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1. Introduction  
1.1 CFD  in general.  

 
   Computational fluid dynamics known as CFD  (Computational Fluid Dynamics) has target flow 
simulation with using computers. CFD has to do with solving the equations that describe the 
phenomenon that we want to solve numerical. The equations of interest are partial differential 
equations in time and space and a discretization scheme is needed, in order to solve them. This 
discretization is a proper division of space in smaller parts (computational cells and volumes). The 
set of the points of these parts are the computational grid. 
     
   Area of study of Computational Fluid Dynamics [1] 
 
• CFD has to do with numerical simulation of fluids motion and the results can be used after 
the initial study of one specific problem, for further observations and conclusions. More time and 
capabilities comparing to experimental procedure. 
• There is no human error affecting the results. The user can study one problem without 
affecting the problem analysis and flow parameters. 
• The user has the ability to observe and analyze all the areas of the computational domain, 
having knowledge of the important quantities everywhere, something that in the experiment is not 
always either possible or easy. 
• Ability to find the best solution. Using CFD we can work different case studies and decide 
which the best model is that will be tested at the experimental equipment. We can conduct only the 
tests needed at the wind tunnel using a specific and promising geometry (an airfoil for example). 
 
   CFD uses methods for solving non-linear partial differential equations of fluids, known as των 
Navier-Stokes equations, with respect to the geometry and boundary conditions. The result of the 
visualization of the flow is the universal knowledge of quantities of interest like pressure, 
temperature, speed, density, Mach number etc. 
   The solutions of Νavier-Stokes equations although they are approximate solutions, they satisfy the 
conditions of the problem in a high level of accuracy. This level of accuracy has to do with the 
computational capabilities which have huge progress the last decades, and with choices, like the 
method of discretization, the method for solving the matrix systems of NxN equations. These are 
choices that can reduce the time of calculations and affect the accuracy and convergence. One of 
these decisions of the user must make in order to obtain a better solution of the flow equations is the 
generation of the computational grid, which is the main purpose of this thesis.  
   In order to represent what mesh changes we studied we will examine all the parts that a CFD 
problem is composed of and some of the basics of CFD analysis. 
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STEPS OF SOLVING CFD PROBLEM  
 
   The analysis of a CFD problem in aeronautics has to do with [2]: 
 
– Topology 
– Geometry 
– Surfaces, internal and external (if they exist) 
– Matching of topology with surfaces 
– Grid generation. 
    
   Grid generation can be an iterative procedure. The grid has nodes and a certain way that they are 
connected. The nodes are organized in blocks. Both nodes and surface boundaries (if there exist 
more than one block) are allowed to move in the surfaces that are corresponding. In the 
unstructured grid, different methods of mesh generation are developed that will be represented 
below. 
 
 
Grid Generation with source code 
 
   The user gives the coordinates at the boundaries of the geometry which must contain at least one 
internal boundary of any shape (the body) such as an airfoil, and one external one (the farfield). 
Using this first set of points, and defining some parameters for coercer of finer set of internal points 
(internal nodes) the code generates the grid. The node placing is iterative and computes the  
circumcircles for every pair of points in order to connect them. The final grid that is generated for 
the case of 2D unstructured mesh is a particular triangulation – Delaunay triangulation, which has 
some characteristics such as: 
– There exist no points in the interior of the circle that fix 3 random points at the final grid. 
– The angles of the triangles (cells) approximate the ones of the equilateral (maximization of 
the minimal angle of all the triangle cells). In that way thin computational cells that can cause 
problems while solving Euler equations are avoided (see ch.3, h-refinement). An example of this 
triangulation is given below (fig. 1): 
 

 
 
 
 

Fig.1: Delaunay triangulation of a set of points. 
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   In case of an airfoil NACA0012, the domain between the internal and external boundary will be 
filled with a unique for those points Delaunay triangulation (interior and exterior nodes). The result 
can be like below (fig.2): 
 

 
Fig.2: Unstructured grid generation from source code over Naca0012. 

 
Grid Generation with commercial programs 
 
   The domain is divided into parts that can be filled separately. There is a clear differentiation of 
Topology-Grid and the options for setting up all the parameters that are equivalent with the grid 
generation, give the user the ability to construct the best possible grid for a given problem, choosing 
in between different models of geometry ( 3 geometry models: H,O,C-grid). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3: Ansys-Icem task bar 
defining geometry of grid. 



7 
 

 
Fig.4: Defining topology over Naca0015 

 
 
 
 
 

 
Fig.5: Grid over Naca0015 ,from Ansys-Icem. 

 
 
 
 
 
 
 

 
 
 
 

 



8 
 

 Methodology for grid generation with many blocks (Multiblock)       

 
   Although it is a simple idea, grid generation in multiblocks can be a tough task. This has to do 
with stuff like numerical integration in areas of interface of the neighboring blocks, where different 
geometries exist, or stuff that have to do with defining which the neighboring blocks are. The key 
for the aerodynamic analysis and modeling is the geometry independent grid description. 
 
• Defining the topology of grid structure of a multiblock, with the best possible structure, for 
the flow modeling and for all the component geometries. 
• Defining nodal density of grid and grid point clustering για τις formed surfaces. 
• Grid generation at every geometry. 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

 
Fig.6: Block-structure jet 

 

Εικόνα 1block-structure jet 
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  In conclusion, the steps for every Multiblock method are (fig.7):  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.2  Equations of flow motion 
 

1.2.1 Navier-Stokes equations 
 
  After the grid construction and defining the boundaries (interior-exterior) of the domain, we are 
done with the mapping from physical to the computational domain. The next step that follows is to 
solve the equations that describe our problem. Navier-Stokes equations and the method of 
discretization used from our CFD solver are the following: integration in volume Ω with boundary 

: 
 
 

      (1) 

   where: 
•  , is the vector of  the conservative variables  : 

 

Fig.7: General structure for solving a CFD problem. 
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=  

 
 
• , the vector of the convective fluxes: 

 

=  

, and   , 
 
•    , the vector of Viscous Fluxes: 

 

=  

 
Where:      

 

 

 

 
 
The system of equations is completed with the perfect gas equation of state: 
 

 

1.2.2   Spatial discretization  
 
   Spatial discretization is about numerical approximation of the conservative and viscous fluxes and 
the integrals that occur. The methods of discretization are in general: 
 
  Finite Differences methods 
  Finite Volume methods 
  Finite Element methods 
Moreover, these methods can be categorized with respect to the type of grid which is used, in: 
 
 Structured Grid methods 
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 Unstructured Grid methods 
 
For the solution of the above equations, it has been chosen the method of finite volumes because of 
the following benefits: 
 
   Spatial discretization is developed in the physical computational domain 
   Finite Volumes methods can be applied in both structured and unstructured meshes 
 
   Finally, Finite Volumes methods can be: 
 
   Cell-centered, where the variables of the equations are calculated at the center of the 
computational cells. In this case computational cells coincide with the cells of the grid. 
  Cell-vertex, where the variables of the equations are calculated at the nodes of the grid. In this 
case computational cells are defined from some volume around the nodal points of the grid. 
  
   The cells are defined at the nodes of the grid and the flow variables are calculated at the center of 
the computational cells (Finite Volume - Cell Centered Scheme). 
Assuming that the cell volume is time independent we get: 
 

 
Where: 
  

(  )   

The initial equation (1) becomes : 
 

  (2) 

 
 
   The surface integral at the above equation can be approximated with the sum of the fluxes at the 
surfaces (faces) of each cell. 
Most of the times we assume that the flux in every surface remains constant and is calculated at its 
center. 
 
Equation (2) for each cell Ι, is written: 
 

 (3)   

 
Where Νf is the number of surfaces that each cell consists of and  Δsm is the surface of the edge   

“ ”. The quantity  is called residual. The final expression 

of the discretized equation is written: 
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1.2.3  Approximation of the variables at the boundaries of each 
cell 
 
   The discretization of the convective fluxes is about finding the fluxes at the boundaries of each 
cell. As mentioned previously, in Cell-centered schemes the values of conservative variables 
( ) are considered known in the cell centers. In order to calculate the fluxes at the cell 
boundaries we need to approximate either the values of the conservative variables there, or directly 
the values of the fluxes. 
  The method that was developed for the solver of our laboratory, calculates the values of the 
primitive variables at the boundaries and afterwards the fluxes. This procedure is called 
reconstruction of the variables. In order to compute the values at the cell surfaces, we use left and 
right states. The interpolation of the variables on a certain surface of a cell is computed twice: One 
on the left and one on the right for a given surface and afterwards we calculate the flux through this 
surface. At this method we may make the assumption that the solution is Piecewise linearly 
distributed in the finite volume. The left and right states are computed with the following formulas: 
 
 

       (4) 
 

       (5) 
Where   is the vector of primitive variables: 
 

=  

And are the distances of the cell centers from the centre of the common surface.  
An important factor in the above formulas is  equations (4), (5). The calculation of the 
derivative is done with Green-Gauss approximation. The derivative is approximated by a surface 
integral: 
 

 
 
 
In Cell-centred schemes, the above equation is discretized like this: 
 

 
    
   The function Ψ is a function that allows the variables to take extremely large values, where 
discontinuities exist. These functions are called limiters. In our case we used the limiter of 
Venkatakrishnan.  
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1.2.4  Calculation of  conservative  fluxes 
 
   The calculation of conservative fluxes is accomplished with the Roe scheme. 
 
At first, we compute the Roe variables: 

 

 

 

 

 

 

 
 

 
The flux at the surface  is defined as: 
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   Variables at the left and right state are calculated with Piecewise Linear scheme. The above 
formulation may give solutions that are not correct from physical aspect. In order to fix this, the 
entropy correction of Harten is introduced ( [4],[5]) for the eigenvalues of the system: 
 

if . 

if . 
 
Where . 

 

1.2.5  Boundary conditions 
 
   Boundary conditions are divided in the following categories: 
 
  Solid Wall boundary conditions 
  Farfield Inflow/Outflow boundary conditions 
  Multiblock boundary conditions 
 
   For the formation of the boundary conditions we may use the so called dummy cells which 
increase the computational domain, in order to make it easier to compute all the variables at the 
boundaries. 
 
 
Solid Wall  boundary conditions 
 
   Solid Wall boundary conditions formulation differs in the case of viscous and inviscid flow. At the 
inviscid case, solid wall boundary conditions are described from the no-slip condition: 
 

at the solid wall. 
Consequently, the vector of the conservative fluxes at the solid wall (inviscid component) becomes: 
 

 
 
where  is the pressure the solid wall. 
 
   For viscous flows, the velocity at the wall is zero (non slide boundary condition). Consequently, 
solid wall boundary condition is: 
 

. 
 
Farfield Inflow/Outflow boundary conditions 
 
   The physical information is transferred with respect with the sign of the eigenvalues of the 
conservative variables from or at the outside of the computational domain at the characteristics. The 
number of the boundary conditions should be equal with the number of the characteristics that come 
through the computational domain. The rest conditions are computed from the existing solution at 
the domain. The flow can be incoming or outcoming at the domain, so there are four types of 
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boundary conditions, with respect to the local Mach number: 
 
  Supersonic Inflow 
  Supersonic Outflow 
  Subsonic Inflow 
  Subsonic Outflow 
 
Supersonic Inflow: In this case all the eigenvalues are positive and are coming inside the domain. 
The conservative variables at the boundary are computed only from the incoming flow. 
 

 
 
 
Supersonic Outflow: In this case all the eigenvalues have the same sign and exit the domain. The 
conservative variables at the boundary are computed projecting the existing solution at the domain. 
 

 
 
 
Subsonic Inflow: In this case, four characteristics are coming in the domain and one comes out of it. 
Only one characteristic variable is computed at the boundary from the interior of the domain. 
  

 
 

 

 
 

 
Where  are computed at the interior of the domain. 
 
