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Περίληψη

Σκοπός της διπλωματικής αυτής εργασίας είναι η μελέτη, η ανάλυση και η σχεδίαση

πιθανοτικών αλγορίθμων τοπικής αναζήτησης για διακριτά προβλήματα περιορισμών

με μεθόδους και τεχνικές που χρησιμοποιήθηκαν για την αλγοριθμική απόδειξη του

”Lovász Local Lemma”. Συγκεκριμένα, θεωρούμε αλγορίθμους της εξής μορφής:
• ΄Αρχισε από μία τυχαία ανάθεση τιμών στις μεταβλητές του προβλήματος περιο-
ρισμών.

• ΄Οσο υπάρχουν διαψευδούμενοι περιορισμοί, χρησιμοποίησε μια τυχαιοκρατική
διαδικασία για να διαλέξεις έναν διαψευδούμενο περιορισμό c καθώς και νέες
τιμές για τις μεταβλητές του

Τόσο για την επιλογή του περιορισμού c όσο και για την επιλογή των τιμών στις
μεταβλητές του, υπάρχει πληθώρα ευρεστικών, αλλά όχι πολλά για να τις διαφορο-

ποιήσουν πέρα από πειράματα. Στο paper του R. Moser για την κατασκευαστική
απόδειξη του Lovász Local Lemma στο STOC ’09 η επιλογή του c είναι αυθαίρετη
ενώ η επιλογή της ανάθεσης τιμών στις μεταβλητές γίνεται τυχαία και ομοιόρφα. Ο

τερματισμός του αλγορίθμου αποδεικνύεται δείχνοντας ότι μη τερματισμός θα σήμαινε

καθολική κωδικοποίηση ( universal compression ). Τόσο στη δουλειά του Moser όσο
και στις μετέπειτα δουλειές, μια βασική απαίτηση είναι ότι θα πρέπει να υπάρχει ένα πι-

θανοτικό μέτρο - γινόμενο (product measure) επί των μεταβλητών του προβλήματος
έτσι ώστε κάθε φορά που επαναδειγματοληπτούμε τις μεταβλητές ενός περιορισμο-

ύ, οι τιμές που θα τις αναθέσουμε θα πρέπει να προκύπτουν μέσω ( της προβολής

του) πιθανοτικού μέτρου ( στις μεταβλητές του περιορισμού). Αυτό έρχεται σε έντονη

αντίθεση με τους αλγορίθμους της πράξης στους οποίους οι τιμές που δίνουμε στις

μεταβλητές εξαρτώνται από το πώς ο περιορισμός για τις μεταβλητές του οποίου δια-

λέγουμε τιμές συσχετίζεται με τους γείτονές του, τόσο στατικά ( από τις μεταβλητές

που μοιράζονται), όσο και ” δυναμικά”, δηλαδή από την τωρινή ”κατάσταση” αυτών
των περιορισμών.

Στην παρούσα διπλωματική δείχνουμε μία μέθοδο για να απαλλαχθεί κανείς από αυ-

τή την απαίτηση. Συγκεκριμένα, δείχνουμε ότι η μέθοδος του Moser, δηλαδή το να
φράξουμε τον αριθμό των πιθανών άκαρπων τροχιών του αλγορίθμου χρησιμοποιών-

τας ιδιότητες της εισόδου, για παράδειγμα το μέγιστο βαθμό του γράφου εξάρτησης,

παραμένει πλήρως λειτουργική ακόμα και με την απουσία ενός πιθανοτικού μέτρου,

δηλαδή όταν κάθε περιορισμός επιτρέπεται να αλλάξει τις μεταβλητές του με έναν ”
ιδιωτικό ” τρόπο και στην πραγματικότητα, λαμβάνοντας υπόψιν τις τρέχουσες τιμές
των μεταβλητών των γειτονικών περιορισμών. Επιπρόσθετα, παρατείθενται ορισμένα

βιβλιογραφικά στοιχεία αναφορικά με τις αλγοριθμικές επεκτάσεις του Lovász Local
Lemma και μερικές αποδείξεις/ βελτιώσεις υπάρχοντων αποτελεσμάτων χρησιμποιών-
τας την ”εντροπική μέθοδο ” του R. Moser.
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Abstract

The purpose of this thesis is the study, the analysis and the design of ran-
domized local search algorithms for discrete constraint satisfaction prob-
lems, using methods and techniques employed in the constructive proof of
the Lovász Local Lemma. Specifically, we consider algorithms that operate
as follows:
• Start at a random assignment to the variables of the CSP.

• While violated constraints exist, employ a randomized process to select
a violated constraint c and new values for its variables.

For both the choice of c and the choice for its values, there is a cornucopia of
heuristics, but not much to distinguish between them besides experiments.
In Moser’s STOC’09 argument the choice of c is adversarial, while the choice
of value assignment is uniformly random. Termination is proven by show-
ing that non-termination would amount to universal compression. Both in
Moser’s work and in all subsequent related works a key requirement is that
there exists a product probability measure on the variables such that every
time a constraint is resampled, the assigned values must be chosen via (the
projection of) that measure (on the constraint’s variables). This is in sharp
contrast with practical algorithms whose choice of value assignment depends
heavily on how the constraint being resampled relates to its neighbors, both
statically (shared conflicting variables), but also dynamically, i.e., based on
the current “state” (number of satisfied literals) of these constraints.

In our work we dispense with this requirement. We show that Moser’s
method, i.e., bounding the number of possible unfruitful trajectories of the
algorithm in terms of structural properties of the input, e.g., the maximum
degree of the constraint-conflict/dependency graph, remains fully potent
even in the absence of a background product measure, i.e., when each con-
straint is allowed to resample its variables in a manner specific to itself and,
in fact, that takes into account the current values of its neighboring con-
straints. Furthermore, we present work related to the algorithmic aspects
of the Lovász Local Lemma and proofs/improvements of already existing
results using R. Moser’s ”entropic method”.

Keywords

probabilistic method, entropic method, incompressibility method, Lovász
Local Lemma, constructive proof, entropic potential, randomized algorithms,
compression, entropy, source coding
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1.1 Introduction

The Lovász Local Lemma is a powerful tool to prove the existence of com-
binatorial objects meeting a prescribed collection of criteria. Its’ original
proof was inherently non-constructive. In 2008 Robin A. Moser [14], and
in 2009 Moser and Gábor Tardos [15] gave a constructive proof having as
basis an astonishing simple algorithm. In this chapter we state the lemma
and present its constructive proof by Moser and Tardos.

1.2 Motivation and Statement of the lemma

The probabilistic method is a method, primarily used in combinatorics, for
proving the existence of a prescribed kind of mathematical object. It works
by showing that if one randomly chooses objects from a specified class, the
probability that the result is of the prescribed kind is more than zero.

In a typical probabilistic proof of a combinatorial result, one usually has
to show that the probability of a certain event is positive. However, many of
these proofs actually give more and show that the probability of the event
considered is not only positive but is large. In fact, most probabilistic proofs
deal with events that hold with high probability, i.e, as the dimensions of
the problem grow.

On the other hand, there is a trivial case in which one can show that a
certain event holds with positive, though very small, probability. Imagine
that we have m mutually independent events A1, . . . , Am, and each of them
holds with probability at least p > 0. Then, the probability that all events
hold simultaneously is at least

∏m
i=1 Pr[Ai] ≥ pm , which is positive, although

it maybe exponentially small in m.
The Lovász Local Lemma can be thought as a generalization of the above

case showing that in case that the events Ai are ”not too dependent” the
probability of the event of interest still remains positive.

Theorem 1.1 (The Local Lemma; General Case ). Let A be a finite set of
events in a probability space. For A ∈ A let Γ(A) be a subset of A satisfying
that A is independent from the collection of events A\({A}∪Γ(A)). If there
exists an assignment of reals x : A → (0, 1) such that

∀A ∈ A : Pr[A] ≤ x(A)
∏

B∈Γ(A)

(1− x(B)), (1.1)

then the probability of avoiding all events in A is at least
∏
A∈A(1−x(A)),

in particular it is positive.

The following two propositions are corollaries of the General Case of the
Local Lemma and are widely used in applications.

11



Corollary 1.1 (The Local Lemma; Symmetric Case). Let A1, . . . , Am be
events in an arbitrary probability space. Suppose that each event Ai is mutu-
ally independent of a set of all other events Aj but at most d, i.e, |Γ(Ai)| ≤ d,
and that Pr[Ai] ≤ p for all 1 ≤ i ≤ m. If

ep(d+ 1) ≤ 1 (1.2)

o by induction
then Pr[

⋂n
i=1 Āi] > 0

Corollary 1.2 (The Local Lemma; Asymmetric Case). Let A1, . . . , Am be
events in an arbitrary probability space. If

∑
j∈Γ(Ai)

Pr[Aj ] ≤
1

4
(1.3)

for all i then Pr[
⋂n
i=1 Āi] ≥

∏m
i=1(1− 2 Pr[Ai]) > 0

1.3 Two Applications

A hypergraph H(V,E) is 2-colorable if there is a coloring of V by two colors
so that no edge f ∈ E is monochromatic.

Theorem 1.2. Let H(V,E) be a hypergraph in which every edge has at
least k elements, and suppose that each edge of H intersects at most d other
edges. If e(d+ 1) ≤ 2k−1 then H is two colorable.

Proof. We start by coloring each vertex v of H either blue or red uniformly
at random and independently. For each edge c ∈ E let Ac be the event that
c is monochromatic. Clearly we have that Pr[Ac] ≤ 2

2|c|
= 1

2|c|−1 . Moreover,
each event Ac is clearly mutually independent of all other events Ac′ for
all edges c′ that do not intersect c. The result now follows from corollary
1.1.

Theorem 1.3. Let F be a CNF formula such that each clause has length
(i.e number of variables) at least 3 and shares variables with at most ai other
clauses of length i, where ∑

i

ai2
−i ≤ 1

4
(1.4)

, then F is satisfiable.

12



Proof. We start by assigning a uniformly random value (either zero or one)
to each variable of the formula independently. For each clause c let Ac be
be the event that c is violated. Obviously, Pr[Ac] = 1

2|c|
. Furthermore, each

event Ac is independent from any event Ac′ such that clauses c and c′ do
not share variables. Therefore, the result follows from corollary 1.2.

1.4 Beyond the General Version

Given a set of events {A1, . . . , Am}, their dependency graph, and their cor-
responding probabilities p1, . . . , pm, it is natural to ask what is the optimal
condition for the probability to avoiding all these events to be strictly posi-
tive. It turns out that Theorem 1.1 is not the optimal condition for a fixed
graph since it only uses ”local information”.

Shearer in [21] found an exact characterization of probabilities for which
Pr[Ā1 ∧ . . . ∧ Ām] > 0 whenever Pr[Ai] = pi and {Ai}mi=1 has dependency
graph G. To describe this characterization, let Indep(G) denote the set of
all independent sets of G, including the empty set, and define the quantities

qI = qI(G, p) =
∑

J∈Indep(G),I⊂J

(−1)|J |−|I|
∏
i∈J

pi (1.5)

for all I ∈ Indep(G)

Theorem 1.4. Let G be a dependency graph on [m]. Then for a vector
p = (p1, . . . , pm) of non-zero the following are equivalent:

1. For every system {Ai}mi=1 of events with Pr[Ai] = pi (1 ≤ i ≤ m) with
dependency graph G it holds that Pr[Ā1 ∧ . . . ∧ Ām] > 0

2. qI(G, p) > 0 for all I ∈ Indep(G)

Furthermore, when the above holds, there exists {Bi}mi=1 such that
Pr[Bi] = pi(1 ≤ i ≤ m) with dependency graph G such that for ev-
ery independent set I of G :

Pr[
∧
i∈I

Bi ∧
∧
i/∈I

B̄I ] = qI(G, p) (1.6)

This is the unique instance that minimizes Pr[Ā1 ∧ . . . ∧ Ām], and it
also has the property that all neighbouring events are disjoint. We call
this the extreme instance.

13



Kolipaka and Szegedy showed in [10] that the algorithm proposed by
Moser and Tardos for the General LLL also applies in the Shearer’s condi-
tions under the same mild restrictions (see variable version bellow). How-
ever, we will not present this proof in this thesis since we think it is out of
its purpose.

It is not hard to see that while Theorem 1.4 is optimal the original
condition of Lovász is simpler and more practical. The next question that
comes to mind is if there are ”intermediate” lemmas, i.e lemmas that are
stronger than the original LLL but more practical than Shearer’s condition.
The answer is actually positive as it can be seen in a series of papers by
Bissacot [25] , Pegden [24] , Kolipaka Szegedy [11] etc in which such
”intermediate” theorems are provided. The two most popular of them are
presented below:

Theorem 1.5 (Improved Lovász Local Lemma ). Suppose that G is a
dependence graph for the family of events {Ai} each one with probability
Pr[Ai] = pi and there exist µ(Ai) real numbers in [0,+∞) such that, for
each event Ai,

pi ≤ R∗i =
µ(Ai)

φ∗i (µ)
(1.7)

where

φ∗i (µ) =
∑

R⊆Γ+
G(Ai),R indep

∏
u∈R

µ([u]) (1.8)

Then: Pr[
∧
i Āi > 0)

Observation 1.1. 1. Numbers µ(Ai) of Theorem 1.5 and x(Ai) of The-
orem 1.1 are connected via the following relation:

µ(Ai) =
x(Ai)

1− x(Ai)
(1.9)

2. The sum in the relation for φi(µ)∗, defined above, is over the inde-
pendent sets in the neighbourhood of Ai. Therefore, the improvement
(comparing to the original LLL) is significant if the subgraphs induced
by the vertex neighbourhoods in G are dense. On the other hand, the
improvement is vanishing if the dependency graph is triangle-free.

