

Εθνικό Μετσοβίο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τομέας Δομοστατικής Εργαστήριο Αντισεισμικής Τεχνολογίας

ΔΙΕΡΕΥΝΗΣΗ ΠΡΟΣΟΜΟΙΩΣΗΣ ΚΑΙ ΑΠΟΚΡΙΣΗΣ ΚΤΗΡΙΟΥ ΣΤΟ ΣΕΙΣΜΟ ΤΗΣ ΑΘΗΝΑΣ '99, ΛΑΜΒΑΝΟΝΤΑΣ ΥΠΟΨΗ ΦΑΙΝΟΜΕΝΑ ΚΑΤΕΥΘΥΝΤΙΚΟΤΗΤΑΣ

Διπλωματική Εργάσια ΑΥΓΕΝΑΚΗΣ ΕΥΑΓΓΕΛΟΣ

Επιβλεπων: Ψυχαρής Ιωαννής, Καθηγητής ΕΜΠ

Αθηνα Δεκεμβρίος 2013

Εθνικό Μετσοβίο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τομέας Δομοστατικής Εργαστήριο Αντισεισμικής Τεχνολογίας

ΔΙΕΡΕΥΝΗΣΗ ΠΡΟΣΟΜΟΙΩΣΗΣ ΚΑΙ ΑΠΟΚΡΙΣΗΣ ΚΤΗΡΙΟΥ ΣΤΟ ΣΕΙΣΜΟ ΤΗΣ ΑΘΗΝΑΣ '99, ΛΑΜΒΑΝΟΝΤΑΣ ΥΠΟΨΗ ΦΑΙΝΟΜΕΝΑ ΚΑΤΕΥΘΥΝΤΙΚΟΤΗΤΑΣ

Διπλωματική Εργάσια Αυγενακής ευαγγελός

Επιβλέπων: Ψύχαρης Ιωάννης, Καθηγητής ΕΜΠ

Αθηνα Δεκεμβρίος 2013

Ευχαριστίες

Ολοκληρώνοντας την παρούσα εργασία, θα ήθελα να ευχαριστήσω θερμά τον καθηγητή κ. Ι. Ψυχάρη για την επιστημονική του καθοδήγηση, την άψογη συνεργασία, το ήθος και το ειλικρινές του ενδιαφέρον, τα οποία συνέβαλαν καθοριστικά στην επιτυχή ολοκλήρωση της εργασίας και τα οποία εκτιμώ ιδιαίτερα.

Ευχαριστίες θα ήθελα να απευθύνω επίσης στο συνεργάτη του εργαστηρίου αντισεισμικής τεχνολογίας κ. Ι. Ταφλαμπά, για τη σημαντική βοήθεια και το υλικό που μου προσέφερε, όπως και για το ουσιαστικό ενδιαφέρον του, καθώς και τους υποψήφιους διδάκτορες Ι. Καλυβιώτη και Β. Καρδούτσου, για τις συμβουλές τους, αλλά κυρίως για την πολύτιμη παρέα και το χαμόγελο που προσέφεραν κατά την εκπόνηση της παρούσας εργασίας. Ευχαριστώ ακόμα τους Χ. Μανιατάκη, Λ. Καράπιττα και Γ. Καμίτσο για τη βοήθεια που προσέφεραν όποτε αυτή απαιτήθηκε, καθώς και τον κ. Ν. Πνευματικό για τη βοήθειά του στην απόκτηση της μελέτης του κτηρίου που εξετάστηκε.

Ένα μεγάλο ευχαριστώ οφείλω να εκφράσω και από εδώ στους γονείς μου, χωρίς τη συνεχή συμπαράσταση των οποίων θα ήταν αδύνατη η ολοκλήρωση των σπουδών μου. Ευχαριστώ τέλος τους φίλους μου εντός και εκτός σχολής και ιδιαίτερα την παρέα του φοιτητικού forum MQN.gr για τις όμορφες στιγμές που έχουμε περάσει μαζί όλα αυτά τα χρόνια.

Summary

Examination of structural modelling and response during the Athens (1999) earthquake, considering directivity phenomena

This thesis focuses on the examination of the possible form and intensity of the ground motion of the 7th September 1999 Athens earthquake in one of the most damaged areas near Athens, Thrakomakedones, where no direct ground motion records exist. For this reason, a reverse analysis procedure using possible accelerograms is implemented on a real four-storey building, with ground floor without infill walls and underground floor with surrounding concrete walls, which was damaged in the aforementioned event and its damage details have been recorded. The possibility of existence of directivity phenomena that usually appear in areas near the fault is considered, as they are assumed to have appeared in this seismic event and may influence structural response considerably. The possible accelerograms with elastic spectra that match those proposed by the New Generation Attenuation model by Boore and Atkinson (2008) and its modifications due to directivity effects by Shahi and Baker (2011), based on recorded accelerograms of the seismic event.

A problem that arises during the analysis procedure is the selection of a realistic way to model the structure. That is why a large portion of the thesis focuses on the creation and comparison of different modelling approaches. The basic modelling method for reinforced concrete buildings that is examined and implemented is the one proposed by the Greek Retrofitting Code (acting as an extension to EC8-3) using concentrated plasticity that can take into account various reinforced concrete phenomena, such as shear cracking, shear deformations and anchorage slip. Apart from the main structural members, infill walls are also included in the model. Another aspect that has to be taken into account is the failure of structural members due to shear during the analysis, for which implementation methods are examined.

The structural response analysis to pushover and time-history excitations is performed using OpenSees, a program capable of performing non-linear structural analyses fast and reliably, developed under PEER. For this reason, several programs were developed in the Tcl programming language for input data processing, model analysis and results processing.

OpenSees is considered to be a generally reliable and fast non-linear structural analysis program, which has the additional advantage that it can easily be automated, a very important aspect for conducting parametric analyses. This program concentrates mainly on members with distributed plasticity, where it shines in contrast to other programs, however in this thesis it is used mostly for members with concentrated plasticity hinges as proposed by the Greek Retrofitting Code, using zero length elements at member ends and modifying the member stiffnesses accordingly, as proposed by Ibarra and Krawinkler (2005).

The modelling approach that is followed consists of modelling each beam in three parts, with different effective widths in each part, calculated using EC8 for the outer ones and EC2 for the inner one. The beam and column members are placed using their centerline axes, with rigid parts at their ends at the beam-column intersections, whereas P-Delta effects are also taken into account for column members. Furthermore, infill walls are considered using

diagonal members, activated only in compression for non-linear analyses. The diaphragm effect of the slabs is modelled using very stiff diagonal members and members parallel to the original structure members and the underground concrete walls are modelled also using diagonal members. It is noted that, because the real response of the building is required, the mean values of the material strengths are used, along with unity safety factors.

The non-linear response of the structural members is modelled according to the Greek Retrofitting Code using elastic members with effective stiffnesses, with concentrated hinges at their ends, implemented here using zero-length elements. What is interesting about these hinges and effective stiffnesses is that the do not only try to capture the flexural response, as sometimes considered even for reinforced concrete structural analyses, but they implicitly include shear cracking, shear deformation and rebar anchorage slip effects, that seem to strongly influence the reinforced concrete member response. In the case that is examined, those extra effects seem to have equal, if not a little more, influence on the response to flexural deformations. In fact, the calculated effective stiffnesses for the beams and columns have values about 5% and 9% respectively of their gross stiffnesses, smaller than those generally used.

Furthermore, attempts have been made to include member failures due to shear in the model, using the notion of shear length, modifying the moment - rotation curves of the concentrated plasticity hinges, so that failure occurs when the moment that corresponds to shear equal to shear strength is reached. The use of shear springs was also attempted, however using descending branches in the response of the springs to describe shear failure caused severe convergence problems, so the approximate method with the modification of the rotational hinges was preferred.

The hinge and stiffness characteristics of the members depend on the axial forces and shear lengths of the members, which however change during the analysis, so special attention must be paid to consider representative values for the analysis. Generally, they were found to be more stable in Pushover analyses, so in order to to consider more realistic values for the analyses, Pushover or time-history, a procedure with repetition is followed, taking those values from Pushover analyses in the corresponding directions, according to extreme displacement values of the original Pushover or time-history analyses that use typical values. However, the importance of using more realistic shear length values is increased when using them to describe shear failure with the implicit method proposed above.

The significance of the modelling method choice to the analysis results is emphasized. The results can be significantly different if typical values of axial forces and shear lengths or more realistic ones after a repetition are used, whether or not infill walls are included in the model, whether shear failure is taken into account during the analysis or not and if effects apart from flexure are considered or not, for example shear cracking, shear deformations and rebar anchorage slip.

More specifically, if shear failure is taken into account by modifying the moment - rotation curves, the consideration of more realistic shear lengths is required. The infill walls for the specific building, which do not continue to the ground floor, seem to increase the initial stiffness of the structure with a small decrease in displacements and a small increase in base shear strength and lead to a redistribution of member failures. When shear failures are not included in the model, the strength of the structure is increased, with lower floor drifts where shear failures would occur. Finally, when only flexural response is included in the model and not other concrete member effects, as mentioned earlier, member stiffnesses are doubled, so structural response is notably different in pushover and time-history analyses and especially regarding node displacements, as well as extent and distribution of member failures. In addition, when shear failures are not included in the model, it is found that results from the concentrated plasticity analysis approach satisfactorily the results of the distributed plasticity analysis, which considers axial force and moment interaction. It is noted that even though in classic cases of ground motions, the underestimation of the periods of the structure can overestimate in most cases the need for seismic forces strength, in the specific case of near-field ground motions this underestimation can sometimes lead to dangerous assumptions, as more flexible buildings can be influenced more by directivity pulses. That is why effects that make the structure more flexible, such as the ones mentioned above, must be taken into account when examining the response of concrete structures in near-field events. However, the implicit inclusion of those phenomena and shear failure using modified concentrated plasticity hinges used here is approximate, as representative values of the required variables are difficult to be determined. That is why more robust methods that can be incorporated in distributed plasticity analyses should be implemented, so that changes in member loading during the analysis can be taken into account.

The production of elastic response spectra that contain directivity effects or not, that is pulses usually in the fault-normal direction, is a relatively easy process knowing some information about the seismic event and the site of interest, using the attenuation relationships developed by Boore - Atkinson (2008) and Shahi - Baker (2011). The recorded accelerograms can be adapted to match the above elastic spectra using the program Seismomatch. However, although some accelerograms may have about the same elastic spectra, the response of non-linear multi-degree-of-freedom models may differ significantly. That is why a few analyses using different accelerograms with the same elastic spectra should be conducted, in order to acquire a "mean" response.

In the examined structure, directivity effects were found to alter the structure response significantly. That happens also in the case of an initial "elastic" period that is quite low, so that it could be assumed that the structure would not be affected by the directivity pulse that usually has a relatively high period, because as the various members (beams, columns, infill walls) yield or fail, the period of the structure can rise significantly. In fact, in this case more serious damage may occur, because plasticity demand remains at high levels after the building yield. In general, directivity effects seem to produce more failures, larger storey drifts, base shears and top displacements in the direction that the directivity pulses are acting.

Although many uncertainties exist regarding the construction details of the building, the modelling approach and the approximation of the seismic event that do not allow a certain determination of the ground motion at the examined site, analysis results show that many shear faults at the basement columns that approach the observed ones in reality occur for peak ground accelerations about 0.69g (3.1 standard deviations in Boore - Atkinson spectra, modified by Shahi - Baker), especially when directivity pulses in the direction of the bigger dimension in the building plan exist.

The failures observed in reality are mainly in the direction of the bigger dimension in the building plan, something that also happens in the model when directivity effects are considered also for this specific direction, so the existence of directivity pulses in reality in this direction is probable. In contrast, the failures in the other direction that appear in the model are generally more than those that have appeared in reality, so it is believed that maybe the ground motion of the other direction should correspond to fewer standard deviations than that of the direction of the bigger dimension of the structure, because, as proposed by researchers (e.g. Chioccarelli and Iervolino, 2010), the motion component that contains directivity pulses remains stronger than the other one, even after the removal of the pulses. Generally, ground accelerations have generally higher than expected values and that may be due to other seismological phenomena apart from directivity effects.

The results obtained regarding the existence of directivity pulses in the aforementioned direction are in agreement with the analysis of the recorded accelerograms by researchers that show the existence of directivity pulses in directions very close to the direction directivity pulses are assumed to have acted on the building, as well as observations of simple real structures in close areas with similar damages after the earthquake, where faults with

the same trend in direction as the examined building are recorded. Ground accelerations are assumed to have maximum values of about 0.50g to 0.70g using data from these physical experiments, values close to the one mentioned above that is believed to have acted on the building considered, in contrast those that have been proposed by researchers originating from theoretical ground analyses, which give smaller PGA values. So there is a possibility that the values of ground accelerations assumed until now for the examined location may underestimate the accelerations that appeared in reality during the seismic event.

All in all, the continuation of the research on near-field effects (such as improving building codes and developing new attenuation relationships) is considered very important, especially for countries such as Greece that have faults which may generate directivity pulses capable of causing severe damage to the specific type of buildings used in that area.

Περιεχόμενα

Π	ερίλη	ւփո 1	13
1	Περ	υγραφή εξεταζόμενου κτηρίου	15
	1.1	Ανάλυση βλαβών	15
	1.2	Δεδομένα για προσομοίωση κτηρίου	16
2	Περ	αγραφή διαδικασίας προσομοίωσης φορέα	23
	2.1	Προσομοίωση μελών	23
		2.1.1 Ελαστική συμπεριφορά	25
		2.1.2 Ελαστική συμπεριφορά με ενεργές δυσκαμψίες	25
		2.1.3 Ανελαστική συμπεριφορά με συγκεντρωμένη πλαστικότητα	31
		2.1.4 Ανελαστική συμπεριφορά με κατανεμημένη πλαστικότητα	39
		2.1.5 Συγκεντρωμένη ή Κατανεμημένη πλαστικότητα;	39
		2.1.6 Εισαγωγή της τοιχοποιίας στο προσομοίωμα	41
		2.1.7 Χρησιμοποιούμενα υλικά	43
	2.2	Συνδεσμολογία μελών	52
		2.2.1 Κόμβοι μοντέλου	52
		2.2.2 Δεσμεύσεις κόμβων	53
	2.3	Διαδικασία Ανάλυσης	55
		2.3.1 Σταθερά φορτία	55
		2.3.2 Aváλυση Pushover	56
		2.3.3 Ανάλυση Χρονοϊστορίας	59
		2.3.4 Επεξεργασία αποτελεσμάτων	61
3	Πεο	υνοαφή προγραμμάτων ανάλυσης φορέα	65
-	3.1		65
	3.2	Διάρθρωση προγραμμάτων	66
	3.3	Εισαγωγή δεδομένων από το χρήστη	67
	3.4	Επεξεργασία δεδομένων μοντέλου	69
	3.5	Εκτέλεση μη γραμμικών αναλύσεων	83
	3.6	Επεξεργασία αποτελεσμάτων	86
4	Σεια	σμοί κοντινού πεδίου	91
	4.1	Χαρακτηριστικά σεισμικών κινήσεων κοντινού πεδίου	91
		4.1.1 Φαινόμενο κατευθυντικότητας (Directivity effect)	92
		4.1.2 Φαινόμενο μόνιμης μετατόπισης (Fling-step effect)	94
		4.1.3 Επίδραση ανάντη τμήματος ρήγματος (Hanging wall effect)	95
		4.1.4 Φαινόμενο κατακόρυφης συνιστώσας (Vertical effect)	96
	4.2	Παράμετροι περιγραφής σεισμικών κινήσεων κοντινού πεδίου	96
		4.2.1 Αριθμός σημαντικών παλμών	98
		4.2.2 Περίοδος παλμών	98
		• • •	

	4.3	 4.2.3 Μέγιστη οριζόντια εδαφική ταχύτητα 4.2.4 Λοιπές παράμετροι Απόκριση κατασκευών σε σεισμούς κοντινού πεδίου 	. 100 . 101 . 102
5	Σεισ	μός Αθήνας '99 - Υπάρχουσες αντιλήψεις	105
-	5.1	Σεισμολονικά χαρακτηριστικά	. 105
	5.2	Εκτίμηση επιταχύνσεων στις πλειόσειστες περιοχές	. 107
	5.3	Καταγεγραμμένα επιταχυνσιογραφήματα	. 109
6	Προ	σέγγιση εδαφικών κινήσεων σεισμών κοντινού πεδίου	113
	6.1	Σχέσεις εξασθένησης νέας γενιάς των Boore - Atkinson (2008)	. 113
	6.2	Τροποποίηση φασμάτων σχέσεων εξασθένησης λόγω εμφάνισης παλμού (Shahi	
		and Baker, 2011)	. 118
	6.3	Εφαρμογή της μεθόδου για την εξεταζόμενη θέση	. 123
7	Συγι	κρίσεις και παρατηρήσεις που αφορούν στα μοντέλα προσομοίωσης	137
	7.1	Το μοντέλο αναφοράς (Μοντέλο Α)	. 137
		7.1.1 Αναλύσεις Pushover	. 138
		7.1.2 Ανάλυση Χρονοϊστορίας	. 143
	7.2	Το βασικό μοντέλο με τυπικές τιμές πριν την εκτέλεση επαναλήψεων (Μοντέλο	
		ΤΤ)	. 151
		7.2.1 Aváλυσn Pushover	. 151
		7.2.2 Ανάλυση χρονοϊστορίας	. 152
	7.3	Μοντέλο χωρίς φαινόμενα Ρ-Δ (Μοντέλο ΧΡΔ)	. 155
		7.3.1 Aváλυσn Pushover	. 155
		7.3.2 Ανάλυση χρονοϊστορίας	. 155
	7.4	Μοντέλο χωρίς τοιχοπληρώσεις (Μοντέλο ΧΤ)	. 158
		7.4.1 Aváλυσn Pushover	. 158
		7.4.2 Ανάλυση χρονοϊστορίας	. 159
	7.5	Μοντέλο με συνδετήρες $Φ8/15$ στα υποστυλώματα (Μοντέλο $ΔΣ$)	. 162
		7.5.1 Aváλυσn Pushover	. 162
		7.5.2 Ανάλυση χρονοϊστορίας	. 162
	7.6	Μοντέλο χωρίς αστοχίες λόγω τέμνουσας (Μοντέλο ΧΔ)	. 165
		7.6.1 Aváλυση Pushover	. 165
		7.6.2 Ανάλυση χρονοϊστορίας	. 165
	7.7	Μοντέλο με αστοχίες λόγω τέμνουσας και σε δοκούς (Μοντέλο ΔΔ)	. 168
		7.7.1 Avá λ uon Pushover	. 168
		7.7.2 Ανάλυση χρονοϊστορίας	. 168
	7.8	Μοντέλο με ελαστικά μέλη ρηγματωμένων δυσκαμψιών (Μοντέλο ΕΛ)	. 171
	-	7.8.1 Avaluon xpovoiotopiac \ldots	. 171
	7.9	Μοντελο που λαμβανει υποψη μονο παραμορφωσεις λογω καμψης (Μοντελο Κ)	174
		7.9.1 Avaluon Pushover \ldots	. 174
	710	7.9.2 Avaluon xpovolotopiac \dots \dots \dots \dots \dots \dots \dots \dots \dots	. 175
	7.10	Μοντελό που λαμβανεί υποψη μόνο παραμορφωσεις λόγω καμψης χώρις αστο-	170
		χιες λογω διατμησης (Μοντελο ΚΧΔ)	. 178
		/.10.1 AVαλυση Pusnover	. 178
	711	/.10.2 Αναλυση χρονοιστορίας	. 1/ð
	/.11	νιοντελο κατανεμημένης πλαστικοτητάς υποστυλωμάτων (Μοντελο ΚΚΠ) 7111 Ανάλυση Dushover	. 101 101
		7.11.1 AVUAUOII PUSIIOVEI	. 101
		7.11.2 Αναλυστι χρονοιοτοριας	. 102

8	Αναλύσεις με χρονοϊστορίες που αντιστοιχούν σε διαφορετικές περιπτώσεις ύπαρξης φαινομένων κατευθυντικότητας και διαφορετικά πλήθη τυπικών απο-				
	κλίσεων	185			
	8.1 Παρουσίαση αποτελεσμάτων αναλύσεων χρονοϊστορίας	. 185			
	8.2 Συμπεράσματα από τις αναλύσεις χρονοϊστορίας	. 261			
9	Γενικά συμπεράσματα και προτάσεις	269			
A	Κατόψεις ξυλοτύπων, τοιχοπληρώσεων και επιφανειών επιρροής φορτίων	279			
В	Πηγαίος κώδικας προγραμμάτων	291			
B	Πηγαίος κώδικας προγραμμάτων Β.1 Προγράμματα επεξεργασίας δεδομένων και ανάλυσης φορέα	291 . 292			
В	Πηγαίος κώδικας προγραμμάτων Β.1 Προγράμματα επεξεργασίας δεδομένων και ανάλυσης φορέα Β.2 Αρχεία εισαγωγής δεδομένων για ανάλυση εξεταζόμενου φορέα	291 . 292 . 354			

Περίληψη

Η παρούσα διπλωματική εργασία στοχεύει στη διερεύνηση της πιθανής μορφής και έντασης της σεισμικής κίνησης στο σεισμό της Αθήνας την 7/9/1999, σε μία από τις πλειόσειστες περιοχές, την περιοχή των Θρακομακεδόνων, για την οποία δεν υπάρχουν άμεσες καταγραφές της σεισμικής κίνησης. Για το σκοπό αυτό, πραγματοποιείται ανάστροφη ανάλυση με πιθανά επιταχυνσιογραφήματα σε ένα τετραόροφο κτήριο με pilotis και υπόγειο με περιμετρικά τοιχία, το οποίο υπέστη βλάβες στο σεισμό αυτό και για το οποίο διαθέτουμε κατασκευαστικά σχέδια και έκθεση βλαβών. Ιδιαίτερη έμφαση δίδεται στη διερεύνηση ύπαρξης φαινομένων κατευθυντικότητας που εμφανίζονται σε περιοχές κοντά στο ενεργοποιούμενο ρήγμα, τα οποία πιθανολογείται ότι εμφανίστηκαν στο παραπάνω σεισμικό γεγονός και τα οποία μπορούν να διαφοροποιήσουν σημαντικά την απόκριση των κατασκευών. Η προσέγγιση των πιθανών επιταχυνσιογραφημάτων για το συγκεκριμένο σεισμικό γεγονός και την τοποθεσία επιτυγχάνεται με δημιουργία επιταχυνσιογραφημάτων με ελαστικά φάσματα απόκρισης που αντιστοιχούν σε αυτά που προκύπτουν από τις σχέσεις εξασθένησης νέας γενιάς των Boore και Atkinson (2008) και της τροποποίησής τους λόγω κατευθυντικότητας κατά Shahi και Baker (2011), βασισμένα σε καταγεγραμμένα επιταχυνσιογραφήματα του σεισμικού γεγονότος.

Ένα σημαντικό πρόβλημα που προκύπτει στην προσπάθεια διερεύνησης είναι και η επιλογή της ρεαλιστικότερης μεθόδου προσομοίωσης της κατασκευής. Για το λόγο αυτό, αρκετά μεγάλο μέρος της εργασίας αφιερώνεται στην εξέταση και σύγκριση διαφορετικών μεθόδων προσομοίωσης. Η κυριότερη μέθοδος μοντελοποίησης που εξετάζεται και εφαρμόζεται είναι αυτή που προτείνεται στον ΚΑΝ.ΕΠΕ. (Κανονισμός Επεμβάσεων), χρησιμοποιώντας συγκεντρωμένη πλαστικότητα, η οποία λαμβάνει υπόψη διάφορα φαινόμενα που παρατηρούνται σε μέλη οπλισμένου σκυροδέματος πέραν της κάμψης, όπως διατμητικές ρηγματώσεις, διατμητικές παραμορφώσεις και εξόλκευση οπλισμών. Πέραν των κύριων δομικών μελών, στο προσομοίωμα συμπεριλαμβάνονται ακόμα και οι τοιχοπληρώσεις. Ένα σημαντικό θέμα που έπρεπε να αντιμετωπιστεί είναι και η αστοχία των μελών σε διάτμηση κατά τη διάρκεια της ανάλυσης, για την οποία εξετάζονται τρόποι εισαγωγής στο προσομοίωμα.

Η ανάλυση της απόκρισης του κτηρίου σε αναλύσεις Pushover και χρονοϊστορίας γίνεται με τη βοήθεια του προγράμματος OpenSees, ικανό να πραγματοποιεί μη γραμμικές αναλύσεις κατασκευών γρήγορα και αξιόπιστα, το οποίο έχει αναπτυχθεί στα πλαίσια του PEER (Pacific Earthquake Engineering Research Center).Για το σκοπό αυτό, συντάχθηκαν αρκετά προγράμματα σε γλώσσα Tcl για την επεξεργασία των δεδομένων της κατασκευής, την ανάλυση της και την επεξεργασία των αποτελεσμάτων των αναλύσεων.

Στην κατασκευή που εξετάζεται, τα φαινόμενα κατευθυντικότητας παρατηρείται ότι επηρεάζουν σημαντικά την απόκρισή της, ακόμη και στην περίπτωση σχετικά μικρής αρχικής "ελαστικής" ιδιοπεριόδου. Γενικά, τα φαινόμενα κατευθυντικότητας φαίνεται ότι οδηγούν σε περισσότερες αστοχίες, μεγαλύτερες σχετικές μετατοπίσεις ορόφων, τέμνουσες βάσης και μετατοπίσεις κορυφής στη διεύθυνση που ενεργούν.

Παρόλο που υπάρχουν αρκετές αβεβαιότητες όσον αφορά στην κατασκευαστική διαδικασία, τα μοντέλα προσομοίωσης που ακολουθούνται και την προσέγγιση του σεισμικού γεγονότος, οι οποίες δεν επιτρέπουν έναν ακριβή προσδιορισμό της σεισμικής κίνησης στην εξεταζόμενη θέση, τα αποτελέσματα των αναλύσεων δείχνουν ότι αρκετές αστοχίες υποστυλωμάτων σε διάτμηση που προσεγγίζουν αυτές που παρατηρήθηκαν στην πραγματικότητα συμβαίνουν για μέγιστες σεισμικές επιταχύνσεις περίπου 0.69g (3.1 τυπικές αποκλίσεις σε φάσματα των Boore - Atkinson, τροποποιημένα από τους Shahi - Baker). Αυτό συμβαίνει ιδιαίτερα όταν ενεργούν παλμοί κατευθυντικότητας σε συγκεκριμένη διεύθυνση της κατασκευής, στην οποία παρατηρήθηκαν και οι περισσότερες αστοχίες υποστυλωμάτων και στην πραγματικότητα, κάτι που φανερώνει ότι η ύπαρξη τέτοιων παλμών κατευθυντικότητας κατά την παραπάνω διεύθυνση είναι πολύ πιθανή. Σημειώνεται ότι η εκτιμώμενη μέγιστη σεισμική επιτάχυνση που προκύπτει απο τις παραπάνω αναλύσεις είναι μεγαλύτερη από αυτές που θεωρούνται έως σήμερα.

Διάρθρωση εργασίας

Στο κεφάλαιο 1, γίνεται η περιγραφή του εξεταζόμενου κτηρίου με τα στοιχεία της μελέτης που διατίθεται, καθώς και οι βλάβες που εμφανίστηκαν, σύμφωνα με την έκθεση εμπειρογνωμόνων, που πραγματοποιήθηκε μετά το σεισμικό γεγονός. Στο κεφάλαιο 2, αναλύονται τα στάδια που ακολουούνται για την προσομοίωση του φορέα, καθώς και οι πιθανές εναλλακτικές που εξετάζονται. Παράλληλα, λαμβάνονται υπόψη και οι δυνατότητες του προγράμματος OpenSees, ενώ ιδιαίτερη έμφαση δίδεται στη διαδικασία που προτείνει ο ΚΑΝ.ΕΠΕ. Στο επόμενο κεφάλαιο, περιγράφονται συνοπτικά τα προγράμματα που συντάχθηκαν για τον παραπάνω σκοπό.

Στο κεφάλαιο 4, παρουσιάζονται τα φαινόμενα των σεισμών κοντινού πεδίου που έχουν παρατηρηθεί στη βιβλιογραφία, όπως αυτά εμφανίζονται στις σεισμικές κινήσεις, αλλά και της επίδρασής τους στις κατασκευές. Στο επόμενο κεφάλαιο, παρουσιάζονται συνοπτικά οι υπάρχουσες αντιλήψεις για το σεισμικό γεγονός της 7/9/99, τόσο όσον αφορά στα σεισμολογικά χαρακτηριστικά, όσο και στις επιταχύνσεις που έχουν εκτιμηθεί ότι αναπτύχθηκαν στις πλειόσειστες περιοχές. Στο κεφάλαιο 6, γίνεται μια προσέγγιση των πιθανών εδαφικών κινήσεων που εμφανίστηκαν στην εξεταζόμενη περιοχή, σύμφωνα με μεθόδους που έχουν προταθεί πρόσφατα στη βιβλιογραφία, λαμβάνοντας υπόψη τα παραπάνω σεισμολογικά χαρακτηριστικά και τα χαρακτηριστικά της εξεταζόμενης θέσης.

Στο κεφάλαιο 7, πραγματοποιείται σύγκριση των διαφόρων μεθόδων προσομοίωσης της κατασκευής, τόσο σε αναλύσεις Pushover όσο και σε αναλύσεις χρονοϊστορίας, ώστε να διαπιστωθεί η σημασία της μεθόδου προσομοίωσης στις διαφοροποιήσεις των αποτελεσμάτων που προκύπτουν. Στο επόμενο κεφάλαιο, πραγματοποιείται η ανάλυση της εξεταζόμενης κατασκευής σε πολλά πιθανά επιταχυνιογραφήματα, όπως προέκυψαν προηγουμένως, ώστε να συγκριθούν οι βλάβες που προκύπτουν από τις αναλύσεις αυτές με τις βλάβες που παρατηρήθηκαν στην πραγματικότητα, διαπιστώνοντας έτσι την πιθανότητα ύπαρξης φαινομένων κοντινού πεδίου και τις σεισμικές επιταχύνσεις που πιθανώς αναπτύχθηκαν. Τέλος, στο κεφάλαιο 9, παρουσιάζονται τα συμπεράσματα που προκύπτουν με την παρούσα εργασία, καθώς και προτάσεις για μελλοντική έρευνα.

Στα παραρτήματα που ακολουθούν δίδονται σχέδια που περιγράφουν την κατασκευή, καθώς και τα προγράμματα που έχουν συνταχθεί στα πλαίσια της εργασίας για την ανάλυση του φορέα.

Κεφάλαιο 1

Περιγραφή εξεταζόμενου κτηρίου

Για τη διερεύνηση των χαρακτηριστικών της σεισμικής κίνησης του σεισμού της Πάρνηθας '99 στην περιοχή των Θρακομακεδόνων, εξετάζεται η απόκριση ενός πραγματικού κτηρίου της περιοχής που υπέστη βλάβες στον σεισμό αυτό. Οι βλάβες αυτές έχουν καταγραφεί κατά τη διαδικασία αποκατάστασης του κτηρίου, οπότε συγκρινόμενες με τα αποτελέσματα των αναλύσεων που πραγματοποιούνται, μπορούν να οδηγήσουν σε συμπεράσματα σχετικά με τα χαρακτηριστικά της διέγερσης.

Το κτήριο που εξετάζεται στην παρούσα εργασία έχει κάτοψη μορφής περίπου ορθογωνικής, η οποία εγγράφεται σε ορθογώνιο διαστάσεων περίπου 12 x 21 m και διαθέτει τέσσερις στάθμες. Ο φέρων οργανισμός της κατασκευής αποτελείται από πλάκες, δοκούς, υποστυλώματα και τοιχώματα, τα οποία όμως πιθανολογείται ότι έχουν οπλιστεί ως μεγάλα υποστυλώματα. Μεταξύ της στάθμης εδάφους και της πρώτης στάθμης βρίσκεται το υπόγειο, το οποίο διαθέτει περιμετρικά τοιχώματα από οπλισμένο σκυρόδεμα. Μεταξύ πρώτης και δεύτερης στάθμης βρίσκεται το ισόγειο, το οποίο δεν διαθέτει σχεδόν καμία τοιχοπλήρωση, σε μορφή pilotis, ενώ οι περιμετρικές δοκοί του πατώματος περιμετρικά διαμορφώνονται ως ανεστραμμένες. Το κτίσμα συμπληρώνουν οι δύο ανώτατοι όροφοι, οι οποίοι έχουν διαμορφωθεί σε διαμερίσματα.

Όσον αφορά στα υλικά που έχουν χρησιμοποιηθεί, το σκυρόδεμα έχει αντοχή περίπου ίση με αυτή της σημερινής ποιότητας C16/20 και ο διαμήκης οπλισμός των μελών είναι χάλυβας ποιότητας S400. Ο εγκάρσιος οπλισμός (συνδετήρες) είναι χάλυβας ποιότητας S220 και θεωρείται ότι τα μέλη διαθέτουν γενικά κατά μέσο όρο δίτμητους συνδετήρες Φ8/30. Η αγκύρωση των συνδετήρων γίνεται με γωνία 90° και όχι 135°, οπότε η συμβολή τους στην περίσφιγξη θεωρείται περιορισμένη, κάνοντας όμως την παραδοχή ότι, εφόσον δεν άνοιξαν στο σεισμό, η συμβολή τους στην ανάληψη της τέμνουσας, αν και μικρή, λαμβάνεται κανονικά υπόψη.

Η θεμελίωση αποτελείται κυρίως από μεμονωμένα πέδιλα, συνδεδεόμενα με συνδετήριες δοκούς. Κατά την προσομοίωση του κτηρίου όμως, οι στηρίξεις στο έδαφος θεωρούνται εξιδανικευμένα ως πακτώσεις, καθώς θεωρείται ότι η κατασκευή θεμελιώνεται σε βράχο (εύλογη υπόθεση για την περιοχή των Θρακομακεδόνων), χωρίς αυτό να επηρεάζει ιδιαίτερα τα αποτελέσματα για τα χαρακτηριστικά που εξετάζονται.

Η άδεια του κτηρίου χρονολογείται το 1982, δηλαδή πριν τις αντισεισμικές διατάξεις των κανονισμών του 1985. Τέλος, σημειώνεται ότι η κίνηση του κτηρίου κατά τη διάρκεια του σεισμού δεν επηρεάστηκε από όμορο κτήριο.

Οι κατόψεις των ξυλοτύπων των τεσσάρων στάθμεων δίδονται στα σχέδια στο τέλος του κεφαλαίου, τα οποία παρουσιάζονται και σε μεγέθυνση στο παράρτημα της εργασίας για μεγαλύτερη ευκρίνεια.

1.1 Ανάλυση βλαβών

Οι βλάβες που υπέστη η κατασκευή συγκεντρώνονται κυρίως στην περιοχή του ισογείου (pilotis), όπου παρατηρήθηκαν έντονες διατμητικές ρηγματώσεις στα τοιχία και τα υποστυ-

λώματα. Αναφέρεται επίσης ότι δημιουργήθηκαν πλαστικές αρθρώσεις σε δοκούς της pilotis. Οι σημαντικότερες βλάβες που έχουν καταγραφεί περιγράφονται παρακάτω, όπου για διευκόλυνση της περιγραφής των ρηγματώσεων χρησιμοποιείται η διεύθυνση της τέμνουσας που θα προκαλούσε την αντίστοιχη ρηγμάτωση (*X* για τη μικρή πλευρά του κτηρίου και Y για τη μεγάλη), εφόσον αυτή εμφανίζει συγκεκριμένη διεύθυνση:

- Διαγώνια διατμητική ρηγμάτωση στο γωνιακό υποστύλωμα Κ2 διατομής Γ (διεύθυνση X) και δημιουργία καμπτικών ρηγματώσεων στις στηριζόμενες δοκούς
- Έντονη διαγώνια διατμητική ρηγμάτωση στο υποστύλωμα Κ3 (διεύθυνση Υ)
- Διαγώνιες τριχοειδείς ρωγμές στο μέσο του υποστυλώματος Κ4
- Τριχοειδής ρηγμάτωση του υποστυλώματος Κ5
- Χιαστί διατμητική ρηγμάτωση του γωνιακού υποστυλώματος Κ6 (διευθύνσεις Χ και Υ)
- Έντονη χιαστί διατμητική ρηγμάτωση στο τοιχίο Κ8 (διεύθυνση Υ)
- Έντονη χιαστί διατμητική ρηγμάτωση στο υποστύλωμα Κ10 (διεύθυνση Υ)
- Τριχοειδής ρηγμάτωση στον πόδα του τοιχίου Κ11 (διεύθυνση Υ)
- Έντονη χιαστί διατμητική ρηγμάτωση στο υποστύλωμα Κ12 (διεύθυνση Υ)
- Έντονες χιαστί διατμητικές ρηγματώσεις στο υποστύλωμα Κ13 (διεύθυνση Υ)
- Ρηγμάτωση στον πόδα του τοιχίου Κ15 (διεύθυνση Υ)
- Τριχοειδής ρηγμάτωση στο μέσο του ύψους του υποστυλώματος Κ16 (διεύθυνση Υ)
- Έντονες χιαστί διατμητικές ρηγματώσεις στο υποστύλωμα Κ17 (διεύθυνση Υ)
- Διαγώνια διατμητική ρηγμάτωση στο υποστύλωμα Κ18 και καμπτοδιατμητική ρηγμάτωση των στηριζόμενων δοκών
- Χιαστί διατμητική ρηγμάτωση του υποστυλώματος Κ19 (διευθύνσεις Χ και Υ)
- Τριχοειδής ρηγμάτωση στον πόδα του τοιχίου Κ20 και καμπτοδιατμητική ρηγμάτωση των στηριζόμενων δοκών
- Χιαστί διατμητική ρηγμάτωση του υποστυλώματος Κ21 (διεύθυνση Υ)
- Έντονη χιαστί διατμητική ρηγμάτωση του γωνιακού υποστυλώματος Κ22 (διευθύνσεις Χ και Υ)

1.2 Δεδομένα για προσομοίωση κτηρίου

Το πλέον σημαντικό βήμα για την ανάλυση της κατασκευής είναι ο προσδιορισμός των ιδιοτήτων των μελών και των φορτίσεων, τα οποία εισάγονται στο πρόγραμμα, έτσι ώστε να προσεγγίζεται όσο γίνεται καλύτερα η πραγματικότητα.

Τα δεδομένα που απαιτούνται για τις στάθμες του φορέα, τους κόμβους, τις δοκούς, τα υποστυλώματα, τους οπλισμούς, την προσομοίωση των διαφραγμάτων μπορούν να προσδιοριστούν από τις κατόψεις των ξυλοτύπων που έχουμε στη διάθεσή μας, οι οποίες παρουσιάζονται στη συνέχεια (σχήματα 1.1 με 1.4), και μεγεθυμένες στο παράρτημα Α (σχήματα Α.1 έως Α.8). Με τα παραπάνω δεδομένα, μπορούν να προσδιοριστούν οι απλοποιημένες επιφάνειες κατανομής των φορτίσεων των πλακών στις δοκούς. Οι επιφάνειες αυτές για το υπόγειο και τον Α' όροφο (θεωρούμενες ίδιες για τους τρεις ανώτερους ορόφους) παρατίθενται επίσης στο παραπάνω παράρτημα (σχήμα Α.9).

Τα δεδομένα για τις τοιχοποιίες των ανώτερων ορόφων μπορούν να εξαχθούν από τις κατόψεις των ορόφων αυτών. Όπως περιγράφεται παρακάτω στο κεφάλαιο 2.1.6, n θέση και το μέγεθος των ανοιγμάτων επηρεάζουν την προσομοίωση των τοιχοπληρώσεων. Εκτός από αυτό, λόγω των ανοιγμάτων μειώνεται και το ασκούμενο στις δοκούς φορτίο. Η προσέγγιση για τις τοιχοπληρώσεις που ακολουθείται φαίνεται στα σχήματα Α.10 και Α.11 του παραρτήματος Α.

Οι ιδιότητες των χρησιμοποιούμενων υλικών και τα ασκούμενα φορτία δίδονται στην τεχνική έκθεση που περιέχεται στην αρχική μελέτη και παρουσιάζονται στις αντίστοιχες ενότητες στη συνέχεια (ενότητες 2.1.7 και 2.3.1).

Μια απλοποιημένη εικόνα της προσομοίωσης του κτηρίου που θα εφαρμοστεί στη συνέχεια φαίνεται στις εικόνες 1.5 και 1.6. Στα σχήματα αυτά φαίνονται τα μέλη των δοκών και των υποστυλωμάτων, τα μέλη προσομοίωσης των τοιχοπληρώσεων, καθώς και τα χιαστί μέλη που επιβάλλουν τη διαφραγματική λειτουργία. Μια σημαντική διαφοροποίηση σε σχέση με την πραγματική προσομοίωση που εφαρμόζεται είναι ότι στην πραγματικότητα τα μέλη συνδέονται κεντροβαρικά, όπως περιγράφεται στο επόμενο κεφάλαιο.

Σχήμα 1.1: Κάτοψη ξυλοτύπου υπογείου

Σχήμα 1.2: Κάτοψη ξυλοτύπου ισογείου

Σχήμα 1.3: Κάτοψη ξυλοτύπου α' ορόφου

Σχήμα 1.4: Κάτοψη ξυλοτύπου β' ορόφου

Σχήμα 1.5: Απλοποιημένη παρουσίαση προσομοίωσης κτηρίου - Κάτοψη (στραμμένη)

Σχήμα 1.6: Απλοποιημένη τρισδιάστατη παρουσίαση προσομοίωσης κτηρίου Με μπλε χρώμα φαίνονται τα κύρια μέλη (δοκοί, υποστυλώματα), με πράσινο τα χιαστί μέλη των τοιχοπληρώσεων, με κόκκινο τα χιαστί μέλη των διαφραγμάτων και με φούξια τα άκαμπτα βοηθητικά μέλη

Κεφάλαιο 2

Περιγραφή διαδικασίας προσομοίωσης φορέα

Η διαδικασία που ακολουθείται για εισαγωγή του προσομοιώματος στο πρόγραμμα OpenSees απαιτεί τον καθορισμό των κόμβων του φορέα, των μελών του, των δεσμεύσεων που υπάρχουν, καθώς και φορτίων και μαζών.

2.1 Προσομοίωση μελών

Το μοντέλο που δημιουργείται αποτελείται μόνο από ραβδόμορφα στοιχεία, χωρίς να εξετάζεται η καμπτική συμπεριφορά των πλακών μέσω της προσομοίωσής τους με επίπεδα ή χωρικά πεπερασμένα στοιχεία (σε επόμενη ενότητα εξηγείται πώς προσομοιώνεται η διαφραγματική λειτουργία των πλακών). Τα βασικά μέλη που θα πρέπει να τοποθετηθούν στο προσομοίωμα ειναι τα υποστυλώματα και οι δοκοί. Προκειμένου να τοποθετηθούν τα μέλη στο μοντέλο, χρειάζεται να δοθεί η συνδεσμολογία των μελών με τους κόμβους, καθώς και η διατομή των μελών με τους διάφορους οπλισμούς. Ο ακριβής τρόπος εισαγωγής των στοιχείων αυτών στο πρόγραμμα θα περιγραφεί σε επόμενη ενότητα.

Ιδιαίτερη αναφορά θα πρέπει να γίνει για την προσομοίωση που επιλέχθηκε για τις δοκούς. Επειδή όπως αναφέρθηκε, δεν τοποθετούνται οι πλάκες στο προσομοίωμα, οι διατομές των δοκών θα πρέπει να συμπεριλάβουν και ένα μέρος των πλακών για την ορθότερη αποτύπωση της συμπεριφοράς τους έναντι κάμψης. Στα τμήματα αυτά θα πρέπει να συμπεριληφθούν και οι όποιοι οπλισμοί έχουν τοποθετηθεί στις πλάκες, καθώς και αυτοί συμβάλλουν στη συμπεριφορά της δοκού. Επιπλέον, στις δοκούς συνηθίζεται η διάταξη των οπλισμών να μεταβάλλεται κατά μήκος τους, λόγω διαφορετικών απαιτήσεων έναντι κάμψης (άνω και κάτω στα άκρα, κυρίως κάτω στη μέση). Έτσι, επειδή στα σχέδια που αποτυπώνουν το κτήριο αναγράφεται στις περισσότερες περιπτώσεις το σύνολο των ράβδων που τοποθετούνται και όχι η ακριβής διάταξή τους, θεωρήθηκε ότι στα ακραία τμήματα τοποθετούνται οι μισές πάνω και οι άλλες μισές κάτω (σε περίπτωση περιττού αριθμού ράβδων, οι περισσότερες τοποθετούνται στο άνω μέρος), ενώ στα μεσαία τμήματα θεωρήθηκε οτι όλες τοποθετούνται κάτω. Στην περίπτωση συνεχών δοκών, θεωρήθηκε ότι οι ράβδοι συνεχίζουν και στην επόμενη δοκό και συμβάλλουν στο ακραίο τμήμα της. Για τους παραπάνω λόγους, επιλέχθηκε η κάθε πλακοδοκός να εισαχθεί σε τρία μέρη διαφορετικής διατομής. Δύο ακραία με μήκος ίσο με το 25% του καθαρού μήκους της δοκού και ένα μεσαίο με μήκος ίσο με το 50% του καθαρού μήκους. Για το συνεργαζόμενο πλάτος των πλακοδοκών χρησιμοποιήθηκαν οι σχέσεις του ΕC2 για το μεσαίο τμήμα και του ΕC8 για τα ακραία.

Μεσαία τμήματα (ΕC2) Το θεωρητικό μήκος κάθε δοκού υπολογίζεται βάσει της σχέσης

$$l_{eff} = l_n + a_1 + a_2 \tag{2.1}$$

όπου l_n είναι το καθαρό μήκος μεταξύ των στηρίξεων και a_i το επιπλέον μήκος σε κάθε στήριξη, για το οποίο λαμβάνεται

$$a_i = \frac{\min(h, t)}{2} \tag{2.2}$$

όπου h είναι το ύψος της δοκού και t το πλάτος της στήριξης (υποστύλωμα).

Σχήμα 2.1: Επιπλέον μήκος στήριξης για διάφορες περιπτώσεις στηρίξεων (EC2)

Για τον υπολογισμό του συνεργαζόμενου πλάτους απαιτείται το μήκος μεταξύ μπδενισμού ροπων l_0 , το οποίο λαμβάνεται ίσο με l_{eff} για τις αμφιέρειστες δοκούς, $0.85l_{eff}$ για τις δοκούς που είναι συνεχείς στο ένα άκρο και $0.70l_{eff}$ για τις δοκούς που είναι συνεχείς και στα δύο άκρα, σύμφωνα με το σχήμα 2.2

Σχήμα 2.2: Μήκος *l*₀ (EC2)

Το συνεργαζόμενο πλάτος σε κάθε μεριά της δοκού προκύπτει στη συνέχεια από τη σχέση

$$b_{eff,i} = min(0.2b_i + 0.1l_0, 0.2l_0, b_i)$$
(2.3)

όπου b_i το μήκος του ανοίγματος εγκάρσια της δοκού που της αναλογεί Το συνολικό συνεργα-ζόμενο πλάτος προκύπτει τελικα από τη σχέση

$$b_{eff} = b_{eff,1} + b_{eff,2} + b_w \tag{2.4}$$

όπου b_w το πλάτος της δοκού. Τα παραπάνω μεγέθη αποτυπώνονται στο σχήμα 2.3

Σχήμα 2.3: Αποστάσεις που λαμβάνονται υπόψη κατά τον υπολογισμό του συνεργαζόμενου πλάτους (EC2)

Ακραία τμήματα (ΕC8) Στις ακραίες στηρίξεις δοκών στις οποίες δεν συντρέχει εγκάρσια άλλη δοκός, το b_{eff} λαμβάνεται ίσο με το πλάτος του υποστυλώματος, b_c , ενώ αν συντρέχει εγκάρσια άλλη δοκός περίπου ίσου ύψους, γίνεται αύξηση του συνεργαζόμενου πλάτους κατά $2h_f$ εκατέρωθεν του κορμού, όπου h_f το πάχος της πλακας. Σε ενδιάμεσες στηρίξεις δοκών τα παραπάνω πλάτη αυξάνονται κατά $2h_f$. Τα παραπάνω συνοψίζονται στο σχημα 2.4

2.1.1 Ελαστική συμπεριφορά

Για την προσομοίωση της ελαστικής απόκρισης του φορέα, αρκεί να εισαχθούν στο πρόγραμμα τα γεωμετρικά και αδρανειακά μεγέθη των διατομών. Αφού υπολογιστεί το εμβαδόν και η θέση του κέντρου βάρους της διατομής, υπολογίζονται οι ροπές αδρανείας κατά τους δύο άξονες ως προς το κέντρο βάρους της διατομής. Για την επίλυση του τρισδιάστατου φορέα απαιτείται και η στρεπτική σταθερά J των διατομών, της οποίας ο ακριβής υπολογισμός είναι δυσχερής. Έτσι, για τις ορθογωνικές διατομές γίνεται χρήση της προσεγγιστικής σχέσης

$$J \approx ab^{3} \left(\frac{1}{3} - 0.21 \frac{b}{a} \left(1 - \frac{b^{4}}{12a^{4}}\right)\right)$$
(2.5)

όπου *a* είναι το μεγάλο μήκος της διατομής και *b* το μικρό μήκος της διατομής. Σημειώνεται ότι όπως προτείνει ο EC2, στις περιπτώσεις σύνθετων διατομών, όπως πλακοδοκών και υποστυλωμάτων σχήματος Γ, η τελική τιμή της σταθεράς *J* προκύπτει ως άθροισμα των σταθερών *J* των επιμέρους σκελών.

Στο σχήμα 2.5 φαίνονται οι συμβάσεις για τους τοπικούς άξονες που υιοθετούνται κατά την προσομοίωση, τόσο για τις δοκούς, όσο και για τα υποστυλώματα, σε σχέση με τους καθολικούς άξονες.

2.1.2 Ελαστική συμπεριφορά με ενεργές δυσκαμψίες

Σε φορείς οπλισμένου σκυροδέματος n χρήση των αδρανειακών μεγεθών, όπως προκύπτουν από την ανάλυση της διατομής, δεν δίνει αξιόπιστα αποτελέσματα, καθώς μέρος της

Σχήμα 2.4: Συνεργαζόμενο πλάτος πλακοδοκών (EC8)

Σχήμα 2.5: Καθολικοί και τοπικοί άξονες αναφοράς μελών

διατομής ρηγματώνεται και δεν λειτουργεί, ενώ συνυπάρχουν και φαινόμενα διάτμησης και εξόλκευσης οπλισμών που θα πρέπει να ληφθούν έμμεσα υπόψη. Για το λόγο αυτό, ο ΚΑΝ.ΕΠΕ. προτείνει την απομείωση των δυσκαμψιών των στοιχείων από οπλισμένο σκυρόδεμα. Απλοποιητικά, για αναλύσεις με γραμμικές μεθόδους και ελέγχους σε όρους δυνάμεων, δίνει τις ενδεικτικές τιμές που παρατίθενται στη συνέχεια (ΚΑΝ.ΕΠΕ., Κεφάλαιο 4). Επίσης, η στρεπτική σταθερά *J* ισούται με το 10% της γεωμετρικής τιμής.

Δοκός: $K = 0.4E_cI_g$ (για τις πλακοδοκούς μορφής Γ ή Τ επιτρέπεται να ληφθεί υπόψη $I_g = 1.5I_w$ ή $I_g = 2.0I_w$ αντιστοίχως, όπου I_w είναι η ροπή αδρανείας της ορθογωνικής διατομής του κορμού)

Υποστύλωμα εσωτερικό: $K = 0.8 E_c I_q$

Υποστύλωμα περιμετρικό: $K = 0.6E_c I_g$

Тоіх ω µа µ η ρ $\eta\gamma$ µаt ω µ \acute{e} vo: K = 0.7E_cI_g

Τοίχωμα ρηγματωμένο (ή επισκευασμένο με απλές μεθόδους): $K = 0.5 E_c I_q$

Για μη γραμμικές αναλύσεις, μπορούν να χρησιμοποιηθούν οι σχέσεις ακόλουθου πίνακα (ΚΑΝ.ΕΠΕ., Κεφάλαιο 7), οι οποίες όμως είναι και πάλι αρκετά προσεγγιστικές, καθώς δεν λαμβάνουν υπόψη τον ακριβή οπλισμό της διατομής. Κατά μέσο όρο αναφέρεται ότι δίνουν ως ενεργό δυσκαμψία το 25% της δυσκαμψίας της αρηγμάτωτης διατομής.

Δοκός: $K = 0.1 \{ 0.8 + \ln [\max (0.6, a_s)] \} E_c I_c$

Υποστύλωμα: $K = 0.08 \{0.8 + \ln [\max (0.6, a_s)]\} \left[1 + 0.048 \frac{N}{A_c} (MPa)\right] E_c I_c$

Τοίχωμα ορθογωνικό: K = 0.115 $\{0.8 + \ln [\max (0.6, a_s)]\} \left[1 + 0.048 \frac{N}{A_c} (\text{MPa})\right] E_c I_c$

Τοίχωμα διατομής Γ, Τ, Π: K = 0.09 $\{0.8 + \ln [\max (0.6, a_s)]\} \left[1 + 0.048 \frac{N}{A_c} (MPa)\right] E_c I_c$

Ο ακριβέστερος υπολογισμός των ενεργών δυσκαμψιών περιλαμβάνει τον υπολογισμό της ροπής διαρροής της διατομής M_y , της γωνίας στροφής χορδής κατά τη διαρροή θ_y , καθώς και το αντίστοιχο διατμητικό μήκος L_s .

Η γωνία στροφής χορδής θ ορίζεται ως η γωνία μεταξύ της εφαπτομένης στον άξονα του στοιχείου στο άκρο που εξετάζεται και της χορδής που συνδέει το άκρο αυτό με το το σημείο μηδενισμού των ροπών. Το τμήμα μεταξύ του άκρου του μέλους και του σημείου μηδενισμού των ροπών λειτουργεί ως πρόβολος, του οποίου το μήκος ισούται με

$$L_{\rm s} = \frac{M}{V} \tag{2.6}$$

όπου M και V n ροπή και n τέμνουσα στο άκρο, αντίστοιχα. Η σχέση αυτή ισχύει ακριβώς στις περιπτώσεις των υποστυλωμάτων που δεν υπάρχουν εγκάρσια φορτία κατά μήκος του μέλους, ενώ για δοκούς ισχύει προσεγγιστικά σε περιπτώσεις σχετικά μικρών εγκάρσιων φορτίων. Επομένως, n γωνία στροφής χορδής ισούται με

$$\theta \approx tan\theta = \frac{\delta_V}{L_s}$$
(2.7)

όπου δ_V είναι
 η εγκάρσια μετατόπιση στο σημείο μηδενισμού των ροπών (κορυφή θεωρητικού προβόλου)

Χρησιμοποιώντας τον ορισμό του θεωρητικού αυτού προβόλου, μπορούμε να εξάγουμε την ενεργό δυσκαμψία ως εξής:

Έστω πρόβολος μήκους L_s που φορτίζεται το ελεύθερο άκρο του με δύναμη P και έχει μετατόπιση δ_V . Η σχέση μεταξύ δύναμης P και μετατόπισης δ_V για τον πρόβολο προκύπτει από την κλασική θεωρία της Στατικής

$$P = \frac{3EI}{L_s^3} \delta_V \tag{2.8}$$

Σχήμα 2.6: Ορισμός γωνίας στροφής χορδής θ (διδακτικές σημειώσεις Αντ. Τεχνολογίας ΙΙ, Ι. Ψυχάρης)

ενώ ακόμα ισχύει

$$M = PL_s \tag{2.9}$$

Από τον ορισμό της γωνίας στροφής χορδής έχουμε

$$\theta = \frac{\delta_V}{L_s} \tag{2.10}$$

Έτσι, επιλύοντας τις παραπάνω σχέσεις ως προς ΕΙ λαμβάνουμε

$$EI = \frac{P}{\delta_V} \frac{L_s^3}{3} = \frac{P}{\theta L_s} \frac{L_s^3}{3} = \frac{P}{\theta} \frac{L_s^2}{3} = \frac{ML_s}{3\theta}$$
(2.11)

Αρχικά λοιπόν θα πρέπει να υπολογίσουμε τη ροπή διαρροής, M_y , καθώς και την καμπυλότητα κατά τη διαρροή $(\frac{1}{r})_y$, η οποία θα χρειαστεί στη συνέχεια για τον υπολογισμό της γωνίας στροφής χορδής κατά τη διαρροή, θ_y . Ο ΚΑΝ.ΕΠΕ. δίνει στο παράρτημα 7Α αναλυτικές σχέσεις για την M_y και την $(\frac{1}{r})_y$ για ορθογωνικές διατομές και συνθετότερες διατομές με σταθερή όμως θλιβόμενη ζώνη, καθώς και κάποιες ημιεμπειρικές σχέσεις. Σε γενικότερες όμως περιπτώσεις διατομών με τυχούσα τοποθέτηση οπλισμών, οι σχέσεις αυτές ισχύουν μόνο προσεγγιστικά. Επειδή το OpenSees μπορεί να πραγματοποιήσει ανάλυση ροπών - καμπυλοτήτων τυχόντων διατομών με τους ακριβείς νόμους που διέπουν τα υλικά, προτιμήθηκε τα μεγέθη M_y και $(\frac{1}{r})_y$ να υπολογιστούν ακριβέστερα μέσω της διγραμμικοποίησης των διαγραμμάτων ροπών - καμπυλοτήτων των διατομών.

Για την εξαγωγή των διαγραμμάτων αυτών, για τις δοκούς υποτέθηκε μηδενικό αξονικό φορτίο, ενώ η ανάλυση πραγματοποιείται μόνο περί τον ισχυρό άξονα της διατομής. Για τα υποστυλώματα, πραγματοποιείται ανάλυση και περί τις δύο διευθύνσεις, αγνοώντας όμως απλοποιητικά την αλληλεπίδραση της τυχόν υπάρχουσας ροπής περί την άλλη διεύθυνση, καθώς θεωρήθηκε ότι μεγάλες ροπές στις δύο διευθύνσεις είναι σπάνιο να συνυπάρχουν ταυτόχρονα, ενώ όπως θα δείξουμε παρακάτω, αστοχία για τα υποστυλώματα επέρχεται λόγω της διάτμησης σε τιμές αρκετά μικρότερες από τις τιμές της καμπτικής διαρροής. Πρέπει να σημειωθεί όμως ότι κατά την ανάλυση των διατομών λαμβάνεται υπόψη η επίδραση των αξονικών δυνάμεων, που μπορεί να είναι καθοριστικές για τα υποστυλώματα. Όπως θα αναλυθεί στη συνέχεια, κατά την αρχική ανάλυση οι αξονικές δυνάμεις που λαμβάνονται υπόψη είναι αυτές που οφείλονται στα μόνιμα φορτία για ανάλυση με τις γεωμετρικές ροπές αδρανείας, ενώ σε επόμενες αναλύσεις λαμβάνονται υπόψη διαφορετικές αξονικές δυνάμεις, μικρότερες τις περισσότερες φορές, ανάλογα με τις αξονικές δυνάμεις που εμφανίζονται κατά τις μη-γραμμικές αναλύσεις.

Πρέπει, τέλος, να σημειωθεί ότι τα διαγράμματα ροπών - καμπυλοτήτων εξάγονται και για τις δύο φορές που μπορεί να έχει η ροπή σε κάθε άξονα, με εξαίρεση τα μεσαία τμήματα των δοκών που λαμβάνονται υπόψη μόνο θετικές ροπές. Έτσι, για κάθε διατομή έχουμε δύο ζεύγη $(M_y, (\frac{1}{r})_y)$, από τα οποία προκύπτουν δύο τιμές για την ενεργό δυσκαμψία *ΕΙ* σε κάθε άκρο. Για την πραγματοποίση της ανάλυσης λοιπόν χρησιμοποιείται ο μέσος όρος των δυσκαμψιών που υπολογίζονται για τις δύο φορές, όπως προτείνει και ο ΚΑΝ.ΕΠΕ., οι οποίες πάντως δεν διαφέρουν ιδιαίτερα μεταξύ τους.

Όσον αφορά στη διγραμμικοποίηση των διαγραμμάτων ροπών - καμπυλοτήτων, υιοθετούνται τα εξής: Τα διαγράμματα λαμβάνονται υπόψη κατά το φθίνοντα κλάδο μέχρι το 85% της μέγιστης ροπής που εντοπίζεται. Το εμβαδόν του διαγράμματος αυτού μέχρι τη συγκεκριμένη τιμή θα πρέπει να ταυτίζεται με το εμβαδόν του διγραμμικοποιημένου διαγράμματος μέχρι την τιμή αυτή. Προκειμένου η διγραμμικοποίηση να πραγματοποιείται με αυτοματοποιημένο, αλλά παράλληλα αρκετά αξιόπιστο τρόπο, επιλέγεται διγραμμικοποιημένο διάγραμμα ροπών καμπυλοτήτων που έχει οριζόντιο μετελαστικό κλάδο. Τίθεται όμως ο πρόσθετος περιορισμός, ο αρχικός ελαστικός κλάδος του διγραμμικοποιημένου διαγράμματος να τέμνει την αρχική καμπύλη στο 60% της θεωρητικής τιμής της ροπής διαρροής. Στις ελάχιστες περιπτώσεις που αυτό το τελευταίο κριτήριο δεν μπορεί να ικανοποιηθεί, χρησιμοποιούνται τιμές γύρω από το 60% (για παράδειγμα 55% ή 65%) για τις οποίες μπορεί να γίνει η διγραμμικοποίηση βάσει των παραπάνω κανόνων.

Άλλο ένα μέγεθος που απαιτείται για τον υπολογισμό της ενεργού δυσκαμψίας είναι το διατμητικό μήκος L_s κάθε μέλους. Σύμφωνα με τον ΚΑΝ.ΕΠΕ., το μήκος αυτό για τον υπολογισμό της ενεργού δυσκαμψίας μπορεί να ληφθεί ίσο με :

- $L_s = l_{cl}/2$, για δοκούς που συνδέονται και στα δύο άκρα με κατακόρυφα στοιχεία, όπου l_{cl} είναι το καθαρό μήκος της δοκού μεταξύ των υποστυλωμάτων
- $L_s = l_{cl}$, για δοκούς που συνδέονται μόνο στο ένα άκρο με κατακόρυφο στοιχείο
- $L_s = l_{cl,i}/2$, για υποστυλώματα, όπου $l_{cl,i}$ είναι το καθαρό μήκος του στοιχειου για το εξεταζόμενο επίπεδο καμψης
- $L_s = H_{w,bf}/2$, για τοιχώματα, όπου $H_{w,bf}$ είναι η απόσταση μεταξύ της βάσης του τοιχώματος στον εξεταζόμενο όροφο και της κορυφής του τοιχώματος στο κτήριο

Έτσι, κατά την αρχική επίλυση ακολουθούνται οι παραπάνω συστάσεις, με εξαίρεση την τελευταία σύσταση περί τοιχίων. Συγκεκριμένα, για τα τοιχία τα οποία κατατάσσονται οριακά στην κατηγορία αυτή (δηλαδή η μεγάλη πλευρά της διατομής είναι περίπου ίση με το τετραπλάσιο της μικρότερης) χρησιμοποιήθηκε η σύσταση για τα υποστυλώματα, καθώς όπως φάνηκε και κατά τις αναλύσεις, αυτά συμπεριφέρονταν περισσότερο ως υποστυλώματα. Συνεπώς, η τελευταία σύσταση χρησιμοποιήθηκε μόνο για το μεγαλύτερο τοίχωμα του κτηρίου. Όπως θα περιγραφεί στη συνέχεια, οι τυπικές τιμές που δίδονται παραπάνω διαφέρουν σημαντικά από τις τιμές που εμφανίζονται κατά την ανάλυση, οπότε απαιτείται επανυπολογισμός τους σύμφωνα με τον ορισμό του διατμητικού μήκους, $L_s = M/v$ και επανεκτέλεση της ανάλυσης.

Τέλος,
 η γωνία στροφής χορδής κατά τη διαρρο
ή θ_y υπολογίζεται από τις ακόλουθες σχέσεις του ΚΑΝ.ΕΠΕ. :

$$θ_y = (1/r)_y \frac{L_s + a_V z}{3} + 0.0014(1 + 1.5\frac{h}{L_s}) + \frac{(1/r)_y d_b f_y}{8\sqrt{f_c}}$$
, για δοκούς και υποστυλώματα (2.12)

$$\theta_y = (1/r)_y \frac{L_s + a_V z}{3} + 0.0013 + \frac{(1/r)_y d_b f_y}{8\sqrt{f_c}}, \text{ yia toixúpata}$$
(2.13)

Στις παραπάνω σχέσεις, z είναι ο μοχλοβραχίονας των εσωτερικών δυνάμεων, που λαμβάνεται ίσος με 0.9d για τις δοκούς και ίσος με $d - d_1$ για τα υποστυλώματα, όπου d είναι το στατικό ύψος της διατομής (δηλαδή η απόσταση μεταξύ της πλέον θλιβόμενης ίνας και του πλέον εφελκυόμενου οπλισμού) και d_1 είναι η απόσταση μεταξύ της πλέον θλιβόμενης ίνας και του πλέον θλιβόμενου οπλισμού. h είναι το ύψος της διατομής κατά τη φορά της ροπής που εξετάζεται, d_b η διάμετρος των οπλισμών, f_y η τάση διαρροής των οπλισμών και f_c η αντοχή του σκυροδέματος.

Στην παραπάνω σχέση εμφανίζεται και ο δείκτης a_V ο οποίος λαμβάνει τις τιμές 0 ή 1, ανάλογα με το αν η διατμητική ρηγμάτωση της διατομής έπεται ή προηγείται της διαρροής, αντίστοιχα, οπότε θα πρέπει να ληφθεί υπόψη η επιρροή του μήκους μετάθεσης των ροπών λόγω της ρηγμάτωσης στις παραμορφώσεις του στοιχείου κατά τη διαρροή. Για το λόγο αυτό χρειάζεται να υπολογιστεί σε ποια τιμή τέμνουσας πραγματοποιείται διατμητική ρηγμάτωση της διατομής (ουσιαστικά δηλαδή η αντοχή σε τέμνουσα του μέλους χωρίς συνδετήρες), V_{R1} η οποία σύμφωνα με τον EC2 ισούται με

$$V_{Rd,c} = max \left\{ \left[C_{Rd,c} k (100\rho_l f_{ck})^{1/3} + k_1 \sigma_{cp} \right], \left[v_{min} + k_1 \sigma_{cp} \right] \right\} b_w d$$

$$(2.14)$$

Στην παραπάνω σχέση, b_w είναι το μικρότερο πλάτος της διατομής στην εφελκυόμενη ζώνη (ουσιαστικά δηλαδή το πλάτος του κορμού για τις δοκούς), $k = 1 + \sqrt{\frac{200}{d}} \le 2.0$, $\rho_l = \frac{A_{sl}}{b_w d} \le 0.02$, A_{sl} είναι το συνολικό εμβαδόν του εφελκυόμενου οπλισμού που επεκτείνεται σε απόσταση $d + l_{bd}$ από την εξεταζόμενη διατομή, $\sigma_{cp} = min\left(\frac{N_{Ed}}{A_c}, 0.2f_{cd}\right)$, όπου $N_{Ed} > 0$ για θλίψη και A_c το εμβαδόν της διατομής σκυροδέματος. Για τους υπόλοιπους συντελεστές χρησιμοποιούνται οι συνιστώμενοι: $C_{Rd,c} = 0.18/\gamma_c$, $k_1 = 0.15$, $v_{min} = 0.035k^{3/2}f_{ck}^{1/2}$

Έτσι λοιπόν, αν διαπιστωθεί ότι
 η τέμνουσα που αναπτύσσει το στοιχείο κατά τη διαρρο
ή $(V_{M_y}={}^{M_y}\!/\!{}_{L_s})$ είναι μικρότερη από την V_{R1} , τότε λαμβάνεται
 $a_V=0$ και σε αντίθετη περίπτωση $a_V=1$

Ποιοτικά, οι όροι που αθροίζονται προκειμένου να προκύψει n τιμή της γωνίας στροφής χορδής ερμηνεύονται ως εξής: Ο πρώτος όρος εκφράζει τη συμβολή των καμπτικών παραμορφώσεων και της διατμητικής ρηγμάτωσης, ο δεύτερος όρος τη συμβολή των διατμητικών παραμορφώσεων στο μήκος L_s και ο τελευταίος όρος την επιρροή της εξόλκευσης των ράβδων πέρα από την ακραία διατομή του στοιχείου.

Πρέπει εδώ να τονιστεί ότι οι όροι πέραν της καμπτικής συμβολής είναι σημαντικοί και αυξάνουν ιδιαίτερα την τιμή της θ_y . Για το λόγο αυτό, για την αποτίμηση της πραγματικής συμπεριφοράς της κατασκευής, θα ήταν λάθος όχι μόνο να θεωρήσουμε τις γεωμετρικες δυσκαμψίες, αλλά ακόμα να θεωρήσουμε της δυσκαμψίες που προκύπτουν μόνο από την κάμψη των διατομών, δηλαδή της αρχικής κλίσης του διαγράμματος M - (1/r).

των διατομών, δηλαδή της αρχικής κλίσης του διαγράμματος M - (1/r). Είναι άξιο παρατήρησης πως στη σχέση $EI = \frac{M_y}{(1/r)_y}$ καταλήγουμε και από τις σχέσεις του ΚΑΝ.ΕΠΕ. αγνοώντας όλους τους όρους πέραν των καμπτικών παραμορφώσεων στη σχέση που δίνει τη γωνία στροφής χορδής κατά τη διαρροή. Τότε

$$\theta_y = (1/r)_y \frac{L_s}{3}$$
, onóte $EI = \frac{M_y L_s}{3\theta_y} = \frac{M_y}{(1/r)_y}$ (2.15)

Χρησιμοποιώντας τις παραπάνω σχέσεις υπολογίζουμε την ενεργό δυσκαμψία που αντιστοιχεί σε κάθε άκρο των μελών. Υπενθυμίζεται ότι η τελική δυσκαμψία που αντιστοιχεί στο κάθε άκρο, υπολογίζεται ως μέσος όρος των δυσκαμψιών κατά την ανάλυση και για τις δύο φορές που μπορεί να έχει η ροπή. Για τα υποστυλώματα, η τελική ενεργός δυσκαμψία του μέλους προκύπτει σύμφωνα με τον ΚΑΝ.ΕΠΕ. ως μέσος όρος των ενεργών δυσκαμψιών που αντιστοιχούν στα δύο άκρα. Για τις δοκούς, τα δύο ακραία τμήματα έχουν την ενεργό δυσκαμψία που υπολογίζεται για κάθε ένα από αυτά, ενώ για το μεσαίο τμήμα ο υπολογισμός της ενεργού δυσκαμψίας γίνεται θεωρώντας μόνο θετικές ροπές και διατμητικό μήκος σταθερό σε όλες τις αναλύσεις και ίσο με αυτό που αντιστοιχεί στις συστάσεις του ΚΑΝ.ΕΠΕ.

2.1.3 Ανελαστική συμπεριφορά με συγκεντρωμένη πλαστικότητα

Η συγκεντρωμένη πλαστικότητα στο OpenSees μπορει να προσομοιωθεί με στροφικά ελατήρια που τοποθετούνται στα άκρα των μελών και κατάλληλες προσαρμογές των δυσκαμψιών των μελών που θα αναλυθούν στη συνέχεια. Οι θέσεις που επιλέγεται να ελεγχθούν είναι μόνο τα άκρα των δοκών και των υποστυλωμάτων, καθώς γίνεται η παραδοχή ότι τα κατακόρυφα φορτία είναι σχετικά μικρά σε σχέση με τα σεισμικά φορτία, οπότε δεν αναμένουμε διαρροές δοκών στα μέσα τους.

Σε κάθε ένα από τα άκρα αυτά λοιπόν, τοποθετείται ένα στροφικό ελατήριο που διέπεται από το νόμο ροπής - στροφής που επιθυμούμε και για τις δύο φορές τις ροπής. Ο καθορισμός του σκελετού της συμπεριφοράς κάθε στροφικού ελατηρίου γίνεται χρησιμοποιώντας τις σχέσεις του ΚΑΝ.ΕΠΕ. Από την ανάλυση που έχουμε κανει μέχρι τώρα έχει προκύψει μία ροπή διαρροής M_y και μία γωνία στροφής χορδής κατά τη διαρροή θ_y για κάθε φορά ροπής, τα οποία χρησιμοποιούμε και για της συμπεριφοράς του σκελετού της συμπεριφορής χορδής κατά τη διαρροή θ_y για κάθε φορά ροπής, τα οποία χρησιμοποιούμε και για την κατασκευή του σκελετού της συμπεριφοράς των στροφικών ελατηρίων. Πέραν αυτών όμως, απαιτείται ακόμα ένα μέγεθος, η μέση γωνία στροφής χορδής κατά την αστοχία, θ_{um} , η οποία δίνεται από την ακόλουθη σχέση του ΚΑΝ.ΕΠΕ:

$$\theta_{um} = 0.016 \ (0.3^{\nu}) \left[\frac{max(0.01, \omega')}{max(0.01, \omega)} f_c \right]^{0.225} a_s^{0.35} \ 25^{a\rho_s \frac{f_{yw}}{f_c}} \ 1.25^{100\rho_d} \tag{2.16}$$

Στην παραπάνω σχέση, $a_s = \frac{L_s}{h}$ είναι ο λόγος διάτμησης, ω και ω' τα μηχανικά ποσοστά εφελκυόμενου και θλιβόμενου οπλισμού, $v = \frac{N}{bhf_c}$ η ανηγμένη αξονική δύναμη με b το πλάτος της θλιβόμενης ζώνης και N θετική για θλίψη, $\rho_s = \frac{A_{sh}}{b_w s_h}$ το γεωμετρικό ποσοστό εγκάρσιου οπλισμού παράλληλα στη διεύθυνση της φόρτισης, ρ_d το γεωμετρικό ποσοστό τυχόν δισδιαγώνιου οπλισμού και a ο συντελεστής αποδοτικότητας της περίσφιγξης.

Επειδή στο κτήριο δεν έχουμε δισδιαγώνιο οπλισμό και η περίσφιγξη όπως θα εξηγηθεί στη συνέχεια αμελείται λόγω πολύ αραιής διάταξης συνδετήρων, οι δύο τελευταίοι όροι της παραπάνω σχέσης αγνοούνται.

Ο ΚΑΝ.ΕΠΕ. εδώ ορίζει ότι εφόσον οι αξονικές δυνάμεις μεταβάλλονται σημαντικά κατά τη διάρκεια της ανάλυσης, αυτή η μεταβολή οφείλει να λαμβάνεται υπόψη και στη χρήση της παραπάνω σχέσης. Επίσης, όσον αφορά στο διατμητικό μήκος L_s που χρησιμοποιείται, ο ΚΑΝ.ΕΠΕ. ορίζει ότι στην περίπτωση των άκρων των δοκών στα οποία εφελκύεται το άνω πέλμα, δεν μπορεί να γίνει χρήση των απλοποιητικών συστάσεων που αναπτύχθηκαν στα προηγούμενα (δηλαδή για τυπικά στοιχεία μεταξύ δύο εγκάρσιων μελών $L_s = l_a/2$), οπότε και πρέπει να χρησιμοποιούνται οι τιμές που προκύπτουν από τη σχέση $L_s = M/v$ κατά τις κρίσιμες μετακινήσεις του κτηρίου.

Επιπλέον, οι συντελεστές της παραπάνω σχέσης μεταβάλλονται στις περιπτώσεις τοιχωμάτων και κτηρίων κατασκευασμένα με τις αντισεισμικές διατάξεις πριν το 1985. Συγκεκριμένα, όσον αφορά στα τοιχώματα, το δεξί μέλος της παραπάνω σχέσης πολλαπλασιάζεται με 0,58, ενώ επιπλέον για υιοθέτηση αντισεισμικών διατάξεων πριν το 1985, απαιτείται πολλαπλασιασμός με 0,833 ή 0,79 ανάλογα αν χρησιμοποιούνται χάλυβες με νευρώσεις ή όχι. Στην περίπτωση του κτηρίου που εξετάζεται, χρησιμοποιείται συντελεστής 0,833 για διατάξεις πριν το 1985 και χρήση νευροχαλύβων.

Ο ΚΑΝ.ΕΠΕ. δίνει επιπλέον μια σχέση για απευθείας υπολογισμό του πλαστικού τμήματος της γωνίας στροφής χορδής κατά την αστοχία, καθώς και αποτελέσματα σε πινακοποιημένη μορφή. Τα παραπάνω δεν χρησιμοποιούνται στην παρούσα εργασία.

Αφού υπολογιστεί n θ_{um} , για κάθε φορά ροπής σχηματίζεται ο ακόλουθος σκελετός συμπεριφοράς: Μέχρι την γωνία θ_y η συμπεριφορά είναι ελαστική και η ροπή φτάνει μέχρι την τιμή M_y . Στο διάστημα μεταξύ των τιμών θ_y και θ_{um} , ο σκελετός συμπεριφοράς θεωρούμε ότι διατηρει σταθερή τιμή ροπής, ίση με M_y . Μετά την τιμή θ_{um} , η παραμένουσα αντοχή της διατομής θεωρείται ίση με το 20% της M_y . Σημειώνεται πάντως ότι για λόγους αριθμητικής ευστάθειας του αλγορίθμου επίλυσης, η μετάβαση στην κατάσταση μετά την αστοχία γίνεται με φθίνοντα κλάδο, με σχετικά όμως απότομη κλίση, και όχι με απολύτως κατακόρυφο. Μια τυπική καμπύλη ροπών - στροφών δίδεται στο σχήμα 2.7

Σχήμα 2.7: Τυπική καμπύλη ροπών - στροφών

Έχοντας δημιουργήσει την καμπύλη σκελετό, αυτή δεν αρκεί για να περιγράψει πλήρως την ανελαστική συμπεριφορά του στοιχείου σε ανακυκλιζόμενες φορτίσεις, παρά μόνο σε μονοτονικές. Για το λόγο αυτό, θα πρέπει να υιοθετηθεί επιπλέον ένας υστερητικός νόμος που περιγράφει την αποφόρτιση και επαναφόρτιση του μέλους μετά τη διαρροή του. Το OpenSees διαθέτει αρκετά τέτοια μοντέλα, κάποια από τα οποία χρησιμοποιούνται και περιγράφονται σε επόμενο κεφάλαιο.

Πάνω στην παραπάνω καμπύλη μπορούν να εντοπιστούν οι στάθμες επιτελεστικότητας για πρωτεύοντα στοιχεία, όπως αυτές ορίζονται από τον ΚΑΝ.ΕΠΕ.:

Άμεση Χρήση (AX) $\theta_{AX} = \theta_y$

Προστασία Ζωής (ΠΖ) $\theta_{\Pi Z} = 0.5 rac{\theta_y + \theta_u}{\gamma_{Rd}}$

Οιονεί Κατάρρευση (ΟΚ) $\theta_{OK} = \frac{\theta_u}{\gamma_{Pd}}$

Στις παραπάνω σχέσεις, για την παρούσα εργασία, στην οποία μελετάται η πραγματική συμπεριφορά του κτηρίου, λαμβάνεται $\gamma_{Rd} = 1.0$.

Αστοχία σε διάτμηση

Η αστοχία από διάτμηση είναι ένα πολύ σημαντικό φαινόμενο που θα πρέπει να ληφθεί υπόψη, ιδιαίτερα κατά την αποτίμηση παλαιών κατασκευών, τα οποία κινδυνεύουν ιδιαίτερα λόγω έλλειψης επαρκών συνδετήρων. Παρόλα αυτά, είναι αρκετά δύσκολο να ληφθεί υπόψη άμεσα κατά τη μοντελοποίηση, σε αλληλεπίδραση με την κάμψη και την αξονική δύναμη.

Στο παράρτημα 7Γ, ο ΚΑΝ.ΕΠΕ. προτείνει κάποιες σχέσεις που περιγράφουν την αντοχή των δομικών στοιχείων έναντι διάτμησης.

Για τη διατμητική αντοχή που εξαρτάται από τη διαρροή των συνδετήρων δίνει τη σχέση

$$V_{R} = \frac{h - x}{2L_{s}} min(N, 0.55A_{c}f_{c}) + (1 - 0.05min(5, \mu_{\theta}^{pl}))[0.16max(0.5, 100\rho_{tot})(1 - 0.16min(5, a_{s}))\sqrt{f_{c}}A_{c} + V_{w}] \quad (2.17)$$

όπου h είναι το ύψος της διατομής, x το ύψος της θλιβόμενης ζώνης, το οποίο για τις αναλύσεις που έγιναν θεωρήθηκε σταθερό και ίσο με μια μέση τιμή που προέκυψε κατά την ανάλυση ροπών - καμπυλοτήτων κάθε διατομής, N η αξονική δύναμη που θεωρείται θετική για θλίψη και μηδενική για εφελκυσμό, $a_s = L_s/h$ ο λόγος διάτμησης, $A_c = b_w d$ το εμβαδόν του σκυροδέματος που αξιοποιείται κατά τη διάτμηση, ρ_{tot} το συνολικό ποσοστό διαμήκους οπλισμού και $V_w = \rho_w b_w z f_{yw}$ η συμβολή των συνδετήρων στη διατμητική αντοχή για ορθογωνικές διατομές με ρ_w το ποσοστό του εγκάρσιου οπλισμού, z το μοχλοβραχίονα των εσωτερικών δυνάμεων που λαμβάνεται d - d' για τις δοκούς και τα υποστυλώματα και 0.8h για τα τοιχώματα και f_{yw} την τάση διαρροής του εγκάρσιου οπλισμού.

Η παραπάνω αντοχή που οφείλεται στον εγκάρσιο οπλισμό του μέλους, εξετάζεται στις θέσεις που απέχουν απόσταση *d* από τις παρειές των στηρίξεων. Για το λόγο αυτό, η παραπάνω αντοχή θα πρέπει να προσαρμοστεί ώστε να δίνει την αντίστοιχη αντοχή στη θέση της στήριξης, δηλαδή την τιμή της τέμνουσας στην στήριξη, η οποία όταν υπερβληθεί, η τιμή της τέμνουσας στη θέση "*d*" θα έχει ταυτόχρονα υπερβεί την αντοχή που προκύπτει από την παραπάνω σχέση. Σε υποστυλώματα, μια τέτοια προσαρμογή δεν χρειάζεται να γίνει, καθώς ελλείψει εγκάρσιου φορτίου, η τιμή της τέμνουσας είναι σταθερή για όλο το μέλος. Αντίθετα, σε δοκούς μια τέτοια μετατροπή είναι αναγκαία. Σε δοκούς με σταθερό κατανεμημένου φορτίο, το διάγραμμα τεμνουσών έχει σταθερή κλίση και ίση με την τιμή του κατανεμημένου φορτίου, *q*. Επομένως, η τέμνουσα στο άκρο που μας ενδιαφέρει κάθε φορά (το άκρο με την μεγαλύτερη τόμου η ίδια) θα είναι μεγαλύτερη από τη διατομή στη θέση *d* κατά μία ποσότητα *qd*. Η τελική τιμή της αντοχής έναντι τέμνουσας που λαμβάνεται υπόψη είναι δηλαδή

$$V_{R,0} = V_R + qd \tag{2.18}$$

Η παραπάνω αντοχή δεν μπορεί να ξεπεράσει την αντοχή του διαγώνιου θλιπτήρα σκυροδέματος που για ορθογωνικά υποστυλώματα με $a_s \leq 2.0$ δίνεται από τη σχέση

$$V_{R,\max} = \frac{4}{7} (1 - 0.02 \min(5, \mu_{\theta}^{pl})) (1 + 1.35 \frac{N}{A_c f_c}) \cdot (1 + 0.45 (100 \rho_{tot})) \sqrt{\min(40, f_c)} b_w z \sin(2\delta) \quad (2.19)$$

με $tan(\delta) = 0.5/a_s$, και για τοιχώματα από τη σχέση

$$V_{R,\max} = 0.85(1 - 0.06\min(5, \mu_{\theta}^{pl}))(1 + 1.8\min(0.15, \frac{N}{A_c f_c})) \cdot (1 + 0.25\max(1.75, 100\rho_{tot}))(1 - 0.2\min(2, a_s))\sqrt{f_c}b_w z] \quad (2.20)$$

Στις παραπάνω σχέσεις βλέπουμε ότι υπεισέρχεται ο όρος μ_{θ}^{pl} , δηλαδή το πλαστικό τμήμα της γωνίας στροφής χορδής. Αυτό σημαίνει ότι καθώς το μέλος εισέρχεται περισσότερο στην πλαστική περιοχή και λόγω των ανακυκλίσεων, η αντοχή του έναντι διάτμησης μειώνεται. Η μείωση αυτή συνεχίζεται μέχρι η πλαστιμότητα της γωνίας στροφής χορδής να φτάσει την τιμή 5, οπότε και θεωρείται ότι η αντοχή σε διάτμηση από το σημείο αυτό και μετά διατηρείται σταθερή.

Μπορεί να σχηματιστεί λοιπόν ένα διάγραμμα αντοχής σε τέμνουσα - πλαστιμότητας γωνίας στροφής χορδής και κατ' επέκταση αντοχής σε τέμνουσα - γωνία στροφής χορδής. Για τον σκοπό αυτό απαιτούνται ουσιαστικά δύο τιμές αντοχής σε τέμνουσα. Αυτή που ισχύει για ελαστική συμπεριφορά ($\mu_{\theta}^{pl} = 0$) και αυτή που αντιστοιχεί σε τιμή γωνίας στροφής χορδής $6\theta_y$ ($\mu_{\theta}^{pl} = 5$). Το διάγραμμα θεωρείται ότι έχει οριζόντιους αρχικούς και τελικούς κλάδους, ενώ μεταξύ των τιμών για πλαστιμότητα γωνίας στροφής χορδής 0 και 5 το διάγραμμα θεωρείται ότι φθίνει γραμμικά. Εφόσον τώρα θεωρούμε για κάθε άκρο κάποιο σταθερό L_s , το διάγραμμα αυτό μπορεί να μετατραπεί σε διάγραμμα ροπών - γωνίας στροφής χορδής με χρήση της σχέσης $M = V L_s$. Τα παραπάνω φαίνονται στο σχημα 2.8.

Σχήμα 2.8: Καμπύλες αντοχής έναντι τέμνουσας - γωνίας στροφής χορδής και μετατροπή του σε ισοδύναμο διάγραμμα αντοχής έναντι κάμψης - γωνίας στροφής χορδής

Μετά από την παραπάνω διαδικασία, τα διαγράμματα ροπής - στροφής και αντοχής σε κάμψη - στροφής τοποθετούνται στο ίδιο διάγραμμα και συγκρίνονται. Διακρίνουμε 3 περιπτώσεις, όπως φαίνεται στο σχήμα 2.9:

Στην περίπτωση 2.9a, τα διαγράμματα τέμνονται στον ελαστικό κλάδο του διαγράμματος ροπής - στροφής, επομένως όταν η τιμή της ροπής φτάσει στην τιμή του σημείου τομής, η διατομή αστοχεί διατμητικά, χωρίς να αναπτύξει ποτέ τη ροπή διαρροή της. Άρα το διάγραμμα ροπής - στροφής διαμορφώνεται μετά το σημείο τομής όπως φαίνεται στο σχήμα 2.9d, δηλαδή η ροπή μετά από έναν απότομα φθίνοντα κλάδο καταλήγει στο 20% της ροπής στο σημείο τομής, δηλαδή στην τιμή 0.20*M*_{VR}.

Στην περίπτωση 2.9b, τα διαγράμματα τέμνονται μετά το σημείο διαρροής της διατομής, επομένως η αστοχία λόγω διάτμησης οφείλεται στη μείωση της αντοχής έναντι διάτμησης λόγω της πλαστικής παραμόρφωσης και των ανακυκλίσεων. Το διάγραμμα που χρησιμοποιείται σε αυτήν την περίπτωση είναι ίδιο με το αρχικό μέχρι το σημείο τομής και στη συνέχεια λαμβάνεται ανάλογο της περίπτωσης 2.9a.

Στην περίπτωση 2.9c, φαίνεται ότι δεν υπάρχει σημείο τομής μεταξύ των δύο διαγραμμάτων, επομένως η διατομή δεν πρόκειται να αστοχήσει διατμητικά. Στην περίπτωση αυτή, το διάγραμμα ροπής - στροφής παραμένει αμετάβλητο.

Παρατηρούμε ότι σε όλες τις παραπάνω περιπτώσεις, η αρχική κλίση του διαγράμματος παραμένει η ίδια, οπότε δεν χρειάζεται να γίνει κάποια αλλαγή στις δυσκαμψίες που έχουν υπολογιστεί.

Όσον αφορά στις στάθμες επιτελεστικότητας που εξετάζονται, για λόγους εποπτείας διαχωρίζονται οι παραπάνω περιπτώσεις αστοχίας σε διάτμηση από τη στάθμη Οιονεί Κατάρρευση, και εισάγονται δύο ξεχωριστές στάθμες επιτελεστικότητας:

Καμπτοδιατμητική αστοχία (ΚΔΑ) Καμπτοδιατμητική αστοχία μετά τη διαρροή του μέλους, εξαιτίας της μείωσης της διατμητικής αντοχής του μέλους λόγω ανακυκλίσεων

Διατμητική αστοχία (ΔΑ) Διατμητική αστοχία πριν τη διαρροή του μέλους

Σχήμα 2.9: Σύγκριση διαγραμμάτων ροπής - στροφής και αντοχής έναντι ροπής - στροφής και τελικά διαγράμματα ροπής - στροφής

Σημειώνεται ότι για την προσομοίωση της αστοχίας σε τέμνουσα εξετάστηκε και η άμεση προσομοίωσή της με χρήση διατμητικών ελατηρίων με νόμο τέμνουσας - μετατόπισης με ελαστικό κλάδο πολύ μεγάλης κλίσης και φθίνοντα κλάδο μετά το σημείο αστοχίας μέχρι μια παραμένουσα αντοχή. Κατά την εκτέλεση των αναλύσεων όμως, διαπιστώθηκε ότι τέτοιοι νόμοι διατμητικών ελατηρίων με φθίνοντες κλάδους δημιουργούσαν προβλήματα στη σύγκλιση των αλγορίθμων του OpenSees, όταν στο προσομοίωμα εμφανίζονταν αρκετές θέσεις που συνέβαινε αστοχία λόγω τέμνουσας. Γι' αυτό, η μελέτη του φαινομένου της αστοχίας σε διάτμηση προτιμήθηκε να γίνει τελικά έμμεσα, με μετατροπή των διαγραμμάτων ροπών - στροφών όπως αναλύθηκε στα παραπάνω, αν και η μέθοδος αυτή προσφέρει συγκριτικά μικρότερη ακρίβεια και απαιτεί οπωσδήποτε επαναλήψεις ώστε να καθοριστούν κάποια ακριβέστερα διατμητικά μήκη από τα αρχικά που προτείνονται στον ΚΑΝ.ΕΠΕ.

Σχετικά με την αστοχία σε διάτμηση των δοκών, θεωρείται ότι κρίσιμη είναι η περίπτωση που τα μεγέθη διάτμησης από τα μόνιμα και τα σεισμικά φορτία είναι ομόσημα, δηλαδή συνήθως εφελκύεται η άνω ίνα της δοκού. Συνεπώς η αστοχία σε διάτμηση εξετάζεται για τη φορά ροπής που αντιστοιχεί στην περίπτωση αυτή, για την οποία άλλωστε προτείνει ο ΚΑΝ.ΕΠΕ. και τον υπολογισμό του διατμητικού μήκους των δοκών για κάθε άκρο.

Προσομοίωση συγκεντρωμένης πλαστικότητας

Στο OpenSees, οι συγκεντρωμένες πλαστικές αρθρώσεις μπορούν να προσομοιωθούν με μέλη μηδενικού μήκους, τα οποία ακολουθούν συγκεκριμένο νόμο ροπής - στροφής, δηλαδή αποτελούν στην πραγματικότητα στροφικά ελατήρια.

Η εισαγωγή όμως στο μοντέλο στροφικών ελατηρίων επηρεάζει τις δυσκαμψίες των μελών, καθώς ουσιαστικά πρόκειται για στοιχεία που βρίσκονται εν σειρά με τα ελαστικά μέλη. Για τη

δυσκαμψία ενός μέλους-προβόλου με στροφικό ελατήριο στο άκρο ισχύει η σχέση

$$\frac{1}{K_{mem}} = \frac{1}{K_s} + \frac{1}{K_{bc}}$$
(2.21)

όπου K_{mem} η δυσκαμψία του συνολικού μέλους, K_s η δυσκαμψία του ελατηρίου και K_{bc} η δυσκαμψία του ελαστικού μέλους.

Για το λόγο αυτό, οι Ibarra και Krawinkler προτείνουν τη χρήση τροποποιημένων δυσκαμψιών στο προσομοίωμα, ώστε οι δυσκαμψίες των συνολικών μελών να είναι ίδιες με τις αρχικές. Προτείνουν τη χρήση στροφικών ελατηρίων που είναι η φορές πιο δύσκαμπτα από τα ελαστικά μέλη, δηλαδή $K_s = nK_{bc}$, με το *n* τυχαίο αριθμό αρκετά μεγαλύτερο της μονάδας, ενώ οι ίδιοι υιοθετούν στην εργασία τους την τιμή n = 10, η οποία χρησιμοποιείται και εδώ. Συνδυάζοντας τις παραπάνω σχέσεις καταλήγουμε στις εξής εκφράσεις:

$$K_{bc} = \frac{n+1}{n} K_{mem} \tag{2.22}$$

$$K_s = (n+1)K_{mem}$$
 (2.23)

Για να κάνουμε τη δυσκαμψία του ελαστικού μέλους $\frac{n+1}{n}$ φορές μεγαλύτερη, ο λόγος αυτός αρκεί να πολλαπλασιαστεί με τις τιμές του ΕΙ που εισάγουμε στο πρόγραμμα. Όσον αφορά στις πλαστικές αρθρώσεις, για να επιτευχθεί ο πολλαπλασιασμός της δυσκαμψίας τους με n + 1, η θ_y θα πρέπει να διαιρεθεί με n + 1 ($\theta_{y,s} = \frac{\theta_y}{n+1}$), αλλάζοντας και τις γωνίες με τις οποίες θα πρέπει να ελεγχθούν στη συνέχεια οι πλαστικές αρθρώσεις.

Για την επαλήθευση της παραπάνω μεθόδου πραγματοποιήθηκαν επιπλέον δοκιμές με συμβολική άλγεβρα στο πρόγραμμα MatLab. Έστω μέλος με δυσκαμψία ΕΙ στο οποίο τοποθετούνται στα άκρα ελατήρια με στροφικές δυσκαμψίες $\frac{M}{\theta} = \frac{3EI}{L_s}$. Στη γενική περίπτωση, τα ελατήρια στα δύο άκρα είναι διαφορετικά με τυχόντα L_s . Έστω λοιπόν ότι στο ένα άκρο τοποθετείται στοφικό ελατήριο με $L_{s,1} = \frac{L}{m_1}$ και στο άλλο $L_{s,2} = \frac{L}{m_2}$. Το αρχικό 4χ4 μητρώο δυσκαμψίας του μέλους χωρίς τα στροφικά ελατήρια είναι

<u>12 EI</u>	$6 \mathrm{EI}$	-12 EI	<u>6 EI</u>]
L ³	L^2	L^3	L^2
<u>6 EI</u>	4 EI	$-\frac{6 \text{ EI}}{2}$	2 EI
	L	$12 \frac{L^2}{51}$	
$-\frac{12101}{13}$	$-\frac{0}{121}$	12151	$-\frac{0121}{12}$
6 ĔĨ	2 ÉĨ	6 EI	4 ÉĨ
L^2	L	$-\frac{1}{L^2}$	

Για την εισαγωγή των στροφικών ελατηρίων στο μοντέλο απαιτείται η εισαγωγή δύο νέων στροφικών βαθμών ελευθερίας στο μητρώο δυσκαμψίας. Όπως εξηγήθηκε παραπάνω, στο νέο μητρώο χρησιμοποιούνται οι τιμές $EI' = \frac{n+1}{n}EI$, $k_{s,1} = (n+1)\frac{3EI}{L_{s,1}}$ και $k_{s,2} = (n+1)\frac{3EI}{L_{s,2}}$. Για να προκύψει πάλι ένα 4x4 μητρώο δυσκαμψίας που θα μπορεί να συγκριθεί με το αρχικό, απαιτείται η συμπύκνωση του νέου μητρώου δυσκαμψίας.

Επειδή η παρουσίαση του συμπυκνωμένου μητρώου στη γενική περίπτωση είναι δύσκολη, παρατίθεται εδώ η συνηθισμένη περίπτωση όπου $m_1 = m_2 = m$:

$\frac{\frac{12 \text{ EI } m (n+1)}{L^3 (m n+2)}}{\frac{6 \text{ EI } m (n+1)}{L^2 (m n+2)}}$	$\frac{6 \text{EI} m (n+1)}{L^2 (m n+2)}$ $\frac{12 \text{EI} m (m n+1) (n+1)}{L (3 m^2 n^2 + 8 m n+4)}$	$-\frac{12 \text{ EI } m (n+1)}{L^3 (m n+2)} \\ -\frac{6 \text{ EI } m (n+1)}{L^2 (m n+2)}$	$\frac{6 \text{ EI } m (n+1)}{L^2 (m n+2)} \\ \frac{6 \text{ EI } m^2 n (n+1)}{L (3 m^2 n^2 + 8 m n+4)}$
$-\frac{12 \text{ EI } m(n+1)}{L^3(mn+2)} \\ \frac{6 \text{ EI } m(n+1)}{L^2(mn+2)}$	$\frac{-\frac{6 \operatorname{EI} m (n+1)}{L^2 (m n+2)}}{6 \operatorname{EI} m^2 n (n+1)}$ $\frac{1}{L (3 m^2 n^2 + 8 m n+4)}$	$\frac{\frac{12 \operatorname{EI} m (n+1)}{L^3 (m n+2)}}{-\frac{6 \operatorname{EI} m (n+1)}{L^2 (m n+2)}}$	$-\frac{6 \operatorname{EI} m (n+1)}{L^2 (m n+2)}$ $\frac{12 \operatorname{EI} m (m n+1) (n+1)}{L (3 m^2 n^2 + 8 m n+4)}$

Οι διαφορές των στοιχείων του τελικού μητρώου από τα στοιχεία του αρχικού, κανονικοποιημένες ως προς τα στοιχεία του αρχικού μητρώου δίνονται από τον παρακάτω πίνακα:

Γ	<u>m-2</u>	<u>m-2</u>	<u>m-2</u>	<u>m-2</u>
	mn+2	mn+2	mn+2	m n+2
	m-2	$3 m - 5 m n + 3 m^2 n - 4$	m-2	$-3 n m^2 + 8 n m + 4$
	mn+2	$3 m^2 n^2 + 8 m n + 4$	mn+2	$3 m^2 n^2 + 8 m n + 4$
	m-2	$\underline{m-2}$	m-2	<u>m-2</u>
	mn+2	m n+2	mn+2	mn+2
	m-2	$-3 n m^2 + 8 n m + 4$	m-2	$3 m - 5 m n + 3 m^2 n - 4$
L	$\overline{mn+2}$	$\overline{3 m^2 n^2 + 8 m n + 4}$	$\overline{m n+2}$	$3 m^2 n^2 + 8 m n + 4$

Παρακάτω δίνονται κάποια μητρώα ποσοστιαίων διαφορών (σε μορφή %) για κάποιες τυπικές περιπτώσεις, υιοθετώντας την τιμή n = 10:

Για $m_1=m_2=2$, δηλαδή $L_{s,1}=L_{s,2}=L/2$

0	0	0	0 -
0	1.6129	0	-3.2258
0	0	0	0
0	-3.2258	0	1.6129

Για $m_1 = m_2 = 3$, δηλαδή $L_{s,1} = L_{s,2} = L/3$, όπως για παράδειγμα στην περίπτωση των δοκών μετά από επανάληψη

3.1250	3.1250	3.1250	3.1250
3.1250	4.2459	3.1250	0.8832
3.1250	3.1250	3.1250	3.1250
3.1250	0.8832	3.1250	4.2459

Για $m_1 = 1.5, m_2 = 3$, δηλαδή $L_{s,1} = 2L/3, L_{s,2} = L/3$, όπως για παράδειγμα στην περίπτωση των υποστυλωμάτων μετά από επανάληψη

0.0326	-1.0430	0.0326	1.1082
-1.0430	0.0326	-1.0430	-3.1943
0.0326	-1.0430	0.0326	1.1082
1.1082	-3.1943	1.1082	3.2595

Τα παραπάνω διερευνήθηκαν και για την περίπτωση των δοκών, που έχει χωριστεί σε 3 τμήματα (εδώ θεωρούμε ότι τα ακραία τμήματα έχουν μήκος ίσο με το 20% του καθαρού μήκους). Αυτό που διαφέρει σε αυτήν την περίπτωση είναι ότι το 4x4 μητρώο δυσκαμψίας που θα πρέπει να διαχειριστούμε προκύπτει έπειτα από συμπύκνωση του 8x8 μητρώου των τριών μελών.

Για τα παρακάτω αποτελέσματα θεωρούμε την τυπική περίπτωση που το μεσαίο τμήμα έχει διπλάσια τιμή *EI* από τα ακραία

Για $m_1=m_2=2$, δηλαδή $L_{s,1}=L_{s,2}=L/2$

-1.0887	-1.0887	-1.0887	-1.0887
-1.0887	0.7265	-1.0887	-5.5847
-1.0887	-1.0887	-1.0887	-1.0887
-1.0887	-5.5847	-1.0887	0.7265

Για $m_1=m_2=$ 3, δηλαδή $L_{\mathrm{s},1}=L_{\mathrm{s},2}=L/$ 3

2.3505	2.3505	2.3505	2.3505
2.3505	3.6220	2.3505	-0.7988
2.3505	2.3505	2.3505	2.3505
2.3505	-0.7988	2.3505	3.6220

Για $m_1 = 1.5, m_2 = 3$, δηλαδή $L_{s,1} = 2L/3, L_{s,2} = L/3$

-1.0383	-2.5377	-1.0383	0.4611
-2.5377	-1.3270	-2.5377	-5.5366
-1.0383	-2.5377	-1.0383	0.4611
0.4611	-5.5366	0.4611	2.8826

Στις παραπάνω περιπτώσεις, η μέγιστη ποσοστιαία διαφορά που βρέθηκε σε στοιχείο του μητρώου δυσκαμψίας ειναι περίπου 5-6%. Συμπεραίνουμε λοιπόν ότι πράγματι η μέθοδος που προτείνεται δίνει ικανοποιητικά αποτελέσματα για την ελαστική απόκριση του συστήματος, καθώς μειώνεται στο ελάχιστο η επιρροή της εισαγωγής των στροφικών ελατηρίων στο μοντέλο. Όπως θα δούμε στη συνέχεια, αυτό φαίνεται και από την ελάχιστη μεταβολή των ιδιοπεριόδων του κτηρίου πριν και μετά την εισαγωγή των ελατηρίων στο σύστημα.

Πέραν όμως της ελαστικής απόκρισης, θα πρέπει να γίνουν μεταβολές και στα ανελαστικά χαρακτηριστικά των στοιχείων. Στον κλάδο μετά τη διαρροή της στροφικής άρθρωσης ισχύει

$$\Delta \theta_{mem} = \Delta \theta_s + \Delta \theta_{bc} , \, \delta n \lambda a \delta n \frac{\Delta M}{a_{s,mem} K_{mem}} = \frac{\Delta M}{a_{s,s} K_s} + \frac{\Delta M}{K_{bc}}$$
(2.24)

όπου a_s είναι οι συντελεστές κράτυνσης των στοιχείων $\left(a_s = \frac{K_h}{K_{el}}\right)$. Με αντικατάσταση των δυσκαμψιών στην παραπάνω σχέση με τον τρόπο που τις ορίσαμε νωρίτερα, ο συντελεστής κράτυνσης της στροφικής άρθρωσης προκύπτει¹

$$a_{s,s} = \frac{a_{s,mem}}{1 + n(1 - a_{s,mem})}$$
(2.25)

Εξισώνοντας τη ροπή αστοχίας στο διάγραμμα ροπής - στροφής του συνολικού στοιχείου και σε αυτό που αντιστοιχεί στην στροφική άρθρωση, η γωνία που αντιστοιχεί στην καμπτική αστοχία της άρθρωσης προκύπτει

$$\theta_{u,s} = \theta_{y,s} \left[\left(\left(\frac{\theta_u}{\theta_y} \right)_{mem} - 1 \right) \left(1 - a_{s,mem} \right) n + \left(\frac{\theta_u}{\theta_y} \right)_{mem} \right]$$
(2.26)

Στο μοντέλο μας, που επιλέγουμε να μην έχουμε κράτυνση στο μετελαστικό κλάδο, τίθεται στις παραπάνω σχέσεις $a_{s,mem} = 0$. Στην περίπτωση αυτή η σχέση που δίνει τη γωνία αστοχίας αποδεικνύεται και ως εξής:

Εφόσον το στροφικό ελατήριο δεν έχει κράτυνση, μετά τη διαρροή, ο όποια μεταβολή στροφής του συνολικού μέλους αναλαμβάνεται από το στροφικό ελατήριο και η στροφή του ελαστικού μέλους παραμένει σταθερή, $\theta_{y,bc}$. Άρα

$$\theta_{u,mem} = \theta_{u,s} + \theta_{y,bc} \tag{2.27}$$

Διαιρώντας την παραπάνω σχέση με $\theta_{y,s} = \frac{K_{mem}}{K_s} \theta_{y,mem} = \frac{\theta_{y,mem}}{n+1}$ και αντικαθιστώντας $\theta_{y,bc} = \frac{K_{mem}}{K_{bc}} \theta_{y,mem} = \frac{n\theta_{y,mem}}{n+1}$ προκύπτει τελικά η σχέση

$$\theta_{u,s} = \theta_{y,s} \left[\left(\left(\frac{\theta_u}{\theta_y} \right)_{mem} - 1 \right) n + \left(\frac{\theta_u}{\theta_y} \right)_{mem} \right]$$
(2.28)

Οι παραπάνω αλλαγές βέβαια επηρεάζουν και την απόσβεση του συστήματος. Για τη μόρφωση του μητρώου απόσβεσης Rayleigh, προτείνεται αυτό να ορισθεί βάσει των αρχικών δυσκαμψιών και όχι αυτών που εμφανίζονται κατά τη διάρκεια της ανάλυσης, καθώς η επιρροή των μελών με πλαστικές αρθρώσεις σε φθίνοντα κλάδο δεν έχει εξετασθεί αναλυτικά. Ακόμα, απόσβεση Rayleigh ορίζουμε να έχουν μόνο τα ελαστικά τμήματα των μελών, ενώ τα στροφικά ελατήρια θα πρέπει να μην συμβάλλουν στην απόσβεση. Ο συντελεστής του μητρώου απόσβεσης που αναφέρεται στο μητρώο δυσκαμψίας θα πρέπει τότε να πολλαπλασιαστεί με συντελεστή 1.1 όταν χρησιμοποιείται για τις τροποποιήσεις η τιμή n = 10.

¹Η διορθωμένη σχέση σε σχέση με την πρωτότυπη των Ibarra - Krawinkler, 2005 δίδεται από τη L. Eads στο σύνδεσμο http://opensees.berkeley.edu/wiki/index.php/Pushover_Analysis_of_2-Story_Moment_Frame

2.1.4 Ανελαστική συμπεριφορά με κατανεμημένη πλαστικότητα

Σε αντίθεση με τη συγκεντρωμένη πλαστικότητα, όπου η πλαστικοποίηση των μελών συμβαίνει μόνο σε συγκεκριμένες σημειακές θέσεις, για παράδειγμα στους ακραίους κόμβους των μελών, με τη μέθοδο της κατανεμημένης πλαστικότητας, η πλαστικοποίηση πραγματοποιείται σε μια ευρύτερη περιοχή του μέλους, κάτι που προσεγγίζει περισσότερο την πραγματικότητα.

Στο OpenSees, υπάρχουν δύο βασικά στοιχεία κατανεμημένης πλαστικότητας: τα forcebased elements και τα displacement-based elements. Η βασική διαφορά μεταξύ τους είναι ότι για τη μόρφωση του εφαπτομενικού μητρώου δυσκαμψίας, τα πρώτα υποθέτουν ένα πεδίο εντατικών μεγεθών στο μέλος, ενώ τα δεύτερα ένα πεδίο μετακινήσεων. Στις περισσότερες περιπτώσεις έχει πλέον καθιερωθεί η χρήση των force-based στοιχείων, καθώς αν και υστερούν έναντι των displacement-based σε υπολογιστικό κόστος, η ακρίβεια που προσφέρουν είναι αρκετά μεγαλύτερη. Χαρακτηριστικά αναφέρεται ότι για την αύξηση της ακρίβειας που προσφέρουν τα στοιχεία αυτά, στα μεν force-based αρκεί μια μικρή πύκνωση των σημείων ολοκλήρωσης, ενώ στα displacement-based ο μόνος τρόπος είναι ο διαχωρισμός των μελών σε αρκετά περισσότερα στοιχεία, με σημαντική αύξηση όμως και του υπολογιστικού κόστους.

Η εισαγωγή των χαρακτηριστικών των τμημάτων της κατανεμημένης πλαστικότητας γίνεται είτε ορίζοντας νόμους ροπής - καμπυλότητας για τα τμήματα που θέλουμε, είτε πολύ απλούστερα εισάγοντας τη διατομή σκυροδέματος με τους οπλισμούς της και ορίζοντας τους νόμους κάθε υλικού. Με τη δεύτερη μέθοδο μάλιστα, μπορεί να ληφθεί υπόψη η αλληλεπίδραση μεταξύ της αξονικής και των ροπών στις δύο διευθύνσεις, κάτι που σε διαφορετική περίπτωση είναι σχεδόν αδύνατο να γίνει και αυτή η αλληλεπίδραση μεταξύ των εντατικών μεγεθών θα πρέπει να ληφθεί έμμεσα υπόψη, όπως για παράδειγμα με επαναλήψεις, όταν κρίνεται ότι η μεταβολή τους αλλάζει αισθητά τη συμπεριφορά των υπολοίπων εντατικών μεγεθών.

Στο OpenSees υπάρχει ακόμα μία επιλογή για μείωση του υπολογιστικού κόστους, όπου ένα μέλος διαθέτει στοιχεία κατανεμημένης πλαστικότητας μόνο στα άκρα στα μήκη που ορίζει ο χρήστης, ενώ στο μεσαίο τμήμα τους συμπεριφέρονται ελαστικά, εφόσον δεν αναμένονται πλαστικοποιήσεις στα τμήματα αυτά. Το μήκος των ακραίων τμημάτων μπορεί να οριστεί ίσο με το μήκος της πλαστικής ζώνης που αναμένεται για μέλη χωρίς ιδιαίτερο αντισεισμικό σχεδιασμό, σύμφωνα με την ακόλουθη σχέση του ΕC8.3

$$L_{pl} = 0.2L_s + 0.036d_b f_{y} \text{ (MPa)}$$
(2.29)

Στη συγκεκριμένη περίπτωση όμως, η συγκεκριμένη αντιμετώπιση οδηγεί σε προβλήματα, καθώς το μήκος πλαστικής άρθρωσης πιθανόν να υπερβαίνει το μήκος που έχουμε ορίσει για τα ακραία τμήματα των δοκών, ενώ η δυσκαμψία τους, η οποία προκύπτει από την κατανεμημένη πλαστικότητα, είναι αρκετά μεγαλύτερη από αυτήν που θα προέκυπτε από τον ΚΑΝ.ΕΠΕ., η οποία εφαρμόζεται για το μεσαίο τμήμα, οδηγώντας σε εσφαλμένη κατανομή δυσκαμψιών στο μέλος. Άλλωστε, η περίπτωση εκτεταμένων πλαστικών ζωνών στα μέλη καλύπτεται από τη μέθοδο κατανεμημένης πλαστικότητας σε όλο το μήκος των μελών, η οποία δεν απαιτεί να ορίσουμε εκ των προτέρων κάποιο μήκος πλαστικής άρθρωσης και δεν δημιουργεί εσφαλμένες κατανομές δυσκαμψιών στη δοκό, καθώς ολόκληρη αναλύεται με fibers. Έτσι, η παραπάνω μέθοδος δημιουργίας περιοχών κατανεμημένης πλαστικότητας στα άκρα εφαρμόζεται τελικά με πολύ μικρές περιοχές κατανεμημένης πλαστικότητας, ικανές να αποτυπώσουν την αλληλεπίδραση μεταξύ αξονικής δύναμης και ροπών κάμψης, χωρίς να επηρεάζουν όμως ιδιαίτερα τις δυσκαμψίες των μελών.

2.1.5 Συγκεντρωμένη ή Κατανεμημένη πλαστικότητα;

Όπως φαίνεται από τα παραπάνω, υπάρχουν δύο βασικές μέθοδοι προσομοίωσης της πλαστικοποίησης, κάθε μια με τα πλεονεκτήματα και τα μειονεκτήματά της.

Η κύρια μέθοδος στην οποία προσανατολίζεται το OpenSees είναι αυτή της κατανεμημένης πλαστικότητας. Έχοντας μια πληθώρα μοντέλων υλικών στη διάθεσή του, ο χρήστης το μόνο

που χρειάζεται είναι να εισάγει τις συντεταγμένες της διατομής, τους οπλισμούς της και τους νόμους κάθε υλικού και το OpenSees υπολογίζει αυτόματα κατά τη διάρκεια της ανάλυσης την ανελαστική συμπεριφορά των στοιχείων. Επίσης, όπως αναφέρθηκε στην προηγούμενη ενότητα, με τη μέθοδο αυτή λαμβάνεται υπόψη και η αλληλεπίδραση μεταξύ της αξονικής δύναμης και των ροπών στις δύο διευθύνσεις, καθώς διαφορετικά η μόνη αλληλεπίδραση που μπορεί να ληφθεί άμεσα υπόψη κατά την ανάλυση στο OpenSees είναι αυτή μεταξύ των δύο ροπών, με απαραίτητη προϋπόθεση βέβαια οι νόμοι που διέπουν την κάμψη στις δύο διεθύνσεις να είναι οι ίδιοι, κάτι που δεν χρησιμεύει ιδιαίτερα. Επιπλέον, η συγκεκριμένη μέθοδος είναι δυνατόν να δίνει πιο ρεαλιστικά αποτελέσματα, καθώς η πλαστικοποίηση των μελών γίνεται σε κάποιο μήκος και όχι σε μία μόνο διατομή. Για να επιτευχθεί αυτό όμως, απαιτείται πολύ προσεκτική επιλογή των υλικών και σωστή βαθμονόμησή τους.

Παρά τα παραπάνω πλεονεκτήματα της μεθόδου της κατανεμημένης πλαστικότητας, κρίθηκε αρκετά δύσκολη η εφαρμογή της για αξιόπιστη προσομοίωση φορέων από οπλισμένο σκυρόδεμα, κυρίως γιατί η συμπεριφορά των μελών από Ο.Σ. είναι δύσκολο να περιγραφεί επαρκώς απλά με τη χρήση κατάλληλων καταστατικών νόμων για τα υλικά. Όπως φαίνεται και από τις σχέσεις του ΚΑΝ.ΕΠΕ., καταλληλότερη για ευρεία χρήση σε φορείς από Ο.Σ. είναι η συγκεντρωμένη πλαστικότητα, καθώς με αυτήν μπορούμε να χρησιμοποιήσουμε ευκολότερα ημιεμπειρικές σχέσεις που περιγράφουν επαρκέστερα τη συμπεριφορά του σκυροδέματος. Για παράδειγμα, όπως περιγράφηκε παραπάνω, για τη διαρροή χρησιμοποιείται η γωνία στροφής χορδής που προκύπτει όχι μόνο από παραμορφώσεις λόγω κάμψης, τις οποίες και μόνο λαμβάνει συνήθως υπόψη η κατανεμημένη πλαστικότητα, αλλά και από φαινόμενα ρηγμάτωσης, διατμητικής παραμόρφωσης και εξόλκευσης οπλισμών που περιγράφονται από ημιεμπειρικές σχέσεις. Λόγω των παραπάνω φαινομένων έχουμε ακόμα και σημαντική μεταβολή των ενεργών δυσκαμψιών των μελών έναντι των ενεργών δυσκαμψιών που θα είχαμε αν λαμβάναμε υπόψη μόνο την κάμψη, δεδομένου ότι η ροπή διαρροής διατηρείται περίπου η ίδια $(K = \frac{M_y}{\theta_y})$. Έτσι, χρησιμοποιώντας δυσκαμψίες που οφείλονται μόνο σε παραμορφώσεις λόγω κάμψης, όπως γίνεται συνήθως στην περίπτωση της κατανεμημένης πλαστικότητας, είναι αβέβαιο ότι υπάρχει συμβατότητα με τα όρια διαρροής για τις γωνίες στροφής χορδής που δίνει ο ΚΑΝ.ΕΠΕ., καθώς η χρήση τιμών γωνιών διαρροής που οφείλονται και σε άλλους παράγοντες πέραν της κάμψης και τις αυξάνουν σημαντικά (σε κάποιες περιπτώσεις ακόμα και τις διπλασιάζουν), θα επέβαλε και τη χρήση ανάλογων μειωμένων τιμών δυσκαμψιών για τα μέλη. Συνεπώς, ο έλεγχος διαρροής των μελών, εκτός του ότι στην πραγματικότητα δεν μπορεί να ορισθεί για συγκεκριμένη τιμή γωνίας στροφής χορδής γιατί γίνεται σταδιακά και σε κάποιο μήκος του μέλους ανάλογα και με την αλληλεπίδραση μεταξύ αξονικής δύναμης και ροπών κάμψης, είναι πολύ δύσκολο να εφαρμοστεί, ακόμα και με χρήση συμβατικών ορίων, όπως αυτά του ΚΑΝ.ΕΠΕ. Ακόμα, η αστοχία των μελών επέρχεται στις περισσότερες περιπτώσεις σε αρκετά διαφορετικές τιμές της γωνίας στροφής χορδής από αυτήν που θα έδινε η μέθοδος κατανεμημένης πλαστικότητας και μόνο με ημιεμπειρικές σχέσεις μπορει να γίνει μια προσέγγισή της. Τέλος, η χρήση γωνιών στροφής χορδής για έλεγχο διαρροής ή αστοχίας των μελών θα απαιτούσε τη γνώση του μήκους της πλαστικής άρθρωσης σε κάθε βήμα της ανάλυσης, κάτι αρκετά δύσκολο να να υπολογισθεί, ενώ οι ημιεμπερικές σχέσεις όπως η 2.29 είναι αρκετά προσεγγιστικές και δεν είναι βέβαιο ότι υπάρχει συμβατότητα με τις πλαστικές αρθρώσεις που εμφανίζονται κατά τη διάρκεια της ανάλυσης κατανεμημένης πλαστικότητας.

Στη βιβλιογραφία έχουν προταθεί μέθοδοι που χρησιμοποιούν την κατανεμημένη πλαστικότητα για την κάμψη, ενώ μπορούν να λάβουν υπόψη φαινόμενα εξόλκευσης οπλισμών και διατμητικής παραμόρφωσης. Για παράδειγμα, για να ληφθούν υπόψη φαινόμενα εξόλκευσης οπλισμών, οι Berry - Eberhard (2008) προτείνουν να προστεθούν στα άκρα των κανονικών μελών μέλη μηδενικού μήκους, τα οποία περιγράφουν τις σχέσεις δύναμης-μετατόπισης των διαφόρων υλικών της διατομής. Επιπλέον, για την προσομοίωση της διατμητικής παραμόρφωσης, προτείνουν να "αθροιστεί" η διατομή με fibers που έχει οριστεί για την κάμψη, με κάποια διατομή που δίνει την επιθυμητή συμπεριφορά δύναμης-παραμόρφωσης για τη διάτμηση. Βέβαια, οι καταστατικοί νόμοι που περιγράφουν τα παραπάνω είναι δύσκολο να εκτιμηθούν σωστά αν δεν υπάρχουν διαθέσιμα δεδομένα για παρόμοιες περιπτώσεις, ενώ η υλοποίηση της παραπάνω προσομοίωσης για φορείς με πολλούς βαθμούς ελευθερίας κρίνεται δύσκολη και δεν προσφέρει απαραίτητα μεγαλύτερη ακρίβεια στα αποτελέσματα έναντι πιο απλοποιητικών μεθόδων, όταν οι αβεβαιότητες που οφείλονται σε άλλους παράγοντες είναι πολύ μεγαλύτερε.

Η μέθοδος συγκεντρωμένης πλαστικότητας, αν και κατά την ανάλυση είναι αρκετά ταχύτερη, απαιτεί προεπεξεργασία δεδομένων αρκετά εκτενέστερη από ό,τι η μέθοδος της κατανεμημένης πλαστικότητας, κάτι που φαίνεται άλλωστε και από τις προηγούμενες ενότητες. Ορίζοντας όμως εμείς τους νόμους ροπών - στροφών για τις στροφικές αρθρώσεις, ο έλεγχος της κατάστασης των μελών (διαρροή, στάθμη επιτελεστικότητας, αστοχία) σε κάθε βήμα της ανάλυσης μπορεί να γίνει πολύ ευκολότερα, καθώς υπάρχει σαφής διάκριση μεταξύ των διαφόρων καταστάσεων, ενσωματώνοντας παράλληλα μέσω ημιεμπειρικών σχέσεων και άλλα φαινόμενα πέραν της κάμψης που επηρεάζουν σημαντικά τη συμπεριφορά των μελών. Ακόμα, στα διαγράμματα ροπής - στροφής της συγκεντρωμένης πλαστικότητας μπορούμε να ενσωματώσουμε και την αστοχία σε διάτμηση, ενώ διαπιστώθηκε ότι η ξεχωριστή αντιμετώπιση της με χρήση διατμητικών ελατηρίων με φθίνοντες κλάδους, δημιουργούσε προβλήματα στη σύγκλιση του αλγορίθμου επίλυσης για εκτεταμένες αστοχίες λόγω τέμνουσας.

Τέλος, υπάρχει και η δυνατότητα προσομοίωσης στοιχείων από οπλισμένο σκυρόδεμα με τρισδιάστατα πεπερασμένα στοιχεία. Για μια σωστή προσομοίωση, αυτά θα πρέπει να ενσωματώνουν ασυνέχειες λόγω ρηγμάτωσης, αλληλεπίδραση μεταξύ του σκυροδέματος και των στοιχείων οπλισμού για την προσομοίωση της εξόλκευσης, της παραλαβής της διάτμησης και της περίσφιγξης, καθώς και ρεαλιστικούς νόμους για την τρισδιάσταση καμπτοδιατμητική συμπεριφορά του σκυροδέματος. Εκτός από τη δυσκολία επιλογής νόμων και εφαρμογής των παραπάνω σε πραγματικούς φορείς, το υπολογιστικό κόστος είναι απαγορευτικό για γενικευμένη χρήση σε μεγάλους φορείς από οπλισμένο σκυρόδεμα. Παράλληλα, όπως και στην περίπτωση του πολύπλοκου μοντέλου που περιλαμβάνει κατανεμημένη πλαστικότητα, η αυξημένη δυσκολία προσομοίωσης δεν οδηγεί απαραίτητα σε ακριβέστερα αποτελέσματα όταν οι αβεβαιότητες που προκύπτουν από τα χρησιμοποιούμενα υλικά και τη φάση κατασκευής είναι σημαντικές.

2.1.6 Εισαγωγή της τοιχοποιίας στο προσομοίωμα

Κατά την αποτίμηση της συμπεριφοράς κατασκευών από Ο.Σ., η ύπαρξη τοιχοπληρώσεων λαμβάνεται υπόψη μόνο στις στάθμες επιτελεστικότητας Άμεση Χρήση και Προστασία Ζωής, ενώ για τη στάθμη επιτελεστικότητας Οιονεί Κατάρρευση δεν λαμβάνονται υπόψη, εκτός και αν συμβάλλουν αρνητικά στη συμπεριφορά του κτηρίου. Στη συγκεκριμένη περίπτωση του κτηρίου που εξετάζεται, η ύπαρξη της τοιχοποιίας πιθανόν μεταβάλλει σημαντικά τη συμπεριφορά του κτηρίου, καθώς το κτήριο έχει pilotis χωρίς τοιχοπληρώσεις, επομένως δεν διαθέτει κανονικότητα καθ' ύψος. Επιπλέον, επιδίωξή μας είναι να μελετήσουμε την πραγματική συμπεριφορά του κτηρίου στις σεισμικες διεγέρσεις, οπότε η δημιουργία ενός μοντέλου με τοιχοπληρώσεις θα έδινε ρεαλιστικότερα αποτελέσματα.

Η εισαγωγή στο προσομοίωμα των τοιχοπληρώσεων που έχουν ανοίγματα είναι δύσκολη διαδικασία και συνήθως ακολουθούνται κάποιοι πρακτικοί κανόνες για αμέληση ή όχι των τοιχοπληρώσεων με τα ανοίγματα στο προσομοίωμα, σύμφωνα πάντα με την κριση του μηχανικού. Έτσι, αν υπάρχουν δύο μεγάλα ανοίγματα κοντά στα άκρα ή ένα μεγάλο άνοιγμα με διαστάσεις μεγαλύτερες του 50% αυτών του φατνώματος κοντά στο μέσον του, τότε η τοιχοπλήρωση αμελείται. Αν υπάρχει ένα άνοιγμα κοντά στο μέσον του φατνώματος με διαστάσεις μικρότερες του 20% αυτών του φατνώματος, τοτε η τοιχοπλήρωση εισάγεται αγνοώντας το άνοιγμα, ενώ για διαστάσεις ανοίγματος κοντά στο μέσο μεταξύ 20% και 50%, θα εισάγονται στο προσομοίωμα δυο τοιχοπληρώσεις. Μικρά και γειτονικά ανοίγματα μπορούν να θεωρηθούν ως ενιαίο άνοιγμα που περιγράφεται σε αυτά.

Η προσομοίωση των τοιχοπληρώσεων πραγματοποιείται με την απλή μέθοδο του διαγώνιου θλιπτήρα που περιγράφεται στον ΚΑΝ.ΕΠΕ., με διαφορετικά όμως χαρακτηριστικά για τις ελαστικές και τις ανελαστικές αναλύσεις.

Αρχικά απαιτούνται τα γεωμετρικά χαρακτηριστικά του διαγώνιου θλιπτήρα. Έστω h και l το καθαρό ύψος και μήκος του πετάσματος τοιχοποιίας αντίστοιχα. Το πάχος t του μέλους λαμβάνεται ίσο με το συνολικό πάχος της τοιχοποιίας χωρίς τα τυχόν ενδιάμεσα κενά. Η γωνία που σχηματίζει ο διαγώνιος θλιπτήρας με τα οριζόντια στοιχεία υπολογίζεται από τη σχέση

$$a = \arctan(\frac{h}{l}) \tag{2.30}$$

ενώ το μήκος του διαγώνιου θλιπτήρα από τη σχέση

$$L = \frac{l}{\cos a} \tag{2.31}$$

Το ισοδύναμο πλάτος b της θλιβόμενης διαγωνίου προκύπτει έπειτα από ανάλυση δυνάμεων ως

$$b = L \frac{\bar{f}_{wv}}{\bar{f}_{wc,s}}$$
(2.32)

όπου \bar{f}_{wv} η μέση αντοχή της τοιχοπλήρωσης έναντι διατμητικών δυνάμεων και $\bar{f}_{wc,s}$ η μέση αντοχή της θλιβόμενης διαγωνίου έναντι θλίψης. Για μέσες τιμές αντοχών πριν ή κατά τη ρηγμάτωση μπορει να λαμβάνεται

$$b = 0.15L$$
 (2.33)

Επομένως, το εμβαδόν της διατομής της θλιβόμενης διαγωνίου προκύπτει

$$A_{\rho} = bt \tag{2.34}$$

Στην περίπτωση των ελαστικών αναλύσεων, που αντί για δύο ίδιες ράβδους που ενεργοποιούνται μόνο σε θλίψη, χρησιμοποιούμε δύο ελαστικές ράβδους, το εμβαδόν κάθε μιας είναι το μισό της τιμής που προκύπτει από την παραπάνω σχέση.

Η εκτίμηση της μέσης θλιπτικής αντοχής της τοιχοποιίας κατά τη διεύθυνση της διαγώνιας ράβδου γίνεται με τη βοήθεια της σχέσης

$$\bar{f}_{wc,s} = 1.25 k f_{bc}^{0.7} f_{mc}^{0.3} \tag{2.35}$$

όπου k είναι ένας εμπειρικός συντελεστής που εκφράζει την κατηγορία στην οποία εντάσσονται τα τοιχοσώματα και τα κονιάματα με συνήθεις τιμές από 0.35 έως 0.55, f_{bc} είναι η θλιπτική αντοχή του τοιχοσώματος και f_{mc} η θλιπτική αντοχή του κονιάματος.

Η αξονική παραμόρφωση ε της θλιβόμενης ράβδου κατά τη διαρροή και κατά την αστοχία λαμβάνεται σύμφωνα με το σχήμα 2.10

Το μέτρο ελαστικότητας της ισοδύναμης ράβδου που χρησιμοποιείται για τις ελαστικές αναλύσεις είναι

$$E_w = \frac{f_{wc,s}}{\varepsilon_y} \tag{2.36}$$

Για να ληφθεί υπόψη η πρόωρη αστοχία των τοιχοπληρώσεων λόγω λυγηρότητας σε κάμψη εκτός επιπέδου, ακολουθείται η διαδικασία του ΚΑΝ.ΕΠΕ.: Η λυγηρότητα της τοιχοπλήρωσης υπολογίζεται σύμφωνα με τη σχέση

$$\lambda = \frac{\sqrt{l^2 + h^2}}{t} \tag{2.37}$$

Σημειώνεται ότι για τοίχους με δύο στρώσεις και ενδιάμεσο κενό, ελλείψει ακριβέστερων στοιχείων και κατασκευαστικών λεπτομερειών, ακολουθείται η σύσταση του ΚΑΝ.ΕΠΕ. που ορίζει ως πάχος της ισοδύναμης τοιχοποιίας για τον έλεγχο λυγηρότητας το μέσο όρο των παχών των δύο στρώσεων.

Βάσει της παραπάνω τιμής λυγηρότητας υπολογίζεται ένας συντελεστής μείωσης της αντίστασης της τοιχοποιίας φ_w . Για την περίπτωση της απλής περιμετρικής επαφής διακρίνονται οι εξής περιπτώσεις:

Σχήμα 2.10: Διάγραμμα τάσεων - παραμορφώσεων ισοδύναμης θλιβόμενης διαγώνιας ράβδου άοπλης τοιχοπλήρωσης (ΚΑΝ.ΕΠΕ.)

- $λ \leq 1$ 5, οπότε $φ_w = 1$
- $\lambda \geq$ 30, οπότε $\varphi_w = 0$
- 15 < λ < 30, οπότε το $φ_w$ λαμβάνεται από τις εξής σχέσεις:

$$\varphi_{w} = 0.9 \frac{1}{e^{\frac{(0.0477\lambda - 0.063)^{2}}{0.9}}}, \, \gamma \iota a \, E_{w} = 500 f_{wc}$$
(2.38)

$$\varphi_w = 0.9 \frac{1}{e^{\frac{(0.0316\lambda - 0.063)^2}{0.9}}}, \text{ yia } E_w = 1000 f_{wc}$$
(2.39)

Για ενδιάμεσες τιμές του μέτρου ελαστικότητας E_w γίνεται γραμμική παρεμβολή μεταξύ των παραπάνω τιμών.

Για την προσομοίωση της τοιχοποιίας του κτηρίου που εξετάζεται, δεν ήταν διαθέσιμα τα χαρακτηριστικά αντοχών των υλικών που χρησιμοποιήθηκαν. Έτσι, θεωρήθηκαν κάποιες ενδεικτικές τιμές αντοχής που αντιστοιχούν σε μέτρια ποιότητα υλικών, δεδομένου ότι το κτήριο κατασκευάστηκε στις αρχές της δεκαετίας του '80. Οι τιμές που χρησιμοποιούνται ειναι $f_{bc} = 3.0$ MPa για την αντοχή του τοιχοσώματος και $f_{mc} = 1.5$ MPa για την αντοχή του κονιάματος, ενώ για τον συντελεστή k χρησιμοποιείται η τιμή k = 0.40. Επιπλέον, για τις ορθές παραμορφώσεις ε επιλέχθηκαν τιμές κοντά στο κάτω όριο των τιμών που προτείνονται στο σχήμα 2.10, ώστε να υπάρχει συμβατότητα με τις χαμηλές τιμές των αντοχών, και συγκεκριμένα $\varepsilon_y = 1.125 \cdot 10^{-3}$ και $\varepsilon_u = 2.375 \cdot 10^{-3}$.

2.1.7 Χρησιμοποιούμενα υλικά

Για την ελαστική ανάλυση των φορέων, οι μόνες ιδιότητες των υλικών που χρησιμοποιούνται είναι το μέτρο ελαστικότητας *E* και ενδεχομένως το μέτρο διάτμησης *G*. Στις ανελαστικές αναλύσεις όμως, θα πρέπει να καθορίσουμε τους ανελαστικούς νόμους που διέπουν τη συμπεριφορά των διαφόρων υλικών και κατ' επέκταση των διατομών των μελών. Το OpenSees διαθέτει πληθώρα υλικών που μπορούμε να χρησιμοποιήσουμε, άλλα αρκετά απλά και άλλα που μπορούν να βαθμονομηθούν με πειραματικά αποτελέσματα ώστε τα αποτελέσματα που δίνουν να είναι αξιόπιστα. Τα μοντέλα σκυροδέματος και χάλυβα που χρησιμοποιούνται είναι ενιαία για όλες τις περιπτώσεις μοντελοποίησης που εξετάζονται (συγκεντρωμένη ή κατανεμημένη πλαστικότητα). Στην περίπτωση όμως της συκεντρωμένης πλαστικότητας τα ακριβή μοντέλα που επιλέγονται δεν παίζουν σημαντικό ρόλο, καθώς η συμπεριφορά των διατομών καθορίζεται κυρίως μέσω του υλικού που χρησιμοποιείται για τα διαγράμματα ροπών - στροφών.

Στην περίπτωση της αποτίμησης υφιστάμενων κατασκευών, ο ΚΑΝ.ΕΠΕ. ορίζει τις αντιπροσωπευτικές τιμές των υλικών που θα πρέπει να χρησιμοποιηθούν κατά τις αναλύσεις. Για ελέγχους σε όρους παραμορφώσεων ορίζει ότι θα χρησιμοποιούνται οι μέσες τιμές, ενώ για ελέγχους σε όρους δυνάμεων ορίζει ότι θα χρησιμοποιούνται γενικά οι μέσες τιμές μείον μία τυπική απόκλιση. Επίσης καθορίζει τους απαραίτητους συντελεστές ασφαλείας. Στις αναλύσεις που γίνονται εδώ όμως, επιδιώκεται να διερευνηθεί η πραγματική συμπεριφορά της κατασκευής και όχι ο έλεγχος της ασφάλειάς της, επομένως χρησιμοποιούνται γενικώς οι μέσες τιμές των ιδιοτήτων των υλικών και όλοι οι συντελεστές ασφαλείας που εμφανίζονται στις σχέσεις λαμβάνονται ίσοι με τη μονάδα.

Σκυρόδεμα

Για το σκυρόδεμα επιλέγεται να χρησιμοποιηθεί το υλικό Concrete01, το οποίο ακολουθεί το νόμο σκυροδέματος των Kent-Scott-Park. Το υλικό αυτό είναι ευέλικτο ώστε να μπορεί να χρησιμοποιηθεί με τις υποδείξεις του EC2 για την προσομοίωση της ανελαστικής συμπεριφοράς του σκυροδέματος, ενώ παράλληλα, σε αντίθεση με κάποια άλλα υλικά, είναι αριθμητικά ευσταθές και προσφέρει κύκλους αποφόρτισης - επαναφόρτισης που μπορούν να χρησιμοποιηθούν σε γενικές περιπτώσεις. Ο καταστατικός νόμος του υλικού φαίνεται στο σχήμα 2.11

Σχήμα 2.11: Υλικό Concrete01 (από OpenSees wiki)

Τα χαρακτηριστικά του υλικού που θα πρέπει να εισαχθούν για την περιγραφή του είναι η μέγιστη αντοχή του και η αντοχή του στην αστοχία, καθώς και οι τιμές της ανηγμένης παραμόρφωσης που αντιστοιχούν σε αυτές.

Το μοντέλο σκυροδέματος που προτείνει ο EC2 για ανελαστική ανάλυση κατασκευών φαίνεται στο σχήμα 2.12.

Για την κατασκευή του διαγράμματος αυτού για μια συγκεκριμένη ποιότητα σκυροδέματος, θα πρέπει να γνωρίζουμε τις τιμές f_{cm} , E_{cm} και $\varepsilon c1$ που είναι αντίστοιχα η μέση τιμή αντοχής, η μέση τιμή του μέτρου ελαστικότητας περίπου στο 40% της αντοχής και η ανηγμένη παραμόρφωση του σκυροδέματος στη μέγιστη αντοχή. Οι παραπάνω τιμές μπορούν να βρεθούν μέσω του πίνακα 3.1 του ΕΝ 1992-1-1:2004.

Σχήμα 2.12: Νόμος σκυροδέματος κατά ΕC2

Αρχικά υπολογίζεται η τιμή k:

$$k = 1.05 \frac{E_{cm} |\varepsilon_{c1}|}{f_{cm}}$$
(2.40)

Στη συνέχεια για μια σειρά τιμών της ανηγμένης παραμόρφωσης ε_c υπολογίζεται ο όρος η:

$$\eta = \frac{\varepsilon_c}{\varepsilon_{c1}} \tag{2.41}$$

και στη συνέχεια η τιμή της τάσης που αντιστοιχεί στην ανηγμένη παραμόρφωση αυτή δίδεται από τη σχέση:

$$\sigma_c = f_{cm} \frac{k\eta - \eta^2}{1 + (k - 2)\eta}$$
(2.42)

Η παραπάνω σχέση ισχύει κανονικά για τιμές ανηγμένης παραμόρφωσης μέχρι την τιμή ε_{cu1} που ισχύει για κάθε ποιότητα σκυροδέματος. Εφόσον όμως θέλουμε να εξετάσουμε την πραγματική συμπεριφορά του κτηρίου, το διάγραμμα επιλέχθηκε να συνεχιστεί μέχρι την τιμή που δίνει $\sigma_c = 0.20 f_{cm}$.

Στην περίπτωση του κτηρίου που εξετάζεται, το σκυρόδεμα αντιστοιχεί σε ποιότητα C16/20 και από τον πίνακα του EC2 λαμβάνουμε τιμές $f_{cm} = 24$ MPa, $E_{cm} = 29$ GPa, $\varepsilon_{c1} = 1.9 \cdot 10^{-3}$ και $\varepsilon_{cu1} = 3.5 \cdot 10^{-3}$. Ο φθίνων κλάδος επεκτείνεται μέχρι την τιμή 0.20 · 24 = 4.8 MPa που αντιστοιχεί σε $\varepsilon_c = 4.25 \cdot 10^{-3}$.

Η προσαρμογή του μοντέλου του EC2 στο μοντέλο ConcreteO1 του OpenSees γίνεται χρησιμοποιώντας τις ίδιες τιμές f_{cm} και ε_{c1} . Επειδή όμως ο φθίνων κλάδος στο δεύτερο μοντέλο είναι γραμμικός, χρειάζεται να μεταβληθεί σε σχέση με τον αρχικό. Επιλέγεται να χρησιμοποιηθεί γραμμικός κλάδος που καταλήγει στην τιμή $0.2f_{cm}$ με ανηγμένη παραμόρφωση τέτοια, ώστε τα εμβαδά των δύο καμπύλων μέχρι την τιμή αυτή να είναι ίσα. Προκύπτει τελικά $\varepsilon_{cu,l} = 5.06 \cdot 10^{-3}$

Η σύγκριση του μοντέλου που δίνει ο EC2 και το μοντέλου που χρησιμοποιείται στο υλικό Concrete01 γίνεται στο σχημα 2.13.

Σημειώνεται ότι το μοντέλο Kent-Scott-Park που χρησιμοποιείται δίνει αρχική τιμή μέτρου ελαστικότητας σκυροδέματος

$$E_{c0} = \frac{2f_{cm}}{\varepsilon_{c1}} \tag{2.43}$$

που στην περίπτωσή μας δίνει $E_{c0} = 25.3$ GPa, τιμή μικρότερη της πραγματικής ακόμα και στο 40% της αντοχής που δίνει ο EC2 ($E_{cm} = 29$ GPa). Για το λόγο αυτό, ο EC2 δεν χρησιμοποιεί παραβολή για το αρχικό τμήμα (περίπτωση k = 2), αλλά προσαρμόζει την καμπύλη ώστε να δίνει το επιθυμητό αρχικό μέτρο ελαστικότητας με τον συντελεστή k. Παρόλα αυτά, οι διαφορές μεταξύ των δύο καμπύλων στο αρχικό τμήμα είναι μικρές όπως φαίνεται στο σχήμα 2.13.

Σχήμα 2.13: Σύγκριση μοντέλων σκυροδέματος

Χάλυβας διαμήκων οπλισμών

Για το χάλυβα των διαμήκων οπλισμών εξετάζεται η δυνατότητα προσομοίωσης με διάφορα υλικά που έχουμε στη διάθεσή μας.

Το απλούστερο μοντέλο είναι το SteelO1 το οποίο φαίνεται στο σχήμα 2.14. Οι τιμές που απαιτούνται για περιγραφή του μοντέλου είναι η τάση διαρροής f_y , το μέτρο ελαστικότητας του ελαστικού κλάδου E_0 , καθώς και ο λόγος των μέτρων ελαστικότητας μετά και πριν τη διαρροή b. Επίσης, δίνεται η δυνατότητα εισαγωγής παραμέτρων που ελέγχουν την κράτυνση του χάλυβα κατά τις ανακυκλίσεις.

Μια τροποποίηση του παραπάνω μοντέλου δίνεται από το υλικό Steel02, το οποίο περιγράφει το νόμο των Giuffre - Menegotto - Pinto. Το μοντέλο αυτό μεταβάλλει την περιοχή γύρω από τη διαρροή και την κάνει ομαλότερη. Η μεταβολή αυτή περιγράφεται από τρεις επιπλέον παραμέτρους. Το μοντέλο αυτό φαίνεται στο σχήμα 2.15.

Τα παραπάνω μοντέλα έχουν το μειονέκτημα ότι ο κλάδος μετά τη διαρροή έχει σταθερή κλίση και δεν μπορεί να μεταβληθεί. Στην πραγματικότητα όμως η συμπεριφορά του χάλυβα είναι συνθετότερη και για θερμά κατεργασμένους χάλυβες μπορεί να περιγραφεί από έναν νόμο όπως φαίνεται στο σχήμα 2.16. Ο νόμος αυτός δίνεται από το υλικό ReinforcingSteel, το οποίο δέχεται ως παραμέτρους την τάση διαρροής f_y , τη μέγιστη τάση f_{su} , το αρχικό μέτρο ελαστικότητας στην αρχή της κράτυνσης μετά το πλατώ διαρροής \mathcal{E}_{sh} και τις ανηγμένες παραμορφώσεις στην αρχή της κράτυνσης μετά το πλατώ διαρροής \mathcal{E}_{sh} και στη μέγιστη τάση \mathcal{E}_{su} . Το μοντέλο αυτό μπορεί να δεχθεί επιπλέον παραμέτρους που ελέγ-χουν την κράτυνση, την κόπωση και το λυγισμό των ράβδων, οι παράμετροι όμως αυτές δεν διερευνήθηκαν εδώ. Σημειώνεται πάντως ότι το μοντέλο αυτό εμφανίζει αρκετά προβλήματα σύγκλισης και δεν χρησιμοποιτείται τελικά.

Μια απλούστερη εναλλακτική που προσεγγίζει το παραπάνω διάγραμμα με ένα τετραγραμ μικό ανά φορά φόρτισης είναι η χρήση του υλικού Hysteretic. Το υλικό αυτό φαίνεται στο σχήμα 2.17. Τα τρία σημεία κάθε φοράς φόρτισης που ορίζουν το διάγραμμα του χάλυβα μπορούν για παράδειγμα να είναι το σημείο διαρροής, το σημείο μέγιστης τάσης και το σημείο αστοχίας, με γραμμικούς κλάδους που τα συνδέουν. Εφόσον το τρίτο σημείο έχει τάση μικρότερη από το δεύτερο, το μοντέλο υποθέτει μετά το τρίτο σημείο σταθερή τάση με την αύξηση της παραμόρφωσης. Το μοντέλο επίσης διαθέτει παραμέτρους για έλεγχο των βρόχων υστέρησης

Σχήμα 2.14: Μοντέλο Steel01 (από OpenSees wiki)

Σχήμα 2.15: Μοντέλο Steel02 (από OpenSees wiki)

και της μείωσης της αντοχής με τις ανακυκλίσεις.

Τα μοντέλα Steel01, Steel02 και Hysteretic που περιγράφηκαν παραπάνω συνεχίζουν να έχουν τάση για οποιαδήποτε τιμή παραμόρφωσης. Γι' αυτό μπορεί να χρησιμοποιηθούν παράλληλα με το υλικό MinMax, το οποίο μας επιτρέπει να ορίσουμε μέγιστες και ελάχιστες ανηγμένες παραμορφώσεις, πέραν από τις οποίες τα υλικά αστοχούν και δίνουν μηδενική τάση. Παρόλα αυτά η προσέγγιση αυτή δημιουργεί προβλήματα σύγκλισης και στην πραγματικότητα αποφεύγεται.

Ο χάλυβας που χρησιμοποιείται στο κτήριο που εξετάζεται είναι S400, ο οποίος αντιστοιχεί

Σχήμα 2.16: Μοντέλο ReinforcingSteel (από OpenSees wiki)

Σχήμα 2.17: Μοντέλο Hysteretic (από OpenSees wiki)

σε αντοχή 400 MPa. Η μέση τιμή της αντοχής του λαμβάνεται $f_y = 1.15 \cdot 400 = 460$ MPa. Η μέγιστη αντοχή του χάλυβα λαμβάνεται $f_{su} = 1.25 \cdot 460 = 575$ MPa. Το μέτρο ελαστικότητας του χάλυβα οπλισμών είναι 200000 MPa. Η τιμή της παραμόρφωσης στη μέγιστη τάση του χάλυβα λαμβάνεται $\varepsilon_{su} = 75 \cdot 10^{-3}$. Η μέγιστη ανηγμένη παραμόρφωση του χάλυβα λαμβάνεται $2 \cdot \varepsilon_{su} = 150 \cdot 10^{-3}$.

Για τα μοντέλα Steel01 και Steel02, το μέτρο ελαστικότητας μετά τη διαρροή μπορεί να ορισθεί βάσει των σημείων διαρροής και μέγιστης τάσης. Με την επιλογή αυτή όμως, το μέτρο ελαστικότητας παραμένει σταθερό ακόμα και μετά το σημείο μέγιστης τάσης, επομένως ίσως θα πρέπει να γίνει κάποια μείωση του λόγου κράτυνσης ώστε να λαμβάνει υπόψη το φαινόμενο αυτό. Μια λύση είναι η χρήση τέτοιου λόγου κράτυνσης, ώστε η μέγιστη τάση να εμφανίζεται στην παραμόρφωση αστοχίας. Με βάση τη λογική αυτή μπορεί να αναπτυχθεί και ένα δεύτερο μοντέλο Hysteretic, το οποίο εμφανίζει σταθερή κράτυνση μέχρι την αστοχία, μετά την οποία η ασκούμενη τάση πρακτικά μηδενίζεται.

Τελικά λοιπόν εξετάζονται δύο μοντέλα για το χάλυβα των διαμήκων οπλισμών, βασισμένα στο τετραγραμμικό ανά φορά φόρτισης μοντέλο Hysteretic, τα οποία φαίνονται στο σχήμα 2.18. Το πρώτο μοντέλο έχει το πλεονέκτημα ότι περιγράφει ρεαλιστικότερα τη συμπεριφορά του χάλυβα μέχρι την αστοχία, αλλά μετά από το σημείο αυτό η τάση του παραμένει σταθερή ίση με την τάση διαρροής, αν και το σφάλμα δεν προβλέπεται να είναι τόσο μεγάλο, καθώς ο χάλυβας δεν αναμένεται να αναπτύξει τόσο μεγάλες παραμορφώσεις. Το δεύτερο μοντέλο έχει σταθερή μετελαστική κλίση με μέγιστη τάση στο σημείο αστοχίας, αλλά μετά από το σημείο αυτό, έπειτα από έναν σχετικά απότομο πτωτικό κλάδο, το υλικό αναπτύσσει πρακτικά μηδενική τάση. Γενικά οι αναλύσεις γίνονται χρησιμοποιώντας το πρώτο μοντέλο, αφού στις περισσότερες περιπτώσεις οι παραμορφώσεις των χαλύβων βρίσκονται στην περιοχή που περιγράφεται καλύτερα από το μοντέλο αυτό, αλλά στο αντίστοιχο κεφάλαιο πραγματοποιούνται αναλύσεις χρησιμοποιώντας και το δεύτερο μοντέλο, ώστε να αναδειχθούν οι διαφορές που προκύπτουν. Οι διαφορές μεταξύ των δύο μοντέλων αναμένονται κυρίως στην περίπτωση της κατανεμημένης πλαστικότητας, καθώς στα μοντέλα συγκεντρωμένης πλαστικότητας τα μόνα χρησιμοποιούμενα μεγέθη που επηρεάζονται είναι η ροπή και η καμπυλότητα διαρροής, τα οποία δεν αναμένεται να διαφέρουν ιδιαίτερα.

Σχήμα 2.18: Μοντέλα Χάλυβα διαμήκων οπλισμών

Σημειώνεται ότι οι εγκάρσιοι οπλισμοί των μελών (συνδετήρες S220) δεν εισάγονται στο προσομοίωμα, αλλά λαμβάνονται υπόψη κατά τον υπολογισμό των αντοχών έναντι τέμνουσας. Κανονικά, οι συνδετήρες θα συνέβαλαν και στην αύξηση της αντοχής του σκυροδέματος του πυρήνα των διατομών υπό θλίψη, όπου θα έπρεπε να χρησιμοποιηθεί διαφορετικό υλικό σκυροδέματος για την περιοχή αυτή, ώστε να προσομοιωθεί η αύξηση της αντοχής. Στην περίπτωση του κτηρίου που εξετάζεται όμως, η τοποθέτηση των συνδετήρων είναι τόσο αραιή και δεν "κλείνουν" σωστά με γωνία 135°, συνεπώς θεωρείται ότι δεν συμβάλλουν στην περίσφιγξη των διατομών.

Θλιπτήρες τοιχοπληρώσεων

Για τους θλιπτήρες των τοιχοπληρώσεων κατά τις μη γραμμικές αναλύσεις είναι απαραίτητο ένα υλικό, το οποίο ενεργοποιείται μόνο σε θλίψη. Ένα τέτοιο υλικό είναι το ElasticPPGap, το

οποίο φαίνεται στο σχήμα 2.19. Οι παράμετροι οι οποίες πρέπει να εισαχθούν είναι το μέτρο ελαστικότητας *E*, η τάση διαρροής f_y , το ενδεχόμενο διάστημα ανηγμένων παραμορφώσεων, έπειτα από το οποίο ενεργοποιείται το υλικό και προαιρετικά ο λόγος κράτυνσης, καθώς και ένας όρος ο οποίος ελέγχει αν κατά τις ανακυκλίσεις δημιουργούνται βρόχοι υστέρησης ή αν κατά την επαναφόρτιση ακολουθείται ακριβώς ο δρόμος της αποφόρτισης, που προσομοιώνει τις βλάβες που δημιουργούνται και το οποίο τελικά επιλέγεται.

Σχήμα 2.19: Μοντέλο ElasticPPGap (από OpenSees wiki)

Επειδή όπως φαίνεται το υλικό δεν έχει κάποια τιμή αστοχίας, συνδυάζεται και αυτό με το υλικό MinMax, όπως περιγράφηκε και προηγουμένως.

Όπως αναφέρεται και παρακάτω, στην περίπτωση των μη γραμμικών αναλύσεων, τα διαγώνια μέλη προσομοίωσης των τοιχοπληρώσεων τοποθετούνται στο προσομοίωμα μετά την επιβολή των σταθερών φορτίων, έτσι ώστε να θλίβεται το ένα από τα δύο διαγώνια μέλη κάθε φορά. Με τον τρόπο αυτό προσομοιώνεται ρεαλιστικότερα και η διαδικασία κατασκευής των τοιχοπληρώσεων, η οποία πραγματοποιείται αφού κατασκευαστεί ο φέρων οργανισμός του κτηρίου, που αναλαμβάνει το μεγαλύτερο ποσοστό των σταθερών φορτίων.

Προσομοίωση ανακύκλισης συγκεντρωμένων πλαστικών αρθρώσεων

Όπως αναλύθηκε στα προηγούμενα, παρόλο που μπορούμε να ορίσουμε τους νόμους ροπών - στροφών των ελατηρίων όπως περιγράφεται στον ΚΑΝ.ΕΠΕ. για μονοτονικές φορτίσεις, για ανακυκλιζόμενες φορτίσεις είναι απαραίτητο να ορίσουμε και τη μορφή των βρόχων υστέρησης. Για το λόγο αυτό, δοκιμάστηκε η χρήση δύο κυρίως υλικών: του μοντέλου Hysteretic και του ModIMKPeakOriented (Modified Ibarra-Medina-Krawinkler Deterioration Model with Peak-Oriented Hysteretic Response).

Το μοντέλο Hysteretic αναλύθηκε και προηγουμένως στην ενότητα για τον χάλυβα των διαμήκων οπλισμών, αλλά μπορεί επιπλέον να χρησιμοποιηθεί και για την προσομοίωση της συμπεριφοράς των συγκεντρωμένων πλαστικών αρθρώσεων, ορίζοντας προαιρετικά κάποιες παραμέτρους, ώστε να ληφθεί υπόψη το φαινόμενο στένωσης βρόχων (pinching) που εμφανίζεται σε μέλη οπλισμένου σκυροδέματος ή η μείωση της αντοχής με τις ανακυκλίσεις. Οι τροποποιήσεις αυτές παρουσιάζονται ενδεικτικά στο σχήμα 2.20. Παρόλα αυτά, εδώ χρησιμοποιείται τελικά η κλασική μορφή, χωρίς μεταβολή όρων, καθώς η προσέγγιση προσομοίωσης των παραπάνω φαινομένων είναι αμφίβολη και άλλωστε από σύγκριση αναλύσεων που πραγματοποιήθηκαν με και χωρίς φαινόμενα στένωσης βρόχων, δεν διαπιστώθηκαν ιδιαίτερες διαφοροποιήσεις στη συμπεριφορά της συνολικής κατασκευής.

Ένα άλλο μοντέλο που δοκιμάστηκε είναι το ModIMKPeakOriented. Το μοντέλο αυτό έχει

Σχήμα 2.20: Μοντέλο Hysteretic - Αρχικό μοντέλο με μαύρο χρώμα, Τροποποιημένα μοντέλα με κόκκινο χρώμα (από OpenSees wiki)

βαθμονομηθεί με χρήση πειραματικών δεδομένων από μέλη οπλισμένου σκυροδέματος. Δέχεται όμως και πολλές παραμέτρους, οι οποίες μπορούν να ρυθμίσουν περαιτέρω την απόκριση των μελών, εφόσον διατίθενται πειραματικά αποτελέσματα. Στη συγκεκριμένη περίπτωση χρησιροιούνται κάποιες τυπικές τιμές. Το συγκεκριμένο μοντέλο φαίνεται στο σχήμα 2.21

Chord Rotation θ

Μια παραλλαγή του παραπάνω μοντέλου που εμφανίζει επιπλέον και φαινόμενα pinching είναι το μοντέλο ModIMKPinching, το οποίο δέχεται περισσότερες παραμέτρους. Το μοντέλο

Σχήμα 2.21: Μοντέλο ModIMKPeakOriented (από OpenSees wiki)

αυτό φαίνεται στο σχήμα 2.22.

Σχήμα 2.22: Μοντέλο ModIMKPinching (από OpenSees wiki)

Παρόλο που τα δύο τελευαία μοντέλα φαίνεται ότι προσεγγίζουν περισσότερο τη συμπεριφορά μελών από οπλισμένο σκυρόδεμα, η υλοποίηση του πρώτου από αυτά στο πρόγραμμα έδειξε ότι καθυστερεί σημαντικά στην ανάλυση μεγάλων φορέων μετά τη διαρροή των μελών και επομένως ταιριάζει περισσότερο σε λεπτομερείς αναλύσεις μεμονωμένων μελών. Για το λόγο αυτό, μιας και όλα τα δεδομένα που διαθέτουμε είναι προσεγγιστικά και η χρήση λεπτομερέστερων μοντέλων δεν προσθέτει ακρίβεια στα αποτελέσματα, για τις αναλύσεις χρησιμοποιείται κυρίως το μοντέλο Hysteretic όπως αναπτύχθηκε στην παράγραφο αυτή.

2.2 Συνδεσμολογία μελών

2.2.1 Κόμβοι μοντέλου

Αρχικά, τοποθετούνται στο μοντέλο οι κύριοι κόμβοι του μοντέλου. Αυτοί ορίζονται συνήθως στα άκρα των υποστυλωμάτων, προκειμένου να γίνει ευκολότερη η εισαγωγή συντεταγμένων από τα σχέδια, αλλά και η σωστή τοποθέτηση των μελών στον χώρο, καθώς οι κεντροβαρικοί άξονες των διάφορων μελών που καταλήγουν σε κάθε κόμβο δεν είναι απαραίτητο να συντρέχουν.

Για την προσομοίωση των μελών του φορέα, γίνεται η θεώρηση ότι η περιοχή στην οποία συντρέχουν δοκοί και υποστυλώματα είναι πλήρως άκαμπτη και συμπεριφέρεται συνολικά ως στερεό σώμα. Επίσης, οι διατομές που ελέγχονται σε κάθε μέλος βρίσκονται στα άκρα του καθαρού τους μήκους.

Η τοποθέτηση των μελών, όπως αναφέρθηκε παραπάνω, γίνεται κεντροβαρικά. Κατά την εισαγωγή των διατομών, επιλέγεται η θέση του σημείου αναφοράς της διατομής, δηλαδή σε ποιο σημείο της διατομής βρίσκεται το σημείο τομής με τον άξονα που ενώνει τους κύριους κόμβους του φορέα. Αφού υπολογιστεί η θέση του γεωμετρικού κέντρου βάρους της διατομής, ανάλογα με τις αποστάσεις του κέντρου βάρους και του σημείου αναφοράς γίνεται μετατόπιση των μελών εγκάρσια στη διεύθυνσή τους.

Έτσι, δημιουργούνται τελικά πρόσθετοι κόμβοι, στους οποίους καταλήγουν τα μέλη στα κέντρα βάρους τους. Αυτοί απέχουν από τους κύριους κόμβους του μοντέλου παράλληλα στον άξονα του μέλους απόσταση ίση με το μήκος του άκαμπτου κόμβου στη διεύθυνση αυτή και εγκάρσια στον άξονα του μέλους ανάλογα με τις αποστάσεις μεταξύ του κέντρου βάρους και του σημείου αναφοράς κάθε διατομής. Τελικα, οι κύριοι κόμβοι αναφοράς (master nodes) και οι κόμβοι στα κέντρα βάρους των μελών (slave nodes) συνδέονται με άκαμπτα στοιχεία.

Σημειώνεται ότι το OpenSees διαθέτει δυνατότητα για αυτόματη εισαγωγή μελών με άκαμπτα στοιχεία στα άκρα τυχαίας διεύθυνσης. Η επιλογή αυτή όμως δεν δίνει τη δυνατότητα για έλεγχο των διατομών που μας ενδιαφέρουν, οι οποίες βρίσκονται μεταξύ του μέλους και των άκαμπτων τμημάτων. Συνεπώς, η εισαγωγή των στοιχείων αυτών πρέπει να γίνει χειροκίνητα.

Για τη διευκόλυνση εισαγωγής των μελών, όπως στην περίπτωση επιμήκων υποστυλωμάτων στα οποία οι δοκοί εκατέρωθέν τους καταλήγουν σε διαφορετικά άκρα, μπορούν να εισαχθούν επιπλέον κόμβοι αναφοράς στο μοντέλο, οι οποίοι συνδέονται με στερεούς κόμβους με τους κύριους κόμβους.

Στην περίπτωση αυτή όμως, εφόσον συνδέονται δύο άκαμπτα στοιχεία εν σειρά, απαιτείται τροποποίηση για απ' ευθείας σύνδεση των ακραίων κόμβων. Αυτό γίνεται, επειδή οι κλασικοί αλγόριθμοι επιβολής δεσμεύσεων του OpenSees (Plain, Transformation) δεν επιτρέπουν κάποιος κόμβος να ειναι ταυτόχρονα και master και slave. Η χρήση όμως των μεθόδων Penalty και Lagrange που επιβάλλουν έμμεσα τις δεσμεύσεις εισάγοντας επιπλέον όρους στις εξισώσεις που επιλύονται, δεν δίνουν πάντα αξιόπιστα αποτελέσματα και απαιτούν εκ των προτέρων την γνώση των απαραίτητων συντελεστών που δίνουν "ορθά" αποτελέσματα. Για το λόγο αυτό δεν προτιμώνται.

Όπως αναφέρεται παραπάνω, για την ορθότερη προσομοίωση των δοκών, αυτές χωρίζονται σε τρία μέρη. Για το λόγο αυτό, τοποθετούνται επιπλέον κόμβοι στον άξονα αναφοράς κάθε δοκού στις θέσεις αλλαγής τη διατομής.

Τέλος, στις θέσεις που τοποθετούνται αρθρώσεις, απαιτούνται επιπλέον κόμβοι που συνδέουν τα δύο άκρα της άρθρωσης - ελατηρίου μηδενικού μήκους, οι οποίοι βρίσκονται στις ίδιες θέσεις με τους κόμβους στα άκρα των μελών.

Η σύνδεση των στοιχείων δοκού όπως περιγράφεται παραπάνω συνοψίζεται στο σχήμα 2.23. Η σύνδεση των στοιχείων υποστυλωμάτων είναι παρόμοια, όμως εισάγονται ως ένα ενιαίο μέλος και όχι σε τρία τμήματα.

Σχήμα 2.23: Τυπική διάταξη σύνδεσης μελών δοκού (τα ελατήρια έχουν μεγεθυνθεί και τα στερεά τμήματα στους ενδιάμεσους κόμβους έχουν απομακρυνθεί για λόγους ευκρίνειας)

2.2.2 Δεσμεύσεις κόμβων

Στο προσομοίωμα θα πρέπει κατ' αρχάς να εισαχθούν οι συνοριακές συνθήκες του συστήματος. Στην περίπτωση του κτηρίου που εξετάζεται, η βάση του κτηρίου θεωρείται πλήρως πακτωμένη στο έδαφος και αγνοούνται φαινόμενα αλληλεπίδρασης εδάφους - κατασκευής, καθώς το κτήριο θεωρείται ότι θεμελιώνεται σε βράχο. Έτσι, οι κόμβοι της βάσης δεσμεύονται και στους έξι βαθμούς ελευθερίας τους.

Όπως αναφέρθηκε παραπάνω, οι πλάκες δεν εισάγονται άμεσα στο προσομοίωμα. Θα πρέπει όμως να ληφθούν υπόψη μέσω της διαφραγματικής λειτουργίας που προσφέρουν, καθώς το πάχος τους στο εξεταζόμενο κτήριο (πάνω από 12 cm) είναι ικανό για να αναπτυχθεί η λειτουργία αυτή. Σύμφωνα με αυτήν, οι αποστάσεις μεταξύ των κόμβων στο επίπεδο της πλάκας δεν μεταβάλλονται, ενώ όλοι οι κόμβοι της πλάκας θα πρέπει να έχουν κοινή στροφή γύρω από τον κάθετο στην πλάκα άξονα.

Το OpenSees διαθέτει εντολή που επιβάλλει τις δεσμεύσεις της διαφραγματικής λειτουργίας στους κόμβους που επιθυμούμε. Παρόλα αυτά, επιλέχθηκε να μην χρησιμοποιηθεί, καθώς η χρήση της έχει σημαντικούς περιορισμούς σχετικά με τις σχέσεις κύριων και δεσμευμένων κόμβων, ενώ παρατηρήθηκε ότι τα αποτελέσματα που δίνει ειναι μη ρεαλιστικά. Έτσι, προτιμήθηκε η χειροκίνητη εισαγωγή των δεσμεύσεων που απαιτούνται, κάτι που προσφέρει περισσότερο έλεγχο και ευελιξία.

Έστω λοιπόν 4 κόμβοι που διαμορφώνουν ένα τμήμα πλάκας που θέλουμε να δεσμεύσουμε με διαφραγματική λειτουργία. Τα βασικά μέλη που θα πρέπει να προσθέσουμε στο προσομοίωμα είναι δύο διαγώνια μέλη, τα οποία διαθέτουν "άπειρη" δυστένεια και "άπειρη" δυσκαμψία περί τον κάθετο στην πλάκα άξονα. Στους υπόλοιπους βαθμούς ελευθερίας τα μέλη αυτά έχουν μηδενική συμβολή. Με τον όρο "άπειρα" εννοούνται τιμές δυστένειας και δυσκαμψίας που μπορούν να επιβάλλουν τις δεσμεύσεις που θέλουμε, αλλά δεν μπορεί να είναι υπερβολικά μεγάλες, γιατί μπορεί να δημιουργήσουν αριθμητικά σφάλματα κατά την επίλυση των εξισώσεων του συστήματος. Επιλέγονται λοιπόν τιμές που είναι περίπου 1000 φορές μεγαλύτερες από τις αντίστοιχες των πραγματικών μελών. Η διάταξη που περιγράφεται φαίνεται στο σχήμα 2.24.

Σχήμα 2.24: Βασικά μέλη για την προσομοίωση της διαφραγματικής λειτουργίας

Η παραπάνω διάταξη όμως δεν εξασφαλίζει πλήρως τις δεσμεύσεις που απαιτεί η διαφραγματική λειτουργία για όλους τους κόμβους του ορόφου. Έτσι, εισάγονται επιπλέον στοιχεία παράλληλα στις δοκούς, τα οποία εξασφαλίζουν καλύτερα τις δεσμεύσεις αυτές. Για τη δέσμευση μη μεταβολής της απόστασης μεταξύ των κόμβων, εισάγονται μέλη με "άπειρη" δυστένεια, τα οποία συνδέουν τους κόμβους αναφοράς που βρίσκονται πάνω στην πλάκα. Με την εισαγωγή των μελών αυτών όμως, θα πρέπει να απελευθερωθεί η αξονική σύνδεση στο ένα άκρο κάθε μέλους της δοκού, ώστε να μην εισάγονται επιπλέον δεσμεύσεις στο σύστημα και η αξονική δύναμη που ασκείται στις δοκούς να είναι μηδενική, κάτι που προσεγγίζει αρκετά καλά την πραγματικότητα. Επιπλέον, για την καλύτερη εξασφάλιση της στροφής περί τον κάθετο στην πλάκα άξονα όλων των κόμβων του ορόφου, εισάγονται μέλη με "άπειρη" δυσκαμψία περί τον κάθετο στην πλάκα άξονα, τα οποία τοποθετούνται μεταξύ των σημείων αναφοράς. Με την προσθήκη αυτή, ανάλογα με προηγουμένως, απαιτείται να απελευθερωθούν οι αντίστοιχες στροφές από τα άκρα των πραγματικών μελών, κάνοντας έτσι την παραδοχή ότι οι δοκοί δεν κάμπτονται περί τον ασθενή τους άξονα. Τα επιπλέον αυτά μέλη που προσθέτουμε στο μοντέλο εισάγουν δεσμεύσεις που συμπεριλαμβάνουν τις δεσμεύσεις των διαγωνίων μελών που αναφέρθηκαν στην προηγούμενη παράγραφο. Επομένως στην πραγματικότητα τα διαγώνια μέλη δεν είναι απαραίτητο να εισαχθούν στο μοντέλο.

Η απελευθέρωση των παραπάνω βαθμών ελευθερίας γίνεται εισάγοντας επιπλέον ελατήρια στα άκρα των στοιχείων που απαρτίζουν τη δοκό, τα οποία διαθέτουν μηδενική σταθερά

ελατηριου στους βαθμούς ελευθερίας που απελευθερώνουμε και "άπειρη" σε όλους τους υπόλοιπους βαθμούς ελευθερίας, ώστε να μην υπάρχει στην πράξη κάποια επίδραση του ελατηρίου στους μη απελευθερωμένους βαθμούς ελευθερίας. Στις θέσεις βέβαια που υπάρχει αρχικά στροφικό ελατήριο λόγω κάμψης σε κάποιον βαθμό ελευθερίας, το ελατήριο αυτό στο συγκεκριμένο βαθμό ελευθερίας παραμένει αμετάβλητο. Η τελική διάταξη των δοκών λαμβάνοντας υπόψη τις δεσμεύσεις λόγω της διαφραγματικής λειτουργίας φαίνεται στο σχήμα 2.25

Σχήμα 2.25: Διάταξη σύνδεσης μελών δοκού λαμβάνοντας υπόψη τη διαφραγματική λειτουργία

Τέλος, στο κτήριο που εξετάζεται υπάρχουν τοιχία οπλισμένου σκυροδέματος. Τα τοιχία αυτά δεν εισάγονται άμεσα το προσομοίωμα με επιφανειακά ή χωρικά πεπερασμένα στοιχεία, αλλά εισάγονται οι δεσμεύσεις που επιβάλλουν, σε αναλογία με τη διαφραγματική λειτουργία των πλακών. Έτσι και στις θέσεις που υπάρχουν τα τοιχία αυτά, τοποθετούνται τα δύο διαγώνια μέλη του σχήματος 2.24 που είναι ατενή και άκαμπτα περί τον άξονα που είναι κάθετος στα κατακόρυφα επίπεδα των τοιχίων.

2.3 Διαδικασία Ανάλυσης

Αφού δημιουργηθεί το μοντέλο που περιγράφει το κτήριο όπως αναλύθηκε στις προηγούμενες ενότητες, εισάγονται τα φορτία που ασκούνται στο κτήριο και στη συνέχεια πραγματοποιείται η ανάλυση που επιθυμούμε. Οι βασικές αναλύσεις που μπορούν να γίνουν είναι η υπερωθητική ανάλυση (Pushover) και η ανάλυση χρονοϊστορίας (Time-History) χρησιμοποιώντας σεισμικές καταγραφές.

2.3.1 Σταθερά φορτία

Αρχικά, θα πρέπει να εισαχθούν στο προσομοίωμα τα σταθερά φορτία που ασκούνται στην κατασκευή. Τα ίδια βάρη θεωρούνται με συντελεστή 1.0, ενώ τα κινητά φορτία με συντελεστή 0.3 (σεισμικός συνδυασμός). Στην πραγματικότητα βέβαια, τα κινητά φορτία πιθανόν να είναι μικρότερα τη στιγμή του σεισμού από αυτά που ορίζουν οι κανονισμοί.

Τα ίδια βάρη των πλακών, των δοκών και των υποστυλωμάτων υπολογίζονται βάσει του εμβαδού της διατομής τους (για τις πλακοδοκούς λαμβάνεται υπόψη μόνο ο κορμός) και του ειδικού βάρους του σκυροδέματος, $\gamma_c = 25 \frac{kN}{m^3}$. Τα ανοίγματα μεταξύ των δοκών χωρίζονται γεωμετρικά σε επιφάνειες επιρροής και τα κινητά φορτία των πλακών (λαμβάνονται γενικώς $0.3 \cdot 2.0 \frac{kN}{m^2} = 0.6 \frac{kN}{m^2}$, ακόμα και στους εξώστες), καθώς και οι επικαλύψεις (λαμβάνονται 1.0 $\frac{kN}{m^2}$ στους εσωτερικούς ορόφους και 1.5 $\frac{kN}{m^2}$ στο δώμα) κατανέμονται ομοιόμορφα στις δοκούς. Ίσως θα ήταν σωστότερο τα κινητά φορτία να κατανέμονταν στις δοκούς με τριγωνική/τραπεζοειδή κατανομή, όμως το OpenSees υποστηρίζει μόνο ομοιόμορφη καταπόνηση δοκών, οπότε επιλέχθηκε μια τέτοια κατανομή ως προσέγγιση της πραγματικότητας. Για την εισαγωγή των φορτίων των πλακών ως κατανεμημένα στις δοκούς, το συνολικό φορτίο που αντιστοιχεί σε κάθε δοκό ανάγεται στο καθαρό μήκος της. Το ίδιο βάρος των υποστυλωμάτων ασκείται ως κατανεμημένο αξονικό φορτίο, το οποίο και πάλι για την εισαγωγή του ανάγεται απλοποιητικά στο καθαρό μήκος τους (δηλαδή ενσωματώνεται στο βάρος αυτό και το βάρος του τμήματος στους κόμβους).