Subsonic Outflow: In this case, four characteristics are coming out the domain and one comes in it. 
Four characteristic variables are computed at the boundary from the interior of the domain and one 
is formed at the exterior (in most of the times the pressure): 
 

  
 

                                                        

 
 

 
   At the above boundary conditions we may make the assumption of zero circulation, which fails 
for the case of a lifting body. Because of this, the farfield should be far away from the body.  
Farfield can be reduced significantly, if the outcoming flow be rotated according to the circulation. 
This correction is called vortex correction. 

1.2.6   Time discretization  
 
   For the time discretization, the method of lines was applied. This means that time and space 
discretization is separated and gives a system of interlaced differential equations in time for each 
cell: 
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   The above system of differential equations should be integrated in time either to give us the 
solution for steady problems or to recover the flow history for unsteady problems. 
  For non-moving grids the above equations is written as: 
 
 
 

      (6) 

 
Where: 
 

 
 
Is the correction of the solution. 
 
 
The matrix  is the mass matrix, which is considered unique for the problems that are studied. The 
time step can be a crucial factor for the stability of the problem. The maximum time step for each 
cell is computed with the following formula:  

 
 
Where  are sums of conservative and viscous eigenvalues of the surfaces of each cell. They 
are given from the next formulas: 
 

(2.30) 

 

 
 
Implicit Time-Stepping 
 
   There are many schemes for time integration. An implicit scheme is for  at equation (6) and 
for  is: 
 

       (7) 

 
   From equation (7), we need to know the values at time step   ). In order to calculate the 
residual at this time step, it is linearized through the current time step: 
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Where the component    is the Jacobean of the fluxes. 
 
 
If we apply the Jacobean of the fluxes in the equation (7) and put  we get: 
 

 
where the component   is the implicit operator. 

 
Implicit Operator 
 
The Jacobean of the fluxes is: 
 

 
 
 
   The fluxes in the above equation are necessarily the same with the ones that we used at the space 
discretization because the Jacobean effects only the correction of the solution. 
   Using the Roe fluxes and considering the Jacobean of the viscous fluxes equal to zero, we get: 
 
 

 

 
 

 
 
 
   Assuming that locally Roe Jacobean are constant, we have: 
 

. 

 
 
Unsteady Flows 
 
   For the calculation of unsteady flows we may apply the method of dual-time stepping. For β=1 
and ω= ½ equation (6) becomes: 
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where Δt is the physical time step. In order to solve the above system, the concept of Pseudo-Time. 
In this case, the unsteady problem in real time becomes a steady state problem in Pseudo-Time. 
 
 
 
   Assuming that: 
 

(2.39) 
 
where   is the approximation of   and ti is the variable of  Pseudo-Time. 
The unsteady residual is formulated as: 
 

 
 
   All the components that remain constant during the Pseudo-Time steps are imported at the 
following component (source of component): 
 

(2.41) 
 
   If the solution in Pseudo-Time converges, the residual   will be equal to zero and  . 
Therefore, the initial equation will be satisfied. 
More specifically, in case of indirect methods of integrations in time, the above method is applied in 
the following formulation: 
 

 
 
where (l+1) is the new Pseudo-Time step. 
The next step is the linearization of the unsteady residual in Pseudo-Time: 
 

 
 
with  where the Jacobean of the fluxes defined as: 
 

 
 
With this linearization at the initial equation, we get the indirect numerical scheme: 
 

 
 
where  is referred in Pseudo-Time (which differs for each cell) and Δt is referred in real time 
stepping. 
 
 



19 
 

2. Adaptive mesh refinement. 
 

2.1 Types of refinement. 
 

Mesh Adaptation during the solution iterations   
 
Main purpose of the adaptation: 
   The main purpose of the mesh adaptation is finding a solution of Navier Stokes equations, in 
satisfying levels of accuracy, starting with one initial coarse mesh and ending up with a final fine 
mesh that is refined at areas which is necessary to have more elements, with respect to fluidic 
phenomena. The initial mesh of the problem affects the solution that we will get after a number of 
iterations. This influence is mostly about the convergence and less about the accuracy. 
 
Benefits of the mesh adaptation [3] 
   The new mesh, has an appropriate geometry, adapted to the problems flow conditions, which is 
more suitable than the initial’s one. 
Refining the mesh (final – fine mesh) will cause increment of the computational grid that will be 
used for the solution, but only at areas that this is demanded. The purpose of the mesh adaptation is  
the selective local enrichment of the mesh. It was observed that (chapter 4, Results) that applying 
this local refinement: 
 
a)  The convergence stays at the same or in acceptable levels. 
b)  Increasing the number of nodal points (increasing the number of cells) leads to better flow 
simulation, at any given geometry. 
c) Simplicity of the refinement at unstructured grids. 
 
Types of Mesh Adaption  
 
1) Total reconstruction 
2) Local enrichment (refinement-derefinement or h-refinement) 
3) Moving nodes  
4) Projection techniques  
 
We will study type no2  at the above list, and apply an h-refinement with some flow criteria. 
 There are 3 types of refinement at CFD problems: 
 

 r – Refinement: Nodes, elements remain the same. We relocate the cells at the area that we 
need to increase the resolution. We are not interested in this type of refinement. 

 h – Refinement: The parent cell is divided, giving new children-cells and new nodes. This is 
the type of refinement that we will develop. 

 p– Refinement: We take under consideration, the physical information at the parent cell, for 
example for a shock wave: Increasing  or for boundary layers:  etc and the 
refinement is applied by changing the degree of the basis polynomial of the grid (at finite 
element methods).  

 
   The researcher must decide, according to the problem, the type of the refinement. There are no  
specific criteria that make a certain method more suitable than the others, for a certain problem. In  
this project we applied methods of h-Refinement  using the appropriate fluidic criteria. Before we  
proceed to a detailed description of these methods, we will represent briefly the other two methods of  
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refinement:  
 
► r –Refinement   
   As mentioned before, the number of nodes and cells remain the same, but they change order and 
connectivity, giving a different mesh, locally refined. This method can be applied for structured and 
unstructured grids, steady and unsteady, 2D or 3D fields [4]. 
    
Assumptions for r-Refinement 

 
1)  The mesh adaptation algorithm is mainly designed for the problems that concervation laws hold. 
This does not exclude the fact that it can be used for the numerical solution of any partial differential 
equation, for structured and unstructured grid. 
 2)  The solution of the conservative variables and fluxes is fixed with respect to an inertia grid. The 
solution computed at time step , (let as call it ) is applied for the grid at time step n ( let us 
call this grid at  time, ) that might have the desirable resolution capable for an acceptable solution. 
The adaptation algorithm is called with input the solution  such that after the relocation, the new 
grid , will give us better resolution. This node transportation (relocation) (the mapping ) 
should not alter the solution but only affect the spatial resolution.    
3)  It does not change the grid connectivity. 
 
Ways of r – Refinement (criteria) 
 
- A function for the error (an error indicator), which is a quantity for measuring the lack of the 
resolution at the spatial domain. 
 - A method of reordering the nodes that will preserve the connectivity of the grid. 
 -  An interpolation the solution at the new cells, after the relocation of the nodes. 
    
   At the picture below we can see a simple example of relocation at a three dimensional cell. The 
connectivity remains the same. 
   
 

 
 
  

   
 
 
 
 
 
  
 
 
Relocation with weight functions 
 
   Since we want to increase the nodal density at the domain (if we define as nodal density the set of 
the nodes at the same space scale) we can use a weight function. At [4] for example for wave 
equation:  =0, we firstly apply the mapping from  with the transformation  
      
   For the 3D cell at system of coordinates  we may define the weight function as  

  where  is a coefficient that is used to change the influence of a given  at 

Fig.1: Relocation of grid nodes. 
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the weight function, and  is a mapping that has to do with the processing steps selected from those 
given. 
When the user chooses weight function the nodal relocation can be applied considering the function  

 , like a mass that is related with the nodes of each cell. In that way the new nodes at  
domain will be defined as: 
 

 
                                                
 
The exact same technique is applied for the other two coordinates. The result will be grids with 
higher resolution at the areas of interest. A nice example is given below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
r-Refinement  with  Stretched Grid Method   
 
   Another technique with common logic, is the Stretched Grid Method (SGM), where the grid is 
manipulated as an elastic media where the refinements-deformations will give the desirable level of 
resolution. 
 
Short description of  SGM [5] 
 
   Assuming a grid with triangle cells, then for a random cell with boundary a polygonal continuing 
closed boundary, if we assume a successfully applied number of refinements-deformations at the 
nodal system, then we may define the potential energy of the nodal system, and assuming that this 
energy is proportional of the length of a n-dimensional vector with coefficient all the edges of the 
system, then: 
   Potential energy of a system with n edges:  , where  is a constant and  the length 
of the segment i of every edge. If   (smooth grid) is the vector of coordinates (of all the nodes) 
that is related with the non-deformable grid and  (distorted) then the following formula holds: 

. The problem is then equivalent to find this vector. In order to solve  we apply the 
minimization of the square form of the energy. We demand that:  

, (όπου  = the indicator of coordinates,  = the number of the internal nodes of the 

domain). 
   Finally we obtain the following system of equations: 

Fig.2: r-refinement increases resolution where is needed. 
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       that  will give the new nodes (with the condition that the boundaries 

sustained). 
 
 
 

2.2 h-Refinement.   
 
 

 
 
 
   In this method, new nodes are constructed at the certain areas that are needed, increasing the 
number of the computational cells (fig 3.). This increment of cells is applied considering certain 
criteria that are essential for a successful mesh refinement. This method was developed at this 
thesis. More details about the criteria and the construction of the new grid will discussed at the next 
chapter. Some of the general principles are represented here.  
 
 
 
Cell Enrichment of a mesh and the opposite (refinement/coarsening) 
  
    h-Mesh-Refinement is related with the spatial discretization of the computational domain. This 
means that mesh changes can be a road with two directions: increment of nodes or even vanishing 
them when is needed (fig.4). In these cases we get a better discretization of the domain, more 
suitable for our problem. 
 
 
 
 

Fig.3: h-refinement (structured grid). 
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Fig.4: Refining-derefining structured grid. 

 
 
 
 
Benefits of  h-refinement  [6],[7] 
 
– Application to either Cartesian or unstructured grids. 
– Easily applied algorithm for grid changes. Simplicity. Capability of making a recursive 
method. 
–  Especially for the unstructured grids, the subroutine that was developed, simple ideas for 
dividing parent cells were applied. Most of the original structure remains the same. No special 
treatment for the flow solver needs to be done. No special needs for the initial grid. Rules for the 
quality of the new grid must be implemented at the children-cells. 
– Increment of the resolution, locally for a better simulation. 
 
Aspects of  h-refinement 
 
Some issues for the mesh refinement are the following:  
 
1) Finding the sub regions that the mesh may changes  
2) Grid quality at the above areas and its effects at the solution. 
3) The way that the refinement is developed. 
 
   For a successful refinement one may need: 
 
1) One or more refinement (flow) criteria. 
2) Geometric criteria for constructing the new grid.    
3) An algorithm for the refinement. 
 
For the flow criteria there is a numerous set of options with respect to the problem.   
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General Rules of h-refinement: 
       
1) Flow criteria for choosing the areas of refinement. At the present thesis these were areas 
where shock waves occur. 
2) The above criterion must be bounded, if the corresponding measurement changes while 
solving the governing equations. 
3)  It must be dimensionless. 
4) The interpolation of h-refinement should be consevative, with no mass-energy or 
momentum. 
5) Low levels numerical diffusion, because of the grid changes. 
6) Fast algorithm for computer clustering. 
7) Low CPU usage and memory storage. 
8) Uniform grid. For instance if the initial mesh has a Delaunay triangulation, the new mesh 
must remain close to the Delaunay. 
9) Error distribution at much more cells after every level of refinement. 
10) No need for a priori knowledge of the flow. 
 
