
Αντώνιος Κ. Τσίγκανος

ΑΝAΠΤΥΞΗ ΕΙΚΟΝΙΚHΣ ΜΗΧΑΝHΣ ΓΙΑ ΕΤΕΡΟΓΕΝH

ΕΝΣΩΜΑΤΩΜEΝΑ ΣΥΣΤHΜΑΤΑ

ΕΘΝΙΚΌ ΜΕΤΣΌΒΙΟ ΠΟΛΥΤΕΧΝΕΊΟ

ΣΧΟΛΉ ΗΛΕΚΤΡΟΛΌΓΩΝ ΜΗΧΑΝΙΚΏΝ

ΚΑΙ ΜΗΧΑΝΙΚΏΝ ΥΠΟΛΟΓΙΣΤΏΝ
ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Επιβλέπων : Δημήτριος Σούντρης

Επίκουρος Καθηγητής

Αθήνα, Μαρτιος 2014

Αντώνιος Κ. Τσίγκανος

ΑΝAΠΤΥΞΗ ΕΙΚΟΝΙΚHΣ ΜΗΧΑΝHΣ ΓΙΑ ΕΤΕΡΟΓΕΝH

ΕΝΣΩΜΑΤΩΜEΝΑ ΣΥΣΤHΜΑΤΑ

ΕΘΝΙΚΌ ΜΕΤΣΌΒΙΟ ΠΟΛΥΤΕΧΝΕΊΟ

ΣΧΟΛΉ ΗΛΕΚΤΡΟΛΌΓΩΝ ΜΗΧΑΝΙΚΏΝ

ΚΑΙ ΜΗΧΑΝΙΚΏΝ ΥΠΟΛΟΓΙΣΤΏΝ

ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Επιβλέπων : Δημήτριος Σούντρης

Επίκουρος Καθηγητής

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την 17η Μαρτίου 2014.

Αθήνα, Μάρτιος 2014

 Κιαμάλ Πεκμεστζή
 Καθηγητής

 Γιώργος Οικονομάκος

 Λέκτορας

 Δημήτριος Σούντρης

 Επίκουρος Καθηγητής

Copyright © Αντώνιος Κ. Τσίγκανος, 2014

Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή
τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για σκοπό
μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή
προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας
για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγγραφέα και
δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού Μετσόβιου
Πολυτεχνείου.

Αντώνιος Κ. Τσίγκανος

Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

Περίληψη

 Τα ενσωματωμένα συστήματα στη σημερινή τους μορφή παρέχουν μεγάλο εύρος δυνατοτήτων και
υψηλή απόδοση. Ωστόσο τους ζητείται να ικανοποιήσουν αντιτασσόμενους περιορισμούς στη
συμπεριφορά τους, ενώ η αγορά απαιτεί σύντομους χρόνους ζωής. Λόγω αυτών των
αναμεμειγμένων και αντιτασσόμενων περιορισμών, το σχεδιαστικό πρότυπο που έχει επικρατήσει
είναι ο διαμοιρασμός της λειτουργικότητας του λογισμικού, πάνω σε ετερογενές υλικό. Ωστόσο
αυτό το σχεδιαστικό πρότυπο δημιουργεί υψηλή πολυπλοκότητα, τόσο στον αρχικό σχεδιασμό, όσο
και στη συντήρηση και αναβάθμιση του συστήματος.

Η αφαίρεση (abstraction) που παρέχουν οι εικονικές μηχανές μπορεί να απομονώσει τον
προγραμματιστή απο αυτήν την πολυπλοκότητα. Σε αυτήν την εργασία προτείνουμε μια
αρχιτεκτονική και παρέχουμε μια παραδειγματική υλοποίηση, την Portable Heterogeneous llvm Ir
Virtual Machine (PHIVM), σε μια προσπάθεια να μελετηθούν οι επιδράσεις και οι απαιτήσεις των
εικονικών μηχανών σε ετερογενή ενσωματωμένα συστήματα.

Η PHIVM επιτρέπει την φορητότητα εφαρμογών μεταξύ υπολογιστικών πυρήνων της ετερογενούς
πλατφόρμας. Επίσης παρέχει τη δυνατότητα μετανάστευσης εφαρμογών κατα την εκτέλεση τους
εντός του συστήματος, ενώ επιτρέπει ελαστικότητα στον σχεδιαστή του συστήματος στην χρήση
ήδη υπάρχοντος σεναρίου διεπικοινωνίας. Αυτές οι δυνατότητες δεν απαιτούν αλλαγές στις
φιλοξενούμενες εφαρμογές και είναι διαφανείς στην ανάπτυξη τους. Το πλαίσιο βιβλιοθηκών
PHIVM βασίζεται στον LLVM, με αποτέλεσμα να υποστηρίζει πολλές γλώσσες προγραμματισμού
ως είσοδο, όπως C/C++, Haskell κτλ. Είναι σχεδιασμένο με σκοπό την απλότητα και
αποδοτικότητα, ώστε να είναι φορητό σε μεγάλο εύρος υπολογιστικών συστημάτων, παραμένοντας
τροποποιήσιμο στις ανάγκες των σχεδιαστών.

National Technical University of Athens
School of Electrical & Computer Engineering

Division of Computer Science
Microprocessors and Digital Systems Lab

A virtual machine and runtime framework
targeting Heterogeneous embedded systems

Antonios Tsigkanos

Diploma Thesis

Supervisor: Assist. Prof. Dimitrios Soudris

Abstract

Embedded systems of today, provide ample performance and capa-
bilities. They need to satisfy opposing requirements in their behavior
while the market demands short lifecycles. Due to these mixed and
opposing requirements, the prevalent design pattern is becoming func-
tionality partitioning in software, deployed on heterogeneous platforms.
This design pattern though brings significant complexity in initial de-
sign as well as in maintenance and upgrade.

The inherent abstraction in Virtual Machines can isolate the pro-
grammer from much of this complexity. We propose in this work an
architecure and provide a reference implementation, the Portable Het-
erogeneous llvm Ir Virtual Machine (PHIVM), in an effort to study the
effects and requirements of Virtual Machines on heterogeneous embed-
ded platforms.

PHIVM enables application portability across cores within the het-
erogeneous platform. It also provides for a task migration capability at
runtime within the system, while allowing flexibility to the platform de-
signer in using their already deployed inter-cpu communication scheme.
These capabilities do not require any change in the VM-hosted appli-
cation software and are transparent to its development. The PHIVM
framework, being based on LLVM supports many input programming
languages, such as C/C++, Haskell etc, and is designed to be as sim-
ple and efficient as it can be, to be easily portable in a wide variety of
platforms while remaining modifiable to designers’ needs.

3

Licensing

Copyright c⃝2013 Antonios K. Tsigkanos. All rights reserved.

You are free:
to share – to copy, distribute and transmit the work
Under the following conditions:
Attribution – You must attribute the work in the manner specified by the
author or licensor (but not in any way that suggests that they endorse you
or your use of the work).
Noncommercial – You may not use this work for commercial purposes.
No Derivative Works – You may not alter, transform, or build upon this
work.
With the understanding that:
Waiver– Any of the above conditions can be waived if you get permission
from the copyright holder.
Public Domain – Where the work or any of its elements is in the public
domain under applicable law, that status is in no way affected by the license.
Other Rights – In no way are any of the following rights affected by the
license: Your fair dealing or fair use rights, or other applicable copyright
exceptions and limitations; The author’s moral rights; Rights other persons
may have either in the work itself or in how the work is used, such as publicity
or privacy rights.

Disclaimer – The views expressed in this thesis are those of the author
and do not reflect the official policy or position of the National Technical
University of Athens.

4

Acknowledgements

This work and the many lessons I have learned throughout it, would not
have been possible without the invaluable help and support I have received
by various members of the Microlab.

First, Assist. Prof. Dimitrios Soudris guided me in the work by providing
invaluable insight and lessons that otherwise could only be accumulated by
many years of experience. This study would not have been possible without
his mentorship.

Additionally, Ph.D candidate Harry Sidiropoulos has given me time, in-
credible help and guidance in technical challenges, as well as an example
of self discipline and perseverance when confronting engineering problems. I
also thank Dr. Kostas Siozios for his considerable help throughout the course
of this work.

Finally, I am indebted to Prof. Kiamal Pekmestzi, Assist. Prof. George
Economakos as well as the MicroLab staff, for inspiring me through under-
graduate courses to study embedded systems, by cultivating a culture of
collaboration and exploration in the MicroLab.

Dedicated to to my family and my teachers.

6

Contents

List of Figures 8

List of Listings 9

Abbreviations 10

1 Introduction 11
1.1 Embedded systems today . 11
1.2 Heterogeneous ISA multiprocessing systems 26
1.3 Virtual machines and Managed runtime environments 30
1.4 Motivation . 35
1.5 A hypothetical embedded system deployment scenario 37
1.6 Research questions . 38

2 Related work and Domain Analysis 39
2.1 VM based Application Portability and forward compatibility

on Heterogeneous Systems . 39
2.2 Components and considerations on the design of VMs 39
2.3 Virtual Machine Interpreters 40

2.3.1 Register based vs Stack based VMs 42
2.4 Techniques for efficient Interpretation 47

2.4.1 Switch Dispatch . 47
2.4.2 Direct Call Threading 49
2.4.3 Direct Threading . 50
2.4.4 The Dispatch technique impact on performance 52

2.5 Dispatch mechanism tradeoff 53
2.6 Choosing a Bytecode and Intermediate Representation language 53

3 The LLVM Framework 55
3.1 LLVM Architecture . 56

3.1.1 LLVM as a collection of libraries 60
3.2 The LLVM Compiler IR . 61

3.2.1 LLVM IR properties 63
3.3 On the suitability of compiler LLVM IR as a VM bytecode . . 66

4 Proposed Architecture and Design 69
4.1 Requirements . 69

4.1.1 Architecture portability 70
4.1.2 Flexibility and embeddability 70

7

4.1.3 Application portability 71
4.1.4 Exposing internal state for runtime application migration 71

4.2 Solution considerations . 73
4.3 The PHIVM approach . 77

4.3.1 Allowing embedding 78
4.3.2 Application migration and use of existing communica-

tion layers . 78
4.3.3 The case for a ground up VM design 79
4.3.4 Effects of using the LLVM framework 79
4.3.5 Component reuse from the LLVM framework 80

4.4 Design decisions in the implementation of PHIVM 81

5 Design evaluation 87
5.1 Reconsidering the initial requirements against PHIVM 87
5.2 Considerations on testing . 88
5.3 Feature and functionality comparison 90

5.3.1 System designer effort 92
5.4 Evaluation as a research and exploration enabler 93

6 Conclusion 94

8

List of Figures

1 Embedded system example – block level abstraction(source:
National Instruments) . 12

2 A typical microcontroller – Microchip PIC16F84A (source:
Microchip) . 13

3 tms320 – a prolific TI DSP –(source: Texas Instruments) . . . 14
4 An example SoC block diagram – TI OMAP3430 – (source:

Texas Instruments) . 15
5 Shared SoC Bus example –(source: [3]) 17
6 SoC Network on Chip –(source: IST/INESC-ID) 18
7 Logic Devices tree . 19
8 Device technology tradeoffs – (source: Rapid prototyping of

digital systems Hamblen, Hall, Furman) 20
9 Abstract view of typical FPGA – (source: eetimes.com) . . . 21
10 A Xilinx DSP48E1 included in Virtex-6 devices – (source: Xil-

inx) . 22
11 A hard microprocessor surrounded by reconfigurable fabric –

(source: eetimes.com) . 23
12 A Cypress PSoC with configurable peripherals– (source: Cy-

press Semi. 24
13 ARM big.LITTLE – (source: ARM) 28
14 Simple stack machine . 43
15 Simple register machine . 44
16 Switch interpreter – Java example 48
17 Call threading dispatch . 50
18 Direct threaded dispatch . 51
19 Machine instructions in Direct Dispatch 52
20 Simple Compiler . 56
21 Retargetable Compiler . 57
22 LLVM Compiler . 57
23 X86 Backend simplified . 58
24 Instances of PHIVM in a Heterogeneous system 77
25 Application Migration over PHIVM instances 79
26 Feature comparison table . 90
27 Comparison of developer effort – table 92

9

Listings

1 Switch interpreter dispatch 40
2 Switch Dispatch implementation generalized example 47
3 Direct Dispatch generalized implementation example 50
4 LLVM code to raise an integer to a power 62
5 An LLVM IR example Module 63
6 LLVM IR function syntax . 64
7 IR getelementptr syntax . 65
8 IR phi syntax . 66
9 Example use of the LLVM framework for constructing an in-

terpreter . 73
10 Part of the dispatch loop (trimmed) 81
11 A snippet of the opcodes class 83
12 The instruction class . 84
13 PHIVM Value union (trimmed) 84
14 PHIVM type tags (trimmed) 85
15 Operand struct scope enum 86

10

Abbreviations

ES Embedded System
OEM Original Equipment Manufacturer
SoC System on Chip
uC Microcontroller
RISC Reduced Instruction Set Computer
FPGA Field Programmable Gate Array
DSP Digital Signal Processor
MAC Multiply ACcumulate
PLL Phase Locked Loop
NoC Network on Chip
MPSoC Multi Processsor System on Chip
ISA Instruction Set Architecture
VM Virtual Machine
LLVM Low Level Virtual Machine
LLI LLVM Interpreter
LLC LLVM Compiler
JIT Just In Time (Compiler)
API Application Programming Interface
ABI Application Binary Interface
vPC virtual Program Counter
BTB Branch Target Buffer
CLR Common Language Runtime
CIL Common Intermediate Language
MPI Message Passing Interface
OSI Open Systems Interconnection (model)
NRE Non Recurring Engineering

11

1 Introduction

This document describes the engineering diploma thesis project carried out
by Antonios Tsigkanos, under the supervision of Assistant Professor Dim-
itrios Soudris, at the Microprocessors and Digital Systems Lab at the Na-
tional Technological University of Athens.

This project involves the construction of a reference implementation of
a virtualization framework, aiming to provide an abstraction over heteroge-
neous ISA Multiprocessor Systems on Chip, while providing a capability of
seamless application migration at runtime, among differing ISA processing
elements.

The document starts by outlining the motivation for this thesis, the tech-
nological context within which the research problem arises and a solution is
considered. After the research questions are put, what follows is a description
of relevant work and software frameworks as well as their components and
properties that influence design and architectural decisions later on. Length-
ier descriptions are included, namely of the frameworks the implementation
of this work is based on, along with the rationale for their choice over antag-
onizing tools.

Along with a view of the solution space considering heterogeneous plat-
forms later on, the possible and attempted solutions are outlined, while even-
tually arriving at the target requirements for a research prototype. The pro-
posed architecture as well as the actual implementation are presented, noting
the significant design choices as they are arise from architectural trade-offs
and implementation challenges.

Finally, follows a discussion on the evaluation procedure of the architec-
ture and a comparison with existing tools that could serve a similar purpose.
A point by point analysis of features and associated trade-offs results in the
design scenarios where the proposed solution is most appropriate.

This study concludes by revisiting the original motivation and research
questions, with an overview of the work in light of the design implementation
decisions, suggesting extensions and future implementations to research.

1.1 Embedded systems today

In this section, an outline is provided of the present state of embedded sys-
tems in the computing landscape. A comparison is drawn against general
purpose computing, especially as it relates to their purpose in the consumer
and industrial landscape and the way this influences design and development
decisions and trade-offs. Considering the wide range of their application, we

12

discuss the system constraints embedded systems are tasked to satisfy, as
well as the design challenges involved in doing so. Considering these design
challenges we highlight the heterogeneous hardware design pattern as a solu-
tion and it’s associated complexities relating to development effort and time
to market.

Embedded systems are defined as computing systems with a specific pur-
pose and function within a larger electromechanical system, often with strict
timing, power consumption, reliability and performance constraints. They
are embedded inside a complete device usually including multiple sensors, ac-
tuators, network connectivity interfaces and other electrical, electronic and
mechanical parts. In contrast to a general purpose computing system such
as a consumer PC, they are designed to be highly flexible and configurable
to meet systems engineers’ needs in constructing function specific systems.
In testament to their utility, an everyday modern consumer is surrounded
by hundreds of embedded systems, performing multiple functions either ac-
tually facing the end consumer or within another system containing many
symbiotic and collaborating embedded systems such as a smartphone or a
car.

