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Abstract

Glasgow Haskell Compiler (GHC) is the state-of-the-art compiler for the programming language
Haskell. Striving to be on the edge, in March 2006, Generalized Algebraic Data Types (GADTs) were
incorporated as an extension of GHC and, henceforth, GADTs turned from a specialized hobby into a
mainstream programming technique. Unfortunately, although perfectly integrated in GHC’s type sys-
tem, along with numerous other features and extensions (type classes, type families, functional depen-
dencies, implicit parameters, arbitrary-rank types and more besides), the detection of non-exhaustive
pattern matches in cases that include GADTs proved to be incomplete.

The objective of our work was to design a new mechanism for the detection of non-exhaustive pat-
tern matches, that, not only would be complete in a setting with GADTs (and all other GHC’s exotic
features), but would also treat all cases uniformly. Our main assertion is that exhaustiveness check
must be promoted from a syntactic to a rather semantic matter. Instead of keeping it separated from
the phase of type-checking, we suggest that the mechanism must be integrated into the latter. Hence,
via constraint solving, we can exploit the local constraints introduced by GADT matches, in order to
accurately detect missing patterns.

In this work, we present such a mechanism, as an extension of the previous one, that is considerably
efficient and relatively easy to understand and implement. Apart from the design, we have also par-
tially implemented it in GHC 7.7. Therefore, we additionally enclose further technical information,
regarding our implementation. Finally, we compare the performance and the soundness of GHC with
and without our extension, and show that our mechanism behaves well in such a setting.

Key words

Pattern Matching, Type Checking, Generalized Algebraic Data Types, Glasgow Haskell Compiler,
Haskell
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Chapter 1

Introduction

1.1 Objectives

This thesis aims at designing a mechanism for detecting non-exhaustive pattern matches in pattern-
matching constructs of Haskell code. Although the target was initially focused on GADT-matches,
our goal also includes the design of a mechanism that solves the problem of non-exhaustiveness in
general and treats uniformly both ADT and GADT matches.

Additionally, apart from the designing part, this thesis also aims at implementing such a mechanism
in a real and practical compiler, like the Glasgow Haskell Compiler. This indicates that, instead of
looking for just a theoretical solution, we seek for an efficient mechanism that can potentially be
applied in other languages that support GADTs, with little or no adjustments at all.

1.2 Motivation

Strictly typed functional languages like Haskell have proved to be extremely useful in applications
of high importance, due to their static typing. Languages with static typing are unlikely to produce
runtime errors (since the majority of errors show up during compilation) and this feature makes them
the most suitable for the implementation of robust applications with demanding specifications. Such
applications include international banks’ systems, narrowband software radio systems, modelling of
hardware designs, and lots more.

Even more powerful and expressive are dependently typed languages like Coq or Agda, but, unfortu-
nately, are very difficult to understand and use by the average programmer. Furthermore, efficiency
reasons make them unsuitable for complex industrial applications, where high performance is neces-
sary.

Haskell, on the other hand, is a state-of-the-art, general-purpose purely functional programming lan-
guage. Starting from the other end, the robust and stable core of Haskell has been carefully extended
the past years with concepts of the dependent-type theory, achieving a great increase in expressiveness,
for a very modest cost in terms of intellectual and implementation complexity. That makes Haskell a
great programming language that effectively maintains a balance, focused on real-world applications,
whilst, cost-effetively preserving many important program properties and offering lightweight partial
program verification.

More specifically, the Glasgow Haskell Compiler is currently the most powerful and complete com-
piler for Haskell, supporting numerous extensions and features (apart from the Haskell 2010 Stan-
dard). One of the features GHC has really early integrated into its type system is that of Generalized
Algebraic Data Types, an object similar to the inductive families of data types, found in dependently-
typed languages.
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1.3 Outline of the Thesis

The rest of the thesis is organised as follows: First of all, in Chapter 2 we describe Algebraic Data
Types and their generalization, GADTs. We focus mostly on how they can be used to structure a func-
tional program, through relatively small examples in Haskell. Chapter 3 describes GHC’s compilation
pipeline, focusing on the front end that is closely related to our work. Additionally, this chapter also
includes some more information on some specific aspects of GHC, that played a major role in the
design of our mechanism. In Chapter 4 we describe our mechanism in detail: Firstly, we define the
problem we came up against in a straightforward way. After that, we analyze our mechanism and
cite the respective parts of our implementation. In Chapter 5 we evaluate our mechanism, through
the results we collected from numerous tests. Not only completeness, but also efficiency is deduced.
Finally, in Chapter 6, we conclude our work and present some future work that could be done on the
subject.

18



Chapter 2

Algebraic Data Types and their Generalization

2.1 Algebraic Data Types

Algebraic Data Types (or simply ADTs) are a powerful feature that is supported by most programming
languages but is part and parcel for Functional Programming Languages (FP), such as Clean, F#,
OCaml, Scala, Standard ML and, of course, Haskell. They made their first appearance in programming
languages in the 1970s, as part of Hope [Hope], a rather small functional language but quite important
in the development of functional programming. In the next section we cite the definition of ADTs and
illustrate their power, by describing several of their advantages and by showing how many types can
be defined as ADTs, from built-in types such as integers or characters to even more complex ones,
like lists and trees.

2.1.1 Definition, Terminology and Examples

One could say that an Algebraic Data Type is an ordered pair, consisting of a Type Constructor, i.e.
a type-function that returns the declared type, together with a set of Data Constructors, i.e. a set of
value-level functions that have as result values of the declared type. Using Haskell notation, data and
type constructors start with an uppercase letter and type variables start with a lowercase letter and this
is quite convenient. So, an ADT declaration in Haskell would look something like this:

1| data TypeConstructor type_variables_list

= DataConstructorl type_parameter_listl
3 | DataConstructor2 type_parameter_list2
4 | .
5 |

DataConstructorN type_parameter_listN

Listing 2.1: Type Definition Pattern

Now, let’s take a step back and take a closer look at the pattern above. This small and innocent pattern
arms us with numerous opportunities for structured and safe programming:

Enumerations If there are no type variables in the type_variables_list and no parameters in
type_parameter_list;, Vi, we have an enumeration type. Types such as Bool or WorkDay can
easily be defined using this syntax:

data Bool = True | False

3| data WorkDay = Monday | Tuesday | Wednesday | Thursday | Friday

Listing 2.2: Bool and WorkDay Type Declaration
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Abusing notation, someone could also define Int and Char types this way:

I|data Int = -2147483648

2 | ...

3 | -1 ] 0|1

4 | ...

5 | 2147483647

6

7ldata Char = ... | "a’” | 'b" |

Listing 2.3: Possible Int and Char Type Declaration

It’s quite surprising to know that the above definition of Bool is the actual definition in GHCs
Prelude (type Bool is not a primitive type as far as concerns the typechecker)! Of course, prim-
itive types’ definitions (such as Int and Char) are a bit different but, surprisingly, not that far
from the perspective we describe here.

Wrapper Types Ifthere is only one data constructor, with only one type parameter, we have a wrapper
for a specific type. This may seem useless at first sight but is quite useful in practice. Suppose
we have the following definitions:

data Height = Height Float
2| data Weight = Weight Float

Listing 2.4: Height and Float Type Declarations

It’s impossible for someone to add accidentally values of types Height and Weight because
GHC'’s typechecker would complain that cannot match these two types. Type wrappers lead to
readability and safety and, less obvious but quite useful, allow multiple implementations of the
same functions upon the same underlying type'.

Polymorphism Parameterized data types (potentially recursive) can be viewed as a kind of abstract
types, offering great reusability. For example, the List type defined below, is abstract, in the
sense that type variable a can be instantiated with any type, responding another List type every
time.

data List a = Nil
2 | Cons a (List a)

Listing 2.5: Parameterized List Type

A list of Ints will have type List Int whilst a list of Bools has type List Bool. The function
length we define below can work on every type of list.

length :: List a -> Int
2| length Nil =0
3| length (Cons x xs) = 1 + length xs

Listing 2.6: Length Function

Before moving on to the next chapter, it would be really important to discuss some more aspects of
ADTs, abstraction and polymorphic types in Haskell.

! Since these properties are highly desirable, the Glasgow Haskell Compilation System provides us with newtype key-
word, an alternative that is more efficiently implemented and is designed especially for this particular reason.
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1. Defining ADTs, we described a Type Constructor as a type-function. 1 think that this deserves

more thorough thought. In cases like Bool, WorkDay, Height or Weight, the type constructor is
the type itself. In the case of list, List Int or List Bool surely are types but what exactly is
List itself? This could be a good place to introduce Concreteness: We call a type t concrete if
there can be values of this type t. It surely makes sense to have objects of type List Int (lists
of Ints) but would it make sense to have an object of type List? If we ask for the kind of type
constructor List, ghci gives us the following response:

> :kind List
2| List :: *

-> *

Listing 2.7: Kind of Type Constuctor List

Now it’s obvious that List needs a type-argument to yield a concrete type and (as expected)
there cannot be a value of type List.

. When declaring a datatype, sometimes it’s quite useful to be explicit on types and kind of data
and type constructors respectively. Increases readability and gives us a better intuition of what
exactly we are defining and how it can be used later. We rewrite here the definition of List,
under this perspective, using valid Haskell syntax:

I|data List :: * -> * where
2 Nil :: List a
Cons :: a -> List a -> List a

Listing 2.8: List Type with Explicit Typing and Kinding

. Finally, we could also use a mix of the previous definitions that looks like this:

data List a where
2 Nil : List a
Cons :: a -> List a

-> List a

Listing 2.9: List Type with Explicit Typing

One has to notice the type variable a that spreads through the whole definition. Brought in scope
in the head of the definition (data List a where...), is later available to be used in the types
of data constructors. It’s the definite same type variable. In ADTs every data constructor’s return
type must be List a. Although this detail may seem unimportant (and maybe meaningless) at
first sight, it’s quite a restriction and the major drawback of Algebraic Data Types and we’re
going to prove it in the next section.

2.2 Generalizing Algebraic Datatypes

2.2.1 One Step Closer to GADTs

Suppose now we want to write an interpreter for a simply typed expression language with integers,
booleans and pairs. We need a new data type to represent terms, a parser, some kind of a typechecker
and an evaluator function. For starters, considering the parser-part trivial, we need an appropriate type
Term to use thoughout all stages. In Listing 2.10 below we define such a type, as a simple Algebraic
Data Type, using the typed notation we mentioned earlier.
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data Term where

Lit :: Int -> Term

Inc :: Term -> Term

IsZ :: Term -> Term

If 1 Term -> Term -> Term -> Term
Pair :: Term -> Term -> Term

Fst :: Term -> Term

Snd :: Term -> Term

Listing 2.10: Simply Typed Term

It does not take long to find out there are two major points here:

Evaluator’s Return Type Suppose we declare an eval function that takes a Term and returns the

value calculated. Depending on the “type” of the Term we feed the evaluator, there may be
multiple return types. This is well illustrated below:

eval (Lit 7) ~ 7
eval (Isz (Lit 7)) ~» False
eval (Pair (Lit 6) (Lit 7)) ~» (6,7)

We would have to define a new data type for values like the one presented below:

1| data Value

2 = VI Int -- Integer Value
| VB Bool -- Boolean Value

4 | VP Value Value -- Pair Value

Listing 2.11: Values

Load for Typechecker Our evaluator has to check thoroughly the types of all mid-expressions in the

22

expression to evaluate (and typecheck). The following definition shows this problem: We have
to manually check that the recursive calls to eval return the expected type of values. This is
both tiresome for the programmer and results to additional runtime overhead.

eval :: Term -> Value

2leval (Lit x) = VI x

3leval (Inc t)

4 | VI x <- eval t = VI (x+1)

5 | otherwise = error ”"Inc: Not an Int”
6l eval (IszZ t)

7 | VI x <- eval t = VB (x==0)

8 | otherwise = error ”"IsZ: Not a Bool”
oleval (If t x vy)

10 | VB b <- eval t = if b then eval x

11 else eval y
12 | otherwise = error "If: Not a Bool”
13 eval (Pair x y) = VP (eval x) (eval y)
14| eval (Fst t)

15 | VP vl _ <- eval t = vl

16 | otherwise = error "Fst: Not a Pair”
17| eval (Snd t)

18 | VP _ v2 <- eval t = v2

19 | otherwise = error ”Snd: Not a Pair”

Listing 2.12: Evaluator



Reasonably enough, emerges the question: “Since our types are already supported by Haskell, couldn 't
we just take advantage of GHC's typechecker and let it do the work for us?”. And that’s exactly what
we’re going to do.

