
Ενικό Μετσόιο Πουτενείο
Σοή Ηεκτροόν Μηανικών και Μηανικών Υποοιστών

Τομέας Τενοοίας Πηροφορικής και Υποοιστών

Προσαρμοή συστήματος διαείρισης
εικονικών μηανών ια υποστήριξη υψηού
ρυμού διεκπεραίσης εντοών σε περιάον

υποοιστικού νέφους

Διπματική Ερασία
του

Μπιάμπια Δημήτρη

Επιέπν: Νεκτάριος Κοζύρης
Καηητής Ε.Μ.Π.

Εραστήριο Υποοιστικών Συστημάτν
Αήνα, Απρίιος 2014

Ενικό Μετσόιο Πουτενείο
Σοή Ηεκτροόν Μηανικών και Μηανικών Υποοιστών
Τομέας Τενοοίας Πηροφορικής και Υποοιστών
Εραστήριο Υποοιστικών Συστημάτν

Προσαρμοή συστήματος διαείρισης
εικονικών μηανών ια υποστήριξη υψηού
ρυμού διεκπεραίσης εντοών σε περιάον

υποοιστικού νέφους

Διπματική Ερασία
του

Μπιάμπια Δημήτρη

Επιέπν: Νεκτάριος Κοζύρης
Καηητής Ε.Μ.Π.

Εκρίηκε από την τριμεή εξεταστική επιτροπή την 9η Απριίου, 2014.

..........................
Νεκτάριος Κοζύρης Νικόαος Παπασπύρου Δημήτριος Σούντρης
Καηητής Ε.Μ.Π. Αν. Καηητής Ε.Μ.Π. Επ. Καηητής Ε.Μ.Π.

Αήνα, Απρίιος 2014

...

Μπιάμπιας Δημήτριος
Διπματούος Ηεκτροόος Μηανικός και Μηανικος Υποοιστών Ε.Μ.Π.

Copyright © – All rights reserved Δημήτριος Μπιάμπιας, 2014.
Με επιφύαξη παντός δικαιώματος.

Απαορεύεται η αντιραφή, αποήκευση και διανομή της παρούσας ερασίας, εξ οοκήρου
ή τμήματος αυτής, ια εμπορικό σκοπό. Επιτρέπεται η ανατύπση, αποήκευση και διανομή
ια σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόεση να
αναφέρεται η πηή προέευσης και να διατηρείται το παρόν μήνυμα. Ερτήματα που αφορούν
τη ρήση της ερασίας ια κερδοσκοπικό σκοπό πρέπει να απευύνονται προς τον συραφέα.

Οι απόψεις και τα συμπεράσματα που περιέονται σε αυτό το έραφο εκφράζουν τον
συραφέα και δεν πρέπει να ερμηνευεί ότι αντιπροσπεύουν τις επίσημες έσεις του Ενικού
Μετσόιου Πουτενείου.

Περίηψη

Στις μέρες μας, οι υποδομές Cloud Computing προσφέρουν ευελιξία, διαφάνεια, και ασφά-
λεια για την εκτέλεση ενός συνεχώς αυξανόμενου πλήθους εφαρμογών και υπηρεσιών. Οι
υποδομές αυτές αποτελούνται κατά κανόνα από συστοιχίες υπολογιστών (clusters), χρησιμο-
ποιώντας τεχνικές εικονοποίησης για να διαμοιράσουν τους φυσικούς πόρους σε εικονικούς,
οι οποίοι θα χρησιμοποιηθούν από το cloud περιβάλλον. Οι πάροχοι των cloud υπηρεσιών,
θέλουν οι υπηρεσίες τους να έχουν δυνατότητες κλιμάκωσης (scaling), και να λειτουργούν
με χαμηλούς χρόνους απόκρισης (latency), ανεξαρτήτως του φόρτου των υπηρεσιών τους.
Αρκετοί παράγοντες επηρεάζουν την απόδοση των cloud περιβαλλόντων, όπως το δίκτυο που
χρησιμοποιείται για στη διασύνδεση των φυσικών πόρων, ή το υλικό που χρησιμοποιήθηκε
για την υποδομή, όπως η CPU, η μνήμη, και ο δίσκος. Συνήθως, κάποιο εργαλείο λογισμικού
αναλαμβάνει τη διαχείριση των κόμβων της συστοιχίας των υπολογιστών, όπως και την δια-
χείριση των εικονικών πόρων. Η παρούσα διπλωματική στοχεύει στη βελτίωση της απόδοσης
ενός τέτοιου λογισμικού, και συγκεκριμένα του Ganeti, παρέχοντας υποστήριξη για εναλλα-
κτικές μεθόδους που θα εξυπηρετούν τις απαιτήσεις του εργαλείου σε αποθηκευτικό χώρο. Η
υλοποίησή μας, ενσωματώνει την CouchDB, μία NoSQL βάση διαχείρισης δεδομένων, χωρίς
σχήμα, και προσανατολισμένη γύρω από έγγραφα στο Ganeti, και αξιολογεί την απόδοση
του λογισμικού μετά από αυτή την τροποποίηση. Οι πρώτες μετρήσεις είναι ιδιαίτερα ενθαρ-
ρυντικές, καθώς παρουσιάζουν εμφανή βελτίωση στην απόδοση του Ganeti. Οι λόγοι αυτής
της βελτίωσης θα παρουσιασθούν λεπτομερώς στη συνέχεια της παρούσας διπλωματικής.

Λέξεις Κειδιά

cloud computing, cloud, εικονοποίηση, εικονική μηχανή, NoSQL, Ganeti, JSON, CouchDB,
Synnefo, okeanos, διαμοιρασμός, python, κλιμάκωση (scaling), απόδοση (throughput), συ-
στοιχία (cluster), κόμβος, instance, qemu, KVM, module, πακέτο δομή b+δέντρου, MVCC,
ACID, CAP, views, daemons

v

Abstract

Nowadays, cloud computing exhibits agility, transparency, and security to the execution
of a continuously increasing number of applications and services. Those infrastructures
are designed on top of clusters of physical nodes, using virtualization techniques to ap-
propriately separate the physical resources to create virtual dedicated ones, which will
power the cloud environment. Cloud providers want their applications have the ability to
scale, and operate in low-time latency, regardless of the load of the cloud services. Many
factors affect the performance of those environments such as the network that is used for
the intra-cluster communication, or the underlying hardware resources used, in terms of
CPU, memory, and disk i/o. A software tool is commonly used that manages the physical
nodes of the cluster, and the virtual resources as well. This thesis aims to improve the
performance of such a tool, and specifically Ganeti’s, by providing support for alterna-
tive engines to serve its storage requirements. Our design integrates CouchDB, a NoSQL,
schema-less, and document oriented database in Ganeti, and evaluates the performance of
the tool under the new storage layer. Early performance evaluations look very promising
and show a noteworthy speedup on the performance of Ganeti, that will be discussed in
details in the rest of the document.

Keywords

cloud computing, cloud, virtualization, virtual machine, NoSQL, Ganeti, JSON, CouchDB,
Synnefo, okeanos, replication, python, scaling, throughput, cluster, node, instance, qemu,
KVM, module, package, b+tree structure, MVCC, ACID, CAP, views, daemons

vii

Ευαριστίες

Αρχικά, θα ήθελα να ευχαριστήσω τον αναπληρωτή καθηγητή κ. Νεκτάριο Κοζύρη για την
ευκαιρία που μου έδωσε να ασχοληθώ με το συγκεκριμένο τομέα της επιστήμης των υπο-
λογιστών στο Εργαστήριο Υπολογιστικών Συστημάτων, καθώς και για τη θετική συμβολή
του καθόλη τη διάρκεια των σπουδών μου.

Η εκπόνηση της διπλωματικής αυτής εργασίας, αποτελεί έμπνευση του διδάκτορα Ευάγγε-
λου Κούκη, τον οποίο θα ήθελα να ευχαριστήσω θερμά τόσο για την βοήθειά του και τις
συμβουλές του σε επίπεδο σχεδιασμού και υλοποίσης, όσο και για τις τεχνικές γνώσεις που
μου μετέδωσε κατά τη διάρκειά της. Επίσης θα ήθελα να ευχαριστήσω ιδιαίτερα τον Χρήστο
Σταυρακάκη για την συμβολή του και τις παρεμβάσεις του που βοήθησαν στην επίτευξη της
διπλωματικής μου εργασίας.

Τέλος ένα μεγάλο ευχαριστώ στην οικογένειά μου, για τη συνεχή τους στήριξη όλο αυτό το
διάστημα των σπουδών μου, καθώς και στον κύκλο των φίλων μου για την ωραίες αναμνήσεις
που μου προσφέρουν όλα αυτά τα χρόνια.

Μπλιάμπλιας Δημήτρης

ix

Contents

Περίληψη v

Abstract vii

Ευχαριστίες ix

Contents xii

List of Figures xiii

List of Tables xv

List of Listings xvii

1 Introduction 1
1.1 Thesis motivation . 1
1.2 Thesis structure . 2

2 Background 5
2.1 Virtualization . 5

2.1.1 Hardware Virtualization . 6
2.1.2 Full Virtualization . 8
2.1.3 Paravirtualization . 8

2.2 Cloud Computing . 8
2.2.1 The evolution of Cloud Computing 9
2.2.2 Service Models . 11
2.2.3 Deployment Models . 12

2.3 NoSQL databases . 13
2.3.1 NoSQl compromises . 14
2.3.2 NoSQL Models . 15

3 Ganeti backend 19
3.1 Overview . 19
3.2 Terminology . 20
3.3 Architecture . 22

3.3.1 Cluster Configuration . 24
3.3.2 Jobs . 25
3.3.3 Ganeti Daemons . 29
3.3.4 Ganeti Locking . 32

xi

xii Contents

4 Ganeti and NoSQL 37
4.1 Objective . 37
4.2 Background . 37

4.2.1 Cluster configuration data . 38
4.2.2 Job storage . 40
4.2.3 Caveats . 40

4.3 Choice of product . 42
4.4 Apache CouchDB . 45
4.5 Detailed Design . 54

4.5.1 Core Changes . 54
4.5.2 Feature Changes . 70
4.5.3 Interface Changes . 71

5 Performance Evaluation 73
5.1 Specifications . 73
5.2 Benchmark methodology . 74
5.3 Evaluating CouchDB . 76

5.3.1 Impact of the candidate pool size . 76
5.3.2 Comparison of the job submission rate 79
5.3.3 Comparison of the config.data performance 82
5.3.4 Aggregate evaluation of the CouchDB driver 84

6 Conclusion 89
6.1 Concluding remarks . 89
6.2 Future work . 90

6.2.1 Short-term plans . 90
6.2.2 Long-term plans . 91

Bibliography 93

List of Figures

2.1 Hypervisor types . 7
2.2 Computer history timeline . 10
2.3 The layers of Cloud Computing . 11
2.4 CAP theorem with ACID and BASE visualized 16
2.5 Visual guide to NoSQL systems . 17

3.1 Ganeti base components, version 2.7.2 . 20
3.2 Ganeti architecture, version 2.7.2 . 23

4.1 The power of B+trees in CouchDB . 50

5.1 Compromises of distributed systems . 75
5.2 Job submission rate per number of candidates 77
5.3 Job submission rate per number of candidates #2 78
5.4 Standard Deviation [σ] of the job submission rate 79
5.5 Comparison of the throughput performance 80
5.6 Throughput performance of CouchDB on various socket options 81
5.7 Performance evaluation of the default _WriteConfig method 85
5.8 Performance evaluation of the _WriteConfig method of CouchDB 85
5.9 Comparison of execution performance for instance modify ops 86
5.10 Comparison of execution performance for the phases of a job 87
5.11 Comparison of the throughput performance for instance create ops 87

xiii

List of Tables

4.1 Interface of the CouchDBConfigWriter class 61
4.2 Interface of the CouchDBJobQueue class . 66
4.3 Interface of the utility CouchDB module 69

5.1 Test-VM hardware specs . 74
5.2 Test-VM software specs . 74

xv

List of Listings

3.1 Job Queue structure . 26
3.2 Job structure . 26
3.3 Job dependency diagram . 28
3.4 Structure of the SharedLock class . 34
3.5 OpCode execution path . 35

4.1 Structure of the config.data file . 39
4.2 Document sample in CouchDB . 46
4.3 View function in Javascript in CouchDB . 47
4.4 Replication document in CouchDB . 51
4.5 Factory method for the configuration storage objects 55
4.6 Implementation of the base.AddInstance method 56
4.7 Constructor of the DiskConfigWriter class 57
4.8 Constructor of the DiskJobQueue class . 58
4.9 Constructor of the CouchDBConfigWriter class 62
4.10 Implementation of the configuration unify method of CouchDB 63
4.11 Implementation of the AddNode method of CouchDB 64
4.12 View in CouchDB for job retrieval from the queue db 67
4.13 Filter function in CouchDB . 68
4.14 Waiting manager function of CouchDB on the job-ID given 69
4.15 Extension of the gnt-cluster init operation 72

xvii

Chapter 1

Introduction

Nowadays, cloud computing has emerged as a popular computing model for enabling on-
demand network access to a shared pool of computing resources such as storage, networks,
application, and services. Cloud computing is not a completely new concept, but an
evolution that has been ongoing for over a decade, if not since the very beginning of
computers at around 60 years ago, when a time-sharing computing server served multiple
users. Cloud provides computation, software, data access, and storage services on a pay-
for-use model that do not require the end-user knowledge of the physical location and the
configuration of the system that delivers those services.

Cloud computing providers need to support hundreds of thousands of users and services,
and to ensure that they are fast, available, and secure. In order to accomplish this goal, the
infrastructure that will be build should ensure a set of properties: scalability, reliability,
security, and improved performance are only some of the properties that must be fulfilled
for a cloud infrastructure. In order to meet up with those requirements, and with the
increased data management needs in terms of users, and big data, new solutions appeared.
The adoption of the NoSQL technology as a viable alternative of the relational databases
has become a fact. NoSQL is increasingly considered a proper solution for the cloud
needs, especially as more organizations recognize that operating at scale is better achieved
in clusters of simple, commodity servers, and using a schema-less data model is often
better for the variety of data that are being processed today.

It is common for cloud computing to be confused with the virtualization term. Although
these two technologies are totally related, they have a significant difference. From an
abstract point of view, virtualization is the software that separate the physical resources
to create various dedicated resources, that power the cloud environment. Virtualization
is a software that manipulates hardware, while cloud computing refers to a service that
results from that manipulation. The technology behind virtualization is known as a virtual
manager, which creates virtual computational environments from actual physical infras-
tructure.

1.1 Thesis motivation

In this thesis we will design, and study the performance impact of integrating a NoSQL
database in a software used for managing clusters of physical nodes. The motivation

1

2 Chapter 1. Introduction

behind this thesis emerged from concerns about the performance, and scalability require-
ments of Ganeti 1, a software tool used for the physical node management of a cluster,
and the low level VM management as well. Ganeti is used from Synnefo 2, an open source
cloud software used to create massively scalable IaaS clouds. Synnefo [12], powers the
∼okeanos public cloud service [11]. ∼okeanos is an IaaS, i.e., Infrastructure as a Ser-
vice, that provides virtual machines, virtual networks and storage services to the Greek
Academic and Research Community. It is an open-source service that has been running
in production servers since 2011, by GRNET S.A. 3.

Synnefo is a complete open source cloud stack written in Python, and has three main
components providing the corresponding services:

• Cyclades, Compute/Network/Image/Volume services.

• Pithos, File/Object Storage services.

• Astakos, Identify/Account services.

Synnefo manages multiple Ganeti clusters at the backend for handling the low-level VM
operations. As we mentioned previously, improving the performance and scalability of
Ganeti, by testing it under alternative storage engines, and specifically CouchDB 4, a
NoSQL database system, was our motivation. In addition, a design document 5, that was
proposed a long time ago by Guido Trotter, one of Ganeti’s senior Engineers, amplified
the conduction of this thesis.

1.2 Thesis structure

This thesis is organized in the following sections:

Chapter 2:
We provide all the necessary theoretical background for the concepts discussed in
this thesis.

Chapter 3:
We present the architecture of Ganeti. A small documentation to facilitate the reader
with the most basic components of Ganeti, and how they interact with each other.

Chapter 4:
We analyze two of the basic components of Ganeti by providing more technical de-
tails, and specifically the configuration data file and the job queue components. We
also examine the main factors that prevent Ganeti from achieving better perfor-
mance, and reduce its scalability capabilities. Next, we discuss the main reasons
we chosen CouchDB to provide solution to some of those issues, and we make a
quick presentation of its main features. Finally, we explain in details the design of

1http://code.google.com/p/ganeti/
2http://www.synnefo.org
3https://www.grnet.gr/
4http://couchdb.apache.org/
5https://groups.google.com/forum/#!topic/ganeti-devel/jLvStCCTZ2Q

http://code.google.com/p/ganeti/
http://www.synnefo.org
https://www.grnet.gr/
http://couchdb.apache.org/
https://groups.google.com/forum/#!topic/ganeti-devel/jLvStCCTZ2Q

1.2 Thesis structure 3

the CouchDB driver, along with all the compromises we have to make during the
implementation.

Chapter 5:
We evaluate the performance of the CouchDB driver. We compare it with the
Ganeti’s default filesystem approach, and we weight the pros and cons of each im-
plementation. Finally, we extensively explain the reasons behind the differentiations
that are arisen.

Chapter 6:
We provide our conclusion remarks, and our thoughts about future work for further
improvements on the tool we designed, along with the final deduction of our work.

Chapter 2

Background

In this chapter, we will cover all the necessary theoretical background needed in order to
familiarize the reader with the rest of the document. We will analyze the basic axis around
that document, to avoid setting further understanding difficulties to an unfamiliar with
the subject reader.

More specifically, Section 2.1 covers the virtualization topic since as we will see later,
Ganeti is based on virtualization technologies. Section 2.2, explains the term of Cloud
Computing and how it is evolved since it is first introduced in the computer science.
Finally, Section 2.3 describes the new trend in the databases market, the NoSQL databases,
as we used one of them to deal with some of Ganeti’s performance and scalability issues.

2.1 Virtualization

In recent years, virtualization has become an important consideration and has gained
popularity in many different areas such as server consolidation, cloud computing, corporate
data centers, and the academic world. This is largely due to an increase in hardware
performance of about ten fold in the past decade, the need to reduce the capital and
operational cost to the minimum [9], and the desire to run multiple operating systems in
a single host.

The term virtualization in computing, from a high level of view, refers to those technologies
designed to provide a logical view of computer resources, and an abstraction layer between
hardware systems and the software running on them. Virtualization traces its roots back
to the mainframes of the 1960’s and 1970’s. There are various types of virtualization [19],
and it can refer to a variety of computing concepts such as operating systems, user-space
applications, storage services, computer network resources, and more. Maybe the most
famous virtualization term is the Virtual Machine. In the early 1970’s, Gerald J. Popek
and Robert P. Goldberg defined the virtual machine as:

“A virtual machine is taken to be an efficient,
isolated duplicate of the real machine.” [15]

Gerald J. Popek and Robert P. Goldberg

5

6 Chapter 2. Background

The definition of virtual machine has evolved since then, and current virtual machine uses
have not direct correspondence to any real hardware, necessarily, and are used in a number
of subdisciplines ranging from operating systems to programming languages to processor
architectures [18]. Depending on the correspondence degree of a physical machine, virtual
machines can be classified into two major categories. The Process Virtual Machines and
the System Virtual Machines.

A process virtual machine is a virtual platform that executes an individual process in
isolation from the physical computer system. It is often called an application virtual
machine and its objective is to only support the process it is assigned to. It is created and
terminates as the process is created and terminates respectively. This approach allows a
user to run a program that might otherwise be incompatible with the normal operating
system. The virtualization software that implements a process machine often termed as
“Runtime software”. Such virtual machines are usually suited to a programming language
and build with the purpose of providing portability and flexibility to the language. That
type of VM has become popular since the Java Virtual Machine (JVM) introduction,
used by the Java Programming Language. They provide a high-level of abstraction and
are implemented using an interpreter to transform the instructions written in a specific
programming language into a machine language, which will run in the virtual environment
that the VM creates.

In contrast, a system virtual machine provides a complete environment in which an oper-
ating system with multiple users and many different processes can coexist. With this type
of VM, many different guest operating systems can run in a single host, independently,
isolated, and transparently from each other. The guest operating system also provides
access to virtual hardware including network drivers, I/O communication, along with a
virtual CPU (vCPU) and memory. The software that implements a system virtual ma-
chine often referred as the “Virtual Machine Monitor”, VMM in short. These VMs usually
emulate an existing architecture, and are built with the purpose to provide a platform for
running programs when the real hardware is not available. In addition, having multiple
VM instances on a single host leads to a more efficient use of computer resources, in terms
of energy consumption and cost effectiveness; the key that lead to the Cloud Computing
evolution.

2.1.1 Hardware Virtualization

Hardware, or platform virtualization refers to the technique used by the system virtual
machines. In hardware virtualization, the host machine is the actual machine on which
the virtualization takes place, and the guest machine is the virtual machine. The words
host and guest are used to distinguish the software that runs on the physical machine
from the software that runs on the virtual machine. VMs of that type use a separate
software layer called Hypervisor. Hypervisor is the most basic virtualization component
and it is responsible for the creation and the execution managing of the virtual machine.
Hypervisors are classified on two different types depending on running directly on the
host’s hardware, Type I, or running within a conventional OS environment, Type II.

Type I hypervisors, also called native or “bare metal” ones, run directly on the physical
hardware, control it, and manage the guest operating systems that run on a different level
above the hardware, as Figure 2.1 denotes. They are completely independent from the
operating system, and are also responsible for many basic operations like VM scheduling,

2.1 Virtualization 7

memory management, and more. They allow multiple commodity operating systems run
concurrently and share conventional hardware in a safe way, but without sacrificing either
performance or functionality. Most known hypervisors of that type are the VMWare
vShpere Hypervisor 1 and the Xen Hypervisor [3].

Type II hypervisors, are running on top of a native operating system as a separate distinct
software layer, and below the guest’s operating system, as Figure 2.1 presents. This type
of hypervisor heavily relies on the operating system, and is as secure as the OS itself.
On the other hand, a native operating system provides the ability to the hypervisor to
take advantage of the functions that are already implemented by the OS, like scheduling,
memory management, device drivers, and more. The most known hypervisors of that
category are the KVM hypervisor 2 which actually turns the Linux kernel into a hypervisor,
VirtualBox 3, and the VMWare Workstation 4.

Figure 2.1: Hypervisor types

Finally, we should mention another important hardware virtualization technique, the Em-
ulation. It refers to the replication of system functions from other, so that the emulator
will act similarly to the emulated system. QEMU 5 is maybe the most known hardware
emulator software, written by Fabrice Bellard [4]. It emulates central processing units
through dynamic binary translation, and provides a set of device models, making it feasi-
ble to run a variety of unmodified guest operating systems. It also provides an accelerated
mode for supporting a mixture of binary translation, for kernel code, and native execution,
for user code, in the same fashion as VMware Workstation and VirtualBox do. QEMU
can also be used purely for CPU emulation for user-level processes, allowing applications
compiled for one architecture to be run on another 6.

1http://www.vmware.com/products/vshpere-hypervisor/
2http://www.linux-kvm.org/
3https://www.virtualbox.org/
4http://www.vmware.com/products/workstation/
5http://www.wiki.qemu.org/
6http://en.wikipedia.org/wiki/QEMU

http://www.vmware.com/products/vshpere-hypervisor/
http://www.linux-kvm.org/
https://www.virtualbox.org/
http://www.vmware.com/products/workstation/
http://www.wiki.qemu.org/
http://en.wikipedia.org/wiki/QEMU

8 Chapter 2. Background

2.1.2 Full Virtualization

Full Virtualization is a hardware virtualization type on which the virtual machine simu-
lates almost completely the actual hardware to allow the guest operating system software,
mainly, to be run transparently and in isolation from the rest system. That implies that
every single feature of the physical hardware can be reflected into a virtual machine, in-
cluding interrupts, memory access, and whatever other elements are used by the software
that runs on the bare machine.

Full virtualization is possible only with the right combination of hardware and software
elements. One of the most famous virtualization architectures x86 architecture [1], could
not offer full virtualization until the additions of the Intel VT-x 7 and AMD-V 8 virtu-
alization extensions, made at about 2005-2006. A key challenge for full virtualization is
the interception and simulation of privileged operations, such as I/O instructions. Every
operation performed within a virtual machine should not affect other virtual machines, or
alter the state of the hardware. Many techniques have been developed to provide the ap-
pearance of full virtualization. An interest approach was implemented by VMware with a
technique called “Binary translation” [20]. We will not present further techniques because
are out of the scope of that document. KVM and VMware are well-known examples of
full virtualization solutions.

2.1.3 Paravirtualization

This technique does not simulates a hardware environment. However, the guest appli-
cations are executed in their own isolated domains, as if they are running on a separate
system. With Paravirtualization the term of hypercall is introduced. The guest para-
virtualized operating systems should make a system call to the underlying hypervisor
when it have to perform a privileged operation. By allowing the guest OS to indicate its
intents to the hypervisor, improved performance and efficiency can be achieved, as each
OS can cooperate to obtain better performance when running in a virtual machine. As a
result, the guest OS have to be modified for the hypervisor, since the virtualization code
is integrated into the operating system itself. Xen and User Mode Linux are examples of
paravirtualization solutions.

