%

POMHOEVS .
nvP$opo

A3

Diploma Thesis

A global local approach
for handling local non-linearities

Oikonomakis Lucas
November, 2013

Supervisor: Prof. Manolis Papadrakakis

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF CIVIL ENGINEERING
INSTITUTE OF STRUCTURAL ANALYSIS AND SEISMIC RESEARCH

Zografou Campus
Athens 157 80, Greece






EuxoaploTiec

H mopoloa dimhwuoatind epyacio anotehel o anotéAeoua tng TOAOUNYNG €p-
yaolag pov und v enlBredn tou x. Moavéin Hamadpaxdxrn, Kodnynty| tou
Touéa Aopootatinic tng Myorfc Hohtwv Mnyavixev EMII Enuoatodortet
eniong xat To TEAOG TWV TEOTTUYLOXGY UOLU OTOLd®Y oT1 MLy ohr HohTixdy
Mrnyovixav tou EMII, por oyol) mou o’ 6ho o mpoBAAUaTo TNg xotdpe-
PE VoL TPOCPEREL LPNAOTUTO YVwoloxd eninedo, oaAld xon vo otadel coav évog
ONUOVTIXOG YOPOSC XOWVWVIXOTONONG UTA Tal TEVTE YEOVLAL.

Apyind Yo leha va evyoplotiow Tov x. Hamadpaxdxn. Ohe v exppdow
TNV EUYVOUWOUVY HOU OTEVAVTL TOU, YLOTL UOU TPOCPERE ATAOYEQN YVWOELS,
APLEPKOE TOAUTYIO YPeOVO Xl Ue TNV Telpa Tou Ue Porinoe va Eenepdow omoLa
ouoxolla mpoéxunte. Emiong, ue evénvevoe pe to HHog Tou xan TN moowTI-
xotnta tou. To dpopd tou, To Téog Tou Yyio TN BOUAELS TOU HToY oUTd TOU
otddnxay olupayol pou divovtag You 6peln xar diddeon autd o yeovia. ‘E-
TOL, TMOTEVOVTAS OTIC IXAVOTNTES Uou e xadodhynoe o cpeuvntixnd {nTrhuaTa
OUYMAC TOU LOU QaivovTay dmiao T

Ou ek axdua va eUy oo THow Tov urodrplo Awdxtopa ArEEavdpo Ko-
eoToEdXT TTOU PE MONCE OTY HOYEld TOU TEOYEUUUATIONOU Xl VT XEPETOG
ue Bordnoe omote yperdotnxe. Euyaplotd emlong xou ta undrowma PEAN NG
gpeuvnTiXc ouddag tou x.  Ilamadpoxdxr Tou xATo XUEOUG CUVOEAUAVE UE
YeNoWee ouUBOUAES xou 0dNyieg 0TV EXTOVNOT TNG ToROVC0S OLTAWUATIXYS.
Ogethw eniong va euyaplotiow xar Tov emothito ¢iho pou Jai MEEn yia tig
YAWOGWXES TOU BlopUnoelc el Tou xeWévou Tng epyacioc.

Téhog Vo Hleha var avapépn xan tar dtopa mou Beedrixave dimia you 6ho
QUTOV TOV XAUPO XL PE TNV THPOoLGior Toug 6TNY xadnuepvoTnTa Lou Yewp 0Tt
AmOTENOVY €VOL AVAUTOCTAGTO XOUUATL UTHS TNG Olmhwpatixic. Buyopiotd to
Nixo ywr ™ ouundpeuct| pog 6Ao autdv To xawpd. Euyopiotd enlong tov A-
Ae€avdpo, TNy Tova, v Mopidvir, Tov Kwvotavtivo yio Tic OUop@ee GTLYpES
mou (foope. Oloxinpwvovtag Yo fieha vor eLYOEIGTACK TNV OWOYEVELD LOU
mou pe otneilel Gha aUTA ToL YEOVLAL.

Owcovopdnng Aouxdg

Oxtofene 2013
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Hepirngm

H pédodoc twv nenepacpévov otoryeiwy (Finite Element Method) efvor o Bo-
OXOC TUAWVOG O VEUATA UTOAOYICTIXAC UNYAVIXAC TIC TEAEUTOlES DexaETiES.
Qoluevn ano Tic e€eMEelC TNy TEYVoloYid TV UTOAOYLO TGOV, 1) Uedodog TwY
TEMEQUOUEVLY GTOLYEIY AVATTUGETAL UE PEY AT Tay UTNTA TOCO GE X OTUoiXS
600 %01 O€ EpYoLoo ENinedo. Ao TV TANIWEA TEYVOROYIDY, GYETIXMOY UE To
TENEQUOUEVA GToLyElo, TOL €youy avanTuyVel, 1 Topolcw BiThwuaTxT epyocia
enapletar o VEPUTA UTOPOREWY X0t TOAVETITEDNS avahuoTC.

Ou didpopeg teyVinég uTOPoREwY elvan LoyupdTaTa cpyaieia o Véuata U-
mohoyloTixrg unyovixis. Xwpeilovtoag eva ueydAo TeOBANU O UixpoTEQRY, Ol
TEYVIXEG QUTEC XATAPERVOUY VU XPATOUY TO UTOAOYLO TIXO XOGTOG GE OlayElplot-
o emineda. [Tapdha awta 1 emituyla Toug e€opTdTon Ao TOV TEOTO GUVOECTS
QUTOV TOV UTOTEOBANUATOY. ATO TNV GAATY), OE TERLTTWOEL, OTOU GUVOVTIUE
YWEWES XL YEOVIXEC UVOUOLOTNTES YPNOWOTOLOUVTAL TEYVIXEC TOAUETITEDNG
AVEAVOTG.

IToh) cuyvd xatd Ty e@apuoyt) TNg HEVOO0U EQYOUNUOTE UVTIUETWTOL UE
TeoBAAUATH GTo OTIO{ol OAOXANEOC O POEENS CUUTEPLPEQETAL Y PUUUIXE-EAXCTIXG
ue e€afpeot) plar TOAD QY| TEQLOYT) OTIOU 1) GUUTERLPORE. TOU ELVOL U1) YROUULXT.
Yuvdwg, oe éva tétolo mpoPBinua yweilouue TN ypeovolsToplo PéeTIoNG OE
Bruotind emPBoihouevo goptior xan AOvouue un yeouuxd yia To xde qoptio.
Av opwe to mpofBinua eivon TOAD ueydho, auty| 1 TEOGEYYLoN Elval aoUUQOEN
ano dmon UTOAOYLOTIX0) XOGTOUG.

YNy nopoloa dimhwuatixd| epyocio tpoteiveton o édodog yior TNy entiu-
O1) TETOWWY PAUVOUEVKY, OTIOU UN-YEUUUIXSE. QAULVOUEVOL EPQUVICOVTOL GE Lol UXEY
TEPLOY T} TOU (POPEN EVE O UTIONOLTOG TORUUEVEL YRUUULXOS Xt EAdc TG, T to
o%0T6 oUTO 80O LOVTEAN TEMEQUOUEVLY GTOLYElWY OnuioupyoLuvTon. Eva xado-
Ax6 TOU TEOCOUOLALEL OAOXANEO TO (POREN UE YROUUIXES ENACTIXES LOLOTNTEC,
xo Eva TOTUXG UN-YRoUUiX6 TTou avTixahoTd Tov xaJoMXS TN Un-YeouuXT
meploy . Me pio emavaknmrier) Sladixaota emtuyydveton 1 oxel3ic enthuor Tou
TEOPBAAUOTOC.

Ye authy TN pedodoloyioa xoahoOUUCTE Vo UTOAOYIGOUNE TNV UNYavixy o Ti-
BoapdtnTo plag TEPLOY MG, 1 omolo TEPLYPAPETAL OO TO GUUTARPKUN Tou Schur
TOU UNTEMOL duoxaudlag TNe Teploy A Tévew oTo cLvopo. Auty 1 oTBapdTnTa
umopet vo utohoyiotel ameudelog Pe tior GTUTIXNY CUUTOXVWOT] 1) EVOANOXTIXG VOl
TEOCEYYIOTEL UE XdTolov Mo €0X0A0 TEOTO, xo®S 0 amELVEINS UTONOYIOHOS
€YEL UEYHAO XOOTOG YiaL UeYoAa oAt AUTH 1) TEOGEYYIoT EMITUY Y dvETaL
ouvdtdlovtog TeyViXéS Uixpo-xAlpaxac (Awpldec otoryeinv) xat yeyo-xhiuaxag
(teyvixée opoyevornoinong). Eniong, auth n evodhaxtiny ebvan un napepfortix
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¢ TEOG TO TEOYEAUUUO TETEQUOUEVKY TOU E€YEL Ta 000 UOVTEAN, TOU GTUOLVEL
OTL Ta ovTéAa BeV oAAGLouV xaL UTOAOYLOMOL UTopoUY Var Yivouy amo €Toydo
TEOY QOUUATO TEMEQUCUEVY O TOLYELWY.

Audipopol TpoToL avTaAAAY G GEGOUEVLY HETAE) TMV UOVTEA®Y TapOLGLAloV-
T xS 1o Wi uEY0d0C yior TNV ETIAUCT) TEQITTMGCEWY OOV ToL TAEYUTH TWV
000 HOVTEAWY elva BLUPOPETIXG axOUa XU 6TO 6UVORO. TEAog, oL WBLOTNTES TwY
UeDOdwY pEAET@VTOL PE BUo mapadelyuaToL.

H onuaota tng pedodou ebvan OTL, eXTOC Amd TOTUXESG WUT] YRUUULXOTNTESG UTTO-
el var ypnouomotnUel xou Yot TNV ELCAYWYY| YEOUETELXMY ATEAELDY, OLUPOQETL-
AWV TAEYHATWY 1) XOTUC TUTIXGY VOUWY Tou AElmouv amd to xadohixd poviélo.
To Tomxd povtého unogel enlong va avahuvidel oe tehelwe SlopopeTind hoyiout-
%0, T0 onolo UTOPEL Vo TEQLEYEL BUVAUTOTNTES TTOL OEV TEPLEYEL TO AOYLOULXO TOU
xadohxol woviéhou. ‘Etol, n uédodog auty umopel vo anotehécel Eva toyu-
e6 €pYUAElD Yol TNV ETUXOWVWVIN DUPOPETIXWY TUTWY TETEQUOUEVRY O TOLYEIWY
XL YLl TV axEBECTERT aVIALOT) TOMOTERWY UOVTEAWY 1 QOREMY TIOU €Y 0UV
UTOC TEL TPOTOTIOLACELS.
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Abstract

The Finite Element Method (FEM) has been the dominant technique in
computational mechanics in the past decades. Assisted by the advances
in computers, FEM is developing with great speed in both academia and
industry. Among the plethora of the methods that have been developed, the
current thesis puts it’s focus on a subject that is related to substructuring
and multiscale analysis.

Substructuring and domain decomposition methods are very powerful
analysis techniques in the field of structural mechanics. By splitting a large
problem into several smaller subproblems, these techniques can help keeping
computational costs at reasonable levels. However, their efficiency depends
entirely on how well the subproblems are bridged together. On the other
hand, wherever large disparities in spatial and temporal scales are encoun-
tered the simulation efforts are dominated by multiple scales. This is where
multiscale analysis is used.

In the aircraft industry, it is a common task to perform a finite element
analysis on a complex structure that mostly evolves in a linear elastic way,
but exhibits confined plasticity (or other nonlinear phenomena) in a small
critical region. In most FE software, such an analysis is usually carried out
by dividing the loading history into several load increments, and by solving
nonlinear equilibrium equations at each increment, using Newton’s method or
one of its variants. When the problem size is too large or the loading history
is too complex, this approach can lead to unaffordable computational costs.

This thesis proposes a computational strategy to solve such structural
problems, where non-linear phenomena occur within a small area, while the
rest of the structure retains a linear elastic behaviour. Two finite element
models are defined: a global linear model of the whole structure, and a
local non-linear 'sub-model’ meant to replace the global model in the non-
linear area. An iterative coupling technique is then used to perform this
replacement in an exact way.

In this technique we are called to compute the 'mechanical impedance’ of
a region that can be described by the Schur complement of its stiffness matrix
on its boundary. This quantity can be computed from a static condensation
(which basically consists in computing it straightforwardly) or approximated
in a second non-intrusive way, as the first way is usually very expensive on
large problems. This approximation of the Schur complement of a subdo-
main’s stiffness matrix is obtained by combining local (i.e. element strips)
and global (i.e. homogenized) contributions. Furthermore, this variation is
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non-intrusive, which means the model data sets are never modified and the
computations can be carried out with standard finite element software.

Several ways of exchanging data between the models are discussed and
a simple solution is introduced for the handling of non-conforming meshes.
Finally, the properties of the methods are investigated on two examples.

The significance of this method is that except from local non-linearities
it can be used to introduce geometric details, mesh refinements or specific
constitutive laws that are absent from the global model. The local model can
also be analysed using a separate piece of code, which may contain features
that are not implemented in the global Finite Element solver. In that way,
it can be a powerful tool for the connection of different types of elements,
for more detailed analyses of existing models and for reanalysis after model
modifications.
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2_UVOTITLKT] TLEQLYPALPT) TNC
OLTTAWUATIKNG 0T EAANVLKA

Ilepiypop? Tou mpofBARuatog

Yric pépeg Jag umdpyel Wi parydodar avamTLEN TN UEVOBOL TWV TETEPUCUEVLY
oToElY. XUVEYWE TOCO GE axadNUoixd 650 xou epyactond eninedo, 1 uédodog
TWYV TETEPACUEVWY OTOLYElWY DLddoxeTaL, Yenotuomoteiton xou avantioetat. Neo
Oedouéva, Veeg Teyvohoyieg epgavioviar cuveymS SelyvovTag Jog OTL TPOXELTAL
YLoU Lot ETULOTAHUN UE AUTEO UEAAOY.

IToh0 cuyvd xotd Ty e@apuoyt) TNg HeVOd0U EPYOUAUCTE OVTIUETWTOL UE
TEOPAAUUTA GTAL OTOLL OAOXATIPOS O (POEENS GUUTEQLPERETAL YRUUUNB-EAACTIXS
ue e€alpeom piar TOAD Q1| TERLOY Y| OTIOU 1) CUUTERLPORA TOU ELVOL [UT) YEUUULXT.
Eivar moAd mdoavdy 1) GUUTERLPORE AUTHAG TNG U1 YRUUULXNG TIEQLOY G Vot Efvart o
xplown yior TNV GUUTERLPORPA OAOXANPEOU Tou Qopéa (UeTutomioels, duvdpels). H
Un YOOUUXH oVEAUGT OAOXANENG TNG XATUOXEUNS oV Xl amOoTEAEL AUom elvou
TOMES PopEG aclU@opn amd amon yedvou (og TEPLTTWOELS IOV O POPENS Elvall
ueYAhOC).

YtV mapovoo SimAwuatiny epyacia mapouctdleton uor uédodog emthuomng
TOU TaEATAVE TEOoPAAuaTog. Kpoatdue to povtélo TOou QopEd UE YEUUUIXEC-
ehooTixéc 1OLoTNTES (ST oy Snhodn) xou SnutovpyolUe éva SelTeERO YOVTERD
UOVO YLOL TNV TEQLOYT) TOU UAC EVOLUPEQREL UE TIC UT YRUUUIXES LOLOTNTES TOU
v yopaxtneilouv. H pédodog mou yenowonoifinxe eivon Wiol emavoknmTixy
uédodog mou otnelleTon OTN PETOPOEE DEBOUEVLY UETAED TwY BV0 UOVTEAWY
(Buvdpele, petatotioelc) xon Ye ahhendAANAes emAVGELS ToU xadevdg TeTuyolveL
NV TEAY| oUYXANoT xan entiteudn Aoorg.

Kodoe umdpyet petopopd mhneo@oplcyv YeTalh Twv 800 LOVTEAWY 1) TEALXY
Aoom medxeltan yior axpy3r) Abon oto medPAnue.  Aniadh n tehur Aoor Aoy-
Béver uTOPLY TN OAES TIC AVUXATAVOUES TWV TAGEWY oL GLUBaivouy AoYw TNg
Un YeoUXOTNTOS Xt 1) Moo mou AauBdvoupe Yo fitay 1) {Blot Ue TO VoL otvTLxa-
TAOTOVOOUE TNV CUYXEXQUIEVT] TIEQLOY Y| UE UT| YEUUUIXE TETEQUOUEVAL.

Yy mapovoa SitAwuotix tapouctdlovton 600 mapahhayéc Tne Hedodou.



Mia améd autéc €yer xon TNV WintepdTnTa OTL elvon Un TapeBoting w¢ TEog
TO TEOYPOUUA TETEPAUOUEVLY TOU €YEL Tol 0UO poVTEAX. AuTO ornuolvel 6Tl Ta
000 UOVTENN TEMEQUOUEVLY G ToLyelwY Unopolv va Peloxovioan oe omolodtro-
TE TPOYPUUUA TETEQUOUEVLY (axOuo xot XAEoTo Tpdypoppa .. Abacus).
Hpoxtxd, ov dwdixaocieg g ueddoou mou mpotelvetar BV amaUToly amd TO
TeOYEAUUa 6To orolo PeloxovTta To povTéla TANpogoplec Tou eV Yo uropoloe
v emoteédet (.y. unteoda Suoxaudiog) ovte eneyBaivouy e Tpomonoinot Twy
HOVTEAWY 1) TwV UEVOOWY ETAUGTS oL BtardETeL.

Puoixd n uédodog enthuong Tou TaEATdVE TEOBAAUATOC UTOREL VoL YN oylLo-
motnUel yior TNV eTtALGT) TOAAGDY TOEOUOIWY TEOBANUATLY. Anhadr To SeVTERO
HOVTEAO TOU XOTUOXEUACETOL YO VOl TPOCWULICEL Lol TEQLOYT] TOU (POREN UTO-
cel va €yel onowdY|tote WintepdTTA. ‘ETol 610 0e0TEpo OVTEAD UTOROVUE
VOL €YOUUE OLUPORETIXT| YEWUETEIN, OTES 1} POYUES, DLUPOPETIXOUS XAUTUC TUTLXO-
U VOUOUG YL TO UMXO, U1 YROUUUXOTNTA YEWUETEIOG axdua xon SLopopeTind
TEMEQUOUEVY oTOL el UE TEAELWS DLapopeTind dixTuo.

ITepiypapr, tng yevixrg pevoodoloyiag

Oewpolue eva unyavixd otatxd TeéfAnua oto medio (2. Enlong Yewpolue ot
T CUUTEQLPORE. OAOXANEOL TOU TEDIOU elvol YEUUUIXT) XU EAACTIXT EXTOC U
o puxey| meploy ), mou cupBoiiCouue €. e auth TV Teployy| Yewpolue OTL
0 XUTACTATIXOC VOUOS TOU LAOU elval ehacTomhaoTixoc. Emnicoy, Jewpolue
oTL 1 MepLoy ) €27, 6TOU 1) ENACTOTAAG TN GUUTERLPORE EpavileTan efvon YVWoTH
oo TRV, X0t OTL 1) UTOAOLTY TEPLOY Y|, TOU Vol AVOPERETOL (OC CUUTANEWUTIXY
neptoyn, Qo = Q\Qy, Vo nopoyeiver ehaotix xan ypouuxh. To mopomdve
TEOBANUY QutveTton oTo Myfuo 1.

To mpdfAinuo umopel vor emavadlaTuUTWUEL YENOWOTOWWVTAS 0V0 UOVTEAQ,
70 xdohx6 YOVTERD xou TO ToTixd povieho. To xodohxd yoviéro etvor Eva
Yeoutx6 ehooTixd Hoviédo (Eyfua 2¢). Aviimpoownelel OAOXANEO TO Qoo
X0 T Y1) YEOUUXT TIEQLOY ) GAAG UE YeoUXES EAaoTXES 1oTNTES. To Tomind
LOVTENO TEptypdPeL ubvo TNV W Yeouixr meptoyr (Lyfua 287). Xe autd 1o

OTMELO TIREETEL VAU SLEUXPLVLO'TEL OTL:

1. 70 Q¢ elvon v 6UVOLO TETEPAOUEVWY GTOLYEIWY oL BeV Ywpelletal and To
xodohxd mAéyua (to oUvopo I' Bev x6Bet xavéva ototyeio Tou xoohxo
LOVTELOU)

2. n Qp ebvan 1 axpPric meploy ) Tou xAAUTTETOL amd TO TOTUXO TAEYUL, XOol
To I elvan u€pog tou cuvdpou Tou

3. xou o 800 mAéypata Towtilovtan oto I, Andady| €youv (Bloug xéufouc,



Cpopuixn ehaotixd

/ repoyn, o

Elactomhaoctixy
Teployn, r

Y0vopo, I'

Yo 1t To mpdAnua avapopdc

Boduole ehevieplag, cuvapthoelg oynuatog xAt. Ondte dev ypedleTon
Otaywetopoc tou I

4. 7o 500 povtéha emneedlouv To €val To dhho uévo oto clvopo I'. Ondte
0ev yeetdleTon Vo UTdpyEL CUPBUTOTNTA OTOL TAEYHATA TKY 000 UOVTEAGY
oto (7.