Before revealing the solution to our problem, it’s worth to forecast the best direction. Observing the
three terms we evaluated before, one could presume their types by giving just a glance, it’s like their
structure “gives away” their type. If only we could encapsulate some more of the structural information
in the type of every term, it would be GHC’s typechecker matter to typecheck only well-typed terms
and infer the best return type for our eval function. We generalize ADTs by abstracting over the type
of each constructor and we are finally led to Generalized Algebraic Data Types (GADTSs):

2.2.2 GADTs in Action

We are abstracting over in the sense that we lift the restriction of the same result type for each data
constructor. We supply type Term with a type parameter, indicating the type of the term it represents
and end up with the following declaration of our Term type:

1| data Term a where
2 Lit :: Int -> Term Int
Inc :: Term Int -> Term Int
IsZ :: Term Int -> Term Bool
If :: Term Bool -> Term a -> Term a -> Term a
6 Pair :: Term a -> Term b -> Term (a,b)
7 Fst :: Term (a,b) -> Term a
8 Snd :: Term (a,b) -> Term b

Listing 2.13: Simply Typed Term using GADTs

Henceforth, malformed terms like Isz (Isz (Lit 10)) are statically rejected as ill-typed: Term Lit 10
has type Term Int and by applying constructor IsZ we get a term of type Term Bool. By applying
again constructor Isz we are led to a type-error since IsZ expects a term of type Term Int and not
Term Bool we feed it with.

Furthermore, armed with this level of generalization, the declaration of our evaluating function eval
is now absolutely direct:

Ileval :: Term a -> a
oleval (Lit 1) =1
3leval (Inc t) =z eval t +1
4l eval (Isz t) = eval t == 0

sleval (If t a b) = if eval t then eval a else eval b
ol eval (Pair a b) = (eval a, eval b)

7l eval (Fst t) = fst (eval t)

s eval (Snd t) = snd (eval t)

Listing 2.14: Simply Typed Evaluator

2.2.3 Actual Representation

Although the change in the syntax is quite small, the impact on the typechecker and the type-inference
engine is tremendous. Not clear from the previous syntax is the fact that GADTs introduce local con-
straints'. When matching against a GADT expression, these constraints come in scope, to be used by

! By local constraints we mean type constraints that hold in some parts of the program but not others. A more detailed
description of the term can be found in Outsideln(X) [Vytil1] and System F with Type Equality Coercions [Sulz07].
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the type-checker. We rewrite here the above definition of Term a with explicit type equality constraints
(using valid Haskell syntax):

data Term a where

2 Lit :: forall a. (a~Int) => Int -> Term a
3 Inc :: forall a. (a~Int) => Term Int -> Term a
. (a~Bool) => Term Int -> Term a

a
a

4 Isz :: forall a

5 If :: forall a. Term Bool -> Term a -> Term a -> Term a

6 Pair :: forall a b c. (a~(b,c)) => Term b -> Term c -> Term a

Fst :: forall a b. (a~b) => Term (b,c) -> Term a

8 Snd :: forall a c. (a~c) => Term (b,c) -> Term a

Listing 2.15: Term GADT with explicit equality constraints

Regarding our work, one major point can be extracted from the above definition:

All classic pattern-matching techniques may fail to identify non-exhaustive pattern-matches in a world
with GADTs because of the local constraints. Considering the simple ADT definition of Listing 2.9, a
function expecting an object of type List a can handle both constructors Nil and Cons. In contrast, a
function that expects an argument of type Term Int can handle patterns as Lit x and Inc t butnot Isz
t. A classic algorithm would warn about Isz _ to be a pattern not matched, although, if it appeared,
would be a piece of inaccessible code. Obviously, classic techniques do not exploit type information
so are unable to detect special cases like this one. Before presenting our solution to this problem
(Chapter 4), we briefly describe in the next chapter (Chapter 3) the Glasgow Haskell Compilation
System § structure, in order to grant to the reader the ability to understand GHC’s compilation pipeline
and judge our design choices reasonably.
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Chapter 3

The Glorious Glasgow Haskell Compilation System

3.1 Overview

The Glorious Glasgow Haskell Compilation System (more commonly known as the Glasgow Haskell
Compiler) is a highly optimising native code compiler for the functional programming language
Haskell. Currently the largest and most powerful compiler for Haskell, GHC not only supports the
Haskell 98 and 2010 Standard, but also, numerous extensions, aggressive optimizations and one of
the most comprehensive error-messaging. Although all these features increased the complexity of the
project exponentially, it still is one highly structured program that can be relatively easy to extend
and modify. Of course, the six-staged compiler model (lexical analysis, preprocessing, syntactic and
semantic analysis, code generation and optimization) is not enough for all these features and GHC,
not only goes through a lot more phases, but also rearranges the basic ones. The main focus of this
chapter is to help the reader get acquainted with the internals of GHC and prepare himself for what
lies ahead. Therefore, the chapter is structured as follows:

1. In the first section we describe each phase of the compilation pipeline, along with the types
that are passed around in each phase!. Additionally, we include a diagram that displays all this
information in a more compact way.

2. In the next section, we focus on some specific aspects of GHC, mostly regarding the current
mechanism for the detection of unused patterns. All these issues closely relate to our work and
deeply affected our approaches towards our goal.

3.2 Compilation Pipeline

3.2.1 The Front End

The front end consists of the Parser, the Renamer and the Typechecker. All three of them share the
same datatype, HsSyn, a type that is parameterized over the types of the term variables it contains. In
more detail:

Parser GHC’s Parser is written using Alex, for lexical analysis, Happy, for the parser itself, and
RdrHsSyn, for Haskell support functions. During this phase, the type produced is HsSyn param-
eterized by RdrName, roughly speaking, a simple String. Since the language provides us with
great syntactic flexibility (infix operators, many different precedences and fixities, whitespace
indentation or curly braces to delimit blocks etc.), many things that one could consider to be done

! A more detailed description of GHC’s compilation pipeline and general structure can be found at: GHC Commentary:
The Compiler: http://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler
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by the parser are not. For instance, infix operators are initially all parsed as right-associative,
since their fixity and precedence is defined by the programmer and cannot be determined during
this phase.

Renamer The Renamer sits between the parser and the typechecker and does most of the preprocess-

ing needed for the next phases to operate. Its main task is to replace RdrNames with Names, i.e.,
an RdrName accompanied by a Unique that uniquely identifies it. The renamer is responsible
for associating each identifier with its binding instance and ensuring that all occurences which
associate to the same binding instance share a single Unique. Furthermore, the renamer deals
with the following:

e Sorts out fixities: Using the fixities declared in the module, the renamer re-associates nested
operator applications parsed by the parser (which, as we said, ignores fixities and prece-
dence of operators).

e Does dependency analysis for mutually-recursive groups of declarations. Through this op-
eration, the declarations are divided into strongly-connected components.

e Heavy lexical error checking: Through this phase, many errors and warnings can be issued,
such as out-of-scope variables, unused bindings, unused imports, multiple usage of the
same binder in a single pattern, shadowing bindings and many more.

Finally, one of the most important tasks of the renamer is to build the global rdr-env for the mod-
ule, of type GlobalRdrEnv. This environment allows us to take a qualified or and un-qualified
RdrName and figure out which Name it means. It’s built by looking at all the imports and the
top-level declarations of the module and is heavily used not only by the typechecker but also by
the desugarer.

Typechecker Probably the most important phase in the front end of GHC. Through this phase, Name

is replaced by TcId (or simply its type-synonym Id) which is simply a Name plus a Type. Rather
unusual is the fact that GHC type checks programs in their original Haskell form (HsSyn), before
the desugarer converts them into Core code (CoreSyn, a datatype with only eight constructors).
Although this improves error messages, it really complicates things and effectively slows down
the phase of typechecking, as it has to handle the much more verbose Haskell AST. Both re-
namer and typechecker use the same monad, TcRn and share the same entry point, the function
tcRnModule, which is provided by the module 7cRnDriver. This stage consists of two separate
phases, Constraint Generation and Constraint Solving. The first is a traversal of the Abstract
Syntax Tree (AST) during which, all type constraints are generated. The latter, solves all con-
straints and is (almost) the final phase of typechecking. The current system is described in detail
(both theoretically and techincally) in [Vytill], an outstanding work by Dimitrios Vytiniotis,
Simon Peyton Jones, Tom Schrijvers and Martin Sulzmann.

3.2.2 In Between

Desugarer After the three phases we previously described, comes the phase of Desugaring, where

the massive HsSyn type (more than 52 data types) is converted to CoreSyn, GHC’s Intermedi-
ate Language (only eight data constructors) !. Although this stage comes immediately after the
type checker, the desugarer lives in another monad. Both use instantiations of TcRnIf monad,
but, the renamer and the typechecker use TcM while DsM specializes the TcRnIf monad for the
desugarer. Just before the end of the typechecking-phase, where all types are completely known,
the environment of the desugarer is created, where, only the necessary information is kept and
the rest is garbage-collected. From this, it can be clearly seen that the desugarer sets a definite

! The Core Language is basically Girard’s System F [Gira89, pp. 81-148] enhanced with let, case and constructors’

constructs. The current core language is actually the system F] [Yorg12], an extension of the previous F. [Sulz07].
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demarcation between the front and the back end. Quite importantly, although this stage focuses
mostly on the transformation, during the process, produces a few errors and warnings. These
include pattern-match overlap warnings and — most importantly for our work — pattern-match
non-exhaustive warnings.

SimplCore Pass Now that we have the original program in Core Haskell, aggressive optimisations
take place. This phase consists of many Core-to-Core passes that optimise the program through
various transformations. The main passes include:

e The Simplifier. This pass applies lots of small and local optimisations.

e The Float-in and Float-out transformations, where let-bindings are moved inwards and
outwards respectively, in order to produce faster code.

o The Strictness Analyser.

o The Liberate-Case transformation.

o The Constructor-Specialisation transformation.

o The Common Sub-Expression Elimination (CSE) transformation.

CoreTidy Pass During this procedure, the code gets into a form in which it can be imported into
subsequent modules.

Data Flow Analysis The tidied Core program is dumped into an interface file. The process happens
in two stages: At first the program is converted to IfaceSyn and, after that, IfaceSyn is serialised
into a binary output file. This phase ends the intermediate process and now it’s time for the core
program to be fed to the Back End.

3.2.3 The Back End

Although our work relates mostly to the phases of typechecking and desugaring, we also cite here
some information about the operations of the back end, mainly for the sake of completeness.

Core to STG At this phase, CoreSyn is transformed to StgSyn through a two-stage process. The first
step is called CorePrep and put the program in A-Normal Form (ANF) where the argument of
every application is either a variable or a literal (more complicated arguments are let-bound).
The second step, called CoreToStg, moves to the StgSyn datatype, something quite easy after
the CorePrep transformation has taken place.

Code Generation Now the STG program is converted by the Code Generator to a C-- program.
Many Back Ends Finally, depending on our needs, GHC provides us with three possible final outputs:

e Ifwe are generating GHC’s stylised C code, we can just pretty-print the C-- code as stylised
C.

e If we are generating native code, we invoke the native code generator.

e If we are generating LLVM code, we invoke the LLVM code generator.

3.2.4 The Whole Picture

In Figure 3.1 we present the compilation pipeline of GHC, in a more concise way'.

! This figure can also be found at GHC’s Commentary, in Chapter HscMain.
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3.3 Important Technical Issues

3.3.1 In and Out Convention

Pattern’s type (Pat id) provides us with two different data constructors to represent constructor pat-
terns: ConPatIn and ConPatOut. Although this design choice may seem strange at first sight, it proves
to be quite useful and is used frequently in GHC. The suffixes -/n and -Out, stand for a pattern before
and after typechecking, respectively. Intuitively, this means that before type checking all constructor
patterns must use only the ConPatIn constructor, while, all type-checked constructor patterns will
make use of ConPatout. This simple convention is one more definite separation of typechecker and
desugarer: The type checker can take as input only ConPatIn whilst, the desugarer can be fed only
with ConPatOut.

3.3.2 Purity of the Mechanism

Although the exhaustiveness check is currently done in desugaring, the actual function that identifies
all non-exhaustive pattern matches is a pure function. This proved to be of great importance, regarding
our work, since we could “peek” at the unused patterns of a match, without having to bear side effects
that could modify the global or local state irretrievably.

3.3.3 Impurity of the Type-Checker

For efficiency reasons, during type checking, type variables are represented by TcRefs (simple type
synonym for IORef), i.e. mutable variables. Whilst this design choice significantly increases perfor-
mance, makes the task of reasoning about our code really complex. Almost all type checking functions
are accompanied by tons of side-effects: generation of fresh type variables for all expressions, instan-
tiation of types, storing of type contrstraints etc.

3.3.4 TcM and DsM

As we previously mentioned, the phases of typechecking and desugaring live in different monads,
TcM and DsM, respectively. This fact makes it impossible to move code from one phase to the other,
a tremendous disadvantage that costs not only in adaptability but also in scalability. Of course, this
is unavoidable, because carrying all the intermediate information along more stages would definately
lead to space leaks.

3.3.5 Separation of Constraint Generation and Solving

Type constraints are not solved until they are all collected. Since the current type system supports type
families [Schr08], phantom types [Xi03], [Chen03] and [Peyt06], promoted constructors [ Yorg12], and
many more features, the task of type checking has become a really challenging problem. Additionally,
due to Haskell’s Open World Assumption, new axioms can be added at any time, so, constraint solving
cannot take place before all the needed type information is collected. As we stated before, the phases
of generation and solution of the constraints are definately separated.
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Chapter 4

Exhaustiveness of GADT Matches

4.1 Introducing The Problem

The mechanism used by GHC for the detection of unused patterns in non-exhaustive matches has only
one drawback: While it takes into account type information (the check is done after typechecking, so,
all types are completely known), it does not perform further constraint solving. Of course, before
integrating GADTs into the system, type check during this phase was absolutely redundant. Since we
have all types available, what else could we need? Indeed, in the case of ADTs, all constructors have
the same result type, so, in a context where one can fit, all constructors —of the same type constructor—
can. This does not hold in the case of GADTs, where each data constructor may return a different type.
For example, recall the GADT Term definition 2.13. Although data constructors Inc and IsZ are in
the same family', the one has result type Term Int and the other has result type Term Bool.

