

Embedded Software for Electrocardiograph

Control in a Wireless Sensor Network

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Γεώργιος Χ. Χαρίτος

Επιβλέπων:Γεώργιος Οικονομάκος

 Επίκουρος Καθηγητής Ε.Μ.Π

ΑΘΗΝΑ, ΦΕΒΡΟΥΑΡΙΟΣ 2014

Embedded Software for Electrocardiograph

Control in a Wireless Sensor Network

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Γεώργιος X. Xαρίτος

Επιβλέπων:Γεώργιος Οικονομάκος

 Επίκουρος Καθηγητής Ε.Μ.Π

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή τη 12η Φεβρουαρίου 2014.

 Γεώργιος Οικονομάκος Δημήτριος Σούντρης Κιαμάλ Πεκμεστζή

 Επ. Καθηγητής Ε.Μ.Π Επ. Καθηγητής Ε.Μ.Π Καθηγητής Ε.Μ.Π

ΑΘΗΝΑ, ΦΕΒΡΟΥΑΡΙΟΣ 2014

..........................

Χαρίτος Γεώργιος

Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π

Copyright © Γεώργιος X. Χαρίτος, 2014

Με επιφύλαξη παντός διακαιώματος.All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ

ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση,

αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής

φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται

το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας για

κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν

τον συγγραφέα και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες

θέσεις του Εθνικού Μετσόβιου Πολυτεχνείου.

ΠΕΡΙΛΗΨΗ

Η έξαρση και η συνεχής αύξηση των καρδιοπαθήσεων ανα τον κόσμο έχουν

καταστήσει νέες μεθόδους παροχής ιατρικής περίθαλψης απαραίτητες. Η

πρόσφατη τεχνολογική πρόοδος στους ασύρματους αισθητήρες και την κινητή

τηλεπικοινωνία επιτρέπει νέα συστήματα περίθαλψης. Ειδικότερα, η διαθεσιμότητα

μικρών, ελαφρών και εξαιρετικά χαμηλής ισχύος αισθητήρων δίνει νέες

πιθανότητες για συνεχής παρακολούθηση ανθρώπινων βιοϊατρικών δεδομένων και

επομένως επιτρέπει την πρόωρη ανίχνευση πιθανών παθήσεων. Επιπλέον , η

ανάγκη για μείωση του μεγέθους των δεδομένων έχει οδηγήσει στη χρήση

διαφόρων μεθόδων συμπίεσης. Ο σκοπός αυτής της πτυχιακής εργασίας είναι η

δημιουργία ενός ενσωματωμένου λογισμικού για τον έλεγχο

ηλεκτροκαρδιογραφήματος σε περιβάλλον ασύρματου δικτύου αισθητήρων.

Ένσωματωμμένο λογισμικό είναι εκείνο το οποίο εγκαθίσταται μέσω ενός

λειτουργικού συστήματος σε μια συσκευή καθορίζοντας ανάλογα την λειτουργία

της. Ασύρματο Δίκτυο Αισθητήρων είναι ένα δίκτυο απο μικροσκοπικούς

αισθητήρες(κόμβους του δικτύου) τοποθετημένους σε στρατηγικές θέσεις ,

σχεδιασμένο να μετραέι μεγέθη όπως θερμοκρασία,υγρασία, φωτεινότητα κτλ. Οι

κόμβοι του δικτύου είναι μικροσκοπικές συσκευές οι οποίες στο εσωτερικό τους

περιέχουν μικροεπεξεργαστή,πομποδέκτη,εξωτερική μνήμη,παροχή ισχύος , και ένα

ή περισσότερα αισθητήρια όργανα. Ο σκοπός τους είναι να συλλέγουν πληροφορίες

για το περιβάλλον τους , να επεξεργάζονται δεδομένα και να τα διανέμουν στο

δίκτυο. Στην εργασία μας , το λειτουργικό σύστημα που θα χρησιμοποιήσουμε είναι

το TinyOS από το Πανεπιστήμιο Berkeley της Καλιφόρνια. Το TinyOS χρησιμοποιεί

τη γλώσσα nesC , μίε επέκταση της γλώσσας C . Επειδή δεν θα χρησιμοποιήσουμε

hardware για , θα προσομοιώσουμε το λογισμικό με τη βοήθεια του προσομοιωτή

MSPSim , προσομοιωτής του MSP430(μικροεπεξεργαστής για εφαρμογές εξαιρετικά

χαμηλής ισχύος). Το λογισμικό μας θα εκτελεί τα εξής:

1)Εντοπίζει ένα ECG σήμα συλλέγοντας ένα αριθμό δειγμάτων

2)Επεξεργάζεται το σήμα με τεχνικές στο πεδίο της συχνότητας

3)Εκπέμπει το συμπιεσμένο σήμα με έναν RF πομποδέκτη , το CC2420 μικροτσίπ

που περιλαμβάνει η αισθητήρια συσκευή

Τέλος , θα προσομοιώσουμε το πρόγραμμά μας με την πλατφόρμα shimmer. Στόχος

μας είναι να αναλύσουμε και να αξιολογήσουμε διάφορους τρόπους συμπίεσης του

ECG σήματος και να ανιχνεύσουμε εκείνες που επιτυγχάνουν μείωση της

καταναλισκώμενης ισχύος. Θα καταλήξουμε σε αυτό το συμπέραμα μέσω

μετρήσεων και συγκρίσεων απο τον MSPSim προσοποιωτή.

ABSTRACT

The widespread cardiovascular diseases around the world and their constant rise

have rendered new ways of healthcare delivery imminent. Recent technological

advances in wireless sensors and mobile communication enable new types of

healthcare systems. Especially the availability of small, lightweight and ultra-low

power sensors gives new possibilities for a continuously monitoring of human

biomedical data and therefore allows an early detection of potential illness.

Furthermore, the need for data size reduction has lead to the use of various

compression techniques. The purpose of this bachelor thesis is to create an

embedded software for the control of an electrocardiograph signal in a wireless

sensor network. An embedded software is a software installed via an operating

system on a hardware device thus designating the device's behavior accordingly. A

wireless sensor network(WSN) is a network of sensor nodes (also known as motes)

placed in strategic locations designated to measure temperature, light, humidity etc.

Sensor nodes are tiny hardware devices that contain a microprocessor, a transceiver,

an external memory , power supply and one or more sensors . Their purpose is to

gather information about their environment, process data and send them

throughout the network. In our project the operating system we will use to program

the embedded software is the open source system TinyOS from Berkeley University

of California. TinyOS uses the nesC language, an extension of C programming

language. Since we won't be using any hardware for a wide variety of reasons we will

simulate our software with the help of the mspsim simulator an MSP430(an ultra

low-power microprocessor that most of the motes contain) simulator. Our software

will perform the following:

1) Sense an ECG signal by getting a number of ECG samples.

2) Modify the signal with a Frequency-Domain Technique

3) Transceive the modified signal with an RF Transceiver the CC2420 chip that the

mote contains.

Also we will simulate our software with the shimmer mote. Our goal is to analyze

and evaluate different methods for compressing the ECG signal and detect the

methods that succeed power consumption. We expect to reach this conclusion by

gathering data from the MSPSim simulator and compare the results.

ACKNOWLEDGMENTS

First of all I would like to express my gratitude to Professor George Economakos for

giving me the opportunity to write this bachelor thesis and of course for his support,

patience and scientific supervision.

Furthermore, special thanks go to my colleagues and trusted partners Evangelos

Simopoulos and George Teddes for their precious assistance and advice.

Finally I would like to thank my mother, father and whole family for their assistance,

encouragement and loving care during my studies.

CONTENTS

Chapter 1 ... 21

Introduction .. 21

1.1 Cardiovascular Diseases ... 21

1.2 The ECG signal .. 22

1.3 The Activity of the Heart .. 24

1.3.1 Electrocardiography .. 25

1.3.2 3-Lead Electrocardiography... 26

1.3.3 Interpretation of an Electrocardiogram 27

1.3.4 ECG Hardware ... 28

1.4 ECG Data Compression ... 32

1.4.1 Neccesity for ECG Compression .. 32

1.4.2 ECG Compression Techniques .. 34

Chapter 2 ... 35

Wireless Sensor Networks (WSN) ... 35

2.1 Introduction to WSN .. 35

2.2 Monitoring ... 35

2.3 Motes and Sensors ... 37

2.4 Wireless Sensor Networks ... 38

2.4.1 Energy Efficiency ... 38

2.4.2 Routing ... 40

2.4.3 Security ... 40

2.5 Operating Systems ... 40

Chapter 3 ... 44

Motes .. 44

3.1 Intro to Motes .. 44

3.2 Common mote platforms ... 44

3.2.1 Physical Characteristics ... 47

3.2.2 Processor and Memory ... 47

3.2.3 Communications Capabilities .. 48

3.2.4 Sensor Support ... 49

3.2.5 Power Specifications ... 49

3.2.6 Price .. 50

3.3 The SHIMMER platform ... 50

3.3.1 Shimmer Key Principles ... 50

3.3.2 Shimmer Platform Design ... 51

3.3.3 Shimmer Key Features .. 52

3.3.4 Hardware Overview .. 54

3.3.5 Texas Instruments MSP430F1611 ... 56

3.3.6 Texas Instruments CC2420 .. 57

Chapter 4 ... 60

TinyOS ... 60

4.1 Introduction ... 60

4.1.1 Networked, embedded sensors .. 60

4.2 TinyOS, what is it .. 62

4.2.1TinyOS, what it provides. ... 62

4.3 Example application ... 63

4.3.1Compiling and installing applications 64

Chapter 5 ... 66

NesC .. 66

5.1 First Approach to nesC ... 66

5.2 Basic nesC Programming .. 68

5.3 Example Application:Blink ... 69

5.3.1 The Blink.nc Configuration .. 70

5.3.2 The Blink.nc Module ... 73

5.3.3 Compiling the Blink Application .. 75

5.3.4 Interfaces, Commands, and Events ... 76

5.4 Tasks ... 78

5.5 Radio communication .. 79

5.5.1 Basic Communications Interfaces ... 79

5.5.2 Active Message Interfaces .. 80

5.5.3 Components ... 80

5.5.4 Sending a Message over the Radio.. 81

5.5.5 Receiving a Message over the Radio 85

Chapter 6 ... 89

The MSPSIM Simulator ... 89

6.1 The Simulator ... 89

6.1.1 Main Features ... 90

6.1.2 What is emulated of the MSP430.. 91

6.2 Sensor Board Simulation .. 91

Chapter 7 ... 101

Design .. 101

7.1 ECG App .. 101

7.1.1 ECGC.nc .. 101

7.1.2 ECGAppC.nc .. 110

7.1.3 ECG.h .. 112

7.2 Discrete Fourier Transform(DFT) .. 114

7.2.1 Fast Fourier Transform(FFT) .. 115

7.2.2 FFT on Real-valued Data.. 115

7.2.3 C Code for RDFT .. 117

7.3 ECG-cordic .. 118

7.3.1 Cordic Algorithm ... 118

7.3.2 C code for sine cosine functions with Cordic algorithm 122

7.3.3 ECG-cordic app ... 123

7.4 ECG-lookup ... 124

7.4.1 Look-Up Table (LUT) .. 124

7.4.2 C code for Look-Up Table (LUT) ... 125

7.4.3 ECG-lookup app ... 126

7.5 ECG-lookup-interpolate.. 128

7.5.1 Linear Interpolation .. 128

7.5.2 C code for Linear Interpolation ... 129

7.5.3 ECG-lookup-interpolate app ... 129

Chapter 8 ... 133

Simulation ... 133

8.1 Oscilloscope Simulation ... 133

8.2 Oscilloscope-cordic Simulation .. 134

8.3 Oscilloscope-lookup Simulation ... 135

8.4 Osciloscope lookup-interpolate Simulation 135

8.5 Power Consumption ... 136

8.6 Data Analysis .. 141

Chapter 9 ... 146

Results , Discussion and Future Work. .. 146

9.1 Results-Discussion .. 146

9.2 Future Work ... 147

Chapter 10 ... 150

Body-sensor Survey and Final Conclusions ... 150

10.1 Cardiac Surgery Department Survey .. 150

10.2 Cases of body-sensor appliance and final achievements 151

References ... 159

List of Figures

1.1 Graphic illustration of the factors for improved Healthcare Delivery…………………21

1.2 A typical representation of the ECG waves………………………………………………………23

1.3 Typical ECG waveform………………………………………………………………………………………23

1.4 Sectioned view of the heart………………………………………………………………………………24

1.5 Electrical conduction system of the heart………………………………………………………….25

1.6 Standard 3-Lead ECG based on Einthoven's Triangle…………………………………………26

1.7 Normal ECG waveform………………………………………………………………………………………27

1.8 A Holter device in ambulatory monitoring…………………………………………………………29

1.9 Toumaz’s Sensium Life Pebble TZ203082………………………………………………………….29

1.10 SHIMMER platform , a small wireless sensor platform that can record and

transmit physiological and kinematic data in real-time……………………………………………30

1.11 IMEC’s wireless single-lead bipolar ECG patch…………………………………………………30

2.1 Passive and Active monitoring…………………………………………………………………………36

2.2 Volcano WSN……………………………………………………………………………………………………36

2.3 Mote picture……………………………………………………………………………………………………37

2.4 Mote architecture……………………………………………………………………………………………38

2.5 Heliomote……39

2.6 TinyOS Code snippet…………………………………………………………………………………………41

2.7 Avrora……42

2.8 Cooja………42

3.1 TelosB/Tmote Sky…………………………………………………………………………………..…………45

3.2 Micaz………45

3.3 Shimmer………46

3.4 IRIS……46

3.5 Block diagram from memsic………………………………………………………………………………52

3.6 MSP430 Block diagram from moteiv…………………………………………………………………55

3.7 CC2420 Simplified block diagram………………………………………………………………………57

3.8 CC2420 Simplified block diagram………………………………………………………………….…..58

4.1 A typical sensor network architecture……………………………………………………………….61

4.2 Example application architecture………………………………………………………………………64

6.1a Sky window……………………………………………………………………………………………………96

6.1b USART 1Port Output window…………………………………………………………………………96

6.1c Duty Cycle Monitor window……………………………………………………………………………97

6.1d Stack Monitor window……………………………………………………………………………………97

6.1e MSPSimMonitor window…………………………………………………………………………………98

6.2 MSPSim terminal command line………………………………………………………………………99

--

7.1 Rotation of a vector V by angle φ……………………………………………………………………119

7.2 The yellow line is the LUT sin(x), and the blue one is LUT sin(x+1)…………………..128

--

8.1 Duty Cycle graph for the Oscilloscope app……………………………………………………...134

8.2 Duty Cycle graph for the Oscilloscope-cordic app………………………………………......134

8.3 Duty Cycle graph for the Oscilloscope-lookup app…………………………………………..135

8.4 Duty Cycle graph for the Oscilloscope-lookup-interpolate app………………………..135

8.5a: Power Score graph for 8-point DFT………………………………………………………………140

8.5b: Power Score graph for 16-point DFT…………………………………………………………….141

9.1 Mobile Healthcare system context………………………………………………………………….148

List of Tables

1.1 Heart chambers viewed by the 3-lead ECG ………………………………………………………27

1.2 Segments and intervals of an ECG wave……………………………………………………………28

3.1 Physical characteristics of motes…………………………………………………………………….…47

3.2 Mote microprocessor specifications……………………………………………………………….…48

3.3a Mote Communication capabilities…………………………………………………………………..48

3.3b Mote Communication capabilities…………………………………………………………………..49

3.4 Mote prices………………………………………………………………………………………………………50

3.5 Overview of Shimmer extension daugtherboards…………….……………………………….52

3.6 CC2420 main features……………………………………………………………………………………….59

6.1 Function of Blink application……………………………………………………………………………..92

7.1 Cordic Uses……………………………………………………………………………………………………..121

--

8.1a 8-point Raw duty values (10 per second - command used = duty 10 "MSP430

Core.active") for 3 seconds (30 values) - peak-to-peak………………………………………….136

8.1b 16-point Raw duty values (10 per second - command used = duty 10 "MSP430

Core.active") for 3 seconds (30 values) - peak-to-peak………………………………………….137

8.1c 8-Point ROM(code) bytes,RAM(data) bytes, Average Duty Value and Maximum

Duty Value table……………………………………………………………………………………………………138

8.1d 16-Point ROM(code) bytes,RAM(data) bytes, Average Duty Value and Maximum

Duty Value table……………………………………………………………………………………….…………..138

 8.2a Power Score Table for 8-point DFT……………………………………………………………….139

8.2b Power Score Table for 16-point DFT………………………………………………….………….140

8.3 8-Point No Compression to Compression gain……………………………………….….……142

8.4 16-Point No Compression to Compression gain……………………………………………..143

8.5 16-Point to 8-Point Gain…………………………………………………………………………………144

10.1 Patient Data…………………………………………………………………………………..……………..151

21

Chapter 1

Introduction

1.1 Cardiovascular Diseases

 Nowadays, our modern society is threatened by an incipient health care delivery

crisis caused by the current demo-graphic and lifestyle trends. On the one hand, the

world’s population is fast aging resulting into an increased rate of cardiac disorders.

On the other hand, our busy and often unhealthy lifestyles are gradually increasing

the number of people unsuspectingly developing or living with chronic

cardiovascular conditions for decades. Specifically, according to the World Health

Organization, cardiovascular diseases are the number one cause of death worldwide,

responsible for an estimated 17.1 million deaths in 2012 (i.e., 29% of all deaths

worldwide) and economic fallout in billions of dollars. Their burden is only expected

to rise due to the rapid aging of the world population and of course the increasing

prevalence of unhealthy lifestyles. These increasingly existent cardiac diseases are

requiring escalating levels of supervision and medical management, which are

contributing to unmatchable health care costs .

Figure 1.1 Graphic illustration of the factors for improved Healthcare Delivery

 Cardiovascular diseases require close and potentially continuous medical

supervision and care. Soon they will require healthcare costs and medical

management needs that are unbearable for traditional healthcare delivery systems.

22

Wireless body sensor network (WBSN) technologies promise to offer large-scale and

cost-effective solutions to this problem. The use of wearable, miniaturized, and

wireless sensors, able to continuously measure and wirelessly report cardiac signals,

can definitely provide the ubiquitous, long-term and even real-time monitoring

required by the patients, as well as its integration with the patient’s medical record

and its coordination with nursing/medical support .These solutions scope to

outfitting patients with wearable, miniaturized and wireless sensors able to measure

and wirelessly transmit and report cardiac signals to telehealth providers. They are

ready to enable the required personalized, real-time and long-term ambulatory

monitoring of chronic patients, its seamless integration with the patient’s medical

record and its coordination with nursing/medical support.

1.2 The ECG signal

 An electrocardiogram (ECG or EKG) is a recording of the electrical activity of the

heart over time produced by an electrocardiograph. The signal recorded, is

graphically displayed in a two dimensional graph, where the height represents the

measured electrical activity in millivolts and the width the interval of time in

seconds. Electrical impulses in the heart originate in the sinoatrial node and travel

through the heart muscle where they impart electrical initiation of systole or

contraction of the heart. The electrical waves can be measured at selectively placed

electrodes(electrical contacts) on the skin. Electrodes on different sides of the heart

measure the activity of different parts of the heart muscle. An ECG displays the

voltage between pairs of these electrodes, and the muscle activity that they

measure, from different directions, also understood as vectors. . Figure 1.2 shows a

typical ECG waveform. Among the relevant cardiac signals, the noninvasive

electrocardiogram has long been used as a means to diagnose diseases reflected by

disturbances of the heart’s electrical activity. Beyond traditional

electrocardiography, the automated processing and analysis of the ECG signal has

been a popular subject of research and has witnessed substantial advances .In fact ,

a huge variety of algorithms have been suggested for the detection of the ECG

characteristic waves, so-called ECG delineation, following a variety of approaches

based on low-pass differentiation , the wavelet transform (WT) , dynamic time

warping , artificial neural networks , hidden Markov models , or morphological

transforms. The morphological and timing information of the detected waves,

namely the QRS complex and P and T waves, can be used to diagnose many cardiac

ailments .

23

Figure 1.2 A typical representation of the ECG waves

Figure 1.3 Typical ECG waveform

 To understand how and what an ECG records, we must first understand and grasp

how the heart itself works . For this reason , we describe the basic functionality of

the heart, before describing the ECG waveform and its interpretation in detail.

24

1.3 The Activity of the Heart

 The heart is nothing more than muscle with the sole purpose of pumping blood

throughout our whole body. For this, the heart consists of various chambers: a right

atrium, right ventricle, left atrium and left ventricle, as shown in Figure 1.4 . These

two sides of the heart work together in perfect synchronicity to pump blood

through our body system. The right side of the heart delivers deoxygenated blood

from the body to the lungs, whereas the left side of the heart delivers oxygenated

blood from the lungs to the body .

Figure 1.4 Sectioned view of the heart

 A pumping cycle begins, when deoxygenated blood from the body returns to fill the

right atrium of the heart. When the right atrium is full, it contracts and pushes the

blood into the right ventricle. Now, when the right ventricle is filled, it contracts and

pumps the blood further into the lungs. The oxygenated blood from the lungs is then

returned to the left atrium of the heart. The left atrium contracts and pumps the

blood into the left ventricle. This occurs simultaneously as a new contraction is

taking place in the right atrium, filling the right ventricle with blood. Finally the left

ventricle contracts and sends the blood to the rest of the body system. At the same

time the right ventricle pumps blood into the lungs. After the contraction of the

ventricles, a new cycle begins.

25

Figure 1.5 Electrical conduction system of the heart

1.3.1 Electrocardiography

 In order the heart to contract , an electrical impulse is required. This electrical

impulse is generated by the Sinoatrial Node (SA node) and propagates through the

conduction system of the heart, shown in Figure 1.5 . First the electrical impulse

spreads from the SA node throughout the muscle tissue of the right and left atrium

and follows an internodal pathway directly to the atrioventricular node (AV node),

where it is naturally delayed. This stimulates the artrial muscle cells, causing both

atria to contract in unison and fill the ventricles with blood. Especially the delay,

caused by the AV node is important, because it allows to fill the ventricle with blood

by atrial contraction ,before the ventricles contract itself. After the AV node, the

impulse continuous down to the Bundle of His, where the conduction system

branches out to a right and left bundle branch and finally terminates in tiny fibres,

known as Purkinje Fibres. This Purkinje Fibres conduct the electrical impulse

throughout the ventricular, stimulating the muscle cells and causing a contraction of

the right and left ventricles in unison. At the beginning of this cycle a resting heart is

polarized, which means that the heart cells have a negative charge . As a stimulus

occurs, the cells changes its charge to positive. This is called depolarization and

causes the heart muscle fibres to shorten and consequently the heart muscle to

contract. During this contraction the cells regains slowly a negative charge, as the

electrical impulse is moving down along the conduction system, causing the heart

muscle to relax. This process is known as repolarization. The potential change, which

occurs during depolarization and repolarisation, is exactly what can be measured at

the skin surface by electrodes . This recorded electrical activity can then be displayed

in a two dimensional graph known as electrocardiogram.

26

1.3.2 3-Lead Electrocardiography

 As mentioned, the ECG works by detecting the electrical changes on the skin, caused

when the heart muscle depolarises. This is done by placing pairs of electrodes on

either side of the heart. The output of a pair of electrodes is known as lead and is

said to look at the heart from a specific perspective . These leads are also called

bipolar leads, as they measure the voltage difference between two electrodes .

Based on the number of leads recorded, several types of ECG's are differentiated.

For example 3-lead ECG, 5-lead ECG and 12-lead ECG. These types of ECGs mainly di

fferentiate from each other by the precision and accuracy of their recordings. A 12-

lead ECG for example records more leads than a 3-lead ECG and therefore has a

broader view on the heart. Consecutively the 3-lead ECG will be described in more

detail, as it was used in this project. The 3-lead ECG is based on the most basic form

of electrodes placement, known as Einthoven's triangle . Thereby the electrodes are

placed as follow: one on the right arm (RA), one on the left arm (LA) and the third

one representing the left leg (LL) is situated below the hearts apex. The electrodes

then form the leads: LA + RA (Lead I), LA + LL (Lead II) and RA + LL (Lead III). Figure

1.6 illustrates the placement of the electrodes and the three leads they form . The

leads are described by convention as follows :

Figure 1.6 Standard 3-Lead ECG based on Einthoven's Triangle

 Lead 1 (LA-RA): measures the potential difference between the right arm

electrode and the left arm electrode.

27

 Lead 2 (LA-LL): measures the potential difference between the right arm

electrode and left leg electrode.

 Lead 3 (RA-LL): measures the potential difference between the left arm

electrode and left leg electrode.

 This 3-lead system provides three different views, able to monitor multiple regions

of the heart and consequently yields to three different signals. Table 2.1 summarizes

the chambers, viewed by the 3-lead ECG.

Lead Views Heart Chambers

Lead 1 Lateral Left ventricle,left atrium

Lead 2 Inferior Left and right ventricle

Lead 3 Inferior Right and Left ventricle

Table 1.1 Heart chambers viewed by the 3-lead ECG

1.3.3 Interpretation of an Electrocardiogram

 The recorded ECG signal shows a series of waves, that relate to the electrical

impulses ,which occur during each beat of the heart. These waves are labeled with

successive letters of the alphabet P, Q, R, S, T, and U, as shown in Figure 1.7. When it

comes to the interpretation of an ECG signal, the attention turns to the segment and

intervals, also illustrated in Figure 1.7 . The most important intervals and segments,

are described and summarized in table 1.2 .