Στο προσομοίωμα λαμβάνονται υπόψη επίσης τα ίδια βάρη των δευτερευόντων μελών, όπως οι τοιχοποιίες. Για τις μπατικές τοιχοποιίες λαμβάνεται φορτίο $3.6 \frac{kN}{m^2}$, ενώ για τις δρομικές $2.1 \frac{kN}{m^2}$. Όσες τοιχοποιίες βρίσκονται ακριβώς πάνω σε δοκάρια λαμβάνονται υπόψη ως κατανεμημένο φορτίο, όπως τα ίδια βάρη των δοκών, ενώ όσες βρίσκονται στις επιφάνειες επιρροής των δοκών, χωρίς όμως να φορτίζουν άμεσα τη δοκό, λαμβάνονται υπόψη κατανέμοντας απλοποιητικά το βάρος τους σε όλη τη δοκό.

Από τα φορτία που έχουν υπολογιστεί για τις δοκούς και τα υποστυλώματα, εξάγονται και οι μάζες του μοντέλου, οι οποίες τοποθετούνται στους κύριους κόμβους του μοντέλου. Το συνολικό φορτίο που αντιστοιχεί σε κάθε μέλος χωρίζεται στα δύο και αφού διαιρεθεί με τη σταθερά $g = 9.81 \frac{m}{r^2}$, προστίθεται στη μάζα του κόμβου που βρίσκεται σε κάθε άκρο του μέλους.

Τα παραπάνω φορτία και οι μάζες διατηρούνται σταθερά κατά τη διάρκεια της ανάλυσης και τα υπόλοιπα στάδια της ανάλυσης συνεχίζουν την καταπόνηση των μελών από το σημείο στο οποίο έχουν φτάσει λόγω των σταθερών φορτίων που ασκούνται στην κατασκευή.

2.3.2 Ανάλυση Pushover

Η ανάλυση Pushover συνίσταται στην σταδιακή αύξηση μιας ομάδας φορτίων που ασκούνται στον φορέα με κάποια κατανομή της επιλογής μας, ώστε πιθανόν έπειτα από πλαστικοποιήσεις θέσεων του φορέα, να επιτευχθεί μία συγκεκριμένη μετακίνηση σε κάποιον κόμβο που επιλέγουμε, καταλήγοντας τελικα σε ένα διάγραμμα τέμνουσας βάσης (V_b) - μετακίνησης κόμβου αναφοράς (d_{ref}) .

Αναλυτικότερα, αρχικά θα πρέπει να επιλεγεί μία κατανομή φορτίων που ασκούνται στους κόμβους του φορέα. Η κατανομή των δυνάμεων αυτών μπορεί να είναι τριγωνική (που προσεγγίζει απλοποιπτικά την πρώτη ιδιομορφή), ομοιόμορφη (που προσεγγίζει απλοποιπτικά τη δράση όλων των ιδιομορφών) ή αυτή που προκύπτει από κάποια ιδιομορφή. Για τις αναλύσεις που γίνονται, επιλέγεται να χρησιμοποιηθεί η κατανομή δυνάμεων που βασίζεται στην πρώτη ιδιομορφή που αντιστοιχεί στη διεύθυνση του κτηρίου που εξετάζεται, μια προσέγγιση μάλλον ορθότερη δεδομένου ότι το υπόγειο του κτηρίου δεν θα πρέπει να διεγείρεται στο σεισμό. Για να υπολογιστούν οι δυνάμεις αυτές, απαιτείται να γίνει ιδιομορφική ανάλυση του φορέα και να βρεθούν τα ιδιοδιανύσματα κάθε κόμβου. Η διαδικασία αυτή επιλέγεται να γίνει στο φορέα που χρησιμοποιούνται οι ενεργές δυσκαμψίες και όχι οι δυσκαμψίες των αρηγμάτωτων διατομών.

Συγκεκριμένα, το OpenSees μας δίνει τη δυνατότητα να αποθηκεύσουμε σε αρχεία τα ιδιοδιανύσματα κάθε ιδιομορφής που αντιστοιχούν σε κάθε κόμβο έπειτα από μία ιδιομορφική ανάλυση. Ουσιαστικά χρησιμοποιούνται μόνο τα ιδιοδιανύσματα που αντιστοιχούν στους 3 μετακινησιακούς βαθμούς ελευθερίας, καθώς τα στοιχεία του μητρώου μάζας για τους στροφικούς βαθμούς ελευθερίας είναι μηδενικά. Για κάθε ιδιομορφή όλα τα ιδιοδιανύσματα κανονικοποιούνται ώστε η μέγιστη τιμή τους σε κάποιον κόμβο να είναι ίση με τη μονάδα. Στη συνέχεια, σε κάθε κόμβο υπολογίζονται τα γινόμενα $m\varphi_{j,i}$ και $m\varphi_{j,i}^2$, όπου *j* είναι ο βαθμός ελευθερίας (j = 1, 2, 3) και *i* είναι η ιδιομορφή που εξετάζεται. Έπειτα, υπολογίζεται ο όρος που αντιστοιχεί στη συνισταμένη τέμνουσα βάσης στο οριζόντιο επίπεδο

$$V_{XY,i} = \sqrt{\left(\sum_{k} m_k \varphi_{k,1,i}\right) + \left(\sum_{k} m_k \varphi_{k,2,i}\right)}$$
(2.44)

όπου j = 1, 2 είναι οι δύο βαθμοί ελευθερίας που βρίσκονται στο οριζόντιο επίπεδο και k είναι ο δείκτης κάθε κόμβου. Οι δυνάμεις που ασκούνται στο βαθμό ελευθερίας j σε κάθε κόμβο k λόγω της i ιδιομορφής κανονικοποιούνται τελικά σύμφωνα με τη σχέση

$$F_{k,j,i} = \frac{m_k \varphi_{k,j,i}}{V_{XY,i}} \tag{2.45}$$

ώστε συνολικά να δίνουν μοναδιαία συνισταμένη τέμνουσα βάσης στο οριζόντιο επίπεδο.

Επιπλέον, θα πρέπει να υπολογιστεί ο συντελεστής συμμετοχής Γ και η δρώσα ιδιομορφική μάζα *M* κάθε ιδιομορφής για σεισμικές διεγέρσεις στις τρεις διεθύνσεις. Γενικά ο συντελεστής συμμετοχής της *i* ιδιομορφής δίδεται από τη σχέση

$$\Gamma_{i} = \frac{\{\varphi_{i}\}^{T}[M]\{r\}}{\{\varphi_{i}\}^{T}[M]\{\varphi_{i}\}}$$
(2.46)

όπου {r} είναι το διάνυσμα διεύθυνσης της σεισμικής διέγερσης, του οποίου τα στοιχεία είναι μηδενικά, εκτός από τα στοιχεία που αντιστοιχούν στη διεύθυνση του σεισμού που εξετάζεται, τα οποία είναι μονάδες. Η δρώσα ιδιομορφική μάζα δίνεται από τη σχέση

$$M_i = \Gamma_i \{\varphi_i\}^T [M] \{r\}$$
(2.47)

Έστω λοιπόν ότι το μητρώο μάζας είναι διαγώνιο, έχει στοιχεία μόνο στους μετακινησιακούς βαθμούς ελευθερίας και ότι εξετάζεται σεισμός κατά τη διεύθυνση *j* που ταυτίζεται με την αντίστοιχη διεύθυνση του βαθμού ελευθερίας των κόμβων. Τότε οι παραπάνω σχέσεις γίνονται

$$\Gamma_{j,i} = \frac{\sum_{k} m_k \varphi_{k,j,i}}{\sum_{j=1,2,3} \sum_{k} m_k \varphi_{k,j,i}^2}$$
(2.48)

$$M_{j,i} = \Gamma_{j,i} \left(\sum_{k} m_k \varphi_{k,j,i} \right)$$
(2.49)

Ανάλογα λοιπόν με το ποια διεύθυνση του κτηρίου θέλουμε να εξετάσουμε στην ανάλυση Pushover, μπορεί να επιλεγεί αυτόματα η ιδιομορφή η οποία δίνει τη μεγαλύτερη ιδιομορφική μάζα στην αντίστοιχη διεύθυνση διέγερσης.

Εναλλακτικά, θα μπορούσαμε να επιλέξουμε πιο πολύπλοκες κατανομές φορτίων που ίσως αποτυπώνουν καλύτερα τη συμπεριφορά του φορέα στις σεισμικές διεγέρσεις. Θα μπορούσαμε για παράδειγμα να επιλέξουμε κατανομή φορτίων που προκύπτουν από συνδυασμό περισσότερων της μίας ιδιομορφής, καθώς ο σεισμός θα μπορούσε να διεγείρει έντονα και ανώτερες ιδιομορφές. Ακόμα, επειδή κατά τη διάρκεια της ανάλυσης το μητρώο δυσκαμψίας αλλάζει, άρα μεταβάλλεται και η δυναμική συμπεριφορά του φορέα, θα μπορούσαμε να αλλάζουμε σταδιακά την κατανομή των φορτίων ώστε να ανταποκρίνονται στην εξεταζόμενη ιδιομορφή σε κάθε βήμα του φορέα και όχι μόνο στην αρχή της ανάλυσης. Ή ακόμα συνθετότερα, θα μπορούσαμε να συνδυάσουμε τις δύο παραπάνω εναλλακτικές. Στην πράξη συνήθως όμως, όπως γίνεται και εδώ, οι δυνάμεις διατηρούνται σταθερές κατά τη διάρκεια της ανάλυσης και επιλέγονται σύμφωνα με μία μόνο ιδιομορφή. Εφόσον κρίνεται ότι για τη σεισμική απόκριση του φορέα απαιτούνται περισσότερες της μίας ιδιομορφές (για παράδειγμα, επειδή η ιδιομορφική μάζα της πρώτης ιδιομορφής δεν φτάνει το 90% της συνολικής μάζας του φορέα), πραγματοποιούνται αναλύσεις Pushover για κάθε μία ξεχωριστά και στη συνέχεια συνδυάζονται με τις μεθόδους SRSS ή CQC τα αποτελέσματά τους.

Έχοντας τώρα δεδομένη την κατανομή των φορτίων, αρκεί να επιλέξουμε τον κόμβο avaφοράς και το βαθμό ελευθερίας που επιθυμούμε. Στην πράξη, η ανάλυση Pushover γίνεται με έλεγχο των μετακινήσεων προκειμένου να παράξουμε την καμπύλη ικανότητας V_b - d_{ref} , καθώς αν ο έλεγχος γινόταν στις ασκούμενες δυνάμεις, δεν θα μπορούσαμε να καταγράψουμε πτωτικούς κλάδους στο διάγραμμα V_b - d_{ref} . Σύμφωνα λοιπόν με το displacement control, ορίζουμε την αύξηση της μετακίνησης σε κάθε βήμα, καθώς και πόσα βήματα θέλουμε να εκτελεστούν συνολικά. Ο αλγόριθμος αναλαμβάνει τότε σε κάθε βήμα να βρει ένα φορτικό συντελεστή λ , ο οποίος όταν πολλαπλασιαστεί με τις δυνάμεις αναφοράς που έχουμε δώσει στην αρχή της ανάλυσης, δίνει μετακίνηση του σημείου αναφοράς στον βαθμό ελευθερίας που επιλέγουμε ίση με τη στοχευόμενη μετακίνηση του βήματος αυτού. Η διαδικασία αυτή περιγράφεται από την εξίσωση

$$K_m^{*i} \Delta U_m^{i+1} = (\lambda_m^i + \Delta \lambda^{i+1}) F^{ref} - F(U_m^i)$$
(2.50)

όπου m είναι ένα "εξωτερικό" βήμα που επιδιώκουμε την αύξηση της μετακίνησης στον κόμβο αναφοράς στην τιμή $U_{ref,m} = U_{ref,m-1} + d_{incr}$, *i* είναι ένα "εσωτερικό" βήμα που επιδιώκουμε την ισορροπία μεταξύ εσωτερικών και εξωτερικών δυνάμεων, *U* οι μετακινήσεις των κόμβων, *K** είναι το εφαπτομενικό μητρώο δυσκαμψίας, F^{ref} το διάνυσμα των δυνάμεων αναφοράς, F(U) οι εσωτερικές δυνάμεις που προκύπτουν από τις μετακινήσεις και λ ο φορτικός συντελεστής.

Στην παραπάνω εξίσωση που έχει έναν παραπάνω άγνωστο ($\Delta \lambda^{i+1}$) από το πλήθος των εξισώσεων, θα πρέπει να προσθέσουμε και τη δέσμευση $\Delta U^{i+1}_{ref,m} = U_{ref,m} - U^i_{ref,m}$.

Όπως αναφέρθηκε παραπάνω, οι δυνάμεις αναφοράς σε κάθε κόμβο έχουν κανονικοποιηθεί, έτσι ώστε να δίνουν μοναδιαία συνισταμένη τεμνουσών στο οριζόντιο επίπεδο της βάσης. Με τον τρόπο αυτό, ο φορτικός συντελεστής λ σε κάθε βήμα θα ισούται με την συνισταμένη των τεμνουσών στο οριζόντιο επίπεδο. Εφόσον η εξεταζόμενη ιδιομορφή διεγείρει κυρίως μία συγκεκριμένη διεύθυνση στο οριζόντιο επίπεδο, ο παραπάνω φορτικός συντελεστής θα είναι ελάχιστα μεγαλύτερος της τέμνουσας βάσης που χρησιμοποιείται για την κατασκευή της καμπύλης ικανότητας, η οποία υπολογίζεται αθροίζοντας τις αντιδράσεις των στηρίξεων στη διεύθυνση αυτή, επομένως αποτελεί και έναν τρόπο ελέγχου της ορθότητας των αποτελεσμάτων.

Μια τυπική καμπύλη ικανότητας (τέμνουσας βάσης V_b - μετακίνησης d_{ref}) δίνεται στο σχήμα 2.26

Σχήμα 2.26: Τυπική καμπύλη ικανότητας κατασκευής

Μετά την κατασκευή της καμπύλης ικανότητας, μπορούν να εξαχθούν τα χαρακτηριστικά του ισοδύναμου μονοβάθμιου συστήματος.

Αρχικά, υπολογίζονται τα ακόλουθα χαρακτηριστικά του ισοδύναμου μονοβάθμιου συστήματος (χρησιμοποιώντας την ιδιομορφή *i* κατά το βαθμό ελευθερίας *j* από τα οποία έχει προκύψει η καμπύλη ικανότητας):

$$m' = \sum_{k} m_k \varphi_{k,j,i} \tag{2.51}$$

$$m_{tot} = \sum_{k} m_k \tag{2.52}$$

$$\Gamma = \frac{\sum_{k} m_k \varphi_{kj,i}}{\sum_{k} m_k \varphi_{kj,i}^2}$$
(2.53)

$$a = \Gamma \frac{m'}{m_{tot}} \tag{2.54}$$

Η καμπύλη ικανότητας μετατρέπεται σε φάσμα ικανότητας (ADRS) χρησιμοποιώντας τους εξής μετασχηματισμούς:

$$S_d = \frac{d_{ref}}{\Gamma \varphi_{ref,j,i}} \tag{2.55}$$

$$S_a = \frac{V_b}{am_{tot}} = \frac{V_b}{\Gamma m'}$$
(2.56)

Στη συνέχεια, γίνεται η διγραμμικοποίηση του φάσματος ικανότητας, η οποία γίνεται ανάλογα με τη διγραμμικοποίηση των διαγραμμάτων ροπών - καμπυλοτήτων, όπως αναφέρεται στην ενότητα 2.1.2 (σελ. 29). Συνοψίζοντας εδώ, τα εμβαδά της αρχικής και της τελικής καμπύλης είναι ίσα, λαμβάνοντας υπόψη το τμήμα των διαγραμμάτων μέχρι τη μετακίνηση στην οποία ο φθίνων κλάδος του αρχικού διαγράμματος φτάνει το 85% της μέγιστης τιμής επιτάχυνσης, το διγραμμικοποιημένο διάγραμμα επιλέγεται να έχει οριζόντιο μετελαστικό κλάδο και η θεωρητική καμπύλη τέμνει την αρχική στο 60% της επιτάχυνσης διαρροής. Με τον τρόπο αυτό προκύπτουν οι τιμές στη διαρροή του ισοδύναμου μονοβάθμιου συστήματος S_{ay} και S_{dy} .

$$T = 2\pi \sqrt{\frac{S_{dy}}{S_{ay}}}$$
(2.57)

Για πρακτικούς λόγους, η διαδικασία που ακολουθείται είναι η αντίστροφη, δηλαδή πρώτα γίνεται η διγραμμικοποίηση της καμπύλης ικανότητας και στη συνέχεια μετατρέπεται σε φάσμα ικανότητας του ισοδύναμου μονοβαθμίου. Τα αποτελέσματα και με τους δύο τρόπους είναι τα ίδια.

2.3.3 Ανάλυση Χρονοϊστορίας

Με την ανάλυση χρονοϊστορίας μπορούμε να εξετάσουμε τη συμπεριφορά του φορέα σε συγκεκριμένα σεισμικά σενάρια. Για την εκτέλεση της ανάλυσης χρονοϊστορίας απαιτείται η εισαγωγή των σεισμικών καταγραφών στις οποίες θέλουμε να υποβάλουμε το φορέα, οι οποίες δίνονται συνήθως σε όρους επιταχύνσεων. Μπορούν να εισαχθούν μέχρι και τρεις σεισμικές καταγραφές που ενεργούν ταυτόχρονα στο φορέα, μία για κάθε διεύθυνση, παρόλα αυτά στη συγκεκριμένη προσομοίωση επιλέγεται να εισαχθούν ζεύγη σεισμικών καταγραφών στο οριζόντιο επίπεδο, μιας και η κατακόρυφη συνιστώσα θεωρείται ότι δεν επηρεάζει σημαντικά τη συμπεριφορά του φορέα.

Για τη μόρφωση των εξισώσεων που απαιτούνται για τη δυναμική ανάλυση, απαιτούνται τα εξής μητρώα:

- Μπτρώο μάζας [M], το οποίο δημιουργείται λαμβάνοντας υπόψη τις μάζες που έχουμε ορίσει στους κόμβους. Συνήθως οι μάζες αυτές ορίζονται μόνο για τους μετακινησιακούς βαθμούς ελευθερίας, οπότε τα στοιχεία του μητρώου μάζας που αντιστοιχούν στους στροφικούς βαθμούς ελευθερίας ειναι μηδενικά και το μητρώο μάζας έχει μόνο διαγώνια στοιχεία.
- Μπτρώο απόσβεσης [C], το οποίο δεν προκύπτει άμεσα από τα χαρακτηριστικά του συστήματος, αλλά δημιουργείται με διάφορες μεθόδους για να προσομοιώσει την απόσβεση του συστήματος. Η πιο συνηθισμένη μέθοδος που χρησιμοποιείται είναι η απόσβεση Rayleigh, την οποία υλοποιεί το OpenSees. Για να δημιουργηθεί το μητρώο απόσβεσης στην περίπτωση αυτή, απαιτούνται οι συντελεστές απόσβεσης για δύο ιδιομορφές που επιλέγουμε. Το μητρώο απόσβεσης δίνεται από τη σχέση

$$[C] = a_0[M] + a_1[K] \tag{2.58}$$

όπου χρησιμοποιώντας δύο ιδιομορφές m και n με αντίστοιχους συντελεστές απόσβεσης ξ_m και ξ_n και γωνικές συχνότητες ω_m και ω_n , οι συντελεστές των μητρώων δίνονται από τις σχέσεις

$$a_0 = \frac{2\omega_m \omega_n (\omega_n \xi_m - \omega_m \xi_n)}{\omega_n^2 - \omega_m^2}$$
(2.59)

$$a_1 = \frac{2(\omega_n \xi_n - \omega_m \xi_m)}{\omega_n^2 - \omega_m^2}$$
(2.60)

Το μπτρώο δυσκαμψίας που χρησιμοποιείται μπορεί να είναι το αρχικό ελαστικό μπτρώο δυσκαμψίας, το εφαπτομενικό μπτρώο ή το αρχικό μπτρώο σε κάθε βήμα επίλυσης. Όπως έχει αναφερθεί και προηγουμένως, λόγω της ανεπαρκούς διερεύνησης της συμπεριφοράς του μπτρώου απόσβεσης σε φθίνοντες κλάδους των διαγραμμάτων ροπών - στροφών, για τη μόρφωση του μπτρώου απόσβεσης χρησιμοποιείται το αρχικό ελαστικό μητρώο δυσκαμψίας.

Υπάρχουν και άλλες μέθοδοι μόρφωσης του μητρώου απόσβεσης που μπορούν να λάβουν υπόψη τους ακόμα και όλες τις ιδιομορφές του συστήματος, όπως η απόσβεση Caughey που χρησιμοποιεί πρόσθετες συνθήκες ορθογωνικότητας ή η κατασκευή του με βάση τις ιδιομορφές σύμφωνα με τη σχέση

$$C = M\left(\sum_{n} 2\xi_{n}\omega_{n}\varphi_{n}\varphi_{n}^{T}\right)M$$
(2.61)

Παρόλα αυτά, δεν χρησιμοποιούνται ιδιαίτερα στην πράξη, καθώς δίνουν μητρώα απόσβεσης που είναι εν γένει πλήρη, σε αντίθεση με τα μητρώα μάζας και δυσκαμψίας που εμφανίζουν στοιχεία σε συγκεκριμένες περιοχές (το μητρώο μάζας είναι συνήθως διαγώνιο και το μητρώο δυσκαμψίας ως επί το πλείστον λωριδωτό), αυξάνοντας έτσι ιδιαίτερα το υπολογιστικό κόστος, χωρίς να προσθέτουν απαραίτητα στην ακρίβεια των αποτελεσμάτων. Έτσι, χρησιμοποιείται η απόσβεση Rayleigh, η οποία όμως δίνει αρκετά μεγάλες τιμές απόσβεσης για τις ανώτερες ιδιομορφές, όταν, όπως γίνεται συνήθως, για τη μόρφωση του μητρώου απόσβεσης χρησιμοποιούνται οι πρώτες ιδιομορφές.

• Διάνυσμα εσωτερικών δυνάμεων μελών $\{F^{int}(U)\}$, το οποίο εξαρτάται από τις μετακινήσεις των βαθμών ελευθερίας του συστήματος. Στην ειδική περίπτωση της ελαστικής απόκρισης ισχύει

$$\{F^{int}(U)\} = [K]\{U\}$$
(2.62)

• Διάνυσμα εξωτερικών δράσεων $\{F^{ext}(\ddot{U}_g)\}$, το οποίο εξαρτάται από τις επιταχύνσεις του εδάφους σε κάθε διεύθυνση.

Η εξίσωση δυναμικής ισορροπίας του συστήματος περιγράφεται από τη μητρωική εξίσωση (υποθέτοντας σταθερό μητρώο απόσβεσης)

$$[M]\{\ddot{U}\} + [C]\{\dot{U}\} + \{F^{int}(U)\} = \{F^{ext}(\ddot{U}_g)\}$$
(2.63)

Η επίλυση της παραπάνω εξίσωσης γίνεται με ολοκλήρωση της εξίσωσης δυναμικής ισορροπίας. Η πλέον χρησιμοποιούμενη μέθοδος επίλυσης της παραπάνω εξίσωσης είναι η μέθοδος Νewmark. Στη μέθοδο αυτή, το μητρώο μετακινήσεων και το μητρώο ταχυτήτων σε μια χρονική στιγμή $t + \Delta t$ προσεγγίζονται βάσει των σχέσεων

$$U_{t+\Delta t} = U_t + \Delta t \dot{U}_t + \frac{\Delta t^2}{2} \ddot{U}_t + \beta \Delta t^3 \ddot{U}_t$$
(2.64)

$$\dot{U}_{t+\Delta t} = \dot{U}_t + \Delta t \ddot{U}_t + \gamma \Delta t^2 \ddot{U}_t$$
(2.65)

όπου θεωρείται

$$\ddot{U}_t = \frac{\ddot{U}_{t+\Delta t} - \ddot{U}_t}{2} \tag{2.66}$$

Μετά από πράξεις προκύπτουν οι σχέσεις

$$\Delta \dot{U}_{t+\Delta t} = \frac{\gamma}{\beta \Delta t} \Delta U_{t+\Delta t}$$
(2.67)

$$\Delta \ddot{U}_{t+\Delta t} = \frac{1}{\beta \Delta t^2} \Delta U_{t+\Delta t}$$
(2.68)

Η τελική εξίσωση ισορροπίας επιλύεται με κάποια επαναληπτική μέθοδο (όπως η μέθοδος Newton-Raphson):

$$\hat{K}_{t+\Delta t}^{i} \Delta U_{t+\Delta t}^{i+1} = \hat{P}_{t+\Delta t}^{i}$$
 όπου (2.69)

$$\hat{K}^{i}_{t+\Delta t} = K^{*i}_{t+\Delta t} + \frac{\gamma}{\beta \Delta t} C + \frac{1}{\beta \Delta t^{2}} M$$
(2.70)

$$\hat{P}^{i}_{t+\Delta t} = F^{ext}_{t+\Delta t} - F^{int}(U^{i}_{t+\Delta t}) - C\dot{U}^{i}_{t+\Delta t} - M\ddot{U}^{i}_{t+\Delta t}$$
(2.71)

Στις παραπάνω σχέσεις υιοθετούνται οι ίδιοι συμβολισμοί που αναπτύχθηκαν νωρίτερα (σελ. 58)

Συνηθισμένες περιπτώσεις παραμέτρων που επιλέγονται είναι:

- $\gamma = \frac{1}{2}, \beta = \frac{1}{4}$ (Μέθοδος σταθερής επιτάχυνσης)
- $\gamma = \frac{1}{2}, \beta = \frac{1}{6}$ (Μέθοδος γραμμικά μεταβαλλόμενης επιτάχυνσης)

2.3.4 Επεξεργασία αποτελεσμάτων

Τα αποτελέσματα που μπορούμε να ζπτήσουμε να καταγράψει το OpenSees κατά την ανάλυση είναι διάφορα. Για παράδειγμα, μπορούμε να καταγράψουμε μετακινήσεις, ταχύτητες και επιταχύνσεις κόμβων, αντιδράσεις στηρίξεων, δυνάμεις που αναπτύσσουν τα μέλη, σχετικές μετακινήσεις και στροφές μελών και αρθρώσεων, ιδιοπερίοδοι και ιδιομορφές σε συγκεκριμένες χρονικές στιγμές κλπ.

Στις περισσότερες περιπτώσεις, η καταγραφή των αποτελεσμάτων θα πρέπει να γίνει σε ένα αρχείο ανά ομάδα δεδομένων, καθώς το OpenSees δεν είναι σε θέση να διατηρήσει ανοιχτά άπειρα αρχεία ταυτόχρονα, οπότε για τη μορφοποίηση των αποτελεσμάτων σε κατανοητή μορφή απαιτείται συχνά επεξεργασία των αρχείων των αποτελεσμάτων.

Κάποια αποτελέσματα είναι ιδιαίτερα χρήσιμα αφού υποστούν επεξεργασία. Για παράδειγμα, στην περίπτωση της ανάλυσης με συγκεντρωμένη πλαστικότητα, μπορούμε να εντοπίσουμε σε ποιο βήμα ή ποια χρονική στιγμή διαρρέουν ή αστοχούν τα μέλη βάσει των στροφών που έχουν καταγραφεί ή να βρούμε σε ποιο επίπεδο επιτελεστικότητας έχουν φτάσει κατά τη διάρκεια της ανάλυσης συγκρίνοντας τη μέγιστη μετατόπιση που εντοπίζουμε με τα όρια των σταθμών επιτελεστικότητας της διατομής.

Ακόμα, αθροίζοντας τις αντιδράσεις των στηρίξεων σε μια συγκεκριμένη διεύθυνση μπορούμε να υπολογίσουμε την τέμνουσα βάσης σε κάθε βήμα της ανάλυσης. Στην περίπτωση της Pushover με τον τρόπο αυτό μπορούμε να κατασκευάσουμε την καμπύλη ικανότητας της κατασκευής, συνδυάζοντας τις τέμνουσες βάσης με τις μετατοπίσεις στον κόμβο αναφοράς.

Η διαδικασία επεξεργασίας των αποτελεσμάτων περιγράφεται λεπτομερέστερα στο επόμενο κεφάλαιο.

Εκτέλεση επαναλήψεων Στις σχέσεις που παρουσιάστηκαν στην αρχή του κεφαλαίου σχετικά με την προσομοίωση των ανελαστικών χαρακτηριστικών των μελών και της αστοχίας λόγω τέμνουσας, εμφανίζονται οι τιμές της αξονικής δύναμης Ν και του λόγου διάτμησης L. που αντιστοιχούν σε κάθε διατομή. Αρχικά, οι τιμές αυτές λαμβάνονται προσεγγιστικά, η μεν αξονική δύναμη μόνο λόγω των σταθερών φορτίων του φορέα (στις δοκούς λαμβάνεται πάντα μηδενική) και ο λόγος διάτμησης σύμφωνα με τις προσεγγίσεις που ορίζει ο ΚΑΝ.ΕΠΕ. (σελ. 29). Οι τιμές αυτές όμως μπορεί να διαφέρουν σημαντικά από την πραγματικότητα, ιδιαίτερα μετά την είσοδο του φορέα στη μετελαστική περιοχή, οπότε μεγέθη όπως η αντοχή των υποστυλωμάτων σε κάμψη υπό αξονικό φορτίο, η αντοχή σε τέμνουσα των μελών, οι γωνίες στροφών χορδής και οι ενεργές δυσκαμψιες, δεν ανταποκρίνονται στην πραγματικότητα. Η αδυναμία να ενσωματώσουμε άμεσα τις τιμές της αξονικής δύναμης και του λόγου διάτμησης στον αλγόριθμο της διαδικασίας επίλυσης, καθώς τα χαρακτηριστικά των στροφικών και διατμητικών ελατηρίων στο OpenSees διατηρούνται αμετάβλητα κατά την εκτέλεση της ανάλυσης, χωρίς να μπορούν έτσι να λάβουν υπόψη και γενικευμένα φαινόμενα αλληλεπίδρασης, μας οδηγεί στη λύση της επανάληψης της ανάλυσης, προσεγγίζοντας τα παραπάνω μεγέθη σύμφωνα με τα αποτελέσματα που προκύπτουν από προηγούμενες αναλύσεις. Επαναλαμβάνεται ότι στην περίπτωση της κατανεμημένης πλαστικότητας υπάρχει αλληλεπίδραση μεταξύ αξονικής δύναμης και ροπής, όμως οι γωνίες στροφής χορδής των μελών και οι ενεργές δυσκαμψίες υπολογίζονται αυτόματα λαμβάνοντας υπόψη μόνο την κάμψη, σε αναντιστοιχία με τις διατάξεις του ΚΑΝ.ΕΠΕ., ενώ το πρόβλημα υπολογισμού της αστοχίας λόγω τέμνουσας, που εξαρτάται από την πλαστιμότητα της γωνίας στροφής χορδής, παραμένει. Εξάλλου, όπως αναφέρθηκε παραπάνω, η άμεση προσομοίωση της αστοχίας σε τέμνουσα με διατμητικά ελατήρια δεν προτιμήθηκε τελικά λόγω της αυξημένης δυσκολίας σύγκλισης των αλγορίθμων επίλυσης.

Η διαδικασία εύρεσης καλύτερων προσεγγίσεων για τις αξονικές δυνάμεις και τα διατμητικά μήκη διαφέρει λίγο μεταξύ των αναλύσεων Pushover και χρονοϊστορίας. Για τις αναλύσεις Pushover, αφού πραγματοποιηθεί μια πρώτη ανάλυση με τις αρχικές τιμές όπως αναφέρεται παραπάνω, εξάγονται οι τελικές αξονικές δυνάμεις των υποστυλωμάτων, καθώς και τα διατμητικά μήκη δοκών και υποστυλωμάτων σύμφωνα με τη σχέση $L_s = \frac{M}{V}$. Για την επανάληψη της ανάλυσης Pushover χρησιμοποιούνται οι τελικές αξονικές δυνάμεις που βρέθηκαν, καθώς και όσα διατμητικά μήκη αντιστοιχούν στη συγκεκριμένη διεύθυνση και φορά ανάλυσης. Αυτό σημαίνει ότι για τα υποστυλώματα υπολογίζονται νέα διατμητικά μήκη μόνο στη διεύθυνση που τα οριζόντια φορτία προκαλούν σημαντικές ροπές, ενώ για τις δοκούς, μόνο για τις δοκούς που είναι παράλληλες στα κύρια οριζόντια φορτία και μάλιστα στο άκρο στο οποίο τα σεισμικά φορτία συμβάλλουν στα υπάρχοντα εντατικά μεγέθη με ομόσημες τιμές, δηλαδή όπως προτείνει και ο ΚΑΝ.ΕΠΕ., στο άκρο στο οποίο κατά την ανάλυση με τα οριζόντια φητία εφελκύεται η άνω ίνα της διατομής. Για τις θέσεις που δεν υπολογίζονται νέα διατμητικά μήκη, χρησιμοποιούνται οι οποιούνται οι αρχικές τιμές.

Όσον αφορά στην ανάλυση χρονοϊστορίας, αρχικά από μία ανάλυση για το ζεύγος σεισμικών καταγραφών που επιθυμούμε, βρίσκουμε τις μέγιστες τιμές μετακίνησης ενός κόμβου αναφοράς για τις δύο διευθύνσεις και τις δύο φορές κάθε διεύθυνσης. Έπειτα, απαιτούνται να γίνουν 4 αναλύσεις Pushover με μέγιστες τιμές στον κόμβο αναφοράς ίσες με αυτές που προκύπτουν από την ανάλυση χρονοϊστορίας. Σε κάθε μία από τις 4 αυτές αναλύσεις βρίσκονται οι τελικές τιμές των αξονικών των υποστυλωμάτων, τα διατμητικά μήκη των υποστυλωμάτων στην εν λόγω διεύθυνση και τα διατμητικά μήκη στα άκρα των δοκών που αντιστοιχούν στη συγκεκριμένη διεύθυνση και α φορά, ώστε όπως και πριν τα οριζόντια φορτία να δίνουν ομόσημα εντατικά μεγέθη. Αφού πραγματοποιηθεί η διαδικασία αυτή και για τις 4 Pushover, τα τελικά μεγέθη τα οποία θα χρησιμοποιηθούν για την επανάληψη της ανάλυσης λαμβάνονται ως εξής: για τις αξονικές των υποστυλωμάτων, εντοπίζεται για κάθε διεύθυνση ανάλυσης η πλέον εφελκυστική δύναμη από τις τελικές τιμές των αναλύσεων στις δύο φορές και στη συνέχεια υπολογίζεται ο μέσος όρος των αξονικών που αντιστοιχούν στις δύο διευθύνσεις (θεωρείται δηλαδή δυσμενέστερη περίπτωση η εφελκυστική δύναμη, γιατί τα αξονικά φορτία δεν αυξάνονται τόσο σε σχέση με τα εμβαδά των διατομών, ώστε να δώσουν σημαντικότερη μείωση καμπτικής και διατμητικής αντοχής από τις εφελκυστικές αξονικές δυνάμεις). Για τα διατμητικά μήκη, όσον αφορά στα υποστυλώματα, λαμβάνεται τελικά ο μέσος όρος των διατμητικών μηκών σε κάθε φορά ανάλυσης για κάθε διεύθυνση του υποστυλώματος, ενώ για για τις δοκούς λαμβάνεται υπόψη το διατμητικό μήκος της ανάλυσης ίδιας διεύθυνσης με τη δοκό και φοράς στην οποία εφελκύεται η άνω ίνα της διατομής. Σημειώνεται πάντως ότι για αναφύσεις άκρων δοκών στα οποία εφελκύεται η κάτω ίνα, διατηρείται η τυπική τιμή ($L_s = l_d/2$) που αναφέρεται στον ΚΑΝ.ΕΠΕ.

Σημειώνεται ότι η διαδικασία αυτή θα πρέπει να λαμβάνει υπόψη και τις διαρροές ή αστοxίες που συμβαίνουν κατά τη διάρκεια της ανάλυσης. Μέλη στα οποία διαρρέει ή αστοχεί κάποιο άκρο τους πριν ο κόμβος αναφοράς λάβει την τελική τιμή μετακίνησής του, εξετάζονται τη στιγμή ακριβώς πριν τη μεταβολή της κατάστασής τους και τα μεγέθη που μας ενδιαφέρουν για τα δύο άκρα του, υπολογίζονται τη στιγμή εκείνη. Με αυτόν τον τρόπο λαμβάνονται υπόψη οι ακραίες τιμές πριν διαρρεύσει ή αστοχήσει το μέλος, ενώ σε διαφορετική περίπτωση, τα μεγέθη που θα υπολογίζονταν δεν θα ανταποκρίνονταν στη συμπεριφορά του μέλους μέχρι να φτάσει στη διαρροή ή την αστοχία. Επιπλέον, λόγω της πιθανής ασταθούς συμπεριφοράς των τιμών των διατμητικών μηκών σε κάποια σημεία της ανάλυσης, που μπορεί να μην είναι ρεαλιστικές και χαρακτηριστικές για το μεγαλύτερο μέρος της ανάλυσης, τα χαρακτηριστικά των μελών που προκύπτουν χρησιμοποιώντας τις μπορεί να μην είναι ορθά. Για το λόγο αυτό, επιλέγεται να πραγματοποιείται έλεγχος των τιμών διατμητικών μηκών που υπολογίζονται, έτσι ώστε να βρίσκονται σε ένα διάστημα γύρω από τις αρχικές τυπικές τιμές (για παράδειγμα 25% έως 400% των τυπικών τιμών), αλλιώς επιλέγονται οι τυπικές τιμές.

Κεφάλαιο 3

Περιγραφή προγραμμάτων ανάλυσης φορέα

3.1 Τι είναι το OpenSees;

Για την ανάλυση του φορέα χρησιμοποιείται το πρόγραμμα OpenSees 2.4.1. Το OpenSees (Open System for Earthquake Engineering Simulation) είναι λογισμικό ανοιχτού κώδικα για την προσομοίωση της σεισμικής απόκρισης κατασκευών και εδαφικών συστημάτων, το οποίο ξεκίνησε να αναπτύσσεται το 1999 στο Pacific Earthquake Engineering Research Center. Είναι γραμμένο κυρίως σε γλώσσα C++, ενώ χρησιμοποιεί αρκετές υπορουτίνες επίλυσης γραμμένες σε C και Fortran. Το βασικό περιβάλλον με το οποίο αλληλεπιδρά ο χρήστης χρησιμοποιεί τη γλώσσα Tcl, στην οποία ο χρήστης γράφει τον κώδικα που πρόκειται να εκτελεστεί. Σήμερα γίνεται παράλληλη ανάπτυξή του από διάφορα ερευνητικά κέντρα και πανεπιστήμια, τα οποία εξελίσσουν τις δυνατότητές του συνεισφέροντας στον πηγαίο κώδικά του. Ακόμα, για την υποστήριξη των χρηστών, διατηρείται ηλεκτρονικό forum στην ιστοσελίδα του OpenSees.

Το OpenSees διαθέτει προχωρημένες δυνατότητες για την προσομοίωση και την ανάλυση της ανελαστικής συμπεριφοράς συστημάτων χρησιμοποιώντας πληθώρα υλικών, στοιχείων και αλγορίθμων επίλυσης για ανελαστικές στατικές ή δυναμικές αναλύσεις. Χρησιμοποιείται κυρίως για ανάλυση κατασκευών μέσω ραβδωτών πεπερασμένων στοιχείων, δίνοντας μάλιστα τη δυνατότητα ανάλυσης φορέων με κατανεμημένη πλαστικότητα.

Εκτός όμως από ραβδωτά πεπερασμένα στοιχεία, το OpenSees διαθέτει και επιφανειακά και χωρικά πεπερασμένα στοιχεία, για προσομοίωση κατασκευών αλλά και εδαφικών συστημάτων. Γενικά όμως τα στοιχεία αυτά δεν είναι τόσο ανεπτυγμένα όσο τα ραβδωτά στοιχεία. Ακόμα, στις πρόσφατες εκδόσεις του OpenSees έχουν προστεθεί νέες δυνατότητες που αφορούν στην ανάλυση της απόκρισης φορέων σε πυρκαγιά καθώς και την εκτέλεση αναλύσεων σε παράλληλα υπολογιστικά περιβάλλοντα για αύξηση της ταχύτητας εκτέλεσης σε πολύπλοκους φορείς ή παραμετρικές αναλύσεις.

Γενικά, το OpenSees υπερτερεί έναντι άλλων προγραμμάτων ανάλυσης φορέων όσον αφορά στις δυνατότητες προσομοίωσης των μελών, καθώς και στην ακρίβεια και ταχύτητα των αναλύσεων που παρέχει. Επίσης, επειδή ο χρήστης αλληλεπιδρά με το πρόγραμμα μέσω αρχείων κώδικα, παρέχεται η δυνατότητα αυτοματοποίησης των υπολογισμών, καθώς και εύκολης εκτέλεσης παραμετρικών αναλύσεων. Σημαντικό είναι το γεγονός ότι με τον τρόπο αυτό παρέχεται και μεγαλύτερη δυνατότητα ελέγχου της διαδικασίας ανάλυσης, καθώς σε άλλα προγράμματα οι παραδοχές που γίνονται και οι μέθοδοι ανάλυσης που εφαρμόζονται δεν είναι ξεκάθαρες, κάτι που μπορεί να οδηγήσει σε αποτελέσματα που δεν ταιριάζουν με αυτά που αναμένονται ή, ακόμα χειρότερα, αποτελέσματα που φαίνονται ρεαλιστικά, αλλά λόγω των παραδοχών που έχουν γίνει από το πρόγραμμα, δεν είναι και ορθά.

Παρά τα αρκετά πλεονεκτήματα του OpenSees, όπως κάθε λογισμικό έχει και αυτό ορισμένα μειονεκτήματα. Αρχικά, το πρόγραμμα δεν διαθέτει προς το παρόν πλήρως λειτουργικό γραφικό περιβάλλον και η εισαγωγή των στοιχείων μπορεί να γίνει μόνο μέσω κώδικα, κάτι που μπορεί να δυσκολέψει αρκετά το μέσο χρήστη χωρίς την ανάλογη εμπειρία, ενώ παράλληλα ο εντοπισμός των σφαλμάτων αρκετές φορές διευκολύνεται με την ύπαρξη γραφικών εργαλείων. Ακόμα, δεν υπάρχει κάποιο εκτενές εγχειρίδιο αναφοράς που περιγράφει όλες τις δυνατότητες του OpenSees, ενώ στην ιστοσελίδα του OpenSees οι περισσότερες εντολές περιγράφονται με συνοπτικό τρόπο και διαθέσιμα αρχεία με παραδείγματα υπάρχουν κυρίως για τις βασικές εντολές που διαθέτει. Επίσης, επειδή στο OpenSees έχουν συμβάλλει με κώδικα αρκετά άτομα από διαφορετικές περιοχές του κόσμου, κυρίως για πιο εξειδικευμένες δυνατότητες, δεν είναι πάντα δυνατή η παροχή βοήθειας για τις συγκεκριμένες δυνατότητες. Παράλληλα, είναι πιθανή η ύπαρξη σφαλμάτων στον κώδικα τους, καθώς η ανάπτυξή τους μπορεί να έχει σταματήσει, χωρίς να έχουν διεξαχθεί οι απαραίτητες δοκιμές για όλες τις περιπτώσεις στις οποίες μπορεί να χρησιμοποιηθούν. Συνεπώς, για την προσομοίωση και την ανάλυση των φορέων είναι προτιμότερο να χρησιμοποιούνται οι πιο συχνά χρησιμοποιούμενες εντολές, κάτι που όμως και πάλι δεν αποκλείει την ύπαρξη σφαλμάτων, οπότε θα πρέπει να ελέγχονται συνεχώς τα αποτελέσματα που παράγονται. Τέλος, όσον αφορά στην ανελαστική απόκριση των κατασκευών, το OpenSees στοχεύει κυρίως στην προσομοίωσή της με μεθόδους κατανεμημένης πλαστικότητας, ενώ η εισαγωγή συγκεντρωμένης πλαστικότητας στο προσομοίωμα, αν και προτείνεται ακόμα από κανονισμούς και ειδικά για υλικά όπως το οπλισμένο σκυρόδεμα, είναι σαφώς δυσκολότερη και ανεπαρκής σε κάποιες περιπτώσεις (όπως για παράδειγμα, όταν λόγω αλληλεπίδρασης μεταξύ της αξονικής δύναμης και των ροπών στις δύο διευθύνσεις, η απόκριση των μελών μεταβάλλεται σημαντικά κατά τη διάρκεια της ανάλυσης).

3.2 Διάρθρωση προγραμμάτων

Εκτός από τα βασικά προγράμματα που διενεργούν την ανάλυση του φορέα με τη βοήθεια του OpenSees, απαιτείται να γραφούν και κάποια άλλα προγράμματα για την αρχική επεξεργασία των δεδομένων για την εισαγωγή τους στο περιβάλλον του OpenSees, καθώς και προγράμματα για την επεξεργασία των αποτελεσμάτων. Τα προγράμματα αυτά επιλέχθηκε να γραφούν σε μορφή scripts σε γλώσσα Tcl, τη γλώσσα δηλαδή που χρησιμοποιεί και το περιβάλλον του OpenSees, προκειμένου να αυτοματοποιηθεί η διαδικασία επεξεργασίας των αποτελεσμάτων. Έγινε προσπάθεια τα παραπάνω προγράμματα να είναι αρκετά γενικευμένα και να μπορούν να χρησιμοποιηθούν σε αρκετές περιπτώσεις φορέων.

Συνοπτικά, η διαδικασία που ακολουθείται για την εισαγωγή και επίλυση του φορέα έχει ως εξής: Ο χρήστης αρχικά απαιτείται να εισάγει σε κάποια αρχεία κειμένου τα απαιτούμενα δεδομένα του φορέα που θέλει να αναλύσει, καθώς και κάποιες επιλογές για την ανάλυση που επιθυμεί να πραγματοποιήσει. Στη συνέχεια, εκτελώντας ένα αρχείο μέσα από το περιβάλλον του OpenSees, πραγματοποιείται η προεπεξεργασία των δεδομένων, που περιλαμβάνει υπολογισμούς σχετικά με τους κόμβους, τη συνδεσμολογία των μελών, τη μορφή των διατομών, τις φορτίσεις και την ανελαστική απόκριση των μελών. Στη συνέχεια πραγματοποιείται η ανάλυση του φορέα χρησιμοποιώντας εντολές του OpenSees και αφού ολοκληρωθεί, γίνεται επεξεργασία των αποτελεσμάτων για την παραγωγή κατανοητών αρχείων και συνοπτικών αποτελεσμάτων από την ανάλυση του φορέα.

Κατά τη διαδικασία επεξεργασίας των δεδομένων, απαιτείται σε συγκεκριμένες στιγμές η παρεμβολή προκαταρκτικής ανάλυσης του φορέα ή των διατομών των μελών του με τη βοήθεια του OpenSees, όπως για παράδειγμα για την εύρεση των αξονικών δυνάμεων των μελών και στη συνέχεια τον υπολογισμό των διαγραμμάτων ροπών - καμπυλοτήτων των διατομών ή τον υπολογισμό των ιδιομορφικών φορτίων μέσα από τις ιδιομορφικές αναλύσεις που εκτελεί το OpenSees. Συνεπώς, για τη διαδικασία ανάλυσης που ακολουθείται, η επεξεργασία των δεδομένων του φορέα εμπλέκει και την ανάλυση του, κάτι που επιβάλλει και την ενοποίηση της μορφής των αντίστοιχων προγραμμάτων σε γλώσσα Tcl, ώστε να μπορούν να εκτελούνται όλα διαδοχικά και αυτοματοποιημένα μέσα από το περιβάλλον του OpenSees. Παρακάτω περιγράφονται αναλυτικότερα οι εργασίες που εκτελούν τα διάφορα προγράμματα που γράφτηκαν στα πλαίσια της παρούσας εργασίας.

3.3 Εισαγωγή δεδομένων από το χρήστη

Τα αρχεία κειμένου τα οποία απαιτείται να επεξεργαστεί ο χρήστης βρίσκονται στο φάκελο Input και έχουν ως εξής:

Floors.txt Εισάγονται οι κωδικοί των στάθμεων των ορόφων, καθώς και το υψόμετρο στο οποίο βρίσκονται (άνω πλευρά πλακών)

Nodes.txt Καταγράφονται οι κωδικοί των κόμβων, οι στάθμες στις οποίες πρέπει να εισαχθούν, οι συντεταγμένες *X* και *Y* στις οποίες βρίκονται (σταθερές σε όλους τους ορόφους), καθώς και το αν στην κατώτατη στάθμη οι κόμβοι αυτοί απαιτείται να είναι δεσμευμένοι. Στο αρχείο αυτό μπορούν να εισαχθούν και δευτερεύοντες κόμβοι στο μοντέλο, που βοηθούν στην εισαγωγή των μελών.

Links.txt Καταγράφονται οι δεσμεύσεις που υπάρχουν μεταξύ των κύριων και των δευτερευόντων κόμβων που αναφέρθηκαν παραπάνω, οι οποίοι εξαρτώνται από τους κύριους κόμβους του μοντέλου, όπως και οι στάθμες στις οποίες απαιτούνται οι δεσμεύσεις αυτές.

Columns.txt Εισάγονται οι κωδικοί των κατακόρυφων στοιχείων (υποστυλωμάτων και τοιχωμάτων) του μοντέλου, οι οποίοι αντιστοιχούν στους κύριους κόβμους που έχουν εισαχθεί προηγουμένως, και οι στάθμες τις οποίες συνδέουν. Για κάθε ένα από αυτά, απαιτείται η μορφή της διατομής του, δηλαδή αν είναι ορθογωνικό ή διατομής Γ, οι διαστάσεις του (2 για τα ορθογωνικά υποστυλώματα και 3 για τα υποστυλώματα διατομής Γ), όπως και η γωνία που αντιστοιχεί στο σημείο εισαγωγής του μέλους στο μοντέλο, το οποίο αντιστοιχεί και στον προσανατολισμό των διατομών μορφής Γ. Το σημείο εισαγωγής μπορεί να μεταβληθεί χειροκίνητα αν δεν ταιριάζει με κάποια από τις γωνίες των ορθογωνικών υποστυλωμάτων ή δεν ταυτίζεται με την κορυφή των υποστυλωμάτων διατομής Γ. Έπειτα, απαιτείται η εισαγωγή των οπλισμών τους και συγκεκριμένα ο αριθμός και η διάμετρος των διαμήκων οπλισμών, οι οποίοι θεωρούνται ότι κατανέμονται σε ίσες αποστάσεις σε κάθε μεριά της διατομής και με τέτοιο τρόπο, ώστε να επιτυγχάνεται η μέγιστη δυνατή μικρότερη απόσταση μεταξύ των οπλισμών, καθώς και η διάμετρος, η απόσταση και οι τμήσεις των εγκάρσιων οπλισμών. Τέλος εισάγονται οι επικαλύψεις και τα μήκη των τμημάτων στην αρχή και το πέρας των μελών τα οποία θεωρούνται άκαμπτα (λόγω ύπαρξης δοκών σε αυτό το μήκος).

Beams.txt Καταγράφονται οι κωδικοί των δοκών, οι στάθμες στις οποίες βρίσκονται οι δοκοί με τα χαρακτηριστικά που αναφέρονται κάθε φορά, οι διαστάσεις του κορμού τους (ύψος και πλάτος), καθώς και τα πάχη και τα ημιανοίγματα των πλακών σε κάθε μεριά τους, τα οποία χρησιμοποιούνται αργότερα για τον αυτόματο υπολογισμό των συνεργαζόμενων πλατών τους. Ακόμα, καθορίζεται αν είναι ανεστραμμένες ή όχι, η θέση του σημείου κατά τη διεύθυνση του πλάτους του κορμού τους με το οποίο εισάγονται στο προσομοίωμα (κατά τη διεύθυνση του ύψους του κορμού, το σημείο αυτό βρίσκεται πάντα στην άνω πλευρά των πλακών), τα χαρακτηριστικά των εγκάρσιων οπλισμών (διάμετρος, απόσταση, τμήσεις), καθώς και οι επικαλύψεις στον κορμό και στις πλάκες. Έπειτα, για τις θέσεις αρχής και τέλους απαιτείται να εισαχθούν οι κόμβοι των στηρίξεων, τα μήκη στα οποία θεωρούνται άκαμπτοι κόμβοι (ουσιαστικά δηλαδή οι αποστάσεις μεταξύ του θεωρητικού σημείου εισαγωγής και της παρειάς της στήριξης), αν η δοκός είναι συνεχής στα άκρα αυτά και αν υπάρχουν εγκάρσιες δοκοί αριστερά και δεξιά της, καθώς και οι διαστάσεις των αντίστοιχων υποστυλωμάτων κάθε άκρου παράλληλα και κάθετα στον άξονα της δοκού. Επίσης, ορίζονται οι διαφορές των πλατών μεταξύ υποστυλώματος και δοκού αριστερά και δεξιά της δοκού, οι οποίες μπορούν να υπολογιστούν και αυτόματα αν το υποστύλωμα και η δοκός έχουν ίδια "περασιά" στη θέση του σημείου εισαγωγής. Τέλος, καθορίζονται οι τυχόν μετατοπίσεις του άξονα της δοκού σε σχέση με τον άξονα εισαγωγής, αν κάποιο άκρο της δοκού συνεχίζει καταλήγοντας σε κόμβο χωρίς υποστύλωμα και το ποσοστό του καθαρού μήκους της δοκού που αντιστοιχεί στο μήκος καθενός από τα ακραία τμήματα του μέλους, το οποίο υπενθυμίζεται ότι χωρίζεται σε 3 τμήματα.

BeamRebars.txt Επειδή τα στοιχεία των διαμήκων οπλισμών των πλακοδοκών είναι αρκετά, η εισαγωγή τους γίνεται σε ξεχωριστό αρχείο. Έτσι, για κάθε δοκό που έχει εισαχθεί προηγουμένως και για κάθε ένα από τα τρία τμήματα στα οποία χωρίζεται, εισάγονται το πλήθος και η διάμετρος των διαμήκων οπλισμών του κορμού που βρίσκονται άνω και κάτω στη διατομή. Επίσης, επειδή μπορεί να ληφθούν υπόψη και οι οπλισμοί των πλακών, μπορούν να εισαχθούν όλοι οι οπλισμοί που βρίσκονται στις πλάκες αριστερά και δεξιά της δοκού, στο άνω ή στο κάτω μέρος τους, σε μορφή διαμέτρου και απόστασης, από τους οποίους εξάγονται αργότερα ισοδύναμοι οπλισμοί πλακών που ισοκατανέμονται στις αντίστοιχες θέσεις.

Loads.txt Στο αρχείο αυτό γίνεται η καταγραφή των φορτίων που δέχονται οι παραπάνω δοκοί, πέραν των ιδίων βαρών τους. Για κάθε δοκό που επιθυμούμε, ορίζουμε το φορτίο των επικαλύψεων και των κινητών φορτίων των πλακών με τις οποίες συνδέεται η δοκός, καθώς και τα εμβαδά των επιφανειών φόρτισης για τις πλάκες αριστερά και δεξιά της δοκού, οι οποίες θεωρείται ότι αναλογούν στη συγκεκριμένη δοκό. Ακόμα, εισάγονται το φορτίο και το ύψος των τοιχοπληρώσεων που φορτίζουν άμεσα τη δοκό κατα μήκος της, όπως και το φορτίο, το ύψος και το μήκος των τοιχοπληρώσεων που βρίσκονται στα ανοίγματα των πλακών, στις επιφάνειες φόρτισης που αναλογούν στη δοκό αυτή.

Materials.tcl Ορίζονται οι ιδιότητες των βασικών υλικών που χρησιμοποιούνται στο μοντέλο δηλαδή του σκυροδέματος, του χάλυβα των διαμήκων οπλισμών και του χάλυβα των εγκάρσιων οπλισμών. Συγκεκριμένα, για το σκυρόδεμα απαιτείται ο καθορισμός της αντοχής του σε θλίψη, του μέσου μέτρου ελαστικότητας και των ανηγμένων παραμορφώσεων διαρροής και αστοχίας. Για το χάλυβα των διαμήκων οπλισμών εισάγονται η τάση διαρροής και το αρχικό μέτρο ελαστικότητάς του, καθώς και άλλοι παράμετροι για τον ακριβή καθορισμό της συμπεριφοράς του, όπως η μέγιστη τάση, οι ανηγμένες παραμορφώσεις μέγιστης τάσης και αστοχίας, ένας ισοδύναμος λόγος του μέτρου ελαστικότητας κατά την κράτυνση προς το αρχικό μέτρο ελαστικότητας και ίσως η ανηγμένη παραμόρφωση στην οποία τελειώνει το πλατώ διαρροής και το μέτρο ελαστικότητας στο αμέσως επόμενο σημείο της καμπύλης, ανάλογα με το χρησιμοποιούμενο μοντέλο. Για το χάλυβα των εγκάρσιων οπλισμών απαιτείται μόνο η τάση διαρροής του, καθώς χρησιμοποιείται έμμεσα στους υπολογισμούς και όχι άμεσα στην ανάλυση. Στο συγκεκριμένο αρχείο δίδονται έτοιμες κάποιες προτεινόμενες σχέσεις με τις οποίες υπολογίζονται κάποια από τα παραπάνω χαρακτηριστικά, όπως και οι απαιτούμενες εντολές που δημιουργούν τα μοντέλα προσμοίωσης των υλικών, όπως περιγράφονται στο προηγούμενο κεφάλαιο στην ενότητα με τα χρησιμοποιούμενα υλικά, από τις οποίες θα πρέπει να επιλεγεί μία για κάθε υλικό.

Diaphragms.txt Περιγράφονται τα οριζόντια και κατακόρυφα διαφράγματα που εισάγουν δεσμεύσεις στους κόμβους του μοντέλου, στις μετακινήσεις παράλληλα και στις στροφές εγκάρσια στα αντίστοιχα επίπεδα. Για τα οριζόντια διαφράγματα στα επίπεδα των πλακών, εισάγονται για κάθε διάφραγμα 4 κόμβοι, η στάθμη στην οποία αναφέρεται και ένας αριθμός που καθορίζει το κάθετο διάνυσμα (3). Για τα κατακόρυφα διαφράγματα που προσομοιώνουν τα

δύσκαμπτα τοιχία του υπογείου, εισάγονται για κάθε διάφραγματα 2 κόμβοι και 2 στάθμες τις οποίες ενώνει το διάφραγμα, καθώς και ο αριθμός που αντιστοιχεί στο κάθετο στα διάφραγμα διάνυσμα (1 για κάθετο διάνυσμα κατά *X* και 2 κατά *Y*).

InfillWalls.txt Εδώ εισάγονται οι τοιχοποιίες πλήρωσης που βρίσκονται μεταξύ των κύριων στοιχείων του φέροντος οργανισμού και μπορούν να επηρεάσουν τη συμπεριφορά του φορέα, σύμφωνα με τις συστάσεις του ΚΑΝ.ΕΠΕ. που αναπτύχθηκαν στο προηγούμενο κεφάλαιο. Για κάθε τοιχοπλήρωση δίδονται οι κωδικοί των στάθμεων και οι κόμβοι μεταξύ των οποίων βρίσκεται η τοιχοπλήρωση, καθώς και τα χαρακτηριστικά που καθορίζουν τη συμπεριφορά της, δηλαδή το ύψος, το καθαρό μήκος και το καθαρό πάχος της, καθώς και το ισοδύναμο πάχος στην περίπτωση των τοιχοπληρώσεων με κενά, για λόγους εξέτασης λυγισμού.

IWMaterials.tcl Εισάγονται κάποιες παράμετροι που εππρεάζουν τη συμπεριφορά των τοιχοπληρώσεων, οι οποίες θεωρούνται κοινές για όλες τις τοιχοπληρώσεις του μοντέλου. Συγκεκριμένα, δίδονται οι θλιπτικές αντοχές τοιχοσώματος και κονιάματος, ο συντελεστής *k* της τοιχοπλήρωσης, καθώς και οι θεωρούμενες ανηγμένες παραμορφώσεις διαρροής και αστοχίας, σύμφωνα με τις συστάσεις του ΚΑΝ.ΕΠΕ., όπως περιγράφηκαν στο προηγούμενο κεφάλαιο.

AnalysisOptions.txt Στο αρχείο αυτό, εισάγονται οι παράμετροι που καθορίζουν τις αναλύσεις που επιθυμούμε να πραγματοποιήσουμε. Αναλυτικότερα, πρέπει να εισαχθεί αρχικά ο τρόπος προσομοίωσης της ανελαστικής απόκρισης δοκών και υποστυλωμάτων (ελαστική απόκριση, συγκεντρωμένη πλαστικότητα, κατανεμημένη πλαστικότητα στα άκρα, κατανεμημένη πλαστικότητα σε ολόκληρο το μήκος των μελών), το μοντέλο υστέρησης για τη συγκεντρωμένη πλαστικότητα (μοντέλο Hysteretic ή Modified Ibarra-Medina-Krawinkler), καθώς και το μοντέλο που λαμβάνει υπόψη την αστοχία λόγω διάτμησης (χωρίς αστοχία λόγω διάτμησης - έμμεσα με μεταβολή των διαγραμμάτων ροπών - στροφών, άμεσα με εισαγωγή διατμητικών ελατηρίων). Στη συνέχεια, επιλέγουμε αν θέλουμε να συμπεριληφθούν οι τοιχοπληρώσεις στο μοντέλο. Έπειτα, διαλέγουμε τύπο ανάλυσης (ανάλυση Pushover ή ανάλυση χρονοϊστορίας), αν θέλουμε να παραχθεί αρχείο με τροποποιημένες αξονικές δυνάμεις και διατμητικά μήκη μελών, αν θέλουμε να χρησιμοποιήσουμε ένα τέτοιο υπάρχον αρχείο στη συγκεκριμένη ανάλυση, καθώς και έναν κόμβο αναφοράς για τα διάφορα αποτελέσματα που παράγονται. Για αναλύσεις Pushover απαιτούνται στη συνέχεια η διεύθυνση στην οποία θα διενεργηθεί η Pushover, n ιδιομορφή σύμφωνα με την οποία θα επιλεγούν οι αυξανόμενες δυνάμεις, καθώς και η μετακίνηση - στόχος της ανάλυσης. Για την ανάλυση χρονοϊστορίας πρέπει να δοθούν ένας αριθμός που δηλώνει το ποσοστό του χρόνου της καταγραφής μέχρι τον οποίο θα γίνει η ανάλυση προς το συνολικό χρόνο της καταγραφής, τα αρχεία των καταγραφών κατά Χ και Υ, καθώς και οι αντίστοιχοι πολλαπλασιαστές των σεισμικών καταγραφών. Τέλος, αν ο χρήστης επιθυμεί να εκτελέσει ιδιομορφική ανάλυση σε διάφορα στάδια της ανάλυσης, δίδονται μετά τις παραπάνω παραμέτρους οι επιθυμητές μετακινήσεις του κόμβου αναφοράς ή οι επιθυμητοί χρόνοι εκτέλεσης της ιδιομορφικής ανάλυσης, ανάλογα αν πρόκειται για ανάλυση Pushover ή χρονοϊστορίας, αντίστοιχα.

3.4 Επεξεργασία δεδομένων μοντέλου

Τα προγράμματα που αναλαμβάνουν την επεξεργασία των δεδομένων που έχει εισάγει ο χρήστης και παράγουν αρχεία που χρησιμοποιούνται στη συνέχεια για την προσομοίωση του φορέα στο OpenSees, βρίσκονται στον φάκελο *Analysis*. Τα προγράμματα αυτά παράγουν αρχεία, τα οποία αποθηκεύονται στο φάκελο *ModelData*. Παρακάτω περιγράφονται με τη σειρά με την οποία εκτελούνται:

ModelCreation.tcl Αποτελεί το κυρίως πρόγραμμα που αναλαμβάνει την εκτέλεση όλων των υποπρογραμμάτων που αφορούν στη δημιουργία του μοντέλου το οποίο πρόκειται να αναλυθεί.

FileInput.tcl Βοηθητικό αρχείο για την εισαγωγή δεδομένων. Εισάγει τα αρχεία κειμένου στο πρόγραμμα σε μορφή λίστας, ώστε να είναι δυνατή η περαιτέρω επεξεργασία τους.

FileOutput.tcl Βοηθητικό αρχείο για την εξαγωγή δεδομένων. Μετατρέπει τις μεταβλητές λίστας που ορίζουμε σε αρχεία κειμένου που αποθηκεύονται στο δίσκο για εισαγωγή τους σε επόμενο πρόγραμμα και έλεγχο των δεδομένων. Επίσης, αναλαμβάνει την ταξινόμηση των στοιχείων της λίστας με βάση το πρώτο στοιχείο κάθε υπο-λίστας, πριν την αποθήκευσή τους, για γρηγορότερη αναζήτηση στοιχείων από άλλα προγράμματα και το χρήστη.

Nodes.tcl Πρόγραμμα για παραγωγή των κύριων κόμβου του μοντέλου και των δεσμεύσεων του μοντέλου στο έδαφος. Δημιουργεί τους κύριους κόμβους του μοντέλου, ορίζοντάς τους τριψήφιους κωδικούς, στους οποίους το πρώτο ψηφίο δηλώνει τον κωδικό του ορόφου και τα δύο επόμενα τον κωδικό του κόμβου. Για κάθε κόμβο καταγράφει τις συντεταγμένες του στο χώρο, ενώ καταγράφει τους κόμβους που δεσμεύονται στο έδαφος όπου έχει ορίσει ο χρήστης. Τελικά αποθηκεύονται όλοι οι κόμβοι με τους κωδικούς και τις συντεταγμένες τους, καθώς και οι βαθμοί ελευθερίας που δεσμεύονται.

Links.tcl Πρόγραμμα που διαβάζει τις δεσμεύσεις μεταξύ κύριων και δευτερευόντων κόμβων που έχει εισάγει ο χρήστης στο αντίστοιχο αρχείο εισαγωγής και παράγει αρχείο με τους κωδικούς των αντίστοιχων κόμβων που δεσμεύονται.

BeamRebarsMerge.tcl Πρόγραμμα που καταγράφει τους οπλισμούς των δοκών. Αρχικά διαβάζεται το αρχείο στο οποίο έχει εισάγει ο χρήστης τους οπλισμούς των δοκών, από το οποίο εντοπίζονται οι κύριοι οπλισμοί κάθε τμήματος της δοκού, αλλά και αθροίζονται οι οπλισμοί των πλακών εκατέρωθεν του κορμού για κάθε τμήμα της δοκού. Τελικά καταγράφονται όλα τα τμήματα των πλακοδοκών με τους αντίστοιχους οπλισμούς κορμού και πλακών. Οι οπλισμοί του κορμού δίδονται σε μορφή πλήθους και διαμέτρου οπλισμών άνω και κάτω, ενώ οι οπλισμοί των πλακών δίδονται τελικά σε μορφή εμβαδού οπλισμών ανά μέτρο πλάτους πλάκας στις τέσσερις θέσεις των πλακών (άνω και κάτω, αριστερά και δεξιά του κορμού). Σε κάθε τμήμα ορί-ζεται επίσης ένας τετραψήφιος κωδικός: το πρώτο ψηφίο δηλώνει τον όροφο, τα δύο επόμενα τον κωδικό της δοκού και το τρίτο το τμήμα της δοκού (0 και 2 για τα άκρα και 1 για το μεσαίο τμήμα, όπως εισάγονται και στο αρχείο που δίνει ο χρήστης).

BeamBeff.tcl Υπορουτίνα που υπολογίζει τα συνεργαζόμενα πλάτη των πλακοδοκών. Δέχεται πληθώρα παραμέτρων που εισάγει ο χρήστης στο αρχείο για τα μέλη των δοκών και υπολογίζει τα συνεργαζόμενα πλάτη εκατέρωθεν του κορμού για τα τρία τμήματα της δοκού, στα δύο ακραία σύμφωνα με τον EC8 και το μεσαίο σύμφωνα με τον EC2. Οι σχέσεις που χρησιμοποιούνται αναφέρονται παραπάνω, στην ενότητα 2.1.

SectionProp.tcl Υπορουτίνα που υπολογίζει διάφορα στοιχεία για τις διατομές πλακοδοκών και υποστυλωμάτων. Δέχεται τα ύψη και πλάτη των τριών τμημάτων της διατομής της πλακοδοκού, δηλαδή του κορμού και των δύο πλακών εκατέρωθεν (για απλούστερα σχήματα, όπως για παράδειγμα στα υποστυλώματα, τα μεγέθη αυτα τίθενται μηδενικά), καθώς και τη θέση τους στη διατομή. Αρχικά υπολογίζει τις ιδιότητες των διατομών, δηλαδή το εμβαδόν, τη θέση του κέντρου βάρους, τις ροπές αδρανείας στους δύο άξονες, καθώς και τη στρητική σταθερά *J* σύμφωνα με τη σχέση 2.5. Επίσης, υπολογίζει τις συντεταγμένες των τριών τμημάτων της διατομής σε σχέση με το κέντρο βάρους της διατομής.
BeamRebarsProp.tcl Υπορουτίνα που υπολογίζει στοιχεία για τους οπλισμούς των πλακοδοκών. Δέχεται τη διάμετρο και το πλήθος των οπλισμών του κορμού, το εμβαδόν οπλισμού ανά μέτρο πλάτους στις πλάκες, τις συντεταγμένες των τμημάτων της διατομής, τη διάμετρο συνδετήρων και θεωρούμενου οπλισμού πλακών και τα πάχη επικαλύψεων κορμού και πλακών. Επιστρέφει λίστες για τα στοιχεία των οπλισμών κάθε θέσης της διατομής που περιλαμβάνουν το πλήθος και το εμβαδόν κάθε ράβδου, όπως και τις συντεταγμένες της γραμμής των οπλισμών. Οι οπλισμοί των πλακών δίδονται με δύο μορφές: είτε με σταθερό εμβαδόν ράβδων σύμφωνα με τη διάμετρο ράβδων πλακών που δέχεται, προσαρμόζοντας το πλήθος τους ώστε να προκύπτει περίπου το απαιτούμενο εμβαδόν ανά μέτρο πλάτους, είτε με σταθερό πλήθος ράβδων (προεπιλεγμένο πλήθος 5), προσαρμόζοντας το εμβαδόν τους για να προκύπτει το απαιτούμενο εμβαδόν ανά μέτρο πλάτους. Η τελευταία εναλλακτική δίνει πιο ομοιόμορφη κατανομή ράβδων στις πλάκες, κάτι που θεωρείται ότι προσεγγίζει περισσότερο την πραγματικότητα, καθώς η ακριβής τοποθέτηση των διαφόρων οπλισμών στις πλάκες στις παρειές των δοκών δεν είναι γνωστή ούτως ή άλλως.

BeamMembers.tcl Πρόγραμμα που δημιουργεί αρκετά αρχεία που σχετίζονται με τη συνδεσμολογία και τις διατομές των πλακοδοκών του μοντέλου. Πέρα από τα αρχεία που διαβάζονται και αφορούν στα δεδομένα για τους κόμβους, τις δοκούς, τους οπλισμούς και τα υλικά τους, αξιοποιούνται οι τρεις υπορουτίνες που περιγράφονται παραπάνω. Για κάθε δοκό εντοπίζει τις συντεταγμένες των κόμβων αρχής και τέλους, υπολογίζει τα μήκη των τμημάτων της, καλεί τις υπορουτίνες για υπολογισμό των συνεργαζόμενων πλατών και των στοιχείων διατομών και των οπλισμών τους, δημιουργεί τους ενδιάμεσους κόμβους των δοκών για σύνδεση των τριών τμημάτων της, καθορίζει τα άκαμπτα στοιχεία στους κόμβους βάσει των διαστάσεων των κόμβων και της θέσης του κέντρου βάρους της διατομής (βλ. και ενότητα 2.2.1) και καταγράφει κάποια στοιχεία που χρησιμοποιούνται αργότερα σε άλλους υπολογισμούς, όπως για παράδειγμα τους υπολογισμούς διάτμησης, είτε βάσει των αρχικών διατμητικών μηκών ή αυτών που έχουν προκύψει μετά από επανάληψη. Τα αρχεία που παράγονται αφορούν στη συνδεσμολογία των τμημάτων μελών των πλακοδοκών, στις συντεταγμένες των κύριων, βοηθητικών και ενδιάμεσων κόμβων μοντέλου, σε στοιχεία που χρησιμοποιούνται κατά τους υπολογισμούς φορτίων δοκών και μαζών στους κόμβους, σε στοιχεία που χρησιμοποιούνται κατά τους υπολογισμούς για τη διάτμηση, σε χαρακτηριστικά μεγέθη για την ελαστική συμπεριφορά δοκών, στις συντεταγμένες διατομών σκυροδέματος και των οπλισμών τους, στα μήκη άκαμπτων στοιχείων δοκών στους κόμβους και στα μήκη πλαστικών ζωνών στα άκρα που χρησιμοποιούνται στο μοντέλο κατανεμημένης πλαστικότητας στα άκρα.

ColumnRebars.tcl Υπορουτίνα που υπολογίζει στοιχεία για τους οπλισμούς των διατομών υποστυλωμάτων. Δέχεται το πλήθος και τη διάμετρο των οπλισμών, τις συντεταγμένες των τμημάτων της διατομής, τη διάμετρο των συνδετήρων και την επικάλυψη και υπολογίζονται οι συντεταγμένες των θέσεων που τοποθετούνται γραμμικά οι οπλισμοί στη διατομή (8 στη γενικότερη περίπτωση των διατομών μορφής Γ), καθώς και η κατανομή των ράβδων στις θέσεις αυτές, ώστε να προκύπτει τελικά η μεγαλύτερη δυνατή μικρότερη απόσταση μεταξύ των ράβδων. Έτσι, αφού τοποθετηθούν στη διατομή οι αναγκαίοι οπλισμοί στις γωνίες των τμημάτων της διατομής (4 για ορθογωνικές διατομές και 8 για διατομές Γ), για κάθε ζεύγος ράβδων που πρέπει να τοποθετηθεί, εντοπίζεται η θέση με τις μεγαλύτερες μέχρι εκείνη τη στιγμή αποστάσεις οπλισμών και τοποθετούνται εκεί, μέχρι να τελειώσουν οι οπλισμοί που πρέπει να κατανεμηθούν.

ColumnMembers.tcl Πρόγραμμα που δημιουργεί αρχεία για τα υποστυλώματα του μοντέλου. Δέχεται ως είσοδο αρχεία στα οποία γίνεται από το χρήστη η εισαγωγή δεδομένων για τα υποτυλώματα, τους ορόφους και τα υλικά, ενώ αξιοποιεί τις υπορουτίνες *Analysis\SectionProp.tcl* και *Analysis\ColumnRebars.tcl*. Παρόμοια με το προηγούμενο αρχείο που αφορά στις δοκούς,

υπολογίζονται τα ελαστικά χαρακτηριστικά των διατομών, οι συντεταγμένες τους και οι συντεταγμένες των οπλισμών τους, ανάλογα με το σχήμα της διατομής των υποστυλωμάτων, υπολογίζονται τα μήκη των άκαμπτων στοιχείων στα άκρα τους βάσει των σημείων αναφοράς και του κέντρου βάρους των διατομών, καθώς και κάποια στοιχεία που χρησιμοποιούνται αργότερα για άλλους υπολογισμούς, όπου γίνεται διάκριση μεταξύ υποστυλωμάτων και τοιχωμάτων, ανάλογα με το ύψος της διατομής (αν $h \ge 4b$ ń $h \ge \frac{H_{op6\phiov}}{3}$, το στοιχείο θεωρείται τοίχωμα). Παράγονται τελικα αρχεία, ανάλογα με προηγουμένως, που αφορούν σε χαρακτηριστικά μεγέθη για την ελαστική συμπεριφορά υποστυλωμάτων, στις συντεταγμένες διατομών σκυροδέματος και οπλισμών υποστυλωμάτων, στη συνδεσμολογία μελών υποστυλωμάτων, σε στοιχεία που χρησιμοποιούνται κατά τους υπολογισμούς για τη διάτμηση, στα μήκη άκαμπτων στοιχείων δοκών στους κόμβους και στα μήκη πλαστικών ζωνών στα άκρα που χρησιμοποιούνται στο μοντέλο κατανεμημένης πλαστικότητας στα άκρα.

SelfWeight.tcl Πρόγραμμα που υπολογίζει το ίδιο βάρος των υποστυλωμάτων και των κορμών των δοκών. Το ίδιο βάρος υπολογίζεται ανά μέτρο μήκος στοιχείου ως γινόμενο του εμβαδού της διατομής με το ειδικό βάρος του σκυροδέματος, $\gamma_c = 25 \frac{kN}{M^3}$.

LoadsMasses.tcl Υπολογίζει τα κατανεμημένα φορτία εγκάρσια στις δοκούς και κατά μήκος των υποστυλωμάτων, καθώς και τις μάζες που ορίζονται στους κόμβους του μοντέλου. Τα φορτία υπολογίζονται όπως αναφέρεται στην ενότητα 2.3.1: Για τις δοκούς, πέραν του ιδίου βάρους του κορμού που υπολογίστηκε προηγουμένως, λαμβάνονται υπόψη ακόμα τα ίδια βάρη των πλακών, οι επικαλύψεις και τα κινητά φορτία στις επιφάνειες επιρροής, αλλά και οι τοιχοποιίες που φορτίζουν άμεσα ή έμμεσα τη δοκό, όπως αυτά έχουν οριστεί από το χρήστη. Τα φορτία αυτά απλοποιητικά και για να εισαχθούν στο πρόγραμμα ανάγονται στο καθαρό μήκος της δοκού. Για τα υποστυλώματα, το φορτίο λόγω ιδίου βάρους τους μεταξύ δύο ορόφων ανάγεται και αυτό στο καθαρό τους μήκος. Τέλος, σε κάθε κόμβο προστίθεται το μισό από το συνολικό φορτίο κάθε μέλους που καταλήγει σε αυτόν.

Diaphragms.tcl Πρόγραμμα που δημιουργεί χιαστί ράβδους για τα οριζόντια και κατακόρυφα διαφράγματα. Το πρόγραμμα διαβάζει το αρχειο στο οποίο ο χρήστης έχει εισάγει δεδομένα για τα διαφράγματα και σχηματίζει τους κατάλληλους κωδικούς κόμβων που συνδέονται με τα χιαστί στοιχεία διαφραγμάτων.

BeamColMerge.tcl Για λόγους διευκόλυνσης εποπτείας και εισαγωγής δεδομένων στα επόμενα προγράμματα, το πρόγραμμα αυτό συνενώνει σε ενιαία αρχεία κάποια αρχεία δοκών και υποστυλωμάτων που έχουν παραχθεί από προηγούμενα προγράμματα.

FiberSections.tcl Βοηθητικό πρόγραμμα για παραγωγή αρχείων διατομών και οπλισμών που είναι πιο εύχρηστα στη συνέχεια, συμπυκνώνοντας όλα τα δεδομένα για κάθε διατομή σε μία σειρά.

CLMembers.tcl Πρόγραμμα που δημιουργεί κόμβους στα κέντρα βάρους των διατομών των μελών και στερεούς κόμβους που ενώνουν τους κεντροβαρικούς κόμβους με τους κόμβους αναφοράς. Διαβάζει τα δεδομένα για τη συνδεσμολογία με τους κύριους κόμβους και τα δεδομένα για τους στερεούς κόμβους που έχουν δημιουργηθεί προηγουμένως και δημιουργεί τους μετατοπισμένους κόμβους στο χώρο ανάλογα με τα μήκη των στερεών τμημάτων παράλληλα και εγκάρσια στα μέλη. Παράγονται τελικά αρχεία για τη συνδεσμολογία των μελών στα κέντρα βάρους τους.

InfillWalls.tcl Πρόγραμμα για τη δημιουργία μελών που προσομοιώνουν τις τοιχοπληρώσεις. Διαβάζει τα αρχεία για τα δεδομένα των τοιχοπληρώσεων και τα υλικά τους που έχει εισάγει ο χρήστης και ακολουθώντας τη διαδικασία που αναλύεται στην ενότητα 2.1.6, δημιουργούνται αρχεία μελών τόσο για τις ελαστικές αναλύσεις (με εμβαδά και μέτρα ελαστικότητας μελών), όσο και για τις ανελαστικές (με εμβαδά μελών, τάσεις διαρροής και ανηγμένες παραμορφώσεις διαρροής και αστοχίας).

LinkMerge.tcl Βοηθητικό αρχείο που συνενώνει τα στερεά μέλη που υπάρχουν διαδοχικά στο προσομοίωμα. Το OpenSees όπως έχει εξηγηθεί στο προηγούμενο κεφάλαιο δεν μπορεί να δεχτεί με τους κλασικούς αλγορίθμους επίλυσης διαδοχικούς στερεούς κόμβους, οπότε όπου υπάρχουν αυτοί, θα πρέπει να αντικατασταθούν με στερεό κόμβο που ενώνει τους δύο ακραίους κόμβους της "αλυσίδας".

FixLinkRemoval.tcl Bonθητικό πρόγραμμα που αφαιρεί τους στερεούς κόμβους που βρίσκονται στο επίπεδο των στηρίξεων. Αφού διαβαστούν τα απαραίτητα αρχεία σχετικά με τις στηρίξεις και τα links μεταξύ των κόμβων, εντοπίζονται οι δευτερεύοντες κόμβοι που συνδέονται στερεά με κόμβους που υπάρχουν στηρίξεις και αφαιρούνται από τα παραπάνω αρχεία οι αντίστοιχες καταχωρίσεις στερεών κόμβων, ενώ παράλληλα προστίθενται νέες στηρίξεις στους δευτερεύοντες κόμβους.

MAElastic.tcl Πρόγραμμα που χρησιμοποιεί το OpenSees για εκτέλεση ελαστικής ανάλυσης με τις αρηγμάτωτες δυσκαμψίες των μελών, προκειμένου να εξαχθούν οι αξονικές δυνάμεις που ασκούνται στις διάφορες διατομές των μελών που μας ενδιαφέρουν. Η δημιουργία του μοντέλου στο OpenSees είναι πλέον εύκολη, αφού έχει προηγηθεί η εκτέλεση όλων των παραπάνω προγραμμάτων που δημιουργούν αρχεία που εισάγονται εύκολα στο πρόγραμμα. Έτσι, για την προσομοίωση της κατασκευής στο OpenSees, αρχικά καθορίζεται το είδος του μοντέλου με την εντολή

model BasicBuilder -ndm \$ndm <-ndf \$ndf>

καθορίζοντας το πλήθος των διαστάσεων του προβλήματος και των βαθμών ελευθερίας των κόμβων (εδώ 3 και 6 αντίστοιχα για το τρισδιάστατο πρόβλημα)

Έπειτα, εισάγονται οι κύριοι και οι δευτερεύοντες κόμβοι του μοντέλου με την εντολή node:

node \$nodeTag (ndm \$coords) <-mass (ndf \$massValues)>

όπου δηλώνονται οι κωδικοί των κόμβων, οι συντεταγμένες στον χώρο και προαιρετικά οι μάζες που αντιστοιχούν στον κάθε βαθμό ελευθερίας Οι κόμβοι που δεσμεύονται στο έδαφος ορίζονται με την εντολή *fix*:

fix \$nodeTag (ndf \$constrValues)

όπου ορίζονται οι κόμβοι και οι αντίστοιχοι βαθμοί ελευθερίας που δεσμεύονται. Για πλήρη πάκτωση που εφαρμόζεται εδώ, μετά τον κωδικό του κόμβου εισάγεται 6 φορές ο αριθμός 1. Στη συνέχεια εισάγονται τα υλικά του φορέα από το αρχείο *Input\Materials.tcl* (στην ελαστική ανάλυση χρησιμοποιείται μόνο το μέτρο ελαστικότητας) και ένα πρόσθετο με πολύ μεγάλο μέτρο ελαστικότητας για τα πολύ δύσκαμπτα μέλη των διαφραγμάτων. Τα υλικά αυτά εισάγονται με την εντολή *uniaxialMaterial* που έχει διάφορες παραμέτρους ανάλογα με το υλικό που εισάγεται. Για τις ελαστικές αναλύσεις εισάγονται υλικά με ελαστική συμπεριφορά σύμφωνα με την εντολή

uniaxialMaterial Elastic \$matTag \$E <\$eta>

όπου δίδονται ο κωδικός του υλικού, το μέτρο ελαστικότητάς του και προαιρετικά ένας εφαπτομενικός συντελεστής απόσβεσης. Έπειτα, ορίζεται ο γεωμετρικός μετασχηματισμός που εφαρμόζεται στα μέλη και ο προσανατολισμός τους με την εντολή *geomTransf*. Για επίλυση χωρίς φαινόμενα *P* – δ χρησιμοποιείται η εντολή

geomTransf Linear \$transfTag \$vecxzX \$vecxzY \$vecxzZ <-jntOffset \$dXi \$dYi \$dZi \$dXj \$dZj \$dZj>

και για επίλυση με φαινόμεν
α $P-\delta$ με μικρές μετατοπίσεις η εντολή

geomTransf PDelta \$transfTag \$vecxzX \$vecxzY \$vecxzZ <-jntOffset \$dXi \$dYi \$dZi \$dXj \$dYj \$dZj>

Στις παραπάνω εντολές ορίζεται ο κωδικός του γεωμετρικού μετασχηματισμού, ένα διάνυσμα στο καθολικό σύστημα συντεταγμένων που βρίσκεται σε επίπεδο παράλληλο στο επίπεδο x-z στα τοπικά συστήματα συντεταγμένων και προαιρετικά τα τμήματα των μελών στην αρχή και στο τέλος τους κατά τους τρεις άξονες που θεωρούνται άκαμπτα (εδώ δεν ορίζονται, καθώς χρησιμοποιούνται ξεχωριστά άκαμπτα μέλη). Εδώ για τις δοκούς χρησιμοποιείται η εντολή *PDelta*. Τα βασικά μέλη του φορέα εισάγονται στη συνέχεια με την εντολή

```
element elasticBeamColumn $eleTag $iNode $jNode $A $E $G $J $Iy $Iz
$transfTag <-mass $massDens>
```

όπου για κάθε μέλος καθορίζεται ο κωδικός του, οι κόμβοι αρχής και πέρατος, το εμβαδόν της διατομής, το μέτρο ελαστικότητας και το μέτρο διάτμησης του υλικού, η στρεπτική σταθερά, οι ροπές αδρανείας περί τους δύο άξονες, ο γεωμετρικός μετασχηματισμός που του αντιστοιχεί, όπως ορίστηκε παραπάνω, καθώς επίσης προαιρετικά η μάζα του μέλους ανά μέτρο μήκους. Με τον ίδιο τρόπο εισάγονται και οι χιαστί ράβδοι των διαφραγμάτων και οι ράβδοι παράλληλα στα μέλη, με ταυτόχρονη τροποποίηση των αντίστοιχων παραμέτρων των πραγματικών δοκών, όπως περιγράφηκε παραπάνω στην ενότητα 2.2.2. Τα άκαμπτα τμήματα στα άκρα των μελών τοποθετούνται ξεχωριστά με την εντολή

rigidLink \$type \$masterNodeTag \$slaveNodeTag

όπου ορίζεται το είδους του άκαμπτου τμήματος (bar για στοιχείο δικτυώματος και beam για στοιχείο δοκού), ο κύριος κόμβος και ο κόμβος που δευσμεύεται. Αν στο προσομοίωμα συμπεριληφθούν και οι τοίχοι, απαιτείται ο καθορισμός νέου ελαστικού υλικού με την εντολή *uniaxialMaterial Elastic* και η εισαγωγή τους με στοιχεία δικτυώματος:

```
element truss $eleTag $iNode $jNode $A $matTag <-rho $rho> <-
doRayleigh $rFlag>
```

που απαιτεί την εισαγωγή του κωδικού του μέλους, των κόμβων αρχής και πέρατος, το εμβαδόν της διατομής, το υλικό που δημιουργήθηκε προηγουμένως και προαιρετικά η μάζα του μέλους ανά μέτρο μήκους και η εφαρμογή απόσβεσης Rayleigh στο μέλος (εδώ δεν χρησιμοποιούνται) Μετά, εισάγονται οι μάζες στους κόμβους με την εντολή

```
mass $nodeTag (ndf $massValues)
```

όπου εδώ οι μάζες ορίζονται μόνο για τους μετακινησιακούς βαθμούς ελευθερίας.

Τέλος, εισάγονται τα φορτία που αντιστοιχούν στις δοκούς και τα υποστυλώματα. Τα φορτία στο OpenSees εισάγονται ως χρονοσειρές, ακόμα και στις περιπτώσεις στατικών αναλύσεων, δηλαδή τα ασκούμενα φορτία είναι πάντα συνάρτηση του χρόνου, ο οποίος αποτελεί βασική παράμετρο της ανάλυσης. Στην περίπτωση της ελαστικής απόκρισης μπορεί να χρησιμοποιηθεί η απλούστερη μορφή της σταθερής χρονοσειράς (σχήμα 3.1):

```
timeSeries Constant $tag <-factor $cFactor>
```


Σχήμα 3.1: Σταθερή χρονοσειρά (από OpenSees wiki)

που εκτός του κωδικού της σειράς δέχεται προαιρετικά έναν μεγεθυντικό συντελεστή (προεπιλεγμένος 1.0) Τα πραγματικά φορτία του φορέα μπορούν να εισαχθούν μέσω της εντολής

```
pattern Plain $patternTag $tsTag { ... }
```

που εκτός από τον κωδικό το συνδυασμού φόρτισης δέχεται και τη χρονοσειρά που θα πρέπει να εφαρμοστεί στις τιμές των φορτίσεων αναφοράς που δίδονται μέσα στις αγκύλες. Για την απλή περίπτωση που οι τιμές των φορτίσεων αναφοράς αποτελούν σταθερές τιμές φόρτισης του φορέα για ελαστική συμπεριφορά, η παράμετρος \$tsTag μπορεί απλά να αντικατασταθεί από τη λέξη *Constant*, χωρίς ξεχωριστό ορισμό χρονοσειράς. Οι φορτίσεις αναφοράς που ασκούνται ομοιόμορφα στα μέλη εισάγονται με την εντολή

```
eleLoad -ele $eleTag1 <$eleTag2 .... > -type -beamUniform $Wy $Wz <$Wx >
```

όπου δίδονται οι κωδικοί των μελών με την ίδια ομοιόμορφη φορτιση, καθώς και το μέγεθος της ομοιόμορφης φόρτισης κατά τους τοπικούς άξονες *y*,*z* και προαιρετικά τον *x* (όπως για παράδειγμα στα υποστυλώματα που φορτίζονται παράλληλα στον άξονα του μέλους από το ίδιο βάρος τους).

Για την καταγραφή των αποτελεσμάτων κατά τη διάρκεια της ανάλυσης χρησιμοποιείται γενικά η εντολή *recorder*. Στη συγκεκριμένη περίπτωση της ελαστικής ανάλυσης ζητούμε το πρόγραμμα να αποθηκεύσει σε αρχεία τις δυνάμεις που εμφανίζονται στα άκρα των μελών στους τοπικούς άξονες συντεταγμένων με χρήση της εντολής:

```
recorder Element -file $fileName -ele $eleTag localForce
```

Στη συνέχεια πραγματοποιείται η εκτέλεση της ανάλυσης από το OpenSees, για την οποία απαιτείται να οριστούν διάφορες παράμετροι σχετικά με το είδος της ανάλυσης, τους αλγορίθμους επίλυσης κλπ. Συγκεκριμένα, εδώ χρησιμοποιούνται οι ακόλουθες εντολές:

constraints Transformation

που δηλώνει τον τρόπο με τον οποίο πρέπει να εφαρμοστούν οι δεσμεύσεις στο φορέα. Η συγκεκριμένη μέθοδος επιτρέπει τη χρήση των στερεών κόμβων που εισήχθησαν προηγουμένως, αλλά έχει κάποιους περιορισμούς ως προς τις πολλαπλές δεσμεύσεις στους κόμβους. Στην περίπτωση πιο πολύπλοκων δεσμεύσεων θα πρέπει να χρησιμοποιηθούν άλλες μέθοδοι (Penalty,Lagrange), οι οποίες πάντως δεν προσφέρουν εν γένει την απαιτούμενη ακρίβεια.

numberer RCM

που δηλώνει τον τρόπο με τον οποίο θα πρέπει να ταξινομηθούν οι επιλυόμενες εξισώσεις και την αντιστοίχηση με τους βαθμούς ελευθερίας. Για πολύπλοκα μοντέλα η χρήση της μεθόδου reverse Cuthill-McKee που επιλέγεται εδώ επιταχύνει σημαντικά την επίλυση. Πάντως κάποιοι αλγόριθμοι επίλυσης αγνοούν τη συγκεκριμένη εντολή και χρησιμοποιούν δική τους αρίθμηση εξισώσεων.

system UmfPack

που δηλώνει τον τρόπο διαχείρισης, αποθήκευσης και επίλυσης των μητρώων. Η μέθοδος που επιλέγεται χρησιμοποιεί τη βιβλιοθήκη *UmfPack* για επίλυση αραιών μητρώων.

test EnergyIncr \$tol \$iter <\$pFlag> <\$nType>

που ορίζει τον τρόπο ελέγχου σύγκλισης των αποτελεσμάτων. Στη συγκεκριμένη περίπτωση χρησιμοποιείται ο έλεγχος σύγκλισης βάσει της ενέργειας που απομένει να ισορροπηθεί με την επίλυση. Αν οι επιλυόμενες εξισώσεις έχουν τη μορφή $K\Delta U^i = R(U^i)$, τότε ο έλεγχος που γίνεται είναι $\Delta U^i R(U^i) <$ \$tol. Θα πρέπει να οριστεί το όριο σύγκλισης και ο μέγιστος αριθμός επαναλήψεων πριν το πρόγραμμα σταματήσει την προσπάθεια επίλυσης των εξισώσεων, ενώ δέχεται προαιρετικά κάποιες παραμέτρους σχετικά με τα εμφανιζόμενα μηνύματα κατά την επίλυση και τη χρησιμοποιούμενη νόρμα (προεπιλεγμένη η ευκλίδεια νόρμα).

algorithm Newton

που δηλώνει τον τρόπο επίλυσης των εξισώσεων του μοντέλου. Εδώ χρησιμοποιείται ο κλασικός αλγόριθμος *Newton*, αλλά επειδή το σύστημα ειναι γραμμικό, θα μπορούσε να χρησιμοποιηθεί και ο απλούστερος αλγόριθμος *Linear*. Στον αλγόριθμο *Newton* επιλύεται το σύστημα εξισώσεων $K\Delta U^{i+1} = R(U^i)$, όπου το μητρώο K μπορεί στη γενική περίπτωση της ανελαστικής απόκρισης να μεταβάλλεται και σε κάθε βήμα λαμβάνεται ως το Ιακωβιανό μητρώο $K = \frac{\vartheta R(U^i)}{\vartheta U}$.

integrator LoadControl \$lambda <\$numIter \$minLambda \$maxLambda>

που δηλώνει τη μέθοδο μεταβολής των φορτίων κατά την ανάλυση. Στη συγκεκριμένη περίπτωση τίθεται η απλή περίπτωση ελέγχου των ίδιων των φορτίων αναφοράς, μιας και η φόρτιση είναι μονοτονική, ενώ για ελαστική απόκριση τα φορτία αυτά μπορούν να ασκηθούν σε ένα βήμα, δηλαδή η παράμετρος που ορίζει το χρονικό βήμα κάθε βήματος ανάλυσης μπορεί να τεθεί ίση με μονάδα (lambda = 1.0). Οι υπόλοιπες παράμετροι είναι προαιρετικές και μεταβάλλουν το πλήθος των επαναλήψεων και το μέγεθος αύξησης του χρονικού βήματος, αλλά δεν χρησιμοποιούνται εδώ.

analysis Static

που καθορίζει το είδος της ανάλυσης. Εδώ χρησιμοποιείται στατική ανάλυση, σε αντίθεση με τη δυναμική ανάλυση.

analyze \$numIncr <\$dt> <\$dtMin \$dtMax \$Jd>

είναι η εντολή που πραγματοποιεί την ανάλυση και ως παράμετρο δέχεται το πλήθος των επαναλήψεων που επιθυμούμε να πραγματοποιηθούν με το χρονικό βήμα που ορίστηκε προηγουμένως. Οι υπόλοιπες παράμετροι χρησιμοποιούνται στις δυναμικές αναλύσεις.

Τέλος, για την πραγματοποίηση ιδιομορφικής ανάλυσης μπορεί να χρησιμοποιηθεί η εντολή

eigen <\$type> <\$solver> \$numEigenvalues

καθορίζοντας τον αριθμό των ιδιομορφών που θέλουμε να παραχθούν και δύο προαιρετικές παραμέτρους σχετικά με τη μέθοδο επίλυσης. Οι ιδιοπερίοδοι που υπολογίζονται μπορούν να αποθηκευτούν σε μεταβλητή και να εμφανιστούν στην οθόνη ή να αποθηκευτούν σε κάποιο αρχειο.

AxialExtraction.tcl Πρόγραμμα που διαβάζει τα αποτελέσματα των εντατικών μεγεθών από την παραπάνω ελαστική επίλυση και παράγει το αρχείο με τις αξονικές δυνάμεις στις διατομές στα άκρα των μελών.

MomentCurvature.tcl Υπορουτίνα για τη δημιουργία διαγραμμάτων ροπών - καμπυλοτήτων των διατομών. Δέχεται τον κωδικό της διατομής, τις συντεταγμένες της διατομής, τους οπλισμούς της, την αξονική δύναμη που δέχεται, τη μέγιστη καμπυλότητα που πρέπει να επιτευχθεί και τη διεύθυνση ανάλυσης. Δημιουργεί ένα στοιχείο μηδενικού μήκους με την παραπάνω διατομή και τα υλικά που έχει εισάγει ο χρήστης στο αρχείο *Input\Materials.tcl*, ως εξής:

Αρχικά εισάγεται η διατομή που επιθυμούμε με τις εντολές:

section Fiber \$secTag { ... }

που δημιουργεί μια διατομή με fibers, καθορίζοντας παράλληλα έναν κωδικό για τη διατομή. Μέσα στις αγκύλες καθορίζονται τα στοιχεία που περιέχει η διατομή:

patch quad \$matTag \$numSubdivIJ \$numSubdivJK \$yI \$zI \$yJ \$zJ \$yK \$zK \$yL \$zL

που δημιουργεί ένα τετραπλευρικό στοιχείο με fibers, ορίζοντας το υλικό του, το πλήθος των fibers που θα πρέπει να δημιουργηθούν κατά τις δύο διευθύνσεις και τις συντεταγμένες του σε αντιωρολογιακή φορά. Η εντολή αυτή χρησιμοποιείται για το σκυρόδεμα.

layer straight \$matTag \$numFiber \$areaFiber \$yStart \$zStart \$yEnd \$zEnd

που δημιουργεί μια ομάδα από fibers σε ευθεία γραμμή, δίδονας τον κωδικό του υλικού, τον αριθμό των fibers, το εμβαδό καθενός και τις συντεταγμένες των άκρων του ευθύγραμμου τμήματος. Η εντολή αυτή χρησιμοποιείται για τον οπλισμό των διατομών.

Για να αναλυθεί η παραπάνω διατομή, θα πρέπει να αποκτήσει και αντίσταση έναντι στρέψης, κάτι που επιτυγχάνεται προσθέτοντας της ένα υλικό με πολύ μεγάλη δυστρεψία με την εντολή

```
section Aggregator $secTag $matTag1 $dof1 $matTag2 $dof2 ..... <-
section $sectionTag>
```

όπου ορίζεται ο κωδικός της νέας διατομής, τα υλικά που προστίθενται στους διάφορους βαθμούς ελευθερίας και τελικά η αρχική διατομή στην οποία αυτά θα πρέπει να προστεθούν.

Το στοιχείο μηδενικού μήκους δημιουργείται τελικά από την εντολή

element zeroLengthSection \$eleTag \$iNode \$jNode \$secTag <- orient \$x1
 \$x2 \$x3 \$yp1 \$yp2 \$yp3> <- doRayleigh \$rFlag>

Στην εντολή αυτή εισάγονται ο κωδικός του στοιχειου, οι κωδικοί των κόμβων αρχής και τέλους (με τις ίδιες συντεταγμένες), η διατομή που θα πρέπει να έχει το μέλος, καθώς και κάποιες προαιρετικές παράμετροι σχετικα με τον προσανατολισμό της διατομής και το αν θα πρέπει να ληφθεί υπόψη απόσβεση για το μέλος αυτό.

Για την καταγραφή των αποτελεσμάτων ροπών - καμπυλοτήτων, αλλά και αξονικής παραμόρφωσης, χρησιμοποιείται παρόμοια με προηγουμένως η εντολή

recorder Node -file \$fileName -node \$node1 \$node2 ... -dof (\$dof1
 \$dof2 ...) \$respType

που καταγράφει σε ένα αρχείο για κάθε κόμβο και βαθμό ελευθερίας που επιλέγουμε το μέγεθος που επιθυμούμε, εδώ δηλαδή τις μετακινήσεις (\$respType=disp)

Για την ανάλυση της διατομής, ασκείται αρχικά σε αυτήν η σταθερή αξονική δύναμη με παρόμοιο τρόπο που περιγράφηκε για την ελαστική ανάλυση και στη συνέχεια το φορτίο αυτό διατηρείται σταθερό, μηδενίζοντας παράλληλα τον χρόνο ανάλυσης με την εντολή

loadConst -time 0.0

Σχήμα 3.2: Γραμμική χρονοσειρά (από OpenSees wiki)

Στη συνέχεια καθορίζεται ένα μοναδιαίο φορτίο αναφοράς στη διεύθυνση που επιθυμούμε να γίνει η ανάλυση και συσχετίζεται με μια γραμμική χρονοσειρά, έτσι ώστε ο αλγόριθμος να μπορεί να μεταβάλλει την τιμή του (σχήμα 3.2).

Η ανάλυση πραγματοποιείται πλέον με έλεγχο των μετακινήσεων (εδώ της καμπυλότητας) σύμφωνα με την εντολή

integrator DisplacementControl \$node \$dof \$incr <\$numIter \$DUmin \$DUmax>

όπου καθορίζονται ο κόμβος αναφοράς και ο βαθμός ελευθερίας στον οποίο πρόκειται να γίνεται ο έλεγχος της μετακίνησης, η αύξηση της μετακίνησης αυτής σε καθε βήμα, καθώς και κάποιες προαιρετικές παράμετροι σχετικά με την τροποποίηση των επαναλήψεων και του βήματος κατά την ανάλυση, που εδώ δεν χρησιμοποιούνται. (Η μέθοδος αυτή χρησιμοποιείται και στην ανάλυση Pushover, βλ. 2.3.2)

Για την εκτέλεση της ανάλυσης χρησιμοποιούνται διάφοροι αλγόριθμοι. Κυρίως χρησιμοποιείται η μέθοδος ModifiedNewton που δεν μεταβάλλει το εφαπτομενικό μητρώο δυσκαμψίας σε κάθε βήμα, αλλά όταν αυτή η μέθοδος δεν συγκλίνει, μπορούν να χρησιμοποιηθούν άλλες μέθοδοι, όπως οι NewtonLineSearch, BFGS κλπ.

MASections.tcl Πρόγραμμα που αναλαμβάνει την παραγωγή διαγραμμάτων ροπών - καμπυλοτήτων χρησιμοποιώντας την παραπάνω υπορουτίνα. Αφού εισαχθούν οι διατομές με τους οπλισμούς τους, καθώς και οι αξονικές δυνάμεις, ανάλογα αν πραγματοποιείται επανάληψη της ανάλυσης με τροποποιημένες αξονικές δυνάμεις ή όχι αντίστοιχα), εκτελείται η παραπάνω υπορουτίνα για τις διευθύνσεις και φορές των διατομών που απαιτούνται (4 αναλύσεις για κάθε άκρο υποστυλώματος, 2 αναλύσεις για κάθε άκρο δοκού και 1 ανάλυση για τη διατομή στο μέσον της δοκού).

BilinearMphi.tcl Πρόγραμμα που διγραμμικοποιεί τα διαγράμματα ροπών - καμπυλοτήτων που έχουν παραχθεί από το προηγούμενο πρόγραμμα, σύμφωνα με τους κανόνες που αναφέρονται στην ενότητα 2.1.2. Για κάθε διάγραμμα, αφού μετατοπιστεί στην αρχή των αξόνων και βρεθεί το σημείο μέχρι το οποίο λαμβάνεται υπόψη, καθώς και το εμβαδόν του αρχικού διαγράμματος, ελέγχεται για κάθε ευθύγραμμο τμήμα του αρχικού διαγράμματος, αν υπάρχει σημείο που να ικανοποιεί την απαίτηση ότι το σημείο τομής των δύο διαγραμμάτων βρίσκεται σε ένα συγκεκριμένο ποσοστό του θεωρητικού σημείου διαρροής (αρχικά 60% και στις σπάνιες περιπτώσεις που για την τιμή αυτή δεν υπάρχει λύση επιλέγονται ποσοστά γύρω από την τιμή αυτή. Υπενθυμίζεται ότι για λόγους αυτοματοποίησης της διαδικασίας, επιλέγεται να γίνει διαγραμμικοποίηση με οριζόντιο μετελαστικό κλάδο. Έστω ότι ελέγχεται ένα ευθύγραμμο τμήμα του αρχικού διαγράμματος με σημεία (M_1, φ_1), (M_2, φ_2), με το αρχικό διάγραμμα να τελειώνει σε καμπυλότητα φ_u και με εμβαδόν *E*. Για να υπάρχει σε αυτό το ευθύγραμμο τμήμα σημείο

τομής σε συγκεκριμένο ποσοστό του θεωρητικού σημείου διαρροής (έστω a) θα πρέπει να έχει πραγματικές λύσεις M_y η εξίσωση

$$\lambda M_y^2 + \left(\frac{\varphi_1 - \lambda M_1}{a} - 2\varphi_u\right) M_y + 2E = 0$$
(3.1)

όπου $\lambda = \frac{\varphi_2 - \varphi_1}{M_2 - M_1}$. Η λύση που θα επιλεγεί τελικά θα πρέπει να ικανοποιεί επιπλέον τις ανισώσεις $M_1 \leq a M_y \leq M_2$ και $\varphi_1 \leq a \varphi_y \leq \varphi_2$.

CompZone.tcl Πρόγραμμα για τον υπολογισμό της θλιβόμενης ζώνης των διατομών, η οποία απαιτείται σε επόμενους υπολογισμούς. Αρχικά υπολογίζεται η θέση του κέντρου βάρους της διατομής σε σχέση την κάτω και δεξιά ίνα της διατομής (δηλαδή τις ίνες που θλίβονται για θετικές φορές ροπών κατά τις δύο διευθύνσεις). Στη συνέχεια, μπορεί να υπολογιστεί η εξέλιξη της θλιβόμενης ζώνης κατά τη διάρκεια της ανάλυσης ροπών - καμπυλοτήτων χρησιμοποιώντας την καμπυλότητα και την αξονική παραμόρφωση στο κέντρο βάρους σε κάθε βήμα της ανάλυσης. Η απόσταση του σημείου μηδενισμού των παραμορφώσεων από την ίνα αναφοράς, που θλίβεται για θετική καμπυλότητα, είναι:

$$\mathbf{x}_{ref} = h_{c,ref} - \frac{\varepsilon_c}{\varphi} \tag{3.2}$$

όπου $h_{c,ref}$ είναι η θετική τιμή που δηλώνει την απόσταση του κέντρου βάρους από την ίνα αναφοράς, όπως έχει υπολογιστεί προηγουμένως, ε_c είναι η θετική ή αρνητική αξονική παραμόρφωση στη θέση του κέντρου βάρους της διατομής και φ είναι η καμπυλότητα που έχει θετική τιμή αν θλίβει την ίνα αναφοράς. Για θετικές τιμές καμπυλότητας, η θλιβόμενη ζώνη ισούται με την παραπάνω απόσταση x_{ref} , ενώ για αρνητικές τιμές καμπυλότητας η θλιβόμενη ζώνη προκύπτει ως διαφορά του ύψους της διατομής στη διεύθυνση αυτή με την απόσταση x_{ref} . Η εξέλιξη της θλιβόμενης ζώνης για κάθε φορά ανάλυσης αποθηκεύεται τελικά σε αρχείο.

CZaverage.tcl Πρόγραμμα που υπολογίζει μια μέση τιμή του ύψους της θλιβόμενης ζώνης για κάθε διατομή και για κάθε διεύθυνση και φορά ανάλυσης, από τα αρχεία που δημιουργήθηκαν με το προηγούμενο πρόγραμμα. Σημειώνεται ότι για τον υπολογισμό της μέσης τιμής αγνοούνται κάποιες αρχικές τιμές που βρίσκονται μακριά από τη διαρροή της διατομής. Επίσης, το πρόγραμμα υπολογίζει μια εκτίμηση για το μοχλοβραχίονα εσωτερικών δυνάμεων z σύμφωνα με τη σχέση z = d - 0.4x, που είναι ικανοποιητική για την περίπτωση των δοκών και θα μπορούσε να χρησιμοποιηθεί έναντι των πιο απλοποιητικών συστάσεων του ΚΑΝ.ΕΠΕ.

CompProp.tcl Το πρόγραμμα αυτό υπολογίζει διάφορα χαρακτηριστικά που εξαρτώνται από τη θλιβόμενη ζώνη και απαιτούνται για τους υπολογισμούς που γίνονται στη συνέχεια. Χρησιμοποιώντας τις συντεταγμένες των διατομών που έχουν δημιουργηθεί προηγουμένως, υπολογίζει αρχικά για κάθε φορά ανάλυσης το πλάτος της θλιβόμενης ζώνης. Στη συνέχεια, χρησιμοποιώντας επιπλέον τις συντεταγμένες των οπλισμών των διατομών και το μέσο ύψος της θλιβόμενης ζώνης υπολογίζει το εμβαδόν των οπλισμών που βρίσκονται στη θλιβόμενη και την εφελκυόμενη ζώνη για κάθε διεύθυνση και φορά ανάλυσης που απαιτείται.

ΑνCalc.tcl Πρόγραμμα που υπολογίζει την αντοχή του μέλους χωρίς συνδετήρες έναντι διάτμπσης, καθώς και του συντελεστή a_V που χρησιμοποιείται για τον υπολογισμό της γωνίας στροφής χορδής διαρροής θ_y . Αφού διαβαστούν τα χαρακτηριστικά των διατομών που αφορούν στη διάτμηση, τους εφελκυόμενους οπλισμούς, την ασκούμενη αξονική δύναμη, το εμβαδόν τους, καθώς και τις αντοχές των υλικών τους, υπολογίζεται η παραπάνω αντοχή και συγκρίνεται με την τέμνουσα κατά τη διαρροή του μέλους σύμφωνα με τη διαδικασία που περιγράφεται στην ενότητα 2.1.2 (σελ. 30).

ThetaYModStiff.tcl Πρόγραμμα για τον υπολογισμό της γωνίας στροφής χορδής κατά τη διαρροή θ_u για κάθε διατομή και για κάθε διεύθυνση και φορά ανάλυσης που απαιτείται, καθώς και της απομειωμένης δυσκαμψίας του αντίστοιχου μέλους. Αφού διαβαστούν τα στοιχεία των διατομών που απαιτούνται από τα διάφορα αρχεία που έχουν δημιουργηθεί προηγουμένως, υπολογίζονται η γωνία στροφής χορδής κατά τη διαρροή και η ενεργός δυσκαμψία σύμφωνα με τις σχέσεις που δίδονται στην ενότητα 2.1.2 (σελ. 29). Στη συνέχεια υπολογίζονται οι μέσες τιμές των ενεργών δυσκαμψιών για τις δύο φορές ανάλυσης κάθε διεύθυνσης, όπου υπάρχουν. Οι ενεργές δυσκαμψίες που χρησιμοποιούνται τελικά για τα υποστυλώματα είναι ο μέσος όρος των δυσκαμψιών στην αντίστοιχη διεύθυνση στα δύο άκρα, ενώ για τις δοκούς χρησιμοποιούνται για κάθε τμήμα οι δυσκαμψίες που αντιστοιχούν στο τμήμα αυτό. Τα αρχεία που παράγονται αφορούν σε γωνίες στροφής χορδής διαρροής για κάθε διεύθυνση και φορά ανάλυσης διατομών, σε ποσοστά που δείχνουν τη συμβολή κάθε όρου των σχέσεων 2.12 ή 2.13 στην τελική τιμή της θ_u , στις ενεργές δυσκαμψίες που αντιστοιχούν σε κάθε διεύθυνση και φορά ανάλυσης κάθε διατομής και τέλος σε ενεργές δυσκαμψίες κάθε μέλους σε κάθε διεύθυνση και το ποσοστό της κάθε απομειωμένης δυσκαμψίας σε σχέση με τη δυσκαμψία των αρηγμάτωτων ελαστικών μελών.

MAElasticMS.tcl Πρόγραμμα που περιέχει κώδικα του OpenSees και εκτελεί ελαστική ανάλυση του φορέα χρησιμοποιώντας τις ενεργές δυσκαμψίες που υπολογίστηκαν προηγουμένως. Η διαδικασία εισαγωγής και ανάλυσης του φορέα είναι η ίδια που εφαρμόστηκε και στο προηγούμενο πρόγραμμα ελαστικής ανάλυσης του φορέα, με τη διαφορά ότι χρησιμοποιούνται διαφορετικές σταθερές I_y , I_z και J για τα μέλη του φορέα. Σκοπός του προγράμματος αυτού είναι η παραγωγή των ιδιοδιανυσμάτων των ιδιομορφών του φορέα, ώστε να είναι δυνατή στη συνέχεια η φόρτισή του σύμφωνα με αυτά για τις αναλύσεις Pushover. Αφού πραγματοποιηθεί η ιδιομορφική ανάλυσή του, τα ιδιοδιανύσματα στους κόμβους καταγράφονται σε αρχεία με την εντολή

recorder Node - file \$fileName -node \$node1 \$node2 ... -dof \$dof1
 \$dof2 ... "eigen \$mode1 \$mode2 ..."

ModalProp.tcl Πρόγραμμα που επεξεργάζεται τα ιδιοδιανύσματα που παράχθηκαν με το προηγούμενο πρόγραμμα και παράγει ιδιομορφικά φορτία και δρώσες ιδιομορφικές μάζες του φορέα. Για κάθε ιδιομορφή που υπολογίστηκε από το προηγούμενο πρόγραμμα, αρχικά μετατρέπει το παραχθέν αρχείο σε πιο κατανοητή μορφή και αντιστοιχεί στο ιδιοδιάνυσμα κάθε κόμβου τη μάζα που έχει οριστεί στον κόμβο αυτό. Βάσει αυτών υπολογίζονται στη συνέχεια τα φορτία σύμφωνα με τις ιδιομορφές του φορέα, καθώς και οι συντελεστές συμμετοχής και οι δρώσες ιδιομορφικές μάζες για κάθε ιδιομορφή και διεύθυνση του φορέα, όπως περιγράφεται παραπάνω στην ενότητα 2.3.2.

ThetaU.tcl Πρόγραμμα που υπολογίζει τη γωνία στροφής χορδής κατά την αστοχία των μελών. Αντίστοιχα με τον υπολογισμό της γωνίας στροφής χορδής κατά τη διαρροή, εισάγονται τα απαραίτητα χαρακτηριστικά διάτμησης, αξονικής δύναμης, οπλισμών και υλικών και υπολογίζεται τελικά η ζητούμενη γωνία θ_u σύμφωνα με τη σχέση 2.16.

ShearStrength.tcl Το πρόγραμμα αυτό υπολογίζει την αντοχή σε διάτμηση των μελών σύμφωνα με το παράρτημα 7Γ του ΚΑΝ.ΕΠΕ. Αφού διαβαστούν τα απαιτούμενα μεγέθη που αφορούν στη διάτμηση, την ασκούμενη αξονική δύναμη, το κατανεμημένο φορτίο και τη θλιβόμενη ζώνη κάθε διατομής που μας ενδιαφέρει και για όλες τις φορές ανάλυσης, υπολογίζεται η αντοχή σε διάτμηση για τιμές πλαστικής γωνίας στροφής χορδής 0 και 5, σύμφωνα με τις σχέσεις που έχουν αναπτυχθεί στην ενότητα 2.1.3.

ShearMomentIntersection.tcl Υπορουτίνα που δέχεται τη ροπή διαρροής, τις γωνίες στροφής χορδής διαρροής και αστοχίας, τις αντοχές σε τέμνουσα για πλαστική γωνία στροφής χορδής 0 και 5, καθώς και το μήκος διάτμησης και υπολογίζει το σημείο τομής των διαγραμμάτων ροπής - γωνίας στροφής χορδής και ροπής αντοχής λόγω τέμνουσας - γωνίας στροφής χορδής, σύμφωνα με τη λογική που αναπτύσσεται στην ενότητα 2.1.3.

MTheta.tcl Πρόγραμμα για παραγωγή αρχείων ροπής - γωνίας στροφής χορδής για κάθε διατομή και διεύθυνση ανάλυσης. Αφού διαβαστούν οι ροπές διαρροής και οι γωνίες στροφής χορδής διαρροής και αστοχίας για τις δύο φορές κάθε διατομής και διεύθυνσης ανάλυσης, τα δεδομένα αυτά συνενώνονται για να προκύψει ένα πιο εύχρηστο αρχείο που θα χρησιμοποιηθεί στη συνέχεια. Το πρόγραμμα αυτό καλεί επίσης την προηγούμενη υπορουτίνα και προσαρμόζει τα διαγράμματα ροπής - γωνίας στροφής χορδής ώστε να λαμβάνεται υπόψη και η αστοχία σε τέμνουσα, ανάλογα με το σημείο τομής των δύο διαγραμμάτων που ελέγχει η υπορουτίνα αυτή. Παράγονται τελικά δύο αρχεία, ένα που περιέχει τα διαγράμματα ροπής - γωνίας στροφής χορδής χωρίς τέμνουσα και ένα που λαμβάνεται υπόψη η πρόωρη αστοχία σε τέμνουσα.

HingeComb.tel Υπορουτίνα που δέχεται μια λίστα αρθρώσεων που αποτελείται από πολύ δύσκαμπτα υλικά και μια λίστα που περιέχει υλικά με διαρροή/αστοχία σε κάμψη ή διάτμηση και αναλαμβάνει τη συνένωσή τους σε μία ενιαία λίστα όπου τα στοιχεία της δεύτερης έχουν αντικαταστήσει τα αντίστοιχα στοιχεία της πρώτης. Η λογική πίσω από τη διαδικασία αυτή είναι ότι στις θέσεις που έχουν επιλεγεί να τοποθετηθούν ελατήρια - αρθρώσεις, τα στοιχεία μηδενικού μήκους θα πρέπει να συμπεριφέρονται ως στερεές συνδέσεις στους βαθμούς ελευθερίας που δεν τροποποιούνται, δηλαδή θα πρέπει να ανατεθούν σε αυτούς ελαστικά υλικά με πολύ μεγάλο μέτρο ελαστικότητας. Έτσι, μπορεί να δημιουργηθεί αρχικά ένα αρχείο που σε όλους τους βαθμούς ελευθερίας όλων των στοιχείων μηδενικού μήκους υπάρχουν τέτοια υλικά και ανάλογα με την επιθυμητή συπεριφορά κάποιων συγκεκριμένων βαθμών ελευθερίας που δηλώνεται από ένα άλλο αρχείο, τροποποιούνται οι συγκεκριμένες καταχωρίσεις στο πρώτο, παράγοντας τελικά ένα αρχείο με ανελαστική συμπεριφορά στους βαθμούς ελευθερίας που θέλουμε και πολύ δύσκαμπτη σε όλους τους υπόλοιπους.

HingeElements.tcl Πρόγραμμα που δημιουργεί τα στοιχεία μηδενικού μήκους στα άκρα των μελών για την προσομοίωση της ανελαστικής συμπεριφοράς σε κάμψη ή της αστοχίας σε διάτμηση. Αρχικά, τροποποιείται η υπάρχουσα συνδεσμολογία μελών, ώστε να μπορέσουν να εισαχθούν τα μέλη μηδενικού μήκους στις θέσεις αυτές. Έτσι, στα άκρα των μελών δημιουργούνται νέοι κόμβοι με συντεταγμένες ίδιες με αυτές που έχουν οι υπάρχοντες εκεί κόμβοι και τα μέλη συνδέονται πλέον στα άκρα τους με τους νέους αυτούς κόμβους. Μεταξύ λοιπόν των παλιών και των νέων κόμβων παρεμβάλονται πλέον τα στοιχεία μηδενικού μήκους, στους 6 βαθμούς ελευθερίας των οποίων πρέπει να ορίσουμε υλικά που περιγράφουν τη συμπεριφορά τους. Όπως περιγράφηκε παραπάνω, τα προεπιλεγμένα υλικά που ορίζουμε σε όλους τους βαθμούς ελευθερίας είναι ελαστικά με πολύ μεγάλο μέτρο ελαστικότητας, έτσι ώστε η συμπεριφορά του φορέα πριν και μετά την εισαγωγή των στοιχείων μηδενικού μήκους να είναι πρακτικά η ίδια. Η εντολή του OpenSees που ορίζει τα στοιχεία μηδενικού μήκους είναι

element zeroLength \$eleTag \$iNode \$jNode -mat \$matTag1 \$matTag2 ... dir \$dir1 \$dir2 ... < - doRayleigh \$rFlag> <-orient \$x1 \$x2 \$x3 \$yp1 \$yp2 \$yp3>

που δέχεται έναν κωδικό για το μέλος, τους κόμβους αρχής και πέρατος, τα υλικά για κάθε βαθμό ελευθερίας και τις διευθύνσεις στις οποίες αυτοί αντιστοιχούν στο μέλος, καθώς προαιρετικά και αν εφαρμόζεται απόσβεση στο μέλος αυτό (όπως περιγράφηκε στην αντίστοιχη ενότητα, στο συγκεκριμένο προσομοίωμα ορίζουμε να έχουν απόσβεση μόνο τα ελαστικά μέλη) και τον προσανατολισμό του μέλους στο χώρο, αν δεν ταυτίζονται οι τοπικοί άξονες του μέλους με τους καθολικούς. Επισημαίνεται ότι σε αντίθεση με το στοιχείο ZeroLengthElement που χρησιμοποιήθηκε για την παραγωγή διαγραμμάτων ροπών - καμπυλοτήτων, το συγκεκριμένο στοιχείο παράγει μετακινήσεις στους καμπτικούς βαθμούς ελευθερίας σε όρους στροφής και όχι καμπυλότητας.

HingeShear.tcl Πρόγραμμα για τη δημιουργία των διατμητικών ελατηρίων που μπορούν να χρησιμοποιηθούν στο προσομοίωμα. Το πρόγραμμα διαβάζει τις αντοχές έναντι τέμνουσας που έχουν προκύψει από τη σύγκριση των διαγραμμάτων ροπής - στροφής και ροπής αντοχής λόγω τέμνουσας - στροφής και ορίζει για κάθε άκρο μέλους και κάθε διεύθυνση ανάλυσης την αντοχή σε τέμνουσα του αντίστοιχου ελατηρίου το μέσο όρο των αντοχών των δύο φορών (που συνήθως διαφέρουν ελάχιστα μεταξύ τους). Στη συνέχεια, για τους διατμητικούς βαθμούς ελευθερίας κάθε άκρου ορίζονται υλικά με πολύ μεγάλη δυστμησία μέχρι την τέμνουσα αστοχίας (η οποία αντιστοιχίζεται σε συγκεκριμένη σχετική μετατόπιση αστοχίας που χρησιμοποιείται αργότερα στους ελέγχους αστοχίας) και έπειτα φθίνουσα συμπεριφορά μέχρι μια παραμένουσα αντοχή (20% της μέγιστης). Τα τελικά αρχεία που μπορούν να χρησιμοποιπθούν για την ανάλυση προκύπτουν συνενώνοντας τα υλικά αυτά με τα υλικά μεγάλης δυσκαμψίας, χρησιμοποιώντας την υπορουτίνα *HingeComb.tcl*. Τα στοιχεία δοκών και υποστυλωμάτων αποθηκεύονται ξεχωριστά, ώστε να είναι δυνατή ή χρήση διαφορετικής συμπεριφοράς για τις δύο ομάδες στοιχείων. Παρόλα αυτά, διαπιστώθηκε ότι τέτοια στοιχεία δυσκολεύουν τη σύγκλιση των αλγορίθμων επίλυσης αν διαθέτουν φθίνοντες κλάδους, οπότε περιορίστηκε η χρήση τους.

HingeRotational.tcl Πρόγραμμα για τη δημιουργία στροφικών ελατηρίων για την προσομοίωση της ανελαστικής συμπεριφοράς των μελών με συγκεντρωμένη πλαστικότητα. Τα υλικά που χρησιμοποιούνται για την περιγραφή της ανακυκλιζόμενης ανελαστικής συμπεριφοράς είναι τα *Hysteretic* και *ModIMKPeakOriented*, όπως περιγράφονται στην ενότητα 2.1.7 και υλοποιούνται με τις εντολές

- uniaxialMaterial Hysteretic \$matTag \$slp \$elp \$s2p \$e2p <\$s3p \$e3p> \$sln \$eln \$s2n \$e2n <\$s3n \$e3n> \$pinchX \$pinchY \$damagel \$damage2 <\$beta>
- uniaxialMaterial ModIMKPeakOriented \$matTag \$KO \$as_Plus \$as_Neg
 \$My_Plus \$My_Neg \$Lamda_S \$Lamda_C \$Lamda_A \$Lamda_K \$c_S \$c_C
 \$c_A \$c_K \$theta_p_Plus \$theta_p_Neg \$theta_pc_Plus \$theta_pc_Neg
 \$Res_Pos \$Res_Neg \$theta_u_Plus \$theta_u_Neg \$D_Plus \$D_Neg

Για την παραγωγή των υλικών που αντιστοιχούν στους στροφικούς βαθμούς ελευθερίας σε κάθε διεύθυνση και κάθε άκρο μέλους, αφού διαβαστούν τα στοιχεία του διαγράμματος ροπών - στροφών που έχει δημιουργηθεί από προηγούμενο αρχείο, καλείται μια υπορουτίνα που αναλαμβάνει την τροποποίηση του παραπανω διαγράμματος, όπως έχει αναπτυχθεί στην ενότητα 2.1.3, και τον υπολογισμό των παραμέτρων που εισάγονται στις στις παραπάνω εντολές παραγωγής υλικών. Όπως και προηγουμένως, τα τελικά αρχεία αρθρώσεων παράγονται συνενώνοντας τα παραπάνω υλικά με τα αρχικά υλικά μεγάλης δυσκαμψίας, χρησιμοποιώντας την παραπάνω υπορουτίνα, ενώ δημιουργούνται και αρχεία αρθρώσεων που έχουν και στροφικά και διατμητικά ελατήρια. Επιπλέον, αποθηκεύονται και τα τροποποιημένα διαγράμματα ροπών - στροφών κάθε μοντέλου στροφικής άρθρωσης που χρησιμοποιούνται αργότερα για έλεγχο διαρροής και αστοχίας των μελών.

Στο τέλος δημιουργίας των στοιχείων του προσομοιώματος δημιουργείται το αρχειο ModelData-\ModelComplete.txt, που δηλώνει ότι έχει ολοκληρωθεί η παραπάνω διαδικασία και δεν χρειάζεται να επαναληφθεί από επόμενες αναλύσεις, εφόσον τα στοιχεία του μοντέλου δεν μεταβάλλονται.

3.5 Εκτέλεση μη γραμμικών αναλύσεων

ModelAnalysis.tcl Αποτελεί το βασικό πρόγραμμα ανάλυσης του φορέα. Για ευκολία κατανόησης των λειτουργιών του προγράμματος, αυτές έχουν διαρθρωθεί σε υπορουτίνες τις οποίες καλεί το κύριο πρόγραμμα και περιγράφονται παρακάτω.

ΜAinput.tcl Υπορουτίνα που αναλαμβάνει την εισαγωγή των δεδομένων για προσομοίωση του φορέα στο OpenSees. Τα δεδομένα που εισάγονται σε μεταβλητές είναι οι κύριοι και ενδιάμεσοι κόμβοι του μοντέλου, οι κόμβοι στα κέντρα βάρους των διατομών, τα αντίγραφα των κόμβων αυτών που χρησιμοποιούνται στα μέλη μηδενικού μήκους (αρθρώσεις), οι στάθμες ορόφων, η αρχική συνδεσμολογία των μελών στους κύριους κόμβους του μοντέλου που χρησιμοποιείται για την εισαγωγή των διαφραγμάτων, η συνδεσμολογία των μελών στο μοντέλο με τις αρθρώσεις, οι μάζες που αντιστοιχούν στους κόμβους, τα κατανεμημένα φορτία δοκών και υποστυλωμάτων, τα στοιχεία στερεών κόμβων, οι ελαστικές ιδιότητες των διατομών, οι ενεργές δυσκαμψίες των μελών, οι χιαστί ράδβοι που ορίζουν τα διαφράγματα των ορόφων, οι δεσμεύσεις στους κόμβους του κατώτατου ορόφου στο έδαφος, οι συντεταγμένες των διατομών και των οπλισμών τους, τα μέλη που προσομοιώνουν τους τοίχους πλήρωσης με ελαστική ή ανελαστική συμπεριφορά, καθώς και οι περιοχές ανελαστικής συμπεριφοράς στα άκρα των μελών στην περίπτωση που γίνεται η συγκεκριμένη μορφή ανάλυσης. Κάποια από τα παραπάνω στοιχεία δεν είναι απαραίτητο να χρησιμοποιηθούν βέβαια για κάποιες περιπτώσεις ανάλυσης. Στη συνέχεια, με τις ίδιες εντολές που έχουν χρησιμοποιηθεί και παραπάνω στην περίπτωση της ελαστικής ανάλυσης του φορέα, εισάγονται οι κόμβοι, τα στερεά στοιχεία και οι στηρίξεις εδάφους στο φορέα. Τέλος, ορίζονται τα υλικά που έχει εισάγει ο χρήστης στο αντίστοιχο αρχείο και οι γεωμετρικοί μετασχηματισμοί που θα χρησιμοποιηθούν στη συνέχεια.

MAhinges.tcl Υπορουτίνα για την εισαγωγή των αρθρώσεων που έχει επιλέξει ο χρήστης στο OpenSees. Αρχικά, εντοπίζονται τα κατάλληλα αρχεία από αυτά που έχουν δημιουργηθεί από προηγούμενα προγράμματα για τις δοκούς και τα υποστυλώματα, σύμφωνα με τις επιλογές που έχει εισάγει ο χρήστης για την ανάλυση. Επίσης, εισάγονται τα δεδομένα των διαγραμμάτων ροπής - στροφής που αντιστοιχούν στις παραπάνω αρθρώσεις στην περίπτωση των στροφικών αρθρώσεων, τόσο με διάτμηση, όσο και χωρίς, ώστε να μπορεί στη συνέχεια να διαπιστωθεί αν η αστοχία συνέβη λόγω διάτμησης ή όχι. Για παράδειγμα, στην περίπτωση της ανελαστικής απόκρισης με συγκεντρωμένη πλαστικότητα εισάγεται το αρχείο με τα αντίστοιχα στροφικά ελατήρια (λαμβάνοντας υπόψη τη διάτμηση ή όχι), ενώ αν επιλεγεί ο έλεγχος διάτμησης με διατμητικά ελατήρια εισάγεται το αρχείο αρθρώσεων με τα ελατήρια αυτά. Στην περίπτωση που δεν είναι επιθυμητή η εισαγωγή αρθρώσεων σε κάποιες θέσεις, εισάγονται οι αρθρώσεις με τα πολύ δύσκαμπτα στοιχεία, που προσφέρουν ουσιαστικά ίδια συμπεριφορά με αυτήν που θα υπήρχε αν δεν χρησιμοποιούσαμε αρθρώσεις στις θέσεις αυτές. Από τις αρθρώσεις αυτές, διαπιστώνεται στη συνέχεια ποιες αφορούν στροφικά και ποιες διατμητικά ελατήρια και καταγράφονται στα αντίστοιχα αρχεία που χρησιμοποιούνται στη συνέχεια για τους ελέγχους. Τέλος, ορίζονται στο OpenSees οι κόμβοι που χρησιμοποιούνται στις αρθρώσεις, τα μέλη μηδενικού μήκους των αρθρώσεων αυτών, καθώς και τα υλικά που ορίζουν τη συμπεριφορά των βαθμών ελευθερίας τους.

MAmembers.tcl Υπορουτίνα για την εισαγωγή των βασικών μελών του προσομοιώματος στο OpenSees, ανάλογα με την ανελαστική συμπεριφορά που επιλέγεται για κάθε ομάδα μελών (δοκοί, υποστυλώματα). Για κάθε μια από αυτές τις ομάδες δίνεται η δυνατότητα ελαστικής απόκρισης με ενεργές δυσκαμψίες, ανελαστική απόκριση με συγκεντρωμένη πλαστικότητα, ανελαστική απόκριση με περιοχές κατανεμημένης πλαστικότητας στα άκρα και ανελαστική απόκριση με κατανεμημένη πλαστικότητα εφαρμοζόμενη σε όλο το μήκος των μελών. Στην περίπτωση της ελαστικής απόκρισης με ενεργές δυσκαμψίες, τα μέλη εισάγονται ανάλογα με τις αναλύσεις που έχουν γίνει σε προηγούμενα προγράμματα ελαστικής ανάλυσης, εισάγοντας πέραν του κωδικού των μελών και τους κόμβους αρχής και πέρατος, το εμβαδόν της διατομής, το μέτρο ελαστικότητας του σκυροδέματος, το μέτρο διάτμησης του σκυροδέματος, τη στρεπτική σταθερά, τις ροπές αδρανείας περί τους δύο άξονες και το γεωμετρικό μετασχηματισμό που του αντιστοιχεί (και ορίζει τον προσανατολισμό της διατομής). Για τη συγκεντρωμένη πλαστικότητα, εφόσον εισήχθησαν προηγουμένως οι στροφικές αρθρώσεις στα άκρα, απαιτείται πλέον η εισαγωγή του ελαστικού μέλος, η εισαγωγή του οποίου γίνεται όμοια με την προηγούμενη περίπτωση, με τη διαφορά ότι απαιτείται μεταβολή των δυσκαμψιών, όπως αναφέρεται στην ενότητα 2.1.3. Στην περίπτωση της ανελαστικής απόκρισης με περιοχές κατανεμημένης πλαστικότητας στα άκρα των μελών, πέραν της εισαγωγής των παραπάνω στοιχείων για τα ελαστικά τμήματα στα μέσα των μελών, απαιτείται και η εισαγωγή της διατομής και των οπλισμών της, όμοια με την περίπτωση που έγινε και στην περίπτωση της ανάλυσης διατομής για παραγωγή διαγραμμάτων ροπής - στροφής. Η εισαγωγή των μελών με τις περιοχές κατανεμημένης πλαστικότητας στα άκρα γίνεται με την εντολή

```
element beamWithHinges $eleTag $iNode $jNode $secTagI $Lpi $secTagJ
$Lpj $E $A $Iz $Iy $G $J $transfTag <-mass $massDens> <-iter
$maxIters $tol>
```

όπου ορίζονται ο κωδικός του μέλους, οι κόμβοι αρχής και πέρατος, οι διατομές στην αρχή και το πέρας του μέλους, καθώς και τα μήκη των περιοχών ανελαστικής απόκρισης που θα πρέπει να ληφθούν υπόψη, τα ελαστικά χαρακτηριστικά του ελαστικού τμήματος, ο γεωμετρικός μετασχηματισμός του μέλους και προαιρετικά η μάζα ανά μέτρο μήκους του μέλους και κάποιες παράμετροι για τη σύγκλιση των αποτελεσμάτων κατά την ανάλυση. Η προσομοίωση των μελών με κατανημημένη πλαστικότητα σε όλο το μήκος τους γίνεται με την εντολή

element forceBeamColumn \$eleTag \$iNode \$jNode \$numIntgrPts \$secTag
 \$transfTag <-mass \$massDens> <-iter \$maxIters \$tol> <-integration
 \$intType>

που πέραν των παραπάνω χαρακτηριστικών για τα ανελαστικά τμήματα απαιτείται και το επιθυμητό πλήθος σημείων ολοκλήρωσης (με την εντολή αυτή εφαρμόζεται η ολοκλήρωση Gauss-Lobatto με την ίδια διατομή σε κάθε σημείο ολοκλήρωσης). Τέλος, για την προσομοίωση των διαφραγμάτων στους ορόφους, εισάγονται κατάλληλα μέλη παράλληλα στις δοκούς και χιαστί μέλη, όπως αναφέρονται στην ενότητα 2.2.2.

MAconstant.tcl Υπορουτίνα για την εισαγωγή των σταθερών φορτίων στα μέλη του φορέα, καθώς και των μαζών που αντιστοιχούν στους κόμβους. Αφού εισαχθούν τα παραπάνω στοιχεία, αναλύεται ο φορέας ανελαστικά με τα παραπάνω φορτία και μπορούν να καταγραφούν κάποιες αρχικές ιδιοπερίοδοι του στην κατάσταση μετά την επιβολή των σταθερών φορτίων. Έπειτα, εισάγονται τα μέλη που προσομοιώνουν την τοιχοποιία πλήρωσης στο μοντέλο. Η εισαγωγή τους γίνεται μετά την επιβολή των σταθερών φορτίων, γιατί σε διαφορετική περίπτωση πιθανόν τα χιαστί ανελαστικά μέλη των τοιχοπληρώσεων λειτουργούν ανά δύο ταυτόχρονα σε θλίψη, κάτι που οδηγεί σε λανθασμένη ανάλυση, ενώ αντίθετα αν τοποθετηθούν στο μοντέλο μετά την επιβολή των σταθερών φορτίων, λειτουργεί ένα από τα δύο κάθε φορά σε θλίψη, προσομοιώνοντας έτσι καλύτερα και την πραγματική διαδικασία κατασκευής, καθώς οι τοιχοπληρώσεις εγκαθιστώνται στην κατασκευή μετά την κατασκευή του φέροντος οργανισμού και την ανάληψη από αυτόν της πλειονότητας των φορτίων (τα κινητά φορτία στο σεισμικό συνδυασμό είναι μικρά σε σχέση με τα ίδια βάρη του φορέα). Τα υλικά που χρησιμοποιούνται για τα μέλη αυτά έχουν αναλυθεί παραπάνω στην ενότητα 2.1.7.

MArecorders.tcl Υπορουτίνα για τον ορισμό των recorders, τα οποία αναλαμβάνουν την καταγραφή ορισμένων μεταβαλλόμενων στοιχείων του μοντέλου σε αρχεία κατά τη διάρκεια της ανάλυσης. Η διατήρηση αρκετών αρχείων στα οποία καταγράφονται δεδομένα ανοιχτά ταυτόχρονα (διαπιστώθηκε πάνω από 500 αρχεία περίπου), είναι αδύνατη χωρίς να γίνουν τροποποιήσεις σε αρχεία του συστήματος στο οποίο εκτελείται το OpenSees. Για το λόγο αυτό, επιλέγεται κάποια αποτελέσματα να καταγράφονται σε κοινά αρχεία και η ανάλυσή τους σε μορφή πιο κατανοητή στο χρήστη να γίνεται εκ των υστέρων, εκτελώντας κάποια άλλα προγράμματα για το σκοπό αυτό. Κάποια στοιχεία που επιλέγεται να καταγράφονται με εντολές παρόμοιας μορφής που έχουν περιγραφεί σε προηγούμενα προγράμματα ανάλυσης είναι οι μετακινήσεις των κύριων κόμβων του φορέα και του κόμβου αναφοράς (recorder Node ... disp), οι αντιδράσεις των κόμβων στήριξης (recorder Node ... reaction), οι δυνάμεις στα άκρα των βασικών μελών και των μελών προσομοίωσης των τοιχοπληρώσεων στους τοπικούς τους άξονες συντεταγμένων (recorder Element ... localForce), καθώς και οι σχετικές μετακινήσεις των άκρων των στοιχείων μηδενικού μήκους (recorder Element ... deformation). Τέλος, ορίζεται μια υπορουτίνα που μπορεί να χρησιμοποιηθεί κατά τη διάρκεια της ανάλυσης για την παραγωγή κάποιων πρώτων ιδιομορφών κατά την παραμορφωσιακή κατάσταση του φορέα που επιλέγεται (εντολές eigen \$numEigenvalues και recorder Node ... "eigen \$mode").

MApush.tcl Υπορουτίνα για την εκτέλεση στατικής υπερωθητικής ανάλυσης (Pushover). Αρχικά εισάγονται στο πρόγραμμα τα φορτία αναφοράς που έχουν παραχθεί σε προηγούμενο πρόγραμμα και αντιστοιχούν σε κάθε κόμβο, για την ιδιομορφή που έχει επιλέξει ο χρήστης, σε μορφή γραμμικής χρονοσειράς (δηλαδή ο χρονος της ανάλυσης ισούται με το φορτικό συντελεστή με τον οποίο πολλαπλασιάζονται τα φορτία αναφοράς). Αν δεν έχει ορισθεί συγκεκριμένη ιδιομορφή, από την οποία ορίζονται τα φορτία αναφοράς, τότε το πρόγραμμα εντοπίζει και χρησιμοποιεί την ιδιομορφή με τη μεγαλύτερη ιδιομορφική μάζα στη διεύθυνση σεισμού που αντιστοιχεί στο βαθμό ελευθερίας αναφοράς που έχει εισαχθεί στα δεδομένα για την ανάλυση. Η μορφή των εντολών ανάλυσης είναι η ίδια που χρησιμοποιείται και στην περίπτωση του προγράμματος δημιουργίας διαγραμμάτων ροπών - στροφών για τις διατομές, με τη διαφορά ότι πλέον ελέγχεται κάποιος μετατοπισιακός βαθμός ελευθερίας κάποιου κόμβου και όχι n καμπυλότητα μιας διατομής (εντολή integrator DisplacementControl \$node \$dof \$incr). Για την εκτέλεση της ανάλυσης επαναλαμβάνεται ότι θα πρέπει να επιλεγεί κάποιος αλγόριθμος επίλυσης και κάποιο κριτήριο σύγκλισης. Επιλέγεται αρχικά να χρησιμοποιηθεί ο αλγόριθμος ModifiedNewton -initial, ενώ av n ανάλυση αποτύχει σε κάποιο βήμα ανάλυσης, μικραίνει n στοχευόμενη αύξηση της μετατόπισης στον κόμβο αναφοράς. Αν και πάλι το πρόβλημα παραμένει, αρχικά διατηρείται ο ίδιος αλγόριθμος επίλυσης με λίγο μικρότερο αποδεκτό σφάλμα σύγκλισης και στη συνέχεια δοκιμάζονται άλλοι αλγόριθμοι, όπως οι NewtonLineSearch και BFGS.

MAtimehistory.tcl Υπορουτίνα για την εκτέλεση ανάλυσης χρονοϊστορίας. Αρχικά, θα πρέπει να οριστεί η απόσβεση των μελών του φορέα. Καθορίζεται ο συντελεστής απόσβεσης και επιλέγεται αν θα χρησιμοποιηθεί το αρχικό μητρώο δυσκαμψίας, το τρέχον ή το μητρώο δυσκαμψίας στο τέλος του προηγούμενου βήματος ανάλυσης. Για τους λόγους που αναφέρθηκαν στην ενότητα 2.3.3, χρησιμοποιείται το αρχικό μητρώο δυσκαμψίας του φορέα και οι συντελεστές των μητρώων μάζας και δυσκαμψίας της απόσβεσης Rayleigh υπολογίζονται βάσει των σχέσεων 2.59 και 2.60. Οι κόμβοι και τα μέλη τα οποία θα πρέπει να ληφθούν υπόψη για την απόσβεση Rayleigh είναι καλό να οριστούν χειροκίνητα, καθώς όπως αναφέρθηκε στα προηγούμενα στα στοιχεία με συγκεντρωμένη πλαστικότητα ορίζουμε να έχουν απόσβεση μόνο τα ελαστικά τμήματά τους, για τα οποία μάλιστα ο αντίστοιχος συντελεστής του μητρώου δυσκαμψίων τους, αν και στην πραγματικότητα ο παραπάνω ξεχωριστός ορισμός τους δεν είναι απαραίτητος, επειδή έχουμε ορίσει τα στοιχεία μηδενικού μήκους να μην έχουν απόσβεση. Στη συνέχεια, εισάγονται οι σεισμικές καταγραφές με τους πιθανούς μεγεθυντικούς συντελεστές στους δύο άξονες ανάλυσης, σε μορφή χρόνου - επιτάχυνσης εδάφους. Η μορφή εισαγωγής της φόρτισης αυτής στο OpenSees είναι λίγο διαφορετική σε σχέση με την εισαγωγή των άμεσων φορτίων του φορέα και γίνεται με τις εντολές

```
timeSeries Path 200 -time $TimeList1 -values $AccelList1
```

```
pattern UniformExcitation 300 $GM1direction -accel 200
```

Η πρώτη δημιουργεί μια βηματική χρονοσειρά φόρτισης δίδοντας τον κωδικό της χρονοσειράς, τους χρόνους και τις αντίστοιχες τιμές της φόρτισης, ενώ η δεύτερη δημιουργεί μια εξαναγκασμένη κίνηση όλων των στηρίξεων του φορέα με κοινή τιμή για κάθε στιγμή της ανάλυσης, αποδίδοντάς της έναν κωδικό και αξιοποιώντας τις τιμές μιας χρονοσειράς ως τιμές επιταχύνσεων του εδάφους. Στο σημείο αυτό μπορούν να οριστούν επίσης recorders για την καταγραφή μετακινήσεων και επιταχύνσεων για τον κόμβο αναφοράς σε όλους ορόφους του φορέα (εντολές recorder Node ... disp, recorder Node ... -timeSeries ... accel, όπου απαιτείται και η εισαγωγή της αντίστοιχης χρονοσειράς επιταχύνσεων για παραγωγή απόλυτων και όχι σχετικών επιταχύνσεων). Η εκτέλεση της ανάλυσης χρονοϊστορίας γίνεται στη συνέχεια με τρόπο παρόμοιο με αυτόν της ανάλυσης Pushover, με τη διαφορά ότι πλέον χρησιμοποιούνται οι εντολές

```
integrator Newmark 0.5 0.25
```

analysis Transient

```
analyze $Nsteps $Dt
```

που δηλώνουν ότι επιθυμούμε να πραγματοποιήσουμε δυναμική ανάλυση πλήθους επαναλήψεων και χρονικού βήματος που αναφέρονται στην εντολή *analyze*, χρησιμοποιώντας την ολοκλήρωση κατά Newmark με $\beta = 0.25$ και $\gamma = 0.50$ (μέθοδος σταθερής επιτάχυνσης). Εφόσον συναντηθεί πρόβλημα σύγκλισης σε κάποιο βήμα της ανάλυσης, το χρονικό βήμα μειώνεται και ακολουθείται διαδικασία αύξησης του αποδεκτού σφάλματος σύγκλισης και αλλαγής των αλγορίθμων επίλυσης παρόμοια με την περίπτωση της ανάλυσης Pushover.

3.6 Επεξεργασία αποτελεσμάτων

MAresults.tcl Υπορουτίνα που αναλαμβάνει την εκτέλεση άλλων υπορουτίνων για την επεξεργασία των αποτελεσμάτων μετά την ολοκλήρωση της ανάλυσης.

Vbase.tcl Υπορουτίνα που αθροίζει τις αντιδράσεις των στηρίξεων στις διευθύνσεις *X* και *Y* και παράγει ένα αρχείο με τις τέμνουσες βάσεις στις δύο διευθύνσεις συναρτήσει του χρόνου κάθε βήματος ανάλυσης.

VDmax.tcl Υπορουτίνα που υπολογίζει τις μέγιστες και ελάχιστες τιμές για τις μετακινήσεις του κόμβου αναφοράς και τις τέμνουσες βάσης, και για τις δύο διευθύνσεις και παράγει ένα αρχείο που περιέχει τις τιμές αυτές, μαζί με το χρόνο της ανάλυσης στον οποίο συμβαίνουν και την αντίστοιχη τιμή του άλλου εξεταζόμενου μεγέθους. Η σύγκριση των ζευγών των τιμών αυτών με την καμπύλη Pushover μπορεί να δώσει ενδιαφέροντα αποτελέσματα.

RAModal.tcl Υπορουτίνα που υπολογίζει στοιχεία για τις ιδιομορφές, αν έχουν πραγματοποιηθεί ιδιομορφικές αναλύσεις κατά τη διάρκεια της ανελαστικής ανάλυσης του φορέα. Σε αναλογία με το πρόγραμμα *ModelData\ModalProp.tcl*, δημιουργεί αρχείο για κάθε χρόνο ανάλυσης και κάθε ιδιομορφή που περιέχει τα ιδιοδιανύσματα που αντιστοιχούν σε κάθε κόμβο του φορέα, σε μορφή πιο κατανοητή από το αρχείο που παράγεται από το πρόγραμμα. Επίσης, υπολογίζονται οι συντελεστές συμμετοχής και οι δρώσες ιδιομορφικές μάζες κάθε ιδιομορφής για σεισμική διέγερση κατά τις δύο διευθύνσεις. Για κάθε χρόνο ανάλυσης εντοπίζεται η ιδιομορφή με τη μεγαλύτερη δρώσα ιδιομορφική μάζα σε κάθε μια από τις δύο διευθύνσεις και καταγράφεται σε αρχείο η τιμή της ιδιοπεριόδου της, ώστε να υπάρχει μια ένδειξη της ιδιοπεριόδου του κτηρίου για διέγερση στις δύο διευθύνσεις.

BilinearPush.tcl Υπορουτίνα που αναλαμβάνει τη διγραμμικοποίηση της καμπύλης μετακίνησης κόμβου αναφοράς - τέμνουσας βάσης, στην περίπτωση που γίνεται ανάλυση Pushover. Οι κανόνες που ακολουθούνται για τη διγραμμικοποίηση είναι οι ίδιοι που εφαρμόζονται για τη διγραμμικοποίηση των καμπυλών ροπής - καμπυλότητας (πρόγραμμα *ModelData\BilinearMphi.tcl*). Ακόμα, υπολογίζονται διάφορα χαρακτηριστικά του ισοδύναμου μονοβάθμιου ταλαντωτή που προκύπτει από την παραπάνω διγραμμικοποίηση του φορέα: ο συντελεστής συμμετοχής Γ, η μάζα *m*^{*}, η τέμνουσα διαρροής F_y^* , η μετακίνηση διαρροής δ_y^* , η επιτάχυνση διαρροής a_y^* και η ιδιοπερίοδος *T*^{*}.

RARotHinges.tcl Υπορουτίνα για τον έλεγχο της κατάστασης των καμπτικών αρθρώσεων σε κάθε βήμα της ανάλυσης. Αρχικά το πρόγραμμα διαβάζει τη λίστα με τις αρθρώσεις που περιέχουν στροφικά ελατήρια και τους βαθμούς ελευθερίας στα οποία ενεργούν, καθώς και τα αρχεία που περιγράφουν τα διαγράμματα ροπών - στροφών των στροφικών ελατηρίων που χρησιμοποιούνται και των αντίστοιχων χωρίς να λαμβάνεται υπόψη η διάτμηση. Αν υπάρχει διαφορά μεταξύ των δύο αρχείων σε κάποια διεύθυνση κάποιας στροφικής άρθρωσης, τότε συμπεραίνουμε ότι το μέλος θα αστοχήσει πρόωρα σε διάτμηση, είτε πριν είτε μετά τη διαρροή του, ανάλογα με το ποιες τιμές διαφέρουν. Για κάθε καμπτική άρθρωση που χρησιμοποιείται, διαβάζεται το αρχείο που έχει παραχθεί κατά την ανάλυση που περιγράφει τις σχετικές μετακινήσεις της άρθρωσης. Για κάθε στροφικό ελατήριο κάθε άρθρωσης, ελέγχεται αν κάποια χρονική στιγμή η στροφή που αποκτά ξεπερνά κάποιο από τα όρια για τη διαρροή ή την αστοχία και η πρώτη φορά που θα υπάρξει μεταβολή στην κατάσταση του στροφικού ελατηρίου καταγράφεται. Επίσης, εντοπίζεται η μέγιστη και η ελάχιστη τιμή των σχετικών μετακινήσεων κατά τη διάρκεια της ανάλυσης και βάσει αυτών συμπεραίνουμε σε ποια στάθμη επιτελεστικότητας έχει φτάσει το στοιχείο, συγκρίνοντας τις με τα όρια που καθορίζονται στα διαγράμματα ροπών - στροφών για τις στάθμες επιτελεστικότητας βάσει του ΚΑΝ.ΕΠΕ. (χωρίς συντελεστές ασφαλείας) και λαμβάνοντας υπόψη το αν έχει συμβεί πρόωρη αστοχία λόγω διάτμησης.

RAShearHinges.tcl Υπορουτίνα για τον έλεγχο αστοχίας σε διάτμηση των διατμητικών ελατηρίων του προσομοιώματος. Όπως και στην προηγούμενη υπορουτίνα, διαβάζεται η λίστα με τα διατμητικά ελατήρια που έχουν χρησιμοποιηθεί στις αρθρώσεις του προσομοιώματος, καθώς και το αντίστοιχο αρχείο με τις σχετικές μετατοπίσεις που αποκτούν τα διατμητικά ελατήρια κατά τη διάρκεια της ανάλυσης. Σε κάθε βήμα ελέγχεται αν η σχετική μετατόπιση υπερβαίνει τη σταθερή τιμή που έχει οριστεί για την αστοχία σε τέμνουσα, οπότε και θεωρείται ότι το μέλος έχει αστοχήσει σε τέμνουσα στο βημα αυτό. Οι αστοχίες αυτές, καθώς και οι μέγιστες σχετικές μετατοπίσεις καταγράφονται στα αντίστοιχα αρχεία.

RAHinges.tcl Υπορουτίνα που συνενώνει τα αποτελέσματα αλλαγών κατάστασης των αρθρώσεων των παραπάνω αρχείων και τα συμπληρώνει με τις τέμνουσες βάσης και τις μετακινήσεις του κόμβου αναφοράς τη χρονική στιγμή που συμβαίνει κάθε μεταβολή κατάστασης. Επίσης, διαβάζει τις στάθμες επιτελεστικότητας στις οποίες έχουν φτάσει τα διάφορα στροφικά και διατμητικά ελατήρια και συνοψίζει σε ένα αρχείο ποιες διατομές μελών, χωριστά για δοκούς και υποστυλώματα, βρίσκονται σε στάθμη επιτελεστικότητας πέραν της ελαστικής απόκρισης, επισημαίνοντας μάλιστα τα στοιχεία που αστοχούν σε διάτμηση πριν ή μετά τη διαρροή τους. Ακόμα, υπολογίζεται το πλήθος των διατομών κάθε στάθμης και το ποσοστό τους επί του συνόλου, που έχουν υπερβεί κάθε στάθμης επιτελεστικότητας, καθώς και το πλήθος και το ποσοστό των μελών κάθε στάθμης που αντιστοιχεί σε κάθε στάθμη επιτελεστικότητας, θεωρώντας τη δυσμενέστερη στάθμη επιτελεστικότητας που έχει υπερβεί κάποια άρθρωση στα άκρα του μέλους (με φθίνουσα σειρά σημασίας: ΔΑ, ΚΔΑ, ΟΚ, ΠΖ, ΑΧ).

RADisplacements.tcl Υπορουτίνα για την παραγωγή κατανοητών αρχείων που περιγράφουν τις μετακινήσεις των κόμβων του προσομοιώματος. Κατά τη διάρκεια της ανάλυσης οι μετακινήσεις αυτές καταγράφονται για όλους τους κόμβους σε ένα αρχείο, όπως εξηγήθηκε προηγουμένως, οπότε χρειάζεται περαιτέρω επεξεργασία για παραγωγή αρχείων σε κατανοητή μορφή.

RADrifts.tcl Υπορουτίνα για την παραγωγή των μέγιστων drifts ορόφων. Τα drifts υπολογίζονται βάσει των μετακινήσεων στις δύο διευθύνσεις των κόμβων που βρίσκονται στην ίδια κατακόρυφο με τον κόμβο αναφοράς σε κάθε όροφο, βάσει των αποστάσεων των αντίστοιχων στάθμεων. Υπολογίζονται τα μέγιστα drifts σε κάθε όροφο για κάθε μια από τις δύο διευθύνσεις και καταγράφονται σε αρχείο, μαζι με τη χρονική στιγμή που συμβαίνουν.

RAForces.tcl Υπορουτίνα για παραγωγή κατανοπτών αρχείων δυνάμεων μελών στα τοπικά συστήματα συντεταγμένων. Όπως και με τις μετακινήσεις των κόμβων, κατά τη διάρκεια της ανάλυσης οι δυνάμεις των μελών, λόγω του πλήθους των μελών, αναγκαστικά καταγράφονται σε ένα ενιαίο αρχείο, οπότε πρέπει να γίνει εκ των υστέρων επεξεργασία τους για να παραχθούν κατανοπτά αρχεία, όπου περιγράφεται η χρονική εξέλιξη των δυνάμεων κάθε μέλους σε ξεχωριστά αρχεία. Στο σημείο αυτό, εντοπίστηκε bug στο πρόγραμμα OpenSees (έκδοση 2.4.1), καθώς παρατηρήθηκε ότι οι τέμνουσες των μελών στον τοπικό άξονα z καταγράφονται στο αντίθετο άκρο του μέλους από αυτό που πρέπει στην πραγματικότητα, οπότε έπρεπε να τροποποιηθεί και η αντίστοιχη σειρά δυνάμεων στο πρόγραμμα επεξεργασίας.

MAasl.tcl Πρόγραμμα που εκτελεί νέες αναλύσεις και καλεί άλλες υπορουτίνες για την παραγωγή αρχείων τροποποιημένων αξονικών δυνάμεων και διατμητικών μηκών. Η διαδικασία που ακολουθείται περιγράφεται στην ενότητα 2.3.4. Για τις αναλύσεις χρονοϊστορίας απαιτούνται 4 αναλύσεις Pushover με τελικές μετακινήσεις μεγαλύτερες κατ' απόλυτη τιμή από τις αντίστοιχες μετακινήσεις που προκύπτουν από την ανάλυση χρονοϊστορίας, οι οποίες εκτελούνται αυτόματα αν δεν υπάρχουν. Για τις αναλύσεις Pushover, δεν απαιτούνται νέες αναλύσεις για την εξαγωγή των ζητούμενων μεγεθών.

ASLCalculation.tcl Είναι η υπορουτίνα που εντοπίζει τις αξονικές δυνάμεις και υπολογίζει τα διατμητικά μήκη για κάθε βήμα της ανάλυσης, ανάλογα με το μέλος στο οποίο ανήκει η διατομή και τη θέση της πάνω στο μέλος. Τα διατμητικά μήκη υπολογίζονται ως ο λόγος $L_s = \frac{M}{V}$. Για τα υποστυλώματα τα διατμητικά μήκη υπολογίζονται χωριστά για τις δύο διευθύνσεις και τα δύο άκρα του μέλους, ενώ για τις δοκούς υπολογίζονται ουσιαστικά για μία διεύθυνση, χωριστά για κάθε άκρο.

ASLSelection.tcl Υπορουτίνα για επιλογή των αξονικών δυνάμεων και διατμητικών μηκών από τις αναλύσεις Pushover. Γενικά, οι τιμές των παραπάνω μεγεθών επιλέγονται τη στιγμή που ο κόμβος αναφοράς έχει τη στοχευόμενη τιμή που ισούται με τη μέγιστη τιμή που προκύπτει για τη διεύθυνση και φορά αυτή από την αρχική ανάλυση του φορέα. Σε περιπτώσεις όμως που κάποια διατομή έχει διαρρεύσει ή αστοχήσει, η επιλογή των τιμών γίνεται για το μέλος που ανήκει η διατομή ακριβώς πριν το βήμα που η διατομή αλλάζει κατάσταση. Οι τροποποιημένες τιμές αξονικών δυνάμεων και διατμητικών μηκών αποθηκεύονται μαζί με τους κωδικούς των βαθμών ελευθερίας των διατομών στις οποίες αντιστοιχούν. **ASLCombination.tel** Υπορουτίνα που συνδυάζει τα αποτελέσματα των 4 αναλύσεων Pushover για τις αναλύσεις χρονοϊστορίας. Αφού παραχθούν τα 4 αρχεία με τα τροποποιημένα μεγέθη που απαιτούνται, το πρόγραμμα αυτό αναλαμβάνει τον καθορισμό της συμβολής των αποτελεσμάτων από κάθε ανάλυση Pushover, όπως περιγράφεται στην ενότητα 2.3.4 ώστε να προκύψει η τελική τους τιμή που θα χρησιμοποιηθεί για την επανάληψη της ανάλυσης του φορέα με τα τροποποιημένα μεγέθη. Επίσης, για λόγους σύγκρισης, αποθηκεύονται μαζί με την παραπάνω τιμή και οι αρχικές τιμές κάθε μεγέθους. Τέλος, για τα διατμητικά μήκη, επειδή υπάρχει περίπτωση κάποιο από τα μεγέθη ροπής ή τέμνουσας να πλησιάζει στο μηδέν τις στιγμές που εξετάζουμε, με αποτέλεσμα το διατμητικό μήκος που προκύπτει να δίνει εσφαλμένη συμπεριφορά του μέλους, μπορεί να εφαρμοστεί διόρθωση αν η ποσοστιαία διαφορά μεταξύ τροποποιημένης και αρχικής τιμής βρίσκεται εκτός ενός αποδεκτού διαστήματος, επαναφέροντας στην περίπτωση αυτή την αρχική τιμή του διατμητικού μήκους.

ASLCombinationPush.tcl Υπορουτίνα για παραγωγή των τελικών τιμών αξονικών δυνάμεων και διατμητικών μηκών για τις αναλύσεις Pushover. Στην περίπτωση αυτή, όπως περιγράφεται και στην ενότητα 2.3.4, τροποποιημένα διατμητικά μήκη χρησιμοποιούνται για συγκεκριμένα άκρα μελών και για συγκεκριμένη διεύθυνση και φορά κάμψης, ανάλογα με την κατεύθυνση στην οποία γίνεται η ανάλυση Pushover. Στις υπόλοιπες περιπτώσεις, η τιμή του κάθε μεγέθους διατηρείται ίση με την αρχική.

run.tcl Είναι το βασικό πρόγραμμα που βρίσκεται στον ίδιο φάκελο με το πρόγραμμα OpenSees.exe και το οποίο πρέπει να εκτελέσει ο χρήστης για να πραγματοποιηθούν αυτοματοποιημένα οι αναλύσεις. Διαβάζει τις διάφορες επιλογές για την ανάλυση που έχει καθορίσει ο χρήστης στο αρχείο Input\AnalysisOptions.txt και ελέγχει την εγκυρότητά τους. Στη συνέχεια, αν δεν έχει δημιουργηθεί το μοντέλο ή αν απαιτείται η επαναδημιουργία του, καλεί το πρόγραμμα που παράγει τα στοιχεία προσομοίωσης και έπειτα καλεί το πρόγραμμα ανάλυσης του φορέα στο OpenSees. Τέλος, αν απαιτείται η παραγωγή τροποποιημένων αξονικών δυνάμεων και διατμητικών μηκών, καλεί το αντίστοιχο πρόγραμμα που αναφέρθηκε παραπάνω.

Κεφάλαιο 4

Σεισμοί κοντινού πεδίου

Τα χαρακτηριστικά των σεισμικών κινήσεων στην περιοχή κοντά στο ρήγμα μπορεί να διαφέρουν σημαντικά από αυτά των συνήθων σεισμικών καταγραφών μακριά από κάποιο ρήγμα. Σε αρκετές περιπτώσεις μάλιστα, επιβάλλουν ασυνήθιστα μεγάλες καταπονήσεις στις κατασκευές σε σχέση με αυτές που θα αναμέναμε για σεισμικά γεγονότα ανάλογων μεγεθών. Για το λόγο αυτό, η μελέτη των συγκεκριμένων σεισμικών κινήσεων έχει γίνει τα τελευταία χρόνια αντικείμενο συστηματικής μελέτης, όχι μόνο σεισμολόγων, αλλά και μηχανικών, καθώς η ενημέρωση των κανονισμών σχεδιασμού των κατασκευών, προκειμένου να ληφθούν υπόψη τα φαινόμενα αυτά, είναι επιβεβλημένη για κατασκευές σε περιοχές κοντά σε ρήγματα.

Οι πρώτες ενδείξεις ύπαρξης των φαινομένων εγγύς-πεδίου εντοπίστηκαν στο σεισμό του Port Hueneme (1957), αλλά το ενδιαφέρον της επιστημονικής κοινότητας για τα συγκεκριμένα φαινόμενα αυξήθηκε μετά το σεισμό του Northridge (1994). Έκτοτε, φαινόμενα κοντινού πεδίου έχουν εντοπιστεί σε διάφορες σεισμικές καταγραφές, όπως του Kobe (1995), της Νικομήδειας/Izmit (1999) και του Chi-Chi (1999). Στον ελλαδικό χώρο, ισχυρές ενδείξεις φαινομένων εγγύς-πεδίου έχουν παρουσιάσει οι σεισμοί του Αιγίου (1995) και της Αθήνας (1999).

Στις επόμενες ενότητες παρουσιάζονται τα χαρακτηριστικά των φαινομένων κοντινού πεδίου που έχουν καταγραφεί στη βιβλιογραφία, οι προσπάθειες που έχουν γίνει από ερευνητές για απλοποιημένη περιγραφή και μαθηματική προσομοίωση των αντίστοιχων σεισμικών κινήσεων, καθώς και κάποιες επιπτώσεις των σεισμικών κινήσεων εγγύς-πεδίου στις κατασκευές που έχουν παρατηρηθεί.

4.1 Χαρακτηριστικά σεισμικών κινήσεων κοντινού πεδίου

Η περιοχή γύρω από το ρήγμα στην οποία εντοπίζονται τα φαινόμενα εγγύς-πεδίου δεν είναι σαφώς καθορισμένη. Μια συνήθης τυπική τιμή που λαμβάνεται είναι μια απόσταση 20km από το ρήγμα. Παρόλα αυτά, αρκετοί ερευνητές έχουν προτείνει διαφορετικά όρια για την παραπάνω απόσταση. Οι Stewart et al (2001) προτείνουν ένα εύρος αποστάσεων από 20 έως 60 km από το ρήγμα, ενώ και άλλοι ερευνητές έχουν διαπιστώσει την ύπαρξη φαινομένων εγγύς-πεδίου για μεγαλύτερες από 20 km αποστάσεις. Οι Blume (1965), Vanmarcke (1979), Campbell (1981) και Bommer and Martinez-Pereira (1999) έχουν διατυπώσει κριτήρια για την παραπάνω απόσταση ανάλογα με το μέγεθος του σεισμικού γεγονότος, το EPRI θεωρεί ότι η εμφάνιση φαινομένων κοντινού πεδίου για σεισμικά γεγονότα μεγέθους κάτω από 5.0 είναι αμελητέα, ενώ οι Ambraseys and Menu (1988) εντοπίζουν συσχέτιση μεταξύ της απόστασης και του μεγέθους του ρήγματος.

Τα ειδικά χαρακτηριστικά των σεισμικών κινήσεων στο κοντινό πεδίο σχετίζονται με το μηχανισμό γένεσης του σεισμικού γεγονότος, τη διεύθυνση διάρρηξης του ρήγματος σε σχέση με την εξεταζόμενη θέση και τις μετακινήσεις των τεμαχών του ρήγματος. Το πιο εμφανές χαρακτηριστικό γνώρισμα των σεισμικών κινήσεων αυτών είναι η εμφάνιση ενός η περισσοτέρων παλμών (συνήθως σχετικά μεγάλης περιόδου) στις καταγραφές των επιταχύνσεων,

των ταχυτήτων και των μετακινήσεων της εδαφικής κίνησης, ιδιαίτερα εμφανών όμως στις καταγραφές των ταχυτήτων. Οι παλμοί αυτοί έχουν μεγάλο ενεργειακό περιεχόμενο και θεωρείται ότι είναι αυτοί που ευθύνονται για τις καταστροφικές επιπτώσεις των σεισμών αυτών. Οι σεισμικές αυτές κινήσεις εμφανίζουν επίσης συχνά μεγάλους λόγους $\frac{PGV}{PGA}$ και κάποιες φορές μεγάλες τιμές μόνιμων μετακινήσεων του εδάφους. Τα παραπάνω χαρακτηριστικά οφείλονται σε επιμέρους φαινόμενα που αναλύονται στη συνέχεια, τα κυριότερα από τα οποία είναι τα φαινόμενα κατευθυντικότητας και μόνιμης παραμόρφωσης.

4.1.1 Φαινόμενο κατευθυντικότητας (Directivity effect)

Η κατευθυντικότητα των σεισμικών κυμάτων μπορεί να χαρακτηριστεί ως πρόσω, οπίσω και ουδέτερη, ανάλογα με την κατεύθυνση διάρρηξης του ρήγματος και τη θέση που εξετάζεται. Συγκεκριμένα, αν η διάρρηξη κατευθύνεται μακριά από την εξεταζόμενη θέση, τότε μιλάμε για οπίσω κατευθυντικότητα. Στη θέση αυτή τότε τα σεισμικά κύματα φτάνουν αραιότερα στο χρόνο, δημιουργώντας έτσι σεισμικές κινήσεις με μεγάλη διάρκεια, αλλά μικρού πλάτους. Για το λόγο αυτό, ο συγκεκριμένος τύπος κατευθυντικότητας δεν απασχολεί ιδιαίτερα. Ουδέτερη κατευθυντικότητα εμφανίζεται όταν η εξεταζόμενη θέση βρίσκεται στο πλάι σε σχέση με τη διεύθυνση διάρρηξης του ρήγματος, αλλά ούτε αυτή εμφανίζει κάποιο ιδιαίτερο φαινόμενο. Η πλέον σημαντική και καταστροφική μορφή κατευθυντικότητας που απασχολεί τους ερευνητές είναι η πρόσω κατευθυντικότητα, που εμφανίζεται όταν η διάρρηξη του ρήγματος κατευθύντικότητα κατευθύντικότητα, που εμφανίζεται όταν η διάρρηξη του ρήγματος κατευθυντικότητας τη διάρρηξη του ρήγματος κατευθυντικότητας που απασχολεί τους ερευνητές είναι η πρόσω κατευθυντικότητα, που εμφανίζεται όταν η διάρρηξη του ρήγματος κατευθύντικότητα, που εμφανίζεται όταν η διάρρηξη του ρήγματος κατευθυντικότητα κατευθυντικότητα, που εμφανίζεται όταν η διάρρηξη του ρήγματος κατευθύνεται προς την εξεταζόμενη θέση. Μάλιστα, πολλές φορές αναφερόμενοι στον όρο "κατευθυντικότητα" εννοούμε μόνο την πρόσω κατευθυντικότητα. Στο σχήμα 4.1 διακρίνονται σχηματικά

Σχήμα 4.1: Φαινόμενο κατευθυντικότητας (Shuang - Li-li, 2007)

οι περιοχές που επηρεάζονται από κάθε τύπο κατευθυντικότητας, όπου στη θέση που σημειώνεται κυριαρχεί η πρόσω κατευθυντικότητα.

Το φαινόμενο της πρόσω κατευθυντικότητας εμφανίζει ισχυρούς παλμούς στην αρχή των σεισμικών κινήσεων, και μάλιστα συνήθως στη διεύθυνση που είναι κάθετη στο ρήγμα. Οι παλμοί αυτοί, σε αντίθεση με την περίπτωση της οπίσω κατευθυντικότητας, χαρακτηρίζονται συνήθως από μικρή διάρκεια, αλλά μεγάλα πλάτη στις μεσαίες και μεγάλες περιόδους. Το φαινόμενο αυτό έχει εντοπιστεί από ερευνητές (Somerville et al 1997, Stewart et al 2001, Bray and Rodriguez-Marek, 2004), πέραν της κατεύθυνσης διάρρηξης, στην πολύ μικρή διαφορά που υπάρχει μεταξύ των ταχυτήτων διάδοσης των διατμητικών σεισμικών κυμάτων και διάρρηξης του ρήγματος (η οποία έχει συνήθως τιμή περίπου 80% της πρώτης). Σε αναλογία με το φαινόμενο Doppler, συσσωρεύεται ενέργεια στο μέτωπο διάρρηξης, καθώς κάθε θέση που διαρρυγνύεται παράγει σεισμικά κύματα, τα οποία βρίσκονται πολύ κοντά στα σεισμικά κύματα που έχουν παραχθεί λόγω διαρρήξεων στις προηγούμενες χρονικές στιγμές, λόγω της πολύ μικρής διαφοράς των παραπάνω ταχυτήτων. Η συγκέντρωση αυτή μάλιστα της σεισμικής ενέργειας σε πολύ μικρά χρονικά διαστήματα, έχει προταθεί από ερευνητές ως παράμετρος χαρακτηρισμού της σεισμικής κίνησης στο κοντινό πεδίο (Li, 2005). Το φαινόμενο παρουσιάζεται στο σχήμα 4.2.

