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Abstract

The main purpose of this diploma Thesis was the design of an adaptive load control

system on a marine diesel engine, in the powertrain facilities in LME. Control was

applied on the outlet analog water valve of a 1.2 MW water brake dyno, coupled to

a 448 kW marine diesel engine, during transient low load operation. Control of water

brake’s fill level results in control of applied torque (load) to the engine shaft. The type

of adaptive controller chosen for the implementation of load controller was Combined

Model Reference Adaptive Control (CMRAC), a combination of direct and indirect

MRAC (Model Reference Adaptive Control). Gradient system identification algorithm

was used for water brake system plant parameters estimations. Both plant parameters

and controller parameters estimations were used for the construction of the control

command to the analog valve.

Results from experimental evaluation of MRAC and CMRAC proved that both

controllers were unstable in the presence of nonlinearities and measurement noise of a

complex process like that of the water brake. System response to control command was

oscillatory and control error did not converge to zero. System identification algorithm

overestimated water brake plant parameters leading to overestimation of controller pa-

rameters. Finally, the use of dead-zone robustness technique, so as to eliminate response

oscillations, and of proportional gain, so as to decrease control law values, led the final

experimental test of a MRAC load control system to successful performance with good

stability and generated control error converging to zero. Experimental evaluation of

controllers and system identification algorithms’ stability and convergence properties

were also carried out using a laboratory device and computer simulation. All of the ex-

perimental and computer simulation trials were implemented using MATLAB/Simulink

and dSPACE Rapid Prototyping Environment.
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Nomenclature

α Constant used for the creation of the adjustment gain γsl

β Constant used for the creation of the adjustment gain γsl

∆ Size of the dead-zone

ϵ Identification error (used in recursive algorithms presentation)

γ Adaptation gain

γsl Adjustment gain used for sequential learning algorithm implementation

ϵ̂ Identification error

θ̂ Vector of estimated model parameters using recursive least squares algorithm

θ̂0 Initial value of estimated parameters vector

θ̂iv Vector of estimated model parameters using instrumental variable algorithm

b̂p Plant parameter estimation

ŷ System’s output signal estimation

Λ Controller design constant

λ Forgetting factor

ω1 Control sensitivity vector

ω2 Control sensitivity vector

ω1 Filtered control sensitivity vector

ω2 Filtered control sensitivity vector

θ Unknown parameters vector
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ϖ Filtered internal signals vector

e Noise vector

uc Filtered control law signal

x Data vector

yp Filtered response of the plant

ϕθ0 Controller parameter error

ϕθ1 Controller parameter error

ϕθ2 Controller parameter error

ϕθ Controller parameter error

ϕk Controller parameter error

θ Controller parameter

θ0 Controller parameter

θ1 Controller parameter

θ2 Controller parameter

ϖ Internal signals vector

ϑ Controller parameters vector

A Output signal polynomial

am First order reference model parameter

ap First order plant parameter

am1 Second order reference model parameter

am2 Second order reference model parameter

ap1 Second order plant parameter

ap2 Second order plant parameter

B Input signal polynomial

bm First order reference model parameter
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bp First order plant parameter

bm0 Second order reference model parameter

bp0 Second order plant parameter

C Noise polynomial

e System’s random noise signal

ec Control error

ei Identification error

ek Closed loop estimation error

eθ0 Closed loop estimation error

eθ1 Closed loop estimation error

eθ2 Closed loop estimation error

eθ Closed loop estimation error

h Controller design constant

I2 Unitary diagonal matrix 2x2

I3 Unitary diagonal matrix 3x3

I21 Unitary column matrix with two rows

I31 Unitary column matrix with three rows

I41 Unitary column matrix with four rows

J Sum of squares of identification errors

k Controller parameter

kp Second order plant parameter

km Second order reference model parameter

n Total number of estimated parameters

nb Plant parameter error

Nc Normalization factor
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Ni Normalization factor

nα1 Plant parameter error

nα Plant parameter error

nβ Plant parameter error

na Plant parameter error

nkp Plant parameter error

na Output signal polynomial’s order

nb Input signal polynomial’s order

P Covariance matrix

P0 Initial value of covariance matrix P

Q Polynomial used to generate the instrumental variable

R Polynomial used to generate the instrumental variable

r Reference input signal

u System’s input signal

uc Control law signal

V Instrumental matrix

v Instrumental variables vector

X Data matrix

y System’s output signal

yi Estimated plant’s response

ym Response of the reference model

yp Plant’s response signal

z Instrumental variable

Z41 Zero column matrix with four rows

x0 Initial value of data vector
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v0 Initial value of instrumental variable vector

Z21 Zero column matrix with two rows



Chapter 1

Introduction

1.1 Problem Description

The main purpose of this diploma Thesis is the design of a Combined Model Reference

Adaptive Controller (CMRAC), as a load control system of a marine diesel engine in

the powertrain facilities in LME. The CMRAC is applied on the outlet analog water-

valve of a Froude-type water brake, a device used for testing of engine under rapid

speed and torque transients. Control command is supplied to the outlet analog water

valve, through an electronic-pneumatic transducer, which converts the electric signal

to proportional air quantity as supply to the valve. The control problem is to achieve

the application of requested torque (loading) to the powertrain. The desired engine’s

torque is adjusted by the tuning of water flow through water brake, using a closed-loop

control system with torque reference input. Water brake controller has to operate as a

servo for tracking torque changes. This simulates a propeller along a propeller curve,

with the torque being proportional to the square of speed.

Combined Model Reference Adaptive Controller (CMRAC) is a combination of

direct Model Reference Adaptive Controller (direct MRAC) and indirect Model Refer-

ence Adaptive Controller (indirect MRAC). The innovative characteristic of CMRAC

algorithm is that control law creation is dependent both on control parameter estima-

tions, as in direct MRAC, and on plant parameter estimations, as in indirect MRAC.

Coupling between direct and indirect schemes is done by the creation and use of the so-

called closed loop estimation errors, which are additionally used for the creation of the

control law. It is considered that if both direct and indirect MRAC are used together,

the response of closed loop control system is improved in terms of speed, accuracy and

robustness.

The indirect part of the CMRAC designed can be implemented by any system iden-

tification algorithm appropriate for the identification of the system plant to be con-

14



1.1 Problem Description 15

trolled. This is one of the biggest advantages of CMRAC. Three different identification

algorithms were used for the purposes of this diploma Thesis, least squares algorithm,

instrumental variables algorithm and sequential learning algorithm. So, three different

versions of CMRAC were designed

� CMRAC using recursive least squares identification algorithm (CMRAC-RLS)

� CMRAC using recursive instrumental variables algorithm (CMRAC-RIV)

� CMRAC using sequential learning algorithm (CMRAC-SL)

Performance of system identification and control algorithms designed was evaluated

using a heat exchanger experimental device at LME. The main purpose of these ex-

perimental trials was to control the air temperature inside a plastic tube close to the

reference value. Many experiments were performed so as to analyze the advantages and

disadvantages of the controllers designed, as heat exchanger device is a good simulator

of a real process with features like nonlinearities, external disturbances, measurement

noise, etc. In addition, experience related with data acquisition and tuning of control

algorithms was gained.

System plant output signal and reference input signal, which is either equal to the

reference signal of the closed-loop control system or to an external reference signal,

in open loop, are the required by the system identification algorithm data to estimate

system plant parameters. Plant parameters estimations and the difference between

the system’s real output signal and system’s estimated output signal (identification

error) are the identification algorithm ”products” required for the implementation of

CMRAC.

Heating and cooling the airstream, processes taking place during the operation of

heat exchanger, can be mathematically modelled by a first order differential equation

with acceptable accuracy. Therefore, heat exchanger CMRAC algorithm was setup for

a first order plant. Air heater provided a safe environment prior applying control and

identification algorithms on a 450 kW engine powertrain. Water brake plant was math-

ematically modelled by a second order differential equation giving adequate accuracy

for controller design. In turn, water brake CMRAC algorithm was setup for a second

order plant. With this information and trying to keep the CMRAC algorithm simple

enough, only system plant and reference model of unity relative degree were used. As

a result, both system identification and control algorithms were designed in order to

identify and control a system plant of unity relative degree, respectively. Obviously,

better performance can be achieved using non-linear model based controllers as the

actual plant may be infinite dimensional, nonlinear and its measured input and output
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may be corrupted by noise and external disturbances. The aim of this Thesis, though,

is to detect the capabilities and limitations of CMRAC in order to define its range of

applicability and orient a further development for applications in powertrains.

Adaptation gain is one of the most important design parameters for adaptive con-

trollers performance. It is the design parameter most difficult to tune and even a very

small change in its value may turn a control system from stable to unstable.

Input signal of a system identification algorithm, used for the estimation of system

plant parameters, is the most important design parameter for its satisfactory perfor-

mance. Frequency, amplitude and rate of change are the basic tuning characteristics of

the input signal which must be adjusted so as not to excite system dynamics of higher

order and keep the latter close to linear operating ranges. Moreover, input signals

used by identification algorithms must be persistently exciting, a property essential for

the robustness of the estimator and for the convergence of plant parameters to their

nominal values.

As most of the control systems designed for real processes applications, a discrete

time version of CMRAC was designed for the purposes of this diploma Thesis as it

is more suitable for implementation in practice than are the corresponding continu-

ous time algorithms. In discrete time versions of CMRAC, plant parameters estima-

tions and controller parameters estimations are continuously adjusted through differ-

ence equations. This avoids algebraic problems arising from the inversion of matrices

containing parameter estimations.

Robustness of an adaptive controller is a requirement for the satisfactory perfor-

mance of an adaptive control system when applied on a real process. Persistent ex-

citation, of the signals used by the control algorithm to estimate control parameters

(reference input signal and system’s output signal), is required for a robust CMRAC.

When these signals are not persistently exciting and measurement noise is present, con-

trol parameters cannot converge and the control system can be led to sudden instability

and failure. Dead-zone robustness technique is used so as to eliminate degradation of

CMRAC performance whenever the signals used for producing control parameter esti-

mations are losing their persistently exciting properties.

1.2 Literature Search

Information related with computer simulations and experimental performance of water

brake under closed-loop control mode, as part of an internal combustion engine test

bench, is referred to [6], [11], [14], [9] and [10].

Information required for the design of all the system identification algorithms used
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was found in [16] and [12]. Important information relevant to tuning and troubleshoot-

ing of system identification algorithms was also found in [16].

A Combined Model Reference Adaptive Control scheme was firstly developed by M.

Duarte and K. Narendra and is presented in [3]. Basic mathematical equations used for

the design of CMRAC presented in this diploma Thesis were drawn from [3]. Further

development and applications of CMRAC are presented in [2], [4] and [5].

Basic features of adaptive control theory and its stability were found in [13], [12],

[7] and [1]. Application of a simple feedforward adaptive controller for temperature

control of a heat exchanger is presented in [17].

1.3 Water Brake Facility at LME

Torque

Controller

Torque ref

Figure 1.1: Water Brake at LME

Hydraulic dynamometers [6], [11], [14], [9], [10] have been for a long time the pre-

ferred device for testing of engines under rapid speed and torque transients, particularly

in the area of high power internal combustion engine testing, due to their high torque

absorption capacity per unit rotational inertia. The typical setup of an internal com-

bustion engine test bench equipped with a water brake consists of an IC engine as the

device under test and the brake simulating the load. The engine speed nE , the dy-

namometer speed nD and the dynamometer torque TD can be measured. The desired

engine speed and torque set points constitute the inputs of the test bed.
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The water brake at LME (Figure 1.1), type 9n 38F, is manufactured by AVL Zoellner

GmbH and has a load capacity of 1200 kW, with maximum speed 4000 rpm. It is

coupled to a CATERPILLAR 3176B marine diesel engine, with power 448 kW at 2300

rpm. A pump supplies water to the water brake whose fill level and consequently load

is controlled by a water outlet valve, operated under a closed loop control electro-

hydraulic servo system. Applied torque by the water brake is measured by a load cell

installed on the arm of the dynamometer. The load cell signal is transmitted to a

load cell amplifier, with a 0-10 V signal range for 0 - 5000 Nm. Control command is

supplied to the outlet analog water valve, through a electronic/pneumatic transducer,

which converts the electric signal to proportional air quantity as supply to the valve.

A simplified diagram of water brake’s controller setup is shown in Figure 1.2.

CATERPILLAR 3176 B
Diesel engineWater brake

ZOELLNER

Pen = 445 kW
N = 2300 rpm

Pwb = 1200 kW
N = 4000 rpm

ECU

Water tank

Supply pump

Water brake
controller

Freq. inverter

Q = 30m3/h

H = 32m
N = 2930rpm

Tref

Load cell

Analog valve

Torque
Measurement

I/P
Transducer

Electric Signal

Air

Water Outlet

Marks

Figure 1.2: The complete control setup at the powertrain Facility in LME

The water brake can be divided into two essential parts, as presented in [14] the

rotor driven by the engine to be tested, consisting of the turbine wheel and shaft,

and the stator unit composed of the housing and the supply. In contrast to torque

converters and clutches (they are based on the same working principle), a water brake

has only one rotating part, resulting in 100% slip between the two units and thus a

large thermal impact on the working fluid.

The hydraulic dynamometer working compartment consists of special semi-circular

shaped vanes cast into stainless steel rotor and stators. Water flowing in a toroidal

vortex pattern around these vanes creates a torque reaction through the dynamome-

ter casing which is measured by a precision load cell. The power absorbed by the

dynamometer is carried away by the water in the form of heat.

Cross sections of water brake and water output valve are presented in Figure 1.3
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and in Figure 1.4 respectively.
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Figure 1.3: Cross section of water brake



1.3 Water Brake Facility at LME 21

Figure 1.4: Cross section of water output valve
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1.4 Heat Exchanger Experimental Device

Temperature

Controller

Temperature
ref

Figure 1.5: Heat Exchanger Experimental Device at LME

The heat exchanger experimental device at LME is an airstream heating system

that consists of

� A blower which operates at a constant speed and circulates an airstream along a

plastic tube.

� A heating electrical resistance, with power 2000 W.

� An actuator consisting of power electronics which heats the airstream by applying

voltage across the resistance.

� Two thermocouple sensors, placed close to and far from the heating resistance.

� A third thermocouple placed at an adjustable distance from the resistance, thus

allowing to investigate time delays in temperature measurements.

� A data acquisition card model PCI-6221 from NATIONAL INSTRUMENTS,

placed in the PCI bus of the control computer, used for the implementation of

the control system experimental tests.

Data processing and digital control system implementation were performed using

MATLAB/Simulink.

The heat exchanger experimental device was used both for system identification

algorithms’ performance evaluation and for performance trials implementation on the

various controllers designed. The device was designed and implemented by Dr. G.

Papalambrou at LME and is shown in Figure 1.5.



Chapter 2

Adaptive Control and System

Identification Theory

In this chapter both adaptive control and system identification theory basics, used for

the purposes of this Thesis, are being presented. Mathematical equations of control

and identification algorithms are also provided. Furthermore, the main objectives of

adaptive control are presented so as the choice of this type of control can be justified.

