

Εθνικό Μετσοβίο Πολύτεχνειο

ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ – ΜΕΤΑΛΛΟΥΡΓΩΝ

Διατμηματικό Προγραμμα Μεταπτυχιακών Σπουδών Σχεδιάσμος και Κατάσκευη Υπογείων Εργών

Διερεύνηση κριτηρίων αντοχής πετρωμάτων σε τρεις διαστάσεις

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΗΛΙΑΝΑ Μ. ΠΟΛΥΜΕΡΟΥ

Επιβλέπων : Μιχαήλ Γ. Σακελλαρίου Καθηγητής Ε.Μ.Π.

Αθήνα, Φεβρουάριος 2011

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ Δ.Π.Μ.Σ.: ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΥΠΟΓΕΙΩΝ ΕΡΓΩΝ

Διερεύνηση κριτηρίων αντοχής πετρωμάτων σε τρεις διαστάσεις

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΗΛΙΑΝΑ Μ. ΠΟΛΥΜΕΡΟΥ

Επιβλέπων : Μιχαήλ Γ. Σακελλαρίου Καθηγητής Ε.Μ.Π.

Τριμελής Εξεταστική Επιτροπή:

Μιχαήλ Γ. Σακελλαρίου, Καθηγητής Σ.Α.Τ.Μ. Ε.Μ.Π. Αλέξανδρος Σοφιανός, Καθηγητής Σ.Μ.Μ.Μ. Ε.Μ.Π. Νομικός Παύλος, Λέκτορας Σ.Μ.Μ.Μ. Ε.Μ.Π.

Αθήνα, Φεβρουάριος 2011

Ευχαριστίες

Θα ήθελα να ευχαριστήσω τον επιβλέποντα καθηγητή, κ. Μιχαήλ Σακελλαρίου, για την πολύτιμη βοήθεια του και την καθοριστική συμβολή του στην παρούσα εργασία. Επιπλέον, τον ευχαριστώ που στάθηκε δίπλα μου με κατανόηση και εμπιστοσύνη.

Περίληψη και Συμπεράσματα

Στόχος αυτής της διπλωματικής εργασίας είναι να αποτιμήσει τα καθιερωμένα κριτήρια αστοχίας της Βραχομηχανικής καθώς και να διερευνήσει την ισχύ νέων κριτηρίων αστοχίας από την πρόσφατη βιβλιογραφία. Με τον όρο «κριτήρια αστοχίας» εννοούμε μαθηματικές εκφράσεις που προσδιορίζουν τον κατάλληλο συνδυασμό των κυρίων τάσεων για τον οποίο επέρχεται αστοχία. Η διατύπωση τέτοιων σχέσεων υποθέτει τη γνώση των συνθηκών που χαρακτηρίζουν την αλλαγή της μηχανικής συμπεριφοράς του βράχου και τη μετάβαση του από την ελαστική κατάσταση στη κατάσταση διαρροής.

Εργαλείο για την υλοποίηση αυτού του στόχου αποτελούν πειραματικά δεδομένα που έχουν δημοσιευτεί κατά καιρούς από ερευνητές για διάφορους τύπους πετρωμάτων. Τα δεδομένα περιλαμβάνουν συνδυασμούς αστοχίας και των τριών κυρίων τάσεων. Για αυτό το λόγο, αυτά τα εργαστηριακά δεδομένα προσφέρονται για την αξιολόγηση τριδιάστατων κριτηρίων αστοχίας. Εξαιρετικό ενδιαφέρον παρουσιάζει η διερεύνηση της επίδρασης της ενδιάμεσης κύριας τάσης στην αστοχία καθώς και η εξάρτηση που έχουν από αυτή οι διάφοροι τύποι πετρωμάτων. Συγκεκριμένα εξετάζεται η συμπεριφορά που προβλέπουν 10 κριτήρια αστοχίας για 7 τύπους πετρωμάτων (KTB Amphibolite, Dunham Dolomite, Solenhofen Limestone, Shirahama Sandstone, Yuubari Shale, Westerly Granite, Mizuho Trachyte). Ονομαστικά τα εξεταζόμενα κριτήρια αστοχίας είναι:

- 1) Drucker Prager
- 2) Mohr Coulomb
- 3) Hoek Brown
- 4) Pan Hudson
- 5) Priest
- 6) Zhang Zhu
- 7) Mogi
- 8) Theocaris
- 9) Murrel
- 10) Modified Wiebols and Cook

Η προσαρμογή των κριτηρίων στα πειραματικά δεδομένα γίνεται με γραμμικές και μη γραμμικές προσεγγίσεις με τη μέθοδο ελαχίστων τετραγώνων αλλά και με άλλες απλές αριθμητικές επιλύσεις στις οποίες αναζητείται ο προσδιορισμός του βέλτιστου εκείνου συνδυασμού παραμέτρων που ελαχιστοποιεί τις αποκλίσεις από τα πειραματικά δεδομένα. Βασικός περιορισμός στην αναζήτηση των βέλτιστων παραμέτρων των εκάστοτε κριτηρίων είναι η οριοθέτηση των παραμέτρων μέσα σε κάποιο φάσμα τιμών, τα οποία είναι πειραματικά αποδεδειγμένα (π.χ. λόγος αντοχής σε θλίψη προς αντοχή σε εφελκυσμό ή η μονοαξονική αντοχή σε θλίψη). Συχνά, σε αρκετές περιπτώσεις κριτηρίων, η μέθοδος ελαχίστων τετραγώνων προέβλεπε τιμές παραμέτρων έξω από το αποδεκτό φάσμα τιμών. Σε αυτές τις περιπτώσεις χρειάστηκε να υιοθετηθεί φραγμένη αναζήτηση των παραμέτρων μέσα στα αποδεκτά όρια, γεγονός που οδηγεί σε αύξηση των αποκλίσεων από τα πειραματικά δεδομένα.

Η εργασία καταλήγει σε μία συγκριτική αξιολόγηση των κριτηρίων αστοχίας. Συγκρίνονται με βάση τις προβλέψεις τους για την τιμή της μονοαξονικής αντοχής σε θλίψη καθώς και της παραμέτρου που ορίζει το λόγο αντοχής σε θλίψη και εφελκυσμό. Ακόμα, συγκρίνονται με βάση τα ποσοστά απόκλισης τους από τα εργαστηριακά δεδομένα. Τέλος, μέτρο σύγκρισης είναι και ο σταθμιστικός παράγοντας της ενδιάμεσης κύριας τάσης που πρακτικά σχετίζεται με την κλίση του επιπέδου αστοχίας ως προς την κατεύθυνση της ενδιάμεσης κύριας τάσης. Τα βασικά συμπεράσματα αυτής της εργασίας συνοψίζονται στα εξής:

Α) Ως προς την πρόβλεψη της μονοαξονικής αντοχής σε θλίψη:

Τα κριτήρια Mohr – Coulomb και Hoek – Brown υπερεκτιμούν την αντοχή σε μονοαξονική θλίψη. Το Mohr – Coulomb την υπερεκτιμά σε ποσοστά από 50 ως 80% και το Hoek – Brown ως 70%. Το Inscribed Drucker – Prager την υπερεκτιμά ως και 200% και το Circumscribed ως 90%. Το κριτήριο Murrel την υπερβαίνει σε ποσοστά ως 150 %. Το κριτήριο Pan – Hudson την υπερεκτιμά ως 50 %.

Το κριτήριο Modified Wiebols and Cook επιτυγχάνει εύστοχες προβλέψεις της μονοαξονικής αντοχής σε θλίψη. Τα κριτήριο Zhang – Zhu, Priest και Modified Theocaris προβλέπουν υπερεκτιμήσεις ως 20%.

Β) Ως προς τα ποσοστά απόκλισης από τα εργαστηριακά δεδομένα:

Τα μικρότερα ποσοστά απόκλισης επιτυγχάνει το κριτήριο Priest (Simplified) και ακολουθεί το κριτήριο Theocaris (Modified). Αμέσως μετά έρχεται το κριτήριο Zhang
 Zhu. Ακολουθούν τα κριτήρια Modified Wiebols and Cook και Mogi.

Τα μεγαλύτερα ποσοστά απόκλισης παρουσιάζονται στο κριτήριο Pan – Hudson το οποίο ακολουθείται από το κριτήριο Murrel. Τα κριτήρια Mohr – Coulomb και Hoek
 – Brown παρουσιάζουν μικρότερες αποκλίσεις και μάλιστα το Hoek – Brown δίνει μικρότερες αποκλίσεις από το Mohr – Coulomb.

4

C) Ως προς τον «σταθμιστικό παράγοντα» της ενδιάμεσης κύριας τάσης

Ο «σταθμιστικός παράγοντας» της ενδιάμεσης κύριας τάσης εμφανίζεται στα κριτήρια Mogi και Priest και προστέθηκε στην τροποποίηση του κριτηρίου του Theocaris, που επιχειρούμε στα πλαίσια αυτής της διπλωματικής εργασίας. Ξεχωριστά για κάθε πέτρωμα προέκυψε:

 KTB Amphibolite: Τα κριτήρια Mogi (1967) και Priest (Simplified) προβλέπουν τιμές 0.15 και 0.21 αντίστοιχα, ενώ το Theocaris (Modified) προβλέπει τιμή ίση με τη μονάδα.

 Dunham Dolomite: Τα κριτήρια Mogi (1967) και Theocaris (Modified) προβλέπουν τιμές 0.52 και 0.5 αντίστοιχα και το Priest (Simplified) 0.28.

• Solenhofen Limestone: Τα κριτήρια Mogi (1967) και Theocaris (Modified) προβλέπουν τιμές 0.47 και 0.4 αντίστοιχα και το Priest (Simplified) 0.23.

• Shirahama Sandstone: Τα κριτήρια Mogi (1967) και Theocaris (Modified) προβλέπουν τιμές 0.04 και 0.1 αντίστοιχα και το Priest (Simplified) 0.18.

 Yuubari Shale: Τα κριτήρια Mogi (1967) και Theocaris (Modified) προβλέπουν τιμές 0.24 και 0.3 αντίστοιχα και το Priest (Simplified) 0.27.

 Westerly Granite: Τα κριτήρια Mogi (1967) και Theocaris (Modified) προβλέπουν τιμές 0.19 και 1 αντίστοιχα και το Priest (Simplified) 0.25.

 Mizuho Trachyte: Τα κριτήρια Mogi (1967) και Theocaris (Modified) προβλέπουν τιμές 0.24 και 0.15 αντίστοιχα και το Priest (Simplified) 0.25.

Abstract and Conclusions

The aim of this thesis is to estimate the most frequently used failure criteria in rock mechanics and to investigate the applicability and performance of versions of failure criteria published recently. The term "failure criteria" defines those mathematical expressions that determine the appropriate principal stress combination for which failure begins. The formulation of such expressions assumes that the conditions which characterize the change in mechanical behavior of rock and its transition from elastic to yield condition are known.

Tool for achieving this objective are experimental data published from time to time by researchers for different types of rocks. The published data include polyaxial test data ($\sigma_1 > \sigma_2 > \sigma_3$). Therefore, they are suitable for evaluation of several three-dimensional failure criteria. Of special interest is the investigation of the effect of the intermediate principal stress on failure and the amount of σ_2 dependence that different types of rock show. In this study we examine ten different failure criteria by comparing them to the test data for seven different rock types. (KTB Amphibolite, Dunham Dolomite, Solenhofen Limestone, Shirahama Sandstone, Yuubari Shale, Westerly Granite, Mizuho Trachyte). Nominally the failure criteria considered are:

- 11) Drucker Prager
- 12) Mohr Coulomb
- 13) Hoek Brown
- 14) Pan Hudson
- 15) Priest
- 16) Zhang Zhu
- 17) Mogi (1967, 1971)
- 18) Theocaris
- 19) Murrel
- 20) Modified Wiebols and Cook

The adjustment of criteria to experimental data applies linear and nonlinear approaches with the method of least squares and other simple numerical investigation which sought to identify the optimal combination of parameters that minimizes deviations from the experimental data. The main restriction on the search for optimal parameters of each criterion is the definition of parameters within an expectable range of values which is experimentally proven (eg the strength differential effect). In many cases, the least squares method provides parameter values outside the acceptable range. In these cases the parameters had to be bounded within acceptable limits, leading to an increase in the deviations from the experimental data.

The study results in a comparative assessment of the failure criteria. They are compared in reference to their predictions of uniaxial compressive strength and strength differential effect as well as the amounts of deviations from the test data. Finally, the predicted values for the weighting factor of the intermediate principal stress, practically related to the deviation of the failure plane from the σ_2 -direction, are also compared. The main conclusions of this thesis are summarized as follows:

A) Estimations of uniaxial compressive strength

• The failure criteria Mohr–Coulomb and Hoek–Brown systematically overestimate the uniaxial compressive strength. Mohr – Coulomb overestimates the strength of the rock by 50 to 80% and Hoek – Brown to 70%. Inscribed Drucker–Prager overestimates the strength of the rock up to 200% and Circumscribed Drucker-Prager to 90%. Murrel criterion exceeds the strength up to 150%. Pan and Hudson criterion overestimates the strength of rock by 50%.

• The Modified Wiebols and Cook criterion achieves accurate predictions of uniaxial compressive strength. The Zhang – Zhu, Priest and Modified Theocaris criteria end up overestimating the strength up to 20%.

B) Percentage deviations between theoretical predictions of the maximum principal stress and the respective values of the experimental data.

• The lowest misfits achieves the Simplified Priest criterion as well as the Modified Theocaris. These are followed by the Zhang – Zhu criterion which also shows very good results. Modified Wiebols and Cook and Mogi criteria reasonably reproduce the trend of the experimental data achieving low misfits.

• Pan Hudson criterion gives the poorest results followed by the Murrel criterion which also does not give good misfits. Mohr –Coulomb and Hoek – Brown criteria, which do not account for the effect of σ_2 , produce lower misfits as the Murrel and Pan Hudson criteria and Hoek - Brown achieves lower misfits than the Mohr – Coulomb criterion.

C) Intermediate principal stress weighting factor

An Intermediate principal stress weighting factor has been adopted by Mogi and Priest and appears in the their equations. In this study, the introduction of such a factor has been implemented by numerical solutions. Separately for each rock type our investigation yielded the following values for the σ_2 weighting factor:

• KTB Amphibolite: Mogi (1967) and Simplified Priest criteria predict a value of 0.15 and 0.21 respectively, while Modified Theocaris proposes that the factor is equal to 1.

• Dunham Dolomite: Mogi (1967) and Modified Theocaris propose the values of 0.52 and 0.5 respectively, while the Simplified Priest predicts that the factor is equal to 0.28.

• Solenhofen Limestone: Mogi (1967) and Modified Theocaris propose the values of 0.47 and 0.4 respectively, while the Simplified Priest predicts that the factor is equal to 0.23.

• Shirahama Sandstone: Mogi (1967) and Modified Theocaris propose the values of 0.04 and 0.1 respectively, while the Simplified Priest predicts that the factor is equal to 0.18.

• Yuubari Shale: Mogi (1967) and Modified Theocaris propose the values of 0.24 and 0.3 respectively, while the Simplified Priest predicts that the factor is equal to 0.27.

• Westerly Granite: Mogi (1967) and Modified Theocaris propose the values of 0.19 and 1 respectively, while the Simplified Priest predicts that the factor is equal to 0.25.

• Mizuho Trachyte: Mogi (1967) and Modified Theocaris propose the values of 0.24 and 0.15 respectively, while the Simplified Priest predicts that the factor is equal to 0.25.

8

Πίνακας περιεχομένων

Περί/	ληψη και Συμπεράσματα	.3
Abst	ract and Conclusions	.6
Πίναι	κας περιεχομένων	.9
1.	Εισαγωγή	11
2.	Θεωρητικό Υπόβαθρο	15
2.1	Κριτήρια Διαρροής – Αστοχίας Ισότροπων Μέσων	15
2.2	Drucker Prager	16
2.3	Κριτήριο Mohr – Coulomb	18
2.4	Κριτήριο Hoek – Brown	20
2.5	Γενικευμένα κριτήρια Hoek – Brown	22
2.5.1	Κριτήριο Pan – Hudson	23
2.5.2	Κριτήριο Priest	23
2.5.2	.1 Απλοποιημένο κριτήριο Priest	26
2.5.3	Κριτήριο Zhang – Zhu	27
2.6	Κριτήρια Mogi	29
2.7	Κριτήριο Theocaris (Ελλειπτικό Παραβολοειδές)	31
2.7.1	Κριτήριο Παραβολοειδούς εκ Περιστροφής	33
2.8	Κριτήριο Murrel	34
2.9	Κριτήριο Zhou (Modified Wiebols and Cook)	36
3.	Μεθοδολογία και αποτελέσματα διερεύνησης	38
3.1	Πειραματικά τριαξονικά και πολυαξονικά δεδομένα της βιβλιογραφίας.	38
3.2	Προσαρμογή δεδομένων στο κριτήριο Drucker - Prager	41
3.3	Προσαρμογή δεδομένων στο κριτήριο Mohr - Coulomb	48
3.3	Προσαρμογή δεδομένων στο κριτήριο Hoek - Brown	55
3.4	Προσαρμογή δεδομένων στα Γενικευμένα κριτήρια Hoek – Brown	58
3.4.1	Προσαρμογή στο κριτήριο Pan - Hudson	58
3.4.2	Προσαρμογή στο κριτήριο Zhang - Zhuθ	32
3.4.3	Προσαρμογή στο κριτήριο Simplified Priest	70
3.5	Προσαρμογή στο κριτήριο Mogi 1971	72
3.5.1	Προσαρμογή στο κριτήριο Mogi – Linear	72
3.5.2	Προσαρμογή στο κριτήριο Mogi – Quadratic	78

3.5.3	Προσαρμογή στο κριτήριο Mogi – Power Law	78				
3.6	Προσαρμογή στο κριτήριο Mogi – Power Law 1967	83				
3.6	Προσαρμογή στο Παραβολοειδές εκ Περιστροφής	88				
3.7.1	Προσαρμογή στο Τροποποιημένο Παραβολοειδούς εκ Περιστροφής	92				
3.8	Προσαρμογή στο κριτήριο Murrel	99				
3.9	Προσαρμογή στο κριτήριο Modified Wiebols and Cook1	02				
4.	Συγκριτική αξιολόγηση κριτηρίων αστοχίας1	06				
4.1	Συγκριτικοί Πίνακες1	06				
4.2	Αξιολόγηση κριτητρίου Drucker - Prager1	09				
4.3	Αξιολόγηση κριτηρίου Mohr - Coulomb1	10				
4.4	Αξιολόγηση κριτηρίου Hoek - Brown1	10				
4.5	Αξιολόγηση κριτηρίου Pan - Hudson1	10				
4.5	Αξιολόγηση κριτηρίου Zhang – Zhu1	11				
4.7	Αξιολόγηση κριτηρίου Simplified Priest1	12				
4.8	Αξιολόγηση κριτηρίων Mogi1	12				
4.9	Αξιολόγηση κριτηρίουTheocaris (Παραβολοειδούς εκ Περιστροφής).1	13				
4.10	Αξιολόγηση κριτηρίου Modified Theocaris (Παραβολοειδές εκ Περιστροφής)1	15				
4.11	Αξιολόγηση κριτηρίου Murrel1	15				
4.12	Αξιολόγηση κριτηρίου Modified Wiebols & Cook1	17				
Παρά	άρτημα Α1	18				
Παρό	φτημα Β (Πειραματικά δεδομένα)1	35				
Παρά	Ιαράρτημα Γ (Προβλέψεις κριτηρίων αστοχίας)141					
Βιβλι	3ιβλιογραφία157					

1. Εισαγωγή

Ο κλάδος της Βραχομηχανικής αποτελεί επέκταση του κλάδου της Εδαφομηχανικής και ασχολείται με την απόκριση του βράχου (άρρηκτου αλλά και της βραχομάζας) σε επιβολή σύνθετων καταπονήσεων. Η διπλωματική αυτή εργασία πραγματεύεται κριτήρια που μπορούν να περιγράψουν την κατάσταση αστοχίας σε άρρηκτο και ισότροπο βράχο.

Τα κριτήρια αστοχίας ποικίλουν ανάλογα με τις υποθέσεις επί των οποίων στηρίζονται. Παρόλα αυτά υπάρχουν ορισμένα κοινά χαρακτηριστικά, τα οποία προκύπτουν είτε πειραματικά είτε από τη διαμόρφωση επιχειρημάτων, όπως αυτό της ισοτροπίας. Πριν γίνει η παρουσίαση των κριτηρίων και της προέλευσης τους κρίνεται σκόπιμο να γίνει κάποια αναφορά σε βασικά στοιχεία θεωρίας πάνω στα οποία είναι θεμελιωμένα τα κριτήρια.

Ένα άλλο χαρακτηριστικό εκτός από την ισοτροπία είναι η ανεξαρτησία από το σύστημα αναφοράς. Αυτό οδηγεί στο συμπέρασμα ότι η συνθήκη αστοχίας πρέπει να εκφράζεται συναρτήσει των αναλλοιώτων του τανυστή των τάσεων. Επιπλέον, η ανεξαρτησία της αστοχίας από την υδροστατική συνιστώσα σημαίνει ότι πρέπει να αφαιρεθεί η επιρροή της. Το αποτέλεσμα της αφαίρεσης οδηγεί στη διαμόρφωση του αποκλίνοντος τανυστή. Ακολουθεί εξήγηση και περιγραφή των εννοιών αυτών.

Κάθε τανυστής δευτέρας τάξης όπως οι τανυστές τάσεων έχει τρεις ανεξάρτητες αναλλοίωτες ποσότητες. Τέτοιες αναλλοίωτες προέρχονται από ιδιοτιμές του τανυστή των τάσεων.

$$I_1 = \sigma_{11} + \sigma_{22} + \sigma_{33} = \sigma_{kk}$$
 1.1a

$$I_{2} = \sigma_{11}\sigma_{22} + \sigma_{22}\sigma_{33} + \sigma_{11}\sigma_{33} - \sigma_{12}^{2} - \sigma_{23}^{2} - \sigma_{13}^{2}$$
 1.1b

$$I_{3} = \sigma_{11}\sigma_{22}\sigma_{33} + 2\sigma_{12}\sigma_{23}\sigma_{31} - \sigma_{12}^{2}\sigma_{33} - \sigma_{23}^{2}\sigma_{11} - \sigma_{13}^{2}\sigma_{22}$$
 1.1c

Θεωρούμε ένα συμμετρικό τανυστή (Cauchy) των τάσεων σε σύστημα αξόνων Ο (x₁, x₂, x₃):

$$\sigma = \begin{vmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{vmatrix}$$
 1.2

Ο τανυστής αυτός αναλύεται σε ισότροπο (ή σφαιρικό) και αποκλίνοντα

$$\sigma_{ij} = \frac{1}{3}\sigma_{kk}\delta_{ij} + s_{ij}$$
 1.3

Ο σφαιρικός τανυστής σχετίζεται με την αλλαγή όγκου του υλικού σώματος υπό κάποιο εντατικό πεδίο, ενώ ο προσθετέος του αποκλίνοντος τανυστή τείνει να το παραμορφώσει αλλάζοντας το σχήμα του. Ο αποκλίνων τανυστής προκύπτει αν αφαιρέσουμε από τον ολικό τανυστή τον σφαιρικό:

$$\begin{bmatrix} s_{ij} \end{bmatrix} = \begin{vmatrix} \sigma_{11} - p & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} - p & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} - p \end{vmatrix}$$
 1.4

Οι αναλλοίωτες του αποκλίνοντος τανυστή δίνονται από τις παρακάτω εκφράσεις:

$$J_{1} = 0$$

$$J_{2} = \frac{1}{6} \Big[(\sigma_{11} - \sigma_{22})^{2} + (\sigma_{22} - \sigma_{33})^{2} + (\sigma_{33} - \sigma_{11})^{2} \Big] + \sigma_{12}^{2} + \sigma_{23}^{2} + \sigma_{31}^{2}$$

$$= \frac{1}{6} \Big[(\sigma_{1} - \sigma_{2})^{2} + (\sigma_{2} - \sigma_{3})^{2} + (\sigma_{3} - \sigma_{1})^{2} \Big]$$

$$= \frac{1}{3} I_{1}^{2} - I_{2}$$
1.5b

$$J_{3} = \frac{2}{27}I_{1}^{3} - \frac{1}{3}I_{1}I_{2} + I_{3}$$
 1.5c

Θεωρώντας τις διευθύνσεις των κυρίων αξόνων όπως οι συντεταγμένες του συστήματος αναφοράς, ένα επίπεδο με κάθετο διάνυσμα που σχηματίζει ίσες γωνίες με κάθε έναν από τους κύριους άξονες (με συνημίτονο κατεύθυνσης ίσο με $\left|\frac{1}{\sqrt{3}}\right|$)

ονομάζεται οκταεδρικό επίπεδο. Οι ορθές τάσεις πάνω σε κάθενα από τα οκτώ επίπεδα καλούνται οκταεδρικές ορθές τάσεις, σ_{oct} και οι διατμητικές τ_{oct}. (Σχήμα 1.1)

$$\sigma_{oct} = \frac{1}{3} (\sigma_1 + \sigma_2 + \sigma_3)$$

$$\tau_{oct} = \left[\frac{1}{3} (\sigma_1^2 + \sigma_2^2 + \sigma_3^2) - \frac{1}{9} (\sigma_1 + \sigma_2 + \sigma_3)^2 \right]^{1/2}$$

$$= \frac{1}{3} \left[(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 \right]^{1/2}$$

$$= \frac{1}{3} \sqrt{2I_1^2 - 6I_2} = \sqrt{\frac{2}{3}} J_2$$
1.6
$$\sqrt[n]{(\sigma_{ot})} \sqrt[n]{(\sigma_{ot})} \sqrt[n]{(\sigma_{ot})}$$

Σχήμα 1.1: Οκταεδρικά επίπεδα τάσεων

Συνοψίζοντας αναφέρονται επίσης κάποιες ιδιότητες που πρέπει να έχει μια καμπύλη αστοχίας: α) δε διέρχεται από την αρχή των αξόνων, καθώς η αστοχία συνδέεται με διατμητικές τάσεις, β) είναι κυρτή (ο περιορισμός αυτός προέρχεται από την αρχή του μη αρνητικού έργου των πλαστικών παραμορφώσεων του Drucker).

Προχωρώντας στην παρουσίαση της εργασίας αναφέρεται σε αυτό το σημείο η διάρθρωση της:

Στο Κεφάλαιο 2 παρουσιάζονται οι διατυπώσεις των κριτηρίων αστοχίας καθώς και οι υποθέσεις, εμπειρικές ή πειραματικές διαπιστώσεις πάνω στις οποίες είναι θεμελιωμένα. Στο Κεφάλαιο 3 παρουσιάζεται συνοπτικά η μεθοδολογία επεξεργασίας των κριτηρίων καθώς επίσης παρατίθενται τα αποτελέσματα της διερεύνησης, δηλαδή οι τιμές πρόβλεψης των παραμέτρων των κριτηρίων μαζί με τα αντίστοιχα διαγράμματα στο επίπεδο σ₂-σ₁.

Στο Κεφάλαιο 4 γίνεται συγκριτική αξιολόγηση της συμπεριφοράς των εξαταζόμενων κριτηρίων αστοχίας ως προς τις διάφορες παραμέτρους αντοχής που υπεισέρχονται στη διατύπωση των κριτηρίων. Ακόμη, συγκρίνονται ως προς τις αποδόσεις τους κατά την προσαρμογή στα πειραματικά δεδομένα. Τελικώς, γίνεται προσπάθεια αποτίμησης της επίδρασης της ενδιάμεσης κύριας τάσης στην αστοχία, η συμμετοχή της οποίας διαφοροποιείται από πέτρωμα σε πέτρωμα.

Στο Παράρτημα Α παρατίθενται οι υπολογισμοί που πραγματοποιήθηκαν κατά τη διερεύνηση σε περιβάλλον MatLab. Ενδεικτικά, παρουσιάζονται οι υπολογισμοί για ένα τύπο πετρώματος.

Στο Παράρτημα Β παρατίθενται οι τιμές των διατιθέμενων πειραματικών δεδομένων για κάθε τύπο πετρώματος. Υπενθυμίζεται ότι στη διάθεση μας έχουμε 7 τύπους βράχου με συγκεκριμένο αριθμό δεδομένων: KTB Amphibolite (42), Dunham Dolomite (52), Solenhofen Limestone (29), Shirahama Sandstone (38), Yuubari Shale (26), Westerly Granite (45), Mizuho Trachyte (31).

Στο Παράρτημα Γ παρατίθενται οι τιμές των θεωρητικών προβλέψεων όλων των κριτηρίων αστοχίας ανά τύπο πετρώματος.

2. Θεωρητικό Υπόβαθρο

2.1 Κριτήρια Διαρροής – Αστοχίας Ισότροπων Μέσων

Σε αυτό το κεφάλαιο παρουσιάζονται συγκεντρωμένα τα κριτήρια αστοχίας, τα οποία πραγματεύεται αυτή η διπλωματική εργασία. Διατυπώνεται για καθένα η σχέση που διέπει το καθεστώς αστοχίας καθώς επίσης γίνεται αναφορά στο θεωρητικό τους υπόβαθρο. Να σημειωθεί ότι όταν αναφερόμαστε σε αντοχή του βράχου, εννοούμε αντοχή ισότροπου και άρρηκτου βράχου, καθώς τα κριτήρια αναφέρονται σε ισότροπο μέσο. Εξάλλου τα πειραματικά δεδομένα προέρχονται από άρρηκτα δοκίμια. Συνεπώς, ασχολούμαστε με ισότροπο και άρρηκτο βράχο, ο οποίος αποτελεί ιδεατό υλικό.

Εξετάζονται τόσο διδιάστατα όσο και τριδιάστατα κριτήρια αστοχίας. Μία ακόμα διαιρετική βάση πέρα από τις δύο ή τρεις διαστάσεις είναι ο διαχωρισμός των κριτηρίων σε κριτήρια αστοχίας και διαρροής και μία τρίτη διαιρετική βάση ανάλογα με τη φυσική σημασία των παραμέτρων των κριτηρίων (παράμετροι εσωτερικής τριβής (Mohr - Coulomb) ή παράμετροι που συσχετίζονται με ορυκτολογικά και δομητικά χαρακτηριστικά του βραχώδους υλικού (Hoek - Brown)).

Οι όροι αστοχία και διαρροή δεν επεξηγούνται ικανοποιητικά, έχουν λεπτή διαχωριστική γραμμή και θεωρούνται περίπου ισοδύναμοι. Η βασική διάκρισή τους είναι η εξής:

Κριτήρια διαρροής (Yield criteria): περιγράφουν την έναρξη της διαρροής που σηματοδοτεί το πέρασμα από την ελαστική στη μετελαστική - πλαστική περιοχή. Για τον υπολογισμό των μετελαστικών παραμορφώσεων χρησιμοποιείται συσχετισμένος νόμος ροής (flow rule). Θεωρείται ότι η συνάρτηση διαρροής παίζει το ρόλο του πλαστικού δυναμικού και το διάνυσμα του ρυθμού πλαστικής παραμόρφωσης παριστάμενο στο χώρο των τάσεων είναι κάθετο στην επιφάνεια διαρροής. Παραδείγματα τέτοιων κριτηρίων είναι αυτά των Tresca, von Mises και Drucker – Prager.

Κριτήρια αστοχίας (Fracture Criteria): που συναρτώνται με την αντοχή του υλικού. Σε αυτά τα κριτήρια χρησιμοποιείται μη – συσχετισμένος νόμος ροής (non –

associated flow rule). Παραδείγματα τέτοιων κριτηρίων είναι τα Mohr – Coulomb και Hoek – Brown.

Σε μονοαξονικό πείραμα θλίψης για παράδειγμα οι τάσεις διαρροής και αστοχίας σ_y, σ_F, ταυτίζονται με τις αντίστοιχες στο σημείο διαρροής (Y) και αστοχίας (F) στο διάγραμμα τάσεων – τροπών (Σχήμα 2.1). Για τη γενίκευση των εννοιών αυτών σε διδιάστατες και τριδιάστατες εντατικές καταστάσεις, οι τάσεις αστοχίας μεταφράζονται σε αντίστοιχες αναλλοίωτες του τανυστή των τάσεων που συνήθως καλούνται ισοδύναμες τάσεις (equivalent stresses).

Σχήμα 2.1: Διάγραμμα Τάσεων - Τροπών μονοαξονικής θλίψης

2.2 Drucker Prager

Ξεκινώντας από τα κριτήρια διαρροής θα εξετάσουμε εδώ μόνο αυτό των Drucker – Prager, καθώς τα κριτήρια των Tresca και von Mises δεν είναι αντιπροσωπευτικά για βραχώδες υλικό, τα οποία παρουσιάζουν μεγαλύτερη τάση αστοχίας σε θλίψη από ότι σε εφελκυσμό. Να σημειωθεί ότι αυτή η συμπεριφορά αποδίδεται στην ύπαρξη μικρορωγμών και πόρων στη μάζα των διαφόρων τύπων βράχων που επηρεάζουν δυσμενώς τη συμπεριφορά των υλικών αυτών, ιδιαίτερα όταν καταπονούνται από εφελκυστικά φορτία.

Το κριτήριο Drucker – Prager είναι επέκταση του κριτηρίου von Mises. Το κριτήριο διαρροής von Mises γράφεται συναρτήσει της δεύτερης αναλλοίωτης του αποκλίνοντος τανυστή ως εξής:

$$\sqrt{J_2}^2 = \frac{Y^2}{3}$$
 2.1

όπου Υ η αντοχή σε μονοαξονική θλίψη. Η έναρξη της διαρροής γίνεται όταν το έργο της συνόγκου παραμόρφωσης λάβει την τιμή του αντίστοιχου έργου που επιτελείται μέχρι την έναρξη διαρροής του υλικού σε καθαρό εφελκυσμό (Μαρκέτος 1992α). Το κριτήριο von Mises αγνοεί το έργο της συμμόρφου παραμόρφωσης και δε μπορεί να ληφθεί υπόψη η διαφορά αντοχής του υλικού σε εφελκυσμό και θλίψη. Έτσι το κριτήριο Drucker – Prager διαμορφώθηκε έτσι ώστε να λαμβάνεται υπόψη η επιρροή της υδροστατικής συνιστώσας. Η μορφή του συνοψίζεται στην παρακάτω έκφραση:

$$\sqrt{J_2} = A \cdot \frac{I_1}{3} + B \qquad 2.2$$

Παρατηρούμε ότι η εξάρτηση από τη μέση ορθή τάση είναι γραμμική. Αν θεωρήσουμε συσχετισμένο νόμο ροής το δυναμικό διαρροής δίνεται από τη σχέση:

$$F(I_1, \sqrt{J_2}) = a \cdot I_1 + \sqrt{J_2} - k$$
 2.3

Στην περίπτωση μη - συσχετισμένου νόμου ροής το πλαστικό δυναμικό θα ήταν:

$$Q(I_1, \sqrt{J_2}) = a' \cdot I_1 + \sqrt{J_2} - k'$$
 2.4

Η επιφάνεια του κριτηρίου Drucker – Prager είναι κώνος με άξονα τον υδροστατικό άξονα (χωροδιαγώνιος). Η τομή της επιφάνειας με το αποκλίνον επίπεδο είναι κύκλος. Ο κύκλος του κριτηρίου Drucker – Prager μπορεί να είναι μία επιφάνεια εξωτερικού ορίου περιγεγραμμένη στην πυραμίδα του Mohr – Coulomb (Circumscribed Drucker – Prager) και μία εσωτερικού ορίου εγγεγραμμένη στην επιφάνεια αστοχίας Mohr – Coulomb (Inscribed Drucker – Prager).

Η παράμετρος Α σχετίζεται με τη γωνία εσωτερικής τριβής του υλικού και η παράμετρος Β σχετίζεται με τη συνοχή του υλικού.

Η αντιστοίχιση των δύο κριτηρίων γίνεται μέσω της Σχέσης 2.5a για την εγγεγραμμένη επιφάνεια

$$A = \frac{3\sin\phi}{\sqrt{9+3\sin^2\phi}}, \quad B = \frac{3C_0\cos\phi}{2\sqrt{q}\sqrt{9+3\sin^2\phi}}$$
 2.5a

και μέσω της Σχέσης 2.5b για την περιγεγραμμένη:

$$A = \frac{6\sin\phi}{\sqrt{3}(3-\sin\phi)}, \quad B = \frac{3C_0\cos\phi}{\sqrt{q}(3-\sin\phi)}$$
 2.5b

2.3 Κριτήριο Mohr – Coulomb

Κατά το κριτήριο Mohr-Coulomb η διατμητική τάση στο επίπεδο αστοχίας είναι ανάλογη της ορθής τάσης στο επίπεδο αστοχίας κατ' αντιστοιχία με την ολίσθηση στερεού σώματος επί κεκλιμένου επιπέδου. Για υλικά που έχουν συνοχή, κατά την ολίσθηση επιστρατεύεται ένας επιπλέον μηχανισμός αντίστασης, ο οποίος παριστάνεται μέσω της συνοχής, c. Το κριτήριο διατυπώνεται ως εξής:

$$|\tau| = c + \sigma_n \tan \varphi \qquad 2.6$$

Η σχέση που συνδέει τη μέγιστη κύρια τάση, σ₁ στο επίπεδο αστοχίας με την ελάχιστη κύρια τάση, σ₃ περιγράφεται από την εξίσωση:

$$\sigma_1 = \sigma_{ci} + q \cdot \sigma_3 \tag{2.7a}$$

$$\sigma_{\rm c} = \frac{2 \cdot c \cdot \cos \varphi}{1 - \sin \varphi}, \ q = \frac{1 + \sin \varphi}{1 - \sin \varphi} = \tan^2(\frac{\pi}{4} + \frac{\varphi}{2})$$
 2.7b

Η σχέση 1.3 υπονοεί ότι το υλικό αστοχεί σε διάτμηση κατά μήκος επιφάνειας που σχηματίζει γωνία (π/4+φ/2) από τη διεύθυνση της ελάχιστης κύριας τάσης, σ₃. Λόγω της γραμμικής σχέσης που προβλέπει το κριτήριο μεταξύ των τάσεων σ₁, σ₃ δεν μπορεί να χρησιμοποιηθεί στη Βραχομηχανική για την πρόβλεψη της θραύσης των πετρωμάτων, παρά μόνο όταν υπάρχει κάποιο προκαθορισμένο επίπεδο ασυνέχειας και η συμπεριφορά του βραχώδους υλικού είναι ανισότροπη. Επειδή τα λογισμικά του εμπορίου χρησιμοποιούν ευρέως το κριτήριο Mohr – Coulomb είναι απαραίτητο να υπολογίζονται ισοδύναμες παράμετροι c, φ, ώστε να εφαρμοστεί το κριτήριο. Αυτή η διαδικασία δεν είναι ιδιαίτερα ευχερής καθώς πρόκειται για μη γραμμικό πρόβλημα.