Σχήμα 4.2: Μηχανισμός γένεσης παλμών οπίσω και πρόσω κατευθυντικότητας (Singh, EERI, 1985)

Όπως αναφέρθηκε παραπάνω, το φαινόμενο κατευθυντικότητας παρουσιάζεται εντονότερα στη διεύθυνση που είναι κάθετη στο ρήγμα. Έτσι, στη διεύθυνση αυτή οι χρονοϊστορίες ταχυτήτων εμφανίζουν αιχμές με μεγαλύτερα πλάτη από τη διεύθυνση παράλληλα στο ρήγμα (Archuleta and Hartzell 1981, Somerville and Graves 1993). Επίσης, τα φάσματα απόκρισης στη διεύθυνση κάθετα στο ρήγμα εμφανίζουν μεγαλύτερες φασματικές τιμές στις μεσαίες και μεγάλες περιόδους σε σχέση με τα φάσματα παράλληλα στο ρήγμα (Somerville and Graves 1993, Somerville et al 1997). Μια σύγκριση των χρονοϊστοριών μετακινήσεων στις διευθύνσεις κάθετα και παράλληλα στο ρήγμα για το σεισμό του Loma Prieta, 1989, φαίνεται στο σχήμα 4.3. Στη διεύθυνση κάθετα στο ρήγμα και μακριά από το επίκεντρο διακρίνονται παλμικές κινήσεις με μεγάλα πλάτη μετακινήσεων.

Επειδή οι υψίσυχνοι κυματισμοί δεν διαδίδονται με συνεκτικό τρόπο, το φαινόμενο κατευθυντικότητας εντοπίζεται κυρίως στις εδαφικές μετακινήσεις και στις εδαφικές ταχύτητες και λιγότερο στις εδαφικές επιταχύνσεις (Singh 1985, Wu and Zhu 2003). Στο φαινόμενο αυτό θεωρείται ότι οφείλονται οι υψηλοί λόγοι $\frac{PGV}{PGA}$ που παρατηρούνται στις σεισμικές κινήσεις κοντινού πεδίου. Η τιμή αυτή επηρεάζει την περίοδο T_c που διαχωρίζει τις περιοχές ταχύτητες, και η μετακίνησή της προς υψηλότερες περιόδους λόγω του αυξημένου λόγου $\frac{PGV}{PGA}$ οδηγεί σε μεγάλες περιοχές στην αρχή των φασμάτων με αυξημένη φασματική επιτάχυνση.

Τέλος, επισημαίνεται ότι φαινόμενα κατευθυντικότητας παρουσιάζονται όχι μόνο σε σεισμούς μεγάλου μεγέθους, αλλά και σε σεισμούς μικρού και μεσαίου μεγέθους. Σε τέτοια σεισμικά γεγονότα, οι παλμοί κατευθυντικότητας που παράγονται είναι μικρότερης περιόδου, ικανοί δηλαδή να επηρεάσουν σημαντικά την απόκριση ακόμα και πιο δύσκαμπτων κατασκευών (Bray and Rodriguez-Marek 2004, Li and Zhu 2004b). Η επισήμανση αυτή είναι ιδιαίτερης σημασίας για τον ελλαδικό χώρο, καθώς τα ρήγματα που υπάρχουν σε αυτόν δίνουν συνήθως σεισμούς μικρού ή μεσαίου μεγέθους, με σχετικά μικρές περιόδους παλμών, ενώ ταυτόχρονα τα περισσότερα κτίσματα έχουν λίγους ορόφους, δηλαδή έχουν μικρές ή μεσαίες ιδιοπεριόδους, άρα η επίδραση των παραπάνω σεισμικών γεγονότων είναι αυξημένη (Spyrakos et al 2008).

Σχήμα 4.3: Σύγκριση χρονοϊστοριών μετακινήσεων σεισμού Loma Prieta 1989 στις διευθύνσεις κάθετα και παράλληλα στο ρήγμα. (EERI, 1995)

4.1.2 Φαινόμενο μόνιμης μετατόπισης (Fling-step effect)

Σε κάποιες περιπτώσεις n εκδήλωση σεισμικών γεγονότων κοντινού πεδίου συνοδεύεται από μόνιμες παραμορφώσεις του εδάφους στη διεύθυνση κατά την οποία μετακινείται το τέμαχος του ρήγματος. Σημαντικές παρατηρήσεις τέτοιων φαινομένων υπήρξαν στους σειμούς του Izmit 1999 και του Chi-Chi 1999, στον τελευταίο μάλιστα από τους οποίους μετρήθηκε οριζόντια μετατόπιση ακόμα και 9 m. Το φαινόμενο αυτό αναφέρεται στην αγγλική βιβλιογραφία ως fling step και εκδηλώνεται παράλληλα στο ίχνος του ρήγματος για ρήγματα οριζόντιας διάρρηξης και προς τη φορά της βύθισης για ρήγματα μη οριζόντιας διάρρηξης, ως μονοτονικό βήμα στη χρονοϊστορία μετακινήσεων του εδάφους. Για ρήγματα βύθισης δηλαδή, τα φαινόμενα μόνιμης παραμόρφωσης και κατευθυντικότητας εμφανίζονται συνήθως στην ίδια διεύθυνση, ενώ έχει διαπιστωθεί στη βιβλιογραφία ότι η μέγιστη μόνιμη μετατόπιση εμφανίζεται περίπου την ίδια χρονική στιγμή με τη μέγιστη δυναμική μετατόπιση, κάτι που επιβάλλει την ταυτόχρονη θεώρηση των δύο φαινομένων για την εκτίμηση του σεισμικού κινδύνου (Somerville 2002). Παρόλα αυτά, οι καταγραφές με εμφανή φαινόμενα fling-step δεν είναι ακόμα αρκετές ώστε το φαινόμενο αυτό να ερευνηθεί με μεγαλύτερη ακρίβεια.

Φαινόμενα που σχετίζονται με το fling-step, όπως διαφορικές μετατοπίσεις μεταξύ των τεμαχών του ρήγματος, διαφορικές καθιζήσεις, παραμορφώσεις του εδάφους και ανάπτυξη πρόσθετων τάσεων στο έδαφος, μπορεί να οδηγήσουν σε αστοχίες κτισμάτων ή άλλων έργων υποδομής, ακόμα και σε κάποια απόσταση από το ίχνος του ρήγματος, ιδιαίτερα όταν οι μετατοπίσεις του εδάφους κοντά σε αυτά εντοπίζονται σε δευτερεύοντα ρήγματα ή άλλες ασυνέχειες. Τα φαινόμενα κατευθυντικότητας και μόνιμης μετατόπισης συνοψίζονται σχηματικά τα σχήματα 4.4 και 4.5 για ρήγματα οριζοντίου και μη οριζοντίου διαρρήξεως. Στο σχήμα 4.4 φαίνονται οι διευθύνσεις στις οποίες εκδηλώνονται τα φαινόμενα αυτά σε κάθε περίπτωση, ενώ στο σχήμα 4.5 παρουσιάζονται οι χρονοϊστορίες μετακινήσεων στις διευθύνσεις αυτές που οφείλονται στα δύο φαινόμενα.

Σχήμα 4.4: Διευθύνσης εκδήλωσης φαινομένων κατευθυντικότητας και μόμιμης μετακίνησης για τις δύο περιπτώσεις ρηγμάτων (Stewart et al, 2001)

Σχήμα 4.5: Χρονοϊστορίες μετακίνησης στις διευθύνσεις κάθετα και παράλληλα στο ίχνος του ρήγματος για τις δύο περιπτώσεις ρηγμάτων. Διακρίνεται η συμβολή κάθε φαινομένου στις συνολικές μετακινήσεις. (Stewart et al, 2001)

4.1.3 Επίδραση ανάντη τμήματος ρήγματος (Hanging wall effect)

Το φαινόμενο αυτό έχει διαπιστωθεί από κάποιους ερευνητές στις περιπτώσεις κανονικών και ανάστροφων ρηγμάτων. Σύμφωνα με αυτό, υπάρχουν συστηματικές διαφορές στις σεισμικές κινήσεις σε περιοχές ανάντη και κατάντη στο ρήγμα, ακόμα και αν ισαπέχουν στο οριζόντιο επίπεδο από αυτό, επειδή οι περιοχές ανάντη στο ρήγμα βρίσκονται πλησιέστερα στο επίπεδο του ρήγματος, όπως φαίνεται στο σχήμα 4.6. Σύμφωνα με τους Abrahamson and Somerville, 1996, τα σεισμικά γεγονότα εμφανίζουν μεγαλύτερες εντάσεις διέγερσης και μικρότερη εξασθένηση στις περιοχές ανάντη στο ρήγμα, ενώ ο Somerville, 2000 διαπιστώνει ότι η επίδραση του φαινομένου είναι εντονότερη στις μικρές περιόδους του φάσματος επιταχύνσεων. Το φαινόμενο αυτό εκδηλώθηκε έντονα στο σεισμό του Chi-Chi, 1999, επικεντρώνοντας το ενδιαφέρον αρκετών ερευνητών στο συγκεκριμένο θέμα (Yu and Gao 2001, Shabestari and Yamazaki 2003).

Σχήμα 4.6: Επίδραση ανάντη τμήματος ρήγματος (Shuang - Li-li, 2007)

4.1.4 Φαινόμενο κατακόρυφης συνιστώσας (Vertical effect)

Σε σεισμού κοντινού πεδίου εμφανίζεται αυξημένη η επιρροή της κατακόρυφης συνιστώσας των σεισμικών διεγέρσεων. Συγκεκριμένα, διαπιστώνεται ότι ο λόγος μεταξύ της μέγιστης κατακόρυφης και οριζόντιας συνιστώσας της εδαφικής επιτάχυνσης, $\frac{PGA_V}{PGA_H}$ είναι αυξημένος σε σχέση με συνήθεις σεισμούς εκτός κοντινού πεδίου και μάλιστα σε αρκετές περιπτώσεις μεγαλύτερος από $\frac{2}{3}$, το οποίο θεωρείται από τους κανονισμούς αντισεισμικού σχεδιασμού. Επιπλέον, το φαινόμενο αυτό είναι ακόμα εντονότερο σε μαλακές εδαφικές συνθήκες (Wang et al 2002, Li and Zhu 2004, Ni and Zhu 2004). Η επίδραση αυτή επεκτείνεται και στα φάσματα απόκρισης, με τον λόγο $\frac{PSA_V}{PSA_H}$ να εξαρτάται από την ιδιοπερίοδο του εξεταζόμενου κτηρίου και την απόσταση του από το ρήγμα. Στις μικρές περιόδους και για μικρές αποστάσεις από το ρήγμα, ο παραπάνω λόγος υπερβαίνει συνήθως την τιμή $\frac{2}{3}$ που θεωρείται από τους κανονισμούς, όμως στις μεγάλες περιόδους ο λόγος $\frac{2}{3}$ θεωρείται αρκετά συντηρητικός (Bozorgnia et al 1995).

Οι έρευνες για το παραπάνω ζήτημα και την επίδρασή του στις κατασκευές είναι σχετικά περιορισμένες. Παρόλα αυτά, ορισμένοι ερευνητές (Kikuchi et al 2000) θεωρούν ότι οι παραπάνω αυξημένες κατακόρυφες διεγέρσεις δεν παίζουν σημαντικό ρόλο στις εμφανιζόμενες βλάβες στις κατασκευές, αν και αυτό αμφισβητείται λόγω των απλοποιητικών παραδοχών που οδήγησαν στο παραπάνω συμπέρασμα.

4.2 Παράμετροι περιγραφής σεισμικών κινήσεων κοντινού πεδίου

Για την εξέταση του φαινομένου της κατευθυντικότητας ανάλογα με τη σχετική θέση εξεταζόμενης θέσης και ρήγματος, οι Somerville et al 1997 εισήγαγαν τη χρήση κάποιων παραμέτρων που φαίνονται στο σχήμα 4.7. Όπως φαίνεται στο σχήμα αυτό, η ισχύς του φαινομένου της κατευθυντικότητας εξαρτάται από τη γωνία μεταξύ διεύθυνσης διάρρηξης του ρήγματος

Σχήμα 4.7: Παράμετροι περιγραφής εξεταζόμενης θέσης σε σχέση με το ρήγμα (Somerville et al, 1997, τροποποιημένο από Stewart et al, 2001)

και της διεύθυνσης διάδοσης των σεισμικών κυμάτων προς την εξεταζόμενη θέση (γωνία θ σε κάτοψη για ρήγματα οριζοντίου διαρρήξεως και γωνία φ σε τομή για κανονικά ή ανάστροφα ρήγματα) και από το λόγο της επιφάνειας διάρρηξης που βρίσκεται μεταξύ της εστίας (σε κάτοψη ή σε τομή αντίστοιχα) και της εξεταζόμενης θέσης προς τη συνολική επιφάνεια του ρήγματος. Πιο έντονα φαινόμενα κατυεθυντικότητας αναμένονται για μικρότερη γωνία θ ή φ και για μεγαλύτερο λόγο μεταξύ του παραπάνω τμήματος του ρήγματος προς το συνολικό.

Αρκετοί ερευνητές (Somerville 1998, Alavi and Krawinkler 2000, Sasani and Bertero 2000, Rodriguez-Marek 2000 και άλλοι) έχουν εκφράσει την άποψη ότι η αναπαράσταση των σεισμικών κινήσεων κοντινού πεδίου σε μορφή χρονοϊστορίας κίνησης είναι προτιμότερη από τη χρήση φασμάτων απόκρισης, καθώς τα τελευταία δεν μπορούν να περιγράψουν σωστά την κατανομή έκλυσης ενέργειας που εμφανίζεται σε μικρά χρονικά διαστήματα, κυρίως στην αρχή των σεισμικών κινήσεων, στους σεισμούς κοντινού πεδίου.

Στη βιβλιογραφία έχουν προταθεί διάφορες μορφές προσέγγισης των παλμών που εμφανίζονται στις παραπάνω σεισμικές κινήσεις, με έμφαση τις χρονοϊστορίες ταχύτητας. Έτσι, έχουν για παράδειγμα χρησιμοποιηθεί τμηματικά γραμμικές συναρτήσεις (Hall et al 1995, Krawinkler and Alavi 1998, Alavi and Krawinkler 2001), αρμονικές συναρτήσεις και συνδυασμοί τους (Sasani and Bertero 2000, Makris and Black 2004), συνδυασμοί αρμονικών συναρτήσεων με άλλες μορφές, όπως κωδωνοειδείς (Mavroeidis and Papageorgiou 2003), αλλά και πλέον σύνθετες μορφές όπως το κυματίδιο Daubechie 4ου βαθμού (Baker 2007). Κάποιες απλές μορφές φαίνονται στο σχήμα 4.8.

Η πλέον απλή μορφή παλμού, η οποία όμως μπορεί να περιγράψει ικανοποιητικά τις παλμικές κινήσεις που εμφανίζονται στις σεισμικές κινήσεις κοντινού πεδίου, είναι ο ημιτονοειδής παλμός ταχύτητας. Οι παράμετροι που μπορούν να εισαχθούν με τη συγκεκριμένη αναπαρά-

Σχήμα 4.8: Απλές μορφές παλμών που έχουν χρησιμοποιηθεί από ερευνητές (Stewart et al, 2001)

σταση έχουν φυσική σημασία και είναι οι εξής: ο αριθμός των παλμών μισού ημιτόνου, η περίοδος κάθε παλμού και το μέγιστο πλάτος ταλάντωσης σε κάθε παλμό. Σε περίπτωση εξέτασης διαξονικής διέγερσης με τους παραπάνω παλμούς, απαιτείται και η χρονική διαφορά μεταξύ των δύο παλμικών διεγέρσεων. Οι παραπάνω παράμετροι ορίζονται με διάφορες θεωρήσεις από τους ερευνητές, όπως περιγράφεται παρακάτω. Οι παράμετροι αυτές διακρίνονται στο σχήμα 4.9.

4.2.1 Αριθμός σημαντικών παλμών

Ο αριθμός των παλμών μισού ημιτόνου (αριθμός σημαντικών παλμών N_{ν}) που περιέχει η σεισμική κίνηση ορίζεται συνήθως ως ο αριθμός παλμών μισού ημιτόνου που έχουν μέγιστο πλάτος τουλάχιστον ίσο με το μισό της τιμής μέγιστης ταχύτητας της σεισμικής καταγραφής. Το όριο αυτό όμως είναι αρκετά αυθαίρετο και ο καθορισμός του αριθμού σημαντικών παλμών είναι ευαίσθητος στην επιλογή του ορίου (Rodriguez-Marek, 2000). Στις περισσότερες περιπτώσεις ο αριθμός των σημαντικών παλμών κυμαίνεται μεταξύ των τιμών 1 και 3, με την τιμή 2 να είναι η πλέον συνιθέστερη (δηλαδή εμφανίζεται ένας πλήρης κύκλος παλμικής κίνησης).

4.2.2 Περίοδος παλμών

Η περίοδος κάθε παλμού μισού ημιτόνου T_{ν} ορίζεται ως το διπλάσιο του χρονικού διαστήματος στα άκρα του οποίου οι ταχύτητες μηδενίζονται ή έχουν τιμή ίση με το 10% της μέγιστης ταχύτητας του παλμού αυτού. Στον ορισμό της περιόδου των παλμών εισάγονται υποκειμενικές παράμετροι κατά την κρίση των ερευνητών, καθώς πολλές φορές δεν μπορεί να δοθεί μια

Σχήμα 4.9: Παράμετροι περιγραφής ημιτονοειδών παλμών στις διευθύνσεις κάθετα και παράλληλα στο ρήγμα (Rodriguez-Marek, 2000)

μονοσήμαντη απάντηση, αλλά οι αβεβαιότητες που εισάγουν αυτές οι θεωρήσεις είναι μικρότερες από αυτές που ενέχει η εκτίμηση της περιόδου των παλμών από σεισμολογικές μεταβλητές. Άλλοι ερευνητές χρησιμοποιούν ως προσέγγιση της παραπάνω περιόδου την περίοδο που αντιστοιχεί στο μέγιστο του φάσματος απόκρισης ταχυτήτων για απόσβεση 5% $T_{\nu-p}$, κάτι που μπορεί να υπολογιστεί με μεγαλύτερη σαφήνεια. Παρόλα αυτά, οι δύο αυτές περίοδοι δεν ταυτίζονται, κυρίως για σεισμικές κινήσεις που περιέχουν περισσότερους από έναν παλμούς και η τυχόν ταύτισή τους υποδηλώνει ότι η σεισμική κίνηση περιέχει παλμούς που εκλύουν ενέργεια σε στενές περιοχές περιόδων. Ο Rodriguez-Marek (2000) υπολόγισαν ότι ο λόγος $\frac{T_{\nu}}{T_{\nu-p}}$ έχει μέση τιμή 0.84 με τυπική απόκλιση 0.28.

Στη βιβλιογραφία έχουν διατυπωθεί συνθετότερες μέθοδοι εντοπισμού παλμών που ίσως προσφέρουν καλύτερα αποτελέσματα στις περιπτώσεις που τα χαρακτηριστικά των παλμών δεν είναι ευδιάκριτα. Για παράδειγμα, οι Alavi and Krawinkler (2001) χρησιμοποιούν ως περίοδο παλμού αυτή που προσφέρει μικρότερη απόκλιση μεταξύ του φάσματος απόκρισης ταχυτήτων της πραγματικής καταγραφής και της σειράς των εξιδανικευμένων παλμών. Μια μέθοδος που προτείνεται από τους Krawinkler et al (2005) βασίζεται στα αποτελέσματα των καταγραφών σε πολυβάθμια συστήματα και συγκεκριμένα υπολογίζεται η περίοδος του παλμού που ελαχιστοποιεί τις διαφορές στα drifts των ορόφων σε σχέση με τις πραγματικές καταγραφές. Άλλες μέθοδοι απαιτούν την ανάλυση της σεισμικής κίνησης σε κυματομορφές, οπότε προκύπτουν οι σημαντικοί παλμοί που περιέχουν (Baker, 2007).

Προσεγγίσεις για τις παραπάνω παραμέτρους χρησιμοποιώντας σεισμολογικές μεταβλητές έχουν διατυπώσει αρκετοί ερευνητές όπως οι Somerville (1998), Somerville et al. (1999), Alavi and Krawinkler (2000), Rodriguez-Marek (2000), Baker (2007). Η σεισμολογική μεταβλητή που χρησιμοποιείται κυρίως είναι το μέγεθος του σεισμικού γεγονότος, καθώς από αυτό εξαρτάται n διάρκεια των επιμέρους διαρρήξεων του ρήγματος (Somerville 1998, Somerville et al 2003), n οποία με τη σειρά της καθορίζει την περίοδο των παλμών. Στο σχήμα 4.10 παρουσιάζονται

σχηματικά κάποιες από τις σχέσεις που έχουν διατυπωθεί.

Σχήμα 4.10: Σύγκριση μοντέλου Rodriguez-Marek (2000) για την περίοδο των παλμών με μοντέλα Somerville (1998) για την T_{ν} και Alavi and Krawinkler (2000) για την $T_{\nu-p}$ (Rodriguez-Marek, 2000)

Οι Rodriguez-Marek (2000) μάλιστα έχουν διατυπώσει ξεχωριστές σχέσεις για εδαφικές και βραχώδεις συνθήκες, όπου διαπιστώνεται μεγαλύτερη περίοδος παλμών σε έδαφος από ό,τι σε βράχο για σχετικά μικρά μεγέθη σεισμών, ενώ για μεγαλύτερα μεγέθη δεν υπάρχει σαφής διάκριση μεταξύ των δύο σχηματισμών (σχήμα 4.11).

Σχήμα 4.11: Σύγκριση εδαφικών συνθηκών για τον καθορισμό της περιόδου των παλμών (μέσες τιμές και ζώνη μίας τυπικής απόκλισης (Rodriguez-Marek, 2000)

4.2.3 Μέγιστη οριζόντια εδαφική ταχύτητα

Η PHV εξαρτάται κυρίως από το μέγεθος του σεισμικού γεγονότος, την απόσταση και τις εδαφικές συνθήκες στην εξεταζόμενη θέση και είναι μια καλή προσέγγιση για τη μέγιστη ταχύ-

τητα των παλμών (Krawinkler et al, 2005). Οι Somerville (1998), Alavi and Krawinkler (2000), Rodriguez-Marek (2000) έχουν διατυπώσει σχέσεις που συνδέουν τις παραπάνω μεταβλητές με την μέγιστη εδαφική ταχύτητα, μια σύγκριση των οποίων γίνεται στο σχήμα 4.12.

Σχήμα 4.12: Σύγκριση μοντέλων πρόβλεψης μέγιστης εδαφικής ταχύτητας (Rodriguez-Marek, 2000)

Επιπλέον, οι Somerville et al (1999) έχουν συνδέσει τη μέγιστη ταχύτητα του παλμού με τις παραμέρους του σχήματος 4.7 σύμφωνα με τις σχέσεις

$$\nu_g = \nu_{\rm o\lambda} \frac{s}{L} \cos \theta \tag{4.1}$$

$$\nu_g = \nu_{\rm o\lambda} \frac{d}{W} \cos \varphi \tag{4.2}$$

όπου ν_{ολ} είναι η ταχύτητα ολίσθησης. Η πρώτη χρησιμοποιείται για ρήγματα οριζοντίου διαρρήξεως και η δεύτερη για τις υπόλοιπες περιπτώσεις.

4.2.4 Λοιπές παράμετροι

Οι Somerville et al (1997) και Abrahamson (2000) έχουν διατυπώσει τροποποιήσεις λόγω κοντινού πεδίου στις φασματικές επιταχύνσεις των σχέσεων εξασθένησης των Abrahamson and Silva (1997) λαμβάνοντας υπόψη τις παραμέτρους που φαίνονται στο σχήμα 4.7. Οι τιμές που τροποποιούνται είναι ο γεωμετρικός μέσος των δύο οριζοντίων συνιστωσών και του λόγου μεταξύ των δύο συνιστωσών. Τροποποιήσεις στις σχέσεις εξασθένησης νέας γενιάς έχουν διατυπώσει και οι Shahi and Baker (2011), οι οποίες περιγράφονται σε επόμενη ενότητα. Επίσης, οι Somerville et al (1997) διατύπωσαν τροποποιήσεις στη σημαντική διάρκεια της σεισμικής κίνησης στη σχέση εξασθένησης των Abrahamson and Silva (1996), ενώ οι Liu et al (2001) στον ισοδύναμο αριθμό ομοιόμορφων κύκλων φόρτισης.

4.3 Απόκριση κατασκευών σε σεισμούς κοντινού πεδίου

Τα τελευταία χρόνια οι κανονισμοί σχεδιασμού κατασκευών ανά τον κόσμο έχουν αρχίσει να εξετάζουν τα φαινόμενα των σεισμών κοντινού πεδίου. Χαρακτηριστικά, εδώ αναφέρονται οι περιπτώσεις του αμερικάνικου κανονισμού UBC 1997 και των Ευρωκωδίκων. Ο UBC 1997 ήταν ο πρώτος κανονισμός που έλαβε υπόψη τα χαρακτηριστικά της εδαφικής κίνησης στο κοντινό πεδίο. Στις συνηθισμένες περιπτώσεις, το ελαστικό φάσμα επιταχύνσεων στον κανονισμό αυτό καθορίζεται από δύο παραμέτρους C_a και C_v . Για να ληφθούν υπόψη τα φαινόμενα κοντινού πεδίου (σε απόσταση μικρότερη από 15 km από ενεργό ρήγμα, ικανό να προκαλέσει σεισμούς μεγέθους μεγαλύτερο από 6.5, σε υψηλή σεισμική ζώνη), οι παραπάνω συντελεστές αντικαθίστανται από τις τιμές N_aC_a και N_vC_v . Οι μεγεθυντικοί όροι N_a και N_v διαφοροποιούνται ανάλογα με την κατάταξη της σεισμικής πηγής, η οποία γίνεται ανάλογα με το μέγιστο μέγεθος σεισμού που μπορεί να παράγει το ρήγμα και το ρυθμό ολίσθησής του. Η συγκεκριμένη μέθοδος βέβαια αμφισβητείται, όπως περιγράφεται παρακάτω.

Ο Ευρωκώδικας 8, σε αναλογία με τον παλαιότερο ελληνικό κανονισμό ΕΑΚ 2000, ορίζει ότι κτήρια σπουδαιότητας ΙΙ. ΙΙΙ. ΙV δεν θα κατασκευάζονται σε περιοχές άμεσα γειτνιάζουσες με επισήμως χαρακτηρισμένα ενεργά τεκτονικά ρήγματα (δηλαδή με μέσο ιστορικό ρυθμό ολίσθησης τουλάχιστον 1 mm/έτος και υφιστάμενες τοπογραφικές μαρτυρίες σεισμογόνου δραστηριότητας εντός της ολόκαινης περιόδου - τα τελευταία 11000 χρόνια). Για σημαντικούς φορείς κατασκευαζόμενους κοντά σε ενδεχομένως ενεργά ρήγματα σε περιοχές υψηλής σεισμικότητας θα πρέπει να διεξάγονται ειδικές γεωλογικές έρευνες. Επιπλέον, ορίζεται ότι στην περίπτωση κτηρίου σπουδαιότητας IV, σε απόσταση μικρότερη από 15 km από το πλησιέστερο πιθανό ενεργό ρήγμα, ικανό να δώσει μέγεθος σεισμού μεγαλύτερο από $M_{\rm s}=6.5,$ θα πρέπει να χρησιμοποιούνται ειδικά τοπικά φάσματα που λαμβάνουν υπόψη τα χαρακτηριστικά των σεισμών κοντινού πεδίου. Για την παραπάνω απόσταση και σεισμικό μέγεθος επισημαίνεται ακόμα ότι δεν μπορεί να εφαρμοστεί η απλοποιημένη μέθοδος σε συστήματα μόνωσης με ισοδύναμη γραμμική αποσβενόμενη συμπεριφορά. Στην περίπτωση των γεφυρών δίδεται μεγαλύτερη έμφαση, καθώς μπορεί να διασχίζουν πιθανά ενεργά τεκτονικά ρήγματα με ασυνέχειες μετακινήσεων εδάφους, οπότε ορίζεται ότι πρέπει να πραγματοποιούνται ειδικές μελέτες με ειδικά τοπικά φάσματα, όπου θα πρέπει να λαμβάνεται υπόψη και η κατακόρυφη συνιστώσα της εδαφικής κίνησης, αλλά και η πιθανή χωρική μεταβολή της σεισμικής μετακίνησης εδάφους, κρίνοντας παράλληλα ακατάλληλη τη μέθοδο ισοδύναμου μονοβάθμιου συστήματος για την ανάλυση του φορέα.

Στη βιβλιογραφία καταγράφονται διάφορες παρατηρήσεις σχετικά με την απόκριση των κατασκευών σε σεισμούς κοντινού πεδίου, η οποία διαφέρει σημαντικά από την απόκρισή τους σε συνήθεις σεισμούς. Οι Hall et al (1995) εξετάζοντας τη διάδοση των σεισμικών κυμάτων σε συνεχή διατμητικά συστήματα διαπίστωσαν τις καταστροφικές επιπτώσεις των συγκεκριμένων σεισμών και την ανεπάρκεια των χρησιμοποιούμενων κανονισμών, ενώ τις συσχέτισαν με τις μετατοπίσεις των φορέων κατά τη διάρκεια του παλμού. Ο Iwan (1997) χρησιμοποίησε φάσματα μέγιστων drifts ορόφων έναντι των κλασικών φασμάτων επιταχύνσεων, τα οποία θεώρησε ακατάλληλα για τη μελέτη των φαινομένων αυτών, αλλά οι Chopra and Chintanapakdee (1998) αντέκρουσαν την τελευταία αυτή άποψη.

Ο Malhotra (1999) επικέντρωσε την έρευνά του στον υψηλό λόγο $\frac{PGV}{PGA}$ που παρατηρείται συχνά στις σεισμικές καταγραφές κοντινού πεδίου. Ο υψηλός αυτός λόγος οδηγεί σε φάσματα απόκρισης με μεγάλη περιοχή εξαρτώμενη από τις εδαφικές επιταχύνσεις, πολύ μεγαλύτερη μάλιστα από αυτήν που προβλέπεται από τους κανονισμούς. Εκεί εντοπίζει λοιπόν τις καταστροφικές επιπτώσεις των σεισμικών αυτών γεγονότων. Συγκεκριμένα, η μεγάλη περιοχή των φασμάτων που εξαρτάται από τις εδαφικές επιταχύνσεις θεωρεί ότι έχει τις ακόλουθες συνέπειες:

 Μειωμένη σχετική δυσκαμψία, καθώς οι φορείς συμπεριφέρονται πιο δύσκαπτα όταν βρίσκονται στην περιοχή "σταθερών" επιταχύνσεων

- Αυξημένη τέμνουσα βάσης και drifts ορόφων, επειδή περισσότερες ιδιομορφές που διεγείρονται βρίσκονται στην περιοχή των "σταθερών" επιταχύνσεων, με μεγαλύτερη επιτάχυνση από ό,τι θα είχαν κανονικά
- Μειωμένη συμβολή των ανώτερων ιδιομορφών, καθώς ακόμα και οι πρώτες ιδιομορφές της κατασκευής έχουν μεγαλύτερη πιθανότητα να βρίσκονται στην περιοχή "σταθερών" επιταχύνσεων, συμβάλλοντας έτσι περισσότερο στην τέμνουσα βάσης της κατασκευής.
- Μειωμένη αποδοτικότητα των συστημάτων απόσβεσης, επειδή αυτά έχουν μεγαλύτερη αποδοτικότητα για πιο εύκαμπτα συστήματα, ενώ όπως εξηγήθηκε παραπάνω η αυξημένη περιοχή "σταθερών" επιταχύνσεων οδηγεί σε αυξημένη σχετική δυσκαμψία των κατασκευών
- Αυξημένες απαιτήσεις πλαστιμότητας, αφού για δεδομένο συντελεστή συμπεριφοράς, στην περιοχή "σταθερών" επιταχύνσεων ο απαιτούμενος δείκτης πλαστιμότητας είναι μεγαλύτερος από τις υπόλοιπες περιοχές του φάσματος απόκρισης.

Τέλος, σχολιάζει την επάρκεια του κανονισμού UBC 1997, διαπιστώνοντας ότι είναι συντηρητικός στην περιοχή σταθερών επιταχύνσεων, υποεκτιμά τις επιταχύνσεις στην περιοχή σταθερών ταχυτήτων, ενώ τον θεωρεί μη ρεαλιστικό στην περιοχή μετά την περιοχή σταθερών ταχυτήτων (η οποία έχει πάλι σταθερή επιτάχυνση), καθώς οι μετακινήσεις που δίνει απειρίζονται οσο οι περίοδοι αυξάνουν.

Οι Krawinkler et al (2005) μελέτησαν τη συμπεριφορά μονοβάθμιων και πολυβάθμιων συστημάτων σε ισοδύναμους παλμούς περιόδου T_p . Ο λόγος της περιόδου της κατασκευής προς την περίοδο του παλμού $\frac{T}{T_p}$ θεωρούν ότι αποτελεί καθοριστικό παράγοντα διαμόρφωσης της απόκρισης του φορέα, αναφέροντας ότι στο διάστημα 0.375 $< \frac{T}{T_p} < 3.0$ οι περισσότερες σεισμικές καταγραφές κοντινού πεδίου μπορούν να αντικατασταθούν από ισοδύναμους παλμούς για τη μελέτη της απόκρισης των φορέων.

Χαρακτηριστικά, για λόγους $\frac{T}{T_p} > 1.0$ οι παλμικές κινήσεις δημιουργούν φαινόμενα διάδοσης κυμάτων στα πολυβάθμια συστήματα, διεγείροντας ανώτερες ιδιομορφές, κάτι που οδηγεί σε αυξημένα ελαστικά drift προς τους ανώτερους ορόφους και κατ' επέκταση σε πρόωρες διαρροές στους ορόφους αυτούς. Επισημαίνεται ότι η μέθοδος SRSS δεν οδηγεί σε ορθά αποτελέσματα στην περίπτωση αυτή. Για ανελαστική απόκριση στην περίπτωση που $\frac{T}{T_p} > 1.0$, σε "ισχυρές" κατασκευές διαπιστώνουν αυξημένες απαιτήσεις πλαστιμότητας στους ανώτερους ορόφους, ενώ σε "ασθενείς" κατασκευές οι αυξημένες απαιτήσεις πλαστιμότητας εντοπίζονται κοντά στη βάση του κτηρίου. Για $\frac{T}{T_p} < 1.0$ αυξημένες απαιτήσεις πλαστιμότητας διαπιστώνονται στη βάση του κτηρίου. Για $\frac{T}{T_p} < 1.0$ αυξημένες απαιτήσεις πλαστιμότητας διαπιστώνονται στη βάση του κτηρίου. Και τη προιθημένες απαιτήσεις πλαστιμότητας διαπιστώνονται στη βάση του κτηρίου. Μάλιστα, στην περίπτωση των ισοβάθμιων μονοβάθμιων συστημάτων, για $\frac{T}{T_p} < 0.75$, η μετακίνηση του ανελαστικού συστήματος προκύπτει μεγαλύτερη από τη μετακίνηση του αντίστοιχου ελαστικού, κάτι που υποδηλώνει ότι οι απαιτήσεις πλαστιμότητας κύνας όμως με τους Chopra and Chintanapakdee (2001), Μαντοείdis (2004), μπορούν να χρησιμοποιπθούν οι γνωστές σχέσεις μεταξύ συντελεστή συμπεριφοράς και πλαστιμότητας, αρκεί να οριστεί κατάλληλα η περίοδος Τ_c.

Σημειώνεται ότι για συστήματα με $\frac{T_1}{T_p} < 1.0$, μετά τη διαρροή του συστήματος η θεμελιώδης ιδιοπερίοδος του φορέα σταδιακά πλησιάζει την περίοδο του παλμού, με αποτέλεσμα η φασματική επιτάχυνση που αντιστοιχεί στην ιδιοπερίοδο αυτή σταδιακά να αυξάνεται. Με τον τρόπο αυτό, σεισμικές κινήσεις κοντινού πεδίου απαιτούν τελικά αυξημένη πλαστιμότητα σε σχέση με ανάλογες σεισμικές κινήσεις χωρίς παλμούς. Αντίθετα, στην περίπτωση $\frac{T_1}{T_p} > 1.0$, με την αύξηση της θεμελιώδους ιδιοπεριόδου κατά τη διαρροή και την απομάκρυνσή της από την περίοδο του παλμού, η αντίστοιχη φασματική επιτάχυνση μειώνεται. Σε κάποιες περιπτώσεις μάλιστα, οι απαιτήσεις πλαστιμότητας εμφανίζονται μειωμένες σε σχέση με ανάλογες σεισμικές κινήσεις χωρίς παλμούς. Τέλος, θεωρούν ότι οι ισχύοντες κανονισμοί δεν επαρκούν για να παρέχουν γενικά ικανοποιπτική ασφάλεια έναντι σεισμών κοντινού πεδίου. Προτείνουν λοιπόν ότι ο σχεδιασμός των κατασκευών σε σεισμούς κοντινού πεδίου θα πρέπει να λαμβάνει υπόψη την περίοδο και τα πλάτη ταλάντωσης των ισοδύναμων παλμών, καθώς όπως φαίνεται από τα παραπάνω τα ειδικά χαρακτηριστικά των ισοδύναμων παλμών επηρεάζουν σημαντικά την απόκριση των φορέων.

Ανάλογες παρατηρήσεις με τις παραπάνω έχουν διατυπώσει και άλλοι ερευνητές. Οι Huang (2003), Roberts and Lutes (2003) θεωρούν ότι η εκτίμηση της απόκρισης πολυβάθμιων φορέων είναι ανεπαρκής αν χρησιμοποιείται μόνο η πρώτη ιδιομορφή του φορέα σε περίπτωση που αυτή είναι μεγαλύτερη από την περίοδο του ισοδύναμου παλμού. Ακόμα, έχουν διατυπωθεί απόψεις ότι η χρήση των φασμάτων απόκρισης σχεδιασμού πιθανώς να μην μπορεί να αποδώσει σωστά την ανελαστική απόκριση των φορέων, ενώ οι κλασικές μέθοδοι SRSS και SAV για συνδυασμό των ιδιομορφών μπορεί να δίνουν μη συντηρητικά αποτελέσματα (Baez and Miranda 2000, MacRae and Mattheis 2000, MacRae et al 2001, Huang and Zhu 2003).

Κεφάλαιο 5

Σεισμός Αθήνας '99 - Υπάρχουσες αντιλήψεις

Ο σεισμός της Αθήνας (Πάρνηθας) που συνέβη στις 7 Σεπτεμβρίου 1999 και ώρα 11:56:50 GMT αποτελεί ένα από τα καταστροφικότερα σεισμικά γεγονότα στη σύγχρονη ιστορία της Ελλάδας, καθώς εκδηλώθηκε πολύ κοντά σε πυκνοκατοικημένες περιοχές, κοστίζοντας τη ζωή σε 143 ανθρώπους. Ο συγκεκριμένος σεισμός προκάλεσε μεγάλη εντύπωση, καθώς μέχρι τότε η περιοχή των Αθηνών θεωρούνταν από τους κανονισμούς ως χαμηλής σεισμικότητας. Η κύρια σεισμική δόνηση θεωρείται ότι είχε μέγεθος $M_s = 5.9 (M_0 = 7.8 \cdot 10^{17} Nm)$, ενώ του σεισμικού αυτού γεγονότος προηγήθηκαν κάποιοι προσεισμοί μικρότερου μεγέθους ($M_L = 2.5 \div 3.2$) και ακολούθησαν περισσότεροι από 1500 μετασεισμοί.

Οι βλάβες σε κατασκευές επικεντρώθηκαν κυρίως στα βόρεια και βορειοδυτικά προάστια της Αθήνας, όπως τα Άνω Λιόσια, το Μενίδι (Αχαρνές), οι Αδάμες, η Χελιδονού, η Μεταμόρφωση και οι Θρακομακεδόνες. Περίπου 80 κατοικίες και βιομηχανικά κτήρια κατέρρευσαν και πάνω από 1000 κτήρια έπαθαν μη επισκευάσιμες βλάβες. Λόγω των καταρρεύσεων σε 33 από τα παραπάνω κτήρια, αλλά και λόγω του φόβου, 143 άνθρωποι έχασαν τη ζωή τους. Παρόλα αυτά ακόμα και σε αυτές τις περιοχές, οι βλάβες παρουσίασαν ανοιμοιόμορφη γεωγραφική κατανομή. Γενικά πάντως, η ένταση των βλαβών σύμφωνα με την τροποποιημένη κλίμακα Mercalli στις παραπάνω περιοχές θεωρείται VII - ΙΧ.

5.1 Σεισμολογικά χαρακτηριστικά

Το ρήγμα που προκάλεσε το συγκεκριμένο σεισμικό γεγονός θεωρείται ότι ήταν ένα μη χαρτογραφημένο "τυφλό" κανονικό ρήγμα στην ευρύτερη περιοχή της Πάρνηθας. Η ακριβής θέση του επικέντρου και η έκταση και θέση της ρηξιγενούς ζώνης δεν είναι απολύτως γνωστά και υπάρχουν διάφορες απόψεις στην επιστημονική κοινότητα. Σύμφωνα πάντως με τις επικρατούσες απόψεις, αν το επίπεδο διάρρηξης επεκτεινόταν ως την επιφάνεια, το ίχνος του ίσως ήταν παρόμοιο με το γνωστό ρήγμα της Φυλής. Μια προσέγγιση της θέσης και της μορφής του ρήγματος, καθώς και της θέσης του επικέντρου και της διεύθυνσης διάδοσης δίδεται στο σχήμα 5.1. Στο ίδιο σχήμα παρουσιάζονται οι πλέον σεισμόπληκτες περιοχές, καθώς και οι θέσεις των σεισμικών καταγραφών, που περιγράφονται στη συνέχεια.

Η διεύθυνση του ρήγματος θεωρείται ότι είναι περίπου B120°, η γωνία βύθισής του περίπου 55° με φορά προς τα N-NA (με μεγαλύτερη τιμή στο ανατολικό άκρο) και η γωνία ολίσθησης περίπου -83° . Ακριβέστερα στοιχεία από διάφορες πηγές δίδονται στον πίνακα 5.1. Πιστεύεται ότι η διάρρηξη ξεκίνησε από βάθος 8 έως 15 km και διαδόθηκε προς τα ανατολικά και προς την επιφάνεια, με μεγαλύτερο πλήθος μετασεισμών προς τα ανατολικά. Υπάρχει τέλος η άποψη ότι το όρος Αιγάλεω, του οποίου ο άξονας είναι σχεδόν κάθετος με τη διεύθυνση του ρήγματος, έβαλε φραγμό στη διάδοση της διάρρηξης, οδηγώντας την προς το Βορρά, ενεργοποιώντας και

Σχήμα 5.1: Προτεινόμενη θέση ρήγματος,επικέντρου και διεύθυνσης διάδοσης σε σχέση με τις πλειόσειστες περιοχές και τις θέσεις καταγραφής (Elenas, 2003)

Πηγή	Poπń (Nm)	Βάθος (km)	Δ. ίχνους (°)	Γ. βύθισης (°)	Γ. πλάτος (^ο N)	Γ. μήκος (^ο Ε)
USGS	7.8e17	9	123	55	38.13	23.55
Harvard	1.2e18	15	114	47	38.02	23.71
GLUT	7.6e17	11-18	119	56	38.04	23.61
Stavrakakis et at.	5.66e17	10	117	52	-	-
Papadopoulos et al.	-	16	113	56	38.10	23.58
Voulgaris et al.	-	8	110	55	-	-
Tselentis-Zaradnik	-	10	117	52	-	-

Πίνακας 5.1: Σεισμολογικά δεδομένα ρήγματος από διάφορες πηγές (Bouckovalas - Kouretzis, 2001)

άλλα ρήγματα, αλλά ίσως και να οδήγησε στη δημιουργία υψίσυχνων κυματισμών μεγάλης επιτάχυνσης.

Όπως αναφέρθηκε και στα παραπάνω, παρατηρήθηκε ανομοιομορφία κατανομής των βλαβών, τόσο σε μεγάλη κλίμακα (σε επίπεδο δήμων) όσο και σε μικρότερη (σε επίπεδο γειτονιάς).

Ο μπχανισμός σεισμικής διάρρηξης σε σχέση με τη θέση και τον προσανατολισμό κάθε περιοχής φαίνεται να είναι κυρίως υπεύθυνος για την ανοιμοιομορφία μεγάλης κλίμακας. Η μεγαλύτερη έκταση των βλαβών στα βορειοανατολικά του ρήγματος μπορεί ποιοτικά να ερμηνευτεί από τη θέση και διεύθυνση διάρρηξης του ρήγματος, ενισχύοντας την άποψη εμφάνισης φαινομένων κατευθυντικότητας. Σε αντίθεση μάλιστα με την επικρατούσα αντίληψη, η μέγιστη ένταση δεν παρατηρήθηκε στην οροφή του κανονικού ρήγματος.

Οι επικρατούσες γεωλογικές και τοπικές εδαφικές συνθήκες φαίνεται να είναι υπεύθυνες
για τις διαφοροποιήσεις σε μικρότερη κλίμακα (σε επίπεδο γειτονιάς). Στις περισσότερες πλειόσειστες περιοχές επικρατούν γενικώς πυκνά και σκληρά εδαφικά υλικά, αλλά η τοπική εμφάνιση μαλακότερων εδαφών φαίνεται ότι επηρέασε τις σεισμικές διεγέρσεις στις θέσεις αυτές, παρουσιάζοντας αυξημένες επιταχύνσεις, ιδιαίτερα στις χαμηλές περιόδους.

Άλλες παράμετροι που σημειώνεται ότι φαίνεται να επηρέασαν την κατανομή των βλαβών στις διάφορες περιοχές είναι η σεισμική τρωτότητα των κατασκευών και το ιδιαίτερο τοπογραφικό ανάγλυφο (πχ Αδάμες, Χελιδονού), που διαφοροποιούνται από περιοχή σε περιοχή.

5.2 Εκτίμηση επιταχύνσεων στις πλειόσειστες περιοχές

Όπως αναφέρθηκε και παραπάνω, παρόλο που υπάρχουν αρκετές καταγραφές του κύριου σεισμικού γεγονότος της 7 Σεπτεμβρίου 1999, στις περιοχές που επλήγησαν περισσότερο από το σεισμό δεν είχαν εγκατασταθεί σεισμικά όργανα, με αποτέλεσμα η σεισμική διέγερση στις περιοχές αυτές να είναι άγνωστη. Λόγω του μεγέθους των βλαβών όμως, θεωρείται ότι οι επιταχύνσεις που επέβαλε ο σεισμός στις κατασκευές στις θέσεις αυτές ξεπέρασαν αυτές που επιβάλλουν τα καταγεγραμμένα επιταχυνσιογραφήματα. Για το λόγο αυτό, έγινε προσπάθεια από μια ομάδα ερευνητών για προσέγγιση των παραπάνω χαρακτηριστικών στις περιοχές που εμφανίστηκαν μεγάλες βλάβες σε κατασκευές, η οποία παρουσιάζεται σε έκθεση του ΤΕΕ (απόφαση ΔΕ Γ/18/33/99).

Σκοπός λοιπόν της παραπάνω έκθεσης ήταν ο έμμεσος υπολογισμός μέσω θεωρίας, παρατήρησης και πειραμάτων, της έντασης και των φασματικών χαρακτηριστικών της εδαφικής επιτάχυνσης στις σεισμόπληκτες περιοχές. Για το λόγο αυτό, απαιτήθηκε η καταγραφή των βλαβών και άλλων έμμεσων παρατηρήσεων, όπως για παράδειγμα μετακινήσεις ή πτώσεις μνημείων σε νεκροταφεία ή άλλων αντικειμένων, η ανάστροφη ανάλυση απλών κατασκευών με γνωστές βλάβες ώστε να προκύψουν κάποια συμβατά επίπεδα επιταχύνσεων, η αποτύπωση της χωρικής κατανομής των βλαβών και η σύγκριση με παρόμοια σεισμικά γεγονότα που έχουν συμβεί στο παρελθόν για τα οποία υπάρχει γνώση για τα επίπεδα επιτυχύνσεων που έχουν επιβάλλει, καθώς και η διερεύνηση του εδάφους μέσω γεωτρήσεων και επιτόπου δοκιμών για την ανάλυση της επιρροής του εδαφικού προφίλ, αλλά και του υπεδάφους και του τοπογραφικού αναγλύφου, στις σεισμικές διεγέρσεις των κατασκευών. Όπως φαίνεται από τα παραπάνω, μια τέτοια έρευνα απαιτεί συνεργασία μηχανικών και επιστημόνων διαφόρων ειδικοτήτων.

Η διεξαγωγή της έρευνας έγινε σε τρεις φάσεις. Αρχικά, επιστρατεύτηκε n "δομοστατική" θεώρηση, όπου πραγματοποιήθηκαν ανάστροφες αναλύσεις για κάποιες χαρακτηριστικές περιπτώσεις αστοχιών σε σχετικά απλές κατασκευές. Μέσω δύο αστοχιών μνημείων στο νεκροταφείο Άνω Λιοσίων (ολίσθηση, ανασήκωμα και περιστροφή ενός ογκώδους τύμβου και ανατροπή υψίκορμου τύμβου) εκτιμήθηκαν οι πιθανές εδαφικές επιταχύνσεις (μέγιστη τιμή και μορφή χρονοϊστορίας) στην περιοχή αυτή, ενώ χρησιμοποιώντας τις παρατηρήσεις από βλάβες σε δύο πύλες αυλής στις Αχαρνές και τον υδατόπυργο του στρατοπέδου Δεκελείας, ανατολικά του ολυμπιακού χωριού στους Θρακομακεδόνες, έγινε η εκτίμηση κάποιων φασματικών τιμών στις εκάστοτε περιοχές.

Στη συνέχεια, έγινε αξιοποίηση των γνώσεων που παρέχει η σεισμολογία. Μέσω εμπειρικών σχέσων εξασθένησης που προβλέπουν τις εδαφικές και τις φασματικές επιταχύνσεις για το μέγεθος σεισμού, τις αποστάσεις και τα εδαφικά προφίλ σε κάθε θέση, έγινε προσπάθεια σύνθεσης των πιθανών φασμάτων απόκρισης σε κάθε περιοχή. Στο πλαίσιο αυτό, έγινε παράλληλα και σύγκριση των φασμάτων απόκρισης σε περιοχές που υπήρξαν καταγραφές του σεισμικού γεγονότος αλλά και άλλες παρόμοιες καταγραφές και έτσι προτείνονται κάποια εύρη διακυμάνσεων των φασματικών τιμών και των πιθανών επιταχυνσιογραφημάτων.

Επιπλέον, διενεργήθηκαν εδαφοδυναμικές αναλύσεις. Πραγματοποιήθηκαν μονοδιάστατες αναλύσεις διαφόρων εδαφικών προφίλ που παρατηρήθηκαν, καθώς και διδιάστατες αναλύσεις σε περιοχές με πολύπλοκο τοπογραφικό ανάγλυφο (Αδάμες, Χελιδονού), ώστε να αποτιμηθεί η ενίσχυση των σεισμικών κραδασμών από το υπόβαθρο στην επιφάνεια του εδάφους. Οι επιταχύνσεις που εμφανίζονται στην επιφάνεια εξετάζεται κατά πόσο συμφωνούν με την παρατηρηθείσα ένταση και την ανομοιομορφία της κατανομής των βλαβών σε μεγάλη και μικρή κλίμακα και διαπιστώνεται τελικά η επιρροή των τοπικών εδαφικών συνθηκών στις εδαφικές επιταχύνσεις.

Τα αποτελέσματα των παραπάνω φάσεων συγκρίνονται τελικά μεταξύ τους και ακολουθείται μια επαναληπτική διαδικασία, ώστε να υπάρχει συμβατότητα μεταξύ των αποτελεσμάτων των επιμέρους θεωρήσεων.

Οι τιμές οριζόντιων εδαφικών και μέσων φασματικών επιταχύνσεων που προτείνονται τελικά για τις πλειόσειστες ζώνες έχουν γενικά ως εξής:

T (s)	PSA _H (g)
0.00	0.30-0.70
0.15-0.30	0.75-1.70
0.30-0.60	0.40-1.20
0.60-1.00	0.20-0.50

Επισημαίνεται πάντως ότι οι μέγιστες φασματικές επιταχύνσεις αντιστοιχούν σε εύρος $T = 0.15 \div 0.25$ και είναι αρκετά μεγαλύτερες από τις παραπάνω μέσες τιμές.

Σχετικά με τις κατακόρυφες επιταχύνσεις, δεν κατέστη δυνατή η αξιόπιστη εκτίμησή τους, καθώς οι κατασκευές με αστοχίες που εξετάστηκαν αποδείχθηκαν μη ευαίσθητες στις κατακόρυφες επιταχύνσεις. Παρόλα αυτά, μέσω ανάστροφης ανάλυσης ενός μνημείου στο νεκροταφείο Άνω Λιοσίων προέκυψε μια μέγιστη κατακόρυφη επιτάχυνση με τιμή περίπου 0.50*g*, δηλαδή περίπου στο 80% της οριζόντιας επιτάχυνσης στη θέση αυτή. Μέσω σχέσεων εξασθένησης της βιβλιογραφίας όμως, οι κατακόρυφες επιταχύνσεις προκύπτουν μικρότερες, κάτι που δεν αποκλείει όμως τις μεγαλύτερες τιμές που εκτιμήθηκαν. Τελικά, τα εύρη τιμών που προτείνονται για τις κατακόρυφες εδαφικές και μέσες φασματικές επιταχύνσεις είναι:

T (s)	$PSA_V(g)$
0.00	0.20-0.60
0.05-0.15	0.60-1.10
0.50-1.00	0.10-0.15

Όσον αφορά στη διαφοροποίηση των σεισμικών επιταχύνσεων από περιοχή σε περιοχή, διαπιστώνεται ότι σε περιοχές κτισμένες σε επιφανειακή εκδήλωση βράχου (μαλακού ή σκληρού) (για παράδειγμα Καματερό, Προφήτης Ηλίας, δυτικό τμήμα Αργυρούπολης) οι εδαφικές και φασματικές επιταχύνσεις ήταν σαφώς μικρότερες, οπότε δεν υπήρξε εκδήλωση έντονων βλαβών. Αντίθετα, τα πυκνά και στριφρά εδάφη και οι μαλακοί εξαλλοιωμένοι βράχοι, φαίνεται να οδήγησαν σε φαινόμενα συντονισμού, λόγω του σχετικά υψίσυχνου περιεχομένου των διεγέρσεων, με αποτέλεσμα την έντονη εδαφική ενίσχυση του σεισμικού κραδασμού. Τοπικές τοπογραφικές ιδιαιτερότητες φαίνεται επίσης ότι επηρέασαν σημαντικά τις σεισμικές επιταχύνσεις. Χαρακτηριστικό παράδειγμα είναι η απότομη χαράδρα του Κηφισού στις Αδάμες, όπου κυματικές διαθλάσεις και περιθλάσεις στα πρανή οδήγησαν σε σημαντική αύξηση των οριζόντιων και κατακορύφων επιταχύνσεων σε μια στενή ζώνη κοντά στη χαράδρα, όπου και διαπιστώθηκε η "πυκνότερη" ίσως συσσώρευση καταρρεύσεων του σεισμικού γεγονότος.

Τελικά, δίδονται κάποιες ενδεικτικές τιμές μεγίστων οριζοντίων και κατακορύφων εδαφικών επιταχύνσεων σε τέσσερις περιοχές με εκτεταμένες βλάβες, ανάλογα με τους εδαφικούς σχηματισμούς στις εξεταζόμενες θέσεις:

Άνω Λιόσια	$PGA_{H}(g)$	$PGA_V(g)$
Βράχοι-Ημίβραχοι	0.30-0.45	0.30-0.45
Μετρίως σκληρά εδάφη	0.40-0.70	0.35-0.55

	Μενίδι (Αχαρνές)	PGA _H (g) $ $ H	PGA _V (g)				
	Βράχοι-Ημίβραχοι Σκληρά εδάφη	0.30-0.40 0 0.45-0.55 0).25-0.40).30-0.45				
	Αδάμες $ PGA_H (g) PGA_V (g)$						
Έδαφος κοντά σε πρανές 0.35-0.45 0.25-							
	Θρακομακεδόνες	$PGA_{H}(g) \mid P$	GA _V (g)				
	Βράχοι-Ημίβραχοι Σκληρά εδάφη	0.30-0.40 0 0.40-0.50 0	.25-0.40 .25-0.45				

Παρόλα αυτά, διατηρούνται σε κάποιες περιπτώσεις επιφυλάξεις για ακόμα μεγαλύτερες τιμές επιταχύνσεων. Για παράδειγμα, από την ανάστροφη ανάλυση των πυλών στο Μενίδι, μαζί με το αντίστοιχο πείραμα φυσικής κλίμακας, πιθανολογείται ότι η μέγιστη τιμή της εδαφικής επιτάχυνσης στη θέση αυτή κυμάνθηκε από 0.50g έως 0.70g, επιτάχυνση αρκετά μεγαλύτερη δηλαδή από αυτήν που προκύπτει από μονοδιάστατες εδαφικές αναλύσεις για πολύ σκληρό έδαφος αργιλώδους συστάσεως με χάλικες ή θραύσματα αμμοχάλικου που απαντάται στη θέση αυτή (0.45g) αλλά και τις παραπάνω προτεινόμενες τιμές επιταχύνσεων για σκληρά εδάφη στην περιοχή των Αχαρνών (0.45g ÷ 0.55g).

Τέλος, κατά το σχολιασμό των βλαβών σε κατασκευές στην περιοχή των Αχαρνών, γίνεται η παρατήρηση ότι οι βλάβες εντοπίζονται κυρίως σε συγκεκριμένη διεύθυνση, περίπου B120°, δηλαδή παράλληλα προς τη διεύθυνση του ρήγματος. Αυτό συμπεραίνεται από τις βλάβες του υδατοπύργου Δεκελείας στο Βορειοανατολικό άκρο των Αχαρνών, καθώς και από την πτώση σε ένα κιόσκι που έγινε υπό γωνία B125°. Η παραπάνω συγκέντρωση των βλαβών σε συγκεκριμένη διεύθυνση στην περιοχή αυτή, ενισχύει την άποψη εμφάνισης φαινομένων κατευθυντικότητας, η οποία μάλιστα λόγω της περίπλοκης μορφολογίας και διάδοσης του ρήγματος ίσως και να εμφανίστηκε παράλληλα και όχι κάθετα στο ίχνος, όπως αναμένεται σε συνήθεις περιπτώσεις κανονικών ή ανάστροφων ρηγμάτων.

5.3 Καταγεγραμμένα επιταχυνσιογραφήματα

Στο σεισμό της 7ης Σεπτεμβρίου 1999 δεν υπήρξαν καταγραφές του κύριου σεισμικού γεγονότος στις πλειόσειστες περιοχές και στις περιοχές στην άμεση γειτονία του ρήγματος. Για το λόγο αυτό δεν είναι άμεσα γνωστό το επίπεδο της έντασης της σεισμικής κίνησης. Οι καταγραφές που έχουμε στη διάθεσή μας προέρχονται από επιταχυνσιογράφους στην ευρύτερη περιοχή της Αθήνας, οι περισσότερες σε απόσταση περίπου 10-15 km. Οι κυριότερες καταγραφές που διαθέτουμε προέρχονται από επιταχυνσιογράφους εγκατεστημένους από την "Αττικό Μετρό" σε συνεργασία με το Γεωδυναμικό Ινστιτούτο, κάποιοι μέσα σε σταθμούς Μετρό, από το μόνιμο δίκτυο του ΙΤΣΑΚ (Ινστιτούτο Τεχνικής Σεισμολογίας και Αντισεισμικών Κατασκευών) και από εργοστάσια της ΔΕΗ. Βέβαια για αρκετές από αυτές τις καταγραφές υπάρχει η υπόνοια ότι έχουν επηρεαστεί από παρακείμενες υπόγειες κατασκευές (για παράδειγμα οι καταγραφές στα μετρό Μοναστηράκι και Σύνταγμα).

Για τις ανάγκες της παρούσας διπλωματικής εργασίας, χρησιμοποιούνται οι ακόλουθες καταγραφές, για τις οποίες σημειώνονται και οι διευθύνσεις καταγραφής της συνιστώσας "L".

Κωδικός	Τοποθεσία	Γοποθεσία Εδαφικός σχηματισμός Δ	
ATHA	Νέο Ψυχικό	Αθηναϊκός σχιστόλιθος	B180
DFNA	DFNA Δάφνη 3.5m εδάφους επί σχιστολίθου		B155
DMK	Αγία Παρασκευή	Ασβεστόλιθος	B135
FIX Συγγρού-Φιξ		Αθηναϊκός σχιστόλιθος	B140
SGMA Σύνταγμα Αθηναϊκός σχιστόλιθ		Αθηναϊκός σχιστόλιθος	B10
SGMB	Σύνταγμα	Αθηναϊκός σχιστόλιθος	B135

Όπως φαίνεται από τα παραπάνω, επιλέχθηκαν επιταχυνσιογραφήματα που έχουν καταγραφεί σε βραχώδες υπόβαθρο με εδαφικές ζώνες όσο γίνεται μικρότερου πλάτους. Με τον τρόπο αυτό περιορίζονται οι μεταβολές στη μορφή των επιταχυνσιογραφημάτων λόγω του εδάφους, καθώς στη συγκεκριμένη περιοχή που εξετάζεται στη συνέχεια (Θρακομακεδόνες) θεωρείται ότι υπάρχει κυρίως βραχώδες υπόβαθρο. Τα επιταχυνσιογραφήματα των παραπάνω καταγραφών σε δύο κάθετες διευθύνσεις του επιπέδου παρουσιάζονται στο σχήμα 5.2.

Σχήμα 5.2: Καταγραφές ευρύτερης περιοχής Αθήνας

Κεφάλαιο 6

Προσέγγιση εδαφικών κινήσεων σεισμών κοντινού πεδίου

Καθώς δεν υπάρχουν καταγραφές της σεισμικής κίνησης στην περιοχή που εξετάζεται (Θρακομακεδόνες), θα πρέπει να χρησιμοποιηθεί κάποια μέθοδος προσέγγισής της, ώστε να χρησιμοποιηθεί για την ανελαστική δυναμική ανάλυση του κτηρίου που εξετάζεται. Η μέθοδος αυτή θα χρησιμοποιηθεί για την παραγωγή σεισμικών κινήσεων μορφής ανάλογης με αυτήν που αναμένεται για τα συγκεκριμένα χαρακτηριστικά του σεισμού που σημειώθηκαν και τη θέση που μας ενδιαφέρει, για διάφορα επίπεδα εδαφικής επιτάχυνσης, η οποία αναμένεται να διαφέρει σημαντικά σε σχέση με τις καταγεγραμμένες σεισμικές κινήσεις. Επίσης, επιδιώκεται η παραγωγή σεισμικών κινήσεων με και χωρίς παλμικά χαρακτηριστικά κοντινού πεδίου, ώστε να διαπιστωθεί η επιρροή τους στην απόκριση του φορέα.

Η προσέγγιση που γίνεται εδώ αφορά στη χρήση των σχέσεων εξασθένησης νέας γενεάς (Next Generation Attenuation) και ειδικά αυτών που έχουν αναπτυχθεί από τους Boore and Atkinson (2008), καθώς και της τροποποίησής τους για να ληφθούν υπόψη τα φαινόμενα κοντινού πεδίου, η οποία έχει προταθεί από τους Shahi and Baker (2011). Στη συνέχεια οι καταγεγραμμένες καταγραφές "ταιριάζονται" στα φάσματα που παράγονται από τις παραπάνω σχέσεις εξασθένησης.

6.1 Σχέσεις εξασθένησης νέας γενιάς των Boore - Atkinson (2008)

Οι σχέσεις αυτές έχουν αναπτυχθεί στα πλαίσια του προγράμματος του PEER (Pacific Earthquake Engineering Research Center) για ανάπτυξη σχέσεων εξασθένησης νέας γενιάς (NGA Project). Οι ερευνητές θεώρησαν σκόπιμο να χρησιμοποιήσουν σχετικά απλές παραμέτρους επιρροής της σεισμικής κίνησης οι οποίες χρησιμοποιούνται ευρέως στην πράξη. Συγκεκριμένα, χρησιμοποιούνται το σεισμικό μέγεθος M, η απόσταση R_{JB} των Joyner-Boore που ορίζεται ως η ελάχιστη απόσταση μεταξύ της εξεταζόμενης θέσης και της προβολής του ρήγματος στην επιφάνεια, η ταχύτητα $V_{s,30}$ που ορίζεται από τις ταχύτητες διάδοσης των διατμητικών κυμάτων στα πρώτα 30m κάτω από τον εξεταζόμενο φορέα σύμφωνα με τη σχέση

$$V_{s,30} = {30m \over \sum {h_i \over V_{s,i}}}$$
 (διαστάσεις μηκών σε m) (6.1)

καθώς και προαιρετικά ο μπχανισμός διάρρηξης του ρήγματος, όπου για γωνίες ολίσθησης από 30° έως 150° το ρήγμα θεωρείται ανάστροφο, για γωνίες από –150° έως –30° κανονικό και για τα υπόλοιπα διαστήματα γωνιών οριζοντίου διαρρήξεως.

Τα παραγόμενα μεγέθη είναι οι μέγιστες επιταχύνσεις και ταχύτητες του εδάφους (PGA, PGV), καθώς και οι φασματικές επιταχύνσεις για απόσβεση 5% για διάστημα περιόδων από 0.01*sec* έως 10*sec*. Η παλινδρόμηση της μέγιστης εδαφικής μετατόπισης κρίθηκε ασταθής. Τα

παραπάνω μεγέθη δίδονται σε μορφή GMRotI50, δηλαδή αποτελούν το γεωμετρικό μέσο των δύο συνιστωσών που αντιστοιχεί στη διάμεσο των γεωμετρικών μέσων υπολογισμένων για όλες τις διευθύνσεις και για όλες τις περιόδους που μας ενδιαφέρουν. Η παραπάνω μορφή επιλέχθηκε καθώς αποτελεί μέγεθος που είναι ανεξάρτητο κάποιας συγκεκριμένης διεύθυνσης. Στις περισσότερες περιπτώσεις πάντως, ο γεωμετρικός μέσος, ο οποίος χρησιμοποιείται συνήθως, διαφέρει ελάχιστα με το μέγεθος που δίδεται εδώ, οπότε αυτό μπορεί να θεωρηθεί ως μια μέση οριζόντια συνιστώσα.

Οι σχέσεις εξασθένησης έχουν προκύψει χρησιμοποιώντας κυρίως σεισμικές καταγραφές που περιέχονται στο "NGA Flatfile" το οποίο δέσμευε τους ερευνητές του συγκεκριμένου ερευνητικού προγράμματος. Πάντως, επιλέχθηκαν να μην ληφθούν υπόψη κάποιες καταγραφές, όπως καταγραφές μετασεισμών και σεισμούς με μόνο μία καταγραφή. Για τα δεδομένα που χρησιμοποιήθηκαν τελικά, παρατηρείται ότι επαρκούν κυρίως για ταλαντωτές έως 2sec, ενώ χαρακτηρίζονται σχετικά ελλιπή για μεγαλύτερες ιδιοπεριόδους. Επίσης ελλιπή θεωρούνται για σεισμούς μικρού μικρού μεγέθους για εξεταζόμενες θέσεις σε μικρές αποστάσεις. Οι ερευνητές παρατηρούν ακόμα ότι τα δεδομένα είναι περισσότερο διανεμημένα στο επίπεδο μεγέθους σεισμού-απόστασης για ρήγματα οριζοντίου διαρρήξεως και πολύ λίγο για κανονικά ρήγματα. Τέλος, επισημαίνουν ότι η πλειονότητα των καταγραφών έχει γίνει σε μαλακούς βράχους και σκληρά εδάφη, ενώ οι καταγραφές σε σκληρούς βράχους είναι είναι ελάχιστες. Η σχέση που προκύπτει προτείνεται να χρησιμοποιείται για σεισμούς μεγέθους από 5 έως 8, απόσταση $R_{JB} < 200 km$ και για ταχύτητες διάδοσης διατμητικών κυμάτων $V_{s,30}$ από 180 έως 1300 $\frac{m}{s}$.

Η τελική μορφή της σχέσης εξασθένησης στην οποία κατέληξαν έχει ως εξής:

$$\ln Y = F_M(M) + F_D(R_{JB}, M) + F_S(V_{s,30}, R_{JB}, M) + \varepsilon \sigma_T$$
(6.2)

Ο προσδιορισμός των συντελεστών στην παραπάνω σχέση γίνεται ως εξής:

Συμβολή σεισμικού μεγέθους $F_M(M)$

$$F_M(M) = \begin{cases} e_1 U + e_2 SS + e_3 NS + e_4 RS + e_5 (M - M_h) + e_6 (M - M_h)^2 & \text{av } M \le M_h \\ e_1 U + e_2 SS + e_3 NS + e_4 RS + e_7 (M - M_h) & \text{av } M > M_h \end{cases}$$
(6.3)

Οι συντελεστές U, SS, NS, RS καθορίζονται ανάλογα με το μπχανισμό διάρρηξης του ρήγματος (ακαθόριστος, οριζόντιος, κανονικός ή ανάστροφος). Οι τιμές των παραπάνω συντελεστών δίνονται στον πίνακα 6.1

Είδος ρήγματος	U	SS	NS	RS
Ακαθόριστο	1	0	0	0
Οριζοντίου διαρρήξεως	0	1	0	0
Κανονικό	0	0	1	0
Ανάστροφο	0	0	0	1

Πίνακας 6.1: Τιμές καθορισμού μ
ηχανισμού διάρρηξης για τον όρο $F_M(M)$ (Boore - Atkinson, 2008, τροποποι
ημένο)

Οι υπόλοιποι συντελεστές δίνονται για κάθε περίπτωση υπολογιζόμενου μεγέθους από τον πίνακα 6.2

Συμβολή απόστασης $F_D(R_{JB}, M)$

$$F_D(R_{JB}, M) = \left[c_1 + c_2(M - M_{ref})\right] \ln\left(\frac{R}{R_{ref}}\right) + c_3(R - R_{ref})$$
(6.4)

T (s)	$ e_1 $	<i>e</i> ₂	ez	e_4	<i>e</i> ₅	<i>e</i> ₆	e ₇	M_h
PGV	5.00121	5.04727	4.63188	5.08210	0.18322	-0.12736	0.00000	8.50
PGA	-0.53804	-0.50350	-0.75472	-0.50970	0.28805	-0.10164	0.00000	6.75
0.010	-0.52883	-0.49429	-0.74551	-0.49966	0.28897	-0.10019	0.00000	6.75
0.020	-0.52192	-0.48508	-0.73906	-0.48895	0.25144	-0.11006	0.00000	6.75
0.030	-0.45285	-0.41831	-0.66722	-0.42229	0.17976	-0.12858	0.00000	6.75
0.050	-0.28476	-0.25022	-0.48462	-0.26092	0.06369	-0.15752	0.00000	6.75
0.075	0.00767	0.04912	-0.20578	0.02706	0.01170	-0.17051	0.00000	6.75
0.100	0.20109	0.23102	0.03058	0.22193	0.04697	-0.15948	0.00000	6.75
0.150	0.46128	0.48661	0.30185	0.49328	0.17990	-0.14539	0.00000	6.75
0.200	0.57180	0.59253	0.40860	0.61472	0.52729	-0.12964	0.00102	6.75
0.250	0.51884	0.53496	0.33880	0.57747	0.60880	-0.13843	0.08607	6.75
0.300	0.43825	0.44516	0.25356	0.51990	0.64472	-0.15694	0.10601	6.75
0.400	0.39220	0.40602	0.21398	0.46080	0.78610	-0.07843	0.02262	6.75
0.500	0.18957	0.19878	0.00967	0.26337	0.76837	-0.09054	0.00000	6.75
0.750	-0.21338	-0.19496	-0.49176	-0.10813	0.75179	-0.14053	0.10302	6.75
1.000	-0.46896	-0.43443	-0.78465	-0.39330	0.67880	-0.18257	0.05393	6.75
1.500	-0.86271	-0.79593	-1.20902	-0.88085	0.70689	-0.25950	0.19082	6.75
2.000	-1.22652	-1.15514	-1.57697	-1.27669	0.77989	-0.29657	0.29888	6.75
3.000	-1.82979	-1.74690	-2.22584	-1.91814	0.77966	-0.45384	0.67466	6.75
4.000	-2.24656	-2.15906	-2.58228	-2.38168	1.24961	-0.35874	0.79508	6.75
5.000	-1.28408	-1.21270	-1.50904	-1.41093	0.14271	-0.39006	0.00000	8.50
7.500	-1.43145	-1.31632	-1.81022	-1.59217	0.52407	-0.37578	0.00000	8.50
10.000	-2.15446	-2.16137	-2.53323	-2.14635	0.40387	-0.48492	0.00000	8.50

Πίνακας 6.2: Συντελεστές υπολογισμού όρου $F_M(M)$ (Boore - Atkinson, 2008)

όπου η απόσταση R δίδεται από τη σχέση

$$R = \sqrt{R_{JB}^2 + h^2} \tag{6.5}$$

Οι συντελεστές των παραπάνω σχέσεων δίδονται στον πίνακα 6.3. Οι σταθερές αναφοράς λαμβάνονται $M_{ref} = 4.5$ και $R_{ref} = 1$ km, με εξαίρεση τον υπολογισμό της pga4nl όπως περιγράφεται παρακάτω όπου λαμβάνεται $R_{ref} = 5$ km.

Συμβολή εδάφους $F_S(V_{s,30}, R_{JB}, M)$ Η συμβολή του εδάφους διαχωρίζεται σε ελαστική (F_{LIN}) και σε ανελαστική (F_{NL}), με την τελική συμβολή να δίνεται από τη σχέση

$$F_{\rm S}(V_{\rm s,30}, R_{\rm JB}, M) = F_{\rm LIN} + F_{\rm NL}$$
(6.6)

Στους παρακάτω υπολογισμούς χρειάζεται να ληφθούν υπόψη συντελεστές ανεξάρτητες και εξαρτώμενες από τη ζητούμενη περίοδο που δίδονται στους πίνακες 6.4 και 6.5.

Ελαστική συμβολή εδάφους (F_{LIN})

$$F_{LIN} = b_{lin} \ln \left(\frac{V_{s,30}}{V_{ref}} \right) \tag{6.7}$$

Ανελαστική συμβολή εδάφους (F_{NL} **)** Αρχικά υπολογίζεται ο όρος pga4nl από τη σχέση 6.2 θέτοντας $F_S = 0$ και $\varepsilon = 0$. Οι συντελεστές F_M και F_R υπολογίζονται κανονικά με τιμές παραμέτρων που αντιστοιχούν στην επιτάχυνση εδάφους (PGA) με τη μόνη διαφορά ότι λαμβάνεται $R_{ref} = 1km$ αντί για $R_{ref} = 5km$.

T (s)	<i>c</i> ₁	<i>c</i> ₂	C3	h
PGV	-0.87370	0.10060	-0.00334	2.54
PGA	-0.66050	0.11970	-0.01151	1.35
0.010	-0.66220	0.12000	-0.01151	1.35
0.020	-0.66600	0.12280	-0.01151	1.35
0.030	-0.69010	0.12830	-0.01151	1.35
0.050	-0.71700	0.13170	-0.01151	1.35
0.075	-0.72050	0.12370	-0.01151	1.55
0.100	-0.70810	0.11170	-0.01151	1.68
0.150	-0.69610	0.09884	-0.01113	1.86
0.200	-0.58300	0.04273	-0.00952	1.98
0.250	-0.57260	0.02977	-0.00837	2.07
0.300	-0.55430	0.01955	-0.00750	2.14
0.400	-0.64430	0.04394	-0.00626	2.24
0.500	-0.69140	0.06080	-0.00540	2.32
0.750	-0.74080	0.07518	-0.00409	2.46
1.000	-0.81830	0.10270	-0.00334	2.54
1.500	-0.83030	0.09793	-0.00255	2.66
2.000	-0.82850	0.09432	-0.00217	2.73
3.000	-0.78440	0.07282	-0.00191	2.83
4.000	-0.68540	0.03758	-0.00191	2.89
5.000	-0.50960	-0.02391	-0.00191	2.93
7.500	-0.37240	-0.06568	-0.00191	3.00
10.000	-0.09824	-0.13800	-0.00191	3.04

Πίνακας 6.3: Συντελεστές υπολογισμού όρου $F_D(R_{JB}, M)$ (Boore - Atkinson, 2008)

Συντελεστής	Τιμή
a1	0.03g
pga_low	0.06g
α2	0.09g
V1	180m/s
V2	300m/s
Vref	760m/s

Πίνακας 6.4: Συντελεστές υπολογισμού όρου $F_S(V_{s,30}, R_{JB}, M)$ ανεξάρτητοι της περιόδου (Boore - Atkinson, 2008)

Στη συνέχεια υπολογίζεται
η τιμή b_{nl} που δίδεται από τις σχέσεις:

$$b_{nl} = \begin{cases} b_1 & \text{av } V_{s,30} \leq V_1 \\ (b_1 - b_2) \frac{\ln (V_{s,30}/V_2)}{\ln (V_1/V_2)} + b_2 & \text{av } V_1 < V_{s,30} \leq V_2 \\ \\ b_2 \frac{\ln (V_{s,30}/V_{ref})}{\ln (V_2/V_{ref})} & \text{av } V_2 < V_{s,30} < V_{ref} \\ \\ 0 & \text{av } V_{ref} \leq V_{s,30} \end{cases}$$
(6.8)

T (s)	b _{lin}	b_1	<i>b</i> ₂	
PGV	PGV -0.600		-0.06	
PGA	-0.360	-0.640	-0.14	
0.010	-0.360	-0.640	-0.14	
0.020	-0.340	-0.630	-0.12	
0.030	-0.330	-0.620	-0.11	
0.050	-0.290	-0.640	-0.11	
0.075	-0.230	-0.640	-0.11	
0.100	-0.250	-0.600	-0.13	
0.150	-0.280	-0.530	-0.18	
0.200	-0.310	-0.520	-0.19	
0.250	-0.390	-0.520	-0.16	
0.300	-0.440	-0.520	-0.14	
0.400	-0.500	-0.510	-0.10	
0.500	-0.600	-0.500	-0.06	
0.750	-0.690	-0.470	0.00	
1.000	-0.700	-0.440	0.00	
1.500	-0.720	-0.400	0.00	
2.000	-0.730	-0.380	0.00	
3.000	-0.740	-0.340	0.00	
4.000	-0.750	-0.310	0.00	
5.000	-0.750	-0.291	0.00	
7.500	-0.692	-0.247	0.00	
10.000	-0.650	-0.215	0.00	

Πίνακας 6.5: Συντελεστές υπολογισμού όρου $F_S(V_{s,30}, R_{JB}, M)$ εξαρτώμενοι από την περίοδο (Boore - Atkinson, 2008)

Τελικά, ο όρος F_{NL} υπολογίζεται από τις σχέσεις:

$$F_{NL} = \begin{cases} b_{nl} \ln\left(\frac{pga_low}{0.1}\right) & \text{av } pga4nl \le a_1 \\ b_{nl} \ln\left(\frac{pga_low}{0.1}\right) + c\left(\ln\left(\frac{pga4nl}{a_1}\right)\right)^2 + d\left(\ln\left(\frac{pga4nl}{a_1}\right)\right)^3 & \text{av } a_1 < pga4nl \le a_2 \\ b_{nl} \ln\left(\frac{pga4nl}{0.1}\right) & \text{av } a_2 \le pga4nl \end{cases}$$

$$(6.9)$$

Η δεύτερη περίπτωση ($a_1 < pga4nl \le a_2$) είναι η πλέον πολύπλοκη, καθώς απαιτεί τον υπολογισμό επιπλέον συντελεστών ως εξής:

$$\Delta x = \ln\left(\frac{a_2}{a_1}\right) \tag{6.10}$$

$$\Delta y = b_{nl} \ln \left(\frac{a_2}{pga_low} \right) \tag{6.11}$$

$$c = \frac{3\Delta y - b_{nl}\Delta x}{\Delta x^2} \tag{6.12}$$

$$d = -\frac{2\Delta y - b_{nl}\Delta x}{\Delta x^3} \tag{6.13}$$

Τυπικές αποκλίσεις $\varepsilon \sigma_T$ Ο τελευταίος όρος της σχέσης 6.2 αφορά στην τυπική απόκλιση του μεγέθους που εξετάζεται. Ο όρος ε καθορίζει το πλήθος των τυπικών αποκλίσεων, ενώ ο όρος σ_T της τυπικής απόκλισης ορίζεται από τη σχέση

$$\sigma_{\rm T} = \sqrt{\sigma^2 + \tau^2} \tag{6.14}$$

Οι παραπάνω τιμές δίδονται στον πίνακα 6.6, όπου φαίνεται ότι η τιμή t επηρεάζεται ανάλογα με το αν ο μηχανισμός διάρρηξης του ρήγματος είναι ακαθόριστος ή καθορισμένος (t_U ή t_M αντίστοιχα). Στον παραπάνω πίνακα δίδονται επίσης έτοιμες οι τιμές που προκύπτουν από τη σχέση 6.14.

T (s)	σ	$ \tau_U$	σ_{TU}	$ au_M$	σ_{TM}
PGV	0.500	0.286	0.576	0.256	0.560
PGA	0.502	0.265	0.566	0.260	0.564
0.010	0.502	0.267	0.569	0.262	0.566
0.020	0.502	0.267	0.569	0.262	0.566
0.030	0.507	0.276	0.578	0.274	0.576
0.050	0.516	0.286	0.589	0.286	0.589
0.075	0.513	0.322	0.606	0.320	0.606
0.100	0.520	0.313	0.608	0.318	0.608
0.150	0.518	0.288	0.592	0.290	0.594
0.200	0.523	0.283	0.596	0.288	0.596
0.250	0.527	0.267	0.592	0.267	0.592
0.300	0.546	0.272	0.608	0.269	0.608
0.400	0.541	0.267	0.603	0.267	0.603
0.500	0.555	0.265	0.615	0.265	0.615
0.750	0.571	0.311	0.649	0.299	0.645
1.000	0.573	0.318	0.654	0.302	0.647
1.500	0.566	0.382	0.684	0.373	0.679
2.000	0.580	0.398	0.702	0.389	0.700
3.000	0.566	0.410	0.700	0.401	0.695
4.000	0.583	0.394	0.702	0.385	0.698
5.000	0.601	0.414	0.730	0.437	0.744
7.500	0.626	0.465	0.781	0.477	0.787
10.000	0.645	0.355	0.735	0.477	0.801

Πίνακας 6.6: Συντελεστές υπολογισμού τιμής σ_T (Boore - Atkinson, 2008)

6.2 Τροποποίηση φασμάτων σχέσεων εξασθένησης λόγω εμφάνισης παλμού (Shahi and Baker, 2011)

Η σχέση εξασθένησης που αναλύθηκε παραπάνω δεν λαμβάνει υπόψη φαινόμενα κοντινού πεδίου, επομένως θα πρέπει να τροποποιηθεί κατάλληλα ώστε να μπορέσει να αξιοποιηθεί σε περιοχές κοντά σε ρήγματα. Οι Shahi and Baker (2011) μελέτησαν την επίδραση των φαινομένων κοντινού πεδίου στις σχέσεις εξασθένησης, έτσι ώστε να είναι εφικτή μια ρεαλιστικότερη πιθανοτική ανάλυση σεισμικού κινδύνου στις περιοχές αυτές. Συγκεκριμένα, εξετάζουν την πιθανότητα εμφάνισης παλμικών σεισμικών κινήσεων σε μία θέση, τις διευθύνσεις στις οποίες μπορεί να εμφανιστούν αυτές σε σχέση με το ίχνος του ρήγματος, την περίοδο του παλμού και τις μεταβολές που απαιτούνται στα φάσματα των σχέσεων εξασθένησης ώστε να ληφθεί υπόψη η ύπαρξη ή όχι παλμού. Ακόμα, χρησιμοποιώντας τις σχέσεις αυτές είναι εφικτή η ανάστροφη ανάλυση σεισμικού κινδύνου όπου προσδιορίζονται οι πιθανότητες εμφάνισης παλμού, καθώς και η κατανομή των πιθανών περιόδων του, για την υπέρβαση κάποιων επιθυμητών φασματικών τιμών, κάτι που οδηγεί και σε ορθότερη επιλογή σεισμικών κινήσεων για την εκτίμηση της συμπεριφοράς των κατασκευών σε σεισμικά σενάρια.

Το μοντέλο που προτείνουν οι Shahi and Baker μπορεί να χαρακτηριστεί ως στενής περιοχής, καθώς επηρεάζει κυρίως μια περιορισμένη περιοχή του φάσματος γύρω από την περίοδο του παλμού. Σε αντίθεση, άλλα μοντέλα που έχουν αναπτυχθεί, όπως αυτό των Somerville et al (1997) - Abrahamson (2000) χρακτηρίζονται ως ευρείας περιοχής, καθώς μειώνουν ή αυξάνουν τις φασματικές τιμές μονοτονικά με αύξηση της περιόδου. Έχει διαπιστωθεί πάντως (Somerville, 2005) ότι τα μοντέλα στενής περιοχής, όπως είναι και το συγκεκριμένο, δίνουν ρεαλιστικότερα αποτελέσματα για την πιθανοτική ανάλυση σεισμικού κινδύνου.

Η κατάταξη των καταγραφών ως παλμικών γίνεται με τροποποίηση του αλγορίθμου που προτείνει ο Baker (2007). Ο αλγόριθμος αυτός χρησιμοποιεί ανάλυση κυματιδίων συγκεκριμένης μορφής για την εξαγωγή των παλμών από τις καταγραφές των χρονοϊστοριών ταχύτητας στη διεύθυνση κάθετα στο ρήγμα. Εδώ τροποποιείται, ώστε να μπορεί να εξετάζει την ύπαρξη παλμών σε τυχαία διεύθυνση σε σχέση με το ρήγμα, αφού στραφούν κατάλληλα οι σεισμικές καταγραφές.

Η πιθανότητα εμφάνισης σεισμικής καταγραφής με παλμό θεωρούν ότι είναι:

$$P(\text{pulse}|r,s) = \frac{1}{1 + e^{(0.642 + 0.167r - 0.075s)}}$$
για ρήγματα οριζοντίου διαρρήξεως (6.15)

$$P(\text{pulse}|r, d, \varphi) = \frac{1}{1 + e^{(0.128 + 0.055r - 0.061d + 0.036\varphi)}} \text{ gia tig unóloines repintúseis}$$
(6.16)

Οι αποστάσεις
 r,s,d,φ ορίζονται σύμφωνα με το σχήμα 6.1

Σχήμα 6.1: Ορισμός αποστάσεων για ρήγματα οριζοντίου και μη οριζοντίου διαρρήξεως (Shahi - Baker, 2011)

Οι παραπάνω παλμοί ταχυτήτων λόγω κατευθυντικότητας αναμένονται συνήθως στη διεύθυνση κάθετα στο ρήγμα (Somerville et al, 1997). Παρόλα αυτά, πολλά ρήγματα έχουν ακανόνιστη γεωμετρία με αποτέλεσμα να μην είναι εύκολος ο προσδιορισμός της ακριβούς διεύθυνσης κάθετα στο ρήγμα, ενώ παλμοί παρατηρούνται στην πραγματικότητα σε ένα εύρος διευθύνσεων (Howard et al, 2005). Μια συνηθισμένη περίπτωση που ο παλμός εμφανίζεται στην περιοχή γύρω από τη διεύθυνση κάθετα στο ρήγμα φαίνεται στο σχήμα 6.2, όπου φαίνεται ο δείκτης εμφάνισης παλμού, σύμφωνα με τον Baker (2007) για διάφορες διευθύνσεις του σεισμού Imperial Valley (1979). Σε κάποιες σπάνιες περιπτώσεις όμως, παλμική κίνηση μπορεί να εμφανιστεί

Σχήμα 6.2: Δείκτης εμφάνισης παλμού για διάφορες διευθύνσεις για το σεισμό του Imperial Valley (1979). Οι σκιασμένες περιοχές δηλώνουν ύπαρξη ισχυρής παλμικής καταγραφής. (Shahi - Baker, 2011)

γύρω από διεύθυνση που δεν είναι κάθετη στο ρήγμα. Ακόμα, για ρήγματα μη-οριζόντιας διάρρηξης, οι παλμικές κινήσεις μπορεί να εντοπίζονται κυρίως σε διευθύνσεις εκτός του οριζοντίου επιπέδου. Δεδομένης λοιπόν της ύπαρξης παλμού σε κάποια διεύθυνση, οι Shahi and Baker δίνουν τις ακόλουθες σχέσεις για την εμφάνιση παλμού σε διεύθυνση που σχηματίζει γωνία *a* με το ίχνος του ρήγματος:

$$P(\text{pulse at } a | \text{pulse}) = \begin{cases} \min[0.67, 0.67 - 0.0041(77.5 - a)] & \text{για ρήγματα οριζ. διαρρήξεως} \\ \min[0.53, 0.53 - 0.0041(70.2 - a)] & \text{για τις υπόλοιπες περιπτώσεις} \end{cases}$$
(6.17)

Τα αποτελέσματα των παραπάνω σχέσεων φαίνονται στο σχήμα 6.3 όπου φαίνεται ότι πράγματι n πιθανότητα εμφάνισης παλμού είναι μεγαλύτερη για διευνύνσεις κοντά στην κάθετη στο ίχνος του ρήγματος, n οποία συνήθως προσεγγίζει την προβολή της κάθετης διεύθυνσης στο ρήγμα στο οριζόντιο επίπεδο. Παρόλα αυτά, δίδεται μια μικρή πιθανότητα εμφάνισης παλμών ακόμα και στη διεύθυνση παράλληλα στο ίχνος του ρήγματος.

Για την περίοδο του παλμού προτείνονται οι ακόλουθες σχέσεις:

$$\mu_{\ln T_n} = -5.73 + 0.99M \tag{6.18}$$

$$\sigma_{\ln T_v} = 0.56$$
 (6.19)

Σχετικά με τα φάσματα απόκρισης σε σεισμούς κοντινού πεδίου, οι κλασικές σχέσεις εξασθένησης μπορεί να υποεκτιμούν τις τιμές του φάσματος για σεισμικές κινήσεις που περιέχουν παλμούς και να τις υπερεκτιμούν όταν δεν περιέχουν παλμούς, καθώς στις σχέσεις αυτές λαμβάνονται συνολικά υπόψη χωρίς να διαχωρίζονται σε σεισμικές κινήσεις με ή χωρίς παλμό.

Στην περίπτωση λοιπόν που αναμένεται παλμός, οι Shahi and Baker προτείνουν τις ακόλουθες σχέσεις τροποποίησης του φάσματος απόκρισης:

$$\mu_{\ln S_{a,\text{pulse}}} = \mu_{\ln A_f} + \mu_{\ln S_{a,\text{gmm}}} \tag{6.20}$$

.

Σχήμα 6.3: Πιθανότητα εμφάνισης παλμού σε γωνία *a* για ρήγματα οριζοντίου και μη οριζοντίου διαρρήξεως (Shahi - Baker, 2011)

$$\sigma_{\ln S_{a,\text{pulse}}} = R_f \cdot \sigma_{\ln S_{a,\text{gmm}}} \tag{6.21}$$

Όσον αφορά στην πρώτη σχέση που δίνει τη μέση φασματική τιμή δεδομένης ύπαρξης παλμού, φαίνεται ότι πολλαπλασιάζεται η φασματική τιμή της παραμένουσας σεισμικής κίνησης χωρίς τον παλμό με έναν μεγεθυντικό συντελεστή A_f , ώστε να ληφθεί υπόψη η ύπαρξη του παλμού. Η φασματική τιμή της παραμένουσας σεισμικής κίνησης κρίνεται ότι μπορεί να προσμοιωθεί αρκετά καλά από τις υπάρχουσες σχέσεις εξασθένησης, αν και παρατηρείται γενικά μια μικρή υποεκτίμηση της τιμής τους από τη μέση τιμή που δίνουν οι σχέσεις αυτές, καθώς όπως σημειώνουν και οι Chioccarelli and Iervolino (2010) ακόμα και μετά την αφαίρεση του παλμού η συνιστώσα κάθετη στο ρήγμα είναι ισχυρότερη της συνιστώσας παράλληλα σε αυτό. Ο όρος $\mu_{\ln A_f}$ δίδεται από τις ακόλουθες σχέσεις:

$$\mu_{\ln A_f} = \begin{cases} 1.131 e^{-3.11 \left(\ln \left(\frac{T}{T_p} \right) + 0.127 \right)^2} + 0.058 & \text{av } T \le 0.88T_p \\ 0.896 e^{-2.11 \left(\ln \left(\frac{T}{T_p} \right) + 0.127 \right)^2} + 0.255 & \text{av } T > 0.88T_p \end{cases}$$
(6.22)

Στο σχήμα 6.4 φαίνεται ο παραπάνω αυξητικός συντελεστής συναρτήσει της περιόδου του παλμού T_p , όπου παρατηρείται ότι η μέγιστη αύξηση επικεντρώνεται στην περιοχή της T_p . Στο ίδιο σχήμα φαίνεται επίσης ότι η αύξηση αυτή δεν είναι ευαίσθητη στη διεύθυνση που εξετάζεται, ενώ το ίδιο αποδεικνύεται ότι ισχύει και για το σεισμικό μέγεθος και το μηχανισμό διάρρηξης του ρήγματος.

Όσον αφορά στη σχέση που δίνει την τυπική απόκλιση, οι Shahi and Baker παρατηρούν ότι η τυπική απόκλιση στο υποσύνολο του δείγματος που αφορά ειδικά στις καταγραφές με παλμούς αναμένεται να είναι μικρότερη σε σχέση με αυτές που δίνουν οι κλασικές σχέσεις εξασθένησης (εδώ γίνεται σύγκριση με τη σχέση των Boore - Atkinson (2008) που περιγράφηκε προηγουμένως). Αυτό συμβαίνει γιατί η επιρροή του παλμού λαμβάνεται ειδικά υπόψη, σε αντίθεση με τις κλασικές σχέσεις εξασθένησης που η τυπική απόκλιση είναι αυξημένη λόγω σημαντικής διαφοροποίησης μεταξύ σεισμών με και χωρίς παλμούς που λαμβάνονται υπόψη συνολικά. Έτσι, γίνεται μείωση της τυπικής απόκλισης που δίνει η σχέση των Boore - Atkinson

Σχήμα 6.4: Αυξητικός συντελεστής *A_f*. Αριστερά: σύγκριση με δεδομένα δείγματος, Δεξιά: Μεταβολή ανάλογα με τη διεύθυνση (Shahi - Baker, 2011)

(2008) σύμφωνα με ένα μειωτικό συντελεστή R_f που δίδεται από τις σχέσεις:

$$R_{f} = \begin{cases} 1 - 0.2e^{-0.96\left(\ln\left(\frac{T}{T_{p}}\right) + 1.56\right)^{2}} & \text{av } T \le 0.21T_{p} \\ 1 - 0.21e^{-0.24\left(\ln\left(\frac{T}{T_{p}}\right) + 1.56\right)^{2}} & \text{av } T > 0.21T_{p} \end{cases}$$
(6.23)

Ο μειωτικός αυτός συντελεστής παρουσιάζεται στο σχήμα 6.5.

Σχήμα 6.5: Μειωτικός συντελεστής R_f για τις τυπικές αποκλίσεις (Shahi - Baker, 2011)

Σημειώνεται τέλος ότι οι παραπάνω σχέσεις θα πρέπει να εφαρμόζονται μόνο στην περίπτωση που $T_p > 0.6$ sec.

Στην περίπτωση που δεν αναμένεται η ύπαρξη παλμού, όπως αναφέρθηκε προηγουμένως οι κλασικές σχέσεις εξασθένησης υπερεκτιμούν τις φασματικές τιμές. Για το λόγο αυτό, προτείνεται η μείωσή τους, με τρόπο παρόμοιο με προηγουμένως. Έτσι, δίδονται οι ακόλουθες σχέσεις:

$$\mu_{\ln S_{a,\text{no pulse}}} = \mu_{\ln D_f} + \mu_{\ln S_{a,\text{gmm}}} \tag{6.24}$$

$$\sigma_{\ln S_{a,\text{no pulse}}} = \sigma_{\ln S_{a,\text{gmm}}} \tag{6.25}$$

Ο όρος $\mu_{\ln D_f}$ δίδεται ως ακολούθως:

$$\mu_{\ln D_f} = \begin{cases} 0 & \text{av } T \leq 1.0 \text{s} \\ \max\left[-0.0905 \cdot \ln T \cdot g_M \cdot g_R, -0.0905 \cdot \ln 2 \cdot g_M \cdot g_R\right] & \text{av } T > 1.0 \text{s kai op. diarphi} \\ -0.029 \cdot \ln T \cdot g_M \cdot g_R & \text{yia tig undlines perimtides} \end{cases}$$
(6.26)

όπου οι συντελεστές g_M, g_R δίδονται ως εξής:

$$g_M = \begin{cases} 0 & \text{av } M \le 6\\ \frac{M-6}{0.5} & \text{av } 6 < M < 6.5\\ 1 & \text{av } M \ge 6.5 \end{cases}$$
(6.27)

$$g_R = \begin{cases} 10 - R_{JB} & \text{av } R_{JB} \le 10 \text{km} \\ 0 & \text{av } R_{JB} > 10 \text{km} \end{cases}$$
(6.28)

Παρατηρείται όμως ότι οι τυπικές αποκλίσεις μεταξύ των σεισμικών κινήσεων χωρίς παλμό και αυτών που προκύπτουν από τη σχέση των Boore - Atkinson (2008) δεν διαφέρουν σημαντικά, οπότε δεν γίνεται κάποια τροποποίησή τους.

6.3 Εφαρμογή της μεθόδου για την εξεταζόμενη θέση

Σύμφωνα με τα παραπάνω, απαιτείται αρχικά η δημιουργία των φασμάτων Boore - Atkinson, καθώς και η τροποποίησή τους λόγω εμφάνισης ή μη παλμού κατευθυντικότητας, σύμφωνα με την εργασία των Shahi - Baker. Για τη δημιουργία των φασμάτων αυτών, θα πρέπει να ληφθούν υπόψη τα συγκεκριμένα χαρακτηριστικά της θέσης που εξετάζεται, καθώς και κάποια χαρακτηριστικά του σεισμικού γεγονότος. Έτσι, για το κτήριο που εξετάζεται έχει εκτιμηθεί ότι η πλησιέστερη απόσταση από την προβολή του ρήγματος είναι $R_{JB} = 7.0 km$, η ταχύτητα διάδοσης για ένα σκληρό αμμώδες προς βραχώδες υπόβαθρο, που κυριαρχεί στη θέση αυτή, επιλέχθηκε $V_{s,30} = 780 \frac{m}{s}$, το μέγεθος του σεισμού είναι M = 5.9, το ρήγμα είναι κανονικό, ενώ η περίοδος του παλμού για βραχώδη υπόβαθρα στο συγκεκριμένο σεισμό έχει εκτιμηθεί από άλλες εργασίες $T_p = 1.6s$.

Για την παραγωγή των φασμάτων απόκρισης, απαιτείται και ο ορισμός του πλήθους των τυπικών αποκλίσεων που επιθυμούμε. Όπως θα φανεί στη συνέχεια το εύρος του πλήθους τυπικών αποκλίσεων που θα φανούν χρήσιμα κυμαίνεται μεταξύ 2.7 και 3.3, επομένως παράγονται φάσματα απόκρισης για όλες αυτές τις τιμές με βήμα 0.1. Τα παραγόμενα φάσματα για όλες αυτές τις τυπικές αποκλίσεις και για ύπαρξη παλμού κατευθυντικότητας ή χωρίς φαίνονται στα σχήματα 6.6 και 6.7 αντίστοιχα. Μια σύγκριση μεταξύ των δύο περιπτώσεων φασμάτων γίνεται στο σχήμα 6.8.

Σημειώνεται ότι επειδή M = 5.9 < 6.0, τα φάσματα απόκρισης χωρίς παλμό κατευθυντικότητας ουσιαστικά ταυτίζονται με τα αρχικά φάσματα των Boore - Atkinson, συνεπώς αυτά δεν δίδονται ξεχωριστά. Επίσης, παρατηρούμε ότι, για μικρές περιόδους, τα φάσματα που περιέχουν παλμό κατευθυντικότητας έχουν μικρότερες φασματικές τιμές από αυτά τα οποία δεν έχουν παλμό. Αυτό οφείλεται στο γεγονός ότι στο υποσύνολο των καταγραφών στα οποία εμφανίζεται παλμός, η τυπική απόκλιση στην περιοχή αυτή είναι μικρότερη σε σχέση με την τυπική απόκλιση του συνόλου των καταγραφών, επομένως εφόσον χρησιμοποιούνται υψηλές τιμές πλήθους τυπικών αποκλίσεων για την παραγωγή των φασμάτων, η διαφορά μεταξύ των δύο περιπτώσεων φασμάτων είναι εμφανής.

Στη συνέχεια, επιλέγεται να στραφούν τα επιταχυνσιογραφήματα των πραγματικών καταγραφών της ευρύτερης περιοχής των Αθηνών, ώστε οι διευθύνσεις των καταγραφών να συμπίπτουν με τις βασικές διευθύνσεις του εξεταζόμενου κτηρίου. Όπως φαίνεται από την εικόνα 6.9,

Σχήμα 6.6: Φάσματα απόκρισης με παλμό κατευθυντικότητας για διάφορες τιμές πλήθους τυπικών αποκλίσεων

Σχήμα 6.7: Φάσματα απόκρισης χωρίς παλμό κατευθυντικότητας για διάφορες τιμές πλήθους τυπικών αποκλίσεων

Σχήμα 6.8: Σύγκριση φασμάτων απόκρισης με και χωρίς παλμό κατευθυντικότητας (συμβολισμός *D* και *N* αντίστοιχα)

n διεύθυνση της μεγάλης πλευράς του κτηρίου, κατά την οποία φαίνεται ότι σημειώθηκαν και οι πιο εκτεταμένες βλάβες είναι περίπου B115°. Στην εικόνα 6.10 φαίνονται τα στραμμένα αυτά επιταχυνσιογραφήματα, στο όνομα των οποίων αναφέρονται οι αντιωρολογιακές γωνίες που χρησιμοποιήθηκαν για τη στροφή τους (ουσιαστικά η διαφορά μεταξύ των γωνιών διεύθυνσης των αρχικών καταγραφών και του κτηρίου)

Σχήμα 6.9: Δορυφορική εικόνα του κτηρίου, στην οποία φαίνεται ο προσανατολισμός του κτηρίου

Από υπάρχουσες εργασίες έχει προκύψει ότι ο παλμός κατευθυντικότητας στις καταγραφές

Σχήμα 6.10: Επιταχυνσιογραφήματα στραμμένα ώστε να συμφωνούν με τον προσανατολισμό του εξεταζόμενου κτηρίου

της ευρύτερης περιοχής των Αθηνών εμφανίζεται μέγιστος σε διεύθυνση περίπου B150°, δηλαδή διεύθυνση που διαφέρει περίπου 30° από το ίχνος του ρήγματος, κάτι που απέχει από τις συνηθισμένες παρατηρήσεις εμφάνισης του παλμού κατευθυντικότητας σε διεύθυνση περίπου κάθετη στο ίχνος, πιθανώς λόγω της πολύπλοκης γεωμετρίας του και του μηχανισμού διάδοσης της διάρρηξης. Κάτι τέτοιο έρχεται σε συμφωνία με την παρατήρηση κάποιων βλαβών σε κατασκευές, οι οποίες διαπιστώθηκε ότι εκδηλώθηκαν υπό σαφή διεύθυνση περίπου B120° (βλ. ενότητα 5.2, σελ. 109). Ανάλογη συγκέντρωση βλαβών σε συγκεκριμένη διεύθυνση παρατηρήθηκε και στο κτήριο που εξετάζεται στην παρούσα εργασία, καθώς οι περισσότερες βλάβες σε υποστυλώματα διαπιστώνεται ότι οφείλονται σε τέμνουσες παράλληλα στη μεγάλη πλευρά του κτηρίου, η οποία έχει διεύθυνση περίπου B115°.

Από τα παραπάνω διαπιστώνεται ότι ο πιθανός παλμός κατευθυντικότητας πολύ μάλλον εκδηλώθηκε κυρίως στις διευθύνσεις αυτές. Συνεπώς, η διερεύνηση της ύπαρξης και των επιπτώσεων του παλμού κατευθυντικότητας θα γίνει κυρίως για διεύθυνση σεισμού που είναι παράλληλη προς τη μεγάλη πλευρά του κτηρίου, κατά την οποία εμφανίστηκαν άλλωστε και οι περισσότερες βλάβες στο φορέα, αλλά για λόγους σύγκρισης διερευνάται και η περίπτωση ύπαρξης παλμού κατά την άλλη διεύθυνση. Έτσι, αφού διενεργηθεί η παραπάνω διαδικασία παραγωγής των φασμάτων απόκρισης και στροφής των καταγεγραμμένων επιταχυνσιογραφημάτων, γίνεται προσαρμογή των επιταχυνσιογραφημάτων αυτών στα εκτιμούμενα φάσματα απόκρισης. Τόσο τα επιταχυνσιογραφήματα παράλληλα στη μεγάλη πλευρά του κτηρίου (L), όσο και αυτά που είναι παράλληλα στη μικρή πλευρά (T), προσαρμόζονται σε φάσματα με παλμό κατευθυντικότητας (D), καθώς και σε φάσματα χωρίς παλμό (N). Η διαδικασία προσαρμογής των επιταχυνσιογραφημάτων στα επιθυμητά φάσματα γίνεται με το πρόγραμμα Seismomatch.

Επειδή η παρουσίαση όλων των παραγόμενων επιταχυνσιογραφημάτων είναι αδύνατη, παρουσιάζονται εδώ κάποιες τυπικές περιπτώσεις. Στα σχήματα 6.11 έως 6.16 παρουσιάζονται κάποιες περιπτώσεις παραγόμενων επιταχυνσιογραφημάτων, ενώ στα σχήματα 6.17, 6.18, 6.19 γίνεται σύγκριση των φασμάτων που προκύπτουν από αυτά με τα στοχευόμενα φάσματα που προκύπτουν από τις σχέσεις Boore - Atkinson και Shahi - Baker.

Πρέπει να σημειωθεί ότι τα φάσματα απόκρισης των επιταχυνσιογραφημάτων δεν ταυτίζονται απόλυτα με τα στοχευόμενα φάσματα, όμως η σύγκλιση που επιτυγχάνεται είναι στις περισσότερες περιπτώσεις αρκετά καλή. Η σύγκλιση μεταξύ των παραγόμενων και στοχευόμενων φασμάτων επιλέγεται να γίνει με το Seismomatch σε εύρος περιόδων $T = 0.05 \div 2.00$ s, ενώ συνήθως είναι αδύνατη η επίτευξη σύγκλισης για τη μέγιστη εδαφική επιτάχυνση (φασματική τιμή για T = 0.00), χωρίς όμως αυτό να δημιουργεί προβλήματα στις φασματικές τιμές που μας ενδιαφέρουν στην πραγματικότητα. Με τη μέθοδο προσαρμογής των επιταχυνσιογραφημάτων του Seismomatch μπορεί να μην επιτυγχάνονται επίσης κάποια από τα ιδιαίτερα χαρακτηριστικά των επιταχυνσιογραφημάτων σεισμών κοντινού πεδίου, όπως συνήθως η εμφάνιση του παλμού στην αρχή της καταγραφής, αλλά τα συμπεράσματα που προκύπτουν χρησιμοποιώντας τα κρίνεται ότι προσεγγίζουν αρκετά την πραγματικότητα.

Σχήμα 6.11: Παραγόμενα επιταχυνσιογραφήματα - ε=2.7 - Διαμήκης διεύθυνση - Με(D) / Χωρίς(N) παλμό

Σχήμα 6.12: Παραγόμενα επιταχυνσιογραφήματα - ε=2.7 - Εγκάρσια διεύθυνση - Με(D) / Χωρίς(N) παλμό

Σχήμα 6.13: Παραγόμενα επιταχυνσιογραφήματα - ε=3.0 - Διαμήκης διεύθυνση - Με(D) / Χωρίς(N) παλμό

Σχήμα 6.14: Παραγόμενα επιταχυνσιογραφήματα - ε=3.0 - Εγκάρσια διεύθυνση - Με(D) / Χωρίς(N) παλμό

Σχήμα 6.15: Παραγόμενα επιταχυνσιογραφήματα - ε=3.3 - Διαμήκης διεύθυνση - Με(D) / Χωρίς(N) παλμό

Σχήμα 6.16: Παραγόμενα επιταχυνσιογραφήματα - ε=3.3 - Εγκάρσια διεύθυνση - Με(D) / Χωρίς(N) παλμό

Σχήμα 6.17: Σύγκριση στοχευόμενου φάσματος (BA - SB) με τα φάσματα των παραγόμενων επιταχυνσιογραφημάτων - ε=2.7

Σχήμα 6.18: Σύγκριση στοχευόμενου φάσματος (BA - SB) με τα φάσματα των παραγόμενων επιταχυνσιογραφημάτων - ε=3.0

Σχήμα 6.19: Σύγκριση στοχευόμενου φάσματος (BA - SB) με τα φάσματα των παραγόμενων επιταχυνσιογραφημάτων - ε=3.3

Κεφάλαιο 7

Συγκρίσεις και παρατηρήσεις που αφορούν στα μοντέλα προσομοίωσης

Στο κεφάλαιο αυτό πραγματοποιείται η περιγραφή και μια σύγκριση μεταξύ των διαφόρων εναλλακτικών για την προσομοίωση της κατασκευής, βασιζόμενη στα αποτελέσματα των αναλύσεων που προκύπτουν από τις διάφορες μεθόδους προσομοίωσης.

Τα αποτελέσματα των διαφόρων εναλλακτικών προσομοίωσης που παρουσιάζονται αφορούν κυρίως σε αναλύσεις Pushover κατά τη διεύθυνση παράλληλα στη μεγάλη πλευρά του κτηρίου και με φορά προς τη θετική φορά του άξονα Υ όπως φαίνεται στα σχέδια που δίδονται, καθώς και σε αναλύσεις χρονοϊστορίας στο ζεύγος επιταχυνσιογραφημάτων 30N-SGMA-T για τη μικρή και 30D-SGMA-L για τη μεγάλη πλευρά του κτηρίου, το τελευταίο από τα οποία προσομοιώνει επιταχυνσιογράφημα που περιέχει παλμό κατευθυντικότητας. Υπενθυμίζεται ότι για τις αναλύσεις Pushover, η κατανομή των φορτίων σε όλους τους κύριους κόμβους (οι οποίοι διαθέτουν μάζες) γίνεται βάσει της ιδιομορφής με τη μεγαλύτερη ιδιομορφική μάζα για σεισμική κίνηση στην αντίστοιχη διεύθυνση της ανάλυσης, ενώ ως κόμβος αναφοράς επιλέγεται ο κόμβος 413, δηλαδή η κορυφή του υποστυλώματος 13 στην ανώτατη στάθμη του κτηρίου, το οποίο βρίσκεται κατά προσέγγιση στο μέσο της κάτοψης. Όλες οι ανελαστικές αναλύσεις πραγματοποιούνται αφού αναλυθεί ο φορέας για τα σταθερά φορτία (σεισμικός συνδυασμός).

7.1 Το μοντέλο αναφοράς (Μοντέλο Α)

Υπενθυμίζονται εδώ οι βασικές παραδοχές που έχουν γίνει για το μοντέλο αναφοράς, το οποίο χρησιμοποιείται και για τις αναλύσεις χρονοϊστορίας που παρουσιάζονται στο επόμενο κεφάλαιο. Για την προσομοίωση των δοκών, αυτές χωρίζονται σε τρία τμήματα με διαφορετικά συνεργαζόμενα πλάτη (κατά EC8 στα άκρα και κατά EC2 στο μεσαίο τμήμα) και γενικά τα μέλη τοποθετούνται στο προσομοίωμα στους κεντροβαρικούς τους άξονες, με άκαμπτα τμήματα στα άκρα στις θέσεις των κόμβων, ενώ για τα υποστυλώματα θεωρούνται και φαινόμενα P-Δ. Στο συγκεκριμένο μοντέλο έχουν ληφθεί υπόψη και οι τοιχοπληρώσεις μέσω χιαστί μελών, όπως προτείνεται στον ΚΑΝ.ΕΠΕ. και περιγράφεται σε προηγούμενο κεφάλαιο. Στο μοντέλο ένσωματώνεται η διαφραγματική λειτουργία των πλακών μέσω πολύ δύσκαμπτων χιαστί και παράλληλων στις δοκούς μελών, ενώ τα τοιχία του υπογείου προσομοιώνονται επίσης με πολύ δύσκαμπτα χιαστί μέλη. Σημειώνεται ότι επειδή επιδιώκεται η μελέτη της πραγματικής συμπεριφοράς της κατασκευής, ως αντοχές υλικών λαμβάνονται οι μέσες τιμές αντοχής με μοναδιαίους συντελεστές ασφαλείας.

Στο μοντέλο αυτό, η ανελαστική συμπεριφορά του φορέα προσομοιώνεται μέσω της συγκεντρωμένης πλαστικότητας, όπως περιγράφεται στον ΚΑΝ.ΕΠΕ. Όπως έχει αναλυθεί και σε

προηγούμενο κεφάλαιο, ο ΚΑΝ.ΕΠΕ. επιβάλλει για τη γωνία στροφής χορδής τη χρήση όρων που οφείλονται σε φαινόμενα πέραν της κάμψης, οι οποίοι λαμβάνουν έμμεσα υπόψη φαινόμενα διατμητικών παραμορφώσεων, ρηγματώσεων και εξόλκευσης οπλισμών, τα οποία επηρεάζουν σημαντικά τη συμπεριφορά των μελών από οπλισμένο σκυρόδεμα, αλλά είναι δύσκολο να ληφθούν υπόψη άμεσα στο προσομοίωμα. Για την εισαγωγή των συγκετρωμένων αρθρώσεων στα άκρα των μελών με μορφή μελών μηδενικού μήκους με τους αντίστοιχους νόμους ροπής - στροφής, επαναλαμβάνεται εδώ ότι απαιτείται τροποποίηση των δυσκαμψιών των μελών μηδενικού μήκους και των κανονικών μελών, καθώς σε διαφορετική περίπτωση η συνολική δυσκαμψία του μέλους προκύπτει αρκετά μειωμένη, αφού τα στοιχεία μηδενικού μήκους και τα κανονικά μέλη συνδέονται εν σειρά.

Ακόμα, έχει επιχειρηθεί να ληφθούν υπόψη και οι αστοχίες λόγω διάτμησης στα υποστυλώματα με έμμεσο τρόπο, μέσω της τροποποίησης των διαγραμμάτων ροπής - γωνίας στροφής χορδής χρησιμοποιώντας την έννοια του διατμητικού μήκους. Στις δοκούς επιλέχθηκε για το κύριο μοντέλο να μην ληφθεί υπόψη η αστοχία σε διάτμηση, καθώς στο εξεταζόμενο κτήριο δεν παρατηρήθηκαν παρά ελάχιστες εμφανείς καμπτοδιατμητικές αστοχίες σε δοκούς, ενώ και η μοντελοποίηση του φαινομένου όπως γίνεται εδώ πιθανώς παρουσιάζει προβλήματα και δίνει δυσμενή αποτελέσματα για τη διάτμηση στις δοκούς, εξαιτίας μεταξύ άλλων και του δυσμενούς προσδιορισμού αξιόπιστων τιμών διατμητικών μηκών για τις δοκούς. Για το μοντέλο που περιγράφεται εδώ χρησιμοποιούνται οι τιμές αξονικών δυνάμεων και διατμητικών μηκών που έχουν προκύψει έπειτα από επαναλήψεις για τον προσδιορισμό των χαρακτηριστικών των μελών και όχι οι τυπικές τιμές που δίδονται στον ΚΑΝ.ΕΠΕ., όπως έχει περιγραφεί η διαδικασία σε προηγούμενο κεφάλαιο.

7.1.1 Αναλύσεις Pushover

Αρχικά, παρουσιάζονται οι αναλύσεις που πραγματοποιήθηκαν στις 4 κύριες κατευθύνσεις, όπως φαίνονται στο σχήμα 7.1. Στο ίδιο σχήμα φαίνονται και οι διγραμμικοποιήσεις που έχουν πραγματοποιηθεί αυτόματα σύμφωνα με τους κανόνες που έχουν αναπτυχθεί σε προηγούμενο κεφάλαιο, καθώς και η τιμή της περιόδου του ισοδύναμου μονοβάθμιου που αντιστοιχεί σε αυτές. Όπως περιγράφηκε και παραπάνω, στη συνέχεια επικεντρωνόμαστε στην ανάλυση Pushover κατά τη φορά Y+.

Όπως φαίνεται στα σχήματα αυτά, εντοπίζονται στις καμπύλες Pushover πτώσεις λόγω της σταδιακής μείωσης της αντοχής των μελών της κατασκευής (δοκών, υποστυλωμάτων και μελών τοιχοπληρώσεων), ενώ ιδαίτερα εμφανείς είναι οι απότομες πτώσεις των καμπύλων που οφείλονται σε ταυτόχρονες διατμητικές αστοχίες μιας ομάδας υποστυλωμάτων. Πραγματοποιώντας διγραμμικοποίηση των καμπύλων, προκύπτουν οι ιδιοπερίοδοι των μονοβάθμιων ταλαντωτών για κάθε κατεύθυνση ανάλυσης. Παρατηρείται ότι σε κάθε διεύθυνση ανάλυσης, οι ιδιοπερίοδοι των δύο φορών ανάλυσης σχεδόν ταυτίζονται, ενώ οι ιδιοπερίοδοι κατά τη μεγάλη πλευρά του κτηρίου, διεύθνση στην οποία βρίσκονται και οι περισσότερες τοιχοπληρώσεις του μοντέλου, υπολογίζονται λίγο μικρότερες από αυτές κατά τη μικρή πλευρά του κτηρίου.

Για τις ανάγκες της διαδικασίας ανάλυσης, πραγματοποιούνται ελαστικές αναλύσεις τόσο με δυσκαμψίες αρηγμάτωτων διατομών (EL), όσο και με δυσκαμψίες διατομών όπως προκύπτουν από τον KAN.EΠΕ.(ELMS). Στις αναλύσεις αυτές έχει πραγματοποιηθεί ιδιομορφική ανάλυση, από την οποία προκύπτουν οι τιμές των ιδιοπεριόδων που παρουσιάζονται παρακάτω στον πίνακα 7.1. Η ιδιοπερίοδος της ιδιομορφής με τη μέγιστη ιδιομορφική μάζα για σεισμική διέγερση σε κάθε οριζόντια διεύθυνση, σημειώνεται στο τέλος του πίνακα.

Όπως φαίνεται από τον πίνακα αυτό, οι ιδιοπερίοδοι του φορέα μετά τις απομειώσεις δυσκαμψιών που προτείνει ο ΚΑΝ.ΕΠΕ., διαφέρουν σημαντικά σε σχέση με τις αρχικές αρηγμάτωτες δυσκαμψίες. Επίσης, όπως προκύπτει, οι μετακινησιακές ιδιομορφές κατά τις δύο διευθύνσεις είναι η πρώτη κατά τη μικρή πλευρά και η τρίτη κατά τη μεγάλη πλευρά που λόγω ύπαρξης τοιχοπληρώσεων είναι πιο δύσκαμητη, ενώ η δεύτερη ιδιομορφή είναι στρεπτική.

	<i>T</i> ₁ (s)	T ₂ (s)	T ₃ (s)	T ₄ (s)	T ₅ (s)	<i>T</i> ₆ (s)	$\mid T_X$ (s)	$T_{\rm Y}$ (s)
EL	0.201	0.173	0.164	0.056	0.054	0.051	0.201	0.164
ELMS	0.692	0.555	0.463	0.202	0.181	0.158	0.692	0.463

Πίνακας 7.1: Μοντέλο Α: Ιδιοπερίοδοι ελαστικών αναλύσεων με αρηγμάτωτες και ρηγματωμένες διατομές κατά ΚΑΝ.ΕΠΕ. Σημειώνονται οι πρώτες ιδιοπερίοδοι που αντιστοιχούν σε μετατόπιση προς κάθε διεύθυνση.

Ενδεικτικά αναφέρεται ότι n συνολική μάζα του ισογείου και των ανώτερων ορόφων της κατασκευής είναι M = 788.8 Mgr (οι μάζες του υπογείου δεν αναμένεται να ενεργοποιηθούν κατά τη δυναμική απόκριση της κατασκευής) και οι ιδιομορφικές μάζες της πρώτης και της τρίτης ιδιομορφής στις αντίστοιχες διευθύνσεις X και Y είναι 519.4 Mgr και 649.6 Mgr, δηλαδή n συμμετοχή των ιδιομορφικών μαζών σε κάθε περίπτωση είναι 65.8% και 82.4% αντίστοιχα. Επομένως στην πραγματικότητα για την πληρέστερη αποτύπωση της συμπεριφοράς της κατασκευής σε κάθε διεύθυνση θα απαιτούνταν περισσότερες ιδιομορφές.

Όπως έχει αναλυθεί σε προηγούμενο κεφάλαιο, για τον υπολογισμό της γωνίας στροφής χορδής διαρροής, η οποία επηρεάζει και τις ρηγματωμένες δυσκαμψίες των διατομών, αθροίζονται τρεις όροι: ο πρώτος αφορά στην κάμψη και σε ρηγματώσεις λόγω διάτμησης, ο δεύτερος λαμβάνει υπόψη τη διατμητική παραμόρφωση και ο τρίτος φαινόμενα εξόλκευσης ράβδων οπλισμού. Στον επόμενο πίνακα 7.2 δίδονται οι μέσες τιμές της συμβολής κάθε όρου στην τελική τιμή στης γωνίας στροφής χορδής διαρροής ανά ομάδα μελών, καθώς και ο λόγος της ρηγματωμένης δυσκαμψίας προς την αρχική αρηγμάτωτη ελαστική δυσκαμψία των διατομών. Επισημαίνεται ότι στα υποστυλώματα συμπεριλαμβάνονται και τα τοιχία, στα οποία διαφοροποιείται ο δεύτερος όρος της εν λόγω σχέσης, ενώ ο μέσος όρος έχει εξαχθεί και για τις τέσσερις φορές ανάλυσης κάθε κατακόρυφου στοιχείου.

	θ_y - 1ος όρος	θ _y - 2ος όρος	$ $ $θ_y$ - 3ος όρος	🛛 Απομ. Δυσκ.
Δοκοί	47.7%	39.5%	12.7%	4.6%
Υποστυλώματα	48.7%	28.9%	22.4%	9.2%

Πίνακας 7.2: Μοντέλο Α: Συμβολή όρων στη γωνία στροφής χορδής διαρροής και απομείωση δυσκαμψιών ανά ομάδα μελών

Από τα παραπάνω προκύπτουν ενδιαφέροντα συμπεράσματα για τις προτάσεις που κάνει ο KAN.ΕΠΕ. Όπως φαίνεται, οι όροι διατμητικών παραμορφώσεων και εξόλκευσης οπλισμών προκύπτουν αθροιστικά πιο σημαντικοί από τον όρο λόγω κάμψης, δηλαδή μοντέλα στα οποία αυτά τα φαινόμενα δεν λαμβάνονται υπόψη αναμένεται να απέχουν σημαντικά από την αναμενόμενη πραγματική συμπεριφορά. Για τις δοκούς μάλιστα, η συμβολή του όρου διατμητικών παραμορφώσεων προκύπτει αρκετά σημαντική. Προκύπτει επίσης ότι η απομείωση της δυσκαμψίας των διατομών σε σχέση με τις αρηγμάτωτες διατομές είναι πολύ μεγάλη, με λόγους αρκετά μικρότερους του 25% που αναφέρεται στον ΚΑΝ.ΕΠΕ. Η απομείωση μάλιστα είναι ακόμα μικρότερη στις δοκούς σε σχέση με τα υποστυλώματα, κάτι που ίσως οφείλεται εδώ και στο γεγονός ότι έχουν ληφθεί υπόψη για της αρηγμάτωτες δυσκαμψίες και τα συνεργαζόμενα πλάτη.

Το OpenSees έχει τη δυνατότητα ιδιομορφικής ανάλυσης κατά τη διάρκεια της κυρίως ανάλυσης, βάσει των εφαπτομενικών μητρώων δυσκαμψίας. Οι ιδιομορφές που προκύπτουν στην ανελαστική περιοχή βέβαια, λόγω των αστοχιών, δεν έχουν τη σαφή σημασία και τη σταθερή συμπεριφορά όπως στην περίπτωση της ελαστικής απόκρισης, δίδουν όμως μια τάξη της σημασίας των βλαβών που εμφανίζονται, καθώς και μια σύγκριση της συμπεριφοράς μεταξύ των δύο διευθύνσεων ανάλυσης. Η μεταβολή των ιδιοπεριόδων που κυριαρχούν στην απόκριση

κατά τις δύο διευθύνσεις παρουσιάζεται στο σχήμα 7.2 και στον πίνακα 7.3, όπου σημειώνεται και η σειρά κάθε ιδιομορφής.

Σχήμα 7.2: Μοντέλο Α: Μεταβολή ιδιοπεριόδων στις βασικές διευθύνσεις κατά τη διάρκεια της ανάλυσης Pushover

δ_{top} (m)	T_X (s)		<i>T</i> _Y (s)	
0.00	0.688	(T1)	0.463	(T3)
0.01	0.689	(T1)	0.490	(T3)
0.02	0.698	(T1)	0.644	(T2)
0.03	0.702	(T1)	0.675	(T2)
0.04	0.706	(T2)	0.772	(T1)
0.05	0.707	(T2)	0.783	(T1)
0.06	0.657	(T3)	0.910	(T1)
0.07	0.660	(T3)	1.037	(T1)
0.08	0.667	(T3)	1.116	(T1)
0.09	0.683	(T3)	1.266	(T1)
0.10	0.694	(T3)	1.289	(T1)
0.11	0.704	(T3)	1.425	(T1)
0.12	0.723	(T2)	1.057	(T1)
0.13	0.699	(T3)	1.722	(T1)
0.14	0.700	(T3)	2.070	(T1)
0.15	0.694	(T3)	1.777	(T1)
0.16	0.720	(T2)	1.066	(T1)
0.17	0.721	(T2)	0.916	(T1)
0.18	0.750	(T2)	1.299	(T1)
0.19	0.727	(T2)	0.829	(T1)
0.20	0.726	(T3)	2.651	(T1)

Πίνακας 7.3: Μοντέλο Α: Μεταβολή ιδιοπεριόδων στις βασικές διευθύνσεις κατά τη διάρκεια της ανάλυσης Pushover

Όπως αναμένεται, η κύρια ιδιοπερίοδος στην κάθετη διεύθυνση διατηρείται περίπου σταθερή, ενώ η κύρια ιδιοπερίοδος κατά τη διεύθυνση ανάλυσης μεταβάλλεται σημαντικά κατά τη διάρκεια της ανάλυσης λόγω διαρροών και αστοχιών των μελών του φορέα. Μάλιστα, σύντομα η ιδιοπερίοδος αυτή γίνεται η πρώτη περίοδος του φορέα.

Τέλος, παρουσιάζονται στα επόμενα σχήματα 7.3, 7.4 και 7.5 n εξέλιξη κατά τη διάρκεια της ανάλυσης της αξονικής δύναμης, του διατμητικού μήκους για κάμψη περί τον τοπικό άξονα *y* (καθολικός άξονας *X*) και του διατμητικού μήκους για κάμψη περί τον τοπικό άξονα *z* (καθολικός άξονας *Y*) στη βάση ενός ενδεικτικού μέλους υποστυλώματος (υποστύλωμα 10 στη στάθμη του ισογείου (2)). Το πρόσημο που εμφανίζεται για τα διατμητικά μήκη αντιστοιχεί στο πρόσημο της ροπής κάμψης.

Σχήμα 7.3: Μοντέλο Α: Μεταβολή αξονικής δύναμης βάσης υποστυλώματος 210

Σχήμα 7.4: Μοντέλο Α: Μεταβολή διατμητικού μήκους για κάμψη περί τον τοπικό άξονα *y* βάσης υποστυλώματος 210

Στα παραπάνω σχήματα φαίνεται ότι n αξονική δύναμη των υποστυλωμάτων μεταβάλλεται συνεχώς και μάλιστα n τιμή της κυμαίνεται σημαντικά σε σχέση με την αξονική δύναμη λόγω των ιδίων βαρών, οπότε n θεώρηση σταθερής αξονικής δύναμης για τον υπολογισμό

Σχήμα 7.5: Μοντέλο Α: Μεταβολή διατμητικού μήκους για κάμψη περί τον τοπικό άξονα z βάσης υποστυλώματος 210

χαρακτηριστικών των καμπτικών αρθρώσεων που προτείνει ο ΚΑΝ.ΕΠΕ. είναι μικρής αξιοπιστίας. Μάλιστα, λόγω της ύπαρξης μελών τοιχοπληρώσεων στο προσομοίωμα, η μεταβολή της αξονικής δύναμης σε κάθε υποστύλωμα είναι απρόβλεπτη. Στα επόμενα σχήματα φαίνεται ότι κατά τη διάρκεια της ανάλυσης τα διατμητικά μήκη στις αναλύσεις Pushover παραμένουν σχετικά σταθερά. Προτιμάται γενικά για τις επαναλήψεις να επιλέγονται τιμές πριν από διαρροές ή αστοχίες μελών, έτσι ώστε τα μεγέθη που επιλέγονται και χρησιμοποιούνται κυρίως για τιμές στην ελαστική περιοχή (για παράδειγμα γωνία στροφής χορδής διαρροής και ρηγματωμένες δυσκαμψίες) να είναι χαρακτηριστικά των μελών πριν την όποια διαρροή ή αστοχία. Παρόλα αυτά, μετά τη διαρροή οι τιμές των διατμητικών μηκών δεν διαφοροποιούνται σημαντικά, οπότε τα ίδια μεγέθη μπορούν να χρησιμοποιηθούν και για υπολογισμό τιμών κατά την αστοχία των μελών.

7.1.2 Ανάλυση Χρονοϊστορίας

Για την ανάλυση χρονοϊστορίας με τα επιταχυνσιογραφήματα που αναφέρονται στην εισαγωγή παρουσιάζονται οι χρονοϊστορίες τεμνουσών βάσης και μετακινήσεων του κόμβου αναφοράς κατά τους δύο βασικούς άξονες στο σχήμα 7.6. Στο σχήμα αυτό φαίνονται και οι παραμένουσες μετακινήσεις της κατασκευής μετά τη δυναμική φόρτιση.

Στον πίνακα 7.4 δίδονται οι μέγιστες και οι ελάχιστες τιμές μετακινήσεων του κόμβου αναφοράς και των τεμνουσών βάσης στις δύο βασικές διευθύνσεις. Υπενθυμίζεται ότι έχει ληφθεί ως διεύθυνση *X* η διεύθυνση παράλληλα στη μικρή πλευρά του κτηρίου και ως διεύθυνση *Y* η διεύθυνση παράλληλα στη μεγάλη πλευρά του κτηρίου.

	δ_X (cm)	$\delta_{\rm Y}$ (cm)	V_X (kN)	V _Y (kN)
min	-3.72	-9.38	-4030.9	-3076.2
max	9.86	4.3	1854.3	4358.2

Πίνακας 7.4: Μοντέλο Α: Μέγιστες και ελάχιστες τιμές μετακινήσεων κόμβου αναφοράς και τεμνουσών βάσης

Στον πίνακα 7.5 παρουσιάζονται το πλήθος των μελών (ΜΔ) και των αρθρώσεων (ΑΔ) στις

δοκούς που έχουν υπερβεί διάφορες στάθμες επιτελεστικότητας (ΑΧ: Άμεση Χρήση, ΠΖ: Προστασία Ζωής, ΟΚ: Οιονεί κατάρρευση). Επίσης αναγράφεται το ποσοστό των μελών ή των αρθρώσεων σε σχέση με το σύνολο κάθε ορόφου που έχουν υπερβεί κάθε στάθμη επιτελεστικότητας. Στον πίνακα 7.6 δίδονται τα αντίστοιχα στοιχεία για τα υποστυλώματα κάθε στάθμης με επιπλέον ξεχωριστές στάθμες επιτελεστικότας: ΚΔΑ (Διατμητική αστοχία μετά τη διαρροή των μελών εξαιτίας μείωσης διατμητικής αντοχής λόγω ανακυκλίσεων), ΔΑ (Διατμητική αστοχία πριν τη διαρροή των μελών). Για τα μέλη ως στάθμη επιτελεστικότητας που παρουσιάζεται ότι έχει υπερβληθεί εννοείται η δυσμενέστερη στάθμη που έχει υπερβληθεί σε κάποια θέση του μέλους, με σειρά σπουδαιότητας ΔΑ, ΚΔΑ, ΟΚ, ΠΖ, ΑΧ.

Στάθμη ΜΔ-ΑΧ			ΜΔ-ΠΖ	1	И∆-ОК	A	AΔ-AX	4	ΑΔ-ΠΖ	АΔ-ОК		
4	14	(50%)	4	(14.3%)	1	(3.6%)	24	(42.9%)	4	(7.1%)	1	(1.8%)
3	18	(64.3%)	8	(28.6%)	1	(3.6%)	39	(69.6%)	9	(16.1%)	1	(1.8%)
2	20	(71.4%)	8	(28.6%)	0	(0%)	39	(69.6%)	10	(17.9%)	0	(0%)
1	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)

Πίνακας 7.5: Μοντέλο Α: Στάθμες επιτελεστικότητας για μέλη και αρθρώσεις δοκών

Στάθμη		MY-AX	М	Ϋ-ΠΖ	M	Y-OK	M	Υ-ΚΔΑ	1	ΜΥ-ΔΑ		AY-AX	A	Y-ΠZ	A	Y-OK	AY	ζ-ΚΔΑ		AY-ΔA
4		2 (9.1%)	0	(0%)	0	(0%)	0	(0%)	4	(18.2%)	2	(2.3%)	0	(0%)	0	(0%)	0	(0%)	4	(4.5%)
3		1 (4.5%)	0	(0%)	0	(0%)	0	(0%)	1	(4.5%)	1	(1.1%)	0	(0%)	0	(0%)	0	(0%)	1	(1.1%)
2		2 (9.1%)	0	(0%)	0	(0%)	0	(0%)	13	(59.1%)	4	(4.5%)	0	(0%)	0	(0%)	0	(0%)	14	(15.9%)
1	(0 (0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)

Πίνακας 7.6: Μοντέλο Α: Στάθμες επιτελεστικότητας για μέλη και αρθρώσεις υποστυλωμάτων

Στο σχήμα 7.7 παρουσιάζονται σχηματικά τα ποσοστά των μελών δοκών και υποστυλωμάτων κάθε στάθμης που έχουν υπερβεί τις διάφορες στάθμες επιτελεστικότητας, καθώς και τα drifts κάθε ορόφου στις δύο βασικές διευθύνσεις του κτηρίου.

Σχήμα 7.7: Μοντέλο Α: Ποσοστά μελών δοκών και υποστυλωμάτων που έχουν υπερβεί τις διάφορες στάθμες επιτελεστικότητας και drifts ορόφων στις δύο βασικές διευθύνσεις

Στους παραπάνω πίνακες και σχήματα φαίνεται αρχικά ότι όπως περιμέναμε κατά την κατασκευή του προσομοιώματος, το υπόγειο, στο οποίο υπάρχουν περιμετρικά πολύ δύσκαμπτα μέλη που προσομοιώνουν τοιχία, δεν συμμετέχει στη δυναμική απόκριση της κατασκευής. Στο ζεύγος επιταχυνσιογραφημάτων που εξετάζεται, όσον αφορά στις δοκούς, φαίνεται ότι αναπτύσσονται αρθρώσεις στην πλειονότητα των μελών, κυρίως στη 2η και 3η στάθμη, ενώ κάποια μέλη έχουν υπερβεί και τη στάθμη προστασίας ζωής. Η εικόνα στα υποστυλώματα είναι αρκετά διαφορετική, καθώς εμφανίζονται κυρίως διατμητικές αστοχίες και μάλιστα ιδιαίτερα στη 2η στάθμη (pilotis) σε πάνω από τα μισά μέλη. Παράλληλα, τα μέγιστα drifts φαίνεται ότι αναπτύσσονται στους ανώτερους ορόφους. Παρατηρείται ακόμα ότι στην περίπτωση των drifts κατά Υ, το μέγιστο drift εμφανίζεται στην 3η στάθμη. Σε αντιστοιχία με τα στοιχεία που παρουσιάστηκαν στην προηγούμενη υποενότητα για τις αναλύσεις Pushover, παρουσιάζονται και εδώ οι ιδιοπερίοδοι μετά την επανάληψη για τις ελαστικές αναλύσεις αρηγμάτωτων και ρηγματωμένων διατομών (πίνακας 7.7), η συμμετοχή των διαφόρων όρων στη διαμόρφωση των τελικών τιμών γωνίας στροφής χορδής διαρροής, καθώς και οι λόγοι ρηγματωμένων προς αρηγμάτωτων δυσκαμψιών (πίνακας 7.8).

	<i>T</i> ₁ (s)	T ₂ (s)	T ₃ (s)	T ₄ (s)	T ₅ (s)	T ₆ (s)	$\parallel T_X$ (s)	<i>T</i> _Y (s)
EL	0.201	0.173	0.164	0.056	0.054	0.051	0.201	0.164
ELMS	0.711	0.570	0.478	0.202	0.184	0.163	0.711	0.478

Πίνακας 7.7: Μοντέλο Α: Ιδιοπερίοδοι ελαστικών αναλύσεων με αρηγμάτωτες και ρηγματωμένες διατομές κατά ΚΑΝ.ΕΠΕ. Σημειώνονται οι πρώτες ιδιοπερίοδοι που αντιστοιχούν σε μετατόπιση προς κάθε διεύθυνση.

	$\mid heta_y$ - 1ος όρος	$θ_y$ - 2ος όρος	θ_y - 3ος όρος	Απομ. Δυσκ.
Δοκοί	44.6%	42.5%	12.9%	4.1%
Υποστυλώματα	51.0%	27.3%	21.7%	9.3%

Πίνακας 7.8: Μοντέλο Α: Συμβολή όρων στη γωνία στροφής χορδής διαρροής και απομείωση δυσκαμψιών ανά ομάδα μελών

Τα στοιχεία που δίδουν οι παραπάνω πίνακες (και όπως και στην περίπτωση Pushover έχουν προκύψει έπειτα από επανάληψη) είναι παρόμοια με αυτά που δίδονται στην προηγούμενη υποενότητα για την ανάλυση Pushover.

Η εξέλιξη των ιδιοπεριόδων που κυριαρχούν στις δύο βασικές διευθύνσεις ανάλυσης φαίνονται στο σχήμα 7.8 και στον πίνακα 7.9.

Σχήμα 7.8: Μοντέλο Α: Μεταβολή ιδιοπεριόδων στις βασικές διευθύνσεις κατά τη διάρκεια της ανάλυσης χρονοϊστορίας

Διαπιστώνεται ότι μέχρι τη στιγμή που συμβαίνουν σημαντικές διαρροές ή αστοχίες μελών, οι κύριες ιδιοπερίοδοι στις δύο βασικές διευθύνσεις παραμένουν περίπου σταθερές (με μικρές

Χρόνος <i>t</i> , (s)	$ T_X $	(s)	$T_{\rm Y}$ ((s)
0.01	0.737	(T1)	0.479	(T3)
2.00	0.703	(T1)	0.477	(T3)
4.00	0.703	(T1)	0.480	(T3)
6.00	0.707	(T1)	0.493	(T3)
6.20	0.707	(T1)	0.477	(T3)
6.40	0.720	(T1)	0.477	(T3)
6.60	0.703	(T1)	0.477	(T3)
6.80	0.721	(T1)	0.462	(T3)
7.00	0.703	(T1)	0.480	(T3)
7.20	0.712	(T1)	0.535	(T3)
7.40	0.723	(T1)	0.501	(T3)
7.60	0.742	(T1)	0.542	(T3)
7.80	0.741	(T1)	0.602	(T3)
8.00	0.728	(T1)	0.522	(T3)
8.20	0.744	(T1)	0.478	(T3)
8.40	0.892	(T1)	0.574	(T3)
8.60	0.848	(T2)	0.875	(T1)
8.80	0.942	(T1)	0.771	(T3)
9.00	0.757	(T2)	0.797	(T1)
9.20	0.924	(T1)	0.676	(T3)
9.40	1.061	(T1)	0.958	(T2)
9.60	0.854	(T1)	0.754	(T3)
9.80	0.977	(T1)	0.845	(T2)
10.00	0.799	(T1)	0.744	(T2)
10.20	1.024	(T1)	0.800	(T3)
10.40	1.052	(T1)	0.844	(T2)
10.60	0.899	(T1)	0.779	(T3)
10.80	0.880	(T1)	0.803	(T2)
11.00	0.760	(T1)	0.748	(T2)
11.20	1.043	(T1)	0.865	(T2)
11.40	1.049	(T1)	0.771	(T3)
11.60	0.898	(T1)	0.820	(T2)
11.80	1.000	(T1)	0.763	(T3)
12.00	0.740	(T2)	0.784	(T1)
12.20	0.951	(T1)	0.766	(T3)
12.40	1.015	(T1)	0.775	(T3)
12.60	0.853	(T1)	0.740	(T3)
12.80	0.977	(T1)	0.749	(T3)
13.00	0.844	(T1)	0.758	(T2)
13.20	0.876	(T1)	0.741	(T3)
13.40	1.034	(T1)	0.747	(T3)
13.60	0.876	(T1)	0.741	(T3)
13.80	0.967	(T1)	0.747	(T3)
14.00	0.878	(T1)	0.778	(T2)
15.00	0.831	(T1)	0.740	(T3)

Πίνακας 7.9: Μοντέλο Α: Μεταβολή ιδιοπεριόδων στις βασικές διευθύνσεις κατά τη διάρκεια της ανάλυσης χρονοϊστορίας

βέβαια διαφοροποιήσεις λόγω της ανελαστικής απόκρισης των μελών τοιχοπληρώσεων). Στη συνέχεια, κυμαίνονται συνεχώς κατά τη διάρκεια του κύριου διαστήματος δυναμικής φόρτισης, παρατηρώντας ότι η πρώτη ιδιομορφή κατά Υ, στη διεύθυνση κατά την οποία αναμένονται και τα φαινόμενα κατευθυντικότητας, γίνεται σε κάποιες χρονικές στιγμές και η πρώτη ιδιομορφή του φορέα γενικά, ενώ η ιδιοπερίοδός της μπορεί να φτάσει ακόμα και τα 0.96s, ιδιοπερίοδος που βρίσκεται αρκετά κοντά και επηρεάζεται ιδιαίτερα από τον παλμό που περιέχεται στο επιταχυνσιογράφημα στη διεύθυνση αυτή. Βέβαια, αν επιλέγονταν για ιδιομορφική ανάλυση συγκεκριμένες χρονικές στιγμές ενδιάμεσα σε αυτές που έχουν επιλεγεί εδώ, πιθανότητα θα εντοπίζονταν και ακόμα μεγαλύτερες στιγμιαίες ιδιοπερίοδοι. Σημειώνεται βέβαια ότι λόγω των ανακυκλίσεων και γενικότερα της πολύπλοκης συμπεριφοράς των αρθρώσεων στα άκρα των μελών, οι απόλυτες τιμές των ιδιοπεριόδων σε κάθε χρονική στιγμή ξεχωριστά πιθανόν να μην έχουν κάποια ιδιαίτερη σημασία, καθώς αποτυπώνουν στιγμιαίες δυσκαμψίες του φορέα που περιλαμβάνει ακόμα και αρθρώσεις σε αποφόρτιση. Διαπιστώνεται πάντως μια γενικότερη τάση μείωσης δυσκαμψίας του φορέα, η οποία είναι ικανή να επηρεάσει τη συμπεριφορά του, ακόμα και αν οι αρχικές δυσκαμψίες είναι πολύ μεγαλύτερες. Στην περίπτωση λοιπόν που η μείωση της δυσκαμψίας του φορέα οδηγεί σε δυσμενή αποτελέσματα, όπως γίνεται και στην περίπτωση των σεισμικών διεγέρσεων με φαινόμενα κατευθυντικότητας, η μείωση αυτή της δυσκαμψίας θα πρέπει να λαμβάνεται υπόψη κατά το σχεδιασμό.

Άλλη μια παρατήρηση που πρέπει να γίνει αφορά στις ιδιοπεριόδους του φορέα κατά τις βασικές διευθύνσεις του φορέα στην αρχή της ανάλυσης, μετά την ενεργοποίηση των τοιχοπληρώσεων. Αυτές φαίνεται ότι βρίσκονται πάρα πολύ κοντά με τις ιδιοπεριόδους που προκύπτουν από την ελαστική ανάλυση με τις ρηγματωμένες δυσκαμψίες, κάτι που δείχει ότι η προσέγγιση που έχει ακολουθηθεί για την εισαγωγή των συγκεντρωμένων αρθρώσεων στα άκρα των μελών πράγματι δεν μεταβάλλει την αρχική δυσκαμψία του φορέα, ενώ ακόμα η προσομοίωση των τοιχοπληρώσεων με δύο ανελαστικά μέλη, από τα οποία κάθε φορά ενεργοποιείται το ένα, και η προσομοίωση με δύο ελαστικά μέλη μισού εμβαδού διατομής δίνουν σχεδόν τα ίδια αποτελέσματα όσον αφορά στις αρχικές δυσκαμψίες του φορέα.

Ακόμα, παρουσιάζονται οι χρονοϊστορίες της αξονικής δύναμης, του διατμητικού μήκους για κάμψη περί τον τοπικό άξονα *y* (καθολικός άξονας *X*) και του διατμητικού μήκους για κάμψη περί τον τοπικό άξονα *z* (καθολικός άξονας Y) στη βάση του ενδεικτικού μέλους υποστυλώματος 210 (σχήματα 7.9,7.10 και 7.11 αντίστοιχα).

Σχήμα 7.9: Μοντέλο Α: Μεταβολή αξονικής δύναμης βάσης υποστυλώματος 210 Και εδώ, όπως και στην περίπτωση της ανάλυσης Pushover, διαπιστώνεται ότι η αξονική

Σχήμα 7.10: Μοντέλο Α: Μεταβολή διατμητικού μήκους για κάμψη περί τον τοπικό άξονα *y* βάσης υποστυλώματος 210

Σχήμα 7.11: Μοντέλο Α: Μεταβολή διατμητικού μήκους για κάμψη περί τον τοπικό άξονα z βάσης υποστυλώματος 210

δύναμη μεταβάλλεται σημαντικά, κυμαινόμενη γύρω από την αξονική δύναμη λόγω σταθερών φορτίων και στην πραγματικότητα μεταβάλλει τη συμπεριφορά του υποστυλώματος. Ιδιαίτερο ενδιαφέρον παρουσιάζουν τα διαγράμματα διατμητικών μηκών, όπου φαίνεται ότι το μέγεθος αυτό είναι εξαιρετικά ασταθές και δεν μπορεί να οριστεί εύκολα. Συγκεκριμένα, στο διάγραμμα για κάμψη περί τον *y*, διακρίνεται μία εμμονή των τιμών διατμητικών μηκών γύρω από δύο τιμές (περίπου 0.8 και -1.2) για τις δύο φορές καμπτικής φόρτισης (τα πρόσημα στα διαγράμματα αντιστοιχούν στις δύο φορές της ροπής κάμψης στη βάση του υποστυλώματος), οι οποίες φαίνεται ότι διαφέρουν λίγο για τις δύο φορές φόρτισης. Ανάλογο συμπέρασμα για τη διακύμανση γύρω από μία τιμή εμφανίζεται και στο διάγραμμα περί τον *z*. Αυτό που πρέπει να επισημανθεί ιδιαίτερα όμως είναι ότι, όπως φαίνεται και στα δύο διαγράμματα, συχνά η τιμή του διατμητικού μήκους μηδενίζεται, αυξομειώνεται απότομα ή ακόμα και "απειρίζεται" λόγω στιγμιαίων μηδενισμών της ροπής ή της διατμητικής δύναμης (δεν παρουσιάζεται εδώ ο "απειρισμός" για λόγους εποπτείας των υπολοίπων αποτελεσμάτων) ή γενικά ελάχιστης φόρτισης σε κάποιες διευθύνσεις ορισμένων μελών που δεν δίνει αξιόπιστες τιμές διατμητικών μηκών. Συνεπώς, αν τυχόν μία τέτοια τιμή επιλεγεί ως χαρακτηριστική του μέλους, αν και δεν χαρακτηρίζει γενικά τη συμπεριφορά του μέλους, θα οδηγήσει αναπόφευκτα σε σφάλματα κατά την εξαγωγή των χαρακτηριστικών που ορίζει ο ΚΑΝ.ΕΠΕ. Επομένως, πιθανώς απαιτείται να καθοριστούν κάποια κριτήρια για αποδοχή των διατμητικών μηκών που επιλέγονται, όπως για παράδειγμα ένα διάστημα τιμών γύρω από τις τυπικές τιμές που προτείνει ο ΚΑΝ.ΕΠΕ., όπως επιλέχθηκε να εφαρμοστεί και στην παρούσα εργασία. Το φαινόμενο αυτό βέβαια είναι εντονότερο στις αναλύσεις χρονοϊστορίας, όμως είναι δυνατό (σπανιότερα) να εμφανιστεί σε κάποιες περιπτώσεις και κατά την εξαγωγή των διατμητικών μηκών από αναλύσεις Pushover. Παρόλα αυτά, όπως διαπιστώνεται, η εξέλιξη των διατμητικών μηκών στην περίπτωση των αναλύσεων Pushover είναι αρκετά σταθερότερη, γι' αυτό και τελικά προτιμάται τα μεγέθη αυτά να εξαχθούν από τις αναλύσεις Pushover. Μάλιστα, φαίνεται από τα παραπάνω διαγράμματα ότι πράγματι οι τιμές γύρω από τις οποίες κυμαίνονται τα διατμητικά μήκη στις αναλύσεις χρονοϊστορίας μπορούν να προσεγγισθούν ικανοποιητικά από τις τιμές που προκύπτουν από τις αναλύσεις Pushover.

7.2 Το βασικό μοντέλο με τυπικές τιμές πριν την εκτέλεση επαναλήψεων (Μοντέλο TT)

Η συμπεριφορά του μοντέλου κατά την ανάλυση με τις τυπικές τιμές αξονικών δυνάμεων και διατμητικών μηκών που προτείνει ο ΚΑΝ.ΕΠΕ., χωρίς να γίνει επανάληψη (η οποία γίνεται για όλες τις υπόλοιπες αναλύσεις που παρουσιάζονται στο συγκεκριμένο κεφάλαιο), μπορεί να είναι αρκετά διαφορετική σε σχέση με τη συμπεριφορά του χρησιμοποιώντας τις τιμές μετά την επανάληψη που προσεγγίζουν περισσότερο την πραγματικότητα. Συνοπτικά επαναλαμβάνεται εδώ ότι ο ΚΑΝ.ΕΠΕ. προτείνει ότι για χθαμαλά κτήρια ως αξονικές δυνάμεις που ασκούνται στα υποστυλώματα μπορούν να θεωρηθούν τα αξονικά φορτία λόγω των σταθερών κατακορύφων φορτίων του σεισμικού συνδυασμού, ενώ όσον αφορά στα διατμητικά μήκη γενικά λαμβάνο-νται για την πλειοψηφία των μελών ως το μισό καθαρό μήκος κάθε μέλους.

Δίδονται εδώ αντίστοιχα διαγράμματα με την προηγούμενη ενότητα για ανάλυση Pushover (με φορά Y+) και χρονοϊστορίας, τα οποία αναδεικνύουν τις εμφανιζόμενες διαφορές. Πέραν της χρήσης των παραπάνω τυπικών τιμών του ΚΑΝ.ΕΠΕ., οι παραδοχές προσομοίωσης και ανάλυσης παραμένουν οι ίδιες με αυτές του μοντέλου αναφοράς.

7.2.1 Ανάλυση Pushover

Σχήμα 7.12: Μοντέλο ΤΤ: Διάγραμμα Pushover κατά τη φορά Υ+

	<i>T</i> ₁ (s)	T ₂ (s)	T ₃ (s)	T ₄ (s)	T ₅ (s)	T ₆ (s)	$ T_X(\mathbf{s}) $	$\mid T_{\rm Y} ({\rm s})$
EL	0.201	0.173	0.164	0.056	0.054	0.051	0.201	0.164
ELMS	0.694	0.555	0.467	0.202	0.181	0.159	0.694	0.467

Πίνακας 7.10: Μοντέλο ΤΤ: Ιδιοπερίοδοι ελαστικών αναλύσεων με αρηγμάτωτες και ρηγματωμένες διατομές κατά ΚΑΝ.ΕΠΕ. Σημειώνονται οι πρώτες ιδιοπερίοδοι που αντιστοιχούν σε μετατόπιση προς κάθε διεύθυνση.

Από την καμπύλη Pushover διαπιστώνεται ότι τα δύο μοντέλα δεν διαφέρουν ιδιαίτερα στην αρχή της ανάλυσης, όμως διαφοροποιούνται στη συνέχεια αφού συμβούν κάποιες αστοχίες, πιθανότητα και διατμητικής φύσεως, καθώς οι τυπικές τιμές διατμητικών μηκών που

	$ heta_y$ - 1ος όρος	$ heta_y$ - 2ος όρος	$ heta_y$ - 3ος όρος	Απομ. Δυσκ.
Δοκοί	49.7%	37.5%	12.8%	4.8%
Υποστυλώματα	48.5%	28.7%	22.7%	9.1%

Πίνακας 7.11: Μοντέλο ΤΤ: Συμβολή όρων στη γωνία στροφής χορδής διαρροής και απομείωση δυσκαμψιών ανά ομάδα μελών

προτείνονται στον ΚΑΝ.ΕΠΕ. συνήθως δεν δίδουν σωστές τιμές ροπής για τις οποίες το μέλος φτάνει στη διατμητική αντοχή του. Φαίνεται πάντως ότι η ιδιοπερίοδος του ισοδύναμου μονοβάθμιου κατά τη φορά Y+ είναι περίπου ίδια πριν και μετά την επανάληψη. Αυτό φαίνεται και από σύγκριση των ιδιοπεριόδων του ελαστικού μοντέλου ρηγματωμένων δυσκαμψιών στις δύο διευθύνσεις. Ακόμα, ελάχιστες διαφοροποιήσεις διαπιστώνονται στη συμβολή των διαφόρων όρων στις γωνίες στροφής χορδής διαρροής και στις απομειωμένες δυσκαμψίες χρησιμοποιώντας τις τυπικές τιμές και τις τιμές μετά τις επαναλήψεις, κυρίως στην περίπτωση των δοκών.

7.2.2 Ανάλυση χρονοϊστορίας

	δ_X (cm)	$\delta_{\rm Y}$ (cm)	V_X (kN)	V _Y (kN)
min	-2.63	-8.93	-3758.5	-3161.6
max	8.98	3.12	1571.3	4106.6

Πίνακας 7.12: Μοντέλο ΤΤ: Μέγιστες και ελάχιστες τιμές μετακινήσεων κόμβου αναφοράς και τεμνουσών βάσης

Στάθμη	N	ΛΔ-ΑΧ]	ΜΔ-ΠΖ	N	∕ΙΔ-ΟΚ	A	AΔ-AX	.	ΑΔ-ΠΖ	A	Δ-ОК
4	18	(64.3%)	1	(3.6%)	0	(0%)	25	(44.6%)	1	(1.8%)	0	(0%)
3	23	(82.1%)	5	(17.9%)	0	(0%)	46	(82.1%)	5	(8.9%)	0	(0%)
2	20	(71.4%)	6	(21.4%)	2	(7.1%)	44	(78.6%)	6	(10.7%)	2	(3.6%)
1	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)

Πίνακας 7.13: Μοντέλο ΤΤ: Στάθμες επιτελεστικότητας για μέλη και αρθρώσεις δοκών

Στάθμη		MY-AX	M	ΙΥ-ΠΖ	M	Y-OK	M	Υ-ΚΔΑ		ΜΥ-ΔΑ		AY-AX	A	Y-ΠZ	A	Y-OK	A)	ζ-ΚΔΑ	1	AY-ΔA
4	1	l (4.5%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)	1	(1.1%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)
3	(0%) (0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)
2	(0%) (0%)	0	(0%)	0	(0%)	0	(0%)	18	(81.8%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)	27	(30.7%)
1	0	0 (0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)	C	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)

Πίνακας 7.14: Μοντέλο ΤΤ: Στάθμες επιτελεστικότητας για μέλη και αρθρώσεις υποστυλωμάτων

Από τα σχήματα που δίδονται διαπιστώνεται ότι για τις χρονοϊστορίες τέμνουσας βάσης και μετακίνησης κόμβου αναφοράς, κάποιες μικρές διαφοροποιήσεις φαίνονται στα διαγράμματα μετακίνησης του κόμβου αναφοράς κατά τις δύο διευθύνσεις, όπου οι μετακινήσεις μετά την επανάληψη διαπιστώνονται γενικά λίγο μεγαλύτερες, αν και το μοντέλο με τις τυπικές τιμές εμφανίζει λίγο μεγαλύτερη παραμένουσα μετακίνηση κατά Χ. Πιθανότητα, πέραν της μικρής μείωσης των δυσκαμψιών των μελών μετά τις επαναλήψεις, αυτό οφείλεται και στη διαφορετική κατανομή διαρροών και αστοχιών των μελών, όπως φαίνεται από τους επόμενους πίνακες και διαγράμματα, καθώς μετά την επανάληψη οι αστοχίες είναι πιο εκτεταμένες στους

Σχήμα 7.14: Μοντέλο ΤΤ: Ποσοστά μελών δοκών και υποστυλωμάτων που έχουν υπερβεί τις διάφορες στάθμες επιτελεστικότητας και drifts ορόφων στις δύο βασικές διευθύνσεις

ανώτερους ορόφους, τόσο οι διατμητικές αστοχίες στα υποστυλώματα, όσο και η υπέρβαση δυσμενέστερων στάθμεων επιτελεστικότητας στις δοκούς, σε αντίθεση με τις αστοχίες του ισογείου που μειώνονται. Η παραπάνω παρατήρηση συμφωνεί και με τα αναπτυσσόμενα drifts των ανώτερων ορόφων, τα οποία διαπιστώνονται αυξημένα χρησιμοποιώντας τις τιμές μετά τις επαναλήψεις.

7.3 Μοντέλο χωρίς φαινόμενα Ρ-Δ (Μοντέλο ΧΡΔ)

Γενικά στα μοντέλα που εξετάζονται, για την απόκριση των υποστυλωμάτων συμπεριλαμβάνονται και φαινόμενα Ρ-Δ, που ίσως τα επιβαρύνουν περισσότερο. Βέβαια, η κατασκευή που εξετάζεται είναι σχετικά χθαμαλή, οπότε δεν αναμένονται στην πραγματικότητα σημαντικές διαφοροποιήσεις στην απόκρισή της με και χωρίς φαινόμενα Ρ-Δ. Η περίπτωση που στο μοντέλο αναφοράς δεν θεωρούνται φαινόμενα Ρ-Δ εξετάζεται και παρουσιάζεται στην παρούσα ενότητα.

7.3.1 Ανάλυση Pushover

Σχήμα 7.15: Μοντέλο ΧΡΔ: Διάγραμμα Pushover κατά τη φορά Υ+

Τα δύο διαγράμματα δεν φαίνεται να διαφοροποιούνται ιδιαίτερα. Οι όποιες μικρές διαφοροποιήσεις που παρατηρούνται, κυρίως μετά τη "διαρροή" του συστήματος, πιθανόν να οφείλονται σε μικρές διαφορές που υπάρχουν στα διατμητικά μήκη ή στις αξονικές δυνάμεις που λαμβάνονται υπόψη μετά τις επαναλήψεις, με αποτέλεσμα κάποιες διαρροές ή αστοχίες να συμβαίνουν σε ελαφρώς διαφορετικές μετατοπίσεις. Πέρα από αυτό, οι μεγαλύτερες διαφορές μεταξύ των δύο διαγραμμάτων φαίνεται ότι υπάρχουν στις μεγαλύτερες μετατοπίσεις, κάτι που ήταν αναμενόμενο.

7.3.2 Ανάλυση χρονοϊστορίας

	δ_X (cm)	$\delta_{ m Y}$ (cm)	V_X (kN)	V_{Y} (kN)
min	-4.44	-9.17	-4001.7	-2964.4
max	9.59	4.99	1870.8	4310.7

Πίνακας 7.15: Μοντέλο ΧΡΔ: Μέγιστες και ελάχιστες τιμές μετακινήσεων κόμβου αναφοράς και τεμνουσών βάσης

Στα διαγράμματα αυτά παρατηρείται και πάλι η ελάχιστη διαφοροποίηση της απόκρισης του φορέα με και χωρίς φαινόμενα Ρ-Δ, με λίγο μεγαλύτερες παραμένουσες μετακινήσεις στην περίπτωση της ανάλυσης με φαινόμενα Ρ-Δ.

Σχήμα 7.16: Μοντέλο ΧΡΔ: Χρονοϊστορίες τεμνουσών βάσης και μετακινήσεων κόμβου αναφοράς

Στάθμη	N	ΛΔ-ΑΧ]	ΜΔ-ΠΖ	N	∕ΙΔ-ΟΚ		ΑΔ-ΑΧ		ΑΔ-ΠΖ	4	АΔ-ОК
4	13	(46.4%)	6	(21.4%)	1	(3.6%)	24	(42.9%)	6	(10.7%)	1	(1.8%)
3	19	(67.9%)	7	(25%)	2	(7.1%)	41	(73.2%)	8	(14.3%)	2	(3.6%)
2	21	(75%)	7	(25%)	0	(0%)	42	(75%)	8	(14.3%)	0	(0%)
1	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)

Πίνακας 7.16: Μοντέλο ΧΡΔ: Στάθμες επιτελεστικότητας για μέλη και αρθρώσεις δοκών

Στάθμη		MY-AX	M	Ү-ПΖ	M	Y-OK	M	Υ-ΚΔΑ		ΜΥ-ΔΑ		AY-AX	A	Y-ПZ	A	Y-OK	AY	ζ-ΚΔΑ		AY-ΔA
4	5	(22.7%)	0	(0%)	0	(0%)	0	(0%)	3	(13.6%)	5	5 (5.7%)	0	(0%)	0	(0%)	0	(0%)	3	(3.4%)
3	1	(4.5%)	0	(0%)	0	(0%)	0	(0%)	2	(9.1%)	1	(1.1%)	0	(0%)	0	(0%)	0	(0%)	2	(2.3%)
2	3	(13.6%)	0	(0%)	0	(0%)	0	(0%)	9	(40.9%)	3	6 (3.4%)	0	(0%)	0	(0%)	0	(0%)	9	(10.2%)
1	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)	C) (0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)

Πίνακας 7.17: Μοντέλο ΧΡΔ: Στάθμες επιτελεστικότητας για μέλη και αρθρώσεις υποστυλωμάτων

Σχήμα 7.17: Μοντέλο ΧΡΔ: Ποσοστά μελών δοκών και υποστυλωμάτων που έχουν υπερβεί τις διάφορες στάθμες επιτελεστικότητας και drifts ορόφων στις δύο βασικές διευθύνσεις

7.4 Μοντέλο χωρίς τοιχοπληρώσεις (Μοντέλο ΧΤ)

Εδώ μελετάται η συμπεριφορά του μοντέλου αναφοράς αν από αυτό αφαιρεθούν τα διαγώνια χιαστί μέλη που προσομοιώνουν τις τοιχοπληρώσεις και συγκρίνεται η συμπεριφορά του με το μοντέλο αναφοράς που αναλύθηκε στην αρχή του κεφαλαίου.

7.4.1 Ανάλυση Pushover

Σχήμα 7.18: Μοντέλο ΧΤ: Διάγραμμα Pushover κατά τη φορά Υ+

	<i>T</i> ₁ (s)	T ₂ (s)	T ₃ (s)	T ₄ (s)	T ₅ (s)	<i>T</i> ₆ (s)	T_X (s)	<i>T</i> _Y (s)
EL	0.204	0.176	0.171	0.057	0.056	0.051	0.204	0.171
ELMS	0.801	0.704	0.689	0.230	0.213	0.205	0.802	0.689

Πίνακας 7.18: Μοντέλο ΧΤ: Ιδιοπερίοδοι ελαστικών αναλύσεων με αρηγμάτωτες και ρηγματωμένες διατομές κατά ΚΑΝ.ΕΠΕ. Σημειώνονται οι πρώτες ιδιοπερίοδοι που αντιστοιχούν σε μετατόπιση προς κάθε διεύθυνση.

Όπως αναμενόταν, το μοντέλο χωρίς τοιχοπληρώσεις είναι πιο εύκαμπτο από το αντίστοιχο με τα μέλη τοιχοπληρώσεων, όπως φαίνεται και απο τις ιδιοπεριόδους κυρίως του ελαστικού μοντέλου με ρηγματωμένες δυσκαμψίες. Η αύξηση της πρώτης ιδιοπεριόδου (κατά X) είναι εμφανής, όμως ιδιαίτερα σημαντική είναι η αύξηση της τρίτης ιδιοπεριόδου (κατά Y), καθώς στη διεύθυνση αυτή δρα η πλειονότητα των τοιχοπληρώσεων, μεταβάλλοντας σημαντικά τη συμπεριφορά του μοντέλου στη συγκεκριμένη διεύθυνση. Παρ' όλα αυτά, συγκρίνοντας τα δύο διαγράμματα Pushover διαπιστώνεται ότι οι τοιχοπληρώσεις δρουν κυρίως στην αρχή της ανάλυσης, ενώ στη συνέχεια τα αποτελέσματα που προκύπτουν από τα δύο μοντέλα πλησιάζουν μεταξύ τους, με κάποιες διαφοροποιήσεις ξανά στις μεγαλύτερες μετατοπίσεις, πιθανόν και λόγω διαφορετικής κατανομής αστοχιών. Η μέγιστη τέμνουσα βάσης των δύο μοντέλων δεν διαφέρει πάρα πολύ, δηλαδή οι τοιχοπληρώσεις φαίνεται ότι συμβάλλουν κυρίως στην αύξηση της αρχικής δυσκαμψίας του φορέα, πιθανώς λόγω της σχεδόν πλήρους ανυπαρξίας τοιχοπληρ ώσεων στο ισόγειο.

7.4.2 Ανάλυση χρονοϊστορίας

	δ_X (cm)	$\delta_{\rm Y}$ (cm)	V_X (kN)	V _Y (kN)
min	-4.01	-12.31	-3892.4	-2614.5
max	13.26	5.49	1749.3	4322.7

Πίνακας 7.19: Μοντέλο ΧΤ: Μέγιστες και ελάχιστες τιμές μετακινήσεων κόμβου αναφοράς και τεμνουσών βάσης

Στάθμη	1	ΛΔ-ΑΧ	1	ΛΔ-ΠΖ]	ΜΔ-ΟΚ	4	AΔ-AX		ΑΔ-ΠΖ	4	А∆-ОК
4	14	(50%)	3	(10.7%)	1	(3.6%)	23	(41.1%)	4	(7.1%)	1	(1.8%)
3	12	(42.9%)	13	(46.4%)	3	(10.7%)	33	(58.9%)	17	(30.4%)	3	(5.4%)
2	10	(35.7%)	14	(50%)	4	(14.3%)	27	(48.2%)	22	(39.3%)	4	(7.1%)
1	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)

Πίνακας	7 20. Μοντέλο	ΧΤ· Στάθμες	επιτελεστικότητας	νια μέλη και	αρθοώσεις δο	win
πινακάς	7.20. WIOVLEAU	λι. Διαύμες	επιελευτικυτπίας	για μελιί και	αρυρωσεις στ	KUV

Στάθμη		MY-AX	M	ΙΥ-ΠΖ	M	Y-OK	N	ІΥ-К∆А	1	ΜΥ-ΔΑ		AY-AX	A	Y-ΠZ	A	Y-OK	A	Υ-ΚΔΑ	1	AY-ΔA
4	3	(13.6%)	0	(0%)	0	(0%)	1	(4.5%)	1	(4.5%)	4	(4.5%)	0	(0%)	0	(0%)	1	(1.1%)	1	(1.1%)
3	0	(0%)	0	(0%)	0	(0%)	0	(0%)	3	(13.6%)	1	(1.1%)	0	(0%)	0	(0%)	0	(0%)	4	(4.5%)
2	1	(4.5%)	0	(0%)	0	(0%)	2	(9.1%)	16	(72.7%)	5	(5.7%)	0	(0%)	0	(0%)	2	(2.3%)	28	(31.8%)
1	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)

Πίνακας 7.21: Μοντέλο ΧΤ: Στάθμες επιτελεστικότητας για μέλη και αρθρώσεις υποστυλωμάτων

	T ₁ (s)	T ₂ (s)	T ₃ (s)	T ₄ (s)	$\mid T_5$ (s)	T ₆ (s)	$ T_X(\mathbf{s}) $	<i>T</i> _Y (s)
EL	0.204	0.176	0.171	0.057	0.056	0.051	0.204	0.171
ELMS	0.814	0.749	0.716	0.228	0.220	0.215	0.814	0.716

Πίνακας 7.22: Μοντέλο ΧΤ: Ιδιοπερίοδοι ελαστικών αναλύσεων με αρηγμάτωτες και ρηγματωμένες διατομές κατά ΚΑΝ.ΕΠΕ. Σημειώνονται οι πρώτες ιδιοπερίοδοι που αντιστοιχούν σε μετατόπιση προς κάθε διεύθυνση.

Παρατηρώντας τα διαγράμματα χρονοϊστοριών τεμνουσών βάσης και μετακινήσεων του κόμβου αναφοράς, οι μεγαλύτερες διαφοροποιήσεις διαπιστώνονται στα διαγράμματα μετακίνησης του κόμβου αναφοράς. Επαληθεύεται έτσι ότι η κατασκευή χωρίς τις τοιχοπληρώσεις είναι πιο εύκαμπτη, αναπτύσσοντας μεγαλύτερες μετατοπίσεις, ενώ και η τελική παραμένουσα μετατόπιση του φορέα είναι πολύ μεγαλύτερη από αυτήν του μοντέλου αναφοράς. Από τα διαγράμματα αστοχιών μελών και drifts ορόφων, φαίνεται ότι με την αφαίρεση των τοιχοπληρώσεων αυξάνονται τα drifts και οι αστοχίες του δεύτερου και τρίτου ορόφου, καθώς η αφαίρεση των τοιχοπληρώσεων, πέραν της πιθανής αύξησης της δυναμικής φόρτισης λόγω αύξησης της ιδιοπεριόδου του φορέα στη διεύθυνση που υπάρχουν φαινόμενα κατευθυντικότητας, επηρεάζει την κατανομή των ασκούμενων δυνάμεων, άρα και αστοχιών στα μέλη του φορέα.

Σχήμα 7.20: Μοντέλο ΧΤ: Ποσοστά μελών δοκών και υποστυλωμάτων που έχουν υπερβεί τις διάφορες στάθμες επιτελεστικότητας και drifts ορόφων στις δύο βασικές διευθύνσεις

7.5 Μοντέλο με συνδετήρες Φ8/15 στα υποστυλώματα (Μοντέλο ΔΣ)

Στο συγκεκριμένο μοντέλο διερευνώνται οι αστοχίες που προκύπτουν αν στα υποστυλώματα θεωρηθεί ότι τοποθετούνται συνδετήρες Φ8/15 αντί για Φ8/30 του μοντέλου αναφοράς, διατηρώντας ίδια όλα τα υπόλοιπα στοιχεία προσομοίωσης και ανάλυσης του μοντέλου αναφοράς. Σημειώνεται ότι με την αύξηση των συνδετήρων στα υποστυλώματα, στην πραγματικότητα αυξάνεται και η αντοχή του σκυροδέματος στον πυρήνα των διατομών λόγω περίσφιγξης, κάτι που όμως εδώ δεν λαμβάνεται υπόψη.

7.5.1 Ανάλυση Pushover

Σχήμα 7.21: Μοντέλο ΔΣ: Διάγραμμα Pushover κατά τη φορά Υ+

Όπως φαίνεται, τα διαγράμματα με τις δύο διαφορετικές ποσότητες συνδετήρων προκύπτουν τα ίδια στην αρχή του διαγράμματος. Οι δύο καμπύλες διαφοροποιούνται για λίγο μεγαλύτερες μετατοπίσεις κορυφής, κυρίως δηλαδή εκεί που στο αρχικό μοντέλο ξεκινούν οι αστοχίες των υποστυλωμάτων. Στο μοντέλο που εξετάζεται εδώ φαίνεται ότι μπορεί να αναπτυχθεί ελαφρώς μεγαλύτερη τέμνουσα βάσης.