2.1 Adaptive Control

The word adapt means to change (oneself) so that one’s behaviour will conform to new

or changed circumstances. Adaptive control is a control technique designed to contin-

ually adjust the changing controller parameters in the presence of uncertain variations

in plant parameters. It differs from an ordinary controller in that the controller pa-

rameters are variable and there is a mechanism for adjusting these parameters on-line

based on signals in the system. Its basic objective is to find the feedback control law

that changes the structure and the dynamics of the system so as to maintain stable

performance despite the changes occurring at its functional characteristics during its

operation.

The way the parameter estimator (adaptive law) is combined with the control law

gives rise to two different approaches, direct and indirect adaptive control. The type

of adaptive controller designed as a result of this Thesis is Combined Model Reference

Adaptive Control (CMRAC) [3] which is a combination of Direct Model Reference Adap-

tive Control (MRAC) [13], one of the most popular approaches for designing adaptive

controllers, and Indirect Model Reference Adaptive Control [12] .

23
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2.1.1 Model Reference Adaptive Control

A Model Reference Adaptive Control system (Figure 2.1) is composed of four parts

� a plant which parameters are usually unknown

� a reference model for specifying the desired output of the control system

� a controller (Figure 2.2) which provides a control law containing adjustable pa-

rameters and

� an adaptation mechanism for the update of adjustable parameters

Reference Model

Controller Plant

Adaptation Law

r

ym

uc y ec∑
−

+

Figure 2.1: A Model Reference Adaptive Control system

The plant is assumed to have a known structure but its parameters are unknown.

For linear plants, as those this Thesis deals with, this means that the number of poles

and zeros are known but that the location of these poles and zeros are not.

A reference model is used to produce the ideal response of the adaptive control

system to the input signal. It is necessary in order for the adaptation mechanism to

adjust controller parameters in the proper direction. Choice of the reference model is

part of the adaptive control system design.

The adaptation law created by the controller searches for parameters such that the

response of the plant under adaptive control becomes the same as that of the reference

model, i.e, the aim of the adaptation mechanism is to make the tracking error converge

to zero.

The objective of MRAC is to create the feedback control law that changes the

structure and dynamics of the plant so that its input/output properties are exactly

the same as those of the reference model. Matching between plant and reference model

responses guarantees that for any given reference input signal, the tracking error, which

represents the deviation of plant’s response from the desired one, converges to zero with

time. There are two well-known versions [7], [12] of Model Reference Adaptive Control
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Wm(z)

Wp(z)

θ(t)

k(t)
∑ ∑

X

Integrator

Integrator

−γsgn(bp)
−γsgn(bp)

X

−

+

+

+r(t)

ym(t)

y(t) ec(t)uc(t)

Figure 2.2: Structure of Model Reference Adaptive Controller

� Direct Model Reference Adaptive Control (direct MRAC)

� Indirect Model Reference Adaptive Control (indirect MRAC)

In direct MRAC the plant model is parameterized in terms of the unknown con-

troller parameters that are estimated directly using all the information available from

the plant at a certain moment without intermediate calculations involving plant pa-

rameter estimates. Control parameters are directly adjusted from on-line measurements

to minimize the deviation between the plant output and the reference model output

(control error). A direct MRAC system is shown in Figure 2.3.

Reference Model

Controller Plant

On-Line

∑

+

−

r

r

uc y

ym

ec

Parameter Estimation

Figure 2.3: A Direct MRAC system

In indirect MRAC the parameters of the plant model are estimated dynamically

on-line using measured plant input-output information from the system. At every

instant of time, assuming that the estimates represent the true values of the plant

parameters, the control parameters are computed by solving certain algebraic equations

to achieve desired overall system characteristics. The form of the control law and

algebraic equations is chosen to be the same as the respective ones that could be used
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to meet the performance requirements for the plant if its parameters were known. An

indirect MRAC system is shown in Figure 2.4.

Reference Model

Controller Plant

On-Line Parameter Estimation

Intermediate Calculations

∑

ym

r

y

ec

+

−

uc

Figure 2.4: An Indirect MRAC system

The principle behind the design of direct and indirect model reference adaptive con-

trol is that the design of the controller treats the estimates of the controller parameters

(direct MRAC) or of the plant parameters (indirect MRAC) as if they were the true

parameters. This design approach is called certainty equivalence [7]. The idea behind

the certainty equivalence approach is that as the parameter estimates converge to the

true ones, the performance of the adaptive controller tends to that achieved by the

respective one in the case of known parameters.

2.1.2 Combined Model Reference Adaptive Control

Combined MRAC is an approach to model reference adaptive control based on a com-

bination of direct and indirect MRAC. The controller structure is identical to that used

in the direct method, but the algorithm used to update the controller parameters de-

pends both on the control error as in direct MRAC and on the plant’s model parameter

estimations as in indirect MRAC. The concept behind this approach is that faster and

more accurate control may be possible when more information about the process under

control is available. Furthermore, it is possible to improve the transient behaviour in

terms of robustness if both techniques are used together. The combined MRAC method

was first introduced by Duarte and Narendra [3], [2].

Mathematical equations for direct MRAC and Combined MRAC, for both first and

second order systems, are presented below as these are the control techniques used for

the implementation of this Thesis.
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2.1.3 Mathematical Equations

Direct Model Reference Adaptive Control of First Order Systems

The discretized direct MRAC for a first order plant is implemented as below.

Input

� yp(t), the response of the plant

� r(t), the reference signal

� ec(t) = yp(t) − ym(t), the control error.

Output

� uc(t), the control law signal.

Internal signals

� ym(t), the response of the reference model.

� θ(t), k(t), the controller parameters.

Design Parameters

� γ > 0, the adaptation gain which regulates the rate of change for θ(t) and k(t).

Plant model

yp(t) =
bp

z + ap
uc(t) (2.1)

where ap and bp are the unknown plant parameters.

Reference model

ym(t) =
bm

z + am
r(t) (2.2)

where am and bm are known constants.

Control law

uc(t) = θ(t)yp(t) + k(t)r(t) (2.3)

where θ(t), k(t) are adjustable controller parameters.

Adaptive laws for control parameters

θ̇(t) = −γsgn(bp)ec(t)yp(t) (2.4)

k̇(t) = −γsgn(bp)ec(t)r(t) (2.5)

The aim of direct MRAC is the determination of a bounded control law so that

lim
t→∞

ec(t) = 0 (2.6)

Hence, the adaptive control problem can be equivalently stated as the determination

of adaptive laws (2.4) and (2.5) so that condition (2.6) is satisfied.
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Direct Model Reference Adaptive Control of Second Order Systems

The discretized direct MRAC for a second order plant is implemented as below (Figure

2.5).

Input

� yp(t), the response of the plant

� r(t), the reference signal

� ec(t) = yp(t) − ym(t), the control error.

Output

� uc(t), the control law signal.

Internal signals

� ym(t), the response of the reference model

� k(t), θ1(t), θ2(t), θ0(t), the controller parameters.

� ω̇1(t) = Λω1(t) + huc(t), the control sensitivity signal.

� ω̇2(t) = Λω2(t) + hyp(t), the control sensitivity signal.

Design Parameters

� γ > 0, the adaptation gain which regulates the rate of change for k(t), θ1(t), θ2(t)
and θ0(t).

� Λ = −bm.

� h = 1.

Plant model

yp(t) =
kp(z + bp0)

z2 + ap1z + ap2
uc(t) (2.7)

where ap1, ap2, bp0 and kp are the unknown plant parameters.

Reference model

ym(t) =
km(z + bm0)

z2 + am1z + am2
r(t) (2.8)

where am1, am2, bm0 and km are known constants.

Control law

uc(t) = ϑ⊺(t)ϖ(t) (2.9)

where

ϑ(t) = [k(t) θ1(t) θ2(t) θ0(t)]⊺, the controller parameters vector.
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ϖ(t) = [r(t) ω1(t) ω2(t) yp(t)]⊺, the internal signals vector.

Adaptive laws for control parameters

k̇(t) = −γsgn(kp)ec(t)r(t) (2.10)

θ̇1(t) = −γsgn(kp)ec(t)ω1(t) (2.11)

θ̇2(t) = −γsgn(kp)ec(t)ω2(t) (2.12)

θ̇0(t) = −γsgn(kp)ec(t)yp(t) (2.13)

The aim of direct MRAC is the determination of a bounded control law so that

lim
t→∞

ec(t) = 0 (2.14)

Hence, the adaptive control problem can be equivalently stated as the determination

of adaptive laws (2.10), (2.11), (2.12) and (2.13) so that condition (2.14) is satisfied.

Wm(z)

Wp(z)
+

− e(t)

Λ, hΛ, h

ΣΣΣ

ym(t)

y(t)uc(t)

r(t)
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θ1

k

ω2ω1

+

+

++

+

Figure 2.5: Structure of Model Reference Adaptive Controller for second order systems
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Combined Model Reference Adaptive Control of First Order Systems

The discretized combined MRAC for a first order plant is implemented below.

Input

� yp(t), the response of the plant.

� r(t), the reference signal.

� ec(t) = yp(t) − ym(t), the control error.

Output

� uc(t), the control law signal.

Internal signals

� ym(t), the response of the reference model.

� θ(t), k(t), the controller parameters.

� na(t), nb(t), the plant parameter errors.

� eθ(t), ek(t), the closed loop estimation errors.

� yi(t), the estimated by the identification algorithm response of the plant used for

validation with the real response yp(t).

Design Parameters

� γ > 0, the adaptation gain which regulates the rate of change for θ(t) and k(t).

Plant model

yp(t) =
bp

z + ap
uc(t) (2.15)

where ap and bp are the unknown plant parameters.

Reference model

ym(t) =
bm

z + am
r(t) (2.16)

where am and bm are known constants.

Control law

uc(t) = θ(t)yp(t) + k(t)r(t) (2.17)

where θ(t), k(t) are adjustable controller parameters.

The error equations

ec(t) = yp(t) − ym(t) (2.18)
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ei(t) = yi(t) − yp(t) (2.19)

where ec is the control error and ei is the identification error.

Closed-loop estimation errors

eθ(t) = −na(t) + θ(t)nb(t) + bpϕθ(t) (2.20)

ek(t) = k(t)nb(t) + bpϕk(t) (2.21)

where eθ, ek are the closed loop estimation errors and ϕθ, ϕk are the controller parameter

errors.

Plant parameter errors

ṅa(t) = ei(t)yp(t) + eθ(t) (2.22)

ṅb(t) = −ei(t)uc(t) − θ(t)eθ(t) − k(t)ek(t) (2.23)

Adaptive laws for control parameters

ϕ̇θ(t) = θ̇(t) = −γsgn(bp)[ec(t)yp(t) + eθ(t)] (2.24)

ϕ̇k(t) = k̇(t) = −γsgn(bp)[ec(t)r(t) + ek(t)] (2.25)

The combined method presented above uses the errors (2.18), (2.19), (2.20), and

(2.21) for adjusting the parameters (2.24) and (2.25) which in turn create the control

law (2.17). The problem may now be stated as follows. Given the identification error

ei(t), defining the evolution of ec(t) and the closed-loop estimation errors eθ(t) and
ek(t), determine adaptive laws for adjusting control parameters θ(t) and k(t) so that

lim
t→∞

ec(t) = 0 (2.26)

Based on the plant parameters estimations and the controller parameter values at

any instant t, closed-loop estimation errors eθ(t) and ek(t) are defined which denote

the deviation of the estimated coefficients of the closed-loop transfer function from

those of the reference model. Closed-loop estimation errors eθ(t) and ek(t) are used

to carry information from both plant parameter and control parameter estimations at

time step t through to the calculation of the control law uc at time step t + 1. This is

implemented using plant parameter errors na and nb, control parameters θ and k and

plant parameter estimation b̂p (instead of the unknown plant parameter bp) for their

calculation. Closed-loop estimation errors are, therefore, the feature of combined model

reference adaptive control algorithm which provides the connection between direct and

indirect MRAC. Furthermore, control law uc at time step t+1 contains information from

control law at time step t, as the last is used for the calculation of plant parameter error

nb. Figure 2.6 depicts the structure of a combined model reference adaptive controller

as the one designed for the purposes of this Thesis.
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Combined Model Reference Adaptive Control of Second Order Systems

The discretized combined MRAC for a second order plant is implemented below.

Input

� yp(t), the response of the plant.

� r(t), the reference signal.

� ec(t) = yp(t) − ym(t), the control error.

Output

� uc(t), the control law signal.

Internal signals

� ym(t), the response of the reference model.

� k(t), θ1(t), θ2(t), θ0(t), the controller parameters.

� ω̇1(t) = Λω1(t) + huc(t), the control sensitivity signal.

� ω̇2(t) = Λω2(t) + hyp(t), the control sensitivity signal.

� nkp(t), nβ(t), nα(t), nα1(t), the plant parameter errors.

� ek(t), eθ1(t), eθ2(t), eθ0(t), the closed loop estimation errors.

� yi(t), the estimated by the identification algorithm response of the plant used for

validation with the real response yp(t).

Design Parameters

� γ > 0, the adaptation gain which regulates the rate of change k(t), θ1(t), θ2(t)
and θ0(t).

� Λ = −bm.

� h = 1.

Plant model

yp(t) =
kp(z + bp0)

z2 + ap1z + ap2
uc(t) =Wp(z)uc(t) (2.27)

where ap1, ap2, bp0 and kp are the unknown plant parameters.

Reference model

ym(t) =
km(z + bm0)

z2 + am1z + am2
r(t) =Wm(z)r(t) (2.28)
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where am1, am2, bm0 and km are known constants.

Control law

uc(t) = ϑ⊺(t)ϖ(t) (2.29)

where

ϑ(t) = [k(t) θ1(t) θ2(t) θ0(t)]⊺, the controller parameters vector.

ϖ(t) = [r(t) ω1(t) ω2(t) yp(t)]⊺, the internal signals vector.

The error equations

ec(t) = yp(t) − ym(t) (2.30)

ei(t) = yi(t) − yp(t) (2.31)

where ec is the control error, ei is the identification error.

Closed-loop estimation errors

ek(t) = kpϕk(t) + k(t)nkp(t) (2.32)

eθ1(t) = ϕθ1(t) + nβ(t) (2.33)

eθ2(t) = kpϕθ2(t) + θ2(t)nkp(t) + kmnα(t) (2.34)

eθ0(t) = kpϕθ0(t) + θ0(t)nkp(t) + kmnα1(t) (2.35)

where ek, eθ1 , eθ2 , eθ0 are the closed loop estimation errors and ϕk, ϕθ1 , ϕθ2 , ϕθ0 are the

controller parameters errors.