Ανάμεσα στα κριτήρια «παλιάς γενιάς» το κριτήριο Coulomb (1773) είχε ενσωματώσει τον παράγοντα διαφοροποίησης της αντοχής εισάγοντας στο κριτήριο την επιρροής της πρώτης αναλλοιώτου της τάσης και επομένως σχετίζοντας στην ενέργεια παραμόρφωσης και την ελαστική ενέργεια λόγω διαστολής του όγκου.

Στο χώρο των (σ₁,σ₂,σ₃) το κριτήριο Mohr - Coulomb απεικονίζεται ως «εξάπλευρη πυραμίδα» (Σχήμα 2.3).

Σχήμα 2.3: Γεωμετρική απεικόνιση του κριτηρίου Mohr – Coulomb στο χώρο των κυρίων τάσεων

2.4 Κριτήριο Hoek – Brown

Οι Hoek and Brown βασίστηκαν στο ενεργειακά θεμελιωμένο κριτήριο Griffith, το οποίο τροποποίησαν, εισάγοντας το ομώνυμο κριτήριο, ώστε να ισχύει στο άρρηκτο πέτρωμα και τη βραχόμαζα. Οι Hoek & Brown μετά την εξέταση πολλών πειραματικών δεδομένων τριαξονικών δοκιμών διατύπωσαν τη σχέση που συνδέει τη μέγιστη με την ελάχιστη κύρια τάση, η οποία συνιστά παραβολικό νόμο. Η μορφή αυτή συμφωνεί με τα πειραματικά αποτελέσματα και σε αυτό ακριβώς το δεδομένο βασίστηκαν οι Hoek and Brown όταν εισήγαγαν το εμπειρικό τους κριτήριο το 1981, ως τροποποίηση του κριτηρίου Griffith ώστε η περιβάλλουσα αστοχίας να προσαρμόζεται στους κύκλους Mohr τριαξονικών δοκιμών.

Πρόκειται για εμπειρικό κριτήριο αστοχίας με παραμέτρους την αντοχή σε μονοαξονική θλίψη, σ_c, και δύο αδιάστατες παραμέτρους, m, s. Η παράμετρος m εξαρτάται από τον τύπο του πετρώματος (Πίνακας 2.1) και παριστάνει το λόγο της μονοαξονικής αντοχής σε θλίψη προς τη μονοαξονική αντοχή σε εφελκυσμό. Η παράμετρος s συναρτάται με τα χαρακτηριστικά του πετρώματος και το βαθμό κατακερματισμού του και λαμβάνει τιμές 0 έως 1. Να σημειωθεί ότι στην παρούσα εργασία επεξεργαζόμαστε εργαστηριακά δεδομένα άρρηκτων πετρωμάτων, οπότε η παράμετρος s θεωρείται εξ' αρχής ίση με τη μονάδα.

Η Σχέση 2.8a είναι η διατύπωση του κριτηρίου για άρρηκτο πέτρωμα, ενώ η Σχέση 2.8b για κερματισμένο.

$$\sigma_1 = \sigma_3 + \sigma_{ci} \cdot \left(m_i \frac{\sigma_3}{\sigma_{ci}} + s \right)^a$$
 2.8a

$$\sigma_{1} = \sigma_{3} + \sigma_{ci} \cdot \left(m_{b} \frac{\sigma_{3}}{\sigma_{ci}} + s \right)^{a}$$
 2.8b

Τα εμπειρικά δεδομένα εισόδου, όπως η παράμετρος m_b μπορούν να προσδιοριστούν από τις σχέσεις που έχουν προταθεί από τους Hoek – Brown:

$$m_{b} = m_{i} \cdot e^{(\frac{GSI-100}{28})}$$
 2.9

όπου GSI = 0 – 100, ο Γεωλογικός Δείκτης Αντοχής για τη βραχόμαζα (Hoek – Brown 1997)

Όταν GSI > 25, τότε s =
$$e^{(\frac{GSI-100}{9})}$$
, a = 0.5
Όταν GSI < 25, τότε s = 0, a = 0.65 - $\frac{GSI}{200}$

Οι Hoek et al. (2002) εισήγαγαν ένα συντελεστή διατάραξης D που παίρνει τιμές από 0 – 1. Ο συντελεστής αυτός αποδίδει το βαθμό διατάραξης της βραχομάζας που έχει προκληθεί από εκρηκτικά αλλά και λόγω χαλάρωσης. Σε περίπτωση διάνοιξης με μηχανήματα TBM ο συντελεστής λαμβάνεται ίσος με μηδέν και σε εκσκαφές πρανών εξαρτάται από την ποιότητα της ελεγχόμενης έκρηξης και λαμβάνεται από 0.7 – 1. Οι νέες εμπειρικές εκφράσεις δίνονται από τις Σχέσεις :

$$m_{b} = m_{i} \cdot e^{(\frac{GSI-100}{28-14D})}$$
 2.10a

$$s = e^{(\frac{GSI-100}{9-3D})}$$
 2.10b

$$a = 0.5 + \frac{e^{\frac{(-0.51)}{15}} - e^{\frac{(-20)}{3}}}{6}$$
 2.10c

Η παράσταση του κριτηρίου στο χώρου είναι ένα «εξάπλευρο παραβολοειδές» (Σχήμα 2.4).

Σχήμα 2.4: Επιφάνεια αστοχίας κριτηρίου Hoek – Brown (Κοζάνης 2002)

Πίνακας 2.1: Τιμές της παραμέτρου m_i για διάφορα είδη βράχου (Marinos & Hoek,

Rock type	Class	Group	Texture			
				Coarse	Medium	Fine
Sedimentary	clastic		conglomerate $(21 \pm 3)^{4}$ breccia (19 ± 5)	sandstone (17 ± 4)	siltstone (7 ± 2) greywacke (18 ± 3)	claystone (4 ± 2) shale (6 ± 2) marl (7 ± 2)
	non- clastic	evaporite	crystalline limestone (12 ± 3)	sparitic limestone (10 ± 2) gypsum (8 ± 2)	micritic limestone (9 ± 2) anhydrite (12 ± 2)	dolomite (9 ± 3)
		organic			(chalk (7 ± 2)
Metamorphic	non- foliated		marble (9 ± 3)	hornfels (19 ± 4) metasandstone (19 ± 3)	$\frac{\text{quartzite}}{20 \pm 3}$	
	slightly foliated foliated ^b		migmatite (29 ± 3)	amphibolite (26 ± 6) schist (12 ± 3)	gneiss (28 ± 5) phyllite	slate (7 ± 4)
					(7 ± 3)	
Igneous	plutonic	light	granite (32 ± 3) granodiorite (29 ± 3)	diorite (25 ± 5)		
		dark	gabbro (27 ± 3)	dolerite (16 ± 5)		
	hypabyssal		porphyrie (20 ± 5)		$\frac{\text{diabase}}{(15 \pm 5)}$	peridotite (25 ± 5)
	volcanic	lava		rhyolite (25 ± 5) andesite (25 ± 5)	dacite (25 ± 3) basalt (25 ± 5)	(19 ± 3)
		pyroclastic	agglomerate (19 ± 3)	hreccia (19 ± 5)	tuff (13 ± 5)	

2001)

^a Values in parenthesis are estimates

^b These values are for intact rock specimen tests normal to bedding or foliation. The value of m_i will be significantly different if failure occurs along a weakness plane

2.5 Γενικευμένα κριτήρια Hoek – Brown

Προκειμένου να αντιμετωπιστεί η αδυναμία του εμπειρικού κριτηρίου των Hoek-Brown να συμπεριλάβει την επίδραση της ενδιάμεσης κύριας τάσης, ερευνητές όπως ο Priest, οι Zhang & Zhu και οι Pan & Hudson επέκτειναν το γνωστό κριτήριο κατάλληλα, ώστε να υπολογίζεται η αντοχή της βραχόμαζας σε τρεις διαστάσεις.

2.5.1 Κριτήριο Pan – Hudson

Οι Pan and Hudson (1988) πρότειναν μία τριδιάστατη έκδοση του κριτηρίου Hoek-Brown που εκφράζεται μέσα από τη Σχέση:

$$\frac{3}{\sigma c} \cdot J_{2} + \frac{\sqrt{3}}{2} \cdot m \cdot \sqrt{J_{2}} - m \frac{I_{1}}{3} = s\sigma c$$

$$(5.11)$$

$$(\delta \pi \sigma v) : J_{2} = \frac{\sigma_{1} - \sigma_{2}^{2} + \sigma_{2} - \sigma_{3}^{2} + \sigma_{3} - \sigma_{1}^{2}}{6}, I_{1} = \sigma_{1} + \sigma_{2} + \sigma_{3}$$

Γνωρίζοντας ότι:

$$\tau_{\text{oct}} = \frac{1}{3} \cdot \sqrt{\sigma_1 - \sigma_2^2 + \sigma_2 - \sigma_3^2 + \sigma_3 - \sigma_1^2} \rightarrow \tau_{\text{oct}} = \frac{1}{3} \cdot \sqrt{6 \cdot J_2} \rightarrow 3 \cdot \tau_{\text{oct}} = \sqrt{6 \cdot J_2} \rightarrow J_2 = \frac{3}{2} \cdot \tau_{\text{oct}}^2 \qquad 2.12$$

Αντικαθιστώντας τη Σχέση 1.12 στη Σχέση 1.11 λαμβάνουμε:

$$\frac{9}{2 \cdot \sigma c} \cdot \tau_{oct}^{2} + \frac{3}{2 \cdot \sqrt{2}} \cdot m \cdot \tau_{oct} - m \cdot \sigma_{m3} = s\sigma c \qquad 2.13$$

$$\delta \pi o \upsilon : \sigma_{m3} = \frac{I_{1}}{3}$$

Για την περίπτωση σ₁=σ₂ ή σ₂=σ₃ το γενικευμένο κριτήριο δε μεταπίπτει στο γνωστό διδιάστατο κριτήριο Hoek – Brown. Επομένως, δε προβλέπει την ίδια αντοχή με το κριτήριο Hoek – Brown.

2.5.2 Κριτήριο Priest

Ο Priest διαμόρφωσε ένα κριτήριο διαρροής συνδυάζοντας τα κριτήρια διαρροής Drucker – Prager και Hoek – Brown. Κίνητρο ήταν η αδυναμία του κριτηρίου Hoek – Brown να συμπεριλάβει την επιρροή της ενδιάμεσης κύριας τάσης σ₂ στην αντοχή του βραχώδους υλικού.

Εντατικές καταστάσεις όπου η αστοχία ελέγχεται και από τις 3 διαστάσεις είναι, για παράδειγμα, σε γεωτρήσεις για εξαγωγή πετρελαίου και αερίου. Το κριτήριο Drucker – Prager είχε ευρεία εφαρμογή στον έλεγχο ευστάθειας των τοιχωμάτων γεωτρήσεων πετρελαίου επειδή περιλαμβάνει και τις τρεις κύριες τάσεις. (Fjaer et al., 1992). Η

αναδιανομή των τάσεων στα στοιχεία που βρίσκονται στα τοιχώματα της γεώτρησης οδηγεί σε αύξηση της αποκλίνουσας τάσης (αύξηση της εφαπτομενικής στο άνοιγμα και μείωση της ακτινικής) έως πιθανώς ένα σημείο, όπου το κριτήριο που χρησιμοποιείται να προβλέπει διαρροή.

Η στρατηγική του συνδυασμού είναι ανάλογη της διαδικασίας που υιοθετείται για την εύρεση των ισοδύναμων παραμέτρων του κριτηρίου Mohr – Coulomb, c,φ, για το περιγεγραμμένο και το εγγεγραμμένο κριτήριο Drucker – Prager (Priest 2005). Η ερμηνεία του συνδυασμένου κριτηρίου είναι ότι η κυκλική επιφάνεια αστοχίας Drucker – Prager πάνω στο αποκλίνον επίπεδο θα έχει σημεία τομής με το εξάγωνο Mohr – Coulomb στις οξείες γωνίες του εξαγώνου. Ο Priest προτίμησε να χρησιμοποιήσει αντί του Mohr – Coulomb το κριτήριο Hoek – Brown, το οποίο εκφράζει παραβολική συσχέτιση και όχι γραμμική όπως το Mohr – Coulomb. Βασική προϋπόθεση της σύμπτωσης των δύο κριτηρίων είναι η J₁, η πρώτη αναλλοίωτος του αποκλίνοντος τανυστή να ταυτίζεται για τα δύο κριτήρια, δηλαδή να ισχύει J_{1HB}=J_{1DP}.

$$J_{1HB} = \frac{\sigma_{1hb} + 2\sigma_{3h}}{3}$$
 2.14

$$\mathbf{J}_{1\mathrm{DP}} = \frac{\sigma_3 + \sigma_2 + \sigma_{\mathrm{zf}}}{3}, \qquad 2.15$$

ópou: σ_{zf} , η energés tásh diarrohs gia tic kúriec táseic σ_{2} kai σ_{3}

Αυτό συμβαίνει διότι το αποκλίνον επίπεδο χαρακτηρίζεται από το γεγονός ότι το άθροισμα των τάσεων $\sigma_3 + \sigma_2 + \sigma_1$ είναι σταθερό. Η δεύτερη αναλλοίωτος του αποκλίνοντος τανυστή υπό εντατικό καθεστώς $\sigma_3 \neq \sigma_2 \neq \sigma_{zf}$ δίνεται από τη Σχέση 2.16:

$$J_{2} = \frac{(\sigma_{3} - \sigma_{2})^{2} + (\sigma_{2} - \sigma_{zf})^{2} + (\sigma_{zf} - \sigma_{3})^{2}}{6}$$
 2.16

Η επόμενη συνθήκη που ενώνει τα δύο κριτήρια είναι οι ακτίνες που ξεκινούν από το κεντρικό σημείο που ανήκει στον υδροστατικό άξονα και στο κάθετο σε αυτόν, αποκλίνον επίπεδο και καταλήγουν στα σημεία τομής των δύο κριτηρίων να είναι ίσες. Η αξονική απόσταση για το κριτήριο Hoek – Brown δίνεται από την παρακάτω Σχέση 2.17:

$$R_{HB} = \sqrt{(\sigma_{1hb} - J_1)^2 + 2(\sigma_{3hb} - J_1)^2}$$
 2.17

Η αξονική απόσταση για το κριτήριο Drucker - Prager δίνεται από την παρακάτω Σχέση 2.18:

$$R_{DP} = \sqrt{(\sigma_3 - J_1)^2 + (\sigma_2 - J_1)^2 + (\sigma_{zf} - J_1)^2}$$
 2.18

Επομένως για να τέμνονται πρέπει: R_{DP}=R_{HB}.

Να σημειωθεί ότι οι παραπάνω τάσεις αντιστοιχούν σε ενεργές τιμές, ωστόσο για λόγους απλότητας δε χρησιμοποιείται ο συμβολισμός σ[']₃. Εξάλλου στις αναλύσεις που γίνονται εδώ δεν υφίσταται σενάριο ύπαρξης πιέσεων πόρων.

Ο Priest όρισε σαν «συνδυασμένο» σφάλμα το άθροισμα των τετραγώνων των διαφορών των δύο συνθηκών ισότητας, δηλαδή την παρακάτω παράσταση (Σχέση 2.19):

$$\varepsilon_{\rm c} = (J_{\rm 1HB} - J_{\rm 1DP})^2 + (R_{\rm HB} - R_{\rm DP})^2$$
 2.19

Το ζητούμενο είναι να βρεθούν οι τιμές σ_{3hb} και σ_{zf} που θα ελαχιστοποιούν το παραπάνω άθροισμα.

Θεωρώντας συνθήκες μονοαξονικής θλίψης η αστοχία συμβαίνει στην τιμή της μονοαξονικής αντοχής σ_{cm}, η οποία δίνεται από τη Σχέση 2.20. Σε αυτή την περίπτωση οι αναλλοίωτες του αποκλίνοντος τανυστή λαμβάνουν τις τιμές που δείχνουν οι Σχέσεις.

$$\sigma_{\rm cm} = s^{\rm a} \sigma_{\rm ci} \qquad 2.20$$

$$J_1 = \frac{\sigma_{cm}}{3}$$
 2.21

$$J_2 = \frac{\sigma_{cm}^2}{3}$$
 2.22

Αντικαθιστώντας τις Σχέσεις 2.21, 2.22 στη Σχέση 2.2 λαμβάνουμε:

$$B = \frac{\sigma_{cm}(\sqrt{3} - A)}{3}$$
 2.23

$$A = \frac{3\sqrt{J_2} - \sigma_{cm}\sqrt{3}}{3J_1 - \sigma_{cm}}$$
 2.24

Η διαδικασία επίλυσης του συστήματος των εξισώσεων αποτελείται από τα παρακάτω στάδια (Priest 2005):

1. Ορίζονται τα δεδομένα εισόδου $\sigma_c, \sigma_{cm}, m_b, s, a, \sigma_3, \sigma_2$

2. Τίθεται αυθαίρετη αρχική τιμή για τη σ₃ και σ_{zf} (συνήθεις αρχικές τιμές της τάξεως του σ_{ci}

3. Υπολογίζονται οι τιμές: σ_1 (Σχ.), J_{1HB} (Σχ.1.1), J_{1DP} (Σχ.1.2), J_2 (Σχ.1.3), R_{HB} (Σχ.1.4), R_{DP} (Σχ.1.5), A (Σχ.1.11), B (Σχ.1.10)

4. Έλεγχος σφάλματος ε_c

5. Αναζητούνται οι τιμές σ_c και σ_{zf} που ελαχιστοποιούν το σφάλμα υπό τον περιορισμό ότι είναι μεγαλύτερες ή ίσες του μηδενός, ώστε να μη συμβαίνει αστοχία σε εφελκυσμό.

Το μειονέκτημα της μεθοδολογίας αυτής είναι ότι χρειάζεται επαναληπτική διαδικασία για να συνδυαστούν τα δύο κριτήρια. Για παράδειγμα, για διαφορετικό επίπεδο της σ₃, θα έχουμε και διαφορετικό αποτέλεσμα για την τάση διαρροής. Αυτό συμβαίνει εξαιτίας της μη γραμμικής φύσης του κριτηρίου Hoek – Brown και ενώ οι παράμετροι του κριτηρίου Drucker – Prager είναι σταθερές πάνω σε δεδομένο αποκλίνον επίπεδο, αλλάζουν όταν μετακινηθούμε σε άλλη στάθμη σ₃. Στο χώρο θα παριστάνει ένα κώνο με βάση κύκλο και πλευρές που δεν είναι ευθείες γραμμές αλλά ακολουθούν τον παραβολικό νόμο.

Ο Zhang (2008) προτείνει μία εναλλακτική παρόμοια διαδικασία για την επίλυση του προβλήματος, ενώ ο Priest διατύπωσε ένα απλοποιημένο γενικευμένο κριτήριο Hoek – Brown. Επιπλέον, οι Ν. Melkoumiam, S. D. Priest και S.P. Hunt (2008) έχουν κάνει πρόταση κλειστής λύσης για την εύρεση της μέγιστης τάσης σ₁,την οποία δεν παρουσιάζουμε σε αυτή την εργασία.

2.5.2.1 Απλοποιημένο κριτήριο Priest

Ο Priest εφάρμοσε την τριδιάστατη εντατική κατάσταση διαρροής [σ_xσ_yσ_{zf}] στο διδιάστατο κριτήριο Hoek – Brown προκειμένου να διαμορφώσει μία απλοποιημένη εκδοχή του κριτηρίου Hoek – Brown σε τρεις διαστάσεις. Υπέθεσε ότι η ελάχιστη κύρια τάση σ₃ προέρχεται από το σταθμισμένο μέσο όρο της ελάχιστης κύριας τάσης και της ενδιάμεσης κύριας τάσης. Η συμμετοχή της ενδιάμεσης κύριας τάσης ελέγχεται εισάγοντας ένα συντελεστή, b, ο οποίος κυμαίνεται μεταξύ 0 και 1.

Όταν w=0 η ενδιάμεση κύρια τάση σ_y δεν έχει καμία επιρροή, όταν w=1 η ελάχιστη κύρια τάση δεν έχει καμία επιρροή. Έτσι η σ₃ δίνεται από τη Σχέση:

$$\sigma_{3hb} = b\sigma_2 + (1-b)\sigma_3 \qquad 2.25$$

Αντικαθιστώντας την έκφραση αυτή της σ₃ στη Σχέση (hb) λαμβάνουμε μία λύση κλειστής μορφής για τη σ₁. Συνδυάζοντας τις Σχέσεις 1.1 και 1.2 προκύπτει:

$$\sigma_{zf} = \sigma_{1hb} + 2\sigma_{3hb} - (\sigma_2 + \sigma_3)$$
 2.26

Ο Priest (2005) πρότεινε ότι για πολλούς τύπους βράχου ο συντελεστής b, μπορεί να εκτιμηθεί από τον εκθετικό νόμο (Σχέση 1.14):

$$b \approx \alpha \cdot \sigma_3^{\ \beta}$$
 2.27

Σε πρώτη προσέγγιση προτείνονται οι τιμές α=β=0.15. Η επιφάνεια αστοχίας σε προβολή πάνω στο αποκλίνον επίπεδο παριστάνεται ως εξάγωνο που περικλείει το εξάγωνο του διδιάστατου Hoek – Brown (Σχήμα 2.5)

Σχήμα 2.5: Προβολές επιφανειών αστοχίας σε αποκλίνον επίπεδο (S.D. Priest, 2005)

2.5.3 Κριτήριο Zhang – Zhu

Οι Zhang & Zhu (2007) πρότειναν την παρακάτω έκφραση του εμπειρικού κριτηρίου Hoek-Brown για την περιγραφή της τριδιάστατης αντοχής της βραχόμαζας.

$$\frac{9}{2 \cdot \sigma_{c}} \cdot \tau_{oct}^{2} + \frac{3}{2 \cdot \sqrt{2}} \cdot m \cdot \tau_{oct} - m \cdot \sigma_{m,2} = s \cdot \sigma_{c}$$
 2.28

$$όπου: τoct = \frac{1}{3} \cdot \sqrt{\sigma_1 - \sigma_2^2 + \sigma_2 - \sigma_3^2 + \sigma_3 - \sigma_1^2}, \sigma_{m,2} = \frac{\sigma_1 + \sigma_3}{2} \qquad 2.29$$

Για την περίπτωση σ₁=σ₂ ή σ₂=σ₃ το γενικευμένο κριτήριο μεταπίπτει στο γνωστό διδιάστατο κριτήριο Hoek - Brown :

$$\tau_{oct} = \frac{\sqrt{2}}{3} \cdot \sigma_1 - \sigma_3$$

$$\sigma_1 = \sigma_3 + \sigma_c \cdot (m \frac{\sigma_3}{\sigma_c} + s)^{0.5}$$

2.30

H μόνη διαφορά ανάμεσα στα κριτήρια Pan – Hudson και Zhang – Zhu βρίσκεται στη μέση ορθή τάση. Το Σχήμα 2.6 αναπαριστά γεωμετρικά τις προβολές των επιφανειών αστοχίας των κριτηρίων Hoek – Brown, Pan – Hudson (1988), Priest (2005), Zhang – Zhu (2007) σε παράλληλο στο απικλίνον επίπεδο για J₁=100 MPa σ_c =50 MPa, m=5, s=0.01.

Σχήμα 2.6: Προβολές επιφανειών αστοχίας Hoek – Brown, Pan – Hudson (1988), Priest (2005), Zhang – Zhu (2007). (L. Zhang, 2008)

Η επιφάνεια αστοχίας που προβλέπει το κριτήριο Zhang – Zhu αντίκειται σε μία βασική ιδιότητα που πρέπει να χαρακτηρίζει τις επιφάνειας αστοχίας σύμφωνα με κάποιο ενεργειακό περιορισμό. Συγκεκριμένα, η επιφάνεια αστοχίας πρέπει να είναι κυρτή, δηλαδή να κείται εξ' ολοκλήρου από τη μία πλευρά της εφαπτομένης σε οποιοδήποτε σημείο της. Ο περιορισμός αυτός πηγάζει από την αρχή του μη αρνητικού έργου των πλαστικών παραμορφώσεων του Drucker (Prager 1951). Εξαιτίας αυτής της μη – κυρτότητας το κριτήριο μπορεί να παρουσιάζει προβλήματα για κάποιες διαδρομές τάσεων. Υπάρχουν ωστόσο, αναφορές από πειραματικά δεδομένα που περιγράφουν μη – κυρτές καμπύλες αστοχίας, όπως δημοσιεύσεις των Μ. Μ. Filonenko – Boroditch, R.M. Haythornthwaite, I.N. Mirolubov, T.S. Hsu (Combined loadings in the theory of plasticity, Michał Życzkowski). Επιπλέον, ο Zhang αναφέρει ότι ένα μη – κυρτό κριτήριο έχει ήδη προταθεί από τον Yu (2002).

2.6 Κριτήρια Mogi

Ο Mogi Kiyoo από το πανεπιστήμιο του Τόκυο πραγματοποίησε πολυάριθμα πειράματα σε διαφορετικά είδη άρρηκτου βράχου για να διερευνήσει την επίδραση «σύνθετου» καθεστώτος του εντατικού πεδίου στην αντοχή του βράχου, στη γωνία θραύσης (γωνία που σχηματίζει το επίπεδο θραύσης με τη διεύθυνση της μέγιστης τάσης σ_1) και την πλαστιμότητα του βράχου. Ο όρος «σύνθετη εντατική κατάσταση» σημαίνει $\sigma_1>\sigma_2>\sigma_3>0$. Η καινοτομία των πειραμάτων του ήταν η ίδια η συσκευή της τριαξονικής δοκιμής, η οποία έδινε τη δυνατότητα για ανεξάρτητη επιβολή των πλευρικών πιέσεων σ_2 , σ_3 . Με αυτό τον τρόπο μπόρεσε να μελετήσει συστηματικά την επίδραση της κάθε μιας από τις πλευρικές τάσεις στις παραμέτρους αντοχής και παραμορφωσιμότητας και ιδιαίτερα την επίδραση της σ_2 , την οποία τα ευρέως διαδεδομένα κριτήρια αστοχίας έχει τη διεύθυνση της ενδιάμεσης κύριας τάσης σ_2 , οπότε η μέση ορθή τάση στο επίπεδο αστοχίας δε μπορεί παρά να είναι ο μέσος όρος της μέγιστης και της ελάχιστης κύριας τάσης.

Ο Mogi διαπίστωσε ότι αύξηση της σ₂ οδηγεί σε αύξηση της αντοχής και σε μείωση των μετελαστικών παραμορφώσεων. Ακόμη διαπίστωσε ότι το επίπεδο αστοχίας έχει τη διεύθυνση της σ₂ και ότι η γωνία θραύσης μειώνεται με την αύξηση της σ₂. Να σημειωθεί εδώ ότι ο Mogi διαχώρισε την περίπτωση των τάσεων θραύσης από τις τάσεις διαρροής και διαπίστωσε ότι στην περίπτωση της διαρροής η μέση ορθή τάση στο επίπεδο της αστοχίας ελέγχεται από το μέσο όρο και των τριών τάσεων, δηλαδή

29

από τη σ_{oct}. Αυτό συμβαίνει διότι κατά τη διαρροή δεν υπάρχει κάποιο διακριτό επίπεδο αστοχίας με συγκεκριμένη κατεύθυνση.

Το 1966 διατύπωσε ένα παραβολικό νόμο αστοχίας που συνδέει τη συσχέτιση της αντοχής με την πλευρική πίεση, ο οποίος συνοψίζεται στην παρακάτω σχέση:

$$\sigma_1 - \sigma_3 = C_0 + a \cdot \sigma_3^n \qquad 2.31$$

Όταν σχεδίαζε τα διαγράμματα της μέγιστης διατμητικής τάσης συναρτήσει της $\frac{\sigma_1 + \sigma_3}{2}$ παρατήρησε ότι η καμπύλη για το πείραμα του εφελκυσμού ήταν πιο πάνω από την καμπύλη για τη θλίψη και το αντίθετο συνέβαινε όταν σχεδίαζε την σ_{oct}.σαν συνάρτηση της μέσης ορθής τάσης $\frac{\sigma_1 + \sigma_2 + \sigma_3}{3}$ για την αστοχία στον ίδιο βράχο. Για να αντιμετωπίσει αυτό το πρόβλημα εισήγαγε το συντελεστή β, για κάποια κατάλληλη τιμή του οποίου οι καμπύλες εφελκυσμού και θλίψης συνέπιπταν. Ο Mogi ισχυρίστηκε ότι η τιμή της παραμέτρου είναι περίπου η ίδια για όλα τα ψαθυρά πετρώματα. Το εμπειρικό αυτό κριτήριο διατυπώνεται ως εξής:

$$\frac{\sigma_1 - \sigma_3}{2} = f[(\sigma_1 + \beta \cdot \sigma_2 + \sigma_3) / 2], \beta \le 1$$
2.32

Ο πολλαπλασιαστής της σ₂ υπονοεί τη συμμετοχή της σ₂ στην ορθή τάση στο επίπεδο αστοχίας, επειδή το επίπεδο αστοχίας δεν μπορεί να είναι πλήρως παράλληλο στη σ₂ αλλά κάποιες ανωμαλίες κατευθύνουν το επίπεδο αστοχίας σε απόκλιση arcsin(β) από τη διεύθυνση της σ₂.

Το κριτήριο αστοχίας που πρότεινε ο Mogi (1971) συνοψίζεται στην παρακάτω έκφραση:

$$\tau_{\rm oct} = f(\sigma_{\rm m,2}) \tag{2.33}$$

όπου η f είναι μία αύξουσα και μονότονη συνάρτηση. Καθώς η στροφική ενέργεια είναι ανάλογη με την οκταεδρική διατμητική τάση, το κριτήριο ισοδυναμεί με τη θεώρηση ότι η αστοχία συμβαίνει όταν η στροφική ενέργεια φτάσει σε κάποια κρίσιμη τιμή, η οποία αυξάνει μονότονα με τη σ_{m,2}. Στη διερεύνηση μας εξετάζουμε την αστοχία στο επίπεδο (τ_{oct},σ_{m,2}) και για τη συνάρτηση f γίνονται 3 θεωρήσεις (γραμμική, εκθετική, παραβολική).

2.7 Κριτήριο Theocaris (Ελλειπτικό Παραβολοειδές)

Η επιφάνεια αστοχίας του ελλειπτικού παραβολοειδούς έχει καθιερωθεί σαν κριτήριο αστοχίας που προβλέπει τη συμπεριφορά κατά την αστοχία υλικών που παρουσιάζουν ανισοτροπία και διαφορά αντοχής σε εφελκυσμό και θλίψη κατά μήκος και των τριών κύριων αξόνων. Ειδική περίπτωση αυτής της γενικής συμπεριφοράς είναι το ισότροπο μέσο, για το οποίο η επιφάνεια αστοχίας του ελλειπτικού παραβολοειδούς μεταπίπτει σε παραβολοειδές εκ περιστροφής.

Πρόκειται για κριτήριο που ανέπτυξαν οι Π.Σ. (Theocaris, Philippidis, 1987) με σαφή γεωμετρική απεικόνιση στο χώρο. Πρώτος ο von Mises διατύπωσε κριτήριο διαρροής και αστοχίας ανισότροπων μέσων. Στη συνέχεια ο Hill βασισμένος στον Mises διατύπωσε το δικό του κριτήριο αστοχίας για ανισότροπα υλικά, αλλά χωρίς να περιλαμβάνει τη φυσική ιδιότητα, σχεδόν όλων των υλικών, να παρουσιάζουν διαφορά στην αντοχή τους σε εφελκυσμό και σε θλίψη. Αυτό το μειονέκτημα αντιμετωπίστηκε από τον Hoffman, ο οποίος επέκτεινε το κριτήριο του Hill ενσωματώνοντας τον παράγοντα διαφοροποίησης της αντοχής. Αυτό επιτεύχθηκε προσθέτοντας γραμμικούς όρους των τάσεων στην παραβολική εξίσωση του κριτηρίου του Hill. Το κριτήριο του Hoffman για ισότροπο μέσο μεταπίπτει στο κριτήριο Drucker – Prager.

$$F(\sigma_{ij}) = C_1 \cdot (\sigma_x - \sigma_y)^2 + C_2 \cdot (\sigma_z - \sigma_y)^2 + C_3 \cdot (\sigma_x - \sigma_z)^2 + 2 \cdot C_4 \cdot \tau_{xy}^2 + 2 \cdot C_5 \cdot \tau_{yz}^2 + 2 \cdot C_6 \cdot \tau_{zx}^2 + C_7 \cdot \sigma_x + C_8 \cdot \sigma_y + C_9 \cdot \sigma_z - 1 = 0$$
 2.34

Δύο κριτήρια που είναι θεμελιωμένα σε ενεργειακούς νόμους είναι το πολυώνυμο όρων τανυστή των Tsai –Wu (Failure Tensor Polynomial - FTP) και το ελλειπτικό παραβολοειδές (Elliptical Paraboloid Failure Surface - EPFS). Και τα δύο περιγράφονται από παραβολικές επιφάνειες και παρουσιάζουν μία βασική ιδιότητα που συμμορφώνεται με κάποιο φυσικό νόμο. Θεωρώντας ένα συμμετρικό τανυστή, η παρακάτω έκφραση θα μπορούσε να δίνει συνθήκη διαρροής:

$$f(\sigma) = \sigma \cdot H \cdot \sigma + h \cdot \sigma - 1 \qquad 2.35$$

Επομένως το κριτήριο του ελλειπτικού παραβολοειδούς είναι μία ειδική περίπτωση πολυωνύμου όρων τανυστή, ωστόσο περιγράφεται με φυσικές παραμέτρους όπως αντοχές σε εφελκυσμό και θλίψη, σε αντίθεση με το κριτήριο Tsai – Wu. Το όνομα

οφείλεται στο γεγονός ότι οι τομές της επιφάνειας με επίπεδα παράλληλα στο αποκλίνον είναι ελλείψεις (ή υπερβολές ανάλογα με την επιλογή των παραμέτρων αντοχής). Αν θεωρήσουμε ένα υλικό με ορθοτροπική ανισοτροπία κατά τους άξονες (σ₁,σ₂,σ₃), με αντοχές σε μονοαξονική θλίψη κατά μήκος των αξόνων: σ_{c1}, σ_{c2}, σ_{c3} και σε μονοαξονικό εφελκυσμό σ_{t1}, σ_{t2} σ_{t3}, τότε η επιφάνεια αστοχίας πρέπει να τέμνει τους άξονες σ₁,σ₂,σ₃ στα σημεία (-σ_{c1},0,0), (-σ_{t1},0,0),...,(0,0, σ_{t3}). Προσαρμόζοντας μία παραβολική επιφάνεια σ' αυτά τα σημεία και θέτοντας κατάλληλους γεωμετρικούς περιορισμούς, η έκφραση του κριτηρίου του ελλειπτικού παραβολοειδούς για ορθοτροπικό υλικό είναι:

$$\begin{split} F(\sigma_{1},\sigma_{2},\sigma_{3}) &= \frac{1}{\sigma_{c1}\sigma_{t1}}\sigma_{1}^{2} + \frac{1}{\sigma_{c2}\sigma_{t2}}\sigma_{2}^{2} + \frac{1}{\sigma_{c3}\sigma_{t3}}\sigma_{3}^{2} - \\ &- \left(\frac{1}{\sigma_{c1}\sigma_{t1}} + \frac{1}{\sigma_{c2}\sigma_{t2}} - \frac{1}{\sigma_{c3}\sigma_{t3}}\right)\sigma_{1}\sigma_{2} - \left(\frac{1}{\sigma_{c2}\sigma_{t2}} + \frac{1}{\sigma_{c3}\sigma_{t3}} - \frac{1}{\sigma_{c1}\sigma_{t1}}\right)\sigma_{2}\sigma_{3} - \\ &- \left(\frac{1}{\sigma_{c1}\sigma_{t1}} + \frac{1}{\sigma_{c3}\sigma_{t3}} - \frac{1}{\sigma_{c2}\sigma_{t2}}\right)\sigma_{1}\sigma_{3} + \left(\frac{\sigma_{c1} - \sigma_{t1}}{\sigma_{c1}\sigma_{t1}}\right)\sigma_{1} + \left(\frac{\sigma_{c2} - \sigma_{t2}}{\sigma_{c2}\sigma_{t2}}\right)\sigma_{2} + \\ &+ \left(\frac{\sigma_{c3} - \sigma_{t3}}{\sigma_{c3}\sigma_{t3}}\right)\sigma_{3} - 1 = 0 \end{split}$$

$$\begin{split} \Theta & \acute{\epsilon} \tau \circ \tau \alpha \varsigma \colon H_{11} = \frac{1}{\sigma_{c1} \sigma_{t1}}, H_{22} = \frac{1}{\sigma_{c2} \sigma_{t2}}, H_{33} = \frac{1}{\sigma_{c3} \sigma_{t3}} \\ H_{12} &= \frac{1}{\sigma_{c1} \sigma_{t1}} + \frac{1}{\sigma_{c2} \sigma_{t2}} - \frac{1}{\sigma_{c3} \sigma_{t3}} \\ H_{23} &= \frac{1}{\sigma_{c2} \sigma_{t2}} + \frac{1}{\sigma_{c3} \sigma_{t3}} - \frac{1}{\sigma_{c1} \sigma_{t1}} \\ H_{31} &= \frac{1}{\sigma_{c3} \sigma_{t3}} + \frac{1}{\sigma_{c1} \sigma_{t1}} - \frac{1}{\sigma_{c2} \sigma_{t2}} \\ h_{1} &= \frac{1}{\sigma_{t1}} - \frac{1}{\sigma_{c1}}, h_{2} = \frac{1}{\sigma_{t2}} - \frac{1}{\sigma_{c2}}, h_{3} = \frac{1}{\sigma_{t3}} - \frac{1}{\sigma_{c3}}, \end{split}$$

$$F(\sigma_{1},\sigma_{2},\sigma_{3}) = H_{11}\sigma_{1}^{2} + H_{22}\sigma_{2}^{2} + H_{33}\sigma_{3}^{2} - H_{12}\sigma_{1}\sigma_{2} - H_{23}\sigma_{2}\sigma_{3} - H_{31}\sigma_{1}\sigma_{3} + h_{1}\sigma_{1} + h_{2}\sigma_{2} + h_{3}\sigma_{3} - 1 = 0$$
2.36

Η παρουσία των γραμμικών όρων υποδεικνύει ότι η επιφάνεια του ελλειπτικού παραβολοειδούς για το ορθοτροπικό υλικό έχει τον άξονα συμμετρίας έκκεντρα τοποθετημένο σε σχέση με τον υδροστατικό άξονα.

