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Abstract	
 

The propulsion system of conventional ships consists of one or more main engines (usually 
two- or four- stroke Diesel engines), coupled directly or by means of a reduction gearbox to 
the propeller. The shafting system of a ship transmits the main engine output power to the 
propeller, and, also, transmits the propeller thrust to the ship hull. Friction is a major cause of 
energy losses in marine propulsion systems.  

In Diesel engines, substantial friction losses are present at the piston ring assembly, at the 
guide shoe bearings, at the main bearings and at the connecting rod bearings. Overall, 
approximately 3% of fuel energy is lost to friction; the corresponding cost is substantial, 
taken into account that the annual fuel cost of a typical cargo vessel is approximately 80-90% 
of its total running cost. 

The piston rings of a Diesel engine are circular metallic rings, fitted into grooves at the outer 
diameter of the engine pistons. They are mainly used to isolate the combustion chamber from 
the crankcase. This is accomplished by development of hydrodynamic pressure in a thin film 
of oil that separates the ring face from the cylinder liner. Pressure is generated in the film due 
to the piston reciprocating motion. Friction losses in the piston ring pack correspond to 
approximately 26% of the total engine mechanical losses. 

The aims of the present study are twofold: (a) to develop software tools for the solution of 
hydrodynamic lubrication problems in piston rings under transient loading conditions, and (b) 
to apply those tools for studying the performance of piston rings in large two-stroke marine 
Diesel engines. 

Piston rings operate mainly in the regime of hydrodynamic lubrication, which is governed by 
the Reynolds equation. The tools developed in the course of the present study are capable of 
solving the Reynolds equation with two different types of boundary conditions. The first one 
is the simple Reynolds boundary condition, which provides accurate prediction of the 
lubricant pressure in the active film region, however, mass conservation is violated in the 
cavitating region. To alleviate this drawback, the Elrod‐Adams mass conserving model is 
implemented, which predicts accurately the lubricant behavior in both the active and the 
cavitating regions of the ring. The tools have been properly extended to account for piston 
ring surface with hydrophobic characteristics. Numerical solution of the differential equations 
is performed using the Finite Difference Method (FDM), and the resulting calculations have 
been validated against results published in the literature. 

The tools developed have been applied to compute the performance characteristics of the 
piston rings of a typical large two‐stroke marine Diesel engine. Two loading conditions have 
been considered, corresponding to power output equal to 100% and 25% of the engine MCR. 
At first, calculations have been performed for a reference ring design, and a parametric 
analysis has been conducted to identify the effect of the main design parameters of the ring 
(face curvature / offset, lubricant properties) on its performance characteristics. Next, regions 
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of the ring face have been assumed to have undergone surface treatment in the form of 
hydrophobicity or artificial surface texturing. The effect of those surface treatment 
technologies on the reference design has been assessed, and a detailed parametric analysis has 
been performed to identify optimum design parameter values. 
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Σύνοψη	
 

Το σύστημα πρόωσης συμβατικών πλοίων αποτελείται από μία ή περισσότερες κύριες 
μηχανές (συνήθως δίχρονους ή τετράχρονους κινητήρες Diesel), συζευγμένη/ες απευθείας ή 
μέσω μειωτήρα στροφών με την έλικα. Το αξονικό σύστημα του πλοίου μεταδίδει την 
περιστροφική ισχύ της κύριας μηχανής στην έλικα, και την ώση της έλικας στη γάστρα του 
πλοίου. Η τριβή αποτελεί σημαντική αιτία απωλειών ενέργειας στα συστήματα πρόωσης 
πλοίου. 

Στους κινητήρες Diesel, σημαντικές απώλειες τριβής παρουσιάζονται στα ελατήρια του 
εμβόλου, στα έδρανα του σταυρού, στα έδρανα βάσης και στα έδρανα του διωστήρα. 
Συνολικά, περίπου το 3% της ενέργειας του καυσίμου χάνεται λόγω της τριβής. Το 
αντίστοιχο κόστος είναι σημαντικό, λαμβάνοντας υπόψη ότι το ετήσιο κόστος καυσίμου ενός 
τυπικού πλοίου ανέρχεται περίπου σε 80-90% του συνολικού κόστους λειτουργίας του. 

Τα ελατήρια εμβόλου ενός κινητήρα Diesel είναι κυκλικά μεταλλικά δαχτυλίδια, που 
τοποθετούνται σε αύλακες στην εξωτερική διάμετρο των εμβόλων του κινητήρα. 
Χρησιμοποιούνται κυρίως προκειμένου να απομονώσουν τον θάλαμο καύσης από τον 
στροφαλοθάλαμο. Αυτό επιτυγχάνεται με την ανάπτυξη υδροδυναμικής πίεσης σε ένα λεπτό 
στρώμα λιπαντικού που διαχωρίζει την επιφάνεια του ελατηρίου από το χιτώνιο του 
κυλίνδρου. Πίεση αναπτύσσεται στο φιλμ, λόγω της παλινδρομικής κίνησης του εμβόλου. Οι 
απώλειες τριβής στα ελατήρια εμβόλου αντιστοιχούν στο 26% των συνολικών μηχανικών 
απωλειών. 

Ο σκοπός της παρούσας διπλωματικής εργασίας είναι διττός: (α) η ανάπτυξη υπολογιστικών 
εργαλείων για την επίλυση του προβλήματος της υδροδυναμικής λίπανσης σε ελατήρια 
εμβόλου υπό χρονικά μεταβαλλόμενες συνθήκες φόρτισης, και (β) η εφαρμογή τους για τη 
μελέτη της απόδοσης των ελατηρίων εμβόλου σε μεγάλους δίχρονους ναυτικούς κινητήρες 
Diesel. 

Τα ελατήρια εμβόλου λειτουργούν στην περιοχή της υδροδυναμικής λίπανσης, η οποία 
διέπεται από την εξίσωση Reynolds. Τα υπολογιστικά εργαλεία που αναπτύχθηκαν στο 
πλαίσιο της παρούσας εργασίας επιλύουν την εξίσωση Reynolds με δύο διαφορετικές 
οριακές συνθήκες. Η πρώτη είναι η απλή οριακή συνθήκη Reynolds, η οποία παρέχει ακριβή 
πρόβλεψη της πίεσης του λιπαντικού στην ενεργό περιοχή του φιλμ, παραβιάζοντας όμως τη 
διατήρησης της μάζας στην περιοχή της σπηλαίωσης. Προκειμένου να αμβλυνθεί αυτό το 
μειονέκτημα, χρησιμοποιήθηκε το μοντέλο διατήρησης της μάζας των Elrod-Adams, το 
οποίο προβλέπει με ακρίβεια τη συμπεριφορά του λιπαντικού και στην ενεργό αλλά και στη 
σπηλαιούμενη περιοχή του ελατηρίου. Εν συνεχεία, τα παραπάνω υπολογιστικά μοντέλα 
επεκτάθηκαν κατάλληλα ώστε να μπορούν να χρησιμοποιηθούν σε  περιπτώσεις που η 
επιφάνεια του ελατηρίου έχει υδροφοβικές ιδιότητες. Οι προκύπτουσες διαφορικές εξισώσεις 
επιλύθηκαν με τη μέθοδο των πεπερασμένων διαφορών (Finite Difference Method - FDM), 
και οι υπολογισμοί επικυρώθηκαν με αποτελέσματα της διεθνούς βιβλιογραφίας.  
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Το αναπτυχθέν λογισμικό εφαρμόστηκε για τον υπολογισμό των χαρακτηριστικών 
λειτουργίας των ελατηρίων ενός τυπικού μεγάλου δίχρονου ναυτικού κινητήρα Diesel. 
Θεωρήθηκαν δύο καταστάσεις φόρτισης που αντιστοιχούν σε αποδιδόμενη ισχύ ίση με 100% 
και 25% της μέγιστης συνεχούς ισχύος του κινητήρα. Αρχικά, έγιναν υπολογισμοί για ένα 
ελατήριο αναφοράς, και διεξήχθη παραμετρική ανάλυση προκειμένου να προσδιοριστεί η 
επίδραση των βασικών σχεδιαστικών παραμέτρων του ελατηρίου (καμπυλότητα / 
εκκεντρότητα, ιδιότητες του λιπαντικού κ.λπ.) στα λειτουργικά χαρακτηριστικά του. Στη 
συνέχεια, θεωρήθηκε ότι ορισμένες περιοχές του ελατηρίου έχουν υποστεί επιφανειακή 
κατεργασία με τη μορφή υδροφοβικότητας ή τεχνητής τραχύτητας. Κατ’ αρχάς, 
αξιολογήθηκε η επίδραση αυτών των κατεργασιών στη συμπεριφορά του ελατηρίου, και 
ακολούθησε λεπτομερής παραμετρική ανάλυση για τον προσδιορισμό των βέλτιστων τιμών 
των σχεδιαστικών παραμέτρων.  
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Nomenclature	

a Slip proportionality factor [m/ Pa.s]: α=b/η 

b Ring width [m] 
B Bore diameter, [m] 
b* Non-dimensional slip length: b*=bs/r 

bs Slip length [m] 
c Crown height [m] 
CA Crank angle [degrees] 
dcl Texture cell length [m] 
ddensity Texture density 
ddepth Dimple depth [m] 
dlength Dimple length [m] 
dnum Number of dimples 
E Young's modulus of elasticity [Pa] 
F Friction force [N] 
Fext Sum of external forces acting on the ring [N] 
g Cavitating factor 
h Film thickness [m] 
hmax Maximum film thickness [m] 
hmin Minimum film thickness [m] 
l Ring length along the peripheral [m] 
ls Non-dimensional hydrophobic length, ls=Ls/b 
Ls Ring hydrophobic length [m] 
m Grid points along the y direction 
N Rotational speed [RPM] 
n Grid points along the x direction 
nc Number of engine cycles 
o Offset [m] 
p Pressure of piston ring [Pa] 
p1-2 Pressure between the first and second compression rings [Pa] 
Pbk Force acting on the back face of ring from combustion gases[N] 
pc Cavitation pressure [Pa] 
pch Pressure in the combustion chamber [Pa] 
Pel Pretension force acting against the liner [N] 
PL Power loss [W] 
pmax Maximum pressure of piston ring [Pa] 
R Rod length [m] 
r Composite roughness [m] 
S Engine stroke [m] 
SBe Bottom hydrophobic region: Non-dimensional x coordinate of slip 

end location 



11 
 

SBs Bottom hydrophobic region: Non-dimensional x coordinate of slip 
start location 

STe Top hydrophobic region: Non-dimensional x coordinate of slip end 
location 

STs Top hydrophobic region: Non-dimensional x coordinate of slip start 
location 

t Time [s] 
T Tangential tension force of piston ring [N] 
TBe Bottom textured region: Non-dimensional x coordinate of texture 

end location 
TBs Bottom textured region: Non-dimensional x coordinate of texture 

start location 
TTe Top textured region: Non-dimensional x coordinate of texture end 

location 
TTs Top textured region: Non-dimensional x coordinate of texture start 

location 
tp Time points 
U Piston speed [m/s] 
u Fluid velocity in the x direction [m/s] 
v Fluid velocity in the y direction [m/s] 
W Load carrying capacity of fluid [N] 
w Fluid velocity in the z direction [m/s] 
x Direction along the piston ring profile (streamwise direction) 

y Direction along the piston ring circumference (spanwise direction) 
z Direction along the film thickness (crossflow direction) 
β Lubricant bulk modulus [Pa] 
η Lubricant viscosity [Pa.s] 
θ Lubricating film fraction 
λ Ring gap in the peripheral direction [m] 
ρ Lubricant density [kg/m3] 
τc Critical shear stress [Pa] 
τ Shear stress [Pa] 
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1. Introduction	
 

1.1		The	significance	of	tribology	in	Diesel	engines	
The Diesel engine has been established as the main propulsion system for ships during the 
last 50 years. Nowadays, two-stroke marine Diesel engines have achieved an efficiency factor 
above 50%, and with the ability to burn fuel of the lowest quality, and hence low cost (Heavy 
Fuel Oil - HFO), they are the most reliable choice for overseas ships. Additionally, due to the 
remarkably long piston stroke, Diesel engines rotate the propeller with even lower speed, 
operating it more efficiently. 
 
Because of the constantly increasing cost of fuel oil, it is of great importance to find ways to 
reduce the amount of energy loss. Energy losses in Diesel engines occur by rejected heat in 
the exhaust gases and the cooling system, by friction between moving parts and by radiation. 
Part of the exhaust gas power can be recovered by heat recovery systems, which have been 
vastly developed in the past years. As of the cooling system, the energy that is drained to cool 
the several components of the engine may be used to heat-up water with many onboard uses. 
Finally, friction losses are caused at several different parts of the engine; substantial losses 
are present at the crankshaft bearings, at the connecting rod bearings, at the cross-head shoe 
bearing and at the piston ring assembly. These losses cannot be easily recovered. Therefore, 
there is a lot of ongoing research aiming at design optimization of those components for 
reduced friction loss and, consequently, reduced fuel consumption. 
 
Tribology is a scientific domain which is engaged with the research of friction, lubrication 
and wear of interacting surfaces in relative motion. The early aims of tribology were towards 
improvement of operation and extension of the useful lifetime of mechanical components. 
Today, tribology spans many different fields from macro-scale applications, like wind 
turbines, to nanotribology or biomedical tribology. Lubrication, a subdomain of tribology, is 
concerned with methods to separate two interacting surface by inserting a very thin film of a 
substance, called lubricant, between them, aiming at reduced friction losses and wear. 
 

1.2		Literature	review	‐	Thesis	outline	
Tribology studies friction, wear and lubrication of mechanical parts. Friction and wear are 
substantially reduced when a thin layer (film) of material, usually liquid, but also gas and 
solid in several cases, separates two sliding surfaces [1],[2]. Hydrodynamic lubrication has 
been a subject of extensive research in recent decades, in order to study the behavior of 
mechanical components such as bearings, piston rings, camshafts, seals, etc. Each year, 
hundreds of new papers are published in the scientific domain of tribology, proving the 
importance of tribological optimization in contemporary machine design.  

The theory introduced by Osborne-Reynolds in 1886 forms the basis of hydrodynamic 
lubrication. According to this theory, pressure can be transferred through a thin lubricating 
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film located between the two sliding surfaces, which should not be parallel in order to create 
the necessary geometry of hydrodynamic wedge. In piston rings, which are the main subject 
of the present study, such a geometry is created between the ring and the liner wall by 
allowing the proper gap between them, when the ring is placed around the piston. This 
method allows the creation of lubricating film between the ring and the liner, promoting the 
development of hydrodynamic pressure. [3] 

A plurality of work has been reported in the international literature in the subject of piston 
ring tribology (e.g. [4]-[6]). The tribological behavior of piston rings can be efficiently 
predicted on the basis of the Reynolds equation. An important study on piston rings has been 
published by Jeng et al. in 1992 [4]. Jeng et al. solved the transient problem of hydrodynamic 
lubrication of piston ring with the use of Reynolds equation. An extension of the basic 
modeling of [4] to account for starvation oil conditions at the ring inlet has been published by 
the same group in [5]. A combined numerical and experimental work on piston ring friction 
in internal combustion engines has been presented by Wakuri and his co-workers in [6]. 

Regarding lubricant cavitation in hydrodynamic lubrication, it has been a common practice 
for years to alter the full film pressure results, by setting all predicted negative pressures 
equal to the cavitation pressure (half-Sommerfeld boundary condition) [3]. Although these 
methods produced reasonable load values, they violated the principle of mass conservation. 
To account for the abrupt change of pressure in the cavitation boundary, the assumption that 
the pressure derivative is zero at the film rupture boundary (Reynolds boundary condition) 
has been proposed and used extensively in the literature [3]. Still, the film reformation 
boundary could not be properly predicted, and mass conservation was violated. This is due to 
the fact that density in the cavitation region of the piston ring is not constant, but depends on 
the wedge geometry. In order to properly treat the cavitation region, various methods have 
been developed. ([7]-[10]). A major contribution was that of Elrod and Adams [7], [8], who 
suggested that the lubricant domain can be divided into two distinct zones. In the first zone, 
the lubricant creates a complete film and Reynolds equation along with the Reynolds 
boundary condition can be applied. In the second zone, only a fraction θ of the film thickness 
is occupied with lubricant, while the remaining film consists of multiple liquid-air striations. 
Concerning the analytical solution, Elrod proposed the employment of a "global" differential 
equation, as for θ, which is valid for both regions of the lubricant film and represents 
different quantities depending on the value of a cavitating factor (1 and 0 respectively). 
Vijayaraghavan and Keith [9] presented a numerically more stable development of the Elrod-
Adams algorithm, by using half-step finite difference methods and deriving the shear and 
pressure flow terms in a more consistent way. The cavitating index used by Elrod-Adams 
cavitation algorithm, has been reported by several researchers to cause numerical oscillation 
and instabilities, due to its sudden change, while trying to predict the cavitation boundary. 
Fensanghary and Khonsari [10] proposed a modification of this switch function, which 
smoothens the transition between the full film and the cavitating region and accelerates the 
convergence speed. Giacopini et al [11], making an alternative formulation of the Elrod-
Adams algorithm, presented consistent results in terms of pressure and film fraction 
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distribution for several typical cases, and therefore was used to validate the results of the 
developed algorithm. 

The purpose of the present thesis is to study the tribological behavior of conventional piston 
rings, and of piston rings which have undergone surface treatment, including hydrophobicity 
([12]-[14]) and artificial surface texturing ([11], [15]-[17]). Hydrophobic surfaces are wetting 
resistant, reducing the levels of friction during fluid flow. The modified Reynolds equation 
for slip surface properties was derived following the work of Fatu et al. [12], and the 
calculations were validated against the results of Pavlioglou et al. [13] and Guo Jun et al. 
[14]. The algorithms developed have been applied to study the operational characteristics of a 
piston ring of a typical large two-stroke marine Diesel engine. The results demonstrate that 
substantial friction reduction can be achieved by properly applying hydrophobicity at part of 
the ring surface. Further, artificial surface texturing has also been considered as a means of 
improving the frictional behavior of piston rings. Surface texturing refers to the introduction 
of small periodic irregularities of different shapes on a surface that may reduce frictional 
losses and increase load carrying capacity. Recent research by Etsion et al. [15], 
Papadopoulos et al. [16] and others has confirmed the above statement. In the present work, 
the proposed algorithm for solving piston ring geometries with artificial surface texturing has 
been validated against the results of Giacopini et al. [11] and Xiang et al. [17]. For the engine 
under consideration, implementation of texturing at certain parts of the ring surface 
substantially decreases friction losses and increases load carrying capacity. 
 
