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The Aim of this Thesis 

 
Since this text is written as the final thesis of the Master’s degree in Analysis and 

Design of Earthquake Resistant Structures of the School of Civil Engineering at NTUA, it 
is primarily aimed to educate the engineers, designers and analysts, interested in the 
behavior of large structures, more specifically bridges, under seismic loading when soil-
foundation-structure interaction effects are present. For purposes of completeness a 
parametric investigation considering different structures, earthquake excitations, and 
foundation system properties is conducted in an attempt to identify the important 
parameters that influence the behavior of a structure with the SSI effects. The study 
doesn’t intend to conclude whether the soil-structure interaction is beneficial or 
detrimental since this question has been addressed adequately in the literature. 

 
 
 

Acknowledgements 

 
I would like to thank Professor Vlasis Koumousis, for agreeing to serve as my 

supervisor and for his constant support provided to me throughout the course of this 
study. His guidance helped me in all the time of research and writing of this thesis. I 
would also like to express my sincere gratitude to Professor Panos Tsopelas for the 
continuous support of my research, for his patience, motivation, enthusiasm, and his 
immense knowledge on the subject.  

I would also like to thank Dr. Amir Kaynia, of the Norwegian Geotechnical 
Institute for his generosity of providing an executable version of the computer software 
PILES used in this present study to obtain the dynamic impedances of the pile 
foundations considered.  

 

 

 

 

 

 

 

 



 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

ABSTRACT 

 
 
This thesis focuses on the impact of the Soil-Structure Interaction (SSI) on seismic 

isolated bridges. The general conception is that the beneficial effects of the structural 

isolation are amplified due to the dynamic interaction between the soil, the foundation 

and the structure. Such a misconception is related with the additional flexibility that the 

design spectrum contributes to the system when the SSI acts. In reality, the spectrum is 

only a smoothed average of the response spectra. Hence, the lengthening of the period 

may possibly not correspond to small seismic forces, as it is unlikely for the response at 

a real seismic event to follow closely the smooth line of the spectrum (Figure A). 

 

  
Figure A. The design spectrum and the SSI effects. 

 

The validity of this statement is examined with the help of stick models of 2 

seismic isolated bridges and equivalent models of the frequency-dependent impedance 

functions of the soil and foundation (consists of a pile group). The latter models consist 

of frequency-independent springs and dashpots as well as "gyromasses", which are 

elements proposed recently in the literature. Each "gyromass" plays the role of an 

ordinary mass, with the advantage of not adding inertial forces into the system (Figure 

B). Appropriate combinations of springs, dashpots, and "gyromasses" can match in the 
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frequency domain even the most frequency-sensitive impedance functions providing an 

advantage over simple Voigt models (spring-dashpot in parallel) used frequently in SSI 

analyses. The models are suitable for use in time domain and are utilized in this study 

for the nonlinear time history analyses of the bridges, subjected to 2 sets of 20 motions; 

the near fault and the far field sets.  

 

 (a)                         (b) 

 

 
Figure B. Modeling of SSI effects at single degree of freedom systems a) including an ordinary mass and b) 

a gyromass. 

 

The paper examines factors which influence the SSI effects on a structure: number 

and geometry of piles, spacing of piles, soil characteristics, flexibility of superstructure 

etc. The results are presented in terms of displacements and forces of the system and 

some general conclusions are drawn over the possible vulnerability of a soil-foundation-

isolated superstructure system to the SSI effects. To this direction, the dynamic 

characteristics of the models experiencing the soil–structure interaction in combination 

with the power spectra of “dangerous” excitations reveal interesting aspects of the total 

system’s response. Further analysis would possibly predict the cases that the SSI 

demands detailed modeling due to its detrimental role.  

 

 

 

mp

mf

K

C

Ṁ

ug

üg

uf

up

mp

mf

K

C

Mug

üg

uf

up

mp

mf

K

C

Ṁ

ug

üg

uf

up

mp

mf

K

C

Mug

üg

uf

up

SDOF system 
with 

“gyromass”

SDOF system 
with 

ordinary mass

 
gf Um 











)UU(k

UKUCUMUm

Um)UU(kUm

fppier

fffff

gpfppierpp

gf UmM 










)()UU(k

]UKUCUM[Um

Um)UU(kUm

fppier

fffff

gpfppierpp



 

Contents 
 

 

Introduction ............................................................................................................................................................ 9 

1. Soil Structure Interaction Effect .................................................................................................................. 11 

2. Soil-Foundation-Bridge System Modeling ............................................................................................... 17 

2.1. Soil - Foundation System ....................................................................................................................... 17 

2.1.1. Dynamic impedances of pile groups ............................................................................................... 19 

2.2. Seismic Isolation System ........................................................................................................................ 37 

2.3. Bridge Systems .......................................................................................................................................... 40 

3. Computational modeling ............................................................................................................................... 43 

3.1. Computational Modeling of the Soil-Structure Interaction Problem ......................................... 43 

3.1.1. Spring-Mass-Damper Models to account for SSI ....................................................................... 43 

3.1.2. The concept of GYROMASS ........................................................................................................... 45 

3.2. Calibrating GYROMASS Models ........................................................................................................ 50 

3.2.1. Levenberg Marquadt Method ......................................................................................................... 50 

3.2.2. Parameter calibration of Type II model ........................................................................................ 53 

3.3. Models ......................................................................................................................................................... 60 

3.3.1. Voigt Model ......................................................................................................................................... 60 

3.3.2. Type II Model ..................................................................................................................................... 62 

3.3.3. Simple Type II Model ........................................................................................................................ 63 

3.4. Dynamic properties of the Soil-Foundation-Structure System (Eigenvalue Analysis) .......... 65 

3.5. Seismic Excitations .................................................................................................................................. 68 

4. Analyses Results and Discussion ................................................................................................................. 71 

4.1. Non Linear Time History Analyses and Results .............................................................................. 71 

4.2. Bridge I Analyses ..................................................................................................................................... 72 

4.3. Bridge II Analyses .................................................................................................................................... 75 

4.4. Qualitative Prediction of SSI Response .............................................................................................. 80 

4.4.1. Transfer Function............................................................................................................................... 80 

4.4.2. White Noise or actual Seismic Motion as Input to the TF ...................................................... 82 

4.4.3. Structural System Properties ........................................................................................................... 82 

4.5. Effect of Ep/Es ........................................................................................................................................... 95 



 

 

5. Conclusions .................................................................................................................................................... 105 

Bibliography ....................................................................................................................................................... 107 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Introduction 

 
 
After years of investigating constructions that have been severely damaged by 

earthquakes, structural engineers have developed the most intelligent, innovative and 

technologically safe design theories so as their projects to deal successfully with their 

environment and transfer safely all their loadings to the soil. In common projects, such 

as housing buildings, engineers rarely examine in detail the soil’s characteristics and the 

subsequent effects of a possible interaction with the structures during an earthquake 

event. Some soils are hard, like rock, while others are weak, like loose sand. The 

different soil properties can affect seismic waves as they pass through a soil layer. This 

will also influence what needs to be done to structures, especially the heavy ones, to 

help them perform better in an earthquake. The need of simplifying things during the 

design of a new project, often leads to generalized considerations, such as the structure 

being linearly interacting with the soil or even being fixed base. The real image of the 

problem though, is not exactly this. In fact, the foundation interacts nonlinearly with 

the surrounding soil and modifies unpredictably the final performance of the total 

system. The phenomenon is the so-called soil-structure interaction (SSI). 

Soil-Structure interaction is often neglected by engineers during the design of 

their structures. The problem of such a policy is that the designer not only has to be 

totally aware of the phenomenon’s nature but also confident that the ignorance of the 

soil-structure interaction effects is not going to cause ultimate collapse or even 

serviceability problems to the structure. The objective of this thesis is to investigate in 

which cases the interaction effects between the soil and large structures can be 

stimulated with simple models or further analysis is needed. For this purpose, 2 

different bridge models were considered, one representative of short stiff highway 

overpass systems and another tall flexible multispan highway bridges. The analysis 

consisted of many stages. Firstly, the dynamic impedance of the soil-foundation 

interaction was modeled with frequency-dependent springs and dashpots. Then, 

nonlinear time history analyses were performed for the piers of the two types of bridges, 

for two sets of seismic motions; far-field and near-fault accelerograms. Finally, the 

results of these analyses were summarized and reach to a general conclusion: depending 

on the system's conditions and the earthquake motion’s characteristics the negligence of 

soil-structure interaction may be harmful. 
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1 
Soil Structure Interaction Effect 

 
 
Soil-structure interaction is the phenomenon where a structure together with its 

foundation and soil behave as a system, with the soil and the structure motions 

influencing each other in a way which can’t be absolutely decomposable. Many design 

codes state that the SSI effects may be safely ignored during the design process of heavy 

structures, however that is not always true. For example in ATC-3 provisions (1978) 

and also in NEHRP specifications (1997) and its latest revisions it was effectively stated 

that the response of a structure under earthquake loading could be conservatively 

evaluated without taking the SSI effects into consideration. The myth of the SSI effects 

being safely neglected stems from the perception that the phenomenon makes the 

structural system more flexible when subjected to an earthquake and hence it reduces 

the overall seismic loading. This belief is reasonable enough for light structures in 

relatively stiff soil. When it comes to heavy structures resting on soft soil (such as 

heavy bridges, nuclear power plants etc), the design considerations have to be different, 

not only because of the significance of such structures, but also because the 

environment’s and system’s behavior uncertainties under a certain seismic excitation are 

high.  

The code compliant acceleration design spectrum (see Figure 1) decrease 

monotonically with increasing structural period; a fact that leads to misconceptions over 

the seismic demand. Considering that the design spectrum is a smoothed average of the 

response spectra for many different earthquake motions, it is unlikely that the 

acceleration response from a real seismic excitation will follow it closely. The factors 

which determine the final performance of the system are the characteristics of the 

earthquake excitation, the superstructure, the foundation and the soil’s profile.  

In order to highlight the important features of SSI phenomenon, the appropriate 

models and excitations have to be considered and their analysis results should be 

compared. For this purpose, a variety of methods have been proposed and advanced 

through the years. They can be categorized in two large groups: a) the direct solving 
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methods and b) the substructure solving methods. Undoubtedly, the simplest approach for 

solving accurately problems involving interaction between soil and foundation is to 

model a big area around the foundation and then subject the boundaries to a bedrock 

motion (the non linearities of the soil have to be included). In such an analysis though, 

the dynamic degrees of freedom would be too many and this would increase both the 

cost and the duration of the analysis procedure.  

 

 

Figure 1. The design spectrum and the SSI effects. 

 

In the substructure method the system is analyzed after considered being 

composed of separate parts/substructures. The link between the separate parts is 

established if compatibility conditions are imposed. Such an approach allows for easier 

identification of the interaction’s important parameters and helps quantifying how the 

interaction influences each part separately. In addition this approach offers 

independence, as the change of the properties of one subsystem may leave the others 

unaffected. This is exactly the way that this study deals with the phenomenon of SSI: 

the structure is not one but three interrelated subsystems; soil, foundation, 

superstructure.  

For a more detailed examination of the substructure method, it is necessary to 

introduce some components of the soil behavior and the SSI which accompany the 

substructure method: free field, inertial and kinematic response. 

Free field response is the response of the soil’s surface, without the presence of the 

structure, as the seismic waves travel from the rock stratum through the soil profile (see 
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Figure 2, b). It is clear that the excitation that is generated from the source of the 

earthquake will be different from the motion at the top of the ground, due to the wave 

reflections and refractions that may occur. The estimation of the “distorted” earthquake 

motion that accounts for the free field response (requires soil amplification analysis) 

includes the exact modeling of the soil profile of the region and the dynamic 

characteristics of each layer, which introduces more uncertainties to the SSI problem. 

For simplicity purposes, in this study the earthquake excitation is considered to be the 

same as the free field response, as recorded at the control point (no soil amplification 

analysis is performed).  

The free field response is not the motion that the structure will be exposed to, due 

to the presence of the structure’s foundation, which experiences both horizontal 

displacements and rocking. As a result, a scattered wave field may be generated, with 

the foundation being the source of it. This interaction between the free field motion and 

the foundation’s motion, in the absence of the superstructure, is the kinematic response 

(Figure 2, c). 

 

(a) (b) (c) (d)

O O

 
Figure 2. Seismic response of a structure resting on soil which lays on rock: (a) rock, (b) free field motion, 

(c) kinematic interaction, (d) inertial interaction. 

 

Considering all the above information, it is mandatory to highlight that the final 

seismic performance of the structure is also depending on the characteristics of the 

superstructure. The inertial loads will cause additional moments and displacements at 

the superstructure that are going to interact with the soil, through the foundation. This 

state is known as inertial interaction (see Figure 2, d). The characteristics of the kinematic 

and inertial response are those who determine whether the soil structure interaction 
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will be beneficial or detrimental for the whole structure. In other words, depending on 

the type and profile of the foundation, of the soil and the seismic energy that will be 

introduced to the system, the result may be either beneficial or detrimental.  

In order to clarify the impact of the SSI effects through the aforementioned 

inertial interaction of the superstructure, a hypothetical structure laying on rock is 

introduced. For the structure on the rock, the horizontal input motion of the bedrock 

can be directly applied to the base of the structure, due to the large stiffness of the rock 

that leads to zero amplification of the excitation. The inertial response of the system’s 

base is constant throughout its height. Thus, the developed overturning moment and 

shear force will lead the base to no additional deformations but for the seismic motion’s. 

As a result, no rocking component will appear. The performance of the structure 

depends only from its own characteristics.  

 

= +

 

Figure 3. Substructure method of dealing with soil structure interaction. 

 

For the structure on the soft soil, things are different. In general, the input 

motion is amplified (the frequency content controls this part) as the seismic waves travel 

towards the surface of the site and result in larger accelerations and deformations (see 

Figure 2). The presence of the structure’s rigid base will also change the seismic wave 

scenery and thus it will suffer different inertial responses through its height. The 

equilibrium demands a rocking moment to appear and additional deformations at the 

soil. Although in this chapter only a rough idea is given concerning the effects of the 

soil structure interaction, it is enough to understand the substructure method of 

analysis. For the structure of Figure 3, the method proceeds as follows. After the 

calculation of the free field response, which is the same as the control motion for this 
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study, it is used as input motion for the soil dynamic subsystem. The stiffnesses of the 

discontinuing line that is in contact with the rigid base are estimated. The soil can be 

modeled as a spring – dashpot system, which characteristics can be evaluated. Then the 

superstructure’s model can be subjected also to the free field motion through the spring 

– dashpot system.  

