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Iepiinyn

Mio omd T1c Pacikdtepeg epYOCies TMV KIVOLUEVOV pOUTTOT Eival 1) AOKTNOT LOVTEA®V
tov mepIarrovtoc. Ta tedevtaio ypdvia n Epevva £xel emikevtpwbel oto TPOPANUA TNG
TOVTOYPOVNG XOPTOYPAPNONG Kot ektipmong 0éong yw to poumdt (Simultaneous
localization and mapping - SLAM) kot edwkd oto 3D SLAM. H onupavtikdtepn
vroepyacioc Tov SLAM egivarl 1 dadikacio Tavtonoinong S1adoyikdv GopOcEDY TOL
Y®POL OV AopPAvel TO pouroT (Sscan registration), TOV AGYOAEITOL LE TOV TPOGOIOPIGLO
g Kivnong tov poumot peta&h b0 KOV MYE®V dES0UEVMDVY, BAGEL TOV GYNUOTOC
EMKAAVTTOUEVOV TUNUATOV TOV Gopdcewv. Mia axpipng ektipnomn g otdong (pose,
0éong kol TPOCOVOTOAIGHOD) TOV POUTOT EVIGYVEL E€MIONG TNV  OLTOVOUiO. TOV
EMTPENOVTAG TOL va mhonyndel oty emBount 0éon-61d)0 610 YbpTN. EYouv mpotadet
duapopeg mpooeyyioelg yio emilvon mpoPfAnudtov SLAM oe dyvoota mepipdiiovia.
Qo61060, Ol TEPIGGOTEPEG OAMO OQVTEG YPNOLUOTOLOVV TOVTOTOINGTN COUPOCGEDV TOV
Baciletatl o 3D onpeio Kot 0d0UETPIKEG LETPNOEIS MG OPYIKN LITOOEOT KabIoTOVTOG TEG
un amodotikéc o€ BEpato LTOAOYIGTIKOD YPOVOL Kol KOTOVOAMONG LVAUNG KOl Un
AmOGTACELS, E0IKA o€ Eva TpayD mepPdAiov. e avth TV gpyacia, Oa emkevipmBolpe
oV aKp1P1] Kot amodotikn e€aymyn EMITES®V TUNUATOV amd TPOLEcTaTO VEPT onueinv
(3D point clouds) kot otV ektipnon ¢ OTAONG TOV POUTOT pE PACT TEYVIKES
TAVTOTOINONG EMTEOMV, APOV O PIKPOTEPOS apBUOg emmédwv odnyel o€ peyohdTepn
arodotikotnTa. [Ipog amopuyn tov 0dopeTpIKod GPAAUATOG, dev Ba ypnoipomonbodv
TANPOQOPiEG OOOUETPIKMOV UETPGE®V. AVTL OLTOV, ONUIOVPYOVUE OVTIGTOLYNGELS
HETOED  emMEOV  SOOYIKAOV  copdoewv. [ivovrolr ovykekpuéveg vmobioelg
afePordnrag yw T O©TAGN TOL POUTOT, TWOL ToPAyovv pio afefordnTo oTO
YOPUKTNPIOTIKA TOV EMITEd®VY, N omoio poviehomoteiton ¢ pio kotavoun Gauss. Xt
oLVEKEL, TO TPOPANUO TNG TOVLTOTOINONG OWIHOPPAOVETOL O WHiot ETOVOANTTIKN
BeAtioTtomoinom oTIg AVTIGTOYNOELS TOV EMITEI®V o€ KAOE PrpaL.

AéEaig Kheona

Avtovopa kvntd poundt, Popmotiky, Tavtdypovn yaptoypdenon kot ektipnon 0éong,
Tavtoroinon capocewv, Tavtonoinon emnédwv, Tpotdotata enineda, ARefardtnTeg
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Abstract

Acquiring models of the environment belongs to the fundamental tasks of mobile robots.
In the last few years several researchers have focused on the problem of 3D
simultaneous localization and mapping (SLAM). The most important SLAM subtask is
the scan registration procedure, which deals with the deduction of the movement of the
robot between consecutive scans, based on the shape of overlapping portions of the
scans. An accurate pose estimate also enhances the autonomy of the robot by allowing it
to navigate to the desired goal position in the map. Different approaches for SLAM of
unknown environments have been proposed. However, most of them utilize point-based
scan registration using also odometry information as initial guess, which can be
inefficient in terms of time and memory and inaccurate, since the odometry
measurements deviate extensively, even over short distances, especially in rough
environments. In this thesis, we will focus on the accurate and efficient extraction of
planar segments from 3D point clouds and on pose estimation based on plane
registration techniques, since the smaller number of planes leads to greater efficiency. In
order to avoid the error of odometry information, no odometry is used in this work.
Instead, we establish correspondences of planes between consecutive scans. Certain
uncertainty assumptions about the pose of the robot are made, which produce an
uncertainty in the planar attributes that is modeled as a Gaussian distribution. The
registration problem is then formulated as an optimization problem, which iteratively
refines the planar correspondences at each optimization step.

Key Words

Autonomous mobile robots, Robotics, Simultaneous localization and mapping — SLAM,
Scan registration, Plane registration, 3D planar segments, Uncertainties.
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Introduction

The advance of technology the recent years, especially in computer science and in the
field of robotics, has increased the capabilities of robot navigation and mapping and the
motivation for it. Several approaches to the 2D SLAM problem have been proposed the
last decade and even more researchers extend their work to 3D SLAM. Navigation in
unknown 3D environments demands accurate estimation of the robot’s pose and
mapping of the surrounding area, things that cannot be achieved by the sole use of
odometry. Most algorithms that have been suggested so far consider the use of 3D
points. The most common among them are the Iterative closest point (ICP) and the 3D
Normal distribution transform (NDT) algorithms, introduced in [1] and [2], respectively.
However, due to the fact that these algorithms adopt pointwise techniques, the
computation time and memory complexity can be very high, as the number of points
received from the recently developed sensors is usually significantly large. For this
reason, an extension to 3D Plane SLAM is necessary. The number of planar segments
that are extracted from point clouds is comparatively smaller than the amount of points,
since they are formulated by groups of the latter, and that makes the use of plane-based
algorithms much more efficient in terms of time and memory. In addition, planar
segments provide a more intuitive representation of the environment. Moreover, the
exploitation of odometry measurements for the 3D SLAM problem is presented in
several algorithms, in order to register pairwise scans; that is, align consecutive scans
over time, either of points or of planar segments. In [3] and [4] a lightweight orthogonal
3D SLAM algorithm is presented. However, their work does not apply for many
environments, focusing mostly on indoor ones. In [5] a plane-based solution is
suggested, using also unknown correspondences, i.e. similar attributes between planes of
consecutive scans. In it, the plane parameters uncertainty is also taken into account. A
very comprehensive discussion on finding correspondences between two sets of planar
or quadratic patches using attribute-graphs is found in [6]. In [7] an approach is
considered utilizing correspondences without the use of odometry as an initial guess.

The accurate plane extraction can be considered as the core of the 3D Plane SLAM idea,
since it has a great impact on the result. This procedure has an increased level of
difficulty both in indoor and outdoor environments. Especially in the latter case, the
plane parameters estimation, such as the normal vector and the offset, is very
challenging, as the point clouds received by several types of sensors are noisy and the
structure of the environment can be of high complexity (e.g. complex objects such as
trees are contained). Several approaches for plane fitting algorithms have been proposed
in [8], [9] and [10].

The main goal of this topic is the extension of the 3D NDT algorithm utilizing
correspondences of planar segments without the use of odometry as an initial guess to
perform scan registration. The pipeline of Fig. 1.1 summarizes the above procedure.



