

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΤΩΝ ΚΑΤΕΡΓΑΣΙΩΝ

ΕΠΙΔΡΑΣΗ ΤΟΥ ΜΟΝΤΕΛΟΥ ΤΡΙΒΗΣ ΚΑΙ ΤΟΥ ΜΟΝΤΕΛΟΥ ΤΟΥ ΥΛΙΚΟΥ ΣΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΤΗΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΤΗΣ ΜΙΚΡΟΚΟΠΗΣ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΩΝ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΚΩΝΣΤΑΝΤΙΝΟΣ Ρ. ΜΠΟΥΡΜΠΑΚΗΣ

Επιβλέπων: ΔΗΜΗΤΡΙΟΣ Ε. ΜΑΝΩΛΑΚΟΣ Καθηγητής ΕΜΠ

ΑΘΗΝΑ, Ιανουάριος 2014

ΠΕΡΙΛΗΨΗ

Η παρούσα διπλωματική εργασία πραγματεύεται ένα σύγχρονο θέμα όπως είναι ο τομέας της Μικρομηχανικής. Η ζήτηση στις μέρες μας είναι ολοένα αυξανόμενη για μικροεξαρτήματα της τάξης των μm. Το ενδιαφέρον των ερευνητών έχει στραφεί στη μελέτη και την επίδραση που έχουν διάφορες παράμετροι όπως είναι οι δυνάμεις κοπής, η κατανομή των τάσεων κτλ. Για να διεξαχθεί μια τέτοια μελέτη απαιτείται η κατασκευή μοντέλων και η διεξαγωγή προσομοιώσεων. Στόχος της παρούσας διπλωματικής εργασίας είναι η κατασκευή ενός μοντέλου μικροκοπής και η εξέταση της επίδρασης διαφόρων θεωριών για την μοντελοποίηση της τριβής και της καταστατικής εξίσωσης του τεμαχίου.

Κατά την εκπόνηση της διπλωματικής εργασίας κατασκευάστηκε με τη μέθοδο των Πεπερασμένων Στοιχείων και με τη χρήση του υπολογιστικού πακέτου MSC.Marc που διέθετε προς χρήση το εργαστήριο του Τομέα Τεχνολογίας των Κατεργασίων, ένα θερμομηχανικό μοντέλο μικροκοπής. Στο πρώτο μέρος της διπλωματικής εργασίας διεξήχθησαν με το παραπάνω μοντέλο δύο προσομοιώσεις με δύο διαφορετικές τιμές πρόωσης. Τα αποτελέσματα συγκρίθηκαν με τις αντίστοιχες τιμές των πειραματικών αποτελεσμάτων, καθώς επίσης και με τις τιμές των αποτελεσμάτων των προσομοιώσεων εργασιών άλλων ερευνητών.

Στη συνέχεια μελετήθηκε η μοντελοποίηση της τριβής. Στο μοντέλο που παρουσιάστηκε στο πρώτο μέρος εφαρμόστηκαν δύο μοντέλα τριβής. Το μοντέλο τριβής του Coulomb και το μοντέλο τριβής Stick Slip του Zorev. Τα αποτελέσματα των προσομοιώσεων αυτών συγκρίθηκαν μεταξύ τους σχετικά με τα δύο μοντέλα τριβής.

Στο τελευταίο μέρος της παρούσας διπλωματικής μελετήθηκε η μοντελοποίηση του υλικού του τεμαχίου. Διεξήχθησαν δύο προσομοιώσεις χρησιμοποιώντας το Μοντέλο υλικού των Johnson-Cook για δύο διαφορετικούς τύπους τριβής.

ABSTRACT

This thesis deals with a contemporary issue as is the area of Micromechanics. Nowadays, the demand for components in micro regime is increasing more and more. The interest of researchers has focused on the study and the influence of various parameters such as cutting forces, the stress distribution, etc. To carry out such a study requires the construction of models and carrying out simulations. The aim of this thesis is to create a microcutting model and examine the influence of various theories about modeling the friction and the constitutive equation of the material of the workpiece.

During this thesis a thermomechanical microcutting model was constructed via the Finite Element Method by using the software package MSC.Marc, that is offered by the laboratory of the Department of Manufacturing Technology. In the first part of this thesis two simulations with two different values of feed rates were carried out in the above model. The results were compared with the corresponding values of the experimental results, as well as with the results obtained from the simulations of other researchers.

Afterwards, the modeling of friction was studied. In the model presented in the first part two friction models were applied. The friction model of Coulomb and the friction model Stick Slip of Zorev. The results of these simulations were compared on the two friction models .

In the last part of this thesis the modeling of the material of the workpiece was studied. Two simulations were carried out using the material model of Johnson-Cook for two different types of friction .

Πίνακας περιεχομένων

ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΩΝ ΜΙΚΡΟΚΟΠΩΝ	8
1.1 Ебагогн	8
1.2 ΤΕΧΝΟΛΟΓΙΑ ΤΩΝ ΚΑΤΕΡΓΑΣΙΩΝ ΚΑΙ ΤΩΝ ΜΙΚΡΟΚΑΤΕΡΓΑΣΙΩΝ	10
1.3 Εφαρμογές των Μικροκατεργάσιων	11
1.4 Διαφορά Μοντελοποίησης και Προσομοίωσης	12
1.5 ΟΦΕΛΗ ΠΟΥ ΠΡΟΚΥΠΤΟΥΝ ΑΠΟ ΤΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ	13
1.6 Δύσκολιές κατά τη μοντελοποιήση	13
1.7 Λογοί για την αποτυχία ένος μοντελού	
1.8 ΕΙΔΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗΣ	14
κεφαλαίο δευ τερο	16
	10
2.1 Еідагагн	16
2.2 ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ	16
2.3 Διακριτοποίηση (Meshing)	17
2.4 ΠΡΟΣΑΡΜΟΣΤΙΚΕΣ ΤΕΧΝΙΚΕΣ ΠΛΕΓΜΑΤΟΣ (ADAPTIVE MESHING)	17
2.4.1 Τεχνική Remeshing	17
2.4.2 Τεχνική Refinement	
2.4.3 Τεχνική εξομάλυνσης (Smoothing)	
2.5 ΑΠΟ ΤΗΝ ΔΙΑΚΡΙΤΟΠΟΙΗΣΗ ΣΤΟΥΣ ΤΕΛΙΚΟΥΣ ΥΠΟΛΟΓΙΣΜΟΥΣ	
2.6 MONTEAO TOY EULER	20
2.7 ΜΕΘΟΔΟΣ ΤΟΥ LAGRANGE	20
2.8 ΔΥΝΔΥΑΣΤΙΚΟ ΙΜΟΝΤΕΛΌ LAGRAGNIAN-EULERIAN (ALE)	21 22
2.9 ΠΡΟΓΡΑΜΜΑΤΑ ΛΟΓΙΖΜΙΚΟΥ ΠΡΟΖΟΜΟΚΙΖΕΩΝ ΠΕΠΕΡΑΖΜΕΝΩΝ ΖΤΟΙΧΕΙΩΝ	22 25
$\mathbf{KF} \mathbf{\Phi} \mathbf{A} \mathbf{A} \mathbf{IO} 3^{\mathbf{O}}$	28
ΟΡΘΟΓΩΝΙΚΗ ΚΟΠΗ ΜΕΤΑΛΛΩΝ	
	•
3.1 ΕΙΣΑΓΩΓΗ	
3.1 ΕΙΣΑΓΩΓΗ 3.2 Γεωμετρικά χαρακτηριστικά κοπής	
 3.1 ΕΙΣΑΓΩΓΗ 3.2 Γερμετρικά χαρακτηριστικά κοπης	28 28 30 30
 3.1 ΕΙΣΑΓΩΓΗ 3.2 Γεωμετρικά χαρακτηριστικά κοπής	28
 3.1 ΕΙΣΑΓΩΓΗ 3.2 Γεωμετρικά χαρακτηριστικά κοπής	
 3.1 ΕΙΣΑΓΩΓΗ	
 3.1 ΕΙΣΑΓΩΓΗ	28 28 30 30 30 32 33 33 33 35
 3.1 ΕΙΣΑΓΩΓΗ	28 28 30 30 32 33 33 33 35 36
 3.1 ΕΙΣΑΓΩΓΗ	28 28 30 30 32 33 33 33 35 36 37
 3.1 ΕΙΣΑΓΩΓΗ	28 28 30 30 32 33 33 33 35 36 37 39
3.1 ΕΙΣΑΓΩΓΗ 3.2 Γεωμετρικά χαρακτηριστικά κοπής	28 28 30 30 32 33 33 33 35 36 37 39 40
3.1 ΕΙΣΑΓΩΓΗ 3.2 Γεωμετρικά χαρακτηριστικά κοπής 3.3 Σύνθηκές κοπής 3.4 Μορφολογία και σχηματισμός του αποβλητου[9-14,21-24] 3.5 Ζώνες Παραμοφώσεης 3.6 Μηχανική των κοπών 3.7 Δύναμεις και τάσεις στην Ορθογωνική Κοπή 3.7 Δύναμεις και τάσεις στην Ορθογωνική Κοπή 3.8 Μηχανικές μικροκάτεργασίες 3.9 Ελαχίστο πάχος αποβλητου (Μινιμύμ Chip Thickness)[9-11,35] 3.10 Επίδραση καιμακάς (Size effect)[9-11,30] 3.11 Θερμοκρασίες στις Μικροκόπες ΚΕΦΑΛΑΙΟ ΤΕΤΑΡΤΟ ΚΑΤΑΣΚΕΥΗ ΜΟΝΤΕΛΟΥ ΚΑΙ VALIDATION ΜΕ ΤΗ ΔΗΜΟΣΙΕΥΜΕΝΗ ΠΡΟ	28 28 30 30 32 33 33 33 35 36 37 39 40 DTYIIH
3.1 ΕΙΣΑΓΩΓΗ 3.2 Γεωμετρικά χαρακτηριστικά κοπής 3.3 Σύνθηκές κοπής 3.4 Μορφολογία και σχηματισμός του αποβλητου[9-14,21-24] 3.5 Ζώνες Παραμορφώςης 3.6 Μηχανική των Κοπών 3.7 Δύναμεις και τάσεις στην Ορθογωνική Κοπή 3.7 Δύναμεις και τάσεις στην Ορθογωνική Κοπή 3.8 Μηχανικές μικροκάτεργασίες 3.9 Ελαχίζτο πάχος αποβλητου (Μινιμύμ Chip Thickness)[9-11,35] 3.10 Επίδραση κλιμάκας (Size effect)[9-11,30] 3.11 Θερμοκρασίες στις Μικροκόπες ΚΕΦΑΛΑΙΟ ΤΕΤΑΡΤΟ ΚΑΤΑΣΚΕΥΗ ΜΟΝΤΕΛΟΥ ΚΑΙ VALIDATION ΜΕ ΤΗ ΔΗΜΟΣΙΕΥΜΕΝΗ ΠΡΟ ΕΡΓΑΣΙΑ	28 28 30 30 32 33 33 35 36 37 39 40 DTYIIH 40
3.1 ΕΙΣΑΓΩΓΗ 3.2 Γεωμετρικά χαρακτηριστικά κοπής 3.3 Σύνθηκές κοπής 3.4 Μορφολογία και σχηματισμός του αποβλητου[9-14,21-24] 3.5 Ζώνες Παραμορφώσης 3.6 Μηχανική των Κοπών 3.6 Μηχανική των Κοπών 3.7 Δύναμεις και τάσεις στην Ορθογωνική Κοπή 3.8 Μηχανικές μικροκάτεργασίες 3.9 Ελαχίστο πάχος αποβλητου(Minimum chip thickness)[9-11,35] 3.10 Επίδραση κλιμάκας (Size effect)[9-11,30] 3.11 Θερμοκράσιες στις Μικροκόπες Κεφαλαίο τετάρτο Κατασκεύμ μοντελού και υλιιδατίον με τη Δημοσίευματη Προ Εργασία	28 28 30 30 32 33 33 35 36 37 39 40 DTYIIH 40 40
3.1 ΕΙΣΑΓΩΓΗ 3.2 Γεωμετρικα χαρακτηριστικα κοπής 3.3 Σύνθηκες κοπής 3.4 Μορφολογία και σχηματισμός του αποβλητου[9-14,21-24] 3.5 Ζώνες Παραμορφώσης 3.6 Μηχανική των Κοπών 3.7 Δύναμεις και τάσεις στην Ορθογωνική Κοπη. 3.8 Μηχανικές μικροκατέργασιες 3.9 Ελαχίστο πάχος αποβλητου(Μινιμύς chip thickness)[9-11,35] 3.10 Επίδραση και μαχώς (Size effect)[9-11,30] 3.11 Θερμοκρασίες στις Μικροκοπές Κεφαλαίο τεταρτο. Κατασκευή μοντελού και υλιμός μαιρομοιών εργάσιων 4.1 Εισαγώγη 4.1 Εισαγώγη	28 28 30 30 32 33 33 35 36 37 39 40 DTYIIH 40 40
3.1 ΕΙΣΑΓΩΓΗ 3.2 Γεωμετρικα χαρακτηριστικα κοπής	28 28 30 30 30 32 33 33 35 36 37 39 40)TYIIH 40 40 40 40 42
 3.1 ΕΙΣΑΓΩΓΗ 3.2 Γεωμετρικά χαρακτηριστικά κοπής 3.3 Σύνθηκες κοπής 3.4 Μορφολογία και σχηματισμός του αποβλητου[9-14,21-24]	28 30 30 32 33 33 35 36 37 39 40 40 40 40 40 40
 3.1 ΕΙΣΑΓΩΓΗ	28 28 30 30 32 33 33 35 36 37 39 40 40 40 40 40 40 40 40 40 40
 3.1 ΕΙΣΑΓΩΓΗ	28 28 30 30 32 33 33 35 36 37 39 40 DTYIIH 40 40 40 40 40 42 43 43 43
 3.1 ΕΙΣΑΓΩΓΗ	28 28 30 30 32 33 33 35 36 37 39 40 DTYIIH 40 40 40 40 40 42 43 43 45 5
 3.1 ΕΙΣΑΓΩΓΗ	28 28 30 30 32 33 33 35 36 37 39 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 50 50 50 50 50 50
 3.1 ΕΙΣΑΓΩΓΗ	28 28 30 30 32 33 33 35 36 37 39 40 DTYIIH 40 40 40 40 40 40 40 40 40 40 40
 3.1 ΕΙΣΑΓΩΓΗ	28 30 30 32 33 33 35 36 37 39 40 DTYIIH 40 40 40 40 40 42 43 43 43 45 50 52 53 54

4.10 Διεξαγωγή Προσομοιώσεων	
Πρωτή Προσομοίωση Μοντελογ	
Δεύτερη Προσομοίωση Μοντελού	
ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ	
ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΗΣ ΤΡΙΒΗΣ	
5.1 Егдагогн	
5.2 MONTEΛA ΤΡΙΒΗΣ	
5.3 MONTEAO COULOMB (CONSTANT COULOMB)	
5.4 ΜΟΝΤΕΛΟ ΤΡΙΒΗΣ ΤΗΣ ΔΙΑΤΜΗΣΗΣ (SHEAR)	
5.5 MONTEAO TPIBHΣ TOY ZOREV, STICK-SLIP	
Τριτή Προσομοίωση Μοντελογ	
ΠΡΟΣΟΜΟΙΩΣΕΙΣ ΜΟΝΤΕΛΩΝ ΤΡΙΒΗΣ STICK-SLIP	
Τεταρτή Προσομοίωση Μοντελού	
Πεμπτη Προσομοίωση Μοντελογ	
Έκτη Προσομοίωση Μοντελού	
	120
ΚΕΨΑΛΑΙΌ ΕΚΙΌ	······································
ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΟΥ ΥΛΙΚΟΥ	
ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΟΥ ΥΛΙΚΟΥ	
ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΟΥ ΥΛΙΚΟΥ 6.1 ΕΙΣΑΓΩΓΗ 6.2 Η ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΥΛΙΚΟΥ	
ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΟΥ ΥΛΙΚΟΥ 6.1 ΕΙΣΑΓΩΓΗ 6.2 Η ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΥΛΙΚΟΥ	
ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΟΥ ΥΛΙΚΟΥ 6.1 ΕΙΣΑΓΩΓΗ 6.2 Η ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΥΛΙΚΟΥ 6.3 ΜΟΝΤΕΛΟ ΥΛΙΚΟΥ ΤΟΥ ΟΧLΕΥ 6.4 ΜΟΝΤΕΛΟ ΥΛΙΚΟΥ ΤΩΝ JOHNSON-COOK (JC)	
ΚΕΨΑΛΑΙΟ ΕΚΤΟ MONTΕΛΟΠΟΙΗΣΗ ΤΟΥ ΥΛΙΚΟΥ 6.1 ΕΙΣΑΓΩΓΗ. 6.2 Η ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΥΛΙΚΟΥ 6.3 ΜΟΝΤΕΛΟ ΥΛΙΚΟΥ ΤΟΥ ΟΧLΕΥ 6.4 ΜΟΝΤΕΛΟ ΥΛΙΚΟΥ ΤΩΝ JOHNSON-COOK (JC) 6.5 ΜΟΝΤΕΛΟ ΥΛΙΚΟΥ ΖΕRILLI-ARMSTRONG.	129 129 129 131 131 132
ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΟΥ ΥΛΙΚΟΥ 6.1 ΕΙΣΑΓΩΓΗ. 6.2 Η ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΥΛΙΚΟΥ	129 129 129 131 131 132 133
ΚΕΨΑΛΑΙΟ ΕΚΤΟ MONTΕΛΟΠΟΙΗΣΗ ΤΟΥ ΥΛΙΚΟΥ 6.1 ΕΙΣΑΓΩΓΗ	129 129 129 131 131 132 133 133 135
ΚΕΦΑΛΑΙΌ ΕΚΤΟ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΟΥ ΥΛΙΚΟΥ 6.1 ΕΙΣΑΓΩΓΗ 6.2 Η ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΥΛΙΚΟΥ 6.3 ΜΟΝΤΕΛΟ ΥΛΙΚΟΥ ΤΟΥ ΟΧLΕΥ 6.4 ΜΟΝΤΕΛΟ ΥΛΙΚΟΥ ΤΩΝ JOHNSON-COOK (JC) 6.5 ΜΟΝΤΕΛΟ ΥΛΙΚΟΥ ΖΕRILLI-ARMSTRONG. 6.6 ΠΡΟΣΟΜΟΙΩΣΗ ΜΟΝΤΕΛΩΝ ΥΛΙΚΟΥ ΈΒΔΟΜΗ ΠΡΟΣΟΜΟΙΩΣΗ ΌΓΔΟΗ ΠΡΟΣΟΜΟΙΩΣΗ	129 129 129 131 131 132 133 133 135 143
ΚΕΦΑΛΑΙΟ ΕΚΤΟ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΟΥ ΥΛΙΚΟΥ 6.1 ΕΙΣΑΓΩΓΗ 6.2 Η ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΥΛΙΚΟΥ 6.3 ΜΟΝΤΕΛΟ ΥΛΙΚΟΥ ΤΟΥ ΟΧLΕΥ 6.4 ΜΟΝΤΕΛΟ ΥΛΙΚΟΥ ΤΟΝ JOHNSON-COOK (JC) 6.5 ΜΟΝΤΕΛΟ ΥΛΙΚΟΥ ΖΕΠΙLΙ-ARMSTRONG 6.6 ΠΡΟΣΟΜΟΙΩΣΗ ΜΟΝΤΕΛΩΝ ΥΛΙΚΟΥ ΈΒΔΟΜΗ ΠΡΟΣΟΜΟΙΩΣΗ ΟΓΔΟΗ ΠΡΟΣΟΜΟΙΩΣΗ ΚΕΦΑΛΑΙΟ ΌΓΔΟΟ	129 129 129 129 131 131 132 133 135 143 156
ΚΕΦΑΛΑΙΟ ΕΚΤΟ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΟΥ ΥΛΙΚΟΥ 6.1 ΕΙΣΑΓΩΓΗ. 6.2 Η ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΥΛΙΚΟΥ 6.3 ΜΟΝΤΕΛΟ ΥΛΙΚΟΥ ΤΟΥ ΟΧLΕΥ 6.4 ΜΟΝΤΕΛΟ ΥΛΙΚΟΥ ΤΟΥ ΟΧLΕΥ 6.4 ΜΟΝΤΕΛΟ ΥΛΙΚΟΥ ΤΩΝ JOHNSON-COOK (JC) 6.5 ΜΟΝΤΕΛΟ ΥΛΙΚΟΥ ΖΕΠΙLΙ-ARMSTRONG. 6.6 ΠΡΟΣΟΜΟΙΩΣΗ ΜΟΝΤΕΛΩΝ ΥΛΙΚΟΥ ΈΒΔΟΜΗ ΠΡΟΣΟΜΟΙΩΣΗ. ΟΓΔΟΗ ΠΡΟΣΟΜΟΙΩΣΗ. ΚΕΦΑΛΑΙΟ ΌΓΔΟΟ ΑΝΑΚΕΦΑΛΑΙΩΣΗ .	129 129 129 131 131 132 133 135 143 156
 ΚΕΦΑΛΑΙΟ ΕΚΤΟ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΟΥ ΥΛΙΚΟΥ 6.1 ΕιΣΑΓΩΓΗ. 6.2 Η ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΥΛΙΚΟΥ 6.3 ΜΟΝΤΕΛΟ ΥΛΙΚΟΥ ΤΟΥ ΟΧLΕΥ 6.4 ΜΟΝΤΕΛΟ ΥΛΙΚΟΥ ΤΟΥ ΟΧLΕΥ 6.4 ΜΟΝΤΕΛΟ ΥΛΙΚΟΥ ΤΩΝ JOHNSON-COOK (JC) 6.5 ΜΟΝΤΕΛΟ ΥΛΙΚΟΥ ΖΕΠΙLΙ-ΑRMSTRONG 6.6 ΠΡΟΣΟΜΟΙΩΣΗ ΜΟΝΤΕΛΩΝ ΥΛΙΚΟΥ ΈΒΔΟΜΗ ΠΡΟΣΟΜΟΙΩΣΗ. ΟΓΔΟΗ ΠΡΟΣΟΜΟΙΩΣΗ. ΚΕΦΑΛΑΙΟ ΌΓΔΟΟ ΑΝΑΚΕΦΑΛΑΙΩΣΗ 8.1 ΑΝΑΚΕΦΑΛΑΙΩΣΗ ΚΑΙ ΣΥΜΠΕΡΑΣΜΑΤΑ 	129 129 129 131 131 132 133 135 143 156 156 156
ΚΕΦΑΛΑΙΟ ΕΚΤΟ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΟΥ ΥΛΙΚΟΥ 6.1 ΕΙΣΑΓΩΓΗ 6.2 Η ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΥΛΙΚΟΥ 6.3 ΜΟΝΤΕΛΟ ΥΛΙΚΟΥ ΤΟΥ ΟΧLΕΥ 6.4 ΜΟΝΤΕΛΟ ΥΛΙΚΟΥ ΤΩΝ JOHNSON-COOK (JC) 6.5 ΜΟΝΤΕΛΟ ΥΛΙΚΟΥ ΖΕRILLI-ARMSTRONG 6.6 ΠΡΟΣΟΜΟΙΩΣΗ ΜΟΝΤΕΛΩΝ ΥΛΙΚΟΥ ΈΒΔΟΜΗ ΠΡΟΣΟΜΟΙΩΣΗ. ΟΓΔΟΗ ΠΡΟΣΟΜΟΙΩΣΗ. ΚΕΦΑΛΑΙΟ ΌΓΔΟΟ ΚΕΦΑΛΑΙΟ ΌΓΔΟΟ 8.1 ΑΝΑΚΕΦΑΛΑΙΩΣΗ ΚΑΙ ΣΥΜΠΕΡΑΣΜΑΤΑ 8.2 ΠΡΟΤΑΣΕΙΣ ΓΙΑ ΜΕΛΛΟΝΤΙΚΗ ΕΡΓΑΣΙΑ	129 129 129 131 131 132 133 135 143 156 156 156
ΚΕΦΑΛΑΙΟ ΕΚΤΟ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΟΥ ΥΛΙΚΟΥ 6.1 ΕΙΣΑΓΩΓΗ	129 129 129 131 131 132 133 135 143 156 156 156 157

Ευχαριστίες

Με την εκπόνηση της παρούσας διπλωματικής εργασίας ολοκληρώνονται οι σπουδές μου ως προπτυχιακός φοιτητής της σχολής Μηχανολόγων Μηχανικών του Εθνικού Μετσόβιου Πολυτεχνείου. Σε αυτό το σημείο θα ήθελα να εκφράσω τις ειλικρινείς ευχαριστίες μου στον επιβλέποντα Καθηγητή, κο Δημήτριο Ε. Μανωλάκο, Διευθυντή του Εργαστηρίου Τεχνολογίας των Υλικών για την ευκαιρία που μου έδωσε να ασχοληθώ με το ενδιαφέρον αυτό θέμα, για την παροχή της δυνατότητας χρήσης του εξοπλισμού του Εργαστηρίου του Τομέα των Κατεργασιών, καθώς επίσης και για την υποστήριξη που μου προσέφερε σε όλη τη διάρκεια εκπόνησης της διπλωματικής μου εργασίας.

Θερμά θα ήθελα να ευχαριστήσω επίσης, τον Διδάκτορα κο Άγγελο Μαρκόπουλο για την ουσιαστική και πολύτιμη καθοδήγηση που μου παρείχε, καθώς επίσης και για τις χρήσιμες συμβουλές του. Ακόμα θα ήθελα να ευχαριστήσω ιδιαιτέρως τον υποψήφιο Διδάκτορα κο Εμμανουήλ Γκιθώνα για την αμέριστη συνεχή βοήθεια του, τις χρήσιμες συμβουλές που μου παρείχε, όπως επίσης και για τη συμβολή του στην εκμάθηση του προγράμματος Πεπερασμένων Στοιχείων MSC.MARC. Επιπλέον, ευχαριστώ όλα τα μέλη του Εργαστηρίου Τεχνολογίας των Υλικών για την προθυμία βοήθειας σε οποιαδήποτε απορία και οποιοδήποτε ζήτημα.

Τέλος, την παρούσα διπλωματική μου εργασία την αφιερώνω στους γονείς μου, Ρούσιο και Αργέττα, τα αδέρφια μου Ιωάννη, Βασιλεια και Ευαγγελία, στην Κωνσταντίνα μου, για την αγάπη και για τη στήριξη τους όλα τα χρόνια. Δίχως αυτούς δεν θα έφτανα εδώ. Επίσης, την αφιερώνω στους φίλους μου και σε όλους όσους χαίρονται για τη σημερινή αποφοίτηση μου.

> Κωνσταντίνος Ρ. Μπουρμπάκης Ιανουάριος, 2014

ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΩΝ ΜΙΚΡΟΚΟΠΩΝ

1.1 Εισαγωγή

Οι κατεργασίες αποβολής υλικού είναι από τις πιο ευρέως χρησιμοποιούμενες τεχνικές παραγωγής στη βιομηχανία, για μετατροπή και διαμόρφωση των μετάλλων στα επιθυμητά σχήματα με την κατάλληλη ποιότητα επιφάνειας και την επιθυμητή ακρίβεια διαστάσεων. Σε αυτές τις κατεργασίες αφαιρείται προοδευτικά προκαθορισμένος όγκος μετάλλου με τη βοήθεια εργαλείου, με πλαστική παραμόρφωση του κατεργαζόμενου τεμαχίου υπό μορφή αποβλήτου, σε μέγεθος και σχήμα που ποικίλλει ανάλογα με τη κατεργασία.

Στην εποχή μας το ενδιαφέρον στον τομέα των κατεργασιών έχει επικεντρωθεί στην Μικρομηχανική. Η ζήτηση εξαρτημάτων με χαρακτηριστικά διαστάσεων της τάξης των μm ή και ακόμα των nm είναι ολοένα αυξανόμενη τα τελευταία χρόνια. Αυτό συμβαίνει εξαιτίας του γεγονότος ότι τέτοια εξαρτήματα βρίσκουν χρήση σε ένα μεγάλο εύρος εφαρμογών. Ο τομέας της πληροφορικής και των πληροφοριακών συστημάτων αποτελούν τον κύριο τομέα που ενσωματώνονται τέτοια εξαρτήματα. Άλλοι σημαντικοί τομείς είναι ο κλάδος της υγείας και της βιοϊατρικής τεχνολογίας, η αυτοκινητοβιομηχανία και ο κλάδος των τηλεπικοινωνιών. Μερικά χαρακτηριστικά παραδείγματα εφαρμογών αποτελούν οι μικρορευστομηχανικές αντλίες και βαλβίδες, τα μικροακροφύσια, μικροκαλούπια και μικροοπές καθώς και οπτικά εξαρτήματα. Την ίδια στιγμή, η ένταξη των μικροσυστημάτων στις περισσότερες εφαρμογές από τους προαναφερθέντες τομείς ενδιαφέροντος έχει δώσει μια ώθηση στη μικρό- και νανοπαραγωγή. Ως εκ τούτου έχει στραφεί το ενδιαφέρον των ερευνητών προς τα Μικροηλεκτρομηχανικά Συστήματα (Microelectromechanical systemes-MEMS) και τα Νανοηλεκτρομηχανικά Συστήματα (Nanoelectromechanical systems-NEMS) προηγμένης τεγνολογίας τα οποία αυξάνουν την απόδοση και περιορίζουν το κόστος. Στην εικόνα που ακολουθεί γίνεται φανερή η ολοένα αυξανόμενη ζήτηση της αγοράς για προϊόντα και εξαρτήματα με τα γαρακτηριστικά των MEMS.[1-3]

Εικόνα 1.1: Η χρονική εξέλιξη και η προβλέψεις για το τζίρο προϊόντων και εξαρτημάτων MEMS [4]

Για την παραγωγή τέτοιων μικροεξαρτημάτων απαιτείται η χρήση προηγμένων τεχνολογικά εφαρμογών. Στον τομέα των ηλεκτρονικών ειδών, για την παραγωγή ολοκληρωμένων κυκλωμάτων και τσιπ υπολογιστών, χρησιμοποιούνται διάφοροι μέθοδοι παραγωγής για τη τελική διαμόρφωση των πλακιδίων. Αυτοί μπορεί να είναι είτε προσθετικοί είτε αφαιρετικοί. Προϊόντα βασισμένα και κατασκευασμένα από πυρίτιο, παράγονται κυρίως με λιθογραφικές μεθόδους. Η κυριότερη λιθογραφική μέθοδος είναι η φωτολιθογραφία. Τα τελευταία χρόνια αναπτύχθηκαν νέες μέθοδοι ευρέως γνωστές ως Next Generation Lithographies (NGL) που αποτελούν τη νέα γενιά στις μεθόδους των λιθογραφιών, ώστε να εκπληρωθούν οι απαιτήσεις και η ζήτηση της αγοράς για ηλεκτρονικά εξαρτήματα με ακόμα μικρότερο μέγεθος και από πυρίτιο είναι:

- η λιθογραφία με χρήση ακτινών Χ
- η Extreme UV λιθογραφία
- η μέθοδος LIGA
- η μέθοδος SCAPEL
- η λιθογραφία με τη χρήση δέσμης ακτινών Ιόντων

Οι περισσότερες από τις παραπάνω μεθόδους των μικροκατεργασιών, είναι επίπεδες και έχουν περιορισμένη εφαρμογή σε υλικά πέρα του πυριτίου. Η τεχνολογική ανάπτυξη που παρατηρείται στον τομέα των μικροκατεργασιών οδηγείται και οφείλεται στην ολοένα αυξανόμενη ζήτηση της αγοράς και της ανάγκης της για προϊόντα που θα εκπληρώνουν τις απαιτήσεις της ταχεία αναπτυσσόμενης αγοράς ηλεκτρονικών ειδών.

1.2 Τεχνολογία των κατεργασιών και των μικροκατεργασιών.

Τεχνολογίες αναπτύσσονται για την διαμόρφωση και άλλων υλικών όπως μετάλλων, κεραμικών και πολυμερών υλικών. Οι κατεργασίες αυτές είναι της τάξης των μερικών μm μέχρι και αρκετά εκατοντάδων μm. Οι μικροκατεργασίες αυτές είναι, συμβατικές ή μη συμβατικές κατεργασίες κοπής. Με τον όρο κατεργασίες κοπής , ονομάζουμε τις μεθόδους διαμόρφωσης τεμαχίων μέσω της αποβολής του ανεπιθύμητου υλικού. Το τμήμα που κατεργαζόμαστε ονομάζεται συνήθως δοκίμιο και μπορεί να είναι είτε μεταλλικό είτε όχι, όπως για παράδειγμα πολυμερές, ξύλο, κεραμικό η ακόμα και σύνθετο. Παρακάτω θα αναφερθούμε μόνο στην κοπή μετάλλων. Το ανεπιθύμητο τμήμα υλικού συνήθως αποβάλλεται με τη μορφή αποβλήτου. Φαινόμενα εξάτμισης ή αποκόλλησης υλικού μπορεί να λάβουν χώρα κατά τη διαδικασία.

Τον όρο κοπή, συνήθως τον χρησιμοποιούμε για την περιγραφή διαμόρφωσης αποβλήτου το οποίο προκύπτει από την εισχώρηση κοπτικού υπό τη μορφή σφήνας, όταν υπάρχει σχετική κίνηση μεταξύ του δοκιμίου και του εργαλείου. Οι κατεργασίες αυτές στις οποίες συμπεριλαμβάνονται η τόρνευση, το φρεζάρισμα, η διάτρηση και η εσωτερική τόρνευση, συνήθως αναφέρονται στην βιβλιογραφία ως παραδοσιακές κατεργασίες και στο μικροσκοπικό επίπεδο ως μικροκατεργασίες ή μηχανικές μικροκατεργασίες. Κατεργασίες όπως η λείανση, είναι κατεργασίες κοπής και μάλιστα αρκετά σημαντικές για την σύγχρονη βιομηχανία. Άλλες μη συμβατικές κατεργασίες οι οποίες μπορεί να περιλαμβάνουν ή όχι φυσική επαφή μεταξύ του κοπτικού εργαλείου και του δοκιμίου ή μπορεί να μη χρησιμοποιούν κοπτικό εργαλείο με τον ίδιο τρόπο που χρησιμοποιείται στις συμβατικές μεθόδους κατεργασιών, είτε χρησιμοποιούν θερμική ή χημική ενέργεια για την αποβολή υλικού από το δοκίμιο είναι :

- οι κατεργασίες με την χρήση υπερήχων (USM)
- οι κατεργασίες πίδακα νερού
- οι κατεργασίες ηλεκτροδιάβρωσης (EDM)
- οι κοπές με την χρήση laser
- και οι ηλεκτροχημικές κατεργασίες πχ ηλεκτροχημική λείανση (ECG)

Στις μέρες μας, οι παραπάνω κατεργασίες βρίσκονται στην πρώτη γραμμή της βιομηχανικής πρακτικής και οι εφαρμογές τους έχουν φτάσει σε υψηλό επίπεδο παραγωγικής ωριμότητας. Μερικές από αυτές έχουν το πρόθεμα "μίκρο" στην ονομασία τους για να δηλώσουν ότι είναι κατεργασίες που ακολουθούν και βασίζονται στις ίδιες αρχές όπως οι πρωτότυπες στο μακρόκοσμο. Χαρακτηριστικά τέτοια παραδείγματα μικροκατεργασιών αποτελούν το μικροφρεζάρισμα, η μικροδιάτρηση κτλ. Χάρις τις μικροκατεργασίες έχουμε την δυνατότητα να κατεργαστούμε πληθώρα μετάλλων, με πολύπλοκα σχήματα επιτυγχάνοντας τέλειο φινίρισμα και σφικτές ανοχές. Τα παραπάνω σαφέστατα πλεονεκτήματα των μηχανικών μικροκατεργασιών, τις καθιστούν σε κυρίαρχη θέση όσον αφορά τη κατασκευή εξαρτημάτων διαφόρων τεχνολογικών τομέων.[5] Οι μικροκατεργασίες (micromachining) στη μηχανολογία αφορούν την κατασκευή αντικειμένων με διαστάσεις 1 έως 999 μm. Στη διεθνή βιβλιογραφία, ο όρος micromachining αναφέρεται στην κατασκευή μινιατούρων και προϊόντων με διαστάσεις από 1 έως 500 μm [5]. Συνήθως όμως, αυτό το πεδίο αναφέρεται σε διαστάσεις από 0.1 έως 100 μm. Βέβαια, ο όρος «μικρό», δεν είναι απαραίτητο να χρησιμοποιείται για να περιγράψει μόνο το μέγεθος στο οποίο αναφερόμαστε, αλλά και για να υποδείξει τη δυσκολία κατασκευής. Γενικά, δηλαδή, ο παραπάνω όρος αναφέρεται στην όλη φιλοσοφία και τα χαρακτηριστικά των μικροπροϊόντων. Η μετάβαση σε όλο και μικρότερες κλίμακες στις κατεργασίες προϋποθέτει δύο ενέργειες. Η πρώτη αφορά στην ελάττωση της μοναδιαίας αφαίρεσης υλικού UR και η δεύτερη στη βελτίωση της ακρίβειας του εξοπλισμού. Ο αντικειμενικός στόχος για την ομαλή μετάβαση στην κλίμακα των μικροκατεργασιών είναι η UR να παραμένει μικρότερη του τεμαχίου σε έναν ικανοποιητικό βαθμό και η ακρίβεια να μεγαλώνει με τέτοιο τρόπο, έτσι ώστε ο λόγος των ανοχών προς τις διαστάσεις του τεμαχίου να παραμένει ο ίδιος

Παρότι οι περισσότερες μη συμβατικές μέθοδοι των μικροκατεργασιών γρησιμοποιούν τις ίδιες αρχές που εφαρμόζονται στον μακρόκοσμο και στον μικρόκοσμο, το ίδιο δεν ισχύει και για τις μηχανικές μικροκατερκασίες. Σε αυτή την περίπτωση το πρόθεμα "μίκρο" είναι πολύ σημαντικό δεδομένου ότι μια "υποβάθμιση" της κοπής σε κλίμακα μικροκοπής για παράδειγμα την καθιστά ιδιαίτερα πιο πολύπλοκη. Οι μικρές διαστάσεις του δοκιμίου,του κοπτικού εργαλείου, του βάθους κοπής κτλ εγείρουν ένα μεγάλο αριθμό ζητημάτων, τα οποία μπορεί να μη διαδραματίζουν σημαντικό ρόλο στις παραδοσιακές κατεργασίες, αλλά αποτελούν μείζον θέμα για τις μικροκατεργασίες. Οι μηχανισμοί διαμόρφωσης του αποβλήτου επηρεάζονται από δύο σημαντικά φαινόμενα που εμφανίζονται. Το ελάχιστο πάχος αποβλήτου (minimum chip thickness) και το φαινόμενο κλίμακας (size effect). Και τα δύο φαινόμενα θα αναλυθούν στην συνέχεια. Έτσι προκύπτουν περιορισμοί λόγω μεγέθους. Η διεξαγωγή πειραμάτων δεν είναι πάντα εφικτή να πραγματοποιηθεί για να ξεπεραστούν τα προβλήματα κατασκευής εξαρτημάτων σε μίκρο και νανοκλίμακα. Επιπλέον, πρέπει να ικανοποιούνται παράμετροι όπως η αυξημένη ζήτηση, η καινοτομία, η αξιοπιστία και η μείωση του κόστους παραγωγής. Έτσι έχουν αναπτυχθεί οι τεχνικές της μοντελοποίησης και της προσομοίωσης και συνεισφέρουν στην προσπάθεια ερευνητών και μηχανικών για τον περιορισμό του πειραματικού χρόνου και του χρόνου των δοκιμών. Ακόμα μας δίνουν τη δυνατότητα να δούμε πολύπλοκα φαινόμενα, να διευρύνουμε τις δυνατότητές μας, να περιορίσουμε τη πολυπλοκότητα και να αυξήσουμε την ακρίβεια βελτιστοποιώντας τις κατεργασίες, άρα και τα τελικά προϊόντα.