 
   The criteria that we applied will be discussed at the next chapter. For consistency reasons we will 
briefly represent the below comparisons:  
 
 
h-Refinement  vs Remeshing 
 
   With the word remeshing one may define the construction of a brand new grid after some time 
steps. This can be used for cases where higher resolution is required. The remeshing technique has 
the disadvantage that: At adaptive remeshing, the new mesh may not have the same nodes. That 
means that extra interpolations for the new nodal points will be demanded [8]. This issue shall 
increase the numerical diffusion.  At the technique of h-refinement this is not an issue, because we 
apply such an interpolation only at areas where cells are divided of eliminated, reducing the 
computations which are demanded for the new mesh. This shows the simplicity of h-refinement 
methods versus the remeshing style. Moreover at h-refinement conservation laws hold by definition. 
 
 
 

3. H-Refinement. 
 
3.1 Over the Grid geometry.   
   Some basic information about the geometry of the grid will be represented here. This chapter 
contains some of the parameters that we should pay attention in order to obtain the best grid quality 
one can get for a given initial grid. 
   Given a set of points (2D ή 3D) even if it is a polygonal line, with internal holes or not, or even if 
it is multiple domain, or a curved domain, one can construct a grid that has this set of points nodal 
points. We may obtain structured, unstructured or hybrid grid (fig. 1). The structured is simply 
generated and the geometry info is clearly defined, whereas the unstructured gives the opportunity 
to change and refine selected sub regions of the domain, and is easily applied at complex 
geometries, giving a large number of cells at the solid bodies (an airfoil for  instance) which means 
much more nodes at areas of interest which is our main target. Block-structured grid combines the 
benefits of the previous cases.  
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The effect of cell type at the numerical solution. 
 
   The shape of the cells that is used to solve the Navier-Stokes equations affects the solution 
obtained at every iteration. By geometry of each cell, one means edges and angles that have to do 
with the following: 
 
Αspect-Ratio 
   We may define aspect ratio (AR) the fraction of the maximal and the minimum length among the 
cell edges (fig. 2) and angle condition the non-existence of angles lower of an given limit value 
(defined as an input). 
 
 
 

 
                                               Fig 2: Aspect ratio (triangle-square cell). 

 
 
 
   In general cells with large AR do not lead at high quality grid and are not desirable. High AR 
means (in term of algebra) poorly conditioned matrices that may cause negative effects at the 
accuracy of the solution for a linear solver. Problems also may occur at the interpolation error for 
high AR even if we obtain acceptable solutions. 
   There some cases where elements with high AR may be desirable. 
At [9] some of these cases are mentioned (cases like these where the solution of the partial 
differential equation is anisotropic). This means that the second order derivative differs 
significantly at some direction. In these cases it is possible that cells with high AR may be 
desirable.. In the same source the ideal AR in a grid is described as the square root of the fraction of 

 
Fig.1: Grid samples a) structured, b) un-structured, c) block-structured, d) hybrid. 
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max and min eigenvalues of the Hessian matrix which includes the partial derivatives of the 
solutions. 
   An example of anisotropic problem is the solution of Navier-Stokes equation  where the suitable 
AR can be quite large near the airfoil body. It is clear that whether we have high Re numbers or not 
this area can be sensitive with respect to the cell shape (see chapter 4, Results). This is obvious in 
the diagram of the pressure coefficient when working in unstructured meshes (triangle cells) 
compared to structured and hybrid cases (with square cells). As shown in the final chapter, quad 
elements have the advantage over triangle elements after consecutive refinements as far the error 
indicator in methods of finite volume. This is explained from the fact that the edges (boundary 
elements) in the boundary are placed parallel, fitted in a appropriate way. 
– Another example of anisotropic solution is those related to shock fronts simulations in 
supersonic flows around airfoils. These cases sometimes can demand sub regions with large AR. So 
small error in the solution can be opposed with grids with triangle cells (at least in inviscid flows) 
affected with the level of refinements. 
   At [10] is developed of a method of Delaunay triangulation where locally generated cells with 
large AR are proven to be efficient in high Reynolds numbers in laminar flows. 
 
 
Small angles 
  
   Another parameter in the element-shape category is the angles of the cell. The level of the solution 
error and convergence can be affected. At our methods of refinement, we applied criteria that keep 
the angles bounded and away from the useless cases of 0º and 180º, giving the user the ability to 
select the minimum and maximum of the angle as input. Typical values for our solver was 30˚ και 
45˚ for cells that neighbor with others that pass the flow criterion. This is shown in chapter 4 where 
the refined areas have almost equal angles. 
  
Refinement and grid structure. 
 
Structured grid 
   The advantages of structured were mentioned before. The memory use is also one of them for the 
same number of cells, due to the simplicity of neighbor connectivity. This simplicity means that in 
order to find the cells close to a refined one, we can count the indexes with discrete steps saving 
computing time. For complex geometries can be also demanded unstructured cells because of the 
overwhelmed structured part after the refinement (can be affected from the flow solver). So for the 
test cases of viscous flows, a method of refining hybrid grids was developed. In these cases 
boundary layers are present and we demand to increase the local resolution. 
Unstructured grid 
   Some of its advantages were mentioned before. Most of the refinement algorithms used 
unstructured meshes and has multiple applications in CFD methods. Meshes are most of the times 
triangles formed with Delaunay triangulation which for this thesis were developed in ANSYS-
ICEM. ICEM like any other software package uses a code that fixes  
Delaunay triangles. There many such algorithms such: Devine and Conquer, Sweep line, 
 incremental, gift wrapping etc. They all can be quite fast generating grids that can be the initial 
(coarse grid) with (  run time or even  for some cases, where  = the 
number of the points. A detailed report and comparison of the most popular of them can be find in 
[11]. 
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Adaptive Mesh Generation 
 
   Finally it is worth to mention the method called adaptive mesh-generation in which are used 
algorithms like the others above and codes starting from an initial set of points and generating a 
mesh applying iterative mesh changes that lead to a more suitable grid. There are direct and implicit 
methods for this purpose that do not apply the mesh changes while solving the governing 
differential equations. For example if one defines a local stretching factor for every single node of 
the initial grid ( -plane) with Delaunay triangulation, then we can have a criterion of the local 
nodal density. Define vector  [10] with norm: (where  are the discretization lines in the 
structured grid and defining the orientation with the unit vector), 
 
 
 
 

                 
                      Fig. 4: Stretching factors (structured mesh 2D) 

Fig. 3: Delaunay triangulation and Voronoi diagrams of a set 
of given points in 2D. 
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. 

 
  When defining this vector/criterion for the local nodal distribution we can choose a subset of 
points at the structured part and using one triangulation algorithm (for instance  Boyers devide-and-
conquer) we can generate the unstructured part connecting the diagonals at the quad cells. This 
procedure may give triangle elements with large AR efficient for viscous flows (fig. 5). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.2 Steps of  h-Refinement.  
 
   Mesh Refinement is a dynamic procedure, which means that the mesh that the solution is obtained 
changes after a number of time steps. The flow solver starts with an intial coarse grid and appling a 
local factor related with flow properties, the solver continues until the desirable convergence is 
accomplished, where the calculated mean error can be near  zero, typically ~ . The way the 
convergence rate behaves after every level of refinement is interesting because it is affected for the 
grid changes (more cells and increasing local resolution reveal the flow details for the shock wave 
over the airfoil, see chapter 4). 
 
 
 
 
The psedocode of the computational plan of the refinement solver is: 
 

 
 solve Navier Stokes on the initial triangulation  
 if    mod(Ntime,Number_of_Ntimes_to_be_refined) = 0 then 
       Estimate error for each cell 
 while maximum error on a cell is larger than the given input tolerance do 

   
  Fig.5: unstructured adaptive mesh generator NACA0012  (2D-viscous) 
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       Mark the cells that have to been refined   
       procedure refine the cells of   , get triangulation  
       Interpolate the variables at   
       Solve Navier Stokes on   
       Estimate the error on each cell   
        
endwhile 
 
 
   The procedure that has to do with the cell division of the computational cells will be described 
detailed later. 
 

 
Fig. 6: Flow chart of refinement procedure. 
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3.3 Applying Mesh Refinement- Cell decomposition. 
 
The discussion that follows is referred to: 
 
 Two dimensional grids. 
 Unstructured type.  
 Triangle and Quad elements. 
 In the flow solver of our laboratory (see references). 
 
 
Triangle cells  
   In generall these are different ways of refinement for triangle cells e.g. where a parent cell can be 
divided. If we take the point where the diameters of each edge meet (barycenter) in 2D-plane we get 
a new node. As result 3 new cells occur with each one having as third vertex the new node. Another 
way of cell division is three new nodes over the edges, and consequently the 4 new triangles that 
occur, have at least one of their edges that belongs in the inside triangle. This case was applied in 
our refinement solver. If the initial triangulation is Delaunay, so it must be the new one. 
 
   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
   This although does not mean that the new mesh will be Delaunay after each refinement. The 
reason is that the new nodes that are made belong to an edge that is shared by two cells: Left-Right 
elements. If one of them fails the flow criterion of refinement (for example local Error estimation) it 
will not be divided in four new ones. But then we will have edges that one side only fluxes.  These 
nodes, called hanging nodes and must be connected with nodes from the initial (this because the 
flow solver does not deal with hanging nodes).  
 
 

 
Fig.7.a) 1 new node, 3 new cells. 

               
Fig.7.b) 3 new nodes, 4 new cells. 
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Quad cells 
   In this particular type, there also different ways of division. As seen in the pictures below the cells 
with four edges can be: 
 α) Splited in two-dimensional space, to four new ones (fig.8.a) ,connecting the midpoints of the 
facing edges. 
 β) Splited at only two edges and so the parent cell is divided to two new ones (fig. 8.b). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.9):1 tet-parent can give 2 tri-children .This case can give another kind of refinement (is not             

applied at our current refinement solver) 

 
Fig. 8b): 1 parent-cell 2 new children-cells. 

 
Fig. 8a): 1 parent-cell gives 4 new children-cells. 



32 
 

   For the purposes of this thesis, the second case was selected: One parent cell splited to two new 
equally sized ones. The obvious discomfort of this method is that the new cells may have large  
aspect ratio and also give two and not four (assuming that in this cases of four new ones, we would 
get more cells and higher resolution). 
   There is a basic disadvantage of our choice : limited Refinement, only at certain structured parts. 
This means that practically the refinement retains the local character as we can see at the following 
picture (fig.10). 
 
 
 
 
 
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   Test cases that we used and modified structured meshes, were, as mentioned previously at viscous 
flows with boundary layer, and due to this fact (friction around the geometry cannot be excluded)   
structured grids are used. Structured grids are also applied at inviscid flows as shown at chapter 4, 
with hybrid meshes. 
 
 
 
 
 
 
 
 HYBRID MESHES 
 
   After the subdivision of triangles and quadrilateral elements, it is worth mentioned to the way 
these two are combined and applied at each mesh change and every level of refinement. 
 
Combining Triangles - Quadrilaterals 
 
   The decision to using both of them has a specific reason: Obtaining results that are close to 
realistic features. This practically means that possible discontinuities or distortions at some 
diagrams that will also occur due to other factors, are eventually avoided.  A useful tool for 
choosing the best possible mesh, is proven to be the pressure coefficient plot. 

                         
Fig. 10: local refinement at hybrid grid. 
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A characteristic case is shown in the following picture 11.  
 