The rest of the chapter is divided in two sections. Firstly, we set forth the actual bug, through a series
of some problematic situations. After that, we present our design choices, the different approaches we
took and our final solution.

4.2 The Incompleteness of Pattern Matching

For the rest of the chapter, we are going to use the GADT definition shown in Listing 4.1, a rather
small —and of little usefulness— definition but, enough to illustrate the incompleteness of GHC’s ex-
haustiveness check.

o =

data F :: * -> * -> * where
F1 :: F Int Int
F2 :: F Int Char
F3 :: F Char Int
F4 :: F Char Char

Listing 4.1: A Simple GADT Definition

4.2.1 Suppressing The Bug

In simple cases, like the examplel (shown in Listing 4.2), the task is exactly the same like in an
ADT definition. Since type variables a and b are free, any of the four constructors can match. The
tedious warnings occur in more complex situations, like in example2. Since the signature of example2

! In GHC, we frequently call family a type constructor, along with the respective data constructors. If we refer to type
families, we use explicitly the term #ype family and not just family, in order to overcome the ambiguity.
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indicates that the parameter’s type is F Int Int, not all constructors can appear in this context (to be
exact, only F1 can match the specified type). An older version of GHC whould issue a non-exhaustive
warning for example2, regarding constructors F2, F3, and F4. One must notice that this specific case
is quite easy to solve: If, the constructor F4 appeared, the type equality Int ~ Char would have to
hold, something that can be relatively easy to check. Since both types do not contain type variables, no
unification is needed and we can check immediately for the equality of the types. Due to the simplicity
of such a check (changes to test equality between instantiated types are minor), this test has been
implemented in GHC, and, erroneous warnings are avoided in such trivial cases.

examplel :: F ab -> Int
examplel F1 =
3| examplel F2 =
4| examplel F3 =
5| examplel F4 =

o

A WN R

7| example2 :: F Int Int -> Int
§| example2 F1 = 42

10| example3d :: F a a -> Int
11| example3 F1 = 1
12| example3 F4 = 4

Listing 4.2: Three Exhaustive Examples

4.2.2 General Case Still Unsolved

Although cases like the ones we previously mentioned are handled by GHC, the general case remained
unsolved. This is well illustrated in the definition of function example3, in the Listing 4.2 above. When
compiling the previous function, GHC issues the non-exhaustive warning presented in Listing 4.3
below. Of course, constructors F2 and F3 could not match such a context, because, for example F2,
would introduce the set of constraints: Cg9 = {a ~ b, Int ~ b, Char ~ b}, which is insoluble. If one was
to add such a brach, the typechecker would complain that can’t match type Char with Int, and fail
with an error. Hence, the programmer is caught in the middle of this situation, compelled to tolerate
such a warning, whilst his definition is actually complete'!

warning: Pattern match(es) are non-exhaustive
2 In an equation for ‘example3d’:
: Patterns not matched:
4 F2
5 F3

Listing 4.3: Warning Issued For example3

4.3 Extending The Mechanism

4.3.1 Basic Idea

All previous examples indicate that the mechanism used by GHC for detecting unused or missing
patterns lacks a type-checking character. Additionally, we know that the mechanism issues too many

! Unfortnately, there is a tedious way to avoid such warnings. Since the algorithm for the detection of overlapping patterns
is also incomplete, an addition of a catch-all branch (like: example3 _ = error “inaccessible code”) would suppress
these messages. Although this seems to “solve” the problem, is actually a temporary solution, because the additional branch
is actually inaccessible code and an overlapping pattern.
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warnings and never less than actually should. Consequently, our main approaches were based on a
simple idea: First, use the current mechanism to detect all unused patterns (possibly more than actual).
Afterwards, for each pattern, generate all constraints that its appearance would introduce and, finally,
filter them via constraint solving. The outcome of the solver uniquely determines which warning is to
be issued and which is not:

Unification Failure If the unification fails, a branch introducing the pattern under consideration is
inaccessible. If it appeared, we would have a type-error, so, it is not an actual missing pattern.
In this case we should not issue a warning.

Successful Unification In case the solver succeeds to find a unifier, the pattern is actually missing.
The appearance of the pattern under consideration at a call site would lead to a run-time error,
and so, we should issue a warning.

Our work actually implements the mechanism described, suitably adjusted, not only to take advantage
of GHCs strict structure, but also with respect to the restrictions provided. In the next sections we
describe our mechanism in detail, including technical information about our implementation.

4.3.2 Approaching The Issue

Although only one approach seemed to work, throughout this procedure, we came up with several
solutions and many different approaches that we cite in this section. Even if they seem irrelevant at
first sight, I believe that they reveal many important aspects of GHC’s structure and will help the
reader deeply understand our design choices.

Core Haskell At first, we considered the phase of desugaring one suitable place to add our check: The
existing mechanism already lived within the desugarer and many works are available towards
this direction, like [MitcO8]. One great advantage of this approach is the fact that, since desug-
aring comes after type checking, we have type information on every term. Unfortunately, two
major problems arose, that made this solution somewhat impossible. Firstly, when the original
code is transformed in Core Haskell, a lot of information is lost about the initial appearance of
the expressions. This leads to more hazy messages that are not of much use to the programmer.
Secondly, and more important, during this phase, constraint solving cannot take place. Even if
we ignored the hazy error messaging, in order to implement the check in the desugarer we would
need extreme code refactoring.

Moving Backwards As the only phase of GHC’s pipeline that supports constraint solving is the type
checker, we stopped concerning ourselves with desugaring and all our subsequent approaches
involved the phase of type checking. Since the erroneous warnings occured only in the case of
GADT Constructors, an —initially tempting— solution was to filter out all constructors that do not
introduce local constraints (ADT-Constructors) and handle the rest. The ones without the local
constraints can easily be solved by the old mechanism, so, we would have to concern ourselves
only with GADTs. Of course, such a solution would be messy, so we aimed at a mechanism that
treats uniformly all cases, from Int patterns to GADT data constructors.

Need of Types The mechanism currently implemented in GHC is based on the /n and Out Assumption
(as described in Chapter 3). This adds one more restriction: In order for our mechanism to work,
we had to place it after typechecking, but before desugaring. Since the typechecker traverses
the AST (A4bstract Syntax Tree), the suitest place seemed immediately after the typecheck of
each pattern in the tree, in order to avoid one more traversal that would slow down the phase
of type checking. Unfortunately, during the traversal no constraint solving takes place, just all
constraints introduced are collected.

33



Split of the Phases Taking into consideration all the above restrictions lead us to the final solu-
tion: Immediately after constraint generation we detect the patterns and the respective type-
constraints, and, after constraint solving, we filter them.

4.4 An Algorithm for Detecting Missing Patterns

Here we finally present our solution in detail. In Section 4.4.1 we describe our mechanism in a more
structured and step-to-step way. Section 4.4.2 contains technical information, including functions and
code fragments we implemented to achieve our objective.

4.4.1 The Mechanism

Our mechanism proceeds as follows:

1. Immediately after typecheching a match (or a group of matches, in case expressions and pattern
matching), we call the implemented mechanism to detect all missing patterns.

2. For every pattern, we call the respecive type-checking function! to get the constraints that the
respective pattern would introduce.

3. We store in the global state all patterns, along with the respective constraints, the context we are
in (case-expression, let-expression, function binding, etc.) and the current location. The pattern,
the context and the location are all needed to pretty print the warning, in case we finally need to.

4. After constraint solving we do the heavy work: For each set of constraints we call the constraint
solver on a trial basis (we wouldn’t want to accidentally add spurious error-messages in the
error-list, about patterns that the programmer didn’t even write) and, depending of the outcome,
we issue the warning or not.

An oversimplified version of the mechanism as a flowchart can also be seen in Figures 4.1 and 4.2
(Our additions are coloured blue).

U All type-checking functions actually produce and store the constraints, they are not solving them. The convention is
that every type-checking function has the prefix tc- (for example, tcMatch, tcPat, etc.). Our call is on a trial basis, since
we only get the constraints, and do not store them, to avoid subverting the type-check process.
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4.4.2 Implementation

Prerequisites

Before diving into technical details, the reader must first get acquainted with the data types that are

used most throughout our work:
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Patid The type of a pattern. It is parameterized by id, which, through the various phases of the
compilation, may be one of RdrName, Name, or TcId. More specifically, after renaming id is
Name and after type-checking id is an TcId (types Name and TcId are explained in section 3.2.1).

Match id body The type of a match. A typical match contains all patterns introduced in a match,
along with a right-hand-side, that can make use of guards. Additionally, a match contains one
more field, that contains a type signature for the result of the match.

MatchGroup id body To a first approximation, a list of Located Matches. Since this struct is used
in function pattern bindings (and other structs), it contains also information about the types of
the arguments and the result type of the whole match group.

EquationInfo Info about an equation. Contains the patterns for an equation, along with some more
information that is quite useful during the phase of desugaring. It is normally produced after the
type check of an expression.

ExhaustivePat The patterns to be warned about. Apart from the patterns, it also contains additional
information about the set of used literals. For example, in function definition like in the List-
ing 4.4, we would get a warning like the one shown in Listing 4.5.

iI|f :: Int -> Int
o f 10 = 100

Listing 4.4: A Non-Exhaustive Match on Literals

1 Warning: Pattern match(es) are non-exhaustive
2 In an equation for ‘f’:
Patterns not matched: GHC.Types.I# #x with #x ‘notElem’ [10#]

Listing 4.5: Warning for f’s Definition

Additionally, one convention that is extensively used in GHC, is that of Located: An LPat is simply a
Located Pat, i.e. a pattern with a location. This naming convention is used for many types, including
Match and MatchGroup.

Additions and Modifications

Although our original intention was to implement a solution that uniformly treats all pattern-matching
structs, this was impossible, due to the syntactic difference between some terms. More specifically,
case expressions and function pattern bindings use MatchGroup, whilst, let-bindings make direct use
of Pat. Hence, we had to treat MatchGroups and let-bindings separately. The rest of the chapter con-
tains a complete description of the functions we implemented or adjusted in GHC, along with the
respective type signatures’.

Extending the Global Environment One ofthe most important things to do, was to extend the global
environment with one additional field. Since the mechanism is split in two phases, we could not
pass around the missing patterns, from constraint generation to constraint solving. Instead, we
added one more reference field in the global state, to store there all intermediate information
while traversing the AST. When we are at the phase of constraint solving, we simply read from
the reference the patterns collected from the whole file and process them one at a time. One may
also notice that the type of field back_up_unus (shown in Listing 4.6) seems a bit clumsy. If we

! The whole implementation can be found in the appendix A. Implementation.
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take into consideration the type synonyms, the type of it is actually:

TcRef [ (HsMatchContext Name, SrcSpan, [(ExhaustivePat, WantedConstraints)])]
that seems a lot better. Unfortunately, in order to avoid some potential cyclic-imports, we did
not import the files with the respective type definitions.

back_up_unus :: TcRef [( HsMatchContext Name
2 , SrcSpan

3 , [(([LPat Name], [(Name, [HsLit])]), WantedConstraints)]
4 )]

Listing 4.6: Additions in typecheck/TcRnTypes.lhs

Exploitation of Solver’s Incremental Nature As we have previously mentioned, GHC’s constraint
solver' makes heavy use of T0 references, for efficiency reasons. One of the most important
references it uses, is an EvBindsvar (an IORef type synonym), to store all intermediate in-
formation, during unification. This reference is initialized when entering the function, is used
throughout the whole procedure, but is not returned as a result. In order to call the simplifier
more times (more accurately, one time for every missing pattern), we had to adjust it, to grant
us access to all intermediate information. To achieve this, we added two variations of function
simplifyTop: simplifyTopInit and simplifyTopIncr, where the pass of EvBindsvar is
done explicitly. Type signatures of all functions described here are shown in Listing 4.7 below:

1| simplifyTop :: WantedConstraints -> TcM (Bag EvBind)
2| simplifyTopInit :: WantedConstraints -> TcM (Bag EvBind, EvBindsVar)
3| simplifyTopIncr :: WantedConstraints -> EvBindsvar -> TcM (Bag EvBind)

Listing 4.7: Additions in typecheck/TcSimplify.lhs

Collecting Constraints from Patterns In order to collect the constraints that a pattern would intro-
duce, we had to implement two more functions (Listing 4.8), getConstraintsFromPat and
getConstraintsFromPats. Almost identical, these two functions call typechecking functions
tcPat and tcPats respectively, and collect the constraints generated. Although we call these
functions from another modules, we placed them both in TcPat, because they are highly con-
nected with the type checking of patterns.

getConstraintsFromPat :: HsMatchContext Name
2 -> LPat Name -> TcSigmaType

-> TcM WantedConstraints
getConstraintsFromPats :: HsMatchContext Name

-> [LPat Name] -> [TcSigmaType]
6 -> TcM WantedConstraints

SN

Listing 4.8: Additions in typecheck/TcPat.lhs

Storing of Patterns and Constraints For the storage of the necessary information, we implemented
the function storeUnusedPatterns, shown in Listing 4.9. The only thing this function does is
to update the global state’s reference with the supplied additional information. Although small,
this function seemed right to be defined separately, for reusability and clarity. Since its main
interaction concerns the TcRn monad, we placed it in 7cRnMonad.lhs, a file that contains func-
tions for working with the typechecker environment.