Figure 1: Embedded system example – block level abstraction(source: Na-
tional Instruments)

13

Figure 2: A typical microcontroller – Microchip PIC16F84A (source: Mi-
crochip)

The microcontroller – Continuing the definition of an embedded sys-
tem in comparison against general purpose computing systems, we discuss
their contributing parts. Most importantly but not exclusively, the principal
component which is the central computing element of an embedded system
is an microcontroller(uC). A microcontroller is a self-contained system with
at least one processing element, memory (program and data memory) and
(possibly) programmable input/output peripherals and can be used in an
embedded system. In most cases they simple microcontrollers are used in
systems with minimal requirements for memory and performance, without
an operating system (baremetal), and low software complexity. Typically
the processing element is a 8 or 32 bit word RISC Instruction Set Architec-
ture operating at a frequency in the low MHz. Floating point operations
are usually lacking except for DSP devices where floating point units may
be accompanied by vector instructions and other special instructions such as
multiply accumulate(MAC) etc.

14

Figure 3: tms320 – a prolific TI DSP –(source: Texas Instruments)

The microcontrollers’ memory systems input/output peripherals configu-
ration as well as power management modes and available sleep states equally
demand flexibility and configurability as much as the ISA. To address this
need of widely varied configurations for different applications and target mar-
kets, we arrive at Systems on Chip.

Systems on Chip – Typically equipped with more processing power
than a microcontroller, a System on Chip bundles processing elements with
memory and many complex peripherals such as network interfaces into a

15

single die. Depending on the target application a selection of at least some
of the following components will comprise the System on Chip:

• A microcontroller, microprocessor or DSP core. Possibly a number of
the same core might be replicated to build a Homogeneous Multipro-
cessor System on Chip. Alternatively a microprocessor and DSP might
be paired to make a heterogeneous MPSoC.

• Memory blocks including a selection of ROM, RAM, EEPROM and
flash memory.

• Timing sources including oscillators or configurable timing components
such as phase-locked loops.

• Peripherals including watchdog timers, counter-timers, real-time clocks
and power-on reset generators.

• Networking and inter-chip connectivity interfaces including industry
standards such as USB, FireWire, Ethernet, USART, I2C, SPI.

• Wireless Networking such as Zigbee(802.15.4), bluetooth(802.15.1) or
Wi-fi(802.11xx).

• Analog interfaces i.e. Analog to Digital Converters and Digital to Ana-
log converters.

• Voltage regulators and power management circuits.

Figure 4: An example SoC block diagram – TI OMAP3430 – (source: Texas
Instruments)

16

SoC Interconnect – The above blocks within the SoC are commonly con-
nected by either a proprietary or open standard bus such as the AMBA bus
from ARM or the Wishbone bus. Peripherals may also connect via DMA
controllers directly between external interfaces to memory, increasing the
data throughput of the SoC.

The purpose of a bus interconnect is to foster design reuse by alleviat-
ing SoC integration problems. This is accomplished by creating a common
interface between IP cores which improves the portability and reliability of
the system, and results in faster time-to-market for the end user.

Previously IP cores used non-standard interconnection schemes, that
made them difficult to integrate requiring the creation of custom glue logic to
connect each of the cores together. By adopting standard and open intercon-
nection schemes, the cores and peripherals can be integrated more quickly
and easily by the system designer. Bus interconnects are intended as gen-
eral purpose interfaces, defining the standard data exchange between IP core
modules without attempting to regulate the application specific functions of
the module. They benefit systems designers and the industry as a whole by
providing:

• a reliable System-on-Chip integration solution.

• common interface specification to facilitate structured design method-
ologies on large project teams.

• a generalized and flexible integration solution that can be easily tailored
to a specific application.

• a variety of bus cycles and data path widths to solve various system
problems.

• cross compatibility allowing IP cores to be designed by a variety of
vendors.

17

Figure 5: Shared SoC Bus example –(source: [3])

Increasingly however scalability becomes a concern as the number of pro-
cessing elements and peripherals rapidly increases as well as advances in sil-
icon technology rebalance the interconnect trade-offs. Inherently, busses do
not decouple the activities generally classified as transaction, transport and
physical layer behaviors. This is the key reason they cannot adapt to changes
in the system architecture or take advantage of the rapid advances in silicon
process technology. Consequently, changes to the bus physical implementa-
tion can have severe ripple effects on the implementations of higher-level bus
behaviors; thus causing systems based on bus architectures to not closely
follow process evolution nor system architecture evolution.

18

Figure 6: SoC Network on Chip –(source: IST/INESC-ID)

In the data communications space, Local and Wide Area Networks have
successfully dealt with similar problems by employing the OSI model of a
layered architecture. The decoupling of communication layers using the OSI
model has successfully driven commercial network architectures, and enabled
networks to follow very closely both physical layer evolutions and transaction
level evolutions. This has introduced flexibility at the application level, while
maintaining upward compatibility.

Following the same trend, networks have started to replace busses in
much smaller systems: PCI-Express, a network-on-a board replaces the PCI
board-level bus. Replacement of SoC busses by NoCs are slowly following
the same path, when the economics are proving that NoCs are:

• Reducing SoC manufacturing cost

• Enabling scalability in system architecture

• Increasing SoC performance

• Reducing SoC time to market and NRE

• Reducing SoC design risk

19

Figure 7: Logic Devices tree

The rise of programmable logic devices – In the last decade, higher
densities, higher clock speed, and cost advantages have enabled the use
of programmable logic devices in a wider variety of designs and applica-
tions. CPLDs and FPGAs are the highest density and most advanced
programmable logic devices for which designs typically only require several
weeks of engineering effort instead of months.

On the opposite side of this trade-off, ASICs and full custom designs
provide faster clock speeds than CPLDs or FPGAs since they are hardwired
and do not have programmable interconnect delays. Since ASICs and full
custom designs do not require programmable interconnect circuitry they use
less chip area, less power and have a lower per unit manufacturing cost in
large volumes. This performance and low cost though is traded for by much
higher initial engineering and setup costs for ASICs and full custom designs.
For all but the most time critical design applications, CPLDs and FPGAs
have adequate speed with maximum clock rates typically around 400MHz;
however, clock rates up to 1GHz have been achieved on new generation
FPGAs and many have a few high-speed 1-10 GHz output pins. As seen in

20

the following abstract visualization, the design decision between ASICs and
FPGAs boils down to design performance against NRE and time to market.

Figure 8: Device technology tradeoffs – (source: Rapid prototyping of digital
systems Hamblen, Hall, Furman)

Internally, CPLDs and FPGAs typically contain multiple copies of a ba-
sic programmable logic element or cell. The logic element can implement a
network of several logic gates that are then fed into 1 or 2 flip-flops. Logic
elements are arranged in a matrix on the chip. To perform complex opera-
tions, logic elements are automatically connected to other logic elements on
the chip using a programmable interconnection network which is also con-
tained within the FPGA. The interconnection network used to connect the
logic elements contains row and column chip-wide interconnects. In addition,
the interconnection network often contains shorter and faster programmable
interconnects limited only to neighboring logic elements.

21

Figure 9: Abstract view of typical FPGA – (source: eetimes.com)

Contributing in FPGAs versatility most devices include a host of "hard"
resources dispersed in the "sea of gates" and available to the design, most
notably:

• Block RAMs adding up to several megabytes

• Digital Signal Processing elements such as the below DSP48 element.

• Networking elements supporting ethernet pci-e etc.

• Clock management elements such as PLLs.

22

Figure 10: A Xilinx DSP48E1 included in Virtex-6 devices – (source: Xilinx)

Elements such as the above can usually be inferred by the design tools from
the hardware description and automatically included in the resulting hard-
ware design allowing great performance and power consumption benefits as
well as relaxing pressure on the interconnection resources.

Systems on Programmable Chip – In parallel to high integration for
Systems on Chip and scalability allowed by advanced interconnects, silicon
process technology has enabled the ultimate in design flexibility and con-
figurability: Systems on Programmable Chip. The most interesting of the
programmable logic devices, the Field Programmable Gate Array (FPGA)
has been riding Moore’s law in the last decade, with devices exploding in
capabilities, size and clock speed.

High speed and large capacity FPGAs have enabled design engineers
to implement completely integrated within programmable logic, complete
systems. In this form SoPC include microprocessors, memory hierarchies
and all the peripherals the requirements demand in the reconfigurable fabric
of the FPGA potentially also utilizing the "hard" elements mentioned above.
This design flexibility has allowed a tight coupling of hardware and software,
which increases performance by focusing resources on the target application.
The low clock speed of the device is thus compensated for, wasting no time
or resources by the hardware being general purpose.

Following that same trend, device manufacturers have responded by
adding complete "hard" microprocessors inside the reconfigurable fabric.
This avoids the design and performance overhead of describing the processor

23

hardware and implementing it in reconfigurable logic. Resulting in significant
benefits in time to market, performance and power efficiency these devices
have seen mass adoption.

Figure 11: A hard microprocessor surrounded by reconfigurable fabric –
(source: eetimes.com)

The inverse of this trend, placing configurable logic around a processor
rather than placing the processor inside a reconfigurable chip, is also emerg-
ing. An example of this, the Cypress PSoC, uses PLDs connected to the
SoC bus along with the usual peripherals.

24

Figure 12: A Cypress PSoC with configurable peripherals– (source: Cypress
Semi.

FPGA partial reconfiguration Adding to the already impressive list
of reconfigurable logic’s benefits, partial reconfiguration is the latest available
feature. It is the ability to reconfigure only part of the FPGA, even at run-
time while other parts of the logic continue operations uninterrupted. Two
basic types of partial reconfiguration are usually supported: module-based
and difference-based. Module-based partial reconfiguration uses modular de-
sign blocks to reconfigure large blocks of logic. The distinct portions of the

25

design to be reconfigured are known as reconfigurable modules. Because
specific properties and specific layout criteria must be met with respect to
a reconfigurable module, any FPGA design intending to use partial reconfig-
uration must be planned and laid out with that in mind. Difference-based
partial reconfiguration is a method of making small changes in an FPGA
design, such as changing I/O standards, LUT content, and block RAM con-
tent.

Partial reconfiguration can also be performed by implementing a basic
controller to manage the reconfiguration of the FPGA. This could be in the
form of an external processor, or one programmed within the same FPGA
in the static portion of the design. Frequently, the parts of the functionality
that can be accelerated through the use of reconfigurable hardware are too
many or complex to be loaded simultaneously onto the available logic. In
these cases, it is beneficial to be able to swap different configurations in
and out of the reconfigurable hardware as they are needed during program
execution.

This concept is known as run-time reconfiguration. Run-time reconfig-
uration is based on the concept of virtual hardware, similarly to virtual
memory. Here, the physical hardware is much smaller than the sum of the
resources required by each of the configurations. Therefore, instead of re-
ducing the number of configurations that are mapped, the reconfiguration
processor swaps them in and out of the actual hardware as they are needed.
Because run-time reconfiguration allows more sections of an application to
be mapped into hardware than can be fit in a non-run-time reconfigurable
system, a greater portion of the program can be accelerated. This provides
great potential for an overall improvement in performance and full utiliza-
tion of programmable logic.

26

1.2 Heterogeneous ISA multiprocessing systems

From the state of embedded systems outlined in the previous section a few
trends are becoming apparent:

• Embedded systems being application specific and optimized by defini-
tion, need flexibility and configurability in the devices and platforms
on which they are based.

• This demand for flexibility has spread from the software into the lower
levels of hardware.

• Systems are increasingly multiprocessing.

• The capabilities offered by programmable devices enable function spe-
cific co-processors along with general purpose processing.

• Increased power efficiency requirements are driving design tradeoffs.

• Timing and performance requirements are driving partitioning of tasks
by priority unto separate parts of the device.

• Mixed constraints are increasing system complexity.

These trends and new capabilities are inevitably leading to highly het-
erogeneous multiprocessing systems to meet requirements. Heterogeneity is
becoming prevalent in most high performance embedded platforms, carry-
ing combinations of a main processor and highly optimized co-processors, or
pairs of processors of a different ISA. Microprocessor ISAs have vastly differ-
ent performance profiles across different applications making the selection of
an appropriate ISA an important early design decision.

Reconfigurable chips large and fast enough to host multiple processors,
as well as the availability with cheap licensing or completely free, of IP cores
for multiple ISAs increasingly push heterogeneity. At the time of writing a
considerable number of processors are openly licensed or relatively easy to
license. Most importantly these very common ISA families are well under-
stood, mature and well documented. Their popularity results in the avail-
ability of mature and robust development tools and end-user software for
most applications.

• openSPARC (GPL)

• LEON (LGPL/GPL)

• ARM Holdings ARMxx family (closed source but easily licensed)

• openRISC (LGPL)

• MIPS families

• Picoblaze (free to use but closed license: Xilinx)

27

• NIOS II (free to use but closed license: Altera)

These are the most common and widely used families, each having ver-
sions optimized for various functions increasing utility while maintaining
mainline compatibility for software tools and applications. Apparent from
this list is that design engineers have ample choices for system architecture.
This design freedom is coupled with an equal availability of system intercon-
nects in busses and networks on chip. This results in heterogeneous multi-
processing systems connected with easy to deploy interconnects, on reconfig-
urable platforms to leverage considerable benefits in meeting constraints.

It can be argued that the key problem in embedded system design that
does not exist in general purpose computing systems, is that of mixed con-
straints. Generally an embedded system will be called to strictly satisfy at
least some of the following constraints:

• Timing

• Reliability

• Performance

• Power efficiency

This of course is the bane of engineers’ lives because the solution to these
constraints, generally live on opposite sides of tradeoffs. These tradeoffs are
sometimes imposed by software design patterns but more often than not by
the properties of the ISA. Constrained based partitioning of functionality
and subsystem purpose, is increasingly used to solve this.

Consider the most canonical example of this in systems where telecom-
mand and telemetry functionality must coexist. Telecommand must satisfy
hard timing and reliability so that the system will be reliably managed. On
the other hand telemetry is computationally intensive due to data process-
ing or more complex operations, but it is not operationally critical and can
gracefully fail or be suspended for power consumption purposes. Typically
such a system will employ a heterogeneous layout. Reliability and timing will
be satisfied by a small, power efficient master processor. The master would
control a data acquisition and processing unit of an ISA appropriate for high
performance with digital signal processing capabilities. The data process-
ing element can even be scaled to multiple processors without compromising
reliability or introducing complexity.

This heterogeneous ISA design pattern enables partitioning of function-
ality unto the hardware most capable of performing it. By assigning system
requirements to discreet elements of the hardware platform, each hardware
element can be independently optimized and developed along with it’s cor-

28

responding software. Thus it becomes easier to meet constraints while sim-
plifying the hardware-software codesign process.

This design pattern employed by systems engineers has not gone unno-
ticed by silicon OEMs which have responded with heterogeneous devices and
platforms. Most notable is the ARM Holdings big.LITTLE architecture, al-
though only "slightly Heterogeneous" it uses cores of the same ISA family
to distribute computing load for power savings.

Figure 13: ARM big.LITTLE – (source: ARM)

The big.LITTLE architecture takes advantage of the fact that the us-
age pattern for consumer computing is dynamic: Periods of high processing
intensity tasks, alternate with typically longer periods of low processing in-
tensity tasks such as waiting for user input in end-user facing applications.
A set of high performance and high efficiency CPU clusters are connected
through a cache coherent interconnect fabric such as the ARM CoreLink.
The processors appear as a multicore cpu to the operating system. User
space software on a big.LITTLE SoC is identical to the software that would
run on a standard SMP processor.

Scheduling to the right processor is accomplished by a kernel space patch.
This makes the Operating System aware of the big and LITTLE cores, and
gives the ability to schedule individual threads of execution on the appro-
priate processor based on dynamic run-time behavior. The software also
keeps track of load history for each thread that runs, and uses the history to

29

anticipate the performance needs of a thread the next time it runs.
big.LITTLE software automatically handles the allocation of threads of

execution to the appropriate CPU.
There are three different modes of operation for the software, all based

on the same hardware description. In the global task scheduling model of
software, the operating system is directly aware of the high performance and
high efficiency cpus in the system. In that mode of operation, the software
dynamically allocates each thread based on the performance required. The
software uses a load history to remember previous performance demands,
and a dynamic load tracker to adapt to runtime performance that may differ
from the load history. The software reacts quickly to changes in load, and
can move work to the big or LITTLE cpu cluster in less time than an SMP
load balancing action, invisibly in the background.

Although this abstraction and obscurity of underlying heterogeneity is
ideal, it is only possible in this case due to use of the same family ISAs in the
processing elements. A highly optimized architecture would require in turn
optimized ISAs possibly in-house developed or modified for the application
at hand. The big.LITTLE architecture in this regard is not representative of
extreme heterogeneity since it targets consumer applications and not highly
specialized ES. To properly leverage the benefits of heterogeneous architec-
tures, an abstraction is needed to simplify development and deployment, for
which we look into Virtual Machines.