H hoywr| Tng pedodoloylag etvon 6TL 1 TeAn| Abon houfdvel utody Tng To
TOTUXO UOVTEAD YL TN U1 YRUUUIXY| TEQLOYY| ok TO XoOAXO UOVTEND Yo TNV
unéhoinn meptoyn (Byfua 3). Ondte to nedio o yetatonioewy elvo

[ ul(x) ovxeQ
v u%(x) avx e Qe

EV( TO TEDIO TWV TACEWY, O, Elval

| ol(x) avxeQy
7= o (x) avx € Qe

H tehun) Moo howmdy Jo TeETeL vor txavoTolel TI¢ Topadtey oUVUTXES:

1. n tomxr Aoor, ul xou ok, npéner va wavorolet xde elowon tou Q2 xou

tou OQ\I' (eZlotoei WwoppoTiag, cuVopLoés GUVINXES XL ENAC TOTAG-
OTIXEC XATAOTATINES EELODOELS TOU UAIXOV)
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Coount| ehaotiny
neployn, Qo

Elactomhaoctixr
neployn, 2r

Y0vopo, I'

(o) Kardohxd povtéro

Elactomhaotind - == n
Teployn, €2r AN

20vopo, I'

N
SNDXX

(B") Tomx6 povitého
Lyfuo 20 To 800 povtéda tng pedodoroyiog
2. 1 xadohxh Aoor meploplouévn oto Qc, ud xon od, Teénel va ovonolel

x&e e&lowon tou e xou tou INc\IN (e€lotoeic looppomnoiog, cuvopLaxés
OUVONXES X YROUUIXES ENIOTIXES XATUOTATIXES EELOMOELS TOU UALXOV)

3. xou ot dvo Aoelg mpénet vo tawtilovton oto I' (xowvég uetatonioels xan
LOOPEOTO ECWTEPXMDY SUVAUEWY)



LCoopuixsy ehaotixd
nepoyn, Qo

Elactomhaoctixy
Teployn, r

YOvopo, T’ % m

Yyfuo 3: To yovtero avapopdc

MeUdoodohoyia eniAvong - Xprion wetatonicewy

H enfhuon Eexvdel pe yior opy ) Yeouuxr avdAuor tou xodoAxol gopéa. H
uedodohoyia cuveyilel we ehc:

1. Tomxy avdAuoy. O petotonicelg Tou cuvopou I, Tou €youv uTolo-
yiotel and TNy xodoAixy| avdhuoT), HETAPECOVTOL GTO GUYORO TOU TOTULXOU
MOVTENOU xou EXTEAELTOL iot ovdhuoT eEAEYyou petaxtvioewy (Displacement
control analysis).

2. TroloYloPOG UTONOLOUEVLY BuVAUEwY. Kadog ue v npon-
YOUUEVY) aVIAUGT] 1) GUVEYELXL TV UETOXWVACEWY EYEl emitevyel, ol uto-
Aowndpeveg duvdelc utoloyilovto hapfdvovtog unddy Ty EAern oop-
poTlac OTIC EOWTEPIXES BLVAUELS Yior To oUvopo I'. Omdte unoloyilovto
¢ e&ne

rr = —(AL + )‘ﬁc)

OToL )\19 elvon ol ECOTEPIXEC BUVAUELC TOU TOTUXOU HOVIEAOU YLOL TOUG
x6uPoug Tou cuvopou I' xou A?C avTioTOLY O Ol ECOHTEPIXEC DUVANELS TOU
%xJOAX00 YOVTENOL.



3. AwbpYwon tng xadoAixric ANoong. To xodohixd poviéro goptile-
TOL UE TIC UTOAOLTOUEVES QUVBHELS X0 UOVO. ATO TNV Ypouuixy| avdAuo
ToU xooAX00 UOVTENOL TEOXUTTEL O BLoPYWTIXOC 6POC Au® o omnoloc
AVTITEOCWTEVEL TNV GUPPBOAT TN UN YRUUULXAS TERLOY NG OTIC UETUTOTOELS
Tou xooAxoU povtélou.

0
KCAuY =1% = | rp
0

xou 1 xardohr|) Aoom SlopddveTton v e€ng

u® « u® + Au®

MeUYodohoyia enihvong - XpHor UIXTOY CUVORLAX®Y
cuvInNx®V

Avoagepduevol ot enthuoT UE TN YPNOT UXTMY GUVORLIXGY CUVUTXMY EVVOOUUE
OTL Yyl TNV €TAUOY TOU TOTUXOU UOVTEAOU BEV UETUPEQOUUE TIC UETUTOTIOELS
0L XooMXOU (6Twe ot TEoNYoUEV uedodohoyin) GUTE YENOULOTOLOUUE TNV
LOOPEOTIXL TWV ECWTERIXMY BLVAUEWY (oL Var Aoy Wit GARY TopoAAaYT)) oA
EVOL YROUUIXO GUVBLIOUS oWT®Y TwY 600. Omdte

(AL + Agc) +AuE—uf) =0

omou A efvon plar TopdueTEo TS YeVddou, ahhd etiong évag TETPdYwVoC Tiva-
X0G TOU AVTLITPOCWTEVEL TNV o TBopdTNTa Tou GUVOEoL. AvTicToLyo Ol UTOAOL-
TOUEVES BuVdEl; uToloyiloviar wg e€Xg

(AF + Af o) = B(ug —uf) =0

6mou B ebvan eniong wia nopdpetpog tne pedodov. H emioyn tou A xon tou B
Yo avagepdel apyotepa. Ondte n yedodoroyia oe auth Tnv Toporloyy| ebvon 1)
e€hc:

1. Tomuxy avdAuon. XpenoWonolwvTog Tic WXTEC GUVOPLIXES GUVITXES
1 e€lowomn tne avdAuong Tou Tomxo) YoVTEAOU TUfpVEL TNV Uop®T

ghuf.uf) | TA 0] uk]_ 6], [ -Afo+Aug
ghu.uf) | L0 o) [k [T e [T o

Eivar gavepd 611 o ivaxag A etvor piar tpocdnixn otBapdtntog 6to clhvo-
00 £V N oc6TNTe — AL o +Auf evar 1o emrpdadeto optio 6To GYVOpO.
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Eivar e0xolo €86 vo mopatnendel 6T1 0 mivaxag A aviinpoowne-
OEL TNV oTPAEOTNTA TOLU UTOAOLTLOU POEEN OTOTE XU XAVEL TNV
YEMIOT TWV UXTMV CUVORLAXWY CUVUTXGOY ULd TIHO PEUALS TIXT| TROCEYYLO
oo TN YPNOT TWV UETATOTIOEWY.

2. Ymohoylopog UTONOLTOUEVWY BLUVAUEWY. Ot uTohOITOUEVES BU-
vaelg utoloyiCovtar o¢ €Xg

rr = —(AF + Af o) + B(ug — uf)
T YEYOWOTOLWVTAS TNV LG0REOTHo ToU TEPLEYEL TOV Tiivaxa A

rr = [A + BJ(uf - uf)

3. AwbpYwon tng xadohixng Avong. ‘Onwe xou metv To xadohixod
UOVTENO QopTI(ETON PE TG UTOAOITOUEVES OUVAUELS xan Uovo. Tlpayuo-
ToTOLE(TAL YRAUUUIXY| AVIAUGT) 0TO XoJOAXG HOVTENO XAl OL UETUTOTIOELS
olopUwvovTal Pe Tov Blo TeodTo.

Y nohoyLopog TOL CUUTANEGUATOS ToL Schur
X1 mponyoUUevn evOTNTOL EBOUE OTL Yio TIC X TEC GUYOPLIXEC GUVITXES Loy VEL
(AL + Agc) +A(uk —uf) =0
Enione E€poupe 6TL yia T0 Tomind poviého toyel 1 eiowon

hr (ur) = Af

6mou hi = hi(uk) eivor 1 un ypoupxs oyéon mou ouvdéel Tic UETOTOToELC e
TIC BLUVAELS YLt TO ToTG TEOPBANUA. T'ar To cuUTANPEEUUTIXG Qopéa Loy VEL

G .G _1.G G
Srcur =bro+ At o

6mou SE ¢ elvon 10 oupTAfipwUa Tou Schur ToU GUUTATPEOUOTIXOU PORE T8V
oto oOvopo. To cuumifpwua tou Schur Peioxeton and otoT?] cUPTOXVE-
o1 6AwV TV uTohoitwy Bodunmy eheudeplag Mote va petvouy uévo autol Tou
ouvopou. Télog To olvopo Yo meénel va xavorolel Tig e€r¢ eCIOWOELS

G _ ..L

Ur = ur
G L
AF,C—FAF_O



YuvotdlovTag To Tapamdve 1) AOoT) ToL TEOBAAUNTOC ovapoEdc ToPVEL TNV Uop-
%
L/ R G ..R G
hy(ur) + Spcur = by o
EVE) YPENOWOTOWMVTAS TIC 000 TE®TES EELOWOELS AUTOV TOU XeQahaiou Talpvoule
hi(uk) + Au? = Au® — A&

Me dAho Adyta 1) Buoxaupio Tou GuVGEOL A UETAUPEPETAUL GTO TOTXO TEOBANUA,
10 omolo goptileTon o e TO UixTd popTio Au® — )\g. A7 tic 600 tehevTalec
edlonoelc @aiveton 6TL oy To Unteo A eivon (6o¢ ye To cuumAfpwua Tou Schur
YL TOV CUUTIANPOUATING QOREX, Sﬁc, TOTE TO TOTXO TEOPANUO TauTiETon e
1 Aon tou TpofAruatog avagpopds. Ondte av utoloyicouue To SEC oe3g,
1 pevodoroylo pag Yo etvan:

L. oxpiBric, dOnhadt 1 Tomxh Aoor Yo toautiCeton pe T Ao avapopds

2. dueot), ONAADY| UE TNV TEWTN AvdAuGT) ToU TOTUXOU HOVTENOL Vol GTAVOUE
xou 0Ty Ao Tou TeoPAfuaToS Yweic va yeeidlovial dhheg emavorrideic

3. adLdpopn wg TEOS TN Yéor Tou cUVOEOL

H xolOtepn hoimdy emhoyn yio tov mivaxo A elvon o mivanog Sﬁc. Av-
T6¢ 0 Tivoxag Yo TeoxdPEL HETE amd GTATIXY CUUTUXVKGT OAWY TV Badumy
ehevdepioc TANY TV Padudy eAcuieplag TOU GUVOEOL YL TOV GUUTANPOUOTIXG
popea. H Moon autr oy xan epuxtr] elvor Yvewo 16 6T elvon Wotadtepa TpoBAnuotixy
YLt HEYGAOUS QopEic Aoy Tou uToloyloTixo) Tng xéoTouc. Eriong yeedleton
xou TNV Onuovpyiot ToU CUPTANEWHATIXOY Popéa Tou elvon Ui emepPotiny dta-
ouaoior 6To xadohxd Hovtého, xodme TEETEL Var Slorypapoly Tar oToLyElo Tou
Beloxovtow oty Un yeouuxr| TEpLoY .

Ipotelveton Aowmdv xon pior OeUTEPN EVAAAAXTIXA Yiot TNV ADGT| TOU ToEAVE
meoPAfuatog. Avti vo utohoyloTel To SEC amevlelog Vo UTOAOYLOTEL Lol TPO-
oéyylon tou. H mpoocéyyion autr Yo meénet va elvon xovtd otny axeif3r tun
OANG xo UE UiXPOTERO LTOAOYICTIXO %0GTOC.  Aldpopes mpooeyYloels £youy
mpotadel xato xanpolc. Kdmoleg Baocilovtoan oo otoryeion xovtd oto cUvopo
on6te Yo TI¢ amoxoAoVUE TEOCEYYIOES UXEO-XAUOXAC EVEW Ol UTOAOLTES EU-
TVEUOMEVES amtd TEYVIXESG opoyevorolnong Yo Tic anoxahécouue Tpooeyyioelg
UEYo-XAaxag. MTh TopoUoa DIMAWUATIXT EQUOUOCTNXE EVUS CUVBLIOUOS TGV
ATV TPOCEYYIoEWY Tou Tpotdinxe and touc Genre et. al [7].

ITpocEyyion pixpo-nAipnoxag

e auTH TNV TREOCEYYIoT avTl vor YIVEL GTUTIXNT CUUTOXVWGCT) OAOXATIPOU TOU (PO-
e€a, Ylvetan o TUTIXY) CUUTOXVGOT) OF Lo Awplda o Totyelny YOpw amd 10 6Ovopo
(EyAuo 4). H Swduaoia etvo



H Aoplda tecodipwy otoryeiwy

N

Yyfua4: Mot Awplda TE60dewY 0ToYEIWY TNG CUPTANEWUATIXNS TEQLOY TS YUEW
am6 0 6OVoPo

1. dnuovpyla povtélou pe tov aptiud Awpldwy Tou €youue emAElel YOpw
am6 0 6OVopPo

2. morylwon Tou HOVTEAOL GTNY GAAT) TAEUEA

3. umohoyiouog mpoceyylong D ye ooty CUUTOXVWOT GTOUS ECWTERL-
x00¢ Barduole eevdeplac (Lyrua 5)

ITpocEyyion YeYA-HAlLAXAS

XNV TooEYYIoN UEYU-XAUXAS EQUPUOLOUNE UEQIXES UETATOTICES OTO GUVO-
PO WOTE Vo DOUKE TNV amdXELoT) 0OAOXANEoL Tou @opéa. H emhoyy| Tou medlou
oUTOV TWV UETATOTUOEWY Vol GNUAVTLIXA YLl TNV TOLOTNTA TG TEOGEYYIGNE TTOU
Yo MdBoue. Xt napoloa peétn emhéZope xvioels oTepeol adUaTog (UeTa-
ToTioelc xou O‘CpO(PT/]) TOU GUVOPOU xoMEC KAl TUPUUOPPWCELS XAl O TEEPANMCELC
(o 6).

H yedodoroyia yioo Ty mpooeyyion peyo-xAldoxog elvou
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Yyfuo 5: To YovTtélo yior TNV TEOCEYYIOT) UXEO-XAUOXAC
1. Anuovpyia mivoxa E. Kdlde otiin tou mivaxo etvon xon par poper yeta-
TOTLOTG TOL GLUVOEOU EVG oL GeLEES elvan ot Barduol eheuieplag Tou cuvoEoL

2. EuBddhouye xdie poppt| petatémione (otnin tou E) ato obvopo I' tou
%xo0Oohx00 PopEa xot TOPVOUUE TIC BUVAUELS GTO GUVOQO.

3. Troloyiloupe tov mivaxa P oand 11 ediowon
ETSFCEP =1
O nivaxog SE ¢E ebvon tor poptiar mou Berixaue oto mponyoluevo Briuo.
4. Trnohoyiloupe Tov mivaxo F and v e&iowon

F = SFcEP

2UVoLaAcUOG TWY Npooceyyiocewy

Ané dudpopeg pehéteg €yel damotwiel 6Tl oL Tapamdve Tpooeyyicel, 1 xdie
wo Eeywptotd, dev elvan emapxelc.  Potveton hoimdv 6TL elvan amopaitnTo Vo
AdBoupe Lo pog T6oo TNV SuoxapPia TNG EYYUTNTAC TOU GUYOEOL OGO Xl
TNV GUUTEPLPORE OAOXANPOU TOU QOEEd OE UETOXWVACEL Tou cuvopou. [lpote-
fveton AOLTOV 0 GUVBLUGUOS TWV TUPATAVE TEOCEYYIGEWY.

H hoywe| wag tétotag oxédng PooiCeton otnv apyr tou Saint-Venant, mou
elvo YVOOo T xou oLy Ve yenowonoteiton oTn unyovixt| xat Wwiodtepa otn Yewplo
00x00. H opyn) autr) 5nAmveL 6Tl OL EVIACELG TOU AVATTVCOVTOL CE EVAL
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O

L

(o) Metatonioeic xou 6Tpoés

N R

(B") HMapapoppdoeic xou oTEEPAOOELS

Lyfuo 6: Iedlo petartonioewy tou cuvdpou

POPEX ATO TNV EPAPUOYT) DUVAUEWY OE LA UXPY TEPLOY T AUTO-
0, elvor apeAnTéov peyédoug o ATOCTACELS TOL £fval ATOWUO-
XPUOUEVEG AEXETA ATO TNV TEPLOY N EPAPUOYNS TWY SUVAUELYV.
Me dhha Aoylar o YEYUAEC AMOGTIOES OE OYECT UE TO TEdlo EQUPUOYAS TV
Suvduewy, 1 xivnon tou popéa elvar oyeddV oTeEREd (ot eVTdoEls elvon auehn-
Téec). Av UTOPOVCOUE VoL OVOY VWRICOUUE T TNV GTEPES XivnoT XL VoL TNV
QUPOLPECOVUE OO TO TEDIO TV UETATOTUOEWY TOU POPEN TOTE OL EVUTOUEIVOUCES
uetatonioelg Yo yToy oyeddy undevinég. OmoTe 1 TayLdoT) TOU QopEa GE ENaPXY|
AmOCTACT| A6 TO GNUELD EQUOUOYNG TWV BUVIUEWY BEV Vo ELOYUYE CNUAVTIXG
o@éhua ot Aoon (Dyfua 7).

‘Eyovtag utohoyioet Tic mpooeyyioelg uxpo-xhiuaxog xan ueya-xAluoxog u-
mohoyileton 1 cLVBLIOUEVY TPOTEY YO Sﬁc ¢ e€NC

Sfc = Dr — DrUC[I+ VDyUC] ' VDr

11



"Evy0c¢ nepoyn’ tne Stuonoedg Kivnon G:ESPSOO
TOUL PopPTIOL Toryiopévoc OWUATOC

/ (popeac LJ
S, \\\\.\JIJ_(U
. \F 4

= —

rirne
_|_
i
Ivr”Hﬂ

g

P S
= 1 mnme®

ex~0

Yyfuo 70 H apy) Tou Saint Venant

OTou
U:[AGFE}E]
I 0 0
C=1|0T1 0
| 0 0 —FTAGF
S
V= (AGF)T
ET
Xl

AGF =EP — Dy 'F

Y TOAOYLGUOS UTLONOLTIOUEVWY BUVIUEWY

‘Eyovtag xodopioel emtuyog 1o untewo A mpénel va Bpedél xou 1 BéATIoT
Aoom v to pnrewo B. To mheovéxtnuo mou Yo pog dMOoEL aUTOd TO UNTEMOO
€wvon OTL 1) xouvoUptar AUor Tou xodoAxol TeoPBAfuatog dev Yo elvon mooxTi-
%4 ot B16pdwon Tng TeonyoluevnS AUong Tou oAAd wor Stopdwon Tng Abong
TOU ToTUXOU TPOPATjuaTOC, ) ontola xar Peloxetan xovtUTEpa oTNY TEAX AboT).
[poxdmter Aowmdv 6T 1 xaAbTeEn Abom yia To untewo B eivan

BZgr_Sgc

Avutéd ornuoivel 6Tt 0 B mpox0nTeL amd GTaTING CUUTIUXVOGCT] TWV ECOHTERLXMY
Boducyv ehevlepiog Tou TOTUIXOU LOVTEROU, BNANDY)

B - S%,I
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L
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I i [
(o) XOvopo xadohixol povtéhou (B") Lvopo tomxol povtéhou

Yyfuor 8: M oupPatd chvopa

Mn cuvpfatd cbvopa

Eivan wraitepa onpovtind vo emextadel 1 uédodog xou ylo TEQITTIMOELS OTOU
70 60VopO Tou ToTXOU UovTéhou OV TauTileton Ye T0 oUVopOo TOU XoOAIXOU
wovtélou. ‘Etol Yo undpyet 1 Suvatdtnta To Tomxd Yoviélo vo elvon ToAD Bia-
popeTixd and To xadohxd divovtag pog pueyahitepn eheuieplo xon TEpLOCOTERES
OLVITOTNTES. LT TaEOVGU BITAWUATIXT ToEOLCLALEToL Evag TEOTOC EMIAUCTS
Y10l TEQLTTAOOELS OTOU TO TOTUXO LOVTERO EUTAOUTIETOL UE TEQIGOOTEPOUS XOU-
Boug oo alvopo (Eyhuo 8).