In Chapter 2, the basic principles of the theory of hydrodynamic lubrication are presented, 
along with the formulation of the Reynolds equation for the plain piston ring surface, and of 
the modified Reynolds equation for hydrophobic surfaces. In Chapter 3, the utilized finite 
difference scheme and the developed solution algorithms are presented, followed by the 
corresponding validation examples. In Chapter 4, the reference engine and piston ring design 
are described, and the principal operational parameters of the engine are presented. An initial 
parametric analysis is performed in order to identify the effect of the piston ring design 
parameters on its performance characteristics. Next, the effects of introducing hydrophobicity 
and artificial texturing at part of the ring surface are assessed. Finally, in Chapter 5, the main 
findings of the present thesis are summarized and conclusions are drawn. 
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2. Piston	rings	‐	theoretical	approach	
 

2.1 Diesel	engine	piston	rings	(Based	on	[18]‐[21])	
Diesel engines are used to convert the chemical power of fuels into mechanical work in order 
to move a car, a ship or to operate an electric power generator. The assembly of components 
that receives the combustion pressure and converts it into torque at the crankshaft forms the 
power cylinder, and it consists of the cylinder liner, the piston and the connecting rod. 
The piston is the component that neighbors directly to the combustion chamber and converts 
the combustion pressure into a downstroke motion, which is afterwards transferred through 
the piston pin to the connecting rod, and finally to the crankshaft. 
Piston rings, which is the subject of the present work, are circular metallic rings placed 
around the piston with a certain pretension, and their main purpose is to isolate the 
combustion chamber volume with minimum friction. They also transfer heat from the piston 
to the liner and stabilize the piston so that it is supported symmetrically by the bore. 
A typical sketch of a piston with its piston rings can be see 
]n in Fig. 1. 

 
Fig. 1. Piston and its components [19]. 

In the very first steam engines no piston rings where used because the forces and the 
temperatures were not as high as those of today's engines. Throughout the evolution of 
internal combustion engines, these parameters have been considerably increased, leading to 
increased thermal expansion of the piston material. This is the main reason that made the 
invention of piston rings, as a sealing body between the piston and the liner, essential. 
  
  

2.1.1 Piston	ring	main	functions	
The main purpose of piston rings is to keep gas blow-by from the combustion chamber to the 
crankcase to a minimum, because leakage will reduce compression pressure and power will 
be lost. The combustion gases can flow past the piston ring from three locations, the piston 
ring gap (the gap used to fit the ring around the piston), the front face of the ring and its 
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backside [20]. Piston rings seal the gas by expanding outwards towards the liner due to the 
gas pressure acting on their back and the pretension force. 
Piston rings also spread the lubricating oil up and down the liner uniformly and at the same 
time scrape off the excessive oil and return it to the crankcase during the downstroke. These 
functions are carried out by specially designed oil rings that have different face profile 
geometry and are described in detail in Section 2.1.2. 
Another function of piston rings is heat transfer from the piston to the liner. Through the 
cooling system of the piston head, a part of the combustion heat is transferred to the piston 
boundaries and from there to the piston rings and finally to the liner wall.  
Piston rings also stabilize the piston, preventing it from coming in contact with the liner, 
especially during cold starts. While the piston moves along the liner, the piston ring creates a 
thin lubricating film between it and the liner preventing metal to metal contact. Film 
thickness is maximum when the piston speed is maximum (middle of a stroke), and minimum 
when the piston reaches the two centers (top dead center-TDC, bottom dead center-BDC), 
where contact between asperities may occur, making a certain amount of wear inevitable. 
This fact makes the need of self-lubrication properties of the piston ring and liner materials 
necessary, as explained in a next section. 
 

2.1.2 Piston	ring	categories	
Piston rings always come in a set of two to five rings, forming a ring pack. The ring pack 
mainly consists of compression rings (2-4) and oil control rings (0-3), depending on the type 
of the Diesel engine and its size. Four-stroke Diesel engines have 2 or 3 compression rings 
and only one oil ring, but large two-stroke Diesel engines have 4-6 rings of which 3-4 are 
compression ring and the rest oil rings .  
 
Compression	Rings	
Compression rings are the seal that prevents gas blow-by from the combustion chamber to the 
crankcase. The combustion pressure thrusts the rings, and especially the top ring, downwards 
onto the piston groove, increasing the material wear, and at the same time creating a path for 
the gases to enter the groove and press the ring from the backside and against the liner, 
benefiting the sealing but increasing the mechanical load of the ring, see Fig. 2 

 
Fig. 2. Gas forces acting on a piston ring [18]. 
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The geometry of the piston ring face profile can be roughly distinguished in three categories, 
each with its advantages and disadvantages, but combinations of them and more complex 
geometries also exist. The most common profile of compression rings is the plain 
rectangular-shaped cross section, which has the best sealing behavior. The barrel-shaped face 
profile comes to reduce that force and distribute it more uniformly along the width of the 
ring, but lacks a bit at sealing. Finally, there are the taper faced profile rings, which reduce 
the pressure of the ring against the liner by supporting a part of the gas pressure with the face 
profile itself. The sharp edge of this ring can scrape off the excess oil during the downstroke, 
therefore combining the job of second compression ring and oil-scrap ring [20], as seen in 
Fig. 3b). 

a)  b)  
 

Fig. 3. (a) Compression and (b) compression-oil scrap piston ring profile geometries [20]. 

 
 
Oil	Rings	
During the first years of use of piston rings, the cylinder was lubricated with splash 
lubrication. This method was proved to be inadequate when the pressures and temperatures 
were further increased, because there was not a proper lubricating film to separate the ring 
from the liner; thus, high pressure could not be maintained, and severe damage occurred. 
Therefore, the oil control (oil scrap) rings were introduced, whose purpose is to maintain an 
appropriate oil film on the liner and to scrape off any surplus oil and return it to the 
crankcase. 
The oil rings in a ring pack distribute the oil along the liner evenly, so that a proper 
lubrication film always exists between the ring and the liner. In most cases, only one oil ring 
is needed in the pack, and has a different face profile from compression rings, as seen in Fig. 
4. 
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Fig. 4. Oil ring profile geometries [20]. 

The main characteristic of oil rings is the slots along the peripheral direction. This groove 
acts as a tank where the excess oil is accumulated and then a part of that is distributed evenly 
to the liner through the gap between the two edges and the liner and the rest is returned to the 
crankcase where it is cleaned and recycled. As mentioned above, oil rings are not always 
necessary, while the compression ones are. For example, two-stroke engines may not need oil 
rings [26], because the cylinder oil is mixed with the fuel and there is no surplus of oil. Such 
comparisons between four stroke and two stroke Diesel engines are presented in detail in 
section 2.1.4 of the present study. 
 

2.1.3 Piston	ring	materials	
Piston ring materials must satisfy certain demands, depending on the running conditions of 
the engine and its type. Some of them are elasticity/corrosion resistance and thermal 
conductivity. Piston rings are mainly manufactured from gray cast iron, whose main benefit 
is the graphite phase that can act as lubricant in the case of oil starvation, during the cold start 
of the engine, and at TDC and BDC where lubrication is not enough. In piston rings, graphite 
exists in the form of lustrous grains because of the resulting toughness, which is preferred due 
to the frequent contact of the ring with the liner and the subsequent wear. In liners, the 
graphite is in the form of flakes (see Fig. 5), which provides more effective lubrication than 
grain graphite. 

 
Fig. 5. Cylinder bore microstructure where the black marks constitute the graphite flake [27]. 

 
 

2.1.4 Lubrication	of	piston	rings	in	two‐stroke	and	four‐stroke	Diesel	engines		
 

In four stroke Diesel engines the oil used in the cylinder lubricating system is the same as that 
used in the bearing and the cooling system. The piston area and the crankcase communicate 
directly, so the surplus oil is scraped off, with an oil scrap ring, and returned to the crankcase, 
from where it is cleared, recycled and returned to the lubricating system. 
On the other hand, in two stroke Diesel engines, which will be the main subject of the present 
work, the crosshead separates the space below the piston and the crankcase, in order to isolate 
the acidic products of the combustion, which are very corrosive, from the rest of the engine. 
So the cylinder lubricating system is completely separate from the lubricating system of the 
crankshaft and the other moving parts of the engine. These engines in some cases have no oil 
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scrap ring, because a part of the cylinder lubricating oil is burned in the combustion chamber 
[26]. On the other hand, sometimes the lowest ring of the ring pack is an oil scrap ring that 
scrapes off the surplus oil and returns it to the scavenge area, because if the excess oil is 
burned, it creates residuals that increase the material wear and demotes the sealing capability 
of the rings. Given that cylinder oil is expensive (around 1000$ per day of ship operation) 
reduction of cylinder oil consumption may contribute substantially to cost reduction. 
The use of cylinder oil as sulphur remover is very beneficial, in two stroke marine Diesel 
engines, that burn Heavy Fuel Oil. HFO is produced from the residue of the distillation 
process and it includes sulphur in high proportions. Sulphur is extremely corrosive and can 
damage the material of the engine. Cylinder oil, burned in the combustion chamber, includes 
certain additives that react with the sulphur and remove it from the fuel mix. 
 
 

2.1.5 Ways	of	lubrication,	oils	and	material	wear	
In two stroke Diesel engines, the lubricant is supplied from external oil pumps, which also 
operate with pistons, and is channeled in the cylinder via quills on the periphery of the liner. 
The oil must have appropriate viscosity, in order to (a) spread to the whole liner during the 
downstroke and (b) create an adequate lubricating film between the piston ring and the liner. 
Consequently, the cylinder lubricants are most commonly SAE 50 and 60, to satisfy the 
above needs of viscosity at a temperature of about 200 oC, and with TBN values from 50 to 
70. Certain additives are also required, especially these that react with the sulphur contained 
in HFO, such as EP additives and detergents. 
 
The technology of base stocks and additives has undergone great evolution during the last 20 
years and new products have been developed that meet the most complex needs of current 
engines. First of all, the viscosity must have a specific value; not too high because the flow of 
oil will decrease resulting in poor hydrodynamic lubrication and eventually increased wear 
and friction, and not too low because an oil film of proper thickness cannot be developed, 
leading again to wear (contact between ring and liner if no film exists) and high friction.  
A very important category of additives is that of detergents, which neutralize any external 
impurities and prevent them from creating deposits (sludge) that affect ring and liner wear. 
More specifically, the alkaline detergent additives have a critical role because they neutralize 
and remove the corrosive acidic products of combustion, which are even higher at marine 
slow-speed two stroke engines because they burn HFO, which includes sulphur in great 
portions. They also clean the metal surface of the liner from deposits that may corrode  the 
liner material. The areas that are cleaned (neutralized) most effectively are around the quill 
from where the oil is poured, creating the characteristic clover leaf pattern on the liner. 
 
The wear of the piston rings and the liner is inevitable because the contact between these two 
and the corrosivity of the environment cannot be reduced to zero. Both the rings and the 
liners are parts of the engine that are replaced after a predefined period of time, with the rings 
being replaced more frequent than the liner. This justifies all the efforts that are being made 
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nowadays to reduce the wear and increase the lifetime of these components, taking into 
consideration the difficult economic environment in which the ships operate. 
More specifically, the parameters that greatly affect the wear of piston rings (or liners) are the 
following: bore distortion, engine load with higher loads increasing wear and temperature 
which further increases wear because of oil film thinning. Piston speed is also a critical 
parameter, since it represents the frequency with which the piston reaches the TDC (Top 
Dead Center) and the BDC (Bottom Dead Center), where the speed becomes zero and 
hydrodynamic lubrication breaks down leading to metal to metal contact. In general, 
increased speed (RPM) leads to increased wear because of the increased number of contacts 
between the ring and the liner at TDC and BTC, but simultaneously it creates a  more robust 
oil film of higher thickness. 
 
 

2.2 Hydrodynamic	lubrication	(based	on	[3])	
 

2.2.1 Introduction	
Hydrodynamic lubrication is the ability of a viscous fluid to separate two inclined surfaces 
with relative motion, by developing hydrodynamic pressure in a thin lubricating film that 
separates the surfaces. This results to low friction forces, decrease of the surface temperatures 
and lower rate of material wear. 
In order to achieve hydrodynamic lubrication, a moving surface is needed, as well as 
availability of oil at the gap entrance. The resulting pressure development is caused by the 
energy transferred from the moving surface to the lubricating oil, and satisfies the 
conservation of mass, because if no pressure was developed, the flow rate at the domain exit 
would be lower than the flow rate at the domain inlet. 
A sketch of a simple two-dimensional slider is presented in Fig. 6. The bottom surface (rotor) 
moves with velocity U, while top surface (stator) is inclined and fixed, creating a wedge-like 
geometry. 

 
Fig. 6. Hydrodynamic pressure distribution between the inclined surfaces of a simple slider [3]. 

 
Lubricating oil is forced to enter the wedge-shaped gap, resulting in increase of its pressure. 
From the pressure profile of Fig. 6, it can be noted that pressure gradient is positive at the 
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inlet, allowing the flow of oil into the wedge, and negative at the outlet, allowing the exit of 
the oil. Finally, it must be remarked that the vertical profile of fluid velocity (in the 2-
direction) depends on the spatial derivative of pressure; at the outlet region, it bends towards 
the outlet and at the inlet it bends towards the inlet. 
The most suitable mathematical equation that can express this phenomenon is the Reynolds 
equation (Osborne Reynolds 1843-1912), which is a simplification of Navier-Stokes 
equations and can be derived by considering force equilibrium and continuity of flow of an 
elementary volume of fluid undergoing shear stress. 
 

2.2.2 Simplifying	assumptions	
In most engineering problems, the processes are too complex and interconnected to be 
represented by simple mathematical equations. Computers were a real revolution in that 
respect, as mechanical systems could be analyzed with more detail, taking into account more 
and more factors. 
However, limitations of computational power and time make the use of simpler models 
inevitable in many cases. In particular, the simplifying assumptions needed for the derivation 
of the Reynolds equation are the following: 
1. The lubricant oil behaves as Newtonian fluid 
2. Inertia forces of the lubricant are neglected 
3. Pressure is constant along the thickness of the lubricant fluid 
4. Flow is considered as laminar 
5. Viscosity is constant in the lubricant domain 
6. No-slip condition is valid at the fluid-wall interfaces 
7. External body forces acting on the fluid film are neglected 
 

2.2.3 	Equilibrium	of	a	finite	volume	of	fluid	
 

 
Fig. 7. Force equilibrium of a finite volume of fluid. 
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A small element of fluid from the lubricating film is considered, as seen in Fig. 7, and it is 
assumed that forces are applied only along the x direction. The same results can be extended 
for the other directions, if needed. Equilibrium of the element dictates that, the forces acting 
on at the left side of the volume must be equal to the forces acting on the right one: 
 

x
x x

p
pdxdz dz dxdz p dx dydz dxdz

z x

                   

 x p
dxdydz dxdydz

z x

 
 

 
 (1) 

 
Considering dxdydz≠0, Eq. (1) can be divided by dxdydz, which yields: 

x p

z x

 


 
 (2) 

 
A similar equation can be derived for the y direction: 

y p

z y

 


 
 (3) 

 
Using assumption 4 of section 2.2.2, the pressure is constant along the z direction, thus: 

0
p

z





 (4) 

 
The shear stress of the lubricant can be expressed with the use of dynamic viscosity η and the  
rate of shear along both the x and y directions as follows: 

  


x

u

z
 (5) 

  


y

v

z
 (6) 

where, τx and τy are the shear stress acting along the x and y direction, respectively, whereas 
u, v are the corresponding fluid velocities. 
  
Substituting Eq. (5) into Eq. (2) and Eq. (6) into Eq. (3): 

p u

x z z
        

 (7) 

p v

y z z
        

 (8) 

 
Integrating Eq. (7) and using the assumption of no-slip conditions (assumption (6.)) of 
section 2.2.2: 

2

1 22

p z
C z C u

x


  


 (9) 
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For the simple slider of Fig. 6, the following boundary conditions can be used: 

2u  U     at     z  0   (10) 

1u  U     at     z  h   (11) 

 
These conditions are for the general case where the two surfaces move with different 
velocities U1 and U2; later on, the proper conditions for the case of the present study will be 
applied. 
Substituting the boundary conditions Eq. (10) and Eq. (11) into Eq. (9): 

 1 1 2

2 2

2

p h
C U U

h x
C U






  




 

 
Finally, the equation of velocity results from Eq. (9), by substituting the above constants C1 
and C2: 

 
2

1 2 22

z zh p z
u U U U

x h
  

      
 (12) 

 
 
The equation for the velocity along the y direction can be derived in a similar way: 

 
2

1 2 22

z zh p z
v V V V

y h
  

      
 (13) 

 
In Eq. (12) and Eq. (13), the three separate terms represent the three velocity profiles that, 
when combined, give the final velocity profile, see Fig. 8. 
 

 
Fig. 8. Profiles of the three separate velocity terms at the lubricant inflow region. 
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Velocity	Assumptions	
In most hydrodynamic problems, one of the two surfaces can be considered stationary (stator) 
and the other one moving with speed U (or/and V) (rotor). Specifically, for the problem of a 
piston ring, the liner can be assumed to be the rotor and the piston ring the stator, which, 
according to Fig. 6, yields U1=0 and U2=U. 
In the present problem, it is assumed that velocity is non-zero only in the x direction, 
meaning that the velocities V1 and V2 can be taken as zero. 
As a result, the equations for the two velocities along the x and y directions, respectively, are: 

2

2

z zh p z
u U U

x h
  

      
 (14) 

2

2

z zh p
v

y
  

    
 (15) 

 

2.2.4 	Continuity	of	flow	in	a	column	of	finite	width	
In this section, a infinitesimal volume of the fluid considered, and mass conservation is taken 
into account. The volume has hexahedron shape and dimensions dx, dy and dz along the three 
principal axes, as seen in Fig. 9. The mass conservation law can be expressed by means of 
Eq. (16): 

 

Accumulation Rate
Inflow rate of Outflow rate of

of mass in the control
the control volume the control volume

volume

 
           
     

 (16) 

  
The above values refer to a specific moment in time, so if at a next moment, t0, the mass 
included in the control volume is ρdxdydz, the first term of Eq. (16) can be written as: 

dxdydz
t




 (17) 

    
Concerning the calculation of inflow and outflow rates, it is assumed that mass is entering the 
control volume from the left side (+) and exits from the right (-), as see in Fig. 9. 
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Fig. 9. Continuity of flow in a column of fluid. 