Figure 1.7 Normal ECG waveform

28

Feature Description

RR Interval

Represents the interval between an R wave an the next R wave and
is the inverse of the heart rate. A normal resting heart rate lies
between 50 and 100 beats per minute.

P waves The P wave represents the depolarization of the right and left atria.

PR segment The PR segment coincides with the electrical conduction from the
AV node through the Bundle of His, toward the Purkinje Fibers.
Hence the PR segment corresponds to the time between the end of
28rterial depolarization, to the begin of ventricular depolarization.

PR interval
Represents the time measured between the beginning of the P
wave to the beginning of the QRS complex. The PR interval reflects
the time an electrical impulse takes to travel from the SA node
through the atria and the AV node down to the Purkinje Fibres.

QRS Complex

The QRS complex represents the rapid depolarization of the two
ventricles. Because the ventricles have a larger muscle mass than
the atria,
the QRS complex has a much larger amplitude than the P-wave.

ST Segment
The ST segment lies between the QRS complex and T wave and rep-
resents the period, when the ventricles are depolarized.

T wave The T wave corresponds to the rapid ventricular repolarization.

QT interval
The QT interval represents the complete ventricular cycle, starting
with the depolarization and ending with the repolarization.
Table 1.2:Segments and intervals of an ECG wave

 Based on the rythm of the recorded ECG and the patterns of the segments and

intervals in a ECG waveform, abnormalities can be detected and a diagnose can be

given.

1.3.4 ECG Hardware

 Traditionally, the automatic analysis of ECG signals, including delineation, was either

taking place online on bulky, high-performance bedside cardiac monitors, or

performed offline during a post-processing stage after ambulatory ECG recording

using wearable, yet obtrusive, ECG data loggers . While the resting ECG monitoring

is standard practice in hospitals, its ambulatory counterpart is still facing many

technical challenges. For instance, the three-lead ECG is still nowadays recorded on a

rather bulky commercial data-logging (Holter) device during one to five days of

normal daily activities of a patient. These systems suffer from important limitations:

limited autonomy, bulkiness, and no or limited wireless connectivity.

29

Figure 1.8 A Holter device in ambulatory monitoring

 Recently, the realization of wireless-enabled low-power ECG monitors for

ambulatory use has received significant industrial and academic interest . Effort has

been dedicated to online automatic ECG analysis on miniature, wearable and

wireless ECG monitors as an enabler of next-generation mobile cardiology systems

.The most important highlights of these research and development efforts are:

1)Toumaz’s Sensium Life Pebble TZ203082 , an ultra-small and ultra-low-power

monitor for heart rate, physical activity, and skin temperature measurements with a

reported autonomy of five days on a hearing aid battery.

Figure 1.9 Toumaz’s Sensium Life Pebble TZ203082

2) Intel’s Shimmer , a small wireless wearable sensor platform able to record and

wirelessly transmit three-lead ECG data as well as accelerometer, gyroscope, and

galvanic skin response information.

30

Figure 1.10 SHIMMER platform , a small wireless sensor platform that can record

and transmit physiological and kinematic data in real-time

3) IMEC’s wireless single-lead bipolar ECG patch for ambulatory monitoring claiming

over ten days of monitoring on a 160mAh Li-ion battery (for undisclosed use

conditions).

Figure 1.11 IMEC’s wireless single-lead bipolar ECG patch

31

 The clinical relevance of the first system is still being validated, as Toumaz aims to

achieve more than the system’s so far established accurate measurement of heart

rate. The second system, which is based on commercial off-the-shelf components

such as the TI MSP430 microcontroller and the CC2420 radio chip-set, operates on a

Li-ion battery that provides about 1 Wh of energy. According to measurements, it is

able to support a maximum of 6.5-day single-lead raw ECG sensing and storage on

local memory. This autonomy figure is reduced by 25%, when the raw ECG data are

wirelessly streamed using the ultra-low-power CC2420 in a perfect point-to-point

link with no wireless protocol overhead. More importantly, this autonomy figure will

undoubtedly dramatically decrease under realistic ambulatory monitoring. Finally,

IMEC ultra-low-power wireless biopotential sensor node achieves its enhanced

autonomy due to a proprietary customized ultra-low-power analog read-out ASIC

[signal acquisition, amplification, and analog-to-digital conversion (ADC)], a

proprietary ultra-low-power ultra-wideband wireless transceiver, and more

importantly, dedicated signal processors to preprocess and compress the sensed

data using state-of-the-art techniques, in order to reduce the airtime over power-

hungry wireless links .Based on these premises, it is today acknowledged that the

achievement of truly WBSN-enabled ambulatory monitoring systems requires more

breakthroughs not only in terms of ultra-low-power read-out electronics and radios,

but also and increasingly so, in terms of ultra-low-power dedicated digital processors

and associated embedded feature extraction and data compression algorithms.

 Wireless body sensor networks (WBSN) hold the promise to be a key enabling

information and communications technology for next-generation patient-centric

telecardiology or mobile cardiology solutions. Through enabling continuous remote

cardiac monitoring, they have the potential to achieve improved personalization and

quality of care, increased ability of prevention and early diagnosis, and enhanced

patient autonomy, mobility, and safety. However, state-of-the-art WBSN-enabled

ECG monitors still fall short of the required functionality, miniaturization, and energy

efficiency. Among others, energy efficiency can be improved through embedded ECG

compression, in order to reduce airtime over energy-hungry wireless links.

 In our project we will use the shimmer platform . In fact we will run-simulate our

program on shimmer platform . And that’s because we require a sensor component

that satisfies the requirements specified below:

32

 Record ECG data : The sensor must record raw ECG data in real-time.

 Transmit ECG data : The sensor transmits the recorded data wirelessly to the

mobile application.

 Remote control of sensor : It should be possible to start and stop the

recording of data, by sending corresponding commands wirelessly to the

sensor.

 Use of defined protocol : A defined protocol should be used to send recorded

data. Further the protocol should support the transmission of different types

of biomedical data.

 The shimmer mote meets all these requirements . In Chapter 3 we present the

shimmer platform’s main features in detail.

1.4 ECG Data Compression

1.4.1 Neccesity for ECG Compression

 ECG compression is necessary for efficient storage and transmission of the digitized

ECG signals. Any kind of ECG monitoring device generates a huge amount of data in

the continuous long-term (24-48 hours) ambulatory monitoring tasks. In order to

succeed good diagnostic quality, up to 12 different streams of data may be obtained

from sensors placed on the patient’s body. The sampling rates of ECG signals are

from 125Hz to 500Hz, and each data sample may be digitized into 8 to 12 bits binary

number. Even with one sensor at the lowest sampling rate of 125 Hz and 8-bit

encoding, it generates data at a rate of 7.5KB per minute and 450KB per hour. For a

sampling rate of 500Hz and 12-bit encoding recording, it generates data at a rate of

540KB per minute and 30MB per hour. The data rate from 12 different sensors

totally will generate 12 times the amount of data and it is enormously big. Besides,

recording for almost 24 hours may be of paramount importance for a patient with

irregular heart rhythms . Monitor devices such as Holter must have a memory

capacity of about 400-800 MB for a 12-lead recording, but such a big memory cost

may render a solid-state commercial Holter device impossible. Thus, efficient ECG

data compression to dramatically reduce the data storage capacity is a necessary

solution. On the other hand, it makes possible to transmit ECG data over a telephone

line from one cardiac doctor to another cardiac doctor to get opinions.

33

 Coding is useful because it helps reduce the consumption of expensive resources,

such as hard disk space or transmission bandwidth. On the downside , compressed

data must be decompressed to be used and this extra processing may be detrimental

to some applications. Basically, as we previewsly mentioned , a data coding

algorithm seeks to minimize the number of code bits stored by reducing the

redundancy present in the original signal. The design of data compression schemes

therefore involves trade-offs among various factors including the degree of

compression, the amount of distortion introduced (if using a lossy compression

scheme) and the computational resources required to compress and uncompress the

data. The most difficult part for any efficient ECG compression technique is to reduce

the amount of data as much as possible while preserving the clinical significant signal

for cardiac diagnosis, for analysis of ECG signal for various parameters such as heart

rate, QRS-width, etc. Then the various parameters and the compressed signal can be

transmitted with less channel capacity. Compression connotes the process of

starting with a source of data in digital form (usually either a data stream or a stored

file) and creating a representation that uses fewer bits than the original . An effective

data compression scheme for ECG signal is required in many practical applications

such as ECG data storage, ambulatory recording systems and ECG data transmission

over telephone line or digital telecommunication network for telemedicine .

 Data compression methods can be classified into two categories: 1) Lossless and 2)

Lossy coding methods. Lossy compression is useful where a certain amount of error

is acceptable for increased compression performance. Lossless or information

preserving compression is used primarily in the storage of medical or legal records.

In lossless data compression, the signal samples are considered to be realizations of

a random variable or a random process and the entropy of the source signal

determines the lowest compression ratio that can be achieved. In lossless coding the

original signal can be perfectly reconstructed. For typical biomedical signals lossless

(reversible) compression methods can only achieve Compression Ratios (CR) in the

order of 2 to 1. On the other hand lossy (irreversible) techniques may produce CR

results in the order of 10 to 1. In lossy methods, there is some kind of quantization of

the input data which leads to higher CR results at the expense of reversibility. But

this may be acceptable as long as no clinically significant degradation is introduced

to the encoded signal. The CR levels of 2 to 1 are too low for most practical

applications. Therefore, lossy coding methods which introduce small reconstruction

errors are preferred in practice.

34

1.4.2 ECG Compression Techniques

 Biomedical signals can be compressed in time domain, frequency domain, or time-

frequency domain. ECG data compression algorithms have been mainly classified

into three major categories : 1) Direct time-domain techniques, e.g., turning point

(TP), amplitude-zone-time epoch coding (AZTEC) , coordinate reduction time

encoding system (CORTES) and Fan algorithm. 2) Transformational approaches , e.g.,

discrete cosines trans-formation (DCT), fast fourier transform (FFT), discrete sine

transform (DST), wavelet transform (WT) etc. 3) Parameter extraction techniques,

e.g., Prediction and Vector Quantization (VQ) methods . The time domain techniques

which are based on direct methods were the earlier approaches to biomedical signal

compression. Transform Coding (TC) is the most important frequency-domain digital

waveform compression method .When we compare these methods we find that

direct data compression is a time domain compression algorithm which directly

analyses samples where inter-beat and, intra-beat correlation is exploited. These

algorithms suffer from sensitiveness to sampling rate, quantization levels and high

frequency interference. It fails to achieve high data rate along with preservation of

clinical information. In Transform based technique compressions are accomplished

by applying an invertible orthogonal transform to the signal. Due to its decorrelation

and energy compaction properties the transform based methods achieve better

compression ratios. In transform coding, knowledge of the application is used to

choose information to discard, thereby lowering its bandwidth .The remaining

information can then be compressed via a variety of methods. When the output is

decoded, the result may not be identical to the original input, but is expected to be

close enough for the purpose of the application. In parameter extraction methods a

set of model parameters/features are extracted from the original signal(model

based) which involves methods like Linear term prediction (LTP) and analysis by

synthesis.

35

Chapter 2

Wireless Sensor Networks (WSN)

2.1 Introduction to WSN

 In times where technology evolves on a daily basis, new inexpensive solutions can

be created. These new tools overcome the existing ones by requiring less work while

achieving better results and offering more functionality. These new technologies also

allow the conception of new tools to previously unsolvable problems.

 Wireless Sensor Networks (WSN) are wireless networks formed by small low cost

autonomous devices called motes, with the ability to sense the surrounding

environment. An extension to WSN that adds the ability to act besides sensing over

the environment is called Wireless Sensor and Actor Networks (WSAN). Both WSAN

and WSN are possible solutions for several problems. Their main characteristics are

easy deployment and low cost, while having the ability to sense and act without

human intervention makes their usage highly attractive in many applications. They

are being adopted in several fields of work. Some examples include: creating

effective irrigation systems, fire alarms, structure health monitoring and medical or

military applications.

2.2 Monitoring

 Monitoring can be defined as the act of continuously observing something. It

generally means to be aware of the state of a system. Environmental monitoring

describes the processes and activities that need to take place to characterise and

monitor the quality of the environment.

36

Figure 2.1: Passive and Active monitoring

 When we refer to monitoring we can differentiate two types: active and passive.

The difference between these two types is that while active monitoring necessarily

involves human presence, being performed through field visits to the monitored

environment, passive monitoring is done by autonomous systems not requiring

human intervention. In this case, the monitoring system is placed in the

environment, automatically acquiring data and either storing it locally for later

retrieval or sending it to a remote system.

 Several applications of WSNs in monitoring exist such as animal monitoring used by

biologists to study animals in the wild, structure health monitoring used to ensure

buildings or bridges condition, volcano monitoring used to study the seismic activity

of volcanic areas and obviously forest monitoring mainly used for forest fire

detection.

Figure 2.2: Volcano WSN

37

2.3 Motes and Sensors

 We will cover the motes in more detail in Chapter 3 but an introduction here is

necessary, as they are the basic building block of a WSN. A sensor node (also known

as mote) may be described as a small low-cost device with the ability to perform

some processing, gather sensory information and communicate with other

connected nodes in the network. A mote is a node but a node is not always a mote.

Its main components are a microcontroller, transceiver, external memory, power

source and one or more sensors. A typical mote can be seen in the picture below.

Figure 2.3: Mote picture

 The microcontroller and memory provide computational power and storage space

respectively, while the power source – usually a battery – provides energy supply to

the mote, making it autonomous. The mote captures data through the acquisition

system composed of a set of sensors. These may be embedded directly in the mote

or a separate sensor board connected to the mote via its I/O ports. Sensors of any

type (e.g. temperature, humidity, light, acceleration etc.) can be connected

depending on the type of data we intend to capture. Using a transceiver, the

communication module allows data to be wirelessly transmitted and received

between nodes. The typical architecture of a mote is depicted below. Again, more on

this in Chapter 3.

38

Figure 2.4: Mote architecture

2.4 Wireless Sensor Networks

 Wireless sensor networks (WSN) are wireless networks formed by motes. The

wireless and routing technologies in motes allow them to be deployed creating a

WSN, where each node may capture environmental information and share it with all

other motes. The system’s cost can be highly reduced by avoiding cabling and

instead use wireless technology. This also allows both a more flexible deployment

and lower maintenance costs.

 WSNs intend to provide a low cost solution to problems such as monitoring large

areas, difficult access or hazardous environments. These networks can replace

expensive active monitoring with cost effective passive monitoring. It is possible to

set the motes to capture data for a certain period of time and transmit it to be

stored in a central node called sink, where a person could be in order to access and

monitor the captured information. The biggest challenges that WSNs designers are

faced with nowadays are energy efficiency, routing and security. They are presented

in more detail below.

2.4.1 Energy Efficiency

 Energy management and consumption are critical challenges for WSNs as motes

both require energy to operate each of their composing parts and being

autonomous. The main objective of studies conducted in this field is to maximize the

motes' lifetime. All motes' components require a certain amount of energy to

operate even when it comes to small amounts. The connection of motes to a power

39

source such as a power socket, implies the use of cables, thus nullifying the benefits

of wireless technology.

 Most motes nowadays are battery powered, allowing them to be autonomous and

wireless but also limiting their lifetime. What WSN designers can do to maximize a

mote's lifetime is to minimize its hardware energy consumption. The power usage

can be reduced by putting motes into sleep mode - a state where all mote's activity

is stopped and all of its composing parts are switched off - or even by putting a single

component to sleep when not in use (e.g. switch off the radio transceiver), thus

reducing its duty cycle - the percentage of time during which a device is working.

Figure 2.5: Heliomote

 Research is being done to find alternative or complementary power sources to

batteries. Environmental energy harvesting methods are being studied as they allow

the mote to collect energy from the environment. Two of the aforementioned

methods include solar cells, that allow the conversion of sunlight to electricity

through solar panels, and piezoelectric ceramic materials that convert environment

vibrations to electricity. The use of energy harvesting techniques turns everlasting

mote lifetime into a possibility. Some commercially available products already exist,

such as the Heliomote.

40

2.4.2 Routing

 Routing collected information between sensor nodes in WSNs presents several

challenges. The different kinds of network topologies and their requirement for

different routing protocols, the possibility that nodes are randomly deployed or large

in quantity are some of the faced problems. Energy and computation constraints

also impose new requirements to routing algorithms. A system failure or power

shortage may turn off nodes, requiring new routes to be calculated so as to maintain

network connectivity between the rest operating nodes.

 Requirements such as low energy and memory consumption mean limited routing

tables and new algorithms. Several routing protocols have been specifically designed

for WSNs in order to appropriately fulfill these special needs. The existing routing

protocols are categorized according to the network structure in which they operate

and the protocol operation. Depending on the network structure they can be

classified as flat, hierarchical or location-based routing. Depending on their

operation they can be multipath-based, query-based, negotiation-based, QoS -based

or coherent-based.

2.4.3 Security

 The use of wireless technology in WSNs has numerous benefits but it also

introduces several security threats that need to be considered. Motes'

characteristics of limited computing power and low energy resources represent a

challenge in producing an effective security solution.

 Attacks against WSNs are divided into two types: attacks against the security

mechanisms and against basic mechanisms. Some of the common WSN attacks are

denial of service (DoS), attacks on information in transit, blackhole/sinkhole attacks,

hello flood attacks or wormhole attacks. Most of those are caused when a malicious

node sends false information to other nodes thus compromising the system.

Detecting mechanisms to solve these attacks are still being developed.

2.5 Operating Systems

 Due to specific requirements and constraints of sensor nodes and wireless sensor

networks, operating systems have been created specifically targeting embedded

41

platforms, their needs and objectives. Reconfiguration, energy awareness and

optimization, self-configuration, multi-hop communications, memory and

computation power constraints, are some of the requirements these operating

systems need to address.

 Some of the most popular operating systems used, are Nano-RK developed at

Carnegie Mellon University, SOS developed at University of California Los Angeles,

MANTIS developed at the University of Colorado, BTNut developed at ETH Zurich,

Contiki at Swedish Institute of Computer Science and, the most widely used, as well

as the one that will be used in this thesis, TinyOS created at the University of

California Berkeley.

Figure 2.6: TinyOS Code snippet

 TinyOS is an open source operating system featuring a component-based

architecture minimizing memory usage and providing an event-driven execution

model allowing fine-grained power management and scheduling flexibility. Software

programs developed in TinyOS are programmed using nesC, an extension to the C

programming language. We will examine both TinyOS and nesC, in depth, in

Chapters 4 and 5.

 Simulators are software platforms specifically designed to simulate a WSN's or even

a single mote's behavior. These platforms allow testing a developed program

without having to install the software in the actual motes or (as in our case) without

even having any physical sensor node. Simulators are immensely time-saving when

we need to know the characteristics and operational parameters of a WSN involving

hundreds or thousands of motes, prior to its installation.

42

Figure 2.7:Avrora

 Using a simulator, it is possible to monitor and analyze every single mote in a

simulated network and its response during its life cycle. Energy consumption,

packets received, sent or dropped and the mote's LEDs status are some of the

variables usually observed. A large number of simulators exist, some of them are:

TOSSIM the native simulator from TinyOS, Avrora developed at the University of

California Los Angeles, Cooja originally created at the Swedish Institute of Computer

Science as a Contiki simulator but now able to simulate nodes programmed in the

TinyOS operating system as well, and MSPSim, a MSP430 simulator, also developed

at SICS.

Figure 2.8: Cooja

43

44

Chapter 3

Motes

3.1 Intro to Motes

 The term "mote" was coined by researchers in the Berkeley NEST (now WEBS and

CENS projects) to refer to spatially distributed autonomous devices which use

sensors to cooperatively monitor physical and/or environmental conditions (e.g.

temperature, sound, pressure, vibration) at different locations. Practical WSN nodes,

henceforth "motes", currently range in size from disc-shaped boards having

diameters less than 1 cm to enclosed systems with typical dimensions less than 5 cm

square.

 Each mote is composed of a microcontroller, transceiver, memory, power source

and one or more sensors, either embedded or external to the sensor board. The

motes function within a WSN and typically fulfill one of two purposes: either data

logging, processing (and/or transmitting) sensor information from the environment

or acting as a gateway in the ad-hoc wireless network formed by all the motes to

pass data back to a, usually but not necessarily unique, collection point.

 In this chapter we present a brief review of several frequently used WSN motes,

compared and contrasted under a number of different parameters.

3.2 Common mote platforms

TelosB/Tmote Sky: Wireless sensor modules developed from research carried out at

University of California Berkeley and currently available in similar form factors from

Crossbow and Advanticsys.

45

Figure 3.1 TelosB/Tmote Sky

MicaZ: Second and third generation wireless sensor networking mote family from

Crossbow.

Figure 3.2 Micaz

SHIMMER: (Sensing Health with Intelligence, Modularity, Mobility and Experimental

Reusability) is a wireless sensor platform designed to support wearable applications

and is mainly used in the medical field.

46

Figure 3.3:Shimmer

IRIS: The latest wireless sensor network module from Crossbow. Incudes several

improvements over the Mica2/MicaZ family of products. Improvements include

increased transmission range.

Figure 3.4: IRIS

47

3.2.1 Physical Characteristics

 The first parameter which may dictate mote selection for a given application is

physical size. Table 3.1 provides an overall comparison of the physical dimensions of

the motes in the previous section. This table also lists the motes' weight, which can

be a decisive factor when choosing a certain WSN, especially in applications where

the motes are components of a mobile unit or are integrated into wearable health

monitoring solutions.

Mote Platform WxLxH [cm] Weight w/o batt [g] Weight with batt [g]

TelosB/Tmote Sky 3.2 x 6.6 x 0.7 14.93 63.05

MicaZ 3.2 x 5.7 x 0.6 15.70 63.82

SHIMMER 2 x 4.4 x 1.3 4.87 10.36

IRIS 3.2 x 5.7 x 0.6 21.29 69.40

Table 3.1:Physical characteristics of motes

 The SHIMMER platform's advantage is obvious. Its small dimensions and low weight

make it much more suitable than the other in medical oriented applications. When a

mote has to be part of a wearable application, its size and weight are of the utmost

importance. Its low weight also minimizes the effect of the motes inertial mass when

using the mote's embedded accelerometer. In our case, weight and size is going to

be a deciding factor as the mote will be placed on the human body.

3.2.2 Processor and Memory

 Table 3.2 reviews the microprocessor specifications (bus width and processor clock

speed) for each of the respective motes examined. It also provides information on

available on-board memory for each mote platform. There is a variety here in

available memory sizes, possibly a reflection of their different application spaces.

Mote

Platform

Microprocessor Bus

[bits]

Clock

[MHz]

RAM

[KB]

Flash

[KB]

EEPROM

TelosB/

TmoteSky

Texas

Instruments

MSP430F1611

16 4 10 48 1M

MicaZ Atmel Atmega 8 8 4 128 512K

48

128L

SHIMMER Texas

Instruments

MSP430F1611

16 8 10 48 none

IRIS Atmel Atmega

1281

8 8 8 640 4K

Table 3.2: Mote microprocessor specifications

 In addition to these on-board memory capabilities, some sensor nodes also allow

the option of saving data to additional external non-volatile memory.

3.2.3 Communications Capabilities

 The TelosB/Tmote Sky, MicaZ and SHIMMER motes, employ the 802.15.4

compatible CC2420 radio chip from Texas Instruments, while the IRIS Mote uses

(again a 802.15.4 compatible chip) Atmel's AT86RF230. These two radios are packet

level radios, with a maximum packet length of 127 bytes. In addition to the CC2420,

the SHIMMER mote also contains a second radio chip, a class 2 Bluetooth radio

compatible with the Mitsumi WML-C46 series. Table 3.3a lists the operating

specifications of the three radios and Table 3..3b gives the power consumption of

each radio in sleep mode/switched off, idle/receive mode and when transmitting at

a specified power level.

Radio
Module

Frequency
[MHz]

Modulation Data Rate Tx Power
[dBm]

Rx
Sensitivity

[dBm]

TI CC2420 2400 -
2483.5

QQPSK 250 Kbps -24 - 0 -95

Atmel
AT86RF230

2405 - 2480 QQPSK 250 Kbps -17 - 3 -101

Mitsumi
WML-C46

2400 -
2483.5

GFSK 721 Kbps -6 - 14 -82

Table 3.3a: Mote Communication capabilities

 The CC2420 is a very popular chip for use on wireless sensor nodes, being used on

three of the motes considered here. The CC2420 was the first 802.15.4 radio chip to

be widely available in the market. 802.15.4 is very suitable for use in WSNs due to its

very low power and flexibility. A feature of the CC2420 lacking on the other radios, is

49

its support for encryption using AES 128. This feature can greatly reduce the cost,

both in terms of power and latency, of securing WSN communications.

Radio Module Sleep [μA] Idle/Rx [mA] Tx [mA]

TI CC2420 0.02 - 426 18.8 17.4
Atmel AT86RF230 0.02 15.5 16.5
Mitsumi WML-C46 50 - 1400 40 60

Table 3.3b: Mote Communication capabilities

 The WML-C46 is a class 2 Bluetooth radio, with a range of approximately 10 meters.