It is obvious that in order to study the effects of the soil - structure interaction, 

many realistic and acceptable simplifications should be done. The need for approximate 

results was the main reason for not implementing the Finite Element Method in this 

study. FEM would effectively model the whole system and develop an accurate analysis, 

but this would be extremely time and money consuming. The superstructure was 

chosen to be modeled with the help of the so-called “stick model”. Stick models are 

widely employed in the dynamic analysis of bridges when approximate results are 

desired or when detailed models are difficult to construct. Its simplicity and relative 

accuracy makes it a satisfactory solution for modeling. With the appropriate masses and 

stiffnesses the stick model may be representative of one span or the whole bridge 

system.  

The complicated SSI phenomenon has now become clearer. Interaction between 

the soil and the foundation subjected to an earthquake is distorting the expected 

response in a not easy predictable way. In the case where the superstructure behaves in 

a nonlinear way, the parameters of examination are more. All the aforementioned 

statements have been examined before by many researchers, after considering quite 

representative models for soil, foundations and superstructures. Spyrakos (1990, 1992) 

used simple linear elastic models and concluded that the soil-structure interaction 

effects make structures more flexible and less seismically affected. In another study, 

Mylonakis and Gazetas (2000) used another simplified elastoplastic model for a bridge 

and its foundation, which was subjected to a set of actual acceleration time histories 

recorded on soft soil. Though the lengthening of the period made the structure more 

flexible, the SSI phenomenon played detrimental role on the seismic performance of the 

bridge. In fact, damage in structures associated with SSI effects has been proven or 

suspected in many cases in the past. For instance, the Mexico City earthquake of 1985 

was particularly destructive to 10 to 12-story buildings (founded on soft clay) whose 

period increased from about 1.0 sec (for the fixed-base structure) to nearly 2.0 seconds 

due to SSI (Resendiz & Roesset 1985). Other evidence for a detrimental role of SSI has 

been presented by Meymand (1998), Gazetas & Mylonakis (1998), and Celebi (1998). 

According to these findings and many other researches on this issue, the conclusion is 

that SSI may have either beneficial or detrimental effects on the structure, depending on 

its characteristics and those of the soil and earthquake motion.  
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2 
Soil-Foundation-Bridge System Modeling  

 

 

2.1. Soil - Foundation System 

 

After years of design experience with structures on, with, or within the soil, 

engineers, although it is not possible to model all details of geometry and material of a 

real problem, consider the following essential features in soil-foundation modeling: a) 

the soil consists of horizontal layers resting on a half space, both consisting of isotropic 

viscoelastic material with hysteretic damping, b) the properties vary with depth but 

remain constant within the individual layers, c) when the foundation interaction is taken 

into account, its behavior is influenced by the geometry, mass, and the type of the 

foundation, e.g. for pile foundation the number, the location of the piles, as well as their 

dimensions influence the behavior. Considering the simplest case of dynamic excitation, 

a harmonic oscillation, the dynamic response of the foundation may be easily computed 

once the “dynamic impedance” at the top of the foundation is known for each particular 

frequency of interest, ω.  

It is generally accepted, especially for the layers closer to the surface, that soil 

experiences nonlinear behavior when excited by the strong seismic motions such as the 

ones of interest to structural engineers. However, one can list a few reasons which can 

be called to advocate the practice of accepting linear behavior for the soil - foundation 

systems in modeling:  

1) Currently available foundation design codes do not allow soil-foundation 

systems to respond in the inelastic range (no damage or plastic hinging of any 

kind is allowed). Thus the soil and foundations are designed, and expected, to 

respond in the elastic range. 

2) With the currently available computational tools and power the cost and the 

time of performing nonlinear soil-foundation analyses are quite high.  
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3) The substructure method for soil-structure interaction analysis implicitly 

assumes the superposition principle to be valid. The total solution, when the 

structure is inserted into the seismic environment of the free field, is the sum of 

the free field and kinematic interaction parts of the response. Even when 

determining the free-field site response starting from the motion in the control 

point, superposition is used. This means that a linear behavior of the system is 

actually calculated. 

4) Considering that soil and/or foundation behave in a nonlinear hysteretic 

manner increases the number of parameters required to capture this behavior 

on top of the geometric complexity required to model variability/randomness 

of soil strata. Such large number of parameters might render the nonlinear 

analysis of soil and foundation not only impractical but also highly unreliable 

since it is very difficult to evaluate these parameters. 

In lieu of the above, before moving towards performing nonlinear soil analysis it is 

rather “mandatory” to fully clarify potential SSI effects caused in a linear soil 

environment. Therefore, one of the most important simplifications of the soil-foundation 

models considered by engineers, the linearity of the soil as well as the linearity of the 

foundation is also adopted in the present study. 

 

mf
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Figure 4. Constrained-head pile group floating in a homogeneous soil stratum. 
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Figure 4 shows the soil-foundation system considered in this study. A group of 

circular floating piles of diameter d and length L is embedded in a homogeneous soil 

profile underlying by rigid bedrock. Each pile is treated as a linear elastic beam having 

constant Young’s modulus, Ep and mass density, ρp. The soil is assumed to be a linear 

nonliquefiable hysteretic medium, with a constant mass density ρs, a constant Poisson’s 

ratio ν, and a constant Young’s modulus Es. All piles are rigidly connected to a pile cap, 

on the top of the pile group, which is also the base of the superstructure. The values of 

these parameters, which are summarized in Table 1, are representative of the real soil 

profile which exists in the vicinity of the Meloland Road Overcrossings in California, 

according to the California Division of Mines and Geology (Kampas and Makris, 2011).  

 

 

2.1.1. Dynamic impedances of pile groups 

 
The harmonic response of pile groups is substantially affected by the dynamic 

interaction between the soil and the piles and between the individual piles. The dynamic 

impedance of soil-foundation systems is evaluated as function of the frequency of 

oscillations under harmonic excitations. Following the early numerical studies by Wolf, 

Von Arx and Nogami, several researchers have developed a variety of computational 

(rigorous and simplified) methods for assessing the pile-soil-pile interaction and 

computing the dynamic impedances of pile groups. Under lateral loading, the 

impedances of the foundation being exposed to an earthquake motion are related to: 

bending (Kxx), rocking (Krr) and coupled bending-rocking effects (Kxr). For each 

sinusoidal excitation with a frequency ω, dynamic impedance is defined as the ratio 

between the magnitudes of excitation and of the resulting displacement or rotation at 

the pile head: 

 

)( 
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
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eu
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Such a definition is widely known from the simple Hooke’s law, F=Ku. The 

horizontal dynamic force is described as F=Poeiωt and the resulting horizontal 
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displacement as u=uoei(ωt+φ)
. The angle φ represents the phase-difference between the 

input and the output, on account of the total damping the system experiences. Part of 

this energy dissipation (damping) takes place through the hysteretic action of the soil 

(internal/inherent material damping) and another part through the scattered wave 

fields that the piles generate themselves (radiation damping). The three dynamic 

impedances that take part in a seismic event are defined in a simple cantilever model in 

Figure 5. It is preferable to express the dynamic impedances as: 

 

xxxx CiKxx  ,                                                                                           (2) 

 

where, Kxx is the “spring” coefficient modeling the soil and the foundation, Cxx is the 

“dashpot” coefficient, ω is the frequency of the harmonic input (under free interpretation 

the seismic event) (rad/sec) and i=(-1)1/2.  

 

U = 1

Kxx

Krx
Krr

Kxr

θ = 1

 

Figure 5. Definition of the bending, rocking and coupled bending-rocking impedances. 

 

Physically, Kxx represents the stiffness and inertia characteristics, while Cxx the 

energy loss due to both hysteretic and radiation damping. Obviously, the total stiffness, 

Kxx, is strongly frequency sensitive, a fact that makes difficult the prediction of their 

behavior during a specific seismic excitation. Similarly, the dynamic impedances related 

with rocking and coupled bending-rocking are expressed as: 

rrrr CiKrr                                                                                               (3) 
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rxrx CiKrx                                                                                               (4) 

Pile foundations, sometimes referred to as deep foundations, have been a subject 

of considerable research by engineers. The majority of the studies have focused on short 

and long-term static pile behavior, estimation of lateral deflection and load capacity. In 

the last 20 years though, many powerful techniques have been developed for computing 

foundation dynamic impedances. The codes that have been developed are a useful tool in 

the hands of engineers, but at the same time they can make the problem more 

unreliable. Gazetas, Dorby, Beredugo, Novak, Veletsos, are some of the engineers who 

looked through the problem of soil-structure interaction and ended up with more simple 

and also accurate ways of estimating the foundation dynamic impedances, without even 

the help of a computer (Gazetas, 1984; Gazetas and Dorby, 1984 a, b; Gazetas and 

Tassoulas, 1987a, b).  

The dynamic stiffnesses of a pile group, in any vibration mode, can be computed 

using the dynamic stiffnesses of a single pile in conjunction with the use of 

superposition principle, originally developed for static loads by Poulos (1968), and later 

extended for dynamic loads by Kaynia and Kausel (1982), Sanchez-Salinero (1983) and 

Roesset (1984). It can be used with confidence at least for groups with less than 50 piles. 

Dynamic interaction factors for various modes of loading are available in the form of 

non-dimensional graphs (Gazetas et al., 1991) and in some cases, closed form 

expressions derived from a beam on winkler foundation model in conjunction with 

simplified wave-propagation theory (Dobry and Gazetas, 1988; Makris and Gazetas, 

1992). Depending on the foundation type and its soil-support condition, the procedures 

currently being used in evaluating SSI effects on bridges can broadly be classified into 

two main methods, namely, the so-called elastodynamic method that has been developed 

and practiced in the nuclear power industry for large foundations, and the so-called 

empirical p–y method that has been developed and practiced in the offshore oil industry 

for pile foundations. 

In this study, for the estimation of the dynamic impedances of pile groups, the 

boundary element program PILES (Kaynia, 1989) was utilized. This software uses the 

elastodynamic method which is based on a frequency domain solution of the closed-form 

Green’s function for both the soil and the piles, whose displacements have to be 

compatible. The term “displacements” includes not only translations but also rotations 

and likewise the term “response” both forces and moments. The software assumes that 

the behavior of the piles and the ground is linear elastic, while the pile cap is considered 

rigid and not in contact with the ground. The ground is assumed to be horizontally 

layered and resting either on rigid bedrock or viscoelastic halfspace. The piles are 

characterized by their radius, mass per unit length, bending and axial rigidities and 
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Poisson’s ratio. Although it is made for circular piles, any type of cross section may be 

analyzed with an equivalent radius of its area. The most important results that PILES 

computes are the dynamic foundation stiffnesses of a specific pile group, after having 

interacted with the soil profile. The results are used in this study so as to be the data for 

an algebraic formula that predicts the impedances at different frequencies. Table 1 

summarizes the input used in PILES to model the soil profile of the problem studied.  

 

Table 1. Properties of the soil profile to be studied. 

Number of layers (input PILES)  70 ( max ) 

 

Total Thickness ( m ) 21.5 

Homogeneous / Inhomogeneous Homogeneous 

Halfspace / Rigid Base Halfspace 

Shear Wave Velocity, Vs 

( m/sec ) 
110 

G = ρsVs
2  = 22 MPa 

Mass Density, ρs 

( kg/m3 ) 
1800 

Damping Ratio, ξ 0.10 Es = 2(1+v)G = 0.062 GPa 

Poisson’s Ratio, ν 0.40  

 

Figure 6 presents the 5x5 pile group of the 2 bridge models considered in this 

study. The number and characteristics of piles was chosen based on the real foundation 

image of the Meloland road overcrossing bridges. In order to examine the effect of the 

number of piles on the overall seismic response of the structure, 2 more pile groups 

were considered: one 3x3 and one 2x2 pile group, with the same material characteristics 

and equivalent pile diameters so as to represent the same foundation area and result in 

approximately the same static impedances (=0). As the number of piles decreases, the 

interaction is expected to be less between them because the distance between them is 

greater. Apparently the different pile groups lead to different impedance functions as 

functions of . The 3 equivalent pile groups are also examined for the second bridge, 

where the diameters are greater due to the superstructure being larger. Table 2 presents 
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the material and geometrical properties of the piles in the considered pile groups. The 

properties of the pile groups are identical for the two directions x and y due to the 

symmetric geometry. The bridge models are analytically presented in §2.3. 

 

2.5d

d

5x5 3x3 2x2

5d

10d

Y

X

Y

X

Y

X

 

Figure 6. Geometry of 5x5 and equivalent 3x3 and 2x2 pile groups (for both bridges). 

 

Table 2. Properties of the 3 equivalent pile groups of study. 

 Bridge I Bridge II 

Pile Group Label 5x5 3x3 2x2 5x5 3x3 2x2 

Number of piles, N 25 9 4 25 9 4 

Diameter, d ( m ) 0.43 0.7 1 1.8 3 4.5 

Length, L ( m ) 21.5 21.5 21.5 21.5 21.5 21.5 

Distance, S, from pile 

to pile ( m ) 
1.08 3.5 10 4.5 9 18 

Mass Density, ρp  

( kg/m3 ) 
2500 2500 2500 2500 2500 2500 

Modulus of Elasticity, 

Ep ( GPa ) 
18.5 18.5 18.5 18.5 18.5 18.5 

L/d 50 31 21 12 7 5 
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The considered analyses with the PILES software are: 2 pile groups (one for each 

bridge) and 3 sets of pile configurations per group, 5x5, 3x3, 2x2, (same soil profile, 

with Ep/Es = 300, ρs/ ρp = 0.7 and s/d = 2.5, 5 and 10.) Figures 7, 8, and 9 present the 

dynamic impedances of Bridge I for the three sets of pile configuration. The stiffnesses 

are presented as functions of the dimensionless frequency of excitation ao = ωd/Vs, 

where ω is the frequency of the harmonic excitation (or of the seismic event), d is the 

diameter of each pile and Vs is the S-wave velocity of the soil profile. The parameters 

Kxx and ωCxx are respectively the real and the imaginary parts of the horizontal 

dynamic stiffness of the pile group, Κxx, which are related to bending. 

The values of the parameter ao where picked so as to be representative of the range 

of interest. Specifically, for a range of excitation’s periods T= 0.25-2 secs and a mean 

value of shear wave velocity Vs=200 m/sec and diameter d=1 m, the ao parameter takes 

the value of 0.25. This study focuses to values up to 1, which is considered as an upper 

limit of the values of interest. 

 

 

Figure 7. Kxx, of the 5x5 pile group, Bridge I. 

 

As the number of the piles decreases, the horizontal dynamic stiffnesses tend to 

appear less variation through the frequency range. Specifically, the real part that 

corresponds to spring stiffnesses is getting smaller values as the frequency of the 

excitation moves towards ao=1 (ao=1 → ω = 110 – 260 rad/sec → T = 0.05 – 0.02 sec, 

depending on d). The opposite is happening at the imaginary part, which represents the 

damping of the system. 
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Figure 8. Kxx, of an equivalent to the 5x5 pile group in Figure 7, 3x3 pile group, Bridge I. 

