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ABSTRACT

In this thesis, special geodetic problems are treated as boundary value problems. The
geodesic problem, the gravity field due to a homogeneous ellipsoid and the linear
fixed altimetry-gravimetry problem are thoroughly studied in ellipsoidal geometry.
The study is not limited on a biaxial ellipsoid (oblate spheroid), which is the well-
known mathematical model used in geodesy, but is extended on a triaxial ellipsoid.
The key issue in the current analysis is the expression of the above problems in the

suitable ellipsoidal coordinate system.

The ellipsoidal coordinate system is described in some detail. For a one-to-one
correspondence between ellipsoidal and Cartesian coordinates two variants of
ellipsoidal coordinates are introduced. The transformation between ellipsoidal and
Cartesian coordinates on a triaxial ellipsoid is presented in these two variants. Also,
the element of distance and Laplace’s equation are expressed in these coordinates.
The classical transformation between ellipsoidal and Cartesian coordinates on a

biaxial ellipsoid is presented as a degenerate case.

The geodesic problem on a triaxial ellipsoid is solved as a boundary value
problem, using the calculus of variations. The boundary value problem is formulated
by means of the Euler-Lagrange equation and consists of solving a non-linear second
order ordinary differential equation, subject to the Dirichlet conditions. Subsequently,
this problem is reduced to an initial value problem with Dirichlet and Neumann
conditions. The Neumann condition is determined iteratively by solving a system of
four first-order ordinary differential equations with numerical integration. The last
iteration yields the solution of the boundary value problem. From the solution, the
ellipsoidal coordinates and the angle between the line of constant longitude and the
geodesic, at any point along the geodesic, are determined. Also, the constant in
Liouville’s equation is determined and the geodesic distance between the two points,
as an integral, is computed by numerical integration. To demonstrate the validity of
the method, numerical examples are given. The geodesic boundary value problem and
its solution on a biaxial ellipsoid are obtained as a degenerate case. In this case, using

a special case of the Euler-Lagrange equation, the Clairaut equation is verified and the

X



Clairaut constant is precisely determined. Also, the numerical tests are validated by

comparison to Vincenty’s method.

The exterior gravity potential and its derivative induced by a homogeneous
triaxial ellipsoid are presented. Some expressions, which are used for the
representation of the exterior gravitational potential, are mentioned. Subsequently, the
mathematical framework using ellipsoidal coordinates is derived. In this case, the
gravitational potential includes elliptic integrals which can be computed by a
numerical integration method. From the gravity potential, the gravity vector
components are subsequently obtained. The novel general expressions can be applied
to a triaxial and a biaxial ellipsoid. Also, the gravity field due to a homogeneous
oblate spheroid is obtained as a degenerate case. Numerical examples are given in

order to demonstrate the validity of the general expressions.

The linear fixed altimetry-gravimetry boundary value problem is analyzed
with respect to the existence and uniqueness of the solution. Nowadays, it is possible
to determine very precisely points on the physical surface of the Earth by three-
dimensional satellite positioning and the problem is to determine the disturbing
potential in an unbounded domain representing the exterior of the Earth. In order to
establish realistic boundary conditions, a Dirichlet condition is imposed at seas and an
oblique derivative condition on land. Then, mathematical methods are used, within
the frame of functional analysis, for attacking the problem under consideration.
Specifically, the Stampacchia theorem is used to decide upon the existence and
uniqueness of the weak solution of the problem in a weighted Sobolev space. Finally,
it is confirmed that the condition of validity for such a theorem has a geometrical

interpretation.

Lastly, a method for solving the problem of height datum unification is
presented. This is essentially a problem of determining the potential differences
among different height datums. The local height datums vary mainly due to different
ways of their definition, methods of realization and the fact that they are based on
local data. The main approaches for determining potential differences are outlined and
compared, taking into account the recent developments in the theory of geodetic

boundary value problems (BVPs). This allowed us to select the fixed mixed BVP as



the most suitable type for the estimation of the quasigeoid, which has the advantage
that is independent of any local height datums and it can be regarded as a global
height datum. The basic method of datum unification relies on the comparison of the
potential differences of each local height datum with the so-determined global height

datum (i.e. the quasigeoid).

Keywords: triaxial ellipsoid, ellipsoidal coordinates, geodesic problem, gravity

potential, altimetry-gravimetry problem, Stampacchia theorem, numerical integration
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EXTENDED ABSTRACT IN GREEK

INIEPIAHYH

Atepeivnon 'ewdortikdv [pofinudrov Zvvoprokav Tipumv

oe EAdenyoeion N'eopetpia

Xy mopovoa JaTpiPn, eWkd yewdortikd mpoPfAnuaTe  avtipetomiloviol ®g
mpofAnpato cuvoplak®v Tip®v. To yewdaciokd TpdPinua, to medio fapdtnTag mwov
mopayetal amd £vo, OLOYEVEG EAAENYOELDEG KO TO YPOUUKO OEGUEVUEVO OATILETPIKO-
Bapvtnuetpikd mpdPAnpa peretdvtal TANP®G o€ eAhenyoedn| yempetpio. H pelémm
dev mepropiletor 610 S1aEOVIKO EAAENWOEES (TEMAATVOUEVO COUPOEIDEG), TOL Eivarl
T0 KAOOWKO pHoONUOTIKO HOVIEAO 7OV YPNOIUOTOLEITOL OTN Ye®Ooio, OAAG
emekteiveTal Kot oto TPEOoVIKO eddetyocdés. To ovolaotikd Béua oty avdivon
TOV TOpondveo TpofAnudtov eival n €KEPacT TOVS GTO KOATOAANAO EAAENYOELDEC

GUGTN L0 GUVTIETAYUEVOV.

To eAlenyoeldég GUOTNUA GVVIETAYUEVOV TTEPLYPAPETAL AenTONEPMC. [ pia
avTiototyio. €va mpog Eva PETOED eAAelyoedmv kot Kapteoiavdv cuvietaypévoy,
glodyovior 000 TOPUAAAYEG TOV EAAEWWOEWOMV GULVIETAYUEVOV. XTIG 000 OVTEC
TOPOAAAYEC  TOPOVLCIALETOL O  UETOCYNUOTIOUOS HETOED  EAAENYOEWDDV Kol
Koapteoiavav ocvvtetaypévov oto tplacovikd elhenyosdéc. Eniong, 10 ototeimoeg
unkoc kot 1 e&iowon Laplace exgpdlovion otic cvvietaypéveg avtés. o v

TOPOAAOY] TOV  EAAEWWOEWOMV  GULVIETAYUEVOV TOL  XPNOLUOMOLEITOL  GTOVG

(QOPUOMGLOVG TNG TAPOVGOS LEAETNG, O LETACYNUOTIGUOG £XEL TN HLOPOT|

1/2
E2
x=qu’+E’ (coszl?)—i-E—;sin2 BJ cosh, (la)
y =4fu’+E} cospsini, (1B)

X

E2 1/2
Z=uSinB[1—E—ZCOSZ }»j , (1y)
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omov u > 0, /2 < B < +n/2, -t < A < +m givor o1 EMAEWYOELDEIG GLUVTETOYUEVEG.
YUVENMG, Ol CLVTETAYUEVES empaveleg elval (1) Tpuagovikd ehlewyoewdn (u =
otabepd), (i1) povoywva vrepPorocion (P = otabepd) ko (iil) diywva vrepPoroeldn
(A = otabepd). IeUETPIKA, Ol CUVTETAYUEVEG EPUNVEVOVTAL OC aKOAOVOMG: Ze éva
Koapteowavd cvotua cvvietaypévav, éva onueio P €xel ovvietayuéveg (x, y, z).
OpiCovpe 0Tt €va Tpla&ovikd eAlelyoeldéc mov mepthapfavel to onueio P, €xel og
apyf TV apyn TOL CLOTNUOTOC, O TOAKOG dEovag tov 2b tavtiletal pe tov dEova
TOV z, 0 UEYOAOG oNpePVOC G&ovag 2a, tavtileton pe tov A&ova TV X, 0 HKPOG
lonuepwvog GEovag 2a, tavtiCetor pe tov GEOVO T®V Y KOl Ol 600 YPOLUIKES

EKKEVTPOTNTES £X0LV otabepés Tipég £, kar £ . H cvvtetaypévn u givar o modkdg

nuagovog tov eAheryoedovg, P eivor to eAAelyoedég mAGTog Kol A glval 1O

eEMEWYOEDEC UMKOG. ATt TN oyéon

B=tan" (ij )
y

odnyovpaote oty epunveia 6Tt o eAhenyoeldég mAdtog B yapaxktpilel v KAion
TOV ACHUTTOTOV TNG OIKOYEVELNS TWV OLOECTIOV KUPLOV VIEPPOADV GTO EMIMEDO X =

0. Opo1a, and t oyéon

A= tan"! (lj 3)

X

TO EAAEWYOELDEG KOG A, YOpakTNPilel TNV KAION TOV ACOUTTOTOV TNG OIKOYEVELNG

TOV  OHOEoTIOV  KOpuwv vrepPordv oto eminedo z = 0. O avrtiotpogog

LETOGYNMUOTIOUOG EXEL TN LOPOT|

u=+b>+s,, (40)

B=tan’ |2 52 (4p)

Xiv



2
A=tan’, | ——2, (4y)

Omov ot TWEG TV S, S,, S; VIoAoyilovtor amd TV enilvon KaTdAANANG KLPKNG
eElowong. Télog, 0 KAOOIKOC UETOGYNUOTIOUOS HETAED  EAAENYOEO®V Kot
Kopteoiovav cvvietaypévov oto 010Eovikd eAAelyoeldég mTapovotdleTor ¢ Lo

EKQUMGUEVT TTEPIMTMOOT).

To yewdocrakd mpdPAnpa teptrapdvel Tov Tpocdlopicid TG YEMOOGLUKNG
peta&y dvo onueiwv P, (BO,XO) Kot PI(BI,XI) o€ £€va EAMAELYOELOEG. 2TV TOPOVGA
HEAETN, TO YEMOMGLOKO TPOPANUA OTO TPLOEOVIKO EAAELWOEDES EMAVETAL MG €Vl
TPOPANLLO CLVOPLOKAV TILDV YPTCLLOTOLOVTOS TO AOYIoUO peTaordv. Atakpivovtal
VO TEPUTAOCELG OTOV 1) Ye®OaGLoKN Teptypapetatl og: (1) B = P(A) xon (i1) A = MP).
To cuvoplakd TpdPAnpa Tvmomoteitan cupwva pe v e€locwon Euler-Lagrange kot
meptlopPdvel v emilvon plog un YPORUKNG devtepng Taéng ocvvnin dlopopikm

elomon. XV tpdt nepintmon, 1 e&iocwon £xel T popen
2EGP'+EE, (B)’ - (2EG, - E,G Jp)* + (2E,G - EG, B-GG, =0, (5)
Kot voKewTaL 6Tig cuvOnKeg TOmov Dirichlet

Bo :B(xo)a Bl :B(xl)‘ (6)

d .
a(ﬁ)ﬂs, (70)
dn ((VE Yoy (G 1B )ow (16, E ., (10

dk(ﬁ)—( 2(—;](13){(—; 2E](ﬁ) +(2(—; Ejﬁ{ﬁ], (7B)

ue ovvOnkec Dirichlet kot Neumann

XV



D: B, =B(%,), N: By =B'(,).

(8)

H ovvOnkn Neumann mpocdiopiletar pe emovoAnmTiky] Slodikacio eTAVoVTaS, Ue

aplOUNTIKN OAOKANPM®GT], TO TOPAKAT® CUGTNUO TECCAPMOV TPAOTNG TAENS LV B®V

SLPOPIKDOV EEICMOEMV

d B |_ B
alep,) op,’

6;;(8[3 J [p33 +p22(B) +p11B+p00] op'

[3193 +2p,B+p,

P’

Omov o1 cuvtedeoTtég oty e€icmon (90) divovrtar and TG oyéoelg

s 1FG-EG,

w
b
D
=
N | —
Q
o

» op, _ GG~ GGy 1 EEy — ByE,
2 B G*> 2 E> ’

» _on _l(_;(_;ﬁx_(_;ﬁc_;x _E_Bx_Eﬁ_x
R ) G*> E*? ’

Xvi

op',

(90)

(9B)

97)

(95)

(10a)

(10B)

(10y)

(108)



H televtaio emoviinyn mapdyetl Kot T AVoT TOV GuVOPLOKOD TPOPANHATOS. ATO TN
Aoon  mpoodopilovtal, oe kdbBe onupelo Katd UAKOG TNG YEWMOOUGLOKNG, Ol
EMEWYOEIDEIS OLVTETOYUEVEG KOl 1 Yovie o MHETaEd NG ypopung otabepov

EALELYOEIOOVG UNKOVS KOl TG YEMOALIGLOKNG, OO T1 GYECN

o= arcco‘{%[}'} (11)

Eniong, mpocdiopiletar n otabepd ¢ oty e&iocwon tov Liouville

EZ E2
{c052B+E—Zsin2 B]sinzow—;cosz?»cosza:cz, (12)

X X

Kot VroAoYileTat, pe aplOUNTIKY OAOKANP®GN, 1 YEOIOICIOKY AmOCTOCT HETAED 600

onueiov, omd t oyxéon
s=["JE@) +Gan. (13)

Avaloyeg ekQPAGELS 1IGYDOLY Kot Yo TN 0eVTeEPT epintmon. ['a va amodeyBel n 1oy0g
™mg peboddov divovrar apBuntikd moapadeiypota. To yewdorsrokd mwpdPAnpo
GLVOPLOKOV TILAOV Kot 1 AV TOV 6T0 JEOVIKO EALEWWOEEG AapPdvovtal o¢ Lo
EKQUMOUEVT] TEPIMTMOOT. XTIV  TEPIMTOON OVTH, YPNOUOTOIOVING Lo EOKN
nepintoon ¢ e&iowong Euler-Lagrange, n e&icwon Clairaut emainfedeton kot M
otafepd tov Clairaut mpocsodopileton pe axpifeia. Emiong, ot apiBuntikoi €reyyot

EMKVP®OVOVTOAL 0O TN GVYKPLoN TV amotelecudtov pe ) pébodo tov Vincenty.

To e€wtepko dvvopuko Bapdmrag U kar n napaywyds tov (v,, Yg, Vs ), TOL
mopdyovtor omd €vo  OUOYEVES TPLOEOVIKO  EAAELYOEWES, TOpOoLGLALoVTIOL GE

eMeyoeldeic ouvtetayuéveg (u, B, A) amod Tig oxéoelg

U(u,B,k)=%GM[IO(u)—Il (i — 1, (u)y? — I, ()= ]+ 0, p.0), (14)
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OTov

+o0 do
10(”): L (02 +Ei)1/2(02 +Ey2)1/2 ) (150)

+o0 do
Il(u):.[u (Gz +Ef)3/2(02 +Ey2)1/2 ’ (15B)

+o0 do
IZ(u):J.u (02 +Ef)1/2(02 +Ej)3/2 ’ (157)

+o0 do
I(u)= , (15%)
3( ) L 02(02 +Ex2)1/2(02 +Ey2)1/2

1 2 2 2 2 2 2 2 2 Eez c 2 2
CD(u,B,X)z;m [(u +E, +E; cos ?»)cos B+(u +Ex)Fsm Bcos™ A |, (15¢)
Ko
2 g2\ + B2 172
v, = Werkirn) Mo (160)
(u2 +E; sin’ BXuz +E; +E; sin’ X) ou
2 22 172
v = Lol @ (16B)
(u2 +Ey2 sinz[SXEy2 cos’ B+ E’ sin’ X) op
E? —E?cos’ A "o
= K 2 . (16y)

& {(uz+Ey2+E§sin2XXEyzcoszl?wEfsinzk)} O\

Apyikd, ovoQEPOVTOL  KATOEG EKPPACELS MOV  YPNOCLLOTOOVVTAL  Ylo. TNV
avamopdotacn tov e€mTEPKOD EAKTIKOD duvapkol. AkorovOwc, To podnuoTikd

mlaiclo dnpovpyeitar cbppova pe Tig eAhenyoedeis ovvietaypéves. Onmg elvan
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eovepd amd T E&odoeig 14 ko 15, 1o dvvopikd mepilapfavel eAAEmTIKA
OAOKANpOUATO TOV VTOAOYILovTon pe aplOunTtiky] oAOKANpwon. A0 TO SVVOUIKO
Bapumntag Aapavovion 81000y tKd 01 GLVIGTAOGES TOL daVOGHATOS TNG PapvTntag. Ot
TOPATAVE VEEG EKQPACELS 1oYDOVY Ge £va TPLIEOVIKO Kol dl0EoVIKO EAAENYOEIDEG.
Eniong, 10 medio Popdmmrag mov mapdyetar omd €vo OHOYEVES TEMAATUGUEVO
oQOPOEEG AopuPdveTon Kol oG o eKQUAGHEVN mepintwon. [lpoxeévov va

EMKVPMOEL N 10YVG TOV YEVIKOV EKQPPAGE®MVY divovTon aplOuntikd mopadetyparto.