 
 
So inflow rate, from the left side of the finite volume with area dydz, is equal to: 

,x inm udydz  (18) 

 
The outflow rate, from the right side of the finite volume, is: 

 ,x outm u u dx dydz
x

     
  (19) 

 
In a similar way, the equations for mass conservation in the y and z directions are: 

,y inm vdxdz  (20) 

 ,y outm v v dy dxdz
y

  
   

  (21) 

 

,z inm wdxdy  (22) 

 ,z outm w w dz dxdy
z

     
  (23) 

 
From Eq. (18)-(23), the right part of Eq. (16) can be written as: 

   , , , , , ,x in y in z in x out y out z outm m m m m m          
  

     u v w dxdydz
x y z
     

       
 (24) 

 
Substituting Eq. (17) and (24) into Eq. (16) yields: 

      0u v w dxdydz
t x y z

       
        

 (25) 
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In Eq. (25), the finite volume dxdydz is non-zero, therefore it can be eliminated: 

      0u v w
t x y z

      
   

   
 (26) 

 
Each term of Eq. (26) will now be integrated along the z direction from 0 to h (film 
thickness) considering that way a column of fluid instead of a finite volume. The velocities 
substituted in these terms are taken from Eq. (14) and (15). 

 
2 2

0 0 0

2 2
3

2
0 0 0

( )
2 2

                    
2 12

h h h

h h h

h z zh p z h h h p h h
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x x x x x h x h x

z zh p z p U
dz U dz U dz h

x x x h x x

    
 

  
 

               
                          

       
             

  

  
 

2

h

x


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 
2 2 2

3
2

0 0 2 2 12

h h z zh p h h h p h p
v dz dz h

y y y y y y

  
  

           
              

   

 

 
0

h h
w dz w

z t
   

 
   

 

0

h

dz h
t t

  


   

 
Finally substituting the above terms in (26), results in Eq. (27) which is the Reynolds 
equation: 
 

   2 2
3 3

2 2
0

12 12 2

h hp p U
h h

x y x t

  
 

  
    
   

 (27) 

 

2.2.5 Assumption	of	constant	density	
Considering that the fluid density is constant in the lubricant domain, with a value of ρ0 Eq. 
(21) is simplified as follows: 

2 3 2 3

2 2
0

12 12 2 
   

   
   

p h p h U h h

x y x t
 (28) 
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2.2.6 Performance	parameters	of	piston	rings		
In Fig. 10, a sketch of a typical piston ring geometry is presented. Using the Reynolds 
equation (Eq. (28)), the pressure distribution in the lubricant separating the ring from the liner 
can be calculated. Three important performance parameters of piston rings are load capacity 
(total force acting on the ring in the z-direction), friction force (total force acting on the ring 
in the x-direction), and friction coefficient, which by definition, is the ratio of friction force to 
load capacity. Formulae of calculating those quantities are presented hereinafter. 

 

Fig. 10. Sketch of a typical piston ring geometry. 

 

Load	Capacity	
The load capacity can be calculated by integrating pressure distribution over the ring area: 

0 0
  

l b
W pdxdy  (29) 

where, l and b are the length and width of the piston ring (see Fig. 10) 
 
Friction	Force	
Friction force can be obtained by integrating the x-component of shear stress over the piston 
ring area  

0 0
  

l b

xF dxdy  (30) 

where τx at the ring-fluid interface can be taken from Eq. (5), and /u z  of Eq. (5) can be 

easily calculated by differentiating Eq. (12). 
According to what it is mentioned during the derivation of the Reynolds equation, the shear 
stress, in terms of dynamic viscosity and velocity, takes the following form: 

du

dz
   (31) 

where du/dz is easily calculated by derivating Eq. (12) of velocity u. 
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Friction	coefficient	
Once the load capacity and friction force are known, the coefficient of friction, f, can be 
calculated as: 

F
f

W
  (32) 

 

2.2.7 Boundary	conditions	
In Fig. 11, the geometry of a simple converging-diverging slider is presented. In order to 
solve the Reynolds equation in the lubricant domain, appropriate boundary conditions need to 
be described. In the following paragraphs, a description of the boundary conditions mostly 
used in lubrication problems is given. 

 

Fig. 11. Sketch of a simple slider. 

Full‐Sommerfeld	Boundary	Condition	
This boundary condition assumes, that pressure is equal to zero at the slider inlet and outlet 
cross-sections. The pressure distribution for the Full-Sommerfeld boundary condition is 
presented in  Fig. 12. Practically, the use of this boundary condition allows calculation of 
negative pressures at the diverging region of the slider. In particular, in the diverging part of 
the slider, pressure distribution is the mirror image of the positive pressure distribution of the 
converging part of the slider. Overall, the total hydrodynamic load exerted on the slider is 
zero, which is unrealistic. 

 
 Fig. 12. Solution of the Reynolds equation with Full-Sommerfeld boundary conditions. 
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Half‐Sommerfeld	Boundary	Condition	
A simple remedy to correct the unrealistic results of the full-Sommerfeld condition, is by 
setting the negative pressures equal to zero. This is the half-Sommerfeld boundary condition 
and the respective pressure distribution has the form of Fig. 13. 

 
Fig. 13. Solution of the Reynolds equation with Half-Sommerfeld boundary conditions. 

 
The disadvantage of this boundary condition is that it causes a discontinuity between the 
pressurized region and the region of zero pressure. Nonetheless, the use of this method is 
straight forward, and the obtained results are accurate enough for basic engineering use. 
 
Reynolds	boundary	condition	
A better solution to the problem of non realistic boundary conditions was given by Reynolds, 
who suggested that negative pressures should be set equal to zero and that at the boundary of 
non-zero and zero pressure the spatial derivative of pressure should be also equal to zero. The 
resulting pressure distribution is that of Fig. 14. 
 

 
Fig. 14. Solution of the Reynolds equation with Reynolds boundary conditions. 
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2.3 The	problem	of	cavitation	at	piston	rings	(based	on	[3],	[22]‐[24])	
 
As analyzed previously, during hydrodynamic lubrication, a substantial drop of pressure may 
occur in the diverging part of the wedge created between the liner and the piston ring. 
Existence of very low pressure may trigger the phenomenon of cavitation in liquids, which is 
described below.  
In general, two kinds of cavitation can be distinguished. Firstly, when the bubbles emanate 
from lubricant evaporation, the phenomenon is called vaporous cavitation. When liquid 
pressure is sufficiently low, the liquid evaporates (boils) generating vapor bubbles. When the 
liquid regains its pressure, these bubbles instantly collapse generating locally high values of 
pressure that wear and damage the material. This is the most dangerous type of cavitation, 
because the local pressures from vapor reliquification can reach the values of 0.5 GPa, 
causing damage and wear that can even suspend the functionality of the lubricated 
mechanical system.  This phenomenon is similar to the cavitation encountered at the edges of 
ship propellers. 
On the other hand, liquids contain dissolved air in low proportions (up to 10%). For a given 
percentage of air into oil, when pressure becomes lower than a certain value, the air dissolved 
in the fluid is partially released, generating air bubbles. If the pressure is suddenly raised, the 
air bubbles undergo a rapid (nearly isentropic) compression, which increases local 
temperature. This may seriously affect oil properties and possibly equipment. This 
phenomenon is called gaseous cavitation. In addition to this, when the fluid enters the 
diverging section, the existing lubricating film cannot cover the whole gap, and, as a result, 
the film ruptures and is separated in finger-like areas of gas and liquid. Gas enters the domain 
from the surrounding environment, and is sucked into the fluid area creating streamers of air 
inside the cavitation region. Reynolds has correctly assumed that, in the cavitation region, 
pressure and its spatial derivative are equal to zero. 
The air appearing in the fluid, either in the form of bubbles or streamers, consequently 
reduces the part of the wedge geometry that is filled with lubricant, and increases the 
proportion of air. The fluid - gas ratio in the cavitation region may be calculated by 
considering mass conservation of the lubricant. 

 

 
Fig. 15. Liquid and gas streamers in the cavitation region. 

 

2.3.1 Modification	of	Reynolds	equation	in	the	cavitation	region	
 
The Reynolds equation in the cavitation region can be derived from Eq. (21) by considering 
that the spatial derivatives of pressure are equal to zero: 
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   
0

2

h hU

x t

  
 

 
 (33) 

 

2.4 Hydrophobicity	
 

2.4.1 The	phenomenon	of	hydrophobicity	
Hydrophobicity is the physical property of a surface to repel water. The molecules of these 
surfaces tend to be non polar, consequently preferring other neutral molecules. Water droplets 
on a hydrophobic surface will exhibit a high contact angle, which is a principal parameter for 
characterizing surface hydrophobicity. 
 

 
Fig. 16. Measurement of contact angle of a liquid drop [30]. 

As a result, friction between the liquid and a hydrophobic surface, is very low, allowing the 
liquid to slip on the surface and not wet it. Lotus leaf is an example of hydrophobic surfaces 
found in nature, which can even allow honey, a high viscosity liquid, to slip on its surface. By 
observing the detailed geometry of the surface of the lotus leaf, researchers were led to the 
conclusion that the nanostructure of the leaf is causing that behavior. This structure can be 
seen in Fig. 17and Fig. 18: 
 

Fig. 17. Liquid drops on a lotus leaf [30]. Fig. 18. Lotus leaf under the microscope [30]. 
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Today, it is possible, to artificially create a hydrophobic surface in a laboratory, and several 
industrial applications have been proposed (e.g. ship hull coatings). As stated earlier, 
hydrophobicity of a surface can be measured by the shape of a droplet when placed on it. The 
corresponding parameter is the contact angle between the droplet and the surface. 
 
To translate the phenomenon of hydrophobicity in mathematical equations, the slip 
conditions in the fluid-solid interface must be reconsidered. In the derivation of Reynolds 
equation, it was assumed that the in the fluid-solid interface the liquid has the same velocity 
as the velocity of the moving wall. In the case of hydrophobic surfaces, the liquid velocity is 
different from that of the solid boundary, and can be calculated from the following equation: 

  s
s c

b
u  


   (34) 

 
where,  τ: the shear stress of the fluid on the fluid-solid interface  
  τc: the critical shear stress, above which slip occurs 
  η: fluid viscosity 
  bs: slip length 
 
Slip length is a surface property that defines how slippery a surface is when interacting with a 
certain fluid. It is defined as the imaginary length below the surface where the fluid velocity 
would become zero, assuming linear velocity distribution and rate equal to the velocity 
derivative at the fluid-surface interface, see Fig. 19. 
 

 

 
Fig. 19. Velocity profiles: (a) no-slip condition, (b) slip conditions with slip length bs. 
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2.4.2 Mathematical	equations	for	surfaces	with	slip	properties	
 
Here, the Reynolds equation for surfaces with slip properties is derived: 
 
Starting from Eq. (9): 

 

 

2 2
1 2

1 22 2

p z p z C C
C z C u u z

x x


  
 

      
 

 (35) 

 
The first derivative of velocity in the x-direction is: 

1  
 

 
p u

z C
x z

 (36) 

 
The boundary conditions are now different from those applied to the simple Reynolds 
equation. Slip will occur at the hydrophobic region of the surfaces if the local value of the 
shear stress is higher than the critical value, as described in Eq. (34). This equation suggests 
that slip velocity is proportional to the difference between the shear stress and the critical 
value, with proportionality factors  al for the liner and ar for the piston ring, which are equal 
to the ratio of slip length, bl or br , and the lubricant viscosity, η. 
 


 r

r

b
a , 


 l

l

b
a  (37) 

 
Here, critical shear stress values are τC,l for the liner surface and τC,r for the piston ring and 
Eq. (34) and Eq. (37) yield: 

0 ,
0

 


 
     

z l C l
z

u
u U a

z
 (38) 

, 


 
    

z h r C r
z h

u
u a

z
 (39) 

 
A similar procedure can be used for the derivation of velocity v along y direction. 
 

2
1 2

2  


  

p z C C

v z
y

 (40) 

 

The first derivative of the fluid velocity in the y direction is: 

1  
 

 
p v

z C
y z

 (41) 
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The velocity boundary condition in the y-direction can be derived, taking into account that 
velocity v depends only on the pressure gradient dp/dy (see Fig. 20), since the wall velocity V 
is zero.  

 
Fig. 20. Velocity parabolic profile in the y-direction caused from the pressure derivative. 

 

0 ,
0

 


 
   

z l C l
z

v
v a

z
 (42) 

, 


 
    

z h r C r
z h

v
v a

z
 (43) 

 

After presenting the new boundary conditions of velocity, the modified Reynolds equation 
for hydrophobic surfaces, Eq. (44) can be derived. The detailed derivation of Eq. (44) is 
presented in Appendix A. 
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 (44) 

 
In the active region of the lubricant density is assumed constant, therefore Eq. (44) is 
simplified as follows: 
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 (45) 

 
In the cavitation region, the lubricant film breaks and streamers of oil and gas are formed. 
The balance between these two is determined by consideration of flow continuity, therefore 
density of the oil-gas mixture should be taken into account. If the pressure gradients of Eq. 
(44) are set to zero, Eq. (46) is derived. 
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2.5 Artificial	texturing	
Artificial surface texturing is the introduction of small geometric irregularities in the form of 
dimples of different shapes on the surface of mechanical components. This kind of surface 
treatment may improve the tribological behavior of sliding surfaces in terms of load capacity 
and friction force.  

It is well known that two parallel sliders with a relative motion cannot develop a pressure 
field, because the theory of hydrodynamic lubrication requires the existence of a 
hydrodynamic wedge. However, proper introduction of texturing on the stator of a parallel 
slider enables pressure generation in the lubricant film, and support of external loads. 

The positive effect of surface texturing, on thrust bearings and piston rings, has been 
demonstrated in recent literature results [13], [15] and [16]. Texturing comes in different 
shapes, such as rectangular, trapezoidal and spherical, and is characterized by several 
parameters, such as texture depth and texture density. A critical parameter that needs to be 
defined is the region of the slider that needs to be textured, for optimum slider performance. 
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In order to solve the problem of hydrodynamic lubrication in textured sliders, the Reynolds 
equation can be used without any particular alteration apart from that of the fluid film 
geometry, which should be properly modified to account for the texture geometry. However, 
since textures cause steep divergent and convergent geometries, the use of the Reynolds 
equation with Reynolds boundary conditions is not always recommended, because the 
cavitation region may not be properly defined. In general, several models have been 
developed, which are able to accurately identify  the cavitation region, and one of these is the 
Elrod-Adams mass conserving model, which is also considered in the present study (see 
section 3.2). 

Fig. 21. Example of textured piston rings [29]. 
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3. Numerical	 solution	 of	 Reynolds	 equation	 for	 hydrodynamic	
lubrication	of	piston	ring	

 

3.1 Finite	difference	method	
In the present section, the Finite difference Method (FDM) will be used for solving the 
Reynolds equation (Eq. (28) of section 2.2.5) for piston rings. In Fig. 22, a typical geometry 
of a segment of a piston ring is presented. A three dimensional lubricant film separates the 
surfaces of the piston and the cylinder liner. The film spans in the x and y-axes of Fig. 22, 
along the ring profile and the ring circumference, respectively. At every point (x, y), the film 
is characterized by a thickness value h(x,y), which can be calculated by adding parameter 
hs(x,y), corresponding to the ring profile, to hmin, which represents the minimum gap between 
the piston ring and the liner: 

    min, , sh x y h x y h  (47) 

 

In the present work, the ring is assumed rigid; rotations about the x- and y-axes are not 
considered. Equilibrium of the ring is attained when external forces acting on the ring are 
balanced by hydrodynamic forces developed in the lubricant film, separating the ring and the 
liner. At high external loads the ring will move closer to the liner, decreasing hmin, whereas at 
low external loads the ring will move in the opposite direction, increasing hmin. Therefore, for 
transient ring loads, hmin will also be a function of time. 

 
Fig. 22. Sketch of a piston ring segment. 

 
Hydrodynamic pressure in the lubricant separating the ring and the liner is developed due to 
the reciprocating motion of the ring with (time-dependent) velocity U along the x-axis. Here, 
equivalently, the liner is considered  to be moving with a velocity U and the piston ring is 
assumed stationary. 
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Viscosity is considered constant throughout the domain  of the lubricating film (η(i,j)=η). 
Viscosity is, in general, a function of temperature. For a given lubricant, mean oil 
temperature can be calculated as the average of the combustion chamber and the crankcase 
temperatures. The corresponding viscosity can be computed by appropriate viscosity-
temperature graphs. 
 
In the present work, for the numerical solution of the Reynolds  equation, a central finite 
differencing scheme is utilized. The lubricant domain, in the x- and y-directions is discretized 
with the use of a spatial grid, consisting of nxm points, respectively, see Fig. 23. At every 
point (i,j) of the domain (1≤i≤n, 1≤j≤m), film thickness h(i,j) is computed.  
 
Finally the term dh/dt is the squeeze motion of the oil film. The way this value is calculated 
will be described in the algorithm Section 3.2, where the algorithm flowchart is presented,  
and for now it will be considered as a known parameter dhdt(i,j). 

 

 
Fig. 23. Discretization details of the lubricant domain separating the ring from the cylinder liner. 