30

1.3 Virtual machines and Managed runtime environments

Virtualization is a technology that combines or divides computing resources
to present one or many operating environments using methodologies like
hardware and software partitioning , partial or complete machine simulation,
emulation, time-sharing, and others. Virtualization technologies have wide
applications over a range of areas such as code mobility, secure computing
platforms, supporting multiple operating systems, kernel debugging and de-
velopment, system migration, etc, resulting in widespread usage. They tend
to vary widely in their levels of abstraction they operate at and the underly-
ing architecture. We can identify the following abstraction levels on which
VMs operate: instruction set level, hardware abstraction layer (HAL) level,
operating system level, library level and application level virtual machines.

In computing, a virtual environment is perceived the same as that of
a real environment by application programs, though the underlying mecha-
nisms are formally different. More often than not, the virtual environment
presents a misleading image of a machine that has more or less capability
compared to the actual physical machine underneath for various reasons.

A typical computing software stack already uses many such abstraction
technologies. One prolific example is the virtual memory implementation
in any modern operating system that lets a process use memory typically
much more than the amount of physical memory its computer has to offer.
Similarly, multitasking can be thought of as another example where a single
cpu is partitioned in a time shared way to present some sort of a virtual
cpu to each task. There are quite a few of examples in today’s world that
exploit such methods. The umbrella of technologies that help build such vir-
tualized objects can be said to achieve tasks with one common methodology,
virtualization. With the increase in applications of virtualization concepts
across a wide range of areas in computer engineering, the width of the defini-
tion is ever increasing. For this discussion consider the following generalized
definition:

"Virtualization is a technology that combines or divides computing re-
sources to present one or many operating environments using methodologies
like hardware and software partitioning or aggregation, partial or complete
machine simulation, emulation, time-sharing, and many others"[5]. A vir-
tualization layer, as follows provides infrastructure support using the low
level resources to create virtual machines that are independent of and iso-
lated from each other. There are many reasons for how virtualization can be
useful in practical scenarios, a few of which are the following:

• Application consolidation: A legacy application might require newer

31

hardware and/or operating systems. Fulfillment of the need of such
legacy applications could be served well by virtualizing the newer hard-
ware and providing its access to others.

• Code Portability: It is generally true that a program built within an
OS and library environment is not easily ported to another. This cre-
ates a compatibility problem across operating systems and execution
platforms. Virtualization can be used to develop programs for a spe-
cific virtual machine transferring portability responsibilities to the VM
rather than the application software.

• Software Migration: Eases the migration of software and thus helps
mobility.

• Appliances: Lets one package an application with the related operating
environment as an appliance.

• Sandboxing: Virtual machines are useful to provide secure, isolated
environments for running foreign or less-trusted applications. Virtual-
ization technology can, thus, help build secure computing platforms.

• Multiple execution environments: Virtualization can be used to create
multiple execution environments and can increase the QoS by guaran-
teeing a specified amount of resources.

• Multiple simultaneous OS: It can provide the facility of having multiple
simultaneous operating systems that can run many different kind of
applications.

• Debugging: It can help debug complicated software such as an operat-
ing system or a device driver by letting the user execute them on an
emulated PC with full software controls.

• Testing-Quality Assurance: Helps produce arbitrary test scenarios that
are hard to produce in reality and thus eases the testing of software.

Conceptually a virtual machine represents an operating environment for
a set of user-level applications, which includes libraries, system call inter-
face/service, system configurations, daemon processes, and file system state.
There can be several levels of abstraction where virtualization can take place:
instruction set level, hardware abstraction layer (HAL), OS level (system call
interface), user-level library interface, or in the application level. Whatever
may be the level of abstraction, the general phenomenon still remains the
same; it partitions the low level resources using some novel techniques to
map to multiple higher level VMs transparently.

Emulation is the technique of interpreting the instructions completely in
software. For example, an ARM emulator on an X86 processor can execute

32

any ARM application, thus giving the illusion to the application as if it is
on a real ARM processor. To achieve this, however, an emulator would have
to be able to translate the hosted ARM ISA to the hosts X86 ISA.

The functionality and abstraction level of a HAL level virtual machine
lies between a real machine and an emulator. A virtual machine is an en-
vironment created by a VM manager (VMM), which is the virtualization
software lying between the bare hardware and the OS and gives the OS a
virtualized view of all the hardware. A VMM can create multiple VMs on
a single machine. While an emulator provides a complete layer between the
operating system or applications and the hardware, a VMM manages one
or more VMs where every VM provides facilities to an OS or application to
believe as if it runs in a normal environment and directly on the hardware.

Virtualization at the instruction set architecture level is implemented by
emulating an instruction set architecture completely in software. An emula-
tor tries to execute instructions issued by the hosted machine by translating
them to a set of native instructions and then executing them on the the avail-
able hardware. These instructions would include those typical of a processor,
and the I/O specific instructions for the devices. For an emulator to success-
fully emulate a real computer, it has to be able to emulate everything that a
real computer does that includes reading ROM chips, rebooting, switching
it on, etc.

Although this virtual machine architecture works fine in terms of sim-
plicity and robustness, it has its own pros and cons. On the positive side,
the architecture provides ease of implementation while dealing with multi-
ple platforms. As the emulator works by translating instructions from the
guest platform to instructions of the host platform, it accommodates easily
when the guest platforms architecture changes as long as there exists a way
of accomplishing the same task through instructions available on the host
platform. In this way, it does not enforce a stringent binding between the
guest and the host platforms. However, the architectural portability comes
at a price of performance. Since every instruction issued by the emulated
computer needs to be interpreted in software, the performance penalty in-
volved is significant.
The JVM – In the context of managed runtime environments for embedded
systems we are interested in bytecode VMs. The most notable of which is
of course the JVM. The JVM is a virtual machine that runs Java byte code.
This code is usually generated by Java compilers, although the JVM has also
been targeted by compilers of other languages which speaks to it’s maturity.
Programs intended to run on a JVM must be compiled into a standardized
portable binary format comprised of Java byte code, which typically comes

33

in the form of .class files.
This binary is then executed by the JVM runtime which carries out

emulation of the JVM instruction set by interpreting it or by applying a just-
in-time Compiler (JIT). The JVM, in addition to providing the instruction
set interpreter, also provides the operating environment for the Java byte
codes. Thus the Java platform is a combination of a virtual machine along
with an operating environment (JRE). The virtual machine is eventually
implemented in some native language and can afford to be more flexible
than traditional machines. It adds some extra computation to add features
like byte code verification, structured exception handling, garbage collection
and so on. Being in the application layer, it has much more control over
these implementation than system implementations. The JVM is a stack-
based architecture and supports threads. Each thread has its own program
counter and virtual register set (registers supported by the Virtual Machine).
These instructions, at runtime, are mapped to a set of real instructions that
are to be executed natively. Code verification also ensures that arbitrary
bit patterns cannot get used as an address. Memory protection is achieved
without the need for a memory management unit. Thus, JVM is an efficient
way of getting memory protection on simple silicon that has no MMU.

The JVM supports instructions like load/store, arithmetic, type conver-
sion, object creation/manipulation, push/pop, branches, call/ret, and ex-
ception throws. However, more than the emulation of the byte code is the
complication involved in getting a compatible and efficient implementation
of the map of Java core API to the host OS. The virtual hardware of the Java
Virtual Machine can be divided into four basic parts: the registers, the stack,
the garbage-collected heap, and the method area. These parts are abstract,
just like the machine they compose, but they must exist in some form in every
JVM implementation. JVM supports addresses upto 4GB of memory with
its 32-bit addressing scheme and uses 32-bit virtual registers. Depending
on the particular JVM implementation, the stack, garbage-collected heap,
and the method area reside at some well-defined places within this memory.
JVM supports a small number of primitive data types: byte (8 bits), short
(16 bits), int (32 bits), long (64 bits), float (32 bits), double (64 bits), char
(16 bits), and object handle (32 bits).

Apart from the program counter, it uses three registers to manage the
stack: optop register, frame register, and vars register. These point to various
places within the stack of the executing method. Method area is similar to
the text area in an x86 machine; it contains the byte code to be executed and
the program counter always points to some byte in this area. The program
counter is similar to PC and advances as execution proceeds. The stack

34

is used to store the parameters and results of the methods, and to keep
the state of each method invocation. The vars register point to the local
variables section containing all the local variables in the method. Frame
register points to the execution environment within the stack that maintains
the operations of the stack. Finally, the optop register points to the top of
the stack where the operands and results are placed. Such a virtual machine
architecture allows very fine-grained control over the actions that code within
the machine is permitted to take. This allows safe execution of untrusted
code from remote sources, a model used most famously by Java applets.
Security, sandboxing, easy debugging, platform-independence are a few very
important features of such a virtualization setup. Since all the hardware
devices are below the JVM layer, it has access to everything in the system
and virtually do everything that a normal application can do.

In conclusion to this short review of VMs, their most important features
in the context of the challenges of embedded systems are:

• They are proved and well studied in general purpose computing.

• They are a mature technology, their design and implementation trade-
offs being well studied.

• They can provide a robust abstraction over the underlying ISA and
hardware complexity

• They enable higher agility in software development.

• They can enable wide support of languages and underlying platforms

35

1.4 Motivation

It has become clear that new capabilities in embedded systems design are
providing great potential benefits. These benefits though, introduce signifi-
cant design complexity and require great investment in development effort.

As we argued in the previous section, the heterogeneous design pattern,
enabled by capable programmable chips, can be amplified by features such
as advanced interconnect schemes and flexible memory hierarchies. These
combinations can prove extremely powerful in meeting constraints and in-
creasing flexibility in the final system. Alas these benefits come at a high
initial cost in the design and development stage (high NRE costs) and intro-
duce considerable system complexity in the lifetime of the system.

Uniquely to heterogeneous systems, software development tools and the
resulting code is very hard to manage. Cross-compilation toolchains, the
associated libraries for the target platforms and operating systems are more
difficult to manage and maintain throughout the development and platform
lifetime. Not only are these notoriously difficult to setup, port and maintain
on custom ISAs and platforms but on a hardware platform, developed and
refined in tandem with it’s software, it is practically impossible. Yet hard-
ware platform evolution throughout project lifetime, is crucial to enabling
software-hardware co-design.

As a result, especially in such heterogeneous systems initial design choices
lock the platform due to development tools libraries’ setup and application
software partitioning on processing elements. This lock in the initial design
choices negates most of the benefits of a heterogeneous programmable logic
platform in the first place! Moreover if initial design choices were ill informed
one may end up with an underperforming complex system with poorly chosen
hardware and locked by existing software, too expensive to re-develop.

Recognizing the great potential of heterogeneous systems we seek a so-
lution to manage the complexity they introduce. From such a solution we
would like:

• To reduce development effort and avoid locking the system to a possibly
non-optimal platform due to lack of information early in the design
process.

• To allow leveraging heterogeneity for application functionality parti-
tioning on diverse processing elements. This assignment of tasks to
processing elements would be static but ideally we would like to be
able to rearrange the allocation to processing elements.

• To be able to leverage runtime reconfiguration, to change platform fea-
tures at runtime, without significant impact on software.

36

• To be able to increase the processing elements as needed and dynam-
ically alocate tasks to them. Similarly to remove processing elements,
possibly for power efficiency, by moving their uncompleted tasks back
to fewer processors.

To recap we would like to be able to decouple software and the underlying
hardware. This both for platform design exploration and research in early
stages of system development and at runtime for load balancing and meeting
different requirements in application characteristics.

Faced with increasing complexity in heterogeneous systems, we are look-
ing for a solid but flexible and robust abstraction to separate efforts in hard-
ware and software development but also enable more highly abstracted design
decisions. This abstraction layer should provide portability across candidate
ISAs for heterogeneous systems. Should aid in exploring possible configura-
tions of the platform without hindering development of application software
in parallel. It should allow for application migration across processing ele-
ments, during development for deciding on the partitioning of tasks on the
platform, but also during runtime for dynamically adapting to requirements.

In general purpose computing, similar problems have been solved with
Virtual Machines and managed runtime environments. We propose a Virtu-
alization solution for heterogeneous embedded systems it’s purpose being to
ease software-hardware codesign, reduce development effort for portability
and code mobility and allow the exploration of dynamic task allocation on
processing elements by providing a task migration capability.

37

1.5 A hypothetical embedded system deployment scenario

In this subsection we consider a generalized embedded platform that fits to
many real world applications. This system has time and reliability sensi-
tive constraints for managing itself and it’s interfaces, a networking element
through which it is possibly controlled. It’s main function though is compu-
tationally intensive, "power hungry" but non critical.

This generalization could easily describe a system from exotic applica-
tions such as telecommand-telemetry functionality in a satellite down to
everyday systems such as network interface management in parallel with a
human-interactive computing element in a modern smartphone. These very
different functionalities must coexist within the embedded system and are
typically met by partitioning the software and functionality unto the hetero-
geneous platform. Typically timing sensitive functionality is assigned to a
small microprocessor with a master role, which runs application software on
a real time operating system including a task for communicating with the
other processor. The data processing(in the satellite case) processor serves
as a lower priority slave since it carries non critical functionality entering
sleep states when possible suspending it’s tasks.

38

1.6 Research questions

The core of this work amounts to an effort to answer the following questions.
They are either explicitly or implicitly answered in the rest of this document,
or wherever their complexity escapes the scope of this work, appropriate
directions and thoughts on their resolution is proposed.

• VM Portability Can we execute application code, target indepen-
dently in an embedded system?

• Task migration Is task migration across heterogeneous processing el-
ements possible?

• Task migration overhead If so at what relative cost in performance?

• Development effort Can we reduce development and design effort
with a VM solution?

• Development effort – performance overhead tradeoff Is the
tradeoff balanced, i.e. do the benefits outweigh the incurred overhead?

39

2 Related work and Domain Analysis

In this section, an overview of the domain is presented. Additionally, to put
this study into context, a synopsis of fundamental abstractions is needed,
along with the relevant denominators that arise from them in the VM field.
Namely, discussed are Application Portability and forward compatibility on
Heterogeneous Systems, considerations on VM design and Interpreter based
VMs.

2.1 VM based Application Portability and forward compat-
ibility on Heterogeneous Systems

Virtual machines can provide a powerful abstraction over the underlying
platform. From the point of view of the hardware, the interpreter itself is
the only code executed. The VM hosted application code, the operands in
local variables and on the operand stack and object representation on the
heap are just inputs to the code executed natively on the hardware platform.

This mechanism allows applications to consider only the virtual platform
the VM provides, while depending on the VM to support changes in the
hardware. Especially in heterogeneous systems where the underlying hard-
ware may be drastically updated in the future, it is very valuable to provide
forward compatibility for the system’s software. By deploying part or all of
the application software on a VM, software can remain unchanged without
redevelopment and porting when the hardware platform evolves.

Furthermore, the inherent abstraction in VMs can be expanded to pro-
vide application portability within the heterogeneous system across the de-
ployed ISAs. This can allow with a small increase in complexity compared
to solutions not based on a VM, for the composition of load balancing sys-
tems. Reconfiguring the software partitioning on the underlying ISAs, either
statically or dynamically controlled by load balancing policies the system
can effectively and with low development effort capitalize on the platform
heterogeneity.

Towards employing a virtual machine to examine and enable these bene-
fits for heterogeneous systems, we continue with a study on their components
common architectures and associated tradeoffs.

2.2 Components and considerations on the design of VMs

A virtual machine (VM) is a high level abstraction on top of the native
operating system, that emulates a physical machine. In this work, we are
talking about process virtual machines and not system virtual machines. A

40

virtual machine enables the same application to run on multiple operating
systems and hardware architectures. The VMs for Java and lua can be taken
as examples, where the code is compiled into their VM specific bytecode. The
same can be seen in the Microsoft .Net architecture, where code is compiled
into intermediate language for the CLR (Common Language Runtime).

What functions should a virtual machine generally implement? It should
emulate the operations carried out by a physical CPU and thus should ideally
fulfill the following concepts:

• Compile of source language into VM specific bytecode.

• Implement data structures to contain instructions and operands within
memory.

• A call stack for function call operations.

• An virtual instruction pointer or program counter pointing to the next
instruction to execute.

• A virtual cpu performing operations roughly equivalent to an emulator,
the instruction dispatcher function roughly amounts to:

– Fetching the next instruction pointed to by the instruction pointer.
– Decode and fetches the operands.
– Execute the instruction.

2.3 Virtual Machine Interpreters

Interpreters have a long history, being well studied and deployed in many
runtime technologies. An interpreter can understand the source bytecode of
a virtual ISA and interpret those virtual ISA instructions to those of a host
platform. The interpreter-based VM abstracts away the underlying details
of the host platform and makes the implemented high-level programming
language portable across different hardware platforms as long as the VM
has been ported to them. VM interpreters do not inherently have any de-
pendency on specific features of the underlying platform or the operating
system that hosts them. Thus they can be designed to be easily portable to
several platforms and software stacks.