To ypoppkd deopuevpévo aATIUETPIKO-BapOTNUETPIKO TPOPANLO GLVOPLOKADY
TILAV OVOAVETOL MG TPOG TNV VIOPEN Kol TH LOVAITKOTNTA TG AVOTG TOV. XTIG HEPES
pag eivar duvatd vo. TPOGOIOPIGTOVYV HE UEYOAN akpifela, HEC® dOPLPOPIKOV
TEYVOAOYIDV, GNUELD GTN LGIKY] YV EMPAVELD. ZVVETMDC, TO TPOPANUO ovAyETOL
OTOV TTPOGOLOPIGUO TOV JATAPUKTIKOD SLUVAUKOD T Gg va un epaypévo ywpio Q mov
avaraplotd 10 eEmtepikd G Imc. ITlpokepévouv vo GyYMUOTICTOVV PEOAIGTIKES

cvvoplokég cvvOnkeg, emParieton pa cuvOkn Dirichlet otig BdAacoeg 0Q Kot pa
ocuvOnkn mAdywg mopoy@yov ot otepid 0Q,. To pobnuatikd poviélo mov

TPOKVTMTEL, £XEL TNV TAPUKATO LOPOT|

AT=0 in Q, (170)
T= f, on 69, (17B)
(nVT)+(aVyT)=-f, on 0Q,, (17y)
T=0(x™) as |x| — +o0. (175)

Kotomv, ypnotpomoovvror padnpatikég pébodor  €vtdog tov  mAdiciov g
CLVOPTNGIOKNG OVAALGNG YlOL TNV OVTILETAOTIOT, TOL VIO UEAETN TPOPALOTOC.
Ewwotepa, ypnowomnoteitar 1o Bedpnua tov Stampacchia omv andeacn yw v
Omapén Ko TV LovadkotnTa TG aobevoig Avong Tov TpoPAnuatog o€ Eva oTauiKd

x®po Sobolev. Ta aroterécpota TG peAétng cuvoyilovral 6to axdAovho Bedpnpo
Ochpnpa. Oswpodpe Q évo pn epoyuévo yopio kat Q' = R* — Q éva ACTPOUOPPO

Yopio ®g Tpog v agempia pe cvvopo tomov C"'. Emmiéov, Ocwpodpe a € H'”

TETOL0 MOTE

Xix



div,, (a)| <t, (18)
diveo, (@)

va oy0el 6t0 0L, , O6mov ¢ eivon po Oetikny otabepd. Tote, ywoo dha to f €
H"(0Q;) xau f, € H'*(6Q,) vmapyer pia xoar pévo pia ocleviy Moo T e
W (Q) tov ypoppkod Secpevpévoy aATILETPIKOD-BopyTUETPIKOD TPOPARLOTOG

ocuvoploak®v Tiudv. Téhog, emPefordveror 6Tt 1 GLVONKN 6GYVOG TOL BEPNUOTOC

(E&iomon 18) éxel yeopetpikn epunveia.

KotaAinyovtag, mapovoidleton o péBodoc emiivong tov mpoPfANpaTog
EVOTOINGNG TOV VYOUETPIKAOV ovopopav. [Ipdkettal ovclaotikd yio v TpoOPAnua
TPOGOOPIGHOD TOV  SAPOP®V  SLUVOUIKOD UETAED TV O10QOp®V  VWYOUETPIKAOV
avaeopdv. Ot TOMKEG VWYOUETPIKES OvVOQOPES OAPEPOVY  KLPIMG AOY®D T®V
SPOPETIKMV TPOT®V OPIGUOV TOVG, TOV HEBOS®V VAOTOINGNG KOl TOV YEYOVOTOG OTL
ompilovtar og Tomkd dedopéva. O1 KHpleg TPOGEYYIGEIS TPOGIOPIGUOD SOPOPDV
JUVOLIKOD TTEPYPAPOVTOL KOl GLYKpivovTal, AouPAvovtag vroyn TG TPEYOLCECS
eEeMiéelg g Bewplog TV YEMIOTIKOV TPOPANUATOV GLVOPLOK®V TILAOV. AVTO HOG
EMTPENEL VO EMAEEOVUE TO OEGUEVUEVO UEIKTO TPOPANLUE GLVOPLIKDV TIUAOV OC TO
TO KOTAAANAO Yo TNV EKTIUNGT TOL OXEOOV YEMEWDOVG, TOV glval aveEapTnTo amd
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Chapter 1

1. INTRODUCTION

1.1. Background and motivation

Geodetic research has traditionally been motivated by the need to approximate closer
and closer the physical reality. Researchers such as Bursa (1971), Bursa and Sima
(1980) and BurSa and Fialova (1993) have shown that the Earth is better
approximated by a triaxial ellipsoid than a biaxial one and have estimated parameters
determining the Earth’s triaxiality. Furthermore, several non-spherical celestial bodies
such as planets, natural satellites, asteroids and comets are already modeled by a
triaxial ellipsoid. Tables with such triaxial ellipsoid parameters are included in
Seidelmann et al. (2007). Also, present day accuracy requirements and modern
computational capabilities continue to push toward the study of the triaxial ellipsoid
as a geometrical model in geodesy and related interdisciplinary sciences. Indeed, the
transformation between geodetic (planetographic) and Cartesian coordinates on a
triaxial ellipsoid has been presented by Grafarend and Krumm (2006) and recently by
Feltens (2009) and Ligas (2012a, b). The Lamé surfaces as a generalization of the
triaxial ellipsoid have been presented by Nadenik (2005). Zagrebin (1973) has studied
the gravity field of the Earth and the Moon and Chandrasekhar (1969) the triaxial
(Jacobi) ellipsoid as a figure of equilibrium. Also, an azimuthal mapping of the
triaxial ellipsoid has been presented by Grafarend and Krumm (2006). Other studies

concerning triaxial ellipsoids are mentioned in Feltens (2009).

Anyone acquainted with geodetic theory understands that the problems which have
been solved in triaxial ellipsoidal geometry are very few compared to the
corresponding problems in biaxial ellipsoidal and spherical geometry. Using a triaxial
ellipsoidal geometry, in the framework of boundary value problems, some of today’s
most challenging problems can be studied. Namely, the geodesic problem, the gravity
field due to a homogeneous ellipsoid and the linear fixed altimetry-gravimetry

problem can be addressed on an ellipsoid.
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The geodesic problem entails determining the geodesic between two given points on
an ellipsoid. Quoting from Karney (2013)

(http://en.wikipedia.org/wiki/Geodesics_on_an_ellipsoid), “ ... geodesics play an

important role in several areas:

e for measuring distances and areas in Geographic Information Systems,
e the definition of maritime boundaries,
e in the rules of the Federal Aviation Administration for area navigation,

e the method of measuring distances in the FAI Sporting Code.

Also, by the principle of least action, many problems in physics can be formulated as
a variational problem similar to that for geodesics. For this reason, geodesics on
simple surfaces such as biaxial or triaxial ellipsoids are frequently used -as test cases-

for exploring new methods ... ”.

For the representation of the Earth’s external gravitational field, spherical harmonics
have been extensively used in geodesy. However, since an oblate spheroid is closer to
the shape of the Earth, Holota (2005, 2011) and Claessens (2006), among others, have
attempted to use oblate spheroidal harmonics and to solve the geodetic boundary
value problems in an oblate spheroidal boundary. In other bodies of the solar system
(planets, natural satellites, asteroids and comets), whose shape can be represented
under certain circumstances by a triaxial ellipsoid, it is postulated that ellipsoidal
harmonics would be even more suitable for the representation of their gravitational
fields. For example, Garmier and Barriot (2001) and Hu (2012) applied the classical
theory of ellipsoidal harmonics (Hobson, 1931; Dassios, 2012) in modeling the
gravitational field of the comet Wirtanen, the Martian moon Phobos and the asteroid
433 Eros. Today, the gravity field modeling efforts within the geodetic community are
focussing on numerical and computational aspects. On the other hand this is not an

optimal situation.

The linear fixed altimetry-gravimetry problem is considered to be most suitable and of
great importance in the future because the quasigeoid obtained through its solution is
independent of any local height datum and can be regarded as a global height datum.
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Therefore, it can be used for solving the problem of height datum unification, as
outlined in the works of Sacerdote and Sanso (2003) and Zhang et al. (2009). One of
the present day challenges of geodesy is the unification of all local and regional height
datums into one consistent height datum. The practical problem underlying such
premise is to realize a global reference surface supporting geometric (e.g. from GPS)
and physical heights (e.g. from levelling, sea level observations) and to integrate the
existing local height systems into one global system that is compatible with
international standards and enables cost-saving implementation of modern (satellite,

terrestrial, airborne and shipborne) geodetic techniques.

1.2. Thesis key objectives and problems to be addressed

The main objective of this research is to derive a detailed analysis on the above
geometrical and physical geodetic problems, in the framework of boundary value
problems, using an ellipsoidal geometry. Since the existing geodetic methods tackling
these problems can be applied exclusively in a biaxial or a triaxial ellipsoid, this study
is not limited on a biaxial ellipsoid (oblate spheroid), which is the well-known
mathematical model being used in geodesy, but is also extended on a triaxial
ellipsoid. The key issue in this analysis is the expression of the problems in a suitable

ellipsoidal coordinate system.

The complicated structure implied by the ellipsoidal system, both in the analytical and
the geometrical level is described in some detail in Chapter 2. Among the different
variants of ellipsoidal coordinates, it is necessary to select those that (i) provide one-
to-one correspondence between ellipsoidal and Cartesian coordinates and (ii) can be
applied in the case of biaxial and triaxial ellipsoids. Consequently, these coordinates
must be fully described with respect to their special geometric characteristics and the
transformation between them and the Cartesian coordinates. Also, it is important to
show that the classical transformation between ellipsoidal and Cartesian coordinates
can be derived as a degenerate case. Similarly, the development of problems in
triaxial ellipsoid should be shown that also holds in the case of biaxial ellipsoid.

To better understand the geometry of the triaxial ellipsoid, it is appropriate to study

the geodesics; that is, those characteristic curves that have the greatest geodetic
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importance and have also many interesting properties. In order for the appropriate
formulations to hold in both (biaxial and triaxial) ellipsoidal geometries, it is
necessary to apply mathematical methodologies that are independent of the ellipsoidal
surface. Therefore, along these lines, the geodesic problem and its solution on an

ellipsoid are presented in Chapter 3.

Another typical application example of the geometry of triaxial ellipsoid is the
determination of the gravity field due to a homogeneous ellipsoid. The corresponding
general expressions involved in this determination are developed in Chapter 4. The
derived gravity field can be regarded as a mathematical model that approximates the
actual gravity field and can be suitably applied in the process of linearization of the

geodetic boundary value problems.

The linear fixed altimetry-gravimetry problem is important to be investigated with
respect to the existence and uniqueness of the solution. The relevant theoretical and

practical aspects involved in such an approach are discussed in Chapters 5 and 6.
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2. ELLIPSOIDAL COORDINATES

2.1. Introduction

In potential theory it is natural to use ellipsoidal coordinates, since they allow the
separation of Laplace’s equation and help formulate boundary conditions in a
reasonably simple way. For these reasons, ellipsoidal coordinates have been used for
formulating the theory of ellipsoidal harmonics and the solution of geodetic boundary
value problems, e.g. by Hobson (1931), Garmier and Barriot (2001) and, more
recently, by Lowes and Winch (2012). However, the commonly used variant of
ellipsoidal coordinates has two disadvantages: (i) without imposing additional rules it
generally determines eight points in space and (ii) it holds solely if one of the

coordinate surfaces is a triaxial, not a biaxial ellipsoid.

To overcome these problems we use an alternative variant of ellipsoidal coordinates,
originally introduced by Tabanov (1999). This leads to a one-to-one correspondence
between ellipsoidal and Cartesian coordinates and an ellipsoidal system which
deforms continuously to an oblate spheroidal and spherical system. Consequently,
these coordinates may be useful in applications of geometrical geodesy, like

ellipsoidal map projections and geodesics.

In this chapter, the alternative variant of the ellipsoidal coordinates, which is used in
the following formulations, is presented in some detail along with its geometrical
interpretation. In the direct transformation, the Cartesian coordinates are expressed
using trigonometric functions. In the inverse transformation, the ellipsoidal
coordinates are computed by solving a cubic equation with three real roots. Formulas
relating the variants of the ellipsoidal coordinates are developed and the element of

distance and the Laplace’s equation are expressed in these two variants.
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2.2. Ellipsoidal coordinate system

In order to introduce an ellipsoidal coordinate system, we consider a triaxial ellipsoid

which, in Cartesian coordinates (X, Y, Z), is described by

2 2
L - @.1)
y

2
2
< a

QD
(o

where 0 <b < a, < a, <+ow are its three semiaxes. A family of confocal quadrics

(second degree surfaces) to this ellipsoid is given as

2 2
TR A — 2.2)
+s a,+s b +s

X
a’

X

where S is a real number called the parameter of the family. For each value of s bigger
than —a_, Eq. (2.2) represents a quadric which is (i) a triaxial ellipsoid, when —b* <s
<+o0, (ii) a hyperboloid of one sheet, when —a; <s<-b?, and (iii) a hyperboloid of
two sheets, when —a; <'s < -a; (see Fig. 2.1). Finally, when s < —a;, Eq. (2.2)

represents an imaginary quadric (Kellogg, 1953).

(1) (i1) (iii)
Figure 2.1. Coordinate surfaces: (i) triaxial ellipsoid, (i1) hyperboloid of one sheet and

(ii1) hyperboloid of two sheets.
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In Dassios (2012) is proved that, for every point (X, Y, z) in space with Xyz # 0 (this
excludes the Cartesian planes X = 0, y = 0 and z = 0) Eq. (2.2), which is a cubic

equation in S, has three unequal real roots S,, S,, S, such that
2 2 2
—-a, <s;<-a, <s, <-b” <s <+oo. (2.3)

Thus, through each point (X, Yy, z) in space with Xyz #0 passes exactly one triaxial
ellipsoid (S, = constant), one hyperboloid of one sheet (S, = constant) and one
hyperboloid of two sheets (S, = constant). These variables (S,, S,, S;) are known as
ellipsoidal coordinates and have dimensions of length squared. Also, the ellipsoidal

coordinate system (S,, S,, S;) is a triply orthogonal system and the principal sections

(see below) of the coordinate surfaces share three pairs of foci (= E,, 0, 0), (£ E,,

0,0), (0, + E,, 0), where E, = \/a; —b*>, E, = \Ja; -b” and E, = ,/a; —a; are

the focal lengths (linear eccentricities), i.e. the distances between the coordinate origin

O and the focal points F, (or F,), F, (or F,) and F, (or F,), respectively (see Fig.
2.2). The linear eccentricity E, is related to E, and E, by E;=E, - Ej . Hence, the
ellipsoidal coordinate system is entirely characterized by two parameters e.g. E, and
E, (two-parametric system). Amongst these parameters it holds that E, < E, and

E,<E,.

Figure 2.2 displays the Cartesian planes X = 0, y = 0 and z = 0. These planes intersect
any one of the confocal quadrics either in an ellipse or in a hyperbola which are called
principal ellipses and principal hyperbolas of the corresponding quadric. When s, =
0, Eq. (2.2) represents the fundamental (or reference) ellipsoid (2.1) which has three
principal ellipses mutually perpendicular. From Eq. (2.2) a family of confocal

principal hyperbolas is obtained

Y % 1 x=o0, 2.4)
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with foci at (0, £ E_, 0). The linear equation

—-b? —s,
7=y — 2 (2.5)
a; +s,

represents the two asymptotes of the family of hyperbolas. Also, from Eq. (2.2) a

family of confocal principal hyperbolas is obtained

X Y -0, (2.6)

Y= tX e (2.7)

represents the two asymptotes of the family of hyperbolas. Note that, the confocal
hyperboloids of two sheets do not intersect the plane X = 0. Finally, when the
ellipsoidal coordinates (S,, S,, S;) reach their limiting values, we get degenerate
quadrics corresponding to parts of the planes X =0,y = 0 and z = 0 (see Fig. 2.2). In
this study the dominant part is played by two special curves on which two coordinates

take equal values:

When s, = s, =—b?, from Eq. (2.2) we obtain the focal ellipse

X2 y2
—2+—2:1,Z:O. (28)
El E:

The foci of the focal ellipse are (£ E,, 0, 0) and its semiaxes are E, and E, .

When s, = s, = —aj , from Eq. (2.2) we obtain the focal hyperbola
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2L —1,y=0. (2.9)

The foci of the focal hyperbola are (£ E,, 0, 0) and its semiaxes are E, and E .

+
s = —aj
2 T /
83 < —ay fUz
83 —rrf

2
= —a,
2

ag,

S >

[
T %

Figure 2.2. Ellipsoidal coordinates and Cartesian planes X = 0 (above right), y = 0
(above left) and z = 0 (below right).