7.5.2 Ανάλυση χρονοϊστορίας

	δ_X (cm)	$\delta_{ m Y}$ (cm)	V_X (kN)	V _Y (kN)
min	-5.17	-9.55	-3970.2	-2892.4
max	9.73	5.95	1835.4	4266.2

Πίνακας 7.23: Μοντέλο ΔΣ: Μέγιστες και ελάχιστες τιμές μετακινήσεων κόμβου αναφοράς και τεμνουσών βάσης

Από τις χρονοϊστορίες τεμνουσών βάσης και μετακινήσεων κορυφής διακρίνεται ότι η απόκριση του φορέα διαφοροποιείται και εδώ μετά την επιβολή στο φορέα ισχυρής εδαφικής κίνησης, όπου στο αρχικό μοντέλο συμβαίνουν εκτενέστερες αστοχίες υποστυλωμάτων σε τέ-

Σχήμα 7.22: Μοντέλο ΔΣ: Χρονοϊστορίες τεμνουσών βάσης και μετακινήσεων κόμβου αναφοράς

Στάθμη	1	ΜΔ-ΑΧ	1	ΜΔ-ΠΖ		ΜΔ-ΟΚ	.	ΑΔ-ΑΧ		ΑΔ-ΠΖ	4	А∆-ОК
4	15	(53.6%)	8	(28.6%)	1	(3.6%)	27	(48.2%)	10	(17.9%)	1	(1.8%)
3	14	(50%)	11	(39.3%)	3	(10.7%)	37	(66.1%)	12	(21.4%)	3	(5.4%)
2	22	(78.6%)	5	(17.9%)	0	(0%)	44	(78.6%)	6	(10.7%)	0	(0%)
1	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)

Πίνακας 7.24: Μοντέλο ΔΣ: Στάθμες επιτελεστικότητας για μέλη και αρθρώσεις δοκών

Στάθμη	.	MY-AX	1	ИҮ-ПΖ	M	Y-OK	M	Υ-ΚΔΑ	.	ΜΥ-ΔΑ		AY-AX	.	AY-NZ	A	Y-OK	AY	ζ-ΚΔΑ		ΑΥ-ΔΑ
4	8	(36.4%)	1	(4.5%)	0	(0%)	0	(0%)	2	(9.1%)	14	(15.9%)	1	(1.1%)	0	(0%)	0	(0%)	2	(2.3%)
3	1	(4.5%)	0	(0%)	0	(0%)	0	(0%)	1	(4.5%)	1	(1.1%)	0	(0%)	0	(0%)	0	(0%)	1	(1.1%)
2	2	(9.1%)	0	(0%)	0	(0%)	0	(0%)	3	(13.6%)	2	(2.3%)	0	(0%)	0	(0%)	0	(0%)	3	(3.4%)
1	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)

Πίνακας 7.25: Μοντέλο ΔΣ: Στάθμες επιτελεστικότητας για μέλη και αρθρώσεις υποστυλωμάτων

Σχήμα 7.23: Μοντέλο ΔΣ: Ποσοστά μελών δοκών και υποστυλωμάτων που έχουν υπερβεί τις διάφορες στάθμες επιτελεστικότητας και drifts ορόφων στις δύο βασικές διευθύνσεις

μνουσα, ενώ οι μεγαλύτερες διαφορές παρατηρούνται στις χρονοϊστορίες μετακίνησης κορυφής. Από τα διαγράμματα αστοχιών μελών και drifts ορόφων παρατηρείται μια ανακατανομή της αστοχίας των μελών του φορέα, με τη στάθμη του ισογείου να έχει πολύ λιγότερες αστοχίες μετά την αύξηση των συνδετήρων, όμως φαίνεται ότι επιβαρύνεται περισσότερο ο ανώτερος όροφος του κτηρίου, παρά την αύξηση των συνδετήρων.

7.6 Μοντέλο χωρίς αστοχίες λόγω τέμνουσας (Μοντέλο ΧΔ)

Εδώ γίνεται n ανάλυση του μοντέλου αναφοράς, όπως έχει αναπτυχθεί στην αρχή του κεφαλαίου, με τη διαφορά ότι εδώ δεν λαμβάνονται υπόψη αστοχίες σε τέμνουσα των υποστυλωμάτων. Αυτό σημαίνει ότι τα διαγράμματα ροπών - στροφών των μελών των υποστυλωμάτων δεν τροποποιούνται για να ληφθεί υπόψη n αστοχία σε τέμνουσα.

7.6.1 Ανάλυση Pushover

Σχήμα 7.24: Μοντέλο ΧΔ: Διάγραμμα Pushover κατά τη φορά Υ+

Όπως αναμενόταν, στο μοντέλο χωρίς αστοχίες υποστυλωμάτων, ο φορέας μπορεί να αναπτύξει μεγαλύτερη τέμνουσα βάσης και εμφανίζει γενικά καλύτερη "μετελαστική" συμπεριφορά, τόσο σε σχέση με το βασικό μοντέλο, όσο και με το μοντέλο με τους πυκνότερους συνδετήρες, που βρίσκεται μεταξύ των άλλων δύο μοντέλων που εξετάζοναι. Οι ιδιοπερίοδοι του ελαστικού μοντέλου με τις ρηγματωμένες διατομές δεν αναμένεται να διαφοροποιούνται σημαντικά σε σχέση με το αρχικό μοντέλο.

7.6.2 Ανάλυση χρονοϊστορίας

	δ_X (cm)	$\delta_{\rm Y}$ (cm)	V_X (kN)	V _Y (kN)
min	-5.64	-9.44	-4078	-3042.6
max	10.09	6.17	1882.4	4255.3

Πίνακας 7.26: Μοντέλο ΧΔ: Μέγιστες και ελάχιστες τιμές μετακινήσεων κόμβου αναφοράς και τεμνουσών βάσης

Από τις χρονοϊστορίες τέμνουσας βάσης και μετακίνησης κορυφής φαίνεται ότι η απόκριση των δύο μοντέλων διαφοροποιείται και εδώ μετά την επιβολή στο φορέα ισχυρής δυναμικής φόρτισης, όπου στο μοντέλο με διατμητικές αστοχίες υποστυλωμάτων έχουν συμβεί αστοχίες που διαφοροποιούν τη συμπεριφορά του μοντέλου. Οι βλάβες που εμφανίζονται εδώ στα υποστυλώματα της δεύτερης και τρίτης στάθμης είναι ασήμαντες, όμως οι βλάβες στις δοκούς στις στάθμες αυτές παραμένουν περίπου οι ίδιες ή ελάχιστα αυξημένες. Αντίθετα, όπως και

Στάθμη	1	MΔ-AX	1	ΛΔ-ΠΖ		ΜΔ-ΟΚ		ΑΔ-ΑΧ		ΑΔ-ΠΖ	4	А∆-ОК
4	15	(53.6%)	10	(35.7%)	1	(3.6%)	30	(53.6%)	12	(21.4%)	1	(1.8%)
3	13	(46.4%)	11	(39.3%)	4	(14.3%)	36	(64.3%)	13	(23.2%)	4	(7.1%)
2	23	(82.1%)	4	(14.3%)	0	(0%)	45	(80.4%)	5	(8.9%)	0	(0%)
1	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)

Πίνακας 7.27: Μοντέλο ΧΔ: Στάθμες επιτελεστικότητας για μέλη και αρθρώσεις δοκών

Στάθμη		MY-AX	МҮ-ПΖ			ИҮ-ОК	A	Y-AX	A	Υ-ΠΖ	АУ-ОК		
4	8	(36.4%)	0	(0%)	1	(4.5%)	15	(17%)	0	(0%)	1	(1.1%)	
3	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)	
2	1	(4.5%)	0	(0%)	0	(0%)	1	(1.1%)	0	(0%)	0	(0%)	
1	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)	

Πίνακας 7.28: Μοντέλο ΧΔ: Στάθμες επιτελεστικότητας για μέλη και αρθρώσεις υποστυλωμάτων

Σχήμα 7.26: Μοντέλο ΧΔ: Ποσοστά μελών δοκών και υποστυλωμάτων που έχουν υπερβεί τις διάφορες στάθμες επιτελεστικότητας και drifts ορόφων στις δύο βασικές διευθύνσεις

στην προηγούμενη περίπτωση μοντέλου που εξετάστηκε, λόγω της ανακατανομής των δυνάμεων του φορέα φαίνεται να διαρρέρουν περισσότερα υποστυλώματα και δοκοί στην ανώτερη στάθμη του φορέα σε σχέση με το μοντέλο αναφοράς. Αυτό πιθανότατα οφείλεται και στην απλουστευτική και συντηρητική παραδοχή που γίνεται για τα αξονικά φορτία των υποστυλωμάτων, τα οποία λαμβάνονται μετά την επανάληψη ίσα με το μέσο όρο των πλέον εφελκυστικών αξονικών δυνάμεων στις δύο διευθύνσεις, όπως αναφέρεται σε προηγούμενο κεφάλαιο, κάτι που όμως δεν αντιστοιχεί στην πραγματικότητα και η μεταβολή των αξονικών δυνάμεων οφείλει κανονικά να λαμβάνεται υπόψη κατά τη διάρκεια της ανάλυσης.

7.7 Μοντέλο με αστοχίες λόγω τέμνουσας και σε δοκούς (Μοντέλο ΔΔ)

Οι αναλύσεις που περιγράφονται στα ακόλουθα διαγράμματα αφορούν στο μοντέλο αναφοράς όταν σε αυτό συμπεριληφθούν επιπλέον και αστοχίες σε τέμνουσα και στις δοκούς, οι οποίες δεν λαμβάνονται υπόψη στο μοντέλο αναφοράς. Αυτό γίνεται τροποποιώντας τα διαγράμματα ροπών - στροφών των δοκών, ώστε να ληφθεί υπόψη η πρόωρη αστοχία σε τέμνουσα, είτε πριν είτε μετά τη διαρροή του μέλους. Η διαδικασία που ακολουθείται περιγράφεται αναλυτικά σε προηγούμενο κεφάλαιο.

7.7.1 Ανάλυση Pushover

Στο συγκριμένο μοντέλο διαπιστώνεται ότι η διαφοροποιείται σημαντικά η "μετελαστική" απόκριση του φορέα, όπου η μέγιστη τέμνουσα βάσης που αναπτύσσεται είναι σημαντικά μικρότερη σε σχέση με το αρχικό μοντέλο.

7.7.2 Ανάλυση χρονοϊστορίας

	δ_X (cm)	δ_{Y} (cm)	V_X (kN)	V _Y (kN)
min	-2.87	-12.15	-3745.9	-2302.2
max	10.94	2.41	1600.2	4174.9

Πίνακας 7.29: Μοντέλο ΔΔ: Μέγιστες και ελάχιστες τιμές μετακινήσεων κόμβου αναφοράς και τεμνουσών βάσης

Στο μοντέλο που εξετάζεται εδώ φαίνεται ότι οι χρονοϊστορίες των αναπτυσσόμενων τεμνουσών βάσης και μετακινήσεων κορυφής είναι σημαντικά διαφορετικές σε σχέση με το βασικό μοντέλο που χρησιμοποιείται. Παρόλα αυτά, διαπιστώνεται ότι οι διατμητικές αστοχίες που φαίνεται ότι εμφανίζονται στις δοκούς είναι πολύ εκτεταμένες και πιθανόν είναι μη ρεαλιστικές, καθώς δεν εμφανίζονται ούτε στο πραγματικό κτήριο που εξετάζεται σε τέτοια έκταση,

Στάθμη	i	M∆-AX		ΜΔ-ΠΖ	M	ΙΔ-ΟΚ		ΜΔ-ΚΔΑ		ΜΔ-ΔΑ		A∆-AX		ΑΔ-ΠΖ		ΑΔ-ΟΚ		ΑΔ-ΚΔΑ	1	ΑΔ-ΔΑ
4	7	(25%)	0	(0%)	0	(0%)	3	(10.7%)	14	(50%)	12	7 (30.4%)	2	5 (5.4%)	1	(1.8%)	3	(5.4%)	14	(25%)
3	2	(7.1%)	5	(17.9%)	0	(0%)	2	(7.1%)	19	(67.9%)	1	6 (28.6%)	ç	0 (16.1%)	1	(1.8%)	2	(3.6%)	23	(41.1%)
2	2	(7.1%)	5	(17.9%)	0	(0%)	1	(3.6%)	20	(71.4%)	11	3 (23.2%)	9	0 (16.1%)	0	(0%)	1	(1.8%)	25	(44.6%)
1	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)	∥ C	(0%)	0) (0%)	0	(0%)	0	(0%)	0	(0%)

Πίνακας 7.30: Μοντέλο ΔΔ: Στάθμες επιτελεστικότητας για μέλη και αρθρώσεις δοκών

Στάθμη		MY-AX	M	ΙΥ-ΠΖ	M	IY-OK	M	Υ-ΚΔΑ	1	ΜΥ-ΔΑ	-	AY-AX	A	Y-ΠZ	A	Y-OK	A	Υ-ΚΔΑ		AY-∆A
4	3	(13.6%)	0	(0%)	0	(0%)	0	(0%)	7	(31.8%)	3	(3.4%)	0	(0%)	0	(0%)	0	(0%)	7	(8%)
3	1	(4.5%)	0	(0%)	0	(0%)	0	(0%)	5	(22.7%)	1	(1.1%)	0	(0%)	0	(0%)	0	(0%)	6	(6.8%)
2	0	(0%)	0	(0%)	0	(0%)	0	(0%)	16	(72.7%)	3	(3.4%)	0	(0%)	0	(0%)	1	(1.1%)	18	(20.5%)
1	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)

Πίνακας 7.31: Μοντέλο ΔΔ: Στάθμες επιτελεστικότητας για μέλη και αρθρώσεις υποστυλωμάτων

Σχήμα 7.29: Μοντέλο ΔΔ: Ποσοστά μελών δοκών και υποστυλωμάτων που έχουν υπερβεί τις διάφορες στάθμες επιτελεστικότητας και drifts ορόφων στις δύο βασικές διευθύνσεις

δηλαδή το μοντέλο όπως έχει αναπτυχθεί μάλλον δεν αποτυπώνει ικανοποιητικά την απόκριση με διατμητική αστοχία των δοκών. Αυτό, εκτός από το μοντέλο για τη διατμητική αντοχή που προτείνει ο ΚΑΝ.ΕΠΕ., μπορεί να οφείλεται και στον προβληματικό ορισμό του διατμητικού μήκους για τις δοκούς, το οποίο μεταβάλλεται συνεχώς και μπορεί να εκτιμηθεί κάπως πιο αξιόπιστα μόνο για φορτίσεις που εφελκύουν το άνω πέλμα της διατομής της δοκού.

7.8 Μοντέλο με ελαστικά μέλη ρηγματωμένων δυσκαμψιών (Moντέλο ΕΛ)

Εδώ εξετάζεται το μοντέλο αναφοράς όταν αυτό συμπεριφέρεται πλήρως ελαστικά, δηλαδή τα διάφορα μέλη του δεν διαρρέουν ή αστοχούν. Κατά τη μόρφωση του προσομοιώματος, οι δυσκαμψίες των μελών που θεωρούνται για τα μέλη είναι οι ενεργές δυσκαμψίες που προκύπτουν όπως περιγράφει ο ΚΑΝ.ΕΠΕ. μέσω των γωνιών στροφής χορδής διαρροής, χωρίς όμως να γίνει κατάλληλη τροποποίησή τους για χρήση μαζί με ελατήρια στα άκρα των μελών, όπως γίνεται στις περιπτώσεις των αναλύσεων με συγκεντρωμένη πλαστικότητα. Στη συγκεκριμένη περίπτωση, τα όποια στοιχεία μηδενικού μήκους στα άκρα των μελών (για παράδειγμα για λόγους προσομοίωσης της διαφραγματικής λειτουργίας μαζί με άλλα μέλη) λαμβάνονται με πολύ δύσκαμπτους ελαστικούς κλάδους ροπής - στροφής, ώστε η ύπαρξή τους να μην επηρεάζει τη συμπεριφορά του μοντέλου. Σημειώνεται ακόμα ότι τα ανελαστικά χιαστί μέλη των τοιχοπληρώσεων που ενεργοποιούνται μόνο σε θλίψη, αντικαθίστανται από ελαστικά μέλη με το μισό εμβαδόν, τα οποία λειτουργούν και σε εφελκυσμό.

7.8.1 Ανάλυση χρονοϊστορίας

	δ_X (cm)	$\delta_{ m Y}$ (cm)	V_X (kN)	V _Y (kN)
min	-10.01	-4.91	-4331.6	-5899.8
max	8.62	6.43	4441.7	4818.4

Πίνακας 7.32: Μοντέλο ΕΛ: Μέγιστες και ελάχιστες τιμές μετακινήσεων κόμβου αναφοράς και τεμνουσών βάσης

Φαίνεται γενικά ότι n ελαστική απόκριση του φορέα (που συμπεριλαμβάνει και τα αντίστοιχα ελαστικά μέλη των τοιχοπληρώσεων) εμφανίζει μεγαλύτερες τέμνουσες βάσης, όπως αναμενόταν. Όσον αφορά στις μετακινήσεις κορυφής, φαίνεται ότι κατά τη διεύθυνση X (που n ιδιοπερίοδος του φορέα είναι και αρκετά μεγάλη), οι μέγιστες μετακινήσεις κορυφής είναι παραπλήσιες (δηλαδή ισχύει περίπου n αρχή ίσων μετακινήσεων). Αντίθετα, κατά τη διεύθυνση Y, που n αρχική ιδιοπερίδος είναι αρκετά μειωμένη, οι μετακινήσεις του μοντέλου αναφοράς, που εμφανίζονται διαρροές ή αστοχίες, είναι αρκετά μεγαλύτερες, δηλαδή δεν ισχύει n αρχή ίσων μετακινήσεων. Σημειώνεται ότι στη συγκεκριμένη διεύθυνση εφαρμόζεται και παλμός κατευθυντικότητας, οπότε όπως αναφέρεται στη βιβλιογραφία, n περίοδος από την οποία και μετά αναμένεται να ισχύει n αρχή ίσων μετακινήσεων είναι αρκετά αυξημένη.

Στη συνέχεια θα διερευνηθεί η σχέση μεταξύ του συντελεστή συμπεριφοράς q_y και της πλαστιμότητας μετακινήσεων μ κατά τις δύο διευθύνσεις, όπου υπενθυμίζεται βέβαια ότι εδώ πέραν των αστοχιών κάμψης λαμβάνονται υπόψη και αστοχίες σε τέμνουσα.

Για τη διεύθυνση Χ, θεωρώντας ως τέμνουσα βάσης διαρροής και μετακίνηση διαρροής του βασικού μοντέλου (αγνοώντας την ύπαρξη ελάχιστων αρχικών μετατοπίσεων) τους μέσους όρους των διγραμμικοποιημένων διαγραμμάτων των σχημάτων 7.1a και 7.1c, δηλαδή $V_y = 1641.1$ kN και $\delta_y = 4.81$ cm, προκύπτουν:

$$q_y = \frac{V_{el}}{V_y} = \frac{4441.7}{1641.1} = 2.71 \tag{7.1}$$

$$\mu = \frac{\delta_{inel}}{\delta_{\mu}} = \frac{9.86}{4.81} = 2.05 \tag{7.2}$$

Για τη διεύθυνση Υ, θεωρώντας ως τέμνουσα βάσης διαρροής και μετακίνηση διαρροής του βασικού μοντέλου τους μέσους όρους των διγραμμικοποιημένων διαγραμμάτων των σχημάτων 7.1b και 7.1d, δηλαδή $V_y = 2026.5$ kN και $\delta_y = 2.62$ cm, προκύπτουν:

Σχήμα 7.31: Μοντέλο ΕΛ: drifts ορόφων στις δύο βασικές διευθύνσεις

$$q_y = \frac{V_{el}}{V_y} = \frac{5899.8}{2026.5} = 2.91 \tag{7.3}$$

$$\mu = \frac{\delta_{inel}}{\delta_y} = \frac{9.38}{2.62} = 3.58 \tag{7.4}$$

Από τα παραπάνω φαίνεται ότι, στη διεύθυνση Y, το q_y είναι αρκετά μικρότερο σε σχέση με το μ, δηλαδή δεν ισχύει η αρχή ίσων μετακινήσεων. Αντίθετα, στη διεύθυνση X, το q_y είναι αρκετά μεγαλύτερο του μ, κάτι που στην πραγματικότητα δεν αναμένεται. Αυτό μπορεί να οφείλεται στο ορισμό των τιμών "διαρροής" του φορέα από τις διγραμμικοποιημένες καμπύλες Pushover, καθώς και στην ύπαρξη τοιχοπληρώσεων και την εμφάνιση αστοχιών διάτμησης στα υποστυλώματα του ανελαστικού μοντέλου.

7.9 Μοντέλο που λαμβάνει υπόψη μόνο παραμορφώσεις λόγω κάμψης (Μοντέλο Κ)

Στις αναλύσεις που γίνονται στη συνέχεια, αγνοούνται οι όροι της σχέσης του ΚΑΝ.ΕΠΕ. για τη γωνία στροφής χορδής διαρροής που αναφέρονται στις ρηγματώσεις, τις διατμητικές παραμορφώσεις και την εξόλκευση των οπλισμών των μελών οπλισμένου σκυροδέματος και διατηρείται μόνο το τμήμα του πρώτου όρου που οφείλεται στις παραμορφώσεις λόγω κάμψης. Αυτό βέβαια επηρεάζει και τις τιμές των δυσκαμψιών των ρηγματωμένων διατομών, κάτι που διαφοροποιεί αισθητά την απόκριση της κατασκευής. Οι υπόλοιπες παραδοχές προσομοίωσης και ανάλυσης του μοντέλου παραμένουν οι ίδιες με αυτές του μοντέλου αναφοράς, όπως για παράδειγμα το ότι τα υποστυλώματα θεωρείται ότι μπορούν να αστοχήσουν διατμητικά.

7.9.1 Ανάλυση Pushover

Σχήμα 7.32: Μοντέλο Κ: Διάγραμμα Pushover κατά τ
η φορά Υ+

	$\mid T_1$ (s)	T ₂ (s)	T ₃ (s)	T ₄ (s)	T ₅ (s)	<i>T</i> ₆ (s)	$ T_X(\mathbf{s}) $	<i>T</i> _Y (s)
EL	0.201	0.173	0.164	0.056	0.054	0.051	0.201	0.164
ELMS	0.472	0.403	0.342	0.130	0.121	0.114	0.472	0.342

Πίνακας 7.33: Μοντέλο Κ: Ιδιοπερίοδοι ελαστικών αναλύσεων με αρηγμάτωτες και ρηγματωμένες διατομές κατά ΚΑΝ.ΕΠΕ. Σημειώνονται οι πρώτες ιδιοπερίοδοι που αντιστοιχούν σε μετατόπιση προς κάθε διεύθυνση.

Όπως είναι αναμενόμενο και φαίνεται και από τα παραπάνω, αγνοώντας μέρος του πρώτου, το δεύτερο και τον τρίτο όρο που διαμορφώνουν τη γωνία στροφής χορδής διαρροής, η δυσκαμψία των ρηγματωμένων διατομών προκύπτει μεγαλύτερη, διαμορφώνοντας συνολικά για το φορέα μικρότερες ιδιοπεριόδους. Ο λόγος των ρηγματωμένων προς τις αρηγμάτωτες δυσκαμψίες είναι λίγο μεγαλύτερος από το διπλάσιο σε σχέση με τους αντίστοιχους λόγους του βασικού προσομοιώματος που λαμβάνονται υπόψη όλοι οι όροι, όπως προβλέπει ο ΚΑΝ.ΕΠΕ. Από την καμπύλη Pushover προκύπτει ότι η μέγιστη τέμνουσα βάσης των δύο μοντέλων είναι

	$ heta_y$ - 1ος όρος	$ heta_y$ - 2ος όρος	\mid $ heta_y$ - 3ος όρος \mid	Απομ. Δυσκ.
Δοκοί	100.0%	0.0%	0.0%	10.6%
Υποστυλώματα	100.0%	0.0%	0.0%	23.4%

Πίνακας 7.34: Μοντέλο Κ: Συμβολή όρων στη γωνία στροφής χορδής διαρροής και απομείωση δυσκαμψιών ανά ομάδα μελών

παρόμοια, αναπτύσσεται όμως για πολύ μικρότερη τιμή μετακίνησης κορυφής στο μοντέλο που εξετάζεται εδώ. Εντύπωση προκαλούν επίσης οι απότομες αστοχίες υποστυλωμάτων σε μικρές τιμές μετακινήσεων που οδηγούν σε έντονους πτωτικούς κλάδους στην καμπύλη pushover.

7.9.2 Ανάλυση χρονοϊστορίας

	δ_X (cm)	$\delta_{\rm Y}$ (cm)	V_X (kN)	V _Y (kN)
min	-1.62	-4.88	-4007.2	-2857
max	7.17	1.69	2044.4	4382.7

Πίνακας 7.35: Μοντέλο Κ: Μέγιστες και ελάχιστες τιμές μετακινήσεων κόμβου αναφοράς και τεμνουσών βάσης

Στάθμη	1	ΛΔ-ΑΧ	1	⁄ΙΔ-ΠΖ	M	Δ-ΟΚ	4	ΑΔ-ΑΧ	4	ΑΔ-ΠΖ	A	Δ-ΟΚ
4	15	(53.6%)	0	(0%)	0	(0%)	25	(44.6%)	0	(0%)	0	(0%)
3	26	(92.9%)	1	(3.6%)	0	(0%)	50	(89.3%)	1	(1.8%)	0	(0%)
2	27	(96.4%)	1	(3.6%)	0	(0%)	52	(92.9%)	1	(1.8%)	0	(0%)
1	1	(3.4%)	0	(0%)	0	(0%)	1	(1.7%)	0	(0%)	0	(0%)

Πίνακας 7.36: Μοντέλο Κ: Στάθμες επιτελεστικότητας για μέλη και αρθρώσεις δοκών

Στ	άθμη		MY-AX	M	ΙΥ-ΠΖ	M	IY-OK	N	ΊΥ-ΚΔΑ	1	ΜΥ-ΔΑ		AY-AX	A	Y-ΠZ	A	Y-OK	A	Υ-ΚΔΑ		AY-ΔA
	4	3	(13.6%)	0	(0%)	0	(0%)	1	(4.5%)	5	(22.7%)	3	6 (3.4%)	0	(0%)	0	(0%)	1	(1.1%)	5	(5.7%)
	3	0	(0%)	0	(0%)	0	(0%)	0	(0%)	17	(77.3%)	2	2 (2.3%)	0	(0%)	0	(0%)	0	(0%)	21	(23.9%)
	2	2	(9.1%)	0	(0%)	0	(0%)	0	(0%)	20	(90.9%)	6	6.8%)	0	(0%)	0	(0%)	1	(1.1%)	37	(42%)
	1	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)	C) (0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)

Πίνακας 7.37: Μοντέλο Κ: Στάθμες επιτελεστικότητας για μέλη και αρθρώσεις υποστυλωμάτων

	<i>T</i> ₁ (s)	T ₂ (s)	T ₃ (s)	T_4 (s)	T ₅ (s)	T ₆ (s)	T_X (s)	$T_{\rm Y}$ (s)
EL	0.201	0.173	0.164	0.056	0.054	0.051	0.201	0.164
ELMS	0.478	0.409	0.347	0.131	0.124	0.117	0.478	0.347

Πίνακας 7.38: Μοντέλο Κ: Ιδιοπερίοδοι ελαστικών αναλύσεων με αρηγμάτωτες και ρηγματωμένες διατομές κατά ΚΑΝ.ΕΠΕ. Σημειώνονται οι πρώτες ιδιοπερίοδοι που αντιστοιχούν σε μετατόπιση προς κάθε διεύθυνση.

Στα διαγράμματα που δίδονται, διαπιστώνονται πολλές διαφοροποιήσεις μεταξύ των αποκρίσεων των δύο μοντέλων, όμως εμφανέστερες διαφορές παρουσιάζονται στις χρονοϊστορίες μετακινήσεων, οι οποίες εμφανίζουν εμφανώς μικρότερα πλάτη παλινδρόμησης σε σχέση με

Σχήμα 7.33: Μοντέλο Κ: Χρονοϊστορίες τεμνουσών βάσης και μετακινήσεων κόμβου αναφοράς

Σχήμα 7.34: Μοντέλο Κ: Ποσοστά μελών δοκών και υποστυλωμάτων που έχουν υπερβεί τις διάφορες στάθμες επιτελεστικότητας και drifts ορόφων στις δύο βασικές διευθύνσεις

$\ \theta_y$ - 1ος όρος $\ \theta_y$ - 2ος όρος $\ \theta_y$ - 3ος όρος $\ $ Απομ. Δυσκ.				
Δοκοί	100.0%	0.0%	0.0%	10.6%
Υποστυλώματα	100.0%	0.0%	0.0%	22.0%

Πίνακας 7.39: Μοντέλο Κ: Συμβολή όρων στη γωνία στροφής χορδής διαρροής και απομείωση δυσκαμψιών ανά ομάδα μελών

το πιο εύκαμπτο μοντέλο αναφοράς. Εντύπωση προκαλεί πάντως ότι στο μοντέλο αυτό, αν και οι περισσότερες δοκοί διαρρέουν, η πλειοψηφία παραμένει μεταξύ των στάθμεων επιτελεστικότητας ΑΧ και ΠΖ (θεωρώντας ίδιες τιμές γωνιών στροφής χορδής αστοχίας με το βασικό μοντέλο, μιας και γενικά οι τιμές των γωνιών στροφής χορδής διαρροής είναι σχετικά πολύ μικρότερες), σε αντίθεση με το βασικό μοντέλο, που υπάρχουν και αρκετές δοκοί μεταξύ ΠΖ και ΟΚ, ενώ παράλληλα στα υποστυλώματα και μάλιστα στο ισόγειο οι διατμητικές αστοχίες είναι σημαντικότατες, καθώς εμφανίζονται σε όλα σχεδόν τα υποστυλώματα. Παρόλα αυτά, τα drifts ορόφων φαίνεται ότι είναι αρκετά μειωμένα σε σχέση με το μοντέλο αναφοράς και γενικά χωρίς ιδιαίτερες διαφοροποιήσεις μεταξύ των διαφόρων ορόφων.

7.10 Μοντέλο που λαμβάνει υπόψη μόνο παραμορφώσεις λόγω κάμψης χωρίς αστοχίες λόγω διάτμησης (Μοντέλο ΚΧΔ)

Επαναλαμβάνονται οι αναλύσεις που έγιναν με το προηγούμενο προσομοίωμα (K), στο οποίο αγνοούνται οι όροι πέραν της κάμψης για τον υπολογισμό της γωνίας στροφής χορδής και της ενεργού δυσκαμψίας των μελών, όμως εδώ επιπλέον αγνοούνται οι αστοχίες λόγω διάτμησης στα υποστυλώματα. Δηλαδή το μοντέλο που εξετάζεται εδώ διαφοροποιτείται σε σχέση με το μοντέλο αναφοράς σε δύο σημεία: τον υπολογισμό των γωνιών στροφής χορδής και την αγνόπση της αστοχίας σε διάτμηση στα υποστυλώματα. Υπενθυμίζεται ότι εφόσον αγνοούνται μέρος του πρώτου, ο δεύτερος και ο τρίτος όρος της σχέσης του ΚΑΝ.ΕΠΕ. που δίνει τη γωνία στροφής χορδής διαρροής, αλλά και δεν εξετάζονται και αστοχίες σε διάτμηση, τα διατμητικά μήκη στο μοντέλο αυτό δεν παίζουν κανένα ρόλο πέραν της διαμόρφωσης της γωνίας στροφής χορδής αστοχίας των μελών. Το συγκεκριμένο μοντέλο δημιουργείται κυρίως για να συγκριθεί με το μοντέλο κατανεμημένης πλαστικότητας που αναπτύσσεται στην επόμενη ενότητα.

7.10.1 Ανάλυση Pushover

Σχήμα 7.35: Μοντέλο ΚΧΔ: Διάγραμμα Pushover κατά τη φορά Υ+

Σε αντίθεση με το προηγούμενο μοντέλο που περιλαμβάνει αστοχίες υποστυλωμάτων λόγω διάτμησης, εδώ η μέγιστη τέμνουσα βάσης που μπορεί να αναπτυχθεί είναι αρκετά μεγαλύτερη, με την αρχική δυσκαμψία βέβαια να παραμένει πολύ μεγαλύτερη από αυτή του βασικού μοντέλου.

7.10.2 Ανάλυση χρονοϊστορίας

Ισχύουν και εδώ οι ίδιες παρατηρήσεις που έγιναν για το προηγούμενο μοντέλο σχετικά με τις σημαντικά διαφορετικές χρονοϊστορίες μετακινήσεων κορυφής σε σχέση με το μοντέλο αναφοράς, οι οποίες φαίνεται εδώ ότι παρουσιάζουν και σχεδόν μηδενικές παραμένουσες μετακινήσεις. Στα υποστυλώματα πλέον αναπτύσσονται μόνο κάποιες διαρροές, ενώ και πάλι σχεδόν όλες οι δοκοί ξεπερνούν τη στάθμη ΑΧ, με ελάχιστες δοκούς να υπερβαίνουν και τη στάθμη ΠΖ. Τα drifts του ισογείου στο προκύπτουν αυτή τη φορά σημαντικά μειωμένα σε σχέση με το προηγούμενο μοντέλο, αλλά και σε σχέση με τους υπόλοιπους ορόφους, σε αντίθεση με

Σχήμα 7.36: Μοντέλο ΚΧΔ: Χρονοϊστορίες τεμνουσών βάσης και μετακινήσεων κόμβου αναφοράς

	δ_X (cm)	$\delta_{\rm Y}$ (cm)	V_X (kN)	V _Y (kN)
min	-5.6	-4.79	-5575.3	-3355
max	6.22	3.97	3924.2	4601.6

Πίνακας 7.40: Μοντέλο ΚΧΔ: Μέγιστες και ελάχιστες τιμές μετακινήσεων κόμβου αναφοράς και τεμνουσών βάσης

Στάθμη	MΔ-AX		ΜΔ-ΠΖ ΜΔ-ΟΚ		Δ-ΟΚ	ΑΔ-ΑΧ		ΑΔ-ΠΖ		ΑΔ-ΟΚ		
4	22	(78.6%)	2	(7.1%)	0	(0%)	40	(71.4%)	2	(3.6%)	0	(0%)
3	26	(92.9%)	2	(7.1%)	0	(0%)	52	(92.9%)	3	(5.4%)	0	(0%)
2	28	(100%)	0	(0%)	0	(0%)	52	(92.9%)	0	(0%)	0	(0%)
1	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)

Πίνακας 7.41: Μοντέλο ΚΧΔ: Στάθμες επιτελεστικότητας για μέλη και αρθρώσεις δοκών

Στάθμη	Στάθμη ΜΥ-ΑΧ		МҮ-ПΖ МҮ-ОК			AY-AX		AY-NZ		АҮ-ОК		
4	12	(54.5%)	0	(0%)	0	(0%)	19	(21.6%)	0	(0%)	0	(0%)
3	6	(27.3%)	0	(0%)	0	(0%)	8	(9.1%)	0	(0%)	0	(0%)
2	9	(40.9%)	0	(0%)	0	(0%)	13	(14.8%)	0	(0%)	0	(0%)
1	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)

Πίνακας 7.42: Μοντέλο ΚΧΔ: Στάθμες επιτελεστικότητας για μέλη και αρθρώσεις υποστυλωμάτων

Σχήμα 7.37: Μοντέλο ΚΧΔ: Ποσοστά μελών δοκών και υποστυλωμάτων που έχουν υπερβεί τις διάφορες στάθμες επιτελεστικότητας και drifts ορόφων στις δύο βασικές διευθύνσεις

τα drifts της ανώτερης στάθμης που εμφανίζονται αυξημένα σε σχέση με αυτά του προηγούμενου μοντέλου, κάτι που παρατηρήθηκε και στην εξέταση του μοντέλου ΧΔ προηγουμένως (δυσκαμψίες και διαρροές μελών σύμφωνα με ΚΑΝ.ΕΠΕ., χωρίς αστοχίες σε τέμνουσα).

7.11 Μοντέλο κατανεμημένης πλαστικότητας υποστυλωμάτων (Μοντέλο ΚΚΠ)

Στην περίπτωση αυτή, τα μέλη των υποστυλωμάτων με συγκεντρωμένη πλαστικότητα του μοντέλο αναφοράς αντικαθίστανται με μέλη κατανεμημένης πλαστικότητας, τα οποία μπορούν να λάβουν υπόψη τις μεταβολές των αξονικών δυνάμεων. Στην περίπτωση αυτή όμως δεν λαμβάνεται υπόψη η αστοχία λόγω διάτμησης των υποστυλωμάτων, καθώς εδώ δεν χρησιμοποιούνται συγκεντρωμένες αρθρώσεις που μπορεί να μεταβληθεί η συμπεριφορά τους για να ληφθεί υπόψη η αστοχία σε διάτμηση, ενώ όπως έχει αναφερθεί και σε προηγούμενα κεφάλαια, η μέθοδος με διατμητικά ελατήρια που δοκιμάστηκε, δημιουργούσε σημαντικά προβλήματα σύγκλισης. Ακόμα, επειδή στα μέλη κατανεμημένης πλαστικότητας η ενεργός δυσκαμψία του μέλους προκύπτει αυτόματα κατά τη διάρκεια της ανάλυσης, ανάλογα με τα χρησιμοποιούμενα υλικά και τις παραμορφώσεις του μέλους, αυτή λαμβάνει υπόψη μόνο φαινόμενα κάμψης και όχι φαινόμενα ρηγμάτωσης, διατμητικών παραμορφώσεων και εξόλκευσης οπλισμών που λαμβάνονται επιπλέον έμμεσα υπόψη στο μοντέλο αναφοράς. Όσον αφορά στις δοκούς, η προσομοίωση γίνεται χρησιμοποιώντας συγκεντρωμένη πλαστικότητα, που λαμβάνει όμως υπόψη μόνο παραμορφώσεις λόγω κάμψης, χωρίς αστοχίες λόγω διάτμησης. Για τους παραπάνω λόγους, μπορεί να γίνει σύγκριση του μοντέλου που εξετάζεται εδώ με το μοντέλο της προηγούμενης ενότητας (ΚΧΔ), το οποίο επίσης θεωρεί μόνο φαινόμενα κάμψης για τη διαρροή και τις ενεργές δυσκαμψίες των μελών και δεν λαμβάνει υπόψη την αστοχία των μελών σε διάτμηση.

Στις δοκούς n εφαρμογή κατανεμημένης πλαστικότητας δεν αναμένεται να δώσει σημαντικές διαφοροποιήσεις σε σχέση με το προηγούμενο μοντέλο, λόγω ανυπαρξίας αξονικών δυνάμεων. Αντίθετα, δημιουργεί σημαντικά προβλήματα παράλληλα με την προσέγγιση διαχωρισμού των δοκών σε τρία μέρη που πραγματοποιείται στην εργασία αυτή, καθώς αυξάνεται σημαντικά το υπολογιστικό κόστος και ο χρόνος επίλυσης, αλλά το συγκεκριμένο μοντέλο αποδεικνύεται και πολύ ευαίσθητο. Για παράδειγμα, στα μεσαία τμήματα των δοκών που τοποθετούνται ελάχιστες ή και καθόλου άνω ράβδοι οπλισμού, δημιουργούνται προβλήματα σύγκλισης με την παραμικρή εμφάνιση αρνητικών ροπών, ενώ στην πραγματικότητα προβλήματα μπορεί να μην εμφανιστούν λόγω ανακατανομής ροπών ή της εφελκυστικής αντοχής του σκυροδέματος που δεν λαμβάνεται γενικά υπόψη εδώ εξαιτίας των ανακυκλίσεων.

Εδώ εξετάζονται επίσης και δύο διαφορετικά μοντέλα για το χάλυβα των διαμήκων οπλισμών, όπως περιγράφηκαν στο αντίστοιχο κεφάλαιο σχετικά με τα χρησιμοποιούμενα υλικά. Έτσι, στα παρακάτω διαγράμματα, πέραν των αποτελεσμάτων με το πρώτο μοντέλο χάλυβα που χρησιμοποιείται γενικά στις αναλύσεις, παρατίθενται και τα αποτελέσματα με το δεύτερο μοντέλο χάλυβα, το οποίο αστοχεί πέραν μιας τιμής ανηγμένης παραμόρφωσης, ώστε να φανούν οι διαφορές με χρήση των δύο διαφορετικών μοντέλων.

7.11.1 Ανάλυση Pushover

Συγκρίνοντας τις καμπύλες κατανεμημένης πλαστικότητας με τα δύο μοντέλα για το χάλυβα φαίνεται ότι οι διαφορές μεταξύ τους είναι ελάχιστες, με το φορέα με το δεύτερο μοντέλο χάλυβα να αναπτύσσει γενικά ελάχιστα μικρότερες τέμνουσες βάσης στις ίδιες μετατοπίσεις κορυφής.

Διαπιστώνεται επίσης και η σημαντική ομοιότητα μεταξύ των καμπύλων Pushover συγκεντρωμένης πλαστικότητας που οφείλεται μόνο σε κάμψη χωρίς αστοχίες διάτμησης και κατανεμημένης πλαστικότητας για τα υποστυλώματα. Υπενθυμίζεται ότι για την εξαγωγή της παραπάνω καμπύλης Pushover χρησιμοποιούνται οι αξονικές δυνάμεις που προκύπτουν μετά από επανάληψη, από την οποία χρησιμοποιούνται οι τελικές αξονικές δυνάμεις ή οι αξονικές δυνάμεις αμέσως πριν τη διαρροή των μελών. Για μετακινήσεις κορυφής άνω των 10cm παραπηρούνται πάντως κάποιες μικρές διαφοροποιήσεις μεταξύ των παραπάνω μοντέλων.

Σχήμα 7.38: Μοντέλο ΚΚΠ: Διάγραμμα Pushover κατά τη φορά Υ+

7.11.2 Ανάλυση χρονοϊστορίας

	δ_X (cm)	$\delta_{\rm Y}$ (cm)	V_X (kN)	V_{Y} (kN)
min	-5.02	-4.18	-4924.2	-3451.2
max	6.17	3.37	3379.4	4656.2

Πίνακας 7.43: Μοντέλο ΚΚΠ: Μέγιστες και ελάχιστες τιμές μετακινήσεων κόμβου αναφοράς και τεμνουσών βάσης

Στάθμη	1	ΛΔ-ΑΧ	1	⁄ΙΔ-ΠΖ	M	Δ-ΟΚ		ΑΔ-ΑΧ	4	ΑΔ-ΠΖ	A	Δ-ΟΚ
4	22	(78.6%)	1	(3.6%)	0	(0%)	36	(64.3%)	1	(1.8%)	0	(0%)
3	27	(96.4%)	1	(3.6%)	0	(0%)	54	(96.4%)	1	(1.8%)	0	(0%)
2	28	(100%)	0	(0%)	0	(0%)	52	(92.9%)	0	(0%)	0	(0%)
1	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)	0	(0%)

Πίνακας 7.44: Μοντέλο ΚΚΠ: Στάθμες επιτελεστικότητας για μέλη και αρθρώσεις δοκών

Από τα διαγράμματα που παρατίθενται διαπιστώνεται ότι τα δύο μοντέλα κατανεμημένης πλαστικότητας δίνουν ταυτόσημες οπτικά χρονοϊστορίες τεμνουσών βάσης και μετακινήσεων κορυφής. Ακόμα, φαίνονται οι ομοιότητες των χρονοϊστοριών τεμνουσών βάσης μεταξύ των μοντέλων κατανεμημένης πλαστικότητας και συγκεντρωμένης πλαστικότητας μόνο με παραμορφώσεις κάμψης χωρίς αστοχίες διάτμησης. Οι χρονοϊστορίες μετακινήσεων κορυφής μεταξύ του μοντέλου αναφοράς και του μοντέλου κατανεμημένης πλαστικότητας διαφέρουν σημαντικά, ενώ παρόμοιες με μικρές διαφοροποιήσεις είναι οι χρονοϊστορίες αυτές μεταξύ των δύο μοντέλων που λαμβάνουν υπόψη μόνο την κάμψη (ΚΚΠ, ΚΧΔ). Στο μοντέλο κατανεμημένης πλαστικότητας βέβαια οι μετακινήσεις παρουσιάζονται λίγο μικρότερες σε σχέση με το αντίστοιχο μοντέλο συγκεντρωμένης πλαστικότητας, κάτι που φαίνεται και συγκρίνοντας τα αντίστοιχα drifts.

Το γεγονός ότι οι μετακινήσεις του μοντέλου συγκεντρωμένης πλαστικότητας είναι λίγο

Σχήμα 7.39: Μοντέλο ΚΚΠ: Χρονοϊστορίες τεμνουσών βάσης και μετακινήσεων κόμβου αναφοράς

Σχήμα 7.40: Μοντέλο ΚΚΠ: drifts ορόφων στις δύο βασικές διευθύνσεις

μεγαλύτερες από αυτές της κατανεμημένης ίσως οφείλεται και στο γεγονός ότι κατά τις επαναλήψεις επιλέγονται κάπως δυσμενείς τιμές αξονικών δυνάμεων για ανάλυση των διατομών των υποστυλωμάτων, όπως έχει περιγραφεί σε προηγούμενο κεφάλαιο, με αποτέλεσμα τα μέλη να προκύπτουν λίγο πιο εύκαμπτα από την πραγματικότητα.

Κεφάλαιο 8

Αναλύσεις με χρονοϊστορίες που αντιστοιχούν σε διαφορετικές περιπτώσεις ύπαρξης φαινομένων κατευθυντικότητας και διαφορετικά πλήθη τυπικών αποκλίσεων

Στο κεφάλαιο αυτό παρουσιάζονται συνοπτικά τα αποτελέσματα κάθε ανάλυσης που πραγματοποιείται στο μοντέλο που έχει δημιουργηθεί, το μοντέλο αναφοράς που περιγράφεται στην αρχή του προηγούμενου κεφαλαίου, χρησιμοποιώντας τις διάφορες χρονοϊστορίες που δημιουργήθηκαν όπως περιγράφηκαν σε προηγούμενο κεφάλαιο. Αυτές αντιστοιχούν σε ελαστικά φάσματα απόκρισης με διαφορετικά πλήθη τυπικών αποκλίσεων, καθώς και διαφορετικές αρχικές χρονοϊστορίες. Επίσης, παρουσιάζονται τα αποτελέσματα των αναλύσεων με ύπαρξη ή όχι φαινομένων κοντινού πεδίου στη διεύθυνση παράλληλα στη μεγάλη πλευρά του κτηρίου (στην οποία αναμένεται και η ύπαρξη του παλμού), καθώς και στη διεύθυνση παράλληλα στη μικρή πλευρά του κτηρίου.

8.1 Παρουσίαση αποτελεσμάτων αναλύσεων χρονοϊστορίας

Στις σελίδες που ακολουθούν παρουσιάζονται συνοπτικά τα αποτελέσματα των αναλύσεων που πραγματοποιήθηκαν. Κάθε περίπτωση ανάλυσης αντιστοιχεί σε συγκεκριμένο κωδικό που αναγράφεται κάτω από το αντίστοιχο σχήμα και ερμηνεύεται ως εξής: Τα δύο πρώτα ψηφία συμβολίζουν το πλήθος των τυπικών αποκλίσεων του ελαστικού φάσματος απόκρισης πολλαπλασιασμένο επί 10, ο επόμενος όρος δηλώνει το αρχικό στραμμένο φάσμα απόκρισης που χρησιμοποιήθηκε για παραγωγή του τελικού φάσματος απόκρισης στο πρόγραμμα Seismomatch, το οποίο ταιριάζει με το στοχευόμενο ελαστικό φάσμα απόκρισης, ενώ ο τελευταίος όρος (DL,DT ή N) δηλώνει την ύπαρξη φαινομένων κατευθυντικότητας στην διεύθυνση παράλληλα στη μεγάλη πλευρά του κτηρίου, παράλληλα στη μικρή πλευρά του κτηρίου ή μη ύπαρξή τους αντίστοιχα. Για παράδειγμα, ο κωδικός 28-SGMA-DL δηλώνει ότι έχει πραγματοποιηθεί ανάλυση με χρονοϊστορίες που αντιστοιχούν σε τυπική απόκλιση 2.8, βασισμένες στις στραμμένες πραγματικές καταγραφές SGMA, ενώ στη διεύθυνση παράλληλα στη μεγάλη διεύθυνση του κτηρίου, το ελαστικό φάσμα απόκρισης της χρονοϊστορίας αυτής αντιστοιχεί σε σεισμική κίνηση που περιέχει φαινόμενα κατευθυντικότητας. Υπενθυμίζεται ότι τα επιταχυνσιογραφήματα που περιέχουν το γράμμα **D** αντιστοιχούν σε σεισμικές κινήσεις με φαινόμενα κατευθυντικότητας.

Στα διαγράμματα αυτά αρχικά παρουσιάζονται οι μέγιστες και οι ελάχιστες τιμές μετακινή-

σεων του κόμβου αναφοράς και των τεμνουσών βάσης στις δύο βασικές διευθύνσεις της κατασκευής κατά τη διάρκεια της ανάλυσης χρονοϊστορίας. Οι επόμενοι πίνακες παρουσιάζουν το πλήθος των μελών (ΜΔ/ΜΥ) και των αρθρώσεων (ΑΔ/ΑΥ) στις δοκούς και τα υποστυλώματα που έχουν υπερβεί διάφορες στάθμες επιτελεστικότητας (ΑΧ: Άμεση Χρήση, ΠΖ: Προστασία Ζωής, ΟΚ: Οιονεί κατάρρευση, ΚΔΑ: Διατμητική αστοχία μετά τη διαρροή των μελών εξαιτίας μείωσης διατμητικής αντοχής λόγω ανακυκλίσεων, ΔΑ: διατμητική αστοχία πριν τη διαρροή των μελών). Επίσης αναγράφεται το ποσοστό των μελών ή των αρθρώσεων σε σχέση με το σύνολο κάθε ορόφου που έχουν υπερβεί κάθε στάθμη επιτελεστικότητας. Για τα μέλη ως στάθμη επιτελεστικότητας που παρουσιάζεται ότι έχει υπερβληθεί εννοείται η δυσμενέστερη στάθμη που υπερβαίνεται σε κάποια θέση του μέλους, με σειρά σπουδαιότητας την αντίστροφη που αναφέρθηκε προηγουμένως. Τα ποσοστά των μελών δοκών και υποστυλωμάτων που αντιστοιχούν σε κάθε στάθμη επιτελεστικότητας παρουσιάζονται εποπτικά στο σχήμα που ακολουθεί. Τέλος, παρουσιάζονται σχηματικά και τα drifts κάθε ορόφου στις δύο βασικές διευθύνσεις του κτηρίου. Υπενθυμίζεται ότι έχει ληφθεί ως διεύθυνση Χ η διεύθυνση παράλληλα στη μικρή πλευρά του κτηρίου και ως διεύθυνση Υ η διεύθυνση παράλληλα στη μεγάλη πλευρά του κτηρίου.

			δ_X (cm)	$\delta_{\rm Y}$ (cm)	V_X (kN)	V _Y (kN)	<u> </u>	
		min	-7.22	-7.1	-2220	-2112.4	' 1	
		max	8.07	4.41	2146.6	2504.7		
Στάθμη	MΔ-AX	N	ΊΔ-ΠΖ	МΔ-ОК	AΔ	-AX	ΑΔ-ΠΖ	ΑΔ-ΟΚ
4	17 (60.7	%) 1	(3.6%)	0 (0%)	26 (46.4%)	1 (1.8%) 0 (0%)
3	23 (82.1	%) 5 %) 1	(17.9%)	0 (0%)	44 (78.6%)	6 (10.7%	(0) 0 (0%) 0 (0%)
1	0 (0%) 0	(0%)	0 (0%)	41 ((0%)	1 (1.8%) 0 (0%)	0 (0%)
Στάθμη Ν	ИҮ-АХ МҮ-П	Z MY-OF	Κ ΜΥ-ΚΔΑ	ΜΥ-ΔΑ	AY-AX	AY-ПZ	AY-OK AY	-ΚΔΑ ΑΥ-ΔΑ
4 2	(9.1%) 0 (09	%) 0 (0%) 0 (0%)			0 (0%)	0 (0%) 0	(0%) 3 (3.4%)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(0%) 0 $(0%)(0%)$ 0 $(0%)(0%)$ 0 $(0%)$	%) 0 (0% %) 0 (0% %) 0 (0%	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c cccc} 0 & (0\%) \\ 2 & (9.1\%) \\ 0 & (0\%) \end{array} $	$ \begin{array}{cccc} 0 & (0\%) \\ 0 & (0\%) \\ 0 & (0\%) \end{array} $	$ \begin{array}{ccc} 0 & (0\%) \\ 0 & (0\%) \\ 0 & (0\%) \end{array} $	$\begin{array}{c cccc} 0 & (0\%) & 0 \\ 0 & (0\%) & 0 \\ 0 & (0\%) & 0 \\ \end{array}$	$\begin{array}{c cccc} (0\%) & 0 & (0\%) \\ (0\%) & 2 & (2.3\%) \\ (0\%) & 0 & (0\%) \end{array}$
Μέλη δ	δοκών (%)	Mé	\n υπ/των	· (%)	Drifts ко	ιτά Χ (%)	Drif	ts κατά Υ (%)
4		4		- 4 -	1	19	- 4 -	0.94
3		3 -		- 3 -	1.	.06	- 3 -	1.03
2	_	2		- 2 -	0.42	_	- 2 - C).49
1	_	1 –	1 1	- 1 -	0.00		- 1 - 0.00) –
0 20 40	0 60 80 100	0 20	0 40 60	80 100	0 1	2 3	0	1 2 3
ΔΑ	ΚΔΑ	OK 🗖	ΠΖ 🗖	AX				
	(a) 27-ATH	A-N (Επι	ταχυνσιογ	ραφήματα Χ	K: 27N_T_	ATHA, Y: 2	27N_L_ATH	A)
			$\delta_X (\text{cm}) \mid$	$\delta_{\rm Y}$ (cm)	V_X (kN)	V _Y (kN)		
		min	-11.13	-6.39	-2275	-2421.5	5	
		max	2.12	4.89	2971.3	3360.9		
Στάθμη	ΜΔ-ΑΧ	M	Δ-ПΖ	ΜΔ-ΟΚ	AΔ-	AX	ΑΔ-ΠΖ	АΔ-ОК
4	17 (60.7%	6) 1 (3.6%)	0 (0%)	25 (4	4.6%) 1	(1.8%)	0 (0%)
3	17 (60.7% 27 (96.4%	6) 9 (3 6) 1 (32.1%)	2 (7.1%)	38 (6	7.9% 10 7.9% 1	0 (17.9%)) 2 (3.6%) 0 (0%)
1	0 (0%)	0 1 ((0%)	0 (0%)	0 30 0	0%) C) (0%)	0 (0%)
	$(9.1\%) \mid 0 (0\%)$	$\frac{1}{10000000000000000000000000000000000$	MΥ-ΚΔΑ 0 (0%)	<u>ΔΑ</u> 2 (9.1%)	$ \begin{array}{c c} \ & \text{AY-AX} \\ \ & 2 & (2.3\%) \end{array} $		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.1% 2 (2.3%)
3 1 2 1	$\begin{array}{c cccc} (4.5\%) & 0 & (0\%) \\ (4.5\%) & 0 & (0\%) \\ (0\%) & 0 & (0\%) \\ \end{array}$	$\begin{array}{c c} (0,0) \\ (0,0)$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 (27.3%) 7 (31.8%)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 (0%) 0 (0%)	0 (0%) 2 (0 (0%) 0	2.3%) 7 (8%) (0%) 8 (9.1%) (0%) 0 (0%)
Μέλη δ	(0%) 0 (0%)		<u>10 (0%)</u> \n υπ/των	(%)	Drifts KC	<u>ιτά Χ (%)</u>	<u>0 (0%) 0</u> Drif	(0%) 0 (0%) ts κατά Υ (%)
				(,3)				
4		4		- 4 -		158	- 4 -	0.82
4		4		- 4 - 3 -	-	1.58	- 4 -	0.82 - 0.94 -
4 3 2		4		- 4 - - 3 - - 2 -	0.56	1.58	- 4 - - 3 - - 2 - 0	0.82 - 0.94 - .44 -
4 3 2 1		4 3 2 1 -		- 4 - - 3 - - 2 - 1 -	0.56	1.58	- 4 3 0 1 - 0.00	0.82 - 0.94 - .44 - 0 -
4 3 2 1 - 0 20 40) 60 80 100	4 3 2 1 - 0 20) 40 60	- 4 - 3 - 2 - 1 - 80 100	0.56 0.00 0 1	1.58	- 4 3 0 - 2 - 0 - 1 - 0.00	0.82 0.94 .44) 1 2 3

(b) 27-DFNA-N (Epitaxuvsiograghmata X: 27N_T_DFNA, Y: 27N_L_DFNA)

(b) 27-DFNA-DL (Επιταχυνσιογραφήματα Χ: 27N_T_DFNA, Υ: 27**D**_L_DFNA)

			δ_X (cm)	δ_{Y} (cm)	V_X (kN) V _Y (k	:N)		
		min	-10.79	-6.76	-2113.	4 -209	1.6		
		max	9.27	4.28	2675	2538	3.9		
Στάθμη	MΔ-A	X	ΜΔ-ΠΖ	ΜΔ-ΟΚ	A/	۵-AX	A	Δ-ΠΖ	ΑΔ-ΟΚ
4	16 (57	1%) 2	(7.1%)	0 (0%)	27	(48.2%)	2	(3.6%)	0 (0%)
3	17 (60)	7%) 8 9%) 1	(28.6%) (3.6%)	2 (7.1%)) 35 44	(62.5%) (78.6%)	10 1	(17.9%)	3 (5.4%) 0 (0%)
1	0 (0	%) 0	(0%)	0 (0%)	0	(0%)	0	(0%)	0 (0%)
Στάθμη 📗 Ι	MY-AX MY	.ПZ МҮ-	ОК МҮ-КАЛ	Α ΜΥ-ΔΑ	AY-AX	X AY-ПZ	AY-	OK AY-KA	ΔΑ ΑΥ-ΔΑ
	(9.1%) 0	(0%) 0 (0%) 1 (4.5%	%) 4 (18.2%	b) $\ 2 (2.3) \ _{0}$	%) 0 (0%)	0 (0%) 1 (1.	1%) 4 (4.5%)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(0%) = 0 (4.5%) = 0 (0%) = 0	(0%) = 0 ((0%) = 0 ((0%) = 0 ((0%) = 0 (0%) 0 (0% 0%) 0 (0% 0%) 0 (0%	$\begin{array}{c ccccc} 0 & 0 & (0\%) \\ 0 & 2 & (9.1\%) \\ 0 & 0 & (0\%) \end{array}$	$) \begin{vmatrix} 0 & (0) \\ 1 & (1.1) \\ 0 & (0) \end{vmatrix}$	6) 0 (0%) 6) 0 (0%) 6) 0 (0%)		0%) 0 (0 0%) 0 (0 0%) 0 (0	0%) 0 (0%) 0%) 2 (2.3%) 0%) 0 (0%)
Μέλη	δοκών (%)	1	Μέλη υπ/τω	ov (%)	Drifts	κατά Χ (%)	Drifts	ς κατά Y (%)
4		4		- 4	_	1.56	_	4 -	0.91
3		- 3 -		- 3		1.43	_	3 -	0.99
2		2		- 2	- 0.	63	_	2 - 0.4	48 -
1 –		1		- 1	0.00		_	1 - 0.00	_
0 20 4	0 60 80 1	00 0	20 40 60	80 100	0 1	2	3	0 1	2 3
ΔΑ	КДА			AX					
	(a) 27-A1	HA-DT (.	Επιταχυνσια	ογραφήματα	1 X: 27 D _	T_ATHA, T	Y: 27N	N_L_ATHA	A)
			o_X (cm)	0 _Y (cm)	V_X (KIN	$) \mid V_{Y}(\mathbf{k})$	(N)		
		min	-9.75	-5.91	-2758.	4 -241	1.2		
		max	8.62	5.15	3048.5	5 3428	3.7		
Στάθμη	тала	y max	8.62	5.15	3048.5	5 3428	3.7		
Στάθμη	MΔ-A	max X 4%) 3	8.62 ΜΔ-ΠΖ (10.7%)	5.15 ΜΔ-ΟΚ	3048.5	$\frac{5}{\Delta - AX}$	3.7 A	Δ-ΠZ	<u>ΑΔ-ΟΚ</u>
Στάθμη 4 3	MΔ-A 13 (46 22 (78	x .4%) 3 .6%) 5	8.62 МΔ-ПZ (10.7%) (17.9%)	5.15 ΜΔ-ΟΚ 0 (0%) 1 (3.6%	3048.5	5 3428 Δ-AX (39.3%) (75%)	8.7 A 3 7	Δ-ΠΖ (5.4%) (12.5%)	AΔ-OK 0 (0%) 1 (1.8%)
Στάθμη 4 3 2	MΔ-A 13 (46 22 (78 26 (92	max X - .4%) 3 .6%) 5 .9%) 1	<u>М</u> Δ-ПZ (10.7%) (17.9%) (3.6%)	5.15 ΜΔ-ΟΚ 0 (0%) 1 (3.6%) 0 (0%)	3048.5 Image: mail of the second s	5 3428 Δ-AX (39.3%) (75%) (78.6%)	8.7 A 3 7 1	<u>А-ПZ</u> ((5.4%) ((12.5%) ((1.8%) ((22())	AΔ-OK 0 (0%) 1 (1.8%) 0 (0%)
Στάθμη 4 3 2 1	MΔ-A 13 (46 22 (78 26 (92 0 (0	max X .4%) 3 .6%) 5 .9%) 1 %) 0	8.62 ΜΔ-ΠΖ (10.7%) (17.9%) (3.6%) (0%)	5.15 ΜΔ-ΟΚ 0 (0%) 1 (3.6%) 0 (0%) 0 (0%)	3048.5	Δ-AX (39.3%) (75%) (78.6%) (0%)	3.7 A 3 7 1 0	Δ-ΠΖ (5.4%) (12.5%) (1.8%) (0%)	AΔ-OK 0 (0%) 1 (1.8%) 0 (0%) 0 (0%) 0 (0%)
Στάθμη 4 3 2 1 Στάθμη 1	MΔ-A 13 (46 22 (78 26 (92 0 (0 ΜΥ-AX Μ	max X .4%) 3 .6%) 5 .9%) 1 %) 0 К-ПZ МҮ	8.62 МΔ-ПZ (10.7%) (17.9%) (3.6%) (0%) -OK МҮ-КА	5.15 ΜΔ-ΟΚ 1 (3.6% 0 (0%) 0 (0%) Δ ΜΥ-ΔΑ	3048.5 A A A A A A A A A A A A A A A	Δ-AX (39.3%) (75%) (78.6%) (0%)	3.7 A 3 7 1 0	<u>А-ПZ</u> (5.4%) (12.5%) (1.8%) (0%) ОК АУ-КД	AΔ-OK 0 (0%) 1 (1.8%) 0 (0%) 0 (0%) 0 (0%)
Στάθμη 4 3 2 1 Στάθμη 1 4 3 0	MΔ-A 13 (46 22 (78 26 (92 0 (0 ΜΥ-ΑΧ Μ (9.1%) 0 (0%) 0	max X .4%) 3 .6%) 5 .9%) 1 %) 0 X-ПZ MY (0%) 0	8.62 МΔ-ПZ (10.7%) (17.9%) (3.6%) (0%) -OK МҮ-КА (0%) 1 (4.5% (0%) 0 (0%)	5.15 ΜΔ-ΟΚ 0 (0%) 1 (3.6%) 0 (0%) Δ ΜΥ-ΔΑ %) 1 (4.5%) 0 (0%) 0	3048.5 A A A A A A A A A A A A A A A	5 3428 Δ-AX (39.3%) (75%) (75%) (78.6%) (0%) AY-ΠΖ 6) 0 (0%)) 0 (0%)	3.7 A 3 7 1 0 A A 4 0 0 0 0 0 0 0 0	$\begin{array}{c c} \Delta - \Pi Z \\ \hline (5.4\%) \\ (12.5\%) \\ (1.8\%) \\ (0\%) \\ \hline \\ $	ΑΔ-ΟΚ 0 (0%) 1 (1.8%) 0 (0%) 0 (0%) ΔA ΑΥ-ΔΑ 1%) 1 (1.1%) %) 0 (0%)
Στάθμη 4 3 2 1 Στάθμη 1 4 2 1 2 1 4 2 1	$ \begin{array}{ c c c c } M\Delta - A \\ \hline 13 & (46 \\ 22 & (78 \\ 26 & (92 \\ 0 & (0 \\ \hline 0 & (0 \\ \hline 0 & (0 \\ \hline 0 \\ (9.1\%) & 0 \\ (0\%) & 0 \\ (4.5\%) & 0 \\ (0\%) & 0 \\ \hline \end{array} $	max X - .4%) 3 .6%) 5 .9%) 1 %) 0 r-ПZ MY (0%) 0 (0%) 0 (0%) 0 (0%) 0	8.62 ΜΔ-ΠΖ (10.7%) (17.9%) (3.6%) (0%) -OK MY-KΔ (0%) (0%) 0%) 0%) 0%) 0%) 0%) 0%)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3048.5 A A A A A A A A B A A B	$5 3428$ $\Delta -AX$ (39.3%) (75%) (78.6%) (0%) $ AY-\Pi Z$ (0%)	3.7 A 3 7 1 0 A 4 - - - - - - - - - - - - -	$\begin{array}{c c} \Delta - \Pi Z \\ \hline (5.4\%) \\ (12.5\%) \\ (1.8\%) \\ (0\%) \\ \hline \\ $	$\begin{array}{ c c c c }\hline A\Delta - OK & \\ \hline 0 & (0\%) \\ 1 & (1.8\%) \\ 0 & (0\%) \\ \hline 0 & (0\%) \\ \hline \\ \hline \\ \Delta A & AY - \Delta A \\ \hline \\ 1\%) & 1 & (1.1\%) \\ 1\%) & 0 & (0\%) \\ 1\%) & 2 & (2.3\%) \\ 1\%) & 0 & (0\%) \\ \hline \\ \end{array}$
Στάθμη 4 3 2 1 Στάθμη 1 4 2 1 2 1 4 2 1 0 2 1 0 Μέλη	MΔ-A 13 (46 22 (78 26 (92 0 (0 MY-AX M (9.1%) 0 (0%) 0 (4.5%) 0 (0%) 0 δοκών (%)	max X - .4%) 3 .6%) 5 .9%) 1 %) 0 r-ПZ MY (0%) 0 (0%) 0 (0%) 0 (0%) 0	8.62 MΔ-ΠΖ (10.7%) (17.9%) (3.6%) (0%) -OK MY-ΚΔ (0%) 1 (4.5% (0%) 1 (4.5% (0%) 0 (0% (0%) 0 (0% 0%) 0 (0% Mέλη υπ/τα	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3048.5	Δ-AX (39.3%) (75%) (75%) (78.6%) (0%) AY-ΠΖ (6) 0 (0%) 0 0%) 0 0%) 0 0%) (0%) 0 (0%) 0 (0%) 0 0 0%) (0%) 0 (0%) <t< td=""><td>3.7 A 3 7 1 0 AY-0 0 ((0 ((0 ((0 ((0 ((0 ((0 ((0</td><td>$\begin{array}{c c} \Delta - \Pi Z \\ \hline (5.4\%) \\ (12.5\%) \\ (1.8\%) \\ (0\%) \\ \hline \\$</td><td>AΔ-OK 0 (0%) 1 (1.8%) 0 (0%) 0 (0%) ΔA AY-ΔA 1%) 1 (1.1%) %) 0 (0%) %) 2 (2.3%) %) 0 (0%) % 0 (0%) % Kατά Y (%) 1</td></t<>	3.7 A 3 7 1 0 AY-0 0 ((0 ((0 ((0 ((0 ((0 ((0 ((0	$\begin{array}{c c} \Delta - \Pi Z \\ \hline (5.4\%) \\ (12.5\%) \\ (1.8\%) \\ (0\%) \\ \hline \\ $	AΔ-OK 0 (0%) 1 (1.8%) 0 (0%) 0 (0%) ΔA AY-ΔA 1%) 1 (1.1%) %) 0 (0%) %) 2 (2.3%) %) 0 (0%) % 0 (0%) % Kατά Y (%) 1
Στάθμη 4 3 2 1 Στάθμη 1 4 2 1 Δ 4 3 2 1 Δ 4 4	MΔ-A 13 (46 22 (78 26 (92 0 (0 MY-AX M (9.1%) 0 (0%) 0 (4.5%) 0 (0%) 0 δοκών (%)	max X .4%) 3 .6%) 5 .9%) 1 %) 0 X-IIZ MY (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 1 4	8.62 ΜΔ-ΠΖ (10.7%) (17.9%) (3.6%) (0%) -OK MY-KΔ 0%) 1 (4.5') 0%) 0 (0%) 0%) 0 (0%) 0%) 0 (0%) 0%) 0 (0%) 0%) 0 (0%) 0%) 0 (0%) 0%) 0 (0%) 0%) 0 (0%) 0%) 0 (0%)	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3048.5	Δ-AX (39.3%) (75%) (75%) (78.6%) (0%) AY-ΠΖ (0) AY-ΠΖ (0) (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) (1.36)	3.7 A 3 7 1 0 AY-(0 ((0 ((0 ((0 ((0 ((0 ((0 ((0	$ \Delta - \Pi Z (5.4\%) (12.5\%) (1.8\%) (0\%) 0\% 0 (0) 0\% 0 (0) 0\% 0 (0) 0\% 0 (0) Drifts 4 - 0 0 0$	AΔ-OK 0 (0%) 1 (1.8%) 0 (0%) 0 (0%) 0 (0%) ΔΑ ΑΥ-ΔΑ 1%) 1 (1.1%) %) 0 (0%) %) 0 (0%) %) 0 (0%) %) 0 (0%) %) 0 (0%) %) 0 (0%) %) 0 (0%) %) 0 (0%) %) 0 (0%) %) 0 (0%) %) 0 (0%) %) 0 (0%) %) 0 (0%) %) 0 (0%) %) 0 (0%)
Στάθμη 4 3 2 1 Στάθμη 1 4 3 4 3	MΔ-A 13 (46 22 (78 26 (92 0 (0 MY-AX M [*] (9.1%) 0 (0%) 0 (4.5%) 0 (0%) 0 δοκών (%)	max X .4%) 3 .6%) 5 .9%) 1 %) 0 X-ПZ MY (0%) 0 (0%) 0 (0%) 0 (0%) 0 1 4 3	8.62 MΔ-ΠΖ (10.7%) (17.9%) (3.6%) (0%) -OK MY-KΔ (0%) -OK O% 0%) 0%) 0 (0%) 0 0%) 0 0%) 0 0%) 0 0%) 0 0%) 0 0 0 0 0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3048.5 A A 3048.5 A A 3048.5 A A 3048.5 A A 42 42 44 0 44 0 1 (1.19 0 (0% 0 (0% 0 0% 0 Drifts	Δ-AX (39.3%) (75%) (75%) (78.6%) (0%) AY-ΠΖ (0) AY-ΠΖ (0) (0%) (30.0%) (1.36) 1.36 1.33	3.7 A 3 7 1 0 AY-(0 ((0 (())))))))))))))))))))))))))))))))))	$\Delta - \Pi Z $ (5.4%) (12.5%) (1.8%) (0%) OK AY-K2 0%) 1 (1.3) 0%) 0 (0) 0%) 0 (0) Drifts 4 - C 3 - C	AΔ-OK 0 (0%) 1 (1.8%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) ΔA AY-ΔA 1%) 1 1%) 1 0 (0%) %) 0 %)
Στάθμη 4 3 2 1 Στάθμη 1 4 2 3 1 2 1 3 1 2 1	ΜΔ-Α 13 (46 22 (78 26 (92 0 (0 MY-AX M [*] (9,1%) 0 (0%) 0 (4.5%) 0 (0%) 0 δοκών (%)	max X .6%) 5 .9%) 1 %) 0 X-ПZ MY (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 0 1 4 3 2	8.62 MΔ-ΠΖ (10.7%) (17.9%) (3.6%) (0%) -OK MY-ΚΔ 0%) 1 (4.5° 0%) 0 (0% 0%) 0 (0% 0%) 0 (0% Mέλη υπ/τα	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3048.5 A A A A A A A A A A A A A A A	$5 3428$ $\Delta - AX$ (39.3%) (75%) (78.6%) (0%) $ AY-\Pi Z$ (0%) $AY-\Pi Z$ (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) (1.36) (1.35) (1.35) (1.35)	3.7 A 3 7 1 0 AY-0 0 (0 0 (0))) 0 (0 0 (0)) 0 (0 0 (0)) 0 (0	$\Delta - \Pi Z$ (5.4%) (12.5%) (1.8%) (0%) $DK AY-KZ$ 0%) 1 (1.3%) 0 (0 0%) 0 (0 0%) 0 (0 0%) 0 (0 0%) 0 (0 0%) 2 - 0,2	$\begin{array}{ c c c c c c c c c c c c c c c c c c $
Στάθμη 4 3 2 1 Στάθμη 1 4 2 1 0 2 1 4 3 2 1 2 1	ΜΔ-Α 13 (46 22 (78 26 (92 0 (0 MY-AX M (9.1%) 0 (0%) 0 (4.5%) 0 (0%) 0 δοκών (%) 0	max X 4%) 3 .6%) 5 .9%) 1 %) 0 7-ПZ MY (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 0 1	8.62 ΜΔ-ΠΖ (10.7%) (17.9%) (3.6%) (0%) -OK MY-ΚΔ (0%) -OK 0% 0%)	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3048.5 A A A A A A A A A A A A A A A	Δ-AX (39.3%) (75%) (75%) (78.6%) (0%) AY-ΠΖ (6) 0 (0%) AY-ΠΖ (6) 0 (0%) (1.36) 1.36 1.33	3.7 A 3 7 1 0 AY-0 0 ((0 ((0 ((0 ((0 ((0 ((0 ((0	$\Delta - \Pi Z$ (5.4%) (12.5%) (1.8%) (0%) $0K AY-KZ$ 0%) 1 (1.1) 0%) 0 (0 0%)	AΔ-OK 0 (0%) 1 (1.8%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) %) 0 %)
Στάθμη 4 3 2 1 Στάθμη 1 4 3 1 0 Μέλη 4 3 1 0 2 1 0 20 4	ΜΔ-Α 13 (46 22 (78 26 (92 0 (0 MY-AX M (9.1%) 0 (0%) 0 (4.5%) 0 (0%) 0 δοκών (%) 0 0 60 80	max X 3 .6%) 5 .9%) 1 %) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 00 0	8.62 ΜΔ-ΠΖ (10.7%) (17.9%) (3.6%) (0%) -OK MY-KΔ (0%) -OK MY-ΚΔ (0%) -OK MY-ΚΔ (0%) 0%) 0 0%) 0 0%) 0 0%) 0 0%) 0 0%) 0 0 0%) 0 0%) 0 0%) 0 0%) 0 0%) 0 0%) 0 0%) 0 0%) 0 0%) 0 0%) 0 0%) 0 0%) 0%) 0%) 0%) 0%) 0%)	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3048.5	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3.7 A 3 7 1 0 AY-0 0 ((0 ((0 ((0 ((0 ((0 ((0 ((0	$\Delta - \Pi Z $ $(5.4\%) $ $(12.5\%) $ $(1.8\%) $ $(0\%) $ $OK AY-K2$ $0\%) 1 (1.3\%) $ $0\%) 0 (0) $ $0\%) 0 (0) $ $0\%) 0 (0) $ $Drifts $ $4 - 0 0 $ $2 - 0.4 $ $1 - 0.00 $ $0 1$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

(b) 27-DFNA-DT (Επιταχυνσιογραφήματα X: 27 $\mathbf{D}_{-}T_{-}$ DFNA, Y: 27N_L_DFNA)

(b) 27-FIX-N (Επιταχυνσιογραφήματα Χ: 27N_T_FIX, Υ: 27N_L_FIX)

(b) 27-FIX-DL (Επιταχυνσιογραφήματα Χ: 27N_T_FIX, Υ: 27**D**_L_FIX)

	δ_X	(cm) $\delta_{\rm Y}$ (cm) $ V_X (kN)$	V_{Y} (kN)	_	
	min – max 9	6.46 –7.7 .83 5.26	-3457.1 2297.9	-2301.1 1773.2		
Στάθμη ΜΔ-ΑΧ	<u>Μ</u> Δ-	-ПΖ ΜΔ-(DK A2	Δ-AX	- АΔ-ПΖ	ΑΔ-ΟΚ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	%) 2 (7 %) 6 (21 %) 0 (() 0 ((1.1%) 0 (0 1.4%) 2 (7. 0%) 0 (0 0%) 0 (0	%) 26 1%) 43 %) 44 %) 0	(46.4%) 2 (76.8%) 7 (78.6%) 0 (0%) 0	(3.6%) (12.5%) (0%) (0%)	0 (0%) 2 (3.6%) 0 (0%) 0 (0%)
Στάθμη ΜΥ-ΑΧ ΜΥ-	ПZ МҮ-ОК	MY-КΔА MY-	ΔA AY-AX	С АҮ-ПZ .	AY-OK AY-I	ΚΔΑ ΑΥ-ΔΑ
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0%) 0 (0%) 0%) 0 (0%) 0%) 0 (0%) 0%) 0 (0%) 0%) 0 (0%) 0%) 0 (0%)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3.2%) 4 (4.5%) .5%) 0 (0%) 3.6%) 2 (2.3%) 0%) 0 (0%)	%) 0 (0%) 0 b) 0 (0%) 0 c) 0 (0%) 0 %) 0 (0%) 0 %) 0 (0%) 0 %) 0 (0%) 0 %) 0 (0%) 0	(0%) 0 ((0%) 0 ((0%) 0 ((0%) 0 ((0%) 0 (0%) 4 (4.5%) 0%) 1 (1.1%) 0%) 3 (3.4%) 0%) 0 (0%)
Μέλη δοκών (%)	Μέλη	υπ/των (%)	Drifts к	ατά Χ (%)	Drifts	s κατά Y (%)
4 4	4 3 2 4		4 - 3 - 2 - 0.6	1.62 1.37 4	4 - 3 - 2 - 0.4	1.01 - 1.13 - 41 -
	1 –	_	1 - 0.00		1 - 0.00	
0 20 40 60 80 100	0 20	40 60 80 100	0 1	2 3	0	1 2 3
		IIZ AX]			
(a) 27-DM	$\frac{ \mathbf{K} \cdot \mathbf{D}\mathbf{T} }{ \mathbf{\delta}_X }$	(cm) δ_{Y} (cm)	ata X: $27\mathbf{D}_1$) $\mid V_X (kN)$	$\frac{ V_Y(kN) }{ -3520.8 }$	N_L_DMK _ _)
	max 11	1.43 5.02	2461.7	2019.6	_	
Στάθμη ΜΔ-ΑΧ	MΔ-2	ΠΖ ΜΔ-Ο	Κ ΑΔ	-AX	ΑΔ-ΠΖ	АΔ-ОК
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	%) 4 (14 %) 7 (2 %) 2 (7.0) 0 0 (0	1 (3.0 5%) 2 (7.1 1%) 0 (0° 0%) 0 (0°	9%) 26 (4 %) 33 (4 %) 40 (7 %) 0	46.4%)558.9%)1071.4%)2(0%)0	(8.9%) (17.9%) (3.6%) (0%)	$\begin{vmatrix} 1 & (1.8\%) \\ 2 & (3.6\%) \\ 0 & (0\%) \\ 0 & (0\%) \end{vmatrix}$
Στάθμη ΜΥ-ΑΧ ΜΥ-Π	Z MY-OK	МҮ-КДА МҮ-	ΔΑ ΑΥ-ΑΧ	АҮ-ПZ	AY-OK AY-I	ΧΔΑ ΑΥ-ΔΑ
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	%) 0 (0%) 6) 0 (0%) 6) 0 (0%) 6) 0 (0%) 6) 0 (0%)	3 (13.6%) 4 (13.6%) 0 (0%) 2 (9.0%) 0 (0%) 1 (4.0%) 0 (0%) 0 (0.0%)	3.2%) 3 (3.4%) .1%) 0 (0%) .5%) 2 (2.3%) 0%) 0 (0%)	$ \begin{array}{c cccc} b) & 1 & (1.1\%) & 0 \\ 0 & 0 & (0\%) & 0 \\ b) & 0 & (0\%) & 0 \\ 0 & 0 & (0\%) & 0 \\ \end{array} $	(0%) 3 (3 (0%) 0 ((0%) 0 ((0%) 0 ((0%) 0 ($\begin{array}{c cccc} 5.4\% & 5 & (5.7\%) \\ 0\% & 2 & (2.3\%) \\ 0\% & 2 & (2.3\%) \\ 0\% & 0 & (0\%) \end{array}$
Μέλη δοκών (%)	Μέλη	υπ/των (%)	Drifts к	ατά Χ (%)	Drifts	s κατά Υ (%)
4	4		4 -	1.87 -	4	1.03
3	3	_	3 -	1.54	3 -	0.96
		40 60 90 100	1 - 0.00	±	1 - 0.00	
$ \Delta A = K \Delta A = $	OK	ПZ — AX		2 J	0	J

⁽b) 27-FIX-DT (Επιταχυνσιογραφήματα Χ: 27**D**_T_FIX, Υ: 27N_L_FIX)

			δ_X (cm)	$\delta_{ m Y}$ (cm)	$ V_X(kN) $	V _Y (kN	1)		
		min max	-5.01 8.1	-5.82 4.72	-3558.0 1514.6	5 -2085 3607	.1		
Στάθμη	MΔ-A	X	ΜΔ-ΠΖ	MΔ-C	ОК А	AΔ-AX	AΔ	- ПZ	ΑΔ-ΟΚ
4 3 2 1	16 (57. 24 (85. 25 (89. 0 (0 ⁰	1%) 2 7%) 3 3%) 1 %) 0	$\begin{array}{cccc} 2 & (7.1\%) \\ 3 & (10.7\%) \\ 1 & (3.6\%) \\ 0 & (0\%) \end{array}$	0 0 (0 0 0 (0 0 0 (0 0 0 (0 0 0 (0	%) 27 %) 47 %) 34 %) 0	(48.2%) (83.9%) (60.7%) (0%)	2 (3 (1 (0	(3.6%) (5.4%) (1.8%) (0%)	0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Στάθμη Ν	/IY-AX MY	-ПZ МУ	7-ок мү-к/	ΔA MY-ΔA	А АҮ-АХ	К АҮ-ПΖ	AY-OK	K AY-K	ΔΑ ΑΥ-ΔΑ
4 3 3 0 2 1 1 0	$\begin{array}{c cccc} (13.6\%) & 0 & (\\ (0\%) & 0 & (\\ (4.5\%) & 0 & (\\ (0\%) & 0 & (\\ \end{array}$	0%) 0 0%) 0 0%) 0 0%) 0 0%) 0	(0%) 0 (0%) (0%) 0 (0%) (0%) 0 (0%) (0%) 0 (0%) (0%) 0 (0%)	%) 4 (18.2 %) 1 (4.5% %) 4 (18.2 %) 0 (0%	$\begin{array}{c c} 9\% \\ \% \\ \% \\ 9\% \\ 9\% \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	%) 0 (0%) 6) 0 (0%) %) 0 (0%) %) 0 (0%) %) 0 (0%)	0 (0%) 0 (0%) 0 (0%) 0 (0%)	6) 0 (C 6) 0 (C	$\begin{array}{c cccc} 0\% & 4 & (4.5\%) \\ 0\% & 1 & (1.1\%) \\ 0\% & 4 & (4.5\%) \\ 0\% & 0 & (0\%) \end{array}$
Μέλη δ	οκών (%)	Ν	Ιέλη υπ/τω	v (%)	Drifts F	κατά <i>Χ</i> (%)	7	Drifts	κατά Υ (%)
4 4 3 4 2		4 3 2			4 - 3 - 2 - 0.5	1.41 1.11 9	- 4 - - 3 - - 2 -	0.4	0.96 –).82 – 2 –
1 –	_	1 -			l – 0.00	1	- 1 -	0.00	_
0 20 40	60 80 100	0 0	20 40 60	80 100	0 1	2	3 (0 1	2 3
	(a) 27-SGM	IA-N (Ei	$\begin{vmatrix} \delta_X \text{ (cm)} \\ -4.72 \\ 8.92 \end{vmatrix}$	γραφήματο δ _Y (cm) -5.13 7.7	$ \begin{array}{c c} $	_SGMA, Y: V _Y (kN -4265. 2415.9	27N_L) 6)	_SGMA	x)
Στάθμη	ΜΔ-ΑΧ		ΜΔ-ΠΖ	MΔ-OF	K A/	Δ-AX	ΑΔ-]	ПΖ	ΑΔ-ΟΚ
4 3 2 1	18 (64.3 21 (75% 23 (82.1 0 (0%	%) 2 6) 6 %) 1)) 0	(7.1%) (21.4%) (3.6%) (0%)	0 (0%) 1 (3.69) 0 (0%) 0 (0%)) 26 %) 43) 39) 0	(46.4%) (76.8%) (69.6%) (0%)	2 (3 6 (10 1 (1 0 (0	.6%)).7%) .8%) 0%)	0 (0%) 1 (1.8%) 0 (0%) 0 (0%)
Στάθμη Μ	IY-AX MY-	ΠZ MY	-ок му-ка	Α ΜΥ-ΔΑ	AY-AX	AY-IIZ	АУ-ОК	AY-ΚΔΑ	Α ΑΥ-ΔΑ
$ \begin{array}{c cccc} 4 & 3 \\ 3 & 2 \\ 2 & 1 \end{array} $	$\begin{array}{c cccc} (13.6\%) & 0 & (0) \\ (9.1\%) & 0 & (0) \\ (4.5\%) & 0 & (0) \end{array}$	0%) 0 0%) 0 0%) 0 0%) 0	(0%) 0 (0%) (0%) 0 (0%) (0%) 0 (0%) (0%) 0 (0%) (0%) 0 (0%)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c cccc} 6) & 6 & (6.8\%) \\) & 3 & (3.4\%) \\ 1 & (1.1\%) \\ 0 & (0\%) \end{array}$) 0 (0%)) 0 (0%)) 0 (0%)) 0 (0%) 0 (0%) 0	0 (0%) 0 (0%) 0 (0%) 0 (0%)	0 (0% 0 (0% 0 (0% 0 (0%	$ \begin{array}{c ccc} 1 & 10 & (11.4\%) \\ 2 & (2.3\%) \\ 2 & (2.3\%) \\ 2 & (2.3\%) \\ 0 & 0 & (0\%) \\ \end{array} $
1 0	(0%) 0 (5/0) 0		/ - ()	1 - ()	1 1 1			
1 0 Μέλη δ	(0%) 0 (ι οκών (%)	N	Ιέλη υπ/τω	v (%)	Drifts R	κατά <i>Χ</i> (%)	7	Drifts	κατά Υ (%)
1 0 Μέλη δ 4 3 2 1 1 -	(0%) 0 ((okúv (%)	M 4 3 2 1	1έλη υπ/τω	v (%)	Drifts F 4	ατά X (%) 1.33 1.22	- 4 - - 3 - - 2 - - 1 -	Drifts 0.1 0.00	ката́ Y (%) 1.28 1.16 56

⁽b) 27-SGMB-N (Επιταχυνσιογραφήματα Χ: 27N_T_ATHA, Υ: 27N_L_SGMB)

			δ_X (cm)	δ_{Y} (cm)	V_X (kN)	$ V_Y (kN)$	_	
		min max	-4.67 8.17	-6.18 6.38	-3554.7 1478.5	-2741.7 3658.8		
Στάθιιη	ΜΛ-Α	x	ΜΛ-ΠΖ)K A	Λ-ΑΧ	ΑΔ-ΠΖ	ΑΛ-ΟΚ
		<u>0%) '</u>	(7.1%)	\rightarrow	∞) 30	(53.6%)	3 (5.4%)	
3	23 (82	.1%)	4 (14.3%	6) 0 (0 6) 0 (0	%) 46	(82.1%)	4 (7.1%)	0 (0%)
2	25 (89	.3%)	3 (10.7%	6) 0 (0	%) 41	(73.2%)	3 (5.4%)	0 (0%)
1	0 (0	%) (D (0%)	0 (0	%) 0	(0%)	0 (0%)	0 (0%)
Στάθμη 1	MY-AX M	<i>г</i> -пz м	Y-OK МУ-К	ΔΑ ΜΥ-ΔΑ	A AY-AX	AY-IIZ	AY-OK AY-KA	ΔΑ ΑΥ-ΔΑ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(13.6%) 0 (0%) 0 (4.5%) 0 (0%) 0	(0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0	(0%) 0 (0 (0%) 0 (0 (0%) 0 (0 (0%) 0 (0 (0%) 0 (0	%) 4 (18.2) %) 0 (0%) %) 5 (22.7) %) 0 (0%)	$ \begin{array}{c c} (\%) & 3 & (3.4\%) \\ (5) & 0 & (0\%) \\ (\%) & 1 & (1.1\%) \\ (5) & 0 & (0\%) \end{array} $	b) 0 (0%) 0 0 (0%) b) 0 (0%) b) 0 (0%) c) 0 (0%)	0 (0%) 0 (0 0 (0%) 0 (0 0 (0%) 0 (0 0 (0%) 0 (0 0 (0%) 0 (0 0 (0%) 0 (0	%) 4 (4.5%) %) 0 (0%) %) 5 (5.7%) %) 0 (0%)
Μέλη δ	οκών (%)	N	Λέλη υπ/τω	ov (%)	Drifts K	ατά Χ (%)	Drifts	κατά Υ (%)
4		4		- 2	1 -	1.36	4 -	0.98
3	_	3 –		_ 3	3 – 1	10 -	3 –	0.95
2		2		- 2	2 - 0.60) –	2 - 0.5	52 -
1 -	_	1 -			ι – 0.00	_	1 - 0.00	
0 20 40	0 60 80 10	0 0	20 40 60	80 100	0 1	2 3	0 1	2 3
ΔΑ	ΚΔΑ	OK	— ΠΖ	AX				
	(a) 27-SGN	IA-DL (E	Επιταχυνσια	ογραφήματ	a X: 27N_T_	_SGMA, Y: 2	27 D _L_SGMA	4)
			δ_X (cm)	$\delta_{ m Y}$ (cm)	V_X (kN)	V_{Y} (kN)		
		min	-4.84	-7.65	-2533.8	-4087.2		
		max	8.96	8.19	3103.9	2897.6		
Στάθμη	ΜΔ-ΑΣ	α	ΜΔ-ΠΖ	MΔ-OF	<u>κ</u> ΑΔ	-AX	ΑΔ-ΠΖ	ΑΔ-ΟΚ
	17 (60.2	7%) 2	(7.1%)	0 (0%) 30 (53.6%) 2	(3.6%)	0 (0%)
3	21 (75	%) 6	(21.4%)	1 (3.69	%) 45 (80.4%) 7	(12.5%)	1 (1.8%)
2	23 (82.2	1%) 2	(7.1%)	0 (0%) 40 (71.4%) 2	(3.6%)	0 (0%)
	0 (09	6) 0	(0%)	0 (0%) 0	(0%) 0	(0%)	0 (0%)
Στάθμη Ι	MY-AX M	<i>г</i> -пz м	Y-OK МҮ-К	ΔA MY-ΔA	A AY-AX	AY-NZ	AY-OK AY-K	ΔA AY-ΔA
4 5	$(22.7\%) \mid 0$ (4.5%) 0	(0%) 0	$(0\%) \mid 0 (0)$	%) 5 (22.7 %) 1 (4.5	$(\%) \ 6 (6.8\%) \ 3 (3.4\%) \ 3 ($	b) 0 (0%) b) 0 (0%)	0 (0%) 0 (0	% 6 (6.8%) $%$ 1 (1.1%)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(4.5%) 0 (0%) 0	(0%) = 0 (0%) = 0 (0%) = 0	(0%) 0 (0 (0%) 0 (0 (0%) 0 (0	$\begin{array}{c ccccc} \% & 1 & (1.5) \\ \% & 2 & (9.10) \\ \% & 0 & (0\%) \\ \end{array}$	$\begin{array}{c c} (3.1)\\ $	b) 0 (0%) b) 0 (0%)	0 (0%) 0 (0 0 (0%) 0 (0 0 (0%) 0 (0	$\begin{array}{c cccc} & & & & & & \\ & & & & & & \\ & & & & $
Μέλη δ	οκών (%)	N	Λέλη υπ/τω	ov (%)	Drifts K	ατά Χ (%)	Drifts	
4		4			1 -	1.31	4 -	1.13
3		3		_ 3	3 -	1.24	3 -	1.18
2		2		_	2 - 0.41	_	2 - 0.4	57
1	_	1 -		_	1 - 0.00	_	1 - 0.00	-
0 20 40) 60 80 10	0 0	20 40 60	80 100	0 1	2 3	0 1	2 3
ΔΑ	ΚΔΑ	OK	ΠΖ	AX		-	_	-

⁽b) 27-SGMB-DL (Epitaxuvoiogragúmata X: 27N_T_ATHA, Y: 27 \textbf{D}_L_SGMB)

⁽b) 27-SGMB-DT (Επιταχυνσιογραφήματα Χ: 27**D**_T_ATHA, Y: 27N_L_SGMB)

min -8.3 -8.28 -2591 -2254.1	
max 8.81 5.11 2223.3 2656.9	
Στάθμη ΜΔ-ΑΧ ΜΔ-ΠΖ ΜΔ-ΟΚ ΑΔ-ΑΧ ΑΔ-ΠΖ ΑΔ-ΟΣ	X
4 15 (53.6%) 3 (10.7%) 0 (0%) 25 (44.6%) 3 (5.4%) 0 (0%)	6)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	%) പ
$ \begin{vmatrix} 1 \\ 1 \end{vmatrix} \begin{vmatrix} 20 \\ 0 \\ 0 \end{vmatrix} \begin{pmatrix} (21) \\ (3) \\ 0 \\ 0 \end{vmatrix} \begin{vmatrix} 1 \\ 0 \\ 0 \\ 0 \end{vmatrix} \begin{pmatrix} (3) \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{vmatrix} \begin{vmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{vmatrix} \begin{vmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{vmatrix} \begin{vmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{vmatrix} \begin{vmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{vmatrix} \begin{vmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	6)
	A
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $.5%)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.3%)
<u>Μέλη δοκών (%)</u> <u>Μέλη υπ/των (%)</u> Drifts κατά <i>X</i> (%) Drifts κατά <i>Y</i> (%) %)
	-
3 3 3 3 3 1.19 3 1.17	_
2 2 2 0.43 - 2 0.55	_
1 - 1 - 0.00 - 1 - 0.00	_
0 20 40 60 80 100 0 20 40 60 80 100 0 1 2 3 0 1 2	3
$\Delta A = K \Delta A = OK = IIZ = AX$	
(a) 28-ATHA-N (Επιταχυνσιογραφήματα Χ: 28N_T_ATHA, Υ: 28N_L_ATHA)	
$\begin{vmatrix} & \delta_X (\text{cm}) & \delta_Y (\text{cm}) & V_X (\text{kN}) & V_Y (\text{kN}) \end{vmatrix}$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
Στάθμη ΜΔ-ΑΧ ΜΔ-ΠΖ ΜΔ-ΟΚ ΑΔ-ΑΧ ΑΔ-ΠΖ ΑΔ-Ο	<u> </u>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6) %)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6)
	ó)
Στάθμη ΜΥ-ΑΧ ΜΥ-ΠΖ ΜΥ-ΟΚ ΜΥ-ΚΔΑ ΜΥ-ΔΑ ΑΥ-ΑΧ ΑΥ-ΠΖ ΑΥ-ΟΚ ΑΥ-ΚΔΑ ΑΥ-Δ	A
$ \begin{vmatrix} 4 \\ 3 \end{vmatrix} \begin{pmatrix} 2 \\ 2 \\ (9.1\%) \end{vmatrix} \begin{pmatrix} 0 \\ 0 \\ (0\%) \end{vmatrix} \begin{pmatrix} 0 \\ 0\% \end{pmatrix} \begin{vmatrix} 2 \\ 0\% \end{pmatrix} \begin{pmatrix} 2 \\ 2 \\ (9.1\%) \end{vmatrix} \begin{pmatrix} 2 \\ 2 \\ (2.3\%) \end{vmatrix} \begin{pmatrix} 0 \\ 0\% \end{pmatrix} \begin{vmatrix} 0 \\ 0\% \end{pmatrix} \begin{vmatrix} 0 \\ 0\% \end{pmatrix} \begin{vmatrix} 1 \\ 1 \\ (1.1\%) \end{vmatrix} \begin{pmatrix} 2 \\ 2 \\ (2.3\%) \end{pmatrix} \begin{pmatrix} 2 \\ 2 \\ (2.3\%) \end{pmatrix} \begin{pmatrix} 2 \\ 0\% \end{pmatrix}$	3%) .5%)
2 1 (4.5%) 0 (0%) 0 (0%) 6 (27.3%) 2 (2.3%) 0 (0%) 0 (0%) 7 (8 1 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 7 (8 1 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 7 (8	:%))%)
Μέλη δοκών (%) Μέλη υπ/των (%) Drifts κατά X (%) Drifts κατά Y (%)
4 4 4 0.86	_
3 3 3 3 0.98	-
2 2 2 0.54 - 2 0.46	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3

(b) 28-DFNA-N (Επιταχυνσιογραφήματα Χ: 28N_T_DFNA, Y: 28N_L_DFNA)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$))
)) 5)
$\frac{1}{10000000000000000000000000000000000$	<u> </u>
$4 \qquad \qquad$	1
3 3 - 3 - 1.18 - 3 - 1.11	-
2 2 2 0.47 - 2 0.57	-
1 - 1 - 0.00 - 1 - 0.00	-
0 20 40 60 80 100 0 20 40 60 80 100 0 1 2 3 0 1 2	3
ΔΑ 🗰 ΚΔΑ 🚃 ΟΚ 💶 ΠΖ 🚃 ΑΧ	
(a) 28-ATHA-DL (Επιταχυνσιογραφήματα Χ: 28N_T_ATHA, Y: 28 D _L_ATHA)	
δ_X (cm) δ_Y (cm) V_X (kN) V_Y (kN)	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
IIIax 2.51 4.40 2979.1 5800	
Στάθμη ΜΔ-ΑΧ ΜΔ-ΠΖ ΜΔ-ΟΚ ΑΔ-ΑΧ ΑΔ-ΠΖ ΑΔ-ΟΚ	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$) ()
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.,
Μέλη δοκών (%) Μέλη υπ/των (%) Drifts κατά X (%) Drifts κατά Y (%)	
4 4 4 0.97	-
3 3 2.07 3 1.17	-
	-
	-
	_

⁽b) 28-DFNA-DL (Επιταχυνσιογραφήματα X: 28N_T_DFNA, Y: 28 $\textbf{D}_L_DFNA)$

(b) 28-DFNA-DT (Επιταχυνσιογραφήματα Χ: 28**D**_T_DFNA, Y: 28N_L_DFNA)

(b) 28-FIX-N (Επιταχυνσιογραφήματα Χ: 28N_T_FIX, Υ: 28N_L_FIX)

			δ_X (cm)	$\delta_{\rm Y}$ (cm)	V_X (kN	$I) \mid V_Y \mid I$	xN)			
		min	-5.24	-9.63	-3453	$.1 \mid -284$	2.8			
		max	8.7	7.76	2055.2	2 2010	5.9	-		
Στάθμη	MΔ-AX]	ΜΔ-ΠΖ	M∆-OK	X _ A	Δ-AX	4	ΑΔ-ΠΖ	ΑΔ-ΟΚ	
4	19 (67.99	%) 3	(10.7%)	0 (0%) 28	(50%)	4	(7.1%)	0 (0%)	
3	16 (57.19) 26 (92.99)	%) 10 %) 2	(35.7%) (7.1%)	2 (7.19	6) 40) 43	(71.4%) (76.8%)	12	(21.4%) (5.4%)	2 (3.6%) 0 (0%)	
1	0 (0%)) 0	(0%)	0 (0%) 0	(0%)	0	(0%)	0 (0%)	
Στάθμη	MY-AX MY	-ПZ МУ	7-ок мү-кл	ΔA MY-ΔA	A AY-A	АХ АҮ-ПІ	Z A	Y-OK AY-I	ΚΔΑ ΑΥ-ΔΑ	
4 3	(13.6%) 0 (0%) 0	(0%) 0 (0%) 0	%) 5 (22.7)	%) 3 (3.	4%) 0 (0%	6) 0	(0%) 0 (0% 5 (5.7%))
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(9.1%) 0 ((9.1%) 0 ((0%) 0 (0%) 0 0%) 0	(0%) 0 $(0%)$ 0 $(0%)$ 0 $(0%)$ 0 $(0%)$	$\begin{array}{c cccc} \% & 1 & (4.5) \\ \% & 3 & (13.6) \\ \% & 0 & (0\%) \\ \end{array}$	$\binom{1}{3}$ $\binom{1}{2}$ $\binom{1}{2}$ $\binom{2}{3}$ $\binom{1}{3}$ $\binom{1}{3}$.3%) 0 (0%))%) 0 (0%)	6) 0 6) 0 6) 0	(0%) = 0 ((0%) = 0 ((0%) = 0 ((0%) = 0 ($ \begin{array}{c ccccccccccccccccccccccccccccccccccc$)
Μέλη	δοκών (%)	N	(έλη υπ/τω	ov (%)	Drifts	κατά Χ (%	b)	Drifts	s κατά Υ (%)	
4	_	4		- 4	£ -	1.46	_	4 -	1.24]-
3		3		_ 3	5 -	1.32	_	3 –	1.46	-
2		2		- 2	2 - 0.	56	_	2 - 0.	53	-
1 –	_	1 –		_ 1	0.00		_	1 - 0.00		-
	0 60 80 100) 0	20 40 60	80 100	0 1	2	3	0	1 2	3
(a) 29 DMK DI (ETITEMUNTURE CONTENTS V 2001 T DMK V 200 I DMK)										
	(d) 20-DIV		$\delta_{\rm x}$ (cm)	$\delta_{\rm Y}$ (cm)	$V_{\rm v}$ (kN	$\frac{1}{V_{Y}} = \frac{1}{V_{Y}} \frac{1}{V_{Y}}$	(N))	
		 min	-7.02	-6.2	-3454	$\frac{0}{9}$ $\frac{1}{256}$	4.6	<u> </u> 		
		max	9.27	5.59	2043.8	8 278	34 84			
Στάθμη	MΔ-AX		ΜΔ-ΠΖ	M∆-OK	Х <i>А</i>	AΔ-AX		ΑΔ-ΠΖ	ΑΔ-ΟΚ	
4	17 (60.7	%) 2	(7.1%)	1 (3.6%	6) 29	(51.8%)	2	(3.6%)	1 (1.8%)	
3	21 (75%)	6) 5 %) 3	(17.9%) (10.7%)	1 (3.6%	6) 38) 40	(67.9%) (71.4%)	6	(10.7%)	$ \begin{bmatrix} 1 & (1.8\%) \\ 0 & (0\%) \end{bmatrix} $	
1	0 (0%) 0) 0	(0%)	0 (0%) 0	(0%)	0	(0%)	0 (0%)	
Στάθμη	MY-AX MY	-ПZ М	7-0K MY-K/	ΔA MY-ΔA	A AY-A	АХ АҮ-ПІ	Z A	Y-OK AY-F	ζΔΑ ΑΥ-ΔΑ	
	(18.2%) 0 (0%) 0		%) 6 (27.3	%) 4 (4.	.5%) 0 (0%	6) 0	(0%) 0 (0%) 6 (6.8%)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(0%) 0 ((4.5%) 0 ((0%) 0 (0%) 0 0%) 0 0%) 0	(0%) 0 $(0%)$ 0 $(0%)$ 0 $(0%)$ 0 $(0%)$	%) 0 (0%) %) 1 (4.5%) %) 0 (0%) %) 0 (0%) %	$\begin{array}{c c} $.1%) 0 (0% .1%) 0 (0%)%) 0 (0%	%) 0 %) 0 %) 0	(0%) 0 ((0%) 0 ((0%) 0 ($\begin{array}{c cccc} 0\% & 0 & (0\%) \\ 0\% & 1 & (1.1\%) \\ 0\% & 0 & (0\%) \end{array}$)
Μέλη	δοκών (%)	N	Ιέλη υπ/τω	ov (%)	Drifts	κατά Χ (%	b)	Drifts	s κατά Υ (%)	
4		4		- 4	£ -	1.55	_	4 -	0.89]-
3		3 –		_ 3	5 -	1.28		3 –	0.91	F
2	-	2		- 2	2 - 0.4	16	_	2 - 0.	51	\vdash
1 –	_	1 –		1	0.00	1	_	1 - 0.00		-
0 20 4) 0	20 40 60	80 100	0 1	2	3	0	1 2	3
ΔA	КДА	UK UK		AX						

(b) 28-FIC-DL (Epitacuvsiograghmata X: 28N_T_FIC, Y: 28 \textbf{D}_L FIC)

		δ_X (cm)	$\delta_{\rm Y}$ (cm)	V_X (kN)	V _Y (kN	1)			
	min	-7.1	-8.37	-3516.4	-2445	.8			
	max	10.29	5.68	2414	1826.5	5			
Στάθμη ΜΔ-ΑΧ	M	Δ-ΠΖ	ΜΔ-ΟΚ	ΑΔ	-AX	ΑΔ-ΠΖ	AΔ-OK		
4 17 (60.7	%) 2	(7.1%)	1 (3.6%) 27 (4	48.2%)	2 (3.6%)	1 (1.8%)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	%) 7 %) 2	(25%)	3 (10.7% 0 (0%)	6) 43 () 45 ()	76.8%) 80.4%)	8 (14.3%) 2 (3.6%)	3 (5.4%) 0 (0%)		
1 0 (0%) 0	(0%)	0 (0%)	0	(0%)	0 (0%)	0 (0%)		
 Στάθμη ΜΥ-ΑΧ ΜΥ-	-IIZ MY-	OK MY-K	ΔΑ ΜΥ-ΔΑ	AY-AX	AY-ПZ	AY-OK AY-	КΔА АҮ-ΔΑ		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0%) 0 (0	0%) 0 (0)	%) 3 (13.6	%) 4 (4.5%	(0, 0) = 0 (0,		(0%) 3 (3.4%) (0%) 1 (1.1%)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0%) 0 ((0%) 0 ((0%) 0 ((0%) 0 (0 0%) 0 (0 0%) 0 (0	%) 3 (13.6)	%) 2 (2.3%) 0 (0%)	b) $\begin{bmatrix} 0 & (0/0) \\ 0 & (0\%) \\ 0 & (0\%) \end{bmatrix}$	0 (0%) 0	(0%) 1 (1.170) (0\%) 3 (3.4%) (0\%) 0 (0%)		
<u>Μέλη δοκών (%)</u>	<u>M</u>	έλη υπ/τα	v (%)	Drifts κα	ατά Χ (%)	Drift	s κατά Υ (%)		
4	4		- 4	L -	1.69	- 4 -	1.10		
3	3		_ 3	5 –	1.41	- 3 -	1.22		
2	2		- 2	2 - 0.68	8	- 2-0.	44		
1	1 –		_ 1	0.00		- 1 - 0.00	_		
0 20 40 60 80 100) 0 2	20 40 60	80 100	0 1	2	3 0	1 2 3		
$ \Delta A = K \Delta A = UK = 112 = AX $									
(a) 28-DMK-DT (ETIITAXUVOIOYPA ϕ nµata X: 28 D _T_DMK, Y: 28N_L_DMK)									
		ο _X (cm)		V_X (KIN)		1) 			
	min max	-5.19 11.77	-0.94 5.79	2507.6	2289.2	5 7			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\frac{1\Delta - 11Z}{(21, 406)}$	$M\Delta$ -OK	$A \square A \square$	-AX	$\frac{A\Delta - \Pi Z}{2}$	$ A\Delta - OK $		
3 15 (53.69	6) 0 6) 10	(35.7%)	1 (3.0%) 2 (7.1%)	6) 21 (2 6) 33 (5	58.9%)	(14.5%)	1 (1.8%) 2 (3.6%)		
2 24 (85.79	6) 3	(10.7%)	0 (0%)) 44 (7	78.6%)	3 (5.4%)	0 (0%)		
		(0%)	0 (0%)) 0	(0%)	0 (0%)	0 (0%)		
$\frac{ \Sigma \tau \dot{\alpha} \theta \mu n \ MY-AX MY-\Pi \dot{\alpha}}{ A 2 (9.1\%) 1 (4.5\%)}$	Z MY-OF	$X \mid MY - K\Delta A$	$MY-\Delta A$	AY-AX	АҮ-ПZ	AY-OK AY-KA	$\Delta A \mid AY - \Delta A \mid$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(0,0) $(0,0)$	b) $\begin{vmatrix} 2 \\ 0 \end{vmatrix}$ (4.5%) $\begin{vmatrix} 0 \\ 0 \end{vmatrix}$ (0%)	() (31.0%) (31.0%) (45.5%) (45.5%) (13.6%) () 2 (2.3%) 2 (3.4%) 3 (3.	0 (0%)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	b) 0 (0%	b) 0 (0%)	0 (0%)) 0 (0%)	0 (0%)	0 (0%) 0 (0	%) 0 (0%)		
Μέλη δοκών (%)	M	έλη υπ/τα	ov (%)	Drifts Ko	ατά Χ (%)	Drift	s κατά Υ (%)		
	4		- 4	- -	1.92	- 4 -	1.08		
2	2				1.//		55		
				. – 0.00	,	-1-0.00			
0 20 40 60 80 100		20 40 60	80 100	0 1	2	3 0	1 2 3		
ΔΑ 🔜 ΚΔΑ 🗖	OK I	ΠZ	AX						

(b) 28-FIX-DT (Epitaxuvsiograghmata X: $28 \mbox{D}_T\mbox{FIX},$ Y: $28 \mbox{N}_L\mbox{FIX})$

(b) 28-SGMB-N (Επιταχυνσιογραφήματα Χ: 28N_T_ATHA, Y: 28N_L_SGMB)

	δ_X (cm)	$\delta_{\rm Y}$ (cm) V	$_X$ (kN) V_Y (k)	N)					
	min -4.55	-7.59 -	3560 -2605	5.1					
	max 8.29	5.39 1	607.9 3923	.3					
Στάθμη ΜΔ-ΑΧ	ΜΔ-ΠΖ	МΔ-ОК	ΑΔ-ΑΧ	ΑΔ-ΠΖ	АΔ-ОК				
4 17 (60.70	%) 4 (14.3%)	1 (3.6%)	29 (51.8%)	4 (7.1%)	1 (1.8%)				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	%) 6 (21.4%) 3 (10.7%)	$ \begin{array}{ccc} 0 & (0\%) \\ 0 & (0\%) \end{array} $	42 (75%) 41 (73.2%)	7 (12.5%)	0 (0%)				
) 0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)				
Στάθμη MY-AX MY-	ПZ МҮ-ОК МҮ-КА	ΔA MY-ΔA	АҮ-АХ АҮ-ПΖ	Z AY-OK AY-1	КΔА АΥ-ΔΑ				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	%) 3 (13.6%) %) 1 (4.5%)	3 (3.4%) 0 (0% 0 (0%) 0 (0%	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(0\%) \begin{vmatrix} 3 & (3.4\%) \\ (0\%) & 1 & (1.1\%) \end{vmatrix}$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 (0/6) 0 (0/7) 0%) 0 (0%) 0 (0%) 0%) 0 (0%) 0 (0%)	%) 4 (18.2%) %) 0 (0%)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(0%) 4 $(4.5%)(0%)$ 0 $(0%)$				
Μέλη δοκών (%)	Μέλη υπ/τω	ov (%) I	Drifts κατά Χ (%) Drift	<u>(с к) ү с (с к) ү</u> s ката́ Y (%)				
4	4	- 4 -	1.51	- 4 -	1.17				
3	3	- 3 -	1.13	- 3 -	1.04				
2	2	- 2 -	0.57	- 2 - 0	.57				
1	1 -	_ 1 - (0.00	- 1 - 0.00					
	0 20 40 60	80 100 0	1 2	3 0	1 2 3				
(a) 28-5GMA		ογραφηματά Χ:	$\frac{28N_1 SGMA}{(l_2N_1)} = V_{(l_2N_2)}$	Y: 28 D _L_SGM	IA)				
	O_X (CIII)		$\frac{\chi(KIN)}{2621.1} = \frac{VY(K}{272}$	1N)					
	max 9.96	9.33 3	342.6 2858	8.8					
Στάθμη ΜΔ-ΑΧ	ΜΔ-ΠΖ	МΔ-ОК	ΑΔ-ΑΧ	ΑΔ-ΠΖ	ΑΔ-ΟΚ				
4 19 (67.9%	b) 2 (7.1%)	0 (0%)	32 (57.1%)	2 (3.6%)	0 (0%)				
3 14 (50%) 2 22 (78.6%)	(11 (39.3%))	$\begin{array}{ccc} 3 & (10.7\%) \\ 0 & (0\%) \end{array}$	35 (62.5%) 39 (69.6%)	15 (26.8%) 4 (7.1%)	3 (5.4%) 0 (0%)				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)				
 Στάθμη ΜΥ-ΑΧ ΜΥ-	ПZ МҮ-ОК МҮ-КА	ΔΑ ΜΥ-ΔΑ	АҮ-АХ АҮ-П2	Z AY-OK AY-	КΔА АҮ-ΔΑ				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(.1%) 0 (0%) 0 (0%)	%) 5 (22.7%) %) 3 (13.6%)	5 (5.7%) 2 (2.3) 6 (6.8%) 0 (0%)	%) 0 (0%) 0	(0%) 7 (8%) (0\%) 4 (4.5%)				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	%) 2 (9.1%) %) 0 (0%)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccc} (0\%) & 1 & (13\%) \\ (0\%) & 2 & (2.3\%) \\ (0\%) & 0 & (0\%) \end{array}$				
Μέλη δοκών (%)	Μέλη υπ/τω	ov (%) I	Drifts κατά Χ (%) Drift	s κατά Υ (%)				
4	4	- 4 -	1.49	- 4 -	1.27				
3	3	- 3 -	1.36	- 3 -	1.39				
2	2	- 2 -	0.44	- 2 - 0	0.61				
).00						
0 20 40 60 80 100	0 20 40 60	<u>80 100</u> 0	1 2	3 0	1 2 3				

⁽b) 28-SGMB-DL (Επιταχυνσιογραφήματα X: 28N_T_ATHA, Y: 28 \textbf{D}_L_SGMB)

			δ_X (cm)	$\delta_{ m Y}$ (cm)	V_X (kľ	V V_Y (k	X)		
		min max	-8.33 7.23	-6.47 4.95	—3752 2558.	2.9 -216 5 3715	5.6 5.1		
Στάθμη	ΜΔ-ΑΧ	[]	ΜΔ-ΠΖ	MΔ-OF	K _ A	AΔ-AX	4	Δ-ΠΖ	АΔ-ОК
4 3 2 1	17 (60.7 19 (67.9 26 (92.9 0 (0%	7%) 4 9%) 8 9%) 1 6) 0	(14.3%) (28.6%) (3.6%) (0%)	0 (0%) 0 (0%) 0 (0%) 0 (0%)	b) 28 b) 39 b) 40 b) 0	(50%) (69.6%) (71.4%) (0%)	4 10 1 0	(7.1%) (17.9%) (1.8%) (0%)	0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Στάθμη ΜΥ	-AX MY-	ПZ М	Y-OK MY-K/	ΔA MY-ΔA	. AY	AX AY-П	Z A	Y-OK AY-KA	ΔΑ ΑΥ-ΔΑ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.6%) 1 (4 (0%) 0 (4.5%) 0 ((0%) 0 (.5%) 0 0%) 0 0%) 0 0%) 0 0%) 0	(0%) 0 (0%) (0%) 0 (0%) (0%) 0 (0%) (0%) 0 (0%)	%) 6 (27.3°) %) 1 (4.5%) %) 1 (4.5%) %) 0 (0%)	%) 5 (5 %) 0 (6 %) 1 (1 %) 0 (6	.7%) 1 (1.1 0%) 0 (09 .1%) 0 (09 0%) 0 (09 .1%) 0 (09 0%) 0 (09	%) 0 6) 0 6) 0 6) 0 6) 0	(0%) 0 (0 (0%) 0 (0 (0%) 0 (0 (0%) 0 (0 (0%) 0 (0 (0%) 0 (0	%) 6 (6.8%) %) 1 (1.1%) %) 1 (1.1%) %) 0 (0%)
Μέλη δο	κών (%)	N	Ιέλη υπ/τω	v (%)	Drifts	s κατά <i>Χ</i> (%	b)	Drifts	κατά Υ (%)
4 3 3 2 2		4 3 2		- 4 - 3 - 2	4 – 5 – 2 – 0.	1.42 1.06 48		4 - 3 - (2 - 0.4	1.10 - 0.94 - 3 -
		1			0.00			1 - 0.00	
0 20 40 60 80 100 0 20 40 60 80 100 0 1 2 3 0 1 2 3 A A KAA OK A TIZ AX									
(a	a) 28-SGM	A-DT (E	$ \begin{array}{c c} \pi \pi \alpha x \sigma v \sigma \sigma \\ \hline \delta_X (cm) \\ -4.59 \\ 12.08 \end{array} $	γραφήματα δ _Y (cm) -5.31 8.71	$\begin{vmatrix} \mathbf{X} &: 28\mathbf{D} \\ V_X & (\mathbf{k}) \\ -3300 \\ 257 \end{vmatrix}$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Y: 28N (N) 56 2.3	J_L_SGMA	A)
Στάθμη	ΜΔ-ΑΧ	1	мΔ-ПΖ	ΜΔ-ΟΚ		ΑΔ-ΑΧ	A	Δ-ΠΖ	ΑΔ-ΟΚ
4 1 3 1 2 2 1 0	3 (46.4% 1 (39.3% 25 (89.3% 0 (0%)	6) 4 6) 14 6) 2 0 0	(14.3%) (50%) (7.1%) (0%)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6) 21 %) 34) 44) 0	(37.5%) (60.7%) (78.6%) (0%)	4 15 2 0	(7.1%) (26.8%) (3.6%) (0%)	$\begin{array}{ccc} 1 & (1.8\%) \\ 3 & (5.4\%) \\ 0 & (0\%) \\ 0 & (0\%) \end{array}$
Στάθμη ΜΥ-	АХ МҮ-ПΖ	C MY-O	к мү-кда	ΜΥ-ΔΑ	AY-AX	К АҮ-ПΖ	AY-C	ок ау-каа	Δ AY-ΔA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.7%) 0 (0% 7.3%) 0 (0% 55%) 0 (0% 0%) 0 (0%) 1 (4.5) 0 (09) 0 (09) 0 (09	%) 0 (0%) 6) 1 (4.5%) 6) 0 (0%) 6) 0 (0%) 6) 0 (0%)	6 (27.3%) 11 (50%) 4 (18.2%) 0 (0%)	9 (10. 10 (11. 1 (1.1 0 (0)	2%) 0 (0%) 4%) 0 (0%) 1%) 0 (0%) %) 0 (0%)	1 (1. 0 (0 0 (0 0 (0	1%) 0 (0%) %) 1 (1.1%) %) 0 (0%) %) 0 (0%)	$ \begin{array}{c cccc} 8 & (9.1\%) \\ 6 & 14 & (15.9\%) \\ 0 & 6 & (6.8\%) \\ 0 & 0 & (0\%) \\ \end{array} $
Μέλη δο	κών (%)	N	Ιέλη υπ/τω	v (%)	Drifts	s κατά <i>Χ</i> (%	b)	Drifts	κατά Υ (%)
4	_	4		- 4	L	1.82		4 -	1.32 -
3		3				2.0		3 -	1.36
		1		1	0.00	40		1 - 0.00	
0 20 40	60 80 100) 0 0K	20 40 60	80 100	0	1 2	3	0 1	2 3

(b) 28-SGMB-DT (Επιταχυνσιογραφήματα Χ: 28**D**_T_ATHA, Y: 28N_L_SGMB)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			δ_X (cm)	$\delta_{\rm Y}$ (cm)	V_X (kN)	V _Y (k	:N)			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		min	-8.69	-9.12	-2331.6	-230	5.4			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		max	9.08	5.13	2283.7	2729	9.5			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Στάθμη ΜΔ-Α	X 2	ΜΔ-ΠΖ	ΜΔ-ΟΚ	ΑΔ	-AX	A	Δ-ΠΖ	ΑΔ-ΟΚ	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4 17 (60	7%) 4	(14.3%)	0 (0%)	30 (53.6%)	4	(7.1%)	0 (0%)	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1%) 8 9%) 1	(28.6%)	4 (14.3% 0 (0%)	6) 38 (44 (67.9%) 78.6%)	10 1	(17.9%)	4 (7.1%) 0 (0%)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		%) 0	(0%)	0 (0%)		(0%)	0	(0%)	0 (0%)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Στάθμη ΜΥ-ΑΧ	ИҮ-ПΖ │ М	Y-OK MY-K	ΔΑ ΜΥ-ΔΑ	A AY-AX	АҮ-П2	z AY-	-OK AY-K	ΔΑ ΑΥ-ΔΑ	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} 4 & 3 & (13.6\%) & 0 \\ \hline & & & & & \\ & & & & & \\ & & & & & &$	(0%) 0	(0%) 0 (0	0%) 5 (22.7	%) 3 (3.49	%) 0 (09	6) 0 ((0%) 0 (0)%) 5 (5.7%)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(0%) 0 (0%) 0	(0%) 0 (0 (0%) 0 (0	1%) 1 (4.5 1%) 3 (13.6	$\begin{array}{c c} \% \\ \% \\ \end{array} & \begin{array}{c} 1 & (1.19) \\ 0 & (0\%) \\ \end{array} \\ \end{array}$	%) 0 (09)) 0 (09	6) 0 (6) 0 ((0%) 0 (0 (0%) 0 (0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>Ι</u>	0 (%0) נ	(0%) 0 (0 Μέλη μπ/τα	(%) 0 (0%)	$\frac{0}{0} = 0 (0\%)$) 0 (0%	$\frac{6}{0}$	$(0\%) \mid 0 \mid (0\%)$)%) 0 (0%) κατά V (%)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						1 33	,, 	1 -	1 20	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3	3		_ 5	3 –	1.26	_ 2	3 -	1.30	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	2		- 2	2 - 0.44	:	- 2	2 - 0.	60 -	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1 -	- 1-	_]	0.00	I	- 1	1 - 0.00		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 20 40 60 80	.00 0	20 40 60	80 100	0 1	2	3	0 1	2 3	
(a) 29-ATHA-N (Eπιταχυνσιογραφήματα X: 29N_T_ATHA, Y: 29N_L_ATHA) $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ΔΑ 🚃 ΚΔΑ 🚃 ΟΚ 📩 ΠΖ 🥅 ΑΧ									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(a) 29-ΑΤΗΑ-Ν (Επιταχυνσιογραφήματα Χ: 29Ν_Τ_ΑΤΗΑ, Υ: 29Ν_L_ΑΤΗΑ)									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			δ_X (cm)	$\delta_{\rm Y}$ (cm)	V_X (kN)	V _Y (k	XN)			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		min	-11.25	-6.98	-2837.3	-215	5.5			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		IIIdX	5.67	5.15	2773.9	5450	5.5			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Στάθμη ΜΔ-Α	X	ΜΔ-ΠΖ	ΜΔ-ΟΚ	AΔ-	-AX	A۷	∆-ПZ	ΑΔ-ΟΚ	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4 18 (64	(.3%) 1	(3.6%)	$\begin{vmatrix} 0 & (0\%) \\ 2 & (7.1\%) \end{vmatrix}$	28	(50%)	1	(1.8%)	0 (0%)	
1 0 (0%) 0 0 (0%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 25 (89	.3%) 8	(28.0%) (7.1%)	0 (0%)	5) 58 (0 39 (0	57.9%) 59.6%)	2	(19.0%)	2 (5.0%) 0 (0%)	
Στάθμπ ΜΥ-ΑΧ ΜΥ-ΠΖ ΜΥ-ΟΚ ΜΥ-ΚΔΑ ΜΥ-ΔΑ ΑΥ-ΑΧ ΑΥ-ΠΖ ΑΥ-ΟΚ ΑΥ-ΚΔΑ ΑΥ-ΔΑ		%) 0	(0%)	0 (0%)	0	(0%)	0	(0%)	0 (0%)	
	Στάθμη ΜΥ-ΑΧ Μ	Z-ПZ МҮ-	ОК МҮ-КДА	ΜΥ-ΔΑ	AY-AX	AY-ПZ	AY-OK	АҮ-КДА	ΑΥ-ΔΑ	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(0%) 0 (0	0%) 0 (0%)	6 (27.3%)	$\begin{vmatrix} 2 & (2.3\%) \\ 3 & (3.4\%) \end{vmatrix}$	0 (0%)	0 (0%) 1 (1.1%) 0 (0%)	b) 6 (6.8%) 12 (13.6%)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(0%) 0 (((0\%) 0 (((0\%) 0 ((0%) 0 (0%) 0%) 0 (0%) 0%) 0 (0%)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} 0 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 \\ \end{array}$	0 (0%)	0 (0% 0 (0%	$\begin{array}{c c} (0,0) \\ (0,0)$	$\begin{array}{cccc} 12 & (15.0\%) \\ 4 & (4.5\%) \\ 0 & (0\%) \end{array}$	
Μέλη δοκών (%) Μέλη υπ/των (%) Drifts κατά X (%) Drifts κατά Y (%)	Μέλη δοκών (%	1	Μέλη υπ/τα	υν (%)	Drifts ĸ	ατά Χ (%	b)	Drifts	κατά Υ (%)	
4 4 4 0.86 +	4	4			1 -	1.67	- 4	4 - (0.86	
3 3 3 3 1.72 - 3 1.72 - 3 1.06 -	3	3		_ 3	3 -	1.72	- 3	3 -	1.06	
2 2 2 0.48 - 2 0.51 -	2	2		- 2	2 - 0.48	3	- 2	2 - 0.4	51 –	
	1 -	- 1-]	0.00		- 1	1 - 0.00		
0 20 40 60 80 100 0 20 40 60 80 100 0 1 2 3 0 1 2 3			20 40 60	80 100	0 1	2	3	0 1	2 3	

(b) 29-DFNA-N (Epitaxuvsiograghmata X: 29N_T_DFNA, Y: 29N_L_DFNA)

			δ_X (cm)	$\delta_{ m Y}$ (cm)	V_X (kN)) $ V_Y(k)$	N)			
		min	-8.65	-9.14	-2330.	9 -260	6.8			
		max	8.72	3.8	2314.5	3179	.9			
Στάθμη	MΔ-AX	N	ίΔ-ΠΖ	ΜΔ-ΟΚ	с∥ А	Δ-AX	ΑΔ-	пz	ΑΔ-ΟΚ	
4	17 (60.7	%) 2	(7.1%)	0 (0%)) 27	(48.2%)	2 (3	.6%)	0 (0%)	
3	19 (67.9	%) 7 %) 3	(25%)	2 (7.1%)	6) 39	(69.6%) (80.4%)	9 (10	5.1%)	2 (3.6%)	
1	0 (0%) 0	(0%)	0 (0%)) 0	(0%)	0 (J%)	0 (0%)	
Στάθυη ΙΙ Ν	ΛΥ-ΑΧ ΜΥ-Γ	7. MY-01	K MY-KA4	ΜΥ-ΛΑ	AY-AX	АУ-ПZ	AY-OK	ΑΥ-ΚΛ	Α ΑΥ-ΛΑ	
	(9.1%) 0 (0	%) 0 (0%	6) 1 (4.5%	b) 4 (18.2%	6) 2 (2.39	%) 0 (0%)	0 (0%)	1 (1.10	%) 4 (4.5%)	
3 0 2 0	$\begin{array}{c cccc} (0\%) & 0 & (0') \\ (0\%) & 0 & (0') \end{array}$	%) 0 (09 %) 0 (09	6) 0 (0%) 6) 0 (0%)	$\begin{array}{c cccc} 0 & 0 & (0\%) \\ 0 & 4 & (18.2\%) \end{array}$	6) 0 (0%) 6) 0 (0%)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 (0%) 0 (0%)	0 (0%	b) $\begin{bmatrix} 0 & (0\%) \\ 4 & (4.5\%) \end{bmatrix}$	
	(0%) 0 (0%)	%) 0 (0%	$(6) \mid 0 (0\%)$	0 (0%) = 0	0 (0%)	b) $0 (0\%)$	0 (0%)	0 (0%)	b) $ 0 (0\%) $	
	50κων (%)			V (%)	Drifts)			
4		4 3 –		4	E	1.20	- 4 -		1.11	
2		2		- 7	$\frac{1}{2} - 04$.0	- 2 -	0	71 -	
1 -		1 -		- 1	0.00		- 1 -	0.00	/ 1	
0 20 4	0 60 80 100		20 40 60	80 100	0 1	2	3	0 1	2 3	
ΔΑ										
	(a) 29-ATH	A-DL (Ei	τιταχυνσια	ογραφήματο	a X: 29N_'	T_ATHA, Y	7: 29 D_ L	(_ATHA)		
			δ_X (cm)	$\delta_{ m Y}$ (cm)	V_X (kN)) V _Y (k	N)			
		min	-11.35	-8.14	-2813.	7 -241	0.1			
		max	3.89	4.64	2773	4003	.1			
Στάθμη	MΔ-AX	M	Δ-ΠΖ	ΜΔ-ΟΚ	A.	Δ-AX	AΔ-]	ΠZ	ΑΔ-ΟΚ	
4	15 (53.69	%) 2	(7.1%)	0 (0%)	24	(42.9%)	2 (3	5.6%)	0 (0%)	
3	17 (60.79	%) 8 (%) 1	(28.6%)	3 (10.7% 0 (0%)	6) 36	(64.3%)	11 (1)	9.6%)	3 (5.4%) 0 (0%)	
1	0 (0%)	0 0	(0%)	0 (0%)	0	(0%)	1) 1 0 (0%)	0 (0%)	
Στάθυρ ΙΙ Ν	΄ αν.δχ Μν.Π'			MV-AA		ΔΥ-Π7	AV-OK	ΔΥ-ΚΛΔ		
	(9.1%) 0 (0%	$\begin{array}{c c} $) 0 (0%)	5 (22.7%) 2 (2.3%) 0 (0%)	0 (0%)	1 (1.1%)	A1-ΔA 0 5 (5.7%)	
3 2 2 0	$\begin{array}{c c} (9.1\%) & 0 & (0\%) \\ (0\%) & 0 & (0\%) \end{array}$	b) 0 (0%) b) 0 (0%)	$ \begin{vmatrix} 1 & (4.5\%) \\ 0 & (0\%) \end{vmatrix} $	11 (50%) 5 (22.7%) 3 (3.4%)	b) 0 (0%) 0 (0%)	0 (0%) 0 (0%)	1 (1.1%) 0 (0%)	13 (14.8%) 6 (6.8%)	
1 0	(0%) 0 (0%)	b) 0 (0%)	$\frac{0}{0} = 0 (0\%)$	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	
	JOKWV (%)			V (%)	DIIIts)			
4 3		4 3				1.71	- 3 -		1.95	
2		2		- 2	2 - 0.4	7	- 2 -	0.0	52 -	
1 -		1 -		- 1	- 0.00	,	- 1 -	0.00	-	
0 20 4	0 60 80 100		20 40 60	80 100	0 1	2	 3 (D 1	2 3	
ΔΑ	ΚΔΑ	OK I	ПΖ	AX						

⁽b) 29-DFNA-DL (Επιταχυνσιογραφήματα X: 29N_T_DFNA, Y: 29 $\mathbf{D}_{\rm L}$ _DFNA)

			δ_X (cm)	$\delta_{\rm Y}$ (cm)	V_X (kN)	$ V_Y (\mathbf{k}) $	κN)	-		
		min	-13.19	-8.87	-2364.5	-230)8.3	_		
		max	9.5	5.01	2950.2	271	7.9	_		
Στάθμη	ΜΔ-ΑΧ		ΛΔ-ΠΖ	МΔ-ОК	ΑΔ	AX	A	Δ-ΠΖ	A	Δ-ОК
4	15 (53.6%) 4	(14.3%)	1 (3.6%) 25 (4	14.6%)	5	(8.9%)	1	(1.8%)
3	13 (46.4% 23 (82.1%	b) $ 11 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\$	(39.3%) (17.9%)	$\begin{vmatrix} 4 & (14.39) \\ 0 & (0\%) \end{vmatrix}$	6) 33 (5) 44 (7)	58.9%) 78.6%)	12 5	(21.4%) (8.9%)	6	(10.7%)
1	0 (0%)	0	(0%)		0	(0%)	0	(0%)	0	(0%)
Στάθμη	MY-AX MY-I	IZ MY	-OK MY-K	ΔA MY-ΔA	AY-AX	АҮ-ПΖ	Z A	Y-OK AY-	KΔA	ΑΥ-ΔΑ
4 5	(22.7%) 0 (0)%) 0 ((0%) 1 (4.5)	5%) 5 (22.7	%) 5 (5.7%) 0 (0%	b) 0	(0%) 1 (1.1%)	5 (5.7%)
	(0%) 0 (0 (9.1%) 0 (0 (0%) 0 (0)%) 0 ()%) 0 ((0%) 0 $(0%)$ 0 $(0%)$	%) = 2 (9.19)	$\binom{0}{3}$ $\binom{0}{3}$ $\binom{0}{3}$) 0 (0%		(0%) = 0 (0%) = 0 (0%) = 0	(0%) (0%)	6 (6.8%) 0 (0%)
Μέλη	<u>δοκών</u> (%)	^{5%)} 0 (N	 Ιέλη υπ/τα	ωv (%)	Drifts K	ατά Χ (%	6)	0	(0%) Is kat	<u> (0%) </u>
4		4			1 -	1.84	1	4 -	1.	16
3		3			3 -	1.73	_	3 –	1.	.27
2		2		- 2	2 - 0.8	85	_	2 - (0.61	_
1 –		1 –			l – 0.00	I	_	1 - 0.00)	_
0 20 4	0 60 80 100	0 0	20 40 60	0 80 100	0 1	2	3	0	1	2 3
ΔΑ 🚃 ΚΔΑ 🚃 ΟΚ 🔜 ΠΖ 🚃 ΑΧ										
(a) 29-ATHA-DT (Επιταχυνσιογραφήματα Χ: 29 D _T_ATHA, Y: 29N_L_ATHA)										
			δ_X (cm)	$\delta_{\rm Y}$ (cm)	V_X (kN)	$ V_{Y} (\mathbf{k}) $	κN)	<u> </u>		
		min	-11.72	-6.57	-2732.9	-201	3.9			
		max	9.91	4.98	3525.0	3440	6.4	<u> </u>		
Στάθμη	ΜΔ-ΑΧ	1	ΛΔ-ΠΖ	МΔ-ОК	AΔ·	-AX	A	Δ-ΠΖ	A	Δ-ОК
4	13 (46.4%	b) 5	(17.9%)		26 (4	16.4%)	5	(8.9%)	0	(0%)
3	13 (46.4% 26 (92.9%	(10) (10)	(35.7%)	5 (17.9)	6) 31 (5 47 (8	5.4%) 33.9%)	15 2	(26.8%)	8	(14.3%)
1	0 (0%)	0	(0%)		0	(0%)	0	(0%)	0	(0%)
Στάθμη	MY-AX MY-	∏Z MY	-ok My-k/	ΔA MY-ΔA	AY-AX	AY-ПZ	A	7-OK AY-1	KΔA	ΑΥ-ΔΑ
	(18.2%) 0 (0%) 0	(0%) 0 (0	%) 6 (27.39	6) 4 (4.5%)	0 (0%) 0	(0%) 1 (2	1.1%)	6 (6.8%)
3 0 2 1	(0%) 0 (0 (4.5%) 0 (0	0%) 0 0%) 0	(0%) 0 $(0%)$ 0 $(0%)$	%) 2 (9.1%) %) 3 (13.6%)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 (0%)) 0) 0	(0%) 0 (0%) 0	(0%) (0%)	3 (3.4%) 4 (4.5%)
<u>Ι</u> <u>υ</u> Μέλη	(0%) 0 (0)	0%) 0 λ	(0%) 0 (0 [.] Λέλη υπ/τα	(%) 0 (0%)	$\int 0 (0\%)$	0 (0%) ατά Χ (0) 0 ()	(0%) 0 Drift	(0%) s kat	0 (0%) (d X (%)
							,			
3		3			£	1 52	_		1 0	0 -
2		2		_	2 - 0.6	2	_	2 - 0	.49	
1 -	_	1 -			l - 0.00			1 - 0.00)	
0 20 4	0 60 80 100) 0	20 40 60	0 80 100	0 1	2	3	0	1	2 3
ΔΑ	ΚΔΑ	OK	ПΖ	AX						

(b) 29-DFNA-DT (Επιταχυνσιογραφήματα Χ: 29**D**_T_DFNA, Υ: 29N_L_DFNA)

		δ_X (cm)	$\delta_{ m Y}$ (cm)	V_X (kN)	V_{Y} (k	N)			
	min	-6.4	-9.02	-3824.2	2 -262	9.3			
	max	9.9	6.01	2359.1	1871	.4			
Στάθμη ΜΔ-ΑΧ		ΜΔ-ΠΖ	MΔ-OF	К ∥ А.	Δ-AX	ΑΔ-	ПΖ	ΑΔ-ΟΙ	<
4 18 (64.3	%) 3	(10.7%)	0 (0%) 28	(50%)	4 (7	.1%)	0 (0%	6)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	%) 8 %) 4	(28.6%)	0 (0%)	6) 42) 43	(75%) (76.8%)	9 (1)	5.1%) .1%)	2 (3.6)	%) 6)
1 0 (0%) 0	(0%)	0 (0%) 0	(0%)	0 (0%)	0 (0%	6)
Στάθμη MY-AX MY-	ΠZ M	Y-OK МҮ-К	ΔA MY-ΔA	A AY-A2	X AY-ПZ	AY-OI	K AY-K	ΔΑ ΑΥ-Δ	A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0%) 0	$(0\%) \mid 0 (0)$	%) 2 (9.19)	%) 3 (3.4 %) 1 (1.1	(0% (0%	0) 0 (09) 0 (09) 0 (09) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6) 0 ((2%) 2 (2.) 1 (1)	3%)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0%) 0 0%) 0	(0%) 0 (0) (0\%) 0 (0)	%) 7 (31.8 %) 0 (0%	$\binom{11}{2}$ (2.3)	5%) 0 (0% %) 0 (0%	(0) = (0) (0) = (0) (0) = (0)	6) 0 ((6) 0 ((2%) 7 (8 2%) 0 (0	3%) 3%)
Μέλη δοκών (%)	N	<u>(ε))</u> Ιέλη υπ/τα	ov (%)	Drifts 1	κατά Χ (%)	Drifts	κατά Υ (^α	%)
4	4			1 -	1.37	- 4 -	-	1.20	_
3	3		_ 3	3 -	1.33	- 3 -	-	1.32	_
2	2		- 2	2 - 0	.84	- 2 -	0.4	16	-
1	1 –		_]	l – 0.00		- 1 -	0.00		_
0 20 40 60 80 100) 0	20 40 60	80 100	0 1	2	3	0 1	. 2	3
(a) 20 DMK N (Emitaxing cover a functor V. 20N T DMK V. 20N I DMK)									
(a) 29-DI	/IK-IN (E	$\frac{1}{\delta_{\rm w}}$ (cm)	$\delta_{\rm Y}(\rm cm)$	$V_{\rm w}$ (kN)	$1 _ DMK, 1:$	$\frac{29N}{N}$	_DMK)		
	min	-6.24	-6.72	-3630 $ $	$5 \mid -383'$	75			
	max	10.87	6.28	1856.6	233	4			
Στάθμη ΜΔ-ΑΧ		ΜΔ-ΠΖ	ΜΔ-ΟΚ	A∆	A-AX	AΔ-]	TZ	AΔ-OF	ζ
4 15 (53.60	%) 5	(17.9%)	1 (3.6%) 28	(50%)	5 (8	8.9%)	1 (1.8	%)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	%) 9 %) 3	(32.1%) (10.7%)	1 (3.6%)) 39 (43 ((69.6%)	10 (1) 3 (5	7.9%) 5.4%)	$ \begin{array}{cccc} 1 & (1.8) \\ 0 & (09) \end{array} $	%) 6)
) 0	(0%)	0 (0%)	0	(0%)	0 (0%)	0 (0%	6)
	TZ MY	-ok My-ka	Α ΜΥ-ΔΑ	AY-AX	X AY-ПZ	AY-OK	AY-K	ΔA AY-2	AA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$)%) 0)%) 0	(0%) 1 (4.5) (0%) 0 (0%)	%) 6 (27.3)	%) 5 (5.79 %) 0 (0%	%) 0 (0%)	0 (0%)	1 (1.) 0 (0.)	1%) 7 (8	3%)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0%) 0	(0,0) 0 $(0,0)(0,0)$ 0 $(0,0)(0,0)$ 0 $(0,0)$	6) 5 (13.0) 5 (22.7	%) 0 (0% %) 0 (0%	6) 0 (0%) 6) 0 (0%)			9%) 6 (6. 9%) 0 (0	.8%)
Μέλη δοκών (%)	N	/[έλη υπ/τω	ov (%)	Drifts 1	κατά <i>Χ</i> (%)	Drifts	κατά Υ (^α	%)
4 -	4			1 -	1.69	- 4 -	-	1.04	_
3	3		_ 3	3 –	1.52	- 3 -	-	1.03	_
2	2		_ 2	2 - 0.5	58	- 2 -	- 0,	.61	-
1	1 _]	l – 0.00		_ 1 -	0.00	1	
) 0	20 40 60	80 100	0 1	2	3	0 1	. 2	3
			АΛ						

(b) 29-FIX-N (Epitaxuvsiographiata X: 29N_T_FIX, Y: 29N_L_FIX)

(b) 29-FIX-DL (Επιταχυνσιογραφήματα Χ: 29N_T_FIX, Υ: 29**D**_L_FIX)

⁽b) 29-FIX-DT (Επιταχυνσιογραφήματα Χ: 29**D**_T_FIX, Υ: 29N_L_FIX)

(b) 29-SGMB-N (Επιταχυνσιογραφήματα Χ: 29N_T_ATHA, Y: 29N_L_SGMB)

		δ_X (cm)	$\delta_{ m Y}$ (cm)	V_X (kN)) $ V_{Y} (k)$	N)			
	min	-4.48	-8.02	-3969.	5 -2893	3.7			
	max	9.68	6.16	1780.2	4120	.5			
Στάθμη ΜΔ-ΑΧ		ΜΔ-ΠΖ	M∆-Ok	К А	Δ-AX	ΑΔ-Ι	IZ	АΔ-ОК	
4 13 (46.4)	%) 8	(28.6%)		%) 24	(42.9%)	8 (14	.3%)	1 (1.8%)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	%) / %) 3	(25%) (10.7%)	0 (0%	%) 45) 48	(76.8%) (85.7%)	9 (16 3 (5.	.1%) 4%)	2 (5.6%) 0 (0%)	
1 0 (0%) 0	(0%)	0 (0%) 0	(0%)	0 (0)%)	0 (0%)	
Στάθμη ΜΥ-ΑΧ ΜΥ-	-ΠZ M	Y-OK МҮ-К	ΔΑ ΜΥ-ΔΑ	A AY-A2	Х АҮ-ПΖ	AY-OK	AY-KZ	ΔΑ ΑΥ-ΔΑ	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0%) 0 0%) 0	(0%) 0 (0 (0%) 0 (0	%) 7 (31.8 %) 3 (13.6	3%) 8 (9.1 5%) 1 (1.1	L%) 0 (0%) L%) 0 (0%)) 0 (0%)) 0 (0	%) 7 (8%) %) 3 (3.4%)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0%) 0 0%) 0	(0%) 0 (0 (0%) 0 (0	%) 3 (13.6 %) 0 (0%	0%) 2 (2.3 0) 0 (09)	5%) 0 (0%) %) 0 (0%)) 0 (0%) 0 (0%) 0 (0) 0 (0	%) 3 (3.4%) %) 0 (0%)	
Μέλη δοκών (%)	N	/Ιέλη υπ/τα	ov (%)	Drifts	κατά Χ (%))	Drifts	κατά Υ (%)	
4	4		- 2	1 -	1.89	- 4 -		1.21	
3	3		_ 3	3 –	1.33	- 3 -		1.18 -	
2	2		- 2	2 - 0.5	57	- 2 -	0.0	61 -	
				1 - 0.00			0.00		
0 20 40 60 80 100 0 20 40 60 80 100 0 1 2 3 0 1 2 3 ΔΑ Δ ΚΔΑ Δ ΟΚ Δ ΠΖ Δ ΑΧ									
(a) 29-SGMA-DL (Emitoxi)volovoq ω hiloto X· 29N T SGMA Y· 29 D L SGMA)									
(u) 27 DOIN		$\delta_{\rm x}$ (cm)	$\delta_{\rm v}$ (cm)	$V_{\rm Y}$ (kN)	$V_{\rm v}$ (kl	N)	_001011	1)	
	min	-3.87	-8.39	-2885.0	$6 \mid -4628$	3.9			
	max	10.3	8.21	3353.3	2999	.6			
Στάθμη ΜΔ-ΑΧ	1	и∆-ПZ	ΜΔ-ΟΚ	A	Δ-AX	ΑΔ-Γ	IZ	ΑΔ-ΟΚ	
4 17 (60.79	6) 3	(10.7%)	0 (0%)) 27	(48.2%)	3 (5	.4%)	0 (0%)	
3 16 (57.19	6) 9 6) 3	(32.1%)	3 (10.7%) 0 (0%)	%) 37 40	(66.1%)	12 (2)	1.4%) 4%)	3 (5.4%) 0 (0%)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0	(10.7 %)	0 (0%)		(0%)	0 (0%)	0 (0%)	
Στάθμη ΜΥ-ΑΧ ΜΥ-Ι	IZ MY	′-OK MY-K∆	ΔA MY-ΔA	AY-AX	AY-ПZ	AY-OK	ΑΥ-ΚΔ	Α ΑΥ-ΔΑ	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1%) 0	$(0\%) \mid 0 (0\%) (0\%) (0\%) 1 (4.5)$	$\binom{6}{6}$ 6 (27.39)	%) 5 (5.7% %) 6 (6.8%	b) $\begin{vmatrix} 2 \\ 0 \end{vmatrix}$ (2.3%)	0 (0%)	0 (0%	6) 7 (8%) %) 9 (10.2%)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1%) 0 1%) 0	(0%) 0 (0%) (0%) 0 (0%)	$\begin{array}{c ccccc} & & & & (3011) \\ (6) & & & & (18.29) \\ (6) & & & & (0\%) \\ \end{array}$	$ \begin{array}{c c} (0,0) \\ (0,0$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 (0%) 0 (0%)	0 (0%	$\begin{array}{c ccccc} (10.12)(0) & (10.12)(0) \\ (6) & (6.8\%) \\ (6) & (0) & (0\%) \\ \end{array}$	
Μέλη δοκών (%)	Ν	Ιέλη υπ/τω	ov (%)	Drifts	κατά Χ (%))	Drifts	κατά Υ (%)	
4	4		- 4	4 -	1.56	- 4 -		1.14	
3	3		_ 3	3 –	1.61	- 3-		1.26 -	
2	2		- 2	2 - 0.42	2	- 2 -	0.0	50 -	
		20 40 40			2		0.00	2 7	
		20 40 60	AX	0 1	2	5 () 1	2 3	

⁽b) 29-SGMB-DL (Epitaxuvoiograghimata X: 29N_T_ATHA, Y: 29 \textbf{D}_L_SGMB)

⁽b) 29-SGMB-DT (Επιταχυνσιογραφήματα Χ: 29**D**_T_ATHA, Y: 29N_L_SGMB)

(b) 30-DFNA-N (Επιταχυνσιογραφήματα Χ: 30N_T_DFNA, Υ: 30N_L_DFNA)
		8	δ_X (cm)	$\delta_{\rm Y}$ (cm)	$ V_X $ (k	N) $ V_Y $	xN)			
		min max	-9.16 9.22	-10.26 4.19	-24] 227	19 -253 6 3124	51.3 4.7			
Στάθμη	MΔ-AX	MΔ	-ПZ	ΜΔ-ΟΚ		ΑΔ-ΑΧ	A	Δ-ΠΖ	AΔ-0]	K
4 3 2 1	16 (57.1%) 16 (57.1%) 20 (71.4%) 0 (0%)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.3%) 8.6%) 8.6%) (0%)	0 (0%) 4 (14.3% 0 (0%) 0 (0%)	6) 29 6) 36 41 0	(51.8%) (64.3%) (73.2%) (0%)	4 10 8 0	(7.1%) (17.9%) (14.3%) (0%)	0 (0% 5 (8.9 0 (0% 0 (0%	6) %) 6) 6)
Στάθιιη Ν	νγ.Δχ ΜΥ.Π'		MY-KAA	ΜΥ-ΔΔ	Ш ДУ-	ΔΧ ΔΥ-ΠΖ	ΔΥ-			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	AX A1-112 .3%) 0 (0% 0%) 0 (0% .3%) 0 (0% 0%) 0 (0% 0%) 0 (0%	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c} (0\%) & 1 & (1.1) \\ (0\%) & 0 & (0) \\ (0\%) & 0 & (0) \\ (0\%) & 0 & (0) \\ (0\%) & 0 & (0) \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $.1%) 3%) 0%)
Μέλη	δοκών (%)	Μέλ	ιη υπ/τω	v (%)	Drift	s κατά Χ (9	%)	Drifts	κατά Υ (%)
4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		4		- 4 - 3 - 2	1 - 5 - 2 - 0 00	1.39 1.29 45		4 - 3 - 2 - (1	1.17 1.51).84	
0 20 4	0 60 80 100		0 40 60	80 100	0.00	1 2		0 1	2	
	ΚΔΑ	OK 🗖	<u>по со</u>	AX	U	1 1	2	0 1	-	5
	(a) 50-ATH	$\frac{ \delta }{ min } = \frac{ \delta }{ max }$	$A_X (cm)$	$\delta_{\rm Y} ({\rm cm})$ -8.86 4.14	$V_X (k) = -269'_2$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	kN) 11.2 6.8	J _L_AINA)	
Στάθμη	MΔ-AX	M2	Δ-ΠΖ	ΜΔ-ΟΚ	.	ΑΔ-ΑΧ	A	Δ-ΠΖ	ΑΔ-0]	К
4 3 2 1	14 (50%) 14 (50%) 23 (82.1%) 0 (0%)) 2 11 () 4 (0	(7.1%) 39.3%) 14.3%) (0%)	0 (0% 2 (7.1% 0 (0% 0 (0%) 22 6) 34) 40) 0	(39.3%) (60.7%) (71.4%) (0%)	2 13 4 0	(3.6%) (23.2%) (7.1%) (0%)	0 (09 2 (3.6 0 (09 0 (09	6) %) 6) 6)
Στάθμη Ν	ИҮ-АХ МҮ-ПΖ	МҮ-ОК	ΜΥ-ΚΔΑ	ΜΥ-ΔΑ	∥ AY-A	Х АҮ-ПΖ	AY-O	к ау-кда	ΑΥ-Δ	A
4 2 3 1 2 0 1 0	$\begin{array}{c cccc} (9.1\%) & 0 & (0\%) \\ (4.5\%) & 0 & (0\%) \\ (0\%) & 0 & (0\%) \\ (0\%) & 0 & (0\%) \end{array}$) 0 (0%)) 0 (0%)) 0 (0%)) 0 (0%)) 0 (0%)	0 (0%) 1 (4.5%) 0 (0%) 0 (0%)	6 (27.3%) 11 (50%) 8 (36.4%) 0 (0%)	$\begin{array}{c ccccc} 0 & 2 & (2.1) \\ 1 & (1.1) \\ 0 & 1 & (1.1) \\ 0 & (0) \end{array}$	3%) 0 (0%) 1%) 0 (0%) 1%) 0 (0%) %) 0 (0%)	0 (0) 0 (0) 0 (0) 0 (0)	%) 1 (1.1% %) 1 (1.1% %) 0 (0%) %) 0 (0%) %) 0 (0%)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1%) .8%) .2%))%)
Μέλη	δοκών (%)	Μέλ	ιη υπ/τω	v (%)	Drift	s κατά Χ (9	%)	Drifts	κατά Υ (%)
4 3		4 3 2		- 4	+ - 5 - 2 - 0	1.63 1.74 47	- - -	4 3 2	0.94	_
1 -		1			0.00)	_	1 - 0.00		-
0 20 4	0 60 80 100	0 20	40 60	80 100	0	1 2	3	0 1	2	3
ΔΑ	ΚΔΑ	OK 🗖	🗖 ПΖ 🗖	AX						

⁽b) 30-DFNA-DL (Επιταχυνσιογραφήματα Χ: 30N_T_DFNA, Υ: 30**D**_L_DFNA)

(b) 30-DFNA-DT (Επιταχυνσιογραφήματα Χ: 30**D**_T_DFNA, Υ: 30N_L_DFNA)

			δ_X (cm)	$\delta_{ m Y}$ (cm)	V_X (kN)	VY (k	xN)		
		min max	-6.48 10.06	-9.64 6.48	-3767.4 2501.2	-273 1988	58.4 3.4		
Στάθμη	MΔ-AX	N	<i>и</i> Δ-ΠΖ	ΜΔ-ΟΚ	ΑΔ-	AX	 ΑΔ-	ПΖ	ΑΔ-ΟΚ
4 3 2 1	18 (64.3) 17 (60.7) 24 (85.7) 0 (0%)	%) 3 %) 9 %) 4) 0	(10.7%) (32.1%) (14.3%) (0%)	0 (0%) 2 (7.1%) 0 (0%) 0 (0%)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50%) 3.2%) 8.6%) (0%)	4 (7 10 (1 5 (8 0	7.1%) 7.9%) 3.9%) (0%)	0 (0%) 2 (3.6%) 0 (0%) 0 (0%)
Στάθμη	MY-AX MY-	IZ MY-	ok my-κΔ <i>ι</i>	Α ΜΥ-ΔΑ	AY-AX	AY-ПZ	AY-OK	ΑΥ-ΚΔ	A ΑΥ-ΔΑ
4 3 3 1 2 2 1 0	$\begin{array}{c cccc} (13.6\%) & 0 & (0) \\ (4.5\%) & 0 & (0) \\ (9.1\%) & 0 & (0) \\ (0\%) & 0 & (0) \end{array}$	0%) 0 (0 0%) 0 (0 0%) 0 (0 0%) 0 (0 0%) 0 (0 0%) 0 (0	O%) O (O%) O%) O (O%)	2 (9.1%) 1 (4.5%) 10 (45.5%) 0 0 (0%)	$ \begin{vmatrix} 3 & (3.4\%) \\ 1 & (1.1\%) \\ 2 & (2.3\%) \\ 0 & (0\%) \end{vmatrix} $	0 (0%) 0 (0%) 0 (0%) 0 (0%)) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (09)) 0 (09)) 0 (09)) 0 (09)	%) 2 (2.3%) %) 1 (1.1%) %) 10 (11.4%) %) 0 (0%)
Μέλη	δοκών (%)	M	Ιέλη υπ/τω	v (%)	Drifts ко	ατά Χ (%	b)	Drifts	s κατά Υ (%)
4 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		4 3 2		- 4 - 3 - 2	- 0.	1.29 1.32 96	- 4 - 3 - 2	0.4	1.29 - 1.41 - 49 -
1 -	_	1 –		1	0.00		- 1	0.00	
0 20 4	0 60 80 100) 0	20 40 60	80 100	0 1	2	3	0]	L 2 3
					V. ZONI T	DMV V	ZONII		
	(a) 50-D1	/IK-IN (E	$\delta_{\rm v}$ (cm)	$\delta_{\rm Y}$ (cm)	$V_{\rm v}$ (kN)	$V_{\rm v}$ (k	$\frac{1000}{N}$	_DIVIR)	
		min max	-3.27 11.5	-6.57 7.01	-3772.6 1852.6	-397 2490	74.2 5.1		
Στάθμη	MΔ-AX	1	ΜΔ-ΠΖ	ΜΔ-ΟΚ	AΔ·	-AX	ΑΔ-	ΠZ	ΑΔ-ΟΚ
4 3 2 1	15 (53.69) 16 (57.19) 22 (78.69) 0 (0%)	%) 7 %) 11 %) 5 %) 0	(25%) (39.3%) (17.9%) (0%)	1 (3.6%) 1 (3.6%) 0 (0%) 0 (0%)	$\begin{array}{c cccc} 0 & 24 & 44 \\ 0 & 36 & 66 \\ 42 & 6 \\ 0 & 0 \end{array}$	42.9%) 64.3%) (75%) (0%)	9 (1 12 (2 5 (0	.6.1%) 21.4%) 8.9%) (0%)	1 (1.8%) 1 (1.8%) 0 (0%) 0 (0%)
Στάθμη Μ	ИҮ-АХ МҮ-П	Z MY-0	ок му-кда	Α ΜΥ-ΔΑ	AY-AX	АҮ-ПΖ	AY-OK	AY-K/	ΔA AY-ΔA
4 2 3 1 2 1 1 0	$\begin{array}{c cccc} (9.1\%) & 1 & (4.5) \\ (4.5\%) & 0 & (0) \\ (4.5\%) & 0 & (0) \\ (0\%) & 0 & (0) \end{array}$	5%) 0 (0 %) 0 (0 %) 0 (0 %) 0 (0 %) 0 (0	0%) 1 (4.5%) 0%) 0 (0%) 0%) 1 (4.5%) 0%) 0 (0%) 0%) 0 (0%)	b) 5 (22.7%) 0 8 (36.4%) b) 9 (40.9%) 0 0 (0%)	$ \begin{vmatrix} 6 & (6.8\%) \\ 1 & (1.1\%) \\ 2 & (2.3\%) \\ 0 & (0\%) \end{vmatrix} $	1 (1.1% 0 (0%) 0 (0%) 0 (0%)) 0 (0% 0 (0% 0 (0% 0 (0%	$ \begin{vmatrix} 1 & (1.1) \\ 0 & (0) \\ 1 & (1.1) \\ 0 & (0) \end{vmatrix} $	1%) 6 (6.8%) %) 8 (9.1%) 1%) 9 (10.2%) %) 0 (0%)
Μέλη	δοκών (%)	M	Ιέλη υπ/τω	v (%)	Drifts ко	ατά Χ (%	b)	Drifts	s κατά Υ (%)
4	_	4		- 4		1.82	2 - 4		1.02
2		2		- 2	- 0.55	1.07	- 2).74 –
1 –	_	1 –		_ 1	0.00		- 1	0.00	
	$\begin{array}{c} 0 & 60 & 80 & 100 \\ \hline \hline$		20 40 60	80 100	0 1	2	3	0]	L 2 3
	INΔA	UK							

(b) 30-FIX-N (Επιταχυνσιογραφήματα Χ: 30N_T_FIX, Υ: 30N_L_FIX)

				δ_X (cm)	$\delta_{\rm Y}$ (cm)	V_X (kN)	$ V_{Y}(kN) $	[) (]	
			min	-6.52	-10.94	-3932.5	-2946.	.6	
			max	10.02	8.48	2469.2	2388.4	1	
Στάθμη	M	Δ-ΑΧ]	ΜΔ-ΠΖ	MΔ-OK	ΑΔ	-AX	ΑΔ-ΠΖ	ΑΔ-ΟΚ
4	19	(67.9%	6) 2	(7.1%)	$\begin{vmatrix} 0 & (0\%) \\ 7 & (10.7\%) \end{vmatrix}$) 28	(50%)	3 (5.4%)	0 (0%)
2 2	14 22	(50%)) 11 6) 6	(39.3%) (21.4%)	$ \begin{bmatrix} 5 & (10.7) \\ 0 & (0\%) \end{bmatrix} $	(3) 32 (3) 46 (3)	57.1%) 82.1%)	18 (32.1%) 7 (12.5%)	5 (5.4%) 0 (0%)
1	0	(0%)	0	(0%)	0 (0%)) 0	(0%)	0 (0%)	0 (0%)
Στάθμη	MY-AX	MY-I	IIZ MY	-ок мү-ка	Α ΜΥ-ΔΑ	AY-AX	АҮ-ПZ	AY-OK AY-KA	ΔA ΑΥ-ΔΑ
4 5 3 1	(22.79 (4.5%	b) 0 (0) 0 (0)%) 0)%) 0	(0%) 0 (0%) (0%) 0 (0%)	$\begin{array}{c cccc} 0 & 2 & (9.1\%) \\ 0 & 1 & (4.5\%) \end{array}$) $\ 5 (5.7\%) \\ 1 (1.1\%)$	0 (0%) 0 (0%)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\binom{(2.3\%)}{(2.3\%)}$
2 2 1 0	(9.1% (0%)) 0 (0 0 (0)%) 0)%) 0	(0%) 0 (0% (0%) 0 (0%) 10 (45.5%) 0 (0%)	$ \begin{vmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	0 (0%) 0 (0%)	0 (0%) 0 (0%) 0 (0%) 0 (0%)	%) 12 (13.6%) %) 0 (0%)
Μέλη	δοκών	7 (%)	Ν	Λέλη υπ/τω	ov (%)	Drifts Ko	ατά Χ (%)	Drift	s κατά Υ (%)
4			4		- 4		1.28	- 4 -	1.41
3			3		- 3	_	1.31	- 3 -	1.62
2			2		- 2	- 0.	96	- 2 - C	0.63
			1 -			0.00		- 1 - 0.00	
	0 60	80 100		20 40 60	80 100	0 1	2 3	3 0	1 2 3
	(-)					- V 70NI T			N
	(d)	50-DIV		$\frac{1}{\delta_{\rm W}}$ (cm)		$\frac{u x: 50 n_1}{V_w (k N)}$	$\frac{DMR}{V_{M}}$	<u></u>)
			min		6 03	7825 1		6	
			max	11.57	6.5	1841.6	2830.9	9	
Στάθμη	N	ΊΔ-ΑΧ		ΜΔ-ΠΖ	ΜΔ-ΟΚ	AΔ	AX	ΑΔ-ΠΖ	AΔ-OK
4	14	(50%	b) 5	(17.9%)	1 (3.6%) 26 (4	6.4%)	5 (8.9%)	1 (1.8%)
3	17	(60.7)	%) 9 %) 3	(32.1%)	$\begin{bmatrix} 2 & (7.1\%) \\ 0 & (0\%) \end{bmatrix}$) 39 (6	9.6%) 1 0.4%) 7	$ \begin{array}{ccc} 0 & (17.9\%) \\ 3 & (5.4\%) \end{array} $	$ \begin{array}{cccc} 2 & (3.6\%) \\ 0 & (0\%) \end{array} $
1	0	(02.1) 0	(0%)	0 (0%)	0 0	(0%) (0%) C	0 (0%)
Στάθυη 1	MY-AX	MY-I	TZ M	7-0K MY-K	ΔΑ ΜΥ-ΔΑ	AY-AX	AY-ПZ	AY-OK AY	-κδα Αγ-δα
	(4.5%)	1 (4.	5%) 0	(0%) 1 (4.5	5%) 7 (31.89	%) 3 (3.4%)	1 (1.1%) 1 (2.1%)	0 0 (0%) 1	(1.1%) 7 (8%)
	(4.5%)	0 (0	%) 0 %) 0	(0%) 0 $(0%)$ 0 $(0%)$ 0 $(0%)$	%) 7 (31.8) %) 7 (31.8)	$\begin{array}{c c} \% \\ \% \\ \end{array} \\ 1 \\ (1.1\%) \\ 1 \\ (1.1\%) \\ (0.0\%) \\ \end{array}$	$\begin{array}{c c} 0 & (0\%) \\ 0 & (0\%) \\ 0 & (0\%) \\ 0 & (0\%) \end{array}$	0 (0%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c ccccc} (0\%) & 7 & (8\%) \\ (0\%) & 7 & (8\%) \\ (0\%) & 0 & (0\%) \end{array}$
Μέλη	(0%) δοκών	/ 0 (0 7 (%)	^{1%)} 0 N	(0%) 0 (0 Λέλη υπ/τα	%) 0 (0%)	Drifts Ko	πά Χ (%)	Drift	<u>(0%) 0 (0%) </u> s κατά Υ (%)
4			4		- 4		1.82	- 4 -	1.04
3			3		- 3		1.64	- 3 -	1.02
2		_	2		- 2	0.57	,	- 2 - 0	.62 -
	1 1		1 -	1 1 1	- 1	- 0.00	I	- 1 - 0.00	
0 20 4	0 60	80 100	1 -) 0	20 40 60	80 100	0.00	2 3	- 1 - 0.00 3 0	1 2 3

(b) 30-FIX-DL (Επιταχυνσιογραφήματα X: 30N_T_FIX, Y: 30 \textbf{D}_L _FIX)

(b) 30-FIX-DT (Επιταχυνσιογραφήματα Χ: 30**D**_T_FIX, Υ: 30N_L_FIX)

	δ_X (cm)	$\delta_{\rm Y}$ (cm)	V_X (kN) $\mid V_Y$ (k	XN)	
	min -4.06	-7.67	-4040.2 -225	4.3	
	max 9.78	4.75	1908.8 4228	3.2	
Στάθμη ΜΔ-ΑΧ	ΜΔ-ΠΖ	ΜΔ-ΟΚ	ΑΔ-ΑΧ	ΑΔ-ΠΖ	ΑΔ-ΟΚ
4 15 (53.6	%) 5 (17.9%)	1 (3.6%) $\ 26 (46.4\%) \ $	5 (8.9%)	1 (1.8%)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	%) 8 (28.6%) %) 3 (10.7%)	0 (0%)	44 (78.6%) 41 (73.2%)	8 (14.5%) 3 (5.4%)	0 (0%)
1 0 (0%	b) 0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)
Στάθμη MY-AX MY-I	ПZ МҮ-ОК МҮ-КА	A MΥ-ΔA	АҮ-АХ АҮ-ПΖ	Z AY-OK AY-H	ζΔΑ ΑΥ-ΔΑ
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccc} 6 & 6 & (27.3\%) \\ 6 & 1 & (4.5\%) \end{array}$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6) 6 (27.3%) 6 (0%) 6	$) \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Μέλη δοκών (%)	Μέλη υπ/τα	ov (%)	Drifts κατά Χ (%	b) $Drifts$	s κατά Υ (%)
4 -	4	- 4	1.67	- 4 -	1.24
3	3	- 3	1.26	- 3-	1.15 -
2	2	- 2	0.73	- 2-0.	49
	1		0.00	- 1 - 0.00	
0 20 40 60 80 100	0 0 20 40 60	80 100	0 1 2	3 0	1 2 3
(a) 30 SGM			Y. ZONI T SCMA	V ZON I SCM	۸)
(a) 50-5010	$\frac{1 - N}{\delta_x}$ (cm)	$\delta_{\rm v}$ (cm)	$V_{\rm x}$ (kN) \downarrow $V_{\rm y}$ (k	N)	n)
	$\frac{ 0_{\Lambda} }{ 0_{\Lambda} } = 4.19$	-4.15	$-2977 \mid -4370$		
	max 11.2	11.72	3616.1 2322	.9	
Στάθμη ΜΔ-ΑΧ	ΜΔ-ΠΖ	ΜΔ-ΟΚ	ΑΔ-ΑΧ	ΑΔ-ΠΖ	ΑΔ-ΟΚ
4 18 (64.39	6) 4 (14.3%)	1 (3.6%)) 27 (48.2%)	4 (7.1%)	1 (1.8%)
3 6 (21.4% 2 21 (75%)	(64.3%)	4 (14.3%)	b) $32 (57.1\%)$	20 (35.7%)	4 (7.1%)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 (0%)	0 (0%)	4 (7.1%) 0 (0%)	0 (0%) 0 (0%)
	ΜΥ-ΟΚ ΜΥ-ΚΔΑ	MY-ΔA	AY-AX AY-IIZ	AY-OK AY-K	ΔΑ ΑΥ-ΔΑ
$\begin{array}{c c} 4 \\ \hline 2 \\ \hline 7 \\ \hline 7 \\ \hline 7 \\ \hline \end{array} \begin{array}{c} 0.1\% \\ \hline 1 \\ \hline 1 \\ \hline 0.1\% \\ \hline 1 $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11 (50%)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{vmatrix} 1 & (1.1\%) & 0 & (0) \\ 0 & (0\%) & 2 & (2) \end{vmatrix}$	(%) 13 (14.8%) 27 (30.7%)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19 (80.470) 6 (27.3%) 0 (0%)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3% 27 (30.7%) % 7 (8%) % 0 (0%)
Μέλη δοκών (%)	Μέλη υπ/τα	ov (%)	Drifts ката́ X (%	b) Drifts	s κατά Υ (%)
4	4	4	1.72	- 4 -	1.61
3	3	3	- 1.86	<u>5</u> - 3 -	2.02-
	2	- 2	- 0.37	- 2 - 0) 67 –
2					
		- 1	- 0.00	1 <u></u>	

⁽b) 30-SGMB-N (Επιταχυνσιογραφήματα Χ: 30N_T_ATHA, Υ: 30N_L_SGMB)

	δ_X (cm)	$\delta_{\rm Y}$ (cm)	V_X (kN) V_Y (l	kN)	
	min -3.72	-9.38	-4030.9 -307	76.2	
	max 9.86	4.3	1854.3 435	8.2	
Στάθμη ΜΔ-ΑΧ	ΜΔ-ΠΖ	ΜΔ-ΟΚ	ΑΔ-ΑΧ	ΑΔ-ΠΖ	ΑΔ-ΟΚ
4 14 (50%	b) 4 (14.3%)	1 (3.6%)	24 (42.9%)	4 (7.1%)	1 (1.8%)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	%) 8 (28.6%) %) 8 (28.6%)	1 (3.6%)	39 (69.6%) 39 (69.6%)	9 (16.1%) 10 (17.9%)	1 (1.8%) 0 (0%)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$) 0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)
	Ζ ΜΥ-ΟΚ ΜΥ-ΚΔΑ	ΜΥ-ΔΑ	АҮ-АХ АҮ-ПΖ	AY-OK AY-KA	Α ΑΥ-ΔΑ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(0,0) $(0,0)$ $(0,0)$ $(0,0)$	4 (18.2%)) 0 (0%) 0 (0%)	%) 4 (4.5%)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	%) 0 (0%) 0 (0%) %) 0 (0%) 0 (0%) %) 0 (0%) 0 (0%)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{vmatrix} 1 & (1.1\%) & 0 & (0\%) \\ 4 & (4.5\%) & 0 & (0\%) \\ 0 & (0\%) & 0 & (0\%) \end{vmatrix} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	%) 1 (1.1%) %) 14 (15.9%) %) 0 (0%)
Μέλη δοκών (%)	Μέλη υπ/τα	ov (%)	Drifts κατά Χ (%	%) Drifts	s κατά Υ (%)
4	4	- 4	1.69	- 4 -	1.08
3	3	- 3	1.27	- 3-	1.31 -
2	2	- 2	- 0.72	- 2-	0.96
1	1 -	- 1	- 0.00	- 1 - 0.00	_
0 20 40 60 80 100	0 20 40 60	80 100	0 1 2	3 0	1 2 3
ΔΑ 🗰 ΚΔΑ	OK IIZ	AX			
(a) 30-SGM	A-DL (Επιταχυνσια	ογραφήματα	X: 30N_T_SGMA,	Y: 30 D _L_SGM	IA)
	δ_X (cm)	$\delta_{\rm Y}$ (cm)	V_X (kN) V_Y (l	kN)	
	min -4.19	-9.18	-2947.1 -484	48.2	
		10.1	3005.5 291.	2.7	
Στάθμη ΜΔ-ΑΧ	ΜΔ-ΠΖ	МΔ-ОК	ΑΔ-ΑΧ	ΑΔ-ΠΖ	ΑΔ-ΟΚ
4 19 (67.9%	(6) 4 (14.3%) 4 (50%)	0 (0%)	30 (53.6%)	5 (8.9%)	0 (0%)
2 19 (67.9%	(50%) 14 (50%) (17.9%)	5 (17.9%) 1 (3.6%)	$\begin{array}{c} 28 \\ 37 \\ 66.1\% \end{array}$	20 (55.7%) 5 (8.9%)	5 (8.9%) 1 (1.8%)
1 0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)
Στάθμη ΜΥ-ΑΧ ΜΥ-ΠΖ	Z МҮ-ОК МҮ-КДА	MΥ-ΔΑ	АҮ-АХ АҮ-ПZ	AY-OK AY-K	ΔΑ ΑΥ-ΔΑ
4 3 (13.6%) 1 (4.5%) 3 5 (22.7%) 0 (0%)	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $) 7 (31.8%)) 13 (59.1%)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	b) $\begin{vmatrix} 1 & (1.1\%) & 1 & (1.1\%) \\ 0 & (0\%) & 1 & (1.1\%) \end{vmatrix}$.1%) 9 (10.2%) 1%) 16 (18.2%)
2 1 (4.5%) 0 (0%) 1 0 (0%) 0 (0%)) 0 (0%) 0 (0%)) 0 (0%) 0 (0%)	4 (18.2%) 0 (0%)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 (0%) 0 (0 0 (0%) 0 (0	0%) 5 (5.7%) 0%) 0 (0%)
Μέλη δοκών (%)	Μέλη υπ/τα	ov (%)	Drifts κατά Χ (%	%) Drifts	s κατά Υ (%)
4	4	- 4	1.73	5 - 4 -	1.31
3	3	- 3	- 1.8	6 - 3 -	1.53
2	2	- 2	- 0.40	- 2- ().69
1	1	- 1	0.00	- 1 - 0.00	_
0 20 40 60 80 100	0 20 40 60	80 100	0 1 2	3 0	1 2 3
ΔΑ ΚΔΑ	🔲 ОК 📩 ПΖ	AX			

