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Abstract 
 

  The scope of this thesis is the investigation of Linear Static Isogeometric Analysis, 

an innovative methodology of complete CAD – CAE integration introduced by J. 

Austin Cottrell, Thomas J.R. Hughes and Yuri Bazilevs. NURBS models have been 

analyzed assuming linear elasticity. Finite Element Method and Non-Uniform 

Rational B-SPLines have been examined separately, as the two components of 

Isogeometric Analysis. The routines, which have been used for the linear static 

analysis of the presented applications, were developed in the high-level language and 

interactive environment “MATLAB”. Additionally, geometrical representations were 

acquired through the NURBS-based software “Rhinoceros 3D”. The topics considered 

are B-SPLine and NURBS entity properties, Refinement techniques, Stiffness Matrix 

Formulation, result post-processing (displacement, stress, strain field) and linear 2D 

and 3D applications investigating models of various representations. 

 

 

 

Σύνοψη 
 

 

 

  Ο στόχος της παρούσας διπλωματικής είναι η διερεύνηση της Γραμμικής 

Ισογεωμετρικής Ανάλυσης, που αποτελεί μια καινοτόμο μεθοδολογία πλήρους 

ενσωμάτωσης των τεχνολογιών CAD – CAE και πρωτοπαρουσιάστηκε από τους J. 

Austin Cottrell, Thomas J.R. Hughes και Yuri Bazilevs. Η ανάλυση 

πραγματοποιήθηκε σε προσομοιώματα NURBS με την παραδοχή γραμμικής 

ελαστικότητας. Η Μέθοδος των Πεπερασμένων Στοιχείων και τα Non-Uniform 

Rational B-SPLines μελετήθηκαν ξεχωριστά, ως τα δύο συστατικά της 

Ισογεωμετρικής Ανάλυσης. Οι ρουτίνες που χρησιμοποιήθηκαν για την γραμμική 

στατική ανάλυση των εφαρμογών αναπτύχθηκαν στην γλώσσα προγραμματισμού 

υψηλού επιπέδου και το διαδραστικό περιβάλλον “MATLAB”.Επιπρόσθετα, οι 

γεωμετρικές αναπαραστάσεις παράχθηκαν μέσω του NURBS-based λογισμικού 

“Rhinoceros 3D”. Τα θέματα που εξετάσθηκαν αφορούν ιδιότητες των οντοτήτων B-

SPLine και NURBS, τεχνικές Διακριτοποίησης, Μόρφωση του Μητρώου 

Στιβαρότητας, επεξεργασία των αποτελεσμάτων (πεδία μετατοπίσεων, τάσεων, 

παραμορφώσεων) και γραμμικές εφαρμογές 2D και 3D με τη διερεύνηση διάφορων 

αναπαραστάσεων. 
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1 The concept of     

Isogeometric Analysis 
 

     

 

1.1 Finite Element Method 
 

 

1.1.1 Historical Overview 
 

Isogeometric Analysis as a historic evolutionary computational mechanics 

achievement 

 

  Isogeometric Analysis is an innovative method, which integrates design and analysis 

in the greatest scale ever achieved. It was conceived by Thomas J.R. Hughes in 2003, 

Professor of Aerospace Engineering and Engineering Mechanics of the University of 

Texas at Austin. 

 

  Thomas J.R. Hughes is one of the greatest experts worldwide in Computational and 

Applied Mathematics. He began his career as a mechanical design engineer at 

Grumman Aerospace and then went on to General Dynamics as a research and 

development engineer. After receiving his Ph.D. from the University of California at 

Berkley, he joined the faculty and moved on to California Institute of Technology. 

Afterwards, he was hired by Stanford University before joining The University of 

Texas at Austin. 

 

 

 
 

Figure 1.1. Thomas Joseph Robert Hughes. 
(http://users.ices.utexas.edu/~hughes/) 

  

http://users.ices.utexas.edu/~hughes/
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  Isogeometric Analysis is set to bridge the gap that exists between Computer-Aided 

Design and Computer-Aided Engineering. Thomas J.R. Hughes published a book in 

2009, along with J.A. Cottrell and Y. Bazilevs, explaining the fundamentals of this 

new method. The book, “Isogeometric Analysis: Towards Integration of CAD and 

FEA” is the first book to be issued on this new field of study and a trustworthy guide 

to the researchers that want to invest in this method. It contains a vast number of 

applications of Isogeometric Analysis, potential resources for the new researcher, 

advantages of the new method and future fields of study. The application of 

Isogeometric Methods can lead to results and improvements in computational 

mechanics, structural statics and dynamics and biomechanics. 

 

 

The need for Isogeometric Analysis 

 

  The compelling need for a new method had to be met; greater challenges in Finite 

Element Analysis were arising every day, demanding faster and more precise results. 

Even nowadays, although structures worldwide are designed using Finite Element 

Method instead of the traditional by-hand ways, design errors cannot be avoided. 

Since 2000, structural collapse cost humanity over 1500 lives; many of them could 

have been spared, had the engineer a more accurate tool for analysis and design. 

Unfortunately, present analysis technologies require a lot of man-hours for manual 

generation of approximated, FEM-suitable geometries and consequently they derive 

the engineer from his main task and force him to devote less time in result evaluation. 

The risk is even greater, considering the mistakes the engineer can make during this 

transformation. Furthermore, the approximation of the geometry sometimes is clearly 

not enough for the desired convergence. These are the gaps that Isogeometric 

Analysis is set to fill. In order to fully understand Isogeometric Analysis, one has to 

acknowledge the evolution of Analysis throughout its history and understand the 

principles this revolutionary method is based on. This introduction provides the 

historical review of the technologies and the requirements of structural analysis that 

led to the creation of this new method. 

 

 

Before Finite Element Method 

 

  Engineers of the past had to meet the demands for structural analysis and 

representation of accurate results. Construction always needed the cost-efficiency 

provided by design. In the early years, the only weapon the engineer possessed was 

his mind. In order to solve a statically indeterminate structure, Equilibrium, 

Constitutive and Compatibility Laws had to be applied. Several methods existed in 

order to solve the problem.  

 

  The Force Method used the Betti-Maxwell Theorem in combination with virtual 

works in order to provide support forces and moments. The main idea is the 

preservation of Equilibrium and calculation of forces, in order to ensure 

Compatibility. 

 

  The Displacement Method, on the other hand, ensures Compatibility is maintained 

and Equilibrium is achieved via calculation of displacements.  
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  The Moment Distribution Method, also known as the Cross Method, relies upon 

computational iteration cycles to an initial moment distribution, until the desired 

approximation is achieved. It only yields results for bending effects and ignores axial 

and shear tension, but its efficiency made it very popular among the engineers in the 

1930s. 

 

  These methods had their limits; a vast amount of time was required for the solution 

and many errors would occur in the manual computational process. More complex 

problems could only be approximated and sometimes analysts had to solve 

differential equations by hand in order to obtain the solution. 

 

 

Finite Element Method 
 

  Structural Analysis has been a major part of the engineering field of practice. The 

knowledge of a structure’s reaction to certain loads enhances its safety and makes it 

cost-effective. It has a wide field of application, including buildings, bridges, 

airplanes, space shuttles, ships, satellites, nuclear stations and much more. At first, 

engineers used methods obtained from the solution of differential equations in order 

to evaluate the stress, strain and displacement conditions of the structure. Structural 

mechanics theorems were developed and used in order to solve the computational 

problem. These served their purpose well for relatively simple, everyday linear 

problems. However, new technologies emerged and the constant demand for faster, 

more accurate solutions to complicated problems had to be met. 

 

  Early computer models had made their appearance and engineering scientists were 

eager to use them in their problems. The birth of Finite Element Methods can be 

placed at the late stages of World War II. Structural Engineers working for the Royal 

Aeronautical Society of London had to design an innovative type of combat jet 

aircraft whose speed required swept-back wings. Unfortunately, none of the existing 

theories could fit to solve such a complex problem. The failure of the German ME262 

was palpable proof of that matter. 

 

  This challenging task was assigned to one of the brightest minds of the Royal 

Aeronautical Society of London, John Argyris. Argyris was born in Greece, Volos in 

1913 and had studied Civil Engineering at National Technical University of Athens. 

 

 

 
 

Figure 1.2. John Argyris. 
(http://www.nae.edu/27953.aspx) 

  

http://www.nae.edu/27953.aspx
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Figure 1.3. City of Volos. Central Greece. John Argyris Birthplace. 
(http://www.greekscapes.gr/~landscapesatlas) 

 

 

  John Argyris graduated from Technical University of Munich in 1936 and had begun 

to work in industrial applications of complex structures. He remained in Germany at 

the beginning of World War II and was accused of giving research info to the Allies, 

arrested and sent to a concentration camp when the Axis invaded Greece. He was 

rescued by a German Admiral, Kanaris, who was of Greek ancestry as well. After 

breaking out from the concentration camp, Argyris escaped to Switzerland by 

swimming through the Rhine river, in the middle of a raid holding his passport with 

his teeth. He finished his Doctoral Degree in Aeronautics from ETH, Zurich in 1942. 

Afterwards he moved to England and was engaged with the Royal Aeronautical 

Society of London, working as a technical officer. As a researcher, he was really 

skeptical with Cartesian coordinate systems and the way they were used in 

engineering. He believed that triangular and tetrahedral elements were far more 

suitable for engineering applications. John Argyris was not devoted to everyday 

problems, but would rather get busy with difficult, apparently unsolvable problems. 

His superiors quickly recognized this trait and he in return welcomed the challenges 

he was given, including the swept-back wings aircraft problem.  

 

  It seems he was the right man for the job. In August 1943, after 3 days and nights of 

devotion to the problem, he had a breakthrough. He used triangular elements to 

simulate the swept-back wings and solved the model in the electro-mechanical 

computing device the Society had recently acquired. The device was able to solve an 

equation with up to 64 unknowns. Analysis results were very close to the 

experimental results, with a deviation of approximately 8 %. This was the birth of the 

Finite Element Method (FEM). All relative papers were at once labeled “secret”. This 

innovative method included a different measurement of stresses and strains, diverging 

from the classical Cartesian field and was proving to be useful and easily generalized. 

 

  In the following years, the “Matrix Force and Displacement Method”, mostly known 

as “Finite Element Method” (or, as Ray Clough wrote in 1960, “The Argyris 

Method”) was developed by many researchers, including Turner, Clough, 

Zienkiewicz and Cheung. Argyris resumed his academic career with drastic 

contributions to the research and development of Finite Element Method as well as 

many other aspects of the Engineering field until he was 88 years old. He invented, 

among others, the triangular element TRIC and is also well known for the 

contribution to the solution of the heat protection problem for the NASA space shuttle 

during the entrance in the atmosphere. He passed away in April 2004 [15].  

http://www.greekscapes.gr/~landscapesatlas
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  Due to the swift evolution of computational speed and memory capacity, FEM 

became very popular within the engineering industry. Millions of dollars were 

invested in its development. New FEM technologies emerged, such as the 

isoparametric elements. These allowed for a more general approach and a better 

adaptation to complex geometries. 

 

  NTUA Professor Papardakakis Manolis has devoted his career in the evolution and 

outspread of FEM technologies. Nowadays, in the middle of the financial crisis in 

Greece, NTUA’s Institute of Structural Analysis and Antiseismic Research has a 

remarkable research portfolio to show, always being up to date with the latest 

technological trends. Bright young minds are given a chance to shine, in National 

Technical University of Athens, continuing and improving the cycle of expanding the 

boundaries of human knowledge. 

 

  In the dawn of 2000, the structural engineering field has changed drastically. 

Personal computers and a variety of FEM software are now available to engineers. All 

the hard work done so many years ago by hand is now avoided. Greater speeds and 

bigger rates of convergence are achieved every other month. Problems once thought 

to remain unsolved now seem common and relatively easy. Finite Elements are used 

in a wide range of computational analysis, such as structural and dynamic analysis, 

fluid mechanics, biomechanics, earthquake engineering and many more. The modern 

engineer does not need to solve complex mathematical equations by hand, but has to 

pursue a global and thorough understanding of his field of study as well as knowledge 

of the innovative computational methods. 

 

  The engineering software market consists of many products devoted to the analysis 

of FEM models. There are generalized and more theoretical software that can solve 

almost any type of structure. NASTRAN, a widely used FEM platform, was originally 

developed by NASA in the 1960s in order to cover the Agency’s special needs [17]. 

Simulia Abaqus, originally released in 1978, was developed using an open-source 

language, Python and was initially intended for non-linear problems. It is particularly 

popular due to its wide range of Modeling capabilities, both for linear and non-linear 

problems [16]. ADINA (Automatic Dynamic Incremental Non-Linear Analysis) , first 

developed in 1974, is used in a wide range of non-linear problems. It has applications 

in static and dynamic analysis, heat transfer, compressible and incompressible flows 

and electromagnetic phenomena [19]. FEMAP (Finite Element Modeling and Post-

processing) is used as an input creation and output processing tool for the engineers. It 

cooperates with the solver routines from other platforms (e.g. NASTRAN) and 

focuses on the easy and accurate communication between software and user [20]. 

 

  Specialized software is also available in the engineering market. The specific 

characteristics and complexity of today’s structures require a more personal and 

delicate approach. ATENA, standing for Advanced Tool for Engineering Non-Linear 

Analysis, is specialized in everything to do with reinforced concrete structures [18]. 

SOFiSTIK, first used in 1987, is directed towards bridge linear and non-linear 

analysis [22]. Furthermore, there are platforms dedicated to the special needs of the 

Greek market. Designing structures in the country with the biggest seismic activity in 

Europe is not an easy task. StereoSTATIKA is suitable for reinforced concrete 

analysis in countries with dangerous seismic activity [21]. FESPA is a Greek software 

dedicated to analysis and design of reinforced concrete and steel buildings [23].  
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1.1.2 Basic Idea of Finite Element Method 
 
  According to [2], the Basic Idea behind Finite Element Method is the approximation 

of the solution field via piecewise polynomial functions, called the shape functions N

. Displacement values U at any internal point of the element can be computed from 

displacements at nodes d : 

 

 

  
 

 
 

 
 ee3 1 3n 13 3n

U(X,Y,Z) N(X,Y,Z) d
 

   

 

where ne is the number of the finite elements. 

 

  A generalization for the whole structure leads to 

 

 
   

 
 

S S S

3 3n3 1 3n 1

U (X,Y, Z) N (X,Y, Z) d
 

     

 

  The problem is directly downsized from infinite unknowns to a finite number of 

degrees of freedom. The next step is to define stress and strain matrices and their 

interconnection, which represents Hooke’s Constitutive Law. 

 

       3D case

 

 

 

 

 

 

    
   
 
   
    

      
    
    
   
       

 

 

           

 

  Deformation Matrix [B] evaluates strains anywhere in the model from nodal 

displacements. 

 

      , , ( , , ) d           

 

  Using internal and external virtual work equilibrium, we can evaluate the Stiffness 

Matrix [k] for each element 

 

 
 

 
 

 
 

 
 e e e e

T

3n 3n 3n 6 6 6 6 3nV

k B E B dV
   

  
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  In the same manner, distributed loads can be transformed into equivalent nodal 

loads. 

 

 
 

 
 

 
 e e

T

3n 1 3 13n 3V

r N f dV
 

   

 

  The contribution of each element is added to the global matrices, producing the 

global Stiffness Matrix [K] and the Force Vector {R}. The Displacement Matrix can 

now be calculated from: 

 

 
 

 
 

 
 3n 1 3n 13n 3n

R K D
 

   

 

where n is the number of the nodes. 

 

  We can observe that (naturally) shape functions [N] and deformation matrix [B] 

depend on the Cartesian coordinates. This leads to iteration problems when complex 

geometries (e.g. circles or conic sections in general) are involved. The solution, which 

contributed to the further generalization of FEM, along with a more efficient iteration 

algorithm, is isoparametric elements. The basic idea is the existence of a parent 

element in the parameter space, which can be modeled as a regular shape (e.g. a cube, 

square or an equilateral triangle). Each element in the physical space (the “real” 

modeling space) can be described using a linear combination of the parent element’s 

shape functions. Hence, geometry can be approximated by the same functions used 

for the solution field. This explains the name “isoparametric”. 

 

 

1.1.3 Drawbacks 
 
  Despite the evolution of FEM all this time, some problems have yet to be solved. For 

one, even isoparametric elements can only produce an approximation of geometry. 

The most challenging tasks of the day often require exact geometrical representation 

in order to achieve the necessary accuracy. After the meshing has been completed, the 

initial geometry plays no more role in the analysis procedure. This is intuitively 

worrying, to begin with. Furthermore, it produces a vast number of problems. The 

inevitable geometrical approximation means there will be convergence errors by 

definition, regardless of the solution methods and the available computational power. 

This affects the efficiency of the computational methods used for the solution.  

 

  If a finer mesh is required, refinement algorithms will return to the initial geometry 

and produce a different approximation. The new, fine mesh cannot be directly 

produced from the coarse mesh. Efficiency is certainly at a low, as procedures already 

completed have to be repeated in order for the new mesh to be created. Precious 

analysis time is required and the geometrical differences between the coarse and fine 

mesh make it difficult to compare the results. Hierarchical structures provide even 

greater challenges. Hierarchical refinement is considered an efficient refinement 

technique, as it focuses on the crucial areas of the model, but it is not easily applicable 

in FEM meshes.  
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  The lack of integration between geometry and mesh generation is crucial. 

Computational geometry provides simply an input file for the meshing of the finite 

element model. Exact geometrical representation is not reflected in the new mesh, nor 

is the smoothness of the initial model, which leads to a slightly different model that 

analysis solves. Even for a small change in the geometrical model, reintegration and 

new mesh generation is required. This process is frustrating and pointless for the 

modern engineer; instead of devoting his time in creativity and design, he has to 

undergo the mundane task of regenerating a slightly different mesh over and over 

again. Many design errors are attributed to this task. In structural design, a vast 

amount of time is spent on these integration cycles between initial, preliminary and 

final design phases. The risk is even greater in complex and innovative structures, 

where the engineers cannot know beforehand what structural results to expect and 

have almost no way of checking the accuracy of the analysis. 

 

  Computational geometry has evolved since its birth; new and optimized geometrical 

structures are being used more often nowadays. Finite Element geometries fail to keep 

up with that pace and as a result, Computer-Aided Engineering is separated even more 

from Computer-Aided Design. Finite Elements cannot cooperate with the modern 

technologies of T-SPLines and Subdivision Surfaces. These problems had always 

been present throughout the history of Finite Elements. Complicated computational 

methods and algorithms have been developed in order to overcome them. The 

problem is that the nature of FEM does not allow for significant steps toward CAD-

FEM integration. Improvements to the basic structure of Finite Elements are difficult 

and quite inefficient. 

 

  Figure 1.4 depicts a wine glass. In order to create this object, a designer has to define 

the following variables: 

 degree of shape functions for each parametric axis 

 knot value vector for each parametric axis 

 control points (Cartesian coordinates and weights). 

 

 

 
 

Figure 1.4. Wine glass. Geometry Design.  
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  As a result, a mesh of finite elements is created, the “geometry mesh”, which 

surprisingly is not used by FEM software, which instead creates a new approximate 

one. Figure 1.5 represents the initial geometry mesh of the wine glass with the 

corresponding control net. 

 

 
 

Figure 1.5. Wine glass. Geometry Initial Mesh. 

 

  With the previous initial mesh, a designer can represent exactly the wine glass, but 

an engineer cannot analyze it accurately and has to apply refinement in order to 

increase the accuracy of the solution field. Figure 1.6 shows a finer mesh of the wine 

glass for both cases. In FEA, the smooth surface of the cup participates only as input 

in FEM software and is thereafter replaced by quad finite elements. In IGA, the 

geometry remains intact and the mesh is the exact geometrical model. 

 

 
 

Figure 1.6. Wine glass. Fine FEA Mesh (left one). Fine IGA Mesh.  
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1.2 Computer Aided Design 
 

 

1.2.1 Historical Overview 
 

Isogeometric Analysis as a historic evolutionary computational design 

achievement 

 

  The evolution of computing systems made the option to design on a platform very 

attractive. Drafts could be edited easily and data could be stored and transferred at 

much higher speeds. Computer Aided Design has many applications in today’s world 

and a huge industrial support. Computer-generated imagery (CGI) is used in movies 

even more often; 3D and 2D cartoons are drafted and animated through computer 

software. Engineers draft complex designs such as cars, space shuttles, long span 

bridges and so on, one piece at a time in a computer. All the drafts can be edited and 

the escalation to optimized drafting is easier than ever. Designers’ time is now being 

devoted to creative thinking and taking ideas to the next level, rather than useless 

drafting by hand for hours. However, there is still room for improvement. 

Computational geometry is involved in a vast number of engineering applications and 

should not be considered independently. Design entities are supposed to cooperate 

with Finite Element Methods. Reinventing and improving computational geometry 

structures is the first step in completing this task. In order to understand the modern 

and future world of Computer-Aided Design, one has to study the history, the creation 

and the necessities that led to the creation of computational geometry entities. 

 

  Computer Aided Design (CAD) emerged in the 1950s from the automotive, shipyard 

and aircraft industries. In those times, designers were able to produce accurate drafts 

by hand, but when ship cross sections had to be drafted in real-life size, pencils could 

not help anymore and things became a bit more complex. The main problem was the 

definition of a real-size curve, which smoothly interpolated several predetermined 

points in order to create the shell of the ship. This task was usually carried out in the 

loft of a building, due to the large amount of space needed. The loftsman, as he was 

called, used easy-to-bend pieces of steel or wood, the spline, in order to interpolate 

the points. In order to maintain the spline’s shape, he usually put weights on them on 

certain points. Anything ring a bell so far [24]? 