1.3 Εφαρμογές των Μικροκατεργασιών

Οι μικροκατεργασίες είναι απαραίτητες σε διάφορους κλάδους της βιομηχανίας και της καθημερινότητας, και για το λόγο αυτό, συνεχώς βελτιώνονται και νέες τεχνικές ανακαλύπτονται. Οι κύριες εφαρμογές αφορούν την ιατρική (αισθητήρες, φακοί, αναίμακτη χειρουργική, βηματοδότες), την πληροφορική (κεφαλές ανάγνωσης σκληρών δίσκων, κεφαλές εκτυπωτών ink-jet) και την αυτοκινητοβιομηχανία (αισθητήρες όπως επιταχυνσιόμετρα κλπ). Άλλες εφαρμογές αφορούν αισθητήρες, επενεργητές, μικροοπτικά συστήματα και καλούπια έγχυσης πλαστικών ή μεταλλικών μικροπροϊόντων. Στις εικόνες που ακολουθούν παρουσιάζονται αντικείμενα που κατασκευάζονται με μικροκατεργασίες:

Εικόνα 1.2: Εφαρμογές μικροκατεργασίων [5]

1.4 Διαφορά Μοντελοποίησης και Προσομοίωσης

Για τους μηχανικούς, η χρήση μεθόδων μοντελοποίησης για την ανάπτυξη ενός προϊόντος αποτελεί κοινή πρακτική. Ως μοντέλο μπορούμε να ορίσουμε ένα θεωρητικό σύστημα το οποίο είναι ισοδύναμο με το πραγματικό και έχει τις ίδιες ιδιότητες και χαρακτηριστικά με το πρωτότυπο. Χρησιμοποιείται για διερεύνηση, υπολογισμούς και επεξήγηση πειραμάτων τα οποία θα ήταν πολύ ακριβό ή ακόμα και αδύνατο να πραγματοποιηθούν. Τα μοντέλα επιτρέπουν γενικές παραδοχές για στοιχεία, τη δομή και τη συμπεριφορά ως τμήμα της πραγματικότητας. Από την άλλη η προσομοίωση είναι η μίμηση μιας δυναμικής διαδικασίας με ένα μοντέλο, με σκοπό να αποκομίσουμε γνώση η οποία θα μπορέσουμε να την μεταφέρουμε και να την αξιοποιήσουμε στην πραγματικότητα.[6]

1.5 Οφέλη που προκύπτουν από τη μοντελοποίηση

Στις μέρες μας η πλειονότητα των ερευνητών εφαρμόζει και αξιοποιεί την μοντελοποίηση των κατεργασιών για τη προβλεψιμότητα που παρέχουν στην απόδοση μιας κοπής και για την βοήθεια που παρέγουν στην επίλυση πρακτικών προβλημάτων που εμφανίζονται στη βιομηχανία. Σημαντικοί παράμετροι των κατεργασιών αποτελούν, οι δυνάμεις κοπής, οι θερμοκρασίες, η μορφολογία του αποβλήτου, οι τάσεις και οι παραμορφώσεις. Τα παραπάνω μπορούν πλέον να υπολογιστούν προτού πραγματοποιηθεί η οποιαδήποτε κοπή. Η προσέγγιση που υπήρχε για πολλαπλές δοκιμές, έτσι ώστε να βελτιώσουμε το τελικό προϊόν, είναι πολύ πιο επίπονη, πιο δαπανηρή και χρονοβόρα. Έτσι χάρις τη μοντελοποίηση εξοικονομούνται πόροι, επιτυγχάνεται βελτιστοποίηση στο αποτέλεσμα και μειώνεται το συνολικό κόστος. Από τα παραπάνω δεν προκύπτει ότι παραγκωνίζεται ο ρόλος της πειραματικής διερεύνησης, καθώς στις περισσότερες των περιπτώσεων είναι απαραίτητη η τελική επικύρωση των αποτελεσμάτων που προέκυψαν. Ο μόνος τρόπος για να επιτευχθεί αυτό είναι να δοκιμαστεί το τελικό μας μοντέλο στις πραγματικές συνθήκες και να γίνει η τελική σύγκριση των αποτελεσμάτων. Ωστόσο η μοντελοποίηση μειώνει σημαντικά την πειραματική εργασία. Επιπλέον η μοντελοποίηση και τα πειράματα συμβάλλουν στην καλύτερη κατανόηση θεμελιωδών ζητημάτων της θεωρίας των κατεργασιών. Αυτό σχηματίζει ένα βρόχο ανάδρασης ζωτικής σημασίας για την έρευνα της κατεργασίας, καθώς όσο καλύτερα κατανοούμε τα αποτελέσματα που προκύπτουν από την κατεργασία, τόσο και αυτά με την σειρά τους θα οδηγούν σε ολοένα και καλύτερα μοντέλα των κατεργασιών και ούτω καθεξής. Όπως προκύπτει και από την δημοσίευση του CIRP [7],υπάρχουν δύο διαφορετικά "παραδοσιακά σχολεία" στα οποία μπορεί να κατανεμηθεί η μοντελοποίηση των κατεργασιών. Στην πρώτη η μοντελοποίηση μπορεί να αντιμετωπιστεί ως μηγανική αναγκαιότητα, ενώ στη δεύτερη ως μια επιστημονική πρόκληση. Μακροπρόθεσμα και οι δύο "σχολές" οδηγούν και παράγουν ακριβή και αξιόπιστα μοντέλα προς όφελος της βιομηχανίας και κατ' επέκταση και της κοινωνίας μας.

1.6 Δυσκολίες κατά τη μοντελοποίηση

Η βασική δυσκολία που παρατηρείται κατά τη μοντελοποίηση είναι ο μεγάλος αριθμός μεταβλητών και παραμέτρων οι οποίες πρέπει να ληφθούν υπόψη κατά την κατασκευή του εκάστοτε μοντέλου. Το παραπάνω σε συνάρτηση με το γεγονός ότι κάθε μοντέλο έχει τις δικές του ιδιαιτερότητες και συντελεστές, καθιστούν αδύνατη την ύπαρξη ενός και μόνο μοντέλου το οποίο θα μπορούσε να εφαρμοστεί σε οποιαδήποτε περίπτωση.

Άλλη μια σημαντική δυσκολία έγκειται στο γεγονός ότι στο συγκεκριμένο είδος κατεργασιών ασκούνται υψηλές τάσεις και καταπονήσεις σε ελάχιστο όγκο και με μεγάλη ταχύτητα. Οι μηχανισμοί σχηματισμού του αποβλήτου είναι αρκετά πολύπλοκοι και αυτοί με τη σειρά τους οδηγούν σε αντίστοιχα πολύπλοκες θεωρίες και σύνθετα μοντέλα τα οποία αντιπροσωπεύουν αυτές τις θεωρίες. Συνεπώς, ως επακόλουθο τα μοντέλα μικροκοπών πρέπει πάντα να εμπεριέχουν απλουστεύσεις, έτσι ώστε να μπορούν να ενσωματώνουν την εκάστοτε θεωρία. Όμως σε αυτή την

περίπτωση, ελλοχεύει πάντα ο κίνδυνος της υπεραπλούστευσης. Τα αποτελέσματα θα είναι είτε ανακριβή και ως εκ τούτου λανθασμένα, είτε τα αποτελέσματα ή τα μοντέλα θα ισχύουν μόνο για πολύ συγκεκριμένες και περιορισμένες περιπτώσεις. Θα πρέπει εδώ να επισημανθεί ότι οποιαδήποτε είδος μοντέλου είναι πάντα εφαρμόσιμό εντός των ορίων των τιμών εισόδου των εκάστοτε δεδομένων. Ωστόσο, το πεδίο εφαρμογής πρέπει να είναι όσο το δυνατόν διευρυμένο, προκειμένου τα μοντέλα να έχουν πρακτική χρήση.

Επίσης άλλη μία δυσκολία προκύπτει από την πληθώρα που παρατηρείται στο συνδυασμό δοκιμίων, κοπτικών εργαλείων με τις εκάστοτε ιδιότητες τους και γεωμετρικά τους χαρακτηριστικά. Ακόμα σημαντικό ρόλο διαδραματίζουν η ταχύτητα κοπής, η πρόωση, το βάθος κοπής, η χρήση η όχι υγρών κοπής καθώς επίσης και ο συνδυασμός όλων των παραπάνω στο ίδιο σύστημα, αυξάνει την πολυπλοκότητα του μοντέλου. Όλες οι παραπάνω μεταβλητές αποτελούν τα δεδομένα που πρέπει να εισαχθούν προκειμένου να δημιουργηθεί το μοντέλο μας. Είναι προφανές ότι η εισαγωγή διαφορετικών παραμέτρων ως δεδομένα, θα επιφέρουν σημαντική μεταβολή στις δυνάμεις κοπής, στις θερμοκρασίες καθώς επίσης και στη μορφολογία του αποβλήτου.[8]

1.7 Λόγοι για την αποτυχία ενός μοντέλου

Ένα μοντέλο αποτυγχάνει όταν δεν μπορεί να παρέχει ακριβή αποτελέσματα. Επίσης, λόγοι αποτυχίας αποτελούν η πολυπλοκότητα του μοντέλου, που να το καθιστά δύσχρηστο και αργό για χρήση στην πράξη. Πολλοί λόγοι μπορεί να συντελέσουν στην αποτυχία ενός μοντέλου. Τους πιο συνήθεις αποτελούν η έλλειψη εισαγωγής ακριβών δεδομένων, η ανεπαρκής ενσωμάτωση σημαντικών παραμέτρων, καθώς επίσης και η κατάχρησης μιας τεχνικής μοντελοποίησης

1.8 Είδη μοντελοποίησης

Το μοντέλο μας θα πρέπει να μας παρέχει αξιόπιστες απαντήσεις και αποτελέσματα σύμφωνα πάντα με τα εκάστοτε δεδομένα εισαγωγής. Έτσι υπάρχουν πέντε γενικές κατηγορίες μοντελοποίησης:[9]

- η εμπειρική
- η αναλυτική
- η μηχανιστική
- η αριθμητική
- η τεχνητή νοημοσύνη

Συνήθως πιο πολύπλοκα μοντέλα απαιτούν περισσότερες παραμέτρους ως δεδομένα εισαγωγής και άλλα μοντέλα παρουσιάζουν δυσκολία και δεν είναι σε θέση να προβλέψουν μερικές παραμέτρους από τα αποτελέσματα τους.

Στις αρχές της μοντελοποίησης της κοπής μετάλλων η φθορά του κοπτικού εργαλείου ήταν ύψιστης σημασίας για τους ερευνητές. Στην εποχή μας όμως το ενδιαφέρον τους έχει επικεντρωθεί σε άλλους τομείς όπως η ακρίβεια και ο προσδιορισμός των κοπτικών δυνάμεων, ο υπολογισμός των θερμοκρασιών και το είδος του παραγόμενου αποβλήτου. Επιπλέον, η βιομηχανία ενδιαφέρεται για

κατεργασίες υψηλής ταχύτητας οι οποίες θα είναι φιλικές στο περιβάλλον και θα περιορίζουν ή ακόμα και θα εξαλείφουν την χρήση κοπτικών υγρών.

Το αναλυτικό μοντέλο προβλέπει και εξάγει τα απαιτούμενα αποτελέσματα όπως παραδείγματος χάρη τις δυνάμεις κοπής, μέσω των απαιτούμενων εξισώσεων και των σταθερών που προκύπτουν από τις βάσεις δεδομένων για το εκάστοτε υλικό του δοκιμίου. Οι σταθερές αυτές έχουν προκύψει από σειρές πειραμάτων. Σημαντικό μειονέκτημα αποτελεί ότι για σπάνιες περιπτώσεις υλικών και άλλων παραμέτρων δεν υπάρχουν απαραίτητα και αξιόπιστα ακριβή αποτελέσματα.

Από την άλλη, με τη Μέθοδο των Πεπερασμένων Στοιχείων μπορούμε να διεξάγουμε σε συνδυασμό θερμο-μηχανικές αναλύσεις, οι οποίες όμως απατούν αυξημένη υπολογιστική ισχύ για να εξάγουν ακριβή αποτελέσματα.

Ακόμα μια τεχνική μοντελοποίησης είναι μέσω της χρήσης τεχνητής νοημοσύνης. Η συγκεκριμένη τεχνική συνήθως μας παρέχει απλούστερα και γρήγορα αποτελέσματα τα οποία όμως έχουν τη δυνατότητα να επικεντρωθούν σε μία παράμετρο ή ακόμα και σε μια συγκεκριμένη περιοχή του δοκιμίου. Είναι αλήθεια ότι η επιλογή της τεχνικής της μοντελοποίησης κυρίως εξαρτάται από τις γνωστές παραμέτρους και τα δεδομένα της κατεργασίας μας.

Λαμβάνοντας υπόψη όλα τα παραπάνω και αφού αναφερθήκαμε σε όλα τα είδη και τις τεχνικές μοντελοποίησης, καταλήγουμε ότι η μέθοδος των Πεπερασμένων Στοιχείων προσφέρει τη δυνατότητα για πιο ακριβείς αναπαραστάσεις μοντέλων διαφόρων κατεργασιών. Έτσι, παραδείγματος χάρη, μπορούμε να αναπαραστήσουμε τρισδιάστατα μοντέλα, τα οποία αξιοποιώντας τις ισχυρές υπολογιστικές τους δυνατότητες μπορούν σε εύλογο χρονικό διάστημα να διεξάγουν τους απαραίτητους και πολύπλοκους υπολογισμούς που απαιτούνται. Συνεπώς η χρήση λογισμικών Πεπερασμένων Στοιχείων αποτελεί πλέον την πρώτη επιλογή των ερευνητών για τη μοντελοποίηση μηχανικών κατεργασιών.

ΚΕΦΑΛΑΙΟ ΔΕΥΤΕΡΟ

ΣΤΟΧΟΣ ΚΑΙ ΥΛΟΠΟΙΗΣΗ

2.1 Εισαγωγή

Στόχος της παρούσας διπλωματικής εργασίας είναι η κατασκευή ενός μοντέλου μικροκοπής και η εξέταση της επίδρασης διαφόρων θεωριών για την μοντελοποίηση της τριβής και της καταστατικής εξίσωσης του τεμαχίου. Για να γίνει αυτή η. διερεύνηση θα βασιστούμε σε αντίστοιχες εργασίες που έχουν γίνει στο μακρόκοσμο.

2.2 Μέθοδος πεπερασμένων στοιχείων

Στις αρχές της δεκαετίας του 1970 άρχισαν να δημοσιεύονται, τα πρώτα άρθρα και οι πρώτες πρωτοποριακές εργασίες που αφορούσαν την μοντελοποίηση διαφόρων κατεργασιών με την Μέθοδο των Πεπερασμένων στοιχείων (FEM). Με τα χρόνια και την αλματώδη πρόοδο που συντελούνταν στον τομέα των ηλεκτρονικών υπολογιστών, με την ραγδαία ανάπτυξη της υπολογιστικής ισχύος τους, καθώς επίσης και με την ανάπτυξη των πρώτων εμπορικά διαθέσιμων λογισμικών Πεπερασμένων Στοιχείων, οι τεχνικές με πεπερασμένα στοιχεία άρχισαν να χρησιμοποιούνται ευρέως από τους ερευνητές για τη μοντελοποίηση των κατεργασιών.

Στις μέρες μας τα μοντέλα Πεπερασμένων Στοιχείων χρησιμοποιούνται για να διευρύνουμε τις γνώσεις μας σε βασικά ζητήματα των μηχανισμών αποβολής υλικού, αλλά κυρίως για την δυνατότητα που μας παρέχουν να προβλέψουμε σημαντικές παραμέτρους όπως : δυνάμεις κοπής, οι θερμοκρασίες, οι τάσεις κ.α. που αποτελούν απαραίτητοι παράμετροι για την πρόβλεψη του τελικού αποτελέσματος, όπως επίσης και της ποιότητας του τελικού προϊόντος με ένα έγκαιρο και ανέξοδο τρόπο.

Απαραίτητες προϋποθέσεις που πρέπει να τηρούνται για την καλύτερη απόδοση και το βέλτιστο αποτέλεσμα είναι:

- a) το θεωρητικό επιστημονικό υπόβαθρο
- b) η εμπειρία από την παραγωγική διαδικασία
- c) η ακρίβεια δεδομένων
- d) οι σχεδιαστικές δεξιότητες και οι γνώσεις μοντελοποίησης

Από τον συνδυασμό όλων των παραπάνω προκύπτει το μοντέλο από το οποίο εξάγονται όλα τα απαραίτητα αποτελέσματα.

2.3 Διακριτοποίηση (Meshing)

Η μοντελοποίηση με τη μέθοδο των πεπερασμένων στοιχείων ξεκινά με τη διακριτοποίηση των συνεχών μέσων της κατεργασίας. Ο χώρος που αυτά καταλαμβάνουν χωρίζεται συνήθως σε τετράγωνα ή σε τρίγωνα (σε δισδιάστατο πρόβλημα, στο τρισδιάστατο έχουμε ανάλογο πλέγμα) και ενώνονται αυτά τα πεπερασμένα στοιχεία με κόμβους. Οι κόμβοι μας δίνουν πληροφορίες για το μέγεθος ή τα μεγέθη που μας ενδιαφέρουν και ο βαθμός ελευθερίας τους προσδιορίζεται από τον αριθμό των μεγεθών που αναφέρονται σε αυτούς, δηλαδή των αγνώστων. Το πλέγμα που δημιουργείται δεν είναι πάντα ομοιόμορφο. Ειδικά σήμερα μπορούν να κατασκευαστούν πλέγματα πυκνότερα σε περιοχές του χώρου μοντελοποίησης που μας ενδιαφέρουν και ο βαθιότερα σε περιοχές του χώρου μοντελοποίησης που μας ενδιαφέρουν περισσότερο και αραιότερα σε περιοχές μικρού ενδιαφέροντος, με χρήση ειδικών αλγορίθμων. Αναλυτικότερα, οι προσαρμοστικές τεχνικές πλέγματος θα παρουσιαστούν στις παραγράφους που ακολουθούν.

2.4 Προσαρμοστικές τεχνικές πλέγματος (Adaptive Meshing)

2.4.1 Τεχνική Remeshing

Μια προσαρμοστική διαδικασία κατασκευής πλέγματος είναι η τεχνική remeshing,η οποία περιλαμβάνει τη δημιουργία ενός νέου πλέγματος πέραν του ήδη διαθέσιμου παραμορφωμένου. Έτσι το ήδη υπάρχον παραμορφωμένο πλέγμα αντικαθίσταται από ένα νέο. Ειδικότερα στις κοπές μετάλλων που μας αφορούν, η δημιουργία του νέου πλέγματος και η διαδικασία του Remeshing, πραγματοποιείται όταν το κοπτικό εργαλείο που εισχωρεί στο δοκίμιο ξεπεράσει μια προκαθορισμένη από τον χρήστη τιμή. Στις εικόνες που ακολουθούν, γίνεται φανερό ο τρόπος δημιουργίας της νέας επιφάνειας και του νέου στοιχείου στο δοκίμιο, ενώ το κοπτικό εισχωρεί στο ήδη διαμορφωμένο πλέγμα.

Εικόνα 2.1 : Διαχωρισμός αποβλήτου από το δοκίμιο με τη τεχνική του Remeshing.[10]

2.4.2 Τεχνική Refinement

Η δεύτερη τεχνική είναι η τεχνική Refinement. Όπως προαναφέρθηκε η τεχνική αυτή βασίζεται στην αύξηση της πυκνότητας του πλέγματος τοπικά, μέσω του αντίστοιχου περιορισμού του μεγέθους των τοπικών στοιχείων. Η εικόνα που ακολουθεί εξηγεί καλύτερα την τεχνική.

Εικόνα 2.2: a) Αρχικό τοπικό πλέγμα b) Νέο πλέγμα μειωμένου μεγέθους.

2.4.3 Τεχνική εξομάλυνσης (Smoothing)

Η τελευταία μέθοδος που χρησιμοποιείται είναι η τεχνική της εξομάλυνσης (Smoothing adaptive technique). Με τη τεχνική αυτή επιτυγχάνουμε αναδιάρθρωση της διάταξης των κόμβων, έτσι ώστε να επιτευχθεί και να μας παρέχει το καλύτερο δυνατό αποτέλεσμα για το σχηματισμό του στοιχείου του πλέγματος μας ,όπως φαίνεται στην εικόνα που ακολουθεί:

Εικόνα 2.3: Smoothing a) Αρχικό τοπικό πλέγμα b) Νέα αναδιορθωμένη διάταξη πλέγματος.[11]

Από την εφαρμογή των τριών παραπάνω τεχνικών καταλήγουμε ότι οποιαδήποτε προσαρμοστική μέθοδος και αν εφαρμοστεί, συμβάλει στον περιορισμό των λαθών που συντελούνται κατά τη διαδικασία των υπολογισμών. Συνεπώς, αυξάνουν την ακρίβεια της προσομοίωσης. Από όλα τα παραπάνω προκύπτει η αναγκαιότητα χρήσης των προσαρμοστικών τεχνικών δημιουργίας πλέγματος στις προσομοιώσεις Πεπερασμένων Στοιχείων. Ειδικότερα δε σε προσομοιώσεις που λαμβάνουν χώρα σημαντικές πλαστικές παραμορφώσεις, όπως οι κοπές μετάλλων και οι διαμορφώσεις υλικού, η χρησιμοποίηση τους κρίνεται απαραίτητη για την έκβαση του τελικού αποτελέσματος.

Εικόνα 2.4: Παράδειγμα διακριτοποίησης[9]

2.5 Από την διακριτοποίηση στους τελικούς υπολογισμούς

Έπειτα από την εφαρμογή της διακριτοποίησης και τη δημιουργία του πλέγματος και των στοιχείων μας, στη συνέχεια δίνονται ιδιότητες στα στοιχεία ανάλογα με τις ιδιότητες του μέσου που μοντελοποιούν και δίνονται οριακές συνθήκες στους κόμβους. Τέλος λύνονται οι αλγεβρικές εξισώσεις που είναι σε μητρωϊκή μορφή, και υπολογίζονται οι τιμές κάθε βαθμού ελευθερίας. Προφανώς, όσο περισσότερους κόμβους έχουμε, τόσο πιο καλά προσεγγίζεται το πραγματικό πρόβλημα που έχει άπειρους (θεωρητικά). Βέβαια ο υπολογισμός κάθε πεπερασμένου στοιχείου απαιτεί υπολογιστικό χρόνο και έτσι δεν είναι δυνατό να αυξήσουμε υπερβολικά τον αριθμό των κόμβων αν θέλουμε να έχουμε αποτέλεσμα σε λογικό χρόνο. Η χρήση του υπολογιστή επιβάλλεται για τη μοντελοποίηση ενός προβλήματος με FEM και εκτός

των γρήγορων υπολογισμών, μπορεί να δώσει τα αποτελέσματα σε πιο παραστατική μορφή.

Πιο συγκεκριμένα για τις κατεργασίες, δεν είναι πλέον απαραίτητος ο προγραμματισμός όλης της παραπάνω διαδικασίας, καθώς κυκλοφορούν αξιόπιστοι εμπορικοί κώδικες που είναι συμβατοί με προσωπικούς υπολογιστές. Εισάγεται η γεωμετρία της κατασκευής σε ένα πρόγραμμα CAD και δημιουργείται το τρισδιάστατο μοντέλο. Χωρίζεται το μοντέλο σε πεπερασμένα στοιχεία και αφού ετοιμαστεί το πλέγμα επιλέγεται το είδος της επίλυσης και εισάγονται τα επιπλέον δεδομένα που απαιτούνται. Παραδείγματος χάριν, αν επιλεγεί να λυθεί το μοντέλο μιας ορθογωνικής κοπής θα πρέπει να δοθούν τα δεδομένα για την ταχύτητα κοπής, το βάθος κοπής και την πρόωση. Αυτή η διαδικασία γίνεται με προγράμματα που αποκαλούνται pre processor. Όταν ετοιμαστούν τα δεδομένα για επίλυση εισάγονται σε ένα πρόγραμμα το οποίο θα κάνει την επίλυση του προβλήματος. Τέτοιου είδους προγράμματα λέγονται solver και χρησιμοποιούν για τις επιλύσεις αριθμητικές μεθόδους. Όταν τελειώσει η επίλυση πρέπει να χρησιμοποιηθεί ένα πρόγραμμα, που αποκαλείται post processor, για να μπορέσει ο μελετητής να δει και να επεξεργαστεί τα αποτελέσματα. Τα παραπάνω προγράμματα μπορεί να αποτελούν και επιμέρους τμήματα του ίδιου προγράμματος.

Δύο είναι οι βασικότεροι τύποι μοντέλων Πεπερασμένων Στοιχείων για την προσομοίωση διεργασιών κατεργασίας, του Euler και του Lagrange.

2.6 Μοντέλο του Euler

Κατά τη διατύπωση του Euler, η οποία εμφανίστηκε πρώτη, το πλέγμα των πεπερασμένων στοιχείων είναι χωρικά σταθερό και το υλικό ρέει μέσα από αυτό, προκειμένου να προσομοιώσει το σχηματισμό του αποβλήτου. Τα πλεονεκτήματα της μεθόδου είναι ότι η ποσότητα των στοιχείων για τη μοντελοποίηση του τεμαχίου και του αποβλήτου που χρειάζονται για την ανάλυση είναι μικρή, επιτρέποντας τη μείωση του χρόνου ανάλυσης και το γεγονός ότι δεν υφίστανται σοβαρή στρέβλωση, δεδομένου ότι το πλέγμα και επομένως η μορφή του παραγόμενου αποβλήτου είναι εκ των προτέρων γνωστή. Τα μειονεκτήματα της μεθόδου είναι ότι απαιτεί περίπλοκο προγραμματισμό και ότι τα πειραματικά δεδομένα πρέπει να είναι γνωστά πριν από την κατασκευή του μοντέλου, προκειμένου να καθοριστεί η γεωμετρία του αποβλήτου. Αυτή η μέθοδος χρησιμοποιείται ακόμα από μερικούς ερευνητές για την προσομοίωση της σταθερής κατάστασης της διαδικασίας κοπής.[9-11]

2.7 Μέθοδος του Lagrange

Από την άλλη, στη μεταγενέστερη μέθοδο Lagrange, τα στοιχεία είναι συνδεδεμένα με το υλικό και το εργαλείο έχει προχωρήσει προς το τεμάχιο. Το απόβλητο σχηματίζεται με τη χρήση ενός κριτηρίου διαχωρισμού μπροστά από την ακμή του εργαλείου. Μέχρι στιγμής γεωμετρικά ή φυσικά κριτήρια έχουν προταθεί, με την συμμετοχή της κρίσιμης απόστασης μεταξύ εργαλείου και τεμαχίου, των κρίσιμων τιμών για παράδειγμα πίεσης ή παραμόρφωσης, ή ακόμα και κριτήρια διάδοσης της ρωγμής. Ένα μειονέκτημα της μεθόδου έχει να κάνει με τη μεγάλη παραμόρφωση του πλέγματος που παρατηρείται κατά την προσομοίωση. Λόγω της σύνδεσης του πλέγματος στο υλικό του τεμαχίου, το πλέγμα καταστρέφεται λόγω της πλαστικής παραμόρφωσης στη ζώνη κοπής. Για να ξεπεραστεί αυτό, συνήθως εφαρμόζεται ένας συνεχής επανασχηματισμός του πλέγματος και μία προσαρμογή του πλέγματος, που επιβαρύνουν σημαντικά τον απαιτούμενο χρόνο υπολογισμού. Παρ' όλα αυτά, η πρόοδος των ηλεκτρονικών υπολογιστών έχει καταστήσει δυνατή τη μείωση του χρόνου που απαιτείται για μια τέτοια ανάλυση σε αποδεκτά πλαίσια

Σήμερα, το μοντέλο Lagrange προτιμάται περισσότερο από το μοντέλο Euler στον τομέα της έρευνας. Όλες οι προσπάθειες μοντελοποίησης της μορφής του αποβλήτου στηρίζονται στον τρόπο διαχωρισμού αυτού από το τεμάχιο. Η μέθοδος Lagrange χρησιμοποιεί συνήθως για την περιοχή αποκόλλησης του αποβλήτου από το τεμάχιο την τεχνική τού διαχωρισμού των κόμβων με τη μέθοδο διάδοσης ρωγμής, όπου όταν ο τελευταίος κόμβος της κοπτικής ακμής πλησιάζει κοντύτερα από μία απόσταση τον κόμβο του τεμαχίου και ικανοποιούνται ορισμένες φυσικές παράμετροι (θερμοκρασίας και τάσεων), αυτός χωρίζεται σε δύο κόμβους. Επίσης, όπως είπαμε, η μέθοδος Lagrange έχει το μειονέκτημα της υπερβολικής παραμόρφωσης του πλέγματος και έτσι απαιτείται ο συνεχής επαναπροσδιορισμός πλέγματος (remeshing) και η ομαλοποίησή του (smoothening). Και οι δύο τεχνικές υπολογιστικά στοιχίζουν πολύ, ενώ παράλληλα απαιτείται και τοπική πύκνωση του πλέγματος (refinement) του τεμαχίου στο σημείο κάθε φορά που έρχεται σε επαφή με το εργαλείο.

Σημαντικό είναι εδώ να αναφέρουμε ότι τα τελευταία χρόνια έχει αναπτυχθεί ένα συνδυαστικό μοντέλο Lagragnian-Eulerian (ALE), το οποίο συνδυάζει τα πλεονεκτήματα των δύο μεθόδων.[9-13]

2.8 Συνδυαστικό Μοντέλο Lagragnian-Eulerian (ALE)

Το μοντέλο στηρίζεται στη χρήση της μεθόδου διαχωρισμού. Το πλέγμα που χρησιμοποιείται δεν είναι ούτε καθορισμένο, ούτε όμως και συνδεδεμένο με το υλικό. Αντί αυτού το πλέγμα ακολουθεί τη ροή του υλικού και η επίλυση του προβλήματος για τις μετατοπίσεις γίνεται ακολουθώντας τα βήματα της μεθόδου Lagrange. Ταυτόχρονα το πλέγμα επανακαθορίζεται και το πρόβλημα για τα ζητήματα ταχυτήτων ακολουθεί την μέθοδο του Euler.

Στις προσομοιώσεις κοπών μετάλλων η ιδέα που χρησιμοποιείται είναι η αξιοποίηση της θεωρίας του Euler για την μοντελοποίηση της περιογής γύρω από τη κορυφή του κοπτικού εργαλείου στην οποία λαμβάνει χώρα η κατεργασία της κοπής. Έτσι αποφεύγονται οι σοβαρές παραμορφώσεις που λαμβάνουν χώρα δίχως τη χρησιμοποίηση τεχνικών και μεθόδων remeshing. Ακόμα, η μέθοδος Lagrange χρησιμοποιείται για την αβίαστη ροή του υλικού στα ελεύθερα όρια του τεμαχίου. Επιπλέον, ο σχηματισμός του αποβλήτου δημιουργείται λόγω της πλαστικής παραμόρφωσης που λαμβάνει χώρα. Η διαδικασία προϋποθέτει μικρή προσαύξηση του χρόνου και δεν επιφέρει μεταβολή των στοιχείων και της συνδεσιμότητας του πλέγματος. Επιπρόσθετα δεν απαιτεί την χρήση κριτηρίου διαχωρισμού ούτε εκτεταμένου remeshing του πλέγματος του. Έτσι στη συνδυαστική μέθοδο ALE το πλέγμα αναμένεται να είναι λιγότερο παραμορφωμένο και περισσότερο ομαλό σε σχέση με τα συνήθη πλέγματα που εμφανίζονται στη μέθοδο Lagrange.Ως μειονέκτημα της μεθόδου μπορεί να αναφέρουμε την ανακριβή αντιστοίχηση των μεταβλητών κατάστασης που μπορεί να συμβεί όπως επίσης και την αναγκαιότητα για ολοκληρωμένο remeshing. Η παραπάνω συνδυαστική προσέγγιση γίνεται καλύτερα φανερή στην παρακάτω εικόνα:[9-11,14-16]

Εικόνα 2.5: Οι οριακές συνθήκες με συνδυασμό των μεθόδων Lagrange και Euler σε προσομοίωση ALE.[11]

Η αριθμητική επίλυση σε όλες τις μεθόδους λύνει ουσιαστικά την παρακάτω εξίσωση: M*u = P - I, όπου M το μητρώο μάζας, u η επιτάχυνση του κάθε κόμβου, P η εξωτερικές και I οι εσωτερικές δυνάμεις που ασκούνται σε αυτόν. Για τον υπολογισμό των επιταχύνσεων δεν χρησιμοποιείται πλέον η μέθοδος των συνεχών επαναλήψεων γραμμικών εξισώσεων, αλλά η λύση βρίσκεται με τη χρήση κεντρικής διαφοράς για τη λύση των εξισώσεων κίνησης που δεν είναι γραμμικές και η μέθοδος αυτή χαρακτηρίζεται ως άμεση (explicit). Αυτό συμβαίνει διότι για τις επαφές των πλεγμάτων στις κατεργασίες κοπής το πρόβλημα είναι δυναμικό και θα απαιτούνταν πολλές επαναλήψεις.

2.9 Προγράμματα λογισμικού προσομοιώσεων Πεπερασμένων Στοιχείων

Μέχρι τα μέσα της δεκαετίας του 1990 οι ερευνητές συχνά έγραφαν και χρησιμοποιούσαν τον δικό τους κώδικα Πεπερασμένων Στοιχείων για να παραστήσουν και επιλύσουν ζητήματα όπως η ανάλυση μιας κοπής. Τα τελευταία όμως χρόνια έχουν αναπτυχθεί και χρησιμοποιούνται εκτεταμένα, τόσο από την ακαδημαϊκή κοινότητα όσο και από τη βιομηχανία ,εμπορικά λογισμικά όπως το Deform 2D/3D, το Abaqus, το Advantedge, το Ls-Dyna, το MSC Marc κ.α. Η επιλογή του προγράμματος Πεπερασμένων Στοιχείων για την ανάλυση μιας κοπής αποτελεί μια σημαντική παράμετρος για την ποιότητα των τελικών αποτελεσμάτων. Αυτό συμβαίνει διότι διαφορετικά προγράμματα Πεπερασμένων Στοιχείων έχουν διαφορετικές δυνατότητες και τρόπους επίλυσης των εκάστοτε ζητημάτων. Το Deform (Design Enviroment for Forming), είναι πρόγραμμα Πεπερασμένων Στοιχείων το οποίο μπορεί να χρησιμοποιηθεί σε προσομοιώσεις διαφόρων κατεργασιών όπως η σφυρηλάτηση, η διέλαση κτλ. Το Deform παρέχει τη δυνατότητα στο χρήστη, μέσα από μια ειδική λειτουργία του ,να κατασκευάζει άμεσα μοντέλα που αφορούν την τόρνευση, το φρεζάρισμα, την εσωτερική τόρνευση, τη διάτρηση. Τα χαρακτηριστικά της γεωμετρίας του κοπτικού εργαλείου και του τεμαχίου καθώς επίσης και οι συνθήκες κοπής της κάθε κατεργασίας μπορούν να εισαχθούν από το χρήστη. Ακόμα το πρόγραμμα παρέχει τη δυνατότητα στο χρήστη να καθορίζει απαραίτητες για την προσομοίωση μεταβλητές όπως το μέγεθος του πλέγματος, τις οριακές συνθήκες και τις συνθήκες διεπαφής του κοπτικού εργαλείου με το τεμάχιο. Επιπλέον, το πρόγραμμα έχει εγκατεστημένη βιβλιοθήκη υλικών όπως διαφόρους χάλυβες, κράματα κτλ. Άλλη μια επιπλέον δυνατότητα που έχει το συγκεκριμένο πρόγραμμα είναι η δυνατότητα που παρέχει στο χρήστη να δημιουργήσει ένα νέο υλικό χρησιμοποιώντας διάφορα μοντέλα υλικού.

Άλλο ένα πρόγραμμα με ανάλυση Πεπερασμένων Στοιχείων είναι το Abaqus. Το Abaqus, μπορεί να χρησιμοποιηθεί σε ένα μεγάλο εύρος προβλημάτων όπως για παράδειγμα μία κοπή που φαίνεται στην εικόνα 2.6. Το συγκεκριμένο πρόγραμμα δε διαθέτει έτοιμη λειτουργία και αυτόματη επιλογή συγκεκριμένης κατεργασίας. Συνεπώς, ο χρήστης πρέπει να ορίσει τη γεωμετρία του κοπτικού εργαλείου και του τεμαχίου, τις συνθήκες κοπής, την τεχνική επίλυσης, τις οριακές συνθήκες ,το μέγεθος του πλέγματος κ.α. Το Abaqus, δε διαθέτει προεγκατεστημένη βιβλιοθήκη υλικών, αλλά επιτρέπει στο χρήστη να ορίσει και να κατασκευάσει διάφορα υλικά χρησιμοποιώντας ένα πλήθος μοντέλων. Το σημαντικότερο πλεονέκτημα του παραπάνω προγράμματος είναι η ικανότητα του να μοντελοποιεί ένα σύστημα με έμφαση στη λεπτομέρεια. Για να επιτευχθεί όμως αυτό, η εισαγωγή των απαραίτητων δεδομένων και των εκάστοτε συνθηκών απαιτούν αρκετό χρόνο και ένα έμπειρο χρήστη των δυνατοτήτων του προγράμματος.

Εικόνα 2.6: Προσομοίωση ορθογωνικής κοπής με τη χρήση του Abaqus[17]

Το Advantedge είναι ένα πρόγραμμα που αναπτύχθηκε για κατεργασίες κοπής όπως για τη τόρνευση, το φρεζάρισμα και τη διάτρηση που εμφανίζονται στη εικόνα 2.7. Το πρόγραμμα διαθέτει εύχρηστο περιβάλλον και είναι φιλικό στο χρήστη, παρέχοντας του τη δυνατότητα να εισάγει εύκολα και απλά τα απαιτούμενα δεδομένα για τη γεωμετρία του κοπτικού εργαλείου και του τεμαχίου, καθώς επίσης και συνθηκών κοπής. Επιπλέον, το πρόγραμμα διαθέτει εκτεταμένη βιβλιοθήκη υλικών. Δυστυχώς όμως ο χρήστης δεν έχει τη δυνατότητα να ελέγχει την επίλυση.

α) 2D Τόρνευση

δ) Φραιζάρισμα

Εικόνα 2.7: Παραδείγματα προσομοιώσεων με τη χρήση του Advantedge[18]

Ακόμα ένα πρόγραμμα που χρησιμοποιείται στις προσομοιώσεις Πεπερασμένων Στοιχείων είναι το Ls-Dyna.To Ls-Dyna αποτελεί ένα χρήσιμο εργαλείο για προβλήματα που αφορούν συγκρούσεις και διαμορφώσεις τεμαχίων. Ακόμα το συγκεκριμένο πρόγραμμα μπορεί να χρησιμοποιηθεί για προσομοιώσεις κοπών όπως αυτή που εμφανίζεται στην εικόνα που ακολουθεί 2.8. Παρόλα αυτά δεν προτιμάται επίλυση και προσομοίωση τέτοιων προβλημάτων καθώς δεν εμπεριέχει έτοιμα πρότυπα επιλογών κατεργασιών και ως αποτέλεσμα η επίλυση κοπών θα είναι αρκετά χρονοβόρα. Επιπλέον, το πρόγραμμα Ls-Dyna δεν έχει τη δυνατότητα remeshing των στοιχείων στην περιοχή κοπής μεταξύ κοπτικού εργαλείου και τεμαχίου. Αυτό το μειονέκτημα επιφέρει και επιδρά αρνητικά ως προς την ποιότητα των αποτελεσμάτων των προσομοιώσεων κοπών.

Εικόνα 2.8: Προσομοίωση κοπής μετάλλου με τη χρήση του προγράμματος Ls-Dyna[19]

2.10 Παρουσίαση υπολογιστικού πακέτου MSC Marc

Το Marc είναι ένα ισχυρό, γενικής χρήσης πρόγραμμα μοντελοποίησης της εταιρίας MSC για την επίλυση μη γραμμικών προβλημάτων Πεπερασμένων Στοιχείων. Με την χρήση αυτού του υπολογιστικού προγράμματος δίνεται η δυνατότητα στον χρήστη να προσομοιώσει με ακρίβεια την απόκριση των προϊόντων του και να δει την επίδραση που έχουν σε αυτό διάφορες παράμετροι όπως η στατική και η δυναμική φόρτιση του. Ακόμα το Marc θεωρείται ευέλικτο και ιδανικό για την μοντελοποίηση υλικών με μη γραμμική συμπεριφορά καθώς επίσης και για την προβλημάτων πολύπλοκων σγεδιαστικών υπό μεταβαλλόμενες επίλυση περιβαλλοντικές συνθήκες. Με τις καινοτόμες τεχνολογίες και μεθοδολογίες μοντελοποίησης που διαθέτει, δίνει τη δυνατότητα στον χρήστη να προσομοιώσει πολύπλοκες συμπεριφορές μηχανολογικών συστημάτων στον πραγματικό κόσμο. Αυτό το καθιστά κατάλληλο και απαραίτητο για την αντιμετώπιση οπουδήποτε κατασκευαστικού και σχεδιαστικού προβλήματος, που μπορεί να αντιμετωπίσει ένας μηχανικός σε ένα σύγχρονό και μεταβαλλόμενο περιβάλλον.

Με τον τρόπο επίλυσης του ,που είναι έξυπνα σχεδιασμένο για να παρέχει την βέλτιστη απόδοση και πλήρη αξιοποίηση του υλικού, σε συνδυασμό με ένα φιλικό σχεδιαστικό περιβάλλον δίνει στον χρήστη τη δυνατότητα επίλυσης, μοντελοποίησης, προσομοίωσης και διερεύνησης οποιουδήποτε πολύπλοκου ζητήματος. Χαρακτηριστικά παραδείγματα αποτελούν η επίλυση προβλημάτων που σχετίζονται με μεγάλες μηχανικές παραμορφώσεις, με την επίδραση τάσεων και φορτίων, θερμικής αγωγιμότητας ζητημάτων κοπής και επαφής υλικών, καθώς επίσης και η αλληλεπίδραση τους. Συνεπώς, το Marc είναι σε θέση να βοηθήσει στην επίλυση προβλημάτων και να δώσει εικόνα για τη συμπεριφορά διαφόρων προϊόντων υπό διάφορες περιβαλλοντολογικές συνθήκες. Άρα για την βελτιστοποίηση και το σχεδιασμό των τελικών μας προϊόντων.

Πεδία εφαρμογής είναι τα ακόλουθα προβλήματα: 1)Γεωμετρίας υλικού και οριακών συνθηκών (συνθήκες επαφής)

- 2) θερμικής ανάλυσης
- 3) διεργασιών διαμόρφωσης όπως διαμορφώσεις, συγκολλήσεις, βαφές κτλ.
- 4) φυσικών προβλημάτων
 - a) συνδυασμού θερμομηχανικής ανάλυσης
 - b) ηλεκτρομαγμητικών
 - c) πιεζοηλεκτικών
 - d) ηλεκτρο-θερμο-μηχανικών
 - e) συνδυαστικά ηλεκτροστατικών και μαγνητοστατικών ζητημάτων
 - f) μηχανικής των ρευστών κ.α

Ακολουθούν χαρακτηριστικά παραδείγματα προβλημάτων που επιλύθηκαν με το υπολογιστικό πακέτο MSC Marc όπως:

επαφή γραναζιών

μηχανικής κοπής αποβολής υλικού

Εικόνα 2.9: Παραδείγματα προβλημάτων [20]

Το Marc αποτελεί απαραίτητο εργαλείο και χρησιμοποιείται παγκοσμίως από εταιρίες κολοσσούς σε διάφορους τομείς όπως :

- σε Αυτοκινητοβιομηχανίες :ΤΟΥΟΤΑ, BMW, FERRARI κ.α.
- σε αεροδιαστημικές εταιρίες : Boeing, Airbus, Eurocopter, Sikorsky
- σε εταιρείες ελαστικών : Goodyear, Pirelli, Dunlop κ.α
- και σε άλλες πολυεθνικές όπως Philips, Lego, HP, Duracell

Ακόμα το Marc διαδραματίζει σημαντικό ρόλο και επηρεάζει τις τελικές αποφάσεις που αφορούν το τελικό προϊόν. Χαρακτηριστικοί τομείς είναι οι ακόλουθοι που αφορούν:

- εξαρτήματα αυτοκινήτων
- βιοϊατρικό εξοπλισμό
- ηλεκτρονικά εξαρτήματα
- διωστήρες κινητήρων
- αεροδιαστημικά οχήματα
- και ελαστικά

Παρακάτω παρουσιάζουμε το περιβάλλον σχεδίασης του λογισμικού MSC Marc.