2.3. From ellipsoidal to Cartesian coordinates

Formulas relating ellipsoidal (s,, S,, S;) and Cartesian coordinates (X, Y, Z) are

obtained by Eq. (2.2), as expressed in Kellogg (1953):
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(@ s)@ s, )@ +s)
(ax —ay)(a, —b*)

: (2.10)

2 2 2
) _ (ay + sl)(ay +sz)(ay +5;)

(ay —a;)(@; —b*)

, 2.11)

G +521)(b22+sj)(b22+ 5,) (2.12)
(b” —a,)(b” -a,)

where —a; < s; < —a; < s, < b’ < 5, <+o0. According to these equations
there are, in general, eight points (£ X, £ Yy, * Z) in space, symmetrically located in
octants, corresponding to the same (S, , S,, S;) and thus the transformation is not one-
to-one. In order to have a one-to-one correspondence between ellipsoidal and
Cartesian coordinates one usually has to introduce new ellipsoidal coordinates,

expressing S,, S,, S; and hence X, Y, Z in terms of suitable functions of three new

coordinates. For example, Byerly (1893) express the ellipsoidal coordinates in terms
of elliptic functions, while Wang and Guo (1989) express them in terms of theta
functions as well. Elliptic and theta functions are special kind and complicated
functions to handle and, for that reason, we have avoided to represent the Cartesian
coordinates in terms of such functions. Clearly, the change of variables does not affect

the system, since each of the new coordinates is a function of the old ones.
2.3.1. Common variant

The theory of ellipsoidal harmonics, e.g. Hobson (1931), mostly uses the ellipsoidal

coordinates (p, y, v) given by the relations
s, =p>—a’, (2.13)

5, =’ -a, (2.14)

10
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s,=v’-a;. (2.15)

Substituting Egs. (2.13)-(2.15) into Egs. (2.10)-(2.12), yields

1
X = ——puv, 2.16
EE pu (2.16)
1
y=——p’ —E2u’ —EE V", 2.17)
E, E,
z=E1E Jo? B2 JEI -2 B2 v, 2.18)
x =y

where 0 < v < E, < p < E, < p<+ow. These coordinates have dimensions of

length. In this case, to ensure that a point (X, Y, ) corresponds to the point (p, p, v) we

have to impose additional rules. Specifically, v is to be taken with the positive sign

when X is positive and vice versa; yE. —v® is to be taken with the positive sign

when y is positive and vice versa; and 4/E. —u” is to be taken with the positive sign

when z is positive and vice versa. The quantities p, L, \/p2 -EZ, \/uz—Eg ,

\Jp°—E2 and E: -V’ are to be taken always with the positive sign. Thus, it

follows that the ellipsoidal coordinates (p, p, v) have the disadvantage that, in order to

fully fix a point in space, we need to know not merely the values of its coordinates p,

p and v, but the signs of v, \/E: —v? and \/Ef —u? as well (Byerly, 1893; Hobson,

1931).
Substituting Egs. (2.13)-(2.15) into Eq. (2.2), the coordinate surfaces are

1) triaxial ellipsoids (p = constant)

2
1)3(_2+p2_E2+p22_E2:1= E, <p<+o, (2.19)

11
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i1) hyperboloids of one sheet (i = constant)

2 y2 Z2
|,L_2+p,2—E2_E2—|12:1, E. <p<E,, (2.20)

i1) hyperboloids of two sheets (v = constant)

2 - =1, 0<v<E,. (2.21)

For p = a,, from Eq. (2.19) we obtain the reference ellipsoid (2.1). Forp=pnu= E,,
from Eqgs. (2.19) and (2.20) we obtain the focal ellipse (2.8) and for p=v = E_, from
Egs. (2.20) and (2.21) correspondingly the focal hyperbola (2.9).

The main characteristic of the previous coordinate systems is that it can be used only
if the first coordinate surface (S, = constant or p = constant) is a triaxial ellipsoid. In

the following section, we present an alternative variant of ellipsoidal coordinates

which will overcome these problems.

2.3.2. Alternative variant

In order to have a one-to-one correspondence between ellipsoidal and Cartesian

coordinates, we introduce ellipsoidal coordinates (u, B, A) by the relations

s, =u’-b*, (2.22)
s, =—a, sin” —b” cos” B, (2.23)
S, =—a; sin’ L—a; cos’ L. (2.24)

In a Cartesian coordinate system, a point P has the coordinates (X, y, z). We pass

through P a triaxial ellipsoid whose centre is the origin O, its polar axis coincides with

12
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the z-axis, its major equatorial axis coincides with the x-axis, its minor equatorial axis

coincides with the y-axis and two linear eccentricities have the constant values E,
and E, . The coordinate U is the polar semiaxis of this ellipsoid, 8 is the ellipsoidal

latitude and A is the ellipsoidal longitude. Substituting Eq. (2.23) into Eq. (2.5), we

obtain
B = tan"" G] (2.25)

which leads us to the interpretation that the ellipsoidal latitude B represents the
inclination of the asymptotes of the family of confocal principal hyperbolas (2.4) on

the plane x = 0. Similarly, substituting Eq. (2.24) into Eq. (2.7), we obtain
)= tan”! (lj (2.26)

and thus the ellipsoidal longitude A represents the inclination of the asymptotes of the

family of confocal principal hyperbolas (2.6) on the plane z = 0, (see Fig. 2.2).

Substituting Eqgs. (2.22)-(2.24) into Egs. (2.10)-(2.12), we derive the equations
introduced by Tabanov (1999) and presented also by Dassios (2012)

2
e

1/2
E
X=,Uu>+E] [cosz[%t?sinz[ij cosh, (2.27)

y =u’+E; cospsini, (2.28)

2
X

) 1/2
Z =Usin B[l _E cos’ kj , (2.29)

whereu > 0,—7/2 < B < +w/2, t <A < +m.

13
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Now, substituting Egs. (2.22)-(2.24) into Eq. (2.2), the coordinate surfaces are (i)
triaxial ellipsoids (U = constant), (ii) hyperboloids of one sheet (f = constant) and (iii)

hyperboloids of two sheets (A = constant) with their respective equations given as

+ +—=1, u>o, 2.30
u’+E; Uu’+E; u (2.30)

X y z
+ - =1, —-w2<B<+w2,B#0, 2.31
E; +E§ cos’ B Ej cos’ B Ej sin’ B P P 231

2 2 2

X y z
— - =1, —w<A<+m, A#0,\#=xn/2. 2.32
EJcos’h EZsin’A E; —Ecos’A (232)

For u = b, from Eq. (2.30) we obtain the reference ellipsoid (2.1). Foru=0and =0,
from Egs. (2.30) and (2.31) we obtain the focal ellipse (2.8) and for f = +n/2 and A =
0 (or A = =£m), from Eqgs. (2.31) and (2.32) the focal hyperbola (2.9).

When the values B = £n/2 and A = 0 (or A = £m) are substituted in Egs. (2.27)-(2.29)

we get the Cartesian coordinates

E E
x:J_rq/u2+EfE—e, y=0, z:J_ruE—. (2.33)

X

These coordinates correspond to umbilical points U, U,, U, U, on the ellipsoid u

= constant (see Fig. 2.2).

As pointed out in Dassios (2012), an important characteristic of this system is that it
specifies uniquely the points in the different Cartesian octants, without having to

impose additional rules, as it is the case with the (s,, S,, S;) or (p, W, v) systems. In
addition, when a, = a, = a,i.e. E, = E, = Eand E, =0, Egs. (2.27)-(2.29) reduce

to the well-known oblate spheroidal system (Heiskanen and Moritz, 1967):

14
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X:(u2+E)l/2cosBcosk, y:(u2+E)l/2cosBsink, Z=Uusinf, (2.34)

where U > 0, /2 < B < +m/2, -t < A < +m. In this case, the triaxial ellipsoids
become oblate spheroids (U = constant), the hyperboloids of one sheet become
hyperboloids of revolution ( = constant) and the hyperboloids of two sheets become
meridian planes (A = constant). The focal ellipse becomes a focal circle whose radius
is the linear eccentricity E and the focal hyperbola becomes the z-axis. Also, it is well-
known that the oblate spheroid has two umbilical points (X, Yy, z) = (0, 0, £u) which are
its poles. Finally, when E = 0, Egs. (2.34) degenerates to the spherical system r = u,
(latitude) and A (longitude).

Summing up, the fixed point (X, Yy, Z) can be represented with respect to a continuously
changing coordinate system, which gradually approaches first the oblate spheroidal
system and then the spherical one. The importance of this procedure is that we avoid

any degeneracy of the variables, as happens with the ellipsoidal coordinates (s,, S,,
s;) or (p, w, v). Conversely, the intervals of variation of the coordinates (u, B, A)

remain invariants as the system transforms first to the oblate spheroidal and then to

the spherical one (Dassios, 2012).
At this point, we can show the connection between the ellipsoidal coordinates (p, L, v)

and (u, B, A). Hence, by comparing Egs. (2.13)-(2.15) with Egs. (2.22)-(2.24), we are
lead to

p’=Uu’+E;, u’ =EZsin’B+E; cos’P, v’ =Ecos’ L. (2.35)
2.4. From Cartesian to ellipsoidal coordinates

The next obvious step is to compute the ellipsoidal (s,, s,, S;) from the Cartesian

coordinates (X, Y, z). Substituting the known Cartesian coordinates (X, Yy, z) in Eq.
(2.2), we obtain a cubic equation in S, from which we can evaluate the three real roots

S,, S, and S;.

15



Chapter 2

Equation (2.2) can be written equivalently as

s’+c,s’+¢s+¢, =0, (2.36)
where

C,=a; +a; +b’ —x’ —y* -7, (2.37)
c, =aja, +a;b’ +ajb’ —(aj +b7 I — (a2 +b?)y* — (a2 + aj)zz, (2.38)

c, =a,a b’ —a;b’x* —ajb’y’ - 2’ (2.39)

a,

2
ay

This equation has three real rootss,, S, and S, which are distributed according to Eq.

(2.3). When a cubic equation has three real roots its solutions can be expressed as

(Garmier and Barriot, 2001)

S, =24Pp cos(%) - %2, (2.40)
S, =2 pcos(%—z?nj—%z, (2.41)
S, =24P cos(% — 4?“) —%2, (2.42)
where

_ C22+93Cl (2.43)
q= 9c,c, —27¢, —2¢; ’ (2.44)

54
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and

® = cos” [LJ (2.45)

T

It should be mentioned that Garmier and Barriot (2001) have also applied a numerical
algorithm (secant method) for the computation of the roots of Eq. (2.2). In this work,
we have included only the explicit solutions (2.40)-(2.42).

2.4.1. Common variant

Inverting Egs. (2.13)-(2.15), results in

p=+/a; +s, , (2.46)
W=, a’ +s,, (2.47)
v=4a; +s,, (2.48)

where the same conventions with regard to the proper signs hold, according to the

explanations given in Section 2.3.1.
2.4.2. Alternative variant

Inverting Egs. (2.22)-(2.24), results in

u=.b’+s,, (2.49)

(2.50)
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AL=tan" | —1—2, (2.51)

where the conventions with regard to the proper quadrant for the coordinates 3, A need
to be applied. In the spheroidal case, the corresponding expressions have been derived

by Heiskanen and Moritz (1967) and Featherstone Claessens (2008).
2.5. Laplace’s equation in ellipsoidal coordinates

The general form of the element of distance in arbitrary orthogonal coordinates m,,

N, M is
ds’> =h’dn; +h;dn; +hidn;. (2.52)

It can be shown that Laplace’s operator A in these coordinates and for a function V is

Ao {a [h2h3 av]+ o (h3h1 avj+ o [hlhz oV ﬂ 253)
h1h2h3 8111 hl 8111 anZ h2 an2 6113 h3 8113

The Laplace equation, AV = 0, is the main representative of second-order partial

differential equations of elliptic type, for which fundamental methods of solution of

boundary value problems for elliptic equations have been and are being developed.
2.5.1. Common variant

In ellipsoidal coordinates (p, W, v), the element of distance ds is written as (Hobson,

1931)
ds* =h’dp® +hidu” +hidv?, (2.54)

where the scale factors (metric coefficients) hp2 , hf , h? are given by
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, (P =pHP’-v?) (2.55)

" (P -E;)p -EJ)’

e W —pH)’ —v?) (2.56)

LW -EDW -EN)

e = (V=p (v ) (2.57)

TV -ED( -ED

Note that in Eq. (2.52) there are no terms with dpdu, dpdv and dudv because the
ellipsoidal coordinates are orthogonal: the ellipsoids p = constant, the hyperboloids of
one sheet i = constant and the hyperboloids of two sheets v = constant intersect each

other orthogonally.

In these coordinates, Laplace’s equation, AV = 0, can be written as (Hobson, 1931)

2 2 2 2 2 2 a 2 2 2 Zav
(2=v)yp* —EZ\p* - E; 6—p<¢p ~E}p’ —E: )"

(P* v )y E: —p?yu - E? %(JEXZ —p?Ju? - E; %H

A

~) =0 (2.58)

R N e i

2.5.2. Alternative variant

Using Egs. (2.35) we can transform Eq. (2.52) and Eq. (2.56) to the form in which the
ellipsoidal coordinates (U, B, A) are the independent variables. Hence, in ellipsoidal
coordinates (U, B, A), the element of distance ds is

ds? = h2du’ +h2dp> +h2d)?, (2.59)

where
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(u® +E;sin’B)(u® + E; + E; sin’ 1)

h? , 2.60
’ (u2+EX2)(u2+Ej) (2-60)
- u’+ E; sin’ B)(E; cos’ B+ E; sin’ &)

hg = £ e’ , (2.61)

x —E,sin”p
2 2 2 2.2 2 2 2 .2

he (U +E, +E;sin" A)(E, cos” B+ E; sin” A) 560

A 2 2 2 : (2.62)

E, —E;cos™ A
In these coordinates, Laplace’s equation, AV = 0, becomes
p q
(E2cos® B+EZsin’ 1)\Ju’ + EZ \/uz +E; i(\/u2 +E; \/uz +E? %)Jr
g ¥ ou Y ou

2 2 2 .2 2 2 2 8 2 2 2 av
(u?+E] +Esin’ 1), [E? + E cos’ B a—ﬁ(\/Ee +E? cos BG_B)+
(U” +E2sin’B)y/E2 — E2 cos® & %(\/Ef —E? cos’ x%) - 0. (2.63)

2.5.3. Spheroidal expressions

Fora, =a, =a,ie. E, = E = Eand E, =0, Eq. (2.57) and Eq. (2.61) reduce to

the same spheroidal expressions that have been derived by Heiskanen and Moritz

(1967)
ds? = hjdu2 + thde + hfdkz, (2.64)
where

_Uu?+E’sin’p

h2
! u’+E?

(2.65)

>

hB2 =u’+E*sin’ B, (2.66)
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h> =’ +E?)cos’B, (2.67)
and

2 2 2 2 .2 2
OV oM OV g W HE s OV (2.68)

u*+E? +
( )8u2 ou  op’ OB (U +E*)cos’P on’

In the limiting case, E — 0, these equations reduce to the well-known spherical

expressions (Heiskanen and Moritz, 1967).
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3. THE GEODESIC BOUNDARY VALUE PROBLEM

AND ITS SOLUTION ON AN ELLIPSOID

3.1. Introduction

The shortest path between two points on a curved surface is along a geodesic, i.e. the
analogue of a straight line on a plane. The geodesic problem entails determining the

geodesic between two given points P, (BO,XO) and F’I(Bl,kl) on an ellipsoid (van

Brunt, 2004).

For a triaxial ellipsoid, the explicit description of geodesics was given by Jacobi
(1839). Using the ellipsoidal coordinates, Jacobi showed that the geodesics can be
reduced to integrals. These integrals include a constant that also appears in Liouville’s
equation, the Liouville constant (see Section 3.4). A recent application of this
technique with examples concerning the behavior of long geodesics was presented by

Karney (GeographicLib: http://geographiclib.sourceforge.net/html/triaxial.html). As

an alternative approach, Shebl and Farag (2007) used a conformal mapping between a
triaxial ellipsoid and a sphere in order to approximate a geodesic on a triaxial

ellipsoid.

For a biaxial ellipsoid, a historical summary of solution methods for the geodesic
problem can be found in Deakin and Hunter (2010) and Karney (2013). Among these
methods, Vincenty’s iterative formulas based on series expansions are widely used
(Vincenty, 1975). Recently, Karney (2013) gave improved series expansions for
solving the problem. However, Sjoberg (2012) and Sjoberg and Shirazian (2012)
solved the problem by decomposing the solutions into those on a sphere and the
corrections for the ellipsoid. The spherical solutions are given in closed form, while
the corrections for an ellipsoid are expressed with elliptic integrals, suitable for
numerical integration. A similar approach is followed by Saito (1970). Also, part of
the problem is the determination of the so-called Clairaut constant (i.e., the cosine of
the maximum latitude of the geodesic), which was treated by Sjoberg (2007). Today,

considering modern computational capabilities, we prefer solution methods that use
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numerical integration rather than a series expansion approach, because a truncated
series solution makes a mathematical approximation. By comparison, numerical
integration suffers only from computational errors, which can be addressed with

improved computational systems and require no change in the theoretical background.

Solving the geodesics as a boundary value problem is a well-studied topic in
differential geometry, but only as far as the properties of the geodesics are concerned.
On the other hand, there are several studies (e.g Maekawa 1996, Chen and Chen
2011) which present computational schemes for general, free-form parametric or

regular surfaces, but with no focus on the ellipsoid.

In this chapter, we present a method which solves the geodesic problem on an
ellipsoid. In this method, the geodesic (i.e. ellipsoidal coordinates and derivatives) is
obtained and then the angle between a line of constant longitude and the geodesic at
any point along the geodesic is computed, together with the geodesic distance
between the two points. Also, the Liouville constant is precisely determined,
including an accuracy check. Our solution includes numerical integrations and so its
accuracy is limited by the computational system used. The generalized algorithm can
be applied for triaxial ellipsoids, biaxial ellipsoids, and spheres; it is particularly
interesting to show how the general expressions are reduced in the biaxial case.
Between two points on a biaxial ellipsoid, we can also determine the Clairaut constant
without using the Clairaut equation. In addition, we do not use conformal mapping

with an auxiliary sphere, as do Saito (1970), Vincenty (1975) and Karney (2013).
Finally, it would be interesting to generalize the biaxial ellipsoid solution from the
(different) approaches of Sjoberg (2012), Sjoberg and Shirazian (2012) and Karney
(2013) to the geodesic problem on a triaxial ellipsoid.

3.2. Geodesic boundary value problem

By setting u = b in Egs. (2.27)-(2.29), the triaxial ellipsoid which is described by Eq.
(2.1) may be parameterized as (Jacobi, 1839; Tabanov, 1999; Dassios, 2012)
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1/2
EZ
Xzax(cosz[SJrE—ezsinzBJ cosh, (3.1a)
y=a, cosPsini, (3.1b)
y
Ez 1/2
z:bsinﬁ[l—E‘*2 coszkj , (3.1¢)

where —/2 < B < +n/2 and -t < A < +n. These parameters can be interpreted as
ellipsoidal latitude and ellipsoidal longitude, respectively (see Fig. 3.1). More details

about the ellipsoidal coordinates are included in Dassios (2012). In this

parameterization, the first fundamental coefficients E , F and G can be expressed as

E = B(Ef cos’ B+ E. sin’ X), (3.2a)
F-o0. (3.2b)
G = A(EZ cos® B+ E2sin* 1), (3.2¢)
where

2 22 2 2
:aysm B+b”cos™ P
E; —E;sin’p

(3.3a)

a, sin’ A +a; cos® A
E; —EZcos’ A

(3.3b)

In Eq. (3.2b), F = 0 indicates that the B-curves and A-curves are orthogonal. Also, B
# 0, A # 0 for all points, and E = G =0 at the umbilical pomnts U, U,, U;, U,,
i.e., when A = 0 or +m and B = £ n/2. From Egs. (3.2a), (3.2¢) and (3.3) we obtain the

partial derivatives which are presented in Appendix A.1.
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Figure 3.1. The ellipsoidal coordinates on a triaxial ellipsoid.