 

 
Using the finite difference method, the spatial derivative of a generic variable u(i,j) in the x-
direction can be approximated as follows: 
From the development of Taylor series: 
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Considering a small value of Δx, the higher order terms of the previous equations can be 
neglected, and the derivative of u at (i,j) can be calculated as: 

  1, 1, 1, 1,

1 1

,
2

   

 

 
 

  
i j i j i j i j

i i

u u u uu
i j

x x x x
 (48) 

 
The neglected higher order terms form the error from the exact value (truncation error), 
therefore, for accurate calculations, an appropriately small value of Δx must be selected. Each 
term of the Reynolds equation Eq. (28) is written using central differences, as follows: 
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Pressure	term	along	the	y	direction	
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Shear	flow	term			
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Squeeze	motion	term	
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 (49) 

 
where hprev(i,j) is the value of film thickness at the previous time step (for transient solutions). 
Substituting all the above terms into Eq. (28), and setting the auxiliary variable

   
 

3 ,
var ,

12 ,

h i j
i j

i j
 , the following equation is derived: 
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The next step is to transform Eq. (50) in the following form: 
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A, B, C, D, E and F are given by the following equations: 
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Finally, the pressure at the point (i,j) is calculated by solving Eq. (51) for p(i,j): 
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  (52) 

 
 

3.2 Solution	algorithm	
The present study aims at developing and implementing an algorithm capable of solving the 
problem of hydrodynamic lubrication for the piston rings of internal combustion engines. At 
the start of the solution process, all the necessary details of the piston ring (geometry, 
operational conditions, solver details, discretization parameters, number of engine cycles, 
points per cycle etc) are read by an input file supplied by the user. At each time step, first, the 
external force acting on the piston rings needs to be calculated. To this end, the force due to 
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pressure acting on the back face of the piston ring, and the pretension force of the ring should 
be taken into account. Here, the pressure at the back face of the ring is assumed to be the 
maximum of the leading and trailing ring pressure values. Next, an initial estimation of 
minimum film thickness, hmin, is made, and the geometry of the lubricant domain is 
computed, using Eq. (47). 

The Reynolds equation is solved over the lubricant domain with the Gauss-Seidel iterative 
method, and pressure distribution over the ring face is calculated. In the peripheral direction 
(direction y), symmetric conditions are assumed (one-dimensional problem). Using a second 
order Newton-Raphson method, an appropriate value of hmin is sought for which equilibrium 
is attained between the load capacity of the lubricating film (integration of pressure over the 
ring face) and the external ring force, which finally results in the minimum film thickness. In 
this way the piston ring motion in the z-direction (Fig. 22) is taken into consideration. At the 
first time step the squeeze film term of the Reynolds equation (dh/dt) is neglected, whereas at 
the next time steps, it is calculated by means of Eq. (49). Therefore, squeeze film motion is 
taken into account, and it is shown that it alters substantially the results compared to those 
obtained by considering the steady state phenomenon. After equilibrium has been reached for 
each time step, all the operational indices of the ring can be calculated, including friction 
force, power loss, friction coefficient, etc. A Simpons's integration rule is utilized here for 
maximum accuracy. The solution ends when all the time steps of the engine cycles that were 
selected by the users are solved. 

For the solution of the Reynolds equation, four different solvers are developed in order to 
cover all the cases studied in the present work. The equations solved are the following: (a) 
Reynolds equation with Reynolds boundary condition (§2.2.5, Eq. (28)), (b) Reynolds 
equation for hydrophobic surface with Reynolds boundary condition (§2.4.2, Eq. (45)), (c) 
Reynolds equation with the Elrod-Adams mass conservation model (§3.2, Eq.(111)) and (d) 
Reynolds equation for hydrophobic surfaces with the Elrod-Adams mass conservation model 
(§3.3.2). 

The algorithm of the present work was developed with the object oriented programming 
language C++ and the results were post processed with the MATLAB software. 



48 
 

 

Fig. 24. Transient hydrodynamic lubrication in piston rings: solution algorithm. 
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Notes: 

1.   Based on the known piston ring profile geometry, film thickness is calculated: 

     min, ,sh i j h i j h 
 

2. The Reynolds equation is solved for pressure with the Gauss-Seidel iterative numerical 
method. 

3. Integration of quantities over the lubricant domain is performed using  the Simpson rule. 
Load capacity and friction force are calculated by: 
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4. At each time step (crank angle), the external ring forces must be balanced by the 
hydrodynamic forces generated in the lubricating film. The external forces acting on the 
ring are the elastic pretension force and the force on the back face of the ring due to gas 
pressure: 

 
 2

el

T
P b l

b B
 

  
    1 2max ,bk chP p p b l    

 ext el bkF P P   
where pch is the combustion chamber pressure and p1-2 is the pressure between the first 
and the second piston rings 
 

5. At each time step, the value of hmin for which force equilibrium of the ring is reached is 
calculated by means of a second order Newton-Raphson method, also called Halley's 
method. Equilibrium is reached when: 

    min min  extf h W h F   

where W(hmin) is the hydrodynamic force acting on the ring at a value of minimum 
 film thickness hmin, and Fext is the external ring force. 

 
The first and second derivatives of function f(hmin) are calculated as follows: 

 min min0.05dh h  

 
   min min min min extf h dh abs W h dh F       
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
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 The new approximation of hmin, following the Halley's method, can be calculated as: 

 

   
     

min min
min, min 2

min min min

'
2

2 ' ''
new

f h f h
h h

f h f h f h
 

   
 

 

3.3 Algorithm	solvers	
As stated earlier, the C++ algorithm developed within the course of the present study, 
includes four different solvers. The equations solved are the following: 

1. Reynolds equation with Reynolds boundary conditions 
2. Reynolds equation for hydrophobic surfaces with Reynolds boundary conditions 
3. Reynolds equation with the Elrod-Adams mass conservation model   
4. Reynolds equation for hydrophobic surfaces with the Elrod-Adams mass conservation
 model   

 
The solution algorithm presented in Fig. 24 is used by all solvers; the only difference is that 
for calculation of pressure in the lubricant domain, a different form of the Reynolds equation 
is utilized. 
The simple Reynolds equation and the modified Reynolds equation to account for 
hydrophobic surfaces have been presented in sections 2.2.5 (Eq. (28)) and 2.4.2 (Eq. (45)), 
respectively. The latter is written in a general form to account for non-zero values of critical 
shear stress τC,r and τC,l of the ring and the liner. In the present work, these values have been 
taken as zero, therefore any non-zero local shear stress at the fluid-solid interface of a 
hydrophobic surface will include fluid slip over that surface. Taking this into account, Eq. 
(45) can be simplified as follows: 
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 (53) 

 
The finite difference method, presented in section 3.1, can be used for the numerical solution 
of the two forms of the Reynolds equation. 
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3.3.1 Reynolds	equation	with	the	Elrod‐Adams	mass	conservation	model	
 

Introduction	
The problem of cavitation is a key concern in problems of hydrodynamic lubrication. Several 
researchers have worked on this subject, and many different numerical methods handling this 
phenomenon have been proposed. In the present work, the well-known Elrod's cavitation 
algorithm [8] has been used. 
  
As mentioned in Section 2.3, the lubrication area is divided into two zones. The first one is 
the pressurized (active) zone, where the film is fully developed, and the Reynolds equation 
applies. The second is the cavitation (passive) zone, where only a fraction θ of the gap is 
occupied with oil, therefore finger-like striations of liquid and gas are observed. 
 
Here, a universal equation for both the active and the passive zone is used, containing the 
fractional film content variable θ. In the active zone, the mass content per unit film area is 
ρch, where ρc is the lubricant oil density at cavitation pressure pc and h is the film thickness. 
In the passive zone, the lubricant density is constant and equal to ρc but the mass content is 
now ρcθh. In the active zone, density varies due to the pressure distribution, meaning that the 
oil is considered slightly compressible and the mass content is higher than that corresponding 
to cavitation pressure pc. Consequently the fractional film content θ is equal to ρ/ρc. 
 
Analytical	Formulation	
The two dimensional Reynolds equation can be written as follows, and it fully applies to the 
full film region: 
               

               

3 3 h hh p h p U

x 12 x y 12 y 2 x t
(54) 

 
The lubricant oil density is related to the film pressure through the bulk modulus definition: 

 
 






p

 (55) 

 
It is easier to work with the universal variable θ, which is equal to the fractional film content 
(ratio of density along the film area and the density at the cavitation pressure). Variable θ 
takes values slightly above unity in the full film region, because of the relative compression 
of the lubricant as explained above. In the cavitation region, θ takes values below unity, as it 
further explained. The lubricant oil density in the cavitation region is constant and equal to ρc, 
but the liquid occupies only a portion of the gap, meaning that the actual mass content is 
ρcθh. 
 
Consequently, variable θ can be defined as: 
 

C




  , 
1 in the full film region

<1 in the cavitation region



 


 (56)
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Due to the fact that the film pressure is constant in the cavitation region, a switch function is 
introduced in the pressure-density relation, in order to exclude the pressure terms in the 
cavitation region, and keep only the Couette flow term: 
 p p

g  
 
 

 
 

, 

1 in the full film region

0 in the cavitation region
g


 


 

(57)

 
By directly integrating Eq. (57), the expression of pressure is yielded: 
 lnCp p g    (58) 

 
Replacing Eq. (58) in Eq. (54) yields: 
                 

               

3 3 h hg( ) h g( ) h U

x 12 x y 12 y 2 x t
 (59)

 
The finite difference form of Eq. (59) is presented in Eq. (60). The derivation of Eq. (60) is 
presented in detail in Appendix B. 
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3.3.2 Reynolds	 equation	 for	 hydrophobic	 surfaces	with	 the	 Elrod‐Adams	mass	
conservation	algorithm	

 

This fourth solver developed within the course of the present study is a combination of the 
solver for the Reynolds equation for hydrophobic surfaces (section 3.3) and of the solver for 
the Elrod-Adams mass conservation model (section 3.3.1). In brief the equation was derived 
starting from Eq. (111), and modifying it appropriately to account for hydrophobicty at the 
stator and rotor surfaces, see Eq. (38) and (39). The derived equation was solved with the 
same finite differencing scheme as that used in 3.3.1, which is central difference in the 
pressure region and backward difference in the cavitation region. 

 

3.4 Validation	of	the	solution	algorithms	
The solution algorithms presented in the previous sections are now validated against 
numerical results published in the international literature. In order to validate all the features 
of the present development, different sets of geometries and boundary conditions have been 
considered. These are presented in the following sections: 

3.4.1 Reynolds	equation	
The results of the Reynolds equation algorithm are validated by comparing the calculated 
operational characteristics of a piston ring with those published by Jeng et al. [4]. In 
particular, calculations have been performed for the first compression ring of a four-stroke 
Diesel engine, using the Reynolds equation. The engine geometric and operational 
characteristics are: 
 

 Bore, B= 88.9 mm 

 Stroke, S= 80 mm 

 Rod length, R= 141.9 mm 

 Composite roughness, r= 0.37 mm 

 Viscosity, η= 0.00689 Pa.s 

 Speed, N= 2000 rpm 

 Dry friction coefficient (metal to metal), f= 0.08 

 First compression ring details 
o Width, b= 1.47 mm 
o Crown height, c= 14.9 μm 
o Offset, o= 0 μm 
o Tangential ring tension force, T= 14.05 N 

 

In Fig. 25, the computed performance parameters (minimum film thickness, friction force and 
power loss) are plotted against the corresponding results of Jeng et al. A very good agreement 
is observed for all the presented comparisons. The maximum deviation in minimum film 
thickness is 4%, mainly observed for values of crank angle (CA) less than 180o. At higher CA 
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values, the deviation is less than 0.7%. The same trend is observed for the other two plotted 
quantities (power loss and friction force), with maximum deviation at values of CA higher 
than 180o being less than 3%. 

Fig. 25. (a) Minimum film thickness, (b) power loss, and (c) friction force against crank angle: 
Comparison between the present results, and those of Jeng et al. [4]. 

 

3.4.2 Reynolds	equation	with	the	Elrod‐Adams	cavitation	model	
The developed solution algorithm of the Reynolds equation using the Elrod-Adams mass 
conservation model is validated against the results of two publications, namely those of 
Giacopini et al. [11] and Xiong et al. [17]. 
 
Models	by	Giacopini	et	al.	[11]	
The first three validation cases refer to a pure slider  with a sinusoid varying geometry. In 
particular, the first slider has a converging-diverging geometry with zero pressure at both 
boundaries, the second one is of the same geometry, but with pressure of 1 MPa at the slider 

(a) (b) 

 
 

 
 

(c)  
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boundaries, whereas the third slider has a diverging-converging geometry and pressure of 1 
MPa at the slider boundaries. Hereinafter, the basic geometric and operational characteristics 
of the sliders are presented: 

 Slider length, b= 125 mm 

 Maximum film thickness, hmax= 0.025 mm 

 Minimum film thickness, hmin= 0.015 mm 

 Viscosity, η= 0.015 Pa.s 

 Speed, U= 4 m/s 
 
In Fig. 26, the film thickness of each slider is presented along with the corresponding 
pressure distribution, using both the Reynolds equation and the Reynolds equation in 
conjunction with the Elrod mass conservation model. 
 

 

Fig. 26. Converging-diverging slider with zero pressure at the slider boundaries: Film thickness 
shape and corresponding pressure distribution calculations by (a) Giacopini et al. [11], 
(b) the present Reynolds equation solver and (c) the present solver of the Reynolds 
equation with the Elrod-Adams mass conservation model. 
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Fig. 27. Converging-diverging slider with 1 MPa pressure at the slider boundaries: Film 

thickness shape and corresponding pressure distribution calculations by (a) Giacopini et 
al. [11], (b) the present Reynolds equation solver and (c) the present solver of the 
Reynolds equation with the Elrod-Adams mass conservation model. 

 

 

 
Fig. 28. Diverging-converging slider with 1 MPa pressure at the slider boundaries: Film 

thickness shape and corresponding pressure distribution calculations by (a) Giacopini et 
al. [11], (b) the present Reynolds equation solver and (c) the present solver of the 
Reynolds equation with the Elrod-Adams mass conservation model. 
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A very good agreement can be observed between the computations of the present Elrod-
Adams mass conservation model and the corresponding results of Giacopini et al., for all the 
sliders considered. The Reynolds equation making use of the Reynolds boundary conditions 
is only suitable for the first case (Fig. 26). As for the second case, the classic Reynolds 
equation underestimates the extent of the cavitation region, while the Elrod-Adams algorithm 
properly predicts the instant pressure regain at the outflow region (Fig. 27). Finally, in the 
third test case, computations with the use of the Reynolds equation are totally different in 
comparison to those made with the Elrod-Adams model; the pressure distribution computed 
with the use of the Reynolds equation develops very early, which is unrealistic, because the 
lubricant still cavitates even if it enters a converging geometry (Fig. 28). Consequently, in 
some cases, the use of the Elrod-Adams mass conservation model is imperative, because the 
classic Reynolds equation cannot properly predict the exact location of film rupture and 
reformation. 

In all three cases, the deviations between computations with the present Elrod-Adams model 
and that of Giacopini et al. are less than 1%. 

The next considered test case refers to a parallel slider containing a single pocket near the 
inflow region. In Fig. 29, a sketch of the slider is shown, and in Table 1, the corresponding 
geometric and operational characteristics are presented. 
 
 

 
Fig. 29. Sketch of parallel slider with a single microtexture pocket. 

 
 

b 
(mm) 

b1 

(mm) 

b2 

(mm) 
b3 

(mm) 
hmax 

(mm) 
hmin 

(mm) 
η 

(Pa.s) 
U 

(m/s) 
pa 

(MPa) 

20 2 3 15 0.010 0.001 0.01 1 0.1 

Table 1. Geometrical and operational characteristics of the slider of Fig. 29. 

 
In Fig. 30, the computed pressure profiles for this case is presented, where a very good 
agreement can be seen between the computations of the present work and those of Giacopini 
et al.   



58 
 

 
Fig. 30. Parallel slider with a single pocket and 0.1 MPa pressure at the boundaries: Film 

thickness shape and corresponding computed pressure distribution by (a) the present 
Reynolds equation solver, with the Elrod-Adams algorithm, and (b) Giacopini et al. [11]. 

 
 
Models	by	Xiong	et	al.	[17]	
A more detailed validation is needed for textured surfaces, because the film geometry 
variation is notably abrupt. To this end, two additional test cases where considered derived 
from the publication of Xiong et al. [17]. The utilized slider geometry is similar to that of the 
microtextured slider of Giacopini et al., see also Fig. 29. All the parameters are summarized 
in Table 2; they are exactly the same, except for texture depth. In the first test case of Xiong 
et al., the texture depth is two times the minimum film thickness, and the corresponding 
pressure distribution is shown in Fig. 31. In the second test case, the texture depth is four 
times the minimum film thickness, and the calculated pressure is shown in Fig. 32. The 
resulting pressure distribution of the present model is very close to those computed by Xiong 
et al., exhibiting a maximum deviation of approximately 0.7%. 
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Fig. 31. Parallel slider with a single pocket and 0.1 MPa pressure at the boundaries: Pocket 

depth, hmax=2.hmin: Film thickness shape and corresponding computed pressure 
distribution by (a) the present Reynolds equation solver, with the Elrod-Adams 
algorithm, and (b) Xiong et al. [17]. 

  

 
Fig. 32. Parallel slider with a single pocket and 0.1 MPa pressure at the boundaries: Pocket 

depth, hmax=4.hmin: Film thickness shape and corresponding computed pressure 
distribution by (a) the present Reynolds equation solver, with the Elrod-Adams 
algorithm, and (b) Xiong et al. [17]. 
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Case b 
(mm) 

b1 

(mm) 

b2 

(mm) 
b3 

(mm) 
hmax 

(mm) 
hmin 

(mm) 
η 

(Pa.s) 
U 

(m/s) 
pa 

(MPa) 
a. 20 2 3 15 0.002 0.001 0.01 1 0.1 

b. 20 2 3 15 0.004 0.001 0.01 1 0.1 

Table 2. Geometric and operational parameters of the slider studied by Xiong et al. [17]. 

 
 

3.4.3 Reynolds	equation	for	hydrophobic	surfaces	
The Reynolds equation solver for hydrophobic surfaces was validated against three cases. 
The first test case corresponds to the one-dimensional slider of Pavlioglou et al. [13], the 
second one refers to the cases III and VII of the publication of GuoJun et al. [14], and the last 
one refers to two three-dimensional models solved with the ANSYS CFX software. 

 
The basic parameter needed to define a slip surface is the non-dimensional slip length b*, 
which is defined here as: 

*

min

b
b

h
 , where b is the slip length and hmin the minimum film thickness  

The part of the stator with hydrophobic properties may be calculated if the non-dimensional 
parameter ls is given, which is defined here as: 

s
s

L
l

L
 , where Ls is the length of the hydrophobic part of the stator and L the slider length. 

