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Abstract

Online Learning for Automatic Quality Estimation of Machine Translation

Output

by Antonios Anastasopoulos

The automatic estimation of Machine Translation output quality is a hard task, where

the selection of the appropriate algorithm and the most predictive features often plays a

crucial role. When moving from controlled lab evaluations to real-life scenarios the task

becomes even harder. For current Machine Translation Quality Estimation systems,

additional complexity comes from the difficulty to model user and domain changes.

Systems’ instability with respect to data coming from different distributions, in fact,

calls for adaptive solutions that quickly react to new operating conditions. To tackle

this issue we propose an online framework for adaptive Quality Estimation, targeting

reactivity and robustness to user and domain changes.

We experiment with different online machine learning techniques like Online Support

Vector Regression, Passive Aggressive Algorithms and Online Gaussian Processes. We

also perform contrastive experiments with two language pairs, English-Spanish and

English-Italian, in different testing conditions. The outcome of the experiments demon-

strates the effectiveness of this approach.

Keywords: Quality Estimation, Machine Translation, Online (Adaptive) Learning





“Translation is like rewriting from scratch. In has to be extremely sensitive to not just

the syntax but the deeper linguistic features. It involves translating from one culture to

another, so that it resonates with someone of that other culture.”

Gao Xingjian

Literature Nobel Prize 2013
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Chapter 1

Introduction

1.1 Motivation

Recent advances in computer science and, more precisely, statistical natural language

processing have enabled the creation of even more reliable Statistical Machine Trans-

lation (MT) tools, which produce results good enough to be used in a professional

translation workflow.

As the SMT systems evolve, one of the next steps is to try to automatically evaluate the

translated data, instead of relying on costly human annotations. This line of research

has formed the Quality Estimation task, further described in §2.5.

The first goal of this project was to implement a system that will perform online Quality

Estimation, suitable for integration with the core system of the MateCat project. The

second goal was to test the performance of the system, in order to verify that indeed such

a QE system would be beneficiary for the CAT-tool that is developed by the Matecat

project.

1.1.1 The MateCat project

MateCat is a project trying to effectively and ergonomically integrate Machine Transla-

tion within the human translation workflow.

While today MT is mainly trained with the objective of creating the most comprehensible

output, MateCat targets MT technology that will minimize the translator’s post-editing

effort.

To this end, MateCat is developing an enhanced web-based CAT tool that will offer new

MT capabilities, such as automatic adaptation to the translated content, online learning

from user corrections, and automatic quality estimation.

1



Chapter 1. Introduction 2

The project builds on state-of-the-art MT and CAT technologies created by the project

members (Fondazione Bruno Kessler, Translated, Université du Maine, University of

Edinburgh). Such technologies include Moses, the most popular open source statisti-

cal MT toolkit, and MyMemory, the world’s largest Translation Memory (TM) built

collaboratively via MT and human contributions.

In order to optimally integrate MT into the CAT workflow and enhance translator’s pro-

ductivity and user experience, MateCat attempts to innovate by creating new operating

conditions for MT, so as to match the CAT application, such as:

• Self-tuning MT, that could be domain- or project-adaptive and perform document

analysis in order to improve translation coherence.

• User-adaptive MT, that could adapt to user feedback in an on-line and realtime

fashion, but would also be context-aware, augmented with lexical/syntactic con-

straints.

• Informative MT, that would learn and help with terminology, provide confidence

measures and would also produce enriched MT output, by displaying alternative

outputs or highlighting possible parts that need to be edited.

The ultimate goal is to create new CAT technology that will significantly enhance the

productivity and user experience of professional translators.

1.2 Organization

This booklet is organized as follows:

• Chapter 2 presents an overview of the theoretical background needed. The basic

concepts of Machine Translation and Quality Estimation are presented.

• Chapter 3 describes the theoretical and algorithmic aspects of the machine learning

techniques that we used.

• Chapter 4 contains the system specifications and requirements, describing the li-

braries and the core system that we used for the Online Quality Estimation com-

ponent.

• Chapters 5 and 6 present the experiments that test the performance of our system,

attempting, in the end, to provide a suggestion for the best configuration of the

system.

• Chapter 7, finally, summarizes the main results and findings of this work.



Chapter 2

Quality Estimation for Statistical

Machine Translation in a

Computer-assisted Framework

2.1 Introduction

This chapter provides a short overview of the development of the Machine Translation

field, with an emphasis on its integration in the Computer-Assisted Translation frame-

work.