Although the plane extraction step is not the main goal of the thesis, it is crucial for the
accuracy of the scan registration procedure. For that reason, a new algorithm is
introduced. The rest of the topic is organized as follows:

Chapter 2 mainly focuses on a brief presentation of several plane extraction algorithms.
Furthermore, the basic idea of a new algorithm is featured and experimentally evaluated
in real world data sets.

Chapter 3 presents the most common point-based 3D registration algorithms and
attempts a comparison of them. In addition, the concept of 3D plane registration is
analysed and the extension of the 3D NDT algorithm considering the use of planes and
correspondences without any odometry information is presented.

Plane extraction [—=""——=m=-| Polygonization [—=——== Plane registration

Figure 1.1: Registration Pipeline



Segmentation

Many 3D robotic applications commonly utilize the basic primitive of 3D points mostly
for the representation of the surrounding environment but for other tasks as well. Until
now points have been used in most 3D scan registration algorithms and autonomous
exploration tasks of unknown environments. However, one could say that this kind of
environmental representation is far from human intuition. Furthermore, due to the fact
that the amount of points received is usually significantly large, the computational cost
in several procedures becomes prohibitive for on-line applications. Therefore, the use of
plane polygons and rectangles is considered as a better alternative. The transition from
points to plane polygons is of high significance for all the robotic applications,
especially for 3D plane SLAM, which is the main goal of this topic. Planes offer a more
intuitive representation of the environment, clearly contain much more information than
points do, such as the normal vector of the plane, through which the orientation
knowledge of it is obtained, contributing to the localization problem. Moreover, planes
require much less memory space than points do, since they are formed by groups of
points, a fact that makes their use more efficient.

A variety of algorithms have been proposed the recent years for efficient extraction of
planes from 3D point cloud received from various types of sensors, such as laser range
finders. Due to the fact that planes play a very important role in 3D scan registration, it
is critical that the results must strictly correspond and fit to the planes of the
environment in the real world. The noise caused by the sensors makes the plane
extraction procedure significantly difficult, since the estimation of the plane parameters
such as the normal vector and the offset is not accurate. Moreover, an outdoor
environment has more complicated structure and the plane fitting process is more
challenging than it would be in an indoor environment. For these reasons, several types
of errors must be considered, such as the mean square error of the points that form each
plane. The prior knowledge of the sensor employed allows the modelling of the noise in
the plane extraction procedure using calibration techniques. This Chapter is organized as
follows. Section 2.1 provides some mathematical background and overview of related
work. In Section 2.2 we propose a segmentation algorithm whose main idea is based on
the octree data structure.



Mathematical background and related work

Mathematical background

The basic context behind the plane fitting procedure is the estimation of the plane
parameters; that is, the normal vector and the offset. The normal vector is represented by
the eigenvector that corresponds to the minimum eigenvalue of the covariance matrix C
of the n points that form the plane. The covariance matrix C is computed using the
equation:

C:r:r x¥ C:rz
O = C}':-r C}.}. C_}-z (2 . l)
Cz:-r Cz}' Czs

where C_, = X", (a, —m_)(b, — m;), a, b is the notation for {x, y, z}and m is the 3D
centroid of n points:

M=~ P, n>3,0= (%, Vi, 2), i = L (22)

The minimum number of points must be 3 so that a plane can be formed uniquely in the
3D space. The offset of the plane is computed according to the formula:

d= —(n,m,+nm, +nm.) (2.3)

where ny ny, n, are the coordinates of the normal vector assuming that the centroid
computed satisfies the plane equation:

np+ d=0 (2.4)

More detailed information about planes can be found in [8]. [11] gives information about
eigenvalues and eigenvectors and [12] about the covariance matrix computation.

Related work

1. PCL Region growing segmentation

This algorithm is described in [8] and this is how it works. First of all it sorts the points
by their curvature value. This needs to be done because the region begins its growth
from the point that has the minimum curvature value. The reason for this is that the point
with the minimum curvature is located in the flat area (growth from the flattest area
allows to reduce the total number of segments).



So we have the sorted cloud. Until there are unlabeled points in the cloud, the algorithm
picks up the point with minimum curvature value and starts the growth of the region.
This process occurs as follows:
- The selected point is added to the set called seeds
- For every seed point the algorithm finds neighbor points
e Every neighbor is tested for the angle between its normal and the
normal of the current seed point. If the angle is less than a threshold value
then the current point is added to the current region.
e After that every neighbor is tested for the curvature value. If the
curvature is less than a threshold value then this point is added to the
seeds.
e Current seed is removed from the seeds

If the seed set becomes empty this means that the algorithm has grown the region and
the process is repeated from the beginning. .

2. Fast plane detection in noisy 3D range images

The second plane extraction algorithm is described in [9] and its implementation is
slightly different than the one presented above. Firstly the input pointcloud is
transformed to a range image to achieve the notion of vicinity. A random point p; and its
nearest neighbor p, from point cloud data PC are taken through the range image. This is
the initial set of points — region I1. Then an extension of this region by considering
points in increasing distance from set IT is done. Now suppose point p’ is such that the
distance between it and the region is less than the distance 4. Then if the mean square
error (MSE) to the optimal plane 2 of the region ITU p’ is less than ¢ and if the
distance between the new point and the optimal plane (2 is less than y, then p’ is
added to the current region II. This region is expanded until no points can be added.
Afterwards if the region size is more than @ it is added to the set of regions R, else these
points are treated as unidentified and are added to the set R’. This is repeated until each
point from PC is either inR orin R".

The key part of this region growing algorithm is that the computation of the mean square
error is being done in an incremental way. In particular, if C is the covariance matrix
described above and C;; are its elements, then each time a new point is added to the
region, the update formula for the new Cj; (n + 1) is:

Cii = CiyF insafnsr — Mg Spyy + mS; (25)

Where 5% is the sum of n points in the i-th coordinate and m, the i-th coordinate of the
centroid of n points.
The general formula for the mean square error computation is:

MSE(k) = X%, (ip, +d)*  (26)
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where k is the number of points, p; is the 3D point, n is the plane normal vector and d is
the plane offset. Expanding this equation gives a form which is suitable for incremental
calculation:

MSE(K) = 2%, (nan, 25y p (M) + 2T n, 5. () + 4> (27)

where a, b is the notation for {Xx, y, z}.

The mean square error and the distance between the point and the optimal plane are two
factors that enhance the performance of the algorithm, making it suitable even for noisy
pointclouds. Another advantage one could notice from the above description is that the
incremental way of calculating essential attributes makes the algorithm efficient in terms
of computational time, despite the point-based region growing procedure.

3. Fast plane detection for SLAM from noisy range images in both structured
and unstructured environments

Two segmentation algorithms are suggested in the particular paper, which are described
thoroughly in [10]. The first one is a slight variant of the algorithm introduced by [9] and
briefly described above. The basic differences lie in the initialization of each region and
in the computation of the mean square error each time a new point is added to a region.
Regarding the initialization part, a characterization is assigned to each point, depending
on the eigenvalue of the covariance matrix that is calculated by it and its neighbors. As
initial points to each region, those characterized as planar are chosen and expanded using
the same procedure that is described in the previous algorithm. The mean value
computation is done in a much faster way resulting in high efficiency in terms of time
and memory. In particular, a plane can be described by the equation:

n'p=d (2.8)
where n is the normal vector of the plane, p is an arbitrary point on the plane and d is
the plane offset. Assuming that the centroid m of the points that form the plane is part of
the plane, it derives that:

n'm=d (2.9)
Hence, using (2.9), (2.6) can be rewritten as:

MSE(k) = X%, (R p, + 7 m) (2.10)

which is

MSE = i(ﬁfcﬁj (2.11)

The normal n is the eigenvector of C that corresponds to the minimal eigenvalue, as
mentioned above. Therefore, the MSE can be derived:
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MSE = = 1,:(C) (2.12)

where A stands for the minimum eigenvalue of C.