Plant parameter errors

ṅkp(t) = −ei(t)
β(t)ω1(t) + uc(t)

kmNi(t)
− [k(t)ek(t) + θ2(t)eθ2(t) + θ0(t)eθ0(t)] (2.36)

ṅβ(t) = −sgn(kp)ei(t)
ω1(t)

kmNi(t)
− eθ1(t) (2.37)

ṅα(t) = −ei(t)
ω2(t)
Ni(t)

− kmeθ2(t) (2.38)

ṅα1(t) = −ei(t)
yp(t)
Ni(t)

− kmeθ0(t) (2.39)

where

β(t) = b̂p(t).
uc(t) =Wm(z)uc(t).
ω1(t) =Wm(z)ω1(t).
ω2(t) =Wm(z)ω2(t).
yp(t) =Wm(z)yp(t).
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Ni(t) = 1 + (βω1(t) + uc(t))2 + ω2
1(t) + y2p(t) + ω2

2(t).
Adaptive laws for control parameters

ϕ̇k(t) = k̇(t) = −[γsgn(kp)ec(t)]
ym(t)

kmNc(t)
− [γsgn(kp)]ek(t) (2.40)

ϕ̇θ1(t) = θ̇1(t) = −[γsgn(kp)ec(t)]
ω1(t)

kmNc(t)
− [γ]eθ1(t) (2.41)

ϕ̇θ2(t) = θ̇2(t) = −[γsgn(kp)ec(t)]
ω2(t)

kmNc(t)
− [γsgn(kp)]eθ2(t) (2.42)

ϕ̇θ0(t) = θ̇0(t) = −[γsgn(kp)ec(t)]
yp(t)

kmNc(t)
− [γsgn(kp)]eθ0(t) (2.43)

where

Nc(t) = 1 +ϖ⊺(t)ϖ(t).
ϖ(t) = [ym(t) ω1(t) ω2(t) yp(t)]⊺, the filtered internal signals vector.

The combined method presented above uses the errors (2.30), (2.31), (2.32), (2.35),

(2.33) and (2.34) for adjusting controller parameters (2.40), (2.43), (2.41) and (2.42)

which in turn create the control law (2.29). The problem may now be stated as follows.

Given the identification error ei(t), defining the evolution of ec(t) and the closed-loop

estimation errors ek(t), eθ1(t), eθ2(t) and eθ0(t), determine adaptive laws for adjusting

control parameters k(t), θ1(t), θ2(t) and θ0(t) so that

lim
t→∞

ec(t) = 0 (2.44)
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2.1.4 Stability

Formation of both MRAC and CMRAC adaptive laws presented above is based on

Lyapunov stability theory. The global stability of the system is assured by the existence

of a Lyapunov function. Basic features of the Lyapunov stability theory used for the

purposes of this diploma Thesis and the Lyapunov functions used for the stability proof

of the CMRAC designed are presented below.

Lyapunov’s Theory for Non-linear System’s

Russian mathematician Lyapunov made fundamental contributions to the stability the-

ory for nonlinear systems in the end of the nineteenth century. Lyapunov investigated

the nonlinear differential equation

dx

dt
= f(x) (2.45)

f(0) = 0 (2.46)

Since f(0) = 0, the equation has the solution x(t) = 0.
Lyapunov was interested in investigating whether the solution of equation (2.45)

is stable with respect to perturbations. For this purpose he introduced the following

stability theorem.

DEFINITION 1: Lyapunov stability

The solution x(t) = 0 to the differential equation (2.45) is called stable if for given ε > 0
there exists a number δ(ε) > 0 such that the solutions with initial conditions ∥ x(0) ∥< δ
have the property

∥ x(t) ∥< ε for 0 ≤ t <∞.

The solution is unstable if it is not stable. The solution is asymptotically stable if it is

stable and δ can be found such that all solutions with ∥ x(0) ∥< δ have the property

that ∥ x(t) ∥→ 0 as t → ∞. It is noteworthy that Lyapunov stability refers to the

stability of a particular solution and not to the differential equation.

Lyapunov developed a method for investigating stability that is based on the idea

of finding a function with special properties. This method is described below.

DEFINITION 2: Positive definite functions

A continuously differentiable function V is called positive definite if:
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1. V (0) = 0

2. V (x) > 0

Lyapunov’s Stability Theorem

If there exists a function V that is positive definite such that its derivative along the

solution of equation (2.45)

dV

dt
= ∂V ⊺

∂x

dx

dt
= ∂V ⊺

∂x
f(x) = −W (x) (2.47)

is negative semi-definite, then the solution x(t) = 0 to (2.45) is stable. If
dV

dt
is negative

definite then the solution is also asymptotically stable. The function V is called Lya-

punov function for the system (2.45). The Lyapunov functions used for the stability

proof of CMRAC designed are

V1 =
1

2
(e2c + bpϕ2

θ + bpϕ
2
k + e

2
i + n2

α + n2
b) (2.48)

V2 =
1

2
(∣kp∣ϕ2

k + ∣kp∣ϕ
2
θ1 + ∣kp∣ϕ

2
θ0 + ∣kp∣ϕ

2
θ2 + n

2
kp + ∣kp∣n

2
β + n

2
α + n2

α1
) (2.49)

for systems of first and second order respectively. Their derivatives are

dV1

dt
= −amec

2 − ei2 − eθ2 − ek2 ≤ 0 (2.50)

dV2

dt
= −ec

2

Nc
− ei

2

Ni
− eθ12 − eθ22 − ek2 − eθ02 ≤ 0 (2.51)

According to the Lyapunov’s stability theorem, since V̇1, V̇2 ≤ 0, plant parameter

estimates, control parameters and closed-loop estimation errors are uniformly bounded.

Since these parameters are uniformly bounded, it follows that limit of the corresponding

signals tends to zero, as time tends to infinite, which is the requirement for stable and

effective performance of CMRAC.
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2.2 Robustness of Adaptive Control

The analysis presented above has been carried out assuming that no other uncertainties

or variations exist in the adaptive control system besides the parametric ones. However,

since adaptive controllers are designed to control real physical systems, many types of

non-parametric uncertainties are often present such as

� unmodeled dynamics, such as actuator dynamics or structural vibrations

� measurement noise

� external disturbances

� sampling delay

When the reference signal r(t) and the plant’s output signal yp(t) are persistently ex-

citing, the adaptive control system has some robustness with respect to non-parametric

uncertainties. When these signals are not persistently exciting, even small plant uncer-

tainties may lead to serious problems for adaptive controllers. The major instability

mechanism associated with non-parametric uncertainties is parameter drift and it is

mainly caused by the noise with which measured signals are usually corrupted. The

simplest explanation of the parameter drift problem is that non persistently exciting

signals contain little information for the parameter adaptation mechanism to distin-

guish the parameter information from measurement noise. As a result, the adaptive

control system is led to sudden instability and failure.

Dead-Zone

Dead-zone [13] is a technique for modifying the adaptation law so as to avoid the

parameter drift problem. It is based on the fact that small control errors contain

mostly noise and disturbance, therefore, the adaptation mechanism should be shut off

for small control errors. Specifically, the adaptation gain (2.4) should be replaced by

θ(t) =
⎧⎪⎪⎨⎪⎪⎩

θ(t − 1) − γsgn(bp)ec(t)yp(t) if ∣ec∣ >∆
0 if ∣ec∣ <∆

(2.52)

where ∆ is the size of dead-zone.
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2.3 System Identification

System identification is a technique by which the parameters of a system’s model can

be estimated. This is usually performed by assuming a discrete time form for the

system model and then using a recursive estimation algorithm (Figure 2.7) to calculate

estimations of the parameters of the model from the measurements of input and output

signals of the system.

Parameter estimation can be done either on-line or off-line. Off-line estimation may

be preferable if the parameters are constant and there is sufficient time for estimation

before control. However, when system plant parameters vary during its operation, on-

line real time parameter estimation is necessary to keep track of their values. Since

problems in the adaptive control context usually involve time varying parameters, on-

line estimation methods are thus more relevant.

Three different system identification algorithms were used in this Thesis. These are

[16]

� Least squares algorithm

� Instrumental variables algorithm

� Sequential learning algorithm

Mathematical implementation of the identification techniques mentioned above is pre-

sented below.

2.3.1 Least Squares Algorithm

Consider a discrete time transfer function model of a system with control input signal

u(t) and with output signal y(t) subject to random noise. The model can be written

in the form

Ay(t) = Bu(t − 1) +Ce(t) (2.53)

where

A = 1 + a1z−1 + . . . + anaz
−na

B = 1 + b1z−1 + . . . + bnb
z−nb

C = 1 + c1z−1 + . . . + cncz
−nc

Introducing the unit backward shift operator z−1 defined by

z−ix(t) = x(t − i) (2.54)
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equation (2.53) can be written in the more suitable for estimation purposes form

y(t) = x⊺(t)θ + e(t) (2.55)

where θ is the vector of unknown parameters, defined by

θ
⊺ = [−a1, . . . ,−ana , b0, . . . , bnb

, c1, . . . , cnc] (2.56)

and x(t) is a regression vector partly consisting of measured input/output variables

and defined by

x⊺(t) = [y(t − 1), . . . , y(t − na), u(t − 1), . . . , u(t − nb − 1), e(t − 1), . . . , e(t − nc)] (2.57)

The values of e(t − 1), . . . , e(t − nc) are past values of the unobservable white noise

disturbance and are usually unknown. For the purposes of this Thesis is assumed

that C polynomial’s coefficients are zero and the unknown noise no longer appears in

equation (2.55). Hence, x(t) can be called data vector.

In order to determine vector θ of true system parameters, a model of the system of

the correct structure is further assumed

y(t) = x⊺θ̂ + ϵ̂(t) (2.58)

where θ̂ is a vector of estimated model parameters and ϵ̂(t) is the corresponding identifi-
cation error at time t. θ̂ has to be selected so that identification error is minimized. The

technique used for the calculation of θ̂ and the resulting minimization of identification

error ϵ̂(t) is linear least squares, which is described below.

Assuming that the system described by equation (2.55) has been running for the

time required to form N consecutive data vectors, the system’s model is rewritten in

the form

y =Xθ̂ + ϵ̂ (2.59)

where

y⊺ = [y(1), . . . , y(N)]
ϵ̂⊺ = [ϵ̂(1), . . . , ϵ̂(N)]

and

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x⊺(1)
x⊺(2)
⋮

x⊺(N)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.60)
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An estimation of parameters’ vector θ̂ is selected so as the sum of squares of identifi-

cation errors J is minimized

J =
N

∑
t=1

ϵ̂2(t) = ϵ̂⊺ϵ̂ (2.61)

The least squares estimation for the parameter vector θ can be calculated after rewriting

equation (2.61) in terms of the data vector and parameter vector and setting the first

derivative of J with respect to θ̂ to zero

θ̂ = [X⊺X]−1[X⊺y] (2.62)

This solution is a unique minimum as the second derivative of J with respect to θ̂ is

positive definite.

Recursive Least Squares

In order for the identification algorithm to be useful in control schemes, the parameter

estimation should be iterative so as the estimated parameters of the system model can

be updated at each sample interval as new data become available.

The model created by past information θ̂(t − 1) is used to obtain an estimate ŷ(t)
of the current output. This is then compared with the real measured output y(t) to
generate the identification error ϵ(t). This in turn generates an update to the model

which replaces θ̂(t − 1) with the new value θ̂(t). In summary, the full recursive least

squares (RLS) [16] algorithm for updating θ̂(t) is presented below.

At time step t:

1. Formation of x(t) using the new data measured.

2. Formation of the identification error ϵ(t) using the equation

ϵ(t) = y(t) − x⊺(t)θ̂(t − 1) (2.63)

3. Formation of the covariance matrix P (t) = [X⊺(t)X(t)]−1 using the equation

P (t) = P (t − 1)[Im −
x(t)x⊺(t)P (t − 1)

1 + x⊺(t)P (t − 1)x(t)
] (2.64)

where m = na + nb + 1.

4. Updating of θ̂(t) using the equation

θ̂(t) = θ̂(t − 1) + P (t)x(t)ϵ(t) (2.65)

5. After next time step elapses loop back to step 1.
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Figure 2.7: Schematic presentation of recursive estimation

2.3.2 Instrumental Variables Algorithm

Instrumental variables [15] is a system identification technique which produces unbiased

estimates of the parameter vector θ(t) by using a vector of instrumental variables

v(t) of the same dimensions as data vector x(t) such that the elements of v(t) are

uncorrelated with the noise corrupting the system. The instrumental variables v(t) are
often created by passing the input signal u(t) through a known discrete time transfer

function to obtain the signal z(t) which replaces the output signal y(t) in the vector

v(t). The technique used for the calculation of the estimations of a system’s parameters

is described below.

Consider the following discrete time transfer function of a system’s model

y(t) = B

A
u(t) + e(t) (2.66)

where

B = b1z−1 + . . . + bnb
z−nb

A = 1 + a1z−1 + . . . + anaz
−na

Similarly to the least squares identification case, equation (2.66) can be written in a

form more suitable for identification purposes

y =Xθ + e (2.67)

where

y⊺ = [y(t), . . . , y(t +N)]

the output signal vector

e⊺ = [e(t), . . . , e(t +N)]
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the noise vector

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x(t)
⋮

x(t +N)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
the data matrix and

θ
⊺ = [−a1, . . . ,−ana , b1, . . . , bnb

]

the unknown parameters vector.

The instrumental variable z(t) would be generated as

z(t) = R

Q
u(t)1 (2.68)

where

R = r0 + r1z−1 + . . . + rnrz
−nr

Q = 1 + q1z−1 + . . . + qnqz
−nq

The instrumental vector is then constructed as

v(t) = [z(t − 1), . . . , z(t − na), u(t − 1), . . . , u(t − nb)] (2.69)

and

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v(1)
v(2)
⋮

v(N)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.70)

Multiplying matrix (2.70) with equation (2.67), the estimations

θ̂iv = [V ⊺X]−1V ⊺y (2.71)

can be produced, as the instrumental variables are uncorrelated with the noise e(t)
and the factor V ⊺e will be eliminated as N →∞.

Recursive Instrumental Variables

The instrumental variables algorithm [15] can be put in a recursive form in analogous

manner to that used for the least squares algorithm.

The estimation of the parameter vector θ̂iv(t) at time t is given by the equation

θ̂iv(t) = θ̂iv(t − 1) + P (t)v⊺(t)ϵ(t) (2.72)

1The discrete time transfer function used to generate the instrumental variables should be stable

and in general nr ≥ nb or nq ≥ na.



44 Chapter 2. Adaptive Control and System Identification Theory

where

ϵ(t) = y(t) − x(t)θ̂iv(t − 1) (2.73)

and

P (t) = P (t − 1)[Im −
v(t)x⊺(t)P (t − 1)

1 + x⊺(t)P (t − 1)v(t)
] (2.74)

where m = na + nb + 1.

2.3.3 Sequential Learning Algorithm

Sequential learning algorithm [16] is a gradient method of system identification which

replaces the covariance matrix P (t) by an expression which is simpler to compute and

requires less storage space comparing to the least squares technique. Equation (2.65)

can be interpreted as an iterative minimization step as follows.

Consider the error criterion

ϵ2(t) = 1

2
[y(t) − x⊺(t)θ̂(t − 1)]2 (2.75)

The gradient with respect to θ̂(t) is

dϵ2(t)
dθ̂(t − 1)

= −[x(t)ϵ(t)] (2.76)

Substituting (2.76) in (2.65) a gradient descent-like iteration arises

θ̂(t) = θ̂(t − 1) − P (t) dϵ2(t)
dθ̂(t − 1)

(2.77)

where covariance matrix P (t) can be viewed as a positive definite matrix which mod-

ifies the direction of the gradient adjustments. Hence, P (t) can be replaced by an

adjustment gain γsl(t) selected in a simpler way.