2.2 Cloud Computing

Nowadays, the term Cloud has become one of the most popular words worldwide consti-
tuting a new trend in the computer science. Cloud Computing is an overloaded term with
many formulated definitions, which make us realize the high interest of the topic. Although
nearly everybody talks about cloud computing, the concepts remain somewhat unclear to
many, because a new definition arises according to the field of interest. However, what
we could say about all the different definitions, is that they have in common the concept
of IT applications, infrastructures, and platforms provided on demand and standardized
as services over the Internet where the resources are provided to the consumers logically
rather than physically. According to that basic understanding and based on our literature

7http://en.wikipedia.org/wiki/X86_virtualization#Intel_virtualization_.28VT-x.29
8http://en.wikipedia.org/wiki/X86_virtualization#AMD_virtualization_.28AMD-V.29

http://en.wikipedia.org/wiki/X86_virtualization#Intel_virtualization_.28VT-x.29
http://en.wikipedia.org/wiki/X86_virtualization#AMD_virtualization_.28AMD-V.29

2.2 Cloud Computing 9

review we will try to provide a definition from a computer resources perspective rather
than a technical point of view:

Cloud Computing is a design solution for an IT deployment, based on virtualized
resources offered over the Internet, where its services in terms of infrastructure, software,
storage, networking, and more, are offered on demand by a service provider, guaranteeing

scalability, security, reliability and high-availability, and can be billed based on a
per-usage paying policy.

2.2.1 The evolution of Cloud Computing

Although the Cloud Computing became known to the public the last decade, that does
not constitutes a new invention or a revolution for the computer science. It is more an
evolution of already existing technologies rather than a new computing paradigm. The
following short historical review of the development of computers and the Internet will
show us that the idea of a centralized computer utility was always existed and inevitably
lead us to the beginning of Cloud Computing [13].

Going back in time we stop in 1947, the year when John Bardeen, Walter Brattain, and
William Shockley first introduced the transistor. This is a milestone in computer evolution
because it marked great advancements in the computer development. Computers evolved
from simple calculating, Turing capable to general-purpose machines 9. The underlying
concept of cloud computing dates back in late 1950s, when large-scale mainframe comput-
ers become available in academia and corporations. IBM 704, in 1954 was the first mass
produced mainframe computer with floating-point arithmetic. Eventually, in 1964 the
IBM System/360 followed. Mainframe computers was accessible via thin client/terminal
computers. Primarily used by corporate and governmental organizations for critical appli-
cations and bulk data processing. The term originally referred to the large cabinets that
housed the central processing unit and the main memory of early computers. The pe-
ripheral components that started to appear for that product family, in addition to further
developments and the miniaturization of the mainframes computers lead to the appearance
of Minicomputers, such as DEC PDP-8, in 1965.

Mainframes were highly-costed computers. To make more efficient use of costly main-
frames, a practice evolved that allowed multiple users to share both the physical access
to computers from multiple terminals, as well as sharing their CPU time. The practice of
sharing the CPU time on mainframe computers, became known in the industry as time-
sharing. That trend of centralized, shared computer resources is very similar to the idea
of cloud computing. Many researchers in the 1960ies talked about the need of computa-
tion to follow the electricity or telephone system paradigm and be organized as a public
utility [7].

9Actually, ENIAC (aka Electronic Numerical Integrator And Computer), considered to be the first general-
purpose computer, which announced one year earlier in 1946, but after 1947 a burst in computer engineering
occurs, with the first mass produced computers.

10 Chapter 2. Background

“Computing may someday be organized as a public utility just as the telephone system is
a public utility ... Each subscriber needs to pay only for the capacity he actually uses, but

he has access to all programming languages characteristic of a very large system ...”

Professor John McCarthy, at MIT’s centennial celebration in 1961

Douglas Parkhill’s, 1966 book, The Challenge of the Computer Utility, explores deeper
this idea. With the Personal Computer (PC) development in the 1970ies significant per-
formance leaps could be achieved, graphical user interfaces were established, and the
continuing miniaturization eventually lead to the development of laptops and mobile de-
vices. From Intel 4004 first microprocessor in 1971, since 1975 Altair 8800 first Home
Computer, many PCs have been developed and even more followed from Apple, IBM, and
more companies that entered the industry.

In the 1990ies, the Internet achieved a real breakthrough with Tim Berners-Lee’s inven-
tion of the World Wide Web. The concept of Grid Computing got established where a
collection of computer resources from multiple locations used to reach a common goal.
The first appearance of the term Cloud Computing, happened at 2007 some months after
Amazon made the test version of its Elastic Computing Cloud (EC2) public. The rapid
development of Virtualization, which allowed more efficient hardware utilization made the
cloud computing a technological innovation. Nowadays more and more cloud solutions
appear as mobile phones begin to overtake PCs as the most common Web access devices
worldwide.

The following Figure 2.2, gives us an overview of the computing evolution.

Figure 2.2: Computer history timeline

2.2 Cloud Computing 11

2.2.2 Service Models

Cloud computing services can be classified along different layers, according to the level
of the capability they provide. There are three primary models, as shown in Figure 2.3,
namely: Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software
as a Service (SaaS). These abstraction levels can also be viewed as a layered architecture
where services of higher levels can be composed from the underlying layers.

Cloud Clients

SaaS

PaaS

IaaS

Web browser, mobile app, thin client, terminal
emulator, ...

CRM, Email, virtual desktop, communication,
games, ...

Execution runtime, database, web server,
development tools, ...

Virtual machines, servers, storage, load
balancers, network, ...

A
pp

lic
at

io
n

P
la

tfo
rm

In
fr

a-
st

ru
ct

ur
e

Figure 2.3: The layers of Cloud Computing

Infrastructure as a Service
It is the most basic cloud-service model. Providers of IaaS offer computers in terms
of virtual machines, which are controlled by a hypervisor, such as Xen or KVM.
Consumers can control and manage their systems in terms of operating systems,
storage, applications, firewalls, and network connectivity but do not control the
cloud infrastructure themselves. Examples of IaaS providers are the Amazon Web
Services (AWS) 10, Synnefo 11, Openstack 12, Rackspace 13, GoGrid 14 and more.

Platform as a Service
In the PaaS model, cloud providers offer a computing platform, typically including
an operating system, a web server, a database and a programming language execu-
tion environment. Consumers purchase access to those platforms, enabling them to

10http://aws.amazon.com/
11http://www.synnefo.org/
12http://www.openstack.org/
13http://www.rackspace.com/
14http://gogrid.com/

http://aws.amazon.com/
http://www.synnefo.org/
http://www.openstack.org/
http://www.rackspace.com/
http://gogrid.com/

12 Chapter 2. Background

deploy their own software and applications in the cloud. The operating system or the
network access are not managed by the consumers, which may have constraints on
which applications they can deploy in the cloud. Some providers of a PaaS solutions
are: Heroku 15, Openshift 16, AppFog 17, the Google App Engine Platform 18, and
many other.

Software as a Service
In that service model consumers purchase the ability to access and make use of
application software and databases that are hosted in the cloud. Cloud providers
manage the infrastructure and platforms that run the applications. SaaS can be
referred as on-demand software and is usually priced on a per-usage basis. The
cloud users access the software most commonly from cloud clients. Salesforce 19 is
the best known SaaS provider, which also considered to be the founder of the SaaS
industry.

Other -aaS models
There are also many subsets of these models that are related to a more particular
industry or market. Communication as a Service (CaaS), is a model used to de-
scribe hosted IP telephony services. Network as a Service (NaaS) provides network
connectivity services and resource optimization allocations by considering network
and computing resources as a unified whole. Database as a Service (DBaaS), is an-
other submodel offered by the cloud providers. As it seems, in coming years almost
anything will be provided by the cloud as a service.

2.2.3 Deployment Models

Deploying cloud computing can differ depending on consumers requirements. Four primary
deployment models have been identified, each with specific characteristics, used for several
services and user needs.

Private Cloud
The cloud infrastructure has been deployed, and is maintained and operated for a
single organization. It can be hosted either internally or externally and managed
internally or by a third-party.

Community Cloud
This deployment model is very similar to the private cloud, but the infrastructure is
shared among several organizations with common interests and requirements. The
cost for the cloud establishment is shared between organizations. The operation may
be in-house or in third-party premises.

Public Cloud
The cloud infrastructure is available to the public by a service provider over the
network. The most important technical difference compared to the private cloud is

15https://www.heroku.com/
16https://www.openshift.com/
17https://www.appfog.com/
18https://developers.google.com/appengine/
19http://www.salesforce.com/

https://www.heroku.com/
https://www.openshift.com/
https://www.appfog.com/
https://developers.google.com/appengine/
http://www.salesforce.com/

2.3 NoSQL databases 13

the security consideration, which can be considerably different depending on services
like applications, storage, and more.

Hybrid Cloud
As it names stands for, hybrid cloud is a composition of two or more different cloud
deployment models. The various cloud models which implement the hybrid one, are
unique entities. The unified cloud instead, has the ability to communicate through
its sub-cloud interfaces, allowing data or applications to be moved among them, and
offering the benefits of multiple deployment models. Various use cases for hybrid
cloud composition exist, like a combination of a public and private cloud that support
both the requirement to retain some data in an organization, and also the need to
offer some services in the cloud community.

2.3 NoSQL databases

Over the last 15 years, interactive applications have changed dramatically, and so have
the data management needs of those. The inception of Cloud Computing gave higher
priority to the application scalability, resource utilization, and power saving. In addition
to the growth in the global Internet usage, and the growing popularity of smartphones
and tablets, it is very common for applications to have millions of users per day. Their
usage requirements are hard to predict, because user number rapidly grows or shrinks,
and it is important to dynamically support those differentiations. The large number of
users created the need of handling large amount of data, so databases should be able to
effectively deal with all this information [5].

The traditional SQL Relational DataBase Management Systems (RDBMS), based on re-
lational algebra 20, should be modified in order to meet up with the new requirements.
At the beginning, companies tried the traditional approach. Invested to more and faster
hardware as it became available. When that did not work, they tried to improve and
make the current relational models scale by simplifying the database schema, introducing
various caching layers, partitioning the data, and many more solutions in an attempt to
respond to the requirements of the new community that was being developed. Although
each of these techniques extended the currently rigid database model and addressed the
core of the limitations that arose, they introduced additional overhead to the applica-
tions. As a result, the previously optimal relational database design, start to introduce
limitations to the newly designed systems. This is mainly due to the fact that when the
majority of the relational databases was designed, the predominant model for hardware
deployment involved buying large servers attached to storage area networks ,i.e., SANs. In
other words, the databases objective was to provide as much concurrent access as possible
with the given machine’s limitations.

The common architecture of relational databases was the main reason that failed to deal
with scalability, latency, high-availability, failover options, speed, fault-tolerance and other
requirements of the largest sites during the massive growth of the Internet. NoSQL
databases started to emerge, providing solutions to the above requirements and in ad-
dition providing a great advantage; agility. NoSQL designed and evolved in a different
environment with different needs and goals, and as a result provide better suited solutions
for many of the today’s data storage problems. Most agree that the term NoSQL, stands

20http://en.wikipedia.org/wiki/Relational_algebra

http://en.wikipedia.org/wiki/Relational_algebra

14 Chapter 2. Background

for “Not only” SQL, showing that the target is not to completely reject the existing rela-
tional SQL models, but to overcome some of the limitations that exist. Database architects
sacrificed many primary aspects of the relational model, such as joins or strong consis-
tent data, while the schema devolved from strictly related tables with primary/foreign
key relations to something much more like a key/value look up. Amazon’s introduction
of DynamoDB and the underlying paper [8] considered by many the first large, web-scale
production of a NoSQL database.

2.3.1 NoSQl compromises

Companies want solutions that would scale, be fast, and operationally efficient. They
also ideally expect operations to speed up by simply adding new commodity hardware,
at almost a linear rate. One major bottleneck to accomplish that goal are the database
systems. So, in order to achieve the desired behavior, some compromises should be made,
and a bunch of tradeoffs should be taking into account [5].

The CAP Theorem
In 2000, Berkeley’s CA researcher Eric Brewer published the CAP Theorem 21, also
known as Brewer’s Theorem. What Brewer claimed is that it is impossible for a
distributed system to continually maintain perfect Consistency, Availability, and
Partition tolerance.

• Consistency: All node see the same data at the same time.
• Availability: A guarantee that every request receives a response about whether
it was successful or failed.

• Partition tolerance: The system will continue to operate despite arbitrary mes-
sage losses.

The theorem states that when designing a database distributed system you must
make tradeoffs among the above features because you cannot simultaneously main-
tain all three of them. Peter Mell, a senior computer scientist for the National
Institute of Standards and Technology (NIST), said that:

In the database world, they can give you perfect consistency, but that limits your
availability or scalability. It’s interesting, you are actually allowed to relax the

consistency just a little bit, not a lot, to achieve greater scalability.
Well, the big data vendors took this to a whole new extreme. They said that we are
going to offer amazing availability or scalability, knowing that the data is going to

be consistent eventually, usually. That was great for many things. [14]

What Mell actually said is that maybe we need a balance. So systems should be de-
veloped with CAP tradeoffs, relative to operations that the product provides, rather
than relative to the product as a whole. This is what a NoSQL solution actually does.
It employs less constrained consistency models than traditional relational databases,
but with higher availability and partition-tolerance.

21http://en.wikipedia.org/wiki/CAP_theorem

http://en.wikipedia.org/wiki/CAP_theorem

2.3 NoSQL databases 15

ACID vs BASE
In computer science, ACID is a set of properties which outlines the fundamental
elements of transactions. In terms of database, a single logical operation on the
data is called a transaction. ACID stands for Atomicity, Consistency, Isolation, and
Durability 22. In order to make a transaction more agile, and to deliver scalability,
the NoSQL solutions should relax, or redefine some of those properties. Consistency
and durability are the first “runners”.
In distributed systems where there is a great deal of communication involving locks,
scalability can not be easily achieved. One solution is to relax the consistency prop-
erty and pass from “strong” consistency to something called “eventual” consistency.
This actually means that updates made by a part of a system should become known
to the rest parts of the system within a short period of time and not directly after
the transaction is completed. For many applications the acknowledgment that the
information will eventually arrive to all nodes satisfy the requirements. One other
approach is using a concurrency control method called Multi Version Concurrency
Control (MVCC) 23. Both of those techniques add an extra overhead to the program-
mer of the application who is responsible of dealing with the coming information ap-
propriately. An another property is durability. Many NoSQL solutions choose not
to save data to disk at once, because writing to disk slows down the whole system,
but keeping them in memory instead. A balance should be found between durability
and speed of performing read/write operations. Eventually, that approach keeps a
small window open where seemingly committed transactions can be lost. Many other
approaches designed, but as with any other databases, when evaluating a NoSQL
solution, you should choose depending on your application requirements [5].
The result of that “relaxing ACID” approach followed by NoSQL solutions, charac-
terized by the BASE acronym:

• Basically Available: By using data replication or sharding among many different
servers, we result in a system that is always available, even if subsets of data
become unavailable for short periods of time.

• Soft state: In ACID systems, data consistency is one of the most painful require-
ments. On the other hand, NoSQL systems allow inconsistent data between
nodes and leave that inconsistencies to the application developer.

• Eventually consistent: In contrast with ACID systems that enforce consistency
at transaction commit, NoSQL guarantees consistency only at some undefined
future time.

Figure 2.4, sums up everything discussed in the current subsection in a single image.

2.3.2 NoSQL Models

Relational and NoSQL models are totally different. Relational models have rigid schema
which means that they require a strict definition of a schema prior to storing any type of
data into a database. Changing the schema once data are inserted is a big deal, may be
disruptive, and it is frequently avoided. In addition, relational databases take data and

22http://en.wikipedia.org/wiki/ACID
23http://en.wikipedia.org/wiki/Multiversion_concurrency_control

http://en.wikipedia.org/wiki/ACID
http://en.wikipedia.org/wiki/Multiversion_concurrency_control

16 Chapter 2. Background

ACID with
Eventual consistency

RDBMS

BASE with
Eventual consistency

No
SQ
L

Small data sets can be both
Consistent and Available

Partition
Tolerance

Consistency Availability

CAP Theorem with ACID and BASE Visualised

Figure 2.4: CAP theorem with ACID and BASE visualized

separate them into many different tables that contain rows and columns. Tables can be
related through different foreign keys that are stored in columns as well. A simple look
up of a data, requires a search among many tables and the subresults are combined before
the final answer can be provided to the application. Similarly, a write requires data to be
coordinated and performed on many different tables.

NoSQL databases follow a totally different approach. They are schema-less, allowing to
freely add fields without having to define the changes earlier. The application is not
disrupted while the format of the data being inserted changes. They also diverge from
one another as well as from the RDBMS. There are three main representation models
within the NoSQL family: Document-oriented, key/value, and graph related databases.
Key-value databases allow the application to store its data in a schema-less way. The data
could be stored in a datatype of a programming language or an object. Many different
key/value types exist such as: KV-eventual consistency, KV-cache in RAM, KV-solid state
or rotating disk and more. Document-oriented database store data in formats that are more
native to the languages and systems they interact with. JSON or BSON, are commonly
used as a simple dictionary/array representation. Graph-based databases store information
about nodes and edges and provide simple, highly-optimized interface to examine the
connections between them. We can classify NoSQL into more models like, Collection,
or Columnar/Tabular oriented databases, but we chose to present the three most known
categories of them. In Figure 2.5 24, we present a bunch of the most known NoSQL

24Source: http://blog.nahurst.com/visual-guide-to-nosql-systems

http://blog.nahurst.com/visual -guide-to-nosql-systems

2.3 NoSQL databases 17

databases, and the models in which each one belongs, in combination with the CAP
theorem graph, to describe the various areas covered by each NoSQL database.

Figure 2.5: Visual guide to NoSQL systems

NoSQL models have been designed with the intention to handle large amount of data.
Their main characteristics have been designed and developed with respect to scaling and
performance. NoSQL solutions provide auto-sharding techniques. A NoSQL database
automatically spreads data across servers, without requiring application to participate.
Servers can be added or removed from the data layer without application downtime. Most
NoSQL databases also support data replication, storing multiple copies of data across
the cluster, or even more across data centers to ensure high-availability and failover from
hardware failures. In addition to distributed data, they provide distributed processing
techniques, mainly based on MapReduce, providing them with powerful query capabilities
even across hundred of servers. Furthermore, to reduce latency and increase sustained
data throughput, advanced NoSQL database technologies transparently cache data in the
system memory. Summing up, NoSQL vs RDBMS debate will continue. Each has its
advantages and weaknesses, and neither will entirely replace the other. Spending some
time on understanding how the NoSQL tradeoffs will impact the application’s design,
may result in a solution that fits the product’s special needs, sometimes better than a
traditional RDBMS solution would.

Chapter 3

Ganeti backend

This chapter concentrates on Ganeti. We will discuss the architecture of Ganeti, and we
will analyze in details its most basic parts and how they interact with each other. We
will try to provide small documentation to familiarize the reader with this tool, avoiding
presenting superfluous information. Summing up, the objective for the reader is at the
end of this chapter to have a comprehensive view of Ganeti and its basic structure.

3.1 Overview

Ganeti is a software tool to manage computer clusters, and also assumes the management
task of the virtual instances of the cluster. Is is being developed by Google and is an Open
Source Project since 2007. It is build on top of existing virtualization technologies, such
as XEN or KVM hypervisors, and other open source software. It also uses LVM for disk
management, optionally DRBD for disk replication across physical hosts, and other disk
templates such as RBD, external shared storage providers and more.

Ganeti uses a daemon-based model. Each daemon deals with specific tasks that the cluster
has to face, and communicates with other daemons using various protocols, mainly HTTP
based, and custom ones like LUXI. Many of those daemons are written in Haskell, but
most of the project’s code is in Python. Ganeti is actually a wrapper around hypervisors.
Once installed, the tool will take over the management part of virtual instances. It also
makes it convenient for system administrators to setup and handle clusters of physical
nodes.

Some of the main features that Ganeti provides, and controls are the following:

• Cluster management of physical nodes.

• Support for XEN virtualization.

• Support for KVM virtualization.

• Support for virtual console to control instances ,e.g, VNC.

• Support for live instance migration.

• Support for virtio or emulated devices.

19

20 Chapter 3. Ganeti backend

• Disk management: plain LVM volumes, files, Across-the-network RAID1 (using
DRBD) for quick recovery in case of physical system failure.

• Export/import mechanisms for backup purposes or migration between cluster.

• Fast and simple recovery after physical failures using commodity hardware.

3.2 Terminology

In this section, we provide a small introduction of the most basic Ganeti terms, in order
to facilitate the reader in the rest of the document. In Figure 3.1, we present an abstract
Ganeti architecture, which will help us to briefly explain those terms.

Ganeti LVM volumes

RAPI Protocol

RESTful,
JSON over HTTP

LUXI LUXI

Job eue
Ganeti RPC

(HTTP)

RAPI Daemon CLI

master daemon

Ganeti-Cluster

Ganeti-Master node

Ganeti-Node
with instances (VMs)

RAPI

Ganeti-Node

Figure 3.1: Ganeti base components, version 2.7.2

Cluster
A set of computers (nodes) working together to provide a coherent, reliable, scalable,
highly-available virtualization service under a single domain.

Node
A physical machine which corresponds to the basic cluster infrastructure. If they
host no instances, nodes can be added and removed at will from the cluster. They
do not have to be fault-tolerant in order to achieve high availability for the instances
they host. The loss of a single node, in a HA cluster, will not cause disk data loss
for any of the instances it hosts.
A node belonging to a cluster can serve different roles; VM-hosting and/or Admin-
istrative roles, which will be explained later in this document. Independently of its

3.2 Terminology 21

role, nodes can be in different statuses like online, drained or offline. Depending on
the role they serve, each node will run a set of daemons:

• ganeti-masterd
• ganeti-noded
• ganeti-rapid
• ganeti-confd

Instance
A virtual machine that runs on a cluster. Instances in Ganeti are highly-available
entities, that can also become fault-tolerant depending on the disk template they
use, e.g., DRBD. An instance has various parameters which can be modified either
at instance level or at cluster level via cluster default parameters. Those parameters
can be classified in three main categories: hypervisor related parameters, called
hvparams, general parameters, called beparams, and network interface parameters,
called nics.

Disk Template
The layout disk type for the instance. Instances in Ganeti see the same virtual drive
in all cases, but the node-level configuration varies between them. The available
storage templates are the following:

diskless
This creates an instance with no disks. Useful for testing purposes, or other
special cases.

file
Disk devices will be regular plain files. No redundancy is provided.

sharedfile
Disk devices will be regular plain files under a shared directory. This option
allows live migration and failover of instances.

plain
Disk devices will be LVM volumes.

drbd
Disk devices will be drbd on top of LVM volumes, compatible with DRBD
versions 8.x.

rbd
Disk devices will be rbd volumes, short for RADOS block device, residing inside
a RADOS cluster.

blockdev
Pre-existent block devices will be used as backend for its disks.

ext
The instance will use an external storage provider as disk backend, through the
ExtStorage Interface, using ExtStorage providers.

Primary and Secondary concepts
An instance has a primary node, and depending on the disk configuration chosen
might also have a secondary one. Every DRBD instance runs in its primary node
and uses the secondary for disk replication and fault-tolerance. When those terms

22 Chapter 3. Ganeti backend

used in node level, they refer to the instances having the given node as primary and
secondary, respectively.

IAllocator
A framework for using external user-provided scripts to automatically compute the
placement of new instances on the cluster nodes. This eliminates the need to man-
ually specify the exact locations of an instance addition/move, and make the node
evacuate operations an easy, and common cluster operation.
In order for Ganeti to be able to use those scripts, we should place them under the
$libdir/ganeti/iallocators folder path.

Jobs and OpCodes
A Job in Ganeti is the basic operation to modify the cluster’s state. A job consists of
multiple OpCodes internally, short for “Operation Code”. This is the basic element of
operation in Ganeti. Most of the commands in Ganeti are equivalent to one opcode,
or in some cases a sequence of opcodes, all of the same type ,e.g., shutting down all
instances in a cluster. The opcodes of a single job are processed serially, but different
jobs can be executed in parallel, in different order than they have been submitted,
depending on hardware resource availability, locks, or priority given by user.

3.3 Architecture

As we mentioned earlier in this section, Ganeti has a daemon-based architecture. Every
Ganeti-related command, (gnt-* commands), is an individual client which “talk” to the
master daemon who executes every cluster operation.

In Figure 3.2, we present the architecture of a Ganeti cluster in a more detailed form than
in Figure 3.1, and we show how the most basic daemons and elements interact with each
other.

Nodes are the basic cluster infrastructure in Ganeti. They serve different roles and they
can, and usually do, serve more than one. We could group node roles into two major
categories; The Administrative and the VM-capable nodes. Nodes belonging in the first
category, can modify the cluster state, or take part in cluster related decisions like the
master node voting procedure. Nodes in second category can simply hosts instances (VMs).

In more details, a node can belong in one, or more of the following roles:

Master
It is the cluster coordinator node and it holds the authoritative copy of the cluster
configuration. Every decision that could affect the cluster state managed by this
node, because it is the only node which can execute commands. Only one master
should exist every time in a Ganeti cluster.