(b) 30-SGMB-DL (Επιταχυνσιογραφήματα Χ: 30N_T_ATHA, Υ: 30**D**_L_SGMB)

(b) 30-SGMB-DT (Επιταχυνσιογραφήματα Χ: 30**D**_T_ATHA, Y: 30N_L_SGMB)

⁽b) 31-DFNA-N (Επιταχυνσιογραφήματα Χ: 31N_T_DFNA, Υ: 31N_L_DFNA)

			$ \delta_X \text{ (cm)} $	δ_{Y} (cm)	V_X (kN)	$ V_Y (k$	N)	
		min	-10.36	-11.69	-2773.1	-267	8.7	
		max	8.69	4.95	2473.1	3310).7	
Στάθμη	MΔ-A2	K 1	МΔ-ΠΖ	ΜΔ-ΟΚ	A∆	A-AX	ΑΔ-ΠΖ	АΔ-ОК
4	17 (60.2	7%) 4	(14.3%)	$ \begin{array}{c} 0 & (0\%) \\ 4 & (14.7\%) \end{array} $	() 29 ((51.8%)	5 (8.9%)	0 (0%)
2	15 (40.4) 16 (57.1)	10) 11 11 1%) 10	(39.5%) (35.7%)	4 (14.5% 1 (3.6%)	o) 53 () 36 (58.9%) (64.3%)	$\begin{array}{ccc} 10 & (28.0\%) \\ 11 & (19.6\%) \end{array}$	$ \begin{array}{cccc} 4 & (7.1\%) \\ 1 & (1.8\%) \end{array} $
1	0 (09	6) 0	(0%)	0 (0%)	0	(0%)	0 (0%)	0 (0%)
Στάθμη	MY-AX M	<i>г</i> -ПΖ МΥ-	ок му-кда	ΜΥ-ΔΑ	AY-AX	AY-ПZ	АУ-ОК АҮ-КД	A AY-ΔA
4 3 3 0 2 2 1 0	$\begin{array}{c c}(13.6\%) & 0\\(0\%) & 0\\(9.1\%) & 0\\(0\%) & 0\end{array}$	$\begin{array}{c cccc} (0\%) & 0 & (0) \\ (0\%) & (0\%) & (0\%) \\ (0\%) & (0\%) & (0\%) & (0\%) \\ (0\%) & (0\%) & (0\%) & (0\%) \\ (0\%) & (0\%) & (0\%) & (0\%) \\ (0\%) & (0\%) & (0\%) & (0\%) & (0\%) \\ (0\%) & (0\%) & (0\%) & (0\%) & (0\%) \\ (0\%) & (0\%) & (0\%) & (0\%) & (0\%) \\ (0\%) & (0\%) & (0\%) & (0\%) & (0\%) & (0\%) \\ (0\%) & (0\%) & (0\%) & (0\%) & (0\%) & (0\%) & (0\%) \\ (0\%) & (0\%)$	0%) 0 (0%) 0%) 0 (0%) 0%) 0 (0%) 0%) 0 (0%) 0%) 0 (0%)	$\begin{vmatrix} 6 & (27.3\%) \\ 1 & (4.5\%) \\ 10 & (45.5\%) \\ 0 & (0\%) \end{vmatrix}$	$ \begin{vmatrix} 3 & (3.4\%) \\ 0 & (0\%) \\ 4 & (4.5\%) \\ 0 & (0\%) \end{vmatrix} $	0 (0%) 0 (0%) 0 (0%)	$\begin{array}{c cccc} 0 & (0\%) & 1 & (1.19) \\ 0 & (0\%) & 0 & (0\%) \\ 0 & (0\%) & 0 & (0\%) \\ 0 & (0\%) & 0 & (0\%) \end{array}$	$\begin{array}{c cccc} \% & 6 & (6.8\%) \\ 6 & 1 & (1.1\%) \\ 6 & 10 & (11.4\%) \\ 6 & 0 & (0\%) \end{array}$
Μέλη	οκών (%)	<u>(0,0) 0 (</u> N	^{σ,6)} σ (σ,6) Λέλη υπ/τω	v (%)	Drifts K	ατά Χ (%	$\frac{0}{0} \frac{0}{0} \frac{0}$	³⁾ 0 (0%) s κατά Υ (%)
4		4		- 4	_	1.63	- 4 -	1.26
3		3		- 3	_	1.33	- 3 -	1.66
2		2		- 2	- 0.51		- 2 -	1.04
1 –	-	1 -		- 1	0.00		- 1 - 0.00	
0 20 4	0 60 80 1	0 00	20 40 60	80 100	0 1	2	3 0	1 2 3
ΔΑ	ΚΔΑ	OK		AX				
	(a) 31-A7	HA-DL (I	Ξπιταχυνσια	γραφήματα	ι X: 31N_T	_ATHA, Y	Y: 31 D _L_ATHA	A)
			δ_X (cm)	$\delta_{\rm Y}$ (cm)	V_X (kN)	$ V_Y(k) $	N)	
		min max	-12.02 3.57	-11.14	-2780.1 3221.8	-263	7.5	
- / 0		. ,						
Στάθμη	MΔ-A2		MΔ-ΠΖ	MΔ-OK	ΑΔ	A-AX	ΑΔ-ΠΖ	ΑΔ-ΟΚ
Στάθμη 4 3	MΔ-A2	X 1 1%) 2 5%) 14	MΔ-ПΖ (7.1%) (50%)	MΔ-OK 1 (3.6%) 3 (10.7%)	A∆)) 24 (6) 27 (A-AX (42.9%) (48.2%)	ΑΔ-ΠΖ 3 (5.4%) 20 (35.7%)	AΔ-OK 1 (1.8%) 4 (7.1%)
Στάθμη 4 3 2	MΔ-A2 16 (57.1 11 (39.2 17 (60.2	X 1 1.%) 2 5%) 14 7%) 8	MΔ-ПZ ((7.1%) ((50%) (28.6%)	MΔ-OK 1 (3.6%) 3 (10.7%) 1 (3.6%)) 24 (6) 27 (1) 34 (A-AX (42.9%) (48.2%) (60.7%)	ΑΔ-ΠΖ 3 (5.4%) 20 (35.7%) 9 (16.1%)	AΔ-OK 1 (1.8%) 4 (7.1%) 1 (1.8%)
Στάθμη 4 3 2 1	ΜΔ-Αλ 16 (57.1) 11 (39.2) 17 (60.2) 0 (09.2)	X 1 1.%) 2 5%) 14 7%) 8 6) 0	MΔ-ΠΖ (7.1%) (50%) (28.6%) (0%)	MΔ-OK 1 (3.6% 3 (10.7% 1 (3.6% 0 (0%)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A-AX (42.9%) (48.2%) (60.7%) (0%)	AΔ-ΠΖ 3 (5.4%) 20 (35.7%) 9 (16.1%) 0 (0%)	AΔ-OK 1 (1.8%) 4 (7.1%) 1 (1.8%) 0 (0%)
Στάθμη 4 3 2 1 Στάθμη	MΔ-A2 16 (57. 11 (39. 17 (60. 0 (09) MY-AX M	X 1 1.%) 2 5%) 14 7%) 8 6) 0	MΔ-ПΖ (7.1%) (50%) (28.6%) (0%) ОК МҮ-КΔА	MΔ-OK 1 (3.6% 3 (10.7% 1 (3.6% 0 (0%) 	AA) 24 ((6) 27 () 34 (0 AY-AX	A-AX (42.9%) (48.2%) (60.7%) (0%) (0%)	А∆-ПZ 3 (5.4%) 20 (35.7%) 9 (16.1%) 0 (0%) АҮ-ОК АҮ-КА	$ \begin{array}{ c c c c c } $
Στάθμη 4 3 2 1 Στάθμη	MΔ-A2 16 (57] 11 (39] 17 (60] 0 (09] MY-AX M (13.6%) 0 (9.1%) 0 (0%) 0	X I 1.%) 2 5%) 14 7%) 8 6) 0 7-ΠΖ MY- (0%) 0 (0%) 0 (0%) 0	MΔ-ΠΖ (7.1%) (50%) (28.6%) (0%) OK MY-KΔA O%) 0 (0%) O%) 0 (0%) O%) 0 (0%)	MΔ-OK 1 (3.6% 3 (10.7% 1 (3.6% 0 (0%) MY-ΔA 6 (27.3%) 12 (54.5%) 9 (40.9%) 0 (0%)	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	A-AX 42.9%) 48.2%) 60.7%) (0%) AY-ΠΖ AY-ΠΖ 0 (0%) 0 (0%) 0 (0%) 0 (0%)	AΔ-ΠΖ 3 (5.4%) 20 (35.7%) 9 (16.1%) 0 (0%) AY-OK AY-KA 0 (0%) 1 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)	$\begin{array}{ $
Στάθμη 4 3 2 1 Στάθμη 2 4 3 3 2 2 1 0 Μέλη	ΜΔ-Αλ 16 (57.3) 11 (39.2) 17 (60.2) 0 (09) MY-AX M (13.6%) 0 (9.1%) 0 (0%) 0 δοκών (%) 0	X 2 1.%) 2 5%) 14 7%) 8 6) 0 7-ПІХ МҮ- (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0	MΔ-ΠΖ (7.1%) (50%) (28.6%) (0%) OK MY-ΚΔΑ O% 0 (0%) O%) 0 (0%) O%) 0 (0%) O%) 0 (0%) Mέλη υπ/τω	MΔ-OK 1 (3.6%) 3 (10.7%) 1 (3.6%) 0 (0%) MY-ΔA 6 (27.3%) 12 (54.5%) 9 (40.9%) 0 (0%) V (%)	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	A-AX 42.9%) 48.2%) 60.7%) (0%) AY-ПZ 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ $
Στάθμη 4 3 2 1 Στάθμη 4 3 2 1 Δ 4 3 2 1 Δ 4 3 2 1 0 Μέλη	MΔ-A2 16 (57.1 11 (39.2 17 (60.2 0 (09 MY-AX M (13.6%) 0 (9.1%) 0 (0%) 0 δοκών (%) 0	X 1 1.%) 2 5%) 14 7%) 8 6) 0 711Z MY- (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0	MΔ-ΠΖ (7.1%) (50%) (28.6%) (0%) OK MY-KΔA 0%) 0 (0%) 0%) 0 (0%) 0%) 0 (0%) 0%) 0 (0%) 0%) 0 (0%) 0%) 0 (0%)	MΔ-OK 1 (3.6% 3 (10.7% 1 (3.6% 0 (0%) MY-ΔA 6 (27.3%) 12 (54.5%) 9 (40.9%) 0 (0%) V (%) 4	AΔ) 24 ((6) 27 (()) 34 ((0) AY-AX 3 (3.4%) 4 (4.5%) 5 (5.7%) 0 (0%) Drifts Ka	A-AX 42.9%) 48.2%) 60.7%) (0%) AY-ΠΖ 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1.80	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ΑΔ-OK 1 (1.8%) 4 (7.1%) 1 (1.8%) 0 (0%) A AY-ΔA %) 7 (8%) 16 (18.2%) 11 (12.5%) 0 (0%) s κατά Y (%)
Στάθμη 4 3 2 1 Στάθμη 4 3 2 1 Μέλη 4 3	MΔ-A2 16 (57.1 11 (39.2 17 (60.2 0 (09 MY-AX M (13.6%) 0 (9.1%) 0 (0%) 0	X 1 1.%) 2 5%) 14 7%) 8 6) 0 7-TIZ MY- (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 0 4 3	MΔ-ΠΖ (7.1%) (50%) (28.6%) (0%) OK MY-ΚΔΑ 0%) 0 (0%) 0%) 0 (0%) 0%) 0 (0%) 0%) 0 (0%) 0%) 0 (0%) 0%) 0 (0%)	MΔ-OK 1 (3.6% 3 (10.7% 1 (3.6% 0 (0%) MY-ΔA 6 (27.3%) 12 (54.5%) 9 (40.9%) 0 (0%) V (%) 4 - 4 - 3	AA) 24 (27 () 34 (0 AY-AX 3 (3.4%) 4 (4.5%) 5 (5.7%) 0 (0%) Drifts Ko	A-AX 42.9%) 48.2%) 60.7%) (0%) AY-ΠZ 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1.80 1.90	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	AΔ-OK 1 (1.8%) 4 (7.1%) 1 (1.8%) 0 (0%) A AY-ΔA %) 7 (8%) 16 (18.2%) 011 (12.5%) 0 (0%) S κατά Y (%) 1.15 1.73 -
Στάθμη 4 3 2 1 Στάθμη 4 3 2 1 Φ 3 2 3 2 1	MΔ-A2 16 (57. 11 (39. 17 (60. 0 (09) MY-AX M (13.6%) 0 (13.6%) 0 (0%) 0 δοκών (%)	X 2 1.%) 2 5%) 14 7%) 8 6) 0 7-TIZ MY- (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 0 0 1 4 3 2	MΔ-ΠΖ (7.1%) (50%) (28.6%) (0%) ΟΚ MY-ΚΔΑ 0%) 0 (0%) 0%) 0 (0%) 0%) 0 (0%) 0%) 0 (0%) Δ(έλη υπ/τω	MΔ-OK 1 (3.6% 3 (10.7% 1 (3.6% 0 (0%) MY-ΔA 6 (27.3%) 12 (54.5%) 9 (40.9%) 0 (0%) v (%) 4 - 3 - 2	AA) 24 (27 ()) 27 () 34 (0 AY-AX 3 (3.4%) 4 (4.5%) 5 (5.7%) 0 (0%) Drifts Ka 	A-AX 42.9%) (48.2%) (60.7%) (0%) AY-ΠΖ 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1.80 1.90	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Στάθμη 4 3 2 1 Στάθμη 4 3 Μέλη 4 3 1	MΔ-A2 16 (57. 11 (39. 17 (60. 0 (09) MY-AX M (13.6%) 0 (13.6%) 0 (9.1%) 0 (0%) 0 δοκών (%)	X 2 1%) 2 5%) 14 7%) 8 6) 0 7-TIZ MY- (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 0 0 1 -	MΔ-ΠΖ (7.1%) (50%) (28.6%) (0%) OK MY-ΚΔΑ 0%) 0 (0%) 0%) 0 (0%) 0%) 0 (0%) 0%) 0 (0%) Mέλη υπ/τω	MΔ-OK 1 (3.6% 3 (10.7% 1 (3.6% 0 (0%) MY-ΔA 6 (27.3%) 12 (54.5%) 9 (40.9%) 0 (0%) V (%) V (%) - 4 - 3 - 2 - 1	AA) 24 () 27 () 34 (0 AY-AX 3 (3.4%) 4 (4.5%) 5 (5.7%) 0 (0%) Drifts Ku - 0 (049 - 0.00	A-AX 42.9%) (48.2%) (60.7%) (0%) AY-ΠΖ 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1.80 1.90	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	AΔ-OK 1 (1.8%) 4 (7.1%) 1 (1.8%) 0 (0%) A AY-ΔA %) 7 (8%) (0) 16 (18.2%) (11 (12.5%) (0%) S KATÁ Y (%) 1.15 - 1.73 0.98 -
Στάθμη 4 3 2 1 Στάθμη 4 3 2 1 Φέλη 4 3 2 1 0 2 1 0 20 1 0 20 1 0 20	MΔ-A2 16 (57. 11 (39.2 17 (60.2 0 (09) MY-AX M (13.6%) 0 (13.6%) 0 (9.1%) 0 (0%) 0 δοκών (%) Δοκών (%)	X 2 1%) 2 5%) 14 7%) 8 6) 0 7-ПZ МҮ- (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 0%) 0 1 - 00 0	MΔ-ΠΖ (7.1%) (50%) (28.6%) (0%) OK MY-ΚΔΑ 0%) 0 (0%) 0%) 0 (0%) 0%) 0 (0%) 0%) 0 (0%) Δέλη υπ/τω	MΔ-OK 1 (3.6%) 3 (10.7%) 1 (3.6%) 0 (0%) MY-ΔA 6 (27.3%) 12 (54.5%) 9 (40.9%) 0 (0%) V (%) V (%) 4 - 3 2 1 80 100	АΔ) 24 ((6) 27 (() 34 () 0 34 () 0 1 АҮ-АХ 3 (3.4%) 4 (4.5%) 5 (5.7%) 0 (0%) Drifts ки 0 0.49 0.00 0 1	A-AX (42.9%) (48.2%) (60.7%) (0%) AY-ΠΖ 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1.80 1.90 2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{vmatrix} A\Delta - OK \\ 1 & (1.8\%) \\ 4 & (7.1\%) \\ 1 & (1.8\%) \\ 0 & (0\%) \end{vmatrix} $ A AY- ΔA

(b) 31-DFNA-DL (Επιταχυνσιογραφήματα Χ: 31N_T_DFNA, Υ: 31**D**_L_DFNA)

			$\delta_{\rm v}$ (cm)	$\delta_{\rm v}$ (cm)	V _v	(kN)	V _v ((kN)	_				
		min	-16.47	-10.31	$\frac{ }{ }$ -26	91 5	$\frac{1}{2}$ -26	06.4					
		max	8.72	6.46	32	71	28	78					
			I	l			1		_				
Στάθμη	ΜΔ-ΑΧ		ΜΔ-ΠΖ	ΜΔ-ΟΙ		ΑΔ-Α	AX	4	4Δ-Π	Z	_	ΑΔ-ΟΚ	
4	12 (42.9%	b) 10	(35.7%)	1 (3.69	6) 2	l (37	7.5%)	14	(25	5%)	1	(1.80)	%)
5	7 (25%) 21 (75%)	$) 14 \rangle 7$	(50%) (25%)	0 (0%	b) 2) 4	5 (4) 5 (76	L.1%) 5.8%)	22	(39.	5%) 5%)	0	(16.1	%)
1	0 (0%)	0	(0%)	0 (0%			0%)	0	(12.	%)	0	(0%))
Στάθυρ		7 MV-		MV-00		V-AY	Δ٧-Π7		V-OK	AV-K		ΔV-Δ	A
4 3	(13.6%) 1 (4.5	5%) 0 (0% 1 (4.5%	$\frac{1}{2}$ $\frac{1}$) 4	(4.5%)	1 (1.19	%) 0	(0%)	1 (1.	1%)	4 (4.	.5%)
3 4 2 1	$\begin{array}{c ccccc} (18.2\%) & 0 & (0') \\ (4.5\%) & 0 & (0') \\ \end{array}$	%) 0 (%) 0 (0%) 0 (0%) 0%) 0 (0%)	13 (59.1 9 (40.9	%) 5 %) 1	(5.7%) (1.1%)	0 (0% 0 (0%	b) 0 b) 0	(0%) (0%)	0 (0)%))%)	15 (1 12 (13	7%) .6%)
1 0	(0%) 0 (0	%) 0 (0%) 0 (0%)	0 (0%) 0	(0%)	0 (0%) 0	(0%)	0 (0	0%)	0 (0)%)
Μέλη	δοκών (%)	N	/Ιέλη υπ/τω	ov (%)	Dr	ifts ко	ιτά Χ ('	%)	Г	Drift	S KO	τά Υ ('	%)
4	_	4			4 –			2.43	4 -			1.35	-
3		3		_	3 –			2.5	83-			1.52	_
2		2		_	2 -	0.57		-	2 -	(0.66)	-
1	-	1 –		_	1 - 0.	00	I	_	1 -	0.00)	I	_
0 20 4	40 60 80 100	0 0	20 40 60	80 100	0	1	2	3	Ő)	1	2	3
ΔΑ	ΚΔΑ	OK	🔲 ПΖ	AX									
	(a) 31-ATH	A-DT (E	Επιταχυνσια	ογραφήμα	ta X: 3	1 D_ T_	ATHA	, Y: 31	N_L	_ATH	A)		
			δ_X (cm)	$\delta_{\rm Y}$ (cm)	V_X	(kN)	V _Y ((kN)	_				
		min	-22.03	-7.62	-24	64.5		67.8					
		max	5.13	4.95	36	8.8	384	1.1					
Στάθμη	ΜΛΑΥ			MAOK	11		v	٨	- ΛΠ7	,			
Ζιάθμιι	11 (70.70)		(29.60)	MΔ-OK	 () 1'	ΑΔ-Α		17	Δ-11Z	4 20()		4Δ-UK	D()
4	10 (35.7%) 8	(28.6%) (28.6%) 1	0 (35.79)	6) 1 6) 2	6 (30 5 (41	.1%)	15	(25.2	2%) L%)	4 12	(7.1)	%) ⊧%)
2	23 (82.1%) 5	(17.9%)	0%)	4	5 (76	5.8%)	5	(8.9	%)	0	(0%	5)
1	0 (0%)	0	(0%)	0 (0%)	C	(0	0%)	0	(0%	6)	0	(0%	5)
Στάθμη	МҮ-АХ МҮ-П	Z MY-	•ОК МҮ-КДА	Α ΜΥ-ΔΑ	A)	-AX	AY-ΠZ	A	7-OK	AY-K	ΔΑ	AΥ-Δ	A
4 2	(9.1%) 0 (0%	6) 1 (4	4.5%) 0 (0%)) 8 (36.49	6) 2 (2.3%)	0 (0%)		(1.1%)	1 (1	.1%)	8 (9	.1%)
	(4.5%) 0 (0%)	6) 0 (0%) 0 (0%) 0%) 0 (0%)) 13 (39.14) (36.49)	6) 2 ((8%) 2.3%) (2 (2.3%) 0 (0%)	0	(0%) (0%)	0 ((2%) 2%)	8 (9.	.1%)
Μέλη	(0%) 0 (0%) δοκών (%)	<u>) 0 (</u> N	 Δέλη υπ/τω) 0 (0%)	ין די Di	ifts K	ο (0%) ητά Χ (<u> 0</u> %)	(0%)	Drif	ts κα	ητά Υ (^(%)
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				70	4				,0)
4 z		4			4		J.	11	4 7		J.90	þ	
		2			2	0 67	5	.44	ך ר		1.10	5	
		2				0.07			۷ – ۱	0.00	.02 \		
			20 40 40		1 <u>0</u> .	00			1 -	0.00	ر 		
			20 40 60	80 100	0	2	4	:	(J	2	4	Ł
	ΓΔΑ			АЛ									

(b) 31-DFNA-DT (Επιταχυνσιογραφήματα X: 31 \mathbf{D}_{T} DFNA, Y: 31N_L_DFNA)

(b) 31-FIX-N (Επιταχυνσιογραφήματα Χ: 31N_T_FIX, Υ: 31N_L_FIX)

			δ_X (cm)	$\delta_{\rm Y}$ (cm)	V_X (kN	() $ V_Y(k)$	N)		
		min	-7.22	-11.73	-3941	4 -313	5.9		
		max	10.12	9.13	2594.	5 2484	.2		
Στάθμη	MΔ-AX	1	ΜΔ-ΠΖ	ΜΔ-ΟΚ	. 4	AΔ-AX	AΔ-	ПΖ	ΑΔ-ΟΚ
4	18 (64.39	6) 3	(10.7%)	0 (0%) 30	(53.6%)	4 (7.1%)	0 (0%)
3	12 (42.9%	(6) 13 (6) (7)	(46.4%)	3 (10.79)	%) 26 (a) 45	(46.4%) (80.4%)	25 (4 7 (1	4.6%)	3 (5.4%)
1	0 (0%)		(0%)	0 (0%) 0	(0%)	0	(0%)	0 (0%)
Στάθμη Ι	MY-AX MY-	TZ MY	-ок мү-ка <i>н</i>	Α ΜΥ-ΔΑ	AY-AX	К АҮ-ПZ	AY-OK	AΥ-ΚΔ	A AY-ΔA
4 5	$(22.7\%) \mid 0 (0)$)%) 0)%) 0	$(0\%) \mid 0 (0\%)$) 3 (13.69) 5 (22.79)	6) 6 (6.8	%) 0 (0%)	0 (0%) 0 (09) 0 (09) 0 (09) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(6) 3 (3.4%) 5 (5.7%)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} (1.5\%) \\ (4.5\%) \\ (0\%) \\ \end{array} \begin{array}{c c} 0 \\ (4.5\%) \\ 0 \\ 0 \\ (6.5\%) \\ 0 \\ 0 \\ (6.5\%) \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$.5%) 0 0%) 0	$\begin{array}{c cccc} (0\%) & 0 & (0\%) \\ (0\%) & 0 & (0\%) \\ (0\%) & 0 & (0\%) \end{array}$) 10 (45.5%) 0 (0%)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} (0,0) \\ (0,0)$) 0 (0%) 0 (0%)) 0 (09) 0 (09	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Μέλη	δοκών (%)	Ν	Ιέλη υπ/τω	v (%)	Drifts	κατά <i>Χ</i> (%)	Drifts	κατά Υ (%)
4		4		- 4		1.33	- 4 -		1.50
3		3		_ 3	; -	1.31	- 3 -		1.79
2		2		- 2	2 -	0.95	- 2 -	0.	65
1 –	_	1 –		_]	- 0.00		- 1 -	0.00	
0 20 4	0 60 80 100) 0	20 40 60	80 100	0 1	2	3	0 1	2 3
ΔΑ	ΚΔΑ	OK		AX					
	(a) 31-DN	IK-DL (I	Επιταχυνσι	ογραφήματ	a X: 31N	_T_DMK, Y	: 31 D_ L	_DMK)	
			δ_X (cm)	$\delta_{\rm Y}$ (cm)	V_X (kN	$I) V_Y(k)$	N)		
		min	-2.54	-7.51	-4138	5 -413	5.7		
_		IIIdX	12.57	8.08	2155.0	3 5151	.0		
Στάθμη	MΔ-AX	1	МΔ-ПΖ	ΜΔ-ΟΚ	. <i>I</i>	AΔ-AX	AΔ-	ПΖ	ΑΔ-ΟΚ
4	11 (39.39	6) 7	(25%)	1 (3.6%	6) 22	(39.3%)	7 (1	2.5%)	1 (1.8%)
3	12 (42.99	$(b) 13 \\ (b) 5 \\ (c) 5 \\ (c)$	(46.4%)	3 (10.7° 0 (0%	%) 34) 44	(60.7%) (78.6%)	15 (2 5 ()	26.8%) 8.9%)	3 (5.4%) 0 (0%)
1	0 (0%)	0	(0%)	0 (0%) 0	(0%)	0	(0%)	0 (0%)
Στάθυη Ν	MY-AX MY-I	IZ MY-	οκ Μγ-κλά	ΜΥ-ΔΑ	∥ AY-AX	AY-IIZ	AY-OK	AΥ-ΚΔ	Α ΑΥ-ΔΑ
	(13.6%) 1 (4.	5%) 0 (0%) 1 (4.5%) 7 (31.89	b) 8 (9.19	(6) 1 (1.1%)	0 (0%)	1 (1.19	%) 7 (8%)
3 5 2 1 1 0	$\begin{array}{c cccc} (22.7\%) & 1 & (4. \\ (4.5\%) & 0 & (0 \\ (0\%) & 0 & (0 \end{array}$	5%) 0 (%) 0 (%) 0 (0%) 0 (0%) 0%) 0 (0%) 0%) 0 (0%)	15 (68.2% 5 (22.7% 0 (0%)	$\begin{array}{c} 5 \\ 5 \\ 6 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{c cccc} \% & 1 & (1.1\%) \\ \% & 0 & (0\%) \\ 0 & 0 & (0\%) \\ \end{array}$	$ \begin{array}{c cccc} 0 & (0\%) \\ 0 & (0\%) \\ 0 & (0\%) \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccc} \% & 18 & (20.5\%) \\ 0 & 8 & (9.1\%) \\ 0 & 0 & (0\%) \end{array}$
Μέλη	δοκών (%)	N	Ιέλη υπ/τω	v (%)	Drifts	κατά Χ (%)	Drifts	κατά Υ (%)
4		4		- 4		1.90) - 4 -	_	1.24
3		3		3	;	2.	26 3-		1.24
2		2		- 2	2 - 0.5	51	- 2 -	0	.68
1	_	1]	- 0.00	L	_ 1 -	0.00	
0 20 4	0 60 80 100) 0	20 40 60	80 100	0 1	2	3	0 1	2 3
ΔΑ	🔲 ΚΔΑ 🗖	o K	ΠΖ	AX					

(b) 31-FIX-DL (Επιταχυνσιογραφήματα X: 31N_T_FIX, Y: 31 \textbf{D}_L _FIX)

			δ_X (cm)	$\delta_{\rm Y}$ (cm)	V_X (kN	$\mathbf{V} \mid \mathbf{V}_{\mathbf{Y}}$ (k	N)		
		min	-9.17	-9.86	-3776	.2 -276	1.1		
		max	12.07	7.03	2908.	1 1908	3.3		
Στάθμη	ΜΔ-ΑΧ	1	ΜΔ-ΠΖ	ΜΔ-ΟΚ	; <i>1</i>	ΑΔ-ΑΧ	ΑΔ-	ПΖ	АΔ-ОК
4	17 (60.7%	6) 4	(14.3%)	0 (0%) 28	(50%)	5 (3.9%)	0 (0%)
3	10 (35.7%	$(b) 14 \\ (b) 8 $	(50%) (28.6%)	4 (14.3)	%) 32 6) 43	(57.1%) (76.8%)	19 (3 9 (1	3.9%) 6.1%)	4 (7.1%) 1 (1.8%)
1	0 (0%)	0	(0%)	0 (0%) 0	(0%)	0	(0%)	0 (0%)
Στάθμη	MY-AX MY-I	TZ MY	-ок му-кал	Α ΜΥ-ΔΑ	AY-AX	К АҮ-ПZ	AY-OK	ΑΥ-ΚΔΑ	AΥ-ΔΑ
4 5	(22.7%) 1 (4. (4.5\%) 0 (0	5%) 0 %) 0	(0%) 0 (0%)) 2 (9.1%) 7 (31.8%)	b) 5 (5.7 (6) 1 (1.1	% 1 (1.1%)	b) 0 (0%) 0 (0%) 0 (0%)	2 (2.3%) 9 (10.2%)
2 0 1 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5%) 0)%) 0	(0%) 0 (0%) (0%) 0 (0%)	$ \begin{array}{c c} & (0100) \\ 15 & (08.29) \\ 0 & (0\%) \\ \end{array} $	$\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \begin{pmatrix} 2 \\ 0 $	%) 2 (2.3% %) 0 (0%)	b) 0 (0% 0 (0%) 0 (0%)) 0 (0%)	$ \begin{array}{c} 19 & (21.6\%) \\ 0 & (0\%) \end{array} $
Μέλη	δοκών (%)	N	Ιέλη υπ/τω	v (%)	Drifts	κατά X (%)	Drifts 1	κατά Υ (%)
4		4			£ -	1.67	- 4 -	-	1.22
3		3		_ 3	5 –	1.56	- 3 -	-	1.53
2		2		- 2	2 –	1.26	- 2 -	0.5	1 –
1 –	_	1 –		- 1	- 0.00		- 1 -	0.00	
0 20 4	0 60 80 100	0 (20 40 60	80 100	0 1	2	3	0 1	2 3
ΔΑ	ΚΔΑ	OK		AX					
	(a) 31-DN	IK-DT (I	Επιταχυνσι	ογραφήματ	a X: 31 D	_T_DMK, \	<u>31N_L</u>	_DMK)	
			δ_X (cm)	$\delta_{\rm Y}$ (cm)	V_X (kN	V_Y (k	(N)		
		min	-6.61 17.04	-6.1 8.6	-4305	$.7 \mid -412$	0.1		
		Шах	17.94	0.0	2072.0				
Στάθμη	MΔ-AX	1	ΜΔ-ΠΖ	ΜΔ-ΟΚ		AΔ-AX	ΑΔ-	ПΖ	ΑΔ-ΟΚ
4	11 (39.3%	() 7	(25%)	1 (3.6%	6) 20	(35.7%)	8 (1	4.3%)	1 (1.8%)
2	15 (40.4%)	6) 11 6) 12	(39.5%) (42.9%)	4 (14.5° 4 (14.3°	%) 52 %) 33	(57.1%) (58.9%)	15 (2 16 (2	8.6%)	5 (8.9%) 4 (7.1%)
1	0 (0%)	0	(0%)	0 (0%) 0	(0%)	0	(0%)	0 (0%)
Στάθμη Μ	IY-AX МҮ-ПZ	MY-C) К МҮ-КДА	MY-ΔA	AY-AX	АY-ПZ	AY-OK	ΑΥ-ΚΔΑ	ΑΥ-ΔΑ
	(4.5%) 1 (4.5%	b) 0 (0)	%) 1 (4.5%)	$) \mid 5 (22.7\%) \mid 2 (0.1\%) $	$) \ 2 (2.3\%) \ 2 (2.$	b) $\begin{vmatrix} 1 & (1.1\%) \\ 0 & (0\%) \end{vmatrix}$		1 (1.1%) 0 (0%)) 7 (8%) 3 (3.4%)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} (9.1\%) & 0 & (0\%) \\ (9.1\%) & 0 & (0\%) \\ (0\%) & 0 & (0\%) \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5%) 2 (9.1%) %) 0 (0%)	$ \begin{vmatrix} 2 & (9.176) \\ 15 & (68.2\%) \\ 0 & (0\%) \end{vmatrix} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} 0 & (070) \\ 1 & (1.1\%) \\ 0 & (0\%) \end{array} $	3 (3.4%) 0 (0%)	$\begin{array}{c c} 3 & (3.470) \\ 19 & (21.6\%) \\ 0 & (0\%) \end{array}$
Μέλη	δοκών (%)	N	Ιέλη υπ/τω	v (%)	Drifts	κατά Χ (%))	Drifts 1	κατά Υ (%)
4		4			£ -	2.0	3-4-	-	1.02
3		3		_ 3	5 –	2.	23 3 -		1.30 -
2		2		- 2	2 –	1.94	4 - 2 -	0,	.84 –
1	_	1 –]	0.00	I	- 1 -	0.00	
0 20 4	0 60 80 100) 0	20 40 60	80 100	0 1	2	3	0 1	2 3
ΔA	— KΔA —	ok 📃	ПΖ 🛛	AX					

(b) 31-FIX-DT (Επιταχυνσιογραφήματα Χ: 31**D**_T_FIX, Υ: 31N_L_FIX)

			δ_X (cm)	$\delta_{\rm Y}$ (cm)	V_X (k	$(N) \mid V_Y$	/ (kN)	-	
		min	-3.11	-9.15		2.4 -2	593.9		
		max	10.45	4.01	2923	3.2 45	557.7	_	
Στάθμη	MΔ-AX	1	ΜΔ-ΠΖ	MΔ-OF	x	ΑΔ-ΑΧ		ΑΔ-ΠΖ	АΔ-ОК
4	13 (46.4	%) 10	(35.7%)	1 (3.60	6) 25	5 (44.6%	6) 10	(17.9%)	1 (1.8%)
3	13 (46.4	%) 12	(42.9%)	3 (10.7	%) 34	1 (60.7%	6) 13	(23.2%)	3 (5.4%)
1	0 (0%	%) <u>2</u>) 0	(7.1%) (0%)	0 (0%	0 4	0%) (80.49 (0%)	0) 2	(0%)	0 (0%)
					/				
	$(18.2\%) \mid 0$ (0	$\frac{112}{100} + \frac{1012}{100} + 101$	0% MY-K ΔA	$ MY-\Delta A$	6) 8 (9	AX AY - I 0.1%) 0 (C)	$\frac{12}{100} + \frac{12}{100} + 1$	$0K AY-K\Delta P$ 0%) 1 (1.19)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
3 0	(0%) 0 ((0.1%) 0 ((0.1%)))%) 0 (0	(9.1%) 2 (9.1%)) 10 (45.59	(6) 1 (1)	.1%) 0 (0	9%) 0 ($ \begin{array}{c} (0\%) \\ (2.3\%) \\ (0\%) \\$	(12.5%) 11 (12.5%)
$\begin{vmatrix} 2\\1 \end{vmatrix} \begin{vmatrix} 2\\0 \end{vmatrix}$	(9.1%) 0 (0) 0 (0)	0%) 0 (0 0%) 0 (0	9%) 0 (0%) 9%) 0 (0%)	0 (0%)		0%) 0 (0 0%) 0 (0	1%) 0 (1%) 0 (0%) 0 (0%) 0%) 0 (0%)) 0 (0%)
Μέλη	δοκών (%)	Ν	Ιέλη υπ/τω	v (%)	Drif	ts κατά Χ	(%)	Drifts	κατά Υ (%)
4		4		- 4	1 -	1	.91 -	4 -	1.47
3		3			3 -	1.44	Ł –	3 -	1.39 -
2		2		- :	2 –	0.63	_	2 - 0.	58
1 -	_	1 -			1 - 0.00)	_	1 - 0.00	_
0 20 4	0 60 80 10	0 0	20 40 60	80 100	0	1 2	3	0 1	2 3
ΔΑ	ΚΔΑ	OK	ПΖ	AX					
	(a) 31-SGI	A-N (E	πιταχυνσιο	γραφήματα	ι X: 31N	_T_SGM	A, Y: 31	N_L_SGMA	A)
			δ_X (cm)	$\delta_{\rm Y}$ (cm)	V_X (1	$(N) \mid V_Y$	(kN)		
		min				75 _4	1506		
		max	11.95	12.91	394	5.8 23	91.6		
Στάθιμα					-				
Στάθμη			VIΔ-11Z	MA-Or				AΔ-11Z	ΑΔ-ΟΚ
4	15 (53.6) 4 (14.3)	%) 8 %) 10	(28.6%) (67.9%)	1 (3.6% 5 (17.9	%) 28 %) 24	3 (50%) 1 <i>(1</i> 7.0%)) 8 6) 26	(14.3%)	1 (1.8%) 5 (8.9%)
2	16 (57.1	%) 8	(07.970) (28.6%)	0 (0%) 34	1 (60.79	6) <u>2</u> 0	(40.4%) (14.3%)	0 (0%)
1	0 (0%) 0	(0%)	0 (0%) 0	(0%)	0	(0%)	0 (0%)
Στάθμη Μ	1Y-AX МҮ-П	Z MY-0	ΟΚ ΜΥ-ΚΔΑ	ΜΥ-ΔΑ	AY-A	X AY-I	1Z A)	Y-OK AY-KA	ΔA ΑΥ-ΔΑ
	(4.5%) 1 (4.5)	%) 1 (4.	5%) 1 (4.5%)	11 (50%)	7 (8%) 2 (2	3%) 1	(1.1%) 2 (2.3	5%) 12 (13.6%)
2 2 1 0	(18.2%) 1 (4.5 (9.1%) 0 (0) (0%) 0 (0)	%) 0 (0 %) 0 (0 %) 0 (0	%) 0 (0%) %) 1 (4.5%) %) 0 (0%)	16 (72.7%) 8 (36.4%)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(1.5%) 1 (1. (.5%) 0 (0. (.5%) 0 (0.	.1%) 0)%) 0	(0%) 1 (1.1 (0\%) 1 (1.1 (0\%) 0 (0%)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Μέλη	<u>δοκών</u> (%)	<u>, 10 (c</u>	<u>////////////////////////////////////</u>	v (%)	Drif	ts κατά Χ	(%)	Drifts	κατά Υ (%)
4		4			1 -	1	86 -	4 -	1 79
		- -			-	1	.00	•	1.77
3		3			3 –		2.02	3 –	1.93 -
3		3 2			3 - 2 0	.38	2.02-	3 - 2 - (1.93 - 0.85 -
3 2 1	-	3 2 1 -			3 - 2 - 0 0 1 - 0 0(.38)	2.02-	3 - 2 - (1 - 0 00	1.93 - 0.85 -
3 2 1 0 20 4		3 2 1 - 0 0	20 40 60		3 - 2 - 0 1 - 0.00	.38) 1 2	2.02	3 - 2 - 0 = 0 1 - 0.00 0 = 1	1.93 0.85

(b) 31-SGMB-N (Epitaxuvsiograghmata X: 31N_T_ATHA, Y: 31N_L_SGMB)

			δ_X (cm)	$\delta_{\rm Y}$ (cm)	V_X (kN)	$ V_{Y}(k) $	N)		
		min	-3.09	-9.87	-4391.8	-3244	4.3		
		max	10.45	5.19	2791.4	4439	.9		
Στάθμη	ΜΔ-ΑΧ	1	ΜΔ-ΠΖ	ΜΔ-ΟΚ	ς ΑΔ	∆-AX	AΔ-l	TZ	ΑΔ-ΟΚ
4	14 (50%)) 4 14	(14.3%)	1 (3.6%	6) 24 ((26) 33 ((42.9%)	4 (7	7.1%) 8.6%)	1 (1.8%) 3 (5.4%)
2	20 (71.4%	b) 14 b) 8	(28.6%)	0 (0%) 39 ((58.9%)	10 (2) 10 (1)	7.9%)	0 (0%)
1	0 (0%)	0	(0%)	0 (0%) 0	(0%)	0 (0%)	0 (0%)
Στάθμη 📗 Ν	мү-ах мү-г	IZ MY-0	ок му-каа	Δ ΜΥ-ΔΑ	AY-AX	AY-NZ	AY-OK	ΑΥ-ΚΔΑ	ΑΥ-ΔΑ
4 4 3 0 2 3	$\begin{array}{c cccc} (18.2\%) & 0 & (0 \\ (0\%) & 0 & (0 \\ (13.6\%) & 0 & (0 \\ (0\%) & 0 & 0 \end{array}$	%) 0 (0 %) 0 (0 %) 0 (0	$\begin{array}{c cccc} 0\% & 0 & (0\%) \\ 0\% & 1 & (4.5\%) \\ 0\% & 0 & (0\%) \\ 0\% & 0\% \\ 0\% & 0$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccc} b) & 4 & (4.5\%) \\ b) & 0 & (0\%) \\ b) & 5 & (5.7\%) \\ b) & 0 & (0\%) \end{array}$	0 (0%) 0 (0%) 0 (0%)	0 (0%) 0 (0%) 0 (0%)	0 (0%) 1 (1.1% 0 (0%)	$) \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Μέλη δ	(0%) 0 (0 δοκών (%)	^{%)} 0 ((N	^{7%)} 0 (0%) Ιέλη υπ/τω	v (%)	Πο (0%) Drifts κ	ατά Χ (%)	0 (0%))	Drifts	<u>μο (0%) μ</u> κατά Υ (%)
4		4			1 -	1.85	, - 4 -	Dinto	1.17
3		3		_ 3	3 -	1.47	- 3 -		1.43
2		2		- 2	2 - 0.6	4	- 2 -	().90
1 -	_	1 –]	l – 0.00		- 1 -	0.00	
0 20 4	0 60 80 100	0 (20 40 60	80 100	0 1	2	3 () 1	2 3
ΔΑ	ΚΔΑ	OK		AX					
	(a) 31-SGM	A-DL (E	πιταχυνσια	ογραφήματο	a X: 31N_T	_SGMA, Y	7: 31 D _L	_SGMA	A)
		 •	δ_X (cm)	δ _Y (cm)	V_X (kN)		N)		
		min max	-4.46 12.28	-5.89 12.55	-3184.3 3918.7	-4935	5.5		
							!		
Στάθμη	MΔ-AX					A-AX	ΑΔ-I		ΑΔ-ΟΚ
4 3	12 (42.9% 10 (35.7%	o) / b) 15	(25%) (53.6%)	0 (0%) 3 (10.7)) 22 (%) 31 ((59.5%) (55.4%)	7 (1. 19 (3)	2.5%) 3.9%)	0 (0%) 3 (5.4%)
2	9 (32.1%	6) 13	(46.4%)	4 (14.3	%) 21 ((37.5%)	22 (3	9.3%)	4 (7.1%)
	0 (0%)	0	(0%)	0 (0%) 0	(0%)	0 (0%)	0 (0%)
Στάθμη Μ	IY-AX МҮ-П2	Z MY-	OK MY-ΚΔ4	A MΥ-ΔΑ	AY-AX	AY-ПZ	AY-OK	AΥ-ΚΔ	Α ΑΥ-ΔΑ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} (15.0\%) & 1 & (4.5) \\ (31.8\%) & 0 & (0\%) \\ (9.1\%) & 2 & (9.1) \\ (0\%) & 0 & (0\%) \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c cccc} 0 & 0 & (27.37) \\ 12 & (54.59) \\ 16 & (72.79) \\ 0 & (0\%) \end{array} $	$\begin{array}{c ccccc} 0 & 5 & (5.7\%) \\ 6 & 8 & (9.1\%) \\ 6 & 4 & (4.5\%) \\ 0 & (0\%) \end{array}$	$ \begin{array}{cccc} 1 & (1.1\%) \\ 0 & (0\%) \\ 2 & (2.3\%) \\ 0 & (0\%) \end{array} $	$\begin{array}{ccc} 1 & (1.1\%) \\ 0 & (0\%) \\ 0 & (0\%) \\ 0 & (0\%) \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(6) (6.8%) (6) (14) (15.9%) (15.9%) (6) (22) (25%) (25%) (0) (0%)
Μέλη δ	δοκών (%)	Ν	Ιέλη υπ/τω	w (%)	Drifts ĸ	ατά Χ (%))	Drifts	κατά Υ (%)
4		4		- 4	1 -	1.89	- 4 -		1.16
3		3		_ 3	3 -	2.0	8- 3-		1.71 -
2		2			2 - 0.40		- 2 -	0.00	1.69
			20 40 60	80,100		2		0.00) z
ΔA	ΚΔΑ	OK	<u></u> ΠΖ	AX	0 1	2		, 1	2 J

(b) 31-SGMB-DL (Epitaxuvoiographiata X: 31N_T_ATHA, Y: 31 \textbf{D}_L_SGMB)

			$\delta_{\rm v}$ (cm)	δ _w (cn	$\mathbf{n} \mid V_{u} \mid V_{v}$	N) V	(kN)			
						$\frac{1}{0}$				
		min	-10.05	-9.1	1 -432	8.2 -20	001.6			
		max	9.42	5.82	2945	0.5 40.	25.5			
Στάθμη	MΔ-AX	1	ΜΔ-ΠΖ	MΔ-	OK	ΑΔ-ΑΧ		ΑΔ-ΠΖ	ΑΔ-Ο	K
4	16 (57.10	%) 5	(17.9%)	1 (3	.6%) 29) (51.8%) 5	(8.9%)	1 (1.8	3%)
3	12 (42.90	%) 13	(46.4%)	3 (10	0.7%) 33	6 (58.9%) 16	(28.6%)	4 (7.1	L%)
2	25 (89.39	%) 3	(10.7%)		0%) 47	(83.9%) 3	(5.4%)		%)
	0 (0%)) 0	(0%)	0 (0%) 0	(0%)	0	(0%)	0 (0	%)
Στάθμη Μ	MY-AX MY-	TZ MY-	ОК МҮ-КΔ	A MY-	ΔA AY-	АХ АҮ-П	Z AY-	ок ау-к	ΔA AY-4	۱A
4 3	(13.6%) 1 (4)	5%) 0 (0% 0 (0%	b) $10 (4)$	5.5% 8 (9	(1%) 1 (1.1)	%) 0 ((0%) 1 (1)	1% 11 (12)	2.5%)
2 2	(9.1%) 0 (0)%) 0 (0%) 0 (0%	(0) = 0 = (2)	3.6% 2 (2	.3%) 0 (09	%) 0 (0%) 0 (0	1(0) $1(0)$ $1(0$.5%)
1 0	(0%) 0 (0	0%) 0 (0%) 0 (0%	o) 0 ((0%) 0 (0	0%) 0 (09	%) 0 (0%) 0 (0	0%) 0 (0%)
Μέλη	δοκών (%)	N	Λέλη υπ/τα	υv (%)	Drif	ts κατά Χ ((%)	Drif	ες κατά Υ ((%)
4	_	4		_	4 –	1.6	8 -	4 -	1.45	-
3		3		_	3 -	1.34	_	3 -	1.39	-
2		2		_	2 -	0.60	_	2 - ().58	-
1 -	_	1 –		_	1 - 0.00)	_	1 - 0.00)	_
0 20 4	0 60 80 10	0 0	20 40 60	80 100	0	1 2	3	0	1 2]
	ΚΛΑ									
				,					F A \	
	(a) 31-SGM		πιταχυνσι	ογραφημ		D_T_SGMA	A, Y: 31.	N_L_SGN	/IA)	
			δ_X (cm)	$\delta_{\rm Y}$ (cn	n) V_X (k	$(N) \mid V_Y$	(kN)			
		min	-6.02	-5.2	3 -357	7.1 -44	136.3			
		max	20.65	12.70	5 2950	6.1 240	05.6			
Στάθιμα	νιαν	N		MAG						-
						ΑΔ-ΑΛ		<u>3-112</u>		
4 z	12 (42.9%	$) \mid 7$	(25%)	5 (17)	.9%) 23	(41.1%)	10	(17.9%)	5 (8.9 17 (30)	%) 1%)
2	21 (75%)	12	(42.9%)	0 ())%) 47	(83.9%)	7	(12.5%)	0 (00	± 70) %)
1	0 (0%)	0	(0%)	0 (0)%) 0	(00/-)	0	(0%)	0 (09	%)
			· /	· · ·		(0%)	0	()	U (U)	
						(0%)				
Στάθμη Μ	ИҮ-АХ МҮ-П (4.5%) 1. (4.5	Z MY-0	DK MY-ΚΔΑ	A MΥ-Δ	A AY-A	(U%) X АҮ-П:	Z AY	-OK AY-1	CΔA AY-	∆A 1.4%)
Στάθμη Μ 4 1 3 1 2 7	ЛҮ-АХ МҮ-П (4.5%) 1 (4.5 (4.5%) 2 (9.1 (17.6%) 0 (00)	Z MY-0 %) 1 (4. %) 0 (0	DK MY-KΔA 5%) 1 (4.5%) %) 1 (4.5%) %) 1 (4.5%)	A MY-Δ b) 9 (40 b) 18 (81	A AY-A .9%) 8 (9 .8%) 11 (12	(U%0) X AY-III .1%) 1 (1.1 2.5%) 2 (2.3 5%) 0 (0%)	Z AY %) 1 (%) 0	-OK AY-1 1.1%) 2 (2 (0%) 1 (2)	 ζΔΑ ΑΥ 2.3%) 10 (1 1.1%) 25 (2 10 (1) 	ΔA 1.4%) 8.4%)
Στάθμη Μ 4 1 3 1 2 3 1 0	MY-AX MY-II (4.5%) 1 (4.5 (4.5%) 2 (9.1 (13.6%) 0 (0%) (0%) 0 (0%)	Z MY-0 %) 1 (4. %) 0 (0 6) 0 (0 6) 0 (0	DK MY-KA4 5%) 1 (4.5%) 9%) 1 (4.5%) 9%) 1 (4.5%) 9%) 0 (0%)	Λ MY-Δ b) 9 (40 b) 18 (81 b) 8 (36 b) 0 (0	A AY-A .9%) 8 (9 .8%) 11 (12 .4%) 4 (4 %) 0 (%)	(0%) X AY-II: 1%) 1 (1.1 2.5%) 2 (2.3 5%) 0 (0%) 0%) 0 (0%)	Z AY %) 1 (%) 0 %) 0 %) 0	-OK AY-1 1.1%) 2 (2 (0%) 1 (2 (0%) 1 (2 (0%) 0	ζΔΑ ΑΥ 2.3%) 10 (1 1.1%) 25 (2 1%) 10 (1 0%) 0 0	ΔA 1.4%) 8.4%) 1.4%) 0%)
Στάθμη Μ 4 1 3 1 2 3 1 0 Mέλη	МҮ-АХ МҮ-П (4.5%) 1 (4.5 (4.5%) 2 (9.1 (13.6%) 0 (0%) (0%) 0 (0%) δοκών (%)	Z MY-0 %) 1 (4. %) 0 (0 6) 0 (0 6) 0 (0 7 8) 0 (0 8) 0 (0 9) 0 (0 9) 0 (0 8) 0 (0	DK MY-KΔ4 5%) 1 (4.59) 9%) 1 (4.59) 9%) 1 (4.59) 9%) 0 (0%) 9%) 0 (0%) Μέλη υπ/τα Μ		A AY-A .9%) 8 (9 .8%) 11 (12 .4%) 4 (4 %) 0 (6 Drif	(0%) X АҮ-П: 1%) 1 (1.1 2.5%) 2 (2.3 5.5%) 0 (09 0%) 0 (09 0%) 0 (09 ts ката́ Х	Z AY %) 1 (%) 0 %) 0 %) 0 (%)	-OK AY-1 1.1%) 2 (2 (0%) 1 (1 (0%) 1 (1 (0%) 0 Drif	ΚΔΑ ΑΥ- 2.3%) 10 (1 11%) 25 (2 11%) 10 (1 0%) 0 0 tts κατά Y Y	ΔA 1.4%) 8.4%) 1.4%) (0%) (%)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ΛΥ-ΑΧ ΜΥ-Π (4.5%) 1 (4.5 (4.5%) 2 (9.1 (13.6%) 0 (09 (0%) 0 (09 δοκών (%)	$ \begin{array}{c c c} Z & MY-0 \\ \%) & 1 & (4. \\ \%) & 0 & (C \\ \phi) & 0 & (C \\ \phi) & 0 & (C \\ \phi) & 0 & (C \\ \hline N \\ 4 \end{array} $	DK MY-KΔ4 5%) 1 (4.59) 9%) 1 (4.59) 9%) 1 (4.59) 9%) 0 (0%) Μέλη υπ/τα	Λ MY-Δ b) 9 (40 b) 18 (81 b) 8 (36 b) 0 (C	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(0%) X AY-Π: 1%) 1 (1.1 2.5%) 2 (2.3 5%) 0 (0%) 0 (0%) 15 κατά Χ 3.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-OK AY-1 1.1%) 2 (2 (0%) 1 (1 (0%) 1 (2 (0%) 0 (1) Drif 4 -	ΚΔΑ ΑΥ 2.3%) 10 (1) 1%) 25 (2) 1%) 10 (1) 0%) 0 0 ts κατά Υ 1.77	ΔA 1.4%) 8.4%) 1.4%) (0%) (%)
Στάθμη Μ 4 1 2 3 1 0 Mέλη	ΛΥ-ΑΧ ΜΥ-Π (4.5%) 1 (4.5 (4.5%) 2 (9.1 (13.6%) 0 (0%) (0%) 0 (0%) δοκών (%)	$ \begin{bmatrix} Z & & MY-0 \\ MY-0 & 1 & (4. \\ MY-0 & (0. \\ $	DK MY-KΔ4 5%) 1 (4.59) 1%) 1 (4.59) 1%) 1 (4.59) 1%) 1 (4.59) 1%) 0 (0%) Mέλη υπ/τα	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(0%) X AY-II: 1%) 1 (1.1 2.5%) 2 (2.3 .5%) 0 (0%) 0 (0%) 15 κατά X 3. 3	$ \begin{array}{c c c} \hline z & AY \\ \%) & 1 & (\\ \%) & 0 \\ \%) & 0 \\ \%) & 0 \\ \%) & 0 \\ \%) & 0 \\ \%) & 12 \\ .30 \\ \hline $	-OK AY-I 1.1%) 2 (2 (0%) 1 (2 (0%) 1 (2 (0%) 1 (2 (0%) 0 0 Driff 4 - 3 -	κΔA AY κΔA IO 10.1% 25 10% IO 0% 0 ts κατά Y 1.77 1.92	ΔA 1.4%) 8.4%) 1.4%) (0%) (%)
Στάθμη Μ 4 1 3 1 2 3 1 0 Mέλη	ΛΥ-ΑΧ ΜΥ-Π (4.5%) 1 (4.5 (4.5%) 2 (9.1 (13.6%) 0 (09 (0%) 0 (09 δοκών (%)	$ \begin{array}{c c c} Z & MY-C \\ \hline \% & 1 & (4. \\ \% & 0 & (C \\ 6) & 0 & (C \\ 6) & 0 & (C \\ 6) & 0 & (C \\ \end{array} $	DK MY-KΔ4 5%) 1 (4.59) 1%) 1 (4.59) 1%) 0 (0%) 0%) 0 (0%)	Λ MY-Δ (a) 9 (40 (b) 18 (81 (b) 8 (36 (c) 0 (C	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(0%) X AY-III 1%) 1 (1.1 2.5%) 2 (2.3 5.5%) 0 (09 0%) 0 (09 15 κατά X 3. 53	Z AY %) 1 (%) %) 0 (%) %) 0 (%) (%) 0 (%) (%) 0 (%) (%) 0 (%) (%) 0 (%) (%) 0 (%) (%) 0 (%)	-OK AY-1 1.1%) 2 (2) (0%) 2 (2) (0%) 1 (2) (0%) 0 (2) Drif 4 - 3 - 2 - ((ΔA AY 2.3%) 10 (1 1%) 25 (2 1%) 10 (1 0%) 0 0 ts κατά Y 1.77 1.92 0.84	ΔA 1.4%) 8.4%) 1.4%) (0%) (%)
Στάθμη M 4 1 2 3 1 0 Mέλη	ΛΥ-ΑΧ ΜΥ-Π (4.5%) 1 (4.5 (4.5%) 2 (9.1 (13.6%) 0 (09 (0%) 0 (09 δοκών (%)	$ \begin{array}{c c c} Z & & MY-C \\ \hline 960 & & 1 & (4. \\ 960 & 0 & (C \\ 60 & 0 & (C \\ 60 & 0 & (C \\ 60 & 0 & (C \\ 1 &$	DK MY-KΔ4 5%) 1 (4.59) 9%) 1 (4.59) 9%) 1 (4.59) 9%) 0 (0%) Mέλη υπ/τα	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(0%) X AY-Π: 1%) 1 (1.1 2.5%) 2 (2.3 5%) 0 (0%) 0 (0%) 15 κατά X 3. 53 53 0	Z AY %) 1 (%) 0 0 %) 0 (%) %) 0 (%) (%) 0 ((%) 0 ((%) 0 ((%) 0 ((%) 0 ($\begin{array}{c c} -OK & & AY-1 \\ \hline 1.1\% & & 2 & (2 \\ (0\%) & 1 & (1 \\ (0\%) & 1 & (2 \\ (0\%) & 0 & 0 \\ \hline \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$	C (0) (ΔA) AY 2.3%) 10 (1) 25 (2) (1) (1) (1	ΔA 1.4%) 8.4%) 1.4%) (0%) (%)
Στάθμη Μ 4 1 2 3 1 0 Mέλη	ΛΥ-ΑΧ ΜΥ-Π (4.5%) 1 (4.5 (4.5%) 2 (9.1 (13.6%) 0 (09 (0%) 0 (09 δοκών (%) μ - μ -	$ \begin{bmatrix} Z & & MY-C \\ Wy - [1] & (4.) \\ Wy - [0] & (0) \\ Wy - [1] & (4.) \\ $	DK MY-KΔA 5%) 1 (4.59) 9%) 1 (4.59) 9%) 1 (4.59) 9%) 0 (0%) Λ έλη υπ/τα	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(0%) X AY-III 1%) 1 (1.1 5%) 2 (2.3 5%) 0 (0%) 0 (0%) ts katá X 3. 53 0 2 2 2	$ \begin{array}{c cccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} -OK & & AY-I \\ \hline -OK & & AY-I \\ \hline 1.1\% & & 2 & (2) \\ (0\%) & 1 & (2) \\ (0\%) & 1 & (2) \\ (0\%) & 0 & 0 \\ \hline \\ & & & \\ Drif \\ 4 & - \\ 3 & - \\ 2 & - \\ 2 & - \\ 1 & - \\ 0.00 \\ 0 \\ \end{array}$	C (0) (ΔA) AY 2.3%) 10 (1) 25 (2) (1) (1) 0 (1) 0 (1) 0 (2) (1) (1) (1) (1) (1) (1) (1) (2) (1) (1) (1)	ΔA 1.4%) 8.4%) 1.4%) (0%) (%) (%)

(b) 31-SGMB-DT (Епітахи
υνσιογρаф
ήματα X: 31 $\mathbf{D}_T_ATHA,$ Y: 31
N_L_SGMB)

			δ_X (cm)	$\delta_{\rm Y}$ (cm)	V_X (kN) V _Y (k	:N)		
		min	-10.79	-11.06	-3007.	1 -261	9.2		
		max	8.27	7.38	2640.2	2 3089	0.8		
Στάθμη	ΜΔ-ΑΧ	1	ΜΔ-ΠΖ	M∆-OK	: A	Δ-AX	A	Δ-ΠΖ	ΑΔ-ΟΚ
4	17 (60.7%	6) 3	(10.7%)	1 (3.6%	6) 29	(51.8%)	5	(8.9%)	1 (1.8%)
5 2	7 (25%) 24 (85.7%)) 18 6) 4	(64.3%) (14.3%)	0 (0%)	%) 25) 46	(44.6%) (82.1%)	26 4	(46.4%) (7.1%)	5 (5.4%) 0 (0%)
1	0 (0%)	0	(0%)	0 (0%) 0	(0%)	0	(0%)	0 (0%)
Στάθμη	MY-AX MY-	TZ MY	-ок му-к <i>а</i>	A MΥ-ΔΑ	AY-AX	X АҮ-ПZ	AY-	OK AY-K	ΔΑ ΑΥ-ΔΑ
4 4	(18.2%) 0 (0 (0%) 0 (0)%) 0 ()%) 0 ($ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6) 6 (27.3) 6 (18.2) 6 (1	%) 5 (5.7 %) 0 (09	(%) 0 (0%)) 0 ($ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1% 7 (8%)
2 0 1 0	(0%) 0 (0 (0%) 0 (0	0%) 0 (0%) 0 (0%) 0 (0%) 0 (0% 0%) 0 (0%	$\begin{array}{c ccccc} & & & & & \\ 6 & & & & & \\ 6 & & & & & \\ \end{array} \begin{array}{c ccccccccccccccccccccccccccccccccccc$	%) 0 (09) 0 (09	%) 0 (0% %) 0 (0%) 0 () 0 (0%) 0 (0 0%) 0 (0	1%) 5 (5.7%) 9%) 5 (5.7%) 9%) 0 (0%)
Μέλη	δοκών (%)	N	Ιέλη υπ/τα	ov (%)	Drifts	κατά Χ (%)	Drifts	κατά Υ (%)
4		4			£ -	1.68		4 -	1.33
3		3		_ 3	5 –	1.36	_	3 -	1.70
2		2		- 2	2 - 0.4	56	_	2 - 0	.73
1 –	_	1 –		- 1	0.00	I		1 - 0.00	_
0 20 4	0 60 80 100	0 0	20 40 60	80 100	0 1	2	3	0 1	2 3
ΔΑ	КДА		IIZ	AX					
	(a) 32-ATH	$\frac{\text{IA-N}(\text{E})}{1}$	πιταχυνσια	γραφήματο	1 X: 32N_	Γ_{ATHA}	2: 32N	_L_ATHA)
			δ_X (cm)	$\delta_{\rm Y}$ (cm)	V_X (KN) V _Y (k	(N)		
		min max	-16.96 3.73	-8.27 5.07	-3029. 3670.6	5 -235 4089	6.9).4		
						, , , , , , , , , , , , , , , , , , ,			
Σταθμη	MΔ-AX		$\frac{12}{(20, 0)}$	MΔ-OK	$\frac{\ A}{\ A}$	Δ -AX	A/	$\frac{\Delta - \Pi Z}{(10, 60)}$	<u>ΑΔ-ΟΚ</u>
4 3	11 (59.5%)	b) 8 b) 10	(28.6%)	1 (5.0%) 5 (17.9%)	6) 21 6) 29	(57.5%)	11 17	(19.6%)	1 (1.8%) 6 (10.7%)
2	22 (78.6%	b) 3	(10.7%)	0 (0%)	37	(66.1%)	3	(5.4%)	0 (0%)
	0 (0%)	0	(0%)	0 (0%)	0	(0%)	0	(0%)	0 (0%)
Στάθμη	MY-AX MY-	TZ MY	-ок мү-ка	Α ΜΥ-ΔΑ	AY-AX	AY-IIZ	AY-O	К АҮ-КДА	Α ΑΥ-ΔΑ
4 0 3 6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5%) 0 5%) 0	(0%) 0 (0% (0%) 0 (0%	b) $7 (31.89)$ b) $15 (68.29)$	%) 0 (0%) %) 7 (8%)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{vmatrix} 0 & (0) \\ 0 & (0) \end{vmatrix}$	$\begin{array}{c cccc} \% & 1 & (1.19) \\ \% & 0 & (0\%) \end{array}$	%) 8 (9.1%)) 18 (20.5%)
2 0 1 0	(0%) 0 (0 (0%) 0 (0	0%) 0 0%) 0	$\begin{array}{c cccc} (0\%) & 0 & (0\%) \\ (0\%) & 0 & (0\%) \end{array}$	b) $\begin{vmatrix} 8 \\ 0 \end{vmatrix} = \begin{pmatrix} 36.49 \\ 0 \end{vmatrix}$	%) 0 (0%) 0 0 (0%)	0 (0%) 0 (0%)	0 (00	%) 0 (0% %) 0 (0%	$\begin{array}{c ccccc} 0 & 9 & (10.2\%) \\ 0 & 0 & (0\%) \end{array}$
Μέλη	δοκών (%)	Ν	Ιέλη υπ/τα	ov (%)	Drifts	κατά Χ (%	o)	Drifts	κατά Υ (%)
4		4			£ -		2.50	4 -	0.92
3		3		3	5 -		2.8	3 -	1.22 -
2	_	2		- 2	2 – 0.3	9	_	2 – C).74 –
1 –	_	1 –		_]	- 0.00		_	1 - 0.00	_
0 20 4	0 60 80 100	0 (20 40 60	80 100	0 1	2	3	0 1	2 3
ΔΑ	ΚΔΑ 🗖	o K	ΠΖ	AX 🛛					

(b) 32-DFNA-N (Επιταχυνσιογραφήματα Χ: 32N_T_DFNA, Υ: 32N_L_DFNA)

⁽b) 32-DFNA-DL (Επιταχυνσιογραφήματα Χ: 32N_T_DFNA, Υ: 32**D**_L_DFNA)

(b) 32-DFNA-DT (Επιταχυνσιογραφήματα Χ: 32**D**_T_DFNA, Υ: 32N_L_DFNA)

				δ_X (cm)	δγ(cm)	V	$_X$ (kN)) V	7 _Y (k	N)				
			min	-7.98	-10	0.02	-3	3434.0	5 -	309	6.4				
			max	9.83	8.	12	2	520.5		208	7				
Στάθμη	N	ΙΔ-ΑΧ	1	ΜΔ-ΠΖ	М	Δ-ΟΚ		A	Δ-AX	[A	Δ-ΠΖ		AΔ	-OK
4	18	(64.3%	b) 2	(7.1%)	0	(0%)		28	(50	%)	3	(5.40	%)	0	(0%)
3	16	(57.1%)	$(0) 9 \\ (1) 4$	(32.1%)	3 (0	(10.7%) (0%)	6)	36 45	(64.3	3%) 1%)	14	(25%	6) %)	3 (5.4%)
1	0	(0%)	0	(11.570) (0%)	0	(0%)		0	(00)	6)	0	(0%))	0	(0%)
Στάθμη	MY-AX	МҮ-ПΖ	MY-O	к мү-кда	M	ΙΥ-ΔΑ		AY-AX	AY	-ПZ	AY-O	K AY	-ΚΔΑ		AY-ΔA
4 2	(9.1%) (0%)	0 (0%)	0 (09	$\begin{array}{c c} $	6	(27.3%) (31.8%)	3	(3.4%)) 0	(0%)	0 (00	%) 0 %) 1	(0%)	6	(6.8%)
2 2 1 0	(9.1%) (0%)	0 (0%)	0 (0%	6) 0 (0%) 6) 0 (0%)	10 0	(45.5%) (0%)	2	(2.3%)) 0 0	(0%) (0%)	0 (00	%) 0 %) 0	(0%) (0%)	11 0	(12.5%) (0%)
Μέλη	ιδοκών	7 (%)	N	Ιέλη υπ/τα	v (%)		Ī	Drifts 1	κατά .	X (%)	Di	ifts I	κατά	Y (%)
4			4			4	_		1.10		_	4 -		1.2	4
3			3			3	_		1.3	8	_	3 –		1	.57 -
2			2			2	_	(0.99		_	2 -	0.5	0	_
1 –		_	1 –			1	- (0.00			_	1 – 0.	00		_
0 20	40 60	80 100	0	20 40 60	80 1	.00	0	1	2	2	3	0	1		2 3
ΔΑ		ΔΑ	UK		<i>F</i>	47									
	(a)	32-DM	K-N (E	πιταχυνσια	ογραφ	ήματα	X:	32N_7	Γ_DM	K, Y:	32N	_L_DN	1K)		
				δ_X (cm)	δγ(cm)	V	X(kN)) V	′ _Y (k.	N)				
			min max	-3.08 14.4	-4 9.9	.95 93	 2	4398.1 461.5		4270 2531	6.3 .5				
Στάθμη	M	Δ-AX	N	1Δ-ПΖ	M	Δ-ΟΚ		A۷	\-AX		A	∆-ПZ		AΔ	-OK
4	7	(25%)	8	(28.6%)	1	(3.6%)		14	(25%	o)	10	(17.9%	6) 1	1 (1.8%)
3		(39.3%)	12	(42.9%)	5 (2	17.9% (71%))	30 (35 ((53.6°) (62.5°	%) %)	16 7	(28.6% (12.5%	6) (6) 7	5 (1 2 (*	.0.7%) 3.6%)
1	0	(0%)	0	(0%)	0	(0%)		0	(0%))	0	(0%))	(0%)
Στάθμη	MY-AX	MY-NZ	MY-0	ΟΚ ΜΥ-ΚΔ.	A N	ΛΥ-ΔΑ		AY-AX	AY	-ПZ	AY-0	DK A	.Υ-ΚΔΑ	.	ΑΥ-ΔΑ
	(13.6%)	0 (0%)	1 (4.	5%) 0 (0%) 5	(22.7%)	5	(5.7%)		(0%)		1%) 1	(1.1%	b) 5	(5.7%)
2 2 1 0	(9.1%) (0%)	0 (0%) 0 (0%)	0 (0	0%) 0 (0%) 0%) 0 (0%)) 10) 0	(45.5%) (0%)	4	(4.5%) (0%)		(0%) (0%)	0 (0	0%) 0 0%) 0 0%) 0	(0%) (0%)) 13) 0	(14.8%) (0%)
Μέλη	ι δοκών	7 (%)	N	Ιέλη υπ/τα	ov (%)		Ι	Drifts 1	κατά	X (%)	Dı	ifts i	κατά	Y (%)
4		' _	4			4	_			2.1	4	4 -		1.02	-
3			3			3	_				2.77	73 -		1.	48 -
2			2			2	_	0.4	5		_	2 -	().99	-
			1 –			1	- (0.00				1 – 0.	00		
0 20	40 60	80 100	0	20 40 60	80 1	00	0	1	2	2	3	0	1	-	2 3
ΔΑ						11									

(b) 32-FIX-N (Επιταχυνσιογραφήματα Χ: 32N_T_FIX, Υ: 32N_L_FIX)

		8	$\delta_X (\text{cm}) \mid$	$\delta_{ m Y}$ (cm)	$ V_X(kN) $	V V_Y (k	N)		
		min max	-8.03 9.74	-11.54 10.56	-3381 2529	.1 -321 4 2691	6.5 .5		
Στάθμη	MΔ-AX	M2	∆-ПZ	ΜΔ-ΟΙ	K	AΔ-AX	AΔ	-ПZ	ΑΔ-ΟΚ
4 3 2 1	19 (67.99) 13 (46.49) 13 (46.49) 0 (0%)	6) 2 6) 12 (6) 13 (7) 0	(7.1%) 42.9%) 46.4%) (0%)	$\begin{array}{ccc} 0 & (0\%) \\ 3 & (10.7) \\ 2 & (7.19) \\ 0 & (0\%) \end{array}$) 28 %) 30 %) 35) 0	(50%) (53.6%) (62.5%) (0%)	3 (20 (16 (0	(5.4%) 35.7%) 28.6%) (0%)	0 (0%) 3 (5.4%) 2 (3.6%) 0 (0%)
Στάθμη	MY-AX MY-I	IZ MY-OK	МҮ-КДА	ΜΥ-ΔΑ	AY-AX	К АҮ-ПΖ	AY-OK	X ΑΥ-ΚΔ	Α ΑΥ-ΔΑ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccc} (18.2\%) & 0 & (0) \\ (4.5\%) & 0 & (0) \\ (4.5\%) & 0 & (0) \\ (0\%) & 0 & (0) \end{array}$	%) 0 (0%) %) 0 (0%) %) 0 (0%) %) 0 (0%) %) 0 (0%)	0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)	4 (18.2% 7 (31.8% 14 (63.6% 0 (0%)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	%) 0 (0%) %) 0 (0%) %) 1 (1.1%) %) 0 (0%)	0 (0% 0 (0% 0 (0% 0 (0%	b) 0 (0% b) 0 (0%	$ \begin{array}{c cccc} b) & 4 & (4.5\%) \\ b) & 8 & (9.1\%) \\ b) & 18 & (20.5\%) \\ b) & 0 & (0\%) \\ \end{array} $
Μέλη	δοκών (%)	Μέ	\n υπ/τω [·]	v (%)	Drifts	s κατά <i>Χ</i> (%)	Drifts	κατά Υ (%)
4		4			4 –	1.06	- 4	_	1.32
3		3			3 –	1.35	- 3		1.74
2	_	1 -			2 - 1 - 0 00	1.00		- 0.00	0.94
0 20 4	40 60 80 100	0 20	0 40 60	80 100	0.00	L 2	3	0 1	2 3
ΔΑ	Κ ΔΑ	OK 🗖	ПΖ	AX					
	(a) 32-DM	1K-DL (Επ δ min max	$\begin{array}{c c} 11111111111111111111111111111111111$	ογραφήματ δ _Y (cm) -8.48 9.98	ta X: 32N V _X (kN -4408 2452.	T_DMK, Y N) V _Y (k .2 -403 5 3180	7: 32 D _I N) 9.4 0.3	L_DMK)	
Στάθμη	MΔ-AX	M/	∆-ПZ	ΜΔ-ΟΚ	A	Δ-AX	AΔ-I	TZ	ΑΔ-ΟΚ
4 3 2 1	14 (50%) 8 (28.69) 22 (78.69) 0 (0%)) 8 (6) 13 (6) 4 (0	28.6%) 46.4%) 14.3%) (0%)	1 (3.6% 7 (25% 1 (3.6% 0 (0%)	b) 25 b) 25 b) 40 b) 0	(44.6%) (44.6%) (71.4%) (0%)	11 (1) 20 (3) 5 (8) 0 (9.6%) 5.7%) 8.9%) 0%)	1 (1.8%) 8 (14.3%) 1 (1.8%) 0 (0%)
Στάθμη Μ	мү-ах Мү-пи	Z MY-OK	МҮ-К∆А	ΜΥ-ΔΑ	AY-AX	АҮ-ПΖ	AY-OK	ΑΥ-ΚΔ	Α ΑΥ-ΔΑ
$ \begin{array}{ccccc} 4 & 5 \\ 3 & 4 \\ 2 & 2 \\ 1 & 0 \end{array} $	$\begin{array}{cccc} (22.7\%) & 0 & (0\%) \\ (18.2\%) & 2 & (9.14) \\ (9.1\%) & 0 & (0\%) \\ (0\%) & 0 & (0\%) \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{vmatrix} 0 & (0\%) \\ 1 & (4.5\%) \\ 0 & (0\%) \\ 0 & (0\%) \end{vmatrix} $	7 (31.8%) 15 (68.2%) 6 (27.3%) 0 (0%)	$\begin{array}{c ccccc} b) & 8 & (9.19) \\ b) & 9 & (10.2) \\ b) & 2 & (2.39) \\ 0 & (0\%) \end{array}$	%) 0 (0%) %) 2 (2.3%) %) 0 (0%) %) 0 (0%) %) 0 (0%)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccc} b) & 1 & (1.1) \\) & 1 & (1.1) \\) & 0 & (09) \\) & 0 & (09) \end{array}$	%) 7 (8%) %) 21 (23.9%) %) 8 (9.1%) %) 0 (0%)
Μέλη	δοκών (%)	Mé	\n υπ/τω [,]	v (%)	Drifts	s κατά <i>Χ</i> (%)	Drifts	κατά Υ (%)
4	_	4		- 4	4 –	2.	19 4	_	1.25
3		3				15	2./03		1.48
		1			1 - 0.00	TJ	- 1	- 0.00	
0 20 4	0 60 80 100	0 20	0 40 60	80 100	0 1	L 2	3	0 1	2 3
ΔΑ	ΚΔΑ	OK 🗖	🗖 ПΖ 🗖	AX					

			δ_X (cm)	$\delta_{\rm Y}$ (cm)	V	T_X (kN)		kN)	_		
		min	-9.76	-9.33	_	3803.4	-295	57.7	_		
		max	11.88	8.31	3	066.2	2072	2.8	_		
Στάθμη	MΔ-AX		ΜΔ-ΠΖ	M∆-OK		A2	A-AX		ΑΔ-ΠΖ		ΑΔ-ΟΚ
4	16 (57.19	(6) 5	(17.9%)	0 (0%))	29 ((51.8%)	6	(10.79	6) 0) (0%)
3	9 (32.19	(6) 15	(53.6%) (21.4%)	4 (14.3)	%) 6)	29 (45 ((51.8%)	22	(39.3%)	6) 4 6) 1	(7.1%) (1.8%)
1	0 (0%)		(0%)	0 (0%))	0	(0%)	0	(0%)) (0%)
Στάθμη Ι	MY-AX MY-I	IZ MY	-οκ My-κΔ <i>ι</i>	Α ΜΥ-ΔΑ		AY-AX	AY-ПZ	AY	'-OK AY	-ΚΔΑ	ΑΥ-ΔΑ
4 5	(22.7%) 1 (4.	5%) 0 (0% 1 (4.5%	(18.2%)	b) 4	5 (5.7%) 5 (3.4%)	$\begin{vmatrix} 1 & (1.1\%) \\ 0 & (0\%) \end{vmatrix}$) 0	(0%) 1	(1.1%)	4 (4.5%)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(4.5%) 1 (4. (0%) 0 (0	5%) 0 (%) 0 (0%) 0 (0%) 0%) 0 (0%)	12 (54.5%) 0 (0%)	5) 3	3 (3.4%) 0 (0%)	$ \begin{array}{c c} 0 & (0,0) \\ 1 & (1.1\%) \\ 0 & (0\%) \end{array} $) 0	(0%) 0 (0%) 0	(0%) (0%)	$\begin{array}{ccc} 10 & (11.170) \\ 17 & (19.3\%) \\ 0 & (0\%) \end{array}$
Μέλη	δοκών (%)	N	/Ιέλη υπ/τω	ov (%)]	Drifts ĸ	ατά Χ (%	́о)	Dri	fts K	ατά Y (%)
4		4		- 4	ŧ -		1.69	_	4 -		1.24
3		3		_ 3	; -		1.59	_	3 -		1.43 -
2		2		- 2	2 -]	1.11	-	2 -	0.50	_
1 –	_	1 –		- 1	. – (0.00		_	1 - 0.0)0	_
0 20 4	0 60 80 10	0 C	20 40 60	80 100	0	1	2	3	0	1	2 3
ΔΑ	ΚΔΑ	OK	ΠΖ	AX							
	(a) 32-DN	IK-DT (Επιταχυνσι	ογραφήματ	a X	: 32 D_ T		Y: 32	N_L_DM	íK)	
			δ_X (cm)	$\delta_{\rm Y}$ (cm)	V	X_X (kN)	$V_{\rm Y}$ (h	κN)	_		
		min	-7.7	-5.04		4253.8	-423	35.1			
		max	23.32	10.18	2	894.1	246)	/.5	_		
Στάθμη	ΜΔ-ΑΧ	N	ΙΔ-ΠΖ	ΜΔ-ΟΚ		ΑΔ	AX	A	Δ-ΠΖ	.	ΑΔ-ΟΚ
4	8 (28.6%	b) 6	(21.4%)	3 (10.7%)	16 (2	8.6%)	9	(16.1%)	3	(5.4%)
3	11 (39.3%)	$(b) 11 \\ (b) 10 $	(39.3%)	6 (21.4% 9 (32.1%)	30 (5 28 (¹	3.6%) 50%)	17 15	(30.4%)	7	(12.5%) (21.4%)
1	0 (0%)	0	(0%)	0 (0%)	′∥	0 ((0%)	0	(0%)	0	(0%)
Στάθμη Ι	мү-ах мү-п	Z MY-0	οκ My-κΔ <i>ι</i>	Α ΜΥ-ΔΑ		AY-AX	AY-ПZ	AY-	OK AY	-ΚΔΑ	ΑΥ-ΔΑ
	(13.6%) 0 (09	6) 1 (4.	5%) 2 (9.1%	b) 2 (9.1%) 3	3 (3.4%)	0 (0%)		.1%) 2	(2.3%)	2 (2.3%)
$ \begin{array}{c cccccccccccccccccccccccccccccccccc$	(4.5%) 0 (09 (9.1%) 0 (09 (096) 0 (09	6) 0 (0 6) 1 (4.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	b) $\begin{bmatrix} 2 & (9.1\%) \\ 18 & (81.8\%) \\ 0 & (00\%) \end{bmatrix}$		(2.5%) 5 (5.7%)	$ \begin{array}{c} 0 & (0\%) \\ 0 & (0\%) \\ 0 & (0\%) \end{array} $	$ \begin{bmatrix} 0 & () \\ 1 & () \\ 0 & () \end{bmatrix} $	0%) 0 1%) 1	(0%) (1.1%) (0%)	2 (2.5%) 31 (35.2%)
Μέλη	οκών (%)	<u>) 0 (0</u> N	/////////////////////////////////////) 0 (0%)) (%)	י <u>וו</u> ו	Drifts K	 ατά Χ (%	<u>ი (</u> რ)	<u>0%)</u> 0 Dri	(0%)	<u>ο (0%)</u> πάΥ(%)
4		4			F	BTIHEB K		2 51	4 -	1	12
3		3			; ; _			2.91	89 -		1.39
2		2		2	2 –			2.7	02 -	1	.06
1 -	_	1 -		_ 1	(0.00		•	1 - 0.0)()	
0 20 4	0 60 80 10	 D 0	20 40 60	80 100	L 0	1	2	3	0	1	2 3
ΔΑ	ΚΔΑ	OK	ПΖ	AX							

(b) 32-FIX-DT (Επιταχυνσιογραφήματα Χ: 32**D**_T_FIX, Υ: 32N_L_FIX)

				δ_X (cm)	δ_{Y}	(cm)	V	V_X (kN)	V _Y (1	kN)	-			
			min	-4.77	-:	10.41	_	4869.0	5 -29	21	_			
			max	11.2		.92	2	384.3	487	5.6	_			
Στάθμη	M	[Δ-ΑΧ	1	ΜΔ-ΠΖ	1	ΛΔ-ΟΚ		A/	۵-AX		ΑΔ-Ι	ΊΖ	AΔ	-OK
4	19	(67.9%)	4	(14.3%)	0	(0%)		31	(55.4%)	4	(7	.1%)	0	(0%)
2	11 19	(39.3%)	8	(46.4%) (28.6%)	4	(14.5%)	o))	32 40	(57.1%)	10	(28	3.6%) 4.3%)	4 (7.1%) 1.8%)
1	0	(0%)	0	(0%)	0	(0%)	<i>,</i>	0	(0%)	0) (0%)	0	(0%)
Στάθμη Ι	MY-AX	МҮ-ПΖ	MY-	ОК МҮ-КД	A	ΜΥ-ΔΑ		AY-AX	АҮ-ПΖ	A.	<i>г</i> -ок	ΑΥ-ΚΔ	A A	AY-ΔA
4 4 3 0	(18.2%) (0%)	0 (0%)	0 (0%) 0 (0% 0%) 0 (0%	b) 4 b) 17	(18.2%) (77.3%)		(8%) (1.1%)	0 (0%)	0	(0%) (0%)	0 (0% 0 (0%	b) 4 b) 18	(4.5%) (20.5%)
2 2 1 0	(9.1%) (0%)	1 (4.5%) 0 (0%)) 0 (0%) 1 (4.5 0%) 0 (0%	%) 11 5) 0	(50%) (0%)	2	(2.3%) (0%)	1 (1.1% 0 (0%)) 0 0	(0%) (0%)	1 (1.1) 0 (0%	%) 12 5) 0	(13.6%) (0%)
Μέλη	δοκών	7 (%)	Ν	Ιέλη υπ/τα	ων (%	b)	Ι	Drifts ĸ	ατά Χ (9	6)		Drifts	κατά	Y (%)
4			4		I	- 4	_		1.47	-	4 -		1.4	49 -
3			3			- 3	_		1.50	-	3 -		1	.64 -
2			2			- 2	_	-	1.09	-	2 -	0	.72	-
1		_	1 –		I	- 1	- (0.00		_	1 -	0.00		
0 20 4	0 60	80 100	0	20 40 60) 80	100	0	1	2	3	0) 1	2	2 3
ΔΑ						AA ,								
	(a) 3	2-SGMA	-N (E		γραφ	mµata	X: 3	52N_T_ (1-NT)	$\underline{SGMA},$	Y: 32	IN_L_ - 	_SGMA	A)	
				O_X (CIII)			V	$\frac{\chi(KIN)}{77.41}$		(N)	 - 			
			min max	-4.89		5.15 5.1	4	229.8	2403	6.1 3.2				
Στάθιμη	м		M		, М	A OK	11			Δ	<u> </u>	7	• •	OV
	21	(75%)	2	(10.7%)	1	(3.6%)	<u> </u> 	τ	-AA	л Т	(5 /	<u>-</u> %)	ΑΔ- 1 (
3	1^{21}	(7.5%)	16	(57.1%)	11	(39.3%))	18 (3	32.1%)	26	(46.4	4%)	1 (. 12 (2	1.4%)
2	19	(67.9%)	6	(21.4%)	1	(3.6%)		38 (0	57.9%)	6	(10.2	7%)	1 (1	1.8%)
	0	(0%)	0	(0%)	0	(0%)		0	(0%)	0	(09	/0)	0	(0%)
Στάθμη Ν	(17 606)	MY-ПZ	MY-C	DK MY-ΚΔ	1	MY-ΔA		AY-AX	AY-ПZ	A	Y-OK	AY-KZ	A .	AY-ΔA
3 1 2 2 1 0	(13.0%) (4.5%) (9.1%) (0%)	$ \begin{array}{cccc} 1 & (4.5\%) \\ 0 & (0\%) \\ 0 & (0\%) \\ 0 & (0\%) \end{array} $	1 (4 2 (9 0 (0 0 (0	5%) 0 (0%) 1%) 0 (0%) %) 1 (4.5%) %) 0 (0%)) 19 (b) 8 () 0	(39.1%) (86.4%) (36.4%) (0%)	12 12 4 0	(9.1%) (13.6%) (4.5%) (0%)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$) 2 0 0	(1.1%) (2.3%) (0%) (0%)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5%) 20 5%) 33 .%) 9 %) 0	(37.5%) (10.2%) (0%)
Μέλη δ	δοκών	(%)	Ma	έλη υπ/των	7 (%)		Dri	fts κατ	á X (%)		Dr	ifts kar	tá Y (%	ó)
4		_	4		_	4 -			1.76	- 4	_		1.79) –
3			3			3 -			2.3	23	_			2.84
2		_	2		_	2 -	().39		- 2	-	0.84	1	_
1 –	1	_	1 –		_	1 -	0.0	0		- 1	- 0.0	00		_
0 20 4			-						-				-	-
	0 60 0	80 100	0 2	20 40 60	80 10	0000 x		1	2 3		0	1	2	3

(b) 32-SGMB-N (Επιταχυνσιογραφήματα Χ: 32N_T_ATHA, Υ: 32N_L_SGMB)

			δ_X (cm)	δ_{Y} (cm)	$ V_X $	kN) V	Y _Y (kN)			
		min max	-4.78 11.82	-13.13 2.94	-48 239	58.4 - 0.5 4	2583.9 737.5	_		
										A 017
Σταθμη			ΛΔ-11Ζ	<u>ΜΔ-01</u>				AΔ-11Z		Δ -OK
4	19 (67.99	%) 3 %) 13	(10.7%) (46.4%)	1 (3.6 ⁴ 5 (17.9	%) ∥ 3 %) ∥ 2	0 (53.6 5 (44.6	%) 3 %) 22	(5.4%) (39.3%	$ 1\rangle$	(1.8%) (8.9%)
2	11 (39.30	%) 14	(50%)	3 (10.7	%) 3	0 (53.6	%) 18	(32.1%) 3	(5.4%)
1	0 (0%)	0	(0%)	0 (0%) () (0%	b) 0	(0%)	0	(0%)
Στάθμη 📗 Ι	MY-AX MY-I	IZ MY-C	К МҮ-КДА	MΥ-ΔΑ	AY	-AX AY	-ΠΖ A	Y-OK AY-	КΔА	ΑΥ-ΔΑ
4 5	$(22.7\%) \mid 0 (0)$	%) 0 (0 ⁴	%) 0 (0%) 0 (0%)	4 (18.29	6) 8 (¹ 6) 1 (9.1%) 0	(0%) 0 (0%) 0	(0%) 0	(0%)	4 (4.5%)
		%) 0 (0 %) 0 (0	%) 2 (9.1%)) $16 (72.79)$	6) 4 ((0%)	(1.1%) 0 (0%) 0	(0%) 2 (10%) 0	2.3%)	22 (25%) 0 (0%)
Μέλη	οκών (%)	^{/0)} 0 (0	^{////////////////////////////////////}	v (%)	 Dri	(07.0) η 0 fts κατά 2	X (%)	Drif	ts κατι	<u>á</u> Y(%)
4		4			4 -	1	61	4 -	1	
3		3		_	3 –	1.4	54 -	3 -		1.80
2		2			2 -	1.15	_	2 -	1	.37
1 -	_	1 –		_	1 - 0.0	0	_	1 - 0.00)	-
0 20 4	0 60 80 10	0 0	20 40 60	80 100	0	1 2	3	0	1	2 3
ΔΑ	ΚΔΑ	OK	🔲 ПΖ	AX						
	(a) 32-SGM	A-DL (E	πιταχυνσια	ογραφήματ	a X: 32	N_T_SGN	MA, Y: 32	2 D_ L_SGI	MA)	
			δ_X (cm)	$\delta_{ m Y}$ (cm)	V_X (kN) V	Y _Y (kN)	_		
		min	-4.91	-5	-32	94.7 -	5112.4	-		
		max	13.24	16.36	417	2.6 2	869.6			
Στάθμη	ΜΔ-ΑΧ	M	Δ-ΠΖ	ΜΔ-ΟΚ		ΑΔ-ΑΧ	A	Δ-ΠΖ	A	Δ-OK
4	17 (60.7%) 5	(17.9%)	0 (0%)	28	s (50%)) 5	(8.9%)	0	(0%)
3	5 (17.9%) 18	(64.3%)	5 (17.90	%) 21	(37.5%	6) 28	(50%)	5	(8.9%)
2	10 (35.7% 0 (0%)	0	(28.6%)	$\begin{array}{ccc} 10 & (35.7) \\ 0 & (0\%) \end{array}$	6) 18 0 0	(32.1%) (0%)	6) 19 0	(33.9%)		(19.6%)
						(0,1)		(0,1)		
Στάθμη Λ 4 5	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	12 MY-C 5%) 0 (0	$\frac{OK MY-K\Delta A}{\%) 0 (0\%)}$	MΥ-ΔΑ	AY) 7	AX A (8%) 1	$\frac{Y-11Z}{(1.1\%)} \mid 0$	<u>.Y-OK AY-J</u> (0%) 1 (1	$\Delta A \mid $	$\frac{\text{AY-}\Delta \text{A}}{3 (9.1\%)}$
3 3 2 1 1 0	$\begin{array}{c ccc} (13.6\%) & 0 & (0) \\ (4.5\%) & 2 & (9.7) \\ (0\%) & 0 & (0) \end{array}$	%) 0 (0 1%) 0 (0 %) 0 (0	%) 2 (9.1%) %) 1 (4.5%) %) 0 (0%)	17 (77.3%) 18 (81.8%) 0 (0%)) 10 (1) 4 (0	11.4%) 0 4.5%) 2 (0%) 0	(0%)0(2.3%)0(0%)0	$\begin{array}{c cccc} (0\%) & 2 & (2 \\ (0\%) & 1 & (1 \\ (0\%) & 0 & 0 \end{array}$	2.3%) 2 1.1%) 2 (0%) (.3 (26.1%) .5 (28.4%) 0 (0%)
Μέλη	δοκών (%)	Μ	Ιέλη υπ/τω	v (%)	Drif	ts κατά λ	K (%)	Drift	ε κατό	i Y (%)
4		4		- 4	Ł –		L.91 -	4 -	1.2	24
3		3		2	; -		2.35	3 -		2.29
2		2			2 - 0	.39	_	2 -		2.29
1 –	_	1 –		- 1	. – 0.0	0		1 - 0.00)	_
0 20 4	0 60 80 10	0 0	20 40 60	80 100	0	1 2	3	0	1	2 3
ΔΑ Ι	ΚΔΑ	ok 📃	— ΠΖ	AX						

(b) 32-SGMB-DL (Epitaxuvoiogragámata X: 32N_T_ATHA, Y: 32 \textbf{D}_L_SGMB)

			δ_X (cm)	$\delta_{ m Y}$ (cm)	$ V_X $ (kl	N) V _Y (kN)		
		min	-8.34	-10.9	-4712	.8 -28	41.6	_	
		max	12.74	2.26	3128.	4 486	4.7	<u> </u>	
Στάθμη	MΔ-AX	M.	∆-ПZ	MΔ-0	K	ΑΔ-ΑΧ		ΑΔ-ΠΖ	ΑΔ-ΟΚ
4	19 (67.99	6) 3	(10.7%)	1 (3.6	%) 34	(60.7%)	4	(7.1%)	1 (1.8%)
3	8 (28.6%	6) 16 6) 8	(57.1%)	4 (14.3)	%) 29 %) 30	(51.8%)	21	(37.5%)	4 (7.1%)
1	0 (0%)	0) 0	(0%)	0 (0%	b) 0	(0%)	0	(14.5%)	0 (0%)
Στάθμη Ι	MY-AX MY-D	Z MY-OK	MY-КΔА	MΥ-ΔA	AY-AX	АҮ-ПΖ	AY	-ок ау-к <i>и</i>	ΔΑ ΑΥ-ΔΑ
4 5 3 0	$(22.7\%) \mid 0 (0)$ $(0\%) \mid 0 (0)$	%) 0 (0%) %) 0 (0%)	0 (0%)	7 (31.8%		5%) 0 (0% 6) 0 (0%	b) 0 b) 0	(0%) 0 (0 (0%) 0 (0	%) 7 (8%) 13 (14.8%)
2 3 1 0	(13.6%) 1 (4.5 (0%) 0 (0%)	5%) 0 (0%) %) 0 (0%)	0 (0%) 0 (0%)	12 (54.5% 0 (0%)	3 (3.4 0 (09	$\begin{array}{c c} \% & 1 & (1.19) \\ 6 & 0 & (0\%) \end{array}$	%) 0)) 0	$\begin{array}{c c} (0\%) & 1 & (1. \\ (0\%) & 0 & (0 \\ \end{array}$	1%) 15 (17%) %) 0 (0%)
Μέλη	δοκών (%)	Μέ	λη υπ/τω	ov (%)	Drifts	s κατά Χ (^α	%)	Drift	s κατά Υ (%)
4		4		_	4 -	1.55	_	4 -	1.72
3		3		_	3 -	1.70) –	3 -	1.59
2		2		_	2 -	1.27		2 -	0.79
1 –	_	1 -		_	1 - 0.00			1 - 0.00	
0 20 4	0 60 80 100	0 0 2	0 40 60	80 100	0	1 2	3	0	1 2 3
ΔΑ	ΚΔΑ		IIZ I	AX					
	(a) 32-SGM	A-DT (En	ταχυνσια	ογραφήματ	a X: 32 D	_T_SGMA	, Y: 32	N_L_SGM	IA)
			$\delta_X (\mathrm{cm})$	$\delta_{\rm Y}$ (cm)	V_X (kľ	$\mathbf{V} \mid \mathbf{V}_{\mathbf{Y}} ($	kN)	<u> </u>	
		min	-5.84	-5.28	-3743	5.5 -45	86.7		
		IIIdX	22.49	15.40	5052.	5 257	7.4	-	
Στάθμη	ΜΔ-ΑΧ	MΔ·	ПΖ	ΜΔ-ΟΚ	∥ A	Δ-AX	A	Δ-ΠΖ	ΑΔ-ΟΚ
4	15 (53.6%	b) 5 (1)	7.9%)	6 (21.4%	6) 21	(37.5%)	9	(16.1%)	6 (10.7%)
3	1 (3.6%) 22 (78.6%)	(2) (2) (2) (3) (4) (14)	25%) 2 1.3%) 2	20 (71.49) 2 (7.1%)	b) $ 12 42 12 $	(21.4%)	17 4	(30.4%)	27 (48.2%) 3 (5.4%)
1	0 (0%)	0 (0%)	0 (0%)	´ 0	(0%)	0	(0%)	0 (0%)
Στάθμη Ν	ИҮ-АХ МҮ-П2	Z MY-OK	ΜΥ-ΚΔΑ	MY-ΔA	AY-AX	С АҮ-ПZ	AY	7-OK AY-K	ΔΑ ΑΥ-ΔΑ
	(18.2%) 1 (4.5%)	%) 1 (4.5%) 1 (4.5%)) 11 (50%)	8 (9.1	%) 1 (1.19	6) 1 ((1.1%) 2 (2)	3%) 14 (15.9%)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} (4.3\%) & 0 & (0\%) \\ (22.7\%) & 0 & (0\%) \\ (0\%) & 0 & (0\%) \end{array}$	$\begin{array}{c ccccc} 0 & 2 & (9.1\%) \\ 0 & (0\%) \\ 0 & 0 & (0\%) \\ \end{array}$	0 (0%) 0 (0%) 0 (0%)	19 (80.4%) 7 (31.8%) 0 (0%)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6%) 2 (2.39 %) 0 (0% %) 0 (0%	0) 2 () 0) 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0%) 35 (39.8%) 0%) 11 (12.5%) 0%) 0 (0%)
Μέλη	δοκών (%)	Μέ	λη υπ/τα	ov (%)	Drift	s κατά Χ (%)	Drift	s κατά Υ (%)
4		4			4 -	3.	44-	4 -	1.72
3		3			3 –	3	.59	3 –	3.08
2		2		_	2 - 0.5	51		2 - 0	76
1		1 -		_	1 - 0.00	1	-	1 - 0.00	
0 20 4	0 60 80 100	0 2	0 40 60	80 100	0	2 4		0	2 4
	ΚΔΑ	🔲 OK 🗖	🗖 ПΖ	AX					

(b) 32-SGMB-DT (Epitaxuvoiogragúmata X: 32 $\mathbf{D}_T_ATHA,$ Y: 32N_L_SGMB)

				δ_X (cm)	$ \delta_{Y}$	(cm)	V	$_X$ (kN)	V _Y (kN)	_				
			min	-11.36	-:	12.16	-3	3073.4	-272	76.1					
			max	8.63		7.2	2	785.5	317	5.6					
Στάθμη	M	Δ-ΑΧ	1	ΛΔ-ΠΖ	1	ΛΔ-ΟΚ		AΔ	-AX		ΑΔ-Γ	IZ		AΔ-C	OK
4	18	(64.3%) 4 10	(14.3%)	1	(3.6%))	33 (£	58.9%)	4	(7.	1%)	$\begin{vmatrix} 1 \\ 7 \end{vmatrix}$	(1)	8%)
2	26	(17.9%)) 18) 2	(04.5%) (7.1%)	0	(17.9%))	45 (8	59.5%) 80.4%)	20 3	(40 (5.	.4%) .4%)	0	(12)	.5%) %)
1	0	(0%)	0	(0%)	0	(0%)		0	(0%)	0	(0)%)	0	(0	%)
Στάθμη	MY-AX	МҮ-П	Z MY-C	ок му-кал	4	ΜΥ-ΔΑ		AY-AX	AY-ПZ	A'	Y-OK	АҮ-Ка	۱A ا	AY	-ΔA
4 4 3 2	(18.2% (9.1%)) 0 (09	6) 0 (0 6) 0 (0	%) 1 (4.5% %) 0 (0%)	5) 9 19	(40.9%) (86.4%)) 9) 4	(10.2%) (4.5%)) 0 (0%) 0 (0%)) 0) 0	(0%) (0%)	1 (1. 0 (0	1%) %)	11 (26 (2	12.5%) 29.5%)
2 0 1 0	(0%) (0%)	0 (09	6) 0 (0 6) 0 (0	%) 0 (0%) %) 0 (0%)) 7) 0	(31.8%) (0%)	0 1 0	(1.1%) (0%)	0 (0%) 0 (0%)) 0) 0	(0%) (0%)	0 (0 0 (0	%) %)	10 (1 0	11.4%) (0%)
Μέλη	δοκών	v (%)	Ν	Ιέλη υπ/τα	wv (9	%)	Ι	Drifts κ	ατά Χ (9	%)		Drift	s Ko	ιτά Υ	(%)
4			4			- 4	-		1.69	_	4 -	_		1.2	70 -
3			3			3	_		1.84	4 -	3 -				2.09-
2			2			- 2		0.52	2	_	2 -	C).57		_
1 –		_	1 –			- 1	- (0.00		_	1 -	0.00)		_
	40 60	80 100		20 40 60) 80	100	0	1	2	3	(C	1	2	3
						AA ,	v			17 77			•		
	(a)	55-AIF	IA-IN (E		γρα		X: . 	(1-NI)	$\underline{AIHA},$	1: 5:		_AIH	A)		
							V .	X (KIN)			_				
			max	-20.58 4	4	4.27	-3	948.8	403	5.4					
Στάθιιη	ll M	Λ-ΑΧ	N	[Λ-ΠΖ	N	IЛ-ОК		ΑΛ	-AX		 ΔΛ-Π	z		4/-0	ĸ
4	10	(35.7%) 2	(7.1%)	9	(32.1%))	16 (2	28.6%)	4	(7.1	.%)	12	(21	.4%)
3	12	(42.9%) 4	(14.3%)	12	(42.9%	ó)	25 (4	44.6%)	9	(16.	1%)	18	(32	.1%)
2	20	(71.4%) 6 0	(21.4%)	1 0	(3.6%))	38 ((0	67.9%) (0%)	6	(10.)	7%) %)	1 0	(1.	8%) %)
					•			A 37 A 37						(-	
<u>Σταθμη</u> <u>Ν</u>	(4.5%)	0 (0%) 1 (4	.5%) 0 (09	A b) 7	ΜΥ-ΔΑ (31.8%)	2	(2.3%)	AY-11Z 0 (0%)	A 1	Y-OK (1.1%)	AY-K	ΔA .1%)	AY 7	-ΔA (8%)
3 2 2 1 1 0	(9.1%) (4.5%) (0%)	4 (18.2) 0 (0%) 0 (0%)	%) 1 (4) 0 () 0 (.5%) 0 (0%) 0%) 0 (0%) 0%) 0 (0%)	6) 14 6) 10 6) 0	4 (63.6%)) (45.5%) (0%)	4 2 0	(4.5%) (2.3%) (0%)	4 (4.5%) 0 (0%) 0 (0%)	1 0 0	(1.1%) (0%) (0%)		0%) 0%) 0%)	18 (12 (0	20.5%) 13.6%) (0%)
Μέλη	δοκών	v (%)	N	/Ιέλη υπ/τα	ων (9	%)]	Drifts ĸ	ατά Χ (9	%)	. ,	Drif	ts K	ατά Υ	· (%)
4			4			- 4	-	I		4.0	94-		1.02	2	_
3			3			3	; -			4.2	23-		1.4	46	_
2		-	2			- 2	2 -	0.44		-	2 -	C).85		_
1		_	1 –			_ 1	. – (0.00			1 -	0.00)		
0 20 4	40 60	80 100	0	20 40 60	0 80	100	0	2	4			0	2		4
ΔΑ	ŀ	ΚΔΑ 🗖	OK	IIZ		AX									

(b) 33-DFNA-N (Epitaxuvsiograghmata X: 33N_T_DFNA, Y: 33N_L_DFNA)

(b) 33-DFNA-DL (Επιταχυνσιογραφήματα Χ: 33N_T_DFNA, Υ: 33**D**_L_DFNA)

			δ_X (cm)	$\delta_{\rm Y}$ (cm)	$ V_X $ (kl	N) $ V_Y ($	kN)			
		min	-13.55	-12.07	-293	$7 \mid -278$	85.3			
			10.56	0.9	2769.	1 515	2.2			
Στάθμη	ΜΔ-ΑΧ	M	Δ-ΠΖ	ΜΔ-ΟΚ	. A	Δ-AX	A	Δ-ΠΖ	1	ΑΔ-ΟΚ
4	16 (57.1%	b) 5	(17.9%)	2 (7.1%	b) 30	(53.6%)	6	(10.7%)	2	(3.6%)
3	2 (7.1%	$) 19 \\ - 3 3$	(67.9%)	7 (25%	$) \parallel 16 \\ 44$	(28.6%)	31 4	(55.4%)	9	(16.1%)
1	0 (0%)	0	(10.7 %)	0 (0%		(0%)	0	(0%)	0	(0%)
Στάθμη	МҮ-АХ МҮ-П	Z MY-OK	МҮ-КДА	ΜΥ-ΔΑ	AY-A	Х АҮ-ПΖ	Z AY-	OK AY-K	ΔA	ΑΥ-ΔΑ
	(18.2%) 0 (0%)	6) 0 (0%)	1 (4.5%)	9 (40.99	b) 9 (10.	2%) 0 (0%	(0) 0 (0%) 1 (1.	1%)	11 (12.5%)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6) 0 (0%) 6) 0 (0%) 6) 0 (0%)	0 (0%) 0 (0%) 0 (0%)	8 (36.49 0 (0%)	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	5%) 0 (0%) 5%) 0 (0%) 6%) 0 (0%)	b) 0 (b) 0 (b) 0 (0%) 0 0 0%) 0 0 0%) 0 0	1%) %)	$\begin{array}{ccc} 52 & (50.4\%) \\ 10 & (11.4\%) \\ 0 & (0\%) \end{array}$
Μέλη	δοκών (%)	Mé	λη υπ/τω	v (%)	Drifts	s ката́ X (^с	%)	Drift	s ĸa	τά Υ (%)
4	_	4			4 -	2.	01	4 -		1.69
3		3			3 -	2	.14	3 -		2.05
2		2		_	2 - 0	.58	_	2 - 0).56	_
1 -		1 –		_	1 - 0.00	1 1	_	1 - 0.00)	_
0 20 4	0 60 80 100	0 2	0 40 60	80 100	0	1 2	3	0	1	2 3
ΔA	ΚΔΑ	OK 🗖	ПΖ 🛛	AX						
	(a) 33-ATH	A-DT (Επ	ιταχυνσια	γραφήμαι	a X: 33 D	_T_ATHA,	, Y: 33	N_L_ATH	A)	
			δ_X (cm)	$\delta_{\rm Y}$ (cm)	V_X (kl	N) $ V_Y (I)$	kN)			
		min	-62.19	-9.27	-222	9 -252	74.3			
		max	4.64	4.37	4003.	1 373	9.4			
Στάθμη	ΜΔ-ΑΧ	MΔ	-ПZ	М∆-ОК	∥ A	Δ-AX	AZ	∆-ПZ	A	ΑΔ-ΟΚ
4	9 (32.1%) 3 (1) (1)	0.7%) 1	1 (39.3%	b) 18	(32.1%)	4	(7.1%)	18 25	(32.1%)
5 2	17 (25%)	$) \begin{bmatrix} 6 & (2) \\ 7 & (2) \end{bmatrix}$	1.4%) 1 25%) 4	5 (53.6% I (14.3%	b) 16 b) 37	(28.6%)	12 10	(21.4%) (17.9%)	25 5	(44.6%) (8.9%)
1	0 (0%)	0 (0%) 0) (0%)	´ 0	(0%)	0	(0%)	0	(0%)
Στάθμη Μ	ИҮ-АХ МҮ-ПΖ	MY-OK	МҮ-КДА	ΜΥ-ΔΑ	AY-A	X AY-ПZ	AY-0	OK AY-K	ΔΑ	ΑΥ-ΔΑ
4 2	$(9.1\%) \mid 0 (0\%)$ $(4.5\%) \mid 0 (0\%)$	1 (4.5%)	0 (0%)	9 (40.9	%) 3 (3.4	₩) 0 (0%)		.1%) 1 (1.	1%)	9 (10.2%) 17 (10.3%)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} (4.3 \ 6) & 0 & (0 \ 6) \\ (9.1 \ 6) & 0 & (0 \ 6) \\ (0 \ 6) & 0 & (0 \ 6) \end{array}$	0 (0%)	0 (0%) 0 (0%)	13 (59.19 0 (0%)	%) 4 (4.5) 0 (09)	5%) 0 (0%) %) 0 (0%)	0 ((0%) 0 (0 0%) 0 (0)%))%)	$\begin{array}{ccc} 17 & (19.5\%) \\ 21 & (23.9\%) \\ 0 & (0\%) \end{array}$
Μέλη	δοκών (%)	Mé	λη υπ/τω	v (%)	Drift	s κατά Χ (%)	Drif	ts ĸc	ιτά Υ (%)
4		4		_	4 -		9.76	4 - 1.0	03	
3		3			3 –		9.76	3 - 1.	.43	_
2		2		_	2 - 0.7	0	_	2 - 0.9	93	
1		1 –		_	1 - 0.00			1 - 0.00)	
0 20 4	0 60 80 100	0 2	0 40 60	80 100	0	5 1	.0	0	5	10
ΔΑ	ΚΔΑ	OK 🛛	ΠZ	AX						

(b) 33-DFNA-DT (Επιταχυνσιογραφήματα X: 33 \mathbf{D}_{T} DFNA, Y: 33N_L_DFNA)

			δ_X (cm)	δ_{Y} (cm)	V _X	(kN)	$ V_{Y}(k) $	N)			
		min	-8.92	-9.48 9.21	-3	855.8 75.6	-3402	2.7			
		max	10.01	7.21		75.0					
Στάθμη	MΔ-A	X	ΜΔ-ΠΖ	MΔ-OI	K ∥	ΑΔ-	AX	A	Δ-ΠΖ	A	АΔ-ОК
4	20 (71	4%) 3	(10.7%)	0 (0%)	34 (6	0.7%)	4	(7.1%)	0	(0%)
2	11 (39	.5%) 1: .6%) 6	(53.0%)	0 2 (7.19) 0 (0%)	%) .) .	28 (44 (7	50%) 78.6%)	25 7	(41.1%) (12.5%)	2	(3.6%)
1	0 (0	%) C	(0%)	0 (0%)	0	(0%)	0	(0%)	0	(0%)
Στάθμη	MY-AX N	1Ү-ПZ М	1Y-OK MY-K/	ΔA MY-ΔA		AY-AX	AY-ПZ	AY	-OK AY-K	ΔΑ	ΑΥ-ΔΑ
4 5	(22.7%) 0	(0%) 0	(0%) 0 (0%)	%) 5 (22.7	%) 6	(6.8%)		0	(0%) 0 (0)%)	5 (5.7%)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(4.5%) = 0 (0%) = 1 (0%) = 0	(0%) = 0 (4.5%) = 0 (0%) = 0	(0%) = 0 = (0%) (0%) = 0 = (0%) (0%) = 0 = (0%)	%) 1 (4.5%) %) 10 (45.5) %) 0 (0%)	%) 0	(1.1%) (0%)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	(0%) 0 (0 (0%) 0 (0 (0%) 0 (0)%) 1)%) 1	$\begin{array}{ccc} 2 & (2.5\%) \\ 0 & (11.4\%) \\ 0 & (0\%) \end{array}$
Μέλη	δοκών (%)	(0,0) 0		ωv (%)	, <u>п</u> е	rifts ĸc	ιτά X (%))	Drift	s κατ	άΥ(%)
4		4			4 -		1.40		4 -		1.43
3		3		_	3 -		1.39	_	3 -		1.46
2		2		_	2 -	1.	.06	_	2 - 0	.52	_
1 -		- 1		_	1 - 0.	.00	1	_	1 - 0.00		
0 20 4	0 60 80 3		20 40 60	0 80 100	0	1	2	3	0	1	2 3
ΔΑ	ΚΔΑ	— 0I	К 💼 ПZ	AX							
	(a) 33-	DMK-N	Έπιταχυνσι	ιογραφήματ	a X: 3	3N_T_	DMK, Y:	33N	_L_DMK)	
			δ_X (cm)	δ_{Y} (cm)	V_X	(kN)	$ V_{Y}(k) $	N)			
		min	-2.92	-3.68	-4	631.4	-4062	7.2			
		max	16.51	10.54	24	21.2	2596	.2			
Στάθμη	ΜΔ-Α	X	МΔ-ΠΖ	ΜΔ-ΟΚ		AΔ- <i>A</i>	AX	A۷	∆-ПZ	А	Δ-ΟΚ
4	8 (28.	6%) 7	(25%)	1 (3.6%) 1	6 (28	8.6%)	8	(14.3%)	1	(1.8%)
3	15 (53.	6%) 5 7%) 6	(17.9%)	8 (28.6%		30 (53 35 (61	3.6%)		(19.6%)	9 1	(16.1%)
1	0 (0	%) 0	(0%)	0 (0%)		0 (02	0%)	0	(10.7%)	0	(1.8%)
Στάθυρ ΙΙ Ν		<u></u>	AN-UK WA-K			NV-AY	ΔΥ-Π7	٨٧-(אר אע-א	A A	AV-AA
4 6	(27.3%) 0	(0%) 1	(4.5%) 0 (0	%) 9 (40.90	6) 8	(9.1%)	0 (0%)	1 (1.	.1%) 1 (1	1%)	9 (10.2%)
3 4 2 3 1 0	$\begin{array}{c cccc} (18.2\%) & 3 & (\\ (13.6\%) & 0 \\ (0\%) & 0 \end{array}$	13.6%) 0 (0%) 0 (0%) 0	$\begin{array}{cccc} (0\%) & 0 & (0) \\ (0\%) & 0 & (0) \\ (0\%) & 0 & (0) \end{array}$	%) 15 (68.2 %) 14 (63.6 %) 0 (0%)	6) 6 6) 4 0	(6.8%) (4.5%) (0%)	3 (3.4%) 0 (0%) 0 (0%)	0 (0 0 (0 0 (0	0%) 1 (1. 0%) 0 (0 0%) 0 (0	1%))%))%)	18 (20.5%) 19 (21.6%) 0 (0%)
Μέλη	δοκών (%)		Μέλη υπ/το	ων (%)	D	rifts Ko	ατά Χ (%)	Drift	s ka	tá Y (%)
4		- 4			4 -		2.30	_	4 -	1.09	
3		3			3 -		2.99	_	3 -	1.44	4
2		- 2			2 –	0.42		_	2 -	1.23	; –
1 -		- 1	-	_	1 - 0	.00	I	-	1 - 0.00)	
0 20 4	0 60 80	100 0	20 40 6	0 80 100	0	2	4		0	2	4
ΔA	ΚΔΑ	— 01	К 💼 ПΖ	AX							

(b) 33-FIX-N (Επιταχυνσιογραφήματα Χ: 33N_T_FIX, Υ: 33N_L_FIX)

			δ_X (cm)	δ_{Y} (cm) V_X (k	$(N) \mid V_Y$	(kN)			
		min	-8.95	-13.68	8 -385	7.2 -31	54.9	-		
		max	10.8	10.61	2784	.9 334	48.1	-		
Στάθμη	MΔ-AX	1	ΜΔ-ΠΖ	MΔ-0	К .	ΑΔ-ΑΧ	A	Δ-ΠΖ	A.	Δ-ОК
4	18 (64.39	6) 3	(10.7%)		6) 31	(55.4%)	4	(7.1%)	0	(0%)
3	8 (28.6%)	6) 13 6) 9	(46.4%) (32.1%)	7 (25 1 (3.6	%) 22 %) 43	(39.3%) (76.8%)	25	(44.6%) (17.9%)	8 ((14.3%) (1.8%)
1	0 (0%)	0	(0%)	0 (00	6) 0	(0%)	0	(0%)	0	(0%)
Στάθμη Ι	MY-AX MY-I	IZ MY	-ok my-κΔa	Δ MY-ΔΑ	A AY-A	Х АҮ-ПΖ	AY-	OK AY-KA	۱A	ΑΥ-ΔΑ
4 7 3 2	$\begin{array}{c c} (31.8\%) & 0 & (0) \\ (9.1\%) & 1 & (4.5\%) \end{array}$	%) 0 5%) 0	(0%) 0 (0%) (0%) 0 (0%)	3 (13. 17 (77.)	5%) 8 (9. 3%) 5 (5.	1%) 0 (0% 7%) 1 (1.19) 0 (%) 0 (0%) 0 (0 0%) 1 (1.	%) 3 1%) 1	(3.4%) 8 (20.5%)
2 1 1 0	(4.5%) 1 (4. (0%) 0 (0	5%) 0 %) 0	(0%) 0 (0%) (0%) 0 (0%)	11 (50 0 (00	%) 3 (3.4 6) 0 (0	4%) 1 (1.19 %) 0 (0%	%) 0 () 0 (0%) 0 (0 0%) 0 (0	%) 14 %) C	4 (15.9%) (0%)
Μέλη δ	δοκών (%)	Μ	ίέλη υπ/των	7 (%)	Drifts	κατά <i>Χ</i> (%)	Drifts 1	κατά Υ	<u>/</u> (%)
4		4			4 -	1.40	- 4	_	1.4	2 -
3		3			3 -	1.38	- 3	-		2.62
2		2		_	2 -	1.07	- 2	- 0.	73	_
			20 40 60	80,100	1 = 0.00	 ວ		0.00	<u>ן</u>	
	ΚΔΑ		20 40 00 ΠΖ 🗖		0 1	2	J	0 1	2	J
	(a) 33-DN	IK-DL (Επιταχυνσι	 ονοαφήu	ατα Χ: 33]	N T DMK	. Y: 33 I	d L DMK	()	
			δ_X (cm)	$\delta_{\rm Y}$ (cm	V_X (1	$(N) V_Y$	(kN)		-7	
		min	-2.93	-8.75	5 -466	64.7 -4	095			
		max	16.18	11.65	2414	4.2 323	35.7			
Στάθμη	ΜΔ-ΑΧ	M	ΙΔ-ΠΖ	MΔ-OI	ζ .	ΑΔ-ΑΧ	A	Δ-ПΖ	A	Δ- 0K
4	13 (46.4%) 9	(32.1%)	1 (3.6	%) 25	(44.6%)	12	(21.4%)	1	(1.8%)
3	5 (17.9% 15 (53.6%) 13	(46.4%)	10 (35.) 1 (3.6	7%) 18 %) 32	(32.1%) (57.1%)	24 10	(42.9%)	11 1	(19.6%)
1	0 (0%)		(0%)	0 (00	6) 0	(0%)	0	(0%)	0	(0%)
Στάθμη Μ	1Y-AX МҮ-П	Z MY-	ОК МҮ-КДА	Δ MY-ΔA	A AY-A	Х АҮ-ПZ	AY	-OK AY-F	ΔA	ΑΥ-ΔΑ
4 6 3 2	$(27.3\%) \mid 0 (09)$ $(9.1\%) \mid 2 (9.1)$	$(5) 1 (4) \\ (6) 0 (0) \\ (7) 0 (0) \\ (7) 0 (0) \\ (7) 0 $.5%) 0 (0%) 2 (9.1%)	7 (31.3)	3%) 9 (10 7%) 8 (9	.2%) 0 (0%) 1%) 2 (2.3%)	$() 1 () \\ () 0 0 0 0 0 0 0 0 0 $	1.1% 1 (1 (0%) 2 (2	.1%)	8 (9.1%) 8 (20.5%)
2 1 1 0	(4.5%) 0 (0%) (0%) 0 (0%)	b) 0 (0 b) 0 (0	0%) 1 (4.5%) 0%) 0 (0%)	b) 7 (31. 0 (09	3%) 2 (2. 6) 0 (0	3%) 0 (0% %) 0 (0%	b) 0 b) 0	(0%) 1 (1 (0%) 0 (.1%) 0%)	9 (10.2%) 0 (0%)
Μέλη	δοκών (%)	N	Λέλη υπ/τω	ov (%)	Drif	ts κατά Χ (%)	Drift	s κατ	á Y (%)
4		4		_	4 -		2.41	4 -	1	.36
3		3			3 -		2.8	37 -		1.66 -
2	_	2		-	2 - 0	.44	-	2 -	0.90) -
1 –	_	1 –		_	1 - 0.00)	_	1 - 0.00		
0 20 4	0 60 80 100) 0	20 40 60	80 100	0	1 2	3	0	1	2 3
ΔΑ	ΚΔΑ		IIZ	AX						

(b) 33-FIX-DL (Επιταχυνσιογραφήματα Χ: 33N_T_FIX, Υ: 33**D**_L_FIX)

				δ_X (cm)	δ_{Y}	· (cm)	V_X (k	N)	V _Y (kN)					
		m	nin	-15.61	-	9.32	-311	6.9	-32	50.5	_				
		m	lax	6.84	Ģ	9.34	3282	.1	230	0.8					
Στάθμη	MΔ-A2	K	М	Δ-ΠΖ	1	ΛΔ-ΟΚ		AΔ-A	Х	A	Δ-П	Z		AΔ-OK	ζ
4	14 (50	%)	10	(35.7%)	1	(3.6%)	26	(46	.4%)	14	(25	5%)	1	(1.80	%)
3	7 (25	%) 7%)	14 4	(50%)	7	(25%)	20	(35	5.7%) 8.6%)	26 5	(46.	.4%) 	8	(14.3	5%)
1		6)	0	(0%)	0	(0%)	0	()()%)	0	(0)	%)	0	(0%	b)
Στάθμη Ν	MY-AX MY	-ПZ	MY-OK	С МΥ-КΔА	A	ΜΥ-ΔΑ	AY-A	X	АҮ-П2	Z A	Y-OK	AY-K	ΔΑ	ΑΥ-Δ	A
4 3	(13.6%) 1 (1.5%)	0 (0%) 1 (4.5%) 0 (0%)	6) 6	(27.3%)	6 (6	.8%)	1 (1.1)	%) 0	(0%) (0%)		.1%)	7 (8	3%) 7%)
2 0 1 0	(0%) 0 (0%) 0	(0%) (0%)	0 (0% 0 (0%	$\begin{array}{c cccc} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{array}$) 8) 0	(36.4%) (0%)	10 (1) 1 (1) 0 (0)	.1%) 0%)	0 (0% 0 (0%	6) 0 6) 0	(0%) (0%)	0 (0%) 0%)	11 (12 0 (0	2.5%) D%)
Μέλη	δοκών (%)		Ma	έλη υπ/τα	ων (%	%)	Drift	s ka	τά X (^α	%)		Drift	ts ka	τά Υ (%)
4		-	4			- 4	_			2.29	4 -			1.45	_
3			3			- 3	_			2.48	3 -			1.43	-
2			2			- 2	- (0.61		_	2 -	С	.52		_
1 –			1 –			- 1	- 0.00)			1 -	0.00)	1	_
0 20 4	0 60 80 1	00	0 2	20 40 60	0 80	100	0	1	2	3	C)	1	2	3
ΔΑ	ΚΔΑ		OK I	IIZ		AX									
	(a) 33-D	MK-I	DT (Ei	πιταχυνσ	ιογρα	αφήματο	a X: 331	D_ T_	DMK,	Y: 33	N_L_	DM	()		
				δ_X (cm)	δ_{Y}	(cm)	V_X (k	N)	V _Y (kN)					
		m m	nin Nax	-9.44 28.97	- 1	-3.5 0.76	-430 3107	5.2 .6	-41 229	18.2 5.7					
	1	<u> </u>		1		I					_				
Στάθμη	ΜΔ-ΑΧ	.	MΔ	-ΠΖ	M	Δ-ΟΚ		AΔ-A	X	A	Δ-ΠΖ	<u> </u>	A	Δ-OK	.
4	10 (35.7)	%) %)	2 () 4 ()	7.1%)	7 11	(25%) (39.3%)	16	(28	.6%) 2%)	7 8	(12.5	5%) 5%)	8 16	(14.3)	5%) 5%)
2	9 (32.1	%)	9 (3	52.1%)	10	(35.7%)	25	(44	.6%)	16	(28.0	5%)	14	(259	%)
1	0 (0%)	0	(0%)	0	(0%)	0	(0	9%)	0	(0%	6)	0	(0%	b)
Στάθμη 📗 Ν	MY-AX MY	-ПZ	MY-O	K MY-KA	ΔA	ΜΥ-ΔΑ	AY-	AX	AY-ΠΖ	A	Y-OK	AY-	KΔA	AY-2	۱A
4 3 3 1	(13.6%) 0 (4.5%) 1 ((0%) 1.5%)	1 (4.5 0 (09	%) 2 (9.1 %) 0 (0	1%) %)	3 (13.6% 3 (13.6%	$\begin{array}{c c} 0 & 3 \\ 0 & 2 \\ \end{array} $.4%)	0 (0%)) 1 %) 0	(1.1%) (0%)	0 2 (2.3%) (0%)	3 (3	5.4%) 5.4%)
2 1 1 0	(4.5%) 0 (0%) 0	(0%) (0%)	1 (4.5 0 (09	6%) 1 (4.5 6) 0 (0	5%) 1 %)	9 (86.4% 0 (0%)	b) 5 (5 0 (1	.7%) 0%)	1 (1.19 0 (0%	%) 1) 0	(1.1%) (0%)	0 1 (1.1%) (0%)	37 (4 0 (42%) 0%)
Μέλη	δοκών (%)	-	M	έλη υπ/το	ων (%)	Drif	ts ĸa	τά Χ (%)		Drif	ts ĸc	τά Υ ((%)
4		-	4		I	- 4	_		3.	.41	4 -		1.06	•	-
3			3			- 3	_		3	.51-	3 -		1.4	5	
2			2			2	_		3.0)5 -	2 -		1.2	9	╞
1			1			- 1	- 0.00)			1 -	0.00)		
0 20 4	0 60 80 1	00	0 2	20 40 60	0 80	100	0	2	4	:	()	2	4	ł
ΔΑ	Μ ΚΔΑ		OK 🛛	ПZ		AX									

(b) 33-FIX-DT (Epitaxuvsiograghmata X: 33 \mathbf{D}_T FIX, Y: 33N_L_FIX)

			δ_X (cm)	$\delta_{\rm Y}$ (cm)	$ V_X $ (k	N) V _Y	(kN)	-			
		min	-5.11	-12.19	-515	0.7 -2	764.5	-			
		max	12.4	1.58	2106	.7 49	46.5	_			
Στάθμη	µn MΔ-AX		ΜΔ-ΠΖ	M∆-OI	K ∥	ΑΔ-ΑΧ		ΑΔ-ΠΖ		ΑΔ-ΟΚ	
4	16 (57.19	6) 4	(14.3%)	3 (10.7	%) 30	(53.6%) 5	(8.9%)	3 (5.4%)	
3	9 (32.19	$(b) 14 \\ (b) 11 $	(50%) (39.3%)	5 (17.9)	%) 30 %) 36	(53.6%) (64.3%)	$(0) 19 \\ (0) 11$	(33.9%)		8.9%)	
1	0 (0%)	0	(0%)	0 (0%) 0	(0%)	0	(19.0%)		(0%)	
										AY-ΔA	
$\begin{array}{c c} 4 & 3 \\ 3 & 1 \end{array}$	$(13.6\%) \mid 1 (4.5) \mid (4.5) \mid 0 (0)$	5%) 0 (0 %) 0 (0	0%) 0 (0%)	9 (40.9%) 9 (10) 2 (2)	.2%) 1 (1.	1%) 0	(0%) 0 (0	0%) 10	(11.4%)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} (13.6\%) & 0 & (0) \\ (13.6\%) & 1 & (4.5) \\ (0\%) & 0 & (0) \end{array}$	5%) 0 ((%) 0 (($ \begin{array}{c cccc} 0,0 \\$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5%) 1 (1. %) 0 (0	1%) 0 %) 0	(0%) 0 (((0\%) 1 (1 (0\%) 0 ((1%) 13 0%) 0	(14.8%) (0%)	
Μέλη	Μέλη δοκών (%) Μέλη υπ/των (%) Drifts κατά X (%) Drifts κατά Y (%)										
4		4			1 -	1.5	5 -	4 -		2.00	
3		3			3 –	1.7	' 0 –	3 -	1	.75 -	
2		2			2 -	1.33	_	2 -	0.86	-	
1		1 –		_	l – 0.00)		1 - 0.00)	-	
0 20 4	0 60 80 100) 0	20 40 60	80 100	0	1 2	3	0	1 2	2 3	
ΔΑ	ΚΔΑ	OK	ΠΖ	AX							
	(a) 33-SGM	IA-N (E	πιταχυνσιο	γραφήματο	ι X: 33N	_T_SGMA	A, Y: 33	N_L_SGM	(A)		
			δ_X (cm)	$\delta_{\rm Y}$ (cm)	V_X (k	N) $ V_Y$	(kN)	_			
		min	-5.29	-5.83	-355	7.5 -4	827.2				
		max	13.71	16.94	4405	.5 25	00.7	_			
Στάθμη	ΜΔ-ΑΧ	M	[Δ-ΠΖ	ΜΔ-ΟΚ		ΑΔ-ΑΧ	A	Δ-ΠΖ	ΑΔ-	OK	
4	21 (75%)	4	(14.3%)	1 (3.6%) 34	(60.7%)	5	(8.9%)	1 (1	1.8%)	
2	0 (0%)) 7	(46.4%)	15 (53.6%	$(0) 14 \\ (0) 38$	(25%)	24	(42.9%)	$\frac{18}{2}$ (3	2.1%) 3.6%)	
1	0 (0%)	0	(0%)	0 (0%)	0	(0%)	0	(0%)	0	(0%)	
Στάθμη Μ	IY-AX МҮ-ПZ	Z MY-0	ОК МҮ-КДА	. MΥ-ΔΑ	AY-A	Х АҮ-П	IZ A	7-OK AY-1	ΚΔΑ Α	ΑΥ-ΔΑ	
4 4 3 2	$(18.2\%) \mid 0 (0\%)$ $(9.1\%) \mid 0 (0\%)$	1 (4.	5%) 1 (4.5% 5%) 1 (4.5%) 13 (59.1%) 18 (81.8%)	13 (14) 14 (15	.8%) 0 (0 9%) 0 (0	%) 1 %) 1	(1.1%) 2 (2 (1.1\%) 5 (2)	2.3%) 19 57%) 34	(21.6%)	
2 1 1 0	$\begin{array}{c cccc} (4.5\%) & 0 & (0\%) \\ (0\%) & 1 & (4.5\%) \\ (0\%) & 0 & (0\%) \end{array}$	%) 0 (0)) 0 (0	1 (4.5%) (%) 0 (0%)	$\begin{array}{c c} $	$\begin{vmatrix} 1 & (1) \\ 3 & (3) \\ 0 & (0) \end{vmatrix}$	4%) 1 (1. %) 0 (0	1%) 0 %) 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1%) 11 0%) 0	(12.5%) (0%)	
Μέλη	δοκών (%)	Ν	∕Ιέλη υπ∕τα	ov (%)	Drift	s κατά Χ	(%)	Drif	ες κατά	Y (%)	
4		4			1 -	1.2	78 -	4 -		2.05	
3		3			3 -		2.57	73-			
2 2 0.42 2 0.93											
1	_	1		_	l – 0.00)		1 - 0.00)		
0 20 4	0 60 80 100	0	20 40 60	80 100	0	1 2	3	0	1 2	3	
				1							

(b) 33-SGMB-N (Επιταχυνσιογραφήματα Χ: 33N_T_ATHA, Υ: 33N_L_SGMB)

			S ()	S (ame)	17 /1		(1-NT)	_		
			$ o_X (cm)$	<i>o</i> _Y (cm)		$(N) V_Y$	(KIN)	_		
		min	-5.13	-14.57	-514	8.1 -2	586.8			
		max	13.18	3.23	222	6 4	893	_		
Στάθμη	MΔ-AX	1	ΜΔ-ΠΖ	MΔ-01	K	ΑΔ-ΑΧ		ΑΔ-ΠΖ	A/	Δ- ОК
4	18 (64.3%	b) 4	(14.3%)	1 (3.60	%) 28	(50%)	5	(8.9%)	1	(1.8%)
3	8 (28.6%	(0) 15	(53.6%)	5 (17.9)	'%) ∥ 24 %) ∥ 22	(42.9%)	24	(42.9%)	5	(8.9%)
1	0 (21.4)		(0%)	0 (21.4	(0) 22	(0%)	0	(11.070)	0	(0%)
		I			<u> </u>		I			
Στάθμη	МҮ-АХ МҮ-П	$Z \mid MY-C$	$OK \mid MY-K\Delta$	$A \mid MY - \Delta A$	AY-A	Х АҮ-П2	$Z \mid AY$	Y-OK AY-K	$\Delta A \mid $	ΑΥ-ΔΑ
4 4 3 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	%) 0 (0 %) 0 (0	%) 1 (4.59 %) 0 (0%	(18.2)	(6) 0 (6) (6) (6) (6) (6) (6) (6) (6) (6) (6)	8%) 0 (09 1%) 0 (09	6) 0 6) 0	(0%) 1 (1 (0%) 0 (.1%) 4 0%) 1	(4.5%) (1.1%)
2 0 1 0	(0%) 0 (0° (0%) 0 (0°	%) 0 (0 %) 0 (0	%) 2 (9.19 %) 0 (0%	$\begin{pmatrix} 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 $	%) 5 (5.) 0 (0	7%) 1 (1.1 %) 0 (0%	%) 0 6) 0	(0%) 2 (2 (0%) 0 (.3%) 27 0%) 0	' (30.7%) (0%)
Μέλη	δοκών (%)	N		ων (%)	Drif	ts κατά Χ	(%)	Drif	ts κατά	í Y (%)
4		4			4 -	1 2	78	4 -		1 60
3		3		_	3 -	1.7	ν̈́ζ	3 -		1.97 -
2		2			2 -	1 40		2 –		1 66
1	_	1			1 - 0.00) 1.10		$\frac{2}{1-0.0}$		1.00
			20 40 6	0 90 100	1 0.00		7		J 1	
			20 40 6		0	1 2	2	0	1	2 3
	(a) 33-SGM	A-DL (E	Επιταχυνσ	ιογραφήμα	ta X: 331	J_T_SGM	A, Y: 3	3 D _L_SGI	MA)	
			δ_X (cm)	$\delta_{\rm Y}$ (cm)	V_X (k	$(N) \mid V_Y$	(kN)			
		min	-5.3	-2.88	-339	0.9 -53	327.9			
		max	14.11	22.93	4295	5.4 21	77.9	_		
Στάθιιη	ΜΛ-ΑΧ	N	[Λ-ΠΖ	ΜΛ-ΟΚ	.	ΑΛ-ΑΧ		Δ-ΠΖ	Α/	V-OK
	14 (50%)	3	(10.7%)	0 (0%	. ∥ .) ∥ 24	(42.9%)	3	(5.4%)		(0%)
3	0 (0%)	14	(10.7 %)	14 (50%	6) 13	(42.7%)	24	(42.9%)	17	(30.4%)
2	8 (28.6%) 2	(7.1%)	17 (60.7	%) 17	(30.4%)	7	(12.5%)	24 ((42.9%)
1	0 (0%)	0	(0%)	0 (0%	b) 0	(0%)	0	(0%)	0	(0%)
Στάθμη Μ	МҮ-АХ МҮ-П	Z MY-	OK MY-KZ	ΔA MY-ΔA	AY-A	Х АҮ-П	Z A	Y-OK AY-	ΚΔΑ	ΑΥ-ΔΑ
4 4	(18.2%) 1 (4.5	%) 0 ((0%) 0 (09	%) 13 (59.1	%) 7 (8	3%) 1 (1.1	%) 0	(0%) 1 (1.1%) 1	9 (21.6%)
2 0	(9.1%) 1 $(4.5)(0%)$ 0 $(0%)$	b) 2 (9	(9.1)	%) 17 (77.5 %) 19 (86.4	%) 9 (10 %) 2 (2.	$\begin{array}{c c} 2\% \end{array} = 2 & (2.3) \\ 3\% \end{array} = 1 & (1.1) \\ 0 & (2.3) \\ 0 & (2.$	%) 0 %) 2	(0%) 5 ((2.3%) 2 (5.4%) 2 2.3%) 2	8 (31.8%) 6 (29.5%)
Μάλη	(0%) = 0 (0%)	0) U (0 N		(0%) 0 (0%)	Drif	(0, 0) = 0 (0)	%) U	(0%) 0	$(0\%) \mid 0$	6 V (0%)
Ινιελιι							(70)			
4		4			4 -	1.92		4 -	1.34	
3		3			3 -	2.60) –	3 -		3.44
2		2			2 - 0.	43	-	2 -		3.26
1 –	_	1 –	1	_	1 - 0.0) 		1 - 0.0	0	
0 20 4	40 60 80 100	0 0	20 40 6	0 80 100	0	2	4	0	2	4
ΔΑ	🗾 ΚΔΑ 🗖	ok 🗾	🗾 ПΖ	AX						

(b) 33-SGMB-DL (Επιταχυνσιογραφήματα Χ: 33N_T_ATHA, Υ: 33**D**_L_SGMB)

			δ_X (cm)	$\delta_{\rm Y}$ (cm)	$ V_X(\mathbf{k}) $	N) V_Y	(kN)	-		
		min	-6.74	-12.17	-487	1.9 -28	379.1	_		
		max	17.49	2.07	2896	.4 492	32.6			
Στάθμη	MΔ-AX		ΜΔ-ΠΖ	MΔ-OI	< ∥	ΑΔ-ΑΧ		ΑΔ-ΠΖ	A	Δ-ΟΚ
4	16 (57.1	%) 5	(17.9%)	3 (10.7	%) 30	(53.6%) 7	(12.5%)) 3	(5.4%)
5 2	5 (17.9 9 (32.1	%) 18 %) 16	(64.3%) (57.1%)	5 (17.9 3 (10.7	%) 22 %) 27	(39.3%) (48.2%)) 27	(48.2%)) 5) 3	(8.9%)
1	0 (0%) 0	(0%)	0 (0%) 0	(0%)	0	(0%)	0	(0%)
Στάθμη Μ	MY-AX MY-	IZ MY-	ок му-кда	Α ΜΥ-ΔΑ	AY-A	Х АҮ-П2	Z AY	-OK AY-1	κΔΑ	ΑΥ-ΔΑ
4 5 3 0	(22.7%) 1 (4 (0%) 0 (0	5%) 0 (%) 0 (0%) 1 (4.5%) 0%) 0 (0%)	$\begin{array}{c cccc} b) & 7 & (31.8\%) \\ 0 & 6 & (27.3\%) \end{array}$	b) 9 (10. b) 0 (09	2%) 1 (1.1 %) 0 (0%	%) 0 6) 0	(0%) 1 (2 (0%) 0	.1%) 8 (0%) 6	3 (9.1%) 5 (6.8%)
2 2 1 0	(9.1%) 1 (4 (0%) 0 (0	5%) 1 (4 %) 0 (9	.5%) 0 (0%) 0%) 0 (0%)) 15 (68.2%) 0 (0%)	b) $\begin{vmatrix} 5 \\ 0 \end{vmatrix} = 5 (5.7) \\ 0 (0) \\ 0 \end{vmatrix}$	7%) 1 (1.1 %) 0 (0%	%) 1 (6) 0	1.1%) 1 (1 (0%) 0	(0%) 2 (0%) 0	5 (28.4%)) (0%)
Μέλη	δοκών (%)	Ν	Λέλη υπ/τα	ov (%)	Drift	s κατά Χ ((%)	Drif	ts κατά	í Y (%)
4		4			4 -	2	.07–	4 -		1.85
3		3			3 -	2	2.15	3 –		1.64
2		2			2 -	1.7	7 -	2 -	0.97	7 –
1 –	-	1 –		_	1 - 0.00		_	1 - 0.00)	_
	0 60 80 10	0 0	20 40 60	80 100	0	1 2	3	0	1	2 3
									.	
	(a) 33-SGI			ογραφήματ	a X: 33D	T_SGMA	$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$	N_L_SGN - 	ΛА)	
			δ_X (cm)	δ _Y (cm)		$N) \mid V_Y$	(KN)	<u> </u>		
		min	-7.49	-5.92	-3559	$2.7 \mid -47$ $2 \mid 240$	/29.5 12.2			
				1,10				<u> </u>		
Στάθμη	MΔ-AX	M	Δ-ΠΖ	ΜΔ-ΟΚ	<u> </u>	Δ-ΑΧ	A/	Δ-ΠΖ	AΔ	N-OK
4	12 (42.9)	%) 4) 7	$(14.3\%) \mid 1$ (2.5%)	10 (35.7%) 21 (75%)	b) 20	(35.7%)	7 14	(12.5%)	15 (33 ((26.8%)
2	20 (71.4	%) 6	(21.4%)	2 (7.1%)) 43	(76.8%)	7	(12.5%)	3	(5.4%)
1	0 (0%) 0	(0%)	0 (0%)	0	(0%)	0	(0%)	0	(0%)
Στάθμη Μ	MY-AX MY-I	IZ MY-C	ОК МҮ-КДА	MY-ΔA	AY-AX	Х АҮ-ПΖ	AY-	OK AY-F	ΔΑ	ΑΥ-ΔΑ
4 4 3 0	(18.2%) 0 (0 (0%) 0 (0	%) 1 (4. %) 1 (4.	5%) 2 (9.1% 5%) 2 (9.1%) 10 (45.5%) 19 (86.4%	b) 8 (9.1 b) 7 (8%	$ \begin{array}{c c} \% \\ \% \\ 6 \end{array} & \begin{array}{c} 0 & (0\%) \\ 2 & (2.3\%) \end{array} $) 1 (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	1.1%) 3 (3 2.3%) 2 (2	.4%) 12 .3%) 3	2 (13.6%) 5 (39.8%)
2 1 1 0	(4.5%) 0 (0 (0%) 0 (0	%) 0 (0 %) 0 (0	%) 1 (4.5% %) 0 (0%)) 10 (45.5% 0 (0%)	$\begin{array}{c c} 0 & 2 & (2.3) \\ 0 & 0 & (0\%) \end{array}$	%) 0 (0%) 6) 0 (0%)) 0 () 0 ((0%) 1 (1 (0%) 0 (.1%) 15 0%) 0	5 (17%) 0 (0%)
Μέλη δοκών (%) Μέλη υπ/των (%) Drifts κατά Χ (%) Drifts κατά Υ (%)										
4		4			4 -		5.88	4 -	1.99	-
3		3			3 -		5.83	3 -	3.1	9 -
2		2			2 - 0.4	9	_	2 - 0.	98	\vdash
1 –	_	1 –		_	1 - 0.00			1 - 0.00)	
0 20 4	0 60 80 10	0 00	20 40 60	80 100	0 2	4 6	8	0 2	4	6 8
ΔΑ	ΚΔΑ	UK UK	11Z	AX						

(b) 33-SGMB-DT (Επιταχυνσιογραφήματα Χ: 33**D**_T_ATHA, Υ: 33N_L_SGMB)

Στη συνέχεια καταγράφονται όλες οι διαρροές ή αστοχίες υποστυλωμάτων που εμφανίζονται στις παραπάνω αναλύσεις χρονοϊστορίας. Το πρώτο ψηφίο δηλώνει τον όροφο, τα δύο επόμενα τον αριθμό του υποστυλώματος, το γράμμα b ή e δηλώνει τη βάση ή την κορυφη του υποστυλώματος αντίστοιχα και το γράμμα y ή z δηλώνει τον τοπικό άξονα συντεταγμένων γύρω από τον οποίο ασκείται η ροπή κάμψης (IO, LS, CP) ή παράλληλα στον οποίο ασκείται η διάτμηση (BS, SH). Οι στάθμες επιτελεστικότας στις παρενθέσεις έχουν ως εξής: ΙΟ: Άμεση Χρήση, LS: Προστασία Ζωής, CP: Οιονεί κατάρρευση, BS: Διατμητική αστοχία μετά τη διαρροή του μέλους, SH: Διατμητική αστοχία πριν τη διαρροή του μέλους.

27-ATHA-N 403ey(IO) 410ey(IO) 201by(SH) 206by(SH) 416ey(SH) 418by(SH) 422by(SH)

27-ATHA-DL 202bz(IO) 403ey(IO) 201by(SH) 206by(SH) 211by(SH) 306ey(SH) 401by(SH) 418by(SH) 422by(SH)

27-ATHA-DT 222bz(IO) 403ey(IO) 409ez(IO) 405ey(BS) 201by(SH) 206by(SH) 401by(SH) 413ey(SH) 416ey(SH) 418by(SH)

27-DFNA-N 218bz(IO) 222bz(IO) 301bz(IO) 403ey(IO) 409ez(IO) 318by(BS) 321by(BS) 405ey(BS) 201by(SH) 206ez(SH) 206ey(SH) 215by(SH) 215by(SH) 220ey(SH) 221by(SH) 202ey(SH) 305by(SH) 305by(SH) 308bz(SH) 311by(SH) 315by(SH) 319by(SH) 320by(SH) 405by(SH) 413ey(SH)

27-DFNA-DL 218bz(IO) 301bz(IO) 403ey(IO) 409ez(IO) 405ey(BS) 201by(SH) 206ez(SH) 206ey(SH) 215by(SH) 221bz(SH) 221by(SH) 202by(SH) 305by(SH) 305ey(SH) 308ez(SH) 405by(SH) 413ey(SH)

- **27-DFNA-DT** 222bz(IO) 407ez(IO) 409ez(IO) 405ey(BS) 201by(SH) 206by(SH) 408bz(SH)
- **27-DMK-N** 206bz(IO) 222bz(IO) 403ey(IO) 407ez(IO) 201ey(SH) 308bz(SH) 401by(SH) 416ey(SH) 419by(SH) 422by(SH)
- **27-DMK-DL** 206bz(IO) 222bz(IO) 303by(IO) 403ey(IO) 407ez(IO) 410ey(IO) 201ez(SH) 201ey(SH) 308bz(SH) 401by(SH) 416ey(SH) 419by(SH) 422by(SH)
- **27-DMK-DT** 202bz(IO) 222bz(IO) 403ey(IO) 404ez(IO) 407ez(IO) 410ey(IO) 201by(SH) 206by(SH) 218ey(SH) 308bz(SH) 416ey(SH) 418by(SH) 419by(SH) 422by(SH)
- **27-FIX-N** 222bz(IO) 403ey(IO) 404ez(IO) 410ey(IO) 201ey(SH) 308ez(SH) 401by(SH) 415ez(SH) 416ey(SH) 418by(SH) 419by(SH) 422by(SH)
- **27-FIX-DL** 222bz(IO) 403ey(IO) 404ez(IO) 201ey(SH) 401by(SH) 402by(SH) 408bz(SH) 416ey(SH) 418by(SH) 419by(SH) 422by(SH)
- **27-FIX-DT** 206bz(IO) 222bz(IO) 403ey(IO) 409ez(IO) 410ey(IO) 407ez(LS) 404ey(BS) 405ey(BS) 410bz(BS) 201ez(SH) 201ey(SH) 301by(SH) 308ez(SH) 415ez(SH) 416bz(SH) 416ey(SH) 419by(SH) 422by(SH)
- **27-SGMA-N** 222bz(IO) 403ey(IO) 407ez(IO) 410ey(IO) 201by(SH) 202by(SH) 206by(SH) 211by(SH) 308bz(SH) 401by(SH) 405by(SH) 416ey(SH) 418by(SH)
- **27-SGMA-DL** 222bz(IO) 403ey(IO) 407ez(IO) 410ey(IO) 201by(SH) 202by(SH) 206by(SH) 211by(SH) 214by(SH) 401by(SH) 416ey(SH) 418by(SH) 421bz(SH)
- **27-SGMA-DT** 222bz(IO) 403ey(IO) 405ez(IO) 409bz(IO) 409ez(LS) 308bz(SH) 401by(SH) 405by(SH) 413ey(SH) 416ey(SH) 418by(SH) 419by(SH) 422by(SH)
- **27-SGMB-N** 222bz(IO) 303ey(IO) 309by(IO) 309ey(IO) 403by(IO) 403ey(IO) 407ez(IO) 409bz(IO) 409ez(IO) 410ey(IO) 201ey(SH) 221bz(SH) 308ez(SH) 315ez(SH) 410bz(SH) 412bz(SH) 413bz(SH) 415bz(SH) 415ez(SH) 416bz(SH) 416bz(SH) 416bz(SH) 416bz(SH) 417bz(SH) 418by(SH) 419bz(SH)
- **27-SGMB-DL** 222bz(IO) 309by(IO) 309ey(IO) 309ez(IO) 403ey(IO) 407ez(IO) 409bz(IO) 409ez(IO) 410ey(IO) 413ey(IO) 201ez(SH) 201ey(SH) 21bz(SH) 315ez(SH) 408bz(SH) 415bz(SH) 415ez(SH) 416ey(SH) 418by(SH) 421bz(SH)
- **27-SGMB-DT** 222bz(IO) 302bz(IO) 309by(IO) 309bz(IO) 309ey(IO) 403by(IO) 403ey(IO) 404ez(IO) 405ez(IO) 409ey(IO) 409ez(IO) 410ey(IO) 413ey(IO) 407ez(LS) 319by(BS) 322by(BS) 201ez(SH) 201ey(SH) 218ey(SH) 221bz(SH) 305by(SH) 306by(SH) 308ez(SH) 311by(SH) 314by(SH) 315by(SH) 315ez(SH) 316by(SH) 320by(SH) 321by(SH) 413bz(SH) 415bz(SH) 415ez(SH) 416ey(SH) 417bz(SH) 419bz(SH) 422by(SH)
- **28-ATHA-N** 403ey(IO) 405ez(IO) 410ey(IO) 206by(SH) 221bz(SH) 306ey(SH) 401by(SH) 416ey(SH) 418by(SH) 422by(SH)
- **28-ATHA-DL** 202bz(IO) 403ey(IO) 405ez(IO) 201by(SH) 206by(SH) 221bz(SH) 306ey(SH) 401by(SH) 416ey(SH) 418by(SH) 422by(SH)
- **28-ATHA-DT** 222bz(IO) 403ey(IO) 407ez(IO) 409ez(IO) 410ey(IO) 405ey(BS) 201by(SH) 205by(SH) 206by(SH) 211by(SH) 401by(SH) 413ey(SH) 416ey(SH) 418by(SH) 422by(SH)
- **28-DFNA-N** 218bz(IO) 222bz(IO) 307bz(IO) 309bz(IO) 403ey(IO) 409ez(IO) 318by(BS) 405ey(BS) 201by(SH) 206ez(SH) 206ey(SH) 214ey(SH) 215by(SH) 220ey(SH) 222ey(SH) 301by(SH) 302by(SH) 305by(SH) 305ey(SH) 308bz(SH) 311by(SH) 313by(SH) 315by(SH) 319by(SH) 320by(SH) 321by(SH) 405by(SH) 413ey(SH)
- **28-DFNA-DL** 218bz(IO) 222bz(IO) 303ey(IO) 307bz(IO) 309bz(IO) 403ey(IO) 409ez(LS) 318by(BS) 405ey(BS) 201by(SH) 206ez(SH) 206ey(SH) 214ey(SH) 215by(SH) 221bz(SH) 222ey(SH) 301by(SH) 302by(SH) 305by(SH) 305ey(SH) 308ez(SH) 311by(SH) 315by(SH) 319by(SH) 320by(SH) 321by(SH) 322by(SH) 405by(SH) 413ey(SH)
- **28-DFNA-DT** 222bz(IO) 404ez(IO) 407ez(IO) 409ez(IO) 410ey(IO) 405ey(BS) 201by(SH) 206by(SH) 305by(SH)
305ey(SH) 308bz(SH) 405by(SH) 413ey(SH) 416ey(SH) 418by(SH)

- **28-DMK-N** 206bz(IO) 222bz(IO) 303by(IO) 403ey(IO) 407ez(IO) 410ey(IO) 201ey(SH) 308bz(SH) 401by(SH) 416ey(SH) 418by(SH) 419by(SH) 422by(SH)
- **28-DMK-DL** 206bz(IO) 222bz(IO) 303by(IO) 403ey(IO) 407ez(IO) 410ey(IO) 201ey(SH) 218ey(SH) 221ez(SH) 308bz(SH) 401by(SH) 416ey(SH) 418by(SH) 419by(SH) 422by(SH)
- **28-DMK-DT** 202bz(IO) 222bz(IO) 403ey(IO) 404ez(IO) 407ez(IO) 410ey(IO) 201by(SH) 206by(SH) 218by(SH) 308bz(SH) 416ey(SH) 419by(SH) 422by(SH)
- **28-FIX-N** 222bz(IO) 403by(IO) 403ey(IO) 404ez(IO) 405ez(IO) 407ez(IO) 409ez(IO) 410by(IO) 410ey(IO) 201ey(SH) 308bz(SH) 408bz(SH) 415ez(SH) 416bz(SH) 416ey(SH) 418by(SH) 419by(SH) 421bz(SH) 422by(SH)
- **28-FIX-DL** 222bz(IO) 403ey(IO) 404ez(IO) 405ez(IO) 407ez(IO) 201ey(SH) 402by(SH) 415ez(SH) 416ey(SH) 418by(SH) 419by(SH) 422by(SH)
- **28-FIX-DT** 206bz(IO) 218bz(IO) 222bz(IO) 304bz(IO) 309bz(IO) 403by(IO) 403ey(IO) 405ez(IO) 410ey(IO) 407ez(LS) 302by(BS) 404ey(BS) 410bz(BS) 201ez(SH) 201ey(SH) 218ey(SH) 221bz(SH) 305by(SH) 306by(SH) 311by(SH) 314by(SH) 315by(SH) 316by(SH) 319by(SH) 320by(SH) 321by(SH) 322by(SH) 413bz(SH) 414ez(SH) 415ez(SH) 416bz(SH) 416ey(SH) 419by(SH) 421bz(SH) 422by(SH)
- **28-SGMA-N** 222bz(IO) 403ey(IO) 407ez(IO) 410ey(IO) 201by(SH) 202by(SH) 206by(SH) 211by(SH) 308ez(SH) 401by(SH) 405by(SH) 416ey(SH) 419by(SH)
- **28-SGMA-DL** 222bz(IO) 403ey(IO) 407ez(IO) 410ey(IO) 201by(SH) 206by(SH) 211by(SH) 221bz(SH) 308bz(SH) 401by(SH) 414by(SH) 416ey(SH)
- **28-SGMA-DT** 222bz(IO) 403by(IO) 403ey(IO) 405ez(IO) 407ez(IO) 410ey(IO) 409ez(LS) 201ey(SH) 308bz(SH) 405by(SH) 413ey(SH) 416ey(SH) 418by(SH) 419by(SH) 422by(SH)
- **28-SGMB-N** 222bz(IO) 303by(IO) 303ey(IO) 307ey(IO) 309by(IO) 309ey(IO) 403by(IO) 403ey(IO) 405ez(IO) 409bz(IO) 410ey(IO) 413ey(IO) 407ez(LS) 409ez(LS) 201ez(SH) 201ey(SH) 221bz(SH) 308bz(SH) 308ez(SH) 315ez(SH) 320ez(SH) 402by(SH) 410bz(SH) 412bz(SH) 413bz(SH) 415bz(SH) 415ez(SH) 416bz(SH) 416ey(SH) 417bz(SH) 418by(SH) 419bz(SH) 420ez(SH) 420ez(SH)
- **28-SGMB-DL** 222bz(IO) 303by(IO) 303ey(IO) 307by(IO) 307ey(IO) 309by(IO) 309ey(IO) 403ey(IO) 405ez(IO) 409bz(IO) 410ey(IO) 413ey(IO) 407ez(LS) 409ez(LS) 201ey(SH) 221bz(SH) 308bz(SH) 308ez(SH) 315ez(SH) 320ez(SH) 415bz(SH) 415ez(SH) 416ey(SH) 418by(SH) 420bz(SH) 420ez(SH) 421bz(SH)
- **28-SGMB-DT** 222bz(IO) 302bz(IO) 303by(IO) 303ey(IO) 304bz(IO) 307bz(IO) 307ey(IO) 309by(IO) 309bz(IO) 309ey(IO) 312bz(IO) 403by(IO) 403ey(IO) 404ez(IO) 405ez(IO) 409bz(IO) 409ez(IO) 410ey(IO) 413ey(IO) 407ez(CP) 319by(BS) 201ez(SH) 201ey(SH) 206ez(SH) 218ey(SH) 221bz(SH) 221ey(SH) 305by(SH) 306by(SH) 308bz(SH) 308ez(SH) 311by(SH) 314by(SH) 315by(SH) 315ez(SH) 316by(SH) 318by(SH) 320by(SH) 320ez(SH) 321ez(SH) 322by(SH) 413bz(SH) 415bz(SH) 415ez(SH) 416ey(SH) 419bz(SH) 420bz(SH) 420ez(SH) 422by(SH)
- **29-ATHA-N** 303by(IO) 403ey(IO) 405ez(IO) 410ey(IO) 201ey(SH) 211ey(SH) 221bz(SH) 308bz(SH) 401by(SH) 416ey(SH) 418by(SH) 421by(SH) 422by(SH)
- **29-ATHA-DL** 403ey(IO) 410ey(IO) 405ey(BS) 201by(SH) 206by(SH) 219bz(SH) 221bz(SH) 401by(SH) 416ey(SH) 418by(SH) 422by(SH)
- **29-ATHA-DT** 203bz(IO) 218bz(IO) 222bz(IO) 403ey(IO) 404ez(IO) 407ez(IO) 409ez(IO) 410ey(IO) 405ey(BS) 201by(SH) 205by(SH) 206by(SH) 211by(SH) 221bz(SH) 222ey(SH) 308bz(SH) 322by(SH) 401by(SH) 413ey(SH) 416ey(SH) 418by(SH) 422by(SH)
- **29-DFNA-N** 222bz(IO) 301bz(IO) 303by(IO) 303ey(IO) 403ey(IO) 409ez(IO) 405ey(BS) 206ez(SH) 206ey(SH) 214ey(SH) 222ey(SH) 305by(SH) 305ey(SH) 308bz(SH) 311by(SH) 313by(SH) 314by(SH) 315by(SH) 318by(SH) 319by(SH) 320by(SH) 322by(SH) 405by(SH) 408bz(SH) 413ey(SH) 418by(SH) 421by(SH) 422by(SH)
- **29-DFNA-DL** 303by(IO) 303ey(IO) 307bz(IO) 403ey(IO) 409ez(IO) 301by(BS) 405ey(BS) 202ey(SH) 206ey(SH) 214ey(SH) 221bz(SH) 222ez(SH) 222ey(SH) 305by(SH) 305ey(SH) 308bz(SH) 308ez(SH) 311by(SH) 313by(SH) 314by(SH) 315by(SH) 318by(SH) 319by(SH) 320by(SH) 321by(SH) 322by(SH) 405by(SH) 413ey(SH) 418by(SH) 421by(SH) 422by(SH)
- **29-DFNA-DT** 222bz(IO) 404ez(IO) 407ez(IO) 409ez(IO) 410ey(IO) 405ey(BS) 201by(SH) 205by(SH) 205ey(SH) 206by(SH) 305by(SH) 305by(SH) 308bz(SH) 405by(SH) 408bz(SH) 413ey(SH) 416ey(SH) 418by(SH) 421bz(SH)
- **29-DMK-N** 202bz(IO) 222bz(IO) 303by(IO) 403ey(IO) 407ez(IO) 410ey(IO) 201by(SH) 206by(SH) 211by(SH) 214by(SH) 215by(SH) 218by(SH) 220by(SH) 308bz(SH) 416ey(SH) 422by(SH)

29-DMK-DL 202bz(IO) 222bz(IO) 303by(IO) 403ey(IO) 407ez(IO) 410ey(IO) 201by(SH) 206by(SH) 211by(SH) 214by(SH) 215by(SH) 218by(SH) 220by(SH) 221bz(SH) 221ez(SH) 308bz(SH) 310bz(SH) 416ey(SH) 422by(SH)

- **29-DMK-DT** 222bz(IO) 303by(IO) 403ey(IO) 404ez(IO) 407ez(IO) 410ey(IO) 201by(SH) 206by(SH) 211by(SH) 218by(SH) 308bz(SH) 416ey(SH) 419by(SH) 422by(SH)
- **29-FIX-N** 403by(IO) 403ey(IO) 407ez(IO) 410ey(IO) 416ez(IO) 404ey(BS) 201ey(SH) 206by(SH) 206ez(SH) 214by(SH) 221bz(SH) 222by(SH) 308bz(SH) 314by(SH) 316by(SH) 408bz(SH) 413bz(SH) 415ez(SH) 416bz(SH) 416by(SH) 419by(SH) 421bz(SH)
- **29-FIX-DL** 222bz(IO) 403ey(IO) 404ez(IO) 407ez(IO) 416ez(IO) 201ey(SH) 206by(SH) 214by(SH) 218ey(SH) 221bz(SH)

314by(SH) 316by(SH) 415ez(SH) 416by(SH) 419by(SH) 421bz(SH)

- **29-FIX-DT** 206bz(IO) 222bz(IO) 304bz(IO) 309bz(IO) 312bz(IO) 403by(IO) 403ey(IO) 405ez(IO) 410by(IO) 410ey(IO) 407ez(LS) 302by(BS) 404ey(BS) 201ey(SH) 218ey(SH) 221bz(SH) 305by(SH) 306by(SH) 308bz(SH) 310by(SH) 311by(SH) 314by(SH) 315by(SH) 316by(SH) 318by(SH) 319by(SH) 320by(SH) 320ey(SH) 321by(SH) 322by(SH) 408bz(SH) 413bz(SH) 416ez(SH) 416ey(SH) 419by(SH) 420ez(SH) 421bz(SH) 422by(SH)
- **29-SGMA-N** 206bz(IO) 222bz(IO) 403by(IO) 403ey(IO) 404ez(IO) 405ez(IO) 407ez(IO) 410ey(IO) 422bz(IO) 201ey(SH) 218ey(SH) 308ez(SH) 311ey(SH) 401by(SH) 405by(SH) 410bz(SH) 414by(SH) 416ey(SH) 418by(SH) 419by(SH) 420by(SH)
- **29-SGMA-DL** 206bz(IO) 222bz(IO) 303ey(IO) 403by(IO) 403ey(IO) 404bz(IO) 404ez(IO) 405ez(IO) 407ez(IO) 410ey(IO) 422bz(IO) 201ey(SH) 218ey(SH) 221bz(SH) 308ez(SH) 311ey(SH) 315ez(SH) 401by(SH) 405by(SH) 415ez(SH) 416ey(SH) 418by(SH) 419by(SH) 420by(SH)
- **29-SGMA-DT** 222bz(IO) 403by(IO) 403ey(IO) 405ez(IO) 407ez(IO) 409bz(IO) 410ey(IO) 409ez(LS) 201by(SH) 201ey(SH) 206by(SH) 301by(SH) 305by(SH) 308ez(SH) 405by(SH) 413ey(SH) 416ey(SH) 418by(SH) 419by(SH) 421by(SH)
- **29-SGMB-N** 209by(IO) 209ey(IO) 222bz(IO) 302bz(IO) 303ey(IO) 307ey(IO) 309by(IO) 309ey(IO) 309ez(IO) 403by(IO) 403ey(IO) 405ez(IO) 409bz(IO) 410ey(IO) 413ey(IO) 407ez(LS) 409ez(LS) 319by(BS) 322by(BS) 201ey(SH) 208bz(SH) 215ey(SH) 217bz(SH) 218ey(SH) 219bz(SH) 221bz(SH) 221ey(SH) 306by(SH) 308bz(SH) 308ez(SH) 311by(SH) 314by(SH) 315by(SH) 315ez(SH) 316by(SH) 320by(SH) 401by(SH) 402by(SH) 405by(SH) 412bz(SH) 413bz(SH) 415bz(SH) 415ez(SH) 416ey(SH) 418by(SH) 422by(SH)
- **29-SGMB-DL** 222bz(IO) 302bz(IO) 303ey(IO) 309by(IO) 309ey(IO) 309ez(IO) 312bz(IO) 403ey(IO) 405ez(IO) 409bz(IO) 410ey(IO) 413ey(IO) 407ez(LS) 409ez(LS) 322by(BS) 201ez(SH) 201ey(SH) 215ey(SH) 218ey(SH) 221bz(SH) 206by(SH) 306by(SH) 310by(SH) 311by(SH) 314by(SH) 315by(SH) 315ez(SH) 316by(SH) 319by(SH) 320by(SH) 402by(SH) 408bz(SH) 415bz(SH) 415ez(SH) 416ey(SH) 418by(SH) 421bz(SH)
- **29-SGMB-DT** 209by(IO) 209ey(IO) 222bz(IO) 303by(IO) 303bz(IO) 303ey(IO) 304bz(IO) 307by(IO) 307bz(IO) 307bz(IO) 307ey(IO) 309by(IO) 309ey(IO) 310bz(IO) 312bz(IO) 403by(IO) 403ey(IO) 404ez(IO) 409bz(IO) 409ey(IO) 409ez(IO) 410ey(IO) 413ey(IO) 309bz(LS) 407ez(CP) 302by(BS) 319by(BS) 322by(BS) 405ey(BS) 201ez(SH) 201ey(SH) 206ez(SH) 208bz(SH) 218ey(SH) 221bz(SH) 301by(SH) 305by(SH) 306by(SH) 308bz(SH) 308bz(SH) 310bz(SH) 313by(SH) 314by(SH) 315by(SH) 315ez(SH) 316by(SH) 318by(SH) 320by(SH) 320ez(SH) 321bz(SH) 321by(SH) 322ey(SH) 410bz(SH) 413bz(SH) 415bz(SH) 415ez(SH) 416ey(SH) 417bz(SH) 420ez(SH) 420ez(SH) 422by(SH)
- **30-ATHA-N** 303by(IO) 403by(IO) 403ey(IO) 407ez(IO) 410ey(IO) 405ey(BS) 201by(SH) 206by(SH) 208bz(SH) 221bz(SH) 308bz(SH) 321bz(SH) 401by(SH) 416ey(SH) 418by(SH) 422by(SH)
- **30-ATHA-DL** 206by(IO) 222bz(IO) 403ey(IO) 410ey(IO) 405ey(BS) 201ey(SH) 208bz(SH) 211ey(SH) 217bz(SH) 219bz(SH) 219bz(SH) 212bz(SH) 308bz(SH) 401by(SH) 416ey(SH) 418by(SH) 422by(SH)
- **30-ATHA-DT** 218bz(IO) 503by(IO) 303bz(IO) 309bz(IO) 312bz(IO) 403ey(IO) 407ez(IO) 410ey(IO) 413ey(IO) 409ez(LS) 405ey(BS) 201ey(SH) 202ey(SH) 206ez(SH) 206ey(SH) 210ey(SH) 211ey(SH) 214ey(SH) 221bz(SH) 222by(SH) 305by(SH) 308bz(SH) 308by(SH) 313by(SH) 315by(SH) 316by(SH) 318by(SH) 319by(SH) 320by(SH) 321by(SH) 322by(SH) 401by(SH) 413ey(SH) 415ez(SH) 422by(SH)
- **30-DFNA-N** 222bz(IO) 301bz(IO) 303ey(IO) 403ey(IO) 409ez(IO) 410ey(IO) 405ey(BS) 206ez(SH) 206ey(SH) 214ey(SH) 217bz(SH) 221bz(SH) 222ey(SH) 305by(SH) 305ey(SH) 308bz(SH) 311by(SH) 313by(SH) 314by(SH) 315by(SH) 319by(SH) 320by(SH) 321by(SH) 322by(SH) 405by(SH) 413ey(SH) 418by(SH) 419by(SH) 421bz(SH) 421by(SH) 422by(SH)
- **30-DFNA-DL** 222bz(IO) 303ey(IO) 403ey(IO) 409ez(IO) 301by(BS) 405ey(BS) 202ey(SH) 206ez(SH) 206ey(SH) 208bz(SH) 214ey(SH) 217bz(SH) 219bz(SH) 221bz(SH) 222ey(SH) 305by(SH) 305ey(SH) 308bz(SH) 308ez(SH) 311by(SH) 313by(SH) 314by(SH) 315by(SH) 318by(SH) 319by(SH) 320by(SH) 321by(SH) 322by(SH) 405by(SH) 413ey(SH) 419bz(SH) 419by(SH) 421by(SH) 422by(SH)
- **30-DFNA-DT** 218bz(IO) 222bz(IO) 303by(IO) 303bz(IO) 303ey(IO) 304bz(IO) 310bz(IO) 312bz(IO) 317bz(IO) 403ey(IO) 410ey(IO) 307bz(LS) 309bz(LS) 409ez(CP) 405ey(BS) 201by(SH) 202ey(SH) 206by(SH) 206ez(SH) 206ey(SH) 214ey(SH) 221bz(SH) 222ey(SH) 301by(SH) 305by(SH) 305ey(SH) 308bz(SH) 308by(SH) 311by(SH) 313by(SH) 315by(SH) 316by(SH) 318by(SH) 319by(SH) 320by(SH) 321by(SH) 322by(SH) 405by(SH) 408bz(SH) 413ey(SH) 418by(SH) 420ez(SH) 421bz(SH)
- **30-DMK-N** 202bz(IO) 222bz(IO) 303by(IO) 403ey(IO) 407ez(IO) 410ey(IO) 201by(SH) 205by(SH) 206by(SH) 211by(SH) 214by(SH) 215by(SH) 219by(SH) 219by(SH) 220by(SH) 221ez(SH) 308bz(SH) 416ey(SH) 422by(SH)
- **30-DMK-DL** 202bz(IO) 222bz(IO) 303by(IO) 403ey(IO) 404ey(IO) 407ez(IO) 410ey(IO) 413ey(IO) 201by(SH) 205by(SH) 206by(SH) 211by(SH) 214by(SH) 215by(SH) 218by(SH) 219by(SH) 220by(SH) 221bz(SH) 221by(SH) 221ez(SH) 308bz(SH) 416ey(SH) 422by(SH)
- **30-DMK-DT** 222bz(IO) 303by(IO) 403ey(IO) 404ez(IO) 405ez(IO) 409ez(IO) 410ey(IO) 407ez(LS) 201by(SH) 206by(SH) 211by(SH) 218by(SH) 221ez(SH) 221ey(SH) 308bz(SH) 416ey(SH) 419by(SH) 422by(SH)
- **30-FIX-N** 222by(IO) 222bz(IO) 322bz(IO) 403by(IO) 403ey(IO) 404bz(IO) 407bz(IO) 410ey(IO) 416ez(IO) 407ez(LS) 219bz(BS) 404ey(BS) 201ey(SH) 206by(SH) 208bz(SH) 214by(SH) 215ey(SH) 217bz(SH) 218ey(SH) 220by(SH) 221bz(SH) 302by(SH) 306by(SH) 311by(SH) 314by(SH) 315by(SH) 316by(SH) 319by(SH) 320by(SH) 413bz(SH) 415ez(SH) 416bz(SH) 416by(SH) 418by(SH) 419by(SH)

30-FIX-DL 222bz(IO) 322bz(IO) 403by(IO) 403ey(IO) 407bz(IO) 407ez(LS) 404ey(BS) 201ey(SH) 206by(SH) 214by(SH) 215ey(SH) 218ey(SH) 220by(SH) 221bz(SH) 302by(SH) 305by(SH) 306by(SH) 311by(SH) 314by(SH) 315by(SH) 320by(SH) 405by(SH) 413bz(SH) 415ez(SH) 416ey(SH) 417bz(SH) 418by(SH) 419by(SH)