In practice, when noise is present, γsl(t) must be selected in a special manner so

as the influence of the noise on the parameter estimates can be progressively reduced.

Sequential learning algorithm uses an adjustment gain of the following form

γsl(t) =
α

[β + x⊺(t)x(t)]
(2.78)

where β > 0 and 0 < α < 2.

The recursive form of the sequential learning algorithm is analogous to that used

for the least squares algorithm.



2.3 System Identification 45

2.3.4 Forgetting Factors

The recursive estimation techniques presented above have the ability to estimate a

constant parameter vector. However, in many practical cases the estimator will be

required to track changes in a set of system model parameters. These changes may be

even due to nonlinear phenomena after an operating condition change or due to varia-

tions which occur over time due to external factors. Furthermore, these changes may

be associated even with known phenomena, which means that the time the parameters

change will be known or with unknown phenomena, which means that there will be no

prior knowledge of when and what changes will occur. In the last case, the recursive

estimator will be required to adapt the parameter estimates with no prior knowledge

about the origin of the variations being present.

In a control system the recursive estimator generates a system model which can

be used for real time implementation of the corresponding controller. When a system

source changes, it is important that the recursive estimator rapidly adapts the system’s

parameters estimates so as the corresponding controller adapts its parameters and

maintains its design role.

Provided that there is sufficient excitation2, then the equation (2.64) ensures that

the elements of covariance matrix P (t) decrease in size as the number of time steps

increases. Thus as the estimates become more accurate they require less adjustment.

Consequently, P (t) can be interpreted as acting as an adjustment gain in equation

(2.65). Manipulation of P (t) matrix size is the basic mechanism for controlling the

adaptive capabilities of the identification algorithm. The basic mechanism, therefore,

for parameter tracking implementation is to control the size of P (t) matrix.

For the purposes of this Thesis the technique used for tracking system’s parame-

ter changes is the directional forgetting factor technique [16]. A forgetting factor λ is

a number between 0 and 1 which is used to progressively reduce the emphasis place

on past information. Forgetting factor’s technique concept can be understood by con-

sidering the way in which information is weighted in the least squares cost function.

Specifically, normal least squares algorithm minimizes the cost function

Jt =
t

∑
i=1

ϵ̂2(i) (2.79)

at each time step. In this cost function all values of ϵ̂(i) from i = 1 to t carry an equal

weighting.

The forgetting factor approach applies a differential weighting to the data by use

2see Appendix C
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of the modified cost function

J t =
t

∑
i=1

λt−iϵ̂2(i) (2.80)

The forgetting mechanism, therefore, uses the influence of λ to progressively reduce the

importance given to old data.

Using directional forgetting factor, equation (2.64) of the RLS algorithm is modified

P (t) = P (t − 1)[Im −
x(t)x⊺(t)P (t − 1)

r−1(t − 1) + x⊺(t)P (t − 1)x(t)
] (2.81)

where

r(t) = λ
′
− (1 − λ′)
x⊺(t + 1)P (t)x(t + 1)

(2.82)

where λ
′
is similar to a fixed forgetting factor.



Chapter 3

Design of Identifiers and

Controllers

The design of identifiers and controllers is presented in this chapter. Stability and con-

vergence properties of adaptive controllers and system identifiers designed were evalu-

ated before the implementation of the load control system for CAT marine diesel engine

at LME. Evaluation took place using both computer simulations and experiments, us-

ing heat exchanger experimental device (Figure 1.5). Simulink models, created for

structuring of system identifiers and adaptive controllers, are presented in this chapter.

Diagrams depicting the control setup at the IC engine test bench together with the

corresponding Simulink models are also presented here. Finally a mathematical model

of water brake used for testing of the controllers before being used at the implemen-

tation of the load control system of CAT marine diesel engine at LME, is provided in

this chapter. Results from the evaluation trials are presented in chapter 4.

3.1 System Identification Schemes

3.1.1 Computer Simulations

Simulink model of Figure 3.1 was created for the evaluation of least squares system

identification algorithm performance by making computer simulations while model of

Figure 3.2 was created for the formulation of recursive least squares algorithm. Models

used for the performance evaluation and implementation of the other two identification

algorithms are similar and their presentation is omitted.
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3.1.2 Heat Exchanger Experimental Device

Various aspects of system identification algorithms, like algorithm’s robustness in the

presence of measurement noise and external disturbances were evaluated using the heat

exchanger experimental device (Figure 1.5). Simulink model of Figure 3.3 was created

for the application of least squares system identification algorithm on heat exchanger

plant. It was used for data acquisition and on-line identification experimental trials.

On-line system identification of heat exchanger plant using instrumental variables and

sequential learning algorithms was performed using Simulink models similar to that in

Figure 3.3.

3.1.3 Data from Water Brake Operation

Signals of analog output valve command and torque, measured during water brake

operation, were fed to sequential learning identification algorithm using Simulink model

in Figure 3.4 so as to evaluate performance of the identifier when signals measured

from a real process were given as inputs to the algorithm. Moreover, a second order

mathematical model of water brake plant could be produced. Model in Figure 3.4 was

created for an initial check of identifiers performance before applied on CAT diesel

engine’s plant.

3.1.4 System Identification Toolbox

System identification toolbox of MATLAB was also used during the evaluation process

of various identification algorithms. It was used for quick comparisons between different

methods, for mathematical models creation (both of discrete and continuous time) and

for stability analysis of the latter.

The mathematical model of water brake, created using identification toolbox, used

for computer simulated evaluation trials of MRAC and CMRAC (presented in chapter

5) is presented below.

% Discrete-time IDPOLY model: A(q)y(t) = B(q)u(t) + e(t)

% A(q) = 1 - 1.699 (+-0.0006829) q^-1 + 0.6996 (+-0.0006827) q^-2

%

% B(q) = 1.597 (+-0.06409) q^-1 - 1.292 (+-0.06411) q^-2

%

% Estimated using ARX on data set water_brake_measurements

% Loss function 0.000895613 and FPE 0.000895619
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3.2 Adaptive Control Schemes

3.2.1 Computer Simulations

Performance and stability properties of the three versions of Combined Model Refer-

ence Adaptive Control (CMRAC) designed for the purposes of this Thesis was initially

evaluated by making computer simulation trials. Computer simulations of model refer-

ence adaptive control (MRAC) were also made for performance comparisons. Simulink

models created for the implementation of these evaluation trials are presented below.

Model in Figure 3.6 was used for the evaluation of a closed loop control system

consisting of MRAC and a first order system plant of heat exchanger. Model in Figure

3.5 was created for the formulation of MRAC algorithm for first order discrete time

systems. Model in Figure 3.8 was created for the evaluation of a closed loop control

system consisting of a MRAC and the second order plant of water brake, created using

the Identification Toolbox of MATLAB (presented in the previous section). Model in

Figure 3.9 implements MRAC for second order discrete time systems via Simulink.

Finally, evaluation of a closed loop control system consisting of CMRAC and the

first order system plant of heat exchanger was performed using Simulink model in

Figure 3.7. Simulink models used for performance tests of the rest versions of CMRAC

designed are similar to Figure 3.7, therefore, their presentation is omitted. Model in

Figure 3.10 was used for the evaluation of a closed loop control system consisting of a

CMRAC with SL identifier and the second order plant of water brake which was also

used in model shown in Figure 3.8 formulation.
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order
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3.2.2 Heat Exchanger Experimental Device

Performance and various aspects of the three different versions of CMRAC algorithms

designed, presented in chapter 4, were also tested using heat exchanger experimen-

tal device (Figure1.5). Simulink model in Figure 3.13 was created for experimental

evaluation of CMRAC with RLS identifier while model shown in Figure 3.12 was cre-

ated for experimental evaluation of direct MRAC. Remaining versions of CMRAC were

evaluated using Simulink models similar to that shown in Figure 3.13.

Figure 3.11 is a simplified diagram of the closed loop control system setup of heat

exchanger device. Controller is fed with temperature measurements, by a temperature

sensor (thermocouple), and with the desired air temperature as temperature reference.

Then, it produced a voltage signal (control law) using power electronics which was

applied across the heating resistance. The latter heats the air stream in order to obtain

the desired air temperature.
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3.2.3 Water Brake at CAT Test Bench

Final experimental evaluation trials of the adaptive controllers designed were per-

formed at powertrain facilities of LME using CAT diesel engine test bench (Figure

3.18). Simulink model in Figure 3.15 was used for the implementation of experimental

tests of CAT diesel engine load control system made with CMRAC and SL identifier.

The same Simulink model was used for experimental tests of load control system made

with MRAC. Regarding the control platform, the real time rapid prototyping tools of

dSPACE were used, under MATLAB/Simulink (Figure 3.17). All analog sensors and

actuators are connected to the dSPAC DS1103 controller board (Figure 3.16).

Figure 3.14 is a simplified diagram of CAT diesel engine’s test bench control setup.

Applied torque by the water brake is measured by a load cell installed on the arm of the

dynamometer. Control command is supplied to the outlet analog water valve, through

a electronic/pneumatic transducer, which converts the electric signal to proportional

air quantity as supply to the valve. Water outlet valve control leads to water brake fill

level control and consequently to applied on engine’s shaft torque control. The desired

torque level is fed to water brake controller as torque reference signal.

Figure 3.19 shows a water brake’s free end view while Figure 3.20 shows the water

output analog valve of water brake and its arm with the loadcell. Figure 3.21 shows

CATERPILLAR marine diesel engine at LME. Finally, Figure 3.22 shows a water

brake’s coupled end view.
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Figure 3.16: dSPACE DS1103 electronic control board

Figure 3.17: dSPACE rapid prototyping tools under MATLAB/Simulink
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Figure 3.18: CAT marine diesel engine test bench at LME
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Figure 3.19: Water Brake at LME - view from free end

Figure 3.20: Water output analog valve and arm with loadcell
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Figure 3.21: CAT marine diesel engine at LME

Figure 3.22: Water Brake at LME - view from coupled end



Chapter 4

Experimental Evaluation of

Identifiers and Controllers

This chapter shows results from the experimental evaluation of system identifiers and

controllers designed, which were presented in detail in the previous chapter. Testing

was performed through computer simulations and on a laboratory device of LME. Final

results from water brake test are the subject of the next chapter.

4.1 Evaluation of System Identification Algorithms

Results of system identification algorithms evaluation process, designed for the purposes

of this Thesis, are presented in this section. Performance trials were implemented using

both computer simulations and heat exchanger experimental device. Identification error

and estimated plant parameters are the basic variables monitored for the evaluation of

each identification algorithm performance.

Tables 4.1 and 4.2 are summarizing the trials made for each type of system identi-

fication algorithm using computer simulations and heat exchanger experimental device

respectively.

Table 4.3 evaluates different aspects of each identification algorithm performance.

Adaptability refers to the capacity of the algorithm to cope with different input signals

of various frequencies and produce acceptable results. Start-up tuning refers to the

amount of effort initially needed to make the algorithm work properly. Optimal tuning

refers to the amount of effort needed to optimize the algorithm’s function. Needs in

computer memory refers to the storage space needed for the parameters and variables

of each algorithm except from the space needed for the storage of estimated parameters.

Implementation simplicity refers to the amount of effort needed to format the identi-

70
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fication algorithm using MATLAB/Simulink. Finally, stability refers to the ability of

the algorithm to produce stable estimations not only in optimal tuning but also close

to optimal tuning.

All evaluation trials were performed using MATLAB/Simulink.

Table 4.1: System Identification Evaluation Trials-Computer Simulations

PPPPPPPPPPPlant

Trial
Constant Changing Low Frequency High Frequency

Plant Plant Input Input

Parameters Parameters Signal Signal

Literature Plant

RLS 3 3 5 5

RIV 3 3 5 5

SL 3 3 5 5

Heat Exchanger Plant

RLS 5 5 3 3

RIV 5 5 3 3

SL 5 5 3 3

Table 4.2: System Identification Evaluation Trials-Experimental Trials
hhhhhhhhhhhhhhhhhhhhhhSystem Plant

Evaluation Trial
λ = 0.99 λ = 0.95 γsl = 1 γsl = 0.7

Heat Exchanger Device

RLS 3 3 5 5

RIV 3 3 5 5

SL 5 5 3 3



72 Chapter 4. Experimental Evaluation of Identifiers and Controllers

Table 4.3: System Identification Algorithms Evaluation
hhhhhhhhhhhhhhhhhhhhCriterion

Identification Algorithm
RLS RIV SL

Response to Good Good Good

plant parameters only in

changes optimal tuning

Response to Good Bad Good

forgetting factor

changes

Response to Satisfactory Unstable Good

high rate

amplitude changes

Adaptability Good Bad Good

Start-up Regular Difficult Easy

tuning

Optimal Regular Always Difficult Regular

tuning

Needs in Big Very Big Normal

computer memory

Implementation Regular Difficult Regular

simplicity

Stability Good Good Good

only in

optimal tuning
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4.1.1 Computer Simulations

System identification algorithms evaluation through computer simulations were per-

formed using two system plant mathematical models. The first plant was taken from a

literature example [16], so that results comparisons and check of the system identifica-

tion algorithms proper design and function could be done by making similar simulations.

It was a second order system plant represented by a discrete time transfer function.

The second plant was a first order mathematical model of heat exchanger experimental

device formed using data measured from a heat exchanger’s reaction curve1 to a step

input. This model gives accurate results for temperature changes between 30 and 45 oC

degrees since the open-loop measurement used for its calculation was a corresponding

change of temperature. The model was used to perform simulations in order to gain

some experience in tuning the three types of identification algorithms and make tuning

of experimental evaluation of the system identification algorithms easier.

Simulations on the literature plant were performed with both constant and changing

plant parameters so as to simulate the conditions of a real process as better as possible.

Plant parameters change was achieved by a duplication of discrete transfer function’s

gain. Simulations on heat exchanger plant were performed with input signals of two

different frequencies as latter’s value affects identification algorithm effectiveness.

System excitation was applied using four different input signals

� Square signal

� Sinusoidal signal

� Square signal of changing frequency (PRBS signal)

� Sinusoidal signal of changing frequency (Chirp signal)

These types of input signals are persistently exciting2 and are the most frequently used

signals for system identification purposes.

Most representative results of all the trials performed, using mathematical models

presented above, and tables with the values of each algorithm tuning parameters are

presented below. Comments on identification algorithms performance are also listed for

each trial. The type of input signal, the plant parameters estimations, the identification

error and the validation of estimated plant output signal are depicted in the following

figures for each plant used and for each kind of evaluation trial performed.

More results from evaluation trials of system identification algorithms using com-

puter simulations can be found in Appendix A.

1This kind of system identification is known as process reaction curve method
2More details about persistent excitation can be found in Appendix C
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Computer Simulations using Plant from Literature - Comments

� Constant plant parameters

– RLS algorithm, Figures 4.1, 4.2, A.1, A.2 and Tables 4.4, A.1.

* Low values of identification error.

* Smooth variation of estimated parameters.

– RIV algorithm, Figures A.5, A.7 and Tables A.3, A.4 respectively.

* Low values of identification error.

* Smooth variation of estimated parameters.

* Sharp oscillation at the beginning of identification process using sinu-

soidal input signal. Fast elimination of it.