Master Candidate
Nodes in this category have the full copy of the live cluster configuration and jobs.
Only nodes belonging in this role can become master. This set of nodes called
candidate pool, and there is also a parameter called candidate_pool_size, which
represents the number of candidates the cluster tries to maintain, automatically.
Because the candidate_pool_size can have a huge impact in Ganeti performance,

3.3 Architecture 23

LUXI Endpoint

Master I/O read

Job eue

worker worker

ganeti-watcher

Burnin

RAPI daemon

CLI Tools

confd

config.data (JSON)

ssconf_* files

Master Node

gnt-cluster
gnt-node
gnt-instance

RPC listener

Disk Managment

Network Managment

Hypervisor (KVM/XEN)

Job eue

config.data (JSON)

ssconf_* files

noded confd

Master Candidate nodes

RPC listener

Disk Managment

Network Managment

Hypervisor (KVM/XEN)

ssconf_* files

noded confd

VM-capable nodes

Ganeti Cluster

Figure 3.2: Ganeti architecture, version 2.7.2

for reasons which we ’ll explain later, it can be configured during initialization or
modified via cluster related commands (gnt-cluster *).

Master Capable
Nodes in this category are not master candidates, but can become and promoted to
master node, in cases when nodes in the candidate pool are less than the desired
size. In such case, a randomly selected master capable node is promoted to master
candidate. We could disable this flag and exclude some nodes from being master
candidates in case when they have a less reliable hardware and we do not want to
store sensitive information to them.

VM Capable
This is the default node state and means that the node can host instances. More
specifically, the node will participate in instance allocation operations, capacity cal-
culations, cluster checks, and other operations.

Offline
Nodes having this flag set have some special characteristics. They are still recorded
in the Ganeti configuration, and can only take part in the master voting procedure,
to ensure consistency. They are not allowed to become master. Enabling this flag
to a master candidate node will demote it from candidate possibly, causing another
node which is master capable to be promoted. Additionally, these nodes are not al-
lowed to host primary instances. The main reason this role was added to Ganeti was
to allow broken machines that are being repaired to remain in the cluster without
introducing further problems.

24 Chapter 3. Ganeti backend

Drained
Nodes in this state, will not participate in instance allocation operations, but all
other operations as queries, or starting and stopping instances, are working without
any restrictions. The actual intention is that nodes in this role have some issue and
they are being evacuated for hardware repairs.

Previously, we made some references to Ganeti Cluster Configuration and Jobs which are
stored in the system as files. These files are stored under the /var/lib/ganeti directory,
and actually form a database for the cluster. Every single piece of information that the
cluster needs to operate normally is stored in those files.

3.3.1 Cluster Configuration

The cluster configuration is a set of files which are present in all, or a subset of nodes
depending on their usage. We could group them into three main categories, namely:

config.data
The cluster configuration database is a single JSON config file called config.data.
The master node keeps a valid version of this file and it also replicates it to the
master candidate nodes, for reliability reasons. Ganeti has a special way to handle
config.data updates; It holds the config.data both in master memory and disk. The
canonical version of the config exists at every moment in the master node memory,
and the disk version will be updated from there. Every operation that updates a
single object in the memory version of the config.data automatically causes a flush
of the whole file to disk. If the config does not flushed successfully to disk, the
operation will fail. The config.data file contains information about all the major
Ganeti objects such as cluster, nodes, instances, networks, and their attributes. We
will extensively talk about the config.data structure in the next chapters.

ssconf_*
Besides the objects contained in the config.data, which change quite often, Ganeti
also holds a set of configuration files which contain information that does not change
frequently and needs to be present to all Ganeti nodes. These files are stored in the
same directory as the config.data file and start with a ssconf_ prefix. For example,
the ssconf file which contains the master IP value is called ssconf_master_ip, and
so on. The main reason for the existence of the ssconf files is that the most frequent
Ganeti operations should not need to contact the master node and overload him. In
addition, we want some information to be accessible at every moment, even if the
master node is down, so that we can use it from services external to the cluster, and
avoiding the single point of failure that a master hard shutdown could introduce.

SSL certificates
Ganeti uses OpenSSL for encryption on the RPC layer, and SSH for executing com-
mands. These SSL certificates are stored under the same directory as the rest of the
configuration files and exist in all Ganeti nodes. The SSL certificates are automat-
ically generated when the cluster is initialized, and are copied to the newly added
nodes automatically along with the master’s SSH host key. The cluster SSL key
is stored in the server.pem file. There is a similar key for the RAPI daemon, the

3.3 Architecture 25

rapi.pem file. The spice.pem and spice-ca.pem files are used by SPICE connec-
tions to the KVM hypervisor, the hmac.key is used by the ganeti-confd daemon,
the cluster-domain-secret file is used to sign information exchanged between sep-
arate clusters via a third party, and finally the Ganeti known_hosts file are all the
certificates maintained by Ganeti.

3.3.2 Jobs

Jobs are the basic Ganeti operation, and the only way to modify the cluster’s state. They
are stored as individual files in the file system, and serialized using JSON format, which
is the standard Ganeti serialization mechanism. A job consists of one or more opcodes.
That list of opcodes is processed serially, and if an opcode fails, later opcodes are no longer
processed and the entire job will fail.

At any time, each job and each opcode can be, in a different status depending on the
stage of its execution. The job status is actually the status of its first processed opcode.
A complete status description follows:

Queued
The job/opcode has been submitted, but has not been processed yet.

Waiting
The job/opcode is waiting for locks, or other factors, to proceed.

Running
The job/opcode is currently being executed.

Canceled
The job/opcode is waiting for locks, but is has been marked for cancellation by the
user. It will never return to the Running status.

Success
The job/opcode ran and finished successfully.

Error
The job/opcode has failed while executing, or the master daemon stopped before
the job finishes its execution.

While job opcodes execute serially, jobs do not. Their execution order depends on a variety
of factors, apart from their incoming order, like their ability to acquire all necessary locks,
their priority, or probable dependencies with other jobs. At any time, there are jobs that
can be in one of the above statuses. Similarly to the global cluster configuration files,
jobs are stored under a directory in the configuration path called queue, which is located
by default under the /var/lib/ganeti/queue path. The Job Queue structure speeds up
operations because every job which is ready for execution can run independently and so in
parallel with the other jobs. In addition, storing the jobs in a common folder makes it more
convenient for the user to handle and watch their progress, independently of Ganeti, and
it also makes the consistency checks that Ganeti does to the job list and jobs themselves
a simpler procedure. Queue structure also gives us the choice to prevent new jobs from
entering it by enabling the drained flag. This is a feature used mainly in cases when we

26 Chapter 3. Ganeti backend

have to make maintenance-related operations to the cluster and we do not want any new
incoming jobs affecting us.

Besides the regular jobs, the Job Queue structure always contains three more files, even if
there are not any jobs running, pending, or canceled in the cluster. Those are the version
file, which denotes the queue format version, the lock file, which is opened by the queue
managing process in exclusive mode, and the serial file, containing the last job ID value
used. Listing 3.1, presents a high-level view of the Ganeti Job Queue structure:

/var/lib/ganeti/queue/
job-1 (JSON encoded job description and status)
[...]
job-99
job-100
lock
serial
version

Listing 3.1: Job Queue structure

In Listing 3.2, we present the internal structure of a randomly-selected job in Ganeti, with
its most basic fields:

1 {id : 17238,
2 ops : [{’end_timestamp’ : [1383218135, 558098],
3 ’exec_timestamp’ : [1383218073, 542380],
4 ’input’ : {’OP_ID’: ’OP_INSTANCE_CREATE’,
5 ’depends’: ’null’,
6 ’dry_run’: False,
7 ’hypervisor’: ’kvm’,
8 ’iallocator’: ’hail’,
9 ’opportunistic_locking’: False,
10 [...]
11 ’priority’: 0},
12 ’log’ : [[1,
13 [1383218074, 501763],
14 ’message’, ’- INFO: Selected ... ’],
15 [...]],
16 ’priority’ : 0,
17 ’start_timestamp’ : [1383218073, 349666],
18 ’status’ : ’success’}],
19 received_timestamp : [1383218073, 199686],
20 start_timestamp : [1383218073, 349666],
21 end_timestamp : [1383218135, 558281]}

Listing 3.2: Job structure

3.3 Architecture 27

As we notice from this listing, a job consists of the ops field, short for opcodes, the job id,
and three timestamp fields that indicate when the job passed from the various statuses we
presented earlier. This job, consists of an opcode list with a single element, and represents
an instance create operation as indicated by the OP_ID field, i.e, OP_INSTANCE_CREATE.
Every opcode also has its own timestamps, as the job, so that the user can be informed with
more details about the exact time every single opcode passed from the various statuses.
The rest fields presented, are related to the specific opcode, to make the reader better
understand how Ganeti stores and handles the parameters we give in a commonly used
job like the creation of an instance. These are the iallocator algorithm, the hypervisor
chosen, and the opportunistic locking choice for the lock retrieval, a topic that we ’ll cover
later in Section 3.3.4.

Besides the above fields, we distinguish two important fields that will help us to better
understand how a job executes by the Ganeti processor; the priority and depends fields.

The job priority is an integer number; the lower the number the higher the opcode’s
priority is. This is a very helpful attribute in job queue handling, because in cases we
want to run a job like an emergency shutdown as soon as possible, we want to overcome
factors that could delay us. The priority range is [-20..19], and jobs submitted without
priority assigned the default zero value. To avoid starvation, a job can change its own
priority after a certain amount of retries, or a certain amount of time. One interesting
thing is that opcodes also have their own priorities. So, the job priority is the same as its
first unprocessed opcode. This behavior, combined with the fact that the job processor
returns the job back to the queue after each opcode completion, means that if there are
opcodes of higher priority submitted in the meantime of a job execution, these will first
try to acquire their locks and as result the job that was Running will go to the Waiting
status again. That behavior makes the job queue structure a lot more versatile.

The depends field of a job, is an optional property which defines dependencies on other
jobs. Clients can submit jobs in the right order and proceed to wait for changes made to
them. The master daemon will take care of everything, Section 3.3.3 covers that topic.
Jobs waiting for dependencies are in the Waiting status. In Listing 3.3, we present a
simple example of job dependencies:

First job
{
id : 1365,
ops : [

{ ”OP_ID” : ”OP_INSTANCE_REPLACE_DISKS”,
”depends” : null, ... },

{ ”OP_ID” : ”OP_INSTANCE_START”,
”depends” : null, ... },

],
}

Second job
{
id : 1532,
ops : [

{ ”OP_ID” : ”OP_INSTANCE_FAILOVER”,

28 Chapter 3. Ganeti backend

”depends” : null, ... },
],

}

Third job, depending on success of previous jobs
{
id : 1690,
ops : [

{ ”OP_ID” : ”OP_NODE_SET_PARAMS”,
”depends” : [

[1365, [”success”]]
[1532, [”success”]]], ... }

],
}

Listing 3.3: Job dependency diagram
The job queue must be consistent between the master node and the master candidates,
just like the cluster configuration files. Failures to replicate a job to other nodes will be
only flagged as error in the master daemon log if more than half of nodes fail to copy it,
otherwise the failure will be ignored and the operation will continue normally. This relies
on the fact that the next update for already running jobs, will retry the update.
Now we will present the job execution procedure from a high-level view; the “Life of a
Ganeti job”, from the time the user submits it till its completion:

1. Client submits the job. The appropriate opcode or a list of opcodes if the job
consists of multiple opcodes, will be built in the client side. The opcode contains all
the available information that Ganeti needs to execute the operation. For example,
an OpInstanceCreate opcode contains the name of the instance, the os_type, the
hypervisor, or instance-related parameters such as the beparams, the hvparams, the
nicparams, and so on.

2. Then the list of the opcode{s} will be sent via the LUXI protocol in the master
daemon, who will generate a new job identifier depending on the value of the serial
file, and it will assign it to the job. Then the master daemon writes the job to
his local disk and replicates it to the master candidates. The job must be copied
successfully at half of the candidates at least, otherwise the operation will fail. Then,
the identifier is returned to the client using the LUXI protocol again.

3. After the job_id is returned to the client, the master daemon builds the job object
named _QueuedJob, and adds a new task to the workerpool. The task is the job
object and the workerpool is a heap queue. The tasks are ordered in the heap queue
in respect to the job’s priority primarily, and if the priorities match, to an increasing
number which denotes their incoming order.

4. As soon as a new task is added to the heap queue, a pool of job queue workers with
currently 25 threads will be notified for new arrivals. Those threads wait for new
jobs to arrive. If all threads are busy, the job will have to wait until one of them
become available. The first worker finishing its work will grab it. Otherwise one of
the waiting threads will pick up the new job.

3.3 Architecture 29

5. When a job assigned to a worker it is time for the job to start its execution. The
worker does not know nothing about the opcodes that the job contains. He just
passes the opcode to the Ganeti’s processor who dispatches them to the appropriate
Logical Units, the LUs in short. There is a Logical Unit for each Ganeti opcode which
knows how to deal with it. The LU is the part of Ganeti which finally executes the
operation which will modify the cluster’s state. The rest responsibilities of a worker
thread include the appropriate handling of the job queue lock, the notification of
other threads when it finishes its work, and generally taking care of the job’s smooth
execution.

6. If the user chooses to wait for job status updates and does not make use of the
–submit flag, he waits by calling a waiting RPC function. The mechanism underlying
the waiting function is an inotify manager who responds to events happen in the job
file located to disk. In this case, log messages may be shown to the user depending
on the job. The user can also cancel the job while it is waiting in the queue.

7. The client can also archive the job, which then moved to a history directory called
archive ,i.e., the default path is the /var/lib/ganeti/queue/archive directory.
This can be done in order to speed up the queue handling, because by default, jobs
in the archive directory do not touched by any function.

3.3.3 Ganeti Daemons

We have already made a few references to the Ganeti daemons in previous sections. Now
we will talk in more details about the internal structure of Ganeti, and particularly the
set of daemons that it is divided into. Ganeti consists of a growing number of daemons.
Each of these deals with a specific task that the cluster has to face, and communicates
with the rest using a variety of protocols. Specifically, as of Ganeti version 2.7, we have
four daemons. The situation is as follows:

Master Daemon
The master daemon runs on a single node only, the master node. Currently is written
in python and deals with every cluster operation. It is the Ganeti’s heart because it
is responsible for the overall cluster coordination. Without it, no modification can
be performed on the cluster. This is the reason why it is the most heavy loaded
daemon of all. It receives the commands given by the clients, either through the
Command Line tools or the Remote API, parses them, and executes the appropriate
operation. Creates, and manages the jobs that will execute those commands, handles
the locks, and ensures that race conditions will never occur. It is also responsible
for managing, and maintaining the cluster configuration files, updating them when
it is necessary, and replicating them to the master candidates, in addition to the job
queue. Each job is managed by a separate python thread. The basic python threads
which managed by the master daemon are presented below:

• The main I/O thread: It is a single thread. The masterd is build around this
thread. It accepts connections in the master socket and setups/shutdowns the
other thread pools.

• The job queue worker threads: This pool consists of 25 threads, each of which
executes the jobs submitted by the clients. They are long-lived threads and are
initialized during the daemon startup.

30 Chapter 3. Ganeti backend

• The client worker threads: The client worker pool contains 16 threads. They
handle the connections in the master socket, one thread per connected socket,
parse LUXI requests, and send data back to the clients. They are also being
built during daemon startup.

• The RPC worker threads: This is not actually a pool like the above two cat-
egories. The thread size depends on the RPC call; single-node or multi-node.
They interact with nodes using HTTP based RPC calls.

The masterd keeps some interaction paths for the communication with the rest
Ganeti daemons. More specific, the interaction between the Command Line tools
which are located in the master node, and the RAPI daemon is done with a cus-
tom protocol called LUXI. LUXI is a UNIX-socket based protocol of JSON-encoded
messages. The UNIX socket permissions itself will determine the access rights. The
LUXI API allows both job related operations, and cluster query functions.
The communication between the master daemon and the rest node daemons is done
through RPC calls, using HTTP{S} simple PUT/GET of JSON-encoded messages.
Communication between master and nodes is protected using SSL/TLS encryption.
Both the clients and the server must have the cluster-wide shared SSL/TLS certifi-
cate, and verify it when establishing the connection by comparing fingerprints. For
highly-traffic commands like image dumps, or low level commands such as restarting
the node-daemon, a simple SSH protocol is used. The master node must share the
cluster-wide shared SSH key with the rest nodes of the cluster.
During startup, the masterd will confirm in coordination with the node daemons
that the node it is running, is the master node of the cluster, indeed. This is done
via a voting procedure where all the nodes take part, even the offline ones. For
successful confirmation the masterd has to get half plus one positive answers. When
the masterd receives a SIGINT or SIGTERM signal, it stops accepting new jobs,
and prepares to shut down as soon as the jobs that are currently running finish their
execution. At the meanwhile, it still answers to LUXI requests. Pending jobs are
re-added to the queue in Queued state after the daemon restarts. If a hard shutdown
requested the cluster may be leaved in an inconsistent state.
The current Ganeti daemon structure suffers from many performance problems
caused by the various protocols involved in interaction between daemons, and by
the many python threads that are created which increase lock contention, log pol-
lution and memory usage. This is the reason why from version 2.9, Ganeti daemon
subdivision will change to improve the current situation.

Node Daemon
The noded runs on all the nodes of a cluster. It is also written in python, and
it is responsible for receiving the requests made by the masterd over RPC, and
executes them using the appropriate backend tool ,e.g., hypervisors, DRBD, LVM.
It executes almost all operations that modify the node’s state, like creating disks
for instances, activating disks, starting/stopping an instance and so on. If a noded
stops, the masterd will not be able to talk to this daemon, but the instances will
not be affected.

Rapi Daemon
The rapid is written in python, and runs automatically on the master node only.
By default, listens on TCP port 5080 and uses SSL/TLS encryption. Both those

3.3 Architecture 31

parameters can change via command line. Ganeti supports a Remote API protocol
which is JSON over HTTP, designed over the REST principle, for enabling commu-
nication with external clients, to easily retrieve information about the cluster state
or modifying it. The ganeti-rapid waits for requests issued remotely through that
protocol. Then, it forwards them via the LUXI protocol to the master daemon to
deal with them.
Rapid reads its users and their rights from a file on startup, which is usually lo-
cated under the /var/lib/ganeti/rapi/users path. Changes to that file will be
loaded automatically. Most query operations are allowed without authentication.
Modification operations though, require authentication in order to be executed.

Configuration Daemon
The configuration daemon is written in Haskell and runs on all master candidate
nodes, since the configuration exists only on that group of nodes. This daemon is
used to answer queries related to the configuration of a cluster. It makes sure that
we have a highly-available and very fast way to query cluster configuration values.
The config.data is reloaded automatically from disk every time it is updated. The
requests are made through an HMAC authenticated JSON-encoded custom protocol
over UDP, and meant to be used by parallel querying all the master candidates, or
a subset of them, getting the most up to date answer by comparing the value of
the config.data’s serial number, named serial_no. The queries are answered from
a cached copy of the config which it keeps in memory, so no disk space is required
in order to get an answer. Queries are also contain a “salt” which they expect the
answers to be sent with, and clients are supposed to accept only answers which
contain salt generated by them. The configuration daemon answers simple queries
such as:

• master node
• master candidate, offline nodes
• instance list, primary nodes
• cluster info
• job list, and more

In Ganeti 2.7 we can also disable the confd during build time using the –disable-
confd flag, if it is not needed in our setup. The confd serves both network-oriented
queries about the static configuration, and local UNIX socket queries about the
current status of the system including live data configuration. To answer queries of
the second category the daemon has to communicate with the node daemons through
RPC calls. In next Ganeti versions, it is intended those two functionalities to be
separated into two different daemons, for simplicity and security reasons.

Finally, we have to mention that there exists a log file per daemon model, which are by
default stored under /var/log/ganeti directory. Those log files are:

• The master-daemon.log, for the MasterD.

• The node-daemon.log, for the NodeD.

• The rapi-daemon.log, for the RapiD.

• The conf-daemon.log, for the ConfD.

32 Chapter 3. Ganeti backend

3.3.4 Ganeti Locking

We have already covered the most major Ganeti parts. The last, but not least, part we
will cover is the Ganeti Locking library and the way it is implemented. Locking libraries
are vital for every project, affecting the overall performance. They must preserve data
coherency, prevent deadlocks and thread/job starvation. Ganeti Locking library has passed
through many stages but still improves and extends its features. In earlier Ganeti versions
(1.x), there was a single global cluster lock for most operations, which made inevitable the
execution of parallel operations. In Ganeti v2.0 a complete redesign of the locking library
has been made, which allowed the parallel execution of multiple operations. The locking
library was also drastically improved in version v2.1, but the last major change was made in
v2.3 when the job priorities was firstly introduced. A feature called Opportunistic Locking
was added lately, at v2.7, which also improved the parallel execution of some operations,
mainly the instance creations. Below we will present the current Ganeti Locking library
and how it is working “under the hood”.

The Locks
Locks are represented by objects of locking.SharedLock class. These locks are
declared by the Logical Units located in the cmdlib.py module, and are acquired
by the Processor which is found in the mcpu.py module, with the aid of the Ganeti
Locking library, in locking.py. There are several locking levels which must acquired
in specific order. These levels are the following:

1. Cluster level or BGL from Big Ganeti Lock.
2. Instance level.
3. Node allocation level or NAL.
4. Nodegroup level.
5. Node level.
6. Node resource level.
7. Network level.

These locks must be acquired in an increasing order. Each lock has the following
possible statuses:

• Unlocked, anyone can grab the lock.
• Shared, anyone can grab the lock but in shared mode only.
• Exclusive, only one can hold the lock.

Besides the order in which the locks acquired, there are some extra rules which must
be preserved:

• Cluster level, resides the Big Ganeti Lock, or BGL. It is the first lock which
must be acquired before performing any operation in the cluster. Can be ac-
quired either in shared or exclusive mode, but acquiring it in exclusive mode is
discouraged and should be avoided.

3.3 Architecture 33

• Instance level, resides the instance locks. They have the same name as the
instances they protect, and are created when a new instance is added to the
cluster. They are acquired as set, which means that if we need more than one
instance locks we must acquire them at the same time. Internally the locking
library acquire them in alphabetical order.

• Node level, resides the node locks and have the same names as the nodes they
protect. They are also acquired as a set, and internally acquired in alphabetical
order. We should first acquire all the instance level locks that reside in a node,
before we acquire the node lock itself. Ofcourse, before the node locks, we
should already have the BGL acquired, preferably in shared mode.

• Node Resource level, it is used for node resources protection, as it name reveals,
and should be used by operations with possibly high impact on the node’s disks.

• Node Allocation level, this lock is similar to the BGL in the sense that it has its
own level and there is only one. It must be acquired after the instance locks and
before the nodegroup locks, and used for instance allocation related operations.
As a rule-of-thumb, NAL must be acquired in the same mode as the node and/or
the node-resource locks. It blocks instance allocations for the whole cluster and
can be acquired either in shared or exclusive mode. OpCodes doing instance
allocations should acquire it in exclusive mode. When an Opcode blocks all
or a significant amount of the cluster’s locks, it should be acquired in shared
mode. The NAL lock should be released when the set of acquired locks for an
opcode reduces to the working set, to allow allocations to proceed.

Besides the above levels, we also have the ConfigWriter lock which is shared among
those functions that read the config.data file, and acquired exclusively by functions
that modifying it. This extra lock level allows the config.data replication to the
master candidate nodes using the rpc.call_upload_file call, without holding the
node level locks since the RPC function caller already holds the config lock in exclu-
sive mode. This have the advantage that the config distribution can run in parallel
with other cluster operations.
Similarly to the ConfigWriter lock, exists the Big Job Queue lock. It is used from
all classes involved in the queue handling. Job queue functions acquiring it can be
safely called from the rest of the code, because the lock is released before leaving the
job queue again, something that prevents deadlocks. Unlocked queue functions must
only be called from those functions, which have already acquired the lock beforehand.

Ganeti Locking Library
As we have already mentioned, locks in Ganeti are represented by objects. The
basic class which implements a lock in Ganeti is the SharedLock class located in the
locking.py module. All locks needed in the same level must be acquired together.
So, a class is needed to take care of acquiring the locks always in the same order,
thus preventing deadlocks. This class is the locking.LockSet class, a container
of one or more SharedLock instances, which provides an interface to add/remove
locks, to acquire, and subsequently release any number of those locks contained in
it, distinguished by name. As this class is beyond the scope of this document, we
will not present it further. In this section we will focus in the SharedLock class, to
understand the Ganeti’s approach to its locking requirements.
SharedLock class implements a shared lock. Multiple threads can acquire the lock
by calling acquire(shared=1). Exclusive acquirers should call acquire(shared=0).

34 Chapter 3. Ganeti backend

Since Ganeti first introduced job priorities in v2.3, the internal structure of Shared-
Lock class also changed to support them. All pending acquires for a lock with
different priorities is contained in a heap queue similar to the worker pool structure,
named __pending. The heap queue does automatic sorting, automatically taking
care of priorities. For each priority there is a single plain list ([]) of pending acquires.
This is a normal in-order list of conditions 1 to be notified when the lock can be
acquired. Shared acquires are grouped together by priority and the condition for
them is stored in a separate dictionary of shared acquires called __pending_shared.
There is also a dictionary called __pending_by_prio which keeps references for the
per-priority queues indexed by priority for faster access.
When the lock is released, the code locates the list of pending acquires with the
highest priority waiting. Due to the heap queue behavior, this is the first element
in the structure. The first, zero indexed condition of the list is notified. Once all
waiting threads receive the notification, the condition is removed from the list, the
code processes the second condition and so on. When the list of conditions is empty
it is removed from the list, and the list of conditions of the second priority in the
heap is processed. In Listing 3.4, we present a possible state of the internal queue
from a high-level view. Conditions are shown as waiting threads. Assuming we have
no timeouts or other modifications, for simplicity reasons, the lock will be acquired
by the threads in the following order (concurrent acquirers in parenthesis):
thread-Ex1, thread-Ex2, (thread-Sh1/thread-Sh2/thread-Sh3), (thread-Sh4/thread-
Sh5), thread-Ex3, thread-Sh6, thread-Ex4, thread-Ex5

{
(0, [exc/thread-Ex1, exc/thread-Ex2,

shr/thread-Sh1/thread-Sh2/thread-Sh3]),
(2, [shr/thread-Sh4/thread-Sh5]),
(10, [exc/thread-Ex3]),
(33, [shr/thread-Sh6, exc/thread-Ex4, exc/thread-Ex5]),

}

Listing 3.4: Structure of the SharedLock class

Locking Granularity
With the current locking policy, each Logical Unit acquires/releases the locks it
needs; this means that locking is at the Logical Unit level. Ofcourse, each LU has its
own locking requirements. Logical Units declare their locks and then execute their
code with the appropriate locks held. In Listing 3.5, we present how the Ganeti
Processor with the aid of the Logical Units executes an OpCode from an abstracted
point of view, which pays more attention to the lock handling.