WSNs were not considered as a target for Bluetooth when it was being designed and

as a result it is not ideally suited for use with them, being overly complex for most

applications. However, the presence of Bluetooth allows it to address a current

problem faced by 802.15.4 devices, which is interoperability with existing devices.

For many applications a Bluetooth enabled mobile phone or laptop can be a very

convenient device to use for data aggregation or network querying.

3.2.4 Sensor Support

 The TelosB/Tmote Sky offers a versatile set of onboard sensors, namely humidity,

temperature and light sensors. In addition to the onboard sensors, the TelosB/Tmote

Sky provides access to 6 ADC inputs, a UART and I2C bus and several general purpose

ports. The MicaZ motes do not have onboard sensors. However, Crossbow offers an

extensive set of sensor boards that connect directly to the MicaZ mote and are

capable of measuring light, humidity, temperature, pressure etc. Additionally,

actuators such as relays and buzzers can be attached too, in case of a WSAN. Intel's

SHIMMER mote incorporates a 3 axis accelerometer and allows connection of other

sensors through its expansion board. As in MicaZ, more types of sensors (most of

them medically oriented) are available. The IRIS mote, in Crossbow tradition, does

not offer any embedded sensor capabilities. However, it is equipped with a 51-pin

expansion connector that existing MicaZ compatible, Crossbow sensor boards can be

connected to.

3.2.5 Power Specifications

 Both the TelosB and Tmote Sky boards are typically powered from an external

battery pack containing two AA batteries. AA cells may be used in the operating

range of 2.1 to 3.6V DC, however the voltage must be at least 2.7V when

programming the microcontroller flash or external flash. MicaZ and IRIS motes are

50

also powered by a set of two AA batteries in an attached battery pack. The SHIMMER

mote is powered by a rechargeable 450 mAh Li-Ion battery. The Shimmer design also

includes a Texas Instruments BQ-24080 Smart Li Charger for battery management.

3.2.6 Price

Current (August 2013) pricing information for a single mote is shown in Table 3.4.

Mote Platform Price

TelosB/Tmote Sky 77 €
MicaZ 77 €

SHIMMER 199 €
IRIS 87 €

Table 3.4: Mote prices

3.3 The SHIMMER platform

 Since we will simulate our program on a shimmer platform it is essential that we

present the platform’s main features .

3.3.1 Shimmer Key Principles

 The Shimmer platform was developed with the goal to allow biomedical

researchers to focus on their research instead of the development of applications

during the lifecycle of their research project . The key principles that underline the

Shimmer wearable sensor platform, as stated on www.shimmer-research.com , are :

• Flexible

 Shimmer is extremely flexible due to the fact that it can be programmed to meet

exact data capture and transfer requirements. Moreover Shimmer can be adapted

for different sensing purposes due to its modular expansions described later.

• Highly Configurable

 Shimmer provides a suite of technologies to offer compatability with a wide variety

of system technologies including other sensors. For example the platform offers

Bluetooth or 802.15.4 radio for the communication with other devices and the

51

instant transmission of recorded biomedical signals. Furthermore a microSD card is

included, allowing a local storage of recorded data.

• Open Source

All code and firmware is actively maintained and available online at Sourceforge .

• Raw Data

 Shimmer provides raw data, giving the researchers and developers full control over

the interpretation and analysis of the sensed data.

3.3.2 Shimmer Platform Design

 The Shimmer platform consists of a baseboard which provides the sensor

computational , data storage, communications and daughterboard connection

capabilities. Figure 3.5 gives a brief overview of the sensor's technical specification.

The core capabilities of the Shimmer baseboard can be extended via a wide range of

daughterboards committed to provide wearable kinematic, biophysical, and ambient

wireless sensing capabilities .For this a connector is provided, that allows the user to

connect daughterboards to the baseboard. The extension capabilities make a flexible

and thus valuable platform out of Shimmer. Table 3.5 gives an overview of the

currently available extensions daugtherboards.

52

Figure 3.5 Overview of shimmer’s technical specifications

Kinematic
Sensing

Biophysical Sensing Ambient Sensing

Gyroscope Electrocardiograph(ECG) Passive Infrared (PIR)
Motion

Magnetometer Electromyograph (EMG) Temperature

Accelerometer Galvanic Skin
Response(GSR)

Light

Table 3.5 Overview of Shimmer extension daugtherboards

3.3.3 Shimmer Key Features

 The main requirements a wearable sensor should comply in a healthcare

environment are certainly, low power consumption, light weight, small form factor,

53

low power communication capabilities and modularity . These are exactly the

features the Shimmer platform exhibits as consecutively described.

Low Power Consumption

 The Shimmer baseboard is equipped with a MSP430 MCU and other hardware to

minimize power consumption. Especially the MCU from Texas Instrument is known

for its low power consumption during periods of inactivity and has a proven history

for biomedical sensing platforms . Further the Shimmer firmware was optimized with

focus on lowering the on-time of all hardware subsystems on the sensor hardware

platform and thus extends operation life of the sensor.

Small Form Factor and Light Weight

 With an enclosure size of 53mm x 32mm x 15mm and a weight of 22 gramms the

Shimmer sensor is perfectly appropriate for sensing biomedical data as a wearable

mobile sensor.

Communication Capabilities

 One of the key features of Shimmer is certainly its ability to communicate wirelessly

with other sensor and devices. For this the Shimmer platform provides two modules:

the IEEE 802.15.4 radio module and the Bluetooth radio module. The Bluetooth

module contains the full Version 2 Bluetooth Protocol Stack guaranteeing the

compatibility with a wide range of other Bluetooth devices like mobile phones.

Firmware

 The firmware of Shimmer is primarily developed by using TinyOS. It provides the

low-level capabilities to control the sensor functions like: local processing of the

sensed data, local storage of the data and communication of sensed data to a higher

level application for advanced signal processing, display and data persistence . All

Shimmer firmware is thereby available online at Sourceforge .The operating system

TinyOS, is responsible for task scheduling, radio communication , time, I/O

processing and has a very small footprint, which makes it suitable for sensor devices.

TinyOS is completely written in nesC , an extension of the programming.

 The SHIMMER platform consists of a base board, optional add on boards and a

series of firmware versions to match the hardware configuration.

The main components on the SHIMMER base board are:

54

 Compact form factor, light & wearable (weight: 15 grams, volume: 53mm x

32mm x 15mm)

 Wireless communications via Bluetooth® and 802.15.4 (WML-C46A, CC2420)

 Offline data capture – micro SD card storage – 2 gigabytes

 SD data bypass 8MHz MSP430 CPU (10Kbyte RAM, 48Kbyte flash, 8 channels of

12 bit A/D)

 Open platform, driven by TinyOS

 Internal and external connectors for expansion

 Includes simple serial command interface for Bluetooth®

 Integrated TCP/IP stack for 802.15.4

 Integrated 3-axis MEMs accelerometer with selectable range

 Integrated tilt / vibration sensor

 Integrated Li-ion battery management

 Supported by BioMOBIUS™ graphical software platform

 Example LabView integration module

3.3.4 Hardware Overview

The image below illustrates a block diagram of the Shimmer baseboard

interconnections between and integrated devices.

CPU

 The core element of the platform is the low-power MSP430F1611 microprocessor

which controls the operation of the device. Nearly every feature of the CPU is

exercised in the Shimmer implementation! The CPU configures and controls various

integrated peripherals through I/O pins, some of which are available on the

internal/external-expansion connectors

55

Figure 3.6 Shimmer Baseboard Interconnections and Integrated Devices

 The CPU has an integrated 8-channel 12bit analog-to-digital converter (ADC) which

is used to capture sensor data from the accelerometer, battery, or sensor expansions

such as ECG, kinematics, GSR, and EMG. The external expansion allows

communication to and from the baseboard using the docking station.

Data Transmission and Storage

 For wireless data streaming the platform is equipped with both Bluetooth and

802.15.4 radio modules. The Shimmer board has a built in microSD Flash socket for

additional storage. To improve usability, SHIMMER incorporates components to

provide direct and immediate access to microSD flash memory using an external SD-

flash card controller (SDHOST) for high-speed data transfer.

Functionality

 A push-button power controller powers off the entire board after a held press of

the reset button. Software controlled power switching is provided for both the

Bluetooth radio module and microSD socket. Three light-emitting diodes (LED) are

used to display application status.

 Finally a triaxial MEMs accelerator and omni-directional tilt/vibration sensing round

out the integrated peripheral suite.

56

3.3.5 Texas Instruments MSP430F1611

 The low power operation of the Shimmer module is due to the ultra-low power

Texas Instruments MSP430F1611 microcontroller featuring 10kB of RAM, 48kB of

program flash memory and 128B of information storage. This 16-bit RISC processor

features extremely low active and sleep current consumption that permits Shimmer

to run for months on a single pair of AA batteries.

The MSP430 includes three clock sources:

 LFXT1CLK: Low frequency/high frequency oscillator that can be used either

with low frequency 32768Hz = 32KHz watch crystals, or standard crystals or

resonators in the 450KHz to 8MHz range.

 XT2CLK: Optional high frequency oscillator that can be used with standard

crystals, resonators, or external clock sources in the 450KHz to 8MHz range.

 DCOCLK: Internal digitally controlled oscillator (DCO) with RC-type

characteristics.

 There are three clock signals available. The one that we are interested in is the

Master Clock (MCLK). MCLK is software selectable and is derived from one of

LFXT1CLK, XT2CLK or DCOCLK. It is used by the CPU and the system. By default it is

sourced from DCOCLK and its default operating frequency in the case of a Shimmer

mote is 8MHz.

 Although it is software configurable, we will not modify the MCLK from its default

value, because of the non CPU-intensive nature of our application. If one would like

to do so and provided they are using TinyOS, the necessary component to look for

would be MSP430ClockC and more specifically its MSP430ClockInit interface.

Operating the mote at higher frequencies might be necessary for CPU-intensive

programs, but doing so increases the mote’s power consumption, while our main

objective is to keep it as low as possible.

 The DCO may be turned on from sleep mode in 6μs, however 292ns is typical at 20
0C. When the DCO is off, the MSP430 operates off an eternal 32768Hz watch crystal.

In addition to the DCO, the MSP430 has 8 external ADC ports and 8 internal ADC

ports. The internal ports may be used to read the internal thermistor or monitor the

battery voltage. A variety of peripherals are available including SPI, UART, digital I/O

ports, Watchdog timer and Timers with capture and compare functionality. The

F1611 also includes a 2-port 12-bit DAC module, Supply Voltage Supervisor and 3-

port DMA controller.

57

Figure 3.7 :MSP430 Block diagram from moteiv

 The MSP430 has one active mode and five software selectable modes of operation.

An interrupt event can wake up the device from any of the five low-power modes,

service the request, and restore back to the low-power mode on return from the

interrupt program. As developers, we will not have to worry about MCU

management at all in most situations. TinyOS handles everything for us

automatically. The low-power modes range from LPM0, which disables only the CPU

and main system clock, to LPM4, which disables the CPU, all clocks and the oscillator,

expecting to be woken by an external interrupt source. According to the

TelosB/Tmote Sky datasheet, the MSP430F1611 draws 1.8 mA of current in Active

mode and 5.1 μΑ in Sleep mode (both computed at 3.0V supply voltage).

3.3.6 Texas Instruments CC2420

 The CC2420 is a true single-chip 2.4GHz IEEE 802.15.4 compliant RF transceiver

designed for low-power and low-voltage wireless applications. CC2420 includes a

digital direct sequence spread spectrum baseband modem providing an effective

data rate of 250 Kbps. The CC2420 provides extensive hardware support for packet

handling, data buffering, burst transmissions, data encryption, data authentication,

clear channel assessment, link quality indication and packet timing information.

These features reduce the load on the host controller and allow CC2420 to interface

low-cost microcontrollers. It is based on Chipcon’s SmartRF – 03 technology in

180nm CMOS.

58

Figure 3.8: CC2420 Simplified block diagram

Its main features are summarized below

Frequency Band 2400 ~ 2483.5 MHz IEEE 802.15.4 Compliant

Sensitivity -90dBm(min), -95dBm typ Receive Sensitivity

Transfer Rate 250 Kbps IEEE 802.15.4

RF Power -25 dBm ~ 0 dBm Software Configurable

Range ~100m (outdoor),

20~30m (indoor)

Longer range possible with optional

SMA antenna attached

Current Draw RX: 18.8 mA, TX: 17.4 mA,

Sleep: 1 μA

Lower RF Power Modes reduce

consumption

RF Power supply 2.1V ~ 3.6V CC2420 Input Power

Antenna Dipole Antenna/

PCB Antenna

Encryption Hardware MAC encryption

59

AES-128

Buffer 128(RX) + 128(TX) data

buffering

Table 3.6:CC2420 main features

 The CC2420 is controlled by the TI MSP430 microcontroller through the SPI port

and a series of digital I/O lines and interrupts. The radio may be put to sleep for low

power duty cycled operation. The transceiver also has software configurable output

power, which the transmission range is obviously dependent on.

60

Chapter 4

TinyOS

4.1 Introduction

 TinyOS is an open source, BSD-licensed operating system designed for low-power

wireless devices, like the ones used in WSNs, ubiquitous computing, personal area

networks, smart buildings, and smart meters. A worldwide community from

academia and industry use, develop, and support the operating system as well as its

associated tools . The main TinyOS website, www.tinyos.net , has instructions for

downloading and installing the TinyOS programming environment. The website has a

great deal of useful information such as common hardware platforms and how to

install code on a node.

4.1.1 Networked, embedded sensors

 TinyOS is designed to run on small, wireless sensors. Networks of these sensors

have the potential to revolutionize a wide range of disciplines, fields, and

technologies. Recent example uses of these devices include:

Golden Gate Bridge safety High-speed accelerometers collect synchronized data on

the movement of and oscillations within the structure of San Francisco’s Golden

GateBridge. This data allows the maintainers of the bridge to easily observe the

structural health of the bridge in response to events such as high winds or traffic, as

well as quickly assess possible damage after an earthquake . Being wireless avoids

the need for installing and maintaining miles of wires.

 Volcanic monitoring Accelerometers and microphones observe seismic events on

the Reventador and Tungurahua volcanoes in Ecuador. Nodes locally compare when

they observe events to determine their location, and report aggregate data to a

camp several kilometers away using a long-range wireless link. Small, wireless nodes

allow geologists and geophysicists to install dense, remote scientific instruments ,

obtaining data that answers other questions about unapproachable environments.

Data center provisioning Data centers and enterprise computing systems require

huge amounts of energy, to the point at which they are placed in regions that have

low power costs. Approximately 50% of the energy in these systems goes into

cooling, in part due to highly conservative cooling systems. By installing wireless

sensors across machine racks, the data center can automatically sense what areas

61

need cooling and can adjust which computers do work and generate heat.

Dynamically adapting these factors can greatly reduce power consumption, making

the IT infrastructure more efficient and reducing environmental impact.

Figure 4.1 A typical sensor network architecture. Patches of ultra-low power sensors,

running nesC/TinyOS, communicate to gateway nodes through data sinks. These

gateways connect to the larger Internet.

 Athough these three application domains are only a fraction of where networks of

sensors are used, they show the key differences between these networks and most

other computing systems. First, these “sensor networks” need to operate

unattended for long periods of time. Second, they gather data from and respond to

an unpredictable environment. Finally, for reasons of cost, deployment simplicity,

and robustness, they are wireless. Together, these three issues – longevity,

embedment, and wireless communication – cause sensor networks to use different

approaches than traditional, wired, and human-centric or machine-centric systems.

The sheer diversity of sensor network applications means that there are many

network architectures, but a dominant portion of deployments tend to follow a

common one, shown in Figure 4.1 of ultra-low power sensors self-organized to form

an ad-hoc routing network to one or more data sink nodes. These sensor sinks are

attached to gateways, which are typically a few orders of magnitude more powerful

than the sensors: gateways run an embedded form of Linux, Windows, or other

multitasking operating system. Gateways have an Internet connection, either

through a cell phone network , long-distance wireless, or even just wired Ethernet

.Energy concerns dominate sensor hardware and software design. These nodes need

to be wireless, small, low-cost, and operate unattended for long periods. While it is

often possible to provide large power resources, such as large solar panels, periodic

battery replacement, or wall power, to small numbers of gateways, doing so to every

one of hundreds of sensors is infeasible.

62

4.2 TinyOS, what is it.

 As mentioned in this chapter before ,TinyOS is a lightweight operating system

specifically designed for low-power wireless sensors. TinyOS differs from most other

operating systems in that its design focuses on ultra low-power operation. Rather

than a full-fledged processor, TinyOS is designed for the small, low-power

microcontrollers motes have. Furthermore, TinyOS has very aggressive systems and

mechanisms for saving power .TinyOS makes building sensor network applications

easier. It provides a set of important services and abstractions, such as sensing,

communication, storage, and timers. It defines a concurrent execution model, so

developers can build applications out of reusable services and components without

having to worry about unforeseen interactions. TinyOS runs on over a dozen generic

platforms, most of which easily support adding new sensors. Furthermore, TinyOS’s

structure makes it reasonably easy to port to new platforms .TinyOS applications and

systems, as well as the OS itself, are written in the nesC language. nesC is a C dialect

with features to reduce RAM and code size, enable significant optimizations, and

help prevent low-level bugs like race conditions. Later on we will go into the details

on how nesC differs significantly from other C-like .

4.2.1TinyOS, what it provides.

 At a high level, TinyOS provides three things to make writing systems and

applications easier:

• a component model, which defines how you write small, reusable pieces of code

and compose them into larger abstractions;

• a concurrent execution model, which defines how components interleave their

computations as well as how interrupt and non-interrupt code interact;

• application programming interfaces (APIs), services, component libraries and an

overall component structure that simplify writing new applications and services.

 The component model is grounded in nesC. It allows you to write pieces of reusable

code which explicitly declare their dependencies. For example, a generic user button

component that tells you when a button is pressed sits on top of an interrupt

handler. The component model allows the button implementation to be

independent of which interrupt that is – e.g. so it can be used on many different

hardware platforms – without requiring complex callbacks or magic function naming

conventions .The concurrent execution model enables TinyOS to support many

components needing to act at the same time while requiring little RAM. First, every

I/O call in TinyOS is split-phase: rather than block until completion, a request returns

immediately and the caller gets a callback when the I/O completes. Since the stack

63

isn’t tied up waiting for I/O calls to complete, TinyOS only needs one stack, and

doesn’t have threads .Instead, TinyOS introduces tasks, which are lightweight

deferred procedure calls .Any component can post a task , which TinyOS will run at

some later time. Because low-power devices must spend most of their time asleep,

they have low CPU utilization and so in practice tasks tend to run very soon after

they are posted (within a few milliseconds).Furthermore, because tasks can’t

preempt each other, task code doesn’t need to worry about data races. Low-level

interrupt code can have race conditions, of course: nesC detects possible data races

at compile-time and warns you .Finally, TinyOS itself has a set of APIs for common

functionality, such as sending packets, reading sensors, and responding to events .In

addition to programming interfaces, TinyOS also provides a component structure

and component libraries .TinyOS itself is continually evolving. Within the TinyOS

community, “Working Groups” form to tackle engineering and design issues within

the OS, improving existing services and adding new ones .The best way to stay up to

date with TinyOS is to check its web page www.tinyos.net and participate in its

mailing lists.

4.3 Example application

 To better understand the unique challenges faced by sensor networks, we walk

through a basic data-collection application. Nodes running this application

periodically wake up ,sample some sensors, and send the data through an ad hoc

collection tree to a data sink (as in Figure 4.1). As the network must last for a year,

nodes spend 99% of their time in a deep sleep state .In terms of energy, the radio is

by far the most expensive part of the node. Lasting a year requires telling the radio

to be in a low power state. Low power radio implementation techniques are beyond

the scope of this book, but the practical upshot is that packet transmissions have

higher latency. Figure 4.2 shows the four TinyOS APIs the application uses: low

power settings for the radio, a timer, sensors, and a data collection routing layer.

When TinyOS tells the application that the node has booted, the application code

configures the power settings on the radio and starts a periodic timer. Every few

minutes, this timer fires and the application code samples its sensors. It puts these

sensor values into a packet and calls the routing layer to send the packet to a data

sink. In practice, applications tend to be more complex than this simple example. For

example, they include additional services such as a management layer which allows

an administrator to reconfigure parameters and inspect the state of the network, as

well as over-the-air programming so the network can be reprogrammed without

needing to collect all of the nodes. However, these four abstractions – power

64

control, timers, sensors, and data collection – encompass the entire datapath of the

application.

Figure 4.2:Example application architecture. Application code uses a timer to act

periodically, sensors to collect data, and a routing layer to deliver data to a sink.

4.3.1Compiling and installing applications

 You can download the latest TinyOS distribution, the nesC compiler, and other tools

at www.tinyos.net . The TinyOS website has step-by-step tutorials to get you started.

One part of TinyOS is an extensive build system for compiling applications. Generally,

to compile a program for a sensor platform, one types make <platform>, e.g. make

telosb. This compiles a binary. To install that binary on a node, you plug the node

into your PC using a USB or serial connection, and type make <platform> install. The

tutorials go into compilation and installation options in detail.

65

66

Chapter 5

NesC

5.1 First Approach to nesC

 NesC (network embedded systems C), is a component-based, event
driven programming language used to build applications for the TinyOS platform.
NesC is built as an extension to the C programming language with components
"wired" together to run applications on TinyOS. It offers a more ‘’holistic’’ approach
to embedded systems while supporting the TinyOS’s design. It is a static language
with all resources known at compile time and call-graph fully known at compile time.
nesC’s contribution is to support the special needs of the WSN exposing a
programming model that incorporates event-driven execution, a flexible
concurrency model, and component-oriented application design. Restrictions on the
programming model al-low the nesC compiler to perform whole-program analyses,
including data-race detection (which improves reliability) and aggressive function
inlining (which reduces resource consumption)

There are a number of unique challenges that nesC must address:

Driven by interaction with environment: Unlike traditional computers, motes are
used for data collection and control of the local environment, rather than general-
purpose computation. This focus leads to two observations. First, motes are
fundamentally event-driven, reacting to changes in the environment (message
arrival ,sensor acquisition) rather than driven by interactive or batch processing.
Second, event arrival and data processing are concurrent activities, demanding an
approach to concurrency management that addresses potential bugs such as race
conditions.

Limited resources: Motes have very limited physical resources ,due to the goals of
small size, low cost, and low power consumption. We do not expect new technology
to remove these limitations: the benefits of Moore’s Law will be applied to reduce
size and cost, rather than increase capability

Reliability: Although we expect individual motes to fail due to hardware issues, we
must enable very long-lived applications. For example, environmental monitoring
applications must collect data without human interaction for months at a time. An
important goal is to reduce run-time errors, since there is no real recovery
mechanism in the field except for automatic reboot. Soft real-time requirements:
Although there are some tasks that are time critical, such as radio management or
sensor polling, we do not focus on hard real-time guarantees. Our experience so far

67

indicates that timing constraints are easily met by having complete control over the
application and OS, and limiting utilization. One of the few timing-critical aspects in
sensor networks is radio communication; however, given the fundamental
unreliability of the radio link, it is not necessary to meet hard deadlines in this
domain.

The basic concepts behind nesC are:

1. Separation of construction and composition: programs are built out of
components, which are assembled ("wired") to form whole programs.
Components have internal concurrency in the form of tasks. Threads of
control may pass into a component through its interfaces. These threads are
rooted either in a task or a hardware interrupt.

2. Specification of component behaviour in terms of set of interfaces. Interfaces
may be provided or used by components. The provided interfaces are
intended to represent the functionality that the component provides to its
user, the used interfaces represent the functionality the component needs to
perform its job.

3. Interfaces are bidirectional: they specify a set of functions to be implemented
by the interface's provider (commands) and a set to be implemented by the
interface's user (events). This allows a single interface to represent a
complex interaction between components (e.g., registration of interest in
some event, followed by a callback when that event happens). This is critical
because all lengthy commands in TinyOS (e.g. send packet) are non-blocking;
their completion is signaled through an event (send done). By specifying
interfaces, a component cannot call the send command unless it provides an
implementation of the sendDone event. Typically commands call
downwards, i.e., from application components to those closer to the
hardware, while events call upwards. Certain primitive events are bound to
hardware interrupts.

4. Components are statically linked to each other via their interfaces. This
increases runtime efficiency, encourages robust design, and allows for better
static analysis of programs.

5. nesC is designed under the expectation that code will be generated by whole-
program compilers. This should also allow for better code generation and
analysis.

 Program structure is the most essential and obvious difference between C and nesC

.C programs are composed of variables, types, and functions defined in files that are

compiled separately and then linked together. nesC programs are built out of

components that are connected (“wired”) by explicit program statements . the nesC

compiler connects and compiles these components as a single unit .To illustrate and

explain these differences in how programs are built, we compare and contrast C and

nesC implementation of a very simple “hello world”-like mote application, Blink

(boot and repeatedly blink a LED).

A few basic principles underlie nesC’s design:

68

nesC is an extension of C: C produces efficient code for all the target

microcontrollers that are likely to be used in sensor networks. C provides all the low-

level features necessary for accessing hardware, and interaction with existing C code

is simplified. Last but not least, many programmers are familiar with C.C does have

significant disadvantages: it provides little help in writing safe code or in structuring

applications. nesC addresses safety through reduced expressive power and structure

through components. None of the new features in nesC are tied to C: the same ideas

could be added to other imperative programming languages such as Modula-2 .