- **30-FIX-DT** 202bz(IO) 219by(IO) 222bz(IO) 302bz(IO) 403by(IO) 403ey(IO) 410by(IO) 410ey(IO) 407ez(LS) 322by(BS) 404ey(BS) 201by(SH) 201ez(SH) 205by(SH) 206by(SH) 208bz(SH) 211by(SH) 214by(SH) 215by(SH) 217bz(SH) 218ey(SH) 221bz(SH) 301by(SH) 305by(SH) 306by(SH) 308bz(SH) 311by(SH) 312by(SH) 312by(SH) 315by(SH) 316by(SH) 320ey(SH) 321by(SH) 408bz(SH) 415ez(SH) 416bz(SH) 416ey(SH) 422by(SH)
- **30-SGMA-N** 222bz(IO) 303ey(IO) 403by(IO) 403ey(IO) 405ez(IO) 407ez(IO) 410ey(IO) 201by(SH) 202by(SH) 206by(SH) 211by(SH) 214by(SH) 218ey(SH) 308bz(SH) 308ez(SH) 405by(SH) 410bz(SH) 415ez(SH) 416ey(SH) 418by(SH) 419by(SH)
- **30-SGMA-DL** 201by(IO) 202by(IO) 204by(IO) 222bz(IO) 303ey(IO) 403ey(IO) 410ey(IO) 201by(SH) 202by(SH) 203bz(SH) 205bz(SH) 206by(SH) 208bz(SH) 211by(SH) 212bz(SH) 214by(SH) 217bz(SH) 218bz(SH) 218ey(SH) 219bz(SH) 221bz(SH) 308ez(SH) 416ey(SH) 418by(SH) 419by(SH) 422by(SH)
- **30-SGMA-DT** 222bz(IO) 303by(IO) 303ey(IO) 403by(IO) 403ey(IO) 404ey(IO) 405ez(IO) 409ez(IO) 410ey(IO) 206by(BS) 201by(SH) 301by(SH) 305by(SH) 308bz(SH) 308ez(SH) 405by(SH) 413ey(SH) 416ey(SH) 418by(SH) 419by(SH) 421by(SH) 422by(SH)
- **30-SGMB-N** 209by(IO) 209ey(IO) 222bz(IO) 302bz(IO) 303ey(IO) 304by(IO) 307bz(IO) 307ey(IO) 309bz(IO) 309ey(IO) 309ez(IO) 312bz(IO) 403by(IO) 403ey(IO) 404ez(IO) 405ez(IO) 409bz(IO) 410ey(IO) 412ey(IO) 413ey(IO) 416ey(IO) 417ey(IO) 307by(LS) 309by(LS) 409ez(LS) 407ez(CP) 310ez(BS) 319by(BS) 201ey(SH) 206ez(SH) 208bz(SH) 215ey(SH) 218ey(SH) 221bz(SH) 221ey(SH) 301bz(SH) 302bz(SH) 305bz(SH) 305bz(SH) 305by(SH) 306by(SH) 308bz(SH) 310bz(SH) 311bz(SH) 311by(SH) 312bz(SH) 312bz(SH) 315by(SH) 315ez(SH) 316bz(SH) 316bz(SH) 317bz(SH) 318bz(SH) 318by(SH) 319bz(SH) 320bz(SH) 320by(SH) 321bz(SH) 312bz(SH) 312bz(SH) 402by(SH) 405by(SH) 410bz(SH) 412bz(SH) 415bz(SH) 415bz(SH) 416bz(SH) 416bz(SH) 416bz(SH) 417bz(SH) 418by(SH) 421by(SH) 422by(SH)
- **30-SGMB-DL** 222bz(IO) 302bz(IO) 303ey(IO) 304bz(IO) 307by(IO) 307bz(IO) 307ey(IO) 309by(IO) 309bz(IO) 309ez(IO) 309ez(IO) 312bz(IO) 403ey(IO) 403ey(IO) 404ez(IO) 405ez(IO) 409bz(IO) 410ey(IO) 413ey(IO) 409ez(LS) 407ez(CP) 319by(BS) 410bz(BS) 201ey(SH) 208bz(SH) 218ey(SH) 221bz(SH) 221ey(SH) 303bz(SH) 305by(SH) 306by(SH) 308bz(SH) 310ez(SH) 311by(SH) 314by(SH) 315by(SH) 315ez(SH) 316by(SH) 318by(SH) 320ez(SH) 321bz(SH) 322by(SH) 402by(SH) 405by(SH) 415bz(SH) 415ez(SH) 416ey(SH) 418by(SH) 421bz(SH) 421by(SH) 422by(SH)
- **30-SGMB-DT** 222bz(IO) 302bz(IO) 303ey(IO) 304bz(IO) 307by(IO) 307bz(IO) 307ey(IO) 309by(IO) 309bz(IO) 309bz(IO) 309ey(IO) 312bz(IO) 403by(IO) 403ey(IO) 404ez(IO) 409bz(IO) 409ez(IO) 410ey(IO) 412ey(IO) 413ey(IO) 416ey(IO) 407ez(CP) 310ez(BS) 319by(BS) 322by(BS) 405ey(BS) 201ey(SH) 206by(SH) 206ez(SH) 208bz(SH) 211by(SH) 214by(SH) 218ey(SH) 221bz(SH) 301bz(SH) 303bz(SH) 305by(SH) 306by(SH) 308bz(SH) 308ez(SH) 310bz(SH) 310by(SH) 311by(SH) 312bz(SH) 313bz(SH) 313bz(SH) 314by(SH) 315by(SH) 315ez(SH) 316bz(SH) 316by(SH) 317bz(SH) 318bz(SH) 318by(SH) 319bz(SH) 320bz(SH) 320bz(SH) 320bz(SH) 321bz(SH) 412bz(SH) 413bz(SH) 415bz(SH) 416bz(SH) 416ey(SH) 417bz(SH) 420ez(SH) 422by(SH)
- **31-ATHA-N** 303by(IO) 303ey(IO) 403by(IO) 403ey(IO) 407ez(IO) 409ez(IO) 410ey(IO) 405ey(BS) 201by(SH) 206by(SH) 208bz(SH) 219bz(SH) 221bz(SH) 308bz(SH) 308ez(SH) 321bz(SH) 401by(SH) 405by(SH) 413ey(SH) 416ey(SH) 418by(SH) 422by(SH)
- **31-ATHA-DL** 201by(IO) 202by(IO) 204by(IO) 206by(IO) 403ey(IO) 409ez(IO) 410ey(IO) 405ey(BS) 201by(SH) 203bz(SH) 205bz(SH) 206by(SH) 208bz(SH) 210bz(SH) 217bz(SH) 218bz(SH) 219bz(SH) 221bz(SH) 308bz(SH) 401by(SH) 405by(SH) 413ey(SH) 416ey(SH) 418by(SH) 422by(SH)
- **31-ATHA-DT** 218bz(IO) 303by(IO) 303bz(IO) 304bz(IO) 309bz(IO) 317bz(IO) 403by(IO) 403ey(IO) 407ez(IO) 410ey(IO) 409ez(LS) 405ey(BS) 201by(SH) 201ey(SH) 202ey(SH) 206ez(SH) 206ey(SH) 208bz(SH) 211ey(SH) 214ey(SH) 219ez(SH) 221bz(SH) 222by(SH) 222ey(SH) 301by(SH) 302by(SH) 305by(SH) 308bz(SH) 308bz(SH) 312by(SH) 313by(SH) 316by(SH) 318by(SH) 319by(SH) 320by(SH) 321bz(SH) 321by(SH) 322by(SH) 413ey(SH) 416ey(SH) 418by(SH) 422by(SH)
- **31-DFNA-N** 222bz(IO) 301bz(IO) 303by(IO) 303ey(IO) 307bz(IO) 403ey(IO) 409ez(LS) 405ey(BS) 206ez(SH) 206ey(SH) 214ey(SH) 217bz(SH) 219bz(SH) 221bz(SH) 222ey(SH) 305by(SH) 305ey(SH) 308bz(SH) 311by(SH) 313by(SH) 315by(SH) 319by(SH) 320by(SH) 321by(SH) 322by(SH) 405by(SH) 408bz(SH) 413ey(SH) 418by(SH) 419by(SH) 422by(SH)
- **31-DFNA-DL** 201by(IO) 202by(IO) 204by(IO) 206by(IO) 222bz(IO) 301bz(IO) 303ey(IO) 307bz(IO) 309bz(IO) 403ey(IO) 409ez(IO) 410ey(IO) 405ey(BS) 202ey(SH) 206ez(SH) 206ey(SH) 208bz(SH) 210bz(SH) 214ey(SH) 217bz(SH) 219bz(SH) 221bz(SH) 222ez(SH) 222ey(SH) 303bz(SH) 305by(SH) 305ey(SH) 308bz(SH) 308ez(SH) 310bz(SH) 311by(SH) 313by(SH) 315by(SH) 319bz(SH) 319bz(SH) 320by(SH) 321bz(SH) 321by(SH) 312by(SH) 312by(SH) 413ey(SH) 418by(SH) 419by(SH) 421by(SH) 422by(SH)
- **31-DFNA-DT** 218bz(IO) 222bz(IO) 303by(IO) 303bz(IO) 303ey(IO) 304bz(IO) 310bz(IO) 312bz(IO) 317bz(IO) 403ey(IO) 410ey(IO) 307bz(LS) 309bz(LS) 409ez(CP) 405ey(BS) 201by(SH) 202ey(SH) 204ey(SH) 206by(SH) 214ey(SH) 219ez(SH) 221bz(SH) 222ey(SH) 301by(SH) 305by(SH) 305ey(SH) 306by(SH) 308bz(SH) 308by(SH) 311by(SH) 313by(SH) 315by(SH) 316by(SH) 318by(SH) 319by(SH) 322by(SH) 322by(SH) 322by(SH) 302by(SH) 322by(SH) 322by(SH) 316by(SH) 316by(SH) 318by(SH) 319by(SH) 322by(SH) 322by(SH) 322by(SH) 322by(SH) 312by(SH) 322by(SH) 32by(SH) 32by

401by(SH) 405by(SH) 408bz(SH) 413ey(SH) 415ez(SH) 418by(SH) 420ez(SH) 422by(SH)

- **31-DMK-N** 202bz(IO) 222bz(IO) 303by(IO) 403ey(IO) 407ez(IO) 410ey(IO) 201by(SH) 205by(SH) 206by(SH) 211by(SH) 214by(SH) 215by(SH) 219by(SH) 219by(SH) 220by(SH) 221by(SH) 221ez(SH) 308bz(SH) 308ez(SH) 416ey(SH) 422by(SH)
- **31-DMK-DL** 202bz(IO) 303by(IO) 403ey(IO) 404ey(IO) 407ez(IO) 410ey(IO) 413ey(IO) 416ey(IO) 222bz(LS) 201by(SH) 205by(SH) 206by(SH) 211by(SH) 214by(SH) 215by(SH) 218by(SH) 219by(SH) 219ez(SH) 220by(SH) 221bz(SH) 221by(SH) 212ez(SH) 308bz(SH) 310bz(SH) 312bz(SH) 314bz(SH) 315bz(SH) 415ez(SH) 416ey(SH) 422by(SH) 416ey(SH) 416ey(SH) 422by(SH) 416ey(SH) 416ey(SH) 422by(SH) 416ey(SH) 416ey(SH) 416ey(SH) 416ey(SH) 416ey(SH) 422by(SH) 416ey(SH) 416e
- **31-DMK-DT** 204bz(IO) 207bz(IO) 307bz(IO) 403ey(IO) 404ez(IO) 405ez(IO) 409ez(IO) 410ey(IO) 207ez(LS) 222bz(LS) 407ez(LS) 201by(SH) 202by(SH) 202ey(SH) 203by(SH) 204ey(SH) 205by(SH) 206by(SH) 206ez(SH) 206ey(SH) 210by(SH) 211by(SH) 214by(SH) 215by(SH) 218by(SH) 219by(SH) 220by(SH) 221ez(SH) 222ez(SH) 222ey(SH) 301by(SH) 305by(SH) 308bz(SH) 308ez(SH) 310bz(SH) 314bz(SH) 320bz(SH) 320by(SH) 322by(SH) 416ey(SH) 422by(SH)
- **31-FIX-N** 222by(IO) 222bz(IO) 302bz(IO) 303bz(IO) 304bz(IO) 307bz(IO) 309bz(IO) 310bz(IO) 312bz(IO) 403by(IO) 403ey(IO) 405ez(IO) 407bz(IO) 409bz(IO) 409ez(IO) 416ez(IO) 407ez(LS) 219bz(BS) 322by(BS) 404ey(BS) 201ey(SH) 206by(SH) 208bz(SH) 217bz(SH) 218ey(SH) 221bz(SH) 221ey(SH) 305by(SH) 306by(SH) 308by(SH) 308ez(SH) 311by(SH) 313by(SH) 314by(SH) 314ey(SH) 315by(SH) 316by(SH) 318by(SH) 319by(SH) 320by(SH) 320ey(SH) 321by(SH) 322ey(SH) 405by(SH) 413bz(SH) 415ez(SH) 416bz(SH) 416by(SH) 418by(SH) 419bz(SH)
- **31-FIX-DL** 222bz(IO) 303bz(IO) 304bz(IO) 307bz(IO) 310bz(IO) 312bz(IO) 403by(IO) 403ey(IO) 405ez(IO) 407bz(IO) 409bz(IO) 409ez(IO) 410ey(IO) 413ey(IO) 309bz(LS) 407ez(LS) 322by(BS) 404ey(BS) 201ez(SH) 201ey(SH) 206by(SH) 206ez(SH) 215ey(SH) 218ey(SH) 221bz(SH) 221ey(SH) 301by(SH) 302by(SH) 305by(SH) 306by(SH) 308bz(SH) 313by(SH) 313by(SH) 314by(SH) 314ey(SH) 315by(SH) 316by(SH) 318by(SH) 319by(SH) 320ey(SH) 320ey(SH) 322ey(SH) 405by(SH) 413bz(SH) 415ez(SH) 416by(SH) 418by(SH) 420ez(SH) 421bz(SH)
- **31-FIX-DT** 207bz(IO) 209bz(IO) 222by(IO) 307ey(IO) 307ez(IO) 403by(IO) 403ey(IO) 407ez(LS) 222bz(CP) 202by(BS) 204by(BS) 219bz(BS) 404ey(BS) 201by(SH) 201ez(SH) 203by(SH) 205by(SH) 206by(SH) 208bz(SH) 208by(SH) 210by(SH) 211by(SH) 212by(SH) 214by(SH) 215by(SH) 217bz(SH) 217by(SH) 218by(SH) 219by(SH) 220by(SH) 221bz(SH) 208bz(SH) 308ez(SH) 320ey(SH) 415ez(SH) 416bz(SH) 416ey(SH) 418by(SH) 419bz(SH) 419by(SH) 422by(SH)
- **31-SGMA-N** 206bz(IO) 222bz(IO) 303ey(IO) 403by(IO) 403ey(IO) 404ey(IO) 404ez(IO) 407ez(IO) 410ey(IO) 413ey(IO) 416ey(IO) 303bz(BS) 322by(BS) 405ey(BS) 201ey(SH) 214by(SH) 215ey(SH) 218ey(SH) 219ez(SH) 221bz(SH) 221ey(SH) 306by(SH) 308bz(SH) 300bz(SH) 310bz(SH) 311by(SH) 314by(SH) 315by(SH) 316by(SH) 319by(SH) 320by(SH) 321bz(SH) 410bz(SH) 415ez(SH) 416ey(SH) 418by(SH)
- **31-SGMA-DL** 201by(IO) 204by(IO) 206bz(IO) 218bz(IO) 222bz(IO) 403ey(IO) 404ez(IO) 407ez(IO) 410ey(IO) 322by(BS) 201ey(SH) 205ey(SH) 208bz(SH) 214by(SH) 215ey(SH) 217bz(SH) 218bz(SH) 218ey(SH) 219bz(SH) 221bz(SH) 306by(SH) 308bz(SH) 308ez(SH) 311by(SH) 314by(SH) 314ey(SH) 315by(SH) 316by(SH) 319by(SH) 320by(SH) 416ey(SH) 418by(SH) 419bz(SH) 421by(SH)
- **31-SGMA-DT** 206bz(IO) 222bz(IO) 303ey(IO) 403by(IO) 403ey(IO) 404ey(IO) 404ez(IO) 407ez(IO) 410ey(IO) 413ey(IO) 416ey(IO) 409ez(LS) 303bz(BS) 405ey(BS) 201by(SH) 201ey(SH) 219ez(SH) 221bz(SH) 301by(SH) 305by(SH) 308bz(SH) 308ez(SH) 312bz(SH) 320ey(SH) 321bz(SH) 405by(SH) 410bz(SH) 412bz(SH) 413ey(SH) 415ez(SH) 416ey(SH) 418by(SH) 419bz(SH) 419by(SH) 420ez(SH) 422by(SH)
- **31-SGMB-N** 209by(IO) 209ey(IO) 222by(IO) 222bz(IO) 302bz(IO) 303ey(IO) 304bz(IO) 307by(IO) 307bz(IO) 309bz(IO) 309ey(IO) 309ez(IO) 310bz(IO) 312bz(IO) 321by(IO) 403ey(IO) 404ez(IO) 410ey(IO) 412ey(IO) 413ey(IO) 416ey(IO) 417ey(IO) 309by(LS) 409bz(LS) 409ez(LS) 407ez(CP) 219bz(BS) 319by(BS) 403bz(BS) 405ey(BS) 201ez(SH) 201ey(SH) 206ez(SH) 208bz(SH) 212bz(SH) 215ey(SH) 217bz(SH) 218ey(SH) 221bz(SH) 221ey(SH) 303bz(SH) 306by(SH) 308bz(SH) 308ez(SH) 310bz(SH) 311by(SH) 312bz(SH) 313bz(SH) 314by(SH) 315by(SH) 315ez(SH) 316by(SH) 317bz(SH) 318by(SH) 319bz(SH) 320by(SH) 401by(SH) 405by(SH) 410bz(SH) 412bz(SH) 415bz(SH) 415bz(SH) 415ez(SH) 416ey(SH) 417bz(SH) 418by(SH) 421by(SH) 422by(SH)
- **31-SGMB-DL** 204by(IO) 209ey(IO) 222by(IO) 222bz(IO) 302bz(IO) 303ey(IO) 304bz(IO) 307bz(IO) 309by(IO) 309ey(IO) 310bz(IO) 312bz(IO) 403ey(IO) 404ez(IO) 405ez(IO) 409bz(IO) 410ey(IO) 207by(LS) 209by(LS) 409ez(LS) 407ez(CP) 219bz(BS) 319by(BS) 201bz(SH) 201ey(SH) 202bz(SH) 203bz(SH) 205bz(SH) 206bz(SH) 208bz(SH) 210bz(SH) 210ez(SH) 211bz(SH) 212bz(SH) 214bz(SH) 215bz(SH) 215ey(SH) 216bz(SH) 217bz(SH) 218bz(SH) 218ey(SH) 220bz(SH) 221bz(SH) 221ez(SH) 221ey(SH) 305by(SH) 306by(SH) 308bz(SH) 308by(SH) 308ez(SH) 311by(SH) 314by(SH) 315by(SH) 316by(SH) 317bz(SH) 318by(SH) 319bz(SH) 320by(SH) 322by(SH) 405by(SH) 415ez(SH) 416ey(SH) 418by(SH) 421by(SH) 422by(SH)
- **31-SGMB-DT** 207by(IO) 209by(IO) 209ey(IO) 222bz(IO) 303bz(IO) 303ey(IO) 304bz(IO) 307by(IO) 307ey(IO) 307ez(IO) 309by(IO) 309ey(IO) 312bz(IO) 317bz(IO) 321by(IO) 403by(IO) 403ey(IO) 409bz(IO) 410ey(IO) 412ey(IO) 413ey(IO) 416ey(IO) 417ey(IO) 307bz(LS) 309bz(LS) 409ez(LS) 407ez(CP) 219bz(BS) 302by(BS) 404ey(BS) 405ey(BS) 201ez(SH) 201ey(SH) 206by(SH) 206ez(SH) 208bz(SH) 212bz(SH) 217bz(SH) 218ey(SH) 212bz(SH) 301by(SH) 303bz(SH) 305by(SH) 306by(SH) 308bz(SH) 308by(SH) 308ez(SH) 310bz(SH) 310by(SH) 312bz(SH) 313bz(SH) 313by(SH) 314by(SH) 315by(SH) 315ez(SH) 316by(SH) 317bz(SH)

318by(SH) 319bz(SH) 319by(SH) 320by(SH) 321by(SH) 322by(SH) 322ey(SH) 405by(SH) 410bz(SH) 412bz(SH) 413bz(SH) 415bz(SH) 415ez(SH) 416ey(SH) 417bz(SH) 420ez(SH) 422by(SH)

- **32-ATHA-N** 403by(IO) 403ey(IO) 407ez(IO) 409ez(IO) 410ey(IO) 303bz(BS) 405ey(BS) 201by(SH) 206by(SH) 208bz(SH) 219bz(SH) 208bz(SH) 308bz(SH) 312bz(SH) 312bz(SH) 319bz(SH) 321bz(SH) 401by(SH) 405by(SH) 413ey(SH) 416bz(SH) 416ey(SH) 418by(SH) 422by(SH)
- **32-ATHA-DL** 222bz(IO) 403by(IO) 403ey(IO) 404ey(IO) 409ez(IO) 410ey(IO) 412ey(IO) 413ey(IO) 416ey(IO) 417ey(IO) 405ey(BS) 201by(SH) 206by(SH) 206ez(SH) 208bz(SH) 217bz(SH) 219ez(SH) 221bz(SH) 221ez(SH) 221ey(SH) 222ez(SH) 222ey(SH) 301bz(SH) 303bz(SH) 308bz(SH) 310bz(SH) 312bz(SH) 317bz(SH) 401by(SH) 405by(SH) 413ey(SH) 415ez(SH) 416ey(SH) 418by(SH) 422by(SH)
- **32-ATHA-DT** 218bz(IO) 222bz(IO) 303by(IO) 304bz(IO) 309bz(IO) 317bz(IO) 403ey(IO) 404ez(IO) 409ez(IO) 410ey(IO) 307bz(LS) 407ez(CP) 405ey(BS) 201by(SH) 201ey(SH) 202by(SH) 203ey(SH) 205by(SH) 206by(SH) 208bz(SH) 211ey(SH) 215ey(SH) 219bz(SH) 221bz(SH) 301by(SH) 302by(SH) 305by(SH) 306by(SH) 308bz(SH) 308by(SH) 308ez(SH) 310by(SH) 312by(SH) 313by(SH) 314by(SH) 315by(SH) 316by(SH) 318by(SH) 319bz(SH) 319by(SH) 320by(SH) 321bz(SH) 321by(SH) 322by(SH) 405by(SH) 416bz(SH) 416ey(SH) 418by(SH) 422by(SH)
- **32-DFNA-N** 303bz(IO) 303ey(IO) 304bz(IO) 307bz(IO) 310bz(IO) 312bz(IO) 317bz(IO) 309bz(LS) 409ez(LS) 405ey(BS) 206ez(SH) 206ey(SH) 208bz(SH) 210ey(SH) 214ey(SH) 217bz(SH) 219bz(SH) 221bz(SH) 222ey(SH) 301by(SH) 302by(SH) 305by(SH) 306by(SH) 308bz(SH) 308bz(SH) 311by(SH) 313by(SH) 314by(SH) 315by(SH) 315by(SH) 315ey(SH) 316by(SH) 319by(SH) 320by(SH) 322by(SH) 405by(SH) 408bz(SH) 413ey(SH) 418by(SH) 419bz(SH) 419by(SH) 422by(SH)
- **32-DFNA-DL** 303bz(IO) 303ey(IO) 304bz(IO) 307bz(IO) 309bz(IO) 310bz(IO) 312bz(IO) 317bz(IO) 403ey(IO) 410ey(IO) 409ez(LS) 405ey(BS) 206by(SH) 206ez(SH) 206ey(SH) 208bz(SH) 210ey(SH) 214ey(SH) 217bz(SH) 219bz(SH) 221bz(SH) 222ey(SH) 301by(SH) 302by(SH) 305by(SH) 305ey(SH) 306by(SH) 308bz(SH) 308bz(SH) 308bz(SH) 308bz(SH) 310by(SH) 315by(SH) 315by(SH) 315ey(SH) 316by(SH) 318by(SH) 319bz(SH) 319by(SH) 320by(SH) 321bz(SH) 321by(SH) 322by(SH) 405by(SH) 413ey(SH) 418by(SH) 419by(SH) 421by(SH) 422by(SH)
- **32-DFNA-DT** 206by(IO) 218bz(IO) 222bz(IO) 303by(IO) 303ey(IO) 304bz(IO) 310bz(IO) 403ey(IO) 409bz(IO) 410ey(IO) 307bz(LS) 312bz(LS) 317bz(LS) 309bz(CP) 409ez(CP) 303by(BS) 405ey(BS) 201by(SH) 202ey(SH) 204ey(SH) 205by(SH) 205ey(SH) 206by(SH) 206ez(SH) 206ey(SH) 207ey(SH) 208bz(SH) 210bz(SH) 210by(SH) 210ez(SH) 210ey(SH) 211by(SH) 214ey(SH) 217bz(SH) 219bz(SH) 221bz(SH) 222ey(SH) 301by(SH) 305by(SH) 305ey(SH) 308bz(SH) 308bz(SH) 308bz(SH) 310bz(SH) 311by(SH) 311by(SH) 313by(SH) 315by(SH) 315by(SH) 316by(SH) 318by(SH) 319by(SH) 321by(SH) 322by(SH) 401by(SH) 405by(SH) 413ey(SH) 415ez(SH) 418by(SH) 419bz(SH) 420ez(SH)
- **32-DMK-N** 202bz(IO) 222bz(IO) 403ey(IO) 410ey(IO) 413ey(IO) 303bz(BS) 201by(SH) 205by(SH) 206by(SH) 211by(SH) 214by(SH) 215by(SH) 218by(SH) 219by(SH) 220by(SH) 221by(SH) 221ez(SH) 306ey(SH) 308bz(SH) 308ez(SH) 310bz(SH) 311ey(SH) 312bz(SH) 314ey(SH) 320ey(SH) 401by(SH) 413bz(SH) 415ez(SH) 418by(SH) 419bz(SH) 422by(SH)
- **32-DMK-DL** 201by(IO) 202bz(IO) 303by(IO) 403ey(IO) 409ez(IO) 410ey(IO) 413ey(IO) 222bz(LS) 201by(SH) 205bz(SH) 205by(SH) 206by(SH) 208bz(SH) 211by(SH) 212bz(SH) 214by(SH) 215by(SH) 217bz(SH) 218by(SH) 219bz(SH) 219by(SH) 219ez(SH) 220by(SH) 221bz(SH) 221by(SH) 222bz(SH) 306ey(SH) 308bz(SH) 308ez(SH) 311ey(SH) 314ey(SH) 315ey(SH) 320ey(SH) 321bz(SH) 401by(SH) 415ez(SH) 418by(SH) 422by(SH)
- **32-DMK-DT** 204bz(IO) 207bz(IO) 222bz(IO) 303by(IO) 307by(IO) 307bz(IO) 403ey(IO) 404ez(IO) 409ez(IO) 410ey(IO) 413ey(IO) 207ez(LS) 407ez(LS) 405ey(BS) 201by(SH) 201ez(SH) 202by(SH) 202ey(SH) 203by(SH) 204ey(SH) 205by(SH) 206by(SH) 206ez(SH) 206ey(SH) 211by(SH) 214by(SH) 215by(SH) 218by(SH) 220by(SH) 221ez(SH) 221ey(SH) 301by(SH) 305by(SH) 308bz(SH) 308ez(SH) 310bz(SH) 312bz(SH) 314bz(SH) 315by(SH) 320by(SH) 322by(SH) 415ez(SH) 416ey(SH) 419bz(SH) 422by(SH)
- **32-FIX-N** 209by(IO) 209ey(IO) 222by(IO) 222bz(IO) 303by(IO) 303bz(IO) 303ey(IO) 304bz(IO) 307by(IO) 309ez(IO) 312bz(IO) 317bz(IO) 403by(IO) 403ey(IO) 404ez(IO) 409bz(IO) 409ez(IO) 307bz(LS) 309bz(LS) 407ez(CP) 302by(BS) 405ey(BS) 201ez(SH) 201ey(SH) 202bz(SH) 203bz(SH) 208bz(SH) 210bz(SH) 215ey(SH) 217bz(SH) 218bz(SH) 218ey(SH) 219bz(SH) 221bz(SH) 221ey(SH) 301by(SH) 305by(SH) 306by(SH) 308bz(SH) 308bz(SH) 308bz(SH) 310by(SH) 313by(SH) 314by(SH) 314ey(SH) 315by(SH) 315ey(SH) 316by(SH) 318by(SH) 319by(SH) 320by(SH) 320ey(SH) 321by(SH) 322by(SH) 322ey(SH) 405by(SH) 416ey(SH) 418by(SH) 419bz(SH) 421by(SH)
- **32-FIX-DL** 219by(IO) 222bz(IO) 303bz(IO) 303ey(IO) 304bz(IO) 307by(IO) 307ez(IO) 309by(IO) 309ez(IO) 312bz(IO) 317bz(IO) 403by(IO) 403ey(IO) 404ey(IO) 404ez(IO) 409bz(IO) 409ez(IO) 410ey(IO) 413ey(IO) 307bz(LS) 309bz(LS) 407ez(CP) 302by(BS) 405ey(BS) 201ey(SH) 208bz(SH) 215ey(SH) 217bz(SH) 218ey(SH) 221bz(SH) 221ez(SH) 221ey(SH) 301by(SH) 305by(SH) 306by(SH) 308bz(SH) 308by(SH) 310by(SH) 311by(SH) 313by(SH) 314by(SH) 315by(SH) 315ey(SH) 316by(SH) 316by(SH) 319by(SH) 320by(SH) 320ey(SH) 321bz(SH) 321by(SH) 322by(SH) 402ey(SH) 405by(SH) 415ez(SH) 416ey(SH) 418by(SH) 420ez(SH) 421by(SH)
- **32-FIX-DT** 207by(IO) 207bz(IO) 209by(IO) 209bz(IO) 222by(IO) 307bz(IO) 307ez(IO) 403ey(IO) 410ey(IO) 413ey(IO) 222bz(CP) 407ez(CP) 204by(BS) 404ey(BS) 405ey(BS) 201bz(SH) 201by(SH) 202bz(SH) 202by(SH) 202ey(SH) 203bz(SH) 203bz(SH) 205bz(SH) 205by(SH) 206by(SH) 206by(SH) 206bz(SH) 208by(SH) 210bz(SH) 210by(SH) 210b

211by(SH) 212bz(SH) 212by(SH) 213by(SH) 214by(SH) 215by(SH) 216by(SH) 217bz(SH) 217by(SH) 218bz(SH) 218bz(SH) 218by(SH) 219bz(SH) 219by(SH) 220by(SH) 221bz(SH) 221by(SH) 302by(SH) 320ey(SH) 416ey(SH) 418by(SH)

- **32-SGMA-N** 202bz(IO) 204bz(IO) 303ey(IO) 403by(IO) 403ey(IO) 404ey(IO) 405ez(IO) 410ey(IO) 413ey(IO) 416ey(IO) 222bz(LS) 206by(BS) 201by(SH) 205by(SH) 208bz(SH) 210by(SH) 211by(SH) 214by(SH) 215by(SH) 218by(SH) 219bz(SH) 219by(SH) 220by(SH) 221bz(SH) 301bz(SH) 302bz(SH) 303bz(SH) 305bz(SH) 306bz(SH) 308bz(SH) 308ez(SH) 310bz(SH) 312bz(SH) 312bz(SH) 314ey(SH) 316bz(SH) 317bz(SH) 318bz(SH) 319bz(SH) 320ey(SH) 321bz(SH) 410bz(SH) 415ez(SH) 416ey(SH) 422by(SH)
- **32-SGMA-DL** 201by(IO) 202bz(IO) 204bz(IO) 206by(IO) 303ey(IO) 403by(IO) 403ey(IO) 404ey(IO) 404ez(IO) 407ez(IO) 410ey(IO) 413ey(IO) 416ey(IO) 222bz(LS) 202bz(BS) 206by(BS) 201by(SH) 203bz(SH) 204bz(SH) 205bz(SH) 205by(SH) 208bz(SH) 210bz(SH) 210by(SH) 211bz(SH) 211by(SH) 212bz(SH) 214by(SH) 215bz(SH) 215by(SH) 218bz(SH) 218bz(SH) 219bz(SH) 219bz(SH) 220by(SH) 221bz(SH) 222bz(SH) 303bz(SH) 308bz(SH) 320ey(SH) 402by(SH) 415ez(SH) 416ey(SH) 422by(SH)
- **32-SGMA-DT** 202bz(IO) 204bz(IO) 207bz(IO) 403by(IO) 403ey(IO) 404ey(IO) 404ez(IO) 405ez(IO) 407ez(IO) 409ez(IO) 410ey(IO) 412ey(IO) 413ey(IO) 416ey(IO) 417ey(IO) 222bz(LS) 206by(BS) 201by(SH) 201ey(SH) 205by(SH) 206ey(SH) 208bz(SH) 210by(SH) 211by(SH) 214by(SH) 215by(SH) 218by(SH) 218ey(SH) 219bz(SH) 219by(SH) 220by(SH) 220by(SH) 203bz(SH) 305by(SH) 306bz(SH) 306bz(SH) 310bz(SH) 311by(SH) 312bz(SH) 317bz(SH) 318bz(SH) 319bz(SH) 320by(SH) 321bz(SH) 322bz(SH) 402by(SH) 405by(SH) 410bz(SH) 412bz(SH) 415ez(SH) 416ey(SH) 417bz(SH)
- **32-SGMB-N** 209by(IO) 209ey(IO) 222by(IO) 222bz(IO) 302bz(IO) 303ey(IO) 304by(IO) 304bz(IO) 307bz(IO) 307ey(IO) 309bz(IO) 309ez(IO) 310bz(IO) 312bz(IO) 317bz(IO) 403by(IO) 403ey(IO) 404ez(IO) 409bz(IO) 410ey(IO) 412ey(IO) 413ey(IO) 416ey(IO) 321by(LS) 409ez(LS) 307by(CP) 309by(CP) 407ez(CP) 219bz(BS) 319by(BS) 322by(BS) 405ey(BS) 201ey(SH) 206ez(SH) 206ey(SH) 208bz(SH) 212bz(SH) 215ey(SH) 217bz(SH) 218ey(SH) 221bz(SH) 301bz(SH) 302bz(SH) 303bz(SH) 305bz(SH) 305by(SH) 306by(SH) 308bz(SH) 308bz(SH) 308bz(SH) 308bz(SH) 310bz(SH) 311bz(SH) 311by(SH) 312bz(SH) 313bz(SH) 313by(SH) 314bz(SH) 314by(SH) 314ey(SH) 315bz(SH) 315by(SH) 315ez(SH) 316bz(SH) 316by(SH) 317bz(SH) 318bz(SH) 318by(SH) 319bz(SH) 320bz(SH) 320bz(SH) 401bz(SH) 412bz(SH) 412bz(SH) 415bz(SH) 415by(SH) 415by(SH) 415by(SH) 415by(SH) 415by(SH) 415by(SH) 412by(SH) 412by(SH) 420bz(SH) 420bz(SH) 421bz(SH) 421by(SH) 422by(SH)
- **32-SGMB-DL** 204by(IO) 209ey(IO) 209ez(IO) 222bz(IO) 303bz(IO) 303ey(IO) 304bz(IO) 307bz(IO) 307ey(IO) 309by(IO) 309ey(IO) 310bz(IO) 312bz(IO) 317bz(IO) 403by(IO) 403ey(IO) 404ez(IO) 407ez(IO) 409bz(IO) 410ey(IO) 413ey(IO) 207by(LS) 209by(LS) 409ez(LS) 222bz(BS) 302by(BS) 319by(BS) 405ey(BS) 201bz(SH) 201ey(SH) 202bz(SH) 203bz(SH) 205bz(SH) 206ez(SH) 208bz(SH) 210bz(SH) 210ez(SH) 211bz(SH) 212bz(SH) 213bz(SH) 214bz(SH) 215bz(SH) 215ey(SH) 216bz(SH) 217bz(SH) 218bz(SH) 218ey(SH) 219bz(SH) 219ez(SH) 221bz(SH) 221bz(SH) 221ez(SH) 301by(SH) 303bz(SH) 306by(SH) 308bz(SH) 308bz(SH) 308bz(SH) 308bz(SH) 310bz(SH) 312bz(SH) 312bz(SH) 312bz(SH) 314by(SH) 315by(SH) 315by(SH) 315ez(SH) 316by(SH) 317bz(SH) 318by(SH) 320ey(SH) 320ey(SH) 322bz(SH) 322bz(SH) 405by(SH) 412bz(SH) 415ez(SH) 416ey(SH) 418by(SH) 419by(SH) 422by(SH)
- **32-SGMB-DT** 202bz(IO) 207by(IO) 207ey(IO) 209by(IO) 209ey(IO) 219by(IO) 222bz(IO) 303bz(IO) 303ey(IO) 304bz(IO) 307ey(IO) 309ey(IO) 310bz(IO) 310ey(IO) 312bz(IO) 317bz(IO) 321by(IO) 403by(IO) 403ey(IO) 407ey(IO) 409bz(IO) 410ey(IO) 412ey(IO) 413ey(IO) 416ey(IO) 307bz(LS) 309bz(LS) 409ez(LS) 307by(CP) 309by(CP) 407ez(CP) 404ey(BS) 405ey(BS) 201by(SH) 201ez(SH) 201ey(SH) 206by(SH) 206ez(SH) 208bz(SH) 215ey(SH) 217bz(SH) 218ey(SH) 221bz(SH) 221ez(SH) 301bz(SH) 302bz(SH) 302by(SH) 303bz(SH) 305bz(SH) 306by(SH) 308bz(SH) 308bz(SH) 308bz(SH) 310bz(SH) 311bz(SH) 311by(SH) 312bz(SH) 313bz(SH) 314bz(SH) 314by(SH) 314ez(SH) 315bz(SH) 315by(SH) 315ez(SH) 316bz(SH) 316by(SH) 317bz(SH) 318bz(SH) 319bz(SH) 319by(SH) 320bz(SH) 320by(SH) 320ez(SH) 321by(SH) 322bz(SH) 322bz(SH) 322by(SH) 401bz(SH) 402bz(SH) 405by(SH) 414ez(SH) 415bz(SH) 415ez(SH) 416ey(SH) 418bz(SH) 418by(SH) 419bz(SH) 420bz(SH) 420bz(SH) 421bz(SH) 422by(SH)
- **33-ATHA-N** 222bz(IO) 304by(IO) 307by(IO) 310ey(IO) 321by(IO) 403by(IO) 403ey(IO) 404ey(IO) 404ez(IO) 407ez(IO) 409ez(IO) 410ey(IO) 413ey(IO) 416ey(IO) 405ey(BS) 201ey(SH) 206ez(SH) 206ey(SH) 210ey(SH) 211ey(SH) 214ey(SH) 221bz(SH) 221ez(SH) 222ez(SH) 222ey(SH) 301bz(SH) 302bz(SH) 302by(SH) 303bz(SH) 305bz(SH) 305bz(SH) 305by(SH) 306bz(SH) 310bz(SH) 311bz(SH) 312bz(SH) 313bz(SH) 313by(SH) 314bz(SH) 315by(SH) 316bz(SH) 317bz(SH) 318bz(SH) 318by(SH) 319bz(SH) 319by(SH) 320by(SH) 320by(SH) 321by(SH) 322by(SH) 410bz(SH) 415ez(SH) 416bz(SH) 416ey(SH) 418by(SH) 419bz(SH) 419by(SH) 420ez(SH) 421by(SH) 422by(SH)
- 33-ATHA-DL 222bz(IO) 303ey(IO) 304by(IO) 307by(IO) 309by(IO) 403by(IO) 404ez(IO) 409ez(IO) 412ey(IO) 413ey(IO) 413ey(IO) 310ez(BS) 403ez(BS) 404ez(BS) 405ey(BS) 410ez(BS) 416ez(BS) 201ey(SH) 202ey(SH) 206ez(SH) 206ez(SH) 207ez(SH) 208ez(SH) 211ey(SH) 214ey(SH) 217bz(SH) 219ez(SH) 221bz(SH) 221ez(SH) 222ez(SH) 222ey(SH) 301bz(SH) 302bz(SH) 302bz(SH) 303bz(SH) 305bz(SH) 305by(SH) 306bz(SH) 310bz(SH) 311bz(SH) 312bz(SH) 313bz(SH) 313bz(SH) 314bz(SH) 315bz(SH) 315bz(SH) 316bz(SH) 317bz(SH) 318by(SH) 319by(SH) 320bz(SH) 320by(SH) 322by(SH) 322by(SH) 410bz(SH) 413bz(SH) 413bz(SH) 413ey(SH) 414ez(SH) 415ez(SH) 416bz(SH) 416ey(SH) 417bz(SH) 418by(SH) 419by(SH) 422by(SH)
 27 ATHA DT 218bz(ID) 222bz(ID) 202bz(ID) 202bz(ID
- **33-ATHA-DT** 218bz(IO) 222bz(IO) 303bz(IO) 304by(IO) 304bz(IO) 307bz(IO) 309bz(IO) 403by(IO) 403ey(IO)

404ey(IO) 404ez(IO) 407ez(IO) 409ez(IO) 410ey(IO) 413ey(IO) 416ey(IO) 310ez(BS) 405ey(BS) 201by(SH) 206by(SH) 211ey(SH) 214ey(SH) 215ey(SH) 220ey(SH) 221bz(SH) 221ez(SH) 222ez(SH) 222ey(SH) 301bz(SH) 301by(SH) 302bz(SH) 302by(SH) 303bz(SH) 305bz(SH) 305by(SH) 306by(SH) 306by(SH) 308bz(SH) 310bz(SH) 310by(SH) 311bz(SH) 312bz(SH) 312by(SH) 313bz(SH) 314bz(SH) 314by(SH) 315bz(SH) 315by(SH) 316bz(SH) 316by(SH) 317bz(SH) 318bz(SH) 319bz(SH) 319bz(SH) 320by(SH) 320by(SH) 321by(SH) 312by(SH) 319bz(SH) 319by(SH) 320by(SH) 320by(SH) 321by(SH) 312by(SH) 312by(SH) 319bz(SH) 319by(SH) 320by(SH) 320by(SH) 321by(SH) 322by(SH) 410bz(SH) 413ey(SH) 415ez(SH) 416ey(SH) 418by(SH) 419bz(SH) 419by(SH) 420ez(SH) 421by(SH) 422by(SH)

- **33-DFNA-N** 218bz(IO) 222bz(IO) 303by(IO) 303ey(IO) 310bz(IO) 317bz(IO) 403by(IO) 403ey(IO) 303bz(LS) 304bz(LS) 309bz(LS) 312bz(LS) 307bz(CP) 409ez(CP) 405ey(BS) 202ey(SH) 206by(SH) 206ez(SH) 206ey(SH) 208bz(SH) 210ey(SH) 214ey(SH) 217bz(SH) 219bz(SH) 220ey(SH) 221bz(SH) 222ey(SH) 301by(SH) 302by(SH) 305by(SH) 305ey(SH) 308bz(SH) 308bz(SH) 308bz(SH) 311by(SH) 313by(SH) 314by(SH) 315by(SH) 315ey(SH) 316by(SH) 318by(SH) 319by(SH) 320by(SH) 322by(SH) 405by(SH) 413ey(SH) 416ey(SH) 418by(SH) 419by(SH) 420by(SH) 422by(SH)
- **33-DFNA-DL** 201by(IO) 202by(IO) 204by(IO) 206by(IO) 218bz(IO) 222bz(IO) 304bz(IO) 317bz(IO) 403by(IO) 403ey(IO) 403ey(IO) 410ey(IO) 413ey(IO) 416ey(IO) 303bz(LS) 312bz(LS) 307bz(CP) 309bz(CP) 409ez(CP) 405ey(BS) 202ey(SH) 203bz(SH) 206by(SH) 206ez(SH) 206ey(SH) 208bz(SH) 210bz(SH) 210ez(SH) 210ey(SH) 212bz(SH) 214ey(SH) 217bz(SH) 218bz(SH) 219bz(SH) 220ey(SH) 221bz(SH) 222ey(SH) 301by(SH) 302by(SH) 303bz(SH) 305by(SH) 305ey(SH) 308bz(SH) 308by(SH) 310bz(SH) 311by(SH) 312bz(SH) 313by(SH) 314by(SH) 315by(SH) 316by(SH) 317bz(SH) 318bz(SH) 318bz(SH) 319bz(SH) 319bz(SH) 319by(SH) 320by(SH) 321bz(SH) 312bz(SH) 413ey(SH) 416ey(SH) 417bz(SH) 418by(SH) 419by(SH) 420by(SH) 422by(SH)
- **33-DFNA-DT** 203bz(IO) 206by(IO) 218bz(IO) 222bz(IO) 303ey(IO) 304bz(IO) 310bz(IO) 403ey(IO) 409bz(IO) 410ey(IO) 309bz(CP) 312bz(CP) 317bz(CP) 409ez(CP) 303by(BS) 307by(BS) 405ey(BS) 201by(SH) 202by(SH) 202ey(SH) 204ey(SH) 205by(SH) 205ey(SH) 206by(SH) 206ez(SH) 206ey(SH) 208bz(SH) 210bz(SH) 210by(SH) 210ez(SH) 210ey(SH) 211by(SH) 214ey(SH) 217bz(SH) 219bz(SH) 221bz(SH) 222bz(SH) 222ey(SH) 301by(SH) 305by(SH) 306by(SH) 308bz(SH) 308bz(SH) 310bz(SH) 311by(SH) 313by(SH) 315by(SH) 316by(SH) 319by(SH) 320by(SH) 321by(SH) 322by(SH) 401by(SH) 405by(SH) 413ey(SH) 415ez(SH) 416ey(SH) 418by(SH) 419bz(SH) 420ez(SH) 422by(SH)
- **33-DMK-N** 303by(IO) 403ey(IO) 405ez(IO) 407ez(IO) 409ez(IO) 410ey(IO) 413ey(IO) 222bz(LS) 201by(SH) 205by(SH) 206by(SH) 211by(SH) 214by(SH) 215by(SH) 218by(SH) 219by(SH) 220by(SH) 221ez(SH) 308bz(SH) 308ez(SH) 413bz(SH) 415ez(SH) 416ey(SH) 419bz(SH) 420ez(SH)
- **33-DMK-DL** 207bz(IO) 207ez(IO) 219by(IO) 303ey(IO) 304by(IO) 307bz(IO) 307ey(IO) 309by(IO) 403ey(IO) 405ez(IO) 407ez(IO) 409ez(IO) 410ey(IO) 413ey(IO) 416ey(IO) 421by(IO) 222bz(LS) 307by(LS) 310ez(BS) 201by(SH) 205by(SH) 206by(SH) 206ez(SH) 208bz(SH) 211by(SH) 214by(SH) 215by(SH) 218by(SH) 218ez(SH) 219by(SH) 219ez(SH) 200by(SH) 201bz(SH) 302bz(SH) 303bz(SH) 305bz(SH) 306bz(SH) 308bz(SH) 308ez(SH) 310bz(SH) 311bz(SH) 312bz(SH) 313bz(SH) 314bz(SH) 315bz(SH) 316bz(SH) 317bz(SH) 320bz(SH) 321bz(SH) 322bz(SH) 415ez(SH) 416ey(SH) 419bz(SH)
- **33-DMK-DT** 222bz(IO) 303by(IO) 303bz(IO) 304bz(IO) 307by(IO) 307bz(IO) 307ez(IO) 309bz(IO) 310bz(IO) 312bz(IO) 317bz(IO) 403by(IO) 403ey(IO) 407bz(IO) 407ez(IO) 410ey(IO) 413ey(IO) 409ez(LS) 405ey(BS) 201by(SH) 202ey(SH) 206by(SH) 206ez(SH) 206ey(SH) 214ey(SH) 218ey(SH) 220ey(SH) 221ez(SH) 221ey(SH) 222ey(SH) 301by(SH) 305by(SH) 308bz(SH) 308bz(SH) 308ez(SH) 311by(SH) 313by(SH) 314by(SH) 315by(SH) 316by(SH) 320by(SH) 321by(SH) 322by(SH) 413bz(SH) 413ey(SH) 415ez(SH) 416ey(SH) 418by(SH) 419bz(SH) 422by(SH)
- **33-FIX-N** 207by(IO) 209by(IO) 222by(IO) 222bz(IO) 303bz(IO) 303ey(IO) 304bz(IO) 307ez(IO) 312bz(IO) 317bz(IO) 401bz(IO) 403by(IO) 403ey(IO) 404ez(IO) 409bz(IO) 409ez(IO) 410ey(IO) 413ey(IO) 302bz(LS) 307bz(LS) 309bz(LS) 407ez(CP) 310by(BS) 405ey(BS) 201bz(SH) 201ey(SH) 202bz(SH) 203bz(SH) 205bz(SH) 206bz(SH) 208bz(SH) 210bz(SH) 210ez(SH) 212bz(SH) 215bz(SH) 215ey(SH) 217bz(SH) 218bz(SH) 218ey(SH) 219bz(SH) 220bz(SH) 221bz(SH) 221ey(SH) 301by(SH) 305by(SH) 306by(SH) 308by(SH) 310bz(SH) 311by(SH) 313by(SH) 314by(SH) 314ey(SH) 315by(SH) 316by(SH) 318by(SH) 319by(SH) 320ey(SH) 321by(SH) 322by(SH) 322ey(SH) 405by(SH) 414by(SH) 415by(SH) 416ey(SH) 417bz(SH) 418by(SH) 419bz(SH) 421by(SH) 422by(SH)
- **33-FIX-DL** 222by(IO) 222bz(IO) 303bz(IO) 304bz(IO) 307by(IO) 307ez(IO) 309by(IO) 312bz(IO) 317bz(IO) 321by(IO) 401bz(IO) 403by(IO) 403ey(IO) 404ez(IO) 407ey(IO) 409bz(IO) 409ez(IO) 410ey(IO) 413ey(IO) 307bz(LS) 309bz(LS) 407ez(CP) 219bz(BS) 302by(BS) 310by(BS) 405ey(BS) 201ey(SH) 208bz(SH) 212bz(SH) 215ey(SH) 217bz(SH) 218ey(SH) 221ez(SH) 221ez(SH) 221ey(SH) 301by(SH) 303bz(SH) 305by(SH) 306by(SH) 308bz(SH) 308by(SH) 311by(SH) 312bz(SH) 313by(SH) 314by(SH) 315by(SH) 316by(SH) 318by(SH) 319by(SH) 320by(SH) 320by(SH) 320by(SH) 415by(SH) 415ez(SH) 416ey(SH) 418by(SH) 419by(SH) 420ez(SH) 421by(SH)
- **33-FIX-DT** 204by(IO) 207by(IO) 209by(IO) 209bz(IO) 222by(IO) 303ey(IO) 307ez(IO) 403ey(IO) 409ez(IO) 410ey(IO) 207bz(LS) 307bz(LS) 222bz(CP) 407ez(CP) 204by(BS) 404ey(BS) 405ey(BS) 201bz(SH) 201by(SH) 201ey(SH) 202bz(SH) 202by(SH) 203bz(SH) 203by(SH) 205bz(SH) 205by(SH) 206bz(SH) 206by(SH) 207ey(SH) 208bz(SH) 208by(SH) 210bz(SH) 210by(SH) 210ez(SH) 211bz(SH) 211by(SH) 212bz(SH) 212by(SH) 212ez(SH) 213by(SH) 214by(SH) 215bz(SH) 216by(SH) 216by(SH) 217bz(SH) 217by(SH) 218bz(SH) 218by(SH) 219bz(SH) 219by(SH) 219b

220bz(SH) 220by(SH) 221bz(SH) 221by(SH) 310bz(SH) 320ey(SH) 322by(SH) 416ey(SH) 418by(SH) 422by(SH)

- **33-SGMA-N** 202bz(IO) 204bz(IO) 206by(IO) 210bz(IO) 301by(IO) 303ey(IO) 403by(IO) 404ey(IO) 404ez(IO) 405ez(IO) 410ey(IO) 412ey(IO) 413ey(IO) 416ey(IO) 417ey(IO) 222bz(LS) 403ey(LS) 206by(BS) 201by(SH) 205by(SH) 208bz(SH) 211by(SH) 214by(SH) 215by(SH) 218by(SH) 219bz(SH) 219by(SH) 220by(SH) 221bz(SH) 221by(SH) 221ez(SH) 303bz(SH) 305bz(SH) 306bz(SH) 308bz(SH) 310bz(SH) 312bz(SH) 314ey(SH) 316bz(SH) 317bz(SH) 318bz(SH) 319bz(SH) 320ey(SH) 322bz(SH) 410bz(SH) 412bz(SH) 414ez(SH) 415ez(SH) 416bz(SH) 416ey(SH) 417bz(SH) 419bz(SH) 420ez(SH) 422by(SH)
- **33-SGMA-DL** 201by(IO) 202bz(IO) 204bz(IO) 206by(IO) 210bz(IO) 303ey(IO) 403ey(IO) 404ey(IO) 407ez(IO) 410ey(IO) 413ey(IO) 416ey(IO) 222bz(LS) 202bz(BS) 206by(BS) 404ey(BS) 201by(SH) 203bz(SH) 203by(SH) 204bz(SH) 205bz(SH) 205by(SH) 208bz(SH) 210bz(SH) 211bz(SH) 211by(SH) 212bz(SH) 213bz(SH) 214bz(SH) 214by(SH) 215bz(SH) 215by(SH) 217bz(SH) 218bz(SH) 218by(SH) 219bz(SH) 219by(SH) 220bz(SH) 220by(SH) 221bz(SH) 221by(SH) 221ez(SH) 222bz(SH) 308bz(SH) 402by(SH) 415ez(SH) 416ey(SH) 422by(SH)
- **33-SGMA-DT** 201by(IO) 202by(IO) 204bz(IO) 206by(IO) 207bz(IO) 403by(IO) 404ey(IO) 404ez(IO) 407ez(IO) 409ez(IO) 410ey(IO) 412ey(IO) 413ey(IO) 416ey(IO) 202bz(LS) 403ey(LS) 222bz(CP) 206by(BS) 405ey(BS) 201by(SH) 201ey(SH) 203bz(SH) 203by(SH) 205by(SH) 206ey(SH) 208bz(SH) 208ez(SH) 210bz(SH) 210by(SH) 211by(SH) 212by(SH) 214by(SH) 215by(SH) 217bz(SH) 217by(SH) 218bz(SH) 218by(SH) 218ey(SH) 219bz(SH) 219bz(SH) 211by(SH) 221bz(SH) 221bz(SH) 221ez(SH) 303bz(SH) 310bz(SH) 317bz(SH) 318bz(SH) 319bz(SH) 320by(SH) 402by(SH) 410bz(SH) 414ez(SH) 415ez(SH) 416bz(SH) 416ey(SH) 417bz(SH) 420ez(SH)
- **33-SGMB-N** 209by(IO) 222by(IO) 222bz(IO) 303bz(IO) 303ey(IO) 304by(IO) 304bz(IO) 307by(IO) 307bz(IO) 307bz(IO) 307bz(IO) 309bz(IO) 309bz(IO) 309bz(IO) 310bz(IO) 312bz(IO) 317bz(IO) 321by(IO) 401bz(IO) 403by(IO) 403ey(IO) 404ez(IO) 407ez(IO) 409bz(IO) 409ey(IO) 410ey(IO) 412ey(IO) 413ey(IO) 416ey(IO) 417bz(IO) 417ey(IO) 209ey(LS) 309by(CP) 409ez(CP) 219bz(BS) 302by(BS) 310ez(BS) 319bz(BS) 319by(BS) 322by(BS) 405ey(BS) 410bz(BS) 201ez(SH) 201ey(SH) 206ez(SH) 208bz(SH) 210bz(SH) 212bz(SH) 215ey(SH) 217bz(SH) 218ey(SH) 221bz(SH) 201ez(SH) 301bz(SH) 302bz(SH) 303bz(SH) 305bz(SH) 305by(SH) 306by(SH) 308bz(SH) 308bz(SH) 301bz(SH) 311by(SH) 311ey(SH) 312bz(SH) 313bz(SH) 313by(SH) 314bz(SH) 314by(SH) 314bz(SH) 315bz(SH) 315by(SH) 315bz(SH) 315by(SH) 316bz(SH) 316bz(SH) 316bz(SH) 413bz(SH) 413bz(SH) 413bz(SH) 415bz(SH) 415bz(SH) 415by(SH) 415bz(SH) 416bz(SH) 416ey(SH) 418by(SH) 419by(SH) 420bz(SH) 420bz(SH) 421by(SH) 422by(SH)
- **33-SGMB-DL** 209ey(IO) 222bz(IO) 303bz(IO) 304bz(IO) 304ey(IO) 307ey(IO) 309by(IO) 310bz(IO) 310ey(IO) 312bz(IO) 317bz(IO) 403ey(IO) 404ez(IO) 407ez(IO) 409bz(IO) 410ey(IO) 413ey(IO) 417bz(IO) 209ez(LS) 303ey(LS) 309ey(LS) 409ez(LS) 207by(CP) 209by(CP) 204bz(BS) 222bz(BS) 302by(BS) 319by(BS) 322by(BS) 405ey(BS) 201bz(SH) 201ey(SH) 202bz(SH) 203bz(SH) 203ez(SH) 205bz(SH) 206bz(SH) 206ez(SH) 208bz(SH) 210bz(SH) 210ez(SH) 211bz(SH) 212bz(SH) 212ez(SH) 213bz(SH) 214bz(SH) 215bz(SH) 216bz(SH) 216bz(SH) 216bz(SH) 210bz(SH) 219bz(SH) 219bz(SH) 220bz(SH) 220bz(SH) 202bz(SH) 301by(SH) 301ez(SH) 303bz(SH) 305by(SH) 306by(SH) 308bz(SH) 308ez(SH) 310bz(SH) 311by(SH) 311ez(SH) 311ey(SH) 312bz(SH) 315by(SH) 315by(SH) 315by(SH) 315by(SH) 315bz(SH) 315by(SH) 316by(SH) 318by(SH) 318ez(SH) 319bz(SH) 320by(SH) 320ez(SH) 320ey(SH) 321by(SH) 321ez(SH) 402bz(SH) 405bz(SH) 405bz(SH) 405bz(SH) 419bz(SH) 415bz(SH) 415bz(SH) 415bz(SH) 415bz(SH) 415bz(SH) 419bz(SH) 421by(SH) 422by(SH)
- **33-SGMB-DT** 222by(IO) 222bz(IO) 303bz(IO) 303ey(IO) 304by(IO) 307by(IO) 309ey(IO) 310ey(IO) 321by(IO) 403by(IO) 409bz(IO) 410ey(IO) 412ey(IO) 413ey(IO) 416ey(IO) 417ey(IO) 312bz(LS) 317bz(LS) 309by(CP) 309bz(CP) 409ez(CP) 219bz(BS) 304by(BS) 307by(BS) 404ey(BS) 405ey(BS) 407ey(BS) 201ez(SH) 201ey(SH) 203by(SH) 203ey(SH) 206ez(SH) 206ey(SH) 208bz(SH) 211ey(SH) 212bz(SH) 215ey(SH) 217bz(SH) 218bz(SH) 218ey(SH) 221bz(SH) 221ez(SH) 301bz(SH) 301by(SH) 302bz(SH) 302by(SH) 303bz(SH) 305bz(SH) 305by(SH) 308bz(SH) 308bz(SH) 308ez(SH) 310bz(SH) 310by(SH) 311bz(SH) 312bz(SH) 313bz(SH) 313by(SH) 314bz(SH) 315bz(SH) 315by(SH) 315ez(SH) 316bz(SH) 316by(SH) 317bz(SH) 318bz(SH) 319bz(SH) 320bz(SH) 320bz(SH) 320bz(SH) 322bz(SH) 322by(SH) 401bz(SH) 415bz(SH) 415bz(SH) 415ez(SH) 416ey(SH) 418by(SH) 420bz(SH) 420ez(SH) 421bz(SH) 422by(SH)

Για καλύτερη εποπτεία των αποτελεσμάτων δίδονται στα επόμενα διαγράμματα (8.64 έως 8.69) τα ποσοστά των αναλύσεων σε σχέση με το σύνολο στις οποίες καταγράφονται διατμητικές αστοχίες των υποστυλωμάτων του ισογείου κατά τους τοπικούς άξονες *y* και *z* ξεχωριστά (δηλαδή τους καθολικούς άξονες *X* παράλληλα στη μικρή πλευρά του κτηρίου και Y παράλληλα στη μεγάλη πλευρά του κτηρίου αντίστοιχα). Για παράδειγμα αν η τιμή κάποιου υποστυλώματος σε ένα διάγραμμα φτάνει συνολικά στο 50%, αυτό σημαίνει ότι το υποστύλωμα αστόχησε στις μισές αναλύσεις που πραγματοποιήθηκαν. Κάθε διάγραμμα αναφέρεται σε μια συγκεκριμένη ομάδα επιταχυνσιογραφημάτων (Ν για ανυπαρξία παλμού κατευθυντικότητας, DL για ύπαρξη παλμού στη διεύθυνση Y και DT για ύπαρξη παλμού στη διεύθυνση *X*).

Στη συνέχεια, δίδονται στα σχήματα 8.70 και 8.71 οι μέσοι όροι των drifts ορόφων για όλες

Σχήμα 8.64: Ποσοστά διατμητικών αστοχιών υποστυλωμάτων ισογείου κατά Χ (%) - Ομάδα επιτ/των Ν (Χωρίς παλμούς κατευθυντικότητας)

Σχήμα 8.65: Ποσοστά διατμητικών αστοχιών υποστυλωμάτων ισογείου κατά Χ (%) - Ομάδα επιτ/των DL (Με παλμούς κατευθυντικότητας κατά Υ)

Σχήμα 8.66: Ποσοστά διατμητικών αστοχιών υποστυλωμάτων ισογείου κατά Χ (%) - Ομάδα επιτ/των DT (Με παλμούς κατευθυντικότητας κατά Χ)

Σχήμα 8.67: Ποσοστά διατμητικών αστοχιών υποστυλωμάτων ισογείου κατά Υ (%) - Ομάδα επιτ/των Ν (Χωρίς παλμούς κατευθυντικότητας)

Σχήμα 8.68: Ποσοστά διατμητικών αστοχιών υποστυλωμάτων ισογείου κατά Υ (%) - Ομάδα επιτ/των DL (Με παλμούς κατευθυντικότητας κατά Υ)

Σχήμα 8.69: Ποσοστά διατμητικών αστοχιών υποστυλωμάτων ισογείου κατά Υ (%) - Ομάδα επιτ/των DT (Με παλμούς κατευθυντικότητας κατά Χ)

τις περιπτώσεις αναλύσεων με ύπαρξη ή όχι παλμών κατευθυντικότητας στις δύο διευθύνσεις, όπως ορίστηκαν προηγουμένως και για όλες τις περιπτώσεις τυπικών αποκλίσεων που εξετάστηκαν.

Τέλος, δίδονται στα σχήματα 8.72 έως 8.75 για όλες τις αναλύσεις χρονοϊστορίας που πραγματοποιήθηκαν και για κάθε κατεύθυνση τα σημεία μέγιστης τέμνουσας βάσης με την αντίστοιχη μετατόπιση του κόμβου αναφοράς και τα σημεία μέγιστης μετατόπισης με την αντίστοιχη τέμνουσα βάσης, συγκρινόμενα με την καμπύλη Pushover της συγκεκριμένης κατεύθυνσης. Στα σχήματα αυτά με συμπαγή σχήματα δίδονται τα σημεία που αντιστοιχούν σε μέγιστες κατ' απόλυτη τιμή τέμνουσες βάσης ή μετατοπίσεις κόμβου αναφοράς ανά διεύθυνση για κάθε ανάλυση χρονοϊστορίας, ενώ τα μη συμπαγή σχήματα αντιστοιχούν σε μέγιστες τιμές ανά φορά ανάλυσης, που δεν είναι όμως μέγιστες κατ' απόλυτη τιμή στη διεύθυνση αυτή. Κάθε κωδικός που φαίνεται στις λεζάντες αναφέρεται σε έξι περιπτώσεις αναλύσεων χρονοϊστορίας (με επιταχυνσιογραφήματα ΑΤΗΑ, DFNA, DMK, FIX, SGMA, SGMB), με την αντίστοιχη τυπική απόκλιση που αναφέρεται και για κάθε περίπτωση ύπαρξης παλμών κατευθυντικότητας (Ν για μη ύπαρξη, DL για ύπαρξη στη διεύθυνση Υ, DT για διεύθυνση Χ).

8.2 Συμπεράσματα από τις αναλύσεις χρονοϊστορίας

Συγκρίνοντας τα αποτελέσματα που προκύπτουν από τις παραπάνω αναλύσεις, αρχικά θα πρέπει να παρατηρηθεί ότι ακόμα και επιταχυνσιογραφήματα που έχουν περίπου ίδια ελαστικά φάσματα απόκρισης μπορεί να δώσουν αρκετά διαφοροποιημένες αποκρίσεις του πολυβάθμιου φορέα, ο οποίος βέβαια συμπεριφέρεται ανελαστικά. Για το λόγο αυτό, όταν χρησιμοποιούνται επιταχυνσιογραφήματα για μελέτη της απόκρισης κάποιου φορέα, θα πρέπει να χρησιμοποιείται ένα ικανοποιητικό πλήθος επιταχυνσιογραφημάτων, το σύνολο από τα οποία είναι ικανό να δώσει μια εικόνα της συμπεριφοράς του.

Γενικά όπως αναμενόταν, διαπιστώνεται ότι καθώς αυξάνεται το πλήθος των τυπικών αποκλίσεων των ελαστικών φασμάτων απόκρισης, οι βλάβες του φορέα γίνονται περισσότερες και δυσμενέστερες. Για το πλήθος των τυπικών αποκλίσεων από το οποίο αρχίζουν οι αναλύσεις (2.7 τυπικές αποκλίσεις που αντιστοιχεί σε PGA $\approx 0.55g$) οι αστοχίες στο φορέα είναι σχετικά λίγες, ενώ για το πλήθος των τυπικών αποκλίσεων στο οποίο σταματούν (3.3 τυπικές αποκλίσεις που αντιστοιχεί σε PGA $\approx 0.77g$) οι αστοχίες στο φορέα είναι πολύ σημαντικές.

Όπως περιγράφηκε στο πρώτο κεφάλαιο, στο πραγματικό κτήριο εμφανίστηκαν σημαντικές διατμητικές ή καμπτοδιατμητικές βλάβες στα περισσότερα υποστυλώματα/τοιχία του ισογείου pilotis, χωρίς όμως πολλές εμφανείς βλάβες σε δοκούς. Σε ανώτερους ορόφους οι βλάβες περιορίστηκαν κυρίως στις τοιχοπληρώσεις. Από τα αποτελέσματα των αναλύσεων χρονοϊστορίας διαπιστώνεται ότι εκτεταμένες βλάβες σε κατακόρυφα στοιχεία του ισογείου εμφανίζονται σε πλήθος τυπικών αποκλίσεων γύρω από την τιμή 3.0, η οποία αντιστοιχεί σε PGA ≈ 0.65 g, ειδικά για ύπαρξη φαινομένων κατευθυντικότητας. Παράλληλα για τις παραπάνω τιμή, οι αστοχίες σε υποστυλώματα στους υπόλοιπους ορόφους είναι σε αρκετές περιπτώσεις σχετικά λίγες. Γενικά οι περισσότερες δοκοί παραμένουν στη στάθμη μεταξύ AX και ΠΖ, με ορισμένες να υπερβαίνουν την τελευταία.

Η θεώρηση φαινομένων κατευθυντικότητας, σε οποιαδήποτε από τις δύο διευθύνσεις, φαίνεται ότι όντως αυξάνει γενικά τις παρατηρούμενες βλάβες, όπως φαίνεται από τα συνοπτικά δεδομένα που δίδονται για κάθε δυναμική ανάλυση που εκτελείται. Η διεύθυνση και η κατανομή των αστοχιών όμως διαφέρει για κάθε περίπτωση διεύθυνσης στην οποία θεωρούνται φαινόμενα κατευθυντικότητας. Αυτό φαίνεται από τη λίστα των αστοχιών στα υποστυλώματα για κάθε περίπτωση δυναμικής ανάλυσης, καθώς και από τα αντίστοιχα σχήματα που παρατίθενται στη συνέχεια, τα οποία συνοψίζουν τις διατμητικές αστοχίες των υποστυλωμάτων σε κάθε διεύθυνση. Παρατηρείται λοιπόν ότι οι πρόσθετες διατμητικές αστοχίες που καταγράφονται σε σχέση με τις αναλύσεις χωρίς φαινόμενα κατευθυντικότητας. Ανάλογο συμπέρασμα

Σχήμα 8.70: Μέσοι όροι drifts ορόφων κατά Χ (%) για κάθε περίπτωση τυπικής απόκλισης και ύπαρξης φαινομένων κατευθυντικότητας

Σχήμα 8.71: Μέσοι όροι drifts ορόφων κατά Υ (%) για κάθε περίπτωση τυπικής απόκλισης και ύπαρξης φαινομένων κατευθυντικότητας

Σχήμα 8.72: Σημεία ($\delta_{V_{max}}, V_{max}$), σε σχέση με τις αντίστοιχες καμπύλες Pushover, κατά τον άξονα *X*. Τα συμπαγή στοιχεία αντιστοιχούν σε σημεία με μέγιστη κατ' απόλυτη τιμή τέμνουσα βάσης στη συγκεκριμένη διεύθυνση.

Σχήμα 8.73: Σημεία (δ_{max} , $V_{\delta_{max}}$), σε σχέση με τις αντίστοιχες καμπύλες Pushover, κατά τον άξονα Χ. Τα συμπαγή στοιχεία αντιστοιχούν σε σημεία με μέγιστη κατ' απόλυτη τιμή μετακίνηση κόμβου αναφοράς στη συγκεκριμένη διεύθυνση. (Σημεία με δ_{max} εκτός των ορίων που απεικονίζει το σχήμα έχουν τοποθετηθεί ακριβώς στα όρια του σχήματος)

Σχήμα 8.74: Σημεία ($\delta_{V_{max}}, V_{max}$), σε σχέση με τις αντίστοιχες καμπύλες Pushover, κατά τον άξονα Υ. Τα συμπαγή στοιχεία αντιστοιχούν σε σημεία με μέγιστη κατ' απόλυτη τιμή τέμνουσα βάσης στη συγκεκριμένη διεύθυνση.

Σχήμα 8.75: Σημεία (δ_{max} , $V_{\delta_{max}}$), σε σχέση με τις αντίστοιχες καμπύλες Pushover, κατά τον άξονα Υ. Τα συμπαγή στοιχεία αντιστοιχούν σε σημεία με μέγιστη κατ' απόλυτη τιμή μετακίνηση κόμβου αναφοράς στη συγκεκριμένη διεύθυνση. (Σημεία με δ_{max} εκτός των ορίων που απεικονίζει το σχήμα έχουν τοποθετηθεί ακριβώς στα όρια του σχήματος)

προκύπτει και για τα drifts ορόφων, τις τέμνουσες βάσης και τις μετατοπίσεις κορυφής, που εμφανίζονται γενικά αυξημένα κατά τη διεύθυνση που ενεργεί ο παλμός κατευθυντικότητας. Η επίδραση των παλμών κατευθυντικότητας στην αύξηση των drifts ορόφων κατά τη διεύθυνση στην οποία υπάρχουν φαίνεται και στα σχήματα 8.70 και 8.71, ιδιαίτερα για μεγάλες τυπικές αποκλίσεις.

Η ύπαρξη φαινομένων κοντινού πεδίου στη διεύθυνση παράλληλα στη μεγάλη πλευρά του κτηρίου φαίνεται ότι επηρεάζει τη συμπεριφορά του φορέα, εμφανίζοντας περισσότερες βλάβες και ειδικά στα υποστυλώματα του ισογείου που εξετάζονται, παρόλο που η τιμή της κύριας ιδιοπεριόδου κατά τη διεύθυνση αυτή είναι αρχικά σχετικά μικρή και οι φασματικές επιταχύνσεις των φασμάτων με φαινόμενα κατευθυντικότητας είναι μικρότερες στις μικρές περιόδους σε σχέση με τα φάσματα χωρίς φαινόμενα κατευθυντικότητας. Όπως περιγράφηκε και παραπάνω, εξαιτίας της διαρροής ή αστοχίας μελών δοκών, υποστυλωμάτων και τοιχοπληρώσεων, η τιμή της κύριας ιδιοπεριόδου της διεύθυνσης αυτής αυξάνεται κατά τη διάρκεια της ανάλυσης και μπορεί να φτάσει πολύ υψηλές τιμές, ώστε να μπορεί να επηρεαστεί από την περιοχή κοντά στην περίοδο του παλμού, όπως καταγράφεται στα ελαστικά φάσματα απόκρισης. Το φαινόμενο αυτό είναι ιδιαίτερα εμφανές σε αναλύσεις με τις σειρές επιταχυνσιογραφημάτων ΑΤΗΑ και SGMA.

Διαπιστώνεται ακόμα ότι και η ύπαρξη παλμού στη διεύθυνση παράλληλα στη μικρή πλευρά του κτηρίου αυξάνει σημαντικά τις εμφανιζόμενες βλάβες, τόσο στις δοκούς, όσο και στα υποστυλώματα. Σημειώνεται εδώ ότι στη διεύθυνση αυτή η κύρια ιδιοπερίοδος έχει αρκετά μεγάλη τιμή και μπορεί να επηρεαστεί σημαντικά από παλμικά φαινόμενα. Για σχετικά υψηλή τιμή πλήθους τυπικών αποκλίσεων, διαπιστώνεται στη συγκεκριμένη ομάδα επιταχυνσιογραφημάτων ότι αυξάνονται ιδιαίτερα και οι αστοχίες στους ανώτερους ορόφους του φορέα, κάτι που βέβαια δεν παρατηρήθηκε στην πραγματικότητα. Έτσι, σε κάποιες περιπτώσεις ανάλυσης εμφανίζονται σημαντικότατες βλάβες στους ανώτερους ορόφους με πολύ μεγάλο αριθμό μελών να έχουν υπερβεί τις στάθμες επιτελεστικότητας ΟΚ ή ΔΑ, καθώς και πολύ υψηλά drifts, από τα οποία διαπιστώνεται ότι η κατασκευή έχει σχεδόν καταρρεύσει.

Στο κτήριο που εξετάζεται φαίνεται ότι οι περισσότερες βλάβες στα υποστυλώματα του ισογείου έχουν διεύθυνση παράλληλα στη μεγάλη πλευρά του (καθολικός άξονας Υ), δηλαδή οφείλονται σε διάτμηση παράλληλα στον z άξονα των υποστυλωμάτων. Γενικά, στις περιπτώσεις μη ύπαρξης παλμού κατευθυντικότητας ή ύπαρξής του σε διεύθυνση παράλληλα στη μικρή πλευρά του κτηρίου, δεν εμφανίζονται σημαντικές διατμητικές βλάβες κατά τον καθολικό άξονα Υ. Αντίθετα, η ύπαρξη φαινομένων κατευθυντικότητας κατά τη διεύθυνση Υ (ομάδα επιταχυνσιογραφημάτων DL) οδηγεί σε σημαντική αύξηση των εμφανιζόμενων διατμητικών αστοχιών στη διεύθυνση αυτή. Συνεπώς είναι πιθανό στην πραγματικότητα να υπήρξαν παλμοί κατευθυντικότητας στη διεύθυνση Υ, οι οποίοι επιβάρυναν περισσότερο την κατασκευή στην παραπάνω διεύθυνση.

Κατά τη διεύθυνση X καταγράφονται ακόμα και στις περιπτώσεις μη ύπαρξης παλμών κατευθυντικότητας και παλμών κατά τη διεύθυνση Y αρκετές διατμητικές βλάβες σε υποστυλώματα, που γενικά δεν συμφωνούν με τις βλάβες που εμφανίστηκαν στην πραγματικότητα, εκτός από τα υποστυλώματα 6, 18 και 22 που πράγματι εμφάνισαν αστοχία στη συγκεκριμένη διεύθυνση και δίνουν σημαντικές αστοχίες σε αρκετές περιπτώσεις ανάλυσης. Για το λόγο αυτό, πιθανολογείται ότι στη διεύθυνση αυτή οι σεισμικές επιταχύνσεις μπορεί να ήταν στην πραγματικότητα μικρότερες από αυτές που θεωρήθηκαν στις αναλύσεις, δηλαδή στις δύο διευθύνσεις φόρτισης οι εδαφικές επιταχύνσεις πιθανώς να είχαν αρκετά διαφορετικές εντάσεις, που αντιστοιχούν σε διαφορετικές τυπικές αποκλίσεις. Άλλωστε και στη βιβλιογραφία (Chioccarelli and Iervolino, 2010) αναφέρεται ότι στην περίπτωση σεισμών κοντινού πεδίου, η συνιστώσα που περιέχει παλμό κατευθυντικότητας παραμένει ισχυρότερη της άλλης συνιστώσας, ακόμα και αν από αυτή αφαιρεθεί ο παλμός. Η διαφοροποίηση αυτή όμως είναι δύσκολο να προσεγγισθεί πρακτικά, καθώς οι πιθανοί συνδυασμοί επιταχυνσιογραφημάτων κατά τους δύο άξονες, που προκύπτουν από σχέσεις εξασθένησης, είναι πάρα πολλοί.

Αντίθετα, στην άλλη διεύθυνση (Υ), τα αποτελέσματα των αναλύσεων που πραγματοποιήθηκαν δίνουν λογικές αστοχίες υποστυλωμάτων και μάλιστα αυτά που προκύπτουν από ανάλυση με φαινόμενα κατευθυντικότητας κατά τη διεύθυνση αυτή φαίνεται ότι συμφωνούν περισσότερο με τις αστοχίες που εμφανίστηκαν στην πραγματικότητα. Συγκεκριμένα, ιδιαίτερη επιβάρυνση προκύπτει στην περίπτωση αυτής της ομάδας επιταχυνσιογραφημάτων για τα υποστυλώματα 21, 8, 19, 17 και 6, κατά τη διεύθυνση Υ και τα οποία, σύμφωνα με την έκθεση βλαβών που καταγράφηκαν μετά το σεισμό, εμφάνισαν στην πραγματικότητα βλάβες κατά την ίδια διεύθυνση και μάλιστα ιδαίτερα έντονες για τα μέλη 8, 17. Από τα υπόλοιπα μέλη που αστοχούν κατά τις αναλύσεις, αλλά με μικρότερη συχνότητα, μπορούμε να διακρίνουμε τα μέλη 3, 12, 22 που πράγματι αστόχησαν και στην πραγματικότητα και μάλιστα έντονα, το μέλος 18 που πράγματι εμφάνισε αστοχία και στην πραγματικότητα, το μέλος 1 δεν φαίνεται να αστόχησε στην πραγματικότητα, ενώ στο μέλος 5 φάνηκαν απλά τριχοειδείς ρηγματώσεις. Ένα μέλος που φαίνεται να είχε σημαντικές αστοχίες στην πραγματικότητα, αλλά αυτό δεν αποτυπώνεται σε τέτοια έκταση κατά τις αναλύσεις είναι το μέλος 13, ενώ τα μέλη 7 και 9 που στην πραγματικότητα δεν εμφάνισαν διατμητικές αστοχίες, πράγματι δεν αστοχούν σχεδόν ποτέ ούτε στις παραπάνω αναλύσεις. Συμπερασματικά λοιπόν, η προσέγγιση των βλαβών στη διεύθυνση αυτή είναι ικανοποιητική και γίνεται καλύτερα χρησιμοποιώντας τα επιταχυνσιογραφήματα της ομάδας DL, τα οποία περιέχουν παλμούς στη διεύθυνση στη διεύθυνση Υ, έναντι των άλλων ομάδων επιταχυνσιογραφημάτων.

Στη συνέχεια επιχειρείται η σύγκριση κάποιων συγκεκριμένων αποτελεσμάτων ανάλυσης με τις βλάβες που εμφανίστηκαν στην πραγματικότητα. Οι περιπτώσεις ανάλυσης που παρουσιάζονται στη συνέχεια επιλέγονται επειδή εμφανίζουν σημαντικές αστοχίες υποστυλωμάτων στο ισόγειο κατά τον άξονα Υ, με σχετικά λίγες αστοχίες σε υποστυλώματα πέραν του ισογείου και σχετικά λίγες σοβαρές αστοχίες δοκών (που έχουν υπερβεί δηλαδή τις στάθμες επιτελεστικότητας ΠΖ ή και ΟΚ). Πρέπει να σημειωθεί ότι στις περισσότερες από τις παρακάτω περιπτώσεις επιταχυνσιογραφημάτων, υπάρχει σημαντική διαφοροποίηση στα αποτελέσματα για ύπαρξη ή όχι παλμού στη διεύθυνση Υ. Στον πίνακα 8.1 παρουσιάζεται το πλήθος των υποστυλωμάτων του ισογείου που εμφανίζουν διατμητική αστοχία ή έχουν υπερβεί τη στάθμη επιτελεστικότητας ΠΖ κατά τους δύο άξονες για κάποιες περιπτώσεις ανάλυσης, όπου σημειώνεται το πλήθος των αστοχιών που είναι κοινές στην πραγματικότητα και στο προσομοίωμα, το πλήθος των αστοχιών που εμφανίζονται μόνο στην πραγματικότητα, καθώς και το πλήθος των αστοχιών που εμφανίζονται μόνο στο προσομοίωμα. Για τον σκοπό αυτό, καθώς οι βλάβες δεν δίδονται με σαφήνεια σε όλες τις περιπτώσεις, παρατίθενται εδώ αυτές που θεωρήθηκαν για τους σκοπούς της κατηγοριοποίησης που εφαρμόζεται: Αστοχίες κατά Χ: 2, 6, 18, 19, 22, Αστοχίες κατά Υ: 3, 6, 8, 10, 12, 13, 15, 17, 18, 19, 21, 22. Σημειώνεται πάντως ότι τα υποστυλώματα που εμφανίζουν τριχοειδείς ρηγματώσεις (4, 5, 11, 16, 20) δεν συμπεριλαμβάνονται στα υποστυλώματα που ελέγχονται, καθώς οι τριχοειδείς ρηγματώσεις οφείλονται σε αρκετούς παράγοντες, ενώ κάποια από τα παραπάνω μέλη εμφανίζουν στις αναλύσεις διατμητική αστοχία ή διαρροή.

Από τον παραπάνω πίνακα φαίνεται ότι η προσέγγιση των αστοχιών κατά τον άξονα Χ δεν γίνεται τόσο ικανοποιητικά, καθώς προβλέπεται ένας σημαντικός αριθμός αστοχιών που δεν έχουν γίνει στην πραγματικότητα, αλλά οι αστοχίες κατά Υ προσεγγίζονται καλύτερα. Βέβαια, δεν μπορεί να διαπιστωθεί ακριβής ταύτιση κάποιας συγκεκριμένης περίπτωσης με τα πραγματικά ευρήματα. Κάτι τέτοιο μπορεί να θεωρηθεί λογικό, καθώς τα δεδομένα που διαθέτουμε ή υποθέτουμε για την κατασκευή μπορεί να μην συμφωνούν ακριβώς με την πραγματικότητα, ενώ τα διαθέσιμα μοντέλα για προσομοίωση οπλισμένου σκυροδέματος ή και τοιχοπληρώσεων που χρησιμοποιούνται είναι μάλλον αρκετά προσεγγιστικά, ειδικά όσον αφορά στην αστοχία σε διάτμηση. Από την άλλη, η εκτίμηση κάποιων επιταχυνσιογραφημάτων που φορτίζουν την κατασκευή είναι πολύ προσεγγιστική και πιθανότητα μπορεί να μην συμφωνούν πολύ με αυτά που συνέβησαν πραγματικά, καθώς η προσέγγιση ενός τόσο πολύ πολύπλοκου φαινομένου όπως ο σεισμός είναι εξαιρετικά δύσκολο να γίνει με την ακρίβεια που απαιτείται εδώ.

Ανάλυση	Κοινά (Χ)	Επ. πραγμ. (Χ)	Επ. προσ. (Χ)	Κοινά (Υ)	Επ. πραγμ. (Υ)	Επ. προσ. (Υ)
30-ATHA-DL	0	5	1	4	8	0
30-SGMA-DL	3	2	2	7	5	0
31-ATHA-DL	1	4	1	7	5	0
31-SGMA-DL	1	4	4	5	7	0
32-ATHA-DL	2	3	2	6	6	0
32-DMK-DL	4	1	4	6	6	0
32-SGMA-DL	4	1	4	10	2	1
33-SGMA-DL	4	1	5	11	1	2

Πίνακας 8.1: Σύγκριση αστοχιών υποστυλωμάτων ισογείου μεταξύ πραγματικότητας και προσομοιώματος

Όσον αφορά στα σχήματα 8.72 έως 8.75, φαίνεται γενικά ότι τα σημεία ($d_{V_{max}}, V_{max}$) απέχουν πολύ από τις καμπύλες Pushover, καθώς στις αναλύσεις χρονοϊστορίας αναπτύσσονται πολύ μεγαλύτερες τέμνουσες βάσης από τις μέγιστες τιμές στις καμπύλες Pushover, σε μικρότερες μάλιστα μετατοπίσεις, ακόμα και αντίθετης φοράς από την αναμενόμενη, από τις μετατοπίσεις στις περιοχές μέγιστων τεμνουσών βάσης των Pushover. Αντίθετα, αρκετά από τα σημεία ($d_{max}, V_{d_{max}}$) φαίνεται ότι συγκεντρώνονται γύρω από τις καμπύλες Pushover, αλλά και πάλι κάποια από αυτά βρίσκονται κάτω από αυτές, δηλαδή αναπτύσσονται μεγάλες μετατοπίσεις για αρκετά μικρότερες τιμές τεμνουσών βάσης από τις μέγιστες, σε κάποιες περιπτώσεις και αντίθετης φοράς από την αναμενόμενη. Αξίζει πάντως να παρατηρηθεί ότι για τις διευθύνσεις στις οποίες υπάρχει παλμός κατευθυντικότητας (δηλαδή για τις ομάδες επιταχυνσιογραφημάτων DT για διεύθυνση X και DL για διεύθυνση Y), τα αντίστοιχα σημεία φαίνεται ότι ξεχωρίζουν γενικά από τα υπόλοιπα, καθώς αντιστοιχούν σε μεγαλύτερες μετακινήσεις και σε κάποιες περιπτώσεις σε μεγαλύτερες τέμνουσες βάσης από τα υπόλοιπα. Οι μεγαλύτερες μετακινήσεις που παρατηρούνται πιθανώς οφείλονται και στις εκτενέστερες αστοχίες μελών στις αντίστοιχες διευθύνσεις για τις περιπτώσεις αυτές.

Συμπερασματικά, βάσει των παραπάνω αναλύσεων που πραγματοποιήθηκαν μπορούν να εξαχθούν κάποια σημαντικά συμπεράσματα. Όπως διαπιστώθηκε, η ύπαρξη φαινομένων κατευθυντικότητας φαίνεται ότι επηρεάζει την έκταση και τη σπουδαιότητα των εμφανιζόμενων βλαβών. Ειδικά στην περίπτωση του εξεταζόμενου κτηρίου, όπου οι διατμητικές βλάβες στα υποστυλώματα του ισογείου εμφανίστηκαν κυρίως κατά τη διεύθυνση παράλληλα στη μεγάλη πλευρά του κτηρίου, πιθανότητα σε αυτό συνέβαλαν παλμοί κατευθυντικότητας κατά αυτή τη διεύθυνση. Επιπλέον, συγκρίνοντας τις αστοχίες των υποστυλωμάτων μεταξύ των αποτελεσμάτων των αναλύσεων που πραγματοποιήθηκαν και των πραγματικόν, διαπιστώνεται ότι για να πραγματοποιηθούν βλάβες έκτασης περίπου όσης διαπιστώθηκε και στην πραγματικότητα, απαιτούνται σεισμικές διεγέρσεις με PGA $\approx 0.69g$ για ελαστικό φάσμα μορφής Shahi - Baker που παρουσιάστηκε σε προηγούμενο κεφάλαιο (3.1 τυπικές αποκλίσεις). Η υψηλή αυτή τιμή πλήθους τυπικών αποκλίσεων φανερώνει τις μη αναμενόμενα υψηλές τιμές των επιταχύνσεων που πιθανώς εκδηλώθηκαν στην περιοχή αυτή στο σεισμό της Αθήνας, οι οποίες για το λόγο αυτό ίσως οφείλονται και σε άλλα σεισμολογικά φαινόμενα πέραν της κατευθυντικότητας.

Κεφάλαιο 9

Γενικά συμπεράσματα και προτάσεις

Στην παρούσα εργασία μελετήθηκαν διάφορα θέματα, όπως η χρήση του προγράμματος OpenSees για εκτέλεση μη γραμμικών αναλύσεων, η προσομοίωση κατασκευών οπλισμένου σκυροδέματος όπως προτείνεται στον ελληνικό Κανονισμό Επεμβάσεων, συμπεριλαμβάνοντας και φαινόμενα αστοχίας σε διάτμηση, τα φαινόμενα κοντινού πεδίου και ιδιαίτερα η παραγωγή φασμάτων απόκρισης με σύγχρονες σχέσεις απόσβεσης (Boore-Atkinson) που περιλαμβάνουν φαινόμενα κατευθυντικότητας (Shahi-Baker), καθώς και η σύγκριση αστοχιών που διαπιστώθηκαν στην πραγματικότητα σε ένα εξεταζόμενο κτήριο σε σχέση με αυτές που δίνει ο συνδυασμός των παραπάνω προσεγγίσεων.

Όσον αφορά στο πρόγραμμα OpenSees, διαπιστώνεται ότι παρά τα όποια μειονεκτήματά του (έλλειψη γραφικού περιβάλλοντος, έλλειψη εκτενούς εγχειριδίου χρήσης, μη αξιοπιστία όχι τόσο συχνά χρησιμοποιούμενων εντολών), αποτελεί σε γενικές γραμμές ένα γρήγορο και αξιόπιστο πρόγραμμα ανελαστικής ανάλυσης φορέων που έχει το σημαντικό πλεονέκτημα ότι μπορεί να αυτοματοποιηθεί, κάτι ιδαίτερα σημαντικό για εκτέλεση πολλών παραμετρικών αναλύσεων. Το συγκεκριμένο πρόγραμμα προσανατολίζεται κυρίως σε μέλη με κατανεμημένη πλαστικότητα, όπου και ξεχωρίζει σε σχέση με άλλα προγράμματα, όμως στη συγκεκριμένη εργασία χρησιμοποιήθηκε κυρίως με μέλη συγκεντρωμένης πλαστικότητας, όπως αυτά προτείνονται από τον ΚΑΝ.ΕΠΕ., χρησιμοποιώντας στις θέσεις που απαιτείται στοιχεία μηδενικού μήκους και κατάλληλες τροποποιήσεις δυσκαμψιών.

Για τη δημιουργία του μοντέλου που αναλύεται στην εργασία, γίνονται οι ακόλουθες παραδοχές: Για την προσομοίωση των δοκών, αυτές χωρίζονται σε τρία τμήματα με διαφορετικά συνεργαζόμενα πλάτη (κατά EC8 στα άκρα και κατά EC2 στο μεσαίο τμήμα) και γενικά τα μέλη τοποθετούνται στο προσομοίωμα στους κεντροβαρικούς τους άξονες, με άκαμπτα τμήματα στα άκρα στις θέσεις των κόμβων, ενώ για τα υποστυλώματα θεωρούνται και φαινόμενα P-Δ. Στο συγκεκριμένο μοντέλο έχουν ληφθεί υπόψη και οι τοιχοπληρώσεις μέσω χιαστί μελών, όπως προτείνεται στον ΚΑΝ.ΕΠΕ. Στο μοντέλο ενσωματώνεται η διαφραγματική λειτουργία των πλακών μέσω πολύ δύσκαμπτων χιαστί και παράλληλων στις δοκούς μελών, ενώ τα τοιχία του υπογείου προσομοιώνονται επίσης με πολύ δύσκαμπτα χιαστί μέλη. Σημειώνεται ότι επειδή επιδιώκεται η μελέτη της πραγματικής συμπεριφοράς της κατασκευής, ως αντοχές υλικών λαμβάνονται οι μέσες τιμές αντοχής με μοναδιαίους συντελεστές ασφαλείας.

Σχετικά με την προσομοίωση της ανελαστικής συμπεριφοράς των κατασκευών σύμφωνα με τον ΚΑΝ.ΕΠΕ., ο κανονισμός προτείνει η προσομοίωση των μελών της κατασκευής να γίνεται με ελαστικά μέλη με τροποποιημένες ρηγματωμένες δυσκαμψίες, με συγκεντρωμένες στροφικές αρθρώσεις στα άκρα. Στο προσομοίωμα, οι στροφικές αυτές αρθρώσεις τοποθετούνται μέσω στοιχείων μηδενικού μήκους, κάτι το οποίο απαιτεί τροποποίηση των δυσκαμψιών των μελών και των αρθρώσεων, ώστε το συνολικό μέλος να έχει δυσκαμψία ίση με την αρχική. Σημαντικό στοιχείο των πλαστικών αρθρώσεων και των δυσκαμψιών αποτελεί το γεγονός ότι δεν βασίζονται μόνο στην κάμψη, όπως λαμβάνεται συνήθως σε ανελαστικές αναλύσεις κατασκευών ακόμα και οπλισμένου σκυροδέματος, αλλά λαμβάνουν έμμεσα υπόψη φαινόμενα διατμητικών ρηγματώσεων, διατμητικής παραμόρφωσης και εξόλκευσης οπλισμών. Σύμφωνα με τον ΚΑΝ.ΕΠΕ. τα φαινόμενα αυτά είναι τόσο σημαντικά, που στην περίπτωση του κτηρίου που εξετάστηκε, η συμβολή τους στον καθορισμό των γωνιών στροφής χορδής είναι περίπου ίση με αυτήν των παραμορφώσεων κάμψης. Οι ρηγματωμένες δυσκαμψίες που υπολογίστηκαν για τα μέλη είχαν τιμές περίπου 5% για τις δοκούς και 9% για τα υποστυλώματα σε σχέση με τις αρηγμάτωτες γεωμετρικές δυσκαμίες, ποσοστά αρκετά μικρότερα από τα συνήθως θεωρούμενα και αυτά που αναφέρονται ενδεικτικά στον ΚΑΝ.ΕΠΕ.

Επιπλέον, επιχειρήθηκε να ληφθεί υπόψη η αστοχία σε διάτμηση, μέσω χρήσης της έννοιας του διατμητικού μήκους, τροποποιώντας τις καμπύλες ροπών - γωνιών στροφής χορδής των συγκεντρωμένων αρθρώσεων, ώστε να επέρχεται αστοχία σε ροπή που αντιστοιχεί σε τέμνουσα δύναμη ίση με τη διατμητική αντοχή. Ακόμα, δοκιμάστηκε η χρήση διατμητικών ελατηρίων, τα οποία όμως δημιουργούσαν προβλήματα σύγκλισης, οπότε τελικά ακολουθήθηκε η παραπάνω προσεγγιστική μέθοδος.

Επιπλέον, εξετάστηκε η μεταβολή των μεγεθών αξονικής δύναμης και διατμητικών μηκών που απαιτούνται για την εξαγωγή των απαιτούμενων χαρακτηριστικών των μελών για την ανάλυση. Διαπιστώθηκε ότι γενικά παρουσιάζουν πιο σταθερή συμπεριφορά σε αναλύσεις Pushover και για λήψη πιο ρεαλιστικών τιμών ακολουθήθηκε μια διαδικασία επανάληψης εκτέλεσης της ανάλυσης όπου τα παραπάνω μεγέθη λαμβάνονται από αντίστοιχες αναλύσεις Pushover, σύμφωνα με τις ακραίες τιμές μετακινήσεων από την ανάλυση χρονοϊστορίας ή την ανάλυση Pushover. Παρόλα αυτά, η σημασία των διατμητικών μηκών είναι μεγαλύτερη όταν χρησιμοποιούνται για να ληφθεί έμμεσα υπόψη η αστοχία σε διάτμηση μέσω τροποποίησης των καμπύλων ροπής - γωνίας στροφής χορδής στα άκρα των μελών.

Η παραγωγή ελαστικών φασμάτων απόκρισης που περιέχουν ή όχι φαινόμενα κατευθυντικότητας, δηλαδή παλμούς στη διεύθυνση συνήθως κάθετα στο ρήγμα, είναι αρκετά απλή διαδικασία γνωρίζοντας κάποια δεδομένα σχετικά με το σεισμικό γεγονός και την εξεταζόμενη περιοχή, σύμφωνα με τις σχέσεις των Boore - Atkinson (2008) και Shahi - Baker (2011). Τα κατεγεγραμμένα επιταχυνσιογραφήματα μπορούν να προσαρμοστούν στα παραπάνω ελαστικά φάσματα απόκρισης χρησιμοποιώντας το πρόγραμμα Seismomatch. Παρόλα αυτά, όπως διαπιστώθηκε, τα επιταχυνσιογραφήματα που μπορεί να δημιουργηθούν βάσει των ελαστικών αυτών φασμάτων μπορεί να δώσουν σημαντικά διαφορετικά αποτελέσματα σε ανελαστικές αναλύσεις πολυβάθμιων φορέων, οπότε είναι καλό να δημιουργούνται αρκετά επιταχυνσιογραφήματα βασιζόμενα σε κάποιο φάσμα, από τα οποία μπορεί να προκύψει κάποιο γενικό συμπέρασμα.

Στη συγκεκριμένη περίπτωση του κτηρίου και της θέσης που εξετάστηκε, διαπιστώθηκε αρχικά ότι πράγματι τα φαινόμενα κατευθυντικότητας μπορεί να διαφοροποιήσουν σημαντικά την απόκριση της κατασκευής. Αυτό συμβαίνει ακόμα και στην περίπτωση που η αρχική "ελαστική" ιδιοπερίοδος του φορέα είναι αρκετά χαμηλή ώστε να επηρεάζεται από τον παλμό του επιταχυνσιογραφήματος, καθώς εξαιτίας της διαρροής και αστοχίας των μελών δοκών, υποστυλωμάτων και τοιχοπληρώσεων κατά τη διάρκεια της ανάλυσης, η ιδιοπερίοδος του φορέα μπορεί να αυξηθεί σημαντικά, με αποτέλεσμα αντί να μειωθεί η απαίτηση σε πλαστιμότητα όπως συμβαίνει σε μια κλασική περίπτωση σεισμού μακρινού πεδίου, η απαίτηση σε πλαστιμότητα να παραμείνει αυξημένη και οι βλάβες να είναι σοβαρότερες.

Αν και λόγω των πολλών αβεβαιοτήτων στην κατασκευή του φορέα, στα διαθέσιμα μοντέλα προσομοίωσής του, καθώς και στην εκτίμηση του σεισμικού γεγονότος δεν είναι δυνατή φυσικά η ακριβής εκτίμηση των επιταχυνσιογραφημάτων που επέδρασαν στη συγκεκριμένη θέση, διαπιστώθηκε ότι σημαντικές διατμητικές βλάβες στα υποστυλώματα του ισογείου (pilotis) που προσεγγίζουν τις πραγματικές εμφανίζονται για τιμές PGA $\approx 0.69g$ (περίπου 3.1 τυπικές αποκλίσεις στα φάσματα Boore - Atkinson, τροποποιημένα από τους Shahi - Baker) και μάλιστα για ύπαρξη φαινομένων κατευθυντικότητας παράλληλα στη μεγάλη διεύθυνση του κτηρίου. Γενικά παρατηρήθηκε ότι επιταχυνσιογραφήματα που προσομοιώνουν σεισμικές κινήσεις με φαινόμενα κατευθυντικότητας οδηγούν σε αυξημένες αστοχίες, drifts ορόφων, τέμνουσες βάσης και

μετακινήσεις κορυφής κατά τη διεύθυνση των επιταχυνσιογραφημάτων με τους παλμούς κατευθυντικότητας.

Οι βλάβες που παρατηρήθηκαν στην πραγματικότητα χαρακτηρίζονται από μια εμμονή παράλληλα στη μεγάλη πλευρά του κτηρίου, κάτι που εμφανίζεται και στο μοντέλο όταν στη συγκεκριμένη διεύθυνση υπάρχουν φαινόμενα κατευθυντικότητας, καθιστώντας την ύπαρξη τέτοιων φαινομένων και στην πραγματικότητα αρκετά πιθανή. Συγκρίνοντας τις βλάβες που έχουν καταγραφεί για το εξεταζόμενο κτήριο στην πραγματικότητα με τις βλάβες που εμφανίζονται το μοντέλο, οι διατμητικές βλάβες των υποστυλωμάτων του ισογείου κατά τη διεύθυνση αυτή φαίνεται ότι προσεγγίζονται καλύτερα για επιταχυνσιογραφήματα με παλμούς κατευθυντικότητας στην παραπάνω διεύθυνση. Αντίθετα, οι βλάβες που εμφανίζονται στο μοντέλο κατά την άλλη διεύθυνση είναι εκτενέστερες από ό,τι στην πραγματικότητα στις περισσότερες περιπτώσεις, ένδειξη ότι πιθανόν οι σεισμικές επιταχύνσεις κατά την άλλη διεύθυνση αντιστοιχούν σε λιγότερες τυπικές αποκλίσεις σε σχέση με αυτές που θεωρούνται για την διεύθυνση παράλληλα στη μεγάλη πλευρά του κτηρίου, καθώς, όπως αναφέρεται και στη βιβλιογραφία, η συνιστώσα που περιέχει τον παλμό παραμένει ισχυρότερη της άλλης συνιστώσας, ακόμα και μετά την αφαίρεση του παλμού. Γενικά πάντως εμφανίζονται μη αναμενόμενα υψηλές τιμές επιταχύνσεων, οι οποίες ίσως οφείλονται και σε άλλα σεισμολογικά φαινόμενα πέραν της κατευθυντικότητας.

Τα συμπεράσματα σχετικά με την ύπαρξη φαινομένων κατευθυντικότητας στην παραπάνω διεύθυνση και της προσέγγισης των εδαφικών επιταχύνσεων που εμφανίστηκαν, συμφωνούν με άλλες παρατηρήσεις που έχουν γίνει από ερευνητές, σχετικά με την ύπαρξη παλμών κατευθυντικότητας στα επιταχυνσιογραφήματα του σεισμού της Αθήνας, σε διεύθυνση μάλιστα πολύ κοντά στην παραπάνω, αλλά και από πραγματικές παρατηρήσεις απλών κατασκευών σε κοντινές περιοχές μετά το σεισμό, όπου διαπιστώνεται μια εμμονή βλαβών περίπου στην παραπάνω διεύθυνση και την PGA να εκτιμάται από αυτά τα φυσικά πειράματα σε τιμές 0.50÷0.70*g*, αντίθετα με αποτελέσματα θεωρητικών αναλύσεων που δίνουν μικρότερες τιμές PGA. Συνεπώς διαπιστώνεται ότι υπάρχει πιθανότητα οι μέχρι τώρα θεωρούμενες τιμές που έχουν προκύψει από θεωρητικές εδαφικές αναλύσεις να υποεκτιμούν τις πραγματικά εμφανισθείσες εδαφικές επιταχύνσεις.

Στη θέση αυτή θα πρέπει να επισημανθεί η σημασία της μεθόδου προσομοίωσης μιας κατασκευής στα αποτελέσματα που δίνει η ανάλυση. Όπως διαπιστώθηκε, η χρήση τυπικών ή συγκεκριμένων μετά από επανάληψη τιμών αξονικών δυνάμεων ή διατμητικών μηκών για την προσομοίωση που προτείνει ο ΚΑΝ.ΕΠΕ., η θεώρηση ή όχι τοιχοπληρώσεων στο προσομοίωμα, η θεώρηση ή όχι μελών που αστοχούν σε διάτμηση κατά τη διάρκεια της ανάλυσης, η θεώρηση ή όχι φαινομένων που επηρεάζουν την απόκριση μελών ΟΣ πέραν της κάμψης (ρηγματώσεις, διατμητικές παραμορφώσεις, εξόλκευση οπλισμών) μπορούν να διαφοροποιήσουν σημαντικά τα αποτελέσματα που λαμβάνονται από την ανάλυση.

Συνοψίζοντας κάποια συμπεράσματα από τη σύγκριση των αποτελεσμάτων των διαφόρων μοντέλων, διαπιστώνεται ότι ειδικά στην περίπτωση που λαμβάνονται υπόψη διατμητικές αστοχίες με τροποποίηση των διαγραμμάτων ροπών - γωνιών στροφής χορδής στα άκρα των μελών, η επανάληψη για να ληφθούν ακριβέστερα διατμητικά μήκη είναι επιβεβλημένη. Οι τοιχοπληρώσεις, οι οποίες δεν συνεχίζονται στο ισόγειο, διαπιστώνεται ότι συμβάλλουν κυρίως στην αύξηση της αρχικής δυσκαμψίας του φορέα, με μείωση των μετακινήσεων και μικρή αύξηση της αντοχής τέμνουσας βάσης, αλλά οδηγούν και σε ανακατανομή των αστοχιών στα μέλη του φορέα. Προφανώς, όταν δεν λαμβάνονται υπόψη οι αστοχίες σε τέμνουσα κατά τη διάρκεια της ανάλυσης, η αντοχή του φορέα είναι σημαντικά αυξημένη, με μειωμένα drifts στις στάθμες που θα συνέβαιναν στην πραγματικότητα διατμητικές αστοχίες, κάνοντας επιβεβλημένη την συμπερίληψή τους στο προσομοίωμα όταν σε αυτό αναμένονται διατμητικές αστοχίες. Τέλος, όταν για τους υπολογισμούς των γωνιών στροφής χορδής, άρα και των ενεργών δυσκαμψιών, λαμβάνονται υπόψη μόνο φαινόμενα κάμψης, οι δυσκαμψίες των διατομών προκύπτουν περίπου διπλάσιες. Αποτέλεσμα των παραπάνω είναι ότι ο φορέας αποκρίνεται εντελώς διαφορετικά τόσο σε αναλύσεις Pushover, όσο και σε αναλύσεις χρονοϊστορίας, και κυρίως όσον αφορά στις εμφανιζόμενες μετακινήσεις, με σημαντικές διαφοροποιήσεις στο πλήθος και την κατανομή των εμφανιζόμενων βλαβών. Το μοντέλο αυτό, όταν επιπλέον δεν λαμβάνεται υπόψη η αστοχία σε διάτμηση, προσεγγίζει πολύ ικανοποιητικά τα μοντέλα κατανεμημένης πλαστικότητας που δοκιμάστηκαν.

Ιδιαίτερα τονίζεται ότι, ενώ στις κλασικές περιπτώσεις σεισμικών κινήσεων n υποεκτίμπση των ιδιοπεριόδων του φορέα δίνει αποτελέσματα μάλλον υπέρ της ασφαλείας όσον αφορά στις ασκούμενες δυνάμεις, σε κάποιες περιπτώσεις σεισμικών κινήσεων κοντινού πεδίου είναι δυνατόν n υποεκτίμπση των ιδιοπεριόδων να δώσει μη συντηρητικά αποτελέσματα, καθώς στην πραγματικότητα n κατασκευή μπορεί να επηρεασθεί περισσότερο από τους παλμούς κατευθυντικότητας σε αυξημένες περιόδους. Για το λόγο αυτό, n μελέτη της απόκρισης φορέων ΟΣ, ιδιαίτερα σε σεισμούς κοντινού πεδίου, οφείλει να λαμβάνει υπόψη φαινόμενα που κάνουν την κατασκευή πιο εύκαμπτη σε σχέση με την ευκαμψία που έχει θεωρώντας παραμορφώσεις μόνο λόγω κάμψης.

Συνεπώς, θα πρέπει να εξετασθούν περισσότερο φαινόμενα όπως τα παραπάνω, που μεταβάλλουν την απόκριση των μελών οπλισμένου σκυροδέματος σε σχέση με την κλασική καμπτική απόκριση. Αν και τέτοια φαινόμενα μπορούν να ληφθούν έμμεσα υπόψη με τη μέθοδο συγκεντρωμένης πλαστικότητας, κάτι που προτείνει και ο ΚΑΝ.ΕΠΕ. και εφαρμόστηκε και στην παρούσα εργασία, θεωρείται ότι θα πρέπει να μελετηθεί περισσότερο η συμπερίληψή τους και στη μέθοδο κατανεμημένης πλαστικότητας, σύμφωνα με την οποία τα χαρακτηριστικά απόκρισης των μελών μεταβάλλονται και προσαρμόζονται συνεχώς σύμφωνα με τα δεδομένα που προκύπτουν σε κάθε χρονική στιγμή της ανάλυσης (για παράδειγμα στις εκάστοτε αξονικές δυνάμεις ή τα θεωρούμενα διατμητικά μήκη). Με ανάπτυξη κατάλληλων νόμων για τη μέθοδο αυτή θα μπορέσουν να εξαλειφθούν αβεβαιότητες και ανακρίβειες που οφείλονται στη διατήρηση σταθερών τιμών των παραπάνω μεγεθών κατά τη διάρκεια της ανάλυσης, για τα οποία μάλιστα είναι δύσκολο να προσδιοριστούν κάποιες αντιπροσωπευτικές τιμές. Ακόμα, θα πρέπει να μελετηθεί περισσότερο το φαινόμενο της αστοχίας σε διάτμηση, φαινόμενο ιδιαίτερα σημαντικό για παλιές κατασκευές με ανεπαρκή οπλισμό διάτμησης, καθώς και το πώς μπορεί να συμπεριληφθεί στο προσομοίωμα με μεγαλύτερη ακρίβεια, χωρίς όμως να δημιουργεί προβλήματα συγκλίσεων λόγω της απότομης πτώσης αντοχής.

Τέλος, θα ήταν παράλειψη αν δεν τονιζόταν η σημασία περαιτέρω μελέτης των σεισμικών κινήσεων κοντινού πεδίου, ιδιαίτερα για τον ελλαδικό χώρο, καθώς οι παλμικές κινήσεις που είναι ικανά να παράγουν τα ρήγματα που υπάρχουν σε αυτόν, μπορεί να είναι καταστροφικές για τις μορφές κατασκευών που διαθέτει η Ελλάδα. Για το λόγο αυτό, σημαντικής βοήθειας για το μηχανικό θα ήταν ο εμπλουτισμός των κανονισμών με περισσότερες συστάσεις για την προστασία έναντι τέτοιων περιπτώσεων, καθώς πιθανώς και η δημιουργία, στα πρότυπα των σχέσων εξασθένησης νέας γενιάς, ανάλογων σχέσεων εξασθένησης ειδικά για τον ελλαδικό ή ευρύτερα μεσογειακό χώρο, ικανών να προβλέψουν ρεαλιστικότερα τα αναμενόμενα σεισμικά γεγονότα σύμφωνα με τα ιδιαίτερα χαρακτηριστικά των περιοχών αυτών.

Βιβλιογραφία

Προσομοίωση & Ανάλυση κατασκευών

- Berry, Michael P. кан Eberhard, Marc O. Performance modeling strategies for modern reinforced concrete bridge columns. PEER-2007/07. PEER Center, 2008.
- *European Standard EN 1992-1-1:2004, Eurocode 2: Design of concrete structures, Part 1-1: General rules, and rules for buildings. European Committee for Standardization (CEN). 2004.*
- European Standard EN 1998-1:2004, Eurocode 8: Design of structures for earthquake resistance, Part 1: General rules, seismic actions and rules for buildings. European Committee for Standardization (CEN). 2004.
- European Standard EN 1998-3:2005, Eurocode 8: Design of structures for earthquake resistance, Part 3: Assessment and retrofitting of buildings. European Committee for Standardization (CEN). 2005.
- Ibarra, Luis F. кан Krawinkler, Helmut. *Global collapse of frame structures under seismic excitations*. Pacific Earthquake Engineering Research Center, 2005.
- Ibarra, Luis F., Medina, Ricardo A. και Krawinkler, Helmut. «Hysteretic models that incorporate strength and stiffness deterioration». *Earthquake engineering Θ structural dynamics* 34.12 (2005), σσ. 1489–1511.
- Pauley, Τ. και Priestley, M.J.N. Αντισεισμικός σχεδιασμός κατασκευών από οπλισμένο σκυρόδεμα και τοιχοποιία. Μετάφραση της αγγλικής έκδοσης "Seismic Design of Reinforced Concrete and Masonry Buildings", 1992. Εκδόσεις Κλειδάριθμος, 1996.
- UC Berkeley. Ιστοσελίδα OpenSees (wiki και message board). URL: http://opensees.berkeley.edu/.
- Βιντζηλαίου, Ε., Ζέρης, Χ. και Μωρέττη, Μ.. Διδακτικές σημειώσεις για το μάθημα "Ειδικά κεφάλαια Ωπλισμένου Σκυροδέματος". ΕΜΠ, 2005.
- Γιαννόπουλος, Π., Κανιτάκη, Ε., Σιγάλας, Ι., Τρέζος, Κ. και Χρονόπουλος, Μ.. Διαδικτυακές διδακτικές σημειώσεις για τα μαθήματα "Σιδηροπαγές Σκυρόδεμα" και "Κατασκευές από Οπλισμένο Σκυρόδεμα".
- Καλυβιώτης, Ι.. «Διερεύνηση της ανελαστικής συμπεριφοράς πρότυπων πλαισίων από Ω.Σ. με χρήση του προγράμματος OpenSees». Διπλωματική εργασία. Σχολή Πολιτικών Μηχανικών ΕΜΠ, 2011.
- ΚΑΝ.ΕΠΕ. (Κανονισμός Επεμβάσεων). Οργανισμός Αντισεισμικού Σχεδιασμού και Προστασίας (ΟΑΣΠ). 2012.
- Κατσικαδέλης, Ι.Θ.. Δυναμική των Κατασκευών. Τόμ. Ι. Εκδόσεις Συμμετρία, 2002.
- Δυναμική των Κατασκευών. Τόμ. ΙΙ. Εκδόσεις Συμμετρία, 2004.
- Κωμοδρόμος, Π.. Ανάλυση Κατασκευών. Εκδόσεις Παπασωτηρίου, 2009.
- Παπαδρακάκης, Μ., Κατσικαδέλης, Ι.Θ., Σαπουντζάκης, Ε.Ι. και Νεραντζάκη, Μ.Ν.. Διδακτικές σημειώσεις για το μάθημα "Σύγχρονες μέθοδοι αναλύσεως φορέων (Στατική ΙΙΙ)". ΕΜΠ, 2008.
- Ψυχάρης, Ι.. Αντισεισμικός σχεδιασμός με στάθμες επιτελεστικότητας, διδακτικές σημειώσεις για το μάθημα "Αντισεισμική Τεχνολογία ΙΙ".

Σεισμολογικά

- Abrahamson, N.A. Kui Silva, W.J. «Empirical ground motion models». *Report to Brookhaven National Laboratory* (1996).
- Abrahamson, N.A. και Somerville, P.G. «Effects of the hanging wall and footwall on ground motions recorded during the Northridge earthquake». *Bulletin of the Seismological Society of America* 86.1B (1996), S93–S99.
- Abrahamson, Norman A. «Effects of rupture directivity on probabilistic seismic hazard analysis». *Proceedings of the 6th International Conference on Seismic Zonation*. Tóμ. 1. Palm Springs CA. 2000, σσ. 151–156.
- Alavi, Babak και Krawinkler, Helmut. «Consideration of near-fault ground motion effects in seismic design». *Proceedings of the 12th World Conference on Earthquake Engineering.* 2000.
- Effects of near-fault ground motions on frame structures. John A. Blume Earthquake Engineering Center, 2001.
- Ambraseys, N.N. και Menu, J.M. «Earthquake-induced ground displacements». *Earthquake engineering Θ structural dynamics* 16.7 (1988), σσ. 985–1006.
- Archuleta, Ralph J. και Hartzell, Stephen H. «Effects of fault finiteness on near-source ground motion». *Bulletin of the Seismological Society of America* 71.4 (1981), σσ. 939–957.
- Baez, Jose I. και Miranda, Eduardo. «Amplification factors to estimate inelastic displacement demands for the design of structures in the near field». *Proceedings of the 12th World Conference on Earthquake Engineering*. 2000.
- Baker, Jack W. «Quantitative classification of near-fault ground motions using wavelet analysis». *Bulletin of the Seismological Society of America* 97.5 (2007), σσ. 1486–1501.
- Bommer, Julian J. και Martinez-Pereira, Alejandro. «The effective duration of earthquake strong motion». *Journal of Earthquake Engineering* 3.02 (1999), σσ. 127–172.
- Boore, David M. και Atkinson, Gail M. «Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s». *Earthquake Spectra* 24.1 (2008), σσ. 99–138.
- Bouckovalas, G.D. και Kouretzis, G.P. «Stiff soil amplification effects in the 7 September 1999 Athens (Greece) earthquake». *Soil dynamics and earthquake engineering* 21.8 (2001), σσ. 671– 687.
- Bozorgnia, Youself, Niazi, Mansour και Campbell, Kenneth W. «Characteristics of free-field vertical ground motion during the Northridge earthquake». *Earthquake spectra* 11.4 (1995), σσ. 515–525.
- Bray, Jonathan D. και Rodriguez-Marek, Adrian. «Characterization of forward-directivity ground motions in the near-fault region». *Soil Dynamics and Earthquake Engineering* 24.11 (2004), σσ. 815–828.
- Campbell, Kenneth W. «Near-source attenuation of peak horizontal acceleration». *Bulletin of the Seismological Society of America* 71.6 (1981), σσ. 2039–2070.
- Chioccarelli, E. και Iervolino, I. «Near-source seismic demand and pulse-like records: A discussion for L'Aquila earthquake». *Earthquake Engineering and Structural Dynamics* 39.9 (2010), σσ. 1039–1062.
- Chopra, Anil К. кαι Chintanapakdee, C. «Accuracy of response spectrum estimates of structural response to near-field earthquake ground motions: Preliminary results». *ASCE Structures World Conf.* T136-1. San Francisco, Paper. 1998.
- «Comparing response of SDF systems to near-fault and far-fault earthquake motions in the context of spectral regions». *Earthquake engineering Θ* structural dynamics 30.12 (2001), σσ. 1769–1789.
- Elenas, A. «Athens earthquake of 7 September 1999: Intensity measures and observed damages». ISET Journal of earthquake technology 40.1 (2003), σσ. 77–97.

Hall, John F., Heaton, Thomas H., Halling, Marvin W. και Wald, David J. «Near-source ground motion and its effects on flexible buildings». *Earthquake spectra* 11.4 (1995), σσ. 569–605.

- Howard, Jeffrey K., Tracy, Chris A. και Burns, Robert G. «Comparing observed and predicted directivity in near-source ground motion». *Earthquake Spectra* 21.4 (2005), σσ. 1063–1092.
- Huang, Ching-Tung. «Considerations of multimode structural response for near-field earthquakes». *Journal of engineering mechanics* 129.4 (2003), oo. 458–467.
- Huang, Jian-wen και Zhu, Xi. «Inelastic response analysis for the SDOF structures under near-fault earthquakes [J]». *China Safety Science Journal* 13.11 (2003), σσ. 59–65.
- Iwan, W.D. «Drift spectrum: measure of demand for earthquake ground motions». *Journal of structural engineering* 123.4 (1997), σσ. 397–404.
- Kikuchi, Masaru, Dan, Kazuo και Yashiro, Kazuhiko. «Seismic behavior of a reinforced concrete building due to large vertical ground motion in near source regions». *Proceedings of 12th. World Conference on Earthquake Engineering.* 2000.
- Krawinkler, Helmut και Alavi, Babak. «Development of improved design procedures for nearfault ground motions». *SMIP98, seminar on utilization of strong motion data, Oakland, CA.* 1998.
- Krawinkler, Helmut, Alavi, Babak και Zareian, Farzin. «Impact of near-fault pulses on engineering design». *Directions in Strong Motion Instrumentation*. Springer, 2005, σσ. 83–106.
- Li, Shuang και Xie, Li-li. «Progress and trend on near-field problems in civil engineering». *Acta Seismologica Sinica* 20.1 (2007), σσ. 105–114.
- Li, Xin-le και Zhu, Xi. «Influence by near-fault ground motion of moderate and minor earthquakes [J]». *Earthquake Resistant Engineering* 4 (2004), σσ. 43–46.
- Li, Xl και Zhu, Xi. «Study on near-fault design spectra of seismic design code [C]». Liu WQ, Yuan FG, Chang P C. 3rd International Conference on Earthquake Engineering: New Frontier and Research Transformation. Beijing: Intellectual Property Publishing House. 2004, σσ. 147– 152.
- Liu, Andrew H., Stewart, Jonathan P., Abrahamson, Norman A. και Moriwaki, Yoshi. «Equivalent number of uniform stress cycles for soil liquefaction analysis». *Journal of geotechnical and geoenvironmental engineering* 127.12 (2001), σσ. 1017–1026.
- MacRae, Gregory A. και Mattheis, Joshua. «Three-dimensional steel building response to near-fault motions». *Journal of Structural Engineering* 126.1 (2000), σσ. 117–126.
- MacRae, Gregory A., Morrow, Daniel V. και Roeder, Charles W. «Near-fault ground motion effects on simple structures». *Journal of Structural Engineering* 127.9 (2001), σσ. 996–1004.
- Makris, Nicos και Black, Cameron J. «Dimensional analysis of bilinear oscillators under pulsetype excitations». *Journal of engineering mechanics* 130.9 (2004), σσ. 1019–1031.
- Malhotra, Praveen K. «Response of buildings to near-field pulse-like ground motions». *Earth- quake engineering Θ structural dynamics* 28.11 (1999), σσ. 1309–1326.
- Mavroeidis, George P. Modeling and simulation of near-fault strong ground motions for earthquake engineering applications. 2004.
- Mavroeidis, George P. και Papageorgiou, Apostolos S. «A mathematical representation of nearfault ground motions». *Bulletin of the Seismological Society of America* 93.3 (2003), σσ. 1099– 1131.
- Ni, Yong-jun και Zhu, Xi. «Analysis of acceleration peak ratios and response spectra for near-fault earthquakes». *Journal of Northern Jiaotong University* 28.4 (2004), σσ. 1–5.
- Papadopoulos, G.A., Drakatos, G., Papanastassiou, D., Kalogeras, I. και Stavrakakis, G. «Preliminary results about the catastrophic earthquake of 7 September 1999 in Athens, Greece». *Seismological Research Letters* 71.3 (2000), σσ. 318–329.
- Roberts, Matthew W. και Lutes, Loren D. «Potential for structural failure in the seismic near field». *Journal of engineering mechanics* 129.8 (2003), σσ. 927–934.
- Rodriguez-Marek, Adrian. «Near-fault seismic site response». Διδακτορική διατρ. University of California, 2000.

- Sasani, Mehrdad Kai Bertero, Vitel V. «Importance of severe pulse-type ground motions in performance-based engineering: historical and critical review». *Proceedings of the 12th World Conference on Earthquake Engineering*. 2000.
- Shabestari, Khosrow T. και Yamazaki, Fumio. «Near-fault spatial variation in strong ground motion due to rupture directivity and hanging wall effects from the Chi-Chi, Taiwan earthquake». *Earthquake engineering ∂ structural dynamics* 32.14 (2003), σσ. 2197–2219.
- Shahi, Shrey K. και Baker, Jack W. «An empirically calibrated framework for including the effects of near-fault directivity in probabilistic seismic hazard analysis». *Bulletin of the Seismological Society of America* 101.2 (2011), σσ. 742–755.
- Singh, Jogeshwar P. «Earthquake ground motions: implications for designing structures and reconciling structural damage». *Earthquake Spectra* 1.2 (1985), σσ. 239–270.
- Somerville, Paul G. «Engineering characterization of near fault ground motions». *Proceedings* of 2005 NZSEE Conference, Wairakei, NZ. 2005.
- «Magnitude scaling of the near fault rupture directivity pulse». *Physics of the earth and planetary interiors* 137.1 (2003), σσ. 201–212.
- Somerville, Paul G., Smith, Nancy F., Graves, Robert W. και Abrahamson, Norman A. «Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity». *Seismological Research Letters* 68.1 (1997), σσ. 199–222.
- Somerville, Paul και Graves, Robert. «Conditions that give rise to unusually large long period ground motions». *The structural design of tall buildings* 2.3 (1993), σσ. 211–232.
- Somerville, Paul, Irikura, Kojiro, Graves, Robert, Sawada, Sumio, Wald, David, Abrahamson, Norman, Iwasaki, Yoshinori, Kagawa, Takao, Smith, Nancy και Kowada, Akira. «Characterizing crustal earthquake slip models for the prediction of strong ground motion». *Seismological Research Letters* 70.1 (1999), σσ. 59–80.
- Somerville, P.G. «Characterizing near fault ground motion for the design and evaluation of bridges». *Third National Conference and Workshop on Bridges and Highways. Portland, Oregon.* 2002.
- «Development of an improved representation of near fault ground motions». *SMIP98 Seminar on Utilization of Strong-Motion Data*. Tóµ. 15. 1998.
- Spyrakos, Constantine C., Maniatakis, Charilaos A. και Taflambas, John. «Evaluation of nearsource seismic records based on damage potential parameters: Case study: Greece». *Soil Dynamics and Earthquake Engineering* 28.9 (2008), σσ. 738–753.
- Stavrakakis, G.N., Chouliaras, G. και Panopoulou, G. «Seismic source parameters for the Ml= 5.4 Athens earthquake (7 September 1999) from a new telemetric broad band seismological Network in Greece». *Natural Hazards* 27.1-2 (2002), σσ. 47–60.
- Stewart, J.P., Chiou, S.J., Bray, J.D., Graves, R.W., Somerville, P.G. кан Abrahamson, N.A. Ground motion evaluation procedures for performance based design. Rpt. No. PEER-2001/09. PEER Center, 2001.
- Tselentis, G-Akis και Zahradnik, Jiri. «The Athens earthquake of 7 September 1999». *Bulletin of the Seismological Society of America* 90.5 (2000), σσ. 1143–1160.
- Vanmarcke, Erik. State-of-the-art for assessing earthquake hazards in the United States: Representation of earthquake ground motion: scaled accelerograms and equivalent response spectra. US Army Engineer Waterways Experiment Station, 1979.
- Voulgaris, N., Kassaras, I., Papadimitriou, P. και Delibasis, N. «Preliminary results of the Athens September 7, 1999 aftershock sequence». *Ann. Geol. Pays Hellen* 38 (2000), σσ. 51–62.
- Wang, G-Q, Zhou, X-Y, Zhang, P-Z Kai Igel, H. «Characteristics of amplitude and duration for near fault strong ground motion from the 1999 Chi-Chi, Taiwan earthquake». *Soil Dynamics and Earthquake Engineering* 22.1 (2002), oo. 73–96.

- Wu, X. και Zhu, X. «Effect of velocity pulse in near field ground motions and certification of regression equations to simple impact». Beifang Jiaotong Daxue Xuebao/Journal of Northern Jiaotong University 27.1 (2003), σ. 36.
- Yu, Yan-xiang και Gao, Meng-tan. «Effects of the hanging wall and footwall on peak acceleration during the Jiji (Chi-Chi), Taiwan Province, earthquake». *Acta Seismologica Sinica* 14.6 (2001), σσ. 654–659.
- Γκαζέτας, Γ., Μπουκοβάλας, Γ., Πρωτονοτάριος, Ι., Παπαδημητρίου, Α., Ψαρρόπουλος, Π., Γερόλυμος, Ν., Αντωνίου, Α., Κουρετζής, Γ. και Κάλλου, Π.. Μελέτη του Σεισμού της Αθήνας 7-9-99, Υπολογιστική εκτίμηση των επιταχύνσεων στις πλειόσειστες περιοχές. Τεχνικό Επιμελητήριο Ελλάδος, Απόφαση ΔΕ Γ/18/33/99, 2001.

Μουζάκης, Χ. και Σπυράκος, Κ.. Διδακτικές σημειώσεις για το μάθημα "Τεχνική Σεισμολογία".

Σκιαδά, Ε.. «Σεισμοί κοντινού πεδίου μεσαίου μεγέθους: Η περίπτωση του σεισμού της Αθήνας στις 7/9/1999». Μεταπτ/κή διπλ. εργασ. ΔΠΜΣ Αντισεισμικός Σχεδιασμός και Ανάλυση Κατασκευών, 2011.

Λοιπά

Tcl Association. *Ιστοσελίδα γλώσσας προγραμματισμού Tcl (wiki)*. URL: http://wiki.tcl.tk/. Wall, Kurt. *Tcl and Tk programming for the absolute beginner*. Course Technology Press, 2007.

Παράρτημα Α

Κατόψεις ξυλοτύπων, τοιχοπληρώσεων και επιφανειών επιρροής φορτίων

Σχήμα Α.1: Κάτοψη ξυλοτύπου υπογείου, μεγέθυνση (1)

Σχήμα Α.2: Κάτοψη ξυλοτύπου υπογείου, μεγέθυνση (2)

Σχήμα Α.3: Κάτοψη ξυλοτύπου ισογείου, μεγέθυνση (1)

Σχήμα Α.4: Κάτοψη ξυλοτύπου ισογείου, μεγέθυνση (2)

Σχήμα Α.5: Κάτοψη ξυλοτύπου α' ορόφου, μεγέθυνση (1)

Σχήμα Α.6: Κάτοψη ξυλοτύπου α' ορόφου, μεγέθυνση (2)

Σχήμα Α.7: Κάτοψη ξυλοτύπου β' ορόφου, μεγέθυνση (1)

Σχήμα Α.8: Κάτοψη ξυλοτύπου β' ορόφου, μεγέθυνση (2)

Σχήμα Α.9: Προσέγγιση προσομοίωσης τοιχοπληρώσεων

Σχήμα Α.10: Επιφάνειες κατανομής φορτίων υπογείου

Σχήμα Α.11: Επιφάνειες κατανομής φορτίων Α' ορόφου, όπου φαίνονται και οι εσωτερικές τοιχοπληρώσεις

Παράρτημα Β

Πηγαίος κώδικας προγραμμάτων

ργασίας δεδομένων κα	50 S 51 S 52	122 WModelCreation.tcl	54 SOU 55 SOU	57 Source 57 Established 58 Source 5	59 Close		1# Subrou	2 3 proc Filel	4	6 set out	7 while {	ser o if		11 } 12 close	13 return	14]		1 # Subroutin	s proc FileOu	s set Is	6 set fil 7 foreach 8 put	9 } 10 close \$	11 }		1 # Node crea
Β.1 Προγράμματα επεξε ανάλυσης φορέα		/OpenSees/Analysi	1# Model Data Creation 2	3 wipe	s puts "Model Data Creation" c	7 set ANNHINGEN 10.0 8 set ANSHLIM 0.000001	9 Io wipe	u set tcl_precision 10 12 file mkdir ModelData		4 source Analysis/FileInput.tcl 5 source Analysis/FileOutput.tcl	s source Analysis/Nodes.tcl	<pre>> source Analysis/Links.tcl source Analysis/BeamRebarsMerge.tcl</pre>	source Analysis/BeamMembers.tcl	o source Analysis/ColumnMembers.tcl source Analysis/SelfWeight tcl	2 source Analysis/LoadsMasses.tcl	s source Analysis/Diaphragms.tcl 4 source Analysis/BeamColMerge.tcl	s source Analysis/FiberSections.tcl se source Analysis/CLMembers.tcl	<pre>>> source Analysis / InfillWalls.tcl s source Analysis / LinkMerge.tcl</pre>	<pre>9 source Analysis/FixLinkRemoval.tcl 0</pre>	iset tcl_precision 16	<pre>8 puts "Elastic Analysis" 4 source Analysis/MAElastic.tcl</pre>	<pre>ss source Analysis/AxialExtraction.tcl ss</pre>	<pre>37 source Analysis/MASections.tcl 38 source Analysis/BilinearMphi.tcl 38 source Analysis/Comm2200.tcl</pre>	59 SOURCE ANALYSIS/ COMPZONE.ICI 4 SOURCE ANALYSIS/ CZAVERAGE.ICI	a source Analysis/ compriopci a source Analysis/ AvCalc.ici

6 set nodeInput [FileInput Input/Nodes.txt]	0
	10 set changed 0
8 set modeList [] set fivList []	<pre>11 if {[lindex \$lst 0] != "*"} {set aa [lindex \$lst 0]; set changed 1} 13 if {[lindex \$]st 1] != "*"} {set floors [lindex \$lst 1]. set changed 1}</pre>
10 foreach 1st \$nodeInput {	13 if {[lindex \$lst 2] != "*"} {set part [lindex \$lst 2]; set changed 1}
11 set nodenum [lindex \$lst 0]	14
12 Set noderi lindex %ist lj 22 cot vodov rijudov ¢iot pi	וא איז איז איז איז איז איז איז איז איז אי
14 set nodeY [lindex \$1st 2]	17 set apru [lindex \$1st 12]
15 set nodefix [lindex \$lst 4]	18 set aprd [lindex \$lst 14]
16 17 foreach flnum [split \$nodef] ""] {	19 20 if {\$changed=1} {
18 set nodecode [expr %flnum*100+\$nodenum]	21 incr nbeams [string length \$floors]
19 set flline [lsearch -integer -inline -index 0 \$flList \$flnum]	22 set Nu [lindex \$lst 3]
20 set nodeZ [lindex \$flline 1] من اعسمسط ممطور[نوف [انوف فالمطومينام فيمطولا فيمطولا فيمطولا]	25 set Du [lindex \$lst 4]
21 tappent indering [1131 \$INDECODE \$INDER \$INDER \$INDER \$INDER \$INDER \$	25 set Dd [lindex %]st 6]
<pre>if {\$flnum==0 && \$nodefix=="Y"} {lappend fixList [list \$nodecode 1 1 1</pre>	26 set Aslu 0.0000
1 1 1]	27 set Asid 0.0000
24 } 25 }	28 set Asru 0.0000 29 set Asrd 0.0000
26	20
27 FileOutput \$nodeList ModelData/MainNodes.txt	if {\$aplu>0.} {set Dlu [expr [lindex \$lst 7]/10.]; set Aslu [expr
28 FILEOUTPUT \$TIXLIST MODELDATA/FIX.TXT	*Asiu+*pir*Juu/4./(*apiu/100.)} if {\$apld>0.} {set Dld [expr [lindex \$lst 9]/10.]: set Asld [expr
	\$Asld+\$pi*\$Dld/4./(\$apld/100.)]}
/OpenSees/Analysis/Links.tcl	if {\$apru>0.} {set Dru [expr [lindex \$lst 11]/10.]; set Asru [expr
1# Links	<pre>\$4 if {\$aprd>0.} {set Drd [expr [lindex \$12 13]/10.]; set Asrd [expr</pre>
z 3 set linkList [FileInput Input/Links.txt]	\$Asrd+\$pi*\$Drd*\$Drd/4./(\$aprd/100.)]}
4	35 foreach fluim [sulit \$floors ""] {
Sset Links [] sforwarch INK ©linkTist J	37 set code [expr \$flnum*1000+\$aa*10+\$part]
7 set fl [lindex %LNK 1]	58 lappend beamRebarList [list \$code \$Nu \$Du \$Nd \$Dd \$Aslu \$Asld
8 foreach flnum [split \$fl ""] {	SASru \$Asrd]
9 set nb [expr %flnum*100+[lindex %LNK 2]]	40 } else {
u set ne expr annun 100*[nnuex arans J] n lannend Links [list \$nb \$ne]	41 set nfl [string length \$floors]
וו מקררוות בווותט (מוסר שווט שוב) 12 }	42 for {set i 1} {\$i<=\$nf]} {incr i} {
13 }	45 if {%aplu>0} {set Dlu [expr [lindex %1st 7]/10.]; 1set beamRebarList [expr %nbeams-%i] 5 [expr %Aslu+%pi*%Dlu*%Dlu/4
14 15 FileOutmut \$Links ModelData/Links txt	./(\$aplu/100.)]}
	<pre>if {\$apld>0} {set Dld [expr [lindex \$lst 9]/10.]; lset</pre>
/OpenSees/Analysis/BeamRebarsMerge.tcl	Deamkepartist [expr \$noeams-\$t] o [expr \$Asia+\$pt \$Dia \$Dia/4 ./(\$apld/100.)]}
1 H Basm rahare innit merae	45 if {\$apru>0} {set Dru [expr [lindex \$lst 11]/10.]; lset
IT DEGINI LEVAIS UNPUL MELSE	beamRebarList [expr %nbeams-%i] / [expr %Asru+%pi*%Dru*%Dru/4 // %anru/100
<pre>Set pi [expr 4*atan(1.0)]</pre>	<pre>46 if {\$aprd>0} {set Drd [expr [lindex \$lst 13]/10.]; lset</pre>
4 set rebars [rileinput input/beamkebars.txt] 5	beamRebarList [expr \$nbeams-\$i] 8 [expr \$Asrd+\$pi*\$Drd*\$Drd/4 ./(\$aprd/100.)]}
6 set beamRebarList []	47 }
7 set noeams U 8 foreach 1st \$rebars {	48 }

set bbeffclex2 [expr (\$hcpen1-\$b)/2.0] set beeffclex1 [expr (\$hcpen2-\$b)/2.0] set bbeffcl2 [expr 4*\$hf2]
set bbeffcl2 [expr 4*\$hf2]
elseif {(\$cont1 eq "N") && (\$bb2 eq "N")} elseif {(\$cont2 eq "N") && (\$be1 eq "N")} set bbeff1 [expr \$bbeffcl1+\$bbeffclex1] set bbeff2 [expr \$bbeffcl2+\$bbeffclex2] set beeff1 [expr \$beeffcl1+\$beeffclex1] set bbeffclex2 [expr \$hcpen1-\$b] if {(\$cont1 eq "Y") && (\$bb2 eq "Y")} { set beeffclex1 [expr \$hcpen2-\$b] if {(\$cont2 eq "Y") && (\$be1 eq "Y")} { if {\$bbeff1>\$b1} {set bbeff1 \$b1} if {\$bbeff2>\$b2} {set bbeff1 \$b2} elseif { \$refpoint eq "M" } } elseif {\$refpoint eq "M"} set beeffcl1 [expr 2*\$hf1] set bbeffcl2 [expr 2*\$hf2] set beeffcl1 [expr 4*\$hf1] if {\$bbeffclex2 eq "-"} {
 if {\$refpoint eq "L"} { if {\$refpoint_eq "R"} { if { \$beeffclex1 eq "-" } { set bbeffclex2 0 0 set beeffclex1 set bbeffcl2 0 set beeffcl1 0 0 set bbeff1 0 set bbeff2 if { \$hf1 >0} { if { \$hf2 >0} { if {\$hf1 > 0} { else else { } else { } else { else else { else Last part 80 # 48 49 50 51 52 53 55 57 72 80 83 6 92 93 54 56 99 5 0 ŝ 2 62 5 88 89 91 4 95 96 97 98 6 {bbeffclex1 "-"} {bbeffclex2 "-"} {beeffclex1 "-"} {beeffclex2 If $\mathbb{E}ffective$ widths calculation for the outer and the inner parts of the beams s proc BeamBeff {h b hf1 hf2 b1 b2 lc refpoint cont1 hcpar1 hcpen1 cont2 hcpar2 ../OpenSees/Analysis/BeamBeff.tcl **set** lth [**expr** \$lc+min(\$h/2,\$hcpar1)+min(\$h/2,\$hcpar2)] set bmeff1 [expr min(0.2*\$b1+0.1*\$10,0.2*\$10,\$b1)] set bmeff2 [expr min(0.2*\$b2+0.1*\$10,0.2*\$10,\$b2)] elseif {(\$cont1 eq "N") && (\$cont2 eq "N")} { set bbeffclex1 [expr (\$hcpen1-\$b)/2.0] 50 FileOutput \$beamRebarList ModelData/BeamRebars.txt elseif {($\operatorname{Scont1}$ eq "N") & ($\operatorname{bb1}$ eq "N") } { "--" } {NoB "N" } {NoE "N" }} if {(\$cont1 eq "Y") & (\$cont2 eq "Y")} set bbeffclex1 [expr \$hcpen1-\$b] if {(\$cont1 eq "Y") && (\$bb1 eq "Y")} { if {\$bmeff1>\$b1} {set bmeff1 \$b1}
if {\$bmeff2>\$b2} {set bmeff1 \$b2} { \$bmeff2>\$b2} { set bmeff1 \$b2} } elseif { \$refpoint eq "M" } set bbeffcl1 [expr 2*\$hf1] set bbeffcll [expr 4*\$hf1] if {\$refpoint eq "R"} { **set** 10 [expr 0.85*\$lth] **set** 10 [expr 0.7*\$lth] if { \$bbeffclex1 eq "-" } { set bbeffclex1 0 hcpen2 bb1 bb2 be1 be2 \ set l0 [expr \$lth] set bbeffcl1 0 set bmeff1 0 set bmeff2 0 set lOcoeff 0.85 if {\$hf1 > 0} { if {\$hf2 >0} { else { 6 # Middle part First part else else { else else { 32 # 49 33 0 11 19 20 30 35 36 37 38 339 41 42 43 13 4 5 22 23 S 80 31 34 44 45 46 9 5 8

00 set beeff1 0	10 if {\$updown eq N} { 21 cat vr [svnr _(\$h*\$h*\$h/2 0+\$haff1*\$hf1*\$hf1 /2 0+\$haff3*\$hf2*\$hf2 /2 0)
22	/ \$area] / \$area]
<pre>03 if {(\$cont2 eq "Y") && (\$be2 eq "Y")} {</pre>	12 } else {
D4 Set beeffcl2 [expr 4*\$hf2]	13 set hf [expr max(\$hf1,\$hf2)]
<pre>D5 } elseif {(\$cont2 eq "N") && (\$be2 eq "N")} {</pre>	14 set yc [expr (-\$b*\$hf*\$hf/2.0+\$b*(\$h-\$hf)*(\$h-\$hf)/2
be set beeffc12 0	.0-\$beff1*\$hf1*\$hf1/2.0-\$beff2*\$hf2*\$hf2/2.0)/\$area]
0/ Jelse { ∞s set heaffr]2 [exmr.2*\$hf2]	
00 } 300 00011012 [54] 2 \$1112]	15 if {\$imdown on N} {
10 if {\$beeffclex2 eq "-"} {	18 set IX [expr \$b*\$h*\$h*\$h*\$h/12.0+\$b*\$h*(\$h/2.0+\$yc) *(\$h/2.0+\$yc) +
<pre>ii if {\$refpoint eq "L"} {</pre>	\$beff1 [*] \$hf1*\$hf1*\$hf1/12.0+\$beff1*\$hf1/2.0+\$beff1*\$hf1*(\$hf1/2.0+\$yc)*(\$hf1/2.0+
<pre>12 set beeffclex2 [expr \$hcpen2-\$b]</pre>	\$yc)+\$beff2*\$hf2*\$hf2*\$hf2*\$hf2/12.0+\$beff2*\$hf2*(\$hf2/2.0+\$yc)*(\$hf2
<pre>IS } elseif { \$refpoint eq "M" } {</pre>	/2.0+\$yc)]
14 Set Deeliclex2 [expr (\$ncpen2-\$D)/2.U]	19 } else { 20 cet 1× [cvnx %h*%h*%h*%h*%h/12 0+%h*%h*/%h/2 0_%hf_%vr)*/%h/2 0_%hf_%vr)+
16 set beeffclex2 0	Set is Use [1,2,0] Use [1,2,0] <thuse [1,2,0]<="" th=""> <thuse [1,2,0]<="" th=""> <thu< td=""></thu<></thuse></thuse>
17 }	\$yc)+\$beff2*\$hf2*\$hf2*\$hf2'\$hf2/12.0+\$beff2*\$hf2*(\$hf2/2.0+\$yc)*(\$hf2
ال من المن المن المن المن المن المن المن	/2.0+\$yc)]
20 set beeff2 [expr \$beeffcl2+\$beeffclex2]	<pre>21 f 22 set ly [expr \$h*\$b*\$b/12.0+\$h*\$b*\$xc*\$xc+\$hf2*\$beff2*\$beff2*\$beff2/12.0</pre>
21 } else {	+ \$hf2*\$beff2*(\$b/2.0+\$beff2/2.0-\$xc)*(\$b/2.0+\$beff2/2.0-\$xc)+
22 set beeff2 0	\$hf1*\$beff1*\$beff1*\$beff1/12.0+\$hf1*\$beff1*(\$b/2.0+\$beff1/2.0+\$xc)*(&h/2 0+\$heff1/2 0+\$xc)1
22 4	φυ/Δ.Οτφυστι1/Δ.Οτφασι1/2.2 23
<pre>25 if {\$beeff1>\$b1} {set beeff1 \$b1} 26 if {\$beeff2>\$b2} {set beeff1 \$b2}</pre>	24 # Approximate calculation of torsion constant 25 set torlist [list "\$h \$b"]
	26 if {(\$beff1>0) (\$beff2>0)} {
28 ur (\$Nob eq "Y") { 29 set bbeff1 \$bmeff1	27 Set torb [expr \$beit1+\$beit2+\$b] 28 set torh [expr (\$hf1+\$hf2)/2.0]
so set bbeff2 \$bmeff2	<pre>29 lappend torlist [list \$torh \$torb]</pre>
31 } 32 if {\$NoE eq "Y"} {	30 } 31 set JJ 0
ss set beeff1 \$bmeff1	32 foreach elem \$torlist {
34 set beer12 \$bmert2 55 }	33 Set ta [expr max([lindex %elem 0], [lindex %elem 1])] 34 Set tb [expr min([lindex %elem 0], [lindex %elem 1])]
36 25 raturn []ict "\$hhaff] \$hhaff?" "\$hmaff] \$hmaff?" "\$haaff] \$haaff?"]	<pre>35 set]part [expr \$ta*pow(\$tb,3)*(1.0/3.0-0.21*\$tb/\$ta*(1-pow(\$tb,4)/12 0/mmrf \$t= 4)))1</pre>
ל ארב הבווו היואר אטטבוון אטטבווב אטוונגוו אטוונגוו אטרבבווג א 18]	36 set JJ [expr \$J]+\$Jpart] 37 }
/OpenSees/Analvsis/SectionProp.tcl	38 39 set listprop [list \$area \$xc \$yc \$1x \$1y \$JJ]
1# Section elastic properties and concrete coordinates	40 41 # Section concrete coordinates
2	42 # Web
<pre>3 proc SectionProp {h b hf1 hf2 beff1 beff2 updown} { 4</pre>	43 Set Xml [expr $-$ \$b/2.0 $-$ \$xc]
s # Section elastic properties	44 Set XIIZ [eXpr \$0/2.0-\$XC] 45 Set XIT3 \$XIIZ
6 set area [expr \$h*\$b+\$hf1*\$beff1+\$hf2*\$beff2] 7	46 set xm4 \$xm1
8 # Referece point: The middle of the web, at the height of the upper lin	e 48 if {\$updown eq N} {
<pre>01 title Stat 2 set xc [expr (\$hf2*\$beff2*(\$beff2+\$b)/2.0-\$hf1*\$beff1*(\$beff1+\$b)/2.0)/</pre>	49 set yml [expr -\$h-\$yc] 50 set ym3 [expr -\$yc]
\$area]	

31 } else {	6 set Dw [expr \$Dw/1000.]
22 set yml [expr -\$hf-\$yc] 23 est ym2 [expr %h_%hf-%yc]	7 set Dp [expr \$Dp/1000.] 。
	set Aslu [exmr \$Aslu/10000]
ss set ym2 \$ym1	10 set Asld [expr \$Asld/10000.]
se set ym4 \$ym3	11 set Asru [expr \$Asru/10000.]
ss set listm [list %xm] %xm2 %xm2 %xm3 %xm3 %xm3 %xm4 %xm4	12 set Asrd [expr \$Asrd/10000.]
נים כבר נוסנוון (בנסר שמווב שמווב שמווב שמווב שמוום שמוום שמווב שמוובים) נפ	14 # Main rebars
00	<pre>15 set covexmd [expr \$covb+\$Dw+\$Dmd/2.] 16 set covexmum [expr \$covb+\$Dmr+2] 16</pre>
22 set list[[list 0 0 0 0 0 0]]	17 set pi [expr 4*atan(1.0)]
33 } else {	18 set areamd [expr \$pi*\$Dmd*\$Dmd/4]
set xl1 [expr \$xm1-\$beff1]	19 set areamu [expr %pi*\$Dmu*\$Dmu/4.]
55 Set x12 \$XM1 56 Set x13 \$x12	20 set reparma [11st \$NMA \$areama [expr [11naex \$11stm U]+\$covexma] [expr] lindex \$listm 1]+\$covexmd] [expr [lindex \$listm 2]-\$covexmd] [expr]
57 set x14 \$x11	<pre>lindex \$listm 3]+\$covexmd]]</pre>
58 59 set vll [expr -\$vc-\$hf1]	21 set rebarmu [list \$Nmu \$areamu [expr [lindex \$listm b]+\$covexmu] [expr] lindex \$listm 7]-\$covexmu] [expr [lindex \$listm 4]-\$covexmu] [expr]
0 set yl2 \$yl1	lindex \$listm 5]-\$covexmu]]
1 set yl3 [expr -\$yc]	22
22 set y14 \$y15	25 set areap [expr %pi*%Dp*%Dp/4.] 24 set suvern [expr %sourn+%Dn/2]
4 set list1 [list \$x11 \$v11 \$x12 \$v12 \$x13 \$v13 \$x14 \$v14]	25 Set covery [eapt weavy/web/4.]
15 }	26 # Left slab
6 طرحاء + طعزاء + مرام + مرام - 10	27 if { \$listl== [list 0 0 0 0 0 0 0]} {
8 if {\$hf2==0 \$beff2==0} {	29 Set rebarlu [list 0 0 0 0 0]
9 set listr [list 0 0 0 0 0 0 0 0]	30 } else {
30 } else { ss ss vr] & vm2	31 Set bil [expr ([lindex \$list] 2]-\$covexp)-([lindex \$list] 0]+\$covexp)]
set xr1 \$xmuz set xr2 [expr \$xm2+\$beff2]	32 Set Niu [expr round(&Asiu*Sbil/\$areap)] 33 Set Niu [expr round(&Asiu*Sbil/\$areap)]
35 set xr3 \$xr2	34 if {\$Nld>0} {set rebarld [list \$Nld \$areap [expr [lindex \$list] 0]+
34 set xr4 \$xr1	<pre>\$covexp] [expr [lindex \$list] 1]+\$covexp] [expr [lindex \$list] 2]</pre>
35 36 set vr1 [expr -\$vc-\$hf2]	-\$covexp] [expr [lindex \$list1 5]+\$covexp]]} else {set rebarid [list 0 0 0 0 0 0]}
sv set yr2 \$yr1	35 if {\$Nlu>0} {set rebarlu [list \$Nlu \$areap [expr [lindex \$list] 6]+
88 set yr3 [expr -\$yc] 99 set yr4 \$yr3 00	<pre>\$covexp] [expr [lindex \$list1 7]-\$covexp] [expr [lindex \$list1 4] -\$covexp] [expr [lindex \$list1 5]-\$covexp]]} else {set rebarlu [list 0 0 0 0 0]</pre>
11 set listr [list \$xr1 \$yr1 \$xr2 \$yr2 \$xr5 \$yr3 \$xr4 \$yr4]	36 }
return [list \$listprop \$listm \$listl \$listr]	38 # Right slab
94 }	<pre>39 if { \$listr== [list 0 0 0 0 0 0 0 0] { 40 set rebarrd [list 0 0 0 0 0 0]</pre>
	41 set rebarru [list 0 0 0 0 0]
/OpenSees/Analysis/BeamRebarsProp.tcl	42 } else {
1# Beam Rebars properties	45 Set Dir [expr (] 1111.00 \$1 \$1 \$1 \$2 \$4 Set Nrd [expr round(\$Asrd*\$bir / \$areap)]
2 	45 set Nru [expr round(\$Asru*\$bir/\$areap)]
s proc beamtrevarserop (unital unital unital Astu Astu Astu Astu Itstin 11511 11517 DW Dp covb covp (Nplreb 5)} {	46 if {\$Nrd>0} {set rebarrd [list \$Nrd \$areap [expr [lindex \$listr 0]+ \$covexp] [expr [lindex \$listr 1]+\$covexp] [expr [lindex \$listr 2]
4 set Dmu [expr \$Dmu/1000.] 5 set Dmd [expr \$Dmd/1000.]	<pre>-\$covexp] [expr [lindex \$listr 3]+\$covexp]]} else {set rebarrd [</pre>

S

47	<pre>list 0 0 0 0 0 0]} if {\$Nru>0} {set rebarru [list \$Nru \$areap [expr [lindex \$listr 6]+</pre>	<pre>3 source Analysis/BeamBeff.tcl 4 source Analysis/SectionProp.tcl 5 source Analysis/BeamRebarsProp.tcl 6 source Input/Materials.tcl</pre>
48	115T U U U U U U]}	7 8 set nodes [FileInput ModelData/MainNodes.txt] 8 set rehars [FileInnut ModelData/ReamRehars txt]
50 51	# Rebar area calculation, so that Nplreb rebars exist	o set ne fever 4.0° atam (1.0)]
52	# Left slab if {\$list1==[list 0 0 0 0 0 0]} {	sset beamInput [FileInput Input/Beams.txt]
54	set urpld [list 0 0 0 0 0]	Б
55 56	<pre>set urplu [list 0 0 0 0 0 0] } else {</pre>	s set beamMemberList [] 6 set innerNodeList []
57	<pre>set bil [expr ([lindex \$list1 2]-\$covexp)-([lindex \$list1 0]+\$covexp)]</pre>	7 set loadPropList []
58 59	set Ald [expr %Asld %bul/%Npireb] set Alu [expr %Aslu*%bil/%Npireb]	sset beamsnearProp [] sset rigList []
60	<pre>if {\$Ald>0} {set urpld [list \$Nplreb \$Ald [expr [lindex \$list] 0]+</pre>	oset beamElProp [] 1set beamConCoor []
	-\$covexp] [expr[lindex \$list] 3]+\$covexp]]} else {set urpld [<pre>2 set beamRebCoorD8 [] 2 set beamRebCoorD8 []</pre>
61	if {\$Alu>0} {set urplu [list \$Nplreb \$Alu [expr [lindex \$list] 6]+	s set beamDir []
	\$covexp] [expr [lindex \$list] 7]-\$covexp] [expr [lindex \$list] 4] : -\$covexp] [expr [lindex \$list] 5]-\$covexp]]} else {set urplu [s 6 if {\$ANModASL="YES"} {set shearLengths [FileInput ModelData/ASL.txt]
62		<pre>8 foreach lst \$beamInput {</pre>
63 64	# Right slab	<pre>0 II {[llength \$lst]==>>} {lappend lst 0} 0 if {[llength \$lst]==34} {lappend lst N}</pre>
65	if { \$listr== [list 0 0 0 0 0 0]} {	i if {[llength \$lst]==55} {lappend lst N}
66	set urprd [list 0 0 0 0 0]	<pre>2 if {[llength \$lst]==36} {lappend lst 0.25}</pre>
67	set urpru [list 0 0 0 0 0]	cot mum []indow @]ct O]
89 69	<pre>} else { set bir [expr ([lindex \$listr 2]-\$covexp)-([lindex \$listr 0]+\$covexp)];</pre>	<pre>4 set num [index \$lst U] 5 set fl [lindex \$lst 1]</pre>
70	set Ard [expr \$Asrd*\$bir/\$Nplreb]	6 set h [lindex \$lst 2]
71	set Aru [expr \$Asru*\$bir/\$Nplreb]	7 set b [lindex \$lst 3]
72	if {\$Ard>0} {set urprd list \$NpIreb \$Ard [expr [lindex \$listr 0]+ \$covern] [expr [lindex \$]istr 1]+\$covern] [expr [lindex \$]istr 2] *	8 set hfl [lindex \$lst 4] 9 set hf? [lindex \$lst 5]
	-\$covexp] [expr [lindex \$listr 3]+\$covexp]]} else {set urprd [o set b1 [lindex \$lst 6]
	list 0 0 0 0 0 0]}	1 set b2 [lindex \$lst 7]
73	if {\$Aru>0} {set urpru list \$NpIreb \$Aru expr lindex \$listr b]+ \$covexp] [expr lindex \$]istr 7]-\$covexp] [expr lindex \$]istr 4] <	2 set updown [Index \$Ist 8] 3 set refpoint [lindex \$]st 9]
	-\$covexp] [expr [lindex \$listr 5]-\$covexp]]} else {set urpru [4 set DW [lindex \$lst 10]
74	list 0 0 0 0 0 0]}	s set SW [lindex \$lst 11] s set TW [lindex \$lst 12]
75		7 set covb [lindex \$lst 13]
76	return [list \$rebarmd \$rebarmu \$rebarld \$rebarlu \$rebarrd \$rebarru \$urpld	8 set covp [lindex \$lst 14]
77	surplu surprd surpru]	9 set nodeb [lindex \$lst 15] 0 set rigidh [lindex \$lst 16]
-		1 set contb [lindex \$1st 17]
		2 set beamlb [lindex \$lst 18]
	/OpenSees/Analysis/BeamMembers.tcl	<pre>set beamrb [lindex \$lst 19]</pre>
1 #	Beam members	4 Set Dpard Lindex \$151 20] 5 set hnemh fiindex \$164 31]
2		261 0 Dello [1111067 \$131 71]

# Intermediate nodes	35 Set SecHBLIST [] 136 34 lappend secHBList [join [list \$codeb \$h \$b \$hf1 \$hf2 [lindex \$beff 0] 137
	30 camtev \$0 camtev 32 \$ bextb \$ bexte \$ bexte \$ 135 33 \$ control = 1 c
<pre>for {set i 6} {\$i<=9} {incr i} { if {[lindex \$beamRBList \$i 0]!=0} {lappend beamRebCoorUniPl [join [list [lindex \$SHB 0] [lindex \$beamRBList \$i]]] }</pre>	<pre>39 # Effective widths 132 00 # Effective widths 132 01 set beff [BeamBeff \$h \$b \$hf1 \$hf2 \$b1 \$b2 \$lcl \$refpoint \$contb \$bparb \$bpenb \$conte \$bpare \$bpene \$beamlb \$beamrb \$beamle 133 account 133</pre>
<pre>for {set i 0} {\$i<=1} {incr i} { if {[lindex \$beamRBList \$i 0]!=0} {lappend beamRebCoorUniPl [join [list [lindex \$SHB 0] [lindex \$beamRBList \$i]]] }</pre>	<pre>55 set louter [expr \$outratio^\$lcl] 56 set lb [expr \$louter+\$rigidb] 57 set le [expr \$louter+\$rigide] 58 lappend loadPropList "[expr \$flnum*1000+\$num*10] \$b \$hf1 \$hf2 \$lcl 50 \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$</pre>
<pre>for {set i 0} {\$i<=5} {incr i} { if {[lindex \$beamRBList \$i 0]!=0} {lappend beamRebCoorD8 [join [list [lindex \$SHB 0] [lindex \$beamRBList \$i]]] }</pre>	<pre>22 set lcl [expr dist-%rigidb-%rigide] 124 23 if {\$NoB="Y" \$NoE="Y" } {set lclfs [expr \$lcl*2.0]} else {set lclfs 125 35 if \$NoB="Y" \$NoE="Y" } {set lclfs [expr \$lcl*2.0]} else {set lclfs 125 36 } 36 }</pre>
lindex \$secProp 1] [lindex \$secProp 2] [lindex \$secProp 3] \$DW 8 \$covb \$covp]	# Beam parts lengths ====================================
<pre># The order of the rebars changes due to local axes convention set beamRBList [BeamRebarsProp [lindex \$rbline 2] [lindex \$rbline]] [lindex \$rbline 4] [lindex \$rbline 3] [lindex \$rbline 7] [lindex \$rbline 8] [lindex \$rbline 6] [</pre>	35 set XE [lindex \$ndEline 1] 121 86 set YE [lindex \$ndEline 2] 122 87 set Z [lindex \$ndBline 3] 122
<pre>set rbline [lsearch -integer -inline -index 0 \$rebars [lindex \$SHB 0]]</pre>	32 set ndEline [lsearch -integer -inline -index 0 \$nodes \$nodecodeE] 119 35 set XB [lindex \$ndBline 1] 110 36 set YB [lindex \$ndBline 2] 110
<pre>if {[lindex \$secProp 3]!=[list 0 0 0 0 0 0 0]} {lappend beamConCoor [join [list [lindex \$SHB 0] R [lindex \$secProp 3]]]}</pre>	# Beginning and end node coordinates set nodecodeB [expr \$flnum*100+\$nodeb] set nodecodeE [expr \$flnum*100+\$nodee] set nodecodeE [expr \$flnum*100+\$nodee] set nodecodeB [expr \$flnum*100+\$nodee]
<pre>1]]]} if {[lindex \$secProp 2]!=[list 0 0 0 0 0 0 0]} {lappend beamConCoor [join [list [lindex \$SHB 0] L [lindex \$secProp c)111</pre>	<pre>74 set codeb [expr %flnum*1000+\$num*10+0] 75 set codem [expr %flnum*1000+\$num*10+1] 76 set codee [expr %flnum*1000+\$num*10+2] 77 77 77 77 77 77 77 77 77 77 77 77 77</pre>
<pre>if {[lindex \$secProp 1]!=[list 0 0 0 0 0 0 0]} {lappend beamConCoor [join [list [lindex \$SHB 0] M [lindex \$secProp</pre>	1 114 22 foreach flnum [split \$fl ""] { 35
<pre>lappend beamElProp [join [list [lindex \$SHB 0] [lindex \$secProp</pre>	ss set NoB [lindex \$1st 34] 112 s9 set NoE [lindex \$1st 35] 113 70 set outratio [lindex \$1st 36] 113
<pre># The order of the widths changes due to local axes convention set secProp [SectionProp [lindex \$SHB 1] [lindex \$SHB 2] [lindex \$SHB 4] [lindex \$SHB 3] [lindex \$SHB 6] [lindex \$SHB 5] [lindex \$SHB 7]]</pre>	Set Update Undex 150 100 set bpene [Index \$151 110 55 set berne [Index \$151 110 56 set berne [Index \$151 111 57 set daxis [Index \$151 32 57 set daxis [Index \$151 33
<pre>lappend secHBList [join [list \$codee \$h \$b \$hfl \$hf2 [lindex \$beff 2] \$updown]] foreach SHB \$secHBList {</pre>	39 set rigide [lindex \$ist 25] 106 50 set conte [lindex \$ist 26] 107 51 set beamle [lindex \$ist 27] 107 52 set beamle [lindex \$ist 28] 107
\$updown]] lappend secHBList [join [list \$codem \$h \$b \$hfl \$hf2 [lindex \$beff 1] \$updown]]	56setbexlb[lindex \$lst 22]57setbexrb[lindex \$lst 23]58setnodee[lindex \$lst 24]

 187 } 188 } 188 } 189 # Member connectivity 190 # Member connectivity 191 lappend beamMemberList [list \$codeb \$incode1 \$incode2] 192 lappend beamMemberList [list \$codee \$incode2 \$nodecodeE] 	194 195 # Shear properties	if {\$ANNodASL!="YES"} {set LsIndex -1} else {set LsIndex -integer -index 0 \$shearLengths [expr \$codeb*100]]}	198 11 {\$Lsindex <u} \$lcirs="" \$lsindex="" \$shontearlengths="" 1]}<="" 2.0]}="" [expr="" else="" lsi="" th="" {set=""><th>is the set of the set</th><th><pre>200 II {\$LSINGEX <0} {Set LSZ [expr \$ICUTS/2.0]} else {Set LSZ \$shearLengths \$LSINdex 1]}</pre></th><th>201 Set LSIN [expr %]CLIS/2.0] 202 Set LS2n [expr %]clfs/2.0]</th><th>203 204 set rlist [lsearch -integer -inline -sorted -index 0 \$reb</th><th>205 set NBu [lindex \$rlist 1]</th><th>206 set DBu [expr [lindex %rlist 2]/1000.0] 207 set NBd [lindex %rlist 3]</th><th>208 set DBd [expr [lindex \$r]ist 4]/1000.0] 208 set Ator [exnr \$NBu*\$n]*\$DBu*\$DBu/4 0+\$NBd*\$n]*\$DBd/</th><th>210 Set 2 [expr \$h-\$covb-\$DW/1000.0-\$DB/2.0] 211 Set 2 [expr \$h-\$covb-\$DW/1000.0-\$DB/2.0] 211 set 2 [expr \$h-2.0*\$covb-2.0*\$DW/1000.0-\$DBd]</th><th>212 lappend beamShearProp [list [expr 100*\$codeb] z \$h \$b \$d \$DBd & Arot \$DW \$SW \$TW 0]</th><th>213 # 200 [] 200</th><th><pre>'rop \$bmcode]215 # set plh [expr 0.2*(\$lcl/2.0)+0.036*\$DBav*\$fy/1000.0]</pre></th><th><pre>216 set plh [expr 0.01*\$1c1] 217 lappend beamPlReg [list \$codeb \$plh]</pre></th><th>218 219 set rlist [lsearch -integer -inline -sorted -index 0 \$reb</th><th>220 set NBu [lindex \$rlist 1]</th><th>221 set DBu [expr [lindex \$rlist 2]/1000.0]</th><th>223 Set DBd [expr [lindex \$rlist 4]/1000.0]</th><th><pre>224 set Atot [expr \$NBu*\$pi*\$DBu*\$DBu/4.0+\$NBd*\$pi*\$DBd*\$DBd/ 224 set d [expr \$h-\$covb-\$DW/1000.0-\$DBd/2.0]</pre></th><th>226 set z [expr \$h-2.0*\$covb-2.0*\$DW/1000.0-\$DBd]</th><th>227 lappend beamShearProp [list [expr 100*\$codee+10] z \$h \$b هدرمه شکلمه شکلمه شکلمه شکلهه داره ال</th><th>ןט שוב שכיש שנוטוא בוטוא פון אבור (ער 228 נער 228)] [expr 228</th><th>229 # set DBav [expr \$DBu/2.0 +\$DBd/2.0]</th><th>230 # set pin [expr U.2" (¢ici/2.U)+U.U56"\$DBaV"\$ry/ובטטטיט] +⊄לפסיופו [פיני מיני מיני מיני מיני מיני מיני מיני</th></u}>	is the set of the set	<pre>200 II {\$LSINGEX <0} {Set LSZ [expr \$ICUTS/2.0]} else {Set LSZ \$shearLengths \$LSINdex 1]}</pre>	201 Set LSIN [expr %]CLIS/2.0] 202 Set LS2n [expr %]clfs/2.0]	203 204 set rlist [lsearch -integer -inline -sorted - index 0 \$reb	205 set NBu [lindex \$rlist 1]	206 set DBu [expr [lindex %rlist 2]/1000.0] 207 set NBd [lindex %rlist 3]	208 set DBd [expr [lindex \$r]ist 4]/1000.0] 208 set Ator [exnr \$NBu*\$n]*\$DBu*\$DBu/4 0+\$NBd*\$n]*\$DBd/	210 Set 2 [expr \$h-\$covb-\$DW/1000.0-\$DB/2.0] 211 Set 2 [expr \$h-\$covb-\$DW/1000.0-\$DB/2.0] 211 set 2 [expr \$h-2.0*\$covb-2.0*\$DW/1000.0-\$DBd]	212 lappend beamShearProp [list [expr 100*\$codeb] z \$h \$b \$d \$DBd & Arot \$DW \$SW \$TW 0]	213 # 200 [] 200	<pre>'rop \$bmcode]215 # set plh [expr 0.2*(\$lcl/2.0)+0.036*\$DBav*\$fy/1000.0]</pre>	<pre>216 set plh [expr 0.01*\$1c1] 217 lappend beamPlReg [list \$codeb \$plh]</pre>	218 219 set rlist [lsearch -integer -inline -sorted - index 0 \$reb	220 set NBu [lindex \$rlist 1]	221 set DBu [expr [lindex \$rlist 2]/1000.0]	223 Set DBd [expr [lindex \$rlist 4]/1000.0]	<pre>224 set Atot [expr \$NBu*\$pi*\$DBu*\$DBu/4.0+\$NBd*\$pi*\$DBd*\$DBd/ 224 set d [expr \$h-\$covb-\$DW/1000.0-\$DBd/2.0]</pre>	226 set z [expr \$h-2.0*\$covb-2.0*\$DW/1000.0-\$DBd]	227 lappend beamShearProp [list [expr 100*\$codee+10] z \$h \$b هدرمه شکلمه شکلمه شکلمه شکلهه داره ال	ןט שוב שכיש שנוטוא בוטוא פון אבור (ער 228 נער 228)] [expr 228	229 # set DBav [expr \$DBu/2.0 +\$DBd/2.0]	230 # set pin [expr U.2" (¢ici/2.U)+U.U56"\$DBaV"\$ry/ובטטטיט] +⊄לפסיופו [פיני מיני מיני מיני מיני מיני מיני מיני
<pre>eamDirRig [] ncode1 [expr \$flnum*1000+\$num*10+1] ncode2 [expr \$flnum*1000+\$num*10+2] xB==\$xE} { t Xin1 \$XB et Xin1 \$XB et Yin1 [expr \$YB+\$lb] et Xin2 \$XE</pre>	set Yin2 [expr \$YE-\$le] Lappend beamDirRig [list \$codeb Y \$rigidb 0] Lannend beamDirRig [list \$codem Y 0 0]	lappend beamDirRig [list \$codee Y 0 \$rigide]	append beamDir [list \$codem Y]	se t set Xinl [expr \$XB+\$]b] 	set tint \$IB set Xin2 [expr \$XE-\$le] 	set rinz \$15 lappend beamDirRig [list \$codeb X \$rigidb 0]	lappend beamDirRig [list \$codem X 0 0] Lappend beamDirRig [list \$codee X 0 \$rigide]	<pre>lappend beamDir [list \$codeb X]</pre>	lappend beamDir [list \$codem X] Lappend beamDir [list \$codee X]	21 22	and innerNodeList [list \$incodel \$Xinl \$Yinl \$Zin] and innerNodeList [list \$incode2 \$Xin2 \$Yin2 \$Zin]	bid marts	ch butte ch butter A butter (1:50 the of	set bmline [littues and o] set bmline [lsearch -integer -inline -index 0 \$beamElP	<pre>set xc [lindex \$bmline 2] set yc [lindex \$bmline 3]</pre>	<pre>if { \$refpoint=="L"} {</pre>	set Drefaxis [expr \$b/2.0]	<pre>{ elseif { \$refpoint == "R" } {</pre>	Set Dividants (EAPI - JU/2.0) else {	set Drefaxis 0.0		if {[lindex \$bm 1]=="X"} { lannond rialist [list \$hmrode [lindex \$hm 2] [evur	וועד איז	\$xc-\$Drefaxis+\$daxis] \$yc]	} else { l=nnond riglict [list %hmcode [exnr _%xc+%])refaxis

<pre>34 set rlist [lsearch -integer -inline -sorted -index 0 \$rebars \$codem]</pre>	
s set NBU [lindex »riist l] s set DBu [synyr [jindey \$r]ist 21/1000 0]	22 Set a [expr &A-Z*\$covex] 28 set f [evur [lindev &listm 2]_[lindev &listm 0]]
sy set NBd [lindex %rlist 2//1000.0]	24 set c [expr [innues window 2] [innues window 3]
38 set DBd [expr [lindex \$rlist 4]/1000.0]	25
39 set Atot [expr \$NBu*\$pi*\$DBu*\$DBu*4.0+\$NBd*\$pi*\$DBd*\$DBd^4.0]	26 set ND [expr (\$NR-4)/2]
40 set d [expr %h-%covb-%DW/1000.0-%DBd/2.0]	27 set Na O
41 set z [expr 0.9*\$d]	28 set aa \$a
42 set Ls3 [expr \$lclfs/2.0]	29 set Nc 0
4s lappend beamShearProp [list [expr 100*\$codem] z \$h \$b \$d \$z \$Ls3 \$Ls3 \$Ls3 \$Ls3 \$Ls3 \$Ls3 \$Ls3 \$Ls3	50 set cc %c for fort i 1] feiv_eND) fince i) f
	IOF Set I J Set I J Set Set J Set Set
44 AE	32 II {\$aa<\$cc} { incr Nc
45 J	25 IIICI INC 24 Set of [avnr (\$c/(\$Nc+1))]
40 J	
48 set TNodes [ioin [list \$nodes \$innerNodeList]]	se incr Na
	set as [expr (\$a/(\$Na+1))]
50 FileOutput	
si FileOutput \$innerNodeList ModelData/InnerNodes.txt	59 }
52 FileOutput \$TNodes ModelData/TotalNodes.txt	
55 FileOutput \$loadPropList ModelData/BeamLoadProp.txt	at set L1 [list [expr \$Nc+2] \$AR [expr [lindex \$listm 0]+\$covex] [expr [
54 FileOutput %beamShearProp ModelData/BeamShearProp.txt	lindex %listm 7]—%covex] [expr [lindex %listm 2]—%covex] [expr [
55 FileOutput \$beamErProp ModeLuata/BeamErlasticProp.txt	index \$listm 7 -\$covex]
is file Uutput beamconcoor modeline beamconcor.txt	42 Set LZ [IIST [expr \$NC+Z] \$AK [expr]IIGEX \$115tm U]+\$covex] [expr]
57 FileOutput \$beamKebCoorD8 ModelData/BeamKebCoorD8.txt	lindex \$listm 1]+\$covex] [expr [lindex \$listm 2]-\$covex] [expr]
ss FileOutput \$DeamKeDcoorUntry ModeLData/ BeamKeDcoor.ixt من تبناه ۲۰۰۰ شدنما نمبه المرمال ۲۰۰۰ / من ساونونا ۲۰۰۰ المرمان المرمان المرمين المرمين المرمين المرمين المرمين	index שווגנות ון+שנטיפאן ניסאראירטו ניסאי וער לוויד שאר שאר לאיד און איר
15 FileOutput ¢rigList אסמפושמדמ∕ Beamkigiu.ixi מי FileOutput ¢haamDir MadalData/BeamDir tvt	43 II {\$NNa>U} {Set L5 IIST \$NA \$AK expr IIIQex \$IISUN U]+\$CUVEX] expr [Iindav &lictm 1]+&covex+&ss [evur [Iindav @lictm O]+&covex] [
60 FileOutput \$beamPikes ModelData/BeamDir.ixt 61 FileOutput \$beamPikes ModelData/BeamPikes.txt	[10] [10] [10] [10] [10] [10] [10] [10]
	if [\$Na>0] {set L4 [list \$Na \$AR [expr [lindex \$listm 2]-\$covex] [expr
/OpenSees/Analysis/ColumnRebars.tcl	[lindex \$listm 1]+\$covex+\$aa] [expr [lindex \$listm 2]-\$covex] [
1# Column Rebars	expr [iindex \$listm /j-\$covex-\$aaj]} eise {set L4 [iist U U U U U U U U U U U U U U U U U U U
2	45 set colRebars [list \$L1 \$L2 \$L3 \$L4]
<pre>3 proc ColumnRebars {NR DR listm listc DW cov} {</pre>	1 9
4 · · · · · · · · · · · · · · · · · · ·	47 } else {
Set Di [expT 4.0 et at at (1.0)]	80
Set AD [is if {[lindex \$listc 2]>[lindex \$listm 2]} {set pos "R"} else {set pos "
8 set DW [expr %DW/1000.0]	L_} 16 {[]index \$listr 7]>=[exnr []index \$listm 7]_0001]} {set []] "1]"}
5	else {set UD "D"}
10 # For the calculation of the division of the rebars onto the section, 4	si set covex [expr \$cov+\$DW+\$DR/2.0]
lengths are taken into account:	sz set A [expr [lindex \$listm 7]–[lindex \$listm 1]]
11 # d III Section n-c	ss set C [expr [lindex \$listm 2]-[lindex \$listm 0]]
13 # C in Section C	it {\$pos=="K"} {set B [expr [lindex \$listc 2]-[lindex \$listm 0]]} else
14 # d in the sections H, B that aren't contained in a or b	{Set D [expr [lingex allstin d]-[lingex allstic u]]}
15	00 Set c teapu ¢c−z ¢cureaj 56 Set d &c
<pre>16 if {\$listc == [list 0 0 0 0 0 0 0]} {</pre>	57 set a [expr \$A-2*\$covex-\$c]
17	set b [expr \$B-2*\$covex-\$c]
18 set covex [expr %cov+%UW+%UK/2.0]	
20 set A [expr [lindex \$listm 7]–[lindex \$listm 1]]	so set ND [expr (\$NR-8)/2]

