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ΠΕΡΙΛΗΨΗ 

Η έξαρση και η συνεχής αύξηση των καρδιοπαθήσεων ανα τον κόσμο έχουν 

καταστήσει νέες μεθόδους παροχής ιατρικής περίθαλψης απαραίτητες. Η 

πρόσφατη τεχνολογική πρόοδος στους ασύρματους αισθητήρες και την κινητή 

τηλεπικοινωνία επιτρέπει νέα συστήματα περίθαλψης. Ειδικότερα, η διαθεσιμότητα 

μικρών, ελαφρών και εξαιρετικά χαμηλής ισχύος αισθητήρων δίνει νέες 

πιθανότητες για συνεχής παρακολούθηση ανθρώπινων βιοϊατρικών δεδομένων και 

επομένως επιτρέπει την πρόωρη ανίχνευση  πιθανών παθήσεων. Επιπλέον , η 

ανάγκη για μείωση του μεγέθους των δεδομένων έχει οδηγήσει στη χρήση 

διαφόρων μεθόδων συμπίεσης. Ο σκοπός αυτής της πτυχιακής εργασίας είναι η 

δημιουργία ενός ενσωματωμένου λογισμικού για τον έλεγχο 

ηλεκτροκαρδιογραφήματος σε περιβάλλον ασύρματου δικτύου αισθητήρων. 

Ένσωματωμμένο λογισμικό είναι εκείνο το οποίο εγκαθίσταται μέσω ενός 

λειτουργικού συστήματος σε μια συσκευή καθορίζοντας ανάλογα την λειτουργία 

της. Ασύρματο Δίκτυο Αισθητήρων είναι ένα δίκτυο απο μικροσκοπικούς 

αισθητήρες(κόμβους του δικτύου) τοποθετημένους σε στρατηγικές θέσεις , 

σχεδιασμένο να μετραέι μεγέθη όπως θερμοκρασία,υγρασία, φωτεινότητα κτλ. Οι 

κόμβοι του δικτύου είναι μικροσκοπικές συσκευές οι οποίες στο εσωτερικό τους 

περιέχουν μικροεπεξεργαστή,πομποδέκτη,εξωτερική μνήμη,παροχή ισχύος , και ένα 

ή περισσότερα αισθητήρια όργανα. Ο σκοπός τους είναι να συλλέγουν πληροφορίες 

για το περιβάλλον τους , να επεξεργάζονται δεδομένα και να τα διανέμουν στο 

δίκτυο. Στην εργασία μας , το λειτουργικό σύστημα που θα χρησιμοποιήσουμε είναι 

το TinyOS από το Πανεπιστήμιο Berkeley της Καλιφόρνια. Το TinyOS χρησιμοποιεί 

τη γλώσσα nesC , μίε επέκταση της γλώσσας C . Επειδή δεν θα χρησιμοποιήσουμε 

hardware για , θα προσομοιώσουμε το λογισμικό με τη βοήθεια του προσομοιωτή 

MSPSim , προσομοιωτής του MSP430(μικροεπεξεργαστής για εφαρμογές εξαιρετικά 

χαμηλής ισχύος). Το λογισμικό μας θα εκτελεί τα εξής: 

1)Εντοπίζει ένα ECG σήμα συλλέγοντας ένα αριθμό δειγμάτων 

2)Επεξεργάζεται το σήμα με τεχνικές στο πεδίο της συχνότητας 

3)Εκπέμπει το συμπιεσμένο σήμα με έναν RF πομποδέκτη , το CC2420 μικροτσίπ 

που περιλαμβάνει η αισθητήρια συσκευή 

Τέλος , θα προσομοιώσουμε το πρόγραμμά μας με την πλατφόρμα shimmer. Στόχος 

μας είναι να αναλύσουμε και να αξιολογήσουμε διάφορους τρόπους συμπίεσης του 

ECG σήματος και να ανιχνεύσουμε εκείνες που επιτυγχάνουν μείωση της 

καταναλισκώμενης ισχύος. Θα καταλήξουμε σε αυτό το συμπέραμα μέσω 

μετρήσεων και συγκρίσεων απο τον MSPSim προσοποιωτή. 

 



 
 

  



 
 

ABSTRACT 

The widespread cardiovascular diseases around the world and their constant rise 

have rendered new ways of healthcare delivery imminent. Recent technological 

advances in wireless sensors and mobile communication enable new types of 

healthcare systems. Especially the availability of small, lightweight and ultra-low 

power sensors gives new possibilities for a continuously monitoring of human 

biomedical data and therefore allows an early detection of potential illness. 

Furthermore, the need for data size reduction has lead to the use of various 

compression techniques. The purpose of this bachelor thesis is to create an  

embedded software for the control of an electrocardiograph signal in a wireless 

sensor network. An embedded software is a software installed via an operating 

system on a hardware device thus designating the device's behavior accordingly. A 

wireless sensor network(WSN) is a network of sensor nodes (also known as motes) 

placed in strategic locations designated to measure temperature, light, humidity etc. 

Sensor nodes are tiny hardware devices that contain a microprocessor, a transceiver, 

an external memory , power supply and one or more sensors . Their purpose is to 

gather information about their environment, process data and send them 

throughout the network. In our project the operating system we will use to program 

the embedded software is the open source system TinyOS from Berkeley University 

of California. TinyOS uses the nesC language, an extension of C programming 

language. Since we won't be using any hardware for a wide variety of reasons we will 

simulate our software with the help of the mspsim simulator an MSP430(an ultra 

low-power microprocessor that most of the motes contain) simulator. Our software 

will perform the following:  

1) Sense an ECG signal by getting a number of ECG samples. 

2) Modify the signal with a Frequency-Domain Technique 

3) Transceive the modified signal with an RF Transceiver the CC2420 chip that the 

mote contains. 

Also we will simulate our software with the shimmer mote. Our goal is to analyze 

and evaluate different methods for compressing the ECG signal and detect the 

methods that succeed power consumption. We expect to reach this conclusion by 

gathering data from the MSPSim simulator and compare the results.  
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Chapter 1 

Introduction 

1.1 Cardiovascular Diseases 

    Nowadays, our modern society is threatened by an incipient health care delivery 

crisis caused by the current demo-graphic and lifestyle trends. On the one hand, the 

world’s population is fast aging resulting into an increased rate of cardiac disorders. 

On the other hand, our busy and often unhealthy lifestyles are gradually increasing 

the number of people unsuspectingly developing or living with chronic 

cardiovascular conditions for decades. Specifically, according to the World Health 

Organization, cardiovascular diseases are the number one cause of death worldwide, 

responsible for an estimated 17.1 million deaths in 2012 (i.e., 29% of all deaths 

worldwide) and economic fallout in billions of dollars. Their burden is only expected 

to rise due to the rapid aging of the world population and of course the increasing 

prevalence of unhealthy lifestyles. These increasingly existent cardiac diseases are 

requiring escalating levels of supervision and medical management, which are 

contributing to unmatchable health care costs . 

 

Figure 1.1 Graphic illustration of the factors for improved Healthcare Delivery 

     Cardiovascular diseases require close and potentially continuous medical 

supervision and care. Soon they will require healthcare costs and medical 

management needs that are unbearable for traditional healthcare delivery systems.     
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Wireless body sensor network (WBSN) technologies promise to offer large-scale and 

cost-effective solutions to this problem. The use of wearable, miniaturized, and 

wireless sensors, able to continuously measure and wirelessly report cardiac signals, 

can definitely provide the ubiquitous, long-term and even real-time monitoring 

required by the patients, as well as its integration with the patient’s medical record 

and its coordination with nursing/medical support .These solutions scope to  

outfitting patients with wearable, miniaturized and wireless sensors able to measure 

and wirelessly transmit and report cardiac signals to telehealth providers. They are 

ready to enable the required personalized, real-time and long-term ambulatory 

monitoring of chronic patients, its seamless integration with the patient’s medical 

record and its coordination with nursing/medical support.  

 

1.2 The ECG signal 

   An electrocardiogram (ECG or EKG) is a recording of the electrical activity of the 

heart over time produced by an electrocardiograph. The signal recorded, is 

graphically displayed in a two dimensional graph, where the height represents the 

measured electrical activity in millivolts and the width the interval of time in 

seconds. Electrical impulses in the heart  originate in the sinoatrial node and travel 

through the heart muscle where they impart electrical initiation of systole or 

contraction of the heart. The electrical waves can be measured at selectively placed 

electrodes(electrical contacts) on the skin. Electrodes on different sides of the heart 

measure the activity of different parts of the heart muscle. An ECG displays the 

voltage between pairs of these electrodes, and the muscle activity that they 

measure, from different directions, also understood as vectors. . Figure 1.2 shows a 

typical ECG waveform.  Among the relevant cardiac signals, the noninvasive 

electrocardiogram has long been used as a means to diagnose diseases reflected by 

disturbances of the heart’s electrical activity. Beyond traditional 

electrocardiography, the automated processing and analysis of the ECG signal has 

been a popular subject of research and has witnessed substantial advances .In fact , 

a huge variety of algorithms have been suggested for the detection of the ECG 

characteristic waves, so-called ECG delineation, following a variety of approaches 

based on low-pass differentiation , the wavelet transform (WT) , dynamic time 

warping , artificial neural networks , hidden Markov models , or morphological 

transforms. The morphological and timing information of the detected waves, 

namely the QRS complex and P and T waves, can be used to diagnose many cardiac 

ailments . 



23 
 

 

Figure 1.2 A typical representation of the ECG waves 

 

 

Figure 1.3 Typical ECG waveform 

 

 To understand how and what an ECG records, we must first understand and grasp 

how the heart itself works . For this reason , we describe the basic functionality of 

the heart, before describing the ECG waveform and its interpretation in detail. 
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1.3 The Activity of the Heart 

 The heart is nothing more than muscle with the sole purpose of pumping blood 

throughout our whole body. For this, the heart consists of various chambers: a right 

atrium, right ventricle, left atrium and left ventricle, as shown in Figure 1.4 . These 

two sides of the heart work together in perfect synchronicity  to pump blood 

through our body system. The right side of the heart delivers deoxygenated blood 

from the body to the lungs, whereas the left side of the heart delivers oxygenated 

blood from the lungs to the body . 

 

Figure 1.4 Sectioned view of the heart 

 A pumping cycle begins, when deoxygenated blood from the body returns to fill the 

right atrium of the heart. When the right atrium is full, it contracts and pushes the 

blood into the right ventricle. Now, when the right ventricle is filled, it contracts and 

pumps the blood further into the lungs. The oxygenated blood from the lungs is then 

returned to the left atrium of the heart. The left atrium contracts and pumps the 

blood into the left ventricle. This occurs simultaneously as a new contraction is 

taking place in the right atrium, filling the right ventricle with blood. Finally the left 

ventricle contracts and sends the blood to the rest of the body system. At the same 

time the right ventricle pumps blood into the lungs. After the contraction of the 

ventricles, a new cycle begins. 
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Figure 1.5 Electrical conduction system of the heart 

1.3.1 Electrocardiography 

 In order the heart to contract , an electrical impulse is required. This electrical 

impulse is generated by the Sinoatrial Node (SA node) and propagates through the 

conduction system of the heart, shown in Figure 1.5 . First the electrical impulse 

spreads from the SA node throughout the muscle tissue of the right and left atrium 

and follows an internodal pathway directly to the atrioventricular node (AV node ), 

where it is naturally delayed. This stimulates the artrial muscle cells, causing both 

atria to contract in unison and fill the ventricles with blood. Especially the delay, 

caused by the AV node is important, because it allows to fill the ventricle with blood 

by atrial contraction ,before the ventricles contract itself. After the AV node, the 

impulse continuous down to the Bundle of His, where the conduction system 

branches out to a right and left bundle branch and finally terminates in tiny fibres, 

known as Purkinje Fibres. This Purkinje Fibres conduct the electrical impulse 

throughout the ventricular, stimulating the muscle cells and causing a contraction of 

the right and left ventricles in unison. At the beginning of this cycle a resting heart is 

polarized, which means that the heart cells have a negative charge . As a stimulus 

occurs, the cells changes its charge to positive. This is called depolarization and 

causes the heart muscle fibres to shorten and consequently the heart muscle to 

contract. During this contraction the cells regains slowly a negative charge, as the 

electrical impulse is moving down along the conduction system, causing the heart 

muscle to relax. This process is known as repolarization. The potential change, which 

occurs during depolarization and repolarisation, is exactly what can be measured at 

the skin surface by electrodes . This recorded electrical activity can then be displayed 

in a two dimensional graph known as electrocardiogram. 
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1.3.2   3-Lead Electrocardiography 

 As mentioned, the ECG works by detecting the electrical changes on the skin, caused 

when the heart muscle depolarises. This is done by placing pairs of electrodes on 

either side of the heart. The output of a pair of electrodes is known as lead and is 

said to look at the heart from a specific perspective . These leads are also called 

bipolar leads, as they measure the voltage difference between two electrodes . 

Based on the number of leads recorded, several types of ECG's are differentiated. 

For example 3-lead ECG, 5-lead ECG and 12-lead ECG. These types of ECGs mainly di 

fferentiate from each other by the precision and accuracy of their recordings. A 12-

lead ECG for example records more leads than a 3-lead ECG and therefore has a 

broader view on the heart. Consecutively the 3-lead ECG will be described in more 

detail, as it was used in this project. The 3-lead ECG is based on the most basic form 

of electrodes placement, known as Einthoven's triangle . Thereby the electrodes are 

placed as follow: one on the right arm (RA), one on the left arm (LA) and the third 

one representing the left leg (LL) is situated below the hearts apex. The electrodes 

then form the leads: LA + RA (Lead I), LA + LL (Lead II) and RA + LL (Lead III). Figure 

1.6 illustrates the placement of the electrodes and the three leads they form . The 

leads are described by convention as follows : 

 

Figure 1.6 Standard 3-Lead ECG based on Einthoven's Triangle 

 

 Lead 1 (LA-RA): measures the potential difference between the right arm 

electrode and the left arm electrode. 
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 Lead 2 (LA-LL): measures the potential difference between the right arm 

electrode and left leg electrode. 

 Lead 3 (RA-LL): measures the potential difference between the left arm 

electrode and left leg electrode. 

  This 3-lead system provides three different views, able to monitor multiple regions 

of the heart and consequently yields to three different signals. Table 2.1 summarizes 

the chambers, viewed by the 3-lead ECG. 

Lead Views Heart Chambers 

Lead 1 Lateral Left ventricle,left atrium 

Lead 2 Inferior Left and right ventricle 

Lead 3 Inferior Right and Left ventricle 

Table 1.1 Heart chambers viewed by the 3-lead ECG 

1.3.3 Interpretation of an Electrocardiogram 

 The recorded ECG signal shows a series of waves, that relate to the electrical 

impulses ,which occur during each beat of the heart. These waves are labeled with 

successive letters of the alphabet P, Q, R, S, T, and U, as shown in Figure 1.7. When it 

comes to the interpretation of an ECG signal, the attention turns to the segment and 

intervals, also illustrated in Figure 1.7 . The most important intervals and segments, 

are described and summarized in table 1.2 .  

 

Figure 1.7 Normal ECG waveform 
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Feature Description 

RR Interval 
  

Represents the interval between an R wave an the next R wave and 
is the inverse of the heart rate. A normal resting heart rate lies 
between 50 and 100 beats per minute. 

  

P waves The P wave represents the depolarization of the right and left atria. 

PR segment The PR segment coincides with the electrical conduction from the 
AV node through the Bundle of His, toward the Purkinje Fibers. 
Hence the PR segment corresponds to the time between the end of 
28rterial depolarization, to the begin of ventricular depolarization. 

  

PR interval 
Represents the time measured between the beginning of the P 
wave to the beginning of the QRS complex. The PR interval reflects 
the time an electrical impulse takes to travel from the SA node 
through the atria and the AV node down to the Purkinje Fibres. 

  

QRS Complex 

The QRS complex represents the rapid depolarization of the two 
ventricles. Because the ventricles have a larger muscle mass than 
the atria, 
the QRS complex has a much larger amplitude than the P-wave. 

ST Segment 
The ST segment lies between the QRS complex and T wave and rep-
resents the period, when the ventricles are depolarized. 

T wave The T wave corresponds to the rapid ventricular repolarization. 

QT interval 
The QT interval represents the complete ventricular cycle, starting 
with the depolarization and ending with the repolarization. 
Table 1.2:Segments and intervals of an ECG wave 

   Based on the rythm of the recorded ECG and the patterns of the segments and 

intervals in a ECG waveform, abnormalities can be detected and a diagnose can be 

given. 

 

1.3.4 ECG Hardware 

 Traditionally, the automatic analysis of ECG signals, including delineation, was either 

taking place online on bulky, high-performance bedside cardiac monitors, or 

performed offline during a post-processing stage after ambulatory ECG recording 

using wearable, yet obtrusive, ECG data loggers .  While the resting ECG monitoring 

is standard practice in hospitals, its ambulatory counterpart is still facing many 

technical challenges. For instance, the three-lead ECG is still nowadays recorded on a 

rather bulky commercial data-logging (Holter) device during one to five days of 

normal daily activities of a patient. These systems suffer from important limitations: 

limited autonomy, bulkiness, and no or limited wireless connectivity.  



29 
 

 

Figure 1.8 A Holter device in ambulatory monitoring 

   Recently, the realization of wireless-enabled low-power ECG monitors for 

ambulatory use has received significant industrial and academic interest .  Effort has 

been dedicated to online automatic ECG analysis on miniature, wearable and 

wireless ECG monitors as an enabler of next-generation mobile cardiology systems 

.The most important highlights of these research and development efforts are:  

1)Toumaz’s Sensium Life Pebble TZ203082 , an ultra-small and ultra-low-power 

monitor for heart rate, physical activity, and skin temperature measurements with a 

reported autonomy of five days on a hearing aid battery. 

 

Figure 1.9 Toumaz’s Sensium Life Pebble TZ203082 

 

2) Intel’s Shimmer , a small wireless wearable sensor platform able to record and 

wirelessly transmit three-lead ECG data as well as accelerometer, gyroscope, and 

galvanic skin response information. 
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Figure 1.10  SHIMMER platform , a small wireless sensor platform that can record 

and transmit physiological and kinematic data in real-time 

3) IMEC’s wireless single-lead bipolar ECG patch for ambulatory monitoring claiming 

over ten days of monitoring on a 160mAh Li-ion battery (for undisclosed use 

conditions).  

 

Figure 1.11 IMEC’s wireless single-lead bipolar ECG patch 
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   The clinical relevance of the first system is still being validated, as Toumaz aims to 

achieve more than the system’s so far established accurate measurement of heart 

rate. The second system, which is based on commercial off-the-shelf components 

such as the TI MSP430 microcontroller and the CC2420 radio chip-set, operates on a 

Li-ion battery that provides about 1 Wh of energy. According to measurements, it is 

able to support a maximum of 6.5-day single-lead raw ECG sensing and storage on 

local memory. This autonomy figure is reduced by 25%, when the raw ECG data are 

wirelessly streamed using the ultra-low-power CC2420 in a perfect point-to-point 

link with no wireless protocol overhead. More importantly, this autonomy figure will 

undoubtedly dramatically decrease under realistic ambulatory monitoring. Finally, 

IMEC ultra-low-power wireless biopotential sensor node achieves its enhanced 

autonomy due to a proprietary customized ultra-low-power analog read-out ASIC 

[signal acquisition, amplification, and analog-to-digital conversion (ADC)], a 

proprietary ultra-low-power ultra-wideband wireless transceiver, and more 

importantly, dedicated signal processors to preprocess and compress the sensed 

data using state-of-the-art techniques, in order to reduce the airtime over power-

hungry wireless links .Based on these premises, it is today acknowledged that the 

achievement of truly WBSN-enabled ambulatory monitoring systems requires more 

breakthroughs not only in terms of ultra-low-power read-out electronics and radios, 

but also and increasingly so, in terms of ultra-low-power dedicated digital processors 

and associated embedded feature extraction and data compression algorithms. 

 

  Wireless body sensor networks (WBSN) hold the promise to be a key enabling 

information and communications technology for next-generation patient-centric 

telecardiology or mobile cardiology solutions. Through enabling continuous remote 

cardiac monitoring, they have the potential to achieve improved personalization and 

quality of care, increased ability of prevention and early diagnosis, and enhanced 

patient autonomy, mobility, and safety. However, state-of-the-art WBSN-enabled 

ECG monitors still fall short of the required functionality, miniaturization, and energy 

efficiency. Among others, energy efficiency can be improved through embedded ECG 

compression, in order to reduce airtime over energy-hungry wireless links. 

  In our project we will use the shimmer platform . In fact we will run-simulate our 

program on shimmer platform . And that’s because we require a sensor component 

that satisfies the requirements specified below: 

 

 



32 
 

 Record ECG data : The sensor must record raw ECG data in real-time. 

 

 Transmit ECG data : The sensor transmits the recorded data wirelessly to the 

mobile application. 

 

 Remote control of sensor : It should be possible to start and stop the 

recording of data, by sending corresponding commands wirelessly to the 

sensor. 

 

 Use of defined protocol : A defined protocol should be used to send recorded 

data. Further the protocol should support the transmission of different types 

of biomedical data. 

 The shimmer mote meets all these requirements . In Chapter 3 we present the 

shimmer platform’s main features in detail. 

 

 

1.4 ECG Data Compression 

1.4.1 Neccesity for ECG Compression 

  ECG compression is necessary for efficient storage and transmission of the digitized 

ECG signals. Any kind of ECG monitoring device generates a huge amount of data in 

the continuous long-term (24-48 hours) ambulatory monitoring tasks. In order to 

succeed good diagnostic quality, up to 12 different streams of data may be obtained 

from sensors placed on the patient’s body. The sampling rates of ECG signals are 

from 125Hz to 500Hz, and each data sample may be digitized into 8 to 12 bits binary 

number. Even with one sensor at the lowest sampling rate of 125 Hz and 8-bit 

encoding, it generates data at a rate of 7.5KB per minute and 450KB per hour. For a 

sampling rate of 500Hz and 12-bit encoding recording, it generates data at a rate of 

540KB per minute and 30MB per hour. The data rate from 12 different sensors 

totally will generate 12 times the amount of data and it is enormously big. Besides, 

recording for almost 24 hours may be of paramount importance for a patient with 

irregular heart rhythms . Monitor devices such as Holter must have a memory 

capacity of about 400-800 MB for a 12-lead recording, but such a big memory cost 

may render a solid-state commercial Holter device impossible. Thus, efficient ECG 

data compression to dramatically reduce the data storage capacity is a necessary 

solution. On the other hand, it makes possible to transmit ECG data over a telephone 

line from one cardiac doctor to another cardiac doctor to get opinions.  
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  Coding is useful because it helps reduce the consumption of expensive resources, 

such as hard disk space or transmission bandwidth. On the downside , compressed 

data must be decompressed to be used and this extra processing may be detrimental 

to some applications. Basically, as we previewsly mentioned , a data coding 

algorithm seeks to minimize the number of code bits stored by reducing the 

redundancy present in the original signal. The design of data compression schemes 

therefore involves trade-offs among various factors including the degree of 

compression, the amount of distortion introduced (if using a lossy compression 

scheme) and the computational resources required to compress and uncompress the 

data. The most difficult part for any efficient ECG compression technique is to reduce 

the amount of data as much as possible while preserving the clinical significant signal 

for cardiac diagnosis, for analysis of ECG signal for various parameters such as heart 

rate, QRS-width, etc. Then the various parameters and the compressed signal can be 

transmitted with less channel capacity. Compression connotes the process of 

starting with a source of data in digital form (usually either a data stream or a stored 

file) and creating a representation that uses fewer bits than the original . An effective 

data compression scheme for ECG signal is required in many practical applications 

such as ECG data storage, ambulatory recording systems and ECG data transmission 

over telephone line or digital telecommunication network for telemedicine .  

  Data compression methods can be classified into two categories: 1) Lossless and 2) 

Lossy coding methods. Lossy compression is useful where a certain amount of error 

is acceptable for increased compression performance. Lossless or information 

preserving compression is used primarily in the storage of medical or legal records. 

In lossless data compression, the signal samples are considered to be realizations of 

a random variable or a random process and the entropy of the source signal 

determines the lowest compression ratio that can be achieved. In lossless coding the 

original signal can be perfectly reconstructed. For typical biomedical signals lossless 

(reversible) compression methods can only achieve Compression Ratios (CR) in the 

order of 2 to 1. On the other hand lossy (irreversible) techniques may produce CR 

results in the order of 10 to 1. In lossy methods, there is some kind of quantization of 

the input data which leads to higher CR results at the expense of reversibility. But 

this may be acceptable as long as no clinically significant degradation is introduced 

to the encoded signal. The CR levels of 2 to 1 are too low for most practical 

applications. Therefore, lossy coding methods which introduce small reconstruction 

errors are preferred in practice.  
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1.4.2  ECG Compression Techniques 

    Biomedical signals can be compressed in time domain, frequency domain, or time-

frequency domain. ECG data compression algorithms have been mainly classified 

into three major categories : 1) Direct time-domain techniques, e.g., turning point 

(TP), amplitude-zone-time epoch coding (AZTEC) , coordinate reduction time 

encoding system (CORTES) and Fan algorithm. 2) Transformational approaches , e.g., 

discrete cosines trans-formation (DCT), fast fourier transform (FFT), discrete sine 

transform (DST), wavelet transform (WT) etc. 3) Parameter extraction techniques, 

e.g., Prediction and Vector Quantization (VQ) methods . The time domain techniques 

which are based on direct methods were the earlier approaches to biomedical signal 

compression. Transform Coding (TC) is the most important frequency-domain digital 

waveform compression method .When we compare these methods we find that 

direct data compression is a time domain compression algorithm which directly 

analyses samples where inter-beat and, intra-beat correlation is exploited. These 

algorithms suffer from sensitiveness to sampling rate, quantization levels and high 

frequency interference. It fails to achieve high data rate along with preservation of 

clinical information. In Transform based technique compressions are accomplished 

by applying an invertible orthogonal transform to the signal. Due to its decorrelation 

and energy compaction properties the transform based methods achieve better 

compression ratios. In transform coding, knowledge of the application is used to 

choose information to discard, thereby lowering its bandwidth .The remaining 

information can then be compressed via a variety of methods. When the output is 

decoded, the result may not be identical to the original input, but is expected to be 

close enough for the purpose of the application. In parameter extraction methods a 

set of model parameters/features are extracted from the original signal(model 

based) which involves methods like Linear term prediction (LTP) and analysis by 

synthesis. 
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Chapter 2 

Wireless Sensor Networks (WSN) 

2.1 Introduction to WSN 

 

  In times where technology evolves on a daily basis, new inexpensive solutions can 

be created. These new tools overcome the existing ones by requiring less work while 

achieving better results and offering more functionality. These new technologies also 

allow the conception of new tools to previously unsolvable problems. 