1A condition variable in Ganeti is a bit different from the Python’s built-in threading.Condition class. It
uses POSIX pipes in addition to the operating system support on timeouts on file descriptors (see select(2)).
All clients of the condition use select or poll to wait for notifications. In a higher level-of-view a condition
variable has acquire() and release() methods that call the associate lock methods. Also has a wait(),
notify() and notifyAll() methods. Threads waiting for a particular change of state call wait() repeatedly
until they see the desired state. Threads that modify the state will call notify() or notifyAll() when they
change the state in a desired way for the waiting threads.

3.3 Architecture 35

Opportunistic Locking
The last major change in Ganeti locking library was made in v2.7, when firstly
introduced the Opportunistic Locking feature. The motivation behind this change
was the need of more instance creations in a shorter amount of time. As of Ganeti
v2.6, instance creations acquire all locks when an iallocator algorithm was used,
causing a lot of lock congestion on node locks when someone tried to create many
instances at once. This situation can become worse when we are waiting for DRBD
synchronization between disks, if we choose the drbd template for an instance. As
a result, even on big clusters with multiple nodegroups all instance creations were
serialized. The main objective was to speed up instance creations in combination
with an iallocator even when the cluster’s balance is sacrificed in the process. The
cluster can be rebalanced latterly, by using external Ganeti tools ,e.g., hbal. So,
the opportunistic locking reduces the number of node locks acquired for instance
creations, causing many creation operations to run in parallel. More specific, instead
of forcibly acquiring all node locks for creating an instance using an iallocator, only
those locks available will be acquired, and the iallocator algorithm will run on those
nodes we have succeeded to acquire their locks.

1 def ExecOpCode(opcode):
2 # Depending on the opcode given get the appropriate LU class instance.
3 lu = lu_class(opcode)
4

5 # Purely lock-related functions.
6 # Update all the opcode parameters to their canonical form,
7 # (e.g. user passed names are expanded to the internal lock/resource
8 # name). Then known needed locks are declared.
9 lu.ExpandNames()
10

11 # While most of LUs declare their locks at ExpandNames time, sometimes
12 # there is the need to calculate some locks after having acquired the
13 # ones before, because we can’t know which resources we need before
14 # locking the previous level.
15 lu.DeclareLocks()
16

17 ## At this point every function is called with the appropriate lock held.
18

19 # This method checks the prerequists for the execution of this LU.
20 lu.CheckPrereq()
21

22 # This method implements the actual work, the opcode execution.
23 lu.Exec()
24

25 ## All acquired locks released, locks declared for removal are removed.

Listing 3.5: OpCode execution path

Chapter 4

Ganeti and NoSQL

In Chapter 3, we discussed about Ganeti’s architecture; we covered extensively its most
basic components and all the prerequisites needed for someone to get familiar with this
tool. In this chapter, we will discuss how Ganeti’s current design impacts its performance
and its scalability, and then we will provide a design solution for limiting some of those
issues and make the tool even more suitable for cloud environments.

Specifically, section 4.1, discusses in a few words the current document’s objective and
how we are going to succeed it. Section 4.2, provides a detailed view of the configuration
and job queue storage, in addition to the main issues resulting from those design choices.
The options which lead us to the product choice are discussed in section 4.3, while section
4.4 covers in more details the tool we chose to overcome those performance issues, and
more specific the Apache CouchDB database. Section 4.5 finally, provides a detailed
presentation of our software design.

4.1 Objective

Ganeti has been evolved since first introduced, and has become a mature software tool
for managing the low level VM of big clusters. In version 2.7, many new features like the
opportunistic locking where introduced, but many scalability and performance issues are
still arise from the current design.

In the current chapter, we will introduce a different approach for handling the Ganeti’s
configuration and job queue storage, using a NoSQL database as the backend storage layer,
which will attempt to remedy some of the performance and scalability issues that exist in
Ganeti version 2.7.

4.2 Background

While Ganeti v2.7 is usable, it limits the flexibility and the performance of the cluster. The
current design for handling the configuration data and the job queue storage, in addition
to how it replicates those files among the master candidate nodes, are some of the main
reasons of those limitations. In the current section we will analyze this design, and we will
extensively discuss about the main issues arisen from it.

37

38 Chapter 4. Ganeti and NoSQL

More specifically, Section 4.2.1 presents analytically the configuration data form, in more
details than the previous chapter, while section 4.2.2, concentrates on the job storage.
Section 4.2.3, points out the most important performance issues that arise from the current
design, both for the configuration file and the job queue storage.

4.2.1 Cluster configuration data

In section 3.3, we saw that the Ganeti’s cluster configuration database is stored in a single
file, the config.data file, on the master node filesystem. In this section, we will dive into
the internal structure of the config.data file, which will lead us to the conjecture that
the current configuration management is imperfect and suffers from scalability problems
mainly on bigger clusters.

The configuration data uses JSON format, consisting of key/value pairs. The keys that the
configuration file consists of, are a combination of Ganeti specific object collections, and
default JSON objects of name/value pairs. In detail, there are five Ganeti objects namely:
Cluster, Node, Instance, Nodegroup, and Network. From these objects the cluster,
nodes, instances, nodegroups, and networks attributes are composed of. The default
name/value pairs are the serial_no, version, ctime, and mtime. Ganeti configuration
objects provide the appropriate functions for serializing, de-serializing, and handling them
in a safe way, in order to by easily handled by external parties. They also provide recursive
checks for their derived classes, and are also responsible for handling appropriately any
attribute error that will arise.

The configuration file is represented internally by a ConfigData object, which actually is the
topmost-level configuration object. The cluster attribute contains all the available infor-
mation that the cluster needs to operate normally like the master node name, the master
ip, the default hypervisor chosen during cluster initialization, the candidate_pool_size,
and more. The nodes attribute, contains all the nodes that the cluster consists of. Each
distinct Node object, contains information about the corresponding node such as its name,
its primary and secondary IP, the node role information, and more. The instances,
nodegroups, and networks attributes, contain relevant information for the instances that
the cluster contains, the nodegroups which the user created, and the networks that exist
in the cluster, as their names denote.

Besides the Ganeti specific objects, config.data also contains information about four gen-
eral attributes. That are, the serial_no, which is an increasing number denoting the
number that the config.data has been modified since it has been created, and it is used
for consistency checks in case when some candidates are stalled in the middle of a config-
uration update, or in order to find the most recent answer when used by the configuration
daemon ,i.e., confd. The version attribute, contains the current Ganeti version, and the
{c/m}time timestamps contain the exact time when the cluster was created and modified,
respectively.

Listing 4.1, briefly presents the config.data internal structure with its most basic key/value
pairs. Due to its size, most of its attributes and values have been intentionally removed
for simplicity reasons.

4.2 Background 39

1 {cluster: {’candidate_pool_size’: 3,
2 ’cluster_name’: ’ganeti.cluster.com’,
3 ’default_iallocator’: ’hail’,
4 . . .
5 ’hvparams’: { ... },
6 ’master_ip’: ’192.168.0.206’,
7 ’master_netdev’: ’eth0’,
8 ’master_node’: ’node.example.com’}
9 instances:
10 {’inst1’: {’admin_state’: ’up’,
11 ’ctime’: 1383218076.653934,
12 ’disk_template’: ’plain’,
13 ’hvparams’: {’vnc_bind_address’: ’0.0.0.0’},
14 ’hypervisor’: ’kvm’,
15 ’name’: ’inst_name’,
16 . . .
17 ’nics’: [{’mac’: ’aa:00:00:60:23:f9’, ’nicparams’: {}}],
18 ’os’: ’snf-image+default’,
19 ’osparams’: {’img_format’: ’diskdump’,
20 ’img_id’: ’debian_base-7.0-1-x86_64’,
21 . . .
22 }
23 ’primary_node’: ’node.example.com’}}
24 nodegroups:
25 {’default’: {’alloc_policy’: ’preferred’,
26 ’name’: ’default’,
27 . . .
28 ’uuid’: ’1c580c22-8a14-4f78-8416-0e0a7eac827f’}},
29 nodes: {’node.example.com’:
30 {’ctime’: 1380633061.361784,
31 ’drained’: False,
32 ’group’: ’1c580c22-8a14-4f78-8416-0e0a7eac827f’,
33 ’master_candidate’: True,
34 ’master_capable’: True,
35 . . .
36 ’name’: ’node.example.com’,
37 ’offline’: False,
38 ’primary_ip’: ’192.168.0.3’,
39 ’secondary_ip’: ’192.168.8.8’,
40 ’vm_capable’: True},
41 networks : {},
42 ctime: 1380633038.861877,
43 mtime: 1383320564.876588,
44 serial_no: 10,
45 version: 2070000}

Listing 4.1: Structure of the config.data file

40 Chapter 4. Ganeti and NoSQL

4.2.2 Job storage

Jobs are stored in the filesystem as separate, individual files using JSON format just like
the config.data file. The choice of storing each job in its own separate file was made for
a number of reasons. The most important of them are summarized below.

In chapter 3, we saw that a job can change its status many times during its execution ,e.g.,
Queued, Waiting, Running, and more. Moreover, an opcode, so as the job, passes from
several execution phases like acquiring the needed locks, running the iallocator algorithm,
and so on. The user should have access to all that information when requests it, either for
debugging reasons, or simply for monitoring the execution path of a job. Those information
is saved in the job object as a list of log messages in the log attribute. It is obvious that
a job is modified many times during its execution. The choice of using a file per job, is
based on the fact that a job changes quite often, and a file that can easily and atomically
be (over)written facilitates this behavior. Furthermore, a file can be easily replicated to
the master candidate nodes. The replication is done atomically for every single file with
a multi-node Remote Procedure Call (RPC) call with a timeout of about a minute. In
addition, a consistency check in the job queue across master candidate nodes through a
third partie, can very easily be implemented, since all job files should be identical.

It is also interesting to see how a job is internally represented by Ganeti. Jobs are stored
in the filesystem, but until the job completes its execution there is also an in-memory
representation of it. Any modification to the job object is flushed on the disk, and then
replicated to the candidate nodes. That in-memory representation of a job is a python
class definition called _QueuedJob. This class contains attributes and implements all the
appropriate methods needed for the smooth execution of a job. The most important
attributes that a _QueuedJob object contains are: the job id field, the queue object
on which the job belongs, the ops field which is a list of the job’s opcodes where the
_QueuedOpCodes objects are encapsulated, and three timestamps the received, start,
and end, providing information about the time when a job was received, started and
finished its execution respectively.

4.2.3 Caveats

We extensively discussed about the design of Ganeti. While it scales quite well for small
clusters, it does not as the number of nodes grow, and some drawbacks start to appear.
This is mainly due to the fact that several documents are shared among the nodes of the
cluster. The config.data file and the job queue need to be present, and replicated, to all
master candidates for reliability reasons mainly, and the ssconf_ static configuration files
have to be replicated to all the nodes of the cluster, as well. In addition, the confd which is
present on all the master candidate nodes, might need to have access to the configuration
data file even if the master node is down. Due to those needs, an increase in the size of
the cluster will bring up the configuration management imperfections that Ganeti suffers
of. In particular:

• Some operations like instance-(add/remove/rename), network-(add/remove), or
node-(add/remove/offline/drained) are the most commonly used operations in a
Ganeti cluster. Some of these operations like the instance related ones, grow in
frequency as the cluster grows. We would ideally want the time needed in order

4.2 Background 41

to those operations to complete, be steady. This does not apply at all, due to the
fact that all these operations need to contact all the nodes of the cluster in order to
update the ssconf_ files, so they become significantly slower.

• Any other operations that do not affect the ssconf_ files will contact, at least, all the
master candidate nodes for two reasons. The first one is to inform the configuration
data files for the new updates been made, and the second one is to synchronize the
job queues among them. As the number of nodes in a cluster grows, we expect the
number of jobs to grow as well. While the number of candidate nodes is constant, an
increase on the jobs will have impact on the cluster performance. This is due to the
fact of an overloaded master daemon which will affect the whole cluster performance,
because besides the growth in the number of jobs it has to deal with, it also has to
supervise the replication process of those files among the candidate nodes, manage
the locking, an so on.

• The candidate pool size is not affected as the cluster size increases. It is a constant
number independent of the nodes of the cluster. Ganeti though, interacts with the
candidate nodes every time it updates one of its configuration and job queue files
in order to maintain the file consistency among them. The replication procedure
is the main reason that prevents Ganeti from scaling. It is handled and monitored
exclusively by the master daemon, and is a procedure that breaks the scalability
because many should-be-fast operations are slowed down by replicating the changes
to remote nodes, thus waiting with locks held on remote RPC calls to complete.

• Another issue arisen from the increase in the number of jobs, is the config lock. Any
job that modifies the cluster state must exclusively acquire that lock before apply
its changes to the cluster, and so as to the configuration file. The single config
lock becomes a bottleneck, when a huge number of jobs is in execution and try to
acquire it. In addition, the lock will not be released until the modification have been
successfully replicated to the master candidate nodes, something that increases the
congestion on that lock.

• The configuration file is a JSON formatted file which needs to be serialized before it
is flushed to disk. The time needed to serialize it, is quite small in smaller clusters
and it can be ignored. Ganeti though, is a tool used by big open source projects, such
as Synnefo 1, which means it is mainly used in bigger clusters. Providing an example,
a cluster with around 1.000 instances, will have a config.data file of about 2.5 MB
in size. The serialization cost starts to be a bottleneck when the configuration file
enlarges, even from sizes at around 1 MB. This claim will be justified in Chapter 5.
The de-serialization cost from disk is also raised respectively, but it does not affect
the overall cluster performance at all, because the config.data de-serializes only at
the master-daemon startup. Then it exists at the master node memory, and its disk
version is updated from there.

• Besides the serialization cost, more factors are affected when the configuration data
size increases. These are the time needed to flush the changes to disk, in addition to
the time needed to distribute those modifications to the master candidates. These
two extra costs, in addition to the serialization time discussed in the bullet above,
slows down the cluster operations, reduce the overall performance of the cluster and

1http://www.synnefo.org

http://www.synnefo.org

42 Chapter 4. Ganeti and NoSQL

make even the quick commands last several minutes, instead of some seconds in order
to complete.

• The current configuration management groups all the cluster’s attributes in a single
JSON file ,e.g., instances, nodes, networks, and more. This design choice, in com-
bination to the global config lock, forbids any type of concurrent update to distinct
Ganeti objects, and makes every modification access to the configuration file be seri-
alized. There are various cases when that restriction reduces the cluster performance.
An example is when a client wants to add an instance to the cluster, while another
one tries to create a new network. While the clients modify two distinct objects
of the cluster with an indirect relationship, they can not make the updates concur-
rently, but they have to wait instead. It would be very convenient for Ganeti and its
users to allow concurrent updates when they do not affect other cluster operations,
because it would have a positive impact in the cluster’s throughput.

• Moreover, in case of a faulty update on the configuration file, there is no way to
roll back the changes made in it and return to a previous state. Even if we keep
backups of the configuration file and want to revert a modification, we should alter
the whole configuration file and not only the section that we modified, increasing the
probability of causing a breakage in the cluster configuration state. This attribute
could be very useful in case when the config.data breaks due to a faulty-update on
it, and we want to recover it painless.

4.3 Choice of product

Our design solution aims to address some, and not all, of the above issues. It replaces the
Ganeti configuration and job queue storage with a NoSQL distributed, document-oriented
database. There are plenty of NoSQL choices in the database market which would meet
Ganeti’s requirements, such as MongoDB 2, or Riak 3. Some of the criteria for deciding
which one was the best fitted NoSQL solution for Ganeti were the replication style, the
reliability provided, the available API, and how the database handles reads and writes.
For our implementation we chose Apache CouchDB 4 as our backend database.

Apache CouchDB (acronym of “Cluster Of Unreliable Commodity Hardware”), is an open
source database built on the Erlang OTP platform 5, a functional, concurrent programming
language, and a development platform too. Erlang was developed for real-time telecom
applications with an extreme emphasis on reliability and availability using lightweight
“processes” and message passing for concurrency. It is an ideal solution for a database
server due to its robustness and concurrent nature. CouchDB is a database that focuses
on being “a database that completely embraces the web”, as its developers promote. It is
a NoSQL document-oriented database, using JSON format for storing its data, a simple
RESTful API based on HTTP, and a powerful query server using Map/Reduce techniques
that is written in JavaScript, by default, but there are also servers available for nearly
any language we can imagine 6. It was created in April 2005 by Damien Katz, and since

2http://www.mongodb.org/
3http://basho.com/riak/
4http://couchdb.apache.org/
5http://www.erlang.org
6http://en.wikipedia.org/wiki/CouchDB

http://www.mongodb.org/
http://basho.com/riak/
http://couchdb.apache.org/
http://www. erlang.org
http://en.wikipedia.org/wiki/CouchDB

4.3 Choice of product 43

February 2008 is part of the Apache foundation. In July 2013, the CouchDB community
merged the codebase for BigCouch, Cloudant’s clustered version of CouchDB, into the
Apache project. The BigCouch clustering framework is prepared to be included in an
upcoming release of Apache CouchDB [17].

The main reasons we chose CouchDB for our modifications to Ganeti, are presented in
the current section. We do not claim it is the best fitted database solution for Ganeti or
the only one, but without lost of generality it is a representative NoSQL database which
will show us how Ganeti reacts with a different underlying storage solution. The criteria
which were evaluated are the following:

• Free Software, CouchDB is an open source project which keeps up with the current
open source Ganeti policy.

• Licensing, CouchDB is licensed under the Apache License, Version 2.0 7 which does
not affect Ganeti’s license or model. Ganeti will remain a separate software, which
connects through Apache licensed libraries to CouchDB.

• Bindings, Ganeti is written in both python and Haskell languages. CouchDB pro-
vides Haskell bindings which are available on Hackage, the Haskell package library,
and a variety of Python libraries for working with CouchDB.

• Document Storage, In order to avoid big changes in the current configuration and
job queue storage we want a solution that would fit this design. CouchDB stores its
data as documents; one or more key/value pairs using JSON format, that fits the
Ganeti’s needs.

• Replication model, CouchDB is a peer-based distributed database system. Its repli-
cation process synchronizes two copies of the same database. If you change one
document of a database, the replication process will propagate these changes to the
second database. This is very similar to the master-slave replication procedure used
by Ganeti. In addition, the BigCouch merge in the CouchDB project will give us a
native clustering support which could later provide different design solutions for the
Ganeti data handling.

• Simplicity, CouchDB comes with good documentation in the form of books, presen-
tations, blog posts, wikis, and a strong and active community which makes it much
simple to be installed and configured. In addition, the RESTful HTTP API which
uses, is quite straightforward and simple, and it does not requires much effort to
learn using it.

• Security model, CouchDB comes with a simple reader access and update validation
model to protect who can read and update documents, that can also be extended
to support custom security models. In addition, every CouchDB database instance
can have one or more administrator accounts. These accounts come with specific
privileges and user credentials in order to secure the access to selected databases
and documents. Validation functions are written in JavaScript, and can be used as
documents are written to disk. If the documents pass the validation criteria, the
update is allowed to continue, otherwise the update is aborted and an error message
is returned to the client.

7http://www.apache.org/licenses/LICENSE-2.0

http://www.apache.org/licenses/LICENSE-2.0

44 Chapter 4. Ganeti and NoSQL

• Resource Usage, CouchDB is designed from the ground up to service highly-concurrent
use cases. There is not fixed RAM, CPU or disk space needs for CouchDB. It is flex-
ible enough to run from a smart phone to a cluster. Apparently, more RAM is
better, because CouchDB works completely through file I/O, delegating caching to
the operating system, the filesystem cache. CouchDB makes the assumption that
disk space is cheap, so it does not take great care of it. The good news are that
some operations like database compaction reclaim a lot of disk space. CouchDB is
written in Erlang, so the more CPU in a server, the most beam processes 8 can be
created. CouchDB (or Erlang) take great advantage of this resource. Summing up,
memory and disk have the great “pain”, as a result faster disks and more memory
will be handy and will increase the database overall performance.

• Debugging, CouchDB maintains a log file where every single operation, or event
made to the CouchDB server is recorded. The debugging level of the log file can
be modified, and the user can define how verbose and detailed the logging will be.
We can choose from a very informative log file, where every HTTP header, external
process communications, authorization operations, and much more information is
recorded, to a status where any debug message is disabled. Ganeti also maintains a
set of log files to record its updates, and CouchDB will just insert one more log file
to the already existent.

• Reliability, CouchDB comes with a fault-tolerant storage engine that puts the safety
of the data first. As it name denotes, is build for Clustering On Unreliable Com-
modity Hardware and the main goal is to provide data integrity, high-scalability and
reliability in a fault-prone environment. The fact that CouchDB is written in Erlang,
a concurrent, functional programming language with an emphasis on fault-tolerance
reinforces the succeed of the data safety goal. Its internal structure is fault-tolerant,
and failures occur in a controlled environment and are dealt without letting sin-
gle problems cascade to the whole system, but are isolated in single requests. For
CouchDB specifically, if an operation fails, we will never end up in a state with par-
tially updated objects, or corrupted objects that was previously written successfully
to the server. It provides a total reliable storage engine, which we will extensively
present in section 4.4.

• Recovery from failures, The current CouchDB design does not provide automate
recovery from failures. The recovery procedure will be handled by Ganeti with the
administrator help, as it currently is. Various commands like the master-failover,
or the redist-conf will be extended to meet up with the new needs. The CouchDB
replication procedure, along with the CouchDB tools, will make those operations
relatively painless.

• Backups, CouchDB stores each database in a separate file in the disk, as we are
extensively cover in later sections. We can take backups of a database file, silently
and without stopping the database by simply running a cp Unix command ,i.e., cp
db.couch /mnt/backup. We can store periodically flat-file copies of the database
files on the master and master candidate nodes, and create a method to “re-init” the
Ganeti status from those flat-files during disaster-recovery.

• Backwards compatibility, We would like to have a way to easily converting from
the current Ganeti storage management, to CouchDB. We decided to support both

8http://www.erlang.org/documentation/doc-5.8.3/doc/efficiency_guide/processes.html

http://www.erlang.org/documentation/doc-5.8.3/ doc/efficiency_guide/processes.html

4.4 Apache CouchDB 45

CouchDB and file configuration as different storage engines, with different limitations
for each case. Maybe it is not the simplest solution since it requires to convert a
fairly great amount of code, but the future ability of further expanding the underlying
storage options is a tradeoff that reinforces that approach.

4.4 Apache CouchDB

In the previous section, we mentioned the factors why we chose CouchDB for our imple-
mentation, depending on current Ganeti needs, keeping also in mind that we do not want
a choice that will introduce important Ganeti design changes. In the current section we
will discuss extensively about Apache CouchDB and its main characteristics and features,
in order to proceed with the detailed design section.

CouchDB is a document-oriented, distributed, schema-free NoSQL database, using views
for aggregating and reporting on documents in a database. For a complete overview of
CouchDB’s technical information there is a well structured documentation 9. Let’s review
some of the basic elements of CouchDB:

Schema-Free
Unlike SQL databases which are designed to support highly-structured data, with
CouchDB no schema is required. New document types can be added at will, along-
side with the old ones. CouchDB is designed to perform on document-oriented
applications with large amounts of semi-structured data.

Document-Oriented
Documents are the primary unit of data in CouchDB. Each document is a JSON for-
matted object and consists of any number of named fields and attachments 10. Field
values can be strings, numbers, dates, or even ordered lists and associative arrays.
Documents also include metadata that are maintained and used by the CouchDB
server. An example of a document in CouchDB would be a contact document as
shown in Listing 4.2. In that document, “Type” is a field that contains a single string
value “Contact”, “Email” is a field containing a list of two values and so on.
A CouchDB database is a flat collection of documents, each having a unique identifier
named _id, and a revision/version number named _rev. The version number is a
special field in CouchDB with great importance, about which we will talk later in this
chapter. The underlying data structure used to store the database files is a B+tree
structure. CouchDB implementation is a bit different from the original B+trees;
while it maintains all the important properties, it adds an append-only design 11,
along with a Multi-Version Concurrency Control. That append-only variation of
the original B+tree structure, trades a bit of (disk) space for speed. A B+tree is
an excellent data structure for storing huge amount of data for fast retrieval. The
B+trees are very shallow but wide data structures. The leaf nodes contain the actual
data in an ordered manner, while the intermediate nodes contain indexes/pointers to

9http://kxepal.iriscouch.com/docs/dev/contents.html
10Documents in CouchDB can have attachments just like an email. For creating an attachment, we need to

provide a file name, the MIME type and the base64 encoded binary data. Its even possible to have multiple
attachments for a single document.