51	set Na O	expr [lindex %Yb 1]-\$dd]} else {set L5 [list 0 0 0 0 0]}
52	set aa \$a	set L6 [list [expr \$Na+2] \$AR [lindex \$Xa 0] [lindex \$Ya 0] [lindex
63	set Nc 0	\$Xa 0] [lindex \$Ya 1]]
64	set cc %c	100 set L7 [list [expr %Nc+2] %AR %Xc [lindex %Yb 0] %Xc [lindex %Yb 1]]
65	set Nb 0	101 set L8 [list [expr \$Na+2] \$AR [lindex \$Xa 1] [lindex \$Ya 0] [lindex ************************************
56	Set DD \$D 5.4 Mi O	AAA IJ [IINGEX \$YA I]]
28	set dd \$d	103 set colRebars [list \$L1 \$L2 \$L3 \$L4 \$L5 \$L6 \$L7 \$L8]
20	<pre>for {set i 1} {\$i<=\$ND} {incr i} {</pre>	
20	if {\$aa>=\$bb && \$aa>=\$cc && \$aa>=\$dd} {	105 }
71	incr Na	106 return \$colRebars
72	set aa [expr (\$a/(\$Na+1))]	107 }
73	} elseif {\$bb>=\$cc && \$bb>=\$dd} { i=== Nb	
75	set bb [expr (\$b/(\$Nb+1))]	/OnenSees/Analysis/ColumnMembers tcl
76	<pre>} elseif {\$cc>=\$dd} {</pre>	
77	incr Nc	1# Column members
78	set cc [expr (\$NC+1))]	s source Analvsis/SectionProp.tcl
ر ۵۵	jetse j incr Nd	4 source Analysis/ColumnRebars.tcl
31	set dd [expr (\$d/(\$Nd+1))]	s source Input/Materials.tcl
82		9
33		7 set colElProp []
84		set colconcoor [] set rolMembers []
85	set Aa [11st [expr [11ndex אווsנות U]+אָכטעפאן [expr [11ndex אווsנות 2] מהמיהאיון	10 set colRebars []
36	-əcovex]] if {\$UD=="U"} {set Ya [list [expr [lindex \$]istm 1]+\$covex] [expr [11 set colRig []
	lindex \$listm 1]+ \$covex+\$a]]} else {set Ya [list [expr [lindex	12 set colShearProp []
	\$listm 7]-\$covex-\$a] [expr [lindex \$listm 7]-\$covex]]}	13 set rigList []
37	<pre>if {\$pos=="R"} {set Xb [list [expr [lindex \$listc 0]-\$covex] [expr [</pre>	14 set ColPIReg []
	lindex \$listc 2]-\$covex]]} else {set Xb [list [expr [lindex	15 2004 mi [own: /*atm./1 0/1]
	<pre>\$listc 0]+\$covex] [expr [lindex \$listc 2]+\$covex]]} </pre>	15 SEL PI [EX.PT 4 ALAII(1.07]
80	set to [list [expr [lindex \$listc l]+\$covex] [expr [lindex \$listc /] _\$covex]]	18 set floorList [FileInput Input/Floors.txt]
39	<pre>if {\$pos=="R"} {set Xc [expr [lindex \$listc 2]-\$covex]} else {set Xc</pre>	r 19
	expr [lindex \$listc 0]+\$covex]}	20 set lastfloorheight [lindex \$floorList end end]
06	<pre>if {\$UD=="U"} {set Yc [expr [lindex \$listm 1]+\$covex]} else {set Yc [</pre>	21 22 if f&ANModAST "VES" feat charr! and the [Eile[mmt Mode]Data / AST tot 1]
10	expr [lindex %listm /]-%covex]} if {%nos=="R"} {set Xd [exnr []index \$]istm O]+%covex]} else {set Xd	z is [#ANNYOUNDET IN] 351 SHEALDENGLIS [I HEINPUT MOUNTDATE/AUGUAN]
4	expr [lindex \$listm 2]-\$covex]}	24 set flHeight []
92	<pre>if {\$UD=="U"} {set Yd [expr [lindex \$listm 7]-\$covex]} else {set Yd [</pre>	25 toreach FL \$1100rList {
5	expr [lindex \$listm 1]+\$covex]}	26 II {[lingex %rL U]==U} {set nprev [lingex %rL 1]; continue} 27 lappend flHeight [list [lindex %FL 0] [expr [lindex %FL 1]-%hprev]]
55 46	set L1 [list [expr \$Nd+2] \$AR [lindex \$Xa 0] \$Yd [lindex \$Xa 1] \$Yd]	28 set hprev [lindex %FL 1]
95	if {\$Nc>0} {set L2 [list \$Nc \$AR [expr [lindex \$Xa 0]+\$cc] \$Yc [expr	[29]
	lindex \$Xa 1]-\$cc] \$Yc]} else {set L2 [list 0 0 0 0 0 0]}	30 s s s s f collist [FileInnut]nnut/Columns + vt]
96	If {\$ND>0} {set L3 [list \$ND \$AK [expr [lindex \$XD 0]+\$DD] [lindex \$Y if for the set of	Districture international input voluminio.co.
	」 [expr [ипаех эло 」]—Эрој [ипаех это 」]]} еизе {set цэ [инзт О О О О О П]}	33 set num [lindex \$lst 0]
97	if {\$Nb>0} {set L4 [list \$Nb \$AR [expr [lindex \$Xb 0]+\$bb] [lindex \$Y	b 34 set fl [lindex \$lst 1]
	0] [expr [lindex \$Xb 1]-\$bb] [lindex \$Yb 0]]} else {set L4 [list	35 set H [lindex \$lst 2] 36 set B [lindex \$lst 3]
מכ	U U U U U U U U U U U U U U U U U U U	37 set c [lindex \$lst 4]
ά	ΙΙ [ΦΙΛΠΛΟ] [SEL FO [ΙΙΟΙ ΦΙΛΠ ΦΗΊΝ ΦΥΠ [ΕΥΝΤ ΙΙΙΙΠΕΥ ΦΙΟ Ο]. ΦΠΟ] ΦΥΠ [38 set shape [lindex \$lst 5]

301

set NR [lindex \$lst 6]	92 set beff2 0
set DR [lindex \$lst 7] set DW [lindex \$lst 8]	93 set updown N
set SW [lindex \$1st 9]	95 J
set TW [lindex \$lst 10]	96 set colProp [SectionProp \$H \$Bw \$hf1 \$hf2 \$beff1 \$beff2 \$updown]
set cov [lindex \$lst 11]	View and a contract of the static of the state of the sta
set rigun [lindex \$1st 12] set rigun [lindex \$1st 13]	98 # Δοία/Τοία Feler to the lower leit points of the sections, where fela, refy also refer fo
	99 if {\$c==0} {
<pre>if {[llength \$lst]==14} {</pre>	100 set Xold [expr \$B/2.0]
if {\$shape==1} {lappend st 0 0}	101 set Yold \$H
11 {\$Strape==2} {1appena 1st \$B U} if f &chane=2} /1anond let 0 &H	102 } EISE { 102 if {&chana=-1 &chana=-3} /cet Yold [avnr %c/2 0] alca {cet Yold [
if {\$\$hape==4} {lapbend ist \$\$ \$H}	expr 38-36/2.01
	104 if {\$shape==1 \$shape==2} {set Yold \$c} else {set Yold \$H}
set refX [lindex \$]st 14]	105]
set refY [lindex \$lst 15]	106 set DXc [expr %Xold-%refX] 107 set DVc [evnr %Vold_%refV]
# Section calculations using subroutine SectionProp	
if {\$c==0} {	109 # Xc, Yc substitution
set hfl 0	<pre>110 lset colProp {0 1} [expr [lindex \$colProp {0 1}]+\$DXc]</pre>
set hf2 0	<pre>111 lset colProp {0 2} [expr [lindex \$colProp {0 2}]+\$DYc]</pre>
set berri U sot hoff? D	112 forwardh flannm [cm]it &f] ""] [
set utila o set indown N	113 IDIEACH IIIUII SPIIC #11 J 114 Set code [expr %f]nim*100+%nim]
set Bw \$B	
} else {	116 lappend colElProp [join [list \$code [lindex \$colProp 0]]]
set Bw \$c	<pre>117 if {[lindex \$colProp 1]!=[list 0 0 0 0 0 0 0]} {lappend colConCoor [</pre>
if {\$\$hape==1} { 	join [list \$code M [lindex \$colProp 1]]]}
set nil U set hf? %c	ווא איסטראיסטר (איסטראיסט איסטראיסטר) איסטרטע איסטרטערטטר (גערטארטטר) איסטרטערטטר (גערטארטטר) נערטארטטר (גערטארטטר) איסט איסט איסט איסט איסט איסט איסט איסט
set beff1 0	juin [11] juindex \$coup 3]]=[list 0 0 0 0 0 0 0]} {lappend colConCoor [
set beff2 [expr \$B-\$c]	join [list \$code R [lindex \$colProp 3]]]}
set updown Y	120
	121 lappend colMembers [list \$code [expr \$code-100] \$code]
if {\$\$hape==2} {	
set Hill ac set hf2 0	125 Set itstill litituex scotriop 1] 124 if {[lindex \$colPron 2]1=[list 0 0 0 0 0 0 1]} {set list [lindex
set beff1 [expr \$B-\$c]	\$colProp 2]} else {set listc [lindex \$colProp 3]}
set beff2 0	125
set updown Y	<pre>126 set listColReb [ColumnRebars \$NR \$DR \$listm \$listc \$DW \$cov]</pre>
} if {\$shape==3} {	127 128 foreach elem \$listColReb {
set hfl 0	129 if {[lindex \$elem 0]>0} {lappend colRebars [join [list \$code \$elem
set hf2 \$c	
set beitl U set haff? [avnr \$R_\$r]	130 }
set updown N set updown N	132 # Rigid parts
	set cline [join [list \$code [lindex \$colProp 0]]]
if {\$shape==4} { 	134 set xc [lindex \$cline 2]
set hf? O	135 Set yc [IIIIdex acuue o] 136 annend rigList [list \$rode \$rc \$rigdn \$rc \$vr [exnr —\$rigun]]
set beff1 [expr \$B-\$c]	
n	

 33
 33

 34
 34

 35
 34

 36
 34

 37
 34

 36
 34

 37
 34

 36
 34

 37
 35

 36
 36

 37
 37

 38
 38

 38
 38

 38
 38

 38
 38

 38
 38

 38
 38

 38
 38

 38
 38

 38
 38

 39
 36

 30
 37

 31
 37

 32
 38

 33
 38

 34
 36

 35
 37

 36
 37

 37
 37

 38
 38

 38
 38

 38
 38

 36
 36

 37
 37

 38
 38

 38
 38

 37
 37

	<pre>183 if {\$B>=[expr 4.0*\$bw-0.0001] \$B>=[expr \$flh/3.0-0.0001]} {set</pre>
# Snear properties set flh [lindex [lsearch -integer -inline -index 0 \$flHeight \$flnum]	COLORWAIL 2} 184 if {\$ColORWall==1} {set z [expr \$d-\$d1]} else {set z [expr 0.8*\$B]}
1]	
set lcl [expr %flh-%rigdn-%rigup]	<pre>186 set hingeCode1 [expr 100*\$code+1]</pre>
	187 set hingeCode2 [expr 100*\$code+11]
set DB [expr \$DR/1000.0]	<pre>188 if {\$ANModASL!="YES"} {set LsIndex1 -1} else {set LsIndex1 [lsearch</pre>
set Atot [expr \$NR*\$pi*\$DB*\$DB/4.0]	-integer -index O \$shearLengths \$hingeCode1]}
set d1 [expr \$cov+\$DW/1000.0+\$DB/2.0]	189 if {\$LsIndex1<0} {
set d [expr \$H-\$d1]	190 set Ls1 [expr \$ c /2.0]
if {\$c>0} {set bw \$c} else {set bw \$B}	191 if $\{\$B>=\{expr 4.5^*\$bw\}\}$
	192 set sechejeht (expr []index \$floor[.ist [expr \$floum-1]]]+
set ColORWall 1	stied of the second strength in the second st
if {\$H>=[expr 4.0*\$bw-0.0001] \$H>=[expr \$flh/3.0-0.0001]} {set	<pre>193 set Ls1 [expr (\$lastfloorheight-\$secheight)/2.0]</pre>
ColORWall 2	
<pre>if {\$ColORWall=1} {set z [expr \$d-\$d1]} else {set z [expr 0.8*\$H]}</pre>	195 } else {
	196 set Ls1 [lindex \$shearLengths \$LsIndex1 1]
set hingeCode1 [expr 100*\$code]	197 }
<pre>set hingeCode2 [expr 100*\$code+10]</pre>	<pre>198 if {\$ANModASL!="YES"} {set LsIndex2 -1} else {set LsIndex2 [lsearch</pre>
<pre>if {\$ANModASL!="YES"} {set LsIndex1 -1} else {set LsIndex1 [lsearch</pre>	<pre>-integer -index 0 \$shearLengths \$hingeCode2]}</pre>
<pre>-integer -index 0 \$shearLengths \$hingeCode1]}</pre>	199 if {\$LsIndex2 < 0} {
if { \$LsIndex1 < 0} {	200 set Ls2 [expr \$lc1/2.0]
set Ls1 [expr \$lc1/2.0]	201 if {\$B>=[expr 4.5*\$bw]} {
if {\$H>=[expr 4.5*\$bw]} {	202 set secheight [expr [lindex \$floorList [expr \$flnum-1] 1]+
set secheight [expr [lindex \$floorList [expr \$flnum-1] 1]+	\$rigdn]
Srigdn	203 set Ls2 expr (\$lastfloorheight - \$secheight)/2.0]
set Ls1 [expr (\$lastfloorheight-\$secheight)/2.0]	204 }
· · · · · · · · · · · · · · · · · · ·	205 } else {
} else {	206 set Ls2 [lindex \$shearLengths \$LsIndex2 1]
set Ls1 [lindex \$shearLengths \$LsIndex1 1]	207 }
	208
<pre>if {\$ANModASL!="YES"} {set LsIndex2 -1} else {set LsIndex2 [lsearch</pre>	209 lappend colShearProp [list \$hingeCode1 y \$B \$bw \$d \$z \$Ls1 \$Ls1 \$DB
<pre>-integer -index 0 \$shearLengths \$hingeCode2]}</pre>	SAtot SDW SSW SIW SCOLORWAIL
if {\$LsIndex2 < 0} {	210 lappend colShearProp [list \$hingeCode2 y \$B \$bw \$d \$z \$Ls2 \$Ls2 \$DB
set Ls2 [expr \$lc1/2.0]	\$Atot \$DW \$SW \$TW \$ColoRWall]
if {\$H>=[expr 4.5*\$bw]} {	211
set secheight [expr [lindex \$floorList [expr \$flnum-1] 1]+	<pre>212 # set plh [expr 0.2*(\$lcl/2.0)+0.036*\$DR/1000.0*\$fy/1000.0]</pre>
srigan	213 set plh [expr 0.01*\$lc1]
set Ls2 [expr (%lastfloorheight-%secheight)/2.0]	214 Jappend ColFikeg [list \$code \$pin]
	215
set LSZ [lindex \$ShearLengths \$LSindeXZ 1]	
	218 FIEOUtput \$colElFrop ModelData/ColElasticFrop.txt
כרוט ויין גער אין	219 FileOutput \$colConCoor ModelData/ColConCoor.txt
LAPPENU COISTEATE/TOP LIST ANTINECOUEL Z AN AUX AU AZ ALSI ALSI AUB AALLE ANTIAATE ANTIAATE ASISTINES (1)	220 FILEOULDUL \$COLMEMDERS MODELJALA/COLMEMCON.CXC
	221 FILE/ULTPUT \$COIREDATS MODELLATA / COIREDCOOF.TXT
IAPPERIC COLSTEALFTOP LIST STURGECODEZ Z SH SOW SG SZ SLSZ SLSZ SUB	222 FILEOUTPUT \$COISTREATFICD MODELLATA/ COISTREATFICD.TXT
\$Atot \$DW \$SW \$IW \$ColORWall]	223 FileOutput \$rigList ModelData/ColKigid.txt
	224 FILEOULDUL & COLFINES MODELDALA/ COLFINES.LXL
Set a [expr öb-val] if f¢c>0) feet huv \$c] else feet huv \$H]	
	/Ound Cone/Ann Junio/Colf/170iAnt + 40]
set ColORWall 1	Openisees/shialysis/sell weight
	1# Self weights of beams and columns

s set consw 25.0	21 set MWht [lindex \$LL 7] 22 set SWJd [lindex \$LL 8]
	23 set SWht [lindex \$LL 9]
# Columns	24 set SWlt [lindex \$LL 10]
<pre>set CEP [FileInput ModelData/ColElasticProp.txt]</pre>	<pre>25 26 foreach flnum [split \$fl ""] {</pre>
set CSW []	<pre>27 set code [expr \$flnum*1000+\$beamno*10]</pre>
<pre>toreach lst \$CEP {</pre>	28 set Ipline [Isearch -integer -inline -index 0 %loadPropList %code] 29 set bsw [lindex [Isearch -integer -inline -index 0 %beamSWList %code]
	1]
5 FileOutput \$CSW ModelData/ColSelfWeight.txt	31 set hf1 [lindex %lpline 2]
	32 set hf2 [lindex \$lpline 3]
s# beams (wed only)	35 SEC ICI LINUEX %IDILIE 4]
<pre>> set BMS [FileInput Input/Beams.txt]</pre>	35 set ne [lindex %lpline 6]
set BSW []	36
oforeach Ist \$BMS {	37 set nblink [Isearch -index 1 %Links %nb] 30 if (***):
0 Set num [lindex \$1st U] 1 set f] [lindex \$1st 1]	38 II {\$nolink>=0} {set no [lindex \$Links \$nolink 0]} 30 set nelink [lsearch _index 1 \$Links \$nel
2 set bsw [expr [lindex \$lst 2]*[lindex \$lst 3]*\$consw]	40 if {\$nelink>=0} {set ne [lindex \$Links \$nelink 0]}
<pre>3 foreach flnum [split \$f] "] {</pre>	41
4 for {set i 0} {\$i<=2} {incr i} { 	42 set totExLoads [expr (\$hf1*\$consw+\$cov+\$mov) *\$Aleft+(\$hf2*\$consw+\$cov+
s set coue [expr annum roou+anum ro+an 6 lappend BSW "\$code \$bsw"	amov) aArtgntj 43 set bmLoad [expr \$totExLoads/\$]c]+\$MWMd*\$MWht+\$SWId*\$SWht*\$SWlt/\$]c]+
	\$bsw]
S	44
6 6	45 set codel [expr %code+1]
0 1 FileOutrout \$BSW ModelData/BeamSelfWeight txt	46 set couez [expr &coue+z] 47 lappend heam[.oads [list &code &hm[.oad]
D	48 lappend beamLoads [list \$code1 \$bmLoad]
/AnnuConc/Analysis/Icn/Jacob	49 Lappend beamLoadS [11ST \$CODEZ \$DMLoad] 50
Opendees/ Analysis/ Loausinasses.ici	51 set totBMLoad [expr \$bmLoad*\$lc]]
1# Total loads and masses	s2 set ndmass [expr \$totBMLoad/2.0/9.81]
s set consw 25.0	sz lappend nodeMasses [list \$nb \$ndmass] s4 lappend nodeMasses [list \$ne \$ndmass]
<pre>4 5 Set loadList [FileInput Input/Loads.txt]</pre>	55 }
6 set loadPropList [FileInput ModelData/BeamLoadProp.txt] 7 set heamSWUist [FileInnut ModelData/ReamSelfWeighttxt]	57
set Links [FileInput ModelData/Links.txt]	58 set 11001 List [file111 put / fi0015.1x1] 59 set columns [FileInput Input / Columns.txt]
9	60 set colSWList [FileInput ModelData/ColSelfWeight.txt]
oset beamLoads [] set nodeMasses []	
	62 Set IIITelgut [] 63 foreach FL \$floorList {
<pre>3 foreach LL \$loadList {</pre>	64 if {[lindex \$FL 0]==0} {set hprev [lindex \$FL 1]; continue}
4 set beamno [lindex %LL 0] s set fl [lindex %LL 1]	65 lappend flHeight [list [lindex \$FL 0] [expr [lindex \$FL 1]-\$hprev]]
6 set cov [lindex %LL 2]	66 Set nprev [lingex \$FL 1] 67}
set mov [lindex \$LL 3]	68
s set Aleft [lindex %LL 4] set Aright [lindex %11 5]	69 set colList []
o set MWId [lindex \$LL 6]	70 foreach ist \$columns {

2	2
3 set Sec [] 4 set codes []	<pre>set TNodes [FileInput ModelData/TotalNodes.txt] 4 set Mem [FileInput ModelData/MemCon.txt]</pre>
s set old 0 6	s 6 set Rig [FileInput ModelData/Rigid.txt]
<pre>7 set fileSec [FileInput ModelData/ConCoor.txt] . for the fileSec f</pre>	c c c c c c c c c c c c c c c c c c c
<pre>o inf elineary % sist 0]!=\$old} {lappend codes [lindex \$lst 0]; set old [lindex</pre>	set CLANOUES [] set CLANOUCO []
\$1st UJ} 10 lappend Sec [list [lindex \$1st 0] [lindex \$1st 2] [lindex \$1st 7] [lindex	0 set Cllinks []
<pre>\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$</pre>	<pre>set CLBeamCon [] set CLColCon []</pre>
	4 sforsech alam (Mam (
Is set FiberList []	6 set code [lindex \$elem 0]
14 foreach elem \$5ec { 15 set indexFL [lsearch -integer -index 0 \$FiberList [lindex \$elem 0]]	7 set nodeB [lindex %elem 1] 8 set nodeE [lindex %elem 2]
16 II {\$indexFL<0} { 17 lappend FiberList [list [lindex \$elem 0] [lindex \$elem 1] [lindex \$elem 2] [lindex \$elem 3] [lindex \$elem 4] [lindex \$elem 5] [<pre>9 set nodeBcoor [Isearch -integer -inline -index 0 %INodes %nodeB] 0 set nodeEcoor [Isearch -integer -inline -index 0 %Rig %nodeE] 1 set rigid [Isearch -integer -inline -index 0 %Rig %code]</pre>
lindex \$elem 6] [lindex \$elem 7] [lindex \$elem 8]]	
18 } else { 19 lset FiberList \$indexFL [join [list [lindex \$FiberList \$indexFL] [<pre>set couel [expr \$coue.luu+1] 4 set X1 [expr [lindex \$nodeBcoor 1]+[lindex \$rigid 1]]</pre>
lindex \$elem 1] [lindex \$elem 2] [lindex \$elem 3] [lindex \$elem 3] 4] [lindex \$elem 5] [lindex \$elem 6] [lindex \$elem 7] [lindex	<pre>s set Y1 [expr [lindex \$nodeBcoor 2]+[lindex \$rigid 2]] s set Z1 [expr [lindex \$nodeBcoor 3]+[lindex \$rigid 3]]</pre>
\$elem 8]]]	
	8 set code2 [expr \$code*100+2] م معف 27 [معمد المنطقين فيمطمة محمنين المالية في مناطقين في ماليا
22	<pre>9 set AZ [expr linuex anoueccool 1]+[inuex anglu 4]] 0 set YZ [expr [lindex \$nodeEcoor 2]+[lindex \$rigid 5]]</pre>
23 FileOutput \$FiberList ModelData/FiberSections.txt 24 FileOutput \$codes ModelData/SectionCodes.txt	<pre>1 set Z2 [expr [lindex \$nodeEcoor 3]+[lindex \$rigid 6]] 2</pre>
25 26 Set Reb [File]nput ModelData/RebCoor.txt]	3 lappend CLNodes [list \$code1 \$X1 \$Y1 \$Z1] 4 lappend CLNodes [list \$code2 \$X2 \$Y2 \$Z2]
29 Set redation [] 29 foreach elem \$Reb {	2 Jappenu chartenicon [1131 & coue & couel & couel
<pre>30 set indexRL [lsearch -integer -index 0 \$RebarList [lindex \$elem 0]] 31 if {\$indexRL <0} {</pre>	8 lappend CLLinks [list \$nodeB \$code1] 9 lappend CLLinks [list \$nodeE \$code2]
32 Jappend RebarList [list [lindex \$elem 0] [lindex \$elem 1] [lindex \$elem 2] [lindex \$elem 3] [lindex \$elem 5] [0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
lindex \$elem 6]]	<pre>2 lappend CLColCon [list \$code \$code1 \$code2] 2 } alse {</pre>
34 1set RebarList \$indexRL [join [list [lindex \$rebarList \$indexRL [<pre>1 list \$code \$code1 \$code2] 2 list \$code \$code1 \$code2]</pre>
4] [lindex \$elem 5] [lindex \$elem 6]]	
55] 36] 37	8 FileOutput \$CLNodes ModelData/CLNodes.txt a FileOutput \$CLMemCon ModelData/CLMemCon.txt
38 FileOutput \$RebarList ModelData/FiberRebars.txt	FileOutput \$CLLinks ModelData/CLLinks.txt
	FileOutput \$CLBeamCon ModelData/CLBeamCon.txt
/UpenSees/Analysis/LLMembers.tci	s 4 FileOutput \$CLColCon ModelData/CLColCon.txt

1 # Centerline connectivity creation

/OpenSees/Analysis/InfillWalls.tcl	53 lappend IWElastic [list \$code1 \$nd1 \$nd2 [expr \$Ap/2.0] \$Ew]
1# Infill wall diagonal members	54 lappend IWElastic [list \$code2 \$nd3 \$nd4 [expr \$Ap/2.0] \$Ew] 55 lannend IWInelastic [list \$code1 \$nd1 \$nd2 \$An \$fwrcf \$enwr]
2 set IWFile [File]nnut [nnut/Infil]Walls_txt]	156 lappend IWInelastic [list \$code2 \$nd3 \$nd4 \$Ap \$fwcsf \$eywf \$euw]
	57
<pre>source Input/IWMaterials.tcl</pre>	58 } 59
6 7 set IWElastic []	<pre>60 set file [open ModelData/InfillWallsEl.txt w] 61 foreach elem \$IWElastic {</pre>
8 set IWInelastic [] 9	62 puts \$file \$elem
Io foreach IWline \$IWFile {	65 f 64 close \$file
11 Set 111 [expr lindex \$1W1me 0]/10] 12 Set f12 [expr [lindex \$1W1me 0]%10]	65 22 22 4 611 - [2222 MedelDate / InfillWelleTwel tot 10]
13 set k1 [lindex \$IWline 1]	67 foreach elem \$IWInelastic {
14 Set K2 [lindex \$1Wline 2] 15 set h [lindex \$1Wline 3]	68 puts \$file \$elem
16 set l [lindex \$IWline 4]	69 } 70 rlnce %f ile
17 set t [lindex \$IWline 5]	
18 Set cell [1110.62] 3. Store of cells	
19 Set nut [expr #11 100 ##11] 20 Set nd2 [expr \$f12*100+\$k2]	/Upendees/Analysis/LinkMerge.tcl
21 set nd3 [expr %f12*100+\$k1]	1# Link members merge
22 set nd4 [expr \$f]1*100+\$k2]	2 * **** Timbe [Eile]mnut Mede]Data/[imbe +***]
23 24 cet a [evnr atan(\$h/\$1)]	set Links [FileInput ModelData/Links.txt] 4 set CLLinks [FileInput ModelData/CLLinks.txt]
25 Set L [expr \$1/cos(\$a)]	
26 set b [expr 0.15*%L]	6 set CLLinksNew []
27 set Ap [expr \$b*\$t]	structure of the second s
28 20 cet fuures [avmr 1 25*¢huu*nouu/ \$fhc 0 7)*nouu/ \$fmc 0 3)*1000 0]	8 IOFEACT LL & LALINKS { 9 set node [lindex &CL 0]
30 set EW [expr %fwcs/%eyw]	10 set indx [lsearch -index 1 %Links %node]
31	11 if {\$indx <0} { 12 if {\$indx <0} {
32 Set lambda [expr pow(%1*%1+%h*%h,0.5)/%teff] 33 set ff 1 0	12 } Lappenu Leenuksnew [1151 [1111uex () [1111uex () 1] 13 } else {
34 if {\$lambda<=15.0} {	14 lappend CLLinksNew [list [lindex \$Links \$indx 0] [lindex \$CL 1]]
35 set ff 1.0	15 }
<pre>36 } elseif {\$lambda>=30.0} {</pre>	16 }
2/ Set 11 0.0 38 } else {	18 FileOutput \$CLLinksNew ModelData/CLLinks.txt
<pre>39 set ff500 [expr 0.9/exp(pow((0.0477*\$lambda-0.063),2)/0.9)] 40 cet ff1000 [expr 0.9/exp(rows((0.0316*\$lambda-0.063),2)/0.9)]</pre>	
41 41 41 41 41 41 41 41 41 41 41 41 41 4	/OpenSees/Analysis/FixLinkRemoval.tcl
<pre>42 set rat [expr 1.0/\$eyw] 43 set ff [expr \$ff500+(\$rat-500.0)/(1000.0-500.0)*(\$ff1000-\$ff500)]</pre>	1# Removal of excess restraints and constraints
44 }	sset Fix [FileInput ModelData/Fix.txt]
45 46 set fwcsf [expr \$fwcs*\$ff] 47 set evwf [expr \$fwcsf/\$Ew]	<pre>4 set Links [FileInput ModelData/Links.txt] 5 set CLLinks [FileInput ModelData/CLLinks.txt] 6</pre>
48	set FixEx []
<pre>49 set code1 [expr 5*1000000+\$nd1*1000+\$nd2] 50 set code2 [expr 5*1000000+\$nd3*1000+\$nd4]</pre>	8 set LinksNew [] 9 set CLLinksNew []
51 52 if {\$ff>0 001} {	10 forward close frights f
	11 FOTEACH GLETH &LINKS {

nd2 [lindex setem 1]	25 Set IIIIIIWaIIS [1 IIEIII/µu wuueiwata/ IIIIIIWaIIShI.LAL] 24 25 # Nodes
dex [lsearch -sorted -index 0 -integer \$Fix \$nd1] ndex>=0} {	26 set nodeCodes [] 27 foreach ND \$Nodes {
pend FixEx [list \$nd2 1 1 1 1 1] {	28 node [lindex \$ND 0] [lindex \$ND 1] [lindex \$ND 2] [lindex \$ND 3] 29 lannend nodeCodes [lindex \$ND 0]
p end LinksNew [list \$nd1 \$nd2]	
	32 foreach CLN \$CLNodes { 33 node []index \$CLN 0] []index \$CLN 2] []index \$CLN 2] []index \$CLN 3]
m \$CLLinks {	
. [lindex %elem 0] ? [lindex %elem 1]	35 36 # Restraints
dex [Isearch -sorted -index 0 -integer \$Fix \$nd1]	57 foreach NF \$NodesFix { 58 fix [lindex \$NF 0] [lindex \$NF 1] [lindex \$NF 2] [lindex \$NF 3] [lindex
ndex>=U} { pend FixEx [list \$nd2 1 1 1 1 1]	59 } \$NF 4] [IINGEX \$NF 5] [IINGEX \$NF 6]
{ pend CLLinksNew [list \$nd1 \$nd2]	40 41 # Materials
	42 43 set ADDMATTOMODEL 1
[join [list %Fix %FixEx]]	44 source Input/Materials.tcl 45 set ADDMATTOMODEL 0
\$FixNew ModelData/Fix.txt \$LinksNew ModelData/Links.txt \$CLLinksNew ModelData/CLLinks.txt	46 47 uniaxialMaterial Elastic 3 10000000.0; # rigid members 48 49 # Sections
/OpenSees/Analysis/MAElastic.tcl	50 51 set Sec [] 52 foreach 1st \$ElProp {
inalysis with initial stiffness	53 lappend Sec [list [lindex \$lst 0] [lindex \$lst 1] [lindex \$lst 4] [lindex \$slst 5] [lindex \$lst 6]]
ush 6	55 S
	56 # Members
:Builder — ndm 3 — ndf 6 ModelData/ELElementForces	57 58 geomTransf Linear 1 1 0 0 59 øeomTransf Linear 2 0 1 0
1	60 geomTransf Linear 3 0 0 1
FileInput ModelData/TotalNodes.txt]	
<pre>/ FileInput MoueLLata/LLNOUES.Lt] [FileInput Input/Floors.txt]</pre>	63 foreach elem \$MemCon { 64 set Elline [lsearch -integer -inline -index 0 \$Sec [lindex \$elem 0]]
[FileInput ModelData/MemCon.txt] r [FileInput ModelData/MemCon.txt]	<pre>65 if {[lindex \$elem 0]>=1000} {set A 0.0} else {set A [lindex \$EIline 1]} 66 set Iy [lindex \$EIline 2]</pre>
ileInput ModelData/NodeMasses.txt] ds [FileInnut ModelData/BeamLoads txt]	<pre>67 if {[lindex \$elem 0]>=1000} {set Iz 0.0} else {set Iz [lindex \$Elline 3]} </pre>
s [FileInput ModelData/ColLoads.txt]	68 set) [IIIdex \$Elline 4] 69 if {[lindex \$elem 0]>=1000} {set gtf 3} else {set gtf 4}
'ileInput ModeIData/Links.txt] [FileInnut ModeIData/CLLinks txt]	70 element elasticBeamColumn [lindex \$elem 0] [lindex \$elem 1] [lindex \$elem 30] ما هم هدو هو مورد من هو مورد من هو مورد من هو مورد مورد مورد مورد مورد مورد مورد مور
FileInput ModelData/ElasticProp.txt]	2] \$A \$EC \$GC \$J \$IY \$IZ \$gtf 71 if {[lindex \$elem 0]>=1000} {
ds [FileInput ModelData/DiaphRods.txt] c [FileInput ModelData/Fix.txt]	72 set MCO [lsearch -sorted -integer -inline -index 0 \$MemConOr [lindex

<pre>118 foreach elem \$MemCon { 119 set beam [lindex \$elem 0] 20.0 120 recorder Element -file ModelData/ELElementForces/\$beam.txt -ele \$beam 10.0 localForce;</pre>	121 } 122	123 # Analysis 124	125 set Tol 1.0e-10 126 constraints Transformation 127 numberer RCM	128 numberer Acts 128 system UmfPack 129 test EnergyIncr \$Tol 10 120 slovithm Nawron	151 augustitum verveus 151 set NstepGravity 1 122 set StepGravity 1 / & NstenGravity 1	<pre>12 Set Duravity leaf 1./ #INSUEPUTAVILY] 135 integrator LoadControl \$DGravity 1 \$DR34 analysis Static 1 355 analyze \$NstepGravity 156</pre>	137 file mkdir ModelData/ELModal/	139 set pi [expr 4*atan(1.0)]	<pre>140 set Periods [] 141 set eigenvalues "[eigen \$MaxEigPush]" 141 set eigenvalues "[eigen sMaxEigPush]" 142 foreach eig \$eigenvalues { 143 if {\$eig>=0} {lappend Periods [expr (2*\$pi)/sqrt(\$eig)]}</pre>	144 } 145	146 set fileper [open ModelData/ELModal/Periods.txt w] 147 foreach elem \$Periods {	148 puts \$fileper \$elem	150 close \$fileper) 151	<pre>152 for {set EigPush 1} {\$EigPush<=\$MaxEigPush} {incr EigPush} { 153 set NWMline {recorder Node -file ModelData/ELModal/Mode\$EigPush.txt -node</pre>	154 foreach NWM \$NodesWMass {	155 append NWMIIITE ANWMI 156 }	t \$BL57 append NWMINE {-dor L 2 5 4 5 6 eigen \$Eigrusn } 158 eval \$NWMIne	159 } 160	161 record dex 162 153 wine		/OpenSees/Analysis/AxialExtraction.tcl	1 $\#$ Axial forces extraction after the analysis of the structure with constant
<pre>% \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$</pre>	74 } 75	76 }	78 # Links 79 foreach LNK \$Links { 80 risidLink heam [lindex \$LNK 0] [lindex \$LNK 1]	81) 82 foreach CLINK \$CLLinks { 22 risidTink heam []inder \$CTINK 0] []inder \$CTINK 1]	סט ווקועדווות טכמוו (אוויטרא שיבשועיי טן ואוויטרא שיבשועיי אן 14 14	<pre>55 86 foreach DR \$DiaphRods { 87 element elasticBeamColumn [expr 700000000+[lindex \$DR 0]*10000+[lindex 87 element elasticBeamColumn [expr 700000000+[lindex \$DR 1] 100.0 100000000.0 0 0 0 100.0 1] [lindex \$DR 2]</pre>	88 }	<pre>90 if {[info exists ANInfWalls] ==1&&\$\$ANInfWalls=="IW"} {</pre>	 foreach IW %InfillWalls { uniaxialMaterial Elastic [lindex %IW 0] [lindex %IW 4] element truss [lindex %IW 0] [lindex %IW 1] [lindex %IW 2] [lindex 3] [lindex %IW 0] 	94 } 95 }	96 97 # Masses	98 set NodesWMass [] 00 foresth me &Mase /	100 lappend NodesWMass [lindex \$ms 0] 101 mass [lindex \$ms 0] [lindex \$ms 1] [lindex \$ms 1] [lindex \$ms 1] 0 0 C	102 } 103 103 103 103 103 103 103 103 103 103	104 # Ludus 105 pattern Plain 101 Constant {	106 107 foreach BL \$BeamLoads { 107 foreach BL \$TeamLoads {	108 eleboad -ele [lindex \$BL U] - type -beamUnuorm U.U [expr -[lindex 1]]	109 }	foreach CL \$ColLoads { 112 eleLoad -ele [lindex \$CL 0] -type -beamUniform 0.0 0.0 [expr -[lin scr -]] \$CT_111 \$CT_111 \$CT_2111 0.0 [expr -] [lin scr -]]	113 } 114 }	115 116	116# Kecoraers 117

<pre>33 for {set j 1} {\$j <=[expr [llength \$rebars]-6]} {incr j 6} { 34 layer straight 2 [lindex \$rebars \$j] [lindex \$rebars [expr \$j +1]] [lindex \$rebars [expr \$j +2]] [lindex \$rebars [expr \$j +3]] [</pre>	35 } 36 } 37 section Aggregator \$sec \$SecTagTorsion T -section [expr 100*\$sec] 38 element zeroLengthSection 2001 1001 1002 \$sec -orient 1 0 0 0 1 0	<pre>40 41 recorder Node -file ModelData/MomentCurvature/Mphi\${sec}\${mom}.out -time 41 -node 1002 -dof [expr 5+\$dirz] 1 disp; 43 44 45 45 45 45 45 45 45 45 45 45 45 45</pre>	45 pattern Plain 3001 Constant { 44 load 1002 \$N 0.0 0.0 0.0 0.0 0.0 45 }	47 constraints Transformation 48 numberer RCM 49 system UmfPack	<pre>50 test EnergyIncr 1.0e-9 5000 51 algorithm ModifiedNewton -initial 52 integrator LoadControl 0 53 analysis Static</pre>	54 55 analyze 1 56 loadConst -time 0.0	57 58 pattern Plain 3002 Linear { 59 load 1002 0.0 0.0 0.0 [expr 1.0*\$diry] [expr 1.0*\$dirz] 60 }	61 62 set dK [expr \$maxK/\$numIncr] 63 integrator DisplacementControl 1002 [expr 5+\$dirz] \$dK	<pre>bs set ox [andryze \$nummer] 66 67 if {\$ok != 0} { 68 set Dstep 0.0; 69 set Dstep 0.0; 69 set Dstep 0.0; 60 set Dste</pre>	<pre>69 set ok 0 70 while {\$Dstep <= 1.0 && \$ok == 0} { 71 set controlDisp [nodeDisp 1002 [expr 5+\$dirz]]</pre>	<pre>73 set Dstep [expr \$controlDisp/\$maxK] 74 75 test EnergyIncr 1.0e-9 5000 76 algorithm ModifiedNewton -initial 77 integrator DisplacementControl 1002 [expr 5+\$dirz] \$dK 78 set ok [analyze 1]</pre>	<pre>79 80 if {\$ok != 0} { 81 set Nk 4 82 set dKReduced [expr \$dK/\$Nk];</pre>
2 3 set Codes [FileInput ModelData/SectionCodes.txt] 4 5 set axial []	<pre>6 foreach code \$Codes { 7 set file [open ModelData/ELElementForces/\$code.txt r] 8 gets \$file line 9 set lst [regexp -all -inline {\S+} \$line] 10 lappend axial [list [expr 100*\$code+2] [expr -[lindex \$lst 0]]]</pre>	11 lappend axial [list [expr 100*\$code+12] [lindex \$lst 6]] 12 13 close \$file	16 FileOutput \$axial ModelData/AxialForces.txt	/OpenSees/Analysis/MomentCurvature.tcl 1# Moment - Curvature curve creation subroutine	<pre>2 3 proc MomentCurvature { sec FS rebars N maxK dir {numIncr 100} } { 4 5 wipe</pre>	<pre>7 if {\$dir=="y"} {set diry 1; set dirz 0} 8 if {\$dir=="z"} {set diry 0; set dirz 1}</pre>	<pre>if {\$maxK>0} {set sign "p"} else {set sign "m"} set mom "M\${dir}\${sign}"</pre>	15 model BasicBuilder -ndm 3 -ndf 6 15 node 1001 0.0 0.0 0.0 17 node 1002 0.0 0.0 0.0	18 19 fix 1001 1 1 1 1 1 1 20 fix 1002 0 1 1 1 \$dirz \$diry	<pre>22 set ADDMATTOMODEL 1 22 source Input/ Materials.tcl 23 set ADDMATTOMODEL 0 24 set ADDMATTOMODEL 0</pre>	<pre>25 26 set SecTagTorsion 99; 27 uniaxialMaterial Elastic \$SecTagTorsion 10000000 28 28 section Fiber [expr 100*\$sec] { 29 for {set i 1} {\$i <=[expr [llength \$FS]-8]} {incr i 8} { 20 for {set i 1} {\$i <=[expr [llength \$FS]-8]} {incr i 8} 21 } </pre>	<pre>21 patch quad 1 20 20 [Lindex %FS %i] [Lindex %FS [expr %i+1]] [</pre>

integrator DisplacementControl 1002 [expr 5+ ومعادمة المالية المناطقة المناطق	+\$dirz] \$dKReduced 17 set Ku 0.02
of the set in if with the set in if and the set in if and the set in the set	19 SEL RUPULICE 100
86 algorithm ModifiedNewton –initial	20 foreach FS &FiberSec {
87 set ok [analyze 1]	21 set code [lindex \$FS 0]
88	22 set rebars [lsearch -integer -sorted -inline -index 0 \$FiberReb \$code]
89 if {\$0k != 0} {	23 23
90 puts "Decreasing Tolerance"	24 if {\$code<1000} {
91 test EnergyIncr 1.0e-5 20000	25 set P1 [lindex [lsearch -integer -inline -sorted -index 0 \$Axial [exp
92 algorithm ModifiedNewton –initial	100*\$code+2]] 1]
93 set ok [analyze 1]	26 set P2 [lindex [lsearch -integer -inline -sorted -index 0 \$Axial [exp
94 }	100*\$code+12]] 1]
95 II { \$0K != 0} { 	27 MomentCurvature [expr 100*\$code] \$FS \$rebars \$F1 \$Ku y \$numIncr
90 Trving NawtonWithlingSarch"	ewioni laiteu, 28 Junnieniuuvaluue (eApi 100 %coure) #13 #164 pi -@nu) y Rhiminori
27 test EnergyIncr 1.0e-6 100000	29 MomentCurvature [expr 100*\$code+10] \$FS \$rebars \$P2 \$Ku v \$numIncr
98 algorithm NewtonLineSearch -tol 1.0e-	e−6 −maxlter 50000 30
99 set ok [analyze 1]	\$numIncr
	31 MomentCurvature [expr 100*\$code+1] \$FS \$rebars \$P1 \$Ku z \$numIncr
101 $if \{ sok = 0 \} \{ \dots, $	32 MomentCurvature [expr 100*\$code+1] \$FS \$rebars \$P1 [expr -\$Ku] z
102 puts שופאיז אפערסת ערנסן ארטערני דייידים אייילפה "	tnLineSearch railed, summincr sture [evnr 100*%code±11] &FS %rehare &D3 &Ku z #]nor
103 test Energylner 1 0e-6 10000	30 MomentCurvature [expr roo woode II] wig wreats wrw 2 wiunund 34 MomentCurvature [expr 100*\$code+11] \$FS \$rehars \$P2 [expr _\$Ku] z
104 algorithm BFGS	\$numIncr
105 set ok [analyze 1]	35 } else {
106 }	36 set P 0.0
107 }	37 if {\$code%10<2} {set seccode [expr 100*\$code]} else {set seccode [exp]
108 }	100*\$code+10]}
109	38 MomentCurvature \$seccode \$FS \$rebars \$P [expr -\$Ku] y \$numIncr
	39 11 {\$COUE*%LU!=1} { An MomentChrvathre \$secrode \$FS \$rehars \$P \$Kin y \$mimThrr
112 wipe	41 }
113 -	42 }
114 }	43 }
	44
/OpenSees/Analysis/MASections.tcl	
1# Section analysis OpenSees program	/OpenSees/Analysis/BilinearMphi.tcl
3 wipe	1# Moment - Rotation bilinearization
4	2
s file mkdir ModelData/MomentCurvature	<pre>set filelist [glob -directory ModelData/MomentCurvature/ *.out]</pre>
z source Analysis/MomentCurvature.tcl	* set alpha [list 0.6 0.55 0.65 0.5 0.7 0.45 0.75]:# 0.40 0.80 0.35 0.85 0.30 0
	.90 0.25 0.95 0.201
<pre>9 set FiberSec [FileInput ModelData/FiberSections.txt]</pre>	6 set BLMphi []
וס set FiberReb [FileInput ModelData/FiberRebars.txt] נייני לפאטאליקארן"אדר"ין ל	o fournach Minfeila & fillaliat I
11 [\$ANNWOUNDLET ILS } { 12] 12] 12] 12] 12] 12] 14] 15] 15] 15] 15] 15] 15] 16] 17] 17] 17] 17] 17] 17] 17	8 LOFEACH MILLILE DILIEIISI {
13 } else {	10 set Mphi [FileInput \$MCfile]
14 set Axial [FileInput ModelData/AxialForces.txt]	11 set fubegin [expr [string last / \$MCfile]+5] 12 set fnend [expr [string last \$MCfile]_1]
1 ci 16	13 set code [string range \$MCfile \$fnbegin [expr \$fnend-3]]

set dir [string range \$MCfile [expr \$fnend-2] \$fnend]	66 set aa [expr (\$phi2-\$phi1)/(\$M2-\$M1)] 67
Part of the curve that is taken into account et maxM O et maxphiM O	<pre>68 set bb [expr ((\$phil-\$aa*\$M1)/\$A-2*\$sign*\$phiLast)] 69 set gg [expr 2*\$area] 70 set DD [expr \$bb*\$bb-4.0*\$aa*\$gg]</pre>
et index.Max U et index.Line —1	72 if {\$DD<=0} {continue}
f {[lindex \$Mphi 1 1]>0} {set sign 1} else {set sign -1} oreach line \$Mphi { incr indexLine	<pre>74 set My1 [expr (-\$bb-sqrt(\$DD))/(2*\$aa)] 75 set My2 [expr (-\$bb+sqrt(\$DD))/(2*\$aa)] 76</pre>
<pre>if {\$sign*[index \$line 0]>\$sign*\$maxM} {</pre>	<pre>27 set phiy1 [expr 2*(\$sign*\$phiLast-\$area/\$My1)] 22</pre>
set maxing lindex sline J set maxing [lindex sline 1]	78 Set Puity = [expr & querie putterst-gated/group] 79 Set MIO6 [expr &A*\$My1]
set indexMax \$indexLine }	80 set pnilU5 [expr &A *ppny1] 81 set M206 [expr &A*\$My2]
	82
et Mlim [expr \$maxM*0.85]	\$sign*\$maxM} {lappend BLMphi "\$code \$dir [expr \$sign*\$My1] [expr \$sign*\$nhiv11"· set found 1· hreak}
et N [expr [llength \$Mphi]-1] et indexLast [expr [llength \$Mphi]-1] or {set i \$indexMax} {\$i<=\$N} {incr i} {	<pre>14 if {\$Ml<=\$M206x&\$M00<=\$M226x\$phil<=\$phi206&x\$philo6<=\$phi206&x\$My2< \$sign*\$maxM} {lappend BLMphi *\$code \$dir [expr \$sign*\$My2] [expr \$sign*\$phiy2] *; set found 1; break}</pre>
<pre>if {\$sign*[lindex \$Mphi \$i 0]<\$sign*\$Mlim} { set indexLast [expr \$i-1] </pre>	85 } { ffound==1} { break }
Dreak }	87 } 88 if {\$found==0} { puts "Bilinearization failed for section \$code \$dir"}
et MLast [lindex \$Mphi \$indexLast 0] et phiLast [lindex \$Mphi \$indexLast 1]	89 } 90 91 FileOutput \$BLMphi ModelData/BilinearMphi.txt
Area of the initial curve of area O	[at our Zuma]/ajavi[au/Jaaa] uou/
<pre>or {set i 1} {\$i<=\$indexLast} {incr i} { set area [expr \$area+([lindex \$Mphi [expr \$i-1] 0]+[lindex \$Mphi \$i</pre>	1# Compression zone depth calculation
0])/2.0*([lindex \$Mphi \$i 1]-[lindex \$Mphi [expr \$i-1] 1])]	z file mkdir ModelData/CompZones
Initial and bilinear curve intersection	<pre>4 5 5 set Codes [FileInput ModelData/SectionCodes.txt] 6 6 6 6 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8</pre>
et found U oreach A \$alpha {	zset Coor [FileInput ModelData/ConCoor.txt]
<pre>for {set i 1} {\$i<=\$indexLast} {incr i} {</pre>	set centerdepth []
set M1 [expr \$sign*[lindex \$Mphi [expr \$i-1] 0]]	10 foreach elem \$Codes { 11 set coorlist [lsearch -integer - all -inline - index 0 \$Coor \$elem]
<pre>set M2 [expr \$sign*[lindex \$Mphi \$i 0]]</pre>	<pre>12 set Mcoor [Isearch -inline -index 1 \$coorlist "M"] 13 set vc [expr -[lindex \$Mcoor 3]] : # from the bottom</pre>
set phil [expr \$sign*[lindex \$Mphi [expr \$i-1] 1]]	14 set H [expr [lindex \$Mcoor 9]-[lindex \$Mcoor 3]] 15
set phi2 [expr \$sign*[lindex \$Mphi \$i 1]]	<pre>16 set Rindex [lsearch -index 1 \$coorlist "R"] 17 if {\$Rindex!=-1} {</pre>
<pre>if {[expr \$M2-\$M1] ==0} { continue}</pre>	<pre>18 set xc [lindex \$coorlist \$Rindex 4] ; # from the right 20 clock</pre>
	19 } else { 20 set xc [lindex \$Mcoor 4]

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 1111

 1111

 1111

 1111

 1111

 1111

 1111

 1111

 1111

 1111

 1111

 1111

 1111

 1111

 1111

 1111

 1111

 1111

 1111

 1111

 1111

 1111

 1111

 1111

 1111

 1111

 11111

<pre>>LIF \$LL >OpenSees/Analysis/Comprrop.tci > Calculation of width and rebars of the compression zone > Set SCC [FileInput ModelData/ConCoor.txt] > Set SRC [FileInput ModelData/RebCoor.txt] > Set SRC [FileInput ModelData/RebCoor.txt] > CDenSees/Analysis/CZaverage.tcl 6</pre>	<pre>e \$C4 </pre>
<pre>1e 2 2</pre>	<pre>2 3 set SCC [FileInput ModelData/ConCoor.txt] 4 4 set SRC [FileInput ModelData/RehCoor.txt]</pre>
<pre>2 3 set SCC [FileInput ModelData/ConCoor.txt] 4 5 set SRC [FileInput ModelData/RebCoor.txt] 6 6</pre>	2 3 set SCC [FileInput ModelData/ConCoor.txt] 4 5 set SRC [FileInput ModelData/RehCoor.txt]
set SRC [FileInput ModelData/RebCoor.txt] /ObenSees/Analvsis/CZaverage.tcl	4 s set SRC [File]mput ModelData/RehCoor.txt]
/ObenSees/Analvsis/CZaverage.tcl	
Freedom Section Codes. 1 results and a set Codes [FileInput ModelData/SectionCodes.txt]	/OpenSees/Analysis/CZaverage.tcl

<pre>9 set CZav [FileInput ModelData/CompZoneAv.txt]</pre>	60 if {\$dir=="Mym" \$dir=="Mzp"} {
10 11 cot homm []	61 set lim [expr \$xx-[lindex \$elem 2]]
11 Set ocump [] 12 Set complim []	62 Jeise 1 63 set lim fexpr \$xx+[lindex \$elem 2]]
13 foreach elem \$CZav {	
14	65 lappend complim [list [lindex \$elem 0] \$dir \$lim \$bb]
15 set code [expr [lindex \$elem 0]/100] 16 set dir [lindex \$elem 1]	66 67 }
17	68 22 22 24 PTT-24 []
18 19 set sec [lsearch -integer -all -inline -index 0 \$SCC \$code]	70 foreach elem \$complim {
<pre>20 set reb [lsearch -integer -all -inline -index 0 \$SRC \$code]</pre>	71 set Ac 0
21 22 set serM [lsearch _inline _index 1 \$sec "M"]	72 Set At 0 73 Set rehars []search _integer _all _inline _index 0 \$SRC [expr []index
23 set bu [expr [lindex \$secM 6]-[lindex \$secM 8]]	\$elem 0]/100]]
24 set yu [lindex \$secM 7]	74 set dir [lindex \$elem 1]
25 set yd [lindex \$secM 3] 26 set hd \$hu	75
27 set bl [expr [lindex \$secM 9]–[lindex \$secM 3]]	77 foreach r \$rebars {
28 set br [expr [lindex \$secM 7]–[lindex \$secM 5]]	78 set Nr [lindex \$r 1]
29 set x1 [lindex \$secM 2]	79 set Ar [lindex \$r 2]
30 set xr [lindex \$secM 4]	80 set yup [expr max([lindex \$r 4],[lindex \$r 6])]
31 	set yon [expr mun([Index %r 4], [Index %r 6])]
32 Set INL [ISearcn —Index I \$Sec L] ≈≈ if {\$ini >=∩}{	82 Set alstup [expr syup-sum] 83 set dictdn [expr %ydn_\$]im]
34 set sec[.[lindex \$sec \$inL]	ed set dist (expression) 84 set dist (expression) 84
set bl [expr [lindex \$secL 9]–[lindex \$secL 3]]	if {\$distup>=0&&\$distdn>=0} {
36 set xl [lindex \$secL 2]	86 set Ac [expr \$Ac+\$Nr*\$Ar]
<pre>37 if {[expr abs([lindex \$secL 7]-[lindex \$secM 7])]<0.00001} {</pre>	87 } elseif {\$distup < 0} {
<pre>38 set bu [expr \$bu+[expr [lindex \$secL 6]-[lindex \$secL 8]</pre>]]] 88 set At [expr \$At+\$Nr*\$Ar]
39 } Else { 40 cat hd [avnr \$hu+[avnr []indav \$car[6]_[]indav \$car[8]	89 } else { cat ratio [avar &diction / & dict]
40 Set ou [capt wout[capt [innues word] [innues word of 41 }	91 Set Nation [expr #discup/#discup/#discup/ 91 Set NC [expr (floor(\$ratio*\$Nr)+1)]
42 }	92 set Nt [expr \$Nr-\$Nc]
43	93 set Ac [expr \$Ac+\$Nc*\$Ar]
44 set inR [lsearch -index 1 \$sec "R"]	94 set At [expr \$At+\$Nt*\$Ar]
46 set secR [lindex \$sec \$inR]	96
47 set br [expr [lindex \$secR 7]–[lindex \$secR 5]]	<pre>97 } elseif {\$dir=="Myp"} {</pre>
48 set xr [lindex \$secR 4]	98 foreach r \$rebars {
49 II {[expr aos(]IIIIdex \$seck /]-[IIIIdex \$seck /]]<0.00001} { 50 set bu [expr \$bu+[expr [lindex \$secR 6]-[lindex \$secR 8]	(99 Set Nr Illnaex %r 1 111 100 set Ar [lindex %r 2]
51 } else {	101 set yup [expr max([]index \$r 4],[lindex \$r 6])]
s2 set bd [expr \$bu+[expr [lindex \$secR 6]–[lindex \$secR 8]]]] 102 set ydn [expr min([lindex \$r 4],[lindex \$r 6])]
53 }	103 set distup [expr \$yup-\$lim] 104 set distdn [expr \$ydn-\$lim]
55	105 set dist [expr \$distup-\$distdn]
<pre>56 if {\$dir=="Myp"} {set bb \$bd} elseif {\$dir=="Mym"} {set bb \$bu}</pre>	elseif { 106 if {\$distup <=0&&\$distdn <=0} {
<pre>\$dir== Mzp } {set 00 \$Dr} else {set 00 \$Dr} spl {set xx \$vd} else { {\$dir== "Mvn" } {set xx \$vu}</pre>	107 Set AC [expr \$AC+\$NI^\$AI] elseif { 108 } elseif {\$distdn>0} {
<pre>\$dir=="Mzp"} {set xx \$xr} else {set xx \$xl}</pre>	109 set At [expr \$At+\$Nr*\$Ar]
58 lappend bcomp [list \$code Nzm \$bb \$xx]	110 } else { cat ratio [avmr ahs(\$distdm)/\$dist]
n	דוד ספר זמרוס (כי סה מסס (אתופרתוי) / אתופר

<pre>set Nc [expr (floor(\$ratio*\$Nr)+1)]</pre>	/OpenSees/Analysis/AvCalc.tcl
set Nt [expr \$Nr-\$Nc]	1 # VR1 shear and av coefficient calculation (used in vield chord rotation)
set Ac [expr \$Ac+\$Nc*\$Ar] set At [ever \$A++\$Nt**Ar]	2
	<pre>3 proc AVcalculation {My Ls fck N bw d Ac Asl} {</pre>
} } elseif {\$dir=="Mzp"} {	s set gammac 1.0
foreach r \$rebars { set Nr []index \$r]]	set k1 0.15
set Ar [lindex \$r 2]	8 د د د بابا [مخمعة 13/10000]
set xr [expr max([lindex %r 3],[lindex %r 5])] set yl [eynr min/[lindex %r 3] [lindex %r 5])]	9 Set u [expr].0+sqrt(200.0/\$dd)] 10 Set k [expr 1.0+sqrt(200.0/\$dd)]
set distr [expr %xr-%lim]	11 if {\$k>2.0} { set k 2.0}
set dist] [expr \$x]-\$lim]	12 set vmin [expr 0.035*pow(\$k,1.5)*pow(\$fck,0.5)]
set uist [expr puist! = puist!] if {\$distr>=0&&\$dist]>=0} {	14
set Ac [expr %Ac+%Nr*%Ar]	15 Set II (eXpr \$ASI/\$DW/\$d] 16 if {\$r1>0.02} {set r1 0.02}
}	
	18 set NN [expr -0.001*\$N] 19 set scn [exnr \$NN/\$Ac]
set ratio [expr \$distr/\$dist] cot No [over {floor(*ratio*\$Nr)+1)]	20 JULY ALL ALL ALL ALL ALL ALL ALL ALL ALL A
set Nt [expr %Nr-%Nc]	21 set fcd [expr \$fck/\$gammac]
set Ac [expr \$Ac+\$Nc*\$Ar]	22 Set scpmax [expr U.2*\$fcd] 23
set At [expr %At+%Nt*%Ar] }	<pre>24 if {\$scp>\$scpmax} {set scp \$scpmax}</pre>
	25 26 set VRdc1 [expr (\$CRdc*\$k*pow(100.0*\$r1*\$fck,1.0/3.0)+\$k1*\$scp)*\$bw*\$d]
foreach r \$rebars {	27 set VRdc2 [expr (\$vmin+\$k1*\$scp)*\$bw*\$d]
set Nr [lindex \$r 1]	28 Set VKac [expr max(\$VKac1,\$VKac2)*1000.0] 29
set Ar [lindex %r 2] set xr [exnr max/flindex %r 3] flindex %r 5])]	<pre>30 set VRdM [expr \$My/\$Ls]</pre>
set x1 [expr min([lindex \$r 3], [lindex \$r 5])]	
set distr [expr \$xr-\$lim]	32 II {⊅VKUUVI<=\$VKUC} {SET aV U} EISE {SET aV ⊥} 33
set alsti lexpr axi-alim] set dist lexpr \$distr-\$dist]]	34 return [list \$av \$VRdc]
if {\$distr<=0&&\$distl<=0} {	35 }
set Ac [expr \$Ac+\$Nr*\$Ar] } alsaif /\$dis+1 >01 /	37 set BilinearMphi [FileInput ModelData/BilinearMphi.txt]
set At [expr \$At+\$Nr*\$Ar]	38 set CompWidthRebars [FileInput ModelData/CompWidthRebars.txt]
} else {	40 Set ElasticProp [FileInput ModelData/ElasticProp.txt]
Set ratio [expr abs(\$dist1)/\$dist] cot No [over {floor(\$ratio*\$Nr)+1)]	41
Set Nt [expr %Nr-%Nc]	42 if {\$ANModASL=="YES"} {
set Ac [expr \$Ac+\$Nc*\$Ar]	43 set Axial [FileInput ModelData/ASL.txt]
set At [expr \$At+\$Nt*\$Ar]	44
	46 } 47
} lappend CTreb [list [lindex %elem 0] %dir [lindex %elem 3] %Ac %At]	48 set AV []
	49 foreach BMP \$BilinearMphi { 50 set code [lindex \$BMP 0]
ileOutput \$CTreb ModelData/CompWidthRebars.txt	51 set dirM [lindex \$BMP 1]
a	52 set My [lindex \$HMP 2]

16 return \$rtlist	<pre>17 } ars 18 bars 18 19 set file [open ModelData/BilinearMphi.txt r] 10 set Mphi [] 20 set Mphi [] 21 while {[set cnt [gets \$file line]] > 1} { 22 set lst [regexp -all -inline {\S+} \$line] 23 lappend Mphi "[lindex \$lst 0] [lindex \$lst 1] [expr abs([lindex \$lst 2])] ode [expr abs([lindex \$lst 3])]"</pre>	<pre>24 } 25 Set SP [FileInput ModelData/ShearProp.txt] 25 Set AvList [FileInput ModelData/Av.txt] 27 Set CZList [FileInput ModelData/CompZoneAv.txt] 29 20 Source Input/Materials.tcl 31 32 Set ModEl [] 33 Set THY [] 34 Set TYpartlist [] 35 Set Typartlist [] 35</pre>	<pre>55 56 foreach sec \$Mphi { 37 set code [lindex \$sec 0] 6Ac 38 set dir [lindex \$sec 1] 39 set AVall [lsearch -integer -sorted -all -inline -index 0 \$AvList \$code] 40 set AVdirM [lsearch -inline -index 1 \$AVall \$dir] 41 set av [lindex \$AVdirM 2]</pre>	42 43 # set CZall [Isearch -integer -sorted -all -inline -index 0 \$CZList \$code 44 # set CZdirM [Isearch -inline -index 1 \$CZall \$dir] 45 # set z [lindex \$CZdirM 3] 46	47 if {\$code <100000} { 48 set csplineall [lsearch -integer -all -inline -index 0 \$SP \$code] 49 set dir [lindex \$sec 1] 40 if {\$dir=="Myp" \$dir=="Mym"} { 50 if {\$dir=="Myp" \$dir=="Mym"} { 51 set cspline [lsearch -integer -inline -index 1 \$csplineall "z"]	<pre>style="text-align: center;">style="text-align: center;"/>style: center;"/>s</pre>	<pre>57 set h [lindex \$cspline 2] 58 set b [lindex \$cspline 3] 59 set z [lindex \$cspline 5] 60 set BCW [lindex \$cspline 13] 61 set TY [ThetaY [lindex \$cspline 13] 62 set thetaY [lindex \$ry 0] 63 set TYpart [lindex \$TY 1] 64 set FI [avvvr [lindex \$TY 1] 65 set Typart [lindex \$ry 1] 66 set FI [avvvr [lindex \$ry 1] 67 set FI [avvvr [lindex \$ry 1] 68 set FI [avvvr [lindex \$ry 1] 69 set FI [avvvr [lindex \$ry 1] 60 s</pre>	 Image: A start of the start of
ss set absMy [expr abs(\$My)]	<pre>set CRall [lsearch -integer -sorted -all -inline -index 0 \$CompWidthRet</pre>	<pre>set SPdirV [lsearch -inline -index 1 \$SPall \$dirV] set bw [lindex \$SPdirV 3] set d [lindex \$SPdirV 4] set Lsp [lindex \$SPdirV 4] set Lsn [lindex \$SPdirV 6] set Lsn [lindex \$SPdirV 7] if {\$dirM=="Myp" \$dirM=="Mzp"} {set Ls \$Lsp} est Ls {Lsn} set codeN [expr (\$code/10)*10+2] set codeN [expr (\$code/10)*10+2] set codeN [lsearch -integer -inline -index 0 \$Axial \$codeN] set Nind [lsearch -integer -inline -index 0 \$Axial \$codeN]</pre>	<pre>22 set codeAc [expr \$code/100] 73 set codeAc [expr \$code/100] 74 set Acline [lsearch -integer -sorted -inline -index 0 \$ElasticProp \$code 75 set Ac [lindex \$Acline 1] 76 set Ac [lindex \$Acline 1]</pre>	<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	<pre>ss FileOutput \$AV ModelData/Av.txt/OpenSees/Analysis/ThetaYModStiff.tcl</pre>	<pre>1 # ThetaY and effective stiffness 2 5 proc ThetaY {phiy Ls av z h b db fy fc BCW} { 4</pre>	<pre>s if {\$phiy>0} {set sign 1} else {set sign -1} 6 7 set term1 [expr \$phiy*(\$Ls+\$av*\$z)/3.0] 8 set term2 [expr \$sign*0.0014*(1.0+1.5*\$h/\$Ls)] 9 if {\$BCW==2} {set term2 [expr \$sign*0.0013]} 10 set term3 [expr \$phiy*\$db*\$fy/8.0/sqrt(\$fc)] 11 set thetay [expr \$term1+\$term2+\$term3] 12</pre>	<pre>13 set part [list [expr \$term1/\$thetay] [expr \$term2/\$thetay] [expr \$term3</pre>

	1] [lindex \$TYpart 2]]	118	} else {
68		119	set EIz [lindex \$elem 2]
69 } els(120	set Elv O
70	<pre>{ { lindex \$sec 1]=="Mvm" [lindex \$sec 1]== "Mvm" } {</pre>	12.1	set Nv 0: set Nz 1
- 12	set bspline [lsearch -integer -inline -index 0 \$\$P \$code]	122	
- C -	eat [cn []indav @henling f]		
/.2	set rsu linuex abspirue /]	124]	
74	set db [lindex \$bspline 8]	125 if {\$Ny:	>0} {set Elyav [expr \$Ely/\$Ny]} else {set Elyav 0}
75	set dir [lindex \$sec 1]	126 if {\$Nz:	>0} {set Elzav [expr %Elz/%Nz]} else {set Elzav 0}
76	set h [lindex \$bspline 2]	127 if {\$old	1>0} { lappend ModElav [list \$old \$Elvav \$Elzav]}
		001	
11			
78	set z [lindex \$pspline 5]	129 Set Moc	1SecStHT []
79	set BCW [lindex \$bspline 13]	130 foreach	MS \$ModElav {
80	if {[lindex %ser 1]=="M/w"} {set [s %]sn} else {set [s %]sn}	131 Set	serrode [exnr []index \$MS 01/100]
0			
81	SET IT [INETAI [INTREX \$SEC 5] \$LS \$AV \$Z \$N \$D \$QD \$FIN \$FUN \$E		{seccode >= 1000} {
		133	lappend ModSecStiff [list \$seccode [lindex \$MS 1] [lindex \$MS 2]]
82	set thetay [lindex \$TY 0]	134 } e	<pre>lseif {[lindex \$MS 0]%100==0} {</pre>
83	set TYpart [lindex \$TY 1]	135	set By [lindex [lsearch -inline -index 0 \$ModElay [expr 100*\$seccode]]
84	set FI [avr [lindev &sec]]*\$!s/? ()/\$thetav]		
۴ u	JOE TI [CAPY] THING & WORL 2] WIDOLOGY / WEINCORY]		المعامرة المعامية المستقلمين المستقلمين المستقلم المستقلمات المستقلمات المستقل المستقل المستقل المستقل المستقل
cα		150	Set DZ IIIIUEX ISSAICH -HILLIE -HRUEX U \$MUUTELAV EXPL IOU \$SECCODE
86	lappend Model [list \$code \$dir \$el]		+1]] 2]
87	lappend TYpartlist [list \$code \$dir [lindex \$TYpart 0] [lindex	137	set Ey [lindex [lsearch -inline -index 0 \$ModElav [expr 100*\$seccode
	\$TYpart 1 [lindex \$TYpart 2]]		+10 1
1		021	cot Er []avin (]correct in]indow () @ ModElow [own 100*@correcto
88 2		QC1	Set LZ (IIIUUEA (ISEAICH - HILLIE - HILLEA O \$MOULLIAV (EAP) IOU \$SECCOUR
89			
60 }		139	<pre>lappend ModSecStiff [list \$seccode [expr (\$By+\$Ey)/2.0] [expr (\$Bz+\$Ez</pre>
91			1/2.011
92.# Average	values	140 }	
oz cot ModFl			
	av []	141]	
94 set ola U		142 	
95 set Ely 0		143 FileOutp	put \$ModEl ModelData/ModStiffnessDifDir.txt
96 set EIz 0		144	
97 set Ny O		145 FileOutj	put \$THY ModelData/ThetaY.txt
98 set Nz 0		146 FileOutJ	put \$TYpartlist ModelData/TYparts.txt
99 foreach	em \$ModEl {	147	
100 set C	ode [lindex \$elem 0]	148 SOULCE	Inbut / Materials. tcl
101 if {\$	code == \$old } {	149 Set Fla	sticPron [FileTunut ModelData/FlasticPron txt]
	در النام من من المالية المالية وقال المالية ال		outer top interniped accounter account of the second second second second second second second second second se
701	ו [[עוותכא שניים] אין		
103	Set LIV [expr &LIV +[IIIdex & elem 2]]	151 IOFEACN	
104	incr Ny	152 Set	
105 }	else	153 Set	EFLINE [ISEARCH - INLINE - INTEGET - SOTTED - INDEX U % ELASTICFTOP %CODE]
106	set Elz [expr \$Elz+[lindex \$elem 2]]	154 set	Ely [expr \$Ec*[lindex \$EPline 4]]
107	incr Nz	155 set	EIz [expr \$Ec*[lindex \$EPline 5]]
108 }		156 set	Elyrat [expr [lindex \$ms 1]/\$Ely]
109 } els(157 set	EIzrat [expr [lindex \$ms 2]/\$EIz]
110 J	f {\$Nv>0} {set Elvav [expr \$Elv/\$Nv]} else {set Elvav 0}	158 lapt	oend ModSecStiffExt [list \$code [lindex \$ms 1] [lindex \$ms 2] \$Elvrat
111 İ.	[{\$Nz>0} {set Elzav [expr \$Elz/\$Nz]} else {set Elzav 0}	•	\$Elzrat
 112	<pre>[{ \$ old > 0} { lapbend ModElav [list \$ old \$Elvav \$Elzav]}</pre>	159 }	
113 St	et old \$code	160	
114 i i	<pre>f {[lindex \$elem 1]=="Myp" [lindex \$elem 1]=="Mym" } {</pre>	161 FileOutp	put
115	set Ely [lindex \$elem 2]		
116	set EIZ 0		
117	set Ny 1; set Nz O		
			/UpenSees/Analysis/MAElasticMS.tcl

1# Elastic analysis with effective stiffness	22 }
z 3 set MaxEigPush 6	53 54# Members
4	ss geomTransf Linear 1 1 0 0
5 wipe 6 model BasicBuilderndm 3ndf 6	56 geomiransi Linear 2 U I U 57 geomTransf Linear 3 O O 1
	ss geomTransf PDelta 4 0 1 0
8# File input	59
9 set Noues [riteliput MouelData/lotaiNoues.txt] 10 set CLNodes [FileInput ModelData/CLNodes.txt]	61 set Elline [lsearch -integer -inline -index 0 \$Sec [lindex \$elem 0]]
11 set Floors [FileInput Input/Floors.txt]	62 set ModStline [lsearch -integer -inline -index 0 \$ModStiff [lindex \$elem
12 set MemCon [FileInput ModelData/CLMemCon.txt]	0]]
15 SEL MENICUIOL FILETILPUL MOUEDALATATION.CALJ 14 SEL Mass [File]nnut ModelData/NodeMasses.txt]	03 II IIIIUUEA ØEIENI UJZELOUUJ SEL A U.UJ EISE SEL A IIIIUUEA ØEIINNE IJJ 64 set IV [expr []index \$ModSt]ine 11/\$FC]
<pre>15 set BeamLoads [FileInput ModelData/BeamLoads.txt]</pre>	65 set Iz [expr [lindex \$ModStline 2]/\$Ec]
16 set ColLoads [FileInput ModelData/ColLoads.txt]	66 set J [expr 0.10*[lindex \$Elline 4]]
17 Set Links [FileInput ModelData/Links.txt] 	67 if { lindex %elem 0]>=1000} {set gtf 3} else {set gtf 4} 20 aloment alseticBesmColumn [linder %alom 0] [linder %alom 1] [linder %alom
19 set ElProp [FileInput ModelData/ElasticProp.txt]	2] \$A \$EC \$G \$] \$IV \$IZ \$gtf
20 set DiaphRods [FileInput ModelData/DiaphRods.txt]	69 if {[lindex \$elem 0]>=1000} {
21 set ModStiff [FileInput ModelData/ModStiffness.txt]	70 set MCO [lsearch -sorted -integer -inline -index 0 \$MemConOr [lindex \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$
28 set Nouesrix [riteitiput MouelData/rix.txt] 25 set InfillWalls [FileInput ModelData/InfillWallsE1.txt]	71 element elasticBeamColumn [expr 80000000+[lindex \$MCO 0]*10000+[
24	lindex \$MC0 0]] [lindex \$MC0 1] [lindex \$MC0 2] 100.0 10000000.0
25 # Nodes	0 0 0 100.0 3
26 set nodeCodes []	72 }
27 IOTEACH NU \$NOGES { 28	75 }
29 lappend nodeCodes [lindex \$ND 0]	75 # Links
20 } 21	76 foreach LNK &Links { 25
32 foreach CLN \$CLNodes {	
33 node [lindex \$CLN 0] [lindex \$CLN 1] [lindex \$CLN 2] [lindex \$CLN 3] 34}	79 foreach CLLNK \$CLLinks { 80
35	
36# Restraints 27 fearsorth NE @NodosFiv J	82 foreach DR \$DiaphRods { **
interaction with the second state of the secon	53 Element lastrubeambound [eap] /000000007[muea #DA 0] 10000 [0100 [1]] [[index \$DR 0] [lindex \$DR 1] 100.0 100000000.0 0 0 100.0 [1.1.1
39 } ANF 4] [IIIIGEX ANF 3] [IIIIGEX ANF 0]	וותנפא ¢טא בן 84 }
40 	88
41 # Malefials 42 set ADDMATTOMODEL 1	86 II {[INIO EXISCS ANVIN WALLS]==LXXXAANVIN WALLS== LW } { 87 foreach IW \$InfillWalls {
43 source Input/Materials.tcl	uniaxialMaterial Elastic [lindex \$IW 0] [lindex \$IW 4]
45 SEL ADDIVIDIDUDIDUDUDUDUDUDUDUDUDUDUDUDUDUDUD	89 ELEMENT LIUSS LITTUER JIW OJ LITTUER JIW IJ LITTUER JIW ZJ LITTUER JIW 37 [linder \$IW O]
46 uniaxialMaterial Elastic 3 10000000.0; # rigid members	90
47 48 # Sections	91 } 92
49 set Sec []	93 # Masses
so foreach 1st \$ElProp {	94 set NodesWMass []
51 Lappend Sec [list lindex \$1st U] lindex \$1st 1] lindex \$1st 4] lindex \$1st 5] [lindex \$1st 6]]	95 roreach ms \$Mass { 96 lappend NodesWMass [lindex \$ms 0]

97 mass [lindex \$ms 0] [lindex \$ms 1] [lindex \$ms 1] [lindex \$ms 1] 0 0 0	147 eval \$NWMine
98] 99	148 } 149
00 # Loads	150 record
01 pattern Flain lui Constant { 02	151 152 wipe
<pre>03 foreach BL \$BeamLoads { 04 eleLoad -ele [lindex \$BL 0] -type -beamUniform 0.0 [expr -[lindex 07 1]]</pre>	BL
05 }	Openders and muchaver forces relation
06 07 foreach CL \$ColLoads { 08 eleLoad -ele [lindex \$CL 0] - type -beamUniform 0.0 0.0 [expr -[lind]	x sfile mkdir ModelData/PushModalLoads
09 } \$CL 1]]	<pre>5 set Mass [FileInput ModelData/NodeMasses.txt]</pre>
10 }	6 7 set mainDirPer []
12# Analysis	8 9# Elastic with pross stiffness
13 14 set Tol 1.0e-10	
15 constraints Transformation	11 set Per [FileInput ModelData/ELModal/Periods.txt]
16 numberer KLM 17 system UmfPack	13 set EigPartFact []
18 test EnergyIncr \$Tol 10	14 set EigMasses []
19 algorithm Newton	15 set elg 1 16 while { \$eig >0} {
20 set nsteputavity 1 21 set DGravity [expr 1./\$NstepGravity]	17 set fileName ModelData/ELModal/Mode\$eig.txt
22 integrator LoadControl \$DGravity 22 analysis Static	<pre>18 if {[file exists \$fileName]==0} {break} 19 set EigenLine [join [FileInput \$fileName]]</pre>
24 analyze \$NstepGravity	
25 26 file mkdir ModelData/ELMSModal/	21 set i 0 22 set MassEigen []
27	23
28 set pi [expr 4*atan(1.0)]	24 foreach mass \$Mass { 25 lannend MassFigen [list [lindex \$mass 0] [lindex \$mass 1] [lindex
29 set Ferious [] 30 set eigenvalues "[eigen \$MaxEigPush]"	\$EigenLine \$i] [lindex \$EigenLine [expr \$i+1]] [lindex \$EigenLine
31 foreach eig \$eigenvalues { 32	<pre>[expr \$i+2]] [lindex \$EigenLine [expr \$i+5]] [lindex \$EigenLine [expr \$i+4]] [lindex \$EigenLine [expr \$i+5]]]</pre>
	26 incr i 6 27 }
35 set fileper [open ModelData/ELMSModal/Periods.txt w]	28
36 foreach elem \$Periods {	29 set maxPHI 0.0
37 puts \$fileper \$elem 201	<pre>30 foreach ME \$MassEigen { 31 if {[expr abs(f]index \$ME 2])]>[expr abs(\$maxPHI)]} {set maxPHI [</pre>
39 close \$fileper	lindex \$ME 2]}
	32 II {[exprads(lindex \$ME 5])]> exprads(\$maxFh1)]} {Set maxFh1 [lindex \$MF 3]}
41 for {set EigPusn 1} {\$EigPusn<=\$MaxEigPusn} {Incr EigPusn} { 42 set NWWine {recorder Node —file ModelData/ELMSModal/Mode\$EigPush.txt	<pre>if {[expr abs([index \$ME 4])]>[expr abs(\$maxPHI)]} {set maxPHI [</pre>
-node } 43 foreach NWM \$NodesWMass {	iff {[expr aver *]] if {[expr aver *]] if {[expr abs(\$maxPHI)]} {set maxPHI [
44 append NWMline "\$NWM "	index \$ME 5]} ss if {[expr abs([lindex \$ME 6])]>[expr abs(\$maxPHI)]} {set maxPHI [
45	lindex \$ME 6]}
	<pre>36 if {[expr abs([lindex \$ME 7])]> expr abs(\$maxPHI)]} {set maxPHI </pre>

lindex \$ME 71}	84 set maxMXmode 0
	85 set maxMY 0.0
58	86 set maxMYmode 0
set Menorm [] to foreach ME \$MassEigen {	88 foreach EM \$EigMasses {
a lappend MEnorm [list [lindex \$ME 0] [lindex \$ME 1] [expr [li 2]/\$maxPHI] [expr [lindex \$ME 3]/\$maxPHI] [expr [lindex \$ME \$maxPHI] [expr [lindex \$ME 5]/\$maxPHI] [expr [lindex \$M	<pre>Lindex \$ME 89 if {[lindex \$EM 1]>\$maxMX} {set maxMX [lindex \$EM 1]; set maxMXmode [</pre>
\$maxPHI] [expr [lindex \$ME 7]/\$maxPHI]]	lindex \$EM 0]}
13 14 FileOutnut \$MEnorm ModelData/FL.Modal/Mode\${eig} arranged txt	92 lappend mainDirPer [list "Elastic" \$maxMXmode [lindex \$Per [expr \$maxMXmode-1 11 \$maxMYmode [lindex \$Per [expr \$maxMYmode-1]1]
16 set MassPhil] 17 set TMnhiX 0.0	94# Elastic With effective stiffness 95
is set TMPhiY 0.0	96 set Per [FileInput ModelData/ELMSModal/Periods.txt]
Bet IMpniz 0.0 So set TMphi2X 0.0	97 98 set EigPartFact []
si set TMphi2Y 0.0	99 set EigMasses []
22 Set IMphilzd U.U	100 Set elg 1 101 wrhile { \$eig > 0} {
foreach ME \$MEnorm {	102 set fileName ModelData/ELMSModal/ Mode\$eig.txt
ss set MPX [expr [lindex \$ME 1]*[lindex \$ME 2]] se set MD2Y [expr [lindex \$ME 1]*[lindex \$MF 2]*[lindex \$MF 2]]	<pre>103 if {[file exists \$fileName]==0} {break} 11</pre>
57 Set TMphiX [expr \$TMphiX+\$MPX]	$1] \qquad 10^{4} \qquad 3cc \qquad Lifetical [join [interinput winter]] \\105$
ss set TMphi2X [expr \$TMphi2X+\$MP2X]	106 set i 0
set MPY [expr [lindex \$ME 1]*[lindex \$ME 3]]	107 set MassEigen [] 108
st set MP2Y [expr [lindex \$ME 1]*[lindex \$ME 3]]]] ###################################
22 set TMphiY [expr \$TMphiY+\$MPY] 23 set TMnhi2V [exnr \$TMnhi2V+\$MP2V]	110
	111 # set mext [list [list 201001 0] [list 201002 0] [list 2011 0] [list
ss set MPZ [expr [lindex \$ME 1]*[lindex \$ME 4]]	201101 0] [list 201102 0] [list 2012 0] [list 201201 0] [list 201202
set MFZZ [expr [lingex \$ME 1]" [lingex \$ME 4]" [lingex \$ME 4]] 57 set TMphiZ [expr \$TMphiZ+\$MPZ]]] U]] U]] # set Massext [join [list \$Mass \$mext]]
set TMphi2Z [expr \$TMphi2Z+\$MP2Z]	113 ###################END
59 10 lappend MassPhi [list [lindex \$ME 0] \$MPX \$MPY \$MPZ]	114 # foreach mass \$Massext
11 } 22	116 foreach mass \$Mass { 117 lappend MassFigen [list [lindex \$mass 0] [lindex \$mass 1] [lindex
<pre>set sumMPhi2 [expr \$TMphi2X+\$TMphi2Y+\$TMphi2Z] l lappend EigPartFact [list \$eig [expr \$TMphiX/\$sumMPhi2] [expr \$T</pre>	\$EigenLine \$:1] [lindex \$EigenLine [expr \$i+1]] [lindex \$EigenLine [expr \$i+3]] \$IMphiY/ [expr \$i+3]] [lindex \$EigenLine [expr \$i+3]]
\$sumMPhi2] [expr \$TMphi2/\$sumMPhi2]] [sc]snnsnd FirMisces []ite+ &sig [svnv &TMnhiY*&TMnhiY/&sumMPhi2] [s	[expr \$i+4]] [lindex \$EigenLine [expr \$i+5]]]
\$TMphiY*\$TMphiY/\$sumMPhi2] [expr \$TMphiZ*\$TMphiZ/\$sumMPhi2]	
, increig	120 121 set maxPHI 0.0 ferrert NAT @NGADFirm (
(g) 6	izz IDFeach ME \$Massergen { 125 if {[expr abs([lindex \$ME 2])]>[expr abs(\$maxPHI)]} {set maxPHI [
<pre>30 FileOutput \$EigPartFact ModelData/ELModal/EigenPartFactors.txt</pre>	lindex \$ME 2]}
31 FileOutput \$EigMasses ModelData/ELModal/EigenMasses.txt 32	124 If {[expr abs(lundex \$ME 3])]>[expr abs(\$maxPHI)]} {set maxPHI [lindex \$ME 3]}
33 set maxMX 0.0	if {[expr abs([lindex \$ME 4])]>[expr abs(\$maxPHI)]} {set maxPHI [

/OpenSees/Analysis/ThetaU.tcl	set Lsp [lindex \$SPlist 6]																								
1# ThetaU 55	set LSN [index \$SPlist 7] set BCW [lindex \$SPlist 13]																								
56 56 57 58 58 58 57 58 57 58	<pre>if {\$dir=="Myp" \$dir=="Mzp" } {set Ls \$Lsp} else {set Ls \$Lsn}</pre>																								
set v [expr =\$N/1000.0/\$b/\$h/\$fc] set as [exmr \$I.s/\$h]	set thetau [ThetaU \$N \$h \$b \$bw \$Ls \$At \$Ac \$FYK \$FCK \$BCW]																								
7 set wt [expr \$Ast/\$bw/\$h*\$fy/\$fc] 8 set wc [expr \$Asc/\$bw/\$h*\$fy/\$fc] 61	set THYlistall [lsearch -integer -all -inline -index 0 \$THY \$code] set THYlist [lsearch -inline -index 1 \$THYlistall \$dir]																								
9 5	<pre>set TY [lindex \$THYlist 2] if {\$thetau<\$TY} {set thetau [expr 1.05*\$TY]; lappend TUcor [list \$code</pre>																								
12 Set to lexpr pow(att/att att.) [55] 13 Set thetaubmod [expr 0.016*pow(0.3,\$v)*\$t3*pow(\$as,0.35)] 14																									
<pre>57 15 set md 0.833; # Old regulations and deformed rebars 16 if {\$ECW==2} {set md [expr \$md*0.58]} 17 set thetau [expr \$thetaubmod*\$md]</pre>	lappend TU [list \$code \$dir \$thetau] }																								
	FileOutput \$TU ModelData/ThetaU.txt																								
19 return \$thetau 72 20}	<pre>if {[llength \$TUcor]>0} { FileOutput \$TUcor ModelData/ThetaUcorrections.txt</pre>																								
22 set CWR [FileInput ModelData/CompWidthRebars.txt] 23 if {\$ANModASL=="YES"} {																									
24 set Axial [FileInput ModelData/ASL.txt] 25	/OpenSees/Analysis/ShearStrength.tcl																								
<pre>26 set Axial [FileInput ModelData/AxialForces.txt]</pre>	# Shear Strength calculation according to greek Structure strengthening code (
28 set SP [FileInput ModelData/ShearProp.txt]	KAN.EPE.), appendix 7C																								
29 30 set THY [FileInput ModelData/ThetaY.txt] 4	<pre>proc Shear {h bw d z x Ls N fc fyw mthpl Atot DW SW TW BCW q} {</pre>																								
31 32 source Input/Materials.tcl 6	# DW in mm # SW in cm																								
33	# rtot in m2																								
34 Set IU [] 8 35 Set TUCor [] 9	# fc, fyw in MPa # N in kN (positive for tension)																								
36 foreach elem \$CWR { 37 set code [lindex \$elem 0]	# Ctronath due to hoore																								
<pre>12 12 12 12 12 12 12 12 12 12 13 12 12 14 15 15 15 16 16 17 16 17 17 17 17 17 17 17 17 17 17 17 17 17</pre>	<pre># Jiteligin use to houps set DW [expr \$DW/1000.0] set SW [expr \$SW/100.0]</pre>																								
40 14 41 set b [lindex \$elem 2] 42 set Ac [lindex \$elem 3] 50 of times \$elem 3]	<pre>set pi [expr 4*atan(1.0)] set Asw [expr \$TW*\$pW*4.0]</pre>																								
 35 Set At [IIIIGEX \$EIENT 4] 44 45 Set Nind [Isearch - integer - inline - index 0 \$Axial [expr (\$code/10)*10+21] to 18 	<pre>set Vw [expr \$Asw/\$SW*\$z*\$fyw]; # in MN</pre>																								
46 if {\$Nind>=0} {set N [lindex \$Nind 1]} else {set N 0.0} 20 47	# Stength due to axial force if {\$N>0} {sat N 0} else {sat N [exmr _\$N/1000 0]}																								
48 set SPlistall [lsearch -integer -all -inline -index 0 \$SP \$code] 22 40 set SPlist [lsearch -inline -index 1 \$SPlistal] \$direharl																									
1 control [control] control 25 50 cot h [lindov \$SD](c+ 2]	set Ac [expr buw bu] set Tl [expr min(\$N,0.55*\$Ac*\$fc)] 																								
52 set bw [lindex \$SPlist 3] 26	set VN [expr (\$n-\$x)/(2.0^\$LS)^\$II]																								
80 81 if {\$ANModASL=="YES"} { 82 set Axial [FileInput ModelData/ASL.txt] 83 } else {	84 set Axial [FileInput ModelData/AxialForces.txt] 85 } 86	87 set CZav [FileInput ModelData/CompZoneAv.txt] 88	89 source Input/Materials.tcl	91 set ShearStr [] 92 foreach elem \$ShearProp {	93 set code [lindex \$elem 0] 94 set dir [lindex \$elem 1]	95 set h [lindex \$elem 2] 96 set bw [lindex \$elem 3]	97 set d [lindex \$elem 4] 98 set z [lindex \$elem 5]	99 set Lsp [lindex \$elem 6]	100 Set LSN [lindex \$elem 7] 101 set DB [lindex \$elem 8]	102 set Atot [lindex \$elem 9]	103 Set DW [IIndex Selem 10] 104 Set SW [lindex \$elem 11]	105 set TW [lindex \$elem 12] 106 set BCW [lindex \$elem 13]	<pre>107 set Nind [lsearch -integer -inline -index 0 \$Axial [expr (\$code/10)*10 108 if {[llength \$Nind]>=1} {set N [lindex \$Nind 1]} else {set N 0.0}</pre>	<pre>109 110 if {\$dir="z"} {set dirM "y"} else {set dirM "z"}</pre>	111 set CZall [Isearch -integer -sorted - all -inline - index 0 \$CZav \$code]	113 set CZdirM [lsearch —all —inline —index 1 \$CZall *\$dirM*] 114	115 if {\$BCW>0} { 116 set q 0.0	117 } else { 118 set beamcode [expr \$code/100]	<pre>119 set bcindex [lsearch -sorted -integer -index 0 \$BeamLoads \$beamcode 120 if {\$bcindex>=0} {set q [lindex \$BeamLoads \$bcindex 1]} else {set c 01</pre>	121 } .0]	122 foreach CZ \$CZdirM {	124 set x [lindex \$CZ 2] 125 set M [lindex \$CZ 1]	126 # set z [lindex \$CZ 3]	<pre>128 if {\$M=="Myp" \$M=="Mzp"} { set Ls \$Lsp} else {set Ls \$Lsn}</pre>	130 set SSO [Shear \$h \$bw \$d \$z \$x \$Ls \$N \$FCK \$FYWK 0 \$Atot \$DW \$SW \$T
--	--	--	---	---	---	---	--	---	--	------------------------------------	--	---	--	--	--	--	---	--	---	-----------------	---------------------------	--	-----------------------------	--	--
<pre># Strength reduction due to plastic chord rotation set as [expr \$Ls/\$h] set rtot [expr \$Atot/\$bw/\$d] set T2 [expr 1-0.05*min(5.0,\$mthpl)]</pre>	<pre>set T3 [expr 0.16*max(0.5,100*\$rtot)] set T4 [expr 1-0.16*min(5,\$as)]</pre>	<pre>set T5 [expr \$T3*\$T4*sqrt(\$fc)*\$Ac] set T6 [expr \$T5+\$Vw]</pre>	set VR [expr (\$VN+\$T2*\$T6)*1000.0]; # in kN	set VRO [expr \$VR+\$q*\$d]	# Maximum shear strength due to concrete	if {\$BCW==2} {	set T7 [expr 1-0.06*min(5.0.\$mthp])]	set T8 [expr 1.0+1.8*min(0.15,\$N/\$Ac/\$fc)]	<pre>set 19 [expr 1.0+0.25"max(1./5,100.0"%rtot)] set Tl0 [expr 1-0.2*min(2,\$as)]</pre>	set T11 [expr sqrt(\$fc)*\$bw*\$z]	<pre>set VRmax [expr 0.85*\$T7*\$T8*\$T9*\$T10*\$T10*\$T11*1000.0]</pre>	set VRmin [expr min(\$VR0,\$VRmax)]	} elseif {\$BCW==1&&\$as<=2.0} {	set T7 [expr 1.0-0.02*min(5.0,\$mthpl)]	<pre>set 18 [expr 1.0+1.55*\$N/\$AC/\$IC] set T9 [expr 1.0+0.45*100.0*\$rtot]</pre>	<pre>set T10 [expr sqrt(min(40.0,\$fc))] set T11 [expr \$bw*\$z*sin(2.0*atan(0.5/\$as))]</pre>	<pre>set VRmax [expr 4.0/7.0*\$T7*\$T8*\$T9*\$T10*\$T11*1000.0]</pre>	set VRmin [expr min(\$VR0,\$VRmax)]	} else {	set VRmin \$VRO	-	return \$VRmin		ripe	et ShearProp [FileInput ModelData/ShearProp.txt]

j appment structure (intervent works and structure) see set (intervent works and structure) (1000pm: Struct)	<pre>import pretact (interval) (i</pre>	<pre>set SS5 [Shear \$h \$bw \$d \$z \$x \$Ls \$N \$FCK \$FYWK 5 \$Atot \$DW \$SW \$TW</pre>	<pre>s set ThetaY [FileInput ModelData/ThetaY.txt] s set ThetaU [FileInput ModelData/ThetaU.txt]</pre>
(c) Comparison Modelluts/ShearKoneghtst (c)	Itemput ShearStrength.rt:	lappend ShearStr [list \$code \$M \$SSU \$SS5 \$LS] }	7 set Shear [FileInput ModeLData/ShearStrength.txt] 8 set BMP [FileInput ModelData/BilinearMphi.txt] 9
OpenSecs/Analysis/ShearMomentIntersection.cl former accord immediate a basis of index stem cl OpenSecs/Analysis/ShearMomentIntersection.cl acc code (Index stem cl Commer according a same of the future of boxed provided in the interval boxen values of chod acc code (Index stem cl Consert (for a close a low of control of a close of chod acc code (Index stem cl Consert (for a close a low of control of a close of chod acc code (Index stem cl Consert (for a close a low of control of a close of chod acc code (Index stem cl Consert (for a close a low of control of a close of chod acc code (Index stem cl Consert (for a close a low of control of close of chod acc code (Index stem cl Consert (for a close a low of control of close of chod acc code (Index stem cl Consert (for a close a low of close a low of close a close close a c	OpenSees/Analysis/ShearMomentIntersection.td OpenSees/Analysis/ShearMomentIntersection.td onder	ileOutput \$ShearStr ModelData/ShearStrength.txt	y set Mth [] 11 set MthV [] 12 set VRlist []
Nummer - Condict constition set of 17 (Index Selem 2) Control of and S intervencion Start forces always positive, Nomment and clord creations with real signa Start forces always positive, Nomment and clord creations with real signa Start forces always positive, Nomment and clord creations with real signa Start forces always positive, Nomment and clord creations with real signa Start forces always positive, Nomment and clord creations with real signa Start forces always positive, Nomment and clord creations with real signa Start forces always positive, Nomment and clord creations with real signa Start forces always positive, Nomment and clord creations with real signa Start forces always positive, Nomment and clord creations with real signa Start forces always positive, Nomment and clord creations with real signa Start forces always positive, Nomment and clord creations with real signa Start forces always positive, Nomment and clord creations with real signa Start forces always positive, Nomment and clord creations with real signa Start forces always Start force Start for	moment Set (I [Index Selem 2] moment Set (I [Index Selem 2	/OpenSees/Analysis/ShearMomentIntersection.tcl	13 foreach elem \$BMP { 14 set code [lindex \$elem 0]
<pre>Inter digrading in the interval between values of chord containo and s Shoar forces always positive. Moments and chord rotations with real signs Shoar forces always positive. Moments and chord rotations with real signs Shoar forces always positive. Moments and chord rotations with real signs Shoar forces always positive. Moments and chord rotations with real signs of Shaar Working) if (MAP-0) [see right 1] else [see sign -1] see [b] [seepr Sings 2] if (MAP-0) [see right 1] else [see sign -1] see [b] [seepr Sings 2] if (MAP-0) [see right 1] else [see sign -1] see [b] [seepr Sings 2] if (MAP-0] [see right 1] else [see sign -1] see [b] [seepr Sings 2] if (MAP-0] [see right 1] else [see sign -1] see [b] [seepr Sings 2] if (MAP-0] [see right 1] else [see sign -1] see [b] [seepr Sings 2] if (MAP-0] [see right 1] else [see sign -1] see [b] [seepr Sings 2] if (MAP-0] [see right 1] else [see sign -1] see [b] [seepr Sing 2] if (MAP-0] [see right 1] else [see sign -1] see [b] [seepr Sing 2] if (MAP-0] [see right 1] else [see sign -1] see [b] [seepr Sing 2] if (MAP-0] [see right 1] else [see sign -1] see [b] [seepr Sing 2] if (MAP-0] [see right 1] else [see sign -1] see [b] [seepr Sing 2] if (MAP-0] [see right 1] else [see sign -1] see right 1] else [see sign -1] s</pre>	Liver forces always positive. Nommers and chord rotations with real signation of adds straine finder straine stranee straine straine straine straine straine straine straine strai	Moment – chord rotation and Moment strength due to shear – chord rotation curves intersection	<pre>15 set dir [lindex \$elem 1] 16 set M [lindex \$elem 2]</pre>
Shear Torree Jiways positive. Momens and chord rotations with real signa Set Tyline Jacatehintegerartiedallinlineindex 0 SThead Scoteh (180%-c) (set sign 1) else (set sign1) set Tyline (lacer Tyline 2) set Tyline 2) set Tyline (lacer Tyline 2) set Tyline (lacer Tyline 2) set Tyline 2)	Shear forces always positive. Moments and chood rotations with real signs ### TVIIII [Jearth - Initine - Inidex 1 STVIII Scill ore ShearMomentIntersection [Wi thu VO 'B La) [### TVIIII [Jearth - Initine - Inidex 1 STVIII Scill ore ShearMomentIntersection [Wi thu VO 'B La) [### TVIIII [Jearth - Initine - Inidex 1 STVIII Scill of (Sepr Styring 1) else [set sign - 1] ### TVIIII [Jearth - Initine - Inidex 1 STVIII Scill of (Sepr Styring 1) else [set sign - 1] ### TVIIII [Jearth - Inidex 1 STVIII Scill of (Sepr Styring 1) else [set sign - 1] ### TVIIII [Jearth - Inidex 1 STVIII Scill of (Sepr Styring 1) else [set sign - 1] ### Styring 1] of (Sepr Styring 1) else [set sign - 1] ### Styring 1] of (Sepr Styring 1) else [set sign - 1] #### Styring 1] of (Sepr Styring 1) else [sep Styring 2] ### Styring 2] of (Sepr Styring 1) else [sep Styring 2] ### Styring 2] of (Sepr Styring 2] ## Styring 2] of (Sepr Styring 2] ## Styring 2] of (Sepr Styring 2]	Linear degradation is assumed in the interval between values of chord rotation 0 and 5	17 18 set TYall [lsearch -integer -sorted -all -inline -index 0 \$ThetaY \$code]
conc ShearMomentIntersection (by thy thu Vo 'S Ls) { set Tubil [search - Inite - Index 0 SThead Scole) ef (SW0-c) (set sign 1) size (set sign - 1) set Tubil [search - Inite - Index 1 STUBI Scil] ef (SW0-c) (set sign 1) size (set sign - 1) set Tubil [search - Inite - Index 1 STUBI Scil] ef (SW0-c) (set sign 1) size (set sign - 1) set Sill [lsearch - Inite - Index 1 STUBI Scil] ef (SW0-c) (set sign 1) size (set sign - 1) set Sill [lsearch - Inite - Index 1 STUBI Scil] ef (SW0-c) (set sign 1) size (set sign - 1) set Sill (set sign 1) size (set sign - 1) ef (SW0-c) (set sign 1) size (set sign - 1) set Sill (set sign - 1) ef (SW0-c) (set sign 1) size (set sign - 1) set Sill (set sign 1) size (set sign - 1) ef (SW0-c) (set sign 2) size (str) (set sign 1) size (st) (set sign 1) size (st) (set sign 1) size (st) (set sign 2) size (st) (set size (st) (set size (st) (set sign 2) size (st) (set sign 2) size (st) (set size (st) (st) (set size (st) (set size (st) (set size (st) (set size (st) (st) (s	<pre>conc ShearMomentIntersection (by thy thu V0 V5 Ls) { the set sign -1) the set sign -1, the set si</pre>	Shear forces always positive, Moments and chord rotations with real signs	¹⁹ set TYline [lsearch -inline -index 1 \$TYall \$dir] ²⁰ set TY [lindex \$TYline 2]
<pre>## (1000-0) (set sign 1) size (set sign -1) ## (1000-0) (set sign 1) size (set sign 1) size (set sign -1) ## (1000-0) (set sign 1) size (</pre>	<pre>## TUINE 1 alse (set sign -1) ## TUINE alse for all -1010 ## TUINE alse for all -1000 /pre>	oroc ShearMomentIntersection {My thy thu VO V5 Ls} {	21 22 set TUall [lsearch -integer -sorted -all -inline -index 0 \$ThetaU \$code]
<pre># State Stood Shear Stood # State Sta</pre>	<pre>set Sile [sept Sive index 0 SS set Sile [serveindex 1 Sine 2] set Sile [serveindex 1 Sine 3] set thy Stile 2] set /pre>	if {\$My>=0} {set sign 1} else {set sign -1}	23 set TUline [Isearch -inline -index 1 \$TUall \$dir] 24 set TU [lindex \$TUline 2]
<pre>(f (3M5-5sign'3My) { set Soline (1search - mines - mark 1 Soline 1) set Ning Shu set Ning Shu set Ning Shu set Ning Shu set Soline (1search - mines - mark 1 Soline 2) set Soline (1search - mines - mark 1 Soline 2) set Ning Shu set Ning</pre>	<pre>if (365-5sign*3by) { set Sall statts set Sall set set Sall set set</pre>	set NU [expr \$VU \$LS] set M5 [expr \$V5*\$Ls]	25 2
<pre>eff Mi Wy eff Siline 3 eff Siline 4 eff Siline 3 eff Siline 4 eff Siline 5 eff Silindex Silin 1 eff Siline 5 eff Silindex Silin 1 eff Silindex Silin</pre>	eet Mi Styeet Si lindex Silme 2eet Wi Styeet La lindex Silme 2eet Wi Styeet Sty Tableeet Wi Styeet Sty Tableeet Wi Styeet Sty Tableeet Wi Styeet Styeet Wi Styeet Wi Lindex SSMIeet Wi Lindex SSMIeet Wi Lindex SSMI<	if {\$M5>\$sign*\$Mv} {	26 Set Sall [Issarcn - integer - sorted - all - inline - index 0 \$Shear \$code] 27 Set Sline [Isearch - inline - index 1 \$Sall \$dir]
<pre>set full shu set full shu set full shu set full shu set full sets sign 1] else { set ing an i ble { set</pre>	<pre>set Ls [Index SSIne 4] set full shu set</pre>	set Mi \$My	28 set SO [lindex \$Sline 2] 29 set S5 [lindex \$Sline 3]
eff (% % %)if (% % % % % %)if (% % % % %)if (% % % % % %)if (% % % % % % %)if (% % % % % % % %)if (% % % % % % %)if (% % % % % % % % %)if (% % % % % % % % %)if (% % % % % % % % % % % % % % % % % % %	eff R8 V5if (300-60) (set sign 1) else (set sign -1)> elseif (300-63ign*5My) { set thy (1expr 5sign*5M0/5My*5thy)set try (sign*5M0/5My*5thy)set thy icar backgry)set try (index 5SM1 1)set thy icar backgry)set try (index 5SM1 1)> est K3Mset try (index 5SM1 1)set try (struer backgry)/stasset try (index 5SM1 1)set true (struer backgry)/stasset try (index 5SM1 1)set true (struer backgry)/stasset try (index 5SM1 1)set truer statset try (index 5SM1 2)set truer statset true (struer statif ((strue backgry))/stasset true (struer statset truer statset true (struer statif ((struer backgry))/stasset try (index 5SM1 2)set truer statset try (index 5SM1 2)set truer statset try (index 5SM1 2)set truer statset true (struer statset truer statset true (struer statset truer statset truet	set thui \$thu set thui \$thu	30 set Ls [lindex \$Sline 4]
<pre>) elseff [300 dssign*3ky] { set TVs [expr Ssign*abs(STV)] set fun [expr Ssign*3k0() set fun [sty is sign*3k0() Sky*sthy] set fun [expr shy*sthy] set fun [expr shy] (state SSM 1] set fun [expr shy] (state SSM 2] set fun [expr abs(Shy]) (sta] if [(state SSM 2] set fun [expr abs(Sthu])] [set thui sthu: set mode 0] if [(state SSM 2] set fun [index SSM 3] set mode [index SSM 3] set fun [index SSM 3] set mode [index SSM 3] mode [index SSM 3] set mode [index SSM 3] set mode [index SSM 3] set mode [index SSM 3] mode [index SSM 3] mode [index SSM 3] mode [index SSM 3] set mode [index SSM 3] mode [index SSM 3] mode [index SSM 3]</pre>	<pre>> elseif [3400-5sign*3by] { set TVS [expr \$sign*3bs(\$TV)] set TVS [expr \$sign*3bs(\$TV)] set TVS [expr \$sign*3bs(\$TV]] set thy! [expr \$sign*3bs(\$TV]] set thy [intex \$SM0] set thy [lintex \$SM1] set thy [lintex \$SM2] set thy [lintex \$SM1] set thy [lintex \$SM1] set thy [lintex \$SM2] set the lintex \$M2] set thy [lintex \$SM2] set</pre>	set VR \$V5 set mode D	31 32 if {\$M>=0} {set sign 1} else {set sign -1}
<pre>set thy[texpr \$sign*5M0] set thy[stars \$stars \$star</pre>	<pre>set Wi [expr \$sign*5M0] set thui \$thyi set thui \$thy set thui set thui \$thy set thu set thui \$thy set code set thy set thu set thu set to /pre>	<pre>} elseif {\$MO<\$sign*\$My} {</pre>	<pre>33 set TYs [expr \$sign*abs(\$TY)] 24 cet TIIs [expr \$cign*abs(\$TTI)]</pre>
<pre>set thui \$thyi set Wa \$YO set WA \$Index \$SMI] set Wa \$Index set Wa \$</pre>	<pre>set thui isthy set will index SMI of set will will will will will will will wil</pre>	set Mi [expr \$sign*\$M0] set thvi [expr \$sign*\$M0/\$Mv*\$thv]	
<pre>set VR 3Y0 set mode 1 } else { ref mode 2 ref mode 3 ref mode 4 ref mode 4</pre>	<pre>set VR \$V0 set mode 1 } else { wr (lindex \$SMI 0) set thy (lindex \$SMI 2) set thy \$SMI 2) set thy (lindex \$SMI 2) set thy \$SMI 2) set thy (lindex \$SMI 2) set thy \$SMI 2) set the \$SMI 2] set the \$SMI 2] set thy \$SMI 2] set the \$SMI 2] set thy \$SMI 2] set the \$SMI 2] set the \$SMI 2] set</pre>	set thui \$thyi	36 lappend Mth [list \$code \$dir \$M \$TYs \$TUs] 27
<pre> else { Set MV [Index SSMI 0] set thy [Index SSMI 2] set thy [Index SSMI 2] set thy [Index SSMI 2] set thy [Index SSMI 3] set thy [Sthui)]>[expr abs(\$thu)]] {set thui \$thu; set mode [Index SSMI 4] set mode 2 if {[expr abs(\$thu)]} {set thui \$thu; set mode 0} if {[expr abs(\$thu)]} {set thui \$thu; set mode 0} if {[expr abs(\$thu)]} {set thui \$thu; set mode 0} if {[expr abs(\$thu)]} {set mode 2 if {[expr abs(\$thu)]} {set thui \$thu; set mode 0} if {[expr abs(\$thu)]} {set mode 2 if {[expr abs(\$thu)]} {set thui \$thu; set mode 0} if {[expr abs(\$thu)]} {set mode 2 if {[expr abs(\$thu)]} {set thui \$thu; set mode 0} if {([scode>=100000]&st([scode/100])s0]0==0)&st(\$thu] set mode 2 if {[expr abs(\$thu]} {sthu \$thu \$thu \$thu \$thu \$thu \$thu \$thu \$</pre>	<pre> lete {</pre>	set VR \$VO set mode 1	set SMI [ShearMomentIntersection \$M \$TYs \$TUs \$SO \$S5 \$Ls]
<pre>set thy Sthy set thy Sthy set thy Sthy set thy Sthy set this StMI 3] set this StMI 4] set this StMI 4]</pre>	<pre>set Mi SMy set thuy [sthy set thuy [index \$SMI 2] set VR [index \$SMI 2] set thuy [index \$SMI 2] set thui [sthy set code] } set WR [expr abs(\$hy)/\$Ls] set thui \$thui the triat OpenSees/Analysis/MTheta.tcl Opender - chord rotation with or without shear</pre>	} else {	39 set MV [lindex \$SMI 0]
<pre>set thui [expr sthy*(6-5*(\$sign*\$My-\$M5)/(\$M0-\$M5))]</pre>	<pre>set thui [expr abs(\$My)/\$Ls] set VR [index \$SMI 3] set WR [expr abs(\$My)/\$Ls] set WR [expr abs(\$My)/\$Ls] set mode 2 if [[expr abs(\$Mui)]>[expr abs(\$Mui)]> [set thui \$thu; set mode 0] if [[expr abs(\$Mui)]>[expr abs(\$Mui)]>[set thui \$thu; set mode 0] if [[expr abs(\$Myi \$thui \$VR \$mode] } Node 1 if [[expr abs(\$Myi \$thui \$VR \$mode] </pre>	set Mi \$My set thvi \$thv	41 set thuV [lindex \$SMI 2]
<pre>set mode 2 if {[expr abs(\$thui)]>[expr abs(\$thu)]} {set thui \$thu; set mode 0} if {[expr abs(\$thui)]>[expr abs(\$thu)]} {set thui \$thu; set mode 0} if {[expr abs(\$thui)]>[expr abs(\$thu)]} {set thui \$thu; set mode 0} if {[(scode>=100000)&&((\$code/100)&10]==0)&&(\$K(\$M<0))]} {if {((scode>=100000)&&((\$code/100)&10]==0)&&(\$K(\$M<0))]} {set list \$thui \$thu \$thu \$thu \$thu \$thu \$thu \$thu \$thu</pre>	<pre>set mode 2 if {[expr abs(\$thui)]>[expr abs(\$thu)]} {set thui \$thu: set mode 0} if {[expr abs(\$thui)]>[expr abs(\$thu)]} {set thui \$thui \$thu</pre>	set thui [expr \$thy*(6-5*(\$sign*\$My-\$M5)/(\$M0-\$M5))] set VR [expr abs(\$My)/\$Ls]	42 set VR [lindex \$SMI 3] 43 set mode [lindex \$SMI 4]
<pre></pre>	<pre></pre>	set mode 2 if [[avnr =he(\$thui)]>[avnr =he(\$thu)]] [sat thui \$thu: sat mode 0]	45 lappend VRlist [list \$code \$dir \$VR \$mode]
<pre>set 1st [list \$Mi \$thyi \$thui \$VR \$mode] set 1st [list \$Mi \$thyi \$thuy \$TUs] return \$1st scode \$dir \$MV \$thyV \$thuV] return score \$dir \$MV \$thyV \$thuV] store \$ Analysis/MTheta.tcl score \$dir \$MV \$thyV \$thuV] store \$ Analysis/ShearMomentIntersection.tcl score \$ Analysis/ShearMomentIntersection.tcl sco</pre>	<pre>set lst [list \$Mi \$thyi \$thui \$VR \$mode] set lst [list \$Mi \$thyi \$thuy] { return \$lst return \$lst </pre>		46 47 if {((\$code>=100000)&%((\$code/100)%20(\$\$code/100)%10==0)&&(\$(\$M<0)) ((\$code>=100000)&%((
Analysis/MTheta.tcl 49 } else { 50 lappend MthV [list \$code \$dir \$MV \$thvV] /OpenSees/Analysis/MTheta.tcl 51 } Moment - chord rotation with or without shear 53 54 Durce Analysis/ShearMomentIntersection.tcl 56 telse { 55 Surce Analysis/ShearMomentIntersection.tcl 56 telse { 55	49 } else { 9 > else {	<pre>set lst [list \$Mi \$thyi \$thui \$VR \$mode] </pre>	<pre>\$code/100)%10==2)&&(\$M<0)) } { 18</pre>
S1 S1 S1 S1 S1 S1 S1 S2 S2 S2 S3 S3 S3 S3 S3 S3 S3 S3 S4 S1 S1 S1 <th< td=""><td>/OpenSees/Analysis/MTheta.tcl 52 } 52 } 52 } 52 } 52 } Moment - chord rotation with or without shear 54 FileOutput \$VRlist ModelData/ShearMomInter.txt 55 55 55 55 55 56 56 56 56 56 56 56 56</td><td></td><td><pre>49 } else { 50 lappend MthV [list \$code \$dir \$MV \$thyV \$thuV]</pre></td></th<>	/OpenSees/Analysis/MTheta.tcl 52 } 52 } 52 } 52 } 52 } Moment - chord rotation with or without shear 54 FileOutput \$VRlist ModelData/ShearMomInter.txt 55 55 55 55 55 56 56 56 56 56 56 56 56		<pre>49 } else { 50 lappend MthV [list \$code \$dir \$MV \$thyV \$thuV]</pre>
Moment – chord rotation with or without shear 54 FileOutput \$VRlist ModelData/ShearMomInter.txt 55 ource Analysis/ShearMomentIntersection.tcl 56 set codeold –1	Moment – chord rotation with or without shear 54 FileOutput \$VRlist ModelData/ShearMomInter.txt 55 ource Analysis/ShearMomentIntersection.tcl	/OpenSees/Analysis/MTheta.tcl	51 }
55 ource Analysis/ShearMomentIntersection.tcl 56 set codeold —1	ource Analysis/ShearMomentIntersection.tcl 56 set codeold —1	Moment - chord rotation with or without shear	55 54 FileOutput \$VRlist ModelData/ShearMomInter.txt
		ource Analysis/ShearMomentIntersection.tcl	55 56 set codeold -1

57 set dirold 0 58 set conlst []	05 } else { 06 lappend cur \$My \$phy \$phu
59 set cur [] 60 foreach elem \$Mth {	07 } 08 }
<pre>61 set code [lindex \$elem 0] 62 if {(\$code>=100000)&&((\$code/100)%10==1)} {continue} 72 continue} 73 continue</pre>	<pre>09 if {[lindex \$cur 0]<0} {set cur [list [lindex \$cur 3] [lindex \$cur 4] [lindex</pre>
65 set dupm [index seven 1] 64 set dir [string index \$dirpm 1]	LO LAPPERA CORISENS (JOIN LIST &COUREDIA &CUF)] 11
65 set My [lindex \$elem 2] 66 set phy [lindex \$elem 3]	12 FileOutput \$conlstWS ModelData/MthetaWS.txt
67 set pru [lindex %elem 4] 68 if {\$code!=\$codeold \$dir!=\$dirold} {	/OpenSees/Analysis/HingeComb.tcl
<pre>69</pre>	<pre>1# Subroutine for combination of a base hinge file with rotational or shear hinges</pre>
<pre>\$cur 2]]} 71 lappend conlst [join [list \$codeold \$cur]]</pre>	<pre> sproc HingeComb {HBase HNew} {</pre>
72 } 75 set cur [list \$My \$phy \$phu]	s set HComb [] 6 foreach HB %HBase {
74 set codeold \$code 75 set dirold \$dir	set hcode [lindex \$HB 2]
76 } else {	set hindex [lsearch -integer -sorted -index 2 \$HNew \$hcode]
	10 if {\$hindex <0} { 11 lappend HComb \$HB
79 } 80 if {[lindex \$cur 0]<0} {set cur [list [lindex \$cur 3] [lindex \$cur 4] [lindex \$cur 4] [lindex \$cur 4] [lindex	<pre>12 } else { 13 lappend HComb [lindex \$HNew \$hindex]</pre>
sulappend conist [join [list \$codeoid \$cur]]	14 } 15 }
82 85 FileOutput \$conlst ModelData/Mtheta.txt 84	16 17 return \$HComb
sset codeold -1 sset dirold D	18 }
87 set constWS []	/OpenSees/Analysis/HingeElements.tcl
88 set cur [] 89 foreach elem \$MthV {	1# Hinge elements and connectivity creation
<pre>set code [lindex \$elem 0] if {(\$code>=100000)&&((\$code/100)%10==1)} {continue}</pre>	z s file mkdir ModelData/Hinges
92 set dirpm [lindex \$elem 1] 93 set dir [string index \$dirpm 1]	set CLMemCon [FileInput ModelData/CLMemCon.txt]
94 set My [lindex \$elem 2] 05 set nhv [lindex \$elem 3]	6 set CLNodes [FileInput ModeIData/CLNodes.txt] 7
os set prig [lindex geten: J] set phu [lindex getem J] st f & conden[d] & diri = & dirold] ا	8 set EAco 1000000000 9 set Elvoo 1000000000
9/ II \$COUE' = \$COUE' \$UII : = \$UII 0 8 98 If {\$codeold>=1} {	10 set Elzoo 100000000
<pre>99 if {[lindex \$cur 0]<0} {set cur [list [lindex \$cur 3] [lindex \$cur 4] [lindex \$cur 5] [lindex \$cur 0] [lindex \$cur 1] [lindex 6</pre>	11 Set Gjoo 1000000000 12 Set GAoo 1000000000 22 Sot FAO D
<pre>100 scur 2]]} 100 lappend conlstWS [join [list \$codeold \$cur]]</pre>	test Eizo O
101 } 102 set cur [list \$My \$phy \$phu]	16 Set CLBeamConWH []
103 set codeold \$code 104 set dirold \$dir	17 set CLColConWH [] 18 set ZLBeamNodes [] 19 set ZLColNodes []

set ZLBeamElem [] set ZLColElem []	<pre>71 set HVycode [expr \$ZLbcode+4] 72 lappend ZL\${mem}Mat "uniaxialMaterial Elastic \$HVycode \$GAoo" 72 13 13 13 13 13 13 13 13 13 13 13 13 13</pre>
set ZLColMat []	74 set HVycode [expr \$ZLecode+4] 75 lappend ZL\${mem}Mat "uniaxialMaterial Elastic \$HVycode \$GAoo"
<pre>foreach CLMC \$CLMemCon { set code [lindex \$CLMC 0]</pre>	76 # Vz
<pre>if {\$code<1000} {set mem "Col"} else {set mem "Beam"}</pre>	78 set HVzcode [expr \$ZLbcode+5] 79 lappend ZL\${mem}Mat "uniaxialMaterial Elastic \$HVzcode \$GAoo"
<pre>set nd1 [lindex \$CLMC 1] set nd2 [lindex \$CLMC 2]</pre>	80 set HVzcode [expr \$ZLecode+5] 82 lappend ZL\${mem}Mat "uniaxialMaterial Elastic \$HVzcode \$GAoo"
<pre>set ndlnew [expr \$nd1+2] set nd2new [expr \$nd2+2] laberd CL\${men}ConWH [list \$code \$nd1new \$nd2new]</pre>	83 # A 85 if {\$mem=="Col"} {set EA \$EAoo} else {set EA \$EAO}
<pre>set nodeBcoor [lsearch -integer -inline -index 0 \$CLNodes \$nd1] set nodeEcoor [lsearch -integer -inline -index 0 \$CLNodes \$nd2]</pre>	<pre>87 set HAcode [expr \$ZLbcode+2] 88 lappend ZL\${mem}Mat "uniaxialMaterial Elastic \$HAcode \$EAoo" 89 lappend ZL\${mem}Mat "uniaxialMaterial Elastic \$HAcode \$EAoo"</pre>
<pre>append the product of a subject of a su</pre>	90 set HAcode [expr \$ZLecode+2] 92 lappend ZL\${men}Mat "uniaxialMaterial Elastic \$HAcode \$EA" 93
1 2 set ZLbcode [expr \$code*100] 3 set ZLecode [expr \$code*100+10]	94 if {\$mem=="Col"} { 95 lappend ZL\${mem}Elem "element zeroLength [expr \$ZLbcode+9] \$nd1 96 lappend ZL\${mem}Elem "element zeroLength [expr \$ZLbcode+9] \$nd1
4 # My	<pre>\$ndinew -mat [expr %Lbcode+2] [expr %Lbcode+4] [expr %Lbcode +5] [expr %Lbcode+3] [expr %Lbcode] [expr %Lbcode+1] -dir 1 2 * 1 E 6 ********************************</pre>
set HMycode \$ZLbcode set HMycode \$ZL\${mem}Mat "uniaxialMaterial Elastic \$HMycode \$Elyoo"	97 lappend ZL\${men}Elem "element zeroLength [expr \$ZLecode+9] \$nd2new \$nd2 - mat [expr \$ZLecode+2] [expr \$ZLecode+4] [expr \$ZLecode+5] [
set HMycode \$ZLecode 1 lappend ZL\${mem}Mat "uniaxialMaterial Elastic \$HMycode \$Elyoo"	expl streeter = J [expl streeter] = [expl streeter = 1] = un 1 2 3 4 3 6 = Orient 0 0 1 1 0 0" 98 • • • • • • • • • • • • • • • • • • •
2 # Mz	99 } elseif {\$mem=="Beam"} { 100
<pre>4 5 if {\$mem=="Col"} {set Elz \$Elzoo} else {set Elz \$Elz0}</pre>	<pre>101 if {[expr abs([lindex \$nodeBcoor 1]-[lindex \$nodeEcoor 1])]<0.0000001} {set dir Y} else {set dir X}</pre>
set HMzcode [expr \$ZLbcode+1] lappend ZL\${mem}Mat "uniaxialMaterial Elastic \$HMzcode \$EIz"	<pre>102 103 if { \$dir=="X"} { 104 lappend ZL\${mem}Elem "element zeroLength [expr \$ZLbcode+9] \$nd1</pre>
9 0 set HMzcode [expr \$ZLecode+1] 1 lappend ZL\${mem}Mat "uniaxialMaterial Elastic \$HMzcode \$EIz"	<pre>\$nd.new -mat [expr \$zLbcode+4] [expr \$zLbcode+4] [expr \$ZLbcode+5] [expr \$ZLbcode+3] [expr \$ZLbcode] [expr \$ZLbcode +1] -dir 1 2 3 4 5 6 -orient 1 0 0 0 1 0"</pre>
2 # T 4 set HTcode [expr \$ZLbcode+3] 5 lappend ZL\${mem}Mat "uniaxialMaterial Elastic \$HTcode \$GJoo"	<pre>105 lappend ZL%{mem}Elem "element zeroLength [expr %ZLecode+9] %ndZnew %nd2 -mat [expr %ZLecode+2] [expr %ZLecode+4] [expr %ZLecode +5] [expr %ZLecode+3] [expr %ZLecode] [expr %ZLecode+1] -dir 1 2 3 4 5 6 -orient 1 0 0 0 1 0"</pre>
5 set HTcode [expr \$ZLecode+3] 8 lappend ZL\${mem}Mat "uniaxialMaterial Elastic \$HTcode \$GJoo" 9 # VV	<pre>106 } else {</pre>
₩ Wy	

<pre>108 lappend ZL\${mem}Elem "element zeroLength [expr \$ZLecode+9] \$nd2new \$nd2 -mat [expr \$ZLecode+2] [expr \$ZLecode +5] [expr \$ZLecode+3] [expr \$ZLecode] [expr \$ZLecode+1] -dir</pre>	<pre>11 if {\$code!=\$codeold} { 12</pre>
1 2 3 4 5 6 -orient 0 1 0 -1 0 0"	13 set sumY 0.0
109 }	14 set sum2 0.0
110 }	15 Set codeold \$code
111 [10
113 FileOutput \$CLBeamConWH ModelData/CLBeamConWH.txt	<pre>18 if {[expr \$sec%10]==1} {set sumY [expr \$sumY+[lindex \$sh 2]]}</pre>
114 FileOutput \$CLColConWH ModelData/CLColConWH.txt 115 FileOutput \$ZI.BeamNodes ModelData/ZI.BeamNodes txt	19 } A lannend SHList [list \$codeold [exnr \$sumY/2 0] [exnr \$sumZ/2 0]]
116 FileOutput \$ZLColNodes ModelData/ZLColNodes.txt	21
117	22 set Beamout []
118 set ZLBeamElem [lsort -integer -index 2 \$ZLBeamElem]	23 set Colout []
119 set ille jopen MouelData/AlbeamElem.tkt Wj 120 foreach elem \$71.BeamElem {	24 25 foreach sec \$SHList {
121 puts \$file \$elem	26
122 }	27 set Vy [lindex \$sec 1]
125 CIOSE ØIIIE 124	28 SET VZ [IIIIGEX \$SEC 2]
125 set ZLColElem [lsort -integer -index 2 \$ZLColElem]	so set seccode [lindex \$sec 0]
126 Set file Open Modelluata/ZLC01Elem.txt W 	11 [[exbr \$seccode.IU]<10000}
12/ IUTEACII ELENII & ALACULETENII { 128 muts \$file \$elem	22 # Vv
129 }	s4 set HVycode [expr \$seccode*10+4]
130 close \$file	ss lappend Colout "uniaxialMaterial Hysteretic \$HVycode \$Vy \$ANSHLIM \$Vy
131 122 cot 71 Borne Mat []cout interes index 2 \$71 Borne Mat]	[expr \$ANSHLIM*1.1] [expr 0.2*\$Vy] [expr \$ANSHLIM*2.0] [expr -\$Vy]] [ovur @ANSHTIM1] [ovur @Uvi] [ovur @ANSHTIM*1.1] [ovur
132 set file [open ModelData/Hinges/BeamBH.txt w]	J LEADI — #ANNOTILINY] LEADI — #YYJ LEADI — #ANNOTILINY 1.1.] LEADI — 0.2*\$VY] [EXPI — \$ANSHLIM*2.0] 1.0 1.0 0.0 0.0 "
134 foreach elem \$ZLBeamMat {	36
135 puts \$file \$elem	37 # VZ
136 } 137 rlnse \$file	38 set HVZCOGE [expr &seccoge LU+5] 30 Jannend Colout "uniaxialMaterial Hysteretic \$HV7code \$V7 \$ANSHLIM \$V7
138 ØILIG	[expr %VSHLIM*1.1] [expr 0.2*\$Vz] [expr %ANSHLIM*2.0] [expr %Vz %ANSHLIM*2.0]
139 set ZLColMat [lsort –integer –index 2 \$ZLColMat]] [expr -\$ANSHLIM] [expr -\$Vz] [expr -\$ANSHLIM*1.1] [expr
140 set file [open ModelData/Hinges/ColBH.txt w]	-0.2*\$Vz] [expr -\$ANSHLIM*2.0] 1.0 1.0 0.0 0.0 "
142 Duts \$file \$elem	40 41
143 }	42 } else {
144 close \$file	43 44 HZ
	++ T VL/Tronda [avn: %cerronda*10+6]
/OpenSees/Analysis/HingeShear.tcl	46 lappend Beamout "uniaxialMaterial Hysteretic \$HVzcode \$Vz \$ANSHLIM \$Vz
1 # Shear hinges creation	[expr \$ANSHLIM*1.1] [expr 0.2*\$Vz] [expr \$ANSHLIM*2.0] [expr #11] [expr #12] [expr #12] [expr
IT UICAL IIIIIGCS LICALIUI	–\$VZ] [eXpr –\$ANDHLIM] [eXpr –\$VZ] [eXpr –\$ANDHLIM*1.1] [eXpr **V7] [exmr _\$ANGHTIM*201 1 0 1 0 0 0 0 1
<pre>s set Shear [FileInput ModelData/ShearMomInter.txt]</pre>	47
t seet rodeold O	48 }
6 set SHList []	49 50 }
7 foreach sh \$Shear {	
set sec [lindex \$sh 0] و نز (الإدىمام	<pre>52 set Beamout [lsort -integer -index 2 \$Beamout]</pre>
ער אינייין אינייין איניייער אי אינייין איניייער איני	ss set file [open ModelData/Hinges/BeamSHOnlyShear.txt w]

54 foreach elem \$Beamout {	set sin \$Mym
55 puts \$tile \$elem 22	set eln \$thymmod
57 close \$file	set szir avgyri set e2n \$thummod
58 59 set Hbase [FileInput ModelData/Hinges/BeamBH.txt]	<pre>set s3n [expr 0.20*\$Mym] set e3n [expr \$e2n-0.00001]</pre>
60 set Hcomb [HingeComb \$Hbase \$Beamout]	<pre>if {\$thpm<0.00001} {set s2n \$s3n; set e2n \$e3n; set e3n [expr 10.0*\$e3n]}</pre>
control of the control of the second start with the second	set pinchX 1.0
63 IOTEACH EIEM \$ATCOMD { 64 Puts \$file \$elem 53	set purchr 1.0 set damagel 0.0
65 } 66 close \$file 33	set damage2 0.0
67 68 set Colont [sort -integer -index 2 \$Colont]	set lstprop [list \$code \$s1p \$e1p \$s2p \$e2p \$s3p \$e3p \$s1n \$e1n \$s2n \$e2n \$s3n \$e3n \$pinchX \$ninchY \$damage1 \$damage2]
<pre>69 set file [open ModelData/Hinges/ColSHOnlyShear.txt w] 70 foreach elem \$Colout { 35 36 36 36 36 36 36 36 36 36 36 36 36 36</pre>	set lstmodhinge [list \$code \$s1p \$s2p \$s2p \$s2p \$s1n \$s1n \$s2n \$s2n] return [list \$lstprop \$lstmodhinge]
71 puls #life #cient 35	
73 CLOSE \$FILE 44	proc IMKModel {code Myp thyp thup Mym thym thum n} {
75 set Hbase [FileInput ModelData/Hinges/ColBH.txt] 76 set Hcomb [HingeComb \$Hbase \$Colout]	<pre>set Ke1 [expr abs(\$Myp/\$thyp)] set Ke2 [expr abs(\$Mym/\$thym)]</pre>
77 78 set file [open ModelData/Hinges/ColSH.txt w]	set Ke [expr (\$Ke1+\$Ke2)/2.0*(\$n+1.0)]
79 foreach elem \$Hcomb { 46 80 puts \$file \$elem 47	<pre>set thypmod [expr \$Myp/\$Ke] set thymmod [expr \$Mym/\$Ke]</pre>
81 } 46 82 close \$file 55	<pre>set thupmod [expr \$thypmod*(\$n*(\$thup/\$thyp-1.0)+\$thup/\$thyp)] set thummod [expr \$thymmod*(\$n*(\$thum/\$thym-1.0)+\$thum/\$thym)]</pre>
⁵¹ /OpenSees/Analysis/HingeRotational.tcl	<pre>set thpp [expr abs(\$thupmod-\$thypmod)]</pre>
1# Rotational hinges creation	set thpm [expr abs(\$thummod-\$thymmod)] set Mup \$Myp
2 55 5 proc HYSModel {code Myp thup Mym thum n} { 56	set Minn \$Mym if {\$thpp<0.0000001} {set thpp 0.00001; set Mup [expr 0.20*\$Myp]}
4 57 5 set thypmod [expr \$thym/(\$n+1.0)] 56 set thymmod [expr \$thym/(\$n+1.0)]	<pre>if {\$thpm<0.0000001} {set thpm 0.00001; set Num [expr 0.20*\$Mym]} set as 0.0</pre>
<pre>66 8 set thupmod [expr \$thypmod*(\$n*(\$thup/\$thyp-1.0)+\$thup/\$thyp)] 61 9 set thummod [expr \$thymmod*(\$n*(\$thum/\$thym-1.0)+\$thum/\$thym)] 62 63 64 65 65 65 65 65 65 65 65 65 65 65 65 65</pre>	<pre>set L 1.0 set c [expr 1.0*(\$n+1.0)] set t [eta_pc 0.00001</pre>
10 63 11 set thpp [expr abs (\$thupmod-\$thypmod)] 12 set thpm [expr abs (\$thummod-\$thypmod)] 66	<pre>set Res 0.20 set theta_u_p [expr \$thup*10] set theta_u_m [expr abs(\$thum*10)]</pre>
15 66 14 set slp \$Myp 65	set D 1.0
15 set elp \$thypmod 66 16 set s2p \$Myp	<pre>set lstprop [list \$code \$Ke \$as \$as \$Myp \$Mym \$L \$L \$L \$c \$c \$c \$c \$thpp \$thpm \$theta_pc \$theta_pc \$Res \$Res \$theta_u_p \$theta_u_m \$D \$D</pre>
17 set e2p \$thupmod 18 set s3p [expr 0.20*\$Mvp]] cot letwodhineo [lict &codo &Mim &thurnmod &Mim &thurnmod &Mim
<pre>19 set e3p [expr \$e2p+0.0001] 20 if {\$thpp<0.00001} {set s2p \$s3p; set e2p \$e3p; set e3p [expr 10.0*\$e3p]} 70</pre>	set istinoutitinge (1151 score swyp sutypniou swup strupniou swyn sutyminou swun \$thummod] return [list \$lstprop \$lstmodhinge]
21	

119	set Hout []
73 set Mth [FileInput ModelData/Mtheta.txt]	<pre>foreach secline \$HingeProp {</pre>
74 set MthWS [FileInput ModelData/MthetaWS.txt] 122 75	set sec [lindex \$secline 0]
76 set WS [list " "WS"]	
77 Set Models [list "HYS" "IMK"] 125 78	# About y axis
79 foreach mdl \$Models { 80 foreach ws \$WS { 128	set HMyline \$secline if {\$mdl=="HYS"} {
81 82 set Mth [FileInput ModelData/Mtheta\${ws}.txt]	lappend Hout "uniaxialMaterial Hysteretic [lindex \$HMyline 0] [lindex \$HMyline 1] [lindex \$HMyline 2] [lindex
83 Set Beamlist []	<pre>\$HMyline 3] [lindex \$HMyline 4] [lindex \$HMyline 5] [lindex \$HMyline 6] [lindex \$HMyline 7] [lindex</pre>
85 set Collist [] 86 set ModBeamHinges [] 87 set ModColHinges []	»нмуипе 8] ципаех »нмуипе 9] ципаех »нмуипе 10] [lindex \$HMyline 11] [lindex \$HMyline 12] [lindex \$HMvline 13] [lindex \$HMvline 14] [lindex \$HMvline
	15] [lindex \$HMyline 16]"
89 IDFeact elem and 1 130 90 if {[lindex \$elem 0]<100000} {	f eisent tainuts = num f t lappend Hout "uniaxialMaterial ModIMKPeakOriented [lindex
<pre>91 set MDLlist [\${mdl}Model [lindex \$elem 0] [lindex \$elem 1] [</pre>	<pre>\$HMyline 0] [lindex \$HMyline 1] [lindex \$HMyline 2] [lindex \$HMyline 3] [lindex \$HMyline 4] [lindex</pre>
32 [lindex \$elem 6] \$ANHINGEN] 92 lappend Collist [lindex \$MDLlist 0]	\$HMyline 5] [lindex \$HMyline 6] [lindex \$HMyline 7] [lindex \$HMyline 8] [lindex \$HMyline 9] [lindex
93 lappend ModColHinges [lindex \$MDLlist 1] 94 } else {	\$HMyline 10] [lindex \$HMyline 11] [lindex \$HMyline 12] [lindex \$HMvline 13] [lindex \$HMvline 14] [lindex
<pre>set MDLlist [\${mdl}Model [lindex \$elem 0] [lindex \$elem 1] [</pre>	\$HMyline 15] [lindex \$HMyline 16] [lindex \$HMyline 17] [lindex \$HMyline 18] [lindex \$HMyline 19] [lindex
\$elem 5] [lindex \$elem 6] \$ANHINGEN] se lappend Beamlist [lindex \$MDLlist 0]	\$HMyline 20] [líndex \$HMyline 21] [líndex \$HMyline 22] [líndex \$HMyline 23]"
97 lappend ModBeamHinges [lindex \$MDLlist 1]	
98 } 133 134	# About z axis
135	
01 FileOutput \$Beamlist ModelData/Hinges/Beam\${mdl}\${ws}Prop.txt 136 02 FileOutput \$ModBeamHinges ModelData/Hinges/Beam\${mdl}\${ws}ModMth.txt 137	set HMzcode [expr \$sec+1] set HMzindex [lsearch -integer -index 0 \$HingeProp \$HMzcode]
03 FileOutput \$Collist ModelData/Hinges/Col\${mdl}\${ws}Prop.txt 138 04 FileOutput \$ModelDHinges ModelData/Hinges/Col\${mdl}\${ws}ModMth txt 138	if {\$HMzindex>=0} { eet HMvline []index \$HinreDron \$HMeindev]
04 I HECULPUL PROUCOUTINGES MOUCEDALA INNEES COLO MANA MUCUNTING 139	if {\$mdl=="HYS"} {
06 } [14]	lappend Hout "uniaxialMaterial Hysteretic [lindex دHMraline ما ايانيطوير «HMraline عال ايسطوير» (المسطوير)
00	2] [lindex \$HMzline 3] [lindex \$HMzline 4] [
09 set ElasticProp [FileInput ModelData/ElasticProp.txt]	lindex \$HMzline 5] [lindex \$HMzline 6] [lindex \$HMzline 7] [lindex \$HMzline 8] [lindex \$HMzline
in set Models [list "HYS" "IMK"]	9] [lindex \$HMzline 10] [lindex \$HMzline 11] [
13 set WEM [list "Wes] 13 set MEM [list "Beam" "Col"]	IINGEX \$HMZINE 12] [IINGEX \$HMZINE 15] [IINGEX \$HMZINE 14] [IINGEX \$HMZINE 15] [IINGEX
	\$HMzline 16]"
15 foreach mdl \$Models {	<pre>} elseif {\$mdl=="IMK"} {</pre>
16 foreach ws \$WS {	lappend Hout "uniaxialMaterial ModIMKPeakOriented [
<pre>17 foreach mem %MEM { 18 set HingeProp [FileInput ModelData/Hinges/\${mem}\${mdl}\${ws}</pre>	lindex \$HMzline 0] [lindex \$HMzline 1] [lindex \$HMzline 2] [lindex \$HMzline 3] [lindex \$HMzline
Prop.txt]	4] [lindex \$HMzline 5] [lindex \$HMzline 6] [

3] [lindex 16 dex \$HMzline 17 source Analysis/MApush.tcl	Mzline 13] [18 15] [lindex 19] else {	ndex 20 ndex 21 source Analysis/MAtimehistory.tcl ndex 22 23 }	24 25 Wibe	26 27 control Amalyceic / M A rocults tol	2/ source Analysis/ MALESULIS.LU /OpenSees/Analysis/M	w] 1# Data input 2	<pre>3 puts "Analysis \$ANNUM" 4 file mkdir Analysiss{ANNUM}/</pre>	5 6 # file mkdir AnalvsisResults/Analvsis\${ANNUM}/M	7 # file copy ModelData/ AnalysisResults/Analysis\$	nlyShear.txt]	tt w] 11 puts \$file \$elem. 12 } 12 } 13 close \$file	14 15 # Model data input	16 17 model BasicBuilder –ndm 3 –ndf 6 18 set Nodes [FileInput ModelData/TotalNodes.txt]	19 Set CLNOUES [FILETITPUL MOUELDALA/CLNOUES.LXL] 20 21 Set Floors [FileInput Input/Floors.txt]	22 22 MANNCANDY [Eilalunut MadalData/MannCan tat]	24 set BeamConWOH [FileInput ModelData/CLBeamCon.txt	25 26 set ColCon [FileInput ModelData/CLColConWH.txt]	27 set BeamCon [FileInput ModelData/CLBeamConWH.txt 28	<pre>29 set Mass [FileInput ModelData/NodeMasses.txt] 30 set BeamLoads [FileInput ModelData/BeamLoads.txt</pre>	<pre>31 set ColLoads [FileInput ModelData/ColLoads.txt] 32 set Links [FileInput ModelData/Links.txt]</pre>	<pre>33 set CLLinks [FileInput ModelData/CLLinks.txt] 34 set ElProp [FileInput ModelData/ElasticProp.txt]</pre>	35 set ModStiff [FileInput ModelData/ModStiffness.t	
lindex \$HMzline 7] [lindex \$HMzline 8 \$HMzline 9] [lindex \$HMzline 10] [lin	11] [lindex \$HMzline 12] [lindex \$HMzline 14] [lindex \$HMzline environment of the second seco	\$HMZINE 15] [lindex \$HMZINE 17] [lindex \$HMZINE 19] [lindex \$HMZline 19] [lindex \$HMZline 21] [lindex \$HMZline 21] [lindex \$HMZline 23]"	14 [] [] [] [] [] [] [] [] [] [[[<pre>set Hout [lsort -integer -index 2 \$Hout] set Hbase [FileInput ModelData/Hinges/\${mem}BH.txt] set Hcomb [HingeComb \$Hbase \$Hout]</pre>	<pre>set file [open ModelData/Hinges/\${mem}\${mdl}\${ws}.txt for for alow &Hcomb /</pre>	puts % file % elem	56 close \$file	58 if {\$WS==""} {	<pre>set SHfile [FileInput ModelData/Hinges/\${mem}SHO set SHcomb [HingeComb \$Hcomb \$SHfile]</pre>	<pre>set file [open ModelData/Hinges/\${mem}\${mdl}SH.tx foreach elem \$SHcomb {</pre>	55 } close \$file		{ o	/OpenSees/Analysis/ModelAnalysis.tcl	1# Model Analysis Execution	2 3 wipe	4 5 source Analysis/MAinput.tcl	6 7 source Analysis/MAhinges.tcl	8 9 source Analysis/MAmembers.tcl	o 1 source Analysis / MAconstant.tcl		z source Analysis / M Arecorders tol

<pre>s9 set FiberReb [FileInput ModelData/FiberRebars.txt] t0 set ShearProp [FileInput ModelData/ShearProp.txt] t1 set InfillWalls [FileInput ModelData/InfillWallsInel.txt]</pre>	<pre>9 10 if {\$ANModelTypeC=="EL"} { 11 set ColHinges ModelData/Hinges/ColBH.txt</pre>
<pre>22 set InfillWallsEl [FileInput ModelData/InfillWallsEl.txt] 13 set PlRegList [FileInput ModelData/PlReg.txt] 14 set ZLBeamNodes [FileInput ModelData/ZLBeamNodes.txt] 15 set ZLColNodes [FileInput ModelData/ZLColNodes.txt] 15 set ZLColNodes [FileInput ModelData/ZLCONNODES.txt] 15 set ZLCONNODES [FileInput ModelData/ZLCONNODES [FileInput ModelData/ZLCONNOD</pre>	<pre>2 } else { 3 if {\$ANShearC="NO"} {set sh ""} else {set sh \$ANShearC} 4 if {\$ANShearC="NO"} {set sh ""} else {set sh \$ANShearC} 5 if {\$sh="WS"&&&ANModelTypeC!="CP"} {set sh "SH"} 5 if {\$ANModelTypeC="CP"} {set hm \$ANHingeModelC} else {set hm ""}</pre>
<pre>40 47 set nodeCodes [] 48 foreach ND \$Nodes { 49 node [lindex \$ND 0] [lindex \$ND 1] [lindex \$ND 2] [lindex \$ND 3] 50 lappend nodeCodes [lindex \$ND 0] </pre>	<pre>11 {\$\$11= \$\$14 17 \$\$ \$\$ \$\$ CollHinges ModelData/Hinges/ColBH.txt 18 } else { 19 \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$</pre>
31 } 22 foreach CLN \$CLNodes { 33 node [lindex \$CLN 0] [lindex \$CLN 1] [lindex \$CLN 2] [lindex \$CLN 3]	<pre>if {\$sh="SH"} {set sh "} lappend ModMth [FileInput ModelData/Hinges/Col\$ {mm}\${sh}ModMth.txt]</pre>
4 } 55 foreach LNK \$Links { 56 rigidLink beam [lindex \$LNK 0] [lindex \$LNK 1]	<pre>33 lappend ModWthWUS [FileInput ModelData/Hinges/Col\${hm}ModMth.txt] 34 } 35 }</pre>
ss foreach CLLNK \$CLLinks { ss foreach CLLNK \$CLLinks { ss rigidLink beam [lindex \$CLLNK 0] [lindex \$CLLNK 1]	05) 27 28 set HingeFile [FileInput \$ColHinges] 29 foreach line \$HingeFile {
1 21 21 22 41	<pre>6 if {[lindex \$line 1]!="Elastic"} { 11 set mcode [lindex \$line 2] 12 set hdof [expr \$mcode%10] 13 set hcode [expr (\$mcode/10)*10+9] 14 if {\$hdof<=1} { 15 if \$hdof<=1} { 15 if \$hdof<=1} 15 if \$hdof<=1</pre>
ss 66# Materials input	<pre>55</pre>
ss set ADDMATTOMODEL 1 ss source Input/Materials.tcl no set ADDMATTOMODEL 0	<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>
72 22 uniaxialMaterial Elastic 3 100000000.0; # rigid members	
<pre>/5 /4 geomTransf Linear 1 1 0 0 /5 geomTransf Linear 2 0 1 0 /6 geomTransf Linear 3 0 0 1 /7 if {\$ANShearC=="NO" (\$ANModelTypeC=="CP" &&\$ANShearC=="WS")} {set gtfc "PDelta</pre>	<pre>## Beams ## Beams ## # Beams ## ## Beams ## ##################################</pre>
references of the prince of the second of the second s	0
/OpenSees/Analysis/MAhinges.tcl	<pre>ii if {\$ANModelTypeB=="CP"} {set hm \$ANHingeModelB} else {set hm " } if {\$sh=="&&&hm==""} { set BeamHinges ModelData/Hinges/BeamBH.txt set BeamHinges ModelData/Hinges/BeamBH.txt</pre>
1# Hinges selection 2 5 set ShearHinges []	<pre>} } else { else { set { set { set { set { set { set { set { set {</pre>
4 set RotHinges [] 5 set ModMth [] 6 set ModMthWOS []	<pre>if {\$sh="SH"} {set sh ""} if {\$sh="SH"} {set sh ""} ModMth [FileInput ModelData/Hinges/Beam\${hm}\${sh} ModMth.txt]</pre>
7 8 # Columns	39 lappend ModMthWOS [FileInput ModelData/Hinges/Beam\${hm}ModMth.txt]

60 }	110 foreach ZND \$ZLBeamNodes {
61 }	111 node [lindex \$ZND 0] [lindex \$ZND 1] [lindex \$ZND 2] [lindex \$ZND 3]
5d J	113 source \$ColHinges
set HingeFile [FileInnut \$BeamHinges]	
65 foreach line \$HingeFile {	115 source ModelData/ZLColElem.txt
<pre>66 if {[lindex \$line 1]!="Elastic"} {</pre>	116 source ModelData/ZLBeamElem.txt
67 set mcode [lindex \$line 2]	
68 set hdof [expr \$mcode%10]	
69 set hcode [expr (\$mcode/10)*10+9]	/OpenSees/Analysis/MAmembers.tcl
70 II {\$hdof<=1} { 20 cot oviete []corver interes corted index O #DetWinger #heede]	1# Member input
// Set exists Integer Source # Monthlinges 7 if [& avists < 0] {] annend RotHinges	2
75 } else {	3 # Columns
74 set exists [lsearch -integer -sorted -index 0 \$ShearHinges \$hcode	
75 if {\$exists <0} {lappend ShearHinges [list \$hcode z]}	s if {\$ANModelTypeC=="EL"} {
76 }	<pre>presch elem \$ColCon {</pre>
//] /s]	8 set fscode [lindex \$elem 0]
20	9 set secEP [lsearch -integer -sorted -inline -index 0 \$ElProp \$fscode]
80 file mkdir AnalysisResults/Analysis\${ANNUM}/HingeAnalysis	10 set A [lindex \$secEP 1]
81	11 set Iyel [lindex \$secEP 4]
82 set RotHinges [lsort -index 0 \$RotHinges]	12 Set Izel [Index %sec] 5
83 set ShearHinges [lsort -index 0 \$ShearHinges]	IS Set J [expr 0.10] [Index \$seccr. b]]
84 FileOutput %RotHinges AnalysisResults/Analysis\${ANNUM}/HingeAnalysis/	14 Set secmo isearch — integer — softed — intine — index 0 amodotiti aiscode]
koumunges.txt 85 FileOutmut \$ShearHinges AnalysisResults/Analysis\${ANNIM}/HingeAnalysis/	<pre>is if {[lindex \$secMS 1]>0} {set ly [expr [lindex \$secMS 1]/\$Ec]} else {</pre>
ShearHinges.txt	set Iy \$Iyel}
98	<pre>16 if {[lindex \$secMS 2]>0} {set Iz [expr [lindex \$secMS 2]/\$Ec]} else {</pre>
<pre>87 set TotalHingesOld [join [list \$RotHinges \$ShearHinges]]</pre>	set IZ %IZel}
88 set TotalHingesOld [lsort - index 0 \$TotalHingesOld]	17 Set gti 4 ۵۰ مامسمید مامیدانهDممسرمانیسی [ا نسطمی « مامس م] [ا نسطمی «م امس 1] [انسطمی
	נא בווויון באנאונדספמורטומוון ווויפע א פרפוון טן ווווועפע א פנפוון בן וווועפע מסוסה כן פע פרי פרי פרו פון פווע פון איי פון איי
90 set IotalHinges list lindex \$IotalHingesUld U U] מימי היא אינטי רוויאלטע מיניטוניימיניטונייטונייטונייטונייטונייטו	19 } ¢CICIII 4] 45 414 404 4)) 419 414 4511
91 SEC prev [intex \$rotaintingesour o o] 00 for {set i 1} { \$i <= [exmr [lleneth \$Tota]HingesOld]_1] {incr i} {	20
93 set newhinge [lindex \$TotalHingesOld \$i 0]	<pre>21 } elseif {\$ANModelTypeC=="CP"} {</pre>
94 if {\$newhinge!=\$prev} { lappend TotalHinges \$newhinge}	22
95 set prev \$newhinge	23 foreach elem \$ColCon {
96 }	24 Set iscode [lindex %elem 0]
97 set TotalHinges [lsort \$TotalHinges]	25 set secEP [lsearch -integer -sorted -inline -index 0 \$ElProp \$Iscode] دور موام 11index «مورجه 11
98 00 set McdWth [ioin &McdMth]	27 Set Ivel [lindex \$secEP 4]
00 FileOutput \$ModMth AnalvsisResults/Analvsis\${ANNUM}/HingeAnalvsis/ModMth.txt	28 set Izel [lindex \$secEP 5]
	29 set JJ [expr 0.10* [lindex \$secEP 6]]
102 set ModMthWOS [join \$ModMthWOS]	30 set secMS [lsearch -integer -sorted -inline -index 0 \$ModStiff \$fscode
103 FileOutput \$ModMthWOS AnalysisResults/Analysis\${ANNUM}/HingeAnalysis/] if [[]indav @coorMS 1]>0] [cot [v [avnr []]ndav @coorMS 1]/@Ex*/
ModMthW US.txt	\$ANHINGEN+1.0)/\$ANHINGEN] else {set IV \$Ivel}
105 # Hinges input	if {[lindex \$secMS 2]>0} {set Iz [expr [lindex \$secMS 2]/\$Ec*(
106	\$ANHINGEN+1.0)/\$ANHINGEN] else {set iz \$izei} \$2\$ \$2\$ \$2\$
107 foreach ZND %ZLCOINOGES { 108	element elasticBeamColumn [lindex \$elem 0] [lindex \$elem 1] [lindex
100 }	selem 2] \$A \$Ec \$Gc \$JJ \$Iy \$Iz \$gtf
	35]

jeoif ∫\$∆NM/odelThrong/"DDH") /	6 eet ferade []index &alam 0]
tt (#Windertypec Drit)	set FS [lsearch -integer -sorted -inline -index 0 \$FiberSec \$fscode]
<pre>sreach elem \$ColCon {</pre>	9 set rebars [lsearch -integer -inline -index 0 \$FiberReb \$fscode]
<pre>set fscode [lindex \$elem 0] set FS [lsearch -integer -sorted -inline -index 0 \$FiberSec \$fscode] set rebars [lsearch -integer -sorted -inline -index 0 \$FiberReb \$fscode]</pre>	<pre>section Fiber [expr 10000*\$fscode+999] { section Fiber [expr 10000*\$fscode+999] { for {set i 1} {\$i<=[expr [llength \$FS]-8]} {incr i 8} { patch quad 1 20 20 [lindex \$FS \$i] [lindex \$FS [expr \$i+3]] [lindex \$FS [expr \$i+3]] [lindex \$FS [expr \$i+2]] [lindex \$FS [expr \$i+5]] [lindex \$FS [expr \$FS [expr \$FS [expr \$i+5]] [lindex \$FS [expr \$FS [expr \$FS [expr \$FS [expr \$i+5]] [lindex \$FS [expr \$FS [expr \$FS [expr \$FS [expr \$i+5]] [lindex \$FS [expr \$FS [</pre>
<pre>section Fiber [expr 10000*\$fscode+999] { for {set i 1} {\$i<=[expr [llength \$FS]-8]} {incr i 8} { patch quad 1 20 20 [lindex \$FS \$i] [lindex \$FS [expr \$i+1]] [lindex \$FS [expr \$i+4]] [lindex \$FS [expr \$i+5]] [lindex \$i+5]</pre>	<pre>4 4 5 for {set j 1} {\$j <=[expr [llength \$rebars]-6]} {incr j 6} { 6 1 ayer straight 2 [lindex \$rebars \$j] [lindex \$rebars [expr \$j +1]] [lindex \$rebars [expr \$j+2]] [lindex \$rebars [expr \$j }</pre>
<pre>expr %1 *0]] [1110ex %5 [expr %1 */]] for {set j 1} {\$;<=[expr [llength \$rebars]-6]} {incr j 6} { layer straight 2 [lindex \$rebars \$j] [lindex \$rebars [expr \$j *1]] [lindex \$rebars [expr \$j+2]] [lindex \$rebars [expr \$j+3]] \$; *3]] [lindex \$rebars [expr \$j+4]] [lindex \$rebars [expr \$j+3]] \$; *5]]</pre>	<pre>>> + 5] [IIIUGEX STEDATS [EXPL 3) + 4]] [IIIUGEX STEDATS [EXPL \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$</pre>
<pre>} } set A [lindex \$secEP 1] </pre>	<pre>2 uniaxialMaterial Elastic [expr 10000*\$fscode+9999] \$GJ 4 section Aggregator \$fscode [expr 10000*\$fscode+9999] Tsection [expr 10000*\$fscode+999]</pre>
<pre>set Iyel [lindex \$secEP 4] set Izel [lindex \$secEP 5] set JJ [expr 0.10*[lindex \$secEP 6]] set secMS [lsearch -integer -sorted -inline -index 0 \$ModStiff \$fscode</pre>	s set gtf 4 dement forceBeamColumn \$fscode [lindex \$elem 1] [lindex \$elem 2] 6
<pre>if {[lindex \$secMS 1]>0} {set Iy [expr [lindex \$secMS 1]/\$Ec]} else { set Iy \$Iyel} if {[lindex \$secMS 2]>0} {set Iz [expr [lindex \$secMS 2]/\$Ec]} else { if {[lindex \$secMS 2]>0} {set Iz [expr [lindex \$secMS 2]/\$Ec]} else {</pre>	<pre>\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$</pre>
<pre>set i2 %12e1/ set GJ [expr \$Gc*\$JJ] uniaxialMaterial Elastic [expr 10000*\$fscode+9999] \$GJ section Aggregator \$fscode [expr 10000*\$fscode+9999] T —section [expr</pre>	<pre># Beams fif {\$ANModelTypeB=="EL"} {</pre>
10000*\$fscode+999]	<pre>7 foreach elem \$BeamCon { 8 set fscode [lindex \$elem 0] 9 set secEP [lsearch -integer -sorted -inline -index 0 \$ElProp \$fscode]</pre>
<pre>set PlReg [lindex [lsearch -integer -sorted -inline -index 0</pre>	<pre>0 set A [lindex \$secEP 1] 2 set Iyel [lindex \$secEP 4] 2 set Izel [lindex \$secEP 5] 3 set JJ [expr 0.10*[lindex \$secEP 6]] 4 set secMS [lsearch -integer -sorted -inline -index 0 \$ModStiff \$fscode</pre>
	<pre>if {[lindex \$secMS 1]>0} {set Iy [expr [lindex \$secMS 1]/\$Ec]} else {</pre>
eif {\$ANModelTypeC=="DP"} {	<pre>set Iy \$Iyel} if {[lindex \$secMS 2]>0} {set Iz [expr [lindex \$secMS 2]/\$Ec]} else { set Iz \$Izel}</pre>
oreach elem \$ColCon {	7 set gtf 3

11	ه element elasticBeamColumn [lindex \$elem 0] [lindex \$elem 1] [lindex \$elem 1] [lindex \$elem 1] ها المناطقة ال	
Ę	selem 2] \$A \$Ec \$Gc \$JJ \$IY \$IZ \$gtf	57 tor {set j 1} {\$j <= [expr [llength \$rebars]6]} {incr j 6} { ss laver straight 2 [lindex \$rehars \$i] [lindex \$rehars [i
12	o set MCO [lsearch -sorted -integer -inline -index 0 \$MemConOr [lindex	+1]] [lindex \$rebars [expr \$j+2]] [lindex \$rebars [expr
	\$elem 0]]	<pre>\$j+3]] [lindex \$rebars [expr \$j+4]] [lindex \$rebars [expr *:.<pre>complete</pre></pre>
12	lindex \$MCO 0]] [lindex \$MCO 1] [lindex \$MCO 2] 100.0 10000000.0	[[C+[¢ { 65
17	0.0 0.0 0.0 100.0 3	50 } si set serFP [lsearch -integer -sorted -inline -index 0 %FlPron %fscode]
12	5	s set A [lindex \$sectP 1]
12	4 s] alsaif {\$ANModalTymaR=="CP"} {	53 Set lyel [lindex \$SecEP 4] 54 set 17e] [lindey \$secFP 5]
12		set J [expr 0.10*[lindex \$secEP 6]]
12	ر foreach elem \$BeamCon { مورف ومروض المناصر من فرمانس ما	set secMS [lsearch -integer -sorted -inline -index 0 \$ModStiff \$fscode
12	<pre>set iscode [linuex stern o] set secEP [lsearch -integer -sorted -inline -index 0 \$ElProp \$fscode]</pre>	s7 if {[lindex \$secMS 1]>0.00001} {set Iy [expr [lindex \$secMS 1]/\$Ec]}
13	o set A [lindex \$secEP 1]	else {set Iy %Iyel}
13	set [lindex \$secEP 4]	<pre>if {[lindex \$secMS 2]>0.00001} {set Iz [expr [lindex \$secMS 2]/\$Ec]} </pre>
15	set I [[expr 0.10*[]index \$secEP 6]]	20 ALSO SEL 12 Ø1261]
13	4 set secMS [lsearch -integer -sorted -inline -index 0 \$ModStiff \$fscod	70 set GJ [expr \$Gc*\$J]]
] :£ [[]:-1	71 uniaxialMaterial Elastic [expr 10000*\$fscode+9999] \$GJ
13	\$\$ II {[IIIIGEX \$SECMS I]>U} {SET IY [EXPIT [IIIIGEX \$SECMS I]/\$EC [*] } \$ANHINGPN+1 0)/\$ANHINGPN]} also {sat iv \$1va]}	22 section Aggregator \$iscoae [expr וחטט"\$iscoae +9999] I —section [expr 10001*\$ferode+999]
13	6 if {[lindex \$secMS 2]>0} {set Iz [expr [lindex \$secMS 2]/\$Ec*(13 23
3	<pre>\$ANHINGEN+1.0)/\$ANHINGEN]} else {set Iz \$Izel}</pre>	14 set gtf 3
୩ 34	set gtf 3	
13	s element elasticbeam-column [index selem 0] [index selem 1] [index \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<pre>/6 II {\$ISCODE'%LU==1} { 77 element elasticBeamColumn \$fscode [lindex \$elem 1] [lindex \$elem</pre>
13		2] \$A \$EC \$GC \$JJ \$IY \$IZ \$gtf
14	o set MCO [lsearch -sorted -integer -inline -index 0 \$MemConOr [lindex المعادية الم المعادية المعادية المعا	Research Startede%10==0}
14	element elasticBeamColumn [expr 80000000+[lindex \$MCO 0]*10000+[8 set fixes [inities [isearch = initeger = source = initine = inites of \$PIRegList \$fscode] 1
	lindex \$MCO 0]] [lindex \$MCO 1] [lindex \$MCO 2] 100.0 10000000.0	so element beamWithHinges \$fscode [lindex \$elem 1] [lindex \$elem 2]
Υ F	0.0 0.0 1.0 0.0 100.0 3	\$ISCODE \$FIKEG \$ISCODE U \$EC \$A \$IZ \$IY \$GC \$J] \$GU \$1 } alcaif {\$fscrda@410==3} {
14		set PIReg [lindex [lsearch -integer -sorted -inline -index 0
14	4 5 1 alsaif / ¢ANNMadalT.maB"DDH" 1 /	\$PIRegList \$tscode] 1] alomont hosmWithHinges &fecode []index &olom 1] []index &olom 2]
14 14		second station of the second state of the seco
14	7 foreach elem \$BeamCon {	34 }
14	8 cat ferrida []inday &alam 0]	35 se sat MCO []saarsh _soutad _intasar _inlina _indav O \$MamConOr []indav
15 1	o set FS [lsearch -integer -sorted -inline -index 0 %FiberSec %fscode]	se set and predict setted finites intervery watericond printers \$6.000 [111100.
	<pre>set rebars [lsearch -integer -sorted -inline -index 0 \$FiberReb</pre>	المحمد المحم المحمد المحم >>> >>>
15	section Fiber [expr 10000*\$fscode+999] {	88
15	<pre>4 for {set i 1} {\$i<=[expr [llength \$FS]-8]} {incr i 8} {</pre>	39 }
15	patch quad 1 20 20 [lindex \$FS \$i] [lindex \$FS [expr \$i+1]] [index of common fields of the second	۲ ("מכם" ממורב-אוועאים איןון- (ממורב-אוועאים) איןון- (מ
	linaex \$F3 [expr \$1+4]] [linaex \$F3 [expr \$1+5]] [linaex \$F5 [expr \$i+5]] [lindex \$F5 [expr \$j+5]] [lindex \$F5 [31 } elself {\$ANMOGELLYPEB== DP } {
	expr \$i+6]] [lindex \$FS [expr \$i+7]]	foreach elem \$BeamCon {

<pre>4]] [expr -[lindex \$IW 5]] [expr -0.01*[lindex \$IW 4]] [expr -[lindex \$IW 6]-([lindex \$IW 6]-[lindex \$IW 5])] # uniaxialMaterial Concrete01 [expr 100*[lindex \$IW 0]] [expr -[</pre>	s foreach elem \$MemConOr { 5 append EForceLine "[lindex \$elem 0] " 5 }
<pre># uniaxiantaterial contracted [asp 100 [unites \$1W 0]] [expr -[[index \$1W 4]] [expr -[lindex \$1W 5]] [expr -[lindex \$1W 4]] # uniaxialMaterial ElectioNullifinger [lindex \$1W 0] offici [own]</pre>	s append EForceLine "localForce" eval \$EForceLine
<pre># undatainmaterial prastrumulturited [index \$!W 6] -0.001] [expr -[-[lindex \$!W 6]] [expr -[lindex \$!W 6]-0.001] [expr -[lindex \$!W 6]] [expr -[lindex \$!W 5]] 0.0 0.01 0.1 -stress 0 .0 0.0 [expr -[lindex \$!W 4]] [expr -[lindex \$!W 4]] 0.0 0.0 0.0</pre>	<pre>iif {[info exists ANInfWalls]==1&&\$ANInfWalls=="IW"} { set WForceLine {recorder Element -file AnalysisResults/Analysis\${ANNUM}/ WallForces.txt -time -ele } foreach IW \$InfillWalls {</pre>
<pre># uniaxialMaterial Concrete04 [lindex \$IW 0] [expr -[lindex \$IW 4]] [expr -[lindex \$IW 5]] [expr -[lindex \$IW 6]] [expr [lindex \$IW 4]/[lindex \$IW 5]] uniaxialMaterial ElasticPPGap [expr 100*[lindex \$IW 0]] [expr [</pre>	<pre>append WForceLine "[lindex \$IW 0] " append WForceLine "localForce" append WForceLine append \$WForceLine</pre>
<pre>lindex \$!W 4]/[lindex \$!W 5]] [expr -[lindex \$!W 4]] 0 damage uniaxialMaterial MinMax [lindex \$!W 0] [expr 100*[lindex \$!W 0]] -min [expr -[lindex \$!W 6]] element truss [lindex \$!W 0] [lindex \$!W 1] [lindex \$!W 2] [lindex</pre>	<pre>8 9 0 if {[llength \$TotalHinges]>0} { 1 file mkdir AnalysisResults/Analysis\${ANNUM}/HingeDeformations/ 1</pre>
} \$W 5] [IITGEX \$W U]	<pre>2 roreacn Zine % localHunges { 3 set Zihecode [lindex \$zlhe 0] 4 recorder Element -file AnalysisResults/Analysis\${ANNUM}/ 7 HingeDeformations/\$zlhecode.txt -time -ele \$zlhecode deformation; 8 }</pre>
/OpenSees/Analysis/MArecorders.tcl	
Recorders	B proc ModalAnalysis { 11me MaxModes AUNUM NodesWMass} {
e mkdir AnalysisResults/Analysis\${ANNUM}/ ile copy ModelData AnalysisResults/Analysis\${ANNUM}/	<pre>file mkdir AnalysisResults/Analysis\${ANNUM}/ModalAnalysis/ set PeriodsFile [open AnalysisResults/Analysis\${ANNUM}/ModalAnalysis/ Periods.txt a+]</pre>
<pre>{\$ANctrlNode>0} { recorder Node -0} { recorder Node -file AnalysisResults/Analysis\${ANNUM}/RefNodeDisp.txt -time -node \$ANctrlNode -dof 1 2 disp</pre>	<pre>set pi [expr 4.0*atan(1.0)] set Periods [list %Time] set eigenvalues "[eigen \$MaxModes]"</pre>
עואחדה/אירייין ארייין ארייין אריין א	<pre>foreach eig \$eigenvalues { if {\$eig>=0} {lappend Periods [expr (2.0*\$pi)/sqrt(\$eig)]}</pre>
Displine {recorder Node —rile Analysiskesuits/Analysis\${ANNUM}/ NodeDisplacements.txt —time —node } each ND \$Nodes { append DispLine "flindex \$ND 0] "	<pre>B } Duts \$PeriodsFile \$Periods Close \$PeriodsFile</pre>
end DispLine "-dof 1 2 3 4 5 6 disp" I \$DispLine	<pre>for {set Eig 1} {\$Eig<=\$MaxModes} {incr Eig} { set NWMline {set ModalRecorder [recorder Node -file AnalysisResults/ Analvsis\${ANNUM}/ModalAnalvsis/Time\${Time}Mode\${Fie} txt -node }</pre>
: ReacLine {recorder Node -file AnalysisResults/Analysis\${ANNUM}/ NodeReactions.txt -time -node }	foreach NWM \$NodesWMass { append NWMline "\$NWM "
each NF \$NodesFix { append ReacLine "[lindex \$NF 0] "	append NWMline {-dof 1 2 3 "eigen \$Eig"]}
wend ReacLine "−dof 1 2 reaction" ul \$ReacLine	e record b remove recorder \$ModalRecorder 1 }
EForceLine {recorder Element -file AnalysisResults/Analysis\${ANNUM}/	
ElementForces.txttimeele }	