 

 

 
 

Figure 1.7. Original Splines and Weights (called Ducks). 
(http://www.boatdesign.net)  
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  The development of NURBS arose from the need to effectively represent freeform 

surfaces. Two engineers in France stood at the forefront of this approach, Pierre 

Bezier from Renault and Paul de Casteljau from Citroen. Bezier’s work was the first 

to reach publication, and soon after the CAD industry started using and enhancing 

Bezier curves. However, certain disadvantages of Bezier curves led to the search for 

more convenient forms of representation. Researchers finally introduced B-SPLines, 

which were similar to Bezier curves, meaning that the curve was defined by a set of 

points, called the “control points”, but their number was independent of the 

polynomial order of the curve. B-SPLines were a generalization of Bezier curves, but 

they were also more convenient to edit; changing a point no longer changed the whole 

curve, but only part of it. 

 

  Another problem is that even B-SPLines cannot produce an exact representation of 

conic sections. This is where NURBS came along. Ken Versprille was the first to 

work with NURBS on his dissertation in 1975. Later, when he acquired a top position 

in Computervision, the company began to support NURBS. Boeing, in its ambitious 

project to create a single curve representation that included Bezier curves and conic 

sections, became the first to industrialize NURBS [26]. 

 

  After that, NURBS began to spread across the CAD industry. They possessed a lot 

of interesting attributes. The parameterization of the whole curve was downsized to a 

few control points coordinates, numerically stable mathematical procedures and easy 

modification. Cartoon characters, videogame graphics, ships, cars, airplanes were 

designed using NUBRS. This led to major investments from research and industrial 

faculties. Graphic designers became accustomed to them and students were taught 

about the theory and implementation of NURBS in real-life problems. This cycle led 

to the increasing popularity of Non-Uniform Rational B-SPLines in the CAD industry 

[25]. 

 

 
 

 
 

Figure 1.5. Entities created by NURBS. 
(http://www.smcars.net/threads)(http://www.turbosquid.com)  

http://www.smcars.net/threads
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  Today, even though many other forms of more suitable representations exist, such as 

T-SPLines, Polycube SPLines and Subdivision surfaces, NURBS still hold a large 

share of the market. Many platforms exist for NURBS and designers still find it easier 

to use them. Many handful tools have been developed over the years for them (knot 

insertion, order elevation, curve fitting, patching). This makes them more attractive 

and easy-to-use than newer techniques with less industry experience behind them. 

 

 
Car (http://asakomiyamori.blogspot.gr/) 

 

 
Castle (http://asakomiyamori.blogspot.gr/) 

 

 
Motorbike (http://kawasaki.turbosquid.com/3d-Models/3ds/max/xsi/c4d/obj) 

 
Figure 1.6. Entities created by Subdivision Surfaces.  

http://asakomiyamori.blogspot.gr/
http://asakomiyamori.blogspot.gr/
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1.3 Isogeometric Analysis 
 

  The usual design process requires both exact geometrical representation of the model 

and accurate engineering results. Unfortunately, computational geometry and Finite 

Element Method are represented in different file types and are not compatible to each 

other. The engineer has to create a model for FEM solution and the designer a model 

for CAD representation. Moreover, the typical design process is not straightforward. 

The designer produces CAD designs, which are transformed into FEM-compatible 

forms of representation by the analyst. After generating mesh and obtaining results, 

the analyst informs the designer of the appropriate changes in geometry. The designer 

then gives the new CAD model to the engineer, who has to regenerate the FEM model 

and the new mesh. This cycle of CAD/CAE interaction can go on multiple times. In 

complex projects each design consists of numerous CAD entities combined together 

and the integration process is estimated to take up at around 80% of the whole design 

time. Researchers around the world have been trying to achieve automatic CAD/CAE 

integration. 

 

  The main problem is that CAD and FEM, even though they refer to the same object, 

evolved differently. This incompatibility drove researchers into separate roads, 

building a wall between the two methods. Thomas J.R. Hughes, a Professor of 

Aerospace Engineering and Engineering Mechanics at the University of Texas at 

Austin, came up with a different point of view. Instead of trying to connect present 

CAD and CAE formulas, we should reinvent them in ways that enable the integration. 

This is the scope of Isogeometric Analysis. 

 

  The basic idea is to exploit the functions used for the exact geometrical 

representation in order to describe the solution field. Isogeometric Analysis extends, 

in essence, isoparametric elements, but the process of altering geometry for the sake 

of the solution approximation is reversed.  

 

  This leads to the creation of a single model, capable both of exact representation and 

analysis. Designers and engineers will be working on the same platform. Time for 

meshing and entity translation will be eliminated in an instant. This direct contact 

between analysis and geometry means that every single change can be integrated as 

soon as it happens, with no risk of errors or timely tasks involved. Most importantly, 

the designer has to follow the engineer’s perspective and vice versa; the modern 

designer has to learn how to help the engineer and the modern engineer has to learn 

the methods the designer is using. 

 

  Isogeometric Analysis brings together two very different technologies, combining 

their best points to one. This leads to a better adaptation both from engineers and 

designers. In order to understand and improve Isogeometric Analysis, it simply needs 

to improve its counterparts. Finite element and computational geometry codes need 

not change drastically. This makes the new technology even more attractive. 

Understanding the basics of an innovation and implementation in the daily routine is 

usually a difficult and time-consuming task. 
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  There are many geometrical forms of representation suitable for analysis, such as 

NURBS, T-SPLines, Polycube SPLines and Subdivision surfaces. Each entity has its 

own advantages and drawbacks, but the variety provided ensures a vast number of 

alternatives to use, depending on the case. This ensures the generalization of 

Isogeometric Analysis method to even more complex geometries. 

 

  FEM’s shape functions are defined only in the interior of the element. Each element 

has 
1C
 continuity in the edges. IGA’s shape functions are not contained in one 

element. Most of the times, they are defined through many elements. This ensures a 

greater continuity and interconnectivity. This different approximation works better 

and leads to greater convergence than the classical methods. 

 

  Refinement by order elevation or knot insertion has always been important for 

computational geometry. Hierarchical adaptation has been developed for a vast 

number of entities. All these technologies can be exploited by IGA. Hierarchical 

structures can be easily developed, straight from the geometrical model. Meshing and 

refinement is also immediately accomplished. 
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2 Basic Ingredients of 

Isogeometric Analysis 
 

 

 

2.1 Introduction 
 

 

  Until recently, the majority of CAD software users had not realized that by designing 

a model, they simultaneously created its corresponding mesh of finite elements. This 

information, although redundant for designers devoted to computational geometry, is 

a revolutionary remark for the engineering community. Before Thomas J.R. Hughes’ 

idea, known as IsoGeometric Analysis (IGA), engineers used to create a new 

approximate mesh instead of taking advantage of the existing accurate one. The 

additional geometry error makes the process less accurate, though more time-

consuming. This observation seems now very obvious, but it took years of research 

until 2003, when Thomas J.R. Hughes and his research team succeeded to cut the 

Gordian Knot of CAD – CAE integration. 

 

  The main idea is the elimination of the node mesh in the analysis process. The role 

and properties of the node mesh are inherited by two separate meshes, obtained 

directly from the geometrical representation: 

 

 The Control Point mesh, which defines geometry and the finite number of 

degrees of freedom that form the problem equation. 

 

 The Knot mesh, which provides appropriate discretization for numerical 

integration and boundaries for Shape function influence in the model. 

 

  For the scope of this thesis, I have worked exclusively with Non-Uniform Rational 

B-SPLines (NURBS), as they are the most commonly used computational geometry 

technology. Despite the fact that quite more advanced SPLines have emerged, CAD 

industry still invests in NURBS. Since 1970, billions of dollars have been directed 

towards the outspread and evolution of NURBS, establishing them as a common tool 

for graphic representation around the globe. Both professionals and amateurs still use 

NURBS despite their disadvantages, such as difficulties in Patch connection and local 

Refinement. The reason for this is that NURBS are not only much more simple in 

their definition and use, but also able to represent with accuracy smooth curves and all 

conic sections. 
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2.2 Index, Parameter and Physical Space 
 

 

  In most occasions, the exact solution of a natural problem is neither possible nor 

necessary. The actual objective is to find an accurate solution that satisfies a selected 

convergence criterion. The ultimate challenge for an engineer is to balance between 

accuracy and time. Design and analysis of extraordinary geometries is a powerful 

asset for modern engineers, who are capable of facing surprisingly more complicated 

problems. Accurate geometrical representations of the natural model are designed in 

the familiar Cartesian system, called Physical Space. Additionally, it is very helpful to 

envision a complex structure in an imaginary, basic space, where all geometries can 

be represented as lines, rectangles and cuboids. This is Parameter Space. This 

approach is far from new; it is already known from the isoparametric concept in Finite 

Element Methods. The Parameter Space utilized in Isogeometric Analysis, however, 

holds some major differences. Furthermore, Isogeometric Analysis also introduces the 

Index Space. This additional space plays an important role for some kinds of SPLines, 

but it is only auxiliary for NURBS. 

 

 
 (a) (b) 

 

 
(c) 

 
Figure 2.1. B-SPLine solid. 

(a) Index Space (b) Parameter Space 

(c) Physical Space  
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2.2.1 Index Space 
 

  Index Space is a representation of the model with respect to Knot Values. It is a line 

in 1D, containing the corresponding Knot Values in equally spaced positions. This 

space focuses upon the sequence of Knot Values rather than their actual numerical 

content. 

 

  Index Space describes the contribution of each Knot Value to the creation of a 

certain B-SPLine basis function. This helps identify the level of interconnection 

between basis functions and the Knot Value support of each function. 

 

  Control Points are also evaluated in the Index Space. In fact, Control Points are 

defined as the center of the support of Knot Value Spans. 

 

  Expansion to 2D or 3D leads to the creation of rectangles or cuboids respectively. 

Due to tensor product properties, everything mentioned about 1D extends and applies 

to both 2D and 3D. Thus, Index Space provides information that can contribute to the 

comprehension of a complex representation. 

 

 

 
(a) 

 

 
(b) 

 
Figure 2.2. (a) Curve and (b) Surface represented in Index Space  
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2.2.2 Parameter Space 
 

  Parameter Space is a representation of the model with respect to Knots. SPLine 

entities are always represented as orthogonal shapes in Parameter Space. Only lines, 

rectangles and cuboids exist here. In order to transform those simple patterns to 

virtually unlimited, complex geometries, the application of a mapping from Parameter 

to Physical Space is required. Hence, Parameter Space is a primitive, abstract 

representation of Physical Space. The mapping between Parameter Space and 

Physical Space is achieved through the Jacobian Matrix and its inverse. This is 

something widely utilized in FEM as well. 

 

  The illustration of basis functions in the Parameter Space allows for a better 

understanding of concepts such as support, Control Point coordinates and the role of 

Knots in basis function creation. Each Knot marks the beginning and the end of a 

basis function domain. By “domain” we mean the area in which the basis function is 

non-zero, as all basis functions are defined throughout the Parameter Space, but are 

non-zero only in specific Knot Spans. Basis functions sharing the same domain are 

overlapping in Parameter Space and controlling a common part of the entity in the 

Physical Space. 

 

 
(a) 

 

 
(b) 

 
Figure 2.3. (a) Curve and (b) Surface represented in Parameter Space  



Basic Ingredients of Isogeometric Analysis  19 

 

 

2.2.3 Physical Space 
 

  Physical Space is the already known Cartesian Space, where the real model is 

represented. Simple orthogonal shapes from Parameter Space are transformed into 

complex entities in the Physical Space. Physical coordinates of the Control Points 

play a major role in the aforementioned mapping, but an equally drastic role is set 

upon basis functions. In fact, for a given set of Control Points, only a single set of 

basis functions can lead to the same geometry. We will examine this thoroughly later. 

 

  Control Points can often be seen outside the model in Physical Space in contrast to 

FEM’s nodes which always belong to the mesh. It is one of the reasons NURBS and 

SPLine entities in general can accurately represent multiple types of geometries and 

the understanding of this peculiarity is one of the many challenges of Isogeometric 

Analysis. 

 

 

 
(a) 

 

 
(b) 

 
Figure 2.4. (a) Curve and (b) Surface represented in Physical Space 
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2.3 B-SPLine Geometries 
 

 

2.3.1 B-SPLine Basis Functions 
 

  Given a sequence of non-decreasing numbers,  1 2 n p n p 1...         , we 

can evaluate the B-SPLine basis functions at 1 n p 1,  
      using the Cox-de Boor 

recursive formula [1]: 

 

  First, for degree p 0  (piecewise constant, Box B-SPLine) 

 

i i 1

i,0

1, if  
N ( )

0, otherwise

    
  


 

 

  The piecewise constant does not include the right edge i 1  in order to ensure 

partition of unity, as the next basis function begins at that edge. The last function, 

however, includes both left and right edge, in order to be defined for the whole Knot 

Span. 

 

n p n p 1

n p,0

1, if  
N ( )

0, otherwise

  



    
  


 

 

  Afterwards, for degree p 1,2,... : 

 

i p 1i
i,p i,p 1 i 1,p 1

i p i i p 1 i 1

N ( ) N ( ) N ( )
 

  

   

 
      

   
 

 

with the assumption of 
0

0
0

. 

 

  We keep the same symbols with [1], which is quite popular, because we want the 

reader to browse through this thesis conveniently. In the software implementation of 

this method, however, we discourage the use of symbolizations and instead represent 

the variables with full names. 
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2.3.2 Knot Value Vector as Boundary of Basis 

Functions Support 
 

  Knots define the boundaries of the model’s basis functions. They represent 

“switches” which turn “on” or “off” a certain piece of a B-SPLine basis function. In 

order to acquire the Knots and the basis functions, a Knot Vector must be defined. 

 

  A Knot Vector   is usually defined in bibliography as a set of coordinates i , with 

i i 1   . It can contain the same number multiple times and generates the basis in a 

unique way. 

 

  In order to improve efficiency and communication between members of GiGA 

Team, we define as  

 

 “Knot Value Vector”: the whole set of non-decreasing coordinates (“Knot 

Values”). 

 

 “Knot Vector”: the set of unique coordinates (“Knots”). 

 

  For example, a Knot Value Vector could be  0 1 1 1 2 2 3 3  where 

0, 1, 1, 1, 2, 2, 3, 3  are the separate Knot Values. The corresponding Knot Vector is 

 0 1 2 3  where 0, 1, 2, 3 are the separate Knots. 

 

  Let p  be the polynomial degree of the basis function. If the first and the last Knots 

are repeated p 1  times, the Knot Value Vector is considered “Open”, because it has 
1C
 Continuity on the edges, creating an open curve that is interpolatory at these 

points. If Knot Values are equally spaced, the Knot Value Vector is considered 

“Uniform”. In CAD community, non-uniform, open Knot Value Vectors are widely 

used. An example of such a Knot Value Vector with p 2  is:  

 

 0 0 0 0.5 1 1.5 2 2.5 3 3 3  

 

  A Knot Value Vector may contain integers or decimals. In fact, the actual numerical 

content of Knot Values is of no importance. What matters is the relative distance 

between them. This means a Knot Value Vector can be multiplied by any number, or 

have a number added to every Knot Value and the resulting basis would still be the 

same.  

 

  In GiGA Team, we generally prefer to use Knot Value Vectors that start from 0 and 

span by 1, as it is more convenient for the human mind to use an integer system. 
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2.3.3 Control Points as the Center of the Support 
 

  Control Points exist in all three spaces. Their parametric coordinates are defined as 

the center of the support in the Index Space. Recall that for the thi  basis function of 

order p  the support is i i p 1,  
  . The support contains p 1  Knot Value Spans, 

therefore p 2  Knot Values (including the right boundary value 
i p 1  ). 

 

  For even degrees, the center of the support in the Index Space lies between two 

sequential Knot Values, 
p

i
2

  and
p

i 1
2

  . As a result, the coordinate of the Control 

Point is defined as the average of these Knot Values: 

 

CP p p
i i 1

2 2

0.5
  

 
      

 
 

 

which means that a Control Point of even degree can either be on a Knot, or in the 

middle of a Knot Span. 

 

  For odd degrees, the center of the support is the Knot Value 
p 1

i
2


 . Therefore, for 

odd degrees, Control Points are always coincident with Knots. 

 

2.3.4 Full Tensor Product as a characteristic of B-

SPLine Basis Functions 
 

  B-SPLine basis functions are of full-tensor product nature. Consequently, it is easy 

to combine B-SPLines across different directions, in order to evaluate a multi-

directional B-SPLine Shape function.  

 

  2D B-SPLine Shape functions can be evaluated as tensor product of basis functions 

i,pN ( )  and  j,qM  : 

 

 p,q

i, j i,p j,qR , N ( ) M ( )       

 

  3D B-SPLine Shape functions are a tensor product of basis functions on three 

directions, 
i,pN ( ) ,  j,qM   and  k,rL  : 

 

   p,q,r

i, j,k i,p j,q k,rR ( , , ) N ( ) M L          

 

  It is understood that all properties of B-SPLine basis functions in one direction are 

inherited by the multi-directional Shape functions. As a result, thorough adaptation to 

one-directional B-SPLine basis function properties and techniques is very important 

for understanding multi-directional complex geometries.  
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2.3.5 B-SPLine Basis Function Properties 
 

  According to “The NURBS Book” [3], B-SPLine basis functions possess the 

following important properties: 

 

1. Local support: 

i,pN ( ) 0  i i p 1,  
    

 

2. In any given Knot Span, at most p 1  functions of order p  are non-zero. 

 

3. Nonnegativity:  

i,pN ( ) 0 ,i,p     

4. Partition of unity: 
n

i,p

i 1

N ( ) 1 ,p


     

 

5. p mC 
 Continuity across Knots with multiplicity m . 

 

6. 
i,pN ( )  has exactly one maximum value, except for p=0. 

 

7. A non-periodic Knot Value Vector that produces n functions of order p  has 

n p 1   Knot Values. 

 

8. Every B-SPLine basis function shares support with 2p  B-SPLines.  

 

 

2.3.5.1 Local support 

 

  Local support means that basis functions are non-zero only in certain Knot Spans in 

Parameter Space. This can be expressed by 

 

i,pN ( ) 0   i i p 1,  
    

 

  Local support is a result of the recursive character of B-SPLines. For the creation of 

a B-SPLine function of degree p , two consecutive B-SPLine functions of order p 1  

are used. For the creation of those consecutive basis functions, three consecutive 

functions of order p 2  are needed. Inductively, p 1  consecutive box basis functions 

are required. 

 

  Each box function has a support of one Knot Value Span. As a result, the support of 

the final basis function is defined by the union of the supports of the box functions, 

hence p 1  consecutive Knot Value Spans. 
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Figure 2.5. Lower-order basis functions required for the creation of 5,3N ( ) .  

 

 

  In Figure 2.5, the recursive character of B-SPLines is represented. The box 

functions, drawn in red, are required in order to build the linear basis functions, drawn 

in green. Linear functions are combined for the evaluation of quadratic  p 2  basis 

functions. Bear in mind that some linear and box functions are zero across the entire 

domain, but still contribute to the evaluation of the next-order B-SPLines. 

 

 
 

Figure 2.6. B-SPLine recursive character. 

Basis functions required for the evaluation of a quadratic B-SPLine function. 

 

 

  For example, 
4,2N ( )  in Figure 2.6 is created from 

4,1N ( )  and 
5,1N ( ) . They, in 

turn, are evaluated from 
4,0N ( ) , 

5,0N ( )  and 
5,0N ( ) , 

6,0N ( )  respectively. The 

corresponding box functions are non-zero in the Knot Spans  1,2 ,  2,3  and  2,3 , 

 3,4 , thus creating the support  1,4  of 
4,2N ( ) .  
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  In a similar fashion, a support can be defined with respect to Knot Values 

contributing to the creation of a B-SPLine basis function. These are the p 2  Knot 

Values that are contained in the Knot Value Span support of the function. Both Knot 

Value Span Support and Knot Value Support are necessary for the understanding of 

Isogeometric Methods. 

 

 
Figure 2.7. B-SPLine Basis functions for Knot Value Vector .

 0 0 0 0 0 1 2 3 4 5 5 5 5 6 6 6 6 6   

1D Shape Function 5,4N ( )  

 

  In Figure 2.7, the degree is p 4 , so each basis function has a support of 

p 1 4 1 5     Knot Value Spans. The selected function 
5,4N ( ) , drawn in red, is 

non-zero only in the Knot Value Spans  0,1 ,  1,2 ,  2,3 ,  3,4  and  4,5 . The 

p 2 6   Knot Values that define this function are  0,1,2,3,4,5  shown in green. 

There are no trivial spans in this B-SPLine function, so it is considered a fully 

developed basis function.  

 

  Bear in mind that Knot Values can be repeated, thus forming trivial spans. 

 

 
Figure 2.8. B-SPLine Basis functions for Knot Value Vector .

 0 0 0 0 0 1 2 3 4 5 5 5 5 6 6 6 6 6   

1D Shape function 6,4N ( )  
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  In Figure 2,8 
6,4N ( )  is highlighted. This function is non-zero in the Knot Value 

Spans  1,2 ,  2,3 ,  3,4 ,  4,5  and  5,5 . The corresponding Knot Values shown 

in green are  1,2,3,4,5,5 . The support is five Knot Value Spans, but this leads to 

only four Knot Spans, as a trivial span is contained. 