For an orthogonal parameterization, the line element ds on a triaxial ellipsoid is given

by (Deakin and Hunter, 2008)

ds? = Edp? + Gdr’. (3.4)

The geodesic curvature k along the respective parametric lines is given by (Struik,
1961)

b_ | (3.5a)

1 E,

K *const.:__— — °
Qo =3 /5

(3.5b)

Thus, according to Egs. (3.5), (A3b) and (A3c) only the principal ellipses are

geodesics on a triaxial ellipsoid. For this reason, in order to describe the geodesics on

a triaxial ellipsoid, we consider two cases: (3.2.1) A, # A, with the independent

variable being the ellipsoidal longitude, and (3.2.2) A, = A, with the independent

variable being the ellipsoidal latitude.
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3.2.1. Case with A, # A,

We consider a curve on a triaxial ellipsoid to be described by B = B(%), i.e., with the

ellipsoidal latitude a function of ellipsoidal longitude. Using Eq. (3.4) the line element

is given by
ds=+E(B') +Gda, (3.6a)
where
dp
'=—, 3.6b
p 0 (3.6b)

Hence, the length s from A= A, to A= A, (A, < A,) is obtained by

S:KWQﬁﬁ%x, (3.72)

where

f(LB.B")=+E(P') +G . (3.7b)

From the calculus of variations, it is well-known that a geodesic B = B(A) satisfies the

Euler-Lagrange equation (van Brunt, 2004)

ﬂ{ﬂq—ﬂcm. (3.8)
drlop') op

Using Eq. (3.7b) we obtain

o _ i (3.9a)
E
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and

o _ EB)+G,
B 2JE@E)Y+G

(3.9b)

By writing out the total derivative in Eq. (3.8) using the chain rule, the Euler-

Lagrange equation becomes

2 2 2
o-f B+ o f B o f _izo, (3.108)
op'op' opop'  op' P
where
d’p
"=, 3.10b
p e ( )

Substituting Egs. (3.9) into Eq. (3.10a) subsequently yields
2EGP'+EE, (p')’ - (2EG, - E,G B’ +(2E,G -EG, p-GG, =0, (3.11)

which is a non-linear second-order ordinary differential equation. The Dirichlet

conditions associated with this equation are
Bo =Blko). By =B(n)- (3.12)

Hence, the geodesic between two points with A, # A, on a triaxial ellipsoid is

described by a two-point boundary value problem.

3.2.2. Case with A, = %,

Here, the curve is described by A = A(p). Using Eq. (3.4) the line element is given by

28



Chapter 3

ds=+E +G())*dp, (3.13a)
where
e g_g _ (3.13b)
Hence, the length s from = B, to B = B, (B, < B,) 1s obtained by
s= Bi'g(B,k,k’)dB, (3.14a)
where
g, 1) =yE+G(A) . (3.14b)
Using similar reasoning as was applied in the previous case, we have
d%(%j_g_g:o’ (3.15)
or equivalently
ai'zgw ’ aizai' | a%zai' B Z_i =0- (3.162)
where

"= 3;? (3.16b)

Using the partial derivatives of Eq. (3.14b), Eq. (3.16a) yields
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2EGL'4GG, (V) - (2E,G - EG, 1)’ + (2EG, - GE, )'-EE, =0, (3.17)

Ao =MBy). o =MB,). (3.18)

Thus, similar to the previous case, the geodesic between two points with A, = A, ona

triaxial ellipsoid is described by a two-point boundary value problem.
3.3. Numerical solution

For solving the above two-point boundary value problems, there are several numerical
approaches such as shooting methods, finite differences and finite element methods
(see e.g., Fox, 1990; Keller, 1992). However, in this study we develop a method based
on Taylor’s theorem. This method reduces the boundary value problem to an initial

value problem which can be solved by well-known numerical techniques.

3.3.1. Case with A # X,

Equation (3.11) is written equivalently as a system of two first-order differential

equations,

d

a(ﬁ)= f,(A,B.B), (3.19a)

d " _ ]
a(ﬁ)— f,(A,B.B), (3.19b)

where
f,(L.B.B) =P, (3.20a)
and
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L (LB.B)=p,(B) + P, (B) + PP, (3.20b)
with

o, = _%% (3.21a)
0, =%_%%, (3.21b)
0, :%%_%, (3:210)
o, = %% (3.21d)

The boundary values associated with this system are

D: B, =B, ), N: By =PB'(2,), (3.22)

which are a Dirichlet (D) and a Neumann (N) condition, respectively. The solution 8
= B(L) depends on the values given by Eq. (3.22). Our aim is to determine the

unknown value f'; such that

B, =B(Bo.BYoiN). (3.23)
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P

Po
Po (Bo, Xo)

Figure 3.2. The geodesic on an ellipsoid.

We start with an approximate value B'O(O) and we integrate the system of Egs. (3.19)
on the interval [A,,A,] using any convenient numerical method. Thus, we determine

the geodesic (see Fig. 3.2)

ro. §- B(Bo’ B, ;x), (3.24)
with
BBy B 0 )= B, =B, (3.25)

Therefore, we search for a correction 8[3'0(0) such that

B(B,. B, +5p1, ), ) =B, (3.26)

Using Taylor’s theorem (second and higher order terms ignored), Eq. (3.26) can be

written as

B, = B(BO,B'O“’;M){%J 5p',". (3.27)
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and from Egs. (3.25), (3.26) and (3.27) we then obtain
Bl — BI(O)

B )
o, ),

In Eq. (3.28) the derivative has an unknown value. In order to solve this problem we

p'," = (3.28)

apply the chain rule in Egs. (3.19) to obtain

1( op Jzﬂi+@ﬁ+iﬂﬂ, (3.29a)
d\ o, ) onop', opap, op op,
1( op ]:%ﬂ+%ﬁ+%ﬂ, (3.290)
dr 0B, or op', OB op', OIp' P

where the first terms on the right side of Egs. (3.29) are equal to zero. Hence, we can

integrate the system of Egs. (3.19) on the interval [, A, ] and obtain at A, the values

B, (%j , (3.30)

which are required in Eq. (3.28). In other words, by integrating the system of Egs.
(3.19), we obtain the geodesic I'® and the value 8[3'0(0) which is required to start a

new iteration.

Now, we start with the value
B, =B, +3B, ", (331)

and via numerical integration on the interval [, A, ] we determine the geodesic
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r0: B=p,.p," 1), (3.32)
with
B(B,.B ", )=B," #B,. (3.33)

Using the results at A,

B, (%] , (3.34)

we compute the new correction 8[3'0(1). The process is repeated m times until we reach
a value B'O(m) such that ‘Bl(m) - Bl‘ < g, where € > 0 is a user-defined threshold for the

desired accuracy.

Introducing the variables

X - B X, - (3.35)
op'y op',

the system of Egs. (3.19) and (3.29) can be rewritten as

X'=X,, (3.36)
X,"= Py (%, )+ p, (%, ) + pX, + Py (3.36b)
X;'= Xy, (3.36¢)
X,'= [p33(x2 ) + py, (X, ) + pyy X, + pOOJx3 + [3 p,(X, ) +2p,x, + P, Jx4, (3.36d)
where
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8p3 1 prG - Ex B

— = —— s 3.37a
p33 GB 2 G 2 ( )
D P, _ GGBB__ GGy 1 _EBB__ EyEp (3.37b)

2o G? 2 E? ’
GG, -G.G, EE, —E.E,

o, op, _1 i e B i ) (3.37¢)

B 2 G E

op, 1 EGy, ~E,G,

—_— =t 3.37d
pOO GB 2 E 2 ( )

This system of the four first-order differential equations can be solved on the interval

A,, A, ] using a numerical integration method such as Runge-Kutta or a Taylor series
0>M g g g y

(see Butcher, 1987). The required initial conditions are described below.

The step size SA is given by 8A=(r, —%,)/n, where n is the number of steps; a

greater number of steps leads to slower computation but greater accuracy, and vice

versa. For the variable X, the initial value is always the ellipsoidal latitude B, . For the

variable X, the initial value can be approximated by the spherical case. Subsequently,

in each iteration this value is corrected according to the previous method. For the

variables X, and X, the initial values are always 0 and 1, respectively. Finally, the

last iteration yields the geodesic I" between the two points with A, # A, on a triaxial

ellipsoid (see Fig. 3.2).

3.3.2. Case with A, = %,

In a manner similar to that presented above, introducing the variables

y o . - o
Poan,’ YN,

y, =M\, y, =\, , (3.38)
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allows Eq. (3.17) to be reduced to the system

Yi'=VYs, (3.39a)
Y,'=05(y,) +a,(y,) +a,y, +0,, (3.39b)
Y3'= Vs> (3.39¢)
Vo= [0 (95 ) + s (Y + QY + Goo Jys + 30 (¥, + 20,5 + 4, |y (3.39d)
where

1G,

=——_ 3.40
as > E ( a)

E, 1G,

_o 25 3.40b

©=F"5% ( )
1 EB EB

e N 1 3.40
q, > E G ( C)

1E,

_ 15 3.40d
B =+575 ( )
and

aq 1 E@Bk - Ex_ﬁ
U5 a—;——g = : (3.41a)
8% EEM B ExEx 1 agxx _gngx
=2 = _ - _ , 3.41b
2o E? 2 G? ( )
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69, 1EE, -E,E, GG, -GG,
ay, ax] =3 = - = , (3.41¢)
aq, 1 E,,G -E,G,
= =+4— — . 3.41d
oo o 2 G*? ( :

This system can be integrated on the interval [f,,f, ] and the last iteration yields the

geodesic between the two points with A, = A, on a triaxial ellipsoid.

3.4. Liouville’s constant, angles and geodesic distance

Equation (3.4) can be rewritten as
ds* = (E? cos® B+ EZsin> A[Bdp> + Ad)A?), (3.42)

which, according to Klingenberg (1982, p. 305) is called a Liouville line element.
Then, along a geodesic it holds that

E; cos’Bsin’® a—E; sin® Acos® a =/, (3.43)

where /¢ is a constant and a is the angle at which the geodesic cuts the curve A =
constant. Eq. (3.43), which is known as the Liouville equation, can be written

equivalently as

E’ E’
(COSZB-I-E—ZSH’IZ Bjsin2a+ ¢cos” heos® a=C”, (3.44)

where C is a new constant.

The angle a at any point along the geodesic B = B(A) withA, < A, is computed by
(Deakin and Hunter, 2008)
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o =arc cot[% B'J = arc cot[%[}} , (3.45)

which gives —n/2 < o < +n/2 and o # 0. When a < 0, the correct angle is obtained as
a = o + 7. Furthermore, since 0 < o <+, Eq. (3.44) implies that 0 <c < 1, where ¢ =
1 is on the principal ellipse xy (see Fig. 3.2). Similarly, the angle a at any point along
the geodesic A = A(B) with, < B, is computed by

o= g —arc cot(% X'J , (3.46)

which gives 0 < a < +m and a # +n/2. When a > +mn/2, the correct angle is obtained as
o= o — 7. Since —/2 < a < +n/2, Eq. (3.44) implies that 0 < ¢ < 1. On the principal
ellipses xz and yz, Eq. (3.44) gives c = E,/E, and c = 0, respectively. We also note
that Eqs. (3.45) and (3.46) involve the variablesx, =, X, =f',and y, =1, y, =1',

respectively, which are obtained by numerical integration. In this way, using Eq.
(3.44) one can check the accuracy of the numerical integration and subsequently can

compute the geodesic distance between two given points.

The distance S between two given points along the geodesic f = B(A) withd, < A,,

using Egs. (3.7), is written as an integral
5= j;‘,/ E(@) +Gdr, (3.47)

which can be computed by a numerical integration method such as the Newton-Cotes
formulas (see, e.g., Hildebrand, 1974). Similarly, the distance S between two points

along the geodesic A = A(B) withf, < B,, using Egs. (3.14), is computed by

s= jﬁi‘d&@(w)zdﬁ. (3.48)
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There is a common misconception that a geodesic is the shortest path between two
points, but this is not always the case. A discussion on this complex problem is
included in Struik (1961) and Guggenheimer (1977). However, we can show under
what condition a geodesic is the shortest path. According to Guggenheimer (1977, p.
265-266), a given geodesic is not the shortest path when it contains two conjugate

points, and the minimum geodesic distance of two mutually conjugate points is
n(max k)_l/ ?, where K is the Gauss curvature. On a triaxial ellipsoid, it holds that max
k=a; / (bzaf, ), (Klingenberg, 1982, p. 311). Hence, the length s of a geodesic which

does not contain conjugate points is
ay
s<mh—. (3.49)

Thus, Eq. (3.49) provides the length limit, below which a geodesic is the shortest path

between two points on a triaxial ellipsoid.
3.5. The geodesic boundary value problem on a biaxial ellipsoid

In the biaxial case it holds that a, = a, = aie, E, = E, = hand E, =0. Under

these conditions and by setting u = b in Eq. (2.34), the ellipsoidal coordinates (3, 1)
are related to Cartesian coordinates (X, Y, z) by (e.g. Heiskanen and Moritz, 1967;
Featherstone and Claessens, 2008)

X =acosfBcosh, y =acosfsini, z=bsinf, (3.50)

where —n/2 < B < +n/2 and -t < A < +m. In this parameterization, Egs. (3.2) and

(3.3) are written as
E =BE’cos’B, (3.51a)

F=0, (3.51b)
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G = AE’cos’p, (3.51c)
where

_a’sin’B+b’cos’ B

B
E*cos’ B

, (3.52a)

A= (3.52b)

a2
E*

In Eq. (3.51b), F = 0 indicates that the B-curves (parallels) and A-curves (meridians)

are orthogonal. Also, B # 0, A # 0 and E #0atall locations, and G =0 at the poles
(i.e., when B = +m/2). The partial derivatives of Egs. (3.51a), (3.51c¢) and (3.52) are
presented in Appendix A.2.

In the biaxial case we study only the case with A, # A, since the case where A, = A,

can be excluded as trivial: it is well-known that all meridians are geodesics with
Clairaut’s constant € equal to zero. Also, the azimuths a along the meridian are zero

and the geodesic distance S between two points on the meridian is given by (Deakin

and Hunter, 2008)
s= j;" JEdB. (3.53)

The curve on a biaxial ellipsoid is described by B = B(L) with A, < A, and the

geodesic boundary value problem consists of solving the equation

2EGP"(2EG, -E,G Jp)’ -GG, =0, (3.54)
subject to the Dirichlet conditions

By =B(%,), B, =B(,). (3.55)
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3.5.1. Numerical solution

Following the method discussed in Section 3.3.1, the geodesic boundary value
problem on a biaxial ellipsoid is reduced to a system of four first-order differential

equations. Hence, we rewrite Egs. (3.36) as

X'=X,, (3.56a)
X,"= P, (%, )" + Py (3.56b)
X,'= X, (3.56¢)
Xe'= [P (% ) + Poo s +2,%,%, (3.56d)

Using Egs. (3.21),

5 (3.57a)
T, . a
E

Gy (3.57b)
E’ '

o, =P _CCw -GG 1EEy—EE, (3.582)
22 513 G? 2 E?2 ’
op, 1 EG,, -E,G,
Moo 7B PP 3.58b
pOO aB 2 E 2 ( )

Hence, this system can be integrated on the interval [A,,A,] and the last iteration

yields the geodesic between two points with A, # A, on a biaxial ellipsoid.
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3.5.2. Clairaut’s constant, azimuths and geodesic distance
In the biaxial case, Eq. (3.44) becomes
cosPsina=cC, (3.59)

which is the well-known Clairaut’s equation. Also, the function f in Eq. (3.7b) does

not contain the independent variable A explicitly. Therefore, along any geodesic B =

B() it holds that

f —B’% =ac, (3.60)

which is a special case of the Euler-Lagrange equation (Eq. (3.8)), (van Brunt, 2004).
Substituting Egs. (3.7b) and (3.9a) into Eq. (3.60) we obtain

%= ac. (361)
E@R) +G

Now, substituting Eq. (3.45) into Eq. (3.61) and using Egs. (3.51¢) and (3.52b), we
obtain the Eq. (3.59). Hence, Eqgs. (3.59) and (3.61) are equivalent and the Clairaut
constant € can be computed by Eq. (3.61) at any value of the independent variable A.
In this way, using Eq. (3.61) one can check the accuracy of the numerical integration
and subsequently can compute the azimuths along the geodesic and the geodesic

distance between two given points.
The azimuth a at any point along the geodesic is computed by Eq. (3.45). Also, since
0 <o <+m, Eq. (3.59) implies that 0 <c < 1. The geodesic distance S between the two

points is computed by Eq. (3.47). Finally, Eq. (3.49) becomes

s<nb, (3.62)
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which ensures that the resulting geodesic is the shortest path between two points on a

biaxial ellipsoid.

3.6. Numerical examples

In order to demonstrate the validity of the algorithms presented above, numerical
examples are given for each case. All algorithms were implemented in MATLAB.
The numerical computations in the triaxial case were carried out using Earth’s
geometrical parametersa, = 6378172 m, a, =6378103 m and b = 6356753 m (Bursa
and Sima, 1980). For solving the system of the four first-order differential equations,
the fourth-order Runge-Kutta numerical integration method was used. The number of
steps n was selected as 16000 in order to cover all cases with sufficient accuracy but
keep computational time within reason. The latitudes at A, and the longitudes at f3,
were required to converge with an accuracy &€ = 10™* rad, which corresponds to
approximately 0.006 mm. Also, the geodesic distance between two points was
computed by Simpson’s rule (i.e., the three point rule) and according to Eq. (3.49) the

maximum geodesic distance which ensures the shortest path property is S =

19970112.4835 m.