Theorem 1.6 (Clique Lovász Local Lemma). Let {A1, . . . , Am} be a set
of events with dependency graph G and let {K1, . . . ,Kn} be a set of cliques
in G covering all the edges (not necessarily disjointly). If there exists a set
of vectors {x1, . . . ,xn} from (0, 1)m such that the following conditions are
satisfied,

14



1. ∀v ∈ [n] :
∑

i∈Kv xi,v < 1

2. ∀i ∈ [m], ∀ v such that i ∈ Kv :

Pr[Ai] ≤ xi,v
∏

u6=v:Ku3i
(1−

∑
j∈Ku\{i}

xj,u) (1.10)

then: Pr[∩i∈[m]Āi] ≥
∏
v∈[n](1−

∑
i∈Kv xi,v > 0]

Observation 1.2. Although Theorem 1.6 and Theorem 1.5 cannot be com-
pared directly, Clique Lovász Local Lemma gives better results for all exam-
ples it has been studied.

1.5 The Variable Version- MT Algorithm

Moser and Tardos presented in [15] a constructive proof of Theorem 1.1
by imposing one small restriction upon the general setting. That is, they
considered events determined by different subsets of underlying mutually
independent random variables. This setting is sometimes referred to as the
variable version of the LLL and, while it appears as the only way in order
to get any efficient algorithmic access to the problem, it seems as well to be
the case in almost all known applications. We give the exact formulation
below.

Let P = {X1, . . . , Xn} be mutually independent random variables in a
fixed probability space Ω. In this space we define a set A that consists of m
events, viewed as constraints, and we denote by Ai(1 ≤ i ≤ m) the event that
the i-th constraint does not hold. We denote by vbl(Ai) the set of variables
on which Ai depends. In particular, if vbl(Ai) ∩ vbl(Aj) = ∅ then Ai and
Aj are independent. Finally, we define the dependency graph G = GA for
A to be the graph on vertex set A with an edge between dependent events.
For each Ai ∈ A we write Γ(Ai) = ΓA(Ai) for the neighbourhood of Ai
in G. Finally, we define the inclusive neighborhood of an event A to be
Γ+(A) := Γ(A) ∪ {A}.

Consider the following algorithm:

Algorithm 1 MT-Algorithm

1: procedure RESAMPLE
2: for i = 1→ n do
3: vi ← a random evaluation of Xi

4: while ∃Ai ∈ A : Ai is violated do
5: pick an arbitrary violated event Ai ∈ A
6: for all X ∈ vbl(Ai) do
7: vX ← a new random evaluation of X
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Theorem 1.7 (The Lovász Local Lemma; Variable Version ). Let P be a
finite set of mutually independent random variables in a probability space.
Let A = {A1, . . . , Am} be a set of m events determined by these variables.
If there exists an assignment of reals x : A → (0, 1) such that:

Pr[Ai] ≤ x(Ai)
∏

Aj∈Γ(Ai)

(1− x(Aj)) (1.11)

for all 1 ≤ i ≤ m, then there exists an assignment of values to the vari-
ables in P not violating any of the events in A. Moreover the randomized
algorithm described above resamples an event A ∈ A at most an expected
x(A)/(1− x(A)) times before it finds such an evaluation. Thus the expected

number of resampling steps is at most
∑m

i=1
x(Ai)

1−x(Ai)

1.6 Analysing the MT Algorithm

1.6.1 Execution logs and witness trees

Note that the decision which violated event A ∈ A to correct in each step of
Algorithm 1 can be taken completely arbitrarily. Fixing any (deterministic
or randomized) procedure for this selection makes the algorithm and the
expected values we consider well defined. The selection method does not
matter for the analysis.

The analysis is based on keeping an accurate journal of what the algo-
rithm does. Let C : N → A list the events as they have been selected for
resampling in each step. We call C ”the LOG” of the execution. Notice
that C is a well defined random variable determined by the random choices
the algorithm makes.

A witness tree τ = (T, σT ) is a finite rooted tree T together with a
labelling σT : V (T )→ A of its vertices with events such that the children of
a vertex u ∈ V (T ) receive labels from Γ+(σT (u)). A proper witness tree is a
witness tree in which the children of the same vertex always receive distinct
labels. To simplify the notation, we will write V (τ) := V (T ) and for any
v ∈ V (τ), we write [v] := σT (v).

Given the value of C, we will now associate with each resampling t carried
out a witness tree τC(t) the following way:

1. Define τ
(t)
C (t) to be an isolated root vertex labelled C(t).

2. For each i = t − 1, t − 2, . . . , 1 go backwards through the log and
distinguish two cases:

(a) If there is a vertex v ∈ τ i+1
C (t) such that C(i) ∈ Γ+([v]), then

we choose among all such vertices the one having the maximum
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distance from the root and attach a new child vertex u to v that
we label C(i), thereby obtaining the tree t

(i)
C (t). In the selection

of the maximum distance vertex we break ties arbitrarily.

(b) If there is no vertex v ∈ τ (i+1)
C such that C(i) ∈ Γ+([v]), then we

skip the time step i and simply define τ
(i)
C := t

(i+1)
C (t).

3. Let τC(t) := τ
(1)
C (t)

Lemma 1.1. Let τ be a fixed witness tree and C the (random) log produced
by the algorithm.

(i) If τ occurs in C, then τ is proper.

(ii) The probability that τ appears in C is at most
∏
v∈V (τ) Pr[[v]]

Proof. Notice that the procedure cannot output a tree in which 2 vertices
u, v with the same label have a common parent w. If w.l.o.g vertex u was
created after a vertex v, then u could be placed as a child of v (which has
greater depth than w). So, (i) is proved by contradiction.

To prove (ii) consider the following procedure that we call τ − check:
In an order of decreasing depth (e.g, reversed breadth first order) visit the
vertices of τ and for a vertex v take a random evaluation of the variables
in vbl(v) (according to their distribution, independent of possible earlier
evaluations) and check if the resulting evaluation violates [v]. We say that
the τ− check passes if all events were violated when checked.

Clearly, Pr[τ − check passes] =
∏
v∈V (τ) Pr[[v]]. We are going to prove

that: τ occurs in C =⇒ the τ−check (on the same random source) passes.
We assume that for each variable Pi ∈ P the random source produces an

infinite list of independent random samples P
(0)
i , P

(1)
i , . . . , and whenever

either algorithm calls for a new random sample of Pi we pick the next unused
value from the sequence.

Let Sv(Pi) = {w ∈ V (τ) : d(w) > d(v) ∧ Pi ∈ vbl(w) ∩ vbl(v)} where d()
denotes the depth of a node. From the construction of the witness tree, we
have that all vertices of the same depth correspond to mutually independent
events. So, in our decreasing depth order every event Pi is resampled at most

once per depth value taking the value P
(|Sv(P )|)
i no matter which order we

choose to resample events of the same depth. From that we can also deduce
that when Pi is resampled for the k-th time in the algorithm, it is resampled
for the k-th time in the τ−check as well because we take decreasing depth
order. Finally, the fact that a vertex v is evaluated by the τ -check means
that the event [v] is in the execution log C =⇒ it was violated the time
was written in C =⇒ that the τ -check will find that [v] is violated (using
the above argument).
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For any event A ∈ A, let us denote by NA the random variable that
counts how many times the event A is resampled during the execution of
the algorithm. If C is the log of the execution of our algorithm then NA is
the number of occurrences of A in this log and also the number of distinct
proper witness trees occuring in C that have their root labeled A. The
latter statement holds because if ti is the i-th time step with C(ti) = A,
then obviously the tree tC(ti) contains exactly i vertices labelled A, thus
τC(ti) 6= τC(ti) unless i = j. Therefore one can bound the expectation of
NA simply by summing the bounds in Lemma 1.1 on the probabilities of the
occurrences of the different proper witness trees.

1.6.2 Random generation of witness trees

Let us fix an event Ai ∈ A and consider the following Galton-Watson branch-
ing process for generation a proper witness tree having it’s root labelled Ai:

1. Produce a singleton vertex labelled Ai

2. For each new vertex v, and for each event B ∈ Γ+([u]) add to v a child
node with label B independently with probability x(B).

3. Repeat step 2 until new nodes are added.

Observe that the above process may continue forever.
Let x′(B) := x(B)

∏
C∈Γ(B))(1 − x(C)). For the probability that described

Galton-Watson process yields a prescribed proper witness tree we obtain the
following:

Lemma 1.2. Let τ a fixed proper witness tree with its root vertex labelled
A. The probability pτ that the Galton-Watson process described above yields
exactly the tree τ is

pτ =
1− x(A)

x(A)

∏
v∈V (τ)

x′([v])

Proof. For a vertex v ∈ V (τ) we denote by Wu ⊆ Γ+([u]) the set of inclusive
neighbours of [v] that do not occur as a label of some child node of v. Then
clearly, the probability that the Galton-Watson process produces exactly τ
is given by

pτ =
1

x(A)

∏
v∈V (τ)

(
x([v])

∏
u∈Wv

(1− x([u]))

)
, (1.12)
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where the leading factor accounts for the fact that the root is always
born. In order to get rid of the Wu, we can rewrite this expression in an
obvious way to obtain

pτ =
1− x(A)

x(A)

∏
v∈V (τ)

 x([v])

1− x([v])

∏
u∈Γ+([u])

(1− x([u]))

 , (1.13)

where again we have to account for the root separately. Replacing in-
clusive by exclusive neighborhoods, this simplifies to:

pτ =
1− x(A)

x(A)

∏
v∈V (τ)

x([v])
∏

u∈Γ([u])

(1− x([u]))

 =
1− x(A)

x(A)

∏
v∈V (τ)

x′([u]).

(1.14)

Let TA denote the set of all proper witness trees having the root labelled
A. We have:

E[NA] =
∑
τ∈TA

Pr[τ appears in the log C] ≤
∑
τ∈TA

∏
v∈V (τ)

Pr[[v]] ≤
∑
τ∈TA

∏
v∈V (τ)

x′([v]),

(1.15)

where the first inequality follow from Lemma 1.1, while the last inequal-
ity follows from the fact that the Galton-Watson process produces exactly
one tree at a time ( not necessarily one fro TA since it might also grow
infinite). This concludes the proof of Theorem 1.7.

1.7 The Lopsided Local Lemma

We can compute Pr[
⋂m
i=1Ai] from the inclusion-exclusion formula as long

as we know the probability of the other 2m − 1 atomic events created by
the Ais. Obviously this is not very helpful because of the large number of
atoms and the alterating signs in the formula. The LLL is valuable exactly
because we can deduce the positiveness of the above probability from simple
information on the dependency graph and the probabilities of the events. It
may occur however, that simple information other that the latter can lead
us to conclusion we want to get. There is at least one well known condition,
that relies on other than GA and (Pr[A1],Pr[A2], . . . ,Pr[Am]) alone. This is
known as the lopsided LLL. Here instead of the dependency graph we can
have aBranching Lemmany arbitrary graph, which call the lopsidependency
graph. Of course this does not come without a cost. Specifically:
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Definition 1.1 (Lopsidependency Graph). Let A1, . . . , Am be events in a
probability space, G a graph on the indices. We say G is a lopsidependency
graph (for the events) if

Pr[Ai|
∧
S

Āj ] ≤ Pr[Ai] (1.16)

for all i, S with i /∈ S and no j ∈ S adjacent to i

Using the above definition of the dependency graph, we can prove the
following:

Theorem 1.8 (Lopsided LLL). Let {AC}C∈I be a finite set of events in
some probability space. Let Γ(C) be a subset of I for each C ∈ I such that
for every subset J ⊆ I \ (Γ(C) ∪ {C} we have

Pr[AC |
∧
D∈J

ĀD] ≤ Pr[AC ] (1.17)

Suppose there are real numbers 0 < x(C) < 1 for C ∈ I such that for
every C ∈ I we have

Pr[AC ] ≤ x(C)
∏

D∈Γ(C)

(1− x(D)) (1.18)

Then

Pr[
∧
C∈I

AC ] > 0 (1.19)

Moser and Tardos adapted this framework in to their setting by defining
two events Ai and Aj to be lopsidependent, if there exist two evaluations f
and g on the variables in P that differ only on variables in vbl(A) ∩ vbl(B)
such that f violates A and g violates B but either f does not violate B or
g does not violate A. Instead of the usual dependency graph they consider
the one on the vertex set A, where lopsidependent events are connected by
an edge, and prove the analogous lopsidependent theorem of Theorem 1.7.
We present here their theorem:

We write Γ′(A) = Γ′A(A) for the neighborhood of an event A in this
graph. Clearly, if vbl(A) is disjoint from vbl(B), then A and B cannot be
lopsidependent, so we have Γ′(A) ⊆ Γ(A). Substituting Γ′(A) for Γ(A) in
the statement of Theorem 1.7 makes the assumption weaker and therefore
the theorem itself stronger. Specifically we get:
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Theorem 1.9 (Lopsided Local Lemma Variable Version). Let P be a finite
set of mutually independent random variables in a probability space. Let A
be a finite set of events determined by these variables. If there exists an
assignment of reals x : A → (0, 1) such that:

∀A ∈ A : Pr[A] ≤ x(A)
∏

B∈Γ′A(A)

(1− x(B)) (1.20)

then there exists an assignment of values to the variables P not violating
any of the events in A. Moreover, our randomized algorithm resamples an
event A ∈ A at most an expected x(A)

1−x(A) times before it finds such an evalua-

tion. Thus the expected number of resampling steps is at most
∑

A∈A
x(A)

1−x(A)

1.8 Dealing with superpolynomially many bad events

In this section we study further algorithmic aspects of the Lovász Local
Lemma. Specifically we a present a theorem due to [17] that gives sufficient
conditions so that the number of resamplings of the MT algorithm remains
polynomial in the number of variables n = |P|, even if the number of events
is exponential in n.