 

  Wireless Sensor Networks (WSN) are wireless networks formed by small low cost 

autonomous devices called motes, with the ability to sense the surrounding 

environment. An extension to WSN that adds the ability to act besides sensing over 

the environment is called Wireless Sensor and Actor Networks (WSAN). Both WSAN 

and WSN are possible solutions for several problems. Their main characteristics are 

easy deployment and low cost, while having the ability to sense and act without 

human intervention makes their usage highly attractive in many applications. They 

are being adopted in several fields of work. Some examples include: creating 

effective irrigation systems, fire alarms, structure health monitoring and medical or 

military applications.  

 

2.2 Monitoring 

 

 

  Monitoring can be defined as the act of continuously observing something. It 

generally means to be aware of the state of a system. Environmental monitoring 

describes the processes and activities that need to take place to characterise and 

monitor the quality of the environment. 
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Figure 2.1: Passive and Active monitoring 

 

  When we refer to monitoring we can differentiate two types: active and passive. 

The difference between these two types is that while active monitoring necessarily 

involves human presence, being performed through field visits to the monitored 

environment, passive monitoring is done by autonomous systems not requiring 

human intervention. In this case, the monitoring system is placed in the 

environment, automatically acquiring data and either storing it locally for later 

retrieval or sending it to a remote system. 

 

  Several applications of WSNs in monitoring exist such as animal monitoring used by 

biologists to study animals in the wild, structure health monitoring used to ensure 

buildings or bridges condition, volcano monitoring used to study the seismic activity 

of volcanic areas and obviously forest monitoring mainly used for forest fire 

detection. 

 
 

Figure 2.2: Volcano WSN 
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2.3 Motes and Sensors 

 

  We will cover the motes in more detail in Chapter 3 but an introduction here is 

necessary, as they are the basic building block of a WSN. A sensor node (also known 

as mote) may be described as a small low-cost device with the ability to perform 

some processing, gather sensory information and communicate with other 

connected nodes in the network. A mote is a node but a node is not always a mote. 

Its main components are a microcontroller, transceiver, external memory, power 

source and one or more sensors. A typical mote can be seen in the picture below. 

 
 

Figure 2.3: Mote picture 

 

  The microcontroller and memory provide computational power and storage space 

respectively, while the power source – usually a battery – provides energy supply to 

the mote, making it autonomous. The mote captures data through the acquisition 

system composed of a set of sensors. These may be embedded directly in the mote 

or a separate sensor board connected to the mote via its I/O ports. Sensors of any 

type (e.g. temperature, humidity, light, acceleration etc.) can be connected 

depending on the type of data we intend to capture. Using a transceiver, the 

communication module allows data to be wirelessly transmitted and received 

between nodes. The typical architecture of a mote is depicted below. Again, more on 

this in Chapter 3. 
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Figure 2.4: Mote architecture 

 

2.4 Wireless Sensor Networks 

 

  Wireless sensor networks (WSN) are wireless networks formed by motes. The 

wireless and routing technologies in motes allow them to be deployed creating a 

WSN, where each node may capture environmental information and share it with all 

other motes. The system’s cost can be highly reduced by avoiding cabling and 

instead use wireless technology. This also allows both a more flexible deployment 

and lower maintenance costs. 

 

  WSNs intend to provide a low cost solution to problems such as monitoring large 

areas, difficult access or hazardous environments. These networks can replace 

expensive active monitoring with cost effective passive monitoring. It is possible to 

set the motes to capture data for a certain period of time and transmit it to be 

stored in a central node called sink, where a person could be in order to access and 

monitor the captured information. The biggest challenges that WSNs designers are 

faced with nowadays are energy efficiency, routing and security. They are presented 

in more detail below. 

 

2.4.1 Energy Efficiency 

 

  Energy management and consumption are critical challenges for WSNs as motes 

both require energy to operate each of their composing parts and being 

autonomous. The main objective of studies conducted in this field is to maximize the 

motes' lifetime. All motes' components require a certain amount of energy to 

operate even when it comes to small amounts. The connection of motes to a power 
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source such as a power socket, implies the use of cables, thus nullifying the benefits 

of wireless technology. 

 

  Most motes nowadays are battery powered, allowing them to be autonomous and 

wireless but also limiting their lifetime. What WSN designers can do to maximize a 

mote's lifetime is to minimize its hardware energy consumption. The power usage 

can be reduced by putting motes into sleep mode - a state where all mote's activity 

is stopped and all of its composing parts are switched off - or even by putting a single 

component to sleep when not in use (e.g. switch off the radio transceiver), thus 

reducing its duty cycle - the percentage of time during which a device is working. 

 

 
 

Figure 2.5: Heliomote 

 

  Research is being done to find alternative or complementary power sources to 

batteries. Environmental energy harvesting methods are being studied as they allow 

the mote to collect energy from the environment. Two of the aforementioned 

methods include solar cells, that allow the conversion of sunlight to electricity 

through solar panels, and piezoelectric ceramic materials that convert environment 

vibrations to electricity. The use of energy harvesting techniques turns everlasting 

mote lifetime into a possibility. Some commercially available products already exist, 

such as the Heliomote.  
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2.4.2 Routing 

 

  Routing collected information between sensor nodes in WSNs presents several 

challenges. The different kinds of network topologies and their requirement for 

different routing protocols, the possibility that nodes are randomly deployed or large 

in quantity are some of the faced problems. Energy and computation constraints 

also impose new requirements to routing algorithms. A system failure or power 

shortage may turn off nodes, requiring new routes to be calculated so as to maintain 

network connectivity between the rest operating nodes. 

 

  Requirements such as low energy and memory consumption mean limited routing 

tables and new algorithms. Several routing protocols have been specifically designed 

for WSNs in order to appropriately fulfill these special needs. The existing routing 

protocols are categorized according to the network structure in which they operate 

and the protocol operation. Depending on the network structure they can be 

classified as flat, hierarchical or location-based routing. Depending on their 

operation they can be multipath-based, query-based, negotiation-based, QoS -based 

or coherent-based. 

 

 

2.4.3 Security 

 

  The use of wireless technology in WSNs has numerous benefits but it also 

introduces several security threats that need to be considered. Motes' 

characteristics of limited computing power and low energy resources represent a 

challenge in producing an effective security solution. 

 

  Attacks against WSNs are divided into two types: attacks against the security 

mechanisms and against basic mechanisms. Some of the common WSN attacks are 

denial of service (DoS), attacks on information in transit, blackhole/sinkhole attacks, 

hello flood attacks or wormhole attacks. Most of those are caused when a malicious 

node sends false information to other nodes thus compromising the system. 

Detecting mechanisms to solve these attacks are still being developed. 

 

2.5 Operating Systems 

 

  Due to specific requirements and constraints of sensor nodes and wireless sensor 

networks, operating systems have been created specifically targeting embedded 
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platforms, their needs and objectives. Reconfiguration, energy awareness and 

optimization, self-configuration, multi-hop communications, memory and 

computation power constraints, are some of the requirements these operating 

systems need to address. 

 

  Some of the most popular operating systems used, are Nano-RK developed at 

Carnegie Mellon University, SOS developed at University of California Los Angeles, 

MANTIS developed at the University of Colorado, BTNut developed at ETH Zurich, 

Contiki at Swedish Institute of Computer Science and, the most widely used, as well 

as the one that will be used in this thesis, TinyOS created at the University of 

California Berkeley. 

 

 
Figure 2.6: TinyOS Code snippet 

 

  TinyOS is an open source operating system featuring a component-based 

architecture minimizing memory usage and providing an event-driven execution 

model allowing fine-grained power management and scheduling flexibility. Software 

programs developed in TinyOS are programmed using nesC, an extension to the C 

programming language. We will examine both TinyOS and nesC, in depth, in 

Chapters 4 and 5. 

 

  Simulators are software platforms specifically designed to simulate a WSN's or even 

a single mote's behavior. These platforms allow testing a developed program 

without having to install the software in the actual motes or (as in our case) without 

even having any physical sensor node. Simulators are immensely time-saving when 

we need to know the characteristics and operational parameters of a WSN involving 

hundreds or thousands of motes, prior to its installation. 
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Figure 2.7:Avrora 

 

  Using a simulator, it is possible to monitor and analyze every single mote in a 

simulated network and its response during its life cycle. Energy consumption, 

packets received, sent or dropped and the mote's LEDs status are some of the 

variables usually observed. A large number of simulators exist, some of them are: 

TOSSIM the native simulator from TinyOS, Avrora developed at the University of 

California Los Angeles, Cooja originally created at the Swedish Institute of Computer 

Science as a Contiki simulator but now able to simulate nodes programmed in the 

TinyOS operating system as well, and MSPSim, a MSP430 simulator, also developed 

at SICS. 

 

 
Figure 2.8: Cooja 
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Chapter 3 

Motes 

3.1 Intro to Motes 

 

  The term "mote" was coined by researchers in the Berkeley NEST (now WEBS and 

CENS projects) to refer to spatially distributed autonomous devices which use 

sensors to cooperatively monitor physical and/or environmental conditions (e.g. 

temperature, sound, pressure, vibration) at different locations. Practical WSN nodes, 

henceforth "motes", currently range in size from disc-shaped boards having 

diameters less than 1 cm to enclosed systems with typical dimensions less than 5 cm 

square. 

 

  Each mote is composed of a microcontroller, transceiver, memory, power source 

and one or more sensors, either embedded or external to the sensor board. The 

motes function within a WSN and typically fulfill one of two purposes: either data 

logging, processing (and/or transmitting) sensor information from the environment 

or acting as a gateway in the ad-hoc wireless network formed by all the motes to 

pass data back to a, usually but not necessarily unique, collection point. 

 

  In this chapter we present a brief review of several frequently used WSN motes, 

compared and contrasted under a number of different parameters.  

 

3.2 Common mote platforms 

 

TelosB/Tmote Sky: Wireless sensor modules developed from research carried out at 

University of California Berkeley and currently available in similar form factors from 

Crossbow and Advanticsys. 
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Figure 3.1 TelosB/Tmote Sky 

 

MicaZ: Second and third generation wireless sensor networking mote family from 

Crossbow. 

 

 
 

Figure 3.2 Micaz 

 

SHIMMER: (Sensing Health with Intelligence, Modularity, Mobility and Experimental 

Reusability) is a wireless sensor platform designed to support wearable applications 

and is mainly used in the medical field. 
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Figure 3.3:Shimmer 

 

IRIS: The latest wireless sensor network module from Crossbow. Incudes several 

improvements over the Mica2/MicaZ family of products. Improvements include 

increased transmission range. 

 

 
Figure 3.4: IRIS 
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3.2.1 Physical Characteristics 

 

  The first parameter which may dictate mote selection for a given application is 

physical size. Table 3.1 provides an overall comparison of the physical dimensions of 

the motes in the previous section. This table also lists the motes' weight, which can 

be a decisive factor when choosing a certain WSN, especially in applications where 

the motes are components of a mobile unit or are integrated into wearable health 

monitoring solutions. 

 

Mote Platform WxLxH [cm] Weight w/o batt [g] Weight with batt [g] 

TelosB/Tmote Sky 3.2 x 6.6 x 0.7 14.93 63.05 

MicaZ 3.2 x 5.7 x 0.6 15.70 63.82 

SHIMMER 2 x 4.4 x 1.3 4.87 10.36 

IRIS 3.2 x 5.7 x 0.6 21.29 69.40 

Table 3.1:Physical characteristics of motes 

  The SHIMMER platform's advantage is obvious. Its small dimensions and low weight 

make it much more suitable than the other in medical oriented applications. When a 

mote has to be part of a wearable application, its size and weight are of the utmost 

importance. Its low weight also minimizes the effect of the motes inertial mass when 

using the mote's embedded accelerometer. In our case, weight and size is going to 

be a deciding factor as the mote will be placed on the human body. 

 

3.2.2 Processor and Memory 

 

  Table 3.2 reviews the microprocessor specifications (bus width and processor clock 

speed) for each of the respective motes examined. It also provides information on 

available on-board memory for each mote platform. There is a variety here in 

available memory sizes, possibly a reflection of their different application spaces.  

Mote 

Platform 

Microprocessor Bus 

[bits] 

Clock 

[MHz] 

RAM 

[KB] 

Flash 

[KB] 

EEPROM 

TelosB/ 

TmoteSky 

Texas 

Instruments 

MSP430F1611 

16 4 10 48 1M 

MicaZ Atmel Atmega 8 8 4 128 512K 
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128L 

SHIMMER Texas 

Instruments 

MSP430F1611 

16 8 10 48 none 

IRIS Atmel Atmega 

1281 

8 8 8 640 4K 

Table 3.2: Mote microprocessor specifications 

 

  In addition to these on-board memory capabilities, some sensor nodes also allow 

the option of saving data to additional external non-volatile memory. 

 

3.2.3 Communications Capabilities 

 

  The TelosB/Tmote Sky, MicaZ and SHIMMER motes, employ the 802.15.4 

compatible CC2420 radio chip from Texas Instruments, while the IRIS Mote uses 

(again a 802.15.4 compatible chip) Atmel's AT86RF230. These two radios are packet 

level radios, with a maximum packet length of 127 bytes. In addition to the CC2420, 

the SHIMMER mote also contains a second radio chip, a class 2 Bluetooth radio 

compatible with the Mitsumi WML-C46 series. Table 3.3a lists the operating 

specifications of the three radios and Table 3..3b gives the power consumption of 

each radio in sleep mode/switched off, idle/receive mode and when transmitting at 

a specified power level. 

 

Radio 
Module 

Frequency 
[MHz] 

Modulation Data Rate Tx Power 
[dBm] 

Rx 
Sensitivity 

[dBm] 

TI CC2420 2400 - 
2483.5 

QQPSK 250 Kbps -24 - 0 -95 

Atmel 
AT86RF230 

2405 - 2480 QQPSK 250 Kbps -17 - 3 -101 

Mitsumi 
WML-C46 

2400 - 
2483.5 

GFSK 721 Kbps -6 - 14 -82 

 

Table 3.3a: Mote Communication capabilities 

  The CC2420 is a very popular chip for use on wireless sensor nodes, being used on 

three of the motes considered here. The CC2420 was the first 802.15.4 radio chip to 

be widely available in the market. 802.15.4 is very suitable for use in WSNs due to its 

very low power and flexibility. A feature of the CC2420 lacking on the other radios, is 
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its support for encryption using AES 128. This feature can greatly reduce the cost, 

both in terms of power and latency, of securing WSN communications. 

 

Radio Module Sleep [μA] Idle/Rx [mA] Tx [mA] 

TI CC2420 0.02 - 426 18.8 17.4 
Atmel AT86RF230 0.02 15.5 16.5 
Mitsumi WML-C46 50 - 1400 40 60 

Table 3.3b: Mote Communication capabilities 

 

  The WML-C46 is a class 2 Bluetooth radio, with a range of approximately 10 meters. 

WSNs were not considered as a target for Bluetooth when it was being designed and 

as a result it is not ideally suited for use with them, being overly complex for most 

applications. However, the presence of Bluetooth allows it to address a current 

problem faced by 802.15.4 devices, which is interoperability with existing devices. 

For many applications a Bluetooth enabled mobile phone or laptop can be a very 

convenient device to use for data aggregation or network querying. 

 

3.2.4 Sensor Support 

 

  The TelosB/Tmote Sky offers a versatile set of onboard sensors, namely humidity, 

temperature and light sensors. In addition to the onboard sensors, the TelosB/Tmote 

Sky provides access to 6 ADC inputs, a UART and I2C bus and several general purpose 

ports. The MicaZ motes do not have onboard sensors. However, Crossbow offers an 

extensive set of sensor boards that connect directly to the MicaZ mote and are 

capable of measuring light, humidity, temperature, pressure etc. Additionally, 

actuators such as relays and buzzers can be attached too, in case of a WSAN. Intel's 

SHIMMER mote incorporates a 3 axis accelerometer and allows connection of other 

sensors through its expansion board. As in MicaZ, more types of sensors (most of 

them medically oriented) are available. The IRIS mote, in Crossbow tradition, does 

not offer any embedded sensor capabilities. However, it is equipped with a 51-pin 

expansion connector that existing MicaZ compatible, Crossbow sensor boards can be 

connected to. 

 

3.2.5 Power Specifications 

 

  Both the TelosB and Tmote Sky boards are typically powered from an external 

battery pack containing two AA batteries. AA cells may be used in the operating 

range of 2.1 to 3.6V DC, however the voltage must be at least 2.7V when 

programming the microcontroller flash or external flash. MicaZ and IRIS motes are 
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also powered by a set of two AA batteries in an attached battery pack. The SHIMMER 

mote is powered by a rechargeable 450 mAh Li-Ion battery. The Shimmer design also 

includes a Texas Instruments BQ-24080 Smart Li Charger for battery management. 

 

3.2.6 Price  

 

Current (August 2013) pricing information for a single mote is shown in Table 3.4. 

 

Mote Platform Price 

TelosB/Tmote Sky 77 € 
MicaZ 77 € 

SHIMMER 199 € 
IRIS 87 € 

 

Table 3.4: Mote prices 

 

3.3 The SHIMMER platform 

  Since we will simulate our program on a shimmer platform it is essential that we 

present the platform’s main features . 

3.3.1 Shimmer Key Principles 

  The Shimmer platform was developed with the goal to allow biomedical 

researchers to focus on their research instead of the development of applications 

during the lifecycle of their research project . The key principles that underline the 

Shimmer wearable sensor platform, as stated on www.shimmer-research.com , are : 

 

• Flexible 

 Shimmer is extremely flexible due to the fact that it can be programmed to meet 

exact data capture and transfer requirements. Moreover Shimmer can be adapted 

for different sensing purposes due to its modular expansions described later. 

• Highly Configurable 

  Shimmer provides a suite of technologies to offer compatability with a wide variety 

of system technologies including other sensors. For example the platform offers 

Bluetooth or 802.15.4 radio for the communication with other devices and the 
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instant transmission of recorded biomedical signals. Furthermore a microSD card is 

included, allowing a local storage of recorded data. 

• Open Source 

All code and firmware is actively maintained and available online at Sourceforge . 

• Raw Data 

  Shimmer provides raw data, giving the researchers and developers full control over 

the interpretation and analysis of the sensed data. 

 

 

3.3.2 Shimmer Platform Design 

  The Shimmer platform consists of a baseboard which provides the sensor 

computational , data storage, communications and daughterboard connection 

capabilities. Figure 3.5 gives a brief overview of the sensor's technical specification. 

The core capabilities of the Shimmer baseboard can be extended via a wide range of 

daughterboards committed to provide wearable kinematic, biophysical, and ambient 

wireless sensing capabilities .For this a connector is provided, that allows the user to 

connect daughterboards to the baseboard. The extension capabilities make a flexible 

and thus valuable platform out of Shimmer. Table 3.5 gives an overview of the 

currently available extensions daugtherboards. 
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Figure 3.5 Overview of shimmer’s technical specifications 

 

Kinematic 
Sensing 

Biophysical Sensing Ambient Sensing 

Gyroscope Electrocardiograph(ECG) Passive Infrared (PIR) 
Motion 

Magnetometer Electromyograph (EMG) Temperature 

Accelerometer Galvanic Skin 
Response(GSR) 

Light 

Table 3.5 Overview of Shimmer extension daugtherboards 

 

3.3.3 Shimmer Key Features 

  The main requirements a wearable sensor should comply in a healthcare 

environment are certainly, low power consumption, light weight, small form factor, 
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low power communication capabilities and modularity . These are exactly the 

features the Shimmer platform exhibits as consecutively described. 

Low Power Consumption 

  The Shimmer baseboard is equipped with a MSP430 MCU and other hardware to 

minimize power consumption. Especially the MCU from Texas Instrument is known 

for its low power consumption during periods of inactivity and has a proven history 

for biomedical sensing platforms . Further the Shimmer firmware was optimized with 

focus on lowering the on-time of all hardware subsystems on the sensor hardware 

platform and thus extends operation life of the sensor. 

Small Form Factor and Light Weight  

  With an enclosure size of 53mm x 32mm x 15mm and a weight of 22 gramms the 

Shimmer sensor is perfectly appropriate for sensing biomedical data as a wearable 

mobile sensor. 

Communication Capabilities 

  One of the key features of Shimmer is certainly its ability to communicate wirelessly 

with other sensor and devices. For this the Shimmer platform provides two modules: 

the IEEE 802.15.4 radio module and the Bluetooth radio module. The Bluetooth 

module contains the full Version 2 Bluetooth Protocol Stack guaranteeing the 

compatibility with a wide range of other Bluetooth devices like mobile phones. 

Firmware 

  The firmware of Shimmer is primarily developed by using TinyOS. It provides the 

low-level capabilities to control the sensor functions like: local processing of the 

sensed data, local storage of the data and communication of sensed data to a higher 

level application for advanced signal processing, display and data persistence . All 

Shimmer firmware is thereby available online at Sourceforge .The operating system 

TinyOS, is responsible for task scheduling, radio communication , time, I/O 

processing and has a very small footprint, which makes it suitable for sensor devices. 

TinyOS is completely written in nesC , an extension of the programming. 

 

 

 The SHIMMER  platform  consists of a base board, optional add on boards and a 

series of firmware versions to match the hardware configuration. 

The main components on the SHIMMER base board are: 
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 Compact form factor, light & wearable (weight: 15 grams, volume: 53mm x 

32mm x 15mm)   

 Wireless communications via Bluetooth® and 802.15.4 (WML-C46A, CC2420) 

 Offline data capture – micro SD card storage – 2 gigabytes 

  SD data bypass 8MHz MSP430 CPU (10Kbyte RAM, 48Kbyte flash, 8 channels of 

12 bit A/D) 

 Open platform, driven by TinyOS 

  Internal and external connectors for expansion 

 Includes simple serial command interface for Bluetooth® 

 Integrated TCP/IP stack for 802.15.4 

  Integrated 3-axis MEMs accelerometer with selectable range 

 Integrated tilt / vibration sensor 

 Integrated Li-ion battery management 

 Supported by BioMOBIUS™ graphical software platform 

  Example LabView integration module 

 

 

 

3.3.4 Hardware Overview 

The image below illustrates a block diagram of the Shimmer baseboard 

interconnections between and integrated devices. 

 

CPU 

 

  The core element of the platform is the low-power MSP430F1611 microprocessor 

which controls the operation of the device.  Nearly every feature of the CPU is 

exercised in the Shimmer implementation! The CPU configures and controls various 

integrated peripherals through I/O pins, some of which are available on the 

internal/external-expansion connectors 
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Figure 3.6 Shimmer Baseboard Interconnections and Integrated Devices  

  The CPU has an integrated 8-channel 12bit analog-to-digital converter (ADC) which 

is used to capture sensor data from the accelerometer, battery, or sensor expansions 

such as ECG, kinematics, GSR, and EMG. The external expansion allows 

communication to and from the baseboard using the docking station.  

Data Transmission and Storage 

  For wireless data streaming the platform is equipped with both Bluetooth and 

802.15.4 radio modules. The Shimmer board has a built in microSD Flash socket for 

additional storage.  To improve usability, SHIMMER incorporates components to 

provide direct and immediate access to microSD flash memory using an external SD-

flash card controller (SDHOST) for high-speed data transfer. 

Functionality 

  A push-button power controller powers off the entire board after a held press of 

the reset button.  Software controlled power switching is provided for both the 

Bluetooth radio module and microSD socket.  Three light-emitting diodes (LED) are 

used to display application status. 

 

  Finally a triaxial MEMs accelerator and omni-directional tilt/vibration sensing round 

out the integrated peripheral suite. 
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3.3.5 Texas Instruments MSP430F1611 

 

  The low power operation of the Shimmer module is due to the ultra-low power 

Texas Instruments MSP430F1611 microcontroller featuring 10kB of RAM, 48kB of 

program flash memory and 128B of information storage. This 16-bit RISC processor 

features extremely low active and sleep current consumption that permits Shimmer 

to run for months on a single pair of AA batteries. 

 

The MSP430 includes three clock sources: 

 LFXT1CLK: Low frequency/high frequency oscillator that can be used either 

with low frequency 32768Hz = 32KHz watch crystals, or standard crystals or 

resonators in the 450KHz to 8MHz range. 