 
 
 
 

 
 
   This case is from airfoil NACA0012, with mach number, Ma∞ = 0.7 , angle of inflow = 2°. 
The unstructured grid with triangles only has been refined (after a number of iterations so that the 
solution convergences). The grid with green color (refined) is o ne level of refinement up than the 
other with the red (coarse) . 
   The “wiggles” in this plot, mainly occur because of the fact that we use cell-centered finite 
volumes. As presented previously for the Navier-Stokes equations, at cell-centred methods  of finite 
volumes the solution is calculated at the center of each  cell and afterwards the fluxes at the edges. 
We calculate the the solution at a finite volume and then at the boundary the related fluxes by 
integrating the governing equations (Euler equations) using with this method, the neighboring cells 
(left+right states). So it is clear that the spatial discretization is related to the neighboring 
computational volumes and the distances from their centers. The big difference between the 
structured and the unstructured mesh is that these distances, from the centers to the faces are equal 
across the boundary (airfoil body). This is something that does not happen at the triangles where the 
distances can vary a lot at the boundary cells (fig. 12). 

Fig. 11: Wiggles at Cp   diagram for unstructured grid at  Ma∞ = 0.7 , angle inflow = 2˚ ,NACA0012. 
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Some more concepts about mesh Refinement  
 
   The solvers code, gives us the opportunity to indentify in every mesh the following among othes 
useful features: 
– Geometric features of the nodes, like their coordinates. 
– Geometric features of the cells of different shape, like volume, unit vectors, etc. 
–  Flow variables at the nodes. 
– Neighbors of each cell and the connectivity.   
 
   This last one is important and gave us an idea for different refinement method. This method was 
focused to avoid the refinement of the quadrilateral cells, generating new cells only at the triagle 
elements. This can be easily achieved by defining an unstructured zone of at the coarse grid that is 
not allowed to be refined even if some elements satisfy the flow criterion (error-indicator). This area 
of not refinement will be triangles and quadrilaterals as shown in the picture 13. 
   So despite the fact that we may have cells that demand refinement and are not eventually refined, 
it is possible that we may also have overwhelmed nodes, meaning that many cells use one node. 
This unpleasant result is shown below at picture 14 and must be avoided. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.12: Boundary elements over NACA0012 



35 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   The above shows that the solution of no refinement case of one layer (coarse-element-layer) is not 
efficient. One can take the same result generating another layer of triangles where, together with the 
structured layer no refinement will take place (inviscid flow). This can easily be done adding 
another loop at the external loop of the code that checks for the first layer (procedure): 
 
   Initialise array layer not to be refined 
   index = 0   
   For each cell = 1 , NTE 
       if Ngeom(cell).eq.2 then 
           index = index +1 
           procedure find neighbooring_cells 
           if Ngeom(neighbooring_cell).eq.3 index = index +1 

 
Fig. 14: Refinement after defining one layer of not-refinement can give 

High-degree nodes and bad quality grids. 

 
Fig. 13: Area of not-refinement -20 layers of structured and 1 layer unstructured grid. 
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       endif 
!  second layer of not-refinement ? 
       If (second layer of not-refinement) then 
           procedure find neighbooring_cells           
           if Ngeom(neighbooring_cell).eq.3 index = index +1 
       endif 
! third layer of not-refinement ? 
       ... 
 area of refinement has been 
 defined (only tri-elements) 
            
 
 
Hanging nodes 
 
   The problem of these nodes has to do with edges  that only one of the two elements that share this 
edge, is divided, as shown in picture 15, for the cases that occurred in this thesis and is about 
triangles and quadrilateral cells and is also related to the way the flow solver deals with these nodes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
  
 
 
 
 
 
 
 
 
    
 
   The solution to this problem is the connection of these nodes with the vertex that faces the divided 
edge. It is more clear in the picture 16. In that way we shall have two new children cells from the 
parent cell. 
 
 
  

 
Fig.15) : Hanging nodes cases .The refinement solver makes 

Sure for the appropriate connections. 
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   Finally it is worth mentioned that hanging nodes is not necessary to be connected in the above 
way and they can remain unchanged if  the flow solver has this capability. A necessary condition is 
that the neighboring cells that hanging nodes exist, should not be refined more than one time so the 
variations of the volume are not very high. That will make sure that that the positions of the parent 
cells and the children cells are such that their centers are almost the same. There are avoided in that 
way [12]: 
α) Effects at the calculation of the error of the fluxes. 
β) The occurring Wiggles at the pressure coefficient. 
  
STEPS OF THE REFINEMENT  (A DJUSTED TO THE FLOW SOLVER) 
 
   The psedocode of the computational program that builds the new  grid is the following: 
 
 Program refine_msh.f90 
! 
! define area of refinement 
! 
 do nel = 1 , NTE 
    read coase grid (tri+quad elements) 
    if error_cell (nel)  >  error_min (eg 10d-6) then 
       i = i + 1   
       if (Ngeom(nel).eq.3) N_tri(nel) = i 
       if (Ngeom(nel).eq.4) N_quad(nel)= i 
    endif 
 enddo                
! 
!  let the dimension of N_tri(i),N_quad(i) 
!  be integers  m_1 , m_2 . 
! 
   call  compute_4_new_tri_cells (N_tri(nel)) 
   call  compute_4_new_tri_cells (N_quad(nel))     
! 
! fix  incompatible elements 
! 
  call contour (N_tri(nel),hanging nodes) 
! 
! the refinement area has been defined 
! fix the rest grid ( new numbering applied ) 
! 
  call  rest_grid (coarse grid \cap(N_tri(i)+N_quad(i) )     
!   
! interpolation 

 
Fig. 16: Second kind of refining tri-elements (2D) 
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! 
! at coarse mesh      
  copy fluxes 
!    
! for new elements 
! 
  set fluxes    
  deallocate array fluxes 
! 
! at fine mesh      
! 
  allocate new array fluxes 
  interpolate fluxes 
  deallocate  array fluxes 
! 
 END of program refine_msh.f90 
 
 
 
 
Thoughts and aspects of the geometry 
 
   In order to achieve a suitable refinement we must, regardless of the decisions that were mentioned 
before and have to do with the mesh quality (Aspect ratio, minimum and maximum angles, volume 
ratio of the finite volumes that neighbor) take care the following parameters: 
 
• Τolerance of the initial grid while designing. This tolerance has to do with the line that the 
curve of the airfoil will be approximated. This approximation is accomplished with a method of 
numerical interpolation of the initial boundary points that the user gives. If this initial grid is 
constructed by a software package like ANSIS-ICEM we can define it and keep it small. 
 
• New boundary nodes. These nodes are constructed at the surface of the airfoil and their 
coordinates are the half of the sum of the corresponding vertices that belong to that divided edge.  
As a result the new node and every new boundary point that is constructed at each level of 
refinements, at edges that belong to the airfoil boundary, follows the initial discretization which 
clearly differs from the airfoil (fig.17). 

 
  
 

 

                                  Fig.17: Initial discretization of a random airfoil and the analytical equation if 
known. The equation which passes through  this points has a tolerance (input). 



39 
 

   The problem that occurs is more clear at areas with much more levels of refinements. The 
problem of the new boundary nodes can be handled with the following ways (both tested at this 
thesis): 
 
α) Approximation with interpolation at the subroutine which computes the new nodal points. The 
interpolation with B-Splines between two points will pass a curve that is affected by the gradient at 
these two points, giving a point that is well fitted at the airfoil Naca0012 or any other airfoil 
(Constrained fitting for airfoil curvature smoothing  [13]). 
The interpolation will be applied every time that the subroutine of the refinement is applied for the 
new nodes. 
This method was successfully developed approximating the boundary faces with second degree  
splines (fig.18). 

 
     

Fig.18) : Method of computing the new nodes at airfoil boundary          

  with splines. The 1st derivative of each polynomial is continuous. 

 
 
β) Airfoils equation (no interpolation). 
 
   We try the analytic equation of the airfoil for fiing the discretization at the boundary nodes and 
their midpoints. In every space   corresponds to two nodes of the cell that is divided to 
new ones giving a new node at the midpoints. 
During the iterations for the solution of Euler equations the refinement subroutine is called and the 
new nodes on the airfoil contour can be computed from the analytic expression of the equation. In 
that way points correspond to the real shape of the boundary. This method can be applied only when 
the analytic equation is known. 
 
The equation of  NACA0012 : 
 

 
 
   The method of analytic equation was applied in this thesis successfully increasing the smoothness 
of the boundary surface, as, especially in cases of supersonic flows as proven (chapter 4) this can be 
an important factor for the wiggles that occur at the pressure coefficient  graph (figure 19). 
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Functions for refinement solvers at finite volume methods 
 
   Let F be the quatity/criterion, such as pressure, density, and others, then the grid adaptation can be 
applied in areas related to this quantity, meaning that a criterion will be a function of F. Some of 
these functions can be: 
 
– Absolute difference (difference of the considering quantity)    between two 
nodes   . 
– Relative difference (divided with the local mesh size). 
Let’s call  the local length, between , then we may use:        , or some other versions  

like the following: 
 

   ,   

 
 
The functions above are expressed dimensionless, using the mean value of   at the face:  

   and if we want to amplify or discourage the rate of big or small vertices division, we 

may use weight functions increasing of decreasing the value of     
( ). 
 
 
 
 
 

Fig. 19:  Cp –x/chord diagram over Naca0012 , Ma∞ = 0.1 , angle =5˚ ,Re =10e-6. 
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Adaptation and criterion functions behavior   
 
   In case of linear distribution of the quantity  the division of the face  will give two new 
children cell edges that across them, due to the linear distribution, will have variations that will be 
equal ( ). It seems more possible to achieve a new level of 
refinement at the children - faces (h-refinement). This means that the adaptation can be bounded at 
certain areas (bounding edges Sierpinski’s triangle) something that can be pleasant or not. 
      
Refinement functions at inviscid flows [14] 
 
Cell centered scheme    
   As mentioned in a previous chapter, the flow solver of Navier-Stokes equations  computes the 
variables at the centers of each finite volume. This means that the following computations are 
applied at the center of each cell (fig. 20) and let us call two random cell centers . 
   The expressions that can be used for criteria for strong shock waves and are mainly: 
 
1) The square of the norm of velocity change: 
            . 
 
2) The absolute difference of Mach number: 
             ,ενός 
 
3) The absolute difference of the (static) density: 
            . 
4) The dimensionless difference of (static) density: 
             . 

5) The absolute difference of the pressure: 
            . 
6) The absolute difference of the static pressure: 
             . 

 
 

 
Fig.20): For every cell-center ,the neighbors are used for some criteria. 

 
Special cases: 
 
– For weak discontinuities of the flow we can use as refinement functions, expressions of 
pressure, density and velocity which can be quite efficient.       
– Stagnation points are revealed only with refinement functions related to the velocity   
– Viscous layers are captured with the vector of the rotation  which is: 
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. 

 
 
– Circulation areas, combination of criteria of rotation and Mach number. 
 
   The refinement criteria that used mach number and density appeared to be almost equally efficient 
and were selected for transonic flows with shock waves. Pressure can also be successfully used for 
finding the sub regions that mesh changes must be applied. The same holds for the variation of 
velocity. All these quantities are inserted as input at the refinement solver where the user defines the 
criterion/a of his choice. 
 
 
The reverse procedure - Mesh coarsening  
 
 
(We will briefly define the following notations for the coarsening)    
 
Let us call: , a grid that the time  has a level of refinement    
(with  
   
For  cases of  problems and triangle cells, there are three possibilities: 
  
– The four new cells of    are replaced at  by  the parents they come from 
at  
– The two new cells in the second layer of refinement, are replaced by the parent cell they 
were constructed.  
– The four new cells are replaced by two new cells. 
All these cases are shown below: 
 
  

 
 
 Fig.21: Derefining unstructured mesh, 

with triangle elements. 
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3.4 Interpolation  of the variables 
 

   After constructing the new mesh we must transfer the fluid information at the new cells. For this 
purpose we may use arrays that this information (the flow variables) is temporarily is stored. This 
memory allocation is temporary and done only for the current time step, before the flow solver 
continues the solution of the problem. 
  