 
Figure 9. Kxx, of an equivalent to the 5x5 pile group in Figure 20, 2x2 pile group, Bridge I. 

 

Figures 10 and 11 are comparing the impedances of the 3 pile groups. It is useful to 

observe the above conclusions in dimensionless figures, where the dynamic stiffnesses of 

the groups are compared with the static stiffnesses of the single piles: 
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where Kxx, ωCxx are the two parts of the bending dynamic stiffnesses, N is the number 

of the piles and Kx, single is the static bending stiffness of the single pile (see Table 3). 

Figures 12 and 13 are showing the dimensionless impedances of Figures 9 and 10. The 

imaginary part is additionally divided by dimensionless coefficient ao. 

 

Table 3. Single pile static stiffnesses. 

Ep=18.50 GPa Bridge I Bridge II 

Pile Group 

Label 

5x5 

(d=0.43m) 

3x3 

(d=0.70m) 

2x2 

(d=1m) 

5x5 

(d=1.8m) 

3x3 

(d=3m) 

2x2 

(d=4.5m) 

Single Pile 

Static Stiffness  

( kN/m ) 

9.02×104 1.46×105 2.08×105 3.77×105 6.22×105 9.06×105 

 

Concerning the rocking dynamic impedances, Krr and ωCrr (real and the imaginary 

parts of the rotational dynamic stiffness of the pile group, Κrr), are presented in Figures 

14, 15 and 16, while Figures 17 and 18 compare the values of Krr and ωCrr for the three 

pile group configurations for the Bridge I.  Presenting the same results for 

dimensionless rocking impedances, in Figures 18 and 19, the normalization follows the 

Equations (7) and (8). 

 

2

,sin* ( * ( 0))
rr
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rr
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
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where N is the number of piles, xi is the horizontal distance of each pile from the basic 

coordinate system of the pile group and Kx, single is the static stiffness related with 

bending of each pile (see Table 3).  



 

 
Figure 10. Comparison of the stiffnesses, Kxx(ω), of 5x5, 3x3 and 2x2 

pile groups, Bridge I. 

 
Figure 12. Dimensionless real parts of the bending dynamic 

impedances, Kxx(ω), Bridge I. 

 
Figure 11. Comparison of the dampings, ωCxx(ω), of 5x5, 3x3 

and 2x2 pile groups, Bridge I. 

 
Figure 13. Dimensionless imaginary parts of the bending dynamic 

impedances, ωCxx(ω), additionally divided by ao, Bridge I. 
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Figure 14. Krr, of the 5x5 pile group, Bridge I. 

 
Figure 15. Krr, of an equivalent to the 5x5 pile group in Figure 14, 3x3 pile group, Bridge I. 

 
Figure 16. Krr, of an equivalent to the 5x5 pile group in Figure 14, 2x2 pile group, Bridge I.
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Figure 17. Comparison of the stiffnesses, Krr(ω), of 5x5, 3x3 and 2x2 

pile groups, Bridge I. 

 
Figure 19. Dimensionless real parts of the rocking dynamic impedances, 

Krr(ω), Bridge I. 

 
Figure 18. Comparison of the dynamic impedances, ωCrr(ω), of 

5x5, 3x3 and 2x2 pile groups, Bridge I. 

 
Figure 20. Dimensionless imaginary parts of the rocking dynamic 

impedances, ωCrr(ω), additionally divided by ao, Bridge I. 
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Rocking oscillations are not in general independent of the bending response. 

Considering the effect of the coupling is beyond the scope of this study, however they 

coupling stifnesses are presented here in for completeness. The coupled bending-

rocking impedances (Kxr, ωCxr) are also obtained from PILES and are presented in the 

next figures. 

 

 
Figure 21. Krx, of the 5x5 pile group, Bridge I. 

 

 
Figure 22. Krx, of an equivalent to the 5x5 pile group in Figure 20, 3x3 pile group, Bridge I. 
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Figure 23. Krx, of an equivalent to the 5x5 pile group in Figure 20, 2x2 pile group, Bridge I.  

 

A general but significant comment applicable to all the presented figures above is 

that the values of the stiffness and damping of the soil-foundation systems considered 

here in, may greatly differ depending on the frequency of the (seismic) excitation. The 

next figures (Figures 24-30) present the dynamic impedances of the considered pile 

groups for Bridge II. The impedances are expected to reach larger values and may vary 

much more through the frequency range of interest.  

 

 
Figure 24. Kxx, of the 5x5 pile group, Bridge II. 
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Figure 25. Kxx, of an equivalent to the 5x5 pile group in Figure 24, 3x3 pile group, Bridge II. 

 

 
Figure 26. Kxx, of an equivalent to the 5x5 pile group in Figure 23, 2x2 pile group, Bridge II. 
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Figure 27. Comparison of the stiffnesses, Kxx(ω), of 5x5, 3x3 and 2x2 

pile groups, Bridge II. 

 
Figure 29. Dimensionless real parts of the bending dynamic 

impedances, Kxx(ω),  Bridge II. 

 
Figure 28. Comparison of the dampings, ωCxx(ω), of 5x5, 3x3 and 

2x2 pile groups, Bridge II. 

 
Figure 30. Dimensionless imaginary parts of the rocking dynamic 

impedances, ωCxx(ω), additionally divided by ao, Bridge II. 
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Figure 31. Krr, of the 5x5 pile group, Bridge II. 

 
Figure 32. Krr, of an equivalent to the 5x5 pile group in Figure 31, 3x3 pile group, Bridge II. 

 
Figure 33. Krr, of an equivalent to the 5x5 pile group in Figure 31, 2x2 pile group, Bridge II. 
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Figure 34. Comparison of the stiffnesses, Krr (ω), of 5x5, 3x3 and 2x2 

pile groups, Bridge II. 

 
Figure 36. Dimensionless real parts of the rocking dynamic 

impedances, Krr (ω), Bridge II. 

 
Figure 35. Comparison of the dynamic impedances, ωCrr, of 5x5, 3x3 

and 2x2 pile groups, Bridge II. 

 
Figure 37. Dimensionless imaginary parts of the rocking dynamic 

impedances, ωCrr(ω), additionally divided by ao, Bridge II. 
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Figure 38. Krx, of the 5x5 pile group, Bridge II. 

 
Figure 39. Krx, of an equivalent to the 5x5 pile group in Figure 38, 3x3 pile group, Bridge II. 

 
Figure 40. Krx, of an equivalent to the 5x5 pile group in Figure 38, 2x2 pile group, Bridge II. 
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2.2. Seismic Isolation System 

 

Seismic isolation is a powerful “technique” of mitigating earthquake hazard. It is 

meant to enable a building or non-building structure to survive a potentially 

devastating seismic event with minimal or no damage. In other words the isolation 

system which stands instead of a monolithic connection between the deck and the pier, 

decouples them and offers a kind of movement independency. As a result the seismic 

forces who “travel” through the foundation to the pier never reach the deck with their 

initial strength and characteristics, due to the energy reflection at the point of the 

isolation system and dissipation that takes place through the travel path. 

The seismic isolation system of this study is considered to behave as a bilinear 

hysteretic spring with smooth elastic to post yielding transition. Such a behavior could 

be representative of typical lead rubber bearings, as well as of sliding bearings with 

metallic yielding devices or restoring force capability.  

 

 
Figure 41. Typical lead rubber bearing’s components. 

 

Lead Rubber Bearing or LRB is a type of system which is employing heavy 

damping. It was invented in New Zealand (Robinson et al. 1974). Figure 41 

demonstrates the components of a typical LRB. Heavy damping mechanism 

incorporated in vibration control technologies and, particularly, in base isolation 

devices, is often considered a valuable source of suppressing vibrations thus enhancing a 

building's seismic performance.  

Seismic isolation using sliding bearings has been recognized as one of practical and 

effective technologies for seismic protection of structural systems. In practice, a typical 

http://en.wikipedia.org/wiki/Earthquake_engineering
http://en.wikipedia.org/wiki/Damping
http://en.wikipedia.org/wiki/William_Robinson_%28scientist%29
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sliding isolator usually consists of a sliding interface to uncouple the ground motion 

from the structure, and also a restoring force mechanism to reduce the residual isolator 

displacement.  

 

 
Figure 42. Lead Rubber Bearing (LRB). 

 

A friction pendulum system (FPS) is one of widely used sliding isolation systems 

and has been implemented in many existing structures. For a FPS isolator, the shape of 

the sliding interface is made spherical, so that the structure gravitational load applied on 

the slider will provide a restoring stiffness for the isolated structure to return to its 

original position after an earthquake (Figure 42). 

 

 
Figure 43. Friction Pendulum sliding bearing. 

 

The friction pendulum system (FPS) has been implemented in many structures 

around the world. For an FPS isolator, the shape of the sliding interface is made 
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spherical, so that the structure gravitational load applied on the slider will provide a 

restoring force (stiffness) for the isolated structure to return to its original position after 

an earthquake (Figure 43). However, this stiffness will inevitably introduce an extra 

natural frequency, called isolation frequency, to the structural system. The isolation 

frequency of an FPS system depends on the radius of curvature of the spherical sliding 

surface.  Therefore, FPS systems become sensitive to the frequency content of ground 

excitations in the vicinity to the isolation system frequency. Some studies have shown 

that when a structure isolated by an FPS is subjected to a ground motion with near-

fault characteristics, the base displacement and the structural acceleration may be 

considerably amplified due to the long-period pulse - like wave component possessed in 

most near-fault earthquakes  

In this study the isolation system is placed between the deck and the pier and not 

the foundation from the superstructure. Its nonlinear hysteretic behavior was modeled 

using a model proposed by Ozdemir (1976). Ozdemir’s model suggests that a Maxwell 

model can be generalized with a nonlinear dashpot, which in the limit leads to an 

elastoplastic model (Figure 44). This is achieved by expressing mathematically the 

behavior of a viscoplastic system, after determining the equation of motion of Maxwell’s 

model, with aback stress to control the postyielding behavior. The variables that 

particularly control the system are the yield strength (Fy), the elastic stiffness (Ke) and 

the postyielding stiffness (Kb). The values of these parameters are those who determine 

the final performance of the isolation system which influences the whole structure. 

There are design philosophies which call for large Kb stiffness, in order to limit the 

displacement response, while others call for low so as to protect the bridge piers from 

large shear forces. The values used in this study are defined at the next paragraph.  

 

 
Figure 44. Development of Ozdemir’s model.
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2.3. Bridge Systems 

 
Two bridge structures are considered in this study. The first (Bridge I) is 

representative of a typical highway overcrossing with a stiff short pier, while the second 

one (Bridge II) could be part of a long multispan bridge with flexible tall piers. Figure 

45 depicts the geometric characteristics of each bridge. The dynamic impedances of the 

5x5 pile groups for both bridges were presented in §2.1.  

 

5.2 m

1.1 m

40.0 m

3.0 m

0.43 m 1.80 m  
Figure 45. Geometrical representation of Bridge I and Bridge II. 
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The bridge models consist of a single linear pier (no yield considered), at the top of 

which the bilinear isolation system carries the deck’s weight. At the bottom, the pier is 

monolithically connected to the pile group cap. The mass of the deck, the pier and the 

foundation are considered concentrated at a point on their top. The above assumptions 

get on well with the conventional design methods of large structures including seismic 

isolation, according to the Eurocode 2 and other codes provisions. The aforementioned 

characteristics are schematically presented in Figure 46.  

 

Wf

Wp

Wd

F

U

Kpier

F

U
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Kb

Isolation System

Pier

Soil – Foundation system

 
Figure 46. Stick model and the behavior of its parts. 

 

The pile caps are supported by a 5x5 pile group (in this figure), with pile spacing 

(S) 2.5 times the pile diameter (d) (see also Figure 5). The pile diameters where 

considered different for the two bridges, due to the different dimensions of the 

superstructures (d1= 0.43 m, d2 = 1.80 m). The models are also analyzed with the 



42      Chapter 2. Soil Structure Interaction Effect  
 

 

equivalent 2x2 and 3x3 pile groups which were presented previously. The diameter of 

each pile in the groups is adjusted in such a way as the total area of the pile groups (m2) 

to be the same in all three cases, 5x5, 3x3, and 2x2 in an attempt to retain 

approximately the same stiffness and damping constants for zero frequency in all three 

cases.  

The non linear time history analyses for both bridges were performed without 

considering any cracked section (reduction of cross sectional area). Such consideration 

doesn’t represent the real condition of a constructed bridge, but was chosen herein since 

this is a parametric study looking at the possible effects of SSI on seismic isolated 

bridges and not the analysis and design of a particular structure. Table 4 presents the 

characteristics of the bridge models considered in the analyses.  

 

Table 4. Properties of the bridge models considered. 

Bridge model Bridge I Bridge II 

Deck seismic weight, md ( Mg ) 265 1440 

Isolation system period, Tb ( sec ) 2 4.5 

Isolation strength ratio ( Fy / Wd ) 0.12 0.04 

Pier seismic weight, mp ( Mg ) 38.5 620 

Pier weight/ Deck weight 0.15 0.43 

Pier height, h ( m ) 5.2 40 

Pier elastic stiffness, kp ( kN/m ) 1.24E5 1.09E5 

Pier damping ratio, ξ 5% 5% 

Foundation seismic weight, mf ( Mg ) 84 4248 

Foundation moment of inertia, If ( Mg m2 ) 173 126200 

Pile cup height, Hf ( m ) 1.1 3 
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Computational modeling  

 

 

3.1. Computational Modeling of the Soil-Structure 

Interaction Problem 

3.1.1. Spring-Mass-Damper Models to account for SSI 

 

Soil - structure interaction (SSI) problems have been studied for over half a 

century and as a result engineers have developed a plethora of close-form impedance 

functions for various soil-foundation systems. Although the analysis of the interaction 

problem treats the soil-foundation-structure system as many separate subsystems, the 

compatibility conditions at the interfaces are those guarantee its continuity. In the 

current work the analyses have developed frequency dependent impedance functions. 

The nonlinear behavior of the isolation system prohibits the use of frequency 

domain analysis techniques to treat the SSI problem.  In order to overcome this 

incompatibility between the frequency dependence of the soil-foundation springs and 

the requirement for nonlinear time history analysis, it is customary to introduce an 

approximation omitting the frequency dependency of the soil-foundation system 

considering that the springs and dashpots have constant, frequency – independent, 

values corresponding to the values that the impedances take for ao=0. This assumption, 

in the present study is not unreasonable considering the fact that the isolation period, 

which is fairly large, is expected to dominate the overall seismic response of the bridge.  

These low excitation frequencies correspond to a range of ao between 0 and 0.1 thus 

effectively the “static” values of the spring and damping coefficients.  