/OpenSees/Analysis/MApush.tcl	50 algorithm ModifiedNewton — initial
1# Pushover analysis	51 integrator DisplacementControl \$ANctrlNode \$ANctrlDOF \$Dincr
2 - if fønnright, j] [53 Set UN [minuryze 1]
str {	54 if {\$ok != 0} { ss incrients
s set maxmass 0	56 Set Nk 2
b Set maxelgen U 7 foreach EM \$EigenMasses {	57 set DincrReduced [expr \$Dincr/\$Nk];
<pre>8 if {[lindex \$EM \$ANctrlDOF]>\$maxmass} {set maxmass [lindex \$EM</pre>	58 INTEGRATOR DISPLACEMENTCONTROL \$ANCTRIDUE \$DINCTREAUCED 59 for {set ik 1} {\$ik <=\$Nk} {incr ik 1} {
\$ANctrIDOF]; set maxeigen [lindex \$EM 0]}	60 test EnergyIncr 1.0e-6 20000
io set ANEigPush \$maxeigen	61 algorithm ModifiedNewton — initial 62 set ok fanalyze 11
11 }	
13 puts "Running Pushover"	64 II {\$0K != U} { 65 milts "Derreasing Tolerance"
14 set PML [FileInput ModelData/PushModalLoads/Mode\$ANEigPush.txt]	66 test EnergyIncr 1.0e-5 20000
15 pattern Flain 102 Linear { 16 foreach 1d \$PML {	67 algorithm ModifiedNewton –initial دون معرف راد استراحیت ا
17 load [lindex \$1d 0] [lindex \$1d 1] [lindex \$1d 2] [lindex \$1d 3] 0.0 (
.0.0.0	70 if {\$ok != 0} {
19 1	71 puts "Disp: \$controlDisp, ModifiedNewton failed, Trying NewtonWithTineSearch"
20 }	72 test EnergyIncr 1.0e-6 100000
21 Drave & A. Maravelien	73 algorithm NewtonLineSearch -tol 1.0e-6 -maxIter 50000
25 if {\$ANmaxdisp>=0} {set ANmaxdispsign 1} else {set ANmaxdispsign -1}	74 set ok [analyze 1]
24 set Dincr [expr 0.00005*\$ANmaxdispsign]	75 } } 15 {\$nk != 0} {
25 set Dincrpos [expr abs(\$Dincr)]	77 puts "Disp: \$controlDisp, NewtonWithLineSearch failed, Trying
26 27 constraints Transformation	Broyden" Broyden
28 numberer RCM	78 test EnergyIncr 1.0e-6 100000
29 system UmfPack	/9 algorithm Brus 80 cet ok [ana]vre 1]
30 test EnergyIncr 1.0e-6 5000	81 } Set on [anaryze 1]
31 algorithm ModifiedNewton —initial 22 integrator DisnlarementControl \$4NrtrlNode \$4NrtrlDOF \$Dinrr	82 } .
33 analysis Static	83
34 set Nsteps [expr int(\$Dmax/\$Dincr)]	84 }
35 26 eat jarrars O	86 puts "Pushover complete"
37 set Dstep 0.0	
38 set ok O ≈ownhile {\$Deten <= 1 ∩ &%; \$∩k == 0} {	/OpenSees/Analysis/MAtimehistory.tcl
	1# Time-History Analysis Execution
41 set controlDisp [lindex [nodeDisp \$ANctrlNode \$ANctrlDOF] 0] 42 set Dstep [expr \$controlDisp/\$Dmax]	2 2 cet *Damn 0 05
43 Economic international inte	4 set MpropSwitch 1.0
 45 Set dispdiff [expr \$ANmaxdispsign*(\$controlDisp-\$itemMTL)] 46 if {0<=\$dispdiff&&\$dispdiff<\$Dincrpos} {ModalAnalysis \$controlDisp 6 	<pre>5 set KcurrSwitch 0.0 6 set KcommSwitch 0.0 7 set KinitSwitchB 1.0</pre>
47 } &ANNUM \$NodesWMass}	<pre>8 set KinitSwitchC 1.0 9 if {\$ANModelTypeB=="CP"} {set KinitSwitchB 1.0*(\$ANHINGEN+1.0)/\$ANHINGEN}</pre>
48 10 teet Energylner 1 Ae—6 SAAA	<pre>10 if {\$ANModelTypeC=="CP"} {set KinitSwitchC 1.0*(\$ANHINGEN+1.0)/\$ANHINGEN}</pre>
40 LEOL FILE18/11/LT 1.00 - 0.000	11

12 Set nEigenI 1	65 set ndcode [expr \$flnum*100+\$ctr1NodeSuf]
isset nEigen] 3	66 recorder Node -file AnalysisResults/Analysis\${ANNUM}/RefNodeDispAcc/\${
14 set lambdaN [eigen [expr \$nEigen]]]	ndcode}Disp.txt -time -node \$ndcode -dof 1 2 disp
isset lambdal [lindex_\$lambdaN [expr_\$nEigenI-1]]	<pre>67 recorder Node _file AnalysisResults/Analysis\${ANNUM}},RefNodeDispAcc/\${</pre>
16 set lambdaJ [lindex \$lambdaN [expr \$nEigenJ-1]]	ndcode}AccX.txt —timeSeries 200 —time —node \$ndcode —dof 1 accel
17 set omegal [expr pow(\$lambdal,0.5)]	68 recorder Node -file AnalysisResults/Analysis\${ANNUM}/RefNodeDispAcc/\${
18 set omegaj [expr pow(\$lambdaJ,0.5)]	ndcode}AccY.txt
19 set alphaM [expr \$MpropSwitch*\$xDamp*(2*\$omegaI*\$omegaJ) /(\$omegaI+\$omegaJ)]	69 }
20 set betaKcurr [expr %KcurrSwitch*2.*\$xDamp/(%omegal+%omega])]	
21 Set Detakcomm [expr »KcommSwitch'2.*هٔلالعسp/(هٔomegal+هٔomegal)] متعمد ایمبیلانسندD [منسب «لانسندمهٔ D*۵ *«یامست //«مسمیاً شمسمیتاً)]	7.561 DIANDALYSIS VOUCD
25 Set betaKinito [expr %kinitowitcho 2. *xDamp/(%onitegar*onitega))] 25 Set betaKinito [expr %Kinitowitcho*2.*\$xDamp/(%omegal+%omegal)]	75 set Intarchitarysis [expr Intues #Ithercist1 end of #Arvinterer]
24	5/ 5
25 region 1 –nodeRange 1 999 –rayleigh \$alphaM 0.0 0.0 0.0	75 constraints Transformation
26 region 2 –eleRange 100 999 –rayleigh 0.0 \$betaKcurr \$betaKinitC \$betaKcomm	76 numberer RCM
27 region 3 —eleRange 1000 9999 —rayleigh 0.0 \$betaKcurr \$betaKinitB \$betaKcomm	77 system UmfPack
28 20	78 test EnergyIncr I.Ue-6 5000
29 SET GALTGLECION I	γJaugorichm Modureanewerton — Initial Distantation Modureanewerton — Initial
30 SEU DIVIIACI (EK.pr. &ANGMITHUU 9.01) 21 set GMITist [FileTnnut &ANGMIFile]	80 HITEBLATOT NEWHILAR 0.2 0.23
32 set TimeList1 []	et altalyois transient
ss set Arrellist []	sset jerrors ()
stereach GMTime SGMTList {	
ss if {[string is double _strict []index \$GM[ine 0]]]=]} {continue}	ssect controlTime [getTime]
36 lappend TimeList1 [lindex \$GMLine 0]	ss while { \$controlTime < \$TmaxAnalvsis & \$ck \$ck == 0} {
37 lappend AccelList1 [expr [lindex \$GMLine 1]*\$GM1fact]	87
38 }	88 set controlTime [getTime]
39	<pre>89 foreach itemMTL \$ANModalTimeList {</pre>
40 set GM2direction 2	90 set timediff [expr %controlTime-%itemMTL]
41 set GM2fact [expr %ANGM2mult*9.81]	<pre>91 if {0<=\$timediff&&\$timediff<\$DtAnalysis} {ModalAnalysis \$controlTime 6</pre>
42 set GMZList [FileInput \$ANGMZINE]	SANNUM \$NODESWMASS }
43 SET limeList2 []	92 }
HASEL ALCELLISIS []	
45 IOFEACH GMLLIRE & SGMZLISE { 45 IOFEACH GMLLIRE & SGMZLISE { 46 ICTALLE = 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	94 test EnergyIntr.Lue-6 5000
40 II [STIRING S UNDER SLIDEL [INNER & COMPLUE O]]!=1 { CONTINUE}	95 algolinin Modulteurewoon – ninital 66 aastronalissa ja ©n+Assolissas
4/ Laperu Linterist. [Interest Journal of] 	96 Set UK [allalyze 1 & DLAILALIYSIS]
40 ιαμμετιά π ουστείδια σάμι μιτιάσα φυνιείτε ε φυντείατι Δα }	ov if {%ork = ∩] {
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
51 timeSeries Path 200 -time \$TimeList1 -values \$AccelList1	100 set Nk 2
52 timeSeries Path 250 -time \$TimeList2 -values \$AccelList2	101 set DtReduced [expr \$DtAnalysis/\$Nk];
53	102 for {set ik 1} {\$ik <=\$Nk} { incr ik 1} {
54 pattern UniformExcitation 300 \$GM1direction —accel 200	105 test EnergyIncr 1.0e-6 20000
ss pattern UniformExcitation 350 \$GM2direction —accel 250	104 algorithm ModifiedNewton —initial
	105 set ok [analyze 1 \$DtReduced]
5%	105 if {\$ok != 0} {
29	108 puts "Decreasing Tolerance"
60 set ctrlNodeSuf [expr \$ANctrlNode%100]	109 test EnergyIncr 1.0e-5 20000
61	110 algorithm ModifiedNewton —initial
62 foreach fl \$Floors {	111 set ok [analyze 1 \$DtReduced]
63 set flnum [lindex \$f] 0]	
64 if {\$flnum==0} {continue}	113 if {\$ok != 0} {

114 puts "Time: \$controlTime, ModifiedNewton failed, Trying	7 set VbaseSumX 0.0
test EnergyIncr 1.0e-6 100000	<pre>8 set vuasesummt 0.0 9 for {set i 1} {\$i<=[expr [llength \$lst]-1]} {incr i 2} {</pre>
algorithm NewtonLineSearch – tol 1.0e–6 – maxIter 50000	10 set VbaseSumX [expr \$VbaseSumX+ lindex \$lst \$i]]
117 set ok [analyze 1 \$DtReduced]	11 set VbaseSumY [expr \$VbaseSumY +[lindex \$1st [expr \$i +1]]]
118 }	12 }
119 if {\$0k != 0} {	13 lappend Vbase [list [lindex \$lst 0] \$VbaseSumX \$VbaseSumY]
120 puts "Time: \$controlTime, NewtonWithLineSearch failed, Trying	14
Broyden "	15 }
121 test EnergyIncr 1.0e-6 100000	16 close \$file
122 algorithm BFGS	17
123 set ok [analyze 1 \$DtReduced]	18 set file [open AnalysisResults/Analysis\${ANNUM}/Vbase.txt w]
124 }	19 foreach elem \$Vbase {
125 }	20 puts \$file \$elem
126 }	21 }
127 }	22 close \$file
128	
129 puts "Timehistory Analysis Complete"	
	/ Upendees/Analysis/ v Dmax.tci
/OpenSees/Analysis/MAresults.tcl	1# Displacement and base shear maximum values
1# Analvsis Results	
	<pre>3 set RND [FileInput AnalysisResults/Analysis\${ANNUM}/RefNodeDisp.txt]</pre>
s source Analysis/Vbase.tcl	<pre>4 set Vbase [FileInput AnalysisKesults/Analysis\$[ANNUM]/Vbase.txt]</pre>
4 source Analysis/VDmax.tcl	s 6 set inlast [expr [llength \$RND]-1]
ω	
<pre>6 if {[file exists AnalysisResults/Analysis\${ANNUM}/ModalAnalysis/]>0} {</pre>	8 # minX maxX minY maxY
	9 set extrDT [list 0 0 0]
б. Б	Defention [list 0 0 0] 11 set extrDD [list 0 0 0]
10 if {\$ANTYPE=="PUSH"} {	
11 puts "Pushover Curve Bilinearization"	13 set extrVT [list 0 0 0 0]
12 source Analysis/BilinearPush.tcl	14 set extrVV [list 0 0 0 0]
13 }	15 set extrVD [list 0 0 0 0]
is buts "Hinge Analysis"	16
16 source Analysis/RARotHinges.tcl	17 IOT {SET U} {\$ <=\$ N AST} {INCT } {
17 source Analysis/RAShearHinges tol	
18 source Analysis/RAHinges.tc	19 If {[lindex \$extrUD 0]>[expr [lindex \$KND \$1 1]]} {
	20 ISET EXTYDU U [JINGEX &KNU &L] 20 Jost 2004-DT O [Jingex &RND &L]
20 puts "Disp and Force Results Analysis"	21 ISEL EXTEDIO LINGEX SKNU SU OJ
21 source Analysis/RADisplacements.tcl	22] ISEL EXILIDY O [IIIIUEX \$VUGSE \$1 1]
22 source Analysis/RADrifts.tcl	25 J 24 if {[lindex &extrDD 1]<[exnr []index &RND %i 1]]} {
23 source Analysis/RAForces.tcl	24 LI LILINGEA VEALLED IJ (EAPL LILINGEA VILLE VILLE VILLE VILLE) 25 Set extrDD 1 [linder \$PND \$1 1]
	26 Iset extrDT 1 [lindex \$RND \$i 0]
/OnenSees/Analvsis/Vhase.tcl	27 lset extrDV 1 [lindex \$Vbase \$i 1]
	28 }
1# Base shear calculation	<pre>29 if {[lindex \$extrDD 2]>[expr [lindex \$RND \$i 2]]} {</pre>
	30 Iset extrDD 2 [lindex \$RND \$i 2]
3 set file [open AnalysisKesults/Analysis\${ANNUM}/ NodeKeactionS.txt r] / cet Vhase []	31 ISET EXTIDT 2 [lindex \$KNU \$1 U] 20 Iset extrDV 7 [lindex \$Vhase \$1 7]
survius (feat ant foots \$file line]] > 0} {	ני וסכן באוושע 4 [ווועני 4/טמסר 4/ 4] איס איסמסר 1/ 4]
6 set lst [regexp -all -inline {\S+} \$line]	34 if {[lindex \$extrDD 3]<[expr [lindex \$RND \$i 2]]} {

<pre>set eig 1 while { \$eig >0} { while { \$eig >0} { set fileName AnalysisResults/Analysis\${ANNUM}/ModalAnalysis/Time\${TM} Mode\${eig}.txt if {[file exists \$fileName]==0} {break} set EigenLine [join [FileInput \$fileName]] set i 0 set i 0 set i 0 set i 0 set MassEigen [] foreach mass \$Mass { lappend MassEigen [list [lindex \$mass 0] [lindex \$mass 1] [lindex \$EigenLine \$i] [lindex \$fileNtine {expr \$i+1]] [lindex } }</pre>	<pre>\$EigenLine [expr \$i+2]]] incr i 3 } set maxPHI 0.0 foreach ME \$MassEigen { if {[expr abs([lindex \$ME 2]]]>[expr abs(\$maxPHI]]]} {set maxPHI [lindex \$ME 2]} if {[expr abs([lindex \$ME 3]]]>[expr abs(\$maxPHI]]]} {set maxPHI [lindex \$ME 3]} if {[expr abs([lindex \$ME 4]]]]>[expr abs(\$maxPHI]]]} {set maxPHI [lindex \$ME 3]} if {[expr abs([lindex \$ME 4]]]]>[expr abs(\$maxPHI]]]} {set maxPHI [lindex \$ME 3]} if {[expr abs([lindex \$ME 4]]]]>[expr abs(\$maxPHI]]]} {set maxPHI [lindex \$ME 4]} </pre>	<pre>} set MEhorm [] foreach ME \$MassEigen { lappend MEhorm [list [lindex \$ME 0] [lindex \$ME 1] [expr [lindex</pre>	<pre>FileOutput \$MEhorm AnalysisResults/Analysis\${ANNUM}/ ModalAnalysis/ Time\${TM}Mode\${eig}_arranged.txt set MassPhi [] set TMphiX 0.0 set TMphiX 0.0 set TMphiZ 0.0 set TMphiZ 0.0 set TMphi2Y 0.0 set TMphi2Y 0.0 set TMphi2Y 0.0 set TMphi2Y 0.0</pre>	<pre>foreach ME \$MEnorm { set NPX [expr [lindex \$ME 1]*[lindex \$ME 2]] set NP2X [expr [lindex \$ME 1]*[lindex \$ME 2]*[lindex \$ME 2]] set TMphiX [expr \$TMphiX+\$MPX] set TMphi2X [expr \$TMphi2X+\$MP2X]</pre>	set MPY [expr [lindex \$ME 1]*[lindex \$ME 3]] set MP2Y [expr [lindex \$ME 1]*[lindex \$ME 3]*[lindex \$ME 3]] set TMphiY [expr \$TMphiY+\$MPY]
<pre>[set extrDD 3 [lindex \$RND \$i 2] [set extrDT 3 [lindex \$RND \$i 0] [set extrDV 3 [lindex \$RND \$i 0] [set extrVV 0]>[expr [lindex \$Vbase \$i 2] if {[lindex \$extrVV 0]>[expr [lindex \$Vbase \$i 1]]} {</pre>	<pre> lset extrVT 1 [lindex \$RND \$i 0] lset extrVV 1 [lindex \$Vbase \$i 1] } [[[lindex \$vbase \$i 1]] [[[lindex \$extrVV 2]>[expr [lindex \$Vbase \$i 2]]]} {[[index \$RND \$i 2] lset extrVD 2 [lindex \$RND \$i 2] lset extrVV 2 [lindex \$RND \$i 0] lset extrVV 2 [lindex \$Vbase \$i 2]] if {[lindex \$extrVV 3]<[expr [lindex \$Vbase \$i 2]]} {[set extrVV 3]<[expr [lindex \$Vbase \$i 2]]} {[set extrVV 3]<[expr [lindex \$Vbase \$i 2]]} if {[lindex \$extrVV 3]<[expr [lindex \$Vbase \$i 2]]} {[set extrVV 3]<[expr [lindex \$Vbase \$i 2]]} {[set extrVV 3]<[expr [lindex \$RND \$i 0] lset extrVV 3]<[expr [lindex \$RND \$i 2] lset extrVV 3 [lindex \$RND \$i 2] </pre>	<pre> flout [open AnalysisResults/Analysis\${ANNUM}/VDextr.txt w] s \$flout [lindex \$extrDT 0] [lindex \$extrDV 0] [lindex \$extrDV 0] DXmin" s \$flout "[lindex \$extrDT 1] [lindex \$extrDV 1] DXmax" s \$flout "[lindex \$extrDT 2] [lindex \$extrDD 2] [lindex \$extrDV 2] DYmax" s \$flout "[lindex \$extrDT 3] [lindex \$extrDD 3] [lindex \$extrDV 3] DYmax" s \$flout "[lindex \$extrDT 3] [lindex \$extrDD 3] [lindex \$extrDV 3] DYmax" s \$flout "[lindex \$extrDT 3] [lindex \$extrDD 3] [lindex \$extrDV 3] DYmax" s \$flout "[lindex \$extrDT 3] [lindex \$extrDD 3] [lindex \$extrDV 3] DYmax" s \$flout "[lindex \$extrDT 3] [lindex \$extrDD 3] [lindex \$extrDV 3] DYmax" </pre>	<pre>s \$flout "[lindex \$extrVT 0] [lindex \$extrVD 0] [lindex \$extrVV 0] VXmin" 57 s \$flout "[lindex \$extrVT 1] [lindex \$extrVD 1] [lindex \$extrVV 1] VXmax" s \$flout "[lindex \$extrVT 2] [lindex \$extrVD 2] [lindex \$extrVV 2] VYmin" 58 s \$flout "[lindex \$extrVT 3] [lindex \$extrVD 3] [lindex \$extrVV 3] VYmax" 59 se \$flout "[lindex \$extrVT 3] [lindex \$extrVD 3] [lindex \$extrVV 3] VYmax" 54 fodal properties calculation after inelastic analyses 54 fodal properties calculation after inelastic analyses 54 fodal properties calculation after inelastic analyses 54 fout 10 for the follow of the follow for the follow follow for the follow follow follow for the follow follo</pre>	<pre>46 Mass [FileInput ModelData/NodeMasses.txt] Periods [FileInput AnalysisResults/Analysis\${ANNUM}/ModalAnalysis/ Periods.txt] mainDirPer []</pre>	state and the set of t

56 set TMphi2Y [expr \$TMphi2Y+\$MP2Y]	.90 0.25 0.95 0.20]
s? 58 set MPZ [expr [lindex \$ME 1]*[lindex \$ME 4]] 59 set MP2Z [expr [lindex \$ME 1]*[lindex \$ME 4]*[lindex \$ME 4]] 60 set TMphiZ [expr \$TMphiZ+\$MPZ]	<pre>4 5 set Vfile [FileInput AnalysisResults/Analysis\${ANNUM}/Vbase.txt] 6 set Dfile [FileInput AnalysisResults/Analysis\${ANNUM}/RefNodeDisp.txt] 7</pre>
61 set TMphi2Z [expr \$TMphi2Z+\$MP2Z] 62 l	<pre>8 if {[lindex \$Vfile 20 \$ANctrlDOF]>0} {set signV 1} else {set signV -1} 9 if {[lindex \$Dfile 20 \$ANctrlDOF]>0} {set signD 1} else {set signD -1}</pre>
64 set sumMPhi2 [expr \$TMphi2X+\$TMphi2Y+\$TMphi2Z] 65 set sumMPhi2 [expr \$TMphi2X+\$TMphi2Y+\$TMphi2Z] 66 set sumMPhi2 [expr \$TMphi2X+\$TMphi2Z]	11 set VD [] 12 set N [expr [llength \$Vfile]-1]
66 lappend EigFartFact [11st \$eig [expr \$LivpInLX/\$sumMFNLZ] [expr \$LivpInLX \$sumMPhi2] [expr \$TMphiZ/\$sumMPhi2]] 67 lappend EigMasses [list \$eig [expr \$TMphiX*\$TMphiX/\$sumMPhi2] [expr \$TMphiZ*\$TMphiZ/\$sumMPhi2]]	<pre>/13 14 set d1 [expr \$signD*[lindex \$Dfile 0 \$ANctrlDOF]] 14 set i 1} {\$i <=\$N} {incr i} { 15 for {set i 1} {\$i <=\$N} {incr i} { 16 set dtemp [expr \$signD*[lindex \$Dfile \$i \$ANctrlDOF]] 16 set dtemp [expr \$signD*[lindex \$Dfile \$i \$ANctrlDOF]] 17 set dtemp [expr \$signD*[lindex \$Dfile \$i \$ANctrlDOF]] 18 set dtemp [expr \$signD*[lindex \$Dfile \$i \$ANctrlDOF]] 19 set dtemp [expr \$signD*[lindex \$Dfile \$i \$ANctrlDOF]] 19 set dtemp [expr \$signD*[lindex \$Dfile \$i \$ANctrlDOF]] 10 set dtemp [expr \$signD*[lindex \$Dfile \$i \$ANctrlDOF]] 11 set dtemp [expr \$signD*[lindex \$Dfile \$i \$ANctrlDOF]] 12 set dtemp [expr \$signD*[lindex \$Dfile \$i \$ANctrlDOF]] 13 set dtemp [expr \$signD*[lindex \$Dfile \$i \$ANctrlDOF]] 14 set dtemp [expr \$signD*[lindex \$Dfile \$i \$ANctrlDOF]] 15 set dtemp [expr \$signD*[lindex \$b \$i \$ance \$anc</pre>
69 increig 70 }	<pre>1/ II {[expr aus(autentp-aut)]>0.0000001} {set utilit [expr aut-(autentp-aut)]; 18 } 18 }</pre>
 71 72 FileOutput \$EigPartFact AnalysisResults/Analysis\${ANNUM}/ModalAnalysis/ Time\${TM} EigenPartFactors.txt 75 FileOutput \$EigMasses AnalysisResults/Analysis\${ANNUM}/ModalAnalysis/Time {TM} EigenMasses.txt 	19 20 lappend VD [list 0 0] 21 set dtemp -999 22 for {set i 0} {\$i <=\$N} {incr i} { 23 set v [expr \$signV*[lindex \$Vfile \$i \$ANctr]DOF]]
74 72 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 7 7 5 5 5 5 5 1 1 7 7 5 5 5 5 1	<pre>24 set d [expr \$signD*[lindex \$Dfile \$i \$ANctrIDOF]_\$dinit] 25 if {[expr abs(\$d-\$dtemp)]<0.0000001} {continue} 26 set dtemp \$d 27 lappend VD [list \$v \$d] 28 }</pre>
<pre>79 79 80 foreach EM \$EigMasses { 81 if {[lindex \$EM 1]>\$maxMX} {set maxMX [lindex \$EM 1]; set maxMXmode [82 if {[lindex \$EM 0]} 82 if {[lindex \$EM 0]} 83 if {[lindex \$EM 0]} 84 maxMY {set maxMY [lindex \$EM 2]; set maxMYmode [85</pre>	29 30# Part of the curve that is taken into account 31 set maxV O 32 set DmaxV O 33 set indexMax O 34 set indexLine -1
<pre>83 } 84 lappend mainDirPer [list \$TM \$maxMXmode [lindex \$Per \$maxMXmode]</pre>	55 foreach line \$VD {
<pre>85 } 86 86 87 file [open AnalysisResults/Analysis\${ANNUM}/ ModalAnalysis/ 88 foreach MDP \$mainDirPer { 88 foreach MDP \$mainDirP</pre>	<pre>38 incr indexLine 39 if {[lindex \$line 0]>\$maxV} { 40 set maxV [lindex \$line 0] 41 set DmaxV [lindex \$line 1] 42 set indexMax \$indexLine 43 }</pre>
<pre>set TY [lindex \$MDP 3] 1 puts \$file "Time [lindex \$MDP 0]: DirX T\${TX} = [lindex \$MDP 2], DirY T\$ 1 TY = [lindex \$MDP 4] </pre>	44 } 45 45 et Vlim [expr \$maxV*0.85]
92 f 95 close \$file	47 48 set N [expr [llength \$VD]−1] 49 set indexLast [expr [llength \$VD]−1] 50 for {set i \$indexMax} {\$i<=\$N} {incr i} {
<pre>/OpenSees/Analysis/BilinearPush.tcl 1# Pushover curve bilinearization</pre>	<pre>51 if {[lindex \$VD \$i 0]<\$Vlim} { 52 set indexLast [expr \$i-1] 53 break</pre>
2 set alpha [list 0.6 0.55 0.65 0.5 0.7 0.45 0.75];# 0.40 0.80 0.35 0.85 0.30 0	54 }

55		103
56 Set	<pre>: VLast [lindex \$VD \$indexLast 0]</pre>	104 set Vbl [expr \$signV*int([lindex \$BLVD 0]*100.0)/100.0]
57 Se	t DLast [lindex \$VD \$indexLast 1]	105 set Dbl [expr \$signD*int([lindex \$BLVD 1]*100000.0)/100000.0]
7 28 17 28	tras of the initial curve	106 set file [open AnalysisKesults/Analysis\${ANNUM}//FusnVD.txt w] 107 foreart elem \$VD {
60 Set	area O	108 puts \$file [list [expr [lindex \$elem 0]] [expr [lindex \$elem 1]]]
61 fo 1	<pre>* {set i 1} {\$i<=\$indexLast} {incr i} { set area [exmr \$area+([]index \$VD [exmr \$i=1] 0]+[]index \$VD \$i 0])/2 0*/]</pre>	109 }
40	lindex \$VD \$i 1]-[lindex \$VD [expr \$i-1] 1])]	
63 } 64		112 set BLlist [] 113 lappend BLlist [list 0.0 0.0]
65 # 66 S e 1	Initial and bilinear curve intersection • found O	114 lappend BLlist [list \$Vb] \$Db]] 115 lannend BLlist [list \$Vb] \$DLast]
67 fo1	each A \$alpha {	116 set file [open AnalysisResults/Analysis\${ANNUM}/PushBL.txt w]
68 69	<pre>for {set i 1} {\$i<=\$indexLast} {incr i} {</pre>	117 foreach elem \$BLList { 118
70	set V1 [lindex VD [expr $i-1$] 0]	
71 72	set V2 [lindex \$VD \$i 0]	120 close \$file
73		122 set ESDOFlist []
74 75	set μι Ιιμαεχ φνυ [εχρι φι-τ] ι]	123 lappeng ESUUFIIST [1181 Elgenmode & ANEIGFUSN] 124 lappend ESDOFIIST [1151 "Node" & ANCtrINode]
76	set D2 [lindex \$VD \$i 1]	125 lappend ESDOFlist [list "DOF" \$ANctrIDOF]
77 78	<pre>if {[expr \$V2-\$V1]==0} {continue}</pre>	126 # set EigPartFact [FileInput ModelData/EigenPartFactors.txt]
79 80	<pre>set aa [expr (\$D2-\$D1)/(\$V2-\$V1)]</pre>	128# set ANgamma [lindex \$EigPartFact [expr \$ANEigPush-1] \$ANctrIDOF] 129 set PhiList [FileInput ModelData/ELMSModal/Mode\${ANEigPush}_arranged.txt]
81 82	set bb [expr ((\$D1-\$aa*\$V1)/\$A-2*\$DLast)]	130 set Prikernoge (isearch -sorteg - integer -inline - ingex U \$Prillist \$Ainctrinoge]
83 84	set gg [expr 2*\$area] set DD [expr \$bb*\$bb-4.0*\$aa*\$gg]	151 set ANphiref [lindex \$PhiRefNode [expr \$ANctrlDOF + 1]] 152 set ANmstar 0.0
85		133 set Smphi2 0.0
86 87	if {\$DD<=0} {continue}	134 foreach PL %PhiList { 135 set ANmstar [expr %ANmstar+[lindex %PL 1]*[lindex %PL [expr %ANctr]DOF
88 68 68 0	<pre>set Vy1 [expr (-\$bb-sqrt(\$DD))/(2*\$aa)] set Vy2 [expr (-\$bb+sqrt(\$DD))/(2*\$aa)]</pre>	+1]]] +1]]] set Smphi2 [expr \$Smphi2+[lindex \$PL 1]*[lindex \$PL [expr \$ANctr]DOF+1]]*[lindex \$PI [evvr \$ANcrr]DOF+1111
91 91	<pre>set Dy1 [expr 2.0*(\$DLast-\$area/\$Vy1)]</pre>	137 }
92	set Dy2 [expr 2.0*(\$DLast-\$area/\$Vy2)]	138 set ANgamma [expr \$ANmstar/\$Smphi2]
95 94	set vido [expr %A &vyi] set D106 [expr %A*\$Dy1]	140 lappend ESDOFlist [list "gamma" \$ANgamma]
95	set V206 [expr \$A*\$Vy2]	141 lappend ESDOFlist [list "phiref" \$ANphiref]
97 97	set D200 [expl #A #D72] if {\$V1<=\$V106&&\$V106<=\$V2&&\$D1<=\$D106&&\$D106<=\$D2&&\$V1<\$maxV} {set	142 Lappenu EJUOLIISI LISU III (AANNIISIAL) 143
	BLVD [list [expr \$signV*\$Vy1] [expr \$signD*\$Dy1]]; set found 1;	14 set FyESDOF [expr \$Vb]/\$ANgamma]
98	if {\$V1<=\$V206&&\$V206<=\$V2&&\$D1<=\$D206&&\$D206<=\$D2&&\$Vy2<\$maxV} {set	146 set Say [expr %FyESDOF/%ANmstar]
	BLVD [list [expr %signV*%Vy2] [expr %signD*%Dy2]]; set found 1; break}	147 lappend ESDOFlist [list "Fy" \$FYESDOF] 148 lappend ESDOFlist [list "dy" \$dyESDOF]
99	} € [@found1] [[مدم_]]	149 lappend ESDOFItst [list "Say" \$Say]
101	II {⊅ιουπα==⊥} {Dreak}	150 151 set pi [expr 4.0*atan(1.0)]
102 if	{\$found==0} { puts "Bilinearization failed for Pushover Curve"}	152 set TESDOF [expr 2*\$pi*sqrt(\$ANmstar*\$dyESDOF/\$FyESDOF)]

153 lappend ESDOFlist [list "T*" \$TESDOF]	set fpWOS [lindex \$MMthlineWOS 4]
154	39 Set ymwus [lindex \$MMrthinewUS b]
155 166 eaf fila (anam AnalyseisResults/Analyseis\$/ANNIM1/FSDDF txt wi	40 Set Imwos Lindex \$MIMTRINEWOS 8]
157 foreach elem \$ESD0Flist {	42 if {[expr abs(\$vp-\$vpWOS)]>0.000001} {
158 puts \$file \$elem	43 set sp 1
159 }	44 } elseif {[expr abs(\$fp-\$fpWOS)]>0.000001} {
160 close \$file	45 set sp 2
	46 } else { 47 cet cn ()
/OpenSees/Analysis/RARotHinges.tcl	48 }
1 # Rotational hindes after analysis	49 if {[expr abs(%ym-%ymWOS)]>0.000001} {
	50 Set Sm I 51 } alseif {[exmr_ahs(%fm_%fmWOS)]>0 000001} {
3 wipe	52 Set Sm 2
4	53 } else {
<pre>5 set RHinges [FileInput AnalysisResults/Analysis\${ANNUM}/HingeAnalysis/ DotHingect.ttl</pre>	54 set sm 0
6 set ModMth [FileInput AnalysisResults/Analysis\${ANNUM}/HingeAnalysis/	55 }
ModMth.txt] 7 set ModMthWOS [FileInnut AnalvsisResults/Analvsis\${ANNIM1/HingeAnalvsis/	57 set rmax 0.0
ModMthWOS.txt]	58 Set Intit 0.0
	60 set cond 0
9 set Lunanges [] 10 set Hund []	61 set cch []
	63 if {\$let="v"} {set rotindex 5} else {set rotindex 6}
12 foreach RH \$RHinges {	64 set Nmax [expr [llength \$RFile]-1]
15 Set itoure [lindex and 0] 14 set hdir [lindex \$RH 1]	65
15 16 set elemende [exmr \$hende/100]	67 set rot [lindex \$RFile \$i \$rotindex]
17 set loccode [expr %hcode%100]	68 set conaprev \$cona 69
<pre>18 if {\$loccode>=10} {set loc "end"} else {set loc "beg"} 19</pre>	70 if {[expr abs (\$cond)]<=1&&\$tot>=\$yp} { ••••••••••••••••••••••••••••••••••••
20 set Mthetay [expr (\$hcode/10)*10+0]	71 II {\$cond =0} { 72 set cond 1
<pre>21 set Mthetaz [expr (\$hcode/10)*10+1] 22 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25</pre>	73 set cch [list \$i \$elemcode \$loc \$let "yp"]
<pre>25 set RFile [FileInput AnalysisResults/Analysis\${ANNUM}/HingeDeformations/ \$hcode.txt]</pre>	74 } 75 if {\$sp==1} { 76 set cond 3
24 foreach let [split \$hdir ""] {	<pre>77 set cch [list \$i \$elemcode \$loc \$slet "s"] 78 }</pre>
26 set slet [string trim yz \$let]	79 } 80 if {\$cond==1&&\$tot>=\$fp} {
28	81 set cond 2
29 if {\$let=="y"} {set MT \$Mthetay} else {set MT \$Mthetaz} 30 set MMthline [lsearch -inline -integer -sorted -index 0 \$ModMth \$MT]	82 set cch [list \$i \$elemcode \$loc \$let "fp"] مت افر همیکرار آ
31 set yp [lindex \$MMthline 2]	84 set cond 4
32 set fp [lindex \$MMthline 4]	85 set cch [list \$i \$elemcode \$loc \$slet "bsp"]
<pre>33 set ym [lindex \$MMthline 6] 34 set fm [lindex \$MMthline 8]</pre>	86 }
	87 J
36 set MMthlineWOS [lsearch -inline -integer -sorted -index 0 \$ModMthWOS	if {[expr abs(\$cond)]<=1&&\$rot<=\$ym} {
37 set ypWOS [lindex \$MMthlineWOS 2]	90 if {\$cond==0} {

set cond 1 set rob [list %i &elemrode &lor &let "um"]	144 FileOutput \$CChanges AnalysisResults/Analysis\${ANNUM}/HingeAnalysis/ DotfChangestyt
361 CCH 1131 #1 #CTENHCORE #100 #TEL }HIL]	145 FileOutput \$HCond AnalysisResults/Analysis\${ANNUM}}/HingeAnalysis/RotHCond.txt
if {\$sm==1} { cot cond Z	
set cond 3 set cch [list \$i \$elemcode \$loc \$slet "s"]	/OpenSees/Analysis/RAShearHinges.tc]
	1# Shear hinge condition after analysis
f { \$cond==1&&\$tot<=\$fm} {	2
set cond 2	3 wipe
<pre>set cch [list \$i \$elemcode \$loc \$let "fm"] if {\$sm>0} {</pre>	4 5 set SHinges [FileInput AnalysisResults/Analysis\${AWNUM}/HingeAnalysis/
set cond 4	ShearHinges.txt]
set cch [list \$i \$elemcode \$loc \$slet "bsm"]	و ۱
	vset Ccnanges [] set HCond []
if / @condl-@condnrov] /	9 10 foreach SH \$SHinges {
lappend CChanges \$cch	11 set hcode [lindex \$SH 0] 12 set hdir [lindex \$SH 1]
if / grat / grat / and / and / grat /	13 14 set elemcode [expr \$hcode/100]
if {\$rot<\$rmin} {set rmin \$rot}	<pre>15 set loccode [expr \$hcode%100]</pre>
	10 11 {\$100000002=10} {\$501 100 610 610 6156 {\$501 100 008 }
	ואריסאם ארוופן דוופוחים עד אומון אוואסט אין אוואטאאן אוואסט אין אוואסט אין אוואסט אין אוואסט אין אוואסט אין או אריסאם אין
if {\$cond==0} { set onit "FI"	#11COUE.LAL]
set ratmax 0	<pre>20 foreach let [split \$hdir ""] {</pre>
<pre>} elseif {\$cond==2} {</pre>	21
set epit "CP"	22 set smax 0.0
Set ratmax I	24 set cond O
set epit "SH"	25 set cch []
set ratmax 1	26
<pre>} elseif {\$cond==4} {</pre>	<pre>27 if {\$let="y"} {set shindex 2} else {set shindex 3} 20</pre>
set epit "BS"	28 Set NMax [expr [liengin \$5File]—1] 29 for {set i 0} {\$i<=\$Nmax} {incr i} {
Set ratmax 1 } else {	
<pre>set ratp [expr (\$rmax-\$ypWOS) /(\$fpWOS-\$ypWOS)]</pre>	31 set sh [lindex \$SFile \$i \$shindex]
<pre>set ratm [expr (\$rmin-\$ymWOS) /(\$fmWOS-\$ymWOS)]</pre>	32 set abssh [expr abs(\$sh)]
set ratmax [expr max(\$ratp,\$ratm)]	35 Set conaprev acona
11 (\$ratmax<=0.5) { cot onit "IO"	35 if {\$cond==0&&\$abssh>\$ANSHLIM} {
) pice {	36 set cond 3
set epit "LS"	37 set cch [list \$i \$elemcode \$loc \$let "s"] 20 jannand Crhanges \$cch
	39 break
İappend HCond [list \$elemcode \$loc \$let \$epit \$rmax \$rmin \$ratmax]	40 } 41
	42 if {\$abssh>\$smax} {set smax \$abssh}
	43
	44
	45

set IOB set LSB set CPB set SB set SB set SB set SC set SC	<pre>1 set epit [lindex %H 3] 2 if {\$epit=="EL"} {continue} 3 set code [lindex %H 0] 4 if \$code>=1000} {set mem "B"; set code [expr \$code/10]} else {set mem "C"</pre>	<pre>set fl [expr \$code/100] set mcode [expr \$code%100] set dir [lindex \$H 2] if {\$epit=="SH" \$epit=="BS"} {set dir [string trim "yz" \$dir]} lappend \${epit}\${mem} [list \$fl \$mcode [lindex \$H 1] \$dir]</pre>	<pre>2 foreach H \$Shear { 2 set epit [lindex \$H 3] 4 if {\$epit=="EL"} {continue} 5 set code [lindex \$H 0] 6 if {\$code>=1000} {set mem "B"; set code [expr \$code/10]} else {set mem "C"</pre>	<pre>7 set f1 [expr \$code/100] 8 set mcode [expr \$code%100] 9 set dir [lindex \$H 2] 9 lappend \${epit}\${mem} [list \$f1 \$mcode [lindex \$H 1] \$dir]</pre>	<pre>5 set summary [] 6 set Len [llength \$10B] 7 set Len [llength \$10B] 7 set Len [llength \$12B] 7 set Len [llength \$12B] 8 set LSB [linsert \$12B 0 [list LS_Beams \$Len]] 9 set Len [llength \$CPB] 0 set CPB [linsert \$CPB 0 [list CP_Beams \$Len]] 1 set Len [llength \$SHB]</pre>	<pre>2 set SHB [linsert \$SHB 0 [list SH_Beams \$Len]] 3 set Len [llength \$BSB] 4 set BSB [linsert \$BSB 0 [list BS_Beams \$Len]] 5 set Len [llength \$10C] 6 set IOC [linsert \$10C 0 [list IO_Columns \$Len]] 7 set Len [llength \$LSC] 8 set LSC [linsert \$LSC 0 [list LS_Columns \$Len]] 8 set LSC [linsert \$LSC 0 [list LS_Columns \$Len]] 8 set LSC [linsert \$LSC 0 [list LS_Columns \$Len]] 8 set LSC [linsert \$LSC 0 [list LS_Columns \$Len]] 8 set LSC [linsert \$LSC 0 [list LS_Columns \$Len]] 8 set LSC [linsert \$LSC 0 [list LS_Columns \$Len]] 8 set LSC [linsert \$LSC 0 [list LS_Columns \$Len]]</pre>
<pre> 46 if {\$cond==0} { 47 set epit "EL" 48 set ratmax [expr \$smax/\$ANSHLIM] 49 b elseif {\$cond==3} { 50 set ratmax 1 51 set ratmax 1 52 } 53 set ratmax 1 54 set ratmax 1 55 } 56 } 56 } 57 57 56 } 57 57 57 57 57 57 57 57 57 57</pre>	58 FileOutput \$CChanges AnalysisResults/Analysis\$ {ANNUM} / HingeAnalysis/ 4. ShearCChanges.txt 59 FileOutput \$HCond AnalysisResults/Analysis\$ {ANNUM} / HingeAnalysis/ 4. ShearHCond.txt	<pre>1# Hinge conditions summary 2 5 set Rot [FileInput AnalysisResults/Analysis\${ANNUM}/HingeAnalysis/ 5 RotChanges.txt]</pre>	<pre>4 set Shear [FileInput AnalysisResults/Analysis\$ {ANNUM} / HingeAnalysis/ 5 ShearCChanges.txt] 5 6 set Total [join [list \$Rot \$Shear]] 5 7 set Total [lsort -integer -index 0 \$Total] 5 8</pre>	<pre>9 set Vbase [FileInput AnalysisResults/Analysis\${ANNUM}/Vbase.txt] 5 10 set RefNodeDisp [FileInput AnalysisResults/Analysis\${ANNUM}/RefNodeDisp.txt] 5 11 12 set TotalExt [] 6 13</pre>	<pre>14 foreach line \$Total { 15 set i [lindex \$line 0] 16 set Time [lindex \$Vbase \$i 0] 17 set Vx [lindex \$Vbase \$i 1] 18 set Vy [lindex \$Vbase \$i 2] 19 set Dx [lindex \$RefNodeDisp \$i 1] 20 set Dy [lindex \$RefNodeDisp \$i 2] 20 set Dy [lindex \$RefNodeDisp \$i 2] 21 lappend TotalExt [list [lindex \$line 4] \$Time \$Vx \$Vy \$Dx \$Dy] 22] 23] 24] 25] 25] 26 [lindex \$line 3] [lindex \$line 4] \$Time \$Vx \$Vy \$Dx \$Dy] 26 [lindex \$line 3] [lindex \$line 4] \$Time \$Vx \$Vy \$Dx \$Dy] 27] 28] 29] 20] 20] 20] 20] 20] 20] 20] 20</pre>	<pre>25 24 FileOutput \$TotalExt AnalysisResults/Analysis\$ {ANNUM}/HingeAnalysis/ 7 24 FileOutput \$TotalCChanges.txt 7 25 26 set Rot [FileInput AnalysisResults/Analysis\$ {ANNUM}/HingeAnalysis/RotHCond.txt 7 26 set Shear [FileInput AnalysisResults/Analysis\$ {ANNUM}/HingeAnalysis/ 7 27 28 Shear [FileInput AnalysisResults/Analysis\$ {ANNUM}/HingeAnalysis/ 7 29 20 set Shear [FileInput AnalysisResults/Analysis\$ {ANNUM}/HingeAnalysis/ 7 29 20 set Shear [FileInput AnalysisResults/Analysis\$ {ANNUM}/HingeAnalysis/ 7 20 set Shear [FileInput AnalysisResults/Analysis\$ {ANNUM}/HingeAnalysis/ 7 29 20 set Shear [FileInput AnalysisResults/Analysis\$ {ANNUM}/HingeAnalysis/ 7 20 set Shear [FileInput AnalysisResults/Analysis\$ {ANNUM}/HingeAnalysis/ 7 20 set Shear [FileInput AnalysisResults/Analysis\$ {ANNUM}/HingeAnalysis/ 7 20 set Shear [FileInput AnalysisResults/Analysis\$ {ANNUM}/HingeAnalysis/ 7 20 set Shear [FileInput AnalysisResults/Analysis\$ {ANNUM}/HingeAnalysis/ 7 20 set Shear [FileInput AnalysisResults/Analysis\$ {ANNUM}/HingeAnalysis/ 7 20 set Shear [FileInput AnalysisResults/Analysis\$ {ANNUM}/HingeAnalysis/ 7 20 set Shear [FileInput AnalysisResults/Analysis\$ {ANNUM}/HingeAnalysis/ 7 20 set Shear [FileInput AnalysisResults/Analysis\$ {ANNUM}/HingeAnalysis/ 7 20 set Shear [FileInput AnalysisResults/Analysis\$ {Analysis} {Analy</pre>

80 set CPC [linsert \$CPC 0 [list CP_Columns \$Len]]	132 set totMembers \$BeamMem
81 set Len [11ength \$5HC] 82 set SHC [linsert \$SHC 0 [list SH_Columns \$Len]]	135 } else { 134 set totHinges \$ColHinges
83 set Len [llength \$BSC] 24 set BSC [linsert \$BSC 0 [list BS Co]umns \$I en]]	135 set totMembers \$ColMem
	137 I I I I I I I I I I I I I I I I I I I
86 set summary [list \$10B \$LSB \$CPB \$BSB \$SHB \$10C \$LSC \$CPC \$BSC \$SHC] 87	138 set perHinges [] 139 set perMembers []
88 set floors [FileInput Input/Floors.txt] 89 set maxfi [expr [llength \$floors]-1]	140 for {set i 0} {\$i<\$maxf1} {incr i} { 141 set bH [expr 1.0*[lindex \$sumHinges \$i]/[lindex \$totHinges \$i]]
90 01 cot Sectodes [FileInnut ModelData / Section Codes tot]	142 lappend perHinges [format "%0.3f" \$pH] 142 cet mM [event 1 0*flindex %enumMembers %i]/[lindex %totMembers %i]]
92 set ColMem [split [string repeat 0 \$maxfl] ""]	14 lappend perMembers [format "%0.3f" \$pM]
set BeamMen [split [string repeat 0 \$maxfl] ""] مرومه دوالبنسوين [معانه (معناه منسور 0 \$maxfl] ""]	145 }
94 Set Countinges [Split [String repeat 0 \$miaxii]] 95 set BeamHinges [split [string repeat 0 \$maxfi] "]	140 set ext [list [lindex \$cat 0] \$sumMembers \$sumHinges \$perMembers
96 foreach sc \$SecCodes { as if {&sr<1000} {	<pre>\$perHinges] \$pertinges] \$</pre>
98 set f [expr \$sc/100]	
<pre>99 lset ColMem [expr \$f-1] [expr [lindex \$ColMem [expr \$f-1]]+1]</pre>	150 }
100 Iset Colhinges [expr &r-1] [expr lindex & Colhinges [expr &r-1]]+4] 101 } else {	151 152 set file fonen AnalvsisResults/Analvsis\${ANNUM}/HingeAnalvsis/Summarv.txt w
102 if {[expr \$sc%10]!=0} {continue}	155 foreach elem \$summary {
103 set f [expr \$sc/1000]	154 puts \$file \$elem
104 Iset BeamWem [expr %f-1] [expr [lindex %BeamMem [expr %f-1]]+1] 105 Iset BeamHinges [expr %f-1] [expr [lindex %BeamHinges [expr %f-1]]+3	155 } 156 close \$file
107] 108	/OpenSees/Analvsis/RADisplacements.tcl
109 for {set j 9} {\$j>=0} {incr j -1} {	1# Displacement results analysis
111 if {\$j==9 \$j==4} {set Existingcodes []}	
112 113 set cat [lindex \$summary \$i]	<pre>3 file delete -force AnalysisKesults/Analysis\${ANNUM}/ NodeDisplacements/ 4 file mkdir AnalysisResults/Analysis\${ANNUM}/ NodeDisplacements/</pre>
115 set sumHinges [split [string repeat 0 \$maxfl] ""]	6 set Nodes [FileInput ModelData/TotalNodes.txt] 7
117 for {set i 1} {\$i<=[lindex \$cat 0 1]} {incr i} {	8 set i 0
118 set f [lindex \$cat \$i 0]	9 set NDCodes []
119 set men [lindex \$cat \$i 1] 200 set code [sever \$f*100.4%mem]	10 FOREACT NU ANOUES { 11 Set code [lindex \$ND 0]
121 lset sumHinges [expr %f-1] [expr [lindex \$sumHinges [expr %f-1]]+1]	12 set fileelem\$i [open AnalysisResults/Analysis\${ANNUM}/NodeDisplacements/
122	scode.txt a+] scode.txt a+j
123 set ex Isearcn \$Existingcodes \$code] 124 if {\$ex<0} {	14 }
125 lappend Existing codes \$code 126 1set sum Members expr \$f=-1]	15 16 Set Nread O
140	17
127 }	<pre>18 set filend [open AnalysisResults/Analysis\$[ANNUM]/NodeDisplacements.txt r]</pre>
128 }	20 while {[set cnt [gets \$filend line]] > 0} {
120 if {\$j<=4} {	21 set tm [regexp -all -inline {\S+} \$line]
131 set totHinges \$BeamHinges	22 Set time times sure of 23 Set Ndisp [expr [llength \$tm]-1]

37 file delete -force AnalysisResults/Analysis ${\rm MNUM}/{\rm ElementForces.txt}$	<pre>49 source Analysis/ModelAnalysis.tcl </pre>
/OpenSees/Analysis/MAasl.tcl	<pre>50 f 51 if {[file exists AnalysisResults/Analysis\$ANNUM/ASL.txt]==0} {source Analysis/ASLCalculation.tcl}</pre>
1# Axial Forces and Shear Lengths Extraction	52 source Analysis/AbLbelection.tcl 53
2 puts "Axial Forces and Shear Lengths Extraction"	54 set ANNUM [expr \$ANNUM+1] 55 set PUSHYMmum \$ANNUM
<pre>4 5 if {\$ANTYPE=="TH"} {</pre>	56 set ANEigPush 0 57 set ANctrIDOF 2
6 7 set prevpush 0 8 if {[string is integer -strict \$ANProdASL]==1} {	<pre>set ANASLdisp \$DYmin s9 set ANmaxdisp [expr \$DYmin-0.001] 60 if {&nrevnich==1} {</pre>
<pre>9 set prevpush 1 90 cot p</pre>	61 set ANUM \$prevpish3
<pre>10 Set prevpushi [exp] #AINTOURDELIAOO] 11 Set prevpushi [%ANNProdASL#1000]100] 12 cot provincht [count (%ANNProdASL#01000)1100]</pre>	62 set PUSHYMnum SANNUM 63 } else {
13 set prevpush4 [expr \$ANProdASL%10]	64 source Analysis/ModelAnalysis.tcl 65 }
14 } 15	<pre>66 if {[file exists AnalysisResults/Analysis\$ANNUM/ASL.txt]==0} {source</pre>
16 set ANTYPE "PUSH"	67 source Analysis/ASLSelection.tcl
<pre>10 Set AnymoualLineList [] 18 Set DmaxList [FileInput AnalysisResults/Analysis\$ANNUM/VDextr.txt]</pre>	68 69 set annum [exdr &annum+1]
19 set DXmin [lindex \$DmaxList 0 1]	70 set PUSHYPnum \$ANNUM
20 Set DAMAX [INDEX \$DMAXLIST 1 1] 21 Set DYMin [lindex \$DmaxList 2 1]	71 set ANEigPush 0 72 set ANctr1DOF 2
<pre>22 set DYmax [lindex \$DmaxList 3 1]</pre>	73 set ANASLdisp \$DYmax
25 set ANNUM [expr \$ANNUM+1]	74 set ANmaxdisp [expr \$DYmax+0.001] 75 if {\$nrevnush==1} {
25 set PUSHXMinum \$ANNUM	76 set ANNUM \$prevpush4
26 set ANEigPush 0 27 set ANrtrIDDF 1	77 set PUSHYPnum \$ANNUM
28 set ANASLdisp \$DXmin	78 } else { 79 source Analvsis/ModelAnalvsis.tcl
29 set ANmaxdisp [expr \$DXmin-0.001]	80 }
30 II { \$PIEVPUSH==1 } { 31 set ANNUM \$PIEVPUSh1	<pre>81 if {[file exists AnalysisResults/Analysis\$ANNUM/ASL.txt]==0} {source</pre>
32 set PUSHXMnum \$ANNUM 22 1 else 1	source Analysis/ASLSelection.tcl
34 source Analysis/ModelAnalysis.tcl	83 84 source Analysis/ASLCombination.tcl
<pre>35</pre>	85 86 } else {
Analysis/Abdcatcutation.tcl 37 source Analysis/ASLSelection.tcl	87 88 set ANASLdisp O
38	89 source Analysis/ASLCalculation.tcl
39 set ANNUM [expr %ANNUM+1] 40 set PUSHXPnum %ANNUM	90 source Analysis/ASLSelection.tcl
41 set ANEigPush 0	22 source Analysis/ASLCombinationPush.tcl
42 Set ANCtrIDOF 1 22 cot ANACIdicn \$NYmay	93 }
45 Set ANMaxdisp [expr \$DXmax+0.001]	
45 if {\$prevpush==1} { 6 cot ANNUIM \$reconnect2	/OpenSees/Analysis/ASLCalculation.tcl
46 Set Auruvur oprevpusits 47 Set PUSHXPnum \$ANNUM	1# Axial and shear lengths calculation
48 } else {	2

33 33 33 33 44 44 44 44 45 44 45 47 48

<pre>10 10 10 10 10 10 10 10 10 10 10 10 10 1</pre>	<pre>close \$filein close \$fileout } elseif {[expr \$sec%10]==2} {</pre>
<pre>\$filelist { 53 8filelist { 54 8din [expr [string last / \$fl]+1] 1d [expr [string last . \$fl]-1] 55</pre>	<pre>set filein [open \$f] r] set fileout [open AnalysisResults/Analysis\${ANNUM}/AxialShearLengths/</pre>
c [string range \$f1 \$sbegin \$send] 56 57 ec<1000} {	<pre>while {[set cnt [gets \$filein line]] > 0} { set lst [regexp -all -inline {\S+} \$line] set time [lindex \$lst 0]</pre>
<pre>tfilein [open \$f1 r] tfileout [open AnalysisResults/Analysis\${ANNUM}/AxialShearLengths/ \$sec.txt a+] tfileout [cont front official line] > 0 f</pre>	<pre>set N2 [lindex \$lst 7] if {[lindex \$lst 9]!=0} {set Lsy2 [expr [lindex \$lst 11]/abs([</pre>
<pre>use list [regersall=unite_j] _ of 1 set list [regersall=unite_j] _ of 3 set list [regersall= -inline {\S+} \$line] set N1 [expr -[lindex \$lst 3]!=0} {set Lsy1 [expr [lindex \$lst 5]/abs([66 lindex \$lst 3])] else {set Lsy1 0} if {[lindex \$lst 2]!=0} {set Ls21 [expr [lindex \$lst 6]/abs([68 lindex \$lst 2]]] else {set Ls21 0} set N2 [lindex \$lst 7] </pre>	<pre>puts antreout filst attile and above above above above fileout }</pre>
<pre>IT {[lindex %15T 9]!=U] {Set Lsy2 [expr [lindex %15t 9]] else {set Lsy2 0} lindex \$1st 9])]} else {set Lsy2 0} if {[lindex \$1st 8]!=0} {set Lsz2 [expr [lindex \$1st 12]/abs([</pre>	<pre>/OpenSees/Analysis/ASLSelection.tcl # Axial forces and shear lengths calculation</pre>
<pre>2 236 36 36 36 36 36 36 36 36 36 36 36 36 3</pre>	<pre>set RefNodeDisp [FileInput AnalysisResults/Analysis\${ANNUM}/RefNodeDisp.txt] set ASLindex -1 set i 0 set imax [expr [llength \$RefNodeDisp]-1] set absASLdisp [expr abs(\$ANASLdisp]]</pre>
<pre>t filein [open \$f1 r] t fileout [open &f1 r] \$ t fileout [open AnalysisResults/Analysis\${ANNUM}/AxialShearLengths/ 10 \$sec.txt a+] 11 nile {[set cnt [gets \$filein line]] > 0} { set 1st [regexp -all -inline {\S+ \$line]} 12</pre>	<pre>if {\$absASLdisp>0} { while {\$ASLindex=-1} { while {\$ASLindex=-1} { while {\$ASLindex \$RefNodeDisp \$i \$ANctrIDOF])]< = \$absASLdisp&&\$absASLdisp<=[expr abs([lindex \$RefNodeDisp [expr</pre>
<pre>set time [lindex \$lst 0] set Nl [expr -[lindex \$lst 1]] if {[lindex \$lst 3]!=0} {set Lsy1 [expr [lindex \$lst 5]/abs([</pre>	<pre>incr i incr i if {\$i=\$imax} {set ASLindex \$i; puts "The last value was chosen for ASL extraction, regarding pushover \$ANNUM"} } else { set ASLindex [expr [llength \$RefNodeDisp]-1]</pre>

<pre>1 set HCchanges [FileInput AnalysisResults/Analysis\${ANNUM}/HingeAnalysis/ TotalCChanges tot1</pre>	70 }
set HClist	<pre>72 } elseif {[expr \$sec%10]==0} {</pre>
STOTEACT HC #HCCHANGES { set tier [expr [lindex %HC 0]-1] reference of the set index (furner)	<pre>75 lappend ASLList [list [expr \$sec*100] [lindex \$FLline 2]] 76 27 27 27 27 27 27 27 27 27 27 27 27 27</pre>
s II {%iter>%ASLmdex} {Dreak} set [lindex %HC 1]	<pre>75 76 } elseif {[expr \$sec%10]==2} { </pre>
7 Lappend Hulist [IIST \$Sec \$ITET] 8	78 lappend ASLList [list [expr \$sec*100+10] [lindex \$FLline 2]]
<pre>9 if {\$sec>1000} { 0 if {\$sec>1000} { 1 if {[expr \$sec%10]==0} {lappend HClist [list [expr \$sec+2] \$iter]} 1 if {[expr \$sec%10]==2} {lappend HClist [list [expr \$sec-2] \$iter]} 2 }</pre>	79 80 } 81 82 }
3 } 4 set HClist [lsort -index 0 \$HClist]	85 84 FileOutput \$ASLList AnalysisResults/Analysis\$ANNUM/ASL.txt
<pre>6 set HCin [] 7 set secold [lindex \$HClist 0 0]</pre>	/OpenSees/Analysis/ASLCombination.tcl
sset munim filmer and i foreach HC \$HClist { o set enc flinder \$HC O]	$_{1}\#$ Axial forces and shear lengths combination for timehistory analysis, using results of the individual pushover analyses
1 if \$sec!=\$secold \$indmin] 2 lappend HCin [1] \$ \$secold \$indmin]	2 3 set BeamDir [FileInput ModelData/BeamDir.txt]
set secold \$sec set indmin []index \$HC 1]	4 5 set AxialForcesOld [FileInput ModelData/AxialForces.txt]
<pre>5</pre>	6 set ASLold \$AxialForcesOld_ 7 set ShearProp [FileInput ModelData/ShearProp.txt]
	<pre>8 foreach SP \$ShearProp {</pre>
slappend HCin [list \$secold \$indmin]	10 }
set ASLList []	12 set ASLold [lsort -integer -index 0 \$ASLold]
<pre>2 set Tilelist [giod - directory Analysiskesuits/ Analysis\$ {ANNUM}/ AxialShearLengths/ *.txt] 5 set destnum [list 0 2 0 1 12 10 11] 4 foreach fl \$filelist {</pre>	14 Set PXMlist [FileInput AnalysisResults/Analysis\$PUSHXMnum/ASL.txt] 15 Set PXPlist [FileInput AnalysisResults/Analysis\$PUSHXPnum/ASL.txt] 16 Set PYMlist [FileInput AnalysisResults/Analysis\$PUSHYMnum/ASL.txt] 17 Set PYPlist [FileInput AnalysisResults/Analysis\$PUSHYMnum/ASL.txt]
set sbegin [expr [string last / \$f1]+1] set send [expr [string last . \$f1]-1] set sec [string range \$f1 \$sbegin \$send]	18 19 set ASLcor [] 20 foreach sec \$ASLold {
<pre>set secexists [lsearch -integer -index 0 \$HCin \$sec] i if {\$secexists>=0} {set ASLindexH [lindex \$HCin \$secexists 1]} else {set ASLindexH \$ASLindex}</pre>	<pre>22 set code [lindex \$sec 0] 23 set old [lindex \$sec 1] 24 24</pre>
2 5 set FL [FileInput \$f]] 4 set FLline [lindex \$FL \$ASLindexH]	25 set PXM [lindex [lsearch -index 0 -integer -sorted -inline \$PXMIist \$code] 1] 26 set PXP [lindex [lsearch -index 0 -integer -sorted -inline \$PXPlist \$code] 1]
s if {\$sec<1000} {	<pre>27 set PYM [lindex [lsearch -index 0 -integer -sorted -inline \$PYMlist \$code] 11</pre>
<pre> for {set i 1} {\$i <=6} {incr i} { lappend ASLList [list [expr \$sec*100+[lindex \$destnum \$i]] [lind] </pre>	<pre>28 set PYP [lindex [lsearch -index 0 -integer -sorted -inline \$PYPlist \$code] x 1 </pre>
\$FLline \$i]]	29 30 if {\$code<100000} {

<pre>31 if {[expr \$code%10]==0} {</pre>	12 lappend ASLold [list [lindex \$SP 0] [lindex \$SP 6]]
32 set final [expr (abs(\$PYM) + abs(\$PYP))/2.0] 22 1<	13 }
34 set final [expr (abs(\$PXM) + abs(\$PXP))/2.0]	15 set ASLold [lsort -integer -index 0 \$ASLold]
<pre>35</pre>	16 17 set ASLlist [FileInput AnalysisResults/Analysis\$ANNUM/ASL.txt]
37 }	18
38 } else { 20 cot div [locamDiv [locamDiv [locamDiv]] indov 0 interest control & DecemDiv	19 set ASLcor []
set utf [itituex preatibit [isearcit -itituex o -ititeger -sourced preatibit expr \$code/100]] 1]	
40 if {\$dir=="X"} { set dirX 1.0; set dirY 0.0} else { set dirX 0.0; set	22 22 224 2040 [linday from 0]
41 utt 1.0}	25 Set coue [lindex \$sec 0] 24 set old [lindex \$sec 1]
42 if {[expr \$code%10]==2} {	25
45 continue 44 # set final 0	26 Set ASL [1111.0.6X [ISEATCH -111.0.6X U -111.0.6Ger -SOTTED -111.1.1.6 & ASLITST & CODE] 1]
45 } elseif {[expr (\$code%1000)/100]==0} {	27
46 set final [expr abs (\$dirX*min(\$PXM,\$PXP)+\$dirY*min(\$PYM,\$PYP))]	28 if {\$code<100000} {
4/ } etsetr {[expr (\$coue%touo)/tou]==2} { 48 set final [expr abs(\$dirX*max(\$PXM.\$PXP)+\$dirY*max(\$PYM.\$PYP))]	29 II {[expr ≫coueγoru]=U} { 30 set final [expr &diranY*ahs(\$ASL)]
49 } elseif {[expr (\$code%1000)/100]==1} {	31 } elseif {[expr \$code%10]==1} {
so continue	32 set final [expr \$diranX*abs(\$ASL)]
51 } 57 }	33
53	
54 # Correction due to very small values	36 } else {
55	set dir [lindex \$BeamDir [lsearch -index 0 -integer -sorted \$BeamDir]
56 Set Iinalcor \$Iinal 57 if {[avnr \$rode%1011=2] {	expr %code/lUU]
is if [expr 0.25*\$old]>\$final [expr 4.0*\$old]<\$final}	
set finalcor \$old	39
60 }	40 if {[expr \$code%10]==2} {
b1 } 62	41 continue 42 # set final O
63 lappend ASLcor [list \$code \$finalcor \$final \$old]	43 } elseif {[expr (\$code%1000)/100]==0} {
64	44 set final [expr abs((%diranX*%dirX+%diranY*%dirY)*min(%ASL,0))]
65 J	<pre>45</pre>
67 FileOutput \$ASLcor ModelData/ASL.txt	<pre>47 } elseif {[expr (\$code%1000)/100]==1} { 48</pre>
/OnenSees/Analysis/ASLCombinationPush_tcl	49 } 50 }
A first former of the state of	51
ו# AXIAI IOTCES מתם Snear lengtns compunation וסר pusnover מתמוץsis י	<pre>52 # Correction due to very small values </pre>
<pre>if {\$ANctrlDOF==1} {set diranX 1.0; set diranY 0.0} 4 if {\$ANctrlDOF==2} {set diranX 0.0; set diranY 1.0}</pre>	55 set finalcor \$final 55 if {[expr \$code%10]!=2} {
5 6 eat RaamDir [Filalnnut ModalData/RaamDir txt]	<pre>56 if {[expr 0.25*\$old]>\$final [expr 4.0*\$old]<\$final} {</pre>
251 DEGILIDIA [1 INTELINPUT MOUSTURIA DEGILIDIA. DEGILIDIA	57 Set Inalcor \$010 58 }
8 set AxialForcesOld [FileInput ModelData/AxialForces.txt] סיביד מצו הות AvialForcesOld מאוון איניין איניאן	
10 set ShearProp [FileInput ModelData/ShearProp.txt]	ol 61 lappend ASLcor [list \$code \$finalcor \$final \$old]
11 IOFEACH SF \$SNEARFIOD {	

	<pre>45 if {[string is integerstrict \$ANProdASL]==1} { 46 if {\$ANProdASL<1000 \$ANProdASL>9999} {incr errors}</pre>
ileOutput \$ASLcor ModelData/ASL.txt	<pre>47 } else { 48 if {\$ANProdASL!="NO"&&\$ANProdASL!="YES"} {imcr errors} 49 }</pre>
	40 J
/OpenSees/run.tcl	<pre>51 set ANModASL [lindex \$INITEM 9] 52 if {\$aNModASL1="NO"&&&\$aNModASL1="YES"&&\$aNModASL1="RESET"} {incr errors}</pre>
Automated analysis execution	
ipe	<pre>54 set ANCtrINode [lindex \$INITEM 10] 55 if {[string is integerstrict \$ANctrINode]==0 \$ANctrINode<=0} {incr</pre>
ource Analysis/FileInput.tcl	errors}
burce Analysis/FileOutput.tcl	57 if {\$ANTYPE== "PUSH"} {
et ANHINGEN 10.0 et ANSHLIM 0.000001	<pre>set ANctrlDOF [lindex \$INITEM 11] set ANctrlDOF [lindex \$INITEM 11] s if {[string is integerstrict \$ANctrlDOF]==0 \$ANctrlDOF<1 \$ANctrlDOF>2} {incr errors}</pre>
et INLIST [FileInput Input/AnalysisOptions.txt] et INLINE 0	60 set ANEigPush [lindex \$INITEM 12] 61 if ([attice is introved attice #ANTFichterhold (attice
	errors} () admension () admension ==0 admension () { increase errors}
Dreach Initem \$INLIST {	63
set ANOPT \$INITEM	64 set ANMAXAISP [IINGEX \$INILEM 15] 65 if {[string is double -strict \$ANMaxdisp]==0} {incr errors}
set errors O incr INLINE	66 set ictart 14
set ANModelTypeB [lindex \$INITEM 0] :: [@ANMAdaTTDIER_&ANMAdATTDIER_AANMAdATTDIEDDU	<pre>68 } elseif {\$ANTYPE=="TH"} { 68 } elseif {\$ANTYPE=="TH"} { 69 set ANTimePer [lindex \$INITEM 11]</pre>
&&\$ANModelTypeD!= DP" } {incr errors}	70 II {[String is double —strict \$ANIImePer]==U \$ANIImePer <u} {incr<br="">errors}</u}>
<pre>set ANHingeModelB [lindex \$INITEM 1] if {\$ANHingeModelB!="HYS"&&\$ANHingeModelB!="HYS" & \$\$ if {\$ANHingeModelB!="HYS" & \$\$ if {incr errors}</pre>	<pre>71 72 set ANGM1file [lindex \$INITEM 12] 73 if {[file exists \$ANGM1file]==0} {incr errors}</pre>
<pre>set ANShearB [lindex \$INITEM 2] if {\$ANShearB!="NO"&&\$ANShearB!="WS" &&\$ANShearB!="SH"} {incr errors}</pre>	<pre>74 74 set ANGM2file [lindex \$INITEM 13] 75 if {[file exists \$ANGM2file]==0} {incr errors}</pre>
<pre>set ANModelTypeC [lindex \$INITEM 3] if {\$ANModelTypeC!="EL"&&\$ANModelTypeC!="DPH" &&&\$ANModelTypeC!="DP"} {incr errors}</pre>	<pre>77 78 set ANGM1mult [lindex \$INITEM 14] 79 if {[string is double -strict \$ANGM1mult]==0} {incr errors} 80</pre>
set ANHingeModelC [lindex \$INITEM 4] if {\$ANHingeModelC!="HYS"&&\$ANHingeModelC!="IMK"} {incr errors}	<pre>set ANGM2mult [lindex \$INITEM 15] s2 if {[string is double -strict \$ANGM2mult]==0} {incr errors} 83</pre>
set ANShearC [lindex \$INITEM 5] if {\$ANShearC!="NO"&&\$ANShearC!="WS"&&\$ANShearC!="SH"} {incr errors}	84 set istart 16 85 } 86
set ANInfWalls [lindex \$INITEM 6] if {\$ANInfWalls!="NO"&&\$ANInfWalls!="IW"} {incr errors}	87 set ANModalTimeList [] 88 89 set INITEMIensth [exmr []]ensth \$INITEM]-1]
<pre>set ANTYPE [lindex \$INITEM 7] if {\$ANTYPE!="PUSH"&&\$\$ANTYPE!="TH"} {incr errors}</pre>	<pre>90 for {set i %istart } {si<=%INITEMIEngth } {incr i } { 91 if {[string is double -strict [lindex \$INITEM \$i]]==0} {incr errors} 92 lappend ANModalTimeList [lindex \$INITEM \$i]</pre>
	93 }

set ANProdASL [lindex \$INITEM 8]

line \$INLINE of input file. Stopping" delData/ModelComplete.txt]==0 \$ANModASL!="NO"} {	ious analyses results —directory AnalysisResults/ — type d —nocomplain *]	elist { r [string last "s" \$folder]+1] string range \$folder \$numloc end] \$maxANnum} {set maxANnum \$foldernum}	cANnum+1] delAnalvsis.tcl	"} { /MAasl.tcl
<pre>if {\$errors!=0} { puts "Error in line \$IN break } if {[file exists ModelData/ source Analvsis/ModelC</pre>	} # Detection of previous and set filelist [glob -directo	<pre>set maxANnum 0 foreach folder \$filelist { set numloc [expr [strin set foldernum [string r if {\$foldernum >\$maxANnuu }</pre>	set ANNUM [expr \$maxANnum+1 source Analysis/ModelAnaly	<pre>if {\$ANProdASL!="NO"} { source Analysis/MAasl.t }</pre>

B .2	Aox	εία ει	סמאניי	νής δ	εδοι	ωvâi	ע עום	ανάλ	ngn	εξε -		413	0.50	EO	/MATCHI	ED/30N	T SGI	MA.txt	EO/N	IATCHE	D/301	D L SGN	1A.txt
	ταζά	όμενο	- 0 0	ρέα			- -			M N	4 CP	—1.0 HYS 413	1.0 NO 1.00	υщ	P Q/MATCI	HYS HED/30N	T NS T	I GMA.tx	t EQ/	TH MATCH	ED/30		YES MA.txt
		/0	oenSee	s/Input	/Anal	ysis0 ₁	ptions.t	xt		23	CP	-1.0 HYS 413	1.0 NO 0.50	ОĞ	P /MATCHI	HYS ED/30D_	T_SGI	I MA.txt	W EQ/N	TH IATCHE	1 D/301	 234 N_L_SGN	RESET IA.txt
1 # Moc 2 # 1.	lel Data I Beam inel Beam hyst	nput for lastic m teretic r	automa odel (EL nodel fo	ted anal. /CP/DPH/I r concen	ysis e> DP) trated	recution plasti	r city (HY:	S/IMK)		Ñ	5 CP	1.0 HYS 413 1.0	1.0 NO 1.00	Οщ	P Q/MATCI	HYS HED/30I	WS T_S(I 5MA.tx	t EQ/	TH MATCH	ED/30	0 N_L_SG	YES MA.txt
4 # 3 6 # 4 3 7 5 7 5	Beam shea Column ir Column h) Column sh	ar failur nelastic ysteretic	e (NO/W model (model (ire (ND	'S/SH) EL/CP/DPF for conc	H/DP) entrate	d plas	ticity (I	HYS/IMK)						/Op	enSee	s/Inpı	it/Be	eamR	ebars.	txt			
8 # 4 6 # 2 . 8	Infill w Analysis	alls incl Type (PL	usion () JSH/TH)	NO/IW)		-			-	-	1 # Bear 2 # If	n Rebar l an asteri	Jata sk is	used	in colu	nns Nu	E .	0015,	Part,	the a	bove	one is	-
10#9. f 11#10.	Modified or existi Modified	Axial for ng Push Axial f	over and over and orces a	d Snear J ulyses in nd Shear	Lengtns case (Length	s produ of Time Is use	Ction (Y) eHistory (YES/NO/]	ES/NU/4 c analysis RESET)	ligit co	a	a f f n	ssumed to or place- the colum	o conti -keepin in Floo	nue. g pur ors, a	I ne as poses. mergeo	cerisks numbe	ın t r wit	h all	st of t the flo	ne co oor n	umbei umbei	s are us rs can b	sed
12 # 11. 13 # For	Referenc Pushover	e node analyse	 								i 4 # Num	nserted Floors	Part	(0/1/	2) Mai	n: [Nup	Dup	Ddown	ר Ddov	لس ا	LeftS	lab:[Du	đ
14 # 12. 15 # 13	Referenc Mode for	e direct:	ion distrihu	tion (if		set to	the T	node wit	h the		р с	istup Do	lown	distdo	14 14	Rights	lab:[Dup 10	distup 30	Ddow	FC	listdowr O	ت
	ighest el	ffective	modal n	nass in tl	he refe	erence	direction	i is aut	tomatic	ally	1 * 1 *	+ * •)) *) *) *	4 1 *) *) *) 1 00	0	0 0		0	
D 7 4 7 5	sed) Tourot d		ţ								* *	0 1	50 5	14 2	14	10	30	~ ~ ~	000	0 0		00	
16 # 14. 17 # 15	Iarget C Refere	nce node	ient Aisnlac	ements	for mo	dal ana	Jusps					2 Z 1	s c	14 12 2 2	1 4 1 2		0 0	x c	0	0 7		0 20	
18 # For	Time-Hi	story an	alyses:							Ä	1 *	10	7	12 2	12	0 0	0	00		10	30 8	30	
19 # 12.	Analysis	time p	ercentag	e relativ	ve to (excitati	ion files	time		H	* (7 7	4 (12 2	12	0 0	0 0	0 0	~	10	30	30	
20 # 15. 21 # 14.	Accelero	gram ru gram fil	e actin e actin	g on gloi	bal X g bal Y g	axis axis				нн	× 7 • ×	54 I 0	74	12 Z 12 Z	12	00	0 0	50		0 0		00	
22 # 15.	Accelero	gram on	X multi	plier						Ţ.	*	2	4	12 2	12	0	0	0	0	0	0	0	
23 # 16. 24 # 17	Accelero, Times	for mode	Y multi vlene le	plier							4 * * 2	34 1 *	0 *	12 *	12	00	00	01 α	20	0 0		00	
25 # Not	e: The or	der of p	ushover	analyse	s for r	nodified	d axial a	ind shea	ır lengt	чн Ч	*	0	4	12 2	12	10	30	0 00	000	0 0	00	00	
Ţ	ile produ	uction is	Xminus	- Xplus	– Ymin	Y – sur	plus)	Ξ.	* 1	5	7	12 2	12	10	30	00	20	0	0	0	
26 # L	2 11	5 12	13 13	5 14	0 15	16	8 17	ת	-		× 7 ۲ *	54 L 0	7 7	10 2 2	10	10	30 20	x x	0 0	0 0		00	
27 CP	SYH	NO	CP	HYS	WS	IW	PUS	SH NC	2	0	* (5	4 (10 2	10	10	30	00 0	20	0	0	0	
28 CP	415 HYS	I ON	o G	-0.18 HYS	WS	IW	PUG	H NC	2	0	9 * 0 *	54 1 0	7 4	10 2 2 2	10	00	0 0	00	~ ~	0 0	0 0 0	00	
ŧ	413	1	0	0.18			21 IC			6	* (5 5	5	10 2	10	0 0	0 0	0,	0	0 0	0,0	0	
29 LF	Н15 413	N0 N0	ہ ر	нт. -0.18	Ś	ΤM			4	<u>0</u>	× 7 •	54 L *	D *	D ∗ 0	7 *	00	0 0		0 0	0 0	- @	0020	
30 CP	HYS	NO VO	СЪ	HYS	WS	IW	PUG	H NC	2	0	* *	0 *	€0 *	12 2	12 *	10	30	∞ c	20	10	30 8	30	
31 CP	SYH	NON O	CP	HYS	WS T	MI	HL	12	34 F	ESET 2	* *	N +	* 13	12 2 *	12	010	30		00		200	202	
	415 1.0	0.0 0.1	EU/MAJ	CHED/ 50 N	ין_טקוע	IA.LXI	EU/MAIC		_L_SGM <i>I</i>	A.TXT	8	34 1	: C	: 0 : 0	12		- 1 0		50			0 50 40	
32 CP	SYH	NO	CP	НҮS	SW	IW	TH	NC	Y	ES	*	* 	*)*	 *	0	0	0		0		40	
	413	1.00	EQ/M/	ATCHED/30	N_T_SG	MA.txt	EQ/MAT	CHED/301	N_L_SGN	[A.txt 3	* *	0 ^	ы	12 2	12	Ο α	0 8	ω α	22 10	10	40 8 a	40	
33 CP	SYH	NO N	СР	НҮS	WS	IW	ΤH	12	34 F	ESET 3	1 1 2	24 1 34 1	ηO	14 0 5	12	0 0	0	ວ∞	000	2 0	20	0 30	

25	0	50	с С	20	20	0	0;		0	0	0	0	0 0	0 0	0 0	0 0	00	0	0	0	0 0	- C		0	0	0	0	0 0	0	0	0 0		0	30	30	50 05		0	0	0	0 0	0 0	с С	0
∞	0 0	χ	o c	0	8	0	0,	0Ια	0	0	0	0	0 0	0 0	0 0		0 0	0	0	0	0 0			0	0	0	0	0 0	0	0	0 0		0	8	ω (χ) O	0	0	0 0	0 0		0
0		252	0 0 0 0 0	0	50	0	0 0	0 0	0	0	0	0	0 0	0 0) (0 0	00	0	0	0	0 0			0	0	0	0	0 0	0	0	0 0		0	30	20	0.0) O	0	0	0 0	0 0		0
0	0	χ	xα	0	8	0	0 0	0 0	0	0	0	0	0 0	0 0	0 0	-	00	0	0	0	0 0			00	0	0	0	00	00	0	0 0	0 0	0	10	10	01 d) O	0	0	0 0	0 0) O
40	0	70	070	0	0	0	0 0		50	50	50	50	50	0,0	000		20	50	25	50	5 0	о с	л и И И И И И	25	50	0	0	20	20	20	30	00	30	0	0 0	5 0) O	30	30	30	30	205	30
8	0,	DI 0	хс	0	0	0	0	0 0	10	8	10	8	10	χ,	ΟIα	0 -	0 4	8	8	∞ (0 0	οα	ົ່	တ	8	0	0	αα	10	8	10	α	∞	0	0 0	0 0		0	10	8	ω (∞ 0	xα	່∞
50	40	70	o c	0	10	40	30	0 0	0	0	10	0	0 0	0 0	0 0		0 0	50	0	50	000			0	25	50	40	0 7	20	0	0 *	30	30	0	0 0	0 0		0	0	0	30	30	05050	300
8	ω ⁻	10	o c	0	10	ω	ω	0 0	0	0	10	0	0 0	5 0	0 0	0 0	00	10	0	ω,	01,6			0	8	8	∞	Ο α	10	0	0 *	10	10	0	0 0	0 0		0	0	0	10	10	1 C	10
2		7		2	2			7	2		2		2		7	c	2	2	2	2		C	10	ہ ۵	2				3 03		2	0	2	2	2 0			2 0	2		5			0
H	* 7	-i •	* *	H	H	*	* *	*	H	*	H	*	÷.	• •		÷		H	H	÷ •	¢ -}	· .			Η	*	*			*	* 1	-	H	H	÷.		-i -	1 🖂	H	*	н ,			i A
2	* (~ ~	* *	4	2	*	* (* 2	4	*	2	*	• 5 5	• •	4 *	ſ	* /	2	4	2	د ÷	, r	3 d	ר יי מ	2	*	*	4 r	1 01	*	4*	2	2	2	0 10 0 10			101	4	*	2 0	~ ~		10
11	* 7		* *	0	1	*	* *	H *	0	*	1	*	- -	• •) *	÷	× ⊣ *	H	0	1	¢ *	· -	i c	- H	1	*	*	0 -	i H	*	0 *	1	1	1	1,	1,		12	0	*	1	1		ίH
4	* ◄	4,	*	0	4	*	* (* 2	0	*	2	*	4,	, () *	-	1 , *	2	0	• 5	¢ *		ť C	04	2	*	*	0 r	1 7	*	0 *	. 2	2	2	. 2	4' (7 4	· 4	0	*	4 (0 0	7 0	14
0	* (2	• *	1	0	*	* (* 2	1	*	0	* (~ N	۰ ,	⊣ ∗	c	D *	7	-	0 +	د ب <i>ا</i>	¦ (- ، د	- 0	2	*	*		5 0	*	н »	0	7	1	0 (7,		5 0	1	*	0 (7 -	-	5 0
*	* *	ĸ -)	• *	234	*	*	* 1	k *	234	*	*	* •	* 1	, r	454 *	*	*	*	234	* +	۰÷	: *	7 Z Q	יי א א א	*	*	*	234 *	*	*	н »	*	*	1	* +	· •		*	1	*	* •	* -		*
* 68	* *	91 °	• 56 • 56	14 23	95 *	9 6 *	* 16	* *	00 24	*	32 *)3 *	* *	2 2 2	57 90 * *	*	× *	* 0	1 26	2 *	× ≥	4 u	C 27	* 6	*	* 6	*	* *	າ *	* *	* 1 *	* 2	* 80	2 2	* *	: L	∽ ∗	*	55 4	* 95	* 12	* L	ດ * ຄູ່	÷ 2 ⊑
w	01 0	01	01 0	1 01	01	01	01	0, 0	" H	, H	10	10	10	H :	g ;		4 4	1	Ξ	Ξ	3	3 3	3 2	1 1	Ξ	Ξ	11	11		12	1	1 1	1	12	H	2		1 1	13	13	13	8		17
																									0	0																		
30	30	0	05 0	25	25	25	20	02	25	50	0	25	25	07 07	О Ц Ц Ц	0 U	25	25	25	50	0 0	07	04	202	0	0	0	0 0	0	50	02	000	50	50	20	D D C		50	50	25	50	0 0	0 2	25
8	αc	0 0	хс	0	8	ø	ω (α	0 00	8	0	8	ω (χ	α	0 0	0 00	∞	8	ω (0	α	, C	~ ∞	10	0	0	0 0	0	10	ω, α	0 8	10	8	10	α,	PΓα	, 10 10	8	8	ω (0 0	⊃ ∝	ົ້
0	50	0.5	50	i o	0	0	0	0 0	0	20	50	0	0 0	0	020		n 1 0	0	0	50	04 0			0 0	10	0	10	0 0	0	0	0,		0	0	0 0	0 0		50	20	0	50	20	0 7 0	0
0	ω -		101	0	0	0	0	0 0	0	10	8	0	0 0	0 0	χc	0	0 0	0	0	∞ (χ		, C	0			10	00	0	0	0,	0 1	0	0	0 0	0 0) œ	10	0	10	∞ ^c) O
	_		_																						5.3	.3	_										~							
0	000	0	500	0	0	0	0 0		0	0	0	0	0 0	0 0			00	0	0	0	0 0			00	13	13	20	50 0	202	0	0 0		0	0	50	כ ה		25	0	25	25	0 0	0 6	201
0	∞ c	0 0	хc	0	0	0	0 0		0	0	0	0	0 0	0 0			00	0	0	0	0 0			00	8	8	∞	αα	0 00	0	0 0		0	0	ω (× <) œ	0	8	∞ (0 0	⊃ ∝) œ
0	09	0 0	с С	0	0	0	0 0		0	0	0	0	0 0	0 0		0 0	00	0	0	0	0 0			0	0	0	40	00	50	0	0 0		0	0	0 0) 0 0) O	0	0	0 0	0 0	0 40	, 0
0	ωc	0 0		0	0	0	0 0		0	0	0	0	0 0	0 0		0 0	00	0	0	0	0 0			0	0	0	8	00	တ	0	0 0		0	0	0 0	0 0	×Ο) O	0	0	0 0	0 0	⊃ ∝	0
	01		~1	10			. o	0.11		~1		~1	~ ~					~	~1	~		~ ~		3	~7	~1	~1	_ ~				-	~		~1		~1	~		~1	~		~	1.01
*		(* 7	× ⊢	16	16	16	1,5			17	*	1		, i		, C , F		17	12	1,	(; ;			, + *	12	12	12		i i	11	* *) *	10	*	, i ,	(, ,	× ⊢	12	*	17	1,	* *		
*	2 * 2	* ((7 * 7	ß	6 2	6 2	ι Γ Γ	2 C 9 C	0 1 4	2 2	*	2	4.0	7 C	7 7	ר ¹	5 10	4	2 2	2 2	• •	с 4 с	4 C	۰× ۱	4	2 2	2 2	4 c	5 6	4	* (7 * 7	2 2	*	4, 1	• ((7 * 7	2 2	*	4	2 2	* *	, c , c	1 14
*	н »	* 7	- + *	0	1		0,		+ 0	-i	*		0;			- C		0	Ļ		• •	⊃ -		+ *	0	Ļ	ц.	0 -	i	0	* 7	⊣ *	H	*	0 *	• •	-1 *	-i	*	0		* *	· -	+ 0
*	M *	* 1	× 0×	0	23	M	0 1	N N	0	2	*	4	0 .	4' (7 0) (14	0	4	÷ 7	• () r	40	1 *	0	2	2	0 r	1 7	0	* (N *	2	*	0 *	• (7 *	4	*	0	4	* *	. 4	· 0
*	0 *	* (N ∗	1	0	7		0 ^	ب ہ	0	*	7		2	7 -	-	5 77	-	0	5	· -		2 ~	1 *	Ч	0	2		5 7	1	* (D *	2	*	, н ,	• 0	⊃ *	2	*	-	0 +	* *	· ~	۰ ۱
*	* *		• *	234	*	*	234	k *	234	*	*	*	234	¢ -}	, 77.7	5 7 7 8 7 8	*	234	*	* :	, (454 *	*	*	234	*	*	234 *	*	234	* *	*	*	*	234	· •	: *	*	*	234	* 1	* *	: *	234

50	25	25	0	50	0	0 0	40 10 10	0	20	0	0 0	202	0	0	40	0	0			20	0	0	0	0	0	0 0		0	0	0	0 0		0	0	5 0		30	30	30	30	30	0 (0		
α	ົ່	8	0	8	0	0 0	0 ∞	0	8	0		0 00	0	0	8	0	0	οc	o [, w	0	0	0	0	0	0 0		0	0	0	0 0		0	0	5 0		οœ	10	ø	10	ω (0 (0		
C	» o	0	0	50	20	40	20	40	0	0	0 0	0	0	0	25	40	40	5 7	0 4 C	0	0	0	0	0	0	0 0		0	0	0	0 0		0	0	5 0		0	0	0	0	30	0 (0		
C) O	0	0	8	10	∞ ⊂	10	Ω	0	0	0 0	0	0	0	8	∞	∞ 0	⊃ 0	0 0	0	0	0	0	0	0	0 0		0	0	0	0 0		0	0	5 0		0	0	0	0	10	0 (0		
C	25 25	40	0	25	0	0 0	72 72	0	50	0	0 0	40	0	0	20	0	0 0	-		0	25	50	25	25	25	20	40 4	20	0	20	20	0 7 7 0	0	20	40	1 0 1 0	40	40	40	0	40	0 (0		
C) co	∞	0	8	0	0 0	0 00	0	8	0		တ	0	0	8	0	0 0	-		0	8	8	∞	8	ø	ωd	οœ	0	0	∞	∞ ∘	0 00	0	ω (α,) co	10	∞	0	ω (0 (0		é
C	0	40	20	0	0	00	0 0	0	40	50	20	50	40	30	0	0	0 0	5		0	0	50	0	0	0	20	0 4 0	50	20	0	00	000	25	0	040	04 C	0	0	40	0	40	18	30		
C	0	10	10	0	0	0 0		0	8	∞ (∞ ⊂	000	8	8	0	0	0 0	5 7		0	0	8	0	0	0	∞ 0	⊃ ∝	တ	10	0	0 0	οα	0 00	0	χ	αC	0	0	10	0	10	10	10		- /T
																																													č
10	12	12	*	12	*	* -	12	 *	12	* +	* (12	*	*	12	*) • •	7 7	1 1	1 *	12	12	12	12	12	12	1 12	1 *	*	12	12	1 1 2	1 + *	12	1 7	7 *	12	*	12	*	12	* 1	*		
~	14	7	*	2	* •	* <	r ~	*	7	* :	* 4	' 7	*	*	7	*	* 、	4' r	7 6	1 *	4	7	7	4	7	~ ~	4 0	1 *	*	7	4 r	2 1	*	4 (7 1	V *	9	*	٢	*	÷ ۵	* 1	¥		ç
17	10	12	*	12	*	* C	12	 *	12	* +	* C	12	*	*	12	*	* C	с ;	1 1	1 *	0	12	12	0	12	12	- - -	1 + *	*	12	0	1 5	1 *	0	7 5	7 *	0	*	12	*	12	* 1	*		
0	10	7	*	4	* •	* C	04	*	4	* +	* C	o 4.	*	*	4	*	* (⊃ ¬	4 0	1 *	0	7	4	0	4	~ ~	2 ~	1 *	*	4	0 7	1 0	1 *	0	7 1	* 1	0	*	ы	*	۰ M	K 1	*		
0	1 1	0	*	2	* •	* -	- 0) *	2	* +	*	• 0	*	*	7	*	* •	-	2 ~	1 *	1	0	7	Ч	0	7 7	- 0) *	*	7		2 ~	1 *			* 1	1	*	0	*	~ 7	K 1	*		
*	-1	*	*	*	* •	* ~	⊣ *	*	*	* +	*	H *	*	*	*	*	* •	⊣ *	*	*	-	*	*	Ч	*	* •	- + ∗	*	*	*	.⊣ ∗	*	*	, н	• *	*	1	*	*	*	* f	k 1	*		
* ¥	6 20	* 6	*	*	*	, r , s	× 5 2 ₩	*	*	* *	* ⁷	*	*	*	5	* *	4 I * C	C 7 %	*	*	9 24	*	*	2 25	* ·	* (0 7 *	*	*	* ე	0 27 *	*	*	4 28	، • د •	• •	8 29	*	*	*	* 1	₩. 1	*		
0	1 19	19	19	19	20	20	20 20	20	20	20	20	20	21	21	21	21	21	717	17	21	21	22	22	22	22	22	77 6	52	22	22	23	0 2	23	23	23	22	23	23	24	24	24	24	24		
C	0	0	30	30	30	0 0	30	40	40	40	40 76	36	36	0	0	36	25		000	202	50	25	50	25	25	25	00 5	202	0	25	25		0	0	07	40 070	20	0	0	0	0 (0 (0 0	с 25	50
C	0	0	10	8	<i>∞</i>	00	0 00	10	8	ω (8 [0, 00	8	0	0	∞	∞ α	οc	oα	တ	8	8	∞	8	ø	ω	οœ) œ	0	∞	∞ ∘	0 00	0	0	χc	α 10) • ∞	0	0	0	0 (0 0	0 0) œ	8
C	0	0	0	0	30	18	30	0	0	40	40	0	40	50	36	36	0			50	50	0	50	0	0	0		25	20	0	0 0	00	40	30	5	04 C	0	0	0	0	0 (0 0	0 0) O	50
C	0	0	0	0	10	10	101	0	0	10	010	0	8	8	10	10	0	οc	0 0	s ∞	8	0	∞	0	0	0 0	0 C) co	10	0	00	οα) œ	∞ (0	αC	0	0	0	0	0 (0 0	0 0) O	8
C	0	0	36	36	36	0 0	36	25	0	25	50 7 J	0	50	0	0	50	0 0	- C		0	0	0	0	0	0	0 0		0	0	0	00		0	0	0 0		0	25	50	50	25	25	0.50) O	0
C	0	0	10	8	∞	0 0	s ∞	0	0	ω (∞ ∝	0	8	0	0	œ	0 0	-		0	0	0	0	0	0	0 0		0	0	0	0 0		0	0	5 0		0	∞	∞	8	ω (хo	x C) O	0
C	0	0	0	0	36	22	30 70 70	0	0	0	050	0	50	0	0	50	0 0	-		0	0	0	0	0	0	0 0		0	0	0	0 0		0	0	5 0		0	0	50	50	0 (0 0	25	0	0
C	0	0	0	0	10	8 F	101	0	0	0	∞ ⊂	0	8	0	0	∞	0 0	-		0	0	0	0	0	0	0 0		0	0	0	0 0		0	0	5 0		0	0	∞	8	0 (0 0	8	,	0
10	10	10	12	*	12	* *	12	12	*	12	12	1 *	12	*	*	12	12	7 7	17	12	12	12	12	12	12	12	172	12	*	12	12	1 1 1	1 + *	* 1	77	172	1 + *	12	12	12	11	l c	10	11	10
~	1 01	7	ß	*	2	* *	2	n ا	*	0 0	N 10) *	2	*	*	7	4' (N 1	4	5	7	4	7	7	4	2 0	4 4	' N	*	7	4 r	م ہ	1 *	* •	4' (7 0	1 *	4	7	7	4 (2 0	* 7	4	7
10	10	10	0	*	12	* *	12	0	*	12	17) *	12	*	*	12	0;	7 7	7 0	12	12	0	12	12	0	12	7 0	12	*	12	0	1 12	1 *	* (с ;	172	1 + *	0	12	12	0	12	12 *	0	12
~	14	7	0	*	۶O -	* *	M	0	*	n u	∞ C) *	ы	*	*	ю	0 1	N 1	N C	5 0	2	0	7	4	0	4' (N C	2	*	4	0 7	7 7	*	* (c c	7 0	1 *	0	7	7	0 (2 0	* 17	0	7
-	10	2	Ч	*	0	* *	2		*	0	- 1	+ *	0	*	*	7	- 0	⊃ r	v ⊢	0	2	Ч	0	7		0 1	7 -	• 0	*	7		2 ~	*	* ,		2 ~	1 *	Ч	0	7		2 (× 7	1	0
-	1 *	*	Ч	*	* •	* *	*	1	*	* :	* ,	+ *	*	*	*	*	н *	*	-	+ *	*	Ч	*	*	н	* *	-	• •	*	*	.⊣ ∗	*	*	* ,	⊣ *	*	*	Ч	*	*	, н ,	r 1	* *	1	*
9 001	143 *	144 *	145 7	146 *	147 *	148 *	149 150 *	151 8	152 *	153 *	154 *	156 * 1	157 *	158 *	159 *	160 *	161 10	162 *	163 11	165 * 1.	166 *	167 12	168 *	169 *	170 13	*	172 14	174 *	175 *	176 *	177 15	۲/۵ *	180 *	181 *	182 Ib *	183	185 *	186 17	187 *	188 *	189 18	190 °	191 *	193 19	194 *
-		- 1 T			1.11				1	1.12		. –		- C.T.	1.00	1.12	1.1.1						1	1.1	1.11	1.1	- -	- -		_	1.1.1						- -			1.11	1.1	1.1	1.1.1	- 17 B	1.1

41 33 36 19 o _| Ι 30 30 9 | o ഹ 0 0 0 0 T 0 0 C Т 0.02 02 02 0 0 0 0 0.02 -31 10 34 44 Q ю 17 0.02 0 0.1 0.02 0.9 0.3 Τ Ι 0.02 0.1 0.02 ю o. 0.03 0.03 0.03 Ι T 0.02 0.7 0.3 T 0.02 0.02 0.02 .03 I 0.3 ы M м М Ι 0.3 0.03 v. . 0 0 0 0. $\begin{array}{c} 0.03 \\ 0.3 \\ 0.02 \\ 0.03 \end{array}$ 0 0.02 0.02 0.02 0.02 0.02 0.02 N 2 1.0 0.03 0.6 (0.03 0.3 (0.03 303 ₽. z ⁷ 0.03 .7 0.3 (0.03 Y z ^s 0.0 . o ß ഹ \sim T 03. Υ 03 0.03 03 30 Y 03 o. 0. 30 Y 0.3 30 ∼ Z 0. o. $\sim Z \sim Z$ о ъ о. С 7 7 0. 0 z z 0 30 Y 0.0 N 8 N 20 20 N 30 4 30 30 Y 0 N ⁷ ° z ∞ z 2 5 5 7 7 ∞ 30 Y 20 20 30 Y ΝΥ 30 30 Y z z 30 30 30 ч, 0 ^Г ∞ Z ∞ ≻ ∞ ≻ ° ^x z ^x ∞ ∞Z പ്പ 0 Y м ≻ ² N ³ N ³ N ³ N ³ A 9 ы × Y 8 0.05 ∞z∞ U.1 16 0 Y 9 2.4 N L R 0.1 30 ∞ чочо. чо. z 9 Σo Ω Ω z 13 1.8 2 N 31 8 0.3 N 1.8 0.1 3 ≻ ≻ R 0.3 30 30 ×°×°°×°°×°° N N N N 36 36 0.1 ° z പറ K 4 z 1 ഹ .9 Y 21 : 10 R L L 95 1.9 0. 0 0.6 3.75 ;75 1.2 5 - -N L - 9 2.95 0.5 0.1 2 ۲₀ ..3 2.4 N 0.1 16 ..8 2.4 N 0 0.1 - - - 1.425 3.375 - z Ц 1.4253.725 0.5 z z z 2 ი 0 1.8 5 ₀ 0 1.8] 5 – 45 45 7 7 22 22 22 39 30 30 30 3 0.1 0 $\begin{array}{c} 1.425\\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ \end{array}$ T 2.175 ы. М I 1.7253.37 0.3 1.2 ы. 0. 0 0.3 1 1 $1.7 \\ 0.3$ - -0.15 N 1.2 ഹ ю 0.3 -2.9 0 - 2.4 0 - -2.4 0 0.15 c 1 0.5 c.5 0.15 2. 1.45 .3 0 2.175 0.3 -N N Y 0.3 0. 0 0.12 0 1.. 1 0.3 0.3 0.05 0.3 0.13 0.15 0.3 Y Y 0.3 2 0 2 5 0 0 0 0.15 N 0. 0 0 0 2.9 0 0. м Ю Ι \sim 0.13 0.7 0.3 0.13 N 0.8 0.18 N 1 0.15 N 0. 0 0.18 0.3 0.3 Ц. 0. 0.15 0.9 0.2 0 0.6 1 M 0.15 N (0.18 .3 0.5 0.12 Y (0.15 Y 1 0.13 0.15 Y Y 0 Чoч 0 οЪ 0 z 0.3 0.15 1 N Y Y N 0.13 N 0.13 Y 0.15 Y 0.18 0.15 0 C 0.15 N N 0.15 z z z 0.3 0.3 4 0.6 0.3 0.1 1 1 N 0.5 0.25 4 0.3 N 0 N Y 0.5 0.25 4 0.3 N 0 N Y 0.5 0.25 0 N Y 0 N Y ، N 33 ن 33 ن 0 ΝΥ 0.25 0.25 .5 0.2 0 .5 0.3 h 0.2 N 4 N 0.2 N 0.2 0.2 0.2 Z 0.2 0.2 0.2 2 0.5 0 0.4 Y 0.5 (0.15 0.1 o. 0 z z 0.5 C 0.45 0.1 ഹ 45 0.6 0 Y 0.6 N 0.5 Y 0.5 0.5 4 C 23 0 4 23 0 0.^L Y 1 9 15 9 0.6 35 0.5 Y 0. ^V 0. 0. 0 I 4 0 234 234 .02 23 234 234 .3 234 .02 234 --------24 19 20 22 23 21 18 38 3 **39 3** 40 4 42 6 43 7 б 35 1 \sim \sim ഹ 44 8 29 33 27 30 31 32 34 36 37 41 22 26 28 bexlb bexlb 4 O - -1 0 0 7 0 0 Ч ° z ∼ 0 0 I 0 0 0 0.02 0.05 covb 0.02 0.02 0.02 is I 0.03 1.2 0.3 31 I 32 12 42 30 0 0 Y 0.02 0.3 ю L 4 value be I I 0.02 0.02 T 02 0.02 0.25 0.3 0.02 | 2.0 0.3 - -0.03 0.3 0.3 ₽. ₽. SW TW bpenb 1.2 can Υ 0 o. o. I .6 0.3 -0.02 .2 - - 0.02 bpene 0.03 0.3 -0.6 0.3 -0.03 0.3 0.3 0.3 0.02 0.03 0.3 C 0.03 0.02 Ι 0.02 5 - - 5 0.03 1 0.3 -03 0.9 the 0.3 .03 0.75 all the floor numbers 0. Z z ~ .03 03 N Т 1 02 0.03 0.3 C 30 Y used, 30 2 N Y 2 0.03 0.03 0.3 0.2 0.7 0.3 -0.03 Y 0.3 -MO Z 7 1 М 6 0.3 refpoint DM beamrb bparb 0 Z Z Ч У 0 0 0.03 .03 3 0.. z bpare Y 0. 0.03 ≻ 30 Y ŝ 0 30 М 30 Y z 7 value — is the values z ⁷ is 7 ° . z [~] z [~] °×°z 0.03 0.5 0. 0. о.5 8 8 7 8 Y N ³⁰ 4 ³⁰ 8 39 30 ы о 4 ⁷ z ~ ∞Z beamrb z б ³⁰ N 34 N 330 34 S R 1.15 ×° z × Σo ^{o L} x[®] x⁵ ∞ bexrb, bexle, bexre the v atically using the rest of tl hf1 hf2 b1 b2 updown rigidb contb beamlb rigide conte beamlb b NoB NoE outratio 8 0.3 1.8 0.1 3 36 36 R 0.6 0.3 x ⁸ 0 ^{L 55} N L 45 ∞ ≻ ∞ ° z z o ∞ z ∝ number with 6 N 1.2 1 1.2 1 1.2 1 0 Y L 0.15 L 0 05 3 X | 0.3] 0.6 N 0.05 L 0.3 -N L - 9 2.95 0.5 0.1 1.675 3 0.5 0.15 / N 19 1.8 1.675 0.3 - -2.725 Y 3.375 - -30 N 2 N Ц optional 1.7 0 N ... - 5 0.5 0 3.725 ' ... 0.5 0.5 -15 0.12 в. 0.5 0.5 - -0.225 0.3 - $\begin{array}{cccc} .425 & 0 \\ 5 & - & - \\ 1.425 \\ 3 & - & - \end{array}$ z r ; c i , r I 2.1 2.8 . 1.7 0.3 1.2T ₽. o _| 0 1.425 \sim 2.725 0.3 0.0
 1
 0.5
 0.2
 0
 0.12
 0
 1

 .3
 Y
 N
 0.3
 0.3
 0.05
 1

 1
 0.45
 0.3
 0.13
 0.15
 0.15

 .02
 33
 0.3
 N
 Y
 Y
 0.16
 are merged 2.1 1.2 Т N Y 0.6 0.15 0 Y 0.8 0.3 -0.15 0 0.15 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.15 0 Y N 1.2 0.5 -2 0 0.15 0 Y N 0.3 0.3 -9 М 0.3 0 ю 0.15 Y (I 0.15 outratio 15 13 .3 0.2 0.6 0.3 o.≻ ർ o.≻ 0 automatio h b nodeb 0. column Floors, and out bexlb, ю Υ 0.3 0.3 2 0.15 Y N : 0.15 : N N daxis 0.15 Y N z 0.6 0.2 0.18 21 0.6 N N 0.6 0.2 0 0. 0.6 N N Y 0.6 0.2 0 0. Y 0.15 9.15 Y N 0.15 Y 0.1 nodee 0.15 N N 0.15 N J 0.18 Data 0.6 0.2 0.15 0 Y Y 1 0.5 0.2 0.15 7 0.3 N Х 0 0 0.6 0.2 0 0 Y N N N N Y N N N N Y ≻ 0.15 0.6 0.2 (38 0.3 1 0.6 0.2 (0.9 N N 0.2 daxis 0.2 N Y 0.2 0.6 0.2 35 0.2 columns 0.6 0.2 0.6 0.2 0.2 \sim lculated Floors 1 N 0.6 0.2 0.3 N N Y N N Beam Members 0 0.1 o. .6 N covs bexrb bexrb z nserted 0.6 N 0.6 N 0.6 0.6 ഹ Columns If in col 0 I Х the z I 0 cal .3 1 m. ₽. 9. ₽. Num ----------Ч ----1 -Ц 21 16 15 10 20 15 23 18 16 11 17 12 18 13 19 14 22 17 4 # 7 2 12 7 1 # 2 # 3 # 2 # 6 1 8 9 4 ഹ 9 ∞ 14 9 2 11 13

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	10	34	•	02	2	02) ,	44 44							n la r	niai	F	:	sdoot										6	0	6	0									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.02	- 02	- 02		0.0 7	2 4	0. 0		7 I		n be	dered		rence		ctan o	ררמונ	are colum		Z										0.	.45	.0	.45									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0				0.03	כ י י	0.03		- -		rs ca	consi	C L C L C L C L C	rere. an be	ıs is	- 1 - 1		they to	2	oobs										0.45	0.6 0	0.45	0.6 0									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.03	3 0.2 0.03	3 0.2	80.5	~ 2	2	~ Z		c 0.9		umbe	is	vidth +ho	on ca	ctior	for nt fo		ted, rding		disth		0.6		0.6		0.6))		0.6	0.5 (0	0.6 (0									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	2 0.	, 0. 2	0	30	-	30 4	۰ r	ہ 0.	Ļ.	or n	ction	lall v	secti	nn se	4 ior	Ъод ц	inser acco		sdo	0.15		0.6 0.1		0.6	ст. С	0.6	0.15	ب م	0.0	0.45	0	10	0.15								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	30	30 N	N 02	N N	8 Z	5	% Z		N N C L	ıs.tx	e flc	n se	h sm	the	colum	ma), rence		are i point		Dho	0	0.45	00	0.45	0 0	0 0	0	0	0.45	20	ю	23	0.03	0								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8	N 8	7 8 7	2) ,	ц с	þ	ᇅᅌ) c	N N N	umr	11 th	colum	d wit	r of	aped	Gam		lues rce r	4))	ebars	33	2	50 10	n M	50	0 10	5 10	50	50 10	0.0	0.0	0.0	7	23								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ч	0 8	0	0	Z Z	רח	5 N 7 N) Э С	В. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	/Col	th a	the o	shape:	uston:	L-sh	r + +		o va. ferer		s Dro	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	200	7	2	30	0.0								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	z	45 N	45 N	17	н с		C	. 2	N 22	ıput	er wi	sed,		eft c	the	3 fo		If n Je re	•	rebar	7	0	0 C	N 4	0 0	7 0	0	0		30	30	30	8	0								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	4	; •	.35		.35			uI/s	qunu	is u	dered	u rei rer lo	e of	deter	מכוכד	nal. ng th	o O	Z	ret) 30	30	50 N	n 10	500	5 C	5 20	ю і 0	20 N	ດ ທີ	2 8	0	20	30								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.85	. 85	-	1 	α α	2 2	80		0	nSee	rged	le 0	consi v m	A an	shap	for _	2	optio	5	hape	8 8	22 8	0 a 0 a	ာထ	000		8	0 8	ω α Ο α	9 9 9 9	6 2	2	1	0 8								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0 0	6 0.3	3 0.4	0.14 N	2	0.14 N		2 C	Opei	a me	valu	is	o the	xact	2	100	are callv		U U	p ret 12 2	12	8 -	12	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1 12	12	12	α 17 8	24	4	4	0.3 4	12								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0.		2	2	, z		0		ta ors,	the	se it	nce t	the e	L, he		refY mati	5	а.	igidu 1	Ч		5 6	7 7	7 0	5 6	50	50 10	0.3	0.3	0.3	.0	٢								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.15	1 N 0.15	N ²	'Z	0.13	-	0.13 V	• •			s Da Flo	um um	r, els	al co ferer	pe, 1	for	um ve	and j auto	5	Ξ,	dn <u>r</u> 1 0.5	0.3	0 0 N N	0.0	0.0 1	0.0	0.3	0.3	0.0	5.0	ß	2	0.75	0.3								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.2	Ч 0.2 0.2	4 0		0.2 0.2	0.0	0.2		7.0 N		embei olumn	ed e colt	gula	pulon in re	ed n sha	ed: 1	d cal	refX ated	5	DOLS	rigid 3 1.2	1	9 1 1	0.0	0.6			0.0		0.7	0.7	0.7	5	0.6								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0	0.5 0.6	4.04	0.3]	0.6	-	0.6	, c	4 0.7 0.3]		he co	n the	ctan boo	ne o oint	serte olumr	sert	hape	mns J alcula	lape	Fle	0.8	0.6	00	0.0	00	0 0	0.0	0.0	0.0	0	0.0	0.0	0.7	ب 1								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	4	2.5	2 2 2	7 23	1.	4	c	ς γ γ		Colur In t	If i	1 1 1	b d	In In	The tr	S III	Colur	sh	Num	Ч	2	34	7	34		34	8	м и И И		6	. v	4	ц .								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	68 25	8 69 25	70.26		- 71 27		72 27		/2 70		1 # - 2 #	3 #	4	4. #	5 #	# v	t	4 4		8 #	9 1	10 1	11 1 2 2	- 13 2	14 2	- 15 0 16 6	176	18 18	19 18 2 1 05	21 19	- 22 19	23 19	0 24 19	25 23								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-			0.02	-	-	0	0	0.02	0.2	0.2 -	42 0		0.02 0.3 -		0.3	4	ŭ	n	ß	C	0	0	- 0.0	0.02		7 0 0)))	0.02	- 0.02		٥	Ч									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ΙY	0.02	0	0	0.3	9 7	.,			0.3	0.3								- 0.UZ	0.02	- C	ν. Υ		с С	}	0.3	>	4		5.0 2.3	0.3	0.02	0.02	Ι								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	z	20	.75	0.03	6.0	0.3	0.02	0.02	0.03	0.03 Y	0.03 Y	0.02		0.03	200	0.25	0.02		- 0.3		0.3	۲ ۲	0	0.03	0.03	0.7		:	0.03	0.03	2 2 2 1	י שר ס כ		.2								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0.0	0	2	ù Y c	0.6	2 C	2 M C	2.7 2	Z _N Z	N N	ы	0.3	Z 7	~	Z	м	0.3	0.0	0.0	0.3 20.3		(7 Z	5	Z'n	≺ <i>د</i>	•	5	7 7	ž	0.0	0.0	.3 0								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	39	7	Y	30	Zr	۶	0.0	0.0	30	z 8 z	30 X	0.0	0.6	20 20	202	Z	0.0	0.3	۷ Z	5	zα	13 0	0	50 2	30	Y	о С)	30	N 02	z	⁷ z	7	z								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ß	30	z	8	0 N 0	z	z 7	2 7	z ∞ ;	15 8 15	8 15	0	Ч	∞ Z	α	Z	2	Y	0° Y	30	Y	۱ ^د	0	∞≻	8	ۍ ۲	0 C	5	∞;	× ∞	Z	05 N	30	×								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0	8	ß	Г	2 α.	۰×	° 20	30	z "'	o L o o L o	о Г о	30	z	0 צ 0	Ω.	0 0	30	z°	ν Σ	. ∞	z ^z		,	о г e	с ,	- 0 9	JK	5	о С	റപ		∞ ≻	8	z								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	05	L L	0.4	Z	- 1	- -	° 2 , ⊳	2 ⁰⁰ 2		- Z 10	Σъ	∞	9 N	<pre></pre>	N		∞	Z ^d		R	0 u	0	;	4 Z -	.4 N	- 2	ς ,		Z	' N Z	. 7	ч с -	, R	0								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.3 0.	1.7 N	19	1.725	2	- 1 M			2.35 U.	2.35	2.35	и И	8	1	C	, ,	ц Г Z	0 4	ິດ ດຸ	, <u> </u>	ດ໌	.45	(י ש ר	00.7 ℃ 00.7	2	2.35	2.85			4 0	45								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.3 0	2	Ι	1.8	0.3	n	2.1	2.1	- 1. 1.5	0.2 0.3 0.3	1.5 0.3	2.8]	-	2.75 0.3	7 7 C	0.3	0			2.17	ן א ו נו	- 1 - 7 - 7	1	2.35 0 3	2.35	°.0 0.0	ο α 7 ⊂	2	2.8	9.0 9.0	0.3	ا ت ا	-	Ι								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Y	10	.⊲	10	9.0	0.3	o	0	' '	0.3 0.7	5 0.7	0		3 0.6	ď	0.6	2.1		י 2.5 ס	0	. 0. 	ž	,	5 0_7		0.7	z	-	2	ی ۳.	6.0	2.17 0 3 -	2.85	.⊲ ⊡								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Υ	0.1	0.6.0	0.1	۲ ۲	0.6	л С	ы С С	0.1	Z O Z	N.1	ы	0.2	N 0.1	0	Z	0	0.3	0.5	2 2 2	0.5	z		- ≻	0.1		÷ ∽≻	•	0.1	Z O	Z	0 0	0	0.6 0								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	z	8	Ч	8	zċ	Ч.	0.1 0.6	0.1	0.0 1	N N	Z Z	0.1	0.3	۲ ۲	ſ	Ϋ́	5	0.3	T. D Z	0.1	Zu	ე ი	I	Z Z	[2 -	z	_ ∩	•	ری :	8	Y	n Z	្រុ	z								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.3	3 0.3	z	3 0.1	о N 9 с	, z	7 0 7 0	2 0	2 N	4 0 N	5 0.1	2 0	Ч	20.7 20	۲ ۲	Z 2 2	2 0.7	ک د	∩ ≻	2 0	γ γ γ	4.0 .4.0		7 7 7 0.≻	5 0	, סיד סיד	י. קיי קיי) H	2 0.:	5 ⊀ 0.7		~ 0. 7	2 0.3	z								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38	3 – .6 0.	z	.6 0.	- u - u	N N N	.6 0.	.6 0.	2 0. 9.	000 000	5.0 .0	.6 0.	z	. 0 9.	9		.5 0.	z	2 C	.5 0.	4 7 2		1	°. ℃ 0. ℃	5.0.	0 0 10 10 10 10 10 10 10 10 10 10 10 10 10 1	ں د م		.5 0.	е 0.0 0.0	6	. 0 9. 0	.6 0.	Ч								
10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 12 11 11 11 11 11 13 12 11 11 11 11 13 12 12 12 12 12 19 19 19 11 11 11 12 22 23 23 24 25 25 23 24 24 24 24	.02	.2 0. 234 0	0.9	234 0	2 124		23 0 6 Y	, ⁴ ,	.4 I 234 0 -	23 0 1	+ 0 -	- 234_0	3 N	70	- 42	5	234 0	N 20		10.	0.774	020.	.7 0.	25 7 0 8	4 0	ې ۵	0, D №	.⊾ . –	4	3 234 0		234 0	2	0.6								
		5 10		7 11 2	, ,	7 1	9 13	, 13	114	2 15	3 15 4	16		5 17	17	- - -	7 18	, C	י דת) 19			2	. 121	21 ,	, ,	2 2 2		4 22	23		5 24	7 25									
0.3 1		(-	nragm D	an be us	es Floor:	ю			M			ŀ	n		ı	2			N			м	ר			M			ß			23			٢	n			ß			м
--------	-----------------------	--------------	--------------------	--	-------------	------	----------	-----------------------	----------------	--------	-------------	-------	---------------------	----------	-----------	---------	----------	--	-------------	--------	---	-------------	----------	----------	------------	-------	----------------	--------------	-------	---	----------------	--------------	--	---------------	-------------	----------------	---------------	----------------	-------	-------	-------	--------
4		;	lar ; ;	; ö	Vod				-			-	-		,	-			Ч			-	-						Ч			7			ſ	V			2			7
79 20		:	- # # (- # 7	3#1	41	5 2	0 0 0 0 0	∩ 10 ∞ ∕	9 4	10 7	11 43	12 52 13 31	14 36	15 35 	16 42	0C /T	19 18	20 5	21 6	22 10	23 ע אאז	24 JI	26 45	27 33	28 33	29 34 20 70	30 JY	32 38	33 44	34 22 ze 71	36 1	37 2	38 30	39 3	4 04 4 14	42 7	43 43	44 32	45 31	46 3b	46 42
													.0 0.725 0 0.725					Б О 3	.6 0.3	.6 0.3	.6 0.3							9. v	0 0.9	.6 0	.6 0	0 0 9	.6 0							.6 0	.6 0	.6 0
		_		~			.0		.,	_) \				C	0	0	0	,	~					0 0		0	0 0		0							0	0	Э
45 0.(0.6 0.15 45 0.6	0.6	0.15	45 0.(06	0.0	0.5	45 0.5	0.5	0.5 م		0.5	0 0		0 0	0.15	45 0.(0.0	0.0	0.15	0.15	0.15	0.13	47 0.6	0.0 0	0.5	0.5	0.5	0.15	0.15	0.15	0.15	0.15	0.15	0.6	0.6	0.6	4 U T T T T T	,, ,, ,,	0.6	0.15	0.15	0.15
0	000	0	0		0	0	0.	0 0		0	0	ы	ык	0 10	0	0	0 0		0	0	0	0 0	0.0		0	0	0	0		0	0 0		0	0	0	0		. c	, 0	0	0	0
0.03	0.03 0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	2 0.0	2 0.0	2 0.0	0.03	0.03	0.03		0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	c0.03	0.03	0.03	0.05 0.03	0.03	0.03	0.03	0.03	20.0 20.0	20.0	0.03	0.03	0.03	0.03
7	2 2 2	5	5	2 5	5	7	7	0 0	2 0	1 1	7	30	30	30	7	7	2 1	2 1	5 6	7	7	0 0	2 0	2 0	v 0	2	2	2 1	2 1	5	2	2 0	5	7	7	2 1	2 0	10	5	7	7	2
30	30	30	30	20	30	30	30	30	20	000	30	8	ωα) @	30	30	30		30	30	30	30	20	202	202	30	30	30	30	30	30	205	30	30	30	0 0	000	200	30	30	30	30
m	~~~~~	n m	<i>~</i>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	n m	ø	<i>~</i>	<i>~</i> ~		n m	m	16	26	10	m	m	~ ~ ~	0 a	n m	m	m	<i>~</i> ~	n a	n a	n m	m	<i>m</i>	<i>~</i> ~ ~	0 00	0	<i>~</i> ~	n a		m	m	m	na	n or		m	ŝ	m
0	0 00 0	5 ~~ 5 ~~	~ ~ ·		ა დ	9	9	ص	ω ωα	ა ა	0		2 10	.	∞	~~ ∞	0 0	0 0	ა დ	0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~ ~	~ ~		2 ~~	0	0	ю.	00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ю. ю.	0 C	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0	0	00			, o	5	~ ~	~ 0
5	0					-		, i			2	4		1 4		-	~ ~		1 01	5	0	00			1 0	2	2				~ ~			2	0	0 0		1	10	2	0	~
Ξ	ααα	ŝ	8	8 4	4	4	4	4 (α	s ∞	4	ß	0 0	4	8	8	4, 2	-, t	12	Ξ	8	00 0	χ	4 4	۳ ۵	8	4			∞	1		œ	H	8	4,		iα	4	1(1	Ļ
м	M 4 4	4				Ч		, н	2 0	2 4	7	0	0 0	0	7	7	~ ~	۷ C	0	0	0	, 1,	⊣,			-		0		0	0		0	Ч		, ,			. –	0	0	Э
0.3	0.3	0.3	0	0 0	0	0	0	0		0	0	0.3	0.0 10	0.3	0	0	0 0		0	0	0	0	5 0		0	0	0	0	0 0	0	0 0		0	0	0	0 0			, o	0	0	0
0.6	9.0	6.0	<u>د</u> . ۱	<u></u> 20 к	. <u>.</u>	0.3	2.3	<u>м</u> .	<u>л</u> и		0.4	0.3		.3	0.3	.3	N. N	<u>, </u>	2	[.2	2	ю. 1	<u>.</u>		. <u>.</u>	.3	.3	2.0	2 7	.2	2.0	2 0	. 7	0.3	.3	<u>ю</u> .	0. K		. 2	2		7
	000 0.0	.0.	9.0	0.0 0.0	5 4.	.3	£. 1	м. 1	ກ ແ ເ		.4 0	0	45 45	2	.6 0	9.6	ທ ເບິ	1. M	. ₪	.3	.3	с.		. ч		.7	о. С.	ю. г	0.10	.0	ю. 1	0. K	∾.	.80	8.0	ທ. ເ	ο α		. n.	.3	£. ∣	ک
-	4	. 4						4			<u> </u>	.234	23	234						0	1				_ ~	0							. 0	5								
2		1 10			14	Ч		[^] T		N FU	ሻ	Ч		·	-	2		- 1, -	- N	(14	ч			7 (8	r –	N)	4			4		 	4		50	ч г - Т			ব	1	(11)	×1
26 21	27 21 28 22	30 22	31 3	32 3 73 3	34 3	35 4	36 4	37 4	38 20 20	40 G	41 5	42 7	43 8 44 8	45 9	46 1C	47 1C	48 1C	49 IC	51 11	52 11	53 11	54 12	55 LZ	56 L2	58 13	59 13	60 13	61 14	63 14	64 14	65 15	66 L3	68 15	69 1 6	70 16	71 16	72 17	74 17	75 17	76 2C	77 2C	78 ZL

359

0.6 0 0.15 0 0.03 2 30 ∞ 22 ∞ 0 ..2 0

../OpenSees/Input/Diaphragms.txt

Data r Nodes with one Floor number or two Nodes with two Floor numbers sed (4 or 2 consecutive lines, respectively) rs Perp.Axis

02 COL	201 201		106 7	107 43	108 32	109 31	110 36	111 35	112 42	113 36	114 19	115 18 -	116 5	117 6	118 IU	119 9 200 7 1	24 121	123 33	124 33	125 34	126 39	127 38	128 38	129 44	130 22	131 21	132 I	133 3 124 3	135 43	136 32	137 12	138 12	139 35	140 42	141 18	147 30	144 19	145 21	146 6	147 10	148 10	149 45	150 34	151 1 7	152 I7	153 59 154 44	124 11

ы

- - -

- - - -

- - -

- -

ы

ы

ы

ы

ы

	ю				ы				ß				2				ю				ю			ı	M			N	n			ю				ß				ю				ß				ß	
	7				7				7				7				ю				м			ı	M			N	n			٢				ю				ю				ы				4	
36 19	2 10	9	10	б	31	D I	45	33	33	34	30	38	38	44	22	21		5	30	ы	M	4		43	32	31	202		4 6	ο 1 σ	18	ъ	9	10	6	31	10	45	33	33	34	39	38	38	44	22	21		2
49 50	51	53	54	55	56	57	58	59	60	61	62	63	64	65	99	67	68	69	70	71	72	73	74	75	76	77	78	2 0	Do ra	5 6	83	84	85	86	87	88	89	6	91	92	93	94	95	96	97	98	66	8	10

27 34 31 9 2.65 1.35 0.20 0.20 28 34 41 13 2.65 1.85 0.20 0.20 29 34 16 33 2.65 2.45 0.20 0.20 30 34 36 38 2.65 2.85 0.20 0.20	/OpenSees/Input/IWMaterials.tcl	1# Infill Walls Meterial Data	z set fbc 3.00 4 set fmc 1.50	5 set kw 0.40 6 set eyw 0.00125 7 set euw 0.002375		/OpenSees/Input/Links.txt	1# Links Data 2# Used to connect main and auxiliary nodes	3# In the column Floors, a merged number with all the floor numbers with the same links can be inserted 4# Num Floors BNode ENode	5 1 01234 11 32 6 2 01234 11 43	7 3 01234 15 35	8 4 01234 15 42 6 5 01234 14 34	10 6 01234 14 45		12 0 01234 20 44 13 9 1234 8 31	14 10 1234 8 41	16 12 1234 15 55 16 26	17 13 1234 19 38		/Opensees/input/Loads.txt	1# Loads Data 2# In the column Floors a merged number with all the floor numbers with the	and the column arous, a mergea number with all the 11001 numbers with the same loads can be inserted	<pre>3 # BeamNum Floors Cov Mov(kN/m2) SlabAreaLeft SlabAreaRight MainWalls[</pre>	$41 \ 1 \ 1 \ 0.6 \ 7.46 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$	52 1 1 0.6 0.81 1.59 3.6 2.0 0 0 0 6 3 1 1 0.6 0.78 0 3 6 2.0 0 0		85 1 1 0.6 0.32 0.87 3.6 2.0 0 0 0	96 I I 0.6 5.52 4.69 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
ISS 22 156 1 01 2 157 2 158 4 01 2 159 30	160 30 01 2 161 5	162 5 01 2 163 6	164 18 01 2 165 19 166 21 01 2	167 22	/OpenSees/Input/Floors.txt	1# Floor Height Data 2# Nume Height		5 2 2.5 6 3 5.65 7 4 8.75		/OpenSees/Input/InfillWalls.txt	1 # Infill Walls Member Data	<pre>2 # In the column Floors, a two digit number with the two floor numbers is incomed</pre>	inserted 3# Floors BNode ENode h l t teff	4 12 4 5 2.65 2.80 0.20 0.20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	512 7 51 2.65 1.10 0.20 0.20 612 31 9 2.65 1.35 0.20 0.20	723 1 3 2.55 2.50 0.20 0.20	8 25 2 30 2.55 2.55 0.20 0.20 9 23 4 5 2.65 2.80 0.20 0.20	10 23 6 10 2.55 3.25 0.20 0.20 11 23 42 18 2 55 3 05 0.20 0.20	12 23 44 22 2.55 3.05 0.20 0.20	13 23 19 21 2.65 2.10 0.20 0.20 14 23 7 31 2 65 1 10 0 20 0 20	15 23 31 9 2.65 1.35 0.20 0.20	16 23 41 13 2.65 1.85 0.20 0.20 11 2 2 6 2 4 0 20 0.20	18 23 36 38 2.65 2.85 0.20 0.20	1934 1 3 2.55 2.50 0.20 0.20 2034 2 30 255 2.50 0.20 0.20	2134 4 5 2.65 3.00 0.20 0.20	22 34 6 10 2.55 3.25 0.20 0.20 	23 54 42 18 2.55 5.05 0.20 0.20 24 34 44 22 2.55 3.05 0.20 0.20	25 34 19 21 2.65 2.10 0.20 0.20 26 34 7 31 2.65 1.10 0.20 0.20

../OpenSees/Input/Materials.tcl

4.45 DF	در 7.2	1.7	7		2.35	2.2			0		13	4.7	3.25	0	85	0.95	2.35		0 0	0 (5 0		þ	0		0	0			C	0 0		c	D	c		00			(00	D	
0 10 1	 - M	м			n v	ю	0	0	0	0	m I	1	M 0	0	2	м	ю	0	0	0	0 0		0	0	0	0	0	0 0			0	0	0 0				0	0	0	0	0 0)
0 2.1	۰ 2.1	2.1	м		2.1	2.1	0	0	0	0	2.1	2.1	2.1	0	ы	2.1	2.1	0	0	0	0 0		0	0	0	0	0	0 0	-		0	0	0 0		0 0		0	0	0	0	0 0)
000	7.7	2.5	2.1		2.5	2.5	0	0	2.6	0	2.6	2.6	2.6 0	2.5	2.1	2.5	2.5	0	0	0	5 0		0	0	0	0	0	0 0	- C		0	0	0 0		o c		0	0	0	0	0 0	0 0	>
2.6 0	0 0	3.6	2.5	7.7 7.7	9. 9. 9.	3.6	2.5	2.5	3.6	2.6	3.6	2.6	3.6 2.6	0	2.5	3.6	3.6	2.5	0	0	5 0		0	0	0	0	0	0 0	5 0		0	0	0 0				0	0	0	0	0 0	0 0	>
3.6 69	.52	.91	.7 3.6	0.6 9.6	.44	.71	3.6	3.6	.14	3.6	.04	.68	.16 3.6	.15	2.1	.06	.71	3.6	1.4	.11	9 T.	.04 87	0	.69	0	.52	.91	0 4.	0 0	44.0	.71	0	0	. T 4	2	τα α	.16	0	0	0	.06	0	,
0.86 52 4 4 7 17	4.5.1/ 37551	.6	.16 7	0.40 73	88 7	05 4	1.75	57 0	.12 3	1 8.95	53	55	89 5 1.93	15 7	28 0	23 5	11 3	75 0	21 1	81 2	2 0	00 24 00	0.86	52 4	4 3.17	37 5	9 . 9 .	.16 7	5.98 22	ر الار 17 مع	05 4	1.75	57 0	с 2I. 1 8 ог	1 0.7J	0 U U U U	1 10 0 00 0 1	1.93	15 0	28	23 11 23	11 0 75 0	
0.0	~ 8	Ξ	10		4.	4.	0	2.	11	₽.	۰ ۱	م	- o	7.	7.	ы. С	.∾	Ŀ.	4.0	0.0		- 2 C	$\dot{\circ}$ \circ	ъ.	7.	8.	11	E o		2 4	4	0	2.5	- 1		ч		0	7.	۰ ۱		o. ⊢	i
0.6 0.6	0.0	0.6	0.0	0.0 0	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6 0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.0	0.0 0	0.0 0	0.6	0.6	0.6	0.6	0.6	0.0	9.9 0.0		0.6	0.6	9.0 0				0.0	0.6	0.6	0.6	9.0	0.0))
			, н,	⊣ ←	ч г г	Ч	1	1	-1	1	, ,			1	1	Ч	, -		1.5	1.5		 - г	1.5	1.5	1.5	1.5	1.5	1.5 1.5	ບ ບ. ເ		1.5	1.5	1.5 1.5	- г -	 	 	1.5	1.5	1.5	1.5	ר - יי	- I - 1 - 1)
50 50 50	∩ 10	ю	<u>ه</u>	<u>л</u> к	0 ₪	ß	ß	ю	ß	ы	n ⊔	<u>1</u>	n n	ß	ы	ы	ы	٢	4.	4.	4.	4 4	· 4	4	4	4	4.	4,	4 ~	r 4	· 7	4	4,	7 4	ť -	4 4	r 7	4	4	4.	4 ~	4 4	4
66 6 67 7	ათ 89 69	70 10	71 11	72 12 73 13	74 14	75 15	76 16	77 17	78 18	79 19	80 20	81 21	82 22 83 23	84 24	85 25	86 26	87 27	88 28	89 1 2	90 Z -	91 5	92 4 97 1	94 6	95 7	96 8	97 9	98 10	99 11 20	21 00		03 15	04 16	105 17	01 10			10 22	11 23	112 24	113 25	14 26	115 27 116 2.8	

0	0 00	4. 4. 4. 4. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	7.2 7.2 1.7 2.35 2.35 2.25	0 0 5 13 4.7 5 3.25 0 0 5.25	2.85 2.35 2.35 0000 2.35
0000000	0000000000	1 M O O O O O O O O O O O		00022000	w 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	00000000000000000000000000000000000000	0 0 0 2.55 2.65 2.65 2.65 2.265 2.265 2.1 2.1 2.1	2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55	2.65 2.65 2.65 2.65 2.65 2.65 5 2.65	2.55 2.55 2.55 2.55 2.5 2.6 0 2.6 0 2.6 0 2.6 0 2.6 0
00000000	ы м.	00000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000	
6.91 7.7 0 .84 0 .52 0 .97 0 .07 0 .75 0	3.14 .95 3.14 3.68 0 3.68 5.16 .93 0 0 0 0 0 0 0	5.18 5.18 2.11 2.11 2.16 8.64 0.87 4.69		0 3.6 3.14 5.14 5.04 3.68 5.16 5.16 5.16 0 3.6	0 2.1 5.06 3.71 0 3.6 11.4 2.11 2.16 8.64 0.87
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.63 3.18 4.55 4.42 2.89 0 1 7.15 7.28 7.28 5.23 3.11	1	7.4 8.37 111.6 11.16 0 5 4.16 4.05 0 1 0 1	2.57 11.12 3.1 8 7.55 5.55 5.55 2.89 0 1 7.15	7.28 5.23 3.11 1.75 4.21 0.81 0.78 0.78 0.53
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.000000000000000000000000000000000000		0.6 0.6 0.6 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 10 1 4 11 1 1 5 5 12 1 6 13 1 1 7 14 1 1 8 15 1 1 9 16 1 1	1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 2 2 1 1 1 1 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 24 2 24 2 24 2 24 2 24	25 26 27 26 27 28 27 28 27 28 27 28 27 28 27 28 27 28 27 28 29 29 21 11 28 29 29 20 21 21 22 23 24 25 26 27 28 29 29 20 21 21 22 24 25 26 27 28 29 29 20 21 21 22 23 24 25 26 27 28 29 29 29 29 29 29

1# Materials Data (Mean values)	45 set FCK [e	xpr abs (\$fc/1000	[(0]
z 3# Concrete	46 Set FIN [e 47 Set FYWK 2	жрг ату/тооо.ој 50.0	
4 5 set fc 24000.0 5 set Fc 2annond 0)/	henSees/Innut/Nodes tvt
7 set nu 0.0	:		princes input nouts in
8 set Gc [expr \$Ec/2./[expr 1+\$nu]] 9	1 # Nodes Da 2 # In the c	ata olumn Floors, a	merged number with all the floor numbers with the
10 set fpc [expr -\$fc]	same r z # In colum	nodes can be inse m fived it is d	rted storminod (V/N) if the node is fived at the lower
11 set epsc0 -0.0019	floor.	11 IIVEU, 11 13 U	CICTININICA (1/11) IT LING NOAC IS TIVEN AL LINE TOWEST
12 set ipcu -4800.0 13 set ensil -0.00506	4 # Num F1	cors X Y fiy	ted
14 cP00 ccccccc	51 01234 62 01234	0 0 4 4	
15 # Steel	7 3 01234	0 3.1 Y	
16 17 set fy 460000.0	8 4 01234 2 01234	4.4 3.15 Y	:
18 set E0 20000000.0	9 5 01234 10 6 01234	7.45 5.15 12 3.15 Y	Υ
19 20 set fsu lexpr 1.25*\$fv]	11 7 01234	4.4 7.25 Y	
21 set epssy [expr %fy/%E0]	12 8 01234 13 9 01234	5.87.725 Y	~
22 set epssu 0.075	14 10 01234	12 7 Y	-
23 set epssi [expr ∠.0 vepssu] 24 set bhard [expr ((\$fsu-\$fv)/(\$epssu-\$epssv))/\$EO]	15 11 01234	0.6 8 Y	
25 set epssh [expr 0.15*%epssu]	16 12 01234	I 10.9 Y	
26 set Esh [expr 2.0*(\$fsu-\$fy)/(\$epssu-\$epssh)]	18 14 01234	11.4 10.85	Y
28 if {[info exists ADDMATTOMODEL]>0&&&ADDMATTOMODEL==1} {	19 15 01234	0.6 13.95 Y	
29 uniaxialMaterial Concrete01 1 \$fpc \$epsc0 \$fpcu \$epsU	$20\ 16\ 01234$ $21\ 17\ 01234$	5.8 13.4 Y 10.8 14.15	Y
30 31 # mniaxialMaterial Steel01 2 \$fv \$E0 \$bhard	22 18 01234	0 17.9 Y	
32 # uniaxialMaterial Steel02 2 \$fy \$E0 \$bhard 15 0.925 0.15	23 19 01234	5.8 17.9 Y	:
33 # uniaxialMaterial Hysteretic 2 \$fy \$epssy [expr \$fy+\$bhard*\$E0*(24 20 01234	11.4 17.05 5 8 21 Y	Υ
\$epssf-\$epssy)] \$epssf [expr 0.001*\$fy] [expr 1.05*\$epssf] [expr -\$] [evnr _&eneev] [evnr _&fh_=rd*&Fh=rd*&FD*(&eneef_&eneev]] [evnr _&eneev]	y 26 22 01234	12 21 Y	
j [expr -vepssyj [expr -viy-volate vio (vepssi-vepssyj) [expr -veps] [expr -0.001*\$fy] [expr -1.05*\$epssf] 1.0 1.0 0.0 0.0	27 30 01234	6 3.15 Y	
34 # uniaxialMaterial Hysteretic 2 \$fy \$epssy \$fsu \$epssf [expr 0.001*\$fy]	[28 31 1234 29 32 01234	N CZ./ 0.C	
expir. 100 vepser] [expir = viy] [expir = vepsey] [expir = vesu] [expir = vecon] [expir = vecon] = vec	30 33 1234	5.8 10.85 N	;
35 uniaxialMaterial Hysteretic 2 \$fy \$epssy \$fsu \$epssu \$fy \$epssf [expr -	5fy 31 54 01254 5fy 325 01234	1 17 95 N	Z
] [expr -\$epssy] [expr -\$fsu] [expr -\$epssu] [expr -\$fy] [expr -\$enssf1 1.0 1.0 0.0 0.0	33 36 1234	5.8 13.95 N	
36 # uniaxialMaterial ReinforcingSteel 2 \$fy \$fsu \$E0 \$Esh \$epssh \$epssu	34 38 1234 26 20 01234	5.8 17.05 N	2
37 38 # uniaxialMaterial Hysteretic 22 \$fy \$epssy \$fsu \$epssu \$fy \$epssf [expr		5.8 8 N	
-\$fy] [expr -\$epssy] [expr -\$fsu] [expr -\$epssu] [expr -\$fy] [expr -\$ensef] 1 0 1 0 0 0 0	38 43 01234	N CECT O	
39 # uniaxialMaterial MinMax 2 22 -min [expr -\$epssf] -max \$epssf	39 44 01234	12 17.05 N	
40	LUAIO 04 04	10.01 41	
42			
43 # Material Strengths in MPa			
44			

B.3 Προγράμματα σχετιζόμενα με επιταχυνσιογρα	- 47 if {\$inangle==0} {
φήματα	48 set maxvel U 49 set maxangle 99999
	50 Set maxur U
/OpenSees/Seism/AccRotation.tcl	52 for { set angle -180} {\$angle<180} { incr angle 1} { 53
1# Accelerograms rotation	set anrad [expr \$angle/180.0*\$pi]
2 2 cot cont 0	<pre>55 for {set i 0} {\$i <=\$Ntimes} {incr i} {</pre>
5 set court o 4 while {\$cont==0} {	56 set vell [lindex \$f11 \$i 2]
s puts "Input File for EQ Motion – Dir 1"	5/ Set veld [10004 #112 #1 4] 58 set vell [exnr %vell*cos(%anrad)+%vel2*sin(%anrad)]
6 gets stdin ans1	<pre>59 # set velt [expr %vel2*cos(%anrad) - %vel1*sin(%anrad)]</pre>
<pre>7 set filename1 "EQ/ORIGINAL/\${ans1}"</pre>	60 set absvell [expr abs(\$vell)]
<pre>8 if {[file exists \$filename1]==1} {set cont 1}</pre>	61 # set absvelt [expr abs(\$velt)]
6 J	62 if {\$absvell>=\$maxvel} {
n set cont D	63 set maxvel \$absvell
12 while {\$cont=0} {	64 Set maxangre vangre se set maxahir "1"
13 puts "Input File for EQ Motion - Dir 2"	
14 gets stdin ans2	67
15 set filename2 "EQ/ORIGINAL/\${ans2}"	68 # set maxvel \$absvelt
<pre>16 if {[file exists \$Tilename2]==1} {set cont 1}</pre>	69 # set maxangle \$angle
17 }	70 # set maxdir "t"
19 Duts "Rotation Angle (enter O for automatic calculation of angle that	
maximizes velocity)"	75 }
20 gets stdin inangle	74 }
21 	75
22 set file lopen pruenamer rj 23 set fil fi	76 if { \$inangle!=0} {set maxangle \$inangle}
24 while {[set cnt [gets \$file1 line]] > 0} {	7/ Set foul [] 78 Set rott []
25 set lst [regexp -all -inline {\S+} \$line]	79 set anrad [expr \$maxangle/180.0*\$pi]
<pre>26 if {[string is double -strict [lindex \$lst 0]]==0} {continue}</pre>	80
27 lappend fil \$lst 28 }	81 for {set i 0} {\$i<=\$Ntimes} {incr i} {
29 close \$file1	82 87 set TM [lindex \$fi1 \$i O]
30	84
31 set file2 [open \$filename2 r]	85 set acc1 [lindex \$f11 \$i 1]
32.551 112 [] 33.wwhile {[set cnt [gets \$file?]]ne]] > 0} {	86 set acc2 [lindex \$f12 \$i 1]
34 set lst [regexp -all -inline {\S+} \$line]	87 Set acci [expr &acci"cos(\$aniad)+\$acc2"sin(\$aniad)] ٥٥ موغ عدما [محسب \$عدمائ*دممه(\$عسعط) _ \$عدمائهوام (\$aniad)]
35 if {[string is double -strict [lindex \$]st 0]]==0} {continue}	88 Set acct [expr paccz cus(panhau)—pacci shh(panhau)] 89
36 lappend fl2 \$lst	90 set vell [lindex \$fl1 \$i 2]
37 }	91 set vel2 [lindex \$f12 \$i 2]
38 CIOSE \$TILE2	92 set vell [expr \$vel1*cos(\$anrad)+\$vel2*sin(\$anrad)]
40 set length1 [llength %fl1]	93 set velt [expr \$vel2*cos(\$anrad)-\$vel1*sin(\$anrad)]
41 set length2 [llength \$f12]	95 set dis1 [lindex \$f]1 \$i 3]
42 if {\$length1!=\$length2} { puts "Problem, file lengths not equal"}	96 set dis2 [lindex \$f12 \$i 3]
45 SET NUIMES [EXPT ALENGULL-I]	97 set disl [expr \$dis1*cos(\$anrad)+\$dis2*sin(\$anrad)] موقع موفع dist [محسب \$dis2*cos(\$anrad)_\$dis1*sin(\$anrad)]
45 set pi [expr 4.0*atan(1.0)]	96 Set uist [expl øuisz rus(øailiau)—øuisi sili(øailiau)] 99
46	nn

100 lappend rotl [list \$TM \$accl \$vell \$disl] 101 lappend rott [list \$TM \$acct \$velt \$dist]	<pre>set lnAf [expr 1.131*exp(-3.11*(log(\$T/\$Tp)+0.127)*(log(\$T/\$Tp)+0.127))+0.0581</pre>
22 105 24	<pre>} else { set lnAf [expr 0.896*exp(-2.11*(log(\$T/\$Tp)+0.127)*(log(\$T/\$Tp)+0.127) set lnAf [expr 0.896*exp(-2.11*(log(\$T/\$Tp))+0.127)</pre>
104)+0.255]
105 set file [string range \$ans1 0 [expr [string length \$ans1]–6–1]] 22 106	
107 set flnamel "EQ/ROTATED/\${file}_\${maxangle}_L" 108 set flnamet "EQ/ROTATED/\${file}_\${maxangle}_T" 22	<pre>if {\$T<=[expr 0.21*\$Tp]} { set Rf [expr 1.0-0.2*exp(-0.96*(log(\$T/\$Tp)+1.56)*(log(\$T/\$Tp)+1.56))]</pre>
25 110 if {\$inangle==0} { 110 annend flname\${maxdir} max"	<pre>} else { sat Rf [arm: 1.0-0.21*ern(-0.24*(log(\$T/\$Tn)+1.56)*(log(\$T/\$Tn)+1.56)) sat Rf [arm: 1.0-0.21*ern(-0.24*(log(\$T/\$Tn))+1.56))</pre>
111 set mindir [string trim]t \$maxdir] 112 append flname\${mindir} "_min" 31	
113 } 52 53 54 54 54 55 55 55 55 55 55 55 55 55 55	# set Rf 1.0 set FFD [exnr \$Rf*\$FF]
115 append flnamet ".DAT"	
35 117 set fileoutl [open \$flnamel w] 36	set InPSAU [expr %InPSA+%InAI+%FEU-%FE] set PSAD [expr exp(%InPSAD)]
118 foreach elem \$rotl { 35 119 puts \$fileoutl \$elem 35	if {\$T<=1.0} {
120 } 35 121 close \$fileoutl 40	set lnDf 0.0
122 611 661 1 661 1 41	
125 Set Illeoutt [Open Silnamet W] 124 foreach elem Srott {	} eise {
125 puts \$fileoutt \$elem	if {\$M<6.0} {
126 } 45 127 close \$fileoutt 46	set gM 0.0 } elseif {\$M<6.5} {
47	set gM [expr (\$M-6.0)/0.5]
	set gM 1.0
1# Boore — Atkinson elastic spectra creation	
2 3# Data input 53	<pre>if {\$RJB<10.0} { set #R [expr 10.0-\$RIB]</pre>
4 2	} else {
Set fault NO ; # Optionis: O 101 underlined, 33 101 strike-stip, NO 101 not instingt, 35 RS for reverse faults	set gK 0.0 }
6 set M 5.9 7 set RJB 7.0	if {\$Fault="SS"} {
8 set Vs30 780.0	set lnDf1 [expr -0.0905*log(\$T)*\$gM*\$gR]
used su s.0 % If 0 is given, it is calculated automatically from Baker (2007) (10 set Tp 1.6; # If 0 is given, it is calculated automatically from Set (2007) (2007	set lnDf2 [expr -0.0905*log(2.0)*\$gM*\$gR] set lnDf [expr max(\$lnDf1,\$lnDf2)]
11 55 56 57	} else {
12 (1) 1 0 1 1 - 0 1 1 13 set InTp [expr -5.73+0.99*\$M] 14 set Tp [expr exp(\$InTp)]	set InDf [expr -0.029*log(\$T)*\$gM*\$gR] }
00 17 # Subroutine for directivity effects modifications 66	<pre>set lnPSAND [expr \$lnPSA+\$lnDf]</pre>
18 19 proc Directivity {lnPSA T Tp M RJB Fault FE} { 70	set PSAND [expr exp(\$InPSAND)]
20 21 if {\$T<=[expr 0.88*\$Tp]} {	return [list \$PSAD \$PSAND]

111 [list 0.200 -0.58300 0.04273 -0.00952 1.98] \	112 [list 0.300 -0.55430 0.01955 -0.00750 2.14] \	114 [list 0.400 -0.64430 0.04394 -0.00626 2.24] \	115 [1151 0.250 -0.69140 0.06080 -0.00540 2.52 \ 116 [1151 0.750 -0.74080 0.07518 -0.00409 2.46] \	lin [list 1.000 -0.81830 0.10270 -0.00334 2.54]	118 [list 1.500 -0.83030 0.09793 -0.00255 2.66] \ http://list 2.000 -0.82850 0.09432 -0.00217 2.73] \	Discrete Control Contro Control <thcontrol< th=""> <th< th=""><th>Dist Example Control <thcontrol< th=""> <thcontrol< th=""> <thcont< th=""><th>124 [list 10.000 -0.09824 -0.13800 -0.00191 3.04]]</th><th></th><th>126 Set al 0.05; 127 set pga_low 0.06;</th><th>128 set a2 0.09; 129 set V1 180.0;</th><th>130 set V2 300.0;</th><th>132 Set Mref 4.5;</th><th>135 set Rref 1.0; 132 set Bref4nl 5.0;</th><th>]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]</th><th>137</th><th>138# Period blin b1 b2 1139 set FSC [list \</th><th>140 [list 0.000 -0.360 -0.640 -0.14] \</th><th>]141 [list 0.010 -0.360 -0.640 -0.14] \ 145 [list 0.020 -0.340 -0.630 -0.12] \</th><th>]]143 [list 0.030 -0.330 -0.620 -0.11] \</th><th>144 [list 0.050 -0.290 -0.640 -0.11] \</th><th>145 [1154 0.000 - 0.250 - 0.040 - 0.13] \ 146 [1154 0.100 - 0.250 - 0.600 - 0.13] \</th><th>]147 [list 0.150 -0.280 -0.530 -0.18] \</th><th>148 11st 0.200 -0.510 -0.520 -0.19 \]149 [list 0.250 -0.390 -0.520 -0.16] \</th><th>150 [list 0.300 -0.440 -0.520 -0.14] \ Disi [list 0.400 -0.500 -0.510 -0.10] \</th><th>152 [list 0.500 -0.600 -0.500 -0.06] \</th><th>155 [list 0.750 -0.690 -0.470 0.00] \ 154 [list 1 000 -0.700 -0.440 0.00] \</th><th>155 [list 1.500 -0.720 -0.400 0.00] \</th><th>156 [list 2.000 -0.730 -0.380 0.00] \</th><th>15/ [1151 3.000 -0.740 -0.340 0.00] \ 158 [1ist 4.000 -0.750 -0.310 0.00] \</th><th>159 [list 5.000 -0.750 -0.291 0.00] \</th><th>160 [list 7.500 -0.692 -0.247 0.00] \ 161 [list 10.000 -0.650 -0.215 0.00]]</th><th>162 163 # Period s tU sTU tM sTM</th></thcont<></thcontrol<></thcontrol<></th></th<></thcontrol<>	Dist Example Control Control <thcontrol< th=""> <thcontrol< th=""> <thcont< th=""><th>124 [list 10.000 -0.09824 -0.13800 -0.00191 3.04]]</th><th></th><th>126 Set al 0.05; 127 set pga_low 0.06;</th><th>128 set a2 0.09; 129 set V1 180.0;</th><th>130 set V2 300.0;</th><th>132 Set Mref 4.5;</th><th>135 set Rref 1.0; 132 set Bref4nl 5.0;</th><th>]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]</th><th>137</th><th>138# Period blin b1 b2 1139 set FSC [list \</th><th>140 [list 0.000 -0.360 -0.640 -0.14] \</th><th>]141 [list 0.010 -0.360 -0.640 -0.14] \ 145 [list 0.020 -0.340 -0.630 -0.12] \</th><th>]]143 [list 0.030 -0.330 -0.620 -0.11] \</th><th>144 [list 0.050 -0.290 -0.640 -0.11] \</th><th>145 [1154 0.000 - 0.250 - 0.040 - 0.13] \ 146 [1154 0.100 - 0.250 - 0.600 - 0.13] \</th><th>]147 [list 0.150 -0.280 -0.530 -0.18] \</th><th>148 11st 0.200 -0.510 -0.520 -0.19 \]149 [list 0.250 -0.390 -0.520 -0.16] \</th><th>150 [list 0.300 -0.440 -0.520 -0.14] \ Disi [list 0.400 -0.500 -0.510 -0.10] \</th><th>152 [list 0.500 -0.600 -0.500 -0.06] \</th><th>155 [list 0.750 -0.690 -0.470 0.00] \ 154 [list 1 000 -0.700 -0.440 0.00] \</th><th>155 [list 1.500 -0.720 -0.400 0.00] \</th><th>156 [list 2.000 -0.730 -0.380 0.00] \</th><th>15/ [1151 3.000 -0.740 -0.340 0.00] \ 158 [1ist 4.000 -0.750 -0.310 0.00] \</th><th>159 [list 5.000 -0.750 -0.291 0.00] \</th><th>160 [list 7.500 -0.692 -0.247 0.00] \ 161 [list 10.000 -0.650 -0.215 0.00]]</th><th>162 163 # Period s tU sTU tM sTM</th></thcont<></thcontrol<></thcontrol<>	124 [list 10.000 -0.09824 -0.13800 -0.00191 3.04]]		126 Set al 0.05; 127 set pga_low 0.06;	128 set a2 0.09; 129 set V1 180.0;	130 set V2 300.0;	132 Set Mref 4.5;	135 set Rref 1.0; 132 set Bref4nl 5.0;]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]	137	138# Period blin b1 b2 1139 set FSC [list \	140 [list 0.000 -0.360 -0.640 -0.14] \]141 [list 0.010 -0.360 -0.640 -0.14] \ 145 [list 0.020 -0.340 -0.630 -0.12] \]]143 [list 0.030 -0.330 -0.620 -0.11] \	144 [list 0.050 -0.290 -0.640 -0.11] \	145 [1154 0.000 - 0.250 - 0.040 - 0.13] \ 146 [1154 0.100 - 0.250 - 0.600 - 0.13] \]147 [list 0.150 -0.280 -0.530 -0.18] \	148 11st 0.200 -0.510 -0.520 -0.19 \]149 [list 0.250 -0.390 -0.520 -0.16] \	150 [list 0.300 -0.440 -0.520 -0.14] \ Disi [list 0.400 -0.500 -0.510 -0.10] \	152 [list 0.500 -0.600 -0.500 -0.06] \	155 [list 0.750 -0.690 -0.470 0.00] \ 154 [list 1 000 -0.700 -0.440 0.00] \	155 [list 1.500 -0.720 -0.400 0.00] \	156 [list 2.000 -0.730 -0.380 0.00] \	15/ [1151 3.000 -0.740 -0.340 0.00] \ 158 [1ist 4.000 -0.750 -0.310 0.00] \	159 [list 5.000 -0.750 -0.291 0.00] \	160 [list 7.500 -0.692 -0.247 0.00] \ 161 [list 10.000 -0.650 -0.215 0.00]]	162 163 # Period s tU sTU tM sTM
				3472 -0.50970 0.28805 -0.10164 0.00000 6.75]	1551 -0.49966 0.28897 -0.10019 0.00000 6.751	3006 -0 48895 0 25144 -0 11006 0 00000 6 751	2222		$3462 - 0.26092 \ 0.06369 - 0.15752 \ 0.00000 \ 6.75$	78 0.02706 0.01170 -0.17051 0.00000 6.75] \	8 0.22193 0.04697 -0.15948 0.00000 6.75] \ 8 0.49328 0.17990 -0.14539 0.00000 6.75] \	0.61472 0.52729 -0.12964 0.00102 6.75] \	0.51990 0.64472 -0.15694 0.10601 6.75] \	8 0.46080 0.78610 -0.07843 0.02262 6.75] \ 0 0.5537 0.76837 -0.09054 0.00000 6.75] \	176 -0.10813 0.75179 -0.14053 0.10302 6.75]	3465 -0.39330 0.67880 -0.18257 0.05393 6.75])902	•	7697 —1.27669 0.77989 —0.29657 0.29888 6.75]	2584 -1.91814 0.77966 -0.45384 0.67466 6.75]		[C/'0 0NC6/'N %/0CC'N— I06%7'I 0010C'7— 0770)904 -1.41093 0.14271 -0.39006 0.00000 8.50]	.022 -1.59217 0.52407 -0.37578 0.00000 8.50]	33323 -2.14635 0.40387 -0.48492 0.00000 8.50				51 1.35] \ E1 1.7E1 \	51 1.351 \ 51 1.351 \	51 1.35] \	.51 1.35] \ .51 1.551 \	51 1.68] \ 13 1.86] \
22 }	4# Coefficient matrices		16# Period el ez es e4 e5 e6 NM 17 set FMC [list \	8 [list 0.000 -0.53804 -0.50350 -0.75	°₀ [list 0.010 -0.52883 -0.49429 -0.74				2 [list 0.050 -0.28476 -0.25022 -0.48	35 [list 0.075 0.00767 0.04912 -0.2057	<pre>H [list 0.100 0.20109 0.23102 0.03058 [list 0.150 0.46128 0.48661 0.30185</pre>	Image: 100 0.57180 0.59253 0.40860 11:1 0.200 0.57180 0.59253 0.40860	8 [list 0.300 0.43825 0.44516 0.25356	0 [list 0.400 0.39220 0.40602 0.21398 0 [list 0.500 0.18957 0.19878 0.00967	1 [list 0.750 -0.21338 -0.19496 -0.49	2 [list 1.000 -0.46896 -0.43443 -0.78	s[list 1.500 -0.86271 -0.79593 -1.20		4 [list 2.000 -1.22652 -1.15514 -1.57	5 [list 3.000 -1.82979 -1.74690 -2.22		9677- 0066717- 0604777- 00017 1111 9	7 [list 5.000 -1.28408 -1.21270 -1.50	8 [list 7.500 -1.43145 -1.31632 -1.81	∮ [list 10.000 -2.15446 -2.16137 -2.5	, II	0 1# Period r1 r2 r3 h	2 set FDC [list \	[list 0.000 -0.66050 0.11970 -0.011	5 [] 115 [0.010 -0.66600 0.12280 -0.011] 0.011] 0.020 -0.011	06 [list 0.030 -0.69010 0.12830 -0.011	07 [list 0.050 -0.71700 0.13170 -0.011 08 [list 0.075 -0.72050 0.12370 -0.011	<pre>9 [list 0.100 -0.70810 0.11170 -0.011 0 [list 0.150 -0.69610 0.09884 -0.011</pre>

0.000 0.502 0.265 0.566 0.566 1 0 0.561 1 0 0.00 0.502 0.266 0.566 1 0 0.010 0.502 0.266 0.566 1 0 0.010 0.502 0.266 0.566 1 0 0.030 0.507 0.276 0.589 0.266 1 0 0.030 0.501 0.276 0.589 0.266 1 0 0.050 0.516 0.288 0.599 0.606 1 0 0.050 0.518 0.288 0.593 0.606 1 0 0.100 0.523 0.506 0.520 0.504 1 1 0 0.250 0.521 0.522 0.260 0.594 1 0 0.250 0.524 0.592 0.596 1 0 0.250 0.554 0.595 1 0 0.250 0.554 0.595 1 0 0.250 0.554 0.595 1 0 0.250 0.554 0.595 1 0 0.250 0.554 0.595 1 0 0.250 0.554 0.595 1 0 0.250 0.554 0.595 1 0 0.250 0.554 0.503 1 0 0.250 0.554 0.503 1 0 0.250 0.554 0.503 1 0 0.551 0.572 0.668 0.589 0.647 1 1 0 0.250 0.557 0.563 0.594 0.503 0.647 1 0 0.550 0.594 0.503 0.647 1 0 0.550 0.594 0.750 0.571 0.311 0.649 0.299 0.645 1 1 0 0.00 0.573 0.551 0.532 0.668 0.410 0.700 0.441 1 0 0.500 0.566 0.410 0.700 0.414 0.530 0.564 0.700 0.541 0.538 0.698 1 0 0.500 0.566 0.410 0.700 0.513 0.441 1 0 0.500 0.566 0.410 0.700 0.513 0.441 1 0 0.500 0.566 0.410 0.700 0.543 0.735 0.538 0.698 1 0 0.500 0.566 0.410 0.700 0.414 0.700 0.513 0.541 1 0 0.00 0.555 0.738 0.647 1 1 0 0.00 0.555 0.738 0.647 1 1 0 0.00 0.556 0.538 0.698 1 0 0.500 0.566 0.410 0.700 0.411 0.509 1 0 0.500 0.566 0.410 0.700 0.414 0.700 0.513 0.538 0.698 1 0 0.500 0.566 0.410 0.700 0.543 0.738 0.538 0.538 0.508 0.700 1 0 0.000 0.555 0.738 0.474 1 0 0.700 0.555 0.738 0.474 1 0 0.700 0.555 0.738 0.474 0.787 1 1 0.000 0.555 0.735 0.747 0.787 1 1 0.000 0.555 0.735 0.747 0.787 1 1 0.000 0.555 0.735 0.747 0.787 1 1 0.000 0.555 0.750 0.555 0.750 0.555 0.750 0.555 0.750 0.555 0.755 0.755 0.755 0.755 0.750 0.555 0.750 0.555 0.755	<pre>set FDline [lindex \$FDC \$i] set R [expr pow(\$R)B*\$RDB+\$h*\$h.0.5)] set R [expr pow(\$R)B*\$RDB+\$h*\$h.0.5)] set R [expr pow(\$R)B*\$RDB+\$h*\$h.0.5)] set FD [expr (lindex \$FDline 1]+[lindex \$FDline 2]*(\$M-\$Mref))*log(\$R\ M-\$Mref))*log(\$R/\$Rref1]+[lindex \$FDline 1]+[lindex \$FDline 2]*(\$M-\$Mref))*log(\$R/\$RRef1]+[lindex \$FDline 3]*(\$R-\$Rref4n1)]] if {\$i==0} {set FDAnl [expr \$Mh+\$FDAnl] if {\$i==0} {set PDAnl [expr \$Mh+\$FDAnl] if {\$i==0} {set PDAnl [expr \$Mh+\$FDAnl] if {\$se=0} {set PDAnl [expr \$Mh+\$FDAnl] if {\$see PBAAnl [expr \$FSline 1]*log(\$Vs30/\$Vref)] if {\$see PBAAnl [expr \$FSline 2] if {\$see PDAnl lindex \$FSline 2] if {\$see PDAN [lindex \$FSline 2] if {\$see PDAN [sec P</pre>
248] 249	
248] 249	
list [] 250 ≤ 0} {\$i <=21} {incr i} {	set FS [expr %FLIN+%FNL]
Intelline [Intellinex \$FMC \$i] 255 5555 555 555 555 <td< td=""><td><pre>set STCline [lindex \$STC \$i] if {\$Fault=="U"} {</pre></td></td<>	<pre>set STCline [lindex \$STC \$i] if {\$Fault=="U"} {</pre>
<pre>[lindex %FMline U] [lindex %FMline 8] [lindex %FMline 8] [expr [lindex %FMline 1]*\$U+[lindex %FMline 2]*\$SS+[lindex %FMline 256</pre>	<pre>set sT [lindex \$STCline 5] } else { set sT [lindex \$STCline 5]</pre>
\$\Stillindex \$FMline 4]*\$\RS] 257 } =\$\Mn1 { 25\Mn1 }	} set FF [exnr &sd*&sT]
<pre></pre>	set in PSA [expr %FM+\$FD+\$FS+\$FE] set in PSA [expr %FM+\$FD+\$FS+\$FE]
{ t FM [expr \$FM+[lindex \$FMline 7]*(\$M-\$Mh)] 262	set PSA [expr exp(#)]
263 #	<pre># Directivity effects modifications</pre>

264 265	if {\$i==0} {	311 313 set OutList [ioin [list &PSAalllist &newValues]]
266		313 361 Outhoot [Join [1131 \$1 Omaillist \$116W values]] 313
267	set PSAD \$PSA	314 set OutList [lsort -real -index 0 \$OutList]
268	set PSAND \$PSA	315 A rumarraa (m. 1910) ar - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1
269 270	} else {	<pre>316 TILE THKUT EQ/SFECIRA 317 Set file [open EQ/SPECTRA/PSA_\${Fault}_\${M}_\${RJB}_\${Vs30}_\${sd}.txt w]</pre>
271 272	set DirList [Directivity \$InPSA \$T \$TD \$M \$RJB \$Fault \$FE]	318 foreach elem \$OutList { 319 puts \$file \$elem
273 274	<pre>set PSAD [lindex \$DirList 0] set PSAND [lindex \$DirList 1]</pre>	320 }
275 276		
277	[dīvvsd\$ dīvsd\$ T\$ +=;[] +=;[][rvsd þronne]	/OpenSees/Seism/ElasticSpectra.tcl
279 279	TAPPENN FORMULISI (1136 41 4004 4004 40040 400400	1# Elastic spectra creation
280 } 281		2 3 set EQFolder EQ/MATCHED
282 #	Additional values	4 set SaveFolder EQ/MSPECTRA s file mkdir \$SaveFolder
285 284 Se	t newValues []	
285 SE	t extraT [list [expr 0.70*\$Tp] [expr 0.75*\$Tp] [expr 0.80*\$Tp] [expr 0	7 set filelist [glob -directory \$EQFolder *.*]
	.85*%ipj [expr 0.90*%ipj [expr 0.95*%ip] %ip [expr 1.05*%ip] [expr 1 10*%Tn]]	set Tmax 2.00
286 S 6	t Nper [expr [llength \$PSAalllist]-1]	10 set Tstep 0.02
287 200 fo	1 T. T. T. T. T. T. T. T. T. T. T. T. T.	11 SEL A I 0.00
289	set T [expr int(\$ET*1000)/1000.]	13 set T 0.02
290	set ignoreT 0	14 15 set Periods []
291 292	<pre>for {set i 0} {\$i <= \$Nper} {incr i} {</pre>	16 while {\$T<=[expr \$Tmax+0.0001]} {
293	set Tlower [lindex \$PSAalllist \$i 0]	17 lappend Periods \$T
294	set Tupper [lindex \$PSAalllist [expr %i+1] 0] if [[over the(@T @Thouver]]/0 0001] [cot innever 1. healb]	18 Set i [eApi ØltØlseP] 19}
295 296	if {[expr aus(%1-%110Wer/)<0.0001} {set ignore1 1; break} if {[expr abs(%T-%Tupper)]<0.0001} {set ignoreT 1; break}	20
297	if {\$Tlower<\$T&&\$Tupper>\$T} {set TLindex \$i; break}	21 set pi [expr 4.0*atan(1.0)]
298 299		22 23 foreach fl \$filelist {
300	<pre>if {\$ignoreT==0} {</pre>	24
301	set newPSA [expr [lindex \$PSAalllist \$i 1]+(\$T-[lindex \$PSAalllist \$ out /////:e.s.c. @PSAcullist former #: 1] of files and former #PSAalllist #:	25 Set PSA []
	UJ)/([IINGeX %PSAAIIIIST [eXpr % +1] UJ-[IINGeX %PSAAIIIIST % D])*([Iindex %PSAall1ist [exnr % +1] 11-[Iindex %PSAal11ist %	27 set PGA 0.0
	o)/ ([IIIIUCA #1 JAGIIIIJC [CAPT #1.1] I] [IIIIUCA #1 JAGIIIIJC #1 1])]	28 set i O
302		29 set diffDt 0
303	<pre>set DirList [Directivity [expr log(\$newPSA)] \$T \$Tp \$M \$RJB \$Fault \$.</pre>	E 30 set agust [] 31
304 305	set newPSAD [lindex \$DirList 0] set newPSAND [lindex \$DirTist 1]	<pre>32 set file [open \$f] r] 33 while {[set cnt [gets \$file line]] > 0} {</pre>
306	SCL HENTIOTIND [JIIICC & DITTIOL T]	34 set lst [regexp -all -inline {\S+} \$line]
307 308	<pre>lappend newValues [list \$T \$newPSA \$newPSAD \$newPSAND] }</pre>	<pre>35 if {[string is double -strict [lindex \$]st 0]]!=1} {continue} 36 if {[expr abs([lindex \$]st 1])]>\$PGA} {set PGA [expr abs([lindex \$]st</pre>
309		27 if {\$i\$1} {
310 }		38 set Dtprev \$Dt

set Dt [expr [lindex \$1st 0]-\$tprev]	92	
io set tprev lindex \$Ist Uj	93	Set St I
1	94	set amax 0.0
42 Lappenu agiist إياريده عنه عنه عنه عنه عنه عنه عنه عنه عنه منه عنه عنه عنه عنه عنه عنه عنه عنه عنه ع	0 0 0 0	cat fila [nnan %f] r]
to ferrer المراجع المرا مراجع المراجع ا	0 0	
e billines also of the billines also of approximation of the billing of the bill	10 00	within fleat out fracts &file line]] > 01 f
43 Set τριεν μιτικελ φιστ Ο] 46 Janaand απηία+ [lindov Φla+ 1]	0 0	WILLE [] DEL CIL [] DELS #ILC ILLE] / 0]
10 iappena agriot inner viot i 47 } Pise {	99 001	if {[string is double _strict []index \$]st 0]]]=]} {continue}
48 set tprev [lindex \$lst 0]	101	
49 if {[expr abs([lindex \$lst 1])]>0.000001} {set \$c	<pre>\$ diffDt 1}</pre> 102	# # Exact solution for partially linear ground acceleration
50 }	103	# if {\$st==1} {set st 0; set t [lindex \$lst 0]; set u 0.0; set
si incr i		v 0.0; set p [expr -[lindex \$lst 1]]; set a [expr
52 }		\$p-\$c*\$v_\$w*\$w*\$u]; continue}
53 close \$file	104	# set tprev \$t
	105	# set uprev Su
55 IAPPEIU FOA [IISU 0.0 &FGA]	90 T	# SEL Vprev &v
57 if { \$diffDt==0 } {	107	# set prev \$p
puts "File \$fl. solution with uniform Dt and ag(0)=0"	109	# set t [lindex \$lst 0]
· · ·	110	# set Dt [expr \$t-\$tprev]
60 foreach T \$Periods {	111	<pre># set p [expr -[lindex \$lst 1]]</pre>
61	112	# set Dp [expr \$p-\$pprev]
62 set w [expr 2.0*\$pi/\$T]	113	# set alpha \$pprev
63 set c [expr 2.0*\$xi*\$w]	114	# set beta [expr \$Dp/\$Dt]
64	115	# set AO [expr 1.0/\$w/\$w*(\$alpha-2.0*\$xi*\$beta/\$w)]
65 set Kstar [expr &w*\$w+2.0*\$c/\$Dt+4.0/\$Dt/\$Dt]	116	<pre># set Al [expr \$beta/\$w/\$w]</pre>
66 set p 0.0	117	# set A2 [expr %uprev-%A0]
57 set u 0.0	118	# set A3 [expr 1.0/\$wd*(\$vprev+\$xi*\$w*\$A2-\$A1)]
68 Set V U.U	119	# Set uterm [expr %AZ_cos(%Wd~%Dt)+%A5~sin(%Wd~%Dt)]
59 set a 0.0	120	# set vterm [expr (-\$xi*\$W*\$A2+\$wd*\$A3)*cos(\$wd*\$Dt)+(@*@^7_@#@^7_@#@^2)*ci=(@3*@Fv1]
	7 C 7	–¢XU ¢W ¢A5–¢WQ ¢A2) "SIN (¢WQ ¢DT) / " معفد فعد معند المعالية (¢WQ ¢DT) / " معند المعالية (¢WQ ¢DT) / " معالية المعالية (¢WQ ¢DT) / " معالية (¢WQ ¢DT) / " معالية (¢WQ ¢DT) / " معالية (¢WQ ¢DT) / "
	Т7Т	# SEL aleIII [EX.pr] &vi*&vi*&uv*&A2_20_6*vi*&uv*&A3_6*0*
75 foreach ag %aglist {		with with we way with a straight with with with with with with the straight with the
74 set Pstar [expr - \$ag-\$p+(4.0/\$Dt+2.0*\$c) *\$v+2	+2.0*\$a]	.0*\$xi*\$wd*\$A2—\$wd*\$wd*\$\$A3) *sin (\$wd*\$Dt)]
75 set p [expr -\$ag]	122	<pre># set u [expr \$A0+\$A1*\$Dt+exp(-\$xi*\$w*\$Dt)*\$uterm]</pre>
76 set u [expr \$u+\$Pstar/\$Kstar]	123	# set v [expr \$A1+exp(-\$xi*\$w*\$Dt)*\$vterm]
<pre>77 set v [expr 2.0/\$Dt*\$Pstar/\$Kstar-\$v]</pre>	124	# set a [expr exp(-\$xi*\$W*\$Dt)*\$aterm]
78 set a [expr \$p-\$c*\$v-\$w*\$w*\$u]	125	#######################################
<pre>79 if {[expr abs(\$a-\$p)]>\$amax} {set amax [expr</pre>	: abs(\$a-\$p)]} 126	
	127	# # Mean acceleration method
81 • • • • • • • • • • • • •	128	# II {\$SI==1} {set st u; set t [iincex \$ist u]; set u u.u; set
82 Lappend PSA [list %] %amax] 84 }		v 0.0; set p [expr -[linaex %lst l]; set a [expr \$n-\$c*\$v-\$w*\$u*\$11]: continue}
88	129	# set tbrev \$t
85 } else {	130	# set uprev \$u
86	131	# set vprev \$v
<pre>87 puts "File \$f1, solution with different Dt and ag(0)=</pre>	i = / =0 " 132	# set aprev \$a
88 foreach T \$Periods {	133	# set pprev \$p
89 set w [expr 2.0*\$pi/\$T]	134	# set t [lindex \$lst 0]
90 set wd [expr \$w*sqrt(1.0-\$xi*\$xi)]	135	<pre># set Dt [expr %t-%tprev]</pre>
91 set c [expr 2.0*\$xi*\$w]	136	# set p [expr -[lindex \$lst 1]]

<pre># set Dp [expr \$p-\$prev] # set Katar [expr \$yp+40.0\$Dt+2.0*\$0pt+4.0.\$Dt,\$Dt] # set Fatar [expr \$yp+4.0.\$Dt,\$Dt-2.0*\$sprev} # set Du [expr \$ptar/\$fstar1] # set Du [expr \$ptar/\$fstar1] # set Du [expr \$ptar/\$fstar1] # set u [expr \$vprev+5Du] # max###################################</pre>	<pre># Mean acceleration method (shortened) if (Sat==1) (set st 0; set t [lindex \$]st 0]; set a [e</pre>
--	---