Theorem 1.10. Suppose there exists ε ∈ [0, 1) and an assignment of reals
x : A→ (0, 1) such that:

∀Ai ∈ A : Pr[Ai] ≤ (1− ε)x(Ai)
∏

B∈Γ(Ai)

(1− x(B)) (1.21)

With δ denoting minAi∈A
∏
B∈Γ(Ai)

(1− x(B)), we have

T :=
∑
Ai∈A

xAi ≤ n log(
1

δ
) (1.22)

Furthermore:

1. If ε = 0, then the expected number of resamplings done by the MT algo-
rithm is at most v1 = T maxAi∈A

1
1−x(A) , and for any parameter λ ≥ 1,

the MT algorithm terminates within λv1 resamplings with probability
at least 1− 1/λ.

2. If ε > 0, then the expected number of resamplings done by the MT
algorithm is at most v2 = O(nε log T

ε ), and for any parameter λ ≥ 1,
the MT algorithm terminates within λv2 resamplings with probability
1− e−λ.
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Proof. The main idea is of relating T to n and δ is to use the high density of
the dependency graph G (see below) and the nature of the LLL-conditions
which force highly connected events to have small probabilities and x-values.

The first part of the theorem follows immediately from theorem 1.7, be-
cause we have proved that if ε = 0, then the expected number of resamplings
cannot be more than

∑
Ai∈A

xAi
1−xAi

≤ T ·maxAi∈A
1

1−xAi
. Also, the rest of

the first part is proven by a simple application of Markov’s inequality.
We proceed with proving the bound on T . Let,

APi = {Ai ∈ A|Pi ∈ vbl(Ai)} (1.23)

i.e APi is the clique of the dependency graph G that is formed by the
events that include the variable Pi. Observe that that the m vertices of G
can be partitioned into n such cliques with potentially further edges between
them, and therefore has at least n ·

(
m/n

2

)
= m2/(2n)−m/2 edges, which is

high density for m >> n. To prove the bound on T it is sufficient to prove
that :

∀Pi :
∑

B∈APi

xB ≤ log(1/δ) (1.24)

, since A = ∪Pi∈PAPi and |P| = n. Let Ai ∈ AP , P ∈ P be the event
with the smallest x-value. By definition, we have:

δ ≤ xAi
∏

B∈AP \{Ai}

(1− xB) =
xAi

1− xAi

∏
B∈AP

(1− xB) (1.25)

There are two cases depending on the value xAi .

(a) If xAi ≤ 1
2 , then

xAi
1−xAi

≤ 1 implies that δ ≤
∏
B∈AP (1 − xB) ≤

e
−

∑
B∈APi xB and therefore:

∑
B∈APi

xB < log2(
1

δ
) (1.26)

(b) If xAi >
1
2 , let B1 ∈ AP \ {Ai}. Then,

δ ≤ xAi
∏
B∈AP \Ai(1− xB)

= xAi(1− xB1)
∏
B∈AP \{Ai,B1}(1− xB)

= xAi(1− xB1)e
−

∑
B∈AP \(AicupBi)

(1.27)
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Since xAi is the smallest x-value, 1
2 ≤ xAi ≤ xB1 ≤ 1. Therefore, using

some calculus we get that xAi(1− xB1) ≤ e−(xAi+xB1
) and therefore:

δ ≤ e
−

∑
B∈APi

xB
(1.28)

Thus, once again:
∑

B∈APi
< log2(1

δ )

The second part of the theorem now also follows directly from the main
theorem of Moser and Tardos and by a simple application of Markov’s in-
equality. Specifically, in section 5 of their paper, Moser and Tardos show
that saving a (1 − ε) factor in the probability of every resampling step im-
plies that with high probability, no witness tree of size Ω(1

ε log
∑

A∈A
xA

1−xA )
occurs. This easily implies that none of the n variables can be resampled
more often. It is furthermore shown that without loss of generality all x-
values can be assumed to be bounded away from 1 by at least O(ε). This
simplifies the upper bound on the expected running time to n ·O(1

ε log T
ε )

Theorem 1.10 implies that the number of resampling MT algorithm needs
in order to find a satisfying assignment is polynomial in n and δ. Note
that, without loss of generality, δ ≤ 1

4 because otherwise all A ∈ A are
independent, that is, defined on disjoint set of variables. Indeed if δ > 1

4
and there is an edge in G between A ∈ A and B ∈ A, then we have 1

4 >
x(A)(1− x(B)) and 1

4 > x(B)(1− x(A)), and thus 1
4 ·

1
4 > x(A)(1− x(A)) ·

x(B)(1− x(B)) which is a contradiction because x(1− x) ≤ 1
4 for all x.

The fact that the number of resampling is polynomial in n does not
immediately implies that the MT algorithm is polynomial in n if if the
number of events m is exponential in n. This is because at each step of the
algorithm we have to find a violated event ( before we resample it).

Definition 1.2. A set A of events that are determined by variables in P is
efficiently verifiable if given an arbitrary assignment to P, we can efficiently
find an event A ∈ A that holds or detect that there is no such event.

To overcome this obstacle, i.e the sets of events that are not efficienlty
verifiable, Haupler, Saha and Srinivasan introduced the notion of core subset :

Definition 1.3. A set A′ ⊆ A will be called a core subset of A if it has the
additionally property of being efficiently verifiable.

The main idea is to find a core subset of A′ ⊆ A and to apply the
MT-algorithm on it. In other words, we only resample events from A′ and
terminate when we cannot find one such violated event. The non-core events
will have small probabilities and will be sparsely connected to core events
and as such their probabilities in the output distribution of the algorithm
does not blow up much. Specifically, we prove the following theorem:
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Theorem 1.11. Assume there is an assignment of reals x : A → (0, 1) such
that the general LLL conditions hold. Let B be any event that is determined
by P. Then, the probability that B was true at least once during the execution
of the MT algorithm on the events in A, is at most Pr[B]

∏
C∈Γ(B)(1−xC)−1.

In particular, the probability of B being true in the output distribution of MT
obeys this upperbound.

Proof. As we saw in section 1.6, if B became true at least once during
the execution of the algorithm, then there must be witness tree with root
node B and non-root nodes V ′(τ) ⊆ A \ {B}. Using a very similar way
we can bound the expected number of such trees and then apply Markov’s
inequality.

Let τ be a fixed proper witness tree with its root vertex labelled B. Also
for A ∈ Γ(B), let τA be the subtree starting from A. Following the proof of
lemma 1.2 and keeping in mind that the products are only over non-root
nodes, we get that the probability that this particular tree is produced by
the Galton-Watson process defined in the section 1.6.2, is exactly:

Pr[τ ] =
∏

A∈ΓG(B)

x(A) · Pr[τA]
∏

A∈ΓG(B)\ΓG(B)

(1− xA) (1.29)

=
∏

A∈ΓG(B)

(1− x(A))
∏

u∈V ′(τ)

x′[u] (1.30)

Furthermore, if W (B) is the random variable equal to the number of
witness trees with root B that appear in an execution of the algorithm
then:

E[W (B)] ≤ Pr[B]
∑
τ∈TB

∏
v∈V (τ)\{B}

Pr[[v]] (1.31)

≤ Pr[B]
∑
τ∈TB

∏
v∈V (τ)\{B}

x′([u]) (1.32)

= Pr[B]
∏

Ai∈Γ(B)

(1− x(Ai))
−1
∑
τ∈TB

pτ (1.33)

≤ Pr[B]
∏

Ai∈Γ(B)

(1− x(Ai))
−1 (1.34)

Finally, an application of the Markov’s inequality yields the theorem.

Using theorem 1.11 we can now prove the following theorem that makes
formal the ideas presented above regarding the core subset.
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Theorem 1.12. Let A′ ⊆ A be an efficiently verifiable core subset of A. If
there is an ε ∈ [0, 1) and an assignment of reals x : A → (0, 1) such that:

∀Ai ∈ A : Pr[Ai] ≤ (1− ε)x(Ai)
∏

B∈Γ(Ai)∩A′
(1− x(B)), (1.35)

Then the modified MT-algorithm can be efficiently implemented with an
expected number of resamplings according to theorem 1.11. The algorithm
furthermore outputs a satisfying assignment with probability at least 1 −∑

Ai∈A\A′ xAi

Proof. The expected number of resampling is given by the standard proof
of the MT algorithm if we apply it on A′. So all it remains is to bound the
failure probability of the modified MT-algorithm. According to hypothesis
we have that:

x(Ai) ≥ Pr[Ai]
∏

B∈Γ(Ai)

(1− x(B))−1 (1.36)

Combining the above inequality with theorem 1.11 we get that the
probability that a non-core event Ai is violated by the output assignment
of the MT algorithm is at most x(Ai). A simple union bound yields the
theorem.

We proceed now by presenting a theorem that indicates when theorem
1.12 is applicable. Notice that this is not trivial since in order for one to use
theorem 1.12, one has to be able to find an efficient verifiable core A′ and
further to prove that the events in A ⊆ A′ have small probabilities.

Theorem 1.13. Assume log 1
δ ≤ poly(n). Assume further that there is a

fixed constant ε ∈ (0, 1) and an assignment of reals x : A → (0, 1 − ε) such
that:

∀Ai ∈ A : Pr[Ai]
1−ε ≤ x(Ai)

∏
B∈Γ(Ai)

(1− x(B)) (1.37)

Then for every p ≥ 1
poly(n) the set A′ = {Ai ∈ A : Pr[Ai] ≥ p} has size

at most poly(n), and is thus essentially always an efficiently verifiable core
subset of A. If this is the case, then there is a Monte Carlo algorithm that
terminates after O(n logm) resamplings and returns a good assignment with
probability at least 1− nc, where c > 0 is any desired constant.

Proof. To prove that A′ is efficiently verifiable it suffices to prove that its
size is polynomial in n. Indeed, since by definition Ai ∈ A′ implies that
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x(Ai) ≥ p and: ∑
B∈A′

x(B) ≤
∑
B∈A

x(B) ≤ O(n log(1/δ) (1.38)

we have that |A′| ≤ O(n log(1/δ)
p ) = poly(n), so A′ is efficiently verifiable.

For ε > 0 sufficiently small we have:

∀Ai ∈ A : Pr[Ai] ≤ x(Ai) ≤ 1− ε (1.39)

Therefore, using the hypothesis we have that:

Pr[Ai] ≤ Pr[Ai]
εx(Ai)

∏
B∈Γ(Ai)

(1− x(B))

< (1− ε)εx(Ai)
∏

B∈Γ(Ai)

(1− x(B))

< (1−Θ(ε2))x(Ai)
∏

B∈Γ(Ai)

(1− x(B)) (1.40)

and now we can apply theorem 1.10 to prove that the algorithm termi-
nates after O(n log n) resamplings.

All it remains is bound the failure probability of the algorithm. Note
that for every non-core event A ∈ A \ A′ we have that:

Pr[Ai] ≤ pεx(Ai)
∏

B∈Γ(Ai)

(1− x(B)) (1.41)

Applying theorem 1.10 with x∗(Ai) = pεx(Ai) gives:

∑
Ai∈A\A′

x∗(Ai) = O(pεpoly(n)) = O(pεnk) (1.42)

Choosing p = n−
1
ε
(k+c) = 1

poly(n) , then by theorem 1.12 we get that

the failure probability is at most n−c on non-core events, while the core is
always avoided.
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Chapter 2

Constructive Proofs for CNF
Formulas: Incompressibility
Method
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2.1 Introduction

The Lovász Local Lemma applied to satisfiability problem states that a k-
CNF formula is satisfiable if each clause has common variables with at most
2k

e − 1 other clauses. In this chapter we present R.Moser’s [14] constructive
proof (slightly altered using the ideas of [12]) of the Lovász Local Lemma
applied to such formulas, which is based on an ingeniously simple technique,
usually referred to as the ”Incompressibility Method” (also knows as ”The
Entropic Method”). Furthermore, we apply this method to show a construc-
tive result for CNF formulas in which the are clauses with different number
of variables as well as the Lefthanded Local Lemma [23] for the case of
k-CNF Formulas with dependency graphs that are chordal. Finally, note an
extension of this argument will also be the main tool upon which we develop
our ideas in chapter 3.

2.2 Constructive Proof of the LLL for the case of
k-CNF Formulas

2.2.1 The Recursive Algorithm

Let F be an arbitrary k−CNF formula with n variables and m clauses where
we have fixed an arbitrary total order over the set of clauses. The variables
of a clause are the variables that occur in a clause, positive or negative. A
literal is a variable or the negation of a variable.

