
Εθνικό Μετσόβιο Πολυτεχνείο
Σχολή Ηλεκτρολόγων Μηχανικών
και Μηχανικών Υπολογιστών

Τομέας Τεχνολογίας Πληροφορικής
και Υπολογιστών

Performance analysis and optimization of modern
applications on Chip Multiprocessor Architectures

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΝΑΤΑΛΙΑ ΧΕΡΙΓΚ

Επιβλέπων : Νεκτάριος Κοζύρης

Καθηγητής

Αθήνα, Μάρτιος 2014

Εθνικό Μετσόβιο Πολυτεχνείο
Σχολή Ηλεκτρολόγων Μηχανικών
και Μηχανικών Υπολογιστών

Τομέας Τεχνολογίας Πληροφορικής
και Υπολογιστών

Performance analysis and optimization of modern
applications on Chip Multiprocessor Architectures

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΝΑΤΑΛΙΑ ΧΕΡΙΓΚ

Επιβλέπων : Νεκτάριος Κοζύρης

Καθηγητής

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την 28η Μαρτίου 2014.

. .

Νεκτάριος Κοζύρης
Καθηγητής

. .

Νικόλαος Παπασπύρου
Αναπληρωτής Καθηγητής

. .

Αριστείδης Παγουρτζής
Επίκουρος Καθηγητής

Αθήνα, Μάρτιος 2014

. .

Ναταλία Χέριγκ
Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

Copyright c© Ναταλία Χέριγκ, 2014.
Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή
τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για σκοπό
μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή
προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας
για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγγραφέα
και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού Μετσόβιου
Πολυτεχνείου.

Περίληψη

Ο σχεδιασμός συστημάτων παράλληλης επεξεργασίας είναι σημαντικό να γίνεται με τέτοιο τρόπο
ώστε να μπορεί να καλύψει τις απαιτήσεις διαφορετικών προγραμμάτων που πρόκειται να εκτελε-
στούν στο μέλλον. Κάθε σύγχρονο πρόγραμμα έχει διαφορετικές ιδιαιτερότητες που πρέπει να λη-
φθούν υπόψιν ώστε η παράλληλη εκτέλεσή του να είναι αποδοτική. Στην παρούσα εργασία επεξερ-
γαστήκαμε το PARSEC 3.0 benchmark, το οποίο αποτελείται από διαφορετικά σύγχρονα παράλληλα
προγράμματα. Ο στόχος της παρούσας διπλωματικής είναι η μελέτη ενός υποσυνόλου αυτών, ως προς
την αξία τους στο σύγχρονο κόσμο και ως προς τους λόγους για τους οποίους η παράλληλη εκτέλεσή
τους είναι αποδοτική ή όχι. Δόθηκε βάση στον τρόπο με τον οποίο κάθε εφαρμογή σχεδιάστηκε χρη-
σιμοποιώντας παράλληλο προγραμματισμό όπως επίσης και στις διαφορετικές δομές δεδομένων που
αξιοποιήθηκαν. Επιπλέον, μελετήθηκαν ξεχωριστά οι αιτίες που αποτελούν εμπόδιο για την γρήγορη
εκτέλεση κάθε προγράμματος. Δοκιμάστηκαν βελτιστοποιήσεις και τροποποιήσεις των προγραμμά-
των και των δεδομένων που χρησιμοποιούν, με στόχο την ακριβέστερη συλλογή συμπερασμάτων.
Τέλος, μελετήθηκε ο χρονοπρογραμματισμός όλων των εφαρμογών στο ίδιο περιβάλλον. Το συγκε-
κριμένο μέρος παρουσιάζει ενδιαφέρον, καθώς η συμπεριφορά ενός προγράμματος μπορεί να είναι
διαφορετική όταν αυτό εκτελείται απομονωμένα ή σε συνδιασμό με άλλα ταυτόχρονα.

Λέξεις κλειδιά

Παράλληλος προγραμματισμός, χρονοπρογραμματισμός, PARSEC, νήματα, δομές δεδομένων

5

Abstract

Designing a chip multiprocessor architecture can be very challenging, because it must satisfy the
requirements of many different applications that will be executed in the future. Each of the modern
programs has different needs in order to be executed efficiently in parallel and have good scaling.
In the current project we use the PARSEC 3.0 benchmark suite, which contains many applications
from several modern domains. The thesis aims to analyze a subset of these programs extensively and
focus on their behavior and problems when running in parallel. We emphasize on the parallelization
approaches that are used and in the data structures that are chosen for each program as well. Moreover,
we execute measurements in the laboratory and as part of this effort we are changing and in some cases
optimizing the implementation of the programs. Last but not least, we are scheduling all the programs
of PARSEC to run in parallel at the same time and extract interesting observations. Since the different
cores in this architecture are not completely isolated with each other, the behavior of each program
depends a lot on the other programs that are being executed simultaneously.

Key words

Parallel computing, Chip multiprocessors, PARSEC, benchmark, threads, data structures

7

Ευχαριστίες

Αρχικά, θα ήθελα να ευχαριστήσω τον καθηγητή Νεκτάριο Κοζύρη για την ευκαιρία που μου έδωσε
να εκπονήσω τη διπλωματική μου στο συγκεκριμένο εργαστήριο.

Επίσης, θα ήθελα ιδιαιτέρως να ευχαριστήσω τον Μεταδιδακτορικό Ερευνητή Γεώργιο Γκούμα για
την ευκαιρία που μου έδωσε να συνεργαστούμε στα δεδομένα χρονικά περιθώρια που παρουσίαζαν
ιδιαιτερότητες. Χάρη στην πολύτιμη καθοδήγησή του, τη στήριξη, τις συμβουλές, τις γνώσεις, την
οργάνωση, το κουράγιο και την έμπνευση που μου μετέδωσε κατά τη διάρκεια της εκπόνησης η ολο-
κλήρωση αυτής της εργασίας έγινε πραγματικότητα. Είναι μεγάλη μου τύχη να μπορώ να έρχομαι σε
επαφή με ανθρώπους που θαυμάζω και με επιστημονικά πεδία στα οποία μπορώ να αφοσιωθώ.

Επιπλέον, θα ήθελα να ευχαριστήσω τη μητέρα μου και την οικογένειά μου για την υπομονή και την
στήριξη στις διαφορετικές επιλογές μου όλα αυτά τα χρόνια. Τους φίλους μου (που ευτυχώς είναι
πολλοί και έτσι δεν τους αναφέρω ονομαστικά) για τις γνώσεις και τις στιγμές που μοιραστήκαμε, για
την έμπνευση και για τη συνεισφορά τους να κάνουν το ταξίδι μας μοναδικό και χωρίς τέλος. Τέλος
το Μάνο για όλα τα προηγούμενα, για τη βοήθεια και την υπομονή του αυτά τα χρόνια.

Ναταλία Χέριγκ,

Αθήνα, 28η Μαρτίου 2014

9

Contents

Περίληψη . 5

Abstract . 7

Ευχαριστίες . 9

Contents . 11

List of Figures . 13

1. Introduction . 15
1.1 Benchmarking . 15
1.2 Outline of the thesis . 15
1.3 Overview of the experimental environment . 16
1.4 Factors for scalability limitation . 17

2. Applications with good scaling . 19
2.1 FREQMINE . 19

2.1.1 Overview . 19
2.1.2 Description . 19
2.1.3 Parallelization approach . 22
2.1.4 Measurements and performance analysis 23

2.2 BLACKSCHOLES . 25
2.2.1 Overview . 25
2.2.2 Description . 25
2.2.3 Parallelization approach . 25
2.2.4 Data structures . 26
2.2.5 Measurements and performance analysis 26

3. Applications with medium achievable speedup . 29
3.1 STREAMCLUSTER . 29

3.1.1 Overview . 29
3.1.2 Description . 29
3.1.3 Parallelization approach . 30
3.1.4 Data structures . 31
3.1.5 Measurements and performance analysis 32

3.2 BODYTRACK . 33
3.2.1 Overview . 33
3.2.2 Description . 33
3.2.3 Parallelization approach . 34
3.2.4 Data structures . 34
3.2.5 Measurements and performance analysis 36

3.3 FLUIDANIMATE . 43

11

3.3.1 Overview . 43
3.3.2 Description . 43
3.3.3 Parallelization approach . 44
3.3.4 Data structures . 45
3.3.5 Measurements and performance analysis 48

4. Co-scheduling PARSEC applications . 51
4.1 Introduction . 51
4.2 Execution of PARSEC pairs applications: Observations and measurements 51

Bibliography . 55

12

List of Figures

1.1 Dunnington architecture . 16

2.1 MapFile structure . 21
2.2 FP-tree . 21
2.3 Default native input dataset . 24
2.4 Customized input dataset . 24
2.5 Customized input dataset . 24
2.6 Blackscholes Thread execution . 26
2.7 Array of OptionData converted to multiple arrays 27
2.8 Native input dataset . 28

3.1 Cluster Task - ClusterClassXTask = { CenterTableCountTask, FIxCenterTask, Low-
erCostTask, CenterCloseTask, SaveMoneyTask } 31

3.2 Streamcluster scaling and time per step . 32
3.3 Facility location scaling and time . 32
3.4 TBB pipeline . 34
3.5 Tracking Model operator . 35
3.6 Particle Filter operator . 36
3.7 Bodytrack scaling and time per step . 36
3.8 Time percentage spent in each step (including the serial parts) 37
3.9 Grayscale to RGB Data . 40
3.10 Comparisson of Initial and New Implementations Total Run Time 42
3.11 Step 4 - Calc Weights, Time percentage for Parallel and Serial parts 42
3.12 Scaling of Step 2 (Gaussian Blur), Row and Column Parallel parts 43
3.13 Generic Template Classes . 45
3.14 Tree of Thread and Task allocation . 45
3.15 Cells and Particles representation . 47
3.16 Rebuild step - Using New and Old structure implementations 47
3.17 Fluidanimate time per step . 48
3.18 Scaling per step . 48
3.19 Time percentage spent on locks . 49
3.20 Fluidanimate Run without locks . 49

4.1 Time (sec) of Parsec application Pairs . 52
4.2 Scheduling of PARSEC applications . 53

13

Chapter 1

Introduction

1.1 Benchmarking

Benchmarking in computer science is the method of running one or more computer programs or oper-
ations in order to analyze a computer system. The same set of applications is executed in systems that
have different software or hardware characteristics, such as various processor clock frequencies or
compilers. The different chip architectures, for instance, can be compared based on the performance
results of the executions. Moreover, having a set of workloads from several domains, which require
different hardware characteristics in order to achieve satisfying performance, the hardware designer
can get information about the behavior of the new architecture in state of the art examples. Of course,
designing and implementing programs of a benchmark is a challenging task. Since these applications
are part of a test suite and not of a real industry software, the designer of the benchmark has to ensure
that they are representative compared to the actual likely workloads. According to the one benchmark-
ing approach, known as “Represenatative Program Selection” [Bien11], the programs of the suite are
a subset of all the available ones in the application space. Regarding the second approach, described as
“Diverse Range of Characteristics”[Bien11], the suite design involves a bottom – up implementation
of the programs, which aim to combine from scratch all the different combinations of characteristics
that have to be tested.