The second algorithm considers a grid based growing segmentation. Initially, the same
procedure as in the above algorithm is followed. The growing procedure now is done
using planar grids instead of points. The normal vectors of these small grids that resulted
from the initialization are compared in order to check the difference in their orientation.
Moreover, the perpendicular distance of the centroid of each grid to the current plane is
checked in order to decide whether this grid should be added to the plane or not. Finally,
if two planar grids are merged, a further check on the mean square error of the resulted
plane is conducted.

Plane extraction using the octree data structure

This algorithm was implemented for the purposes of this topic. Its main idea consists of
two parts, an initialization part and a merging one. The initialization part exploits the
advantages of the octree data structure, for which information can be gained in [13] and
[14]. This is done by fitting initial planes in small neighborhoods of points already
stored in the octree. In the octree data structure the sense of space is conceived therefore
the notion of vicinity has direct correspondence to the physical environment. Each leaf
node of the octree corresponds to a certain volume defined by the resolution of the tree.
For example, the leaves of an octree with resolution 0.05 correspond to a cube with edge
of 0.05m. Every node other than the leaves divides the space into eight octants and its
volume equals to the sum of the volumes of its children. Utilizing these two properties, it
is possible to extract planes locally from points that are contained in small
neighborhoods. These neighborhoods are described by a certain volume which is defined
by the initialization level chosen in the tree (certain height of the tree). Moreover, the
octree data structure can perform a down sampling of points due to its resolution (e.g.,
two different points whose distance is less than the resolution will both be assigned to
the same node), resulting in higher efficiency. In addition, the noise that the sensors
cause can be reduced by checking the density of each volume that is used for the plane
fitting technique. Areas with small point density (determined by a threshold value) and
with large mean square error are ignored.

The second part of the algorithm consists of merging the initial planes into bigger ones
in order for their number to be decreased and to gain a clearer and a more compact
representation of the environment. The initial planes are inserted in a 3D array structure
using their centroids to determine the position they will be assigned to. This provides an
efficient neighbor search, as nearby planes will be assigned to nearby cells of the array.
For the neighbor planes, a test is conducted between the angle of their normal vectors,
and their perpendicular distance. If two or more planes have similar orientation and
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small perpendicular distance, they are candidates for merging. After that, three more
checks are conducted. Firstly, the mean square error of the merged plane must be under
a certain threshold value. Secondly, the total number of points that the merged plane
contains must be over a threshold value so that small planes or planes with small point
density are rejected. Finally, the maximum eigenvalue of the plane covariance matrix is
checked. This value describes the radius which forms a hypothetic circle around the
centroid of the planar segment that contains all of its points. Hence, it gives an
estimation of its size. This is described analytically in [15]. So in order to reject small
planes, this value must overcome a certain threshold. In Fig. 2.1 a pseudocode of the
above algorithm is presented.

PLANE EXTRACTION USING OCTREE:
Input:
Pointcloud PCL
Octres O
Octree resolution r
Initialization height i
Thresholds  T{LocalMseThres, LocalPoiniThres,  MseThres, PoiniThres,
AngleThres. PerpendicularDisThres, MmEigenvalueThres }
Output:
Planar Segments {PS}
Procedure:
Local Planes {LP} < 0
Insert points from PCL into octree
Pomts {P} < @
For all Ny do // Nodes of the tree at height 4
o P =Ny //points in all the descendant leaf nodes from inner
/node N
If ((s1ze of P) = T¥LocalPoiniThres) )
= [P5=Fit Plane {P} ‘/initial Plane Segment
= Mse = compute_mse{/P5}
If (Mse < T{LocalMseThres) )
o (LP} < {LP} U IPS
end if
end if
end for
Grid = Construct_3D_array(LP)
{PS} = Merging_function{LP, T, Grid}

Figure 2.1(a): Pseudocode of the plane extraction algorithm using octree
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MERGING _FUNCTION
Input:
Initial Plane Segmets {LP}
Thresholds T
3D array of initial planes Grid
Output:
Planar Segments {P5}
Procedure:
for all initial planes LP(i) in Grid do
{N} = compute_neighbors(LP(i), Grid)
For all neighbors j do
= P 4= ComputePerpendicularDistance(LP(i), N} )
= theta = cos\{ dot{LP(i). normal, N{j). normal) )
if (P_d < T{PapendicularDisThres)) && (theta <
TidngleThres)
s LP(i) = merge(LPfi), Nij) )
end if
if (LP(i).mse < I(MseThres) ) && ( size of(LP{i)) =
I{PoiniThres) ) && (radius > I(MoxEigemvalueThres) )
s (PS5} € {PSYU{LPfi}
end if
end for
end for

{fradius is the maximum eigenvalue of the covariance matrix of the plane

Figure 2.1(b): Pseudocode of the merging function

Experimental Evaluation

This Section focuses on the evaluation of the suggested algorithm in real world data sets.
Specifically, three data set were tested, the Bremen city center data set, the Freiburg
campus data set? and an indoor environment data set®. For the first data set a noise model
was also employed to estimate the uncertainty of the points imposed by the sensor. The
octree implementation from [34] was employed. The experiments mentioned in this
section were carried out on an Intel® Core i5-2500K, 3.30 GHz processor with 16GB
memory.

Concerning the Bremen city center data set, it consists of 14 files containing pointcloud
data, with an average number of 295000 points per file. The Freiburg Campus data set
consists of 78 files containing pointcloud data, with an average number of 159000 points
per file. Finally, the indoor environment data set consists of 60 files, with an average
number of 112498 points.

The algorithm was tested in the first file of the Bremen city center data set, which
contains 233399 points. Fig. 2.2 shows the number of initial planes, the initialization
time and the merging time for different values of the height h of the tree at which the

! Courtesy of Dorit Borrmann and Jan Elseberg available at the Osnabrueck robotic 3D scan repository,
http://kos.informatik.uniosnabrueck. de/3Dscans/

2 Courtesy of B. Steder and R Kuemmerle, available at http://ais.informatik.uni-
freiburg.de/projects/datasets/octomap/

% Courtesy of Martin Magnusson, available at the Osnabrueck robotic 3D scan repository,
http://kos.informatik.uni-osnabrueck.de/3Dscans/
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initial planes are constructed. It must be pointed out that h must be a number that is
power of two. The values used for the extraction of these results are h = 64, 128 and 256
with octree resolution r = 2cm. That is, for h = 64, we extract initial planes in cubic cells
of size 2*64 = 128x128x128 cm?®. For the other cases, this size can be calculated
respectively. The other parameters of the algorithm (e.g., mean square error threshold
value) are chosen using the sensor features and calibration techniques.