 
Model	by	Pavlioglou	et	al.	[13]	
The model of Pavliogou et al. [13] corresponds to a parallel slider with hydrophobicity at the 
inflow part of the stator. The slider has the following geometric and operational parameters: 

 Slider length, b= 50 mm 

 Film thickness, h= 0.05 mm 

 Viscosity, η= 0.037 Pa.s 

 Speed, U= 12 m/s 

 Non-dimensional hydrophobic length, ls= 0.85 

 Non-dimensional slip length, b*= 10 
 
In Fig. 33, the pressure distribution of the slider, calculated with the model of the present 
study is validated against the calculations of Pavlioglou et al., exhibiting a very good 
agreement. 
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Fig. 33. Streamwise  pressure distribution of the slider: comparison between result of the 

present work and those of Pavlioglou et al [13]. The considered slider is parallel with 
hydrophobicity at 85% of the slider length, starting from inflow. 

 
	
Models	by	GuoJun	et	al.	[14]	
GuoJun et al., performed calculations for a two-dimensional converging slider with slip 
properties at a part of the stator surface. Two of their cases are selected in order to compare 
the results of the present study, case III and VII (see Fig. 34). In case III the slider has 
hydrophobic properties along the entire width and for a length of 55% of the slider length, 
starting from inflow. The slider corresponding to case VII has hydrophobic properties in a 
trapezoidal shape, defined by a length of 70% of the slider length and a transverse angle 
equal to 70o. 

Case III 

 
 ls= Bs/B= 0.55 
 b*= 100 

Case VII 

 
 ls= Bs/B= 0.7 
 b*= 100 
 α= 70ο 

Fig. 34. Sketch of the two three-dimensional sliders with hydrophobicity at part of the stator, 
studied by GuoJun et al. [14]. 
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For the above two cases, the results of dimensionless load carrying capacity 

  *
min /W Wh U BL  and dimensionless friction force   *

min /F Fh U BL  are 

presented in Fig. 35 and Fig. 36 against convergence ratio  max min/ 1k h h  . A very good 

agreement can be observed between the results of the present study and these of GuoJun et 
al., with deviation being less than 1% for W* and 3% for F*. 
 

 
Fig. 35. Non-dimensional load capacity W* against convergence ratio k for the cases depicted in 

the embodied sketches; comparison between the results of present study and those of 
GuoJun et al. [14]. 

 

 
Fig. 36. Non-dimensional friction force F* against convergence ratio k for the cases depicted in 

the embodied sketches; comparison between the results of present study and those of 
GuoJun et al. [14]. 
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ANSYS	CFX	models	
In order to further examine the validity of the present algorithm solvers, two additional cases 
were studied, previously solved with the ANSYS CFX software. The first one is an alteration 
of the model used by Pavlioglou et al. [13] and refers to a 3-D converging slider with a value 
of b/l=1 and minimum film thickness hmin= 50 μm. The remaining parameters have been 
presented in detail in the paragraph where the models of Pavlioglou et al. have been 
considered. In Fig. 37 and Fig. 38, computations of maximum pressure and load carrying 
capacity with the solver of the present work are plotted against the CFX calculations for three 
different values of b*. A very good agreement can be observed between the results of the 
present model and the CFD results. 

The second model is also three-dimensional and corresponds to the case III of GuoJun et al. 
[14], which was also discussed previously. An identical model was introduced in CFX and 
calculations were performed for the non-dimensional load carrying capacity 'W*' and the non-
dimensional friction force 'F*'. The CFD results were compared with calculations with the 
solver of the present study, and a very good agreement was observed, as seen in Fig. 39 and 
Fig. 40. 

 

Fig. 37. Partially hydrophobic 3-D slider: Maximum pressure versus convergence ratio, for 
different values of non-dimensional slip length b*. Comparisons between the 
computations of the present Reynolds equation solver and those with ANSYS CFX. 
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Fig. 38. Partially hydrophobic 3-D slider: Load capacity versus convergence ratio, for different 

values of non-dimensional slip length b*. Comparisons between the computations of the 
present Reynolds equation solver and those with ANSYS CFX. 

 
Fig. 39. Partially hydrophobic 3-D slider: Non-dimensional load carrying capacity versus 

convergence ratio. Comparison between CFD results and results of the present Reynolds 
equation solver. 
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Fig. 40. Partially hydrophobic 3-D slider: Non-dimensional friction force versus convergence 

ratio. Comparison between CFD results and results of the present Reynolds equation 
solver. 
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4. Computational	Results	

4.1 Introduction	
The algorithms developed within the present thesis are applied to compute the performance 
parameters of the first compression ring of a piston of a large two-stroke marine Diesel 
engine. The reference engine in this work is similar to the RT-flex58T-B engine by Wärtsilä. 
The principal characteristics of the engine are given in Table 3. For this engine two loading 
conditions are considered, one corresponding to power output equal to 100% of the engine 
MCR at the rotational speed of 105 RPM, and a second corresponding to power output equal 
to 25% of the engine MCR at a rotational speed of 66.1 RPM. 
 
In Fig. 41, a sketch of the reference piston ring geometry studied in the present work is 
depicted. The geometry of the ring face is part of a parabola, characterized by the ring 
thickness, b, the crown height, c, and the offset value, o. The geometric parameters and 
mechanical characteristics of the reference piston ring are presented in Table 4. The top edge 
of the reference ring is assumed to be at a pressure equal to the combustion pressure of the 
engine. Pressure at the bottom edge of the ring (pressure between the first and the second 
ring) is assumed to be half of the combustion pressure. 
 
At first, in section 4.2, the combustion chamber pressure history of the reference engine at the 
two engine loading conditions is presented, along with calculations of the piston speed. Next, 
calculations are performed for the reference piston ring design of Table 4. and a parametric 
analysis is performed, to identify the effect of the main design parameters of the ring on its 
performance characteristics. 
 
Subsequently, part of the piston ring surface is assumed to have undergone surface treatment 
in the form of hydrophobicity or artificial surface texturing. The effect of those surface 
treatment technologies on the performance of the piston ring is computed for a reference 
design, and a detailed parametric analysis is performed to identify the optimum design 
parameter values. Finally, the results are analyzed and conclusions are drawn. 
 

Reference engine 
Bore, B 580 mm 
Stroke, S 2416 mm 
Connecting rod length, R 2241 mm 
Revolution speed, N 

 load 100% 
 load 25% 

 
105 RPM 
66.1 RPM 

Viscosity1, η 0.19 Pa.s 
Table 3. Geometric and operational characteristics of the reference engine 

1. The cylinder oil of the reference engine is assumed to have a dynamic viscosity of 0.19 
Pa.s at working conditions of the engine. 
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Fig. 41. Sketch of the first (top) compression piston ring. 

 
First (top) compression piston ring

Radial width 28 mm 
Ring thickness, b 16 mm 
Crown height2, c 3 μm 
Offset2, o 0 μm 
Composite roughness, r 0.2 μμ 
Pretension force3, T 49744 N 
Table 4. Geometric parameters and mechanical characteristics of the reference piston ring of 

the present study. 

 
2. The piston ring profile is assumed to be a parabola with offset, which is considered to 
describe adequately the profile after a certain period of engine running [4]. So the ring profile 
is represented by the following function: 
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3. According to [25] p.373, when the ring is slipped on the piston, stress in section AB (Fig. 
42) can be calculated as: 
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where, 
D≈ B= 580 mm 
E= 170 GPa (Young's modulus of elasticity for cast iron) 
λ≈ 0 mm, ring gap when the ring is slipped on the piston, which is practically zero, because 
the two ring ends are in contact. 
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The specific pressure acting on the liner walls is calculated from equation (342) of [114] and 
is considered to be uniformly distributed at the ring circumference (Fig. 42). 

2
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
   

 
Fig. 42. Sketch of a piston ring and radial load 

from the liner wall. 

 

 
Fig. 43. Equilibrium of forces at half of the 

piston ring. 

 

 
Considering the half ring as a simple beam the pretension force acting on the section AB is 
the result of force equilibrium in the model of Fig. 43: 

49744 N
2 2

spP Dbp
T     

 

4.2 Pressure	and	piston	speed	diagrams	
The combustion chamber pressure over a full engine cycle is taken from Kontoulis et al. [28] 
and takes the values shown in Fig. 44, for two different engine operating conditions, one 
corresponding to engine load of 100% at a rotational speed of 105 RPM, and a second, 
corresponding to engine load of 25% at a rotational speed of 66.1 RPM. For the reference 
piston ring, the pressure between the first and second ring is assumed to be equal to the half 
of the combustion chamber pressure, according to Jeng et al. [4], and takes the values shown 
in Fig. 45. Fig. 46 presents the piston speed for the two different engine operating conditions 
mentioned above. 
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Fig. 44. Combustion chamber pressure versus crank angle for engine loads of 100% and 25%. 

 

Fig. 45. Pressure in the space between the first and second piston rings versus crank angle for 
engine loads of 100% and 25%. 
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Fig. 46. Piston speed versus crank angle at 105 RPM (100% load) and 66.1 RPM (25% load). 

 

4.3 Reference	case	
In the present section, the developed model is applied for the computation of the operational 
characteristics of the first compression ring of the reference engine of the present study. Two 
different loads are considered, namely that of 100% and that of 25% of the engine MCR. The 
geometrical and operational characteristics of both the engine and the piston ring have been 
presented in Table 3 and Table 4, respectively.  

The developed algorithm solves the problem of hydrodynamic lubrication, making use of the 
Reynolds equation in conjunction with the Elrod-Adams mass conservation model. Firstly, a 
mesh study is performed to determine the appropriate grid details that yield mesh 
independent solution. Further, a study of the bulk modulus value is performed to identify its 
effect on the results, when the Elrod-Adams mass conservation model is used. Next, variation 
of the main geometrical and operational parameters of the reference piston ring is performed, 
and comparisons of the computed results are made. Finally, emphasis is given on the squeeze 
film terms of the Reynolds equation, which significantly affect the computational results.  

4.3.1 Mesh	study	
In this section a mesh study is performed for the reference piston ring design, in order to 
choose the required number of grid points. The chosen grid size should provide results with 
negligible deviation from those computed with a very fine grid, and at the same time 
reasonable duration of solution. In the present study, following the results presented in Fig. 
47, the selected mesh grid consists of 201 points along the x direction. 
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Fig. 47. Mesh study of the plain piston ring at 100% engine load. The parameters evaluated are: 
minimum film thickness 'hmin', its percentage difference from the maximum grid size, 
friction force 'F', and maximum pressure 'pmax'. 

 

4.3.2 Study	of	lubricant	bulk	modulus	
As described in section 3.3, the Elrod-Adams mass conservation model makes use of the bulk 
modulus, which introduces compressibility to the fluid and expresses the relation between the 
variation of lubricant pressure and density. However, after discussions with Professor M. 
Fillon, it was ascertained that bulk modulus does not necessarily correspond to a physical 
parameter of the lubricant. The selected bulk modulus should be the minimum value, above 
which the computed pressure differences are negligible. In addition to this, it was noted that 
high values of bulk modulus cause numerical instabilities and oscillations. The bulk modulus 
value that was selected for the present study is equal to 109 Pa , for which the calculated 
maximum pressure for the reference engine load is different by only 0.22% from the 
corresponding maximum pressure in the case of a bulk modulus value equal to 9.109 Pa. In 
Fig. 48 and Fig. 49 a detailed view of the peak of the pressure distribution against different 
values of bulk modulus is shown, along with the minimum film thickness for two engine 
cycles. 
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Fig. 48. Pressure distribution at CA=450o, for different values of bulk modulus, 'β'. 

 

 

Fig. 49. Minimum film thickness 'hmin' versus crank angle for different values of  
bulk modulus, 'β'. 
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4.3.3 Comparison	 of	 computation	 with	 the	 classic	 Reynolds	 equation	 and	 the	
Reynolds	equation	with	the	Elrod‐Adams	mass	conservation	model	

In this section, the performance of the reference piston ring is computed by means of the two 
solution algorithms, namely (a) by solution of the Reynolds equation with Reynolds 
boundary conditions, and (b) by solution of the Reynolds equation with the Elrod-Adams 
mass conservation model. As mentioned in Section 3.2, the Elrod-Adams model can predict 
the cavitation and reformation boundaries of the fluid more precisely than the simple 
Reynolds model.  

In Fig. 50 several ring operational parameters (minimum film thickness, friction force, 
maximum pressure and cavitation area) are plotted against crank angle, for the two different 
solution algorithms. From Fig. 50 it is observed that the differences of minimum film 
thickness, power loss and maximum pressure are very small, regardless of the solution 
algorithm used. The only notable difference is that of the extent of the cavitation area, which 
is underestimated when the Reynolds boundary condition is utilized. 

In Fig. 51 two examples of pressure distribution at two different crank angles are presented. 
Fig. 51 clarifies the difference between the way the two methods handle the reformation 
boundary at the fluid outflow. When the Reynolds boundary condition is utilized, pressure 
starts to build up gradually almost before the outlet, while the Elrod model defines that the 
pressure is regained almost instantly when the fluid meets the ambient pressure. 

(a) (b) 

(c) (d) 

Fig. 50. (a) Minimum film thickness, (b) power loss, (c) maximum pressure and (d) percentage 
of cavitation area, against crank angle, for the two different solution algorithms. 
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Fig. 51. Pressure distribution for CA=405o (downstroke) and CA=660o (upstroke): Calculations 
with the classic Reynolds equation and the Elrod-Adams mass conservation model. 

 

4.3.4 Effect	of	time	derivatives	(squeeze	film	terms)	
While most publications utilizing the Elrod -Adams mass conservation model solve the 
steady state problem, in the present work the full transient problem was solved. The main 
difference between the two approaches, is the inclusion in the latter of the squeeze film term, 
which is equal to the time derivative of film thickness. 

 

Fig. 52. Pressure and film thickness distribution at CA=539o (approximately zero sliding 
velocity). Effect of the squeeze film term on the solution. 
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In Fig. 52 the pressure and film thickness distributions are presented at a representative crank 
angle (CA=539o). The crank angle of 539 degrees has been selected, because the piston speed 
is almost equal to zero and the piston is located very close to the BDC. When the speed is 
equal to zero, no pressure field can be produced from the phenomenon of hydrodynamic 
lubrication, because there is no sliding motion. Observing Fig. 52, when the time derivatives 
are excluded, the piston ring is practically in contact with the liner (film thickness is almost 
equal to the composite roughness r). In addition to this, the pressure distribution is very steep 
(red dotted line of Fig. 52), because of the generated steep hydrodynamic wedge, which also 
leads to a large cavitation region, being almost 50% of the total piston ring area. 

On the other hand, when time derivatives are taken into consideration, due to the squeeze 
film term dh/dt, pressure field is developed (red continuous line of Fig. 52) capable of 
separating the two surfaces with a thicker film, eliminating the possibility of metal to metal 
contact and wear. 

 

4.3.5 Comparison	of	different	engine	cycles	
In the present study, simulations of the piston ring under transient conditions are performed. 
For engine operation at the given operating points, the combustion chamber pressure, and the 
pressure of the area between the first and the second ring, differ throughout the engine cycle. 
As shown in the previous section, the Reynolds equation includes time derivative terms 
(squeeze film terms) which, at the beginning of the simulation, are equal to zero. Therefore, 
the first simulation cycle is not accurately predicted. After a few cycles, the simulation results 
between two consecutive cycles are identical. In this section, calculations of the piston ring 
operational indices are performed for the reference piston ring design, for four full engine 
cycles. 

Fig. 53. Minimum film thickness versus crank angle: Comparison between simulation results 
corresponding to the first and the fourth engine cycle, and simulation results 
corresponding to the second and fourth engine cycle. 
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From Fig. 53 it can be concluded that only the first cycle has small deviation compared to the 
fourth and this deviation lies in the engine start (0o crank angle), where the film thickness is 
equal to the composite roughness. At this point piston speed is almost zero and under these 
circumstances hydrodynamic lubrication cannot occur. In addition to this, there is no squeeze 
film motion, because the simulation has just started and time derivatives are equal to zero. 
Therefore, the simulations in the present work are performed for two engine cycles, and the 
presented results correspond to the second simulation engine cycle. 

 

4.3.6 Reference	piston	ring	design	‐	100%	engine	load	
After adjusting all the essential parameters, the next step is to calculate the piston ring 
performance for the two different engine loading conditions (100% and 25% of the engine 
MCR). Here, the solution algorithm that solves the Reynolds equation with the Elrod-Adams 
mass conservation model is utilized. In Fig. 54, certain operational parameters of the piston 
ring are plotted versus crank angle, for a full engine cycle corresponding to the 100% engine 
loading condition at a rotational speed of 105 RPM. Minimum film thickness ranges from 5 
μm το 12 μm approximately, and the maximum pressure acting on the back surface of the 
piston ring surface is observed at 11.5 degrees of crank angle, where the combustion 
phenomenon is intense. Friction force and friction coefficient exhibit their maximum values 
at values of CA equal to 64.6o and 229.9ο, where the piston speed is maximum, and their 
minimum values at CA=0o and CA=179.8o, where the piston speed is zero. 

In Fig. 55, film thickness, h, pressure distribution, p, and film fraction, θ, are plotted versus 
the streamwise coordinate at several representative crank angle values. 
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Fig. 54. Reference piston ring design, 100% engine load, 105 RPM: Operational indices versus 
engine crank angle. 

 

 

 

 

 

 

 

 

 

 

 

 



78 
 

(a) (b) 

(c) (d) 

Fig. 55. Reference piston ring design, 100% engine load, 105 RPM: Distributions of  pressure 
'p', film thickness 'h' and film fraction 'θ' for crank angle values: (a) CA=384o, (b) 
CA=451o, (c) CA=540o, (d) CA=661o. 

 

4.3.7 Reference	piston	ring	design	‐	25%	engine	load	
In the present section, the performance of the reference piston ring design is calculated for an 
engine load of 25% at a rotational speed of 66.1 RPM, using the Reynolds equation with the 
Elrod-Adams mass conservation algorithm. In Fig. 56, certain operational parameters of the 
piston ring are plotted versus crank angle, for a full engine cycle. Minimum film thickness 
ranges from 5 μm το 10 μm approximately and the maximum pressure acting on the piston 
ring surface is observed at 10.5 degrees of crank angle, where the combustion phenomenon is 
intense. Friction force, and friction coefficient exhibit a maximum at 65.6o and 292.9o of 
crank angle, where the piston speed is also maximum, and a minimum at CA=0o and 
CA=360o, where the piston speed is zero. 