1.2 Outline of the thesis

The Princeton Application Repository for Shared-Memory Computers (PARSEC) benchmark suite
is a modern benchmark suite composed for multi threaded programs. The suite focuses on emerging
workloads and was designed to be representative of next-generation shared-memory programs for
chip-multiprocessors[Bien11], [PARS14b]. The suite consists of 13 different programs from multiple
application domains, such as computer vision, financial analysis, data mining and media processing.
These workloads have different parallel models, machine requirements and runtime behaviors. For
example, some of them rely a lot on lock and others on barrier synchronization. Each program has six
input datasets provided: test, simdev, simsmall, simmedium, simlarge and native, but only the simlarge
and native ones are representative of the real life inputs.

Current project is using some of the applications included in this suite and analyzes them further.
Firstly, for each of them we present an overview of the application, focusing mainly on the domain
area in which it is part of. We continue by analyzing the algorithm implemented in the program and
describing the parallelization approach.

All the programs have been implemented in C/C++ and have been parallelized with at least one of the
following APIs: OpenMP[Open14], Threading Building Blocks[Inte14] or POSIX Threads[Blai14].
For each application we choose one of the available implementations and outline the details of it.

15

Moreover, we analyze the data structures in order to understand better the connection between the
algorithm and the actual parallel implementation and enable the detailed analysis of the experimental
results. In some cases, we suggest alternative data structures in order to achieve better results at the
parallel execution. Lastly, we present the outcome of the measurements that are taken when executing
these applications. Most of the applications are split in several steps and we analyze each of them sep-
arately as well. This part mainly involves the visual representation of different interesting parameters,
such as the achievable speedup and the time spent in each step. For each of them we analyze further
the results, present alternative implementations and executions that we tried out and compare them
to the initial ones. The applications are divided in two main groups: The one includes those that the
achievable speedup is almost the ideal one and the other includes those with worse scaling.

1.3 Overview of the experimental environment

All the experiments of the current project were executed in the “Dunnington” platform, which is rep-
resented in figure 1.1. Dunnington is a Chip multiprocessor machine with 24 cores (Intel® Xeon
X7460® @ 2.66GHz) in total, grouped in four sockets. Each socket has one CPU and all of them
share one main memory of 30GB (28811766 KB). Regarding the caches, each core has a Level 1
cache of 32KB and shares with one more core a Level 2 cache of 3MB. Additionally, all the cores of
one socket share a Level 3 cache of 16MB. The four sockets communicate with each other through a
front-side bus (FSB). All the programs are part of the version 3.0 of PARSEC benchmark[PARS14a]

Core 0

L1 32KB

L2 3MB

L3 16MB

Pa
ck

ag
e

0 Core 3

L1 32KB

Core 1

L1 32KB

L2 3MB

Core 4

L1 32KB

Core 2

L1 32KB

L2 3MB

Core 5

L1 32KB

Core 0

L1 32KB

L2 3MB

L3 16MB

Core 3

L1 32KB

Core 1

L1 32KB

L2 3MB

Core 4

L1 32KB

Core 2

L1 32KB

L2 3MB

Core 5

L1 32KB

Pa
ck

ag
e

1

Core 0

L1 32KB

L2 3MB

L3 16MB

Pa
ck

ag
e

2

Core 3

L1 32KB

Core 1

L1 32KB

L2 3MB

Core 4

L1 32KB

Core 2

L1 32KB

L2 3MB

Core 5

L1 32KB

Core 0

L1 32KB

L2 3MB

L3 16MB

Core 3

L1 32KB

Core 1

L1 32KB

L2 3MB

Core 4

L1 32KB

Core 2

L1 32KB

L2 3MB

Core 5

L1 32KB

Pa
ck

ag
e

3

D
D

R
3FSB

M
C

H

Figure 1.1: Dunnington architecture

and have been compiled with gcc version 4.4.7 (Debian 4.4.7-2). Moreover, all the measurements of
the current project use the native input included in the PARSEC suite or some customizations of it
which are further defined in the corresponding chapters. We start the experimental execution by creat-
ing only 1 thread and repeat it until we have 24 threads. In some cases, we try to get information when
the total available threads are more than the number of Dunnington’s cores and extract the related
information.

16

1.4 Factors for scalability limitation

There are many reasons for having a multi threaded application with medium or bad achievable
speedup in a specific execution environment, or even in different ones. Each of the programs that
are further analyzed in the current project are affected by at least one of these problems.

• Serial parts of an algorithm

There is always an overhead in a parallel program introduced by its serial parts that cannot be
parallelized. If the serial algorithms need a lot of time to be executed or are repeated in many
places of the application they will impact the performance of it. According to the Amdahl’s
law, if the best serial time achieved by a program is Ts and f is the portion of the program that
cannot be parallelized, the parallel time needed given p processors is described in equation 1.1.
Equation 1.2 describes the achievable speedup when using p threads[NTUA14].

Tp = fTs +
(1− f)Ts

p
(1.1)

S =
Ts

Tp
=

1

f + 1−f
p

(1.2)

• Load Imbalance

All the available threads must have ideally equal workload to execute. However, this is not
occurring in some programs. Some algorithms can depend a lot on the input and the imple-
mentation of the program cannot be generic enough to ensure that the load distribution will be
always equal among the threads. In other cases, there has to be a master thread executing more
work than the rest of the threads.

• Synchronization

In some cases the different threads have to exchange data, access global memory elements at
the same time or perform an action after a previous one has been already executed by all the
active threads. These programs have a high communication intensity and their performance is
reduced due to the barrier or lock synchronization that they are using. Frequent I/O operations
are also introducing many synchronization points in the application.

• Contention for memory

When a thread has to access often the main memory, which is shared among the available cores,
a bottleneck is introduced. The communication between the CPU and the memory is happening
through the memory bus which may have the data of other threads at the same time. Programs
must be designed in a way to optimize the cache utilization of each core in order to reduce the
communication need with the main memory. For example, the variables that a single thread
is reading and writing must be stored in continuous places in the memory so that they can be
copied to the cache with a single access.

• Thread management time

The time spent just on creating the threads can be a drawback when having to parallelize an
algorithm which does not require a lot of time in total to be executed. As a result, in some cases
it is preferable not to parallelize a program or use less cores than the available ones.

17

Chapter 2

Applications with good scaling

2.1 FREQMINE

2.1.1 Overview

The freqmine application is part of the domain of data mining. It is based on the Frequent Pattern Tree
(FP-tree) data structure and its Frequent Pattern Growth (FP-Growth) algorithm [Han00]. It is one of
the methods used for frequent itemset mining (FIM) [Grah03] as part of the association rule mining
(ARM) process. Given a transactional database the ARM process aims to extract interesting rules
from it based on the combination and frequency that the items of the database have. Freqmine aims to
give a solution to the full extent of the problem of data mining across different domain areas. Protein
sequences, market data, log analysis [Bien11], machine learning, social media, music classification
into genres are just a few areas that use data mining algorithms to achieve better results. Freqmine
used the example of data mining in web html documents. Given different web sites for news from
several countries, freqmine algorithm can be applied and extract the braking news that are worldwide
interesting.

2.1.2 Description

The input database consists of the different transactions, which are in our case the different web sites
(by excluding the html tags and the very common words, such as “a”, “and”, “the” etc). Each word of
the web site is represented by one item in the corresponding transaction. For example, an article about
the newmobile phone would lead in having probably following items in a transaction: “camera”, “net-
work”, “CPU”, “Bluetooth”. Additionally, the transaction would include items that may appear only
in the specific article and are not very generic: “WAV ringtones”, “H.263 player”, “MIDP emulator”.

Freqmine is divided into three steps. In the first step, the program reads this database and constructs
the FP-tree with the most frequent items. An FP-tree is a compact data structure that contains all the
information needed. In the next steps the program traverses and manipulates the FP-tree according to
the FP-growth algorithm in order to perform the data mining and to extract the desired information
about every item.

For example, an instance of a database that was generated after parsing 7 simple web sites could look
like the one in table 2.1, in which items “a”, “b” could represent the words “Camera” and “GPS”.
If the minimum item frequency is set to 2, all the items that appear less than this number in all the
transactions will be excluded from further analysis. Item “m” in table 2.1 is part of a single transaction
and hence not important for extracting any information out of it.

• Step 1: Parse database, Build FP-tree header

19

TID Items
1 {b,a,c}
2 {a,h,e,b,g,f}
3 {d,b,a,e}
4 {g,b,i}
5 {m,d,f,a}
6 {g,c,a}
7 {c,h,q}

Table 2.1: Database

The main task of this step is to parse the input database, discard the items that appear in the
database fewer times than the desired minimum item frequency and store permanently in de-
creasing order those that are part of enough transactions. Each item is represented by an integer.
In order to store all of them we use the MapFile structure, which consists of several MapFileN-
ode data structures as it is depicted in figure 2.1. Each node contains an integer array with all
the item data and depending on the size of a transaction it can store the information of one or
more transactions. The MapFile structure can be traversed either as a linked list or as an array
of MapFileNodes. This structure is used heavily by the application and it is very efficient for
distributing the workload equally among the threads. Afterwards we construct the arrays that
will have the information about each item’s number of occurrences and ranking.

The overview of the information that this step produces can be represented in the tables 2.2 and
2.3.