Σχήμα 2.7: Η επιφάνεια αστοχίας του ελλειπτικού παραβολοειδούς (Π.Σ. Θεοχάρης 1999)

Το κριτήριο του ελλειπτικού παραβολοειδούς αποτελεί γενίκευση του παραβολοειδούς εκ περιστροφής για ισότροπο μέσο, το οποίο έχει ενεργειακή θεμελίωση. Αν και κάτι τέτοιο δεν έχει αποδειχθεί για το ελλειπτικό παραβολοειδές,εν τούτοις φαίνεται να ισχύει καθώς στην έναρξη αστοχίας συμμετέχουν τόσο η υδροστατική συνιστώσα όσο και η απόκλιση.

Επιπλέον οι παράμετροι αντοχής πρέπει να πληρούν κάποιες συνθήκες, ώστε η επιφάνεια αστοχίας να είναι κυρτή με τομές κλειστές καμπύλες. Ένας τέτοιος περιορισμός είναι αυτός που διατύπωσε ο Θεοχάρης για τα εγκάρσια ανισότροπα υλικά το 1989:

$$4\sigma_{t3}\sigma_{c3} > \sigma_{t1}\sigma_{c1}$$
 2.37

2.7.1 Κριτήριο Παραβολοειδούς εκ Περιστροφής

Σύμφωνα με το Π.Σ. Θεοχάρη (1983,1989) είναι δυνατή η έκφραση ενός κριτηρίου αστοχίας για ισότροπα μέσα, τα οποία χαρακτηρίζονται από διαφορετική αντοχή σε εφελκυσμό και θλίψη. Το κριτήριο είναι θεμελιωμένο σε ενεργειακές προτάσεις καθώς η αστοχία γίνεται όταν η ελαστική στροφική ενέργεια λάβει κάποια κρίσιμη τιμή που εξαρτάται από την υδροστατική συνιστώσα. Έτσι συμμετέχουν εξίσου οι ενέργειες συνόγκου και σύμμορφης παραμόρφωσης. Η γεωμετρική του απεικόνιση είναι μια παραβολική επιφάνεια με αξονική συμμετρία ως προς τον υδροστατικό άξονα. Το παραβολοειδές εκ περιστροφής είναι μια ειδική περίπτωση του κριτηρίου του ελλειπτικού παραβολοειδούς για ισότροπο μέσο. Οπότε προκύπτει αν θέσουμε τους εξής περιορισμούς:

$$\sigma_{c1} = \sigma_{c2} = \sigma_{c3} = \sigma_{c}$$

$$\sigma_{t1} = \sigma_{t2} = \sigma_{t3} = \sigma_{t}$$
2.38

και διατυπώνεται ως εξής :

$$(\sigma_{1} - \sigma_{2})^{2} + (\sigma_{2} - \sigma_{3})^{2} + (\sigma_{1} - \sigma_{3})^{2} + 2 \cdot (R - 1) \cdot (\sigma_{1} + \sigma_{2} + \sigma_{3}) \cdot \sigma_{t} = 2 \cdot R \cdot \sigma_{t}^{2} \qquad 2.39$$

όπου R είναι ο λόγος της μονοαξονικής αντοχής σε θλίψη προς τη μονοαξονική αντοχή σε εφελκυσμό.

Σχήμα 2.8: Γεωμετρική απεικόνιση της επιφάνειας αστοχίας του παραβολοειδούς εκ περιστροφής και του κριτηρίου Hoek – Brown (Κοζάνης, 2002)

2.8 Κριτήριο Murrel

Ο Griffith το 1921 (Jaeger and Cook), πρότεινε ένα κριτήριο για την ερμηνεία της ψαθυρής θραύσης του χάλυβα στους κινητήρες των αεροπλάνων. Σύμφωνα με τη θεωρία του Griffith η θραύση έχει ως σημεία εκκίνησης προϋπάρχουσες ρωγμές. Για την τεκμηρίωση της θεωρίας του έκανε πειράματα σε γυαλί. Στο Σχήμα φαίνεται η διάδοση της ρωγμής από μια αρχική ρωγμή ελλειπτικού σχήματος σε θλιπτικό πεδίο σε συνθήκες επίπεδης έντασης.

Σχήμα 2.9 : Εκκίνηση ρωγμής από το σύνορο εγκοπής σε διαξονική θλίψη

Αν και η θεωρία αυτή δε μπορεί να εφαρμοστεί στα πετρώματα αποτελεί μια βάση στην ερμηνεία της επιρροής προϋπαρχουσών ρωγμών στα υλικά. Η βασικής της υπόθεση είναι: Μία προϋπάρχουσα ρωγμή θα επεκταθεί όταν η συνολική δυναμική ενέργεια του συστήματος των φορτίων και του υλικού μειώνεται ή παραμένει σταθερή για μία αύξηση του μήκους της ρωγμής. Η ενέργεια ενός συστήματος μπορεί να μεταβληθεί για τρεις λόγους:

- Δημιουργία νέων επιφανειών των ρωγμών λόγω θραύσης
- Μεταβολή της ελαστικής ενέργειας παραμορφώσεων
- Μεταβολή της δυναμικής ενέργειας του συστήματος φόρτισης

Στην περίπτωση θλιπτικού πεδίου στην περιοχή των αιχμών αναπτύσονται εφελκυστικές τάσεις, οι οποίες δε μπορούν να ξεπεράσουν ένα όριο. Η διατύπωση του κριτηρίου είναι η εξής:

$$\sigma \ge \frac{2 \cdot \mathbf{E} \cdot \mathbf{a}}{\pi \cdot \mathbf{c}}$$
 2.40

όπου, Ε το μέτρο ελαστικότητας, α η ενέργεια ανά μονάδα επιφάνειας, c το ημιμήκος του μεγάλου άξονα της έλλειψης, και σ η εφελκυστική τάση, η οποία προκαλεί εκκίνηση της διάδοσης της ρωγμής.

Στην περίπτωση μονοαξονικής θλίψης αλλάζουν οι συνοριακές συνθήκες. Έχουν προταθεί λύσεις. Αν υποθέσουμε ότι η ρωγμή παραμένει ανοιχτή, ότι δηλαδή δεν έχουμε τάσεις στα τοιχώματα, θα ισχύει:

$$(\sigma_1 - \sigma_3)^2 = 8 \cdot (\sigma_1 + \sigma_3) \cdot \sigma_t \qquad 2.41$$
Ο Murrel επέκτεινε τη θεωρία του Griffith στις τρεις διαστάσεις, ώστε να συμπεριλαμβάνει και τις τρεις κύριες τάσεις. Σύμφωνα με τη θεωρία του Murrel η επιφάνεια αστοχίας είναι ένα παραβολοειδές εκ περιστροφής που εφάπτεται στα επίπεδα σ₁=-σ_t, σ₂=-σ_t, σ₃=-σ_t. Η διατύπωση του κριτηρίου είναι η εξής:

$$\tau_{oct}^{2} = 8\sigma_{t}\sigma_{oct}$$

$$(\sigma_{1} - \sigma_{2})^{2} + (\sigma_{2} - \sigma_{3})^{2} + (\sigma_{1} - \sigma_{3})^{2} = 24 \cdot (\sigma_{1} + \sigma_{2} + \sigma_{3}) \cdot \sigma_{t}$$
2.41

2.9 Κριτήριο Zhou (Modified Wiebols and Cook)

Ο Zhou (1994) παρουσίασε ένα κριτήριο αστοχίας, το οποίο αποτελεί επέκταση του περιγεγραμμένου Drucker – Prager με στοιχεία από το κριτήριο των Wiebols and Cook. Το κριτήριο διατυπώνεται ως εξής:

$$J_2^{1/2} = A + B \cdot \frac{I_1}{3} + C \cdot \left(\frac{I_1}{3}\right)^2$$
 2.42

Οι παράμετροι A, B, C προσδιορίζονται έτσι ώστε η ενδιάμεση κύρια τάση σ_2 να κυμαίνεται μεταξύ των τιμών σ_3 , σ_1 και και $\sigma_1 = C_0$ όταν $\sigma_2 = \sigma_3 = 0$.

$$C = \frac{\sqrt{27}}{2 \cdot C_1 + (q-1) \cdot \sigma_3 - C_0} \cdot \left(\frac{C_1 + (q-1) \cdot \sigma_3 - C_0}{2 \cdot C_1 + (q-1) \cdot \sigma_3 - C_0} - \frac{q-1}{q+2}\right), C_1 = (1+0.6\mu_i) \cdot C_0 \quad 2.43a$$

$$B = \frac{\sqrt{3} \cdot q - 1}{q + 2} - \frac{C}{3} \cdot 2 \cdot \sigma_{ci} + q + 2 \cdot \sigma_3$$
 2.43b

$$A = \frac{C_0}{\sqrt{3}} - \frac{C_0}{3}B - \frac{C_0^2}{9}C$$
 2.43c

Το κριτήριο των Wiebols and Cook (1968) ξεκινά από την υπόθεση ότι ένα ομογενές κομμάτι βράχου μπορεί να θεωρηθεί σαν ένα ελαστικό υλικό που περιέχει ένα μεγάλο αριθμό από ομοιόμορφα διανεμημένες και τυχαίου προσανατολισμού κλειστές επίπεδες ρωγμές Griffith, οι διαστάσεις των οποίων βρίσκονται μέσα σε κάποιο δεδομένο εύρος. Υπό την επίδραση κάποιου εντατικού πεδίου ο όγκος του υλικού αποθηκεύει κάποια ελαστική ενέργεια παραμόρφωσης μέσα του και επιπλέον της ενέργειας παραμόρφωσης που θα αποθήκευε αν δεν έχει ρωγμές αποθηκεύεται πρόσθετη ενέργεια λόγω των ρωγμών. Σε θλιπτικό εντατικό πεδίο ολίσθηση μεταξύ των απέναντι πλευρών μιας ρωγμής θα συμβεί όταν: $|τ| - μσ_n > 0$ Η διατμητική τάση

πάνω στη ρωγμή εξαρτάται από την τιμή των κυρίων τάσεων και τον προσανατολισμό της ρωγμής σε σχέσεις με αυτόν των κυρίων τάσεων. Η ενεργός διατμητική ενέργεια παραμόρφωσης (effective shear strain energy) εξαρτάται από τις τιμές των διατμητικών τάσεων πάνω σε κάθε ρωγμή στο μοναδιαίο όγκο, τον αριθμό των ρωγμών καθώς επίσης το σχήμα και το μέγεθος τους.

Η τριαξονική αντοχή του βράχου (σ₂=σ₃) για το κριτήριο Wiebols and Cook μπορεί να περιγραφεί με βάση την ίδια εξίσωση που αντιπροσωπεύει και το κριτήριο Coulomb:

$$\sigma_1 = C_0 + k \cdot \sigma_3 \tag{2.44}$$

Στην περίπτωση του κριτηρίου Wiebols and Cook η τιμή του k εξαρτάται από το συντελεστή τριβής, με τρόπο παρόμοιο αλλά διαφορετικό από αυτόν που εξαρτάται ο συντελεστής k από το συντελεστή εσωτερικής τριβής μ, στο κριτήριο Coulomb.

Όταν σ₁=σ₂ η αντοχή του βράχου και πάλι περιγράφεται από ίδιας μορφής εξίσωση, άλλα για τη σταθερά αντοχής C_B, ισχύει C_B > C₀:

$$\sigma_1 = C_B + k \cdot \sigma_3 \tag{2.45}$$

Η ολική διατμητική ενέργεια παραμόρφωσης ανά μονάδα όγκου υπολογίζεται μέσω ολοκληρώσης της πάνω σε όλα τα στοιχεία μιας επιφάνειας (1/8 μιας οκταεδρικής επιφάνειας) ως εξής:

$$W_{eff} = 2\pi N \int_{\theta_1}^{\theta_2} |\tau| - \mu \sigma^2 \sin \theta \, d\theta, \quad \gamma \iota \alpha \sigma_2 = \sigma_3 \qquad 2.46a$$

$$W_{eff} = 2\pi N \int_{\frac{\pi}{2}-\theta_3}^{\frac{\pi}{2}-\theta_1} |\tau| - \mu \sigma^{-2} \sin \theta \, d\theta, \, \gamma \iota \alpha \, \sigma_2 = \sigma_1 \qquad 2.46b$$

3. Μεθοδολογία και αποτελέσματα διερεύνησης

3.1 Πειραματικά τριαξονικά και πολυαξονικά δεδομένα της βιβλιογραφίας

Οι επτά τύποι πετρωμάτων που χρησιμοποιήθηκαν είναι: 1) KTB Amphibolite, 2) Dunham Dolomite, 3) Solenhofen Limestone, 4) Shirahama Sandstone, 5) Yuubari Shale, 6) Westerly Granite, 7) Mizuho Trachyte. Τα δεδομένα από πολυαξονικές δοκιμές έχουν δημοσιευτεί από ερευνητές και αντλήθηκαν, τα μεν 5 πρώτα από την εργασία των Colmenares and Zoback (2002) και τα 2 τελευταία από δημοσίευση του L. Zhang (2008). Τα επιμέρους δεδομένα για τους διάφορους τύπους πετρωμάτων παρατίθενται στο Παράρτημα Β. Τα δεδομένα για τον αμφιβολίτη και τον γρανίτη προέρχονται από τους Chang and Haimson (2000), για τον δολομίτη, τον ασβεστόλιθο και τον τραχύτη από τον Mogi (1971), ενώ τα δεδομένα για τον ψαμμίτη και τον σχιστόλιθο οφείλουν την προέλευση τους στους Takahashi and Koide. Στην παρούσα εργασία δεν επιχειρούμε να αξιολογήσουμε την αξιοπιστία των παρεχόμενων δεδομένων. Πάντως λαμβάνεται σα δεδομένο ότι αντιπροσωπεύουν με μεγάλη αξιοπιστία την πραγματικότητα. Σκοπός της εργασίας αυτής είναι αφενός η προσαρμογή κριτηρίων αστοχίας στα πειραματικά δεδομένα και αφετέρου η διερεύνηση της επίδρασης που έχει η ενδιάμεση κύρια τάση στην αντοχή του βράχου. Σε πρώτη προσέγγιση ενδιαφέρει να δούμε τη συσχέτιση της μέγιστης τάσης, σ1 με την ενδιάμεση τάση, σ2 για κάθε επίπεδο της ελάχιστης τάσης σ3. Παρακάτω παρουσιάζονται τα αντίστοιχα διαγράμματα για τα 7 είδη πετρωμάτων, από όπου φαίνεται ότι ο αμφιβολίτης, ο ασβεστόλιθος, ο δολομίτης, ο τραχύτης και ο γρανίτης παρουσιάζουν αυξανόμενη αντοχή όσο αυξάνει και η σ₂ μέχρι ενός ορίου βεβαίως, σε σύγκριση με τον ψαμμίτη και τον σχιστόλιθο που μάλλον δεν παρουσιάζουν σημαντική ευαισθησία στην αντοχή τους με την αύξηση της ενδιάμεσης κύριας τάσης, σ₂.

Σχήμα 3.1: Διαγράμματα τάσεων σ₂ – σ₁

Μία περαιτέρω διερεύνηση της επίδρασης της ενδιάμεσης κύριας τάσης είναι ο υπολογισμός του συντελεστή συσχέτισης (colleration coefficient) μεταξύ των παραμέτρων σ₁, σ₂ (L.B. Colmenares, M.D. Zoback). Στο Σχήμα 3.2 φαίνεται το διάγραμμα του συντελεστή συσχέτισης μεταξύ των τάσεων σ₁, σ₂ για κάθε σ₃ κάθε πετρώματος. Από τον Πίνακα 3.1 φαίνεται ότι τα πετρώματα με τη μικρότερη εξάρτηση είναι ο Shirahama Sandstone και ο Yuubari Shale, ενώ τα πετρώματα KTB Amphibolite, Dunham Dolomite, Solenhofen Limestone, Westerly Granite και Mizuho Trachyte παρουσιάζουν σημαντική εξάρτηση από τη σ₂.

Πέτουμα		ντελεστής	Συσχέτισης R				
Πειρωμα		Rγ	/ια κάθε επί	ίπεδο σ ₃ ((MPa)		
KTB	0 30 60 100			15	150		
Amphibolite	0.74	0.79	0.78	0.	83	0.4	46
Dunham	25	45	65	85	105	125	145
Dolomite	0.82	0.87	0.93	0.88	0.77	0.84	0.72
Solenhofen	20 40		60		80		
Limestone	0.9	0.98 0.93		0.74		0.87	
Shirahama	5	8	15	20	30	4	0
Sandstone	0.13	0.46	0.78	0.62	0.09	0.8	85
Yuubari		25			50)	
Shale	0.64 0.70			0			
Westerly	0	2	20	38	60	77	100
Granite	0.82	0.87	0.78	0.84	0.87	0.78	0.69
Mizuho	4	5	60	75		100	
Trachyte	3.0	34	0.75	0.	85	0.90	

Πίνακας 3.1: Συντελεστής Συσχέτισης μεταξύ των παρ	αμέτρων σ₁,σ₂	$\frac{1}{2}$ για κάθε σ ₃
--	---------------	---------------------------------------

Σχήμα 3.2: Διάγραμμα συντελεστή συσχέτισης συναρτήσει της ελάχιστης τάσης σ₃

3.2 Προσαρμογή δεδομένων στο κριτήριο Drucker - Prager

Οι παράμετροι Α, Β προσδιορίζονται από την ευθεία παλινδρόμησης σχεδιασμένη στο επίπεδο (J₁, J₂^{1/2}). Η εύρεση της βέλτιστης ευθείας συνεπάγεται την ελαχιστοποίηση της παράστασης:

$$Q = \sum_{i=1}^{n} \left[\sqrt{J_2} - (A \cdot \frac{I_1}{3} + B) \right]^2$$
 3.1

Η ελαχιστοποίηση της παράστασης επιτυγχάνεται, όταν $\frac{\partial Q}{\partial A} = \frac{\partial Q}{\partial B} = 0$. Επομένως η Σχέση 3.1 γίνεται:

$$\frac{\partial}{\partial A} \sum_{i=1}^{n} \left[\sqrt{J_2} - (A \cdot \frac{I_1}{3} + B) \right]^2 = 2 \sum_{i=1}^{n} \left[\sqrt{J_2} - (A \cdot \frac{I_1}{3} + B) \right] \cdot \left(-\frac{I_1}{3} \right) = 0$$

$$\Rightarrow A \sum_{i=1}^{n} \left(\frac{I_1}{3} \right)^2 + B \sum_{i=1}^{n} \frac{I_1}{3} = \sum_{i=1}^{n} \sqrt{J_2} \frac{I_1}{3}$$

$$\frac{\partial}{\partial B} \sum_{i=1}^{n} \left[\sqrt{J_2} - (A \cdot \frac{I_1}{3} + B) \right]^2 = 2 \sum_{i=1}^{n} \left[\sqrt{J_2} - (A \cdot \frac{I_1}{3} + B) \right] \cdot (-1) = 0$$

$$\Rightarrow A \sum_{i=1}^{n} \frac{I_1}{3} + nB = \sum_{i=1}^{n} \sqrt{J_2}$$

Λύνοντας το σύστημα των εξισώσεων ως προς τις παραμέτρους a, b παίρνουμε:

$$A = \frac{n\left(\sum_{i=1}^{n} \sqrt{J_{2}} \frac{I_{1}}{3}\right) - \left(\sum_{i=1}^{n} \frac{I_{1}}{3}\right) \left(\sum_{i=1}^{n} \sqrt{J_{2}}\right)}{n\left(\sum_{i=1}^{n} \left(\frac{I_{1}}{3}\right)^{2}\right) - \left(\sum_{i=1}^{n} \frac{I_{1}}{3}\right)^{2}}$$

$$B = \frac{\left(\sum_{i=1}^{n} \left(\frac{I_{1}}{3}\right)^{2}\right) \left(\sum_{i=1}^{n} \sqrt{J_{2}}\right) - \left(\sum_{i=1}^{n} \frac{I_{1}}{3}\right) \left(\sum_{i=1}^{n} \sqrt{J_{2}} \frac{I_{1}}{3}\right)}{n\left(\sum_{i=1}^{n} \left(\frac{I_{1}}{3}\right)^{2}\right) - \left(\sum_{i=1}^{n} \frac{I_{1}}{3}\right)^{2}}$$
3.2a
3.2b

Στη συνέχεια παρουσιάζονται τα αποτελέσματα της γραμμικής προσέγγισης με τα αντίστοιχα διαγράμματα καθώς και οι ισοδύναμες παράμετροι c, φ (Σχέσεις 2.5a,b)

Πέτρωμα	Α	В	Συντελεστής Συσχέτισης R ²
KTB Amphibolite	0.8716	67.8460	0.9093
Dunham Dolomite	0.5161	151.1259	0.8685
Solenhofen Limestone	0.3427	167.2267	0.7043
Shirahama Sandstone	0.6178	27.7431	0.8586
Yuubari Shale	0.4171	48.6889	0.6176
Westerly Granite	1.0757	51.9967	0.9558
Mizuho Trachyte	0.3972	85.4401	0.8285

Πίνακας 3.1: Αποτελέσματα γραμμικής προσέγγισης

Πέτρωμα	σ_{c}	μ	С	φ	σ_{c}	μ	С	φ
	(MPa)		(MPa)	(rad)	(MPa)		(MPa)	(rad)
		Εγγεγρ	αμμένο		Περι	γεγραμ	μένο	
KTB Amphibolite	-	-	-	-	236.5	0.76	58.8	0.64
Dunham Dolomite	689	0.64	188	0.57	372.9	0.42	123.6	0.4
Solenhofen Limestone	525	0.37	182	0.36	361.1	0.28	136.8	0.27
Shirahama Sandstone	175	0.88	39.5	0.72	74.6	0.51	22.8	0.47
Yuubari Shale	176	0.48	55.5	0.44	111	0.34	39.8	0.32
Westerly Granite	-	-	-	-	237.6	1.01	48.8	0.79
Mizuho Trachyte	297	0.44	96.2	0.42	192	0.32	69.8	0.31

Πίνακας 3.2: Ισοδύναμες παράμετροι κριτηρίου Mohr – Coulomb για εγγεγραμμένο – περιγεγραμμένο Drucker - Prager

Όπου σημειώνεται '-', σημαίνει ότι δεν είναι δυνατή η αντιστοίχιση. Εν τούτοις το κριτήριο Drucker – Prager εφαρμόζεται πάντα αν δεν είναι απαραίτητη η σύγκριση με το κριτήριο Mohr – Coulomb.

Σχήμα 3.3: Ευθείες παλινδρόμησης στο επίπεδο $(J_2^{1/2}, J_1)$

.

Στη συνέχεια επιλύεται το κριτήριο ως προς τη μέγιστη τάση σ₁ και σχεδιάζονται τα διαγράμματα στο επίπεδο (σ₁,σ₂). Για το σκοπό αυτό διαμορφώνεται εξίσωση δευτέρου βαθμού ως προς τη σ₁, η επίλυση της οποίας δίνει δύο δυνατές λύσεις, από τις οποίες γίνεται δεκτή εκείνη που δίνει θετική τιμή για τη μέγιστη τάση σ₁.

$$\begin{split} \sqrt{J_{2}} &= A \cdot J_{1} + B \rightarrow \\ \sqrt{\frac{1}{6} \cdot \left[(\sigma_{1} - \sigma_{2})^{2} + (\sigma_{2} - \sigma_{3})^{2} + (\sigma_{3} - \sigma_{1})^{2} \right]} = \frac{A}{3} \cdot (\sigma_{1} + \sigma_{2} + \sigma_{3}) + B \rightarrow \\ \frac{1}{6} \cdot \left[(\sigma_{1} - \sigma_{2})^{2} + (\sigma_{2} - \sigma_{3})^{2} + (\sigma_{3} - \sigma_{1})^{2} \right] = \left[\frac{A}{3} \cdot (\sigma_{1} + \sigma_{2} + \sigma_{3}) + B \right]^{2} \rightarrow \\ \frac{1}{3} \cdot (\sigma_{1}^{2} + \sigma_{2}^{2} + \sigma_{3}^{2} - \sigma_{1}\sigma_{2} - \sigma_{2}\sigma_{3} - \sigma_{3}\sigma_{1}) = \\ \frac{A^{2}}{9} \cdot (\sigma_{1}^{2} + \sigma_{2}^{2} + \sigma_{3}^{2} + 2 \cdot \sigma_{1}\sigma_{2} + 2 \cdot \sigma_{2}\sigma_{3} + 2 \cdot \sigma_{3}\sigma_{1}) + \\ + \frac{2 \cdot A \cdot B}{3} \cdot (\sigma_{1} + \sigma_{2} + \sigma_{3}) + B^{2} \rightarrow \\ (1 - \frac{A^{2}}{3}) \cdot \sigma_{1}^{2} + (-\sigma_{2} - \sigma_{3} - 2 \cdot \frac{A^{2}}{3} \cdot (\sigma_{2} + \sigma_{3}) - 2 \cdot A \cdot B) \cdot \sigma_{1} + \\ + (\sigma_{2}^{2} + \sigma_{3}^{2}) \cdot (1 - \frac{A^{2}}{3}) - \sigma_{2}\sigma_{3} \cdot (1 + \frac{2 \cdot A^{2}}{3}) - 2 \cdot A \cdot B \cdot (\sigma_{2} + \sigma_{3}) - 3 \cdot B^{2} \\ \sigma_{1} &= -\frac{1}{2} \cdot \left\{ (2 \cdot A^{2} + 3) \cdot (\sigma_{2} + \sigma_{3}) + 6 \cdot A \cdot B + 3 \cdot \left[(4 \cdot A^{2} - 3) \cdot (\sigma_{2}^{2} + \sigma_{3}^{2}) + \\ + 12 \cdot B^{2} + \sigma_{2} \cdot \sigma_{3} \cdot (6 + 4 \cdot A^{2}) + 12 \cdot A \cdot B \cdot (\sigma_{2} + \sigma_{3}) \right]^{1/2} \right\} / (-3 + A^{2}) \end{split}$$

Παρακάτω παρουσιάζονται τα διαγράμματα πρόβλεψης σε άξονες σ₂,σ₁ συναρτήσει των διαφόρων τιμών της σ₃ και υπολογίζονται οι ποσοστιαίες αποκλίσεις, i%, των πειραματικών τιμών της σ₁, από τις τιμές της μέγιστης τάσης σ_{1D-P} που προβλέπει το κριτήριο.

$$i\% = \frac{\left|\sigma_{\rm 1D-P} - \sigma_{\rm 1, \pi \epsilon \iota \rho.}\right|}{\sigma_{\rm 1, \pi \epsilon \iota \rho.}} \cdot 100\%$$
3.3

Κεφάλαιο 3

Σχήμα 3.4: Διαγράμματα πρόβλεψης σ₂-σ₁ Drucker - Prager

Πέτρωμα	i %
KTB Amphibolite	16.64
Dunham Dolomite	5.52
Solenhofen Limestone	5.12
Shirahama Sandstone	10.60
Yuubari Shale	7.85
Westerly Granite	15.66
Mizuho Trachyte	6.45

	Πίνακας	3.3 :	Ποσοστά	απόκλισης,	i%
--	---------	--------------	---------	------------	----

<u>Γενικά Συμπεράσματα</u>: Στο κριτήριο συμμετέχουν μόνο οι τάσεις και όχι χαρακτηριστικές ιδιότητες του υλικού. Είναι ένα γενικό ενεργειακό κριτήριο με θεωρητική αξία. Επιπλέον η σύγκριση με παραμέτρους άλλων κριτηρίων δεν είναι πάντα εφικτή. Οι καμπύλες πρόβλεψης ακολουθούν την τάση των δεδομένων, αλλά τείνουν να υποεκτιμούν την αντοχή στις μικρότερες τιμές της σ₂ και να την υπερεκτιμούν στις μεγαλύτερες.

3.3 Προσαρμογή δεδομένων στο κριτήριο Mohr - Coulomb

Στην ενότητα αυτή γίνεται προσαρμογή του κριτηρίου Mohr-Coulomb στα διαθέσιμα δεδομένα για κάθε πέτρωμα. Το κριτήριο Mohr-Coulomb μπορεί να εκφραστεί σε όρους μέγιστης διατμητικής τάσης και μέσης ορθής τάσης, αν εκμεταλλευτούμε τις Σχέσεις 2.7a,b ως εξής (Al. Ajmi, R. W. Zimmerman):

$$\sigma_{1} = \sigma_{ci} + q \cdot \sigma_{3} \Rightarrow \sigma_{1} = \frac{2 \cdot c \cdot \cos \varphi}{1 - \sin \varphi} + \frac{1 + \sin \varphi}{1 - \sin \varphi} \cdot \sigma_{3} \Rightarrow$$

$$\sigma_{1} \cdot (1 - \sin \varphi) = 2 \cdot c \cdot \cos \varphi + (1 + \sin \varphi) \cdot \sigma_{3} \Rightarrow$$

$$\sigma_{1} - \sigma_{3} = 2 \cdot c \cdot \cos \varphi + (\sigma_{1} + \sigma_{3}) \cdot \sin \varphi \Rightarrow$$

$$\frac{\sigma_{1} - \sigma_{3}}{2} = c \cdot \cos \varphi + \sin \varphi \cdot \frac{\sigma_{1} + \sigma_{3}}{2} \Rightarrow$$

$$\tau_{max} = c \cdot \cos \varphi + \sin \varphi \cdot \sigma_{m,2}$$
3.4

Θα προσαρμόσουμε τη συνάρτηση στα γνωστά δεδομένα με τη μέθοδο ελαχίστων τετραγώνων, προσδιορίζοντας τις σταθερές a και b:

$$\tau_{\max} = c \cdot \cos \phi + \sin \phi \cdot \sigma_{m,2} \Longrightarrow \tau_{\max} = b + a \cdot \sigma_{m,2} \longrightarrow \begin{cases} a = \sin \phi \\ b = c \cdot \cos \phi \end{cases}$$
3.5

Η εύρεση της βέλτιστης ευθείας συνεπάγεται την ελαχιστοποίηση της παράστασης:

$$Q = \sum_{i=1}^{n} [\tau_{max} - (a \cdot \sigma_{m,2} + b)]^2$$
 3.6

Η ελαχιστοποίηση της παράστασης επιτυγχάνεται, όταν $\frac{\partial Q}{\partial a} = \frac{\partial Q}{\partial b} = 0$. Επομένως η Σχέση 3.6 γίνεται:

$$\frac{\partial}{\partial a} \sum_{i=1}^{n} [\tau_{max} - (a \cdot \sigma_{m,2} + b)]^2 = 2 \sum_{i=1}^{n} [\tau_{max} - (a \cdot \sigma_{m,2} + b)] \cdot (-\sigma_{m,2}) = 0$$

$$\Rightarrow a \sum_{i=1}^{n} \sigma_{m,2}^2 + b \sum_{i=1}^{n} \sigma_{m,2} = \sum_{i=1}^{n} \tau_{max} \sigma_{m,2}$$

$$\frac{\partial}{\partial b} \sum_{i=1}^{n} [\tau_{max} - (a \cdot \sigma_{m,2} + b)]^2 = 2 \sum_{i=1}^{n} [\tau_{max} - (a \cdot \sigma_{m,2} + b)] \cdot (-1) = 0$$

$$\Rightarrow a \sum_{i=1}^{n} \sigma_{m,2} + nb = \sum_{i=1}^{n} \tau_{max}$$

Λύνοντας το σύστημα των εξισώσεων ως προς τις παραμέτρους a, b παίρνουμε:

$$a = \frac{n\left(\sum_{i=1}^{n} \tau_{max} \sigma_{m,2}\right) - \left(\sum_{i=1}^{n} \sigma_{m,2}\right) \left(\sum_{i=1}^{n} \tau_{max}\right)}{n\left(\sum_{i=1}^{n} \sigma_{m,2}^{2}\right) - \left(\sum_{i=1}^{n} \sigma_{m,2}^{2}\right)^{2}}$$
3.7a

$$b = \frac{\left(\sum_{i=1}^{n} \sigma_{m,2}^{2}\right) \left(\sum_{i=1}^{n} \tau_{max}\right) - \left(\sum_{i=1}^{n} \sigma_{m,2}\right) \left(\sum_{i=1}^{n} \tau_{max} \sigma_{m,2}\right)}{n \left(\sum_{i=1}^{n} \sigma_{m,2}^{2}\right) - \left(\sum_{i=1}^{n} \sigma_{m,2}\right)^{2}}$$
3.7b

Αφού προσδιοριστούν οι παράμετροι διατμητικής αντοχής, c,φ, αλλά και η αντοχή σε μονοαξονική θλίψη με τη γραμμική παλινδρόμηση σχεδιάζονται τα διαγράμματα σ₂ συναρτήσει της σ₁ για τις διαφορετικές τιμές σ₃. Στο Παράρτημα Α παρουσιάζεται ο κώδικας σε περιβάλλον MatLab, όπου έγιναν οι υπολογισμοί. Ο Πίνακας 3.4 παρουσιάζει συγκεντρωτικά τα αποτελέσματα της γραμμικής προσέγγισης. Στο Σχήμα 3.5 παρουσιάζονται οι ευθείες παλινδρόμησης στο επίπεδο (τ, σ_{m,2}) για κάθε πέτρωμα και στο Σχήμα 3.6 τα διαγράμματα σ₂ συναρτήσει της σ₁ για τις διαφορετικές τιμές σ₃.

Πέτρωμα	а	b	Συντελεστής Συσχέτισης, R ²
KTB Amphibolite	0.7445	38.9926	0.9896
Dunham Dolomite	0.5922	81.8647	0.9542
Solenhofen Limestone	0.5812	69.1101	0.9086
Shirahama Sandstone	0.6457	15.4835	0.9914
Yuubari Shale	0.5137	25.5129	0.9386
Westerly Granite	0.7886	35.2102	0.9967
Mizuho Trachyte	0.5705	31.8874	0.9523

Πίνακας 3 4: Προσέγγιση παραμέτρων a,b

Σχήμα 3.5: Ευθείες παλινδρόμησης στο επίπεδο (τ,σ_{m,2})

Προκειμένου να αξιολογηθεί η προσαρμογή υπολογίζεται η μέγιστη κύρια τάση που προβλέπει το κριτήριο Mohr – Coulomb, σ_{1M,C} και συγκρίνεται με τις αντίστοιχες πειραματικές τιμές της σ₁. Τα ποσοστά απόκλισης για τη μέγιστη τάση σ₁ υπολογίζονται με βάση τη Σχέση 3.8.

$$i\% = \frac{\left|\sigma_{1M-C} - \sigma_{1,\pi\epsilon\iota\rho.}\right|}{\sigma_{1,\pi\epsilon\iota\rho.}} \cdot 100\%$$
3.8

Ο Πίνακας 3.5 παρουσιάζει τα αποτελέσματα της προσέγγισης των παραμέτρων c,φ,i. Η πειραματική – πραγματική τιμή της αντοχής σε μονοαξονική θλίψη παρατίθεται για λόγους σύγκρισης. Όπου δεν υπάρχουν δεδομένα, έχει τοποθετηθεί ερωτηματικό.

Πέτρωμα	Πειρα- ματική σ _c (MPa)	Πρόβλεψη σ _c (MPa)	Συνοχή, c (MPa)	Γωνία τριβής, φ (rad)	q	i %
KTB	165	305	58.4	0.8397	6.8264	10.62
Amphibolite						
Dunham	257	401	101.6	0.6337	3.9038	6.01
Dolomite						
Solenhofen	N/A	330	84.9	0.6202	3.7751	6.55
Limestone						
Shirahama	N/A	87	20.3	0.7020	4.6452	4.63
Sandstone						
Yuubari	N/A	105	29.7	0.5395	3.1127	4.54
Shale						
Westerly	201	333	57.3	0.9085	8.4608	6.73
Granite						
Mizuho	100	148	38.8	0.6071	3.6564	6.46
Trachyte						

Πίνακας 3.5: Προσέγγιση παραμέτρων κριτηρίου Mohr – Coulomb

Σχήμα 3.6: Διαγράμματα πρόβλεψης σ₂-σ₁ Mohr - Coulomb

<u>Γενικά Συμπεράσματα</u>: Από τα διαγράμματα σ₁-σ₂ διακρίνεται ότι το διδιάστατο κριτήριο Mohr - Coulomb αποτυγχάνει να προβλέψει τη μορφή της καμπύλης που δημιουργείται από τα πειραματικά δεδομένα. Τα διαγράμματα αναδεικνύουν την εξάρτηση της αντοχής από την ενδιάμεση κύρια τάση. Επιπλέον παρατηρείται σημαντική υπερεκτίμηση της αντοχής σε μονοαξονική θλίψη. Διεξοδικότερα η συμπεριφορά του κριτηρίου αναλύεται στο Κεφάλαιο 4.