Initialise temp_arrays 
for each flux variable allocate temp_arrays  /duplicate 
      temp_arrays = flux_arrays      /flux_arrays coarse grid 
      deallocate flux_arrays 
 assign fluxes at refined grid 
deallocate temp_arrays    
   
   
Cells that do not change. 
   The interpolation at the cells that do not change and keep their geometry is simple: all the flow 
propertiesat the previous time step at the coarse grid are transferred to the refined grid. So the 
concervative fluxes remain the same at the next time step. 
 
Cells that are decomposed. 
   The control volume  is divided to either 2 or 4 new ones  and will obviously be:    
and  , for the new volume and mass. The new cells will get the physical 
information of the parent cell they became from (fig.22). 
 
 
 

 
 

Fig.22 :Interpolation of variables for unstructured mesh. 
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4. Test cases 
 

4.1 Inviscid flow,  Ma∞ = 0.7, angle of inflow = 2°. 
 
   In this particular case we have a shock wave at only one side of the airfoil (suction side). We want 
to construct a mesh suitable for this phenomenon. This is accomplished with the right criterion and 
the geometric limitations used by the solver. After trying multiple refinement functions, mach 
difference appeared to be quite efficient. The solution is at first approximated using a coarse 
unstructured grid with 3658 cells. The refinements that were applied to the area of interest (the 
shock wave at fig.1) are shown at the following pictures: 
 
 
 
 
 

Refinement criterion was the absolute difference of mach number (0.12), and mean error of 
energy at each cell (10d-03). 

 
Fig. 1: Area of interest (Mach =0.7, inflow angle = 2˚). 



45 
 

 

 
Fig.2: 1st refinement, 4323 triangle elements, Ma∞=0.7, angle =2˚, Naca0012. 

 
Fig.3: 2nd refinement, 5383 triangle elements, Ma∞=0.7, angle =2˚, Naca0012. 
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Fig. 4: 3rd refinement, 6671 triangle elements, Ma∞=0.7, angle =2˚, Naca0012. 

 
Fig. 5: 4th refinement, 9353 triangle elements, Ma∞=0.7, angle =2˚, Naca0012. 
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Fig. 6: 5th refinement, 14696 triangle elements, Ma∞=0.7, angle =2˚, Naca0012. 

 
Fig.7a: 6th refinement, 24442 triangle elements, Ma∞=0.7, angle =2˚, Naca0012. 
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Fig.7b: Refined mesh at shock wave region, Ma∞=0.7, angle =2˚, Naca0012. 

 
 
 
 
   The pressure and lift coefficient graphs follow next at figures 8 and 9. Both cases of refined and 
non refined grids are plotted for comparison. These two as we will see the convergence of the mean 
error of density differ long before the solver is called. The reason is that different CFL and number 
of internal iterations the flow solver uses at each case. As a result final CFL equal to 20 for  refined 
and 5 for non refined grid the iterations to reach the CFL were 100 and 1 respectively. 
CFL number can be an important factor that can affect the convergence. Large values the rate of 
congruence increases and very high CFL may lead the solution to divergence. 
In general there were used small values of final CFL such as 20 or less. So in general it can affect 
the levels of convergence mean error. 
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Fig.8: Pressure coefficient, for Ma∞ =0.7, angle=2.0˚, Naca0012 

 

 
Fig. 9: Lift coefficient, for Ma∞=0.7 angle=2.0˚ Naca0012. 
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   The graph for the mean error of density with respect to time steps is the following (fig. 10): 
 

 
 
 
 
Results: 
 
– The figure of pressure has distortions at the suction side at almost the 25% of the chord. 
These wiggles also occur after applying the refinements, but they are smoother. This is caused by 
the triangle shape of the cells across the contour of NACA0012. 
– Lift coefficient changes and convergences at a higher value with the new grid. 
– Mean error of density jumps from 10e-16 at 5.72e-07 reaching a mean value around 3.88e-
06. In order to explain this big difference, let us have a closer look the area of interest after the 6th 
refinement (final grid): 
 
  
   
 
 

                                                                      

 
Fig.10: Mean density error through convergence history. Every peak assigns to a refinement. 

Refined case CFL final 20, Non-refined case CFL final 5. 100 iterations to reach cfl final for 

Refined case, 1 for non-refined case. 
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 The area of the refinement at a closer look. The shock wave is in the middle of the new grid region 
(fig. 11-12). 
 

 
Fig.11: Shock wave and grid placing it after the final refinement. 

                                      

 
Fig.12: Shock wave grid at closer look. 

 

Εικόνα 12:  Κάθετο Κύμα Κρούσης (εστιάζοντας περισσότερο) Ma=0.7 angle=2.0 
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   Taking as criterion the absolute difference of mach number between two neighboring cells, and 
taking as a second criterion of refinement the mean error of density then for Mach difference  = 
0.10 and limit for the error at each cell = 10d-03, the shock wave is located and the solver keeps 
refining the mesh until a limit to the number of cells (which in out our case was chosen to be 20.000 
cells). We observe that there exist inside the refined areas, sub regions where the mean energy error 
is larger than the others (fig. 13). 
 

 
Fig. 13: Sub-regions with large error of energy .Inviscid flow, Ma∞=0.7, angle =2.0˚. 

 
 
 
 
   These sub regions shown above with light green color may have a mean value that is 3 or more 
times larger than the rest domain and cause the increment of the mean error in high levels close to 
10e-06. 
 
– Absolute Mach Difference   = 0.12,  Mean Error  = 10d-03  (stricter criterion) 
 
   In this case the refinement solver will fix the mesh only the are of the shock wave and not in the 
stagnation point as before. The criterion is more demanding and the refinement is even more 
targeted. Moreover we only get one level of refinement (fig. 14). The new grid will have only 3999 
cells. This means that it will refine ~ 9% of the initial mesh (3658 cells). The mean error of density 
falls at the levels of the previous case (fig. 15). 
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Fig.14: 1st refinement Ma∞ =0.7 angle =2.0˚, Mach- difference with neighboring elements =0.12. 

Fig.15: Mean error of density after 1st refinement with stricter criterion. Inviscid flow, Ma∞=0.7, 
angle =2.0˚. 
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– Using triangle and quad cells. 
 
    The same criterion absolute Mach difference and mean error per cell can be successfully be 
applied in a coarse grid with triangles and quadrilateral cells at an initial mesh with more cells 
(initial number = 10413 cells): 
 

 
 

                                                           
Fig.16 : Grid after 1st refinement ,10980 elements, Ma∞=0.7 ,angle =2˚ ,Naca0012.  

                                                  
Fig.17:Grid after 2nd refinement , 11728 elements, Ma∞=0.7 ,angle =2˚ ,Naca0012. 
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Fig.18: Grid after 3rd refinement, 13020 elements, ,Ma∞=0.7 ,angle =2˚ ,Naca0012. 

 
Fig. 19: Grid after 4th refinement, 15920 elements, Ma∞=0.7, angle =2˚, Naca0012. 
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Fig.20: Grid after 5th refinements (21976 elements), Ma∞=0.7, angle =2˚, Naca0012. 

        
Fig. 21: Closer look at refined grid after the 5th refinement, Ma∞ =0.7, angle=2.0˚. 
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Fig.22: Comparison of Cp coefficient for coarse and refined grid for NACA0012-Mach 0.7 angle =2.0˚. 

 
Fig.23: Comparison of  CL for the coarse and the refined grid with respect to convergence history -Ma =0.7  

angle =2.0˚, Naca0012. 
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   In the case of hybrid mesh the criterion of absolute Mach difference remains the same, at 0.12 and 
the limit for the criterion of mean error at each cell becomes 10d-02. The refinement area is figured 
in figures 25-26. We may observe that: 
– Pressure and lift coefficient figures (fig. 22-23), remain the almost the same (refined and non 
refine cases). There are no wiggles at the pressure because of the structured layer. Moreover the 
mean error of density (fig. 24) increases to the levels of 10e-06 reaching a value close to 1.21033e-
06 after the last refinement. 
– The area of the shock wave is shown in figures 27a)-b). Again there exist sub regions with 
high values of energy error (fig. 28a). The maximum error is close to 0.10. 
 
 

Fig.24 : Mean error of density for both Coarse-Refined grid ,Ma∞=0.7 ,angle=2.0˚ ,Naca0012. 
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Fig.25:Area of refinement –Mach =0.7 ,angle =2.0˚. 

 
Fig.26: Shock Wave over Naca0012, Ma∞=0.7, angle=2.0˚ 
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Fig.27a: Shock wave after the refinement. The red area (supersonic) is even closer with the blue one 

(subsonic). 

 
Fig 27b: Density at an area of big mean error of energy, Ma∞=0.7, angle=2.0˚. 
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   If the refinement solver is called at a time step, where the convergence is even more greater ( with 
even lower mean error) the result will be the same: 5 levels of refinement with the figures of Cp ,CL 
the same as the above case. The mean error of density in this case is shown below (fig. 28b). 
 

 
Fig.28a: Typical example of an area with large mean error of energy. These sub-regions meet 

across the shock wave increasing mean error of density. 

Fig.28b: Mean error of density through convergence history, case Ma∞ =0.7, angle =2.0˚. 
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4.2 Transonic flow,  Ma∞= 0.85, angle of inflow = 1.25°. 
  
   The criteria for the refinement were the absolute difference of mach number (equal to 0.13) and 
the mean energy error at each cell (equal here to 1e-01). The final CFL was also a parameter that 
varied. At the case was equal to 5. Number of cells at the initial unstructured mesh = 3658. 
In this case we have inviscid flow around Naca0012 with Mach number 0.85 and angle of flow 
1.25˚. Two shock waves appear (fig. 29a-b) almost perpendicular to the contour of the airfoil. The 
initial coarse grid is refined in two different areas where the criterion points to. 
  Looking the levels of refinement we may observe that the majority of the new cells is fixed at the 
strong shock wave. This seems fair as both to shocks are refined by the same quantity-criterion. 
  In order to avoid the large scale refinement, a stricter value for the bandwidth of refinement was 
used. This is about the portion of the cells that will be divided by two and is also given as input at 
the solver. In order to avoid the large scale refinement, a stricter value for the bandwidth of 
refinement was used. This is about the portion of the cells that will be divided by two and is also 
given as input at the solver. 
 
 
 
 
 

 
Fig.29a: Mach lines for inviscid flow Ma =0.85. 

 
Fig.29b: Mach distribution over Naca0012. 

 
 
   The mesh changes follow below. The refinement is accomplished both on the pressure and suction 
side, where the absolute difference of mach number is quite large. This limit for the criterion was 
defined after testing multiple values. As seen at figures 31-35 the transition from the coarse to the 
refined part is a serious issue. Some geometric aspects were fixed by the solver’s ability to check 
the neighbor’s angles and volumes as mentioned at chapter 3 and the limits of the number of cells at 
the two new cells area and the number of the four new cells area. So the smoothness from coarse to 
finer grid is also taken care. 
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Fig. 30: 1st refinement, 4508 elements, Ma∞ =0.85, angle =0.125˚. 

 
Fig 31: 2nd refinement, 6087 elements, Ma∞ =0.85, angle =1.25˚. 
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Fig 32: 3rd refinement, 9131 elements, Ma∞ =0.85, angle =1.25˚. 

 
Fig. 33: 4th refinement, 15264 elements, Ma∞ = 0.85, angle =1.25˚. 
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Fig. 34: 5th refinement, 27067 elements, Ma∞ =0.85, angle =1.25˚. 

 
Fig.35: Area of refinement at big shock wave, Ma∞ =0.85, angle =1.25˚. 
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Fig. 36: Pressure coefficient over Naca0012, Ma∞ =0.85, angle =1.25˚. 