1. Frequency array

Item Frequency
a 5
b 4
c 3
d 2
e 2
f 2
g 2
h 2

Table 2.2: Frequency array

2. Database with the sorted items that remained after the filtering

TID Items
1 {a,b,c}
2 {a,b,e,f,g,h}
3 {a,b,d,e}
4 {b,g}
5 {a,d,f}
6 {a,c}
7 {c,h}

Table 2.3: Database

20

Figure 2.1: MapFile structure

• Step 2: Construct prefix tree

The aim of this step is to construct the FP-tree by parsing the MapFile data structure that was
constructed in the previous step. Each transaction of the database is represented by a path in
the FP-tree, where a node contains the number of an item. Transactions that have the same
prefix (same items in the beginning) will share the initial path in the tree. Each node maintains
a counter that gives information about how many transactions are related to the sub-path that
starts from the root until that node. Moreover, the FP-tree contains several right sibling pointers
that connect nodes with the same items with each other.

We distinguish the 216 itemsets that consist of the 16 most frequent ‘hot’ items. Another Map-
File structure is used in order to store the information about the hot and non-hot items of each
transaction in a way that will enable better workload distribution. The main goal is that the
threads have an equal number of non-hot items to manipulate, instead of an equal number of
transactions. The number of different items with low and medium frequency that are included
in a database can be really huge and all of them will allocate at least one node in the FP-tree.
Another data structure called Fnode is used to create the FP-tree. Each node in the FP-tree con-
tains the item number, the counter that was mentioned above, a pointer to the next node of the
path and a right sibling pointer that will potentially point to another node of a different path
that has the same item. The final FP-tree will have the 216 hot itemsets as roots, which can be
accessed directly, and each of them contains all the Fnodes needed.

Figure 2.2 represents a simplified version of the FP-tree and does not take into account the hot
itemsets, since the database of the example is too small. The counters of each node have the

Figure 2.2: FP-tree

21

following values

Node Counter
A 5

b (of a-b path) 3
c (of a-c path) 1
d (of a-d path) 1
c (of a-b-c path) 1
e (of a-b-e path) 1
d (of a-b-d path) 1
f (of a-d-f path) 1

Table 2.4: Node Counters

• Step 3: Mine data

The last step aims to perform the data mining for each item on the FP-tree using the FP-growth
algorithm. Firstly, we have to define the conditional FP-tree for an item x: it is the subtree of
the initial FP-tree which contains only the transactions that contain the item x without the item
x itself. From the remaining nodes we keep those whose counter has a value above a specific
threshold. The conditional FP-tree will contain all the frequent itemsets that end with x. In the
current algorithm, we have to find, for each item, all frequent itemsets that endwith that item.We
distribute the different items among the threads and for each item we perform the data mining.
We start by creating the conditional FP-tree for the current item x and then recursively create
the conditional FP-trees for the itemsets that contain the x until we have a tree just with a single
path.

The frequent itemsets of the example are the following ones.

Suffix item Frequent Itemsets
h {h}
g {g},{b,g}
f {f},{a,f}
e {e},{a,b,e},{a,e},{b,e}
d {d},{a,d}
c {c},{a,c}
b {b},{a,b}
a {a}

Table 2.5: Frequent itemsets

2.1.3 Parallelization approach

The current application is a data-parallel program and it has been parallelized with the use of OpenMP.
Each step contains several parallel-for regions, for which dynamic scheduling is always chosen. Each
region performs one of the following tasks:

• Initialize data. Most of the arrays in the program have one dimension on which the array is
split, with one region belonging to each thread, so that data sharing and locks are avoided. Each
thread has to initialize the part of these arrays that it possesses.

22

• Load and store data. This involves the different tasks that were described in the above steps.
In some loops the threads will manipulate equal number of nodes (MapFileNode) and in other
similar number of items. The program is designed in a way to distribute the workload as well
as possible.

2.1.4 Measurements and performance analysis

We have taken measurements using the default parameters of the native input [Lucc04]. The highest
speedup was achieved with 24 threads and it was 15,2175.

The main observation is that freqmine is input-dependent. As mentioned above, each thread will edit
transactions that have a similar total number of non-hot items. However, one transaction cannot be
split among different threads. This means that if we have a database where the size of the transactions
varies a lot, the achievable speedup can also vary a lot. Moreover, the creation and maintenance of the
right sibling pointers is also input-dependent. In one scenario, we may only have a few different items
that are used in most of the transactions, meaning that there will be many right sibling pointers and
each conditional FP-tree will have many different paths. In another scenario, we can have many items
appearing relatively rarely in the transactions, meaning that there will be just a few pointers and small
conditional FP-trees during the mining. Both scenarios can be related to real databases. The FP-tree
can compress the data a lot or it may need more space than the actual input database if the path sharing
percentage (common itemsets between transactions) is very low. For these reasons, we manipulated
the input dataset to experiment the different behaviors.

The steps 1 and 2 do not achieve a very good speedup. This is understandable, since most of the time is
spent for I/O operations in order to read the input file, and for array initializations. However, both steps
together are executed in only 6,43% of the total running time, so we do not consider their mediocre
scaling as a problem.

We present the measurements that were taken using the default input dataset and parameters and ma-
nipulated versions of them.

Figure
Frequency
Thresh-
old

Input Database
File

#Items
(*106)

#Different
Items

#Tran-
sactions
(*103)

Step 3
Speedup
(24
Threads)

Input
size
(MB)

2.3 11000 webdocs 250k 21 829 250 15,2175 210
2.4 10000 webdocs 250k 22 923 250 16,2363 210

2.4 11000

webdocs 138k
(webdocs 250k
wtih transactions
that have at least
200 items)

9,8 501 65 11,032 142

2.5 80000

webdocs 420k
(initial webdocs
with items that
have value
below 1000)

94 441 1692 15,86 410

2.5 60000 webdocs 420k 100,5 535 1692 16,7337 410

Table 2.6: Database

As we can see there are changes in the speedup every time we change the input, but the overall scaling
is very good. The main reasons for that are the following:

23

Figure (2.3.1) Scaling per step Figure (2.3.2) Time (sec) per step

Figure 2.3: Default native input dataset

Figure (2.4.1) Scaling per step Figure (2.4.2) Scaling per step

Figure 2.4: Customized input dataset

Figure (2.5.1) Scaling per step Figure (2.5.2) Scaling per step

Figure 2.5: Customized input dataset

• Good workload distribution among threads and each of them stores data in its own memory
elements.

• Not much time is spent in lock contention.

• Most data that one thread is manipulating in every parallel loop is stored in continuous places
in the memory which leads to efficient use of the cache.

24

2.2 BLACKSCHOLES

2.2.1 Overview

The Black-Scholes application is part of the financial analysis domain. The Black-Scholes model
is a well-known mathematical model, used for determiming the fair price of European put or call
options [Blac73]. The price is calculated based on the risky and the riskless assets of the market.
These parameters are mainly the value of the given stock, the risk-free interest rate, the option’s strike
price and volatility and the time to the option’s expiry. The core implementation of the model is based
on the Black-Scholes partial differential equation, which describes the price of the option over the
time [Inve14], [Kari03].

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0 (2.1)

2.2.2 Description

Current benchmark implements the numerical computation of the Black-Scholes formula for multiple
options and the calculated price either refers to a put or a call option. By using the Cumulative Normal
Distribution Function the program calculates the option prices according to the equations 2.2, 2.3.

Pcall = sptprice∗ · CNDF (d1)− strike∗ · e−rate∗·time · CNDF (d2) (2.2)

Pput = strike∗ · e−rate∗·time(1− CNDF (d2))− sptprice∗ · (1− CNDF (d1)) (2.3)

d1 =
(rate+ volatility2

2)∗ · time+ log(sptpricestrike)

volatility ·
√
time

(2.4)

d2 = d1 − volatility ·
√
time (2.5)

2.2.3 Parallelization approach

The application can be executed with the use of Pthreads, TBB threading model or OpenMP. In the
current project we emphasized in the OpenMP implementation [Open14].

For a given input the program has to compute numOption different prices. The parameters and result of
each price do not have any dependency with the rest and this makes the division of the problem across
the available threads very easy. The design of the parallelization is following the data-parallel model.
Given nThreads, each of them has to execute the equation numOptions/nThreads different times and
store the output in numOptions/nThreads different elements of a shared array.

The above computation is repeated a constant number of times, which is defined as 100 in the current
program.

In order to enable the parallel execution of the Black-Scholes, the #pragma omp prarallel for work
– sharing construct is used. Since OpenMP is a shared memory programming model, the output array
for storing the pricing results is defined as a private variable in order to avoid conflicts during the
repeatable stores.

25

Figure 2.6: Blackscholes Thread execution

2.2.4 Data structures

Current implementation uses arrays in order to store the values of the input file. For each option there
are 9 values that need to be read and stored in a specific struct, defined as OptionData. However, for
the current computation not all of them are needed to be used by the threads. After storing all the values
in an array with numOptions different OptionData structures, the ones that will be used repeatedly are
copied to separate arrays. The final arrays are allocated in continuous places in the memory and all
the elements are aligned with the cache line size.

Given a cache line size of 64 bytes, each thread will need to copy the values to its cache for each float
array every 16 iterations.

2.2.5 Measurements and performance analysis

We executed the blackscholes application in the Dunnington, using from 1 up to 32 threads. For all of
them we used the native input, which consists of 10,000,000 different options and the file size of it is
only 632 MB.

The application has an ideal achievable speedup of 23,73 when 24 threads are being used. The main
reasons for this behavior are the following ones

• The workload is small and requires small amount of memory. Moreover, as mentioned above,
thememory needs to be accessed every 16 iterations of the Black-Scholes computation. For each
price computation one thread needs only to read from 5 global float variables, one integer vari-
able and store the result in one float element. As a result, the off-chip bandwidth requirements
are very limited and they do not impact the performance.

26

Figure 2.7: Array of OptionData converted to multiple arrays

• There is not any dependency between the data of the different threads. This makes the imple-
mentation of the program to be free of locks and multiple synchronization points during the
execution.

• All the values that need to be written by a single thread are stored in continuous places in the
memory. It is noteworthy that Black-Scholes has the lowest miss rate across all the PARSEC
applications.

As it is obvious from figure 2.6 the computations for all the options are repeated 100 times. When
monitoring the results, we took separate measurements for the time needed for a single iteration of the
options computation (which would be the same as if the NUM RUNS variable was defined as 1). The
main difference in the results is as expected the time spent per execution.