3.3 Προσαρμογή δεδομένων στο κριτήριο Hoek - Brown

Για την αξιολόγηση της ισχύος του κριτηρίου Hoek – Brown έχουμε ως δεδομένο το εύρος των τιμών της παραμέτρου m, όπως προβλέπεται από τους Hoek & Marinos (Πίνακας 2.1). Η μέθοδος προσέγγισης με χρήση ελαχίστων τετραγώνων θα μπορούσε να δώσει τιμές έξω από το επιτρεπόμενο φάσμα για το εκάστοτε πέτρωμα. Για αυτό το λόγο, η προσαρμογή του κριτηρίου αυτού δεν έγινε με τη βοήθεια ελαχίστων τετραγώνων αλλά με απλή αριθμητική επίλυση. Δηλαδή διαμορφώθηκε «κάνναβος» αναζήτησης τιμών για τα m, σ_{cl.} όπου το m κυμαίνεται μέσα στα όρια των επιτρεπόμενων τιμών (m, σ_{cl.}) είναι να βρεθεί εκείνο το ζεύγος που ελαχιστοποιεί τη μέση απόκλιση της τάσης σ_{1.}μ_B από την πειραματική τιμή της σ₁. Στο Παράρτημα A.3 διατίθεται ο τρόπος προσέγγισης των παραμέτρων αυτών. Να σημειωθεί ότι εκ των προτέρων θεωρείται α=0.5, s=1, μιας και τα πειράματα διεξήχθησαν σε άρρηκτα δοκίμια βράχου. Στη συνέχεια παρουσιάζονται τα αποτελέσματα της ανάλυσης στο Σχήμα 3.7, και τον Πίνακα.3.6

Σχήμα 3.7: Διαγράμματα πρόβλεψης σ₂-σ₁ Hoek – Brown

Πέτρωμα	Πειρα- ματική σ _c (MPa)	Πρόβλεψη σ _c (MPa)	Εύρος τιμών m (Hoek & Marinos,2001)	Πρόβλεψη m	Απόκλιση i %
KTB Amphibolite	165	295	26±6	26	7.96
Dunham Dolomite	257	400	9±3	8	5.57
Solenhofen Limestone	N/A	367	11±4	5	6.38
Shirahama Sandstone	N/A	72	17±4	16	3.69
Yuubari Shale	N/A	90	6±2	8	4.32
Westerly granite	201	300	32±3	32	5
Mizuho trachyte	100	150	13±4	9	5.41

Πίνακας 3.6: Προσέγγιση παραμέτρων κριτηρίου Hoek – Brown

<u>Γενικά Συμπεράσματα</u>: Το διδιάστατο κριτήριο Hoek – Brown προβλέπει μία και μοναδική τιμή αντοχής για κάθε επίπεδο σ₃ αγνοώντας την επίδραση της ενδιάμεσης κύριας τάσης σ₂. Τα πειραματικά δεδομένα ωστόσο τείνουν να διαμορφώσουν μία καμπύλη στο επίπεδο (σ₁-σ₂) και όχι ευθεία γραμμή, όπως αυτές των κριτηρίων Hoek – Brown, Mohr - Coulomb. Αναλυτικότερα ο σχολιασμός των αποτελεσμάτων γίνεται στο Κεφάλαιο 4.

3.4 Προσαρμογή δεδομένων στα Γενικευμένα κριτήρια Hoek – Brown

3.4.1 Προσαρμογή στο κριτήριο Pan - Hudson

Για την αξιολόγηση της ισχύος του κριτηρίου επιλύεται αρχικά η εξίσωση ως προς την τ_{oct}.

$$\frac{9}{2 \cdot \sigma_{c}} \cdot \tau_{oct1}^{2} + \frac{3}{2 \cdot \sqrt{2}} \cdot m \cdot \tau_{oct1} - m \cdot \sigma_{m3} = s \cdot \sigma_{c}$$

$$\frac{9}{2 \cdot \sigma_{c}} \cdot \tau_{oct1}^{2} + \left(\frac{3}{2 \cdot \sqrt{2}} \cdot m\right) \cdot \tau_{oct1} - (m \cdot \sigma_{m3} + s \cdot \sigma_{c}) = 0 \Longrightarrow$$

$$\tau_{oct1}^{2} + \left(\frac{\sigma_{c}}{3 \cdot \sqrt{2}} \cdot m\right) \cdot \tau_{oct1} - \frac{2 \cdot \sigma_{c}}{9} (m \cdot \sigma_{m3} + s \cdot \sigma_{c}) = 0$$

$$\Delta = \left(\frac{\sigma_{c}}{3 \cdot \sqrt{2}} \cdot m\right)^{2} + 4 \cdot \frac{2 \cdot \sigma_{c}}{9} (m \cdot \sigma_{m3} + s \cdot \sigma_{c})$$

$$\tau_{oct1} = \frac{-\frac{\sigma_{c}}{3 \cdot \sqrt{2}} \cdot m \pm \sqrt{\Delta}}{2}$$
3.9

Κατά τη διαδικασία της προσέγγισης δεν έχει εφαρμοστεί μέθοδος ελαχίστων τετραγώνων, όπως άλλωστε φαίνεται στα διαγράμματα του Σχήματος 3.8. Επομένως, το ζεύγος των σ_c, m δε δίδει την ελάχιστη μέση απόκλιση στο επίπεδο τ_{oct} – σ_{m3}. Η επιλογή των παραμέτρων έγινε μέσα από εύρος τιμών που βρίσκονται μέσα στο αποδεκτά όρια για κάθε πέτρωμα (Hoek & Marinos 2001). Το βέλτιστο ζεύγος είναι εκείνο που ελαχιστοποιεί την απόκλιση q (Σχέση 3.10).

Για παράδειγμα, στο γρανίτη (Westerly Granite) οι τιμές που δίνουν την ελάχιστη μέση απόκλιση δεν μπορούν να γίνουν αποδεκτές, αφού δε συμβαδίζουν με την πραγματικότητα. Πιο συγκεκριμένα, οι τιμές που δίνουν την ελάχιστη απόκλιση είναι: σ_c=1206 MPa (αντί της πραγματικής τιμής που είναι 200 MPa), m=35 και q=7.02%. Με τη φραγμένη αναζήτηση που χρησιμοποιήθηκε στη συνέχεια προκύπτουν: σ_c=200 MPa, m=35 και q=19.60%. Έτσι, υιοθετούμε τη φραγμένη αναζήτηση για να πάρουμε ρεαλιστικά αποτελέσματα, τα οποία ωστόσο οδηγούν σε μεγάλες αποκλίσεις κατά την προσαρμογή.

$$q\% = mean(\frac{|\tau_{oct} - \tau_{oct1}|}{\tau_{oct}})\%$$
3.10

140

160

☆

ú

ŵ

160

140

Σχήμα 3.8: Προσαρμογή του κριτηρίου Pan - Hudson στα πειραματικά δεδομένα και προβολή της προσέγγισης στο επίπεδο (σ_{m3} – τ_{oct})

Πέτρωμα	Αντοχή σε μονοαξονική θλίψη, σc (MPa)	Παράμετρος m	Απόκλιση q %	Απόκλιση i %
KTB Amphibolite	250	32	11.92	23.44
Dunham Dolomite	400	7	6.32	8.94
Solenhofen Limestone	355	7	8.42	6.95
Shirahama Sandstone	65	13	9.12	14.80
Yuubari Shale	115	4	7.39	8.76
Westerly Granite	200/1000	35/20	19.60/7.02	33.41/13.02
Mizuho Trachyte	100	10	10.45	15.25

Πίνακας 3.7: Προσέγγιση των παραμέτρων του κριτηρίου των Pan and Hudson

Η συνάρτηση που περιγράφει το κριτήριο των Pan – Hudson είναι πεπλεγμένη ως προς τις τάσεις σ₁ και σ₂ (παρουσιάζονται και στα δύο μέλη της εξίσωσης). Για να σχεδιαστούν τα διαγράμματα σ₁-σ₂ και εφόσον δεν είναι ευχερής η αναλυτική επίλυση για καμία από τις τάσεις σ₁, σ₂, εφαρμόστηκε μία απλή προσεγγιστική αριθμητική μέθοδος εύρεσης σημείων μηδενισμού για την εξίσωση του κριτηρίου αυτού (Παράρτημα Α.4).

Westerly Granite: $\sigma_c = 1000 \text{ MPa}, \text{ m} = 20, \text{ i} = 13.02 \text{ \%}$ 1400 r 1200 1000 ο09 σ¹ (MPa) 009 σ¹ (MPa) σ₃ = 0 ŵ σ₃ = 2 σ₃ = 20 σ₃ = 38 400 $\sigma_{3}^{} = 60$ * σ₃ = 77 ☆ 200 $\sigma_{3} = 100$ 0^L 0 50 100 150 200 250 300 350 $\sigma_2^{}(MPa)$

Shirahama Sandstone : σ c = 65 MPa, m = 13, i = 14.80 % 350 f

<u>Γενικά Συμπεράσματα</u>: Στην προσπάθεια ελαχιστοποίησης της απόκλισης το κριτήριο καταλήγει σε άστοχη πρόβλεψη για την μονοαξονική αντοχή του Westerly Granite. Επιπλέον παρατηρείται έντονη υποεκτίμηση της αντοχής στα χαμηλά επίπεδα της ενδιάμεσης κύριας τάσης. Γενικώς, παρατηρείται ότι δε προβλέπει σωστά την αντοχή ειδικά για τα πετρώματα Westerly Granite, KTB Amphibolite.

3.4.2 Προσαρμογή στο κριτήριο Zhang - Zhu

Για την αξιολόγηση της ισχύος του κριτηρίου επιλέχθηκε να επιλυθεί η σχέση 3.11 ως προς την τ_{oct} μέσω της επίλυσης τριωνύμου.

$$\frac{9}{2 \cdot \sigma_{c}} \cdot \tau_{oct1}^{2} + \frac{3}{2 \cdot \sqrt{2}} \cdot m \cdot \tau_{oct1} - m \cdot \sigma_{m,2} = s \cdot \sigma_{c}$$
$$\frac{9}{2 \cdot \sigma_{c}} \cdot \tau_{oct1}^{2} + (\frac{3}{2 \cdot \sqrt{2}} \cdot m) \cdot \tau_{oct1} - (m \cdot \sigma_{m,2} + s \cdot \sigma_{c}) = 0 \Longrightarrow$$

$$\tau_{oct1}^{2} + \left(\frac{\sigma_{c}}{3 \cdot \sqrt{2}} \cdot m\right) \cdot \tau_{oct1} - \frac{2 \cdot \sigma_{c}}{9} (m \cdot \sigma_{m,2} + s \cdot \sigma_{c}) = 0$$

$$\Delta = \left(\frac{\sigma_{c}}{3 \cdot \sqrt{2}} \cdot m\right)^{2} + 4 \cdot \frac{2 \cdot \sigma_{c}}{9} (m \cdot \sigma_{m,2} + s \cdot \sigma_{c})$$

$$\tau_{oct1} = \frac{-\frac{\sigma_{c}}{3 \cdot \sqrt{2}} \cdot m \pm \sqrt{\Delta}}{2}$$

3.11

Αναζητήθηκε η ελάχιστη μέση απόκλιση της πραγματικής τ_{oct} από τη θεωρητική που προβλέπει το κριτήριο (Σχέση 3.11), δηλαδή η ελάχιστη τιμή της παράστασης:

$$q\% = mean(\frac{|\tau_{oct} - \tau_{oct1}|}{\tau_{oct}})\%$$
 3.12.

Στο Σχήμα 3.10 απεικονίζονται τα γραφήματα που προέκυψαν από την αναζήτηση των βέλτιστων τιμών σ_c, m. Αυτό το βέλτιστο ζεύγος παραμέτρων δίνει την ελάχιστη απόκλιση q %. Η διαδικασία υπολογισμού παρατίθεται στο Παράρτημα A.6.

σ m2 (MPa)

σ m2 (MPa)

Σχήμα 3.10: Προσαρμογή του κριτηρίου Zhang – Zhu στα πειραματικά δεδομένα και προβολή της προσέγγισης στο επίπεδο (σ_{m2} - τ_{oct})

Προκειμένου να σχεδιαστούν τα διαγράμματα σ₁-σ₂ και να ποσοτικοποιηθεί το ποσοστό απόκλισης για τη σ₁ (Σχέση 3.13) πρέπει να επιλυθεί το κριτήριο ως προς τη μέγιστη τάση σ₁.

$$i\% = mean(\frac{\left|\sigma_{1\pi\epsilon\iota\rho.} - \sigma_{1zg}\right|}{\sigma_{1\pi\epsilon\iota\rho.}})\%$$
3.13

Επειδή είναι πεπλεγμένη η συνάρτηση ως προς τη σ₁ επιλέγεται να επιλυθεί ως προς την ενδιάμεση τάση σ₂. Η εξίσωση 2^{ου} βαθμού δίνει δύο λύσεις για τη σ₂.

$$2\sigma_{2}^{2} - 2\sigma_{2}^{2} \cdot (\sigma_{1} + \sigma_{3}) + \sigma_{1}^{2} + \sigma_{3}^{2} + (\sigma_{1} - \sigma_{3})^{2} - \frac{18}{144} \cdot m^{2} \cdot \sigma_{c}^{2} + \frac{3\sqrt{2}}{2 \cdot 12} m \cdot \sigma_{c} \cdot \sqrt{2 \cdot m^{2} \cdot \sigma_{c}^{2} + 32 \cdot m \cdot \sigma_{c} \cdot (\sigma_{1} + \sigma_{3})/2 + 32 \cdot s \cdot \sigma_{c}^{2}} - \frac{18}{144} \cdot m^{2} \cdot \sigma_{c}^{2} - \frac{32 \cdot 9}{144} \cdot m \cdot \sigma_{c} \cdot \frac{\sigma_{1} + \sigma_{3}}{2} - \frac{9 \cdot 32}{144} \cdot s \cdot \sigma_{c}^{2} = 0$$

Λύση 1

$$\frac{\sigma_{1} + \sigma_{3}}{2} + \frac{1}{4} \cdot \sqrt{-12 \cdot \sigma_{1}^{2} + 24 \cdot \sigma_{1} \cdot \sigma_{3} - 12 \cdot \sigma_{3}^{2} + 2 \cdot m^{2} \cdot \sigma_{c}^{2}} + 8 \cdot m \cdot \sigma_{c} \cdot \sigma_{3} + 16 \cdot s \cdot \sigma_{c}^{2} - 2 \cdot m \cdot \sigma_{c} \cdot A + 8 \cdot m \cdot \sigma_{c} \cdot \sigma_{1}}$$

$$A = \sqrt{m^{2} \cdot \sigma_{c}^{2} + 8 \cdot m \cdot \sigma_{c} \cdot \sigma_{1} + 8 \cdot m \cdot \sigma_{c} \cdot \sigma_{3} + 16 \cdot s \cdot \sigma_{c}^{2}}$$

Λύση 2

$$\frac{\sigma_{1}+\sigma_{3}}{2} - \frac{1}{4} \cdot \sqrt{-12 \cdot \sigma_{1}^{2} + 24 \cdot \sigma_{1} \cdot \sigma_{3} - 12 \cdot \sigma_{3}^{2} + 2 \cdot m^{2} \cdot \sigma_{c}^{2}} + 8 \cdot m \cdot \sigma_{c} \cdot \sigma_{3} + 16 \cdot s \cdot \sigma_{c}^{2} - 2 \cdot m \cdot \sigma_{c} \cdot A + 8 \cdot m \cdot \sigma_{c} \cdot \sigma_{1}}$$

$$A = \sqrt{m^{2} \cdot \sigma_{c}^{2} + 8 \cdot m \cdot \sigma_{c} \cdot \sigma_{1} + 8 \cdot m \cdot \sigma_{c} \cdot \sigma_{3} + 16 \cdot s \cdot \sigma_{c}^{2}}$$

Η πρώτη λύση χρησιμοποιείται στον ανιόντα κλάδο ενώ ο κατιών κλάδος σχηματίζεται από τη δεύτερη λύση.

Σχήμα 3.11: Προσαρμογή του κριτηρίου Zhang – Zhu στα πειραματικά δεδομένα και προβολή της προσέγγισης στο επίπεδο (σ₁ – σ₂)

Πέτρωμα	Αντοχή σε μονοαξονική θλίψη, σ _c (MPa)	Παράμετρος m	Απόκλιση q% (Σχ.	Απόκλιση i%
KTB Amphibolite	155	31	2.70	10.45
Dunham Dolomite	320	7	1.58	2.74
Solenhofen Limestone	295	5	1.99	3.52
Shirahama Sandstone	45	16	2.64	6.40
Yuubari Shale	80	6	2.82	3.52
Westerly Granite	200	35	2.31	9.76
Mizuho Trachyte	100	10	2.25	3.09

Πίνακας 3.8: Προσέγγιση των παραμέτρων του κριτηρίου των Zhang and Zhu

<u>Γενικά Συμπεράσματα</u>: Τα συμπέρασμα της προσαρμογής είναι ότι το κριτήριο συμπεριφέρεται αρκετά κοντά στην πραγματικότητα. Η ελεύθερη επιλογή των παραμέτρων από μεγάλο εύρος τιμών έδωσε σε κάποια πετρώματα τιμές για τα σ_c, m, οι οποίες βρίσκονται έξω από το αναμενόμενο εύρος τιμών. Σε αυτές τις περιπτώσεις τέθηκε περιορισμός, όπως στο γρανίτη, όπου χρησιμοποιήθηκε άνω όριο στην παράμετρο R, γιατί η απόκλιση μειωνόταν συνεχώς με την αύξηση της και τον σχιστόλιθο, όπου τέθηκε κάτω όριο για την αντοχή σε μονοαξονική θλίψη, επειδή η προσέγγιση την υποεκτιμούσε σημαντικά. Η περίπτωση της καμπύλης πρόβλεψης του Westerly Granite, του KTB Amphibolite και σε κάποιες περιπτώσεις του Shirahama Sandstone παρουσιάζει την ιδιαιτερότητα να δίνει δύο τιμές αντοχής για την ίδια σ₂. Ενδεχομένως να οφείλεται σε αδυναμία του κριτηρίου να δεχτεί τιμές σ₂ μεγαλύτερες από κάποια τιμή. Αναλυτικότερα τα σχόλια για την αξιολόγηση του κριτηρίου παρουσιάζονται στο Κεφάλαιο 4.

3.4.3 Προσαρμογή στο κριτήριο Simplified Priest

Το συνδυασμένο κριτήριο Drucker – Prager που πρότεινε ο Priest απαιτεί επαναληπτική διαδικασία. Λόγω αυτής της δυσκολίας πρότεινε ένα απλοποιημένο κριτήριο. Αυτό το απλοποιημένο κριτήριο μόνο μελετάται στην παρούσα εργασία. Για κάθε επίπεδο σ₃ ξεχωριστά αναζητούνται οι παράμετροι σ_c, m, b, οι οποίες δίνουν την ελάχιστη απόκλιση i %, που δίνεται από τη Σχέση 3.14. Οι υπολογισμοί παρατίθενται στο Παράρτημα Α.5.

$$i\% = \operatorname{mean}(\frac{\left|\sigma_{zf} - \sigma_{1\pi\epsilon\iota\rho.}\right|}{\sigma_{1\pi\epsilon\iota\rho.}})\%$$

$$\delta\pi\sigma\upsilon:\sigma_{zf} = \sigma_{1hb} + 2\sigma_{3hb} - (\sigma_{2} + \sigma_{3}) (\Sigma\chi\epsilon\sigma\eta 2.26)$$
3.14

Πίνακας 3.9: Αποτελέσματα αναζήτησης παραμέτρων για το κριτήριο Priest

Πέτρωμα	σ_{c} (MPa)	m	i %
KTB Amphibolite	188	32	7.33
Dunham Dolomite	318	9	2.89
Solenhofen Limestone	246	11	3.37
Shirahama Sandstone	55	20	3.25
YuubariShale	86	7	3.40
Westerly Granite	201	35	5.16
Mizuho Trachyte	100	13	2.24

	Σταθμιστικός Συντελεστής b												
Πέτρωμα	ρ νια κάθε επίπεδο σ₂ (MPa)											Μέσες	
												Τιμές, b	
KTB	0		30		60		100		150			0.216	
Amphibolite	0.13	C	.19	(0.25		0.26		0.25			0.210	
Dunham	25	45		65		85	1	05	125	5	145	0.28	
Dolomite	0.29	0.	30	0.2	7	0.28	0	.28	0.28	28 0.28			
Solenhofen	20			40			60		3		30	0.22	
Limestone	0.25	(0.24	.24		0.20		0.23		.23	0.23	
Shirahama	5	8		15	15		0 30)	40		0.19	
Sandstone	0.12	0.20		0.1	0.19		20 0.20		0	0.22		0.10	
Yuubari	25 50										0.07		
Shale	0.26							0.27					
Westerly	0	2		20	3	8	60		77		100	0.25	
Granite	0.16	0.1	8 0	.23	0.	27	7 0.26).30		0.37	0.25	
Mizuho	45	5 6					75			100		0.25	
Trachyte	0.25		0	.25	5		0.24			0.25		0.25	

Σχήμα 3.12: Καμπύλες πρόβλεψης κριτηρίου Priest στο επίπεδο σ₁-σ₂

Όπως δείχνουν τα παραπάνω διαγράμματα, δεν έχει προσδιοριστεί μία ενιαία καμπύλη και οι τιμές της παραμέτρου b ποικίλουν. Παρατηρείται ότι κυμαίνονται για όλα τα πετρώματα από 0.12 ως 0.37. Έχουν εξαχθεί και μέσες τιμές για κάθε πέτρωμα που κυμαίνονται από 0.18 ως 0.28.

<u>Γενικά Συμπεράσματα</u>: Το κριτήριο Priest παρακολουθεί τα δεδομένα με μεγάλη ακρίβεια και επιτυγχάνει πολύ μικρές αποκλίσεις. Το μειονέκτημα είναι ότι δεν παράγεται ενιαία καμπύλη για κάθε πέτρωμα. Ωστόσο η τιμή της παραμέτρου b δεν έχει μεγάλο εύρος διακύμανσης. Σε κάποιες περιπτώσεις παρατηρείται μείωση της αντοχής με την αύξηση της σ₂,γεγονός που οφείλεται μαθηματικά στον όρο –(σ₂+σ₃) που αφαιρείται σχέση 2.26.

3.5 Προσαρμογή στο κριτήριο Mogi 1971

3.5.1 Προσαρμογή στο κριτήριο Mogi – Linear

Για την περίπτωση γραμμικής συνάρτησης εφαρμόστηκε για την προσαρμογή γραμμική μέθοδος προσέγγισης με ελάχιστα τετράγωνα. Η συνάρτηση είναι της μορφής:

$$\tau_{\rm oct} = a \cdot \sigma_{\rm m,2} + b \qquad 3.15$$

Η εύρεση της βέλτιστης ευθείας συνεπάγεται την ελαχιστοποίηση της παράστασης:

$$Q = \sum_{i=1}^{n} [\tau_{oct} - (a \cdot \sigma_{m,2} + b)]^2$$
 3.16

Η ελαχιστοποίηση της παράστασης επιτυγχάνεται, όταν $\frac{\partial Q}{\partial a} = \frac{\partial Q}{\partial b} = 0$. Επομένως η

Σχέση 3.16 γίνεται:

$$\frac{\partial}{\partial a} \sum_{i=1}^{n} [\tau_{oct} - (a \cdot \sigma_{m,2} + b)]^2 = 2 \sum_{i=1}^{n} [\tau_{oct} - (a \cdot \sigma_{m,2} + b)] \cdot (-\sigma_{m,2}) = 0$$

$$\Rightarrow a \sum_{i=1}^{n} \sigma_{m,2}^2 + b \sum_{i=1}^{n} \sigma_{m,2} = \sum_{i=1}^{n} \tau_{oct} \sigma_{m,2}$$

$$\frac{\partial}{\partial b} \sum_{i=1}^{n} [\tau_{oct} - (a \cdot \sigma_{m,2} + b)]^2 = 2 \sum_{i=1}^{n} [\tau_{oct} - (a \cdot \sigma_{m,2} + b)] \cdot (-1) = 0$$

$$\Rightarrow a \sum_{i=1}^{n} \sigma_{m,2} + nb = \sum_{i=1}^{n} \tau_{oct}$$

Λύνοντας το σύστημα των εξισώσεων ως προς τις παραμέτρους a, b παίρνουμε:

$$a = \frac{n\left(\sum_{i=1}^{n} \tau_{oct} \sigma_{m,2}\right) - \left(\sum_{i=1}^{n} \sigma_{m,2}\right) \left(\sum_{i=1}^{n} \tau_{oct}\right)}{n\left(\sum_{i=1}^{n} \sigma_{m,2}^{2}\right) - \left(\sum_{i=1}^{n} \sigma_{m,2}\right)^{2}}$$

$$b = \frac{\left(\sum_{i=1}^{n} \sigma_{m,2}^{2}\right) \left(\sum_{i=1}^{n} \tau_{oct}\right) - \left(\sum_{i=1}^{n} \sigma_{m,2}\right) \left(\sum_{i=1}^{n} \tau_{oct} \sigma_{m,2}\right)}{n\left(\sum_{i=1}^{n} \sigma_{m,2}^{2}\right) - \left(\sum_{i=1}^{n} \sigma_{m,2}\right)^{2}}$$
3.17a
3.17b

74

Σχήμα 3.13: Αποτελέσματα γραμμικής προσέγγισης Mogi – Linear

Ακολούθως επιλύεται το κριτήριο ως προς σ₁ προκειμένου να σχεδιαστεί το διάγραμμα σ₁-σ₂.

$$\begin{aligned} \tau_{oct} &= a \cdot \sigma_{m,2} + b \rightarrow \frac{1}{3} \cdot \sqrt{(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2} = a \cdot \frac{\sigma_1 + \sigma_3}{2} + b \\ &\rightarrow \frac{2}{9} \cdot (\sigma_1^2 + \sigma_2^2 + \sigma_3^2 - \sigma_1 \cdot \sigma_2 - \sigma_2 \cdot \sigma_3 - \sigma_3 \cdot \sigma_1) = \\ \frac{a^2}{4} \cdot (\sigma_1^2 + 2 \cdot \sigma_1 \cdot \sigma_3 + \sigma_3^2) + a \cdot b \cdot (\sigma_1 + \sigma_3) + b^2 \rightarrow \\ \sigma_1^2 \cdot (\frac{2}{9} - \frac{a^2}{4}) + (-\frac{2}{9} \cdot \sigma_2 - \frac{2}{9} \cdot \sigma_3 - \frac{a^2}{2} \cdot \sigma_3 - a \cdot b) \cdot \sigma_1 + \frac{2}{9} \cdot (\sigma_2^2 + \sigma_3^2 - \sigma_2 \cdot \sigma_3) \\ -\frac{a^2}{4} \cdot \sigma_3^2 - a \cdot b \cdot \sigma_3 - b^2 = 0 \\ \sigma_1 &= -\frac{9a^2\sigma_3 + 18ab + 4(\sigma_2 + \sigma_3)}{-8 + 9a^2} - \\ -\frac{2 \cdot \sqrt{54a^2\sigma_3^2 + 36ab\sigma_2 + 108ab\sigma_3 - 12(\sigma_2 - \sigma_3)^2 + 72b^2 + 18a^2\sigma_2^2}}{-8 + 9a^2} \end{aligned}$$

$$3.18$$

Ο Πίνακας 3.10 παρουσιάζει συγκεντρωμένα τα αποτελέσματα προσέγγισης και τα ποσοστά απόκλισης i %, που δίνονται από τη Σχέση 3.19:

$$i\% = mean(\frac{\left|\sigma_{1mogi} - \sigma_{1\pi\epsilon i\rho.}\right|}{\sigma_{1\pi\epsilon i\rho.}})\%$$
3.19

Πέτρωμα	а	b	Συντελεστής Συσχέτισης, R ²	Ποσοστό Απόκλισης i %
KTB Amphibolite	0.6431	36.3709	0.9886	13.3
Dunham Dolomite	0.4634	89.4125	0.9829	2.89
Solenhofen Limestone	0.4117	86.7889	0.9494	3.08
Shirahama Sandstone	0.5354	14.4750	0.9854	5.02
Yuubari Shale	0.4285	23.9434	0.9433	4.28
Westerly granite	0.7116	30.1860	0.9939	8.65
Mizuho Trachyte	0.4419	39.8294	0.9596	6.19

Πίνακας 3.10: Προσέγγιση παραμέτρων κριτηρίου Mogi - Linear

Σχήμα 3.14: Καμπύλες πρόβλεψης κριτηρίου Mogi – Linear επίπεδο (σ₁-σ₂)

<u>Γενικό Συμπέρασμα</u>: Προσαρμόζεται με ικανοποιητική ακρίβεια στα δεδομένα αλλά σε ορισμένες περιπτώσεις, όπως στο Westerly Granite, τον KTB Amphibolite και τον Shirahama Sandstone παρουσιάζει δύο τιμές της αντοχής για την ίδια σ₂.

3.5.2 Προσαρμογή στο κριτήριο Mogi – Quadratic

Σε αυτή την περίπτωση η προσέγγιση γίνεται με παραβολική συνάρτηση, σύμφωνα με τη Σχέση 3.20. Τα αποτελέσματα της προσέγγισης συμπίπτουν για όλους τους τύπους πετρωμάτων με τα αποτελέσματα της ανάλυσης για τη γραμμική προσέγγιση. Δηλαδή ο συντελεστής a είναι ίσος με μηδέν, οπότε η συνάρτηση γίνεται πρώτου βαθμού. Για το λόγο αυτό δεν παρουσιάζονται εκ νέου τα αποτελέσματα της ανάλυσης, ούτε και τα διαγράμματα, διότι ταυτίζονται με τη γραμμική προσέγγιση.

$$\tau_{\rm oct} = \mathbf{a} \cdot \boldsymbol{\sigma}_{\rm m,2}^2 + \mathbf{b} \cdot \boldsymbol{\sigma}_{\rm m,2} + \mathbf{c} \qquad 3.20$$

3.5.3 Προσαρμογή στο κριτήριο Mogi – Power Law

Η συνάρτηση προσαρμογής είναι της παρακάτω μορφής. Λογαριθμίζουμε τη Σχέση 3.21 και αναζητούμε την ελαχιστοποίηση της παράστασης 3.22.

$$\tau_{oct} = \mathbf{a} \cdot \sigma_{m,2}^{b} \qquad 3.21$$

$$\Rightarrow \ln \tau_{oct} = \ln \mathbf{a} + \mathbf{b} \cdot \ln \sigma_{m,2}$$

$$Q = \sum_{i=1}^{n} (\ln \tau_{oct} - \ln \mathbf{a} + \mathbf{b} \cdot \ln \sigma_{m,2})^{2} \qquad 3.22$$

Η ελαχιστοποίηση επιτυγχάνεται όταν,

$$\begin{cases} \frac{\partial Q}{\partial a} = 0 \\ \frac{\partial Q}{\partial b} = 0 \end{cases} \begin{cases} n \cdot \ln a + (\sum_{i=1}^{n} \ln \sigma_{m,2}) \cdot b = \sum_{i=1}^{n} \ln \tau_{oct} \\ (\sum_{i=1}^{n} \ln \sigma_{m,2}) \cdot \ln a + (\sum_{i=1}^{n} \ln^{2} \sigma_{m,2}) \cdot b = \sum_{i=1}^{n} \ln \sigma_{m,2} \cdot \ln \tau_{oct} \end{cases}$$

Λύνοντας το σύστημα των εξισώσεων αυτών ως προς Ina και b, βρίσκουμε:

$$\begin{cases} \ln a = \frac{(\sum_{i=1}^{n} \ln^{2} \sigma_{m,2}) \cdot (\sum_{i=1}^{n} \ln \tau_{oct}) - (\sum_{i=1}^{n} \ln \sigma_{m,2}) \cdot (\sum_{i=1}^{n} \ln \sigma_{m,2} \cdot \ln \tau_{oct})}{n \cdot (\sum_{i=1}^{n} \ln^{2} \sigma_{m,2}) - (\sum_{i=1}^{n} \ln \sigma_{m,2})^{2}} \\ b = \frac{n \cdot (\sum_{i=1}^{n} \ln \sigma_{m,2} \cdot \ln \tau_{oct}) - (\sum_{i=1}^{n} \ln \sigma_{m,2}) \cdot (\sum_{i=1}^{n} \ln \tau_{oct})}{n \cdot (\sum_{i=1}^{n} \ln^{2} \sigma_{m,2}) - (\sum_{i=1}^{n} \ln \sigma_{m,2})^{2}} \end{cases}$$

Σχήμα 3.15: Αποτελέσματα μη – γραμμικής προσέγγισης για το κριτήριο Mogi – Linear

Πίνακας 3.11: Προσέγγιση	παραμέτρων κριτηρίου	Mogi – Power Law	(1971)
--------------------------	----------------------	------------------	--------

Πέτρωμα	а	b	Συντελεστής Συσχέτισης, R ²	i %
KTB Amphibolite	1.7726	0.8577	0.9962	8.49
Dunham Dolomite	5.0322	0.6686	0.9858	2.74
Solenhofen Limestone	8.1233	0.5710	0.9444	3.33
Shirahama Sandstone	1.8227	0.7880	0.9873	6.56
Yuubari Shale	2.7469	0.6924	0.9444	4.43
Westerly Granite	1.5407	0.8894	0.9966	9.38
Mizuho Trachyte	3.3859	0.6877	0.9844	4.41

Το κριτήριο επιλύεται ως προς σ₂ προκειμένου να σχεδιαστεί το διάγραμμα σ₁-σ₂ και να υπολογιστεί το ποσοστό απόκλισης i. (Σχέση 3.19). Η επίλυση του ως προς τη σ₁ δεν είναι ευχερής καθώς η συνάρτηση είναι πεπλεγμένη.

$$\tau_{oct} = a \cdot \sigma_{m,2}{}^{b} \Longrightarrow \frac{1}{3} \cdot \sqrt{(\sigma_{1} - \sigma_{2})^{2} + (\sigma_{2} - \sigma_{3})^{2} + (\sigma_{3} - \sigma_{1})^{2}} = a \cdot \left(\frac{\sigma_{1} + \sigma_{3}}{2}\right)^{b} \rightarrow \frac{1}{9} \cdot \left[(\sigma_{1} - \sigma_{2})^{2} + (\sigma_{2} - \sigma_{3})^{2}\right] + \frac{1}{9} \cdot (\sigma_{3} - \sigma_{1})^{2} = a^{2} \cdot \left(\frac{\sigma_{1} + \sigma_{3}}{2}\right)^{2b} \rightarrow 2\sigma_{2}^{2} - 2(\sigma_{3} + \sigma_{1}) \cdot \sigma_{2} + \left[(\sigma_{3}^{2} + \sigma_{1}^{2}) + (\sigma_{3} - \sigma_{1})^{2} - 9a^{2} \cdot \left(\frac{\sigma_{1} + \sigma_{3}}{2}\right)^{2b}\right]$$

Σχήμα 3.16: Διαγράμματα σ₁-σ₂ κριτηρίου Mogi - Power Law (1971)

<u>Γενικά Συμπεράσματα</u>: Προσαρμόζεται με ικανοποιητική ακρίβεια στα δεδομένα αλλά σε ορισμένες περιπτώσεις, όπως στο Westerly Granite, τον KTB Amphibolite και τον Shirahama Sandstone αλλά και στα πετρώματα Dunham Dolomite, Mizuho Trachyte μόνο για τις χαμηλά επίπεδα σ₃, παρουσιάζει δύο τιμές της αντοχής για την ίδια σ₂. Επιπλέον, η απότομη μείωση της αντοχής, όπως συμβαίνει για παράδειγμα στο γρανίτη δεν εξηγείται με φυσικό τρόπο.

3.6 Προσαρμογή στο κριτήριο Mogi – Power Law 1967

Σε αυτό το κριτήριο εφαρμόζεται και πάλι μέθοδος ελαχίστων τετραγώνων και επιπλέον αναζητείται από ένα εύρος τιμών, από 0.01 με βήμα 0.01 έως 1, η βέλτιστη τιμή της παραμέτρους β που δίνει το μέγιστο συντελεστή συσχέτισης R² για τη μέθοδο ελαχίστων τετραγώνων. Η μέθοδος δεν ξαναπαρουσιάζεται παρά μόνο οι μεταβλητές που χρειάζονται για την κατάστρωση της εξίσωσης.

$$\frac{\sigma_{1} - \sigma_{3}}{2} = a \cdot \left(\frac{\sigma_{1} + \beta \cdot \sigma_{2} + \sigma_{3}}{2}\right)^{b}$$

$$\left\{ \tau = \frac{\sigma_{1} - \sigma_{3}}{2}$$

$$\sigma_{m} = \frac{\sigma_{1} + \beta \cdot \sigma_{2} + \sigma_{3}}{2} \right\} \rightarrow \tau = a \cdot \sigma_{m}^{b}$$
3.23

$$\tau = \mathbf{a} \cdot \sigma_{\mathrm{m}}^{b} \Longrightarrow \ln \tau = \ln \mathbf{a} + \mathbf{b} \cdot \ln \sigma_{\mathrm{m}}$$
$$Q = \sum_{i=1}^{n} (\ln \tau - \ln \mathbf{a} + \mathbf{b} \cdot \ln \sigma_{\mathrm{m}})^{2}$$
3.24

Ο συντελεστής συσχέτισης δίνεται από την παρακάτω έκφραση:

$$\mathbf{R} = \frac{n\left(\sum_{i}^{n} \tau \boldsymbol{\sigma}_{m}\right) - \left(\sum_{i}^{n} \boldsymbol{\sigma}_{m}\right) \left(\sum_{i}^{n} \tau\right)}{\sqrt{\left[n\left(\sum_{i}^{n} \boldsymbol{\sigma}_{m}^{2}\right) - \left(\sum_{i}^{n} \boldsymbol{\sigma}_{m}\right)^{2}\right] \cdot \left[n\left(\sum_{i}^{n} \tau^{2}\right) - \left(\sum_{i}^{n} \tau\right)^{2}\right]}}$$
3.25

Όσο πιο μικρή είναι η διασπορά των σημείων εκατέρωθεν από την γραμμή παλινδρόμησης, τόσο η εξάρτηση των μεταξύ των μεταβλητών είναι πιο ισχυρή, με αποτέλεσμα η απόλυτη τιμή να τείνει προς τη μονάδα.