In the triaxial case withA, # A, taking into account the geometry of the triaxial
ellipsoid, we use two input sets. In the first set starting points (B,,A,) with A, = 0°
and B, = 0°, 1°, 5°, 30°, 60°, 75° and 80° were selected, as well as points (,,A,)
with A, = 0.5°, 1°, 5°, 40°, 90°, 120°, 170°, 175°, 179°, 179.5° and B, = 0°, £ 1°,
+5°, £30°, £60° £75°and +80° (set 1). Note that, when B, = 0° only the values
B, = 0° were used (symmetry). Hence, in total 850 geodesics were derived. Despite

the fact that 15999 intermediate points were determined and usually the iterative
procedure reached convergence in three or four iterations for each geodesic, the entire
set was completed in about 2.5 h of processing time using a 2.8 GHz Intel processor,
which corresponds to about 10 seconds for each complete determination of a

geodesic. A sample of results is presented in Table 3.1.
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In the second set starting points (3,,,) with A, =-90° and B, = 0°, 1°, 5°, 30°, 60°,
75° and 80° were selected, as well as points (B,,A,) with A, =—-89.5°, —89°, —85°, —
50°, 0°, 30°, 80°, 85°, 89°, 89.5° and B, = 0°, £1°, £5°, +£30° +60°, £75° and
+80° (set 2). Similarly, when B, = 0° only the values B, > 0° were used

(symmetry). We should point out that the iterative procedure does not convergence in
the cases where the resulting geodesic includes the values f = 90° and A = 0° (i.e.,
where it passes above the umbilical point). For this reason, we present the rear
extreme cases in Table 3.2 which can be interpreted as follows: the geodesic with
(By>2y) = (+80°, —90°) convergence in all cases with —80° < B < +80° and A, =

+55°, the geodesic with (B,,%,) = (+75°, —90°) convergence in all cases with —75° <

B < +75°and A, = +66°, and so on. Finally, we point out that the first geodesic of

Table 3.2 may not be the shortest path between those points, since its length exceeds

the limit of Eq. (3.49).

In the triaxial case withA, = A, starting points (B,,A,) with A, = 0.5°, 5°, 30°, 45°,
60°, 85°, 89.5° and B, = 0°, —-1°,-5°,-30°, —60°, —75°, —80° were selected, as well as
points (B,,A,) with A, = A, and B, = 0°, £1°, £5° +30° £60° *75° =+80°
where B, < B, (set 3). Hence, in total 441 geodesics were derived. A sample of the

results is presented in Table 3.3.

Furthermore, we have used the values for B and A of sets 1 and 3 using the parameters
of GRS80 a= 6378137 m, b = 6356752.3141 (Moritz, 1980) i.c. a biaxial ellipsoid, as
input to the general algorithm of the triaxial case (Section 3.3). A sample of the
results is presented in Table 3.4. In addition, we used the same 3 and A values as input
to the biaxial case algorithm (Section 3.5.1), which produced identical results. Also,
in order to validate the algorithm which has been presented, the results of Table 3.4
were compared to those obtained using the Vincenty’s method. For this study,

Vincenty’s algorithm (Vincenty, 1975) was implemented with the requirement that

the longitude differences were to converge with an accuracy 107" rad ~ 0.006 mm.

The results between our proposed method and Vincenty’s method show agreement to
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within 6x107° seconds of arc for azimuth and 0.21 mm in geodesic distance. These

results are presented in Table 3.5.

In order to get an estimate of the difference in length of a geodesic on a biaxial or a

triaxial ellipsoid, we consider the case of an equatorial geodesic. The difference

between the two surfaces is represented by the equatorial flattening of the triaxial

ellipsoid, which is about 10 ppm for the triaxial ellipsoid used in our computations.

Therefore, the difference in geodesic length will reach a maximum value of about 200

m, for near-antipodal equatorial points.

Table 3.1. Numerical examples in the triaxial case with A, # A, and A, = 0°.

Bo | Ao B, A c o, (°'") o, (°'") s (m)
0° 0° 0° 90° | 1.00000000000 90 00 00.0000 90 00 00.0000 | 10018754.9569
1° 0° | —80° 5° | 0.05883743460 | 17907 12.2719 174 40 13.8487 8947130.7221
5° 0° | -60° 40° | 0.34128138370 | 160 13 24.5001 13726 47.0036 8004762.4330
30° 0°] =30° | 175°| 0.86632464962 91 07 30.9337 9107 30.8672 | 19547128.7971
60° 0° 60° | 175°| 0.06207487624 02 52 26.2393 177 04 13.6373 6705715.1610
75° 0° 80° | 120° | 0.11708984898 2320 34.7823 140 55 32.6385 2482501.2608
80° 0° 60° 90° | 0.17478427424 72 26 50.4024 159 38 30.3547 3519745.1283

Table 3.2. Numerical examples in the triaxial case with A #A,, A,=—90° and B,=8,.

Bo | Mo | B | M c a, (°'") a, (°'") s (m)
0° | -90° 0° | 89.5°| 1.00000000000 90 00 00.0000 90 00 00.0000 | 19981849.8629
1° ] -90° 1°| 89.5°| 0.18979826428 1056 33.6952 | 16903 26.4359 | 19776667.0342
50 -90° 5° 89° | 0.09398403161 0524 48.3899 | 1743512.6880 | 18889165.0873
30° | -90° | 30° 86° | 0.06004022935 03 5823.8038 | 17602 07.2825 | 13331814.6078
60° | -90° | 60° 78° | 0.06076096484 06 56 46.4585 | 173 11 05.9592 6637321.6350
75° | -90° | 75° 66° | 0.05805851008 12 40 34.9009 | 16820 26.7339 3267941.2812
80° | —90° | 80° 55° | 0.05817384452 183540.7848 | 164 25 34.0017 2132316.9048
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Table 3.3. Numerical examples in the triaxial case with A, = &,.

Bo | X | B | M c a, (°'") a, (°'") s (m)
0° 0.5° | 80° 0.5° | 0.05680316848 | —0 00 16.0757 00132.5762 | 8831874.3717
—1° 5 75° 5° | 0.05659149555 | —001 47.2105 006 54.0958 | 8405370.4947
-5° 30° | 60° 30° | 0.04921108945 | —00422.3516 00842.0756 | 7204083.8568
-30° 45° | 30° 45° | 0.04017812574 | —003 41.2461 00341.2461 | 6652788.1287
-60° 60° 5° 60° | 0.02843082609 | —0 08 40.4575 00422.1675 | 7213412.4477
—75° 85° 1° 85° | 0.00497802414 | —00644.6115 00147.0474 | 8442938.5899
—80° | 89.5° 0° | 89.5°| 0.00050178253 | —00127.9705 000 16.0490 | 8888783.7815
Table 3.4. Numerical examples in the biaxial case.
Bo | 2o | B A, c a, (°'") a, (°'") s (m)
0° 0° 0° 90° | 1.00000000000 90 00 00.0000 90 00 00.0000 | 10018754.1714
1° 0° 0° ] 179.5° | 0.30320665822 173911.0942 | 16220589032 | 19884417.8083
5° 0° | -80° 170° | 0.03104258442 178 12 51.5083 10 17 52.6423 | 11652530.7514
30° 0° | -75° 120° | 0.24135347134 163 49 04.4615 68 49 50.9617 | 14057886.8752
60° 0° | -60° 40° | 0.19408499032 157 09 33.5589 | 15709 33.5589 | 13767414.8267
75° 0° | -30° 0.5° | 0.00202789418 179 33 03.8613 179 51 57.0077 | 11661713.4496
80° 0° —5° 120° | 0.15201222384 610533.9600 | 1711322.0148 | 11105138.2902
0° 0° 60° 0° | 0.00000000000 00 00 00.0000 00 00 00.0000 6663348.2060
Table 3.5. Numerical tests and comparisons with Vincenty’s method.
Bo | A B, A, Aa, (") Aa, (") AS (mm)
0° 0° 0° 90° 0 0 -0.004
1° 0° 0° | 179.5° -
5° 0° | —80° 170° %10~ %1077 -0.21
30° 0° | —75° 120° 1x10~7 %1077 0.05
60° |  0°] —60° 40° 6x10~" 6x10 0.06
75° 0° | -30° 0.5° _1x10~7 5%x10 0.05
80° 0° -5° 120° 6x10~" 3x10 0.04
0° 0° 60° 0° 0 0 0.03
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4. THE GRAVITY FIELD DUE TO A HOMOGENEOUS

ELLIPSOID

4.1. Introduction

In this chapter, we present the exterior gravity field in the simple case of a
homogeneous triaxial ellipsoid. In Balmino (1994) the gravitational potential is
expanded in Legendre series but this creates complications, especially when we want
to obtain the derivatives of the potential. For this reason, we start with the compact
expressions of classical potential theory, e.g. Kellogg (1953) and MacMillan (1958).
Subsequently, we show that the ellipsoidal coordinates (u, B, A) play a special role in
the construction of the gravitational potential, which differs with respect to
alternatives as reported in the related literature, such as Miloh (1990), and provide
expressions of the gravity field applicable in all cases: a triaxial ellipsoid, an oblate
spheroid and a sphere. These expressions contain improper integrals; therefore we
provide a suitable transformation in order to evaluate them by numerical integration
methods. Also, we present a connection with the Lamé functions, some numerical
examples and a geometrical interpretation. Finally, the gravity field due to a
homogeneous oblate spheroid is obtained as a degenerate case. This leads to an
equivalent and simpler expression of the gravity field of an oblate spheroid than the

ones that have been discussed by Wang (1988) and Hvozdara and Kohut (2012).

4.2. Gravity potential

The gravity potential U of a triaxial ellipsoid rotating with constant angular velocity
o, as described in a co-rotating reference system, is the sum of the gravitational
potential V, generated by the total mass M contained in this ellipsoid, and the

centrifugal potential @, due to the rotational motion, i.e.

U=V+o. (4.1)

47



Chapter 4

We assume that the centre of mass of the ellipsoid coincides with the origin O of the
coordinate system and its axis of rotation coincides with the z-axis. Therefore, the

centrifugal potential ® is expressed by
D= %mz(xz +y?). 4.2)

Since we consider that the solid ellipsoid Q is homogeneous, i.e. has a distribution of

mass of constant density p,, the gravitational potential V at an exterior point P is

given by the special case of Newton’s integral
1
V(P)=Gp, [av, 43)
Q

where G is the gravitational constant and | the distance between the mass element dm

= p, dv and the attracted point P. Note that, the total mass is M = (4/3)na, a, bp,.

As shown in Balmino (1994), the gravitational potential V due to a homogeneous

ellipsoid can be expanded in the form of a Legendre series in spherical coordinates (I,

B, M)

o N

v(r,B,x)zG—Mi

r n=0 m=0

2n
a
[—X j C,omPonam (sinf)cos 2ma, (4.4)
r , ,

where P, - are the associated Legendre functions with

_(l_tz)m/z gmm It
Pn,m(t)_ 2nn! dtn+m (t2 1) > (45)

and the coefficients C,, , are given by explicit expressions (Balmino, 1994).

Kellogg (1953) and MacMillan (1958) demonstrated that the gravitational potential V

induced by a homogeneous ellipsoid can be given by a simple integral:
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x* y’ z° ds
J (af + s)”z(af, + s)”z(b2 + s)”2 ’
(4.6)
where (S,, S,, S,) are the ellipsoidal coordinates which correspond to (X, Y, z) by Egs.
(2.10)-(2.12). Here, the coordinate s, is the positive root of Eq. (2.2). It is easy to
show that Eq. (4.6) satisfies Laplace’s equation in the exterior of the ellipsoid and, in

addition, the regularity condition at infinity, i.e. as S, tends towards infinity, V tends

towards zero.
4.2.1. General expressions

Following Kellogg (1953) and MacMillan (1958), the gravitational potential V due to

a homogeneous ellipsoid at an exterior point P(u, B, 1), where u > b, is given by

3 4o X’ y’ 7’ do
Vv A)=—GM 1- — -— , 4.7
(u5.2) 2 'L ( o’ +E; o’+E; GZJ(GZ + Exz)m(cs2 + E;)l/2 @7

where the Cartesian coordinates (X, Y, z) are related to the ellipsoidal (u, B, A) by Egs.
(2.27)-(2.29). Thus, the gravitational potential V may be written as

V(U’B’x):%GM[Io(U)_ |1(U)X2 - |2(U)y2 - |3(u)22]= (4-8)
where
+00 do
I = , 4.9
o(u) .[u (02 N Ef)m(cz E;)m (4.9)
Lw)=[" do (4.10)
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e d
()= (62+EX2)1/2E;2+E§)3/2, @4.11)

o d
()= s Ez)l/(;(oz e (4.12)

y
Clearly, by substituting Eqgs. (2.27)-(2.29) into Eq. (4.8) the resulting potential can be

fully expressed in ellipsoidal coordinates (u, 3, A). In turn, the integrals 1,, |,, I, and
I, can be expressed in terms of elliptic integrals of the first and the second kind, see

e.g. MacMillan (1958). Also, Fukushima and Ishizaki (1994) provide algorithms that
allow numerical computations. On the other hand, in order to evaluate these integrals,
considering the modern computational capabilities, we take advantage of numerical
integration methods. For this reason, the improper integrals are transformed to

definite integrals by the substitution ¢ = 1/t. As a result, we obtain

- T e @
)= Ll/ (1+ Eft2)3t:?1t+ Ex)? (4.14)
IZ(U):E/U 1+ Eftz)lizi Ex ) (4.15)
Lw=[" tdt . (4.16)

0 (1+ Eft2)1/2(1+ Ejtz)”2

Now, the above integrals can be computed by numerical methods such as Newton-

Cotes formulas, Simpson rules, etc.
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Following the theory of ellipsoidal harmonics e.g. Dassios (2012), the integrals in
Egs. (4.9)-(4.12) may be expressed in terms of Lamé functions of the second kind

m o
F,,1e.

do

Fr(u)=2n+DEN W]~ e e e e (4.17)
where the Lamé functions of the first kind E™ used in this paper are

ECu)=1, Eu)=(u*+E2)"?, EXu)=(?+E2)", E}(u)=u. (4.18)
Thercfore, Eq. (4.8) can be rewritten as

V(u,B,x):GTM%FOO(u)— ;Eﬂ;xz - E;EE; y? - E;EE;ZZ} (4.19)
Finally, by substituting Eqs. (2.27) and (2.28) into Eq. (4.2), we obtain

O(u,B, %)= %mz[(uz +E2 +EZcos® h)cos B+ (u® + Ef)E—‘*zsinz B cos® x}. (4.20)

4.2.2. Oblate spheroidal case

The formulas which have been derived in the previous Section 4.2.1 have the
advantage that they can be applied in any case, e.g. to a triaxial ellipsoid, oblate
spheroid and sphere. However, it is interesting to show how these general expressions

are reduced to the oblate spheroidal case, where a, = a, =a,ie. E, = E, = E, E,

=0and |, =1, = |,,. Inthis case
3 4o x> +y> 7’ do
V(u,B)==GM 1- -— , 4.21
(v.p) 2 '[J ( o’ +E* o’ i62+E2i *2D
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or equivalently

V(u,p)= %GM[IO(U)— L, ()X +y*) = 1, (u)z?], (4.22)
where
o (u)=[" 02(1652 =étanl(a, (4.23)

Ly (u)=[" o _1 [tanl(Ej—i}, (4.24)

v (c52+E2)2 2E° u/ u*+E?

oo do 1 |E E
I,(u)= =—|——tan"'| —|]. 4.25
O e (3] 429
As we see, in this case the integrals are expressible in terms of elementary functions.
Also, equivalent expressions in other oblate spheroidal systems are included in Wang
(1988) and Hvozdara and Kohut (2012). In a similar treatment, it can be easily shown

that in the spherical case, where E = 0, it holds that V =GM/r.