– SL algorithm, Figures A.9, A.10 and Table A.5.

* Low values of identification error.

* Smooth variation of estimated parameters.

� Changing plant parameters

– RLS algorithm, Figures A.3, A.4 and Table A.2.

* Successful estimation of output signal’s change of amplitude.

* Fast elimination of identification error’s peak at the time of output sig-

nal’s amplitude duplication.

– RIV algorithm, Figures A.6, A.8 and Tables A.3, A.4 respectively.

* Unsuccessful estimation of output signal’s amplitude change using square

input signal. Unstable performance.

* Slow minimization rate of identification error using sinusoidal input sig-

nal.

* Sharp variation of estimated parameters at the time of plant parameters

change.

– SL algorithm, Figures 4.3, 4.4, A.11, A.12 and Tables 4.5, A.6 respectively.

* Successful estimation of output signal’s change of amplitude.

* Small peak of identification error at the time of plant parameters change.

Fast elimination of it.
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Table 4.4: RLS tuning parameters

RLS
n λ θ̂0 x0 P0

3 0.99 I31 I31 1000 ∗ I3
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Figure 4.1: Results of RLS identification applied on literature plant stimulated with

square input signal
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Figure 4.2: Results of RLS identification applied on literature plant stimulated with

sinusoidal input signal
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Table 4.5: SL tuning parameters

SL
n γsl θ̂0 x0

3 1 I31 I31
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Figure 4.3: Results of SL identification applied on literature plant with changing pa-

rameters stimulated with square input signal
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Figure 4.4: Results of SL identification applied on literature plant with changing pa-

rameters stimulated with sinusoidal input signal
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Computer Simulations using Heat Exchanger Plant - Comments

� Input signal of low frequency

– RLS algorithm, Figures 4.5, 4.6 and Table 4.6.

* Slow rate of identification error minimization.

* Smooth variation of estimated parameters.

– RIV algorithm, Figures A.13, A.14 and Table A.7.

* Slow rate of identification error minimization. Need for bigger simula-

tion time in order for the identification error to be minimum.

* Smooth variation of estimated parameters.

* Sharp oscillation of estimated output signal and estimated parameters

at the beginning of identification process using sinusoidal input signal.

Fast elimination of it.

– SL algorithm, Figures A.17, A.18 and Table A.9.

* Fast rate of identification error minimization. Low values of identifica-

tion error.

* Smooth variation of estimated plant parameters.

� Input signal of high frequency

– RLS algorithm, Figures 4.7, 4.8 and Table 4.7.

* Faster rate of identification error minimization. Better performance of

system identification algorithm.

– RIV algorithm, Figures A.15, A.16 and Table A.8.

* Slight improvement of identification algorithm performance.

* Same characteristics of estimated parameters and output signal’s esti-

mation fluctuations using sinusoidal input signal.

– SL algorithm, Figures A.19, A.20 and Table A.10.

* Faster rate of identification error minimization. Better performance of

system identification algorithm.

* Low values of identification error.
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Table 4.6: RLS tuning parameters

RLS
n λ θ̂0 x0 P0

2 0.99 I21 I21 1000 ∗ I2
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Figure 4.5: Results of RLS identification applied on heat exchanger plant stimulated

with square input signal of low frequency
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Figure 4.6: Results of least squares system identification applied on heat exchanger

plant stimulated with sinusoidal input signal of low frequency
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Table 4.7: RLS tuning parameters-Input of high frequency

RLS
n λ θ̂0 x0 P0
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Figure 4.7: Results of RLS identification applied on heat exchanger plant stimulated

with square input signal of high frequency
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Figure 4.8: Results of RLS identification applied on heat exchanger plant stimulated

with sinusoidal input signal of high frequency
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4.1.2 Experiments using Heat Exchanger Experimental Device

Evaluation of system identification algorithms was completed using heat exchanger ex-

perimental device. Identifiers performance was tested in on-line real-time identification

processes. Moreover, the algorithms designed were tested in a laboratory environment

and on a real process characterized with many features that most real processes have

like measurement noise, external disturbances and varying environmental conditions

(performance of identification algorithms during winter and summer period was not

the same).

Most representative results of the trials performed and tables with the values of each

algorithm tuning parameters are presented in this section. The depicted Results, for

each system identification algorithm, were produced using different values of directional

forgetting factor λ and of scalar gain γsl so that their effect in the performance of

identification algorithm can be clearly shown. Values of λ used were λ = 0.99 and

λ = 0.95 and values of γsl used were γsl = 0.7 and γsl = 1 as they are most commonly

used in practice [16].

Comments on identification algorithms performance are also listed for each exper-

imental trial. More results from evaluation trials of system identification algorithms

using heat exchanger device can be found in Appendix A.

Experimental Trials using Heat Exchanger - Comments

� R.L.S algorithm, Figures 4.9, 4.10, A.21, A.22 and Tables 4.8, A.11.

– Stable performance of the identification algorithm. Almost unaffected by

directional forgetting factor changes.

� R.I.V algorithm, Figures 4.11, 4.12, A.23, A.24 and Tables 4.9, A.12.

– Unstable performance when λ = 0.99 and square input signal used.

– Small and slowly eliminating oscillation of estimated output signal when

λ = 0.99 and sinusoidal input signal used.

– Stable performance when λ = 0.95 used for both types of input signal.

Smaller and faster eliminating oscillation of estimated output signal.

� S.L algorithm, Figures 4.13, 4.14, A.25, A.26 and Tables 4.10, A.13.

– Stable performance using both values of scalar gain γsl.

– Low values of identification error. Smooth variation of estimated plant pa-

rameters.
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Table 4.8: RLS tuning parameters
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Figure 4.9: Results from RLS identification applied on heat exchanger experimental

device stimulated with square input signal
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Figure 4.10: Results from RLS identification applied on heat exchanger experimental

device stimulated with sinusoidal input signal
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Table 4.9: RIV tuning parameters
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Figure 4.11: Results from RIV identification applied on heat exchanger experimental

device stimulated with square input signal
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Figure 4.12: Results from RIV identification applied on heat exchanger experimental

device stimulated with sinusoidal input signal
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Table 4.10: SL tuning parameters

SL
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Figure 4.13: Results from SL identification applied on heat exchanger experimental

device stimulated with square input signal
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Figure 4.14: Results from SL identification applied on heat exchanger experimental

device stimulated with sinusoidal input signal
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4.1.3 Conclusions

Generally, all system identification algorithms used had satisfactory performance with

the identification error converging to zero. The rate of identification error’s minimiza-

tion was sufficiently high and variation of estimated plant parameters was quite smooth

which is necessary for small oscillations3 of estimated plant output signal. Negative

values and high values4 of input signal amplitude caused unstable performance of all

identification algorithms.

Amplitude Change

An increase of one hundred percent (100%) in plant output signal amplitude seemed

not to affect the performance of identification algorithms except from the performance

of RIV algorithm. Increase of 100% in output signal amplitude and high rate of input

signal change of amplitude caused unstable performance of RIV algorithm by generating

sharp variations of estimated plant parameters and increasing identification error. This

algorithm performed better when the increase in output signal amplitude was smaller

and the rate of input signal change of amplitude was lower (sinusoidal input signal)

or restricted (use of a rate limiter). Increase of plant output signal much greater than

100% caused instabilities to all the identification algorithms.

Input Signal Frequency

An increase of one hundred percent (100%) in input signal frequency seemed to improve

the performance of all system identification algorithms used by increasing the rate of

identification error minimization (Figures 4.5, 4.6 and 4.7, 4.8). However, frequency

increase had to be carefully tuned as very high values of input signal frequency caused

identification algorithms malfunctions. RIV algorithm took more time in order to min-

imize the identification error and stabilize its estimation of output signal. In addition,

its performance was less improved comparatively to the performance of the other two

identification algorithms.

Forgetting Factor

RLS algorithm was almost unaffected by the change of directional forgetting value

between the limits selected. In contrast, RIV algorithm’s stability was strongly affected.

Furthermore, oscillations of estimated output signal were eliminated using a directional

3The absence of estimated output signal oscillations is very important for the stable performance of

a Combined Model Reference Adaptive Controller.
4High values of input signal amplitude usually excite system dynamics of high order.
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forgetting factor of lower value. SL algorithm performance was almost unaffected by

the change of scalar gain γsl value, too. Identification error was the lowest possible

when γsl was equal to 1.
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4.2 Evaluation of Control Algorithms

Results of controllers evaluation process are presented in this section. The three versions

of Combined Model Reference Adaptive Controllers (CMRAC) designed were evaluated

using both computer simulations and heat exchanger laboratory device. Control error,

control law, controller parameters and closed-loop estimation errors are some of the

signals monitored for the evaluation of each controller performance. Transient and

steady-state response of closed-loop control systems were also examined. Computer

simulations and experiments were also performed using direct Model Reference Adap-

tive Control (MRAC) in order to compare its results with those taken from simulations

and experiments using CMRAC.

Table 4.11 summarizes the evaluation trials performed through computer simula-

tions presented in this section.

Table 4.11: Control Evaluation Trials-Computer Simulations

hhhhhhhhhhhhhhhhhhhSystem Plant

Evaluation Trial
Reference of Reference of Use of

constant changing dead

amplitude amplitude zone

Literature Plant

CMRAC-RLS 3 5 3

CMRAC-RIV 3 5 3

CMRAC-SL 3 5 3

MRAC 3 5 3

Heat Exchanger Plant

CMRAC-RLS 3 3 3

CMRAC-RIV 3 3 3

CMRAC-SL 3 3 3

MRAC 3 3 3

Table 4.12 summarizes the experimental evaluation trials performed and presented in

this section. Table 4.13 shows mean values of control error of all the experimental

control evaluation trials presented in this chapter which is a simple criterion for control

algorithms effectiveness comparison.

Table 4.14 evaluates different aspects of each control algorithm performance. Adapt-

ability refers to the capacity of the algorithm to cope with reference signals of higher

amplitude. Start-up tuning refers to the amount of effort initially needed to make

the algorithm work properly. Optimal tuning refers to the amount of effort needed
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Table 4.12: Control Evaluation Trials-Heat Exchanger Experimental Device

hhhhhhhhhhhhhhhhhhhSystem Plant

Evaluation Trial
Reference of Reference of Use of

constant changing dead

amplitude amplitude zone

Heat Exchanger Device

CMRAC-RLS 3 3 3

CMRAC-RIV 3 3 3

CMRAC-SL 3 3 3

MRAC 3 3 3

Table 4.13: Mean values of control error from experimental evaluation trials

XXXXXXXXXXXXXReference

Trial

Reference of Reference of Reference of Reference of

constant constant changing changing

amplitude amplitude amplitude amplitude

dead-zone dead-zone

Square

MRAC −0.3537 −0.4324 −0.4153 −0.3825

CMRAC-

RLS
−0.4342 −0.0211 −0.4312 −0.5036

CMRAC-

RIV
−0.5542 −0.7136 −0.6817 −0.5309

CMRAC-SL −0.4764 −0.6290 −0.4890 −0.4958

Sinusoidal

MRAC −0.2931 −0.3118 5 5

CMRAC-

RLS
−0.4172 −0.3596 5 5

CMRAC-

RIV
−0.4130 −0.7228 5 5

CMRAC-SL −0.3490 −0.3188 5 5

to optimize algorithm’s function. Needs in computer memory refers to the storage

space needed for the parameters and variables of each algorithm. Implementation sim-

plicity refers to the amount of effort needed to format the control algorithm using

MATLAB/Simulink. Finally, stability refers to the ability of the algorithm to produce

stable results and maintain its convergence properties not only in optimal tuning but

also close to optimal tuning.
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Table 4.14: Control Algorithms Evaluation
XXXXXXXXXXXXXCriterion

Controller
MRAC CMRAC-RLS CMRAC-RIV CMRAC-SL

Response to Good Good Good Good

reference model only in only in

amplitude changes optimal tuning optimal tuning

Response to Stable Stable Stable Stable

presence of

measurement noise

Performance Satisfactory Good Bad Good

using

dead-zone

Adaptability Satisfactory Regular Bad Regular

Start-up Easy Regular Difficult Easy

tuning

Optimal Regular Regular Always Difficult Regular

tuning

Needs in Small Normal Big Normal

computer memory

Implementation Easy Regular Difficult Regular

simplicity

Stability Good Good Good Good

only in only in

optimal tuning optimal tuning
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4.2.1 Computer Simulations

Evaluation of the three different versions of CMRAC designed (CMRAC-RLS, CMRAC-

RIV, CMRAC-SL) and of direct MRAC using computer simulations were performed

using two system plant mathematical models. The first plant was taken from an ex-

ample in the literature [3] so that results comparisons and check of control algorithms

proper design and function could be done by making similar simulation trials. This

was a first order system plant represented by a discrete time transfer function. The

second plant was a first order discrete time system plant of heat exchanger device used

for simulating heating and cooling processes of air temperature. It was calculated in

the same way as the one presented in the previous section. This plant was used to per-

form simulations using all of the controllers in order to gain some experience in tuning

control algorithms when changes in reference signal were imposed and when robustness

technique of dead-zone was applied.

Evaluation trials using literature plant were performed with reference input signals

of constant amplitude. Three different types of reference input signals were used

� Step reference signal

� Square reference signal

� Sinusoidal reference signal

Simulations with the plant of heat exchanger were performed using not only reference

input of constant amplitude but also of changing amplitude. Reference changes of

amplitude, in the simulations performed with heat exchanger plant, were representing

air temperature changes and all of them were within the temperature range where the

plant mathematical model was producing accurate results.

Most representative results of all the control evaluation trials performed along with

tables with the values of control algorithms tuning parameters are presented below.

Except from the figures depicting the values of control law, control parameter estima-

tions and control error, figures depicting the trajectories of controller parameters, plant

parameter errors and of closed-loop estimation errors are included which are represen-

tative of control systems stability and convergence properties. Comments on control

algorithms performance for each evaluation trial are shown below.

More results from evaluation trials of control algorithms using computer simulations

can be found in Appendix B.
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Computer Simulations using Plant from Literature - Comments

CMRAC

In general, the performance of CMRAC was satisfactory whatever the type of reference

signal being used was. Control error and closed-loop estimation errors were fluctuating

close to zero value. Control parameters estimates fluctuation was very smooth and

system’s transient response was oscillatory only at the beginning of each evaluation

trial having small or no overshoot. Trajectories of controller parameters and closed-

loop estimation errors were converging to a small region of the plane which is a proof

of control algorithm’s stable performance. Corresponding Figures are 4.15 to 4.18, B.5,

B.6, B.9, B.10 and Tables 4.15, 4.16, B.3 and B.5.

CMRAC-RIV did not perform well when any type of the reference signals used

was applied. Control error and closed-loop estimation errors were not converging to

zero and as a result system’s response could not ”follow” the response of reference

model. Trajectories of control parameters and closed-loop estimation errors were also

not converging to a stable value and to zero, respectively. Corresponding Figures are

B.7 and B.8 and Table B.4.