 
Fig. 37: Lift coefficient over Naca0012, through convergence history. Ma∞ =0.85, angle =1.25˚. 
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OBSARVATIONS 
 
– For the pressure, the wiggles that occur at the triangle meshes, still exist here (fig. 36) and as 
mentioned before this (unpleasant) behavior is common at unstructured cases due to the cell’s 
shape. Pressure coefficient Cp seems to improve after the refinement and shock waves are perfectly 
mapped at the pressure plot.  
– Lift coefficient CL diagram normally changes and convergences at a value a little lower than 
0.4029 of the non refined mesh. 
– As for the mean error of density, does not keep the low levels of congruence in the non 
refined case (fig. 38) and approximates a mean value around 5 to 8 10e-08. This big mean error is 
the result of cells with high error. Moreover an extra limitation was the number of cells for the next 
refinement of a mesh (less than 20.000 cells). The final mesh has 27067 cells (7.38 times larger than 
the initial). In figure 39 one can see where the mesh changes, and how “the criterion draws the path 
of refinement”. At figure 40 there some captions of the shock wave over the upper side with the 6 
(1+5) meshes. There exist regions where the mean error of energy is significantly big compared to 
the neighboring. The cells in these regions contribute to the high maximum error at both (fig. 
41a,b,c,d). Comparing a caption before the forth refinement and afterwards (fig. 41 d) we can 
observe the revealed detail. At the next caption (every caption is in 1000 time steps) the error is 
smaller. Figure 41 is repeated in a way similar to the behavior the mean error of density. 

Fig. 38: Mean error of density, Ma∞ =0.85, angle =1.25˚.  
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 Fig.39:Area of refinement for Ma∞ =0.85, angle 1.25˚ 

Fig. 40 : Pressure capture through the refinements. 
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Fig.41: Mean error of energy per cell a) before 4th refinement ,b)after 1000 time steps  and c)after 
2000 time steps, d) after 3000 time steps  Ma∞ =0.85 ,angle =1.25.˚ 

 
   Above are figured the captions of the maximum energy error of energy.  Small regions across the 
shock waves may have these variations, and this is just a typical example. As before after the 
repeated refinements the maximum error which is revealed in these areas, increases the error levels  
of the whole mesh. These refinement areas have large mean error of energy with respect to the rest 
mesh. 
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   This observation leads us to the question: how is the number of cells can affect the convergence 
levels? A stricter criterion for the number of cells of the coarse mesh each time the refinement 
solver was called. Decreasing this number and applying one level of refinement less each time we 
can see the congruence behavior. The relation of the number of cells and the mean error of density 
for the same criterion of refinement is figured below (fig. 42): 
 
 
 
 
 
 

Number of 
Refinements 

Final Number 
of tri-elements 

3 9131 

4 15264 

5 27067 
 
  

 
 
 
 
 

 
Fig. 42: Same error indicator and Mach criterion with 3, 4 and 5 refinements respectively, Ma∞ 

=0.85, angle =1.25˚. 
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   As we can see in picture 42, applying 2 refinements less we can reduce the mean density error 10 
times smaller, and with one refinement we can reach at the same levels with the non refined mesh 
(fig 43). The same happens is we relax the criterion by increasing the mach number from 0.13 to 
0.12 (fig. 44).  

 

 
Fig. 43: 1 refinement, mean error of density is significantly small. This is an example of one 

Single case not mentioned further. 

Fig. 44: Changing Mach number limit gives 4 refinements and even lower mean rho error ,Ma∞ 
=0.85 ,Angle =1.25˚. 
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TESTING VARIUS REFINEMENT CRITERIA 
 
   Generally, the criterion of the absolute difference of mach number turned to be the most efficient 
for shock waves helping us to determine where the solver must be apply the mesh changes.  
Although others can also be tested. One can use the square root of the divergence   where 
except for the shock’s areas, some other sub regions are selected too like the stagnation point (fig. 
45). 
 

 
 
 

 
Fig. 45: 2nd refined grid, divergence of pressure criterion, at stagnation point, Ma∞ =0.85, angle 

=1.25˚. 

Fig.46: Mean error of density after 2 refinements, Ma∞=0.85, angle =1.25˚, Naca0012. 
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– Inviscid flow, Ma∞=0.85, angle of inflow =1.25˚, with finer initial grid. 
 
   The test case of mach 0.85, was promising as concerned the convergence so a initial coarse 
unstructured mesh with more cells was used. This mesh has 13586 triangle cells and the refinements 
are below (fig.47-48-49-50). 
 
 

 

 
Fig. 47: 1st Refinement, grid with 15828 tri elements, Naca0012, Ma∞ =0.85, angle =1.25˚. 

Fig.48: 2nd Refinement, grid with 20245 tri elements, Naca0012, Ma∞=0.85, angle =1.25˚. 
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Fig.49: 3rd Refinement, grid with 28891 tri elements, Naca0012, Ma∞ =0.85, angle =1.25˚. 

Fig 50: 4th Refinement, grid with 45955 tri elements, Naca0012, Ma∞ =0.85, angle =1.25˚. 
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The pressure and lift coefficient and mean error of density with respect to time are the following: 
 

 
 

 

 
Fig.51: Pressure coefficient for 4 refinements, with an initial grid with 13586 tri-elements, Ma∞ 

=0.85, angle = 1.25˚. 

Fig. 52: Lift coefficient for 4 refinements with an initial grid with 13586 tri-elements, Ma∞=0.85, 
angle =1.25˚, Naca0012. 
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– As shown in picture 51 the graph of Cp is quite smooth, and every peak corresponds to a 
shock wave like before. This pressure profile is satisfactory and the sharp slopes at the non refined 
case are eliminated.  
– Similarly, at the lift coefficient graph looks different than the non refined case. In this case 
for the first time the lift takes lower values after the refinement: The lift is reduced with the grid 
changes. The reason is because of the pressure coefficient around the airfoil is changed with the 
new mesh and so does the integral of the pressure (as a result the lift coefficient). 
–  Mean error of density is slightly improved with respect to the less populated initial grid in 
the previous case. Generally, the run cases proved that an initial grid with much more cells may 
give the same convergence, with an initial one with fewer cells at the same flow conditions and 
refinement criteria at Mach =0.85, flow angle = 1.25°. This means that starting with 13586 cells, 
and applying some refinements, we may expect the solution to convergence, with a cut-off error at 
1e-07 with a grid with more cells than before. 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 53: Mean error of density through time evolution after 4 refinements with a coarser initial grid, 

Ma∞ =0.85, angle =1.25˚, Naca0012. 
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   The mean error in the less populated mesh is distributed at big computational cells. A mesh like 
this consists of cells with mach number less than 1 that share faces with others with mach greater 
than 1. When applying a refinement, cells like these still exist across the refinement regions. The 
number of these elements increases and the shock wave is captured with more details after each 
refinement level. This can be shown below (fig.54). The supersonic and subsonic areas are figured 
and in the middle the shock wave.  
 
 
 
 

 
 
 
 
 
 
 
 

Fig. 54: Shock wave over Naca0012, (suction side) capturing primary value per cell , after 4 
refinements. 
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4.3 Inviscid flow, Ma∞ = 0.6, angle of inflow = 2.0°. 
 
   This test case is theoretically easier than the previous ones because of the weak shock wave that is 
developed over the airfoil Naca0012. The refinement criterion was the error and the absolute 
difference of mach number with smaller values than above test cases. Other criteria were also 
applied such that the divergence of pressure and the density combined with the error indicator. 
These all criteria although have the negative feature: the dispersion of the quantity of interest, after 
every refinement. For example the mean and max value for the pressure is double after the first 
level. Consequently the solver selects and refines not only the shock wave area but more regions   
with the Mach criterion (fig. 55). 

 
 
   Every function criterion can be eventually be applied using an appropriate value as limit. 
Initial unstructured mesh with only triangle cells: 
Coarse grid with 3658 triangles and refinement selection with the following quantity: 

 

 
 
  And the mean error per cell equal to 10d-01 (higher than before). An extra limitation for the coarse 
grid to have less than 6000 cells. As a result 4 levels of refinement were applied (fig. 56-57-58-59). 

Fig. 55: Selected area, for Mα∞ =0.85, angle of inflow 4.0˚. 
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Fig. 56: 1st refinement, 3956 triangle elements, Mach =0.6, angle =4.0˚, Naca0012. 

Fig. 57: 2nd refinement, 4441 tri-elements, Ma∞ =0.6 ,angle =4.0˚, Naca0012. 
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Fig. 58: 3rd refinement 5656 tri-elements, Mach =0.6, angle =4.0˚, Naca0012. 

Fig. 59: 4th refinement, 8351 tri-elements, Mach =0.6, angle =4.0˚, Naca0012. 



81 
 

 
 

 
 

    
Fig. 60: Cp for Naca0012, refined and non-refined cases for Ma∞ =0.6, angle =4.0˚. 

Fig. 61: Lift coefficient through convergence history for refined and non-refined cases,                  
Ma∞ =0.6, angle =4.0˚. 
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– For a small rate of refinement ~2.28 times the initial number of cells, the mean error of 
density drops at the same and even lower levels of non refined case. The criterion we chose 
represents the maximum variation of the pressure in the computational domain. The solver selects 
areas with large mean pressure changes (fig. 63). As we can see one of these areas is the one that the 
shock shows up (fig.64). The stagnation point is chosen too and more nodes in the boundary are 
constructed with the numerical methods mentioned at chapter 3. 
 
 
 
 
 
 
 

 
Fig. 62: Mean error of density for Naca0012, refined and non-refined cases, Ma∞ =0.6, angle 

=4.0˚. 

Fig. 63: Pressure distribution around Naca0012,     
Ma =0.6, angle =4˚. 
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Pressure and lift coefficients are presented in figures 60 and 61. Wiggles at pressure graph still 
occur due to unstructured mesh. This problem can be solved with combining triangle and 
quadrilateral cells in the initial grid. For the hybrid case that follows a limitation to the number of 
cells at the coarse grid at each refinement was applied (less than 15.000 cells).  
 

- Hybrid mesh with triangle and quad cells. 
 

   We test this same flow (Ma∞ =0.6, angle of flow = 4˚) using the mach difference criterion (10d-
05) with the error indicator of energy per cell. 
   As we can see (fig. 65-71), the new grids are refined at the stagnation point and the around shock 
wave as it was expected. 
   Initial number of cells is 11463 cells. The captions of each refinement are following: 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.64: Mach distribution around Naca0012. Solver refines the area of the shock wave too. 
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    Fig.65a) : 1st refinement .Number of elements                         Fig.65b) : Mach distribution over Naca0012 

   11463 hybrid mesh .Ma∞ =0.6 ,angle =4˚ , Naca0012.                              for   Ma∞ =0.6 angle 4˚ . 

  
 
 

 
 Fig. 66a) : 2nd refinement .Number of elements                             Fig.66.b) :Mach distribution for 2nd refinement.     

 12573 hybrid mesh. Ma∞ =0.6 ,angle =4˚ ,Naca0012. 
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Fig.67a) :3rd refinement , 13899elements hybrid                                  Fig.67b)  :Mach distribution over Naca0012. 

            mesh. Ma∞ =0.6 ,angle 4˚ ,Naca0012. 

 
                                                                                                                                                           
 
 

 
Fig. 68a) : 4th refinement .Number of elements 16872,                   Fig.68b) :Mach distribution over Naca0012. 

        hybrid mesh .Ma∞ =0.6 ,angle =4˚ , Naca0012. 
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Fig.69a) : 5th refinement .Number of elements 23836 ,                      Fig.69.b) : Mach distribution for 5th refinement. 

             hybrid mesh .Ma∞ =0.6 ,angle 4˚ ,Naca0012. 

 
 

 
Fig.70a) : 6th refinement ,Number of elements 36168 ,                Fig 70b) : Mach distribution for 6th refinement. 

              hybrid mesh .Ma∞ =0.6 ,angle 4 ,Naca0012. 