Whole-program analysis: nesC programs are subject to whole program analysis (for

safety) and optimization (for performance).Therefore we do not consider separate

compilation in nesC’s design. The limited program size on motes makes this

approach tractable.

nesC is a “static language”: There is no dynamic memory allocation and the call-

graph is fully known at compile-time. These restrictions make whole program

analysis and optimization significantly simpler and more accurate. They sound more

onerous than they are in practice: nesC’s component model and parameterized

interfaces eliminate many needs for dynamic memory allocation and dynamic

dispatch. We have, so far, implemented one optimization and one analysis: a simple

whole-program inliner and a data-race detector .nesC supports and reflects TinyOS’s

design: nesC is based on the concept of components, and directly supports TinyOS’s

event-based concurrency model. Additionally, nesC explicitly addresses the issue of

concurrent access to shared data .In practice, nesC resolved many ambiguities in the

TinyOS concepts of components and concurrency, and TinyOS evolved to the nesC

versions as it was reimplemented.

5.2 Basic nesC Programming

 The nesC language is primarily intended for embedded systems such as sensor
networks. nesC has a C-like syntax, but supports the TinyOS concurrency model, as
well as mechanisms for structuring, naming, and linking together software
components into robust network embedded systems. The principal goal is to allow
application designers to build components that can be easily composed into
complete, concurrent systems, and yet perform extensive checking at compile time.

 TinyOS defines a number of important concepts that are expressed in nesC. First,
nesC applications are built out of components with well-defined,
bidirectional interfaces. Second, nesC defines a concurrency model, based
on tasks and hardware event handlers, and detects data races at compile time.

69

Components
Specification
 A nesC application consists of one or more components linked together to form an
executable. A component provides and uses interfaces. These interfaces are the
only point of access to the component and are bidirectional. An interface declares a
set of functions called commands that the interface provider must implement and
another set of functions called events that the interface user must implement. For a
component to call the commands in an interface, it must implement the events of
that interface. A single component may use or provide multiple interfaces and
multiple instances of the same interface.

Implementation
 There are two types of components in nesC: modules and configurations. Modules
provide application code, implementing one or more interface. Configurations are
used to assemble other components together, connecting interfaces used by
components to interfaces provided by others. This is called wiring. Every nesC
application is described by a top-level configuration that wires together the
components inside .nesC uses the filename extension “.nc” for all source files-
interfaces, modules and configurations.

Concurrency Model
 TinyOS executes only one program consisting of selected system components and
custom components needed for a single application. There are two threads of
execution: tasks and hardware event handlers. Tasks are functions whose execution
is deferred. Once scheduled, they run to completion and do not preempt one
another. Hardware event handlers are executed in response to a hardware interrupt
and also runs to completion, but may preempt the execution of a task or other
hardware event handler. Commands and events that are executed as part of a
hardware event handler must be declared with the async keyword.

 Because tasks and hardware event handlers may be preempted by other
asynchronous code, nesC programs are susceptible to certain race conditions. Races
are avoided either by accessing shared data exclusively within tasks, or by having all
accesses within atomic statements. The nesC compiler reports potential data
races to the programmer at compile-time. It is possible the compiler may report a
false positive. In this case a variable can be declared with the norace keyword. The
norace keyword should be used with extreme caution.

5.3 Example Application:Blink

 The most concrete first-approach example application for nesC is the Blink

application the simple test program "Blink" causes the red LED on the mote to turn
on and off at 1Hz. Blink application is composed of two components: a module,

called "BlinkM.nc", and a configuration, called "Blink.nc". All applications require a

top-level configuration file, which is typically named after the application itself. In

70

this case Blink.nc is the configuration for the Blink application and the source file

that the nesC compiler uses to generate an executable file. BlinkM.nc, on the other

hand, actually provides the implementation of the Blink application. Blink.nc is used

to wire the BlinkM.nc module to other components that the Blink application

requires.

 The reason for the distinction between modules and configurations is to allow a
system designer to quickly "snap together" applications. For example, a designer
could provide a configuration that simply wires together one or more modules, none
of which he actually designed. Likewise, another developer can provide a new set of
"library" modules that can be used in a range of applications.

 Sometimes (as is the case with Blink and BlinkM) you will have a configuration and a
module that go together. When this is the case, the convention used in the TinyOS

source tree is that Foo.nc represents a configuration and FooM.nc represents the

corresponding module. While you could name an application's implementation
module and associated top-level configuration anything, to keep things simple it is
better to adopt this convention in our code.

5.3.1 The Blink.nc Configuration

 The nesC compiler, ncc, compiles a nesC application when given the file containing
the top-level configuration. Typical TinyOS applications come with a standard
Makefile that allows platform selection and invokes ncc with appropriate options on
the application's top-level configuration.

Below we present the configuration for this application:

configuration Blink {

}

implementation {

 components Main, BlinkM, SingleTimer, LedsC;

 Main.StdControl -> BlinkM.StdControl;

 Main.StdControl -> SingleTimer.StdControl;

 BlinkM.Timer -> SingleTimer.Timer;

 BlinkM.Leds -> LedsC;

}

http://www.tinyos.net/tinyos-1.x/doc/nesc/ncc.html

71

 The first thing to notice is the key word configuration, which indicates that

this is a configuration file. The first two lines,

 configuration Blink {

 }

simply state that this is a configuration called Blink. Within the empty braces here
it is possible to specify uses and provides clauses, as with a module. This is

important to keep in mind: a configuration can use and provide interfaces!

 The actual configuration is implemented within the pair of curly bracket following

key word implementation . The components line specifies the set of

components that this configuration references, in this

case Main, BlinkM, SingleT-imer, and LedsC. The remainder of the
implementation consists of connecting interfaces used by components to interfaces
provided by others.

 Main is a component that is executed first in a TinyOS application. To be precise,
the Main.StdControl.init() command is the first command executed in

TinyOS followed by Main.StdControl.start(). Therefore, a TinyOS

application must have Main component in its configuration. StdControl is a

common interface used to initialize and start TinyOS components. Let us have a look

at tos/interfaces/StdControl.nc:

StdControl.nc

Interface StdControl {

command result_t init();

command result_t start();

command result_t stop();

}

 We see that StdControl defines three commands, init(),start(), and

stop(). init() is called when a component is first initialized, and start()

when it is started, that is, actually executed for the first time. stop() is called when

the component is stopped, for example, in order to power off the device that it is
controlling. init() can be called multiple times, but will never be called after

either start() or stop are called. Specifically, the valid call patterns of
StdControl are init*(start | stop)* . All three of these commands

have "deep" semantics; calling init() on a component must make it call init()
on all of its subcomponents. The following 2 lines in Blink configuration

Main.StdControl -> SingleTimer.StdControl;

Main.StdControl -> BlinkM.StdControl;

wire the StdControl interface in Main to the StdControl interface in both

BlinkM and SingleTimer. SingleTimer.StdControl.init()and

72

BlinkM.StdControl.init() will be called by

Main.StdControl.init(). The same rule applies to the start() and
stop() commands.

 Concerning used interfaces, it is important to note that subcomponent initialization
functions must be explicitly called by the using component. For example, the
BlinkM module uses the interface Leds, so Leds.init() is called explicitly in
BlinkM.init().

 nesC uses arrows to determine relationships between interfaces. Think of the right
arrow (->) as "binds to". The left side of the arrow binds an interface to an
implementation on the right side. In other words, the component that uses an
interface is on the left, and the component provides the interface is on the right.

The line

 BlinkM.Timer -> SingleTimer.Timer;

is used to wire the Timer interface used by BlinkM to the Timer interface
provided by SingleTimer. BlinkM.Timer on the left side of the arrow is

referring to the interface called Timer (tos/interfaces/Timer.nc), while

SingleTimer.Timer on the right side of the arrow is referring to the
implementation of Timer (tos/lib/SingleTimer.nc). The arrow always

binds interfaces (on the left) to implementations (on the right).

 nesC supports multiple implementations of the same interface. The Timer

interface is such an example. The SingleTimer component implements a single

Timer interface while another component, TimerC, implements multiple timers
using timer id as a parameter.

Wirings can also be implicit. For example,

 BlinkM.Leds -> LedsC;

is really shorthand for

 BlinkM.Leds -> LedsC.Leds;

73

 If no interface name is given on the right side of the arrow, the nesC compiler by
default tries to bind to the same interface as on the left side of the arrow.

5.3.2 The Blink.nc Module

Now let's look at the module BlinkM.nc:

BlinkM.nc

module BlinkM {

provides {

 interface StdControl;

}

uses {

 interface Timer;

 interface Leds;

 }

}

// Continued below...

 The first part of the code states that this is a module called BlinkM and declares
the interfaces it provides and uses. The BlinkM module provides the interface

StdControl. This means that BlinkM implements the StdControl interface.
As explained above, this is necessary to get the Blink component initialized and

started. The BlinkM module also uses two interfaces: Leds and Timer. This

means that BlinkM may call any command declared in the interfaces it uses and
must also implement any events declared in those interfaces.

 The Leds interface defines several commands like redOn(),redOff(), and so
forth, which turn the different LEDs (red, green, or yellow) on the mote on and off.
Because BlinkM uses the Leds interface, it can invoke any of these commands.

However Leds is just an interface: the implementation is specified in the

Blink.nc configuration file.

Timer.nc is a little more interesting:

Timer.nc

interface Timer {

command result_t start(char type, uint32_t interval);

command result_t stop();

74

event result_t fired();

}

 Here we see that Timer interface defines the start() and stop() commands,
and the fired() event.

 The start() command is used to specify the type of the timer and the interval at

which the timer will expire. The unit of the interval argument is millisecond. The
valid types are TIMER_REPEAT and TIMER_ONE_SHOT. A one-shot timer ends
after the specified interval, while a repeat timer goes on and on until it is stopped by
the stop() command.

 How does an application know that its timer has expired? The answer is when it
receives an event. The Timer interface provides an event:

 event result_t fired();

 An event is a function that the implementation of an interface will signal when a
certain event takes place. In this case, the fired() event is signaled when the
specified interval has passed. This is an example of a bidirectional interface: an
interface not only provides commands that can be called by users of the interface,
but also signals events that call handlers in the user. Think of an event as a callback
function that the implementation of an interface will invoke. A module that uses an
interface must implement the events that this interface uses.

Let's look at the rest of BlinkM.nc to see how this all fits together:

BlinkM.nc, continued

implementation {

 command result_t StdControl.init() {

 call Leds.init();

 return SUCCESS;

 }

 command result_t StdControl.start() {

 return call Timer.start(TIMER_REPEAT, 1000) ;

 }

 command result_t StdControl.stop() {

75

 return call Timer.stop();

 }

 event result_t Timer.fired()

 {

 call Leds.redToggle();

 return SUCCESS;

 }

}

 As we see the BlinkM module implements the StdControl.init(),
StdControl.start(), and StdControl.stop() commands, since it

provides the StdControl interface. It also implements the Timer.fired()

event, which is necessary since BlinkM must implement any event from an
interface it uses.

 The init() command in the implemented StdControl interface simply
initializes the Leds subcomponent with the call to Leds.init(). The start()

command invokes Timer.start() to create a repeat timer that expires every

1000 ms. stop() terminates the timer. Each time Timer.fired() event is
triggered, the Leds.redToggle() toggles the red LED.

 Also , a graphical representation of the component relationships within an
application can be viewed. TinyOS source files include metadata within comment
blocks that ncc, the nesC compiler, uses to automatically generate html-formatted
documentation. To generate the documentation, we need to type make

<platform> docs from the application directory.

5.3.3 Compiling the Blink Application

 TinyOS supports multiple platforms. Each platform has its own directory in the
tos/platform directory. In our example we will use the telosb platform. In

the TinyOS source tree, compiling the Blink application for the telosb mote is as
simple as typing

 make telosb

in the apps/Blink directory. Of course this doesn't tell us anything about how the
nesC compiler is invoked.

76

nesC itself is invoked using the ncc command which is based on gcc. For example, we
can type

 ncc -o main.exe -target=telosb Blink.nc

to compile the Blink application (from the Blink.nc top-level configuration) to
main.exe, an executable file for the telosb mote. If we want to upload the code to
the actual hardware mote, we use

 avr-objcopy --output-target=srec main.exe main.srec

to produce main.srec, which essentially represents the binary main.exe file in a
text format that can be used for programming the telosb mote. We then use another
tool (such as uisp) to actually upload the code to the mote, depending on our
environment. In general we will never need to invoke ncc or avr-objcopy by

hand, the Makefile does all this for us, but it's nice to see that all we need to

compile a nesC application is to run ncc on the top-level configuration file for our
application. ncc takes care of locating and compiling all of the different components
required by our application, linking them together, and ensuring that all of the
component wiring matches up.We won’t expand further in the hardware part of the
mote since it is out of the scope of this project .Further information on how to install
a nesC code such as Blink on a mote can be found on www.tinyos.net.

5.3.4 Interfaces, Commands, and Events

 We learned that if a component uses an interface, it can call the interface's
commands and must implement handlers for its events. We also saw that the
BlinkC component uses the Timer, Leds, and Boot interfaces.Let's take a

look at those interfaces:

interface Boot {

event void booted();

}

interface Leds {

/**

* Turn LED n on, off, or toggle its present state.

*/

async command void led0On();

async command void led0Off();

async command void led0Toggle();

async command void led1On();

async command void led1Off();

async command void led1Toggle();

async command void led2On();

async command void led2Off();

async command void led2Toggle();

/**

77

* Get/Set the current LED settings as a bitmask. Each bit

corresponds to

* whether an LED is on; bit 0 is LED 0, bit 1 is LED 1,

etc.

*/

async command uint8_t get();

async command void set(uint8_t val);

}

interface Timer

{

// basic interface

command void startPeriodic(uint32_t dt);

command void startOneShot(uint32_t dt);

command void stop();

event void fired();

// extended interface omitted (all commands)

}

 Looking over the interfaces for Boot, Leds, and Timer, we can see that since
BlinkC uses those interfaces it must implement handlers for the

Boot.booted()event, and the Timer.fired()event.The Leds interface
signature does not include any events, so BlinkC need not implement any in order

to call the Leds commands. Here, again, is BlinkC's implementation of
Boot.booted():

event void Boot.booted()

{

call Timer0.startPeriodic(250);

call Timer1.startPeriodic(500);

call Timer2.startPeriodic(1000);

}

 BlinkC uses 3 instances of the TimerMilliC component, wired to the
interfaces Timer0, Timer1, and Timer2. The Boot.booted()event handler

starts each instance. The parameter to startPeriodic()specifies the period in

milliseconds after which the timer will fire (it's millseconds because of the
<TMilli>in the interface). Because the timer is started using the
startPeriodic() command, the timer will be reset after firing such that the

fired() event is triggered every n milliseconds. Invoking an interface command

requires the call keyword, and invoking an interface event requires the signal
keyword. BlinkC does not provide any interfaces, so its code does not have any
signal statements.

Next, we present the implementation of the Timer.fired():

78

event void Timer0.fired()

{

call Leds.led0Toggle();

}

event void Timer1.fired()

{

call Leds.led1Toggle();

}

event void Timer2.fired()

{

call Leds.led2Toggle();

}

 Because it uses three instances of the Timer interface, BlinkC must implement

three instances of Timer.fired()event. When implementing or invoking an
interface function, the function name is always interface.function. As

BlinkC's three Timer instances are named Timer0, Timer1, and Timer2, it

implements the three functions Timer0.fired, Timer1.fired, and
Timer2.fired.

5.4 Tasks

 All of the code we've looked at so far is synchronous. It runs in a single execution
context and does not have any kind of pre-emption. That is, when synchronous
(sync) code starts running, it does not relinquish the CPU to other sync code until it
completes. This simple mechanism allows the TinyOS scheduler to minimize its RAM
consumption and keeps sync code very simple. However, it means that if one piece
of sync code runs for a long time, it prevents other sync code from running, which
can adversely affect system responsiveness. For example, a long-running piece of
code can increase the time it takes for a mote to respond to a packet. So far, all of
the examples we've looked at have been direct function calls. System components,
such as the boot sequence or timers, signal events to a component, which takes
some action (perhaps calling a command) and returns. In most cases, this
programming approach works well. Because sync code is non-preemptive ,however,
this approach does not work well for large computations. A component needs to be
able to split a large computation into smaller parts, which can be executed one at a
time. Also, there are times when a component needs to do something, but it's fine to
do it a little later. Giving TinyOS the ability to defer the computation until later can
let it deal with everything else that's waiting first. Tasks enable components to
perform general-purpose "background" processing in an application. A task is a
function which a component tells TinyOS to run later, rather than now. A task is
declared in the implementation module using the syntax

task void taskname() { ... }

79

where taskname() is whatever symbolic name we want to assign to the task.

Tasks must return void and may not take any arguments. To dispatch a task for
(later) execution, use the syntax

post taskname();

 A component can post a task in a command, an event, or a task. Because they are
the root of a call graph , tasks can safely both call commands and signal events. We
will see later that, by convention, commands do not signal events to avoid creating
recursive loops across component boundaries (e.g., if command X in component 1
signals event Y in component 2, which itself calls command X in component 1). These
loops would be hard for the programmer to detect (as they depend on how the
application is wired) and would lead to large stack usage. The post operation places

the task on an internal task queue which is processed in FIFO order. When a task is
executed, it runs to completion before the next task is run. Therefore, and as the
above examples showed, a task should not run for long periods of time. Tasks do not
preempt each other, but a task can be preempted by a hardware interrupts (which
we haven't seen yet). In case we need to run a series of long operations, we should
dispatch a separate task for each operation, rather than using one big task. The post
operation returns an error_t, whose value is either SUCCESS or FAIL. A post

fails if and only if the task is already pending to run (it has been posted successfully
and has not been invoked yet).

5.5 Radio communication

 TinyOS provides a number of interfaces to abstract the underlying communications
services and a number of components that provide(implement) these interfaces. All
of these interfaces and components use a common message buffer abstraction,
called message_t, which is implemented as a nesC struct (similar to a C
struct). message_t is an abstract data type, whose members are read and written

using accessor and mutator functions.

typedef nx_struct message_t {

nx_uint8_t header[sizeof(message_header_t)];

nx_uint8_t data[TOSH_DATA_LENGTH];

nx_uint8_t footer[sizeof(message_footer_t)];

nx_uint8_t metadata[sizeof(message_metadata_t)];

} message_t;

5.5.1 Basic Communications Interfaces

 There are a number of interfaces and components that use message_t as the

underlying data structure.Let's take a look at some of the interfaces that are in the
tos/interfaces directory to familiarize ourselves with the general functionality
of the communications system:

80

• Packet - Provides the basic accessors for the message_t abstract data type.

This interface provides commands for clearing a message's contents, getting its
payload length, and getting a pointer to its payload area.

• Send - Provides the basic address-free message sending interface. This interface

provides commands for sending a message and canceling a pending message send.
The interface provides an event to indicate whether a message was sent successfully
or not. It also provides convenience functions for getting the message's maximum
payload as well as a pointer to a message's payload area.

• Receive - Provides the basic message reception interface. This interface

provides an event for receiving messages. It also provides, for convenience,
commands for getting a message's payload length and getting a pointer to a
message's payload area.

5.5.2 Active Message Interfaces

 Since it is very common to have multiple services using the same radio to
communicate, TinyOS provides the Active Message (AM) layer to multiplex access to
the radio. The term "AM type" refers to the field used for multiplexing. AM types are
similar in function to the Ethernet frame type field, IP protocol field, and the UDP
port in that all of them are used to multiplex access to a communication service. AM
packets also includes a destination field, which stores an "AM address" to address
packets to particular motes. Additional interfaces, also located in the
tos/interfaces directory, were introduced to support the AM services:

• AMPacket - Similar to Packet, provides the basic AM accessors for the

message_t abstract data type. This interface provides commands for getting a

node's AM address, an AM packet's destination,and an AM packet's type. Commands
are also provides for setting an AM packet's destination and type, and checking
whether the destination is the local node.

• AMSend - Similar to Send, provides the basic Active Message sending interface.

The key difference between AMSend and Send is that AMSend takes a destination

AM address in its send command.

5.5.3 Components

 A number of components implement the basic communications and active message
interfaces. Let's take a look at some of the components in the /tos/system
directory. We should be familiar with these components because our code needs to
specify both the interfaces our application uses as well as the components which
provide(implement) those interfaces:

81

• AMReceiverC - Provides the following interfaces: Receive, Packet, and

AMPacket.

• AMSenderC - Provides AMSend, Packet, AMPacket, and

PacketAcknowledgements as Acks.

• AMSnooperC - Provides Receive, Packet, and AMPacket.

• AMSnoopingReceiverC - Provides Receive, Packet, and AMPacket.

• ActiveMessageAddressC - Provides commands to get and set the node's

active message address. This interface is not for general use and changing a node's
active message address can break the network stack, so we best avoid using it unless
we know what we are doing.

5.5.4 Sending a Message over the Radio

 Our message will send both the node id and the counter value over the radio.
Rather than directly writing and reading the payload area of the message_t with
this data, we will use a structure to hold them and then use structure assignment to
copy the data into the message payload area. Using a structure allows reading and
writing the message payload more conveniently when our message has multiple
fields or multi-byte fields (like uint16_t or uint32_t) because we can avoid

reading and writing bytes from/to the payload using indices and then shifting and
adding (e.g. uint16_t x = data[0] << 8 + data[1]). Even for a

message with a single field, we should get used to using a structure because if we
ever add more fields to our message or move any of the fields around, we will need
to manually update all of the payload position indices if we read and write the
payload at a byte level. Using structures is straightforward. The following defines a
message structure with a uint16_t node id and a uint16_t counter in
the payload:

typedef nx_struct BlinkToRadioMsg {

nx_uint16_t nodeid;

nx_uint16_t counter;

} BlinkToRadioMsg;

 Given we are familiar with C structures, this syntax looks quite familar but the
nx_prefix on the keywords struct and uint16_t stands out a little bit. The

nx_ prefix is specific to the nesC language and signifies that the struct and

uint16_t are network types . Network types have the same representation on all
platforms. The nesC compiler generates code that transparently reorders access to
nx_ data types and eliminates the need to manually address endianness and

alignment (extra padding in structs present on some platforms) issues.

82

 We will implement a new application, called BlinkToRadioC which will

periodically broadcast a counter value.Now that we have defined a message type for
our application, BlinkToRadioMsg, we will next see how to send the message
over the radio.

Let's walk through the steps, one-by-one:

1. We will use the AMSend interface to send packets as well as the Packet and

AMPacket interfaces to access the message_t abstract data type. We need to
start the radio using the ActiveMessageC.SplitControl interface.

module BlinkToRadioC {

...

uses interface Packet;

uses interface AMPacket;

uses interface AMSend;

uses interface SplitControl as AMControl;

}

 Note that SplitControl has been renamed to AMControl using the as

keyword. nesC allows interfaces to be renamed in this way for several reasons. First,
it often happens that two or more components that are needed in the same module
provide the same interface. The as keyword allows one or more such names to be

changed to distinct names so that they can each be addressed individually. Second,
interfaces are sometimes renamed to something more meaningful. In our case,
SplitControl is a general interface used for starting and stopping components, but
the name AMControl is a mnemonic to remind us that the particular instance of
SplitControl is used to control the ActiveMessageC component.

2. We need a message_t to hold our data for transmission. These declarations

need to be added in the implementation block of BlinkToRadioC.nc:

implementation {

bool busy = FALSE;

message_t pkt;

...

}

 Next, we need to handle the initialization of the radio. The radio needs to be
started when the system is booted so we must call AMControl.start inside

Boot.booted. The only complication is that in our current implementation, we
start a timer inside Boot.booted and we are planning to use this timer to send

messages over the radio but the radio can't be used until it has completed starting
up. The radio signals that it has completed starting through the
AMControl.startDone event. To ensure that we do not start using the radio

83

before it is ready, we need to postpone starting the timer until after the radio has
completed starting. We can accomplish this by moving the call to start the timer,
which is now inside Boot.booted, to AMControl.startDone, giving us a new

Boot.booted with the following body:

event void Boot.booted() {

call AMControl.start();

}

 We also need to implement the AMControl.startDone and

AMControl.stopDone event handlers, which have the following bodies:

event void AMControl.startDone(error_t err) {

if (err == SUCCESS) {

call Timer0.startPeriodic(TIMER_PERIOD_MILLI);

}

else {

call AMControl.start();

}

}

event void AMControl.stopDone(error_t err) {

}

 If the radio is started successfully, AMControl.startDone will be called with
the error_t parameter set to a value of SUCCESS. If the radio starts successfully,

then it is appropriate to start the timer. If, however, the radio does not start
successfully, then it obviously cannot be used so we try again to start it. This process
continues until the radio starts, and ensures that the node software doesn't run until
the key components have started successfully. If the radio doesn't start at all, a
human operator might notice that the LEDs are not blinking as they are supposed to,
and might try to debug the problem.