Finally, in the oblate spheroidal case, Eq. (4.20) is reduced to
1 2,2 2 2
D(u,p)= 2o (u> + E2)cos® B. (4.26)

4.3. Gravity vector
4.3.1. General expressions
From the gravity potential U, the gravity vector y is obtained by

y = grad U. (4.27)
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Evaluating the gradient in ellipsoidal coordinates (u, B, A), the gravity vector

components y,, v, and v, are related to the gravity potential by

1 86U (u2+EX2Xu2+Ej) v ouU
Yu:h_a_: (2 EZ sin2 Xz E2 4+ E2si 2;») ou’ (4.28)
, Ou u”+E; sin"pu” +E; + E; sin u
1/2
1 aU E; —E,sin’p U
Tp :h_ = 2 2 . 2 2 2 2 . 2 > (4.29)
s OB (u +E, sin BXEy cos” B+ E; sin k) op
1/2
_laou E;-EZcos’A oU (430)
o | ER+EZsin AJEX cos’ B+ EZsin*A) | Oh '

where, using Eq. (4.1) and inserting the gravitational potential V given by Eq. (4.8),

we have

% _ %GM[% |0(u)—%(ll(u)x2)—%(IZ(U)VZ)—%(MU)ZZ)} +%f= (4.31)
%—E:—%GM{II(U)GGE R |2(u)5ay[; ; |3(u)562[; }% 432)
u —%GM{II(U)a(a);j)Jr L), g(u)ﬁ?}%’. 433

The above partial derivatives can be easily obtained using Egs. (2.27)-(2.29), (4.20)
and additionally

Ay __ ! (4.34)
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ol 1

a_ul:_(uz +Ef)3/2(u2 Ef)m ’ (4.35)
ol 1

auz :_(U2 + Ef)l/z(uz E§)3/2 ’ (436)
T e : - (4.37)

In order to obtain the gravity vector components in the Cartesian system (X, Y, Z), one

can use the chain rule

Yy = + + (4.38)
h,| X ou 0oy ou 0z du

_ L[@% oy Qz}
and similarly for y, and v,, where the partial derivatives OX/ou etc. are easily

obtained from Egs. (2.27)-(2.29). Since the coordinates of both systems are

orthogonal, the transformation matrix is orthogonal, therefore one obtains the result

1 ox 1 ox 1 ox
=y Y+ ——7,, 4.39
Yx h. ou Yy h, 3B Ve h, o (4.39)

1 oy 1 oy 1 oy
=Ty Ly gy 4.40
Yy h ou Yy h, 2B Vp h, PR (4.40)
YZ:L@Z 1 oz 1 oz (4.41)

Y F—— Y, .
hyou'* "hoopt hoan'

u

4.3.2. Oblate spheroidal case

In this case, Egs. (4.28)-(4.30) are reduced to the expressions
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u+E2 ) au
_ , 442
T (u2+EzsinZBJ ou (%42)
1 " au
_ , 443
T (u2+Ezsin2BJ op (14
1 1/2 6U
= -, 4.44
" {(uzﬁth)coszB} oL (3.44)
where using Egs. (4.1) and (4.22), we have
o 3 0 0 0 o0
— ==GM| — I (u)—=—|1, (upx* +y*)[-=\1,(u)z* ) |+ —, 4.45
2= 2aM 2,0 2l oy - 2 )|+ (445
2 2 2
N _ 3em |12(u)a(x—+y)+|3(u)‘3(Z ) 22 (4.46)
B 2 o op op
oU
0. 4.47
Y (4.47)

In this case, we have to use Egs. (2.34), (4.26) and additionally

al, 1 al, 1 ol, 1

TR TR0 M T ey A TRty vov=— R

In the oblate spheroidal case one can simplify Egs. (4.39)-(4.41) and obtain the more
familiar gravity vector components in the rectangular coordinate system (X, Y, z) (see

Heiskanen and Moritz, 1967).

4.4. Numerical examples and interpretation

As an example, the numerical values obtained by means of the novel expressions have

been computed for the best-fitting planetocentric triaxial ellipsoid representing the
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Moon. Following Bursa (1994) we took a, = 1737830 m, a, = 1737578 m, b =

1737161 m, GM = 49028x 10* m’s ™ and ® = 2.6616995x 10°s~". All algorithms
are implemented in MATLAB. To emphasize the one-to-one correspondence between
ellipsoidal and Cartesian coordinates eight points were selected each in a different
octant. At these points the gravity potential U and the gravity vector components were
computed using Egs. (4.1), (4.8), (4.20) and (4.28)-(4.30). For the numerical
integrations an adaptive Simpson rule was used and the results are presented in Table
4.1. As one can see from Table 4.1, the values obtained for the gravity potential are
very close to that in Bur$a and Sima (1980), i.e. 2825390 m? /s> which refers to the
actual gravity field of the Moon.

Table 4.1. Numerical results.

o . Gravity
Point Ellipsoidal coordinates botential U Yu Vs Y
(u, B, 1) (m?/s?) m/s®) | (m/s?) | (m/s?)
1 (1737161 m, 30°, 20°) 2821614.40 -1.623946 | 0.000169 | 0.000069
2 (1737261 m, 40°, 120°) 2821597.64 -1.623804 | 0.000158 | -0.000095
3 (1737461 m, 50°, -130°) 2821292.00 -1.623438 | 0.000171 | 0.000121
4 (1737661 m, 60°, -40°) 2820982.21 -1.623070 | 0.000171 | -0.000144
5 (1737361 m, -60°, 45°) 2821483.10 -1.623635 | -0.000162 | 0.000142
6 (1737561 m, -70°, 145°) 2821165.93 -1.623264 | -0.000147 | -0.000169
7 (1737761 m, -20°, -145°) 2820640.20 -1.622824 | -0.000114 | 0.000093
8 (1737861 m, -30°, -65°) 2820592.91 -1.622673 | -0.000135 | -0.000078

The equipotential surfaces of the gravitational field have an interesting geometric

property. When the gravitational potential is constant, i.e. V(u, B, A) = ¢, Eq. (4.8) can

be written equivalently as

2 2 2
2_2+y_2+2_2:1, (4.49)
n
where
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é '\,k/llﬁn ﬁk/lz,(_} 1[k/|3 andk—l —EG—M (450)

Equations (4.9)-(4.12) and (4.50) show that I, |,, |, and k are all functions of u

which, in turn, is a function of the Cartesian coordinates X, Y, z, as described in

Chapter 2. Thus, Eq. (4.49) describes a level surface of an order higher than second.
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5. AN ANALYSIS OF THE LINEAR FIXED

ALTIMETRY-GRAVIMETRY BOUNDARY VALUE
PROBLEM

5.1. Introduction

The determination of the Earth’s external gravity field is usually formulated in terms
of various types of Geodetic Boundary Value Problems (GBVPs) for the Laplace
equation. Most investigations on GBVPs have been motivated by the need to find
more accurate and reliable procedures to handle the variety of available gravity field
related data. During the last thirty years, there has been a great deal of interest in
studying the so-called Altimetry-Gravimetry Boundary Value Problems (AGBVPs).
These take into account that the situation with available terrestrial geodetic data is
different over the sea part and the land part of the Earth’s surface. Three kinds of the
AGBVP have been defined according to the type of input data used and these have
been discussed in several papers. Some of them deal with the formulation of the
problem, as well as with the existence and uniqueness of the solution, such as e.g.
Holota (1983a, b), Sacerdote and Sanso (1983, 1987), Svensson (1983, 1988), Keller
(1996) and Lehmann (1999).

Nowadays, with the establishment of the International Terrestrial Reference Frame
(ITRF) and the development of the Global Navigation Satellite Systems (GNSS), we
can determine very precisely the 3D positions of points on the physical surface of the
Earth, which can be considered as a fixed boundary. In this case, the physical surface
of the Earth is assumed to be known and the problem is to determine the disturbing
potential in the Earth’s exterior using two types of main data: (a) in land areas, we can
have gravimetric data at points with precisely determined 3D positions which yield
surface gravity disturbances, and (b) at seas, we are able to evaluate the disturbing
potential with the help of the satellite altimetry and oceanographic data. This situation
leads to the formulation of a fixed altimetry-gravimetry (mixed) boundary value
problem with a Dirichlet condition at seas and an oblique derivative condition on

lands which is also known as AGBVP-III (Lehmann, 1999).
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In Keller (1996), this problem is treated primarily in its linearized form, using the
concept of weak solutions in functions spaces. The Dirichlet-oblique derivative
problem is formulated for an exterior domain and mapped by the Kelvin transform to
an internal domain. In the sequel, the weak formulation of the problem is studied and
standard theorems of existence and uniqueness are proven. Using various
assumptions, a weak solution is shown to be also a classical solution. In the case of
the spherical and constant radius approximation of the problem, which can be derived
as a special case, the results are much stronger. This Dirichlet-normal derivative
(Neumann) problem was treated by Sanso (1993) and it was found that if a solution is

looked for in a suitable function space then the problem is well-posed.

In this chapter, we analyze the linear fixed mixed boundary value problem in an
unbounded domain representing the exterior of the Earth. The Stampacchia theorem
enables us to prove an existence and uniqueness result for the weak solution to the
problem. Our considerations are based on the work of Holota (1997) for the linear
gravimetric boundary value problem. Also, the linear fixed mixed boundary value

problem was addressed numerically by Cunderlik and Mikula (2009).
5.2. Formulation of the problem

In order to define the problem under consideration, let us consider a three-
dimensional Euclidean space R* and rectangular Cartesian coordinates x,,i=1, 2, 3,
with the origin at the Earth’s centre of mass. We assume that the Earth is a rigid, non-
deformable body and that the system of coordinates rotates together with the Earth
with a known constant angular velocity around the x,-axis. We further assume that
the problem is independent of time, i.e. not only that there are no changes relative to

the Earth but also that there are no changes with respect to the Cartesian coordinate

system. In addition, the space outside the Earth is assumed as being empty. For the

general point x = (x,,x,, x;), the Euclidean norm is denoted by |x| and the Euclidean

inner product of two vectors by ( - ).

The actual gravity potential of the Earth I is composed of the gravitational potential
V' generated by the Earth and the centrifugal potential ® due to the rotational motion
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of the Earth. The normal gravity potential U corresponds to a mathematical model of
the Earth (e.g. a geocentric biaxial ellipsoid) rotating with the same angular velocity
as the Earth. The small difference between the actual gravity potential W and the

normal gravity potential U (known) is the disturbing potential 7 (unknown), so that

T=W-U. (5.1)

In the mass-free exterior of the Earth, the disturbing potential T satisfies the Laplace
equation 47 = 0 (harmonic function) and is regular at infinity. Moreover, the
disturbing potential is the quantity to be determined from the available data on the
Earth’s surface. We assume that for the whole surface of the Earth there is continuous

coverage with data.

With gravimetric measurements at land points with precisely determined 3D positions
provided by the GNSS we can have the magnitude g of the actual gravity vector g =
VW and we can compute the magnitude y of the normal gravity vector y = VU at the

same point, where V it denotes the gradient operator. Thus, we can compute the

gravity disturbance dg, i.e.

og=g-7, (5.2)

where g is corrected for gravitational interaction with the Moon, the Sun and the

planets and so on.

Applying the gradient operator in Eq. (5.1), we obtain

VT =V(W-U)y=VW - VU =g—y=0g, (5.3)

that is, the gradient of the disturbing potential VT equals the gravity disturbance

vector og.

Defining the unit vector fields
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y=-—2 and h=-7, (5.4)

the difference between the directions of v and A, i.e. the plumb line and the ellipsoidal
normal through the same point on the Earth’s surface, is the deflection of the vertical.
If we now neglect the deflection of the vertical, which implies that the directions of

the normals v and 4 coincide, the gravity disturbance is given by
og=g-y==-[vg) - (hy]=-[(hg—(hy]=-(hog). (5.5)
Finally, form the inner product of 4 and Eq. (5.3), we may write
(h-VT)=-o0g. (5.6)

Comparing Eq. (5.6) with Eq. (5.3), we see that the gravity disturbance dg is the

normal component of the gravity disturbance vector dg.

Respectively, in the sea areas, a point P situated on the geoid is projected onto a point
Q on the ellipsoid by means of the ellipsoidal normal A. Expanding the potential U at
P according to Taylor’s theorem and truncating the series at the linear term we get

Uy~ U, +(hVU),N=U, - y,N. (5.7)

Here, N is the geoidal height or geoidal undulation, i.e. the distance between the geoid

and the reference ellipsoid.

Using Eqgs. (5.1) and (5.7) we arrive at

T, =y,N+oW, (5.8)
where
wW=w,-U,. (5.9)
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Since we compare the geoid W, with a reference ellipsoid U, of the same potential

we have W, = U, = U, = W,. Finally, we obtain the well-known Bruns” formula

T, = y,N, (5.10)

which relates a physical quantity, the disturbing potential 7, to a geometric quantity,
the geoidal undulation N (Heiskanen and Moritz, 1967). Geoidal undulations at sea
can be derived through new enhanced mappings of the mean sea surface height of the
worlds oceans, derived from a combination of multi-year and multi-satellite altimetry
data, in combinations with mean dynamic topography (MDT) models which provide
the necessary correction that bridges the geoid and the mean sea surface constraining

large-scale ocean circulation.

For the mathematical model describing this physical setting, let Q < R’ be the
exterior of the Earth whose boundary 0Q is the surface of the Earth. The boundary of
Q is decomposed into two parts as 0Q = 0Q, U 0Q, , where 0Q¢ N 0Q, = . Here

0Q represents the sea part and 0€, the land part of the Earth’s surface. Under the

previous assumptions, the problem is to find a function u (disturbing potential 7) in Q

such that

Au=0 in Q, (5.11)
u= f on 0Q; (sea), (5.12)
(h-Vu)=-203g on 0, (land), (5.13)
u= O(|x|_l) as x| > oo, (5.14)

where f =y,N+oW.

The problem, as formulated above, is a linear fixed boundary value problem with a

Dirichlet condition on the part 0Qg of the boundary and an oblique derivative
condition on the remainder 0Q2, of the boundary. Also, the boundary 0Q divides the

Euclidean space R’ into an unbounded domain Q, the exterior of the Earth, and a
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bounded domain Q' = R* — Q , the interior of the Earth, where Q denotes the closure

of Q (i.e. Q =0QuUaQ ). In the remainder of this paper, we shall continue using the

symbolism #n for the outward unit normal vector of 0Q'.

Equation (5.13) represents an oblique derivative boundary condition because in
general the normal n to the Earth’s surface does not coincide with the direction of the
unit vector & defined by Eq. (5.4). Therefore, the oblique boundary condition is more
suitable than a normal (Neumann) boundary condition.

In this juncture, it is reasonable to make the assumption that

(h'n)>c>0 on 0Q, . (5.15)

This implies that the vector field 4 is non tangential to 0Q, forallx € 0Q, .

Let A, n and a be continuous vector fields on 0Q, , such that

i) =n+ta, (5.16)

which, in turn, leads to the following equivalent formulation of the boundary

condition given by Eq. (5.13)

(nVu)t+(aVou)=-f on 0Q,, (5.17)

where a is tangent to 0Q, , i.e. (a'n) =0o0n 0Q,, V,, denotes the gradient operator

on dQ, and f, = 8g/(h-n). Furthermore, let T(0Q,) be the tangent space of 0Q, .

We can find continuous vector fields {e,,e,} forming an orthonormal basis of the
tangential plane on 0Q, and generating 7(0Q2,). Thus, a = Z; [(h-el. )/ (h-n)] e,

and for each differentiable function, defined on 0Q,, we have V., u =
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z;ei (6u/ 6el.). In Eq. (5.17), the term a-V, can be considered as a perturbation

with respect to the main operator n-V (Rozanov and Sanso, 2003).

Finally, we obtain the following equivalent problem

Au=0 in Q, (5.18)
u= fg on 0Qg, (5.19)
(n"Vu)+(aVyu)=—f, onoQ,, (5.20)
u=0(|x[") as [x| - . (5.21)

5.3. Mathematical background

In this section we briefly present the tools from functional analysis which we used in

order to derive the main results of this chapter.

First, we will assume that Q' is star-shaped domain with respect to the origin, i.e.

every half line from the origin meets 02 in exactly one point. Also, we assume that

Q' is a domain with a C"' boundary, i.e. it is locally the graph of a function whose

derivative is Lipschitz continuous and we can assume that its tangent space 7(0Q) is
well defined, as shown e.g. by Raskop and Grothaus (2006). It should be noted, that a

C"' boundary is a special case of a Lipschitz boundary. For a detailed definition of

Lipschitz boundary, see Holota (1997).

Next, we define the function spaces which play an important role in the treatment of
the problem. C'(Q) is the space of functions, which together with derivatives up to
the order i are continuous on Q. C”(Q) is the space of functions with continuous
partial derivatives of any order and C; (Q2) is the space of C”(Q) functions with
compact support in Q. Finally, L,(0€Q) is the space of square integrable functions on

0Q .
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Following Holota (1997), we work with the weighted Sobolev space W," that is

equipped with the inner product given by

(), = [ “odx+ [ (Vu- V. (5.22)
@] Q
This product induces the norm (u,u),* = |u . W," is the space containing functions

which are square integrable on Q under the weight |x|_2 and have derivatives of the

first order, in a certain generalized sense, which are again square integrable. It should

be noted that harmonic functions with their characteristic regularity at infinity belong

to W,V
Let H be a real Hilbert space with norm || || and inner product ( , ).

The main tool that we will use for deriving an existence and uniqueness result for the
weak solution of the problem is known as the Stampacchia theorem (Lions and

Stampacchia, 1967).

Theorem 1 (Stampacchia). Let 4: H x H — R be a continuous and coercive bilinear

form (not necessarily symmetric), i.e. there exist positive constants ¢, and ¢, such

that
|A(u,v)| < ¢ |u] M VouveH (5.23)
and
Aw) 2 o, M v veH. (5.24)

Let K be a non empty, closed and convex subset of H and F be a continuous linear

form on H. Then there exists a unique « in K such that
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Au,v—u) > F(v—u) vV veKk (5.25)

Note that when K = H, inequality (5.25) is equivalent to A(u,v) = F(v) forallv e H

and this is the result of the well-known Lax-Milgram theorem.
The proof of Theorem 1 can be found in Lions and Stampacchia (1967).

The theorems and lemmas that follow are useful for the purpose of showing the

solvability of the problem at hand.

Theorem 2 (equivalent norms). Let Q be an unbounded domain such that Q' = R’> —
Qisa star-shaped domain at the origin with Lipschitz boundary. Then the norms ||u||1

and

] = (], ) * (526
are equivalent, i.e. there exist positive constants ¢; and C, such that

e, < Jul| < Gy, Voue w". (5.27)
The proof of this theorem is shown in Holota (1997).

For s € R the Sobolev space H**(R™), m € N consists of all functions u e

L,(*R™) such that .[(l + |x|)s|ﬁ(x)|2 dx < 400, where u is the Fourier transform of u.
et

12
This space equipped with the norm ||u||H2 = (J'(1+|X|)S [,(x)|2de becomes a

Hilbert space. Using H**(R™) one can (via local coordinates) define the Sobolev
spaces for functions and vector fields, on 0Q, namely H*’(0Q) and

H**(0Q;T(89Q)), respectively. H /**(8Q) is the dual space of H"**(6Q) and in
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the sequel we shall denote by < f, v> their duality product. Note that, L,(0Q) <
H™2(Q) and if [ € L,(0Q), then (f,v) = LQ fvdo . Finally, H"*(R") is the

subspace of L_(R"™) consisting of functions which have essentially bounded

derivatives in a generalized sense and again, by using local coordinates, one can
define H'”(0Q) and H"”(0;T(0Q)). For more detailed explanations, the

interested reader is referred to Raskop and Grothaus (2006).