In Fig. 57, film thickness, h, pressure, p, and film fraction, θ, are plotted versus the 
streamwise coordinate, at several representative crank angle values. 
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Fig. 56. Reference piston ring design, 25% engine load, 66.1 RPM: Operational indices versus 
engine crank angle. 

 

 

 

 

 

 

 

 

 

 

 

 



80 
 

(a) (b) 

(c) (d) 

Fig. 57. Reference piston ring design, 25% engine load, 66.1 RPM: Distributions of  pressure 'p', 
film thickness 'h' and film fraction 'θ' for crank angle values: (a) CA=384o, (b) CA=451o, 
(c) CA=540o, (d) CA=661o 

 

4.4 Parametric	analysis	of	geometric	and	operational	parameters	
In this section, a parametric analysis is conducted to identify the effect of different design and 
operational parameters of the piston ring on its tribological performance. 

The parameters studied here are: 

 Crown height 'c' 

 Offset 'o' 

 Pretension force 'T' 

 Lubricant dynamic viscosity 'η' 

 Composite roughness of the piston ring surface 'r' 

 Pressure between the first and second ring 'p1-2' 
 

A sketch of the piston ring geometry considered in this section has been presented in Fig. 41. 
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4.4.1 Crown	height	
The crown height of the piston ring controls the curvature of the ring surface, so it has an 
apparent effect on the film shape. The crown height of the reference piston ring is assumed 
equal to 3 μm; in the present section, crown height values of 1, 2, 5, 8, 12 and 20 μm are also 
considered.  

In Fig. 58, the effect of different crown height values on the operational indices of the piston 
ring (minimum film thickness, power loss, maximum pressure and percentage of cavitation 
area) is presented.  

(a) (b) 

(c) (d) 

Fig. 58.  (a) Minimum film thickness, (b) power loss, (c) maximum pressure and (d) percentage 
of cavitation area, against crank angle, for different crown height values. 

 

Higher values of crown height lead to increased minimum film thickness and decreased 
power loss at regions of high piston velocity. However, at regions of low piston velocity 
(near the TDC and BDC), minimum film thickness is decreased, in comparison to the 
reference design, increasing the likelihood of asperity contact between the ring and the liner 
wall. Further, values of crown height higher than 12 μm will provide negligible additional 
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benefit. Maximum pressure follows the trend of minimum film thickness, whereas the 
cavitation area increases with increasing crown height, due to the resulting sharper diverging 
region geometry. 

 

4.4.2 Offset	
The ring controls the location of the minimum value of the parabola corresponding to the ring 
face geometry, see Fig. 41. The reference piston ring has no offset, o=0 mm; in the present 
section, offset values of 0.8 mm, 1.6 mm, 3.2 mm, -0.8 mm, -1.6 mm, -3.2 mm are 
considered. 

In Fig. 59 and Fig. 60, the effect of different offset values on the operational indices of the 
piston ring (minimum film thickness, power loss, maximum pressure and percentage of 
cavitation area) is presented. The cases of positive and negative offset are presented in a 
different set of graphs, in order to detect the differences. 

(a) (b) 

(c) (d) 

Fig. 59.  (a) Minimum film thickness, (b) power loss, (c) maximum pressure and (d) percentage 
of cavitation area, against crank angle, for different positive offset values. 
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(a) (b) 

(c) (d) 

Fig. 60.  (a) Minimum film thickness, (b) power loss, (c) maximum pressure and (d) percentage 
of cavitation area, against crank angle, for different negative offset values. 

 

Based on Fig. 59, we observe that positive values of offset, o, lead to decreased minum film 
thickness at the first half of the engine cycle (0o-180o of CA), and to increased minimum film 
thickness at the second half of the engine cycle. At CA values close to 180o, where piston 
speed is minimum, positive values of offset lead to decreased values of minimum film 
thickness, which increases the likelihood of asperity contact between the ring and then liner. 
Power loss increases substantially at the first half of the engine cycle, whereas, at the second 
half, it exhibits a small decrease, in comparison to the reference case. Maximum pressure, 
increases substantially at the first half of the cycle, followed by a substantial increase of the 
cavitating ring area. 

On the other hand, negative values of offset, o, lead to increased minimum film thickness at 
the first half of the engine cycle and to decreased (but in a less pronounced way) minimum 
film thickness at the second half of the engine cycle. The overall minimum film thickness, 
remains at the levels of that of the reference case, except for the case of o= -3.2 mm where 
asperity contact is observed at CA=180o. Power loss exhibits substantial reduction at the first 
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half of the engine cycle, whereas it is slightly increased at the second half of the engine cycle. 
For the case of o= -1.6 mm, the overall maximum pressure is less than that of the reference 
case, whereas the cavitation region is decreased at the first half of the engine cycle and 
increased at the second. Overall, this value of offset leads to an overall increased minimum 
film thickness, decreased power losses , without increase of maximum pressure. 

 

4.4.3 Pretension	force	
In section 4.1, the tangential ring pretension force was calculated for the reference design, 
following the methodology of [25]. In the present section different values of this parameters 
are considered in order to study the effect of the ring pretension force on the tribological 
behavior of the system. The reference pretension force is 49744 N, and the additional values 
considered here are: 5000 N, 15000 N, 30000 N, 60000 N, 100000 N. 
In Fig. 61, the effect of different pretension force values on the operational indices of the 
piston ring (minimum film thickness, power loss, maximum pressure and percentage of 
cavitation area) is presented.  

(a) (b) 

(c) (d) 

Fig. 61.  (a) Minimum film thickness, (b) power loss, (c) maximum pressure and (d) percentage 
of cavitation area, against crank angle, for different ring pretension force values. 
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Higher pretension force results in lower minimum film thickness, higher power loss, higher 
maximum pressure and larger cavitation area. Increasing the ring pretension force, the ring 
gets closer to the liner wall, proving the above trends. 

 

4.4.4 Viscosity	
The lubricant oil selected for the reference case has a viscosity value of 0.19 Pa.s at the 
reference working temperature. Here, different values of oil viscosity are considered, namely 
those of 0.03, 0.05, 0.075, 0.12, 0.3 and 0.45 Pa.s. In Fig. 62, the effect of different oil 
viscosity on the operational indices of the piston ring (minimum film thickness, power loss, 
maximum pressure, percentage of cavitation area) is presented.  

 

(a) (b) 

(c) (d) 

Fig. 62.  (a) Minimum film thickness, (b) power loss, (c) maximum pressure and (d) percentage 
of cavitation area, against crank angle, for different values of viscosity. 

As expected, higher values of viscosity create a thicker lubricating film (higher values of 
minimum film thickness) and exhibit higher values of power loss, because motion of a more 
viscous fluid yields higher friction drag. The opposite is observed for lower values of 
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viscosity. The effect of oil viscosity on maximum pressure and on the extent of cavitation 
region is negligible. 

 

4.4.5 Pressure	of	area	between	first	and	second	piston	ring	
For the calculations of the reference case the pressure after the first compression ring and 
before the second one (p1-2) has been assumed equal to half of the combustion chamber 
pressure (pch), following the work of Jeng et al. [4]. This statement leads to an overestimation 
of the trailing pressure of the first ring, so in this section additional (lower) values are studied, 
namely 1/3, 1/5 and 1/10 of the combustion chamber pressure. 
 
In Fig. 63, the effect of different values of pressure p1-2 on the operational indices of the 
piston ring (minimum film thickness, power loss, maximum pressure and percentage of 
cavitation area) is presented. pch 

(a) (b) 

(c) (d) 

Fig. 63.  (a) Minimum film thickness, (b) power loss, (c) maximum pressure and (d) percentage 
of cavitation area, against crank angle, for different values of pressure between first and 
second piston ring. 
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It is obvious from Fig. 63 that different values of the pressure between the first and second 
piston rings has negligible effect on the tribological behavior of the system. This is rather 
expected since as shown in Fig. 55, the maximum hydrodynamic pressure is almost two 
orders of magnitude higher than the pressure at the ring boundaries. 

 

4.4.6 Composite	roughness	
The composite roughness of the reference piston ring is assumed to be 0.2 μm; in the present 
section, composite roughness values of 0.1 and 0.5 μm are also considered. In Fig. 64 the 
operational indices for these different values are plotted. 

Composite roughness affects mainly the frequency of asperity contact (large values more 
frequent contacts and vice versa). As shown in previous sections, for the reference ring 
design, asperity contact is observed only at the first simulation cycle (where dh/dt=0). At the 
next engine cycles, the squeeze film effect aids in maintaining a thick lubricating film, even 
at instances of very low piston speed. Taking that into account, here, only the first cycle of 
the engine is presented. Different values of composite roughness affect the region of very 
small crank angle values, where asperity contact is observed. We see that a decrease of 
composite roughness will decrease the duration of asperity contact, and vice versa. 

 

(a) (b) 

Fig. 64.  (a) Minimum film thickness against crank angle, for different values of pressure 
between first and second piston ring, (b) zoom of 20 first crank angles of engine cycle 
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4.5 Effect	of	hydrophobicity	at	part	of	the	ring	surface	
In this section, the effect of introducing hydrophobic properties at part of the rig face on the 
ring performance characteristics is investigated. Here, the Reynolds equation for hydrophobic 
surfaces with the Elrod-Adams mass conservation model is used, for the two different engine 
operating conditions considered in the present study. Fig. 65 presents a piston ring with two 
regions of hydrophobicity, one at the top half of the ring (near the combustion chamber), and 
one at the bottom half of the ring. The location and extent of those regions are controlled by 
the following non-dimensional parameters. Here, a slip length value b= 2 μm is assumed, 

corresponding to a non-dimensional value * 10sb
b

r
   (r: composite roughness of the ring 

face, here equal to 0.2 μm). 

 b*: Non-dimensional slip length: b*=bs/r 

 SBs: Bottom hydrophobic region: Non-dimensional x coordinate of slip start location 

 SBe: Bottom hydrophobic region: Non-dimensional x coordinate of slip end location 

 STs: Top hydrophobic region: Non-dimensional x coordinate of slip start location 

 STe: Top hydrophobic region: Non-dimensional x coordinate of slip end location 

The initial values of SBs, SBe, STs, STe are given in Table 5. 

 

Fig. 65.  Piston ring face profile with the regions of hydrophobicity highlighted; the four dots 
mark the start and end of each hydrophobic area; SBs: start of bottom slip region, SBe: 
end of bottom slip region, STs: start of top slip region, STe: end of top slip region 
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SBs 0.1 
SBe 0.3 
STs 0.7 
STe 0.9 

Table 5. Piston ring with hydrophobicity. Parameters controlling the location and extent of the 
hydrophobic regions of Fig. 65. 

 

In Fig. 66 a comparison of the operational indices of the reference piston ring (section 4.3.6) 
with those of the hydrophobic ring corresponding to the design parameters of Table 5 is 
performed. 

(a) (b) 

(c) (d) 

Fig. 66.  (a) Minimum film thickness, (b) power loss, (c) maximum pressure and (d) percentage 
of cavitation area for 100% engine load, against crank angle, for the reference piston 
ring, and the hydrophobic ring with parameters those of Table 5. 
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The introduction of hydrophobicity is proved beneficial for the ring. In particular, minimum 
film thickness is increased, corresponding to higher load capacity, and power loss is 
substantially decreased, but with the cost of increased maximum pressure at the ring face. 
Cavitation area is also increased by approximately 5%. 

In the following paragraphs, a parametric analysis is performed for different values of b*, 
SBs, SBe, STs and STe to identify optimal design of the hydrophobic region. 

 

4.5.1 Non‐dimensional	slip	length,	b*	
Here values of b* between 0 and 100 are considered, corresponding to dimensional slip length 
values of 0 to 20 μm. In Fig. 67, the piston ring operational characteristics are presented 
versus crank angle, for different values of b*. 

(a) (b) 

(c) (d) 

Fig. 67.  (a) Minimum film thickness, (b) power loss, (c) maximum pressure and (d) percentage 
of cavitation area, against crank angle, for different values of non-dimensional slip length, b* 
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Higher values of b* are shown to further improve the tribological behavior of the ring. In 
particular, for b*=100, minimum film thickness value is almost 20% higher than that 
corresponding to the case of b*=10 and power loss is 25% less. Maximum pressure, on the 
other hand, exhibits a cycle maximum approximately equal to that corresponding to  b*=10. 
When b* is decreased below the reference value (b*=10), the results tend to those of the 
reference (non-hydrophobic) piston ring. 

 

4.5.2 Bottom	slip	region:	Variation	of	slip	start	location	
Here, values of SBs between 0 and 0.2 are considered (SBs=0.2 corresponds to a x-coordinate 
of the start of the bottom slip region equal to 0.2xb, where b is the ring width). In Fig. 68, the 
piston ring operational characteristics are presented versus crank angle, for different values of 
SBs. 

 (a) (b) 

(c) (d) 

Fig. 68.  (a) Minimum film thickness, (b) power loss, (c) maximum pressure and (d) percentage 
of cavitation area, against crank angle, for different values of start of bottom slip region, 
SBs 
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The results of Fig. 71 suggest that SBs affects the ring operation only during the downstroke. 
The largest hydrophobic area (0%-30%) has the best performance, since it further increases 
the minimum film thickness, decreases power loss, while affecting insignificantly the 
maximum pressure and the cavitation area. 

 

4.5.3 Bottom	slip	region:	Variation	of	slip	end	location	
Here, values of SBe between 0.2 and 0.4 are considered (SBe=0.4 corresponds to a x-
coordinate of the start of the bottom slip region equal to 0.4xb, where b is the ring width). In 
Fig. 69, the piston ring operational characteristics are presented versus crank angle, for 
different values of SBe. 

(a) (b) 

(c) (d) 

Fig. 69.  (a) Minimum film thickness, (b) power loss, (c) maximum pressure and (d) percentage 
of cavitation area, against crank angle, for different values of the end of bottom slip 
region, SBe. 
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From Fig. 69, it can be concluded that hydrophobic areas larger than the reference one (10%-
30%) do not affect at all the operational parameters, whereas smaller areas reduce minimum 
film thickness and increase power loss. 

Merging the observations of Fig. 68 and Fig. 69, the optimum design of the bottom slip 
region is the one that extends from the start of the piston ring face profile (SBs=0) until 30% 
of its total length (SBe=0.3). 

 

4.5.4 Top	slip	region:	Variation	of	slip	start	location	
Here, values of STs between 0.6 and 0.8 are considered (STs=0.6 corresponds to a x-
coordinate of the start of the top slip region equal to 0.6xb, where b is the ring width). In Fig. 
70, the piston ring operational characteristics are presented versus crank angle, for different 
values of SBs. 

(a) (b)

(c) (d) 

Fig. 70.  (a) Minimum film thickness, (b) power loss, (c) maximum pressure and (d) percentage 
of cavitation area, against crank angle, for different values of the start of top slip region, 
STs. 
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Lower values of STs (top hydrophobic region between 60%-90% and 65%-90%), which are 
equivalent to larger slip areas, provide a small increase of the minimum film thickness and a 
small decrease of the power loss in the upstorke motion, while they decrease the former and 
increase the latter for the downstroke motion. Maximum pressure is decreased for all the 
cases during the upstroke, while it is slightly increased for increased slip areas during 
downstroke. Finally, cavitation region is largely increased, by almost 30%, for the cases of 
large slip areas and is decreased for the smaller ones.  

 

4.5.5 Top	slip	region:	Variation	of	slip	end	location	
Here, values of STe between 0.8 and 1 are considered (STs=0.8 corresponds to a x-coordinate 
of the start of the top slip region equal to 0.8xb, where b is the ring width). In Fig. 71, the 
piston ring operational characteristics are presented versus crank angle, for different values of 
SBe. 

(a) (b) 

(c) (d) 

Fig. 71.  (a) Minimum film thickness, (b) power loss, (c) maximum pressure and (d) percentage 
of cavitation area, against crank angle, for different values of end of top slip region, STe 
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Variation of the STe affects the ring operation only during the downstroke. According to Fig. 
71, the largest hydrophobic area (70%-100%) has the best performance, since it further 
increases the minimum film thickness, decreases power loss, while affecting insignificantly 
the maximum pressure and the cavitation area. 

 

4.5.6 Optimal	design	with	hydrophobicity	at	 the	bottom	and	 the	 top	part	of	 the	
piston	ring	

Summing up the results of the four previous sections (4.5.1-4.5.5), the optimum location of 
slip regions is from 0% up to 30% and from 70% to 100% of the total piston ring width. In 
Fig. 72, a comparison is made between the results of the reference no-slip case and of the 
optimal hydrophobic case. The operational characteristics of this optimum case of 
hydrophobicity, are presented in Fig. 73, whereas in Fig. 74 pressure distribution and film 
fraction at several representative crank angles are plotted, in order to further understand this 
phenomenon. 

(a) (b) 

(c) (d) 

Fig. 72. (a) Minimum film thickness, (b) power loss, (c) maximum pressure and (d) percentage 
of cavitation area against crank angle, for 100% engine load: Comparison between the 
reference case (no-slip) piston ring design and the optimal hydrophobic design. 
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Fig. 73. Operational indices of the optimal hydrophobic case against crank angle for 100% 
engine load and 105 RPM; hydrophobic region from 0%-30% and 70%-100% and non-
dimensional slip length b*=10. 
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(a) (b) 

(c) (d) 

Fig. 74. Optimal hydrophobic design: Distributions of pressure, p, film thickness, h, and film 
fraction, θ, at crank angles (a) CA=384o, (b) CA=451o, (c) CA=540o and (d) CA=661o. 
Here, 100% load is assumed. 

 

For the case of 100% engine load, the optimal hydrophobic ring design, increases the mean 
value of minimum film thickness over a full cycle by 20%, while mean power loss, over a 
full cycle, is decreased by 23%. 

The performance of the optimal hydrophobic ring design is also studied for the 25% engine 
load (25%). This is interesting, especially nowadays, since most ships operate in slow 
steaming, with the engine operating at very low loads, in order to decrease fuel consumption. 
The corresponding operational indices are compared in Fig. 75. 
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(a) (b) 

(c) (d) 

Fig. 75. (a) Minimum film thickness, (b) power loss, (c) maximum pressure and (d) percentage 
of cavitation area against crank angle, for 25% engine load: Comparison between the 
reference (no-slip) piston ring design and the optimal hydrophobic design. 