In Fig. 2.2 (a) and (c) we see that the number of planes and the merging time increase as
h decreases. That is an expected outcome, because the lower the value of h, the smaller
the cells in which initial planes are constructed. Hence we expect the initial planes to be
more as the same space is described by a larger number of them when the value of h is
smaller. Also, the larger the number of the initial planes, the higher the time taken to
merge them. Fig. 2.2 (b) shows that the time needed to construct the initial planes does
not change with respect to h. This can be explained by the fact that the same octree
resolution was utilized for all three values of h so the total number of the octree nodes
that has to be traversed is almost the same.

a000 0.2

018 2

0.16

014

Initialization time
merging time

012

01
100 150 200 250 100 150 200 250 100 150 200 250

Height of the octree Height of the octree Height of the octree

(@) Number of Planes (b) Initialization time (c) Merging time

Figure 2.2: (a) Number of initial planes, (b) Time to construct initial planes and (c) Time
to merge the initial planes, with respect to the height of the octree that the initialization
is conducted

Fig. 2.3 shows the segmentation procedure for the 1% scan of the Bremen city center data
set. In Fig. 2.3 (a) we see two views of the input pointcloud. Fig. 2.3 (b) and (c) show
the same views using the initial and final planes, respectively. The algorithm parameters
and runtimes are depicted in Table 2.1(a) and (b) respectively.
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Octree Resolution (m) 0.05
Initialization height h 32

Local MSE threshold(m) 8x10°
Local points threshold 10

MSE threshold(m) 6x10°
Angle threshold(°) 15
Perpendicular distance threshold(m) 0.1
Points threshold 80

Max eigenvalue threshold 0.25

Table 2.1 (a): Parameters of the segmentation algorithm for the 1% file of the Bremen

city center data set

Input Pointcloud points 233399
Time to insert in octree (s) 0.08
Initialization time (s) 0.11
Number of initial planes 5807
Merging time (s) 1.53
Number of resulted planes 216
Total time (s) 1.72

Table 2.1 (b): Times and number of planes for the 1% file of the Bremen city center data

(a): Initial pointcloud of the 1% scan of the Bremen city center data set
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(c): Final planes

Figure 2.3: Segmentation procedure for the 1% scan of the Bremen city center data set.
(a) initial pointcloud, (b) planes after initialization, (c) final planes

Fig. 2.4 shows the segmentation procedure for the first file of the Freiburg campus data
set, which consists of approximately 176251 points. The algorithm parameters utilized
are depicted in Table 2.2(a). The runtimes and number of planes are depicted in Table
2.2(b).

Octree Resolution (m) 0.02
Initialization height h 32

Local MSE threshold(m) 10
Local points threshold 5

MSE threshold(m) 7x10°

Angle threshold(°) 15
Perpendicular distance threshold(m) 0.1

Points threshold 100

Max eigenvalue threshold 0.35

Table 2.2 (a): Parameters of the segmentation algorithm for the 1 file of the Freiburg
campus data set
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Input pointcloud points 176251
Time to insert in octree (s) 0.06
Initialization time (s) 0.09
Number of initial planes 2417
Merging time (s) 0.3
Number of resulted planes 66
Total time (s) 0.45

Table 2.2 (b): Runtimes and number of planes for the 1% file of the Freiburg campus data
set

(@) Initial pointcloud (b) Initial planes (c) Merged planes

Figure 2.4: Segmentation procedure for the 1% scan of the Freiburg campus data set. (a)
initial pointcloud, (b) planes after initialization, (c) final planes

In order to get a more compact view of the Freiburg campus, the algorithm was also
tested in the first 7 files of the specific data set. Fig. 2.5 shows the results. The runtimes
and number of planes are depicted in Table 2.3. The algorithm parameters are the same
as in Table 2.2(a).

Input pointcloud points 1141086
Time to insert in octree (s) 0.84
Initialization time (s) 0.82
Number of initial planes 9701
Merging time (s) 4.95
Number of resulted planes 319
Total time (s) 6.61

Table 2.3: Runtimes and number of planes for the first 7 files of the Freiburg campus
data set
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(c): Final planes

Figure 2.5: Segmentation procedure for the first 7 scans of the Freiburg campus data set.
(a) initial pointcloud, (b) planes after initialization, (c) final planes
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Finally, the algorithm was also evaluated for the first 4 scans of the indoor dataset. Table
2.4(a) and (b) show the algorithm parameters and results respectively. Fig. 2.6 depicts
the initial pointcloud (a) and the final planar segments (b). We can see from the
visualization that the results are clearer and more compact. This can be explained by the
fact that indoor environments are more structured and consist mainly of big planar
segments.

Octree Resolution (m) 0.02
Initialization height h 16
Local MSE threshold(m) 8x10°
Local points threshold 5
MSE threshold(m) 10°
Angle threshold(°) 10
Perpendicular distance threshold(m) 0.05
Points threshold 100
Max eigenvalue threshold 0.35
Table 2.4 (a): Parameters of the segmentation algorithm for the first 4 files of the indoor
data set
Input pointcloud points 449992
Time to insert in octree (s) 0.05
Initialization time (s) 0.08
Number of initial planes 3908
Merging time (s) 0.6
Number of resulted planes 47
Total time (s) 0.73

Table 2.4: Runtimes and number of planes for the first 4 files of the indoor data set

(@) Initial pointcloud (b) Final planes

Figure 2.6: Segmentation results for the first 4 scans of the indoor data set. (a) Initial
pointcoud and (b) Final planes
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One could notice from the above results that the algorithm is suitable for online
applications, such as 3D SLAM and navigation procedures, as the runtimes are fairly

low. This can be attributed mainly to the octree structure, which allows for fast plane
initialization.
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3D Scan registration

The 3D simultaneous localization and mapping, widely known as SLAM problem, has
been one of the most popular research issues in the field of robotics and particularly of
mobile robots the last few years. The main part of the SLAM procedure is the scan
registration. That is, the procedure of aligning two consecutive scans received from a
sensor in order to achieve the proper calculation of the transformation of the robot
between the two scans. Many approaches to the problem have been proposed so far not
only utilizing a 3D point-based representation of the environment but also a plane-based
representation. In [16] and [17] ICP based algorithms are presented and the 3D NDT
approach is featured in [2]. Plane-based techniques are suggested in [5] and in [18].

In the following subsections, the two approaches to the scan registration problem using
points and planar segments are considered. In 3.1 the most commonly used point-based
algorithms are presented and compared, the ICP and 3D NDT. Subsequently, 3.2 deals
with the advantages of 3D scan registration using planes and the concept of applying the
use of planes in the 3D NDT algorithm. Moreover, a way of establishing
correspondences is suggested, as no odometry information is used. Finally, in Section
3.3 the algorithm is evaluated for the indoor and the dwelling scenario® data sets.

3D scan registration using points

Most 3D SLAM algorithms that have been implemented so far are based on the ability
of registering two range scans or a range to a map, using 3D points. The goal of two
range scans registration is to find the relative pose between the two positions, at which
the scans were taken. The basis of most successful algorithms is the establishment of
correspondences between the primitives of the two scans (e.g. points). Out of this, an
error can be derived and minimized. The most general approach, using points, is the ICP
algorithm introduced in [1] and a variant of it introduced in [19]. These approaches
require an establishment of explicit correspondences between points (points that
correspond to the same physical point in the real world). Another approach is the
Normal Distribution Transform (NDT) algorithm, which was introduced for 2D SLAM
in [20] and an extension of it for 3D SLAM that can be found in [2] and in [21]. In the
following subsection, the ICP and 3D-NDT are briefly presented, as they are considered
to be two of the most significant scan registration algorithms using the primitive of
points in the 3D space and a comparison is made.