 XT2CLK: Optional high frequency oscillator that can be used with standard 

crystals, resonators, or external clock sources in the 450KHz to 8MHz range. 

 DCOCLK: Internal digitally controlled oscillator (DCO) with RC-type 

characteristics. 

 

  There are three clock signals available. The one that we are interested in is the 

Master Clock (MCLK). MCLK is software selectable and is derived from one of 

LFXT1CLK, XT2CLK or DCOCLK. It is used by the CPU and the system. By default it is 

sourced from DCOCLK and its default operating frequency in the case of a Shimmer 

mote is 8MHz.  

 

  Although it is software configurable, we will not modify the MCLK from its default 

value, because of the non CPU-intensive nature of our application. If one would like 

to do so and provided they are using TinyOS, the necessary component to look for 

would be MSP430ClockC and more specifically its MSP430ClockInit interface. 

Operating the mote at higher frequencies might be necessary for CPU-intensive 

programs, but doing so increases the mote’s power consumption, while our main 

objective is to keep it as low as possible. 

 

  The DCO may be turned on from sleep mode in 6μs, however 292ns is typical at 20 
0C. When the DCO is off, the MSP430 operates off an eternal 32768Hz watch crystal. 

In addition to the DCO, the MSP430 has 8 external ADC ports and 8 internal ADC 

ports. The internal ports may be used to read the internal thermistor or monitor the 

battery voltage. A variety of peripherals are available including SPI, UART, digital I/O 

ports, Watchdog timer and Timers with capture and compare functionality. The 

F1611 also includes a 2-port 12-bit DAC module, Supply Voltage Supervisor and 3-

port DMA controller. 
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Figure 3.7 :MSP430 Block diagram from moteiv 

 

  The MSP430 has one active mode and five software selectable modes of operation. 

An interrupt event can wake up the device from any of the five low-power modes, 

service the request, and restore back to the low-power mode on return from the 

interrupt program. As developers, we will not have to worry about MCU 

management at all in most situations. TinyOS handles everything for us 

automatically. The low-power modes range from LPM0, which disables only the CPU 

and main system clock, to LPM4, which disables the CPU, all clocks and the oscillator, 

expecting to be woken by an external interrupt source. According to the 

TelosB/Tmote Sky datasheet, the MSP430F1611 draws 1.8 mA of current in Active 

mode and 5.1 μΑ in Sleep mode (both computed at 3.0V supply voltage). 

 

3.3.6 Texas Instruments CC2420 

 

  The CC2420 is a true single-chip 2.4GHz IEEE 802.15.4 compliant RF transceiver 

designed for low-power and low-voltage wireless applications. CC2420 includes a 

digital direct sequence spread spectrum baseband modem providing an effective 

data rate of 250 Kbps. The CC2420 provides extensive hardware support for packet 

handling, data buffering, burst transmissions, data encryption, data authentication, 

clear channel assessment, link quality indication and packet timing information. 

These features reduce the load on the host controller and allow CC2420 to interface 

low-cost microcontrollers. It is based on Chipcon’s SmartRF – 03 technology in 

180nm CMOS. 
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Figure 3.8: CC2420 Simplified block diagram 

 

Its main features are summarized below 

 

Frequency Band 2400 ~ 2483.5 MHz IEEE 802.15.4 Compliant 

Sensitivity -90dBm(min), -95dBm typ Receive Sensitivity 

Transfer Rate 250 Kbps IEEE 802.15.4 

RF Power -25 dBm ~ 0 dBm Software Configurable 

Range ~100m (outdoor),  

20~30m (indoor) 

Longer range possible with optional 

SMA antenna attached 

Current Draw RX: 18.8 mA, TX: 17.4 mA,  

Sleep: 1 μA 

Lower RF Power Modes reduce 

consumption 

RF Power supply 2.1V ~ 3.6V CC2420 Input Power 

Antenna Dipole Antenna/ 

PCB Antenna 

 

Encryption Hardware MAC encryption  
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AES-128 

Buffer 128(RX) + 128(TX) data 

buffering 

 

Table 3.6:CC2420 main features 

  The CC2420 is controlled by the TI MSP430 microcontroller through the SPI port 

and a series of digital I/O lines and interrupts. The radio may be put to sleep for low 

power duty cycled operation. The transceiver also has software configurable output 

power, which the transmission range is obviously dependent on.  
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Chapter 4 

TinyOS 

4.1 Introduction 

  TinyOS is an open source, BSD-licensed operating system designed for low-power 

wireless devices, like the ones used in WSNs, ubiquitous computing, personal area 

networks, smart buildings, and smart meters. A worldwide community from 

academia and industry use, develop, and support the operating system as well as its 

associated tools . The main TinyOS website, www.tinyos.net , has instructions for 

downloading and installing the TinyOS programming environment. The website has a 

great deal of useful information such as common hardware platforms and how to 

install code on a node. 

4.1.1 Networked, embedded sensors 

  TinyOS is designed to run on small, wireless sensors. Networks of these sensors 

have the potential to revolutionize a wide range of disciplines, fields, and 

technologies. Recent example uses of these devices include: 

Golden Gate Bridge safety High-speed accelerometers collect synchronized data on 

the movement of and oscillations within the structure of San Francisco’s Golden 

GateBridge. This data allows the maintainers of the bridge to easily observe the 

structural health of the bridge in response to events such as high winds or traffic, as 

well as quickly assess possible damage after an earthquake . Being wireless avoids 

the need for installing and maintaining miles of wires. 

 Volcanic monitoring Accelerometers and microphones observe seismic events on 

the Reventador and Tungurahua volcanoes in Ecuador. Nodes locally compare when 

they observe events to determine their location, and report aggregate data to a 

camp several kilometers away using a long-range wireless link. Small, wireless nodes 

allow geologists and geophysicists to install dense, remote scientific instruments , 

obtaining data that answers other questions about unapproachable environments. 

Data center provisioning Data centers and enterprise computing systems require 

huge amounts of energy, to the point at which they are placed in regions that have 

low power costs. Approximately 50% of the energy in these systems goes into 

cooling, in part due to highly conservative cooling systems. By installing wireless 

sensors across machine racks, the data center can automatically sense what areas 
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need cooling and can adjust which computers do work and generate heat. 

Dynamically adapting these factors can greatly reduce power consumption, making 

the IT infrastructure more efficient and reducing environmental impact. 

 

 

Figure 4.1 A typical sensor network architecture. Patches of ultra-low power sensors, 

running nesC/TinyOS, communicate to gateway nodes through data sinks. These 

gateways connect to the larger Internet. 

  Athough these three application domains are only a fraction of where networks of 

sensors are used, they show the key differences between these networks and most 

other computing systems. First, these “sensor networks” need to operate 

unattended for long periods of time. Second, they gather data from and respond to 

an unpredictable environment. Finally, for reasons of cost, deployment simplicity, 

and robustness, they are wireless. Together, these three issues – longevity, 

embedment, and wireless communication – cause sensor networks to use different 

approaches than traditional, wired, and human-centric or machine-centric systems. 

The sheer diversity of sensor network applications means that there are many 

network architectures, but a dominant portion of deployments tend to follow a 

common one, shown in Figure 4.1 of ultra-low power sensors self-organized to form 

an ad-hoc routing network to one or more data sink nodes. These sensor sinks are 

attached to gateways, which are typically a few orders of magnitude more powerful 

than the sensors: gateways run an embedded form of Linux, Windows, or other 

multitasking operating system. Gateways have an Internet connection, either 

through a cell phone network , long-distance wireless, or even just wired Ethernet 

.Energy concerns dominate sensor hardware and software design. These nodes need 

to be wireless, small, low-cost, and operate unattended for long periods. While it is 

often possible to provide large power resources, such as large solar panels, periodic 

battery replacement, or wall power, to small numbers of gateways, doing so to every 

one of hundreds of sensors is infeasible. 

 



62 
 

4.2 TinyOS, what is it. 

   As mentioned in this chapter before ,TinyOS is a lightweight operating system 

specifically designed for low-power wireless sensors. TinyOS differs from most other 

operating systems in that its design focuses on ultra low-power operation. Rather 

than a full-fledged processor, TinyOS is designed for the small, low-power 

microcontrollers motes have. Furthermore, TinyOS has very aggressive systems and 

mechanisms for saving power .TinyOS makes building sensor network applications 

easier. It provides a set of important services and abstractions, such as sensing, 

communication, storage, and timers. It defines a concurrent execution model, so 

developers can build applications out of reusable services and components without 

having to worry about unforeseen interactions. TinyOS runs on over a dozen generic 

platforms, most of which easily support adding new sensors. Furthermore, TinyOS’s 

structure makes it reasonably easy to port to new platforms .TinyOS applications and 

systems, as well as the OS itself, are written in the nesC language.  nesC is a C dialect 

with features to reduce RAM and code size, enable significant optimizations, and 

help prevent low-level bugs like race conditions. Later on we will go into the details 

on how nesC differs significantly from other C-like  . 

4.2.1TinyOS, what it provides. 

  At a high level, TinyOS provides three things to make writing systems and 

applications easier: 

• a component model, which defines how you write small, reusable pieces of code 

and compose them into larger abstractions; 

• a concurrent execution model, which defines how components interleave their 

computations as well as how interrupt and non-interrupt code interact; 

• application programming interfaces (APIs), services, component libraries and an 

overall component structure that simplify writing new applications and services. 

  The component model is grounded in nesC. It allows you to write pieces of reusable 

code which explicitly declare their dependencies. For example, a generic user button 

component that tells you when a button is pressed sits on top of an interrupt 

handler. The component model allows the button implementation to be 

independent of which interrupt that is – e.g. so it can be used on many different 

hardware platforms – without requiring complex callbacks or magic function naming 

conventions .The concurrent execution model enables TinyOS to support many 

components needing to act at the same time while requiring little RAM. First, every 

I/O call in TinyOS is split-phase: rather than block until completion, a request returns 

immediately and the caller gets a callback when the I/O completes. Since the stack 
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isn’t tied up waiting for I/O calls to complete, TinyOS only needs one stack, and 

doesn’t have threads .Instead, TinyOS introduces tasks, which are lightweight 

deferred procedure calls .Any component can post a task , which TinyOS will run at 

some later time. Because low-power devices must spend most of their time asleep, 

they have low CPU utilization and so in practice tasks tend to run very soon after 

they are posted (within a few milliseconds).Furthermore, because tasks can’t 

preempt each other, task code doesn’t need to worry about data races. Low-level 

interrupt code can have race conditions, of course: nesC detects possible data races 

at compile-time and warns you .Finally, TinyOS itself has a set of APIs for common 

functionality, such as sending packets, reading sensors, and responding to events .In 

addition to programming interfaces, TinyOS also provides a component structure 

and component libraries .TinyOS itself is continually evolving. Within the TinyOS 

community, “Working Groups” form to tackle engineering and design issues within 

the OS, improving existing services and adding new ones .The best way to stay up to 

date with TinyOS is to check its web page www.tinyos.net and participate in its 

mailing lists.  

 

4.3 Example application 

  To better understand the unique challenges faced by sensor networks, we walk 

through a basic data-collection application. Nodes running this application 

periodically wake up ,sample some sensors, and send the data through an ad hoc 

collection tree to a data sink (as in Figure 4.1). As the network must last for a year, 

nodes spend 99% of their time in a deep sleep state .In terms of energy, the radio is 

by far the most expensive part of the node. Lasting a year requires telling the radio 

to be in a low power state. Low power radio implementation techniques are beyond 

the scope of this book, but the practical upshot is that packet transmissions have 

higher latency. Figure 4.2 shows the four TinyOS APIs the application uses: low 

power settings for the radio, a timer, sensors, and a data collection routing layer. 

When TinyOS tells the application that the node has booted, the application code 

configures the power settings on the radio and starts a periodic timer. Every few 

minutes, this timer fires and the application code samples its sensors. It puts these 

sensor values into a packet and calls the routing layer to send the packet to a data 

sink. In practice, applications tend to be more complex than this simple example. For 

example, they include additional services such as a management layer which allows 

an administrator to reconfigure parameters and inspect the state of the network, as 

well as over-the-air programming so the network can be reprogrammed without 

needing to collect all of the nodes. However, these four abstractions – power 
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control, timers, sensors, and data collection – encompass the entire datapath of the 

application. 

 

Figure 4.2:Example application architecture. Application code uses a timer to act 

periodically, sensors to collect data, and a routing layer to deliver data to a sink. 

4.3.1Compiling and installing applications 

  You can download the latest TinyOS distribution, the nesC compiler, and other tools 

at www.tinyos.net . The TinyOS website has step-by-step tutorials to get you started. 

One part of TinyOS is an extensive build system for compiling applications. Generally, 

to compile a program for a sensor platform, one types make <platform>, e.g. make 

telosb. This compiles a binary. To install that binary on a node, you plug the node 

into your PC using a USB or serial connection, and type make <platform> install. The 

tutorials go into compilation and installation options in detail. 
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Chapter 5  

NesC 

5.1 First Approach to nesC 

    NesC (network embedded systems C), is a component-based, event 
driven programming language used to build applications for the TinyOS platform. 
NesC is built as an extension to the C programming language with components 
"wired" together to run applications on TinyOS. It offers a more ‘’holistic’’ approach 
to embedded systems while supporting the TinyOS’s design. It is a static language 
with all resources known at compile time and call-graph fully known at compile time. 
nesC’s contribution is to support the special needs of the WSN exposing a 
programming model that incorporates event-driven execution, a flexible 
concurrency model, and component-oriented application design. Restrictions on the 
programming model al-low the nesC compiler to perform whole-program analyses, 
including data-race detection (which improves reliability) and aggressive function 
inlining (which reduces resource consumption) 

There are a number of unique challenges that nesC must address: 

Driven by interaction with environment: Unlike traditional computers, motes are 
used for data collection and control of the local environment, rather than general-
purpose computation. This focus leads to two observations. First, motes are 
fundamentally event-driven, reacting to changes in the environment (message 
arrival ,sensor acquisition) rather than driven by interactive or batch processing. 
Second, event arrival and data processing are concurrent activities, demanding an 
approach to concurrency management that addresses potential bugs such as race 
conditions. 

Limited resources: Motes have very limited physical resources ,due to the goals of 
small size, low cost, and low power consumption. We do not expect new technology 
to remove these limitations: the benefits of Moore’s Law will be applied to reduce 
size and cost, rather than increase capability 

Reliability: Although we expect individual motes to fail due to hardware issues, we 
must enable very long-lived applications. For example, environmental monitoring 
applications must collect data without human interaction for months at a time. An 
important goal is to reduce run-time errors, since there is no real recovery 
mechanism in the field except for automatic reboot. Soft real-time requirements: 
Although there are some tasks that are time critical, such as radio management or 
sensor polling, we do not focus on hard real-time guarantees. Our experience so far 
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indicates that timing constraints are easily met by having complete control over the 
application and OS, and limiting utilization. One of the few timing-critical aspects in 
sensor networks is radio communication; however, given the fundamental 
unreliability of the radio link, it is not necessary to meet hard deadlines in this 
domain. 

The basic concepts behind nesC are: 

1. Separation of construction and composition: programs are built out of 
components, which are assembled ("wired") to form whole programs. 
Components have internal concurrency in the form of tasks. Threads of 
control may pass into a component through its interfaces. These threads are 
rooted either in a task or a hardware interrupt. 

2. Specification of component behaviour in terms of set of interfaces. Interfaces 
may be provided or used by components. The provided interfaces are 
intended to represent the functionality that the component provides to its 
user, the used interfaces represent the functionality the component needs to 
perform its job. 

3. Interfaces are bidirectional: they specify a set of functions to be implemented 
by the interface's provider (commands) and a set to be implemented by the 
interface's user (events). This allows a single interface to represent a 
complex interaction between components (e.g., registration of interest in 
some event, followed by a callback when that event happens). This is critical 
because all lengthy commands in TinyOS (e.g. send packet) are non-blocking; 
their completion is signaled through an event (send done). By specifying 
interfaces, a component cannot call the send command unless it provides an 
implementation of the sendDone event. Typically commands call 
downwards, i.e., from application components to those closer to the 
hardware, while events call upwards. Certain primitive events are bound to 
hardware interrupts. 

4. Components are statically linked to each other via their interfaces. This 
increases runtime efficiency, encourages robust design, and allows for better 
static analysis of programs. 

5. nesC is designed under the expectation that code will be generated by whole-
program compilers. This should also allow for better code generation and 
analysis. 

  Program structure is the most essential and obvious difference between C and nesC 

.C programs are composed of variables, types, and functions defined in files that are 

compiled separately and then linked together. nesC programs are built out of 

components that are connected (“wired”) by explicit program statements . the nesC 

compiler connects and compiles these components as a single unit .To illustrate and 

explain these differences in how programs are built, we compare and contrast C and 

nesC implementation of a very simple “hello world”-like mote application, Blink 

(boot and repeatedly blink a LED). 

A few basic principles underlie nesC’s design: 
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nesC is an extension of C: C  produces efficient code for all the target 

microcontrollers that are likely to be used in sensor networks. C provides all the low-

level features necessary for accessing hardware, and interaction with existing C code 

is simplified. Last but not least, many programmers are familiar with C.C does have 

significant disadvantages: it provides little help in writing safe code or in structuring 

applications. nesC addresses safety through reduced expressive power and structure 

through components. None of the new features in nesC are tied to C: the same ideas 

could be added to other imperative programming languages such as Modula-2 . 

Whole-program analysis: nesC programs are subject to whole program analysis (for 

safety) and optimization (for performance).Therefore we do not consider separate 

compilation in nesC’s design. The limited program size on motes makes this 

approach tractable. 

nesC is a “static language”: There is no dynamic memory allocation and the call-

graph is fully known at compile-time. These restrictions make whole program 

analysis and optimization significantly simpler and more accurate. They sound more 

onerous than they are in practice: nesC’s component model and parameterized 

interfaces eliminate many needs for dynamic memory allocation and dynamic 

dispatch. We have, so far, implemented one optimization and one analysis: a simple 

whole-program inliner and a data-race detector .nesC supports and reflects TinyOS’s 

design: nesC is based on the concept of components, and directly supports TinyOS’s 

event-based concurrency model. Additionally, nesC explicitly addresses the issue of 

concurrent access to shared data .In practice, nesC resolved many ambiguities in the 

TinyOS concepts of components and concurrency, and TinyOS evolved to the nesC 

versions as it was reimplemented. 

5.2 Basic nesC Programming 

  The nesC language is primarily intended for embedded systems such as sensor 
networks. nesC has a C-like syntax, but supports the TinyOS concurrency model, as 
well as mechanisms for structuring, naming, and linking together software 
components into robust network embedded systems. The principal goal is to allow 
application designers to build components that can be easily composed into 
complete, concurrent systems, and yet perform extensive checking at compile time. 

  TinyOS defines a number of important concepts that are expressed in nesC. First, 
nesC applications are built out of components with well-defined, 
bidirectional interfaces. Second, nesC defines a concurrency model, based 
on tasks and hardware event handlers, and detects data races at compile time. 
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Components  
Specification  
  A nesC application consists of one or more  components linked together to form an 
executable. A component provides and uses interfaces. These interfaces are the 
only point of access to the component and are bidirectional.  An interface declares a 
set of functions called commands that the interface provider must implement and 
another set of functions called events that the interface user must implement. For a 
component to call the commands in an interface, it must implement the events of 
that interface. A single component may use or provide multiple interfaces and 
multiple instances of the same interface. 

Implementation  
  There are two types of components in nesC: modules and configurations. Modules 
provide application code, implementing one or more interface. Configurations are 
used to assemble other components together, connecting interfaces used by 
components to interfaces provided by others. This is called wiring. Every nesC 
application is described by a top-level configuration that wires together the 
components inside .nesC uses the filename extension “.nc” for all source files-
interfaces, modules and configurations. 

Concurrency Model 
  TinyOS executes only one program consisting of selected system components and 
custom components needed for a single application. There are two threads of 
execution: tasks and hardware event handlers. Tasks are functions whose execution 
is deferred.  Once scheduled, they run to completion and do not preempt one 
another. Hardware event handlers are executed in response to a hardware interrupt 
and also runs to completion, but may preempt the execution of a task or other 
hardware event handler. Commands and events that are executed as part of a 
hardware event handler must be declared with the async keyword. 

  Because tasks and hardware event handlers may be preempted by other 
asynchronous code, nesC programs are susceptible to certain race conditions. Races 
are avoided either by accessing shared data exclusively within tasks, or by having all 
accesses within atomic statements. The nesC compiler reports potential data 
races to the programmer at compile-time. It is possible the compiler may report a 
false positive. In this case a variable can be declared with the norace keyword. The 
norace keyword should be used with extreme caution. 

5.3 Example Application:Blink 

  The most concrete first-approach example application for nesC is the Blink 

application the simple test program "Blink" causes the red LED on the mote to turn 
on and off at 1Hz. Blink application is composed of two components: a module, 

called "BlinkM.nc", and a configuration, called "Blink.nc". All applications require a 

top-level configuration file, which is typically named after the application itself. In 
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this case Blink.nc is the configuration for the Blink application and the source file 

that the nesC compiler uses to generate an executable file. BlinkM.nc, on the other 

hand, actually provides the implementation of the Blink application. Blink.nc is used 

to wire the BlinkM.nc module to other components that the Blink application 

requires. 

  The reason for the distinction between modules and configurations is to allow a 
system designer to quickly "snap together" applications. For example, a designer 
could provide a configuration that simply wires together one or more modules, none 
of which he actually designed. Likewise, another developer can provide a new set of 
"library" modules that can be used in a range of applications. 

  Sometimes (as is the case with Blink and BlinkM) you will have a configuration and a 
module that go together. When this is the case, the convention used in the TinyOS 

source tree is that Foo.nc represents a configuration and FooM.nc represents the 

corresponding module. While you could name an application's implementation 
module and associated top-level configuration anything, to keep things simple it is 
better to adopt this convention in our code. 

5.3.1 The Blink.nc Configuration 

  The nesC compiler, ncc, compiles a nesC application when given the file containing 
the top-level configuration. Typical TinyOS applications come with a standard 
Makefile that allows platform selection and invokes ncc with appropriate options on 
the application's top-level configuration.   

 

Below we present the configuration for this application: 

 

 

 

configuration Blink { 

} 

implementation { 

  components Main, BlinkM, SingleTimer, LedsC; 

 

  Main.StdControl -> BlinkM.StdControl; 

  Main.StdControl -> SingleTimer.StdControl; 

  BlinkM.Timer -> SingleTimer.Timer; 

  BlinkM.Leds -> LedsC; 

} 

http://www.tinyos.net/tinyos-1.x/doc/nesc/ncc.html
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  The first thing to notice is the key word configuration, which indicates that 

this is a configuration file. The first two lines, 

  configuration Blink { 

  } 

 

simply state that this is a configuration called Blink. Within the empty braces here 
it is possible to specify uses and provides clauses, as with a module. This is 

important to keep in mind: a configuration can use and provide interfaces! 
 

  The actual configuration is implemented within the pair of curly bracket following 

key word implementation . The components line specifies the set of 

components that this configuration references, in this 

case Main, BlinkM, SingleT-imer, and LedsC. The remainder of the 
implementation consists of connecting interfaces used by components to interfaces 
provided by others. 

  Main is a component that is executed first in a TinyOS application. To be precise, 
the Main.StdControl.init() command is the first command executed in 

TinyOS followed by Main.StdControl.start(). Therefore, a TinyOS 

application must have Main component in its configuration. StdControl is a 

common interface used to initialize and start TinyOS components. Let us have a look 

at tos/interfaces/StdControl.nc: 

StdControl.nc                                                                                                  

Interface StdControl {                                                                                                                            

command result_t init();                                             

command result_t start();                                       

command result_t stop();                                             

} 

  We see that StdControl defines three commands, init(),start(), and 

stop(). init() is called when a component is first initialized, and start() 

when it is started, that is, actually executed for the first time. stop() is called when 

the component is stopped, for example, in order to power off the device that it is 
controlling. init() can be called multiple times, but will never be called after 

either start() or stop are called. Specifically, the valid call patterns of 
StdControl are init*(start | stop)* . All three of these commands 

have "deep" semantics; calling init() on a component must make it call init() 
on all of its subcomponents. The following 2 lines in Blink configuration 

Main.StdControl -> SingleTimer.StdControl;              

Main.StdControl -> BlinkM.StdControl; 

wire the StdControl interface in Main to the StdControl interface in both 

BlinkM and SingleTimer. SingleTimer.StdControl.init()and 



72 
 

BlinkM.StdControl.init() will be called by 

Main.StdControl.init(). The same rule applies to the start() and 
stop() commands. 

  Concerning used interfaces, it is important to note that subcomponent initialization 
functions must be explicitly called by the using component. For example, the 
BlinkM module uses the interface Leds, so Leds.init() is called explicitly in 
BlinkM.init(). 

 

  nesC uses arrows to determine relationships between interfaces. Think of the right 
arrow (->) as "binds to". The left side of the arrow binds an interface to an 
implementation on the right side. In other words, the component that uses an 
interface is on the left, and the component provides the interface is on the right. 

 

The line 

 

  BlinkM.Timer -> SingleTimer.Timer; 

is used to wire the Timer interface used by BlinkM to the Timer interface 
provided by SingleTimer. BlinkM.Timer on the left side of the arrow is 

referring to the interface called Timer (tos/interfaces/Timer.nc), while 

SingleTimer.Timer on the right side of the arrow is referring to the 
implementation of Timer (tos/lib/SingleTimer.nc). The arrow always 

binds interfaces (on the left) to implementations (on the right). 

  nesC supports multiple implementations of the same interface. The Timer 

interface is such an example. The SingleTimer component implements a single 

Timer interface while another component, TimerC, implements multiple timers 
using timer id as a parameter.  