 
 
   The grid changes both at structured and unstructured part. Using the suitable values for the 
geometric smoothness we may obtain as figured at pictures *.α) finer meshes at the shock wave 
region around the airfoil. 
   Pressure and lift coefficient and mean error of density diagrams are following next compared to 
the non refined case (fig. 71-74): 
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Fig.71) : Pressure coefficient for both cases of refined and non-refined grid , Ma∞ =0.6 ,angle 4˚ over Naca0012. 

 
 
 
 

 
Fig.72) : Lift coefficient for the refined and non-refined grid ,cases .Ma∞ =0.6 ,angle =4˚ ,over Naca0012. 
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Fig.73) : Mean error of density for refined and non-refined cases. Every peak of the graph is assigned to a refinement 

.Ma∞ =0.6, angle 4˚, Naca0012. 

 

 

   Pressure coefficient is properly simulated and wiggles are eliminated after the refinements (fig. 
71). Lift coefficient stays the same as the non refined test case. The huge difference appears at the 
mean error of density. Sub regions with large energy error surrounded by ones with lower (fig. 74a) 
these areas may exist across the shock wave at the unstructured part near the structured one where 
the elements have high aspect ratio (fig74b). The final mesh has 36168 cells (3.32 times more  
populated than the initial). 
 

 
Fig.74a) : Areas with large error of energy (unstruct.).   Fig.74.b) :Elements of high aspect ratio (structured).   
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4.4 Inviscid transonic flow, Ma∞ = 0.95, angle of inflow = 0˚ 
 

   At this test case shock waves around Naca0012 form a triangle area (pressure-suction side-
farfield). The criterion of absolute difference of Mach number is efficient tested here too for 
these shocks. These areas have also large variation of pressure (fig. 75b-76b-77b). As a result 
the selection was made with the divergence of pressure which was more suitable than one with 
mach number. The solver refines only cells that have pressure divergence larger than the input  
limit alongside with energy error per cell. Initial unstructured mesh with 11629 cells. Each 
refinement level is shown below (fig. 75a-76a-77a): 

 
 

 
Fig. 75a) : 1st  refinement , number of elements 16239 ,                         Fig. 75b) : Pressure around Naca0012. 

         all tris. Inviscid flow Ma∞ =0.95 , angle 0˚, Naca0012.                              

 
 

 
Fig. 76a) : 2nd  refinement, number of tri elements 25127.                  Fig. 76b) : Pressure lines for 2nd refinement. 

              Inviscid  flow, Ma∞ = 0.95, angle =0˚, Naca0012. 
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Fig. 77a) :3rd  refinement ,number of tri-elements 44487.                    Fig.77b) :Pressure lines for 3rd refinement. 

        Inviscid  flow over Naca0012 ,Ma∞ =0.95 ,angle =0˚.                              Pressure value was the main criterion. 

 
 
 

 
Fig.77c) : The 3rd refinement at a closer look. refinement over areas with  

large pressure and Mach differences (inviscid case). 
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   Mach number and pressure changes need finer grid at the leading edge and the area of the shock 
waves. There exist 3 areas where the mesh changes and the rate of refinement was defined to the 
input to avoid extensive mesh population, and at the same time allowing the solver to select a larger 
amount of parent cells than previous test cases 8.2% of the initial mesh from 5% before). The 
number of layers that will be refined and neighbor to the ones selected from flow criteria, is also 
reduced. 
   The pressure coefficient, lift coefficient and mean error of density through time evolution 
compared to the non refined case are following (fig. 78-80): 
 

 
Fig. 78 :Pressure coefficient for inviscid  flow over Naca0012 ,Ma∞ =0.95 ,angle =0˚ 

(both refined and non-refined grid  cases). 
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Fig. 79) :Lift coefficient through convergence history for inviscid flow over Naca0012, Ma∞ =0.95, angle =0˚. 

 
 

 
Fig.80) : Mean error of density through convergence history  for inviscid  flow over Naca0012 , 

Ma∞ =0.95, angle =0˚.Error is almost equal after each one of the refinements. 
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   Because of the zero angle the pressure distribution is as expected to remain the same (fig. 78). The 
same holds for the lift coefficient (fig. 79). 

   Differentiations appear only at the diagram of mean error of density. The convergence level is 
satisfying and approximates the value of 1e-08. The final grid has 44.487 triangle cells giving us a 
suitable flow simulation. In this test case convergence is affected by the CFL number, (final CFL), 
and smaller value was selected to achieve better convergence. The  CFLfinal used was 5 here. 

 

 

 

 
Fig.80a: Error of energy for inviscid flow over Naca0012, Mach=0.95, angle =0. 

 

 

 

4.5 Inviscid transonic flow, around two-elements airfoil, Ma∞ = 0.185, angle 
of inflow = 6˚. 
 

   At this test case the inviscid flow over the two-elements airfoil NLR -7301, was studied. There is 
no shock wave so the absolute difference of mach number will not be efficient here. Either the 
pressure or the changes at velocity were rejected to. The refinement criterion was the error indicator 
of energy of each cell. The cut-off for the selection was a small number around 10d-08, because of 
the small Ma∞   number of the flow. The initial grid was firstly designed and then refined has 9016 
triangle cells. 

   The new grids are presented below, for each refinement (fig. 81a-82a-83a-84a). Grid changes are 
applied where the energy error is larger (fig. 81b-82b-83b-84b) and is mostly between the main 
wing and the flap. 
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Fig. 81a): 1st  refinement ,number of elements 10578 (all tris).        Fig.81b) :Energy error distribution between   

    Inviscid flow over NLR-7301 airfoil ,Ma∞ =0.185 ,angle =6˚.                      The 2 elements (error criterion). 

                                                                        

    

 

  
Fig.82a) : 2nd  refinement for inviscid flow over NLR-7301 ,            Fig.82.b) Error of energy distribution around  

number of elements 12929 (all tris). Ma∞ =0.185 ,angle 6˚.                            The airfoil for 2nd refinement. 

 

 



95 
 

 
Fig.83a): 3rd refinement, number of elements 17906                     Fig.83b): Error of energy (3rd refinement). 

,all tris. Inviscid flow over NLR-7301 ,Ma∞ =0.185 ,angle=6˚. 

 

 

 
Fig. 84a) : 4th  refinement ,number of elements 22678 (all tris).     Fig.84.b): Energy error distribution at   
              Inviscid flow Ma∞ =0.185, angle =6˚, NLR-7301.                             4th refinement, around NLR-7301. 
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Fig.84 c): Area between the main wing and flap after the 4 refinements. Inviscid flow Ma∞ =0.185, angle 6˚. 

 

 

 

 

 
Fig. 85a): 5th refinement, number of 25931 triangle                      Fig.85.b): Error energy around NLR-7301. 

             Elements. Refining stagnation point areas, 

            Inviscid flow Ma∞=0.185, angle=6˚. 

 

 

   The pressure, lift coefficient and the mean error of density through time evolution compared to the 
non refined case, are the following (fig. 86,87,88): 
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              Fig.86) : Pressure coefficient around NLR-7301 airfoil with flap. Inviscid flow, Ma∞ =0.185 ,angle=6˚. 

 

 

 
Fig.87) :Lift coefficient for refined ,non-refined grid cases .Inviscid flow, Ma∞ =0.185, angle=6˚, NLR-7301. 
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Fig.88): Mean error of density for inviscid flow around NLR-7301 airfoil at Ma∞ =0.185, angle =6˚. 

    
 
    
   The pressure distribution (fig. 86) does not change after the refinements (changes happen only 
momentarily until it convergences again). Moreover the wiggles of previous unstructured cases do 
not occur. The lift at NLR-7301 (fig. 87) increases after the refinement with respect to the non 
refined case. It also increases compared to the lift of Naca0012, something that is expected as far  
NLR-7301 concerned, because it has two elements. The mean error of density convergence in quite 
acceptable levels after each refinement and at the end it is practically zero after 4000 time steps (1e-
10). The local resolution is increased and the accuracy of the solution is also high.  
 

5. Summary – Conclusions  
 

5.1 Resume of the thesis  
 
   Summing up, the purpose of this thesis was the design (development and programming) of 
methods for the refinement at meshes that are used to solve adapted to the flow solver of the 
laboratory of fluid mechanics of the department of mechanical engineering of NTUA. The flow 
solver calls the refinement solver that decides if the grid needs changes, selects these areas and 
improves the grid locally all based on some criteria. These criteria take under consideration the flow 
parameters and the geometric features that need to fix to smoothly adapt the new mesh (refined) to 
the old one (coarse). All these features as defined by the user as input. The refinement solver’s code 
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is added to the main program as a subroutine. The speed of the solver’s calculations was also a 
problem that was taken care in order to be fast. A solver that based to a sorting algorithm that was 
able to fix new nodes and cells was abandoned. The reason was that the method was efficient but 
too slow. 
   The code was mainly tested to the airfoil Naca0012 both for structured and structured meshes 
with triangle and quadrilateral cells and for inviscid flows. It was afterwards extended to any other 
airfoil and for viscous flows too. The quantities that are used as criteria of refinement may vary for 
each flow and were studied at different test cases. 
    
 

5.2 Conclusions   
 
   A method for mesh refinement in multiple steps with various criteria was developed and tested. 
The method applied at triangle of hybrid grids. 
   Difference flow cases were studied. Behavior of flow simulation with respect to the criteria was 
also a part of our study. 
   The procedure of refinement for each level, considering the fact that it is determined and locally 
applied, differentiates the computational grid at some regions leaving the rest untouched. This may 
lead to a limited convergence level after a specific value. Either for the triangle or the quadrilateral 
mesh, applying one or more levels of refinement may provoke changes at the grid smoothness that 
can be small or large, depending on the flow conditions. In that way, a coarse grid that has Delaunay 
triangulation is featured with smooth transition from the smaller cells area, to the bigger ones, and 
as a result so does the smoothness of the solution and consequently eliminating the error during the 
convergence history. 
   For the interpolation of the variables at the new cells we applied the simplest interpolation 
scheme.  
   Mesh refinement is most of the times necessary for better flow simulation. An important factor is 
the suitable criterion. Some criteria can be pretty efficient and their variations describe perfectly the 
phenomena occurring. In test-cases with shock waves differences of mach number and pressure are 
properly applied. In cases with subsonic flows criteria like mean error may be useful too. for every 
flow there can be found a quantity that corresponds to the appropriate criterion for the refinement. 
The combination with two or more of them turns to be pretty efficient. 
   Refinement equals to higher resolution and detailed simulation in regions of interest. If these areas 
include shock waves, abrupt increment of temperature, density and pressure occur, non 
continuously and the energy is conserved. These discontinuities are properly revealed as more cells 
are developed there. These small finite volumes obtain large error as expected from the physics of 
shocks. This detail I the flow is not simulated before the current level of refinement and affects the 
convergence level. Convergence can be reduced at the non refined grid levels depending both on the 
level of refinement and the flow. 
  Mesh refinement may affect pressure distribution over the airfoil. In order to prevent unpleasant 
results the initial grid must be properly constructed. Boundary elements around airfoil body need 
special treatment.  
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5.3 Suggestions for future research and improvement 
 
  After managing the basic development of the refinement, some much features could be applied and 
some others be improved. These are the following:  
 
   1) Interpolation with higher order schemes for example wider stencil methods. 
   2) Development of methods that will ensure smooth transition to the regions with new mesh. The 
computational direction from large computational cells to smaller ones is an important issue. This 
can be achieved with constructing transition layers at specific regions of using the whole refinement 
area.  
   3) Development of the opposite procedure of coarsening the grid. Combining such techniques 
with refinement could lead to less computational load using less cells.  
   4) Methods of decomposing the mesh to smaller parts and embedded to flow solver of parallel 
processing increasing the computational capabilities.  
   5) Some further modifications could be applied for the flow solver to handle meshes with hanging 
nodes, technique that would improve the smoothness of mesh geometry. 
   6) Using the ability of the flow solver of the laboratory to 3D finite volumes with various shapes 
the refinement some extra add-ons could be applied to the solver for refinement in three 
dimensional space. 
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NLR -7301 airfoil points 
 