Εικόνα 2.10: Το περιβάλλον του MSC.Marc

ΚΕΦΑΛΑΙΟ 3⁰

ΟΡΘΟΓΩΝΙΚΗ ΚΟΠΗ ΜΕΤΑΛΛΩΝ

3.1 ΕΙΣΑΓΩΓΗ

Οι δύο τύποι κοπών που χρησιμοποιούνται στην ανάλυση της μηχανικής των κοπών των μετάλλων είναι: α) η ορθογωνική κοπή και η λοξή κοπή. Στην ορθογωνική κοπή όπως φαίνεται και στην εικόνα 3.1, το ανεπιθύμητο υλικό αποβάλλεται από το τεμάχιο όταν η κοπτική ακμή, η οποία βρίσκεται κάθετη στη διεύθυνση της σχετικής κίνησης κοπτικού εργαλείου(KE) - τεμαχίου(TE), εισχωρεί σε αυτό. Από τη σχετική κίνηση τους, μια στρώση υλικού αποβάλλεται με τη μορφή αποβλήτου. Κάθετο στην πρόωση είναι το βάθος κοπής, το οποίο είναι μικρότερο ή ίσο με το πλάτος του κοπτικού εργαλείου.

Εικόνα 3.1 : Είδη κοπής: (α) Ορθογωνική κοπή, (β) Λοξή κοπή[21]

Στην ορθογωνική κοπή, η διαδικασία αποβολής του υλικού θεωρείται ομοιόμορφη κατά μήκος της κοπτικής ακμής. Συνεπώς αποτελεί ένα δισδιάστατο πρόβλημα επίπεδης παραμόρφωσης. Στη λοξή κοπή, η κόψη του κοπτικού εργαλείου είναι λοξή, ως προς τη διεύθυνση κοπής, με κλίση της γωνίας όπως φαίνεται στο παραπάνω σχήμα.

Παρότι οι πλειονότητα των κοπών είναι ως επί το πλείστον λόξες κοπές, η ορθογωνική κοπή αποτελεί αντικείμενο μελέτης των ερευνητών, εξαιτίας της απλοϊκότητας της, καθώς επίσης και των καλών προσεγγίσεων που επιτυγχάνει.

3.2 Γεωμετρικά χαρακτηριστικά κοπής

Το κοπτικό εργαλείο της ορθογωνικής κοπής, καθορίζεται από συγκεκριμένα γεωμετρικά χαρακτηριστικά. Στο σχήμα που ακολουθεί παρατηρούμε αυτά τα γεωμετρικά χαρακτηριστικά όπως επίσης και ότι το κοπτικό εργαλείο έχει δύο κοπτικές πλευρές, την κύρια και τη δευτερεύουσα

Εικόνα 3.2: Βασικά γεωμετρικά χαρακτηριστικά της κοπής

Τα σημαντικότερα γεωμετρικά χαρακτηριστικά του κοπτικού εργαλείου είναι:[21-23]

- Η γωνία ελευθερίας (α), η οποία σχηματίζεται από την κατεργασμένη επιφάνεια και την ελεύθερη επιφάνεια του κοπτικού εργαλείου. Συμβάλλει στη μείωση της τριβής μεταξύ ΤΕ(τεμαχίου) και ΚΕ(κοπτικού εργαλείου). Παίρνει τιμές από 5°-15°.Η ελεύθερη επιφάνεια του εργαλείου δεν παίρνει μέρος στο σχηματισμό του αποβλήτου ,η γωνία ελευθερίας όμως επηρεάζει τη φθορά του εργαλείου.
- Η γωνία σφήνας (β), η οποία σχηματίζεται από την επιφάνεια αποβλήτου και την ελεύθερη επιφάνεια.
- Η γωνία αποβλήτου (γ), η οποία σχηματίζεται μεταξύ του νοητού κάθετου άξονα στην κατεργασμένη επιφάνεια ο οποίος ξεκινά από την αιχμή του κοπτικού εργαλείου και την επιφάνεια αποβλήτου. Όσο αυξάνεται η τιμή της τόσο μειώνονται οι δυνάμεις κοπής. Για μεγάλες γωνίες αποβλήτου το ΚΕ γίνεται πιο αιχμηρό με αποτέλεσμα να υπερθερμαίνεται και να φθείρεται πιο εύκολα η αιχμή του. Παίρνει τιμές από 0-20°.Για μεγάλες ταχύτητες κοπής και μικρή διατομή αποβλήτου η γωνία γ λαμβάνει αρνητικές τιμές.

Όπως συμπεραίνουμε από το σχήμα πρέπει να ισχύει $\alpha + \beta + \gamma = 90^{\circ}$.

Η γωνία διατμήσεως (φ) : το ΤΕ παραμορφώνεται πλαστικά κατά μήκος του επιπέδου διάτμησης σχηματίζοντας το απόβλητο με πάχος t₂. Όπως φαίνεται

στο σχήμα το επίπεδο διατμήσεως κλίνει προς την διεύθυνση κοπής κατά μια γωνία φ.

Τα παραπάνω γεωμετρικά μεγέθη αποτελούν σημαντικούς παράγοντες ,διότι χάρις σε αυτά καθορίζονται τα χαρακτηριστικά της κοπής.

3.3 Συνθήκες κοπής

Για τις συνθήκες κοπής έχουμε το εξής "τρίπτυχο":[21]

- Βάθος κοπής, a: Είναι το βάθος στο οποίο εισχωρεί το ΚΕ μέσα στο υλικό ΤΕ. Μετράται σε mm.
- Ταχύτητα κοπής, υ: Είναι η στιγμιαία (σχετική) ταχύτητα της ακμής (κόψης) του ΚΕ ως προς το ΤΕ κατά την πρωτεύουσα κίνηση. Συνήθως μετράται σε m/min (σπανιότερα σε m/s).
- Πρόωση, s: Είναι η σχετική μετατόπιση του ΚΕ ως προς ΤΕ ανά περιστροφή ή ενεργό διαδρομή (ΚΕ ή ΤΕ). Μετράται σε mm/rev ή mm/ενεργό διαδρομή και κατά τη κατεύθυνση της κίνησης πρόωσης. Το σύνηθες είναι να επιτυγχάνεται με κίνηση του κοπτικού εργαλείου ενώ είναι το τεμάχιο σταθερό αλλά μπορεί σε κάποιες περιπτώσεις να συμβαίνει και το αντίθετο. Στον τόρνο, πρόωση είναι η κατά την έννοια του άξονα περιστροφής μετακίνηση του κοπτικού εργαλείου ανά στροφή του αντικειμένου

Ταχύτητα πρόωσης, υν: Είναι η στιγμιαία (σχετική) ταχύτητα της ακμής ΚΕ ως προς το ΤΕ κατά τη συνεχή κίνηση πρόωσης. Μετράται σε m/min και χρησιμοποιείται εναλλακτικά αντί της πρόωσης

3.4 Μορφολογία και σχηματισμός του αποβλήτου[9-14,21-24]

Όπως γνωρίζουμε, κύριο χαρακτηριστικό των κατεργασιών κοπής αποτελεί ότι ,για τη μορφοποίηση των κομματιών, αφαιρείται μέταλλο και ότι το μέταλλο αυτό αφαιρείται σε μορφή αποβλήτων. Το απόβλητο κατά συνέπεια είναι το προϊόν της κοπής των μετάλλων και η μελέτη του μας δίνει τη δυνατότητα να βγάζουμε ενδιαφέροντα συμπεράσματα για το φαινόμενο της κοπής.

Το απόβλητο, όπως θα δούμε στη συνέχεια, σχηματίζεται σε διάφορα μεγέθη και παίρνει ποικίλες μορφές ανάλογα με τη περίπτωση της κατεργασίας, δηλαδή από ταινιοειδές ευθύ και μακρύ μέχρι σπειροειδές τεμαχισμένο ή ακόμη κατακερματισμένο σε τεμαχίδια.

Τα απόβλητα διακρίνονται σε τρία βασικά είδη: α) το ασυνεχές απόβλητο, β) το συνεχές απόβλητο, και γ) το συνεχές απόβλητο με ψευδοακμή. Τα τρία είδη αποβλήτου διακρίνονται στις παρακάτω εικόνες

Εικόνα 3.3 :Είδη αποβλήτου : α)Ασυνεχές απόβλητο, β)Συνεχές απόβλητο, γ)Συνεχές απόβλητο με ψευδοακμή [21]

Ασυνεχές απόβλητο συναντούμε στην κοπή ψαθυρών μετάλλων, όπως είναι ο χυτοσίδηρος ή χυτευτικός ορείχαλκος κ.α. Ακόμα είναι δυνατός ο σχηματισμός ασυνεχούς αποβλήτου και κατά την κοπή όλκιμων μετάλλων ή κραμάτων (μαλακός χάλυβας, αργύλιο, μόλυβδος κτλ)γενικά σε χαμηλές ταχύτητες κοπής, σε μεγάλες προώσεις και με εργαλεία με μικρές τιμές της γωνίας αποβλήτου. Το συνεχές απόβλητο σχηματίζεται κατά την κοπή όλκιμων μετάλλων και κραμάτων, κυρίως σε υψηλές ταχύτητες κοπής, όπως συμβαίνει στις περιπτώσεις που χρησιμοποιούμε σκληρομέταλλα ως κοπτικά εργαλεία. Αυτό το είδος αποβλήτου είναι πολύ επιθυμητό για τις κατεργασίες κοπών, λόγω των καλύτερων αποτελεσμάτων που επιτυγγάνουν στο φινίρισμα των επιφανειών, καθώς επίσης και επειδή ο σχηματισμός του σχετίζεται με ευνοϊκές συνθήκες αναπτυσσόμενων δυνάμεων κοπής και καταναλισκόμενης ισχύος. Το απόβλητο όμως αυτό έχει τέτοια μορφή και το μήκος του μπορεί να είναι τόσο μεγάλο, ώστε να δυσχεραίνει γενικά την κοπή. Αυτό πρακτικά αντιμετωπίζεται με τη χρήση γρεζοθραυστών. Συνεχές απόβλητο με ψευδοακμή σχηματίζεται όταν μαλακοί χάλυβες κόβονται από κοπτικά εργαλεία υψηλών ταχυτήτων σε χαμηλές ταχύτητες κοπής. Η ψευδοακμή έχει ως αποτέλεσμα τη χειροτέρευση της τραχύτητας της κατεργαζόμενης επιφάνειας του τεμαχίου και την αύξηση της φθοράς ,άρα και τη μείωση της διάρκειας ζωής του κοπτικού εργαλείου.

3.5 Ζώνες Παραμόρφωσης

Στην κατεργασία της κοπής εμφανίζονται τρείς ζώνες παραμόρφωσης όπως φαίνονται και στην εικόνα 3.5 που ακολουθεί παρακάτω:

- Πρωτογενής διατμητική ζώνη. Ο σχηματισμός του αποβλήτου διαδραματίζεται πρώτα και κυριότερα σε αυτή την περιοχή, όσο η κοπτική ακμή εισχωρεί μέσα στο κατεργαζόμενο τεμάχιο. Από μικροσκοπικές μελέτες και πειράματα έχει προκύψει ότι το απόβλητο σε αυτή την περιοχή δημιουργείται λόγω της διάτμησης. Ακόμα πειραματικές μελέτες έχουν καταλήξει ότι το μέσο πάχος αυτής της περιοχής είναι ίσο με το ένα δέκατο του πάχους αποβλήτου.
- Δευτερογενής διατμητική ζώνη. Η περιοχή σχηματίζεται από την επαφή του κοπτικού εργαλείου με το απόβλητο καθόλο το μήκος της. Το υλικό παραμορφώνεται εξαιτίας της εντατικής επιφανειακής τριβής που εμφανίζεται. Αυτή η δευτερογενής περιοχή αποτελείται από δύο μέρη, την περιοχή Sticking,κοντά στην κορυφή της κοπτικής ακμής και την περιοχή ολίσθησης που έπεται αυτής {}.

Και οι δύο παραπάνω περιοχές χαρακτηρίζονται από αύξηση της θερμοκρασίας. Στην μεν πρωτογενή ζώνη λόγω της έντονης πλαστικής παραμόρφωσης και στη δευτερογενή λόγω της τριβής. Επίσης, εξαιτίας των μεγάλων ταχυτήτων κοπής, δεν παρατηρείται αγωγιμότητα της θερμότητας και η παραγόμενη θερμότητα θεωρείται συγκεντρωμένη στην περιοχή γύρω από την κοπτική ακμή.

 Τριτογενής διατμητική ζώνη. Όταν η ελεύθερη επιφάνεια του εργαλείου έρχεται σε επαφή με τη νέα διαμορφωμένη επιφάνεια του κατεργαζόμενου τεμαχίου, μπορεί να δημιουργηθεί αυτή η τριτογενής περιοχή παραμόρφωσης.

Εικόνα 3.5: Ζώνες παραμόρφωσης στις κοπές[25]

3.6 Μηχανική των Κοπών

Τα τελευταία 60 χρόνια οι ερευνητές έχουν επικεντρώσει τη μελέτη τους στην κατασκευή μοντέλων που αφορούν τη συμπεριφορά κοπών μετάλλων ή την ανάπτυξη προηγούμενων μοντέλων. Πολλές από τις πρώτες εργασίες που έγιναν αφορούσαν αναλυτικά μοντέλα, στα οποία παρουσιαζόταν η βασική μηγανική που αφορούσε τις κοπές. Τα περισσότερα αναλυτικά μοντέλα είχαν σκοπό τους την παραγωγή των εξισώσεων από τις οποίες θα καθορίζονταν οι δυνάμεις κοπής, δίγως την διεξαγωγή πειραμάτων. Από τα αποτελέσματα των δυνάμεων κοπής και από τη φθορά που παρουσίαζε το κοπτικό εργαλείο, μπορούσαν να εξαχθούν χρήσιμα συμπεράσματα που αφορούσαν την ακεραιότητα και την ποιότητα της επιφάνειας του κατεργαζόμενου τεμαχίου. Το πρόβλημα προϋπόθετε τον καθορισμό των δυνάμεων κοπής, με γνωστές τις συνθήκες κοπής και επιλύονταν με τον ορισμό της κατάλληλης σχέσης μεταξύ της διατμητικής γωνίας, της γωνίας αποβλήτου και του συντελεστή τριβής. Αρκετές μέθοδοι έχουν εφαρμοστεί, οι οποίες άλλοτε υπερεκτιμούν και άλλοτε υποτιμούν τα αποτελέσματα σε σχέση με τις πραγματικές τιμές. Οι πραγματικές τιμές των δυνάμεων κοπής, συνήθως βρίσκονται κάπου μεταξύ των δύο παραπάνω ορίων.

3.7 Δυνάμεις και τάσεις στην Ορθογωνική Κοπή

Ο Merchant το 1945[27] ανέπτυξε την θεωρία του μοντέλου λεπτής ζώνης (Thinzone model) κάνοντας χρήση των παρακάτω υποθέσεων:[28]

- Η κοπτική ακμή είναι αιχμηρή και μεταξύ του κοπτικού εργαλείου και του κατεργαζόμενου τεμαχίου δεν υπάρχει τριβή.
- 2) Η παραμόρφωση θεωρείται δισδιάστατη
- 3) Οι τάσεις του επιπέδου διάτμησης είναι ανομοιόμορφα κατανεμημένες.
- 4) Η συνισταμένη δύναμη F που εφαρμόζεται στο επίπεδο διάτμησης είναι ίση, αντίθετη και συγραμική με τη δύναμη F που ασκείται στην επιφάνεια κοπτικού εργαλείου-αποβλήτου.

Με τη βοήθεια των παραπάνω υποθέσεων προέκυψε το διάγραμμα δυνάμεων της ορθογωνικής κοπής που φαίνεται στην εικόνα 3.6 που ακολουθεί.

Εικόνα 3.6 :Ο κύκλος τους Merchant με το διάγραμμα δυνάμεων[21]

Η συνισταμένη δύναμη F αναλύεται στις δύο συνιστώσες F_N και F_F οι οποίες είναι κάθετες στην κόψη του κοπτικού εργαλείου η μεν πρώτη και κατά μήκος της κόψης του κοπτικού εργαλείου η δεύτερη. Ακόμα, αναλύεται και στις F_{SN} και F_S οι οποίες είναι κάθετες και διαμήκεις αντίστοιχα στο επίπεδο διάτμησης. Τελικά έτσι μπορεί να αναλυθεί στις συνιστώσες F_c, της δύναμης κοπής και F_t της δύναμης πρόωσης ή απώθησης (thrust force). Ακόμα από στο διάγραμμα των δυνάμεων διακρίνονται και άλλοι σημαντικοί παράμετροι όπως η γωνία αποβλήτου γ, η γωνία διάτμησης φ και η μέση φαινόμενη γωνία τριβής ρ που σχηματίζεται με το μέσο φαινόμενο συντελεστή τριβής μ μέσω της εξίσωσης:

$$\rho = \arctan(\mu) = \arctan(F_F/F_N)$$

Σύμφωνα με την θεωρεία των Ernst και Merchant, το ανώτερο όριο της γωνίας διάτμησης πρέπει να βρεθεί, στην οποία το έργο θα περιορίζεται στο ελάχιστο. Με άλλα λόγια, αφού το παραγόμενο έργο είναι ανάλογο της δύναμης κοπής F_c αναζητείται η έκφραση που συνδέει τη δύναμη κοπής με τη διατμητική γωνία και μετά να βρεθεί η φ^ο για την οποία η F_c γίνεται ελάχιστη. Από την εικόνα του κύκλου Merchant εύκολα συμπεραίνουμε ότι :

$F_s^{=}Fcos(\phi+\rho-\gamma)$

Από το διάγραμμα των δυνάμεων προκύπτουν οι δύνάμεις κοπής F_c και οι δυνάμεις απώθησης Ft ως εξής:

 $F_c =$

Εικόνα 3.7: Ορθογωνική μικροκοπή

3.9 Ελάχιστο πάχος αποβλήτου(Minimum chip thickness)[9-11,35]

Σε τέτοιο επίπεδο, το μοντέλο του Merchant είναι μη ρεαλιστικό. Στις μικροκοπές το βάθος κοπής μπορεί να είναι μικρότερο των 10 μm και η επικρατούσα τραχύτητα επιφανείας μόλις μερικά nm.Εδώ η ακμή του κοπτικού εργαλείου δεν μπορεί πλέον να θεωρείται κοφτερή. Έτσι το κοπτικό εργαλείο έχει ακτίνα κοπτικής ακμής σε μέγεθος αντίστοιχο με το άκοπο πλάτος του αποβλήτου. Σημειωτέον η κατασκευή ενός τέλειου κοπτικού εργαλείου είναι πρακτικά αδύνατη, εξαιτίας τεχνικών περιορισμών που συνδέονται με την κατασκευή του εργαλείου. Από την παραπάνω εικόνα της μικροκοπής παρατηρούμε ότι η ενεργή γωνία κοπής είναι αρνητική. Στην περίπτωση αυτή η ελαστοπλαστική παραμόρφωση του υλικού του τεμαχίου όπως επίσης και η ελαστική επαναφορά της ελεύθερης επιφάνειας, πρέπει να ληφθεί υπόψη.

Από τα παραπάνω προκύπτει ο όρος του ελάχιστου πάχους αποβλήτου που μπορεί να αφαιρεθεί από το τεμάχιο σε μια μικροκοπή και γενικότερα στις μικροκατεργασίες. Θεωρούμε σταθερό σημείο πάνω από το οποίο διαμορφώνεται το απόβλητο και κάτω από το οποίο λαμβάνει χώρα μόνο ελαστοπλαστική παραμόρφωση. Με τη χρήση του σταθερού αυτού σημείου και με τη βοήθεια της προκύπτουσας γωνίας θ_m , σε συνδυασμό με την ακτίνα της κοπτικής ακμής του εργαλείου, ορίζεται η παρακάτω σχέση του ελάχιστου άκοπου πάχους κοπής h_m [36] ως εξής:

$h_{m=}r_{e}(1-\cos\theta_{m})$

Το ελάχιστο πάχος αποβλήτου ορίζει αν θα διαμορφωθεί ένα απόβλητο ή όχι, καθώς αν το βάθος κοπής σε μια μικροκατεργασία έχει οριστεί μικρότερο του ελαχίστου, τότε η κοπτική ακμή αναμένεται να διαμορφώσει πλαστικά μόνο το υλικό του τεμαχίου δίχως να δημιουργήσει απόβλητο. Αυτός είναι ο μηχανισμός ploughing ο οποίος εκτός του ότι επιφέρει τα προφανή αποτελέσματα στην ακεραιότητα της κατεργαζόμενης επιφάνειας του τεμαχίου, μεταβάλει εμφανέστατα τις δυνάμεις κοπής. Άρα και τη δυνατότητα πρόβλεψης τους.
Το φαινόμενο του ελαχίστου πάχους αποβλήτου αναγνωρίστηκα αρχικά από τον Finnie στην κατεργασία της λείανσης [31]. Και άλλοι όμως ερευνητές έχουν διεξάγει πειράματα για να αποδείξουν την ύπαρξη του φαινομένου στη μικροτόρνευση και στο μικροφρεζάρισμα. Ο Ikawa με τη χρήση ενός περιστρεφόμενου κοπτικού εργαλείου από διαμάντι και κοπτική ακτίνα ακμής της τάξεως των 10 nm, υπολόγισε ότι το άκοπο πάγος του αποβλήτου είναι περίπου το 1/10 της κοπτικής ακτίνας [32].Ο Weule μελέτησε το ελάχιστο πάχος αποβλήτου στο μικροφρεζάρισμα. Από τη μελέτη του προέκυψε ότι κατά το πέρασμα ενός δοντιού και λόγω του μεταβλητού πάγους αποβλήτου, ο μηχανισμός αποβολής του υλικού μπορεί να μεταβληθεί από διατμητικός σε ploughing. Αυτό θα έχει ως αποτέλεσμα τη διαμόρφωση της επιφάνειας σε πριονωτή μορφή και την επιδείνωση του φινιρίσματος της [33]. Αντίστοιχα μελέτησε το ίδιο φαινόμενο κατά τη διάρκεια μικροφρεζαρίσματος και ο Kim. Κατά τη διάρκεια της έρευνας του συνέκρινε τον όγκο του αποβλήτου με τον ονομαστικό και τα σημάδια της πρόωσης στο τεμάχιο με την πρόωση ανά δόντι. Έτσι κατέληξε στο συμπέρασμα ότι το απόβλητο δεν διαμορφωνόταν σε κάθε πέρασμα του κοπτικού οδόντα και αυτό αποδιδόταν στο ελάγιστο πάγος αποβλήτου [34].

3.10 Επίδραση κλίμακας (Size effect)[9-11,30]

Η μικροκοπή χαρακτηρίζεται από πολύ μικρές ποσότητες υλικού που αφαιρούνται από την επιφάνεια, όπου το πάχος του αποβλήτου κυμαίνεται από μερικά μικρόμετρα μέχρι μερικές εκατοντάδες μικρόμετρα. Σε αυτά τα μεγέθη αφαίρεσης υλικού, αναμένεται να κάνει την εμφάνισή του το φαινόμενο της επίδρασης κλίμακας, γνωστό στη βιβλιογραφία και ως "size effect". Στις κατεργασίες η επίδραση κλίμακας τυπικά χαρακτηρίζεται από μια μη γραμμική αύξηση της ειδικής ενέργειας ή ειδικής δύναμης όσο το πάχος του αδιαμόρφωτου αποβλήτου μειώνεται. Σε ερευνητικό επίπεδο ουκ ολίγες είναι οι πειραματικές παρατηρήσεις πάνω στην επίδραση κλίμακας που έχουν γίνει σε διαφορετικά υλικά και κάτω από διαφορετικές συνθήκες κοπής.

Οι προσπάθειες που έχουν γίνει για να εξηγήσουν και να προβλέψουν την επίδραση κλίμακας είναι αρκετές. Οι περισσότερες εξηγήσεις που έχουν δοθεί μέχρι σήμερα μπορούν να ταξινομηθούν ως εξής: 1) η ενίσχυση του υλικού που οφείλεται σε παράγοντες που ποικίλουν ανάλογα με το πάχος του αδιαμόρφωτου αποβλήτου, 2) η παραμόρφωση του υλικού κάτω από την κατεργαζόμενη επιφάνεια, 3) η επίδραση της ακτίνας καμπυλότητας, 4) η ενέργεια που απαιτείται για να δημιουργηθούν νέες επιφάνειες διαμέσου όλκιμης θραύσης. Το φαινόμενο της επίδρασης κλίμακας στις μικροκοπές φαίνεται καλύτερα στις εικόνες που ακολουθούν:

Εικόνα 3.8: Δύναμη με βάθος κοπής

Εικόνα 3.9: Ειδική δύναμη με βάθος κοπής [35]

Πρόσφατη έρευνα από τον Atkins [37] αποδίδει την επίδραση κλίμακας στην κοπή, στην ενέργεια που απαιτείται για τη δημιουργία νέας επιφάνειας μέσω όλκιμης θραύσης. Ο συγγραφέας βρήκε μέσω προσομοίωσης με πεπερασμένα στοιχεία ότι το έργο είναι κοντά στην τυπική τιμή αντοχής σε θραύση για το υλικό σε μηχανισμούς όλκιμης θραύσης. Υπέδειξε ότι η ενέργεια που απαιτείται για τη διαμόρφωση της νέας επιφάνειας δε μπορεί να θεωρηθεί αμελητέα στην ανάλυση κοπής μετάλλων. Αυτή η ενέργεια είναι ανεξάρτητη του βάθους κοπής και κατά συνέπεια η συμβολή της στη συνολική ειδική ενέργεια θα πρέπει να αυξηθεί όσο μικραίνουν οι τιμές του πάχους του αδιαμόρφωτου αποβλήτου.

Τελευταίες έρευνες εστιάζουν στη συσχέτιση του ρυθμού μεταβολής της παραμόρφωσης με την επίδραση κλίμακας. Είναι σαφές, από τη βιβλιογραφία, ότι η επίδραση κλίμακας στη μικροκοπή μπορεί να προκύψει λόγω πολλαπλών μηχανισμών. Είναι επίσης προφανές ότι η επίδραση κλίμακας μπορεί να προκύψει ακόμα και κατά την κοπή με αιχμηρά εργαλεία ή και όταν οι επιπτώσεις της θερμοκρασίας και του ρυθμού παραμόρφωσης αμελούνται (π.χ. για πολύ μικρές ταχύτητες κοπής).

Οι περισσότερες έρευνες συμφωνούν ότι μεγάλο ρόλο στο φαινόμενο παίζει η ακτίνα καμπυλότητας της κοπτικής ακμής. Αυτό αποδίδεται στο γεγονός ότι για μειούμενο βάθος κοπής, η συμμετοχή των δυνάμεων άρωσης και τριβής στη συνολική δύναμη κοπής είναι αρκετά σημαντική. Οι δυνάμεις αυτές είναι ανεξάρτητες του βάθους κοπής και για το λόγο αυτό σε μικρά βάθη κοπής αποτελούν μεγάλο ποσοστό της συνολικής δύναμης κοπής. Γενικά, η ειδική δύναμη άπωσης αυξάνεται με μεγαλύτερο ρυθμό από ότι η ειδική δύναμη κοπής, για μειούμενο βάθος κοπής. Επιπλέον, η κατάσταση της κοπτικής ακμής, που σχετίζεται με τη φθορά του κοπτικού εργαλείου, επηρεάζει σημαντικά τη δύναμη άπωσης

3.11 Θερμοκρασίες στις Μικροκοπές

Όσον αφορά στις θερμοκρασίες κοπής κατά τη διάρκεια της μικροκοπής, αυτές είναι σημαντικά μικρότερες από τις αντίστοιχες των μακροκατεργασιών. Αυτό οφείλεται στη μικρή ενέργεια κοπής, αλλά και στην αγωγιμότητα των εργαλείων και των κατεργαζόμενων υλικών. Βέβαια, μικρή αύξηση της θερμοκρασίας είναι πολύ σημαντική στις μικροκατεργασίες, καθώς μπορεί να οδηγήσει σε διαστολή του εργαλείου, του εργαλειοφορείου ή του τεμαχίου, κάτι που μπορεί να οδηγήσει σε περιορισμό της ακρίβειας που μπορεί να επιτευχθεί με την κατεργασία

ΚΕΦΑΛΑΙΟ ΤΕΤΑΡΤΟ

ΚΑΤΑΣΚΕΥΗ ΜΟΝΤΕΛΟΥ ΚΑΙ VALIDATION ΜΕ ΤΗ ΔΗΜΟΣΙΕΥΜΕΝΗ ΠΡΟΤΥΠΗ ΕΡΓΑΣΙΑ

4.1 ΕΙΣΑΓΩΓΗ

Στο κεφάλαιο αυτό κατασκευάζουμε μοντέλο με τη μέθοδο των Πεπερασμένων στοιχείων και με τη χρήση του υπολογιστικού πακέτου MSC Marc στην έκδοση του 2011 που διαθέτει προς χρήση το εργαστήριο του τομέα Τεχνολογίας των Υλικών.

4.2 Ιστορική αναδρομή και παρουσίαση παρόμοιων εργασιών

Η μελέτη των κοπών αποτελεί αντικείμενο διερεύνησης των ερευνητών για πάνω από 100 χρόνια. Η πρώτη έρευνα γύρω από τις κοπές μετάλλων πραγματοποιήθηκε από τον Cocquilhat το 1851, ο οποίος εστίασε στις ενέργειες που απαιτούνται για την αφαίρεση υλικού με τη κατεργασία της διάτρησης. Στη συνέχεια ο Tresca το 1873, ήταν ο πρώτος που προσπάθησε να εξηγήσει το τρόπο διαμόρφωσης του αποβλήτου. Έπειτα οι Ernest και Merchant το 1941 ανέπτυξαν πρώτοι το απλούστερο και το πιο διαδεδομένο μοντέλο κοπών που χρησιμοποιείται ακόμα και στις μέρες μας. Το παραπάνω μοντέλο εξελίχτηκε και βελτιώθηκε από τις προσπάθειες των Lee και Shaffer to 1951 ,όπως επίσης και από τους Kobayashi και Thomsen το 1962.Το επόμενο μεγάλο βήμα συντελέστηκε από τους Oxley και Welsch το 1963 οι οποίοι εισήγαν το πρώτο μοντέλο διατμητικής ζώνης με παράλληλες πλευρές διαμόρφωσης αποβλήτου και τη θεωρία προβλεψιμότητας των κατεργασιών. Γνωστά βιβλία έχουν γραφτεί από τον Armerago το 1969, από τον Boothroyd το 1981, τον Shaw to 1984 και τον Trent το 2000. Επίσης χρήσιμες εκδόσεις γύρω από τις εισαγωγικές τους έννοιες, αποτελούν το βιβλίο του Kalpakjian του 2006 [38] και του Degarmo το 1997 [39].

Η πειραματική προσέγγιση για τη μελέτη των μηχανικών κατεργασιών αποτελεί μια ακριβή και χρονοβόρα διαδικασία, ειδικά όταν περιλαμβάνει ένα μεγάλο εύρος παραμέτρων όπως τη γεωμετρία του κοπτικού εργαλείου, το χρησιμοποιούμενο υλικό, τις συνθήκες κοπής κτλ. Εξαιτίας αυτών των δυσκολιών αναπτύχθηκαν εναλλακτικές προσεγγίσεις, όπως η μαθηματική προσομοίωση που χρησιμοποιεί αριθμητικές μεθόδους για την επίλυση των εκάστοτε ζητημάτων. Από τις παραπάνω αριθμητικές μεθόδους η μέθοδος των Πεπερασμένων Στοιχείων αποδείχτηκε η πιο χρήσιμη και η πιο διαδεδομένη.

Η μέθοδος των Πεπερασμένων Στοιχείων χαρακτηρίζεται από το διαχωρισμό ενός συστήματος σε μικρότερα στοιχεία. Το κάθε στοιχείο παραγράφεται και χαρακτηρίζεται από ιδιότητες σε μητρωική μορφή. Από το άθροισμα των παραπάνω στοιχείων προκύπτει ένα σύστημα εξισώσεων από την επίλυση των οποίων μας δίδεται η συμπεριφορά ολόκληρου του συστήματος.

Η βασική ιδέα της μεθόδου των Πεπερασμένων Στοιχείων μελετήθηκε στις αρχές του 1940. Ο Courant το 1943 ανέπτυξε τη Μέθοδο των Πεπερασμένων Στοιχείων χρησιμοποιώντας τμηματική παρεμβολή πολυωνύμων σε τριγωνικές περιοχές ,ώστε να μοντελοποιήσει προβλήματα συστροφής. Ο πρώτος που χρησιμοποίησε τον όρο Πεπερασμένα στοιχεία ήταν ο Clough το 1960.Το πρώτο σύγγραμμα για την θεωρία των Πεπερασμένων Στοιχείων γράφτηκε από τους Ziekiewicz και Cheung το 1967. Στη συνέχεια γράφτηκαν κι άλλα αξιόλογα βιβλία όπως από τον Cook το 1989, τον Mohr το 1992 και από τους Chandrupatla και Belegundu το 2002.

Η Μέθοδος των Πεπερασμένων Στοιχείων έχει εξαιρετική εφαρμογή στη μοντελοποίηση ορθογωνικών κοπών (2D) και λοξών κοπών μετάλλου (3D). Το 1973 ο Klamecki ανέπτυξε ένα από τα πρώτα μοντέλα Πεπερασμένων Στοιχείων για μετάλλου. γρησιμοποιώντας τρισδιάστατο κατεργασίες κοπής ένα και ελαστοπλαστικό μοντέλο το οποίο χρησιμοποιούσε μια εκσυγχρονισμένη εκδοχή της θεωρίας Lagrange. Ο Usui και ο Shirakashi το 1982 κατασκεύασαν τη πρώτη δισδιάστατη προσομοίωση ορθογωνικής κοπής σε μόνιμη κατάσταση, με τη χρήση Πεπερασμένων Στοιχείων. Για να το πραγματοποιήσουν χρησιμοποίησαν μια ειδική υπολογιστική μέθοδο, η οποία ονομάστηκε Επαναληπτική Μέθοδο Σύγκλισης. Το 1984 ο Iwata και οι συνεργάτες του ανέπτυξαν μια μέθοδο αριθμητικής μοντελοποίησης για την επίπεδη ορθογωνική κοπή, στη βάση ενός rigid-plastic μοντέλου, στο οποίο η επίδραση της θερμοκρασίας δεν λαμβάνονταν υπόψη. Στη συνέχεια ο Strenkowski και ο Carroll το 1985 δημιούργησαν ένα αριθμητικό μοντέλο ορθογωνικής κοπής χωρίς προσχηματισμένο απόβλητο. Το μοντέλο τους βασίστηκε σε κώδικα updated Lagrange επικεντρωμένο στις μεγάλες παραμορφώσεις. Το 1991 οι Κομβόπουλος και Erpenbeck εισήγαγαν εάν κριτήριο διαχωρισμού του αποβλήτου, χρησιμοποιώντας τις απόψεις του distansce tolerance critirion για να μελετήσουν το σχηματισμό του αποβλήτου. Ο Liu με τον Lin to 1992 εισήγαγαν ένα κριτήριο διαχωρισμού του αποβλήτου χρησιμοποιώντας τα επιχειρήματα της ενέργειας παραμόρφωσης. Η μελέτη τους επικεντρώθηκε στη γεωμετρία του αποβλήτου, στις παραμένουσες τάσεις στην επιφάνεια του κατεργαζόμενου τεμαχίου, στη κατανομή των θερμοκρασιών στο απόβλητο και δυνάμεις κοπείς του κοπτικού εργαλείου. Ο Ceretti το 1996 κατασκεύασε ένα μοντέλο κοπής, το οποίο αφαιρούσε στοιχεία ,όταν αυτά έφταναν τη κρίσιμη τιμή του κριτηρίου της συσσωρευτικής καταστροφής (accumulated damage critical value).[11]

Με εξέλιξη της τεχνολογίας και την αλματώδη πρόοδο που συντελέστηκε στον τομέα των ηλεκτρονικών υπολογιστών, σε συνδυασμό με την ανάπτυξη των εμπορικών λογισμικών προσομοιώσεων Πεπερασμένων Στοιχείων ,ξεπεράστηκαν αρκετοί περιορισμοί στη μοντελοποίηση και στις υπολογιστικές δυσκολίες του παρελθόντος. Έτσι δόθηκε η δυνατότητα στους ερευνητές να εστιάσουν τις μελέτες τους σε πιο εξειδικευμένα ζητήματα όπως στις δισδιάστατες προσομοιώσεων κοπών με τη χρήση τριών διαφορετικών λογισμικών Πεπερασμένων στοιχείων (MSC Marc, Thirdwave Advantedge και το Deform 2D), με τα αποτελέσματα πειραμάτων. Έπειτα οι Ozel και Felice το 2004, χρησιμοποίησαν το Deform 2D, για να μελετήσουν την επίδραση διαφορετικών μοντέλων τριβής στα αποτελέσματα των κοπών. Ο Atanasio το 2008 ανέπτυξε μια προοδευτική προσέγγιση για τη μοντελοποίηση των φαινομένων μεταφοράς θερμότητας της διαφάνειας κοπτικού εργαλείου-αποβλήτου. Στις αριθμητικές του προσομοιώσεις χρησιμοποίησε το Deform 3D για να μελετήσει

τη φθορά του κοπτικού εργαλείου. Έπειτα το 2009 οι Davim και Maranho χρησιμοποίησαν το πρόγραμμα MSC.Marc για να διευρευνήσουν τις πλαστικές παραμορφώσεις και την επίδραση του ρυθμού πλαστικών παραμορφώσεων κατά τη διάρκεια κατεργασιών υψηλής ταχύτητας (High Speed Machining-HSM). Ο Kilicaslan το 2009 [11] κατασκεύασε ένα μοντέλο ορθογωνικής κοπής και μελέτησε την επίδραση στα αποτελέσματα κοπής τριών δριαφορετικών μοντέλων υλικού (Oxley, Johnson-Cook, και Zerilli-Armstrong) με τη χρήση του λογισμικού Abaqus.

4.3 Πειραματική διαδικασία

Στην εργασία του Halil Bil διεξήχθη και μελετήθηκε η κατεργασία της τόρνευσης[10]. Τα αποτελέσματα που προέκυψαν από αυτή την εργασία αποτέλεσαν αντικείμενο περαιτέρω μελέτης καθώς επίσης και αυτά που θα συγκριθούν με το μοντέλο της Μεθόδου των Πεπερασμένων της παρούσας διπλωματικής εργασίας.Τα στοιχεία προς σύγκριση είναι τα ακόλουθα:

- οι δυνάμεις κοπής
- οι δυνάμεις άπωσης
- το μήκος επαφής στην πλευρά κόψης αποβλήτου-κοπτικού εργαλείου
- το πάχος αποβλήτου

Μετά τη διεξαγωγή της τόρνευσης, τα παραχθέντα απόβλητα μετρήθηκαν σε μικροσκόπιο ως προς τους γεωμετρικούς παράγοντες όπως, τη γωνία διάτμησης κτλ. Η πειραματική διαδικασία έλαβε χώρα σε τόρνο. Η τόρνευση ήταν μετωπική όποτε την κοπή μπορούμε να τη θεωρήσουμε ορθογωνική. Αυτή την κοπή θα προσομοιώσουμε με τα μοντέλα μας χρησιμοποιώντας τη μέθοδο των Πεπερασμένων Στοιχείων. Το κατεργαζόμενο τεμάχιο ήταν κυλινδρικό και κούφιο από μέσα με διάμετρο εξωτερικά 56 mm και εσωτερικά 51,1 mm. Η πρόωση είχε επιλεγεί από τις διαθέσιμες επιλογές του τόρνου, ίση με 0,1 mm/rev στο πρώτο και 0,05 mm/rev στο δεύτερο πείραμα. Η ταχύτητα περιστροφής του τόρνου ήταν 125 rpm και στις δύο περιπτώσεις. Η ταχύτητα κοπής ν (m/min) δίδεται από τη σχέση:

v=π D n (3.1)

Εικόνα 4.1: Η Ορθογωνική τόρνευση

Στην πράξη οι μονάδες που χρησιμοποιούνται είναι D σε (mm), n σε (rpm). Οπότε η εξίσωση παίρνει την μορφή $v=\pi$ D n/1000 (mm/min). Συνεπώς για τη τόρνευση ίσχυε ταχύτητα κοπής 21,6 m/sec.

4.4 Κατασκευή μοντέλου Πεπερασμένων Στοιχείων με το MSC Marc

4.4.1Σχεδίαση του τεμαχίου.