Listing 1: Switch interpreter dispatch
typedef enum {
add /∗ ... ∗/
sub /∗ ... ∗/
} Opcode;
void engine()

41

{
static Inst program[] = { add /∗ ... ∗/ };
Inst ∗ip = program;
int ∗sp;
for (;;)

switch (∗ip++) {
case add:

sp[1]=sp[0]+sp[1];
sp++;

break;
case sub:

sp[1]=sp[0]−sp[1];
sp++;

break;
/∗ ... ∗/
}

}

There are many different types of interpreters. Some interpreters simulate
the ISA of new hardware, which does not yet exist, or to port binary appli-
cations compiled for one hardware platforms to run on another one. Some
other interpreters (Java, , Lua, Perl, Tcl) are used to implement higher level
programming languages. When an interpreter is used to implement a high-
level language, there are two ways to convert the high-level source code into
a sequence of virtual machine instructions or bytecodes understandable by
the interpreter.

The translation of the source code into VM code can be either off-line
as in the JVM, or during runtime as with Lua or Perl. VM instructions
for higher-level portable languages like Java are usually designed with the
intention of easing interpretation. The opcodes are usually encoded with
one byte (256 possible VM instructions) in interpreters, such as Java and
Smalltalk.

An interpreter is a very attractive option for VM implementation because
it is easy to implement relatively to other execution engines and port to dif-
ferent platforms. However, they suffer from the drawback of low performance
when compared to native code compiled directly from the source program-
ming language. We will focus on the two categories of improvement which
are relevant to this work. The first category is related to the interpreter
implementation, such as the dispatch mechanism. The second category is
related to the VM bytecode instruction architecture design choices, such as
the choice between virtual a register machine instruction format or virtual
stack machine one.

42

The core of a virtual machine (VM) is an execution engine, which behaves
like a real processor. The execution engine, which can be implemented with
an interpreter, fetches, decodes and executes VM instructions. Inside a vir-
tual machine, an interpreter (the execution engine) has a virtual instruction
pointer to the VM code currently being executed. In order to execute a
VM instruction, the interpreter first fetches an instruction by using the in-
struction pointer, decodes the instruction (find the segment of code which
implements the VM instruction in the interpreter loop), and then executes
the code in the segment to carry out the function of the VM instruction. The
last step includes the fetching the operands of the instruction and storing
any results.

There are two types of operand locations for VM instructions. The first
type of operand location is virtual registers or an operand stack, which
are typically implemented as an array in the memory. The second type
of operand location can be some data structures, such as an object represen-
tation, in the heap in the runtime data areas.

2.3.1 Register based vs Stack based VMs

Stacks are widely used in computer science. An evaluation stack is used to
compute the value of arithmetic expressions. In a processor, a call stack saves
the traces of subroutine calls and returns. A stack computer with a stack-
based instruction set uses a stack to store the operands for instructions. In a
stack computer, most of the instructions have implicit operands on the top
of the operand stack. Any result produced by an instruction will be pushed
onto the operand stack. There are two important instructions load and store.
The load instruction pushes a value from an arbitrary RAM location onto
the top of the computational stack and the store instruction saves a value
from the top of the computational stack into a memory location.

A register machine uses the registers to store the operands (temporaries/re-
sult) of instructions. In a register machine, the operands must be encoded
as part of an instruction. Most compilers for register architectures will use
registers as much as possible because accesses to the registers are faster and
a limited number of registers allow for shorter encoding of the instructions.
Generating code for a register machine is more complex and a sophisticated
register allocator is often needed to make the best use of a limited number
of registers to maximize the performance of a source program.

There are essentially two main ways to implement a virtual machine:
Based on a stack architecture, or register architecture. Prolific examples of
stack based VMs are the Java Virtual Machine and the .Net CLR, as it is the

43

widely used method for implementing virtual machines. Examples of regis-
ter based virtual machines are the ones found in Lua, Perl(Parrot) and the
Dalvik VM. The difference between the two approaches is in the mechanism
used for storing and retrieving operands and their results.

Stack Based Virtual Machines A stack based virtual machine imple-
ments the general function of the VM with a memory structure where the
operands are stored is a stack. Operations are carried out by popping data
from the stack, processing them and pushing in back the results in a last in
first out order. In a stack based virtual machine, the operation of adding
two numbers would usually be carried out as follows:

Figure 14: Simple stack machine

Because of the push and pop operations, four instructions are needed to
carry out an addition operation causing significant overhead. An advantage
of the stack based model is that the operands are addressed implicitly by the
stack pointer(SP). This means that the Virtual machine does not need to
know the operand addresses explicitly, as calling the stack pointer will pop
the next operand. In stack based VMs, all arithmetic and logic operations
are carried out by pushing and popping the operands and results in the stack.

Register Based Virtual Machines In the register based implementa-
tion of a virtual machine, the data structure where the operands are stored
mirrors that of the registers of a cpu. There are no push or pop operations
here, but the instructions need to contain the addresses (or symbol names)
of the operands. In the register based architecture, the operands for the
instructions are explicitly named in the instruction, unlike the stack based
architecture, where we had a stack pointer pointing to the operand. For
example, if an addition operation is to be carried out in a register based
virtual machine, the instruction would look as follows:

44

Figure 15: Simple register machine

As mentioned earlier, there is no pop or push operations and the related
overhead, so the instruction for adding is simply one line. But unlike the
stack, we need to explicitly mention the addresses of the operands as R1, R2,
and R3. The advantage here is that the overhead of pushing to and popping
from a stack is non-existent, and instructions in a register based VM execute
faster within the instruction dispatch loop.

Another advantage of the register based model is that it allows for some
optimizations that cannot be done in the stack based approach. One such
instance is when there are common sub expressions in the code, the register
model can calculate it once and store the result in a register for future use
when the sub expression comes up again, which reduces the cost of recalcu-
lating the expression.

The problem with a register based model is that the average register
instruction is larger than an average stack instruction, as we need to spec-
ify the operand addresses explicitly. Whereas the instructions for a stack
machine are short due to the stack pointer, the respective register machine
instructions need to contain operand locations, and results in larger bytecode
size in register code compared to stack code.

Comparison of stack vs register VM implementation
There have been many arguments between stack and register-oriented

instruction set architectures making it quite difficult to draw any definitive
conclusions. below we list advantages and disadvantages, as well as some
trends in mature implementations.

The main advantages of a stack-based instruction set are:

• Very high code density compared to other form of instruction sets re-
sulting in small overall code size.

• Simplicity of the instruction set.

• Simple compiler implementation to generate stack-based code from the

45

source programming language.

In the case for register based Virtual Machines, there have been several
that are mature and widely used, most notably Perl 6 Lua 5.0 and Dalvik,
implemented with register instruction set architectures. Both Lua and Perl
moved from a stack implementation to a register based VM implementation.

Parrot VM: The Parrot Virtual Machine for Perl 6 [18] moves away
from its earlier stack-based versions to a new register architecture. It is
intended to support multiple languages including Perl itself. It has many
higher-level features such as objects, thread synchronization support and
garbage collection.

The designers of Perl 6 give some of the following reasons for moving to
the register architecture:

• Fewer register-based VM instructions are required than those of a stack
VM.

• More research in optimization for register-based hardware to take ad-
vantage of.

• Break away from the tradition of stack VM architecture implementation
to innovate.

Parrot originally used a scheme similar to a real processor. It had four
groups (integers, floating-point numbers, strings and PMCs) of 32 registers.
In the later evolution, the number of registers became unlimited to eliminate
register spills. The virtual registers of the Parrot VM are stored in a register
frame which could be pushed and popped onto a virtual register stack.

Lua 5.0: Lua[9] is a scripting language widely used in game industry.
Lua 5.0[10] moved to register-based architecture partly because of earlier
work on register machines in the developing group. There are 35 instruc-
tions in Lua’s virtual machine. Virtual registers are kept in the run-time
stack, which is implemented with an array. Constants and upvalues are also
stored in arrays. Lua 5.0 uses 32 bits instruction encoding. The first 6-bits
are the opcode. The next 8 bits are the first operand (A) and always present.
The second (B) and third (C) operands are 9 bits. These second and third
operands can be combined into one larger operand. Performance compar-
isons between Lua 5.0 (register based) and 4.0(stack based) show around a
20% improvement.

There are various ways to organize the virtual registers in a virtual ma-
chine. Some VMs such as earlier versions of the Parrot VM have a fixed

46

number of general purpose registers or even a fixed number of registers for
different data types, like a real processor. The state of the registers has to
be saved and restored for function calls and returns. Another problem with
a fixed number of registers is that a register allocator is needed and virtual
register spilling can happen. This can cause a lot of unexpected memory
copy operations. Other VMs create a new set of registers on a stack for each
method call. Usually the number of required registers can be determined
when compiling the source code. The number of addressable registers is lim-
ited by the size of operands (typically one byte). 256 registers are usually
more than enough for modern object-oriented programming languages which
encourage small methods. A register allocator is not needed, although one
can be used to minimize the number of registers to save some space. Fur-
thermore, all the VM registers are not physical registers in a real processor.
They are typically represented using an array and indexed by an integer.

47

2.4 Techniques for efficient Interpretation

For an efficient interpreter for a general purpose language the design of choice
is a virtual machine interpreter. The program is represented in an interme-
diate code that is similar in many respects to real machine code: the code
consists of VM instructions that are laid down sequentially in memory and
are easy to decode and process by software.

The interpretation of a virtual machine instruction consists of accessing
arguments of the instruction, performing the function of the instruction, and
dispatching (fetching, decoding and starting) the next instruction. The most
efficient method for dispatching the next VM instruction is direct threading.
Instructions are represented by the addresses of the routine that implements
them, and instruction dispatch consists of fetching that address and branch-
ing to the routine. Direct threading cannot be implemented in ANSI C and
other languages that do not have first-class labels, but GNU C provides the
necessary features. Implementors who restrict themselves to ANSI C usu-
ally use the switch dispatch approach, VM instructions are represented by
arbitrary integer tokens, and the switch uses the token to select the right
routine.

When translated to machine language, direct threading typically needs
three to four machine instructions to dispatch each VM instruction, whereas
the switch method needs nine to ten. The additional instructions of the
switch method over direct threading is caused by a range check, by a ta-
ble lookup, and by the branch to the dispatch routine generated by most
compilers.

2.4.1 Switch Dispatch

Switch dispatch, is the simplest and most portable dispatch mechanism. In
this case we show as an example how an interpreter might choose a rep-
resentation that is less compact than possible, for simplicity and speed of
interpretation.

Listing 2: Switch Dispatch implementation generalized example
while (true) {

byte instruction = instructionStream[programCounter];
switch (instruction) {

case NOP:
programCounter += 1;
break;

/∗
∗

48

∗
∗/

case JUMP:
programCounter = instructionStream[programCounter + 1];
break;

}
}

In the below figure, a loaded Java bytecode representation appears on the
bottom left. Each virtual opcode is represented as a full word token even
though a byte would suffice. Arguments, for those virtual instructions that
take them, are also stored in full words following the opcode. This avoids
any alignment issues on machines that penalize unaligned loads and stores.

Illustrated is the situation just before the statement c=a+b+1 is exe-
cuted. The box on the right of the figure represents the C implementation
of the interpreter. The vPC points to the word in the loaded representa-
tion corresponding to the first instance of iload. The interpreter works by
executing one iteration of the dispatch loop for each virtual instruction it
executes, switching on the token representing each virtual instruction. Each
virtual instruction is implemented by a case in the switch statement. Virtual
instruction bodies are simply the compiler-generated code for each case.

Figure 16: Switch interpreter – Java example

49

Above, a switch interpreter loading each virtual instruction as a virtual
opcode, or token, corresponding to the case of the switch statement that
implements it. Virtual instructions that take immediate operands, like iconst,
must fetch them from the vPC and adjust the vPC past the operand. Virtual
instructions which do not need operands, like iadd, do not need to adjust
the vPC.

Every instance of a virtual instruction consumes at least one word in
the internal representation, namely the word occupied by the virtual opcode.
Virtual instructions that take operands are longer. This motivates the strat-
egy used to maintain the vPC. The dispatch loop always bumps the vPC to
account for the opcode and bodies that consume operands bump the vPC
further, one word per operand. Although no virtual branch instructions are
illustrated in the figure, they operate by assigning a new value to the vPC
for taken branches.

A switch interpreter is relatively slow due to the overhead of the dispatch
loop and the switch. Despite this, switch interpreters are commonly used
in production (e.g. in the JavaScript and Python interpreters). Presumably
this is because switch dispatch can be implemented in ANSI standard C and
so it is very portable.

2.4.2 Direct Call Threading

Another portable way to organize an interpreter is to write each virtual
instruction as a function and dispatch it via a function pointer. The following
figure shows each virtual instruction body implemented as a C function.
While the loaded representation used by the switch interpreter represents the
opcode of each virtual instruction as a token, direct call threading represents
each virtual opcode as the address of the function that implements it. So
by treating the vPC as a function pointer, a direct call-threaded interpreter
can execute each instruction in turn.

For historical reasons the name "direct" is given to interpreters which
store the address of the virtual instruction bodies in the loaded representa-
tion. We assume that is because they can "directly" obtain the address of
a body, rather than using a mapping table (or switch statement) to convert
a virtual opcode to the address of the body. However, the name can be
confusing as the actual machine instructions used for dispatch are indirect
branches(in this case, an indirect call).

50

Figure 17: Call threading dispatch

In this figure, a direct call-threaded interpreter packages each virtual
instruction body as a function. The shaded box highlights the dispatch loop
showing how virtual instructions are dispatched through a function pointer.
Direct call threading requires the loaded representation of the program to
point to the address of the function implementing each virtual instruction.

Next we will describe direct threading, perhaps the most well-known high
performance dispatch technique.

2.4.3 Direct Threading

Listing 3: Direct Dispatch generalized implementation example
op_ADD_INT:

int op1 = READ_OP1;
int op2 = READ_OP2;
int result = op1 + op2; // The actual implementation.
WRITE_RESULT(result);
unsigned int opcode = pc−>opcode;
++pc;
goto ∗dispatch[opcode]; // Jump to code for next instruction.

In the above figure a generalized implementation of direct dispatch is shown.
Note the goto statement jumping to the next opcode to execute and using
it’s label as a destination address.

In the below figure is a Direct-threaded Interpreter showing how Java
Source code compiled to Java bytecode is loaded into the Direct Threading
Table (DTT). The virtual instruction bodies are written in a single C func-

51

tion, each identified by a separate label. The double-ampersand && shown
in the DTT is gcc syntax for the address of a label.

Figure 18: Direct threaded dispatch

Like in direct call threading, a virtual program is loaded into a direct
threaded interpreter as a list of body addresses and operands. We will refer
to the list as the Direct Threading Table, or DTT, and refer to locations in
the DTT as slots.

Interpretation begins by initializing the vPC to the first slot in the DTT,
and then jumping to the address stored there. A direct-threaded interpreter
does not need a dispatch loop like direct call threading or switch dispatch.
Instead, as can be seen in the figure, each body ends with goto *vPC++,
which transfers control to the next instruction.

In C, bodies are identified by a label. Common C language extensions
permit the address of this label to be taken, which is used when initializ-
ing the DTT. GNU gcc, as well as C compilers produced by Intel, support
the label-as-value and computed goto extensions, making direct threading
possible despite not being ANSI C.

52

Figure 19: Machine instructions in Direct Dispatch

In the above figure machine instructions used for direct dispatch are
shown. On both platforms assume that some general purpose register, rx,
has been dedicated for the vPC. Note that on the PowerPC on the right,
indirect branches are two part instructions that first load the ctr register
and then branch to its contents.

Direct threading requires fewer instructions and is faster than direct call
threading or switch dispatch. Assembler for the dispatch sequence is shown
above. When executing the indirect branch the Pentium 4 will speculatively
dispatch instructions using a predicted target address. The PowerPC uses a
different strategy for indirect branches, as shown. First the target address
is loaded into a register, and then a branch is executed to this register ad-
dress. The PowerPC stalls until the target address is known, although other
instructions may be scheduled between the load and the branch (like the
addi in the previous figure) to reduce or eliminate these stalls.

2.4.4 The Dispatch technique impact on performance

In a detailed study on they effects of dispatch on performance in [16] it
is found that generally interpreters perform an exceptionally high number
of indirect branches. Typical C code performs significantly less than 1%
non-return indirect branches; C++ programs (using virtual function calls)
perform 0.5% – 2% indirect branches and other interpreters perform less
than 1.5% non-return indirect branches. But up to 13% of the instructions
executed in the dispatch mechanisms we examine are non-return indirect
branches. Consequently, the performance of efficient virtual machine inter-
preters is highly dependent on the indirect branch prediction accuracy, and
the branch misprediction penalty.