Opuwpuevor amd pedodous dlaxpltonolnone Qopéwy dNUIOUEYOLUUE Eval N
Tewo A 10 onolo cuoyeTilel TIC PETATOTIOELS TMV XUVOURLOY XOUBWY TOU To-
00 UOVTEAOU UE TIG HETUATOTIUOELS TWV XOWGY XOULKY TOTX0) %ot XoOAXOU
wovtélou. 'Etol yu mapdderyua yio éva xoufo mou Peloxeton avdueoo oe 500
dAhoug 6TwE patvetal 6To Ly fua 9 oy el

1 1
L G G
us = —uy +
¢~ otaTous
WOl
uﬁ:ui
L _ .G
Up = Up

Exgpdlovtag TI¢ Tapandve OYECES O UNTEWIXT| Lop@N

Uy 1 0 uy
up = 01 u
w ) [4op)lu

Anuovpyeitar To pnte@o A mou cuoyetilel TIC HETATOTIOE TOU TOTXOV GU-
VOEoU UE aUTEC ToU xoOALXOU.



o

B

(o) XOvopo xodohxol yoviéhou

( Euvopo ‘comxou novtélou

Eyfuo 9: XuoyeTiouds v VEov Boduny ereuvieploc

XpnowonotvTog To avdoTEoPo UNTEMO ToU A UTOROUUE VO XATAVELLOUYE TIC
OUVAELS TOU TOTUXOU GUVOEOL GTO XaoAxd Glvopo

9 = ATEL

XpnowomoiwvTag To untewo A xal To avdoTeopo TOU UTOPOVUE UE ULXPES dA-
horyeg ot pedodo va emAdooupe TeoBAAUaTa Ue un cuufouta ohvopa.

EriAoyocg

Hapouoidotnxay ol facixeg apyeg Tng Letddou Tou yenotuototinxe o auThy
NV OImAGUATX Yior TNV oLLeLEn duo povTéhwy. Evog ypauuixol xow eAdoTL-
%00 OAOXANPOU TOU POPEX YO EVOG TOTUXOU U YROUXOU Yid VO PO PEPOS
Tou @opéa. Ot Bidpopeg maparhayéc TN HeEV6doL TapoucLdc Txay Xxadde xaL
0 TEOTOC AVTIETOTIONG UEQIXWY TEQITTWOEWY U1 cLPBATOTNTIC cUVOELY. Tla-
eadelypoTa xou anoteAéoputa TIg LEVOB0U TapouctdlovTon GTo XEQIAUOL 8 XAl
9 TN¢ ToEoLCUC BLTAWUATIXG.
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Introduction

1.1 The Finite Element Method

The human mind, unable to comprehend the behaviour of its surroundings
as a whole, has the tendency to divide all systems into their components
or ’elements’, whose behaviour can be understood. Then, by rebuilding the
original system from these elements, the engineer or the scientist studies
successfully its behaviour. This division can be done using a finite number of
‘elements’, called discrete problem, or using an infinite number of ’elements’
(leading to differential equations or equivalent statements), called continuous
problem.

Although discrete problems can be easily solved, especially with the ad-
vent of digital computers, continuous problems can only be solved exactly
by mathematical manipulation, which is possible only for simple problems.
Scientists and engineers have proposed various methods of discretization of
the continuous problems. All these methods lead to an approximation, which
approaches the exact solution as the number of discrete variables increases.

The problems that an engineer faces, such as problems of solid mechan-
ics or fluid mechanics, are continuous problems. So the engineer approaches
these problems by creating an analogy between real discrete elements and
finite portions of the continuum domain. It is from the engineering ’direct
analogy’ view that the term ’finite element’ was born. Throughout the years
a standard methodology applicable to discrete systems was developed. The
civil engineer, dealing with structures, first calculates force-displacement re-
lationships for each element of the structure and then proceeds to assemble
the whole by following a well-defined procedure of establishing local equi-
librium at each 'mode’ or connecting point of the structure. The resulting
equations can be solved for the unknown displacements. Similarly, the elec-
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trical or hydraulic engineer, dealing with a network of electrical components
(resistors, capacitances, etc.) or hydraulic conduits, first establishes a rela-
tionship between currents (fluxes) and potentials for individual elements and
then proceeds to assemble the system by ensuring continuity of flows.

The standard pattern that all these analyses follow is universally adapt-
able to discrete systems. " The existence of a unified treatment of ’standard
discrete problems’ leads us to the first definition of the finite element process
as a method of approximation to continuum problems such that

1. the continuum is divided into a finite number of parts (elements), the
behaviour of which is specified by a finite number of parameters, and

2. the solution of the complete system as an assembly of its elements fol-
lows precisely the same rules as those applicable to standard discrete
problems.” [20]

Through the work done in structural engineering during the nineteenth
and twentieth centuries we can follow the development of the finite element
method. We should mention here the work of Navier, Clebsch, Southwell and
Cross before the second world war. Then with the larger use of matrices the
finite elements took their current matrix form. The works of Duncan and
Collar, Argyris, Kron and Turner played significant role in the formulation
of the finite element method as it is today.

1.2 The Multiscale Methods

The Finite Element Method (FEM), assisted by the advances in computers,
has been developed with great speed in both academia and industry the last
century. Many various types of finite element methods have been introduced
(GFEM, X-FEM, Meshfree methods etc.) and the research still goes on
with tremendous results. In this plethora of methods and analysis there are
problems and techniques that involve multiple scales.

Wherever large disparities in spatial and temporal scales are encountered
the simulation efforts are dominated by multiple scales. Such disparities ap-
pear in all areas of modern science and engineering, for example, composite
materials, porous media, turbulent transition in high Reynolds number flows,
and so on. The direct numerical solution of multiple scale problems is diffi-
cult even with the advent of supercomputers. The major difficulty of direct
solutions is the size of the computation. The situation can be relieved to
some degree by parallel computing. However, the size of the discrete prob-
lem is not reduced. Therefore, it would be desirable to develop a method
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that captures the small-scale effect on the large scales, but does not require
solving all the small scale features. Single-scale models, usually at a macro
scale, make use of constitutive equations which should reflect the behaviour
of the underlying finer scales, but in many cases the microstructure may
not be scalable and may be different at each structural level [19]. These
constitutive equations are generally of a phenomenological type.

An alternative to the use of constitutive equations at a single (macro)
scale is provided by multiscale modelling, in which the relevant physics is
explicitly captured on multiple spatial and temporal scales. There are various
techniques of multiscale analysis. Most common are self-consistent methods,
asymptotic analysis and homogenization techniques [6].

In this thesis we will investigate the case where a complex structure, that
mostly evolves in a linear elastic way, exhibits confined plasticity (or other
non-linear phenomena) in a small critical region. This is a common case in
many engineering problems, especially in the aircraft industry. This problem
occurs in two scales. The one is the large linear model of the structure and the
other is the small region that the non-linearity occurs. Similar problems are
those where, instead of a small non-linearity, we have either strange geometry
(cracks or holes) or where we want to use different types of FEM [9]. Also
situations where an existing model (e.g. a building) has been modified in a
small region (local failure or reinforcement) are identical problems.

1.3 Outline of the diploma thesis

The present diploma thesis focuses on intermediate ways to analyze complex
structures that contain small nonlinear areas, when full nonlinear computa-
tions are too expensive. It has been based mainly on the work of Gendre et
al. [8] [7] and proposes algorithms for the implementation of their methods
and a simple extension on non-conforming meshes. The remainder of the
paper is structured as follows.

e In the second chapter the fundamentals of the non-linear solid me-
chanics are presented. To be more specific, the von Mises plasticity
with no hardening is presented and the forward and backward Euler
schemes. A chapter with elasticity theory was avoided as it is regarded
a well-known subject of most engineers. This chapter, as well as the
third one, contain the essential theory for the creation of the basic
non-linear finite element software that was used for this thesis.

o The third chapter contains various non-linear analysis methods. In
the same logic, algorithms for the analysis of linear problems are con-

17



sidered known [18] and someone can append in the bibliography for
further reading.

In the fourth chapter the iterative method, on which the whole thesis
is based, is presented. It is the method that connects the local model,
which describes the small non-linear area, with the global model. The
two variations of this method are presented, the displacement and the
mixed variation.

The fifth chapter describes the procedure for the creation of a Schur
complement approximation that is used in the mixed variation method.
The procedure involves both short-scale techniques and long-scale tech-
niques that are combined for the creation of the approximation.

The sixth chapter offers a solution for the handling of some cases
of non-conforming meshes. Inspired from domain decomposition tech-
niques a matrix that connects the different interfaces is created and
later used in the method.

The seventh chapter describes the whole procedure of the creation
of the software that was used for the current thesis. It describes how
all the theory was turned into algorithms. It also includes segments of
the matlab code that was created. Such segments are found in various
places in this thesis, whenever their appearance thought to be support-
ing for the comprehension of the text.

Chapters eight and nine contain the two examples of this thesis.
The global domain is the same for both examples, but the local domain
is different. The first example, in which the local model has the same
mesh with the global, focuses on the comparison of the methods. On the
other hand, the second example, in which the local model has different
mesh than the global, focuses on the use of non-conforming meshes.

Finally, chapter ten phrases the conclusions of the whole study and
ideas for future research.
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Non Linear Material in Finite
Element Method

2.1 Introduction

There are many types of non linearities in FEM. For the current thesis a
material non linearity, with a von Mises yield criterion was chosen, based
on [5] [13]. The material that was chosen was a bilinear elastic fully plastic
material. Of course there are many other criteria that can be applied easily
such as the Mohr Coulomb as well as many non linear laws to choose from.
Nevertheless, the purpose of the thesis was not to examine differences be-
tween the different kind of non linearities, but to examine the connection of
the global linear model and the local non linear. This is the reason why a
simple non linear FEM was chosen for the algorithm.

The elasto-plastic material, contrary to the linear elastic, having reached
equilibrium at point A (Figure (2.1)) on the effective stress/strain curve, will
continue to flow plastically to point B (remaining on the effective stress/strain
curve) and then continue to point C on the curve or unload elastically to D.
Clearly the two paths have different stiffness, but in the absence of prior
knowledge on load reversals, it will generally be assumed that plastic flow
will continue and that the tangent stiffness relates to BC. However, even for
monotonically increasing loads, certain areas of the structure can 'unload’.
In such circumstances, it is usually left to the iterative correction procedure
to discover those areas that are 'unloading’.

In general, there are three separate roles for the plasticity algorithms of
a finite element code. Those roles are:

1. the formation of the standard tangent modular matrix to be used in the
incremental tangent stiffness matrix or to be used with the integration
of the stress/stain laws

2. the formation of a 'consistent’ tangent modular matrix to be used with
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Figure 2.1: One dimentional stress-strain relationship

Newton-Raphson iterations
3. the integration of the stress/strain laws to update the stresses

With material non-linearity changing the modular matrix, the structural
tangent stiffness matrix takes the form

K, = /BTCthV (2.1)
where Cy is the standard tangential modular matrix, which is given by

Jo
9 C (2.2)
If certain forms of stress updating are adopted, it is possible to derive a
‘consistent’ tangent modular matrix, Cy, that is consistent with the numerical
technique used for the stress updating. In such cases, for example when
the Newton-Raphson algorithm is used for the equilibrium iterations, the
consistent tangent modular matrix leads to a significantly faster convergence
rate than the 'standard’ tangential modular matrix.
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2.2 The standard elasto-plastic modular ma-
trix for an elastic perfectly plastic von
Mises material under plane stress

In some senses plane stress is one of the more difficult stress state. However,
plane stress will be used to introduce plasticity calculations simply because
it involves fewer components. The prime aim is to develop the general form
of the matrix, vector and tensor equations which will also apply to more
general stress states.
We will start with the simple plane-stress version of the von Mises yield
function
f=(02+0,—0.0,+ 3T§y>% — 09 = 0, — 0 (2.3)

where o, is the effective stress and o the yield stress. In conjunction with
(2.3), the Prandlt-Reuss flow rules are

; . 20, —0

(0 : €pa A =~ Oy

€p = A <8£’> =da=| ¢, | = 5 20, — 0, (2.4)
c 0Ty

Epay

the vector a is normal to the yield surface and A is a positive constant
usually referred to as ’plastic strain-rate multiplier’. (Note that with the
present notation, df/deo is a column vector.) In equation (2.4) and generally
during this chapter, the 'rate’ form is denoted by a dot. However, we are
not considering dynamic effects. As a result we have a 'pseudo-time’ and
indeed the dotted quantities can be simply considered as small changes are
usually designated via ds. In addition to (2.4), the stress changes are related
to strain changes via

o €, €pa '
o= q'y =C ey - e};y =C(é—€,) =C(e — )a) (2.5)
Oy Exy Epay

where, assuming isotropic elasticity,

E

Tl

C

0 (2.6)
1—v
2

S R =
O = ]

Equation (2.5) relates the small changes in stress (or more strictly stress
rates) to the small changes in elastic strain (or more strictly elastic strain
rates), €. = € — €p.
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A negative 'plastic strain-rate multiplier’, A, would imply plastic unload-
ing from the yield surface. The latter cannot occur and, consequently, any
negative, s should be replaced by zero so that elastic unloading occurs.

For plastic flow to occur, the stresses must remain on the yield surface
and hence

f= 550 =ale=0 (2.7)

The situation described by (2.7) shows that, for plastic flow, the stress
changes, o, are instantaneously moving tangentially to the surface, with
o being orthogonal to the vector a. Hence a is normal to the surface and
the flow rules (equation (2.4)) invoke normality.
In order to find the plastic strain-rate multiplier, A, equation (2.5) is
premultiplied by the flow vector aT and, using equation (2.7)
aTCe

A= aTCa (28)

Consequently, substitution into equation (2.5) gives

)
dzctezc<1—aa C)

: 2.
aTCa € (2.9)

where Cy is the tangential modular matrix which is not only a function of F
and v but also, via a, a function of the current stresses, . This matrix can
now be used in finite element expressions to form the element and hence the
structure tangent stiffness matrix.

2.3 Von Mises plasticity in three dimensions

For the general three-dimensional case, the von Mlses yield criterion is

1
f:Ue—Uoz\/gjf—Uo

[(Ux o O—y)Q + (Uy - 02)2 + (O_Z - Ux)z + 6(7—x2y + Ty2z + 7_,22&:)]% — 0y

1
V2

1 2 2 2 2 2 241
= VB[S (s + 5y +52) + 7 + 7L+ TR]E — 0

= @(STLS)% — o0 (2.10)
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where

1
1
L— L (2.11)
= 5 '
2
- 2 -

and

sT = {Sz’asy7SZ7Ta:yaTyz>Tza:} (2.12)
are the deviatoric stresses.

S
o
o
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Figure 2.2: Von Mises yield criterion in three-dimensional principal stresses
space

The three-dimensional von Mises yield criterion is plotted in principal
stresses space in Figure (2.2) where the stress vector o is decomposed into a
volumetric component (along the axis ¢ = (1,1,1)) and a devatoric compo-
nent, s. From (2.10), the radius of the von Mises cylinder is clearly \/gao.

For three-dimensional plasticity, the equivalent plastic strain rate is given
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by 1
€ .= 2 é2 +€2 —|—€2 _‘_1(2 +-2 +2) 2 (213)
ps — 3 px Y pz 2 ’ny ’sz Vex :

The elastic stresses and strains are connected by

O €x
Ty €y

Taz = [C] 76'2 or o =[Cle (2.14)
Ty Ty
Tyz Vyz
TZ$ P)/Z.I

where
1-v) v v
> v (1-v) (111 :
C] = T T (2.15)
(1+v)(1—2v) 2 Iy
1-2v)

Differentiating equation (2.10) gives

o0
- do
1
=3 {20, — 0, —0.),(20, — 0, — 0.), (20, — 0y — 0y), 64y, 67Ty, 67,0 }
3 3 OfT
= g {Sxa Sy, 5277—zy77_yz77—zz} = 9% (LS)T = g (216)

As in (2.4), €, = \a so that in (2.13)

2. L 24 s
éps = \/;)\(aTLla)2 = \/;O_(ST:[JS)2 (217)

With these definitions of o, €, C, and a, an identical formulation of Sec-
tion 2.2 produces equations (2.8) for A and (2.9) for Cy

2.4 Integrating the rate equations
The solution procedure (incremental predictor /corrector approaches), as it is

based on the incremental (or rate) nature of the flow rules, inevitably leads
to some error. This error will not relate to a lack of equilibrium, but rather
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will be caused by errors in the integration of the flow rules and their relation
to the complete incremental/iterative solution procedure. Consequently, the
adopted procedure for updating the stresses and strains affects the error.
The recommended procedure is the one 'using the incremental strains’:

1. Compute the iterative displacements, dp, using, for example, dp =
-Ki'g

2. Update the incremental displacements (from the last converged equi-
librium state) using Ap,, = Ap, + 0p, where Ap, are the incremental
displacements at the end of the last iteration

3. Compute the incremental strains, Ae, from the incremental displace-
ments, Ap, using Ae = fn(Ap)

4. Compute the incremental stresses preferably by integrating the rate
equations

5. Update the stresses using, o, = o+ Ao where o are the old stresses
at the end of the last increment

Using this procedure, the incremental stress is simply re-computed from the
new incremental strain. The main advantages of this algorithm are gained
because the stresses are always updated from the stresses at the end of the
last increment. These stresses are in equilibrium.

If the stress and strains increments were very small, we could effectively
proceed by applying the previous tangential formula (equation (2.9)) with
terms like € being replaced by terms like de and use the strain updating
scheme of the above procedure. In this case, instead of using equation (2.9),
it would be more efficient to separately use (2.8) to compute A and hence
knowing a = %, to compute ¢ from the general form in (2.5). However,
the strain and subsequent stress changes will not be infinitesimally small
and, as a consequence, errors would accumulate just as they would under
other schemes such as the pure ’incremental’ or 'forward-Euler scheme’ and
we cannot replace terms like € with terms like Ae. For the von Mises yield
criterion, we can however add a higher-order term and replace (2.7) by

1 Jda
— T “AoT——
Af =aTAo + 2Aa’ Ao (2.18)
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where differentiation of (2.16) gives

2 -1 -1
-1 2 —1
Oa 1 -1 -1 2 1 1 1
da _ _ laaT— A taaT (219
do 20, 6 o, aa 20, O, aal )
6
I 6 |

If we simply calculate a = g—g at the beginning of the increment and use
equation (2.8) to compute A), we adopt 'forward-Euler scheme’ which is
bound to lead to stresses that lie outside the yield surface at the end of the
increment. Unless steps are taken to return the stresses to the yield surface
or in some other way to ensure that the stresses remain at least very close to
surface, errors are bound to accumulate and the computed collapse load will
generally be overpredicted. There are three procedures which can be used,
either individually or in combination to overcome this problem. They are

1. Add a return to the yield surface to the 'forward-Euler’ scheme
2. Use sub-increments

3. Use same form of backward or mid-point Euler scheme

2.4.1 ’Forward-Euler scheme and return to the yield
surface
The "forward-Euler’ scheme has two steps. Firstly, the intersect point with

the yield surface is found and then the tangent modular matrix is computed
and the new stresses are calculated. To find the intersection, we require

flox +alo.) =0 (2.20)
where the original stresses, o x are such that
flox)=fx <0 (2.21)
while, with a = 1, the elastic stresses ox + Ao, give
flop) = flox +Ao.) >0 (2.22)

For some yield surfaces, this problem can be solved exactly. For example,
with the von Mises yield function, we can use A matrix in (2.19) to re-express
the yield function (2.10) in squared form as

1
fo=02+05 = §UTA0' —05 =0 (2.23)
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Substituting the stresses, ox + aAo, into (2.23) gives
fo = a?0.(Aa.)? +aloTAox +o.(ox)? —02 =0 (2.24)

where the o, terms are simply the ’equivalent stress’ terms of (2.10). We
require the positive root of (2.24).

Alternatively, for a general yield function we can use a truncated Taylor
series with a as the only variable to set up an iterative scheme. Such a scheme
might start with an initial estimate

—Jx
Q)= 77— 2.25
" Ja—Jx (2.25)
and then use the truncated Taylor series
fo=to+ 0J0a 5, fo+alAo.da =0 (2.26)
doda

to give a first change in «, dap. In applying (2.26), the ’old’ yield function
value, fy, would for the iteration be computed from the stresses o = ox +
apgAo, with fy being computed from the same stresses. The scalar o would
then be updated using a; = ag + dag while a second iteration would involve

50[1 - 7_]01 (227)

where a and f; would be computed at a;. Having computed the intersection
point oy + aAo,., the remaining portion of the strain increment, which is
(1 — a)Ao, can be treated in an elasto-plastic manner.