11http://guide.couchdb.org/editions/1/en/btree.html

http://kxepal.iriscouch.com/docs/dev/contents.html
http://guide.couchdb.org/editions/1/en/btree.html

46 Chapter 4. Ganeti and NoSQL

the nodes beneath them. While other tree structures can grow very high, a typical
B+tree has a single-digit height, even on millions of entries. Jan Lenhard, one of
the core CouchDB developers, said during the Berlin’s Buzzwords 2013 conference 12
that a B+tree node in CouchDB has a size of about 60.000 entries. That actually
means that even on billions of entries in a database, we will have a tree depth of 6,
at most. This is very interesting for CouchDB particularly, where the leaves nodes
of the B+tree are stored in a slow medium such as a hard drive. CouchDB does not
make use of a built-in cache layer, but it uses the operating system’s cache instead.
Due to the small height of the structure, the filesystem cache keeps the upper nodes
of the tree cached, so reading, or writing to a document requiring only a few seeks
to disk on the final tree node, making it a quite fast data structure for both read
and write requests.

1 {
2 _id : ”couch_doc”,
3 _rev : ”4-33d3d5926a1986207dde6e9adc4c9006”,
4 Type : ”Contact”,
5 Name : ”Name”,
6 Email : [{”Home” : ”foo@bar.net”, ”Work” : ’foo@bar-work.net’}],
7 Phone : [{”Home” : ”+81 00 0000 0000”}],
8 Tags : [”foo”, ”bar”, ”foo-bar”]
9 Address : []
10 }

Listing 4.2: Document sample in CouchDB

Views
CouchDB is a schema-less database. However, for some applications a kind of struc-
tured data may be required. In order to deal with that problem, CouchDB integrates
a view model using JavaScript for the view description. Views are also a useful tool
for many other purposes like document filtering based on specific fields, extracting
and presenting data in a special order, building indexes among documents to find a
value that resides in them, and generally performing all sorts of calculations on the
databases data.
CouchDB views are stored inside special design documents, and a design document
can contain any number of views. A view is actually a map function of a map/reduce
system. All map functions have a single parameter doc, which corresponds to a
single document in the database. A simple view example which checks whether the
database’s documents have a date and a title field is shown in Listing 4.3. When we
query the view, CouchDB takes the source code and runs it on every document in
the database our view was defined. We query the view to retrieve the view result.
Because the view runs on all documents of a database, it would take a lot amount
of time to run it, if it should traverse the whole database every time we query it.
Instead, a view runs on all documents only the first time it is queried; if a document
is updated the map function will only run to recompute the new keys and values

12Berlin Buzzwords is a Germany’s conference that focuses on the issues of scalable search, data-analysis
in the cloud and NoSQL-databases

4.4 Apache CouchDB 47

for the updated document. Views in CouchDB are stored in separate flat files just
like the databases, using B+tree data structure as well. Initially, the view file is
empty because no index has been built yet. Views are being built lazily when the
first query is made. The next view query will incrementally update the not updated
view indexes.

1 function(doc) {
2 if(doc.date && doc.title) {
3 emit(doc.date, doc.title);
4 }
5 }

Listing 4.3: View function in Javascript in CouchDB

ACID properties
CouchDB is a database, so every transaction should ensure the ACID (Atomicity,
Consistency, Isolation, Durability) properties. CouchDB provides ACID semantics,
and in this part we will examine carefully each of those properties.

• Atomicity, refers to the ability of database to guarantee that either all the tasks
of a transaction are performed or none of them are. Each transaction is said to
be atomic in case when one part of a transaction fails, the whole transaction
fails. CouchDB database modifications follow the “all or nothing” rule, ensuring
that property.

• Consistency, is the property that ensures that any transaction will bring the
database from one valid state to another, according to some defined rules. The
valid state does not necessarily guarantee correctness of the transaction in all
ways the application programmer might have wanted, but that the database
will remain consistent even if the transaction succeeds, or fails. For distributed
systems, as CouchDB is, the system is either strongly consistent or has some
form of weak consistency, also referred as eventual consistency. CouchDB is
an eventual consistent database, ensuring that the database will eventually
reach at a consistent state. The MVCC method ensures that each client sees a
consistent snapshot of the database from the beginning to the end of the read
operation. The latest version is sitting somewhere in the cluster. Older versions
are still out there and eventually all nodes will see the latest version.

• Isolation, refers to the requirement that other operations cannot access or see
the data in an intermediate state during a transaction. This constraint is re-
quired to maintain the performance as well as the consistency between transac-
tions in a database. Thus, each transaction is unaware of another transactions
executed concurrently in the system. It ensures that the concurrent execution
of transactions results in a system state that would be obtained if transactions
were executed serially. Documents updates in CouchDB (create, delete, mod-
ify) are always serialized on disk. In addition, the concurrent update of the
same document will result in two new documents, where none of the clients
that modify the same document is aware of the other client existence.

• Durability, refers to the guarantee that once the user has been notified of suc-
cess, the transaction will persist, and will not be undone. This means it will

48 Chapter 4. Ganeti and NoSQL

survive system failure, and that the database system has checked the integrity
constraints and will not need to abort the transaction. CouchDB uses by default
the fsync system call, to ensure that a transaction have reached the disk before
declaring it as successful. It also gives the ability to the user to loose that prop-
erty and increase the write performance by using intermediate buffers, but by
default it always “fsyncs” for every transaction. In addition, another transaction
will never overwrite any changes made by a previously successful transaction,
due to the append-only model followed. So, it cannot corrupt anything that
has been written and committed to disk already.

In order to understand even better how CouchDB ensures the above properties, we
are going to give an overview of some more technical, but important, CouchDB
features:
CouchDB implements a form of Multi-Version Concurrency Control (MVCC) 13,
instead of locks. Requests are run in parallel, making excellent use of the CPU,
but writes are always serialized on disk. Database readers will never have to wait
for writers or other readers on the same document. Each reader sees a consistent
snapshot of the database from the beginning till the end of the operation. We
mentioned earlier that every document always contains besides the _id field, a _rev
field as well. This is the document’s version, because in CouchDB documents are
versioned. If we want to modify a document, we create an entire new version of
it and save it after the old one. So, we end up with more than one versions of
the same document, depending on how many times we modify it. The version is
a composition of two values ,i.e., “23-a2a33fdabad1376f58a12ea0ff4b”. The first
one is an increasing sequential number, which denotes how many times the file was
modified. The second part of the number after the dash, is a hash composition of
the document’s contents plus the sequential number of the revision. If we found two
documents, in different databases, with same _id and _rev values its not necessary
to look at the contents of each file to know that are identical, we already know they
are. In that lockless update model we may end up with two clients updating the
same document. In that case, a conflict error will be produced, where two versions
of the same document will exist. There is a conflict mechanism used by CouchDB to
resolve those errors, and the user can also involve in the conflict resolution. There are
three possible states after a conflict detection, which are explained in the Eventual
Consistency section 4.4, and ensure that the database remains consistent even if
sometimes the application should involve in that procedure.
Committing is the process of updating the database file to reflect the changes re-
quested. It is a CouchDB process with great importance. It is not needed in order
to use CouchDB, but it will help us to deeper understand the CouchDB design, and
how the ACID properties are preserved. CouchDB uses a B+tree data structure for
both the “storage” and the “view” needs. In that paragraph we will focus on the
storage part. Every database file consists internally of a number of components.
The most important of them follow:

• B+tree, by_id_index. It is a B+tree structure that uses the document ID as the
index key. This index stores the mapping from document IDs to their positions
on disk. Is is mainly used to lookup documents by their ID. The data on disk

13http://en.wikipedia.org/wiki/Multiversion_concurrency_control

http://en.wikipedia.org/wiki/Multiversion_concurrency_control

4.4 Apache CouchDB 49

it points to, contain the list of revisions, along with the document’s revision
history.

• B+tree, by_seqnum_index. It is a B+tree structure that uses the sequence
number as the index key. A new sequence number is a monotonically increas-
ing number, and is generated every time a document is created, deleted, or
modified. This index stores the mapping from the update sequence number to
the document’s position on disk. This B+tree actually answers the question
“what happened since?”, and is very useful to keep track of the last point of
the replication synchronization or the last point of view index updates, by the
compaction operation, and more.

• Header. The file header contains the pointer to the roots of the above two
B+tree structures, some metadata needed by the CouchDB server like the
database name, or size, and a checksum to ensure the file’s integrity.

CouchDB database files are purely append-only. This means that all document up-
dates like create, delete, and modify happen in a purely append-only mechanism. All
writes occur at the end of the file, and old versions of documents are never overwrit-
ten, or deleted when new versions come in. Either inserting or deleting a document,
the database file still grows only at the end. More specifically, CouchDB uses a
kind of copy-on-modified approach. This means that the update is not happening
in-place, but after we located the B+tree node that contains the document to be
modified, we copy it over, make the appropriate modifications, and append it at the
end of the file. After that, the parent B+tree nodes should also be informed to point
to the new location. A modification to the parent node is triggered, which will also
cause a new copy of the parent node, and so on all the way back to the root node
of the B+tree. Finally, the file header must be modified to point to the new root
node location. That means that every update will trigger 1 write to the document
and logN writes to the B+tree nodes, where N is the B+tree height. A graphical
representation of this procedure from a high-level of view is shown in Figure 4.1,
which was taken from a blog post by Ricky Ho titled, “NoSQL patterns” 14. Notice
that the update of a data slot causes the creation of the green nodes, while the yellow
ones will be removed as soon as no one uses them, after a compaction operation.
The update mechanism also forbids partial updates; either the update will succeed
or will fail completely, there is nothing in between. The file footer is the last region
that is updated and appended at the end of the file during a transaction. It is
the last 4K of the database file, and is actually the database header we explained
above. To declare an operation successful the footer must be written twice. It is
separated in two identical chunks of 2K each. The committing process occurs in two
phases. During the first phase, CouchDB appends any changes in terms of document
data and their associated indexes to the file. After recorded the new file’s length,
it records it to the first 2K of the file footer. Those updates are synchronously
flushed to disk. In the second phase it just copies the first 2K of the footer, over
the second 2K of the footer, and flushes again. Only when both footers are flushed
to disk CouchDB declares the transaction as successful. If a failure happens during
phase 1, the partially flushed updates are simply forgotten. Incomplete writes and
index updates simply appear as garbage data at the end of the file, and are ignored
on database open. If a failure happens during the header committing (phase 2),

14http://horicky.blogspot.gr/2009/11/nosql-patterns.html

http://horicky.blogspot.gr/2009/11/nosql-patterns.html

50 Chapter 4. Ganeti and NoSQL

Figure 4.1: The power of B+trees in CouchDB

CouchDB start reading the file backwards 15. If the first 2K is corrupted, CouchDB
replaces it with the second identical 2K footer. The same happens if the second 2K
are corrupted. If the header is intact then the data are intact as well. Checks never
happen in the document data or their associated indexes, but only in the database
header. With this design data are never lost, and data on disk are never corrupted.
This append-only design results in very fast updates, and query processing. Provided
that the B+tree nodes are in system memory, they require the minimal seeks pos-
sible. A tradeoff of this scheme is the disk space needs. CouchDB is built with the
assumption of cheap disk space, but since every document update causes a whole
new copy of the B+tree indexes, care should be taken for limiting the disk space
needs. CouchDB answer is the compaction operation. Compaction compresses the
database file by removing unused sections created during updates. Old revisions of
documents are also removed from the database, though a small amount of meta data
is kept for server related needs. It is manually triggered per database and retrieves a
great amount of disk space. Technically, the compaction process opens the file and
reads the by_seqnum_index. It traces the B+tree all the way to the leaf node and
copy the corresponding document content to the new file. The database remains
completely online the entire time and all updates and reads are allowed to complete
successfully. The old file is deleted only when all the data has been copied and all
users transitioned to the new file.

15To differentiate data from headers, CouchDB appends a single byte every 4K of the database file. If the
byte value is 0x01, everything preceding is database header. If the value is 0x00 then document data precedes.

4.4 Apache CouchDB 51

Distributed Updates and Replication
Maybe the most powerful CouchDB’s feature is the simplicity of replicating databases
among different servers in the web. Replication is an incremental, fast, and one way
process involving a Source and a Target database. The aim is very simple; synchro-
nize the independent replica copies of the same database, between the source and the
target nodes. All active documents should co-exist after the replication finished, and
the deleted documents should also be deleted in both databases. During replication,
only the last version of each document is copied from the source to target database,
along with the document’s revision history. Previous revisions are only accessible
via the source database. Not all documents replicated over and over again, repli-
cation process continues from the last replicated documents. CouchDB replication
protocol is not something magical, but a simple agreement of its public HTTP API
in a specific way. The replicator is actually a separate, independent Erlang applica-
tion with its own processes, where processes are CouchDB client workers with some
logic on synchronizing documents between two databases. The CouchDB replication
framework comes with many features and can be modified depending on the dis-
tributed model we want to follow. We can chose between Master-Master replication,
the common Master-Slave replication, and also Filtered replication which managed
by Javascript functions so that only particular documents fulfilling specific criteria
will be replicated.
Before we extensively present the CouchDB Replication Protocol, we should explain
some terms that we will confront at a later point. It is important to know that
CouchDB saves every replication in a separate special database called _replicator.
A replicator object is a normal JSON document just like all the other CouchDB
documents. In Listing 4.4, we see a replication document where the replication is
set to continuous which means that it will replicate as soon as new documents
appear in the source database. The create_target attribute means that if the
database does not exists in the target node it will be created, the _id is the identifier
provided by user to the replication which is different form the replication_id which
internally assigned by the CouchDB server. The _replication_state shows the
current replication status, while the _replication_state_time is a Unix timestamp
which denotes the time when replication was set. Finally the source and target
are the databases which involve in the replication procedure. Now we are ready to
proceed with the replication algorithm.

1 {
2 _id : ”rep_from_A_to_B”,
3 source : ”http://aserver.com:5984/foo”,
4 target : ”http://bserver.com:5984/foo_a”,
5 create_target : true,
6 continuous : true,
7 _replication_id : ”c0ebe9256695ff083347cbf95f93e280”,
8 _replication_state : ”triggered”,
9 _replication_state_time : 1297971311
10 }

Listing 4.4: Replication document in CouchDB

52 Chapter 4. Ganeti and NoSQL

CouchDB Replication Protocol
The CouchDB protocol is a synchronization protocol between two peers over HTTP
using the RESTful CouchDB API. Anyone familiar with Git 16, a well-known dis-
tributed source control system, actually knows how replication works. Replicating
is very similar to the push and pull methods used in distributed source managers
like Git. Once a replication task is posted or a replication document is created in
the _replicator database, the couch_replicator process is started. This process
watches the whole replication procedure which we are extensively explain below:

1. Firstly, Replicator (the process responsible for the replication) verifies that both
the Source and Target peers/databases exist. This is done via a HEAD /db
request in both databases. If the Target does not exist and the create_target
field is set to True, an additional PUT /<target> request will be produced.

2. Replicator, retrieves basic information from both Source and Target, in order
to get some important for the replication fields like the update_seq. Each
update of a document during his life generates a serial sequence number and
that Update Sequence gives us powerful information about the modifications
made in a specific update, or a range of updates. This is done via a GET /<db>
request.

3. Next, a unique identifier must be generated by the Source and assigned to the
replication. That replication ID is very useful in order to find and resume pre-
viously interrupted replications, and identify each separate replication process.

4. The replication ID generated in the previous step, is saved in a special non-
replicating document interface, the _local document on both peers via a PUT
/<db>/_local/<unique_id>. This document will contain the last sequence
ID, last_seq field, from the previously run replication. The last_seq is also
mentioned as a Checkpoint for the replication process.

5. Using the replication ID, Replicator will retrieve the replication log history from
both Source and Target via a GET /<db>/_local/<unique_id>. Then it will
compare the two logs in order to find common ancestry. If there is not common
ancestry, or if there are not any replication logs, it means that the replication
is triggered for first time and an error will occur during that step. This will not
affect replication because it is only an optimization to speedup the replication
by not re-replicating already copied files.

6. Replicator then listens to the _changes feed from the Source’s database. The
_changes feed is actually a list of changes made to the database’s documents.
The Checkpoint can be used as input to the since option of that call, in or-
der to retrieve changes immediately after the sequence number given. feed,
style, heartbeat, and filter are some more parameters that can be used
while listening to the changes feed. Only the list of current revisions changed
will be returned, and not the whole revision tree of the changed documents. An
example request for the _changes feed is:
GET /<source>/_changes?feed=normal&style=all_docs&since=last_seq

7. Collect a group of documents/revision ID pairs from the changes feed and send
them to the Target via a POST /<target>/_revs_diff request. The Target’s
response will contain only those pairs that are missing from its database.

16http://gitscm.com/

http://gitscm.com/

4.4 Apache CouchDB 53

8. Fetch all the documents contained in the response from the previous step, from
the Source database. A GET /<source>/<doc_id>?revs= true&rev=<revision>
request will be made for each document. There are also some optimization op-
tions which can be used like ?atts_since, but will not be further presented. Ev-
ery document fetched is put in a local stack for bulk uploading in order to utilize
the network’s bandwidth effectively. When all documents are fetched they will
be uploaded at once to the Target database using POST /<target>/_bulk_docs
request.

9. After the batch of changes uploaded to the Target, the Target must ensure
that every single bit is on persistent storage (on disk). The request is: POST
/<target>/_ensure_full_commit.

10. Then, Source and Target update their replication logs and the Checkpoint value,
so next replication will resume from that point. The request is as in a previous
step: POST /<db>/_local/<unique_id>

If the replication feed is set to continuous, the Replicator will listen to the _changes
feed until someone cancels it. When new changes encountered, the replication process
will repeat from step 7. Replicator does not have to run either on Source or Target
servers. It could run from anywhere with read access to the Source’s database and
write access to the Target’s database. However, it is nearly always run by either the
Source or the Target server.

Eventual Consistency
In Chapter 2, we discussed about the relational databases constraints and some
compromises that a NoSQL database have to make, in order to achieve better per-
formance and scalability, mainly in distributed environments. CouchDB loosens
the consistency checks that a traditional database would make, and makes it really
simple to build distributed applications with huge performance improvements that
would scale, by sacrificing immediate consistency. Maintaining consistency between
multiple database servers is a common and complex problem with many books de-
voted to its solution. Sharding, master/slave replication, multi-master replication,
and many more techniques are used to deal with it.
CouchDB’s way of address that problem is an incremental replication procedure
along with a MVCC, which provides eventual consistency to the nodes involved.
CouchDB operations stay within the context of a single document. Incremental
replication is a process where document changes are periodically synchronized be-
tween different servers. The level the nodes will interact and communicate is decided
by the user who sets up the replication. We can have from a cluster with independent
nodes, up to a cluster where all nodes communicate and synchronize their databases.
When two or more databases are synchronized from both directions, we may face a
condition when the same document has been modified from both databases. This is
a conflict, and CouchDB system comes with automatic conflict detection and reso-
lution. What it does, is detect the document both changed, flag it as a conflicted
document, and then decide which one version of the two is the “winning” one. The
winning version saved as the most recent version of the two, and the losing version
also stays in the database as a previously edited version. The two databases make
exactly the same choice in order to achieve consistency between them. The user can
decide between three possible options. Leave the CouchDB choice as it is, revert

54 Chapter 4. Ganeti and NoSQL

it, or merge the two versions and generate a new one with the appropriate changes
made.

4.5 Detailed Design

The changes we made, can be split into three main entities:

• Core Changes, that affect the software design.

• Feature Changes, which do not have impact on the design but facilitate some cluster
wide operations.

• Interface Changes, user-level (CLI) and Remote-API level (RAPI) changes, which
enable the features added.

4.5.1 Core Changes

One main core change will be extending Ganeti’s design to support additional solutions
for the configuration and the job queue storage. A use case will be Apache CouchDB
along with the current disk implementation, an approach that aims to increase the job
queue throughput and allow Ganeti to scale even better. Furthermore, the configuration
data file will be divided into its most heavily used components, in order to increase the
resource utilization in bigger clusters.

Besides these major changes, another “core” change which will not be visible to the users,
will be abstracting a few python modules, and more specifically those responsible for
the job queue and configuration storage management, in order to provide support for
alternative storage solutions. This will allow future flexibility in defining additional drivers
by moving away from the current static Ganeti approach which complicates and actually
prohibits additional storage options.

Module Abstraction
The modules related to the configuration and job queue storage management that
will be re-written in a more generic form, are the config.py, jqueue.py, and js-
tore.py. In Python terms, we will convert the {config/jqueue}.py modules to
packages, while the jqueue.py module will remain a single entity, with the appro-
priate changes applied. A package is simply an extension of the module mechanism to
a directory. A detailed overview of those modules and how they restructured follows:

• config.py

Overview
The config.py module will be transformed into the config/ package. The configu-
ration related code will be split into smaller modules. The config/__init__.py file
will contain the imports of the various sub-modules of the package, in order to ex-
pose their functionality to the clients that will make use of it. It is a necessity those

4.5 Detailed Design 55

abstraction changes be invisible to the rest Ganeti code and to the user as well.
Any new storage type that is created and added, should not disturb the existing
code. The most reasonable step was to use polymorphism and to create a common
interface for all those types, which would separate the rest Ganeti functionality from
the knowledge of the specific type it uses. The solution we adopted was to force the
creation of new objects occur through a common Factory 17, rather than to allow
the creation code be spread all over Ganeti’s code. With this approach, every new
type designed is silently added to the factory and the new feature is available. The
factory along with its auxiliary method and the appropriate lookup table for the
configuration storage types are also contained in the __init.py__ file. The relevant
code is presented in Listing 4.5.

1 # Lookup table for configuration storage types
2 _CONFIG_DATA_TYPES = {
3 constants.CFG_DISK: default.DiskConfigWriter,
4 constants.CFG_COUCHDB: couch.CouchDBConfigWriter
5 }
6

7 def GetConfigWriterClass(name):
8 ”””Returns the class for a configuration data storage type
9

10 @type name: string
11 @param name: Configuration storage type
12

13 ”””
14 try:
15 return _CONFIG_DATA_TYPES[name]
16 except KeyError:
17 msg = ”Unknown configuration storage type: %r” % name
18 raise errors.ConfigurationError(msg)
19

20

21 def GetConfigWriter(name, **kargs):
22 ”””Factory function for configuration storage methods.
23

24 @type name: string
25 @param name: Configuration storage type
26

27 ”””
28 return GetConfigWriterClass(name)(**kargs)

Listing 4.5: Factory method for the configuration storage objects

The next task was to identify the features and functions that should be extracted
to each sub-module of the package. The config.py file will be renamed to con-
fig/base.py. Only the should-be-common classes and methods for all the imple-

17http://www.itmaybeahack.com/book/python-2.6/html/p03/p03c03_patterns.html#factory

http://www.itmaybeahack.com/ book/python-2.6/html/p03/p03c03_patterns.html#factory

56 Chapter 4. Ganeti and NoSQL

mented drivers will remain in that module. The rest class methods and functions
that will not be contained in the base module, will be contained in a newly cre-
ated file named config/default.py, which will provide the default disk storage type
functionality for the configuration data file.
Technical Details
The config/base.py file, will provide the basic interface to the rest configuration
drivers. The “globally” needed objects, from classes to functions and variables will
appear in that module. The rest drivers will inherit 18 the base functionality, which
they have to extend depending on their specific needs.
In the previously single configuration module, all the needed functionality were con-
tained in a single class interface named ConfigWriter. This interface will be trans-
formed to a more generic form, named _BaseConfigWriter that will implement only
a subset of the original class methods. We can define a sort of rule about the func-
tions that will be implemented by the base module, and those by each driver. We
can group the configuration methods to those that modify the cluster state, and
those that simply query it. The second group of methods will be implemented by
the base module, while the first one will not. Providing an example, a method that
modify the cluster state like the AddInstance, is presented in Listing 4.6. It is an
empty method, that raises a NotImplementedError exception in order to indicate to
the derived classes that it is required to be overridden. In addition, some method’s
definition were needed to be modified, in order to allow them to accept an arbitrary
number of arguments depending on the driver’s needs. The Python’s *args and/or
**kargs special syntax, facilitated those definition modifications.

1 def AddInstance(self, instance):
2 ”””Add an instance to the configuration file.
3

4 ”””
5 raise NotImplementedError()

Listing 4.6: Implementation of the base.AddInstance method

The default disk driver class methods will be implemented by the config/default.py
module. We will not analytically present any of the functions of that module because
they correspond to the default Ganeti methods. For a detailed comprehensive view
of the code, refer to the following Github link 19. Listing 4.7, presents a part of
the disk constructor method of the DiskConfigWriter class, which shows how the
base functionality is inherited via the Python super() call, before any disk specific
changes been made.

18Because Python is a dynamically typed language, it does not really cares about interfaces and types.
All it cares about is applying operations to objects. The interface and inheritance keywords have different
meaning in Python from other Object-Oriented languages such as C++ or Java, where it is often to inherit
from a common interface. In Python, and as in our implementation, the only reason to inherit is to re-use
the code in the base class.