 

The results of Fig. 75 verify that introduction of slip properties at both sides of piston ring 
substantially increase the minimum film thickness and decrease the power loss, for the case 
of engine load equal to 25% of the engine MCR. 

Here, the optimal design exhibits a increase of the mean value of minimum film thickness 
over a full cycle by 19%, whereas mean power loss, over a full engine cycle, is decreased by 
15%. 
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4.6 Artificial	surface	texturing	
In this section, the effect of introducing artificial surface texturing at part of the ring face on 
the ring performance characteristics is investigated. Computations are performed with the 
Reynolds equation with the Elrod-Adams mass conservation model.  

Fig. 76 presents a piston ring with two artificially textured regions, one at the top half of the 
ring, and one at the bottom half. The location and extent of those regions are controlled by 
the following non-dimensional parameters: 

 TBs: Bottom textured region: Non-dimensional x coordinate of texture start location 

 TBe: Bottom textured region: Non-dimensional x coordinate of texture end location 

 TTs: Top textured region: Non-dimensional x coordinate of texture start location 

 TTe: Top textured region: Non-dimensional x coordinate of texture end location 

Once those parameters are defined, the length of each textured area can be calculated. Next, 
this length is divided by the selected number of dimples, dnum, yielding the length of each 
dimple cell, dcl. Finally, multiplying the length of dimple cell with the dimple density, ddensity, 
yields the length of each dimple, dlength. Each dimple has a depth of ddepth. The corresponding 
texture geometry is  presented in Fig. 76. The initial values of TBs, TBe, TTs, TTe, dnum, 
ddensity and ddepth are given in Table 6. 

dnum 3 
ddensity 0.5 
ddepth 5 μm 
TBs 0.1 
TBe 0.3 
TTs 0.7 
TTe 0.9 

Table 6. Piston ring with artificial surface texturing: Parameters controlling the location and 
extent of the textured regions of Fig. 76, as well as the position, length and depth of the dimples. 
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Fig. 76.  Piston ring face profile including the geometry of the textured regions; the four dots 
mark the start and end of each hydrophobic area; TBs: start of bottom textured region, 
TBe: end of bottom textured region, TTs: start of top textured region, TTe: end of top 
textured region, ddepth: dimple depth, dcl: length of each dimple cell, dlength: length of each 
dimple. 

 

In Fig. 77, a comparison of the operational indices of the reference piston ring (section 4.3.6) 
with those of the textured ring corresponding to the design parameters of Table 6 is 
performed. 
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(a) (b) 

(c) (d) 

Fig. 77.  (a) Minimum film thickness, (b) power loss, (c) maximum pressure and (d) percentage 
of cavitation area for 100% engine load, against crank angle, for the reference piston 
ring, and for the textured ring with parameters those of Table 6. 

 

the introduction of artificial surface texturing is proved beneficial for the ring. In particular, 
minimum film thickness is increased, corresponding to higher load capacity, and power loss 
is substantially decreased. Maximum pressure is slightly increased, while the cavitation area 
is decreased for approximately 5%.  

In the following paragraphs, a parametric analysis is performed for different values of TSs, 
TBe, TTs, TTe and ddepth to identify optimal design of the textured region. 

 

4.6.1 Bottom	textured	region:	Variation	of	texture	start	location	
Here, values of TBs between 0 and 0.2 are considered (TBs=0.2 corresponds to a x-coordinate 
of the start of the bottom textured region equal to 0.2xb, where b is the ring width). In Fig. 
78, the piston ring operational characteristics are presented versus crank angle, for different 
values of TBs. 
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 (a) (b) 

(c) (d) 

Fig. 78.  (a) Minimum film thickness, (b) power loss, (c) maximum pressure and (d) percentage 
of cavitation area, against crank angle, for different values of the start of bottom 
textured region, TBs. 

 

The results of Fig. 78 suggest that variation of the start of the bottom textured area affects the 
ring operation only during the downstroke period. The largest textured area (0%-30%) has the 
best performance, since it further increases the minimum film thickness, decreases power 
loss, while affecting insignificantly the maximum pressure and the cavitation area. 

 

4.6.2 Bottom	textured	region:	Variation	of	texture	end	location	
Here, values of TBe between 0.2 and 0.4 are considered (TBs=0.4 corresponds to a x-
coordinate of the start of the bottom textured region equal to 0.4xb, where b is the ring 
width). In Fig. 79, the piston ring operational characteristics are presented versus crank angle, 
for different values of TBe. 
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(a) (b) 

(c) (d) 

Fig. 79.  (a) Minimum film thickness, (b) power loss, (c) maximum pressure and (d) percentage 
of cavitation area, against crank angle, for different values of the end of bottom textured 
region, TBe. 

 

From Fig. 79, it can be concluded that textured areas larger than the reference one (10%-
30%) affect insignificantly the operational parameters, whereas smaller textured areas reduce 
minimum film thickness and increase power loss. 

Merging the observations of Fig. 78 and Fig. 79, the optimum design of the bottom textured 
area is the one that extends from the start of the piston ring face profile (TBs=0) until 30% of 
its total length (TBe=0.3). 

 

4.6.3 Top	textured	region:	Variation	of	texture	start	location	
Here, values of TTs between 0.6 and 0.8 are considered (TTs=0.6 corresponds to a x-
coordinate of the start of the top textured region equal to 0.6xb, where b is the ring width). In 
Fig. 80, the piston ring operational characteristics are presented versus crank angle, for 
different values of TTs. 
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(a) (b) 

(c) (d) 

Fig. 80.  (a) Minimum film thickness, (b) power loss, (c) maximum pressure and (d) percentage 
of cavitation area, against crank angle, for different values of the start of top textured 
region, TTs. 

 

Lower values TTs (60%-90% and 65%-90%), which are equivalent to larger textured areas, 
provide a small increase of the minimum film thickness and a small decrease of power loss in 
the upstroke motion, while they decrease the former and increase the latter for the 
downstroke motion. Maximum pressure is decreased for larger textured region during the 
upstroke, while is increased during the downtroke for smaller textured region. Finally, 
cavitation region decreases for almost all the cases during the upstroke and it is increased for 
large textured regions during the downstroke.  

 

4.6.4 Top	textured	region:	Variation	of	texturing	end	location	
Here, values of TTe between 0.8 and 1 are considered (TTe=0.8 corresponds to a x-coordinate 
of the start of the top textured region equal to 0.8xb, where b is the ring width). In Fig. 81, the 
piston ring operational characteristics are presented versus crank angle, for different values of 
TTe. 
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(a) (b) 

(c) (d) 

Fig. 81.  (a) Minimum film thickness, (b) power loss, (c) maximum pressure and (d) percentage 
of cavitation area, against crank angle, for different values of the end of top textured 
region, TTe. 

 

Variation of TTe affects the ring operation only during the downstroke. According to Fig. 81, 
the largest textured area (70%-100%) has the best performance, since it further increases the 
minimum film thickness, decreases power loss, while affecting insignificantly the maximum 
pressure and the cavitation area. 

 

4.6.5 Texture	depth	
It is resulted from sections 4.6.1 to 4.6.4 that the best piston ring design with surface 
texturing is the one with textured areas expanding from 0% to 30%, which improves the 
operation of the downstroke motion, and from 70% to 100%, which improves the operation 
of the upstroke motion. These results were obtained for a texture depth equal to 5 μm; in the 
present section texture depth values of 2, 8, 10 and 15 μm are also considered. 
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In Fig. 82, the effect of different texture depth values on the operational indices of the piston 
ring (minimum film thickness, power loss, maximum pressure and percentage of cavitation 
area) is presented.  

(a) (b) 

(c) (d) 

Fig. 82.  (a) Minimum film thickness, (b) power loss, (c) maximum pressure and (d) percentage 
of cavitation area against crank angle, for different values of dimple depth. Here, the 
optimal textured ring is considered. 

 

From Fig. 82 can be noticed that increasing dimple depth beyond 5 μm does not minimum 
film thickness (hmin is actually decreased for a dimple depth value of 15 μm). However, 
power loss maintains a decreasing trend with increasing dimple depth, achieving a decrease 
of approximately 30% for ddepth=15 μm . Maximum pressure and cavitation region are 
practically is not affected by the variation of dimple depth. 
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4.6.6 Optimal	design	with	artificial	surface	texturing	at	the	bottom	and	at	the	top	
part	of	the	piston	ring	

 

From the parametric analysis of previous sections (4.6.1-4.6.5), the resultant optimal design 
is characterized by artificial surface texturing from 0% to 30% and 70% to 100% of the total 
piston ring surface, with a dimple depth value equal to 10 μm. 

In Fig. 83, a comparison is made between the results of the reference (untextured) and of the 
optimal textured case. The operational characteristics of the optimally textured ring are 
summarized in Fig. 84, whereas in Fig. 85, pressure distribution and film fraction at several 
representative crank angles are plotted, in order to further understand this phenomenon. 

(a) (b) 

(c) (d) 

Fig. 83. (a) Minimum film thickness, (b) power loss, (c) maximum pressure and (d) percentage 
of cavitation area against crank angle, for 100% engine load: Comparison between the 
reference case (untextured) piston ring and the optimal textured design. 
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Fig. 84. Operational indices of the optimal texturing case against crank angle for 100% engine 
load and 105 RPM; textured region from 0%-30% and 70%-100% of the total ring 
length, and a dimple depth value of 10 μm. 
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(a) (b) 

(c) (d) 

Fig. 85. Optimal textured ring design: Distributions of pressure, p, film thickness, h, and film 
fraction, θ, at crank angle values (a) CA=384o, (b) CA=451o, (c) CA=540o and (d) 
CA=661o. Here, 100% engine load is assumed. 

  

For the case of 100% engine load, the optimally textured ring design, increases the mean 
value of minimum film thickness over a full cycle by 11%, while mean power loss, over a 
full cycle, is decreased by 25%. 

The performance of the optimally textured ring design is also studied for the 25% engine 
load. The corresponding operational indices are compared in Fig. 86. 
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(a) (b) 

(c) (d) 

Fig. 86. (a) Minimum film thickness, (b) power loss, (c) maximum pressure and (d) percentage 
of cavitation area for against crank angle for 25% engine load: Comparison between the 
reference (untextured) piston ring and the optimally textured design. 

 

Artificial texturing at both sides of the piston ring substantially increase minimum film 
thickness and decrease power loss, for the case of engine load equal to 25% of the engine 
MCR.  

Here, the optimal design exhibits an increase of the mean value of minimum film thickness 
over a full cycle by 7%, whereas mean power loss, over a full cycle, is decreased by 15%. 
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5.	Conclusions	and	future	work	
 

5.1 Conclusions	
 

In the framework of the present thesis, software tools have been developed for the solution of 
hydrodynamic lubrication problems in piston rings under transient loading conditions. Two 
different solution algorithms were formulated, namely one for the classic Reynolds equation 
with Reynolds boundary conditions, and a second for the Reynolds equation with the Elrod-
Adams mass conservation model. The Elrod-Adams model handles more effectively the 
cavitation boundaries and takes into account the lubricant density. Both solvers have been 
extended to account for ring surface with hydrophobic parts, and the differential equations are 
solved using the Finite Difference Model (FDM). The calculations of each solver have been 
validated against results from the international literature; a very good agreement was found 
for all the considered cases. 

The developed software has been applied to compute the performance characteristics of the 
piston rings of a large two-stroke marine Diesel engine, for two loading conditions, 
corresponding to power output of 100% and 25% of the engine MCR. First, a mesh study has 
been performed to decide the proper discretization that results in a mesh independent 
solution. Next, a study of the lubricant bulk modulus, a basic parameter of the Elrod-Adams 
model, has been performed to identify its effect on the computed ring performance. Further, 
comparisons were made between the two previously mentioned solution algorithms, and the 
effect of time derivatives (squeeze film terms) has also been investigated. 

The reference piston ring design has been extensively studied to identify the effect of its main 
design parameters (curvature, offset, viscosity) on performance (minimum film thickness, 
power loss, maximum pressure, etc.). After this parametric analysis, part of the ring surface 
has been assumed to have hydrophobicity or artificial surface texturing. A detailed parametric 
study has been performed to identify the corresponding optimum design parameters. The 
results demonstrate a substantial reduction of power loss, of the order of 23%, when 
hydrophobicity is applied properly to the ring surface, and of the order of 25%, when parts of 
the ring surface are properly textured. At the same time, the mean value of minimum film 
thickness is increased by approximately 20% and 11%, respectively, meaning that load 
carrying capacity is also substantially increased. The decrease in friction loss and the 
simultaneous increase of load capacity result in decreased values of friction coefficient. 
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5.2 Future	work	
 

In the present work, the piston ring was assumed to operate under fully flooded lubrication 
conditions. In practice, an engine has a series of piston rings, therefore oil starvation 
conditions are anticipated at several of those rings. A future study could aim at proper 
modification of the Elrod-Adams mass conservation model to account for oil starvation 
boundary conditions. 

A further enhancement of the present work would be the study of the whole ring pack, 
assuming mass conservation conditions in the whole piston ring assembly.  

Finally, the tilt motion and mechanical deformations of the piston ring, neglected in the 
present thesis, could be taken into account in the framework of an elastohydrodynamic 
(EHD) analysis approach. 

 

 



113 
 
 

5. Literature	

1. Σταματελόπουλος Δ., “Πειραματική Μελέτη Υδροδυναμικής Λίπανσης σε Ακτινικά 
Έδρανα”, Αθήνα, Ιούλιος, 2013. 

2. Yukio H., "Hydrodynamic Lubrication", Springer, Japan, 2005. 
3. Stachowiak G., Batchelor A., “Engineering Tribology”, Butterworth Heinemann, 

2011. 
4. Jeng Y.-R., "Theoretical Analysis of Piston-Ring Lubrication Part-I Fooly Flooded 

Lubrication", Tribology Transactions, Vol. 35(4), pp 696-706, 1992. 
5. Jeng Y.-R., "Theoretical Analysis of Piston-Ring Lubrication Part-II Staeved 

Lubrication and Its Application to a Complete Ring Pack", STLE Tribology 
Transactions, Vol. 35(4), pp 707-714, 1992. 

6. Wakuri Y et al, "Piston ring friction in internal combustion engines", Tribology 
International, Vol. 25, pp 299-308, 1992. 

7. Elrod H.G, Adams M.L., "A computer program for cavitation and starvation 
problems", Cavitation and Related Phenomena in Lubrication, pp 37-41,1974. 

8. Elrod H.G., "A Cavitation Algorithm", ASME Journal of Lubrication Technology, 
Vol. 103(3), pp 350-354,1981. 

9. Vijayaraghavan D. and Keith T.G. Jr., "Development and Evaluation of a Cavitation 
Algorithm", STLE Triboligal Transactions, Vol. 32(2), pp 225-233, 1989. 

10. Khonsari M. M. and Feshangary M., "A Modification of the Switch Function in the 
Elrod Cavitation Algorithm", ASME Journal of Tribology, Vol. 133, 024501, pp 1-
4, 2011. 

11. Giacopini M. et al, "A Mass-Conserving Complementarity Formulation to Study 
Lubricant Films in the Presence of Cavitation", ASME Journal of Tribology, Vol. 
132, 041702, pp 1-12, 2010. 

12. Fatu A., et al, "Wall slip effects in (elasto) hydrodynamic journal bearings", 
Tribology International, doi: 10.1016/j.triboint.2011.03.003 2011. 

13. Pavlioglou S.K. et al, "Tribological Optimization of Thrust Bearings Operated with 
Lubricants of Spatially Varying Viscosity", ASME GT2014-25292, pp 1-10, 2014. 

14. GuoJun M., Cheng W.W, Ping Z., "Hydrodynamics of slip wedge and optimization 
of surface slip property", Sci China-Phys Mech Astron, Vol. 50(3), pp 321-330, 
2007. 

15. Etsion I., Kligerman Y., Shinkarenko A., "Improved Tribological Performance of 
Piston Rings by Partial Surface Texturing" Transactions of the ASME, Vol. 127, pp 
632-638, 2005. 

16. Papadopoulos C.I., Efstathiou E.E., Nikolakopoulos P. G., Kaiktsis L., "Geometry 
Optimization of Textured Three-Dimensional Micro-thrust Bearings", ASME 
Journal of Tribology, Vol. 133, 041702, pp 1-14, 2011. 

17. Xiong S., Wang Q.J., "Steady-state Hydrodynamic Lubrication Modeled with the 
Payvar-Salant Mass Conservation Model", ASME Journal of Tribology, Vol. 134, 
031703, pp1-16. 

18. Κυρτάτος Ν., “Ναυτικοί Κινητήρες Diesel - Θέματα Σχεδίασης και Λειτουργίας”, 
Αθήνα, Νοέμβριος 1993. 

19. US Department of Energy, “DOE Fundamentals Handbook - Mechanical Science 
Vol. 1 of 2, Diesel Engine Fundamentals”, Washington 1993. 

20. Anderson P., Tamminen J., Sandström C. E., “Piston ring tribology - A literature 
survey”, VTT Industrial Systems. 



114 
 
 

21. Bharat Bhushan, “Modern Triblogy Handbook, Two volume set”, CRC Press, 2000.  
22. Bertocchi L., Strozzi A., “A Linear Complementarity Approach to Solve 

Elastohydrodynamic Lubrication Problems in the Presence of Cavitation”, March 
2013. 

23. Dhunput A., Teodorescu M., Arcoumanis C., “Investigation of cavitation 
development in the lubricant film of piston-ring assemblies”, IOP Publishing, 2005. 

24. Khonsari M. M. and Booser E. R., “Applied Tribology: Bearing Design and 
Lubrication”, Second Edition, Wiley, 2008. 

25. Petrovsky N., "Marine Internal Combustion Engines", MIR Publishers, 1976. 
26. Christensen O., "Cylinder lubrication of two-stroke crosshead marine Diesel 

engines", Wartsila Technical Journal, 2010. 
27. http://www.ringleader.net/piston-ring-materials/3/index.phtml. 
28. Kontoulis P., Chrysakis C., Kaiktsis L., "Evaluation of Pilot Injections in a Large 

Two-Stroke Marine Diesel Engine, Using CFD and T-φ Mapping", COMODIA, 
2008. 