3. Since we want to transmit the node's id and counter value every time the timer
fires, we need to add some code to the Timer0.fired event handler:

event void Timer0.fired() {

...

if (!busy) {

BlinkToRadioMsg* btrpkt = (BlinkToRadioMsg*)(call

Packet.getPayload(&pkt,NULL));

btrpkt->nodeid = TOS_NODE_ID;

btrpkt->counter = counter;

if (call AMSend.send(AM_BROADCAST_ADDR, &pkt,

sizeof(BlinkToRadioMsg)) ==SUCCESS) {busy = TRUE;}

}

}

84

 This code performs several operations. First, it ensures that a message transmission
is not in progress by checking the busy flag. Then it gets the packet's payload portion
and casts it to a pointer to the previously declared BlinkToRadioMsg external

type. It can now use this pointer to initialise the packet's fields, and then send the
packet by calling AMSend.send. The packet is sent to all nodes in radio range by
specyfing AM_BROADCAST_ADDR as the destination address. Finally, the test

against SUCCESS verifies that the AM layer accepted the message for transmission.

If so, the busy flag is set to true. For the duration of the send attempt, the packet is
owned by the radio, and user code must not access it.

4. Looking through the Packet, AMPacket, and AMSendinterfaces, we see

that there is only one event we need to worry about, AMSend.sendDone:

/*** Signaled in response to an accepted send request.

msg is the message buffer sent, and error indicates

whether the send was successful.

@param msg the packet which was submitted as a send

request

 @param error SUCCESS if it was sent successfully, FAIL

if it was not, ECANCEL if it was cancelled @see send

@see cancel***/

event void sendDone(message_t* msg, error_t error);

 This event is signaled after a message transmission attempt. In addition to signaling
whether the message was transmitted successfully or not, the event also returns
ownership of msg from AMSend back to the component that originally called the

AMSend.send command. Therefore sendDone handler needs to clear the busy
flag to indicate that the message buffer can be reused:

event void AMSend.sendDone(message_t* msg, error_t error)

{

if (&pkt == msg) {

busy = FALSE;

}

}

 Note the check to ensure the message buffer that was signaled is the same as the
local message buffer.This test is needed because if two components wire to the
same AMSend, bothwill receive a sendDone event after either component issues a

send command. Since a component writer has no way to enforce that her
component will not be used in this manner, a defensive style of programming that
verifies that the sent message is the same one that is being signaled is required.

85

5. The following lines can be added just below the existing components declarations
in the implementation block of BlinkToRadioAppC.nc:

implementation {

...

components ActiveMessageC;

components new AMSenderC(AM_BLINKTORADIO);

...

}

 These statements indicate that two components, ActiveMessageC and

AMSenderC, will provide the needed interfaces. However, note the slight
difference in their syntax. ActiveMessageC is a singleton component that is

defined once for each type of hardware platform. AMSenderC is a generic,

parameterized component. The new keyword indicates that a new instance of
AMSenderC will be created. The AM_BLINKTORADIO parameter indicates the AM

type of the AMSenderC. We can extend the enum in the BlinkToRadio.h

header file to incorporate the value of

AM_BLINKTORADIO:

enum {

AM_BLINKTORADIO = 6,

TIMER_PERIOD_MILLI = 250

};

6. The following lines will wire the used interfaces to the providing components.
These lines should be added to the bottom of the implementation block of
BlinkToRadioAppC.nc:

implementation {

...

App.Packet -> AMSenderC;

App.AMPacket -> AMSenderC;

App.AMSend -> AMSenderC;

App.AMControl -> ActiveMessageC;

5.5.5 Receiving a Message over the Radio

 Now that we have an application that is transmitting messages, we can add some
code to receive and process the messages. Below we add code that, upon receiving a
message, sets the LEDs to the three least significant bits of the counter in the
message.

1. We will use the Receive interface to receive packets.

module BlinkToRadioC {

...

86

uses interface Receive;

}

2. We need to implement the Receive.receive event handler:

event message_t* Receive.receive(message_t* msg, void*

payload, uint8_t len) { if (len

== sizeof(BlinkToRadioMsg)) {

BlinkToRadioMsg* btrpkt = (BlinkToRadioMsg*)payload;

call Leds.set(btrpkt->counter);

}

return msg;

}

 The receive event handler performs some simple operations. First, we need to

ensure that the length of the message is what is expected. Then, the message
payload is cast to a structure pointer of type BlinkToRadioMsg*and assigned to
a local variable. Then, the counter value in the message is used to set the states of
the three LEDs. Note that we can safely manipulate the counter variable outside

of an atomic section. The reason is that receive event executes in task context rather
than interrupt context (events that have the async keyword can execute in

interrupt context). Since the TinyOS execution model allows only one task to execute
at a time, if all accesses to a variable occur in task context, then no race conditions
will occur for that variable. Since all accesses to counter occur in task context, no
critical sections are needed when accessing it.

3. The following lines can be added just below the existing components declarations
in the implementation block of BlinkToRadioAppC.nc:

implementation {

...

components new AMReceiverC(AM_BLINKTORADIO);

...

}

 This statement means that a new instance of AMReceiverC will be created.

AMReceiver is a generic, parameterized component. The new keyword indicates
that a new instance of AMReceiverC will be created. The AM_BLINKTORADIO

parameter indicates the AM type of the AMReceiverC and is chosen to be the

same as that used for the AMSenderC used earlier, which ensures that the same
AM type is being used for both transmissions and receptions. AM_BLINKTORADIO

is defined in the BlinkToRadio.h header file.

4. Update the wiring by insert the following line just before the closing brace of the
implementation block in BlinkToRadioAppC:

implementation {

...

87

App.Receive -> AMReceiverC;

}

 The Blink Application and its derivative applications we presented above were a
small presentation of nesC’s basic features . Most of those features are included in
our project .Thus we got a better understanding of how nesC language actually
works ,how it interacts with C language and in what way we will use TinyOS to better
implement our application.

88

89

Chapter 6

The MSPSIM Simulator

 Software development for wireless sensor networks is a challenging and time

consuming task. The resource limited hardware with limited I/O and debugging

abilities combined with the often cumbersome hardware debugging tools makes

low-level debugging on the target hardware difficult. We present MSPSim , an

extensible sensor board platform and MSP430 instruction level simulator that

simulates sensor boards with peripherals for the purpose of reducing development

and debugging time .The use of a simulator also enables testing without access to

the target hardware and makes more advanced debugging and instrumenting

possible.

6.1 The Simulator

 Due to the distributed nature of sensor networks and resource-constraints of

sensor nodes, code development for wireless sensor network is a challenging and

time consuming task. Furthermore, the application development and debugging

tools are still cumbersome. One of the most commonly used methods for debugging

sensor nodes is using on-chip emulation via JTAG that makes it possible to single-

step and debug a running application on the target hardware. This is useful for

understanding execution patterns, stack usage, etc, but less useful for debugging

communication, sensor drivers, etc. For the development of wireless sensor network

applications, system simulators exist that simplify the development of algorithms

and enable researcher to study the algorithm’s behavior and interaction in a

controlled environment .Cross-level simulation enables simultaneous simulation at

different levels of the sensor network and hence supports simultaneous low-level

debugging and application development . For cross-level simulation of our MSP430-

based sensor node platforms we required an extensible instruction level simulation.

Towards, this end, we use MSPsim. As Avrora , MSPsim is a sensor network simulator

simulating nodes at the instruction-level, but for the MSP430. Unlike ATEMU that

emulates the operations of individual nodes and simulates communication between

them , MSPsim is designed for instruction-level simulation but can by design be

incorporated in COOJA’s cross-level simulation environment. Therefore , MSPSim is

all about an extensible instruction level simulator for the MSP430 microcontroller

90

that is intended to be used as a component in a larger sensor net-work simulation

system supporting cross-level simulation . For this reason MSPsim is designed to run

multiple instances of the simulator in a single process unlike other simulators such as

the GDB MSP430 simulator . MSPsim also contains a sensor board simulator that

simulates hardware peripherals such as sensors, communication ports, LEDs, and

sound devices such as a beeper. The design of MSPsim, together with its

implementation in Java, makes it easy to adapt the simulator to new sensor boards.

 The MSPsim is a Java-based instruction level simulator for the MSP430

microcontroller that simulates unmodified target platform firmware. Supports

loading of IHEX and ELF firmware files, and has some tools for monitoring stack,

setting breakpoints, and profiling .MSPsim is an instruction-level simulator which

made it easy to achieve accurate timing simulation. Further, MSPsim can run

unmodified target platform firmware. The simulator is easily extensible with

peripheral devices making it possible to simulate various types of MSP430 based

sensor nodes. In addition to simulate the MSP430 and sensor board hardware,

MSPsim can show a graphical representation of the sensor board in an on-screen

window. LEDs on the sensor board are displayed using the correct colors. The

graphical output allows a system designed to visually verify that an application is

correctly simulated by inspection of the LEDs.

6.1.1 Main Features

The main features of MSPSim are numbered below:

1) Instruction level emulation of MSP430 microprocessor

2) Supports loading of ELF and IHEX files

3) Easy to add external components that emulates external HW

4) Supports monitoring of registers, adding breakpoints, etc.

5) Built-in profiling of executed code

6) Statistics for various components modes (on/off, LPM modes, etc).

7) Emulates some external hardware such as TR1001 and CC2420.

8) Command Line Interface, CLI, for setting up breakpoints and output to files

or windows.

9) GDB remote debugging support (initial)

91

6.1.2 What is emulated of the MSP430

a) CPU (instruction level simulation)

b) Timer A/B subsystem

c) USARTs

d) Digital I/O

e) Multiplication unit

f) Basic A/D subsystem (not complete)

g) Watchdog

6.2 Sensor Board Simulation

 We will simulate a simple application on a telosb Sky mote with the mspsim .One

of the design objectives of the MSPsim simulator is to simplify the adaptation to

different types of sensor node platforms. To add support for a new sensor node

platform only implementations of peripherals such as sensors, actuators such as

beepers or LEDs, and radio and communication peripherals are needed. The

implementation of those peripherals are typically relatively easy to make as many of

them do not need to conform to strict timing requirements .We will simulate the

fundamental application Blink , which we presented on an earlier chapter .As we

recall , Blink application simply causes the red LED on the mote to turn on and off at

1Hz .Well , this is not exactly the case here because we use a different version of the

Blink application from TinyOS – 2.1.2 to better fit the telosb mote and give us a

better understanding of the simulation .More specifically , the Blink application we

used causes the blue LED on the mote to turn on and off at 1Hz , the green Led on

the mote to turn on and off at 2Hz and the red LED on the mote to turn on and off at

4Hz .In other words , it is a binary 3-bit counter from 0 to 7 decimal .A blinking LED

account for binary ‘’1’’ and o non-blinking LED accounts for binary ‘’0’’ .It’s function

is portrayed on table 6.1 below.

92

BLUE LED GREEN LED RED LED COUNTER(BIN) COUNTER(DEC)

0 0 0 000 0

0 0 1 001 1

0 1 0 010 2

0 1 1 011 3

1 0 0 100 4

1 0 1 101 5

1 1 0 110 6

1 1 1 111 7

Table 6.1 Function of Blink application

First we show the BlinkAppC configuration

configuration BlinkAppC

{

}

implementation

{

 components MainC, BlinkC, LedsC;

 components new TimerMilliC() as Timer0;

 components new TimerMilliC() as Timer1;

 components new TimerMilliC() as Timer2;

 BlinkC -> MainC.Boot;

 BlinkC.Timer0 -> Timer0;

 BlinkC.Timer1 -> Timer1;

 BlinkC.Timer2 -> Timer2;

 BlinkC.Leds -> LedsC;

}

The application includes the components MainC,BlinkC ,LedsC and

TimerMilliC.Then it creates three instances of the TimerMilliC

Timer0,Timer1 and Timer2.

components MainC, BlinkC, LedsC;

components new TimerMilliC() as Timer0;

components new TimerMilliC() as Timer1;

components new TimerMilliC() as Timer2;

Afterwards , it wires BlinkC to MainC.Boot setting BlinkC as the main

component.

BlinkC -> MainC.Boot;

93

Next , it wires each timer of BlinkC with an instant of TimerMilliC

BlinkC.Timer0 -> Timer0;

BlinkC.Timer1 -> Timer1;

BlinkC.Timer2 -> Timer2;

Finally, it wires the Leds of BlinkC to the LedsC component

BlinkC.Leds -> LedsC;

Below , we present the module BlinkC.

#include "Timer.h"

module BlinkC()

{

 uses interface Timer<TMilli> as Timer0;

 uses interface Timer<TMilli> as Timer1;

 uses interface Timer<TMilli> as Timer2;

 uses interface Leds;

 uses interface Boot;

}

implementation

{

 event void Boot.booted()

 {

 call Timer0.startPeriodic(250);

 call Timer1.startPeriodic(500);

 call Timer2.startPeriodic(1000);

 }

 event void Timer0.fired()

 {

 dbg("BlinkC", "Timer 0 fired @ %s.\n",

sim_time_string());

 call Leds.led0Toggle();

 }

 event void Timer1.fired()

94

 {

 dbg("BlinkC", "Timer 1 fired @ %s \n",

sim_time_string());

 call Leds.led1Toggle();

 }

 event void Timer2.fired()

 {

 dbg("BlinkC", "Timer 2 fired @ %s.\n",

sim_time_string());

 call Leds.led2Toggle();

 }

}

It uses interfaces Timer ,Leds and Boot

{

 uses interface Timer<TMilli> as Timer0;

 uses interface Timer<TMilli> as Timer1;

 uses interface Timer<TMilli> as Timer2;

 uses interface Leds;

 uses interface Boot;

}

 Calls the Timer command 3 times for each timer when booted .Each timer is set

with different fire limit.Timer0 is fired with 250ms , Timer1 with 500ms and

Timer2 with 1000ms

 event void Boot.booted()

 {

 call Timer0.startPeriodic(250);

 call Timer1.startPeriodic(500);

 call Timer2.startPeriodic(1000);

 }

If a Timerx is fired , the respective x LED Blinks

 event void Timerx.fired()

 {

 dbg("BlinkC", "Timer x fired @ %s.\n",

sim_time_string());

 call Leds.ledxToggle();

 }

95

 As we mentioned in the installation process of the mspsim , in order to simulate an

application on a mote , first we need to compile the application on this mote with

the msp430-gcc . After having install the msp430-gcc version 4.6.3 , we go to Blink

application folder which includes the BlinkC configuration (BlinkAppC.nc) , the

BlinkC module (BlinkC.nc) and the Makefile. Here we type the command:

make telosb

 Then , a folder named build is created inside the Blink application folder . This

folder contains folder named telosb .The latter includes an executable file named

main.exe.

 After we rename the file to main.elf (in order an executable file to be simulated

with mspsim it must end with .elf) with the command:

mv main.exe main.elf

Finally while we are in Blink/build/telosb , we run the command:

mspsim main.elf

The mspsim simulator is activated and the simulation has started

The message :

Flash got reset! MSPSim>

Autoloading script: /home/homedirectory/mspsim/scripts/autorun.sc

MSPSim 0.97 starting firmware : main.elf

is displayed and the command line of mspsim is ready:

MSPSim>

Also , the following 5 Windows have opened:

96

 Sky

Figure 6.1a Sky window

 The Sky window offers an optical-hardware representation of the mote .On the

upper left side we can see the 3 Blinking Leds.

 USART1 Port Output

Figure 6.1b USART 1Port Output window

97

 The USART1 Port Output concerns the usb port output that would function if we

had an actual mote inserted on a usb port

 Duty Cycle Monitor

Figure 6.1c Duty Cycle Monitor window

 The Duty Cycle Monitor shows the duty cycle of the LEDS(red color) , the duty cycle

of the listening-sensing activity(green color) , the duty cycle of the Transmitting

activity (Blue color) and the duty cycle of the CPU(blackcolor)

 Stack Monitor

Figure 6.1d Stack Monitor window

98

 The Stack monitor shows the Max Stack(red color) and the Stack (green color)

 MSPSim monitor

Figure 6.1e MSPSimMonitor window

 The MSPSim monitor window shows the steps executed in assembly code. It offers

step by step execution , debug monitor making it visible on the command line and

start-stop actions.

In the command line , If we execute:

MSPSim>profile

 The MSPSim command profile can be useful to see the number of cycles

elapsed in each function of the program. For our Blink application after a certain

period of time the output is shown in Figure 6.2

99

Figure 6.2: MSPSim terminal command line

 Also , MSPSim allows to watch the variable values evolution during the program

execution with the command symbol <application> . It will be illustrated

profoundly during our project.

 Another command we will be using in our project is the duty command:

MSPSim>duty [freq] [chip]

Duty is useful for viewing each chips duty cycle at a frequency of our choice.

100

101

Chapter 7

Design
 As we mentioned in previous chapters , the source application we will be using
from the TinyOS libraries is the AccelECG application. Our new application will be

named ECG application.In addition to the ECG app , we derived 3 more apps by
modifying the ECG’s code. The ECG-cordic , the ECG-lookup and the ECG-lookup-
interpolate app.The following chapters describe these four applications in-detail.

7.1 ECG App

7.1.1 ECGC.nc

 Below we present and analyse the code for the module ECGC.nc. The ECG is slightly
different than the AccelECG . More specifically , we added removed the three
accelerometer channels and replaced them with 3 ECG channels and also added 3
more ECG channels which adds up to 8 ECG channels.In other words the ECG app
sends 8 ECG channels with each packet.
ECGC.nc

/*

 * Copyright (c) 2007, Intel Corporation

 * All rights reserved.

 *

 * Redistribution and use in source and binary forms, with or

without

 * modification, are permitted provided that the following

conditions are met:

 *

 * Redistributions of source code must retain the above

copyright notice,

 * this list of conditions and the following disclaimer.

 *

 * Redistributions in binary form must reproduce the above

copyright notice,

 * this list of conditions and the following disclaimer in the

documentation

 * and/or other materials provided with the distribution.

 *

 * Neither the name of the Intel Corporation nor the names of

its contributors

102

 * may be used to endorse or promote products derived from

this software

 * without specific prior written permission.

 *

 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS "AS IS"

 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE

 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE

 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR

CONTRIBUTORS BE

 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

EXEMPLARY, OR

 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

PROCUREMENT OF

 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS; OR BUSINESS

 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY, WHETHER IN

 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE

OR OTHERWISE)

 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF

ADVISED OF THE

 * POSSIBILITY OF SUCH DAMAGE.

 *

 * Author: Adrian Burns

 * November, 2007

 */

/***

 This app uses Bluetooth to stream 8 ECG channels

 of data to a BioMOBIUS PC application.

 Tested on SHIMMER Base Board Rev 1.3, SHIMMER ECG board Rev

1.1.

 LOW_BATTERY_INDICATION if defined stops the app streaming

data just after the

 battery voltage drops below the regulator value of 3V.

 Default Sample Frequency: 100 hz

 Packet Format:

 BOF| Sensor ID | Data Type | Seq No. | TimeStamp |

Len | ECG | ECG | ECG | ECG | ECG | ECG | ECG | ECG |

Dummy| CRC | EOF

 Byte: 1 | 2 | 3 | 4 | 5-6 | 7

| 8-9 | 10-11| 12-13| 14-15 | 16-17| 18-19| 20-21 | 22-23| 24-

25| 26-27| 28

**

*********************/

103

/*

 * @author Adrian Burns

 * @date November, 2007

 *

 * @author Mike Healy

 * @date May 13, 2009 - ported to TinyOS 2.x

 *

 * @author Steve Ayer

 * @date June, 2010

 * mods to use shimmerAnalogSetup interface and new GyroBoard

module

 */

#include "Timer.h"

#include "ECG.h"

#include "crc.h"

#include "RovingNetworks.h"

module ECGC {

 uses {

 interface Boot;

 interface FastClock;

 interface Init as FastClockInit;

 interface Init as BluetoothInit;

 interface Leds;

 interface Timer<TMilli> as SetupTimer;

 interface Timer<TMilli> as ActivityTimer;

 interface Timer<TMilli> as SampleTimer;

 interface LocalTime<T32khz>;

 interface StdControl as BTStdControl;

 interface Bluetooth;

 interface shimmerAnalogSetup;

 interface Msp430DmaChannel as DMA0;

 }

}

implementation {

 extern int sprintf(char *str, const char *format, ...)

__attribute__ ((C));

#ifdef LOW_BATTERY_INDICATION

 //#define DEBUG_LOW_BATTERY_INDICATION

 /* during testing of the the (AVcc-AVss)/2 value from the

ADC on various SHIMMERS, to get a reliable cut off point

 to recharge the battery it is important to find the

baseline (AVcc-AVss)/2 value coming from the ADC as it varies

 from SHIMMER to SHIMMER, however the range of

fluctuation is pretty constant and (AVcc-AVss)/2 provides an

accurate

 battery low indication that prevents getting any voltage

skewed data from the accelerometer or add-on board sensors */

#define TOTAL_BASELINE_BATT_VOLT_SAMPLES_TO_RECORD 1000

#define BATTERY_LOW_INDICATION_OFFSET 20 /* (AVcc - AVss)/2 =

Approx 3V-0V/2 = 1.5V, 12 bit ADC with 2.5V REF,

 4096/2500 =

1mV=1.6384 units */

104

 bool need_baseline_voltage, linkDisconnecting;

 uint16_t num_baseline_voltage_samples, baseline_voltage;

 uint32_t sum_batt_volt_samples;

#ifdef DEBUG_LOW_BATTERY_INDICATION

 #error "were going for debug mode yea?, comment me out

then"

 uint16_t debug_counter;

#endif /* DEBUG_LOW_BATTERY_INDICATION */

#endif /* LOW_BATTERY_INDICATION */

#define FIXED_PACKET_SIZE 28

#define FIXED_PAYLOAD_SIZE 12

 uint8_t tx_packet[(FIXED_PACKET_SIZE*2)+1]; /* (*2)twice

size because of byte stuffing */

 /* (+1)MSP430

CPU can only read/write 16-bit values at even addresses, */

 /* so use an

empty byte to even up the memory locations for 16-bit values

*/

 const uint8_t personality[17] = {

 0,1,2,3,4,5,0xFF,0xFF,

 SAMPLING_50HZ,SAMPLING_50HZ,SAMPLING_50HZ,SAMPLING_50HZ,

SAMPLING_50HZ,SAMPLING_50HZ,SAMPLING_0HZ_OFF,SAMPLING_0HZ_OFF,

FRAMING_EOF

 };

 norace uint8_t current_buffer = 0;

 uint16_t sbuf0[6], sbuf1[6], timestamp0, timestamp1;

 bool enable_sending, command_mode_complete,

activity_led_on;

/* default sample frequency every time the sensor boots up */

 uint16_t sample_freq = SAMPLING_200HZ;

 uint8_t NBR_ADC_CHANS;

 /* Internal function to calculate 16 bit CRC */

 uint16_t calc_crc(uint8_t *ptr, uint8_t count) {

 uint16_t crc;

 crc = 0;

 while (count-- > 0)

 crc = crcByte(crc, *ptr++);

 return crc;

 }

 void init() {

#ifdef USE_8MHZ_CRYSTAL

 call FastClockInit.init();

 call FastClock.setSMCLK(1);

#endif /* USE_8MHZ_CRYSTAL */

 call BluetoothInit.init();

105

 call shimmerAnalogSetup.addECGInputs();

 call shimmerAnalogSetup.finishADCSetup(sbuf0);

 NBR_ADC_CHANS = call

shimmerAnalogSetup.getNumberOfChannels();

 atomic {

 memset(tx_packet, 0, (FIXED_PACKET_SIZE*2));

 enable_sending = FALSE;

 command_mode_complete = FALSE;

 activity_led_on = FALSE;

 }

 call Bluetooth.disableRemoteConfig(TRUE);

 }

 event void Boot.booted() {

 init();

 call BTStdControl.start();

 /* so that the clinicians know the sensor is on */

 call Leds.led0On();

#ifdef LOW_BATTERY_INDICATION

 /* initialise baseline voltage measurement stuff */

 need_baseline_voltage = TRUE;

 num_baseline_voltage_samples = baseline_voltage =

sum_batt_volt_samples = 0;

 call Leds.led0On();

#ifdef DEBUG_LOW_BATTERY_INDICATION

 debug_counter = 0;

#endif /* DEBUG_LOW_BATTERY_INDICATION */

#endif /* LOW_BATTERY_INDICATION */

 }

#ifdef LOW_BATTERY_INDICATION

 task void sendBatteryLowIndication() {

 uint16_t crc;

 char batt_low_str[] = "BATTERY LOW!";

 /* stop all sensing - battery is below the threshold */

 call SetupTimer.stop();

 call ActivityTimer.stop();

 call shimmerAnalogSetup.stopConversion();

 call DMA0.stopTransfer();

 call Leds.led1Off();

 /* send the battery low indication packet to BioMOBIUS

*/

 tx_packet[1] = FRAMING_BOF;

 tx_packet[2] = SHIMMER_REV1;

 tx_packet[3] = STRING_DATA_TYPE;

 tx_packet[4]++; /* increment sequence number */

 atomic tx_packet[5] = timestamp0 & 0xff;

 atomic tx_packet[6] = (timestamp0 >> 8) & 0xff;

 tx_packet[7] = FIXED_PAYLOAD_SIZE;

 memcpy(&tx_packet[8], &batt_low_str[0], 12);

106

#ifdef DEBUG_LOW_BATTERY_INDICATION

 tx_packet[8] = (baseline_voltage) & 0xff;

 tx_packet[9] = ((baseline_voltage) >> 8) & 0xff;