The simple Voigt model, consisting of a spring and a dashpot, connected to the 

foundation mass, is the easy solution for modeling the impedance functions, under the 

aforementioned simplifications. Figure 47 presents a Voigt model. Although it may be 
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widely used by engineers simulating SSI effects due to its simplicity, the constant values 

of its elements make it hard to adjust to frequency-sensitive impedances. Figure 48 

demonstrates the bridge model and the attached Voigt models for horizontal and 

rotational DOFs. The vertical degree of freedom is not depicted in the picture and will 

be neglected in this study.  

 

 
Figure 47. Voigt model 
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Figure 48. Bridge model with two Voigt models; one translational and one rotational. 

 

The constant values of the springs and dashpots in a Voigt models make the 

analysis easier but are not representing the real behavior of the dynamic impedances 

(Figures 7 to 40). A closer examination of their behavior reveals that they resemble the 

dynamic stiffness of a simple spring-mass-dashpot system. By introducing a frequency -

independent artificial mass, a spring and a dashpot in a foundation system, the time 

history nonlinear analyses can be easily performed. This is the basis of the procedure 

used by De Barros and Luco (1990) and Wolf and Somani (1986) where they introduced 

a spring-mass-damper secondary subsystem attached to the foundation mass with 

appropriately calibrated parameters to account for the frequency dependent behavior of 

K

C

Figure 24. Voigt model.
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the soil-foundation system. Furthermore, more than one such systems could be used, 

particularly in cases of complicated dynamic impedance functions which have to be 

modeled. However, such systems alter the dynamics of the soil-foundation-structure 

system because the additional mass of the secondary system contributes to the inertial 

forces and moments of the system thus altering the actual input (right hand side of the 

equations of motion) to the system.  

 

 

3.1.2. The concept of GYROMASS 

 

For the mathematical modeling of the complicated behavior of the soil-foundation 

interacting with the structure, researchers had to think of a system which would predict 

precisely the result of such an interaction in the frequency domain while at the same 

time it can be utilized in time domain analysis without revoking any approximations as 

with the Voigt system discussed previously. Saitoh (2007) presented a system of basic 

mechanical elements (springs and dashpots)  together with an element named 

“gyromass” capable of representing frequency dependent impedance functions while 

eliminating the shortcomings of the models introduced by Luco and others. 

The gyromass is a frequency-independent mechanical element which has the same 

dimension as mass. It is defined as an independent unit generating a reaction force due 

to the relative acceleration of the nodes between which the gyromass is placed. The 

mechanical analogy of the gyromass (Figure 49-b) corresponds to a rotational disk and 

a rod attached to the disk with gears. The mass of the rod is considered negligible. The 

rod experiences an external force F and the disk rotates with rotational acceleration  . 

The relative acceleration of the rod ü with respect to the fixed node at the right hand 

side is geometrically related to the rotational acceleration  .  

 

J

r
F

ü

K

C

Figure 21. Voigt model.
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Figure 49. (a) Gyromass system; (b) mechanical analogy ; (c) mechanical system of gyromass. 

As a result, the following relation between the external force F and the relative 

acceleration ü is obtained: 

 

F mu                                                                                                                      (9) 

2

J
m

r
                                                                                                                    (10) 

where,  

r = distance from the center of the disk to the point where the rod is attached, 

J = mass moment of inertia of the disk and 

m = equivalent mass generated by the rotation of the disk. 

Thus, the reaction force F is identical to the product of the equivalent mass m and 

the relative acceleration u . The mass m is the aforementioned “gyromass” so as to be 

distinguished from ordinary masses. The advantage of such an element focuses on its 

independence from the frequency ω.  

The model introduced by Saitoh containing springs, dashpots, and gyromasses to 

achieve better fitting of the dynamic impedances in the frequency domain is the Type II 

model (Figure 50). Type II model evolved from the simpler Type I model (Saitoh, 

2007). The Type II model consists of one base system, where the spring-dashpot unit and 

the gyromass are connected in parallel and from two core systems where the spring-

dashpot unit and the gyromass are connected in series as depicted in Figure 50. 

The Type II model is a specific combination of base and core systems and is 

capable of fitting impedance functions with many variables and highly non-linear 

behavior. Undoubtedly, the Type II model can be generalized, with combinations of 

three or more core systems so as to optimize the fitting to impedance functions. In this 

study, the parametric analyses were carried using three different models for the 

simulation of the SSI effects. These are the: 

 

a) Voigt model for both translational and rotational degrees of freedom,  

b) Type II model for both translational and rotational DOF (see Figure 51a), and 

c) simple Type II model, for only the lateral DOF (see Figure 52b). 
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Figure 50. Saitoh’s Type II model. 
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Figure 51. Bridge model with (a) a Type II system on translational and rotational DOFs and (b) simple 

Type II system (no rotational dof). 
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The equilibrium equation of a generalized Type II model, for the horizontal dof is: 
 

2 2 2N
i i i i 2

TYPE II o 02 2 2 2
i 1 i i

N
i i

o2 2 2 2
i 1 i i

a ( a 1) a
F F(a ) K 1 a

(1 a ) a

ia u(a ) (11)
(1 a ) a
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                             (11) 

where: 

N, the total number of core systems 

o

s

d
a

V




, the dimensionless frequency of excitation, 

sCV

dK
 

, the dimensionless damping coefficient of the base system, 

i

si
i

dk

Vc
γ  , the dimensionless damping coefficient in each core system, 

2

s
o 2

MV

d K
 

, the dimensionless mass coefficient of the base system, 
2

i s
i 2

i

m V

d k
 

, the dimensionless mass coefficient in each core system, 
ki

i
K

 
, the relative stiffness of each core and base system,  

 

Equation (11) relates the displacements of the foundation with the forces 

developed, in the frequency domain. The values of the coefficients are those who 

determine the total dynamic stiffness. A similar equation with a similar set of variables 

is utilized for the rotational degree of freedom (Type II model) and relates the rotation 

of the system with the corresponding moment developed. Tables 5 presents the initial 

values of the horizontal and rotational impedances (ao=0), of the three different pile 

configurations considered ( 5x5, 3x3 and 2x2) for the two bridges, as they were 

estimated by the software PILES. The values match all the 3 modeling approaches, 

Voigt, Type II and simple Type II system (only for the lateral impedances) and 

correspond to the static values of the impedances. 
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Table 5. Foundation system properties (ao=0) of a 5x5 pile group for the three modeling approaches. 

Parameters for 
ao=0 of all the 
three models 

(Type II, Voigt, 
simple Type II) 

Bridge I Bridge II 

Kxx 
(GN/m) 

Krr 
(GN/rad) 

Cxx 
(GNs/m) 

Crr 
(GNm 
s/rad) 

Kxx  
(GN/m) 

Krr  
(GN/rad) 

Cxx 
(GNs/m) 

Crr 
(GNm 
s/rad) 

2.5d

d

5x5 3x3 2x2

5d

10d

Y

X

Y

X

Y

X

 

0.42 17 0.008 0.35 1.78 700 0.14 8.4 

3x3

5d

Y

X

 

0.47 19.4 0.010 0.35 2 787 0.18 36.2 

2x2

10d

Y

X  

0.50 21.9 0.011 0.35 2 787 0.20 8.1 

 

The table summarizes the similarities and differences of the three models. In 

general, as the piles are getting fewer and their distances larger, the static dynamic 

impedances are becoming greater. A simple explanation for this is that when the piles 

are distant they have enough space to develop the frictional and lateral forces that are 

generated due to the earthquake excitation and soil-structure interaction.  
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3.2. Calibrating GYROMASS Models 

3.2.1. Levenberg Marquadt Method 

 

Apart from the static values of the problem, the dynamic group behavior is also 

known, as it was presented in Chapter 2. In order the three soil-foundation models 

(Type II, simple Type II, Voigt) to represent the estimated dynamic behaviors, the 

values of their parameters have to be evaluated/calibrated properly. For the complex 

relation of the Type II model (11), the problem now is a mathematical curve fitting one. 

The fitting was accomplished with a method applicable to non-linear least squares 

problems, the Levenberg Marquadt method. 

A least squares problem comes up when a parametrical function has to adjust to a 

number of data, with the least possible error between the real data and those that the 

function estimates. Non linearity appears when the function which has to be adjusted is 

non-linear concerning its parameters. The method is based on an iterative correction of 

the values of the parameters so as to minimize the sum of the squares of the 

discrepancies with the real data. In reality, the method is a combination of two other 

methods: the gradient descent method and of Gauss-Newton method. The gradient descent 

method minimizes the sum of the squares of the aforementioned errors/discrepancies by 

adjusting the values of the parameters to the maximum least square objective. The 

Gauss-Newton method minimizes the sum of the squares of the discrepancies with the 

assumption that the function of the sum is locally squared and so the minimum of the 

square is found. Practically, when the values of the parameters are far from the optimum 

solution the Levenberg Marquadt method is working as the gradient descent method 

and when they are close to the optimum value, as the Gauss-Newton method. 

When adjusting a function ŷ(t, p), with  t  the independent variable, and  p  a 

string of parameters, in a data series (ti, yi) it is convenient enough to minimize the sum 

of the weighted squares of the estimated discrepancies between the estimated data y(ti) 

and the values of the curve fitting function ŷ(ti, p). This is the error criterion, x2.  

2
N

2 i i

i 1 i

T

T T T

ˆ1 y(t ) y(t ,p)
x (p)

2 w

1
ˆ ˆ(y y(p)) W(y y(p))

2

1 1
ˆ ˆ ˆy Wy y Wy y Wy (12)

2 2
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 
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 

   
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The parameter wi is the estimation of the discrepancy of the value of y(ti). The 

weighted matrix W is diagonal with 
11 2

1
W

w
 . If the function ŷ(ti, p) is non-linear, then 

the minimization of w2 has to be completed with an iterative procedure. In each iteration 

the parameter of perturbation  h, of the parameters  p  has to be evaluated. 

 

o Gradient descent method  

The gradient descent method is a generalized method of minimization, which 

adjusts the parametric values at an opposite direction of that of the objection function’s 

gradient. For big scale problems, with thousands of parameters the gradient descent 

method is the unique way of curve fitting. The gradient of function x2 with respect to 

the parameters is: 

2 T

T

T

ˆ ˆx (y y(p)) W (y y(p))
p p

ŷ(p)
ˆ(y y(p)) W

p

ˆ(y y(p)) W J (13)

 
   

 

 
    

 

  

 

where the mxn Jacobean matrix ∂ŷ/∂p represents the local sensitivity of the 

function ŷ to the changes of the values of the parameters  p. In order to simplify things, 

J will be used instead of ∂ŷ/∂p. The perturbation h  that leads the parameters to the 

direction of the maximum descent is: 

T

gd
ˆh J W(y y)                                                                                                             (14) 

where    is the positive coefficient that controls the size of the step towards the 

maximum descent. 

 

o Gauss-Newton method  

The Gauss Newton method is a tool for the minimization of the sum of the 

discrepancies’ squares. It assumes that the objective function is almost squared with 

respect to its parameters, near the optimum solution. For ordinary problems the Gauss 

Newton method is converging much faster than the gradient descent method  
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The function evaluated with the perturbed parameters model can locally be 

expressed by the 1st order Taylor series: 

ŷ
ˆ ˆ ˆy(p h) y(p) y Jh

p

 
     

 
                                                                                            (15) 

and with the help of equation (12): 

2 T T T T T T1 1 1 1
ˆ ˆ ˆ ˆx (p h) y Wy y Wy y Wy (y y) WJh h J WJ

2 2 2 2
                                          (16) 

This proves that x2 is almost squared at the perturbation h and the Hessian matrix 

of the x2 criterion is JTWJ. The perturbation h that minimizes x2 is: 

2

T T T

T T T

gn

(x (p h))
0

h

ˆ(y y) WJ h J WJ 0

ˆJ WJ h J W(y y) (17)

 
 



    

    

 

 

o Levenberg Marguadt Method 

The Levenberg Marquadt algorithm adjusts the changes of the parameters 

between the two aforementioned methods, 

T

lm
ˆJ WJ I h JTW(y y)                                                                                                (18) 

where small changes of the value λ lead to the Gauss – Newton method and big 

changes of the value λ lead to the gradient descent method. At a great distance from the 

minimum function the gradient descent method is useful due to the stability and fast 

convergence that it serves. As the solution moves towards the minimum and the values 

of λ are adjustably getting smaller, the Levenberg Marquadt method becomes Gauss 

Newton and the solution converges rapidly to the local minimum. The relation that 

Marquadt used for the adjustment between the two methods is: 

T T T

lm
ˆJ WJ diag(J WJ) h J W(y y)                                                                                 (19) 
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3.2.2. Parameter calibration of Type II model 

 

As it has become clear, the Voigt model is the only one that consists of spring-

dashpot systems, without masses or gyromasses. At the case of Voigt model, the 

Levenberg-Marquadt method is not applicable, as there are no parameters to be 

evaluated apart from the dynamic impedances for ao=0. On the other hand, the Type II 

model (and the simple Type II) has to be defined properly, for each case of studying. 

The calibration of its parameters (see Equation (11)) is accomplished with the help of 

Levenberg-Marguadt method, as it was presented at §3.2.1. The mathematical 

expression (Equation 11) is now fully defined and the values of its parameters, for the 

5x5, 3x3, and 2x2 pile groups of bridges I and II, are presented in Table 5. 

 

 Figure 52. Real horizontal dynamic impedances of 5x5 pile group of Bridge I, in comparison with the 
fitted horizontal impedances by Levenberg Marquadt method. 

 

Figure 52 compares actual and fitted data of the dynamic impedance of the 5x5 pile 

group for the Bridge I. The same algorithm was also used to estimate the parameters of 

the other cases of studying: the 3x3 and 2x2 equivalent pile groups for both Bridge I 

and Bridge II. There are many combinations of values that can describe satisfactorily 

the same curve. The algorithm ends up with those values that best fit the given 
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impedances. Table 6 summarizes the values of the variables that are going to be used in 

this study, for the horizontal degree of freedom of the three equivalent pile groups. 

Table 7 summarizes the same variables for the rotational degree of freedom. 

 

Table 6. Dimensionless coefficients of Type II model that calibrate horizontal impedance functions of 5x5, 

3x3 and 2x2 pile groups. 

Coefficient 

Bridge I Bridge II 

5x5 3x3 2x2 5x5 3x3 2x2 

Kxx / N*Kx,single 0.19 0.36 0.60 0.19 0.36 0.60 

γο 2 4.2 0.13 5 3 0.6 

μο 5 1.1 1.6 2.5 1.2 1.1 

β1 1.2 0.9 0.03 0.28 1 0.08 

γ1 2 0.5 10 0.8 0.55 5 

μ1 1.9 0.82 2 3.4 0.8 0.1 

β2 6 0.14 2.5 2.7 1.22 2 

γ2 0.4 0.17 1.1 0.2 0.4 0.9 

μ2 0.5 0.02 1.2 0.65 0.8 1 
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Table 7. Dimensionless coefficients of Type II model that calibrate rotational impedance functions of 5x5, 

3x3 and 2x2 pile groups. 