Moreover, when running blackscholes with more than 24 threads the speedup is getting immediately
worse (16,7 for 26 threads) since the Dunnington has 24 cores. This is happening due to the fact that
the threads are not equally split among the available cores. One core of the Dunnington has to execute
the code of multiple threads, perform context switching for each thread change which involves saving
the status before each replacement. When having less threads than cores, the OS scheduler is not doing
complicated context switching and the thread migration becomes rare. Additionally to that, it has been
observed in other runs [Pusu11] that the main thread of blackscholes is taking up to the 85% of the
execution time. This leads to have a small workload for the worker threads when increasing too much
the number of threads and distributing the input in very small chunks. Last but not least, blackscholes
spends a lot of time waiting for the FPU since the computation of the equations is intense. This means,
that in amachine which has FPUs of lower performance there would be a bottleneck and the achievable
speedup would be worse.

27

Figure (2.8.1) Scaling Figure (2.8.2) Time (sec) per execution

Figure 2.8: Native input dataset

28

Chapter 3

Applications with medium achievable speedup

3.1 STREAMCLUSTER

3.1.1 Overview

The streamcluster application belongs to the domain of data mining. As the name implies, the goal of
the program is to group a set of objects into different clusters. Objects that share a common pattern or
trait will be part of the same group and once the clustering for all the objects of a problem is finalized
the desired information can be extracted. Clustering is a modern problem that is used in many fields.
Network intrusion detection, pattern recognition, data mining [Bien11], medical imaging and search
result grouping in the web are just a few of them. For example, in the area of the image processing
a problem that can take advantage of clustering is the one of image segmentation [Wiki14], in which
multiple 3D digital medical images have to be simplified in order to extract patterns across the patients
and make better diagnosis. In this problem, the input consists of a stream of pixels. The output image
contains a specific number of segments and each of them has many similar pixels in terms of color
and position. Ten neighboring pixels of similar color for instance will be grouped in the same cluster
and the resulting image will give one unique color to all of them. The main difficulty of the algorithm
is to make the proper choice of the centers/ pixels that will represent a specific segment and to group
all the objects into the right cluster.

3.1.2 Description

There are many different algorithms to implement the clustering and we are focusing on analyzing
the one that was chosen in the PARSEC benchmark. Given two integers kmin, kmax and a stream of
multidimensional integer points we aim to distinguish k elements kmin ≤ k≤kmax out of this stream
and assign them as centers. Each of the remaining points will be related to one center, which will be
the most similar to it. For the example with the images, it would make sense to choose a big integer k
for medical images of the brain and a smaller one for pictures with different sea scenes that are more
simplified.

In the current algorithm the sum of squared distances (SSQ) between every point and the center of its
cluster determines the quality of clustering [Ocal02]. A very well-known algorithm is k-means, which
is based on the NP-hard optimized solution. The current application is an implementation of another
algorithm that according to the references achieves even better results than k-means.

The main parts of the application are the following:

• Parsing a stream of integer numbers x1,…, xn. The number n is equal to the capacity of one
chunk.

29

• Computation of the sum |xi − x1|2, which is the distance between all the dimensions of two
points xi and x1 (i:2,…,n). The point x1 is defined as the initial center of the algorithm.

• Shuffling of the points, center selection, which is described as facility opening, and assignment
of non-center points to a cluster. This step is repeated until the proper number of centers is
created and the total cost is not decreasing further. The extended algorithms that solve this part
are the LSEARCH and the FL (Facility Location). If the desired number of centers equals with
the total available points of the chuck (n) then all of them will be immediately assigned as
centers and each cluster will have only one member.

• Copying of the center’s data in thememory, in order to have this information for future incoming
streams.

3.1.3 Parallelization approach

The application can be executed with the use of either Pthreads or the TBB threading model. We have
analyzed the TBB implementation. The parallel parts of the code can be categorized in three main
steps and we proceed with analyzing each of them further. Assume that we have n different points in
a chunk, xi (0 ≤ i≤ n) represents a multidimensional random point within this chunk and nproc is
the available number of threads. The tbb::blocked range template class [Docu14a] is used in all
the parallel loops to distribute the points among the nproc available threads. Specifically, the range is
always (x0, xn) ,where x0 is the first point stored in the chunk. The grainsize is defined as n/nproc.

• Step 1: Hiz Reduction

This step computes the sum of equation 3.1 by using the reduce function.

n−1∑
k=0

|xk − x0|2 · x.weightk (3.1)

The body is implemented in the HizReduction struct so that each thread computes the sum of
its subrange.

• Step 2: Pspeedy method

This method contains two parallel loops. The first one aims to create one center, point x0, and
assign all the other points to that. For this purpose the parallel for template function is used.

x.costk = |xk − x0|2 · x.weightk (3.2)

x.assignk = 0 (3.3)

The goal of the second one is to assign to a new center, xi, all points that have a better weighted
distance for xi than for their previously assigned center. The final outcome is the new total cost
of the points, which is a quality metric for the new center that was opened. Reduction is used
since we need to both perform the cost updates in parallel and join all the costs in a common
result variable.

x.costk = min
{
|xk − xi|2 · x.weigthk, x.costk

}
(3.4)

n−1∑
k=0

x.costk (3.5)

30

• Step 3: Facility Location – Pgain method
This step contains 5 parallel parts that follow the same parallel pattern and compute the cost that
will be saved by opening a new center. Assume that the actual code that a thread will execute
is implemented in the class ClusterClassX that derives from the tbb::task class. For every
such class there is another one, ClusterClassXTask, that also derives from tbb::task. The
ClusterClassXTask creates a tbb::task list of nproc-1 ClusterClassX children that will be
executed by nproc-1 worker threads and one ClusterClassX root object that will spawn the list.
The pgain method is using the spawn and wait method to start the execution of this chain.

Figure 3.1: Cluster Task - ClusterClassXTask = {CenterTableCountTask, FIxCenterTask, LowerCost-
Task, CenterCloseTask, SaveMoneyTask }

3.1.4 Data structures

The main information that needs to be stored in this application is the data of the points of each
incoming stream. For this reason we create the structs “Point” and “Points”, which contains a pointer
to the first element of a “Point” array. In this way all the data of one point and all the points of a chunk

Variable Type Description
num long size of Point array
dim int dimensions of one point
p Point * pointer to first element of Point array

Table 3.1: Points (struct)

Variable Type Description
Weight float weight of current point
Coord float * array with #dim coordinates
Assign long id of center to which current point is assigned to
Cost float cost of current point

Table 3.2: Point (struct)

are stored continuously in the memory.

31

3.1.5 Measurements and performance analysis

We took measurements in Dunnington using from 1 up to 32 threads and distinguished the results for
the three parallel parts that were mentioned above. Figure 3.2.1 presents the achievable speedup and
figure 3.2.2 the time spent on each of these parts. The whole clustering algorithm is being called once
per each incoming stream, and for the native execution of the application we have 5 streams. As a
result, if we wish to calculate the time spent per stream, we have to divide all the results given in the
figure 3.2.2 with 5. Regarding the Hiz Reduction part, the total time spent in it is 0,078 for all the

Figure (3.2.1) Scaling per step Figure (3.2.2) Time (sec) per step

Figure 3.2: Streamcluster scaling and time per step

streams and 0,0156 per stream. The first reason for the mediocre scaling is the fact that the time needed
for thread creation cannot be skipped. The second reason is that the computation of one distance is
being executed serially for all the dimensions. In the native input each point has 128 dimensions.
Of course this implies that for another input with points of bigger dimension we will introduce a
bottleneck, but in this case, the distance calculation could be parallelized. As far as the second part is
concerned, apart from the overhead that the thread creation introduces, we have two synchronization
points in it. Moreover, pspeedy method is called repeatedly until the creation of an adequate number
of centers (kmin) is achieved. This means that the time spent per single parallel execution should be
divided further and that more synchronization points are introduced. The pspeedymethod also depends
on random generation of some numbers that will influence the speed of successful center creation.

It is obvious that the most crucial part for the overall performance of the program is the last one. We
analyzed further the 5 parallel parts of this step. If we wish to get the actual time spent on each loop we
have to divide the results with 8771, since this is how many times the pgain method is called during
the execution of the native input. The least time – approximately 0,0002 sec per single iteration - is

Figure (3.3.1) Scaling of Facility Location parallel
steps

Figure (3.3.2) Time (sec) of each parallel step of Fa-
cility Location

Figure 3.3: Facility location scaling and time

spent on loops A1, A2 and C which can explain the bad scaling that these steps achieve.

32

As it is obvious from the above diagram, the most critical loop regarding time is the B. The loading of
several variables of an integer array (“center table”) is one of this part’s operations. The variables that
each thread is accessing are not stored continuously in memory and as a result this loop is memory
bound. The indexes of the array elements that each thread will need to load cannot be specified from
the beginning, since they depend on the incoming data and the computation performed until this step.
We verified this observation by creating a mockup class that would perform all the computations of
loop B but not the crucial one. The mockup code was implemented in a way that the omission of this
clause would not have any influence on the rest of the loop. The new loop took similar time to be
executed as the other loops of this step.

Besides the analysis of the specific native input that was used in the PARSEC benchmark, we made
several observations that are worth mentioning. Streamcluster depends on the input parameters and
especially on the dimensions of each point, the size of each data stream and on the number of desired
centers to be opened. Themore dimensions one point has, the more computational time is added during
the execution of the program. Similar overhead is introduced if the size of a chunk is increased. The
increase of the number of centers that are needed has an impact on the size of some arrays and the
number of several iterations in Pspeedy method and Facility Location parts. Moreover, the random
number generation and the shuffling of the points in several places in the program determine howmany
times some loops will be executed. As a result, even if we run the program with the same parameters,
the run time can vary due to this dependency.

3.2 BODYTRACK

3.2.1 Overview

The bodytrack belongs to the domain of computer vision [Bala05]. Given a sequence of images from
different cameras that depict a human body in different poses, the program aims to track this 3D
body as accurately as possible. The more image sequences and the more cameras that capture the
same movement from different angles we have, the more complicated the problem becomes. The
body detection problem is very important for the areas of video surveillance, character animation,
computer interfaces [Bien11] and within the medical domain which may use body or face recognition
for improving the sign language software. Given t frames and c cameras, the input consists of t · c
different images and the t · c related foreground images of the body. An annealed particle filter is
employed on the input in order to produce the t output images, where the human body is marked with
10 conic cylinders per camera shot.

3.2.2 Description

The bodytrack implementation in PARSEC consists of different steps which are executed for every
frame. The parts (iii) to (vi) are repeated m times, where m is an input parameter that represents the
number of annealing layers.