! Constraint Solver’s entry point is the function simplifyTop.
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1| storeUnusedPatterns :: HsMatchContext Name
2 -> SrcSpan

-> [([LPat Name], [(Name, [HsLit])])]
4 -> [WantedConstraints]

-> TcM ()

Listing 4.9: Additions in typecheck/TcRnMonad.lhs

Handling of MatchGroups The manipulation of MatchGroups is rather straightforward: After the

typecheck of the match-group has taken place, we collect all missing patterns via the previ-
ous mechanism used by GHC (through the type-checked match-group, due to the reasons dis-
cussed in section 3.3.1). For each set of patterns, we collect all constraints using the func-
tion getConstraintsFromPats we defined earlier and finally store them, using the function
storeUnusedPatterns. The additional code to implement the above is shown in Listing 4.10.
The type signature of function extractMissingPatterns that exploits the previous mechanism
can be found in Listing 4.11. One important issue that has to be discussed here is the additional
code for checking if there are any errors. In case there are errors already, we do not trigger our
mechanism, mainly for two reasons:

Efficiency GHC does not issue warnings if there are errors. That means that it is only a waste of
time to examine code for non-exhaustive pattern matches since they will never be issued.

Falsums In some cases, when GHC detects an error, there is no value to return, so, some func-
tions may return falsums. If we went on with our mechanism, we would definately force
these terms to be evaluated, leading to a compiler crash, that is highly undesirable.

errs_var <- getErrsvar

3 ; msgs <- readTcRef errs_var

4 ; dflags <- getDynFlags

5 ; current_loc <- getSrcSpanM

6 ; let errs_flag = errorsFound dflags msgs

hs_ctxt = mc_what ctxt

8 ; unless errs_flag $

9 do { let (exhaust_pats, missing) = extractMissingPatterns match_group’
10 ; wanteds <- forM missing $ \pats ->

11 getConstraintsFromPats hs_ctxt pats pat_tys

12 ; storeUnusedPatterns hs_ctxt current_loc exhaust_pats wanteds

Listing 4.10: Additional code in function tcMatches

extractMissingPatterns :: MatchGroup TcId (Located (body TcId))
-> ([ExhaustivePat], [[LPat Name]])

Listing 4.11: Additions in typecheck/TcMatches.lhs

Handling of Let-Bindings The processing of let-bindings, although similar to the one we previously
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described, is a bit different. The steps we follow are:

o Filter the type-checked bindings. Function bindings are translated in MatchGroups and are
handled by the previous mechanism. So, we have to keep only the pattern-bindings, through
a simple filtering.

e Collect the respective types for the patterns filtered in the previous step. In order to collect
the constraints we want, we need the expected type for each pattern-binding.



e For each pattern, detection of the missing patterns. In order to achieve this, we call function
getUnusedPatsFromLTcPatBind, shown in Listing 4.14.

e For every missing pattern, we collect all constraints and store them in the global state.

The implementation of the mechanism is shown in Listing 4.12.

2 ; errs_var <- getErrsvVar

3 ; msgs <- readTcRef errs_var

4 ; dflags <- getDynFlags

5 ; unless (errorsFound dflags msgs) $

6 do { let pat_binds_tc = filterMonoPatBinds tc_binds

7 pat_exp_types = [ty | PatBind {pat_rhs_ty=ty}

8 <- map unLoc (filterPatBinds binds’)]

9 zipped = zip pat_binds_tc pat_exp_types

10 ; forM_ zipped $ \(1l_tc_bind, rhs_ty_to_use) ->

11 do { let exhaust_pats = getUnusedPatsFromLTcPatBind 1_tc_bind
12 ; let lpatss = map fst exhaust_pats

13 ; wcs <- forM lpatss $ \[pat] ->

14 getConstraintsFromPat PatBindRhs pat rhs_ty_to_use

; current_loc <- getSrcSpanM

16 ; storeUnusedPatterns PatBindRhs current_loc exhaust_pats wcs

19

Listing 4.12: Additional code in function tctMonoBinds

isPatBind :: HsBind id -> Bool

Listing 4.13: Additions in hsSyn/HsBinds.lhs

1| filterPatBinds 11 [LHsBind id] -> [LHsBind id]
2| filterMonoPatBinds :: [Located TcMonoBind] -> [Located TcMonoBind]

4| mkEquationInfoFromLTcPatBind :: Located TcMonoBind -> EquationInfo
5| getUnusedPatsFromLTcPatBind :: Located TcMonoBind -> [ExhaustivePat]

Listing 4.14: Additions in typecheck/TcBinds.lhs

Predicate isPatBind shown in Listing 4.13 is used by filterPatBinds, but, we defined it in
another module. Since type HsBind id is defined in HsBinds.lhs, we believe that that is the right
place to be.

Detection of Missing Patterns The final phase of the mechanism lives inside the module TcRnDriver.lhs,
and, more specifically, function tcRnSrcbecls'. After constraint solving has taken place —and
if there were no errors— our mechanism takes place. First, we retrieve all information from the
global state. Then, we process sequentially all sets of patterns. Only if the flags enabled indi-
cate that the current context is of interest, we do further search. In cases where we have pat-
terns qualified with literal constraints, we issue the warning right away (literals are always
of the same type, so, no further check is needed). In all other cases, we call the constraint
solver (simplifyTopIncr) for each set of constraints, and, whether it fails or not to find a
unifier, we do not or do issue a warning, respectively. For the pretty printing of the warnings,
we use the function tcIncompleteWarn, shown in Listing 4.16. All these functions (including
tcIncompleteWarn) are identical (or slightly adjusted to work within the TcM monad) to the re-
spective functions in desugaring, since non-exhaustive pattern matches were previously detected
during desugaring. The implementation is displayed in Listing 4.15 below.

! The entry point for the renaming and typechecking of a whole module.
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2 ; dflags <- getDynFlags

; tc_gbl_env <- getGblEnv

4 ; let mmioref = tcg_back_up_unused tc_gbl_env
5 ; all_cases <- readTcRef mmioref

7 ; forM_ all cases $ \(hs_match_context, location, list_of_pats) ->

8 when (incomplete_flag dflags hs_match_context) $

9 do { actual_pats <- filterM (\(exh_pat, wcs) -> do

10 case (null (snd exh_pat)) of

11 True -> do { (_msgs, mval) <- tryTcErrs $
simplifyTopIncr wcs ev_binds_var

13 ; return $ case mval of { Nothing -> False

14 ; Just _  -> True}) }
15 False -> return True ) list_of_pats

17 ; when (notNull actual_pats) $
18 tcIncompletewWarn hs_match_context location (map fst actual_pats)

Listing 4.15: Additional code in function tcRnSrcDecls

1| tcIncompletewarn 11 HsMatchContext Name -> SrcSpan -> [ExhaustivePat] -> TcM ()
2| maximum_output 11 Int

3| pp_context 11 HsMatchContext Name

4 -> SrcSpan

5 -> SDhoc

6 -> ((Sboc -> SDoc) -> SDoc)

7 -> SDhoc

g| ppr_pats ;1 Outputable a => [a] -> SDoc

o| ppr_incomplete_pats :: HsMatchContext Name -> ExhaustivePat -> SDoc
10| ppr_constraint 11 (Name, [HsLit]) -> SDoc

11| incomplete_flag :: DynFlags -> HsMatchContext id -> Bool

Listing 4.16: Additions in typecheck/TcRnDriver.lhs

Cleaning Up Finally, we had to deactivate the previous mechanism, or else, we would have multi-
ple warnings. The entry point was in file deSugar/Match.lhs and, more specifically, the func-
tion matchCheck_really. Unfortunately, till now, matchCheck_really used to handle both
overlapping and missing patterns, so we could not remove it. Instead, we only removed the
part that had to do with the detection of missing patterns. Additionally, we moved functions
incomplete_flag, dsIncompleteWarn, ppr_incomplete_pats and ppr_constraint (for
the pretty printing of warnings) in #ypecheck/TcRnDriver.lhs. The rest three functions we previ-
ously mentioned (maximum_output, pp_context and ppr_pats) had to be copied and not just
moved, because they are also important in the issuing of overlapping-pattern-warnings.
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Chapter 5

Evaluation of the Mechanism

In this chapter, we present the results we had, when testing our mechanism. Section 5.1 concerns
soundness. We show that our mechanism passed almost all the tests, issuing the wanted warnings, in
most cases tested. On the other hand, in Section 5.2, we concern ourselves with the efficiency of GHC.
We show that, even on extremely large tests, the slowdown due to our additions is insignificant.

5.1 Testing

5.1.1 Proper Interaction With The System

First of all, we had to check that our additions interact properly with the existing system. In order to
be sure about that!, we run the two major sets of tests:

GHC-Build Since GHC uses bootstrapping, if our mechanism caused any undesirable effects, it
would probably make the compiler crash. Unfortunately, this was not the most accurate test
in our case, because GHC is highly structured and a quite robust application. Hence, not many
non-exhaustive pattern-matches existed to check our mehanism. Additionally, GHC does not
make heavy use of GADTSs, because they were integrated recently into the system?.

Testsuite The ultimate test for our implementation, was the testsuite of GHC, that includes 3685 tests,
which gave rise to 14555 testcases. Due to some missing libraries (we tested GHC only with the
basic libraries), the actual number of testcases was 11482, since the 3073 were skipped. More
than enough, through these tests we came to conclude that the extended GHC does not do worse’
than the vanilla version. Below we discuss our results in detail.

Figures 5.1 and 5.2 show the results we got when we ran the suite with the extended and the vanilla
GHC, respectively. Of course, they are not of much use to anyone in this form, so, in Figure 5.3 we
show the actual differences between our outputs.

! As sure as anyone can be in such cases. In any case, we are talking about testing, and not a mathematical proof here.
2 GHC was initially released in 1989, whilst, GADTs are supported by GHC since March 2006.
3 We had some failures, but not much different from the failures of the vanilla version.
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0 caused framework failures

2 unexpected passes
72 unexpected failures

Unexpected passes:

driver T5313 (ghci,dyn)

Unexpected failures:

../../libraries/base/tests
../libraries/base/tests

./
../../libraries/base/tests/System
/

../libraries/random/tests

codeGen/should_run
codeGen/should_run
concurrent/should_run
concurrent/should_run
concurrent/should_run

concurrent/should_run
concurrent/should_run
concurrent/should_run
concurrent/should_run
deSugar/should_compile
dph/nbody

driver

ffi/should_run
ffi/should_run
ffi/should_run
ffi/should_run
ghc-api/T7478
ghci.debugger/scripts
ghci.debugger/scripts
ghci/linking
ghci/linking
numeric/should_run
numeric/should_run
numeric/should_run
parser/should_run
parser/should_run
perf/compiler
perf/compiler
perf/compiler
perf/haddock
perf/haddock
perf/haddock
perf/should_run
perf/should_run
programs/barton-mangler-bug

programs/barton-mangler-bug
programs/seward-space-leak
rts

rts

rts

rts

rts
simplCore/should_compile

T7653 [bad exit code] (ghci, threadedl, threaded2)
memo@O1 [bad stdout] (hpc)
Timeout@@1 [bad exit code] (ghci,threadedl, threaded2)
rangeTest [bad exit code] (optasm, threaded2,dyn
,optllvm)
cgrun@15 [bad exit code] (ghci)
cgrun068 [bad exit code] (ghci)
T367_letnoescape [bad exit code] (ghci)
T5611 [bad exit code] (ghci)
T7970 [bad stdout] (normal, hpc,optasm, threadedl
, threaded2,dyn, optllvm)
T7970 [bad stdout or stderr] (ghci)
conc023 [bad exit code] (ghci, threadedl, threaded2)
conc064 [bad exit code] (ghci)
foreignInterruptible [bad exit code] (ghci)
T5455 [stderr mismatch] (normal)
dph-nbody-vseg-opt [bad exit code] (threadedl
, threaded2)
werror [stderr mismatch] (normal)
T1288_ghci [bad exit code] (ghci)
T1679 [bad exit code] (ghci)
ffioe3 [bad exit code] (ghci)
ffie21 [bad exit code] (ghci)
T7478 [bad exit code] (normal)
dynbrk@@9 [bad exit code] (ghci)
print020 [bad exit code] (ghci)
ghcilink@@2 [bad exit code] (normal)
ghcilinkee5 [bad exit code] (normal)
T7689 [exit code non-0] (dyn)
arith@16 [bad exit code] (ghci)
expfloat [bad exit code] (ghci)
readRun@02 [bad exit code] (ghci)
readRun@@4 [bad exit code] (hpc)
T1969 [stat too good] (normal)
T3294 [stat not good enough] (normal)
T4801 [stat not good enough] (normal)
haddock.Cabal [stat not good enough] (normal)
haddock.base [stat not good enough] (normal)
haddock.compiler [stat too good] (normal)
T7797 [stat too good] (normal)
lazy-bs-alloc [stat too good] (normal)
barton-mangler-bug [bad exit code] (hpc,optasm
, threaded2
,dyn, optllvm)
barton-mangler-bug [exit code non-0] (threadedl)
seward-space-leak [bad exit code] (ghci)
T2047 [bad exit code] (ghci)
T6006 [bad exit code] (hpc)
T7919 [bad stdout] (dyn)
T7919 [exit code non-0] (normal,hpc,optasm,threadedl
, threaded2, optllvm)
T7919 [bad stdout or stderr] (ghci)
T7702 [stderr mismatch] (optllvm)