MRAC

MRAC performance was seriously affected by the choice of reference signal. MRAC

performed very well when step reference input was used. Control parameters reached

a stable value and control error converged fast to zero. Transient response was charac-

terized by small overshoot and small settling time. However, when square or sinusoidal

reference signal was used performance of MRAC was not satisfactory. Convergence of

control error and control parameters was unsuccessful. Corresponding Figures are B.1

to B.4 and Tables B.1 and B.2.
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Table 4.15: CMRAC-RLS identifier tuning parameters

CMRAC RLS
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Figure 4.15: CMRAC-RLS of literature plant stimulated with step input signal
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Figure 4.16: Trajectories of closed-loop estimation errors, plant parameter errors and

controller parameters presented in Figure 4.15
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Table 4.16: CMRAC-SL identifier tuning parameters

CMRAC SL
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Figure 4.17: CMRAC-SL of literature plant stimulated with square input signal
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Figure 4.18: Trajectories of closed-loop estimation errors, plant parameter errors and

controller parameters presented in Figure 4.17
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Computer Simulations using Heat Exchanger Plant - Comments

Reference Signal of Constant Amplitude

Both MRAC and CMRAC performed well when a reference signal of constant amplitude

was used. Control error and closed-loop estimation errors were converging to zero with

the trajectories of the latter and of control parameters converging to a small area of the

plane. Overshoot occurred at the beginning of the evaluation trials and when amplitude

of reference model response changed, was very fast eliminated. Corresponding Figures

are B.12, B.13, B.16, B.17 and Tables B.6, B.8.

Performance of CMRAC-RIV was unsuccessful when square reference signal was

used. Control error and closed-loop estimation errors were not converging to zero value.

System’s response remained oscillatory through the whole duration of the evaluation

trial. Performance of CMRAC-RIV was satisfactory when sinusoidal reference signal

was used. Corresponding Figures are B.14, B.15 and Table B.7.

Reference Signal of Changing Amplitude

Both MRAC and CMRAC performed successfully when the change of amplitude in

reference model response occurred leading to a system’s response close to the corre-

sponding one of reference model. However, the system’s response tended to be more

oscillatory when reaching higher values after reference model change of amplitude oc-

curred. These oscillations were of bigger amplitude when CMRAC-RIV was used. The

trajectories of controller parameters and closed-loop estimation errors verified the fact

that each of them converged to the desired value required for a good performance.

Corresponding Figures are 4.19, 4.20, B.18, B.19, B.22, B.23 and Tables 4.17, B.9,

B.11.

CMRAC-RIV performance was again less satisfactory as it did not perform well

when reference model change of amplitude occurred. System’s response was even more

unstable when it obtained bigger values of temperature. Corresponding Figures are

B.20, B.21 and Table B.10.

Use of Dead-one

Use of dead-zone robustness technique eliminated the oscillations of system response

either the change of reference model amplitude occurred or not. It was applied so as to

minimize control error faster and to improve system’s transient response. Correspond-

ing Figures are 4.21, 4.22, B.26, B.27 and Tables 4.18, B.13.

CMRAC-RIV performance remained unstable even when technique of dead-zone

was used. Corresponding Figures are B.24, B.25 and Table B.12.
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Table 4.17: CMRAC-RLS tuning parameters

CMRAC-RLS
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Figure 4.19: CMRAC-RLS of heat exchanger plant stimulated with square input signal

of changing amplitude
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Figure 4.20: Trajectories of closed-loop estimation errors, plant parameter errors and

controller parameters presented in Figure 4.19
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Table 4.18: CMRAC-DZ-RLS tuning parameters

CMRAC-RLS
γ ∆ n λ θ̂0 x0 P0
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Figure 4.21: CMRAC-RLS of heat exchanger plant stimulated with square input signal

of changing amplitude. Use of dead-zone
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Figure 4.22: Trajectories of closed-loop estimation errors, plant parameter errors and

controller parameters presented in Figure 4.21
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4.2.2 Experiments using Heat Exchanger Experimental Device

Results of experimental evaluation of CMRAC performed using heat exchanger exper-

imental device, are presented in this section. Evaluation of MRAC was also performed

so as its results can be compared with the respective ones of CMRAC. Evaluation trials

were performed using

� Reference signal of constant amplitude

� Reference signal of constant amplitude and dead-zone robustness technique

� Reference signal of changing amplitude

� Reference signal of changing amplitude and dead-zone robustness technique

Control law values, produced by the controllers under experimental evaluation, are

equal to voltage values applied across the heating resistance of heat exchanger device.

These values are automatically limited5 between 0V and 5V as negative voltage values

have no importance and values over 5V cause heating resistance overheating.

The duration of each experimental evaluation trial was as big as needed so that one

cycle of heating and cooling process of air temperature could be implemented. Second

cycle of heating and cooling could not be implemented as more computer memory

was needed. In addition, in all the experimental trials the thermocouple and heating

resistance were placed close enough so as to minimize measurement delay.

Tuning of control algorithms was done by trial and error. Sample time of all the

experiments was 0.25 sec. Most representative results of the experimental control eval-

uation trials performed and tables with the values of control algorithms tuning pa-

rameters are presented below. Except from the figures depicting the values of control

law, control parameter estimations and control error, figures depicting the trajectories

of controller parameters, plant parameter errors and of closed-loop estimation errors

which are representative of control systems stability and convergence properties are

also presented. Comments on control algorithms performance for each experimental

trial are shown below.

More results from evaluation trials of control algorithms using heat exchanger ex-

perimental device can be found in Appendix B.

5Using the saturation block in Simulink models 3.12 and 3.13
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Experimental Trials using Heat Exchanger Device - Comments

Reference Input of Constant Amplitude

Most of the experimental evaluation trials were characterized by a slow transient re-

sponse having big overshoot and by a faster but oscillatory steady-state response. Val-

ues of control error were satisfactorily small and fluctuating close to zero. Trajectories

of controllers parameters and closed-loop estimation errors showed that the controllers

designed have good convergence properties.

Experimental performance of the controllers designed were less satisfactory when

sinusoidal reference signal was used. However, system response still fluctuated around

the desired one.

Corresponding Figures are B.28 to B.35 and Tables B.14 to B.17.

Reference Input of Constant Amplitude-Use of Dead-Zone

Use of dead-zone robustness technique led to an experimental closed-loop response

free of oscillations both in transient and in steady-state response. Overshoot was also

eliminated while controllers parameters and closed-loop estimation errors converged to

desired values.

CMRAC-RIV performance was not satisfactory as system response remained oscil-

latory and control error generated did not converge to zero.

Corresponding Figures are 4.23 to 4.30 and Tables 4.19 to 4.22.

Reference Input of Changing Amplitude

A change in reference model amplitude had an effect in the form of experimental closed-

loop response by making it more oscillatory when the change occurred. However,

these oscillations were characterized by small amplitude and system’s response signal

fluctuations were very close to the response of reference model. Moreover, trajectories

of control parameters and closed-loop estimation errors showed that the controllers

were maintaining their good convergence properties.

Corresponding Figures are B.36 to B.43 and Tables B.18 to B.21.

Reference Input of Changing Amplitude-Use of Dead-Zone

Application of dead-zone eliminated oscillations of system’s response only when cooling

of air temperature occurred, after the change of reference model amplitude. Oscilla-

tory response, after system response reached higher values of air temperature, was

unavoidable. All of the controllers, though, maintained their convergence and stability

properties and performed properly.
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Corresponding Figures are B.44 to B.51 and Tables B.22 to B.25.

Delay of Transient Response

Delay of the experimental closed loop transient response before reaching the desired

values of air temperature, during the initial time steps of the experimental evaluation

trials, was due to the initial negative values of the control law. The initial values of

reference model response were below the ambient temperature of the air. As a result,

the controller tended to decrease air’s temperature, in order to decrease the values of

control error. However, this could not be implemented, as negative values of control

law-voltage were not accepted by the heating resistance and the latter didn’t have the

ability to cool the air below the ambient temperature. Values of control law quickly

became positive, as the reference model response quickly reached values above the

ambient temperature of the air. The time needed by the controller to create the first

positive values of control law constituted the initial delay of the experimental closed

loop transient response.
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Table 4.19: MRAC tuning parameters
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Figure 4.23: MRAC of heat exchanger device stimulated with square input signal. Use

of dead-zone
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Table 4.20: CMRAC-RLS tuning parameters

CMRAC-RLS
γ ∆ n λ θ̂0 x0 P0

7 ∗ 10−9 1 2 0.99 Z21 Z21 1000 ∗ I2

0 1 2 3 4 5 6 7 8 9 10

x 10
4

-0.5

0

0.5

1

1.5

V
o
lt
s
 (

V
)

Control Law

u_c

u_c,sat

0 1 2 3 4 5 6 7 8 9 10

x 10
4

-5

0

5

10

15
x 10

-3 Control Parameters Estimations

theta

k

0 1 2 3 4 5 6 7 8 9 10

x 10
4

35

40

45

50

55

T
e
m

p
e
ra

tu
re

 (
C

e
ls

iu
s
)

simulation time

CMRAC Results

y_m

y

0 1 2 3 4 5 6 7 8 9 10

x 10
4

-10

-5

0

5

10

simulation time

T
e
m

p
e
ra

tu
re

 (
C

e
ls

iu
s
)

Control Error

e_c

Figure 4.25: CMRAC-RLS of heat exchanger device stimulated with square input sig-

nal. Use of dead-zone
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Table 4.21: CMRAC-RIV tuning parameters

CMRAC-RIV
γ ∆ n λ θ̂0 x0 v0 P0

6 ∗ 10−9 1 2 0.95 [−0.1 − 0.1]⊺ [−0.1 − 0.1]⊺ [−0.1 − 0.1]⊺ 1000 ∗ I2
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Figure 4.27: CMRAC-RIV of heat exchanger device stimulated with square input sig-

nal. Use of dead-zone
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Table 4.22: CMRAC-SL tuning parameters

CMRAC-SL
γ ∆ n γsl θ̂0 x0

7 ∗ 10−9 1 2 1 Z21 Z21
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Figure 4.29: CMRAC-SL of heat exchanger device stimulated with square input sig-

nal.Use of dead-zone
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4.2.3 Conclusions

In general, the evaluation trials performed showed that CMRAC had satisfactory per-

formance. Control error fluctuations were close to zero value and closed-loop estima-

tion errors were converging to zero, something which showed that the deviation of the

estimated coefficients of the closed-loop transfer function, calculated by the control al-

gorithm, from those of the reference model was very small. Furthermore, trajectories of

controllers parameters and of closed-loop estimation errors proved that the controllers

designed have good convergence properties.

CMRAC using instrumental variables identifier (CMRAC-RIV) did not perform as

well as the remaining versions of CMRAC. Control error values and trajectories of

controller parameters and closed-loop estimation errors showed that CMRAC-RIV had

weaker convergence properties.

Use of Reference Signal of Changing Amplitude

Both computer simulations and experimental evaluation trials performed using refer-

ence signal of changing amplitude, showed that the oscillatory system’s response after

the change of reference’s amplitude occurred was unavoidable. Use of dead-zone ro-

bustness technique was necessary in order to eliminate oscillations at parts of system’s

response which represent heating and cooling processes of air temperature, when square

or sinusoidal reference signal was used. CMRAC-RIV performed worse when reference

input of constant amplitude and dead-zone were used, as it produced the biggest control

error values (see Table 4.13). However, as trajectories of controllers parameters and

closed-loop estimation errors showed, the latter maintained its convergence properties.

Effect of Identification Algorithm Used

Evaluation of system identification algorithms used, presented in the previous section,

showed that the instrumental variables algorithm did not perform well in most occa-

sions. Taking into account the conclusions made for CMRAC-RIV, it is clear that the

performance of the system identification part of CMRAC algorithm strongly affected

performance of CMRAC. Identification error and plant parameters estimations values,

which are produced by the identification algorithm and used by CMRAC algorithm for

control law synthesis, must be a result of identification algorithm good performance in

order for the CMRAC to work properly.

All of the identification algorithms maintained their performance characteristics

(referred in previous section) during control evaluation trials as they were operating

independently of the control algorithms. As a result, CMRAC-RLS and CMRAC-SL
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performed better than CMRAC-RIV during control evaluation trials implementation.

Conclusions for the performance of identification algorithms in control evaluation trials

can be drawn from plant parameter errors trajectories.

Actuator Nonlinearity

During the implementation of the experimental evaluation trials of the designed con-

trollers, a nonlinearity in power electronics actuator was observed. The amount of

electricity fed through to the heating resistance by the actuator seemed to be bigger

when the voltage applied to the latter was equal to 0.5V , 1V , 1.5V and so on. Whenever

the voltage applied to the actuator (calculated by the control law) was taking any other

value, the amount of electrical power fed was decreased or increased disproportionately

to the control law.

As a result, experimental closed-loop response, in most of the results presented in

this chapter, was characterized by peaks which were absent in the control-law signal.

These oscillations were occurring during steady-state response (when square reference

signal used) or when system response had to follow a sinusoidal air temperature ref-

erence. Oscillations created due to this nonlinearity could not be eliminated with the

use of dead-zone robustness technique.



Chapter 5

Experimental Results from

Water Brake

Results from the final experimental evaluation tests of the controllers designed, using

the water brake at the powertrain facility in LME, are presented in this chapter. These

results are representative of the performance trials implemented at CAT 3176B ma-

rine diesel engine test bench, in LME, during the final stage of this diploma Thesis.

Basic aim of these trials was to test the stability and convergence properties of the

controllers designed for the engine load control system. In all trials, CAT diesel engine

was operated in low load transient regime.

MRAC and CMRAC designed were used for the implementation of two different load

control systems of CAT marine diesel engine, applied on the water brake coupled to the

latter. Firstly, both system identification and control algorithms, were tested through

computer simulations using real measured signals, taken from water brake operation,

and a second order mathematical model of water brake, respectively. During the final

stage of the diploma Thesis implementation, one version of the CMRAC and MRAC was

installed in the control platform of CAT 3176B (Simulink model in Figure 3.15) marine

diesel engine test bench for the conduction of a series of experimental evaluation tests.

Representative results of all the evaluation trials performed and conclusions regarding

the performance of the controllers are presented in the following sections.

5.1 CMRAC Trials

5.1.1 Computer Simulation Results

Representative computer simulation results from the evaluation trials of the CMRAC

version selected for the final experimental trials implementation are presented below.

105
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These trials were performed in order to test controller’s performance and limitations,

using a mathematical model of water brake plant (see section 3.1.4), before final ex-

perimental tests be made. Computer simulation results of sequential learning and least

squares identification algorithms evaluation trials, used for two different CMRAC ver-

sions synthesis, are also presented. These trials were performed so as to test algorithms’

performance and stability properties when real measured signals of valve command and

water brake torque were used as inputs to the algorithm.

System Identification Trials

Figures 5.1 and 5.2 show results from computer simulation trials of SL and RLS al-

gorithm respectively while Tables 5.1 and 5.2 show details of their tuning parameters.

It can be seen that both SL and RLS identification algorithms were able to estimate

the dynamics of torque signal (y signal) with high precision. Values of identification

error prove that both algorithms performance was satisfactory and stable. A propor-

tional gain was used for the amplification of the input signal used (valve command)

so that the necessary, for a good algorithm performance, level of amplitude can be

generated. Modifications of the input signal characteristics were necessary in order for

the identification algorithm to maintain its stability and convergence properties.