Without indirect branch prediction, the resulting mispredictions can take
up most of the time even on a processor with a short pipeline. Even with indi-
rect branch prediction, misprediction rates are remarkably high. In [16] pro-
file guided static prediction only yields an average accuracy of 11%. Branch
target buffers give accuracies of 2% to 50%, with a slight improvement for
the two-bit variant. Two level predictors increase the performance of efficient

53

VM interpreters significantly, by increasing prediction accuracy to 82%98%.
Threaded code interpreters are much more predictable than switch based
ones, increasing accuracy from 2% – 20% to about 45%.

The reason is that a switched based interpreter has only a single indirect
branch jumping to many targets, whereas a threaded code interpreter has
many branches, each of them jumping to a much smaller number of frequent
targets. Given that threaded code interpreters also require less overhead for
instruction dispatch, they are clearly the better choice for efficiently imple-
menting VM interpreters on modern processor architectures.

2.5 Dispatch mechanism tradeoff

As noted above the cost of all dispatch mechanisms is not the same. Threaded
dispatch is about twice as fast as switch dispatch, although it cannot be
implemented in ANSI C. Similarly, other interpreter optimizations which re-
duce the cost and/or number of dispatches will strongly affect the relative
performance of stack and register architectures. So, specifically register ma-
chines might prove more efficient where the interpreter must be written in
ANSI C for maximum portability, while a stack architecture might have an
edge where GNU C or assembly language is acceptable. In effect the deci-
sion between threaded dispatch vs switch dispatch is that of portability vs
performance.

2.6 Choosing a Bytecode and Intermediate Representation
language

The most important design decision for the bytecode virtual ISA for a vir-
tual machine is arguably that of stack based or register based. This is the
most significant departure of virtual ISAs from actual real-processor ISAs.
Considering the low level effects of this choice previously discussed at length,
we now also consider this decision from a practical and high level standpoint.

Regarding Register based virtual instruction sets:

• Compilation to a register based ISA is significantly harder.

• Fewer register-based VM instructions are required than those of a stack
VM.

• More research in optimization for register-based hardware to take ad-
vantage of.

• Very high code density compared to other form of instruction sets re-
sulting in small overall code size.

54

• Simple compiler implementation to generate stack-based code from the
source programming language.

• Simplicity of the instruction set

The main advantages of a stack-based instruction set are:

• Very high code density compared to other form of instruction sets re-
sulting in small overall code size.

• Simplicity of the instruction set

• Simple compiler implementation to generate stack-based code from the
source programming language.

55

3 The LLVM Framework

The Low Level Virtual Machine (LLVM) is an open source, mature opti-
mizing compiler framework whose development started in 2000 seeing ac-
tive development since. Today, it provides a high- performance static com-
piler backend, but can also be used to build virtual machines or just-in-time
compilers and to provide midlevel analyses and optimization in a compiler
pipeline. Its main innovation is in the area of life-long program analysis and
optimization, it supports program analysis and optimization at compile time,
link time, and runtime. At the time of writing, LLVM supports a wide array
of target ISAs (backends). Although even more target backends are officially
supported, the LLVM 3.4 trunk 202591 ships by default with the following:

• ARM

• Mips

• R600

• X86

• AArch64

• Hexagon

• NVPTX

• PowerPC

• Sparc

• SystemZ

• XCore

• CppBackend

• MSP430

The variety of the supported backends speak clearly to LLVM’s versatility,
with support from novel ISAs such as CUDA PTX to widely used microcon-
troller ISAs such as MSP430.

Over the last ten years, LLVM has substantially altered the compiler
landscape . LLVM is now used as a common infrastructure to implement a
broad variety of statically and runtime compiled languages (e.g., the family of
languages supported by GCC, Java, .NET, Python, Ruby, Scheme, Haskell,
D, as well as many lesser known languages). It has also replaced a broad
variety of special purpose compilers, such as the runtime specialization engine
in Apple’s OpenGL stack. Finally LLVM has also been used to create a broad
variety of new products, perhaps the best known of which is the OpenCL
GPU programming language and runtime.

56

3.1 LLVM Architecture

The traditional three phase design – The most popular design for a
traditional static compiler (like most C compilers) is the three phase design
whose major components are the front end, the optimizer and the back end
as in the following figure. The front end parses source code, checking it for er-
rors, and builds a language-specific Abstract Syntax Tree (AST) to represent
the input code. The AST is optionally converted to a new representation for
optimization, and the optimizer and back end are run on the code.

Figure 20: Simple Compiler

The optimizer is responsible for doing a broad variety of transformations
to try to improve the code’s running time, such as eliminating redundant
computations, and is usually more or less independent of language and tar-
get. The backend (also known as the code generator) then maps the code
onto the target instruction set. In addition to producing correct code, it is
responsible for generating good code that takes advantage of unusual fea-
tures of the supported architecture. Common parts of a compiler back end
include instruction selection, register allocation, and instruction scheduling.

This model applies equally well to interpreters and JIT compilers. The
Java Virtual Machine (JVM) is also an implementation of this model, which
uses Java bytecode as the interface between the front end and optimizer.

Retargetability – The most important benefit of this classical design
comes when a compiler decides to support multiple source languages or target
architectures. If the compiler uses a common code representation in its
optimizer, then a front end can be written for any language that can compile
to it, and a back end can be written for any target that can compile from it,
as shown below.

57

Figure 21: Retargetable Compiler

Figure 22: LLVM Compiler

With this design, porting the compiler to support a new source language
requires implementing a new front end, but the existing optimizer and back
end can be reused. If these parts weren’t strictly separated, implementing a
new source language would require starting over from scratch, so supporting
N targets and M source languages would need N*M compilers.

Another advantage of the three-phase design which follows from retar-
getability is that the compiler serves a broader set of programmers than it
would if it only supported one source language and one target. For a consider-
ably large open source project, this means that there is a larger community
of potential contributors to draw from, which naturally leads to more en-
hancements and improvements to the compiler. This is the reason why open
source compilers that serve many communities (like GCC) tend to generate
better optimized machine code than narrower compilers like FreePASCAL.
This isn’t the case for proprietary compilers, whose quality is directly re-
lated to the project’s budget. For example, the Intel ICC Compiler is widely
known for the quality of code it generates, even though it serves a narrow

58

audience.

Figure 23: X86 Backend simplified

A final major benefit of the three phase design is that the skills required
to implement a front end are different than those required for the optimizer
and back end. Separating these makes it easier for front-end developers to
enhance and maintain their part of the compiler. While this is a social issue,
not a technical one, it matters a lot in practice, particularly for open source
projects that want to reduce the barrier to contributing as much as possible.

While the benefits of a three-phase design are compelling and well-documented
in compiler textbooks, in practice it is almost never fully applied. Looking
across open source language implementations, one would find that the imple-
mentations of Perl, Python, Ruby and Java share no code. Further, projects
like the Glasgow Haskell Compiler (GHC) and FreeBASIC are retargetable
to multiple different CPUs, but their implementations are very specific to the
one source language they support. There is also a broad variety of special
purpose compiler technology deployed to implement JIT compilers for image
processing, regular expressions, graphics card drivers, and other subdomains
that require CPU intensive work.

That said, there are three major success stories for this model, the first
of which are the Java and .NET virtual machines. These systems provide
a JIT compiler, runtime support, and a very well defined bytecode format.
This means that any language that can compile to the bytecode format, can
take advantage of the effort put into the optimizer and JIT as well as the
runtime. The tradeoff is that these implementations provide little flexibility
in the choice of runtime: they both effectively force JIT compilation, garbage

59

collection, and the use of a very particular object model. This leads to
suboptimal performance when compiling languages that don’t match this
model closely, such as C.

A second success story is perhaps the most unfortunate, but also most
popular way to reuse compiler technology: translating the input source to
C code (or some other language) and send it through existing C compilers.
This allows reuse of the optimizer and code generator, gives good flexibility,
control over the runtime, and is really easy for front-end implementers to
understand, implement, and maintain. Unfortunately, doing this prevents
efficient implementation of exception handling, provides a poor debugging
experience, slows down compilation, and can be problematic for languages
that require guaranteed tail calls (or other features not supported by C).

A final successful implementation of this model is GCC4. GCC supports
many front ends and back ends, and has an active and broad community of
contributors. GCC has a long history of being a C compiler that supports
multiple targets with support for a few other languages bolted onto it. As
the years go by, GCC is slowly evolving to a cleaner design. As of GCC 4.4,
it has a new representation for the optimizer (known as "GIMPLE Tuples")
which is closer to being separate from the front-end representation than
before. Also, its Fortran and Ada front ends use a clean AST.

Embedability and module reuse – While very successful, these three
approaches have strong limitations to what they can be used for, because
they are designed as monolithic applications. As one example, it is not
realistically possible to embed GCC into other applications, to use GCC as
a runtime/JIT compiler, or extract and reuse pieces of GCC without pulling
in most of the compiler. People who have wanted to use GCC’s C++ front
end for documentation generation, code indexing, refactoring, and static
analysis tools have had to use GCC as a monolithic application that emits
interesting information as XML, or write plugins to inject foreign code into
the GCC process.

There are multiple reasons why pieces of GCC cannot be reused as li-
braries, including rampant use of global variables, weakly enforced invariants,
poorly-designed data structures, sprawling code base, and the use of macros
that prevent the codebase from being compiled to support more than one
front-end/target pair at a time. The hardest problems to fix, though, are
the inherent architectural problems that stem from its early design and age.
Specifically, GCC suffers from layering problems and leaky abstractions: the
back end walks front-end ASTs to generate debug info, the front ends gen-
erate back-end data structures, and the entire compiler depends on global
data structures set up by the command line interface.

60

In an LLVM-based compiler, a front end is responsible for parsing, vali-
dating and diagnosing errors in the input code, then translating the parsed
code into LLVM IR (usually, but not always, by building an AST and then
converting the AST to LLVM IR). This IR is optionally fed through a series
of analysis and optimization passes which improve the code, then is sent into
a code generator to produce native machine code, as shown in Figure 11.3.
This is a very straightforward implementation of the three-phase design, but
this simple description glosses over some of the power and flexibility that the
LLVM architecture derives from LLVM IR.

3.1.1 LLVM as a collection of libraries

After the design of LLVM IR, the next most important aspect of LLVM is
that it is designed as a set of libraries, rather than as a monolithic command
line compiler like GCC or an opaque virtual machine like the JVM or .NET
virtual machines. LLVM is an infrastructure, a collection of useful libraries
of compiler technology that can be brought to bear on specific problems (like
building a C compiler, or an optimizer in a special effects pipeline). While
one of its most powerful features, it is also one of its least understood design
points.

These libraries provide all sorts of analysis and transformation capabil-
ities.They are expected to stand on their own, or explicitly declare their
dependencies among other components if they depend on some other func-
tionality to do their job.

Libraries and abstract capabilities are great, but they don’t actually solve
problems. The interesting part comes when someone wants to build a new
tool that can benefit from compiler technology, perhaps a JIT compiler for an
image processing language. The implementer of this JIT compiler has a set
of constraints in mind: for example, perhaps the image processing language
is highly sensitive to compile-time latency and has some idiomatic language
properties that are important to optimize away for performance reasons.

The library-based design of the LLVM optimizer allows the implementer
to pick and choose both the order in which transformation passes execute,
and which ones make sense for the image processing domain in our example:
if everything is defined as a single big function, it doesn’t make sense to
waste time on inlining. If there are few pointers, alias analysis and memory
optimization are not a concern.

This is where the power of the library-based design of LLVM comes
into play. It’s straightforward design approach allows LLVM to provide a
vast amount of capability, some of which may only be useful to specific

61

audiences, without punishing clients of the libraries that just want to do
simple things. In contrast, traditional compiler optimizers are built as a
tightly interconnected mass of code, which is much more difficult to subset,
reason about, and come up to speed on.

3.2 The LLVM Compiler IR

The LLVM assembly language, LLVM IR, is the input language which LLVM
accepts for code generation. However, it also acts as LLVM’s internal inter-
mediate representation for program analysis and optimization passes. The IR
has three equivalent representations: a textual representation (the assembly
form), an in-memory representation, and a binary representation(bitcode).
The textual representation is useful in a compiler pipeline where individual
tools communicate via files, as well as for human inspection. The in-memory
representation is used internally, but also whenever a compiler links to LLVM
as a library to avoid the overhead of file input and output. The binary rep-
resentation is used for compact storage – it occupies less storage than the
textual format and can be read more efficiently.

The LLVM IR is low-level and assembly-like, but it maintains higher-
level static information in the form of type and dataflow information – the
latter due to using static single assignment (SSA) form. SSA form guar-
antees that every variable is only assigned once (and never updated), and
hence, strongly related to functional programming[20]. The design goal in
combining a low-level language with high-level static information is to retain
sufficient static information to enable aggressive optimization, while still be-
ing low-level enough to efficiently support a wide variety of programming
languages. The main features of LLVM’s assembly language are:

• Low-level assembly with higher-level type information.

• Unlimited virtual registers, abstracting real hardware registers.

• Static single assignment form (SSA) with phi function.

• Functions and function calling with efficient tail call support.

• Explicit control flow with functions comprising blocks and branch state-
ments.

• Direct memory access, as well as a type-safe address calculation instruc-
tion, getelementptr facilitating optimizations.

The single-assignment property of the SSA form requires the use of phi
functions in the presence of low-level control flow with explicit branches. A
phi function selects the value to be assigned to a virtual register in depen-
dence on the edge of the control-flow graph along which execution reached

62

the phi function. SSA form is well-established as a type of intermediate
representation that simplifies the implementation of code analysis and opti-
mization.

Listing 4: LLVM code to raise an integer to a power

define i32 @pow(i32 %M, i32 %N) {
LoopHeader :

br label %Loop
Loop :
%res = phi i32 [1, %LoopHeader], [%res2, %Loop]
%i = phi i32 [0, %LoopHeader], [%i2, %Loop]
%res2 = mul i32 %res , %M
%i2 = add i32 %i, 1
%cond = icmp ne i32 %i2 , %N
br i1 %cond , label %Loop , label %Exit
Exit :
ret i32 %res2

}

The code in the above listing contains one complete LLVM function,
which is made up of a list of basic blocks, each preceded by a label. The
function has three basic blocks, those being LoopHeader, Loop, and Exit.

All control flow in LLVM is explicit, so each basic block must end with a
branch (br) or return statement (ret). Variable names preceded by a percent
symbol, such as %res and %i, denote virtual registers. Virtual registers
are introduced by the unique assignment that defines them. All operations
are annotated with type information, such as i32, which implies an integer
type of 32 bits. Finally, the Loop block starts with two phi functions. The
first one assigns to %res either the constant 1 or the value stored in register
%res2 depending on whether execution entered the Loop block from the block
LoopHeader or from Loop itself.

All LLVM code is defined as part of an LLVM module, with modules
serving as compilation units. An LLVM module consists of four parts: meta
information, external declarations, global variables, and function definitions.
Meta information can be used to define the endianness of the module, as well
as the alignment and size of various LLVM types for the architecture the code
will be compiled to. Global variables are as expected, and are prefixed with
the @ symbol, as are functions, to indicate that they are actually pointers
to the data and have global scope. This also distinguishes them from local
variables which are prefixed with the % symbol.

63

3.2.1 LLVM IR properties

Module structure – LLVM IR programs are composed of Modules, each
of which is a translation unit of the input programs. Each module consists
of functions, global variables, and symbol table entries. Modules may be
combined together with the LLVM linker, which merges function (and global
variable) definitions, resolves forward declarations, and merges symbol table
entries. Following is an example of a "hello world" module:

Listing 5: An LLVM IR example Module
; Declare the string constant as a global constant.
@.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"

; External declaration of the puts function
declare i32 @puts(i8∗ nocapture) nounwind

; Definition of main function
define i32 @main() { ; i32()∗

; Convert [13 x i8]∗ to i8 ∗...
%cast210 = getelementptr [13 x i8]∗ @.str, i64 0, i64 0

; Call puts function to write out the string to stdout.
call i32 @puts(i8∗ %cast210)
ret i32 0

}

; Named metadata
!1 = metadata !{i32 42}
!foo = !{!1, null}

This example is made up of a global variable named .str, an external
declaration of the puts function, a function definition for main and named
metadata foo.

In general, a module is made up of a list of global values (where both
functions and global variables are global values). Global values are repre-
sented by a pointer to a memory location (in this case, a pointer to an array
of char, and a pointer to a function), and have one of the following linkage
types.

Functions – LLVM function definitions consist of the "define" keyword,
an optional linkage type, an optional visibility style, an optional DLL storage
class, an optional calling convention, a return type, an optional parameter
attribute for the return type, a function name, an argument list, optional
function attributes, an optional section, an optional alignment, an optional

64

garbage collector name, an optional prefix, an opening curly brace, a list of
basic blocks, and a closing curly brace.