The dependency graph of formula F is the graph with vertex set the set
of clauses, where two clauses are connected if they share variables. For a
clause c we denote by Γ(c) the set of neighbours of c in the dependency
graph, and by Γ+(c) = Γ(c) ∪ {c} the inclusive neighbourhood of c. The
Lovász Local Lemma implies the following:

Theorem 2.1. Let d be the maximum degree in the dependency graph of
the k − CNF formula F . If

(d+ 1)d+1

dd
< 2k (2.1)

then F is satisfiable.
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Moser presented a simple algorithmic proof for this Theorem by consid-
ering the following algorithm:

Algorithm 2 Recursive Algorithm

1: procedure Fix(c)
2: resample vbl(c)
3: repeat
4: u← lowest indexed unsatisfied clause in Γ+(c).
5: Fix(u)
6: until the inclusive neighbourhood of c is satisfied
7: return
8: procedure Global Fix
9: Pick a random truth assignment σ0 for the variables of F .

10: while there current assignment does not satisfy F do
11: c← lowest indexed violated clause
12: Fix (c)

13: return the current assignment

It is not hard to see that if the above algorithm terminates then we have
found a satisfying assignment for formula F . Clearly however, there is a
chance that it runs forever. To show that it terminates under the conditions
of Theorem 2.1 we use the incompressibility method, an argument presented
by Moser in its breakthrough paper [14].

2.2.2 The Incompressibility Method

In order to execute the above algorithm we imagine an infinite, predefined,
uniformly random binary string R. Each time a clause c resamples its vari-
ables, our algorithm reads k new random bits from R and it assigns them
to the variables of c. It also reads n bits at the beginning in order to define
the initial truth assignment. The key of the analysis is to keep a (compact)
record of each step of the algorithm, in such a way that at any step T , the
record until step T and the final truth assignment, denoted by σT , are enough
to deduce the prefix of the random string that has been ”consumed” up to
this step. In particular, the number of prefixes that lead to a violating truth
assignment σT is smaller than the set of all possible records of all steps and
final assignments σT . The total number of random string prefixes are 2kT+n.
Therefore, if we prove that the number of possible records is 2C+T (k−ε) for
positive constants C, ε, this shows that the algorithm terminates with high
probability after a finite number of steps.
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2.2.3 Preliminaries

• Binomials and Entropy By h we denote the binary entropy, h(p) =
−p log2(p) − (1 − p) log2(1 − p) for 0 < p < 1. We use the following
well known upper for for

(
Td
T

)
. For d ≤ 2, and T ≥ 1(

Td

d

)
< 2d·h(1/d)T (2.2)

• The number of d-ary labelled forests with at most m trees
and T nodes

An important tool in our analysis is an estimate of the number of
d-ary labelled forests with at most m trees and T nodes, denoted by
Fd,m(T ). Recall that a d-ary tree is a tree where each node has at
most d children. We have that (see [19]):

Fd,m(T ) =
m

d · T +m

(
d · T +m

m

)
(2.3)

Using the aforementioned inequality for the binomial coeffecient we
have that for d ≥ 2 and T,m ≥ 1

Fd,m(T ) < 2
(d·T+m)·h( 1

d+m
s

)

< 2(d·T+m)·h( 1
d

)
(2.4)

2.2.4 The LOG

We now precise what we meant by compact record of each step of the al-
gorithm. During the execution of the algorithm, we form a LOG in which
we encode the sequence of resampled clauses along with the n bits of the
final (satisfying) assignment at the end of it. If the LOG does not lead to a
satisfying assignment, it will be called a ”partial LOG” and will encode the
execution up to some point. The final (not satisfying) assignment is also
explicitly written at the end of the partial LOG in this case.

We start by showing that we can reconstruct the trajectory of the algo-
rithm from the LOG.

Lemma 2.1. Let CT = c1, c2 . . . , cT be the sequence of resampled clauses
and let PT = σ0, σ1, . . . , σT be the corresponding sequence of truth assign-
ments, i.e, σi is the truth assignment after resampling ci.

(a) CT and σT determine PT

(b) PT determines the random bits used in the first T resamplings.
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Proof. (a) For each 1 ≤ i ≤ T , the resampling of ci implies that ci was
unsatisfied under σi−1. Moreover σi and σi−1 differ only on the vari-
ables in ci. Since we are given σT we can thus determine σT−1 as the
truth assignment that results by changing σT so that cT is unsatisfied.
Similarly for cT−1, σT−1 and σT−2, etc.

(b) Notice that σ0 determines the first n random bits used for the choice of
σ0, as well as c1. The knowledge of σ1, c1 and σ0 determine the next
k random bits used. The trajectory up to this point (i.e σ0, σ1) implies
the next clause that was resampled, i.e c2. Repeating the process in the
same fashion implies the lemma.

2.2.5 Encoding-Decoding the LOG

From the LOG we will next define a recursion forest that represents the se-
quence of resampled clauses. Our final algorithm to reconstruct the random
bits used by the Recursive Algorithm will have a coding of this forests as
input.

We construct the recursion forest of a LOG (c1, . . . , cT , σT ) as follows.
Suppose ci is the i-th clause to be resampled. Then:

(a) If ci was picked by procedure GLOBAL FIX ( at line 11 of Algorithm
2) create a new tree (with one node) with ci as the label of its root.

(b) If ci was picked by procedure FIX(cj) ( at line 5 of Algorithm 1 ( j < i))
then we know that cj is already added in the forest. Add a node labelled
ci as a child of cj , to the right of the rightmost child of cj .

It is not hard to see that traversing the recursion forest in preorder gives
the sequence of resampled clauses. All it remains is to bound the number of
possible recursion forests and thus to bound the number of possible LOGs.
In order to do so will need the following lemma.

Lemma 2.2. Given that a call of Fix terminates, then the number of un-
satisfied clauses after termination is strictly less than it was before that call

Proof. Notice that ∀i : Fix(ci) terminates if and only if all the clauses adja-
cent to ci and ci itself are satisfied. Let G = (V,E) be the dependency graph
for the formula F , and let V ′ ⊆ V be the set of vertices-clauses which were
”explored” by that call of Fix. Obviously, every descendant of this particular
call in the recursion tree must also terminate. So, by induction all clauses
whose distance from V ′ is at most 1 (e.g

⋃
u∈V ′ Γ

+(u)) will be satisfied after
the termination of Fix. All the clauses in the set V \u∈V ′ Γ+(u) are not
altered by this part of execution. Also, at least one clause in

⋃
u∈V ′ Γ

+(u)
(namely ci) was unsatisfied before. This implies the lemma.
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Using the above lemma we can easily deduce the following corollary:

Corollary 2.1. The number of trees in the recursion forest is at most m.

Proof. Each time the algorithm starts a new tree, by the time the tree is
finished, the total number of satisfied clauses have increased by at least one,
i.e, by the root-clause of the tree. Therefore, the total number of trees in
the forest cannot be more than m.

To count the recursion forests we simply have to encode them. To do
so the next observation is crucial: we don’t need to store the labels of the
nodes, because we can compute the labels from the precise structure of the
forest. Namely, we can use the order of the clauses as they appear in F as
an order on the clauses. This induces an order on al the sets Γ+(c). Hence,
in the recursion forest, we can think of every node as having d + 1 slots
reserved in a certain order, one for each child to come. That is, we can
for example distinguish the tree where the child of c1 has label c3. Similar,
for the potential roots of the trees, we have m slots reserved. When ci
becomes the root of a tree, we put it at slot j , if j is the rank of ci in
the order of all clauses. Therefore, if we know the precise structure of the
forest, we can reconstruct the labels of the nodes. Since we can enumerate
all (d+ 1,m)-forests with T nodes we are able to bound the number of the
recursion forests.
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2.2.6 Putting things together

Now we have all the tools for the incompressibility method argument. Specif-
ically we prove the following Theorem that implies Theorem 2.1.

Theorem 2.2. Let F be a k-CNF formula and d be the maximum degree of
its dependency graph. If

(d+ 1)d+1

dd
< 2k (2.5)

then the Recursive Algorithm finds a satisfying assignment for F after
O(m) steps with high probability

Proof. We will say that an input (random) string R is T -good if the algo-
rithm terminates after T steps, by consuming some prefix R′ of R, otherwise
we will say that R is T -bad. Observe that:

1. The number of random strings that can be an input for a T - step
execution of the algorithm are exactly 2n+kT .

2. There is a bijection between the T -bad random strings and the number
of LOGs for T -step execution for the algorithm.

Therefore, the number of T -bad random strings are at most:

2n · Fd,m(T ) < 2n+m·h( 1
d+1

)+d·h( 1
d+1

)·T (2.6)

An easy calculation shows that the assumption (d+1)d+1

dd
< 2k is equiva-

lent to k − (d+ 1) · h( 1
d+1) = g > 0 for integral d ≥ 2.

Let Bad(T ) denote the number of T -bad random strings. Since the
random string R is chosen uniformly at random, if S is the random variable
that equals the number of steps of the recursive algorithm then:

Pr [S = T ] = Bad(T )
2n+kT

≤ 2
n+m·h( 1

d+1
)+d·h( 1

d+1
)·T

2n+kT

≤ 2m·h( 1
d+1

) · 2−Tg
(2.7)

Let T0 =
m·h( 1

d+1
)

g . It is easy to see that the probability that the recursive

algorithm runs more than T0 + λ steps is less than 2−λ·g. Since T0 = O(m)
the theorem is implied.
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2.3 An asymmetric result for CNF Formulas

In this section we prove the following theorem for CNF Formulas where there
are clauses with different number of variables. It should be noted that, as
far as we know, this is a new result.

Theorem 2.3. Let F be a CNF formula with m clauses and n variables
and let k = maxc∈F |c|. For each clause c ∈ F define dc =

∑
γ∈Γ+(c) 2k−|γ|

and let d = maxc∈F dc. If:

(d+ 1)d+1

dd
< 2k (2.8)

then F is satisfiable and Algorithm 2 finds a satisfying assignment for
F after O(m) steps

Proof. For each clause c define the real number a(c) = k − |c| and say that
a clause c is needy if a(c) > 0. We will form a formula F ′ by replacing the
needy clauses of F one-by-one as follows.

To replace a needy clause c, introduce a(c) new variables xc1 , xc2 , . . . , xa(c)

and replace c by the 2a(c) distinct clauses each of which contains the literals
of c and one signed combination of the a(c) new variables. We will denote
the set of the new clauses as children(c).

Observe now that F is satisfiable if and only if F ′ is satisfiable. Namely,
if we find a satisfying assignment for F ′ we have also found a satisfying
assignment for F . Furthermore, observe that F ′ is a k-CNF formula that
satisfies the conditions of the Local Lemma, and therefore the proof of the
previous section can be used to prove that F ′ is satisfiable. To see that the
recursive algorithm terminates after O(m+n) steps (and not after O(|F ′|+n)
steps) notice that the number of trees in the recursion forest is at most m
(and not |F ′|) since at each state σ and for each clause c only one of the
clauses in children(c) can be violated.
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2.4 A constructive Proof for the Left Handed LLL
for the case of k-CNF Formulas

2.4.1 Statement of the Lefthanded Lovász Local Lemma

An interesting variant of the Local Lemma is the Lefthanded Lovász Local
introduced by Pegden in [22] and [23]. The lemma holds for a specific family
of dependency graphs, but for those graphs that it hold it gives better results
than the General LLL. In this section we state the lefthanded lemma for the
case of chordal graphs, where it is optimal. As Pegden showed, in this case
the left handed local lemma is optimal, meaning it is equivalent to Shearer’s
condition (Theorem 1.4). However, as we will see, its statement is closer to
the General LLL, which means that it is not hard to apply. First we need
some definitions:

Definition 2.1. A tree order is a partial order, denoted by ≤, in which
w < u, v implies that u and v are comparable .

Notice that every partial ordered set whose partial order is a tree order,
has a unique maximal element. In particular, any set with a tree order can
be represented as tree whose vertices are labelled with elements of the set,
with the root being the maximal element.

Definition 2.2. A graph is a lefthanded graph with respect to a tree-order
≤ if

1. u ∼ v implies that u ≤ v or v ≤ u, and

2. (w < u < u) and (v ∼ w) together imply (v ∼ u)

A subtree graph is a graph whose vertex-set is a set of subtrees of some
fixed tree, where adjacency corresponds to intersection.

Lemma 2.3. A graph is lefthanded with respect to some tree-order if and
only if it is isomorphic to a subtree graph. Furthermore, a graph is isomor-
phic to a subtree graph if and only if it is chordal.

Lemma 2.4. A graph is lefthanded if and only if is chordal. Furthermore,
given a chordal graph G, one can find a tree order ≤, so that G is lefthanded
with respect to this tree order, in polynomial time.

Proofs for lemmata 2.3 and 2.4 can be found in [23]. We are now ready
to state the theorem.

Theorem 2.4 (The Lefthanded Lovász Local Lemma). Consider a family
of events {Av}(v∈V ) with a lefthanded dependency graph (G,≤) on V. If there
is an assignment of numbers 0 ≤ xv ≤ 1 (v ∈ V ) such that for any v ∈ G
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Pr[Av] ≤ xv
∏

u∼v,u≤v
(1− xu) (2.9)

Then we have

Pr[
⋂
A∈A

Ā] ≥
∏
v∈G

(1− xv) (2.10)

The proof given by Pegden for Theorem 2.4 was not constructive. How-
ever, due to the work of Kolipaka and Szegedy in [10] we know that the MT
algorithm terminates when applied to (variable) settings where the Left-
handed Lovász Local Lemma holds. An immediate corollary of the above
discussion is the following.