Coefficient 

Bridge I Bridge II 

5x5 3x3 2x2 5x5 3x3 2x2 

Krr / Σ (xr
2*Kx,single) 1.09 0.72 0.13 0.61 1.04 1.52 

γrο 2.2 1.2 1.32 5.5 1.4 1.3 

μrο 2.5 0.5 0.2 3.3 0.6 0.8 

βr1 1.45 0.85 0.48 8 2.6 0.04 

γr1 0.23 0.27 1.8 0.01 0.33 2 

μr1 1.18 1.14 4.7 0.01 1.03 1.1 

βr2 1.65 1.3 0.23 6.7 0.2 0.55 

γr2 1.95 1.5 0.6 0.23 0.2 0.75 

μr2 6.5 3.1 3.2 0.79 0.2 2.4 

 

The following figures (Figures 53-64) are demonstrating the curve fitting that the 

Type II and Voigt models are achieving to the actual impedances obtained from 

software PILES. Practically it is a graphic representation of the fitting that the models 

with the variable values of Tables 6 and 7 achieve.  
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Figure 53. The actual and fitted horizontal impedances, of the 5x5 pile group, Bridge I. 

 
Figure 54. The actual and fitted horizontal impedances, of the 3x3 pile group, Bridge I. 

 
Figure 55. The actual and fitted horizontal impedances, of the 2x2 pile group, Bridge I. 
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Figure 56. The actual and fitted horizontal impedances, of the 5x5 pile group, Bridge II. 

 
Figure 57. The actual and fitted horizontal impedances, of the 3x3 pile group, Bridge II. 

  
Figure 58. The actual and fitted horizontal impedances, of the 2x2 pile group, Bridge II. 
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Figure 59. The actual and fitted rotational impedances, of the 5x5 pile group, Bridge I. 

 
Figure 60. The actual and fitted rotational impedances, of the 3x3 pile group, Bridge I. 

 
Figure 61. The actual and fitted rotational impedances, of the 2x2 pile group, Bridge I. 
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Figure 62. The actual and fitted rotational impedances, of the 5x5 pile group, Bridge II. 

 
Figure 63. The actual and fitted rotational impedances, of the 3x3 pile group, Bridge II. 

 
Figure 64. The actual and fitted rotational impedances, of the 2x2 pile group, Bridge II. 
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3.3. Models 

 
The equations of motion of the considered systems with 3 different soil models, 

Voigt, Type II, and simple Type II, in the time domain are presented in the sequel. The 

parameters of the models for the two bridge systems were presented in Chapter 2 (§2.2). 

 

3.3.1. Voigt Model 

 
The Voigt model consists of a linear spring and a linear viscous dashpot and is the 

simplest way to account for the soil and accordingly the interaction between the 

structure the foundation and the soil. The use of such a model by engineers is very 

common, however is not able to represent the frequency dependence of the soil-

foundation behavior. Voigt systems are utilized for both translational and rotational 

degrees of freedom of the soil-foundation. Figure 65 presents the bridge system with the 

Voigt models in the undeformed and deformed configurations.  
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Figure 65. Undeformed and deformed configuration of the bridge system with Voigt models.. 
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The system has 4 DOF, deck displacement w.r.t the pier or isolation system 

displacement, displacement of the pier w.r.t. its base, displacement of the foundation 

w.r.t. ground, and rotation of the foundation.  The equations of dynamic equilibrium of 

the system are: 

 

Σ deck d d,tot d g ISOL

d d,tot d g ISOL ISOL

Fx = 0 m u  + m u  + f = 0  

                    m u  + m u  + k u = 0                                                  (20)

   

  
 

pier p p,tot p g p ISOL

p p,tot p g p p p p ISOL ISOL

Fx = 0 m u  + m u  + f  - f = 0  

                 m u  + m u  + k u  + c u   - k u = 0                      (21)

    

    
 

foundation f f f g VOIGT p

f f f g h f h f p p p p

Fx = 0 m u  + m u  + f  - f = 0  

                      m u  + m u  + K u  + C u -  k u  - c u = 0               (22)

    

     
 

Μ

θ θ θ

f f
foundation INERTIAL VOIGT VOIGT p

f f
f f r f r f h f h f

f f
p p p p

H H
= 0   M + M  - f  -  f = 0  

2 2

H H
                          I  + K  + C  - K u  - C u  - 

2 2

H H
- k u  - c u = 0                (23)

2 2

    

     

   

 

where, ug is the ground displacement, uf is the foundation displacement, uISOL is the 

isolation system displacement, θf is the rotation of the foundation, md is the mass of 

deck, mp is the mass of pier, mf is the mass of foundation, kisol is the stiffness of the 

isolation system (the behavior of isolation is bilinear hysteretic and is modeled by 

Ozdemir’s model), kp is the linear elastic stiffness of pier, cp is the damping coefficient of 

the pier, If is the mass moment of inertia of the pile group cap, Hf is the height of pile 

cap. 

The values Kh, Ch, Kr, Cr are the spring and damping constants of the Voigt 

models calculated previously from the foundation-soil impedances for  for ao=0 (see 

Table 5).  The system of equations is transformed to state-space form, after reduction of 

order, and solved utilizing a predictor corrector scheme, based on 4th order Runge-

Kutta algorithms, suitable for solving 1st order nonlinear ordinary differential equations.  
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3.3.2. Type II Model 

 
Figure 66 presents the bridge system with the Type II models in the undeformed 

and deformed configurations. The system has the same 4 DOF in the structural system 

as before, however the presence of the Type II models increase the number of DOFs 

(two internal DOF per Type II model) to total 8. 

 

Σ deck d d,tot d g ISOL

d d,tot d g ISOL ISOL

Fx = 0 m u  + m u  + f = 0  

                    m u  + m u  + k u = 0                                                  (24)

   

  
 

pier p p,tot p g p ISOL

p p,tot p g p p p p ISOL ISOL

Fx = 0 m u  + m u  + f  - f = 0  

                 m u  + m u  + k u  + c u   - k u = 0                      (25)

    

    
 

 

Σ foundation f f f g TYPEII p

f f f g base core 1 core 2 p p p p

Fx = 0 m u  + m u + f  - f = 0  

                      m u  + m u  + f + f  + f -  k u  - c u = 0       (26)

                        

   

   

where, 

base f h f h f

core1 1 f 21 1 21 1 21

core2 2 f 22 2 22 2 22

f Mu K u C u (27)

f k (u u ) m u c u (28)

f k (u u ) m u c u (29)

  

   
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where, 

base r f r f r f
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M M K C (31)

k ( ) m c (32)

k ( ) m c (33)
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Figure 66. Undeformed and deformed configuration of the bridge system with Type II models. 

 

 

3.3.3. Simple Type II Model 

 
The Simple Type II model has the same set up with the Type II mechanism but 

only for the translational degree of freedom at the foundation level. The rotational DOF 

is omitted. The system has 3 DOF, (translation of deck, translation of the pier, 

translation of the foundation) and accordingly 3 equations of motion: 

 

Σ deck d d,tot d g ISOL

d d,tot d g ISOL ISOL

Fx = 0 m u  + m u  + f = 0  

                    m u  + m u  + k u = 0                                                  (34)

   

  
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pier p p,tot p g p ISOL

p p,tot p g p p p p ISOL ISOL

Fx = 0 m u  + m u  + f  - f = 0  

                 m u  + m u  + k u  + c u   - k u = 0                      (35)
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Figure 67. Undeformed and deformed configuration of the bridge system with Simple Type II model. 

 

The advantage of the gyromass element is now clear. It contributes to the total 

force that the Type II system represents as an ordinary mass but it doesn’t appear as an 

additional inertial force, as it is attached to the Type II model and is activated by the 

relative acceleration between the foundation and the ground. 
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3.4. Dynamic properties of the Soil-Foundation-Structure 

System (Eigenvalue Analysis) 

 
Natural frequencies and mode shapes are functions of the structural properties and 

boundary conditions of a structural system. For example a cantilever beam has a set of 

natural frequencies and their associated mode shapes. In general, if the structural 

properties change, but not the boundary conditions, the frequencies and the mode 

shapes change also. However there are cases where the mode shapes do not change.  If 

the boundary conditions change then both the frequencies and mode shapes of the 

cantilever have to change. The reason for computing these characteristics is to possibly 

identify how the input seismic energy will be directed in the structure. An earthquake’s 

energy is distributed to frequency ranges and if those coincide with the “natural” 

frequencies of the structure might make the structural response/vibration much more 

intense and possibly lead to damage or even structural failure. Although this fact reveals 

the high possibilities of the resonance appearing, other parameters such as the duration 

of the vibration and the distance of the structure from the seismic epicenter, determine 

finally whether it will take place or not.  

The eigenvalue analysis is carried out on a set of differential equations which 

describe the equilibrium of the whole system, from the soil to the deck. The state-space 

formulation of the equations of motion of the system is followed in this work and 

accordingly the eigenvalue analysis is carried on the state-space equations modeling the 

system. In general terms the 2nd order differential equations of motion are reduced to 1st 

order differential equations and take the form presented in the equations below.  

 

    )()()( tuBtxAtx gcc
                                                                                                (40) 

where, 

    TTT tututx )()()(  ,                                                                                                  (41) 
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M= mass matrix, K=stiffness matrix, CD= damping matrix and Bf= influence matrix. 

Finally the eigenvalues of the system can be deduced from the common eigenvalue 

problem: 

       ppAc i                                                                                                                 (44) 

where p is the mode vector and γi  are the complex values of the system: 

  
2

1 iiiii i                                                                                                  (45) 

 
*

iii   , 
i

i
i






)Re(
                                                                                         (46) 

The limitation of the approach lies in the required linearity of the system 

equations. To this end, the nonlinear behavior of the isolator is replaced by an 

equivalent linear system, with stiffness and linear viscous damping appropriate to 

simulate the total dissipated energy of the nonlinear isolator. The stiffness of the 

equivalent linear isolator is chosen to take the value of the postyielding stiffness, Kb (see 

Table 4) of the actual isolator and the equivalent linear viscous damping coefficient to 

take the value of 10% of critical (ξ). For Bridge I, when the foundation is modeled by 

Type II systems, Ac is a matrix of dimensions 16x16, due to the 16 1st order ordinary 

differential equations modeling the system (there are 8 degrees of freedom; 4 in the 

superstructure and 4 in the two Type II models; see Section 3.3.2). Of the total 16 

eigenvalues 4 pairs determine the 4 mode shapes of the system.  

After formulating the equations of motion according to the Equation (40) the 

matrices [Ac] and [Bc] are determined and the eigenvalue problem of Equation (44) 

solved.  Table 8 presents the eigenvalues  for Bridge I with Voigt and Type II models, 

while Table 9 for Bridge II. It should be pointed out here that the real bridge, is 

controlled by a bilinear behavior with two different periods, as it was presented in Table 

4. 

Small differences are observed between the Type’s II and Voigt’s eigenvalues, 

which is in complete accordance with the flexibility of the system when is modeled with 

Type II. What has to be highlighted once again is that the isolation’s stiffness was 

considered constant for the needs of the eigenvalue analysis (resulting in T=2secs for 

Bridge I and T=4.5secs for Bridge II). The real isolation model though, is a bilinear one, 

with 2 different periods governing the behavior of the isolator (e.g. for Bridge I: 

Ke=26154 kN/m → Te= 0.63secs, Kb=2615.4 kN/m → Tb= 2 secs). Depending on the 

incoming motion the performing eigenperiod may be either the elastic one or a 

combination of both elastic and postyielding. These differences will be commented later 
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on, where the analysis results will be plotted. The characteristics of the system have 

now been revealed and can be compared with the features of different excitations. The 

non linear time history analysis is the tool.  

 

Table 8. Eigenvalues of Bridge I, with the 5x5 pile group. 

mode 

Type II Voigt 

f (Hz) T (sec) ξ f (Hz) T (sec) ξ 

#1 0.49 2.028 9.62% 0.49 2.027 9.62% 

#2 8.91 0.112 22.56% 8.26 0.121 22.70% 

#3 9.39 0.106 67.20% 12.44 0.08 57.60% 

#4 28.08 0.036 65.40% 309. 0.003 100% 

 

Table 9. Eigenvalues of Bridge II, for the 5x5 pile group. 

mode 

Type II Voigt 

f (Hz) T (sec) ξ f (Hz) T (sec) ξ 

#1 0.22 4.561 9.62% 0.22 4.561 9.62% 

#2 2.11 0.473 10.41% 2.08 0.480 9.69% 

#3 2.59 0.385 73.63% 3.32 0.300 81.46% 

#4 5.51 0.181 22.22% 11.91 0.084 44.43% 

 

Before presenting the earthquake excitations that were used in this study for the 

time history analyses, it is important to compare the eigenvalues that were estimated 

analytically with those of the equivalent single degree of freedom problems. Table 10 

reveals the translational eigenperiod of the free standing pier assuming that it was a 
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cantiliver, of the isolation system as it would behave alone and of the foundation system 

assuming that it was alone and had only Kx and Kr springs. The resemblance between 

the real eigenvalues and those of the single dof problems is great, especially for Bridge 

II. This is expected, as each mode shape there is always one predominant degree of 

freedom. 

 

Table 10. Eigenperiods (sec) of the single degree of freedom components of Bridge I and II. 

SDOF system Bridge I Bridge I 

Pier as a cantilever 0.11 0.47 

Isolation system as a sdof system 2.00 4.50 

Foundation as a sdof system 

(translational) 
0.09 0.31 

Foundation as a sdof system (rotational) 0.02 0.08 

 

 

3.5. Seismic Excitations 

 
Two sets of ground motion time histories are used in this study and are introduced 

in both bridge models, for the three equivalent pile groups (5x5, 3x3, 2x2) and the three 

foundation modeling approaches of each pile group (Voigt, Type II, Simple Type II). 

The first set, referred as NF (near fault), consists of 20 ground motions, assembled by 

Somerville et al. (1997). The motions are recordings by National earthquake hazards 

Reduction Program (NEHRP), from earthquakes with multiple fault mechanisms, 

magnitude range of 6.7-7.4 and epicentral distances between 0 and 10 km. These 

recordings correspond to medium to soft soil (site class D conditions). Table 11 presents 

the NF set of ground motions. 
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Table 11. List of the NF set of ground motions. 