Ο Πίνακας 3.12 συνοψίζει τα αποτελέσματα της προσέγγισης. Η παράμετρος β ισούται με το τόξο ημιτόνου της γωνίας που σχηματίζει το επίπεδο αστοχίας με τη διεύθυνση της σ₂. Για παράδειγμα η γωνία που σχηματίζει το επίπεδο αστοχίας στον αμφιβολίτη με τη διεύθυνση της σ₂ είναι arcsin(0.15)=8.62⁰. Δηλαδή το επίπεδο αστοχίας στοχίας στον αμφιβολίτη αποκλίνει κατά 8.62⁰ από τη σ₂.

Πέτρωμα	а	b	Συντελεστής Συσχέτισης, R ²	β
KTB Amphibolite	1.7672	0.8731	0.9972	0.15
Dunham Dolomite	5.1544	0.6737	0.98	0.52
Solenhofen Limestone	7.7969	0.5902	0.9655	0.47
Shirahama Sandstone	1.9437	0.8069	0.9950	0.04
Yuubari Shale	2.7389	0.7121	0.9606	0.24
Westerly granite	1.7819	0.8789	0.9989	0.19
Mizuho Trachyte	3.1829	0.7125	0.9893	0.24

Πίνακας 3.12: Προσέγγιση παραμέτρων κριτηρίου Mogi – Power Law (1967)

Σχήμα 3.17: Αποτελέσματα μη – γραμμικής προσέγγισης Mogi – Power Law 1967

Στη συνέχεια επιλύεται το κριτήριο ως προς την ενδιάμεση τάση σ₂. Η διατύπωση του κριτηρίου ως προς τη σ₁ δεν είναι ευχερής, διότι η εξίσωση είναι σε πεπλεγμένη μορφή και στην προκειμένη περίπτωση δεν ήταν δυνατό να βρεθεί λύση κλειστής μορφής. Ακολούθως, τέθηκαν τιμές για τη σ₁ και τη σ₃ και υπολογίσθηκαν οι αντίστοιχες σ₂. Αυτή η διαδικασία γίνεται για να κατασκευαστεί το διάγραμμα σ₁, σ₂ και να υπολογιστεί το μέσο ποσοστό απόκλισης i %, όπως ορίζεται στη Σχέση 3.19.

$$\frac{\sigma_1 - \sigma_3}{2} = f[(\sigma_1 + \beta \cdot \sigma_2 + \sigma_3)/2], \beta \le 1$$

$$\frac{\sigma_1 - \sigma_3}{2} = a \cdot \left(\frac{\sigma_1 + \beta \cdot \sigma_2 + \sigma_3}{2}\right)^b \longrightarrow \left(\frac{\sigma_1 - \sigma_3}{2a}\right)^{\frac{1}{b}} = \frac{\sigma_1 + \beta \cdot \sigma_2 + \sigma_3}{2} \longrightarrow$$

$$\left(\frac{\sigma_1 - \sigma_3}{a}\right)^{\frac{1}{b}} \cdot 2^{\binom{b-1}{b}} = \sigma_1 + \beta \cdot \sigma_2 + \sigma_3 \longrightarrow \sigma_2 = \frac{\left(\frac{\sigma_1 - \sigma_3}{a}\right)^{\frac{1}{b}} \cdot 2^{\binom{b-1}{b}} - (\sigma_1 + \sigma_3)}{\beta}$$

Σχήμα 3.18: Διαγράμματα σ₁-σ₂ κριτηρίου Mogi - Power Law (1967)

	Ποσοστό
Πέτρωμα	Απόκλισης
	i %
KTB Amphibolite	8.17
Dunham Dolomite	3.53
Solenhofen Limestone	2.95
Shirahama Sandstone	4.85
Yuubari Shale	3.85
Westerly granite	6.39
Mizuho Trachyte	3.71

Πίνακας 3.13: Ποσοστά απόκλισ	ης i %
--------------------------------------	--------

<u>Γενικά Συμπεράσματα</u>: Το κριτήριο Mogi 1967 λαμβάνει μειωμένη συμμετοχή της ενδιάμεσης κύριας τάσης και επιτυγχάνει αρκετά εύστοχες προσαρμογές στα δεδομένα. Στο Κεφάλαιο 4 γίνεται σύγκριση των τιμών της παραμέτρου β (Πίνακας 3.12) με τις τιμές που είχε προτείνει ο Mogi.

3.6 Προσαρμογή στο Παραβολοειδές εκ Περιστροφής

Προκειμένου να διερευνηθεί η ισχύς του κριτηρίου του παραβολοειδούς εκ περιστροφής προσαρμόζεται το κριτήριο στα πειραματικά δεδομένα. Για να γίνει αυτό επιλέγεται να επιλυθεί το κριτήριο ως προς τη μέγιστη τάση σ₁ και να βρεθούν οι τιμές των παραμέτρων, R, σ_c που ελαχιστοποιούν τη μέση απόκλιση της θεωρητικής σ₁ από την πειραματική. Το κριτήριο εκφράζεται μέσα από τη Σχέση 1.1:

$$(\sigma_{1} - \sigma_{2})^{2} + (\sigma_{2} - \sigma_{3})^{2} + (\sigma_{1} - \sigma_{3})^{2} + 2 \cdot (R - 1) \cdot (\sigma_{1} + \sigma_{2} + \sigma_{3}) \cdot \sigma_{t} = 2 \cdot R \cdot \sigma_{t}^{2} \quad 3.26$$

Να σημειωθεί ότι ο εφελκυσμός θεωρείται θετικός, οπότε η θλίψη είναι αρνητική και στον υπολογισμό της παραμέτρου R οι τάσεις φέρουν αρνητικό πρόσημο. Παρακάτω παρουσιάζεται ο τρόπος κατασκευής και επίλυσης τριωνύμου ως προς τη σ₁. Αντικαθιστώντας τη μονοαξονική αντοχή σε εφελκυσμό σ_t προκύπτει: Ο υπολογισμός του βέλτιστου ζεύγους (σ_c, R) προέρχεται από αναζήτηση μέσα στα αποδεκτά όρια τιμών για τις παραμέτρους. Το βέλτιστο ζεύγος είναι αυτό που δίνει την ελάχιστη μέση απόκλιση i % (Σχέση 3.27). Η προσέγγιση των παραμέτρων αλλά και ο υπολογισμός των μέγιστων τάσεων σ1 παρατίθενται στο Παράρτημα Α.10.

$$i\% = mean(\frac{\sigma_{1theocaris} - \sigma_{1\pi\epsilon\mu}}{\sigma_{1\pi\epsilon\mu}}) \cdot 100\%$$
 3.27

$$(\sigma_{1} - \sigma_{2})^{2} + (\sigma_{2} - \sigma_{3})^{2} + (\sigma_{1} - \sigma_{3})^{2} + 2 \cdot (R - 1) \cdot (\sigma_{1} + \sigma_{2} + \sigma_{3}) \cdot \frac{|\sigma_{c}|}{R} = 2 \cdot R \cdot \frac{|\sigma_{c}|^{2}}{R^{2}} \Longrightarrow$$

$$\sigma_{1}^{2} - 2 \cdot \sigma_{1} \cdot \sigma_{2} + \sigma_{2}^{2} + \sigma_{2}^{2} - 2 \cdot \sigma_{2} \cdot \sigma_{3} + \sigma_{3}^{2} + \sigma_{1}^{2} - 2 \cdot \sigma_{1} \cdot \sigma_{3} + \sigma_{3}^{2} + 2 \cdot (\sigma_{1} + \sigma_{2} + \sigma_{3}) \cdot |\sigma_{c}| - 2 \cdot (\sigma_{1} + \sigma_{2} + \sigma_{3}) \cdot \frac{|\sigma_{c}|}{R} = 2 \cdot \frac{|\sigma_{c}|^{2}}{R} \Longrightarrow$$

$$2 \cdot \sigma_1^2 - 2 \cdot \sigma_1 \cdot \sigma_2 - 2 \cdot \sigma_1 \cdot \sigma_3 + 2 \cdot \sigma_1 \cdot |\sigma_c| - 2 \cdot \sigma_1 \cdot \frac{|\sigma_c|}{R} - 2 \cdot \sigma_2 \cdot \sigma_3 + 2 \cdot \sigma_2^2 + 2 \cdot \sigma_3^2$$
$$+ 2 \cdot (\sigma_2 + \sigma_3) \cdot |\sigma_c| - 2 \cdot (\sigma_2 + \sigma_3) \cdot \frac{|\sigma_c|}{R} - 2 \cdot \frac{|\sigma_c|^2}{R} = 0 \Longrightarrow$$

$$\sigma_{1}^{2} + (-\sigma_{2} - \sigma_{3} + |\sigma_{c}| - \frac{|\sigma_{c}|}{R}) \cdot \sigma_{1} - \sigma_{2} \cdot \sigma_{3} + \sigma_{2}^{2} + \sigma_{3}^{2} + (\sigma_{2} + \sigma_{3}) \cdot (|\sigma_{c}| - \frac{|\sigma_{c}|}{R}) - \frac{|\sigma_{c}|^{2}}{R} = 0 \Rightarrow$$

$$\Delta = (-\sigma_{2} - \sigma_{3} + |\sigma_{c}| - \frac{|\sigma_{c}|}{R})^{2} - 4 \cdot (-\sigma_{2} \cdot \sigma_{3} + \sigma_{2}^{2} + \sigma_{3}^{2} + (\sigma_{2} + \sigma_{3}) \cdot (|\sigma_{c}| - \frac{|\sigma_{c}|}{R}) - \frac{|\sigma_{c}|^{2}}{R})$$

$$\sigma_{1} = \frac{-(-\sigma_{2} - \sigma_{3} + |\sigma_{c}| - \frac{|\sigma_{c}|}{R}) \pm \sqrt{\Delta}}{2}$$
3.28

Εκ των δύο πιθανών τιμών από την επίλυση του τριωνύμου δεκτή γίνεται η λύση που δίνει αρνητική τιμή για την τάση, ώστε να είναι συμβατή με την αρχική σύμβαση ότι η θλίψη είναι αρνητική. Επιπλέον, για την επιρροή της ενδιάμεσης κύριας τάσης εξετάζεται η συμμετοχή της μέσω ενός πολλαπλασιαστικού συντελεστή,b, που λαμβάνει τιμές μεταξύ 0 και 1. Οπότε μετά από αυτή τη μεταβολή οι εξισώσεις 3.26, 3.28 γράφεται ως εξής:

$$\begin{split} \Theta & \acute{\epsilon} \tau \circ \upsilon \mu \epsilon : \sigma_{2,1} = b \cdot \sigma_2, \acute{\sigma} \pi \circ \upsilon b = 0 : 1 \\ (\sigma_1 - \sigma_{2,1})^2 + (\sigma_{2,1} - \sigma_3)^2 + (\sigma_1 - \sigma_3)^2 + 2 \cdot (R - 1) \cdot (\sigma_1 + \sigma_{2,1} + \sigma_3) \cdot \sigma_t = 2 \cdot R \cdot \sigma_t^2 \qquad 3.29 \\ \sigma_1 &= \frac{-(-\sigma_{2,1} - \sigma_3 + |\sigma_c| - \frac{|\sigma_c|}{R}) \pm \sqrt{\Delta}}{2} \end{split}$$

Ο Πίνακας 3.14 δίνει συγκεντρωμένα τα αποτελέσματα της διερεύνησης καθώς επίσης και οι καμπύλες πρόβλεψης του Σχήματος 3.19, όπου φαίνονται οι προσεγγίσεις που οδηγούν στις μικρότερες αποκλίσεις.

Solenhofen Limestone: σ_c = 370 MPa, R = 15, b = 0.32, i = 4.04%

Solenhofen Limestone: σ_{c} = 295 MPa, R = 7, b = 1, i = 7.35%

Σχήμα 3.19: Καμπύλες πρόβλεψης παραβολοειδούς εκ περιστροφής στο επίπεδο (σ₁-σ₂) με μειωτική παράμετρο για τη συμμετοχή της σ₂

Πέτρωμα	σ _c (MPa)	R	b	i %
KTB Amphibolite	250	32	1	33.81
Dunham Dolomite	350	14	1	5.33
Solenhofen Limestone	295/370	7/15	1/0.32	7.35/4.04

Πίνακας 3.14: Προσέγγιση παραμέτρων παραβολοειδούς εκ περιστροφής

Dunnam Dolomite	350	14	1	5.33
Solenhofen Limestone	295/370	7/15	1/0.32	7.35/4.04
Shirahama Sandstone	75	21	1	12.51
Yuubari Shale	120/95	8/4	0.38/1	7.25/7.74
Westerly Granite	370	35	1	26.86
Mizuho Trachyte	145	11	1	7.53

<u>Γενικά Συμπεράσματα</u>: Το κριτήριο προσεγγίζει με σημαντικές αποκλίσεις τα δεδομένα. Ειδικά για τον KTB Amphibolite και το Westerly Granite το κριτήριο αποτυγχάνει να παρακολουθήσει την αύξηση της αντοχής με την αύξηση της σ₃. Μειωμένη συμμετοχή της ενδιάμεσης κύριας τάσης προβλέπει για το Solenhofen Limestone και το Yuubari Shale. Ο Yuubari Shale είναι πέτρωμα που έχει μικρότερη εξάρτηση από τη σ₂, οπότε αυτή η πρόβλεψη φαίνεται κατά κάποιο τρόπο εύλογη.

3.7.1 Προσαρμογή στο Τροποποιημένο Παραβολοειδούς εκ Περιστροφής

Η παρατήρηση της συμπεριφοράς του κριτηρίου οδήγησε στο συμπέρασμα ότι το κριτήριο δεν ανταποκρίνεται στη μεταβολή της σ₃ σε ψηλότερα επίπεδα καθώς επίσης ότι σε κάποιες περιπτώσεις ενδέχεται να υπερεκτιμά τη συμμετοχή της ενδιάμεσης κύριας τάσης σ₂. Για να προσαρμοστεί το κριτήριο λοιπόν πιο σωστά στα δεδομένα που έχουμε στη διάθεση μας, προτείνονται δύο επεμβάσεις.

A) Εισάγεται ένας συντελεστής, b που αφορά στη συμμετοχή της ενδιάμεσης κύριας τάσης. Ο συντελεστής αυτός λαμβάνει τιμές από 0 έως 1, δηλαδή υποπολλαπλασιάζει την τάση σ₂. Χρησιμοποείται τόσο στον προσθετέο που παριστάνει τη μέση ορθή τάση στο επίπεδο αστοχίας, αλλά και στους υπόλοιπους προσθετέους που την περιέχουν. (δεύτερη αναλλοίωτος των αποκλινουσών τάσεων).

B) Εισάγεται ένα συντελεστής, w, o οποίος πολλαπλασιάζει τη μονοαξονική αντοχή σε θλίψη σ_c. Αυτή η παρέμβαση προέρχεται από την παρατήρηση ότι η μέση απόκλιση μειώνεται καθώς αυξάνει η τιμή της σ_c. Ειδικότερα με ελεύθερη επιλογή των παραμέτρων σ_c, R, η τιμή της σ_c που ελαχιστοποιεί την απόκλιση των πειραματικών από τις θεωρητικές τιμές αυξάνεται συνεχώς όσο αυξάνει η σ₃. Αν υιοθετηθεί η πραγματική σ_{ci} για όλα τα επίπεδα της σ₃, τότε η προσαρμογή του κριτηρίου είναι ανεπιτυχής, καθώς παρουσιάζει μεγάλες αποκλίσεις για τις υψηλές τιμές της ελάχιστης κύριας τάσης. Έτσι ο συντελεστής αυτός πρέπει να έχει κάποια εξάρτηση από την ελάχιστη τάση σ₃. Η σχέση που προτείνεται είναι η ακόλουθη:

$$w = \sigma_3^{a} \qquad \qquad 3.31$$

Όπου a: συντελεστής που οι αναλύσεις έδειξαν ότι κυμαίνεται μεταξύ 0 και 0.3. Συνοψίζοντας, παρουσιάζεται η διατύπωση του τροποποιημένου κριτηρίου αστοχίας του παραβολοειδούς εκ περιστροφής.

$$(\sigma_{1} - b\sigma_{2})^{2} + (b\sigma_{2} - \sigma_{3})^{2} + (\sigma_{1} - \sigma_{3})^{2} + 2(R - 1)(\sigma_{1} + b\sigma_{2} + \sigma_{3})\frac{w \cdot |\sigma_{c}|}{R} = 2R\frac{(w \cdot |\sigma_{c}|)^{2}}{R^{2}} \qquad 3.32$$

Αναζητείται η εύρεση των παραμέτρων σ_c, R, b, a. Η βέλτιστη τετράδα παραμέτρων είναι αυτή, για την οποία προκύπτει η ελάχιστη μέση απόκλιση i % (Σχέση 3.27). Ο Πίνακας 3.15 δίνει τα αποτελέσματα της ανάλυσης για κάθε σ₃ ξεχωριστά.

Πίνακας 3.15: Προσέγγιση παραμέτρων τροποποιημένου παραβολοειδούς εκ περιστροφής για κάθε σ₃ ανά τύπο πετρώματος

KTB Amphibolite					
		σ_{c} (MPa) = 165		
σ₃ (MPa)	R	b	а	w	i %
0	22	0.75	0	1	10.62
30	24	0.56	0.24	2.2621	7.17
60	24	0.4	0.31	3.5582	4.10
100	20	0.58	0.29	3.8019	4.35
150	22	0.20	0.33	5.2253	5.10

Dunham Dolomite					
		σ _c (MPa) = 257		
σ ₃ (MPa)	R	b	а	w	i %
25	11	0.55	0.12	1.4715	4.72
45	12	0.51	0.13	1.6403	2.97
65	7	0.31	0.15	1.8704	2.72
85	11	0.41	0.14	1.8626	2.36
105	8	0.23	0.17	2.2060	2.79
125	6	0.28	0.17	2.2723	2.79
145	10	0.42	0.15	2.1096	2.36

Solenhofen Limestone							
	$\sigma_{\rm c}$ (MPa) = 165						
σ ₃ (MPa)	R	b	а	w	i %		
20	7	0.24	0.06	1.1969	1.10		
40	11	0.28	0.06	1.2477	2.06		
60	15	0.19	0.07	1.3319	2.83		
80	7	0.28	0.07	1.359	2.93		

Shirahama Sandstone					
		σ _c (MPa	a) = 65		
σ ₃ (MPa)	R	b	а	w	i %
5	17	0.01	0.19	1.3577	5.13
8	17	0.07	0.28	1.7901	5.50
15	21	0.08	0.26	2.0220	1.12
20	20	0.1	0.27	2.2453	2.45
30	13	0.01	0.3	2.7742	2.61
40	16	0.18	0.27	2.7074	1.83

Yuubari Shale								
σ _c (MPa) = 90								
σ₃ (MPa)	R	b	а	w	i %			
25	6	0.24	0.11	1.4249	4.04			
50	8	0.15	0.16	1.87	3.00			

	Westerly Granite							
		σ _c (MPa) = 201					
σ ₃ (MPa)	R	b	а	w	i %			
0	35	1	0	1	5.77			
2	29	0.69	0.4	1.3195	5.92			
20	35	0.44	0.28	2.3136	4.14			
38	29	0.7	0.26	2.5748	3.48			
60	32	0.31	0.29	3.2784	2.01			
77	31	0.27	0.31	3.8443	2.33			
100	29	0.84	0.28	3.6308	2.67			

	Mizuho Trachyte								
	σ _c (MPa) = 100								
σ₃ (MPa)	R	b	а	w	i %				
0	9	0.01	0	1	0				
15	14	0.98	0.14	1.4610	0				
30	17	0.32	0.19	1.9083	0				
45	12	0.14	0.23	2.4002	2.78				
60	17	0.2	0.21	2.3627	3.07				
75	17	0.13	0.23	2.6994	2.68				
100	13	0.18	0.23	2.8840	2.32				

Σχήμα 3.20: Καμπύλες πρόβλεψης για κάθε επίπεδο σ₃ τροποποιημένου παραβολοειδούς εκ περιστροφής

Κατά τη διερεύνηση ελέγχθηκε ο διαφορετικός ρόλος των παραμέτρων w, b. Η αύξηση της παραμέτρου w προκαλεί παράλληλη μετάθεση προς υψηλότερες τιμές της αντοχής στην καμπύλη του κριτηρίου του παραβολοειδούς, ενώ η αύξηση της τιμής της παραμέτρου b σχετίζεται με την καμπυλότητα της καμπύλης του κριτηρίου.

Στη συνέχεια αναζητείται για κάθε πέτρωμα να βρεθεί ενιαία καμπύλη για όλες τις τιμές σ₃. Έχοντας σαν πρώτη προσέγγιση τις τιμές που επιτεύχθηκαν για κάθε σ₃ ξεχωριστά, δημιουργείται εκ νέου «κάνναβος» αναζήτησης των τιμών των παραμέτρων (σ_c, R, w, b) και αναζητείται ο βέλτιστος συνδυασμός αυτής της

96

τετράδας που δίνει την ελάχιστη απόκλιση για τη μέγιστη κύρια τάση σ₁ σε σύγκριση με τις πειραματικές τιμές της σ₁. Συμπληρώνεται ότι σε αυτή τη διαδικασία χρησιμοποιήθηκε για την παράμετρο w, η εξής σχέση: w=cσ₃^a αντί της Σχέσης 3.31. Οι υπολογισμοί αυτής της προσαρμογής δίνονται στο Παράρτημα Α.11. Οι νέες προσεγγίσεις παρουσιάζονται στο Σχήμα 3.21.

Σχήμα 3.21: Καμπύλες πρόβλεψης τροποποιημένου παραβολοειδούς εκ περιστροφής

Πέτρωμα	σ _c (MPa)	R	b	а	С	i %
KTB Amphibolite	165	20	1	0.38	0.56	7.68
Dunham Dolomite	259	6	0.5	0.15	0.95	3.47
Solenhofen Limestone	278	7	0.4	0.10	0.90	3.15
Shirahama Sandstone	78	21	0.1	0.35	0.65	3.70
Yuubari Shale	103	4	0.3	0.35	0.4	3.77
Westerly Granite	201	35	1	0.26	0.95	5.74
Mizuho Trachyte	100	10	0.15	0.3	0.75	2.98

Πίνακας 3.16: Προσέγγιση παραμέτρων τροποποιημένου παραβολοειδούς εκ περιστροφής

<u>Σημείωση</u>: $w = c \cdot \sigma_3^{a}$

<u>Γενικά Συμπεράσματα</u>: Το τροποποιημένο κριτήριο έχει τη δυνατότητα να μεταβάλει το ποσοστό συμμετοχής της σ₂ και να προσαρμόζει την καμπύλη αστοχίας αντίστοιχα. Παρουσιάζει σχετικά μικρά ποσοστά απόκλισης και δίνει εύστοχες προσεγγίσεις για την αντοχή σε μονοαξονική θλίψη.

3.8 Προσαρμογή στο κριτήριο Murrel

Ο Murrel πρότεινε το παρακάτω κριτήριο αστοχίας που είναι ενεργειακά θεμελιωμένο αλλά κατάλληλα τροποποιημένο, ώστε να λαμβάνει με μειωμένο συντελεστή την επίδραση της ενδιάμεσης κύριας τάσης σ₂ στην αντοχή της βραχομάζας. Επιλύουμε την παράσταση ως προς την μέγιστη κύρια τάση σ₁. Αναζητούνται οι παράμετροι σ_c, R που δίνουν την ελάχιστη μέση απόκλιση i%.

$$i\% = mean \frac{\left|\sigma_{IMR} - \sigma_{I,\pi \epsilon \iota \rho.}\right|}{\sigma_{I,\pi \epsilon \iota \rho.}} \cdot 100\%$$
3.33

$$\begin{aligned} & (\sigma_{1} - \sigma_{2})^{2} + (\sigma_{2} - \sigma_{3})^{2} + (\sigma_{1} - \sigma_{3})^{2} = 24 \cdot \sigma_{ii} \cdot (\sigma_{1} + \sigma_{2} + \sigma_{3}) \\ & \sigma_{ii} = \frac{\sigma_{c}}{R} \end{aligned} \right\} \rightarrow \\ & \sigma_{1}^{2} - 2 \cdot \sigma_{1} \cdot \sigma_{2} + \sigma_{2}^{2} + \sigma_{2}^{2} - 2 \cdot \sigma_{2} \cdot \sigma_{3} + \sigma_{3}^{2} + \sigma_{3}^{2} - 2 \cdot \sigma_{3} \cdot \sigma_{1} + \sigma_{1}^{2} \\ & -24 \cdot \frac{\sigma_{c}}{R} \cdot \sigma_{1} - 24 \cdot \frac{\sigma_{c}}{R} \cdot (\sigma_{2} + \sigma_{3}) = 0 \rightarrow \\ & \sigma_{1}^{2} + (-\sigma_{2} - \sigma_{3} - 12 \cdot \frac{\sigma_{c}}{R}) + \sigma_{2}^{2} + \sigma_{3}^{2} - \sigma_{2} \cdot \sigma_{3} - 12 \cdot \frac{\sigma_{c}}{R} \cdot (\sigma_{2} + \sigma_{3}) = 0 \\ & \Delta = (-\sigma_{2} - \sigma_{3} - 12 \cdot \frac{\sigma_{c}}{R})^{2} - 4 \cdot (\sigma_{2}^{2} + \sigma_{3}^{2} - \sigma_{2} \cdot \sigma_{3} - 12 \cdot \frac{\sigma_{c}}{R} \cdot (\sigma_{2} + \sigma_{3})) \\ & \sigma_{1} = \frac{-(-\sigma_{2} - \sigma_{3} - 12 \cdot \frac{\sigma_{c}}{R}) \pm \sqrt{\Delta}}{2} \end{aligned}$$

Επιπλέον εξετάζεται η επίδραση της ενδιάμεσης κύριας τάσης με την εισαγωγή του σταθμιστικού παράγοντα b που λαμβάνει τιμές από 0 έως 1. Θέτουμε δηλαδή στην εξίσωση 3.34 όπου σ₂ την σταθμισμένη τάση σ_{2,1}, η οποία ισούται με: σ_{2,1}=b σ₂.

Σχήμα 3.22: Καμπύλες πρόβλεψης κριτηρίου Murrel

Πέτρωμα	Θεωρητική αντοχή σε μον.θλίψη, σ _c (MPa)	Πραγματική αντοχή σε μον. θλίψη, σc (MPa)	R	b	Φάσμα τιμών m (Marinos and Hoek, 2001	Απόκλιση %
KTB Amphibolite	415	165	15	1	26±6	30.79
Dunham Dolomite	315	257	11	0.94	9±3	5.34
Solenhofen Limestone	395/265	N/A	13/12	0.3/1	11±4	3.88/8.10
Shirahama Sandstone	100	N/A	16	1	17±4	12.39
Yuubari Shale	95/55	N/A	10/8	0.35/1	6±2	7.00/8.39
Westerly granite	305	201	10	1	32±3	26.60
Mizuho trachyte	90	100	8	1	13±4	7.54

Πίνακας 3.17: Αποτελέσματα προσαρμογής κριτηρίου Murrel

<u>Γενικά Συμπεράσματα</u>: Το κριτήριο Murrel παρουσιάζει σημαντικές αποκλίσεις από τις εργαστηριακές τιμές. Όπως και το κριτήριο του παραβολοειδούς εκ περιστροφής, πριν από την τροποποίηση, προβλέπει μειωμένη συμμετοχή της σ2 για το Solenhofen Limestone και το Yuubari Shale. Επίσης, υπερεκτιμά τις αντοχές σε μονοαξονική θλίψη σε αρκετές περιπτώσεις.

3.9 Προσαρμογή στο κριτήριο Modified Wiebols and Cook

Το κριτήριο του Zhu βασίζεται σε χαρακτηριστικά του κριτηρίου των Wiebols and Cook. Αρχικά έγινε προσδιορισμός των τιμών των παραμέτρων A, B, C με τη μέθοδο ελαχίστων τετραγώνων. Εν τούτοις οι τιμές που προέρχονται από αυτή τη μαθηματική μέθοδο δε δίνουν την ελάχιστη απόκλιση για τη μέγιστη κύρια τάση σε σύγκριση με τις πειραματικές τιμές. Παρ' όλα αυτά χρησιμοποιούνται βοηθητικά σα τάξη μεγέθους για την αναζήτηση της βέλτιστης τριπλέτας A, B, C ανάμεσα σε κατάλληλα επιλεγμένο εύρος τιμών. Η διαδικασία αναζήτησης των βέλτιστων τιμών των παραμέτρων A, B, C επαναλαμβάνεται για κάθε επίπεδο σ₃.

Η επίλυση της εξίσωσης του κριτηρίου δεν έγινε με αναλυτικό τρόπο, καθώς η επίλυση της ως προς κάποια από τις κύριες τάσεις δεν είναι ευχερής. Εναλλακτικά πραγματοποιήθηκε προσεγγιστική αριθμητική επίλυση. Για δεδομένη τριπλέτα Α, Β, C και για κάθε ζεύγος σ₂, σ₃ αναζητήθηκαν προσεγγιστικά οι τιμές της μέγιστης κύριας τάσης σ₁ σαν σημεία μηδενισμού της εξίσωσης που περιγράφει το κριτήριο (Παράρτημα Α.13).

Σε τελική φάση γίνεται υπολογισμός της μονοαξονικής αντοχής σε θλίψη, σύμφωνα με τις Σχέσεις 2.43a, b, c για την τριάδα τιμών A, B, C που αντιστοιχεί σε σ₃=0. Σε περιπτώσεις που δεν υπήρχαν δεδομένα για μηδενική ελάχιστη πλευρική τάση δεν έγινε υπολογισμός της μονοαξονικής αντοχής σε θλίψης, διότι παρατηρήθηκε ότι οι τιμές των παραμέτρων A, B, C έχουν έντονη εξάρτηση από την τιμή της σ₃.

Σχήμα 3.23: Καμπύλες πρόβλεψης κριτηρίου Modified Wiebols and Cook

Πίνακας 3.18: Προσέγγιση Παραμέτρων κριτηρίου Modified Wiebols and Cook

KT	B Am	phiboli	te		Dunham	Dolomite	l
σ₃ (MPa)	Α	В	С	σ₃(MPa)	Α	В	С
0	30	16	-0.003	25	110	0.8	0.0006
20	20	1 75	0.000	45	120	0.8	0.0006
30	30	1.75	-0.0028	65	130	0.8	0.0006
60	30	2	-0.0028	85	140	0.8	0.0006
100	30	1.8	-0.0018	105	150	0.8	0.0006
150	30	2	-0.0018	125	160	0.8	0.0006
	σ _c =25	0 MPa		145	165	0.8	0.0006

Solenhofen Limestone						
σ ₃ (MPa)	Α	В	С			
20	164	0.36	0.0002			
40	174	0.36	0.0002			
60	180	0.36	0.0002			
80	185	0.36	0.0002			

Shirahama Sandstone					
σ₃(MPa)	Α	В	С		
5	10	1.1	-0.006		
8	10	1.3	-0.008		
15	10	1.4	-0.007		
20	10	1.5	-0.007		
30	10	1.5	-0.0057		
40	10	1.5	-0.05		
	σ _c =52	2 MPa			

Yuubari Shale					
σ ₃ (MPa)	Α	В	С		
25	50	0.33	0.00009		
50	60	0.33	0.00009		

We	Westerly Granite						
σ₃ (MPa)	Α	В	С				
0	50	1.1	-0.002				
2	50	1.2	-0.002				
20	50	1.5	-0.002				
38	50	1.7	-0.002				
60	50	1.8	-0.002				
77	50	1.9	-0.002				
100	50	1.9	-0.001				
C	σ _c =197	MPa					

Mizuho Trachyte						
σ ₃ (MPa)	Α	В	С			
0	40	0.65	-0.003			
15	40	1	-0.003			
30	40	1.1	-0.003			
45	40	1.18	-0.0028			
60	40	1.2	-0.0026			
75	40	1.3	-0.0028			
100	40	1.3	-0.0025			
	σ _c =10	1 MPa				

Πίνακας 3.19 : Ποσοστά απόκλισης, i	%
-------------------------------------	---

Πέτρωμα	i %
KTB Amphibolite	12.42
Dunham Dolomite	3.39
Solenhofen Limestone	3.48
Shirahama Sandstone	6.47
Yuubari Shale	6.03
Westerly Granite	4.28
Mizuho Trachyte	3.62

4. Συγκριτική αξιολόγηση κριτηρίων αστοχίας

4.1 Συγκριτικοί Πίνακες

Σε αυτό το κεφάλαιο παρουσιάζονται συγκεντρωτικά τα αποτελέσματα της διερεύνησης για κάθε τύπο πετρώματος. Στόχος είναι η σύγκριση της συμπεριφοράς των κριτηρίων και η εξαγωγή συμπερασμάτων για την επίδραση της ενδιάμεσης κύριας τάσης στη κατάσταση της αστοχίας. Στους Πίνακες που ακολουθούν παρουσιάζονται για κάθε πέτρωμα χαρακτηριστικές παράμετροι που προέκυψαν από τη διερεύνηση.

KTB Amphibolite	σ _c (Mpa)	m,R	i %	μ _i	с (MPa)	φ (rad)	σ.π.*
Drucker Prager - Inscribed	-	-	40.04	-	-	-	
Drucker Prager - Circumscribed	236.5	-	16.64	0.76	58.8	0.4	
Mohr - Coulomb	305	-	10.62	1.1	58.4	0.834	
Hoek - Brown	295	26	7.96	-	-	-	
Pan - Hudson	250	32	23.44	-	-	-	
Zhang - Zhu	155	31	10.45	-	-	-	
Simplified Priest (2005)	188	32	7.33	-	-	-	0.21
Mogi (1967)	-	-	8.17	-	-	-	0.15
Mogi - Linear (1971)	-	-	13.3	-	-	-	
Mogi - Power Law (1971)	-	-	8.49	-	-	-	
Theocaris	250	32	33.81	-	-	-	1
Theocaris (Modified)	165	20	7.68	-	-	-	1
Murrel	415	15	30.79	-	-	-	1
Modified Wiebols&Cook	255	-	12.42	-	-	-	

Dunham Dolomite	σ _c (Mpa)	m,R	i %	μ _i	с (MPa)	φ (rad)	σ.π.*
Drucker Prager - Inscribed	689	-	F F 0	0.64	188	0.57	
Drucker Prager - Circumscribed	372.9	-	5.52	0.42	123.6	0.4	
Mohr - Coulomb	401	-	6.01	0.73	101.6	0.634	
Hoek - Brown	400	8	5.57	-	-	-	
Pan - Hudson	400	7	8.94	-	-	-	
Zhang - Zhu	320	7	2.74	-	-	-	
Simplified Priest (2005)	318	9	2.89	-	-	-	0.28
Mogi (1967)	-	-	3.53	-	-	-	0.52
Mogi - Linear (1971)	-	-	2.89	-	-	-	
Mogi - Power Law (1971)	-	-	2.74	-	-	-	
Theocaris	350	14	5.33	-	-	-	1
Theocaris (Modified)	259	6	3.47	-	-	-	0.5
Murrel	315	11	5.34	-	-	-	0.94
Modified Wiebols&Cook		-	3.39	-	-	-	

Solenhofen Limestone	σ _c (Mpa)	m,R	i %	μ _i	с (MPa)	φ (rad)	σ.π.*
Drucker Prager - Inscribed	525	-	E 40	0.37	182	0.36	
Drucker Prager - Circumscribed	361.1	-	5.12	0.28	136.8	0.27	
Mohr - Coulomb	330	-	6.55	0.71	84.9	0.620	
Hoek - Brown	367	5	6.38	-	-	-	
Pan - Hudson	415	3	6.95	-	-	-	
Zhang - Zhu	295	5	3.52	-	-	-	
Simplified Priest (2005)	246	11	3.37	-	-	-	0.23
Mogi (1967)	-	-	2.95	-	-	-	0.47
Mogi - Linear (1971)	-	-	3.08	-	-	-	
Mogi - Power Law (1971)	-	-	3.33	-	-	-	
Theocaris	295	7	7.35	-	-	-	1
Theocaris (Modified)	278	7	3.15	-	-	-	0.4
Murrel	265 395	12 13	8.1 3.9	-	-	-	1 0.3
Modified Wiebols&Cook		-	3.48	-	-	-	-

Shirahama Sandstone	σ _c (Mpa)	m,R	i %	μi	с (MPa)	φ (rad)	σ.π.*
Drucker Prager - Inscribed	175	-	10.00	0.88	39.5	0.72	
Drucker Prager - Circumscribed	74.6	-	10.60	0.51	22.8	0.47	
Mohr - Coulomb	87	-	4.63	0.84	20.3	0.70	
Hoek - Brown	72	16	3.69	-	-	-	
Pan - Hudson	65	13	14.8	-	-	-	
Zhang - Zhu	45	16	6.4	-	-	-	
Simplified Priest (2005)	55	20	3.25	-	-	-	0.18
Mogi (1967)	-	-	4.85	-	-	-	0.04
Mogi - Linear (1971)	-	-	5.02	-	-	-	
Mogi - Power Law (1971)	-	-	6.56	-	-	-	
Theocaris	75	21	12.51	-	-	-	1
Theocaris (Modified)	78	21	3.7	-	-	-	0.1
Murrel	100	16	2.39	-	-	-	1
Modified Wiebols&Cook	52	-	6.47	-	-	-	
Yuubari Shale	σ _c (Mpa)	m,R	i %	μ _i	с (MPa)	φ (rad)	σ.π.*
--------------------------------	-------------------------	---------	-----------	----------------	------------	------------	-----------
Drucker Prager - Inscribed	176	-	7.05	0.48	55.5	0.44	
Drucker Prager - Circumscribed	111	-	7.85	0.34	39.8	0.32	
Mohr - Coulomb	105	-	4.54	0.6	29.7	0.539	
Hoek - Brown	90	8	4.32	-	-	-	
Pan - Hudson	115	4	8.76	-	-	-	
Zhang - Zhu	80	6	3.52	-	-	-	
Simplified Priest (2005)	86	7	3.4	-	-	-	0.27
Mogi (1967)	-	-	3.85				0.24
Mogi - Linear (1971)	-	-	4.28	-	-	-	
Mogi - Power Law (1971)	-	-	4.43	-	-	-	
Theocaris	120	8	7.25	-	-	-	0.38
Theocaris (Modified)	103	4	3.77	-	-	-	0.3
Murrel	55 95	8 10	8.39 7	-	-	-	1 0.35
Modified Wiebols&Cook		-	6.03	-	-	-	

Westerly Granite	σ _c (Mpa)	m,R	i %	μi	с (MPa)	φ (rad)	σ.π.*
Drucker Prager - Inscribed	-	-	45.00	-	-	-	
Drucker Prager - Circumscribed	237.6	-	15.66	1.01	48.8	0.79	
Mohr - Coulomb	333	-	6.73	1.28	57.3	0.91	
Hoek - Brown	300	32	5	-	-	-	
Pan - Hudson	1000!!	20	13.02	-	-	-	
Zhang - Zhu	200	35	9.76	-	-	-	
Simplified Priest (2005)	201	35	5.16	-	-	-	0.25
Mogi (1967)	-	-	6.39	-	-	-	0.19
Mogi - Linear (1971)	-	-	8.65	-	-	-	
Mogi - Power Law (1971)	-	-	9.38	-	-	-	
Theocaris	370	35	26.86	-	-	-	1
Theocaris (Modified)	201	35	5.74	-	-	-	1
Murrel	305	10	26.6	-	-	-	1
Modified Wiebols&Cook	197	-	4.28	-	-	-	

Mizuho Trachyte	σ _c (Mpa)	m,R	i %	μ	с (MPa)	φ (rad)	σ.π.*
Drucker Prager - Inscribed	297	-	C 45	0.44	96.2	0.42	
Drucker Prager - Circumscribed	192	-	0.45	0.32	69.8	0.31	
Mohr - Coulomb	148	-	6.46	0.7	38.8	0.61	
Hoek - Brown	150	9	5.41	-	-	-	
Pan - Hudson	100	10	15.25	-	-	-	
Zhang - Zhu	100	10	2.36	-	-	-	
Simplified Priest (2005)	100	13	2.24	-	-	-	0.25
Mogi (1967)	-	-	3.71	-	-	-	0.24
Mogi - Linear (1971)	-	-	6.19	-	-	-	
Mogi - Power Law (1971)	-	-	4.41	-	-	-	
Theocaris	145	11	7.53	-	-	-	1
Theocaris (Modified)	100	10	2.98	-	-	-	0.15
Murrel	90	8	7.54	-	-	-	1
Modified Wiebols&Cook	101	-	3.62	-	-	-	

σ.π.^{*}: σταθμιστικός παράγοντας της ενδιάμεσης κύριας τάσης, σ₂.