Corollary 2.2 (Symmetric LLLL on k-CNF Formulas). Let F be a k-CNF
Formula with m clauses and n variables whose dependency graph is left-
handed with respect to a tree order ≤. For each clause c ∈ F let Γ≤(c) =
{u ∈ Γ(c) : u ≤ c} and d = maxc∈F Γ≤(c). If

(d+ 1)d+1

dd
< 2k (2.11)

then F is satisfiable and there exists an algorithm that finds a satisfying
assignment for F after O(m) steps

In the next subsection we give a constructive proof for corollary 2.2
using the incompressibility method.
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2.4.2 A Focused Recursive Algorithm

Recall that each tree order on a specific set can be represented as a tree
whose vertices are labelled with elements of the set. Let τ be the labelled
(with clauses of the formula) tree that corresponds to ≤. Consider the
following algorithm :

Algorithm 3 Focused Recursive Algorithm

1: procedure Fix(c)
2: resample vbl(c)
3: repeat
4: u← lowest indexed unsatisfied clause in Γ≤(c).
5: Fix(u)
6: until the inclusive neighbourhood of c is satisfied
7: return
8: procedure LeftHanded Global Fix
9: Pick a uniformly random assignment

10: τ ′ ← τ
11: while τ ′ 6= ∅ do
12: Let Leaf(τ ′) be the set of leaves of τ ′

13: while There exist violated clause in Leaf(τ ′) do
14: c← The lowest indexed violated clause in Leaf(τ ′)
15: Fix(c)

16: τ ′ ← τ ′ \ Leaf(τ ′)

In words, Algorithm 2.4.2 traverses τ in backwards BFS fashion starting
from the lowest indexed leaf and applies the FIX procedure to every violated
clause it meets. Notice that unlike the case of the standard recursive algo-
rithm it is not yet obvious that the termination of Algorithm 2.4.2 implies
satisfiability. To prove this we need the following lemma.

Lemma 2.5. Let s be a subtree of τ and let c be the label of its root. Let σ
be a state such that every clause in s, except for the root, is satisfied. Call
Fix(c) and let σ′ be the output, assuming it terminates. Then, every clause
of s, including the root, is satisfied in σ′.

Proof. Let u1, . . . , ul be the l clauses in Γ≤(c) that correspond to the labels of
the recursion tree that corresponds to FIX(c). Notice that by definition, this
clauses belong in the subtree of τ with root c. By induction, we may assume
that every clause that belonged in the subtrees of τ with roots u1, . . . , ul
remained satisfied after the termination of FIX(c). Therefore, it remains to
prove that every member of Γ≤(c) that does not belong in {u1, . . . , ul} or in
one of the subtrees of τ with roots {u1, . . . , ul} remained satisfied after the
termination of FIX(c). Observe however that (1) and (2) in Definition 2.2
imply that such clauses do not exist.
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Lemma 2.5 asserts that if Algorithm 2.4.2 terminates, then it finds a
satisfying assignment for F . Furthermore, lemma 2.5 that the sequence of
resampled clauses can be represented as a d + 1-ary forest with at most m
roots. Therefore, following the exact similar proof of the previous section
Corollary 2.2 yields.
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Chapter 3

Probabilistic Hill Climbing
of Entropic Potentials
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3.1 Motivation

For a CNF formula F with n variables, let E : {0, 1}n → N be the (energy)
function counting the number of violated clauses at each value assignment.
A number of practically useful satisfiability algorithms start at a random
σ ∈ {0, 1}n and, while violated clauses exist, employ a randomized process
to select a violated clause c and new values for its variables, leading to a new
state τ . For both the choice of c and the choice of values for its variables
there exists a cornucopia of heuristics, but not much to distinguish between
them besides experiments, the systematic conduct of which forms an entire
subarea of satisfiability research. One property that is shared by the vast
majority of these heuristics is that they are primarily guided by the new
number of violated clauses, E(τ), i.e., they largely focus on the energetic
potential near the current truth assignment σ.

Inspired by Moser’s [14] groundbreaking algorithmic argument for the
Lovász Local Lemma we show that there is an alternative entropic potential
to consider that lends itself to rigorous mathematical analysis. Focusing on
this potential suggests a systematic methodology for designing algorithms for
any discrete-valued CSP, while also elucidating why certain existing heuris-
tics perform as well as they do. For example, our work suggests an expla-
nation for the following, rather surprising, experimental finding of Balint
and Schöning [2]: in choosing new values for c one should focus on minimiz-
ing the number of clauses that will become unsatisfied, ignoring the clauses
that will become satisfied. As a matter of fact, trying to avoid satisfying
too many clauses can enhance the performance of the algorithm.

3.2 Introduction

In a discrete Constraint Satisfaction Problem (CSP) we are given a set of
variables V = v1, . . . , vn with discrete domains and collection of functions
F , called constraints, where each f ∈ F takes as input a subset of the
variables and outputs an element of {0, 1}. Whenever a value assignment
is such that a constraint evaluates to 1 we say that a constraint is satisfied,
otherwise that it is violated. Given a CSP we would like to know if there
exists a value assignment to the variables which simultaneously satisfies all
constraints, i.e., a satisfying assignment, and, if the answer is positive, to
find such an assignment efficiently.

A powerful tool for determining the existence of a satisfying assignment,
developed in the context of the Probabilistic Method, is the Lovász Local
Lemma (LLL) [6]. The LLL presumes the existence of a probability space
within which we are interested in the probability that none of a collection
A of “bad” events occurs. Clearly, this probability is always positive if the
events in A are independent (and none of them has probability 1). The LLL
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asserts that the probability is, in fact, positive under a condition of limited
dependence among the events in A.

LLL (General). Let A be a set of m events such that each Ai ∈ A is
mutually independent of A− (Di ∪Ai), for some Di ⊆ A. If there exist real
numbers x1, . . . , xm ∈ [0, 1) such that Pr(Ai) ≤ xi

∏
Aj∈Di(1− xj) for every

i ∈ [m], then the probability that none of the events in A occur is at least∏m
i=1(1− xi) > 0.

Even though the general LLL is stated as an implication, it is in fact a
characterization. To see this, consider any k-CNF formula F with n variables
and m clauses and let Ai denote the event that clause ci is violated. By the
correctness of the theorem, if F is unsatisfiable, then no matter what µ is,
there are no xi ∈ [0, 1) satisfying the theorem’s conditions. On the other
hand, if σ ∈ {0, 1}n is a satisfying assignment of F , then under the trivial
measure that places all its mass on σ, taking xi = 0 for all i satisfies the
conditions. In other words, if a formula F is satisfiable, there always exist a
probability measure µ and numbers {xi} that satisfy the LLL condition for
F , thus witnessing its satisfiability.

The value of the LLL lies in that in many settings even the most uned-
ucated choice of measure, unlike in the paragraph above, combined with a
straightforward choice for the xi, yields highly non-trivial results. For exam-
ple, if every clause in F shares variables with at most ∆ other clauses, then
taking µ to be the uniform measure on {0, 1}n and letting xi = 1/(∆ + 1),
implies that F is satisfiable if ∆ ≤ 2k/e − 1. How good is this bound on
∆? It is tight. Gebauer, Szabó, and Tardos [7] proved that there exist un-
satisfiable k-CNF formulas where each clause shares variables with at most
(1 + ok(1))2k/e other clauses.

As one can imagine, whenever the LLL establishes that “good configu-
rations exist”, the question of whether these can be found efficiently soon
follows. Finding the answer to this question has been a long quest, start-
ing with the work of Beck [3], with subsequent works of Alon [1], Molloy
and Reed [13], Czumaj and Scheideler [4], Srinivasan [17] and others, estab-
lishing increasingly weaker conditions under which good configurations can
be found efficiently, yet in all cases still requiring significantly more than
the LLL. The breakthrough was made by Moser [14] a few years ago, who
showed that a shockingly simple algorithm nearly matches the LLL condi-
tion for k-CNF formulas. Very shortly afterwards, Moser and Tardos [15]
closed the gap completely, also establishing a general setting within which
the LLL is constructive.

Specifically, the so-called variable setting of Moser and Tardos [MT]
requires that the measure µ is a measure over n explicitly presented variables,
the values of which fully determine the events of interest. Crucially, the
measure µ must be a product measure over the n variables so that sampling
from µ amounts to setting each variable v independently of all others using
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its own measure µ(v). In the variable setting we can associate with each
event Ai a subset of variables vbl(Ai) that determine Ai, and we can express
dependencies by letting Γ(Ai) be the set of events Aj for which vbl(Ai) ∩
vbl(Aj) 6= ∅, writing j ∼ i. In this variable setting Moser and Tardos
introduced and analyzed the algorithm Resample, given below.

Algorithm 4 RESAMPLE

1: for i ∈ [n] do
2: Sample variable vi according to µ(vi)

3: while at least one of A1, . . . , Am occurs do
4: Pick an arbitrary occurring event Aj
5: Sample each variable v ∈ vlb(Aj) according to µ(v)

6: return the current assignment

Theorem 3.1 ([15]). If there exist real numbers x1, . . . , xm ∈ (0, 1) such
that Pr(Ai) ≤ xi

∏
j∼i(1− xj) for every i ∈ [m], then the average number of

resamplings until Resample terminates is
∑

i∈[m] xi(1− xi)−1.

For example, for k-CNF formulas, if we set each variable to 0 or 1 with
equal probability, i.e., µ(v) = 1/2 for every v, and for every i ∈ [m] we
let xi = 1/(∆ + 1) where ∆ = maxc |Γ(c)|, Theorem 3.1 implies that if
∆ ≤ 2k/e− 1, exactly as in the LLL, a satisfying assignment will be found
in O(m) time.

As mentioned earlier, the value of the LLL lies in the fact that we get
useful results even if we chose the measure µ in an oblivious manner [18].
In particular, since typically one does have access to explicitly presented
variables, e.g., the logical variables of a Boolean formula, or the colors to be
assigned to the vertices of a graph, in the vast majority of applications of
the LLL µ is simply taken to be the product measure in which each µ(v) is
uniform over the the domain of variable v. Doing this makes the search for
suitable {xi} relatively straightforward and, in practice, one typically does
not even need to use the general LLL directly, but can use instead one of
the following two corollaries (offering “pre-packaged” {xi}’s).

Corollary 3.1 (Symmetric LLL). If each event Ai is mutually independent
of all but at most d other events and Pr[Ai] ≤ p for all i ∈ [m], then if
p(d+ 1) ≤ 1/e, the probability that none of the Ai occurs is positive.

Corollary 3.2 (Asymmetric LLL). If
∑

j∼i Pr[Aj ] ≤ 1/4 for every event
Ai, then the probability that none of the Ai occurs is positive.

In this frame of mind, Resample seems like a perfectly natural algo-
rithmization of the LLL. Yet, it is hard to miss its striking similarity to
randomized local search algorithms for CSPs. Given that such algorithms
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perform well in practice, way beyond what the LLL and Resample can
guarantee, it is tempting to ask if the approach of Moser and Tardos [15]
for analyzing Resample can be applied to them.

Unfortunately, there is a huge obstacle in this direction: the require-
ment of product measure. Local search algorithms typically resample the
variables of each constraint in a way that depends both on which constraint
is being resampled and, more importantly, on the current value of neighbor-
ing variables. But for the approach of [15], the requirement of a product
measure is, in the words of Joel Spencer, “critical for the entire result” [16].
Similarly for all works following [15], including [12, 8, 10, 11], and up to the
most recent work of Harris and Srinivasan [9], where the partial resampling
approach is developed: to resample an event Aj , resample an appropriate
random subset of vbl(Aj) using the product measure.

Our work is inspired instead by Moser’s groundbreaking entropic ar-
gument of the symmetric LLL for k-CNF formulas [14]. Specifically, our
contribution begins with the realization that the proof technique of Moser
remains fully potent even without the backdrop of a probability measure on
the variables, i.e., outside the realm of “The Probabilistic Method”. Specif-
ically:

Rather than requiring each variable to carry its own measure and in-
sisting that each and every value assignment to each and every variable
is independent of all other value assignments (and obeys the variable’s
utterly uniformed measure), we allow each and every resampling of
each and every constraint to have its own resampling distribution that
depends on the current state of the system.

We formulate our analysis in the context of satisfiability for CNF formu-
las but our ideas easily carry over to arbitrary discrete-valued CSPs. Our
approach reduces the problem of choosing good resampling distributions for
each clause c to a constrained source coding problem, the size of which de-
pends only on Γ(c), i.e is independent of the size of the formula. We develop
both a symmetric and asymmetric version of our conditions such that, in
the case of uniform resampling, they reduce to Corollaries 3.1 and 3.2 (ap-
plied to CNF formulas). Unlike the asymmetric version of the LLL which is
typically used to deal with constraints of different arities, in our setting, the
freedom to choose arbitrary probability distribution per clause (and state)
brings about a whole new role for asymmetry. Specifically, when the source
coding problem associated with one or more clauses is infeasible (in a sense
we make precise), the degree of (in)feasibility of each problem highlights
“where the pain is” vs. which clauses are “easy to satisfy”. The asymmet-
ric conditions then, make it possible to use this information to modify the
resampling distributions so that the easy to satisfy clauses help the hard
to satisfy clauses, potentially making all associated source coding problems
feasible.