Record 

ID 
Seismic event Station Component 

Scale  

factor 

1,2 1978 TABAS  N, P 1.00 

3,4 1989 Loma Prieta Los Gatos N, P 1.00 

5,6 1989 Loma Prieta Lex Dam N, P 1.00 

7,8 1992 Cape Medocino Petrolia N, P 1.00 

9,10 1992 Erzincan  N, P 1.00 

11,12 1992 Landers Lucerne N, P 1.00 

13,14 1994 Northridge Rinaldi N, P 1.00 

15,16 1994 Northridge Olive View N, P 1.00 

17,18 1995 Kobe Kobe N, P 1.00 

19,20 1995 Kobe Takatori N, P 1.00 

 

The second set, referred as FF (far field) is identical to the set used in Whittaker 

et al (1998) and Constantinou and Quarshie (1998). It consists of ten pairs of scaled 

acceleration time histories from six actual earthquakes with magnitudes larger than 6.5 

and epicentral distances between 10 and 20 km. The recordings correspond to soft rock 

or stiff soil. The scale factors were chosen so as the average spectrum of all the 

response spectra from the 20 motions to match a target design spectrum, as presented 

in AASHTO, for soil type II, A=0.4. The procedure is described analytically in 

Tsopelas et al (1997). Table 12 presents the FF set of ground motions. The two sets of 

motions of Tables 8 and 9 are shown graphically in Figure 68. There is also their 

average spectrum, indicated with bold line.  
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Table 12. List of the FF set of ground motions. 

Record 

ID 
Seismic event Station Component 

Scale  

factor 

1,2 1992 Landers Joshua ( CDMG ) 90, 0 1.48 

3,4  Yermo ( CDMG ) 270, 360 1.28 

5,6 1989 Loma Prieta Gilroy 2 ( CDMG ) 0, 90 1.46 

7,8  Hollister ( CDMG ) 0, 90 1.07 

9,10 1994 Noorthridge Century ( CDMG ) 90, 360 2.27 

11,12  Moorpark ( CDMG ) 180, 90 2.61 

13,14 1949 W. Washington 325 ( USGS ) N86E, N04W 2.74 

15,16 1954 Eureka  022 ( USGS ) N79E, N11W 1.74 

17,18 1971 San Fernando 241 ( USGS ) N00W, S90W 1.96 

19,20  458 ( USGS ) S00W, S90W 2.22 

 

 
Figure 68. Response spectra (a) FF set of motions; (b) NF set of motions.



71 

4 
Analyses Results and Discussion 

 

 

4.1. Non Linear Time History Analyses and Results 

 
Non-linear time history analyses of the two bridge models (Bridge I and Bridge II) 

with different foundations (2x2, 3x3, and 5x5 pile groups) utilizing three different soil-

structure interactions models (Voigt, Type II for translation and rotation, and Simple 

Type II for translation only) subjected to both Far Field (FF) and Near Fault (NF) sets 

of seismic excitations are performed to evaluate and compare the superstructure and 

foundation responses in order to quantify the effects of the soil-structure interaction 

modeling on these structures. The bridge system responses in terms of displacements 

and forces in the superstructure and foundation are considered. The state-space 

formulation is utilized, where the second order differential equations of motion are 

transformed into a system of first order differential equations.  

The critical response quantities for the design of a bridge structure are the 

isolation system displacement (isolation drift) and the shear force in the pier. In the 

present study the results of the parametric analyses are presented in terms of ratios as 

isolation drift ratio (IDR) and pier shear ratio (PSR).  Since the objective of this study is 

to evaluate the effect of soil-structure–interaction modeling the analyses considering the 

Type II model/s are compared against the analyses with the Voigt model. Thus IDR 

and PSR are defined as follows:  

TYPEII

VOIGT

Isolationdrift
IDR

Isolationdrift
                     (47) 

TYPEII

VOIGT

Piershear
PSR

Piershear
                    (48) 
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4.2. Bridge I Analyses  

 
Figure 69 summarizes the results of the isolation drift ratio and Figure 70 the pier 

shear ratio for Bridge I, when subjected to the FF set of seismic motions for all three 

pile groups considered (2x2, 3x3 and 5x5). The IDR is constant (±1% max deviation), 

around unity for all seismic excitations and for all three pile groups considered, 

indicating the insensitivity of the isolation system displacement on the SSI modeling in 

this particular case. It should be reminded (see also Figures 10 and 21) that the 

impedances for all three pile group do not show substantial variability between them for 

The variation around unity is now slightly larger, ranging between +2% and -4% 

between all the seismic excitations. The pier shear ratio is also more sensitive to the pile 

group.  The 2x2 pile group results in higher response compared to the other two for 

every seismic excitation and with the max differences (in EQ 13) reaching almost 6% 

between the 2x2 and the 5x5 pile groups. The larger sensitivity of the PSR as compared 

to IDR is attributed to the higher frequency content of the pier shears relative to 

isolation system displacements; and because of this is rather expected.  

Figures 71 and 72 present the IDR and PSR for the NF seismic excitation set.  

Similar observations are made to the FF set of motions. For this set of seismic motions, 

also, the IDR is insensitive to the SSI modeling (Type II vs Voigt) and the pile group 

considered. The PSR although shows a slight sensitivity to both SSI modeling (2.5% 

max difference) and pile group considered (4% max difference between 2x2 and 5x5 pile 

groups), for all practical purposes it is also considered insensitive. 

From the NF set of motions, NF12 (1992, Landers seismic event) shows the larger 

differences, although smaller than 4%, in IDR as well as the PSR compared to the other 

seismic events. Figure 73 presents the acceleration time history of this motion (Table 11, 

§3.5). Figure 74, 75, 76 and 77 show the isolation system displacement history, the 

isolation system force normalized by the deck weight vs isolation system drift, the pier 

shear force normalized by the carried weight vs pier drift and the foundation system 

shear vs foundation drift for the NF 12 respectively.  These results of the nonlinear time 

history analysis where used to define some hidden characteristics of the models 

introduced. As it is already been discussed, the dynamic impedances are strongly 

frequency dependent parameters. Figure 78 presents foundation system shear vs 

foundation drift or in other words the force vs displacement of the Voigt and the Type 

II models used to represent the SSI. An apparent stiffness can be obtained from these 

hysteretic loops (Type II and Voigt), estimated as the gradient of the shape, if its 

tangent is considered. In spite the differences shown between these two curves in Figure 

79, the equivalent stiffness and damping will be very similar. 



 

 

 
 

Figure 69. IDR for Bridge I and FF set. 

 
 

Figure 70. PSR for Bridge I and FF set. 

 
 

Figure 71. IDR for Bridge I and NF set. 

 
 

Figure 72. PSR for Bridge I and NF set. 
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Figure 73. Acceleration time history of NF12 seismic event (1992, Landers). 

 

 

Figure 74. Isolation displacement for NF 12 

(Bridge I, 5x5 pile group). 

 

Figure 75. Isolation system loop for NF12 (Bridge 

I, 5x5 pile group). 

 

Figure 76. Pier shear vs pier drift for NF 12 

(Bridge I, 5x5 pile group). 

 

Figure 77. Foundation shear vs foundation drift for 

NF12 (Bridge I, 5x5 pile group). 

 
Although the NF12 ground motion is the only near fault excitation which seems 

to influence the performance of Bridge I when the SSI effects are taken into account, the 

differences observed are very small. The discrepancies between the two models in terms 
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of isolation displacements reach the value of 2%, while in terms of pier’s displacements 

the value of 3%. The same figures hold also for the pier’s forces (Figure 69). Some larger 

discrepancies are observed at the soil-foundation displacements and forces; however, 

these are expected due to the nature of the two models, Voigt and Type II. 

 

 

4.3. Bridge II Analyses  

 
Figure 78 and 79 show the IDR and PSR for Bridge II and FF set of motions. The 

differences in the isolation drift between the Voigt model and the Type II range 

between -10% and +10% (-2% on the average over all motions), much larger when 

compared to the differences observed for Bridge I.  The results for the three pile groups 

are also different than Bridge I; the 5x5 pile group, which could be characterized as the 

more “flexible” of the three (see Figure 27 and 28), experiences larger isolation drifts for 

three seismic motions where for the rest no significant differences are observed. Over all 

the isolation drift seem to be insensitive to the 3 pile groups considered but it is not 

insensitive to the SSI modeling since there are seismic motions, 5 out of 20, where the 

observed differences between Voigt and Type II model are larger than 5% absolute 

value and reach 10% maximum.   

The PSR also shows larger differences than Bridge I, -16% maximum and -10% on 

the average over all seismic motions. This indicates that using a more accurate SSI 

model (Type II) than the simple Voigt the shear forces in the pier are on the average 

10% smaller over this FF motion set.  PSR is sensitive to the pile groups with 

differences between them ranging from 2% (motion # 3) to 10% (motion #9).      

Figure 80 and 81 show the IDR and PSR for the NF set of motions. The IDR 

response of the Bridge II under the NF motions appears similar to the corresponding 

response for the Bridge I, where the IDR shows insensitivity between the 3 pile groups 

and the seismic motions (IDR in the range +1% and -2% for 19 out of the 20 motions).  

Only NF #16 motion (1994 Northridge, Olive View station, Fault Parallel component) 

shows difference between the Voigt and the Type II models for SSI reaching 8%.  Over 

all the displacement ratio appears consistently lower (slightly though) than 1 indicating 

that the more accurate model for SSI results in slightly lower isolation system 

displacements.  It is also interesting to observe that for the NF set, IDR for the 5x5 pile 

group, the “flexible” one, is consistently lower than the other 2 pile groups which is a 

behavior opposite from the one observed for the FF set of motions. 



 

 

 
 

Figure 78. IDR for Bridge II and FF set. 

 
 

Figure 79. PSR for Bridge II and FF set. 

 
 

Figure 80. IDR for Bridge II and NF set. 

 
 

Figure 81. PSR for Bridge II and NF set. 
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The PSR shows similar behavior to the FF set of motions, -15% maximum and -

8% on the average over all seismic motions. Again it indicates that using a more 

accurate SSI model (Type II) than the simple Voigt the shear forces in the pier are on 

the average 8% smaller over this FF motion set.  PSR is sensitive to the pile group with 

differences between them ranging from 0% (motion # 17) to 8% (motion #2).  

The NF16 excitation is the one which results in the larger differences for Bridge 

II. Therefore the time history responses of Bridge II will be presented and discussed 

next. Figure 82 presents the time history of the NF16 seismic event (Olive View station) 

(see Table 9, §3.3). 

 

 
Figure 82. Acceleration time history of NF16 motion (Northridge 1994. Olive View station). 

 

Figures 83, 84, 85, and 86 show the isolation system displacement history, the 

isolation system force normalized by the deck weight vs isolation system drift, the pier 

shear force normalized by the carried weight vs pier drift and the foundation system 

shear vs foundation drift for the NF16 respectively. There is only, approximately 10% 

difference in the isolation displacements between the Voigt and the Type II models as 

shown in Figure 84. Higher differences are observed in Figures 85 and 86. For the pier 

drift the difference reach 15% and for the pier shear forces are 17%. The higher values 

for all the responses occur for the simple SSI Voigt model. But the reasons for the 

differences occurring are investigated and presented, as analytically as possible. 

After presenting the response of the two soil-foundation systems in Figure 86, it is 

obvious that there are differences between the Voigt and the Type II models concerning 

the maximum values of foundation’s forces. The maximum foundation force for the 

Type II model is 13% less than the Voigt model. The same holds for the foundation’s 

displacement. The main reason for this is the larger damping of the Type II model.  
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The comparison of the stiffnesses of the 3 pile groups highlights that the 5x5 

group is the most “weak”, while the greater stiffness is performed by the 2x2 pile group. 

The same conclusion was also reached for Bridge I. The main reason for this is that the 

less the piles (and the greater the diameter) the smaller the interaction between them. 

Each pile has the space to develop the stresses and deformations, without interacting 

with another pile’s stress field.  

 

 
Figure 83. Isolation displacement for NF16 (Bridge 

II, 5x5 pile group). 

 
Figure 84. Isolation system loop for NF16 (Bridge 

II, 5x5 pile group). 

 
Figure 85. Pier shear vs pier drift for NF16 (Bridge 

II, 5x5 pile group). 

 
Figure 86. Foundation shear vs foundation drift for 

NF16 (Bridge II, 5x5 pile group). 

 

Although the differences between the Type II and Voigt models reach the figure of 

20%, neither of the 2 severe excitations (for Bridge I and for Bridge II) presented above 

correspond to larger displacements and forces when the Type II model utilized. 

Detailed responses of one more seismic motion, FF11 (Northridge 1994, Moopark 

station) are presented in Figures 80 to 84. Isolation system displacements for Type II 

model are 15% larger than the displacements from the Voigt model. However, the 

opposite is the case for the pier where the drift for the Voigt model is 16% larger and 

the pier shear is 19% larger. 
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Figure 87. Acceleration time history of FF11 motion (Northridge 1994, Moopark station). 

 

 
Figure 88. Isolation displacement for FF 11 (Bridge 

II, 5x5 pile group). 

 
Figure 89. Isolation system loop for FF11 (Bridge 

II, 5x5 pile group). 

 
Figure 90. Pier shear vs pier drift for FF 11 (Bridge 

II, 5x5 pile group). 

 
Figure 91. Foundation shear vs foundation drift for 

FF11 (Bridge II, 5x5 pile group). 

 

In general, the greatest discrepancies between the Type II and Voigt models 

appear for Bridge II, for both NF and FF sets of motions. Both bridge systems have also 

been examined to quantify the differences between the previously presented results of 
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the Voigt and the Type II systems with the third model (see §3.2), the so called Simple 

Type II. The comparison of the maximum values between this and the Type II model, 

for both bridges and sets of motion showed that the two systems behave almost 

identically. The rotational degree of freedom of the soil-foundation system doesn’t 

seemto play a significant role in the specific seismic isolated models considered in this 

study. The maximum discrepancies observed hardly reached 5%. The model is going to 

be discussed again later in this study.  

 

 

4.4. Qualitative Prediction of SSI Response 

4.4.1. Transfer Function 

 
In order to present the analysis results in a more comprehensive way, the concept 

of the Transfer Function is introduced. It will be helpful to develop a pictorial approach 

to the system modeling. To begin, we can imagine a differential equation as being a 

model of the engineering system which transforms the input signal f(t) into an output 

signal y(t) (the solution of the differential equation). The system is characterized by the 

values of the coefficients a, b, c, which are independent from the input signal. A different 

engineering system will be characterized by a different set of coefficients. This is easy to 

describe graphically: 

 

 
 

After the Laplace transform the differential equation is transformed into: 
 

cbsas
sHsFsHsY




2

1
)(),()()(                                                        (42)

System

a, b, c
input signal

f(t) y(t)

output signal
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in which H(s) is the Transfer Function, which is nothing more than the ratio of the 

output to the input. In order the above to be obtained analytically, linearity and time-

invariance are to be true/assumed for the system. Input is analyzed to an infinite sum of 

sinusoidal signals and output is formed as a sum of the responses to each sinusoidal 

function (linearity). The mathematical description of H can be defined in the time 

domain (differential equations), in the Laplace domain (transfer functions) and in the 

frequency domain (frequency response), with explicit relationships among the three 

counterparts. The following theorem can be put forward: 

The frequency response characteristics of a system can be determined from its Transfer 

Function, by substituting the Laplace variable s by jω, where ω is the angular frequency 

(rad/sec). 