Figure 5.1: Testsuite Results: Extended Mechanism
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/
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arr
cod
cod
con
con

con
con
con
dph
dph
ffi
ffi
ffi
ffi
ghc
ghc
ghc
ghc
ghc

0 caused framework failures
2 unexpected passes
68 unexpected failures

cted passes:
ver T5313 (ghci,dyn)

cted failures:
./libraries/base/tests
../libraries/base/tests
./libraries/base/tests/System
../libraries/random/tests

./libraries/unix/tests
ay/should_run
eGen/should_run
eGen/should_run
current/should_run
current/should_run

current/should_run
current/should_run
current/should_run
/dotp

/nbody

/should_run
/should_run
/should_run
/should_run
-api/T7478
i.debugger/scripts
i.debugger/scripts
i/linking
i/linking

numeric/should_run
numeric/should_run
numeric/should_run
parser/should_run
parser/should_run

per
per
per
per
per
per
per
per
pro

pro
rts
rts

rts
sim

f/compiler

f/compiler

f/compiler

f/haddock

f/haddock

f/haddock

f/should_run
f/should_run
grams/barton-mangler-bug

grams/seward-space-leak

plCore/should_compile

T7653 [bad exit code] (ghci, threadedl, threaded2)
memo001 [bad stdout] (hpc)
Timeout@@1 [bad exit code] (ghci,threadedl, threaded2)
rangeTest [bad exit code] (optasm, threaded2,dyn
,optllvm)
executeFile@01 [bad exit code] (threaded2)
arr016 [exit code non-0] (optllvm)
cgrun@15 [bad exit code] (ghci)
cgrun068 [bad exit code] (ghci)
T5611 [bad exit code] (ghci)
T7970 [bad stdout] (normal, hpc,optasm,threadedl
, threaded2,dyn, optllvm)
T7970 [bad stdout or stderr] (ghci)
conc023 [bad exit code] (ghci, threadedl, threaded2)
foreignInterruptible [bad exit code] (ghci)
dph-dotp-copy-opt [bad exit code] (threaded2)
dph-nbody-vseg-opt [bad exit code] (normal, threaded1l)
T1288_ghci [bad exit code] (ghci)
T1679 [bad exit code] (ghci)
ffiee3 [bad exit code] (ghci)
ffie21 [bad exit code] (ghci)
T7478 [bad exit code] (normal)
dynbrk@@9 [bad exit code] (ghci)
print®20 [bad exit code] (ghci)
ghcilink002 [bad exit code] (normal)
ghcilink@e5 [bad exit code] (normal)
T7689 [exit code non-0] (dyn)
arithe16 [bad exit code] (ghci)
expfloat [bad exit code] (ghci)
readRun@@2 [bad exit code] (ghci)
readRun004 [bad exit code] (hpc)
T1969 [stat not good enough] (normal)
T3294 [stat not good enough] (normal)
T4801 [stat not good enough] (normal)
haddock.Cabal [stat not good enough] (normal)
haddock.base [stat not good enough] (normal)
haddock.compiler [stat too good] (normal)
T7797 [stat too good] (normal)
lazy-bs-alloc [stat too good] (normal)
barton-mangler-bug [bad exit code] (hpc,optasm
, threaded2, dyn
,optllvm)
seward-space-leak [bad exit code] (ghci)
T7919 [bad stdout] (dyn)
T7919 [exit code non-0] (normal, hpc,optasm, threadedl
, threaded2, optllvm)
T7919 [bad stdout or stderr] (ghci)
T7702 [stderr mismatch] (optllvm)

Figure 5.2: Testsuite Results: Vanilla GHC
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+

../../libraries/unix/tests
array/should_run

dph/dotp
concurrent/should_run
concurrent/should_run

rts

rts

deSugar/should_compile
driver

dph/nbody
dph/nbody
perf/compiler
perf/compiler

programs/barton-mangler-bug

executeFile@01 [bad exit code] (threaded2)
arr016 [exit code non-0] (optllvm)
dph-dotp-copy-opt [bad exit code] (threaded2)
T367_letnoescape [bad exit code] (ghci)
conc064 [bad exit code] (ghci)

T2047 [bad exit code] (ghci)

T6006 [bad exit code] (hpc)

T5455 [stderr mismatch] (normal)
werror [stderr mismatch] (normal)
dph-nbody-vseg-opt [bad exit code] (normal

, threaded1)
(threaded1
, threaded2)

dph-nbody-vseg-opt [bad exit code]

T1969 [stat not good enough] (normal)
T1969 [stat too good] (normal)

barton-mangler-bug [exit code non-0] (threadedl)

Figure 5.3: Actual Differences Between Testsuite Results

Let’s discuss the differences shown in Figure 5.3 in detail:
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1. T5455: This stderr-mismatch shown in line 9 is maybe the most interesting. The example T5455
includes the definition of the function of the Listing 5.1. Vanilla GHC used to avoid issuing
warnings is such cases, where the pattern bound is not actually demanded in the body of the let.

Instead, we believe that warnings is such cases must be issued, mainly for two reasons:

— Due to Haskell’s laziness, if the pattern will not be demanded, it will never be evaluated.

Hence, there is no reason to add such a let-binding in the first place.

— Even ignoring the fact of lazy evaluation, the pattern binding is non-exhaustive anyway. If
we had strict evaluation, such a pattern-binding could lead to a runtime error, so, the warning

should be issued.

o

w :: String -> String
wx = let (_:_) = x in "1”

Listing 5.1: Function With Non-Demanded Pattern

mismatch is just a false alarm.

3. T1969: Almost nothing to discuss on this one, test T1969 shows statistics about the performance
ofthe test 77969.hs of the suite. More specifically, this test case contains 300 data types (with one
data constructor each), and 300 instances of a class (one instance for each data type). Remarkable
is the fact that our extension has nothing to do with class instances, so, this improvement is
somewhat unexpected. The only thing that could possibly contribute positively, is the way we
handle pattern matches (in this file we had 300 exhaustive pattern matches, one for each type
and the respective data constructor).

. werror: This stderr-mismatch shown in line 10 is nothing more than a rearrangement in the
order of the issued warnings. The order in the line and column of the warnings is preserved, and
the difference in the warnings, concerns only warnings of the same line and column. Hence, this




4. barton-mangler-bug: This difference shown in line 20 is rather cryptic. Both vanilla and ad-
justed GHC fail in the cases of hpc, optasm, threaded2, dyn, optllvm with bad exit code. The
extended version seems to fail additionally in the case of threadedl with non-0 exit code. Un-
fortunately, this difference in the exit codes was not available to further inspection. In any case,
the whole program did not have any non-exhaustive match, so, our mechanism would not store
any pattern at all, so, we believe that this mismatch is caused by another bug.

5. dph-nbody-vseg-opt: Like the previous one, this difference in lines 12-15, is quite irrelevant.
Vanilla GHC fails in the cases of normal and threaded1, whereas, the adjusted GHC seems to
fail in the cases of threadedl and threaded2. Suprisingly enough, this test is also completely
irrelevant with our work, and does not contain any missing pattern too.

6. rest differences: Finally, we have the mismatches shown in lines 1-7. Vanilla GHC used to fail in
the cases shown in lines 1-3 while it shouldn’t. Instead, the extended mechanism — for completely
unknown reasons — passes these tests, but it fails in the tests of lines 4-7. Unfortunately, all 7
cases are completely irrelevant with our work (mostly related with parallelism, concurrency
and ffi calls). Additionally, they contain only exhaustive matches, and, the second phase of our
mechanism (the only one that could have some side effects) does not even come to work.

Although we had the differences discussed, we believe that the numbers are quite reassuring:

| Adjusted GHC  Vanilla GHC

expected passes 11122 11126
expected failures 141 141
unexpected passes 2 2
unexpected failures 72 68

5.1.2 Proper Non-Exhaustive Warnings

After that, we had to check that our implementation does what it is supposed to do: Issue the correct
warnings in pattern-match constructs, even in cases that we are pattern matching against GADT con-
structors. In order to check that, we have written some tests of our own', that cover many possible
settings. We descibe some of them below:

A Basic Test These are actually the same test, but, in order to check that our mechanism works in all
pattern-match constructs, we had to test it on all of them?. In this testcase, only constructor T1 can
satisfy the type specified. Although obvious to the reader, GHC used to issue a warning on this
one, before implementing our mechanism. The twist in this one is the fact that, if we change the
type signature of c from T a a -> InttoT Int Int -> Int, GHC does notissue a warning
about missing patterns. The reason for this is the patch described in Section 4.2.1. Since no type
variables are introduced, constraint solving is not actually needed and the problem can be solved
with a simple equality test.

1| {-# OPTIONS -XGADTs -XKindSignatures -Wall #-}
3| module GADTmatch@1 where

sldata T :: * -> * -> * where
6 T1 :: Int -> Int -> T Int Int

! We have also collected some tests that have been issued in the GHC/Haskell community.
2 Although we do not present it here, all the examples shown below have been tested like this. However, for readability
reasons, we presnt only pattern-match constructs and case expressions, since are usually clearer.
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7 T2 :: Char -> Int -> T Char Int
8 T3 :: Int -> Char -> T Int Char

10| -- Check on a case expression

ijc :: T aa ->Int

2|c x =

13 case x of -- should not issue warning
14 T1 i j -> i+j

Listing 5.2: Test GADTmatchO1case.hs

{-# OPTIONS -XGADTs -XKindSignatures -fwarn-incomplete-uni-patterns -Wall #-}

)

module GADTmatchO1 where

sldata T :: * -> * -> * where

6 T1 :: Int ->Int -> T Int Int

7 T2 :: Char -> Int -> T Char Int
8 T3 :: Int -> Char -> T Int Char

10| -- Check on a let-binding

in|f :: T aa->1Int

2| f x = 1let T1 1 j = x -- should not issue warning
13 in  i+j

Listing 5.3: Test GADTmatchO1let.hs

{-# OPTIONS -XGADTs -XKindSignatures -Wall #-}
3| module GADTmatch0l where

sldata T :: * -> * -> * where

6 T1 :: Int ->Int -> T Int Int

7 T2 :: Char -> Int -> T Char Int
8 T3 :: Int -> Char -> T Int Char

10| -- Check on a function pattern-matching
injw :: T aa ->Int
2w (T1 1 j) = i+j -- should not issue warning

Listing 5.4: Test GADTmatchO1pm.hs

{-# OPTIONS -XGADTs -XKindSignatures -fwarn-incomplete-uni-patterns -Wall #-}

module GADTmatchO1 where

sldata T :: * -> * -> * where

6 T1 :: Int ->Int -> T Int Int
7 T2 :: Char -> Int -> T Char Int
8 T3 :: Int -> Char -> T Int Char

10| -- Check on a where-binding (syntactic sugar for let)
g :: T aa ->1Int

219 x = i+j

13 where T1 i j = x -- should not issue warning

Listing 5.5: Test GADTmatchO1where.hs

Nested GADT Patterns The reason we have included this test, is to show that our mechanism be-
haves well, even in nested patterns. There is no actual missing pattern here, although the vanilla
GHC issues one: X2.
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1| {-# OPTIONS_GHC -Wall -XGADTs -XKindSignatures #-}
3| module Nested where

s/data X :: * -> * -> * where
6 X1 :: X Char Char
7 X2 :: X Int Char

oldata Y :: * -> * -> * where

10 Y1 :: Int -> Char -> Y Int Char
11 Y2 :: Char -> Char -> Y Char Char
12 Y3 :: a -> b ->Y a b

4| fxy 1t Y (Xaa) (Xaa) ->a
15| fxy value = case value of
16 Y3 X1 X1 -> 'a’

Listing 5.6: Test GADTmatch02nested.hs

A Simple Test This test, although embarrassingly simple, is left in our testsuite for historical reasons,
since it’s the first one I came across and my main challenge for a long time.