 

  Observe the next basis functions in this example; as more trivial spans are contained, 

the Knot Span support of each function is reduced. Still, the Knot Value Span support 

and the corresponding Knot Value support follow the rules already mentioned. 

 

 

 
Figure 2.9. B-SPLine Basis functions for Knot Value Vector.

 0 0 0 0 1 2 3 4 5 6 7 7 7 7   

1D Shape Function 6,3N ( )  

 

 

  In the above figure, the polynomial degree of the basis functions is p 3 . Knot 

Value Span support is p 1 4   Knot Value Spans, which requires Knot Value 

support of p 2 5   Knot Values.  

 

  
6,3N ( )  is non-zero in the Knot Value Spans  2,3 ,  3,4 . 4,5  and  5,6 . No 

trivial spans are involved, so this is another fully developed B-SPLine. The Knot 

Value Support consists of the Knot Values  2,3,4,5,6 .  

 

  B-SPLine tensor product properties enable the immediate expansion of 1D properties 

to 2D and 3D B-SPLine Shape functions. 

 

  
3,2N ( )  in Figure 2.10 has a support of 3 Knot Value Spans per  ,  0,1 ,  1,2  and 

 2,3 . It is created by Knot Values  0,1,2,3 . 

 

  
4,2M ( )  has a support of 3 Knot Value Spans per  ,  1,2 ,  2,3 and  3,4 . It is 

created by Knot Values  1,2,3,4 .  
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Figure 2.10. Shape Function  p,q 2,2

i, j 3,4R R ,    as a tensor product of 3,2N ( )  and  4,2M   

Knot Value Vector  0 0 0 1 2 3 4 5 5 5   

Knot Value Vector  0 0 0 1 2 3 4 4 4   

 

 

 The 2D Shape function  2,2

3,4R ,   is the full tensor product of 
3,2N ( )  and  4,2M  . 

The support of the Shape function is a rectangle created from the supports of the 

respective basis functions. It has a total area of 3 3 9   Knot Value Rectangles. 

 

  Observe that the value of the bidirectional B-SPLine is represented both in the third 

axis of the graph and by projection of the contour in the 2D plane. This is useful for 

representation of 3D basis functions. 

 

 
 

Figure 2.11. Shape Function  p,q 2,2

i, j 1,6R R ,    as a tensor product of 1,2N ( )  and  6,2M   

Knot Value Vector:  0 0 0 1 2 3 3 4 5 5 5   

Knot Value Vector  0 0 0 1 2 2 3 4 4 4    
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  Both 1D basis functions have reduced Continuity in Figure 2.11.  

 

  
1,2N ( )  has a Knot Value Span Support of  0,0 ,  0,0  and  0,1 , leading to a 

Support of a single Knot Span,  0,1 . The corresponding Knot Value Support is 

 0,0,0,1 . 

 

   6,2M   has a Knot Value Support of  2,3,4,4  which leads to a Knot Value Span 

Support of  2,3 ,  3,4 ,  4,4 . One trivial and two non-trivial Spans are contained. 

 

  Support for the Shape Function  2,2

1,6R ,   is defined as the tensor product of the 

supports of the basis functions, namely 1 2 2   Knot Rectangles. 

 

  3D B-SPLine Shape functions can be represented as in the Figure 2.12. 

 

 
Figure 2.12. Shape Function  p,q,r 2,2,1

i, j,k 3,3,1R R , ,     as tensor product of 3,2N ( ) ,  3,2M  , 1,1L ( ) . 

Knot Value Vector  0 0 0 1 2 2 2   

Knot Value Vector  0 0 0 1 2 2 2   

Knot Value Vector  0 0 1 2 2   

 

 

  The three axes represent the three parametric directions , ,   . B-SPLine basis 

functions for   are drawn in the    plane, functions for   in the   plane and 

functions for   in the    plane.  

 

  
3,2N ( )  and  3,2M   both have a support of 3 Knot Value Spans,  0,1 ,  1,2  and 

 2,2  in their respective directions. Knot Value Support for those functions is 

 0,1,2,2 . Knot Span Support is restrained at 2 Knot Spans for each function.  
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1,1L ( )  has a Knot Value Span Support of  0,0  and  0,1 , leading to the support of 

1 Knot Span. Knot Value Support is defined as  0,0,1 . 

 

  Their tensor product value has been calculated as a function of two parametric 

directions at the Control Point coordinate of the remaining direction. The resulting 

contour is projected on a plane that is parallel to the two directions and intersects with 

the tensor product Control Point. This process is repeated for all three possible 

combinations, thus creating contours at   ,   and    planes. 

 

  For example, Control Point  3,3,1  has coordinates    , , 1.5,1.5,0    .  

 

   2,2,1

3,3,1R , ,0   has been calculated and projected in 0   plane. The support of the 

projection shows the support of the 3D Shape function per ,  , namely 2 2 4   

Knot Rectangles. 

 

   2,2,1

3,3,1R ,1.5,   is represented in the plane 1.5  . Support of the 3D Shape function 

per ,     is 2 1 2   Knot Rectangles. 

 

   2,2,1

3,3,1R 1.5, ,   is projected in 1.5   plane. The support of the 3D Shape function 

per ,     is 2 1 2   Knot Rectangles. 

 

  The support of the 3D Shape function across the entire domain is the tensor product 

of the 1D supports. In this particular case, it is 2 2 1 4    Knot Cuboids. The support 

is represented by the tensor product of the projections in Figure 2.12. 

 

2.3.5.2 Maximum number of non-zero functions per Knot Span 

 

  A box function that is non-zero in one Knot Span contributes to the evaluation of 

two consecutive B-SPLine basis functions of order p 1 . These two functions lead to 

the creation of three consecutive basis functions of order p 2 . Inductively, a box 

function contributes to the creation of p 1  B-SPLine basis functions of order p . 

 

  It applies from Cox de Boor recursive formula that only one box function is non-zero 

across a selected Knot Span. As a result, only the corresponding p 1  B-SPLine basis 

functions of order p  can be non-zero in that specific Knot Span. 

 

  Therefore, at a non-trivial Knot Value Span  i i 1,    only the basis functions 

i p,p i p 1,p i,pN ( ),  N ( ),  ...,  N ( )      are non-zero. This is used efficiently in Stiffness 

Matrix Formulation, in order to reduce computational cost. 
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Figure 2.13. Contribution of one box function 

to the creation of higher-order B-SPLine basis functions. 

 

 
Figure 2.14. Contribution of one box function to non-zero higher-order B-SPLine basis functions 

across Knot Span  1,2 . 

 

 
 

Figure 2.15. B-SPLine Basis functions for Knot Value Vector  

 0 0 0 1 2 3 4 5 6 7 7 7  . 

Basis functions that are non-zero in Knot Span  0,1  are drawn in red. 

Basis functions that are non-zero in Knot Span  4,5  are drawn in green.  
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  In Figure 2.15, two separate Knot Spans are examined. For every Knot Span, 

p 1 3   basis functions are non-zero.  

 

  For the first Knot Span,    3 40,1 ,   , basis functions 
1,p 2,p 3,pN ( ),  N ( ),  N ( )    are 

non-zero. 

 

  For the second Knot Span,    7 84,5 ,   , basis functions 
5,p 6,p 7,pN ( ),  N ( ),  N ( )    

are non-zero. 

 

  As a result, in 2D, at a given Knot Rectangle, only the tensor products of the 

respective non-zero basis functions are non-zero, namely    p 1 q 1    Shape 

functions. 

 

  Inductively, in 3D, at a given Knot Cuboid, the tensor products of the corresponding 

non-zero basis functions create      p 1 q 1 r 1      non-zero Shape functions. 

 

2.3.5.3 Non-negativity 

 

  It has been established that: 

 

i,pN ( ) 0 ,i,p    . 

 

 
 

Figure 2.16. B-SPLine Basis functions for Knot Value Vector 

 0 0 0 0 0 1 2 3 4 5 6 7 8 9 9 9 9 9   

 

 

  The degree in Figure 2.16 is p 4 . As we see in the picture above, all the basis 

functions are positive for every , i . This property is very important for Isogeometric 

Analysis and it does not apply in the classical Shape functions of Finite Element 

Analysis. Naturally, it is easier for the human mind to work with only positive values, 

so this attribute simplifies and encourages the understanding of B-SPLines. Non-

negativity applies for 2D and 3D Shape functions as well.  
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2.3.5.4 Partition of unity 

 

  Partition of unity is expressed by 

 
n

i,p

i 1

N ( ) 1


   ,p . 

 

 
 

Figure 2.17. B-SPLine Basis functions for Knot Value Vector 

 0 0 0 0 1 2 3 4 5 6 7 7 7 7   

Sum of B-SPLine function value at every  . Partition of Unity. 

 

 

  The degree for the B-SPLine basis functions in Figure 2.17 is p 3 . The green 

horizontal line represents the sum of B-SPLine values at the corresponding  , which, 

of course, is equal to 1 for every  .  

 

  For example, B-SPLine values have been evaluated for 4.81  , with the following 

results for the four non-zero basis functions: 

 

 

5,3N (4.81) 0.0011  

6,3N (4.81) 0.2763  

7,3N (4.81) 0.6340  

8,3N (4.81) 0.0886  

 

  The above yields 
10

i,3

i 1

N (4.81) 1


  

as expected. 
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  Partition of unity applies for multi-dimensional Shape functions as well. 

 

  In 2D, partition of unity is expressed as 

 
n m n m

p,q

i, j i,p j,q

i 1 j 1 i 1 j 1

R N ( ) M ( ) 1
   

       

 

which is a result of tensor product nature [1]: 

 
n m n m n m

p,q

i, j i,p j,q i,p j,q

i 1 j 1 i 1 j 1 i 1 j 1

R N ( ) M ( ) N ( ) M ( ) 1
     

  
          

   
     

 

  In full analogy, 3D Shape functions also possess partition of unity: 

 

 
n m l n m l

p,q,r

i, j,k i,p j,q k,r

i 1 j 1 k 1 i 1 j 1 k 1

R N ( ) M ( ) L 1
     

         

 

  Partition of unity is also a property of great importance for the Shape functions that 

are used in Finite Element Analysis. 

 

2.3.5.5 p m
C  Continuity 

 

  At a Knot with multiplicity m , 
i,pN ( ) produces p m  continuous derivatives or, in 

other words, it has 
p mC 

 Continuity. Continuity less than 
0C  is not acceptable for 

internal Knots, which means they can be repeated up to p  times. Bear in mind that as 

Continuity decreases, B-SPLine basis functions tend to be more “steep”.  

 

 
 

Figure 2.18 B-SPLine Basis functions for Knot Value Vector 

 0 0 0 0 1 2 3 4 4 4 5 6 7 8 8 8 8   
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  The polynomial order in Figure 2.18 is p 3 . Continuity for a basis function is 

affected only by the corresponding Knot Values. Knot 4   has multiplicity m 3  

with respect to the Knot Vector. Its multiplicity with respect to the basis functions 

depends on each function’s Knot Value Support. 

 

  
4,3N ( ) , a fully developed basis function, drawn in red, has a Knot Value Support of 

 0,1,2,3,4 . The Knot 4   has multiplicity m 1  with respect to the basis function 

4,3N ( ) , so this function is 
p m 3 1 2C C C    Continuous in the entire domain. 

 

  The purple basis function, 
5,3N ( )  has a Knot Value Support of  1,2,3,4,4 . The 

Knot in question has multiplicity m 2  with respect to the basis function, which 

makes 
5,3N ( )  

p m 3 2 1C C C    Continuous across 4  . 

 

  Knot Value Support for 
6,3N ( )  and 

7,3N ( )  is  2,3,4,4,4  and  3,4,4,4,5  

respectively. The multiplicity of the Knot is m 3  for both basis functions. 

Therefore, these functions have 
p m 3 3 0C C C    Continuity across 4  . 

 

  Observe that when a B-SPLine basis function 
j,pN ( )  has a Knot m with 

multiplicity p  in the center of the Knot Value Support, it applies that 
j,p mN ( ) 1  . 

 

  In 2D and 3D cases, Continuity per direction is obtained straight from the Continuity 

of the corresponding one-directional B-SPLine basis functions. 

 

  In Figure 2.19.a,  2,2

3,4R ,   is tensor product of 
3,2N ( )  and  4,2M  . 

3,2N ( )  has 

p m 2 1 1C C C    Continuity across 3   and  4,2M   has 
p m 2 2 0C C C    

Continuity across 2  . Therefore,  2,2

3,4R ,   has 
1C  Continuity with respect to   

and 
0C  Continuity with respect to   across    , 3,2   . 

 

  In Figure 2.19.b,  2,2

5,4R ,   is tensor product of 
5,2N ( )  and  4,2M  . Both B-

SPLine basis functions have 
0C  Continuity across 3  , 2   respectively. As a 

result,  2,2

5,4R ,   has 
0C  Continuity across    , 3,2   . This particular case of 

0C  

Continuity for both directions will be utilized in future applications. 

 

 Note that 
0C  Continuity per both directions leads to    2,2

5,4 5.2 4.2R 3,2 N (3) M 2 1   . 

Non-negativity and Partition of unity properties require that  2,2

i, jR 3,2 0 , 

   i, j 5,4  .  
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(a) 

 

 
(b) 

 
Figure 2.19. B-SPLine Basis functions for directions ,   

 
Knot Vector  0 0 0 1 2 3 3 4 5 5 5   

Knot Vector  0 0 0 1 2 2 3 4 4 4   

 
(a): Shape Function  p,q 2,2

i, j 3,4R R ,    as tensor product of 3,2N ( )  and  4,2M   

(b): Shape Function  p,q 2,2

i, j 5,4R R ,    as tensor product of 5,2N ( )  and  4,2M   
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  Figure 2.20 represents  2,2,2

4,3,3R , ,   , a Shape function formed as a tensor product of 

three 
0C  Continuous functions across  2,1,1 . The corresponding basis functions are 

4,2N ( ) ,  3,2M   and  3,2L  . Naturally, at the point of 
0C Continuity for all three 

directions, it applies that      2,2,2

4,3,3 4,2 3,2 3,2R 2,1,1 N (2) M 1 L 1 1    . 

 

  Observe that all functions of reduced Continuity tend to be more “steep”. This 

happens because they contain multiple Knot Values of the same Knot, and therefore 

develop across trivial spans. This “steepness” is the first indication that a basis 

function has reduced Continuity. 

 

  Moreover, internal 
0C  Continuity produced exactly the same B-SPLine basis 

functions as 
1C
 Continuity on the edge of the Knot Vector. This means that at every 

Knot with multiplicity m p , only one function remains non-zero. Due to partition of 

unity, that function’s value at that Knot is equal to 1.  

 

  In multi-dimensional functions, 
0C  Continuity across a Knot requires the basis 

functions per all directions to be 
0C  Continuous at that point. In this case, the value of 

the multi-dimensional Shape function across this Knot is equal to 1. 

 
 
 

Figure 2.20. Shape Function    p,q,r 2,2,2

i, j,k 4,3,3R , , R , ,         

 
Knot Value Vector  0 0 0 1 2 2 3 3 3   

Knot Value Vector  0 0 0 1 1 2 2 2   

Knot Value Vector  0 0 0 1 1 2 2 2   
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2.3.5.6 Linear Independence 

 

  Given a finite number of distinct vectors  1 2 nu u ... u  and scalars 

 1 2 na a ... a , the subset S  of a vector space V  is called linearly independent if 

the equation 1 1 2 2 n na u a u ... a u 0     leads to the unique solution 

1 2 na a ... a 0    . Thus the subset is linearly independent if a linear combination of 

the vectors is the zero vector, only for 1 2 na a ... a 0    . The linear independence 

in Isogeometric Analysis applies for the basis functions 

 1,p 2,p n,pN ( ) N ( ) ... N ( )   . The equation 

 

1 1,p 2 2,p n n,pa N ( ) a N ( ) ... a N ( ) 0           

 

leads to 1 2 na a ... a 0    . We can reach the conclusion that no B-SPLine basis 

function can be expressed as a linear combination of the other B-SPLine basis 

functions. 

 

  These linearly independent vectors form a basis for the vector space V . Some 

interesting attributes of such vectors include: 

 

 The basis of the vector space V  can be formed by different sets of linearly 

independent vectors. Any set can be used, provided that the vectors are 

linearly independent and all the properties above apply for every vector. Thus, 

in Isogeometric Analysis, we can choose different sets of B-SPLine basis 

functions in order to represent the vector space. 

 

 The number of vectors of any basis chosen is equal to the dimension of V , 

often represented as  dim V . In Isogeometric Analysis  dim V  is equal to 

the number of Control Points and, consequently, the number of basis functions 

used. 

 

 Let there be a mass of vectors  1 2 nu u ... u  which form the basis of a 

vector space with  dim V n  and the numbers  1 2 na a ... a , called the 

coordinates of u . In Isogeometric Analysis, the basis of the vector space is the 

set of B-SPLine basis functions  1,p 2,p n,pN ( ) N ( ) ... N ( )    and the 

numbers are the coordinates 1 2 nX X ... X  of the Control Points of the 

curve. A random vector u  of the vector space V  can be represented by the 

equation: 

 

1 1 2 2 n nu a u a u ... a u     

 

which in Isogeometric Analysis applies as 

 

1 1,p 2 2,p n n,pC( ) X N ( ) X N ( ) ... X N ( )             
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  Any vector in V  can be described as a linear combination of the basis. The numbers 

 1 2 na a ... a  are the coordinates of u  and they are unique for this specific u  and 

this specific basis. 

 

  Vector space V in  is a mass of vectors with the properties below: 

 

1. Commutativity of addition: 

 

u v v u   , u, v V   

 

In Isogeometric Analysis this property applies as 

 

 1 2 2 1C C ( ) C ( ) C ( )        

 

2. Associativity of addition: 

 

   u v w u v w     , u,v,w V   

 

Respectively in Isogeometric Analysis, 

 

         1 2 3 1 2 3C C C C C ( ) C ( )            

 

3. Identity element of addition: There is an element 0 V , the zero vector, so 

that 

 

u 0 u  , u V   

 

In Isogeometric Analysis the equation applies as 

 

C( ) 0 C( )     

 

4. Inverse elements of addition: There is an element u V   such that 

 

 u u 0   , u V   

 

The u  is called the additive inverse of u . The equivalent in Isogeometric 

Analysis is 

 

C( ) ( C( )) 0      

 

5. Identity element of scalar multiplication: For the real number 1 , it applies: 

 

1 u u  , u V   

 

Respectively, in Isogeometric Analysis 

 

1 C( ) C( )      
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6. Distributivity of scalar multiplication with respect to vector addition: a   

and u, v V   applies the relation 

 

 a u v a u a v       

 

In Isogeometric Analysis this equation applies as 

 

1 2 1 2a (C ( ) C ( )) a C ( ) a C ( )           

 

7. Distributivity of scalar multiplication with respect to field addition: a,b   

and u V   applies the relation 

 

 a b u a u b u       

 

which is implemented in Isogeometric Analysis as 

 

(a b) C( ) a C( ) b C( )          

 

8. Compatibility of scalar multiplication with field multiplication: a,b   and 

u V   applies the equation 

 

   a b u a b u      

 

Its equivalent in Isogeometric Analysis is  

 

a (b C( )) (a b) C( )        

 

  B-SPLine basis functions are indeed the basis for a vector space with  dim V n , 

where n is the number of Control Points. Control Points are the coordinates that 

transform the basis functions at any point in the given Physical Space. Conclusively, 

 

 1,p 2,p n,pN ( ) N ( ) ... N ( )    

 

is the basis of the Vector space, while 

 

 1 2 nX X ... X  

 

are the coordinates for a vector C( ) . The familiar linear combination applies: 

 

1 1,p 2 2,p n n,pC( ) X N ( ) X N ( ) ... X N ( )            

 

  Due to linear independence and vector space properties, it is understood that for a 

specific set of basis functions, only one set of Control Points can yield the appropriate 

geometry. If one wants to change the basis functions, the Control Points have to be 

shifted accordingly.  
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2.3.5.7 Fixed Number of Knot Values 

 

  A non-periodic Knot Value Vector that produces n  functions of order p  has 

n p 1   Knot Values. 

 

 
 

Figure 2.21. B-SPLine Basis functions for Knot Value Vector 

 0 0 0 1 2 3 3 4 5 6 7 7 8 9 9 9   

 

 

  In this example the degree is p 2 and we have thirteen basis functions produced, so 

n 13 . 

 

  We observe that the Knot Value Number is k n p 1 13 2 1 16       . This occurs 

because for the creation of n basis functions of degree p , needed to construct the 

curve, n p  basis functions of order p 0  are used, hence n p 1   Knot Values are 

needed. 

 

  In another approach, each Control Point has a Knot Value Support of p 2  Knot 

Values. For n Control Points,  n p 2   Knot Values are needed. There are  p 1  

Knot Values repeated in  n 1  Control Point interconnections. The total number of 

Knot Values is: 

 

     n p 2 n 1 p 1 n p 2n n p n p 1 n p 1                  

 

  Therefore, n p 1   Knot Values are required. 
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2.3.5.8 Shared Support 

 

  Each B-Spline shares support with at most 2p  B-Splines. More specifically, each 

basis function shares support with at most p  basis functions on each side. This results 

in higher interconnection, compared to equivalent Finite Element Method Shape 

functions. Basis function overlapping leads to interconnectivity between Control 

Points as well. 

 

 
 

Figure 2.22. Shared support for 6,3N ( ) . 