Matlab Code 2.1: Function factor to yield surface

function a=factorToYieldSurface(self,6 currentStresses,6 stressesIncrement)
fx=self .damageFunction(currentStresses);
fb=self.damageFunction(currentStresseststressesIncrement);
a0=—*fx /(fb—£fx);
fO=self.damageFunction(currentStressesfalOxstressesIncrement);
ai=a0;
fi=f0;
while abs(fi)>10e—5
atangenti=NonLinearMaterial3D.verticalVectorToYieldSurface<>
(currentStressesfaixstressesIncrement);
dai=—1/(atangenti 'sxstressesIncrement )*fi;
ai=ai+dai;
fi=self.damageFunction(currentStressestaix«
stressesIncrement);
end
a=—ai;
end
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The tangent modular matrix Cy is then computed as in equation (2.9)

aa’C
Cia=C (I - 2.2
tA ( aTCa> A (228)
Hence the forward-Euler scheme leads to
oc =04+ Ciale (2.29)

Matlab Code 2.2: Function stress increment from yield surface

-
function stressIncrement=stressIncrementFromYieldSurface(self , <

currentStresses ,strainIncrement ,steps)
stressIncrement =0;
for i=1:steps
Ct=self.getTangentModularMatrix (currentStresses+<«
stressIncrement);
stressIncrement=stressIncrement+Ct*(strainIncrement./steps<>
)
end

end
\. J

Alternatively, AX could be computed from (2.8) but with A’s instead of dots
SO

aTCAe
A= —— 2.30
aTCa ( )
and then
Aoc = CAe — AXCa (2.31)
For the return to the yield function we require
Op =0¢ — (5/\00&0 (232)
where
oNc = / (2.33)

atCa+ A o

and op are the new stresses closer to the yield surface, while o¢ are the old
stresses with damage function greater than zero.

Matlab Code 2.3: Function correction to yield surface

function stressDecrement=correctionToYieldSurface (self, 6 currentStresses)

fc=self.damageFunction(currentStresses);
a=NonLinearMaterial3D.verticalVectorToYieldSurface (+
currentStresses);
dl=fc/(a'xself.C6x*a);
stressDecrement=dl*xself.C6x*a;
end
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Matlab Code 2.4: Function forward Euler with return

[newStresses isNonlinear|=forwardEulerWithReturn(self <

function
currentStresses ,strainIncrement)
stressesIncrement=self.C6*xstrainlncrement;
a=self.factorToYieldSurface(currentStresses ,stressesIncrement )<

)
if a<l
isNonlinear=true;
intersectStresses=currentStressestaxstressesIncrement;
remainingStrains=(l—a)*strainIncrement;
newStresses—intersectStresses+self .«
stressIncrementFromYieldSurface(intersectStresses , ¢
remainingStrains ,1);
while self.damageFunction(newStresses)>self .«
damageMagnitude
newStresses=newStresses—self.correctionToYieldSurface (+
newStresses);
end
else
isNonlinear=false;
newStresses=currentStresses+(self .C6xstrainlncrement);

end

end
J

F(

2.4.2 Sub-increments

Figure 2.4: Reducing the drift via sub-increments (with later correction to
E)

The use of sub-incrementation can be significantly reduce the errors that
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are introduced by the forward-Euler tangential scheme. In this technique the
incremental strain Ae is divided into m sub-steps and the standard forward-
Euler procedure is applied at each step. Even with sub-incrementation it is
probably wise to introduce a 'correction’ either at the end of each sub-step
or at the end of the increment. The sub-incrementation will not be discussed
further as it was not used in the thesis.

2.4.3 Backward-Euler scheme

-
(#4]
-

=
(9]

=
5y

(a)
Figure 2.5: Backward-Euler return

The "backward-Euler’ scheme is the one that is mainly used with Newton-
Raphson techniques as it has some advantages (simple formulation and quadratic
convergence) over the 'forward-Euler’ scheme. This scheme has also a spe-
cific plane-stress formulation which is more efficient at such problems. The
backward-Euler return is based on the equation

Oc =0p — A)\C&C (234)

and a starting estimate for o ¢ is needed. Generally the starting estimate will
not satisfy the yield function and further iteration will be required because

31



the normal at the trial position B (Figure (2.5)) will not general equal the
final normal. In order to derive such an iterative loop, a vector r, can be set
up to represent the difference between the current stresses and the backward-

Euler stresses,
r=0 — (op — A)XCac) (2.35)

and iterations are introduced to reduce r to (almost) zero while the final
stresses would satisfy the yield criterion, f = 0.

With the trial elastic stresses, og being kept fixed, a truncated Taylor
expansion can be applied to equation (2.35) so as to produce a new residual,
r,, where

@i.
60’0

& is the change in o and A is the change in AX. Setting r,, to zero gives

r, =19+ & + ACa + ANC (2.36)

-1
oc=— 1+ AACZ:_ (ro + )\Ca) = —Q'r,— A\Q " !Ca (2.37)

Also, a truncated Taylor series on the yield function gives

o .
fe, = fo, + 90 = fc, +apo =0 (2.38)

so that (dropping the subscript C)

i — fo—aTQ 'rg

—O-1Ca (2.39)

Matlab Code 2.5: Function backward-Euler return

-~
function [newStresses isNonlinear|=backwardEulerReturn(self <
currentStresses ,strainIncrement)

C=self .C6;

stressesIncrement=CxstrainlIncrement;
newStressesB=currentStresses{stressesIncrement;
fb=self.damageFunction(newStressesB);
if fb>=0
isNonlinear=true;
ab=NonLinearMaterial3D.verticalVectorToYieldSurface (+
newStressesB);
dl=fb/(ab'*Cx*ab);
newStressesC=newStressesB—dl*Cxab;
fc=self.damageFunction(newStressesC);

ac=NonLinearMaterial3D.verticalVectorToYieldSurface (+

newStressesC);
r=newStressesC —(newStressesB—dl*Cxac);
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Q=(eye(6)+dl*CxNonLinearMaterial3D.aDerivativeToStresses (+
newStressesC));

lamda=(fc—ac '« (Q\r))/(ac'«(Q\Cxac));
stressesIncrement=—(Q\r)—lamdax*(Q\self.C6x*ac);
newStressesC=newStressesC+stressesIncrement;
fc=self.damageFunction(newStressesC);
newStresses=newStressesC;

else
isNonlinear=false;
newStresses=newStressesB;

end

end
end

(f

2.5 The consistent tangent modular matrix

Simo and Taylor [15], and Runesson and Samuelson [14] derived a tangent
modular matrix that is fully consistent with the backward-Euler integration
algorithm. As a consequence of the 'consistency’, the use of the consistent
tangent modular matrix significantly improves the convergence characteris-
tics of the overall equilibrium iterations if a Newton-Raphson scheme is used
for the latter. Standard techniques would use the modular matrix of (2.9)
which is ’inconsistent” with the backward-Euler integrations scheme and de-
stroys the 'quadratic convergence’ inherent in the Newton-Raphson method.
A consistent tangent modular matrix with the backward-Euler return dis-

cussed in (2.4.3) can be derived using the following equations. Differentiation
of the standard backward-Euler expression (2.34) gives

. . Oa |

o =Ce—\Ca— A\NC—o (2.40)

Jo

where the last term is omitted from the derivation of the standard tangent
modular matrix. From (2.40),

. aa ! . N 1 . N . \
o= <I+A)\Caa> C(é—la)=Q'C(é—Aa) =R (e—Aa) (241)
where the Q matrix has appeared before in (2.37).
To remain on the yield surface, f should be zero, and hence from (2.7)

a'c =a’Re —Xa"Ra =10 (2.42)
and Raa™RT
. . aa )
6=Cui=(R- "1 )e (243)

where Cg; is the consistent tangent modular matrix.
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Matlab Code 2.6: Function get consistent modular matrix

( function Ct=getConsistentTangentModularMatrix(self 6 stresses)
f=self.damageFunction(stresses);
if £>=0
a=NonLinearMaterial3D.verticalVectorToYieldSurface (+
stresses);
dl=f /(a'*xself.C6xa);
Q=(eye(6)+dl*self.C6xNonLinearMaterial3D.<+>
aDerivativeToStresses(stresses));
R=Q\self.C6;
Ct=Rx*(eye (6)—axa'xR/(a'xRxa));
else
Ct=self .C6;
end
end
\. J

There are special formulations for two-dimensional situations [5, Chapter
6.8].

34



Non Linear Finite Element
Analysis

3.1 Introduction

With the creation of a non-linear material, as discussed in Chapter (2), the el-
ement which encapsulates the material becomes a non-linear element. Given
some strains or displacements (strains can be computed from displacements),
the non-linear finite element can return its stresses or the reactions (again
the reactions can be computed from the stresses) according to the material
law that is chosen. In that way we can see that the pure displacement ver-
sion of the finite element method is the most convenient spatial discretisation
method for the majority of the applications of non-linear constitutive rela-
tions. Its formulation is simple, and allows for a straightforward implemen-
tation of complicated constitutive relations. Apart from the displacement
control methods, there are also load control methods, and even more ad-
vanced ones, such as path-following methods, Quasi-Newton methods, and
branch switching techniques at bifurcation points [13, Chapter 4].

3.2 Load control method

Generally, in static finite element analysis we require
fext - fint =0 (31)

where f.,; are the external forces and f;,; are the internal forces.

For static non linear analysis time plays no role. Yet, also then we need a
parameter to order the sequence of events. For this reason we shall continue
to use the concept of 'time’ also in static mechanical processes to order the
loading sequence. In particular, the concept of time can be employed to

35



apply the external load in a number of loading steps (or increments). It
would be possible to impose the entire external load f.,; in a single step, but
this wouldn’t be a sensible approach because of the following reasons:

1. The set of algebraic equations that arises from the discretisation of a
non-linear continuum model is non-linear, thus necessitating the use of
an iterative procedure for its solution. For very large loading steps, the
case of imposing the entire load in one step being the extreme, it is usu-
ally difficult to obtain a properly converged solution, if a solution can
be obtained at all. Indeed, the convergence radius is limited for most
commonly used iterative procedures, including the Newton-Raphson
method.

2. Experiments show that most materials exhibit path-dependent behaviour.
This means that different values for the stress are obtained depending
on the strain path that is followed. For instance, the resulting stress
can be different when we first apply tension on a panel followed by a
shear strain increment or when the same strain increments are imposed
in the reverse order. Evidently, the structural behaviour can only be
predicted correctly if the strain increments are relatively small, so that
the strain path is followed as closely as possible.

Along this line of reasoning we decompose the vector of unknown stress
components at time t 4+ At, denoted by ot*2¢ into a stress vector o at time ¢
when the stress components are known, and Ao which contains the hitherto
unknown components of the stress increment

o™ =g+ Ao (3.2)

Substituting this additive decomposition into Equation (3.1) we get

A A
f?;t - f;?rtt =0 (3.3)
Contrary to a linear system, the internal forces ff~*, derived from the dis-
placements Aa by solving
KAa=fiI2 —f, (3.4)

where K which is the tangential stiffness matrix of the structure upon a
small increment of loading, will not equal the external forces £©72% and hence
the equilibrium of (3.3) will not be satisfied. This would lead to a ’drifting
away’ from the true equilibrium solution, especially if relatively large loadings

steps are employed. This is why equilibrium iterations within each loading
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step should be added. In this incremental-iterative solution method a first
estimate for the displacement increment Aa is made through

Aal = Kal’f‘o (35)

where
t+At

To = femt - fint70 (36)
is the residual vector at the beginning of the load increment. The subscript
1 of Aa signifies that we deal with the estimate in the first iteration for the
incremental displacement vector. Likewise, the subscript 0 of the internal
force vector relates to the fact that this vector is calculated using the stresses
at the beginning of the loading step, i.e. that are left behind at the end of
the previous iteration (og = o?)

finto = finto(oo)!! (3.7)

Then from the displacement vector Aa; the strain increment Ae; is esti-
mated, whereupon, using the stress-strain law, the stress increment Ao is
computed. The new stresses are now

0'1:0'0—|—A0'1 (38)

Generally, the new internal force vector f;,,;1 (that is computed from o) is

not in equilibrium with the external loads £t so the new residual vector is
computed
T = fi:tm — Lot (3.9)

and then the correction to the displacement increment by das
day =K' (3.10)

where K is the updated tangential stiffness matrix. The displacement in-
crement after the second iteration in the loading step follows from

Aaz = Aa1 + dag (311)

In a similar fashion the next iterations are now proceeded. The process results
in stresses that are in equilibrium internally and with the applied external
loading within some user-prescribed convergence tolerance. A graphical ex-
planation is given in Figure (3.1). The general algorithm for the load control
method for each load step is:

1. Initialize the data for the loading step. Set Aay =0
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Figure 3.1: Graphical explanation of the 'load control’ method

ft+At

Compute the new external force vector £,

. Compute the tangential stiffness matrix Kj (see chapter 2)

. Adjust for prescribed displacements and linear dependence relations

Solve the linear system Kjda i1 = ff;rft —finej

. Add the correction da;; to the incremental displacement vector (equa-

tion (3.11))

. Compute the strain increment Ag; ;4 for each integration point ¢

Compute the stress increment from the strain increment for each inte-
gration point ¢ using the methods of chapter 2

Add the stress increment to o for each integration point 7

Compute the internal force vector from the stresses at gauss points

t+At

ent —Fintj41]] and proceed to the next

Check convergence with norm ||f
loading step or go to step 3
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An issue that has not been discussed yet, is the implicit assumption that
the tangential stiffness matrix Kj is updated after each iteration. Indeed, it
can be rather costly to compute and to decompose a stiffness matrix every
iteration, as is being done within a full Newton-Raphson process, especially in
computations of three-dimensional structures. This has motivated the search
for methods which obviate the need to construct and decompose a tangential
stiffness matrix in every iteration. There are other load control methods
that compute the stiffness matrix once in each load step and use the same
or use linear modifications of that such as the Quasi-Newton techniques. [13,
Chapter 4]

Matlab Code 3.1: Function ’NonLinearLoadControlAnalysis’

-
function nonLinearLoadControlAnalysis(ElementList,loadVector,h steps)

solverTime=tic;

[pDOF prescribedDisplacements|=ElementList.nodeList.«
getPrescribedDisplacements;

loadVectorStep=loadVectorx(1l/steps);

fprintf ('Non Linear Analysis for %5.0f steps \n', steps)

for i=1:steps

fprintf ('Step %5.0f of %5.0f ... ' i,steps)

newLoadVector=loadVectorStepx*i;

[newDisplacements newForces]=Solver.nonLinearNewtonRaphson<—
(ElementList ,prescribedDisplacements ,pDOF , <«
newLoadVector);

ElementList.forces=newForces;

end

time=toc(solverTime);
fprintf ('Time for calculations %10.3f seconds\n', time)
end

(S

Matlab Code 3.2: Function 'nonLinearNewtonRaphson’

function [displacementVector forcesVector|=nonLinearNewtonRaphson (+
ElementList ,prescribedDisplacements ,prescribedDisplacementsDOF ,<
loadVector)
freeDOF=ElementList .getDOF;
freeDOF (prescribedDisplacementsDOF) =[];
fext=loadVector;
fint=ElementList.getLoadsFromStresses;
n=0;
displacements=ElementList.displacements;
if isempty(displacements)
dof=ElementList.getDOF;
displacements=zeros(dof ,1);
end
remainingloads=fext—fint;
remaininglLoads (prescribedDisplacementsDOF)=0;

while norm(remainingloads (freeDOF))/norm(loadVector)>«
Solver.forcesAccuracy
n=n-+1;
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fprintf ('Iteration %5.0f ... ',n)
ElementList.createStiffnessMatrix;
StiffnessMatrix—ElementList.getStiffnessMatrix;
[displacementStep forcesStep]=Solver.classicSolver (+
StiffnessMatrix ,prescribedDisplacements ', <>
prescribedDisplacementsDOF ,remainingloads);
displacements=displacements{displacementStep;
%forces=forces+forcesStep;
ElementList.setDisplacements(displacements);
%ElementList.forces=forces;
ElementList.setStressesToGaussPoints;
fint=ElementList.getLoadsFromStresses;

remaininglLoads=fext—fint;
remainingloads (prescribedDisplacementsDOF )=0;
reverseStr = repmat(sprintf('\b'), 1, 20);
fprintf (reverseStr);
end
fprintf ('Completed in %2.0f iterations\n',n)
displacementVector=displacements;
forcesVector=fint;
end

F(

3.3 Displacement control method

Alternatively to the previous section where we prescribe load increments, we
can prescribe displacement increments. This so-called displacement control
procedure causes a stress development within the specimen, which in turn
results in nodal forces at the nodes where the displacements are prescribed.
Summation of these forces gives the total reaction force, which, except for a
minus sign, equals the equivalent external load that would be caused by the
prescribed displacements. However, when there is no preference for either
load or displacement control from a physical point of view, the latter method
is often to be preferred. The reasons for the preference for displacement
control are twofold

1. The tangential stiffness matrix is better conditioned for displacement
control than for load control. This tends to result in a faster conver-
gence behaviour of the iterative procedure.

2. Under load control, the tangential stiffness matrix becomes singular
at a limit point in the load-deflection diagram, not only when global
failure occurs, but also when we have a local maximum along this
curve (Figure 3.2). The tangential stiffness matrix of the displacement
controlled problem, on the other hand, does not become singular.

These statements are best elucidated starting from Equation (3.4). This
equation has been derived for load control, and the prescribed external load
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Figure 3.2: Singularity of tangential stiffness matrix at limit point and di-
vergence of iterative procedure

level is contained explicitly in the vector f.,;. The use of displacement control
does not directly cause external forces to be exerted on the structure. Rather,
a number of non-zero displacements are prescribed in an incremental loading
programme. We now decompose the incremental displacement vector Aa
into a vector that contains only degrees of freedom that are 'free’, i.e. which
have to be calculated, Aay, and displacement increments that have been
assigned a certain non-zero value, Aa,

Aa = [ 22 1 (3.12)

In a similar manner the stiffness matrix can be partitioned, as

Ke Ky ]

K= P 3.13

[ Kpf Kpp ( )

Using Equations (3.12) and (3.13), Equation (3.4) can be replaced by the
expression

Ke Kpp Aay frinto
= | gt 3.14
[ Kpe Kpp ] [ Aa, £pint,0 ( )
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where it has been assumed that, apart from the prescribed displacements, no
other forces act on the structure. Next, the unknown or ’free’ displacement
increments can be calculated by eliminating Aa, from Equation (3.14). For
the first iteration this elimination process yields

Aay = —Kg ' (KprAay, + fint0) (3.15)

while in the subsequent iterations the formula for computing the unknown
degrees of freedom changes into

dagjp = —Kg £ (3.16)

since da,, vanishes. Comparison of Equations (3.4) and (2.56) shows, that for
the first iteration the external load f1A" must be replaced by the ’equivalent
force vector’ KprAa, when switching from load to displacement control.
In the next iterations this contribution vanishes altogether for displacement

control.

Matlab Code 3.3: Function 'nonLinearDisplacementControlAnalysis’

function [displacementVector n|=nonlinearDisplacementControlAnalysis (<«
ElementList ,prescribedDisplacements ,prescribedDisplacementsDOF)

fprintf ('Non Linear Displacement Control Analysis \n')

% Displacements
ElementList.createStiffnessMatrix;
K=ElementList.getStiffnessMatrix;
cDOF=prescribedDisplacementsDOF;
prescribedDisp=prescribedDisplacements;
Kff=K.deleteDOF (cDOF);

fDOF=Kff.getDOF;
Kfp=K.getKce (£DOF , cDOF) ;

df=Kff.getStiffnessMatrix\(—Kfp.getStiffnessMatrix*<«
prescribedDisp);

%Reaction forces

Kpp=K.getKcc (cDOF);

Kpf=K.getKce (cDOF , £DOF) ;

Rp=Kpf .getStiffnessMatrix+xdf+Kpp.getStiffnessMatrix*<>
prescribedDisp;

% Displacement vector
disp=zeros(size(K.getDOF,2) ,1);
disp (fDOF )=df ;

disp (cDOF )=prescribedDisp;
displacementVector=disp;

% Forces vector
R=zeros(size(K.getDOF,2) ,1);
R(cDOF )=Rp—R(cDOF);
forcesVector=R;

42




(S

end

n=0;

displacementStep=displacementVector;
ElementList.setDisplacements (displacementVector);

while norm(displacementStep)/norm(prescribedDisplacements)><

end

Solver.displacementsAccuracy

n=n-+1;

fprintf ('Iteration %5.0f ... ',n)

ElementList.setStressesToGaussPoints;

fint=ElementList.getLoadsFromStresses;

%ElementList.createStiffnessMatrix;

StiffnessMatrix=ElementList.getStiffnessMatrix;

Kff=StiffnessMatrix.deleteDOF (prescribedDisplacementsDOF);

displacementStep=—(Kff.getStiffnessMatrix)\fint (£DOF);

displacementVector (fDOF )=displacementVector (£DOF )+«
displacementStep;

%displacementVector (£fDOF)=displacementStep;

ElementList.setDisplacements (displacementVector);

reverseStr = repmat(sprintf('\b'), 1, 20);

fprintf (reverseStr);

fprintf ('Completed in %2.0f iterations\n',n)
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The non-intrusive global local
strategy

4.1 Introduction

In this chapter, the main analysis technique for the handling of the local
non-linearities will be discussed. This technique is based upon a simple idea.
Instead of changing the linear elastic model that we have, by changing the
mesh and the type of finite elements in the region that the non-linearity is
expected, a second model is created only for that region with the geometric
details, mesh refinements or specific constitutive laws that are required. The
first model, the linear elastic one,which is referred as global, stays unchanged
(it contains also the region of the second model with linear elastic proper-
ties). Then with a coupling iterative algorithm between the two models, by
transferring displacements and forces from one model to the other and after
various analyses, the exact solution is achieved [8]. The global model reaches
the solution for the linear elastic part while the local model for the non-linear
region.