1| {-# OPTIONS_GHC -Wall -XGADTs -XKindSignatures #-}
3| module Simple where

5|data Foo a b where

6 F1 :: Foo Int Bool
7 F2 :: Foo Bool Int
8 F3 :: Foo Int Int
9 F4 :: Foo Char Char

11| simple :: Foo a a -> Int
12| simple F3 = 42

Listing 5.7: Test GADTmatchO3simple.hs

GADT;s and Type Classes The next two examples show a behaviour of the mechanism that is quite
interesting. Although our mechanism managed to avoid issuing a warning for the function add
(as it is supposed to do) in Listing 5.1.2, it issued a warning for the function ipow. Although
it seems wrong at a first glance (since the class constraints are unsatisfiable), it it’s actually
absolutely correct! This is well illustrated in the next program (Listing 5.1.2) where GHC issued
no error for the unreachable branch. The reason for this behaviour is Haskell’s Open World
Assumption. Since new instances can be added at any time (and, more importantly in any file),
the satifiability of the class constraint is required only at the call site. Hence, the type checker
does not reject the program. Since our mechanism preserves the properties of the type system,
if the missing pattern is type-correct, we have to issue the warning.

1| {-# OPTIONS_GHC -Wall -XGADTs -XKindSignatures #-}
3| module Numerical where

s5|data NumT :: * -> * where

6 NumI :: Int -> NumT Int

7 NumF :: Float -> NumT Float
8 NumD :: Double -> NumT Double

10| -- No Warning Should Be Issued Here
i1jadd :: (Num a) => NumT a -> NumT a -> NumT a
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12| add (NumI x) (NumI y) NumI $ x + vy
13add (NumF x) (NumF y) NumF $ x + vy
14| add (NumD x) (NumD y) = NumD $ X + y

16| ipow :: (Integral b, Num a) => NumT a -> NumT b -> NumT a
17| ipow (NumI Xx) (NumI y) = NumI $ x Ay
18| ipow (NumF Xx) (NumI y) NumF $ x Ay
19| ipow (NumD Xx) (NumI y) = NumD $ x Ay

Listing 5.8: Test GADTmatchO4numerical.hs

1| {-# OPTIONS_GHC -Wall -XGADTs -XKindSignatures #-}
3| module Openwl where
s|data Gen :: * -> * where

6/ GenS :: (Num a) => a -> Gen [a]
7 GenT :: (Integral a, Integral b) =>a -> b -> Gen [(a,b)]

9| list :: (Num a) => [Gen [a]] -> [a]

0| list [] = []

11| 1ist ((GenS x):rest) = x : list rest

12| list ((GenT _ _):rest) = 1 : list rest -- (a,b) NOT an instance of Num (not
13 -- exported from the prelude. Hence,
14 -- currently unreachable.

Listing 5.9: Test GADTmatchO5openw.hs

GHC Tickets The next three programs are more or less covered by the previous examples but I be-
lieve that had to be included in this work. All of them are official bugs stated in the GHC Com-
munity and, since our mechanism is handling all cases uniformly, all of them are covered.

{-# OPTIONS_GHC -Wall -XGADTs #-}

3| module GADTmatch@7trac2006 where

5|data Expr a vs where

6 EPrim 11 String -> a -> Expr a vs
7 Evar 1 Expr a (a,vs)

8

9| interpret :: Expr a () -> a

10| interpret (EPrim _ a) = a
11| -- interpret EVar = error ”unreachable”

Listing 5.10: Test GADTmatch07trac2006.hs

1| {-# OPTIONS_GHC -Wall -XGADTs #-}
3| module GADTmatch@8trac366 where
s|data T a where

6 Cl :: T Char

7 C2 :: T Float

9| exhaustive :: T Char -> Char
10| exhaustive C1 = " '/

Listing 5.11: Test GADTmatch08trac366.hs
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{-# OPTIONS_GHC -Wall -XGADTs #-}
module GADTmatch0©9trac3927 where

data T a where
T1 :: T Int
T2 :: T Bool

-- f1
fi ::
fiT1
f1i T2

should be exhaustive
Ta->Ta -> Bool
T1 True

T2 = False

2
f2 ::
f2 T1
f2 T2

1s exhaustive too,
Ta->Ta -> Bool
(T2 :: T Int) = True

(T2 :: T Bool) = False

even more obviously

Listing 5.12: Test GADTmatch09trac3927.hs

Data Kinds Finally, we show that our mechanism behaves as expected in the presence of promoted
types.

{-# LANGUAGE DataKinds, GADTs, TypeOperators #-}
module GADTmatchl10dkinds where

data Vect v a where

Nil :: Vect '[] a
Vec :: a -> Vect v.a ->Vect (() ": v) a
instance Eq a => Eq (Vect v a) where
(==) Nil Nil = True
(Vec e0 vO) == (Vec el vl) = e0 == el && vO == v1

Listing 5.13: Test GADTmatch10dkinds.hs

{-# OPTIONS_GHC -Wall -XDataKinds -XKindSignatures -XGADTs #-}
module GADTmatchlldksimple where

data Foo :: Bool -> * where
A :: Foo False
B :: Foo True
hmm :: Foo b -> Foo b -> Bool
hmm A A = False
hmm B B = True

Listing 5.14: Test GADTmatch11dksimple.hs

One Ticket Missing The following example is a case our implementation cannot handle at the mo-
ment. The commented GBool branch is actually inaccessible but we issue a warning about a
missing pattern. Interesting is the fact that if we annotate the scrutinee baz a with the type
G Int, the warning is not issued. The reason our extension behaves this way is quite simple:
Our current implementation cannot exploit the type constraints that are extracted from the rest
of the program. In our case, the constraint from the as-pattern is not used by our extension and
the constraints introduced by the pattern GBool seem to be solvable while they are not. Hope-
fully, this is only an implementation issue and not a problem of the mechanism. Additionally,

49



although incomplete, the current implementation can handle all annotated top level definitions,
so, the programmer can avoid such warnings with a type signature. In any case, in the near fu-
ture, our implementation will follow precisely the mechanism we described, and such cases will
be handled too.

{-# OPTIONS_GHC -Wall -XGADTs #-}
3| module Trac4139 where

5|data F a where

6 FInt :: F Int

FBool :: F Bool

oldata G a where

10 GInt :: G Int

11 GBool :: G Bool

13| class Baz a where

14 baz :: Fa ->G a

15

16| instance Baz Int where { baz _ = GInt }
17| instance Baz Bool where { baz _ = GBool }
18

19|bar :: Baz a => F a -> ()

)

bar a@(FInt)
case baz a of
GInt -> ()
2 -- GBool -> ()
24l bar _ = ()

2
> =

Listing 5.15: Test GADTmatchO6trac4139.hs

5.2 Performance

5.2.1 Trivial Tests

The least accurate tests —which we inevitably run— were the build of GHC and the testsuite. None
of them is closely related to our mechanism, and sparsely use GADTs, or non-exhaustive matches.
Therefore, these tests were not of much use in the measurement of our mechanism’s time performance.
The main reasons we ran these tests are:

e GHC is a large and well-written project. Although the cases we handle do not seem to appear
very often in GHC, many different constructs and methods are used in it. Hence, through this
performance test, we could check how the extended GHC performs in a general setting.

e The build of GHC is already time consuming. We definately wouldn’t want to make it last even
more.

e The performance test on testsuite, of even less use, was really simple to do. Since we would
anyway test our mechanism on the testsuite, why not measure our time consumption on this one
too?

Time results we got from the GHC and testsuite build are shown in Figure 5.4 below. Rather unex-
pected is the fact that GHC’s build in both cases took about 1 hour and 47 minutes, the extended GHC
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was 22 seconds faster that the original'.

Adjusted GHC | Vanilla GHC
GHC Build (ms) 6400179 6422403
Testsuite Build (ms) 17878182 17860428

Figure 5.4: Time Results of GHC & Testsuite Build

5.2.2 General Tests

Roughly speaking, our mechanism is slower than the original, for three reasons: a) For each potten-
tially missing pattern, we call the typechecker to detect the respective type constraints. ) For each
match, we store the potentially missing patterns along with the respective constraints in the global
reference field. In contrast, the previous mechanism used to issue the warning as soon as the patterns
were detected. ¢) Finally, for each pattern we call the constraint solver, on a trial basis. Specifically,
if the pattern is not actually missing, the constraint solving may fail (literally or due to errors), so, we
have the cost of the recovery (no negligible at all).

In order to measure such delays, we created large tests” like the examplel of Listing 4.2. In these
cases, the warnings issued by the vanilla GHC are identical to the ones the extended mechanism
issues. Hence, through this test, we can approximately calculate the additional time cost per pattern,
or even per match. The only factor we can’t estimate through these tests is the potential failure and
recovery of the constraint solver (all patterns may appear in the context, so, constraint solving always
succeeds), but, we talk about that in the next section.

Number of Data Constructors | Adjusted GHC (ms) Vanilla GHC (ms) Delay (ms)
27 348 345 3
256 447 364 83
625 607 511 96
1296 1004 656 348
2041 1536 969 567
3125 2122 1298 824

Figure 5.5: Non-Exhaustive Performance Test Results

5.2.3 GADT-Specific Tests

Finally, we measure our performance in cases where vanilla GHC issues warnings while it shouldn’t.
We have created large tests® , where our functions are actually exhaustive. In order for our mechanism
to ensure that there are actually no missing patterns, it has to run through all potential patterns, collect
the respective constraints, try to solve them and fail. Hence, this is the best test to check the worst-case
delay caused by our trial-and-error method.

! We believe that this speed-up can be attributed only to caching or other irrelevant reasons, since our mechanism performs
at least as many operations as the original.

2 These tests can be found in the appendix B. Performance Tests.

3 These tests can also be found in the appendix B. Performance Tests.
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Number of Data Constructors | Adjusted GHC (ms) Vanilla GHC (ms) Delay (ms)
27 321 318 3
256 454 376 78
625 712 513 199
1296 1146 656 490
2041 1818 983 835
3125 2527 1314 1213

Figure 5.6: Exhaustive Performance Test Results

5.2.4 Sum Up

In Figures 5.7 and 5.8 below are presented the previous results graphically. The blue line represents
the exhaustive definitions and the green line represents the non-exhaustive ones. As expected, the
behaviour of the extended mechanism is almost linear in the number of data constructors, since each
data constructor introduces (most of the times) only a few constraints. Additionally, in Figure 5.8 one
can see that if we have less than 50 data constructors (which is the most common case), the compilation
delay does not exceed 5%, a really decent percentage, especially if we consider how much time it takes
to compile a file with GHC.
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1400 T T T T T T
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1000
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Chapter 6

Conclusion

6.1 Contribution

Although small, we believe that this misbehaviour has contributed negatively to the usage of GADTs.
Hence, through our work, we hope to make the setting more friendly for Haskell programmers, and
motivate them to use this significant feature in a larger extent.

Furthermore, our mechanism enjoys the highly desirable properties of efficiency and simplicity. Due
to this, we believe that it would be worth it to be implemented in other languages that support GADTs
too. It is based on very simple and principal mechanisms (type-checking and exhaustiveness check on
ADT matches) that are already performed by all compilers. So, such an extension would be relatively
easy to implement.

6.2 Future Work

The exhaustiveness of pattern-match is a subject long studied and efficiently solved. We believe that,
from the theoretical point of view, our work extends the previous mechanism in a rather general way,
and, its soundness is somewhat self-evident. Hence, we believe that not much work could be done on
this aspect of the subject.

On the other hand, there is much work that can be done, regarding the implementation. Some of the
adjustments we intend to do in the near future include:

e Fully implement our extension. The extension suggests that cases like the one shown in List-
ing 5.1.2 are handled too, hence, we intend to extend our code to implement the exact procedure
we have described.

e Complete separation of exhaustiveness and overlapping test. Till now, GHC provided a function
named check as the entry point for both the detection of missing and overlapping patterns.
Since these two tests are now separate, so must be their entry points. Although this could have
caused some efficiency problems, Haskell’s laziness helped us overcome such a situation. Since
overlapping patterns are not demanded in our implementation, they are never actually computed
and the potential slowdown is avoided.

o Shift of all respective functions (and files in general) from the desugarer to the folder that con-
cerns the phase of type-checking. Henceforth, the exhaustiveness of pattern-match has nothing
to do with the phase of desugaring, so, there is no reason for it to be there.
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A.

Implementation

In Chapter 4, we cited only the type signatures of the functions we implemented in GHC. The reader

who wants to take a closer look at our work can find here the whole implementation.