 

Airfoil Data: 
       1.000000    1.494277E-02 8.289919E-02   -5.883842E-02 5.759999E-03    2.657714E-02 

9.890835E-01    1.657285E-02 7.389852E-02   -5.681385E-02 8.033172E-03    3.119666E-02 

9.772437E-01    1.821649E-02 6.567809E-02   -5.478715E-02 1.098309E-02    3.607763E-02 

9.643493E-01    1.917988E-02 5.819098E-02   -5.275245E-02 1.477851E-02    4.111988E-02 

9.526795E-01    1.953210E-02 5.140123E-02   -5.067647E-02 1.960687E-02    4.615280E-02 

9.428632E-01    1.944147E-02 4.525360E-02   -4.859960E-02 2.570975E-02    5.083963E-02 

9.342002E-01    1.905715E-02 3.969373E-02   -4.655543E-02 3.314366E-02    5.493407E-02 

9.262452E-01    1.844563E-02 3.469608E-02   -4.450462E-02 4.173582E-02    5.860228E-02 

9.186485E-01    1.763614E-02 3.023043E-02   -4.243881E-02 5.141019E-02    6.202954E-02 

9.111276E-01    1.663522E-02 2.624240E-02   -4.039916E-02 6.222215E-02    6.514498E-02 

9.034036E-01    1.541891E-02 2.270687E-02   -3.837268E-02 7.419923E-02    6.799029E-02 

8.951613E-01    1.392956E-02 1.959781E-02   -3.636072E-02 8.736816E-02    7.065430E-02 

8.860273E-01    1.199762E-02 1.686958E-02   -3.439751E-02 1.017657E-01    7.322783E-02 

8.754532E-01    9.332777E-03 1.448536E-02   -3.248730E-02 1.174505E-01    7.568856E-02 

8.625527E-01    5.631745E-03 1.243492E-02   -3.062834E-02 1.344646E-01    7.808837E-02 

8.457202E-01    2.918663E-04 1.066920E-02   -2.883932E-02 1.528565E-01    8.038185E-02 

8.250030E-01   -6.630416E-03 9.164336E-03   -2.713409E-02 1.726567E-01    8.257949E-02 

8.032055E-01   -1.386199E-02 7.872004E-03   -2.552333E-02 1.938884E-01    8.464053E-02 

7.803196E-01   -2.124571E-02 6.776264E-03   -2.401453E-02 2.165561E-01    8.655240E-02 

7.562906E-01   -2.840810E-02 5.841217E-03   -2.260142E-02 2.406463E-01    8.829530E-02 

7.311667E-01   -3.520022E-02 5.053942E-03   -2.129057E-02 2.661264E-01    8.984053E-02 

7.050425E-01   -4.155884E-02 4.389001E-03   -2.007844E-02 2.929411E-01    9.115937E-02 

6.780237E-01   -4.740670E-02 3.821460E-03   -1.895828E-02 3.210114E-01    9.223486E-02 

6.502920E-01   -5.296887E-02 3.339584E-03   -1.793149E-02 3.502357E-01    9.302679E-02 

6.219929E-01   -5.827638E-02 2.933059E-03   -1.699346E-02 3.804876E-01    9.350574E-02 

5.932566E-01   -6.322600E-02 2.589659E-03   -1.613523E-02 4.116189E-01    9.366567E-02 

5.642325E-01   -6.777043E-02 2.299176E-03   -1.534942E-02 4.434609E-01    9.346852E-02 

5.350670E-01   -7.179967E-02 2.053096E-03   -1.463093E-02 4.758282E-01    9.290183E-02 

5.059035E-01   -7.513048E-02 1.844111E-03   -1.397914E-02 5.085221E-01    9.195519E-02 

4.769035E-01   -7.767550E-02 1.665941E-03   -1.338829E-02 5.413325E-01    9.056596E-02 

4.482392E-01   -7.948611E-02 1.513502E-03   -1.285277E-02 5.740483E-01    8.873536E-02 

4.200733E-01   -8.068644E-02 1.361465E-03   -1.228370E-02 6.064566E-01    8.644214E-02 

3.925499E-01   -8.138816E-02 1.200926E-03   -1.164557E-02 6.383487E-01    8.364213E-02 

3.657953E-01   -8.167103E-02 1.033757E-03   -1.092960E-02 6.695254E-01    8.030787E-02 

3.399167E-01   -8.160332E-02 8.620141E-04   -1.012643E-02 6.998045E-01    7.644492E-02 

3.150049E-01   -8.122198E-02 6.870911E-04   -9.225646E-03 7.290323E-01    7.213821E-02 

2.911358E-01   -8.052865E-02 5.117796E-04   -8.215961E-03 7.570868E-01    6.751481E-02 

2.683639E-01   -7.961497E-02 3.450535E-04   -7.083839E-03 7.838694E-01    6.268139E-02 

2.467317E-01   -7.847898E-02 1.982805E-04   -5.815168E-03 8.093137E-01    5.776541E-02 

2.262651E-01   -7.714084E-02 7.705308E-05   -4.394514E-03 8.333760E-01    5.287363E-02 

2.069737E-01   -7.565740E-02 -8.950266E-06   -2.806079E-03 8.560349E-01    4.810045E-02 

1.888557E-01   -7.404825E-02 -4.294989E-05   -1.032463E-03 8.772870E-01    4.351589E-02 
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1.718975E-01   -7.232996E-02 -1.101520E-05    9.456107E-04 8.971339E-01    3.912094E-02 

1.560785E-01   -7.051211E-02 9.615486E-05    3.148192E-03 9.156092E-01    3.498605E-02 

1.413642E-01   -6.864120E-02 3.129058E-04    5.595359E-03 9.327445E-01    3.110611E-02 

1.277138E-01   -6.674758E-02 6.520439E-04    8.310100E-03 9.485875E-01    2.749631E-02 

1.150907E-01   -6.480268E-02 1.148581E-03    1.131453E-02 9.631886E-01    2.414229E-02 

1.034441E-01   -6.284557E-02 1.840017E-03    1.463071E-02 9.766068E-01    2.103514E-02 

9.273168E-02   -6.084649E-02 2.771303E-03    1.827920E-02 9.888897E-01    1.810574E-02 

8.289919E-02   -5.883842E-02 4.037316E-03    2.226594E-02 1.000000    1.494277E-02 
Flap Data: 

       1.273393   -1.104745E-01 9.479136E-01   -3.380343E-02 1.043060   -1.616922E-02 

1.270088   -1.090811E-01 9.471037E-01   -3.355524E-02 1.049877   -1.725057E-02 

1.266425   -1.075376E-01 9.464064E-01   -3.329406E-02 1.056911   -1.852098E-02 

1.262380   -1.058324E-01 9.458246E-01   -3.297840E-02 1.064148   -1.997013E-02 

1.257924   -1.039542E-01 9.453375E-01   -3.263118E-02 1.071568   -2.159573E-02 

1.253033   -1.018876E-01 9.449276E-01   -3.227050E-02 1.079153   -2.340092E-02 

1.247724   -9.953219E-02 9.446073E-01   -3.192012E-02 1.086885   -2.536271E-02 

1.241912   -9.702086E-02 9.443691E-01   -3.159151E-02 1.094741   -2.747372E-02 

1.235538   -9.445485E-02 9.441875E-01   -3.128440E-02 1.102697   -2.972987E-02 

1.228616   -9.177712E-02 9.440242E-01   -3.095187E-02 1.110725   -3.212643E-02 

1.221150   -8.896457E-02 9.438668E-01   -3.056931E-02 1.118795   -3.466315E-02 

1.213135   -8.604755E-02 9.437186E-01   -3.014057E-02 1.126877   -3.733918E-02 

1.204571   -8.306723E-02 9.435969E-01   -2.968356E-02 1.134942   -4.014018E-02 

1.195472   -8.005244E-02 9.435130E-01   -2.918571E-02 1.142960   -4.305886E-02 

1.185871   -7.704662E-02 9.434801E-01   -2.862709E-02 1.150901   -4.609006E-02 

1.175804   -7.407776E-02 9.435087E-01   -2.800800E-02 1.158739   -4.921097E-02 

1.165340   -7.114610E-02 9.436079E-01   -2.736076E-02 1.166456   -5.239050E-02 

1.154533   -6.830575E-02 9.437980E-01   -2.668866E-02 1.174025   -5.562151E-02 

1.143460   -6.557547E-02 9.440843E-01   -2.598812E-02 1.181425   -5.888415E-02 

1.132209   -6.296426E-02 9.444554E-01   -2.525102E-02 1.188640   -6.215837E-02 

1.120868   -6.048834E-02 9.449388E-01   -2.448526E-02 1.195645   -6.544030E-02 

1.109525   -5.816614E-02 9.455310E-01   -2.370667E-02 1.202428   -6.871004E-02 

1.098277   -5.599114E-02 9.462142E-01   -2.292551E-02 1.208985   -7.194100E-02 

1.087210   -5.396334E-02 9.470331E-01   -2.214002E-02 1.215295   -7.513099E-02 

1.076403   -5.209191E-02 9.479682E-01   -2.135598E-02 1.221350   -7.827815E-02 

1.065933   -5.036100E-02 9.490342E-01   -2.058910E-02 1.227134   -8.138465E-02 

1.055861   -4.876733E-02 9.502523E-01   -1.984693E-02 1.232650   -8.443324E-02 

1.046240   -4.731019E-02 9.516004E-01   -1.912832E-02 1.237896   -8.741099E-02 

1.037113   -4.596946E-02 9.531094E-01   -1.845255E-02 1.242872   -9.031407E-02 

1.028507   -4.473864E-02 9.547587E-01   -1.779737E-02 1.247592   -9.311900E-02 

1.020442   -4.360468E-02 9.565703E-01   -1.718203E-02 1.252053   -9.583124E-02 

1.012923   -4.258190E-02 9.585384E-01   -1.659133E-02 1.256180   -9.856313E-02 

1.005952   -4.163947E-02 9.606791E-01   -1.604644E-02 1.260035   -1.012304E-01 

9.995188E-01   -4.077372E-02 9.629951E-01   -1.554100E-02 1.263677   -1.037512E-01 

9.936075E-01   -3.998842E-02 9.654965E-01   -1.508836E-02 1.267114   -1.061291E-01 

9.881976E-01   -3.927529E-02 9.681882E-01   -1.467614E-02 1.270351   -1.083687E-01 

9.832653E-01   -3.862612E-02 9.710785E-01   -1.430412E-02 1.273393   -1.104745E-01 
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9.787833E-01   -3.803542E-02 9.741742E-01   -1.396085E-02 
   9.747232E-01   -3.749824E-02 9.774851E-01   -1.365307E-02 
   9.710554E-01   -3.700950E-02 9.810190E-01   -1.337730E-02 
   9.677498E-01   -3.656863E-02 9.847855E-01   -1.313738E-02 
   9.647765E-01   -3.617889E-02 9.887918E-01   -1.293583E-02 
   9.621068E-01   -3.583968E-02 9.930463E-01   -1.278068E-02 
   9.597144E-01   -3.554074E-02 9.975560E-01   -1.269434E-02 
   9.575750E-01   -3.527346E-02 1.002326   -1.270015E-02 
   9.556643E-01   -3.503386E-02 1.007360   -1.281134E-02 
   9.539602E-01   -3.481982E-02 1.012659   -1.303282E-02 
   9.524435E-01   -3.462267E-02 1.018222   -1.338758E-02 
   9.510958E-01   -3.443102E-02 1.024049   -1.387176E-02 
   9.498966E-01   -3.425515E-02 1.030136   -1.448431E-02 
   9.488385E-01   -3.405068E-02 1.036476   -1.524949E-02 
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