This method is designed to be both exact and non-intrusive. It is an
exact solution as it reaches the solution of a model with elastic linear prop-
erties in general and the non-linear properties at the chosen local region. In
other words, if the local region is selected correctly, as the only region where
non-linearities occur, then the solution of this strategy reaches the solution
of a full non-linear model. The great advantage of this local handling is
highlighted in its low computational cost. The method is also non-intrusive
which means that the solvers as well as the models are not meant to be ma-
nipulated in a way that would require intervention in standard fem programs
(even commercial). This means that the two models, the global and the
local, can be created in any fixed commercial program that has the appro-
priate libraries (of finite elements, materials etc.) for the local non-linearity.
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In addition, all the information that is required for the coupling between the
two models is data that is always found from the standard fem programs,
such as displacements and forces. Moreover, the solvers that the strategy
uses are solvers that FEM programs already have and there is not any need
to be changed. The only algorithm that is needed to be implemented is the
one that makes the information exchange between the two models.

Another significant specification here is that, in addition to handling local
non-linearity, the local model can be used to introduce geometric details,
mesh refinements or specific constitutive laws that are absent from the global
model. Furthermore, it can also be analyzed using a separate piece of code,
which may contain features that are not included in the global FE solver.
In this sense, the approach also works as a flexible and exact structural
reanalysis and solver coupling technique.

4.2 The reference problem and the two mod-
els

We consider a static mechanical problem set on a domain €2. We also assume
that the behaviour all of the domain is linear and elastic except in a small
region, that we call €2;. In this region, €);, we assume that the constitutive law
is elastic-plastic, although, as already discussed, other forms of non-linearity
and geometry abnormalities could as well be considered. We also assume
that the region, €27, in which the elastic-plastic behaviour occurs is already
known and that the rest of the region,which is called complement area, Q¢ =
O\Qy, will remain purely elastic and linear. Only one loading increment
is considered, but multiple load increments are handled by repeating the
procedure in an incremental scheme. [1] The reference problem is shown in
Figure 8.2 with its boundary conditions and loads.

This problem is rephrased in a splitted way by creating two models, the
global model and the local model. The global model is a simplified linear
elastic model (Figure 4.2a). This model represents the entire structure and
contains the elastic-plastic region but with linear elastic properties. The lo-
cal model describes only the non-linear region (Figure 4.2b). This reminds
of traditional submodeling techniques with one major difference: the local
model can contain many enhancements or changes without causing inaccu-
racies in the final result. To define the local model, a proper model error
indicator is being used after a first global linear analysis. At this point, it
should be clarified that in the sake of simplicity the following assumptions
are made:
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Figure 4.1: The reference problem

1. Q¢ is a set of uncut elements of the global mesh (I' doesn’t cut any
global element)

2. Q; is the exact region covered by the local mesh, and I' is part of its
boundary

3. both meshes match on I' : same nodes, edges, faces, degrees of freedom
and shape or basis functions. Therefore there is no need for a separate
discretization of I'. Non-conforming interfaces have not been consid-
ered so far, though a standard mortar technique [3] should provide an
effective answer to this problem.

In addition, the local model completely replaces the global model in the non-
linear region. In other terms, the two models affect each other only on the
boundary of the non-linear region. There is no need for model compatibility
inside £2;. The two representations of {2; can be completely different in terms
of geometries, discretizations and constitutive laws, given that the meshes
match on I'. This property makes it easier for the user to define the local
mesh and allows the method to be used for structural reanalysis and solver
coupling purposes, as explained previously.

The logic of the strategy is that the final solution takes into account the
local model for the non-linear region and the global model for the rest area
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Figure 4.2: The two models of the strategy

(Figure 4.3). Hence, the displacement field, u, of the solution is defined as

[ ul(x) ifxeQ
= u®(x) if x € Q¢

while the stress field, o, as

[ ol(x) ifxe
7= o (x) if x € Q¢

The ’global-local’ solution verifies every equation of the reference problem
if, and only if, the following three conditions are satisfied [7]:
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Figure 4.3: The reference model

1. the local solution, u” and o’, verifies each equation written in Q;
and on 0Q\I' (equilibrium, boundary conditions and elastic-plastic
constitutive equations)

2. the restriction of the global solution to Q¢, ué and &, verifies each
equation written in Q¢ and on 9Qc\I' (equilibrium, boundary condi-
tions and linear elastic constitutive equations)

3. both solutions match on I' (displacements are equal and tractions are
balanced)

These three conditions form the so-called global/local formulation. They are
similar to the formulation of non-overlapping domain decomposition meth-
ods: the overlap of models is eliminated from the equations.

4.3 Equations of the problem

According to our previous hypothesis, the system that corresponds to the
global problem has the classic form

KCGuY = f¢ (4.1)
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where K€, u® and f¢ are the stiffness matrix, the displacement field vector
and the forces vector of the global model. Decomposing equation (4.1) leads
to

KSC Kgr 0 ug fg
Kfe Kfrc+Krrr Kg uf | =| fio+ fIG‘,I (4.2)
0 K$ KS || uf £¢

where the subscripts I, C' and I" represent respectively the degrees of freedom
of the areas of €);, Q- and the interface I', while the contribution of the
elements of 2; and )¢ on the interface’s I' stiffness matrix has been separated
with the subscripts I and C.

On the other hand, the non-linear system that corresponds to the local
problem without the boundary conditions on I' and therefore incomplete
takes the form

gh(ul) = & + \F (4.3)
where g denotes the vector of nodal internal forces, which is a non-linear
function of u, and A denotes the vector of the nodal forces corresponding to
the boundary condition on unspecified I'.  Decomposing equation (4.3) for
the degrees of freedom of the interface, I', and the the interior, €27, we get

L L
-3 =
Note that, there is no link between the local and the global degrees of freedom
inside €;; as a result the two discretizations are independent. However, the
degrees of freedom of the interface, I' are the same for both models.

Finally, the finite element formulation of the reference problem is defined
by substituting in the global decomposed formulation (equation (4.2)) all the

contributions of §2; with the local decomposed formulation of equation (4.4).
Hence the problem takes the form

l gﬁ(uﬁ,ui)
g7 (ug, uy)

KS. K& 0 ul 0 S
Kfc Kfre 0 uf | 4+ | gf(ui,uf) | = f?,c + flé,l (4.5)
0 0 0]|uf gl (ult, uff) f]

where superscript R represents the solution of the reference problem (in the
finite element formulation) as shown in figure 4.3.

4.4 The exchange algorithm

After a first linear analysis to the global model, and after defining the local
area and creating the local model there are two variations of the exchange
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algorithm depending on the information being exchanged between the two
models.
Ar

' / Initial solution

L T AL (ul)
1 Iterations: .- ¥
ll L. _)\G (LIG)

J Solution of
) reference problem

ur
Figure 4.4: The iterative algorithm scheme

4.4.1 The displacements variation

In the displacement variation, in every iteration, we prescribe to the local
model the continuity of displacements. The algorithm of this variation is the
following

1. Local Analysis. The displacements of the interface I', that have been
calculated from the global linear analysis, are prescribed at the local

model (on I').

L_ .G
Ur = Ur

Then local problem is solved with the prescribed displacements as in
equation (4.4). For the elastic-plastic elements of the current thesis,
this means that a ’displacement control’ analysis is being driven as
described in chapter 3.

2. Calculation of the residual. As the continuity of the displacements
has been achieved with the previous step, the residual is calculated by
taking into account the lack of equilibrium of forces on the interface
['. Thus the residual is the sum of the interface’s nodal forces of the
surrounding elements. It takes the form

rr = —(AL + A?,c) (4.6)
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where AL is the nodal forces of the local model on the interface T' after
the local non-linear analysis (by solving equation (4.4)), and )\ICJ:C are
the nodal forces of the global model, only from the complement area
and not from the non-linear region (£2;).

. Global correction. The global model is loaded with the calculated
residual and all other prescribed displacements and loads are set to zero.
From this analysis a corrective term Au¢ is computed that represents
the effect of the non-linear region to the global model.

0
KCAu® =r¢ = | rp (4.7)
0

then global solution is updated by adding this correction term

u® < u® + Au® (4.8)
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= ! u Solution of
) reference problem
Il
1
1
)
ur

Figure 4.5: The displacement variation

4.4.2 The mixed boundary conditions variation

The term 'mixed boundary condition’ can have several meanings. In this
thesis, the use of Robin boundary conditions has been chosen. In other words,
when we solve the local problem (4.4), we do not prescribe the continuity
of displacements (the case of the previous variation) or the equilibrium of
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forces (that could be another variation), but a linear combination of these
two equations. That is

AL+ AEL) + A(ul —uf) =0 (4.9)

where A is a parameter of the method, but also a square matrix representing
an interface stiffness. Likewise the residual is also computed as a linear
combination of the continuity of the displacements and the equilibrium of
forces

(Al +Af¢) —B(uf —uf) =0 (4.10)

where B is also a parameter of the method. It should be clear that Equa-

tions (4.9) and (4.10) are equivalent to the equilibrium of forces and displace-

ments on the interface if, and only if, the matrix [A + B] is invertible. If

this condition is verified and if the algorithm is convergent, then the solution

will converge to the reference solution. Apart from this condition, there is

no restriction to the choice of A and B, but this will be discussed later.
The algorithm of this variation is the following

1. Local Analysis. Using the mixed boundary conditions of equation (4.9)
the local analysis of equation (4.4) takes the following formulation

ghubuf) | (A 0] [uf] 6],
gf (uf, uf) 0 0 [uf| |[fr
It is clear that the matrix A represents a stiffness addition to the in-
terface, while the mixed quantity —)\ﬁ o + Auf is the additional load
to the interface. Matrix A simulates the stiffness of the rest of the
structure and thus makes the mixed formulation more realistic than
the displacement variation. As we apply the mixed formulation in the

form of a force vector, a ’load control’ analysis method is needed for
the local model as it is described in chapter 3.

—)\ﬁc + Au? ]
0

2. Calculation of the residual. The residual is calculated according to
equation (4.10)

rr = —(AL + AL ) + B(uf — uf) (4.12)
while using using equation (4.9) it takes the form

rr = [A + B](uk — uf) (4.13)
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3. Global correction. There is no difference for the global correction in
this variation. The global model is loaded with the calculated residual,
while all other prescribed displacements and loads are set to zero. Then
the corrective term Au® is computed and the global solution is updated
(equation (4.8)).

Ar
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= / Slope B
I
~
ur

Figure 4.6: The mixed variation

4.5 Interface formulation

It is convenient to write the equations in each model in condensed form, i.e.
using only interface quantities. The global/local formulation can then be
translated directly. The global solution in condensed form is

S+ SFo|uf — (b, +bf) =0 (4.14)

where SEI denotes the Schur complement of the complement area’s stiffness
matrix, and bﬁo the corresponding condensed right-hand side vector. More
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precisely
-1
SI‘ I K?l" I K?IKI% Kﬁ‘
-1
SI‘C - I‘I‘C K K CC KSI‘
bl =7, - KEKE ¢
bl =8, — KEKE, '8

or we can write S§uf — b = 0 where

SE = SF1 + Sfc
b = bl + bl

The global solution, as it has to verify equations on ¢, takes also the form
SGIuF by’ C = )‘ﬁc (4.15)

The local problem with condensation at the interface takes the form
hr (uf) = Af (4.16)

where h% is the local problem’s discrete Steklov—Poincaré operator, i.e. the
interface stiffness operator giving the reaction forces /\12 as a function of the
interface displacements uk. A different notation is used because this group
of equations is non-linear. Finally, interface displacements must match and
interface nodal reaction forces must be balanced

uf = uf (4.17)

Ao+AE=0 (4.18)

This formulation is very similar to non-linear domain decomposition meth-
ods [12] [4]. The difference is that the global model is never substructured
since the approach is non-intrusive; therefore, the complement area is never
separated from the area of interest in the global model, and the quantities
S¢ rc and br ¢ cannot be accessed directly. Equivalently, we can say that it
is 1mp0881b1e to prescribe tractions directly on the complement area through
['; only traction discontinuities between {2 and €2; can be prescribed in the
global model.
The condensed form of the reference problem is

hi(uf) + Sfcuff — b =0 (4.19)
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The Schur approximation

5.1 Introduction

In section 4.4, two variations of the exchange algorithm were presented. The
one was the displacements variation and the other the mixed variation. This
two variations differ on the boundary conditions that are being exchanged.
The displacements variation is easy to implement and creates a continuous
displacement field. This is why it is very popular and often used in glob-
al/local or multi-level FEA, as well as hierarchical techniques.!! However,
displacement boundary conditions suffer from a couple of limitations. First,
as there is a difference between the stiffness of the local model and the stiff-
ness of the global model at the area of interest, there is a great influence on
the displacement field, which causes the boundary condition to be inaccurate.
In other terms, during the first iterations, global interface displacements are
usually quite different from reference interface displacements. This affects the
solution’s accuracy and, therefore, the algorithm’s convergence. A common
workaround is to position the interface far enough from the local details, but
this increases the size of the local problem unnecessarily. Another problem is
that if plasticity occurs at integration points located close to the boundary,
we have noticed that the prescribed displacements can cause convergence dif-
ficulties. Mixed boundary conditions are commonly used in domain decom-
position methods for these reasons. They are known to be quite insensitive to
the difference of stiffnesses and give accurate results from the first iterations,
which implies fast convergence, and they do not have a tendency to cause
stress concentrations or convergence problems. Their increased accuracy was
also shown in the field of global/local analysis. Therefore, they seemed to be
a natural choice for the method.
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5.2 The interface stiffness

As discussed in subsection 4.4.2 prescribing mixed boundary conditions to
the interface takes the form

()\% + )\ﬁc) + A(u% — uICf) =0 (5.1)

In addition, from the interface formulation of section 4.5 we have the following
equations. The local problem is

hr(ur) = A (5-2)
the global solution to the complement area is

the continuity of the displacements and the equilibrium of forces

uf = uf (5.4)
Afc+Af =0
and the reference problem
hi(uff) + Slg,cuf:2 = bgc (5.6)

By replacing in equation (5.1) the term AL with its equal form equation (5.2)
we take the form
hi(uf) + Aul = Au® — A& (5.7)

In other terms, the interface stiffness A is assembled into the local problem
and a mixed load vector Au® — A& is prescribed. This shows that the Robin
condition can be a powerful tool for modeling the stiffness of the rest of
the structure, that is the complement domain, as ’seen from outside’. More
specifically by comparing with equation (5.6), it is easy to see that if A is
equal to the Schur complement of the complement domain SE o, then the
mixed local problem (5.7) becomes equivalent to the reference problem (5.6).
Therefore, if we could compute Sl(:’: ¢ exactly, the analysis strategy would be:

1. exact, which means that the local solution will be the exact reference
solution

2. direct, which means that with the first local analysis we would reach
the reference solution and hence, no other iterations would be needed
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3. insensitive to the interface position, unlike the variation with the pre-
scribed displacements

Unfortunately, to compute Slg,c means to perform static condensation on
the complement area. Of course this technique is known to be extremely
expensive especially on problems with many degrees of freedom, such as big
3D problems. Maybe there is a possibility here for this technique (of the Schur
complement) to be combined with domain decomposition techniques, such
as FETI, and reduce the computation cost at accepted levels. Furthermore,
this static condensation is also intrusive. To condensate the complement area
we would have to create a model of this area and this is an intrusion to the
linear model.

This chapter proposes that an alternative is the approximation of the
Schur complement. This approximation should of course be inexpensive to
compute, and at the same time be ’close enough’ to the exact value so that
fast convergence is obtained. In addition, since the method is aimed to be
non-intrusive, the building of the approximation should work on irregular
meshes and require as little user intervention (such as manual mesh opera-
tions) as possible. There are many approximations that have been suggested,
but the most common are the following two types of approximation. Approx-
imations based on the elements on the vicinity of the interface, which we can
call short-scale approximations, and approximations that are inspired from
homogenization techniques, which we can call large-scale approximations (we
use large-scale interface loads and displacements in these approximations). In
this chapter this two approximations will be reviewed and then a combination
of the above approximations will be discussed. This ’two-scale approxima-
tion’ is proposed by Genre et. al [7] and is a technique that was used at this
thesis.

5.3 Short-scale approximation

These short-scale techniques are also called element strip techniques. As the
name suggests, these techniques consist in performing exact static condensa-
tion, not on the whole complement area, but on a strip of elements adjacent
to the interface, usually clamped at the other end. This leads to much lower
memory requirements. In this thesis, we have built such ’strips’ by analysing
element connectivity in a recursive manner. For example a two-element strip
is the strip of elements that touch the one-element strip and the one-element
strip is the strip of elements that touch the interface. The function of this
algorithm is shown at the following matlab code.
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The 4 element strip ~

Figure 5.1: A strip of 4 elements of the complement area adjacent to the
interface

Matlab Code 5.1: Recursive function get element strips attached

function elementStripIDs=getElementStripsAttachedToGlobalElements (self <
number0fStrips ,ElementsIDs)
if numberO0fStrips==1
[a interfaceNodesID|=self .«
getGlobalInterfaceNodeListForGlobalElements (+
ElementsIDs);
elementStrip=[];
for i=l:size(self.globalDomain.elementlist ,2)
nodes=self.globalDomain.getElement (i).nodeList;
for j=l:size(nodes,2)
if sum(nodes(j).ID=—interfaceNodesID)==1 && sum (<
self.globalDomain.getElement (i) .ID=—¢
ElementsIDs )==0
elementStrip=[elementStrip self.globalDomain.<
getElement (i).ID];
break;
end
end
end
elementStripIDs=elementStrip;
elseif numberO0fStrips>1
backElementStripIDs=self .«
getElementStripsAttachedToGlobalElements (<«
number0fStrips —1,ElementsIDs);
ElementsIDs=[ElementsIDs backElementStripIDs];
elementStripIDs=[backElementStripIDs self .+«
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getElementStripsAttachedToGlobalElements (1,ElementsIDs<

ik

end
end

It is obvious that the more element strips someone chooses the better the
approximation is and hence, better results are expected at the convergence
of the method.

Matlab Code 5.2: Function to get short scale approximation to Schur com-
plement

function Dgamma—=getShortScaleApproximationToSchurComplement (self , <
numberOfElementStrips)
model.globalDomain.construct;

elementStripIDs=model . getElementStripsAttachedToGlobalElements<>
(number0fElementStrips ,model.globalElementIDs{1});

[constrainedNodes constrainedNodesIDs|=model.<+>
getGlobalInterfaceNodeListForGlobalElements ([model .+
globalElementIDs{l} elementStripIDs]);

ElementStrip=ElementList (model.globalNodeList);

for i—elementStripIDs
ElementStrip.addElement (model.globalDomain.getElement (1))

end

ElementStrip.construct;

ElementStrip.nodelist.setPrescribedDisplacements («
constrainedNodes.getDOF ,zeros (size(constrainedNodes.getDOF+«+
)));

interfaceDOF=model.globalInterfaces{1}.getDOF;

Dgamma=ElementStrip.staticCondensation(interfaceDOF).«
getStiffnessMatrix();

model.globalNodeList.deletePrescribedDisplacements;
end

To summarize, the algorithm for the short scale approximation of the
Schur complement is

1. Create a model with the element strip that we have choose

2. Prescribe zero displacements at the other side of the interface of the

model

3. Compute the Schur complement of the model at the interface to get
the short-scale approximation

Slg,c = Krrc — KrcKcoe 'Ker (5.8)
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where SIC} ¢ is the approximation of the Schur complement of the complement
area, Sﬁc and the subscript £ denotes the rest of the model except from the
interface. The model is shown in figure 5.2.
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Figure 5.2: The model for the short scale approximation

5.4 Long-scale approximation

The long scale approximations are inspired from homogenization techniques.
In these techniques you prescribe a small number of interface loads on the
whole subdomain, representing the large scale behaviour. In comparison,
short-scale techniques consist in prescribing every possible interface load (i.e.
performing condensation) on a small part of the subdomain.