-- | Additional Functions in HsBinds.lhs
isPatBind :: HsBind id -> Bool

3| isPatBind (PatBind {}) = True

isPatBind _other_pat_bnd = False

-- | Additional Functions in TcBinds.lhs
filterPatBinds :: [LHsBind id] -> [LHsBind id]
filterPatBinds binds = [b | b <- binds, isPatBind (unLoc b)]

filterMonoPatBinds :: [Located TcMonoBind] -> [Located TcMonoBind]
filterMonoPatBinds binds = [b | b <- binds, isTcPatBind (unLoc b)]
where isTcPatBind (TcPatBind _ _ _ _) = True
isTcPatBind _other_bind = False
mkEquationInfoFromLTcPatBind :: Located TcMonoBind -> EquationInfo
mkEquationInfoFromLTcPatBind (L _ (TcPatBind _ pat _ _))
= EgqnInfo { eqn_pats = [unLoc pat]
, eqn_rhs = cantFailMatchResult undefined }

mkEquationInfoFromLTcPatBind (L _ _other_bind)
= error "mkEquationInfoFromLTcPatBind called with TcFunBind”

getUnusedPatsFromLTcPatBind :: Located TcMonoBind -> [ExhaustivePat]

3| getUnusedPatsFromLTcPatBind mono_bind

= fst $ check [mkEquationInfoFromLTcPatBind mono_bind]

-- | Additional Functions in TcMatches.lhs
extractMissingPatterns :: MatchGroup TcId (Located (body TcId))
-> ([ExhaustivePat], [[LPat Name]])
extractMissingPatterns match_group = (exhaust_pats, missing_pats)
where exhaust_pats = fst (check (mkEqInfoPure match_group))
missing_pats = map fst exhaust_pats

3| -- | Additional Functions in TcPat.lhs

getConstraintsFromPat :: HsMatchContext Name
-> LPat Name -> TcSigmaType
-> TcM WantedConstraints
getConstraintsFromPat hs_ctxt pat sig_ty
= do { let tc = tcPat hs_ctxt pat sig_ty (return ())
; 1liftM snd (captureConstraints tc) }

getConstraintsFromPats :: HsMatchContext Name
-> [LPat Name] -> [TcSigmaType]
-> TcM WantedConstraints
getConstraintsFromPats hs_ctxt pats pat_tys
= do { let tc = tcPats hs_ctxt pats pat_tys (return ())
; 1iftM snd (captureConstraints tc) }

3| -- | Additional Function in DSGRHSs.lhs
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mkEqInfoPure :: MatchGroup Id (Located (body Id)) -> [EquationInfo]
mkEqInfoPure (MG { mg_alts = matches }) = map mkEgInfoPurel matches
where
mkEqInfoPurel :: LMatch Id (Located (body Id)) -> EquationInfo
mkEqInfoPurel (L _ (Match pats _ (GRHSs grhss _)))
= EqnInfo { egn_pats = map unLoc pats
, egn_rhs = foldrl combineMatchResults (map lgrhsToMR grhss) }

1grhsToMR :: LGRHS Id (Located (body Id)) -> MatchResult
1grhsToMR (L _ (GRHS guards _)) = guardsToMR (map unLoc guards)

guardsToMR :: [GuardStmt Id] -> MatchResult

guardsToMR [] cantFailMatchResult undefined

guardsToMR (BodyStmt e _ _ _ : stmts) Just addTicks <- lhsexprToMR2 e

guardsToMR stmts

guardsToMR (BodyStmt stmts) = MatchResult CanFail undefined

guardsToMR (LetStmt _ : stmts) = guardsToMR stmts

guardsToMR (BindStmt _ _ _ _ : stmts) = guardsToMR stmts

guardsToMR _ = panic ”"Guards: Non Exhaustiveness failure”

lhsexprToMR2 :: LHsExpr Id -> Maybe (CoreExpr -> DsM CoreExpr)
lhsexprToMR2 (L _ (HsVvar v))

| v ‘hasKey’ otherwiseIdKey || v ‘hasKey’ getUnique trueDataConId = Just return
lhsexprToMR2 (L _ (HsTick tickish e)) | Just ticks <- lhsexprToMR2 e = Just ticks
lhsexprToMR2 (L _ (HsBinTick ixT _ e)) | Just ticks <- lhsexprToMR2 e = Just ticks
lhsexprToMR2 (L _ (HsPar e)) = lhsexprToMR2 e
lhsexprToMR2 _ = Nothing

Listing 1: Additional Functions (Part 1)

-- | Additional Functions in TcRnDriver.lhs
-- All of them are copies (or slighly adjusted) of the respective

3| -- ones 1in the desugarer. All useful for pretty-printing if warnings.

tcIncompletewarn :: HsMatchContext Name -> SrcSpan -> [ExhaustivePat] -> TcM ()
tcIncompletewarn kind loc pats
= addwarnAt loc warn
where
warn = pp_context kind loc (ptext (sLit "are non-exhaustive”))

(\_ -> hang (ptext (sLit ”"Patterns not matched:”))

4 ((vcat $ map (ppr_incomplete_pats kind)

(take maximum_output pats))

$$ dots))

dots | pats ‘lengthExceeds’ maximum_output = ptext (sLit ”...")
| otherwise = empty

maximum_output :: Int
maximum_output = 4

pp_context :: HsMatchContext Name -> SrcSpan -> SDoc -> ((SDoc -> SDoc) -> SDoc) -> SDoc
pp_context kind _loc msg rest_of_msg_fun
= vcat [ptext (sLit ”"Pattern match(es)”) <+> msg,
sep [ptext (sLit "In”) <+> ppr_match <> char ’:’, nest 4 (rest_of_msg_fun pref)]]
where
(ppr_match, pref)
= case kind of
FunRhs fun _ -> (pprMatchContext kind, \ pp -> ppr fun <+> pp)
_ -> (pprMatchContext kind, \ pp -> pp)
ppr_pats :: Outputable a => [a] -> SDoc
ppr_pats pats = sep (map ppr pats)




ppr_incomplete_pats :: HsMatchContext Name -> ExhaustivePat -> SDoc
ppr_incomplete_pats _ (pats,[]) = ppr_pats pats
ppr_incomplete_pats _ (pats,constraints) =
sep [ppr_pats pats, ptext (sLit "with”),
sep (map ppr_constraint constraints)]

ppr_constraint :: (Name, [HsLit]) -> SDoc
ppr_constraint (var,pats) = sep [ppr var, ptext (sLit ”‘notElem’”), ppr pats]

3| incomplete_flag :: DynFlags -> HsMatchContext id -> Bool

incomplete_flag dflags (FunRhs {}) = wopt Opt_WarnIncompletePatterns dflags
incomplete_flag dflags CaseAlt = wopt Opt_WarnIncompletePatterns dflags
incomplete_flag _flags IfAlt = False

incomplete_flag dflags LambdaExpr = wopt Opt_WarnIncompleteUniPatterns dflags
incomplete_flag dflags PatBindRhs = wopt Opt_WarnIncompleteUniPatterns dflags
incomplete_flag dflags ProcExpr = wopt Opt_WarnIncompleteUniPatterns dflags
incomplete_flag dflags RecUpd = wopt Opt_WarnIncompletePatternsRecUpd dflags
incomplete_flag _flags ThPatQuote = False

incomplete_flag _flags (StmtCtxt {}) = False

Listing 2: Additional Functions (Part 2)

-- | Additional Function in TcRnMonad.lhs

3| storeUnusedPatterns :: HsMatchContext Name

-> SrcSpan
-> [([LPat Name], [(Name, [HsLit])])]
-> [WantedConstraints]
-> TcM ()
storeUnusedPatterns match_ctxt src_span ex_pats wcs
= do { let pats_and_constraints = zip ex_pats wcs
; let info_to_store = (match_ctxt, src_span, pats_and_constraints)
; unused_ref <- 1iftM tcg_back_up_unused getGblEnv
; updTcRef unused_ref (info_to_store:) }

Listing 3: Additional Functions (Part 3)

-- | Additional functions in TcSimplify.lhs

3| simplifyTop :: WantedConstraints -> TcM (Bag EvBind)

-- Simplify top-level constraints
-- Usually these will be implications,
-- but when there is nothing to quantify we don’t wrap
-- 1in a degenerate implication, so we do that here instead
simplifyTop wanteds
= do { traceTc ”"simplifyTop {” $ text "wanted = ” <+> ppr wanteds
; ev_binds_var <- newTcEvBinds
; binds <- simplifyTopIncr wanteds ev_binds_var
; traceTc "End simplifyTop }” empty
; return binds }

simplifyTopInit :: WantedConstraints -> TcM (Bag EvBind, EvBindsVar)

-- Simplify top-level constraints

-- Initializer for incremental version

simplifyTopInit wanteds

= do { traceTc ”"simplifyTopInit {” $ text "wanted = ” <+> ppr wanteds

; ev_binds_var <- newTcEvBinds
; binds <- simplifyTopIncr wanteds ev_binds_var
; traceTc ”"End simplifyTopInit }” empty
; return (binds, ev_binds_var) }

Listing 4: Additional Functions (Part 4)
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-- | Adjustments in function tcMatches, in file TcMatches.lhs

3| tcMatches :: (Outputable (body Name)) => TcMatchCtxt body

-> [TcSigmaType] -- Expected pattern types

-> TcRhoType -- Expected result-type of the Match.
-> MatchGroup Name (Located (body Name))

-> TcM (MatchGroup TcId (Located (body TcId)))

tcMatches ctxt pat_tys rhs_ty (MG { mg_alts = matches })
= ASSERT( not (null matches) ) -- Ensure that rhs_ty is filled in
do { matches’ <- mapM (tcMatch ctxt pat_tys rhs_ty) matches
; let match_group’ = MG { mg_alts = matches’, mg_arg_tys = pat_tys, mg_res_ty =
rhs_ty }

-- Detection of Missing Patterns
; errs_var <- getErrsvVar
; msgs <- readTcRef errs_var
; dflags <- getDynFlags
; current_loc <- getSrcSpanM
; let errs_flag = errorsFound dflags msgs
hs_ctxt = mc_what ctxt
; unless errs_flag $
do { let (exhaust_pats, missing) = extractMissingPatterns match_group’
; wanteds <- forM missing $ \pats ->
getConstraintsFromPats hs_ctxt pats pat_tys
storeUnusedPatterns hs_ctxt current_loc exhaust_pats wanteds

; return match_group’ }

Listing 5: Adjusted Functions (Part 1)

o)

-- | Adjustments in function tcMonoBinds, in file TcBinds.lhs

2| tcMonoBinds :: ToplLevelFlag

-> RecFlag -- Whether the binding is recursive for typechecking purposes
-- i.e. the binders are mentioned in their RHSs, and
-- we are not rescued by a type signature

-> TcSigFun -> LetBndrSpec

-> [LHsBind Name]

-> TcM (LHsBinds TcId, [MonoBindInfo])

tcMonoBinds top_lvl is_rec sig_fn no_gen
[ L b_loc (FunBind { fun_id = L nm_loc name, fun_infix = inf,
fun_matches = matches, bind_fvs = fvs })]
-- Single function binding,
| NonRecursive <- is_rec -- ...binder isn’t mentioned in RHS
, Nothing <- sig_fn name -- ...with no type signature
= -- In this very special case we infer the type of the
-- right hand side first (it may have a higher-rank type)
-- and *then* make the monomorphic Id for the LHS
-- e.g. f = \(x::forall a. a->a) -> <body>
-- We want to infer a higher-rank type for f
setSrcSpan b_loc $
do { rhs_ty <- newFlexiTyVarTy openTypeKind
; mono_id <- newNoSigLetBndr no_gen name rhs_ty
(co_fn, matches’) <- tcExtendIdBndrs [TcIdBndr mono_id top_lvl] $
tcMatchesFun name inf matches rhs_ty

’

; return (unitBag (L b_loc (FunBind { fun_id = L nm_loc mono_id, fun_infix = inf,
fun_matches = matches’, bind_fvs = fvs,
fun_co_fn = co_fn, fun_tick = Nothing })),

[(name, Nothing, mono_id)]) }




)

IS

w

tcMonoBinds top_lvl _ sig_fn no_gen binds
= do { tc_binds <- mapM (wrapLocM (tcLhs sig_fn no_gen)) binds

-- Bring the monomorphic Ids, into scope for the RHSs
; let mono_info = getMonoBindInfo tc_binds
rhs_id_env = [(name,mono_id) | (name, Nothing, mono_id) <- mono_info]
-- A monomorphic binding for each term variable that lacks
-- a type sig. (Ones with a sig are already in scope.)