Finally, after the Laplace transformation the process can be graphically described 

as: 

 

 

 

The TF provides an easy and efficient way of identifying the properties of a 

structure were the input and the response signals are recorded. The maximum values 

(peaks) of the TF indicate the eigenvalues (periods and corresponding damping). 

Eigenvalue analysis performed in §3.4 has resulted in the system properties. However, 

for this analysis to be performed the non-linear component of the system, the isolation 

system model, had to be replaced by an equivalent linear model and accordingly the 

results of the eigenvalue analysis are the properties of the equivalent linear system. 

Transfer Functions (ratio of the Fourier power spectra of the output to the input) are 

adopted in this study since they are not limited by the requirement for system linearity 

as is the eigenvalue analysis. The properties are obtained from the graphical 

representation of the TFs. The input signal is nothing more than the earthquake/input 

acceleration which filters through the structure. The output may be any quantity of the 

structure’s response.  

 

 

System

H(s)
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4.4.2. White Noise or actual Seismic Motion as Input to 

the TF 

 
As can be deduced from the above definitions, TF can be obtained independently of 

the characteristics of the input.  Thus, one TF can be obtained from a seismic motion 

input into the system and another TF can be obtained from a white-noise acceleration as 

input. The “problem” with a real seismic event is that it can be decomposed to an infinite 

sum of sinusoidal signals with different frequencies, usually not uniformly distributed 

along the frequency range. The resonance may appear in structures that their periods 

are in accordance with the predominant period of the excitation. Thus, the TF of a real 

seismic event cannot present the accurate eigenvalues of the structure, as the governing 

frequency may suppress some eigen-periods which are really existing. For this purpose 

the TF from a “white noise” acceleration signal is used in this study. White noise is a 

random signal with a flat (constant) power spectral density. In other words, a signal 

that contains equal power within any frequency band with a fixed width. The TF of the 

artificial signal is expected to reveal all the eigenvalues of the structures studied.  

 

 

4.4.3. Structural System Properties 

 

Bridge I 
 

One important characteristic of nonlinear systems with plastic behavior is that 

their transfer functions show many peaks - with high amplitudes. This behavior is 

stronger the higher the strength of the system. These peaks are not necessarily located 

at the actual highest eigenperiod/s. When a white noise signal propagates through a 

structure it excites all the peaks (together with the ones due to plastic behavior) and 

thus makes the 4 eigenperiods of the system studied here hard to identify. The problem 

of identifying the periods of a system would be greater in the case where a real seismic 

event is the input to the system. A seismic input does not have uniform power spectrum 

(constant amplitude over the frequency domain) and as a result some 

periods/frequencies of the system might not be excited. To investigate the effect of the 

http://en.wikipedia.org/wiki/Bandwidth_%28signal_processing%29
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isolation system strength on the Transfer Functions of the system, 3 analyses of the 

same system subjected to white noise were performed: where yield strength corresponds 

to: 

(i)  12% of the carried weight (Fy= 0.12*deck weight),  

(ii) 3% of the carried weight (Fy= 0.03*deck weight), and  

(iii) 0.5% of the carried weight (Fy= 0.005*deck weight) 

The objective of this parametric analysis (varying the friction coefficient of the 

isolation system) is to unmask the period/s of the system which are hidden when the 

strength of the system takes relatively large values. Figure 92 presents the white noise 

acceleration signal used in these analyses.  

 

 
Figure 92. White Noise signal: Acceleration vs time. 

 

Figure 93 shows the TFs between the foundation acceleration (output) and the 

ground acceleration (input) of the 3 yield strength scenarios, as mentioned above. The 

specific TFs aim at identifying the periods of the system which correspond to the 

foundation oscillation modes (translational and rotational). Of course, any of the other 

periods may appear corresponding to the pier and/or the isolation mode. The smaller 

the strength (the less the friction) the clearer the resonances. It is evident that the curve 

corresponding to small friction is the smoother over all frequency range, where the TF 

for the system with 12% friction (green line) shows the more peaks. 

When observing Figure 94 it is evident that when the strength is very small 

(friction coefficient 0.5%) a peak at period of T≈2 secs is very pronounced. This period 

matches the eigenvalue analysis results and is the isolation period of the system 
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considering the post yielding stiffness. It is obvious now, that large strength (friction 

coefficients) can suppress periods of the system. As it has already been mentioned the 

bilinear behavior of the isolator consists of 2 different periods (for Bridge I: Ke=26154 

kN/m → Te= 0.63secs, Kb= 0.1*Ke =2615.4 kN/m → Tb= 2 secs). So, it wouldn’t be 

wrong to say that the system finally performs with an effective period, depending on the 

maximum displacement of each cycle of the vibration. The peak that appears around 

0.8secs in Figure 94 for Fy=12%*Wd, is probably an effective period peak. The 

linearization of the isolator with a constant eigenperiod at T=2secs is not the real 

period based on a TF analysis but it’s an upper limit of it. 

 

 
 

 
Figure 93. White Noise TFs aType II / ag, (Bridge I, 5x5 pile group). 
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Figure 94. Transfer functions adeck / apier, Bridge I, 5x5 pile group, white noise. 

 

In Figure 95 the TFs of the foundation’s acceleration with respect to the incoming 

motion are shown for both Voigt and Type II models. The data plotted refer to the case 

of the lower friction (Fy/weight=0.005). The red and blue dashed vertical lines are the 

periods from the eigenvalue analysis which are related to the foundation modes for both 

the Voigt and Type II models. The frequency range of the white noise signal doesn’t 

allow the identification of system periods below T=0.02 secs (max frequency = 50 Hz). 

Apart from the analyses performed, due to the large horizontal and rotational 

foundation stiffnesses the periods are expected to be very small. The conclusions that 

come of the TFs plots are quite clear. The existence of the soil-structure interaction 

that Type II model represents lengthens the periods, even though for a small amount, 

and makes the system more flexible compared to the system with the Voigt model.. The 

peaks of the TFs are not in accordance with the eigenvalues and that is probably 

because of the linearity assumed at the case of eigenvalue solution.  

Figure 96 presents the TF between the pier horizontal acceleration and the 

foundation horizontal acceleration (TF= apier / afoundation). The peaks of the two TFs 

correspond to the eigenvalues related to the pier movement and almost coincide. Once 

more the SSI seems to make the pier a bit more flexible, fact that agrees with the values 

obtained from the eigenvalue analysis. The discrepancies observed between the peaks 

and the estimated periods represented by the vertical discontinuous lines may be due to 

the linearization of the isolation’s system.  
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Figure 95. White Noise TFs afoundation/ aground, (Bridge I, 5x5 pile group, Fy/Wd=0.005). 

 

 
Figure 96. White Noise Transfer Functions apier/afoundation, (Bridge I, 5x5 pile group, Fy/Wd=0.005). 

 

The concept of transfer functions (TF) of a structure subjected to a white noise 

signal is used now in combination with the Fourier Transform of the earthquake motion 

signal of interest to qualitative predict the effect of SSI on the structural response. It is 

done by comparing the range of frequencies which the motion’s energy is mainly 

concentrated with the structural system’s frequencies.  
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Figure 97 shows the plots of the TFs of Bridge I (Fy/Wd=0.12) under the white 

noise excitation, of the FFT of the NF12 seismic event and of the dynamic impedances 

of the 5x5 pile group. Considering that the predominant frequency of NF12 is around 

12Hz (T=0.083 sec) and the 3rd eigen-period is around T=0.08 sec for Voigt model and 

T=0.106 sec for Type II it appears that the SSI effect is not detrimental. It appears that 

the resonance scenario for the Voigt system is likely to happen but cannot be predicted 

with certainty as it is also controlled by other parameters, such as the duration of the 

excitation or the possible large damping. The SSI effects decrease the soil’s horizontal 

impedance about 50% compared to the Voigt’s (Kx,Voigt=421,000 kN/m, Kx,Type 

II=205,000 kN/m). On the other hand there is an extreme increase in the damping that 

is not shown in this Figure 97. The SSI with the Type II model 9 gives 1.24 times 

larger damping compared to the Voigt’s model (Cx,Voigt= 8,416 kN*sec/m, Cx, Τype II= 

10,403 kN*sec/m). On the other hand, the rotational stiffness decreases up to 17% 

(Kr,Voigt= 17,000,000 kN/rad, Kr,Type II= 14,100,000kN/rad) and the rotational damping 

part is amplified for about 2.3 times (Cr,Voigt= 345,483 kN/m, Cr, Τype II= 791,893 kN/m).  

A significant remark concerning the above values is that the increased damping seems 

to outbalance the stiffness reduction of the Type II model which accompanies the SSI 

effects.  Such an observation is going to be discussed further later. The same plots can 

be shown for the TFs that correspond to the pier’s motion.  

It would be very interesting to observe what would happen in the cases where the 

structure was founded on a 3x3 and a 2x2 equivalent pile groups. Figure 98 shows the 

Transfer Functions of foundation accelerations to the ground acceleration of Bridge I 

with the Type II model for the 3 different foundations. It should be noted that the 2x2 

and 3x3 pile groups are equivalent to the 5x5 pile group with same cross sectional area 

of the piles. It is expected not to see important discrepancies concerning the peaks of the 

TFs. Figure 99 is comparing the foundation force (FType II) versus foundation drift 

hysteretic loops for all three pile groups for the NF12 excitation. It is obvious that the 

less the piles (larger diameter), the greater the overall stiffness.  
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( a ) 

( b ) 

( c ) 
Figure 97. White Noise TFs (a) apier/afoundation, (b) afoundation/awhitenoise (c) adeck/apier of for Bridge I (purple and dashed 

light-purple line), Fourier Power spectrum of NF12 (red line), impedance functions of 5x5 pile group (blue 

and dashed blue lines). 
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Figure 98. Transfer functions of Bridge I modeled 

with Type II system, for 5x5, 3x3 and 2x2 pile 

groups. 

 
Figure 99. Graphical representation of Type II 

stiffnesses of Bridge I for 5x5, 3x3 and 2x2 pile 

groups, NF12. 

 

 
Bridge II 
 

In order to understand the impact of NF16 on the Bridge II system, the transfer 

function concept is used again. Bridge II is analyzed for a low friction case (same as 

before, Fy=0.5%*Wd) and the suitable TFs are plotted so as the resonance points to be 

revealed and compared with the results of the eigenvalue analysis. More specifically, 

Figures 100, 101 and 102 reveal the periods which are related with the isolation, the pier 

and the foundation motions, respectively. The peaks of the TFs are in quite good 

agreement with the values obtained from the eigenvalue analysis. The simplification 

considering the isolator to behave as a linear system has undoubtedly influenced the 

values of eigenperiods, as it has already been discussed for Bridge I. 

In Figures 103a, b and c the seismic event NF16 is examined in the frequency 

domain, in comparison with the TFs of the system and the dynamic impedances of the 

soil-foundation system. The energy of the seismic motion is considered to be 

concentrated around 2 Hz, which is the 2nd eigen-frequency of both Type II and Voigt 

systems (T=0.46 sec). At this frequency, the SSI effects drop the soil’s horizontal 

stiffness up to 30% compared to the Voigt model (Kx,Voigt=1,780,000 kN/m, Kx,Type 

II=1,260,000 kN/m), while they increase the damping up to 1.2 times (Cx,Voigt= 144,864 

kN/m, Cx,Type II= 175,395 kN/m). In addition, the rotational stiffness suffers a decrease 

of around 54% (Kr,Voigt= 700,000,000 kN/m, Kr,Type II= 322,000,000 kN/m) and the 

rotational damping part increases about 1.9 times (Cr,Voigt= 35,079,049 kN/m, Cr, Τype II= 

65,610,813 kN/m). 
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Figure 100. Transfer functions adeck / apier, Bridge II, 5x5 pile group, white noise (Fy/Wd=0.005). 

 

 
Figure 101. Transfer functions apier/afoundation, Bridge II, 5x5 pile group, white noise (Fy/Wd=0.005). 

 

It should be noted that the TFs in Figure 103 are for the system with Fy/Wd=0.12 

and not the modified one with Fy/Wd=0.005 as presented in Figures 100, 101, and 102. 

According to the discussion presented in Section 4.4.3 the non-linear hysteretic system 

with 12% strength masks the fundamental periods of the system and that is clear in 

Figure 96a where there is no distinct peak in the TFs at T=4.5 secs corresponding to 

the post yielding period of the isolation system (with Te= 1.42 secs) but rather there are 
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2 peaks one at a0= 0.065 (T= 1.57secs) and next to it another at a0=0.030 (T=3.41 secs). 

Both these peaks are probably effective values for the specific motion, with T=1.57secs 

to be the predominant. 

 

 
Figure 102. Transfer functions afoundation/ aground, Bridge II, 5x5 pile group, white noise (Fy/Wd=0.005). 

 

The energy/power of the seismic input is concentrated around T=0.5 secs, with 

significant spread to larger periods. This cannot explain the effect on the isolation 

system response (see Figures 76, 77, 78 and 79) where the displacements are larger for 

the Voigt system in spite the fact that the Type II stiffness is smaller. However, from 

Figure 96(c ) (the Voigt TF is higher than Type II)  it can be deduced that the response 

(foundation acceleration) for the Voigt system should be larger than the Type II 

something which is confirmed in Figure 79 were indeed the foundation force for the 

Voigt system is larger than the Type II. The response of the isolation system might not 

be possible to be predicted directly from Figure 96 (a), because it is not affected directly 

by the acceleration of the ground but it is affected by the acceleration of the pier which 

has resulted from filtering of the ground acceleration 2 times, one through the soil-

foundation springs and after through the pier.  
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(a) 

(b) 

(c) 
Figure 103. TFs (a) adeck/apier, (b) apier/afoundation, (c) afoundation/awhitenoise of Bridge II, FFT of NF16; (the scale of the 

FFT is not presented in figures) Impedance Functions 5x5 pile group  
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Figure 104 presents the TFs of the foundation for the three different pile groups 

considered in the study. In contrast to the Bridge I model these for Bridge II are 

different. This is supported by the findings in the groups of Figures 69, 70, 71, 72 and 

78, 79, 80, 81 where there are strong differences between the 3 pile group cases for the 

Bridge II. Figure 105 presents the force-displacement loops of the Bridge II soil-

foundation for the three pile group cases when excited by NF16 motion. It appears that 

for the 2x2 pile group the response is smaller as expected since this pile group is stiffer 

than the other two. The total stiffness that each pile group represents is increasing as 

the number of piles is getting smaller. 

 

 
Figure 104. Transfer functions of Bridge II modeled 

with Type II system, for 5x5, 3x3 and 2x2 pile 

groups. 