29. Etsion I., "Laser Surface Texturing" (presentation). 
30. http://en.wikipedia.org/wiki/Lotus_effect. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



115 
 
 

Appendix	A	
Derivation of Reynolds equation for hydrophobic surfaces 

 
Starting from Eq. (9) of section 2.2.3, velocity u can be calculated: 
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Differentiating Eq. (61) yields: 
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The boundary conditions at the liner and ring surfaces are: 
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where τC,l and τC,r  are the critical shear stress values for the liner and the piston ring, 
respectively. 
Τhe first derivative of velocity at z=0 is: 
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Similarly, the first derivative of velocity at z=h is:  
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Velocities at z=0 and z=h can be calculated as: 
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Use of Eq. (63), (65) and (67) results in: 

2
1 ,l C l

C
U a C 


       (69) 

 
From Eq. (64), (66) and (68): 
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 (70) 

 

Solving Eq. (69) for C2: 

 2 1 ,l C lC U a C       (71) 

 

Substituting Eq. (71) into Eq. (70) yields: 
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 (72) 

 

C2 can be calculated from Eq. (71): 

 
2

, , ,

2
2

( )

h r C r C l C l

l
l r

p p h
a h U a h

x xC U a
h a a

     
 



  
           

  

 (73) 

 

Substituting constants C1 and C2 into Eq. (61) yields the velocity along direction x: 

   
 

 

2
, ,

2
, , ,

2

2 2 ( ) ( ) ( )

2

2

r C r l C lr

l r l r l r

r C r C l C lr l r l
l

l r l r l r

a ap z p h a h U
u z

x x h a a h a a h a a

a hh a p h a a a h
U a

h a a x h a a h a a

 
    

     
   

   
             

   
  

      

 (74) 

Continuity of mass demands that: 

     
0 0 0 0

0
h h h hu v w

dz dz dz dz
x y z t

      
   

        (75) 
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Using the Leibnitz rule for differentiation of integrals, the first term of Eq. (75) can be written 
as: 

 
0 0

( ) ( )
h hu h

dz u z dz u h
x x x


 

  
 

     (76) 

 

Substituting Eq. (74) into the first part of Eq. (76) results in: 

   
 

 

3 2
, ,

0

2
, , ,

2
( )

6 2 2 ( ) ( ) ( )

2

2

h
r C r l C lr

l r l r l r

r C r C l C lr l r l
l

l r l r l r

a ap h h p h a h U
u z dz

x x h a a h a a h a a

a hh a p h a a a h
Uh h ha

h a a x h a a h a a

   
    

       
   

   
             

   
   

      


  

 
   

   
 

2 22

2
, , , ,

4 12 2

12 2

21

2

l r l r r

l r l r

l C l r C r l r C l C r

l r

h a a h a ah p Uh h a

x h a a h a a

h a a a a h

h a a

   
  

    




   
  

    

  


 

 (77) 

 

Substituting Eq. (74) into the second part of Eq. (76) results in: 

   
 

 

2
, ,

2
, , ,

2
( )

2 2 ( ) ( ) ( )

2

2

r C r l C lr

l r l r l r

r C r C l C lr l r l
l

l r l r l r

a ap h p h a h U
u h h

x x h a a h a a h a a

a hh a p h a a a h
U a

h a a x h a a h a a

   
    

       
   

   
             

   
   

      

  

   
 

 
2

, , ,2
( )

2
r l C r C l r C rr l r r

l r l r l r

a a a hp h a h a a a
u h U

x h a a h a a h a a

        
   

  
   

      
 (78) 

 

Thus the first term of Eq. (75) is written as: 

   
   

   
 

2 22

0

, , , ,

4 12 2

12 2

21

2

h
l r l r r

l r l r

l C l r C r l r C l C r

l r

u h a a h a ah p U h a
dz h

x x x h a a x h a a

h a a a a
h

x h a a

    
    

    




        
              

   
      


 

   
 

 
2

, , ,2

2
r l C r C l r C rr l r r

l r l r l r

a a a hh p h a h a a h a h
U

x x h a a x h a a x h a a

       
   

     
  
         

 (79) 
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A similar procedure is followed for the derivation of velocity v along the y direction. 

1 1

p v p v p v p
z z C z C z v

y z z y z y z y
                                                

 

2 2
1 2

1 22 2

p z p z C C
C z C v v z

y y


  
 

      
 

 (80) 

 

The first derivative of velocity along y direction is: 

1

p v
z C

y z
 

 
 

 (81) 

  
The boundary conditions are derived from similar considerations, as those made for the 
boundary conditions of the velocity u along the x direction. The only difference now is that 
the velocity is caused only from the pressure gradient dp/dy (see Fig. 20), since no wall 
velocity V exists in the y direction.  

 
Fig. 87. Velocity parabolic profile caused from the pressure derivative 

 

0 ,
0

z l C l
z

v
v a

z
 



 
   

 (82) 

 

,z h r C r
z h

v
v a

z
 



 
    

 (83) 

 
The first derivative of velocity at z=0 is: 

1
0z

v
C

z








 (84) 

 
Similarly, the first derivative of velocity at z=h is:  

1
z h

v p
C h

z y




 
 

 
 (85) 

 



119 
 
 

Eq. (80) yields: 

2
0z

C
v

   (86) 

 
2

1 2

2z h

p h C C
v h

y   


  


 (87) 

 
Eq. (82), (84) and (86) result in: 

2
1 ,l C l

C
a C 


     (88) 

 
From (83), (85) and (87): 

2
1 2

1 , 2r C r

p p h C C
a C h h

y y


  
  
        

 (89) 

 

Solving Eq. (88) for C2: 

 2 1 ,l C lC a C    (90) 

 

Substituting Eq. (90) into Eq. (89): 

2
1

, , 1 12r r C r l C l l r

p p h C
a h a a h a C a C

y y
 

 
 

       
 

 

2

, ,

1

2
( )

r r C r l C l

r l

p p h
a h a a

y y
C

h a a

    



   
  

 
 (91) 

 

C2 can be calculated from Eq. (90): 

 
 

2

, , ,

2

2r r C r C l C l

l
r l

p p h
a h a h

y y
C a

h a a

    




  
       

  
  

 (92) 

 

Substituting constants C1 and  C2 into Eq. (80), the velocity along the y direction is: 
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   
2

, ,2

2 2
r C r l C lr

r l r l

a ap z p h a h
v z

y y h a a h a a

 
   

   
         

 

 
 

 
2

, , ,2

2
r l C r C l l C ll r l

r l r l

a a a hp h a a ha

y h a a h a a

    
  

  
 
    

 (93) 

 

Using the Leibnitz rule for differentiation of integrals, the second term of Eq. (75) can be 
written as: 

0 0

( ) ( )
h hv h

dz v z dz v h
y y y

   
 

     (94) 

 

Substituting equation of velocity (93) into the first part of Eq. (94)  results in: 

     
 

 

0

3 3 2 2 2
, ,

2
, , ,

( )

2 2

6 4 2 2

h

r C r l C lr l r l

r l r l r l

r l C r C l l C l

r l

v z dz

a ap h p h a h h p h a a ha

y y h a a h a a y h a a

a a h a h

h a a



     
     

   






     
             

 
 

 



 

 
 

   
 

2 22
, , , ,24 12

12 2
r C r l C l r l C r C lr l l r

r l r l

a a h a ah h a a a ap h h

y h a a h a a

      
  

     
       

 (95) 

 
and for the term v(h) 

       
 

     

2 2 2
, ,

2 2
, , ,

2 2

2 2 2

2 2

2

r C r l C lr l r l

r l r l r l

r l C r C l l C l r l r l

r l r l r l

a h a hp h p h a h p h a a ha
v h

y y h a a h a a y h a a

a a a h p h a h h a a ha
h

h a a y h a a h a a

      
     

       
   

     
             

     
            

 

 
 

 
2

, , ,2

2
r C r r l C r C lr l r

r l r l

a h a ap h a h a a

y h a a h a a

      
  

   
        

 (96) 

 
Thus the second term of Eq. (75) is written in total: 
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   
 

   
 

2 22
, , , ,

0

24 12

12 2

h
r C r l C l r l C r C lr l l r

r l r l

a a h a av h h a a a ap h h
dz

y y y h a a y h a a

       
   

           
                   


 

 
 

 
2

, , ,2

2
r C r r l C r C lr l r

r l r l

a h a ap h h a h a a h

y y h a a h a a y

      
  

     
         

 (97) 

 

For the third term of Eq. (75) the following is valid, as the squeeze motion only occurs: 

 
0

h w h
dz w

z t


 


 

 
  (98) 

 
 
The final term of Eq. (75) is the accumulation ratio, as mentioned during the derivation of the 
Reynolds equation and is equal to: 

0

h

dz h
t t

  


   (99) 

 

Substituting all the three terms for x, y and z directions in the Eq. (75) of continuity of flow 
the result is the Reynolds equation for slip conditions on the solid boundary.  

 

 
 

 
 

     

2 2 2 22 2

2 2

4 12 4 12

12 12

2 2

2 2

1

2

l r l r r l l r

l r r l

r r r l r

l r l r l r

h a a h a a h h a a a ah p p h

x x h a a y y h a a

U h a h a h h a h a a h p p h
U

x h a a h a a x h a a x x y y

h

x

     
    

     
   



          
             

          
                    





   
 

 
 

2
, , , , , , ,2l C l r C r l r C l C r r l C r C l r C r

l r l r

a a a a h a a a h h

h a a h a a x

        


 
      

        

 

   
 

 
 

 , , , , , , ,2

2
r C r l C l r l C r C l r C r r l C r C l

r l r l

a a h a a a h a a hh h

y h a a h a a y t

          
 

       
   
        

 (100) 
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Appendix	B	
Finite difference formulation of the Reynolds equation with the Elrod-Adams mass 
conservation algorithm.  

The Reynolds equation with the Elrod-Adams mass conservation algorithm is presented in 
Eq. (101): 

 
 
 

                
               

3 3 h hg( ) h g( ) h U

x 12 x y 12 y 2 x t
(101)

 
 
Pressure	Term	
The terms of the pressure induced flow from Reynolds Eq. (101) are: 
            

           

3 3
Cg( ) h g( ) h

x 12 x y 12 y
(102) 

 
 
According to Vijayaraghavan and Keith [9], the optimum way to handle the switch function 
g(θ), is the following: 
      1 1

1
g g

g g
x x x x

  
    

   
   

(103)

 
 

In Eq. (103) the term  1
g

x
 



is always equal to zero, because outside the boundary 

between the active and cavitation regions g is constant (1 or 0), therefore 0  g x , whereas 

on the cavitation boundary, fraction θ is equal to unity, therefore (θ-1)=0. Consequently, the 
following is valid: 
  1g

g
x x

  


 
 (104)

 
Inserting Eq. (104) in Eq. (102) and utilizing a half-step finite difference method: 

         
           

3 3 g 1g( ) h h

x 12 x x 12 x
 

       
 

   
  

 
 

3 3

i 1/2,j i 1/2,j

g 1 g 1
h i 1 / 2, j h i 1 / 2, j

x x

12 x
 (105) 
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The following operator may be used to calculate the quantities introduce in Eq. (105): 
 

     1
1/2

     
   

2
i i

i





  (106)

 
 
Finally, Eq. (105), with the aid of Eq. (106) yields: 

 
       

         

 

   
  

           
              

            
  

  


3 3

3 3
i 1/2, j i 1/2,j

3 3

g 1 g 1
h i 1 /2, j h i 1 /2, j

x xg 1g( ) h h

x 12 x x 12 x 12 x

g(i 1, j) (i 1, j) 1 g(i, j) (i, j) 1 g(i, j) (i, j) 1 g(i 1, j) (i 1, j)
h i 1 /2, j h i 1 /2, j

x(i 1) x(i)

12

 

           

        
           




  

  
             

     
 

3 3

2

3 3

h i 1 / 2, j g(i 1, j) (i 1, j) 1 g(i, j) (i, j) 1 h i 1 / 2, j g(i, j) (i, j)
12 x

1

x(i) x(i 1)

x(i 1 /2) x(i 1 /2)

g(i 1, j) (i 1, j) 1 g(i, j) (i, j) 1 g(i, j) (i, j) 1 g(i 1, j) (i 1, j) 1
h i 1 /2, j h i 1 /2, j

x x
12 x

     

               
      

      


                  




            



3 3 3 3

2

3 3 3

2

1 g(i 1, j) (i 1, j) 1

(i 1, j) 1 g(i 1, j)h i 1 / 2, j (i, j) 1 g(i, j) h i 1 / 2, j h i 1 / 2, j (i 1, j) 1 g(i 1, j)h i 1 / 2, j
12 x

(i 1, j)g(i 1, j)h i 1 /2, j (i, j)g(i, j) h i 1 /2, j h i 1 /2, j (i 1, j)g(i 1,
12 x

   3
j)h i 1 /2, j

 

         
        


3 3 3 3

2
g(i 1,j)h i 1 /2,j g(i, j) h i 1 /2,j h i 1 /2,j g(i 1,j)h i 1 /2,j

12 x
 (107) 

 
   

The same procedure can be used for the pressure term in the y direction: 

         

    
    


            



3

3 3 3 3

2

g( ) h

y 12 y

(i, j 1)g(i, j 1)h i, j 1 / 2 (i, j)g(i, j) h i, j 1 / 2 h i, j 1 / 2 (i, j 1)g(i, j 1)h i, j 1 / 2
12 y

 

         
         


3 3 3 3

2
g(i, j 1)h i,j 1 /2 g(i, j) h i, j 1 /2 h i, j 1 /2 g(i, j 1)h i, j 1 /2

12 y
 (108) 
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Shear	Term	
The term of the shear induced flow of Eq. (101) is: 
   


hU

2 x
 (109) 

 
 
According to the Elrod-Adams model, the mass flux due to the velocity of the liner (Fig. 22) 
is given by the following equation: 

                
 

(i, j) (i 1, j)
(i 1, j)h(i 1, j)(1 g(i 1, j)) g(i 1, j) (i 1, j) g(i, j)g(i 1, j)

2 2
x cconv

U h h
m h (110) 

 
 
This algorithm is the result of the following three special cases: 
 

a) If the upstream point is in the cavitation zone (g(i 1,j) 0  ), then, regardless of the 

downstream state: 

     (i 1, j)h(i 1, j)
2

x cconv

U
m  

b) If the upstream point is in the full film region (g(i 1,j) 1  ) and the downstream point 

is in the cavitation zone (g(i, j) 0 ): 

   h(i 1, j)
2

x cconv

U
m  

c) If both points are in the full film region: 

    


h(i 1, j) h(i, j)

2 2
x cconv

U
m  

 



125 
 
 

Therefore, the shear flow term of Reynolds equation can be written in the following form: 

     
            

      

       
 


          



C
x xc c

C C C

U
h

m mhU 1 1 12

2 x x x x

h(i 1, j) h(i, j)
(i, j)h(i, j)(1 g(i, j)) g(i, j)h(i, j) g(i 1, j)g(i, j)

U 2

2 x

h(i, j) h(i 1, j)
(i 1, j)h(i 1, j)(1 g(i 1, j)) g(i 1, j)h(i 1, j) g(i, j)g(i 1, j)

 
 
 


           





            


2

x

U g(i 1, j)g(i, j)h(i 1, j) g(i 1, j)g(i, j)h(i, j)
(i, j)h(i, j)(1 g(i, j)) g(i, j)h(i, j)

2 x 2 2

U g(i 1,j)g(i, j)h(i, j) g(i 1,j)g(i, j)h(i 1,j)
(i 1, j)h(i 1, j)(1 g(i 1, j)) g(i 1,j)h(i 1, j)

2 x 2 2
 


 

 

 

 
  

          

 

          

     







g(i, j)h(i, j) g(i 1, j)g(i, j)h(i 1, j)
g(i 1, j) 2 g(i 1, j)

2 2

g(i 1,j)h(i 1,j)
(i, j)h(i, j)(1 g(i, j)) (i 1,j)h(i 1,j)(1 g(i 1,j)) 2 g(i, j)

2

(i 1,j)h(i 1,j)(1 g(i 1,j)) (i, j)h(i

U
2 x

U
2 x

U
2 x

 

 

 
  

    

   

     


g(i 1,j)h(i 1,j)
, j)(1 g(i, j)) 2 g(i, j)

2

g(i, j)h(i, j) g(i 1, j)g(i, j)h(i 1,j)
g(i 1,j) 2 g(i 1,j)

2 2

U
2 x

 

 
 
Squeeze	film	term	
 
The squeeze film term can be written as: 

      
  
 

                   
t t 1 t 2 t 1 t 2

t t

3 (i,j) 4 (i,j) (i,j) 4 (i,j) (i,j)h h dh dh 3h(i,j)h (i,j) h(i,j) (i,j) h(i,j)
dt 2 t dt 2 t 2 tt t t

 
Terms dh/dt and / t  of the previous equation are computed utilizing a second-order 
backward difference scheme. 
 
Inserting all the above terms into Reynolds equation the result is the following: 
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   

   

    
                   

    
                


  




3 3

2 2

3 3

2 2

2

g(i 1, j)h i 1 / 2, j (i 1, j) g(i 1, j)h i 1 / 2, j h(i 1, j)(1 g(i 1, j)) (i 1, j)
12 x 12 x

g(i, j 1)h i, j 1 / 2 (i, j 1) g(i, j 1)h i, j 1 / 2 (i, j 1)
12 y 12 y

g(i, j) h i 1 /
12 x

U
2 x

         
         
   

                 


         



      


3 3 3 3

2

3 3 3 3

2

3 3

2

dh 3h(i, j)
2, j h i 1 / 2, j g(i, j) h i, j 1 / 2 h i, j 1 / 2 (i, j)

12 y dt 2 t

g(i 1, j)h i 1 / 2, j g(i, j) h i 1 / 2, j h i 1 / 2, j g(i 1, j)h i 1 / 2, j
12 x

g(i, j 1)h i, j 1 / 2 g(i, j) h i, j 1 / 2 h i, j 1 /
12 y

     
   

  

             

3 3
2 g(i, j 1)h i, j 1 / 2

g(i 1, j)h(i 1, j) g(i, j)h(i, j) g(i 1, j)g(i, j)h(i 1, j)
2 g(i, j) g(i 1, j) 2 g(i 1, j)

2 2 2

U
2 x

 

 
  




t 1 t 2
4 (i, j) (i, j)

h(i, j)
2 t

 (111) 

 