 0 0 0 0 1 2 3 4 5 6 6 7 8 9 9 9 9   

 

  
6,3N ( )  interacts with p 3  basis functions on each side, 

3,2N ( ) , 
4,2N ( )  and 

5,2N ( )  on the left, 
7,2N ( ) , 

8,2N ( ) , 
9,2N ( )  on the right. As a result, the respective 

positions in the Stiffness Matrix will be non-zero. 

 

 
 

Figure 2.23. Shared support for 8,4N ( ) . 

 0 0 0 0 0 1 2 3 4 5 6 6 7 8 9 10 10 10 10 10   

 

  
8,4N ( )  shares support with 2p 8  basis functions, 4 on each side. Greater-order 

basis functions tend to create more dense Stiffness Matrices and therefore demand 

more computational power.  
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2.3.6 B-SPLine Basis Function Derivatives 
 

  Basis function derivatives are widely used in Isogeometric Analysis. Deformation 

and Stiffness Matrices are built upon the derivatives of Shape functions. As a result, 

the distribution of stresses and strains across the model is based on those derivatives. 

The derivatives of B-SPLines, as obtained from the recursive formula, are represented 

as a linear combination of previous polynomial order basis functions [1]: 

 

i,p i,p 1 i 1,p 1

i p i i p 1 i 1

d p p
N ( ) N ( ) N ( )

d
  

   

      
    

 

 

  This leads to a generalized equation for the k
th

 derivative: 

 
k k

i,p k, j i j,p kk
j 0

d p!
N ( ) a N ( )

d (p k)!
 



    
 


 

0,0

k 1,0

k,0

i p k 1 i

k 1, j k 1, j 1

k, j

i p j k 1 i j

k 1,k 1

k,k

i p 1 i k

a 1

a
a

a a
a ,  j=1, . . . , k-1, 

a
a



  

  

    

 

  




 



 



 

 

 

  The partial derivatives of two-directional B-SPLine Shape functions can be easily 

obtained by application of the quotient rule: 

 

 p,q

i, j i,p j,q

d
R , N ( ) M ( )

d

 
      

  
 

 

 p,q

i, j i,p j,q

d
R , N ( ) M ( )

d

 
      

  
 

 

  3D Shape function derivatives per direction can be obtained in the same manner 

 

   p,q,r

i, j,k i,p j,q k,r

d
R ( , , ) N ( ) M L

d

 
         

  
 

 

   p,q,r

i, j,k i,p j,q k,r

d
R ( , , ) N ( ) M L

d

 
         

  
 

 

   p,q,r

i, j,k i,p j,q k,r

d
R ( , , ) N ( ) M L

d

 
         

  
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2.3.7 B-SPLine Curves, Surfaces and Solids 
 

  Given a Knot Value Vector   and a polynomial order p , we can evaluate the B-

SPLine functions at every  . In order to create the B-SPLine curve, we also need a 

vector of coordinates for each basis function, the Control Points  i i i iX X Y Z . 

The curve is evaluated for every  as a linear combination of basis functions: 

 

 
n

i,p i

i 1

C( ) N ( ) X


     

 

  After evaluating the Shape functions, the B-SPLine surface is defined in analogy to 

the B-SPLine curve: 

 

   
n m n m

p,q

i,p j,q i, j i, j i, j

i 1 j 1 i 1 j 1

S( , ) N ( ) M ( ) X R X
   

           

 

  Using the tensor product properties, we can also evaluate the solid function: 

 

    
n m l n m l

p,q,r

i,p j,q k,q i, j,k i, j,k i, j,k

i 1 j 1 k 1 i 1 j 1 k 1

S( , , ) N ( ) M ( ) L ( ) X R , , X
     

                 

 

 
 (a) (b) 
 

 
(c) 

 
Figure 2.24. B-SPLine Entities. (a) Curve, (b) Surface and (c) Solid.  
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2.3.8 B-SPLine Curve Properties 
 

  B-SPLine curve entities have the following properties, as obtained from Piegl, Tiller 

[3]: 

1. B-SPLine curves are a generalization of Bezier curves. 

 

2. C( )  is a piecewise polynomial curve. 

 

3. Each basis function corresponds to a certain Control Point. 

 

4. The first and last Control Point as well as internal Control Points 

corresponding to 
0C  Continuous basis functions are interpolatory to the curve. 

 

5. B-SPLine curves possess strong convex hull property. 

 

6. Moving a Control Point iX  only changes part of the curve. 

 

7. The Control Polygon represents a piecewise linear approximation to the curve. 

 

8. It is possible to use multiple Control Points with the same coordinates. 

 

9. Any transformation applied to the curve can be applied directly at the Control 

Points. This property is known as “affine invariance” or “affine covariance”. 

 

10. In every Knot Span, at most p+1 Control Points contribute to the definition of 

the curve, corresponding to the p 1  non-zero basis functions. 

 

11. Since C( )  is a linear combination of 
i,pN ( ) , curve Continuity and 

differentiability are obtained straight from the basis functions. 

 

12. No line has more intersections with the curve, than with the Control Polygon.  

 

2.3.8.1 Generalization of Bezier curves 

 

  B-SPLine curves are a generalization of Bezier curves. Given an open Knot Vector 

and n p 1   Control Points, a Bezier curve is produced. 

 

  Bezier curves were utilized in CAD methods before B-SPLines. Figure 2.25 presents 

a Bezier curve with p 3 , an open Knot Value Vector  0 0 0 0 1 1 1 1  

and n p 1 4    Control Points. Bezier curves are B-SPLine curves defined in only 

one Knot Span. As a result, every basis function is non-zero across the entire 

parameter space and Control Points affect the shape of the entire curve. Bezier 

surfaces are a special case of one-rectangle B-SPLine surfaces and Bezier solids a 

special case of one-cuboid B-SPLine solids as well. 
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(a) 

 
(b) 

 
Figure 2.25. B-SPLine as generalization of Bezier curves. (a) Physical Space and (b) basis functions 

 

2.3.8.2 Piecewise polynomial curve 

 

  C( )  is formed from piecewise polynomials 
i,pN ( ) , and therefore is a piecewise 

polynomial curve. 

 

 
 

Figure 2.26 Piecewise polynomials that form a B-SPLine basis function. Knots represent the 

boundaries of the pieces.  
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  A B-SPLine curve is obtained through the curve function: 

 
n

i,p i

i 1

C( ) N ( ) X


     

 

which is a linear combination of piecewise polynomial basis functions. This applies in 

multi-directional entities as well. Tensor product Shape functions are piecewise 

polynomials with respect to the corresponding directions, thus B-SPLine Surfaces and 

Solids are also piecewise polynomials. The term B-SPLine, after all, stands for Basis - 

Smooth Polynomial Line. 

 

2.3.8.3 Control Point – Basis Function Correspondence 

 

  Each basis function corresponds to a certain Control Point. There are n  basis 

functions and n  Control Points in a B-SPLine curve. 

 

 
(a) 

 
(b) 

 
Figure 2.27. (a) Physical Space and (b) basis functions with the corresponding Control Points.  
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  In Figure 2.27, Control Points are represented both in Parameter and Physical Space. 

Each Point controls a specific basis function. This property also applies for multiple 

directions. Every Control Point of the surface or the solid is tensor product of a 

Control Point in directions  ,   and  . By extension, the corresponding B-SPLine is 

tensor product of the basis functions. In the most general case, there are n m l   

Control Points and basis functions. 

 

2.3.8.4 Interpolation to the Curve 

 

  The first and last Control Points are interpolatory to the curve. Any internal Control 

Point corresponding to 
0C  Continuous basis function is also interpolatory to the 

curve. 

 

 
(a) 

 
(b) 

 
Figure 2.28. Control Point interpolation. (a) B-SPLine curve and (b) the reciprocal basis functions 

 

  In Figure 2.28, the first and the last Control Point, which have 
1C
 Continuity, are 

interpolatory to the curve. This can be explained with the help of the equation of the 

curve: 

 
n

i,2 i

i 1

C( ) N ( ) X


     
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  For 0  , it applies that: 
n

i,2 i

i 1

C(0) N (0) X


   

where, 

1,2N (0) 1  

 

i,2N (0) 0 , i 2,...,6   

so, 

1,2 1 1C(0) N (0) X X    

And for 3  : 
n

i,2 i

i 1

C(3) N (3) X


   

 

6,2N (3) 1  

 

i,2N (3) 0 , i 1,...,5  

so, 

6,2 6 6C(3) N (3) X X    

 

  Likewise, the internal Control Point, with 
0C  Continuity across 2   is 

interpolatory to the curve because: 

 

 
n

i,2 i

i 1

C(2) N (2) X


   

 

4,2N (2) 1 , as this is the only non-zero basis function across 2   

 

i,2N (2) 0 , i 4  

so, 

4,2 4 4C(2) N (2) X X    

 

  Observe that both the form of the curve and the form of the basis functions indicate 

that this geometry could be represented by two different sets of Knot Vectors and 

Control Points, with absolutely no deflections from the current representation. This 

will be examined thoroughly later. 

 

  Interpolation also applies for Surfaces and Solids, when appropriately reduced 

Continuity is used for all directions at a Knot. 
1C
 Continuity is required for external 

Knots and 
0C  for internal. 
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  In Figure 2.29, 
5,2N ( )  at axis   and 

6,2M ( )  at axis   have 
0C  Continuity. 

Therefore the Control Point corresponding to  2,2

5,6R ,   is interpolatory to the 

surface. The external Control Points with 
1C
 Continuity at both directions are also 

interpolatory to the surface. 

 

  In Figure 2.30, 
4,2N ( )  at parametric axis   and 

4,2M ( )  at parametric axis   have 

0C  Continuity, thus Control Points corresponding to the Shape functions 

 2,2,1

4,4,1R , ,    and  2,2,1

4,4,2R , ,   , are interpolatory to the solid. As we can see, the 

external Control Points are also interpolatory to the solid, because Continuity is 

reduced to 
1C
. 

 

 
(a) 

\ 
(b) 

 
(c) 

 
Figure 2.29. (a) B-SPLine Surface and (b), (c) the corresponding basis functions in axes ,  .  
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(a) 

 

 
(b) 

 

 
 (c) (d) 
 

Figure 2.30. (a) Solid in the Physical Space 

with (b), (c), (d) the associated basis functions in axes , ,   .  



Basic Ingredients of Isogeometric Analysis  51 

 

 

2.3.8.5 Convex Hull 

 

  B-SPLine curves possess strong convex hull property. The convex hull of the curve 

is defined as the sum of the convex hulls of p+1 consecutive Control Points. The 

curve is always contained in the convex hull. 

 

 
 

 
 

Figure 2.31. Step-by-step convex hull creation for a B-SPLine curve. 

 

 

  The curve in Figure 2.31 has a degree of p 2 . The convex hull is formed by 

connecting each Control Point with the p 2  successive ones. As we can easily see in 

the figure, the union of the convex hulls contains the curve. The convex hull is a way 

to assume the general form of a B-SPLine curve. 
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2.3.8.6 Control Point Local support 

 

  Moving a Control Point iX  only changes part of the curve, more specifically the part 

corresponding to the 
i i p 1[ , )    Knot Value Spans. This is a result of the local support 

of the corresponding B-SPLine function. 

 

  Moving along the curve, basis function 
i,pN ( ) is switched “on” at the Knot Value 

i  and then again switched “off” at the Knot Value 
i p 1  , where the function 

i p 1,pN ( )    is switched “on”. 

 

 

 
(a) 

 
(b) 

 
Figure 2.32. Control Point Local support (a) in Physical and (b) in Parameter Space. 

 

  Every Control Point is associated with a basis function. Support of the Control Point 

is defined by the support of the corresponding basis function. Therefore, Control 

Points affect only part of the curve. In Figure 2.32, a curve with p 2  and Knot 

Value Vector  0 0 0 1 2 3 4 4 4 , is presented. The Control Point for 

i 3  is moved and this affects partially the entity. 
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  In this example, 
3,2N ( )  spans from 0   to 3  . The Knots act as boundaries of 

the support. For 3  , 
3,2N ( )  is switched “off” and 

6,2N ( )  is switched “on”. 

 

  Local support of Control Points is also expanded by tensor product properties. The 

local support of a Multi-directional Control Point is the tensor product of the 

respective supports. 

 

 
(a) 

 
(b) 

 
Figure 2.33. Local support of a 2D Control Point. 

Surface (a) in Physical and (b) in Parameter Space. 

 

  Figure 2.33 represents the local support in the parametric axis ,   of 
4,2N ( )  and 

3,2M ( )  B-SPLine curves respectively. In parametric axis   the local support 

expands throughout the axis, whereas in parametric axis   the basis function is 

switched “on” at the second Knot Span. In Figure 2.33.a, the tensor product of the 

respective supports for ,   is represented in cyan. It spans across 4x3 12  Knot 

Rectangles in total.  
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  The same properties apply for B-SPLine solids as well. 

 

 
(a) 

 

 
(b) 

 
Figure 2.34. Local support of a 3D Control Point. 

Solid (a) in Physical and (b) in Parameter Space. 

 

 

  Figure 2.34.b presents the local support of 
3,2N ( ) , 

4,2M ( )  and 
1,1L ( ) . In 

parametric axes ,    , the local support expands at all Knot Spans, whereas in the 

parametric axis   the local support spans between Knots 1  and 4 . In Figure 2.34.a, 

the local support is displayed in cyan and it does not reach all the Knot Spans in 

parametric axis  . A total of 3 3 1 9    Knot Cuboids represent the Support of the 

Control Point. 
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2.3.8.7 Control Polygon approximation 

 

  The Control Polygon represents a piecewise linear approximation to the curve. Due 

to convex hull properties, Refinement by knot insertion or order elevation brings the 

Control Polygon closer to the curve. 

 

 

 
 

 
 

 
 

Figure 2.35. Control Polygon approximation through Refinement. 

 

  In Figure 2.35 a curve of degree p 3  is designed. The Control Polygon already 

represents a linear approximation to the curve. When consecutive h- or p- 

Refinements are applied, the Control Polygon is brought even closer to the curve. 

Refined Control Polygons provide a general idea of the form of the curve. This 

property also applies for multiple directions. 

 

 
Figure 2.36. Control Net approximation through Surface h-Refinement. 

 

  For example, in Figure 2.36, the Refinements, that were made, brought the Control 

Net closer to the surface.  
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2.3.8.8 Multiple Control Points 

 

  It is possible to use multiple Control Points with the same coordinates. This can 

prove to be very useful. 

 

 
(a) 

 

 
(b) 

 
Figure 2.37. (a) Physical Space and (b) Convex Hull creation for a curve 

with two coincident Control Points (drawn in deep red). 

 

 

  In Figure 2.37.a, a quadratic curve with a double Control Point is designed. The 

curve is interpolatory at these Points and a sharp edge is formed. This is explained in 

Figure 2.37.b, where the convex hull of the curve is designed. The curve is always 

contained in the convex hull, therefore a sharp edge has to be formed exactly at the 

double Point coordinates. Inductively, this applies when p  coincident Control Points 

are used in a curve of polynomial degree p .  
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2.4 Non-Uniform Rational B-SPLines 
 

 

  B-SPLine geometries may have many promising attributes, but they also have 

several weaknesses in geometrical representation. Some basic geometrical forms 

cannot be presented as B-SPLine entities, such as circles or conic sections in general. 

In order to solve this problem, the CAD industry introduced Non-Uniform Rational 

B-Splines (NURBS). The basic idea is simple. A NURBS entity is produced from the 

actual section of a cone with a plane. 

 

2.4.1 Basic Idea 
 

 
 

Figure 2.38. B-SPLine curve and projective transformation to NURBS Curve. 

 

  As shown in Figure 2.38, the projective B-SPLine curve 
wC ( )  is created from the 

projective 3D Control Points  w w w wX X Y Z .  

 

  Projection of the curve and Control Points on the plane z 1  produces the NURBS 

curve C( )  and the 2D Control Points: 

 

 X X Y  

where, 

 
w w

i i
i i w w

i i

X Y
X Y

Z Z

 
  
 

 

 

  The Weights of the NURBS curve are defined as: 

 

 ww Z  

 

  In generalization, n -dimensional Rational B-SPLines are projections of  n 1 -

dimensional non-rational B-SPLines.   
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2.4.2 NURBS Shape Functions 
 

  In order to evaluate NURBS Shape functions, the Weighting function is defined: 

 

    
n

i,p i

i 1

W N w


     

 

  In most engineering applications, Weights have positive values. Unless otherwise 

stated, they will be considered positive for the scope of this thesis. W( )  is in fact the 

Z-coordinate of the projective B-SPLine curve. Projective transformation is applied 

by dividing the other two coordinates of the B-SPLine curve with the Z-coordinate. 

NURBS Shape functions are calculated from 

 

 

i,p i i,p ip

i n

i ,p i

i 1

N ( ) w N ( ) w
R ( )

W( )
N ( ) w 



   
  


 

 

 

  p

iR ( )  are piecewise rational functions. The expression “the order of NURBS” refers 

to the order of the projective B-SPLine curve. 

  NURBS Shape Functions in multiple directions can be obtained as tensor products of 

one-directional basis functions: 

  Shape functions for two directions: 

 

 

i,p j,q ijp,q

i, j n m

i ,p j ,q i j

i 1 j 1

N ( ) M ( ) w
R ( , )

N ( ) M ( ) w   

  

   
  

   
 

 
n m

i ,p j ,q i j

i 1 j 1

W( , ) N ( ) M ( ) w   

  

        

 

  Similarly, we expand the equations in order to obtain tensor product 3D Shape 

functions: 

 

 

i,p j,q k,r ijkp,q,r

i, j,k n m l

i ,p j ,q k ,r i j k

i 1 j 1 k 1

N ( ) M ( ) L ( ) w
R ( , , )

N ( ) M ( ) L ( ) w     

    

     
   

     
 

 

  The Weighting function is now defined as: 

 

 
n m l

i ,p j ,q k ,r i j k

i 1 j 1 k 1

W( , , ) N ( ) M ( ) L ( ) w     

    

           

 

  Observe that for 
ijkw 1 , i, j,k , it applies that NURBS Shape functions 

downgrade to B-SPLine basis functions. Actually, NURBS entities are a 

generalization of B-SPLine entities. All the B-SPLine properties examined in this 

thesis apply for NURBS as well.  
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2.4.3 NURBS Shape Function Derivatives 
 

  Simple application of the quotient rule yields the derivatives of NURBS Shape 

functions for one and multiple directions. 

 

 

i,p i,p

p

i i 2

d d
N ( ) W( ) W( ) N ( )

d dd
R ( ) w

d W( )

   
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      
 

 

where 

   
n

i,p i

i 1

d d
W N w

d d

 
    
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  For bidirectional Shape functions: 
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  Derivatives of 3D Shape functions per direction are evaluated as shown 
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2.4.4 NURBS Entities 
 

  NURBS entities are created as a linear combination of NURBS Shape functions, 

exactly the same way as B-SPLine entities. The following is the equation for the 

creation of NURBS Curves: 

 

 
n

p

i i

i 1

C( ) R ( ) X


     

 

Surfaces: 

  
n m

p,q

i, j i, j

i 1 j 1

S( , ) R , X
 

       

 

and Solids: 

  
n m l

p,q,r

i, j,k i, j,k

i 1 j 1 k 1

S( , , ) R , , X
  

         

 

 

 
 (a) (b) 

 

  
(c) 

 

Figure 2.39. NURBS elliptical Entities. 

(a) Curve, (b) Surface and (c) Solid.  
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2.4.5 NURBS Examples 
 

 
(a) 

 
(b) 

 
Figure 2.40. (a) NURBS curves and (b) Shape Functions for different Weight values. 

 

  In Figure 2.40, five NURBS Curves with the same set of Control Point Coordinates 

are represented. The corresponding Weights are iw 1 , for i 3 . The third Control 

Point has a different Weight for each curve. Observe that, as the Weight value 

increases, the Shape function and, as a result, the corresponding Control Point tends to 

dominate the p 1  Knot Spans of the support. Thus, the Knots are gravitated closer to 

the corresponding Control Point. 

 

  According to [1], in order to accurately represent an arc of 180   degrees, three 

Control Points are required. Weights for the first and last Points are 1 3w w 1  , 

whereas the middle one has a weight of 
2w cos

2

 
  

 
. 

 

  In Figure 2.41, the same circle is represented by NURBS Shape functions of 

different order. This is a closed curve, so the first and last Control Points coincide. 

Weights are shown for each Control Point. A NURBS circle is usually represented by 

four consecutive Patches, bound together by a common Knot Value Vector.   
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 (a) (b) 

 
(c) 

 
Figure 2.41. NURBS Circle of different polynomial degree. Weight values for each Control Point. 

 
(a) Quadratic basis functions. Knot Value Vector 

 0 0 0 1 1 2 2 3 3 4 4 4   

(b) Cubic basis functions. Knot Value Vector 

 0 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 4   

(c) Quadric basis functions. Knot Value Vector 

 0 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 4   

 

 

 
 

Figure 2.42. Basis functions for circle represented in Figure 2.41. 

Contour distribution for Shape Function 
2

5R ( ) , with corresponding Weight 
2

0.7071
2

 . 

Comparison with basis function 5,2N ( )  shown in blue.   
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Figure 2.43. NURBS Surface created from consecutive circle cross-sections. 

 

 

 
 

Figure 2.44. Shape Function  2,2

2,6R ,   for the surface of Figure 2.43. 

The corresponding Weight is 
2

0.7071
2

 . 