LLVM function declarations consist of the "declare" keyword, an optional
linkage type, an optional visibility style, an optional DLL storage class, an
optional calling convention, an optional unnamed_addr attribute, a return
type, an optional parameter attribute for the return type, a function name, a
possibly empty list of arguments, an optional alignment, an optional garbage
collector name and an optional prefix.

A function definition contains a list of basic blocks, forming the CFG
(Control Flow Graph) for the function. Each basic block may optionally
start with a label (giving the basic block a symbol table entry), contains a
list of instructions, and ends with a terminator instruction (such as a branch
or function return). If an explicit label is not provided, a block is assigned
an implicit numbered label, using the next value from the same counter as
used for unnamed temporaries (see above). For example, if a function entry
block does not have an explicit label, it will be assigned label "%0", then
the first unnamed temporary in that block will be "%1", etc.

The first basic block in a function is special in two ways: it is immediately
executed on entrance to the function, and it is not allowed to have predecessor
basic blocks (i.e. there can not be any branches to the entry block of a
function). Because the block can have no predecessors, it also cannot have
any PHI nodes.

LLVM allows an explicit section to be specified for functions. If the target
supports it, it will emit functions to the section specified.

An explicit alignment may be specified for a function. If not present, or
if the alignment is set to zero, the alignment of the function is set by the
target to whatever it feels convenient. If an explicit alignment is specified,
the function is forced to have at least that much alignment. All alignments
must be a power of 2.

If the unnamed_addr attribute is given, the address is known to not be
significant and two identical functions can be merged.

Listing 6: LLVM IR function syntax
define [linkage] [visibility] [DLLStorageClass]

[cconv] [ret attrs]
<ResultType> @<FunctionName> ([argument list])
[unnamed_addr] [fn Attrs] [section "name"] [align N]
[gc] [prefix Constant] { ... }

Interesting instructions – Among the LLVM IR instructions the
following have interesting properties and are either not typically found in

65

other bitcode or IR languages, or have properties highly relevant to this work.
For a complete reference of instructions, refer to the llvm documentation.

• Terminators: As mentioned previously, every basic block in a pro-
gram ends with a terminator instruction, which indicates which block
should be executed after the current block is finished. These terminator
instructions typically yield a "void" value: they produce control flow,
not values (withthe exception "invoke"). They are the following : "ret",
"br", "switch", "indirectbr", "invoke", "resume" and "unreachable".

• getelementptr: The "getelementptr" instruction is used to get the
address of a subelement of an aggregate data structure. It performs
address calculation only and does not access memory.

Listing 7: IR getelementptr syntax
<result> = getelementptr <pty>∗ <ptrval>{, <ty> <idx>}∗
<result> = getelementptr inbounds <pty>∗ <ptrval>{, <ty> <idx>}∗
<result> = getelementptr <ptr vector> ptrval, <vector index type> idx

The first argument is always a pointer or a vector of pointers, and forms
the basis of the calculation. The remaining arguments are indices that
indicate which of the elements of the aggregate object are indexed.
The interpretation of each index is dependent on the type being indexed
into. The first index always indexes the pointer value given as the first
argument, the second index indexes a value of the type pointed to etc.
The first type indexed into must be a pointer value, subsequent types
can be arrays, vectors, and structs. Note that subsequent types being
indexed into can never be pointers, since that would require loading the
pointer before continuing calculation.

• phi: The "phi" instruction is used to implement the phi node in the
SSA graph representing the function. The type of the incoming values
is specified with the first type field. After this, the "phi" instruction
takes a list of pairs as arguments, with one pair for each predecessor
basic block of the current block. Only values of first class type may be
used as the value arguments to the PHI node. Only labels may be used
as the label arguments.
There must be no non-phi instructions between the start of a basic block
and the PHI instructions: i.e. PHI instructions must be first in a basic
block.

For the purposes of the SSA form, the use of each incoming value is
deemed to occur on the edge from the corresponding predecessor block

66

to the current block (but after any definition of an "invoke" instruction’s
return value on the same edge).

Listing 8: IR phi syntax

<result> = phi <ty> [<val0>, <label0>], ...

3.3 On the suitability of compiler LLVM IR as a VM byte-
code

It should be obvious from the above description that LLVM is a highly
capable framework in support of building compiler toolchains and runtime
environments. In this work we are interested specifically on the LLVM IR’s
use as a Virtual Machine input bitcode. Despite efforts in using it as such and
the resulting Virtual Machine, it can be argued that it is not suitable for this
task, namely that of building a platform. Building a platform meaning here
that any system where LLVM IR is a format in which programs are stored
or transmitted for subsequent use on multiple underlying architectures.

LLVM IR initially seems like it could well serve that purpose. It can
appear highly attractive and it’s documentation slightly misleading requiring
an actual implementation effort to uncover these faults during development.
There are several ways in which LLVM IR differs from actual platform ISAs,
both high-level VM virtual bytecodes like Java or .NET and actual low-level
ISAs like x86 or ARM.

First, the boundaries of what capabilities LLVM provides are vague.
LLVM IR contains:

• Explicit target-specific ABI code. In order to interoperate with native
C ABIs, LLVM requires front-ends to emit target-specific IR. This is
sometimes avoidable, but not always.

• Explicitly target-specific features. As an example, x86_fp80’s who’s
value in the IR’s as a compiler IR is undeniable.

• Implicitly target-specific features. The most notable example being all
the different Linkage kinds. These are all practically just gateways to
features in real linkers, and native linkers vary quite a lot hence they
are again required.

• Target-specific limitations in at first seemingly portable features. How
big can the alignment be on an alloca? Or a GlobalVariable? What’s
the widest supported integer type? LLVM’s various backends all have
different answers to questions like these without a consistent implemen-

67

tation between them. This could possibly be avoided, but not without
considerable collaboration among backend developers.

Even ignoring the fact that the quality of the backends in the LLVM source
tree varies widely and specific IR feature implementation diverges, the ques-
tion of "What can LLVM IR feature XY do?" has many backend-specific
facets, sometimes unavoidably for it’s use as a compiler IR.

Secondly, and perhaps more fundamentally, LLVM IR is a fundamentally
vaguely specified language. It has:

• Undefined Behavior. LLVM is, at its heart, a C compiler, and Undefined
Behavior is one of its cornerstones.
High-level VMs like JVM or .NET typically raise predictable excep-
tions when they encounter program errors. Actual physical machines
typically log their behavior extensively. LLVM IR is fundamentally dif-
ferent from both: it describes a bunch of rules to follow and then offers
no description of what happens when they are violated. There are some
analysis and correctness tools that can help locate violations of the rules
in IR. But they can’t find all undefined behaviors across code possibly
generated by any front-end. There are even some kinds of undefined
behavior that lack a method of detection for.

• Intentional vagueness. There is a strong preference for defining LLVM
IR semantics intuitively rather than formally. This is very practical;
formalizing the language is a considerable task and it reduces future
flexibility. This would require even forbidding certain edge cases some
transformations or backends rely on, requiring significant rewrites.

In stark opposition to Java’s "write once, debug everywhere", consider the
situation in LLVM IR, which is fundamentally opposed to even trying to
provide that level of consistency. Furthermore, allowing optimizers to do
target or subtarget specific optimizations, the chances of exposing edge cases
and undefined behavior is increased.

Thirdly, LLVM is a low level system that doesn’t represent high-level
abstractions natively. It forces them to be partitioned up into many small
low-level instructions.

• It makes LLVM’s Interpreter really slow. The amount of work per-
formed by each instruction is relatively small, so the interpreter has
to execute a relatively large number of instructions to do simple tasks.
Languages built for interpretation such as Lua do more with fewer in-
structions, and have lower per-instruction overhead.

• Similarly, it makes really-fast Just in time compiling very hard. LLVM

68

is fast compared to some static C compilers, but it’s not fast com-
pared to runtimes specifically built for JIT compilation. Compiling
one LLVM IR instruction at a time can be relatively simple, but this
approach generates very slow code. Fixing this requires recognizing pat-
terns in groups of instructions, essentially complete optimization passes
at runtime. This works, but it’s more involved since it forces use of op-
timizations not designed for runtime.

In conclusion, consider the writing of an independent implementation of
an LLVM IR Platform. The set of capabilities it should provide will end
up depending on a combination of front-end and backend for which it is
designed for. Semantic details would be vague, it would have to support
features which require complicated infrastructure to implement which are
rarely used. And to provide lightweight execution, it would need to translate
the IR into something else better suited for it first. LLVM isn’t actually
a virtual machine. It’s widely acknowledged that the name "LLVM" is a
historical artifact which doesn’t actually represent what LLVM actually grew
to be. LLVM IR has actually evolved into a compiler IR.

69

4 Proposed Architecture and Design

To recap, the motivation for this work is to enable capitalizing on the bene-
fits of heterogeneous embedded systems. We have elaborated on the utility
of heterogeneous systems and the complexity they bring in real cost and
development effort. We have considered the components and candidate im-
plementation architectures of Virtual Machines and given a brief overview of
the LLVM framework and it’s capabilities.

In this section we draw the detailed requirements for a solution to the is-
sues presented in the introduction. After a short presentation of the solutions
and architectures initially considered, we present the proposed architecture:
the Portable Heterogeneous llvm Ir Virtual Machine, PHIVM. The imple-
mentation of PHIVM is outlined along with the rationale behind related
design decisions and a reconsideration of the stated requirements.

We can now formulate the requirements to a possible solution before
discussing the proposed architecture and design pattern.

4.1 Requirements

Considering that the industry has not yet arrived to a consensus for manag-
ing the inherent complexity of heterogeneous systems, simply because only
recent advances in integration and device programmability has made them
prevalent. We require a solution to satisfy the following requirements to
inform further research investigating such systems in the form of a design
pattern or methodology, robust abstraction or reference implementation.

• Architecture portability The proposed solution should be easily
ported to a wide variety of already existing or possibly useful future
platforms. That is, the actual proposed software should be portable
across ISAs and not be restricted to a certain software stack be it ex-
otic libraries or OS dependencies.

• Application portability To enable evolution in the underlying plat-
form the architecture should allow for applications to be easily, or ideally
seamlessly adapted to changes in the hardware. This is sought to es-
cape software development costs on porting while allowing for updates
to the platform while it is deployed.

• Task migration It should allow for applications to move within the
system’s ISAs to satisfy different system behaviors. Crucially this mech-
anism should allow for runtime task migration at arbitrary application
execution points. This should ideally be possible at several points in

70

the hosted application execution i.e. not restrictively at task or func-
tion level. The management of this functionality should allow to be
performed by the user so that it can integrate with other parts of the
system.

• Flexibility It should not restrict other design choices in the system.
This means that it should not require for example specific communica-
tion, message passing frameworks, debugging/logging tools etc.

• Embeddability It should be easily embeddable without significant
changes in the existing software stack and hardware platform. This
implies a usable API embeddable in software as a simple library.

• Development effort It should overall reduce development effort in
deploying and maintaining applications in heterogeneous systems.

4.1.1 Architecture portability

The most important requirement to support heterogeneity is portability of
the proposed architecture itself. In the solution considerations subsection an
initial effort that failed in this regard is described.

The proposed solution should be easily ported to a wide variety of already
existing or possibly useful future platforms. That is, the actual proposed VM
should be portable across ISAs and not be restricted to a certain software
stack or hardware configuration. This is closely coupled with flexibility where
the least amount of assumptions should be made in order to allow the user
to fit the architecture to their own needs.

4.1.2 Flexibility and embeddability

It is required that the architecture does not restrict other design choices in
the system. The possible configurations of the target heterogeneous systems
are too many to predict and explicitly provide support for. It is understood
that surely a task management functionality would exist along with some
form of inter-process and/or inter-processor communication. The architec-
ture should not assume a specific design pattern or framework for this and
allow the user to adapt his own, via simple wrappers and essentially boiler-
plate code.

For this to be possible data structures to be communicated should be
simple and well defined. Similarly the provided API should be lean to allow
easy embeddability as well as being "hackable" to allow for adaptation to
the user’s needs. Although a vaguely defined term, "hackability" is well
understood by most intended users of such a system. It implies the ability for

71

the architecture to be easily understood and the codebase being manageable,
allowing custom modifications by the end user to fit their needs.

In flexibility and avoiding restriction to other parts of the system we
also include an almost free choice of input language. Perhaps the most
important design decision, the programming language of the system is usually
taken for granted, being restricted by frameworks or design patterns to be
used in software. But in the general trend towards higher level languages,
the architecture should support a wide array of candidate input languages.
Obviously though, for practical reasons C/C++ support should be the main
concern and exhibit complete robustness.

4.1.3 Application portability

To enable evolution in the underlying platform the architecture should allow
for applications to be easily, or ideally effortlessly adapted to changes in
the hardware. This to escape software development costs on porting while
allowing for updates to the platform while it is deployed.

It is a fact that in general, software is never really finished and will have
to adapt to future and unplanned behaviors. The same is true for complex
hardware configurations, especially so when hosted on reprogrammable logic.
To enable updates to the hardware, the architecture should allow for software
to be ported to the new hardware configuration with minimal porting effort.

4.1.4 Exposing internal state for runtime application migration

As previously discussed, typically mixed constraints in system requirements
have solutions residing on the opposite sides of tradeoffs. A popular tool to
combat this is partitioning the application functionality on a heterogeneous
platform. To empower this design pattern and adapt to different required
behaviors of the system the architecture should provide a task migration
capability.

This mechanism should allow applications to be moved around different
processing elements of the system. Optimally at arbitrary points of the
hosted application execution, this should be done seamlessly and without
the hosted application’s knowledge.

The management of this functionality should allow to be performed by
the user so that it can integrate with other parts of the system. Furthermore
the user should be able to provide their own rules for this mechanism to
service their intended behavior profile. To enable this, hosted application
runtime information should be exposed. In this way the user can build

72

inspection tools to dynamically migrate the hosted application whenever it’s
behavior triggers it.

73

4.2 Solution considerations

In the beginning of this work it was clear that to meet the requirements
posed, a Virtual Machine would be required. But the requirement for a
flexible solution disallowed the use of mature VMs such as the JVM or highly
embeddable and small VMs such as the lua VM. Such a choice would restrict
the input language of the system to Java and lua respectively. Moreover,
although the JVM is very mature and widely used, besides the input language
problem it carries dependencies making porting to new platforms prohibitive
failing on yet another requirement.

The other VM considered, the Lua VM, was investigated because of it’s
porting ease, being self contained with almost no dependencies on libraries
and OS. The lua VM is also very easily embeddable in user code and a mature
project overall. Eventually it too was rejected due to the input language
(Lua) being too high level without alternative bytecode generators.

The requirement for flexibility in input languages, that is bytecode gen-
erating frontends, led to LLVM. As mentioned in the chapter describing it,
LLVM frontends exist for practically all mainstream languages due to it’s
popularity, but there also exists a gcc backend targeting LLVM bytecode
called dragonegg1. This practically makes gcc compiled languages also can-
didates for virtualization.

The LLVM framework provides an API for constructing specialized execu-
tion engines for LLVM bitcode(IR). This was used to construct an execution
engine embedded in a virtual machine manager with the purpose of porting
to embedded platforms. In the following listing we present as an example a
part of the code of this effort to set up an LLVM Virtual Machine interpreter
execution engine.