* Courtesy of Jacobs University Robotics department, available at: http://robotics.jacobs-

university.de/node/293
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ICP algorithm

The Iterative Closest Point (ICP) algorithm was developed by P.Besl and N.McKay [1]
and is usually used to register two consecutive clouds of points in a common coordinate
system. The ICP algorithm has commonly been used for many robotic applications
including SLAM, as described in [22]. The basic idea here is to minimize the difference
between the points of the two sets. The procedure is done iteratively. That is, in each
step, the algorithm selects the correspondence points according to the minimum distance
and calculates the transformation (R,t) using an initial guess (odometry estimation) for
minimizing a certain heuristic mean square error function, usually

SR

E(R, I':] = Z?:lzjlzlj_ H'Fi,_;l'|mi - [Rd} + t)

where Ny, and Ng represent the number of points in the two sets and w;; are the weights
for a point match, which are either equal to 1 when the points i and j are the closest ones
between the two scans and O otherwise. According to the above equation, the
transformation can be calculated using a variety of algorithms, as suggested in [23], [24]
and [25].

Figure 3.1: Example of the ICP algorithm

3D-NDT algorithm

The Normal Distributions Transform can be described as a method for compactly
representing a surface. As mentioned above, its 2D variant was introduced by Biber and
Strasser in [20] and an extension for 3D applications can be found in [21]. The transform
maps a point cloud to a smooth surface representation, described as a set of local
probability density functions (PDFs), each of which describes the shape of a section of
the surface. The algorithm firstly divides the occupied 3D space into a grid of cells (i.e.
cubes) and a PDF is assigned to each cell, based on the point distribution within it. An
appropriate PDF could be a normal distribution such as the following

'::?—E’.:'TE"--::?—ED:]

p(X) = —p—=exp(— (3.2)

(2m)P/2 f1Z
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where D is the dimension notation and & and ¥ denote the mean vector and covariance
matrix of the reference scan surface points within the cell where x lies, or a mixture of a
normal and a uniform distribution.

By using NDT for scan registration, the goal is to find the pose of the current scan that
maximizes the likelihood that the points of the current scan lie on the reference scan
surface. This likelihood is expressed by the function

ITi=, p(T(p, %)) (3.3)

where x, are the k points from the current scan, p is a pose and T(p, x,) is a spatial
transformation function that moves the point x,by the pose p. The best pose 7 should be
the one that maximizes the above function. Given the above parameters, the NDT score
function is

s(p) = _EE=1P(T(EEJ<)] (3.4)

which corresponds to the likelihood that the points x,, lie on the surface of the reference
scan, when transformed by p.

Newton’s algorithm can be employed to find the parameters p that optimize s(p).
Newton’s method iteratively solves the equation HAp = —g where H and g are the
Hessian matrix and gradient vector of s(p). The increment Ap is added to the current
pose estimate in each iteration, so that p = p + Ap. As initial transformation for the
algorithm, the one estimated with the use of odometry is commonly used. More detailed
information about Newton’s algorithm can be found in [26] and about the maximization
of the above likelihood function in [21].

Comparison

The basic difference between the NDT and ICP algorithm is that using the first, no
explicit correspondences have to be found between points or features. Moreover, NDT is
done in a probabilistic manner and that makes it more efficient in “difficult” scans; that
is, scans with few prominent geometric features, little overlap, and high noise level.
However, one could say that the complexity of the PDF and the Newton’s algorithm
computation may result in an increase in time and memory complexity. On the other
hand, most ICP algorithms employ tree data structures (usually k-d trees as in [27]) for
storing the points facilitating the establishment of the correspondences using a nearest
neighbor search. An explicit comparison between the two algorithms was conducted in
[28].

3D plane registration

Point-based algorithms used for 3D scan registration, such as the ICP algorithm and its
variants, apart from being computationally expensive and slow for large point clouds,
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also suffer from premature convergence to local minima, especially when the overlap
between scene-samples decreases. By using more abstract primitives, such as planes,
instead of points, complexity problems can be overcome and more efficient solutions to
the scan registration problem can be achieved. Planar segments are less in number than
points, providing an advantage in terms of computational cost and memory
consumption. Furthermore, the plane parameters, such as the normal vector and the
offset provide useful information about the environment the robot moves.

The problem of estimating the robot’s pose using planar segments can be formulated as
follows:

If the robot moves from the frame F; to the frame F, and observes the coordinates of the
same physical point as p; and p, respectively, these coordinates are related by the
equation

Py = %R P, + %t (3.5)

Where IR and 1t are the rotation matrix and translation vector from F; to F,
respectively. More information can be found in [29].

Now we wish to extend this equation for planes. Let’s assume that sets of planar
segments P; and P, are extracted from F; and F, and the planes P;; and P, ; correspond
to the same physical plane. Then using equation (2.8) that describes a plane, equation
(3.5) becomes

ny; = 3Rn,;  (3.6)

nl,i%t =d;; — d, (3.7)

o
The problem consists of estimating 2R and 1t.

The main goal of this topic is to modify the 3D NDT algorithm so that it can support the
use of planar segments in order to estimate the above rotation and translation parameters.
The uncertainty of the robot’s pose estimation will produce an uncertainty in the
attributes of the planes extracted from the reference scan. This error in the estimation of
the robot translation and rotation is introduced by either the error of odometry
measurements, if used, or by certain assumptions that can be made for the robot
movement (e.g., distance between two consecutive scans should not be greater than 5
meters).
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Pose uncertainty
Pose 2

T+U aue|d
T+U 3ue|d

Pose 1 J
Uncertainty in planar

attributes R

Plane n ] Plane n _’/T\

Frame i Frame i+ 1

(a) Plane detection in scan i (b) Plane detection inscani + 1

Fig. 3.2: Simplified 2D scan registration using plane uncertainty. (a) Initial pose of the
robot in frame i with two planes detected and (b) Pose of the robot in the next frame.
The ellipsoid around the robot models the uncertainty of the pose. This uncertainty
implies the uncertainty of the plane features which is modeled as a normal distribution.

The main idea of the NDT algorithm is adopted here, by assigning normal distributions
to approximate the uncertainties of the plane parameters. In particular, a 4-dimensional
multivariate Gaussian can be employed to describe the uncertainty in the three
coordinates of the normal vector and the offset of the plane, which is produced from the
robot rotation and translation error, respectively, as depicted in Fig. 3.2. [30] gives
detailed information about multivariate normal distributions. The procedure followed for
the estimation of R and t is similar to the one followed in the point based 3D NDT.
Initially the planar segments P, of the current scan are transformed back to the reference
scan using odometry information (the notation here suggests that the current scan is the
second one and the reference scan the first one). Then checks are held between the
transformed segments P, and the reference scan segments Py. Particularly, the plane
parameters of each transformed segment P,;" are compared to all the segments P; of the
reference scan. The probability that two examined planes are similar (i.e. have similar
normal vectors and offset values) can be calculated utilizing the gaussian distributions
assigned to each plane P;. More explicitly, in an 1-dimensional simplified case, the
below calculation would be conducted:

_i;E-H.2
pla) = P

o 2

where a can be one of the three coordinates X, y, z of the normal vector or the offset
value d of the examined plane P,; of the current scan, u is the mean value of the

[t]
=

(3.8)
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corresponding attribute in the reference scan and o the deviation expressing the
uncertainty of the specific plane attribute. The similarity between the two examined
planes is more likely when the maximum of these probabilities is observed. The sum of
all maximum value #,,,.. forms the score function

Score = XP.. (3.9)

which has to be maximized. This maximization can be achieved employing Newton’s
method as described for the point based 3D NDT in section 3.1, using the Hessian
matrix and the gradient vector of the score function.

The pseudocode describing the above idea is presented in Fig. 3.3, presenting the
notation first. Odometry measurements are used as an initial guess.