43



Our conditions take as input the CSP instance itself, not just its de-
pendency graph (as the LLL/MT conditions do). As a result, our analysis
is sensitive not only to “how many” constraints share variables with each
constraint, but also to “how” these neighboring constraint are connected to
it, e.g., do the clauses share one or more variables, are there triplets {i, j, k}
such that i ∼ j, j ∼ k, and k ∼ i, etc. For example, they readily encom-
pass the (and often significantly subsume) the improvements that result by
considering the lopsided dependency graph in the variable as formulated by
Moser and Tardos [15].

Finally, we note that from a strict worst-case point of view, our analysis
only improves upon the LLL/MT conditions in specialized settings which
are hard (and perhaps too ugly) to abstract away. Rather, we consider our
main contribution the demonstration that entropic arguments, such as the
one pioneered by Moser [15], offer a new tool for run-time analysis that may
have practical implications in algorithm design.

3.3 Setting

Let F be an arbitrary CNF formula with clauses A = {c1, . . . , cm}. For σ ∈
{0, 1}n, let U(σ) = UF (σ) denote the set of unsatisfied clauses of F under
σ. We will analyze algorithms which as long as U(σ) 6= ∅ select a clause
c ∈ U(σ) and assign to its variables an element of {0, 1}|c| selected from a
probability distribution Rc(σ), i.e., one that depends on the current state.
For now, these resampling distributions will be arbitrary. Let β > 0 be the
largest real number such that in every distribution every value assignment
receives probability either 0 or at least 2−β. For the analysis, it will be
helpful to consider algorithms that continue resampling clauses even after a
satisfying assignment has been found. With this in mind, let π1, π2 . . . be
an infinite sequence of permutations of [m]. We will analyze the following
ceaseless algorithm.

• Let i = 1 and set σi = 0.

• Repeat forever:

– If U(σi) 6= ∅ then let c be the lowest indexed clause in U(σi)
according to πi

else let c be the lowest indexed clause according to
πi

– Let σi+1 be the state that results by resampling c according to
Rc(σi).

– i← i+ 1

Remark 3.2. If π1 = π2 = · · · , then the algorithm fixes an ordering of
the clauses and always resamples the lowest violated clause per the order-
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ing. If the πi are i.i.d. uniformly random permutations, then the algorithm
resamples a random (violated) clause in each step.

To simplify exposition, we will consider the sequence π1, π2, . . . to be ar-
bitrary but fixed, i.e., we will consider it part of the algorithm’s description,
similarly to σ1 = 0.

Definition 3.1. We refer to the (random) sequence σ1, . . . , σt+1, entail-
ing the first t resamplings, as the algorithm’s trajectory of length t, or
t-trajectory. A t-trajectory is bad iff σ1, . . . , σt+1 are all unsatisfying. For
a bad trajectory Σ, the sequence of t clauses that were resampled along Σ is
called its witness W (Σ).

There are two key ideas involved in bounding the probability that the
algorithm’s trajectory is bad, both introduced in Moser’s groundbreaking
proof [14].

• The map from a bad t-trajectory Σ to 〈W (Σ), σt+1〉 is 1-1. Specifically,
if W (Σ) = r1, . . . , rt, then σt is the truth assignment that results
by setting in σt+1 the variables of rt to the unique value assignment
violating rt (the uniqueness stemming from the nature of satisfiability
constraints). And so on.

• The growth of the set of witnesses of a formula as a function of t can
be bounded in a non-trivial way by static considerations, i.e., without
unfolding the algorithm’s probabilistic dynamics.

To refine the second point above in our work, we model the possible
executions of the algorithm as an infinite tree whose root is labelled by the
value of σ1, i.e., 0, per π1. If c is the clause resampled by the algorithm
at σ1, then the root has 2|c| children corresponding to (and labelled by)
each possible value of σ2. More generally, for every i ≥ 1, a vertex labeled
by a possible value σ of σi has 2|c| children, each child labeled by a distinct
possible value of σi+1, where c is the clause resampled by the algorithm when
σi = σ (recall that the clause selected for the i-th resampling depends only
on σi and πi). We thus get an infinite vertex-labelled tree. We also label
every edge of the tree between a parent vertex labelled σ and a child vertex
labelled τ with the probability that the algorithm makes the transition σ →
τ conditional on having reached the vertex labelled σ.

We call the above labelled infinite tree the computation tree and note
that it is nothing but the unfolding of the Markov chain corresponding to
the state-evolution of the algorithm. In particular, for every vertex v of
the tree the probability, pv, that an infinite trajectory will go through v
equals the product of the edge-labels on the root-to-v path. In visualizing
the computation tree it will be helpful to draw each vertex v at (Euclidean)
distance log2 pv from the root. This way all finite trajectories whose last
vertex is at the same distance from the root are equiprobable, even though
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they may entail wildly different numbers of resamplings (this also means that
sibling vertices are not necessarily equidistant from the root). Finally, we
color the vertices of the computation tree as follows. For every infinite path
that starts at the root determine its maximal prefix forming a bad trajectory.
Color the vertices of the prefix red and the remaining vertices blue. So, for
example, whenever F is unsatisfiable every vertex of the computation tree
is red.

In terms of the above picture, our goal will be to prove that there exists
a critical radius x0 and δ > 0, such that the proportion of red states at
distance x0 from the root is at most 1− δ. Therefore, if we repeatedly “run
the algorithm until it consumes x0 bits of randomness”, the probability we
only encounter red states in s/δ runs is at most exp(−s). Crucially, x0 will
be polynomial, in fact linear, in m = |F |.

To prove that red vertices thin out beyond a critical radius we stratify the
computation tree as follows. Fix any real number x > 0 and on each infinite
path starting from the root mark the first vertex of probability 2−x or less.
Truncate the computation tree so that the marked vertices become leaves
(of a finite tree). Let L(x) be the set of root-to-leaf paths in this finite tree
(trajectories) and let B(x) ⊆ L(x) consist of the bad trajectories. Now, let
I be the random variable equal to an infinite trajectory of the algorithm and
let Σ = Σ(x) be the prefix of I in L(x). By definition,

∑
Σ∈L(x) Pr[Σ] = 1,

and Pr[Σ] ∈ (2−x−β, 2−x]. Let P = P (Σ) be the maximal red prefix of Σ
and observe that if Σ ∈ B(x) then P = Σ. Therefore,

H[P ] ≥
∑

Σ∈B(x)

Pr[Σ](− log2 Pr[Σ]) ≥ x
∑

Σ∈B(x)

Pr[Σ] = xPr[Σ ∈ B(x)] .

(3.1)
Assume now that there exist M, ε > 0, such that H[P ] ≤ (1− ε)x+M ,

for every x > 0. Then (3.1) implies that for every x ≥ θM/ε,

Pr[Σ ∈ B(x)] ≤ H[P ]

x
≤ (1− ε)x+M

x
≤ 1− ε+ ε/θ ,

and, thus, for θ > 1, the probability of finding a satisfying assignment is
strictly positive. Moreover, observe that by adding the numbers along the
edges of the computation tree traversed so far, i.e., by keeping track of “how
much randomness it has consumed so far”, the algorithm can keep track of
the probability pv of the current vertex. Therefore, for any fixed x > 0, the
algorithm can test whether its trajectory is in L(x) or not. With this in
mind, consider the following meta-algorithm, with parameters T and x0:

• t← 1.

• While t ≤ T do:

– Run the algorithm until the trajectory is in L(x0)
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– t← t+ 1

Setting x0 = M(2/ε) and T = s(2/ε), we see that the probability that the
meta-algorithm never encounters a blue state is at most (1 − ε/2)s(2/ε) <
exp(−s). In other words, consuming (4M/ε2)s random bits suffices to drive
the probability of failure to find a satisfying assignment down to exp(−s).

3.4 Local Distributions

For each clause c ∈ F , let Γ(c) denote the set of clauses with which c shares
at least one variable and let Γ+(c) = Γ(c) ∪ {c}. For a value assignment
σ violating c, the set of c-critical clauses consists of the satisfied clauses in
Γ(c) whose every satisfied literal belongs to a variable shared with c. We
denote the characteristic vector of the set of c-critical clauses as v(σ) =
vc(σ) ∈ {0, 1}Γ(c) and refer to it as the critical vector of c in σ. We denote
by V(c) the union of c-critical vectors over all σ ∈ {0, 1}n and note that it
is quite possible that V(c) ⊂ 2Γ(c), i.e., that not all c-critical vectors may be
realizable. Finally, for each critical vector v ∈ V(c), if D(v) ⊆ Γ+(c) denotes
the union of c and the c-critical clauses in v, we define Br(v) = 2D(v), i.e.,
the set of all possible subsets of Γ+(c) that may become (or in the case of c
remain) unsatisfiable when resampling c at v. Again, it is important to note
that even if D(v) = Γ+(c), the set Br(v) may be much smaller than 2Γ+(c)

due to our choice of Rc(v).
We will focus on probability distributions for which Rc(σ) = Rc(vc(σ)),

i.e., which out of the entire current value assignment (state) σ, only consider
[the projection of σ amounting to] the critical vector vc(σ). In that sense,
the resampling probability distributions are “local”, since variables in clauses
outside Γ(c) are ignored, and “coarse”, since non-c-critical clauses are not
distinguished by, say, how many satisfied literals they have (and, therefore,
by the impact of c’s resampling to their criticality with respect to other
clauses).

Definition 3.2. For each clause c, the potential of c, is

Pot(c) = min
v∈V(c)

H[Rc(v)] . (3.2)

In words, Pot(c) is a lower bound on the average amount of randomness
consumed by any resampling of clause c. It will be convenient to also define
the potential of sets of clauses, i.e., Pot(S) =

∑
c∈S Pot(c).

Definition 3.3. For each clause c ∈ A and v ∈ V(c), let Bcv : Br(v) →
[0, 1] be the probability distribution on the elements of Br(v) that results by
resampling c at critical vector v according to Rc(v).
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3.5 Amenability

For reasons that will become clear later, the key quantity we need to control
is determined by the following experiment, which we refer to as the unit-
experiment. Fix a clause c ∈ A and a probability distribution P on its set
of critical vectors V(c). Fix also a function f that takes as input a critical
vector v and a subset B of the set of clauses that are critical in v, i.e.,
〈v ∈ V(c), B ∈ Br(v)〉, and outputs a probability distribution fBv on the
subsets of B.

Finally, for each clause c ∈ F let Self(c) ≤ Pot(c) be an arbitrary real
number and define Parent(c) = Pot(c) − Self(c). For a set of clauses S we
define Self(S) and Parent(S) similarly as Pot(S). Let the random variable
B∗ be defined by the following experiment:

1. Select v ∈ V(c) according to P.

2. Select B ∈ Br(v), according to Bcv.

3. Select B∗ ⊆ B, according to fBv .

Definition 3.4. A clause c is ε-amenable under resampling distributions Rc
if there exists ε > 0 such that for every distribution P and every function f ,

H[B∗ | |B∗|] + 2E|B∗| ≤ (1− ε) (Self(c) + E[Parent(B∗)]) . (3.3)

Theorem 3.3. If every c ∈ F is ε-amenable, then for every x > 0,

H[P ] ≤ (1− ε)x+ n+ 2m+ β . (3.4)

3.6 A first application

Theorem 3.4. Let F be a CNF formula with maxc∈F |c| = k. If for every
c ∈ F ,

∑
γ∈Γ+(c) 2k−|γ| < 2k−2, then there exists ε > 0 such that every clause

in F is ε-amenable.

The hypothesis of Theorem 3.4 has long been known to imply the satis-
fiability of F via the LLL. Moreover, the existence of an efficient algorithm
under the same hypothesis follows readily by considering the uniform mea-
sure on {0, 1}n and applying Theorem 1 of Moser and Tardos [15]. Observe
now that our main result, Theorem 3.3, allows one to establish algorithmic
efficiency from a local condition on the distributions, amenability, without
any global requirement that the resampling distributions in their totality
form some coherent probabilistic object (or, worse, that they must be pro-
jections of some product measure). Our purpose in proving Theorem 3.4
is to demonstrate that this flexibility does not come at a significant cost,
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indeed none in this case (we discuss this point further later). In particular,
when F is a k-CNF formula, Theorem 3.4 applies whenever |Γ+(c)| < 2k−2

for every c in F , matching Moser’s [14] original result. (Note that in the
proof below we do use a product measure, but this fact is not considered by
the proof.)

Proof of Theorem 3.4. For every clause c and every value assignment σ let
Rc(σ) be the uniform distribution over all 2|c| assignments to the variables
of c and Self(c) = 0. Thus, Pot(c) = Parent(c) = |c| for every c ∈ F .
Let Γ+,i(c) denote the set of all i-subsets of Γ+(c). For each c ∈ F , let
a(c) = k − |c|, and for a set of clauses S let a(S) =

∑
γ∈S a(γ).