Theorem 3 (trace theorem). Let Q be an unbounded domain with Lipschitz boundary.

Then there exists a continuous linear operator Z: W, — H'">?(6Q) such that

Z(u) = ul Vue C(Q)nWD (5.28)
and
1Z@)] 122 ey < 4 [ Vue WD, (5.29)

where ¢, is a positive constant. Z(u) is called the trace of u on 0Q . In the sequel, in

order to simplify the notation we shall use u instead of Z(u). This theorem is explained

fully in Raskop (2009).

Lemma 1. One has that
V,o: H?(0Q) — H 7 (06Q;T(6Q)) (5.30)
is continuous, 1.e. there exist positive constant ¢ such that

||v5Qu||H’]/2'2(0Q;T(0Q)) S ¢ ”u”HV“(aQ) Vue H™ (02). (5.31)

We would like to mention that the proof of this lemma needs at leasta C"' boundary.

68



Chapter 5

Lemma 2. Let u € H"**(0Q) and a € H'”(6Q). Then for a positive constant

c¢(a) we have

”au”H‘/zvz(am S ¢ (a) ||u||H‘/2~2<aQ)' (5.32)
Lemma 3. The following inequality is valid

‘<f’v>‘ < ||f||H’l/2’2(6Q)

|V||H‘/2«2(5Q) Vfe H2 (0Q), V ve H'"? (0Q2) . (5.33)

Lemma 4. For all u, v € H"**(@0Q) and a € H'"(6;T(6Q)) one has that
div,,(a) € L, (0Q) and

3
1.
> (va,,(V qu),) == L divog (@uvds (5.34)

1

The divergence on 0Q is defined by divy, (@) = Y. e, -(6a/e,), where {e,,e,} is

an orthonormal basis of 7(0Q2). This definition is independent of the selected basis.

For the proof of the previous lemmas see Raskop and Grothaus (2006).
5.4. Solvability of the problem

A classical solution of a linear fixed mixed boundary value problem corresponding to

continuous data f,, f, on 0Q,, 0Q,, respectively and continuous vector fields n, a

on 0Q,, is a function u € C*(Q)N C'(ﬁ), which fulfils Egs. (5.18)-(5.20)

pointwise.

In order to allow weak assumptions on coefficients and data, we are interested in

weak solutions. It what follows, we require that @ € H"*(0Q;T(6Q)), fs €
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H"*(Q ¢)and f, € H 12260 . ), where all these conditions are related to the

“regularity” of the boundary (the first one) and the data (the last two).

We define the sets

K={ue wW":Zu)= f; on 0Q,} (5.35)
and
V={ve C*(Q):v=00n oQ,}. (5.36)

Then the set K is closed and convex by the continuity and the linearity of Z,

respectively.

We define the bilinear form for our problem
3

A(u,v) = jg(vu V)dx — Y (va,.(V g 1)) Vuvek (5.37)
i=1

and the functional

Fv) = (f,.v) Vve H? Q). (5.38)
Lemmab5. Let u € K be a solution of the variational inequality (5.25). Then

A(u,v) = F(v) Vvel. (5.39)
Proof. Let u € K be a solution of inequality (5.25) and v € V. Then

Zu + v)=Zu) + Z(v)=Z(u) + v|ms =Z(u) = f
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and thus u = v € K. Setting u + v in the inequality (5.25), results in A(u,v) > F(v)
and setting u — v, it follows that A(u,v) < F(v). Consequently, we have the claimed

equality.

Definition 1. The function u € W, (Q) is called a weak solution of a linear fixed

mixed boundary value problem if u € K and
3
IQ(Vu-Vv)dx — ;<va[,(VmLu)i> = <fL,v> Vvel. (5.40)

Lemma6.Ifu e C* (ﬁ) is a weak solution, then it is a classical solution.

Proof. Since u € C° (ﬁ) is a weak solution we have that u € K, Z(u) = f on 0Q;

and thus u = f; on 0Q(, i.e. showing the validity of the boundary condition given by

Eq. (5.19).

Foru e C? (5) and v € V, by the representation of the dual pairing in terms of

integrals, we have

3 <vai,(VmLu)i> = Lg (a-VaQLu)vdcs and <fL,v> = J.m f,vdo .
=1 L L

1

Hence, Eq. (5.40) becomes

L(Vu-Vv)dx - LQL (a-V . uvds = LQL f,vdo VveV. (5.41)

One can use the Gauss-Green theorem to transform Eq. (5.41) to

JQvAudx + J.m (n-Vu)vdo + .[sz [(@a-Vyu)+ flvdo =0 Vvel. (5.42)
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Since u has to fulfill this for all v € V in particular the equality is valid for all v €
Cy (). Hence, Au =0 in Q (C; () is dense in L, (£2)). Combining this result with
Eq. (5.42) we get

LQ [(n-Vu)+(a-V u)+ f,vds =0 Vovel. (5.43)

Consequently, u has to fulfill also the boundary condition given by Eq. (5.20) and
therefore, u is a classical solution (the restrictions of functions belonging to ¥, on 0Q,

are dense in L, (0Q)).

Using Lemma 3 and (trace) Theorem 3 it follows that

FO)| = [(f,.v)

< ”fl ||H’1/2’2(E)Q) ||V|

H'? (60 < €4 ||fL||H’l/2‘2(6Q) |V||1 Vve W2(1)’ (5'44)

and hence F(v) is a continuous functional on W, .

Using Lemmas 1, 2 and (trace) Theorem 3 we get

|A(u,v)

= ‘L (Vu-Vv)dx — Z3:<V“f : (Vam”)i>‘

< UQ(Vu-Vv)dx‘ +

i<vai9(véﬂLu)i>‘

3
< Jo, M, + 2fva (Vo 0,
i=1

3
< fod, A, + 2 va]
i=1

H'72(0Q) H(VaQL u); HH"/M(@Q)

3
< ol Il + 2@ s o[V,
=

H722(60;T(602))

3
< Ju M, + 2 eseotanl

H'%2(60) u| H'%2(60)

1 b

3
< (1 + szcscé (g, )J ”“”1 ”V
i1
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or
|A(u,v)| < ¢ ||u||l ||v||1 YV ou,ve wh. (5.45)
Hence, A(u,v) is continuous on W, x WV,

In order to apply Stampacchia’s theorem, we only need to show that A(u,v) is

coercive on W,".

Using Lemma 4 and Definition 1 we obtain

_ 2 1 . 2
A,v) = jg|w| dx + LQL div , (@)vdo . (5.46)
Immediately we see that

AWy 2 [ [V dx —% 1], (5.47)

where

1= Lm div , (@)vdo . (5.48)
From the continuous and dense embedding (see Raskop and Grothaus, 2006)
H"2(0Q) c L,(0Q) ¢ H"**(6Q),

it holds that

v

<c ”V”H'/“ (5.49)

L,(0Q) (0Q)°

where c is a positive constant. Thus, we can write the estimate
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1| < saglLo‘diV@QL @] M7 e, < %g?\dime O I [ (5.50)

Moreover, using (trace) Theorem 3 it follows that

1] < supldivg, (@) c” ¢] M- (5.51)
o0,

Combining now the last result with inequality (5.47) and using Theorem 2 (on

equivalent norms), we obtain

A(v,v) 2 (cf —%sup‘divml (a)‘cchj”v”f. (5.52)
Q,
Supposing that
2 2
diveg, @) < 5 (5.53)
‘ cey

we have that 4(u,v) is coercive on W,".

Summing up, we have proved the following theorem:

Theorem 4. Let Q be an unbounded domain and Q' = R* — Q be a star-shaped

domain at the origin with C"' boundary. Further leta € H"*(6Q;T(6Q)) such that

) 2¢2
div oo, (@) < 535 (5.54)

cc

holds on 0Q, , where the constants ¢, ¢3 and c4 are given in inequalities (5.49), (5.27)
and (5.29), respectively. Then for all f; € H"*? (0Qy) and f, € H™*? (0Q))

there exists one and only one weak solution u € W."(Q) of the linear fixed mixed

boundary value problem.
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Condition given by inequality (5.54) has a geometrical interpretation. Generally, the
direction of & does not differ too much from that of n. For example, taking as 0Q the
surface of the geoid, the angle between the vector /& and the vector n can be estimated

by several tens of seconds of arc. Under this assumption we have
diveg, (@) = [2(k, — ke, ). (5.55)

where k, is the mean curvature of the ellipsoid and k,, is the mean curvature of

0Q, (Holota, 1997; Rozanov and Sanso, 2003). Hence, condition given by inequality
(5.54) results in

2
S
2 2"
cc;

<

ke _k(')QL

(5.56)

Lastly, it should be noted that, if 0Q represents the Earth’s surface (though smoothed

to a certain degree) the estimate of div,, («) is a rather difficult problem which

strongly depends on the slopes and curvatures of 0Q, . Typically A is the opposite

direction of the normal gravity and directed fairly close to the normal n to the Earth’s
surface. In turn the magnitude of a is small in the average (apart from some extreme
cases in mountainous areas). In the case that A = n we can put @ = 0 and thus, clearly,
the resulting Dirichlet-Neumann problem has a unique solution. For the geometrical
interpretation, a detailed analysis can be found in Holota (1997) and Rozanov and

Sanso (2003).
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6. AN APPROACH TO THE HEIGHT DATUM

UNIFICATION PROBLEM

6.1. Introduction

For a long time, Mean Sea Level (MSL) has been regarded as the reference surface
for heights. MSL expresses a state of gravitational equilibrium and is generally
determined as the average height of the ocean’s surface measured by long-term sea
level observations in one or several tide gauges (Zhang et al., 2009). However MSL is
not an equipotential surface of the Earth’s gravity field, because in reality, due to
currents, air pressure, temperature and salinity variations, etc., this does not occur, not
even as a long term average. Therefore, different height datums refer to different
equipotential surfaces, and consequently there exist various off-sets between different
local height datums with respect to the chosen “reference surface”. In addition, the
MSL and the geoid are not the same. The geoid describes the irregular shape of the
Earth and is the true zero surface for measuring elevations, since it is an equipotential
surface of the Earth’s gravity field that approximates the global MSL in the least
squares sense. The deviation between MSL and the geoid can vary globally in as
much as £2 m and is often referred to as stationary Sea Surface Topography (SST),
(Ardalan and Safari, 2005). In some oceanic regions, like the equatorial areas, the
assumptions about a stationary SST do not hold, and consequently the marine geoid in
these areas has to be computed separately (in patches) for different zones that cannot
be directly connected. Therefore, what is defined as “zero elevation” in one region is
not the same zero elevation defined in another region, which is why locally defined
height datums differ from each other and need to be inter-connected, e.g. through

GNSS.

Ideally, a global height datum conforming to the modern accuracy standards is
required in order to serve many of the tasks of geodesy today, such as: to study SST at
different tide gauges, construct regional or global geospatial information systems,
monitor global climate changes by measuring long-term MSL variations, reduction in

polar ice-cap volumes, post-glacial rebound and land subsidence studies, compute
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reliable estimates of ocean currents, etc. All of these applications require a global
view of the Earth with measurements not only on land, but over the oceans as well

(Fotopoulos, 2003).

In this chapter, we approach this height datum unification problem through the
determination of potential difference between two (or more) local height datums
based on the linear fixed altimetry-gravimetry (mixed) boundary value problem as
outlined previously. This allows obtaining the quasigeoid (instead of the geoid)
which, although is not a level surface (in continental areas), and therefore, has no
physical meaning, is a computationally convenient reference surface that is

independent of any local height datums and can be regarded as a global height datum.
6.2. Approaches for determining potential differences

In general, there are three main approaches that can be followed in order to determine
potential differences: (i) the classical, (ii) the oceanographic and (iii) the Geodetic

Boundary Value Problem (GBVP) approach.

In the classical approach, potential differences can be determined by spirit levelling
combined with gravity measurements. This involves a process that is repeated in a
leap-frog fashion to produce elevation differences between established bench marks
that comprise the vertical control network in the area of interest. When considering an

arbitrary point P, at sea level and another point P connected to P,, the potential

o

difference between P and P, can be determined as
P P
C=C(P, P,)=W(P,)~W(P)= W, ~W, =~ dW =—| gdn, 6.1)

where C is known as the geopotential number of P that denotes the difference

between the Earth’s actual potential W, = W( P,)) at the geoid and the actual potential

W, = W(P) of the surface on which the point P resides; g and dn denote respectively

the average value of actual gravity and the elevation increment between successive

benchmarks. Being a difference between geopotential values, the geopotential number
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C is independent of the levelling route along which the levelling is run in order to

relate the height of point P to the sea level (at point P)). Geopotential numbers make

possible to estimate the orthometric A and the normal H* height of a point, in the

adopted local height datum, by using the following simple relations

=<, (6.2)
g

H*="=, (6.3)

<O

where g is the mean gravity along the actual plumb line from point P, on the geoid
up to point P on the surface of the Earth and y is the mean value of the normal

gravity from the surface of the Earth down to the quasigeoid along the normal plumb
line. True orthometric heights are never achieved since their computation requires
knowledge of assumptions about the behaviour of g inside the Earth (e.g. due to
variations of the crustal density) where the mass distribution is unknown, and because
it is also impossible to measure actual gravity along the plumb line, inside the Earth’s
topography. Normal heights on the other hand, do not have these problems. Normal
gravity can be calculated at any point without any hypotheses, as it is a simple
analytical function of position depending only on the defining parameters of the
reference level ellipsoid, which generates the normal gravity field. Hence, the normal
height of a point P on the physical surface of the Earth can be interpreted as the height
above the quasigeoid. The quasigeoid is identical with the geoid over the oceans and
is very close to the geoid anywhere else. Its main advantage is that it can be computed
rigorously without the necessity to make any hypotheses about the density distribution
of the topographic masses, which accompanies the task of geoid determination. Once
the quasigeoid is determined, it can be transformed into a geoid by introducing the
desired hypothesis about the density of the topographic masses (Heiskanen and
Moritz, 1967).

In spite of their obvious shortcomings (e.g. being time consuming, costly, laborious

and suffering from problems of accumulation of the errors), this type of definition of
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height datums might be sufficient for applications of local or regional scale but would
cause significant problems, as soon as connections of the height networks of different
countries or continents separated by very wide areas and/or by oceans and unification
of height datums in global scale are concerned (Colombo, 1980; Rummel and

Teunissen, 1988; Xu, 1992).

In the oceanographic approach, geostrophic and steric sea level variation procedures
are applied to the problem of determining the potential difference between two (or
more) points across widely separated oceanic areas. These potential differences on the
sea surface can be estimated from analyses of historical ocean subsurface temperature
and salinity observations and/or inferred, for instance, from satellite altimetry merged
mean sea anomalies (since 1993) and GRACE gravimetry (more recently) or from
tide gauge data (over the past decades). This type of height datum unification is based
on the presumption that the ocean acts as a huge level that can connect the zero points
of the height datums realized by the reference tide gauges. However, the accuracy of
ocean levelling is relatively low, mainly because the phenomena affecting the
measuring processes are very complex and difficult to model, but also due to many
practical drawbacks, such as: the sparseness of ocean data (salinity, temperature,
velocities of ocean currents), the time variability of the ocean, the inadequate
knowledge of the ocean mass changes (e.g. due to change in atmospheric water, land
hydrology and land ice mass), the non-validity of the geostrophic assumption about
ocean currents, the problematic nature of satellite radar altimetry data close to the
coast, and the lack of precise regional or local (i.e. non open-ocean) tidal models

(Ardalan and Safari, 2005; Zhang et al., 2009).

Under the framework of GBVPs, the potential difference between two (or more) areas
can also be applied for height datum unification by introducing the local height datum
discrepancies directly into the GBVPs (Rummel and Teunissen, 1988; Lehmann,
2000; Ardalan et al., 2010). Using gravity measurements and levelling, only potential
differences can be obtained, whereas the absolute value of the geopotential cannot be
obtained at any point with acceptable accuracy. Consequently, the boundary values of
the geopotential must be assumed to be known except for one additive constant that
must be determined by imposing a suitable additional constraint (Sacerdote and

Sanso, 2003). However, these methods require the use of local heights, e.g. in order to
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calculate the gravity anomalies. Furthermore, they can be affected by inconsistencies
in the gravity data coming from different sources, which may have different datums or
processed by inconsistent methods. In these cases, such uncertainties can be

misinterpreted as height datum discrepancies.

This GBVP approach is the most recent one, and since it represents the starting point
of our present work, it is discussed briefly in the sequel, in an effort to highlight what
is the most suitable GBVP formulation for determining the sought potential
differences among various height datums (i.e. local to global, local indirectly to other
local), by estimating the height datum discrepancies as follow up step after the BVP

solution.

6.3. Formulations of geodetic boundary value problems

GBVPs represent a well-established basis of the analysis of terrestrial and satellite-
based geodetic measurements for inference of the gravity field of the Earth, as well as
the quasigeoid or the geoid. The treatment of BVPs has always been used in geodesy
as a suitable framework for determining the Earth’s disturbing potential 7. The
classical theory of the GBVPs originated initially from the works of G. G. Stokes
(Stokes, 1849) and M. S. Molodensky (Molodensky et al., 1962), and was followed,
in recent years, by more complicated formulations attempting to approximate the real
world more closely, while also dealing with the issues of well-posedness (i.e.
existence, uniqueness and continuous dependence of the solution on boundary data).
Depending on the type of data, several BVPs can be defined. However, after
linearization around a suitable approximate solution, all problems are special cases of
a problem for the Laplace equation in the Earth’s exterior. The boundary condition
associated with the GBVPs, in general, has the form of the so-called fundamental

equation of physical geodesy (Heiskanen and Moritz, 1967)

& T =4g, (6.4)

where T is the disturbing potential, y is the normal gravity, 4 is the geometric

(ellipsoidal) height, 0h denotes the partial derivative with respect to the direction of
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the normal plumb line and 4g denotes the gravity anomalies defined on the boundary
surface being considered. This boundary is not the Earth’s physical surface, only one
of its approximations, that is: the geoid, in the case of the Stokes’ approach or the
telluroid -a surface in close proximity (of the order of £100 m) to the Earth’s physical

surface- in the Molodensky’s approach, respectively.