The representation and main attributes are exactly the same as those of B-SPLine Shape Functions. 
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(a) 

 

 
(b) 

 
Figure 2.45. NURBS Solids. 

(a) Wine Glass and (b) Abstract NURBS Solid 

 

  The glass of wine displayed in Figure 2.45.a is a 3D NURBS solid. The potential of 

Isogeometric Analysis is clearly represented in this model. Observe the exact 

representation of conic sections and smooth surfaces, in combination with immediate 

mesh generation. The mesh, that is depicted in the picture, can be instantly used for 

analysis. An abstract form of another NURBS solid is represented in Figure 2.45.b.  
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2.5 Patches 
 

  NURBS entities are created by transforming a simple Parametric shape (line, 

rectangle, cube) to a model in Physical Space (curve, surface, solid). They are used 

for the exact and efficient representation of complex geometrical structures. 

Sometimes, the mapping of a single Parametric shape is not the optimum solution. A 

designer might need two or three parametric cubes in order to efficiently represent 

solids with major changes in geometrical attributes. As displayed in Figure 2.46, each 

of these cubes, mapped to a portion of the solid in Physical Space, is a NURBS Patch. 

As expected, each Patch has continuity 
p mC 

 on interior Knots and 
1C
 on the edge.  

 

 
 (a) (b) 
 

Figure 2.46. (a) Geometrical Representation of the famous Falkirk Wheel “abutment”.  

Five separate patches are used. 

  (b) Each Patch portrays a cube in Parameter Space mapped as a complex shape in Physical Space.  

 

  Interconnection between Patches can be roughly achieved by choosing coincident 

Control Points on the edges. Still, Patch connection rarely is leak-proof. This is one of 

the major disadvantages of NURBS, downsized and eliminated in the next version of 

SPLines (T-SPLines etc.). 

 

  Sometimes, Patches exist for other reasons. For example, a major change in material 

properties, as displayed in Figure 2.47, requires a Patch boundary. Interpolation 

through a certain Control Point calls for Patch boundary to be established there. Even 

application of 
0C  Continuity, for analysis purposes, is enabled by introduction of a 

Patch. If the same polynomial order is used, the mapping can be unified. In these 

special occasions, the separate Parameter Spaces of the Patches can be united in one 

Parameter Space, using one set of basis functions and one Knot Value Vector. The 

distinction between Patches can be applied by enforcing 
0C  Continuity across the 

boundary. In the examples used in this book, the latter option is preferred, when 

possible.  
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Figure 2.47. NURBS Patches enforced in order to distinct timber from steel. 

Each material requires separate Patch Stiffness Matrix evaluation, 

before Global Stiffness Matrix creation. 

 

 
 

 
 

Figure 2.48. Separate Knot Vectors united into one. 

The Control Points at the boundary are merged. 0C  Continuity is applied. 

 

  In the geometrical models presented in this thesis, Knot boundaries are drawn in blue 

and Patch boundaries in black. This separates 
1C
 and 

0C  Continuity from 
1C  and 

greater Continuity. The importance of Continuity in Analysis is examined in the 

following Chapters. 
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3 Refinement 
 

 

 

3.1 Introduction 
 

 

  NURBS geometries lie at the forefront of designing technology as they provide 

numerous possibilities for representation, while supplying a reliable basis which can 

be easily adjusted for the purpose of analysis. Thus, it is commonplace to use a more 

complex mesh to obtain better analysis results. The transition from a coarse mesh to a 

fine mesh preserves the geometrical features of the model, while providing the 

designer with the ability to modify specific parts of the entity. In order to use 

Refinement efficiently in analysis, the engineer has to understand the principles 

involved and the ways in which the basis is altered. Refinement is an automated 

process that requires minimal manual effort, but complicated nonetheless. 

 

  The combination of a limited number of Control Points with a small polynomial 

order is the optimum solution for a designer. This coarse mesh provides exact 

geometrical representation with reduced computational cost. It provides a certain level 

of understanding and control for the user, who can comprehend the simplified patterns 

of the basis and Control Net. The creation of Stiffness Matrix is also less time-

consuming, due to the limited number of degrees of freedom and interconnections 

involved. 

 

  The coarse mesh, however, has flexibility issues. This means that each Control Point 

affects a rather large part of the model, so that small changes to Control Point 

variables reflect to significant changes in geometry. Moreover, basis function 

overlapping is reduced in coarse meshes. This makes a coarse mesh unsuitable for 

analysis. A feasible approach is the introduction of a coarse mesh for design, and 

afterwards Refinement of this mesh for analysis purposes. 

 

  With the creation of a finer mesh, a detailed, flexible Control Net is introduced. Each 

Control Point affects a smaller portion of the model and the number of 

interconnections is usually increased. Mapping from Parameter to Physical Space 

remains unchanged; this is very important in terms of analysis. Stiffness Matrix 

calculation is more time-consuming, but accuracy per degree of freedom is also 

improved. 

 

  There are three ways in which a B-SPLine basis can be enriched. A different Knot 

Value Vector may be selected, the polynomial order may be increased or a 

combination of both may occur; the raise of the polynomial order followed by the 

introduction of a richer Knot Vector. These techniques are referred to as h-, p- and k- 

Refinement respectively. 

  



68 Isogeometric Linear Static Analysis with NURBS 

3.2 Knot Value Insertion 
 

 

  Knot Value insertion is the introduction of a finer mesh by enrichment of the 

existing Knot Value Vector  . A new Knot Value Vector   is created, such that

  . Only internal Knot Values can be added; the boundaries have to remain intact. 

A new set of B-SPLine basis functions is created. The coarse mesh representation is 

evaluated, as usual, by: 

 

      
n

T

j,p j

n 1j 1 1 n

C( ) N ( ) X N X
 

        

 

whereas the new representation 
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  Therefore, the new set of Control Points  X  has to be defined. According to 

Hughes [1], this can be achieved with the evaluation of a Transformation matrix, so 

that: 

 

 
   

 
 

p

n 1m nmx1

X T X


     

 

  This matrix is formed recursively: 

 

i j, j 10

ij

1,
T

0, otherwise


      


 

 

i q i qj j q 1q q 1 q 1

i, j i, j i, j 1

j q j q 1 j 1

T T T
   



   

   
   
    

, for q 1,2,...,p  

 

  This technique is called h-Refinement. 

 

  The B-SPLine curve represented in Figure 3.1.a is refined by Knot Value Insertion 

in Figure 3.1.b. Both geometry and parametric mapping remain intact. This can be 

confirmed by the fact that already existing Knots have not been moved. For each new 

Knot Value, a basis function and a corresponding Control Point have been created. 

The support is still p 1  Knot Value Spans, but their size has been reduced by the 

introduction of the new Knot Value Vector. Therefore, each Control Point now affects 

a much smaller part of the curve. This can be seen in Figure 2. The limited area of 

effect for each Control Point leads to a more accurate approximation to the curve. 
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(a) 

 

 
(b) 

 

Figure 3.1. h-Refinement applied on a B-SPLine curve. 
 

 

(a) Coarse Mesh. Knot Value Vector: 

 0 0 0 1 2 3 4 5 6 6 6   
 

(b) Fine Mesh. Knot Value Vector:

 0 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6 6   

 

 
 

                           (a)                                                                             (b) 

 
Figure 3.2: Basis Functions (a) before and (b) after h-Refinement. 
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(a) 

 

                
(b) 

 

Figure 3.3. Knot Insertion in multiple directions. 
 

 

(a) Coarse Mesh. Knot Value Vectors: 

 0 0 0 0 1 2 2 2 2   

 0 0 0 0 1 1 1 1   
 

(b) Fine Mesh. Knot Value Vectors: 

 0 0 0 0 0.25 0.5 0.5 0.75 1 1 1 1.5 2 2 2 2   

 H 0 0 0 0 0.25 0.5 0.5 0.5 0.75 1 1 1 1  

 

 

  Refinement is applicable in multi-directional problems as well. The surface in Figure 

3.3.a is refined both per   and  . Figure 3.4 represents basis functions before and 

after Refinement.  
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  Note that for every univariate (1D) Control Point per  , a whole set of Control 

Points per   are defined. Each set is refined individually, as shown in Figures 3.4.a 

and 3.4.b. After the new Control Points per   are introduced, the same process is 

followed for Refinement per  . The order in which Refinement is applied is of no 

importance; due to tensor product properties, Control Points per   could have been 

refined first, but the result would be the same.  

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 3.4. Basis and Shape Functions for Surface Coarse and Fine Mesh 
 

 

(a) Coarse Mesh. (b) Refinement per   direction. 

(c) Refinement per   direction. Fine Mesh.  
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3.3 Degree Elevation 
 

 

  Instead of adding Knot Values to an existing Knot Value Vector, the increment of 

the polynomial order can also enrich the basis. Apart from geometry, the mapping 

from parameter to physical space must also remain unchanged. This is achieved by 

keeping the same continuity per Knot both for coarse and fine mesh. 

 

  In order to increase the degree of a B-SPLine curve from p  to p , the new Knot 

Value Vector has to be defined first. No new Knots are added, but every existing 

Knot’s multiplicity is increased by p p  times. The coarse mesh representation is 

defined as: 

 

    
 

 
 

n
T

j,p j

n 1j 1 1 n

C( ) N ( ) X N X
 

        

 

whereas the fine mesh representation as: 
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  This leads to: 
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  The new set of Control Points  X , necessary for the representation, will be defined 

through a Transformation matrix for p-Refinement. There are many efficient 

algorithms for degree elevation. The following is a quick, reliable approach we have 

been efficiently using: 

 

  At first, coarse mesh B-SPLine basis functions are evaluated at m points throughout 

the patch. Careful selection (such as no points of 
0C  Continuity or other irregularities 

are involved) is preferred. This way, a B-SPLine function matrix is created,  
 n m

N


, 

which contains the values of the n  basis functions for the m  selected points. 

 

  The same points are used for the evaluation of new basis functions, with the refined 

degree and the new Knot Value Vector. Thus, 
 m m

N


 
   is created. Since the same points 

are evaluated and the parametric mapping remains the same, it applies that: 

 

 

 
 

 
 

 
 

 
   

 
 

 
 

1

T TT T

n 1 n 1m n m nm m m mn 1 n 1

N X N X X N N X



    

 
              

 
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  Therefore, 

 

 
   

 
 

1

T T

m n m nm m

T N N



 

 
     
 

 

 

  If 

 

T

m m

N


 
 

 cannot be reversed, a different set of points have to be selected. This 

procedure can also be used for h-Refinement applications. 

 

 
(a) 

 
(b) 

 

Figure 3.5. p-Refinement on a B-SPLine curve, from p 2  to p 4 . 
 

(a) Coarse Mesh. Knot Value Vector: 

 0 0 0 1 2 3 4 5 6 6 6   

(b) Fine Mesh. Knot Value Vector: 

 0 0 0 0 0 1 1 1 2 2 2 . . . 6 6 6 6 6   

 

  The curve in Figure 3.5 is subjected to p-Refinement. Note that Knot Spans are 

unchanged. Geometry and mapping from Parameter Space remain intact in p-

Refinement as well. Continuity remains 1C  across every internal Knot. Curve 

approximation by Control Points is also improved with p-Refinement.  
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Figure 3.6. Basis Functions for p-Refinement of Figure 3.5. 

1C  continuity across internal Knots. 

 

  Tensor product properties prove that p-Refinement can be utilized in multiple 

directions.  

 

 
 (a) (b) 
 

Figure 3.7. Order Elevation in multiple directions.  
  

(a) Coarse Mesh. Polynomial Degree:    p,q 3,3 . 

(b) Fine Mesh. Polynomial Degree:    p,q 4,5 . 

 

  Observe that Knot Rectangles have not changed in this example as well. The mesh is 

finer, but the continuity of the basis and the whole Parameter Space remain the same. 

Basis function interconnectivity, however, is improved. 

 

 
 

Figure 3.8. Basis and Shape Functions for p-Refinement. Reduced continuity across internal Knots.  
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3.4 Degree Elevation and Knot Insertion 
 

  Increasing polynomial degree by p-Refinement is an improvement to the basis, but 

continuity remains the same as in the coarse mesh. In order to improve this aspect, k-

Refinement was introduced by Hughes. The basic idea is that, after p-Refinement, h-

Refinement can be applied in order to create basis functions of 
p 1C 

 Continuity. This 

is a powerful tool that can lead to greater convergence rates for our models. 

 

 
(a) 

 
(b)  

 
Figure 3.9. k-Refinement on a B-SPLine curve 

 
(a) Coarse mesh. 

(b) Fine mesh. Polynomial order p 3 . Knot Value Vector: 

 0 0 0 0 1 1 2 2 2.5 3 3 3.5 4 4 5 5 6 6 6 6   

 

  In Figure 3.9, p-Refinement is performed first, so the order is elevated to p 3 . The 
1C  continuity that existed in the coarse mesh is maintained. Afterwards, h-Refinement 

is applied, with the insertion of two extra Knot Values. Continuity across this Knot 

Values is 
2C , thus taking greater advantage of the new polynomial order. The 

combination of p- and h- Refinement brings their best features together. This is why 

k-Refinement is considered so effective.  
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(a) 

 
(b) 

 
Figure 3.10. B-SPLine basis functions for the two stages of k-Refinement. 

 
(a) p-Refinement to p 3 . Knot Value Vector: 

 0 0 0 0 1 1 2 2 3 3 4 4 5 5 6 6 6 6   

(b) h-Refinement. Knot Value Vector: 

 0 0 0 0 1 1 2 2 2.5 3 3 3.5 4 4 5 5 6 6 6 6   

 

  After p-Refinement, internal Knots still possess 
1C  continuity. Note that only two 

basis functions are non-zero across every Knot. After h-Refinement, two new 
2C  

continuity Knots are introduced. Three B-SPLine basis functions are non-zero across 

these Knots, 2.5   and 3.5  . This way, greater levels of continuity for the new 

polynomial order are utilized. 
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Figure 3.11. k-Refinement for a NURBS Surface. 

 

 

 
 

Figure 3.12. Basis functions for Surface k-Refinement. 
 

Knot Value Vector (axis ξ) 

 0 0 0 0 0 0.5 1 1 1.5 2 2 2 2 2   

Knot Value Vector (axis η) 

 0 0 0 0 0 0 0.25 0.75 1 1 1 1 1 1   

 

 

  In Figure3.12, the application of k-Refinement for a Surface is represented. In fact, 

h-Refinement is performed after the p-Refinement of Figure 3.7. When p-Refinement 

is applied, continuity of the internal Knots is still 
2C . After h-Refinement, continuity 

of the additional Control Points in axes ,   is increased to 
3C  and 

4C  respectively. 

This augmentation of the continuity has proven to be very helpful for the analysis. 
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3.5 Reverse Refinement 
 

 

  Transformation from a fine to a coarse mesh is also required for some applications. 

The ability to go back-and-forth between coarse and fine mesh is useful in certain 

aspects of the analysis and design. This process is Reverse Refinement. 

 

  Reverse Refinement does not always provide an accurate solution. Removal of 

certain Knots or downgrading of polynomial order may affect the shape of the entity. 

It is obvious, for example, that reverse p-Refinement is not possible if there are Knots 

of 
p 1C 

 continuity involved. In general, reverse Refinement is an over determined 

problem and can only be solved in a certain number of cases. It is generally applicable 

when Refinement has already been implemented and the engineer wants, for some 

reason, to return to the initial state of the model. The procedure we generally follow is 

similar to Refinement. 

 

  In order to calculate the coarse mesh Control Points, a Transformation Matrix from 

Coarse to Fine mesh has to be introduced, so that: 

 

 
 

 
 

 
 
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X T X
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   

 

  This can be created from the Transformation Matrix from Fine to Coarse Mesh, 

 
 
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m n

T


. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

T T

FC FC FC FC

n 1 n 1m n n m n m m nmx1 mx1

X T X T X T T X
    

        

 

  Therefore, 
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and  

 

 
 

 
 

 
 

 
 

1
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T T T T



   

 
    
 

 

 

  As in Figure 3.13, Reverse Refinement works when going back-and-forth between 

coarse and fine mesh, but it is not always applicable. The curve in Figure 3.13.c has 

failed to accurately represent the required geometry. Refinement reverse should be 

carefully used as a tool of intercommunication between initial and refined model. 
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(a) 

 
(b) 

 
(c) 

 
Figure 3.13. Reverse h-Refinement. Success and Failure of Reverse Refinement. 

 
(a) Fine Mesh. Knot Value Vector: 

 0 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6 6   

(b) Reverse Refined Coarse Mesh. Knot Value Vector: 

 0 0 0 1 2 3 4 5 6 6 6   

(c) Reverse-Refined Failed Mesh. Knot Value Vector: 

 0 0 0 1 2 4 5 6 6 6   
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3.6 Refinement with NURBS 
 

 

  Everything mentioned about Refinement is applicable to B-SPLine entities. The 

question is what happens with NURBS. Different weight values and the complexity of 

NURBS shape functions prevent the Refinement straight at the NURBS entity. 

However, every NURBS is created from the projection of a B-SPLine; therefore, 

NURBS Refinement can be achieved by refining the corresponding projective B-

SPLine curve. 

 

  The first step is to evaluate the Projective Control Points  WB , by multiplying 

every coordinate with the corresponding weight, as shown below: 

 

   w w w

i i i i i i i i iX Y Z X W Y W Z W     

 

  As mentioned in 2.4.1 (Chapter 2), Weights are the fourth-coordinate of the 

projective curve. 

 

  Refinement is applied for each set of the four coordinates,  w w wX Y Z W . 

Afterwards, updated NURBS Control Point Coordinates and Weights are obtained by 

dividing the Cartesian coordinates with the weights: 

 

 
w w w

i i i
i i i

i i i

X Y Z
X Y Z

W W W

 
  
 

 

 

 
 (a) (b) 
 

Figure 3.14. (a) Coarse Mesh and (b) p-Refinement as a part of k-Refinement for a NURBS Surface. 
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 (a) (b) 
 

Figure 3.15. (a) k-Refinement and (b) failed Reverse Refinement applied to the NURBS Surface. 
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4 Stiffness Matrix Formulation 
 

 

 

4.1 Preliminary Steps for Analysis 
 

 

  The main difference between Isogeometric Analysis and Finite Element Analysis is 

the type of the shape functions used for the approximation of the solution field. The 

substitution of Lagrange polynomials with NURBS (widely utilized in the CAD 

community) leads to several special characteristics of Isogeometric Analysis. 

 

4.1.1 Shape Functions 
 

  Finite Element Method Shape Functions are usually polynomials (e.g. Lagrange 

polynomials). However, they hold certain disadvantages. FEM Shape functions are 

interpolatory at all nodes, internal and external, and have 
1C
 Continuity at the edge. 

This results in the incompetence of FEM to define stresses and strains at any 

boundary of any element, leading in the introduction of other corrective methods such 

as extrapolation, in order to achieve that. 

 

  NURBS as Shape functions hold an overlapping that is useful, as nearby elements 

are strongly connected, thus the simulation provides an improved approach to the 

natural problem. Continuous Shape function derivatives lead to a continuous stress 

and strain field, minimizing the need for application of corrective methods. 

 

4.1.2 Control Points 
 

  Classical FEM downsizes the natural problem of infinite unknowns to a finite 

number of unknowns, which are the degrees of freedom of the nodes. The position of 

the nodes depends on the element type. As a general rule, the nodes can be usually 

found in the corners and middle of the sides of the elements. They are part of the 

element and therefore part of the physical model. Displacements in other areas of the 

model can be approximated by a linear combination of displacements on the degrees 

of freedom. Distribution in the model is evaluated via the corresponding Shape 

functions. In isoparametric elements, Shape functions and their respective nodes are 

also used to approximate the geometry, thus enabling relatively complex shapes to be 

approximated with Lagrange polynomials. 
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  In Isogeometric Analysis, NURBS are chosen as Shape functions. The isoparametric 

concept is reversed, as geometrical mapping now defines the solution approximation. 

The geometrical representation is achieved through a combination of Control Points 

and their corresponding Shape functions. Degrees of freedom at the Control Points are 

now the unknowns. 

 

 

4.1.3 Elements 
 

  Two ingredients of the Isogeometric universe correspond to the essence of FEM 

“element”. The Isogeometric Element could be either the Patch or the Knot Span of 

the Patch. In order to perform exact numerical integration [4], a certain number of 

Gauss points are chosen for the domain of every piece of the polynomial basis 

functions. The domain of this piece is the knot span, which resembles the finite 

element of FEM. This is the reason why in this thesis knot spans and not patches are 

considered isogeometric elements. In IGA, shape functions are not restricted to the 

interior of each element (Knot Span). Instead, they are non-zero across p 1  Knot 

Spans and overlap with more Shape functions. 

 

  This overlapping results in a denser Stiffness Matrix than the classical Finite 

Element Matrix with the same degrees of freedom. Apart from that, the fact that B-

SPLine functions are defined in the whole domain allows for integration throughout 

the Patch without building local element matrices separately. Of course, this would be 

time-consuming and it is not advised for advanced software technologies, but serves 

well for research purposes, where a flexible quadrature code is needed in order to test 

and discover new methods and ideas. 

 

 

4.1.4 Gauss Points 
 

4.1.4.1 Parametric Coordinates 

 

  As mentioned above, Gauss Points are chosen for each Knot Span. Their coordinates 

are obtained on a reference element spanning [-1,1] as the roots of the Legendre 

Polynomial. The next step is to transform the coordinates and weights from the 

reference Knot Span 
R  to the desired Knot Span  i i 1,   .  