 

Wirings can also be implicit. For example, 

 

  BlinkM.Leds -> LedsC; 

is really shorthand for 

  BlinkM.Leds -> LedsC.Leds; 
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  If no interface name is given on the right side of the arrow, the nesC compiler by 
default tries to bind to the same interface as on the left side of the arrow. 

 

5.3.2 The Blink.nc Module 

Now let's look at the module BlinkM.nc: 

BlinkM.nc                                                       

module BlinkM {                                                                         

provides {                                                                

          interface StdControl;                                                       

}                                                                              

uses {                                                               

          interface Timer; 

          interface Leds; 

     } 

}                                                                                   

// Continued below... 

  The first part of the code states that this is a module called BlinkM and declares 
the interfaces it provides and uses.  The BlinkM  module provides the interface 

StdControl.  This means that BlinkM implements the StdControl interface.  
As explained above, this is necessary to get the Blink component initialized and 

started.  The BlinkM module also uses two interfaces: Leds and Timer. This 

means that BlinkM may call any command declared in the interfaces it uses and 
must also implement any events declared in those interfaces. 

  The Leds interface defines several commands like redOn(),redOff(), and so 
forth, which turn the different LEDs (red, green, or yellow) on the mote on and off. 
Because BlinkM uses the Leds interface, it can invoke any of these commands. 

However Leds is just an interface: the implementation is specified in the 

Blink.nc configuration file. 

Timer.nc  is a little more interesting: 

Timer.nc                                                                         

interface Timer { 

command result_t start(char type, uint32_t interval);            

command result_t stop();                                                 
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event result_t fired();                                                       

} 

  Here we see that Timer interface defines the start() and stop() commands, 
and the fired() event. 

  The start() command is used to specify the type of the timer and the interval at 

which the timer will expire. The unit of the interval argument is millisecond. The 
valid types are TIMER_REPEAT and TIMER_ONE_SHOT. A one-shot timer ends 
after the specified interval, while a repeat timer goes on and on until it is stopped by 
the stop() command. 

  How does an application know that its timer has expired? The answer is when it 
receives an event. The Timer interface provides an event: 

 

  event result_t fired(); 

  An event is a function that the implementation of an interface will signal when a 
certain event takes place. In this case, the fired() event is signaled when the 
specified interval has passed. This is an example of a bidirectional interface: an 
interface not only provides commands that can be called by users of the interface, 
but also signals events that call handlers in the user. Think of an event as a callback 
function that the implementation of an interface will invoke. A module that uses an 
interface must implement the events that this interface uses. 

Let's look at the rest of BlinkM.nc to see how this all fits together: 

BlinkM.nc, continued 

implementation { 

  command result_t StdControl.init() { 

    call Leds.init(); 

    return SUCCESS; 

  } 

  command result_t StdControl.start() { 

    return call Timer.start(TIMER_REPEAT, 1000) ; 

  } 

  command result_t StdControl.stop() { 
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    return call Timer.stop(); 

  } 

  event result_t Timer.fired() 

  { 

    call Leds.redToggle(); 

    return SUCCESS; 

  } 

} 

  As we see the BlinkM module implements the StdControl.init(), 
StdControl.start(), and StdControl.stop() commands, since it 

provides the StdControl interface. It also implements the Timer.fired() 

event, which is necessary since BlinkM must implement any event from an 
interface it uses. 

  The init() command in the implemented StdControl interface simply 
initializes the Leds subcomponent with the call to Leds.init(). The start() 

command invokes Timer.start() to create a repeat timer that expires every 

1000 ms. stop() terminates the timer. Each time Timer.fired() event is 
triggered, the Leds.redToggle() toggles the red LED. 

  Also , a graphical representation of the component relationships within an 
application can be viewed. TinyOS source files include metadata within comment 
blocks that ncc, the nesC compiler, uses to automatically generate html-formatted 
documentation. To generate the documentation, we need to type make 

<platform> docs from the application directory.  

5.3.3 Compiling the Blink Application 

  TinyOS supports multiple platforms. Each platform has its own directory in the 
tos/platform  directory. In our example we will use the telosb platform. In 

the TinyOS source tree, compiling the Blink application for the telosb mote is as 
simple as typing 

  make telosb 

in the apps/Blink directory. Of course this doesn't tell us anything about how the 
nesC compiler is invoked. 
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nesC itself is invoked using the ncc command which is based on gcc. For example, we 
can type 

  ncc -o main.exe -target=telosb Blink.nc 

to compile the Blink application (from the Blink.nc top-level configuration) to 
main.exe, an executable file for the telosb mote. If we want to upload the code to 
the actual hardware mote, we use 

  avr-objcopy --output-target=srec main.exe main.srec 

to produce main.srec, which essentially represents the binary main.exe file in a 
text format that can be used for programming the telosb mote. We then use another 
tool (such as uisp) to actually upload the code to the mote, depending on our 
environment. In general we will never need to invoke ncc or avr-objcopy by 

hand, the Makefile does all this for us, but it's nice to see that all we need to 

compile a nesC application is to run ncc on the top-level configuration file for our 
application. ncc takes care of locating and compiling all of the different components 
required by our application, linking them together, and ensuring that all of the 
component wiring matches up.We won’t expand further in the hardware part of the 
mote since it is out of the scope of this project .Further information on how to install 
a nesC code such as Blink on a mote can be found on www.tinyos.net. 

5.3.4 Interfaces, Commands, and Events 

  We learned that if a component uses an interface, it can call the interface's 
commands and must implement handlers for its events. We also saw that the 
BlinkC component uses the Timer, Leds, and Boot interfaces.Let's take a 

look at those interfaces: 

interface Boot {                                                                                                                                 

event void booted();                                                                                                                                  

} 

interface Leds {                                                                                                                                        

/**                                                                                                                                                                

* Turn LED n on, off, or toggle its present state.                                                                                      

*/                                                                                                                                               

async command void led0On();                                                                                                       

async command void led0Off();                                                                                                       

async command void led0Toggle();                                                                                                         

async command void led1On();                                                                                                          

async command void led1Off();                                                                                                     

async command void led1Toggle();                                                                                                  

async command void led2On();                                                                                                             

async command void led2Off();                                                                                                               

async command void led2Toggle();                                                                                                        

/**                                                                                                                                                                  
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* Get/Set the current LED settings as a bitmask. Each bit 

corresponds to                                                           

* whether an LED is on; bit 0 is LED 0, bit 1 is LED 1, 

etc.                                                               

*/ 

async command uint8_t get();                                                                                                              

async command void set(uint8_t val);                                                                                               

} 

interface Timer                                                                 

{                                                                                  

// basic interface 

command void startPeriodic( uint32_t dt );                                      

command void startOneShot( uint32_t dt );                                                     

command void stop();                                                                          

event void fired(); 

// extended interface omitted (all commands)                                         

} 

  Looking over the interfaces for Boot, Leds, and Timer, we can see that since 
BlinkC uses those interfaces it must implement handlers for the 

Boot.booted()event, and the Timer.fired()event.The Leds interface 
signature does not include any events, so BlinkC need not implement any in order 

to call the Leds commands. Here, again, is BlinkC's implementation of 
Boot.booted(): 

event void Boot.booted()                                                          

{                                                                              

call Timer0.startPeriodic( 250 );                                               

call Timer1.startPeriodic( 500 );                                                  

call Timer2.startPeriodic( 1000 );                                                  

} 

  BlinkC uses 3 instances of the TimerMilliC component, wired to the 
interfaces Timer0, Timer1, and Timer2. The Boot.booted()event handler 

starts each instance. The parameter to startPeriodic()specifies the period in 

milliseconds after which the timer will fire (it's millseconds because of the 
<TMilli>in the interface). Because the timer is started using the 
startPeriodic() command, the timer will be reset after firing such that the 

fired() event is triggered every n milliseconds. Invoking an interface command 

requires the call keyword, and invoking an interface event requires the signal 
keyword. BlinkC does not provide any interfaces, so its code does not have any 
signal statements. 

Next, we present the implementation of the Timer.fired(): 
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event void Timer0.fired()                                                      

{                                                                               

call Leds.led0Toggle();                                                         

}                                                                                 

event void Timer1.fired()                                                      

{                                                                   

call Leds.led1Toggle();                                                         

}                                                                                  

event void Timer2.fired()                                                                                      

{                                                                                    

call Leds.led2Toggle();                                                           

} 

  Because it uses three instances of the Timer interface, BlinkC must implement 

three instances of Timer.fired()event. When implementing or invoking an 
interface function, the function name is always interface.function. As 

BlinkC's three Timer instances are named Timer0, Timer1, and Timer2, it 

implements the three functions Timer0.fired, Timer1.fired, and 
Timer2.fired. 

 

5.4 Tasks 

  All of the code we've looked at so far is synchronous. It runs in a single execution 
context and does not have any kind of pre-emption. That is, when synchronous 
(sync) code starts running, it does not relinquish the CPU to other sync code until it 
completes. This simple mechanism allows the TinyOS scheduler to minimize its RAM 
consumption and keeps sync code very simple. However, it means that if one piece 
of sync code runs for a long time, it prevents other sync code from running, which 
can adversely affect system responsiveness. For example, a long-running piece of 
code can increase the time it takes for a mote to respond to a packet. So far, all of 
the examples we've looked at have been direct function calls. System components, 
such as the boot sequence or timers, signal events to a component, which takes 
some action (perhaps calling a command) and returns. In most cases, this 
programming approach works well. Because sync code is non-preemptive ,however, 
this approach does not work well for large computations. A component needs to be 
able to split a large computation into smaller parts, which can be executed one at a 
time. Also, there are times when a component needs to do something, but it's fine to 
do it a little later. Giving TinyOS the ability to defer the computation until later can 
let it deal with everything else that's waiting first. Tasks enable components to 
perform general-purpose "background" processing in an application. A task is a 
function which a component tells TinyOS to run later, rather than now. A task is 
declared in the implementation module using the syntax  

task void taskname() { ... }  
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where taskname() is whatever symbolic name we want to assign to the task. 

Tasks must return void and may not take any arguments. To dispatch a task for 
(later) execution, use the syntax  

post taskname(); 

  A component can post a task in a command, an event, or a task. Because they are 
the root of a call graph ,  tasks can safely both call commands and signal events. We 
will see later that, by convention, commands do not signal events to avoid creating 
recursive loops across component boundaries (e.g., if command X in component 1 
signals event Y in component 2, which itself calls command X in component 1). These 
loops would be hard for the programmer to detect (as they depend on how the 
application is wired) and would lead to large stack usage. The post operation places 

the task on an internal task queue which is processed in FIFO order. When a task is 
executed, it runs to completion before the next task is run. Therefore, and as the 
above examples showed, a task should not run for long periods of time. Tasks do not 
preempt each other, but a task can be preempted by a hardware interrupts (which 
we haven't seen yet). In case we need to run a series of long operations, we should 
dispatch a separate task for each operation, rather than using one big task. The post 
operation returns an error_t, whose value is either SUCCESS or FAIL. A post 

fails if and only if the task is already pending to run (it has been posted successfully 
and has not been invoked yet). 

5.5 Radio communication 

  TinyOS provides a number of interfaces to abstract the underlying communications 
services and a number of components that provide(implement) these interfaces. All 
of these interfaces and components use a common message buffer abstraction, 
called  message_t, which is implemented as a nesC struct (similar to a C 
struct). message_t is an abstract data type, whose members are read and written 

using accessor and mutator functions. 

typedef nx_struct message_t {                                                           

nx_uint8_t header[sizeof(message_header_t)];                                  

nx_uint8_t data[TOSH_DATA_LENGTH];                                           

nx_uint8_t footer[sizeof(message_footer_t)];                                             

nx_uint8_t metadata[sizeof(message_metadata_t)];                                         

} message_t; 

5.5.1 Basic Communications Interfaces 

  There are a number of interfaces and components that use message_t as the 

underlying data structure.Let's take a look at some of the interfaces that are in the 
tos/interfaces directory to familiarize ourselves with the general functionality 
of the communications system:  
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• Packet   - Provides the basic accessors for the message_t abstract data type. 

This interface provides commands for clearing a message's contents, getting its 
payload length, and getting a pointer to its payload area.  

• Send   - Provides the basic address-free message sending interface. This interface 

provides commands for sending a message and canceling a pending message send. 
The interface provides an event to indicate whether a message was sent successfully 
or not. It also provides convenience functions for getting the message's maximum 
payload as well as a pointer to a message's payload area.  

• Receive   - Provides the basic message reception interface. This interface 

provides an event for receiving messages. It also provides, for convenience, 
commands for getting a message's payload length and getting a pointer to a 
message's payload area. 

5.5.2 Active Message Interfaces 

  Since it is very common to have multiple services using the same radio to 
communicate, TinyOS provides the Active Message (AM) layer to multiplex access to 
the radio. The term "AM type" refers to the field used for multiplexing. AM types are 
similar in function to the Ethernet frame type field, IP protocol field, and the UDP 
port in that all of them are used to multiplex access to a communication service. AM 
packets also includes a destination field, which stores an "AM address" to address 
packets to particular motes. Additional interfaces, also located in the 
tos/interfaces directory, were introduced to support the AM services:  

• AMPacket   - Similar to Packet, provides the basic AM accessors for the 

message_t abstract data type. This interface provides commands for getting a 

node's AM address, an AM packet's destination,and an AM packet's type. Commands 
are also provides for setting an AM packet's destination and type, and checking 
whether the destination is the local node.  

• AMSend   - Similar to Send, provides the basic Active Message sending interface. 

The key difference between AMSend and Send is that AMSend takes a destination 

AM address in its send command. 

5.5.3 Components 

  A number of components implement the basic communications and active message 
interfaces. Let's take a look at some of the components in the /tos/system 
directory. We should be familiar with these components because our code needs to 
specify both the interfaces our application uses as well as the components which 
provide(implement) those interfaces:  



81 
 

• AMReceiverC - Provides the following interfaces: Receive, Packet, and 

AMPacket.  

• AMSenderC   - Provides AMSend, Packet, AMPacket, and 

PacketAcknowledgements as Acks.  

• AMSnooperC   - Provides Receive, Packet, and AMPacket.  

• AMSnoopingReceiverC   - Provides Receive, Packet, and AMPacket.  

• ActiveMessageAddressC   - Provides commands to get and set the node's 

active message address. This interface is not for general use and changing a node's 
active message address can break the network stack, so we best avoid using it unless 
we know what we are doing. 

5.5.4 Sending a Message over the Radio 

  Our message will send both the node id and the counter value over the radio. 
Rather than directly writing and reading the payload area of the message_t with 
this data, we will use a structure to hold them and then use structure assignment to 
copy the data into the message payload area. Using a structure allows reading and 
writing the message payload more conveniently when our message has multiple 
fields or multi-byte fields (like uint16_t or uint32_t) because we can avoid 

reading and writing bytes from/to the payload using indices and then shifting and 
adding (e.g. uint16_t x = data[0] << 8 + data[1]). Even for a 

message with a single field, we  should get used to using a structure because if we 
ever add more fields to our message or move any of the fields around, we will need 
to manually update all of the payload position indices if we read and write the 
payload at a byte level. Using structures is straightforward. The following defines a 
message structure with a uint16_t node id and a uint16_t counter in 
the payload:  

typedef nx_struct BlinkToRadioMsg { 

nx_uint16_t nodeid;                                                        

nx_uint16_t counter; 

} BlinkToRadioMsg; 

  Given we are familiar with C structures, this syntax  looks quite familar but the 
nx_prefix on the keywords struct and uint16_t stands out a little bit. The 

nx_ prefix is specific to the nesC language and signifies that the struct and 

uint16_t are network types . Network types have the same representation on all 
platforms. The nesC compiler generates code that transparently reorders access to 
nx_ data types and eliminates the need to manually address endianness and 

alignment (extra padding in structs present on some platforms) issues. 
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  We will implement a new application, called BlinkToRadioC which will 

periodically broadcast a counter value.Now that we have defined a message type for 
our application, BlinkToRadioMsg, we will next see how to send the message 
over the radio. 

Let's walk through the steps, one-by-one:  

1. We will use the AMSend interface to send packets as well as the Packet and 

AMPacket interfaces to access the message_t abstract data type. We need to 
start the radio using the ActiveMessageC.SplitControl interface. 

module BlinkToRadioC {                                                                                                                          

... 

uses interface Packet;                                                                                                                          

uses interface AMPacket;                                                                                                                      

uses interface AMSend;                                                                                                                             

uses interface SplitControl as AMControl;                                                                                              

} 

  Note that SplitControl has been renamed to AMControl using the as 

keyword. nesC allows interfaces to be renamed in this way for several reasons. First, 
it often happens that two or more components that are needed in the same module 
provide the same interface. The as keyword allows one or more such names to be 

changed to distinct names so that they can each be addressed individually. Second, 
interfaces are sometimes renamed to something more meaningful. In our case, 
SplitControl is a general interface used for starting and stopping components, but 
the name AMControl is a mnemonic to remind us that the particular instance of 
SplitControl is used to control the ActiveMessageC component.  

2. We need a message_t to hold our data for transmission. These declarations 

need to be added in the implementation block of BlinkToRadioC.nc:  

implementation { 

bool busy = FALSE;                                                                                                                                      

message_t pkt;                                                                                                                                                 

... 

} 

  Next, we need to handle the initialization of the radio. The radio needs to be 
started when the system is booted so we must call AMControl.start inside 

Boot.booted. The only complication is that in our current implementation, we 
start a timer inside Boot.booted and we are planning to use this timer to send 

messages over the radio but the radio can't be used until it has completed starting 
up. The radio signals that it has completed starting through the 
AMControl.startDone event. To ensure that we do not start using the radio 
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before it is ready, we need to postpone starting the timer until after the radio has 
completed starting. We can accomplish this by moving the call to start the timer, 
which is now inside Boot.booted, to AMControl.startDone, giving us a new 

Boot.booted with the following body:  

event void Boot.booted() {                                                                                                                                  

call AMControl.start();                                                                                                                               

} 

  We also need to implement the AMControl.startDone and 

AMControl.stopDone event handlers, which have the following bodies:  

event void AMControl.startDone(error_t err) { 

if (err == SUCCESS) {                                                                                                                                         

call Timer0.startPeriodic(TIMER_PERIOD_MILLI);                                                                               

}                                                                                                                                                                   

else {                                                                                                                                                      

call AMControl.start();                                                                                                                             

}                                                                                                                                                                        

}                                                                                                                                                      

event void AMControl.stopDone(error_t err) {                                                                                          

} 

  If the radio is started successfully, AMControl.startDone will be called with 
the error_t parameter set to a value of SUCCESS. If the radio starts successfully, 

then it is appropriate to start the timer. If, however, the radio does not start 
successfully, then it obviously cannot be used so we try again to start it. This process 
continues until the radio starts, and ensures that the node software doesn't run until 
the key components have started successfully. If the radio doesn't start at all, a 
human operator might notice that the LEDs are not blinking as they are supposed to, 
and might try to debug the problem.  

3. Since we want to transmit the node's id and counter value every time the timer 
fires, we need to add some code to the Timer0.fired event handler:  

event void Timer0.fired() {                                                                                                                        

...                                                                                                                                                                    

if (!busy) {                                                                                                                           

BlinkToRadioMsg* btrpkt = (BlinkToRadioMsg*)(call 

Packet.getPayload(&pkt,NULL));                                                              

btrpkt->nodeid = TOS_NODE_ID;                                                                                      

btrpkt->counter = counter;                                                                                                                                

if (call AMSend.send(AM_BROADCAST_ADDR, &pkt, 

sizeof(BlinkToRadioMsg)) ==SUCCESS) {busy = TRUE;}                                                                                                                     

}                                                                                                                                                                  

} 
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  This code performs several operations. First, it ensures that a message transmission 
is not in progress by checking the busy flag. Then it gets the packet's payload portion 
and casts it to a pointer to the previously declared BlinkToRadioMsg external 

type. It can now use this pointer to initialise the packet's fields, and then send the 
packet by calling AMSend.send. The packet is sent to all nodes in radio range by 
specyfing AM_BROADCAST_ADDR as the destination address. Finally, the test 

against SUCCESS verifies that the AM layer accepted the message for transmission. 

If so, the busy flag is set to true. For the duration of the send attempt, the packet is 
owned by the radio, and user code must not access it. 

4. Looking through the Packet, AMPacket, and AMSendinterfaces, we see 

that there is only one event we need to worry about, AMSend.sendDone:  

/*** Signaled in response to an accepted send request. 

msg is the message buffer sent, and error indicates 

whether the send was successful. 

@param msg the packet which was submitted as a send 

request 

 @param error SUCCESS if it was sent successfully, FAIL 

if it was not, ECANCEL if it was cancelled @see send 

@see cancel***/ 

event void sendDone(message_t* msg, error_t error); 

  This event is signaled after a message transmission attempt. In addition to signaling 
whether the message was transmitted successfully or not, the event also returns 
ownership of msg from AMSend back to the component that originally called the 

AMSend.send command. Therefore sendDone handler needs to clear the busy 
flag to indicate that the message buffer can be reused:  

event void AMSend.sendDone(message_t* msg, error_t error) 

{                                                             

if (&pkt == msg) {                                                                                                                                       

busy = FALSE;                                                                                                                                                                   

}                                                                                                                                                                          

} 

  Note the check to ensure the message buffer that was signaled is the same as the 
local message buffer.This test is needed because if two components wire to the 
same AMSend, bothwill receive a sendDone event after either component issues a 

send command. Since a component writer has no way to enforce that her 
component will not be used in this manner, a defensive style of programming that 
verifies that the sent message is the same one that is being signaled is required.  
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5. The following lines can be added just below the existing components declarations 
in the implementation block of BlinkToRadioAppC.nc:  

implementation {                                                                                                                                          

...                                                                                                                                                     

components ActiveMessageC;                                                                                                  

components new AMSenderC(AM_BLINKTORADIO);                                                                        

...                                                                                                                                                                    

} 

  These statements indicate that two components, ActiveMessageC and 

AMSenderC, will provide the needed interfaces. However, note the slight 
difference in their syntax. ActiveMessageC is a singleton component that is 

defined once for each type of hardware platform. AMSenderC is a generic, 

parameterized component. The new keyword indicates that a new instance of 
AMSenderC will be created. The AM_BLINKTORADIO parameter indicates the AM 

type of the AMSenderC. We can extend the enum in the BlinkToRadio.h 

header file to incorporate the value of 

AM_BLINKTORADIO:                                                                                                                        

enum {                                                                                                                          

AM_BLINKTORADIO = 6,                                                                                                                       

TIMER_PERIOD_MILLI = 250                                                                                                                                

}; 

6. The following lines will wire the used interfaces to the providing components. 
These lines should be added to the bottom of the implementation block of 
BlinkToRadioAppC.nc:  

implementation {                                                                                                                                         

...                                                                                                                                                     

App.Packet -> AMSenderC;                                                                                             

App.AMPacket -> AMSenderC;                                                                                                 

App.AMSend -> AMSenderC;                                                                                               

App.AMControl -> ActiveMessageC; 

5.5.5 Receiving a Message over the Radio 

  Now that we have an application that is transmitting messages, we can add some 
code to receive and process the messages. Below we add code that, upon receiving a 
message, sets the LEDs to the three least significant bits of the counter in the 
message.  

1. We will use the Receive interface to receive packets.  

module BlinkToRadioC {                                                                                                                          

...                                                                                                                                                             
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uses interface Receive;                                                                                                                              

} 

2. We need to implement the Receive.receive event handler:  

event message_t* Receive.receive(message_t* msg, void* 

payload, uint8_t len) {                          if (len 

== sizeof(BlinkToRadioMsg)) {                                                                         

BlinkToRadioMsg* btrpkt = (BlinkToRadioMsg*)payload;                                                                

call Leds.set(btrpkt->counter);                                                                                                                

}                                                                                                                                                                    

return msg;                                                                                                                                                

} 

  The receive event handler performs some simple operations. First, we need to 

ensure that the length of the message is what is expected. Then, the message 
payload is cast to a structure pointer of type BlinkToRadioMsg*and assigned to 
a local variable. Then, the counter value in the message is used to set the states of 
the three LEDs. Note that we can safely manipulate the counter variable outside 

of an atomic section. The reason is that receive event executes in task context rather 
than interrupt context (events that have the async keyword can execute in 

interrupt context). Since the TinyOS execution model allows only one task to execute 
at a time, if all accesses to a variable occur in task context, then no race conditions 
will occur for that variable. Since all accesses to counter occur in task context, no 
critical sections are needed when accessing it.  

3. The following lines can be added just below the existing components declarations 
in the implementation block of BlinkToRadioAppC.nc:  

implementation {                                                                                                                                      

...                                                                                                                                              

components new AMReceiverC(AM_BLINKTORADIO);                                                                            

...                                                                                                                                                                  

} 

  This statement means that a new instance of AMReceiverC will be created. 

AMReceiver is a generic, parameterized component. The new keyword indicates 
that a new instance of AMReceiverC will be created. The AM_BLINKTORADIO 

parameter indicates the AM type of the AMReceiverC and is chosen to be the 

same as that used for the AMSenderC used earlier, which ensures that the same 
AM type is being used for both transmissions and receptions. AM_BLINKTORADIO 

is defined in the BlinkToRadio.h header file.  