19https://github.com/dblia/nosql-ganeti

https://github.com/dblia/nosql-ganeti

4.5 Detailed Design 57

1 from ganeti.config import base
2

3 class DiskConfigWriter(base._BaseConfigWriter):
4 ”””Disk storage configuration type
5

6 ”””
7 def __init__(self, cfg_file=None, ...):
8 super(DiskConfigWriter, self).__init__()
9

10 if cfg_file is None:
11 self._cfg_file = pathutils.CLUSTER_CONF_FILE
12 else:
13 self._cfg_file = cfg_file
14

15 . . .
16

17 self._OpenConfig()

Listing 4.7: Constructor of the DiskConfigWriter class

• jqueue.py

Overview
The jqueue.py module that implements the job queue handling will also be re-
written in more generic form. The new package will be named jqueue/, apparently.
The jqueue/__init.py__ file, will make all the appropriate package imports, and it
will also contain the corresponding factory for the job queue storage needs. The fac-
tory is implemented in the same sense as the relevant one for the configuration pack-
age. The previously global job queue module will be renamed to the jqueue/base.py
module, and the driver functionality for the default disk storage type will be imple-
mented by the jqueue/default.py file, similarly to the configuration package.

Technical Details
The “rule” we defined for the configuration package about the methods that should
remain in the base module and those that will not, similarly applies for that package.
The _JobFileChangesWaiter class, will be re-written in a more generic way, and
will be renamed to the _BaseJobFileChangesWaiter class. This class implements
by default an inotify 20 manager using Pyinotify, a Python module for monitoring
filesystem changes 21. Different drivers will apply alternative methods for notifying
about the events happen in a job queue object, so this class will be overridden by
every driver. Similarly, the _WaitForJobChangesHelper class, which is a wrapper

20http://en.wikipedia.org/wiki/Inotify
21Pyinotify relies on a Linux Kernel feature (merged in kernel 2.6.13) called inotify. inotify is an event-driven

notifier, its notifications are exported from kernel space to user space through three system calls. Pyinotify
binds these system calls and provides an implementation on top of them offering a generic and abstract way
to manipulate those functionalities. (From Pyinotify Project’s Wiki page).

http://en.wikipedia.org/wiki/Inotify

58 Chapter 4. Ganeti and NoSQL

over the _JobFileChangesWaiter, will be abstracted and renamed to the _Base-
WaitForJobChangesHelper class. The last class which must be transformed, is the
JobQueue class, which is responsible for the job queue management. It will be re-
named to BaseJobQueue, and it will only implement the common methods for the
individual drivers.
The jqueue/default.pymodule, inherits and extends the base module functionality
depending to the disk driver needs. The _DiskJobFileChangesWaiter, _DiskWait-
ForJobChangesHelper, and DiskJobQueue, are the corresponding implementations
of the above-mentioned class transformations. This module will also contain the
default _JobChangesWaiter class, which is needed by the file notification mecha-
nism only. In Listing 4.8, we present a small part of the constructor method of the
DiskJobQueue class.

1 from ganeti.jqueue import base
2

3 class DiskJobQueue(base.BaseJobQueue):
4 def __init__(self):
5 super(DiskJobQueue, self).__init__()
6

7 # Initialize the queue, and acquire the filelock.
8 self.jstore_cl = jstore.GetJStore(”disk”)
9 self._queue_filelock = self.jstore_cl.InitAndVerifyQueue()
10

11 # Read serial file
12 . . .
13

14 # More initializations

Listing 4.8: Constructor of the DiskJobQueue class

• jstore.py

Overview
In Listing 4.8, and more specifically in line 8, we observe that an instance of the
jstore class is created. This is due to the abstraction of the jstore.py module,
which is the last one that must be transformed. Many auxiliary handling functions
for the job queue are located in this module. In contrast to the previous modules,
we did not convert this one to a separate package, mainly due to its small length.
Technical Details
The generic base jstore class will be renamed to _Base, where all the original meth-
ods like the ReadSerial, or the ReadVersion, will be contained. The FileStorage
class overrides them in order to provide the disk type functionality. The appropriate
factory method was also created and added to that module, so that the user can
chose silently the desired jstore object.

4.5 Detailed Design 59

Configuration Data
We already discussed about the main reasons why the current configuration data
structure prevents Ganeti from achieving better resource utilization, particularly in
bigger clusters. Ganeti is build for low-level VM management, so the most com-
monly used operations are those related to instance level modifications. Network
and node related operations are also used quite often by cluster administrators. In
bigger clusters where the single config file grows, a lot of congestion is observed and
many should-be-fast operations, consume too much time in order to complete. The
approach that is followed by the CouchDB driver, will try to remedy this limitation.
In this section we will analytically discuss about the solution we designed, and how
we applied it in the CouchDB driver.
Database Structure
We decided to separate the config.data file into its most heavily updated objects.
Our claim was: Why should we flush the whole configuration file to disk, when we
just want to update a single field, like modifying an instance parameter. By dividing
it properly, we could save a lot of operational time for the cluster. The CouchDB
approach of handling the documents in a database facilitates that thought, and in
fact gave us the opportunity to apply it in the CouchDB driver. All the changes we
will make, are referred to the on disk representation of the configuration data. The
in-memory representation should, and will, remain as it is, for compatibility reasons
with the rest of the code.
A database in CouchDB is a collection of documents, so we decided to separate
the five primary components of the configuration file that are shown in Listing 4.1,
into five distinct databases. As a result, we are introducing five new entities for
the configuration storage; the instances, nodes, nodegroups, networks, and the
config_data databases. With the new design, when we will want to add an in-
stance, for example, we will add a single document in the instances database. This
practically means that only few kilobytes will be serialized at a time instead of the
whole configuration data file, which can become bigger than 2 MB in bigger clusters.
The detailed structure of the config.data file and a complete database presentation
follows:

• instances, containing one document per instance object, and indexed (_id) by
the instance name.

• nodes, containing one document per node object, and indexed by the node
name.

• nodegroups, containing one document per nodegroup object, and indexed by
the uuid of the group.

• networks, containing one document per network object, and indexed by the
network name.

• config_data, containing one document in total, indexed as config.data. It
will contain all the Ganeti cluster information, as well as the {c/m}time,
serial_no, and version fields. The instances, nodes, nodegroups, and
networks fields will remain in this document for compatibility reasons, and
will contain an empty dictionary as a value.

Each of the objects above, must be updated to contain two extra necessary fields
for the CouchDB needs; the _id and _rev fields. Since CouchDB has access control

60 Chapter 4. Ganeti and NoSQL

per database and even on document level, we will reserve the right to create private,
and public databases, that will contain information which can be shared among the
cluster administrators or third parties respectively.

Implementation Details
Before we proceed to the detailed design of the CouchDB driver, we have to mention
some internal technical details of the driver from a high-level point of view. While
the config.data object will remain in memory as a unified entity, like it currently
is, the on-disk representation will be totally different, as we explained above. With
this approach all the modifications we will make will be invisible to the rest Ganeti
code, and none function definition will have to change.
Some aspects of that transformation must be clarified. The first one concerns the
configuration loading from disk to memory. When the configuration loads from
the CouchDB server must be unified, in order to construct the single Ganeti ob-
jects.ConfigData object, and achieve the compatibility we want to with the rest
of the code. This is an easy task to do, and will introduce a quite small overhead
during Ganeti reload, because Ganeti reads the configuration file from disk only
when it starts, or reboots. The fact that Ganeti rarely reloads, makes that overhead
negligible. The second aspect refers to the way that the updates will be flushed to
the appropriate database. The previously globally used _WriteConfig function will
be converted and extended to dispatch any updates to their appropriate databases.
Finally, the last modification concerns the replication procedure, which will be han-
dled exclusively by the CouchDB server, removing this heavy task completely from
Ganeti.
While the CouchDB driver has been tested, and it seems to work smoothly, it brings
an important change to the Ganeti configuration design. Since most of the Ganeti
operations update more then one configuration object in a single call, we have to
make more than one distinct updates in different databases. If we want to add an
instance, for example, we also have to update the serial_no, and the mtime fields
of the config object that are located in a separate database. Most of Ganeti op-
erations that modify the state of the cluster follow that update policy. While the
cost of making two sequential updates of small objects is negligible comparing to the
whole flushing of the configuration file to disk, the problem lies in the fact that the
ACID property of a configuration transaction changes, since we may face a situation
of a hardware failure where only one of the two updates has been completed. In
the first version of the CouchDB driver, we do not deal efficiently with that case
but it is intended to be fixed in a later version. Currently, we firstly update the
global configuration fields, that are the serial number and the modification time of
the file, and later the main object of the operation, ,i.e., an instance, a node, a
network, or a nodegroup. If the failure occurs between the two updates, we will
have a configuration file with an increased serial number by one, and an updated
modification time, while the actual update have not been performed, because the
operation failed. We believe that this is a small tradeoff we have to bear with for
the first version of our driver in order to achieve better resource utilization.

CouchDB Driver Design
Now we are ready to proceed with the detailed CouchDB driver design. The complete

4.5 Detailed Design 61

code of the CouchDB configuration driver, as the rest code of the project is hosted
at Github 22. The top-level configuration management class, will be inherited and
extended by the CouchDBConfigWriter class. Table 4.1, presents the interface of
the cluster configuration on CouchDB driver behalf. A presentation of the most
important methods of the driver follows:

CouchDBConfigWriter Class
__init__(self, offline=False, accept_foreign=False)
IsCluster()
AllocatePort(self)
AddNodeGroup(self, group, ec_id, check_uuid=True)
_UnlockedAddNodeGroup(self, group, ec_id, check_uuid)
RemoveNodeGroup(self, group_uuid)
AddInstance(self, instance, ec_id)
_SetInstanceStatus(self, instance_name, status)
RemoveInstance(self, instance_name)
RenameInstance(self, old_name, new_name)
AddNode(self, node, ec_id)
RemoveNode(self, node_name)

MaintainCandidatePool(self, exceptions)
_UnlockedAddNodeToGroup(self, node_name, nodegroup_uuid)
_UnlockedRemoveNodeFromGroup(self, node)
AssignGroupNodes(self, mods)
_OpenConfig(self, accept_foreign)
_UpgradeConfig(self)
DistributeConfig(self, node, replicate)
_WriteConfig(self, db_name=None, data=None, feedback_fn=None)
SetVGName(self, vg_name)
SetDRBDHelper(self, drbd_helper)
Update(self, target, feedback_fn, ec_id=None)
AddNetwork(self, net, ec_id, check_uuid=True)
RemoveNetwork(self, network_uuid)
_BuildConfigData(self)
_ClusterObjectPrepare(config_data)

Table 4.1: Interface of the CouchDBConfigWriter class

• __init__() method:
This is the constructor method of the CouchDB driver. The relevant code is pre-
sented in Listing 4.9. The code is quite straightforward; we create five new local class
variables, one for each database we created, before we call the _OpenConfig method
which will construct the global ConfigData object. These variables are instances of
the couchdb.client.Database class, actually a representations of the databases on
the CouchDB server.

22https://github.com/dblia/nosql-ganeti

https://github.com/dblia/nosql-ganeti

62 Chapter 4. Ganeti and NoSQL

1 class CouchDBConfigWriter(base._BaseConfigWriter):
2 ”””CouchDB configuration storage type
3

4 ”””
5 def __init__(self, ...):
6 super(CouchDBConfigWriter, self).__init__()
7 . . .
8 # CouchDB initialization
9 # Setup the connection with Couch Server for all databases
10 self._hostip = netutils.Hostname.GetIP(self._my_hostname)
11 ip = self._hostip
12 port = constants.DEFAULT_COUCHDB_PORT
13

14 # Get database instances
15 self._cfg_db = utils.GetDBInstance(CLUSTER_DB, ip, port)
16 self._nodes_db = utils.GetDBInstance(NODES_DB, ip, port)
17 self._networks_db = utils.GetDBInstance(NETWORKS_DB, ip, port)
18 self._instances_db = utils.GetDBInstance(INSTANCES_DB, ip, port)
19 self._nodegroups_db = utils.GetDBInstance(NODEGROUPS_DB, ip, port)
20

21 self._OpenConfig()

Listing 4.9: Constructor of the CouchDBConfigWriter class

• _OpenConfig method:
The _OpenConfig method, is very similar to the default disk method. The main
difference lies in the way that the document is loaded from disk. The default
utils.ReadFile method, is replaced by the _BuildConfigData method, which is
responsible for the unification of the configuration databases to a single object. List-
ing 4.10, contains the relevant code. It was a challenge to collect all the documents
from all databases in a small amount of time. The view mechanism provided by
CouchDB, gave us the solution. The special _all_docs view, combined with the
include_docs attribute set to True, returns a listing of all the documents in a
database, ordered by their _id. We query that view on each database and construct
the separate dictionaries of the instances, nodes, networks, and nodegroups of the
cluster. Then we combine them to build the unified ConfigData object.

1 def _BuildConfigData(self):
2 ”””This function unifies the config.data from its sub- components,
3 because we do not want to change the in-memory represantation of it.
4

5 ”””
6 # Get config.data from the db
7 raw_data = self._cfg_db.get(”config.data”)
8

9 # nodes dictionary
10 nodes = {}

4.5 Detailed Design 63

11 view_nodes = self._nodes_db.view(’_all_docs’, include_docs=True)
12 for row in view_nodes.rows:
13 node = row[’doc’]
14 nodes[node[’name’]] = node
15

16 # instances dictionary
17 instances = {}
18 view_insts = self._instances_db.view(’_all_docs’, include_docs=True)
19 for row in view_insts.rows:
20 instance = row[’doc’]
21 instances[instance[’name’]] = instance
22

23 # nodegroups dictionary
24 . . .
25

26 # networks dictionary
27 . . .
28

29 # build the unified config.data object
30 raw_data[’nodegroups’] = nodegroups
31 raw_data[’nodes’] = nodes
32 raw_data[’instances’] = instances
33 raw_data[’networks’] = networks
34

35 return raw_data

Listing 4.10: Implementation of the configuration unify method of CouchDB

• _WriteConfig method:
This method does not contain significant changes comparing to the default one, and
it is unnecessary to provide its code. However, we have to mention two important
differentiations from the default implementation. The _DistributeConfig call have
been completely removed, because CouchDB follows a different approach for the
document replication, and it was not necessary any longer. In addition, we do not
have to make a json.dump call to serialize the config.data object before we flush it
to disk. Instead, we call the utils.WriteDocument function which is responsible for
all the write requests to the CouchDB server. We will present the relevant CouchDB
utils module in the upcoming paragraphs.

• AddNode method:
Besides the primary methods for the configuration management that we presented
earlier, we also chose to present the AddNode method. This is maybe the most repre-
sentative method of the CouchDB driver, because it denotes the way we handle the
writes, and how we setup the replication between the master candidate nodes. It is
also a method of two object updates on different databases in a single operation. If
we carefully take a look in Listing 4.11, we observe that if the node is a master can-
didate, we call the _UnlockedReplicateSetup function from the utils/couch.py

64 Chapter 4. Ganeti and NoSQL

module. This call enables the replication between the master and the new candi-
date node, and we do not longer have to worry about it. It will replicate any new
changes made to the master databases to the candidate nodes database respectively.
The last modification concerns the cluster dictionary updates in the config_data
database. As the configuration is in memory as a single ConfigData object, we surely
do not want to flush the whole object to disk. Instead, we call the _Cluster-
ObjectPrepare method which actually clears the instances, nodes, nodegroups,
and networks dictionaries before flushing the updates of the cluster object to the
config_data database.

1 @locking.ssynchronized(_config_lock)
2 def AddNode(self, node, ec_id):
3 ”””Add a node to the configuration.
4

5 ”””
6 # In-object updates
7 node._id = node.name
8 node.serial_no = 1
9 node.ctime = node.mtime = time.time()
10 self._config_data.nodes[node.name] = node
11 self._config_data.cluster.serial_no += 1
12

13 # Write the cluster object to the ’config_data’ database.
14 data = _ClusterObjectPrepare(self._config_data)
15 self._WriteConfig(db_name=self._cfg_db, data=data)
16

17 # Write the node object to the ’nodes’ database.
18 data = objects.Node.ToDict(node)
19 self._WriteConfig(db_name=self._nodes_db, data=data)
20

21 # Enable continuous replication if node marked as MC.
22 if node.master_candidate:
23 for db in constants.CONFIG_DATA_DBS:
24 utils.UnlockedReplicateSetup(hostip, node.primary_ip, db)

Listing 4.11: Implementation of the AddNode method of CouchDB

Job Queue
A job is the only way to modify the cluster state in Ganeti. During its lifetime, a
job interacts many times with the disk, as it passes from the several states of its
execution. The interaction involves the information of the on-disk representation of
the job, to correspond to the latest updates. The policy of Ganeti obliges every local
update of a job to be spread among the master candidate nodes. That necessity,
creates a bottleneck and reduces the throughput of the job queue and consequently
the execution of jobs, specifically when many jobs are sent concurrently to the master
I/O thread for execution.
Our objective, is to take advantage of the CouchDB replication process, and write
a driver without the need to replicate jobs inside Ganeti. We believe that splitting

4.5 Detailed Design 65

some of the work ,i.e., the replication task, to a separate thread, not tied with the
Ganeti code path, will increase the job queue throughput. This actually means
that in bigger clusters with a lot of congestion due to the number of clients who
concurrently talk to the master daemon, the job execution will also be fasten up
because jobs will go to the Queued state earlier than currently are and the waiting
threads will grub them sooner too. In addition, the timeouts happen to the LUXI
server due to a heavy loaded master daemon will be limited.
Database Structure
The structure of the database does not differ a lot from the original disk represen-
tation. We will create two new databases, named queue and archive, for the job
queue and the archive directory respectively. In more details:

• queue, containing one document per job, and indexed by the job identifier.
• archive, containing one document per archived job, and indexed by the job
identifier too.

The _QueuedJob class, which corresponds to the in-memory representation of the
job, already contains an id parameter which will be used for the CouchDB index
needs ,i.e., _id parameter. We will add an extra rev field that will be used as the
job’s version, and will be None by default if the job have not been written to disk
yet. Otherwise it will contain the last revision number of the job.
CouchDB Driver Design
The document containing a job, will have three fields; the common _id, and _rev
fields and a new one named info, which will contain the _QueuedJob instance. The
same will apply for the documents in the archive database, but with the addition of an
extra field named archive_index, which corresponds to the original classification
of the archived directory per 10.000 jobs. With a simple query of a view in the
archived database, we could easily fetch the desired jobs from the given range.
For the CouchDB driver needs, three main classes should be created; the _CouchDB-
JobFileChangesWaiter, the _CouchDBWaitForJobChangesHelper, and the CouchD-
BJobQueue classes. We are going to present the main attributes of each one of
those classes. For deeper investigation, the code is hosted as Github 23. The
CouchDBJobQueue class interface, the related class for the queue management for
the CouchDB driver, is presented at Table 4.2:
We are about to present the methods of the CouchDBJobQueue class with the greatest
importance. The relevant code will be presented, where it is necessary.

• __init__() method:
From the constructor method, we distinguish the creation of two new local class vari-
ables; the self._queue_db and self._archive variables, containing the relevant
couchdb.client.Database instances, similarly to the configuration driver.

• _UpdateJobQueueFile method:
This is the method that writes a job to the database. Actually it is a wrapper
method over utils.WriteDocument, which is the responsible method for the write

23https://github.com/dblia/nosql-ganeti

https://github.com/dblia/nosql-ganeti

66 Chapter 4. Ganeti and NoSQL

CouchDBJobQueue Class
__init__(self, context)
_InspectQueue(self)
AddNode(self, node)
RemoveNode(self, node)
_UpdateJobQueueFile(self, data, job)
_RenameFilesUnlocked(self, arch_jobs, del_jobs)
_NewSerialsUnlocked(self, count)
_GetJobIDsUnlocked(self, archived=False)
_GetJobsUnlocked(self, archived=False)
_LoadJobUnlocked(self, job_id)
_LoadJobFromDisk(self, job_id, try_archived, writable=None)
_UpdateQueueSizeUnlocked(self)
SetDrainFlag(self, drain_flag)
UpdateJobUnlocked(self, job, replicate=True)
WaitForJobChanges(self, job_id, fields, prev_job_info, prev_log_serial, timeout)
_ArchiveJobsUnlocked(self, job_list)
ArchiveJob(self, job_id)
AutoArchiveJobs(self, age, timeout)

Table 4.2: Interface of the CouchDBJobQueue class

requests, as we said in the configuration driver section. If a job is written for the
first time, _rev field is None, we create a document with a empty _rev field. If a
modification made in a job in the queue database, besides the data and the _id field,
we should also provide the _rev field of the document we are about to change. This
stands for all document updates in the CouchDB, because as we said CouchDB uses
a MVCC policy, and the right document version must always be provided in order
to avoid conflicts. The rev attribute we added in the _QueuedJob class, keeps the
last revision number of the job and it is always updated with the most recent version
of it, after each successful write. This speeds up the write requests, otherwise we
should first fetch the document from the database to get the right revision, before
we update it, which would introduce a great overhead to the whole operation. The
same policy used for all the documents in the queue database, like the serial and
version files.

• _Get{Job/ID}sUnlocked methods:
These two methods return all the jobs from the queue database, and the archive one
if requested, and all the job identifiers respectively. Consequently, we want a fast way
to retrieve all the documents of those databases. We made use of the view mechanism
again. We defined a view which returns only the jobs of the database where it runs,
and not other documents like the serial or the version ones. The fact that a view
runs only in the newly inserted documents and not in those already ran, speeds up
that operation. The view, as we said in the Apache CouchDB 4.4 section, must be
defined inside a _design document. In our case, this is the _design/queue_view
document, and contains a single view named jobs. This document is presented in
Listing 4.12. If we query the view with the _included_docs option set to True, it

4.5 Detailed Design 67

will return us a list with all the documents of the database. If that value is set to
False we will get only the job IDs and no other information.

1 { ”_id” : ”_design/queue_view”,
2 ”language” : ”javascript”,
3 ”views” : {
4 ”jobs” : {
5 ”map” :
6 ”function (doc) {
7 var q; q = doc._id.indexOf(’_’);
8 if ((doc._id != ’serial’) && (doc._id != ’version’) &&
9 (q != 0)) {
10 emit(doc._id, doc)
11 }}”
12 }
13 }
14 }

Listing 4.12: View in CouchDB for job retrieval from the queue db

• AddNode method:
This method is responsible to enable the replication tasks for the queue and archive
databases, between the master and the new candidates. To enable/disable the repli-
cation, we make a call to the utils.UnlockedReplicateSetup method, just like the
relevant method from the configuration driver.

• _RenameFilesUnlocked method:
This is the last method we are going to present from that class. It is used for the
archival of the jobs of the queue. This method may need to archive hundreds of jobs
at a time, so we made use of the bulk update feature of CouchDB, which updates
the given list of documents using a single HTTP request. After we collected the
documents to be archived, we simply pass them as input to the update(documents,
**options) method, which performs the bulk update.

• Notify Manager:
A challenge we faced during the job queue driver design, was the implementation of
the notifying manager we will use while waiting for changes in a job. We can not
make use of the inotify manager because the jobs will be at the database and not
at the filesystem. We decided to use the CouchDB _changes feed, where all the
changes made to a database are recorded. This feed is also used by the replicator
process, a topic that we have extensively covered earlier in this chapter. Two classes
involve in the waiting procedure. The _CouchDBWaitForJobChangesHelper and the
_CouchDBJobFileChangesWaiter classes. Those two classes with the aid of the
default utils.Retry function, provide the desired feature.
The _CouchDBWaitForJobChangesHelper class is almost identical with the original
_WaitForJobChangesHelper class, and it will not be presented. we will focus on

68 Chapter 4. Ganeti and NoSQL

the _CouchDBJobFileChangesWaiter class which actually implements the waiter.
Unlike the default class, this one consists of two methods only; the __init__() and
the Wait method. The _changes feed and the relative functionality provided by
CouchDB have been used for the waiter implementation. The _changes feed con-
tains every single modification made on the database. It would be a great waste
of resources to search the whole feed for a modification of a single job at a time.
This is why we created a filter function, which only searches for changes in the job
ID we want to. This filter function is named job_id, and is contained in a design
document just like the view functions. The relevant document is presented in List-
ing 4.13. Another decision we have to make, was the way we will poll for results
in the _changes feed. The most appropriate choice was the longpoll feed with a
timeout to close the feed if nothing has changed. It is a very efficient form of polling,
which avoids the need to frequently poll CouchDB to discover nothing has changed.
It does not run any requests if nothing changed, but as soon as a result appears the
HTTP connection between CouchDB and the Ganeti client closes. The timeout that
was selected is identical to the one used by the default inotify condition. The last
parameter of the _changes feed we have made use of, was the since parameter. By
providing the last sequence number to that parameter, we are waiting for new noti-
fications only, ignoring the old ones. The sequence number refers to the number of
the updates that have been made to the database, because any new update generates
a unique sequence number. The last_seq value corresponds to the upcoming up-
date. As presented in Listing 4.14, if an event happened (have_events[”results”]
== True), we return the relative _QueuedJob object to the client. Otherwise, if the
result returned is False, the utils.Retry function will re-poll repeatable to the
desired job until an event happens.

1 { ”_id” : ”_design/filter”,
2 ”language” : ”javascript”,
3 ”filters” : {
4 ”job_id” :
5 ”function (doc, req) {
6 if (doc._id == req.query.id)
7 { return true; }
8 else { return false; }}”
9 }
10 }

Listing 4.13: Filter function in CouchDB

1 class _CouchDBJobFileChangesWaiter(base._BaseJobFileChangesWaiter):
2 def Wait(self, timeout):
3 ”””Waits for the job to change.
4

5 @return: Tuple of (’Polling’, result) format. If the timeout
6 expires result is False, otherwise a new _QueuedJob
7 object with the new data returned. ’Polling’ is used
8 to distinguish this case in utils.Retry function.