Pi and Pj, j = i +1, denote the planes extracted from the consecutive frames F; and F;j,
respectively. With P,-* we denote the planes extracted at Fj that are transformed with
respect to Fi. Also, let 2, be the planar attributes uncertainty derived from the odometry
uncertainty, p the maximum probability discussed above and T; _ j the transformation
matrix from F; to F; (that is, rotation R; j and translation t; ;). Finally, g and H are the
gradient and the Hessian required for Newton’s algorithm.

3D-NDT using Plane registration

Input:
Planar attributes P;, P; from frames F, and F, respectively
Robot pose estimate X, using odometry
Planar attributes uncertainty 2,

Output:
Final pose estimate Xz,

Procedure:
while not converged do
o {score, g. h} = optimization_function(Pi, PJ, X, Zp)
0 Xy =Xpu T Irlg //converge to maximum
end while
Xﬁmf = AXMJ{

Figure 3.3(a): pseudocode of plane based 3D-NDT using odometry
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optimization_function(P4, Pj, Xinir, Zp)

Input:
Planar attributes P;, P; from frames F; and F}, respectively
Robot pose estimate Xj,; using odometry
Planar attributes uncertainty X,

Output:
{score,g,h}

Procedure:
score =0,g=0,h=0 //initialization
Calculate T, from X
for all planes P; and P; do
o P'=Ti»(P) /ftransform plane attributes
o PS=P"-P
Gz, (P57 R)

o score = score + pf

o pk~

//k is and index over all planar assignements { and j
end for

Calculate g

Calculate

Figure 3.3(b): Optimization procedure of the 3D-NDT
The gradient and Hessian entries are derived as follows:

g = S5 = T —(P)T 5 exp (- (B 5 R (310)
by = Ties exp(~(POTE; PO [ (BDT5 D (RIS ) + (P75 5 +
U751 ]

L=y

(3.11)

where J; is the i entry of the Jacobian matrix [34].

Correspondences

The key difference between the algorithm presented above and the algorithm that
consists the main goal of this topic is the initial transformation of the planes from the
current scan to the reference one. Unlike the approach presented, there will not be used
any odometry information, since the deviation of its measurements from the real robot
movement can be significantly large. Instead, an attempt to establish correspondences
between planes of two consecutive scans will be made. The idea is to find characteristics
of the planes of each scan that identify each one of them (or groups of them) uniquely.
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Using these features, we will try to determine approximately the plane (or the planes) of
the reference scan that corresponds to each plane of the current scan; that is, refer to the
same physical plane in the real world.

Given an average of N planes per view, there are (N + 1)! possible correspondences, if
we include the case when a plane in one view is not present in the other. Non-parallel
planes’ correspondences have rotation information and parallel planes’ correspondences
have only translation information. Due to the high number of possible correspondences
that can be determined, the need to reduce the search space arises. Several properties of
the planar segments could be exploited for that reason, such as the number of points of
each plane or the angle between the normal vectors of the planes (that can be examined
using the dot product). Such attributes and more can be found in [5] where the authors
use the MUMC (minimally uncertain maximal consensus) algorithm to extract planar
segments and find correspondences that reduce the uncertainty volume of pose estimate.

In this Section we introduce an approach for the problem of establishing
correspondences between planes of consecutive scans. More specifically, we create a
fully connected graph ( [31] and [32]) for each scan where each node corresponds to a
single planar segment. Such a graph can be seen in Fig. 3.4. Each node contains
information about certain attributes of the plane it represents, such as the number of
points it consists of, its normal vector and its centroid, the eigenvalues of the covariance
matrix and its mean square error. If the graph contains N nodes, then it will contain N(N-
1)/2 edges connecting them. Each edge contains information about the relations between
the planes of the nodes that it connects. These relations are chosen to be the
perpendicular distance between the two planes, the angle between their normal vectors
and the distance of their centroids. Fig. 3.5 shows the information contained in the
graph. Using the above idea, the problem of establishing correspondences is diminished
to the problem of matching similar subgraphs between the graphs of two consecutive
scans. This procedure is carried out as follows. After the graphs for two consecutive
scans have been built, they are cross checked to determine which plane of the first graph
should correspond to which of the second graph. This is done in a probabilistic manner.
That is, all possible pairs of the planes between the two graphs are formed and they are
given the probability of corresponding to the same physical plane. A pair of two planes i
and j that correspond to the same physical plane should have the highest probability.
This probability is computed according to the similarity of the nodes of the two planes
and of their edges.
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Figure 3.4: A fully connected graph of planes

Plane n attributes:

Plane m attributes:

- Number of Points

- Normal Vector

- Centroid

- Eigenvalues of
Covariance Matrix

-Mean Square Error

- NMumber of Points

- Normal Vector

- Centroid

- Eigenvalues of
Covariance Matrix

-Mean Square Error

Edgen-m

- Centroid Distance
- Angle between Normal Vectors
- Perpendicular Distance

Figure 3.5: Information stored in each node and each edge of the graph

Since no odometry information is used, the initial guess Xini; used in the pseudocode of
Fig. 3.3 is set to zero and no initial transformation T is calculated. Furthermore, a
procedure that establishes the necessary plane correspondences must be added, so that
the optimization function uses only the correspondent planes (and not the whole amount)
to calculate the optimal translation and rotation. The new pseudocode is shown in Fig.
3.6. More specifically, Fig. 3.6(a) shows the main body, Fig. 3.6(b) shows the new
updated optimization function and Fig. 3.6(c) shows the pseudocode for the function that
establishes plane correspondences. The optimization function that employs Newton’s
algorithm tries to align the correspondent planes through the score function. In that way,
parallel correspondent planes between consecutive scans will determine the translation
of the robot through their offset, whereas non-parallel ones will determine the rotation
through their normal vector. P; denotes the set of planes detected from the frame (scan)
Fi. The notation {Py, P} denotes the set of pairs of the plane correspondences, which is
the output of the corresponding procedure. In Fig. 3.6(c) G;j and G; denote the graphs of
the two frames F; and F;, respectively. Moreover, nj, n; denote the nodes of the graphs
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and en; is the set of edges of the n; node. Finally, we use the notation p;; for the
probability of two nodes i and j to be correspondent.

3D-NDT using Plane registration

Input:
Planar attributes Py, P; from frames F; and Fj, respectively
Planar attributes uncertainty X

Output:
Final pose estimate Xznal

Procedure:
{Pm, Pi} = find_correspondences(P;, F)
while not converged do
o {score, g, h} = optimization_function({Pm, Pi}, Xp)
0 Xt = Xmz+ hlg //converge to maximum
end while
KXonal = Xonir

Figure 3.6 (a): pseudocode of plane based 3D-NDT without any odometry information

optimization_function({Pm, Pr}, X, Zp)

Input:
Planar correspondences {Pw, P;} from frames F; and F, respectively
Planar attributes uncertainty X

Output:
{score g h}

Procedure:
- score=0,g=0,h=0 |/ initialization

for all correspondent pairs Pr and P; do
© Pw =Tnsi(P) //transform plane attributes
o] Pm* = Pm* - P.-‘
1 o Tp—1p=
(2 ﬂszp exp(_(Pk)TZ‘p lpk)

o Score = Score +pk

o pF~

end for
- Calculate g
- Calculate h

Figure 3.6 (b): Optimization procedure of the 3D-NDT without any odometry
information
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find correspondences(P;, P))

Input:
Planar attributes P, P; from frames F; and F}, respectively

Output:
Vector of correspondent plane pairs {Pum, Pi}

Procedure:
Gi = create_graph(Pi)
G; = create_graph(P;)
for all the nodes »; and »; do
o Probability p;; =0
o check node similarity(n ny)
for all the edges ensand en;
* check edge similarity(en:, eny)
= update py;
end for
end for
for all the nodes nido
o find max(p;j)
o {Pm Pi} € niny

end for

Figure 3.6 (c): Pseudocode of function that finds correspondences between planes of
consecutive scans