Fix any clause c and consider the unit-experiment for c. To lighten
notation, let pj = pcj = Pr[|B∗| = j] and pj(S) = pcj(S) = Pr[B∗ = S |
|B∗| = j]. Then, EPot(B∗)−H[B∗ | |B∗|]− 2E|B∗| equals∑

j

pj
∑

S∈Γ+,j(c)

pj(S) (Pot(S) + log2 pj(S)− 2j)

=
∑
j

pj
∑

S∈Γ+,j(c)

pj(S) (jk − a(S) + log2 pj(S)− 2j)

=
∑
j

pj j(k − 2)−
∑
j

pj
∑

S∈Γ+,j(c)

pj(S)(− log2 pj(S) + a(S))

=
∑
j

pj j(k − 2)−
∑
j

pj
∑

S∈Γ+,j(c)

2a(S)∑
i=1

pj(S)

2a(S)
log2

2a(S)

pj(S)
(3.5)

≥
∑
j

pj j(k − 2)−
∑
j

pj log2

 ∑
S∈Γ+,j(c)

2a(S)

 , (3.6)

where (3.6) follows from from the fact that the rightmost sum in (3.5) can
be seen as the entropy of a distribution over a set with

∑
S∈Γ+,j(c) 2a(S)

elements. To conclude the proof we will prove by induction on j that under
the hypothesis of the lemma, for every integer j,∑

S∈Γ+,j(c)

2a(S) < 2j·(k−2) , (3.7)

implying that the quantity in (3.6) is strictly positive and, therefore, that
c is ε-amenable for some ε > 0. Observe that the hypothesis of the lemma
is (3.7) with j = 1. Moreover, if the lemma holds for j ≥ 1, then∑
S∈Γ+,j+1(c)

2a(S) ≤
∑

S′∈Γ+,j(c)

2a(S′)
∑

γ∈Γ+(c)

2a(γ) <
∑

S′∈Γ+,j(c)

2a(S′)·2k−2 ≤ 2(k−2)(j+1) .
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3.7 Representing Trajectories by Break Sequences

To prove Theorem 3.3, i.e., to control bad trajectories and thus H[P ], we
introduce the following notation.

Definition 3.5. Let B0 = U(σ1). For i ≥ 1, let

Bi =

{
U(σi+1) \ U(σi) if σi+1 6= σi

{ri} if σi+1 = σi

That is, Bi is the set of clauses “broken” by the i-th resampling, where a
clause “breaks itself” if it remains violated after its own resampling (some-
thing that implies σi+1 = σi).

Let Σ be a bad t-trajectory and let W (Σ) = r1, . . . , rt be its witness.
As we saw, we can recover Σ from 〈W (Σ), σt+1〉. We will see that there is
sequence B∗0 , B

∗
1 , . . . , B

∗
t−1 of subsets of Bi that can be used as an alternative

to W (Σ) to recover Σ. Informally, each B∗i is formed by removing from
Bi those clauses that were never resampled, either because they became
satisfied by the resampling of some other clause later in the execution, or
because they remained violated (without being resampled) throughout the
rest of the execution. In other words, the sequence B∗0 , B

∗
1 , . . . , B

∗
t−1, which

we will refer to as the break sequence of Σ, is a grouping of W (Σ) in t sets.
The benefit of this grouping is that it allows us to distinguish between a
clause c′ ∈ Γ+(c) being unsatisfied after a resampling of c vs. the resampling
of c having caused c′ to become unsatisfied. More formally:

Definition 3.6. For i ≥ 0, let

Di = {c ∈ Bi | ∀k ∈ [i+ 1, t+ 1] : c ∈ U(σk) and c 6= rk}
Ei = {c ∈ Bi | ∃j > i such that c /∈ U(σj+1) and ∀k ∈ [i+ 1, j] : c 6= rk ∧ c ∈ U(σk)}
B∗i = Bi \ {Di ∪ Ei} .

If B∗ is the multiset comprising B∗0 , . . . , B
∗
t−1 and R is the multiset

comprising the clauses of the sequence W (Σ), then R = B∗ and we have
a 1-1 correspondence between the elements of W (Σ) and the elements of
B∗0 , B

∗
1 , . . . , B

∗
t−1. In particular, for every i ∈ [t], the i-th resampled clause

ri is the lowest indexed clause according to πi in

i−1⋃
j=0

B∗j −
i−1⋃
j=1

rj . (3.8)

Observe that (3.8) implies that given B∗0 , B
∗
1 , . . . , B

∗
i−1 we can inductively

determine r1, . . . , ri.
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3.7.1 Moser’s Algorithm via Break Sequences

Assume that F is a k-CNF formula and that Γ(c) ≤ ∆ for every c ∈ F .
Consider the algorithm which in every resampling assigns equal probability
to the 2k − 1 satisfying assignments of the clause c being resampled (and
note that such resampling distributions can not be had as projections of
a product measure over the variables). Since the algorithm ”consumes”
precisely κ = log2(2k − 1) random bits in each and every resamlping we
see that if we set x = κt for some integer t, all trajectories in B(κt) have
exactly t resamlpings and probability 2κt. Therefore, the probability that
we fail to find a satisfying assignment after t resamplings is 2κt|B(κt)| ≤
2n−κt|BS(κt)|, where BS(κt) is the set of Break sequences that correspond
to trajectories in B(κt) (recall that there are at most 2n possible states σt+1

and that we recover each trajectory in B(κt) from its Break Sequence and
its final state).

To bound |B(κt)| we will perform one last 1-1 mapping, organizing each
Break sequence B∗0 , B

∗
1 , . . . , B

∗
t into a structure we call a Break Forest. The

Break Forest will have precisely one vertex per resampling, labelled by the
resampled clause. The set B∗0 will provide the roots of the trees of the forest,
while for each i ≥ 1, the children of the vertex corresponding to the i-th
resampling will be labeled with the clauses in B∗i . For example, if B∗i = ∅,
then the vertex corresponding to the i-th resampling will be a leaf in the
forest. Thus, the Break Forest φ = (Φ, lΦ) of a bad t-trajectory is a finite
rooted forest Φ with exactly t vertices, organized into no more than m = |F |
trees, together with a function (labeling) lΦ : V (Φ) → {c1, c2, . . . , cm}. If
Σ is a bad trajectory with W = W (Σ) = r1, r2, . . . , rt and Break sequence
B∗0 , B

∗
1 , . . . , B

∗
t , then:

• Let E = B∗0 . The Break Forest φ = φ(Σ) consists of |E| trees, the
roots of which are labelled by distinct elements of E. (Neither the
trees nor the children of each vertex are ordered.)

• If v is the vertex of φ corresponding to ri, then v has |B∗i | children
labelled by the elements of B∗i .

To bound |B(κt)| we observe that every element of B(κt) has exactly t
vertices, at most |F | = m trees, and every vertex has at most ∆ children,
since the resampling of a clause can not do more damage than break all its
neighbors, i.e., trivially |B∗i | ≤ ∆ for all i. Finally, and crucially, if we fix any
ordering of the clauses of F , then this ordering induces an ordering of the
clauses in each neighborhood Γ(c). Thus, if we know the label c = lΦ(v) of
a vertex v in the Break Forest, to recover the labels of v’s children it suffices
to know for each child its ordinal in Γ(c), i.e., an integer in {1, . . . ,∆}.
Specifically, to see that φ(Σ) is indeed a representation of W (Σ) observe
that we can recover W (Σ) from φ(Σ) by the following simple procedure:
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• Let E be the union of the labels of the roots of φ and let i = 1

• While E is not empty repeat:

– Let ri be the lowest indexed clause in E according to πi

– Let B be the set of labels of the children of the node that corre-
sponds to ri in φ.

– Let E ← (E \ {ri}) ∪B
– i← i+ 1

Therefore, we are left to count the number of forests satisfying the above
constraints. Let F(m, t) be the set of all rooted forests with at most m trees
and exactly t vertices, where neither the trees, nor the children of each vertex
are ordered. Let L(m, t) be the set of all vertex-labeled rooted forests that
result by labeling the vertices of each forest in F(m, t) in every possible way
subject to the requirement that each root vertex carries a distinct label from
{1, . . . ,m} and that the children of each vertex carry distinct labels from
{1, 2, . . . ,∆}. It is known (but non-trivial), see for example [12], that

|L(m, t)| = m

m+ ∆t

(
m+ ∆t

m

)
. (3.9)

From (3.9), Stirling’s approximation yields log2 |L(m, t)| < (m+∆t)h(1/∆),
where h is the binary entropy, i.e., h(x) = −x log2 x − (1 − x) log2(1 − x).
Thus, the binary logarithm of the probability that the algorithm has not
encountered any satisfying assignment after t resamplings, is at most

−kt+ n+ log2 |B(kt)| < −kt+ (m+ ∆t)h(1/∆) = mh(1/∆)− (k −∆h(1/∆))t .
(3.10)

From this we see that if λ := k −∆h(1/∆) > 0, then we can make the
probability of failure arbitrarily small by making t sufficiently large, i.e.,
without needing to perform multiple runs of the algorithm.

For all ∆ ≥ 2, requiring λ > 0 is equivalent to ∆∆

(∆−1)∆−1 < 2k, matching

the condition in [12]. In particular, λ > 0 for all ∆ < 2k/e. At the same time,
h(1/∆) ≤ 1 implying that if t = M + s/λ, where M = λ−1(h(1/∆)m+ n),
then the probability of failure is at most 2−s. Thus, we see that after
the critical amount of randomness M is consumed, the probability that
the algorithm fails to find a satisfying assignment drops geometrically per
resampling, as in a cutoff phenomenon[5]. This is in contrast to Theorem 3.3
where the drop was geometric per run, i.e., per consumption of Ω(m + n)
bits).
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3.7.2 Local Algorithm Design

It is important to note that the analysis up to this point is tight.
This is because the rate x−1 log2 |H[P ]| is always bounded by 1, even

if F is unsatisfiable. Therefore, the existence of λ = λ(n,m) < 1 such
that H[P ] ≤ λx + M , characterizes satisfiability. This suggests that find-
ing optimal resampling probability distributions, i.e., minimizing H[P ], is a
task we can not hope to resolve fully. On the other hand, even just trying to
minimize H[P ] yields a quantitative tool in the search for resampling proba-
bility distributions. This is because minimizing H[P ] reduces to minimizing
the entropy of the probability distribution on Break Sequences, enabling a
telescoping comparison of x and H[P ] over the resamplings.

Concretely, to minimize the entropy of the distribution on Break Forests,
we note that in any Break Sequence the children of a vertex labelled by clause
c can only carry labels from Br(c), i.e the clauses that can be broke by c
. Clearly, a necessary condition for c′ ∈ Br(c) is that c and c′ contain a
complementary pair of literals, i.e., the condition of the lopsided LLL [18].
But this is hardly sufficient. It must also be that:

1. There is at least one state σ∗ in which c is violated and c′ is satisfied.

2. The clause selected for resampling in state σ∗ is c.

3. The resampling distribution Rc(σ
∗) assigns positive probability to a

value assignment that breaks c′.

It is in the three conditions above, and more importantly their interac-
tions, that we will seek advantage.

In fact, we will not have much to offer in the way of controlling the
occurrence of 2 above. For example, if we select a uniformly random violated
clause in each step, as many successful heuristics do, it is bound to happen
(but see the discussion in Section 3.11 as to why choosing a random clause
choice is a good idea). This weakness in clause selection is actually a key
point of the entropic method1, as discussed in Section 3.12.

Regarding condition 1 we note that while it is rather trivial in and of
itself, i.e., when considering only one clause c′ ∈ Γ(c), it becomes far more
interesting when one considers the set of clauses that may be broken when
resampling a clause c. In particular, in the presence of dense local neigh-
borhoods, one can show that not all possible breaking patterns are possible,
thus reducing the entropy of the random sets B∗i (and thus the rate of growth
of |H[P ]|).

Most of our gain will come from condition 3. Rather than merely con-
sidering whether the probability of c breaking c′ is positive or not, we will
chose the resampling probability distribution by weighing the increase in

1In famous words: It’s not a bug. It’s a feature.
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the distribution’s entropy afforded by allowing the breaking of c′ vs. the
increase that this breaking causes to H[P ]. Specifically, we will craft the re-
sampling probability distributions to minimize the (per resampling) rate of
change of x−1H[P ]. In that sense, the algorithm that results is simply per-
forming steepest descent, except that rather than operating on the obvious
(energetic) potential, i.e., the number of violated clauses, it operates on an
entropic potential that takes into account some of the interactions between
the unsatisfied clauses (not just their number). This notion of an entropic
potential is at the heart of the entropic method. One can see Moser’s original
argument as implicitly constructing a first such potential, based on bounds
on |Γ(c)|, and Break Forests as a refinement that accounts for the capacity
to adapt the resampling distributions to the “local state”, i.e., to the values
of the variables in Γ(c). We believe that significantly more refined potentials
may be developed and we hope that our work serves as the starting point
for such an exploration.

The above approach reduces the problem of choosing good resampling
distributions for each clause c to a constrained source coding problem, the
size of which depends only on |Γ(c)|, i.e., independent of the size of the
formula. If the coding problem associated with every clause in the formula
is feasible, then running the algorithm with the probability distributions
that correspond to feasible solutions will yield a satisfying assignment after
O(n + m) resamplings with positive probability. If, on the other hand, the
source coding problems associated with one or more clauses are infeasible
(in a sense we make precise), the degree of (in)feasibility of each problem
may be used to modify the resampling distributions, potentially making all
clauses feasible.

Note that the entire discussion above is per instance. That is, given
a formula F , we propose that instead of “diving right in”, one first stud-
ies F for a while to find a good collection of resampling distributions, and
only then attacks F by unfolding the algorithm’s dynamics. Besides such
“pointwise-algorithm-design”, the entropic method also allows the derivation
of structural conditions, in particular the existence of dense neighborhoods
and the sharing of multiple variables between clauses, that imply the exis-
tence of satisfying assignments for classes of formulas not satisfying the LLL
conditions under uniform resampling.