4.5 Detailed Design 69

9

10 ”””
11 assert timeout >= 0
12 result = False
13 timeout = int(timeout) + 1
14 have_events = self.db_name.changes(filter=’filter/job_id’,
15 id=self.job_id, feed=’longpoll’, include_docs=True,
16 since=self.since, timeout=timeout * 1000)
17 if have_events[’results’]:
18 try:
19 data = have_events[’results’][0][’doc’]
20 raw = json.loads(data[’info’])
21 result = _QueuedJob.Restore(self, raw, writable=False,
22 archived=None)
23 except Exception, err:
24 raise errors.JobFileCorrupted(err)
25

26 self.since = have_events[’last_seq’]
27

28 return (’Polling’, result)

Listing 4.14: Waiting manager function of CouchDB on the job-ID given

Utility module for CouchDB
In the configuration and job queue CouchDB drivers, we made a lot of references to
the relevant utils/couch.py module. The creation of such a module was essential,
in order to make the main code of the CouchDB driver clearer, and also separate the
main functionality of the driver from the utility functions needed, for the interaction
with the CouchDB server. In Table 4.3, we provide the interface for the couch.py
utility module:

utils/couch.py module interface
URIAuth(user_info, reg_name, port)
URICreate(scheme, auth, path=””, query=””, fragment=””)
DeleteDB(db_name, host_ip, port)
CreateDB(db_name, host_ip, port)
GetDBInstance(db_name, host_ip, port)
UnlockedReplicateSetup(host_ip, node_ip, db_name, replicate)
MasterFailoverDbs(old_master_ip, new_master_ip, db_name)
WriteDocument(db_name, data)

Table 4.3: Interface of the utility CouchDB module

The URIAuthmethod, creates the authority value within a URI, while the URICreate
method, returns a general universal resource identifier. The {Create/Delete}DB,
GetDBInstance, and WriteDocument methods, have a quite straightforward usage.
A special mention have to be made for the UnlockedReplicateSetup and the Mas-
terFailoverDbs methods.

70 Chapter 4. Ganeti and NoSQL

The UnlockedReplicateSetup method is responsible for enabling/disabling the
replication tasks between the master node and the master candidates. During a
server restart, we want the replication tasks to survive and continue from where
they left of. In order to achieve that, we create a special replication document in
the _replicator database. Those document persist a server restart and can only be
modified by the database administrator. This is what this function does. Depending
on the value of the replicate parameter, it creates or removes the desired repli-
cation document. The replication document contains four fields; the source URI,
pointing to the master node, the target URI, pointing to the master candidate, the
create_target attribute set to True, to create the database in the target node if it
does not exists, and the continuous attribute set to True to make the replication
process run forever. A continuous feed stays open and connected to the database
until explicitly closed, and changes are sent to the client as they happen ,i.e., in near
real-time.
The MasterFailoverDbs method, is called in case of a master-failover. In that case
the replication documents from the old master node, are moved to the new master
node. The replication documents must be removed from the old master, otherwise
we will end up with a bi-directional replication process with unknown results. We
should also take care of cases where the master CouchDB server is down, when the
master-failover is requested. In that case, we re-create the replication tasks to the
new master candidate, and as soon as the old master is up again, it is informed
that it is not longer the master node, and the cluster administrator should run a
redist-conf command, which will remove the unwanted replication tasks from the
old master.

Summing up, we presented the Core modifications made to the Ganeti code, to support
multiple driver solution for the configuration and job queue management. Changes have
also been made in other Ganeti parts, but will not be further presented, because are out
of the scope of that document. For more details, and further investigation on the full
changes list, refer to the above-mentioned Github link.

4.5.2 Feature Changes

The main feature-level changes will be:

• the extension of LUClusterRedistConf functionality.

• global cluster-level parameter.

Redistribute Config
Current State
Currently, LUClusterRedistConf triggers a copy of the configuration file to all mas-
ter candidates and of the ssconf files to all nodes. It also distributes every additional
file which is part of the cluster configuration such as the certificate files. This is
a call which should not normally needed, but in some cases like an upgrade of the
Ganeti software, or if the verify call complains about configuration mismatches,
must be run to “re-synchronize” the cluster status.

4.5 Detailed Design 71

Proposed Changes
With CouchDB driver, we may end up with such configuration mismatches in the
following scenario. If the current master node fails, and the CouchDB server can
not be contacted, a master-failover must be run. When the old master becomes
available again, he will be informed by the Ganeti master voting procedure that
he is no longer the master node of the cluster. The problem lies in the remaining
replication tasks, that where never removed during the master-failover operation,
because the old master node was unreachable. The redist-conf which would nor-
mally update its configuration values, will be extended to also remove the remained
replication tasks, in order to avoid a bi-directional replication. Such solution is imple-
mented with an additional function call to the LUClusterRedistConf class, named
_RemoveRemainedReplicationTasks. This function will search about remaining
replication tasks in the candidate’s _replicator databases, and will simply remove
them if there are any. The Ganeti replication tasks have a specific _id format ,i.e.,
from_source_to_target, and can be identified from different replication tasks for
other purposes.

Global Cluster parameter
Current State
Currently, the configuration data and job queue are stored to disk, by default. There
is no alternative storage solution provided. It would be nice for Ganeti users to
have the ability to chose between several cluster-wide parameters the type of the
underlying storage solution they would like to use.
Proposed Changes
The pluggable modular driver transformation of Ganeti’s base components which
we attempted, enables that feature. We added a new cluster-level parameter, which
will modify the underlying storage type of Ganeti per will. This parameter will be
kept into the cluster dictionary of the configuration data, which allow us to create
generic instance “classes” for the configuration and job queue storage handling. The
default value will remain the disk storage.

4.5.3 Interface Changes

There is a single area of interface changes to expose the designed solution:

• Command Line Interface-level changes, CLI.

Command line changes
The new Ganeti feature we designed, introduces modifications in the way CLI ar-
guments are handled. The command gnt-cluster will be modified and extended
to allow setting, and changing the default parameter of the underlying storage type.
The init command will be extended and a new command line argument will be
added named –backend-storage, or -S for abbreviation. The default value will be
“disk”, but user can also choose “couchdb” as a second alternative choice.
The generic syntax of the cluster init command is presented in Listing 4.15.

72 Chapter 4. Ganeti and NoSQL

$ gnt-cluster init \
--enabled-hypervisors=%hypervisors% \
--secondary-ip=%secondary_ip% \
--no-ssh-init \

. . .
--backend_storage=%disk|couchdb%
%CLUSTER_NAME%

Listing 4.15: Extension of the gnt-cluster init operation

Chapter 5

Performance Evaluation

In this Chapter, we will evaluate the performance of the new CouchDB driver compar-
ing to the default disk implementation, that is currently used by Ganeti for its storage
requirements. Good benchmarks are non-trivial; each driver is different, and different use
cases need to tune different parameters. In next sections, we will try to illustrate the
benchmarking methodology of the diagrams we are about to present, before we proceed
to the detailed explanation of our results.

The structure of this chapter is the following. Section 5.1 provides details about the hard-
ware and software on which we conducted our benchmarks, while section 5.2 concentrates
on the methodology behind our measurements; the main factors we have taken into ac-
count in order to decide which were the most interesting and applicable for Ganeti fields,
were we should evaluate our driver’s performance. Finally, section 5.3 contains the actual
performance evaluation of the CouchDB driver. In each of its subsections concentrates on
a specific field of interest for the driver evaluation, which will subsequently lead us to the
final conjecture about how the driver responds to real-world workloads.

5.1 Specifications

To evaluate our software tool, it was required to setup a Ganeti cluster where our bench-
marks would run. We decided to setup our testing cluster into a virtualized environment.
More specifically, we chosen Synnefo 1, an open source cloud software, to host our testing
environment. A bunch of reasons lead us to this decision. Firstly, as Ganeti is a software
tool for managing clusters of physical nodes, it is not a facile task to obtain, setup, and
maintain physical machines for the cluster requirements. On contrast, using a virtualized
environment makes it quite easy to add and remove nodes from the cluster at will, without
interacting with any physical processes that would be running in a physical machine. It
provides a complete isolated environment where no one else can intervene with our work.
In addition, keeping up-to-date snapshots of our virtual nodes makes disaster recovery
quite a bit easier, and our cluster can be recovered in just a few seconds in case of a hard-
ware or a software failure. Moreover, it makes incredibly simple and fast to modify the
underlying hardware we use for our VMs, through the hardware abstraction it is provided.

1http://www.synnefo.org/

73

http://www.synnefo.org/

74 Chapter 5. Performance Evaluation

On the contrary, every virtualization solution comes with an additional overhead in terms
of computation, networking, and I/O operations. The overhead incurred by virtualiza-
tion has been the focus of many performance studies in the past, including numerous of
general-purpose benchmarks. A short review on those, indicates an overhead below 5%
on computation [3], below 15% on networking [3, 2], while the parallel I/O performance
losses due to virtualization has been shown to be below 30% [21], respectively. Recently,
there also has been occurred a burst on the research activity related to the performance
of using virtualized resources in cloud computing environments [6, 16, 10], that provide
additional metrics of the effects of using the cloud computing services for running many
types of scientific tasks.

In our case, the testing environment has been setup in a 7-node cluster, where each node
was armed with a 24-core AMD Opteron(tm) 6172 processor at 2.10 GHz, with 189 GB
of primary memory, and 3.7 TB of storage, running on a SMP Debian GNU/Linux with
3.2.0-4 kernel in 64-bit mode. The virtualization software used, was QEMU 1.7.0 with the
aid of the KVM kernel module. When used as a virtualizer, QEMU achieves near native
performance by executing the guest code directly on the host CPU. The redundancy on
the physical resources of the nodes we setup our cluster, provides 1:1 mapping between
the CPUs and vCPUS, as for the primary memory too. This results to a minimum
performance overhead because there is no overcommitment in the physical resources at
all. On the contrary, we can not come through the overhead during I/O operations with
the disk and the network usage, but keeping in mind that both of our drivers interact with
the disk and make use of the network resources, that overhead is linearly applied to each
of them and will not affect the final results. The specifications of each one of the VMs
constituting our virtual 5-node Ganeti cluster, where we conducted our benchmarks, are
the following.

Component Description
CPU 8 x QEMU Virtual CPU Version 1.7.0
RAΜ 8192 MB
Disk 80 GB

Table 5.1: Test-VM hardware specs

Software Version
OS Debian 7.1 Wheezy Base System
Linux Kernel 3.2.0-4-amd64

Table 5.2: Test-VM software specs

5.2 Benchmark methodology

Real benchmarks require real-world load. We will try to test our driver on real-world
examples under situations when hundreds of clients try to interact with the master daemon
concurrently, meaning that the masterd has to deal with them properly. Ganeti is a
distributed software tool. So it is a premise to scale well and perform-fast, when used in
real production environments with tens of nodes on each cluster.

5.2 Benchmark methodology 75

There are a plenty of attributes affecting the performance of distributed systems and
multiple “knobs” we could turn on to make a system perform better in one area, but
affecting another area when doing so. A use case is the CAP theorem that was discussed
in section 2.3.1. If we want our system to scale out, for example, there are three distinct
areas to deal with; increased read and write requests, and data. In addition, reducing
latency for a given system, affects concurrency and throughput capabilities. These two
examples are graphically illustrated in Figure 5.1. Orthogonal to those attributes, there
are many more factors that affect a system such as Ganeti, and more of the figures below
can be drawed, that display different features such as reliability, simplicity, availability,
and more. CouchDB is very flexible and gives us enough tools to create a system shaped
to suit many, but not all, of our problems.

Latency

Concurrency

Throughput

(a) Performance: Throughput, latency, or concur-
rency

Data

Read Requests

Write Requests

(b) Scaling: read requests, write requests, or data

Figure 5.1: Compromises of distributed systems

Keeping the above in mind, the benchmarks we have executed can be roughly classified
into four main categories, all of which having their own specific goals.

The first category, aims to expose the effect in the job submission rate, when the number
of the master candidate nodes increases. In order to effectively measure the overhead that
is introduced with an increase in the candidate_pool_size of the cluster, we will sent
concurrently errored jobs to the master node, and then we will measure the rate that
Ganeti adds them to the queue. We intentionally chose to sent errored jobs, because we
simply want to observe how the job enqueue throughput of Ganeti responds in various
candidate pool sizes, and not any other factors that may be affected by that type of
measurement. The behavior we will observe, will also indicate a suitable size of master
candidate nodes, to conduct the rest of our tests.

The second category, is a performance comparison test between the two driver implemen-
tations; the default disk implementation that Ganeti currently uses, and the CouchDB

76 Chapter 5. Performance Evaluation

one. The comparison concentrates on the job submission rate, by sending concurrently
errored jobs of various sizes similarly to the previous category, but using a constant value
of master candidate nodes instead, the one that was determined previously. The aim is
to measure the performance against a tough workload, explain the differentiations, if any,
that are observed on both of the drivers, and expose the factors that have the greatest
impact on each of our drivers.

The third category deals solely with the configuration data management. We measure
the performance of the configuration related write requests, on several file sizes, and in
clusters with various candidate pool sizes, to examine the bottlenecks on having a single
configuration file on big production clusters mainly. We will investigate all the factors
that are delaying the update of the configuration file, on both of the drivers, and then we
conduct a comparison test among them.

Lastly, in the forth benchmark category, we position the CouchDB and the disk driver in
a real-world scenario; an attempt to create a bunch of instances and compare the total
execution time of those jobs on each implementation. We aim to present the overall
performance of each driver, and explain any differentiations that may arise.

5.3 Evaluating CouchDB

The overview of the benchmark methodology we provided, points out the various situations
along with different metrics and workloads where we tested our implementations, in order
to measure accurately their performance. The abovementioned categories, are presented
in more details in the upcoming sections.

5.3.1 Impact of the candidate pool size

This category is a sort of an introductory section for the rest of our tests. Ganeti main-
tains a set of master candidate nodes, those that also contain a copy of the full cluster
configuration, i.e., configuration and jobs files. The existence of those nodes has a great
impact in the overall performance of the cluster, due to the fact that each modification in
a disk configuration file causes a copy of it file to the candidate nodes. Creating a cluster
with no master candidates at all is a risky attempt, because in case of a master failure all
the cluster information will be lost. On contrast, maintaining a lot of master candidate
nodes is a redundant waste of resources, as modifications have to be replicated to more
nodes. We would ideally want to find out the set of master candidate nodes that fits a
production environment, in terms of having the less impact in the cluster performance,
and reducing the probability of a cluster failure.

In order to decide which is the most appropriate candidate pool size, we proceed with
the following scenario. We sent jobs concurrently to Ganeti with varying candidate node
numbers, and we measure the rate in which jobs are submitted to the queue, for each
case. This metric is the job enqueue throughput, and denotes the average number of jobs
that are added to the queue per second. It is a representative metric for our purpose,
because every new entry to the job queue will also be replicated to the master candidate
nodes before the operation is declared as successful. Since we are just interested for the
enqueue rate, we decided to submit jobs that will never be executed and will be declared

5.3 Evaluating CouchDB 77

as errored. An example of those jobs is the modification of an instance that does not
exist in the cluster. The jobs will be normally inserted to the queue and replicated to the
candidate nodes, but when they will start their execution, they will immediately fail as
errored.

Jobs have been sent to Ganeti in batches of 10, 20, 30, 40, 50, 100, 150, and 200 jobs.
We ran that benchmark in a 5-node cluster consisting of none, one, two, and four master
candidate nodes, and the whole procedure has been repeated ten times in total. Since
Ganeti writes every information to filesystem and then distributes it to the candidate
nodes, there is a lot of disk and network I/O interaction. As a result, we expect a short
of deviation in our sample data values because there are external factors that may affect
the performance. The “outliers” values that may arise should also be included in the final
results, because are part of the Ganeti behavior. Consequently, we believe that the mean
value of our distribution is the most appropriate metric for our case, because is a metric
that represents the central tendency of the distribution by taking into account the whole
data information.

The benchmark outputs are summarized in two figures. Figure 5.2, presents the total
results in a normal line-points plot style, while Figure 5.3 concentrates on the heavier
workload of our benchmark that are closer to a real-world environment, in a clustered
bar-graph plot.

0

5

10

15

20

25

30

35

40

45

0 50 100 150 200

E
n
q
u
e
u
e
 T

h
ro

u
g
h
p
u
t
[j
o
b
s
/s

e
co

n
d
]

Number of jobs

candidate pool size: 5
candidate pool size: 3
candidate pool size: 2
candidate pool size: 1

Figure 5.2: Job submission rate per number of candidates

Performance Analysis

There are several interesting points that we can conclude from these diagrams, which we
will address below. The most obvious observation is the significant drop in the throughput
performance, as we increase the master candidate nodes of the cluster. Furthermore, in
case of no master candidate nodes, the distribution appears skewed characteristics and

78 Chapter 5. Performance Evaluation

0

5

10

15

20

25

30

35

40

1 2 3 5

E
n
q
u
e
u
e
 T

h
ro

u
g
h
p
u
t
[j
o
b
s/

s
e
c
o
n
d
]

Candidate pool size

Number of jobs: 50
Number of jobs: 100
Number of jobs: 150
Number of jobs: 200

Figure 5.3: Job submission rate per number of candidates #2

visible differentiations in the throughput performance, something that is not observed
when the candidate pool size is increased. A closer explanation of those points follows.

In both figures, there is an obvious relationship between the job submission rate and the
number of master candidates that Ganeti maintains. As we stated in the Caveats section,
i.e., 4.2.3, Ganeti writes jobs to disk and then concurrently replicates them to the master
candidates. The performance slowdown of the replication process is displayed in these
figures. With a single master candidate node, we have a drop in the throughput of about
8 times comparing to the case of no master candidates. An additional increase in the
candidate number, has no significant performance drop. This is an expected behavior
because Ganeti uses a multi-node RPC call to update the files in the candidate nodes.
This small dropdown is totally expected due to the checks that Ganeti does after each
RPC call, to get informed about the success, or not, of the operation.

Another interesting finding from our results, are the “outliers” that were observed in the
output sample data. When we ran the benchmarks in a cluster with no master candidates,
the data tended to have a more sparse behavior than in a cluster with one, or more,
candidate nodes. In order to make that variation visible to the reader, we calculated the
standard deviation metric of our distribution, which shows how much dispersion from the
average value exists, and we present it in Figure 5.4 to justify our claim. The question
that may arise is: Why the deviation exists only in the case of a cluster with no candidates.
The submission rate of Ganeti is the rate that the data are written to disk, and replicated
to the candidate nodes. Obviously, the disk and network I/O are some of the factors that
affect our results. As we know, Ganeti writes the jobs to its queue, so when a worker thread
grubs a job for execution, it will subsequently update the job file in disk too. This causes
a lot of congestion in the job queue lock both from the master thread and the job queue
workers. The order that the workers grub jobs for execution causes those differentiations

5.3 Evaluating CouchDB 79

in the throughput performance, in case of no master candidates. On contrast, when the
cluster contains master candidate nodes, we have a totally smooth distribution with data
around the mean value. This behavior is justified by the replication process of the job
files to the candidate nodes. It is a quite time-consuming operation, that covers the rest
operations that are executed, and actually determines the result’s form. At this point,
many types of measurements can be taken that will clarify those claims and probably will
expose more, but are out of the scope of this document and this test category specifically,
and we will not expand further.

0

10

20

30

40

50

10 20 30 40 50 100 150 200

E
n
q
u
e
u
e
 T

h
ro

u
g
h
p
u
t
[j
o
b
s
/s

e
co

n
d
]

Number of jobs

candidate pool size: 1
candidate pool size: 2
candidate pool size: 3
candidate pool size: 5
Standart Deviation [σ]

Figure 5.4: Standard Deviation [σ] of the job submission rate

Summing up, from the results we presented, we believe that having a cluster with two
candidate nodes is the best choice to conduct the rest of our benchmarks. It is also a
choice that reflects a real production environment because it provides the appropriate
backup degree in case of a hardware failure, and also does not have great performance
impact comparing to a cluster with a single candidate node.

5.3.2 Comparison of the job submission rate

To some extend, we already discussed about the job submission performance rate of
Ganeti’s default disk storage implementation, and we explained some of the drawbacks
that start to appear as the candidate pool size increases. In this category, we make use
of exactly the same metrics that we used in the previous one, with the difference that the
tests are conducted in a cluster with a candidate pool size equal to three nodes, as we
determined in the first benchmark category.

It is the first category where we actually compare the two driver implementations, and we
explain the main factors that affect their performance. The results are summed up in two
figures. Figure 5.5, contains the comparison of the job submission rate between CouchDB

80 Chapter 5. Performance Evaluation

and the disk storage type, while Figure 5.6 presents the comparison of the CouchDB driver
performing under different socket options.

0

5

10

15

20

0 50 100 150 200

E
n
q
u
e
u
e
 T

h
ro

u
g
h
p
u
t
[jo

b
s
/s

e
c
o
n
d
]

Number of jobs

Disk storage
CouchDB storage

Figure 5.5: Comparison of the throughput performance

Performance Analysis

Before we proceed with the interpretation of the diagram results, we have to mention that
the metrics we used, are exactly the same as in the first benchmark category, and the final
values correspond to the mean value of every distribution too.

Figure 5.5, is the first performance comparison test that we made between the two peers.
The initial results look very promising. In a 5-node cluster with two master candidate
nodes, we have a speedup in the job submission rate at about 7-times in the CouchDB
driver, comparing to the default disk storage implementation. The job submission rate
has impact in the overall job execution duration, as we will show in the last benchmark
category, and also reduces the timeouts happen in the LUXI server when many clients
try to submit jobs to Ganeti. We extensively talked about the reasons that performance
drops in a Ganeti cluster when jobs are saved to disk, in the first test category. Now we
are going to have a closer inspection in the factors that prevent CouchDB from presenting
similar behavior.

We discussed a lot about how Ganeti distributes the configuration files to the candidate
nodes, and we presented the performance impact of this operation in the first category’s
figures. One of the main reasons we have chosen CouchDB for Ganeti, is the replication
feature, as it was discussed in section 4.3. CouchDB is a database the replicates, and
with this term we mean that its fundamental function is to provide a simple, fast, and
convenient way to synchronize two or more CouchDB databases. Replication is handled
completely by a separate process, external to Ganeti, which listens on changes to the source
database, and replicates them to the targets. Obviously, the source refers to the master

5.3 Evaluating CouchDB 81

12

14

16

18

20

22

24

26

0 50 100 150 200

E
n
q
u
e
u
e
 T

h
ro

u
g
h
p
u
t
[j
o
b
s/

s
e
c
o
n
d
]

Number of jobs

Delayed Commits: False
Delayed Commits: True

Figure 5.6: Throughput performance of CouchDB on various socket options

database, while the targets are the databases of the candidate nodes. The replicator
process listens continually to the source’s _changes feed, and a new modification to the
source will immediately be replicated to the candidate nodes. In order to ensure safety,
CouchDB makes an fsync call before a 201 Created request is returned to the client. As
soon as the nodes are “up” and running CouchDB will replicate, and there is no need
to make extra checks similar to the RPC checks that Ganeti has to make to find out
that the updates have reached a majority of the nodes, before declaring the operation as
successful. Instead, it is sufficient to check that the CouchDB servers in the candidate
nodes are accessible. This operation can be handled by individual clients, independent to
Ganeti that will not affect the performance, and is an issue that is expected to be fixed in
a future driver version, as we will discuss in the Conclusion, i.e., Chapter 6.

Besides the comparison test between the two implementations, we also make a comparison
test for the CouchDB drive,r on various socket options that CouchDB provides, and have
a great impact in the overall performance of the tool. Figure 5.6 shows this performance
comparison test, on the delayed_commits attribute of CouchDB. When we set this at-
tribute to True, it is observed a further increase in the throughput performance at about
9-times comparing to the default disk implementation, and at about 35% comparing to
the CouchDB driver with this attribute set to False. Delayed commits is probably the
most important CouchDB configuration setting for performance. When is set to true (the
default), CouchDB allows operations to be run against the disk without an explicit fsync
call after each operation. Fsync operations take time in order to complete, and calling
them on each update limits the CouchDB performance for sequential writers. It is clear
that setting this option to true, opens a window for data loss, because data are being kept
in a write buffer and are fsync-ed after a certain amount of time, or when the buffer is full.
Ganeti is an environment where we absolutely need to know when the updates have been
received, so we set this attribute to false, by default. The aim of this test, is to expose

82 Chapter 5. Performance Evaluation

an important setting of CouchDB that could be enabled periodically, in several cases, like
in a situation with an overloaded master daemon, and then disabled at will. It is up to
the cluster administrator to measure the tradeoff between loosing some data in case of
a hardware failure, and the “relief” that the performance improvement will bring to the
cluster.

To achieve the results we presented for the CouchDB driver, another important configura-
tion option must be modified, related to the TCP buffering behavior. This is the nodelay
option which must be set to True, in order to disable the Nagle’s algorithm 2, which intro-
duces an additional delay when using keep-alive HTTP-connections. By setting this option
to true, the TCP_NODELAY option is turned on for socket, which means that even small
amounts of data sent to the TCP socket, like the reply to a document write request, or
reading a very small document, will be sent immediately to the network. They will not be
buffered hoping that it will be asked to send more data through the same socket in order
to transfer them all at once. The main reason that this important option is disabled by
default, is that the last releases of CouchDB ships with a more recent version of the HTTP
server library MochiWeb 3, which by default sets the TCP_NODELAY socket option to
false.