Κατασκευάζουμε ένα μοντέλο επίπεδης παραμόρφωσης με συνδυασμό θερμομηχανικών ιδιοτήτων και με ελαστοπλαστική συμπεριφορά. Η υπόθεση επίπεδης παραμόρφωσης είναι έγκυρη εάν το πάχος κοπής είναι σημαντικά μεγαλύτερο από το πάχος απαραμόρφωτου αποβλήτου. Το μοντέλο κατασκευάζεται με ύψος κοπής 10 φορές μεγαλύτερο από το πάχος αποβλήτου και με μήκος 20 φορές την πρόωση. Με αυτό τον τρόπο τα προβλεπόμενα αποτελέσματα δε θα είναι ευαίσθητα στις οριακές συνθήκες της μετατόπισης και βεβαιώνουμε ότι θα έχει επέλθει η μόνιμη κατάσταση. Ακόμα χάρις σε αυτές τις συνθήκες ικανοποιείται και η συνθήκη επίπεδης παραμόρφωσης.

Στην παρακάτω εικόνα εμφανίζεται το μοντέλο σχεδιασμένο για εισάγωγή στο Marc. Το δοκίμιο έχει διαστάσεις 2 mm σε πλάτος και 0,5 mm σε ύψος. Το δοκίμιο σχεδιάζεται πακτωμένο, έτσι ώστε οι κόμβοι και τα στοιχεία που βρίσκονται στη βάση και στη πλάγια επιφάνεια να είναι πακτωμένα. Συνεπώς δεν μπορούν να κινηθούν κατά τη διεύθυνση των αξόνων x,y.Για να επιτύχουμε το παραπάνω σχεδιάζουμε τοιχία που τα λογίζουμε ως άκαμπτες καμπύλες για την βάση και την αριστερή επιφάνεια που βρίσκονται σε επαφή με το τεμάχιο. Αυτό θα μπορούσαμε να το επιτύχουμε και με τη χρήση οριακών συνθηκών. Όμως, το MSC.Marc παρουσίαζε

αρκετές δυσκολίες λόγω της επιλογής global remeshing, οπότε το αποφύγαμε με τη χρήση των τοιχίων. Τα άκαμπτα τοιχία είχαν διαστάσεις μεγαλύτερες του τεμαχίου και εκτίνονταν κατά 0.1 mm σε κάθε διάσταση. Η πάνω επιφάνεια καθώς και η δεξιά του δοκιμίου παρέμειναν ελεύθερες για τη ροή του υλικού και το σχηματισμό του αποβλήτου. Ακόμα το κατεργαζόμενο τεμάχιο σχεδιάστηκε με βάθος 1,45 mm ως προς τη τρίτη διάσταση. Ακολουθεί το σχέδιο του δοκιμίου με τις βασικές γεωμετρικές αρχές του.

Εικόνα 4.2: Η Γεωμετρία του δοκιμίου μας [10]

Για τη διακριτοποίηση του τεμαχίου χρησιμοποιούμε αρχικά 451 κόμβους και 400 τετράπλευρα στοιχεία τύπου 11 (Advancing Front Quad) από τη βιβλιοθήκη του προγράμματος. Τα παραπάνω στοιχεία έχουν ευρεία εφαρμογή σε εφαρμογές επίπεδων παραμορφώσεων και παράδειγμα της γεωμετρίας του φαίνεται στην εικόνα που ακολουθεί.

Εικόνα 4.3: Τετράπλευρο στοιχείο

Στη συνέχεια για τη διεξαγωγή των προσομοιώσεων εκμεταλλευόμενοι τη λειτουργία του Autoremeshing θα αυξήσουμε τον αριθμό τον στοιχείων στις 5000.Τότε κάθε στοιχείο θα έχει διαστάσεις πλευράς 0,014 από 0,05 mm που είχε αρχικά.

4.4.2 Σχεδίαση του κοπτικού εργαλείου

Για τη διεξαγωγή των προσομοιώσεων θεωρούμε ότι το κοπτικό εργαλείο δεν μπορεί να παραμορφωθεί. Συνεπώς, θα θεωρηθεί άκαμπτο για τη διεξαγωγή της προσομοίωσης της κοπής και θα το ορίσουμε ως καμπύλη. Για τη σχεδίαση, χρησιμοποιήθηκε το σχεδιαστικό πρόγραμμα της Autodesk, Autocad. Με τη χρήση του παραπάνω σχεδιαστικού προγράμματος ήταν ευκολότερη η εύρεση των συντεταγμένων των σημείων του εργαλείου. Η κορυφή της μύτης του κοπτικού ορίστηκε ως το σημείο (2.01,0.4,0) για πρόωση 0,1 και το (2.01,0.45) για πρόωση 0,05. Οι γεωμετρικές παράμετροι του εργαλείου μας είναι η γωνία ελευθερίας, η γωνία αποβλήτου και η καμπυλότητα της κοπτικής ακμής. Από τη γεωμετρία του κοπτικού εργαλείου έχουμε γωνία ελευθερίας α=5° και γωνία αποβλήτου γ=25°.Τα σημεία του κοπτικού με τη παραπάνω γεωμετρία έχουν συντεταγμένες (2.53,1.31,0) και (3.36,0.5,0) για το πάνω όριο και το δεξιά αντίστοιχα. Η κοπτική ακμή σχεδιάστηκε με ακτίνα 0,002 mm κάνοντας fillet στην κοπτική ακμή της. Το κοπτικό εργαλείο έχει την παρακάτω μορφή:

Εικόνα 4.4: Η καμπύλη κοπτική ακμή του κοπτικού εργαλείου

Γωνία αποβλήτου	Γωνία ελευθερίας α	Ακτίνα κοπτικής ακμής
γ(°)	(°)	(mm)
25	5	0,002

Πίνακας 4.1: Γεωμετρικοί παράμετροι κοπτικού εργαλείου

Λαμβάνοντας υπόψη τη σχεδίαση του τεμαχίου και του κοπτικού εργαλείου προκύπτει η παρακάτω εικόνα του μοντέλου :

Εικόνα 4.5: Το βασικό μοντέλο στο MSC. Marc

4.5 Γεωμετρικές ιδιότητες και ιδιότητες υλικού του τεμαχίου

Στη συνέχεια ορίζουμε το υλικό του μοντέλου. Το δοκίμιο της εργασίας είναι ένας "κούφιος" κύλινδρος κατασκευασμένος από χάλυβα C15.Αυτός είναι χάλυβας χαμηλής περιεκτικότητας σε άνθρακα ή μαλακός χάλυβας και η αντίστοιχη ονομασία του κατά το πρότυπο AISI είναι 1015. Η εξωτερική και η εσωτερική διάμετρος του δοκιμίου είναι 56 και 53,1mm αντίστοιχα. Συνεπώς, το βάθος κοπής ισούται με 1.45mm.Για την εισαγωγή και τον ορισμό του χάλυβα χρησιμοποιήσαμε την βιβλιοθήκη υλικών του MSC Marc όπως φαίνεται παρακάτω:

Marke Mentat 2011.10 (64hit): Clusterti fujitul desittopier File Select. View Tode Window Heb Image: Select. View Tode Image: Select. View Tode Image: Select. View Tode Image: Select. View Tode Image: Select. View Tode Image: Select. View Tode Image: Select. View Tode Image: Select. View Tode Image: Select. View Image: Select. View<	Structural Properties Type Elastic-Plastic Isobro Young's Modulus Poisson's Rate	× v	able C15-Emod(1)	Shel/Plane Stress Elems		X
Mennove Unuded show Mennove Experimental Data Fit Edit Mental Properties Material Properties	Viscoelasticity Damage Effects Damping	Viscoplasticity Thermal Expansion Forming Limit	Plasticity Cure Strinkage Grain Size	Creep		86)(d we
Name C15 Type standard Copy Prev Next Rem Region Type	Reset	ties		OK		
Data Categories General Structural Thermal	Hardening Rule	Isotropic 👻	Strain Rate Method	Piecewise Linear 💌		
Conerta Add kem «y		-	OK		ľ.	
Dmark Heru	Command > "dyn Command > "dyn Command > "add Command > "add Enter add materia	anic_model_off mater_elements I element list :				1
Resdy	1 1					0% EN 7:11 µµ

Εικόνα 4.6: Εισαγωγή ιδιοτήτων υλικού στο MSC Marc.

Στον παρακάτω πίνακα παρουσιάζεται η χημική σύσταση του χάλυβα C15.

С	Si	Mn
0.15	0.20	0.45

Πίνακας 4.2: Χημική σύσταση του χάλυβα C15 % w/w

Μετά την ολοκλήρωση και τον ορισμό των μηχανικών ιδιοτήτων υλικού εισάγουμε τις θερμικές ιδιότητες που θα ληφθούν υπόψη κατά τη διεξαγωγή των προσομοιώσεων και αφορούν το χάλυβα C15:

M Thermal Propertie	es					×
Type Isotropic	•					
		Cond	ductivity			
					User Sub. Ar	nkond
к		1		Table	C15-Cond(T)
Specific Heat		1		Table	C15-SpHt(T)	
Mass Density	General 🔹 🔻	Value	7.85e-009	Ð		
Emissivity		0		Table		
Latent Heat				Curin	Ig	
Reset						ОК

Εικόνα 4.7: Εισαγωγή θερμικών ιδιοτήτων του υλικού

Λόγος Poison	Πυκνότητα (gr/ cm ³)	Μέτρο Ελαστικότητας (GPa)	Θερμική Αγωγιμότητα (W/m.K)	Ειδική Θερμότητα (J/g.K)	Συντελεστής Θερμικής Διαστολής(m/m.K)
0,3	7,85	210	58,6	0,46	14,9x10 ⁻⁶

Πίνακας 4.3: Μηχανικές και θερμικές ιδιότητες του χάλυβα C15[10]

Για τις θερμικές ιδιότητες του χάλυβα C15 λάβαμε υπόψη τους πίνακες θερμικών ιδιοτήτων της βιβλιοθήκης του MSC.Marc που αφορούν την θερμική αγωγιμότητα, την ειδική θερμότητα και το συντελεστή θερμικής διαστολής του υλικού. Οι παραπάνω θερμικοί παράγοντες εξαρτώνται από τη θερμοκρασία και απαιτούνται για τους υπολογισμούς που αφορούν την μεταφορά θερμότητας. Οι πίνακες παρουσιάζονται στις εικόνες που ακολουθούν.

Εικόνα 4.8: Θερμική αγωγιμότητα

Εικόνα 4.9: Ειδική θερμότητα

Εικόνα 4.10: Συντελεστής Θερμικής Διαστολής

4.6 Ορισμός των επαφών και των αρχικών συνθηκών.

Έπειτα ορίζουμε τις επαφές μεταξύ των επιφανειών και τις αρχικές συνθήκες όπως φαίνεται στις παρακάτω εικόνες:

M Conta	act Tab	le Properties												×
							Second							
First		Body Name		Body Type		1	2	3	4					
1 noc	1	temaxio		deformable		Т	Т	G	G					
	2	koptiko		rigid										
	3	katw_epifane	eia	rigid										
	4	plagia_epifan	neia	rigid										
							—All E	Intries -						
Contact	t Type		No Co	ntact	Touc	:hing			G	lue	1			
Detectio	Detection Method Defaul		ault	Auto	tomatic		First->Second		Second->	>First	Double-Sideo	đ		
							(OK						

Εικόνα 4.11: Ορισμός επαφών επιφανειών και των ιδιοτήτων τους

Contact Table	Entry Pro	perties							23
Contact Type		Touching		•					
First Body	temaxio				deformable		Re	defined Boundary	
Second Body	koptiko				rigid		Re	defined Boundary	
At Initial Contact			Project	Stress-	Free				
At Sharp Corners 📃 Delay Sli			lide Off						
Distance Tolerance				0					
Bias Factor				0					
Show Properties		Structural	-						
Separation Thresh	old			0					
Interference Closu	ire			0	0				
Friction Coefficient	t			0.4		Tab	le		
Friction Stress Limi	t			1e+0)20	Tab	le		
Anisotropic Frid	tion								
Hard-Soft Ratio				2					
Wear Scale Factor		1	1		Table				
Augmentation	1								
Reset								0	к

Εικόνα 4.12: Ιδιότητες επαφής

Από την καρτέλα των επαφών ορίζουμε και την ταχύτητα του κοπτικού μας εργαλείου. Το κοπτικό κινείται με ταχύτητα $U_x = 21,6 \text{ m/60 sec} = -360 \text{ mm/sec}$ κατά την διεύθυνση του άξονα των x.

Co	ontact Body C	ontrol			22
Name	koptiko				
Туре	rigid				
			Velocity Control		
		Center Of Rota	tion		
0		0			
		Rotation Axi	S	_	
X			0	_	
Y			0	_	
4					
v		Ve	elocity (Center Of Rotation	n)	
			-360	Table	
Y			0	Table	
Z			0	Table	
Rot	ational (Rad/Tir	ne)	0	Table	
		Approach Velo	tity		
Х			0		
Y			0		
Z			0		
Rot	ational (Rad/Tir	ne)	0		
		Growth Factor	s (With Respect To Cente	r Of Rotation)	(r)
Х			1	Table	
Y			1	Table	
Z			1	Table	
			ОК		

Εικόνα4.13: Σχετική ταχύτητα κοπτικού εργαλείου.

Για τις αρχικές συνθήκες θεωρούμε ότι η κατεργασία λαμβάνει χώρα σε θερμοκρασία δωματίου 20° C και ότι η θερμοκρασία είναι ομοιόμορφα κατανεμημένη στο κατεργαζόμενο τεμάχιο. Τα δεδομένα εισάγονται στην παρακάτω καρτέλα όπως φαίνεται στην εικόνα:

M Tempe	rature						×
Name	icond1						
Туре	temperature						
	Method						
Enter	ed Values						
🔘 User	Sub. Usinc						
Post	File						
Continuu	m Elements						
V Tempe	erature		20	Table			Clear
Shell Elen	nents						
Uniform	n Temperature Distribu	ition	•				
					# DOF's	all	
V Tempe	erature		20	Table			Clear
	Doct File			Clear			
				Cicai			
Incremen	+	0	Ry Number	I ant			
and eilien		0	le by Number	Cast			01
Cle	ar						OK

Εικόνα 4.14: Εισαγωγή αρχικής θερμοκρασίας τεμαχίου

4.7 Προσαρμογή του πλέγματος (Mesh Adaptivity)

Έπειτα σειρά παίρνει ο καθορισμός του πλέγματος καθώς επίσης και ο ορισμός των παραμέτρων του global remeshing. Ο τύπος του πλέγματος επιλέχθηκε να είναι τετραγωνικός Advancing Front Quad. Στη συνέχεια ορίζεται το penetration ίσο με 0,0001 που προέκυψε μετά από σειρά δοκιμών. Ο αριθμός των στοιχείων του πλέγματος καθορίστηκε στις 5000 με άμεσο remeshing. Πρακτικά αυτό σημαίνει ότι τα 400 αρχικά στοιχεία του τεμαχίου αυξάνονται στις 5000 με την εκκίνηση της σχετικής κίνησης του κοπτικού εργαλείου. Προτιμήθηκε έναντι του remeshing με την πρώτη επαφή λόγω ατελειών που παρουσιαζόντουσαν στο φινίρισμα της επιφάνειας του τεμαχίου. Ακόμα ορίζεται το ελάχιστο μήκος στοιχείου σε 0,001. Έτσι κατορθώσαμε να εφαρμοστεί τοπική αύξηση της πυκνότητας των στοιχείων για να αποδοθεί καλύτερα η μικροκοπή. Η εισαγωγή των στοιχείων δίδεται στις παρακάτω εικόνες.

	Ar Kenneshing Pro	perues			M Adva	inced Kemeshing Para	meters		
Name	adapg1				Name	adapg1			
Туре	Advancing Front Q)uad			Туре	Advancing Front Quad			
	2-D Solid					2-D Solid			
		Remeshing Criteria			V Min	. Element Edge Length		0.001	
Incr	rement	Frequency	5		Cha	ange Of # Elements (%)		0	
V Imm	nediate				Cur	vature Control	#div	36	
🗌 Adv	vanced				Smoot	hing Ratio		0.8	
		Remeshing Paramete	rs		Transit	ion Factor		1	
🔘 Elen	nent Edge Length		0.005		Featur	e Vertex Angle		120	
🌒 # E	lements		5000		Loc	al Refinement			
🔘 Prev	vious # Elements						Pla: Quad(4) 11	
	Advan	ted			Cha	ange Element Type	Axi: Quad(4	ł) 10	
De	ant			OV			OK		

Εικόνα 4.15: Εισαγωγή ιδιότήτων και παραμέτων του remeshing

M Advanced Remeshing Criteria									
📃 Strain Change	Maximum	0.4							
Element Distortion									
Penetration	🔽 User Limit		0.0001						
Angle Deviation	From Undeformed		40						
	ОК								

Εικόνα 4.16: Καθορισμός του Penetration

4.8 Ιδιότητες φόρτισης

Για την διεξαγωγή των προσομοιώσεων, το επόμενο βήμα ήταν ο ορισμός των ιδιοτήτων των φορτίσεων. Στο βήμα αυτό συνοψίζονται τα προηγούμενα βήματα και ορίζονται αυτά που θα ληφθούν υπόψη. Έτσι ορίζεται ο χρόνος που θα χρειαστεί για την ολοκλήρωση της προσομοίωσης, ίσος με t=

Geometry & Mesh Tables & Coord, Syst, Geometri	Loadcase Properties	X	Jobs Results
······	Name Icase1		
Show Menu	Type Thermal/Structural		
Edit	trans/static		
Loadcases	Loads		
	Gaps		
Loadcases 🔻 🗶 🕅	Contact	Fixed Stepping (Constant Time Step)	×
Name Icase1	Global Remeshing		
Thermal/Structural	VCCT Crack Propagation	Constant Time Step 8.05556e-007 # Steps	5000
trans/static	Solution Control	No Finish Check	
Copy Prev Next Rem	Structural T Convergence Testing	Finish Temperature 0	
Properties	Numerical Dreferences	ОК	
Deactivation / NC Machining		Termination Criteria	
Input File Text Indude File	Stepping Procedure	La reminudon encara	
Title	Fixed	8.05556e-007 Parameters	
	Adaptive 🔘 Multi-Criteria	Parameters	
	Temperature	Parameters	
	Loadcase Results		
	Reset	OK	

Termination Criteria				x
Maximum Percentage	Of Body Boundary Nodes In Contac	:t		
Minimum Percentage	Of Body Boundary Nodes In Contact	t		
Maximum Force On Bo	ody			
Maximum Displacemer	nt Of Body			
Body	koptiko	Maxin	num Displacement Allowed	1.46
Minimum Distance Bet	ween Bodies			
Maximum Distance Be	tween Bodies			
Maximum Displacemer	nt Of Any Node			
Maximum Displacemer	nt Of Node			
Maximum Percentage	Of Elements Reaching Relative Den	sity Threshold		
		OK		

4.9 Τελική ρύθμιση και εκκίνηση της προσομοίωσης

Οι τελικές ρυθμίσεις πριν την εκκίνηση της προσομοίωσης του μοντέλου, λαμβάνουν χώρα στην καρτέλα Jobs. Στην καρτέλα αυτή θα γίνει ο τελευταίος έλεγχος των ρυθμίσεων μας καθώς επίσης θα ρυθμιστούν και οι τελευταίες παράμετροι. Στις διαθέσιμες χρήσιμες ρυθμίσεις συγκαταλέγονται ο ορισμός μέγιστου αριθμού κόμβων και στοιχείων από την επιλογή Mesh Adaptivity. Στην επιλογή Contact Control ρυθμίζονται παραμέτροι χρήσιμες για την επαφή των δύο σωμάτων όπως ο τύπος του συντελεστή τριβής, οι ανοχές της και η μέθοδο που θα ακολουθηθεί. Ο ορισμός των παραπάνω φαίνεται στην εικόνα που ακολουθεί:

ame job 1 pe Thermal/Structural				ases Jobs	Results
elected Clear	Loadcases	Contact Control	-		x
ase 1 Thermal/Structural	trans/static	Method	NODE TO SEGMENT Friction		
		Туре	Shear Bilinear (Displac	cement)	
		Numerical Model	Arctangent (Velo	city)	
			Bilinear (Displace)	ment)	
			Parameters		
		Friction Force Tolerand	e	0.05	
vailable		Slip Threshold	Automatic	▼ 0	
		Initial Contact			
		Advanced	Contact Control		
			ОК		
Initial Loads		An	alysis Options		
	Cyclic Symmetry		Job Results		
Contact Control	Global-Local	Jo	b Parameters		
Mesh Adaptivity		Analysis Dime	nsion		X
Antive Conduc		Plane Strain	•		1
					la la

Εικόνα 4.19: Ιδιότητες της εργασίας

Ακόμα μέσω της επιλογής Job Results ρυθμίζουμε τις μεταβλητές που θα προκύψουν από την προσομοίωση. Στα αποτελέσματα αυτά συγκαταλέγονται μονόμετρα μεγέθη όπως θερμοκρασίες και παραμορφώσεις, καθώς επίσης και διανυσματικά μεγέθη όπως δυνάμεις και τάσεις. Η επιλογή των παραμέτρων που θα μελετηθούν φαίνονται στην παρακάτω εικόνα:

Name	job 1		-					 		
Туре	Thermal/Structural									
	Post	File			Output File	Rebar Veri	fication	Contact		I-DEAS
		Bir	nary	-	Elowlines	Particle Tr	acking	Model Files		Hypermesh
Defau	It Style 🔹 Increment	Frequency		1	Status File	Eorce Bala	ance			Adams
		s	elect	ed Element Quantiti	es				Available Element Tensors	Additio
				Clear Layers	5					
		0.6.1							Stress	
Eq.	juivalent Plastic Strain Rate	Default	•				Cir		Stress in Preferred Sys	
V Te	mperature Increment	Default	•				Clr		Global Stress	
V St	ress	Default	•				Clr		Cauchy Stress	•
🗸 Gl	obal Stress	Default	-				Clr 😑		Available Element Scalars	
🗸 То	tal Strain	Default	-				Clr		Equivalent Von Mises Stress	
V Ela	astic Strain	Default	-				Clr		Mean Normal Stress	
V Pla	astic Strain	Default	-				Clr 🔫		Equivalent Cauchy Stress	
Element	Results	All Points		Centroid					Total Strain Energy Density	-
Concernant of	Selected Nod	al Quantities		Centrola					21	
	Selected Nod	ai Quai tutea	, 		Default	Custom				
Contact	t Glue Forces	Include		Exclude						
						OK				

Εικόνα 4.20: Επιλογή των μεταβλητών των αποτελεσμάτων

Τέλος, πριν την εκκίνηση της εκάστοτε προσομοίωσης, γίνεται ο έλεγχος για τυχόν σφάλματα και επιδιόρθωση του κώδικα πριν το ξεκίνημα της προσομοίωσης με το πάτημα της επιλογής Run, όπως φαίνεται στην εικόνα που ακολουθεί:

Name		job 1								
Туре	ŀ	Thermal/Stru	uctural							
Сору		Сору То	Pre	v	Next	Rem				
		Pr	opertie	es						
Deactivation										
🔲 Input File	e Tex	t	🗌 In	dud	le File					
						Title				
Check Renumber All										
			Run							

Εικόνα 4.21: Τελευταίος έλεγχος και εκκίνηση της προσομοίωσης

4.10 Διεξαγωγή Προσομοιώσεων

Μετά την ολοκλήρωση και τη κατασκευή των μοντέλων, διεξάγονται δύο προσομοιώσεις με δύο διαφορετικές τιμές πρόωσης. Τα αποτελέσματα που προέκυψαν τα συγκρίνονται με τις αντίστοιχες τιμές των πειραματικών αποτελεσμάτων, καθώς επίσης και με τις τιμές των αποτελεσμάτων των προσομοιώσεων της εργασίας του Halil Bil. Οι συνθήκες των προσομοιώσεων παρουσιάζονται στον πίνακα που ακολουθεί:

Γωνία Αποβλήτου,	Γωνία ελευθερίας,	Συντελεστής τριβής, μ	Ταχύτητα κοπής,V _c	Ρυθ Πρόω	μός ση, f	Βάθος Κοπής
γ°	αo		(m/min)	(mm/	rev)	
0	5°	0,4	21,6	0,05	0,1	1,45

Πινακας 4.4: Συνθήκες Προσομοιώσεων

Πρώτη Προσομοίωση Μοντέλου

Shear Bilinear $\mu\epsilon$ f=0,05 , $\gamma=25^{\circ}$ m=0,4

M Run J	ob		-	-	-		×
Name	job 1						
Туре	Thermal,	/Structura	al				
	User Su	broutine I	File				
Par.	allelizatio	n		No DE	M		
				1 Solv	er Proc	ess	
Title		Style	Table-Dri	ven			Save Model
5	Submit (1)		Advan	ced Job	Submis	ssion
	Update		Mor	nitor			Kill
Status						Comple	ete
Current	t Increme	nt (Cycle	:)			5000 ((2)
Singula	rity Ratio					0.008	7677
Conver	gence Ra	atio				0.0463	2
Analysi	s Time					0.0040	0278
Wall Tin	ne					21767	·
1			Tot	al			
Cycles		20542		Cut	Backs	0	
Separa	ations	1204		Rem	neshes	2063	
Exit Nu	mber		3004			Exit	Message
Edit	Outp	ut File	Log File		Statu	s File	Any File
	Open	Post File	(Results Men	u)			
R	eset					1	ОК

Στοιχεία προσομοίωσης

Από την διεξαγωγή της προσομοίωσης προέκυψαν τα ακόλουθα στιγμιότυπα:

t=0,0001sec T_{max}=246 °C

Sele	ct Viev	v Tools	Window He	elp								
🗃)	🧷 💽 🖏) 🔍 🕀 🗩 🤊	← → ↓ ↑	11	$\leftrightarrow \leftrightarrow \diamond$	$ \times \times $	• ••••	 Analysis Class 	Structural	
Geometr	y & Mesh	Tables	& Coord. Syst.	Geometric Properties	Material Properties	Contact	Toolbox Links	Initial Conditions	Boundary Conditions	Mesh Adaptivity	Loadcases Jo	obs Results
New Show M	enu E	Element Ty	pes User Do	mains htify								
rc Ment	tat 2011	.1.0 (64bi	t): c:\users\fuji	tsu\desktop\marc tes	ts pasxa new\summe	r2013\valid	dation1\test_halil	bil_0.4_25_0.05_o	k\test.mud: test_job1.	16 - [Model (View 1	1)]	Statement Statement
Sele	ct Viev	v Tools	Window He	зlp								
📑) 😨	🍠 🔂		← → ↓ ↑	11	\leftrightarrow \leftrightarrow \diamond	$ \times \times $	• ••••	 Analysis Class 	Structural	
Geometr	y & Mesh	Tables	& Coord. Syst.	Geometric Properties	Material Properties	Contact	Toolbox Links	Initial Conditions	Boundary Conditions	Mesh Adaptivity	Loadcases Jo	obs Results
New Show M Edit	enu E	lement Ty	pes User Do Des User Do Tools	mains htify								
Inci	621	Jenen iy	pes Oser Do	inde io								
Time	5.003e	-004										1
	3.434e-	+002										
	3.091e-	+002										
	2.747e-	+002										/
	2.404e-	+002									/	
	2.060e-	+002										
	1.717e-	+002									/	
	1.374e-	+002									1	
	1.030e-	+002									/	
	6.868e-	+001										
	3.434e-	+001										

t=0,0005 sec T_{max}=343 °C

M N	Marc Mentat 2011	1.0 (64bit): c:\use	ers\fujitsu\de	sktop\marc tes	ts pasxa new\summ	er2013\valid	lation1\test_halil	bil_0.4_25_0.05_c	ok\test.mud: test_job1	.t16 - [Model (Vie	w 1)]	•		- 0 - X
17		22	- C	1 . .	++++	11	++++++	* * *		Analysis Cli	ss Structural			CARLS.
×	Geometry & Mesh	Tables & Coord.	Syst. Geo	metric Properties	Material Properties	Contact	Toolbox Links	Initial Conditions	Boundary Conditions	Mesh Adaptivity	Loadcases	Jobs Results		
Man Menu 9	New Show Menu Edit Jobs E	lement Types U Tr lement Types U	ser Domains Identify bols								H. C.			
110	Inc: 1242 Time: 1.001e	003												MSC Software
	3.032e- 2.729e- 2.426e- 2.123e- 1.819e- 1.516e-	002 002 002 002 002												
=>	1.213e-	-002												
	9.097e-	-001												
	6.065e-	-001												
	3.032e+	-001												
	0.000e-	-000						External Heat F	łux					-
Read	ły													0%
	9 👩		3 6	3 🕘				M					EN	5:44 µµ 10/10/2013

t=0,0001 sec T_{max}=303,2 °C

c Mentat 2	011.1.0	(64bit): c:\	users\fujits	u\desktop	marc test	ts pasxa n	ew\summe	er2013\valio	dation1\te	est_halil_	bil_0.4_25_0.05	_ok\test.	mud: test_job1	.t16 - [Model (Vie	w 1)]
Select	View	Tools Wir	ndow Help	l.											
🟓 🖬	5	۱		E	• 🗩 -	+ +	+ +	//	→ €)	\$×7	۲ 🗩	- H - 6	Analysis Cla	ss Structura
eometry & M	Mesh	Tables & Coo	ord. Syst.	Geometric	Properties	Material	Properties	Contact	Toolbox	Links	Initial Condition	Boun	dary Conditions	Mesh Adaptivity	Loadcases
New File Show Menur	Elem	ent Types	User Domi	ains fy											
Jobs	Elem	ent Types	User Dom	ains											
Time: 1.86 Time: 1.9 4.4 4.0	2 500e-00 44e+00 00e+00 56e+00	3 2 2 2												/	/
3.1	11e+00	2													
2.2	22e+00	2													
1.7	78e+00	2												/	
1.3	33e+00	2		1											
8.8	89e+00	1							HARA -		and a support of the state				
4.4	44e+00	1													

t=0,00015 sec T_{max}=444,4 °C

New Eleme Show Menu	ent Types User Dom	ains ify									0
rc Mentat 2011.1.0	(64bit): c:\users\fujits	u\desktop\marc tests	pasxa new\summe	r2013\valid	ation1\tes	t_halil_	bil_0.4_25_0.05_ol	k\test.mud: test_job1.	t16 - [Model (View	w 1)]	-
e Select View T	Tools Window Help	0									
📑 🖬 🕥 🗄	💖 🛃 芝 🕥	Q /	← → ¥ †	11		+ ¢	$\phi \times \times \phi$	*H * ©	Analysis Cla	ss Structur	al
Geometry & Mesh T	Tables & Coord, Syst,	Geometric Properties	Material Properties	Contact	Toolbox	Links	Initial Conditions	Boundary Conditions	Mesh Adaptivity	Loadcases	Jobs Re
New Eleme Show Menu Edit Edit	ent Types User Dom Identi Tools	ains ify									
Jobs Eleme	ent Types User Dom	ains									
Inc: 2483 Time: 2.000e-003 3.532e+002 2.826e+002 2.472e+002 2.119e+002 1.766e+002 1.413e+002 1.060e+002 7.064e+001 3.532e+001	3 2 2 2 2 2 2 2 2 2 2 2 1 1										

t=0,00020 sec T_{max}=353,2 °C

rc Men	tat 201	1.1.0	(64bit): c:\u	sers\fu	itsu\de	sktop\m	arc test	s pasxa r	new\summ	ner2013\va	idation1\te	est_halil_	bil_0.4_25_0.05	_ok\te:	st.mu <mark>d:</mark> test_jo	b1.t16	5 - [Model (View	v 1)]
Sele	ct Vie	ew T	ools	Wind	low H	elp													
1	-	2		2) []] 🕀	₽-		• 🕴 🛉	11		$\Rightarrow \Rightarrow$	\$×7			0	Analysis Cla	ss Structur
Geometr	y & Mes	sh Ti	ables 8	& Coor	d. Syst	Geo	metric Pro	operties	Materia	al Propertie:	s Contact	Toolbox	Links	Initial Condition	s Bo	undary Conditio	ns N	lesh Adaptivity	Loadcases
New Show M Edit Jobs	lenu	Eleme Eleme	nt Typ nt Typ	es es	User De Ide Tools User De	mains ntify mains													
Inc: Time	3104 : 2.500)e-003															1		
	2.813	e+002															/		
	2.250	e+002 e+002																	
	1.969	e+002														1			
	1.688	e+002													/	/			
	1.406	e+002													/				
	1.125	e+002													/				
	8.438	e+001																	
	5.625	e+001											E Tak				-		
	2.813	e+001																	

t=0,00025 sec T_{max}=281,3 °C

arc Mentat 201	1.1.0 (64bit): c:\i	users\fujits	u\desktop\marc test	s pasxa new\summe	r2013\valid	dation1\te	st_halil_	bil_0.4_25_0.05_o	k\test.mud: test_job1.	16 - [Model (View 1	.)]
e Select Vie	ew Tools Win	idow Help	,			s*41					
🧀 🖬 🗹) 🧿 💆	- *	🖸 🗲 🔎 -	← → † †	//	\rightarrow)	$\Rightarrow \times \times$		 Analysis Class 	Structur
Geometry & Me	sh Tables & Coo	ord. Syst.	Geometric Properties	Material Properties	Contact	Toolbox	Links	Initial Conditions	Boundary Conditions	Mesh Adaptivity	oadcases
New Show Menu Edit	Element Types	User Dom Identi Tools	ains fy ♥								
Jobs	Element Types	User Dom	ains								
Time: 3.000 5.032 4.529 4.026 3.522 3.019 2.516 2.013	e+002 e+002 e+002 e+002 e+002 e+002 e+002 e+002										
1.510 1.006 5.032	e+002 e+002 e+001						2				

t=0,00030 sec T_{max}=503,2 °C

arc Mentat 20	011.1.0 (64bit): c	:\users\fujits	u\desktop\marc tests	s pasxa new\summe	r2013\valid	dation1\te	st_halil_	bil_0.4_25_0.05_c	ok∖test.mud: test_job1.	t16 - [Model (View	1)]
e Select \	/iew Tools W	/indow Help							192		
🧀 🖬 🕯	ी 🧕 💆	2 🔂 🤍	Q 🗲 🗲 -	← → † †	11	\rightarrow) ¢	$ \times \times $) 🔻 🛛 Analysis Class	Structur
Geometry & M	esh Tables & Co	oord. Syst.	Geometric Properties	Material Properties	Contact	Toolbox	Links	Initial Conditions	Boundary Conditions	Mesh Adaptivity	Loadcases
New Show Menu Edit	Element Types	User Doma Identi Tools	ains fy								
Jobs	Element Types	User Doma	ains								
Time: 3.51	00e-003 10e+002 16e+002 12e+002 18e+002 14e+002 10e+002 10e+002 10e+002 10e+002 10e+002						/				
1.63 1.08 5.44	12e+002 18e+002 10e+001					2					

t=0,00035 sec T_{max}=544,0 °C

arc Mentat 2011.	1.0 (64bit): c:\u	sers\fujits	u\desktop\marc test	s pasxa new\summe	r2013\valid	dation1\te	st_halil_	bil_0.4_25_0.05	ok\test.mud: test_job1.	t16 - [Model (View	1)]
e Select View	Tools Wine	dow Help	,							1	
1	۹ 🍠		Q 🗲 🔎 -	← → † †	//	\rightarrow)	\$×9	≤ ♥ • ⊞ • @	Analysis Class	Structu
Geometry & Mesh	Tables & Coo	rd. Syst.	Geometric Properties	Material Properties	Contact	Toolbox	Links	Initial Condition	Boundary Conditions	Mesh Adaptivity	Loadcases
New Tel Show Menu Edit	ement Types	User Doma Identi Tools	ains fy								
Jobs El	ement Types	User Doma	ains								
Time: 4.000e- 2.637e+ 2.373e+ 2.109e+ 1.846e+ 1.582e+	003 002 002 002 002 002					/	/	/			
1.318e+ 1.055e+ 7.911e+ 5.274e+ 2.637e+	002 002 001 001 001										

t=0,00040 sec T_{max}=263,7 °C

t=0,0004028 sec T_{max}=276,1 °C

Από τα στιγμιότυπα της πρώτης προσομοίωσης προκύπτει ότι η μέγιστη θερμοκρασία που αναπτύσσεται στο απόβλητο είναι **T**_{max}=**544,0** °C.

Δυνάμεις κοπής

Από τον υπολογισμό των κοπτικών δυνάμεων κατά τον άξονα των x,προέκυψε το παρακάτω διάγραμμα της κοπής:

Διάγραμμα 4.1

Από τους υπολογισμούς των δυνάμεων προέκυψε ότι κατά τη μόνιμη κατάσταση η μέση τιμή των δυνάμεων κοπής κατά τον άξονα των x,είναι **69N**.Η τιμή αυτή προκύπτει και από το διάγραμμα.

Αντίστοιχα υπολογίστηκαν μέσω του Marc και οι δυνάμεις κοπής κατά τον άξονα των y και προέκυψε το παρακάτω διάγραμμα:

Διάγραμμα 4.2

Από τις τιμές των δυνάμεων του παραπάνω γραφήματος προκύπτει η μέση τιμή της δύναμης ίση με -12 N.

Για των υπολογισμό των δυνάμεων τα αποτελέσματα των προσομοιώσεων εξήχθησαν σε υπολογιστικό φύλλο Excel λαμβάνοντας υπόψη λόγω του μεγάλου όγκου δεδομένων, τις τιμές ανά 20 βήματα.

Γεωμετρία του αποβλήτου

Μετρώντας τα γεωμετρικά χαρακτηριστικά του παραχθέντος αποβλήτου δημιουργήθηκε ο παρακάτω πίνακας:

γ(°)	f (mm)	t _c (mm)	L _c (mm)	φ(°)
25°	0,05	0,087	0,061	36,26

Πίνακας 4.5: Γεωμετρικά χαρακτηριστικά αποβλήτου

Μηχανικοί και θερμικοί παράμετροι

Από την αριθμητική επίλυση του μοντέλου προέκυψαν αποτελέσματα χρήσιμα για τη μελέτη, που αφορούσαν παραμέτρους όπως η πλαστική παραμόρφωση, ο ρυθμός πλαστικής παραμόρφωσης και οι τάσεις στην ζώνη παραμόρφωσης. Τα αποτελέσματα αυτά δύσκολα μετρώνται πειραματικά και παρουσιάζονται στις εικόνες που ακολουθούν:

<u>Τάσεις</u>

Εικόνα 4.22: Τάσεις 908,6 MPa στην κύρια ζώνη και 726,8 MPa στη δευτερεύουσα ζώνη παραμόρφωσης.

Από την κατανομή των τάσεων διακρίνουμε ότι η μέγιστη τιμή την λαμβάνεται στην κύρια διατμητική ζώνη όπου έχουμε την εμφάνιση της μέγιστης παραμόρφωσης και του μέγιστου ρυθμού παραμόρφωσης.

Εικόνα 4.23: Η κατανομή των τάσεων σε όλο το τεμάχιο.

Ρυθμός πλαστικής παραμόρφωσης

Εικόνα 4.24: Ρυθμός πλαστικής παραμόρφωσης 77520 ((mm/mm)/sec) στην πρωτογενή ζώνη παραμόρφωσης

Όπως φαίνεται και στην εικόνα υψηλοί ρυθμοί παραμόρφωσης εμφανίζονται κυρίως κατά μήκος της κύριας διατμητικής ζώνης, η οποία καλύπτει ένα μικρό μέρος. Η μέγιστη τιμή των 77520 ((mm/mm)/sec) εμφανίζεται ακριβώς στην κορυφή της κοπτικής ακμής του κοπτικού εργαλείου. Ο ρυθμός παραμόρφωσης μειώνεται σταδιακά καθώς απομακρυνόμαστε από την κορυφή, αλλά παραμένει σχεδόν σταθερός κατά μήκος της ζώνης.

Πλαστική παραμόρφωση

Εικόνα 4.25: Κατανομή πλαστικής παραμόρφωσης

Παρατηρώντας κανείς την κατανομή της πλαστικής παραμόρφωσης παρατηρεί ότι οι υψηλές τιμές της εμφανίζονται στην δευτερεύουσα διατμητική ζώνη όπου εμφανίζονται και οι μέγιστες θερμοκρασίες. Ακόμα, υψηλές τιμές εμφανίζονται και παραμένουν στην ήδη κατεργασμένη επιφάνεια του τεμαχίου. Στην κύρια διατμητική ζώνη παρατηρούνται μικρότερες τιμές πλαστικής παραμόρφωσης εξαιτίας κυρίως της υψηλής παραμόρφωσης σκλήρυνσης και των χαμηλότερων θερμοκρασιών που αναπτύσσονται στην περιοχή.