There two ways for this method. We can either prescribe displacements
to the interface or we can prescribe loads. If we prescribe displacements we
will get an approximation to Schur complement, but if we prescribe loads we
will get an approximation to Schur complement’s inverse, which is not the
approximation that we are interested at. In addition, prescribing loads would
require to split the complement area from the area of interest (split global
model in two), which is not our case and it would be intrusive. This is why
prescribing displacements is chosen. Finally, this choice avoids any potential
'floating subdomain’ problem, that could occur with prescribed forces and
require a specific algorithm.

In this framework, the 'homogenized’, approximate Schur complement is
defined as

Sfc =TISE I (5.9)
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where IT is a linear operator projecting interface forces onto some low-
dimensional 'macro’ space, and its transpose IIT does the same with interface
displacements. This choice guarantees that the approximation is symmetric.
Of course, the matrices in the equation above are never computed explicitly,
and the result is obtained by submitting the global model to simultaneous
load vectors.

The efficiency of the method obviously depends on the choice of these
‘macro’ spaces. For 'macro’ displacements, a common choice is the space
of interface rigid body motions (translations and rotations); this allows a
convenient definition of 'macro’ forces by duality arguments. In this study, we
have chosen the space of affine fields as the 'macro’ displacement space; this
includes translations and rotations, but also stretching and distorting modes,
as shown in Figure 5.3. For the sake of simplicity, we always handle the
interface as a whole: decomposing it would probably require user intervention
in the case of very irregular meshes.

L

(a) Translations and rotations

@,

| AN

N / | !

(b) Stretching and distorting modes

Figure 5.3: Affine displacement fields on the interface

Concerning 'macro’ forces, two definitions are possible. The simplest
choice is to use the same 'macro’ space as for the displacements. If E is a
rectangular matrix whose columns form an orthonormal basis of that space
(i.e. so that ETE = I), the projector can then be defined as

II=II" = EET (5.10)

that is, as an orthogonal projector (represented as a symmetric matrix).
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However, that choice may seem too restrictive because a 'macro’ space
that makes sense for nodal displacements does not necessarily make sense
for nodal forces. For that reason, we also considered different 'macro’ space
and projectors for the two quantities (we require, however, their dimensions
to be the same). If E and F are the rectangular matrices whose columns
respectively define the displacement and force 'macro’ bases, and if we assume
these bases are biorthonormal (i.e. ETF = FTE = I), then the projectors can
be defined as

I = FET (5.11)
" = EFT (5.12)

Since 'macro’ displacements include unit translations and rotations, the cor-
responding 'macro’ forces will have unit resultants and moments. Apart
from this, there is no restriction to the choice of the 'macro’ force space. For
reasons that will be explained later, we have chosen to define this space as
the space of reaction forces to prescribed 'macro’ displacements. Thus, once
these reaction forces have been computed, its basis F' is sought as

F = SE.EP (5.13)

where P is a basis transformation matrix; the biorthogonality condition then
gives
E'SFCEP =1 (5.14)

which means P has to be the inverse or pseudoinverse of ETSFE. Once
this pseudoinverse is computed, the 'macro’ force basis F is directly formed
by equation (5.13). Those 'macro’ basis vectors do not correspond to par-
ticularly noticeable force distributions. However, they have the desirable
properties of having unit resultants or moments (or higher order moments,
due to the stretching and distortion terms), and of containing relevant me-
chanical information on the subdomain’s response.

To summarize, the algorithm for the long scale approximation of the Schur
complement is

1. Create matrix E. Each column is a 'macro’ displacement and the rows
are the degrees of freedom of the interface.

2. Prescribe each 'macro’ displacement (each column of E) on the interface
' of the global model and solve to get the loads of the interface.

3. Calculate matrix P from equation (5.14). The calculated loads from
the preveous step is the matrix Slc{ cE

4. Calculate F from equation (5.13)

64



5.5 Two-scale Schur complement approxima-
tion

It is has been suggested from Gendre et al. [7] that these suggested approx-
imations, the short-scale and the long-scale, do not contain enough infor-
mation to give a good representation of the complement area’s influence. It
seems necessary to represent both the vicinity of the interface and the global
behaviour of the subdomain correctly. So, a technique is proposed for com-
bining these approximations, in order to build an efficient representation of
a subdomain’s stiffness. It is only used to the get an approximation of the
Schur complement of the complement area in the case of this thesis, but could
certainly have more applications, for example to building preconditioners in
domain decomposition methods. [16]

The logic behind this technique can be found in Saint-Venant’s principle,
which is a well-known empirical principle commonly used in mechanical engi-
neering in general, and in the beam theory in particular. The Saint Venant’s
principle stays that "... the strains that can be produced in a body by the appli-
cation, to a small part of its surface, of a system of forces statically equivalent
to zero force and zero couple, are of negligible magnitude at distances which
are large compared with the linear dimensions of that part’ [11].

In other words, at large distances from the system of forces, the motion
of the 'body’ is almost rigid (since strains are negligible). If we could identify
this rigid body motion and subtract it from the displacement field, then the
residual (non-rigid) displacements would be almost zero. Therefore, clamping
that 'body’ at a sufficient distance from the system of forces should not
introduce a significant error in any component of the solution, see Figure 5.4.
This should be true, in particular, for displacements of points where the forces
are applied.

Let us apply this principle to the complement domain, subjected to inter-
face forces Ar. Assume that ETAr = 0; since E contains interface translations
and rotations, then Ar’s resultant force and moment are zero. Therefore, the
principle above states that the complement domain could be replaced with
an element strip such as those presented in Section 5.3, clamped at a suffi-
cient distance from the interface; denoting its Schur complement by Dr, one
should then have

S€c 'Ar ~ Dp'Ar + Ex (5.15)

where x is a (possibly unknown) amplitude vector, and Ex represents the
rigid body motion that was omitted; x might be zero if each of the comple-
ment area’s rigid body modes are blocked. Moreover, since every equation
written in the complement area is linear, this rigid body motion has to be
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Figure 5.4: Saint Venant’s principle

a linear function of the loading; that is, there exists a rectangular matrix C
such that
x = CAr (5.16)

Determining this matrix could be difficult in practice, but luckily it will not
be needed in the final result. By combining the two equations above, the
following postulate is obtained: for any interface load vector Ar

if E"Ar =0, then S§¢ ' Ar ~ [Dr~! + EC| Ar (5.17)

We can now introduce our two-scale approximation to the Schur com-
plement. It basically consists in splitting, using the projectors defined in
Section 5.4, the space of interface forces in two:

1. a ‘micro’ space, design to contain only loads with zero resultant force
and moment, thus that can be analyzed on a short-scale approximation,
like those in Section 5.3

2. and a ‘macro’ space with a low dimension, that will be analyzed on
the whole complement area with homogenization-like techniques, like
in Section 5.4

The formulation is a straightforward application of this idea. First, no-
tice that both definitions of the 'macro’ force projector II, that are (5.10)
and (5.11), imply the following property: for any interface force Ar

ET(I—TI) Ar =0 (5.18)

This means that the resultant force and moment of (I — IT) Ar are always
zero. Therefore, if we take an arbitrary Ar and write the following 'macro/mi-
cro’ decomposition

Ar = IIAr + (I— II) Ap (5.19)
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and left-multiply it by S§ < ', then the postulate (5.17) gives
Sfc Ar~Sfc MAr+ [Dr' +EC| (I-1II) A (5.20)

And since this is true for any arbitrary A, the following approximation is

obtained . )
Sfc ~Sfe T+ [Dr'+EC|(I-1I) (5.21)

At a first glance, this definition seems to involve the response of the com-
plement domain to prescribed 'macro’ forces, due to the Sﬁcflﬂ term; as
explained in the previous section, prescribing interface forces on the comple-
ment domain is an intrusive operation. However, this difficulty can be lifted
by choosing the 'macro’ force space accordingly—that is, by defining it as
the space of reaction forces to prescribed 'macro’ displacements, as specified
by Equations (5.11)-(5.14). With this definition, once these reactions forces
have been computed, obtaining SSC_IH is no longer a problem. In addition,
Equations (5.11), (5.13) and (5.14) give the following identities

SIS 1 S § S
=II'SS 11
~E[E'SE.E| ET (5.22)

hat is, the response to prescribed 'macro’ forces is always a 'macro’ dis-
placement, and the response to a prescribed 'macro’ displacement is always
‘macro’ forces. In other terms, the following decomposition holds

SSe =SS T+ (I1-M)"SE.  (1-1) (5.23)

This decomposition is a direct consequence of the relation between the 'macro’
force and displacement spaces, and does not hold with other definitions (i.e.
when the two spaces are chosen to be the same).

Another difficulty is that the expression in (5.21) looks unsymmetric,
and thus seems to violate a fundamental property of linear elasticity. More
precisely, we know that the actual Schur complement is symmetric in our
problem; therefore, it is desirable to have a symmetric approximation. How-
ever, the identities (5.22) show that the 'macro’ term is already symmetric,
and only the 'micro’ term (with (I — IT)) is unsymmetric. Several ways of
making it symmetric can be thought of; similar to the decomposition (5.23),
we have chosen to slightly adapt Equation (5.21) as follows

Sfo | ~I'SE, M+ (I— 1) [Dr' + EC| (I - I) (5.24)
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Only the 'micro’ term changes between the two equations; this change con-
sists in using the short-scale approximation to calculate the ‘'micro’ response
to 'micro’ forces only. Note that this expression is still a valid consequence
of Saint-Venant’s principle: when comparing it to (5.23), which is an exact
equation, only the response to 'micro’ forces is approximated.

Finally, taking the transpose of Equation (5.18) shows that the rigid
body term (with EC) vanishes. Thus there is no need to identify rigid body
modes and compute the matrix C, and the final, symmetric two-scale Schur
complement approximation is

S¢.  ~mSS. M+ (I-M)"Dp ' (I-1) (5.25)

In practice, we are interested by the (primal) Schur complement itself, rather
than its inverse. Therefore, the expression above needs to be inverted. Since
it involves large full matrices (their size is the number of interface degrees
of freedom), a straightforward inversion may be expensive and a cheaper
method must be used. For that purpose, Equation (5.25) is rewritten (using
the identities (5.22)) as

S¢¢ " ~Dr ' + I'AG + AGI - IITAGIT (5.26)
where AG is the difference between the two compliances: that is
AG=SS; " —Dp! (5.27)

A direct approximation to Sﬁc is then obtained by applying Woodbury’s
matrix identity to Equation (5.26); this approximation is inexpensive to com-
pute because this equation is written as D! plus a small-rank corrective
term (namely, its rank is 3 times the dimension of the 'macro’ spaces). Using
equation (5.13) with equation (5.27) we take the following form

AGF =EP - Dy 'F (5.28)
and hence equation (5.26) can take the following form
S¢. " ~Dr ' +UCV (5.29)
where
U=|AGF E E| (5.30)
[T 0 0
C=]01 0 (5.31)
| 0 0 —FTAGF
-
V= | (AGF)’ (5.32)
ET

68



Then the Woodbury formula gives

Sfc = Dr — DrUC[I+ VDyUC] ' VDr (5.33)

5.6 Computational procedure

The whole procedure that is used to compute the two scale approximation is
summarised in the following algorithm

1. Building of the short-scale approximation

(a) Extract an ’element strip’ from the global model (see Figures 5.1
and 5.2) by analysing element connectivity as explained in Sec-
tion 5.3

(b) Perform static condensation on this element strip; this gives the
short-scale approximation of the Schur complement, Dr.

2. Using large-scale technique

(a) Generate affine displacement fields (see Figure 5.3), compute their

values at interface nodes and store them in the rectangular matrix
E

(b) Prescribe each of these affine displacement fields on the global
model’s interface, set other loads to zero, and run a multiple right-
hand side analysis to compute the corresponding internal reaction
forces on the interface: this gives the product SFcE

(c) Compute the biorthonormal forces F according to Equations (5.13)
and (5.14)

3. Computing the two scale approximation

(a) Compute the two-scale Schur complement approximation by ap-
plying Woodbury’s matrix identity to Equation (32). All the in-
formation needed is contained in D, E and F.

(b) Use it to the mixed formulation of the method as described in
subsection 4.4.2 and in section 5.2.

Matlab Code 5.3: Function to get two scale approximation

|

function Schur=getTwoScaleApproximationToSchurComplement (self , <
number0fElementStrips ,number0fRigidBodyMovements)
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model=self .multiscaleModel;

Dgamma=self.getShortScaleApproximationToSchurComplement (+
numberOfElementStrips);

[P F E]=self.getLongScaleApproximationToSchurComplement (<
number0fRigidBodyMovements);

% Woodbury's matrix identity

DeltaGF=ExP—Dgamma\F;

U=[DeltaGF E E];

C=eye(size(E,2)*3);

C(size(E,2)*2+1:end,size(E,2)*2+1:end)=F'xDeltaGF;

V=[E';DeltaGF' ;E'];

Schur=Dgamma—Dgamma*U+C/(eye(size(E,2)*3) +V«DgammaxU*C)xV*<«
Dgamma ;

end
\ J

5.7 Computation of the residual

In the previous section the calculation of the stiffness matrix A was described.
This is used by the iterative method to apply mixed boundary conditions on
the local model. However, for the calculation of the residual another stiffness
is used, matrix B, as we see in equation (4.12)

rr = —(AF + Afe) + B(uf — uf) = [A + B](uf — uf) (5.34)
The overall correction is then performed as usual
u® «— u® + Splrp (5.35)

where S is the operator that is used for the global correction. Sy is the Schur
complement of the global model (not the complement area)

Sr =S¢ (5.36)

A potential drawback is that as shown in the above expression, the correction
is made from the latest global solution u®. However, as we have seen in the
previous section, the last local solution, u”, is usually much better than
u® when mixed coupling is correctly formulated. In other words, doing the
update from u® may lead to a strategy that does not converge faster than
the approach movement, as shown in Figure 4.6 in Chapter 4, the benefits of
the joint connection would and partially lost. The ideal would be that the
overall correction takes the form

u? — u% + Sglrp (5.37)
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As it has already been explained, the optimal choice for A is the Schur
complement of the complement areaSﬁC. [2] However we use an approxima-
tion of it so we can write

A =8Sfc+AS (5.38)

where AS is the error of the approximation. Hence equation (5.34) takes the
form

rr = [SEc + AS + B](uf — uf) (5.39)

and global correction can be written

u® « St (Slg"c + B) u’ + S;tAS (uL — uG> + [I —S¢! (Sl(:’:c + B)} u“

It is therefore noted that a particularly wise choice is to let (5.40)
B =Sr - Src (5.41)

and so the above equation takes the form
u? u” + §;'AS (v —uf) (5.42)

In other words, with the correct choice of B we have the advantages of the
mixed coupling since it starts from the last local solution u”. Meanwhile,
the remaining term on the local solution, appearing in the above expression,
is

r =AS (uL — uG) (5.43)

However, by introducing the decomposition of A = Sﬁc + AS, the equation
of local problem with mixed boundary conditions (5.7) takes the form

hi(uf) + Sfcu” + ASu” = SEcu” — AZ + ASu” (5.44)
or, using the global solution of (5.3)
AS (uL - uG) = b?,o — hf(uk) - SgcuL (5.45)

This situation is shown schematically in Figure 4.6. The second stiffness
matrix, B, must be computed as the contribution of the area of interest to
the Schur complement of the global area. This means that as B = Sp — Sfc
the matrix B is the Schur complement of the area of interest

B = SE; (5.46)
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Non-conforming interfaces

6.1 Introduction

The biggest advantage of this method is that we can add details or a different
constitutive law in an area of an already given model. The local model can be
a totally different model in terms of material, type of elements and geometry
comparing with the global linear model. In that way new technologies, dif-
ferent elements, new geometries and non-linearities can be easily mixed with
old linear models. For this to be done in a totally free way, the method must
also be able to handle non-conforming interfaces. In this thesis, a simple and
quick way was used to overcome the problem of nonconforming interfaces for
situations that add more nodes in the interface of the local model.

6.2 Adding nodes in the local interface

Let the interface of the local model be called local interface and respectively
the interface of the global model global interface. Creating a detailed local
model requires the addition of nodes in the local interface, making it different
from the global interface. In Figure 6.1 we can see the new nodes of the local
interface with the red color, while, the other nodes are the same with the
global interface.

As in the local interface there are more degrees of freedom in comparison
with the global interface there must be a way for these degrees of freedom to
be determined. A common technique from domain decompositions methods
is the creation of a matrix that connects the displacements of the new degrees
of freedom with the displacements of the the ones that already exist. [17]
This matrix allows us to determine the displacements of the local interface
given the displacements of the global interface. To create this matrix we
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Figure 6.1: Non-conforming interfaces

must firstly determine the relationship between each of the new degrees of
freedom with the existing ones. For example, the displacements of a node
that is in the middle of two others as shown in the Figure 6.2 is

1
u§ + -u§ (6.1)

L _
Ueo = 9

1
2
where ug are the displacements of the node C' using the displacements of the
adjacent nodes A and B, while the displacements of the nodes A and B are
the same for the local and the global interface.

uf =u§ (6.2)
ub = ug

Expressing the above equations in matrix form we get

ugq 1 0 uy
1 1 upg
Uc 2 2

In that way, a matrix is created that represents the dependence of the degrees
of freedom of the local interface with them of the global interface.

uf = Auf (6.5)

Now if we want to distribute the forces from the dense local interface to
the global interface, we can use the same matrix, A. To be more specific,
we should use its transpose. Matrix AT would distribute the forces from the

local interface to the global.
S = ATFL (6.6)
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Figure 6.2: Dependence of the new degrees of freedom

6.3 The new algorithm

The two-scale Schur’s complement approximation, is an approximation of
the Schur’s complement of the global model on the interface. As the global
model remains the same so does the Schur’s complement approximation. We
use the matrix B to take the local interface displacements from the global
ones, and its transpose to take the global interface loads from the local ones.
In that way the analysis procedure is:

1. Local Analysis. The local analysis is performed in the same way.
Because we apply only loads in the local analysis, there is no need to
change something with the non-conforming interfaces. The loads are
not applied at all the local interface nodes but on the common nodes
with the global interface.

2. Calculation of the residual. There is a change in the calculation of
the residual. For the computation of the residual we use the global and
the local interface displacements. For the non-conforming interfaces a
change in the global displacements is needed in order to be of the same
order with the local displacements. This is done with the use of the
matrix A as mention before.

rk = [A + B](uf — Auf) (6.7)

3. Global correction. As the residual loads are computed from the local
interface, they must be turned into loads for the global interface using
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matrix AT.

ré = ATrp (6.8)
Then the method goes on in the same way as the other variations.

This is a quick and easy method to solve some types of non-conforming
interfaces. For other type of non-conforming interfaces a mortar element
technique can be used in a similar way.
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Putting theory into practise

7.1 Introduction

The main objective of this thesis was to turn the previous theory into practice
and arrive to some conclusions. For that reason a software was needed to be
created, which would implement all the necessary methods and algorithms.
Matlab was chosen as the preferred code, where everything was written from
scratch. No ready finite element programs were used. Matlab was chosen for
the following reasons:

1. It is a powerful tool for processing matrices (in finite elements almost
all algorithms require the handling of matrices and vectors). Matlab
has many and powerful built-in functions for the handling of matrices
that reduces the computational cost and makes the program shorter,
more efficient and easier to comprehend.

2. It is simple and user friendly, but also has a powerful IDE (integrated
development environment), which allows a quick and easy implemen-
tation of methods. In addition, it has strong tools for profiling and
testing the algorithms.

3. It was the main program-mathematical tool being educated in the fac-
ulty of civil engineers of NTUA.

The software was chosen to be written in an object-oriented way. The effi-
ciency of object-oriented programming in computational problems is a highly
debated topic, especially now with the raising interest in parallel computing.
The main advantages of object-oriented programming are :

1. It provides a clear modular structure for programs which makes it good
for defining abstract datatypes where implementation details are hid-
den and the unit has a clearly defined interface. In that way, the final
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algorithm is easy to understand even from people not familiar with
programming.