5.3.3 Comparison of the config.data performance

The CouchDB driver, besides the alternative storage solution that provides to the config-
uration files of Ganeti, also introduces a variation in the way it handles the config.data
file, as it was extensively discussed in Section 4.2.1. The ultimate aim of this category is
to compare the performance of the two alternative implementations of handling the con-
figuration file, but before we reach to this point, we will investigate in deep all the factors
that affect the configuration file performance, and that were discussed in Section 4.2.3.

In this category we will present three diagrams in total. The first two of them [5.7, 5.8],
one for each driver, show the total execution duration of the _WriteConfig method, and
all the sub-method calls that are been made. This is the responsible method for applying
the changes of the configuration file to the permanent storage, and replicate them to the
master candidate nodes. Every operation that modifies the cluster state calls this function
to make the changes permanent. It is the most time consuming function related to the
configuration file, and has a great importance in the performance of Ganeti, because is
must be called with the ConfigWriter lock held in exclusive mode, which starts to become
a bottleneck when a huge number of jobs is in execution. If we manage to reduce the time
the lock is held by the workers, we will also reduce some of the congestion in the config
lock. The last diagram [5.9], is the actual performance comparison plot between the two
implementations.

The benchmarks of this section have been conducted on a cluster with a candidate pool
size equal to one, three, and five nodes, respectively. In order to measure the performance
of the _WriteConfig method, we intentionally increased the size of the config.data file,
from 100 KB up to 5 MB. A cluster with about 2.000 instances has a configuration file of
around 5 MB, which corresponds to a real workload for a production environment. Our
test concentrates on modifying a parameter of a single configuration object. We chose

2http://en.wikipedia.org/wiki/Nagle%27s_algorithm
3https://github.com/mochi/mochiweb

http://en.wikipedia.org/ wiki/Nagle%27s_algorithm
https://github.com/mochi/mochiweb

5.3 Evaluating CouchDB 83

an instance object as a use case. Starting, restarting, or stopping an instance is a quite
commonly used operation, that while it aims to modify a single field of the instance object,
the whole configuration object is flushed to disk, and moreover the ssconf_* files are not
affected; a variance that we do not want to take into account in this test category. The test
was repeated 20 times for each pair, and we find it appropriate to make use of the trimmed
mean value of our distribution. The trimmed mean is a method of averaging, that removes
a small percentage of the largest and the smallest values before calculating the mean. This
method aims to reduce the effects of the outliers on the calculated average, and stated as
mean trimmed by X%, where X is the sum of the percentage of observations removed from
both the upper and lower bounds. In our case, we trimmed the mean by 20%. The reason
we did not calculate the normal mean value, is that we wanted to reduce the effects of the
outliers that were observed, and to obtain a more accurate average performance overview,
for both the implementations.

Performance Analysis

In the begging of our analysis, we will take a closer inspection on all the factors related to
the performance of the write operation of the configuration file. An operation that affects
the configuration state, passes from the following execution phases in general. Firstly,
some preliminary checks are being made on the object that it is requested to change,
and then the update of the in-memory representation of the config.data object follows.
Then the _WriteConfig method is called, which flushes the updates to disk, and replicates
them to the candidate nodes. This method consists of a number of time-consuming sub-
method calls that affect the overall performance of any cluster operation that modifies the
configuration file. These calls contain the verification of the config object for configuration
errors, to maintain the consistency of the object, and is named _UnlockedVerifyConfig,
the serialization of the config object in order to be prepared for applying the changes to
disk, through the serializer.Dump call, and then the actual flushing of the in-memory
object to disk, using the utils.SafeWriteFile function call. Finally, the modifications
have to be replicated to the candidate nodes with the _DistributeConfig method. All
these operations are affected from the size of the configuration file, and from the candidate
pool size as well. Figure 5.7, extensively examines this behavior.

From Figure 5.7, the following conclusions can be made. The most time-consuming
method, is the serialization of the configuration file. It is a totally independent cost
from the candidate pool size, but it is 100% bounded with the size of the file. The file is
stored in memory as a ConfigData object, a generic config object defined by Ganeti. In
order to be saved to disk, it must be transformed to a string format, and this is the role
of this method. The cost of the file replication to the candidate nodes is increases along
with the number of master candidates, and the size of the file too. In the same sense,
the verification check consumes a lot of time in bigger file sizes because it traverses the
whole file, same as the time of the function that applies the changes to disk, but with
the difference that even in bigger file sizes it does not consume a noticeable amount of
time. From this diagram it is understood that in a cluster with three candidate nodes,
even from a file of 1.0 MB in size, it takes at about 1 sec to complete a single operation.
If we combine it with the congestion on the config lock, we can see the great impact of
that delay in the overall cluster’s performance.

It is obvious that a single configuration file comes with a number of disadvantages. Mod-
ifying a single field of the file requires the serialization of the whole config object and the

84 Chapter 5. Performance Evaluation

distribution to the candidates, as well. This approach reduces the cluster performance
due to the increased operational cost that is implied. In Figure 5.8, we will present a
different approach that the CouchDB driver introduces, by conducting the same test on
the _WriteConfig method of the CouchDB driver.

In Figure 5.8, we observe a great improvement in the total execution duration of updating
the configuration file. This differentiation can be justified by the different approach of
CouchDB of handling the config object. The configuration file has been separated to its
sub-components, as we extensively discussed in section 4.8. Modifying an instance, a node,
and generally a single object of the configuration file, does not updates the whole object
to disk, but only the single object we want to. Moreover, the serialization cost does not
implies anymore. The transformation of an object before it is written to disk is a simple
conversion to dictionary, and it is part of the utils.WriteDocument method. Since we
convert only few kilobytes each time the cost is negligible. The distribution cost is also
disappears due to the different approach of CouchDB on handling the replication process,
as we already extensively explained. The verification cost is the only one that does not
changes, since we continue to verify the whole in-memory configuration object.

The last diagram we are going to present in this category, is presented in Figure 5.9. It
displays the total execution duration of an instance modify operation. It is a representative
job, as all Ganeti operations modify a specific field of the configuration file. The same
output would appear if we were modifying a node, a network, or a nodegroup. As we
said in the Implementation Details section of the CouchDB driver, i.e., Section 4.8, every
update causes two consecutive object updates to the CouchDB server. One for the cluster
general information, and one for the object we want to change. In this figure, we present
the total execution time for CouchDB, that is the aggregated execution duration of the
two objects. Even with this overhead the difference of flushing the whole file to disk
comparing to the single object that is updated is significant. For example, for a file of 2
MB in size, we have at about 5-times increase in the performance of CouchDB, while the
gap is widening as the file size further increases.

5.3.4 Aggregate evaluation of the CouchDB driver

Up to this point, we have tested our implementation in a variety of situations that may
occur in a Ganeti cluster. We also examined some of the main factors that limit Ganeti
from scaling and achieving better performance. In this last benchmark category, we will
attempt to measure the overall performance of our drivers in a real-world scenario. In
order to explain the results of this section, we will also make use of the findings from the
previous categories.

In a Ganeti cluster with 5 vm-capable nodes, and three master candidates, we will con-
currently submit jobs of OpInstanceCreate opcodes, in batches of 1, 10, 20, 50, and 100
jobs. We will measure the average time of the phases that a job passes through, and then
the total execution duration from the first job that it is enqueued since the last that is
completed. Since the Running times of the jobs are independent to the underlying storage
layer that it is used, we will minimize it by creating instances with 1 GB file disk, using
the –no-install, –no-start options that disable the OS installation and the start-up of the
instances respectively.

5.3 Evaluating CouchDB 85

0

0.5

1

1.5

2

2.5

3

0.
1

0.
5

1.
0

1.
5

2.
0

3.
0

4.
0

5.
0

0.
1

0.
5

1.
0

1.
5

2.
0

3.
0

4.
0

5.
0

0.
1

0.
5

1.
0

1.
5

2.
0

3.
0

4.
0

5.
0

T
o
ta

l
e
xe

c
u
ti
o
n
 t
im

e
 [
se

co
n
d
s
]

Size of the config.data file [MB]

candidate pool size: 1 candidate pool size: 3 candidate pool size: 5

serializer.Dump
_UnlockedVerifyConfig

_DistributeConfig
utils.SafeWriteFile

Figure 5.7: Performance evaluation of the default _WriteConfig method

0

0.5

1

1.5

2

2.5

3

0.
1

0.
5

1.
0

1.
5

2.
0

3.
0

4.
0

5.
0

0.
1

0.
5

1.
0

1.
5

2.
0

3.
0

4.
0

5.
0

0.
1

0.
5

1.
0

1.
5

2.
0

3.
0

4.
0

5.
0

T
o
ta

l e
xe

cu
tio

n
 t
im

e
 [
se

co
n
d
s
]

Size of the config.data file [MB]

Ganeti v2.7.2

candidate pool size: 1 candidate pool size: 3 candidate pool size: 5

_UnlockedVerifyConfig
utils.WriteDocument

Figure 5.8: Performance evaluation of the _WriteConfig method of CouchDB

86 Chapter 5. Performance Evaluation

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5

T
o
ta

l
e
xe

c
u
ti
o
n
 t
im

e
 [
s
e
c
o
n
d
s
]

Size of the config.data file [MB]

CouchDB driver
Disk driver

Figure 5.9: Comparison of execution performance for instance modify ops

Performance Analysis

Figure 5.10, displays the average duration of the execution phases of the InstanceCreate
jobs we submitted. For a short reminder about the execution phases of a job, refer to
Section 3.3.2.

What we observe from Figure 5.10, is a minimized Running time for reasons we already
covered, while the most time is consumed in the Waiting phase. In this phase the jobs are
waiting for locks, held by other threads that are in execution. The Opportunistic locking
that it is used since Ganeti version 2.7, improved the lock congestion in instance create
operations, but since we create a lot of instances in a small cluster, it is a normal behavior.
It is also observed that the average time of CouchDB in the Queued, and Waiting phase
is quite smaller comparing to the disk implementation. We already covered the improved
performance in the submission rate of CouchDB. The new finding, is the increase in the
average Waiting performance time. This behavior can be justified by the increased job
submission rate, as we presented in Figure 5.5. The worker threads, are waiting in the
queue for new jobs to appear. As soon as a job is submitted in the queue, and a worker
thread is available, it grubs it for execution. An increased job enqueue rate translates to
workers that acquire their workload earlier. As a result, we have an immediate impact in
the Waiting average time, due to the fact that the workers are idle for less time than they
previously were, and the resources of the cluster are exploited more efficient than before.
An immediate consequence of the increase in the performance of the Queued and Waiting
time, is an increase in the total execution duration of the jobs. This induction is justified
by Figure 5.11.

What we conclude from Figure 5.11, is that the CouchDB driver performs better under
a heavy loaded environment. The performance gap between the two implementations
widens as the number of jobs in the cluster increases. CouchDB is designed to service

5.3 Evaluating CouchDB 87

0

50

100

150

200

250

300

350

400

450

co
uc

h

di
sk

co
uc

h

di
sk

co
uc

h

di
sk

co
uc

h

di
sk

co
uc

h

di
sk

A
v
e
ra

g
e
 e

xe
c
u
ti
o
n
 t
im

e
 [
s
e
co

n
d
s]

Number of jobs [gnt-intance create]

Ganeti v2.7.2

1 10 20 50 100

Running
Waiting
Queued

Figure 5.10: Comparison of execution performance for the phases of a job

0

2

4

6

8

10

12

14

1 10 20 50 100

T
o
ta

l e
xe

cu
tio

n
 t
im

e
 [
m

in
s
]

Number of jobs [gnt-instance create]

Config size: 2MB, Ganeti v2.7.2

CouchDB storage
Disk storage

Figure 5.11: Comparison of the throughput performance for instance create ops

88 Chapter 5. Performance Evaluation

highly concurrent use cases, and perform under a heavy application load. The Multi-
Version Concurrency Control that implements, makes CouchDB able to handle a high
volume of concurrent readers and writers without conflicts to each other. As a result,
there will not appear any performance gaps as the cluster workload is increased, and the
requests will continue to be serviced efficiently.

Chapter 6

Conclusion

6.1 Concluding remarks

This thesis described the design decisions, the technical-issues, and the implementation
details for replacing the Ganeti configuration and job queue storage engine with CouchDB,
a distributed document-oriented database. The goal of this thesis was to examine if it was
feasible to integrate a NoSQL database system in Ganeti, and measure the efficiency of
this approach.

After introducing the necessary theoretical background information about Ganeti and all
the related fields of interest, we presented the main drawbacks that Ganeti appears, and
the options that were evaluated to chose a NoSQL system, and specifically CouchDB, to
provide a solution to some of those issues. We continued with the design and implemen-
tation details of the new storage choice, and finally we evaluated our solution, in regard
to two broad dimensions: performance, and scalability potentials. Special attention was
given on being fully compliant with the current Ganeti requirements, such as maintaining
the fault-tolerant attribute by putting the safety of the data first, security, and mainly not
intervening with the parts of the Ganeti code that are not related with our implementation.

Looking back at what we have created, we can say that we also covered another need of
Ganeti. The modular approach we followed for our design, supports both CouchDB and
file configuration as different storage engines, with different limitations for each case. The
current storage options can be easily extended due to the transformation that we made
to the base configuration modules, and we could provide support for additional engines,
such as MongoDB, or any other option that would fit the requirements of Ganeti. As far
as the implementation complexity of the abstraction of some modules is concerned, we
agree that we introduced an important amount of transformations to the code, but taking
into account the extra features it introduces, and the fact that the code base is quite clear
and straightforward, we can state that the benefits are greater than the cons, and the
implementation can be consider successful.

Benchmark results were quite promising. Both the storage engines have been tested under
various use cases and workloads. We measure the performance using a variety of metrics
which we believe that correspond to a real-world environment. We have also studied
the reasons that we consider responsible for the differentiations that appeared in the
performance of the two engines. Based on this examination, we conclude that there are

89

90 Chapter 6. Conclusion

good indications that the NoSQL approach will be able to give extra choices and provide
additional support, to the single storage solution which is currently used by Ganeti.

We admit that there are more factors we should consider before trying this new approach
to a real production environment. Since we are only in the first version of the CouchDB
driver, and since some of the limitations we presented are fixed as of writing this chapter,
and also considering the important performance gains we observed, we strongly believe
that this work can become the basis for further work, and give the motivation for focusing
on different approaches for the Ganeti storage engine. A further integration of this design
in a demo environment, will help us gain the desirable feedback for more improvements,
and perhaps will provide us the basis for new ideas and feature extensions.

6.2 Future work

The development of our implementation is far from over, as the tool has a lot of room
for further improvements. Our tasks for the future, on some of which we are currently
working on, will be classified into two separate categories. The short-term goals, and the
long-term ones, which are the following:

6.2.1 Short-term plans

This section, mainly contains improvements of the current implementation, and the ex-
tension of the existing functionality.

Fixing configuration ACID issue
In Section 4.8, we discussed an issue that arisen from the transformation of the
config.data file management. It is our primary priority dealing with this irregularity,
and provide an efficient solution that will fix that issue, without affecting the overall
performance of the tool.

Verification of the replication process
Currently, we do not make any kind of verification checks on the replication process.
We do not have a way to ensure if a modification reached a majority of the candidate
nodes, but we are based on the CouchDB server integrity. CouchDB will replicate,
and all files will reach their destinations, as long as the server is running. We
would like an external to Ganeti process, verify the status of the CouchDB instances,
and warn the user for a possible failure. The current ganeti-watcher script, is a
possible candidate that can be extended to provide the desired functionality, but
more solutions can be discussed.

Improving the ssconf_* management
Ganeti maintains the ssconf_* set of files in all the nodes of the cluster. As a
result, in an operation that modifies one or more of those files, the cost of applying
the changes among the nodes of the cluster is aggregated. This cost is not negligible,
and is one of the reasons that forbids Ganeti from scale. We could also add those
files to the CouchDB server in a separate database called ssconf, and share this
information only among the candidate nodes. Since, every node needs to have access
to those files, we could give write permissions to the master node, while the rest nodes

6.2 Future work 91

will only have read permissions to the database. It is an important performance fix
which is intended to be applied soon.

Import all cluster information
Currently, CouchDB hosts only the job queue, the archive directory, and the con-
fig.data file. The rest Ganeti information, such as the SSL certificates, the daemon
related keys, or the abovementioned ssconf_* set of files, continues to be stored
in the filesystem. We would like to import all those information in the CouchDB
server, as well.

Backups for disaster-recovery
Ganeti keeps a backup for the configuration data file, as soon as a node is demoted
from the master candidate role. CouchDB does not follow with this requirement.
The code will be converted to follow that requirement, and subsequently it may be
extended to keep flat backup files periodically, to add an extra layer of protection
from hardware failures.

6.2.2 Long-term plans

This section contains our thoughts about extending Ganeti, improving its overall perfor-
mance, and its ability to scale better in bigger clusters.

Improving candidate pool management
At this point, the CouchDB driver does not affect the management of the candidate
nodes. Each node in the cluster has a running CouchDB server. As soon as a node is
marked as candidate, the master node will extend its replication tasks to include this
node as well. We are currently discussing another approach of managing the pool
of candidate nodes. We could keep a set of hosts, even independent to Ganeti, that
will be used for the candidate pool requirements only. These hosts will contain the
live cluster configuration and the job queue information, which they will be shared.
The master node will interact with those databases to store the cluster information,
removing the requirement of maintaining the candidate pool exclusively inside Ganeti
nodes. Using Solid State Drives (SSDs) in that small set of nodes is more feasible
than in a whole cluster, and it will be really handy for CouchDB.

Clustering support
The above idea can be amplified by the clustering techniques that the NoSQL sys-
tems provide. Since the NoSQL systems are designed to serve large data sets, some
additional features are introduced to provide redundancy and high-availability in
any case. Clustering and auto-sharding are some of those features, that provide
the ability to the NoSQL systems to store and share data across multiple machines,
using efficient algorithms for handling the read/write requests, and support the data
growth demands. Currently, CouchDB supports clustering using external applica-
tions such as CouchDB Lounge 1. The merge of CouchDB that was announced
with BigCouch, a Cloudant’s clustered version of CouchDB, will bring soon all the
clustering capabilities that currently CouchDB lacks of. Besides the facilitation in

1http://tilgovi.github.io/couchdb-lounge/

http://tilgovi.github.io/couchdb-lounge/

92 Chapter 6. Conclusion

handling the set of candidate nodes, since they will be part of the cluster, with Big-
Couch merged in, CouchDB and Ganeti consequently will be able to replicate data
at a much larger scale.

Extending storage choices
Abstracting the related to the storage management code of Ganeti, was our num-
ber one priority. We made it feasible to easily create additional storage engines for
Ganeti. Moreover, the similarity among the NoSQL family that exists, can be ex-
ploited to design new driver solutions, such as MongoDB 2, compare their performance,
and generally having the ability to choose among several storage options according
to our application’s needs.

Improving lock congestion
The NoSQL systems are using their own locking policy. CouchDB uses the MVCC
method to handle read and write requests. MongoDB uses a readers-writer, or
shared exclusive per database lock, to deal with concurrent readers and writers.
We could improve the current locking situation and be based on the locking level
layer providing by the NoSQL systems. The ConfigWriter, and the queue level
lock are the first contenders to be removed, since any serialization to accessing the
configuration file and the job queue would be unnecessary.

2http://www.mongodb.org/

http://www.mongodb.org/

Bibliography

[1] K. Adams and O. Agesen. A Comparison of Software and Hardware Techniques for
x86 Virtualization. SIGARCH Comput. Archit. News, 34(5):2–13, Oct 2006.

[2] Aravind Menon, G. John Janakiraman, Jose Renato Santos, and Willy Zwaenepoel.
Diagnosing performance overheads in the Xen virtual machine environment. In In
VEE ’05: Proc. 1st ACM/USENIX International Conference on Virtual Execution
Environments, pages 13–23. ACM Press, 2005.

[3] Barham, Paul and Dragovic, Boris and Fraser, Keir and Hand, Steven and Harris,
Tim and Ho, Alex and Neugebauer, Rolf and Pratt, Ian and Warfield, Andrew. Xen
and the art of virtualization. SIGOPS Oper. Syst. Rev., 37(5):164–177, Oktober 2003.

[4] F. Bellard. QEMU, a Fast and Portable Dynamic Translator. In USENIX Annual
Technical Conference, FREENIX Track, pages 41–46, 2005.

[5] G. Burd. NoSQL: An Overview of NoSQL Databases. April 2012.

[6] Deelman, E. and Singh, G. and Livny, M. and Berriman, B. and Good, J. The cost of
doing science on the cloud: The Montage example. In High Performance Computing,
Networking, Storage and Analysis, 2008. SC 2008. International Conference for, pages
1–12, 2008.

[7] S. Garfinkel. The Cloud Imperative. http://www.technologyreview.com/news/
425623/the-cloud-imperative/, October 2013.

[8] Giuseppe DeCandia and Deniz Hastorun and Madan Jampani and Gunavardhan
Kakulapati and Avinash Lakshman and Alex Pilchin and Swaminathan Sivasubra-
manian and Peter Vosshall and Werner Vogels. Dynamo: Amazon’s Highly Available
Key-value Store. In T. C. Bressoud and M. F. Kaashoek, editors, IN PROC. SOSP,
pages 205–220, Oct 2007.

[9] C. D. Graziano. A performance analysis of Xen and KVM hypervisors for hosting the
Xen Worlds Project. Master’s thesis, Iowa State University, 2011.

[10] Iosup, A. and Ostermann, S. and Yigitbasi, M.N. and Prodan, R. and Fahringer, T.
and Epema, D. H J. Performance Analysis of Cloud Computing Services for Many-
Tasks Scientific Computing. Parallel and Distributed Systems, IEEE Transactions
on, 22(6):931–945, 2011.

[11] Koukis, Vangelis and Venetsanopoulos, Constantinos and Koziris, Nectarios. okeanos:
Building a Cloud, Cluster by Cluster. IEEE Internet Computing, 17(3):67–71, May
2013.

93

 http://www.technologyreview.com/news/425623/the-cloud-imperative/
 http://www.technologyreview.com/news/425623/the-cloud-imperative/

94 Bibliography

[12] Koukis, Vangelis and Venetsanopoulos, Constantinos and Koziris, Nectarios. Synnefo:
A Complete Cloud Stack over Ganeti. ;login, 38(5):6–10, Oct. 2013.

[13] Markus BÖhm, Stefanie Leimeister, Christoph Riedl, Helmut Krcmar. Cloud Com-
puting and Computing Evolution.

[14] Peter Mell, NIST. Big Data Tradeoffs: What Agen-
cies Need To Know. http://breakinggov.com/2012/11/12/
big-data-tradeoffs-what-agencies-need-to-know-nists-peter-me/.

[15] G. J. Popek and R. P. Goldberg. Formal Requirements for Virtualizable Third Gen-
eration Architectures. Commun. ACM, 17(7):412–421, July 1974.

[16] Ru Iosup and Simon Ostermann and Nezih Yigitbasi and Radu Prodan and Thomas
Fahringer and Dick Epema. An early performance analysis of cloud computing services
for scientific computing. TU Delft, Tech. Rep., Dec 2008, [Online] Available.

[17] Slater, Noah. Welcome BigCouch. https://blogs.apache.org/couchdb/entry/
welcome_bigcouch, July 25 2013.

[18] J. Smith and R. Nair. The architecture of virtual machines. Computer, 38(5):32–38,
May 2005.

[19] An Introduction to Virtualization, Amit Singh. http://www.kernelthread.com/
publications/virtualization/.

[20] VMware. Understanding Full Virtualization, Paravirtualization, and Hardware As-
sist. November 2007.

[21] Weikuan Yu and Vetter, J.S. Xen-based hpc: A parallel i/o perspective. In Cluster
Computing and the Grid, 2008. CCGRID ’08. 8th IEEE International Symposium
on, pages 154–161, 2008.

http://breakinggov.com/2012/11/12/big-data-tradeoffs-what-agencies-need-to-know-nists-peter-me/
http://breakinggov.com/2012/11/12/big-data-tradeoffs-what-agencies-need-to-know-nists-peter-me/
https://blogs.apache.org/couchdb/entry/welcome_bigcouch
https://blogs.apache.org/couchdb/entry/welcome_bigcouch
 http://www.kernelthread.com/publications/virtualization/
 http://www.kernelthread.com/publications/virtualization/

	Περίληψη
	Abstract
	Ευχαριστίες
	Contents
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Thesis motivation
	Thesis structure

	Background
	Virtualization
	Hardware Virtualization
	Full Virtualization
	Paravirtualization

	Cloud Computing
	The evolution of Cloud Computing
	Service Models
	Deployment Models

	NoSQL databases
	NoSQl compromises
	NoSQL Models

	Ganeti backend
	Overview
	Terminology
	Architecture
	Cluster Configuration
	Jobs
	Ganeti Daemons
	Ganeti Locking

	Ganeti and NoSQL
	Objective
	Background
	Cluster configuration data
	Job storage
	Caveats

	Choice of product
	Apache CouchDB
	Detailed Design
	Core Changes
	Feature Changes
	Interface Changes

	Performance Evaluation
	Specifications
	Benchmark methodology
	Evaluating CouchDB
	Impact of the candidate pool size
	Comparison of the job submission rate
	Comparison of the config.data performance
	Aggregate evaluation of the CouchDB driver

	Conclusion
	Concluding remarks
	Future work
	Short-term plans
	Long-term plans

	Bibliography