Computer simulation trials using RIV identification algorithm were also performed.

Algorithm’s tuning was very difficult and its performance was totally unstable. There-

fore, presentation of results is omitted.

Table 5.1: SL tuning parameters

SL
n γsl θ̂0 x0

4 1 Z41 Z41

Table 5.2: RLS tuning parameters

RLS
n λ θ̂0 x0 P0

4 1 I41 I41 100 ∗ I4
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Figure 5.1: Computer simulation results of SL identification algorithm applied on

torque measurements taken from water brake operation
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Figure 5.2: Computer simulation results of RLS identification algorithm applied on

torque measurements taken from water brake operation
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Control Trials

Figure 5.4 shows computer simulations results of CMRAC-SL applied on a second

order discrete time system plant of water brake and Table 5.3 shows values of its

tuning parameters. These trials were performed as an initial test of the second order

extension of CMRAC before being tested experimentally on the real plant of water

brake at LME facilities. An external square signal (Figure 5.3) was used as input of the

identification algorithm as the latter was not able to operate properly using the control

law (valve command) as input. The reference signal and the reference model used were

the same to those used in the experimental trials performed. A first order discrete time

filter was used in order to make transient response of reference signal, when a change

in its amplitude occurs, smoother and avoid over-excitation of the closed loop control

system.

Results show that CMRAC-SL performed very well by producing a control law

close to the expected, comparing to real valve command measurements, values and a

control error converging to zero very fast. The controller had very good convergence

properties and stability to big changes of reference amplitude. It is also clear that the

use of dead-zone technique is unnecessary since there are no oscillations in the system

response signal.

Computer simulation trials of CMRAC-RLS were also implemented. Controller

performance was unsatisfactory and unstable producing big control error. Therefore,

presentation of the results is omitted.
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Table 5.3: CMRAC-SL tuning parameters

CMRAC-SL
γ n γsl θ̂0 x0

1 ∗ 10−6 4 1 I41 I41
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Figure 5.4: Computer simulation results of CMRAC with SL identifier applied on a

second order water brake plant
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5.1.2 Experimental Results

Table 5.4: CMRAC-SL tuning parameters

CMRAC-SL
γ n γsl θ̂0 x0

1 ∗ 10−9 4 1 I41 I41
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Figure 5.5: Experimental results of CMRAC with SL identifier applied on water brake

plant at CAT diesel engine test bench

The fact that CMRAC-RLS did not perform well in computer simulation evaluation

trials led to selection of CMRAC-SL as the controller to be used for the experimental

tests implementation. Figure 5.5 shows the experimental results of CMRAC-SL applied

on water brake plant at CAT diesel engine’s test bench and Table 5.4 shows CMRAC-

SL tuning parameters values. Signals of measured torque and engine’s speed show that

system’s response to control law input was unstable leading to a control error which did

not converge to zero. Oscillatory system response is due to the high amplitude fluctua-

tions of the control law signal produced (see Figure 5.6) which were much greater than

the required valve command values for stable and smooth operation of the water brake.

Even though the adaptation gain γ was set very small it had no effect on the decreasing
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control law rate of change. Figure 5.7 shows that the SL identifier of the CMRAC used

did not perform well, too, by overestimating the parameters of water brake plant and

producing large identification error. Big identification error led in control parameters

overestimation and finally in bad and unsatisfactory performance of the control system.

The fact that mean value of the control error produced by the controller was close to

zero, was the only positive characteristic of CMRAC performance.
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Figure 5.8: Engine speed and Torque changes from CMRAC-SL experimental test on

water brake plant
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Figure 5.8 shows CAT diesel engine speed and torque changes measured during CMRAC-

SL experimental test on water brake plant. Figure 5.9 shows the corresponding diesel

engine’s torque to speed curve. This is not converging to a small area of the plane

during engine’s operation which proves that engine’s torque and speed were not kept

constant during the experimental trial. On the contrary, torque signal’s fluctuations

covered a big area of the plane which indicates the unstable performance of CMRAC.
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5.2 MRAC Trials

5.2.1 Computer Simulations Results

Representative results of the computer simulation evaluation trials of MRAC, for second

order systems control, are presented below. As in the case of CMRAC, these trials were

performed as a prior test of controller’s stability and convergence properties before the

final experimental tests implementation.

Control Trials

Figure 5.11 shows the results from computer simulation of MRAC applied on a second

order discrete time system plant of water brake while Table 5.5 shows MRAC tuning

parameter value. Figure 5.10 shows MRAC parameters fluctuations during computer

simulation. These trials were performed as an initial test of the second order extension

of MRAC before being tested experimentally on the real plant of water brake at LME

facilities.

Results prove that MRAC designed has very good convergence and stability prop-

erties to big changes of reference amplitude. Control error convergences to zero and

control law values are very close to the real expected valve command values. Fluctua-

tions of control law are very smooth, leading to a system response with no oscillations.

Use of dead-zone is unnecessary.
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Table 5.5: MRAC tuning parameters

MRAC
γ

10−4
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Figure 5.11: Computer simulation results of MRAC applied on a second order water

brake plant
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5.2.2 Experimental Results

Table 5.6: MRAC tuning parameters values-Water Brake-Test Bench Trial
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Figure 5.12: Experimental results of MRAC applied on water brake plant at CAT diesel

engine test bench at LME

Figure 5.12 shows the experimental results of MRAC of second order applied on

water brake plant at CAT diesel engine test bench in LME and Table 5.6 shows MRAC

tuning parameter value. During the initial stages of this trial the control law produced

by the controller was providing large values, as in the case of CMRAC experimental trial

(see Figure 5.6). The rate of change of the control law signal was also very high. As a

result, the response produced was oscillatory with large amplitude leading to a control

error signal which was not converging to zero. In order to make system’s response

more stable and smoother, a proportional gain was used, in order to decrease control

law values and make it fluctuate among the desired values. In addition, the technique

of dead-zone was used in order to improve robustness of the controller in the presence

of measurement noise and unmodelled system dynamics. As a result, oscillations of the
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torque signal were eliminated and the closed loop control system performed better.

Observing the response signal of water brake plant (i.e torque) having small settling

time, no overshoot and being close to the desired response of reference model, perfor-

mance of Model Reference Adaptive Load Control system is considered satisfactory.

Moreover, torque response signal is tracking the changes of torque reference amplitude

smoothly and fast.

Figure 5.13 shows the engine speed variations during the load transients. It can

be seen that speed is kept around its reference value of about 1550 rpm with small

overshoots during load changes, as expected. Constant speed is maintained by the

separate engine speed-fuel controller. Figure 5.13 also shows CAT marine diesel engine

torque signal measured during MRAC experimental test on water brake plant.

Figure 5.14 shows the diesel engine’s torque to speed curve from the experimental

trial of MRAC. It is clear that during high load steady state system response (Figure

5.13), torque signal is converging to a small area of the plane (area 1) which proves that

engine’s torque and speed were kept constant during the corresponding time period of

the experimental trial. Engine’s torque and speed are also kept constant during low load

steady state system response and this can be seen in area 2. Remaining fluctuations

in diesel engine’s torque-speed curve correspond to a path during the transient system

response which in turn corresponds to separate speed signal peaks of amplitude.
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Figure 5.13: Engine speed and Torque changes from MRAC experimental test on water

brake plant
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5.3 Conclusions

Following the completion of the experimental trials of MRAC and CMRAC, conclusions

regarding controllers’ performance could be made. Presence of measurement noise, ex-

ternal disturbances and unmodeled dynamics of higher order, characteristics of most

real processes, made the adaptive controllers perform with an unstable behaviour. Sys-

tem response was oscillatory with large amplitude, a fully unstable condition which can

lead to failure of control system (controller parameters turn to infinite). In the case

of CMRAC, the overestimation of system plant parameters led to large identification

error which in turn led to overestimated controller parameters. Control law was char-

acterized by fluctuations of high rate of change and values larger than the desired ones

for a good and stable performance.

It seems that modifications of adaptive laws in order to be more robust, when

nonlinearities, noisy measurements and external disturbances are present, are necessary

for a satisfactory and stable performance. Dead-zone technique was the one used for

robustness optimization of MRAC due to its simplicity and its effectiveness which

was tested using heat exchanger experimental device. Moreover, use of proportional

gains also seems to be necessary in order for the control law to be smaller and close

to the desired values. In the case of CMRAC used, the performance of the system

identification part seems to be of great importance as bad identifier performance led to

unavoidable bad controller performance. Therefore, better tuning of the identifier and

modifications on the mechanism which estimates plant parameters are necessary, too.

To conclude, combination of robustness optimization techniques and modifications

in the mechanism which generates the control law, is an option able to improve Model

Reference Adaptive Control performance.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

Experimental results of CMRAC evaluation trials, presented in this Thesis, prove that

CMRAC algorithm is more effective in dealing with a simple process, like temperature

control of an air stream (heat exchanger), rather than with a more complex, like the

load control of a marine diesel engine. Performance of CMRAC, when applied on a pro-

cess accurately mathematical modelled by a first order system, was stable and robust

having good convergence properties. On the other hand, when it was set to control a

complex process, characterized by non-linearities and dynamics of higher order, control

algorithm lost its stability properties leading to unacceptable performance. Therefore,

the Combined Model Reference Adaptive Controller, as presented by the mathematical

equations in chapter 2, was not able to control a real process in the presence of unmod-

elled dynamics, measurement noise and external disturbances, features that most real

processes have. Conclusions referred above, also apply to MRAC controllers designed

as presented by the mathematical equations in chapter 2.

Use of techniques for creating robust adaptive control laws seems to be necessary

and much important for satisfactory performance characteristics of both MRAC and

CMRAC designed. Use of dead-zone technique, in the adaptive law synthesis algorithm

part, seems to improve the robustness and performance characteristics of the control

system. This can be proved by comparing experimental results like those shown in

Figures B.30 and 4.25 and those shown in Figures 5.12 and 5.5.

Performance of CMRAC is strongly affected by the performance and the effective-

ness of the identification part of its integrated algorithm, as values of identification

error and of plant parameters estimations are used for the creation of the control law

at any time instants. Figure 5.5 shows that large identification error causes overes-

timation of control parameters, leading to an oscillatory system’s response with big
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overshoot. Therefore, proper tuning of the identification algorithm is something which

needs special treatment by the Control Engineer. Moreover, selection of the identifica-

tion algorithm to be used for a CMRAC system implementation, also needs to be done

very carefully after examining the dynamical characteristics and the working conditions

of the system plant to be controlled. An appropriately selected and well tuned identifi-

cation algorithm combined with a well tuned and robust control algorithm are required

for the creation of a stable and effective control system with the required convergence

properties.

Results from system identification algorithms evaluation trials show that the esti-

mation of the parameters of both first and second order system plants mathematical

models was successfully implemented. Use of forgetting factor technique made the

identification algorithms able of tracking even plant parameters changes of 100%. The

assumption of absence of noise in the response signal, of the system to be identified,

resulted in a simple, though accurate, identification algorithm formation. Furthermore,

the identification algorithms designed can produce accurate results even if white noise

is present, as experimental results from evaluation trials using heat exchanger device

proved. On the other hand, experimental results from trials at water brake plant

proved that the inability of identification algorithms to estimate coloured noise and

higher order characteristics, of the measured torque signal, caused its unsatisfactory

performance. Moreover, features of identification algorithms’ input signal are crucial

for the stable and robust performance of the identifier.

6.2 Future Work

Controller Modifications for Robustness

Except from technique of dead-zone, applied on controllers designed for their robust-

ness optimization, there are other techniques, [7]. Purpose of all of these techniques

is to modify the adaptive law of the control algorithm, designed for an ideal plant,

so that they can retain their stability properties in the presence of plant parameter

uncertainties. The idea behind these techniques is to modify the adaptive laws so that

the time derivative of the Lyapunov function, used to analyze the stability properties

of the controller, become negative. Some of these techniques are leakage technique and

the parameter projection technique which keeps parameter estimates within an a priori

defined bounded space.

It should be pointed that a very important step, in the control systems design

process, before the application of robustness techniques is the analysis of mechanisms

which cause instability phenomena in adaptive systems [7], such as the parameter drift
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problem mentioned in chapter 2.

Measurement Noise Identification

In system identification algorithms analysis, as presented in chapter 2, it was assumed

that noise polynomial (C) coefficients, in equation (2.53), are zero. In other words, the

unobservable noise, with which the measured system’s output signal is usually corrupted

in a real process, was neglected for the purposes of this Thesis. Noise polynomial

coefficients estimation [16] will possibly lead to a more precise estimation of a complex

plant parameters (like that of water brake) as measured signals fed to the identification

algorithm are definitely corrupted with noise or other external disturbances.

Furthermore, use of an identification algorithm able to estimate parameters of a

non-linear system plant, like the maximum likelihood estimator or other stochastic

identifiers [8],[16], could also be more appropriate for on-line real-time identification of

a system like that of water brake.

Time Varying Forgetting Factor

All of the system identification algorithms and control algorithm evaluation trials were

implemented using a constant forgetting factor. However, a constant forgetting factor

may lead to unbounded magnitude in certain directions of covariance matrix P in the

absence of persistently exciting signals. Unboundedness of the covariance matrix is

undesirable since it can lead in violent oscillations of the estimated parameters and as

a result to unstable performance of the identification algorithm. To keep the benefits of

a constant forgetting factor and to avoid the possibility of covariance matrix unbound-

edness, it is desirable to use a forgetting factor tuning technique so that data forgetting

is activated when input signals are persistently exciting and suspended when they are

not.

Forgetting factor tuning techniques are presented in [13]. More forgetting factor

tuning techniques are presented in [16]. One of them is able to deal with unpredicted

changes in system parameters by monitoring and using the identification error ϵ(t) for
the adaptation of the forgetting factor.

Unmodeled Dynamics

In a real process, many types of non-parametric uncertainties can be present. Since

adaptive controllers are designed to control physical systems, such non-parametric un-

certainties are unavoidable. Therefore, creation of a mathematical model which accu-

rately describes the actual plant to be controlled as well as simply enough from the
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control design point of view, over an operating range, is necessary. For the robustness

properties of control algorithms to be improved, a characterization in mathematical

form of the types of plant uncertainties, that are usually present in practice, is very

important. Computer simulations using plant models with uncertainties could be very

important for the complete performance evaluation of the controllers designed. Evalu-

ation trials including unmodeled dynamics are presented in [13] whereas mathematical

modelling of various plant uncertainties is presented in [7].



Appendix A

Evaluation of System

Identification Algorithms

Supplementary results of identification algorithms evaluation trials are presented in this

chapter. The first section refers to results produced through computer simulations. The

second one refers to results from experimental evaluation trials using heat exchanger

experimental device (1.5). Use of PRBS and chirp signals, as identification algorithms

stimulatory signals, is presented.

A.1 Computer Simulations Results

Figures A.1 to A.12 show results from computer simulation trials using the same lit-

erature plant with this used for simulation trials presented in section 4.1.1. Figures

A.13 to A.20 show results from computer simulation tests using the heat exchanger’s

first order discrete time mathematical model which was also used for the computer

simulation evaluation trials of identification algorithms presented in section 4.1.1 .