(i) Gradient based edge detection on the input image in order to get the direction and magnitude of
maximum intensity change at each pixel.

(ii) Edge smoothing by applying a Gaussian filter per row and per column on the image that was
computed in the previous part.

(iii) Cumulative distribution function calculation of the particles’ weights. Each layer uses N parti-
cles. Each of them has a weight π and a multi-variate model configurationX for describing the
location of the body’s joint angles.

33

(iv) Monte Carlo resampling given the calculated cdf vector.

(v) Generate a new particles’ vector by using the values of the previous layer. The results from steps
(iii) and (iv) are used to decide which values will be selected, and then normally distributed
random noise is added to them.

(vi) Likelihood and weight calculation for each particle.

3.2.3 Parallelization approach

The current application has been implemented in all the threading models that are supported by PAR-
SEC (Pthreads, TBB and OpenMP), and we have analyzed the TBB version. Although the data-
parallel model is used in all parallel parts of the application, the program executes the two-stage
tbb::pipeline class [Docu14b]. The main motivation for that is to simplify the synchronization
and communication between specific parts and between the frames. Moreover, the abstraction that
the pipeline model introduces simplifies the understanding and maintenance of the code, since basic
methods like the barriers are logically defined [Reed11]. The current pipeline consists of two filters:

Figure 3.4: TBB pipeline

TrackingModel and ParticleFilter. The operator() method of these classes contains the code that
will be executed for each filter. It takes as an input a token from the previous step and passes it to
the next filter. A specific token can be passed from one step of the pipeline flow to another only if
the current filter has been processed completely. This programming model enables multiple tokens to
run in parallel, which means that at a given point of time some threads will execute code of tokens
that belong to different filters. However, the current implementation does not take advantage of this
feature and has a restriction of a maximum of one token at any given time. Each thread that takes a
token has to keep it as deep in the pipeline as possible in order to prevent context switching and to
use the cache more efficiently. The TrackingModel filter contains the first two parts of the program
(steps (i), (ii)) and the ParticleFilter the rest of them.

• TrackingModel filter (Figure 3.5): This filter consists of one tbb::parallel for loop which
distributes the data across the threads based on the different input cameras. Afterwards, this loop
contains three more nested parallel for loops that implement steps (i), (ii). These follow a
similar pattern for the data partition and always use the tbb::auto partitioner.

• ParticleFilter (Figure 3.6): This group takes as input the token that was passed from the Track-
ingModel filter and executes some serial and parallel methods. Steps (v) and (vi) are imple-
mented with the use of tbb::parallel for and the blocked range is defined as (0, num-
ber of particles, grain size). The grain size in the current implementation is defined as 32,
meaning that only if we have more than 32 particles will the program take advantage of the
existence of multiple threads.

3.2.4 Data structures

Many classes are defined and implemented in the bodytrack application in order to store mainly the
data of the images, the body’s geometry and pose and the images’ projections and measurements.

34

Figure 3.5: Tracking Model operator

The ones that are mostly worth mentioning are the generic template FlexImage<class T, int C> and
FlexImageStore< class T, int C > classes (Tables 3.3 and 3.4), which are responsible for constructing
and deconstructing the objects that store one image’s data, storing and updating the information about
the image’s size and performing several operations on it if needed. Generic class T defines the type of
one pixel’s data and int C defines the number of one pixel’s channels. In the current implementation
one pixel is stored in one unsigned char and has either one channel (grayscale) or three (RGB). The

Variable Type Description
mStore *FlexImageStore
mData *unsigned char pointer to mStore.mData
mBpp int * pointer to first element of Point array

mStepBytes int size in bytes of one image row
mSize class int,int image dimensions: width, height
mStatus enum error status codes

Table 3.3: FlexImage<unsigned char,1>

Variable Type Description
mCount int reference counter
mData *unsigned char pointer to pixel’s data. Pixels chars are stored per row.
mSize class int,int image dimensions: width, height

Table 3.4: FlexImageStore<unsigned char,1>

details provided by the FlexImage structure regarding the size in bytes of one pixel and one image
row enables the program to easily distribute the data among the threads. Having this information and
the memory address of the first image pixel, it is easy to access a pixel with specific coordinates with
one operation.

35

Figure 3.6: Particle Filter operator

3.2.5 Measurements and performance analysis

Firstly, we took measurements for the initial implementation of bodytrack and analyzed the scaling
and time spent on each of the four parallel parts (steps (i), (ii), (v) and (vi)). All the results are produced
with the use of the native input and the calculated time of all the parts is the sum of all the frames.
This input uses 261 frames, so the duration of one single execution of one part equals the current
calculated time divided by 261. The size of all input files is approximately 610 MB and the size of
all the output images that are produced is 220MB. Based on the Figure 3.7 one of the main issues

Figure (3.7.1) Scaling per step Figure (3.7.2) Time (sec) per step

Figure 3.7: Bodytrack scaling and time per step

for the bad achieved speedup are the serial parts of the programs. For this reason, we extracted the
serial algorithms and we present each of them in the following section. Also, we present the following

36

figure, in which the increasing impact of the serial parts as the number of threads increases is quite
obvious.

Figure 3.8: Time percentage spent in each step (including the serial parts)

(i) Cumulative Distribution Function calculation
Memory elements

• vector<float> weights : input vector, size: 4000
• vector<float> cdf: destination vector with cumulative distribution values, size: 4000

Function

cdf [i] =

{
weigths[i], i = 0
cdf [i− 1] + weights[i], 0 < i < 4000

(3.6)

All cdf values are normalized.
Information, Comments
Each element depends on the value of its previous element on the list. As a result, this algorithm
cannot be parallelized. The algorithm includes 4000 floating point additions, 4000 FP read op-
erations (of weights array) and 4000 FP write operations (of cdf array). We take advantage of
the locality of both arrays, since the elements are accessed one after the other. This means that
from the beginning of the algorithm, both arrays will be fully loaded in the cache and we do not
introduce problems with the memory bus. In bodytrack this algorithm occupied just the 0,08%
of the total run time and the 0,17% of the serial time of the application.

(ii) Monte Carlo Resampling
Memory elements

• vector<float> cdf : input vector, size: 4000.
• vector<float> samples: vector with set of sorted random samples.
• vector<float> bins: destination vector which relates cdf with sample list.

Function

samples[i] =

{
RandExp(), i = 0
samples[i− 1] +RandExp(), 0 < i < 3999

(3.7)

37

Algorithm

//Initialize bins.size()=samples.size() && bins[]=0

p=0;

for (int i=0;i<samples.size();i++)

{

while (cdf[p] < samples[i]) p++;

bins[p]=bins[p]+1;

}

Information, Comments

Each of the sample’s elements depends on the previous one of the list. As a result, the com-
putation of this vector cannot be parallelized. A small improvement would be to precompute
the RandExp() values in parallel and have them stored in an array random[4000]. Currently, the
random generation function is called while computing the values of the samples vector.

The computation of the bins vector is by definition based on a serial algorithm. Starting with the
first element of both cdf and samples lists we count the number of initial samples elements that
have a value smaller than the current cdf element. We cannot predict the distribution of these
values from before and the only way to generate this vector is to start from the beginning of both
arrays.

In our current application this algorithm occupied the 1,84% of the total run time and the 3,65%
of the serial time of the application.

(iii) Estimated Model Configuration Calculation

Function

estimate[i] =
4000∑
j=1

particles[j][i] · weights[j] (3.8)

Information, Comments

Each of the 4000 particles has 31 estimated values for the body’s pose. The aim of the current
algorithm is to compute a value for each of the 31 body model’s joint angles and anchors, based
on the separate estimation for these elements that has been made by each particle. The algorithm
can be parallelized in both i and j dimensions, but after taking all the required measurements
we concluded that the overhead introduced by the thread creation and synchronization leads to
worse results. The current execution occupies only the 0,31% of the application’s serial time.

(iv) Load/Save .bmp Input/Output Files

Algorithm

//Open file for reading/writing

//Read/Store file header

//Load/Write pixel data (count: #width * #height = 640*480)

for (int j=0;j<file.height();j++)

{

//Allocate line j of img data

for (int i=0;i<file.width();i++)

{

//Read pixel (j,i)

//Store pixel in img->data(j,i)

38

}

}

//Close file

Information, Comments
It is well known, that trying to parallelize and speedup disk I/O is not a task that programmers
put into practice. The loading part takes the 3,82% and the writing part the 12,99% of the total
running time.

(v) Write Pose.txt Output FIle

Algorithm

for (int i=0;i<pose.size();i++)

{

poseOutputFile << pose[i] << ““ ;

}

Information, Comments
As mentioned before the I/O operation should be executed serially. The current part that saves
the body’s pose information needs only the 0,12% of the total run time. As a result, the total
time percentage spent on I/O operations is 16,93% and around 350 ioctl() calls are produced
per second which is obviously a main bottleneck of the program [Pusu11]. All the threads that
execute I/O operations need to perform often state transitions, mainly between “waiting” and
“runnable” states, which leads to the increase of thread migration. When a sleeping thread is
again ready to be executed but the core that it was using previously is not available anymore, it
may move to another one and the likelihood of cache misses increases.

(vi) Downsample Image by Factor N with Anti-Aliasing

Memory elements

• FlexImage<char,1> srcImage: input image data that will be downsampled (size: 480*640
= 307200 pixels that are stored in 307200 chars).

• FlexImage<char,1> dstImage: destination image that will be the srcImage downsampled
by factor 2 (size: (480/2)*(640/2)=76800 pixels that are stored in 76800 chars).

Algorithm
We will present the algorithm for the Gaussian filter per image row. Similar algorithm is imple-
mented for the column filtering.

//define float kernel[k] (in current implementation k=3)

n=k/2;

for (int j = 0; j<srcImage.Height(); j++)

{

char *currentSource = &srcImage[j][n];

char *currentDest = &dstImage[j][n];

for (int i=n; i<srcImage.Width()-n; i++)

{

int p=0;

int sum=0;

for (int a=-n ; a<=n ; a++)

{

sum+=currentSource[a]*kernel[p++];

}

39

currentDest = sum;

currentDest++;

currentSource++;

}

}

Image downsampling by factor 2

for (int j = 0; j<srcImage.Height()/2; j++)

{

char *currentSource = srcImage[j*2][0];

char *currentDest = dstImage[j][0];

for (int i=0; i<srcImage.Width()/2; i++)

{

currentDest[j][i]=currentSource;

currentSource = currentSource + 2;

}

}

Information, Comments

Both row and column filtering algorithms can be parallelized in the j dimension. The suggested
parallelization is being used as part of another algorithm in the application, and are using an
updated version in this step as well. Moreover, we parallelized the downsampling algorithm in
the j dimension. The initial version occupied the 19,23% of the total run time but the results of
the updated version were very satisfying.