Δεύτερη Προσομοίωση Μοντέλου,

Shear Bilinear $\mu\epsilon$ f=0,1 , γ =25° m=0,4

Name	job 1							
Туре	Thermal	/Structura	i					
	User Su	broutine F	File					
🗌 Par	rallelizatio		No DD	M				
				1 Solv	er Proc	ess		
Title	2	Style	Table-Driv	en	•		Save Model	
	Submit (1)		Advand	ced Job	Submissi	on	
	Update		Mon	Monitor			Kill	
Status						Complet	e	
Curren	it Increme	ent (Cycle))			5000 (2)		
Singula	arity Ratio					0.01057	9	
Conve	rgence Ra	atio				0.1504		
Analys	is Time					0.00402	78	
Wall Ti	me		Tab			22358		
Cycler	2	19566	100	Out	Backs	0		
Separ	ations	1056		Rem	eshes	1038		
Evit N	mbor	1000	200.4			1500		
EXICING	inder		3004			Exit Me	essage	
Edit	Outp	ut File	Log File		Statu	s File	Any File	
	Open	Post File (Results Menu	I)				
R	eset						OK	

Στοιχεία προσομοίωσης

Από την διεξαγωγή της προσομοίωσης προέκυψαν τα ακόλουθα στιγμιότυπα:

Select Vew Tools Window Help	A 01 1 1				110
<u>•</u> ⊟ ∽ ∞ ∞ ₩ ⊘ ⊑	/ / + + + · · ·	1444X		Analysis Class Structural	
rometry & Mesh Tables & Coord. Syst. Geome	ric Properties Material Properties C	ontact Toolbox Links Initial Condit	ons Boundary Conditions	Mesh Adaptivity Loadcases Jobs Res.	lts
lodel Plot Design Plot Sample Points ath Plot Generalized XY Plot Istory Plot	Tools Animation Geometry Distance Movies Report Writer				
Inc: 125 Time: 1.007e-004					/ mc35m
2.134e+002					/
1.921e+002				1	
1.708++002				/	
1.494e+002					
1.2010+002					
8 57984001			terration planting of the		
6.4020-1001					
4.269e+001					
2.134++001					
0.000+1000					
Tabula in the state in the stat		External H	at Flux		
Enter increment to skip to : "zoom_in Enter increment to skip to : "zoom_in					
Enter increment to skip to : "dynamic model o					
Enter increment to skip to : "dynamic_model_o					
Enter increment to skip to : "dynamic_model_o					0%

t=0,0001sec T_{max}=213,4 °C

Marc Mentat 2011.1.0 (64bit): c/users/fujits	su\desktop\marc tests pasxa new\summ	er2013/validation1/test_halil_bil_0.4_25_0.1_o	(test.mud: test.job1t16 - [Model (View 1)]	
He Select View Tools Window Hes		1100++11		- 0
💆 🖬 📢 🐨 🖉 🖉		1144444	Analysis Class Structural	
Geometry & Mesh Tables & Coord. Syst.	Geometric Properties Material Properties	Contact Toolbox Links Initial Conditions	Boundary Conditions Mesh Adaptivity Loadcases Jobs Results	
Model Plot Design Plot Sampl Path Plot Generalized XY Plot History Plot	le Points Tools Animation Geometry Distance Movies Report Writer			
Inc: 621 Time: 5.003e-004				ni Statu
7.210e4002				
6.489++002			/	
5 769+1002				
5.0474+002			_	
4 12(a)(02)				
3.605++002				
2.89444002				
2.163e+002				
1.442#+002				
7.210++001				
0.000++000				
		External Heat F	alax.	
Enter increment to stop to : 1242 Enter increment to stop to : 623 Enter increment to skip to : 621				
Enter increment to skip to :				
N CONTRACTOR OF CONTRACTOR OFO				0%
	(🕘 / 🖉		tion that	EN 259 µµ 11/10/2014

t=0,0005 sec T_{max}=721,0 °C

M M	rc Mentat 2011.10 (64bit): c/users/ug/tsu/desktop/marc tests paska new/summer/2013/validation1/test_hali_b/L04_25_01_ok/test_mud: test_job1.t16 - [Model (View 1)]	
		- 6 :
•		
× •	ecometry & Mesh Tables & Coord, Syst. Geometric Properties Material Properties Contact Toolbox Links Initial Conditions Boundary Conditions Mesh Adaptivity Loadcases Jobs Resul	its
Main Menu	Model Rot Design Plot Ban Post Generalized XY Rot Remerty Datance Remerty Datance Report Writer	
	Inc: 1242 Time: 1.001e-003	NS\$}1stron
4	9.378+1002 6.446+1002	
C.L.	7.500+002	
	5,6276+002	
	4.699+102	
	3.751e+002	
	2.813e+002	
#	1.876e+002	
	9.370+101	
2		
M	External Heat Flux	1
M	bitter normen to skp to "channe", model on Enter normen to skp to "channe", model on Enter normen to skp to : 1242	
8	Enter increment to skip to :	
Read		0%
0	F 📀 📋 🝳 🙆 😻 🚝 🔤 🙆 😂 🔤 — — — —	EN 256 µµ 11/10/2013

t=0,001 sec T_{max}=937,8 °C

Marc Mentat 2011.10.(64bit): clusters/upitu/desktopimarc tests passa new/summer/2013/validation1/test_hall_bit_0.4_25_0.1_ok/sest.mud; test_job1.t16 - [Model (View 1)]	- 0 - X -
	= [0] 1
X Connective March Tabler & Connective Connections Material Description Context Tablers Initia Conditions Resonance Conditions Initia Advantation Initia Conditions Initia Conditi	Denitr
Model Rot Design Plot Sample Points Tools Animation	·
Hatary Plot Generalized X1 Viot Report Writer	
Inc: 1963 Time: 1.500e.003	115) jet ver
5.608+002	
5.047e+002	
3.5084002	
2.80/e+002	
2.2/10+002	
1.662+002	
1.122#+002	
5.608+001	
0.000e+000	
External Heat Flux	
PI X Enter increment to skip to : 621 There increment to skip to : 1242 There increment to skip to : 1242	
Enter increment to step to 1 2002	
S D unite strategy with	0%
87 0 🖄 🗴 🙆 🕲 🔤 🔤 🚺 🖉	EN _ 300 µµ _ 11/10/2013

t=0,0015 sec T_{max}=560,8 °C

🛛 Marc Mentat 2011.1.0 (64bit): clusten/lujitu/deiktop/maic tests passa new/cummer/2013/va/dation1/test_hali_b/j.0.4_25_0.1_ok/test.mud: test_job1.tl6 - [Model (View 1)]	
File Select View Tools Window Help	- 0 ×
x Geometry & Mesh Tables & Coard. Syst. Geometric Properties Material Properties Contact Toobox Links Tratial Conditions Boundary Conditions Mesh Adaptivity Loadcases Jabs Results	
Model Plot Design Flot Sample Points Tools Animation Perform Centerly Points Sample Points Movies Houry Flot Centerly Distance Movies	
The: 2483	NS Jacon
6.821e+002 6.139e+002 5.457e+002 4.756+002 4.756+002 3.411e+002 2.758e+002 1.366e+002 1.366e+002 1.366e+002	
A (212+001	
14 a.000+000	
External Heat Flax	
Image: State	ţ
2 3 Enter increment to skip to : Ready	0%
😨 💿 🧱 🛛 🏉 😻 💷 🔤 🖉 🍋 💭	EN _ 3:00 µµ 11/10/2013

t=0,0020 sec T_{max}=682,1 °C

Alex Mentat 2011.1.0 (4bit): clusers/hujtsu/deixtop/imarc tests passa new/summer2013/validationTitest, hali, b/, 0.4, 25, 0.1_ok/test.mud; test, job1.116 - (Model (View T))	
	[=[d] X
Order Forder and State and Stat	
History Plot Commence of the Commence Provides	
E 10: 3104 Tre: 2.500-003	166) Seture
5,987e+002	
5.300+042 4.790+002	
4.191e+002	
3.5920+002	
2,993+002	
2.395+102	
1.796e+002	
#	
N N N N N N N N N N N N N N N N N N N	
Enter increment to skip to : 3004	
Enter increment to skip to : "dynamic_model_on	
y Binter increment to skip to : Ready	0%
🛜 🗴 🤭 🖉 🕘 👰 🔤 🔲 🌔	EN . 3:01 µµ

t=0,0025 sec T_{max}=598,7 °C

Marc Mentat 2011.1.0 (64bit): c/users//ujtu/desktop/marc tests paska new/summer/2013/validation/l/test_hali_bit_0.4,25_0.1_ck/test.mud: test_job1.t16 - (Model (View 1))	
File Select Verw Tools Window Help	- 0 x
💽 🏜 🖬 🌑 🎕 🌋 🔂 😳 🛄 🔑 🔑 🛶 🕴 † 🖌 🖌 🕂 💠 🕆 🏹 🖉 📲 🐨 🐨 - Analysis Class - Structural	
Geometry & Mesh Tables & Coard. Syst. Geometric Properties Material Properties Contact Toobox Links Initial Conditions Boundary Conditions Mesh Aduptivity Loadcases Jobs Results	
Model Rot Design Plot Sample Points Tools Animation Generalized XP Rot Report Write	
In:: 3724 Time: 3.000e-003	NS (7) of some
5.701e+002	
5.131e+002	
4.561+002	
3.991e+002	
3,420+002	
2,850+1002	
2.280+002	
1.710e+002	
1.1408+002	
5.7016+001	
0.000+000	
External Hood Flor	
X Enter increment to skip to : "room_out	
Enter increment to skip to : "dynamic_model_on	
8 Binter increment to skip to :	
Ready	0%
	EN . 11/10/2013

t=0,00030 sec T_{max}=570,1 °C

Marc Mentat 2011.10 (64bit): c'ustersi (ujitsi/desktopimarc tests passa new/summer2013/validation1/test, halijbij0.4,25,01,oktest.mud: test,job1.tl6 - (Model (View 1))	
	(=10)
Connerty & Meth Tables & Connert, Properties Material Properties Contact Toolbox Units Toolbox Units Conditions Baundary Conditions Meth Adaptivity Loadcases Jobs Results	
Model Rist Design Plot Sample Points Tools Animation	
History Piot	
In: 496	and Sectors
5.315e+002	
1.7946+002	
4.2520+002	
3.721e+002	
3.189e+002	
2,659+002	
2.120+002	
13/564/02	
# \$36401	
0.000+900	
X Enter increment to dag to : "zoom.jn	
Briter increment to skip to : "dynamic_mode_on Enter increment to skip to : 4345	0
s B Enter increment to skip to :	
eady	0%
월 🜍 🚉 🔍 🤭 😼 🚝 🔤 🧶 🤇 🗠	EN 11/10/2013

t=0,00035 sec T_{max}=531,5 °C

Marc Mentat 2011.1.0 (4bit): clusers/uj/tu/desktopimarc tests passa new/summe/2013/vai/dation3/test_hai/_b/_0.4_25_01_ok/test.mud: test_job116 - (Model (View 1))	
Pile Select Vew Tools Window Help	- 0 ×
* geometry & Mesh Tables & Coard. Syst. Geometric Properties Material Properties Contact Toolbox Links Initial Conditions Boundary Conditions Mesh Adaptivity Loadcases Jobs Results	
Model Rot Design Plot Sample Points Tools Animation Geometry Distance Movies Report Writer	
In: 4966 Tm: 4.000-005	nsi)serven
5.670e+002	
5.106+002	
4.509+002	
2,839+002	
2.27164002	
1.703e4002	
1.1366+002	
-# 5.470e+001	
0.000+000 000 000 000 000 000 000 000 00	
External Mode Flax	
Image: State increment to skip to : 10/maint_model_on Enter increment to skip to : 14% Image: State increment to skip to : 14% Enter increment to skip to : 14%	ģ
g 🕺 Enter increment to step to :	
Ready	0%
🚯 📀 😂 🕹 🖉 🔛 🚺 🚱 😓	EN 3/03 µµ 11/10/2013

t=0,00040 sec T_{max}=567,8 °C

t=0,0004028 sec T_{max} =577,8 °C

Από τα στιγμιότυπα της πρώτης προσομοίωσης προκύπτει ότι η μέγιστη θερμοκρασία που αναπτύσσεται στο απόβλητο είναι $T_{max}=937,8$ °C.

Δυνάμεις κοπής

Από τον υπολογισμό των κοπτικών δυνάμεων κατά τον άξονα των x,προέκυψε το παρακάτω διάγραμμα της κοπής:

Διάγραμμα 4.3

Από τους υπολογισμούς των δυνάμεων προέκυψε ότι κατά τη μόνιμη κατάσταση η μέση τιμή των δυνάμεων κοπής κατά τον άξονα των x,είναι 121 Ν.Η τιμή αυτή προκύπτει και από το διάγραμμα.

Αντίστοιχα υπολογίστηκαν μέσω του Marc και οι δυνάμεις κοπής κατά τον άξονα των y και προέκυψε το παρακάτω διάγραμμα:

Διάγραμμα 4.4

Από τις τιμές των δυνάμεων του παραπάνω γραφήματος προκύπτει η μέση τιμή της δύναμης ίση με -27 N.

Γεωμετρία του αποβλήτου

Μετρώντας τα γεωμετρικά χαρακτηριστικά του παραχθέντος αποβλήτου δημιουργήθηκε ο παρακάτω πίνακας:

γ(°)	f (mm)	t _c (mm)	L _c (mm)	φ(°)
25°	0,1	0,19	0,104	33,8

Πινακας 4.6: Γεωμετρικά χαρακτηριστικά αποβλήτου

Μηχανικές και θερμικές παράμετροι

<u>Τάσεις</u>

Εικόνα 4.27: Τάσεις 1090 MPa στην κύρια ζώνη και 980,9 MPa στη δευτερεύουσα ζώνη παραμόρφωσης.
MN	larc Mentat	2011.1.0 (64bit): c:\use	rs\fujitsu\deskt	op\marc te	sts pasxa new\summe	2013\vali	dation1\test_hali	bil_0.4_25_0.1_ok	\test.mud: test_job1.t	16 - [Model (View	1)]		and the second s	
M F	le Select	View Tools Window	w Help											- 8 ×
•	े 🖬 🖬	🖍 🔅 🏹 🖸	• 🖑 🔍	÷₽	++++	//	\leftrightarrow \leftrightarrow \diamond	\$XX	* • • • • • • • • • • • • • • • • • • •) * Analysis Cla	ss Structural			
×	Geometry & I	Mesh Tables & Coord.	Syst. Geomet	ic Propertie	Material Properties	Contact	Toolbox Links	Initial Conditions	Boundary Conditions	Mesh Adaptivity	Loadcases Job	Results		
2	Model Plot	Design Plot	Sample Points	Tools	Animation									
n Mer	History Plot	Generalized AT PIOL		Report W	/riter									
Ma										,				
× 7	Me	odel Plot Results	• 🗙 🖄	The second secon	ime: 4.028e-003									MSCAStofware
		Deformed Shape								/				
	Shile	Defensed Only	Settings	4.	1.090e+003				· /					
	Style	Scalar Plot			9.809e+002									
			Settings	æ.	8.719e+002									
	Style	Contour Bands	*		7.629e+002									
	Şcalar	Equivalent of Stress		120	6.539e+002									
		inclusive inter	Settings		5.449e+002									
	Style	Off	•		4.360e+002									
	Vector	Displacement		\geq	3 270++002				/					
		lensor Plot	Settings		3 1900 1 002				State of the state					
	Style	Off		#	2.100e+002									
	Tensor	Total Strain			1.090e+002									
		Beam Diagram	Callings		1.630e-002									
	Style	Off	Setungs										Constant of the local division of the	
	Unpost	III Isolate	Delta					A COLORADO	Equiv	alent of Stress				-
Ę	Trad	k Plot 📝 Flowle	nes	X	Enter post variable :	zoom_in								
mic M					Enter post variable : *	zoom_in								
Dyna				** Dialo	Enter post variable :									
Read	lγ													0%
9) (2	8	Style M	9	ý							EN 10:39 πμ 4/10/2013

Εικόνα 4.28: Η κατανομή των τάσεων σε όλο το τεμάχιο.

Ρυθμός πλαστικής παραμόρφωσης

Εικόνα4.29: Ρυθμός πλαστικής παραμόρφωσης 71410 ((mm/mm)/sec) στην κύρια ζώνη παραμόρφωσης

Πλαστική παραμόρφωση

Εικόνα 4.30: Κατανομή πλαστικής παραμόρφωσης

Σύγκριση αποτελεσμάτων και γραφήματα προσομοιώσεων

Στη συνέχεια συγκρίνονται τα αποτελέσματα των δύο παραπάνω προσομοιώσεων με τα αντίστοιχα αποτελέσματα που προέκυψαν από τη διεξαγωγή των αντίστοιχων προσομοιώσεων από την εργασία με του Halil Bil, καθώς επίσης και με τα αποτελέσματα που προέκυψαν από τη πειραματική εργασία πάνω στην οποία βασίστηκαν οι παραπάνω προσομοιώσεις.

Πειραματικά αποτελέσματα

γ(°)	f (mm)	t _c (mm)	φ(°)	L _c (mm)
25^{0}	0,05	0,12	24,62	1,00
_	0,1	0,21	28,24	0,90

Πίνακας 4.7: Πειραματικά αποτελέσματα των γεωμετρικών παραμέτρων του αποβλήτου

Προσομοίωση Halil Bil

γ(°)	f (mm)	t _c (mm)	φ(°)	L _c (mm)
25^{0}	0,05	0,08	32,39	0,05
	0,1	0,18	29,01	0,15

Πίνακας 4.8: Αποτελέσματα γεωμετρικών παραμέτρων προσομοίωσης Halil Bil

Σύγκριση της γεωμετρία του αποβλήτου

Παρακάτω ακολουθούν τα γραφήματα από τη σύγκριση των αποτελεσμάτων. Εδώ, πρέπει να επισημάνθεί ότι τα πειραματικά αποτελέσματα που αφορούν τη γεωμετρία του αποβλήτου όπως το πάχος του αποβλήτου, το μήκος κοπής μεταξύ αποβλήτου και της πλευράς κόψης του κοπτικού εργαλείου, είχαν μετρηθεί με τη χρήση μικροσκοπίου. Επιπλέον, στον πίνακα παρουσιάζονται τα πειραματικά αποτελέσματα των γεωμετρικών παραμέτρων του αποβλήτου όπου γ είναι η γωνία αποβλήτου, f η πρόωση (πάχος απαραμόρφωτου αποβλήτου για 0° γωνία πλευρικής κοπτικής ακμής), t_c είναι το πάχος αποβλήτου, φ η γωνία διάτμησης και L_c το μήκος επαφής μεταξύ του αποβλήτου και της πλευράς κόψης του κοπτικού εργαλείου.

Πρώτη προσομοίωση

Δεύτερη προσομοίωση

Λαμβάνοντας υπόψη τα αποτελέσματα των προσομοιώσεων και συγκρίνοντας τα με τα αντίστοιχα πειραματικά καθώς επίσης και με τα αποτελέσματα που προέκυψαν από τις αντίστοιχες προσομοιώσεις που πραγματοποίησε ο Halil Bil, εύκολα διακρίνει κανείς ότι το πάχος αποβλήτου και οι τιμές της διατμητικής γωνίας είναι πολύ κοντινές. Απεναντίας τα αποτελέσματα μας όσον αφορά το μήκος επαφής προσεγγίζουν κατά πολύ αυτά της αντίστοιχης προσομοίωσης του Halil Bil, αλλά απέχουν σημαντικά από τις πειραματικές τιμές.

Σύγκριση των δυνάμεων κοπής

γ(°)	f (mm)	$\mathbf{F}_{\mathbf{x}}(\mathbf{N})$	$\mathbf{F}_{\mathbf{y}}(\mathbf{N})$
25°	0,05	59	50
	0,1	128	57

FT/	4 0	п	,	^	e	,	,
Πινακας	: 4.9:	\mathbf{D}	ματικα	αποτελεσ	ματα ου	ναμεων	$\kappa_0\pi_0$
	,			0			

γ(°)	f (mm)	$\mathbf{F}_{\mathbf{x}}(\mathbf{N})$	$\mathbf{F}_{\mathbf{y}}(\mathbf{N})$
25 ⁰	0,05	65	-9
	0,1	139	-5

Πίνακας 4.10: Προσομοίωση Halil Bil - αποτελέσματα δυνάμεων κοπής

Πρώτη Προσομοίωση

Δεύτερη Προσομοίωση

Από τη σύγκριση των πειραματικών αποτελεσμάτων με αυτά που προέκυψαν από τις προσομοιώσεις, καθώς επίσης και με αυτά που προέκυψαν από την αντίστοιχη εργασία του Halil Bil, συμπεραίνεται ότι οι τιμές των δυνάμεων κοπής F_x είναι πολύ κοντινές μεταξύ τους. Από την άλλη ούτε οι προσομοιώσεις της εργασίας, ούτε αυτές που διεξήγαγε ο Halil Bil κατάφεραν να προσεγγίσουν τις πειραματικές τιμές και παρουσίαζουν σημαντική διαφορά. Και οι δύο αυτές προσομοιώσεις στα αποτελέσματα τους έδειξαν αρνητικές τιμές για τις δυνάμεις F_y .

Εικόνα 4.31: Δυνάμεις κοπής F_x - Δυνάμεις άπωσης F_y

Αυτό γιατί όπως φαίνεται και στην παραπάνω εικόνα 4.31 για μικρές τιμές του συντελεστή τριβής η κάθετη συνιστώσα της κάθετης δύναμης τριβής $(F_n)^y$ ξεπερνάει τη κάθετη συνιστώσα της δύναμης τριβής $(F_f)^y$.

ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ

Μοντελοποίηση της τριβής

5.1 Εισαγωγή

Στο κεφάλαιο που ακολουθεί μελετάται η μοντελοποίηση της τριβής. Αρχικά θα παρουσιαστούν τα διάφορα μοντέλα τριβής τα οποία χρησιμοποιούνται στις διάφορες προσομοιώσεις κοπών. Στη συνέχεια εφαρμόζονται στο μοντέλο που παρουσιάστηκε στο προηγούμενο κεφάλαιο δυο μοντέλα τριβής τα οποία και χρησιμοποιούνται στις κοπές και προτιμούνται ολοένα και περισσότερο από τους ερευνητές. Τέλος, συγκρίνονται τα αποτελέσματα των προσομοιώσεων σχετικά με τα δύο μοντέλα τριβής.

5.2 Μοντέλα τριβής

Η μοντελοποίηση στη δευτερεύουσα ζώνη διάτμησης, δηλαδή στην επαφή του αποβλήτου και της πλευράς κοπής του κοπτικού εργαλείου, είναι ίσης σημαντικότητας με τη μοντελοποίηση υλικού που θα μελετήσουμε και θα διερευνηθεί στο επόμενο κεφάλαιο. Το μοντέλο τριβής διαδραματίζει σημαντικό ρόλο στον προσδιορισμό των δυνάμεων κοπής, όπως επίσης της φθοράς του κοπτικού εργαλείου και της ποιότητας της κατεργαζόμενης επιφάνειας. Οπότε, οι ερευνητές επικεντρώνονται στην επιλογή του κατάλληλου μοντέλου τριβής, έτσι ώστε να αναπαραστήσουν την πραγματική συμπεριφορά της κατεργασίας και να επιτευχθεί όσο το δυνατό καλύτερό αποτέλεσμα. Δηλαδή, όσο πιο κοντά στην πραγματικότητα. Τα πιο ευρέως χρησιμοποιούμενα μοντέλα τριβής στις προσομοιώσεις κοπών παρουσιάζονται αναλυτικά παρακάτω.

5.3 Μοντέλο Coulomb (Constant Coulomb)

Στις πρώτες προσομοιώσεις κοπών, χρησιμοποιήθηκε το απλό μοντέλο τριβής του Coulomb για όλη την επιφάνεια επαφής, με ένα σταθερό συντελεστή τριβής. Ισχύει συνεπώς ο νόμος τριβής του Coulomb.Η δύναμη της τριβής ολίσθησης είναι ανάλογη με την εφαρμοζόμενη κάθετη φόρτιση. Ο λόγος αυτών των δύο είναι ο συντελεστής τριβής μ, ο οποίος και διατηρείται σταθερός για το μήκος επαφής μεταξύ του αποβλήτου και του κοπτικού εργαλείου. Έτσι ορίζεται η παρακάτω σχέση:

$\tau = \mu \sigma_n$

όπου τη τάση τριβής, σ_n η κάθετη τάση και μ ο συντελεστής τριβής.

Όμως όσο αυξάνεται η κάθετη δύναμη και υπερβαίνει ένα κρίσιμο όριο, η παραπάνω εξίσωση αποτυγχάνει να δίνει ακριβή και ρεαλιστικά αποτελέσματα. Από την πειραματική διερεύνηση έχει αποδειχθεί ότι το μήκος κοπής μπορεί να διακριθεί

σε δύο περιοχές επαφής. Στην περιοχή ολίσθησης και στη περιοχή sticking. Έτσι προέκυψε το μοντέλο τριβής Stick-Slip που μελέτησε ποιοτικά ο Zorev και το οποίο θα παρουσιαστεί στη συνέχεια

5.4 Μοντέλο τριβής της διάτμησης (Shear)

Στο μοντέλο τριβής διάτμησης, η τάση τριβής στη πλευρά κοπής του κοπτικού εργαλείου θεωρείται σταθερή και λόγω της περιορισμένης διακύμανσης των τάσεων τ και σ_n , δεν λαμβάνονται υπόψη. Συνεπώς από τα παραπάνω προκύπτει η παρακάτω σχέση :

τ=mk

όπου m o συντελεστής τριβής και k η διατμητική τάση ροής του υλικού του δοκιμίου. Από το συνδυασμό των δύο παραπάνω μοντέλων τριβής προέκυψε το μοντέλο τριβής του Stick Slip.

5.5 Μοντέλο τριβής του Zorev, Stick-Slip

Σύμφωνα με τη μελέτη του Zorev (1963) [40], στην πλευρά κοπής του κοπτικού εργαλείου εμφανίζονται δύο περιοχές τριβής. Η πρώτη περιοχή είναι η ζώνη Sticking, όπου η τάση τριβής παραμένει σταθερή. Η δεύτερη περιοχή είναι η περιοχή ολίσθησης όπου η κάθετη δύναμη είναι μικρή. Έτσι στη ζώνη Sticking ισχύει το μοντέλο τριβής της διάτμησης και στη περιοχή ολίσθησης η θεωρία τριβής του Coulomb. Αυτό εκφράζεται από τις παρακάτω σχέσεις:

 $\tau = \mu \sigma_n$ όταν $\mu \sigma_n < k_{chip}$ (ολίσθηση) $\tau = k$, όταν $\mu \sigma_n \ge k_{chip}$ (Sticking)

όπου τ είναι η τάση τριβής, σ_n η κανονική τάση, μ ο συντελεστής τριβής και k_{chip} η διατμητική τάση του αποβλήτου. Η κατανομή της κανονικής διατμητικής τάσης και της διατμητικής τάσης τριβής στη επιφάνεια αποβλήτου – εργαλείου φαίνεται στην παρακάτω εικόνα:

Εικόνα 5.1: Καμπύλες που αναπαριστούν την κατανομή κανονικής τάσης και τάσης τριβής στην επιφάνεια αποβλήτου[21]

Από το παραπάνω διάγραμμα προκύπτουν συμπεράσματα τα οποία συνοψίζονται παρακάτω:

Στην περιοχή μήκους $L_{1,}$ (Περιοχή Sticking), λαμβάνει χώρα πλαστική παραμόρφωση του υλικού απόβλητου λόγω διάτμησης. Η τάση τριβής τ είναι σταθερή και ίση με το όριο διαρροής σε διάτμηση τ₀ του υλικού

Στην περιοχή (L–L1), (Περιοχή Ολίσθησης) επικρατούν συνθήκες ξηρής τριβής ολίσθησης με σταθερό συντελεστή τριβής μ.

Η κατανομή της ορθής τάσης σ είναι παραβολική σε όλο το μήκος της επιφάνειας επαφής ΚΕ/αποβλήτου και μπορεί να περιγραφεί με ικανοποιητική προσέγγιση από τη σχέση:

 $\sigma = q x^y$

όπου q, y σταθερές και x
ε [0, L].[21]

Σημαντική παράμετρος στη χρησιμοποίηση του παραπάνω συνδυαστικού μοντέλου τριβής αποτελεί ο καθορισμός του μήκους της ζώνης Sticking και της ζώνης ολίσθησης. Σύμφωνα με τη δημοσίευση του Shatla [41],το μήκος της περιοχής Sticking μπορεί να θεωρηθεί ίσο με το διπλάσιο του άκοπου πλάτους του αποβλήτου. Όμως παρατηρήθηκε ότι με αυτό τον τρόπο η Sticking περιοχή κάλυπτε ολόκληρο το μήκος επαφής. Αργότερα ο Ozel [17] πρότεινε ως ενδεικτικό μήκος της περιοχής Sticking, μήκος ίσο με το άκοπο πλάτος αποβλήτου. Στις προσομοιώσεις αυτού του

κεφαλαίου με μοντέλο τριβής το μοντέλο τριβής Stick-Slip του Zorev λήφθηκε υπόψη τιμή συντελεστή τριβής Coulomb μ=1,05.Η τιμή αυτή είναι η ενδεικτική τιμή του προγράμματος μας και επαληθεύεται και από τη σχέση:

μ=

Τρίτη Προσομοίωση Μοντέλου

Coulomb Bilinear $\mu\epsilon$ f=0.05 , γ =25° μ =0.4

ſ	M Run J	ob	1.15	22 0		-		-	23
	Name	job 1							
	Туре	Thermal	/Structura	al					
H		User Su	broutine l	File					
d					1				
Parallelization No DDM									
Ш					1 Sol	ver Proc	ess		
	Title	:	Style	Table-Dri	ven		·	Sav	ve Model
ā		Submit (1))		Advar	nced Job	Subm	ission	
		Update		Mor	nitor		Kill		
2	Status						Comp	lete	
	Curren	t Increme	nt (Cycle)			5000	(2)	
1	Singula	rity Ratio					0.006	52645	
	Conver	gence Ra	atio				0.04	721	
	Analysi	s Time					0.00	40278	
Ш	Wall Tir	ne					2117	5	
				Tot	tal —				
н	Cycles		20527		Cut	t Backs	0		
Ш	Separa	ations	1052		Re	meshes	195	1	
Н	Exit Nu	mber		3004			Exit	Messa	age
Ш	Edit	Outp	ut File	Log File		Statu	s File		Any File
	Open Post File (Results Menu)								
	R	eset							ОК

Στοιχεία προσομοίωσης

Από την διεξαγωγή της προσομοίωσης προέκυψαν τα ακόλουθα στιγμιότυπα:

Marc Mentat 2011.1.0 (64bit): clusers/fujitsu/desktop/marc tests paska new/summer2013/validation2/test_coulomb_bilinear_0.05_25_0.4_ok_75n/test.	mud: test_job1.t16 - [Model (View 1)]
File Select Vew Tools Window Help	- 6
▝▝▋▉▚▏⋑⋦⋬⋻⋼⋼∊∊∊∊∊∊∊∊∊∊∊∊∊∊∊∊∊∊∊∊∊∊∊∊∊∊∊∊∊∊∊∊∊∊∊	Analysis Class Structural
Geometry & Mesh Tables & Coord. Syst. Geometric Properties Material Properties Contact Toobox Links Initial Conditions Boundary Conditions	Mesh Adaptivity Loadcases Jobs Results
New Dement Types User Domains Shark View Dement Types User Domains Istently Doals	
Jobs Element Types User Domains	
Inc: 125 Time: 1.007e-004	mil/serve
3.057e+002	
2.751e+002	
2.446+102	
2.140e+002	
1.894e+002	
1.529e+002	
1.273+4002	
9.17(++00)	
6.11464001	
3.05/2+001	
0.0000+000	
External Heat Flux	
Enter post variable : "post_skip_to Enter increment to skip to : 125	
Enter increment to skip to : "dynamic_model_on	
Enter increment to skip to :	
dy	0%
🗿 🥥 📜 🖸 🥲 🖼 📕 🕘 🕮	EN * 11:28 µµ 28/10/201

t=0,0001sec T_{max}=305,7 °C

her Seet C Very Tools Window Help → → → + + + / / ↔ + + * / / ⊕ · → · → + + + / / ↔ · Andyso Case Shutterd → → → → + + / / ↔ + + * / / ⊕ · → · → · → · → · → · → · → · → · → ·	= 0
Connective & March Tables & Connection Connections Material Department Context Tables Univer Technol. Readings Conditions, March March March 2010, Technol. Solution State	
Connect and a code state a code state a code state and a constant according to the state of the	
New Y Generic Types User Domains Show Years	
Est Tools	
Proc. 62 mon.org	
	HSC/30-See
3.765+002	
3.405+902	
3.038+402	
2.699+002	
2,271+4002	
1.892+102	
1.514+002	
1.156+002	
7.570#+001	
3.7054+001	
0.000+000	
External Heat Page	1
in the increment to skip to : "syname, model on Enter properties to skip to : <31	Ċ
B from systemate to date to :	
dy dy	0%
	EN 11:28 µµ

t=0,0005 sec T_{max}=378,5 °C

t=0,0001 sec T_{max}=381,4 °C

Marc Mentat 2011.1.0 (64bit): c/users/fujitsu/desktop/marc tests passa new/summer2013/validation2/test_coulomb_bilinear_0.05_25_0.4_ok_75n/test.mud: test_job1.1	6 - [Model (View 1)]
	- 0
	ass Structural
Geometry & Mesh Tables & Coord. Syst. Geometric Properties Material Properties Contact Toolbox Links Initial Conditions Boundary Conditions Mesh Adaptivity	Loadcases Jobs Results
New Clement Types User Domains	
Est Tools Tools Los Element Tools User Donains	
Inc. 1862 Text: 1870-009	/
	/ mogration
3.811e+002	
3,430+002	
3,049+002	
2 66264002	
1000-100	
15/44102	
1.1436+002	
7.621e+001	
3.011e+001	
0.000+000	
External Host Flax	
Finter increment to skip to : 621	
Enter increment to skip to : 1242	
Enter increment to skip to :	
eady	0%
😰 🌀 🚞 🖸 💪 🔕 📼 🔳 🔔 🖄	EN - 11:29 µµ 28/10/2013

t=0,00015 sec T_{max}=381,1 °C

t=0,00020 sec T_{max}=348,1 °C

Marc Mentat 2011.1.0 (64bit): clusers/luj/tsu/desktop/marc tests passa new/summer/2013/validation2/test_coulomb_bilinear_0.05_25_0.4_ok_75n/test.mud: test_	ob1116 - [Model (View 1)]
	- (0)
	Aysis Class Structural
Geometry & Mesh Tables & Coord. Syst. Geometric Properties Material Properties Contact Toolbox Links Initial Conditions Boundary Conditions Hesh Ad	aptivity Loadcases Jobs Results
New Dement Types User Domains	
Jobs Element Types User Domain	
Inc: 3104	
4.26%+4002	
3.845+002	
3.416+4002	
2.999++002	
2.562e+002	
2.135e+002	
1.708+002	
1.2816+002	
8.5396+002	
4.2(%+001	
0.000+000	
	Rever 1
Enter increment to skip to : 3104	
Enter Increment to skip to : "dynamic_model_on	-
z B Enter increment to skip to :	
	0%
	EN

t=0,00025 sec T_{max}=426,9 °C

t=0,00030 sec T_{max}=491,7 °C

t=0,00035 sec T_{max}=394,0 °C

t=0,00040 sec T_{max}=498,5 °C

Marc Mentat 2011.10 (64bit): c/users/sujtu/deixtop/marc tests passa new/summer2013/vaidation2/test_coulomb_bilinear_0.05_25_0.4_ok_75n/test.mud: test_job1.116 - [Model (View 1)]	
Per Select. View Tools Window Help	- 0 ×
Contact Toobox Links Initial Conditions Boundary Conditions Mesh Adaptivity Loadcases Jobs Results	
New T Benent Types User Dominis	
Est Tool	
3 Jaba Element Types User Domains	
Te: 500 Te: 4.028-003	HERITAR
4.2166+002	
3756-077	
3.3754+002	
2.951e+002	
2.529+002	
2.108+103	
1.656+103	
1.255+002	
#	
4.216e+001	
0.000+000	
X Enter increment to skip to : 4345	
B Enter increment to ska to : 9666	
S Enter programmed in which the	*
Ready	0%
	EN 11:32 µµ
	28/10/2013

```
t=0,0004028 sec T<sub>max</sub>=349,5 °C
```

Από τα στιγμιότυπα της τρίτης προσομοίωσης προκύπτει ότι η μέγιστη θερμοκρασία που αναπτύσσεται στο απόβλητο είναι T_{max} =498,5 °C.

Δυνάμεις κοπής

Από τον υπολογισμό των κοπτικών δυνάμεων κατά τον άξονα των x,προέκυψε το παρακάτω διάγραμμα της κοπής:

Διάγραμμα 5.1

Από τους υπολογισμούς των δυνάμεων προέκυψε ότι κατά τη μόνιμη κατάσταση η μέση τιμή των δυνάμεων κοπής κατά τον άξονα των x,είναι **75**N.Η τιμή αυτή προκύπτει και από το διάγραμμα.

Αντίστοιχα υπολογίστηκαν μέσω του Marc και οι δυνάμεις κοπής κατά τον άξονα των y και προέκυψε το παρακάτω διάγραμμα:

Από τις τιμές των δυνάμεων του παραπάνω γραφήματος προκύπτει η μέση τιμή της δύναμης ίση με -6 N.

Γεωμετρία του αποβλήτου

Μετρώντας τα γεωμετρικά χαρακτηριστικά του παραχθέντος αποβλήτου δημιουργήθηκε ο παρακάτω πίνακας:

γ(°)	f (mm)	t _c (mm)	L _c (mm)	φ(°)
25°	0,05	0,10	0,06	29,95

Μηχανικές και θερμικές παράμετροι

Από την αριθμητική επίλυση του μοντέλου προέκυψαν αποτελέσματα χρήσιμα για τη μελέτη, που αφορούν παραμέτρους όπως η πλαστική παραμόρφωση, ο ρυθμός πλαστικής παραμόρφωσης και οι τάσεις στη ζώνη παραμόρφωσης οι οποίοι παρουσιάζονται στις εικόνες που ακολουθούν:

<u>Τάσεις</u>

Εικόνα 5.2: Τάσεις 966,7 MPa στην κύρια ζώνη και 775,4 MPa στη δευτερεύουσα ζώνη παραμόρφωσης.

Percent Marken Nates Source: Tougon Pol Nates Nates <t< th=""><th>💽 🥌 🖬 🖍 🎕 🌫 🕲 🗉</th><th></th><th></th></t<>	💽 🥌 🖬 🖍 🎕 🌫 🕲 🗉		
Part Hold Part Hold Sample Ports Tools Amandon Report Writer Yor Port Hold Port Hold Port Hold Port Hold Style Deformed Shape 9.667+002 9.667+002 9.667+002 Style Style Port Hold 9.667+002 9.667+002 Style Style Style Fort Hold 9.667+002 Style Style Style Style 6.777+002 Style Style Style Style Style Style Off Style Style Style </th <th>Geometry & Mesh Tables & Coord. Syst. Geo</th> <th>etric Properties Material Properties Contact Toolbox Links Initial Conditions Boundary Conditions Mesh Adaptivity Loadcases Jobs Results</th> <th></th>	Geometry & Mesh Tables & Coord. Syst. Geo	etric Properties Material Properties Contact Toolbox Links Initial Conditions Boundary Conditions Mesh Adaptivity Loadcases Jobs Results	
Nodel Plot Real/II Image: Style Deformed Shape 9.6/7+402 Style Februard Shape Style Stale Plot Style Stale Plot Style Stale Real/II Style Stale Real/III Style Stale Real/III Style Stale Real/III Style Stale Real/IIII Style Stale Real/IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Model Piot Design Piot Sample Poir Path Piot Generalized XY Piot History Piot	a Tools Anmaton Geometry Ustance Movies Report Writer	
Deformed Shape 9.667+402 Style 6.781+402 Style 0.734+402 Style 0.767+402 Style 0.767+402 Style 0.767+402 Style 0.774+402 Style 0.774+402 Style 0.774+402 Style 0.774+002 Style 0.676+002	X Model Plot Results V X	Inc: 5000 Tme: 4.028e-003	MSCXtotware
Solar Poly 6.701e+002 Solar Poly 6.775+002 Solar Poly 6.767+002 Solar Poly 9.660+002 1.933+002 9.660+001 2.906+003 9.660+001 Solar Poly Poly Equivalent of Stress 9.660+003 Solar Poly Poly Equivalent of Stress 9.660+001 Solar Poly Poly Exponent of Stress 9.660+001 Solar Poly Poly	Deformed Shape Settings	9.667e+002	
Style Contour Bending In Arstendour Style Contour Bending In Arstendour Style Off In Arstendour Style In Irrow Fronting In Arstendour Style In Irrow Fronting In Arstendour Style In Irrow Fronting In Irrow Fronting Style In Irrow Fronting In Irrow Fronting	Scalar Plot	8.7016+002	
Solar Eastwatert of Stress Vector Not 5.600e+002 Style Off Tensor Plot 9.660e+002 Style Off Edurable Stylewink_model Stylewink_model Stylewink_model Stylewink_model Stylewink_model Stylewink_model Stylewink_model Stylewink_model Stylewink_model Stylewink_model Stylewink_	Style Contour Bands *		
Wecker Plot Style Off 4.894e+002 Style Off 2.900+002 Tensor Plot Settings Style Off Tensor Plot Settings Style Off Style Off Style Off Style Off Style Settings Style Off Style Settings Style Setings Settings Seti	Scalar Equivalent of Stress	6.767+002	
Sive off Settings Sive off Sett	Vector Plot Settings	5.800+002 4.8346+002	
Wetter Deplocement Tensor Plot Settings Style Off Style Off Upposet Isolata Deficience Revel Equivalent of Stress Image Plot Ima	Style Off 💌	3.667e+002	
Store off 5.000 + 000 Store off 9.666+000 3.006+000 9.666+000 Store off 3.006+000 Store off 3.006+000 Store off 0.660+000 Store off 0.660+000 Store off 0.660+000 Been Dagram 0.660+000 Store off 0.660+000 Been Cogram 0.060+000	Vector Displacement	2 900+100	
Style Off 9.668e+001 Tensor Total Strain 9.668e+001 Style Off 3.00e-003 Style Off Enter post vaniable : "Total Stress Track Flot If Floring Control of Stress If Track Flot If Floring Control of Stress If Bear Days and Control of Stress If Track Flot If Floring Control of Stress If Bear Days and Control of Stress	Tensor Plot		
Tensor Total Strain Benn Dagram 9.6686+001 3.008+003 Style Off Luppott Tends Pott Tends Pott Pownes Lippott Tenter post vaniable : "Oynamic_model_off Enter post vaniable : "Oynamic_model_on Tenter post vaniable : "Oynamic_model_on Off-	Style Off 👻	# 1.939+002	
Beam Dogram 3.008-002 Style Off Lipsont Isolata Deta Provinces Briter post variable : "toom_out Enter post variable : "toom_out	Tensor Total Strain	9.668e+001	
Setting Image: Setting	Beam Diagram	3.008e-003	
Sive Crt Looost Equivalent of Stress I Unoost Isolate Delta Image: Stress in the stress i	Settings		
U Droott ii Soate Deta I Track Flot IP Powlnes I	style off	kasel	
Ready Office Contraction of the second office Contraction of the second	Tool Not Delta	Equivalent of Stress	1
Ready 0%		Chile post vande: " 2001 [OUI Financi, model_off Enter post vande: " 2001 [OUI Financi, model_off Enter post vande: " dynamic_model_on	ļ
0%	<u>کا</u> ا	x Z Enter post variable :	
	Ready		0%

Εικόνα 5.3: Η κατανομή των τάσεων σε όλο το τεμάχιο.