 
 Figure 105. Graphical representation of Type II 

stiffnesses of Bridge II for 5x5, 3x3 and 2x2 pile 

groups, NF16. 

 

In Figure 106(a) the seismic event FF11 is examined in the frequency domain, in 

comparison with the TFs of the system and the dynamic impedances of the soil-

foundation system. This motion is the one which resulted in larger responses for the 

Type II model compared to the Voigt model for the isolation system response. However 

the response of the pier and the foundation were larger for the Voigt model. The 

frequency representation of the seismic input is concentrated around 2.5-4 Hz. The 

frequency dependent Type II model results in drop of the horizontal stiffness up to 87% 

(Kx,Voigt=1,780,000 kN/m, Kx,Type II=229,000 kN/m), while they increase the damping 

part up to 1.54 times (Cx,Voigt=144,864kN/m, Cx,Τype II=222,492 kN/m). Moreover, the 

rotational stiffness moves from positive to negative values (Kr,Voigt= 700,000,000 kN/m, 

Kr,Type II= -429,000,000 kN/m) and the rotational damping part increases about 2.22 

times (Cr,Voigt= 35,079,049 kN/m, Cr, Τype II= 77,953,442 kN/m). 
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(a) 

(b) 

(c) 
Figure 106. TFs (a) adeck/apier, (b) apier/afoundation, (c) afoundation/awhitenoise of Bridge II, FFT of FF11; Impedance 

Functions 5x5 pile group. 
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In Figures 106(b) and (c)  the vibration’s main energy is compared in the frequency 

domain to the structure’s periods, as indicated by the TFs. The seismic event excites a 

wide range of frequencies which contain approximately 3 of the 4 frequencies which 

characterize the structure with the Type II model. There is also a small amount of 

energy concentrated at the 4th eigenvalue of the system, that is related to the isolation’s 

motion (Figure 99c, a0=0-0.1). At this point the damping part of the impedance function 

is small compared to the other points that the main earthquake’s motion is located. The 

absence of large damping is definitely a parameter that would let the system develop 

large displacements and forces and even reach resonance, if the site conditions should 

allow it.  

Considering all previous results it becomes apparent that the parameters 

influencing the behavior of a seismic isolated bridge are difficult to be predicted. The 

representative models of this study are tested for different seismic motions, foundation 

models, number of pile groups etc, in order to find the vulnerable aspects of the 

phenomenon. Undoubtedly the stiffness and mass of the structure, the geometry of the 

foundation (especially when it is about a flexible system), the relative stiffness of the 

piles and the soil, the incoming energy of the striking excitation etc., are some of the 

most important ones. So far, the majority of the excitations for the 2 bridge models 

seem to result in small differences in the displacements between the Type II and Voigt 

models. A reasonable explanation for this is that the presence of large damping does not 

allow for the stiffness differences to result in large displacement differences.  

 

 

4.5. Effect of Ep/Es  

  
The question that arises now is if there can be cases where the stiffness can be 

small and the damping also small. That would be definitely a case of interest concerning 

the SSI effects. The behavior of the dynamic impedance of the soil-structure system is 

controlled by the stiffnesses of the piles and the soil, as well as by the number of piles in 

the pile group. For this purpose the ratio Ep/Es  is the last parameter of studying. 

Bridge II, same as before, is the model of analyses (§.2.3, Table 4), founded on a 2x2 pile 

group with d=1.8 m (same as 5x5 pile group) and S/d=10. The system will be 

investigated for 2 soil cases, both presented in Table 13. The first soil case is the same 

used in all the previous analyses. The second was chosen so as to represent the ratio 

Ep/Es=1000, with the pile constructed by concrete. The set of seismic motions used is 



96      Chapter 4. Analyses Results and Discussion  
 

 

the Far Field (§.3.3). It should be noted that the case of Ep/Es=1000 as shown in the 

table might represent an extreme case of soil properties (Vs= 63 m/s is very low) but 

close enough to the properties of the soil of the Mexico valley (Mexico City earthquake, 

1985, soil structure interaction involved). 

With the help of the software PILES, the impedance functions are calculated for 

the given frequency range (ao =[0,1]). Figures 107 and 108 are the plots of the 

impedances for the horizontal and rotational degrees of freedom respectively, when 

Ep/Es=300. Figure 109 and 110 show the same quantities for the case Ep/Es=1000. 

Although, the modulus of elasticity of the soil drops around 3 times from the first soil 

case to the second, the peaks and valleys of the impedances curve are almost at the same 

positions. On the other hand, .the values change significantly and proportionally to the 

soil’s stiffness. It is interesting to observe that the real part of the impedance which 

represents its stiffness is not constantly decreasing, while the imaginary part, its 

damping, is not constantly increasing. The peaks and valleys are the points of interest 

now. Depending on the excitation’s main energy, the soil-foundation may react with a 

larger stiffness than the Voigt’s model and with a smaller damping.  

 
 Table 13. Properties of the soil profiles. 

Total Thickness ( m ) 21.5 21.5 

Homogeneous / Inhomogeneous Homogeneous Homogeneous 

Halfspace / Rigid Base Halfspace Halfspace 

Shear Wave Velocity, Vs 

( m/sec ) 
110 63 

Mass Density, ρs 

( kg/m3 ) 
1800 1800 

Damping Ratio, ξ 0.10 0.10 

G = ρsVs
2   ( MPa ) 22 7.1 

Es = 2(1+v)G ( MPa ) 62 20 

Ep/Es 300 1000 

Poisson’s Ratio, ν 0.40 0.40 
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Considering the above observations, it becomes clear that the flatness of the 

impedances through the frequency range is controlled mainly by the ratio S/d. That is 

the reason why the 2x2 pile group with S/d=10 was chosen. Many other cases could 

have been studied, such as a stiffer bridge model, a pile group made of steel and a stiffer 

soil.  

 

 
Figure 107.  Kxx(ω) for Bridge II , with the 2x2 pile 

group, (d=1.8m, S/d=10, Ep/Es=300). 

 
Figure 108.  Krr(ω) for Bridge II , with the 2x2 pile 

group,( d=1.8m, S/d=10, Ep/Es=300). 

 
Figure 109.  Kxx(ω) ) for Bridge II , with the 2x2 

pile group (d=1.8m, S/d=10, Ep/Es=1000). 

 
Figure 110.  Krr(ω) ) for Bridge II , with the 2x2 pile 

group (d=1.8m, S/d=10, Ep/Es=1000). 

 

The maximum values of the Isolation Drift Ratios and Pier Shear Ratios between 

Type II and Voigt models (relations (40) and (41)), for the far field set of motions are 

shown in Figures 111 and 112.  The frequency variation of the impedances for the 2x2 

pile group for of the specific soil conditions seems to play important role in the Type II 

response. For the case of Ep/Es=1000, there is one excitation where the isolation system 

reaches 28% larger displacements for Type II, while for the rest of the motions the 

differences on the isolation drift are between +10% and -10% . For Ep/Es=300 the 

differences are no more than +5% or -5% between Type II and Voigt. 
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Figure 111. Bridge II IDR vs seismic motions for 

FF set. 

 

Figure 112. Bridge II PSR vs seismic motions for 

FF set. 

 

The discrepancies are larger between the two models for the pier shear forces. 

Especially for the case of Ep/Es=1000, there are motions that develop up to 45% larger 

pier shear forces when Type II model is utilized. The case of Ep/Es=300 shows 

maximum differences up to 17%.  

Time history results are presented in Figures 113 and 114 for the FF05 seismic 

event, where isolation displacements, pier drifts, pier shear forces, and foundation forces 

are larger for the Type II model for the case of very soft soil (Ep/Es=1000).  

 

 
 Figure 113. Time history of FF05 seismic event (1989, Loma Prieta). 
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(a) Ep/Es=300 

 
(b) Ep/Es =1000 

 
(c) Ep/Es=300 

 
(d) Ep/Es =1000 

 
(e) Ep/Es =300 

 
(f) Ep/Es =1000 

 
(g) Ep/Es =300 

 
(h) Ep/Es =1000 

Figure 114. Bridge II with 2x2 pile group and S/d=10 Responses for far field seismic motion FF05. (a) and 
(b) are Isolation system displacements; (c) and (d) are Isolation system hysteresis; (e) and (f) are Pier Shear 

vs Pier drift; (g) and (h) are Soil Foundation system hysteresis. 
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Figures 115 present the soil-foundation impedances together with the input seismic 

motion representation in the frequency domain.  The foundation spring stiffness 

activated in the case of Type II model is larger than the Voigt’s (a0=0) while the 

damping (tangent of the blue curve) is. Particularly for Ep/Es=300 there is a stiffness 

amplification with respect to Voigt of 1.4 times around a0=0.5 where most of the seismic 

energy is concentrated and at the same time a drop of the damping value around 4 

times. The same changes hold also for the case Ep/Es=1000, where the stiffness gets 

1.25 times greater when the SSI is in action and the damping decreases around 7 times. 

 

(a) 

 

(b) 
Figure 115. Fourier amplitudes of FF05 seismic event for the two cases of soil (a) Ep/Es= 300; 

 (b) Ep/Es= 1000. 
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What it impressive is that so far the inverse changes had taken place during the 

soil-structure interaction: amplification of damping and weakening of stiffness. Before 

comparing the transfer functions of the system with the soil-foundation impedances and 

the frequency representation of the seismic input an eigenvalue analyses was performed 

for the Bridge II model, founded on a 2x2 pile group , for the cases: S/d=10, d=1.8m, 

Ep/Es=300 and 1000. The results of the eigenvalue analysis are presented in Table 14. 

Once again, a simplified linear isolation model was considered with damping ratio 

ξ=10%, so as to represent the dissipated energy by the real bilinear isolator.  

 
Table 14. Eigenvalues of Bridge II, for the 2x2 pile group, S/d=10, d=1.8m. 

mode 

Type II Voigt 

Ep/Es=300 Ep/Es =1000 Ep/Es=300 Ep/Es =1000 

T (sec) ξ T (sec) ξ T (sec) ξ T (sec) ξ 

#1 4.563 9.60% 4.576 9.57% 4.563 9.60% 4.576 9.57% 

#2 0.492 11.47% 0.890 64.85% 0.500 13.13% 0.658 45.89% 

#3 0.386 30.91% 0.534 17.28% 0.360 37.38% 0.442 17.11% 

#4 0.278 19.19% 0.389 14.19% 0.215 100% 0.396 100% 

 

The eigenvalues of the structures are needed to aid the identification of the 

structural properties from the TRs of the non-linear hysteretic system.  Based on 

periods of the structure from eigenvalue analysis (Table 14) and on the fact that the 

TF’s peaks are satisfactorily show them, Figures 116 give some explanation for the 

results of the previous plots, for the case that Ep/Es=300. The three figures are 

combining the Fourier transform of the excitation of interest, the TFs of the 

accelerations between the ground and the foundation, the foundation and the pier, the 

pier and the deck and the impedance functions for the 2x2 pile group. Although Figure 

115 reveals the active stiffness and damping, the final performance of the structure 

depends on its physical characteristics. From the 3 plots in Figure 116, the following 

are observed: a small amount of the FF05 energy enters into the structure around the 

isolation system frequency (a0=0-1), while a larger amount, excites the structure at 



102      Chapter 5. Conclusions 
 

 

higher-frequencies (a0=0.25-0.3) around the frequencies corresponding to both the pier 

and the foundation.  For the range of frequencies of the pier and the foundation, their 

corresponding stiffness increases and the damping decreases. The input energy seems to 

be concentrated around the period related to the Type II foundation motion and that’s 

the main reason for the differences observed at the pier and foundation loops (Figures 

114e and 114g).  

 

(a) 

 

(b) 
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(c) 
Figure 116. TFs (a) adeck/apier, (b) apier/afoundation, (c) afoundation/awhitenoise of Bridge II, FFT of FF05; Ep/Es=300; 

Impedance Functions 2x2 pile group. 

 

At the second soil case, where Ep/Es=1000, the energy probably enters into the 

structure through the isolation and foundation systems (as seen in Figure 117). The 

main seismic energy activates larger stiffness for the Type II model, while the damping 

is almost zero. Due to the absence of damping, which finally controls the displacements, 

both Voigt and Type II models are expected to have large differences in their response. 
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(b) 

 

(c) 
Figure 117. TFs (a) adeck/apier, (b) apier/afoundation, (c) afoundation/awhitenoise of Bridge II; FFT of FF05; Ep/Es=1000; 

Impedance Functions 2x2 pile group
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5 
Conclusions  

 

The chapters that compose this study are only a brief description of the so-called 

soil-structure interaction of seismic isolated bridges. The complexity of the 

phenomenon and the studies that so far treated the SSI effects as beneficial for seismic 

isolated structures were the initial challenges for the analyses to be performed. In the 

first place the differences that the SSI effects were contributing to the models, either 

detrimental or beneficial, were demonstrated. After the investigation of the important 

parameters that the SSI is vulnerable to, some more analyses were performed of a 

system case that would probably lead to the proof that the SSI may be detrimental. The 

purpose of this study is not to define in which cases the SSI effects must be taken into 

account or not, but to highlight the parameters that control the phenomenon and the 

complicity that characterizes it. Hence, the most important conclusions are: 

 

o The misconception that treats the soil-structure interaction as always being 

beneficial due to the lengthening of the natural period of the total system has to 

be overpassed.  

o The foundation’s and soil’s characteristics are those who determine the dynamic 

response of the soil. The softer the soil compared to the piles’ material and the 

greater the distance of the piles of the group, the more sensitive to the frequency 

the dynamic impedances are.  

o Generally, in cases of stiff foundation resting on linear homogeneous soil based 

on halfspace, the SSI can be satisfactorily modeled with the simple Voigt systems. 

The discrepancies between the Type II (gyromasses) and Voigt models are up to 

10-20% for both isolation displacements and pier shear forces.  

o The last case of analysis (Bridge II, 2x2 pile group, Vs=63 m/sec) revealed the 

importance of the relative stiffness between the soil and the foundation 

concerning the choice of modeling of SSI. This case showed that a flexible 
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system, with flexible pile group resting on a very soft soil can lead to great loss 

of accuracy in case Voigt models are used. The differences came up to 50% for 

both isolation displacements and pier shear forces, with the Type II model 

outweighing the Voigt. This case of such a small value of shear wave velocity 

could be a simplified approach of the nonlinear behavior of the soil, which is the 

actual one.  

o Apart from the dynamic impedances, the final performance of the superstructure 

is a matter of its properties and of the incoming energy. An attempt to define the 

dynamic characteristics of the system (with the SSI involved) was made in this 

study, both graphically (transfer functions, white noise) and analytically 

(eigenvalue analyses). The results are important and could be probably used for 

the inverse scenario: to predict in which excitations there would be a problem in 

case the Voigt systems where used for the SSI modeling. 
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