(vii) Convert Grayscale to RGB Image

Figure 3.9: Grayscale to RGB Data

This algorithm is the basic one for converting a grayscale image into an RGB image, by copying
the initial pixel data to each of the three new channels. In the current implementation, none of
the for loops has been parallelized, so we updated the code accordingly. Moreover, the height or
width dimension can also be parallelized, and we preferred to choose the height dimension in
order to keep advantage of the way both arrays are stored in the memory.

(viii) Beta Annealing Factor Calculation

Memory elements

• vector<float> weights : input vector, size 4000 (weights[i] is the computed weight of par-
ticle[i])

• 2. float alpha desired : input value for the desired particle survival rate
• float beta min, beta max: input values for defining the range of the calculation

Function

Delta alpha calculation

40

DeltaAlpha(beta) =
4000 ·B2

F
, (3.9)

where

B =

4000∑
i=1

ebeta·weights[i] ∧ F =

4000∑
i=1

e2·beta·weights[i]

Algorithm

//Initializations

int i = 0;

float beta_min = 0;

float beta_max = 1000;

float beta = (beta_min + beta_max)/2

float delta_alpha_min = DeltaAplha(beta_min);

float delta_alpha_max = DeltaAlpha(beta_max);

float delta_alpha_beta = DeltaAlpha(beta);

while ((abs(delta_alpha_beta) > 0.00001) && (i < 100))

{

if ((delta_alpha_min, delta_alpha_beta > 0) ||

(delta_alpha_min, delta_alpha_beta <= 0))

{

beta_min = beta;

delta_alpha_min = delta_alpha_beta;

}

else

{

beta_max = beta;

delta_alpha_max = delta_alpha_beta;

}

beta = (beta_min + beta_max)/2

delta_alpha_beta = DeltaAlpha(beta);

i++;

}

Information, Comments
Every time the beta annealing factor computation method is called, around 20 iterations are
executed. In the current implementation, neither the DeltaAlpha function nor the function that
handles the whole computation of the factor have any parallel part.
The beta annealing algorithm is calling the DeltaAlpha function in order to compute the delta
value based on a beta value, which is passed as a parameter. The possible beta values can be
easily represented on a binary tree and can be known from the beginning of the execution of the
algorithm. It is still unknown, though, which the path that will be chosen each time will be. If
the DeltaAlpha value of each node was already stored in the memory, the execution of the beta
algorithm would be much faster. The current program would not take benefit of the use of hyper-
threading, since the depth of the tree is very short. However, given a more complex scenario in
which more nodes of the tree would need to be calculated the logic of hyper-threading could be
useful.

After applying all the optimizations that werementioned above, as figure 3.10.1 depicts, the time spent
in the serial time was improved by 26,29% and the total one by 11,95%. Figure 3.10.2 represents the

41

Figure (3.10.1) Optimizations improvement in sec
Figure (3.10.2) Optimizations improvement percent-
age

Figure 3.10: Comparisson of Initial and New Implementations Total Run Time

improved scaling of the bodytrack application. As far as the parallel parts are concerned, the ones that
need to be analyzed most are the Gaussian Blur and the Calc Weights. In the Calc Weights, the main
reason for the mediocre scaling is that some of the serial parts which were analyzed above introduce
a bottleneck in this step of the pipeline. It is suggested that a solution to that would be to use pairs
of processors for the execution of each thread, where one would have a higher frequency in order to
execute the serial parts of the thread. Moreover, the more layers we use for getting better accuracy
on the body detection, the more synchronization points we introduce, since the loop in which the
CalcWeights part belongs to is executed more times. This part is also memory intensive and many
floating point operations need to be executed, since it has to create the geometric representation of the
bodymodel, compute the required scaling and translation of the coordinates and perform the projection
in the 2D space. Afterwards, three floating point arrays with information about the 4000 particles will
be updated. Regarding the Gaussian Blur step, we present a further analysis of the row and the column

Figure 3.11: Step 4 - Calc Weights, Time percentage for Parallel and Serial parts

filtering scaling in the figure 3.12. The parallel for loop that executes the row bluring is better because
the threads take advantage of the data locality. The pixel data is stored per row in the memory and the
data is distributed per row. A thread that performs column filtering, instead, will manipulate the pixel
of one or more columns, so it will bring to the local cache data from pixels that are not needed. Last
but not least, in all parts above, the time spent on lock contention is one more reason which makes the
achievable speedup worse. According to already collected data 50% of one thread’s time is spent on
waiting for user locks and condition variables [Cass09], [Pusu11].

42

Figure 3.12: Scaling of Step 2 (Gaussian Blur), Row and Column Parallel parts

3.3 FLUIDANIMATE

3.3.1 Overview

The fluidanimate belongs to the domain of computer animation and specifically of real time fluid sim-
ulation. The program aims to visualize the fluids efficiently and can be applied in both scientific and
game animations. Computer games use extensively fluid animation and the program needs to have
both good performance since the data is generated in real time and produce good image quality to
satisfy the player’s demands. The program implements an extension of the smoothed-particle hydro-
dynamics (SPH) computational method, which uses a set of particles to represent the fluid. The input
contains the values of the initial position coordinates, velocity and viscosity for each particle and any
other properties, such as external forces, viscosity flow forces and fluid’s material that may exist. The
viscosity is a measure of a fluid’s resistance to deformation. For example, the honey and the water
have completely different viscosity and if a force is applied to these fluids the results after a specific
timeframe will be less intense for the honey than for the water.

3.3.2 Description

The fluidanimate as it was customized for the PARSEC benchmark uses only one external force and
has predefined the fluid’s colors and the scene’s geometry. With the use of the initial values, the
equations provided by the SPH algorithm and theNavier Stokes equation (eq. 3.10) for incompressible
fluids the program calculates the density and acceleration of each particle.

ρ(
∂v

∂t
+ v · ∇v) = −∇p+ ρg + µ∇2v (3.10)

Simplified version of Navier-Stokes equation, where v is the velocity, ρ the density, p the presure, g
the external force and µ the fluid’s viscosity.

The results are used to update the particle’s initial values. This number of times that this procedure
is executed is defined by the input parameters and since the program is real-time it could be repeated
unlimited times. The equations 3.11, 3.12 and 3.13 are used in each iteration for updating each
particle’s parameters.

positionnew = velocityold · time+ accelerationnew · time2 (3.11)

velocitynew = velocityold + accelerationnew · time (3.12)

43

viscositynew = hvold +
1

2
accelerationnew · time (3.13)

Time is a constant value defined currently 0,001.

The whole procedure of calculating the acceleration and the density is broken up into five parallel
parts which can be easily maintained in order to execute a more complicated input with more external
forces and a different scene. The scene is divided into cells and each of them contains zero or more
particles.

• Rebuild spatial index

Each cell can contain different particles after each iteration, since the particles are changing
positions. This step that is implemented by two functions (ClearParticles and RebuildGrid) is
storing each particle in the proper cell.

• Compute densities

Firstly, this kernel calls InitDensitiesAndForces, which initializes the variables acceleration and
density on the external force and 0 respectively. Afterwards, the ComputeDensities and Com-
puteDensities2 functions are updating the density value by using the position coordinates. The
closer the particles are with each other, the higher is the density of them. Only the particles
that belong in the 27 neighbouring cells of the 3D space from the current one are taken into
consideration to perform these computations.

• Compute forces

This step is implemented by ComputeForces function and calculates the acceleration given the
position coordinates, the density and the viscosity values. As mentioned before the collisions
between particles are handled only between a limited number of cells.

• Handle collisions with scene geometry

The function ProcessCollisions is updating the acceleration values by taking into account the
scene geometry and all the particle’s parameters (position, viscosity, velocity).

• Update position, velocity and viscosity of particles

The function AdvanceParticles is responsible for updating the position, viscosity and velocity
of each particle according to the equations 3.11, 3.12 and 3.13.

3.3.3 Parallelization approach

Fluidanimate is supported in PARSEC by Pthreads and TBB threading models and in our work we
focused on the TBB version. All parallel parts are implemented with the use of generic template
classes. Firstly, a generic class model is implemented which creates a list of tasks that will be executed
by the threads and defines the geometry region that each thread is rensponsible for. Secondly, eight
classes implement the steps mentioned above are and are executed in parallel by the available threads
[Lee10]. Given num threads defined available threads, the program creates in the endnum threads·8
objects of a concrete class T which will execute a specific algorithm of the program and each thread
will need to execute the 8 of these. This abstract pattern gives the freedom to implement different
classes T which are independent of the way that the threads were created, the exact data distribution
and execute them easily in parallel. Moreover, it is easier to follow the logic of the whole program
and maintain the thread creation and the implementation of the algorithms separately.

44

Figure 3.13: Generic Template Classes

Figure 3.14: Tree of Thread and Task allocation

3.3.4 Data structures

The data structures that were implemented in fluidanimate for storing the pixel’s data and keeping
track of the geometric cell in which they belong to are very interesting. The challenge was to handle
boundary conditions where a cell has at some point of time too many pixels in comparison to its
initial state and to the average cell capacity and to have allocated the maximum memory needed
before the parallel thread creation and execution started. It is efficient to prevent the program from
allocating dynamicmemory bymultiple threads in parallel since this requiresmore time than allocating
it dynamically from one thread.