Ρυθμός πλαστικής παραμόρφωσης

Εικόνα 5.4: Ρυθμός πλαστικής παραμόρφωσης 102700 ((mm/mm)/sec) στην κύρια ζώνη παραμόρφωσης

<u>Πλαστική παραμόρφωση</u>

Εικόνα 5.5: Κατανομή πλαστικής παραμόρφωσης

Προσομοιώσεις Μοντέλων τριβής Stick-Slip

Τέταρτη Προσομοίωση Μοντέλου

Stick-slip $\mu\epsilon$ f=0,05 , γ =25° μ =1,05 m=0,4

Στοιχεία προσομοίωσης

M Ru	n Job						X	
Name	job 1							
Туре	Therr	mal/Structura	al					
	User	Subroutine	File					
P	aralleliza	ation	1	No DDM				
			1	1 Solver F	Proce	ess		
Ti	tle	Style	Table-Drive	en	•		Save Model	
	Submit	t (1)	A	dvanced	Job	Submi	ssion	
	Upda	ite	Monit	tor			Kill	
Statu	IS				[Compl	lete	
Curre	ent Incre	ement (Cycle	.)		[9999	(3)	
Singu	larity Ra	atio			[0.010	691	
Conv	ergence	Ratio			[0.019	08	
Anal	/sis Time	2				0.004	0274	
Wall	Time					39492	2	
			Tota					
Cyd	es	52134		Cut Bac	cks	0		
Sep	arations	1417		Remesh	nes	2452	2	
Exit	Number		3004			Exit	Message	
Edit	0	utput File	Log File	St	tatus	File	Any File	
	Ор	en Post File	(Results Menu))				
	Reset						OK	

Από τη διεξαγωγή της προσομοίωσης προέκυψαν τα ακόλουθα στιγμιότυπα:

Marc Mentat 2011.1.0 (64bit): c\users\fujitsu\desktop\marc tests pasxa new\summ	ner2013/walidation2/test_stick_slip_0.05_25_0.4_test_mud: test_job1.t16 - [Model (View 1)]	
File Select Vew Tools Window Help		- 0 ×
™™ ы ∞ ∞ ∞ ™ ₀ ™ 'n 'n h + + + + +	Analysis Class Structural	
🗶 Geometry & Mesh Tables & Coord. Syst. Geometric Properties Material Properties	s Contact Toolbox Links Initial Conditions Boundary Conditions Mesh Adaptivity Loadcases Jobs Results	
Hodel Plot Design Plot Sample Points Tools Animator Path Plot Generalized XY Plot History Plot Report Writer	n	
Inc: 249 Time: 1.003e-004	/	HE Statute
3.663e+002		
3.296+002		
2.930e+002		
2 1994-1992		
1.631e+002		
1.465e+002		
1.0990+00		
7.3266+00		
3.663e+00		
0.000e+00	A CONTRACTOR OF	
	External Heat Flux	
Enter increment to skip to : "zoom_in Enter increment to skip to : "zoom_in		
Enter increment to skip to : "dynamic_model_on		
Keady Enter increment to skp to 1		0%
📀 🧔 🛐 🔉 🤌 🕗 🕼		EN 10:22 µµ 30/10/2013

t=0,0001sec T_{max}=366,3 °C

Marc Mentat 2011.1.0 (64bit): c\users\fujitsu\desktop\ Ele Select Vew Tools Wordow Helo	marc tests paska new\summer2013\v	alidation2\test_stick_slip_0.05_25_0.4_	\test.mud: test_job1.t16 - [Model (View 1)]	
		AAddxx	Analysis Casa Structural	1=10
Connective & March Tables & Council Sust Connective S	reporting Material Draperties Costs	t Teches Links Testal Conditions	Baundary Conditions March Adaptivity Landrance John Danubr	
Model Plot Design Plot Sample Points 1	Tools Animation	a longer land have considered	Contrary Contrary Processing Street	
History Plot	Report Writer			
Inc: 1242 Time: 5.003e-004			/	ni Distan
4.218e+002				
3.796e+002				
3.374++002				
2.9526+002				
2.109e+002				
1.687e+002				
1.265e+00				
8.435e+00				
4.210++00				
0.000e+00			i i	
		External Heat P		
Enter increment to skip to : "zoom_in Enter increment to skip to : "dynamic_model_on Enter increment to skip to : "dynamic_model_on				
Enter increment to skip to : 1				
ly line to cher to sep to t				0%
a 👩 🛅 🖬 🖉	(2) [2]	52E	And the second se	EN 10:23 µµ

t=0,0005 sec T_{max}=421,8 °C

🖬 Marc Mentat 2011.10 (64bit): c'users/fujitsu/desktoplimarc tests passa new/summer/2013/validation/titest_stick_slip_0.05;25;04_test.mud. test_job1.116 - (Model (View 1))	- 0 - X-
Re Select Vew Tools Window Heb	- 0 ×
🗙 Grometry & Mesh Tables & Coard. Syst. Geometric Properties Material Properties Contact Toolbox Links Initial Conditions Boundary Conditions Mesh Adaptivity Loadcases Jobs Results	
Path Plot Cesign Port Ceneralized XY Plot Sample Points Ceamenty Datance Movies Report Writer	
Inc: 2483 Time: 1.000e.003	NSC/Let ver
4.55%+002 3.47%+002 3.47%+002 3.46%+002 2.611%+002 2.611%+002 1.7%1%+002 1.7%1%+002	
1.306+00 8.706+00 4.352e+00 0.000+00 Extend Hear Fax	
X Enter increment to dip to : 1/yaumic_model_on A Enter increment to dip to : 1/yaumic_model_on	
Difference increment to skip to : 2483	*
y 2 Enter increment to skip to :	
	0%
	EN 30/10/2013

t=0,001 sec T_{max}=435,2 °C

Marc Mentat 2011.1.0 (64bit): chusers\fujitsu\de	sktopimarc tests pasxa new\summer2013\va	idation2itest_stick_slip_0.05_25_0.4_\test	mud: test_job1.t16 - [Model (View 1)]	
R		·+++***	Analysis Class Structural	- 10
Geometry & Mesh Tables & Coord. Syst. Geor	netric Properties Material Properties Contact	Toobox Links Initial Conditions Box	ndary Conditions Mesh Adaptivity Loadcases Jobs Res	<i>I</i> ts
Model Plot Design Plot Path Plot Generalized XY Plot History Plot	ts Tools Animation Geometry Distance Movies Report Writer			
Inc: 3725 Time: 1.500e-003			1	nsQ).et.or
3.765e+002 3.389e+002 3.012e+002		/		
2.635e+002				
2.2596+002				
1.882e+002				
1.506e+002				
1.129e+00		State of the second second		
7.529e+00				
3.765e+00				
0.000e+00			Ĺ	
X Enter increment to skip to : 2483		External Heat Plux		1
Enter increment to skip to : 1242 Enter increment to skip to : 3725				
eady				0%
😰 🧔 💟 🖉) 🔕 🔇 🖭			EN 10:25 µµ 30/10/2013

t=0,0015 sec T_{max}=376,5 °C

Marc Mentat 2011.1.0 (64bit): c/users/hujitsu/desktop/marc tests passa new/summer2013/validation2/test_stick_slip_0.05_25_0	(\test.mud: test.job1.t16 - (Model (View 1))
File Select Vew Tools Window Help	(- e - e - e - e - e - e - e - e - e -
「「●●問い」のな問念(前から) 十十十十十人 40カシスト	The second secon
🗙 Geometry & Mesh Tables & Coord. Syst. Geometric Properties Material Properties Contact Toolbox Links Initial Condition	Boundary Conditions Mesh Adaptivity Loadcases Jobs Results
Path Pot Path Pot History Plot	
Inc: 4966 Tme: 2,000-003	/ 1003/11.00
3399+102	
3.012e+002	
2.636+002	
2.259e+002	
1.883e+002	
1.506+00 <mark>2</mark>	
1.130e+00	
# 7.531e+00	
3.765e+00	
N 0000+00	
Ecterna Hexa	Plat
Fiter increment to skip to : 1242	
Enter increment to skip to : 4966	4
Benter increment to skip to :	
	оть En 10-27 µµ
	30/10/2013

t=0,0020 sec T_{max}=376,5 °C

amatry & Mark Tabler & Caned Surt Cane	abis Despectives Material Despectives	Contact Tanhay Links Joshid Condition	and Baundary Conditions Much Identicity Landresse 14	
Addel Plot Design Plot Sample Points	s Tools Animation	ANISACE 100800X Erws press Control	AN DOMONY CONSIGNS PICEL MURDINITY LONCORES AN	a Resid
ath Plot Generalized XY Plot Istory Plot	Geometry Distance Movies Report Writer			
Inc: 6208				
Time: 2.500e-003				nuQte
6.284e+002				
5.455e+002				
5.027++002				
4.39944.092				
3.320+4002				
3.14264002				
2.5136+002				
1.855+400	COLUMN DE LA COLUMN			
1.257e+00				
6.2046+00				
ereo			Y	
0.000e+00			4	
0.000e+00				
0.000e+00			k and the second se	
0.000+00		E sterna Hos	St Har	
0.000++00		E sterna He	Na Mayo	
0.000++00		E størna he	ar Hur	

t=0,0025 sec T_{max}=628,4 °C

Marc Mentat 2011.1.0 (64bit): clusers/fujitsu/desktop/marc tests paska new/summer/2013/vaidation2/test_stick_slip_0.05_25_0.4_ttest.mud: test_job1.t1	6 - [Model (View 1)]
File Select Vew Tools Window Help	1216
●●■も) あた困る 前もち キャナナスト キキセメン ▲・■・◎	* Analysis Class Structural
Geometry & Mesh Tables & Coord. Syst. Geometric Properties Material Properties Contact Toobox Links Initial Conditions Boundary Conditions	Mesh Adaptivity Loadcases Jobs Results
Model Pot Design Pot Semenalaed XY Pot Semela Points Coole Annuation Report Writer Report Writer	
Inc: 7449 Time: 3.000e-003	MBQ) John
3.915e+002	
3.5214+002	
3.152#4002	
2.0124-002	
1.050+1002	
1,75001404	
1.1754400	
7.600+00	
3,915+100	
0.000+00	¥
	1
and the second	
External Heat Plac	
Briter increment to skip to : 6208 Enter increment to skip to : 7449	
Enter provement to skip to :	
ndy	0%
	EN 10:29 µµ

t=0,00030 sec T_{max}=391,5 °C

ڬ 🖬 🖍 🍥 🏵 🖉] 🔑 🔑 ++ ↓ † 🖌 / +> + ‡ \$ X X 👼 = 🔠 = 🛞 = Analysis Class Struct	tural
Geometry & Mesh Tables & Coord. Syst. Geo	metric Properties Material Properties Contact Toolbox Links Initial Conditions Boundary Conditions Mesh Adaptivity Loadcase	s Jobs Results
Model Plot Design Plot Sample Poi Path Plot Generalized XY Plot History Plot	harmation Geometry Dotatance Report Writer	
Inc: 8690 Time: 3.500e-003	/	miğ)ı
4.429e+002		
3.986e+002		
3.543e+002		
3.100e+002		
2.05/0+002		
1.77264002		
1.329e+00		
8.858e+00		
4.429e+00		
0.000e+00	y service and the service of the ser	
Enter increment to skip to : 6208	External Heat Huz	
Enter increment to skip to : 7449 Enter increment to skip to : 8690		
2		
Enter increment to skip to :		

t=0,00035 sec T_{max}=442,9 °C

t=0,00040 sec T_{max}=367,4 °C

Marc Mentat 2011.1.0 (64bit): c/users/upitsu/desktop/marc tests pasxa new/summer2013/va/dation2/test_sti	25_04_\test.mud: test_job1116 - [Model (View 1)]	- 0 -1
		= 0
Geometry & Mesh Tables & Coord. Syst. Geometric Properties Material Properties Contact Toolbox Links	unditions Boundary Conditions Mesh Adaptivity Loadcases Jobs Results	
Mode Piot Design Piot Sample Points Tools Animation Path Piot Generalized XY Piot Geometry Distance Movies Beneral Minime		
лана у лих		
Inc: 9999 Time: 4.027e-003		million
3.612e+002		
3.251e+002		
2.890++002		
2.529e+002		
2.167e+002		
1.806+102		
144544000		
1.000000		
7.2259+00		
3,6128+00		
0.000e+00	i i i i i i i i i i i i i i i i i i i	
	<u>لا م</u>	
	SB HARSE FALLS	
Enter increment to skip to : 3690 Enter increment to skip to : 9932		
Enter increment to skip to : 9999		
B Enter increment to skip to :		
		0%
🦻 🥥 🌉 💟 🥭 😓 🛄 😁 🚺	EN EN	* 30/10/20

t=0,0004028 sec T_{max}=361,2 °C

Από τα στιγμιότυπα της πρώτης προσομοίωσης προκύπτει ότι η μέγιστη θερμοκρασία που αναπτύσσεται στο απόβλητο είναι T_{max} =628,4 °C.

Δυνάμεις κοπής

Από τον υπολογισμό των κοπτικών δυνάμεων κατά τον άξονα των x,προέκυψε το παρακάτω διάγραμμα:

Διάγραμμα 5.3

Από τους υπολογισμούς των δυνάμεων προέκυψε ότι κατά τη μόνιμη κατάσταση η μέση τιμή των δυνάμεων κοπής κατά τον άξονα των x,είναι 74 N.Η τιμή αυτή προκύπτει και από το διάγραμμα.

Αντίστοιχα υπολογίστηκαν μέσω του Marc και οι δυνάμεις κοπής κατά τον άξονα των y και προέκυψε το παρακάτω διάγραμμα:

Διάγραμμα 5.4

Από τις τιμές των δυνάμεων του παραπάνω γραφήματος προκύπτει η μέση τιμή της δύναμης ίση με -7 N.

Γεωμετρία του αποβλήτου

Μετρώντας τα γεωμετρικά χαρακτηριστικά του παραχθέντος αποβλήτου δημιουργήθηκε ο παρακάτω πίνακας:

γ(°)	f (mm)	t _c (mm)	L _c (mm)	φ(°)
25°	0,05	0,0994	0,062	30,26

Μηχανικές και θερμικές παράμετροι

:

<u>Τάσεις</u>

Εικόνα 5.5: Τάσεις 991,2 MPa στην κύρια ζώνη και 693 MPa στη δευτερεύουσα ζώνη παραμόρφωσης.

MM	arc Mentat 2	1011.1.0 (64bit): c:\use	ers\fujitsu\	desktop\mar	tests pasxa new\summe	er2013\valida	ation2\test_stick	c_slip_0.05_25_0.4	\test.mud: test_job1.	t16 - [Model (View	1)]		
			- 10p		+ +	11	201	+ 4 ×		Analysis Cla	en Structural		
-	<u> </u>	-/				11	004	A-X-X-	1 - mond	Analysis Ca	ss Structural	2000	
ê	Geometry & M	Mesh Tables & Coord.	Syst. Ge	eometric Prope	rties Material Properties	Contact	Toolbox Links	Initial Conditions	Boundary Conditions	Mesh Adaptivity	Loadcases Job	Results	
Main Menu	Model Plot Path Plot History Plot	Design Plot Generalized XY Plot	Sample P	oints Tools Georr Repo	Animation etry Distance Movies rt Writer								
×	Мо	del Plot Results	• 🗙	8	Inc: 9999 Time: 4.027e-003				/				NSC Software
		Deformed Shape	Settings		9.912e+002								
	Style	Deformed Only		- 1	0.0000.0000								
		Scalar Plot	Callings		7.920e+002				/				
	Style	Contour Bands	Secongs	-	1.92901002								
	Scalar	Equivalent of Stress			6.938e+002								
		Vector Plot			5.947e+002								
			Settings		4.956e+002	Citer Cite		And					
	Style	Off			3.965e+0								
		Tensor Plot			2.973e+0								
			Settings		1.982e+0								
	Style	Off		• _#	9.9120+0								
	Tensor	Total Strain			0.540.00								
		Beam Diagram	Settings		3.5498-00								
	Style	Off	occurgo	- 1	-								
	Unpost	Isolate	Def	ta 🕨					Equi	valent of Stress			1
mic Menu	Track	Plot Flow	nes		Enter post variable : Enter post variable : Enter post variable :	"zoom_out "dynamic_mo "dynamic_mo	del_off del_on						Ĵ
Dyna				×	Enter post variable :								
Read	у												0%
7			2 (e () 🛷 🖻								EN 11:53 πμ 4/10/2013

Εικόνα 5.6: Η κατανομή των τάσεων σε όλο το τεμάχιο.

Ρυθμός πλαστικής παραμόρφωσης

Εικόνα 5.7: Ρυθμός πλαστικής παραμόρφωσης 89800 ((mm/mm)/sec) στην κύρια ζώνη παραμόρφωσης

Πλαστική παραμόρφωση

Εικόνα 5.8: Κατανομή πλαστικής παραμόρφωσης

Πέμπτη Προσομοίωση Μοντέλου

Stick-slip $\mu\epsilon$ f=0,05 , γ =25° μ =1,05 m=0,2

Στοιχεία προσομοίωσης

M Run J	lob	6. K	22.0		-	-	×	
Name	lame job 1							
Туре	Thermal/Structural							
	User Sul	broutine f	File					
🔲 Par	allelizatio	n		No DDM				
				1 Solver Process				
Title	:	Style	Table-Dri	ven	•		Save Model	
	Submit (1))		Advan	nced Job	Submiss	ion	
	Update		Mor	nitor Kill			Kill	
Status	Status Complete							
Current Increment (Cycle) 9999						9999 (3	(3)	
Singula	rity Ratio					0.0029899		
Conver	gence Ra	atio				0.02351		
Analysi	s Time					0.00402	274	
Wall Tir	ne		-			42294		
Curles			101	tal	Dealer			
Cycles		58494		- Cut	Backs	0		
Separa	Separations 1684 Remeshes 2900							
Exit Nu	Exit Number 3004					Exit Message		
Edit	Outp	ut File	Log File		Status	s File	Any File	
	Open l	Post File ((Results Men	u)				
Reset							ОК	

Από τη διεξαγωγή της προσομοίωσης προέκυψαν τα ακόλουθα στιγμιότυπα:

Marc Mentat 2011.1.0 (64bit): c/users/hujitsu/desktop/marc tests paska new/summer2013/validation2/b//test_stick_slip_0.05_25_0.2_65n/te	st.mud: test_job1.t16 - [Model (View 1)]
File Select View Tools Window Help	- 0 x
 ⊂∽ ⊚ ⊂ ⊡ ⊘ ⊨ , , , , , , , , , , , , , , , , , ,	T T Analysis Class Structural
🗙 Geometry & Mesh Tables & Coord. Syst. Geometric Properties Material Properties Contact Toobox Links Initial Conditions Boundar	r Conditions Mesh Adaptivity Loadcases Jobs Results
New Years Person Person 2015 Contains Control	
Inc: 249 Time: 1.003e-004	Mill Jistuan
2.012e+002 1.811e+002	
1.610++002	
1.409e+002	
1.207e+002	
1.006e+002	
5 8.049e+001	
6.0376+001	
*.025e+001	
2.012e+001	
0.000+000	
14	
External Heat Flux	
Enter Increment to skip to : "zoom_out Enter Increment to skip to : "zoom_out Enter Increment to skip to : "zoom_out	
8 Enter increment to skip to :	
Ready	0%
🚱 🥥 🧮 💟 ಿ 🥥 🖓 🛄 🗠 📕	EN 1222/ mµ 31/10/2013

t=0,0001sec T_{max}=201,2 °C

File Select View Tools Window Help		- 0
è ڬ 🖬 🖍 💿 🍠 🔂 🕐 🛄 🔑 🔶 🔶	+ + / / + + + × × × 👼 + 🖽 + 💮 + Analysis Class Structural	
Geometry & Mesh Tables & Coord. Syst. Geometric Properties Material	Properties Contact Toolbox Links Initial Conditions Boundary Conditions Mesh Adaptivity Loadcases Jobs Results	
New Biement Types User Domains Show Menu		
Edit Tools *		
Inc: 1242 Time: 5.003e-004		/ million
		/
2.902e+002		(
2.612e+002		
2.322+002		
2.0326+002		
1.741e+002		
1.451e+002		
1.161e+002		
8.707e+001	and the second	
5.805e+001		
2.902e+001		
0.000++000		
	External Heat Film	1
Enter increment to skip to : "zoom_out Enter increment to skip to : "zoom_out Enter increment to skip to : "zoom_out		
s S Enter increment to skip to :		0%

t=0,0005 sec T_{max}=290,2 °C

t=0,001 sec T_{max}=340,8 °C

Marc Mentat 2011.1.0 (64bit): c/users/fujitsu/desktop/marc tests paska new/summer2013/validation2/b//test_stick_slip_0.05_25_0.	2_65n/test.mud: test_job1.t16 - [Model (View 1)]
- CLARKE WARKEN AND AND AND AND AND AND AND AND AND AN	Availae Creation Participation
Geometry & Mesh Tables & Coord. Syst. Geometric Properties Material Properties Contact Toolbox Links Initial Conditions	Boundary Conditions Mesh Adaptivity Loadcases Jobs Results
New Bement Types User Domains Show Menu	
Isola Element Types User Domains	
Inc: 3724	/
Time: 1.500e-003	HEZIEN
2.540e+002	
2 201-1002	
2.000+042	
2.032e+002	
1.770e+002	
1.5246+002	
1.270e+002	
1.016e+002	
7.619e+001	
5.079e+001	
2.5406+001	
0.000e+000	
External Heat Fit	R
The increment to skip to 1.443 Enter increment to skip to 1.243 Enter increment to skip to 1.343 Enter increment to skip to 1.3724	
B Enter increment to skip to :	
	0%
a 🗿 🚞 🖸 💪 😓 🔔 🔛 🔤 🔤 🚺	EN 12:29 m

t=0,0015 sec T_{max}=254,0 °C
Man	rc Mentat 2011.1.0 (64bit): c/users/uu/tsu/desktop/marc tests paska new/summer2013/validation2/b/)test_stick_slip_0.05_25_0.2_65n/test.mud: test_job1.t	16 - [Model (View 1)]
File	e Select Vew Tools Window Help	_ (<i>d</i>) x
•	■ EN 図る図の 面気も + + + + × × + + + × × + + + × × + + + × × × = + = +	Analysis Class Structural
* 9	Geometry & Mesh Tables & Coord. Syst. Geometric Properties Material Properties Contact Toobox Links Initial Conditions Boundary Conditions Mesh	Adaptivity Loadcases Jobs Results
Main Menu	New Demonst Types User Domains State Neru Liser Domains Jobs Bernent Types Liser Domains	
10000	Inc: 4966 Time: 2.000e.003	NEZ Setures
	3.295e+002	
	2.965e+002	1
500 500	2.656+002	
	2.306+002	
	1.977e+002	
-	1.647e+002	
2	1.318e+002	
1	9.884e+001	
#	6.589e+001	
	3.2%e+001	
II	0.000+000	
M		And a second
	External Healt Flux	2 - 2 - E
	X Interiorement to sign to 1774 g Interiorement to sign to 17725 Enter norment to sign to 17725 Enter norment to sign to 1466	ģ
8	Enter increment to skip to :	
Ready		0%
) 🥥 🚆 🖸 🥲 🥘 🖳 🖄 🔛 🛄	EN 12:31 mµ 31/10/2013

t=0,0020 sec T_{max}=329,5 °C

Image: State is Cond. Synce: Example in the image: State is Conduct Properties. Material Properties. Contact: Toobox: Links: Total Condition: Boundary Condition: Mech Adaptivity: Loadcase: Joby: Reading Image: Conduct Type: User Constraint User Constraint Image: Conduct Type: Constraint User Constraint Image: Conduct Type: Constraint User Constraint Image: Conduct Type: Constraint User Constraint Image: Constraint Conduct Type: Conduct Type: Constraint User Constraint Image: Constraint Conduct Type: Conduct Type: Constraint User Constraint Image: Constraint Conduct Type: Conduct Type		T Analysis (Tana Church and
Concerts Markets Tables & Gondels Source Properties Network Properties Contact Tobos Units Insul Conditions Insul Condite Insul Conditions <		Anaysis Casis Deucara
Image: State of the state	cometry & Mesh Tables & Coord. Syst. Geometric Properties Material Properties Contact Toobox Links Initial Conditions Boundary Conditions	Mesh Adaptivity Loadcases Jobs Results
Itema Type: Use Domine 2.56+002 2.56+002 2.66+002 3.65+002 1.813+002 1.35+002 1.30+002 1.35+002 1.30+002 1.35+002 1.30+002 1.35+002 1.30+002 1.35+001 2.56+010 0.000+000 0.000+000 0.000+000 0.000+000 0.000+000 Determon Head Fax 0.000+000	tew Menu Lenent rypes Care Lonains	
Prime 25000 4000 Prime 25000 4000 2.566+002 Prime 25000 4000 1.819+002 Prime 25000 4000 1.839+002 Prime 25000 4000 9.655+001 Prime 25000 4000 0.600+000 Prime 25000 4000 Determonement to aligo to: 2725 Entermonement to aligo to: 2725	Jobs Element Types User Domains	
2.266+002 2.960+002 1.339+002 1.356+002 1.356+002 1.356+002 1.356+002 1.356+001 6.796+001 4.532+001 2.266+001 0.000+000 External Head Flux Enternal Head Flux	Inc: 6208 Time: 2,500-003	/
2.56+02 2.06+02 1.35+02 1.35+02 1.35+02 1.36+02 1.35+02 1.3		/
2.060-002 1.050+002 1.050+002 1.050+002 1.050+002 1.050+002 1.050+001 0.750+001 0.520+001 2.256+001 0.000+000 External Heat Flar External Heat Flar Exter	2.2566+002	
1.135+002 1.956+002 1.956+002 1.135+002 9.056+001 6.796+001 5.326+001 5.326+001 0.006+000 Enternal Head Faix Bitte incoment to skip to 1: 1725 Enter incoment to skip to 1: 1965 Enter incoment to skip to 1: 1975	2.040e+002	
1.564402 1.564402 1.564402 1.564402 1.38402	1,812+002	
1.300-1002 1.330-	1.5%++012	
1.034400 1.1354002 9.655401 6.796401 4.5324001 2.2664001 0.000+000 External Heat Flax Enternoment to skip to: 2735 Enter noment to skip to: 2736	1 1004-002	
1.3590.00	1.0001002	
• 0.000+001 • .750+001 • .526+001 • .266+001 • .000+000 •	0.055-001	
6509-001 95520+001 2.266+001 0.0000+000 External Head Flux	9.000+001	
4.532e4001 2.366e4001 0.000e+000 External Heat Flax Enter increment to skip to : 3735 Enter increment to skip to : 9735 Enter increment to skip to : 9708 Enternal Heat Flax Enter increment to skip to : 9709 0%	6.798+001	
2.2664 001 0.0004 000 External Heat Rex Office increased to dep to: 1725 Enter increased to dep to: 1725	4.532e+001	
0.000+000 External Heat Figs External Heat Figs Enter increment to skip to : 205 Enter increment to skip to : 200 Enter increment to skip to : 200 Enter increment to skip to : 0%	2.266+001	
Briter increment to skip to : 2223 External Heat Flux Enter increment to skip to : 5009 Enter increment to skip to : 0%	0.000+000	
External Heat Flux Enter increment to skip to : 3725 Enter increment to skip to : 660 Enter increment to skip to : 0%		
X bit increment to skip to : 205 Bit increment to skip to : 600 Enter increment to skip to : 00 Enter increment to skip to : 00	External Heat Flux	
Enter increment to slip to : 0%	Enter increment to skip to : 3725 Enter increment to skip to : 3926	
Enter increment to algo to : 0%	Enter increment to skip to : 5208	
0%	Enter increment to skip to :	
		0%

t=0,0025 sec T_{max}=226,6 °C

t=0,00030 sec T_{max}=267,8 °C

Marc Mentat 2011.1.0 (64bit): c/users/lujitsu/desktop/marc tests pasxa new/summer2013/validation2/b)/test_stick_slip File Select Vew Tools Window Help	0.05,25,02,65n/test.mud: test.job1.t16 - [Model (View 1)]
	X X 🗑 - H - 🕅 - Analysis Class Structural
X Conserting & Minch Tables & Count Syst. Geometric Properties. Material Properties. Contact: Tanhow Units Table	Conditions Re-under Conditions Meth Adaptivity Londrages John Results
New Dement Types User Domains	Annual Annual Language and Annual Annual
Edit Tools	
Jobs Element Types User Domains	
Inc: 8690 Time: 3.500e-003	HEZ) Straw
2.075e+002	
1.868+002	
1.660+002	
1.452e+002	
1.2450+002	
1.038e+002	
8.302e+001	
6.226e+001	
4.151e+001	
2.075e+001	
0.000+000	
Er Er	ernal Heat Flux
Enter increment to skip to : 6208 Enter increment to skip to : 7449	
Enter increment to skip to : 8690	
s B Enter increment to skip to :	
leady	0%
😰 🧐 🧮 💟 🥭 🗳 💭 🛄 🗠 🚺	EN 1232 m/ 31/10/2013

t=0,00035 sec T_{max}=207,5 °C

t=0,00040 sec T_{max}=320,2 °C

□ 日の ②ご見び □ アア + + + / / → + + × ア	🖉 🛡 🕶 💮 👻 Analysis Class Structural
Geometry & Mesh Tables & Coord, Syst. Geometric Properties Material Properties Contact Toobox Links Initial Conditor	ns Boundary Conditions Mesh Adaptivity Loadcases Jobs Results
New Dement Types User Domains Identify	
Edit Tools *	
Inc: 9999 Time: 4.027e-003	with a
2.376e+002	
2.140e+002	
1.902++002	
1.664e+002	
1,427e+002	
1.1890+1002	
9.511e+001	
7.133e+001	
+.756e+001	
2.370e+001	
0.000e+000	and the second
External Hea	A Filzx
Enter increment to skip to : 8690 Enter increment to skip to : 9932	
Enter increment to skip to : 9999	
8	
Enter increment to skip to :	

t=0,0004028 sec T_{max}=237,8 °C

Από τα στιγμιότυπα της πρώτης προσομοίωσης προκύπτει ότι η μέγιστη θερμοκρασία που αναπτύσσεται στο απόβλητο είναι $T_{max}=340.8$ °C.

Δυνάμεις κοπής

Από τον υπολογισμό των κοπτικών δυνάμεων κατά τον άξονα των x,προέκυψε το παρακάτω διάγραμμα:

Διάγραμμα 5.6

Από τους υπολογισμούς των δυνάμεων προέκυψε ότι κατά τη μόνιμη κατάσταση η μέση τιμή των δυνάμεων κοπής κατά τον άξονα των x,είναι 62N.Η τιμή αυτή προκύπτει και από το διάγραμμα μας.

Αντίστοιχα υπολογίστηκαν μέσω του Marc και οι δυνάμεις κοπής κατά τον άξονα των y και προέκυψε το παρακάτω διάγραμμα:

Διάγραμμα 5.7

Από τις τιμές των δυνάμεων του παραπάνω γραφήματος προκύπτει η μέση τιμή της δύναμης ίση με -14 N.

Γεωμετρία του αποβλήτου

Μετρώντας τα γεωμετρικά χαρακτηριστικά του παραχθέντος αποβλήτου δημιουργήθηκε ο παρακάτω πίνακας:

γ(°)	f (mm)	t _c (mm)	L _c (mm)	φ(°)
25°	0,05	0,0837	0,050	36,35

Μηχανικές και θερμικές παράμετροι

:

<u>Τάσεις</u>

Εικόνα 5.9: Τάσεις 941,7 MPa στην κύρια ζώνη και 659,2 MPa στη δευτερεύουσα ζώνη παραμόρφωσης.

annahr. B	Mark Tables & Cared	Sunt Commetrie	anantar Material Descenter Contact Technic Units Initial Conditions Readow Conditions Math Math. Math.	strong the funder
former a y o	Design Mat	Comple Dointe	operaes material modernes Contact Icobox Links Imaa Canasons Boundary Conasons Mesh Adaptivity Los	scases toos results
Path Plot	Generalized XY Plot	Saliple Folia	eometry Distance Movies	
same y riv			cpan channed	
	todel Plot Results	- X &	Inc: 9999 Time: 1.027e 003	
	Defremed Shane			
	Destrated prope	Settings	9.41704002	
Style	Deformed Only			
	Scalar Plot	1	8.476e+002	
		Settings	7.534e+002	
Style	Contour Bands	-	6.592++002	
5calar	Equivalent of Stress		E 45044002	
	Vector Plot		3.05004002	
-	0.00	Settings	4.709e+002	
- Martin	Denlacement		3.767	
PELLER	Tensor Plot		2.825	
		Settings		
Style	Off			
Tensor	Total Strain		9.412	
	Beam Diagram		1.012	
		Settings		
Style	Off		and the second	and the second
Unpost	t 🔲 Isolate	Delta		
	dk Plot V Flowi	ines 1	X Enter post variable : "zoom_out the Enter post variable : "zoom_out	
Trac			Enter post variable : "zoom out	
Trac				

Εικόνα 5.10: Η κατανομή των τάσεων σε όλο το τεμάχιο.

Ρυθμός πλαστικής παραμόρφωσης

Εικόνα 5.11: Ρυθμός πλαστικής παραμόρφωσης 123000 ((mm/mm)/sec) στην πρωτογενή ζώνη παραμόρφωσης

<u>Πλαστική παραμόρφωση</u>

Εικόνα 5.12: Κατανομή πλαστικής παραμόρφωσης

Έκτη Προσομοίωση Μοντέλου

Stick-slip με f=0,05 ,γ=25° μ=1,05 m=0,6

Στοιχεία προσομοίωσης

M Run J	lob				-		×
Name	job 1						
Туре	Type Thermal/Structural						
	User Subroutine File						
				-			
Par	allelizatior	ı		No E	DDM		
				1 So	lver Proc	ess	
Title	:	Style	Table-Dri	ven		-	Save Model
	Submit (1))		Adva	inced Job	Submis	ssion
	Update		Mor	nitor		Kill	
Status						Comple	ete
Curren	t Increme	nt (Cyde)			23221	(16)
Singula	rity Ratio			0		0.0033258	
Conver	gence Ra	tio				0.4157	
Analysi	s Time					0.002	7864
Wall Tir	ne					52606	
			Tot	tal —			
Cycles		93827		CL	ut Backs	0	
Separa	ations	1335		Re	emeshes	1951	
Exit Nu	Exit Number					Exit	Message
Edit	Outp	ut File	Log File		Statu	s File	Any File
	Open F	Post File	(Results Men	u)			
R	eset						ОК

Από τη διεξαγωγή της προσομοίωσης προέκυψαν τα ακόλουθα στιγμιότυπα:

Marc Mentat 2011.1.0 (64bit): clusers/uj/tsu/deixtop/marc tests paska new/summer/2013/validation2/b)/test_stick_slip_0.05_25_0.6_90 File_Select_Vew_Tools_Window_Heb	test mud: test job1.t16 - [Model (View 1)]
	▼ III T P T Analysis Cass Structural
Geometry & Mesh Tables & Coord. Syst. Geometric Properties Material Properties Contact Toolbox Links Initial Conditions Bou	dary Conditions Hesh Adaptivity Loadcases Jobs Results
Nodel Pot Design Pot Sample Points Tools Animation Pain Pot Generalized XY Plot Sample Points Tools Animation Report Writer	
Inc: 834 Time: 1.001e-004	/ #533.00
4.774e+002	
4.2976+002	
3.819e+002	
3.342e+002	
2.0048+002	
1.900+002	
1.432e+002	
9.548+001	
4.7746+001	
0.000e+000	7
External Mark Fire	
Enter increment to skip to : "zoom_in	
Enter increment to skip to : "zoom in Enter increment to skip to : "dynamic_model_on	
Enter increment to skip to :	
	0%
🤊 🥥 🎑 ڬ 😂 😌 🖳 🐃 🛄	EN 12/30 m 31/10/20

t=0,0001sec T_{max}=477,4 °C

arc Mentat 2011.1.0 (64bit): c\users\fujitsu\	\desktop\marc tests paska new\summer2013\validation2	(b)/test_stick_slip_0.05_25_0.6_90n/test_mud: test_job1.t16 - [Model (View 1)]	
le Select Vew Tools Window Help			- 0
		T + + X X • • • • • • • • • • • • • • • •	
Geometry & Mesh Tables & Coord. Syst. G	seometric Properties Material Properties Contact Toolbo	ux Links Initial Conditions Boundary Conditions Mesh Adaptivity Loadcases Jobs Results	
Model Plot Design Plot Sample F Path Plot Generalized XY Plot History Plot	Points Tools Animation Geometry Distance Movies Report Writer		
Inc. 4167			
Time: 5.000e-004			and Que
		/	
4.469e+002			
4.022e+002			
3.575e+002			
3.128e+002			
2.601e+002			
2.234e+002			
1.768e+002			
1.341e+002			
8.938e+001			
4.469e+001			
0.000e+000			
		External Heat Fizz	
Enter increment to skip to : "zoom_in Enter increment to skip to : "dynamic mo	adel on		
Enter increment to skip to : 4167			
B Enter increment to skip to :			
			0%
🦉 🧐 🛄 💟 (C V V 🖳 🛎 🛛		EN 31/10/201

t=0,0005 sec T_{max}=446,9 °C

Marc Mentat 2011.10 (64bit): c'users/lujitu/desktop/marc tests passa new/summer2013/validation2/b)/test_stick_slip_0.05,25_0.6_00n/test.mud. test_job1116 - [Model (Vew 1)]	
Re Select Vew Tools Window Help	- 0 ×
🗙 👸 Grometry & Mesh Tables & Coard. Syst. Geometric Properties Material Properties Contact Toobox Links Initial Conditions Boundary Conditions Mesh Adaptivity Loadcases Jobs Results	
Pach Net Generalized XY Post Petro Viniter Generalized XY Post History Piblic	
In: 8333 Tm:: 1.000:003	NS () Let was
5.026e+002 4.52fe+002 4.021e+002	
3.518+002	
3.016+002	
2.5130+002	
2.0110+002	
1.508+002	
1.005++002	
-# 5.026+001	
External Heat Flax	l
Bit and a second and the second	Û
S Entre norment to say to : Ready	086
📀 💿 📋 🖸 😂 🍋 🔛 🔤 🔤	EN <u>1:00</u> πμ 31/10/2013

t=0,001 sec T_{max}=502,6 °C

Average	Marc Mentat 2011.1.0 (64bit): c\users\fujitsu\de	esktop\marc tests pasxa new\summer20	3\validation2\b)\test_stick_slip_0.05_25_0	16_90n\test.mud: test.job1t16 - [Model (View 1]]	
Convery March biols & Cond. Syn: Converte Network Properties Contact: Todow: Lake Instal Conditions Roundary Conditions March Adaptivity Landwares biols Real Properties Provided Properties Provided Pro			/ AAttXX	Analysis Gass Structural	<u> = [σ]</u>
Model Pure Length Rd. Sample Ports Tody Turner. Amadorn Rouse Rate Rate Rate Rate Rate Rate Rate Rat	Connetty & Mech Tables & Courd Sust. Good	metric Properties Material Properties C	start Tashay Links Initial Conditions	Reindery Conditions Meth Admittativ Landrases Jobs Des Jos	
Petro Vinit Report Writer Price 1500-000 0.066+002 0.066+002 7.056+002 0.066+002 5.521+002 0.066+002 5.521+002 0.066+001 0.066+002 0.066+002 5.521+002 0.066+001 0.066+002 0.066+001 0.066+001 0.066+001 0.066+001 0.066+001 0.066+001 0.066+001 0.066+001 0.066+001 0.066+001 0.066+001 0.066+001 0.066+001 0.066+001 0.066+001 0.066+001 0.066+001 0.066+001 0.066+001 0.066+001 0.066+001 0.066+001 0.066+001 0.066+001 0.066+001 0.066+001 0.066+001 0.066+001 0.066+001 0.066+001 0.066+001 0.066+001 0.066+001 0.066+001 0.066+001 0.066+001 0.066+001 0.066+001 0.066+001	Model Plot Design Plot Sample Por	nts Tools Animation		and a second second second second	
Re: 1200 0.666+002 7,981+002 2.056+002 6,006+002 5.272+402 6,006+002 5.272+402 5,372+002 5.372+002 6,006+002 5.272+402 6,006+002	History Plot	Report Writer			
0.866+002 7.968+002 7.968+002 5.8274+002	Inc: 12500 Time: 1.500e-003			/	NS() Server
8.866+002 7.981+002 7.966+002 5.272+002 5.272+002 5.272+002 5.272+002 5.272+002 5.577+002					
America America Construct Construct </td <td>8.868e+002</td> <td></td> <td></td> <td>/</td> <td></td>	8.868e+002			/	
6.0084402 5.2214402 4.9349102 3.55759102 2.6669100 0.00090000000000	7.095e+002		/		
5.2214-002 4.936+002 3.557+002 2.660+002 0.000+000+000+000+000+000+000+000+000+0	6.208++002				
4.496+002 3.557+002 2.650+002 1.77++002 0.650+001	5.321e+002				
3.5575+002 2.656+002 1.776+002 0.666+001 0.666+001 0.000+000 0.000+000 Image: State Proceedings of the state Place If the increment to state to : 4327 External Heat Place If the increment to state to : 1323 External Heat Place If the increment to state to : 1323 External Heat Place If the increment to state to : 1200 Image: State Place If the increment to state to : 1200 Image: State Place If the increment to state to : 1200 Image: State Place	4.434e+002				
2 460+02 1.77++02 0.666+00 0.000+000 0.000+000 X External Heat Flux External Heat Flux External Heat Flux 04 04 04 04 04	3.5476+002				
# 0.000+000 # 0.000+000 # # * External Heat Flux #	2.660+002				
0.000+000 0.000+000 External Heat Flux External Heat Flux External Heat Flux External Heat Flux 0%	# 8.860+4001				
External Heat Figur	0.000e+000			y	
External Head Flux External Head Flux External Head Flux External Head Flux First increment to skip to : 1333 Enter increment to skip to : 1200 First i					
			External Heat F	ikex	
	Enter increment to skip to : 4167 Enter increment to skip to : 8333	5			
er 🖹 Enter nomment to sko to : exty	Enter increment to skip to : 12500				
😰 👩 🛅 🔽 🖉 🙆 🏠 🕼 🏧 🖬	8 Biter increment to skip to :				04
		s 👩 👩 🔞			EN 1:00 πμ

t=0,0015 sec T_{max}=886,8 °C

Marc Mentat 2011.1.0 (64bit): c/users//uj/tsu/desktop/marc tests paska new/summer2013/validation2/b)/test_stick_slip_0	5 25 0.6 90n/test.mud; test.job1 t16 - [Model (View 1]]
He select vew tools Window Hep	
	Analysis Class Structural
Geometry & Mesh Table Reset view et. Geometric Properties Material Properties Contact Toolbox Links Initial Co	Stons Boundary Conditions Mesh Adaptivity Loadcases Jobs Results
Model Rot Design Rot Parts Net History Plut Semeralized XY Not Semple Points Report Writer Moves	
Inc: 16666 Time: 2.000e-003	/
5.318e+002	
4.786e+002	
4.254e+002	
3.7220+002	
3.191e+002	
2.65%+002	
2.1276+002	
1.595e+002	
1.0640+002	
5.310++001	
0.000+1000	Y Y
Extern	Heat Flux
Enter increment to skip to : 8333 Enter increment to skip to : 12500	
Enter increment to sup to : 10000	
Enter increment to skip to :	
🤊 🔍 🔜 🐸 🤝 🐷 🛄 👘	EN 31/10/2

t=0,0020 sec T_{max}=531,8 °C

Marc Mentat 2011.1.0 (64bit): c/users/lujitsu/desktop/marc tests paska new/summer2013/validation2/b//test_stick_slip_0.0 File_Select_Vew_Tools_Window_Help	25_0.6_90n/test.mud: test_job1.116 - [Model (View 1)]
	X T + R + R + Analysis Cans Structural
Geometry & Henh Tables & Correl, Syst. Geometric Properties. Material Properties. Contact: Techny: Links, Tethal Corre	Rever Revendary Conditions Meth Adaptivity Loadcases John Des Its
Model Plot Design Plot Sample Points Tools Animation	
Path Plot Generalized XY Plot Geometry Distance Movies History Plot Report Writer	
Inc 20800 /	
Time: 2.500e-003	and the second se
3.705+1002	
3.335e+002	
2.964++002	
2.594e+002	
2.223++002	
1.853e+002	
1.482e+002	
1.112e+002	
7.411e+001	
3.705e+001	
0.0006+000	X
Edena	feet Flax
X Enter increment to skip to : 20827	
Enter increment to skip to : 20829 Enter increment to skip to : 20830	
Enter increment to skip to :	
	0%
) 🥥 🚞 🖸 🥲 😓 🛄 🔤 📶	EN + 104

t=0,0025 sec T_{max}=370,5 °C

Marc Mentat 2011.1.0 (64bit): c/users/fujitsu/desktop/marc tests paska new/summer2013/validation2/b/itest_stick_slip_0.05_25_0.6_90n/tr	t.mud; test_job1116 - [Model (View 1)]
File Select Vew Tools Window Help	- 0
	111 * 100 * Analysis Class Structural
Geometry & Mesh Tables & Coord. Syst. Geometric Properties Material Properties Contact Toolbox Links Initial Conditions Bounda	Conditions Mesh Adaptivity Loadcases Jobs Results
Mode Pick Design Flot Path Flot History Riot. Sample Points History Riot. Annuation Report Viniter Report Viniter	
Inc: 23220 Tme: 2.786e 003	mQyana
4.970e+002	
4.473e+002	
3.976e+002	
3.479e+002	
2.902++002	
2.485e+002	
1.988+002	
1.491e+002	
9.940e+001	
4.970e+001	
0.000+000	y
External Heat Flux	
Enter increment to skip to : 16666 Enter increment to skip to : 20220	
B Enter increment to skin to -	
ady	0%
a 👝 📉 🗖 🖉 🙆 🙆 👘 📼 🔳	ΕΝ 1:02 πμ
	31/10/201

t=0,002786 sec T_{max}=497,0 °C

Από τα στιγμιότυπα της πρώτης προσομοίωσης προκύπτει ότι η μέγιστη θερμοκρασία που αναπτύσσεται στο απόβλητο είναι T_{max} =886,8 °C.