Theoretically, the Stokes’ problem requires the knowledge of reduced (to the geoid)
gravity anomalies which, in turn, requires the availability of levelling and gravity
measurements (i.e. orthometric heights) all over the boundary surface. Respectively,
in the Molodensky’s approach the telluroid must be known a priori in order to reduce
the measured surface gravity anomalies on it, i.e. to compute the corresponding

gravity anomaly on the telluroid as

4g = g(P) — (), (6.5)

where g is the actual gravity at point P on the Earth’s surface and Q is a point on the
telluroid. Hence, in order to compute the normal gravity y at the point Q on the
telluroid one needs the corresponding normal height H*. In practice, as the gravity
anomaly values 4g must be known on the whole Earth for computing the height
anomaly ¢, the length of the ellipsoidal normal between the Earth’s surface and the
telluroid, there are errors introduced in the computation of { because of the off-sets of

the levelling datums.

Let’s consider S to be the Earth’s physical surface and W and g be, respectively, the

actual geopotential and gravity vector on this surface. Then there exists a relation

g=F(S, W), (6.6)

that is, the gravity vector g on S is dependent on the geometry of surface S and the
value of the geopotential /¥ on it, and this dependence is expressed by F which is a

nonlinear operator.

In the Molodensky’s problem the task is to determine S, the Earth’s surface, if g and

W are given everywhere on it. Formally, we have to solve Eq. (6.6) for S
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§=F(@Q W), (6.7)

that is, to get geometry from gravity.

Nowadays, as already explained in the previous chapter, the geometry S is considered

known, and we can now solve Eq. (6.6) for W

W= F,(5,9), (6.8)

that is, to get potential from gravity.

In spite of the similarities between the two approaches, between getting geometry
from gravity or getting potential from gravity, there exists a fundamental difference
between them: Eq. (6.7) solves a free-boundary problem, since the boundary S
covered with boundary data is taken a priori as unknown and “free” to move only in
the vertical direction, so that the information about the normal heights is already used
a priori in order to fix the boundary, i.e. to obtain the telluroid. By contrast, Eq. (6.8)
solves a fixed-boundary problem, since the boundary S is given, so that the realization
of normal heights may be controlled by the independently determined quantities # and

. In mathematical terms, fixed-boundary problems are usually simpler than free ones.

Within the framework of BVP theory, the (quasi)geoid determination problem is more
suitably classified as an altimetry-gravimetry boundary value problem (AGBVP). The
most important relevant formulations of AGBVPs or as they are discussed in the
literature under the shorter name of “Altimetry-Gravimetry Problems” (AGPs) are
summarized in Table 6.1, where besides g and C, another observable at the points of
measurements is considered, the geometric (ellipsoidal) heights /4 determined from
precise GNSS positioning, and o represents, in compact notation, the coordinate pair

or solid angle.
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Table 6.1. Basic formulations of AGBVPs.

Part of the Boundary Value Problem
Treatment of
Earth’s
Parameters AGP-I AGP-II AGP-II1
surface
Known g 0 C g0 C g o h
Land
Unknown h h w
Known o, h, C g o h o, h, C
Sea
Unknown g w g

The type of AGP-I formulation is a favourable approach for global or regional
applications, whereby the ellipsoidal heights /# being used are determined on the sea
surface by satellite radar altimetry, when ship gravity data are not available or their
coverage is poor. The AGP-II approach is often used in local areas close to coastlines
where there is usually poor steric levelling data, but adequate coverage of ship gravity
data and, when geopotential numbers on the sea surface are not available, ellipsoidal
heights 4 are determined on the sea surface by satellite radar altimetry. The AGP-I
and AGP-II are free-boundary problems on land and fixed-boundary problems on sea.
It has been pointed out in the geodetic literature, e.g. by Lehmann (2000), that the
treatment of AGPs in spherical and constant radius approximation leads to
mathematically well-posed problems in the case of the AGP-I and AGP-II, while the
AGP-I may exhibit features of ill-posedness in special situations. Well-posedness of
AGPs is one of the most exciting (and still largely unsolved) problems in geodesy

which is usually considered for mathematical analysis.

The AGP-III formulation is currently of interest for hybrid applications whereby, in
the sea areas ellipsoidal heights 4 are determined by satellite altimetry, replacing sea
gravity there, and on land, observed ellipsoidal heights /4 are determined by GNSS,
replacing geometric levelling data. In contrast to the AGP-I and AGP-II, the AGP-III
is a fixed-boundary problem. Furthermore, this is generally a well-posed BVP, as
shown in the previous chapter. Overall, the treatment of a fixed AGP formulation is
considered as the most important for the near future, since, in practical terms, this

would mean that height information on land could be provided entirely by space
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techniques rather than by the costly and time consuming conventional geometric

levelling procedures.

In summary, considering the distinct features of the AGP-III, that is, being a fixed
BVP, suitable of utilizing the data from the modern geodetic technologies (i.e.
mixed), and being also a well-posed BVP, our approach to the height datum

unification problem is based on the variant formulation outlined in the next section.

6.4. A variant formulation of a fixed mixed BVP

Realization of a unified global height datum, based on the joint processing of
terrestrial and satellite geodetic data, admits a variant formulation of the linear fixed
mixed boundary value problem. The linear fixed mixed BVP can be mathematically

described for each part of the Earth’s surface by using the following form

AT=0, in the 3D space outside the Earth’s physical surface
T=T*+ oW, on sea
or =-0g, on land
Oh
1
T= 0[—}, asr — +o
r

where A is the Laplace operator, 7 is the (unknown) disturbing potential, og = g — y
denotes the gravity disturbances that correspond to difference between the gravity
data on land (i.e. on the Earth’s surface) and the normal gravity from a reference
ellipsoid (e.g. GRS80) that can be computed at the same point by knowing its
ellipsoidal height; 7* represents “observed” values for the disturbing potential (e.g.
from satellite altimetry, ship-borne gravimetry, etc. through the application of the
well-known Bruns’ formula) which requires the dynamic ocean topography to be
removed e.g. by ocean levelling; oW is a perturbation of the Dirichlet boundary

condition which, in this case, represents the datum disturbance parameter 6W = W, —
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U,, that is, the difference between the actual (unknown) potential and the normal

potential on the surface of the reference ellipsoid (which is also used in the

linearization process).

In practice, since W, is not precisely known, the value U is not necessarily equal to
the traditionally used theoretical or approximate values of W . According to Sénchez
(2008), the continuously improving modern geodetic techniques, especially those
involving the precise determination of geometrical coordinates by GNSS positioning
and satellite altimetry, and the accurate gravity field models provided by the new
satellite missions, can now facilitate the accurate estimation of a suitable /¥, value by
evaluating powerful theoretical approaches that 30 years ago were not applicable in

practice. In short, the evaluation of 6/ can become part of the problem, and

numerically a value for it can be obtained using, for instance, the approach shown by

Cunderlik and Mikula (2009).

6.5. Outline of proposed method

Based on the previously described AGP formulation, our proposed realization of the
height datum unification method can be explained with the simple example illustrated
by Fig. 6.1 which shows two equipotential surfaces defined by reference stations

(fundamental stations / and /) in the two local height datums 7 and 77, respectively.

As long as we select the same reference ellipsoid, the quasigeoid determined by this
method would make possible to establish a reference surface that contains middle and
high frequency height components, but without reference to any local height datums.

Therefore, the height anomalies {, as obtained from the solution of the previously

described boundary value problem can be regarded as a “global” height datum.

On the other hand, let us assume that in the local height datum /, for an arbitrary point

A we know its normal height H ;. The local height anomalies {,, can be obtained

by a combination of GPS/GNSS and levelling data
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CA,I - hA o HA,I > (69)

where 4, denotes the ellipsoidal height obtained from GNSS procedures and H

corresponds to the normal height from levelling based on the local height datum /

involved.
—A

’
Equipotential | /

Il Hs,i

Hai\I  wmsL

R

Equipotential Il
ha \ hs

v (Quasi)geoid

A ¢!

Ellipsoid

Figure 6.1. Height datum problem.

If common ellipsoidal parameters are adopted for the computation of both local and

global height anomalies, we obtain the following equation
OW, =Curvu—CaoVa = (é’A,I —Cao )VA =0, V4 (6.10)

where 6 W, is the potential difference between the global and local height datum 7/ and
{ 4o 1s the height anomaly for point 4 as obtained from the solution of the BVP. Note
that, local height anomalies (,, and the height anomalies {,, must correspond to

same point 4 on the Earth surface. Similar equations to Egs. (6.9) and (6.10) hold for
an arbitrary point B on local height datum /1.

Considering the case of two local height datums, if we calculate their datum potential

differences to the global datum individually, using Eq. (6.10), the potential difference

between two local height datums shall be given as
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W, -w, = 5W[,[1 = 5CA,I Ya— 553,1] VB> (6.11)

where W, and W, represent the potential of the respective local height datums / and

Il, oW, is the potential difference between the two local height datums and J6¢

and d(,, represent the height differences between global height datum and local

height datum at points 4 and B, respectively.

In practice, this process could be applied to many points on the local height datum /,
in order to estimate a mean value d/, (the potential difference between the global

height datum and the local height datum /) and its standard deviation. Similarly, the

process could be applied to many points on the local height datum 7/, in order to
estimate a mean value 617, (the potential difference between the global height datum
and the local height datum /) and its standard deviation. Finally, we can estimate the
potential difference 51/7,,,, between the two local height datums 7 and //. This same
process can be applied for many local height datums, i.e. by applying Eq. (6.10), and
subsequently, the mutual relation between any pair of local height datums can be

carried out by applying Eq. (6.11). Therefore, a full unification can be realized in this

truly integrated way.
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{. CONCLUSIONS AND RECOMMENDATIONS

7.1. Conclusions and summary of contributions

In this thesis, various fundamental geodetic problems were extensively studied, in the
framework of boundary value problems and using an ellipsoidal geometry. The main
conclusions resulting from this research and a summary of contributions are as

follows:

In Chapter 2, the ellipsoidal coordinate system is presented. It is shown that the
needed one-to-one correspondence between ellipsoidal and Cartesian coordinates of
points in space can be obtained in two ways. From Egs. (2.16)-(2.18), in order to
determine a point in space we need to know not merely the values of its coordinates p,
u and v, but the signs of various quantities as well. By contrast, from Egs. (2.27)-
(2.29) for the determination of a point we only need to know the ellipsoidal
coordinates (U, B, A). This underlying property of the transformation is due to the
trigonometric functions which are elementary and simple, instead of the elliptic and
theta functions which, as shown in the literature, are used for many similar problems.
Furthermore, expressing the transformation in terms of ellipsoidal parameter u,
ellipsoidal latitude B and ellipsoidal longitude A is more relevant to applications
concerning celestial bodies. Also, a way to compute the ellipsoidal coordinates from

the Cartesian coordinates of a given point is presented.

In Chapter 3, the geodesic problem on an ellipsoid is solved as a boundary value
problem. From its solution, the ellipsoidal coordinates at any point along the geodesic
can be determined, making this method a convenient approach for plotting a geodesic
between two given points on an ellipsoid. For a biaxial ellipsoid, the numerical tests
show that the solutions practically agree with Vincenty’s solution. Hence, our method
can be used to validate Vincenty’s method and, in addition, to provide an accurate
solution to the geodesic problem even in extreme cases, such as between points nearly

antipodal to one another.
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In Chapter 4, new analytical expressions of the gravity field due to a triaxial ellipsoid
of constant density are presented. Ellipsoidal coordinates (u, B, A) give the possibility
to obtain general expressions applicable to an ellipsoidal or spheroidal body. The

resulting elliptic integrals can be computed using numerical methods.

In Chapter 5, Stampacchia’s theorem gave us the possibility to obtain existence and
uniqueness of a weak solution of our linear fixed mixed boundary value problem. As
a consequence, via Theorem 4 we can solve the mixed problem for more general
boundaries (not only for spherical and ellipsoidal boundaries) and for a broader set of

functions.

In Chapter 6, we propose the use of a fixed mixed BVP for attacking the classic
height datum unification problem. The main advantage of this approach is that it is
independent of any local height datum and makes use of all modern geodetic
measurements (e.g. satellite altimetry at sea and GNSS-based geometric heights on
land). The main outcome of the method is the potential differences between each local
height datum and the global height datum realized through the solution of the
aforementioned BVP that leads to the estimation of the quasigeoid. A comparison of
potential differences from different height datums will then yield information on their

relative vertical positions.

The accomplishments and contributions of this study with regard to the

aforementioned geodetic problems are six fold and summarized as follows:

I) For the ellipsoidal coordinates introduced by Tabanov (1999), we have given the
geometrical interpretation. We have presented a way to compute the ellipsoidal from
the Cartesian coordinates. Also, we have expressed the Laplace’s equation in these

coordinates (Panou, 2014).

IT) We have treated the geodesic problem on an ellipsoid as a boundary value problem

(Panou, 2013; Panou et al., 2013a).
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IIT) We have given a method for solving the geodesic problem for an ellipsoid by
directly integrating the system of ordinary differential equations for a geodesic

(Panou, 2013; Panou et al., 2013a).

IV) We have developed a general formula for the gravity field due to a homogeneous

ellipsoid, oblate spheroid and sphere (Panou, 2014).

V) We have analyzed the linear fixed altimetry-gravimetry boundary value problem
with respect to the existence and uniqueness of the solution, using Stampacchia’s

theorem (Panou et al., 2013b).

VI) We have proposed the solution of the linear fixed altimetry-gravimetry boundary
value problem for solving the height datum unification problem (Panou and

Delikaraoglou, 2013).

7.2. Future works

In geodetic applications, it is very useful to connect the ellipsoidal coordinates with
the geodetic (planetographic) coordinates on a triaxial ellipsoid. Such a connection
between ellipsoidal and geodetic coordinates in the oblate spheroidal case has been
presented by Featherstone and Claessens (2008). Finally, by setting u = b in the
transformation (2.27)-(2.29), the resulting parameterization of the ellipsoid (3.1) may
be useful in many geometrical applications, such as the derivation of ellipsoidal map

projections and the determination of other characteristic curves on an ellipsoid.

The presented method for solving the geodesic problem on a triaxial ellipsoid does
not include some special cases, which warrant further study. These are: a) geodesics
having a length that exceeds the limit of Eq. (3.49), such that there are more than one
between the given two points and the shortest path must be determined; b) geodesics
that pass between the umbilical points (f = £ 90°); and c) the umbilical geodesics (see
GeographicLib). Also, the method uses ellipsoidal coordinates because these
constitute the orthogonal set of parametric curves on a triaxial ellipsoid. On the other
hand, in the geodetic applications, the geodetic coordinates are used. Therefore, there

1s a need for a transformation between the two sets of coordinates.
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The theory presented for the gravity field due to a homogeneous ellipsoid can be
extended in many respects. One can obtain expressions for the gravity field in the
interior of a triaxial ellipsoid, homogeneous or composed of confocal ellipsoidal
shells of different density. In addition, the use of the ellipsoidal coordinates (u, B, A)
allows the separation of variables in Laplace’s equation, so one can formulate several
boundary value problems, like the gravity field of a level triaxial ellipsoid. Also, it is
possible to transform other expressions of the potential theory, which involve the
ellipsoidal coordinates (p, W, v), to the coordinates (U, B, A) using the substitutions
(2.35). This gives the opportunity to apply mathematical tools on a triaxial ellipsoid
(e.g. ellipsoidal harmonics) to the case of an oblate spheroid, which is traditionally

related to the shape of the Earth.

In the analysis of the linear fixed altimetry-gravimetry boundary value problem, we
have used Stampacchia’s theorem. Its main advantage is that allows us to treat
directly the mixed boundary value problem, therefore it can be used in similar
geodetic problems of mixed type (such as the Dirichlet-Robin problem). In addition, it
can be used for bilinear forms which are not necessarily symmetric, as in the case of
our problem. Finally, it should be mentioned that the regularity of the data and the
resulting improvement of the solution remains an important issue that needs further

attention.

The author hopes that the developments presented in this work will direct new
research into the various aspects dealing with the geodetic use of a triaxial ellipsoid.
Also, the generalization of geodetic solutions from a spherical or spheroidal geometry

to ellipsoidal geometry would present a challenge to the global geodetic community.
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APPENDIX

A.1 Triaxial case
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Second-order partial derivatives:
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Second-order mixed derivatives:
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A.2 Biaxial case

In the biaxial case where a, = a, =aie., E, = E, = Eand E, =0, Egs. (A1)-(AS)

are written as

2 .
4B _ asin2p (A6a)
df E“cos’B
JOLA (A6b)
dn

104



_d’B _2a’sin’ 2 N 2a’ cos 2P

B”
dp> E’cos’p  E’cos'P
2
8
dA

First-order partial derivatives:

E - _pg cos’B—BE”sin2p

E,=—=0
RS
Gy zﬁz—AEzsinm
P
G, 6Ly
O\

Second-order partial derivatives:

-
Eﬁﬁ = 2{5 =B"E?cos’ [3—2B'E2 sin 23 —2BE? cos 23
-  0'E
E, = =0
o
—  0°G )
Gy = e =-2AE" cos2p
— 0°G
G, = =0
%

105

(A7a)

(A7b)

(A8a)

(A8b)

(A8c)

(A8d)

(A9a)

(A9b)

(A9c¢)

(A9d)



Second-order mixed derivatives:

Ey = i(gj = Q(EJ =E, =0 (A10a)
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