Listing 9: Example use of the LLVM framework for constructing an inter-
preter
LLVMContext &Context = getGlobalContext();
atexit(do_shutdown); // Call llvm_shutdown() on exit.
/∗LLVM initialization
.
.
.
∗/
// Load the bitcode...
SMDiagnostic Err;
Module ∗Mod = ParseIRFile(InputFile, Err, Context);

1Dragonegg(http://dragonegg.llvm.org) is a gcc backend that emits LLVM IR allowing
for any language with a gcc frontend to produce LLVM bitcode

74

if (!Mod) {
Err.print(argv[0], errs());
return 1;

}
EngineBuilder builder(Mod);
builder.setMArch(MArch);
builder.setMCPU(MCPU);
builder.setMAttrs(MAttrs);
builder.setRelocationModel(RelocModel);
builder.setCodeModel(CMModel);
builder.setErrorStr(&ErrorMsg);
builder.setEngineKind(ForceInterpreter

? EngineKind::Interpreter
: EngineKind::JIT);

// If we are supposed to override the target triple, do so now.
if (!TargetTriple.empty())

Mod−>setTargetTriple(Triple::normalize(TargetTriple));

CodeGenOpt::Level OLvl = CodeGenOpt::Default;
switch (OptLevel) {

default:
errs() << argv[0] << ": invalid optimization level.\n";
return 1;

case ’ ’: break;
case ’0’: OLvl = CodeGenOpt::None; break;
case ’1’: OLvl = CodeGenOpt::Less; break;
case ’2’: OLvl = CodeGenOpt::Default; break;
case ’3’: OLvl = CodeGenOpt::Aggressive; break;

}
builder.setOptLevel(OLvl);
TargetOptions Options;
Options.UseSoftFloat = GenerateSoftFloatCalls;
if (FloatABIForCalls != FloatABI::Default)

Options.FloatABIType = FloatABIForCalls;
if (GenerateSoftFloatCalls)

FloatABIForCalls = FloatABI::Soft;

// Remote target execution doesn’t handle EH or debug registration.
if (!RemoteMCJIT) {

Options.JITEmitDebugInfo = EmitJitDebugInfo;
Options.JITEmitDebugInfoToDisk = EmitJitDebugInfoToDisk;

}

builder.setTargetOptions(Options);

75

EE = builder.create();
if (!EE) {

if (!ErrorMsg.empty())
errs() << argv[0] << ": error creating EE: " << ErrorMsg << "\n";

else
errs() << argv[0] << ": unknown error creating EE!\n";

exit(1);
}
// If the user specifically requested an argv[0] to pass into the program,
// do it now.
if (!FakeArgv0.empty()) {

InputFile = FakeArgv0;
} else {

// Otherwise, if there is a .bc suffix on the executable strip it off, it
// might confuse the program.
if (StringRef(InputFile).endswith(".bc"))

InputFile.erase(InputFile.length() − 3);
}
// Add the module’s name to the start of the vector of arguments to main().
InputArgv.insert(InputArgv.begin(), InputFile);

// Call the main function from M as if its signature were:
// int main (int argc, char ∗∗argv, const char ∗∗envp)
// using the contents of Args to determine argc & argv, and the contents of
// EnvVars to determine envp.
//
Function ∗EntryFn = Mod−>getFunction(EntryFunc);
if (!EntryFn) {

errs() << ’\’’ << EntryFunc << "\’ function not found in module.\n";
return −1;

}
// If the program doesn’t explicitly call exit, we will need the Exit
// function later on to make an explicit call, so get the function now.
Constant ∗Exit = Mod−>getOrInsertFunction("exit", Type::getVoidTy(Context),

Type::getInt32Ty(Context),
NULL);

// Reset errno to zero on entry to main.
errno = 0;
if (NoLazyCompilation) {

for (Module::iterator I = Mod−>begin(), E = Mod−>end(); I != E; ++I) {
Function ∗Fn = &∗I;
if (Fn != EntryFn && !Fn−>isDeclaration())

EE−>getPointerToFunction(Fn);
}

76

}
int Result;
// Trigger compilation separately so code regions that need to be
// invalidated will be known.
(void)EE−>getPointerToFunction(EntryFn);
// Clear instruction cache before code will be executed.
if (RTDyldMM)

static_cast<SectionMemoryManager∗>(RTDyldMM)−>invalidateInstructionCache();

// Run main.
Result = EE−>runFunctionAsMain(EntryFn, InputArgv, envp);

// Like static constructors, the remote target MCJIT support doesn’t handle
// this yet. It could. FIXME.

// If the program didn’t call exit explicitly, we should call it now.
// This ensures that any atexit handlers get called correctly.
if (Function ∗ExitF = dyn_cast<Function>(Exit)) {

std::vector<GenericValue> Args;
GenericValue ResultGV;
ResultGV.IntVal = APInt(32, Result);
Args.push_back(ResultGV);
EE−>runFunction(ExitF, Args);
errs() << "ERROR: exit(" << Result << ") returned!\n";
abort();

} else {
errs() << "ERROR: exit defined with wrong prototype!\n";
abort();

}
return Result;

Ultimately after considerable effort in building this virtual machine man-
ager, this architecture was abandoned for the following reason: The most
important requirement to support heterogeneity is portability of the virtual
machine itself.

As a test of the development effort to do this with a VM using the LLVM
API, it was attempted to port LLVM’s libraries unto an ARM platform. This
was of course a test because there are already available binaries for LLVM on
ARM. Despite this ARM served as a "dry run" to assess the developer time
needed for this. After considerable time and effort, porting was succesfull
on ARMv6 with linux but not without considerable changes in the libraries’
build system. As a result it was considered unreasonable to expect the
resulting platform users to expend such porting effort for the multiple ISAs

77

Figure 24: Instances of PHIVM in a Heterogeneous system

of their heterogeneous platform. This difficulty in porting of the LLVM
framework is a result of its composing libraries being closely coupled. In
practice one cannot only port e.g. the runtime parts (lli,jit) of the libraries
only, without having to also port frontend related tools and libraries.

This failed attempt, served as a valuable lesson towards a final solution.
This being that portability is not easily attained and it’s difficulty scales
exponentially with the size and complexity of software.

The next effort involved a simplified bytecode similar to [2]. This byte-
code was inspired by Lua bytecode and was designed to be simple with the
intention to make virtualization easier and low in memory usage. Develop-
ment on an llvm backend to produce it was started, but not completed since
the exploration process led to the realization for the current approach: why
would we emit a custom bytecode from llvm IR and not interpret the IR
directly?

4.3 The PHIVM approach

The proposed architecture to fulfill the stated requirements partially or fully
is based on the Portable Heterogeneous llvm Ir Virtual Machine, PHIVM.
PHIVM rests inside each processing element of the heterogeneous platform
as a process on the operating system. It executes application code compiled
to LLVM IR bitcode. It makes the least possible assumptions about the
surrounding software and hardware platform to allow the platform designer
to embed it within existing infrastructure. Furthermore, it exposes hosted
application state to enable task migration guided by user designed tooling
across the existing platform communication layer.

78

4.3.1 Allowing embedding

To be a viable design tool, PHIVM is structured as a library, intended to
be embedded inside an existing code base. The library API exposes an
initialization function and a main call to execute hosted bitcode. To use them
the end user allocates in memory and passes to PHIVM the data structures,
to be used during runtime, which are specified in the included headers. This
is so that the user has complete control over the specifics of it’s deployment
and the way that an instance of PHIVM is hosted and managed natively.

4.3.2 Application migration and use of existing communication
layers

To utilize the application migration capability, control of all the runtime
context of hosted IR is given to the user. These data structures populated
by the SSA IR registers(stack) memory(heap) and call stack of the hosted
program are in the control of the user. The hosted program is using these
virtualized versions of the stack, heap and call stack which allows for it to be
interrupted and transferred to another instance of PHIVM without realizing
it. The specifics of serialization and moving of the data structures are left
to the user but have been designed to be very simple by the use of simple
underlying data types, relatively flat hierarchy and lack of native pointers.

This mechanism is intended to avoid restriction by assuming a certain
communication scheme. Even allowing serialization to plaintext and transfer
by writing to a socket, this can accommodate most communication configu-
rations between the processors comprising the platform.

Revisiting the previous figure of an abstract deployment of PHIVM, to
put application migration in context consider the following:

79

Figure 25: Application Migration over PHIVM instances

4.3.3 The case for a ground up VM design

The purpose of PHIVM is to eventually arrive at a reference implementation
from which we can learn about how to meet the stated requirements. VM
construction is not an undertaking to be taken lightly. Typically done by
corporations employing large groups of specialized engineers, they reach ma-
turity in a matter of years as in the case of the JVM(Sun) or Dalvik(Google)
or by large communities of experienced researchers as with Lua or Perl.

To be able to expose internal application state and maintain VM and
application portability meant no existing VM implementation could be ex-
tended or modified as discussed in 4.2. Since PHIVM serves the narrow
purpose of a reference implementation, needing simplicity in it’s design to
allow end users to adapt it to their needs which would not be possible by
extending an existing full-featured complex framework. In this vain PHIVM
was designed from the ground up.

4.3.4 Effects of using the LLVM framework

To enable hosted applications to initially be in a wide array of input lan-
guages, PHIVM executes LLVM bitcode. The input high level code is stati-
cally compiled with an LLVM front-end and distributed in the form of bitcode
for execution in PHIVM. As discussed in detail in chapter 3, there are many
stable and mature LLVM front-ends and many more under development.

80

Through this, PHIVM is able to execute applications initially written in for
example C/C++(clang/clang++) java(via the java frontend2) Python3 and
Haskell4. Most importantly, we are concerned with clang and clang++ since
C/C++ are the most likely languages to be used. To testify to their matu-
rity consider that FreeBSD, the OS focused on stability and security recently
switched5 it’s default compiler to clang.

Our use of LLVM infrastructure frontends, brings another significant ad-
vantage: The use of the target independent optimization passes for LLVM
bitcode. Since initial program code is passed from frontends constructed with
LLVM, they can and are passed through a series of IR to IR optimization
transformations ranging from simple dead code elimination up to constant
propagation, alias analysis and more. This significant advantage was the
main reason for the choice of LLVM as input bitcode, the wide range of
usable and mature target independent optimization. More practically, it
should be noted that because these are used across all frontends constructed
with LLVM, they are very advanced, mature and constantly evolving.

Despite problems related to using LLVM IR as input bitcode to a virtual
machine raised in subsection 3.3, the above benefits are too great to ignore
and are a main contributor in the viability of PHIVM.

4.3.5 Component reuse from the LLVM framework

For the purpose of future proofing against future changes in the LLVM IR a
component of the LLVM library was reused, the IR parser. Due to it’s lack of
documented strict semantics of instructions and formal grammar, construct-
ing a complete parser of the IR from documentation alone is very difficult.
It would require reverse engineering IR semantics from their frontend use,
which was initially attempted but ultimately abandoned.

Regarding the portability of this code from LLVM and the effort required
for compiling it to a new architecture, it required significant adaptation. The
LLVM build system for this component was rewritten and it’s implementa-
tion code refactored. In the case of major IR language changes in the future,
a patch can be extracted and applied to the latest LLVM parsing component
source without further changes to PHIVM. This way forward compatibility
with LLVM IR is achieved along with easy porting to new architectures.

2https://llvm.org/svn/llvm-project/java/trunk/docs/java-frontend.txt
3http://pypy.org/
4http://www.haskell.org/ghc/docs/7.4.2/html/users_guide/code-generators.html
5
http://www.phoronix.com/scan.php?page=news_item&px=MTEwMjI

http://www.phoronix.com/scan.php?page=news_item&px=MTEwMjI

81

4.4 Design decisions in the implementation of PHIVM

In this section we outline some notable design and implementation decisions
taken in PHIVM. In general, simplicity was driving many design decisions
for two reasons: As previously noted the construction of an execution engine
is a big undertaking, so simpler solutions were favored to arrive to a reference
implementation in reasonable time. For PHIVM to cover a broad range of
uses, it is flexible through simplicity so that it can be easily modifiable by
end users.

Instruction Dispatch – The heart of PHIVM, the instruction inter-
preter, is based on switch dispatch. Although the first version was using
the direct dispatch mechanism, it was eventually abandoned in favor of the
simpler and more portable switch dispatch. The labels as values mechanism
direct dispatch is based on, is not ANSI standards compliant C and therefore
not considered portable.

Listing 10: Part of the dispatch loop (trimmed)
std::vector<Instruction>::iterator Vpc;

Instruction currInst;
Vpc = BBtoexec−>BBInstructionsV.begin();
currInst = ∗Vpc;
for (;;) {

currInst = ∗Vpc;
debugLog("opcode " << currInst.opcode);
switch (currInst.opcode) {
case OpCodeE::OP_ADD: {

switch (currInst.type) {
case Types::T_CHAR:

getPtrSym(currInst, symContext, 0)−>byteVal =\
getPtrSym(currInst, symContext, 1)−>byteVal +\
getPtrSym(currInst, symContext, 2)−>byteVal;

debugLog(getPtrSym(currInst, symContext, 0)−>byteVal);
break;

case Types::T_SHORT:
getPtrSym(currInst, symContext, 0)−>shortVal =\
getPtrSym(currInst, symContext, 1)−>shortVal +\
getPtrSym(currInst, symContext, 2)−>shortVal;

debugLog(getPtrSym(currInst, symContext, 0)−>shortVal);
break;

case Types::T_INT:
getPtrSym(currInst, symContext, 0)−>intVal =\
getPtrSym(currInst, symContext, 1)−>intVal +\
getPtrSym(currInst, symContext, 2)−>intVal;

debugLog(getPtrSym(currInst, symContext, 0)−>intVal);

82

break;
\∗
.
.
.
∗/

case OpCodeE::OP_NOP: {
(++Vpc);
break;

}
default: {

debugLog(currInst.opcode << "\n");
UnrecoverableErr("Invalid instruction", INSTR_ERR);

}
}

}
UnrecoverableErr("interpreter unreachable", BB_LOOP_ERR);

}

In this listing of some of the dispatching code in PHIVM a few things are
visible:

• The instructions are matched in a switch, containing implementations
for different types.

• After each execution of an instruction the virtual program counter is
incremented.

• PHIVM having evolved from a direct dispatch interpreter it can easily
be reverted back by removing the endless loop and replacing the switch
statement with gotos. This can be done without further changes to the
instruction bodies.

• There are debug macros included for most operations, which are enabled
by a debug build.

In this kind of VM implementation practice, the layout of the switch and
the code implementing the instruction operation results in eventually jump-
ing to the compiler generated code for the instruction operation originally
compiled for the code of the interpreter.

In memory representation of IR – The input IR is initially parsed
with the parser component modified from LLVM and consequently stored
in a data structure convenient for interpretation. As the following listings
show, an enumeration is used to recognize the opcodes which are then stored
in a vector of instructions where an instruction is a class in the second
listing. Basic blocks along with their labels as well as functions, are identified

83

in a similar way, with std::vectors containing their comprising instructions
and basic blocks respectively. It should be noted that basic blocks are also
recognized by the terminator instructions in their end which are treated
appropriately to resolve a possible upcoming phi instruction in the basic
block that follows it.

Listing 11: A snippet of the opcodes class

enum class OpCodeE {

OP_ADD,
//<result> = add <ty> <op1>, <op2> ; yields {ty}:result
//<result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
//<result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
//<result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
OP_FADD,
//<result> = fadd [fast−math flags]∗ <ty> <op1>, <op2> ; yields {ty}:result
OP_SUB,
//<result> = sub <ty> <op1>, <op2> ; yields {ty}:result
//<result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
//<result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
//<result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
OP_FSUB,
//<result> = fsub [fast−math flags]∗ <ty> <op1>, <op2> ; yields {ty}:result
OP_MUL,
//<result> = mul <ty> <op1>, <op2> ; yields {ty}:result
//<result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
//<result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
//<result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
OP_FMUL,
//<result> = fmul [fast−math flags]∗ <ty> <op1>, <op2> ; yields {ty}:result
OP_UDIV,
//<result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
//<result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
OP_SDIV,
//<result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
//<result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
OP_FDIV,
//<result> = fdiv [fast−math flags]∗ <ty> <op1>, <op2> ; yields {ty}:result
OP_UREM,
//<result> = urem <ty> <op1>, <op2> ; yields {ty}:result
OP_SREM,
//<result> = srem <ty> <op1>, <op2> ; yields {ty}:result
OP_FREM,

84

//<result> = frem [fast−math flags]∗ <ty> <op1>, <op2> ; yields {ty}:result

OP_SHL,
//<result> = shl <ty> <op1>, <op2> ; yields {ty}:result
//<result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
//<result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
//<result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
OP_LSHR,
//<result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
//<result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
OP_ASHR,
//<result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
//<result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
OP_AND,
//<result> = and <ty> <op1>, <op2> ; yields {ty}:result
OP_OR,
//<result> = or <ty> <op1>, <op2> ; yields {ty}:result
OP_XOR,
//<result> = xor <ty> <op1>, <op2> ; yields {ty}:result
...
...

Listing 12: The instruction class

struct Instruction {
OpCodeE opcode;
cmp_cond cond;
Types type;
std::vector<Op> opsV;

};

Tagged unions – All values including registers and memory are held
in tagged unions. Although indirectly a tagged union comprises usually of
a struct containing a value inside a union such as the one in the following
listing as well as a tag, noting its type for accessing the union correctly.
In PHIVM an equivalent method is used albeit without an explicit struct.
Values are held in a union and type information is held with a type tag but
they are implicitly matched, via the index in the instruction operands vector.
This is such as to allow the same functionality to service other IR objects
such as labels and instruction options.