Δυνάμεις κοπής

Από τον υπολογισμό των κοπτικών δυνάμεων κατά τον άξονα των x,προέκυψε το παρακάτω διάγραμμα της:

Διάγραμμα 5.7

Από τους υπολογισμούς των δυνάμεων προέκυψε ότι κατά τη μόνιμη κατάσταση η μέση τιμή των δυνάμεων κοπής κατά τον άξονα των x,είναι **86** N.Η τιμή αυτή προκύπτει και από το διάγραμμα.

Αντίστοιχα υπολογίστηκαν μέσω του Marc και οι δυνάμεις κοπής κατά τον άξονα των y και προέκυψε το παρακάτω διάγραμμα:

Διάγραμμα 5.8

Από τις τιμές των δυνάμεων του παραπάνω γραφήματος προκύπτει η μέση τιμή της δύναμης ίση με 25 N.

Γεωμετρία του αποβλήτου

Μετρώντας τα γεωμετρικά χαρακτηριστικά του παραχθέντος αποβλήτου δημιουργήθηκε ο παρακάτω πίνακας:

γ(°)	f (mm)	t _c (mm)	L _c (mm)	φ(°)
25°	0,05	0,011	0,082	28,43

Μηχανικές και θερμικές παράμετροι

<u>Τάσεις</u>

Εικόνα 5.13: Τάσεις 835,2 MPa στην κύρια ζώνη και 584,6 MPa στη δευτερεύουσα ζώνη παραμόρφωσης.

Marc Mental	t 2011.1.0 (64bit): c/users/fujitsu	\desktop\marc to	sts paska new/summe	2013\vali	dation2\b)\tes	t_stick_slip_0.05_25_	0.6_90n\test.mud: test	job1.t16 - [Mode	l (View 1)]		
File Select	: View Tools Window Help										28
🗟 📑 🖬	10 🧕 🍠 🖓	Q + P	++ + +	11	$\leftrightarrow \leftrightarrow$	****	.) - Analysis Cla	ss Structural		
Geometry I	& Mesh Tables & Coord. Syst.	Geometric Propertie	s Material Properties	Contact	Toobox Lin	ks Initial Conditions	Boundary Conditions	Mesh Adaptivity	Loadcases 2	bs Results	
Path Plat History Pla	t Design Plot Sample Generalized XY Plot ot	Points Tools Geometr Report V	Animation y Distance Movies Vriter								
× 1	Model Plot Results 🔻 🗵		inc: 23220 lime: 2.786e-003						/		NSiPsetson
	Deformed Shape								/		
	Settings		8.3526+002					Contraction of the second	/		
Style	Deformed Only	·	7.5176+002						/		
	Schar Hot		6.6826+002						/		
Style	Contour Bands	-	5.046.1000								
Scalar	Equivalent of Stress		5.0406+002								
	Vector Plot		5.011e+002								
	Settings		4.176e+002								
Style	Off	•	3.341e+002					No. of Concession, Name			
Vector	Displacement										
	Tensor Plot		2.506e+002								
	Settings		1.670e+002								
Style	Off	- #	8.352e+001								
Tensor	Total Strain							and the second			

Εικόνα 5.14: Η κατανομή των τάσεων σε όλο το τεμάχιο.

Ρυθμός πλαστικής παραμόρφωσης

Εικόνα 5.15: Ρυθμός πλαστικής παραμόρφωσης 87340 ((mm/mm)/sec) στην κύρια ζώνη παραμόρφωσης

Πλαστική παραμόρφωση

u N	Aarc Mentat	2011.1.0 (64bit): c:\us	sers\fujitsu	desktop\marc	tests paska new/summe	2013\val	dation2\b)\to	st stick slip 0.05 Z5	0.6 90n\test.mud: test	job1t16 Model	(View 1))		- 0 -	3-00
M	ile Select	View Tools Wind	ow Help										- 6	F ×
1	1	り ③ご	•	E + F	-++	11		***	* H•&) 🔹 Analysis Clas	s Structural			
X	Geometry &	Mesh Tables & Coord	d, Syst. G	eometric Proper	tes Material Properties	Contact	Toolbox L	nks Initial Conditions	Boundary Conditions	Mesh Adaptvity	Loadcases Jobs	Results		
ain Menu	Model Plot Path Plot History Plot	Design Plot Generalized XY Plot	Sample I	foints Tools Geom Repor	Animation etry Distance Movies t Writer									
×	M	odel Plot Results	• 🕅	R	Inc: 23220 Time: 2.786e-003						/		NSSJEdar	
		Deformed Shape	Settings		7745++000						1			
	Style	Deformed Only		- ≚							1			
	-	Scalar Plot		180	6.971e+000					1 AL	/			
			Settings	<u>.</u>	6.196e+000						1			
	Style	Contour Bands		•	5.422e+000									
	Scalar	Equivalent of Plastic	Strain		4 64764000									
		Vector Plot			101101000									
	Chila	off	Settings		3,873e+000					-				
	Mertor	Direct accumulant		ê 🧫	3.098c+000									
	Net los	Tensor Plat			2.324e+000									
		icition i net	Settings		1 549++000									
	Style	off		• #	1.01001000									
	Tensor	Total Strain			7.745e-001									

Εικόνα 5.16: Κατανομή πλαστικής παραμόρφωσης

Σύγκριση τρίτης με τέταρτη προσομοίωση

Σύγκριση μοντέλων τριβής Stick-Slip με συντελεστές τριβής 0,2-0,4-0,6

0,08

0.05 0,06

γ=25° . f=0,05 ■ Stick-Slip m=0.6 µ=1.05

Ανακεφαλαίωση και σχολιασμός κεφαλαίου

Στο κεφάλαιο αυτό μελετήθηκε η επίδραση του μοντέλου τριβής. Για τη μελέτη αυτή σε αντίθεση με το προηγούμενο κεφάλαιο που χρησιμοποιήσαμε τον τύπο τριβής Shear bilinear, χρησιμοποιήσαμε δύο διαφορετικά μοντέλα τριβής. Στο πρόγραμμα Πεπερασμένων Στοιχείων MSC.MARC έχουν εισαχθεί στις τελευταίες εκδόσεις του διάφορα μοντέλα τριβής. Εκμεταλλευόμενοι τη δυνατότητα αυτή σε συνδυασμό με την αύξηση των δημοσιεύσεων που προκρίνουν άλλα μοντέλα τριβής για τις κοπές, τρέξαμε το μοντέλο με δύο διαφορετικούς τύπους τριβής. Το μοντέλο τριβής του Coulomb και το μοντέλο τριβής Stick-Slip. Έτσι διατηρώντας σταθερό τον συντελεστή τριβής μ=0,4 και ίδιες τις συνθήκες με την δεύτερη προσομοίωση, διεξήγθησαν η τρίτη και η τέταρτη προσομοίωση του μοντέλου. Από τη διεξαγωγή των προσομοιώσεων αυτών παρατηρούμε ότι ως προς το πάχος αποβλήτου επέτυχαν παραπλήσια αποτελέσματα και μάλιστα καλύτερα από τη δεύτερη προσομοίωση ως προς τα πειραματικά αποτελέσματα. Ακόμα ούτε αυτοί οι τύποι τριβής μπόρεσαν να επαληθεύσουν τα πειραματικά αποτελέσματα ως προς το μήκος επαφής και παρουσίασαν σημαντικά σφάλματα. Επιπλέον μελετώντας τις δυνάμεις κοπής παρατηρούμε ότι διατηρώντας σταθερό το συντελεστή τριβής αυξήθηκαν οι τιμές των δυνάμεων κοπής. Οι δυνάμεις απώσεις παρέμειναν και για αυτούς τους τύπους τριβής αρνητικές και παρουσίασαν σημαντικά σφάλματα σε σχέση με τα πειραματικά Από την άλλη οι δύο αυτοί τύποι τριβής πέτυχαν καλύτερα αποτελέσματα. αποτελέσματα ως προς τη τιμή της γωνίας διάτμησης και προσέγγισαν καλύτερα τα πειραματικά αποτελέσματα. Ως προς τις αναπτυσσόμενες θερμοκρασίες το μοντέλο τριβής του Coulomb παρουσιάζει μικρότερες θερμοκρασίες σε σχέση με τους άλλους δύο τύπους τριβής και το μοντέλο Stick-Slip τις υψηλότερες. Ακόμα ως προς το ρυθμό πλαστικής παραμόρφωσης το μοντέλο τριβής shear εμφανίζει τις χαμηλότερες τιμές και μοντέλο τριβής του Coulomb τις υψηλότερες. Στο μοντέλο τριβής Stick-Slip παρατηρήθηκαν οι μεγαλύτερες τιμές της τάσης στην κύρια ζώνη και της πλαστικής παραμόρφωσης.

Στη συνέχεια μελετήθηκε η επίδραση του συντελεστή τριβής. Εφαρμόστηκαν στο μοντέλο τριβής Stick-Slip οι τιμές του συντελεστή τριβής 0,2,-0,4-0,6. Από τη διεξαγωγή των προσομοιώσεων και την μελέτη των αποτελεσμάτων προέκυψαν χρήσιμα συμπεράσματα. Αρχικά για τον μικρότερο συντελεστή τριβής η μορφή του αποβλήτου ήταν πιο καμπυλωτή και έφτανε στο σημείο μάλιστα να έρχεται η κορυφή του αποβλήτου σε επαφή με το τεμάχιο. Ακόμα παρατηρήσαμε ότι αυξανομένου του συντελεστή τριβής αυξάνεται η παραγόμενη θερμότητα, αυξάνονται οι τιμές των δυνάμεων κοπής και άπωσης. Μάλιστα για συντελεστή τριβής 0,6 οι τιμές των δυνάμεων άπωσης είναι θετικές και αυτές με το μικρότερο σφάλμα. Επιπλέον όσο αυξάνεται ο συντελεστής τριβής αυξάνεται και το πάχος αποβλήτου και προσεγγίζει καλύτερα τις πειραματικές τιμές,Για τις τιμές των τάσεων, αυτές μειωνονται αυξανομένου του συντελεστή τριβής και τη αλαστική παραμόρφωση..

ΚΕΦΑΛΑΙΟ ΕΚΤΟ

Μοντελοποίηση του υλικού

6.1 Εισαγωγή

Το παρακάτω κεφάλαιο πραγματεύεται τη Μοντελοποίηση του υλικού. Η μοντελοποίηση της τάσης ροής του υλικού του κατεργαζόμενου τεμαχίου, ώστε να μας προσφέρει πραγματικά αποτελέσματα, αποτελεί ένα από τα σημαντικότερα ζητήματα που τίθενται σε μια προσομοίωση κοπής. Η τάση ροής είναι η στιγμιαία τάση διαρροής και εξαρτάται από την παραμόρφωση, από το ρυθμό παραμόρφωσης και τη θερμοκρασία. Η αναπαράσταση του γίνεται με μαθηματικές σχέσης σε μορφή καταστατικών εξισώσεων. Από τη βιβλιογραφική μελέτη και από τις τελευταίες δημοσιεύσεις, το μοντέλο υλικού των Johnson-Cook [45] έχει καταστεί το επικρατέστερο και το πιο ευρέως χρησιμοποιούμενο για την μοντελοποίηση των υλικών. Άλλα συνήθη μοντέλα αποτελούν α) το μοντέλο των Usui, Maekawa και Shirakashi [42], β) το μοντέλο του Oxley [43], γ) το μοντέλο των Zirilli-Armstrong [44]. Στο παρακάτω κεφάλαιο θα αναφερθούμε εκτενέστερα και θα παρουσιάσουμε τα παραπάνω μοντέλα υλικών. Στη συνέχεια θα κατασκευάσουμε, θα μελετήσουμε και θα σχολιάσουμε τα αποτελέσματα που θα προκύψουν για το μοντέλο υλικού των Johnson-Cook το οποίο και θα προσομοιώσουμε στο Marc για δύο διαφορετικούς τύπους τριβής και θα το συγκρίνουμε με το μοντέλο υλικού του Oxley που χρησιμοποιεί η βιβλιοθήκη υλικών του MSC.MARC.

6.2 Η Μοντελοποίηση υλικού

Η μοντελοποίηση του υλικού στις κατεργασίες είναι μια πολύ σημαντική διαδικασία. Ειδικότερα, οι ιδιότητες της ροής του υλικού των κατεργαζόμενων τεμαχίων και οι αντίστοιχες εξισώσεις τους που περιλαμβάνονται στα Πεπερασμένα Στοιχεία, έχουν αποτελέσει αντικείμενο εκτεταμένης μελέτης. Αυτές οι καταστατικές εξισώσεις περιγράφουν την ροή των τάσεων ή την ακαριαία διαρροή στην οποία το κατεργαζόμενο υλικό αρχίζει να διαμορφώνεται πλαστικά ή να ρέει. Στις κοπές οι ελαστικές παραμορφώσεις είναι κατά πολύ μικρότερες από τις πλαστικές και έτσι το υλικό του δοκιμίου ρέει πλαστικά προς τη ζώνη κοπής. Τα καταστατικά μοντέλα που παρουσιάζονται στην διεθνή βιβλιογραφία είναι κυρίως ελαστο-πλαστικά (elastoplastic), ελαστικοβισκοπλαστικά (elasto-viscoplastic), ακαμπτοπλαστικά (rigidplastic) και ακαμπτοβισκοπλαστικά (rigid-viscoplastic).

Σε συνθήκες κατεργασιών κοπής, το υλικό του τεμαχίου υπόκειται σε υψηλά επίπεδα παραμόρφωσης, αυξημένα ποσοστά παραμόρφωσης και μεγάλες θερμοκρασίες, τα οποία επηρεάζουν σημαντικά τις τάσεις ροής. Στην κύρια ζώνη παραμορφώσεως οι θερμοκρασίες που αναπτύσσονται είναι της τάξης των 150-250 °C και στη δευτερεύουσα ζώνη παραμορφώσεως κατά πολύ υψηλότερες, της τάξης των 800-1200 °C. Ο ρυθμός παραμορφώσεως λαμβάνει τιμές από 2 x10⁴ s⁻¹ έως και 10⁵ s⁻¹ στις 2 ζώνες [46].Αν σ η τάση, ε η πλαστική παραμόρφωση, έ ο ρυθμός

πλαστικής παραμόρφωσης και Τ η θερμοκρασία, προκύπτει η ακόλουθη καταστατική εξίσωση της μορφής:

$$f(\sigma) = \sigma(\varepsilon, \varepsilon, T)$$

Το πρόβλημα είναι η έλλειψη δεδομένων για υψηλές τάσεις, μεγάλους ρυθμούς παραμόρφωσης και αυξημένες θερμοκρασίες, σαν τις συνθήκες που παρατηρούνται σε μια κοπή. Σε αρκετές περιπτώσεις τα καταστατικά δεδομένα λαμβάνονται από πρότυπες καταστατικές δοκιμές, και συνεπώς δεν είναι επαρκή για να ληφθούν υπόψη σε προβλήματα κατεργασιών. Έτσι απαιτούνται δυναμικές πειραματικές δοκιμές υλικού, όπως οι δοκιμές επιπτώσεων Split Hopkinson Pressure Bar (SHPB). Εκεί στα υπό δοκιμή τεμάχια ασκούνται υψηλές ταχύτητες συμπίεσης, με ρυθμό παραμόρφωσης μέχρι και 10^5 s⁻¹, καθώς επίσης και θερμοκρασίες μέχρι και 700 °C. Όμως τα αποτελέσματα αυτών των πειραμάτων δεν είναι επαρκή για να γρησιμοποιηθούν για τη μελέτη της συμπεριφοράς των υλικών. ειδικά σε κατεργασίες υψηλών ταχυτήτων. Οι τιμές ξεπερνούν κατά πολύ τα αποτελέσματα των δοκιμών και προκύπτουν από γραμμική παρεμβολή. Οι Astakhov και Outeiro, άσκησαν κριτική για τη γρήση των αποτελεσμάτων της μεθόδου (SHPB) στο τομέα των κατεργασιών [47]. Υποστήριζαν ότι τα διαθέσιμα δεδομένα δεν προέρχονται από εξειδικευμένα εργαστήρια. Σε γενικές γραμμές η αντίθεση τους προέκυψε α) από το ότι η μέθοδο SHPB απαιτεί τη χρήση ειδικού εξοπλισμού, β) από το γεγονός ότι στις κοπές δεν ασκούνται υψηλοί ρυθμοί παραμόρφωσης και γ) στο ότι οι κοπές είναι μια ψυχρή διεργασία παρότι το απόβλητο και μόνο βρίσκεται σε υψηλές θερμοκρασίες. Συνεπώς, δεν είναι ξεκάθαρος ο συσχετισμός των αποτελεσμάτων των μονοαξονικών δοκιμών της μεθόδου SHPB με αυτά υλικών υπό τριαξονικές τάσεις όπως αυτές που ασκούνται στις κοπές μετάλλων. Άλλες δοκιμές που εφαρμόζονται είναι οι torsion tests, οι δοκιμές compression ring tests και οι δοκιμές projectile impact tests.

Παρά το γεγονός ότι πολλές καταστατικές εξισώσεις έχουν εφαρμοστεί για την περίπτωση των κοπών, παρακάτω παραθέτονται και αναλύονται οι κυριότερες. Η πρώτη είναι η καταστατική εξίσωση των Usui, Maekawa και Shirakashi [9,48,49]

$$\sigma = B \left[\frac{\dot{\varepsilon}}{1000} \right]^{M} e^{-kT} \left[\frac{\dot{\varepsilon}}{1000} \right]^{m} \left\{ \int_{Path} e^{kT/N} \left[\frac{\dot{\varepsilon}}{1000} \right]^{-m/N} d\varepsilon \right\}^{N}$$

Στην παραπάνω εξίσωση όπου B ο συντελεστής αντοχής, M ο ρυθμός ευαισθησίας παραμόρφωσης, n ο δείκτης σκλήρυνσης παραμόρφωσης. Όλες οι μεταβλητές της θερμοκρασίας T, το κ και το m θεωρούνται σταθερές. Το ολοκλήρωμα, υπολογίζει την επίδραση της παραμόρφωσης και της θερμοκρασίας σε σχέση με το ρυθμό παραμόρφωσης. Απαλείφοντας αυτή την επίδραση, η εξίσωση απλοποιείται στην παρακάτω μορφή:

$$\sigma = B \left[\frac{\dot{\varepsilon}}{1000} \right]^M \varepsilon^N$$

6.3 Μοντέλο υλικού του Oxley

Ο Oxley το 1990 πρότεινε μια σχέση για να εκφράσει τη τάση ροής του υλικού για τους ανθρακούχους χάλυβες, την [43]

$$\sigma = \sigma_1 \varepsilon^n$$

όπου σ₁ η ροή τάσης του υλικού για ε=1 και n εμπειρικός εκθέτης εργοσκληρυνσης του υλικού. Και οι δύο παράγοντες είναι συναρτήσεις της τροποποιημένης θερμοκρασίας, η σχέση της οποίας αποδείχθηκε από τους Macgregor and Fisher [11]. Έτσι ορίζεται η τροποποιημένη θερμοκρασία T_{mod} ως εξής,

$$T_{\rm mod} = T \left(1 - \nu \log \frac{\dot{\varepsilon}}{\dot{\varepsilon}_0} \right)$$

όπου ν και ε_0 οι σταθερές υλικού του τεμαχίου, οι οποίες έχουν τιμές 0,09 και 0,1 για τους ανθρακούχους χάλυβες.

6.4 Μοντέλο υλικού των Johnson-Cook (JC)

Το 1993 ο Johsnon και ο Cook ανέπτυξαν ένα μοντέλο υλικού βασισμένο στη στρέψη και στη δυναμική μέθοδο δοκιμών Hopkinson Bar για ένα μεγάλο εύρος ρυθμού παραμορφώσεων και θερμοκρασιών. Το μοντέλο αυτό των Johnson-Cook συγκαταλέγεται σε ένα από τα πιο ευρέως χρησιμοποιούμενα μοντέλα υλικού. Το μοντέλο είναι θερμό-ελαστικό-βισκο-πλαστικό και περιγράφεται από την παρακάτω καταστατική εξίσωση:

$$\sigma = (A + B\varepsilon^n) \left[1 + C \ln\left(\frac{\dot{\varepsilon}}{\dot{\varepsilon}_o}\right) \right] \left[1 - \left(\frac{T - T_a}{T_m - T_a}\right)^m \right]$$

Η εξίσωση αποτελείται από τρείς όρους. Ο πρώτος όρος είναι ο ελαστοπλαστικός παράγοντας και εκπροσωπεί την εργοσκλήρυνση. Ο δεύτερος όρος της εξίσωσης είναι το ιξώδες και μας δείχνει ότι η τάση ροής του υλικού αυξάνεται όταν το υλικό εκτίθεται σε υψηλούς ρυθμούς παραμόρφωσης. Ο τελευταίος όρος είναι ο όρος εξομάλυνσης της θερμοκρασίας. Στην καταστατική εξίσωση έχουμε: $έ_0$ τη τιμή του ρυθμού πλαστικής παραμόρφωσης, T_a τη θερμοκρασία περιβάλλοντος, T_m τη θερμοκρασία τήξης του υλικού και Τ τη στιγμιαία θερμοκρασία. Ακόμα τα A, B, C, n, και m είναι σταθερές και εξαρτώνται από το υλικό. Ο προσδιορισμός τους γίνεται με τη χρήση πειραμάτων δοκιμών υλικού ή εκτιμώνται. Το μοντέλο υλικού των Johnson-Cook υποθέτει ότι ροή τάσεων επηρεάζεται ξεχωριστά από τη παραμόρφωσης και τη θερμοκρασία.

Η επιρροή των σταθερών Johnson-Cook διερευνήθηκε από τους Umbrello, Saoubi και Outeiro, σε σχέση με το τελικό αποτέλεσμα της μοντελοποίησης των κατεργασιών. Από την ερευνά τους [50] προέκυψε ότι τα αποτελέσματα με τη Μέθοδο των Πεπερασμένων Στοιχείων είναι ευαίσθητα και εξαρτώνται σε μεγάλο βαθμό από τις τιμές αυτών των σταθερών. Με τη σειρά τους και αυτές εξαρτώνται από τη μέθοδο δοκιμών που χρησιμοποιήθηκε για την εύρεση των τιμών τους. Από την άλλη, τα αποτελέσματα μιας μεθόδου δοκιμών μπορούν να προσαρμοστούν σε διάφορες καταστατικές εξισώσεις και η επιλογή του μοντέλου υλικού μπορεί να επηρεάσει τα τελικά προβλεπόμενα αποτελέσματα.

6.5 Μοντέλο υλικού Zerilli-Armstrong

Το 1987 ο Zerilli και ο Armstrong ανέπτυξαν δύο μικροδομικές καταστατικές εξισώσεις, θεωρώντας τη δομή των υλικών ως κρυσταλλική [44]. Στην ερευνά τους κατασκεύασαν δύο διαφορετικά μοντέλα μετάλλων. Ένα Κυβικό χωροκεντρωμένο σύστημα (Body-Cubic-Centered -BCC) και ένα το Κυβικό ενδοκεντρωμένο σύστημα (face cubic centered FCC). Στην εργασία τους ανέλυσαν την απόκριση των υλικών σε διάφορες θερμοκρασίες και σε υψηλούς ρυθμούς παραμόρφωσης. Έτσι παρατήρησαν ευδιάκριτες και σαφείς διαφορές μεταξύ αυτών των υλικών.

Η καταστατική εξίσωση για τα μέταλλα με τη BCC δομή είναι:

$$\sigma = C_0 + C_1 \exp\left(-C_3 T + C_4 T \ln \frac{\dot{\varepsilon}}{\dot{\varepsilon}_0}\right) + C_5 \varepsilon^n$$

Αντίστοιχα η τάση διαρροής για τα μέταλλα με τη FCC δομή είναι:

$$\sigma = C_0 + C_2 \varepsilon^{-1/2} \exp\left(-C_3 T + C_4 T \ln \frac{\dot{\varepsilon}}{\dot{\varepsilon}_0}\right)$$

Στις παραπάνω εξισώσεις το C_0 είναι ο παράγοντας της τάσης που ευθύνεται για την ανομοιομορφία πυκνότητας της τάσης διαρροής. Οι μεταβλητές C_1 - C_5 και n

είναι σταθερές του υλικού και Τ η απόλυτη θερμοκρασία. Οι σταθερές αυτές προκύπτουν πειραματικά, π.χ από τη μέθοδο SHPB. Από την πρώτη εξίσωση προκύπτει ότι η παραμόρφωση δεν επηρεάζεται από το ρυθμό παραμόρφωσης και τη θερμοκρασία, σε αντίθεση με τη σχέση για τα μέταλλα με την FCC δομή.

Στον πίνακα που ακολουθεί είναι συγκεντρωμένα τα μοντέλα υλικού με τις εξισώσεις τους, τα οποία χρησιμοποιούνται ευρέως στη μοντελοποίηση των κατεργασιών μετάλλων.

Πίνακας 6.1	Μοντέλα υλικού	στη	μοντελοποίη	ση	των κοπών.
				_	

Μοντέλο	Καταστατική εξίσωση
Usui et al.	$\sigma = B\left[\frac{\dot{\varepsilon}}{1000}\right]^{M} e^{-kT} \left[\frac{\dot{\varepsilon}}{1000}\right]^{m} \left\{ \int_{Path} e^{kT/N} \left[\frac{\dot{\varepsilon}}{1000}\right]^{-m/N} d\varepsilon \right\}^{N}$
Oxley	$\sigma = \sigma_1 \varepsilon^n$
Johnson-Cook	$\sigma = (A + B\varepsilon^n) \left[1 + C \ln \left(\frac{\varepsilon}{\varepsilon_o} \right) \right] \left[1 - \left(\frac{T - T_a}{T_m - T_a} \right)^m \right]$
Zerilli-Armstrong	$\sigma = C_o + C_1 \exp[-C_3 T + C_4 T \ln(\dot{\varepsilon})] + C_5 \varepsilon^n$
	$\sigma = C_o + C_2 \varepsilon^n \exp[-C_3 T + C_4 T \ln(\dot{\varepsilon})]$

Στις περισσότερες προσομοιώσεις και αναλύσεις μοντέλων το κοπτικό εργαλείο θεωρείται άκαμπτο σώμα (rigid body), παρότι υπάρχουν και άλλες μελέτες όπως [51-54].Το εργαλείο δεν είναι παραμορφώσιμο. Παρόλα αυτά αντικείμενο μελέτης αποτελεί η θερμική ανάλυση του εργαλείου και ειδικότερα της κοπτικής του ακμής, για τον προσδιορισμό των θερμοκρασιών. Αν το κοπτικό αποτελείται από στρώσεις επένδυσης (coatings), τότε μοντελοποιείται συνήθως σαν ελαστικό υλικά και οι μόνες ιδιότητες υλικού που απαιτούνται είναι για τη μεταφορά θερμότητας και για την ελαστικότητα του υλικού.

6.6 Προσομοίωση Μοντέλων Υλικού

Όπως προαναφέρθηκε, στη συνέχεια κατασκευάζονται δύο μοντέλα προσομοιώσεων που υποστηρίζουν την καταστατική εξίσωση υλικού των Johnson-Cook και μελετώνται για δύο διαφορετικά μοντέλα τριβής. Το μοντέλο τριβής της διάτμησης (Shear Bilinear) και το μοντέλο τριβής του Zorev, Stick-Slip. Για τη κατασκευή του Μοντέλου Υλικού Johnson-Cook, χρησιμοποιήθηκαν οι τιμές των παραμέτρων και των μεταβλητών που αφορούν τους μαλακούς χάλυβες, όπως ο C15 του πειράματος και προήλθαν από τη βιβλιογραφία [55].Οι συντελεστές που χρησιμοποιήθηκαν είναι οι ακόλουθοι:

Parameter	Value
Density	$7850 \frac{\mathrm{kg}}{\mathrm{m}^3}$
Modulus of Elasticity	$207\mathrm{GPa}$
Poisson's Ratio	0.3
Johnson-Cook $\dot{\epsilon}_0$	$1\frac{1}{s}$
Johnson-Cook A	$217\mathrm{MPa}$
Johnson-Cook B	$233.7\mathrm{MPa}$
Johnson-Cook n	0.6428
Johnson-Cook C	0.0756

(a) Mild Steel

Λαμβάνοντας υπόψη τις βιβλιογραφικές πηγές για τις τιμές των συντελεστών Johnson-Cook, τις ιδιότητες του χάλυβα που χρησιμοποιήθηκε και τις συνθήκες περιβάλλοντος που απαιτούνται [10], εισάγονται οι τιμές στο Marc για να κατασκευαστεί η καταστατική εξίσωση του υλικού. Στην παρακάτω εικόνα παρουσιάζεται ο πίνακας δεδομένων του Marc με τις παραμέτρους του υλικού.

	Geometric Prope	erties Ma	aterial Properties	Contact	Toolbox	Links	Initial Conditions	Boundary Conditio	ns
Rem Data Fit	ove Unused M	New 🔻 Show Menu Edit	Tools Plot Settings	New Show Mer Edit	nu				
Structural Pro	perties		-	Series.	-				
Plasticity	Properties								×
Plasticity								larc Database	
Yield Criterio	n	Von Mise	S		-	Method	Johnson-Co	ook 🔻	
Coefficient A		217							
Coefficient B		234							
Exponent N		0.64	13						
Coefficient C		0.07	756						
Initial Strain	Rate	0.00	04						
Room Tempe	rature	20							
Melt Tempera	ature	154	0						
Exponent M		0.21							
				OK					

Εικόνα 6.1:Εισαγωγή παραμέτρων Johnson-Cook στο Marc

Έβδομη Προσομοίωση

Μοντέλο Υλικού Johnson-Cook, Shear Bilinear με f=0,05, γ =25° m=0,4

Στοιχεία προσομοίωσης

M Run J	lob						×
Name	job 1						
Туре	Thermal,	/Structura	al				
	User Su	broutine l	File				
🗆 Par	allelizatio	n		No DD	м		
				1 Solv	er Proc	ess	
Title	:	Style	Table-Driv	ven		-	Save Model
:	Submit (1)		Advand	ed Job	Submiss	ion
	Update		Mon	nitor			Kill
Status						Complet	te
Curren	t Increme	nt (Cyde	:)			14916 ((1)
Singula	rity Ratio					0.7749	7
Conver	gence Ra	atio				0.05963	3
Analysi	s Time					0.00303	244
Wall Tir	ne					32390	
			Tot	al			
Cycles	;	44442		Cut	Backs	0	
Separa	ations	1198		Rem	eshes	2172	
Exit Nu	mber		4001			Exit M	essage
Edit	Outp	ut File	Log File		Statu	s File	Any File
	Open	Post File	(Results Meni	u)			
R	eset						ОК

Μετά την κατασκευή της καταστατικής εξίσωσης των Johnson-Cook για το μοντέλο προσομοιώθηκαν οι συνθήκες κοπής f=0.05, $\gamma=25^{\circ}$ m=0.4 χρησιμοποιώντας το μοντέλο τριβής της διάτμησης Shear Bilinear. Όλες οι άλλες παράμετροι, οι γεωμετρικοί παράγοντες και οι συνθήκες κοπής παρέμειναν σταθερές. Από τη διεξαγωγή της προσομοίωσης παρουσιάζονται τα στιγμιότυπα της κοπής που ακολουθούν:

t=0.0001 T_{max}=83,9° C

M	larc M	entat 2011	.1.0 (64bit): d	:\marc\valida	ation3\test_jc_0.05_	25_0.4_shear_	bilinear+	initial_cor	nd_70n\test.	mud: t	est_job1.t16 - [N	Aodel (View 1)]					- 0 -X
MF	le S	elect Viev	v Tools Vi	indow Help													- 8 X
÷) 🤤 🛃	2 😳 🙄	Q 🗲 🔑	← → ∮	• †,	//	\leftrightarrow	\$	$\Rightarrow \times \times$		Analysis C	lass Struct	ural		
×	Geom	etry & Mesh	Tables & O	oord. Syst.	Geometric Properties	Material Pro	perties	Contact	Toolbox U	inks	Initial Conditions	Boundary Condition	ns Mesh Adaptivit	y Loadcases	Jobs	Results	
Vain Menu	New Show Edit	v Menu obs E	Gement Types	User Doma Identif Tools	ins 'y ins												
	li Ti	nc: 2465 me: 4.998e	-004												/	/	MSG25cf-ware
		3.0896	+002												/		
9		2.780e-	+002											/			
(2.471e	+002														
		1.853e-	+002											/			
		1.544e	+002														
		1.235e-	+002														
		9.266e	+001														
#		6.177e-	+001														
		0.000e-	+001														
I																	
				_							Future of March F	h					
M	×	Enter incre	ment to skip to	: "zoom in	-						External real r	10.X					
	8	Enter incre Enter incre	ment to skip to ment to skip to	: "zoom_out : 2465													
¥	Dialo	Enter incre	ment to skip to	1													
Read	у									_	-						0%
7		9			6 🕑		015-	M		1	()	L					 3:23 μμ 9/10/2013

t=0.0005 T_{max}=308,9° C

larc Mentat 2011.1.0 (64bit): d:\marc\validation3\test_jc_0.05_25_0.4_	shear_bilinear+initial_cond_70n\test.mud: test,	ob1.t16 - [Model (View 1)]		
ie Select View Tools Window Help				
📑 🖬 🌑 🎯 🌋 🔂 🥲 🔎 🛵 🔶	-+ + / / + + + + + + + + + + + + + + + + + +	XX	Analysis Class Structural	
Geometry & Mesh Tables & Coord. Syst. Geometric Properties Mate	nal Properties Contact Toolbox Links Initi	I Conditions Boundary Conditions	Mesh Adaptivity Loadcases Jobs Results	
New Element Types User Domains				
Edit Tools *				
Inc: 4932			7	
Time: 1.000e-003				MSBXSata
3 45364002			/	
0.100-1002				
2.76241002				
2.417a+002			/	
2.072+1002				
1 795-1002				
1 29104002			X.	
1.05644002				
6.9050+001				
2.452+1001				
0.0000+000				
0.00007000				
			and the second	Αποθήκευση στιγμιότυπου
	Đ	ternal Heat Flux		κάντε κλικ για προφολή
Enter increment to skip to : "zoom_out Enter increment to skip to : 2465 Enter increment to skip to : 4932				
Enter increment to skip to :				
y				0%

t=0.0010 T_{max}=345,3° C

t=0.0015 T_{max}=357,4° C

t=0.0020 T_{max}=401,3° C

t=0.0025 T_{max}=118,4 °C

Marc Mentat 2011.1.0 (64bit): d:\marc\validation3\test_jc_0.05_25_0.4_shear_bilinear+initial_cond_70n\test.mud: test_job1.t16 ~ (Model (View 1))	
Elie Select Wew Tools Window Help	- 6 ×
🕼 📑 🖬 🖍 😨 🤔 🚰 🙄 🛄 🔑 💭 🛶 🛶 🗼 † 🖌 🗡 🔆 🔶 ‡ 🔅 🖍 🎽 🐨 🐨 🐨 Structural	
Geometry & Mesh Tables & Coord. Syst. Geometric Properties Material Properties Contact Toolbox Links Initial Conditions Boundary Conditions Mesh Adaptivity Loadcases 306 Results	
Brow mode Element Type User Domains Staud Mode Element Type Lidentify Jobs Benefit Type User Domains	
Inc: 14783 Tem: 3.000e-003	MECASofwam
2.636e+002	
2.373e+002	
2.109e+002	
1.845e+002	
1.582e+002	
1.3180+002	
1.055e+002	
7.999+401	
5.273e+001	
2.558e+001	
0.000+000	
External Heat Flux	
N Shar Increment to skip to : 9844	<u>_</u>
Enter increment to skip to : 14793	-
y 🗿 Enter increment to skip to :	
Ready	0%
	EN 3:27 µµ 9/10/2013

t=0.003 T_{max}=308,9 °C

Από τα παραπάνω στιγμιότυπα γίνεται φανερή η διαδικασία σχηματισμού του αποβλήτου, καθώς επίσης και ότι η μέγιστη θερμοκρασία που αναπτύσσεται κατά τη κοπή είναι της τάξεως των T_{max} =401,3 °C.

Δυνάμεις κοπής

Από τον υπολογισμό των κοπτικών δυνάμεων κατά τον άξονα των x προέκυψε το παρακάτω διάγραμμα:

Διάγραμμα 6,1

Από τους υπολογισμούς των δυνάμεων προέκυψε ότι κατά τη μόνιμη κατάσταση η μέση τιμή των δυνάμεων κοπής κατά τον άξονα των x είναι **66** N. Η τιμή αυτή προκύπτει ολοφάνερα και από το διάγραμμα.

Αντίστοιχα υπολογίστηκαν μέσω του Marc και οι δυνάμεις κοπής κατά τον άξονα των y και προέκυψε το παρακάτω διάγραμμα:

Από τις τιμές των δυνάμεων του παραπάνω γραφήματος προκύπτει η μέση τιμή της δύναμης ίση με -12 N.