4.2 Αξιολόγηση κριτητρίου Drucker - Prager

Έχει περισσότερο θεωρητική αξία και δεν είναι πάντα εφικτή η αντιστοίχιση με παραμέτρους αντοχής του κριτηρίου Mohr - Coulomb. Αν η τιμή της παραμέτρου Α για κάποιο πέτρωμα είναι μεγαλύτερη από ένα άνω όριο (asymptotic value), οι παράμετροι αντοχής (σ_c, q) δε μπορούν να υπολογιστούν, το οποίο σημαίνει ότι δε γίνεται σύγκριση το με το κριτήριο Mohr Coulomb (Colmenares & Zoback, 2002).. Σε όσες περιπτώσεις έγινε αντιστοίχιση, παρατηρήθηκε ότι υπερεκτιμά τη μονοαξονική αντοχή σε θλίψη. Το εγγεγραμμένο Drucker – Prager υπερεκτιμά σε όλες τις περιπτώσεις τη συνοχή, c, ενώ τόσο το εγγεγραμμένο όσο και το περιγεγραμμένο δίνουν μικρότερες τιμές γωνίας τριβής σε σύγκριση με το Mohr – Coulomb. Το περιγεγραμμένο κριτήριο προβλέπει μικρότερες τιμές αντοχής σε μονοαξονική θλίψη από αυτές που προβλέπει το εγγεγραμμένο.

Από τα διαγράμματα σ₁ – σ₂ προκύπτει ότι σε χαμηλά επίπεδα σ₂ υποεκτιμά την αντοχή, ενώ σε μεγαλύτερες τιμές σ₂ υπερεκτιμά τη μέγιστη τάση σ₁. Για τον αμφιβολίτη και το γρανίτη παρατηρούμε συνεχή αύξηση της σ₁ με την αύξηση της σ₂. Σε σύγκριση με τα άλλα κριτήρια, το Drucker – Prager "αστοχεί" σημαντικά στην πρόβλεψη της αντοχής του KTB Amphibolite και Westerly Granite. Τα ποσοστά απόκλισης i %, είναι μεγαλύτερα από αυτά του Mohr – Coulomb για όλα τα πετρώματα εκτός από το Dunham Dolomite, Solenhofen Limestone και Mizuho

Trachyte, για τα οποία το Drucker – Prager δίνει μικρότερες μέσες ποσοστιαίες αποκλίσεις. Ο Yuubari Shale και ο Shirahama Sandstone δεν έχουν μεγάλη εξάρτηση από τη σ₂, γι' αυτό και η προσαρμογή τους στο τριδιάστατο Drucker – Prager οδηγεί σε μεγάλες αποκλίσεις.

4.3 Αξιολόγηση κριτηρίου Mohr - Coulomb

Τα μικρότερα ποσοστά απόκλισης παρουσιάζουν τα πετρώματα που δεν έχουν σημαντική εξάρτηση από την ενδιάμεση κύρια τάση, δηλαδή ο Yuubari Shale και ο Shirahama Sandstone (Colmenares & Zoback, 2002). Το κριτήριο υπερεκτιμά την αντοχή σε μονοαξονική θλίψη, προβλέποντας μεγαλύτερες τιμές αυτής της παραμέτρου, σε ποσοστά μεγαλύτερα από 50 %, έως και 80%.

4.4 Αξιολόγηση κριτηρίου Hoek - Brown

Τα μικρότερα ποσοστά απόκλισης παρουσιάζουν τα πετρώματα που δεν έχουν σημαντική εξάρτηση από την ενδιάμεση κύρια τάση, δηλαδή ο Yuubari Shale και ο Shirahama Sandstone και είναι μικρότερα από αυτά που προβλέπει το κριτήριο Mohr – Coulomb (Colmenares & Zoback, 2002).. Το κριτήριο υπερεκτιμά την αντοχή σε μονοαξονική θλίψη σε ποσοστά ως 70%.

4.5 Αξιολόγηση κριτηρίου Pan - Hudson

Το κριτήριο των Pan – Hudson υποεκτιμά την αντοχή στα χαμηλά επίπεδα της σ₂ και την υπερεκτιμά στα υψηλότερα επίπεδα της ενδιάμεσης κύριας τάσης. Σε αντιδιαστολή, το κριτήριο Zhang – Zhu επιτυγχάνει πολύ καλή προσαρμογή στα πειράματα. Δεδομένου ότι η μόνη διαφορά μεταξύ των δύο γενικευμένων Hoek – Brown κριτηρίων είναι στη συμμετοχή της ενδιάμεσης κύριας τάσης στην ορθή τάση πάνω στο επίπεδο αστοχίας, σημαίνει ότι η ύπαρξη του όρου της σ₂ στη μέση ορθή τάση, σ_{m3}, δημιουργεί τη διαφορετική καμπύλη πρόβλεψης.

Στο σχιστόλιθο δεν παρατηρείται έντονα η υποεκτίμηση – υπερεκτίμηση της αντοχής. Από το Σχήμα 3.2, όπου παριστάνεται ο συντελεστής συσχέτισης μεταξύ σ₁-σ₂ έχει προκύψει ότι ο σχιστόλιθος έχει μικρότερη εξάρτηση από τη σ₂ σε σχέση με τα άλλα πετρώματα. Το γεγονός αυτό ίσως αποτελεί ένδειξη ότι λόγω αυτού του χαμηλού συντελεστή συσχέτισης να διαφοροποιείται αισθητά από τα υπόλοιπα πετρώματα στην προσαρμογή του με το κριτήριο. Εν τούτοις πρέπει να λάβουμε υπόψη ότι για το σχιστόλιθο ο αριθμός των πειραματικών μετρήσεων είναι σημαντικά μικρότερος σε σχέση με τα άλλα πετρώματα και για αυτό ενδεχομένως επιτυγχάνεται καλύτερη προσαρμογή.

Στα πετρώματα Westerly Granite και KTB Amphibolite προκύπτουν μεγάλες αποκλίσεις. Τα πετρώματα αυτά έχουν τις μεγαλύτερες τιμές της παραμέτρου m και έντονη εξάρτηση από τη σ₂. Κατά τη διερεύνηση οι παράμετροι σ_c,m, περιορίστηκαν μέσα στα αποδεκτά όρια γιατί παρατηρήθηκε ότι τα ποσοστά απόκλισης i %, μειώνονταν συνεχώς σε μεγαλύτερες τιμές έξω από το αποδεκτό εύρος για τις παραμέτρους σ_c,m. Για παράδειγμα, η προσαρμογή στο Westerly Granite που δίνει καλύτερες τιμές απόκλισης είναι γύρω στα 1000 MPa που είναι μη – ρεαλιστική τιμή.

4.5 Αξιολόγηση κριτηρίου Zhang – Zhu

Όσον αφορά την εκτίμηση της αντοχής σε μονοαξονική θλίψη δίνει πολύ καλές προσεγγίσεις σε όλα τα πετρώματα. Το μειονέκτημα είναι ότι δε γνωρίζουμε για όλα τους τύπους πετρωμάτων την πειραματική τιμή της σ_c. Τα ποσοστά απόκλισης είναι ικανοποιητικά και η μορφή των διαγραμμάτων σ₂-σ₁ δείχνει ότι προσεγγίζει σωστά τα πειραματικά δεδομένα, αφού σε κάθε τύπο πετρώματος διαμορφώνει την κατάλληλη καμπυλότητα, ώστε να ακολουθεί αρχικά την τάση αύξησης της αντοχής και στη συνέχεια την πτώση της αντοχής με την αύξηση της σ₂. Επιτυγχάνει δηλαδή εύστοχη προσαρμογή και παρατηρείται ότι η καμπυλότητα του αυξάνει με την αύξηση της παραμέτρου m.

Αξιοσημείωτο είναι ότι αντιβαίνει στον ενεργειακό περιορισμό του μη – αρνητικού έργου των πλαστικών παραμορφώσεων του Drucker (Prager 1951). Συγκεκριμένα, η επιφάνεια αστοχίας πρέπει να είναι κυρτή, δηλαδή να κείται εξ' ολοκλήρου από τη μία πλευρά της εφαπτομένης σε οποιοδήποτε σημείο της. Ωστόσο η καμπύλη αστοχίας των Zhang – Zhu είναι σε 3 θέσεις, καθώς κοιτάμε το ίχνος της επί του αποκλίνοντος επιπέδου μη – κυρτή, και συγκεκριμένα στις τομές με τις ευθείες σ₁=σ₂, σ₁=σ₃ και

σ₂=σ₃. Το γεγονός αυτό χρειάζεται περαιτέρω διερεύνηση για να διαπιστωθεί αν και ποια προβλήματα δημιουργεί σε συγκεκριμένες διαδρομές τάσεων.

Επιπλέον, σημειώνεται ότι κατά την κατασκευή των διαγραμμάτων σ₁ – σ₂ έχει επιλυθεί ένα τριώνυμο ως προς την τάση σ₂ και έχουν χρησιμοποιηθεί και οι δύο λύσεις του τριωνύμου, η μία για τον ανοδικό κλάδο και η άλλη για τον καθοδικό κλάδο. Αυτό έχει σαν αποτέλεσμα την ύπαρξη δύο τιμών αστοχίας σ₁ για την ίδια τιμή σ₂, γεγονός που δεν έχει φυσικό νόημα, αλλά προκύπτει από τη μαθηματική επίλυση. Τέτοιες περιπτώσεις διπλής τιμής σ₁ παρατηρούνται στα πετρώματα: KTB Amphibolite, Westerly Granite και οριακά σε κάποιες τιμές στον Shirahama Sandstone. Εξάλλου, η απότομη πτώση της σ₂ μετά τη συνεχή αύξηση της σ₁ δε φαίνεται να έχει κάποια λογική αιτία.

4.7 Αξιολόγηση κριτηρίου Simplified Priest

Το απλοποιημένο κριτήριο Priest επιτρέπει το καθορισμό μιας παραμέτρου, b (σ.π.^{*}), για κάθε επίπεδο σ₃ κάθε πετρώματος, οπότε αυτό δίνει τη δυνατότητα καλύτερης προσέγγισης και επομένως μικρότερα ποσοστά απόκλισης. Αν και δεν υπάρχει για κάθε πέτρωμα ενιαία καμπύλη, εν τούτοις έχει προστεθεί για σύγκριση με τα άλλα πετρώματα.

Σε αυτή τη μορφή που έγινε η διερεύνηση παρατηρούμε ότι επιτυγχάνεται εξαιρετικά καλή προσαρμογή στα πειραματικά δεδομένα με τις μικρότερες αποκλίσεις σχεδόν σε όλα τα πετρώματα. Επίσης, οι εκτιμήσεις της μονοαξονικής αντοχής σε θλίψη είναι αρκετά κοντά στην πραγματικότητα. Σε κάποιες περιπτώσεις παρατηρείται μείωση της αντοχής με την αύξηση της σ₂, γεγονός που οφείλεται μαθηματικά στον όρο – (σ₂+σ₃) που αφαιρείται (Σχέση 2.26).

4.8 Αξιολόγηση κριτηρίων Mogi

Οι συναρτήσεις του Mogi έχουν περισσότερο θεωρητική αξία. Δεν προσφέρουν πληροφορίες για παραμέτρους αντοχής, όπως θλιπτική αντοχή ή συντελεστή εσωτερικής τριβής. Η προσαρμογή του κριτηρίου στα δεδομένα έγινε για όλες τις περιπτώσεις με μαθηματική μέθοδο ελαχίστων τετραγώνων. Το κριτήριο Mogi (1967) προσαρμόζεται ικανοποιητικά στα δεδομένα. Η παράμετρος που καθορίζει τη

συμμετοχή της σ₂ έχει τη φυσική σημασία της γωνίας απόκλισης του επιπέδου αστοχίας από τη διεύθυνσης της σ₂. Οι Colmenares & Zoback αναφέρουν ότι ο Mogi διαπίστωσε διαφορετικές τιμές για την «σταθμιστική» παράμετρο b για τα πετρώματα Dunham Dolomite (0.1 (Mogi) αντί για 0.5 που έδωσε η δική τους και 0.52 που έδωσε η δική μας διερεύνηση) και Solenhofen Limestone (κοντά στο μηδέν αντί για 0.45 που έδωσε η δική τους και 0.47 η δική μας διερεύνηση). Κατά τους Colmenares and Zoback αυτή η διαφοροποίηση οφείλεται στο είδος των δεδομένων, δηλαδή, ότι ο Mogi εργάστηκε με δεδομένα τα οποία δεν περιείχαν συνδυασμούς τάσεων με σ₁>σ₂>σ₃, (polyaxial data). Ακόμη, για τον αμφιβολίτη οι Chang & Haimson είχαν βρει ότι σε ψαθυρή θραύση αστοχούσε σε διεύθυνση σχεδόν παράλληλη με τη διεύθυνση της ενδιάμεσης κύριας τάσης, γεγονός που συμφωνεί με τις αναλύσεις μας, περίπου arcsin(0.15)=8,6⁰ απόκλιση.

Το κριτήριο Mogi – Linear (1971) δίνει μεγαλύτερα ποσοστά απόκλισης από το Mogi (1967) επιπλέον παρουσιάζει έντονη πτώση στις τιμές της σ₂, ώστε για τις περιπτώσεις KTB Amphibolite και Westerly Granite αντιστοιχούν σε κάποιες τιμές σ₂ δύο τιμές της μέγιστης τάσης σ₁, που δεν είναι αποδεκτή λύση. Το κριτήριο Mogi – Power Law (1971) έχει παρόμοια συμπεριφορά με το Mogi – Linear (1971) για τα πετρώματα KTB Amphibolite, Westerly Granite και Shirahama Sandstone. Όσο αφορά στις αποκλίσεις επιτυγχάνει καλύτερη προσέγγιση στο Dunham Dolomite.

4.9 Αξιολόγηση κριτηρίουTheocaris (Παραβολοειδούς εκ Περιστροφής)

Η μέση απόκλιση που θέλουμε να υπολογίσουμε πρέπει να παρουσιάζει ελάχιστο ακρότατο. Σε αυτή την ακρότατη τιμή αντιστοιχεί σε ένα ζεύγος τιμών για τις παραμέτρους R, σ_c. Αυτές θεωρούνται ότι είναι η βέλτιστη προσέγγιση για κάθε πέτρωμα. Ωστόσο στο κριτήριο του παραβολοειδούς εκ περιστροφής προέκυψε για κάποια πετρώματα μία καμπύλη απόκλισης, η οποία μειώνεται συνεχώς, χωρίς να παρουσιάζει κάποιο ακρότατο μετά το οποίο θα αρχίζει ξανά να αυξάνει η απόκλιση. Πιο αναλυτικά:

 Για τα δεδομένα του αμφιβολίτη η ανάλυση δε δίνει κάποια ελάχιστη τιμή στην παράμετρο R, που να ελαχιστοποιεί την απόκλιση. Αυξανόμενης δηλαδή της παραμέτρου R μειώνεται συνεχώς η απόκλιση, χωρίς να παρουσιάζει κάποιο ελάχιστο ακρότατο. Επομένως επιλέχθηκε να φραχθεί μέσα στο φάσμα των προτεινόμενων τιμών για τον αμφιβολίτη που είναι 20-32 και η ελάχιστη απόκλιση προκύπτει για την τιμή 32. Όσον αφορά στη τιμή της παραμέτρου σ_c επιλέχθηκε η τιμή 250 MPa, που είναι ο μέσος όρος των 7 πρώτων πειραματικών τιμών που έχουν σ₃=0. Η τιμή της παραμέτρου b που έχουμε επιπλέον εισάγει, εκτιμάται ίση με τη μονάδα, γεγονός που δείχνει ότι υπάρχει πλήρης συμμετοχή της ενδιάμεσης κύριας τάσης.

 Για το δολομίτη η προσέγγιση είναι επιτυχής. Παρουσιάζει ελάχιστη μέση απόκλιση για R=14, σ_c=350 MPa και b=1 για i=5.33%

Για τον ασβεστόλιθο εντοπίζεται η ίδια συμπεριφορά, όπως για τον αμφιβολίτη. Στην παράμετρο R τίθεται άνω φράγμα η τιμή 15 και κάτω φράγμα η τιμή 7 και πάλι σύμφωνα με τους Hoek and Brown. Τελικώς, αντιστοιχίζονται οι τιμές σ_c=370 MPa, R=15, b=0.32 για i=4.04%. Το αποτέλεσμα βασίζεται σε στατιστική προσέγγιση και δεν μπορεί να γενικευτεί θεωρώντας ότι το συγκεκριμένο πέτρωμα δείχνει να μη παρουσιάζει έντονη επιρροή από την ενδιάμεση κύρια τάση. Είναι ωστόσο μία ένδειξη ότι ενδεχομένως υπερτιμάται η συμμετοχή της στο κριτήριο του παραβολοειδούς εκ περιστροφής. Από την άλλη μεριά, όταν επιλέγεται να γίνει ανάλυση κρατώντας ολόκληρη τη σ₂, δηλαδή b=1, τότε παρατηρείται ότι η μέση απόκλιση μειώνεται με τη μείωση της παραμέτρου R, δηλαδή ενώ προηγουμένως κινούνταν στα πάνω όρια, τώρα κινείται προς τα κάτω. Τελικώς, για b=1 προκύπτει R=7, σ_c=295 MPa και i=7.35%.

 Ο ψαμμίτης επίσης δε δίνει ελάχιστο ακρότατο για την παράμετρο R. Τίθεται άνω όριο R=21. Τελικώς, προκύπτει R=21, σ_c=75 MPa, b=1 για i=12.51%.

Για το σχιστόλιθο δεν προκύπτει ακρότατο για την παράμετρο R. Τίθεται άνω όριο R=8. Τελικώς, προκύπτει R=8, σ_c=120 MPa, b=0.38 για i=7.25%. Επιπρόσθετα επαναλαμβάνεται η ανάλυση για b=1 και προκύπτουν R=4, σ_c=95 MPa, b=1 για i=7.74%. Και πάλι παρατηρούμε ότι κρατώντας b=1 η μέση απόκλιση ελαχιστοποιείται μειούμενης της παραμέτρου R. Στα διαγράμματα πρόβλεψης έχουν σχεδιαστεί στο ίδιο διάγραμμα και οι δύο προσεγγίσεις. Πρόκειται για διαφορετικές μορφές καμπυλών με την καμπύλη που έχει μειωμένη τη σ₂ (b=0.38) να δείχνει συνεχή αύξηση της σ₁ με την αύξηση της σ₂. Γενικώς, θα λέγαμε ότι ποιοτικά αναμένεται μείωση της σ₁ μετά από κάποια τιμή της σ₂ ενώ η καμπύλη για b=1 δίνει ποιοτικά ομαλότερη προσαρμογή στα δεδομένα.

Ο γρανίτης δεν παρουσιάζει ελάχιστη τιμή αλλά η απόκλιση είναι συνεχώς μειούμενη. Συνεπώς φράσσεται η τιμή της παραμέτρου R στο άνω αποδεκτό όριο της R=35 και για αυτή την τιμή γίνεται ο υπολογισμός του ποσοστού της απόκλισης. Προκύπτουν σ_c=370 MPa, R=35, b=1 και i=26,86 %.

Η πρόβλεψη των παραμέτρων είναι ρεαλιστική και επιτυχής. Παρουσιάζει
 ελάχιστη μέση απόκλιση για R=11, σ_c=145 MPa και b=1 για i=7.53 %

Σα γενικό συμπέρασμα το κριτήριο έδωσε μεγάλα ποσοστά απόκλισης για τα πετρώματα KTB Amphibolite, Shirahama Sandstone και Westerly Granite που φτάνουν ως και 30%. Επιπλέον, η μειωτική παράμετρος για τη σ₂ έδωσε τιμές μικρότερες της μονάδας σε δύο περιπτώσεις, στο Solenhofen Limestone και το Yuubari Shale.

4.10 Αξιολόγηση κριτηρίου Modified Theocaris (Παραβολοειδές εκ Περιστροφής)

Μετά την εισαγωγή των παραμέτρων τροποποίησης του κριτηρίου του παραβολοειδούς εκ περιστροφής οι ποσοστιαίες αποκλίσεις μειώνονται σημαντικά σε όλα τα πετρώματα. Σημαντικό είναι επίσης το γεγονός ότι δίνει αρκετά εύστοχες εκτιμήσεις της μονοαξονικής αντοχής σε θλίψη. Γενικά, παρακολουθεί σωστά και ομαλά τις τάσεις της μέγιστης τάσης σ₁ με την αύξηση της σ₂. Τα μεγαλύτερα ποσοστά απόκλισης σημειώνονται για τον KTB Amphibolite και για το Westerly Granite.

4.11 Αξιολόγηση κριτηρίου Murrel

Η μαθηματική προσαρμογή στα δεδομένα του αμφιβολίτη καταλήγει σε παραμέτρους που δεν είναι κοντά στις αναμενόμενες τιμές, δηλαδή η σ_c προκύπτει ίση με 415 MPa και η παράμετρος R=15, τιμές οι οποίες είναι έξω και από τα περιθώρια του σφάλματος. Για αυτό περιορίζεται η ανάλυση στο εύρος των αναμενόμενων τιμών, δηλαδή η παράμετρος R κυμαίνεται μεταξύ 20-32, σύμφωνα με τους Marinos & Hoek, 2001 και θεωρώντας ότι η παράμετρος R αντιστοιχεί στην παράμετρο m του κριτηρίου Hoek Brown. Για την παράμετρο αντοχής σε μονοαξονική θλίψη επιλέχτηκε να κυμαίνεται έως 250 MPa, γνωρίζοντας ότι η πειραματική τιμή της είναι περίπου 165 MPa. Η νέα προσαρμογή στο κριτήριο Murrel έδειξε ότι ο Αμφιβολίτης δεν παρουσιάζει ελάχιστο ποσοστό απόκλισης αλλά

αντιθέτως παρουσιάζει συνεχώς μειούμενη απόκλιση με την αύξηση της αντοχής σε μονοαξονική θλίψη. Η απόκλιση ωστόσο μειώνεται με πολύ αργό ρυθμό με την αύξηση της σ_c, οπότε επιλέγεται να της αποδοθεί για λόγους σύγκρισης με τα αποτελέσματα άλλων κριτηρίων η τιμή των 250 MPa. Όσον αφορά την παράμετρο R παρατηρήθηκε ότι χαμηλές τιμές της μειώνουν την μέση απόκλιση και δεδομένου ότι είναι φραγμένη με κάτω όριο το 20, αυτή η τιμή εξάγεται από την ανάλυση. Οπότε, σc=250 MPa, R=20, b=1 και ποσοστό απόκλισης i=42,98%.

Η προσαρμογή του κριτηρίου Murrel στα δεδομένα του δολομίτη είναι επιτυχής.
 Το κριτήριο προβλέπει σ_c=315 MPa, R=11, b=0.94 και i=5.34%. Παρουσιάζει ελαφρώς μειωμένη τη συμμετοχή της σ₂, ενώ υπερτιμά την αντοχή σε μονοαξονική θλίψη.

Για τον ασβεστόλιθο η προσαρμογή είναι επιτυχής. Διακρίνουμε δύο προσεγγίσεις, η πρώτη είναι για b=1, από την οποία προκύπτουν σ_c=265 MPa, R=12 και i=8.10% και η δεύτερη με b=0.3 δίνει σ_c=395 MPa, R=13 και i=3.88%. Η τιμή b=0.3 υποδηλώνει ότι το επίπεδο αστοχίας σχηματίζει γωνία με τη διεύθυνση της ενδιάμεσης κύριας τάσης.

 Για τον ψαμμίτη η πρόβλεψη οδηγεί σε αποτέλεσμα μη ρεαλιστικό σ_c=50 MPa, R=8, b=1. Επομένως περιορίζουμε το εύρος αναζήτησης της παραμέτρου R στο αναμενόμενο για τον ψαμμίτη, 13-21 και επαναλαμβάνουμε την αναζήτηση των παραμέτρων σ_c, R, b που ελαχιστοποιούν τη μέση απόκλιση. Τελικώς, προκύπτουν σ_c=100, R=16, b=1, i=12.39%.

 Η επεξεργασία για το σχιστόλιθο δίνει επίπεδο αστοχίας που σχηματίζει γωνία με τη διεύθυνση της σ₂. Η παράμετρος b συγκλίνει στην τιμή 0.35 με σ_c=95 MPa, R=10 και i=7%. Θέτοντας b=1 και επαναλαμβάνοντας την ανάλυση προκύπτουν σ_c=55 MPa, R=8 και i=8.39%. Για λόγους σύγκρισης έχουν σχεδιαστεί στο ίδιο διάγραμμα.

Για τον γρανίτη (Westerly granite) επίσης το κριτήριο δεν κάνει σωστή πρόβλεψη,
 υποεκτιμά την παράμετρο R σημαντικά. Για αυτό δεν αφήνουμε ελεύθερη την
 παράμετρο R, αλλά την φράσσουμε στα όρια που προβλέπονται για γρανιτικά

πετρώματα, δηλαδή από 29 έως 35. Από τη νέα αναζήτηση παρατηρείται ότι η μέση απόκλιση μειώνεται συνεχώς με την αύξηση της σ_c. Η βέλτιστη προσέγγιση που μπορούμε να επιτύχουμε είναι σ_c=305 MPa, R=10, b=1, i=26.60%, αφήνοντας ελεύθερες τις παραμέτρους, γιατί αλλιώς αυξάνει η μέση απόκλιση κατά πολύ.

Τα δεδομένα για τον τραχύτη προσαρμόζονται πολύ καλά στο κριτήριο. Χωρίς περιορισμό εντός των αποδεκτών ορίων στις παραμέτρους η προσέγγιση είναι ικανοποιητική. Συγκεκριμένα, προκύπτουν: σ_c=90 MPa, R=8, b=1, i=7.54%
 Δεν επτυγχάνει καλή προσαρμογή στα δεδομένα του KTB Amphibolite και Westerly Granite στα οποία παρουσιάζονται και οι μεγαλύτερες αποκλίσεις.

4.12 Αξιολόγηση κριτηρίου Modified Wiebols & Cook

Παρακολουθεί με ικανοποιητική ακρίβεια τη συμπεριφορά όλων των πετρωμάτων. Δίνει σχετικώς μικρά ποσοστά απόκλισης και πολύ εύστοχες εκτιμήσεις της μονοαξονικής αντοχής σε θλίψη. Αξιοσημείωτο είναι ότι προβλέπει πολύ καλή προσαρμογή ακόμα και για τον KTB Amphibolite και το Westerly Granite, πετρώματα με υψηλή εξάρτηση από την ενδιάμεση κύρια τάση και μάλιστα δίνει το μικρότερο ποσοστό απόκλισης για το Westerly Granite σε σύγκριση με όλα τα υπόλοιπα κριτήρια.

Παράρτημα Α

Στο παρόν παράρτημα παρουσιάζονται οι υπολογισμοί σε περιβάλλον MatLab. Ενδεικτικά παρατίθενται για κάθε κριτήριο οι υπολογισμοί για ένα πέτρωμα μόνο. Οι υπολογισμοί στα υπόλοιπα πραγματοποιηθήκαν με τον παρόμοιο τρόπο.

A.1 Drucker – Prager

```
% Drucker-Prager - Προσδιορισμός Παραμέτρων σc , m
S1=[]; S2=[]; S3=[];
% Linear Least Squares
sqJ2 = sqrt(1/6*((S1-S2).^{2}+(S2-S3).^{2}+(S3-S1).^{2}));
J1 = (S1+S2+S3)/3;
J12 = J1.^{2};
sqJ22 = sqJ2.^{2};
w = times(J1, sqJ2);
n = length(S1);
a1 = n*sum(w) - sum(J1)*sum(sqJ2);
a2 = n*sum(J12) - sum(J1).^{2};
a = rdivide(a1,a2);
b1 = sum(J12) * sum(sqJ2) - sum(J1) * sum(w);
b = rdivide(b1, a2);
sqJ21 = a*J1+b;
R1 = n*sum(w) - sum(J1)*sum(sqJ2);
R2 = sqrt((n*sum(J12)-sum(J1).^2.)*(n*sum(sqJ22)-sum(sqJ2).^2.));
R = rdivide(R1, R2);
pR = R^{2};
plot(J1, sqJ2, 'kp')
hold on
plot(J1, sqJ21, 'k')
xlabel('J1 (MPa)', 'Fontsize', 13')
ylabel('J2^1^/^2 (MPa)', 'Fontsize',13')
title('KTB Amphibolite: J2^1//2 = 0.8716 * J1 + 67.8460, R^2 =
0.9093', 'Fontsize', 14')
legend('Test Data', 'Drucker - Prager',4)
%Υπολογισμός μέγιστης τάσης σ1 για σ3=0
syms s1 s2 s3 a b
eq1 = (1-a^{2}/3)*s1^{2}+(-s2-s3-2*a^{2}/3*(s2+s3)-2*a*b)*s1-
s2*s3*(1+2*a^2/3)+(1-a^2/3)*(s2^2+s3^2)-3*b^2-2*a*b*(s2+s3)'
s1 = solve(eq1, s1)
subs(s1,{a,b,s3},{0.8716,67.8460,0})
Ys2 = [0 \ 0 \ 0 \ 79 \ 149 \ 197 \ 229 \ 1086];
Ys1=1108773255/14001959+Ys2.*14123041/14001959+9375000/14001959*
*sqrt(60541/1562500*Ys2.^2.+3452309787/62500+Ys2.*221754651/31250)
hold on
plot(Ys2,Ys1,'k')
```

```
% Προσδιορισμός Παραμέτρων c,φ,σc
A = [0.8716 0.5161 0.3427 0.6178 0.4171 1.0757 0.3972];
B = [67.8460 151.1259 167.2267 27.7431 48.6889 51.9967 85.4401];
% Inscribed Drucker - Prager
num = 9*A.^{2}.;
denom = 9-3*A.^{2};
sinf = sqrt(rdivide(num, denom));
cosf = sqrt(1-(sinf).^2.);
f = asin(sinf)
q = (tan(pi/4+f/2)).^2.
i = sqrt(9+3*(sinf).^2.);
k = times(sqrt(q),i);
u = times(k,B);
sc = 2*rdivide(u,3*cosf)
c=rdivide(times(sc, (1-sinf)), 2*cosf)
q all = [-2.3328 - 0.0000i 3.35 2.08 4.90 2.51 -0.0637 - 0.0000i
2.38];
mi = rdivide(0.5*(q - 1.0), sqrt(q))
% Circumscibed Drucker - Prager
num = 3*sqrt(3)*A;
denom = (6+sqrt(3)*A);
sinf = rdivide(num, denom);
cosf = sqrt(1-(sinf).^2);
f = asin(sinf)
q = (tan(pi/4+f/2)).^{2}.
k = times(sqrt(q), 3-sinf);
sc = rdivide(times(k,B), sqrt(3)*cosf);
c=rdivide(times(sc,(1-sinf)),2*cosf)
q all = [4.0389 2.2733 1.7400 2.6634 1.9516 5.9167 1.8927];
\overline{mi} = rdivide(0.5*(q - 1.0), sqrt(q))
```

A.2 Mohr – Coulomb

```
%Mohr-Coulomb - Προσδιορισμός Παραμέτρων a , b
S1=[]; S2=[]; S3=[];
%Linear Least Squares
t = (S1-S3)/2;
sm2 = (S1+S3)/2;
sm22 = sm2.^{2};
t2 = t.^{2};
w = times (sm2,t);
n = length (S1);
a1 = n*sum(w) - sum(sm2)*sum(t);
a2 = n*sum(sm22) - sum(sm2).^{2};
a = rdivide(a1, a2);
b1 = sum(sm22) * sum(t) - sum(sm2) * sum(w);
b = rdivide(b1, a2);
t1 = a*sm2+b;
R1 = n*sum(w) - sum(sm2)*sum(t);
R2 = sqrt((n*sum(sm22)-sum(sm2).^2.)*(n*sum(t2)-sum(t).^2.));
R = rdivide(R1, R2);
pR = R^{2};
%plot(sm2,t,'kp')
hold on
%plot(sm2,t1,'k')
xlabel('\sigma m2 ( MPa )', 'Fontsize',13)
ylabel('\tau ( MPa )','Fontsize',13)
title('\tau = 0.7445 \sigma m2 + 38.9926, R^2 =
0.9896', 'Fontsize', 14)
legend('Test Data KTB Amphibolite', 'Mohr-Coulomb', 4)
% Ισοδύναμες Παράμετροι c,φ
phi = asin(a); c = b /cos(phi);
\sigma c = 2*b / (1-a); p = tan (phi); q = (1+a) / (1-a);
%Υπολογισμός μέγιστης τάσης σ1 για σ3=0
sc=305; q=6.8264;
A2 = [0 \quad 305];
A3 = [0 \ 0 ];
s11 = sc+q*A3;
plot(A2,s11,'k')
%Υπολογισμός μέσης απόκλισης
differ = abs(S1-s11)/S1;
M = mean(differ);
```

A.3 Hoek – Brown

```
% Hoek-Brown - Προσδιορισμός Παραμέτρων σc , m
s=1; min1=10000; minx=0; mint=0;
for sc=150:300
for m=1:40
    s11 = S3 + sc* sqrt (m*S3/sc+s);
    difer = abs(s11-S1)/S1;
    i = mean (difer);
    if i < min1
       min1 = i;
       minx = sc;
        mint = m;
    end
end
end
min1;
minx;
mint;
%Υπολογισμός μέγιστης τάσης σ1 για σ3=0
s=1; sc=295; m=26;
A2=[0 295];
A3=[0 0];
s11 = A3+sc*sqrt(m*A3/sc+s);
plot(A2,s11,'k')
```

A.4 Pan & Hudson

```
% Προσδιορισμός σc , m (KTB Amphibolite)
min1=10000; minx=0; mine=0; miny=0; s=1;
for sc = 40:500
for m = 10:32
    D = (sc*m/3/sqrt(2))^{2+8/9*sc*}(m*(S1+S2+S3)/3+s*sc);
    toct1 = (-sc*m/3/sqrt(2)+sqrt(D))/2;
    K = S1 - S2;
    L = S2-S3;
   M = S3-S1;
   toct = 1/3*sqrt(K.^2.+L.^2.+M.^2.);
   difer = abs(toct-toct1);
   q = rdivide(difer,toct);
    i = mean(q);
   if i < min1
        min1 = i;
        minx = sc;
       mine = m;
        miny = toct1;
   end
end
end
min1; minx; mine; miny;
sm3=(S1+S2+S3)/3;
hold on
plot(sm3,toct,'kp','MarkerSize',8)
plot(sm3, miny,'k','LineWidth',2)
xlabel('\sigma _m_3 ( MPa )', 'Fontsize', 13')
ylabel('\tau _o_c_t ( MPa )', 'Fontsize',13')
%======
% Προσδιορισμός μέγιστης τάσης σ1
sc=250; m=32; s=1; min1=1000; mink=0;
for i=1:97
s2 = S2(:,i);
s3 = S3(:,i);
for s1 = 0:2000;
    toct = 1/3*sqrt((s1-s2).^2.+(s2-s3).^2.+(s3-s1).^2.);
    d = abs(9/2/sc*toct.^2+3/2/sqrt(2)*m*toct-m*(s1+s2+s3)/3-
s*sc)/1000;
  if d < 0.1
      min1 = d;
      mink = s1;
  end
end
min1; mink
```