Experimental evaluation

This section mainly focuses on testing the approach in real world data sets in order to
evaluate its efficiency. More specifically, the algorithm will be applied in the indoor data
set and the dwelling scenario. In each scan planar segments are extracted using the plane
extraction algorithm presented in Chapter 2 and the approach tries to establish
correspondences between consecutive scans and align them by calculating the optimal
rotation and translation of the robot. Moreover, an attempt to build a 3D map of the
environment will be made. In the first case, where the indoor data set is used, odometry
information is available and is utilized as a correction in cases where the registration
fails, in order to be able to build a consistent 3D map. A comparison will also be made
with the algorithm that utilizes odometry as an initial guess in terms of time and
accuracy. In the latter case, where the dwelling scenario is used, no odometry
information is available. Hence, examples of successful alignments and small consistent
parts of the whole map will be shown. Here it should be pointed out that the
performance of the approach is highly dependent on the segmentation aglorithm that
extracts planar segments. The experiments mentioned in this section were carried out on
an Intel® Core i5-2500K, 3.30 GHz processor with 16GB memory.
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A) Indoor data set

For this evaluation, the indoor data set that was used in Section 2.2 is also used here. For
this specific scenario, we imposed an assumption in translation and rotation such that the
plane overlap between two consecutive scans is at least 50%. These values were taken
into account in the 4-dimensional normal distribution modelling the plane uncertainty, as
discussed in Section 3.2.1. The choise of these thresholds is highly dependent on the
current data set used, the range of the sensor and the density of the received pointcloud.
Moreover, this choise has to do with the overlap of planes that correspond to the same
physical planar segment between consecutive scans, which is indispensable for the
accuracy of the registration algorithm.

The algorithm was evaluated for the first 30scans of the data set, which are depicted in
Fig. 3.7(a)-(c) using the points of the planes of each scan for more clarity. Planes with
same colours were found as correspondent between consecutive scans. In cases that the
algorithm failed to align two frames, the odometry information was used as a correction.
As failures for the translation of the robot are considered values of x-, y- and z- that
diverge more than 20cm from the actual values. For the rotation, we consider as a failure
a deviation more than 5° from the actual rotation values (roll, pitch, yaw).

(@) Top view (b) Side view



33

X

. A
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(b) Side view
Figure 3.7: (a)-(c) Map of the first 30 scans of the indoor data set.

Table 3.1 depicts the percentage of successful scan registrations seperately for the
translation and rotation of the robot both for the case that correspondences
establishment is used without any odometry information and for the case that
odometry measurements are used as an initial guess and no correspondences need to
be found. Regarding the first case, we can see that for the rotation values (roll, pitch,
yaw) the percentage of successful alignments is high. The failures can be attributed
to the fact that the robot rotates more than the uncertainty value imposed in some
cases, so the uncertainty assumptions are not satisfied. However, as one can notice in
Fig. 3.7, the movement of the robot is mainly translational (it moves along a
corridor), so these results for the rotational values are expected. In general, the
failure percentages can be explained mainly by the symmetric space of the indoor
environment. In such cases, the relations and the attributes of the planar segments are
similar, so the algorithm fails to detect the correct correspondences. Fig. 3.8 depicts
a simplified example of a symmetric space. For example, the plane extracted from
the ceiling in frame F; may have the same features as the plane extracted from the
floor in frame Fj.4, infering misleading results. Moreover, to this outcome contribute
the same relations between the planes in a symmetric space. In the previous example,
the edges of the node that corresponds to the ceiling plane from the i-th scan are very
similar to the edges of the node that corresponds to the floor plane from the i+1-th
scan. The deviation in x- and z- coordinates can be attributed to the above reason.
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Furthermore, the deviation of the y- value can be explained by the fact that in many

cases no planes were detected perpendicular to the y-axis (it can be seen from Fig.
3.7(c) that we have a big corridor along the y-axis). For that reason, the translation in
the y-axis could not be computed properly. In comparison to the case where
odometry information is used as an initial guess, Table 3.1 shows that the algorithm
with odometry has a better performance. This outcome is expected, since the
odometry measurements used do not deviate much between two consecutive scans,
leading to smaller uncertainty in the planar attributes.

No odometry used Odometry information
(correspondences as initial guess
establishment)
Success in x 90% 100%
Success iny 73.3% 96.7%
Success in z 73.3% 96.7%
Success in roll 96.7% 93.3%
Success in pitch 100% 100%
Success in yaw 86.7% 93.3%
Total success 63.3% 80%

Table 3.1: Percentage of successful alignments for the cases with and without
odometry information

Ceiling
raboat movement direction
A O
— x
= P . H
E o =
Floor

Figure 3.8: Example of symmetric space
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Finally, Table 3.2 shows the pipeline times for the cases with and without odometry
information. The segmentation time refers to the average time taken for extracting
planar segments from each scan. The registration time refers to the average time
taken for aligning two consecutive scans. The average number of planes per scan is
15. Although the registration times are similar for the two algorithms, we can state
that the approach that utilizes correspondences is faster, since the optimization
algorithm in that case applies only for the correspondent pairs which is a less
complex procedure than doing it for all the possible pairs of planar segments.

No odometry used Odometry information
(correspondences as initial guess
establishment)
Segmentation Time 0.0436458 0.0436458
Registration Time 0.0170526 0.03
Total Time 0.061 0.074

Table 3.2: Runtimes for the whole registration pipeline both for the case where no
odometry information is used and for the case where odometry is utilized as initial
guess.

B) Dwelling scenario

For this case, the algorithm was evaluated for the dwelling scenario. In this scenario, a
laser sensor produces pointcloud data for 96 scans. The uncertainty values here for the
normal vector and the offset of the planar segments are derived from the assumptions we
make that impose the minimum plane overlap to be at least 60% between two
consecutive scans. The uncertainty value here is stricter than in the indoor data set, as
the dwelling environment is more unstructured and the need of plane overlaps is bigger.

As no odometry information is available for this specific data set, a whole map of the
environment could not be built, because the error from failed alignments would
accumulate in the next scans. A successful alignment between two consecutive scans is
determined from the consistency of the map constructed using the transformation that
the algorithm calculated. Like in the indoor environment evaluation, as failures for the
translation of the robot are considered values of x-, y- and z- that diverge more than
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20cm from the actual values and for the rotation, we consider as a failure a deviation
more than 5° from the actual rotation values (roll, pitch, yaw).

The whole amount of the 96 scans was tested and the percentage of successful
alignments was approximately 60%. In the majority of the cases that the algorithm failed
to perform the registration between two consecutive scans, the robot rotation is greater
than uncertainty value imposed, so the uncertainty thresholds imposed are not satisfied.
Unlike the evaluation for the indoor data set, a percentage for the translation and rotation
values could not be given separately due to the lack of odometry information. Table 3.3
depicts the average segmentation time for each scan, the average registration time for
each scan pair and the average number of planes per scan.