2. It makes it easy to maintain and modify existing code as new objects
can be created with small differences to existing ones. This leads to
maintainable and reusable code that is easily adapted to new problems
and changes.

3. It provides a good framework for code libraries where supplied software
components can be easily adapted and modified by the programmer.

Matlab provides the ability to build object-oriented programs, but in ac-
tion this turned to have some disadvantages. The major disadvantage was
that while Matlab was extremely quick and efficient with matrix operations
it turned to be slower with object classes, especially when they had the ’han-
dle’ attribute which is essential for object-oriented programming. Hence,
this leads sometimes in misleading results when we have to compare meth-
ods that have matrices operations with methods that have extended handling
of objects. Furthermore, it seems that using classic object-oriented program-
ming classes (such as the ones used in Java or C++ programming) is not the
best approach for a Matlab object-orienting program. The best and maybe
the only good choice is to write vectorized algorithms. Last but not least, as
Matlab does not use pointers in the handling of matrices there is a significant
drawback for finite element programs that their objects require big amounts
of matrices exchanges. However, Matlab remains a powerful tool for creating
such programs with a plethora of mathematical and engineering libraries.

7.2 Creating linear Finite Element software

Firstly, a classic linear finite element program was needed. We started by
creating the classes of 'Node’ and "Element’. The logic of the algorithm is:

1. A node list is created with all the nodes that will be used from the
domain. The 'Node’ object has as properties all the data that are
required as is shown in the below Matlab Code.

Matlab Code 7.1: Properties of 'Node’ object

classdef Node < handle
properties
ID
X

y
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z

releases=[0 0 0 0 0 O]
constraints=[0 0 0 0 0 O]
degrees0fFreedom=[0 0 0 0 0 O]
dof =[]

loads=[0 0 0 0 0 O]
prescribedDisplacements=[NaN NaN NaN NaN NaN NaN]

displacements=[0 0 0 0 O 0]
stresses =[]

stressesFromElements =]
elementsConnected =[]

end
\ J

The creation of a node requires its ID and its coordinates. Loads,
prescribed displacements and constraints are setted directly to the node
using functions of the 'Node’ object.

. Once the node list has been created, we create an element list. The
function that creates an element has as input the nodes that the element
has, which must be in correct order, and the material of the element.
We create a different "Element’ class for each type of finite element. The
main functions of an element object is the calculation of its stiffness
matrix and the calculation of its stresses and loads given the nodes
displacements. As an example the calculation of the stiffness matrix of
the linear quadrilateral element is shown below:

Matlab Code 7.2: Function getStiffnessMatrix of LinearQuadrilateral
class

-
function k=getStiffnessMatrix(self)

k=zeros (8);

C=self .material.C;
n=size(self.gaussPointList ,2);
xy=self .nodesXY;
gaussPoint=self.gaussPointList;
for i=1l:n

h=gaussPoint (i) .x;
j=gaussPoint (i).y;
J=1/4%[—(1—-h) (1-h) (1+h) —(1+h);
—(1-3) —(1+3) (1+3) (1—-3)]*xy;
Bi=1/det (J)*[J(2,2) —J(1,2) O O;
00 —-J(2,1) J(1,1);
—J(2,1) J(1,1) J(2,2) =J3(1,2)];
B2=1/4%[—(1—h) 0 (1—h) 0 (1+h) 0 —(1+h) O;
—(1-3) 0 —=(1+3) 0 (1+3) 0 (1-3) 0;
0 —(1-h) 0 (1-h) 0 (14+h) O —(1+h),
0 —(1-3) 0 —(143) 0 (1+3) 0 (1-3)];
B=B1%B2;

kgauss=B'#xCxBxdet (J)+*self.thickness;
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k=k+kgauss;
end
end

Furthermore, the element object sets the releases of the nodes that it
has. In that way, we can have different types of elements with different
releases in the same model (the node that connects different types of
elements has the releases from both types).

. The next step is the creation of the stiffness matrix. Once the elements
have determined the releases of each node, the node list can now deter-
mine the degrees of freedom of each node. The domain stiffness matrix
is created by adding the stiffness matrix of each element to the correct
position according to the degrees of freedom of each element. For this
procedure a class has been created that represents the stiffness matrix.
This "StiffnessMatrix’ object has as properties the stiffness matrix, that
can be saved in more condensed way (sparse matrix, symmetric sparse
matrix) instead of full matrix, and its degrees of freedom as a vector.
The stiffness matrix class has the following functions:

. After the creation of the stiffness matrix, we can proceed to the com-
putation of the displacements by solving the known equation

K+d=P (7.1)

where K is the stiffness matrix, d is the displacement vector and P is
the load vector. The load vector is created from the node list by running
throughout the nodes to find the applied loads. In a similar way the
prescribed displacements are found and their degrees of freedom. The
procedure is shown in the following matlab code:

Matlab Code 7.3: Function that solves the stiffness linear equation

function [displacementVector forcesVector]|=classicSolver (+
StiffnessMatrix ,prescribedDisplacements ,<>
prescribedDisplacementsDOF ,loadVector)
% Displacements
K=StiffnessMatrix;
cDOF=prescribedDisplacementsDOF;
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if

end
end

isempty ( cDOF)
D=rcond (full(K.getStiffnessMatrix));
if D<10e—5
warning ( 'Probably Floating domain');
end
displacementVector=K.getStiffnessMatrix\(loadVector)<+

k)
forcesVector=—loadVector;

else

prescribedDisp=prescribedDisplacements;

Ke=K.deleteDOF ( cDOF) ;

eDOF=Ke . getDOF;

Kd=K.getKce (eDOF , cDOF);

Re=loadVector;

Re (cDOF) =[];

de=Ke.getStiffnessMatrix\(Re—Kd.getStiffnessMatrix*<¢>
prescribedDisp);

Y%Reaction forces

Kdd=K.getKcc (cDOF);

Kde=K.getKce (cDOF , eDOF ) ;

Rd=Kde.getStiffnessMatrix*det+Kdd.getStiffnessMatrix*<>
prescribedDisp;

% Displacement vector
disp=zeros(size(StiffnessMatrix.getDOF,2) ,1);
disp (eDOF)=de;

disp (cDOF )=prescribedDisp;
displacementVector=disp;

% Forces vector
R=loadVector;
R(cDOF)=Rd—R(cDOF);
forcesVector=R;

(S

5. The displacements are saved in the correct node’s properties and then
the elements can calculate the loads, the stresses and everything else
it is needed for the post-procession. Functions that take as input the
element list can now plot the deformed model or the stresses.

7.3 Creating the non-linear Finite Element

software

The non-linear finite element is the next object that must be created. For
this reason we build firstly an non linear material class using the theory and
the functions that are presented in Chapter 2.

The 'NonLinearMaterial’ class represents the non-linear material object.
To create this object, the Young modulus, the Poisson ratio and the yield
stress are required. The functions that this class has, are the backward Euler
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return and the construction of the consistent modular matrix. There are also
specific functions for the plane stress finite elements.

The non linear element object follows the next in order to use correctly
the ’NonLinearMaterial’ object.

1. In the construction of the stiffness matrix instead of using the clas-
sic modular matrix, the non-linear element receives from the 'Non-
LinearMaterial’ object the consistent tangent modular matrix. The
function of the creation of this modular matrix takes as input the
stresses of the point where the matrix is calculated (Gauss points in our
case).Consequently, the 'NonLinearElement’ object has to calculate the
stresses of its Gauss points before getting the tangent modular matrix.
If this is the first call then the stresses are zero.

2. In each iteration, once the equation (7.1) has been solved, the 'NonLin-
earElement’ object gets the displacements from its nodes. Then, using
shape functions, it calculates the new strains in the Gauss points. Hav-
ing also the preveous strains, it calculates the strain increment of this
iteration.

3. Using the previous stresses and the strain increment, a backward Euler
return (it is a function of the 'NonLinearMaterial’ object) is performed
in each Gauss point. As already mentioned the backward Euler return
is better than the forward Euler technique. From the backward Euler
return the 'NonLinearElement’ gets and saves the new stresses at each
Gauss point.

4. Using the stresses of each Gauss point, the internal loads of the 'Non-
LinearElement’ are calculated. These loads are used to check the
convergence of the non-linear analysis method that is used (Newton-
Raphson, arc-length etc.). If there is no convergence then the next
iteration starts from step 1 with these new stresses.

The calculation of the stresses by a non-linear quadrilateral element are
shown in the following matlab codes:

Matlab Code 7.4: Function that calculates the strains of the NonLinear-
Quadrilateral element at specific coordinates

function strains=getStrainsFromCurrentNodeDisplacements(self , h,j)
disp=zeros(1,8);
xy=self .nodesXY;
for node=1:4
disp(nodex2—1:node*2)=self .nodelList (node).displacements<>
(1:2) 5
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end
J=1/4x[—(1~h) (1-h) (1+h) —(1+h);
—(1-3) —=(1+3) (A+3) (I1=3)]*xy;
Bi=1/det (J)x[J(2,2) —=J(1,2) 0 O;
00 —J(2,1) J(1,1);
_‘](271) J(lvl) J(272) —J(l,2)};
B2=1/4%[—(1—h) 0 (1-h) O (1+h) O —(14+h) O;
—(1-3) 0 =(1+j) 0 (1+3) 0 (1-3) O
0 —(1-h) 0 (1-h) O (1+h) O —(1+h)
0 —(1-3) 0 —=(143) 0 (1+3j) 0 (1-3)

b

5
I;
B=B1x%B2;

strains=Bx*disp ';
end

(7
-

Matlab Code 7.5: Function that calculates the new stresses and loads of the
NonLinearQuadrilateral element

e
function setStressesToGaussPoints(self)

n=size(self.gaussPointList ,2);
R=zeros (8,1);
disp=zeros(1,8);
for node=1:4
disp(nodex2—1:node*2)=self.nodelist (node).<+>
displacements (1:2);
end
xy=self .nodesXY;
for i=I1:n
gaussPoint=self.gaussPointList (i);
gaussPointStrains=gaussPoint.getStrains;
h—gaussPoint.x;
j=gaussPoint .y;
3=1/4[~(1-h) (1-h) (1+h) —(1+h);
~(1-3) ~(+3) (1+3) (1—3)]*xy;
Bi=1/det (J)*[J(2,2) —J(1,2) 0 0;
00 —-J(2,1) J(1,1);
7J(271) J(lrl) ‘](272) 7‘1(1’2)];
B2=1/4x[—(1—h) 0 (1-h) O (1+h) O —(1+h) O;
~(1-3) 0 —(1+3) 0 (1+3) 0 (1-3) 0;
0 —(1-h) 0 (1-n) O (1+h) 0 —(14+h);
0 —(1-3) 0 —(1+3) 0 (1+3) 0 (1-3)];
B=B1x%B2;
newGaussPointStrains=Bx*disp ';
strainIncrement=newGaussPointStrains—gaussPointStrains;
currentStresses—=gaussPoint.getStresses;

[newStresses isNonlinear|=self.nonlLinearMaterial .+«
backwardEulerReturn(currentStresses,strainIncrement);
if isNonlinear
gaussPoint.isNonlinear=true;
end
R=R+(B') *newStressesx*det(J)*self.thickness;
self.internallLoads=R;
gaussPoint.setStresses(newStresses);
gaussPoint.setStrains(newGaussPointStrains);

end

end
\ J
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For the non-linear finite element code to be complete, the analyses meth-
ods that are described in Chapter 3 are required. Using the load control
method (Section 3.2) or the displacement control method (Section 3.3) with
the above objects and functions we get a usable non-linear finite element
code.

7.4 Analysis with the two-Scale approxima-
tion

The main functions for the creation of the two-scale Schur complement’s ap-
proximation have already been presented in Chapter 5. But in this thesis the
code was designed do the whole procedure by itself, without the intervention
of the user. In other words, someone has only to submit a linear model and
a non-linear material and leave all the rest calculations for the software. The
software has to determine the region where the plasticity occurs and then
create a local model for that region. Then the two scale analysis is per-
formed with the local and the global model. The algorithm of this multiscale
analysis is:

1. First linear analysis. A linear elastic analysis is performed to the global
model and the stresses of all the Gauss points are calculated. Then
the Gauss points that have crossed the yield surface are found (see
Figure 8.3 in the Chapter 8).

2. Creation of the local model. From the Gauss points that have crossed
the yield surface, we can now determine which elements determine the
non-linear area. It is important to point out here that this area is most
likely to be expanded when the elastoplastic properties will be used.
This is why the local model should contain these elements as well as one
or two element strips around them (see Figure 8.4 in the Chapter 8).
Of course the local model is a new non-linear model that is created
from the properties of the elements chosen. The global model remains
untouched.

3. Computation of the Schur approximation. The short scale approxima-
tion is computed (as described in section 5.3), then the long scale (as
described in section 5.4) and then the two-scale approximation. These
functions have already be described in Chapter 5. If we want to calcu-
late the Schur complement explicitly, in this step, after we have created
the local model, we remove from the global model the elements that
are in the plastic area (this is an intrusive operation) and then we make
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a static condensation on the degrees of freedom of the interface (also
intrusive as requires the stiffness matrix).

Multiscale iterations. Using the Schur complement the loads of the
local model are computed and a non-linear load control analysis is
performed as descused in section 3.2. The residual is calculated and it
is applied to the global model. These iterations stop when the residual
is small enough. Apart from the residual two other error estimators
are used. They check the difference between the displacements of the
local model and the global model in the interface. The first, nu, uses
the displacements of the reference solution while the other, n&, of the
gloabl model’s displacements.

nf — H“r — Up H (7.2)
! Juff| '
TLG: ||uF _UFH (7 3)
el '

Where vk, uff and u§ are the displacements of the interface of the local,
the reference and the global solution respectively. Many times a good
reference solution will not exist, so the residual and the n¢ are the only
indicators that are always available. Here is the matlab code for the
multiscale iterations:

Matlab Code 7.6: Function of the multiscale iterations

function residualN=multiscalelteration(self,6 Schur,B,«+
globalPrescribedDisplacements ,prescribedDislpacementsDOF ,<>
globalloads)
GlobalDomain=self .multiscaleModel.globalDomain;
FinalDisp=GlobalDomain.displacements;
globalInterface=self .multiscaleModel.globallnterface;
LocalDomain=self .multiscaleModel.localDomain;
localInterface=self .multiscaleModel.locallnterface;

elementStripl=self .multiscaleModel .«
getElementStripsAttachedToGlobalElements (1,self .«
multiscaleModel.globalElementID);

i=0;
residualNorm=1;
noi=1;

globalInterfaceDisplacements=GlobalDomain.displacements (<
globallnterface.getDOF);

loads=GlobalDomain. <>
getLoadsFromNodeDisplacementsForElements (<
elementStripl);
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end

globalInterfaceLoads=loads (globallnterface.getDOF);

while residualNorm>le—4

end

i=it1;

% Local Domain solve paper Gendre et al. (11)

Forces=Schur*globalInterfaceDisplacements—<
globalInterfacelLoads;

%LocalNodes .setLoads (localLoadsDOF ,localloads);

Loads=LocalDomain.nodelList.getLoads;

Loads (locallnterface.getDOF )=Loads(locallnterface.<>
getDOF )+Forces ';

noi=Solver.<«>
nonLinearLoadControlSolverWithStiffnessAddition («
LocalDomain,localInterface.getDOF,Schur ,h6 Loads<
"),

%loads=LocalDomain.getLoadsFromStresses;

%localIlnterfacelLoads=loads (locallnterface.getDOF);

locallnterfaceDisplacements=LocalDomain. <
displacements (locallnterface.getDOF);

%Residual

%residualForces=—(globallnterfaceloads+<
localInterfacelLoads);

residualDisplacements=locallnterfaceDisplacements—<
globalInterfaceDisplacements;

residual=(Schur+B)*residualDisplacements;

Loads=zeros (size(globalLoads));

Loads (globalIlnterface.getDOF)=Loads(globallnterface.<>
getDOF )+residual;

%GlobalNodes.setPrescribedDisplacements (>
globallnterface.getDOF ,residualDisplacements);

[ddisp loads]=Solver.classicSolver (self.globalK, <«
globalPrescribedDisplacements ,<
prescribedDislpacementsDOF ,Loads);

FinalDisp=FinalDisp+ddisp;

GlobalDomain.setDisplacements (FinalDisp);

globalInterfaceDisplacements=GlobalDomain.<«
displacements(globallnterface.getDOF);

loads=GlobalDomain. <>
getLoadsFromNodeDisplacementsForElements (<
elementStripl);

globallnterfaceLoads=loads(globalIlnterface.getDOF);

Y%Residual

Y%residualForces=—(globalInterfaceLoads+«
locallnterfaceLloads);

residualDisplacements=locallnterfaceDisplacements—<
globalInterfaceDisplacements;

residual=(Schur4B)*residualDisplacements;

residualNorm=norm(residual ,2) /norm(globalloads ,2);

residualN(i,:)=[noi residualNorm];

((
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5. Once the iterations have completed and the local and global model
are in equilibrium, we check if there are elements in the global model
outside the area of interest (the area that has also the local model)
that have crossed the yield surface. If there is no such an element
then the problem is solved. If there are elements that have crossed the
yield surface and are not in the local model, then a new local model
is created and the multiscale iterations must be executed again. Of
course, we can perform the above check inside the multiscale iteration,
which would be more efficient as we would avoid extra iterations.

7.5 Analysis with non-conforming interfaces

The previous algorithm was adapted so that it can handle also non-conforming
interfaces. The key matrix for the analysis is the A matrix that was described
in section 6.2. The creation of this matrix is carried out together with the
creation of the local model, which is in a finer scale. The local model that is
created has four quadrilateral elements in the place where the global model
has one. The following matlab code Shows the function that creates the local
model and the A matrix (matrix B in the code):

Matlab Code 7.7: Function create finer model

function [localDomain locallnterfaceNodeList interfaceNodesID B]=+«
createFineNonLinearDomain(self ,globalElementIDs ,NonLinearMaterial)

[localInterfaceNodeList interfaceNodesID|=self.«
getLocalInterfaceNodeListForGlobalElements (<
globalElementIDs);

localDomain=ElementList (self.localNodelList);

B=eye(locallnterfaceNodeList.sizex*2);

for i=globalElementIDs
coarseElement=self.globalDomain.getElement (i);
ID{l}=coarseElement .nodeList (1).ID;
ID{2}=coarseElement .nodeList (2).1ID;
ID{3}=coarseElement .nodeList (3).1ID;
ID{4}=coarseElement .nodeList (4).1ID;

ID{5}=ID{1};
for i=1:4
x=(self.globalNodeList.getNode(ID{i}).x +
self .globalNodeList.getNode (ID{i+1}).x)/2;
y=(self.globalNodeList.getNode (ID{i}).y +
self .globalNodeList.getNode (ID{i+1}).y)/2;
IDnew=self.localNodeList.findNode(x, y);
if IDnew==
self.localNodeList.newNode(x,y);
IDnew=self.localNodelList.size;
if not(isempty(find(interfaceNodesID==ID{i}, 1))) & «
not (isempty(find(interfaceNodesID=—ID{i+1}, 1)))
locallnterfaceNodeList.addNode(self.localNodeList .«
getNode (IDnew));
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end

end

%interfaceNodesID=[interfaceNodesID IDnew|;
B(size(B,1)+1,2¢locallnterfaceNodelList .«
findIndex0fID (ID{i})—1)=0.5;
B(size(B,1) ,2xlocallnterfaceNodeList.findIndex0fID«
(I1p{i+1})—1)=0.5;
B(size(B,1)+1,2%locallnterfaceNodelist .«
findIndex0fID(ID{i}))=0.5;
B(size(B,1) ,2%locallnterfaceNodeList.findIndex0fID«
(1p{i+1}))=0.5;
end
end
IDn{i}=IDnew;
end
x=(self.globalNodeList.getNode (ID{1}).x +
self .globalNodeList.getNode (ID{2}).
self.globalNodeList.getNode (ID{3}).
self .globalNodeList.getNode (ID{4}).
y=(self.globalNodeList.getNode (ID{
self.globalNodeList.getNode (ID{2}).
self.globalNodeList.getNode(ID{3}).
self.globalNodeList.getNode (ID{4}).
self.localNodeList.newNode(x,y);
IDnew=self .localNodelList.size;
IDn{5}=1IDnew;
thick=coarseElement.thickness;
localDomain.addElement (NonLinearQuadrilateral (self .«
localNodeList.getNode(ID{1}),self.localNodeList .+«
getNode (IDn{1}),self.localNodeList.getNode(IDn{5}) ,+
self.localNodeList.getNode(IDn{4}),thick,«
NonLinearMaterial));
localDomain.addElement(NonLinearQuadrilateral(self.64
localNodeList.getNode (IDn{1}),self.localNodeList .«
getNode (ID{2}) ,self.localNodelist.getNode(IDn{2}),self«
.localNodeList.getNode (IDn{5}) ,thick,NonLinearMaterial+«
)5
localDomain.addElement (NonLinearQuadrilateral (self .«
localNodelList.getNode (IDn{5}),self.localNodelList .«
getNode (IDn{2}) ,self.localNodeList.getNode (ID{3}) ,self«
.localNodeList.getNode (IDn{3}),thick,NonLinearMaterial+«>
)5
localDomain.addElement (NonLinearQuadrilateral (self .«
localNodelList.getNode (IDn{4}),self.localNodeList .«
getNode (IDn{5}) ,self.localNodelList.getNode (IDn{3}) ,+
self.localNodeList.getNode(ID{4}),thick,+
NonLinearMaterial));

Once the A matrix has been computed and the local model has been created,
the non-conforming interfaces can be solved using the algorithm descried in
section 6.3. If the interfaces are conforming then the A matrix is an identity
matrix in the size of the interface degrees of freedom. The residual is now
computed in this way:

Matlab Code 7.8: Computation of residual
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residualDisplacements= locallnterfaceDisplacements —Blx*x«>
globalInterfaceDisplacements;

residual=BxresidualDisplacements;

residualNorm=norm(B1's#residual,2) /norm(globalLloads,2);

Loads=zeros (size(globalloads));

Loads (globalIlnterface.getDOF)=Loads(globallnterface.getDOF)+B1l '«
residual;
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Example 1

8.1 Description of the model

The model is a 2D model, created with linear quadrilateral elements (Fig-
ure 8.1). It is a common L-shaped model with regular mesh and a linear
constitutive law. The model is fixed on the bottom and the loading is ap-
plied on the top, as shown in Figure 8.1. The material was chosen to be steel.
There is no physical representation for this model, but it is a good theoretical
example in order to apply the methods of the current thesis. Table 8.1 shows
the properties of the model.