  

   R

i 1 i i 1 i

2

      
   

 

 i 1 iGP Rw w
2





 
   
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(a) 

 

 
(b) 

 
Figure 4.1. Gauss Points 

(a) on Reference Knot Span and (b) transferred to Parameter Space. 

 

 

  Full tensor product properties apply here as well, leading in similar equations for the 

other two parametric directions: 

 

   R

j 1 j j 1 j

2
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
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2





 
   
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4.1.4.2 Gauss Point Number 

 

 

  Gauss Point Coordinates and Weights are evaluated for every Patch. According to 

[4], for the exact integration of a polynomial of degree q, 
q 1

2


 or 

q 2

2


 Gauss Points 

are required per Knot Span for q odd and even respectively. 

 

  For 1D problems, the maximum degree of the Deformation Matrix is defined from 

the derivation of piecewise polynomial Shape functions, therefore p 1 . 

 

       
T

B E B           yields to the product of polynomials of maximum order p 1  

resulting in a polynomial of maximum order    p 1 p 1 2p 2     . Thus, the 

minimum number of Gauss Points per Knot Span required for exact integration is: 

 

 2p 2 2
p

2

 
  

 

  For 2D and 3D problems, the maximum order of the Deformation Matrix is 

determined by partial derivation of piecewise polynomial Shape functions. Therefore 

the maximum degree is p for derivation in the remaining directions. 

 

  The order of the product      
T

B E B           is p p 2p  . In order to achieve 

exact integration, the minimum number of Gauss Points per Knot Span is: 

 

2p 2
p 1

2


   

 

  Conclusively per Knot Span: 

 

 For 1D problems, p  Gauss Points per knot span are required. 

 For 2D and 3D problems, p 1  Gauss Points per knot span are required. 

 

 

4.1.5 Patches 
 

  As mentioned before, Patches are used when a change in geometry type or material 

occurs. Patches can also be used in any case 
1C
 or 

0C  Continuity is required. If 

separate Knot Vectors are used for every Patch, Stiffness Matrices will be produced 

for every Patch. The separate Matrices are combined into one via connectivity arrays. 

If the connection is watertight, the procedure is the same as the one used in classical 

FEM to combine local element matrices to a single, global Stiffness Matrix. 
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4.1.6 Elasticity Matrix 
 

 

  Elasticity Matrix types vary depending on the stress and strain field for each case. 

Data is obtained straight from classical FEM applications. Elasticity matrices for 1D 

elasticity, plane strain, plane stress and 3D elasticity are presented as follows, where E 

is the Young’s modulus and ν is the Poisson’s ratio. 

 

1D Elasticity: 

 

 
 1x1

E E  

 

2D Elasticity, Plane Stress: 

 

 
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2
3x3
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2D Elasticity, Plane Strain: 

 

 
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1 0
E

E 1 0
1 1 2

1 2
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3D Elasticity: 
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  The corresponding stress and strain vectors are: 

 

1D Elasticity: 

 

 
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2D Elasticity, Plane Stress and Plane Strain: 
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3D Elasticity: 
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 (a) (b) 
 

Figure 4.2. Stress contour distribution. 

(a) xx  for Plane Stress, (b) yz  3D Elasticity 
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4.2 Stiffness Matrix Assembly. 
 

 

4.2.1 General Procedure 
 

  The general process for the Global Stiffness Matrix assembly, as obtained from 

Finite Element Method, is shown in the following flow chart: 

 

 
 

Figure 4.3. Stiffness Matrix Assembly in Finite Element Method. 

 

  There are three loops: 

 Patch loop 

 Element loop 

 Gauss Point loop 

 

  It is worth mentioning that the element loop in IGA can be avoided. In this case, the 

stiffness contribution of each Control Point pair is added directly to the Stiffness 

Matrix of the Patch. The reason for this is that Parameter Space is local to Patch rather 

than elements.  
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  Therefore, an engineer accustomed to the methods of Isogeometric Analysis knows 

that the element loop can be completely avoided, leading to the following flow chart: 

 

 

 
 

Figure 4.4. Stiffness Matrix Assembly in Isogeometric Analysis 

 

 

4.2.1.1 Input Data 

 

  Information necessary for the whole process of analysis is given as input at this 

point. The information essential for the formulation of the Stiffness Matrix is divided 

into two categories: 

 

 Structural Analysis and Material  

 Computational Geometry   
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4.3 Stiffness Matrix 
 

 

4.3.1 Stiffness Matrix 1D 
 

  Let us consider a simple 1D application as an example. These applications are 

utilized only in truss systems with axial tension, but their significance is mostly 

academic. Simplifying the problem, without loss of generality, can lead to a better 

understanding of the principles involved. In our research career, we often address 1D 

analogies for the solution of complex problems and it has always been extremely 

helpful. 

 

  In such a case, only axial deformation for each point of the truss exists. This 

deformation is       u x u C u    . The respective strain matrix consists of one 

value: 
 

 
 

 x

1 1

u
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 
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  In order to calculate the derivative of u , we must first establish a transition from 

Physical Space to Parameter Space: 

 

x x

  


  
 

x

x

  


  
 

 

 J
x

   
       

 

 

where  J  is the Jacobian Matrix enabling transition from Physical to Parameter 

Space and vice-versa. It can be evaluated with the help of basis functions iR ( )  and 

the Control Points’ Cartesian coordinates iX  as shown: 

 
   

 

1

2

1, 2, n,

1 1 1 n

n

n 1

X

X

.
J R ( ) R ( ) ... ... ... R ( )

.

.

X

  

 



 
 
 
 

            
 
 
 
  

 

where 
i, iR ( ) R ( )


  


.  
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   In Finite Element Analysis, the reverse transformation is utilized. This is why the 

inverse matrix  
1

J


 is needed. 

 
   

 

1

1x1

1 1

1
J

J





  

 

  Special care has to be taken in order for the Jacobian to be correct. The positive 

direction of the axes in Parameter and Physical Space must coincide, or the 

determinant of the Jacobian will be negative and the matrix  J  irreversible. 

Numerical integration on points of singularity, such as two points on Parameter Space 

mapped into the same point on Physical Space, has to be avoided as well. 

 

  The next step is to calculate the matrices  1B  and  2B . The matrix  1B  transfers 

the strains of the element from Parameter to Physical Space and the matrix  2B  

transfers the nodal displacements of the elements to the strains at the Parameter 

Space. Therefore, the matrices  1B and  2B  can be calculated from the equations 

below: 

 

 
 

 
1

1 1

u u
J

x





   
          

 

 

 
 
1

1 1 11

1
B

J

 
     

 
 

 

 
 

 
 

 
 

1

1 1 1 1 1 1

B u

  

    

1

2

1, 2, n,

n

u

u

.u
R ( ) R ( ) ... ... ... R ( )

.

.

u

  

 
 
 
  

             
 
 
  

 

 

 
 
2 1, 2, n,

1 n

B R ( ) R ( ) ... ... ... R ( )  



           

 

 
 

 
 

 
 

2

1 1 n 11 n

u B d
 

   

 

  After that, the Deformation Matrix is evaluated. 

 

 
 

 
 

 
 

1 2

1 n 1 1 1 n

B B B
  

                 
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  Deformation Matrix produces strain values anywhere in the model, by utilizing 

nodal displacements. 

 

  
 

 
 

 
 n 11 1 1 n

B d
 

        

 

  The Stiffness Matrix for the Patch is evaluated as shown: 

 

 
 

 
 

 
 

 
 

 
n p 1

0

T

n n 1x1n 1 1 n

K B E B A det J d
 


  

               

 

  Direct integration is almost never applicable. Numerical integration is used instead, 

looping through all the Gauss Points of a Patch and their respective weights: 

 

 
 

 
 

 
 

 
 

 
GP

T GP

i i i

n n 1x1i 1 n 1 1 n

K B E B A det J w




   

  
              

  
  

 

where 

 A : the area of the cross-section 

 GP
: the total number of Gauss Points for the specific Patch 

 iξ : the coordinates of the Gauss Points 

 GP

iw  : the corresponding weights. 

 

 

4.3.2 Stiffness Matrix 2D 
 

  2D elasticity problems have many applications in modern analysis. The logic is 

exactly the same as in 1D problems. The main difference is, obviously, the utilization 

of one more dimension. Parameter Space is defined on  ,   and Physical Space on 

 x,y . Displacements per x, y at any point in the entire domain are defined as 

      u x,y u S , u ,       and    v x,y v ,    respectively. 

 

  The strain vector is defined as: 

 

 
 

 
 

x

y

3 1 3 1

xy

u
0

x x

uv
0

vy y

u v

y x y x

 

    
   

     
       

                             
   

      
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  The transformation of a function φ between Parameter and Physical Space yields: 

 

x x x

    
 

    
 

 

y y y

    
 

    
 

 

x y

x y

    
 

    
 

 

x y

x y

    
 

    
 

 

  Thus, the 2D Jacobian Matrix can be defined as: 

 

 
 2 2

x y

x x
J

x y

y y



            
            
            

            
                    

 

 

and the inverse mapping: 

 

 
 

1

2 2

x
J

y





  
   
    

   
      

 

 

  The Jacobian matrix can be evaluated as shown: 

 

 
 

1 1

2 2

1, 2, N,

2 2 1, 2. N,

N N

X Y

X Y

R ( , ) R ( , ) ... ... ... R ( , ) . .
J

R ( , ) R ( , ) ... ... ... R ( , ) . .

. .

X Y

  

   

 
 
 

        
    

        
 
 
  

 

 

where N n m   is the total number of Control Points. 

 

  The inverse Jacobian matrix is used in Stiffness Matrix calculation: 

 

 
   

* *
1 22 1211 12

* *
2 2 21 1121 22

J JJ J 1
J

J Jdet JJ J





   
     

  
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  The determinant of the Jacobian matrix is also required and is equal to: 

 

  11 22 21 12det J J J J J     

 

  In order to calculate the Deformation Matrix for 2D problems,  1B  and  2B  have 

to be evaluated as usual. 

 

  To obtain matrix  1B : 

 

 
   

22 12

21 11

3 1

21 11 22 12

u

u

ux J J 0 0
v 1

0 0 J J
vy det J

J J J J
u v

vy x



 
     
                               
  
    
  

 

 

  Hence, 

 

 
   

22 12

1 21 11

3 4

21 11 22 12

J J 0 0
1

B , 0 0 J J
det J

J J J J


 
 

        
   

 

 

  To calculate matrix  2B : 

1

1

2

1, 2, N,

2

1, 2, N,

1, 2, N,

1, 2, N,

N

N

u
u

v

u
R 0 R 0 ... ... ... R 0u

v
R 0 R 0 ... ... ... R 0

.
0 R 0 R ... ... ... 0 Rv

.
0 R 0 R ... ... ... 0 R

.
v

u

v

  

  

  

  

 
   

  
  

    
           
    
          

   
     
 

 

 

  Hence, 

 
 

1, 2, N,

1, 2, N,

2

1, 2, N,4 2N

1, 2, N,

R 0 R 0 ... ... ... R 0

R 0 R 0 ... ... ... R 0
B ,

0 R 0 R ... ... ... 0 R

0 R 0 R ... ... ... 0 R

  

  

  

  

 
 
       
 
  
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  Having determined  1B  and  2B , the Deformation Matrix is calculated as: 

 

 
 

 
 

 
 

1 2

3 2N 3 4 4 2N

B , B , B ,
  

                   

 

  In order to evaluate the Stiffness Matrix, integration is required. 

 

 
 

 
 

 
 

 
 

 
n p 1 m q 1

0 0

T

2N 2N 3x32N 3 3 2N

K B , E B , t det J d d

    

   

                   

 

  Numerical integration procedures for ,   lead to integration for tensor product 

Gauss Points. 

 

 
 

 
 

 
 

 
 

 
GP GP T

GP GP

i j i j i j

2N 2N 3x3i 1 j 1 2N 3 3 2N

K B , E B , t det J w w
 

 

    

             
     

 

where: 

 t: the thickness of the cross-section 

 GP 
: the total number of Gauss Points per  for the specific Patch 

 GP 
: the total number of Gauss Points per  for the specific Patch 

 
i j,    : the coordinates of the tensor product Gauss Point i,  j  

 GP GP

i jw ,  w  : the corresponding weights 

 

  The only difference, at this point, between plane stress and plane strain is the 

Elasticity Matrix which is the result of the utilized Constitutive Law. 

 

 
 

Figure 4.5. Basis functions evaluated as Gauss Points. 

 0 0 0 1 2 3 4 5 6 7 8 9 9 9   
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4.3.3 Stiffness Matrix 3D 
 

  3D Elasticity is merely the extension of 2D Elasticity in all directions, with a 

complete stress field. Every other problem can be created by downgrading 3D 

problems into 2D and 1D problems. 

 

  The displacement field for each point in Physical Space is now defined for x, y, z by 

      u x,y,z u S , , u , ,        ,  v , ,   ,  w , ,    respectively. The strain 

field can now be defined as: 

 

 
 

x

y

z

6 1 xy

yz

zx

u
0 0

x x

v
0 0

y y

w
u0 0

z z
v

u v
0 w

y x y x

v w
0

z y z y

w u
0

x z z x



    
    
   

    
       

    
        

       
                           

    
          
      
   
      
         





 

 

, which leads to the definition of the Jacobian Matrix for 3D: 

 

 
3 3

x y z

x x

x y z
J

y y

x y z

z z



             
                     
              

                  
        
             
                     

 

 

and the inverse Jacobian Matrix as well: 

 

 
 

1

3 3

x

J
y

z





  
      
   

     
  
  
      
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  Jacobian Matrix can be calculated from the derivatives of the Shape functions. 

 

 
 

1 1 1

2 2 2

1, 2, N,

1, 2. N,

3 3

1, 2, N,

N N N

X Y Z

X Y Z
R ( , , ) R ( , , ) ... ... ... R ( , , )

. . .
J R ( , , ) R ( , , ) ... ... ... R ( , , )

. . .
R ( , , ) R ( , , ) ... ... ... R ( , , )

. . .

X Y Z

  

  



  

 
 
          
  

            
             
 
  

 

 

  The inverse of the Jacobian Matrix is: 

 

 
 

* * *

11 12 13
1 * * *

21 22 23

3 3 * * *

31 32 33

J J J

J J J J

J J J





 
 

  
 
 

 

 

   1B  is evaluated as: 

 

 
 

* * *

11 12 13

* * *

21 22 23

* * *

31 32 33

1 * * * * * *
6 9 21 22 23 11 12 13

* * * * * *

31 32 33 21 22 23

* * * * * *

31 32 33 11 12 13

J J J 0 0 0 0 0 0

0 0 0 J J J 0 0 0

0 0 0 0 0 0 J J J
B , ,

J J J J J J 0 0 0

0 0 0 J J J J J J

J J J 0 0 0 J J J



 
 
 
 

       
 
 
 
  

 

 

  As for  2B : 

 

 
 

1, 2, N,

1, 2, N,

1, 2, N,

1, 2, N,

1, 2, N,

1, 2, N,

2

9 3N

R 0 0 R 0 0 ... ... ... R 0 0

R 0 0 R 0 0 ... ... ... R 0 0

R 0 0 R 0 0 ... ... ... R 0 0

0 R 0 0 R 0 ... ... ... 0 R 0

0 R 0 0 R 0 ... ... ... 0 R 0

0 R 0 0 R 0 ... ... ... 0 R 0
B , ,

... ... ... ... ... ... ... .

  

  

  

  

  

  



     

1, 2, N,

1, 2, N,

1, 2, N,

.. ... ... ... ...

... ... ... ... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ... ... ... ...

0 0 R 0 0 R ... ... ... 0 0 R

0 0 R 0 0 R ... ... ... 0 0 R

0 0 R 0 0 R ... ... ... 0 0 R

  

  

  

 
 
 
 
 
 
 
 
 
 
 
 
 





 






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  As a result, the Deformation Matrix for 3D Elasticity is calculated as: 

 

 
 

 
 

 
 

1 2

6 3N 6 9 9 3N

B , , B , , B , ,
  

                      

 

  The corresponding Stiffness Matrix is produced by integration 

 

 
 

 
 

 
 

 
 

 
n p 1 m q 1 l r 1

0 0 0

T

3N 3N 6x63N 6 6 3N

K B , , E B , , det J d d d

     
  

    

                      

 

  Numerical integration is used in 3D as well 

 

 
 

 
 

 
 

 
 

 
GP GP GP T

GP GP GP

i j k i j k i j k

3N 3N 6x6i 1 j 1 k 1 3N 6 6 3N

K B , , E B , , det J w w w
  

  

     

               
     

 

where: 

 GP  : the total number of Gauss Points per  for the specific Patch 

 GP  : the total number of Gauss Points per η for the specific Patch 

 GP  : the total number of Gauss Points per ζ for the specific Patch 

 
i j k,  ,     : the coordinates of the tensor product Gauss Point ijk 

 GP GP GP

i j kw , w ,  w   : the corresponding weights of Gauss Points 

 

 

 
 

Figure 4.6. Basis function derivatives evaluated as Gauss Points. 

Knot Value Vector 

 0 0 0 1 2 3 4 5 6 7 8 9 9 9   
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4.3.4 Stiffness Matrix Examples 
 

 
(a) 

 
(b) 

 
Figure 4.7. (a) Stiffness Matrix of the model where 1470 non-zero elements are produced 

and (b) its corresponding basis functions. 

 

  In Figure 4.7, the degree is equal to p 2 , Continuity is 
0C , and the model has 66 

degrees of freedom. The non-zero elements of the matrix are 1470. The 

interconnectivity between the elements applies in a small part of the matrix, as it is 

shown in Figure 4.7.a. This occurs because the overlapping between the B-SPLines 

exists only for 
5,2N ( ) . 

 

  The non-zero elements at the matrix are a result of the shared support between the B-

SPLines, which exists for 2p  B-SPLines. 
5,2N ( )  shares support with the B-SPLines 

3,2N ( ) , 
4,2N ( ) , 

6,2N ( )  and 
7,2N ( ) . For these B-SPLines, the elements of the 

matrix are non-zero. This process requires less composition time, because of the 

limited number of interconnections.  
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(a) 

 
(b) 

 
Figure 4.8. (a) Stiffness Matrix of the model where 1762 non-zero elements are produced 

and (b) its corresponding basis functions. 

 

 

  In Figure 4.8, the model is analyzed for a degree of p 2  and 
1C  Continuity with 

the same 66 degrees of freedom. The interconnectivity between the elements has 

increased and therefore provides a better approximation of the model than the one in 

Figure 4.7. In this case, the configuration of the matrix requires more time, but the 

overlapping between the B-SPLines leads to better results.  
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  A Stiffness Matrix coefficient is non-zero when shared support applies for the 

corresponding B-SPLine and extensively between Control Points.  

 

  In particular, every B-SPLine shares support with 2p  B-SPLines. In Knot Span 

 2,3  of Figure 4.8, the B-SPLines 
3,2N ( ) , 

4,2N ( )  and 
5,2N ( )  are non-zero and in 

Knot Span  3,4 , 
4,2N ( ) , 

5,2N ( )  and 
6,2N ( ) . These two Knot Spans are 

connected to each other with the B-SPLines 
4,2N ( )  and 

5,2N ( ) .  

 

  The B-SPLine 
4,2N ( )  shares support with p  B-SPLines on each side, in particular

2,2N ( ) , 
3,2N ( ) , 

5,2N ( )  and 
6,2N ( ) . The same applies for the B-SPLine 

5,2N ( ) , 

as it shares support with 
3,2N ( ) , 

4,2N ( ) , 
6,2N ( )  and 

7,2N ( ) .  

 

 
(a) 

 
(b) 

 
Figure 4.9. (a) Stiffness Matrix of the model where 2340 non-zero elements are produced and 

(b) its corresponding basis functions.  
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  In Figure 4.9, the model is analyzed for p 3  and 
2C  Continuity and for the same 

66 degrees of freedom. 

 

  In Knot Span  2,3  
3,3N ( ) , 

4,3N ( ) , 
5,3N ( )  and 

6,3N ( )  are non-zero and in 

Knot Span  3,4  the B-SPLines 
4,3N ( ) , 

5,3N ( ) , 
6,3N ( )  and 

7,3N ( )  respectively. 

In this case, the interconnectivity between the elements expands in almost all the 

degrees of freedom, because the overlapping between basis functions exists for 

4,3N ( ) , 
5,3N ( )  and 

6,3N ( ) . 

 

  The B-SPLine 
4,3N ( )  shares support with 2p  B-SPLines as it is previously 

mentioned, three B-SPLines on the left and three B-SPLines on the right, as it is 

shown in Figure 4.9. In particular, 
4,3N ( )  shares support with 

1,3N ( ) , 
2,3N ( ) , 

3,3N ( ) , 
5,3N ( ) , 

6,3N ( ) , 
7,3N ( ) .  

 

  For these B-SPLines, the corresponding coefficients at the Stiffness Matrix are non-

zero. The same applies for 
5,3N ( )  and 

6,3N ( ) . Therefore, the number of the non-

zero elements has increased even more, thus the approximation in this solution is 

more close to the real problem. 

 

  Figure 4.11 represents the influence of the continuity in the analysis of the model in 

Figure 4.10. As the continuity increases, the interconnectivity of the elements affects 

more degrees of freedom. This leads to a better approximation of the physical 

problem, but also the creation of the Stiffness Matrix becomes more time-consuming. 

For the same polynomial order, more non-zero elements are created at the Stiffness 

Matrix.  