Segmentation time 0.126042
Registration time 0.0541053
Number of planes 21

Table 3.3: Average segmentation and registration times, average number of planes per
scan

In the following, we present small consistent maps of successful alignments. The
visualization is done both using the aligned pointclouds and the points of the aligned
planar segments for clarity. Also, the images of the corresponding scans that are
captured from the front camera of the robot are given. Fig. 3.9(a)-(g) shows the images
for scans 60-66. One could notice that the overall movement in these scans consists of
translations and rotations that satisfy the uncertainty restrictions. Figure 3.10(a) shows
the aligned scans using the initial pointcloud and figure 3.10 (b) shows the aligned scans
using the points of the aligned planar segments. Fig. 3.11(a)-(d) and 3.12(a)-(d) visualize
the same results for scans 86-89. It can be concluded from the raw images that mainly
small translations consist the movement of the robot. Two more examples for scans 70-
72 and 20-23 are depicted in Fig. 13-14and 15-16 respectively.
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(a) Scan 60 (b) Scan 61 (c) Scan 62
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(d) Scan 63 (e) Scan 64 (f) Scan 65

(g) Scan 66
Figure 3.9 :(a)-(g) Scans 60-66 of the dwelling scenario environments as raw images

(@) Visualization of the aligned (b) Visualization of the aligned
scans
scans(60-66) using points (60-66) using planar segments

Figure 3.10: Resulted alignment of scans 60-66. Visualization using points (a)
and using points of the planar segments (b)
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(a) Scan 86 (b) Scan 87

(d) Scan 89
Figure 3.11 :(a)-(d) Scans 86-89 of the dwelling scenario environments as raw image

(a) Visualization of the aligned (b)Visualization ~ of  the
aligned scans(86-89) using points scans(86-89) using
planar segments
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(c) Visualization of the aligned (d)Visualization ~ of  the
aligned scans(86-89) using points scans(86-
89) using planar
segments

Figure 3.12: Resulted alignment of scans 86-89. Visualization using points (a)
and (c) and using points of the planar segments (b) and (d)

(a) Scan 70 (b) Scan 71 (c) Scan 72

Figure 3.13 :(a)-(c) Scans 70-72 of the dwelling scenario environments as
raw images
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(a) Visualization of the aligned (b)Visualization ~ of  the
aligned scans(70-72) using points scans(70-
72) using planar
segments

Figure 3.14: Resulted alignment of scans 70-72. Visualization using
points (a) and using points of the planar segments (b)

(a) Scan 20 (b) Scan 21 (c) Scan 22

(d) Scan 23
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Figure 3.15 :(a)-(d) Scans 20-23 of the dwelling scenario environments as
raw images

(a) Visualization of the aligned (b) Visualization of the aligned
scans
scans(20-23) using points (20-23) using planar segments

Figure 3.16: Resulted alignment of scans 20-23. Visualization using
points (a) and using points of the planar segments (b)

Fig. 3.17 and 3.18 below show the alignment of two consecutive scans for two cases.
Fig. 3.17 refers to scans 4-5, where the transformation was calculated to be:

{x,y, z} = {0.287011, -0.500638, 0.0662119}m
{roll, pitch, yaw} = {-0.0243527, 0.019131, -0.663267}rad
and Fig. 3.18 refers to scans 47-48, where the transformation was calculated to be:
{x,y, z} = {0.887781, 0.0935841, -0.248495}m
{roll, pitch, yaw} = {-0.00166798, 0.173416, 0.0452187}rad
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(c) Scan 4 - planar segments

(e) Aligned scans 4-5 - Visualization ()] Aligned scans 4-5-
Visualization using points using  planar
segments

Figure 3.17: (a),(b) images of scans 4 and 5, (c),(d) planar segments of scans 4 and 5.
Visualization of the alignment using points (e) and planar segments (f)
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(€)
Aligned scans 47-48 - Visualization (f) Aligned scans 47-48-Visualization using
points using planar segments

Figure 3.18: (a),(b) images of scans 47 and 48, (c),(d) planar segments of scans 47 and
48. Visualization of the alignment using points (e) and planar segments (f)

The failed alignments can be attributed mainly to the big rotation of the robot in some
cases and does not satisfy the corrseponding uncertainty value we impose. However, in
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some cases even if the assumptions are satisfied, the algorithm fails to compute the
correct transformation. In these cases the segmentation algorithm does not detect planes
that can bound the movement along one axis, so the translation cannot be properly
calculated. This can be mainly explained by the small pointcloud density in some
regions or the complexity of the environment. Finally, there is also a small percentage of
cases where the algorithm could not estabilsh the appropriate correspondences between
planes of consecutive scans due to symmetric space (as discussed for the indoor data set)
and due to the fact that no sufficient plane overlaps exist.

Fig. 3.19 shows an example of failed alignment due to big rotation of the robot (scans 6-
7). The images in Fig. 3.19(a)-(b) show that the rotation is almost 90°. Fig. 3.19(c)-(d)
show the planar segments from these scans and Fig. 3.19(e)-(f) depicts the failed
alignment.

Fig. 3.20 shows an example of failed alignment due to the segmentation algorithm.
Insufficient number of planes perpendicular to the axis along which the robots moves (x-
axis) was detected, so the optimization algorithm could not calculate the optimal
translation along this axis.

i 0

(a) Scan 6 - image (b) Scan 7 - image
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(c) Scan 6 - planar segments (d) Scan 7 - planar segments
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(e) Failed alignment of scans 6-7 — Visualization (f) Failed alignment of scans
using points 6-7 — Visualization using
planar segments

Figure 3.19: (a),(b) images of scans 6 and 7, (c),(d) planar segments of scans 6
and 7. Visualization of the failed alignment using points (e) and planar segments

(f)
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(c) Scan 19 - planar segments (d) Scan 20 - planar segments
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(e) Failed alignment of scans 19-20 -  (f) Failed alignment of scans 19-20-
Visualization using points Visualization  using  planar
segments

Figure 3.20: (a),(b) images of scans 19 and 20, (c),(d) planar segments of scans
19 and 20. Visualization of the failed alignment using points (e) and planar
segments (f)

Summarizing, in several cases of the above evaluation, the proposed algorithm did not
perform successfully and failed to calculate the correct transformation of the robot. As
already discussed, this can be attributed mainly to the following drawbacks of the overall
approach:

e Segmentation algorithm accuracy
e Symmetry of the environment that causes misleading plane correspondences
e Assumptions about the movement of the robot are not satisfied

e Corridor effect: lack of planar segments to bound the movement of the robot
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Conclusion and future work

In this thesis the aspect of 3D plane registration is examined. We present an approach
that considers the use of planar segments instead of points for scan alignment without
any use of odometry information in order to calculate the transformation of the robot
between two consecutive scans and build a consistent 3D map. The uncertainty in the
pose of the robot that is derived by certain assumptions is transformed to planar
attributes uncertainty which is the main idea behind this framework. This uncertainty is
modeled employing an extension to plane-based of 3D-NDT algorithm which utilizes
Gaussian distribution functions. The approach was evaluated both in an indoor and an
outdoor environment to evaluate its accuracy. Despite of the disadvantages of the
algorithm, in both scenarios the success rate was over 50% and low computational times
were achieved making it suitable for online applications. In addition, a plane extraction
algorithm is introduced which exploits the advantages of the octree data structure (e.g.
multi-resolutional representation of the environment) and is highly adaptive to different
scenarios of 3D pointclouds. The experimental evaluation that was conducted showed
that the use of this specific tree structure allows for low computational times, especially
in the initialization procedure, making the algorithm computationally efficient.

As future work, the further development of the algorithm that establishes
correspondences could be considered. More explicitly, the topological properties of a
fully connected graph could be exploited at a higher level, so that the algorithm would
be more accurate and robust to the noise imposed by laser sensors and the deficiencies of
the segmentation algorithm. Moreover, the achievement of more robustness could result
in greater values in the initial assumptions, both in translation and rotation, making the
algorithm suitable for more demanding scenarios. Finally, instead of a fully connected
graph, other less complicated types could be utilized that would conceive better the
structure and the relations between the planar segments.
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