A.5 Simplified Priest

```
%Προσδιορισμός παραμέτρων σc,m
minn=10000; minz=0; minm=0;
s=1;
for sc = 50:150
for m = 4:8
min1=100000; min2=100000;
%sx=Y3, sy=Y2
for b = 0.01:0.01:1
    s3 = b*Y2+(1-b)*Y3;
    s1 = s3+sc*sqrt(s3*m/sc+1);
    szf = s1+2*s3-(Y3+Y2);
   differ = abs(szf-Y1)/Y1;
    q = mean(differ);
    if q < min1
       min1 = q;
    end
end
%sx=U3,sv=U2
for b = 0.01:0.01:1
   s3 = b*U2+(1-b)*U3;
    s1 = s3+sc*sqrt(s3*m/sc+1);
    szf = s1+2*s3-(U3+U2);
    differ = abs(szf-U1)/U1;
    q = mean(differ);
    if q < min2
       min2 = q;
    end
end
    sfalma=(min1+min2)/2;
    if sfalma < minn
        minn = sfalma;
        minz = sc;
        minm = m;
    end
end
end
minn; minz; minm;
```

```
%Προσδιορισμός μέγιστης τάσης
s=1; sc=86; m=7; min1=100000;
miny=0; mint1=0; minb1=0;
%sx=Y3, sy=Y2
for b = 0.01:0.01:1
    s3 = b*Y2+(1-b)*Y3;
    s1 = s3+sc*sqrt(s3*m/sc+1);
    szf = s1+2*s3-(Y3+Y2);
    differ = abs(szf-Y1)/Y1;
    q = mean(differ);
    if q < min1
       min1 = q;
        miny = s3;
        mint1 = szf;
        minb1 = b;
    end
end
min2=10000; minu=0; mint2=0;
minb2=0;
%sx=U3, sy=U2
for b = 0.01:0.01:1
    s3 = b*U2+(1-b)*U3;
    s1 = s3+sc*sqrt(s3*m/sc+1);
    szf = s1+2*s3-(U3+U2);
    differ =a bs(szf-U1)/U1;
    q = mean(differ);
    if q < min2
       min2 = q;
        minu = s3;
        mint2 = szf;
        minb2 = b;
    end
end
miny; min1; mint1; minb1;
minu; min2; mint2; minb2;
```

A.6 Zhang - Zhu

```
%Προσδιορισμός παραμέτρων σc,m (Yuubari Shale)
K=S1-S2; L=S2-S3; M=S3-S1;
toct=1/3*sqrt(K.^2.+L.^2.+M.^2.);
sm2=(S1+S3)/2;
min1=10000; minx=0; mine=0; sc=65; s=1;
while sc<500
   sc = sc+5;
for m = 3:50
   D = (sc*m/3/sqrt(2))^{2+8/9*sc*}(m*sm2+s*sc);
   toct1 = ((-sc*m/3/sqrt(2)+sqrt(D))/2);
   difer = abs(toct-toct1);
   M = median(difer);
   q = rdivide(difer, toct);
   i = mean(q);
  if i < min1
       min1 = i;
       minx = sc;
       mine = m;
  end
  hold on
  %plot(sc,q,'k.')
  %plot(m,q,'k.')
end
end
minx; min1; mine; toct1;
=====
%Επίλυση ως προς τοct
syms toct1
eq1='9/2/sc*toct1^2+3/2/sqrt(2) *m*toct1-m*sm2-s*sc';
toct1=solve(eq1,toct1);
%Επίλυση ως προς σ2
syms s2
eq2='2*s2^2-2*s2*(s1+s3)+s1^2+s3^2+(s1-s3)^2-
18/144*m^2*sc^2+3*sqrt(2)/2/12*m*sc*sqrt(2*m^2*sc^2+32*m*sc*(s1+s3
)/2+
+32*s*sc^2)-18/144*m^2*sc^2-32*9/144*m*sc*(s1+s3)/2-
9*32/144*s*sc^2'
s2=solve(eq2,s2);
```

```
%Διάγραμμα σ1-σ2
sc=80; s=1; m=6;
s3 = 25;
y1 = 160:205;
y11 = y1.^{2}.;
y_{2u} = 0.5*(y_{1+s_{3}}) - 0.25*sqrt(-12*y_{11+24}*y_{1}*s_{3}-
12*s3^2+16*s*sc^2+2*m^2*sc^2-
2*m*sc*sqrt(sc*(m^2*sc+8*m*(y1+s3)+16*s*sc))+8*m*sc*y1+8*m*sc*s3)
y2d = 0.5*(y1+s3)+0.25*sqrt(-12*y11+24*y1*s3-
12*s3^2+16*s*sc^2+2*m^2*sc^2-
2*m*sc*sqrt(sc*(m^2*sc+8*m*(y1+s3)+16*s*sc))+8*m*sc*y1+8*m*sc*s3)
plot(y2u, y1, 'k')
plot(y2d,y1,'k')
text(160+30,160,'ó 3 = 0','FontSize',13)
s3 = 50;
u1 = 220:275;
ull = ul.^2.;
u2u = 0.5*(u1+s3)-0.25*sqrt(-12*u11+24*u1*s3-
12*s3^2+16*s*sc^2+2*m^2*sc^2-
2*m*sc*sqrt(sc*(m^2*sc+8*m*(u1+s3)+16*s*sc))+8*m*sc*u1+8*m*sc*s3)
u2d = 0.5*(u1+s3)+0.25*sqrt(-12*u11+24*u1*s3-
12*s3^2+16*s*sc^2+2*m^2*sc^2-
2*m*sc*sqrt(sc*(m^2*sc+8*m*(u1+s3)+16*s*sc))+8*m*sc*u1+8*m*sc*s3)
plot(u2u,u1,'r');
plot(u2d,u1,'r');
text(220+30,220,'6 3 = 30','FontSize',13)
xlabel('\sigma 2 ( MPa )', 'Fontsize', 13')
ylabel('o 1 ( MPa )', 'Fontsize',13')
legend('\sigma 3 = 25', '\sigma 3 = 50 MPa', 4)
title('Yuubari Shale : \sigma c = 80 MPa, m = 6, i = 3.52 %',
'Fontsize', 14')
% Διάγραμμα σ1 = σ2
I2 = 0:350;
I1 = I2;
plot(I2,I1,'k')
```

A.7 Mogi – Power Law (1967)

```
%Mogi-power law (1967) - Προσδιορισμός παραμέτρων (Yuubari Shale)
K=S1-S2; L=S2-S3; M=S3-S1; t=(S1-S3)/2;
max1=0.001; maxx=0; maxe=0; maxt=0;
% Least Square method
for c = 0.01:0.01:1;
    sm2 = (S1+c*S2+S3)/2;
    sm22 = log(sm2).^{2}.
    t2 = log(t) .^{2}.
    w = times(log(sm2), log(t));
    n = length(S1);
    ua = sum(log(sm2).^{2}.) * sum(log(t)) - sum(log(sm2)) * sum(w);
    ub = n*sum(w) - sum(log(sm2))*sum(log(t))
    d = n*sum(log(sm2).^2.)-sum(log(sm2)).^2.;
    lna = rdivide(ua,d);
    a = \exp(\ln a);
    b = rdivide(ub,d);
    t1 = a*sm2.^{b};
    R1 = n*sum(w) - sum(log(sm2))*sum(log(t));
    R2 = sqrt((n*sum(sm22)-sum(log(sm2)).^2.)*(n*sum(t2)-
sum(log(t)).^2.));
    R = rdivide(R1, R2)
    i = R^{2}
    if i > max1
        max1 = i;
        maxx = a;
        maxe = b;
        maxt = c;
    end
end
max1; maxx; maxe; maxt;
```

%Mogi-power law (1967) - Διάγραμμα σ1-σ2

```
a=2.7389; b=0.7121; c=0.2
```

```
%s3=25 %s3=50
y1 = 172:217; u1 = 249:296;
s3 = 25; s3 = 50;
n = (y1-s3)/a; n = (u1-s3)/a;
m = power(n,1/b); y2 = m*2^((b-1)/b)/c-(y1+s3)/c;
plot(y2,y1,'k') u2 = m*2^((b-1)/b)/c-(u1+s3)/c;
```

<u>%_____</u>

A.8 Mogi – Linear (1971)

```
%Mogi-Linear (1971) - Προσδιορισμός παραμέτρων (Westerly Granite)
K=S1-S2; L=S2-S3; M=S3-S1;
toct=1/3*sqrt(K.^2.+L.^2.+M.^2.)
% Least Square method
sm2 = (S1+S3)/2;
sm22 = sm2.^2.;
toct2 = toct.^2.;
w = times(sm2, toct);
n = length(S1);
a1 = n*sum(w) - sum(sm2)*sum(toct);
a2 = n*sum(sm22) - sum(sm2).^{2}.
a = rdivide(a1, a2)
b1 = sum(sm22) * sum(toct) - sum(sm2) * sum(w);
b = rdivide(b1, a2)
toct1 = a*sm2+b
R1 = n*sum(w) - sum(sm2)*sum(toct)
R2 = sqrt((n*sum(sm22) - sum(sm2).^2.)*(n*sum(toct2) - sum(toct).^2.))
R = rdivide(R1, R2)
pR = R^2
% Εύρεση σημείου τομής με σ1=σ2
%s3=25
syms s1 s2 s3
eq1='(2/9-0.4285^2/4)*s1^2+s1*(-2/9*(s2+s3)-0.4285^2/2*s3-
0.4285 \times 23.94)
+2/9*(s2^2+s3^2-s2*s3)-0.4285^2/4*s3^2-0.4285*23.94*s3-23.94^2';
eq2='s1=s2';
eq3='s3=25';
[s1, s2, s3]=solve(eq1, eq2, eq3, s1, s2, s3)
%s3=50
syms s1 s2 s3
eq1='(2/9-0.4285^2/4)*s1^2+s1*(-2/9*(s2+s3)-0.4285^2/2*s3-
0.4285 \times 23.94)
+2/9*(s2^2+s3^2-s2*s3)-0.4285^2/4*s3^2-0.4285*23.94*s3-23.94^2';
eq2='s1=s2';
eq3='s3=50';
[s1,s2,s3]=solve(eq1,eq2,eq3,s1,s2,s3)
```

```
Παράρτημα Α
```

```
% Mogi-Linear (1971) - Προσδιορισμός μέγιστης τάσης σ1 (Westerly
Granite)
syms s1 s2 s3 a b
eq1 = (2/9-a^2/4)*s1^2+s1*(-2/9*(s2+s3)-a^2/2*s3-a^2/2*s3)
a*b)+2/9*(s2^2+s3^2-s2*s3)-a^2/4*s3^2-a*b*s3-b^2';
s1 = solve(eq1, s1)
q = subs(s1, \{a, b\}, \{0.71, 30.186\})
s3=0
%anion klados
s2u=0:332.5
n=s2u.^2.
Yu11=2.465*s3+111.397+1.155*s2u
Yu12=0.5775*sqrt(15.22*s3^2+771.55*s2u+2314.66*s3-
2.9262*n+24*s2u*s3+65606.01)
Ys1=Yu11+Yu12
plot(s2u,Ys1,'k')
%kation klados
s2d=265:332.5;
n=s2d.^2.
Yd11=2.465*s3+111.397+1.155*s2d
Yd12=0.5775*sqrt(15.22*s3^2+771.55*s2d+2314.66*s3-
2.9262*n+24*s2d*s3+65606.01)
Ys1=Yd11-Yd12
plot(s2d,Ys1,'k')
text(259.32+30,259.32,' \sigma 3 = 0', 'FontSize',13)
```

A.9 Mogi – Power Law (1971)

```
%Mogi-power law (1971) - Προσδιορισμός παραμέτρων (Westerly
Granite)
K=S1-S2; L=S2-S3; M=S3-S1;
toct=1/3*sqrt(K.^2.+L.^2.+M.^2.)
%Least Square Method
sm2=(S1+S3)/2;
sm22=log(sm2).^2.
toct2=log(toct).^2.
w=times(log(sm2),log(toct));
n=length(S1);
ua=sum(log(sm2).^2.)*sum(log(toct))-sum(log(sm2))*sum(w);
ub=n*sum(w)-sum(log(sm2))*sum(log(toct))
d=n*sum(log(sm2).^2.)-sum(log(sm2)).^2.;
lna=rdivide(ua,d);
a=exp(lna);
b=rdivide(ub,d);
toct1=a*sm2.^b;
R1=n*sum(w)-sum(log(sm2))*sum(log(toct));
R2=sqrt((n*sum(sm22)-sum(log(sm2)).^2.)*(n*sum(toct2)-
sum(log(toct)).^2.));
R=rdivide(R1,R2);
pR=R^2;
%Διάγραμμα σ1-σ2
a=1.5407; b=0.8894;
%s3=0
y1=170:627;
s3=0;
y11=y1.^2.
n=(y1+s3)/2;
m=power(n, (2*b));
y2u=0.5*(y1+s3)-0.5*power(-3*s3^2+6*times(s3,y1)-
3*y11+18*a^2*m,0.5)
y2d=0.5*(y1+s3)+0.5*power(-3*s3^2+6*times(s3,y1)-
3*y11+18*a^2*m,0.5)
plot(y2u,y1,'k')
plot(y2d, y1, 'k')
```

A.10 Theocaris (Παραβολοειδές εκ περιστροφής)

```
%Προσδιορισμός παραμέτρων σc, R, b (Yuubari Shale)
min1=10000; minx=0; mine=0; mint=0; z=0;
for b=0:0.1:1
    S21=b*S2;
    sc=35;
while sc<400
   sc=sc+5;
for R=4:8
   B=S21+S3+sc-sc/R;
   C=-sc^2/R+S21.^2.-times(S21,S3)+S3.^2.-
(S21+S3)*sc+(S21+S3)*sc/R;
   A=1;
   D=B.^2.-4*A*C;
   s11=(-B-sqrt(D))/2/A;
   differ = abs(abs(z)-S1);
   q = rdivide(differ,S1);
   i = mean(q);
        i < min1
   if
        min1 = i;
        minx = sc;
        mine = R;
        mint = b;
   end
end
end
end
minx; min1; mine; mint; s11;
%Διάγραμμα σ1-σ2
sc=120; R=8; b=0.38;
%Εύρεση σημείου τομής με s1=s2
syms s1 s2 s3
eq1 = (s1-0.38*s2)^{2}+(0.38*s2-s3)^{2}+(s3-s1)^{2}
+2*(8-1)*(s1+0.38*s2+s3)*120/8=2*8*120^2/8^2';
eq2 = 's1=s2';
eq3 = 's3=-25';
[s1,s2,s3]=solve(eq1,eq2,eq3,s1,s2,s3)
L2 = 0:254.246622;
L3 = 25
B = b*L2+L3+sc-sc/R;
C = -sc^{2}/R+b^{2}L2.^{2}.-times(bL2,L3)+L3.^{2}.-
(b*L2+L3)*sc+(b*L2+L3)*sc/R;
A = 1;
D = B.^{2}.-4*A*C;
Ys1 = abs(-B-sqrt(D))/2/A;
plot(L2,Ys1,'--k')
text(254.246622+10,254.246622-10,'\sigma 3 = 25', 'FontSize',13)
```

A.11 Theocaris (Παραβολοειδές εκ περιστροφής - Τροποποιημένο)

```
%Προσδιορισμός παραμέτρων σc, R, b, w (Yuubari Shale)
min1=10000; minx=0; mine=0; mint=0; minh=0; ming=0; minw=0; z=0;
for b=0.3:0.01:0.4;
    Y21=b*Y2;
for a=0:0.05:0.4
for c=0:0.05:1
    w=c*power(Y3,a);
for sc=90:110
    sc1=w*sc;
   for R=4:8
   B=Y21+Y3+sc1-sc1/R ;
   C=-power(sc1,2)/R+Y21.^2.-times(Y21,Y3)+Y3.^2.-
times((Y21+Y3),sc1)+times((Y21+Y3),sc1)/R;
   A=1;
   D=B.^2.-4*A*C;
   s11=(-B-sqrt(D))/2/A;
   s12=(-B+sqrt(D))/2/A;
   if s11<0 & s12<0;
       z=min([s11,s12]);
   elseif s11>0 & s12<0
       z=s12;
   else z=s11;
   end
   difer=abs(abs(z)-Y1);
   q=rdivide(difer,Y1);
   i=mean(q);
   if i < min1
        min1=i;
        minx=sc;
        mine=R;
        minh=a;
        ming=c;
        mint=b;
        minw=w;
   end
   end
end
end
end
end
min1; minx; mine; mint; minh; ming; minw; s11;
```

```
%Διάγραμμα σ1-σ2
%s3=0
sc=103; R=4; b=0.3; w=1.234;
L2=0:187;
L3=0
B=b*L2+L3+w*sc-w*sc/R;
C=-(w*sc)^2/R+b^2*L2.^2.-times(b*L2,L3)+L3.^2.-
(b*L2+L3)*w*sc+(b*L2+L3)*w*sc/R;
A=1;
D=B.^2.-4*A*C;
Ys1=abs(-B-sqrt(D))/2/A;
plot(L2,Ys1,'b','LineWidth',2)
text(225.91+20,225.91,'\sigma_3 = 0','FontSize',13)
```

A.12 Murrel

<pre>%Προσδιορισμός παραμέτρων σc, R (Yuubari Shale) min1=10000; minx=0; mine=0; mint=0; z=0;</pre>
<pre>for b=0:0.1:1; S21=b*S2; sc=50;</pre>
while sc<500
sc=sc+5;
for R=4:8
B=-(S21+S3+12*sc/R);
C=S21.^2-times(S21,S3)+S3.^2-12*sc/R*(S21+S3);
A=1;
D=B.^24*A*C;
s11=(-B-sqrt(D))/2/A;
s12=(-B+sqrt(D))/2/A;
11 SII>U & SI2>U
$2 = \max([S11, S12])$
$\begin{array}{c} \text{elsell S11/0 } & \text{S12} \\ \text{z=c11} \end{array}$
2-511, plsp $7=s12$.
end
difer=abs(abs(z)-S1);
g=rdivide(difer,S1);
i=mean(q);
if i < min1
<pre>min1=i;</pre>
minx=sc;
mine=R;
<pre>mint=b;</pre>
end
end
end
<pre>minx; min1; mine; mint;</pre>

```
%Διάγραμμα σ1-σ2
sc=55; R=8; b=1;
%s3=25
%Εύρεση σημείου τομής με s1=s2
syms s1 s2 s3
eq1='(s1-s2)^2+(s2-s3)^2+(s3-s1)^2=24*55/8*(s1+s2+s3)';
eq2='s1=s2';
eq3='s3=25';
[s1,s2,s3]=solve(eq1,eq2,eq3,s1,s2,s3)
L2=0:215/2+15/2*231^{(1/2)};
L3=25
A=1;
B=-(b*L2+L3+12*sc/R);
C=b^2*L2.^2-times(b*L2,L3)+L3.^2-12*sc/R*(b*L2+L3);
D=B.^2.-4*A*C;
Ys1=(-B+sqrt(D))/2/A;
plot(L2, Ys1, '--k')
text (215/2+15/2*231^{(1/2)}+20, 215/2+15/2*231^{(1/2)}, '\sigma 3 =
25', 'FontSize', 13)
```

A.13 Modified Wiebols & Cook

```
%Πρώτη Προσέγγιση παραμέτρων με ελάχιστα τετράγωνα
K=S1-S2; L=S2-S3; M=S3-S1;
J=sqrt(1/6*(K.^2.+L.^2.+M.^2.)); J1=(S1+S2+S3)/3;
n=length(S1);
w=times(J1,J);
g=times(J1.^2.,J);
Q=[n sum(J1) sum(J1.^2.); sum(J1) sum(J1.^2.) sum(J1.^3.);
sum(J1.^2.) sum(J1.^3.) sum(J1.^4.)];
I=[sum(J); sum(W); sum(g)];
F=inv(Q);
Y=F*I
sJ2=50.81+0.33*J1+0.00009*J1.^2.;
plot(J1,sJ2,'k')
hold on
plot(J1,J,'kp')
```

```
mins=100; min1=0; minA=0; minB=0; minC=0;
for i=16:30
   s2=S2(:,i);
   s3=S3(:,i);
for A=65
for B=0.1:0.4
for C=0.00009
for s1=100:350
   K = s1 - s2;
   L = s2-s3;
   M = s3-s1;
   J = sqrt(1/6*(K.^{2.+L.^{2.+M.^{2.}}));
   J1 = (s1+s2+s3)/3;
   eq = A+B*J1+C*J1.^{2}.-J;
   d = abs(eq)/100;
if d < 0.003
   min1 = d;
   mins = s1;
   minA = A;
   minB = B;
   minC = C;
end
end
end
end
end
min1;
mins
end
minA; minB; minC;
%_____
%Ισοδύναμες Παράμετροι σο
syms C
eq1='0.00009/9*C^2-(1/sqrt(3)-0.33/3)*C+50';
\sigma c = solve(eq1, C)
```

Παράρτημα Β (Πειραματικά δεδομένα)

Πίνακας Β.1: Πειραματικά δεδομένα για τον KTB Amphibolite (Chang & Hamson, 2000)

σ _{1πειραμ.}	σ _{2πειραμ} .	σ _{3πειραμ} .
165	0	0
346	79	0
291	149	0
347	197	0
267	229	0
410	30	30
479	60	30
599	100	30
652	200	30
571	249	30
637	298	30
702	60	60
750	88	60
766	103	60
745	155	60
816	199	60
888	249	60
828	299	60
887	347	60
954	399	60
815	449	60

σ _{1πειραμ.}	σ _{2πειραμ.}	σ _{3πειραμ.}
868	100	100
959	164	100
1001	199	100
945	248	100
892	269	100
1048	300	100
1058	349	100
1155	442	100
1118	597	100
1147	150	150
1065	198	150
1112	199	150
1176	249	150
1431	298	150
1326	348	150
1169	399	150
1284	448	150
1265	498	150
1262	642	150

σ _{1πειραμ.}	σ _{2πειραμ.}	σ _{3πειραμ.}
399.9	23.5	25
475.2	61.8	25
495.6	93.8	25
560.4	130.3	25
572.5	173.1	25
585.1	232.9	25
544	268.8	25
485.6	42.8	45
566	93.7	45
586.4	124.3	45
606.9	159.3	45
638.7	182.5	45
670.5	241.3	45
670	263.3	45
622.1	292.5	45
567	62.5	65
636.3	133.3	65
641.9	152.4	65
687.1	207.6	65
683.9	258.9	65
725.2	306.4	65
701.4	390.1	65
620.4	83.9	85
682.1	125.9	85
718	149.7	85
743.3	230	85
770.6	303.5	85
817.5	371	85
798.2	440.3	85

Πίνακας Β.2:	Πειραματικά	δεδομένα γ	α τον Dunham	Dolomite	(Mogi,	1971)
--------------	-------------	------------	--------------	----------	--------	-------

σ _{1πειραμ.}	σ _{2πειραμ.}	σ _{3πειραμ.}
680.3	103.3	105
776.1	165.2	105
784.1	202.1	105
804.2	264.9	105
822.1	330.7	105
838.7	350.8	105
820.4	411	105
862.5	266.2	105
726.3	122.7	125
822.6	185.8	125
858.8	241.1	125
861.6	288.1	125
893.3	358.8	125
941.7	410.5	125
918.4	457.8	125
887.1	510.1	125
892.1	254.2	145
928.5	292.3	145
924	318.7	145
922	341.6	145
1015.7	386.6	145
1003.2	404.4	145
952.9	450.9	145

σ 1πειραμ.	σ 2πειραμ.	σ 3πειραμ.
395	19.1	20
414.4	52.2	20
413.3	91	20
454.6	165	20
459.4	203.4	20
463.6	230.9	20
442.1	40.1	40
455	39.9	40
485.6	80.4	40
496.1	112.8	40
525.8	189.6	40
542.2	267.2	40
534.3	312.4	40

Πίνακας Β.3: Πε	ειραματικά δ	δεδομένα για	τον Solenhofen	Limestone	(Mogi,	1971)
-----------------	--------------	--------------	----------------	-----------	--------	-------

σ 1πειραμ.	σ 2πειραμ.	σ 3πειραμ.
471.9	57	60
516	87.1	60
535.2	99.5	60
529.4	111.1	60
572.9	162.1	60
550.5	196.1	60
556.1	271.4	60
529.3	80.5	80
568.9	124.9	80
580.3	149.6	80
641.3	205.4	80
591.6	220.9	80
674.4	280.3	80
658.7	293.8	80
647.7	373	80
678.2	448.1	80

σ _{1πειραμ} .	σ _{2πειραμ.}	σ _{3πειραμ.}
97	9	5
99	15	5
89	29	5
110	45	5
95	64	5
112	15	8
133	26	8
136	41	8
137	51	8
128	74	8
160	29	15
167	61	15
166	81	15
164	87	15
171	97	15
183	30	20
173	41	20
188	51	20
185	60	20
198	72	20
196	85	20
194	100	20
187	103	20

Πίνακας Β.4:	Πειραματικά	δεδομένα για	τον Shirah	ama Sandstone	(Takahashi	and
	Koide)					

σ _{1πειραμ.}	$σ_{2πειραμ.}$	σ _{3πειραμ.}
222	49	30
227	72	30
233	91	30
230	112	30
242	132	30
226	152	30
216	172	30
245	60	40
255	72	40
258	82	40
255	102	40
275	102	40
268	123	40
282	142	40
275	162	40

σ _{1πειραμ.}	σ _{2πειραμ.}	$σ_{3πειραμ.}$
160.975	25.673	25
167.975	25.558	25
181.677	35.567	25
187.369	35.947	25
175.436	45.417	25
175.05	56.153	25
186.264	65.469	25
199.69	76.48	25
193.765	79.118	25
196.405	85.347	25
200.678	96.286	25
194.04	100.093	25
185.64	114.289	25
197.359	124.28	25
183.191	133.23	25

Πίνακας Β.5:	Πειραματικά	δεδομένα για το	v Yuubari Shale	(Takahashi and Koide)
--------------	-------------	-----------------	-----------------	-----------------------

σ _{1πειραμ.}	σ _{2πειραμ.}	σ _{3πειραμ.}
228.364	50.194	50
238.904	49.941	50
244.782	49.652	50
257.171	69.38	50
260.564	89.876	50
265.544	99.982	50
259.646	110.003	50
259.761	121.581	50
285.345	129.164	50
265.797	148.138	50
255.91	158.967	50

Πίνακας B.6: Πειραματικά δεδομένα για τον Mizuho Trachyte (Mogi, 1971)

σ _{1πειραμ.}	σ _{2πειραμ.}	σ _{3πειραμ.}
100	0	0
193	15	15
253	30	30
300	45	45
314	55	45
326	71	45
333	96	45
349	142	45
361	214	45
365	289	45
351	332	45
339	60	60
352	91	60
383	142	60
396	191	60
404	229	60
400	271	60
383	331	60

σ _{1πειραμ.}	σ _{2πειραμ.}	σ _{3πειραμ.}
365	75	75
400	114	75
417	153	75
438	229	75
439	300	75
424	343	75
451	391	75
419	100	100
460	137	100
489	186	100
494	274	100
522	382	100
513	411	100

σ 1πειραμ.	σ 2πειραμ.	σ 3πειραμ.
201	0	0
306	40	0
301	60	0
317	80	0
304	100	0
231	2	2
300	18	2
328	40	2
359	60	2
353	80	2
355	100	2
430	20	20
529	40	20
602	60	20
554	62	20
553	61	20
532	79	20
575	100	20
567	114	20
601	150	20
638	202	20

Πίνακας Β.	7: Πειραματικά	δεδομένα	για	τον	Westerly	Granite	(Chang	&	Hamson
	2000)								

σ 1πειραμ.	σ 2πειραμ.	σ _{3πειραμ.}
605	38	38
620	38	38
700	57	38
733	78	38
720	103	38
723	119	38
731	157	38
781	198	38
747	60	60
811	90	60
821	114	60
860	180	60
861	249	60
889	77	77
954	102	77
992	142	77
998	214	77
1005	310	77
1012	100	100
1103	165	100
1147	167	100
1155	216	100
1195	259	100
1129	312	100

Παράρτημα Γ (Προβλέψεις κριτηρίων αστοχίας)

KTB Amphibolite

$\sigma_{2\pi\epsilon i ho.}$	$\sigma_{3\pi\epsilon i ho}$	σ _{1πειρ.}	DP1 /σ ₁	$MC1/\sigma_1$	HB1 /σ ₁	ΡΗ1 /σ ₁	PR1 /σ ₁	ZG1 /σ ₁	67MG1 /σ ₁
0	0	165	236.5	305	295	45 188		155	178
79	0	346	382.5	305	295	253	263.5	263.5 350	
149	0	291	498.8	305	295	401	298.8	439	294
197	0	347	574.7	305	295	492	315	477	324
229	0	267	624.0	305	295	548	323.4	491	343
30	30	410	357.7	509.8	593	227	495	440	478
60	30	479	416.5	509.8	593	306	517	494	493
100	30	599	490.4	509.8	593	399	544	555	512
200	30	652	661.8	509.8	593	596	597	667	557
249	30	571	741.2	509.8	593	680	618.6	706	578
298	30	637	818.5	509.8	593	758	637	736	599
60	60	702	478.9	714.6	799.7	386	698.5	620	695
88	60	750	534.1	714.6	799.7	453	715.2	661	706
103	60	766	562.8	714.6	799.7	487	728.2	681	712
155	60	745	658.4	714.6	799.7	595	770.5	745	732
199	60	816	735.8	714.6	799.7	677	803	792	749
249	60	888	820.7	714.6	799.7	764	837.7	837	768
299	60	828	903.1	714.6	799.7	844	869.6	875	787
347	60	887	980.4	714.6	799.7	917	898.2	906	804
399	60	954	1062.4	714.6	799.7	990	927.2	931	823
449	60	815	1139.8	714.6	799.7	1056	953.4	947	841
100	100	868	640.4	987.6	1024	576	898.1	811	946
164	100	959	764.8	987.6	1024	710	944.4	890	967
199	100	1001	829.5	987.6	1024	775	968	927	979
248	100	945	917.2	987.6	1024	862	999.3	975	995
269	100	892	953.9	987.6	1024	896	1012.2	994	1002
300	100	1048	1007.3	987.6	1024	946	1030.6	1019	1013
349	100	1058	1090.0	987.6	1024	1021	1058.3	1056	1029
442	100	1155	1242.2	987.6	1024	1151	1107.3	1111	1059
597	100	1118	1485.6	987.6	1024	1340	1179.9	1160	1109
150	150	1147	842.4	1329.0	1260	789	1118.3	1014	1227
198	150	1065	937.0	1329.0	1260	882	1142.9	1068	1242
199	150	1112	939.0	1329.0	1260	884	1143.4	1069	1243
249	150	1176	1033.5	1329.0	1260	973	1167.7	1120	1257
298	150	1431	1123.0	1329.0	1260	1055	1190.2	1165	1272
348	150	1326	1211.7	1329.0	1260	1132	1212	1207	1287
399	150	1169	1300.1	1329.0	1260	1207	1233.3	1244	1303
448	150	1284	1383.2	1329.0	1260	1274	1252.8	1277	1317
498	150	1265	1466.5	1329.0	1260	1340	1271.7	1305	1332
642	150	1262	1699.3	1329.0	1260	1512	1322.3	1365	1374

$\sigma_{2\pi\epsilon i ho}$	σ _{3πειρ.}	σ _{1πειρ.}	$MGP1/\sigma_1$	MGL1 / σ_1	Τ1/ σ ₁	ΜΤ1/ σ ₁	MR1/ σ ₁	MWC1/ σ ₁
0	0	165	160	242.7	165	165	332	242
79	0	346	323	474.5	264.2	264.2	454.9	392
149	0	291	400	616.4	313.8	313.8	532.2	452
197	0	347	427	699.1	334.1	334.1	575.2	473
229	0	267	280	749.5	341.3	341.3	600.3	481
30	30	410	410	440.7	434.7	434.7	435.7	463
60	30	479	463	515.4	476.3	476.3	478.8	508
100	30	599	524	601.8	524.6	524.6	528.7	552
200	30	652	637	779.8	621.0	621.0	628	615
249	30	571	677	853.9	658.5	658.5	666.8	629
298	30	637	708	921.5	690.7	690.7	700.2	635
60	60	702	592	604.5	625.4	625.4	521.5	695
88	60	750	636	662.9	662.3	662.3	557.3	722
103	60	766	658	692.3	680.9	680.9	575.1	735
155	60	745	726	786	740.0	740.0	631.1	769
199	60	816	777	857.4	784.7	784.7	672.4	789
249	60	888	827	931.6	830.3	830.3	713.8	804
299	60	828	869	999.5	871.3	871.3	749.8	812
347	60	887	904	1059.5	906.5	906.5	779.9	813
399	60	954	933	1119.2	940.6	940.6	807.7	809
449	60	815	953	1171.8	969.4	969.4	829.8	799
100	100	868	803	803.4	519.9	831.6	622.6	866
164	100	959	891	913	583.9	908.8	692.9	929
199	100	1001	934	967.4	613.9	947.1	726.7	956
248	100	945	989	1038.2	650.9	996.8	769.5	986
269	100	892	1010	1066.9	665.1	1016.8	786.3	997
300	100	1048	1041	1107.4	684.3	1045	809.6	1010
349	100	1058	1084	1167.6	710.6	1086.7	842.9	1027
442	100	1155	1152	1269.5	746.8	1156.7	895	1045
597	100	1118	1222	1405.8	760.4	1249.7	949.7	1037
150	150	1147	1040	1036.4	625.5	1053.9	736.7	1144
198	150	1065	1103	1109	671.0	1110.4	786.2	1183
199	150	1112	1105	1110.5	671.9	1111.6	787.2	1184
249	150	1176	1165	1180.4	713.3	1166	833.4	1216
298	150	1431	1219	1244	748.8	1215.5	874	1242
348	150	1326	1270	1304.3	780.1	1262.5	911.1	1263
399	150	1169	1317	1361.4	807.4	1307.2	944.9	1280
448	150	1284	1358	1412.3	829.1	1347.3	973.7	1291
498	150	1265	1395	1460.2	846.6	1385.4	999.3	1299
642	150	1262	1481	1575.6	867.5	1480.9	1052.3	1300

Dunham Dolomite

σ _{2πειρ.}	σ _{3πειρ.}	σ _{1πειρ.}	DP2 /σ ₁	MC2 /σ ₁	HB2 /σ ₁	PH2 /σ ₁	PR2 /σ ₁	ZG2 /σ ₁	67MG2 /σ ₁
23.5	25	399.9	447.7	499	515	332	439.2	421	433
61.8	25	475.2	489.6	499	515	387	471.0	464	460
93.8	25	495.6	522.2	499	515	434	495.4	494	481
130.3	25	560.4	556.9	499	515	484	521.3	523	504
173.1	25	572.5	594.5	499	515	536	549.4	552	530
232.9	25	585.1	642.1	499	515	600	585.5	580	563
268.8	25	544	667.9	499	515	634	605.7	590	583
42.8	45	485.6	492.4	577.1	593	391	522.7	494	518
93.7	45	566	547.6	577.1	593	471	561.4	546	548
124.3	45	586.4	578.3	577.1	593	513	583.0	571	566
159.3	45	606.9	611.2	577.1	593	558	606.3	599	585
182.5	45	638.7	631.9	577.1	593	586	621.1	614	598
241.3	45	670.5	680.6	577.1	593	649	656.6	646	628
263.3	45	670	697.5	577.1	593	671	669.2	655	639
292.5	45	622.1	718.8	577.1	593	698	685.4	665	653
62.5	65	567	537.5	655.2	671.6	457	599.5	560	594
133.3	65	636.3	592.8	655.2	671.6	533	625.5	627	632
152.4	65	641.9	631.9	655.2	671.6	585	644.0	643	642
207.6	65	687.1	682.8	655.2	671.6	651	668.3	681	669
258.9	65	683.9	725.9	655.2	671.6	705	689.2	710	694
306.4	65	725.2	762.4	655.2	671.6	751	707.4	730	716
390.1	65	701.4	819.4	655.2	671.6	820	737.0	748	753
83.9	85	620.4	584.6	733.3	742	522	671.3	625	667
125.9	85	682.1	630.6	733.3	742	583	692.6	665	687
149.7	85	718	655.2	733.3	742	615	704.1	686	699
230	85	743.3	731.3	733.3	742	711	740.5	744	736
303.5	85	770.6	792.6	733.3	742	786	770.8	783	769
371	85	817.5	842.5	733.3	742	845	796.6	807	797
440.3	85	798.2	887.6	733.3	742	899	821.3	817	826
103.3	105	680.3	629.4	811.3	809	582	737.9	684	733
165.2	105	776.1	696.3	811.3	809	667	766.1	740	762
202.1	105	784.1	733.0	811.3	809	713	781.9	769	778
264.9	105	804.2	790.8	811.3	809	782	807.3	810	805
330.7	105	822.1	845.5	811.3	809	847	832.1	844	833
350.8	105	838.7	861.1	811.3	809	865	839.4	853	841
411	105	820.4	904.8	811.3	809	916	860.3	873	865
266.2	105	862.5	791.9	811.3	809	784	807.8	811	806
σ _{2πειρ.}	$\sigma_{3\pi\epsilon i ho}$	σ _{1πειρ.}	DP2 /σ ₁	$MC2/\sigma_1$	HB2 /σ ₁	PH2 /σ ₁	PR2 /σ ₁	ZG1 /σ ₁	67MG2 /σ ₁
---------------------	------------------------------	---------------------	----------------------------	----------------	----------------------------	----------------------------	----------------------------	----------------------------	------------------------------
122.7	125	726.3	674.1	889.4	873	639	801.4	741	797
185.8	125	822.6	742.5	889.4	873	724	827.7	797	824
241.1	125	858.8	797.1	889.4	873	789	849.3	838	848
288.1	125	861.6	840.0	889.4	873	839	866.7	867	867
358.8	125	893.3	899.1	889.4	873	907	891.5	904	895
410.5	125	941.7	938.4	889.4	873	952	908.6	924	915
457.8	125	918.4	971.7	889.4	873	989	923.6	937	933
510.1	125	887.1	1005.4	889.4	873	1026	939.4	945	952
254.2	145	892.1	836.4	967.5	935	834	904.5	887	904
292.3	145	928.5	872.1	967.5	935	875	917.8	912	919
318.7	145	924	895.7	967.5	935	902	926.7	927	929
341.6	145	922	915.5	967.5	935	925	934.3	940	938
386.6	145	1015.7	952.4	967.5	935	966	948.8	962	955
404.4	145	1003.2	966.4	967.5	935	981	954.4	969	962
450.9	145	952.9	1001.2	967.5	935	1019	968.6	986	979