 

  This is a result of the shared support of the B-SPLine basis functions, that exists for 

2 p  B-SPLines, which leads to overlapping between the B-SPLines and 

interconnectivity of the degrees of freedom in the Stiffness Matrix. Therefore, as 

Continuity increases, the number of non-zero elements increases as well. 

 

 

 
 

Figure 4.10. 3D Structure for Continuity investigation. 
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(a) 

 
(b) 

 
(c) 

 
Figure 4.11. Stiffness Matrix for p 3  and 99 degrees of freedom. 

(a)
0C  Continuity 

(b)
1C  Continuity 

(c)
2C  Continuity 
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5 External Loads, Boundary 

Conditions and Stress Field 
 

 

 

5.1 Analysis 
 

 

5.1.1 External Load 
 

  After the Stiffness Matrix Assembly, the external Load Vector has to be calculated. 

Concentrated Loads can be assigned directly at the Degrees of Freedom. Distributed 

loads  f , ,    have to be transformed into equivalent concentrated loads by 

integration [2]: 

 

 
 

  
 

 
 

 
n p 1 m q 1 l r 1

0 0 0
N 1 1 1N 1

F R , , f , , det J d d d

     
  

   

               

 

  More specifically, for each case: 

 

1D: 

 

 
 

  
 

 
 

 
n p 1

0
N 1 1 1N 1

F R f det J d

 

 

       

 

2D: 

 

 
 

  
 

 
 

 
n p 1 m q 1

0 0
N 1 1 1N 1

F R , f , det J d d

    

  

           

 

3D: 

 

 
 

  
 

 
 

 
n p 1 m q 1 l r 1

0 0 0
N 1 1 1N 1

F R , , f , , det J d d d

     
  

   

               

 

  This way, the Load Vector  F  is assembled.  
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5.1.2 Refined Load 
 

  If a load vector has already been evaluated for a coarse mesh, there is no need to 

apply numerical integration for the new load vector of the fine mesh. New load values 

can be evaluated directly from the coarse mesh. 

 

  Let  CL ,  FL  be the load vectors,   CN  ,   FN  the basis functions and 

 CX ,  FX  the Control Point Cartesian Coordinates for the coarse and fine mesh 

respectively. Let  f   be the load distribution in the physical space. It applies that: 

 

 
 

  
 

 
 

max

0

C C

1 1n 1 n 1

L N f d



 

      

 

  Both meshes provide the same geometrical representation, resulting in: 

 

    
 

 
 

T
C C

1 n n 1

C N X
 

     

 

    
 

 
 

T
F F

1 m m 1

C N X
 

     

  Thus,  

  
 

 
 

  
 

 
 

T T
F F C C

1 m m 1 1 n n 1

N X N X
   

      

 

  It has been established, in Chapter 3, that: 

 

 
   

 
 

C CF F

n mn 1 m 1

X T X
 

     

 

  Therefore, 

 

  
 

 
 

  
 

 
 

  
   

 
 

  
 

  
   

T T T
F F C C C CF F

n m1 m m 1 1 n n 1 1 n m 1

T T
F C CF

n m1 m 1 n

N X N X N T X

N N T

     

 

           

      

 

 

  This leads to 

 

    
T

F CF C

m nm 1 n 1

N ( ) T N
 

       
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  The fine mesh load vector is evaluated by: 

 

 
 

  
 

 
 

 
   

  
 

 
 

 
   

  
 

 
 

max

0

max

0

max

0

F F

1 1m 1 m 1

T
F CF C

1 1m nm 1 n 1

T
F CF C

1 1m nm 1 n 1

L N f d

L T N f d

L T N f d



 



 



 

    

       

      







 

 

  In conclusion, 

 

 
   

 
 

T
F CF C

m nm 1 n 1

L T L
 

     

 

  In the same manner, equivalent loads for Reverse-Refinement can be defined as: 

 

 
   

 
 

T
C FC F

n mn 1 m 1

L T L
 

     

 

  An engineer must always bear in mind the restrictions set for Reverse Refinement. 

Both in geometrical representation and in equivalent load evaluation, this procedure 

only works under certain circumstances. More specifically, loads refined from a 

coarse mesh can be transformed back to that coarse mesh. On the other hand, loads 

created initially from a fine mesh will probably be transformed incorrectly to the 

coarse mesh. 

 

 

5.1.3 Boundary Conditions 
 

  Certain Degrees of Freedom are fixed, in that their displacements are zero. These are 

called stationary and the corresponding rows and columns are deleted from the 

Stiffness Matrix and the Load Vector. This leaves a Stiffness Matrix and a Load 

Vector having only free Degrees of Freedom,  ffK  and  fF  respectively. The 

solution of the equation is the final step in analysis: 

 

           
1

f ff f f ff fF K D D K F


      

 

  The (zero) displacements for the stationary Degrees of Freedom are added back to 

the result, thus creating the Displacement Vector  D . 
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5.2 Displacement, Strain and Stress Field 
 

 

5.2.1 Displacement 
 

  After the solution of the equation, Control Point Displacements are obtained. Unlike 

classical FEM, Control Points are usually placed outside the area of the model. In 

general, displacements of the model differ from the displacements of the 

corresponding Control Points. Conclusively, analysis results are considered “Pseudo-

Displacements” and play an auxiliary role in calculating the physical model ones. As 

mentioned before, the distribution of the displacement field is achieved via Shape 

Functions [2]: 

 

  1D: 

 

     
 

 
 

N
T

i i i

N 1i 1 1 N

d( ) R D R D
 

        

 

  2D: 

 

     
 

 
 

N
T

i i i

N 1i 1 1 N

d( , ) R , D R , D
 

           

 

  3D: 

 

     
 

 
 

N
T

i i i

N 1i 1 1 N

d( , , ) R , , D R , , D
 

              

 

where: 

 

 
iR  is the Shape Function i  

 
iD  is the Displacement of the corresponding Control Point 

 N  is the total number of Control Points 

 

  If a Control Point c  is interpolatory to the curve at  c c c, ,   , it follows that: 

 

  
N

c c c i c c c i c c

i 1

d( , , ) R , , D 1 D D


           . 

 

  Displacements of interpolatory Control Points are physical model’s displacements as 

well. 
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5.2.2 Stress and Strain 
 

  The Strain Vector can be evaluated at any point in the field with the help of Control 

Point Displacements and the Deformation Matrix  B  [2]: 

 

  1D 

 

  
 

 
 

 
 N 11 1 1 N

B D
 

        

  2D 

 

  
 

 
 

 
 2N 13 1 3 2N

, B , D
 

          

 

  3D 

 

  
 

 
 

 
 3N 16 1 6 3N

, , B , , D
 

            

 

  Applying Hooke’s Constitutive Law leads to: 

 

  1D 

 

  
 

 
 

  
 

 
 

 
 

 
 N 11 1 1 11 1 1 1 1 N

E E B D
   

             

 

  2D 

 

  
 

 
 

  
 

 
 

 
 

 
 2N 13 3 3 33 1 3 1 3 2N

, E , E B , D
   

                

 

  3D 

 

  
 

 
 

  
 

 
 

 
 

 
 3N 16 6 6 66 1 6 1 6 3N

, , E , , E B , , D
   

                   

 

  Note that stress and strain vectors are evaluated via the derivatives of the shape 

functions. This means that their distribution is going to be one order less than the 

displacement distribution. This is why stress and strain continuity cannot be achieved 

in FEM models, where shape functions are always 1C  continuous. This problem is 

solved when the derivatives of the shape functions are also continuous, which means 

using shape functions with 1C  continuity or higher. 
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6 Applications 
 

 

 

6.1 Cantilever 2D 
 

 

  The cantilever presented here is subjected to plane stress. The third dimension 

(thickness) is significantly smaller than the other two. The degrees of freedom on the 

left side are fixed. The load is applied on the right side of the cantilever. 

 

  The first representation consists of quadratic basis functions on axes ,  . There are 

formed 9 Knot Rectangles (Isogeometric elements). Knot boundaries are displayed in 

blue. 

 

 

 
(a) 

 

 
(b) 

 
Figure 6.1. (a) Physical Space and (b) Basis Functions for Cantilever 15x3x0.01 m 

 

Knot Value Vector:  0 0 0 1 2 3 4 5 6 7 8 9 9 9   

Knot Value Vector  0 0 0 1 1 1    
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  Gauss point coordinates are evaluated for every Knot Span. In this 2D problem, 

p 1 3   Gauss points per Knot Span are required. Thus, 3 3 9   Gauss points per 

Isogeometric Element. 

 

 
 

Figure 6.2. Gauss Point coordinates in Physical Space. 9 Gauss Points per Knot Rectangle. 

 

  There are n 11  Control points on   and m 3  Control points on  , for a total of 

33 points and 66 degrees of freedom. The overlapping of the basis functions can also 

be seen in the non-zero elements of the Stiffness Matrix. 

 

 
 

Figure 6.3. Stiffness Matrix. 66 degrees of freedom. Non-zero elements are drawn in blue. 

 

 
 

Figure 6.4. Real Displacements on Physical Space  
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  In Figure 6.5, contour for xx  is represented. The cantilever is subjected to 

transverse bending. Note that stresses are continuous everywhere in the model, as a 

result of 1C  Continuity basis functions. 

 

 
Figure 6.5. Contour for xx  

 

  The same model is analyzed with 0C  Continuity across all Knots. This is achieved 

by h-Refinement. No new Knots are added, but multiplicity of internal Knots is 

increased. The model and basis functions are represented in Figure 6.6, where the 

patch boundaries are drawn in black. 

 

 
(a) 

 
(b) 

 
Figure 6.6. (a) Physical Space 

(b) Basis Functions for Cantilever 15x3x0.01 m 
 

 0 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 9   

 0 0 0 1 1 1    
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  In order to maintain the same elements, more control points have to be added. The 

refined, 0C  Continuity model consists of 19 3 57   Control Points and 114 degrees of 

freedom. Limited Continuity between the elements is also illustrated in the form of 

the Stiffness Matrix. The limited interconnectivity can be seen by the vast number of 

zero elements in the Matrix.  

 

 
 

Figure 6.7. Stiffness Matrix for 0C  Continuity. 114 degrees of freedom. 

Non-zero elements are drawn in blue. 

 

  Contour for xx  is represented in Figure 6.8. Discontinuity of stresses across Patch 

boundary is clearly visible. This is a great advantage of Isogeometric Analysis over 

FEM. 

 

 
Figure 6.8. Contour for xx   
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  A parametric investigation was conducted to the Cantilever Model. One h-

Refinement, one p-Refinement and three k-Refinements were applied. Physical space, 

Control Net and Knot Mesh are presented in Figure 6.9 below. 

 

 
(a) Initial Mesh. 

 
(b) h-Refinement 

 
(c) p-Refinement 

 
(d) k-Refinement (p=3) 

 
(e) k-Refinement (p=3) 

 
(f) k-Refinement (p=4) 

 
 

Figure 6.9. Physical Space for Refined Cantilever. 
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  After the first k-Refinement, a deviation of 0.07 % is achieved. The combination of 

different order with increased continuity yields very accurate results. Moreover, cubic 

basis functions tend to be very efficient for analysis; this is yet to be explained. 
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Figure 6.10. Control Point Displacement in comparison with total Degrees of Freedom. As soon as 

cubic B-SPLines are used, results are surprisingly good. 

 

 
 

Figure 6.11. Contour for xx  after the final k-Refinement. 
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(a) h-Refinement 

 
(b) p-Refinement 

 
(c) k-Refinement (p=3) 
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(d) k-Refinement (p=3) 

 

 

 

 
(e) k-Refinement (p=3)  

 

 

Figure 6.12. B-SPLine Shape functions for the Refinements. 
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6.2 Cook’s Cantilever 
 

 

  Cook’s Cantilever is a characteristic plane stress problem. Both Cook’s Cantilever 

and the Simple Cantilever were represented using the exact same parameterization. 

Only the Cartesian coordinates of the Control Points differentiate.  

 

 

 
 

Figure 6.13. Cook’s Cantilever. Coarse mesh representation. 

 

  Analysis has been conducted with Shape Functions of 1C  and 0C  continuity. The 

results are displayed in Figure 6.14, where the discontinuity of the stress field is 

remarkably obvious for the 0C  representation. 

 

 

 
(a) 1C  Continuity. (b) 0C  Continuity 

 

Figure 6.14. Contour for xx . 

 

  The same parametric investigation is conducted for Cook’s Cantilever as well. It 

consists of an h-Refinement, a p-Refinement and three k-Refinements. The 

displacement results for a characteristic Control Point are displayed in Figure 6.15.  
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Figure 6.15. Control Point Displacement in comparison with total Degrees of Freedom. 

 

  Note that cubic basis functions produce better results than quartic basis functions. A 

divergence of 0.04% is achieved with 658 degrees of freedom, whereas quartic basis 

functions reach the exact solution at a much slower rate, as 1472 degrees of freedom 

are required in order for displacement norm of 0,18 % to be achieved. 

 

 
(a) p=3, 290 Degrees of Freedom.      (b) p=3, 658 Degrees of Freedom. 

 

 
(c) p=4, 784 Degrees of Freedom.       (d) p=3, 1162 Degrees of Freedom. 

 

Figure 6.16. xy  Contour for consecutive k-Refinements.  
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6.3 NURBS Arc 
 

 

  The next model is a cantilever of quadrant shape. The circular shape is represented 

by NURBS entities of different weights. Coarse mesh representation and the 

corresponding weight values are displayed in Figure 6.17. 

 

 

  
 

     (a) Coarse Mesh      (b) k-Refinement, p 2  

 

 
(c) k-Refinement, p 3  

 
 

Figure 6.17. Geometrical representations for NURBS Arc 

 

  Parametric investigation with different polynomial orders has been conducted. For 

each order, 3 k-Refinements were applied. The results are displayed in Figure 6.18. 
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Figure 6.18. Results for NURBS Arc. 

 

 

  
(a): first k-Refinement, p=2 (b): second k-Refinement, p=2 

  
(c): third k-Refinement, p=2 (d): first k-Refinement, p=3 

  
(e): second k-Refinement, p=3 (f): third k-Refinement, p=3 

 

Figure 6.19. xx  Contour for NURBS Arc. 
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6.4 Plate with a hole 
 

 

  This example was first presented in terms of Isogeometric Analysis [1]. It has 

become a characteristic example of the potential of this innovative method. 

 

 
 

Figure 6.20. Plate with a hole and geometrical representation of a quadrant. 

 

  Due to double symmetry, only a quarter of the plate needs to be analyzed. The upper 

left corner is generated by a double control point at that position. The minimum 

degree for the circular quadrant and the outer side (parametric direction  ) is p 2 . 

 

  The double control point is a point of singularity, as two points from parameter 

space coincide into one in the physical space. This does not affect the formulation of 

the Stiffness Matrix, because numerical integration does not include data from this 

specific point. It does affect, however, the stress results. Figure 6.21 represents a fine 

mesh and the corresponding stress contour. The point of singularity has been 

removed, as xy  was infinite there. Still, in the small area close to the point, stress 

values are unusually high. 

 

 
(a) (b) 

Figure 6.21. (a) Fine Mesh representation and 

(b) xy  contour  
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  A different approach for the representation of the corner is to consider a linear B-

SPLine curve and then perform p-Refinement in order to reach the desired quadratic 

basis functions. This method contains no points of singularity, but a patch boundary in 

the middle of parametric direction   is necessary. 

 

 

 
 (a) (b) 

 
Figure 6.22. (a) New geometrical representation and 

(b) basis functions. 

 

 

  A number of Refinements with the corresponding solutions were applied. The fine 

meshes and results are displayed below: 

 

 

 
(a) p-Refinement    (b) h-Refinement 
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(c) k-Refinement with p=3   (d) k-Refinement with p=4 

 
 

Figure 6.23. Fine meshes for Refinement. 

 

 

  All these meshes provide exact geometrical representation. However, certain 

problems may arise in analysis. The meshing leads to quadrilateral elements with 

sides of different size. As it is known from FEM, this leads to a poor approximation of 

the solution field. 

 

  The engineer plays a decisive role in Refinement. It is up to him to choose the 

correct Refinement techniques in order to obtain accurate results. The mesh in Figure 

6.24 provides a much better approximation than all the meshes of Figure 6.23. 

 

 

 
 (a) (b) 

 
Figure 6.24. (a) Mesh for suitable k-Refinement and 

(b) basis functions on η 
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 (a) (b) 

 
Figure 6.25. Gauss points. Physical coordinates for each mesh. 

 

(a) p-Refinement ( 4 4 16   Gauss points per Knot Rectangle) 
 

(b) h-Refinement ( 3 3 9   Gauss points per Knot Rectangle) 

 

 

  Results are displayed in Figure 6.26. When distorted elements are used, the results 

are less accurate. The final, suitable k-Refinement approximates at most the exact 

solution. 

 

 

 
 

Figure 6.26. Results for plate with a hole. 

Representations with elements of irregular shape 

diverge from the exact solution when polynomial order increases. 
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  Contour results are displayed for all the representations. 

 

 

  
 

                  (a) Coarse mesh 
 

       (b) p-Refinement 

  

  

  
 

                 (c) h-Refinement 
 

(d) k-Refinement with p=3 

  

  

  
 

               (e) k-Refinement with p=4 
 

       (f) Suitable k-Refinement with p=3 
  

 
 

Figure 6.27. xy  Contour. 
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6.5 Cantilever 3D 
 

 

  The first 3D representation examined is a simple cantilever, with a rectangle cross-

section. The initial mesh is similar to the 2D Cantilever. A parametric direction   

with one Knot Span is added. The Cantilever is subjected to bending and torsion 

loads. Suitable Refinements are applied for each case. 

 

 

 
 

(a) Initial Mesh.    (b) p-Refinement. 

 

 

 
 

     (c) k-Refinement for bending.                                 (d) second k- Refinement for bending. 

 

 

 
 

     (e) k-Refinement for torsion.                                 (f) second k-Refinement for torsion. 
 

 

Figure 6.28. Initial Mesh and Refinements.  
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  Results for bending and torsion are presented below. As parameterization becomes 

more detailed, the structure becomes more flexible and is able to represent the natural 

problem more accurately. The final k-Refinement for Bending diverges from the path 

to exact solution, because, as mentioned before, quartic basis functions are less 

efficient than cubic ones. The final k-Refinement for bending, containing cubic basis 

functions and 3.234 degrees of freedom, forms a very accurate solution to the 

problem. 

 

 

 
(a) Bending 

 

 
(b) Torsion 

 

 

Figure 6.29. Control Point Displacement in comparison with total Degrees of Freedom, 

for Bending and Torsion. 
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(a): k-Refinement with p 3 .  (b): k-Refinement with p 4 . 

 

Figure 6.30.  xx Contour for Bending.  

 

 

 

  
 
                 (a): xy  Contour.                                                        (b): zx  Contour. 

 

 
 

Figure 6.31. Shear Stress Contour for Torsion, 

for the final k-Refinement. 
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6.6 Bent Pipe 
 

 

  The bent pipe was first presented by [1]. It consists of a straight and a circular 

section, joined together. Parametric direction   represents the longitudinal direction 

of the pipe. Parametric direction   represents the pipe thickness and ζ the creation of 

the circular shape. 

 

 
 (a) (b) 

 

 
 (c) (d) 

 
Figure 6.32. (a) Physical Space and (b), (c), (d) basis functions for bent pipe. 

 

 

  There are four patches across  , as required for the representation of a circle, and 

one patch across  , necessary for the transition from straight to circular section of the 

pipe. 

 

  This coarse mesh cannot produce accurate results. These are achieved, as usual, by 

Refinement. h- and k- Refinement are applied on the bent pipe. The corresponding 

basis functions on ξ, ζ are represented in Figures 6.33 (e),(f) and 6.34 (e),(f). 

  



132 Isogeometric Linear Static Analysis with NURBS 

  Refinements lead to increased continuity and element interconnectivity. The stress 

discontinuity across patch boundary on   is visible as well. 

 

  
 

(a) Physical Space 
 

(b) zz  contour 

 

  
 

(c) xx  contour 
 

(d) zx  contour 

 

  
 

(e) B-SPLine basis function   
 

(f) B-SPLine basis function   
 

Figure 6.33. h-Refinement for Bent Pipe 
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(a) Physical Space 
 

(b) zz  contour 

 

 

  
 

(c) xx  contour 
 

(d) zx  contour 

 

 

  
 

(e) B-SPLine basis function   
 

(f) B-SPLine basis function   

 
Figure 6.34. k-Refinement for Bent Pipe 
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6.7 NURBS Rod 
 

 

  The next application consists of an orthogonal cross-section swept across a quadrant 

and rotated by 90  at the other end. This bizarre shape makes it extremely difficult to 

mesh with classical Finite Element approach. On the other hand, only 12 Control 

Points are required for the NURBS representation. Quadratic basis functions are 

required for the longitudinal direction and linear for the other two. Coarse mesh 

representation and basis functions are displayed in the Figure below. 

 

 
(a) (b) 

 
 (c) (d) 

Figure 6.35. (a) Rhino Model (b) Coarse Mesh representation and 

(c), (d) basis functions on ξ, ζ. 

 

  Once the coarse mesh has been designed, Refinement and convergence to an 

accurate solution is relatively easy. The first fine mesh selected is represented by 

quadratic basis functions for all directions and 4 patches along  (longitudinal 

direction). 0C  Continuity across patch boundaries is reflected on the results. Shape 

function derivatives and, as a result, stress distribution are not Continuous at those 

positions. This is a major problem for finite elements, as 1C  is the maximum 

Continuity any element has. In Isogeometric analysis, the solution is simple. Patch 

boundaries and 0C  are used only when necessary. For the NURBS Rod application, a 

second Refinement is applied and basis functions with greater Continuity are selected. 