Listing 13: PHIVM Value union (trimmed)

85

union Value {
byte_ty byteVal;
short_ty shortVal;
int_ty intVal;
float_ty floatVal;
double_ty doubleVal;
void_ptr_ty ptrTy;
Types typeVal;
std::vector<Value> vectorVal;

\∗
∗ ...
∗/

func ∗ptrFunc;
double VmemPtr;
BB ∗ptrBB;
//std::string symbolID;

};

Listing 14: PHIVM type tags (trimmed)

enum class Types {
T_CHAR,
T_SHORT,
T_INT,
T_FLOAT,
T_DOUBLE,

\∗
∗ ...
∗/

T_VECTOR,
T_BBPTR,
T_LABELPTR,
T_VOID,
T_PTR

};

SSA registers and virtual memory – Registers are stored in an stl
vector of Values with their type and scope information held by the instruction
that uses them. Similarly the virtual memory stores type information and
values in an stl vector which is controlled by memory instructions in the
IR. The use of tagged unions and stl vectors is repeated in other aspects of
PHIVM for the following reasons:

• Stl vectors are mostly portable and recognized by type aware message

86

passing tools.

• As a data structure it is the most easily serializable and target data
layout independent.

• The stdc++ native implementation is responsible for the details of mem-
ory management.

Listing 15: Operand struct scope enum

enum scopeE {
S_GL,
S_FN,
S_BB

};

struct Op {
scopeE scope;
int indx;
int length;

};

In a final note, the above type-value-index pattern is repeatedly used
across PHIVM. It is used to avoid pointers in the data structures which are
meant to be transferred for task migration. This pattern replaces the use
of native pointers which are of course not portable, albeit with a certain
overhead.

87

5 Design evaluation

In this section we consider the initial requirements stated in the previous
chapter and how PHIVM evaluates against them. We discuss the challenges
in evaluating PHIVM, it being a framework rather than an implementation
on a specific platform. Continuing we present a comparison with similar
tools that could perform some of the functionalities of PHIVM in certain
configurations. This section closes with a short note on how and whether
PHIVM can prove valuable in further exploration of this domain.

5.1 Reconsidering the initial requirements against PHIVM

In the previous section, a set or requirements were posed, for a solution to
the complexities of heterogeneous systems. These were in short:

• Architecture and application Portability

• Flexibility and embeddability

• Task migration

• Development effort

Concerning Architecture and application portability:
PHIVM succeeds in this regard, architecture portability being a design con-
cern from the start in it’s implementation. It carries no dependencies to other
software that cannot be easily resolved with an already provided mechanism
i.e. the parsing component reused from LLVM.

Application portability being a mostly inherent property of Virtual Ma-
chines, is also satisfied. In the typical abstraction a virtual machine pro-
vides, hides hardware implementation details from hosted software, allowing
already noted benefits such as hardware platform evolution, independent of
deployed software.

Flexibility and embeddability of the implementation:
Being a framework, that is software purposed to be used to build other
software, it satisfies embeddability, providing a clean API and exposing it’s
inner workings only when necessary to make wrapping it in existing software
easy.

Flexibility though is only partially satisfied. Although PHIVM makes
only generalized assumptions to enable cooperation with other software it is
restricted in it’s assumption that it will run inside a linux environment. This
is though only an artificial restriction, since there is no practical reason for
not supporting any real time operating systems or baremetal deployment.
This restriction emerges from it’s development and testing being done on

88

linux. Besides this, it does not restrict restrict the communication layer or
the system or the input language. Unusually for VMs it allows practically
any mainstream programming language to provide executable bitcode by
using LLVM as a frontend.

Task migration:
Task migration is also possible with PHIVM, by it being designed to ex-
pose hosted application state upstream to the software that embeds PHIVM.
Despite this we consider this requirement only partially satisfied. The re-
quirement of flexibility somewhat limits PHIVM to the extent where it can
support migration. This is due to it not requiring a specific serialization or
communication interface present in the system, it cannot provide a complete
migration solution, leaving parts of it to be fulfilled by the user of PHIVM
with the communication framework or memory topology they have available.

Development effort:
In this requirement it fully succeeds by allowing platform developers to sep-
arate hardware maintenance and updates and software maintenance and up-
dates. This is again a benefit of it being a Virtual Machine. Application
development can rest on the virtualized abstraction PHIVM provides, with-
out maintaining complex cross-compilation toolchains for every part of the
heterogeneous system.

It is worthy to note that there exists a tradeoff between, task Migration
and development effort against flexibility of the implementation. In both
cases the later was chosen. We preferred to attempt increased flexibility
rather than restricting platform properties to propose a more complete task
migration solution. As for development effort it would be expended anyway
for deploying the platform, so there was no comparable benefit to make
platforms on which PHIVM is viable, more narrow.

5.2 Considerations on testing

PHIVM is a reference implementation of a framework making it quite difficult
to formally benchmark. There are a few reasons for this:

• Being a framework it is purposed to enable building a certain class of
software. This means that a complete application would have to be built
utilizing a subset of the provided capabilities. Then this application
would have to be formally benchmarked against something else.

• But it’s capabilities are largely novel in the domain of embedded sys-
tems and not usable or required in general purpose computing i.e. ho-
mogeneity is the standard and heterogeneity has a completely different
meaning (software using both CPU and GPGPU).

89

There is no other readily available framework or similar application for
PHIVM to compare against. Even if a platform was built using PHIVM it is
unclear which parameters would be useful to actually measure. The reason
being that a platform built with PHIVM is closely coupled with the other
parts comprising it. This makes it difficult to separate the contributions to
performance of PHIVM or the other technologies that platform is built with.

Consider as an example, trying to measure the application migration
overhead using PHIVM, in a hardware platform of two different ISAs con-
nected with message passing DMA buffers managed by OpenMPI. There are
at least four contributors to this namely the size of the hosted application
context, the latency of the buffering and locking mechanism in hardware,
the latency of OpenMPI and lastly the overhead of PHIVM. It is not clear
how these could be separated and normalized to produce any meaningful
conclusion.

Even if the above problem, of isolating PHIVM’s impact on system be-
havior, were somehow solved there is still the issue of having nothing to
compare against. That would again require another implementation of the
same functionality but implemented somehow differently without PHIVM.
There is no readily available framework for this, which would result in a
highly specialized, custom and complex system further obscuring any mean-
ingful results.

Such a complex and customized implementation simply for the purpose of
comparison, escapes the scope of this thesis both in time and complexity. In
place of formal benchmarking and comparison for the above reasons, what
follows is a feature comparison of PHIVM and other software that could
possibly be modified to serve a similar purpose.

90

5.3 Feature and functionality comparison

In this section we consider the features and functionality provided by PHIVM
through a comparison. For the reasons outlined above, formalized bench-
marking is not applicable due to the novelty of PHIVM’s capabilities and
the difficulty in extracting meaningful conclusions from such testing.

It is arguably more valuable to consider PHIVM’s properties through its
compliance to the requirements that emerged from our discussion of a viable
platform. Despite this, to make the PHIVM approach more clear we put it
in the context of existing tools and frameworks that could possibly serve a
similar purpose in some hardware platform configurations. The tools consid-
ered are virtual machines or frameworks that could be used to build them.
They could alternatively be used with some modifications or extensions in
similar scenarios.

On including Lua it should be noted that although not being a framework
for building VMs, it is included as a representation of a family of similarly
virtualized languages(Perl, Python etc.). Its design is also considered viable
for deployment in embedded systems and as such it was considered initially
in chapter 4.

Specifically in the context of managing the complexity of heterogeneous
systems we consider:

• PHIVM

• The Lua VM

• lli the LLVM infrastructure interpreter

• The default JVM

Figure 26: Feature comparison table

91

To put these properties better into context for the VM suitability for
deployment in an embedded system:

• Heterogeneity Support – PHIVM has been developed with this in
mind, basing all design decisions around it. The other frameworks con-
sidered could possibly be modified for deployment in a heterogeneous
platform but not without considerable modifications. Such modifica-
tions being an afterthought, would very likely severely limit their other
features, making them practically unusable.

• Task migration – Task migration is a novel capability, especially
on heterogeneous systems. PHIVM provides this by exposing hosted
application state at basic block granularity, allowing migration at basic
block boundaries. It is possible that lli could be modified to allow
equivalent functionality, at the function level, but not without severely
limiting or disabling other features. Namely lli’s runtime optimizations
would have to be disabled since they work across function boundaries
(which is otherwise a benefit).

• Offline application optimization – By exploiting available LLVM
frontends PHIVM is equal to lli in this regard, having possibly the same
input bitcode. There is a wide array of target independent LLVM IR
transformations they can employ for optimization. On the other hand
Lua being compiled to bytecode at runtime cannot support this. Finally
the JVM being mature is also comparable with LLVM in static compile
time optimizations and hence considered equal.

• Runtime optimization and Memory overhead – Runtime opti-
mization and memory overhead are closely coupled since runtime opti-
mization expends considerable memory to transform bytecode in paral-
lel to execution. Lli and and the JVM both expend memory for run-
time optimization as well as other features not relevant to embedded
systems. JVM is more mature in this compared to LLVM simply be-
cause of its prevalence, having sparked alternate implementations and
configurations to improve this. In this regard PHIVM and the Lua VM
provide low memory overhead mostly because they are based on simple
execution engines on compact bytecode. Lua fares better though in this
tradeoff, providing the option for a trace Just in Time compiler.

92

5.3.1 System designer effort

Figure 27: Comparison of developer effort – table

Here we consider framework properties that relate to developer effort, NRE
and maintenance cost in using these in real world platforms:

• Embedability – Embeddability inside other software is relevant to
allow the system designer to consider this as an extension to their plat-
form. Most importantly it implies that such a framework can be added
after design decisions on other parts of the system and surrounding soft-
ware already built. PHIVM and Lua evaluate positively in this mostly
due to their simplicity and their being designed for use as embeddable
libraries. LLVM, although it is too a library it presents too much com-
plexity in deploying it hence requiring effort to cooperate with other
software. The default JVM is not designed for this and is intended
mainly as standalone software.

• Input programming language – No restriction for input program-
ming language in PHIVM and lli exists due to their use of frontends
built with the rest of the LLVM framework. As discussed in previous
chapters, LLVM has emerged as an excellent framework for compiler
backends, the "social" result being frontend designers use it to capital-
ize on this. The Lua VM is restricted to Lua while the JVM is designed
specifically for Java. It is actually possible to target Java bytecode
to compile a few languages(Clojure, Scala), but these are close Java

93

relatives. Using java bytecode drives decisions in their higher level fea-
tures and makes java bytecode frontends difficult to develop for other
languages, due to its being specifically designed for Java(the language).

• Portability to target platforms and deployment dependencies
– These two properties are closely tied since dependencies on other soft-
ware and functionality is the main reason for non-portability. PHIVM
and Lua owning to their simplicity are mostly independent of other
functionality offered by foreign software. Hence they are flexible and
portable due to being largely self contained. LLVM and the JVM in
antithesis, have complex dependencies on libraries and OS services.

• Deployment complexity – In overall deployment complexity PHIVM
is the simplest having been designed for this. Lua is also simple to de-
ploy and use although not in heterogeneous systems which is not its
purpose. Again we mention LLVM’s complexity which is due to its
large feature set, only a small part of which is usable in the platforms
of interest in this study. Finally JVM depends on the specific imple-
mentation on this, having many different choices in different levels of
maturity and design purpose.

5.4 Evaluation as a research and exploration enabler

In completion of this section it is worthy to note the value of PHIVM as a
research enabler. Heterogeneous systems have only recently become preva-
lent due to advances in integration and device programmability. They have
not been widely deployed to their fullest and as a result the industry has
not yet arrived in a consensus for managing their inherent complexity. This
work is experimental in the hopes that the lessons learned and the tradeoffs
uncovered here, will prove valuable to further exploration.

94

6 Conclusion

In conclusion, this work has fulfilled its purpose to provide a reference im-
plementation and present the design tradeoffs in doing so. With the do-
main analysis initially performed, the potential family of solutions converged
clearly towards a Virtual Machine after stating the requirements.

Keeping in mind the characteristics of heterogeneous embedded systems,
the requirements for a virtual machine were focused into what became PHIVM.
The tradeoffs of designing a virtual machine for our purposes emerge through
the proposed architecture and design decisions that comprise PHIVM.

The reference implementation of PHIVM exhibits the feasibility of man-
aging the complexity of heterogeneous systems and benefiting from new de-
sign methodologies in doing so, namely task migration. Perhaps most impor-
tantly by providing this capability, PHIVM enables more research towards
providing for dynamic behaviors and adaptability by migration.

Although this implementation served well for these purposes, it is not
based in production quality runtime frameworks, hence it is only intended as
a reference implementation. Its purpose is to realize the approach presented
in this study and inform further research investigating heterogeneous systems
in the form of a design pattern or methodology and appropriate abstractions.

Finally, this text could prove to be a resource to any future work on the
matter, having outlined the technologies relevant to this domain, presenting
the challenges faced throughout the work and also discussing the rationale
of the design choices.

Bibliography

References

[1] C. Lattner, “LLVM: An Infrastructure for Multi-Stage Optimiza-
tion,” Master’s thesis, Computer Science Dept., University of
Illinois at Urbana-Champaign, Urbana, IL, Dec 2002. See
http://llvm.cs.uiuc.edu.

[2] V. Adve, C. Lattner, M. Brukman, A. Shukla, and B. Gaeke, “LLVA:
A Low-level Virtual Instruction Set Architecture,” in Proceedings of the
36th annual ACM/IEEE international symposium on Microarchitecture
(MICRO-36), (San Diego, California), Dec 2003.

[3] R. Herveille, “Wishbone system-on-chip (soc) interconnection architec-
ture for portable ip cores,” tech. rep., OpenCores Organization, 2010.

[4] D. U. Becker, Efficient microarchitecture for network-on-chip routers.
PhD thesis, Stanford University, 2012.

[5] S. Nanda and T. cker Chiueh, “A survey of virtualization technologies,”
tech. rep., 2005.

[6] A. Donovan, R. Muth, B. Chen, and D. Sehr, “Pnacl: Portable native
client executables,” tech. rep., Google, Feb 2010.

[7] R. L. Bocchino Jr and V. S. Adve, “Vector llva: a virtual vector instruc-
tion set for media processing,” in Proceedings of the 2nd international
conference on Virtual execution environments, pp. 46–56, ACM, 2006.

[8] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation,” in Proceedings of the 2004 Inter-
national Symposium on Code Generation and Optimization (CGO’04),
(Palo Alto, California), Mar 2004.

[9] R. Ierusalimschy, L. H. De Figueiredo, and W. Celes Filho, “Lua-an
extensible extension language,” Softw., Pract. Exper., vol. 26, no. 6,
pp. 635–652, 1996.

[10] R. Ierusalimschy, L. H. de Figueiredo, and W. Celes, “The implementa-
tion of lua 5.0,” vol. 11, pp. 1159–1176, jul 2005.

[11] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar, “Native client: A sandbox
for portable, untrusted x86 native code,” in Security and Privacy, 2009
30th IEEE Symposium on, pp. 79–93, IEEE, 2009.

Bibliography 96

[12] D. Ehringer, “The dalvik virtual machine architecture,” Techn. report
(March 2010), 2010.

[13] M. Arnold, S. J. Fink, D. Grove, M. Hind, and P. F. Sweeney, “A survey
of adaptive optimization in virtual machines,” Proceedings of the IEEE,
vol. 93, no. 2, pp. 449–466, 2005.

[14] Y. Shi, K. Casey, M. A. Ertl, and D. Gregg, “Virtual machine showdown:
Stack versus registers,” ACM Transactions on Architecture and Code
Optimization (TACO), vol. 4, no. 4, p. 2, 2008.

[15] B. Davis, A. Beatty, K. Casey, D. Gregg, and J. Waldron, “The case
for virtual register machines,” in Proceedings of the 2003 workshop on
Interpreters, virtual machines and emulators, pp. 41–49, ACM, 2003.

[16] M. A. Ertl and D. Gregg, “The behavior of efficient virtual machine inter-
preters on modern architectures,” in Euro-Par 2001 Parallel Processing,
pp. 403–413, Springer, 2001.

[17] M. A. Ertl and D. Gregg, “Optimizing indirect branch prediction ac-
curacy in virtual machine interpreters,” in ACM SIGPLAN Notices,
vol. 38, pp. 278–288, ACM, 2003.

[18] F. Fagerholm, “Perl 6 and the parrot virtual machine,” 2005.

[19] S. J. Lee, D. K. Raila, and V. V. Kindratenko, “Llvm-chimps: Com-
pilation environment for fpgas using llvm compiler infrastructure and
chimps computational model,” Proceedings of 4th Annual Reconfigurable
Systems Summer Institute. Urbana, USA, pp. 1–10, 2008.

[20] A. W. Appel, “Ssa is functional programming,” SIGPLAN notices,
vol. 33, no. 4, pp. 17–20, 1998.

[21] H. Muhammad and R. Ierusalimschy, “C apis in extension and extensible
languages.,” J. UCS, vol. 13, no. 6, pp. 839–853, 2007.

[22] G. Wilson, “The architecture of open source applications.”