Young Modulus 2105(K N/m?)
Poison Ratio 0.3

Yield Stress 500000( K N/m?)
Finite Element Thickness 0.1

Number of Nodes 2121

Number of Elements 2000

Total Degrees of Freedom 4242
Free Degrees of Freedom 4182

Table 8.1: Properties of the model in example 1

8.2 Solving the reference problem

First we solve the same problem but with non linear quadrilateral elements,
instead of linear. The non linear elements use the von Mises criterion as de-
scribed in Chapter 2. This solution is considered to be the reference solution,
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to which we will compare all the other results. This full non linear model was
solved in one loading step, which is used for the time comparison as the other
methods also take the load in one step, as well as in 10 loading steps, which
is used for the comparison of the error of the other methods as this solution
is more accurate. Some properties of this solution are shown in Table 8.2,
while Figure 8.2 shows the Gauss points and elements that crossed the yield

Degrees of freedom 4242

Number of iterations (1-step) 11
Time for calculations (1-step) 88 sec
Number of iterations (10-steps) 38
Time for calculations (10-steps) 329 sec
Gauss points crossed yield surface 45
Elements used non linear law 15

Table 8.2: Results of the reference solution
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Figure 8.2: Non linear area of the reference problem

93



8.3 Analysis procedure

The procedure starts with a linear elastic analysis of the global model. Then
the stresses are computed to the Gauss points of every element (Figure 8.3).
Using the von Mises criterion the program finds which Gauss points have
crossed the yield surface. Then the local model is created. The local model
has the elements that their Gauss points crossed the yield surface, as well as
a few more strips of elements around them to ’catch’ the possible expansion
of the non-linear area after a few iterations (see Figure 8.4). By comparing
Figure 8.4 and Figure 8.2 we can see that the elements found from the linear
analysis are not the same with the elements that finally are in the non linear
area. That is way the addition of element strips to the first local model is
necessary. We can see that in this case an one-element strip would be enough
for covering all the non linear area, but no strip addition would finally lead
us to rebuilt the local model in order to expand it. This of course would
be computationally costly and should be avoided. Once the local model has
been created, the algorithm for the coupling of the two models is used as it
was described in Section 4.

8.4 Comparison of the displacement and the
mixed variation

Firstly, we present a comparison of the convergence rate of the displacement
and the mixed variation. In Figure 8.5 we can see the error of the displace-
ment and the mixed variation of Section 4.4 in a logarithmic scale for the
first four iterations between the two models. The blue curve represents the
displacement variation, while the red curve the mixed boundary conditions
variation. As we can see the mixed boundary conditions bring significant
improvements in convergence rate.

8.5 A research at the parameters of the two-
scale approximation

Many analyses were performed with different parameters in order to test
the effectiveness of the methods as well as their functionality and efficiency.
It was chosen that a two-element strip will be added to the elements that
crossed the yield surface and hence, the second local model of the Figure 8.4
was created. First, an analysis with the Schur complement being computed
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5 10 15

(a) The von Mises stresses of the model

I

(b) Zoom at the corner of the model

Figure 8.3: The von Mises stresses after the first linear analysis

explicitly in an intrusive way was occurred. As expected, the coupling was
finished after the first local analysis of the model.

Then the analyses that used the Schur complement approximation were
performed. The main parameters of the Schur complement approximation
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One-element strip

added

N

Elements that crossed
the yield surface

~

- Two-element, strip

added

N

Elements that crossed
the yield surface

~

Figure 8.4: Creation of the local model

are:

1. The number of the element strips that are used for the short scale
approximation (see Section 5.3).

2. The number of the rigid body movements that are used for the long
scale approximation (see Section 5.4).

In Table 8.3 we can see the iterations of the local model and the error
compared to the reference solution when we change the element strip for
the short scale approximation (Figure 8.6). Each row represents a coupling
iteration between the local and the global models. As we can see all four
analyses ended after seven coupling iterations. Each row shows how many
iterations where occurred in each local non linear analysis and the error after
applying the residual to the global model. A visualisation of the above data
is given in Figures 8.7 and 8.8.
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Figure 8.5: Comparison of the errors of the displacements and mixed bound-
ary conditions variations

Global model DOF 4160
Local model DOF 134
Interface DOF 52
Static condensation DOF 4108
Number of iterations 16
Number of couplings 1
Error 1.9% 1073
Time for calculations 43.47
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Figure 8.6: Element strips for short scale approximation
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1-element strip

2-element strip

Iterations | Error
5 0.1065
4 0.0465
2 0.0252
1 0.0189

4-element strip

Iterations | Error
3 0.1129
2 0.0581
2 0.0385
1 0.0268
3-element strip
Iterations | Error
5 0.1020
4 0.0434
3 0.0229
1 0.0152
1 0.0132

Iterations | Error
6 0.0977
5 0.0388
3 0.0191
1 0.0129
1 0.0112

Table 8.3: Number of iterations and error for different element strips at the
Schur complement approximation

107!

1072 |

Error comparing to reference solution

—e— |-clement strip
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—o— 3-elements strip
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Figure 8.7: Comparison of element strips used for Schur complement two-
scale approximation - Error on logarithmic scale
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Figure 8.8: Comparison of element strips used for Schur complement two-
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We are doing the same with the rigid body movements, the second param-
eter in the two-scale approximation of the Schur complement. In Figures 8.9
and 8.10 we can see the rigid body movements as were plotted from the
software. Figures 8.11 and 8.12 are the same as those from the short scale
approximation but with the rigid body movements as a parameter.
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Error comparing to reference solution
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1072

—e— 1 rigid body movemnt

—o— 2 rigid body movemnts
—o— 3 rigid body movemnts
—-o— 4 rigid body movemnts

| | | |
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Number of couplings between local and global model

Figure 8.11: Comparison of rigid body movements used for Schur complement
two-scale approximation - Error on logarithmic scale

Newton-Raphson iterations of the local model

mm | rigid body movement

=2 rigid body movements
41 m @ | == 3 rigid body movements
mm 4 rigid body movements

3, —

A ELEL R
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Number of couplings between local and global model

Figure 8.12: Comparison of rigid body movements used for Schur complement
two-scale approximation - Number of iterations of the local model
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Finally, we perform the analyses with all the combinations (one to four
element strips and one to four rigid body movements). In Figure 8.13 the
error comparing to the remaining residual is shown. As we can see, the better
the approximation is, the least is the error and the remaining residual. Last
but not least, Figure 8.14 shows the error compared to the computational
time. We can see there that better approximations, take more time to be
performed, but the difference of the overall time are a few seconds.
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Figure 8.13: Comparison of Schur complement approximations on logarith-
mic scale
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Figure 8.14: Comparison of Schur complement approximations’ computa-
tional time with error on logarithmic scale
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Example 2

9.1 Description of the model

In this chapter we are going to study the case of non-conforming interfaces.
The model remains the same as in the previous example. It is a common L-
shaped model with regular mesh and a linear constitutive law (Figure 8.1).
The difference is in the local model that will be created for the two scale
method. Materials are also the same as in the previous example. The prop-
erties of the model are shown in Table 9.1.

Young Modulus 2106(K N/m?)
Poison Ratio 0.3

Yield Stress 500000( K N/m?)
Finite Element Thickness 0.1

Number of Nodes 2121

Number of Elements 2000

Total Degrees of Freedom 4242
Free Degrees of Freedom — 4182

Table 9.1: Properties of the global model in example 2
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s

Figure 9.1: The global model in example 2

9.2 Creation of the local model

To study non-conforming interfaces the local model should have different
meshing (finer in our case). Consequently, for the purposes of this example
the local model has four quadrilateral elements instead of one in the global
model. This is a classic example of a multiscale problem were we want to
simulate an area of a model in a finer microscale. Once the first linear
analysis has been performed in the global (coarse scale) linear model, as in
the previous example, the gauss points that have crossed the yield surface
are found (we use the von Mises yield criterion). Then the local model is
created, with four quadrilateral elements in the place of one as mentioned
above. In Figure 9.2 the local model is shown. This model is created in the
same area as in example 1 but in a finer scale with more smaller elements.
The connection of the local model with the global model is shown in
Figure 9.3. With green color is the global model (coarse scale) while with
red color is the local model. The interface is different for the global and
the local model. The global interface has the black nodes while the local
interface has the black and the red nodes. The global model never changes,
this is way the red nodes do not belong to the global model. Also the global
model continues to have elements on coarse scale in the local model area (in
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Figure 9.2: The local model

the red area). The hypothetical change of the global model for the creation
of such detail in an area would require much effort and difficult interventions
especially in 3D problems. This is an advantage of this technique, as the
changes are made in a different model and only the interface needs to be
defined.

Young Modulus 2105(KN/m?)
Poison Ratio 0.3

Yield Stress 500000( K N/m?)
Finite Element Thickness 0.1

Number of Nodes 213

Number of Elements 196

Total Degrees of Freedom 462

Local Interface Nodes 51

Local Interface Degrees of Freedom — 102

Global Interface Nodes 26

Global Interface Degrees of Freedom 52

Table 9.2: Properties of the local model and interface

After the creation of the local model and its interface the matrix A is
created as described in section 6.2. The non-zero cells are shown in Figure 9.4.
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The first 52 rows are the common degrees of freedom between the local and
the global interfaces so this part of the matrix is an identity matrix. The
rest rows are the new degrees of freedom of the local interface. As the new
nodes are in the middle of the old ones, these cells have the value 0.5.
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Figure 9.4: Non-zero cells of A matrix

9.3 Results

As there is not a reference solution for this problem, we could consider as
reference solution, the solution in which the full Schur’s complement is cal-
culated explicitly. For this reason the error estimator that is mainly used
is the n¢. This is because in most situations that the methods would be
applied there are no reference solutions already been calculated so the nf
error estimator is not available. As there is difference between the local and
the global interface the equation (7.3) becomes

o _ lluk = Aug]|

[ Aug|
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The residual is also an indicator of the error of the solution. Of course
the residual never reaches zero because the iterations are stopped when the
normalized forces that are applied to the local model are smaller that the
accuracy that has been chosen. If we choose bigger accuracy then the residual
and the error estimator are smaller. So these two indicators can give a good
perspective of the accuracy of our solution.

First, an analysis with the Schur complement being computed explicitly
in an intrusive way was occurred. As expected the coupling was finished after
the first local analysis of the model. The results of this analysis are shown
in Table 9.3

Global model DOF 4160
Local model DOF 462
Global Interface DOF 52
Local Interface DOF 102
Static condensation DOF 4108
Number of iterations 28
Number of couplings 1
Residual 0.0829
Error n¢ 0.0467
Time for calculations 57.47

Table 9.3: Analysis results with explicit Schur’s complement

Then, different analyses are performed using the two-scale Schur’s com-
plement approximation. Table 9.4 shows the results when we change the
number of element strips and rigid body movements. The error takes as ref-
erence solution the above solution. The two numbers in the "Type of approx-
imation’ rows are the number of element strips and rigid body movements
respectively.

We can see that when we create a better approximation to the Schur’s
complement the solution that we take is much better, but this costs in terms
of iterations and time. The decision must be taken according to the compu-
tational resources and the demands of the analysis. Furthermore, comparing
with the reference analysis and also example 1, the computational cost and
time seems to be in same levels. Figures 9.5 and 9.6 provide a visualisation of
Table’s 9.4 data. In Figure 9.5 the error comparing to the remaining residual
is shown. Last but not least, Figure 9.6 shows the error compared to the
computational time.
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Type of approximation | (1,1) | (1,2) | (1,3) | (1,4)

Number of iterations 6 8 8 9
Number of couplings 5 5 5 5
Residual 0.6671 | 0.3106 | 0.3059 | 0.2687
Error nf 0.0744 | 0.0661 | 0.0660 | 0.0632

u

Time for calculations 32.10 | 39.29 | 40.63 | 39.83

Type of approximation | (2,1) | (2,2) | (2,3) | (2,4)

Number of iterations 8 11 13 14
Number of couplings 5 4 5 5
Residual 0.2161 | 0.1039 | 0.0997 | 0.0884
Error nf 0.0647 | 0.0592 | 0.0565 | 0.0548

u

Time for calculations 52.99 | 48.09 | 67.48 | 65.18

Type of approximation | (3,1) | (3,2) | (3,3) | (3,4)

Number of iterations 10 15 16 17
Number of couplings 5 5 5 4
Residual 0.1187 | 0.0594 | 0.0540 | 0.0857
Error nft 0.0599 | 0.0530 | 0.0526 | 0.0522

u

Time for calculations 39.90 | 69.27 | 56.31 56.92

Type of approximation | (4,1) | (4,2) | (4,3) | (4,4)
Number of iterations 11 16 18 19

Number of couplings 4 4 5 4
Residual 0.0762 | 0.0751 | 0.0264 | 0.0526
Error nft 0.0579 | 0.0518 | 0.0499 | 0.0498

u

Time for calculations 38.57 | 44.69 | 61.11 63.44

Table 9.4: Analysis results with Schur’s complement approximations
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Conclusions

We can divide the conclusions that derive from this thesis into two categories:

1. Conclusions that refer to the local-global technique. In this section
the different types of the Schur complement, the handling of non-
conforming meshes and the efficiency of the local-global technique are
discussed.

2. Conclusions, reguarding the two-scale Schur complement approxima-
tion, that occured through a more detailed study that was carried out
on this subject.

10.1 Conclusions for the local-global iteration
technique

1. In this thesis a technique was described for the coupling of two models,
a global linear and a local non-linear. The major advantage of this tech-
nique is that it is a robust and efficient method for problems where a
linear domain exhibits confined plasticity (or other non-linear phenom-
ena) in a small critical region. Contrary to other submodeling methods
this one does not ignore the global influence of local plasticity [10].
Consequently, it can asses phenomena such as stress redistributions.

2. Through this study it occurred that the explicit computation of the
Schur complement seems to provide better results that the two scale
approximation in terms of accuracy and speed. However, it is known
that in a large problem a static condensation of many degrees of free-
dom is always avoided because of its computational cost. This is why
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the two-scale approximation seems to be a good competitor. Nonethe-
less the two-scale approximation’s errors and time was close enough
with the explicit computation’s.

3. In addition the mixed boundary variation leads to a convergence of
significantly less steps than the displacement variation. This advan-
tage is so huge, that we can conclude that there is no need to use the
displacement variation.

4. Finally, a method that handles non-conforming interfaces was intro-
duced successfully. The handling of non-matching meshes between the
two models, although conducted in a simple manner, allows the method
to address a more general class of locally non-linear problems, and to
be a more flexible structural re-analysis and model coupling tool.

10.2 Conclusions for the two-scale approxi-
mation

1. In this thesis a deep research was made for the two-scale Schur com-
plement approximation. The combination of the short-scale and the
long-scale information is efficient and gives a realistic representation of
the stiffness of a large subdomain at realistic costs.

2. The computation of the two-scale Schur’s complement approximation
is a non-intrusive technique. The ability to apply the techniques in
already given models in closed FEM software, in order to introduce
locally to them material and geometrical non-linearities and any other
details, is a great advantage of this technique. In that way new bet-
ter analyses can be carried out in older models without the need of
remodelling. Furthermore, changes in a model such as a crack, a hole
or a reinforcement can be easily introduced to the analysis by creating
a new model of the area that changed.

3. The use of this two-scale approximation, as a non-intrusive technique,
leads to fast convergence to the iterative coupling strategy introduced
in section 4.4. The mixed boundary conditions strategy converges in
much faster rate than the displacements variation, allowing the method
to be much more efficient.

4. The decision on the number of the element-strips for the short-scale
approximation and the number and type of the rigid body movements
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for the long scale approximation is a difficult procedure that requires
experience. The better the approximation is, the better are the results.
However, a better approximation raises the computational cost. The
choice depends on the resources, the type of the model and the demands
from the analysis.

5. As the two-scale approximation is a representation of the stiffness of a
subdomain it can be used as a preconditioner in other methods.

10.3 Problems and future research proposals

Through the study of this thesis we came across severeal problems and ideas
for further research. These are suggestions and ideas for the future that there
was not sufficient time to be explored and further examined.

1. Although some types of mesh non-conformity where solved, there is
need for more research. Cases with totally different interfaces cannot
be solved with the proposed technique. As already mentioned, mortar
techniques are suitable for these types of problems.

2. For the iterative coupling algorithms there have been already been sug-
gested acceleration techniques, such as the Quasi-Newton and the full
tangent Newton algorithms [8]. The Quasi-Newton variant is simple to
implement, and significantly improves the convergence rate. The full
tangent variant seems even more promising, but requires to process
many local and global load vectors at once, and therefore may be too
expensive to be used on large models in its current form.

3. The explicit computation of the Schur complement seems to be very
promising. However, its high computational cost is a problem. In
this case, a connection with domain decomposition methods, such as
FETI, can be found. Using such techniques a full condensation could
be avoided. The problem would be transformed as a problem of the
interfaces of the subdomains and the iteration algorithm would be ap-
plied of this interface. In that way, although it would be an intrusive
technique, we would avoid the explicit condensation of the global do-
main.

4. Concerning the coupling strategy, it has currently been tested on prob-
lems limited to one single load increment. To handle multiple incre-
ments, two possibilities are foreseen: either incrementation is performed
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and exchanges are carried out at each increment (like in traditional im-
plicit coupling schemes) or, conversely, exchanges are performed and
each global or local problem contains a whole loading history. The
latter option, called non-incremental, seems more promising for sev-
eral reasons. First, it would be more convenient to implement around
FEA software which is designed to analyze complete loading histories
on a given problem, and not just one specific increment. Second, the
non-incremental approach minimizes information transfers between the
solvers, and reduces the number of decompositions of the global stiff-
ness matrix, which are time-consuming (during the global correction
step, the right-hand side vectors corresponding to the residuals at ev-
ery time step could be processed at the same time). Finally, it would
easily allow using different time steps for the two models.

. In the current thesis the local model was a model with standard finite
elements and material non-linearity. For future work connection with
totally different local models is proposed. Local models that handle
cracks and crack propagation (i.e. X-FEM) or local models that apply
the Element Free Galerkin (EFG) method would be a possible future
research topic. This would allow testing advanced models or solution
techniques, that are almost impossible to implement in commercial
software at the moment, on complex industrial problems that cannot
be solved with 'research software’ alone.

. The computations that involves the creation of the two-scale approx-
imation can be possibly programmed in a parallel way resulting in
further acceleration. However, the iterations between the two models
cannot be expressed as parallel procedures as they require the results
of each other in order to proceed.

. Finally, many more configurations can be thought of, such as multiple
areas of interest (i.e. several local models) or multiple zooming levels
(i.e. more than two); this could be useful in a number of engineering
situations and would give more reliability to the usual ’global-local’
simulation scheme, used in many industrial applications of computa-
tional mechanics.
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