Γεωμετρία του αποβλήτου

Μετρώντας τα γεωμετρικά χαρακτηριστικά του παραχθέντος αποβλήτου δημιουργήθηκε ο παρακάτω πίνακας:

γ(°)	f (mm)	t _c (mm)	L _c (mm)	φ(°)
25°	0,05	0,0975	0,05025	31,03

Πίνακας 6,2

Μηχανικές και θερμικές παράμετροι

Από την αριθμητική επίλυση του μοντέλου προέκυψαν αποτελέσματα χρήσιμα για τη μελέτη, που αφορούσαν παραμέτρους όπως η πλαστική παραμόρφωση, ο ρυθμός πλαστικής παραμόρφωσης και οι τάσεις στην ζώνη παραμόρφωσης, Τα παρακάτω αποτελέσματα δύσκολα μετρώνται πειραματικά και παρουσιάζονται στις εικόνες που ακολουθούν:

<u>Τάσεις</u>

Εικόνα 6.2 : Τάσεις 996,6 MPa στην κύρια ζώνη και 797,3 στη δευτερεύσουσα ζώνη παραμόρφωσης.

Εικόνα 6.3 : Η κατανομή των τάσεων σε όλο το τεμάχιο.

Ρυθμός πλαστικής παραμόρφωσης

Εικόνα 6.4: Ρυθμός πλαστικής παραμόρφωσης 139800 ((mm/mm)/sec) στην κύρια ζώνη παραμόρφωσης

<u>Πλαστική παραμόρφωση</u>

_20	_0.4_snear_billnear	+initial_co	na_/un\te	st.mua:	rest Job1410 - [IN	lodel (view 1)]					
		/ /			+ -1 -1						
-	+ 1	11	44	† P	$\Delta \times \lambda$		Analysis Clas	ss Structu	ral		
s	Material Properties	Contact	Toolbox	Links	Initial Conditions	Boundary Conditions	Mesh Adaptivity	Loadcases	Jobs	Results	
y Di Vrite	Animation stance Movies er										
In Ti	c: 14912 me: 3.024e-003							/			
	6.491e+000										
	5.842e+000 5.193e+000										
	4.544e+000										
	3.895e+000										
	3.246e+000						/				
	2.597e+000										
	1.947e+000										
	1.298e+000										
	6.491e-001										

Εικόνα 6.5 : Κατανομή πλαστικής παραμόρφωσης

Όγδοη Προσομοίωση

Μοντέλο Υλικού Johnson-Cook, Stick-Slip με f=0,05, γ=25° m=0,4 , μ=1,05

Στοιχεία προσομοίωσης

M Run J	ob	1.1	12 C	ч	0	C	-	×				
Name	job 1											
Туре	Thermal/Structural											
	User Su	broutine l										
Parallelization No DDM												
				1 Solv	er Proc	ess						
Title		Style	Table-Driv	/en		r	S	ave Model				
	Submit (1))	1	Advand	ed Job	Subn	nissio	n				
	Update		Mon	itor				Kill				
Status						Com	plete	•				
Curren	t Increme	nt (Cyde)			9925	6 (21))				
Singula	rity Ratio					0.00	0380)54				
Conver	gence Ra	atio				0.1204						
Analysi	s Time			0.0040251				51				
Wall Tir	ne					4034	7					
			Tota	al		_						
Cydes		51956		Cut	Backs	0						
Separa	ations	1355		Rem	eshes	240	7					
Exit Nu	mber		5059			Exi	t Me	ssage				
Edit	Outp	ut File	Log File		Statu	s File		Any File				
	Open	Post File	(Results Menu	I)								
R	eset							ОК				

Χρησιμοποιώντας το ίδιο Μοντέλο Υλικού Johnson-Cook, επαναλαμβάνεται η προσομοίωση εφαρμόζοντας το Μοντέλο τριβής Stick-Slip με συντελεστές m=0,4 και μ=1,05 και προκύπτει η παρακάτω προσομοίωση:

Marc Mentat 2011.	1.0 (64bit): d:\marc\v	alidation3\te	estjej0.05j;	25_0.4_stick	_slip\test.n	nud: test_	job1.t16 - [Moc	(View 1)]				-		
The select vev			⊕ ⊝ .		1 +	11	200	t t v v	1 .	Andrea C	teen Chrunte	ral		[=]0
		Carl Carl	- 0-	Maharala	T T .			1 4. X. X.		Mark Lines of	line de la			
Model Plot De	sim Plot	t. Geometry	Tools	Platenal Pl	roperses loimation	Contact	looidox Link	s Initial Conditions	boundary Conditions	Mesh Adaptivit	Loadcases	Joos Resuc	1	
Path Plot Ge History Plot	neralized XY Plot		Geometry Report Wr	Distance M Rer	lovies									
Inc: 247	004					<u>.</u>							/	100 March 100 Ma
														and your a
3.162e+	002													
2.846e4	002												/	
2.529e4	002											/		
2.21364	002											/		
1.097e+	002											1		
1.581e+	200											1		
1.265e+	902					_						/	- 22	
9.48564	001													
6.324e4	001										and the second sec			
3.162e+	001													
0.000+	000													
			_								-			
								External Heat	Flux					
X Enter increm	ent to skip to : "dynament to skip to : "zoom	nic_model_on in												
Enter increm	ent to skip to : "zoom,	out												
B Enter increm	ment to skip to :													
noy		6		TIME			-							0% EN 1048 µµ
🥶 🗐		e			M	4	2							3/10/2013

t=0.0001 sec T_{max}=316,2 °C

Marc Mentat 20	011.1.0 (64bit): d:\ma	c\validation3	test_jc_0.05_	25_0.4_stick	_slip\test.	mud: test_	job1.t16 - [Mode	(View 1)]			1000			10.000	- 0 - X
Pile Select	View Tools Window	Help						1							- 0 >
🖭 📑 🖬 '	n 🖲 🏹 🖬	- C) ICI	000		+ +	11	444	4××		01	Analysis Class Struc	tural			
Geometry & M	lesh Tables & Coord.	Syst. Geome	tric Properties	Material P	roperties	Contact	Toolbox Links	Initial Conditions	Boundary Conditions	s He	esh Adaptivity Loadcase	s Jobs Result	lts		
Model Plot	Design Plot	Sample Points	Tools		Animation								_		
Marc Mentat 20	011.1.0 (64bit): d:/ma	c\validation3	test jc 0.05	25_0.4_stick	slip\test.	mud: test	job1.t16 - [Mode	(View 1))				-		and the second second	
File Select	View Tools Window	Help													- 6 3
🗟 📑 🖬 🕯	n 🖲 🛃 🕻	3 🖉 🛄	÷		+ +	11	+++	***	- H- 6	3-	Analysis Class Struc	tural			
Geometry & M	lesh Tables & Coord.	Syst. Geome	bic Properties	Material P	roperbes	Contact	Toobox Links	Initial Conditions	Boundary Conditions	s Me	esh Adaptivity Loadcase	s Jobs Read	lts		
Model Plot Path Plot History Plot	Design Plot Generalized XY Plot	Sample Points	Tools Geometry Report Wr	Distance M riter	Animation Movies										
Inc: 123 Time: 5.0	3 01e-004												/		MSE Set son
4.65	7e+002														
3.75	57e+002														
3.28	38e+002														
2.34	88e+002														
1.87	79 e+ 002														
1.40	79#+002														
	204 1 002														
#	Net WI														
4.65	77e+001														
0.00	00e+000														
								kase1	her.						
								Envertial Preat P	140						1

t=0.0005 sec T_{max}=469,7 °C
MN	larc Mentat 20	11.1.0 (64bit): d:\ma	irc\validati	on3\test_jc_0.05	_25_0.4_stic	k_slip\test	.mud: test	job1.t16 - [N	(View 1)					-			
M	le Select V	iew Tools Windo	w Help														- 8 ×
-) 🛁 🖬 🖬	ी 🔍 🚝 🗄	8	Q 🔎 🔎	++	+ +	11	$\rightarrow \leftrightarrow$	キキダ	X	- HH - 6	- Analysis (lass Structu	ral			
×	Geometry & Me	sh Tables & Coord	Syst. G	eometric Propertie	s Material	Properties	Contact	Toolbox t	inks Initial Co	ditions E	Soundary Conditions	Mesh Adaptivit	Loadcases	Jobs B	Results		
8	Model Plot	Design Plot	Sample P	oints Tools		Animation											
3	Path Plot	Generalized XY Plot		Geometr	y Distance	Movies	and the second	Internation of the	In the Party sector		_	_	_	_	_	_	
	le Select V	iew Tools Windo	w Help	onsitest_jc_0.05	25_0.4_300	K_sup(test	.mud: test_	1001.110 - [W	iodel (view 1)]	_							
12		n 🐄 🛷 🖬	314			1 +	11	122.42	++0	1		Analysis (terr Structu	اه م			
-	Open			and 0 - 0 -		TI		0.0	P Y Y	1.1	- Utradia			10			
8	Geometry & Me	sh Tables & Coord	Syst. G	eometric Propertie	s Material	Properties	Contact	Toolbox L	inks Initial Cor	iditions t	Soundary Conditions	Mesh Adaptivit	y Loadcases	Jobs 1	Results		
3	Model Plot Path Plot	Design Plot Generalized XY Plot	Sample P	oints Tools Geometr	y Distance	Animation Movies											
an Ne	History Plot			Report	Vriter												
1	tors 2466													7			
	Time: 1.00	0e-003												1			MEG Setwan
1														1			
2	4.616	5e+002												/			
i é i	4.154	e+002											1				
10	3.693	3e+002											1				
	3,231	le+002											/				
													/				
	2.765	/e+002										A					
-	2.300	3e+002			T.												
	1.04	5e+002				_											
-	1.385	5e+002											Contraction of the second				
-4	9.233	e+001											and the second second				
_#	4.61	e+001															
88.4																	
	0.000	36+000															
													-				
									Externa	Heat Flux							

t=0.001 sec T_{max}=461,6 °C

M	arc Mentat 2011.	1.0 (64bit): d:\marc	\validation3	\test_jc_0.05_2	25_0.4_stick_slip	test.mud: test	job1.t16 - [Mode	(View 1)]	-				
M	le Select View	Tools Window	Help										- 8 >
	i 📑 🖬 🛀	۰ 🍠 💽	1 C	,+ ,	← → ∔	+ / /	$\rightarrow \leftrightarrow \diamond$	+××	•••••) 🖛 🛛 Analysis Cla	ss Structural		
×	Geometry & Mesh	Tables & Coord. S	yst. Geome	tric Properties	Material Proper	ties Contact	Toolbox Links	Initial Conditions	Boundary Conditions	Mesh Adaptivity	Loadcases Jo	bs Results	
	Model Plot De	esign Plot	Sample Points	Tools	Anima	tion							
MM	arc Mentat 2011.	1.0 (64bit): d:\marc	validation3	\test_jc_0.05_2	25_0.4_stick_slip	test.mud: test	job1.t16 - [Mode	(View 1)]			-		
M F	le Select View	Tools Window	Help										- 7 >
17		1 💿 🛫 🔂	87 G	+	+ + +	+ / /	++++	+XX		Analysis Cla	ss Structural		
×							I manual lines				10.	a la la	
Merra 9	Model Plot De Path Plot Ge History Plot	esign Plot eneralized XY Plot	Sample Points	Tools Geometry I Report Write	Distance Movie	tion 5	TUNEUX CITES	anda contratoris	bounday contractors	Please Adaptivity	Luducases	Results	
fair													
	Inc: 3699	000									1		
	Time: 1.500e	-003									1		MSG X1dt svere
1		700000									1		
	3.830e4	+002									1		
1.9	3.447e-	+002								./			
	3.064e4	+002								1			
	2.681e-	+002											
1.1.1	2 200-								· · · · · · · · · · · · · · · · · · ·				
	2.29004	1002											
_	1.915e-	+002		1									
-	1.532e-	+002											
	1.14964	+002											
	7.660e+	+001											
_ <u>#</u>	3.830e-	+001									100		
114	0.000ea	4000											
	0.00084												
4	_							casel		1			
								External Heat F	flux				

t=0.0015 sec T_{max}=383,0 °C

Marc Mentat 2011.1.0 (64bit): d:\marc\validation3\te	est_jc_0.05_25_0.4_stick_slip\test.mud: test_job1.t16 - [Model (V	View 1)]	
File Select View Tools Window Help			- 6 ×
💽 📑 🖬 🕥 💿 🍠 🔛 🥲 📖 🤇	╞╞╤┿╲╲╡╡┿┿╤╡	💠 📈 🚿 🐨 🖬 🕶 💮 🕶 Analysis Class Structural	
K Geometry & Mesh Tables & Coord. Syst. Geometri	ic Properties Material Properties Contact Toolbox Links In	Initial Conditions Boundary Conditions Mesh Adaptivity Loadcases	lobs Results
Model Plot Design Plot Sample Points	Tools Animation		
Marc Mentat 2011.1.0 (64bit): d:\marc\validation3\te	est_jc_0.05_25_0.4_stick_slip\test.mud: test_job1.t16 - [Model (V	View 1)]	
File Select View Tools Window Help			_ 6 ×
🕒 📑 🖬 🌑 🏐 🌌 🚱 📖 🧷	≠₽┿┽┼╱╱╤╤╡	💠 🔀 🚿 🖤 🕶 🖽 🗸 💮 👻 Analysis Class Structural	
Geometry & Mesh Tables & Regenerate Geometri	c Properties Material Properties Contact Toolbox Links IP	Initial Conditions Boundary Conditions Mesh Adaptivity Loadcases	Jobs Results
Path Plot Design Plot Sample Points	Tools Animation Geometry Distance Movies		
E History Plot	Report Writer		
2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Time: 2.000e-003			MSGXtatwan
		1	
5.458e+002			
4.912e+002			
4.366e+002			
3.821e+002			
3.275e+002			
2.729e+002			
2.183e+002			
1.637e+002			
1.0926+002			
# 5.458e+001		and the second	
114			
		case1	_
		External Heat Flux	
2.159+4002 2.159+4002 1.537+602 1.537+602 5.459+6001 0.000+600		Kasel External Hear Flax	

t=0.0020 sec T_{max}=545,8 °C

м	Mar	c Menta	at 2011.	1.0 (64bi	t): d:\marc)	valida	tion3\tes	t_jc_0.05_2	25_0.4_sti	ck_slip\test.	mud: test_	job1.t16 - [Mo	del (View 1)]							- (C) - X-
м	File	Selec	t View	Tools	Window	Help														- 6 ×
	÷	1	10		2	3	EI &	+ 🗩 -	+ +	+ +	11	+ + + + + + + + + + + + + + + + + + +	\$ \$ × × ×	(👼 - 🖽 - 6	Analysis C	ass Structural				
×	G	eometry	& Mesh	Tables	& Coord. Sy	/st. 0	Geometric	Properties	Materia	Properties	Contact	Toolbox Lin	ks Initial Condition	s Boundary Conditions	Mesh Adaptivity	Loadcases 1	lobs Results			
~	10	Aodel Pla	ot De	sign Plot	10	Sample	Points	Tools		Animation										
E M	Mar	ath Plot Menta	Ge at 2011.	neralized	XY Plot t): d:\marc)	valida	tion3\tes	Geometry at ic 0.05 2	Distance 25 0.4 sti	Movies ck slip\test.	mud: test	iob1.t16 - Mo	del (View 1)]			-	_		100	X
M	File	Selec	t View	Tools	Window	Help		1.3020.0003.	2014_00	es Coulo (cent	indui terre	Jobritro fine	der (rich a)		_	-	-	_		- 5 ×
1	÷	1	10	1	1	3	GI &	+ 🗩 -	+ +	+ +	11	+ + + + + + + + + + + + + + + + + + +	++×2		Analysis C	ass Structural				
×	6	eometry	& Mesh	Tables	& Coord, Sy	est. (Geometric	Properties	Materia	Properties	Contact	Toolbox Lin	ks Initial Condition	s Boundary Conditions	Mesh Adaptivity	Inadcases	obs Results			
8	T	fodel Pk	ot De	sign Plot	10	Sample	Points	Tools	1-norest no	Animation	corrupct	TOOLOGX LIT		s - boarous y concerna	i near Hauponry	Looocases				
Menu	1	ath Plot listory P	Ge	neralized	XY Plot			Geometry Report Wr	Distance	Movies										
Main																				
	110	Inc: Time:	6165 2,500e-	003											1					MAR Statut
	1	_													1					
			4.435e+	002											/					
	1		3.991e+	002										/						
9	23		2 540-1	002																
9	1		3.54004	002																
			3.1046+	002																
			2.661e+	002																
-			2.217e+	002																
	2		1.774e+	002																
=			1.330e+	002																
	1		8.870e+	001																
+	£		4.435e+	001																
-			0.000e+	000																
	1																			
								-					lcase1				-			
													External Heat	Flux						

t=0.0025 sec T_{max}=443,5 °C

MIN	Aarc Mentat 2011.1.0 (64bit): d/marc/validation3/itest.jc.0.05.25.0.4. stick_slip/test.mud: test.job1.116 - [Model (View 1)]	
M	The Select View Tools Window Help	_ 6 ×
-	🚰 🖬 🌑 🤓 🖉 🕎 💭 💭 🛶 🔶 🕴 🖌 🖌 🔶 💠 🂠 💠 🌾 🖉 🖉 👘 👘 🖓 - Analysis Class Structural	
×	Geometry & Mesh Tables & Coord. Syst. Geometric Properties Material Properties Contact Toolbox Links Initial Conditions Boundary Conditions Mesh Adaptivity Loadcases 30bs Results	
8	Model Plot Design Plot Sample Points Tools Animation	
2	Path Plot: Generalized XY Plot. Book Statistics Movies Movies and Comparison Statistics (solid Statistics and Comparison Statistics). Second Statistics (solid Statistics) and Statistics) and Statistics (solid Statistics). Second Statistics (solid Statistics) and Statistics). Second Statistics (solid Statistics). Second Statistics) and Statistics (solid Statistics). Second Statistics). Second Statistics (solid Statistics). Second Statistics). Second Statistics (solid Statistics). Second Statistic	
MF	ile Selet Vew Tools Window Help	_ 8 ×
×		
8	Uconstry a resi Jaoles a Loord, syst, uconstric Properties material Properties Contact Tostico Links unitial Longitions doublesry Longitions meter Adaptivity Losdcates Jobs Results	
nuq	Poco Europe Carroline XY Plot Generate XY Plot Generate White Movies	
-	Table 3 Service Se	
	Inci 7398	
	Time: 3.000e-003	MS0×107-water
×.	3.0548+002	
DOM:	3.469e+002	
1.90	3.003e+002	
	2.698e+002	
	2.313e+002	
	1.9278+002	
	1.542e+002	
#	7,709e+001	
	3.854e+001	
	0.000+000	
14		
	käsel	
	External Heat Flux	

t=0.0030 sec T_{max}=385,4 °C

t=0.0035 sec T_{max}=494,8 °C

t=0.0040 sec T_{max}=413,3 °C

Από τα προηγούμενα στιγμιότυπα προκύπτει ότι η μέγιστη θερμοκρασία που αναπτύσσεται κατά την προσομοίωση της παραπάνω κοπής είναι της τάξης των T_{max} =545 °C

Δυνάμεις κοπής

Από τον υπολογισμό των κοπτικών δυνάμεων κατά τον άξονα των x προέκυψε το παρακάτω διάγραμμα:

Από τους υπολογισμούς των δυνάμεων προέκυψε ότι κατά τη μόνιμη κατάσταση η μέση τιμή των δυνάμεων κοπής κατά τον άξονα των x είναι **74**N. Η τιμή αυτή φαίνεται και από τη κατανομή των δυνάμεων στο διάγραμμα μας.

Αντίστοιχα υπολογίστηκαν μέσω του Marc και οι δυνάμεις κοπής κατά τον άξονα των y και προέκυψε το παρακάτω διάγραμμα:

Η μέση τιμή των δυνάμεων κατά τον άξονα των x προκύπτει -7Ν.

Γεωμετρία του αποβλήτου

Μετρώντας τα γεωμετρικά χαρακτηριστικά του παραχθέντος αποβλήτου δημιουργήθηκε ο παρακάτω πίνακας:

γ(°)	f (mm)	t _c (mm)	L _c (mm)	φ(°)
25°	0,05	0.1010	0,0636	30,35

Πίνακας 6.3

Μηχανικές και θερμικές παράμετροι

<u>Τάσεις</u>

Εικόνα 6.6: Τάσεις με μέγιστη τιμή τα 940 MPa στη κύρια και 752 MPa στη δευτερεύουσα ζώνη παραμόρφωσης.

Εικόνα 6.7 : Κατανομή των τάσεων στο δοκίμιο

Ρυθμός πλαστικής παραμόρφωσης

ilts 🔻 🗙 🕅	Time: 4.027e-003
d Shape	
bit): d:\marc\validation3\	test.jc_005_25_0.4_stick_slip\test.mud: test.job1.t16 - [Model (View 1)]
s Window Help	
. 🗶 🔂 💭 🛒	→ → → ↓ ↑ × × → → → ↑ × × × × → → + + + × × × Analysis Class Structural
s & Coord. Syst. Geome	ric Properties Material Properties Contact Toolbox Links Initial Conditions Boundary Conditions Mesh Adaptivity Loadcases Jobs Results
t Sample Points d XY Plot	Tools Animation Geometry Distance Movies
	Report Writer
	Inc: 7456
Settings	
I Only	
Plot	8.597e+004
Settings	7.635e+004
lands 🔹	6.674e+004
Plastic Strain Rate	5.7130+004
Plot	
Settings	4./52e+U04
nt	
r Plot	
Settings	
•	
1	

Εικόνα 6.8: Ρυθμός πλαστικής παραμόρφωσης 95580 ((mm/mm)/sec) στην κύρια ζώνη παραμόρφωσης

Πλαστικη παραμόρφωση

Tools Geom Repo	Animation hetry Distance Movies rt Writer	
	Inc: 7456 Time: 3.024e-003 7.160e+000 6.444e+000 5.728e+000 5.012e+000 4.296e+000 3.580e+000	
# 1	2.864e+000 2.148e+000 1.432e+000 7.160e-001	

Εικόνα 6.9: Κατανομή Πλαστικής παραμόρφωσης στο δοκίμιο

Σύγκριση πρώτης με την έβδομη προσομοίωση

Συγκρίνοντας την πρώτη με την έβδομη προσομοίωση προέκυψαν τα παρακάτω διαγράμματα:

Σύγκριση έβδομης με όγδοη προσομοίωση

Ανακεφαλαίωση-Σχολιασμός

Στο παραπάνω κεφάλαιο μελετήθηκε η Μοντελοποίηση του Υλικού. Για το σκοπό αυτό χρησιμοποιήθηκε το μοντέλο υλικού των Johnson-Cook. Εισήχθησαν στο πρόγραμμα μας οι τιμές της καταστατικής εξίσωσης του Μοντέλου υλικού των Johnson-Cook και διεξήχθησαν δύο προσομοιώσεις. Στην έβδομη συνολικά του μοντέλου, χρησιμοποιληθηκε το μοντέλο τριβής Shear και διατηρήθηκαν σταθερές οι συνθήκες και ίδιες με την πρώτη προσομοίωση. Τρέξαμε δηλαδή την προσομοίωση αλλάζοντας μόνο το μοντέλο του υλικού. Από τη σύγκριση των δύο αυτών προσομοιώσεων παρατηρήθηκε ότι το μοντέλο υλικού των Johnson-Cook εμφανίζει χαμηλότερες θερμοκρασίες σε σχέση με το μοντέλο Υλικού του Oxley που είναι το βασικό μοντέλο υλικού που χρησιμοποιεί η βιβλιοθήκη του MSC.MARC. Οι τιμές των δυνάμεων κοπής προσεγγίζουν καλύτερα τις πειραματικές, όπως επίσης και οι τιμές της γωνίας διάτμησης. Όμοια οι τιμές των δυνάμεων άπωσης παρουσιάζουν σημαντικά σφάλματα. Αντίστοιχα παρατηρούνται καλύτερες τιμές ως προς το μήκος επαφής αλλά και πάλι με σημαντικά σφάλματα από τα πειραματικά αποτελέσματα. Ακόμα με τη χρήση του Μοντέλου υλικού των Johnson-Cook παρατηρούνται μεγαλύτερες τιμές τάσεων,μεγαλύτεροι ρυθμοί πλαστικής παραμόρφωσης και λίγο μικρότερες τιμές πλαστικής παραμόρφωσης σε σχέση με το βασικό μοντέλο υλικού.

Στη συνέχεια διεξήχθει η όγδοη και τελική προσομοίωση της εργασίας.Στην προσομοίωση αυτή χρησιμοποιήθηκε το Μοντέλο υλικού των Johnson-Cook και τον τύπο τριβής του Stick Slip με συντελεστές m=0,4, μ=1,05. Από τη σύγκριση των δύο προσομοιώσεων παρατηρήθηκε ότι στην όγδοη προσομοίωση με τον τύπο τριβής Stick-Slip εμφανίζονται αυξημένες θερμοκρασίες. Ακόμα η προσομοίωση με τον τύπο τριβής Shear εμφανίζει καλύτερα αποτελέσματα δυνάμεων κοπής, αλλά υπολογίζει χειρότερα τη γωνία διάτμησης. Επίσης, η όγδοη προσομοίωση εμφανίζει καλύτερα αποτελέσματα ως προς το μήκος επαφής, αλλά και πάλι απέχουν και οι δύο σημαντικά από τις πειραματικές τιμές. Επιπλέον οι δύο αυτές προσομοιώσεις εμφανίζονται μεγαλύτερες τιμές ρυθμού πλαστικής παραμόρφωσης και μικρότερες τιμές για τη πλαστική παραμόρφωση.

ΚΕΦΑΛΑΙΟ ΌΓΔΟΟ

Ανακεφαλαίωση

8.1 Ανακεφαλαίωση και συμπεράσματα

Η παρούσα διπλωματική εργασία πραγματεύτηκε ένα σύγχρονο θέμα όπως είναι ο τομέας της Μικρομηχανικής.Η ζήτηση στις μέρες μας είναι ολοένα αυξανόμενη για μικροεξαρτήματα της τάξης των μm.Το ενδιαφέρον των ερευνητών έχει στραφεί στη μελέτη και την επίδραση που έχουν διάφοροι παράμετροι όπως είναι οι δυνάμεις κοπής,η κατανομή των τάσεων κτλ.Για να διεξαχθεί μια τέτοια μελέτη απαιτείται η κατασκευή μοντέλων και η διεξαγωγή προσομοιώσεων.Στόχος της παρούσας διπλωματικής εργασίας ήταν η κατασκευή ενός μοντέλου μικροκοπής και η εξέταση της επίδρασης διαφόρων θεωριών για την μοντελοποίηση της τριβής και της καταστατικής εξίσωσης του τεμαχίου.

Κατά την εκπόνηση της διπλωματικής εργασίας κατασκευάστηκε με τη μέθοδο των Πεπερασμένων Στοιχείων και με τη χρήση του υπολογιστικού πακέτου MSC.Marc που διέθετε προς χρήση το εργαστήριο του Τομέα Τεχνολογίας των Κατεργασιών, ένα θερμομηχανικό μοντέλο μικροκοπής. Στο πρώτο μέρος της διπλωματικής εργασίας διεξήχθησαν με το παραπάνω μοντέλο δύο προσομοιώσεις με δύο διαφορετικές τιμές πρόωσης. Τα αποτελέσματα συγκρίθηκαν με τις αντίστοιχες τιμές των πειραματικών αποτελεσμάτων, καθώς επίσης και με τις τιμές των αποτελεσμάτων των προσομοιώσεων της εργασίας του Halil Bil [10].

Στη συνέχεια μελετήθηκε η μοντελοποίηση της τριβής. Στο μοντέλο που παρουσιάστηκε στο πρώτο μέρος εφαρμόστηκαν δυο μοντέλα τριβής τα οποία και χρησιμοποιούνται στις κοπές και προτιμούνται ολοένα και περισσότερο από τους ερευνητές. Το μοντέλο τριβής του Coulomb και το μοντέλο τριβής Stick Slip του Zorev. Τα αποτελέσματα των προσομοιώσεων αυτών συγκρίθηκαν μεταξύ τους σχετικά με τα δύο μοντέλα τριβής. Ακόμα για το μοντέλο τριβής Stick-Slip μελετήθηκε η επίδραση της τιμής του συντελεστή τριβής.

Στο τελευταίο μέρος της παρούσας διπλωματικής μελετήθηκε η μοντελοποίηση του υλικού του τεμαχίου. Διεξήχθησαν δύο προσομοιώσεις χρησιμοποιώντας το Μοντέλο υλικού των Johnson-Cook για δύο διαφορετικούς τύπους τριβής.

Από τη σύγκριση των παραπάνω μοντέλων προέκυψε το επικρατέστερο, το οποίο ήταν και το πιο πετυχημένο. Αυτό είναι το μοντέλο της έβδομης προσομοίωσης που χρησιμοποιεί το μοντέλο υλικού των Johnson-Cook και τύπο τριβής Shear.

Από τη μελέτη των αποτελεσμάτων των παραπάνω προσομοιώσεων προέκυψε ότι η επιλογή του μοντέλου τριβής καθώς επίσης και των συντελεστών τριβής, έχουν μεγάλη επίδραση στα αποτελέσματα των τιμών των δυνάμεων κοπής F_x , των δυνάμεων άπωσης, στη μορφή του αποβλήτου καθώς επίσης και των θερμικών ροών.

Στο μοντέλο τριβής του Coulomb υπερεκτιμούνται οι δυνάμεις κοπής αλλά υπολογίζονται καλύτερα οι γωνίες διάτμησης. Στο μοντέλο τριβής Shear και στο μοντέλο τριβής Stick-Slip υπολογίζονται καλύτερά οι δυνάμεις αλλά υπερεκτιμούν τη τιμή της γωνίας διάτμησης. Όλα τα παραπάνω μοντέλα τριβής αποτυγχάνουν να υπολογίσουν ορθά τις τιμές των δυνάμεων άπωσης και υποτιμούν τις τιμές του μήκους επαφής.

Από τη μελέτη του συντελεστή τριβής παρατηρήθηκε ότι αυξανομένου του συντελεστή τριβής αυξάνονται οι δυνάμεις κοπής, μειώνεται η γωνία διάτμησης, μειώνεται καμπυλότητα της μορφής του αποβλήτου αυξάνεται το μήκος επαφής και το πάχος αποβλήτου. Ακόμα οι τιμές των δυνάμεων άπωσης F_y υπολογίζονται καλύτερα για συντελεστές τριβής μεγαλύτερους του 0,6 όπου εμφανίζουν θετικές τιμές.

Ακόμα από τη μελέτη της Μοντελοποίησης του Υλικού παρατηρήθηκε ότι στο μοντέλο Υλικού των Johnson-Cook σε σχέση με το μοντέλο υλικού του Oxley εμφανίζονται χαμηλότερες θερμοκρασίες, μικρότερες τιμές δυνάμεων κοπής, μικρότερες τιμές πλαστικής παραμόρφωσης μεγαλύτερες τιμές τάσεων, μεγαλύτερες τιμές ρυθμού πλαστικής παραμόρφωσης και παραπλήσιες τιμές μήκους επαφής και πάχους αποβλήτου.

8.2 Προτάσεις για μελλοντική εργασία

Λαμβάνοντας υπόψη τα παραπάνω συμπεράσματα προκύπτει η σημαντικότητα της επίδρασης του μοντέλου τριβής, της τιμής του συντελεστή τριβής και του μοντέλου του υλικού στην έκβαση των αποτελεσμάτων μια προσομοίωσης μικροκοπής. Συνεπώς θα πρότεινα ως αντικείμενο για περεταίρω διερεύνηση τη μελέτη του μοντέλου υπό άλλο υπολογιστικό πρόγραμμα που να υποστηρίζει περισσότερους τύπους τριβής και περισσότερα μοντέλα υλικού. Ακόμα θα πρότεινα τη διερεύνηση του μοντέλου τριβής Stick-Slip και τη βελτιστοποίηση της εύρεσης του κατάλληλου μήκους της κάθε περιοχής. Ακόμα θα πρότεινα την βελτίωση του ήδη υπάρχοντος μοντέλου και τη κατασκευή τρισδιάστατου μοντέλου έτσι ώστε να έχουμε μια ακόμη καλύτερη απεικόνιση της κατεργασίας της μικροκοπής.

ΒΙΒΛΙΟΓΡΑΦΙΑ

[1] Mamalis AG, Markopoulos A and Manolakos DE (2005) Micro and nanoprocessing tech-niques and applications. Nanotechnology Perceptions, 1: 31-52

[2] Grzesik W (2008) Advanced machining processes of metallic materials. Theory, modelling and applications. Elsevier, Oxford

[3] Masuzawa T (2000) State of the art of micromachining. Annals of the CIRP, 49 (2): 473-488

[4] Byrne G, Dornfeld D and Denkena B (2002) Advancing cutting technology. Annals of the CIRP, 52(2): 483-507

[5] Σημειώσεις του μαθήματος "Μικρο-Νανοκατεργασίες", Άγγελος Μαρκόπουλος, Αθήνα 2005

[6] Grzesik W (2008) Advanced machining processes of metallic materials. Theory modellingand applications. Elsevier, Oxford

[7] van Luttervelt CA, Childs THC, Jawahir IS, Klocke F, Venuvinod PK (1998) Present situation and future trends in modeling of machining operations. In: Progress report of the CIRP working group "modeling and machining operations". Annals of the CIRP, vol 47/2,

[8] Stephenson DA, Agapiou JS (2006) Metal cutting theory and practice, 2nd edn. CRC Press, FL

[9] Markopoulos A.P. (2012) Finite Element Method in Machining Processes. Springer, London, UK

[10] H. Bil, Simulation of Orthogonal Metal Cutting by Finite Element Analysis, M.Sc. Thesis, Department of Mechanical Engineering, Middle East Technical University, Ankara, Turkey (2003)

[11] Kilicaslan Cenk "Modelling and Simulation of Metal Cutting by FEM" MSc. Thesis,2009,Izmir Instite of Technology,Austria

[12] Harewood FJ and McHugh PE (2007) Comparison of the Implicit and Explicit Finite Element Methods using Crystal Plasticity. Computational Materials Science, 39: 481–494

[13] Shih AJ (1996) Finite Element Analysis of Rake Angle Effects in Orthogonal Metal Cutting. International Journal of Mechanical Sciences, 38: 1-17

[14] Αγγέλου Μαρκοπούλου, "Κατεργασίες Αποβολής Υλικού Λίαν Υψηλής Ακριβείας", Διδακτορική Διατριβή, Αθήνα 2006

[15] W. Grzesik, M. Bartoszuk, P. Nieslony, "Finite element modeling of temperature distribution in the cutting zone in turning processes with differently coated tools", Journal of Manufacturing Processes, Elsevier, 2005

[16] T. D. Marusich, Jeffrey D. Thiele, Christopher J. Brand, "Simulation and Analysis of Chip Breakage in Turning Processes", Journal at Third Wave Systems, 2001

[17] Özel T (2006) The Influence of Friction Models on Finite Element Simulations of Machining. International Journal of Machine Tools and Manufacture, 46

[18] Petrarius, V., Amorande, D. and Alaci, S. 2008. Study about Finite Element Analysis of High Speed Drilling. *Fascile of Management and Technological Engineering* 11

[19] Ambati, R. 2008. Simulation and Analysis of Orthogonal Cutting and Drilling Processesusing LS-DYNA. *Msc. Thesis*. University of Stuttgart

[20] http://www.mscsoftware.com/product/marc

[21] Σημειώσεις του μαθήματος «Κατεργασίες ΙΙ» του καθηγητή ΕΜΠ Δ. Μανωλάκου

[22] Σημειώσεις του μαθήματος «Εισαγωγή στη μηχανουργική Τεχνολογία» του καθηγητή ΕΜΠ Γ. Βοσνιάκου

[23] Λαζάρου Ε. Λαζαρίδη, "Μηχανουργική Τεχνολογία", Ίδρυμα Ευγενίδου, 1997

[24] Πέτρου Γ. Πετροπούλου, "Μηχανουργική Τεχνολογία", Ίδρυμα Ευγενίδου, 1998

[25] <u>http://www.productionmachining.com/articles/anatomy-of-free-machining-</u> steel

[26] Γεωργία Μανταλιά, "Μελέτη των δυνάμεων κοπής στις κατεργασίες υψηλών ταχυτήτων", Διπλωματική εργασία, Αθήνα 2009

[27] Ernst H and Merchant ME (1941) Chip Formation, Friction and High Quality Machined Sur-faces. Surface Treatment of Metals. American Society of Metals, 29: 299-378

[28] Xiaozhou Li, Huadong Yu and Jinkai Xu,2009, "Model of Micro-cutting and Analysis of Micro Cutting Force", Proceedings of the2009 IEEE International Conference on Mechatronics and Automation, August 9 - 12, Changchun, China

[29] Kai Liu, 2005, "Process modeling of micro-cutting including strain gradient effects", Georgia Institute of Technology

[30] E.J.A. Armarego and R.H. Brown, 1962, "On the size effect in metal cutting", *International Journal of Production Research.*, 1, n3, pp. 75-99

[31] Finnie I (1963) A comparison of stress strain behavior in cutting with that in other materials tests. International Research in Production Engineering, ASME: 76–82

[32] Ikawa N, Shimada S, Tanaka H and Ohmori G (1991) Atomistic Analysis of Nanometric Chip Removal as Affected by Tool-Work Interaction in Diamond Turning. Annals of the CIRP 40(1): 551–554

[33] Weule H, Huntrup V and Tritschle H (2001) Micro-Cutting of Steel to Meet New Require-ments in Miniaturization. Annals of the CIRP, 50(1): 61–64

[34] Kim CJ, Bono M and Ni J (2002) Experimental Analysis of Chip Formation in Micro-Milling. Transactions NAMRI/SME, 30: 1–8

[35] Kim JD and Kim DS (1995) Theoretical analysis of micro-cutting characteristics in ultra-precision machining. Journal of Materials Processing Technology 49

[36] Malekian M, Mostofa MG, Park SS and Jun MBG (2012) Modeling of minimum uncut chip thickness in micro machining of aluminum. Journal of Materials Processing Technology, 212

[37] Atkins AG (2003) Modeling metal cutting using modern ductile fracture mechanics: quantita-tive explanations for some longstanding problems. International Journal of Mechanical Sci-ences, 45

[38] Kapakjian, S. and Schmid, S.R. 2006. *Manufactruing Engineering and Technologhy*. New Jersey: Prentice-Hall

[39] DeGarmo, E.P., Black, J.T. and Kosher, R.A. 1997. *Materials and Processes inManufacturing* New Jersey: Prentice-Hall

[40] Zorev, N.N. 1963. Inter-relationship between Shear Processes Occurring along the Tool Face and Shear Plane in Metal Cutting. *International Research in Production Enginerring ASME* 42-49

[41] Shatla, M., Kerk, C. and Altan, T. 2001. Process Modelling in Machining. Part II:Validation and Applications of the Determined Flow Stress Data.*International Journal of Tools and Manufacturing* 41: 1659-1680

[42] Usui E and Shirakashi T (1982) Mechanics of Machining – from "Descriptive" to "Predic-tive" Theory". In: Kops L and Ramalingam S (eds.) On the Art of Cutting Metals – 75 Years Later: a Tribute to F.W. Taylor, Proceedings of the Winter Annual Meeting of the ASME PED, 7: 13-35

[43] Oxley PLB (1989) The Mechanics of Machining: An Analytical Approach to Assessing Ma-chinability. Ellis Horwood, Chichester, UK

[44] Zerilli, F.J. and Armstrong, R.W. 1987. Dislocation Mechanics Based Constitutive Relations for Materials Dynamics Calculations. *Journal of Applied Physics* 5:61.

[45] Johnson, G.R. and Cook, W.H. 1993. A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain-rates and High Temperatures. *Seventh International Symposium on Ballistics* 7: 541-547.

[46] Jaspers SPFC and Dautzenberg JH (2002) Material Behaviour in Metal Cutting: Strains, Strain Rates and Temperatures in Chip Formation. Journal of Material Processing Technol-ogy, 121: 123-135

[47] Astakhov VP and Outeiro JC (2008) Metal Cutting Mechanics, Finite Element Modelling. In: Davim, JP (Ed.), Machining: Fundamentals and Recent Advances, Springer-Verlag Limited UK

[48] Usui E, Maekawa K and Shirakashi T (1981) Simulation Analysis of Built-up Edge Forma-tion in Machining Low Carbon Steels. Bulletin, Japanese Society of Precision Engineering, 15: 237-242

[49] Maekawa K, Shirakashi T and Usui E (1983) Flow Stress of Low Carbon Steel at High Tem-perature and Strain Rate (Part 2). Bulletin, Japanese Society of Precision Engineering, 17(3): 167-172

[50] Umbrello D, M'Saoubi R and Outeiro JC (2007) The Influence of Johnson-Cook Material Constants on Finite Element Simulation of Machining of AISI 316L Steel. International Journal of Machine Tools and Manufacture, 47: 462-470

[51] Strenkowski JS, Carrol JT III (1986) Finite element models of orthogonal cutting with application to single point diamond turning. Int J Mech Sci 30:899–920

[52] Kishawy HA, Rogers RJ, Balihodzic N (2002) A numerical investigation of the chip-tool interface in orthogonal machining. Mach Sci Technol 6:397–414

[53] Klocke F, Raedt H-W, Hoppe S (2001) 2D-FEM simulation of the orthogonal high speed cutting process. Mach Sci Technol 5:323–340

[54] Madhavan V, Adibi-Sedeh AH (2005) Understanding of finite element analysis results under the framework of oxley's machining model. Mach Sci Technol 9:345–36

[55] Steven Ning (2009) Reinventing the Automobile: Designing a Lighter Class of Road Vehicle, Harvey Mudd College

[56] Ng, E.-G., EI-Wardany, T., Dumitrescu, M., and Elbestawi, M. A., Proc. 5 CIRP International Workshop on Modeling of Machining Operations, West Lafayette, IN, USA, May 20-21, 2002, pp. 1-19.

th