#endif /* DEBUG_LOW_BATTERY_INDICATION */

 crc = calc_crc(&tx_packet[2], (FIXED_PACKET_SIZE-

FRAMING_SIZE));

 tx_packet[FIXED_PACKET_SIZE - 2] = crc & 0xff;

 tx_packet[FIXED_PACKET_SIZE - 1] = (crc >> 8) & 0xff;

 tx_packet[FIXED_PACKET_SIZE] = FRAMING_EOF;

 call Bluetooth.write(&tx_packet[1], FIXED_PACKET_SIZE);

 atomic enable_sending = FALSE;

 /* initialise baseline voltage measurement stuff */

 need_baseline_voltage = TRUE;

 num_baseline_voltage_samples = baseline_voltage =

sum_batt_volt_samples = 0;

 call Leds.led0On();

 }

 /* all samples are got so set the baseline voltage for this

SHIMMER hardware */

 void setBattVoltageBaseline() {

 baseline_voltage = (sum_batt_volt_samples /

TOTAL_BASELINE_BATT_VOLT_SAMPLES_TO_RECORD);

 }

 /* check voltage level and if it is low then stop sampling,

send message and disconnect */

 void checkBattVoltageLevel(uint16_t battery_voltage) {

#ifndef DEBUG_LOW_BATTERY_INDICATION

 if(battery_voltage < (baseline_voltage-

BATTERY_LOW_INDICATION_OFFSET)) {

#else

 if(debug_counter++ == 2500) {

#endif /* DEBUG_LOW_BATTERY_INDICATION */

 linkDisconnecting = TRUE;

 }

 }

 /* keep checking the voltage level of the battery until it

drops below the offset */

 void monitorBattery() {

 uint16_t battery_voltage;

 if(current_buffer == 1) {

 battery_voltage = sbuf0[5];

 }

 else {

 battery_voltage = sbuf1[5];

 }

 if(need_baseline_voltage) {

 num_baseline_voltage_samples++;

 if(num_baseline_voltage_samples <=

TOTAL_BASELINE_BATT_VOLT_SAMPLES_TO_RECORD) {

107

 /* add this sample to the total so that an average

baseline can be obtained */

 sum_batt_volt_samples += battery_voltage;

 }

 else {

 setBattVoltageBaseline();

 need_baseline_voltage = FALSE;

 call Leds.led0Off();

 }

 }

 else {

 checkBattVoltageLevel(battery_voltage);

 }

 }

#endif /* LOW_BATTERY_INDICATION */

 /* The MSP430 CPU is byte addressed and little endian */

 /* packets are sent little endian so the word 0xABCD will

be sent as bytes 0xCD 0xAB */

 void preparePacket() {

 uint16_t *p_packet, *p_ADCsamples, crc;

 tx_packet[1] = FRAMING_BOF;

 tx_packet[2] = SHIMMER_REV1;

 tx_packet[3] = PROPRIETARY_DATA_TYPE;

 tx_packet[4]++; /* increment sequence number */

 tx_packet[7] = FIXED_PAYLOAD_SIZE;

 p_packet = (uint16_t *)&tx_packet[8];

 if(current_buffer == 1) {

 p_ADCsamples = &sbuf0[0];

 tx_packet[5] = timestamp0 & 0xff;

 tx_packet[6] = (timestamp0 >> 8) & 0xff;

 }

 else {

 p_ADCsamples = &sbuf1[0];

 tx_packet[5] = timestamp1 & 0xff;

 tx_packet[6] = (timestamp1 >> 8) & 0xff;

 }

 /* copy all the data samples into the outgoing packet */

 *p_packet++ = *p_ADCsamples++; //tx_packet[8]

 *p_packet++ = *p_ADCsamples++; //tx_packet[10]

 *p_packet++ = *p_ADCsamples++; //tx_packet[12]

 *p_packet++ = *p_ADCsamples++; //tx_packet[14]

 *p_packet++ = *p_ADCsamples++; //tx_packet[16]

 *p_packet++ = *p_ADCsamples++; //tx_packet[18]

 *p_packet++ = *p_ADCsamples++; //tx_packet[20]

 *p_packet = *p_ADCsamples; //tx_packet[22]

 /* spare room in the packet so send the battery voltage

data */

 if(current_buffer == 1) {

 tx_packet[18] = (sbuf0[5]) & 0xff;

108

 tx_packet[19] = ((sbuf0[5]) >> 8) & 0xff;

 }

 else {

 tx_packet[18] = (sbuf1[5]) & 0xff;

 tx_packet[19] = ((sbuf1[5]) >> 8) & 0xff;

 }

 crc = calc_crc(&tx_packet[2], (FIXED_PACKET_SIZE-

FRAMING_SIZE));

 tx_packet[FIXED_PACKET_SIZE - 2] = crc & 0xff;

 tx_packet[FIXED_PACKET_SIZE - 1] = (crc >> 8) & 0xff;

 tx_packet[FIXED_PACKET_SIZE] = FRAMING_EOF;

 }

 task void sendSensorData() {

#ifdef LOW_BATTERY_INDICATION

 monitorBattery();

#endif /* LOW_BATTERY_INDICATION */

 atomic if(enable_sending) {

 preparePacket();

 /* send data over the air */

 call Bluetooth.write(&tx_packet[1],

FIXED_PACKET_SIZE);

 atomic enable_sending = FALSE;

 }

 }

 task void startSensing() {

 call ActivityTimer.startPeriodic(1000);

 call SampleTimer.startPeriodic(sample_freq);

 }

 task void sendPersonality() {

 atomic if(enable_sending) {

 /* send data over the air */

 call Bluetooth.write(&personality[0], 17);

 atomic enable_sending = FALSE;

 }

 }

 task void stopSensing() {

 call SetupTimer.stop();

 call SampleTimer.stop();

 call ActivityTimer.stop();

 call shimmerAnalogSetup.stopConversion();

 call DMA0.stopTransfer();

 call Leds.led1Off();

 }

 async event void Bluetooth.connectionMade(uint8_t status) {

 atomic enable_sending = TRUE;

 call Leds.led2On();

 }

109

 async event void Bluetooth.commandModeEnded() {

 atomic command_mode_complete = TRUE;

 }

 async event void Bluetooth.connectionClosed(uint8_t

reason){

 atomic enable_sending = FALSE;

 call Leds.led2Off();

 post stopSensing();

 }

 task void startConfigTimer() {

 call SetupTimer.startPeriodic(5000);

 }

 async event void Bluetooth.dataAvailable(uint8_t data){

 /* start capturing on ^G */

 if(7 == data) {

 atomic if(command_mode_complete) {

 post startSensing();

 }

 else {

 /* give config a chance, wait 5 secs */

 post startConfigTimer();

 }

 }

 else if (data == 1) {

 post sendPersonality();

 }

 /* stop capturing on spacebar */

 else if (data == 32) {

 post stopSensing();

 }

 else { /* were done */ }

 }

 event void Bluetooth.writeDone(){

 atomic enable_sending = TRUE;

#ifdef LOW_BATTERY_INDICATION

 if(linkDisconnecting) {

 linkDisconnecting = FALSE;

 /* signal battery low to master and let the master

disconnect the link */

 post sendBatteryLowIndication();

 }

#endif /* LOW_BATTERY_INDICATION */

 }

 event void SetupTimer.fired() {

 atomic if(command_mode_complete){

 call ActivityTimer.stop();

 post startSensing();

 }

110

 }

 event void ActivityTimer.fired() {

 atomic {

 /* toggle activity led every second */

 if(activity_led_on) {

 call Leds.led1On();

 activity_led_on = FALSE;

 }

 else {

 call Leds.led1Off();

 activity_led_on = TRUE;

 }

 }

 }

 event void SampleTimer.fired() {

 call shimmerAnalogSetup.triggerConversion();

 }

 async event void DMA0.transferDone(error_t success) {

 if(current_buffer == 0){

 call DMA0.repeatTransfer((void*)ADC12MEM0_,

(void*)sbuf1, NBR_ADC_CHANS);

 atomic timestamp1 = call LocalTime.get();

 current_buffer = 1;

 }

 else {

 call DMA0.repeatTransfer((void*)ADC12MEM0_,

(void*)sbuf0, NBR_ADC_CHANS);

 atomic timestamp0 = call LocalTime.get();

 current_buffer = 0;

 }

 post sendSensorData();

 }

}

7.1.2 ECGAppC.nc

The configuration ECGAppC is illustrated.

ECGAppC.nc

/*

 * Copyright (c) 2007, Intel Corporation

 * All rights reserved.

 *

 * Redistribution and use in source and binary forms, with or

without

111

 * modification, are permitted provided that the following

conditions are met:

 *

 * Redistributions of source code must retain the above

copyright notice,

 * this list of conditions and the following disclaimer.

 *

 * Redistributions in binary form must reproduce the above

copyright notice,

 * this list of conditions and the following disclaimer in the

documentation

 * and/or other materials provided with the distribution.

 *

 * Neither the name of the Intel Corporation nor the names of

its contributors

 * may be used to endorse or promote products derived from

this software

 * without specific prior written permission.

 *

 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS "AS IS"

 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE

 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE

 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR

CONTRIBUTORS BE

 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

EXEMPLARY, OR

 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

PROCUREMENT OF

 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS; OR BUSINESS

 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY, WHETHER IN

 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE

OR OTHERWISE)

 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF

ADVISED OF THE

 * POSSIBILITY OF SUCH DAMAGE.

 *

 * Author: Adrian Burns

 * November, 2007

 */

 /* This app uses Bluetooth to stream 3 Accelerometer channels

and 2 ECG channels

 of data to a BioMOBIUS PC application.

 Tested on SHIMMER Base Board Rev 1.3, SHIMMER ECG board

Rev 1.1. */

/*

 * @author Adrian Burns

 * @date November, 2007

 *

 * @author Mike Healy

112

 * @date May 13, 2009 - ported to TinyOS 2.x

 */

configuration ECGAppC {

}

implementation {

 components MainC, ECGC;

 ECGC -> MainC.Boot;

 components FastClockC;

 ECGC.FastClockInit -> FastClockC;

 ECGC.FastClock -> FastClockC;

 components LedsC;

 ECGC.Leds -> LedsC;

 components new TimerMilliC() as SampleTimer;

 ECGC.SampleTimer -> SampleTimer;

 components new TimerMilliC() as SetupTimer;

 ECGC.SetupTimer -> SetupTimer;

 components new TimerMilliC() as ActivityTimer;

 ECGC.ActivityTimer -> ActivityTimer;

 components Counter32khz32C as Counter;

 components new CounterToLocalTimeC(T32khz);

 CounterToLocalTimeC.Counter -> Counter;

 ECGC.LocalTime -> CounterToLocalTimeC;

 components RovingNetworksC;

 ECGC.BluetoothInit -> RovingNetworksC.Init;

 ECGC.BTStdControl -> RovingNetworksC.StdControl;

 ECGC.Bluetooth -> RovingNetworksC;

 components shimmerAnalogSetupC, Msp430DmaC;

 MainC.SoftwareInit -> shimmerAnalogSetupC.Init;

 ECGC.shimmerAnalogSetup -> shimmerAnalogSetupC;

 ECGC.DMA0 -> Msp430DmaC.Channel0;

}

7.1.3 ECG.h

ECG.h

/*

 * Copyright (c) 2007, Intel Corporation

 * All rights reserved.

 *

 * Redistribution and use in source and binary forms, with or

without

113

 * modification, are permitted provided that the following

conditions are met:

 *

 * Redistributions of source code must retain the above

copyright notice,

 * this list of conditions and the following disclaimer.

 *

 * Redistributions in binary form must reproduce the above

copyright notice,

 * this list of conditions and the following disclaimer in the

documentation

 * and/or other materials provided with the distribution.

 *

 * Neither the name of the Intel Corporation nor the names of

its contributors

 * may be used to endorse or promote products derived from

this software

 * without specific prior written permission.

 *

 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS "AS IS"

 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE

 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE

 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR

CONTRIBUTORS BE

 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

EXEMPLARY, OR

 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

PROCUREMENT OF

 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS; OR BUSINESS

 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY, WHETHER IN

 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE

OR OTHERWISE)

 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF

ADVISED OF THE

 * POSSIBILITY OF SUCH DAMAGE.

 *

 * Author: Adrian Burns

 * November, 2007

 */

/*

 * @author Adrian Burns

 * @date November, 2007

 *

 * @author Mike Healy

 * @date May 13, 2009 - ported to TinyOS 2.x

 */

#ifndef ECG_H

#define ECG_H

enum {

114

 NUM_ACCEL_CHANS = 3

};

enum {

 NUM_GYRO_CHANS = 3

};

enum {

 SHIMMER_REV1 = 0

};

enum {

 PROPRIETARY_DATA_TYPE = 0xFF,

 STRING_DATA_TYPE = 0xFE

};

enum {

 SAMPLING_1000HZ = 1,

 SAMPLING_500HZ = 2,

 SAMPLING_250HZ = 4,

 SAMPLING_200HZ = 5,

 SAMPLING_166HZ = 6,

 SAMPLING_125HZ = 8,

 SAMPLING_100HZ = 10,

 SAMPLING_50HZ = 20,

 SAMPLING_10HZ = 100,

 SAMPLING_0HZ_OFF = 255

};

enum {

 FRAMING_SIZE = 0x4,

 FRAMING_CE_COMP = 0x20,

 FRAMING_CE_CE = 0x5D,

 FRAMING_CE = 0x7D,

 FRAMING_BOF = 0xC0,

 FRAMING_EOF = 0xC1,

 FRAMING_BOF_CE = 0xE0,

 FRAMING_EOF_CE = 0xE1,

};

#endif // ECG_H

7.2 Discrete Fourier Transform(DFT)

The applications we are about to describe are an extension of the ECG application.

After sampling the default sensor , they compress the ECG signal samples with a

Discrete Fourier Transform (DFT) and then broadcast the modified message over the

radio every N (N=8 or N=16) readings.Before we proceed to their analysis first we

need to address some aspects of the Fourier Transform.

115

7.2.1 Fast Fourier Transform(FFT)

 A fast Fourier transform (FFT) is an efficient algorithm to compute the discrete

fourier transform (DFT) and it’s inverse. There are many distinct FFT algorithms

involving a wide range of mathematics, from simple complex-number arithmetic to

group theory and number theory. A DFT decomposes a sequence of values into

components of different frequencies but computing it directly from the definition is

often too slow to be practical. An FFT is a way to compute the same result more

quickly. Computing a DFT of N points in the naive way, using the definition, takes

O(N2) arithmetical operations , while an FFT can compute the same result in only

O(Nlog N) operations. The difference in speed can be substantial, especially for long

data sets where N may be in the thousands or millions—in practice, the computation

time can be reduced by several orders of magnitude in such cases, and the

improvement is roughly proportional to N/ log (N). This huge improvement made

many DFT-based algorithms practical; FFTs are of great importance to a wide variety

of applications, from digital signal processing and solving partial differential

equations to algorithms for quick multiplication of large integers. The most well

known FFT algorithms depend upon the factorization of N, but there are FFTs with O

(Nlog N) complexity for all N, even for prime N. Many FFT algorithms only depend on

the fact that is an Nth primitive root of unity, and thus can be applied to analogous

transforms over any finite field, such as number-theoretic transforms. Fast Fourier

Transform is a fundamental transform in digital signal processing with applications in

frequency analysis, signal processing etc [7]. The periodicity and symmetry

properties of DFT are useful for compression .The uth FFT coefficient of length N

sequence {f(x)} is de-fined as in (1):







1

0

/2)()(
N

x

NuxjexfuF  (1)

Where .1,....,1,0  Nu

And its inverse transform is calculated from (2):







1

0

/2)(
1

)(
N

u

Nuxjexf
N

xf  (2)

Where .1,....,1,0  Nx

7.2.2 FFT on Real-valued Data

In our project the ECG data we collect are real values. An FFT algorithm on real

values contains some interesting properties.

For real-valued input data fn  (i.e fn
*= fn =fn)

116

))
2

sin()
2

(cos(
11 2

1
2

2

1
2

/2

N

nk
i

N

nk
f

N
ef

N
F

N

N
n

n

N

N
n

Nnki

nk

 


 

And so the real part is:

N
Fk

1
}Re{  



2

1
2

)
2

cos(

N

N
n

n
N

nk
f



and the imaginary part is:

N
Fk

1
}Im{  



2

1
2

)
2

sin(

N

N
n

n
N

nk
f



Also , only N independent real-valued coefficients are necessary since:

  *** }{
1 nk

Nnk f
N

F  = k

kn

Nn Ff
N



  )(1


So if N the number of samples , then DFT(0) and DFT(N/2) have only real part whilst

DFT(1) to DFT(N/2-1) have both real and imaginary part but they are symmetric to

samples DFT(N/2+1) to DFT(N-1).

Αnd so we get that the DFT of N independent real-valued samples fn is:

{f-N/2+1,..., f0 ...,fN/2}

DFT   IDFT

{F0,Re{F1},Im{F1}, , Re{FN/2-1},Im{FN/2-1},FN/2}

In our project we will use both 8-point DFT (N=8) and 16-point DFT so the sensors

will send:

8-point

{F0,Re{F1},Im{F1},Re{F2},Im{F2},Re{F3},Im{F3},Re{F4},Im{F4},F5}

16-point

{F0,Re{F1},Im{F1},Re{F2},Im{F2},Re{F3},Im{F3},Re{F4},Im{F4}, Re{F5},Im{F5}

,Re{F6},Im{F6},Re{F7},Im{F7},F8}

117

7.2.3 C Code for RDFT

 The C code for RDFT (8-point) is presented below. It implements the algorithm

described above.

/*

 * Real-input Discrete Fourier Transform (RDFT)

 * Using standard math.h functions

 * Author: George Economakos

 *

 */

#include "math.h"

/*

 * Computes the discrete Fourier transform (DFT) of the

given 8 element vector of real values(inreal[8]).*/

void rdft(uint16_t inreal[8]) {

 int k;

 int t;

 uint16_t outsymmetric[8];

 double sumreal;

 double sumimag;

 /* For k=0, sin(0)=0, cos(0)=1 so we have only real

output */

 sumreal = 0.0;

 for (t = 0; t < 8; t++) /* For each input element

*/

 sumreal += (double)inreal[t];

 outsymmetric[0] = (uint16_t)sumreal;

 /* For outputs 1, 2 and 3 which are symmetric to 5,

6 and 7 and have both real and imaginary output, put one

next to the other in the output array */

 for (k = 1; k < 4; k++) {

 sumreal = 0.0;

 sumimag = 0.0;

 for (t = 0; t < 8; t++) { /* For each input

element */

 sumreal += (double)inreal[t]*cos(2*M_PI *

t * k / 8);

 sumimag += -(double)inreal[t]*sin(2*M_PI *

t * k / 8);

 }

 outsymmetric[2*k-1] = (uint16_t)sumreal;

 outsymmetric[2*k] = (uint16_t)sumimag;

 }

118

 /* For k=4, sin(M_PI*t)=0, cos(M_PI*t)=+1 or -1 so

we have only real output */

 sumreal = 0;

 for (t = 0; t < 8; t++) /* For each input element

*/

 sumreal += (double)inreal[t]*cos(M_PI * t);

 outsymmetric[7] = (uint16_t)sumreal;

 /* Copy output to input */

 for (t = 0; t < 8; t++)

 inreal[t] = outsymmetric[t];

}

 The 16-point rdft is the exact same with the small difference that the input

(inreal[16]) and output (outsymmetric[16]) vectors contain 16 elements and the

loops are adjusted accordingly.

7.3 ECG-cordic

 In the ECG-cordic app ,the DFT is implemented with the cordic algorithm.We used

both an 8-point and 16-point DFT so as to compare the results.

7.3.1 Cordic Algorithm

 CORDIC stands for COordinate Rotation DIgital Computer and it is a class of shift-

adds algorithms for rotating vectors in a plane , which is usually used for the

calculation of trigonometric functions , multiplication , division and conversion

between binary and mixer radix number systems of DSP applications such as the

Fourier Transform. All of the trigonometric functions can be computed or derived

from functions using vector rotations, as will be discussed in the following sections.

Vector rotation can also be used from polar to rectangular and rectangular to polar

conversions, for vector magnitude, and as a building block in certain transforms such

as DFT and DCT .The CORDIC algorithm provides an iterative method of performing

vector rotations by arbitrary angles using only shifts and adds. The algorithm

credited to Jack E. Volder in the year 1959 is derived from the general rotation

transform:

x’= x cosφ - y sinφ

y’= y cosφ+x sinφ

this rotates a vector in a Cartesian plane by the angle φ.

119

Figure 7.1: Rotation of a vector V by angle φ

These can be rearranged so that :

]tan[cos'  yxx 

]tan[cos'  xyy 

So far nothing is simplified. However if the rotation angles are restricted so that

tanφ=± 2-i ,the multiplication by the tangent term is reduced to simple shift

operation. Arbitrary angles of rotation are obtainable by performing a series of

successively smaller elementary operations. If the decision at each iteration i , is

which direction to rotate rather than whether or not to rotate, then the cos(δi) term

becomes a constant because cos(δi)= cos(-δi). The iterative rotation can now be

expressed as:

xi+1=Ki[xi-yi×di×2-i]

yi+1=Ki[yi+xi×di×2-i]

where:

120

Ki=cos(tan-i2-i)=
i 21

1

di=±1

 Removing the scale constant from the iterative equations yields a shift add

algorithm for vector rotation. The product of the Ki’s can be applied elsewhere in the

system or treated as a part of the system processing gain. The product approaches

0.6073 as the number of iteration goes to infinity. A good way to implement the







1

0

n

i

iKk factor is to initialize the iterative rotation with a vector of length |k|

which compensates the gain in the CORDIC algorithm.Therefore the rotation

algorithm has a gain An of approximately 1.647.The exact gain depends on the no of

iterations and obeys the relation:




n

i

nA 221

 The angle of a composite rotation is uniquely defined by the sequence of the

directions of the elementary rotations. That sequence can be represented by a

decision vector. The set of all possible decision vectors is an angular measurement

system based on binary arctangents. Conversions between the angular systems and

any other can be accomplished using a look up. A better conversion method uses an

additional adder-subtract or that accumulate the elementary rotation angles at each

iteration. The elementary angles can be expressed in any convenient angular unit.

Those angular values are supplied by a small look up table or are hardwired

depending on the application. The angle accumulator adds a third difference

equation to the CORDIC algorithm:

zi+1=zi-di×tan-1(2-i)

 Obviously, in cases where the angle is useful in the arc tangent base, this extra

element is not needed. The CORDIC rotator is normally operated in one of two

models.The first called rotation by Volder rotates the input vector by a specified

angle. The second mode called vectoring rotates the input vector to the x axis while

recording the angle required to make that rotation.

 In our case , given the special features of a real-valued DFT , we will use a cordic

algorithm in 16 bit fixed point math to compute our DFT coefficients.