4. Update the wiring by insert the following line just before the closing brace of the 
implementation block in BlinkToRadioAppC:  

implementation {                                                                                                                                       

...                                                                                                                                                             
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App.Receive -> AMReceiverC;                                                                                                                

} 

  The Blink Application and its derivative applications we presented above were a 
small presentation of nesC’s basic features . Most of those features are included in 
our project .Thus we got a better understanding of how nesC language actually  
works ,how it interacts with C language and in what way we will use TinyOS to better 
implement our application. 
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Chapter 6 

The MSPSIM Simulator 

 
    Software development for wireless sensor networks is a challenging and time 

consuming task. The resource limited hardware with limited I/O and debugging 

abilities combined with the often cumbersome hardware debugging tools makes 

low-level debugging on the target hardware difficult. We present MSPSim , an 

extensible sensor board platform and MSP430 instruction level simulator that 

simulates sensor boards with peripherals for the purpose of reducing development 

and debugging time .The use of a simulator also enables testing without access to 

the target hardware and makes more advanced debugging and instrumenting 

possible. 

6.1 The Simulator 

   Due to the distributed nature of sensor networks and resource-constraints of 

sensor nodes, code development for wireless sensor network is a challenging and 

time consuming task. Furthermore, the application development and debugging 

tools are still cumbersome. One of the most commonly used methods for debugging 

sensor nodes is using on-chip emulation via JTAG that makes it possible to single-

step and debug a running application on the target hardware. This is useful for 

understanding execution patterns, stack usage, etc, but less useful for debugging 

communication, sensor drivers, etc. For the development of wireless sensor network 

applications, system simulators exist that simplify the development of algorithms 

and enable researcher to study the algorithm’s behavior and interaction in a 

controlled environment .Cross-level simulation enables simultaneous simulation at 

different levels of the sensor network and hence supports simultaneous low-level 

debugging and application development . For cross-level simulation of our MSP430-

based sensor node platforms we required an extensible instruction level simulation. 

Towards, this end, we use MSPsim. As Avrora , MSPsim is a sensor network simulator 

simulating nodes at the instruction-level, but for the MSP430. Unlike ATEMU that 

emulates the operations of individual nodes and simulates communication between 

them , MSPsim is designed for instruction-level simulation but can by design be 

incorporated in COOJA’s cross-level simulation environment. Therefore , MSPSim is 

all about an extensible instruction level simulator for the MSP430 microcontroller 
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that is intended to be used as a component in a larger sensor net-work simulation 

system supporting cross-level simulation . For this reason MSPsim is designed to run 

multiple instances of the simulator in a single process unlike other simulators such as 

the GDB MSP430 simulator . MSPsim also contains a sensor board simulator that 

simulates hardware peripherals such as sensors, communication ports, LEDs, and 

sound devices such as a beeper. The design of MSPsim, together with its 

implementation in Java, makes it easy to adapt the simulator to new sensor boards. 

   The MSPsim is a Java-based instruction level simulator for the MSP430 

microcontroller that simulates unmodified target platform firmware. Supports 

loading of IHEX and ELF firmware files, and has some tools for monitoring stack, 

setting breakpoints, and profiling .MSPsim is an instruction-level simulator which 

made it easy to achieve accurate timing simulation. Further, MSPsim can run 

unmodified target platform firmware. The simulator is easily extensible with 

peripheral devices making it possible to simulate various types of MSP430 based 

sensor nodes. In addition to simulate the MSP430 and sensor board hardware, 

MSPsim can show a graphical representation of the sensor board in an on-screen 

window. LEDs on the sensor board are displayed using the correct colors. The 

graphical output allows a system designed to visually verify that an application is 

correctly simulated by inspection of the LEDs. 

 

6.1.1 Main Features 

The main features of MSPSim are numbered below: 

1) Instruction level emulation of MSP430 microprocessor 

2) Supports loading of ELF and IHEX files 

3) Easy to add external components that emulates external HW 

4) Supports monitoring of registers, adding breakpoints, etc. 

5) Built-in profiling of executed code 

6) Statistics for various components modes (on/off, LPM modes, etc). 

7) Emulates some external hardware such as TR1001 and CC2420. 

8) Command Line Interface, CLI, for setting up breakpoints and output to files 

or windows. 

9) GDB remote debugging support (initial) 
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6.1.2 What is emulated of the MSP430 

a) CPU (instruction level simulation) 

b) Timer A/B subsystem 

c) USARTs 

d) Digital I/O 

e) Multiplication unit 

f) Basic A/D subsystem (not complete) 

g) Watchdog 

 

 

 

 

 

6.2 Sensor Board Simulation 

    We will simulate a simple application on a telosb Sky mote with the mspsim .One 

of the design objectives of the MSPsim simulator is to simplify the adaptation to 

different types of sensor node platforms. To add support for a new sensor node 

platform only implementations of peripherals such as sensors, actuators such as 

beepers or LEDs, and radio and communication peripherals are needed. The 

implementation of those peripherals are typically relatively easy to make as many of 

them do not need to conform to strict timing requirements .We will simulate the 

fundamental application Blink , which we presented on an earlier chapter .As we 

recall , Blink application simply causes the red LED on the mote to turn on and off at 

1Hz .Well , this is not exactly the case here because we use a different version of the 

Blink application from TinyOS – 2.1.2 to better fit the telosb mote and give us a 

better understanding of the simulation .More specifically , the Blink application we 

used causes the blue LED on the mote to turn on and off at 1Hz , the green Led on 

the mote to turn on and off at 2Hz and the red LED on the mote to turn on and off at 

4Hz .In other words , it is a binary 3-bit counter from 0 to 7 decimal .A blinking LED 

account for binary ‘’1’’ and o non-blinking LED accounts for binary ‘’0’’ .It’s function 

is portrayed on table 6.1 below. 
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BLUE LED GREEN LED RED LED COUNTER(BIN) COUNTER(DEC) 

0 0 0 000 0 

0 0 1 001 1 

0 1 0 010 2 

0 1 1 011 3 

1 0 0 100 4 

1 0 1 101 5 

1 1 0 110 6 

1 1 1 111 7 

Table 6.1 Function of Blink application 

First we show the BlinkAppC configuration 

configuration BlinkAppC 

{ 

} 

implementation 

{ 

  components MainC, BlinkC, LedsC; 

  components new TimerMilliC() as Timer0; 

  components new TimerMilliC() as Timer1; 

  components new TimerMilliC() as Timer2; 

 

 

  BlinkC -> MainC.Boot; 

 

  BlinkC.Timer0 -> Timer0; 

  BlinkC.Timer1 -> Timer1; 

  BlinkC.Timer2 -> Timer2; 

  BlinkC.Leds -> LedsC; 

} 

The application includes the components MainC,BlinkC ,LedsC and 

TimerMilliC.Then it creates three instances of the TimerMilliC 

Timer0,Timer1 and Timer2. 

components MainC, BlinkC, LedsC; 

components new TimerMilliC() as Timer0; 

components new TimerMilliC() as Timer1; 

components new TimerMilliC() as Timer2; 

Afterwards , it wires BlinkC to MainC.Boot setting BlinkC as the main 

component. 

 

BlinkC -> MainC.Boot; 
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Next , it wires each timer of BlinkC with an instant of TimerMilliC 

BlinkC.Timer0 -> Timer0; 

BlinkC.Timer1 -> Timer1; 

BlinkC.Timer2 -> Timer2; 

 

Finally, it wires the Leds of BlinkC to the LedsC component 

BlinkC.Leds -> LedsC; 

 

 

Below , we present  the module BlinkC. 

 

#include "Timer.h" 

 

module BlinkC() 

{ 

  uses interface Timer<TMilli> as Timer0; 

  uses interface Timer<TMilli> as Timer1; 

  uses interface Timer<TMilli> as Timer2; 

  uses interface Leds; 

  uses interface Boot; 

} 

implementation 

{ 

  event void Boot.booted() 

  { 

    call Timer0.startPeriodic( 250 ); 

    call Timer1.startPeriodic( 500 ); 

    call Timer2.startPeriodic( 1000 ); 

  } 

 

  event void Timer0.fired() 

  { 

    dbg("BlinkC", "Timer 0 fired @ %s.\n", 

sim_time_string()); 

    call Leds.led0Toggle(); 

  } 

   

  event void Timer1.fired() 



94 
 

  { 

    dbg("BlinkC", "Timer 1 fired @ %s \n", 

sim_time_string()); 

    call Leds.led1Toggle(); 

  } 

   

  event void Timer2.fired() 

  { 

    dbg("BlinkC", "Timer 2 fired @ %s.\n", 

sim_time_string()); 

    call Leds.led2Toggle(); 

  } 

} 

It uses interfaces Timer ,Leds and Boot  

{ 

  uses interface Timer<TMilli> as Timer0; 

  uses interface Timer<TMilli> as Timer1; 

  uses interface Timer<TMilli> as Timer2; 

  uses interface Leds; 

  uses interface Boot; 

} 

 

  Calls the Timer command 3 times for each timer  when booted .Each timer is set 

with different fire limit.Timer0 is fired with 250ms , Timer1 with 500ms and 

Timer2 with 1000ms 

    event void Boot.booted() 

  { 

    call Timer0.startPeriodic( 250 ); 

    call Timer1.startPeriodic( 500 ); 

    call Timer2.startPeriodic( 1000 ); 

  } 

 

If a Timerx is fired , the respective x LED Blinks 

  event void Timerx.fired() 

  { 

    dbg("BlinkC", "Timer x fired @ %s.\n", 

sim_time_string()); 

    call Leds.ledxToggle(); 

  } 
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  As we mentioned in the installation process of the mspsim , in order to simulate an 

application on a mote , first we need to compile the application on this mote with 

the msp430-gcc . After having install the msp430-gcc version 4.6.3 , we go to Blink 

application folder which includes the BlinkC configuration (BlinkAppC.nc) , the 

BlinkC module (BlinkC.nc) and the Makefile. Here we type the command: 

make telosb 

  Then , a folder named build is created inside the Blink application folder . This 

folder contains folder named telosb .The latter includes an executable file named 

main.exe. 

  After we rename the file to main.elf (in order an executable file to be simulated 

with mspsim it must end with .elf ) with the command: 

mv main.exe main.elf  

Finally while we are in Blink/build/telosb , we run the command: 

mspsim main.elf 

The mspsim simulator is activated and the simulation has started 

The message : 

Flash got reset! MSPSim>                                                                                                        

Autoloading script: /home/homedirectory/mspsim/scripts/autorun.sc 

MSPSim 0.97 starting firmware : main.elf  

is displayed and the command line of mspsim is ready: 

MSPSim> 

 

Also , the following 5 Windows have opened: 
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 Sky 

 

Figure 6.1a Sky window 

  The Sky window offers an optical-hardware representation of the mote .On the 

upper left side we can see the 3 Blinking Leds. 

 

 

 USART1 Port Output 

 

Figure 6.1b USART 1Port Output window 
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  The USART1 Port Output concerns the usb port output that would function if we 

had an actual mote inserted on a usb port 

 Duty Cycle Monitor 

 

Figure 6.1c Duty Cycle Monitor window 

 

  The Duty Cycle Monitor shows the duty cycle of the LEDS(red color) , the duty cycle 

of the listening-sensing activity(green color) , the duty cycle of the Transmitting 

activity (Blue color) and the duty cycle of the CPU(blackcolor) 

 Stack Monitor 

 

Figure 6.1d Stack Monitor window 
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  The Stack monitor shows the Max Stack(red color) and the Stack (green color) 

 MSPSim monitor 

 

Figure 6.1e MSPSimMonitor window 

  The MSPSim monitor window shows the steps executed in assembly code. It offers 

step by step execution , debug monitor making it visible on the command line and 

start-stop actions. 

 

In the command line , If we execute: 

MSPSim>profile 

  The MSPSim command profile can be useful to see the number of cycles 

elapsed in each function of the program. For our Blink application after a certain 

period of time the output is shown in Figure 6.2 
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Figure 6.2: MSPSim terminal command line 

  Also , MSPSim allows to watch the variable values evolution during the program 

execution with the command symbol <application> . It will be illustrated 

profoundly during our project. 

 

 Another command we will be using in our project is the duty command: 

MSPSim>duty [freq] [chip] 

Duty is useful for viewing each chips duty cycle at a frequency of our choice. 
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Chapter 7 

Design 
  As we mentioned in previous chapters , the source application we will be using 
from the TinyOS libraries is the AccelECG application. Our new application will be 

named ECG application.In addition to the ECG app , we derived 3 more apps by 
modifying the ECG’s code. The ECG-cordic , the ECG-lookup and the ECG-lookup-
interpolate app.The following chapters describe these four applications in-detail. 

 

7.1 ECG App 

 

7.1.1 ECGC.nc 

 
  Below we present and analyse  the code for the module ECGC.nc. The ECG is slightly 
different than the AccelECG . More specifically , we added removed the three 
accelerometer channels and replaced them with 3 ECG channels and also added 3 
more ECG channels which adds up to 8 ECG channels.In other words the ECG app 
sends 8 ECG channels with each packet. 
ECGC.nc 

 
/* 

 * Copyright (c) 2007, Intel Corporation 

 * All rights reserved. 

 *  

 * Redistribution and use in source and binary forms, with or 

without 

 * modification, are permitted provided that the following 

conditions are met: 

 *  

 * Redistributions of source code must retain the above 

copyright notice,  

 * this list of conditions and the following disclaimer.  

 * 

 * Redistributions in binary form must reproduce the above 

copyright notice, 

 * this list of conditions and the following disclaimer in the 

documentation 

 * and/or other materials provided with the distribution.  

 * 

 * Neither the name of the Intel Corporation nor the names of 

its contributors 
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 * may be used to endorse or promote products derived from 

this software  

 * without specific prior written permission.  

 * 

 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND 

CONTRIBUTORS "AS IS" 

 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 

LIMITED TO, THE  

 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 

PARTICULAR PURPOSE  

 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 

CONTRIBUTORS BE  

 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 

EXEMPLARY, OR 

 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 

PROCUREMENT OF  

 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 

PROFITS; OR BUSINESS  

 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 

LIABILITY, WHETHER IN 

 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE 

OR OTHERWISE) 

 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 

ADVISED OF THE  

 * POSSIBILITY OF SUCH DAMAGE. 

 * 

 * Author: Adrian Burns 

 *         November, 2007 

 */ 

 

 

/*************************************************************

********************** 

 

   This app uses Bluetooth to stream 8 ECG channels  

   of data to a BioMOBIUS PC application.  

   Tested on SHIMMER Base Board Rev 1.3, SHIMMER ECG board Rev 

1.1. 

    

   LOW_BATTERY_INDICATION if defined stops the app streaming 

data just after the  

   battery voltage drops below the regulator value of 3V. 

 

   Default Sample Frequency: 100 hz 

    

   Packet Format: 

         BOF| Sensor ID | Data Type | Seq No. | TimeStamp | 

Len | ECG | ECG  | ECG  | ECG   | ECG  | ECG  | ECG   | ECG  | 

Dummy|  CRC | EOF 

   Byte:  1 |    2      |     3     |    4    |     5-6   |  7  

| 8-9 | 10-11| 12-13| 14-15 | 16-17| 18-19| 20-21 | 22-23| 24-

25| 26-27| 28 

 

 

**************************************************************

*********************/ 
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/* 

 * @author Adrian Burns 

 * @date November, 2007 

 * 

 * @author Mike Healy 

 * @date May 13, 2009 - ported to TinyOS 2.x  

 * 

 * @author Steve Ayer 

 * @date   June, 2010 

 * mods to use shimmerAnalogSetup interface and new GyroBoard 

module 

 */ 

 

#include "Timer.h" 

#include "ECG.h" 

#include "crc.h" 

#include "RovingNetworks.h" 

 

module ECGC { 

   uses { 

      interface Boot; 

      interface FastClock; 

      interface Init as FastClockInit; 

      interface Init as BluetoothInit; 

      interface Leds; 

      interface Timer<TMilli> as SetupTimer; 

      interface Timer<TMilli> as ActivityTimer; 

      interface Timer<TMilli> as SampleTimer; 

      interface LocalTime<T32khz>; 

      interface StdControl as BTStdControl; 

      interface Bluetooth; 

      interface shimmerAnalogSetup; 

      interface Msp430DmaChannel as DMA0; 

   } 

}  

 

implementation { 

   extern int sprintf(char *str, const char *format, ...) 

__attribute__ ((C)); 

 

#ifdef LOW_BATTERY_INDICATION 

   //#define DEBUG_LOW_BATTERY_INDICATION 

   /* during testing of the the (AVcc-AVss)/2 value from the 

ADC on various SHIMMERS, to get a reliable cut off point  

      to recharge the battery it is important to find the 

baseline (AVcc-AVss)/2 value coming from the ADC as it varies  

      from SHIMMER to SHIMMER, however the range of 

fluctuation is pretty constant and (AVcc-AVss)/2 provides an 

accurate  

      battery low indication that prevents getting any voltage 

skewed data from the accelerometer or add-on board sensors */ 

#define TOTAL_BASELINE_BATT_VOLT_SAMPLES_TO_RECORD 1000 

#define BATTERY_LOW_INDICATION_OFFSET 20 /* (AVcc - AVss)/2 = 

Approx 3V-0V/2 = 1.5V, 12 bit ADC with 2.5V REF, 

                                              4096/2500 = 

1mV=1.6384 units */  
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   bool need_baseline_voltage, linkDisconnecting; 

   uint16_t num_baseline_voltage_samples, baseline_voltage; 

   uint32_t sum_batt_volt_samples; 

 

#ifdef DEBUG_LOW_BATTERY_INDICATION 

   #error "were going for debug mode yea?, comment me out 

then" 

   uint16_t debug_counter; 

#endif /* DEBUG_LOW_BATTERY_INDICATION */ 

 

#endif /* LOW_BATTERY_INDICATION */ 

 

#define FIXED_PACKET_SIZE 28 

#define FIXED_PAYLOAD_SIZE 12 

   uint8_t tx_packet[(FIXED_PACKET_SIZE*2)+1]; /* (*2)twice 

size because of byte stuffing */ 

                                               /* (+1)MSP430 

CPU can only read/write 16-bit values at even addresses, */  

                                               /* so use an 

empty byte to even up the memory locations for 16-bit values 

*/ 

   const uint8_t personality[17] = { 

      0,1,2,3,4,5,0xFF,0xFF, 

      SAMPLING_50HZ,SAMPLING_50HZ,SAMPLING_50HZ,SAMPLING_50HZ, 

      

SAMPLING_50HZ,SAMPLING_50HZ,SAMPLING_0HZ_OFF,SAMPLING_0HZ_OFF,

FRAMING_EOF 

   }; 

 

   norace uint8_t current_buffer = 0; 

   uint16_t sbuf0[6], sbuf1[6], timestamp0, timestamp1; 

   bool enable_sending, command_mode_complete, 

activity_led_on; 

 

/* default sample frequency every time the sensor boots up */ 

   uint16_t sample_freq = SAMPLING_200HZ; 

   uint8_t NBR_ADC_CHANS; 

   

   /* Internal function to calculate 16 bit CRC */ 

   uint16_t calc_crc(uint8_t *ptr, uint8_t count) { 

      uint16_t crc; 

      crc = 0; 

      while (count-- > 0) 

         crc = crcByte(crc, *ptr++); 

 

      return crc; 

   } 

 

   void init() { 

#ifdef USE_8MHZ_CRYSTAL 

     call FastClockInit.init(); 

     call FastClock.setSMCLK(1); 

#endif /* USE_8MHZ_CRYSTAL */ 

 

      call BluetoothInit.init(); 
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      call shimmerAnalogSetup.addECGInputs(); 

      call shimmerAnalogSetup.finishADCSetup(sbuf0); 

 

      NBR_ADC_CHANS = call 

shimmerAnalogSetup.getNumberOfChannels(); 

 

      atomic { 

         memset(tx_packet, 0, (FIXED_PACKET_SIZE*2)); 

         enable_sending = FALSE; 

         command_mode_complete = FALSE; 

         activity_led_on = FALSE; 

      } 

 

      call Bluetooth.disableRemoteConfig(TRUE); 

   } 

 

   event void Boot.booted() { 

      init(); 

      call BTStdControl.start(); 

      /* so that the clinicians know the sensor is on */ 

      call Leds.led0On(); 

#ifdef LOW_BATTERY_INDICATION 

      /* initialise baseline voltage measurement stuff */  

      need_baseline_voltage = TRUE; 

      num_baseline_voltage_samples = baseline_voltage = 

sum_batt_volt_samples = 0; 

      call Leds.led0On(); 

#ifdef DEBUG_LOW_BATTERY_INDICATION 

      debug_counter = 0; 

#endif /* DEBUG_LOW_BATTERY_INDICATION */ 

#endif /* LOW_BATTERY_INDICATION */ 

   } 

 

#ifdef LOW_BATTERY_INDICATION 

   task void sendBatteryLowIndication() { 

      uint16_t crc; 

      char batt_low_str[] = "BATTERY LOW!"; 

 

      /* stop all sensing - battery is below the threshold */ 

      call SetupTimer.stop(); 

      call ActivityTimer.stop(); 

      call shimmerAnalogSetup.stopConversion(); 

      call DMA0.stopTransfer(); 

      call Leds.led1Off(); 

 

      /* send the battery low indication packet to BioMOBIUS 

*/ 

      tx_packet[1] = FRAMING_BOF; 

      tx_packet[2] = SHIMMER_REV1; 

      tx_packet[3] = STRING_DATA_TYPE; 

      tx_packet[4]++; /* increment sequence number */  

      atomic tx_packet[5] = timestamp0 & 0xff; 

      atomic tx_packet[6] = (timestamp0 >> 8) & 0xff; 

      tx_packet[7] = FIXED_PAYLOAD_SIZE; 

      memcpy(&tx_packet[8], &batt_low_str[0], 12); 
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#ifdef DEBUG_LOW_BATTERY_INDICATION 

      tx_packet[8] = (baseline_voltage) & 0xff; 

      tx_packet[9] = ((baseline_voltage) >> 8) & 0xff; 

#endif /* DEBUG_LOW_BATTERY_INDICATION */ 

     

      crc = calc_crc(&tx_packet[2], (FIXED_PACKET_SIZE-

FRAMING_SIZE)); 

      tx_packet[FIXED_PACKET_SIZE - 2] = crc & 0xff; 

      tx_packet[FIXED_PACKET_SIZE - 1] = (crc >> 8) & 0xff; 

      tx_packet[FIXED_PACKET_SIZE] = FRAMING_EOF; 

 

      call Bluetooth.write(&tx_packet[1], FIXED_PACKET_SIZE); 

      atomic enable_sending = FALSE; 

 

      /* initialise baseline voltage measurement stuff */ 

      need_baseline_voltage = TRUE; 

      num_baseline_voltage_samples = baseline_voltage = 

sum_batt_volt_samples = 0; 

      call Leds.led0On(); 

   } 

 

   /* all samples are got so set the baseline voltage for this 

SHIMMER hardware */ 

   void setBattVoltageBaseline() { 

      baseline_voltage = (sum_batt_volt_samples / 

TOTAL_BASELINE_BATT_VOLT_SAMPLES_TO_RECORD); 

   } 

 

   /* check voltage level and if it is low then stop sampling, 

send message and disconnect */ 

   void checkBattVoltageLevel(uint16_t battery_voltage) { 

#ifndef DEBUG_LOW_BATTERY_INDICATION 

      if(battery_voltage < (baseline_voltage-

BATTERY_LOW_INDICATION_OFFSET)) { 

#else 

      if(debug_counter++ == 2500) { 

#endif /* DEBUG_LOW_BATTERY_INDICATION */ 

         linkDisconnecting = TRUE; 

      } 

   } 

 

   /* keep checking the voltage level of the battery until it 

drops below the offset */ 

   void monitorBattery() { 

      uint16_t battery_voltage; 

      if(current_buffer == 1) { 

         battery_voltage = sbuf0[5]; 

      } 

      else { 

         battery_voltage = sbuf1[5]; 

      } 

      if(need_baseline_voltage) { 

         num_baseline_voltage_samples++;       

         if(num_baseline_voltage_samples <= 

TOTAL_BASELINE_BATT_VOLT_SAMPLES_TO_RECORD) { 
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            /* add this sample to the total so that an average 

baseline can be obtained */ 

            sum_batt_volt_samples += battery_voltage; 

         } 

         else { 

            setBattVoltageBaseline(); 

            need_baseline_voltage = FALSE; 

            call Leds.led0Off(); 

         } 

      } 

      else { 

         checkBattVoltageLevel(battery_voltage); 

      } 

   } 

#endif /* LOW_BATTERY_INDICATION */ 

 

 

   /* The MSP430 CPU is byte addressed and little endian */ 

   /* packets are sent little endian so the word 0xABCD will 

be sent as bytes 0xCD 0xAB */ 

   void preparePacket() { 

      uint16_t *p_packet, *p_ADCsamples, crc; 

     

      tx_packet[1] = FRAMING_BOF; 

      tx_packet[2] = SHIMMER_REV1; 

      tx_packet[3] = PROPRIETARY_DATA_TYPE; 

      tx_packet[4]++; /* increment sequence number */  

 

      tx_packet[7] = FIXED_PAYLOAD_SIZE; 

 

      p_packet = (uint16_t *)&tx_packet[8]; 

       

      if(current_buffer == 1) { 

         p_ADCsamples = &sbuf0[0]; 

         tx_packet[5] = timestamp0 & 0xff; 

         tx_packet[6] = (timestamp0 >> 8) & 0xff; 