The type of input signal, the plant parameters estimations, the identification error

and the validation of estimated plant output signal are depicted in the following figures

for each plant used. Tables with each algorithm’s tuning parameters are also depicted.
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Table A.1: R.L.S tuning parameters

R.L.S
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Figure A.1: Results of RLS identification applied on literature plant stimulated with

P.R.B.S input signal
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Figure A.2: Results of RLS identification applied on literature plant stimulated with

chirp input signal
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Table A.2: RLS tuning parameters

RLS
n λ θ̂0 x0 P0
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Figure A.3: Results of RLS identification applied on literature plant with changing

parameters stimulated with square input signal
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Figure A.4: Results of RLS identification applied on literature plant with changing

parameters stimulated with sinusoidal input signal
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Table A.3: RIV tuning parameters

RIV
n λ θ̂0 x0 v0 P0
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Figure A.5: Results of RIV identification applied on literature plant stimulated with

square input signal
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Figure A.6: Results of RIV identification applied on literature plant with changing

parameters stimulated with square input signal
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Table A.4: RIV tuning parameters

RIV
n λ θ̂0 x0 v0 P0
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Figure A.7: Results of RIV identification applied on literature plant stimulated with

sinusoidal input signal
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Figure A.8: Results of RIV identification applied on literature plant with changing

parameters stimulated with sinusoidal input signal
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Table A.5: SL tuning parameters

SL
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Figure A.9: Results of SL identification applied on literature plant stimulated with

square input signal
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Figure A.10: Results of SL identification applied on literature plant stimulated with

sinusoidal input signal
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Table A.6: S.L tuning parameters

S.L
n γ θ̂0 x0
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Figure A.11: Results of SL identification applied on literature plant with changing

parameters stimulated with PRBS input signal

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

simulation time

Input Signal

u

0 100 200 300 400 500 600 700 800
0

5

10

15

20

simulation time

Validation

y

y_ ident

0 100 200 300 400 500 600 700 800
-1.5

-1

-0.5

0

0.5

1

1.5

simulation time

Parameter Estimations

a1

a2

b1

0 100 200 300 400 500 600 700 800
-0.05

0

0.05

0.1

0.15

0.2

simulation Time

Identification Error

e
i

Figure A.12: Results of SL identification applied on literature plant with changing

parameters stimulated with chirp input signal
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Table A.7: RIV tuning parameters

RIV
n λ θ̂0 x0 v0 P0
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Figure A.13: Results of RIV identification applied on heat exchanger plant stimulated

with square input signal of low frequency
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Figure A.14: Results of RIV identification applied on heat exchanger plant with chang-

ing parameters, stimulated with square input signal of low frequency
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Table A.8: RIV tuning parameters

RIV
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Figure A.15: Results of RIV identification applied on heat exchanger plant stimulated

with square input signal of high frequency
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Figure A.16: Results of RIV identification applied on heat exchanger plant with chang-

ing parameters, stimulated with square input signal of high frequency
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Table A.9: SL tuning parameters
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Figure A.17: Results of SL identification applied on heat exchanger plant stimulated

with sinusoidal input signal of low frequency
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Figure A.18: Results of SL identification applied on heat exchanger plant with changing

parameters, stimulated with sinusoidal input signal of low frequency
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Table A.10: SL tuning parameters
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Figure A.19: Results of SL identification applied on heat exchanger plant stimulated

with sinusoidal input signal of high frequency
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Figure A.20: Results of SL identification applied on heat exchanger plant with changing

parameters, stimulated with sinusoidal input signal of high frequency
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A.2 Experimental Results

Supplementary results of identification algorithms evaluation tests using heat exchanger

experimental device (Figure 1.5) are presented in this section. The type of input sig-

nal, the plant parameters estimations, the identification error and the validation of

estimated plant output signal are depicted in the following figures for each trial per-

formed. Tables with each algorithm’s tuning parameters are also depicted.
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Table A.11: RLS tuning parameters
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Figure A.21: Results of RLS identification applied on heat exchanger experimental

device stimulated with P.R.B.S input signal
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Figure A.22: Results of RLS identification applied on heat exchanger experimental

device stimulated with chirp input signal
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Table A.12: RIV tuning parameters
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Figure A.23: Results of RIV identification applied on heat exchanger experimental

device stimulated with square input signal
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Figure A.24: Results of RIV identification applied on heat exchanger experimental

device stimulated with sinusoidal input signal
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Table A.13: S.L algorithm tuning parameters
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Figure A.25: Results of SL identification applied on heat exchanger experimental device

stimulated with P.R.B.S input signal
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Figure A.26: Results of SL identification applied on heat exchanger experimental device

stimulated with chirp input signal



138 Chapter A. Evaluation of System Identification Algorithms

2.5 2.55 2.6 2.65 2.7 2.75 2.8 2.85 2.9 2.95 3

x 10
4

1.36

1.38

1.4

1.42

1.44

1.46

1.48

1.5

1.52

1.54

simulation time

V
o
lt
s
 (

V
)

Instumental Variable Wave Form

iv
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Appendix B

Evaluation of Control Algorithms

Supplementary results of control evaluation trials are presented in this chapter. The

first section refers to results produced by making computer simulation trials. The

second one refers to results from experimental evaluation trials using heat exchanger

experimental device (Figure 1.5).

B.1 Computer Simulations Results

Figures B.1 to B.10 show results from computer simulations using the same literature

plant with this used for the simulations presented in section 4.2.1. Figures B.14 to B.27

show results from computer simulations using the heat exchanger’s first order discrete

time mathematical model which was also used for the computer simulation trials of

control algorithms presented in section 4.2.1 .

Except from figures depicting the values of control law, control parameter estima-

tions and control error, there are figures depicting the trajectories of controller param-

eters, plant parameter errors and of closed-loop estimation errors. Tables with each

controller’s tuning parameters are also depicted.

139
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Table B.1: MRAC tuning parameters
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Figure B.1: MRAC of literature plant stimulated with step input signal
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Figure B.2: Trajectory of controller parameters presented in figure B.1
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Table B.2: MRAC tuning parameters
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Figure B.3: MRAC of literature plant stimulated with square input signal
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Figure B.4: Trajectory of controller parameters presented in figure B.3
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Table B.3: CMRAC-RLS tuning parameters

CMRAC-RLS
γ n λ θ̂0 x0 P0
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Figure B.5: CMRAC-RLS of literature plant stimulated with square input signal
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Table B.4: CMRAC-RIV tuning parameters

CMRAC-RIV
γ n λ θ̂0 x0 v0 P0
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Figure B.7: CMRAC-RIV of literature plant stimulated with square input signal
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Table B.5: CMRAC-SL tuning parameters

CMRAC-SL
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Figure B.9: CMRAC-SL of literature plant stimulated with sinusoidal input signal
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Figure B.10: Trajectories of closed-loop estimation errors, plant parameter errors and

controller parameters presented in figure B.9
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Table B.6: MRAC tuning parameters
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Figure B.12: MRAC of heat exchanger plant stimulated with square input signal
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Figure B.13: Trajectory of controller parameters presented in figure B.12
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Table B.7: CMRAC-RIV parameters

CMRAC-RIV
γ n λ θ̂0 x0 v0 P0
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Figure B.14: CMRAC-RIV of heat exchanger plant stimulated with square input signal
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Figure B.15: Trajectories of closed-loop estimation errors, plant parameter errors and

controller parameters presented in figure B.14
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Table B.8: CMRAC-SL tuning parameters
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Figure B.16: CMRAC-SL of heat exchanger plant stimulated with square input signal

-0.1 0 0.1 0.2 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

theta

k

Trajectory of Controller Parameters

-0.06 -0.04 -0.02 0 0.02 0.04
-0.1

-0.05

0

0.05

0.1

0.15

e_th

e
_

k

Trajectory of Closed-Loop Estimation Errors

-0.3 -0.2 -0.1 0 0.1
-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

na

n
b

Trajectory of Plant Parameter Errors

Figure B.17: Trajectories of closed-loop estimation errors, plant parameter errors and

controller parameters presented in figure B.16
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Table B.9: MRAC tuning parameters
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Figure B.18: MRAC of heat exchanger plant stimulated with square input signal of

changing amplitude
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Figure B.19: Trajectory of controller parameters presented in figure B.18
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Table B.10: CMRAC-RIV tuning parameters
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Figure B.20: CMRAC-RIV of heat exchanger plant stimulated with square input signal

of changing amplitude
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Figure B.21: Trajectories of closed-loop estimation errors, plant parameter errors and

controller parameters presented in figure B.20
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Table B.11: CMRAC-SL tuning parameters
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Figure B.22: CMRAC-SL of heat exchanger plant stimulated with square input signal

of changing amplitude
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Figure B.23: Trajectories of closed-loop estimation errors, plant parameter errors and

controller parameters presented in figure B.22
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Table B.12: CMRAC-DZ-RIV tuning parameters
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Figure B.24: CMRAC-RIV of heat exchanger plant stimulated with square input signal.
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Figure B.25: Trajectories of closed-loop estimation errors, plant parameter errors and

controller parameters presented in figure B.24
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Table B.13: CMRAC-DZ-SL tuning parameters
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Figure B.26: CMRAC-SL of heat exchanger plant stimulated with square input signal

of changing amplitude. Use of dead-zone
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B.2 Experimental Results

Supplementary results of controllers’ evaluation tests using heat exchanger experimen-

tal device (Figure 1.5) are presented in this section. Except from figures depicting

the values of control law, control parameter estimations and control error, there are

figures depicting the trajectories of controller parameters, plant parameter errors and

of closed-loop estimation errors. Tables with each controller’s tuning parameters are

also depicted.
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Table B.14: MRAC tuning parameters
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Figure B.28: MRAC of heat exchanger device stimulated with square input signal
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Figure B.29: Trajectory of controller parameters presented in Figure B.28
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Table B.15: CMRAC-RLS tuning parameters
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Figure B.30: CMRAC-RLS of heat exchanger device stimulated with square input

signal
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Figure B.31: Trajectories of closed-loop estimation errors, plant parameter errors and

controller parameters presented in Figure B.30
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Table B.16: CMRAC-RIV tuning parameters
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Figure B.32: CMRAC-RIV of heat exchanger device stimulated with square input signal
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Figure B.33: Trajectories of closed-loop estimation errors, plant parameter errors and

controller parameters presented in Figure B.32
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Table B.17: CMRAC-SL tuning parameters

CMRAC-SL
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Figure B.34: CMRAC-SL of heat exchanger stimulated device with square input signal
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Figure B.35: Trajectories of closed-loop estimation errors, plant parameter errors and

controller parameters presented in Figure B.34
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Table B.18: MRAC tuning parameters
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Figure B.36: MRAC of heat exchanger experimental device stimulated with square

input signal of changing amplitude
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Figure B.37: Trajectory of controller parameters presented in Figure B.36
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Table B.19: CMRAC-RLS tuning parameters

CMRAC-RLS
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Figure B.38: CMRAC-RLS of heat exchanger experimental device stimulated with

square input signal of changing amplitude
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Figure B.39: Trajectories of closed-loop estimation errors, plant parameter errors and

controller parameters presented in Figure B.38
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Table B.20: CMRAC-RIV tuning parameters
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Figure B.40: CMRAC-RIV of heat exchanger experimental device stimulated with

square input signal of changing amplitude
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Figure B.41: Trajectories of closed-loop estimation errors, plant parameter errors and

controller parameters presented in Figure B.40
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Table B.21: CMRAC-SL tuning parameters
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Figure B.42: CMRAC-SL of heat exchanger experimental device stimulated with square

input signal of changing amplitude
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Figure B.43: Trajectories of closed-loop estimation errors, plant parameter errors and

controller parameters presented in Figure B.42
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Table B.22: MRAC tuning parameters
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Figure B.44: MRAC of heat exchanger experimental device using dead-zone stimulated

with square input signal of changing amplitude
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Figure B.45: Trajectory of controller parameters presented in Figure B.44
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Table B.23: CMRAC-RLS tuning parameters

CMRAC-RLS
γ ∆ n λ θ̂0 x0 P0

7.5 ∗ 10−9 2 2 0.99 Z21 Z21 1000 ∗ I2

0 1 2 3 4 5 6 7 8 9 10

x 10
4

-1.5

-1

-0.5

0

0.5

1

1.5

2

V
o
lt
s
 (

V
)

Control Law

u_c

u_c,sat

0 1 2 3 4 5 6 7 8 9 10

x 10
4

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02
Control Parameters Estimations

theta

k

0 1 2 3 4 5 6 7 8 9 10

x 10
4

35

40

45

50

55

60

65

T
e
m

p
e
ra

tu
re

 (
C

e
ls

iu
s
)

simulation time

CMRAC Results

y_m

y

0 1 2 3 4 5 6 7 8 9 10

x 10
4

-10

-5

0

5

simulation time

T
e
m

p
e
ra

tu
re

 (
C

e
ls

iu
s
)

Control Error

e_c

Figure B.46: CMRAC-RLS of heat exchanger experimental device using dead-zone

stimulated with square input signal of changing amplitude
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Figure B.47: Trajectories of closed-loop estimation errors, plant parameter errors and

controller parameters presented in Figure B.46
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Table B.24: CMRAC-RIV tuning parameters
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Figure B.48: CMRAC-RIV of heat exchanger experimental device using dead-zone

stimulated with square input signal of changing amplitude
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Figure B.49: Trajectories of closed-loop estimation errors, plant parameter errors and

controller parameters presented in Figure B.48
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Table B.25: CMRAC-SL tuning parameters
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Figure B.50: CMRAC-SL of heat exchanger experimental device using dead-zone stim-

ulated with square input signal of changing amplitude
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Appendix C

Persistent Excitation

Persistent excitation term can be found in both system identification and adaptive

control theory. It is a property characterizing signals used for producing parameter

estimations and it is necessary for the effectiveness of the estimation mechanism.

In a system identification scheme, persistent excitation of the input signal of the

system is a requirement for the convergence of the estimated plant parameters close to

the values of the real plant parameters. In other words, how well and how fast plant

parameters are estimated depends on two aspects

� The identification algorithm used and

� The information content (persistent excitation) of the input signal used

In a control scheme, persistent excitation of reference signal r and of system’s

output signal y is essential not only for the convergence of the estimated controller

parameters but also for the robustness of the estimator. If the signals in the original

design are not persistently exciting, parameters will not converge even in the absence

of non-parametric uncertainties. In the presence of non-parametric uncertainties, the

estimator may possibly become unstable even using persistently exciting signals. In

this case, control designer may have to produce a more persistently exciting signal

so as to obtain better parameter estimations. Therefore, it is clear that the Control

Engineer should produce as much persistently exciting signals as allowed by the involved

constraints so as to assure the best possible estimator performance.

Commonly used signals in parameter estimation are

� Square signal

� Sinusoidal signal

� Pseudo-Random Binary Sequence(PRBS)
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� Chirp signal

To summarize, both in system identification and control design, the input signal

used, except from being persistently exciting, should be designed with the appropriate

frequency and amplitude level so as not to violate the linear operating range of the

system or to excite system dynamics of higher order. Those are the requirements for

the robust and satisfactory performance of the parameter estimation mechanism aiming

to produce an approximate linear representation.
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