; traceTc ”"tcMonoBinds” $ vcat [ ppr n <+> ppr id <+> ppr (idType id)
| (n,id) <- rhs_id_env]
; binds’ <- tcExtendIdEnv2 rhs_id_env $
mapM (wrapLocM (tcRhs top_1lvl)) tc_binds

; errs_var <- getErrsvVar
; msgs <- readTcRef errs_var
; dflags <- getDynFlags
; unless (errorsFound dflags msgs) $
do { let pat_binds_tc = filterMonoPatBinds tc_binds
pat_exp_types = [ty | PatBind {pat_rhs_ty=ty}
<- map unLoc (filterPatBinds binds’)]
zipped = zip pat_binds_tc pat_exp_types
; forM_ zipped $ \(1l_tc_bind, rhs_ty_to_use) ->
do { let exhaust_pats = getUnusedPatsFromLTcPatBind 1_tc_bind
; let lpatss = map fst exhaust_pats
; wcs <- forM lpatss $ \[pat] ->
getConstraintsFromPat PatBindRhs pat rhs_ty_to_use
; current_loc <- getSrcSpanM
storeUnusedPatterns PatBindRhs current_loc exhaust_pats wcs

; return (listToBag binds’, mono_info) }

Listing 6: Adjusted Functions (Part 2)

-- | Adjustments in function tcSimplify (now renamed to tcSimplifyTopIncr),
-- in file TcSimplify.lhs

simplifyTopIncr :: WantedConstraints -> EvBindsVar -> TcM (Bag EvBind)
-- Simplify top-level constraints incrementally
simplifyTopIncr wanteds ev_binds_var
= do { traceTc ”simplifyTopIncr {” $ text "wanted = ” <+> ppr wanteds
; zonked_final _wc <- solveWantedsTcMwithEvBinds ev_binds_var wanteds simpl_top
; bindsl <- TcRnMonad.getTcEvBinds ev_binds_var
; traceTc "End simplifyTopIncr }” empty

; traceTc ”"reportUnsolved {” empty
; binds2 <- reportUnsolved zonked_final_wc
; traceTc "reportUnsolved }” empty

; return (bindsl ‘unionBags’ binds2) }

where
-- See Note [Top-level Defaulting Plan]
simpl_top :: WantedConstraints -> TcS WantedConstraints
simpl_top wanteds
= do { wc_first_go <- nestTcS (solve_wanteds_and_drop wanteds)
-- This is where the main work happens
; try_tyvar_defaulting wc_first_go }

try_tyvar_defaulting :: WantedConstraints -> TcS WantedConstraints
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try_tyvar_defaulting wc

| isEmptyWC wc

= return wc

| otherwise

= do { free_tvs <- TcS.zonkTyVarsAndFV (tyVarsOfWC wc)

; let meta_tvs = varSetElems (filterVarSet isMetaTyVar free_tvs)

-- zonkTyVarsAndFV: the wc_first_go is not yet zonked
-- filter isMetaTyVar: we might have runtime-skolems in GHCi,
-- and we definitely don’t want to try to assign to those!

; meta_tvs’ <- mapM defaultTyVar meta_tvs -- Has unification side effects

; if meta_tvs’ == meta_tvs -- No defaulting took place;
-- (defaulting returns fresh vars)
then try_class_defaulting wc
else do { wc_residual <- nestTcS (solve_wanteds_and_drop wc)
-- See Note [Must simplify after defaulting]
; try_class_defaulting wc_residual } }

try_class_defaulting :: WantedConstraints -> TcS WantedConstraints
try_class_defaulting wc

| isEmptyWC wc || insolubleWC wc
= return wc -- Don’t do type-class defaulting if there are insolubles
-- Doing so is not going to solve the insolubles
| otherwise
= do { something_happened <- applyDefaultingRules (approximateWC wc)
-- See Note [Top-level Defaulting Plan]
; 1f something_happened
then do { wc_residual <- nestTcS (solve_wanteds_and_drop wc)
; try_class_defaulting wc_residual }
else return wc }

Listing 7: Adjusted Functions (Part 3)




B. Performance Tests

All the tests described in both sections 5.2.2 and 5.2.3 use the same GADT data types. In order to get
as accurate results as possible, we have first separately compiled the files containing the definitions
and, after that, we have kept time of the compilation only for the main programs. The files containing
the definitions are the following:

{-# OPTIONS_GHC -Wall -XKindSignatures -XGADTs #-}

3| module Size®027F (F(..)) where

sldata F :: * -> * -> * .> * ywhere

6 MKF1 :: Int -> Int -> Int ->F Int Int Int

7 MkF2 :: Int -> Int -> Char -> F Int Int Char
8 MKF3 :: Int -> Int -> Bool -> F Int Int Bool

10 MKF27 :: Bool -> Bool -> Bool -> F Bool Bool Bool

Listing 1: File Size0027F.hs

{-# OPTIONS_GHC -Wall -XKindSignatures -XGADTs #-}
3| module Size@256H (H(..)) where

sfdata H :: * -> * -> * > * _> * yhere

6 MkH1 :: Int -> Int -> Int -> Int -> H Int Int Int Int

7 MkH2 :: Int -> Int -> Int -> Char -> H Int Int Int Char

8 MKH3 :: Int -> Int -> Int -> Bool -> H Int Int Int Bool

9 MkH4 :: Int -> Int -> Int -> String -> H Int Int Int String

11 MkH256 :: String -> String -> String -> String -> H String String String String

Listing 2: File Size0256H.hs

{-# OPTIONS_GHC -Wall -XKindSignatures -XGADTs #-}
3| module Size0625X (X(..)) where

sldata X :: * -> * -> * > * _.> * where

6 MkX1 :: Int -> Int -> Int -> Int -> X Int Int Int Int

7 MkX2 :: Int -> Int -> Int -> Char -> X Int Int Int Char

8 MkX3 :: Int -> Int -> Int -> Bool -> X Int Int Int Bool

9 MkX4 :: Int -> Int -> Int -> String -> X Int Int Int String
10 MkX5 :: Int -> Int -> Int -> Integer -> X Int Int Int Integer

12| MkX625 :: Integer -> Integer -> Integer -> Integer -> X Integer Integer Integer Integer

Listing 3: File Size0625X.hs

1| {-# OPTIONS_GHC -Wall -XKindSignatures -XGADTs #-}
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3| module Sizel1296Y (Y(..)) where

sldata Y :: * -> * -> * > * _> * yhere

6 MKY1 :: Int -> Int -> Int -> Int -> Y Int Int Int Int

7 MkY2 :: Int -> Int -> Int -> Char -> Y Int Int Int Char

8 MKY3 :: Int -> Int -> Int -> Bool -> Y Int Int Int Bool

9 MKkY4 :: Int -> Int -> Int -> String -> Y Int Int Int String
10 MKY5 :: Int -> Int -> Int -> Integer -> Y Int Int Int Integer
11 MKY6 :: Int -> Int -> Int -> () -> Y Int Int Int ()

B3l MkY1296 i () > () > () >0 >Y (O OO0

Listing 4: File Size1296Y.hs

{-# OPTIONS_GHC -Wall -XKindSignatures -XGADTs #-}
;| module Size2041Z (Z(..)) where

sldata Zz :: * -> * -> * > * > * yhere

6 MkZ1 :: Int -> Int -> Int -> Int -> Z Int Int Int Int

7 Mkz2 :: Int -> Int -> Int -> Char -> Z Int Int Int Char

8 Mkz3 :: Int -> Int -> Int -> Bool -> Z Int Int Int Bool

9 Mkz4 :: Int -> Int -> Int -> String -> Z Int Int Int String
10 MkZ5 :: Int -> Int -> Int -> Integer -> Z Int Int Int Integer
11 Mkz6 :: Int -> Int -> Int -> () -> Z Int Int Int ()

12 MkZ7 :: Int -> Int -> Int -> [Int] -> Z Int Int Int [Int]

14 Mkz2401 :: [Int] -> [Int] -

\%

[Int] -> [Int] -> Z [Int] [Int] [Int] [Int]

Listing 5: File Size2041Z.hs

{-# OPTIONS_GHC -Wall -XKindSignatures -XGADTs #-}
3| module Size3125G (G(..)) where

sjdata G :: * -> * -> * > * > * _> * yhere

6 MkG1l :: Int -> Int -> Int -> Int -> Int -> G Int Int Int Int Int

7 MkG2 :: Int -> Int -> Int -> Int -> Char -> G Int Int Int Int Char

8 MKG3 :: Int -> Int -> Int -> Int -> Bool -> G Int Int Int Int Bool

9 MkG4 :: Int -> Int -> Int -> Int -> String -> G Int Int Int Int String
10 MKkG5 :: Int -> Int -> Int -> Int -> Integer -> G Int Int Int Int Integer

12 MkG3125 :: Integer -> Integer -> Integer -> Integer -> Integer
13 -> G Integer Integer Integer Integer Integer

Listing 6: File Size3125G.hs

General

In this section we present the performance tests we have described in Section 5.2.2.

1| {-# OPTIONS_GHC -XScopedTypeVariables -Wall -XGADTs #-}

3| module Funcl where

5| import Size®027F (F(..))
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)

funcl :: Fabc ->Int
funcli (MkF1 _ _ ) =1

main :: IO ()
main = print (42 :: Int)

Listing 1: File NonExhaustive/Funcl.hs

3| module Func2 where

{-# OPTIONS_GHC -XScopedTypeVariables -Wall -XGADTs #-}

import Size®256H (H(..))

func2 :: Ha b cd -> Int
func2 (MkH1 _ _ _ ) =1

main :: IO ()
main = print (42 :: Int)

Listing 2: File NonExhaustive/Func2.hs

3| module Func3 where

{-# OPTIONS_GHC -XScopedTypeVariables -Wall -XGADTs #-}

import Size©625X (X(..))

func3 :: X abcd ->Int
func3 (MkX1 _ _ _ ) =1

main :: IO ()
main = print (42 :: Int)

Listing 3: File NonExhaustive/Func3.hs

3| module Func4 where

{-# OPTIONS_GHC -XScopedTypeVariables -Wall -XGADTs #-}

import Size1296Y (Y(..))

func4 :: Yabcd ->Int
func4 (Mky1 _ _ _ ) =1

main :: IO ()
main = print (42 :: Int)

Listing 4: File NonExhaustive/Func4.hs

3| module Func5 where

{-# OPTIONS_GHC -XScopedTypeVariables -Wall -XGADTs #-}

import Size2041Z (Z(..))

func5 :: Zabcd ->1Int
funcs (Mkz1 _ _ _ ) =1

main :: IO ()
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i1{main = print (42 :: Int)

Listing 5: File NonExhaustive/Func5.hs

1| {-# OPTIONS_GHC -XScopedTypeVariables -Wall -XGADTs #-}
3| module Func6 where
5| import Size3125G (G(..))

71 funcé :: G abcde ->1Int
§| funcé (MkG1

i0jmain :: I0 ()
I1{main = print (42 :: Int)

Listing 6: File NonExhaustive/Func6.hs

GADT-Specific

In this section we present the performance tests we have described in Section 5.2.3.

1| {-# OPTIONS_GHC -XScopedTypeVariables -Wall -XGADTs #-}

)

module Funcl where

5| import Size0027F (F(..))

71 funcl :: F a a a -> Int

§| funcl (MkF1 __) =1 --1Int
9| funcl (MkF14 _ _ _) = 2 -- Char
10| funcl (MkF27 _ _ ) = 3 -- Bool

2lmain :: IO ()
13lmain = print (42 :: Int)

Listing 1: File Exhaustive/Funcl.hs

{-# OPTIONS_GHC -XScopedTypeVariables -Wall -XGADTs #-}

)

3| module Func2 where

5| import Size®256H (H(..))

71 func2 :: Haaaa ->1Int

g func2 (MkHL _ _ _ ) =1 -- Int

9| func2 (MkH86 _ _ _ _) = 2 -- Char
10| func2 (MkH171 _ _ _ _) = 3 -- Bool

11| func2 (MkH256 _ _ _ ) = 4 -- String

13lmain :: IO ()
14| main = print (42 :: Int)

Listing 2: File Exhaustive/Func2.hs

1| {-# OPTIONS_GHC -XScopedTypeVariables -Wall -XGADTs #-}

N

70



3| module Func3 where

import Size0625X (X(..))

func3 :: X a aaa ->Int

func3 (MkX1 _ _ __)=1--1Int
func3 (MkX157 _ _ _ _) = 2 -- Char
func3 (MkX313 _ _ _ _) = 3 -- Bool
func3 (MkX469 _ _ _ _) = 4 -- String
func3 (MkX625 _ _ _ _) = 5 -- Integer

main :: I0 ()
main = print (42 :: Int)

Listing 3: File Exhaustive/Func3.hs

S

)

o

3| module Func4 where

func4 :: Y aaaa ->Int

func4 (MkY1 _ _ __)=1--1Int

func4 (Mky260 _ _ _ _) = 2 -- Char

func4 (Mky519 _ _ _ _) = 3 -- Bool

func4 (MkY778 _ _ _ _) = 4 -- String

func4 (MkY1037 _ _ _ _) = 5 -- Integer
3| func4 (MkY1296 _ _ _ ) =6 -- ()

{-# OPTIONS_GHC -XScopedTypeVariables -Wall -XGADTs #-}

import Size1296Y (Y(..))

main :: IO ()
main = print (42 :: Int)

Listing 4: File Exhaustive/Func4.hs

3| module Func5 where

func5 :: Z aaaa ->1Int
func5 (Mkz1i _ _ __)=1--1Int
func5 (Mkz401 _ _ _) =2 -- Char
func5 (Mkz801 _ _ _) =3 -- Bool
func5 (Mkz1201 _ _ _ _) = 4 -- String
func5 (Mkz1601 _ _ _ _) = 5 -- Integer
3| funcs (Mkz2001 _ _ _ ) =6 -- ()
funcs (Mkz2401 _ _ _ ) =7 -- [Int]

{-# OPTIONS_GHC -XScopedTypeVariables -Wall -XGADTs #-}

import Size2041z (z(..))

main :: IO ()
main = print (42 :: Int)

Listing 5: File Exhaustive/Func5.hs

{-# OPTIONS_GHC -XScopedTypeVariables -Wall -XGADTs #-}

3| module Func6 where

W

import Size3125G (G(..))
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funcé ::
;| funcé

funcé
funcé
funcé
funcé

main

s main

Gaaaaa

Int
Char
Bool
String
Integer

Listing 6: File Exhaustive/Func6.hs
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