      } 

      else { 

         p_ADCsamples = &sbuf1[0]; 

         tx_packet[5] = timestamp1 & 0xff; 

         tx_packet[6] = (timestamp1 >> 8) & 0xff; 

      } 

      /* copy all the data samples into the outgoing packet */ 

      *p_packet++ = *p_ADCsamples++; //tx_packet[8] 

      *p_packet++ = *p_ADCsamples++; //tx_packet[10] 

      *p_packet++ = *p_ADCsamples++; //tx_packet[12] 

      *p_packet++ = *p_ADCsamples++; //tx_packet[14] 

      *p_packet++ = *p_ADCsamples++; //tx_packet[16] 

      *p_packet++ = *p_ADCsamples++; //tx_packet[18] 

      *p_packet++ = *p_ADCsamples++; //tx_packet[20] 

      *p_packet = *p_ADCsamples; //tx_packet[22] 

 

      /* spare room in the packet so send the battery voltage 

data */ 

      if(current_buffer == 1) { 

         tx_packet[18] = (sbuf0[5]) & 0xff; 
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         tx_packet[19] = ((sbuf0[5]) >> 8) & 0xff; 

      } 

      else { 

         tx_packet[18] = (sbuf1[5]) & 0xff; 

         tx_packet[19] = ((sbuf1[5]) >> 8) & 0xff; 

      } 

 

      crc = calc_crc(&tx_packet[2], (FIXED_PACKET_SIZE-

FRAMING_SIZE)); 

      tx_packet[FIXED_PACKET_SIZE - 2] = crc & 0xff; 

      tx_packet[FIXED_PACKET_SIZE - 1] = (crc >> 8) & 0xff; 

      tx_packet[FIXED_PACKET_SIZE] = FRAMING_EOF; 

   } 

 

   task void sendSensorData() { 

#ifdef LOW_BATTERY_INDICATION 

      monitorBattery(); 

#endif /* LOW_BATTERY_INDICATION */ 

 

      atomic if(enable_sending) { 

         preparePacket(); 

 

         /* send data over the air */ 

         call Bluetooth.write(&tx_packet[1], 

FIXED_PACKET_SIZE); 

         atomic enable_sending = FALSE; 

      } 

   } 

 

   task void startSensing() { 

      call ActivityTimer.startPeriodic(1000); 

       

      call SampleTimer.startPeriodic(sample_freq); 

   } 

 

   task void sendPersonality() { 

      atomic if(enable_sending) { 

         /* send data over the air */ 

         call Bluetooth.write(&personality[0], 17); 

         atomic enable_sending = FALSE; 

      } 

   } 

 

   task void stopSensing() { 

      call SetupTimer.stop(); 

      call SampleTimer.stop(); 

      call ActivityTimer.stop(); 

      call shimmerAnalogSetup.stopConversion(); 

      call DMA0.stopTransfer(); 

      call Leds.led1Off(); 

   } 

 

   async event void Bluetooth.connectionMade(uint8_t status) {  

      atomic enable_sending = TRUE; 

      call Leds.led2On(); 

   } 
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   async event void Bluetooth.commandModeEnded() {  

      atomic command_mode_complete = TRUE; 

   } 

     

   async event void Bluetooth.connectionClosed(uint8_t 

reason){ 

      atomic enable_sending = FALSE;     

      call Leds.led2Off(); 

      post stopSensing(); 

   } 

 

   task void startConfigTimer() { 

      call SetupTimer.startPeriodic(5000); 

   } 

 

   async event void Bluetooth.dataAvailable(uint8_t data){ 

      /* start capturing on ^G */ 

      if(7 == data) { 

         atomic if(command_mode_complete) { 

            post startSensing(); 

         } 

         else { 

            /* give config a chance, wait 5 secs */ 

            post startConfigTimer(); 

         } 

      } 

      else if (data == 1) { 

         post sendPersonality(); 

      } 

 

      /* stop capturing on spacebar */ 

      else if (data == 32) { 

         post stopSensing(); 

      } 

      else { /* were done */ } 

   } 

 

   event void Bluetooth.writeDone(){ 

      atomic enable_sending = TRUE; 

 

#ifdef LOW_BATTERY_INDICATION 

      if(linkDisconnecting) { 

         linkDisconnecting = FALSE; 

         /* signal battery low to master and let the master 

disconnect the link */ 

         post sendBatteryLowIndication(); 

      } 

#endif /* LOW_BATTERY_INDICATION */ 

   } 

 

   event void SetupTimer.fired() { 

      atomic if(command_mode_complete){ 

         call ActivityTimer.stop(); 

         post startSensing(); 

      } 
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   } 

 

   event void ActivityTimer.fired() { 

      atomic { 

         /* toggle activity led every second */ 

         if(activity_led_on) { 

            call Leds.led1On(); 

            activity_led_on = FALSE; 

         } 

         else { 

            call Leds.led1Off(); 

            activity_led_on = TRUE; 

         } 

      } 

   } 

 

   event void SampleTimer.fired() { 

      call shimmerAnalogSetup.triggerConversion(); 

   } 

 

   async event void DMA0.transferDone(error_t success) { 

      if(current_buffer == 0){ 

         call DMA0.repeatTransfer((void*)ADC12MEM0_, 

(void*)sbuf1, NBR_ADC_CHANS); 

         atomic timestamp1 = call LocalTime.get(); 

  current_buffer = 1; 

      } 

      else {  

         call DMA0.repeatTransfer((void*)ADC12MEM0_, 

(void*)sbuf0, NBR_ADC_CHANS); 

         atomic timestamp0 = call LocalTime.get(); 

  current_buffer = 0; 

      } 

      post sendSensorData();       

   } 

} 

 

 

 

 

 

7.1.2 ECGAppC.nc 

The configuration ECGAppC is illustrated. 

ECGAppC.nc 

/* 

 * Copyright (c) 2007, Intel Corporation 

 * All rights reserved. 

 *  

 * Redistribution and use in source and binary forms, with or 

without 
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 * modification, are permitted provided that the following 

conditions are met: 

 *  

 * Redistributions of source code must retain the above 

copyright notice,  

 * this list of conditions and the following disclaimer.  

 * 

 * Redistributions in binary form must reproduce the above 

copyright notice, 

 * this list of conditions and the following disclaimer in the 

documentation 

 * and/or other materials provided with the distribution.  

 * 

 * Neither the name of the Intel Corporation nor the names of 

its contributors 

 * may be used to endorse or promote products derived from 

this software  

 * without specific prior written permission.  

 * 

 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND 

CONTRIBUTORS "AS IS" 

 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 

LIMITED TO, THE  

 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 

PARTICULAR PURPOSE  

 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 

CONTRIBUTORS BE  

 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 

EXEMPLARY, OR 

 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 

PROCUREMENT OF  

 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 

PROFITS; OR BUSINESS  

 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 

LIABILITY, WHETHER IN 

 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE 

OR OTHERWISE) 

 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 

ADVISED OF THE  

 * POSSIBILITY OF SUCH DAMAGE. 

 * 

 * Author: Adrian Burns 

 *         November, 2007 

 */ 

 

 /* This app uses Bluetooth to stream 3 Accelerometer channels 

and 2 ECG channels  

    of data to a BioMOBIUS PC application.  

    Tested on SHIMMER Base Board Rev 1.3, SHIMMER ECG board 

Rev 1.1. */ 

 

/* 

 * @author Adrian Burns  

 * @date November, 2007 

 * 

 * @author Mike Healy 



112 
 

 * @date May 13, 2009 - ported to TinyOS 2.x  

 */ 

 

 

 

configuration ECGAppC { 

} 

implementation { 

  components MainC, ECGC; 

  ECGC -> MainC.Boot;  

 

  components FastClockC; 

  ECGC.FastClockInit -> FastClockC; 

  ECGC.FastClock     -> FastClockC; 

   

  components LedsC; 

  ECGC.Leds -> LedsC; 

 

  components new TimerMilliC() as SampleTimer; 

  ECGC.SampleTimer -> SampleTimer; 

  components new TimerMilliC() as SetupTimer; 

  ECGC.SetupTimer    -> SetupTimer; 

  components new TimerMilliC() as ActivityTimer; 

  ECGC.ActivityTimer -> ActivityTimer; 

   

  components Counter32khz32C as Counter; 

  components new CounterToLocalTimeC(T32khz); 

  CounterToLocalTimeC.Counter -> Counter; 

  ECGC.LocalTime -> CounterToLocalTimeC; 

   

  components RovingNetworksC; 

  ECGC.BluetoothInit -> RovingNetworksC.Init; 

  ECGC.BTStdControl -> RovingNetworksC.StdControl; 

  ECGC.Bluetooth    -> RovingNetworksC; 

 

  components shimmerAnalogSetupC, Msp430DmaC; 

  MainC.SoftwareInit -> shimmerAnalogSetupC.Init; 

  ECGC.shimmerAnalogSetup -> shimmerAnalogSetupC; 

  ECGC.DMA0 -> Msp430DmaC.Channel0; 

 

} 

 

 

 

7.1.3 ECG.h 

ECG.h 

/* 

 * Copyright (c) 2007, Intel Corporation 

 * All rights reserved. 

 * 

 * Redistribution and use in source and binary forms, with or 

without 
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 * modification, are permitted provided that the following 

conditions are met: 

 * 

 * Redistributions of source code must retain the above 

copyright notice, 

 * this list of conditions and the following disclaimer. 

 * 

 * Redistributions in binary form must reproduce the above 

copyright notice, 

 * this list of conditions and the following disclaimer in the 

documentation 

 * and/or other materials provided with the distribution. 

 * 

 * Neither the name of the Intel Corporation nor the names of 

its contributors 

 * may be used to endorse or promote products derived from 

this software 

 * without specific prior written permission. 

 * 

 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND 

CONTRIBUTORS "AS IS" 

 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 

LIMITED TO, THE 

 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 

PARTICULAR PURPOSE 

 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 

CONTRIBUTORS BE 

 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 

EXEMPLARY, OR 

 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 

PROCUREMENT OF 

 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 

PROFITS; OR BUSINESS 

 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 

LIABILITY, WHETHER IN 

 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE 

OR OTHERWISE) 

 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 

ADVISED OF THE 

 * POSSIBILITY OF SUCH DAMAGE. 

 * 

 * Author: Adrian Burns 

 *         November, 2007 

 */ 

/* 

 * @author Adrian Burns 

 * @date November, 2007 

 * 

 * @author Mike Healy 

 * @date May 13, 2009 - ported to TinyOS 2.x  

 */ 

 

#ifndef ECG_H 

#define ECG_H 

 

enum { 
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  NUM_ACCEL_CHANS = 3 

}; 

 

enum { 

  NUM_GYRO_CHANS = 3 

}; 

 

enum { 

  SHIMMER_REV1 = 0 

}; 

 

enum { 

  PROPRIETARY_DATA_TYPE = 0xFF, 

  STRING_DATA_TYPE = 0xFE 

}; 

 

enum { 

  SAMPLING_1000HZ = 1, 

  SAMPLING_500HZ = 2, 

  SAMPLING_250HZ = 4, 

  SAMPLING_200HZ = 5, 

  SAMPLING_166HZ = 6, 

  SAMPLING_125HZ = 8, 

  SAMPLING_100HZ = 10, 

  SAMPLING_50HZ = 20, 

  SAMPLING_10HZ = 100, 

  SAMPLING_0HZ_OFF = 255 

}; 

 

enum { 

  FRAMING_SIZE     = 0x4, 

  FRAMING_CE_COMP  = 0x20, 

  FRAMING_CE_CE    = 0x5D, 

  FRAMING_CE       = 0x7D, 

  FRAMING_BOF      = 0xC0, 

  FRAMING_EOF      = 0xC1, 

  FRAMING_BOF_CE   = 0xE0, 

  FRAMING_EOF_CE   = 0xE1, 

}; 

 

#endif // ECG_H 

 

 

7.2 Discrete Fourier Transform(DFT) 

The applications we are about to describe are an extension of the ECG application. 

After sampling the default sensor , they compress the ECG signal samples with a 

Discrete Fourier Transform (DFT) and then broadcast the modified message over the 

radio every N (N=8 or N=16) readings.Before we proceed to their analysis first we 

need to address some aspects of the Fourier Transform. 
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7.2.1 Fast Fourier Transform(FFT) 

  A fast Fourier transform (FFT) is an efficient algorithm to compute the discrete 

fourier transform (DFT) and it’s inverse. There are many distinct FFT algorithms 

involving a wide range of mathematics, from simple complex-number arithmetic to 

group theory and number theory. A DFT decomposes a sequence of values into 

components of different frequencies but computing it directly from the definition is 

often too slow to be practical. An FFT is a way to compute the same result more 

quickly. Computing a DFT of N points in the naive way, using the definition, takes 

O(N2) arithmetical operations , while an FFT can compute the same result in only 

O(Nlog N) operations. The difference in speed can be substantial, especially for long 

data sets where N may be in the thousands or millions—in practice, the computation 

time can be reduced by several orders of magnitude in such cases, and the 

improvement is roughly proportional to N/ log (N). This huge improvement made 

many DFT-based algorithms practical; FFTs are of great importance to a wide variety 

of applications, from digital signal processing and solving partial differential 

equations to algorithms for quick multiplication of large integers. The most well 

known FFT algorithms depend upon the factorization of N, but there are FFTs with O 

(Nlog N) complexity for all N, even for prime N. Many FFT algorithms only depend on 

the fact that is an Nth primitive root of unity, and thus can be applied to analogous 

transforms over any finite field, such as number-theoretic transforms. Fast Fourier 

Transform is a fundamental transform in digital signal processing with applications in 

frequency analysis, signal processing etc [7]. The periodicity and symmetry 

properties of DFT are useful for compression .The uth FFT coefficient of length N 

sequence {f(x)} is de-fined as in (1): 
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And its inverse transform is calculated from (2): 
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7.2.2 FFT on Real-valued Data 

In our project the ECG data we collect are real values. An FFT algorithm on real 

values contains some interesting properties. 

For real-valued input data fn  (i.e fn
*= fn =fn) 
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and the imaginary part is: 
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Also , only N independent real-valued coefficients are necessary since: 
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So if N the number of samples , then DFT(0) and DFT(N/2) have only real part whilst 

DFT(1) to DFT(N/2-1) have both real and imaginary part but they are symmetric to 

samples DFT(N/2+1) to DFT(N-1). 

Αnd so we get that the DFT of N independent real-valued samples fn is: 

{f-N/2+1,...,     f0    ...,fN/2} 

DFT           IDFT 

{F0,Re{F1},Im{F1},       ....,   Re{FN/2-1},Im{FN/2-1},FN/2} 

In our project we will use both 8-point DFT (N=8) and 16-point DFT so the sensors 

will send: 

8-point 

{F0,Re{F1},Im{F1},Re{F2},Im{F2},Re{F3},Im{F3},Re{F4},Im{F4},F5} 

16-point 

{F0,Re{F1},Im{F1},Re{F2},Im{F2},Re{F3},Im{F3},Re{F4},Im{F4}, Re{F5},Im{F5} 

,Re{F6},Im{F6},Re{F7},Im{F7},F8} 
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7.2.3 C Code for RDFT  

  The C code for RDFT (8-point) is presented below. It implements the algorithm 

described above. 

/*  

 * Real-input Discrete Fourier Transform (RDFT)  

 * Using standard math.h functions 

 * Author: George Economakos 

 *  

 */ 

 

#include "math.h" 

 

/*  

 * Computes the discrete Fourier transform (DFT) of the 

given 8 element vector of real values(inreal[8]).*/ 

 

void rdft(uint16_t inreal[8]) { 

 int k; 

 int t; 

 uint16_t outsymmetric[8]; 

 double sumreal; 

 double sumimag; 

  

 /* For k=0, sin(0)=0, cos(0)=1 so we have only real 

output */ 

 sumreal = 0.0; 

 for (t = 0; t < 8; t++)   /* For each input element 

*/ 

   sumreal +=  (double)inreal[t]; 

 outsymmetric[0] = (uint16_t)sumreal; 

  

 /* For outputs 1, 2 and 3 which are symmetric to 5, 

6 and 7 and have both real and imaginary output, put one 

next to the other in the output array */ 

 for (k = 1; k < 4; k++) {   

  sumreal = 0.0; 

  sumimag = 0.0; 

  for (t = 0; t < 8; t++) {  /* For each input 

element */ 

   sumreal +=  (double)inreal[t]*cos(2*M_PI * 

t * k / 8); 

   sumimag += -(double)inreal[t]*sin(2*M_PI * 

t * k / 8); 

  } 

  outsymmetric[2*k-1] = (uint16_t)sumreal; 

  outsymmetric[2*k] = (uint16_t)sumimag; 

 } 
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 /* For k=4, sin(M_PI*t)=0, cos(M_PI*t)=+1 or -1  so 

we have only real output */ 

 sumreal = 0; 

 for (t = 0; t < 8; t++)   /* For each input element 

*/ 

   sumreal +=  (double)inreal[t]*cos(M_PI * t); 

 outsymmetric[7] = (uint16_t)sumreal; 

  

 /* Copy output to input */ 

 for (t = 0; t < 8; t++) 

   inreal[t] = outsymmetric[t]; 

}   

 

  The 16-point rdft is the exact same with the small difference that the input 

(inreal[16]) and output (outsymmetric[16]) vectors contain 16 elements and the 

loops are adjusted accordingly. 

7.3 ECG-cordic 

  In the ECG-cordic app ,the DFT is implemented with the cordic algorithm.We used 

both an 8-point and 16-point DFT so as to compare the results. 

7.3.1 Cordic Algorithm 

  CORDIC stands for COordinate Rotation DIgital Computer and it is a class of shift-

adds algorithms for rotating vectors in a plane , which is usually used for the 

calculation of trigonometric functions , multiplication , division and conversion 

between binary and mixer radix number systems of DSP applications such as the 

Fourier Transform. All of the trigonometric functions can be computed or derived 

from functions using vector rotations, as will be discussed in the following sections. 

Vector rotation can also be used from polar to rectangular and rectangular to polar 

conversions, for vector magnitude, and as a building block in certain transforms such 

as DFT and DCT .The CORDIC algorithm provides an iterative method of performing 

vector rotations by arbitrary  angles using only shifts and adds. The algorithm 

credited to Jack E. Volder in the year 1959 is derived from the general rotation 

transform: 

x’= x cosφ - y sinφ 

y’= y cosφ+x sinφ 

this rotates a vector in a Cartesian plane by the angle φ. 
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Figure 7.1: Rotation of a vector V by angle φ 

These can be rearranged so that : 

]tan[cos'  yxx   

]tan[cos'  xyy   

So far nothing is simplified. However if the rotation angles are restricted so that  

tanφ=± 2-i ,the multiplication by the tangent term is reduced to simple shift 

operation. Arbitrary angles of rotation are obtainable by performing a series of 

successively smaller elementary operations. If the decision at each iteration i , is 

which direction to rotate rather than whether or  not to rotate, then the cos(δi) term 

becomes a constant because cos(δi)= cos(-δi). The iterative rotation can now be 

expressed as: 

xi+1=Ki[xi-yi×di×2-i] 

yi+1=Ki[yi+xi×di×2-i] 

where: 
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Ki=cos(tan-i2-i)=
i 21

1
 

di=±1 

  Removing the scale constant from the iterative equations yields a shift add 

algorithm for vector rotation. The product of the Ki’s can be applied elsewhere in the 

system or treated as a part of the system processing gain. The product approaches 

0.6073 as the number of iteration goes to infinity. A good way to implement the 


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iKk  factor is to initialize the iterative rotation with a vector of length |k| 

which compensates the gain in the CORDIC algorithm.Therefore the rotation 

algorithm has a gain An of approximately 1.647.The exact gain depends on the no of 

iterations and obeys the relation: 
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  The angle of a composite rotation is uniquely defined by the sequence of the 

directions of the elementary rotations. That sequence can be represented by a 

decision vector. The set of all possible decision vectors is an angular measurement 

system based on binary arctangents. Conversions between the angular systems and 

any other can be accomplished using a look up. A better conversion method uses an 

additional adder-subtract or that accumulate the elementary rotation angles at each 

iteration. The elementary angles can be expressed in any convenient angular unit. 

Those angular values are supplied by a small look up table or are hardwired 

depending on the application. The angle accumulator adds a third difference 

equation to the CORDIC algorithm: 

zi+1=zi-di×tan-1(2-i) 

  Obviously, in cases where the angle is useful in the arc tangent base, this extra 

element is not needed. The CORDIC rotator is normally operated in one of two 

models.The first called rotation by Volder rotates the input vector by a specified 

angle. The second mode called vectoring rotates the input vector to the x axis while 

recording the angle required to make that rotation. 

  In our case , given the special features of a real-valued DFT , we will use a cordic 

algorithm in 16 bit fixed point math to compute our DFT coefficients. 

Rotation Mode 

  In rotation mode,the angle accumulator is initialized with the desired rotation 

angle. The rotation decision at each iteration is made to diminish the magnitude of 
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the residual angle in the angle accumulator. The decision at each iteration is 

therefore based on the sign of the residual angle after each step. Naturally, if the 

input angle is already expressed in the binary arctangent base, the angle 

accumulator may be eliminated. For rotation mode, the CORDIC equations are: 

 

xi+1=xi-yi×di×2-i 

yi+1=yi+xi×di×2-i 

zi+1=zi-di×tan-1(2-i) 

where di=-1 if zi<0 and di=1 otherwise 

which provides the following result 

xn=An[x0cosz0-y0sinz0] 

yn=An[y0cosz0+x0sinz0] 

zn=0 

An=


n

i221  

Below we present the table of the cordic uses for a variety of widely used functions: 

 

Table 7.1 Cordic Uses 

  In our case we will use cordic to calculate sine and cosine functions , so we will 

initialize as follows: 

x=1/An=Kn=0.607 , y=0 and z=a(current angle for calculation) 
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7.3.2 C code for sine cosine functions with Cordic algorithm 

  The C code for sine and cosine calculations with the help of cordic algorithm is as 

follows: 

//Cordic in 16 bit signed fixed point math 

//Function is valid for arguments in range -pi/2 -- pi/2 

//for values pi/2--pi: value = half_pi-(theta-half_pi) 

and similarly for values -pi---pi/2 

// 

// 1.0 = 1073741824 

// 1/k = 0.6072529350088812561694 

// pi = 3.1415926536897932384626 

//Constants 

#define cordic_1K 0x26DD //* 1/An=0.607 in hexadecimal*//                            

#define half_pi 0x6487   //* pi/2 in hexadecimal*// 

#define MUL 16384.000000 

#define CORDIC_NTAB 16   //* 16-bit point math *// 

Int32_t cordic_ctab [] = {0x3243, 0x1DAC, 0x0FAD, 0x07F5, 

0x03FE, 0x01FF, 0x00FF, 0x007F, 0x003F, 0x001F, 0x000F, 

0x0007, 0x0003, 0x0001, 0x0000, 0x0000, };//* tan
-1
(2

-i
) 

for i=0 to 15*// 

 

/*theta is the current angle for calculation, s is the 

sine , c the cosine and n=16*/ 

 

void cordic(int32_t theta, int32_t *s, int32_t *c, int n) 

{ 

  int32_t k, d, tx, ty, tz; 

  int32_t x=cordic_1K,y=0,z=theta; 

  n = (n>CORDIC_NTAB) ? CORDIC_NTAB : n; 

  for (k=0; k<n; ++k) /*16 iterations*/  

  { 

    d = z>>15; 

    //get sign. for other architectures, you might want 

to use the more portable version 

    // 

    d = z>=0 ? 0 : -1; 

    tx = x - (((y>>k) ^ d) - d); /*xi+1=xi-yidi2
-i
 */ 

    ty = y + (((x>>k) ^ d) - d); /*yi+1=yi+xidi2
-i
 */ 

    tz = z - ((cordic_ctab[k] ^ d) - d);  

/*zi+1=zi-ditan
-1
(    2

-i
 )*/ 

    x = tx; y = ty; z = tz; 

  }   

 *c = x; *s = y;  

} 
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7.3.3  ECG-cordic app 

  The ECG-cordic app is an extended version of the ECG app. More specifically the 

ECG-cordicC.nc: 

A) It contains the declaration of the cordic app: 

void cordic(int32_t theta, int32_t *s, int32_t *c, int n) 

 

B)along with its initial definitions mentioned in the code above: 
 

#define cordic_1K 0x26DD //* 1/An=0.607 in hexadecimal*//                            

#define half_pi 0x6487   //* pi/2 in hexadecimal*// 

#define MUL 16384.000000 

#define CORDIC_NTAB 16   //* 16-bit point math *// 

Int32_t cordic_ctab [] = {0x3243, 0x1DAC, 0x0FAD, 0x07F5, 

0x03FE, 0x01FF, 0x00FF, 0x007F, 0x003F, 0x001F, 0x000F, 

0x0007, 0x0003, 0x0001, 0x0000, 0x0000, };//* tan
-1
(2

-i
) 

for i=0 to 15*// 

 

C)the inclusion of the  math.h library: 

#include “math.h” 

D) the declaration of the rdft function with the difference that the sine and cosine 

functions are calculated with the cordic algorithm. To avoid all kinds of confusion the 

modified rdft with cordic algorithm is presented below: 

void rdft(uint16_t inreal[8]) { 

 int k; 

 int t; 

 uint16_t outsymmetric[8]; 

 uint16_t sumreal; 

 uint16_t sumimag; 

 int32_t csin; /*parameters for the cordic function*/ 

 int32_t ccos; 

  

 /* For k=0, sin(0)=0, cos(0)=1 so we have only real 

output */ 

 sumreal = 0; 

 for (t = 0; t < 8; t++)   /* For each input element 

*/ 

   sumreal += inreal[t]; 

 outsymmetric[0] = sumreal; 

  

 /* For outputs 1, 2 and 3 which are symmetric to 5, 

6 and 7 and have both real and imaginary output, put one 

next to the other in the output array */ 
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 for (k = 1; k < 4; k++) {   

  sumreal = 0; 

  sumimag = 0; 

  for (t = 0; t < 8; t++) {  /* For each input 

element */ 

   cordic((int32_t)(2*M_PI * t * k / 8), 

&csin, &ccos, 16); 

   sumreal +=  inreal[t]*((uint16_t)ccos); 

   sumimag += -inreal[t]*((uint16_t)csin); 

  } 

  outsymmetric[2*k-1] = sumreal; 

  outsymmetric[2*k] = sumimag; 

 } 

  

 /* For k=4, sin(M_PI*t)=0, cos(M_PI*t)=+1 or -1  so 

we have only real output */ 

 sumreal = 0; 

 for (t = 0; t < 8; t++)   /* For each input element 

*/ 

   cordic((int32_t)(M_PI * t), &csin, &ccos, 16); 

   sumreal +=  inreal[t]*((uint16_t)ccos); 

 outsymmetric[7] = sumreal; 

  

 /* Copy output to input */ 

 for (t = 0; t < 8; t++) 

   inreal[t] = outsymmetric[t]; 

}   

 

E)The call of the rdft function in the body of the function preparePacket() before the 
data is copied into the outgoing packet 
The ECG-cordicAppC.nc is the same with the ECGAppC.nc and so is the ECG-cordic.h 

file.The 16-point ECG-cordic is the same but uses the 16-point rdft. 