The new stress field is free of discontinuities.  
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(a) Physical Space (b) Basis functions for longitudinal direction 

  
(c) Stress contour for zz  (d) Stress contour for yz  

 

Figure 6.36. Patch representation. 

  
(a) Physical Space (b) Basis functions for longitudinal direction 

  
c) Stress contour for zz  (d) Stress contour for yz  

 

Figure 6.37. Increased Continuity representation. 
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6.8 Wine Glass 
 

 

  The final application of this thesis is set to demonstrate the remarkable potential of 

Isogeometric Analysis. A wine glass is designed with the help of the platform 

Rhinoceros. Quadratic B-SPLines are used for the perpendicular and the circular 

directions, linear B-SPLines for the thickness. The geometrical data is transferred into 

the Isogeometric Analysis code. This is all it takes. The new model is ready for loads, 

boundary conditions and analysis. 

 

 

 
  

(a) Rhino model                                              (b) Corresponding Isogeometric Analysis mesh 

 

 

 
 

(c)  Basis functions on  . Sweeps from                (d) Basis functions on  . Representation of circle 

       the bottom to the top of the glass.  
 

 

Figure 6.38. Coarse mesh representation and basis functions. 
 
  

  Three finer meshes are generated through h-, p- and k- Refinement. Physical space 

and basis functions are displayed in Figure 6.39. The neck of the glass is subjected to 

the maximum stress values. Therefore, Refinement aims to create regular-sized 

elements in that particular area.  
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(a) h-Refinement 

 

 
(b) p-Refinement 
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(c) k-Refinement 

 
 

Figure 6.39. Physical Space and basis functions for the Refinements. 
 

 

 

 
       (a) Coarse Mesh          (b) k-Refinement 

 
 

Figure 6.40. Deformed Physical Space 
  



Applications 139 

 
 

                (a) Coarse mesh                           (b) h-Refinement 

 

 

 
 

               (c): p-Refinement                                                   (d): k-Refinement 

 

 
 
 

Figure 6.41. zz  Contour for all representations. 
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Appendix A 
 

 

 

A.1 B-SPLine Basis Functions Creation 
 

 

  In this example, B-SPLine basis functions are produced for p 2  and Knot Value 

Vector    1 2 3 4 5 6 7 8 9 0 0 0 1 2 2 3 3 3           . 

For k 9  Knot Values and p 2 , n k p 1 6     B-SPLine basis functions are 

produced. Therefore, n 1 7   B-SPLine basis functions of degree p 1  and 

n 2 8   B-SPLine basis functions of degree p 0  have to be evaluated. In general, 

for n  B-SPLines of degree p , n+p-q B-SPLines of degree q are required. 

 

A.1.1 First Iteration. Order p 0 . 
 

  8 box functions are required. 

i i 1

i,0

1,
N ( )

0, otherwise

    
  

  

  For example, i 4  yields: 

4 5

4,0

1,
N ( )

0, otherwise

    
  

  
 

4,0

1, 1 2
N ( )

0, otherwise

  
  


 

  Basis functions for p 0 are: 

 

1,0N ( ) 0, 0 3   
 

 

2,0N ( ) 0, 0 3   
 

 

3,0

1, 0 1
N ( )

0, otherwise

  
  

  
 

4,0

1, 1 2
N ( )

0, otherwise

  
  


 

5,0N ( ) 0, 0 3     

 

6,0

1, 2 3
N ( )

0, otherwise

  
  

  
 

7,0N ( ) 0, 0 3     

 

8,0N ( ) 0, 0 3     
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A.1.2 Second Iteration. Order p 1 .  
 

  7 linear B-SPLine basis functions are produced. Cox-de Boor recursive formula for 

p 1  yields: 

 

i p 1i
i,p i,p 1 i 1,p 1

i p i i p 1 i 1

N ( ) N ( ) N ( )
 

  

   

 
    

   
 

 

  In this particular example, solved for i 3  and p 1 : 

 

3 5
3,1 3,0 4,0

4 3 5 4

N ( ) N ( ) N ( )
  

    
   

 

 

3,1 3,0 4,0

0 2
N ( ) N ( ) N ( )

1 0 2 1

  
    

 
 

 

3,1 3,0 4,0N ( ) N ( ) (2 ) N ( )       
 

 

  Box functions are obtained from the previous cycle: 

 

3,0

1, 0 1
N ( )

0, otherwise

  
  


 

 

4,0

1, 1 2
N ( )

0, otherwise

  
  


 

 

therefore, 

 

3,1

1 , 0 1

N ( ) 1(2 ), 1 2

0, otherwise

   


     



 

 

3,1

, 0 1

N ( ) 2 , 1 2

0, otherwise

   


      

  

 

  



Appendix A 143 

  Basis functions for p 1 : 

 

1,1N ( ) 0, 0 3     

 

2,1

1 , 0 1
N ( )

0, otherwise

   
  


 

 

3,1

, 0 1

N ( ) 2 , 1 2

0, otherwise

   


      



 

 

4,1

1, 1 2
N ( )

0, otherwise

   
  


 

5,1

3 , 2 3
N ( )

0, otherwise

   
  


 

 

6,1

2, 2 3
N ( )

0, otherwise

   
  


 

 

7,1N ( ) 0, 0 3     

 

A.1.3 Third Iteration. Order p 2 .  
 

  6 quadratic B-SPLine Basis functions are produced.  

 

i p 1i
i,p i,p 1 i 1,p 1

i p i i p 1 i 1

N ( ) N ( ) N ( )
 

  

   

 
    

   
 

 

  For example, basis function for i 2 and p 2  is calculated by: 

 

52
2,2 2,1 3,1

4 2 5 3

N ( ) N ( ) N ( )
 

    
   

 

 

2,2 2,1 3,1

0 2
N ( ) N ( ) N ( )

1 0 2 0

  
    

 
 

 

2,2 2,1 3,1

2
N ( ) N ( ) N ( )

2


        

 

  Linear basis functions are obtained from the previous cycle: 

 

2,1

1 , 0 1
N ( )

0, otherwise

   
  


 

 

3,1

, 0 1

N ( ) 2 , 1 2

0, otherwise

   


      


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Therefore, 

           2,2

(2 )
(1 ) , 0 1

2

(2 )
N ( ) (2 ), 1 2

2

0, otherwise


       


 
      






 

 
2

2

2,2

3
2 , 0 1

2

(2 )
N ( ) , 1 2

2

0, otherwise

 
   




    





 

 

  Basis functions for p 2 : 

 

 
2

1,2

(1 ) , 0 1
N ( )

0, otherwise

    
  


 

 
2

2

2,2

3
2 , 0 1

2

(2 )
N ( ) , 1 2

2

0, otherwise

 
   




    





 

 
2

2

3,2

, 0 1
2

3
N ( ) 4 2, 1 2

2

0, otherwise


  




      





 

2

2

4,2

( 1) , 1 2

N ( ) (3 ) , 2 3

0, otherwise

    


     



 

 

 
2

5,2

2 10 12, 2 3
N ( )

0, otherwise

      
  


 

 

 

 

 

 
2

6,2

( 2) , 2 3
N ( )

0, otherwise

    
  


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A.2 Stiffness Matrix Formulation 
 

 

 

  An application for the creation of Stiffness Matrix in 1D is presented. 1D Elasticity 

is only suitable for truss elements (axial tension) and it is only used as a simplified 

example in this Appendix. The scope is to review and understand numerical 

integration techniques rather than formulate a complicated Stiffness Matrix for a more 

realistic problem. Shape Functions are obtained from Appendix A.1. 

 

A.2.1 Gauss Points 
 

  For 1D problems, p Gauss Points are required per Knot Span. 

 

p 2  

0.57735    and Rw 1.0   

 

  The Knot Spans are  0,1 ,  1,2  and  2,3 . Therefore, six Gauss Points are 

calculated. 

  Transformation of coordinates and weights from reference Knot Span to  0,1 : 

 

   R

i 1 i i 1 i

2

      
   

 

     GP1 GP11 0 0.57735 1 0
0.211325

2

    
     

and 

   GP2 GP21 0 0.57735 1 0
0.788675

2

   
      

 

   GP R GPi 1 i 1 0
w w w 1 0.5

2 2

 



  
       

 

  Accordingly, for the Knot Span  1,2 : 

 

     GP3 GP32 1 0.57735 2 1
1.211325

2

    
     

and 

   GP4 GP42 1 0.57735 2 1
1.788675

2

   
      

 

 GP 2 1
w 1 0.5

2

 
     
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  For the last Knot Span  2,3 : 

 

     GP5 GP53 2 0.57735 3 2
2.211325

2

    
      

and 

   GP6 GP63 2 0.57735 3 2
2.788675

2

   
      

 

 GP 3 2
w 1 0.5

2

 
    

 

A.2.2 Deformation Matrix 
 

  In order to evaluate the Deformation Matrix, the derivatives of the basis functions 

are calculated. 
 

 
1,

2 1 , 0 1
R ( )

0, otherwise


      
  


 

 

2,

2 3 , 0 1

R ( ) 2, 1 2

0, otherwise



    


      



 

 

3,

, 0 1

R ( ) 4 3 , 1 2

0, otherwise



   


      



 

 

 

 4,

2 1 , 1 2

R ( ) 2 3 , 2 3

0, otherwise



   


      



 

 

5,

4 10, 2 3
R ( )

0, otherwise


    
  


 

 

 

 
6,

2 2 , 2 3
R ( )

0, otherwise


     
  


 

  The coordinates are set as 

 

 
 

 
 

T T

1 2 3 4 5 6

1 6 1 6

X X X X X X 2 4 5 7 11 15
 

  

 

  The Jacobian Matrix is given by the equation below: 

 
   

 

1

2

1, 2, n,

1 1 1 n

n

n 1

X

X

.
J R ( ) R ( ) ... ... ... R ( )

.

.

X

  

 



 
 
 
 

        
 
 
 
  
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  For Gauss Point GP1 0.211325   in Knot Span  0,1 : 

 

   GP1 GP1

1,ξR (ξ )= 2 1 ξ 2 1 0.211325 1.57735          

 
GP1 GP1

2,ξR (ξ )=2 3 ξ 2 3 0.211325 1.366025       

 
GP1 GP1

3,ξR (ξ )=ξ 0.211325  

 
GP1

4,ξR (ξ )=0  

 
GP1

5,ξR (ξ )=0 

 
GP1

6,ξR (ξ )=0  

 

 

 

 
 

 

GP1

1 61 1

6 1

2

4

5
J 1.57735 1.366025 0.211325 0 0 0

7

11

15





 
 
 
 

       
 
 
 
 

 

 

GP1J 3.366025     

 

1

GP1

GP1

1
J 0.297086326

J

  
     

  

 

 

 

GP1

1

GP11 1

1
B 0.297086326

J

 
     

  

 

 

and 

 
 
2 1, 2, n,

1 n

B R ( ) R ( ) ... ... ... R ( )  



           

 

 

 GP1

2

1 6

B 1.57735 1.366025 0.211325 0 0 0


      
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Deformation Matrix is evaluated by 

 

 
 

 
 

 
 

1 2

1 n 1 1 1 n

B B B
  

                

 

 

   GP1

1 6

B 0.297086326 1.57735 1.366025 0.211325 0 0 0


       

 

 GP1

1 6

B 0.4686 0.4058 0.0628 0 0 0


      

 

  For Gauss Point GP2 0.788675   in Knot Span  0,1 : 

 
GP2

1,ξR (ξ )= 0.42265  

 
GP2

2,ξR (ξ )= 0.366025  

 
GP2

3,ξR (ξ )=0.788675  

 

GP2

4,ξR (ξ )=0  

 
GP2

5,ξR (ξ )=0  

 
GP2

6,ξR (ξ )=0  

 GP2J 1.633975     

 

 

 GP2

1

GP21 1

1
B 0.612004468

J

 
     

  

 

 

and 

        
 

 GP2

2

1 6

B 0.42265 0.366025 0.788675 0 0 0


       

 

 

 GP2

1 6

B 0.2587 0.2240 0.4827 0 0 0


       

 

For GP3 1.211325   in  1,2 : 

 
GP3

1,ξR (ξ )=0  

 
GP3

2,ξR (ξ )= 0.788675  

 
GP3

3,ξR (ξ )=0.366025 

 

GP3

4,ξR (ξ )=0.42265 

 
GP3

5,ξR (ξ )=0  

 
GP3

6,ξR (ξ )=0  

GP3J 1.633975     

 

 

GP3

1

GP31 1

1
B 0.612004468

J

 
     

  
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 

 GP3

2

1 6

B 0 0.788675 0.366025 0.42265 0 0


      

 

 

 GP3

1 6

B 0 0.4827 0.2240 0.2587 0 0


      

 

  For the fourth Gauss Point GP4 1.788675   and the Knot Span  1,2 : 

 
GP4

1,ξR (ξ )=0  

 
GP4

2,ξR (ξ )= 0.211325  

 
GP4

3,ξR (ξ )= 1.366025  

 

GP4

4,ξR (ξ )=1.57735  

 
GP4

5,ξR (ξ )=0  

 
GP4

6,ξR (ξ )=0  

 

GP4J 3.366025     

 

 

GP4

1

GP41 1

1
B 0.297086326

J

 
     

  

 

 

and 

         
 

 GP4

2

1 6

B 0 0.211325 1.366025 1.57735 0 0


       

 

 

 GP4

1 6

B 0 0.0628 0.4058 0.4686 0 0


       

 

  For GP5 2.211325   in  2,3 : 

 
GP5

1,ξR (ξ )=0  

 
GP5

2,ξR (ξ )=0  

 
GP5

3,ξR (ξ )=0  

 

GP5

4,ξR (ξ )= 1.57735  

 
GP5

5,ξR (ξ )=1.1547  

 
GP5

6,ξR (ξ )=0.42265  

 

GP5J 8     

 

 

GP5

1

GP51 1

1
B 0.125

J

 
     

  
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 

 GP5

2

1 6

B 0 0 0 1.57735 1.1547 0.42265


      

 

 

 GP5

1 6

B 0 0 0 0.1972 0.1443 0.0528


      

 

  For GP6 2.788675   in  2,3 : 

 
GP6

1,ξR (ξ )=0  

 
GP6

2,ξR (ξ )=0  

 
GP6

3,ξR (ξ )=0  

 

GP6

4,ξR (ξ )= 0.42265  

 
GP6

5,ξR (ξ )= 1.1547  

 
GP6

6,ξR (ξ )=1.57735  

 

 

 GP6J 8     

 

 

 GP6

1

GP61 1

1
B 0.125

J

 
     

  

 

 

and 

   
 

 GP6

2

1 6

B 0 0 0 0.42265 1.1547 1.57735


       

 

 

 GP6

1 6

B 0 0 0 0.0528 0.1443 0.1972


       

 

A.2.3 Numerical Integration  
 

  Stiffness Matrix is evaluated by: 

 

 
 

 
 

 
 

 
 

 
GP

T GP

i i i

n n 1x1i 1 n 1 1 n

K B E B A det J w




   

  
              

  
  

 

where, 

 

 

 

  

2A=1 m  

 
 

6

2
1x1

KN
E E 210 10  

m
    

   det J J  
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 

 GP1 6

6 6

0.4686

0.4058

0.0628
K 210 10 0.4686 0.4058 0.0628 0 0 0 1 3.366025 0.5

0

0

0



 
 
 
 

               
 
 
 
 

 

The contribution of the first Gauss Point to the Stiffness Matrix is: 

 

 

GP1 6

6 6

77.6088 67.2080 10.4008 0 0 0

67.2080 58.2010 9.0070 0 0 0

10.4008 9.0070 1.3939 0 0 0
K 10

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



  
 

 
 

      
 
 
 
 

 

 

  Respectively, for the other Gauss Points: 

 

 

GP2 6

6 6

11.4823 9.9421 21.4244 0 0 0

9.9421 8.6086 18.5507 0 0 0

21.4244 18.5507 39.9751 0 0 0
K 10

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



 
 


 
  

      
 
 
 
 

 

 

 

GP3 6

6 6

0 0 0 0 0 0

0 39.9751 18.5507 21.4244 0 0

0 18.5507 8.6086 9.9421 0 0
K 10

0 21.4244 9.9421 11.4823 0 0

0 0 0 0 0 0

0 0 0 0 0 0



 
 

 
 
 

        
 
 
 

 

 

 

GP4 6

6 6

0 0 0 0 0 0

0 1.3939 9.0070 10.4008 0 0

0 9.0070 58.2010 67.2080 0 0
K 10

0 10.4008 67.2080 77.6088 0 0

0 0 0 0 0 0

0 0 0 0 0 0



 
 


 
 

         
 
 
 
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 

GP5 6

6 6

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
K 10

0 0 0 32.6658 23.9030 8.7462

0 0 0 23.9030 17.4909 6.4000

0 0 0 8.7462 6.400 2.3418



 
 
 
 

         
 
 

 

 

 

 

GP6 6

6 6

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
K 10

0 0 0 2.3418 6.4000 8.7462

0 0 0 6.4000 17.4909 23.9030

0 0 0 8.7462 23.9030 32.6658



 
 
 
 

        
 
 

  

 

 

  The Stiffness Matrix is obtained as the sum of the separate Gauss Points’ Stiffness 

Matrices: 

 
   

6
GPi

6 6 GPi 1 6 6

K K
  

     

The final result is: 

 

 
 

6

6 6

89.0911 57.2659 31.8252 0 0 0

57.2659 108.1786 19.0875 31.8252 0 0

31.8252 19.0875 108.1786 57.2659 0 0
K 10

0 31.8252 57.2659 124.0987 17.5030 17.4924

0 0 0 17.5030 34.9818 17.5030

0 0 0 17.4924 17.5030 35.0076



 

  

  

 
   

 

 





 
 
 
 
 



 

 

 
 

Figure A.1. Basis Functions for Appendix A. 
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7 Conclusions 
 

 

 

Exact Geometry 

 

  Isogeometric Analysis enables exact representation for the analysis process. The 

mathematical model has the exact same features as the design model. Therefore, 

transition from design to analysis model does not produce any geometrical errors and 

the accuracy is instantly increased. 

 

Improved refinement schemes 

 

  Analysis is carried out without the creation of an approximate mesh. The analysis 

mesh is directly connected with the accurate geometrical representation of the model. 

Refinements preserve the exact geometry and parametric mapping while providing 

greater accuracy for analysis. FEM, on the contrary, creates a new approximation with 

each refinement; thus, IGA refinement is much faster and more efficient. In addition 

to the classical h- and p- refinement, a new combination also applies in IGA. k-

Refinement is proving to be more competitive than its counterparts. 

 

 

 
 (a) (b) 

 
Figure 7.1. (a) Coarse mesh and (b) application of k-Refinement. 
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Element interconnectivity 

 

  Isogeometric Shape functions hold an overlapping that leads to greater 

interconnectivity between elements. Derivatives are continuous across element 

boundaries, therefore stress and strain fields are continuous as well. The use of 

corrective methods such as extrapolation is applied only to special cases of 
0C  

Continuity. 

 

 
 (a) (b) 

 
Figure 7.2. Stress contour xy  for (a) 

0C  (b) 
1C  Continuity. 

 

Patch Utilitization in IGA 

 

  Patches are used in Isogeometric Analysis when a significant change in Geometry or 

Material occurs. Similarly to Finite Elements, patches possess 
1C
 Continuity on the 

boundary and all Shape functions are contained in their interior. During Stiffness 

Matrix Formulation, a local Stiffness Matrix is produced for every patch. Afterwards, 

the global Stiffness Matrix is built through patch connectivity.  

 

  Each patch has a unique mapping from its own Parameter Space to the Physical 

Space. Refinement is applied separately for every patch. NURBS patch connection is 

not always water-tight; boundary inconsistencies are possible to exist. 

 

  Patch boundary can also be created through a single Knot Value Vector, when the 

separate Parameter Spaces of the patches can be merged into one. Control Points on 

the boundaries are fused into one. The corresponding 
1C
Continuous Shape functions 

are combined into one, with 
0C  Continuity across that edge. 

0C  Continuity is also 

useful for the creation of interpolatory Control Points at a specific part of the model. 
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Stiffness Matrix Formulation 

 

  Stiffness Matrix creation for IGA follows the same general principles as in FEM. 

Enhanced Shape function overlapping leads to a matrix with greater bandwidth. As 

more non-zero elements are created and interconnectivity is increased, the resulting 

Stiffness Matrix is a more accurate representation of the natural problem. However, 

this overlapping makes the formulation process time-consuming. 

 

 

 
 (a) (b) 

 
Figure 7.3. Stiffness Matrices with various interconnectivities. 

(a) 0C  and (b) 2C  Continuity. 

 

The role of the Engineer 

 

  The collective experience from all the years of FEM practice is definitely useful in 

Isogeometric Analysis as well. The engineer should be able to maintain a thorough 

understanding of the methods and techniques involved, as no machine can replace the 

creativity and important role of the human mind.  

 

  Special care has to be taken so that the Jacobian matrix is reversible, or in other 

words, positive directions of the axes in Parameter and Physical Space are equivalent. 

Selection of distorted elements is also inefficient for analysis. Knot rectangles and 

cuboids of similar dimensions and nearly orthogonal shape are preferred. Reverse 

refinement, for analysis purposes, should be applied after careful consideration. 

 

 
 (a) (b) 
 

Figure 7.4. (a) Inefficient and (b) Efficient refinement. 
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