3.8 Motivating Amenability

For the special case of k-CNF formulas and t uniform among the satisfying
assignments resamplings we saw in the previous section that we can map
Break sequences to forests and use a non-trivial result to bound the num-
ber of possible Break sequences by the exact number of possible forests.
Consider, though, the following much more direct way to encode (and thus
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count) Break sequences. Again we fix any ordering of the clauses of F so
that if we know that the i-th resampled clause was ri, then to recover B∗i it
suffices to know for each element of B∗i its ordinal in Γ(ri), i.e., an integer
in {1, . . . ,∆}. With this in mind, we define the following.

• Since B∗0 ⊆ A, encode B∗0 as a string R in {0, 1}m.

• Let S = 1|B
∗
1 |01|B

∗
2 |0 . . .

• Let E = γ1γ2 . . ., where each γi consists of the |B∗i | integers in {1, . . . ,∆}
corresponding to the ordinals of the elements in B∗i in Γ(ri) per the
global ordering of the clauses.

To decode R,S,E we start by reading R to get B∗0 and initialize a set
U = B∗0 . We then consult π1 and determine r1 as the lowest indexed element
in U . We then read the first block of S to determine |B∗i | and armed with
this information we read the first |B∗i | characters of E which, along with r1,
allow us to determine B1. We remove r1 from U and add to it the elements
of B∗1 . Consulting π2 gives us r2, etc.

Observe now that we can convert E to a binary string at a cost of
dlog2 ∆e bits per character, allowing us to bound the total number of bits to
represent S and E as follows. If b = |B∗1 |+ |B∗2 |+ · · · , then |S| = b+ t, while
|E| = bdlog2 ∆e. Since b ≤ t, we get |S|+ |E| ≤ (2 + dlog2 ∆e)t. Therefore,
if λ := k − dlog2 ∆e − 2 > 0, i.e., d∆e < 2k−2, the binary logarithm of the
probability that the algorithm does not encounter any satisfying assignment
after t resamplings, is at most

−kt+ n+m+ (2 + dlog2 ∆e)t = n+m− λt . (3.11)

Thus, for any s > 0, the probability of failure after (n + m)/k + s/λ
resamplings is at most 2−s.

The (rather small) losses relative to the sharp result of the previous
section stem from the fact that we encoded the sequence of the numbers
|B∗i | separately from the content of the sets B∗i . In particular, observe that
we count all possible permutations of the elements of each block in E (rather
than, say, the unique permutation corresponding to the increasing order).
Moreover, we get dlog2 ∆e because we use a “block” code to represent the
elements of each set B∗i . At the same time, though, this separation will be
key in allowing us to deal with state-dependent resampling distributions as
we show next.

3.9 Proof of Theorem 3.3

Let I be the random variable equal to an infinite trajectory of the algorithm.
For any fixed x > 0, we define the following random variables.
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• Let Σ be the prefix of I in L(x).

• Let P = P (Σ) be the maximal bad prefix of Σ.

• Let σ be the final state of P .

• Let Z be the number of resamplings in P .

• For i ∈ [Z], let ri be the clause that was resampled in the i-th resam-
pling. For i > Z, let ri = ∅.

• Let Y = Y (P ) = B∗0 , B
∗
1 , . . . , be the Break Sequence of P , where

B∗j = ∅, for j ≥ Z.

• Let U = |B∗1 |, |B∗2 |, . . .

Recall that there is a bijection between P and the pair Y, σ implying

H[P ] = H[Y, σ] ≤ H[Y ] +H[σ] ≤ H[Y ] + n . (3.12)

To bound H[Y ] we decompose it as follows.

H[Y ] = H[Y,B∗0 , U ]

= H[B∗0 , U ] +H[Y | B∗0 , U ]

= H[B∗0 , U ] +H[B∗1 , B
∗
2 , . . . | B∗0 , U ]

= H[B∗0 , U ] +
∑
i

H[B∗i | B∗0 , B∗1 , B∗2 , . . . , B∗i−1, U ] . (3.13)

In the rest of this section, all subscript indices i are to be read as i ≥ 1.
Theorem 3.3 follows readily from the following lemmata.

Lemma 3.1. H[B∗0 , U ] ≤ m+ 2EZ − E|B∗0 |.

Lemma 3.2. If every clause is ε-amenable, then for every i,

H[B∗i | B∗0 , B∗1 , . . . , B∗i−1, U ] ≤ (1− ε) (E[Self(ri) + Parent(B∗i )])− 2E|B∗i | .

Lemma 3.3.
∑

i E[Self(ri) + Parent(B∗i )] ≤ (x+ β) and
∑

i E|B∗i | = EZ −
E|B∗0 |.

Proof of Theorem 3.3. Combining (3.12) and (3.13) with the bounds from
Lemmata 3.1, 3.2, and 3.3 and using the fact E|B∗0 | ≤ m proves the theorem.

We prove Lemmata 3.1 and 3.3 here. The proof of Lemma 3.2 constitutes
Section 3.10.
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Proof of Lemma 3.1. We will represent B∗0 , U as a binary string s of length
m+2Z−|B∗0 |. Since B∗0 ⊆ A the first m bits of s are the characteristic vector
of B∗0 . We encode U immediately afterwards, representing the i-th element
of U , for each i ∈ [Z], as 1|B

∗
i |0. Decoding, other than termination, is trivial:

after reading the firstm bits of s, the rest of the string is interpreted in blocks
of the form 1∗0. To determine termination we note that, by construction,
|B∗0 | +

∑j
i=1 |B∗i | − j ≥ 0 for every j ∈ [Z] with equality holding only for

j = Z. Therefore, decoding stops as soon as equality holds for the first
time. The representation of U in this manner consists of

∑
i |B∗i | ones and

Z zeroes, i.e., of 2Z −B∗0 bits, since
∑

i |B∗i | = Z − |B∗0 |.

Proof of Lemma 3.3. For
∑

i E|B∗i | the claim follows readily from the fact∑
i |B∗i | = Z − |B∗0 |.
Recall that ri is the i-th resampled clause and let Pot(P ) =

∑
i Pot(ri),

where Pot(∅) = 0. Since there is 1-to-1 correspondence between the resam-
pled clauses in P and the clauses in the sets B∗0 , B

∗
1 , . . ., we get Pot(P ) =

Pot(B∗0) +
∑

i Pot(B∗i ) and, therefore,∑
i

EPot(ri) = EPot(B∗0) +
∑
i

EPot(B∗i )

≥
∑
i

ESelf(B∗i ) +
∑
i

E[Pot(B∗i )− Self(B∗i )]

=
∑
i

E[Self(ri) + Pot(B∗i )− Self(B∗i )]

=
∑
i

E[Self(ri) + Parent(B∗i )] (3.14)

Recall now that for each i, state σi+1 is reached from state σi by selecting
a clause c deterministically as a function of πi and σi and resampling c
according to a probability distribution that depends only on σi. Therefore,
if ci is the random variable that equals the clause selected for resampling at
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state σi, then

H[Σ] =
∑
i

H[σi+1 | σi]

=
∑
i

∑
σ∈{0,1}n

Pr[σi = σ] ·H[σi+1 | σi = σ]

=
∑
i

∑
c∈F

Pr[ci = c]
∑
v∈V(c)

Pr[v(c) = v | ci = c] ·H[Rc(v)]

≥
∑
i

∑
c∈F

Pr[ci = c] · min
v∈V(c)

H[R(c, v)]

=
∑
i

∑
c∈F

Pr[ci = c] · Pot(c)

≥
∑
i

∑
c∈F

Pr[ri = c] · Pot(c)

=
∑
i

EPot(ri) . (3.15)

Combining (3.14) and (3.15) with the fact H[Σ] ≤ x + β proves the
lemma.

3.10 Proof of Lemma 3.2

Recall that the random variables B∗0 , B
∗
1 , . . . , B

∗
i−1 determine the random

variables ri, while U determines |B∗i |. Therefore,

H[B∗i | B∗0 , B∗1 , . . . , B∗i−1, U ] ≤ H[B∗i | ri, |B∗i |] .

To bound H[B∗i | ri, |B∗i |] we define the following probability distributions.

• For each i ≥ 1, let Si : A ∪ ∅ → [0, 1] be the probability distribution
of ri.

• For each i ≥ 1 and clause c ∈ A, let Pci : V(c) → [0, 1] be the proba-
bility distribution of c-critical vectors conditional ri = c.

• For each clause c ∈ A and v ∈ V(c), let Bcv : Br(v) → [0, 1] be the
probability distribution of Bi conditional on ri = c and the c-critical
vector being v.

• For each i ≥ 1, clause c ∈ A, critical vector v ∈ V(c), and set B ∈
Br(v), let Lc,Bi,v : {0, . . . , |B|} → [0, 1] be the probability distribution of
|B∗i | conditional on ri = c, the c-critical vector being v, and Bi = B.
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Let si = |B∗i | to lighten notation. Then,

H[B∗i | ri, |B∗i |] = H[B∗i | ri, si]
=

∑
c∈F

∑
j

Pr[ri = c ∧ si = j] ·H[B∗i | ri = c ∧ si = j]

=
∑
c∈F

Pr[ri = c]
∑
j

Pr[si = j | ri = c] ·H[B∗i | ri = c ∧ si = j]

=
∑
c∈F
Si(c)

∑
v∈V(c)

Pci (v)
∑

B∈Br(v)

Bcv(B)
∑
j

Lc,Bi,v (j) ·H[B∗i | ri = c ∧ si = j] .

Recall now that the unit-experiment defined in Section 3.5 for a fixed
clause c has outcome B∗ and let LBv (j) : N → [0, 1] be the probability
distribution of |B∗| conditional on the selections in Steps 1, 2 being v,B,
respectively. Define also

Q(c,P, f) =
∑
v∈V(c)

P(v)
∑

B∈Br(v)

Bcv(B)
∑
j

LBv (j) ·H[B∗ | |B∗| = j]

W (c,P, f) =
∑
v∈V(c)

P(v)
∑

B∈Br(v)

Bcv(B) ·
∑
S⊆B

fBv (S) · [(1− ε)(Self(c) + E[Parent(B∗)]− 2E[|B∗|]) .

Assume now that we select a clause c according to Si(c) and perform
the unit-experiment of clause c with P = Pci . Clearly, we can couple the
unit-experiment with the algorithm so that B = Bi always. Moreover, if we
define the function f of the unit-experiment by setting fBv to the probability
distribution of B∗i conditional on ri = c, the c-critical vector being v, and
Bi = B, then we can further couple the experiment with the algorithm so
that B∗ = B∗i always. In such a case,

H[B∗i | ri, |B∗i |] =
∑
c∈F
Si(c)

∑
v∈V(c)

Pci (v)
∑

B∈Br(v)

Bcv(B)
∑
j

LBv (j) ·H[B∗ | |B∗| = j] .

Observe that for any fixed c,P, f , if B∗ is the output of the unit-
experiment, then

Q(c,P, f) = H[B∗ | |B∗|] (3.16)

W (c,P, f) = (1− ε)(Self(c) + E[Parent(B∗)])− 2E[|B∗|] . (3.17)

Since every clause is ε-amenable, Q(c,P, f) ≤ W (c,P, f) for every c,P, f
and, therefore, in particular for P = Pci and the function f designed above
to couple B∗ with B∗i . As a result,

H[B∗i | ri, |B∗i |] =
∑
c∈F
Si(c) Q(c,Pci , f)

≤
∑
c∈F
Si(c) W (c,P, f)

= (1− ε)(E[Self(ri)] + E[Parent(B∗i )])− 2E|B∗i | .(3.18)
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3.11 Discussion

As mentioned, a key point of the entropic method is that since we don’t
have control over the state evolution we are limited in our choice of which
clause to resample in each step, as discussed in Section 3.12. This meant
that our analysis had to ensure that the clause resampled in every step
is “entropically gainful”, i.e., that it consumes more randomness than the
increase in the entropy of the Break Forest. Meaning that if not all clauses
are amenable, if we reach a state in which there is a single non-amenable
violated clause the analysis fails. Note though that if we select a random
violated clause to resample in each step, a choice allowed in our setting, then
it is actually enough that there is entropic gain on average, i.e., with respect
to the random clause choice. In that sense, selecting a random violated
clause appears like a reasonable choice, a notion compatible with the fact
that such a choice works very well in practice.

3.12 Clause Choice: Bug or Feature?

Our capacity to compress witness into Break sequences relied crucially on
the nature of the method we used for selecting which clause to resample
in each step. Specifically, the method (fixed permutations) was such that
it was possible to reconstruct which clause was selected for resampling in
a step without knowledge of the exact underlying state σ, or even of the
set U(σ) in its entirety. Some such “insensitivity” of the clause-selection
function with respect to the underlying state seems an essential element of
the entropic approach. Recall that Moser’s fundamental observation was
that every bad trajectory Σ = σ1, . . . , σt can be recovered from 〈W (Σ), σt〉.
We showed that one can bound the number of witnesses sequences in terms of
a quantity more refined than ∆ = maxc |Γ+(c)| by mapping them injectively
into Break Sequences while, like Moser, we trivially bounded the entropy of
σt by n.

The aggregation of multiple bad trajectories (paths of the computation
tree) into a single fiber (either based on having the same Witness sequence,
or on having the same Break Sequence) amounts to giving up all control
over state evolution within each fiber. Yet, for the argument to work the
transformation

Witness sequence→ Break sequence

must remain losslesseral (injective). This was only true because of the nature
of the clause-selection method employed, i.e., its relative insensitivity to the
underlying state. Overcoming this restriction, so that the choice of which
clause to resample in each step depends on the state in a meaningful way,
appears to us to require genuinely new ideas.
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