Rotation Mode

 In rotation mode,the angle accumulator is initialized with the desired rotation

angle. The rotation decision at each iteration is made to diminish the magnitude of

121

the residual angle in the angle accumulator. The decision at each iteration is

therefore based on the sign of the residual angle after each step. Naturally, if the

input angle is already expressed in the binary arctangent base, the angle

accumulator may be eliminated. For rotation mode, the CORDIC equations are:

xi+1=xi-yi×di×2-i

yi+1=yi+xi×di×2-i

zi+1=zi-di×tan-1(2-i)

where di=-1 if zi<0 and di=1 otherwise

which provides the following result

xn=An[x0cosz0-y0sinz0]

yn=An[y0cosz0+x0sinz0]

zn=0

An=


n

i221

Below we present the table of the cordic uses for a variety of widely used functions:

Table 7.1 Cordic Uses

 In our case we will use cordic to calculate sine and cosine functions , so we will

initialize as follows:

x=1/An=Kn=0.607 , y=0 and z=a(current angle for calculation)

122

7.3.2 C code for sine cosine functions with Cordic algorithm

 The C code for sine and cosine calculations with the help of cordic algorithm is as

follows:

//Cordic in 16 bit signed fixed point math

//Function is valid for arguments in range -pi/2 -- pi/2

//for values pi/2--pi: value = half_pi-(theta-half_pi)

and similarly for values -pi---pi/2

//

// 1.0 = 1073741824

// 1/k = 0.6072529350088812561694

// pi = 3.1415926536897932384626

//Constants

#define cordic_1K 0x26DD //* 1/An=0.607 in hexadecimal*//

#define half_pi 0x6487 //* pi/2 in hexadecimal*//

#define MUL 16384.000000

#define CORDIC_NTAB 16 //* 16-bit point math *//

Int32_t cordic_ctab [] = {0x3243, 0x1DAC, 0x0FAD, 0x07F5,

0x03FE, 0x01FF, 0x00FF, 0x007F, 0x003F, 0x001F, 0x000F,

0x0007, 0x0003, 0x0001, 0x0000, 0x0000, };//* tan
-1
(2

-i
)

for i=0 to 15*//

/*theta is the current angle for calculation, s is the

sine , c the cosine and n=16*/

void cordic(int32_t theta, int32_t *s, int32_t *c, int n)

{

 int32_t k, d, tx, ty, tz;

 int32_t x=cordic_1K,y=0,z=theta;

 n = (n>CORDIC_NTAB) ? CORDIC_NTAB : n;

 for (k=0; k<n; ++k) /*16 iterations*/

 {

 d = z>>15;

 //get sign. for other architectures, you might want

to use the more portable version

 //

 d = z>=0 ? 0 : -1;

 tx = x - (((y>>k) ^ d) - d); /*xi+1=xi-yidi2
-i
 */

 ty = y + (((x>>k) ^ d) - d); /*yi+1=yi+xidi2
-i
 */

 tz = z - ((cordic_ctab[k] ^ d) - d);

/*zi+1=zi-ditan
-1
(2

-i
)*/

 x = tx; y = ty; z = tz;

 }

 *c = x; *s = y;

}

123

7.3.3 ECG-cordic app

 The ECG-cordic app is an extended version of the ECG app. More specifically the

ECG-cordicC.nc:

A) It contains the declaration of the cordic app:

void cordic(int32_t theta, int32_t *s, int32_t *c, int n)

B)along with its initial definitions mentioned in the code above:

#define cordic_1K 0x26DD //* 1/An=0.607 in hexadecimal*//

#define half_pi 0x6487 //* pi/2 in hexadecimal*//

#define MUL 16384.000000

#define CORDIC_NTAB 16 //* 16-bit point math *//

Int32_t cordic_ctab [] = {0x3243, 0x1DAC, 0x0FAD, 0x07F5,

0x03FE, 0x01FF, 0x00FF, 0x007F, 0x003F, 0x001F, 0x000F,

0x0007, 0x0003, 0x0001, 0x0000, 0x0000, };//* tan
-1
(2

-i
)

for i=0 to 15*//

C)the inclusion of the math.h library:

#include “math.h”

D) the declaration of the rdft function with the difference that the sine and cosine

functions are calculated with the cordic algorithm. To avoid all kinds of confusion the

modified rdft with cordic algorithm is presented below:

void rdft(uint16_t inreal[8]) {

 int k;

 int t;

 uint16_t outsymmetric[8];

 uint16_t sumreal;

 uint16_t sumimag;

 int32_t csin; /*parameters for the cordic function*/

 int32_t ccos;

 /* For k=0, sin(0)=0, cos(0)=1 so we have only real

output */

 sumreal = 0;

 for (t = 0; t < 8; t++) /* For each input element

*/

 sumreal += inreal[t];

 outsymmetric[0] = sumreal;

 /* For outputs 1, 2 and 3 which are symmetric to 5,

6 and 7 and have both real and imaginary output, put one

next to the other in the output array */

124

 for (k = 1; k < 4; k++) {

 sumreal = 0;

 sumimag = 0;

 for (t = 0; t < 8; t++) { /* For each input

element */

 cordic((int32_t)(2*M_PI * t * k / 8),

&csin, &ccos, 16);

 sumreal += inreal[t]*((uint16_t)ccos);

 sumimag += -inreal[t]*((uint16_t)csin);

 }

 outsymmetric[2*k-1] = sumreal;

 outsymmetric[2*k] = sumimag;

 }

 /* For k=4, sin(M_PI*t)=0, cos(M_PI*t)=+1 or -1 so

we have only real output */

 sumreal = 0;

 for (t = 0; t < 8; t++) /* For each input element

*/

 cordic((int32_t)(M_PI * t), &csin, &ccos, 16);

 sumreal += inreal[t]*((uint16_t)ccos);

 outsymmetric[7] = sumreal;

 /* Copy output to input */

 for (t = 0; t < 8; t++)

 inreal[t] = outsymmetric[t];

}

E)The call of the rdft function in the body of the function preparePacket() before the
data is copied into the outgoing packet
The ECG-cordicAppC.nc is the same with the ECGAppC.nc and so is the ECG-cordic.h

file.The 16-point ECG-cordic is the same but uses the 16-point rdft.

7.4 ECG-lookup

 The ECG-lookup app is another extension of the ECG app only that in this case the

trigonometric functions are calculated via a look-up table(LUT).

7.4.1 Look-Up Table (LUT)

 Look-Up Tables are a technique commonly used to accelerate numeric processing in

applications with demanding timing requirements. They are often used in Image

Processing and DSP (Digital Signal Processing) applications. The basic idea is to pre-

compute the result of complex operations that are or can be expressed as a function

of an integer value. The pre-computed results are typically stored in an array, which

is used at run-time instead of performing the whole, time-consuming operation.

125

 Simply put, a Look-Up-Table (LUT) is an array that holds a set of pre-computed

results for a given operation. This array provides acces to the results in a way that is

faster than computing each time the result of the given operation.

 LUT's are typically used in real-time data acquisition and processing systems (often

embedded systems), since these types of systems impose demanding and strict

timing restriction. An important detail to consider is the fact that LUT's require a

considerable amount of execution time to initialize the array (to pre-compute the

results). In real-time systems, it is in general acceptable to have a delay during the

initialization of the application (after all, the application will be presumably run right

after boot, which takes a few seconds anyway).

 Two important design considerations of a lookup table are its size and its accuracy.

It is not possible to create a table for every possible input value u. It is also not

possible to be perfectly accurate due to the quantization of sin(u) $$ or cos(u) $$

lookup table values.

 The logic is that after we map our angles from a certain range, for example in our

case to 16-bit unsigned integer here [0..16384] is mapped to [0..2pi], then we

perform a logical and with 16383 to remap the values into this range when doing

intermediate computations using larger integer types. Finally the sine and cosine

functions are calculated with the new index on the lookup table. The algorithm in C

code is presented below.

7.4.2 C code for Look-Up Table (LUT)

/*lookup tables are declared initialised*/

uint16_t lsintab[2048];

uint16_t lcostab[2048];

/*lookup tables are initialised*/

for (=0; i<SinTableSize; i++)

{

lsintab[i] = sin((i / 2048) * M_PI);

lcostab[i] = sin((i / 2048) * M_PI);

}

126

/* value is the current angle s for sin and c for cos*/

void lookup(int32_t value, uint16_t *s, uint16_t *c)

{

/*angle is mapped to [0..16383]*/

 uint16_t index = (value >> 2);

 /*logical and with 16383 for value remaping in case og

larger integer types*/

 *c = lcostab[index & 16383];

 *s = lsintab[index & 16383];

}

7.4.3 ECG-lookup app

The ECG-lookup app is an extended version of the ECG app. More specifically the

ECG-lookupC.nc:

A) It contains the declaration of the cordic app:

void lookup(int32_t value, uint16_t *s, uint16_t *c)

B)along with its initial definitions mentioned in the code above:

#define half_pi 0x6487 //* pi/2 in hexadecimal*//

#define MUL 16384.000000

/*lookup tables are declared */

uint16_t lsintab[2048];

uint16_t lcostab[2048];

C)/*lookup tables are initialised*/

for (=0; i<SinTableSize; i++)

{

lsintab[i] = sin((i / 2048) * M_PI);

lcostab[i] = sin((i / 2048) * M_PI);

}

127

D)the inclusion of the math.h library:

#include “math.h”

E) the declaration of the rdft function with the difference that the sine and cosine

functions are calculated with the lookup-tables. To avoid all kinds of confusion the

modified rdft with lookup-tables is presented below:

void rdft(uint16_t inreal[8]) {

 int k;

 int t;

 uint16_t outsymmetric[8];

 uint16_t sumreal;

 uint16_t sumimag;

 int32_t lsin; /*parameters for the cordic function*/

 int32_t lcos;

 /* For k=0, sin(0)=0, cos(0)=1 so we have only real

output */

 sumreal = 0;

 for (t = 0; t < 8; t++) /* For each input element

*/

 sumreal += inreal[t];

 outsymmetric[0] = sumreal;

 /* For outputs 1, 2 and 3 which are symmetric to 5,

6 and 7 and have both real and imaginary output, put one

next to the other in the output array */

 for (k = 1; k < 4; k++) {

 sumreal = 0;

 sumimag = 0;

 for (t = 0; t < 8; t++) { /* For each input

element */

 lookup((int32_t)(2*M_PI * t * k / 8),

&lsin, &lcos);

 sumreal += inreal[t]*((uint16_t)lcos);

 sumimag += -inreal[t]*((uint16_t)lsin);

 }

 outsymmetric[2*k-1] = sumreal;

 outsymmetric[2*k] = sumimag;

 }

 /* For k=4, sin(M_PI*t)=0, cos(M_PI*t)=+1 or -1 so

we have only real output */

 sumreal = 0;

 for (t = 0; t < 8; t++) /* For each input element

*/

 lookup((int32_t)(M_PI * t), &lsin, &lcos);

 sumreal += inreal[t]*((uint16_t)ccos);

128

 outsymmetric[7] = sumreal;

 /* Copy output to input */

 for (t = 0; t < 8; t++)

 inreal[t] = outsymmetric[t];

}

F)The call of the rdft function in the body of the function preparePacket() before the
data is copied into the outgoing packet
The ECG-lookupAppC.nc is the same with the ECGAppC.nc and so is the ECG-

lookup.h file.The 16-point ECG-cordic is the same but uses the 16-point rdft.

 The ECG-lookupAppC.nc is the same with the ECGAppC.nc and so is the ECG-

lookup.h file.The 16-point ECG-lookup is the same but uses the 16-point rdft.

7.5 ECG-lookup-interpolate

 The final app we created is the ECG-lookup-interpolate app which is quite similar to

the previews app but includes linear interpolation between sin(x) and sin(x+1) and

cos(x) and cos(x+1)

7.5.1 Linear Interpolation

 The linear interpolation using LUTs follows the same pattern as described

previewsly with the ECG-lookup app only that in this case instead we interpolate

sin(x) with sin(x+1) as illustrated in the graph below.Thus we get a better

approximation of the result.

Figure 7.2 : The yellow line is the LUT sin(x), and the blue one is LUT sin(x+1).

129

7.5.2 C code for Linear Interpolation

#define half_pi 0x00006487

#define MUL 16384.000000

uint16_t lsintab[2048];

uint16_t lcostab[2048];

/*lookup tables are initialised*/

for (=0; i<SinTableSize; i++)

{

lsintab[i] = sin((i / 2048) * M_PI);

lcostab[i] = sin((i / 2048) * M_PI);

}

void lookup(int32_t value, uint16_t *s, uint16_t *c)

{

/*Angle is mapped tp [0..16383]*/

 uint16_t index = (value >> 2);

/*Lookup angle*/

 uint16_t left = lcostab[index & 16383];

/*Lookup angle+1*/

 uint16_t right = lcostab[(index+1) & 16383];

/*weight is computed*/

 uint16_t weight = (value & 3) / 4;

/*Linear interpolation for cosine*/

 *c = weight * (right - left) + left;

/*Lookup angle*/

 left = lsintab[index & 16383];

/*Lookup angle+1*/

 *right = lsintab[(index+1) & 16383];

/*Linear interpolation for sine*/

 *s = weight * (right - left) + left;

}

7.5.3 ECG-lookup-interpolate app

 The ECG-lookup- app is an extended version of the ECG app. More specifically the

ECG-lookupC.nc:

A) It contains the declaration of the lookup-interpolate app:

void lookup-interpolate(int32_t value, uint16_t *s,

uint16_t *c)

130

B)along with its initial definitions mentioned in the code above:

#define half_pi 0x6487 //* pi/2 in hexadecimal*//

#define MUL 16384.000000

/*lookup tables are declared */

uint16_t lsintab[2048];

uint16_t lcostab[2048];

C)/*lookup tables are initialised*/

for (=0; i<SinTableSize; i++)

{

lsintab[i] = sin((i / 2048) * M_PI);

lcostab[i] = sin((i / 2048) * M_PI);

}

D)the inclusion of the math.h library:

#include “math.h”

E) the declaration of the rdft function with the difference that the sine and cosine

functions are calculated with the lookup-interpolate tables. To avoid all kinds of

confusion the modified rdft with lookup-interpolate tables is presented below:

void rdft(uint16_t inreal[8]) {

 int k;

 int t;

 uint16_t outsymmetric[8];

 uint16_t sumreal;

 uint16_t sumimag;

 int32_t lsin; /*parameters for the cordic function*/

 int32_t lcos;

 /* For k=0, sin(0)=0, cos(0)=1 so we have only real

output */

 sumreal = 0;

 for (t = 0; t < 8; t++) /* For each input element

*/

131

 sumreal += inreal[t];

 outsymmetric[0] = sumreal;

 /* For outputs 1, 2 and 3 which are symmetric to 5,

6 and 7 and have both real and imaginary output, put one

next to the other in the output array */

 for (k = 1; k < 4; k++) {

 sumreal = 0;

 sumimag = 0;

 for (t = 0; t < 8; t++) { /* For each input

element */

 lookup-interpolate((int32_t)(2*M_PI * t *

k / 8), &lsin, &lcos);

 sumreal += inreal[t]*((uint16_t)lcos);

 sumimag += -inreal[t]*((uint16_t)lsin);

 }

 outsymmetric[2*k-1] = sumreal;

 outsymmetric[2*k] = sumimag;

 }

 /* For k=4, sin(M_PI*t)=0, cos(M_PI*t)=+1 or -1 so

we have only real output */

 sumreal = 0;

 for (t = 0; t < 8; t++) /* For each input element

*/

 lookup-interpolate((int32_t)(M_PI * t), &lsin,

&lcos);

 sumreal += inreal[t]*((uint16_t)ccos);

 outsymmetric[7] = sumreal;

 /* Copy output to input */

 for (t = 0; t < 8; t++)

 inreal[t] = outsymmetric[t];

}

F)The call of the rdft function in the body of the function preparePacket() before the
data is copied into the outgoing packet.The ECG-lookup-interpolateAppC.nc is the
same with the ECGAppC.nc and so is the ECG-lookupinterpolate.h file.The 16-point
ECG-cordic is the same but uses the 16-point rdft.

 The ECG-lookupinterpolateAppC.nc is the same with the ECGAppC.nc and so is the

ECG-lookup-interpolate.h file.The 16-point ECG-lookup is the same but uses the 16-

point rdft.

132

133

Chapter 8

Simulation
 The shimmer platform is not compatible with the MSP430 and creates a lot of

disfunctions with the AccelECG. For that reason we decided to simulate the

Oscilloscope application located in the TinyOS libraries . Oscilloscope is a simple

data-collection demo. It periodically samples the default sensor and broadcasts a

message over the radio every 10 (in our case we switched to 8 and 16 for 8-point and

16-point DFT respectively) readings. These readings can be received by a BaseStation

mote and displayed by the Java "Oscilloscope" application found in the java

subdirectory. The sampling rate starts at 4Hz, but can be changed from the Java

application. In addition to the Oscilloscope application , we derived 3 more

applications by modifying the Oscilloscope’s code. The Oscilloscope-cordic , the

Oscilloscope-lookup2048 and the Oscilloscope-lookup2048-interpolate application.

These four apps have the exact same add-ons and modifications with the respective

ones we described in the previews chapters. They perform the same tasks and

produce similar results , only that the Oscilloscope apps are easier to simulate with

the telosb platform than the shimmer.For our simulation we will use the MSPSim.

8.1 Oscilloscope Simulation

 First we simulate the Oscilloscope app.It sends ECG samples every 8 readings

without doing any DFT.By executing the command:

build telosb

 In the Oscilloscope app directory we compile our app on a telosb binary.For the 8

point,the ROM(code) bytes were computed 15860 and the RAM(data) bytes

492.Same results for the 16-point.In order to simulate our app with the MSPSim we

execute in the build/telosb directory that was created the command:

 mspsim main.exe

134

Below we present the Duty Cycle graph

Figure 8.1 Duty Cycle graph for the Oscilloscope app

To get data for the CPU cycles we execute the command:

duty 10 “MSP430 Core.active”

which means we get 10 duty values/second. We let the command run for 3 seconds

so we collect 30 duty values.

8.2 Oscilloscope-cordic Simulation

 We compile and simulate Oscilloscope-cordic app on a telosb binary by following

the same pattern as the Oscilloscope app mentioned above(same goes for the rest of

the apps).For the 8-point ,the ROM(code) bytes were computed 18102 and the

RAM(data) bytes 556 while for the 16-point , the ROM(code) bytes were computed

18110 and the RAM(data) bytes 556.

Figure 8.2 Duty Cycle graph for the Oscilloscope-cordic app

135

8.3 Oscilloscope-lookup Simulation

For the 8-point , the ROM(code) bytes were computed 15860 and the RAM(data)

bytes 8684.Same figures for the 16-point.

Figure 8.3 Duty Cycle graph for the Oscilloscope-lookup app

8.4 Osciloscope lookup-interpolate Simulation

For the 8-point , the ROM(code) bytes were computed 17806 and the RAM(data)

bytes 8684 while for the 16-point the ROM(code) bytes were computed 17814 and

the RAM(data) bytes 8684.

Figure 8.4 Duty Cycle graph for the Oscilloscope-lookup-interpolate app

136

8.5 Power Consumption

All the previews data we collected are illustrated in tables 8.1a to 8.1d

Oscilloscope Oscilloscope-cordic Oscilloscope-lookup Oscilloscope-lookup-interpolate

0,21 0,21 0,21 0,25

2,13 2,1 1,75 1,75

0,21 0,25 0,64 0,61

1,7 0,26 0,21 0,25

0,64 2,14 2,13 2,1

0,21 0,21 0,21 0,25

2,18 47,83 1,71 1,7

0,21 14,83 0,63 0,61

1,7 0,21 0,21 0,25

0,64 2,12 2,13 2,1

0,21 0,21 0,21 0,25

2,13 2,08 1,74 1,7

0,21 0,25 0,61 0,65

1,74 0,21 0,21 0,21

0,61 2,14 2,13 2,1

0,21 0,21 0,21 0,25

2,13 2,12 1,74 1,7

0,21 0,21 0,61 0,65

1,74 0,21 0,21 0,21

0,61 2,12 4,74 39,9

0,21 0,21 0,21 0,65

2,13 2,14 1,78 1,75

0,21 0,21 0,61 0,65

4,34 0,26 0,21 0,21

0,61 2,14 2,11 2,1

0,21 0,21 0,21 0,25

2,18 2,14 1,74 1,7

0,21 0,21 0,61 0,65

1,74 0,21 0,25 0,21

0,59 2,14 2,1 2,14

Table 8.1a: 8-point Raw duty values (10 per second - command used = duty 10

"MSP430 Core.active") for 3 seconds (30 values) - peak-to-peak.

Oscilloscope Oscilloscope-cordic Oscilloscope-lookup Oscilloscope-lookup-interpolate

137

2,11 0,21 0,25 0,78

2,12 0,78 2,1 1,57

2,13 1,55 0,25 0,21

2,14 0,21 0,21 2,1

2,15 2,18 2,18 0,25

2,16 0,21 0,21 0,78

2,17 0,76 2,1 1,57

2,18 1,57 0,25 0,21

2,19 0,21 0,21 2,15

2,2 2,14 2,13 0,25

2,21 0,21 0,21 14,64

2,22 14,62 2,1 100

2,23 100 0,25 52,13

2,24 100 0,21 2,12

2,25 41,88 2,13 0,21

2,26 0,21 0,21 0,78

2,27 0,81 4,7 1,57

2,28 1,54 0,25 0,21

2,29 0,21 0,21 2,12

2,3 2,14 2,13 0,21

2,31 0,21 0,21 0,76

2,32 0,81 2,13 1,57

2,33 1,54 0,21 0,21

2,34 0,21 0,21 2,14

2,35 2,18 2,18 0,21

2,36 0,21 0,21 0,78

2,37 0,81 2,13 1,57

2,38 1,54 0,21 0,21

2,39 0,21 0,21 2,18

2,4 2,14 2,13 0,21

Table 8.1b: 16-point Raw duty values (10 per second - command used = duty 10

"MSP430 Core.active") for 3 seconds (30 values) - peak-to-peak.

138

8-POINT ROM (code)
bytes

RAM (data)
bytes

Average Duty
Value

Maximum
Duty Value

Oscilloscope 15860 492 1,07 4,3

Oscilloscope-cordic 18102 556 3 47,8

Oscilloscope-lookup 15860 8684 1,07 4,7

Oscilloscope-lookup-
interpolate

17806 8684 2,26 40

Table 8.1c: 8-Point ROM(code) bytes,RAM(data) bytes, Average Duty Value and

Maximum Duty Value table

16-POINT ROM (code)
bytes

RAM (data)
bytes

Average Duty
Value

Maximum
Duty Value

Oscilloscope 15860 492 2,26 2,4

Oscilloscope-cordic 18110 556 9,38 100

Oscilloscope-lookup 15860 8684 1,07 4,7

Oscilloscope-lookup-
interpolate

17806 8684 6,46 100

Table 8.1d: 16-Point ROM(code) bytes,RAM(data) bytes, Average Duty Value and

Maximum Duty Value table

The Power Score(PS) we will calculate is the sum of the power consumption in the

MSP430 and the Bluetooth(in our case CC2420) .For the MSP430 the Power

Consumption is given in (1):

PCMSP430=Y1 * P1 (1)

Where Y1=Maximum Duty Value and P1=Average MSP430 Power Consumption

The Average MSP430 Power Consumption is calculated from the databook of the

MSP430F1611 during program execution time , active mode at 8MHz:

I(AM)=5Ma , VCC=3.6V

Average MSP430 Power Consumption=(5mA)x(3,6V)=18mW (2)

For the Bluetooth the PC is given in (3):

PCBluetooth=K*Y2*P2 (3)

Where K=transmission reduction factor , Y2=CC2420 duty cycle , P3= CC2420 Power

Consumption

139

As we concluded from the Paper “ Efficient Algorithm for ECG Coding”[5] , The DFT

provides Compression Ratio approximately 90%. This means that near 10% of the

original data can be sent without any risk of critical data loss (since frequency-

domain techniques are lossy and not lossless techniques). So in order to make sure

we avoid losing critical data we can send half the DFT data . For that reason we

introduce the transmission reduction factor K which reduces the CC2420

transmission according to the DFT data percentage we send.

The Average CC2420 Power Consumption is calculated from the databook of the

CC2420 in transmission (TX) mode and it is:

I(TX)=18mA , VCC=3.6V

Average CC2420 Power Consumption=(18mA)x(3.6V)=65mW (4)

Thus Total Power Score is :

PS= PCMSP430+ PCBluetooth (4)

(1),(2),(3),(4)=>PS = 18mW*Y1 + 65mW*Y2*K (5)

Depending on the percentage of DFT data we send , the transmission factor changes

accordingly. For example if we use full transmission , the transmission factor is 100%

, K=1.If we use half transmission , K=0.5 and for quarter transmission K=0.25. Of

course when we do not use DFT then K=1.Finally the cc2420 duty cycle , Y2=1 as we

derived from the simulation.

All the results are places in tables 8.2a and 8.2b and Figures 8.5a , 8.5b

8-POINT Power score with full transmission

= P1*Y1+P2*Y2

Power score with half transmission =

P1*Y1+K*P2*Y2

Power score with quarter transmission

= P1*Y1+K*P2*Y2

Oscilloscope 142,4 142,4 142,4

Oscilloscope-cordic 925,4 892,9 876,65

Oscilloscope-lookup 149,6 117,1 100,85

Oscilloscope-lookup-

interpolate

785 752,5 736,25

Table 8.2a:Power Score Table for 8-point DFT

140

16-POINT Power score with full transmission

= P1*Y1+P2*Y2

Power score with quarter transmission

= P1*Y1+K*P2*Y2

Power score with quarter transmission

= P1*Y1+K*P2*Y2

Oscilloscope 108,2 108,2 108,2

Oscilloscope-cordic 1865 1832,5 1816,25

Oscilloscope-lookup 149,6 117,1 100,85

Oscilloscope-lookup-

interpolate

1865 1832,5 1816,25

Table 8.2b: Power Score Table for 16-point DFT

Figure 8.5a: Power Score graph for 8-point DFT

0

100

200

300

400

500

600

700

800

900

1000

Power Score(mW)

Applications

8-Point

Power score with full
transmission = P1*Y1+P2*Y2

Power score with half
transmission = P1*Y1+K*P2*Y2

Power score with quarter
transmission = P1*Y1+K*P2*Y2

141

Figure 8.5b: Power Score graph for 16-point DFT

8.6 Data Analysis

 From the Power Score graphs and tables it is obvious that 8-Point DFT is generally

less power consuming than 16-point.More specifically:

No Compression to Compression Gain

8-Point:

 a)The Osc to Osc-Cordic Gain is:

 i)Full Transmission: (142.4-925.4)/142.4=-5.5=-550%

 ii)Half Transmission: (142.4-892.9)/142.4=-5.27=-527%

 iii)Quarter Transmission: (142.4-876.5)/142.2=-5.16=-516%

 b)The Osc to Osc-Lookup Gain is:

 i)Full Transmission: (142.4-149.6)/142.4=-0.05=-5%

 ii)Half Transmission: (142.4-117.1)/142.4=0.18=18% (Positive Gain!)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Power Score(mW)

Applications

16-Point

Power score with full
transmission = P1*Y1+P2*Y2

Power score with quarter
transmission = P1*Y1+K*P2*Y2

Power score with quarter
transmission = P1*Y1+K*P2*Y2

142

 iii)Quarter Transmission: (142.4-100.85)/142.2=0.29=29% (Positive Gain!)

 c)The Osc to Osc-Lookup-Interpolate Gain is:

 i)Full Transmission: (142.4-785)/142.4=-4.51=-451%

 ii)Half Transmission: (142.4-752.5)/142.4=-4.28=-428%

 iii)Quarter Transmission: (142.4-736.25)/142.2=-4.17=-417%

Results are shown in table 8.3

8-Point Gain Full Transmission Half Transmission Quarter Transmission

Osc/Osc-Cordic -550% -5% -451%

Osc /Osc-Lookup -527% 18% -428%

Osc / Osc -Lookup-Interpolate -516% 29% -417%

Table 8.3: 8-Point No Compression to Compression gain

16-Point:

 a)The Osc to Osc-Cordic Gain is:

 i)Full Transmission: (108.2-1865)/108.2=-16.23=-1623%

 ii)Half Transmission: (108.2-1832.5)/108.2=-15.94=-1594%

 iii)Quarter Transmission: (108.2-1816.25)/108.2=-15.79=-1579%

 b)The Osc to Osc-Lookup Gain is:

 i)Full Transmission: (108.2-149.6)/108.2=-0.38= -38%

 ii)Half Transmission: (108.2-117.1)/108.2=-0.08= -8%

 iii)Quarter Transmission: (108.2-100.85)/108.2=0.07= 7% (Positive Gain!)

c)The Osc to Osc-Lookup-Interpolate Gain is:

 i)Full Transmission: (108.2-1865)/108.2=-16.23=-1623%

 ii)Half Transmission: (108.2-1832.5)/108.2=-15.94=-1594%

 iii)Quarter Transmission: (108.2-1816.25)/108.2=-15.79=-1579%

Results are shown in table 8.4

143

16-Point Gain Full Transmission Half Transmission Quarter Transmission

Osc/Osc-Cordic -1623% -38% -1623%

Osc/Osc-Lookup -1594% -8% -1594%

Osc/Osc-Lookup-Interpolate -1579% 7% -1589%

Table 8.4: 16-Point No Compression to Compression gain

 The data declare that in 3 cases (8-Point Osc-Lookup Half and Quarter Transmission

and 16-point Osc-Lookup Quarter Transmission) we succeed Positive Gain. Due to

the large amount of calculations made by Osc-Cordic and Osc-Lookup-Interpolate ,

their power score soars relatively to Osc and Osc-Lookup.