7.4 ECG-lookup 

  The ECG-lookup app is another extension of the ECG app only that in this case the 

trigonometric functions are calculated via a look-up table(LUT). 

7.4.1 Look-Up Table (LUT) 

  Look-Up Tables are a technique commonly used to accelerate numeric processing in 

applications with demanding timing requirements. They are often used in Image 

Processing and DSP (Digital Signal Processing) applications. The basic idea is to pre-

compute the result of complex operations that are or can be expressed as a function 

of an integer value. The pre-computed results are typically stored in an array, which 

is used at run-time instead of performing the whole, time-consuming operation. 
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  Simply put, a Look-Up-Table (LUT) is an array that holds a set of pre-computed 

results for a given operation. This array provides acces to the results in a way that is 

faster than computing each time the result of the given operation. 

  LUT's are typically used in real-time data acquisition and processing systems (often 

embedded systems), since these types of systems impose demanding and strict 

timing restriction. An important detail to consider is the fact that LUT's require a 

considerable amount of execution time to initialize the array (to pre-compute the 

results). In real-time systems, it is in general acceptable to have a delay during the 

initialization of the application (after all, the application will be presumably run right 

after boot, which takes a few seconds anyway). 

  Two important design considerations of a lookup table are its size and its accuracy. 

It is not possible to create a table for every possible input value u. It is also not 

possible to be perfectly accurate due to the quantization of sin(u) $$ or cos(u) $$ 

lookup table values. 

 The logic is that after we map our angles from a certain range, for example in our 

case to 16-bit unsigned integer here [0..16384] is mapped to [0..2pi], then we 

perform a logical and with 16383 to remap the values into this range when doing 

intermediate computations using larger integer types. Finally the sine and cosine 

functions are calculated with the new index on the lookup table. The algorithm in C 

code is presented below. 

 

7.4.2 C code for Look-Up Table (LUT) 

/*lookup tables are declared initialised*/ 

uint16_t lsintab[2048]; 

uint16_t lcostab[2048]; 

/*lookup tables are initialised*/ 

 

for (=0; i<SinTableSize; i++) 

{ 

lsintab[i] = sin((i / 2048) * M_PI); 

lcostab[i] = sin((i / 2048) * M_PI); 

} 
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/* value is the current angle s for sin and c for cos*/ 

void lookup(int32_t value, uint16_t *s, uint16_t *c) 

{ 

/*angle is mapped to [0..16383]*/ 

  uint16_t index = (value >> 2); 

 

  /*logical and with 16383 for value remaping in case og 

larger integer types*/ 

  *c = lcostab[index & 16383]; 

  *s = lsintab[index & 16383]; 

} 

 

7.4.3  ECG-lookup app 

The ECG-lookup app is an extended version of the ECG app. More specifically the 

ECG-lookupC.nc: 

A) It contains the declaration of the cordic app: 

void lookup(int32_t value, uint16_t *s, uint16_t *c) 

 

B)along with its initial definitions mentioned in the code above: 
 

 

#define half_pi 0x6487   //* pi/2 in hexadecimal*// 

#define MUL 16384.000000 

 

/*lookup tables are declared */ 

uint16_t lsintab[2048]; 

uint16_t lcostab[2048]; 

C)/*lookup tables are initialised*/ 

 

for (=0; i<SinTableSize; i++) 

{ 

lsintab[i] = sin((i / 2048) * M_PI); 

lcostab[i] = sin((i / 2048) * M_PI); 

} 
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D)the inclusion of the  math.h library: 

#include “math.h” 

E) the declaration of the rdft function with the difference that the sine and cosine 

functions are calculated with the lookup-tables. To avoid all kinds of confusion the 

modified rdft with lookup-tables is presented below: 

void rdft(uint16_t inreal[8]) { 

 int k; 

 int t; 

 uint16_t outsymmetric[8]; 

 uint16_t sumreal; 

 uint16_t sumimag; 

 int32_t lsin; /*parameters for the cordic function*/ 

 int32_t lcos; 

  

 /* For k=0, sin(0)=0, cos(0)=1 so we have only real 

output */ 

 sumreal = 0; 

 for (t = 0; t < 8; t++)   /* For each input element 

*/ 

   sumreal += inreal[t]; 

 outsymmetric[0] = sumreal; 

  

 /* For outputs 1, 2 and 3 which are symmetric to 5, 

6 and 7 and have both real and imaginary output, put one 

next to the other in the output array */ 

 for (k = 1; k < 4; k++) {   

  sumreal = 0; 

  sumimag = 0; 

  for (t = 0; t < 8; t++) {  /* For each input 

element */ 

   lookup((int32_t)(2*M_PI * t * k / 8), 

&lsin, &lcos); 

   sumreal +=  inreal[t]*((uint16_t)lcos); 

   sumimag += -inreal[t]*((uint16_t)lsin); 

  } 

  outsymmetric[2*k-1] = sumreal; 

  outsymmetric[2*k] = sumimag; 

 } 

  

 /* For k=4, sin(M_PI*t)=0, cos(M_PI*t)=+1 or -1  so 

we have only real output */ 

 sumreal = 0; 

 for (t = 0; t < 8; t++)   /* For each input element 

*/ 

   lookup((int32_t)(M_PI * t), &lsin, &lcos); 

   sumreal +=  inreal[t]*((uint16_t)ccos); 
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 outsymmetric[7] = sumreal; 

  /* Copy output to input */ 

 for (t = 0; t < 8; t++) 

   inreal[t] = outsymmetric[t]; 

}   

 

F)The call of the rdft function in the body of the function preparePacket() before the 
data is copied into the outgoing packet 
The ECG-lookupAppC.nc is the same with the ECGAppC.nc and so is the ECG-

lookup.h file.The 16-point ECG-cordic is the same but uses the 16-point rdft. 

  The ECG-lookupAppC.nc is the same with the ECGAppC.nc and so is the ECG-

lookup.h file.The 16-point ECG-lookup is the same but uses the 16-point rdft. 

7.5 ECG-lookup-interpolate 

  The final app we created is the ECG-lookup-interpolate app which is quite similar to 

the previews app but includes linear interpolation between sin(x) and sin(x+1) and 

cos(x) and cos(x+1) 

7.5.1 Linear Interpolation 

  The linear interpolation using LUTs follows the same pattern as described 

previewsly with the ECG-lookup app only that in this case instead we interpolate 

sin(x) with sin(x+1) as illustrated in the graph below.Thus we get a better 

approximation of the result. 

 

Figure 7.2 : The yellow line is the LUT sin(x), and the blue one is LUT sin(x+1). 
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7.5.2 C code for Linear Interpolation 

 

#define half_pi 0x00006487 

#define MUL 16384.000000 

uint16_t lsintab[2048]; 

uint16_t lcostab[2048]; 

 

/*lookup tables are initialised*/ 

for (=0; i<SinTableSize; i++) 

{ 

lsintab[i] = sin((i / 2048) * M_PI); 

lcostab[i] = sin((i / 2048) * M_PI); 

} 

 

void lookup(int32_t value, uint16_t *s, uint16_t *c) 

{ 

/*Angle is mapped tp [0..16383]*/ 

  uint16_t index = (value >> 2);  

/*Lookup angle*/ 

  uint16_t left = lcostab[index & 16383]; 

/*Lookup angle+1*/ 

  uint16_t right = lcostab[(index+1) & 16383]; 

/*weight is computed*/ 

  uint16_t weight = (value & 3) / 4; 

/*Linear interpolation for cosine*/ 

 *c = weight * (right - left) + left; 

/*Lookup angle*/ 

  left = lsintab[index & 16383]; 

/*Lookup angle+1*/ 

 *right = lsintab[(index+1) & 16383]; 

/*Linear interpolation for sine*/ 

  *s = weight * (right - left) + left; 

} 

 

7.5.3  ECG-lookup-interpolate app 

  The ECG-lookup- app is an extended version of the ECG app. More specifically the 

ECG-lookupC.nc: 

A) It contains the declaration of the lookup-interpolate app: 

void lookup-interpolate(int32_t value, uint16_t *s, 

uint16_t *c) 
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B)along with its initial definitions mentioned in the code above: 
 

 

#define half_pi 0x6487   //* pi/2 in hexadecimal*// 

#define MUL 16384.000000 

 

/*lookup tables are declared */ 

uint16_t lsintab[2048]; 

uint16_t lcostab[2048]; 

C)/*lookup tables are initialised*/ 

 

for (=0; i<SinTableSize; i++) 

{ 

lsintab[i] = sin((i / 2048) * M_PI); 

lcostab[i] = sin((i / 2048) * M_PI); 

} 

 

D)the inclusion of the  math.h library: 

#include “math.h” 

E) the declaration of the rdft function with the difference that the sine and cosine 

functions are calculated with the lookup-interpolate tables. To avoid all kinds of 

confusion the modified rdft with lookup-interpolate tables is presented below: 

void rdft(uint16_t inreal[8]) { 

 int k; 

 int t; 

 uint16_t outsymmetric[8]; 

 uint16_t sumreal; 

 uint16_t sumimag; 

 int32_t lsin; /*parameters for the cordic function*/ 

 int32_t lcos; 

  

 /* For k=0, sin(0)=0, cos(0)=1 so we have only real 

output */ 

 sumreal = 0; 

 for (t = 0; t < 8; t++)   /* For each input element 

*/ 
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   sumreal += inreal[t]; 

 outsymmetric[0] = sumreal; 

  

 /* For outputs 1, 2 and 3 which are symmetric to 5, 

6 and 7 and have both real and imaginary output, put one 

next to the other in the output array */ 

 for (k = 1; k < 4; k++) {   

  sumreal = 0; 

  sumimag = 0; 

  for (t = 0; t < 8; t++) {  /* For each input 

element */ 

   lookup-interpolate((int32_t)(2*M_PI * t * 

k / 8), &lsin, &lcos); 

   sumreal +=  inreal[t]*((uint16_t)lcos); 

   sumimag += -inreal[t]*((uint16_t)lsin); 

  } 

  outsymmetric[2*k-1] = sumreal; 

  outsymmetric[2*k] = sumimag; 

 } 

  

 /* For k=4, sin(M_PI*t)=0, cos(M_PI*t)=+1 or -1  so 

we have only real output */ 

 sumreal = 0; 

 for (t = 0; t < 8; t++)   /* For each input element 

*/ 

   lookup-interpolate((int32_t)(M_PI * t), &lsin, 

&lcos); 

   sumreal +=  inreal[t]*((uint16_t)ccos); 

 outsymmetric[7] = sumreal; 

  

 /* Copy output to input */ 

 for (t = 0; t < 8; t++) 

   inreal[t] = outsymmetric[t]; 

}   

 

F)The call of the rdft function in the body of the function preparePacket() before the 
data is copied into the outgoing packet.The ECG-lookup-interpolateAppC.nc is the 
same with the ECGAppC.nc and so is the ECG-lookupinterpolate.h file.The 16-point 
ECG-cordic is the same but uses the 16-point rdft. 
 

  The ECG-lookupinterpolateAppC.nc is the same with the ECGAppC.nc and so is the 

ECG-lookup-interpolate.h file.The 16-point ECG-lookup is the same but uses the 16-

point rdft. 
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Chapter 8 

Simulation 
  The shimmer platform is not compatible with the MSP430 and creates a lot of 

disfunctions with the AccelECG. For that reason we decided to simulate the 

Oscilloscope application located in the TinyOS libraries . Oscilloscope is a simple 

data-collection demo. It periodically samples the default sensor and broadcasts a 

message over the radio every 10 (in our case we switched to 8 and 16 for 8-point and 

16-point DFT respectively) readings. These readings can be received by a BaseStation 

mote and displayed by the Java "Oscilloscope" application found in the java 

subdirectory. The sampling rate starts at 4Hz, but can be changed from the Java 

application. In addition to the Oscilloscope application , we derived 3 more 

applications by modifying the Oscilloscope’s code. The Oscilloscope-cordic , the 

Oscilloscope-lookup2048 and the Oscilloscope-lookup2048-interpolate application. 

These four apps have the exact same add-ons and modifications with the respective 

ones we described in the previews chapters. They perform the same tasks and 

produce similar results , only that the Oscilloscope apps are easier to simulate with 

the telosb platform than the shimmer.For our simulation we will use the MSPSim. 

8.1 Oscilloscope Simulation 

  First we simulate the Oscilloscope app.It sends ECG samples every 8 readings 

without doing any DFT.By executing the command: 

build telosb 

  In the Oscilloscope app directory we compile our app on a telosb binary.For the 8 

point,the ROM(code) bytes were computed 15860 and the RAM(data) bytes 

492.Same results for the 16-point.In order to simulate our app with the MSPSim we 

execute in the build/telosb directory that was created the command: 

 mspsim main.exe 
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Below we present the Duty Cycle graph  

 

Figure 8.1 Duty Cycle graph for the Oscilloscope app 

To get data for the CPU cycles we execute the command: 

duty 10 “MSP430 Core.active”  

which means we get 10 duty values/second. We let the command run for 3 seconds 

so we collect 30 duty values. 

8.2 Oscilloscope-cordic Simulation 

  We compile and simulate Oscilloscope-cordic app on a telosb binary by following 

the same pattern as the Oscilloscope app mentioned above(same goes for the rest of 

the apps).For the 8-point ,the ROM(code) bytes were computed 18102 and the 

RAM(data) bytes 556 while for the 16-point , the ROM(code) bytes were computed 

18110 and the RAM(data) bytes 556. 

 

Figure 8.2 Duty Cycle graph for the Oscilloscope-cordic app 
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8.3 Oscilloscope-lookup Simulation 

For the 8-point , the ROM(code) bytes were computed 15860 and the RAM(data) 

bytes 8684.Same figures for the 16-point. 

 

Figure 8.3 Duty Cycle graph for the Oscilloscope-lookup app 

8.4 Osciloscope lookup-interpolate Simulation 

For the 8-point , the ROM(code) bytes were computed 17806 and the RAM(data) 

bytes 8684 while for the 16-point the ROM(code) bytes were computed 17814 and 

the RAM(data) bytes 8684. 

 

Figure 8.4 Duty Cycle graph for the Oscilloscope-lookup-interpolate app 
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8.5 Power Consumption 

All the previews data we collected are illustrated in tables 8.1a to 8.1d 

Oscilloscope Oscilloscope-cordic Oscilloscope-lookup Oscilloscope-lookup-interpolate 

0,21 0,21 0,21 0,25 

2,13 2,1 1,75 1,75 

0,21 0,25 0,64 0,61 

1,7 0,26 0,21 0,25 

0,64 2,14 2,13 2,1 

0,21 0,21 0,21 0,25 

2,18 47,83 1,71 1,7 

0,21 14,83 0,63 0,61 

1,7 0,21 0,21 0,25 

0,64 2,12 2,13 2,1 

0,21 0,21 0,21 0,25 

2,13 2,08 1,74 1,7 

0,21 0,25 0,61 0,65 

1,74 0,21 0,21 0,21 

0,61 2,14 2,13 2,1 

0,21 0,21 0,21 0,25 

2,13 2,12 1,74 1,7 

0,21 0,21 0,61 0,65 

1,74 0,21 0,21 0,21 

0,61 2,12 4,74 39,9 

0,21 0,21 0,21 0,65 

2,13 2,14 1,78 1,75 

0,21 0,21 0,61 0,65 

4,34 0,26 0,21 0,21 

0,61 2,14 2,11 2,1 

0,21 0,21 0,21 0,25 

2,18 2,14 1,74 1,7 

0,21 0,21 0,61 0,65 

1,74 0,21 0,25 0,21 

0,59 2,14 2,1 2,14 

Table 8.1a: 8-point Raw duty values (10 per second - command used = duty 10 

"MSP430 Core.active") for 3 seconds (30 values) - peak-to-peak. 

Oscilloscope Oscilloscope-cordic Oscilloscope-lookup Oscilloscope-lookup-interpolate 
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2,11 0,21 0,25 0,78 

2,12 0,78 2,1 1,57 

2,13 1,55 0,25 0,21 

2,14 0,21 0,21 2,1 

2,15 2,18 2,18 0,25 

2,16 0,21 0,21 0,78 

2,17 0,76 2,1 1,57 

2,18 1,57 0,25 0,21 

2,19 0,21 0,21 2,15 

2,2 2,14 2,13 0,25 

2,21 0,21 0,21 14,64 

2,22 14,62 2,1 100 

2,23 100 0,25 52,13 

2,24 100 0,21 2,12 

2,25 41,88 2,13 0,21 

2,26 0,21 0,21 0,78 

2,27 0,81 4,7 1,57 

2,28 1,54 0,25 0,21 

2,29 0,21 0,21 2,12 

2,3 2,14 2,13 0,21 

2,31 0,21 0,21 0,76 

2,32 0,81 2,13 1,57 

2,33 1,54 0,21 0,21 

2,34 0,21 0,21 2,14 

2,35 2,18 2,18 0,21 

2,36 0,21 0,21 0,78 

2,37 0,81 2,13 1,57 

2,38 1,54 0,21 0,21 

2,39 0,21 0,21 2,18 

2,4 2,14 2,13 0,21 

Table 8.1b: 16-point Raw duty values (10 per second - command used = duty 10 

"MSP430 Core.active") for 3 seconds (30 values) - peak-to-peak. 
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8-POINT ROM (code) 
bytes 

RAM (data) 
bytes 

Average Duty 
Value 

Maximum 
Duty Value 

Oscilloscope 15860 492 1,07 4,3 

Oscilloscope-cordic 18102 556 3 47,8 

Oscilloscope-lookup 15860 8684 1,07 4,7 

Oscilloscope-lookup-
interpolate 

17806 8684 2,26 40 

Table 8.1c: 8-Point ROM(code) bytes,RAM(data) bytes, Average Duty Value and 

Maximum Duty Value table 

 

16-POINT ROM (code) 
bytes 

RAM (data) 
bytes 

Average Duty 
Value 

Maximum 
Duty Value 

Oscilloscope 15860 492 2,26 2,4 

Oscilloscope-cordic 18110 556 9,38 100 

Oscilloscope-lookup 15860 8684 1,07 4,7 

Oscilloscope-lookup-
interpolate 

17806 8684 6,46 100 

Table 8.1d: 16-Point ROM(code) bytes,RAM(data) bytes, Average Duty Value and 

Maximum Duty Value table 

 

The Power Score(PS) we will calculate is the sum of the power consumption in the 

MSP430 and the Bluetooth(in our case CC2420) .For the MSP430 the Power 

Consumption is given in (1): 

PCMSP430=Y1 * P1 (1) 

Where Y1=Maximum Duty Value and P1=Average MSP430 Power Consumption 

The Average MSP430 Power Consumption is calculated from the databook of the 

MSP430F1611 during program execution time , active mode at 8MHz: 

I(AM)=5Ma , VCC=3.6V 

Average MSP430 Power Consumption=(5mA)x(3,6V)=18mW  (2) 

For the Bluetooth the PC is given in (3): 

PCBluetooth=K*Y2*P2 (3) 

Where K=transmission reduction factor , Y2=CC2420 duty cycle , P3= CC2420 Power 

Consumption 



139 
 

As we concluded from the Paper  “ Efficient Algorithm for ECG Coding”[5] , The DFT 

provides Compression Ratio approximately 90%. This means that near 10% of the 

original data can be sent without any risk of critical data loss (since frequency-

domain techniques are lossy and not lossless techniques). So in order to make sure 

we avoid losing critical data we can send half the DFT data . For that reason we 

introduce the transmission reduction factor K which reduces the CC2420 

transmission according to the DFT data percentage we send. 

The Average CC2420 Power Consumption is calculated from the databook of the 

CC2420 in transmission (TX) mode and it is: 

I(TX)=18mA , VCC=3.6V 

Average CC2420 Power Consumption=(18mA)x(3.6V)=65mW  (4) 

Thus Total Power Score is : 

PS= PCMSP430+ PCBluetooth     (4) 

(1),(2),(3),(4)=>PS = 18mW*Y1 + 65mW*Y2*K    (5) 

 

Depending on the percentage of DFT data we send , the transmission factor changes 

accordingly. For example if we use full transmission , the transmission factor is 100% 

, K=1.If we use half transmission , K=0.5 and for quarter transmission K=0.25. Of 

course when we do not use DFT then K=1.Finally the cc2420 duty cycle , Y2=1 as we 

derived from the simulation. 

All the results are places in tables 8.2a and 8.2b and Figures 8.5a , 8.5b 

 

8-POINT Power score with full transmission 

= P1*Y1+P2*Y2 

Power score with half transmission = 

P1*Y1+K*P2*Y2 

Power score with quarter transmission 

= P1*Y1+K*P2*Y2 

Oscilloscope 142,4 142,4 142,4 

Oscilloscope-cordic 925,4 892,9 876,65 

Oscilloscope-lookup 149,6 117,1 100,85 

Oscilloscope-lookup-

interpolate 

785 752,5 736,25 

Table 8.2a:Power Score Table for 8-point DFT 
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16-POINT Power score with full transmission 

= P1*Y1+P2*Y2 

Power score with quarter transmission 

= P1*Y1+K*P2*Y2 

Power score with quarter transmission 

= P1*Y1+K*P2*Y2 

Oscilloscope 108,2 108,2 108,2 

Oscilloscope-cordic 1865 1832,5 1816,25 

Oscilloscope-lookup 149,6 117,1 100,85 

Oscilloscope-lookup-

interpolate 

1865 1832,5 1816,25 

Table 8.2b: Power Score Table for 16-point DFT 

 

 

Figure 8.5a: Power Score graph for 8-point DFT 
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Figure 8.5b: Power Score graph for 16-point DFT 

8.6 Data Analysis 

  From the Power Score graphs and tables it is obvious that 8-Point DFT is generally 

less power consuming than 16-point.More specifically: 

No Compression to Compression Gain 

8-Point: 

   a)The Osc to Osc-Cordic Gain is:     

     i)Full Transmission: (142.4-925.4)/142.4=-5.5=-550% 

     ii)Half Transmission: (142.4-892.9)/142.4=-5.27=-527% 

     iii)Quarter Transmission: (142.4-876.5)/142.2=-5.16=-516% 

 

   b)The Osc to Osc-Lookup Gain is:     

     i)Full Transmission: (142.4-149.6)/142.4=-0.05=-5% 

     ii)Half Transmission: (142.4-117.1)/142.4=0.18=18% (Positive Gain!) 
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     iii)Quarter Transmission: (142.4-100.85)/142.2=0.29=29% (Positive Gain!) 

   c)The Osc to Osc-Lookup-Interpolate Gain is:     

     i)Full Transmission: (142.4-785)/142.4=-4.51=-451% 

     ii)Half Transmission: (142.4-752.5)/142.4=-4.28=-428% 

     iii)Quarter Transmission: (142.4-736.25)/142.2=-4.17=-417% 

Results are shown in table 8.3 

8-Point Gain Full Transmission Half Transmission Quarter Transmission 

Osc/Osc-Cordic -550% -5% -451% 

Osc /Osc-Lookup -527% 18% -428% 

Osc / Osc -Lookup-Interpolate -516% 29% -417% 

Table 8.3: 8-Point No Compression to Compression gain 

16-Point: 

   a)The  Osc to Osc-Cordic Gain is:     

     i)Full Transmission: (108.2-1865)/108.2=-16.23=-1623% 

     ii)Half Transmission: (108.2-1832.5)/108.2=-15.94=-1594% 

     iii)Quarter Transmission: (108.2-1816.25)/108.2=-15.79=-1579% 

   b)The Osc to Osc-Lookup Gain is:     

     i)Full Transmission: (108.2-149.6)/108.2=-0.38= -38% 

     ii)Half Transmission: (108.2-117.1)/108.2=-0.08= -8% 

     iii)Quarter Transmission: (108.2-100.85)/108.2=0.07= 7% (Positive Gain!) 

c)The Osc to Osc-Lookup-Interpolate Gain is:     

     i)Full Transmission: (108.2-1865)/108.2=-16.23=-1623% 

     ii)Half Transmission: (108.2-1832.5)/108.2=-15.94=-1594% 

     iii)Quarter Transmission: (108.2-1816.25)/108.2=-15.79=-1579% 

Results are shown in table 8.4 
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16-Point Gain Full Transmission Half Transmission Quarter Transmission 

Osc/Osc-Cordic -1623% -38% -1623% 

Osc/Osc-Lookup -1594% -8% -1594% 

Osc/Osc-Lookup-Interpolate -1579% 7% -1589% 

Table 8.4: 16-Point No Compression to Compression gain 

  The data declare that in 3 cases (8-Point Osc-Lookup Half and Quarter Transmission 

and 16-point Osc-Lookup Quarter Transmission) we succeed Positive Gain. Due to 

the large amount of calculations made by Osc-Cordic and Osc-Lookup-Interpolate , 

their power score soars relatively to Osc and Osc-Lookup. 