Firstly, the basic data structure for the cell is defined and contains the data for a fixed number of pixels.
This number is defined as 8 in the program. Most of the pixel’s parameters are stored in a 3D float
vector (Vec3) which was implemented to support many functions and operations between different
vectors. Ideally, if the fluid did not move and each cell contained the same number of pixels during
the execution it would be enough to let each thread allocate a specific number of cell structures and
handle only these memory elements. Given num cells geometric cells in total, the program allocates in
the beginning a cell array, “cells”, with num cells elements that are not connected with each other. If
more than particles per cell = 8 pixels move into a cell, however, the working thread is able to store
the data in a new cell that is already allocated in the memory and link it with the initial one. A cellpool
structure is implemented that contains a linked list with cells that are able to store the data of at least
4 · (total num particles/num threads · 8) particles. The list does not have any actual pixel values

45

Variable Type Description
p[particles per cell] Vec3 p[i]: 3D position coordinates of pixel i
hv[particles per cell] Vec3 hv[i]: 3D velocity values of pixel i
v[particles per cell] Vec3 v[i]: 3D viscosity values of pixel i
a[particles per cell] Vec3 a[i]: 3D acceleration values of pixel i

density[particles per cell] float density[i]: density value of pixel i
next *Cell pointer to the next cell

padding char padding used for cache alignment purposes

Table 3.5: Struct Cell

stored in the beginning of the execution, but works as a pool to grab cell structures when needed. A
cellpool array of size num threads · 8 is allocated and has num threads · 8 different cell linked
lists. Every time a thread needs a new cell it takes one from this array. The linked list that is selected
for taking the cell follows the round robin algorithm in order to avoid picking all the cells from one
list. The existence of the “next” pointer in each cell makes the cell connections easy to implement and
quick to execute. The drawback of this logic is that when a particle changes the geometric cell it has

Variable Type Description
cells Cell * pointer to the first node of the Cell linked list
alloc int number of cells allocated in the cells linked list

datablocks internal structure for cache alignment purposes

Table 3.6: Cellpool (struct)

to be stored in another cell list as well, since a specific geometric cell is represented by a specific list
of the “cells” array. A separate class, RebuildGridMTWorker is implemented to handle the copying of
the values to the proper cells. This means, that the program has to copy the values of three 3D floating
point vectors every time the particle has to move in another cell.

In order to avoid this very costly part we implemented another data structure model which is depicted
in figure 3.15. The main idea of the new version we implemented is only to change pointers instead
of moving the actual values in the memory. The vectors that describe one particle will be stored in
the same memory addresses during the whole execution, but they will be pointed by different cells
according to their position that will probably change one or more times.

Firstly, we defined the “ParticleNode” structure which contains four 3D vectors (position, velocity,
viscosity, acceleration) and one float value for the density. Additionally, it has a pointer of type “Par-
ticleNode *” which points to its neighboring particle. The allocation of numParticles number of Par-
ticleNode structures is happening in the beginning of the execution. Secondly, we defined the “Cell”
structure which will represent a geometrical cell. Each cell points to a linked list of ParticleNodes
and the structure itself just contains a “ParticleNode *” element pointing to the head of the list and
an integer defining the size of this list. The allocation of the num cells different “Cell” structures
is occurring in the beginning as well. In this way, each time a particle changes cell we just have to
change two pointers: the next pointer of its previous particle or the head pointer of its previous cell
and the next pointer of the current particle. The drawback of this implementation is that after some
iterations and if the fluid is moving a lot while the time is passing the particles of each cell will not be
allocated in continuous places in the memory. This is very costly for the other steps of the program
in which each thread is making calculations for one or more cells. It has a bad impact on the cache
utilization when we have many available threads to handle the execution, since one thread might need
to use between two iterations data from different memory addresses. As a result, it is better to use the
new implementation if the program will be executed for a small number of frames but prefer the initial
one if we have a huge number of frames.

46

Figure 3.15: Cells and Particles representation

For all the following measurements the programs were executed for 500 frames by using the native
input file of 18 MB which requires approximately 290 MB of memory allocation.

In figures 3.16.1 and 3.16.2 it is obvious to see that the new implementation improves the first step
of the program. However, this improvement would not be the same for the other stpes. A suggestion

Figure (3.16.1) Scaling Figure (3.16.2) Time (sec) per step

Figure 3.16: Rebuild step - Using New and Old structure implementations

on that would be to implement a hybrid model, which would follow mainly the logic of the new
implementation. In every 16 frames it would iterate through all the particles and perform copying
of their data so that they can be stored in continuous memory addresses for each cell. It is worth
mentioning, that there have been multiple attempts to optimize the current application. Jim Dempsey
implemented fluidanimate using QuickThread Programming [Quic] and different data structures than
the ones used in the initial program [Demp10]. His results both in terms of the impact that the different
data structures have and of the benefits that QuickThread Programming has were very interesting to
investigate further.

47

3.3.5 Measurements and performance analysis

Initially, we took measurements using the native input that was mentioned before for up to 64 threads.
The best scaling was achieved for 32 threads, despite the fact that the machine that was used (Dun-
nington) has 24 available cores. Fluidanimate can only be executing by using a number of threads that
is a power of two, so it was actually not possible to use exactly 24 threads. Figures 3.17 and 3.18
present how the total execution time was splited among the several steps and what was the achievable
speedup. Regarding the “Rebuild spatial index” step, the bad scaling is due to the bus contention when

Figure (3.17.1) Time percentage spent in each step Figure (3.17.2) Time (sec) per step

Figure 3.17: Fluidanimate time per step

Figure 3.18: Scaling per step

all the particle’s value have to be copied in the between the cells. This step was explicitly analyzed
in part 3 and alternative solutions were presented. As far as the “Compute densities” and “Compute
forces” steps are concerned, the number of locks that is increasing as the number of threads grows is
the main reason for not being able to have a better scaling after the 16 threads. Until that point the
scaling is almost ideal, but afterwards the improvement is very poor. The context switch rate and the
volume of shared data are increasing [Pusu11]. In these steps each particle requires the data of its nine
neighboring particles and when the number of threads increases it is more probable that this data will
be part of another’s threads region and locks have to be used. The last two steps (“Handle collisions”
and “Update positions”) are impacted by the bus contention. The number of computations that they
perform is very low and not costly, but during their execution they need to read the values of all the
vectors and update them as well. This increases the off-chip traffic, the read and write misses. Of
course, depending on the cache size the performance of these steps can vary. It was also observed that
having a larger cache line size is preferable, because the prefetching is valuable in the current data
program where one particle’s data consist of 13 floating point values.

48

In order to make more clear the impact of the locks in fluidanimate, we mocked the computations of
steps 1, 2 and 3 and skipped the use of locks. Figure 3.19 shows the percentage of time that these
steps allocate for the locks. From the other figures (3.20.1 and 3.20.2) that are similar to the above
ones we can prove bad impact of the locks on the achievable speedup. Another issue that is worth

Figure 3.19: Time percentage spent on locks

Figure (3.20.1) Time percentage spent in each step Figure (3.20.2) Scaling per step

Figure 3.20: Fluidanimate Run without locks

mentioning is the fact that fluidanimate depends a lot on the specific input file. Given an extreme case
in which most of the particles of the fluid are concentrated in one cell and most of the image is empty
the program will crash. One cell will have to store the data of all the particles and all the computations
will be handled by a single thread regardless how many are in total available. Another case that is
more probable to happen in the reality is that the fluid is moving from the one border of the image to
the other one. During the whole execution all the cells will store at some point data and all the threads
will be performing computations. However, in a single execution of a frame the snapshot of the image
will include all the particles in just a few cells, meaning that only a few threads will be really taking
part in the execution.

Of course, the goal of this application is to be able to observe in detail the behavior of each step
regarding the cache utilization, the bus contention, the use of locks and other issues related to the
multiprocessor architecture and not to have an excellent program for fluid simulation.

49

Chapter 4

Co-scheduling PARSEC applications

4.1 Introduction

Part of the current work is to analyze how the different applications of the PARSEC benchmark suite
would behave if they had to be executed in parallel by the same computer. The applications have
different characteristics with each other regarding their demands for memory, arithmetic operations,
cache utilization, memory bus traffic, lock contention and thread migration. As a result, it is interest-
ing to understand how the execution of one application would affect another one if both have to be
executed in parallel given the same resources.

Currently, we divide eight of the PARSEC applications into pairs and execute them in the same ma-
chine of the laboratory (Dunnington). In our first scenario, we run each pair in parallel and each
application is executed by 12 cores in order to make use of all the 24 available cores. The two appli-
cations use different caches, so that we can keep them as isolated from each other as possible. In our
second scenario, we follow similar approach with the first one, but we let a cache be available for both
applications. In other words, the cores that share a cache are allocated by both applications. In our last
scenario, we allocate 12 cores out of the 24 available ones and execute each application serially.

4.2 Execution of PARSEC pairs applications: Observations and
measurements

Firstly, regardless if the execution of a pair is parallel or serial, we run each of the application only
once. As it is expected, the parallel execution is always achieving better results than the serial one.
However, depending on the specific combination the achievable speedup differs a lot.

For instance, when bodytrack is running in parallel with x264 the scaling is only 1,22 whereas when
bodytrack is being executed together with swaptions or freqmine the final speedup is 1,80 which is
almost the ideal one. x264 is part of the media processing domain and is aiming to encode video
by performing the required operations in different macroblocks of pixels. Both bodytrack and x264
are memory intensive applications and have a lot of off-chip traffic. Because both are storing their
results into the new frames in each iteration, they need to perform many writes to shared data and
thus when running together they can conflict on the memory bus. It is worth mentioning, that they
do not have conflicts because of the cache sharing, since the time spent when executing them with
separate caches is the same with the one achieved when sharing the caches. On the other hand, as
it is already analyzed, each thread of freqmine is making a good use of the cache and like that this
application does not have conflicts when running together with a memory bound one. Most of the data
load and stores of a freqmine thread are occurring internally and there is not often the need to access
the memory in order to process the execution. Bodytrack with the exception of x264 and canneal was
achieving good speedup with its pairs. The reason is that bodytrack has many serial parts that spend

51

Figure 4.1: Time (sec) of Parsec application Pairs

big amount of the CPUs time, but this is not a barrier for other applications being executed at the same
time. Bodytrack is accessing a lot the memory by the end of each frame computation, but not during
the computations. Moreover, fluidanimate achieved pretty good execution time when running together
with all the other applications. The average improvement introduced by the parallel execution when
allocating 16 threads for fluidanimate and 8 for its pair in comparisson to the serial run time was 37%.
Fluidanimate is divided in many steps and only two of them are memroy intensive. Most part of the
application is spending time on locks or in copying elements between arrays, which is not influencing
the behavior of other programs that can run in the same chip. For this reason, fluidanimate guarantees
that it can have a good scaling when being scheduled together with any other application. Of course,
the best improvement was observed with freqmine. As mentioned before, freqmine does not have any
frequent off-chip traffic and this enables fluidanimate execute efficiently the steps that access often
the memory. The best results were achieved by the pairs that included freqmine. However, only 30%
improvement was introduced by the pair freqmine - canneal. Canneal is an memory intense application
with a very big working set and even if it is being exeucted seperately the achievable speedup is very
poor. When scheduling both applications to be executed multiple times in parallel, context switching
will occur frequently.