16-Point to 8-point Gain

a)The Osc app has no DFT so we expected the 16-point to be more power-

consuming. The total gain is (108.2-142.4)/142.4= - 0.24= -24%.The gain is equal for

all kinds of transmission since there is no compression.

b)The Osc-Cordic gain is :

 i)Full Transmission: (1865-925.4)/1865=0.50=50%

 ii)Half Transmission: (1832.5-892.9)/1832.5=0.51=51%

 iii)Quarter Transmission: (1816.25-876.65)/1832.5=0.52=52%

c)The Osc-Lookup app gain is :

 i)Full Transmission: (149.6-149.6)/149.6=0=0%

 ii)Half Transmission: (117.1-117.1)/117.1=0=0%

 iii)Quarter Transmission: (100.85-100.85)/100.85=0=0%

d)The Osc-Lookup-Interpolate gain is :

 i)Full Transmission: (1865-785)/1865=0.58=58%

 ii)Half Transmission: (1832.5-752.5)/1832.5=0.59=59%

 iii)Quarter Transmission: (1816.25-736.25)/1816.25=0.59=59%

144

Results are shown in table 8.5

Application Full Transmission Half Transmission Quarter Transmission

ECG -24% -24% -24%

ECG-Cordic 50% 51% 52%

ECG-Lookup 0% 0% 0%

ECG-Lookup-Interpolate 58% 59% 59%

Table 8.5: 16-Point to 8-Point Gain

145

146

Chapter 9

Results, Discussion and Future

Work

9.1 Results-Discussion

 In our project we dealt with ECG signal transmission and compression in a Wireless

Sensor Network. We created software that transmits ECG signals with and without

compression. Our goal was to evaluate different approaches to DFT compression and

draw to conclusions on power consumption. With the assistance of the TinyOS open-

source system we built 4 apps:

1) ECG App: Gathers ECG samples and sends them via Bluetooth

2) ECG-Cordic App: Gathers ECG samples , implements Discrete-Fourier-Transform

on every 8 or 16 number of samples with the use of Cordic algorithm and sends the

modified samples via Bluetooth.

3) ECG-Lookup App: Gathers ECG samples , implements Discrete-Fourier-Transform

on every 8 or 16 number of samples with the use of Lookup-Tables(LUTs)and sends

the modified samples via Bluetooth.

4) ECG-Lookup-Interpolate App: Gathers ECG samples , implements Discrete-

Fourier-Transform on every 8 or 16 number of samples with the use of Lookup-Table

Interpolation and sends the modified samples via Bluetooth.

 These 4 apps were compiled on a Shimmer mote. In order to simulate properly

their results we also created 4 new apps that execute the same task but with a much

simpler code that produces more accurate results. We compiled and simulated these

apps on a Telsob mote instead of a shimmer and collected data. From the data we

collected we reached the conclusions above:

-The ECG-Cordic and ECG-Lookup-Interpolate apps are much more power consuming

than the ECG-app and ECG-Lookup app both for 8-Point and 16-Point cases.

- Half-transmission equals to lower power consumption in both cases.

- 8-Point DFT is less power consuming than 16-Point .

147

- With the ECG- Lookup app we succeed less power consumption than the ECG app

in half transmission in both 8-Point and 16-Point cases and in quarter transmission in

8-Point case. Thus the Lookup-Tables technique is the best suited for DFT

compression.

9.2 Future Work

 In our project we implemented a DFT Frequency Domain Technique to compress

our ECG signal.As we mentioned in previews chapters , there is a variety of

Frequency Domain Techniques. In the future we can compress the ECG signal with

techniques such as:

1)The Discrete Cosine Transform(DCT) which was developed to approximate

Karhunen-Loeve Transform (KLT) when there is high correlation among the input

samples, as in the case of ECG signal

2)The Discrete Sine Transform(DST). Discrete sine transform (DST) is a Fourier-

related transform similar to the discrete Fourier transform (DFT),but using a purely

real matrix. It is equivalent to the imaginary parts of a DFT of roughly twice the

length, operating on real data with odd symmetry (since the Fourier transform of a

real and odd function is imaginary and odd), where in some variants the input and/or

output data are shifted by half a sample.

3)Discret Cosine Transform-II (DCT-II). DCT-II can be viewed as special case of the

discrete fourier transform (DFT) with real inputs of certain symmetry.

4)Discrete Wavelet Transform(DWT). The fundamental idea of wavelet transforms is

that the transformation should allow only changes in time extension, but not shape.

This is effected by choosing suitable basis functions that allow for this. Changes in

the time extension are expected to be conform to the corresponding analysis

frequency of the basis function. Based on the uncertainty principle of signal

processing.

 Apart from the Frequency Domain Techniques we can also use Direct Time-Domain

techniques like:

1)Turning point (TP).The TP algorithm is used to save the important signal values by

reducing its sampling rate as half. It takes three signal values to process at a time and

the first signal value is saved in the compressed signal.Then , nnext two signal values

are taken and from these two consecutive signal values , this algorithm retains either

first or second value depending on the slope changes.

2)CORTES Algorithm. An enhanced method known as CORTES (Coordinate Reduction

Time Encoding System) applies TP to some portions of the waveform and AZTEC to

other portions and does not suffer from discontinuities.

148

3)Amplitude-Zone-Time Epoch Coding (AZTEC). The Amplitude Zone Time Epoch

Coding (AZTEC) is one of the earliest ECG coding methods. It was developed by Cox

as a preprocessing software for real-time monitoring of ECGs. It was observed to be

useful for automatic analysis of ECGs such as QRS detection, but it is inadequate for

visual presentation of the ECG signal as the reconstructed signal has a staircase

appearance.

 We could use all these techniques , compare the results and reach defining

conclusions for Compression Ratios(CR) and Power Consumption.

 Despite the compression , there is also the hardware part. The patients use the

shimmer sensor(or any other) to record and send the compressed signal via

Bluetooth o RF radio to a mobile phone(smartphone) and from the mobile phone to

a central server. Through a web page , both patients and doctors can monitor the

ECG signal thus giving the dealing with the circumstances acoordingly. Also the

patient’s exact position could be defined with an established GPS connection from

the patient’s mobile phone. This concept is illustrated graphically in figure 8.1

Figure 9.1 Mobile Healthcare system context

149

150

Chapter 10

Body-sensor Survey and Final

Conclusions

10.1 Cardiac Surgery Department Survey

 In order to obtain a brighter picture concerning the necessity and appliance of body

sensors, we conducted a survey in a cardiac surgery department of a general hospital

of the National Health System searching for possible usage of such sensors. This was

a retrospective study, based on the registry data of the hospital. From the nature of

the study, there was impossible any intervention in the management of the patients,

and the registry was anonymous, so there was not any violation of privacy and we

will not reveal any patient’s consent or agreement.

 During a one year period (January 1st 2012 – December 31st 2012), 626 patients

were operated at the cardiac surgery department of the hospital, for a total number

of 686 cardiac surgery procedures. Twenty four (24) patients (3.8%) were subjected

to a second procedure and 4 patients (0.6%) to a third one.

 After the procedure, the patients were transferred intubated in sedation to the Intensive

Care Unit (ICU) where their vital signs (arterial pressure, central venous pressure, O2

saturation, body temperature, urine output, ECG and mediastinal blood drain) were

constantly monitored, necessary medications were granted and the protocol of

postoperative recovery was followed. After stabilization of hemodynamic profile and body

rewarming, sedation and mechanical ventilation were progressively withdrawn and the

endotracheal tube was removed. Then, programs of physiotherapy and rehabilitation were

begun. The exit from the ICU and the transfer to the general ward of the hospital was done if

the patient was hemodynamically stable and without life-threatening complications. During

the hospitalization in the ward, the patient was subjected to medication, vital signs

recording (including arterial blood pressure, heart rate and rhythm and body

temperature, usually every six or eight hours), intensive physiotherapy and

rehabilitation. The presence of major complications (acute heart failure, life-

threatening rhythm disturbances, pulmonary insufficiency, stroke, bleeding, and

sepsis) demanded the retransferring of the patient to the ICU. The patient was

discharged the hospital after full mobilization, no need for intravenous drug infusions and no

serious complications.

151

1. From the 626 patients, 11 (1.8%) died on the operating table during the procedure and

did not enter in the ICU.

2. From the 615 patients entered in the ICU, 38 (6.2%) succumbed during their state in

the ICU after a mean hospitalization time of 9.1 days.

3. Mean time of the ICU state was 3.2 days (1-48 days) per patient.

4. From the 577 patients that were transferred from the ICU to the common ward

of the hospital, 11 (1.9%) died after a mean hospitalization time of 4.1 days and

25 (4.3%) were retransferred in the ICU due to major postoperative

complications. From these 25 patients, 6 were succumbed during their ICU

state. The patient’s common ward mean time state was 15 days (1-104 days).

5. Thus, from 626 patients who were undergoing a cardiac surgery procedure

during the year 2012, 560 patients were discharged from the hospital to their

home, a total percentage of 89.5%, while 66 patients (10.5%) died in the

operating theater, the ICU, or the common ward.

The results are listed in the table below

Patient Category Number
Category

Percentage
Total

Percentage

Total Number of Patients 626 100% 100%

Operating Table Losses 11 1,80% 1,80%

ICU Entrances 615 100% 98,24%

ICU Losses 38 6,17% 6,20%

Common Ward Entrances 577 100% 92,18%

Common Ward Losses 11 1,90% 1,76%

Readmission to ICU from Common Ward 23 3,99% 3,67%

Losses from Readmission to ICU from Common
Ward

6 1,03% 0,96%

Table 10.1 : Patient Data

10.2 Cases of body-sensor appliance and final

achievements

 In the survey we are interested in searching for patients between those 577 that

were hospitalized in the common ward after a cardiac surgery procedure during the

152

year 2012 and discharged later to their home and could possibly benefit from the

use of body sensors. We selected 9 body sensors from www.cooking-hacks.com :

1. Pulse and oxygen in blood sensor (SPO2)

Pulse oximetry, a noninvasive method of indicating the arterial oxygen

saturation of functional hemoglobin. Oxygen saturation is defined as the

measurement of the amount of oxygen dissolved in blood, based on the

detection of Hemoglobin and Deoxyhemoglobin. Two different light

wavelengths are used to measure the actual difference in the absorption

spectra of HbO2 and Hb. The bloodstream is affected by the concentration of

HbO2 and Hb, and their absorption coefficients are measured using two

wavelengths 660 nm (red light spectra) and 940 nm (infrared light spectra).

Deoxygenated and oxygenated hemoglobin absorb different wavelengths.

2. Airflow sensor (breathing)

The nasal airflow sensor is a device used to airflow rate to a patient in need

of respiratory help or person. This device consists of a flexible thread which

fits behind the ears, and a set of two prongs which are placed in the nostrils.

Breathing is measured by these prongs.

3. Body temperature sensor

This sensor allows to measure body temperature. It is of great medical

importance to measure body temperature. The reason is that a number of

diseases are accompanied by characteristic changes in body temperature.

Likewise, the course of certain diseases can be monitored by measuring body

temperature, and the efficiency of a treatment initiated can be evaluated by

the physician.

4. Electrocardiogram sensor (ECG)

The electrocardiogram (ECG or EKG) is a diagnostic tool that is routinely used
to assess the electrical activity of the heart. The electrocardiogram (ECG) has
grown to be one of the most commonly used medical tests in modern
medicine. Its utility in the diagnosis of a myriad of cardiac pathologies ranging
from myocardial ischemia and infarction to syncope and palpitations has
been invaluable to clinicians for decades.

http://www.cooking-hacks.com/index.php/pulse-and-oxygen-in-blood-sensor-spo2-ehealth-medical.html
http://www.cooking-hacks.com/index.php/airflow-sensor-breathing-ehealth-medical.html
http://www.cooking-hacks.com/index.php/body-temperature-sensor-ehealth-medical.html
http://www.cooking-hacks.com/index.php/electrocardiogram-sensor-ecg-ehealth-medical.html

153

5. Glucometer sensor

Glucometer is a medical device for determining the approximate

concentration of glucose in the blood. A small drop of blood, obtained by

pricking the skin with a lancet, is placed on a disposable test strip that the

meter reads and uses to calculate the blood glucose level. The meter then

displays the level in mg/dl or mmol/l.

6. Galvanic skin response sensor (GSR - sweating)

Skin conductance, also known as galvanic skin response (GSR) is a method of

measuring the electrical conductance of the skin, which varies with its

moisture level. This is of interest because the sweat glands are controlled by

the sympathetic nervous system, so moments of strong emotion, change the

electrical resistance of the skin. Skin conductance is used as an indication of

psychological or physiological arousal. The device measures the electrical

conductance between 2 points, and is essentially a type of ohmmeter.

7. Blood pressure sensor (sphygmomanometer)

Blood pressure is the pressure of the blood in the arteries as it is pumped
around the body by the heart. When our heart beats, it contracts and pushes
blood through the arteries to the rest of our body. This force creates pressure
on the arteries. Blood pressure is recorded as two numbers—the systolic
pressure (as the heart beats) over the diastolic pressure (as the heart relaxes
between beats). High blood pressure (hypertension) can lead to serious
problems like heart attack, stroke or kidney disease. High blood pressure
usually does not have any symptoms, so we need to have our blood pressure
checked regularly.

8. Patient position sensor (Accelerometer)

 The e-Health Body Position Sensor monitors five different patient positions

(standing/sitting, supine, prone, left and right.) In many cases, it is necessary

to monitor the body positions and movements made because of their

relationships to particular diseases (i.e., sleep apnea and restless legs

syndrome). Analyzing movements during sleep also helps in determining

sleep quality and irregular sleeping patterns. The body position sensor could

help also to detect fainting or falling of elderly people or persons with

disabilities.

http://www.cooking-hacks.com/index.php/glucometer-sensor-ehealth-medical.html
http://www.cooking-hacks.com/index.php/galvanic-skin-response-sensor-gsr-sweating-ehealth-medical.html
http://www.cooking-hacks.com/index.php/blood-pressure-sensor-sphygmomanometer-v2-0.html
http://www.cooking-hacks.com/index.php/patient-position-sensor-accelerometer-ehealth-medical.html

154

9. Electromyography Sensor (EMG)

 An electromyogram (EMG) measures the electrical activity of muscles at rest
and during contraction. EMG signals are used in many clinical and biomedical
applications. EMG is used as a diagnostics tool for identifying neuromuscular
diseases, assessing low-back pain, kinesiology, and disorders of motor
control. EMG signals are also used as a control signal for prosthetic devices
such as prosthetic hands, arms, and lower limbs. This sensor will measure the
filtered and rectified electrical activity of a muscle, depending the amount of
activity in the selected muscle.

From the 9 body sensors we have at our disposal , extremely useful and beneficial

are the ones below:

1. Electrocardiogram sensor (ECG)

ECG sensor could be used in all of the 577 patients (100%)

2. Blood pressure sensor (sphygmomanometer)

Blood pressure would be useful for the 556 out of 577 patients (96%)

3. Pulse and oxygen in blood sensor (SPO2)

SPO2 sensor would be useful for the 521 out of 577 patients (90%)

4. Body temperature sensor

Body temperature sensor would be useful for the 327 out of 577 patients (57%)

5. Glucometer sensor

Glucometer sensor could be used for the 247 out of 577 patients (43%)

Judging from the data above gathered from the survey it becomes quite clear how

important these sensors are what a huge breakthrough their use would mean for

every kind of medical center in our country. The infinite number of complications

could be minimized dramatically.

The most common complications in the patient’s post - cardiac surgery period are:

1. ARRHYTHMIAS

 Arrhythmias are the commonest postoperative complication. They are easily

detected with the ECG sensor. Most of them are not life–threatening for the patient,

but if they persist, they could reduce the cardiac output and may produce

http://www.cooking-hacks.com/index.php/electromyography-sensor-emg.html
http://en.wikipedia.org/wiki/Electromyography
http://www.cooking-hacks.com/index.php/electrocardiogram-sensor-ecg-ehealth-medical.html
http://www.cooking-hacks.com/index.php/blood-pressure-sensor-sphygmomanometer-v2-0.html
http://www.cooking-hacks.com/index.php/pulse-and-oxygen-in-blood-sensor-spo2-ehealth-medical.html
http://www.cooking-hacks.com/index.php/body-temperature-sensor-ehealth-medical.html
http://www.cooking-hacks.com/index.php/glucometer-sensor-ehealth-medical.html

155

intracardiac thrombus, with peripheral embolisms and catastrophic sequels. Thus,

their diagnosis and monitoring of their evolution are of vital importance for the

atient. On the contrary, some arrhythmias are deadly from the beginning so their

prompt diagnosis and urgent treatment are life-saving for the patient.

2. HEART FAILURE

 A serious number of patients are operated for heart failure. These patients

postoperatively have the same signs and symptoms as before the operation, while

the heart failure syndrome subsides progressively. These patients show low arterial

pressure and arrhythmias that are detected from the respective sensors. These data

are necessary for the defining or modification of the pharmaceutical care.

3. BLEEDING

 Usually bleeding from the surgical sites appears in the ICU right after the operation

and should be managed immediately, initially with conservative means and if it

persists or occurred hemodynamic instability , with a new sternal opening and

revision of the surgical sites. Later on the bleeding begins from another system,

commonly the gastrointestinal. Tachycardia and low arterial pressure are the first

signs which inform about and call for investigation for this dangerous complication.

4. PULMONARY PROBLEMS

 Pulmonary disturbances are common for patients that are subjected to cardiac

operations . A large percentage of the patients have problematic lungs usually from

many years of smoking. Also the pulmonary function is aggravated postoperatively

from the extra-corporeal circulation which is necessary for the cardiac operations ,

multiple transfusions and prolonged tracheal intubation. In the ICU , blood

saturation in Ο2 (SPO2) is monitored constantly while blood gases are checked

periodically.

5. RENAL PROBLEMS

 Renal problems are common in the ICU and the Common Ward. They appear with

low diuresis, increase potassium concentration in the blood and drop of pH. If not

handled immediately with medical management or with mechanical systems of

temporary blood dialysis , they endanger the patient’s life. So, for the prevention or

for the follow-up of the progress of this complication, combined monitoring with

ECG, SPO2 sensors and arterial pressure is extremely useful

6. NEUROLOGICAL PROBLEMS

156

 Neurological disorders that appear in the ICU have multiple causes. The arterial

network that feeds the brain often suffers , especially in patients with coronary

artery disease or the elderly . These patients demand constant and combined

monitoring with ECG , SPO2 sensors , arterial pressure , temperature and glucose

levels.

7. INFECTIONS

 Infections are usually appearing after the patient’s exit from the ICU. Inflammation

of the mediastinal is a catastrophic complication and often dictates the

reintroduction of the patient in the ICU for an extended period of time. The gravity

of the patient’s clinical picture calls for constant monitoring and reevaluation of their

condition.

All the above complications are the main reasons for mortality in the

perioperative period in the ICU and the Common Ward. In many cases , these

complications can be prevented with constant monitoring. For example ,

arrhythmias , which as mentioned above are the most common complication , start

with innocent forms and in the process they evolve with detrimental or fatal

consequences. Thus , detection of arrhythmias and immediate treatment will reduce

the perioperative morbidity and mortality. Patient’s stay at the ICU and the common

Ward is defined from the severity of the patient’s clinical picture , the difficulty and

the problems during the operation and the appearance of post-operative

complications. Care for high – risk patients in order to achieve immediate diagnosis,

and intensive follow-up for the progress of the above complications, is invaluable by

monitoring with the aid of these sensors. The continuous patient’s monitoring

especially outside the ICU is multiple beneficial firstly for the patient’s safety and

secondly for the hospital for the following reasons :

- Saving Resources, by reducing patient’s length of

stay in the ICU, in the Common Ward, and totally in

the hospital.

- Increasing hospital capacities, by increasing the

available beds in the ICU and in the hospital.

157

- Improving patient’s positive mood, by reducing his

hospital stay, especially and mainly by minimizing

the length of stay in the difficult environment of the

ICU.

- Beginning quickly the rehabilitation programs in

the family environment, by preventing the

appearance or reducing the severity of

complications

 Finally, as far as the economic part is considered in the long run , it is certain

that insurance companies will get largely involved with body-sensors and that

poses another aspect of research to be done in this domain.

158

159

References
[1] Sacha Gilgen, “ Mobile Healthcare on Android Devices” ,University of Zurich

Department of Informatics (IFI)

[2] Hossein Mamaghanian*, Student Member, IEEE, Nadia Khaled, Member, IEEE,

David Atienza, Member, IEEE, and Pierre Vandergheynst, Senior Member, IEEE

“Compressed Sensing for Real-Time Energy-Efficient ECG Compression on

Wireless Body Sensor Nodes” IEEE TRANSACTIONS ON BIOMEDICAL

ENGINEERING, VOL. 58, NO. 9, SEPTEMBER 2011

[3] Francisco Rinc´ on, Joaquin Recas, Nadia Khaled, Member, IEEE, and David

Atienza, Member, IEEE “Development and Evaluation of Multilead Wavelet

Based ECG Delineation Algorithms for Embedded Wireless Sensor Nodes” ,

IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL.

15, NO. 6, NOVEMBER 2011

[4] PHILIP LEVIS an DAVID GAY “TinyOS Programming” , Cambridge University

Press

[5] Joakim Eriksson, Adam Dunkels, Niclas Finne, Fredrik Osterlind, Thiemo Voigt

“Poster Abstract: MSPsim – an Extensible Simulator for MSP430-equipped

Sensor Boards” , Swedish Institute of Computer Science

[6] Joakim Eriksson, Fredrik Österlind, Niclas Finne, Nicolas Tsiftes, Adam

Dunkels, Thiemo Voigt Swedish Institute of Computer Science , Robert Sauter,

Pedro José Marrón University of Bonn and Fraunhofer IAIS “COOJA/MSPSim:

Interoperability Testing for Wireless Sensor Networks

[7] Tatiparti Padma, M. Madhavi Latha, Abrar Ahmed “ECG compression and

labview implementation” , GRIET, JNTU, Hyderabad,India, Member IETE;

JNTU, Hyderabad, India, Member IEEE; GRIET, Hyderabad, India

[8] Tobias Neckel, Dirk Pfluger “Algorithms of Scientific Computing FFT on Real

valued Data” , Technical University of Munchen

[9] Ms. Manjari Sharma, Dr. A. K. Wadhwani, “Efficient Algorithm for ECG

Coding” , International Journal of Scientific & Engineering Research Volume 2,

Issue 6, June-2011

[10] Wearable Sensor Technology|Shimmer|Wraerable Wireless Sensing

Technology and Solutions , www.shimmersensing.com

[11] Toumaz Group , www.toumaz.com

[12] Interuniversity Microelectronics Centre ,IMEC , www.imec.be

[13] www.tinyOS.doc.net

[14] tinyos.stanford.edu

[15] sourceforge.net/projects/mspsim

[16] Vikas Kumar , Kulbir Singh “FPGA Implementation of DFT using Cordic

algorithm” , Thapar University , Electronics and Comunication Engineering

Department

160

[17] Sambit Kumar Dash Jasobanta Sahoo Sunita Patel , “Cordic Algorithm And

it’s Application in DSP” , Department of Electrical Engineering , National Institute

of Technology , Rourkela