σ _{2πειρ}	σ _{3πειρ.}	σ _{1πειρ.}	MGP2 /σ ₁	MGL2 /σ ₁	T2 /σ ₁	ΜΤ2 /σ ₁	MR2/ σ ₁	MWC2/ σ ₁
23.5	25	399.9	421	441.5	429.2	453.4	165.1	398
61.8	25	475.2	464	476.6	482.4	480.4	203.6	446
93.8	25	495.6	495	502.3	521.1	501.4	227.5	482
130.3	25	560.4	524	527.9	560.4	524.0	247.5	517
173.1	25	572.5	553	552.8	601.1	548.8	262.0	554
232.9	25	585.1	582	578.1	649.9	580.9	262.0	597
268.8	25	544	592	587.2	675.2	598.8	238.2	617
42.8	45	485.6	494	498.9	485.6	531.3	209.4	475
93.7	45	566	547	544.9	549.6	565.8	254.2	534
124.3	45	586.4	573	569.0	583.3	585.3	274.1	565
159.3	45	606.9	600	593.3	618.1	606.4	291.6	596
182.5	45	638.7	616	607.6	639.4	619.9	300.2	615
241.3	45	670.5	648	637.2	687.5	652.1	309.5	657
263.3	45	670	657	645.6	703.6	663.6	307.3	670
292.5	45	622.1	667	654.4	723.4	678.3	296.3	686
62.5	65	567	562	556.7	538.2	595.7	249.6	549
133.3	65	636.3	629	603.0	598.5	629.4	291.9	603
152.4	65	641.9	644	633.9	639.2	653.8	316.2	640
207.6	65	687.1	683	670.9	689.7	686.1	339.8	684
258.9	65	683.9	711	698.3	730.5	714.2	350.0	718

$\sigma_{2\pi\epsilon i ho}$	σ _{3πειρ.}	σ _{1πειρ.}	MGP2/o ₁	MGL2 / σ_1	T2 /σ ₁	ΜΤ2 /σ ₁	MR2/ σ ₁	MWC2/ σ ₁
306.4	65	725.2	732	717.5	763.5	738.8	346.1	745
390.1	65	701.4	750	734.0	811.7	778.9	345.5	779
83.9	85	620.4	627	616.1	589.7	653.9	288.7	619
125.9	85	682.1	667	654.9	637.7	681.5	322.8	662
149.7	85	718	687	674.9	662.5	696.4	338.7	684
230	85	743.3	745	732.3	735.9	743.7	376.8	747
303.5	85	770.6	785	771.6	791.2	783.4	389.4	792
371	85	817.5	809	795.5	833.3	817.1	371.6	823
440.3	85	798.2	820	805.8	868.5	849.4	371.3	845
103.3	105	680.3	686	673.7	636.4	706.2	323.9	684
165.2	105	776.1	742	729.6	702.8	745.7	370.4	742
202.1	105	784.1	771	758.8	737.7	768.0	391.3	772
264.9	105	804.2	812	801.5	790.5	803.8	416.2	815
330.7	105	822.1	846	836.9	837.9	838.8	426.6	852
350.8	105	838.7	855	845.7	850.9	849.1	425.8	861
411	105	820.4	875	866.3	885.8	878.6	404.8	885
266.2	105	862.5	812	802.2	791.5	804.5	416.6	816
122.7	125	726.3	743	731.2	681.2	755.1	357.8	739
185.8	125	822.6	799	788.5	746.7	795.0	404.1	795
241.1	125	858.8	840	831.7	796.7	827.7	433.6	836
288.1	125	861.6	870	863.3	834.4	854.1	451.1	865
358.8	125	893.3	907	902.5	884.0	891.6	462.7	902
410.5	125	941.7	927	924.3	915.1	917.4	456.3	923
457.8	125	918.4	940	938.8	939.9	940.0	429.9	937
510.1	125	887.1	948	947.8	963.3	963.8	429.1	949
254.2	145	892.1	889	885.5	832.0	870.0	462.9	881
292.3	145	928.5	914	912.6	862.9	891.6	478.7	905
318.7	145	924	930	929.8	882.8	906.0	487.1	919
341.6	145	922	943	943.6	899.1	918.3	492.5	931
386.6	145	1015.7	965	967.8	928.8	941.7	497.7	952
404.4	145	1003.2	973	976.3	939.7	950.7	497.4	959
450.9	145	952.9	989	995.3	965.9	973.5	488.4	974

Solenhofen Limestone

σ _{2πειο}	σ _{3πειο}	$\sigma_{1\pi\epsilon_{10}}$	DP3 /σ ₁	MC3 /σ ₁	HB3 /σ ₁	PH2 /σ ₁	PR3 /σ ₁	ZG3 /σ ₁	67MG3 /σ ₁
19.1	20	395	395.1	405.5	434	371	357.9	360	381
52.2	20	414.4	422.7	405.5	434	408	381.3	392	397
91	20	413.3	451.7	405.5	434	447	405.6	423	415
165	20	454.6	498.4	405.5	434	509	445.0	465	446
203.4	20	459.4	518.1	405.5	434	536	462.7	478	462
230.9	20	463.6	530.4	405.5	434	553	474.5	484	472
40.1	40	442.1	430.8	481.0	501	418	450.9	422	450
39.9	40	455	430.6	481.0	501	418	450.7	422	449
80.4	40	485.6	464.0	481.0	501	462	470.3	458	467
112.8	40	496.1	488.0	481.0	501	493	484.4	482	479
189.6	40	525.8	536.6	481.0	501	556	513.8	526	508
267.2	40	542.2	573.8	481.0	501	606	538.8	549	535
312.4	40	534.3	589.7	481.0	501	629	551.7	551	550
57	60	471.9	462.9	556.5	554.8	460	531.6	476	511
87.1	60	516	488.2	556.5	554.8	492	536.5	503	522
99.5	60	535.2	498.1	556.5	554.8	505	538.4	513	527
111.1	60	529.4	507.1	556.5	554.8	516	540.1	522	530
162.1	60	572.9	543.2	556.5	554.8	562	546.5	557	548
196.1	60	550.5	564.4	556.5	554.8	589	550.1	575	560
271.4	60	556.1	603.6	556.5	554.8	640	556.2	604	584
80.5	80	529.3	500.7	632.0	610.6	508	606.4	553	569
124.9	80	568.9	537.2	632.0	610.6	553	618.3	570	584
149.6	80	580.3	555.7	632.0	610.6	576	624.4	588	593
205.4	80	641.3	593.3	632.0	610.6	623	637.0	622	610
220.9	80	591.6	602.7	632.0	610.6	634	640.2	630	615
280.3	80	674.4	634.7	632.0	610.6	675	651.7	655	633
293.8	80	658.7	641.0	632.0	610.6	683	654.1	659	637
373	80	647.7	671.3	632.0	610.6	725	666.9	672	660
448.1	80	678.2	687.7	632.0	610.6	752	677.3	659	680

$σ_{2πειρ.}$	$\sigma_{3\pi\epsilon i ho.}$	σ _{1πειρ.}	MGP3 /σ ₁	MGL3/01	Τ3 /σ ₁	ΜΤ3 /σ ₁	MR3 /σ ₁	MWC3 / σ_1
19.1	20	395	369	375.5	353.9	380.1	412.3	385
52.2	20	414.4	400	402.9	397.1	399.6	429.8	411
91	20	413.3	430	430.2	440.3	420.9	449.0	437
165	20	454.6	472	468.5	506.7	457.8	482.8	478
203.4	20	459.4	485	480.7	534.6	475.3	499.0	493
230.9	20	463.6	490	485.7	552.2	487.3	510.2	502
40.1	40	442.1	429	427.1	409.0	444.6	455.5	439
39.9	40	455	428	427.0	408.7	444.5	455.4	439
80.4	40	485.6	464	460.1	456.6	467.3	475.4	469
112.8	40	496.1	487	482.8	489.9	484.6	490.5	491
189.6	40	525.8	529	524.0	555.4	522.3	524.0	533
267.2	40	542.2	551	545.7	605.9	556.7	555.0	562
312.4	40	534.3	553	546.5	628.9	575.3	572.0	572
57	60	471.9	480	475.1	454.7	495.2	492.9	481
87.1	60	516	506	500.6	489.2	511.9	507.3	504
99.5	60	535.2	515	510.3	502.4	518.6	513.1	513
111.1	60	529.4	524	519.0	514.2	524.8	518.4	521
162.1	60	572.9	557	552.6	561.3	550.7	540.8	552
196.1	60	550.5	575	570.9	588.6	567.1	555.1	570
271.4	60	556.1	602	599.3	639.4	601.1	585.0	601
80.5	80	529.3	533	529.0	505.5	543.7	530.8	525
124.9	80	568.9	569	565.4	552.3	567.7	551.1	557
149.6	80	580.3	586	583.3	575.7	580.4	561.9	573
205.4	80	641.3	618	617.8	622.5	607.8	585.4	605
220.9	80	591.6	626	625.9	634.2	615.1	591.7	613
280.3	80	674.4	649	651.0	674.0	641.9	615.0	638
293.8	80	658.7	653	655.3	682.0	647.7	620.1	643
373	80	647.7	665	668.1	721.5	680.5	649.0	663
448.1	80	678.2	650	652.7	747.0	709.3	674.6	667

Shirahama Sandstone

σ _{2πειρ.}	σ _{3πειρ.}	σ _{1πειρ.}	DP4 /σ ₁	$MC4/\sigma_1$	HB4 /σ ₁	ΡΗ4 /σ ₁	PR4 /σ ₁	ZG4 /σ ₁	67MG4 /σ ₁
9	5	97	93.2	110.6	109.6	59	97.6	87	101
15	5	99	100.7	110.6	109.6	71	97.8	95	101.5
29	5	89	116.6	110.6	109.6	94	97.8	110	103
45	5	110	132.8	110.6	109.6	117	96.9	122	105
64	5	95	149.8	110.6	109.6	139	95.0	129	107
15	8	112	105.0	124.6	128	78	120.8	106	120
26	8	133	118.1	124.6	128	97	126.4	119	121
41	8	136	134.3	124.6	128	119	132.9	133	122
51	8	137	144.1	124.6	128	132	136.7	139	123
74	8	128	164.3	124.6	128	157	143.9	146	125
29	15	160	132.3	157.1	164	116	158.8	145	153
61	15	167	166.5	157.1	164	160	165.9	170	155
81	15	166	184.7	157.1	164	181	169.2	179	156.5
87	15	164	189.7	157.1	164	187	170.0	180	157
97	15	171	197.7	157.1	164	196	171.2	182	158
30	20	183	140.8	180.3	188	128	181.0	159	182
41	20	173	153.9	180.3	188	144	183.8	170	182.5
51	20	188	165.0	180.3	188	158	186.1	178	183
60	20	185	174.4	180.3	188	169	187.9	185	184
72	20	198	186.2	180.3	188	182	190.2	192	185
85	20	196	198.2	180.3	188	196	192.3	198	185.5
100	20	194	211.0	180.3	188	210	194.5	202	186.5
103	20	187	213.4	180.3	188	212	194.9	203	187
49	30	222	178.4	226.8	229.4	173	222.9	202	226
72	30	227	203.9	226.8	229.4	202	226.0	220	228
91	30	233	222.8	226.8	229.4	222	228.0	230	229
112	30	230	241.8	226.8	229.4	241	229.7	239	230.5
132	30	242	258.1	226.8	229.4	257	231.0	242	231.5
152	30	226	272.8	226.8	229.4	271	231.9	240	233
172	30	216	285.9	226.8	229.4	282	232.6	228	234.5
60	40	245	206.4	273.2	266.4	204	260.9	234	267
72	40	255	220.2	273.2	266.4	219	263.1	243	268
82	40	258	231.2	273.2	266.4	230	264.9	250	269
102	40	255	251.7	273.2	266.4	230	268.0	262	270
102	40	275	251.7	273.2	266.4	251	268.0	262	270
123	40	268	271.3	273.2	266.4	270	270.8	271	271
142	40	282	287.6	273.2	266.4	285	273.1	276	272
162	40	275	303.4	273.2	266.4	299	275.2	277	273

σ _{2πειρ.}	σ _{3πειρ.}	σ _{1πειρ.}	MGP4 /σ ₁	MGL4/01	Τ4 /σ ₁	ΜΤ4 /σ ₁	MR4 /σ ₁	MWC4/\sigma ₁
9	5	97	84	93.6	97.8	99.3	99.0	69
15	5	99	92	99.7	105.8	100.4	107.3	78
29	5	89	107	111.6	121.7	102.7	123.8	94
45	5	110	118	121.4	136.2	105.3	138.9	107
64	5	95	125	126.8	149.7	108.3	153.0	115
15	8	112	103	107.6	110.2	121.2	111.9	97
26	8	133	115	118.0	123.0	123.0	125.1	109
41	8	136	128	129.3	137.5	125.5	140.1	121
51	8	137	135	134.9	145.7	127.1	148.6	126
74	8	128	143	141.2	160.8	130.7	164.3	132
29	15	160	138	140.1	135.9	160.3	138.3	145
61	15	167	164	164.3	163.7	165.5	167.0	166
81	15	166	173	172.8	176.2	168.6	180.0	173
87	15	164	174	174.1	179.4	169.5	183.3	174
97	15	171	175	174.8	183.9	171.0	188.2	175
30	20	183	157	154.3	143.3	181.8	145.9	167
41	20	173	168	164.9	154.2	183.6	157.1	177
51	20	188	177	173.3	163.0	185.2	166.1	184
60	20	185	184	179.9	170.1	186.6	173.4	189
72	20	198	191	187.4	178.5	188.5	182.1	194
85	20	196	198	193.6	186.3	190.5	190.2	198
100	20	194	202	197.9	193.7	192.8	198.0	200
103	20	187	203	198.4	195.0	193.3	199.4	201
49	30	222	203	199.7	173.9	221.2	177.1	216
72	30	227	222	219.2	192.3	224.9	196.0	232
91	30	233	234	231.8	204.5	227.8	208.6	240
112	30	230	243	241.6	214.9	231.0	219.6	245
132	30	242	247	246.5	222.1	234.1	227.3	247
152	30	226	246	244.9	226.1	237.0	232.0	245
172	30	216	233	230.0	226.5	239.9	233.4	240
60	40	245	238	237.2	195.1	254.3	198.7	252
72	40	255	248	248.3	204.7	256.2	208.6	261
82	40	258	256	256.7	212.0	257.7	216.0	266
102	40	255	269	271.2	224.5	260.8	228.9	275
102	40	275	269	271.2	224.5	260.8	228.9	275
123	40	268	280	283.1	234.9	264.1	239.7	281
142	40	282	286	290.6	241.8	266.9	247.2	284
162	40	275	288	294.6	246.4	269.9	252.4	284

Yuubari Shale

σ _{2πειρ.}	$\sigma_{2\pi\epsilon i ho.}$	σ _{1πειρ.}	DP5 /σ ₁	MC5 /σ ₁	HB5 /σ ₁	ΡΗ5 /σ ₁	PR5 /σ ₁	ZG5 /σ ₁	67MG5 /σ ₁
25.7	25	161.0	160.5	182.8	188	149	175.0	161	172
25.6	25	168.0	160.4	182.8	188	149	175.0	162	172
35.6	25	181.7	169.8	182.8	188	160	177.9	170	175
35.9	25	187.4	170.1	182.8	188	161	178.0	171	175
45.4	25	175.4	178.4	182.8	188	170	180.6	178	177
56.2	25	175.1	187.0	182.8	188	181	183.4	185	180
65.5	25	186.3	194.0	182.8	188	189	185.7	190	182
76.5	25	199.7	201.6	182.8	188	198	188.3	196	185
79.1	25	193.8	203.3	182.8	188	200	188.9	197	186
85.3	25	196.4	207.3	182.8	188	204	190.3	199	187
96.3	25	200.7	213.6	182.8	188	212	192.6	202	189
100.1	25	194.0	215.7	182.8	188	214	193.4	203	191
114.3	25	185.6	222.7	182.8	188	222	196.2	205	193
124.3	25	197.4	227.0	182.8	188	227	198.1	204	195
133.2	25	183.2	230.3	182.8	188	231	199.6	201	198
50.2	50	228.4	208.9	260.6	259	206	243.7	241	250
49.9	50	238.9	208.6	260.6	259	205	243.6	241	250
49.7	50	244.8	208.3	260.6	259	205	243.5	240	250
69.4	50	257.2	226.5	260.6	259	225	248.8	253	253
89.9	50	260.6	243.1	260.6	259	243	253.9	260	257
100.0	50	265.5	250.5	260.6	259	251	256.3	263	260
110.0	50	259.6	257.4	260.6	259	258	258.6	262	262
121.6	50	259.8	264.8	260.6	259	266	261.2	266	263
129.2	50	285.3	269.3	260.6	259	271	262.8	269	265
148.1	50	265.8	279.4	260.6	259	281	266.8	273	269
159.0	50	255.9	284.4	260.6	259	286	268.9	274	271

σ _{2πειρ.}	σ _{3πειρ.}	σ _{1πειρ.}	MGP5 /σ ₁	MGL5/01	Τ5 /σ ₁	ΜΤ5 /σ ₁	MR5 /σ ₁	MWC5/\sigma ₁
25.673	25	160.975	158	160.4	155.5	167.8	168.2	153
25.558	25	167.975	159	160.3	155.4	167.7	168.1	153
35.567	25	181.677	168	168.9	165.5	171.6	173.4	161
35.947	25	187.369	168	169.2	165.8	171.7	173.6	161
45.417	25	175.436	176	176.4	174.5	175.3	178.3	169
56.153	25	175.05	184	183.7	183.3	179.2	183.6	176
65.469	25	186.264	189	189.1	190.2	182.6	187.9	182
76.48	25	199.69	195	194.6	197.6	186.4	192.9	189
79.118	25	193.765	196	195.7	199.3	187.3	194.0	190
85.347	25	196.405	199	198.1	203.0	189.4	196.7	193
96.286	25	200.678	202	201.4	208.9	193.0	201.4	198
100.093	25	194.04	203	202.2	210.7	194.2	202.9	200
114.289	25	185.64	206	203.6	216.8	198.7	208.6	205
124.28	25	197.359	204	202.8	220.2	201.7	212.5	208
133.23	25	183.191	201	200.2	222.7	204.4	215.9	210
50.194	50	228.364	227	226.6	205.0	238.9	209.2	217
49.941	50	238.904	227	226.3	204.8	238.8	209.0	218
49.652	50	244.782	226	226.1	204.5	238.7	208.9	219
69.38	50	257.171	243	242.7	221.8	246.2	218.5	233
89.876	50	260.564	256	257.2	237.0	253.8	227.8	248
99.982	50	265.544	263	263.2	243.6	257.4	232.2	255
110.003	50	259.646	268	268.5	249.5	260.9	236.5	261
121.581	50	259.761	273	273.8	255.7	264.9	241.2	267
129.164	50	285.345	275	276.7	259.3	267.4	244.3	271
148.138	50	265.797	280	281.9	266.9	273.6	251.7	280
158.967	50	255.91	282	283.5	270.3	277.1	255.7	284

Westerly Granite

σ _{2πειρ.}	σ _{3πειρ.}	σ _{1πειρ.}	DP6 /σ ₁	MC6 /σ ₁	HB6 /σ ₁	ΡΗ6 /σ ₁	ZG6 /σ ₁	67MG6/ σ ₁
0	0	201	237.7	333.1	300	33	200	236
40	0	306	351.2	333.1	300	145	340	286
60	0	301	405.7	333.1	300	194	390	307
80	0	317	459.3	333.1	300	240	432	328
100	0	304	512.3	333.1	300	284	470	347
2	2	231	249.5	350.0	335	46	234	238
18	2	300	295.9	350.0	335	94	294	287
40	2	328	357.7	350.0	335	153	359	311
60	2	359	412.4	350.0	335	202	407	331
80	2	353	466.2	350.0	335	248	449	351
100	2	355	519.3	350.0	335	291	487	369
20	20	430	356.0	502.3	553	157	444	478
40	20	529	414.1	502.3	553	212	493	493
60	20	602	470.7	502.3	553	262	535	508
62	20	554	476.2	502.3	553	267	539	510
61	20	553	473.5	502.3	553	265	537	509
79	20	532	523.3	502.3	553	306	558	522
100	20	575	580.6	502.3	553	352	608	537
114	20	567	618.3	502.3	553	381	630	547
150	20	601	714.2	502.3	553	452	684	572
202	20	638	850.6	502.3	553	545	749	607
38	38	605	462.5	654.6	712	258	592	641
38	38	620	462.5	654.6	712	258	592	641
57	38	700	517.9	654.6	712	307	630	653
78	38	733	577.8	654.6	712	356	668	667
103	38	720	647.6	654.6	712	411	710	682
119	38	723	691.6	654.6	712	444	734	692
157	38	731	794.5	654.6	712	518	788	715
198	38	781	903.8	654.6	712	591	840	740
60	60	747	592.7	840.8	876.1	371	739	655
90	60	811	679.9	840.8	876.1	441	790	674
114	60	821	748.1	840.8	876.1	492	827	689
180	60	860	930.2	840.8	876.1	619	918	729
249	60	861	1115.3	840.8	876.1	735	996	769

σ _{2πειρ.}	σ _{3πειρ.}	σ _{1πειρ.}	DP6 /σ ₁	MC6 /σ ₁	MC6 /σ ₁	PH6 /σ ₁	ZG6 /σ ₁	67MG6 /σ ₁
77	77	889	693.3	984.6	987.6	452	838	939
102	77	954	766.3	984.6	987.6	508	878	953
142	77	992	880.1	984.6	987.6	590	936	974
214	77	998	1078.7	984.6	987.6	720	1027	1010
310	77	1005	1335.9	984.6	987.6	871	1127	1058
100	100	1012	829.3	1179.2	1125	556	961	1097
165	100	1103	1016.9	1179.2	1125	686	1052	1129
167	100	1147	1022.6	1179.2	1125	690	1054	1130
216	100	1155	1159.2	1179.2	1125	777	1114	1153
259	100	1195	1277.0	1179.2	1125	848	1162	1173
312	100	1129	1420.1	1179.2	1125	929	1216	1199

σ _{2πειρ.}	σ _{3πειρ.}	σ 1πειρ.	MGP6 /σ ₁	MGL6/071	Τ6 /σ ₁	ΜΤ6 /σ ₁	MR6 /σ ₁	MWC6/071
0	0	201	170	259.3	370	201	366	197
40	0	306	297	332.6	437.6	263.2	435.9	260
60	0	301	344	364.6	466.3	287.5	465.4	285
80	0	317	385	394.1	492.7	308.8	492.5	306
100	0	304	421	421.5	517.2	327.8	517.4	323
2	2	231	200	273.5	377.6	236.2	373.9	230
18	2	300	256	304.6	406.0	263.5	403.4	261
40	2	328	315	343.7	441.1	295.6	439.5	296
60	2	359	361	376.2	469.8	320.8	469.0	323
80	2	353	401	406.4	496.1	343.3	495.9	347
100	2	355	437	434.4	520.5	363.6	520.9	367
20	20	430	400	401.3	440.1	486.8	438.5	428
40	20	529	448	440.3	471.0	518.2	470.2	465
60	20	602	491	476.7	499.2	547.2	499.1	497
62	20	554	496	480.3	502.0	550	501.8	500
61	20	553	494	478.5	500.6	548.6	500.4	505
79	20	532	529	509.3	524.1	572.9	524.4	524
100	20	575	568	543.3	549.7	599.4	550.5	549
114	20	567	591	564.9	565.8	616.1	566.9	564
150	20	601	648	616.8	604.1	656.1	605.9	597
202	20	638	719	683.6	652.7	707.5	655.3	634

σ _{2πειρ.}	σ _{3πειρ.}	σ _{1πειρ.}	MGP6/σ ₁	MGL6/01	Τ6 /σ ₁	ΜΤ6 /σ ₁	MR6 /σ ₁	MWC6/ σ ₁
38	38	605	552	529.1	495.5	620.9	495.2	623
38	38	620	552	529.1	495.5	620.9	495.2	623
57	38	700	593	566.5	522.4	649.2	522.7	653
78	38	733	635	605.6	550.0	678.7	550.8	682
103	38	720	680	649.6	580.5	711.5	581.7	712
119	38	723	708	676.5	598.7	731.4	600.3	729
157	38	731	768	736.6	638.8	775.6	640.9	763
198	38	781	827	796.3	677.5	819.2	680.3	793
60	60	747	715	685.3	557.4	750.7	558.2	765
90	60	811	774	744	595.9	792.7	597.4	802
114	60	821	816	788.3	624.3	824.2	626.1	827
180	60	860	922	900.3	693.2	902.6	696	881
249	60	861	1017	1004.7	753.8	974.4	757.4	920
77	77	889	832	805.9	602.0	838.1	603.6	889
102	77	954	879	855.3	632.9	872.3	634.8	916
142	77	992	947	929.7	677.9	923.4	680.5	951
214	77	998	1057	1052	748.3	1005.8	751.8	998
310	77	1005	1181	1196.3	825.0	1100.7	829.5	1038
100	100	1012	981	969.2	659.2	945.6	661.5	1046
165	100	1103	1091	1094.2	731.6	1028.5	734.8	1107
167	100	1147	1094	1097.8	733.7	1030.8	736.9	1108
216	100	1155	1169	1184.2	781.0	1087	784.7	1144
259	100	1195	1228	1255.6	818.3	1132.8	822.5	1169
312	100	1129	1297	1338.6	859.7	1185.1	864.4	1194

Mizuho Trachyte

σ _{2πειρ.}	σ _{3πειρ.}	σ _{1πειρ.}	DP7 /σ ₁	ΜC7 /σ ₁	HB7 /σ ₁	ΡΗ7 /σ ₁	PR7 /σ ₁	ZG7 /σ ₁	67MG7 /σ ₁
0	0	100	192.0	148.5	150	46	100	100	112
15	15	193	220.4	203.3	224	110	186.8	185.1	189
30	30	253	248.8	258.2	281	163	251.4	242.6	248
45	45	300	277.2	313.0	333	210	306.7	290.0	301
55	45	314	286.5	313.0	333	225	310.4	301.8	303
71	45	326	300.4	313.0	333	246	315.9	315.0	307
96	45	333	320.4	313.0	333	275	323.9	328.1	313
142	45	349	351.7	313.0	333	319	337.0	349.2	324
214	45	361	386.9	313.0	333	369	354.1	362.2	341
289	45	365	403.4	313.0	333	396	368.4	345.8	357
332	45	351	399.6	313.0	333	398	375.5	294.2	366
60	60	339	305.6	367.9	381.7	254	356.6	331.5	349
91	60	352	333.1	367.9	381.7	293	365.4	351.9	356
142	60	383	371.3	367.9	381.7	346	378.1	384.5	367
191	60	396	400.4	367.9	381.7	385	388.6	401.3	378
229	60	404	417.9	367.9	381.7	409	395.8	408.5	386
271	60	400	431.7	367.9	381.7	429	402.9	403.4	394
331	60	383	439.3	367.9	381.7	445	411.9	369.6	406
75	75	365	334.0	422.7	427	294	402.9	365.8	395
114	75	400	368.2	422.7	427	341	410.0	399.4	403
153	75	417	397.5	422.7	427	380	416.3	421.0	411
229	75	438	441.8	422.7	427	437	426.3	446.8	426
300	75	439	467.6	422.7	427	473	433.5	446.4	440
343	75	424	474.5	422.7	427	486	437.1	425.6	448
391	75	451	471.4	422.7	427	490	440.5	416.0	457
100	100	419	381.3	514.1	496	358	474.2	426.2	466
137	100	460	414.1	514.1	496	400	480.7	460.7	473
186	100	489	451.2	514.1	496	446	488.3	490.9	482
274	100	494	501.5	514.1	496	509	499.8	511.6	498
382	100	522	533.2	514.1	496	552	510.8	518.0	517
411	100	513	534.4	514.1	496	557	513.2	502.8	522

σ _{2πειρ.}	σ _{3πειρ.}	σ _{1πειρ.}	MGP7 /σ ₁	MGL7 / σ_1	Τ7 /σ ₁	ΜΤ7 /σ ₁	MR7 /σ ₁	MWC7 /σ ₁
0	0	100	120	157.5	145	100	135	102
15	15	193	186	198.6	194.4	196.3	185.6	180
30	30	253	240	239.7	235.3	260.2	226.8	237
45	45	300	286	280.8	271.9	310.6	263.4	298
55	45	314	296	289.9	283.3	312.9	274.8	307
71	45	326	310	303.2	300.1	316.5	291.4	321
96	45	333	329	321.4	323.3	322.1	314.5	339
142	45	349	355	346.4	358.5	332.1	349.1	362
214	45	361	370	360.1	396.6	346.9	385.6	374
289	45	365	286	361	414.2	361.4	400.4	355
332	45	351	330	348.9	411.2	369.4	394.3	329
60	60	339	371	321.9	305.9	354.1	297.4	343
91	60	352	403	348.5	337.3	361.2	328.5	369
142	60	383	428	382.3	378.9	372.3	369.5	397
191	60	396	459	403.2	409.3	382.7	399.2	413
229	60	404	461	410.2	427.0	390.4	416.1	417
271	60	400	434	404.7	440.5	398.8	428.4	413
331	60	383	436	370.0	447.1	410.3	432.3	391
75	75	365	466	363.0	338.1	393.4	329.4	393
114	75	400	497	396.0	375.1	402.2	366.2	419
153	75	417	531	422.4	405.7	410.7	396.4	437
229	75	438	521	455.1	450.0	426.7	439.3	452
300	75	439	495	456.3	473.7	440.9	461.2	445
343	75	424	371	427.8	478.7	449.2	464.5	427
391	75	451	403	453.8	473.2	458.2	455.5	392
100	100	419	428	431.5	388.7	452.4	379.8	455
137	100	460	459	463.4	422.2	460.8	413.0	477
186	100	489	461	497.6	458.8	471.5	449.1	488
274	100	494	434	536.7	505.6	489.9	494.5	497
382	100	522	436	529.2	529.2	511.3	514.7	507
411	100	513	466	502.7	527.5	516.9	511.4	510

Επεξήγηση Συμβολισμών:

DP: Drucker – Prager, MC: Mohr – Coulomb, HB: Hoek – Brown, PH: Pan – Hudson, PR: Priest (Simplified), ZG: Zhang – Zhu, 67MG: Mogi (1967), MGP: Mogi – Power Law (1971), MGL: Mogi – Linear (1971), T: Theocaris, MT; Modified Theocaris, MR: Murrel, MWC: Modified Wiebols and Cook

Βιβλιογραφία

Ξενόγλωσση Βιβλιογραφία

Carter B. J., Scott Duncan E.J., Lajtai E.Z., "Fitting strength criteria to intact rock", **Geotechnical and Geological Engineering**, 9, 73 – 81, 1991

Colmenares L. B., Zoback M. D., "A statistical evaluation of intact rock failure criteria constrained by polyaxial test data for five different rocks", **International Journal of Rock Mechanics & Mining Sciences**, 39, 695 – 729, 2002

Georgiadis K., Potts D.M., Zdravkovic L., "Modelling the shear strength of soils in general stress state", **Computers and Geotechnics**, 31, 357 – 364, 2004

Jaeger J. C., N. G. W. Cook, and R. W. Zimmerman, "Fundamentals of Rock Mechanics", **Blackwell Publishing**, 2007

Hajiabdolmajid V., Kaiser P.K., Martin C.D., "Modelling brittle failure of rock", **International Journal of Rock Mechanics & Mining Sciences,** 39, 731 – 741, 2002

Liang Z.Z., "Three dimensional numerical modelling of rock failure process", thesis summary, **Center for rock instability & seismicity research**, Dalian University of Technology

Maïolino Siegfried, "Proposition of a general yield function in geomechanics", **Comptes Rendus Mecanique**, 333, 279 – 284, 2005

Melkoumian N., Priest S. D., Hunt S. P., "Further Development of the Three – Dimensional Hoek – Brown Yield Criterion", **Rock Mechanics and Rock Engineering**, November 2008

Mingqing You, "Mechanical characteristics of the exponential strength criterion under conventional triaxial stresses", **International Journal of Rock Mechanics & Mining Sciences**, 47, 195 – 204, 47

Mogi Kiyoo, "Effect of the triaxial stress system on the failure of dolomite and limestone", **Tectonophysics – Elsevier Publishing Company, Amsterdam,** 11: 111 – 127, 1970

Mogi Kiyoo, "Fracture and flow of rocks", **Tectonophysics – Elsevier Publishing Company, Amsterdam,** 13 (1 - 4): 541 – 568, 1971

Mogi Kiyoo, "Effect of the triaxial stress system on fracture and flow of rocks", **Physics of the Earth and Planetary Interiors – North Holland Publishing Company, Amsterdam,** 5: 318 – 324, 1972

Mogi Kiyoo, "On the pressure dependence of strength of rocks and the Coulomb fracture criterion", **Tectonophysics – Elsevier Scientific Publishing Company, Amsterdam,** 21: 273 – 285, 1973

Priest S.D., "Determination of shear strength and three - dimensional Yield Strength for the Hoek - Brown criterion", **Rock Mechanics and Rock Engineering**, 38 (4), 299 - 327, 2005

Priest S.D., "Comparisons between selected three – dimensional yield criteria applied to rock, **Rock Mechanics and Rock Engineering**, 2009

P.S. Theocaris, "The Paraboloid Failure Surface for the General Orthotropic Material" **Acta Mechanica**, 79, 53 – 79, 1989

P.S. Theocaris,"Failure Loci of some Igneous and Metamorphic Rocks", **Rock Mechanics and Rock Engineering,** 32 (4), 267 – 290, 1999

Wiebols G. A., Cook N. G. W., "An energy criterion for the strength of rock in polyaxial compression", International Journal of Rock Mechanics & Mining Sciences, Vol.5, pp.529-549, Pergamon Press 1968

Zhang Chuanqing, Zhou Hui, Huang Shuling, "A new interpretation for the polyaxial strength effect of rock" **International Journal of Rock Mechanics & Mining Sciences**, 47, 496 – 501, 2010

Zhang L., "A generalized three – dimensional Hoek – Brown strength criterion", **Rock Mechanics and Rock Engineering,** 41, 893 - 915, 2008

Zhang L., Zhu H., "Three – dimensional Hoek – Brown Strength Criterion for Rocks", **Journal of Geotechnical and Geoenvironmental Engineering**, (ASCE) 1090-0241 (2007)

158

Ελληνόγλωσση Βιβλιογραφία

Αποστολέρης Κ., «Διερεύνηση της δημιουργίας πλαστικής ζώνης γύρω από κυκλική σήραγγα εντός υδροστατικού τασικού πεδίου με εφαρμογή του κριτηρίου του ελλειπτικού παραβολοειδούς», Διπλωματική Εργασία, ΔΠΜΣ: Σχεδιασμός και Κατασκευή Υπογείων Έργων», ΕΜΠ, Οκτώβριος 2003

Κοζάνης Σ., «Συμβολή στη μελέτη της Βραχόμαζας, θεωρούμενης ως μέσου με μη γραμμική – ανισοτροπική συμπεριφορά, με τη μέθοδο των Πεπερασμένων Στοιχείων. Έμφαση στα υπόγεια έργα», Διδακτορική Διατριβή, Σχολή Αγρ. Τοπογράφων Μηχανικών Ε.Μ.Π, Μάρτιος 2002

Μαρίνος Π., «Σημειώσεις Μαθήματος Σχεδιασμός Υπογείων Έργων», **ΔΠΜΣ: Σχεδιασμός και Κατασκευή Υπογείων Έργων», Ε.Μ.Π,** 2009

Σακελλαρίου Μ., «Εφαρμογή κριτηρίου παραβολοειδούς εκ περιστροφής στη Βραχομηχανική», **5° Συνέδριο Γεωτεχνικής και Γεωπεριβαλλοντικής Μηχανικής, ΤΕΕ, Ξάνθη,** 2006

Σακελλαρίου Μ., «Σημειώσεις Μηχανικής Συνεχούς Μέσου», **ΔΠΜΣ: Σχεδιασμός** και Κατασκευή Υπογείων Έργων», Ε.Μ.Π, Νοέμβριος 2008

Σοφιανός Α., Προχωρημένη Μηχανική Πετρωμάτων, **ΔΠΜΣ: Σχεδιασμός και** Κατασκευή Υπογείων Έργων», Ε.Μ.Π, 1999

Σοφιανός Γ., Τυχόπουλος Ε., «Αριθμητική Ανάλυση», **Εκδόσεις Σταμούλη**, Αθήνα, 2005