For applications that use the cache efficiently this will become a bottleneck. In figure 4.1 we present
the total time spent for each pair when executing serially, parallel with separate caches and parallel
with shared caches. Moreover, we extract a more detailed graph (Figure 4.2.1) presenting the speedup
of the different combinations for the applications that we analyzed above.

Additionally to that, we executed most of the above pairs in the same environment, but we let each
of the application run multiple times. The motivation for that is that we do not want to have an appli-
cation running while the other one is already executed. Based on the serial times, we customized the
multiplications so that the total time the one application of the pair needs to run is the same with the
total time of the other one in a serial environment. From these measurements figure 4.2.2 depicting
the achievable speedup was extracted.

52

Figure (4.2.1) Scaling of combinations Bodytrack,
x264, Freqmine and Swaptions applications Figure (4.2.2) Scaling of Pairs running multiple times

Figure 4.2: Scheduling of PARSEC applications

Number Application 1 Application 2
Nr. 1 Bodytrack Blackscholes
Nr. 2 Bodytrack x264
Nr. 3 Bodytrack Ferret
Nr. 4 Bodytrack Swaptions
Nr. 5 Bodytrack Canneal
Nr. 6 Bodytrack Freqmine
Nr. 7 x264 Ferret
Nr. 8 x264 Swaptions
Nr. 9 x264 Canneal
Nr. 10 x264 Freqmine
Nr. 11 x264 Blackscholes
Nr. 12 Blackscholes Ferret
Nr. 13 Blackscholes Swaptions
Nr. 14 Blackscholes Canneal
Nr. 15 Blackscholes Freqmine
Nr. 16 Ferret Swaptions
Nr. 17 Ferret Canneal
Nr. 18 Ferret Freqmine
Nr. 19 Swaptions Canneal
Nr. 20 Swaptions Freqmine
Nr. 21 Canneal Freqmine
Nr. 22 Fluidanimate Freqmine
Nr. 23 Bodytrack Fluidanimate
Nr. 24 x264 Fluidanimate
Nr. 25 Canneal Fluidanimate
Nr. 26 Swaptions Fluidanimate
Nr. 27 Ferret Fluidanimate
Nr. 28 Blackscholes Fluidanimate

Table 4.1: Points (struct)

53

Bibliography

[Bala05] Alexandru O Balan, Leonid Sigal and Michael J Black, “A quantitative evaluation of
video-based 3D person tracking”, in Visual Surveillance and Performance Evaluation
of Tracking and Surveillance, 2005. 2nd Joint IEEE International Workshop on, pp.
349–356, IEEE, 2005.

[Bien11] Christian Bienia, Benchmarking Modern Multiprocessors, Ph.D. thesis, Princeton Uni-
versity, January 2011.

[Blac73] Fischer Black and Myron Scholes, “The pricing of options and corporate liabilities”, The
journal of political economy, pp. 637–654, 1973.

[Blai14] Lawrence Livermore National Laboratory Blaise Barney, “POSIX Threads Program-
ming”, Available from https://computing.llnl.gov/tutorials/pthreads/, 2014.
[Online; accessed February 23, 2014].

[Cass09] Jimmy Cassis and Mario Flajslik, “CS315A Final Project: PARSEC Beyond 16”, 2009.

[Demp10] Jim Dempsey, “Fluid Animate Particle Simulation”, Available from http://www.

drdobbs.com/parallel/fluid-animate-particle-simulation/228800371,
2010. [Online; accessed February 23, 2014].

[Docu14a] Intel Threading Building Blocks Documentation, “blocked range Template
Class”, Available from http://www.threadingbuildingblocks.org/docs/help/

reference/algorithms/range_concept/blocked_range_cls.htm, 2014. [Online;
accessed February 23, 2014].

[Docu14b] Intel Threading Building Blocks Documentation, “pipeline Class”, Available
from http://www.threadingbuildingblocks.org/docs/help/reference/

algorithms/pipeline_cls.htm, 2014. [Online; accessed February 23, 2014].

[Grah03] Gösta Grahne and Jianfei Zhu, “Efficiently using prefix-trees in mining frequent item-
sets.”, in FIMI, vol. 3, pp. 123–132, 2003.

[Han00] Jiawei Han, Jian Pei and Yiwen Yin, “Mining frequent patterns without candidate gen-
eration”, in ACM SIGMOD Record, vol. 29, pp. 1–12, ACM, 2000.

[Inte14] Intel®, “Threading Building Blocks (Intel® TBB)”, Available from https://www.

threadingbuildingblocks.org/, 2014. [Online; accessed February 23, 2014].

[Inve14] Investopedia, “Black Scholes Model”, Available from http://www.investopedia.

com/terms/b/blackscholes.asp, 2014. [Online; accessed February 23, 2014].

[Kari03] Takeaki Kariya and Regina Y Liu, “Options, Futures and Other Derivatives”, in Asset
Pricing, pp. 9–26, Springer, 2003.

55

https://computing.llnl.gov/tutorials/pthreads/
http://www.drdobbs.com/parallel/fluid-animate-particle-simulation/228800371
http://www.drdobbs.com/parallel/fluid-animate-particle-simulation/228800371
http://www.threadingbuildingblocks.org/docs/help/reference/algorithms/range_concept/blocked_range_cls.htm
http://www.threadingbuildingblocks.org/docs/help/reference/algorithms/range_concept/blocked_range_cls.htm
http://www.threadingbuildingblocks.org/docs/help/reference/algorithms/pipeline_cls.htm
http://www.threadingbuildingblocks.org/docs/help/reference/algorithms/pipeline_cls.htm
https://www.threadingbuildingblocks.org/
https://www.threadingbuildingblocks.org/
http://www.investopedia.com/terms/b/blackscholes.asp
http://www.investopedia.com/terms/b/blackscholes.asp

[Lee10] Janghaeng Lee, Haicheng Wu, Madhumitha Ravichandran and Nathan Clark, “Thread
tailor: dynamically weaving threads together for efficient, adaptive parallel applications”,
in ACM SIGARCH Computer Architecture News, vol. 38, pp. 270–279, ACM, 2010.

[Lucc04] Claudio Lucchese, Salvatore Orlando, Raffaele Perego and Fabrizio Silvestri, “WebDocs:
a real-life huge transactional dataset.”, in FIMI, 2004.

[NTUA14] CSLAB NTUA, “Parallel Processing Systems Introduction”, Avail-
able from http://cslab.ece.ntua.gr/courses/pps/files/fall2013/

pps-parallel-programming-lec1-Fall2013.pdf, 2014. [Online; accessed
February 23, 2014].

[Ocal02] Liadan O’callaghan, Nina Mishra, Sudipto Guha, AdamMeyerson and Rajeev Motwani,
“Streaming-data algorithms for high-quality clustering”, in 2013 IEEE 29th International
Conference on Data Engineering (ICDE), pp. 0685–0685, IEEEComputer Society, 2002.

[Open14] OpenMP, “The OpenMP API Specification For Parallel Programming”, Available from
http://openmp.org/wp/, 2014. [Online; accessed February 23, 2014].

[PARS14a] PARSEC, “Download PARSEC 3.0”, Available from http://parsec.cs.princeton.

edu/download.htm#parsec, 2014. [Online; accessed February 23, 2014].

[PARS14b] PARSEC, “Overview PARSEC”, Available from http://parsec.cs.princeton.edu/

overview.htm, 2014. [Online; accessed February 23, 2014].

[Pusu11] Kishore Kumar Pusukuri, Rajiv Gupta and Laxmi N Bhuyan, “Thread reinforcer: Dy-
namically determining number of threads via os level monitoring”, inWorkload Charac-
terization (IISWC), 2011 IEEE International Symposium on, pp. 116–125, IEEE, 2011.

[Quic] LLC QuickThread Programming, “QuickThread Programming, Parallel Programming
Toolkit”, Available from http://www.quickthreadprogramming.com/. [Online; ac-
cessed February 23, 2014].

[Reed11] Eric C Reed, Nicholas Chen and Ralph E Johnson, “Expressing pipeline parallelism using
TBB constructs: a case study on what works and what doesn’t”, in Proceedings of the
compilation of the co-locatedworkshops onDSM’11, TMC’11, AGERE!’11, AOOPES’11,
NEAT’11, & VMIL’11, pp. 133–138, ACM, 2011.

[Wiki14] Wikipedia, “Image Segmentation”, Available from http://en.wikipedia.org/wiki/

Image_segmentation, 2014. [Online; accessed February 23, 2014].

56

http://cslab.ece.ntua.gr/courses/pps/files/fall2013/pps-parallel-programming-lec1-Fall2013.pdf
http://cslab.ece.ntua.gr/courses/pps/files/fall2013/pps-parallel-programming-lec1-Fall2013.pdf
http://openmp.org/wp/
http://parsec.cs.princeton.edu/download.htm#parsec
http://parsec.cs.princeton.edu/download.htm#parsec
http://parsec.cs.princeton.edu/overview.htm
http://parsec.cs.princeton.edu/overview.htm
http://www.quickthreadprogramming.com/
http://en.wikipedia.org/wiki/Image_segmentation
http://en.wikipedia.org/wiki/Image_segmentation

	Περίληψη
	Abstract
	Ευχαριστίες
	Contents
	List of Figures
	Introduction
	Benchmarking
	Outline of the thesis
	Overview of the experimental environment
	Factors for scalability limitation

	Applications with good scaling
	FREQMINE
	Overview
	Description
	Parallelization approach
	Measurements and performance analysis

	BLACKSCHOLES
	Overview
	Description
	Parallelization approach
	Data structures
	Measurements and performance analysis

	Applications with medium achievable speedup
	STREAMCLUSTER
	Overview
	Description
	Parallelization approach
	Data structures
	Measurements and performance analysis

	BODYTRACK
	Overview
	Description
	Parallelization approach
	Data structures
	Measurements and performance analysis

	FLUIDANIMATE
	Overview
	Description
	Parallelization approach
	Data structures
	Measurements and performance analysis

	Co-scheduling PARSEC applications
	Introduction
	Execution of PARSEC pairs applications: Observations and measurements

	Bibliography