 

16-Point to 8-point Gain 

a)The Osc app has no DFT so we expected the 16-point to be more power-

consuming. The total gain is (108.2-142.4)/142.4= - 0.24= -24%.The gain is equal for 

all kinds of transmission since there is no compression. 

b)The Osc-Cordic gain is : 

      i)Full Transmission: (1865-925.4)/1865=0.50=50% 

      ii)Half Transmission: (1832.5-892.9)/1832.5=0.51=51% 

      iii)Quarter Transmission: (1816.25-876.65)/1832.5=0.52=52% 

c)The Osc-Lookup app gain is : 

      i)Full Transmission: (149.6-149.6)/149.6=0=0% 

   ii)Half Transmission: (117.1-117.1)/117.1=0=0% 

   iii)Quarter Transmission: (100.85-100.85)/100.85=0=0% 

d)The Osc-Lookup-Interpolate gain is : 

   i)Full Transmission:  (1865-785)/1865=0.58=58% 

   ii)Half Transmission: (1832.5-752.5)/1832.5=0.59=59% 

   iii)Quarter Transmission: (1816.25-736.25)/1816.25=0.59=59% 
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Results are shown in table 8.5 

Application Full Transmission Half Transmission Quarter Transmission 

ECG -24% -24% -24% 

ECG-Cordic 50% 51% 52% 

ECG-Lookup 0% 0% 0% 

ECG-Lookup-Interpolate 58% 59% 59% 

Table 8.5: 16-Point to 8-Point Gain 
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Chapter 9 

Results, Discussion and Future 

Work 

9.1 Results-Discussion  

  In our project we dealt with ECG signal transmission and compression in a Wireless 

Sensor Network. We created software that transmits ECG signals with and without 

compression. Our goal was to evaluate different approaches to DFT compression and 

draw to conclusions on power consumption. With the assistance of the TinyOS open-

source system we built 4 apps: 

1) ECG App: Gathers ECG samples and sends them via Bluetooth  

2) ECG-Cordic App:  Gathers ECG samples , implements Discrete-Fourier-Transform 

on every 8 or 16 number of samples with the use of Cordic algorithm and sends the 

modified samples via Bluetooth. 

3) ECG-Lookup App:  Gathers ECG samples , implements Discrete-Fourier-Transform 

on every 8 or 16 number of samples with the use of Lookup-Tables(LUTs)and sends 

the modified samples via Bluetooth. 

4) ECG-Lookup-Interpolate App:  Gathers ECG samples , implements Discrete-

Fourier-Transform on every 8 or 16 number of samples with the use of Lookup-Table 

Interpolation and sends the modified samples via Bluetooth. 

  These 4 apps were compiled on a Shimmer mote. In order to simulate properly 

their results we also created 4 new apps that execute the same task but with a much 

simpler code that produces more accurate results. We compiled and simulated these 

apps on a Telsob mote instead of a shimmer and collected data. From the data we 

collected we reached the conclusions above: 

-The ECG-Cordic and ECG-Lookup-Interpolate apps are much more power consuming 

than the ECG-app and ECG-Lookup app both for 8-Point and 16-Point cases. 

- Half-transmission equals to lower power consumption in both cases. 

- 8-Point DFT is less power consuming than 16-Point . 
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- With the ECG- Lookup app we succeed less power consumption than the ECG app 

in half transmission in both 8-Point and 16-Point cases and in quarter transmission in 

8-Point case. Thus the Lookup-Tables technique is the best suited for DFT 

compression.  

9.2 Future Work 

  In our project we implemented a DFT Frequency Domain Technique to compress 

our ECG signal.As we mentioned in previews chapters , there is a variety  of 

Frequency Domain Techniques. In the future we can compress the ECG signal with 

techniques such as: 

1)The Discrete Cosine Transform(DCT) which was developed to approximate 

Karhunen-Loeve Transform (KLT) when there is high correlation among the input 

samples, as in the case of ECG signal  

2)The Discrete Sine Transform(DST). Discrete sine transform (DST) is a Fourier-

related transform similar to the discrete Fourier transform (DFT),but using a purely 

real matrix. It is equivalent to the imaginary parts of a DFT of roughly twice the 

length, operating on real data with odd symmetry (since the Fourier transform of a 

real and odd function is imaginary and odd), where in some variants the input and/or 

output data are shifted by half a sample. 

3)Discret Cosine Transform-II (DCT-II). DCT-II can be viewed as special case of the 

discrete fourier transform (DFT) with real inputs of certain symmetry. 

4)Discrete Wavelet Transform(DWT). The fundamental idea of wavelet transforms is 

that the transformation should allow only changes in time extension, but not shape. 

This is effected by choosing suitable basis functions that allow for this. Changes in 

the time extension are expected to be conform to the corresponding analysis 

frequency of the basis function. Based on the uncertainty principle of signal 

processing. 

  Apart from the Frequency Domain Techniques we can also use Direct Time-Domain 

techniques like: 

1)Turning point (TP).The TP algorithm is used to save the important signal values by 

reducing its sampling rate as half. It takes three signal values to process at a time and 

the first signal value is saved in the compressed signal.Then , nnext two signal values 

are taken and from these two consecutive signal values , this algorithm retains either 

first or second value depending on the slope changes. 

2)CORTES Algorithm. An enhanced method known as CORTES (Coordinate Reduction 

Time Encoding System) applies TP to some portions of the waveform and AZTEC to 

other portions and does not suffer from discontinuities. 
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3)Amplitude-Zone-Time Epoch Coding (AZTEC). The Amplitude Zone Time Epoch 

Coding (AZTEC) is one of the earliest ECG coding methods. It was developed by Cox 

as a preprocessing software for real-time monitoring of ECGs. It was observed to be 

useful for automatic analysis of ECGs such as QRS detection, but it is inadequate for 

visual presentation of the ECG signal as the reconstructed signal has a staircase 

appearance. 

  We could use all these techniques , compare the results and reach defining 

conclusions for Compression Ratios(CR) and Power Consumption. 

  Despite the compression , there is also the hardware part. The patients use the 

shimmer sensor(or any other) to record and send the compressed signal via 

Bluetooth o RF radio to a mobile phone(smartphone) and from the mobile phone to 

a central server. Through a web page , both patients and doctors can monitor the 

ECG signal thus giving the dealing with the circumstances acoordingly. Also the 

patient’s exact position could be defined with an established GPS connection from 

the patient’s mobile phone. This concept is illustrated graphically in figure 8.1 

 

Figure 9.1 Mobile Healthcare system context 
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Chapter 10 

Body-sensor Survey and Final 

Conclusions 

10.1 Cardiac Surgery Department Survey  

 In order to obtain a brighter picture concerning the necessity and appliance of body 

sensors, we conducted a survey in a cardiac surgery department of a general hospital 

of the National Health System searching for possible usage of such sensors. This was 

a retrospective study, based on the registry data of the hospital. From the nature of 

the study, there was impossible any intervention in the management of the patients, 

and the registry was anonymous, so there was not any violation of privacy and we 

will not reveal any patient’s consent or agreement. 

 During a one year period (January 1st 2012 – December 31st 2012), 626 patients 

were operated at the cardiac surgery department of the hospital, for a total number 

of 686 cardiac surgery procedures. Twenty four (24) patients (3.8%) were subjected 

to a second procedure and 4 patients (0.6%) to a third one. 

 After the procedure, the patients were transferred intubated in sedation to the Intensive 

Care Unit (ICU) where their vital signs (arterial pressure, central venous pressure, O2 

saturation, body temperature, urine output, ECG and mediastinal blood drain) were 

constantly monitored, necessary medications were granted and the protocol of 

postoperative recovery was followed. After stabilization of hemodynamic profile and body 

rewarming, sedation and mechanical ventilation were progressively withdrawn and the 

endotracheal tube was removed. Then, programs of physiotherapy and rehabilitation were 

begun. The exit from the ICU and the transfer to the general ward of the hospital was done if 

the patient was hemodynamically stable and without life-threatening complications. During 

the hospitalization in the ward, the patient was subjected to medication, vital signs 

recording (including arterial blood pressure, heart rate and rhythm and body 

temperature, usually every six or eight hours), intensive physiotherapy and 

rehabilitation. The presence of major complications (acute heart failure, life-

threatening rhythm disturbances, pulmonary insufficiency, stroke, bleeding, and 

sepsis) demanded the retransferring of the patient to the ICU.  The patient was 

discharged the hospital after full mobilization, no need for intravenous drug infusions and no 

serious complications.  
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1. From the 626 patients, 11 (1.8%) died on the operating table during the procedure and 

did not enter in the ICU. 

2. From the 615 patients entered in the ICU, 38 (6.2%) succumbed during their state in 

the ICU after a mean hospitalization time of 9.1 days. 

3. Mean time of the ICU state was 3.2 days (1-48 days) per patient. 

 

4. From the 577 patients that were transferred from the ICU to the common ward 

of the hospital, 11 (1.9%) died after a mean hospitalization time of 4.1 days and 

25 (4.3%) were retransferred in the ICU due to major postoperative 

complications. From these 25 patients, 6 were succumbed during their ICU 

state. The patient’s common ward mean time state was 15 days (1-104 days).  

5. Thus, from 626 patients who were undergoing a cardiac surgery procedure 

during the year 2012, 560 patients were discharged from the hospital to their 

home, a total percentage of 89.5%, while 66 patients (10.5%) died in the 

operating theater, the ICU, or the common ward. 

 

The results are listed in the table below 

 

Patient Category Number 
Category 

Percentage 
Total 

Percentage 

Total Number of Patients 626 100% 100% 

Operating Table Losses 11 1,80% 1,80% 

ICU Entrances 615 100% 98,24% 

ICU Losses 38 6,17% 6,20% 

Common Ward Entrances 577 100% 92,18% 

Common Ward Losses 11 1,90% 1,76% 

Readmission to ICU from Common Ward 23 3,99% 3,67% 

Losses from Readmission to ICU from Common 
Ward 

6 1,03% 0,96% 

Table 10.1 : Patient Data 

10.2 Cases of body-sensor appliance and final 

achievements 

 In the survey we are interested in searching for patients between those 577 that 

were hospitalized in the common ward after a cardiac surgery procedure during the 
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year 2012 and discharged later to their home and could possibly benefit from the 

use of body sensors. We selected 9 body sensors from www.cooking-hacks.com : 

 

1. Pulse and oxygen in blood sensor (SPO2) 

Pulse oximetry, a noninvasive method of indicating the arterial oxygen 

saturation of functional hemoglobin. Oxygen saturation is defined as the 

measurement of the amount of oxygen dissolved in blood, based on the 

detection of Hemoglobin and Deoxyhemoglobin. Two different light 

wavelengths are used to measure the actual difference in the absorption 

spectra of HbO2 and Hb. The bloodstream is affected by the concentration of 

HbO2 and Hb, and their absorption coefficients are measured using two 

wavelengths 660 nm (red light spectra) and 940 nm (infrared light spectra). 

Deoxygenated and oxygenated hemoglobin absorb different wavelengths. 

 
2.  Airflow sensor (breathing) 

The nasal airflow sensor is a device used to airflow rate to a patient in need 

of respiratory help or person. This device consists of a flexible thread which 

fits behind the ears, and a set of two prongs which are placed in the nostrils. 

Breathing is measured by these prongs. 

 
3. Body temperature sensor 

This sensor allows to measure body temperature. It is of great medical 

importance to measure body temperature. The reason is that a number of 

diseases are accompanied by characteristic changes in body temperature. 

Likewise, the course of certain diseases can be monitored by measuring body 

temperature, and the efficiency of a treatment initiated can be evaluated by 

the physician. 

 
4. Electrocardiogram sensor (ECG) 

The electrocardiogram (ECG or EKG) is a diagnostic tool that is routinely used 
to assess the electrical activity of the heart. The electrocardiogram (ECG) has 
grown to be one of the most commonly used medical tests in modern 
medicine. Its utility in the diagnosis of a myriad of cardiac pathologies ranging 
from myocardial ischemia and infarction to syncope and palpitations has 
been invaluable to clinicians for decades. 

 

 

http://www.cooking-hacks.com/index.php/pulse-and-oxygen-in-blood-sensor-spo2-ehealth-medical.html
http://www.cooking-hacks.com/index.php/airflow-sensor-breathing-ehealth-medical.html
http://www.cooking-hacks.com/index.php/body-temperature-sensor-ehealth-medical.html
http://www.cooking-hacks.com/index.php/electrocardiogram-sensor-ecg-ehealth-medical.html
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5. Glucometer sensor 

Glucometer is a medical device for determining the approximate 

concentration of glucose in the blood. A small drop of blood, obtained by 

pricking the skin with a lancet, is placed on a disposable test strip that the 

meter reads and uses to calculate the blood glucose level. The meter then 

displays the level in mg/dl or mmol/l. 

 
6. Galvanic skin response sensor (GSR - sweating) 

Skin conductance, also known as galvanic skin response (GSR) is a method of 

measuring the electrical conductance of the skin, which varies with its 

moisture level. This is of interest because the sweat glands are controlled by 

the sympathetic nervous system, so moments of strong emotion, change the 

electrical resistance of the skin. Skin conductance is used as an indication of 

psychological or physiological arousal. The device measures the electrical 

conductance between 2 points, and is essentially a type of ohmmeter. 

 
7. Blood pressure sensor (sphygmomanometer)  

Blood pressure is the pressure of the blood in the arteries as it is pumped 
around the body by the heart. When our heart beats, it contracts and pushes 
blood through the arteries to the rest of our body. This force creates pressure 
on the arteries. Blood pressure is recorded as two numbers—the systolic 
pressure (as the heart beats) over the diastolic pressure (as the heart relaxes 
between beats). High blood pressure (hypertension) can lead to serious 
problems like heart attack, stroke or kidney disease. High blood pressure 
usually does not have any symptoms, so we need to have our blood pressure 
checked regularly. 

 

8. Patient position sensor (Accelerometer) 

 

 The e-Health Body Position Sensor monitors five different patient positions 

(standing/sitting, supine, prone, left and right.) In many cases, it is necessary 

to monitor the body positions and movements made because of their 

relationships to particular diseases (i.e., sleep apnea and restless legs 

syndrome). Analyzing movements during sleep also helps in determining 

sleep quality and irregular sleeping patterns. The body position sensor could 

help also to detect fainting or falling of elderly people or persons with 

disabilities. 

 

 

http://www.cooking-hacks.com/index.php/glucometer-sensor-ehealth-medical.html
http://www.cooking-hacks.com/index.php/galvanic-skin-response-sensor-gsr-sweating-ehealth-medical.html
http://www.cooking-hacks.com/index.php/blood-pressure-sensor-sphygmomanometer-v2-0.html
http://www.cooking-hacks.com/index.php/patient-position-sensor-accelerometer-ehealth-medical.html
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9. Electromyography Sensor (EMG)  

 An electromyogram (EMG) measures the electrical activity of muscles at rest 
and during contraction. EMG signals are used in many clinical and biomedical 
applications. EMG is used as a diagnostics tool for identifying neuromuscular 
diseases, assessing low-back pain, kinesiology, and disorders of motor 
control. EMG signals are also used as a control signal for prosthetic devices 
such as prosthetic hands, arms, and lower limbs. This sensor will measure the 
filtered and rectified electrical activity of a muscle, depending the amount of 
activity in the selected muscle. 

 

 

 

 

From the 9 body sensors we have at our disposal , extremely useful and beneficial 

are the ones below: 

1. Electrocardiogram sensor (ECG)  

ECG sensor could be used in all of the 577 patients (100%) 

2. Blood pressure sensor (sphygmomanometer)  

Blood pressure would be useful for the 556 out of 577 patients (96%) 

3. Pulse and oxygen in blood sensor (SPO2) 

SPO2 sensor would be useful for the 521 out of 577 patients (90%) 

4. Body temperature sensor 

Body temperature sensor would be useful for the 327 out of 577 patients (57%) 

5. Glucometer sensor 

Glucometer sensor could be used for the 247 out of 577 patients (43%) 

Judging from the data above gathered from the survey it becomes quite clear how 

important these sensors are what a huge breakthrough their use would mean for 

every kind of medical center in our country. The infinite number of complications 

could be minimized dramatically. 

 

 

The most common complications in the patient’s post - cardiac surgery period are: 

1. ARRHYTHMIAS 

 Arrhythmias are the commonest postoperative complication. They are easily 

detected with the ECG sensor. Most of them are not  life–threatening for the patient, 

but if they persist, they could reduce the cardiac output and may produce 

http://www.cooking-hacks.com/index.php/electromyography-sensor-emg.html
http://en.wikipedia.org/wiki/Electromyography
http://www.cooking-hacks.com/index.php/electrocardiogram-sensor-ecg-ehealth-medical.html
http://www.cooking-hacks.com/index.php/blood-pressure-sensor-sphygmomanometer-v2-0.html
http://www.cooking-hacks.com/index.php/pulse-and-oxygen-in-blood-sensor-spo2-ehealth-medical.html
http://www.cooking-hacks.com/index.php/body-temperature-sensor-ehealth-medical.html
http://www.cooking-hacks.com/index.php/glucometer-sensor-ehealth-medical.html
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intracardiac thrombus, with peripheral embolisms and catastrophic sequels. Thus, 

their diagnosis and monitoring of their evolution are of vital importance for the 

atient. On the contrary, some arrhythmias are deadly from the beginning so their 

prompt diagnosis and urgent treatment are life-saving for the patient. 

 

2. HEART FAILURE 

 A serious number of patients are operated for heart failure. These patients 

postoperatively have the same signs and symptoms as before the operation, while 

the heart failure syndrome subsides progressively. These patients show low arterial 

pressure and arrhythmias that are detected from the respective sensors. These data 

are necessary for the defining or modification of the pharmaceutical care. 

3.  BLEEDING 

 Usually bleeding from the surgical sites appears in the ICU right after the operation 

and should be managed immediately, initially with conservative means and if it 

persists or occurred hemodynamic instability , with a new sternal opening and 

revision of the surgical sites. Later on the bleeding begins from another system, 

commonly the gastrointestinal. Tachycardia and low arterial pressure are the first 

signs which inform about and call for investigation for this dangerous complication.     

 

4. PULMONARY PROBLEMS 

 Pulmonary disturbances are common for patients that are subjected to cardiac 

operations .  A large percentage of the patients have problematic lungs usually from 

many years of smoking. Also the pulmonary function is aggravated postoperatively 

from the extra-corporeal circulation which is necessary for the cardiac operations , 

multiple transfusions and prolonged tracheal intubation. In the ICU , blood 

saturation in Ο2 (SPO2) is monitored constantly while blood gases are checked 

periodically. 

5. RENAL PROBLEMS 

 Renal problems are common in the ICU and the Common Ward. They appear with 

low diuresis, increase potassium concentration in the blood and drop of pH. If not 

handled immediately with medical management or with mechanical systems of 

temporary blood dialysis , they endanger the patient’s life. So, for the prevention or 

for the follow-up of the progress of this complication, combined monitoring with 

ECG, SPO2 sensors and arterial pressure is extremely useful 

6. NEUROLOGICAL PROBLEMS 
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 Neurological disorders that appear in the ICU have multiple causes. The arterial 

network that feeds the brain often suffers , especially in patients with coronary 

artery disease or the elderly . These patients demand constant and combined 

monitoring with ECG , SPO2 sensors , arterial pressure , temperature and glucose 

levels. 

7. INFECTIONS 

 Infections are usually appearing after the patient’s exit from the ICU. Inflammation 

of the mediastinal is a catastrophic complication and often dictates the 

reintroduction of the patient in the ICU for an extended period of time. The gravity 

of the patient’s clinical picture calls for constant monitoring and reevaluation of their 

condition. 

 

All the above complications are the main reasons for mortality in the 

perioperative period in the ICU and the Common Ward. In many cases , these 

complications can be prevented with constant monitoring. For example , 

arrhythmias , which as mentioned above are the most common complication , start 

with innocent forms and in the process they evolve with detrimental or fatal 

consequences. Thus , detection of arrhythmias and immediate treatment will reduce 

the perioperative morbidity and mortality. Patient’s stay at the ICU and the common 

Ward is defined from the severity of the patient’s clinical picture , the difficulty and 

the problems during the operation and the appearance of post-operative 

complications. Care for high – risk patients in order to achieve immediate diagnosis,  

and intensive follow-up for the progress of the above complications, is invaluable  by 

monitoring with the aid of these sensors. The continuous patient’s monitoring 

especially outside the ICU is multiple beneficial firstly for the patient’s safety and 

secondly for the hospital for the following reasons : 

 

- Saving Resources, by reducing patient’s length of 

stay in the ICU, in the Common Ward, and totally in 

the hospital. 

- Increasing hospital capacities, by increasing the 

available beds in the ICU and in the hospital.  



157 
 

- Improving patient’s positive mood, by reducing his 

hospital stay, especially and mainly by minimizing 

the length of stay in the difficult environment of the 

ICU.  

- Beginning quickly the rehabilitation programs in 

the family environment,  by preventing the 

appearance or reducing the severity of 

complications  

 Finally, as far as the economic part is considered in the long run , it is certain 

that insurance companies will get largely involved with body-sensors and that 

poses another aspect of research to be done in this domain. 

 

 

  



158 
 

 

  



159 
 

References 
[1] Sacha Gilgen, “ Mobile Healthcare on Android Devices” ,University of Zurich 

Department of Informatics (IFI) 

[2] Hossein Mamaghanian*, Student Member, IEEE, Nadia Khaled, Member, IEEE, 

David Atienza, Member, IEEE, and Pierre Vandergheynst, Senior Member, IEEE 

“Compressed Sensing for Real-Time Energy-Efficient ECG Compression on 

Wireless Body Sensor Nodes” IEEE TRANSACTIONS ON BIOMEDICAL 

ENGINEERING, VOL. 58, NO. 9, SEPTEMBER 2011 

[3] Francisco Rinc´ on, Joaquin Recas, Nadia Khaled, Member, IEEE, and David 

Atienza, Member, IEEE “Development and Evaluation of Multilead Wavelet 

Based ECG Delineation Algorithms for Embedded Wireless Sensor Nodes” , 

IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 

15, NO. 6, NOVEMBER 2011 

[4] PHILIP LEVIS an DAVID GAY “TinyOS Programming” , Cambridge University 

Press 

[5] Joakim Eriksson, Adam Dunkels, Niclas Finne, Fredrik Osterlind, Thiemo Voigt 

“Poster Abstract: MSPsim – an Extensible Simulator for MSP430-equipped 

Sensor Boards” , Swedish Institute of Computer Science 

[6] Joakim Eriksson, Fredrik Österlind, Niclas Finne, Nicolas Tsiftes, Adam 

Dunkels, Thiemo Voigt Swedish Institute of Computer Science , Robert Sauter, 

Pedro José Marrón University of Bonn and Fraunhofer IAIS “COOJA/MSPSim: 

Interoperability Testing for Wireless Sensor Networks 

[7] Tatiparti Padma, M. Madhavi Latha, Abrar Ahmed “ECG compression and 

labview implementation” , GRIET, JNTU, Hyderabad,India, Member IETE; 

JNTU, Hyderabad, India, Member IEEE; GRIET, Hyderabad, India 

[8] Tobias Neckel, Dirk Pfluger “Algorithms of Scientific Computing FFT on Real 

valued Data” , Technical University of Munchen 

[9] Ms. Manjari Sharma, Dr. A. K. Wadhwani, “Efficient Algorithm for ECG 

Coding” , International Journal of Scientific & Engineering Research Volume 2, 

Issue 6, June-2011 

[10] Wearable Sensor Technology|Shimmer|Wraerable Wireless Sensing 

Technology and Solutions , www.shimmersensing.com                                                   

[11] Toumaz Group , www.toumaz.com                                                                                    

[12]  Interuniversity Microelectronics Centre ,IMEC , www.imec.be                       

[13]  www.tinyOS.doc.net                                                                                                       

[14] tinyos.stanford.edu                                                                                                                           

[15] sourceforge.net/projects/mspsim                                                                                  

[16] Vikas Kumar , Kulbir Singh “FPGA Implementation of DFT using Cordic   

algorithm” , Thapar University , Electronics and Comunication Engineering   

Department                                                                                                                                    



160 
 

[17] Sambit Kumar Dash Jasobanta Sahoo Sunita Patel , “Cordic Algorithm And 

it’s Application in DSP” , Department of Electrical Engineering , National Institute 

of Technology , Rourkela 

 

 

 

 

 

 

 