In addition, the task of Quality Estimation is defined, presenting the various techniques

that have been developed to estimate the MT output quality. The most recent develop-

ments on the task, as part of recent evaluation campaigns, are presented.

Finally, the last section describes the challenges that haven’t been addressed so far, and

with which this thesis tries to cope.

2.2 Machine Translation Overview

Machine Translation (MT) is the field investigating the use of automated methods (soft-

ware) in order to translate text or speech from one language to another. It was one of the

first applications envisioned for computers, starting with Warren Weaver in 1949 with

his “Translation Memorandum” and other articles (Weaver, 1955), even before people

had any idea of what computers might be capable of.

Following the initial efforts by IBM researchers (Brown et al., 1990), several approaches

have been developed in order to deal with the challenges of MT. Such approaches were:

3
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• Word-for-word translation, which uses bilingual dictionaries to translate each word

of a text. However, this approach results in low quality translations, since problems

like different word order or word sense ambiguity emerge.

• Rule-Based approaches were the first approaches and the most dominant paradigms

until the 1990s. A simple overview of an RB-system would be:

source
transform−−−−−−−→ intermediate representation

transform−−−−−−−→ target

with the transformation being decided by representation rules. These are also

called Syntactic transfer approaches, since they construct transfer rules for syn-

tactic trees across languages, dealing with the word order problem. However, this

is not only difficult to implement for all possible pairs of languages, due to the need

of various resources, but there are always cases of syntactic mismatches between

the languages.

• Interlingual approaches. The “interlingua” is an intermediate representation be-

tween the languages, like in rule-based approaches. However, the interlingual ap-

proaches try to use a logical form which represents the semantics of the sentence

as an intermediate step between the languages. Defining this interlingua, though,

is by itself a very difficult problem.

• Statistical translation. This approach uses statistical methods in order to find the

most probable translation, given the sentence to be translated, using information

derived from parallel corpora. It is currently the most commonly used approach

and is discussed in the next section.

2.3 Statistical Machine Translation (SMT)

2.3.1 Overview

Given a foreign language F and a sentence f , the SMT approach tries to find the most

probable sentence ŝ in the translation target language S, out of all possible translations

s. This means finding the sentence ŝ with the highest probability p(s|f) where:

ŝ = arg maxs p(s|f)

Using the following equation from the Bayes rule:

p(s|f) =
p(s)p(f |s)
p(f)
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the previous is transformed to

ŝ = arg maxs p(s)p(f |s)

This can be broken down into two components:

• p(s) is the “Language Model”, which assigns higher probability to fluent/gram-

matical sentences and is computed based on monolingual corpora of the target

language S, using n-grams probabilities.

• p(f |s) is the “Translation Model” which assigns higher probability to sentences

with corresponding meaning and is estimated based on parallel corpora of the two

languages F and S, commonly using alignment probabilities, phrase tables or more

advanced methods.

2.3.2 Comparison to other approaches

Some of the advantages of the statistical approach for performing MT are the following:

• it is data driven, and therefore it does not need human annotators, linguists, etc.

• it is language independent, since it can be created for practically any language

pair that has enough training data.

• its building blocks are human translated blocks, resulting in state-of-the-art trans-

lations when large data sets are available.

As disadvantages of SMT could be considered the facts that:

• it doesn’t take advantage of all available information, since eg. it does not explicitly

deal with syntax,

• it needs large data sets for high quality performance, which might not be available

for all language pairs.

It is worth noting that recent advanced models try to deal with the first disadvan-

tage, by also taking a “syntax model” into account (Charniak et al., 2003, Yamada and

Knight, 2001). More recent approaches might also use N-grams with syntactic infor-

mation (Crego and Marino, 2007), shallow syntactic information as input (Crego and

Habash, 2008) or create rules to translate the paths of dependency trees (Lin, 2004).
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Figure 2.1: Example of phrase-based translation between Greek and English

2.3.3 Phrase-Based SMT

Until recently, the standard for SMT were word-based models, where the basic unit of

the translation were the individual words. However, the current state of the art is phrase-

based statistical machine translation. In a phrase-based system, the input sentence is

segmented into phrases (units of one or more words) which are then translated separately

in the target language and reordered, so as to produce the final output.

The use of phrases instead of words offers a way to tackle the problem that often there

is not an one-to-one mapping between the words of the two languages. For example,

in figure 2.1, there is no Greek word that corresponds to the English word “of”. Two

further advantages offered by phrase-based models (Koehn, 2010) are that they help in

resolving translation ambiguities and that they make better use of the training data, as

more training data result in more phrases learnt, something that might not stand for

individual words.

The noisy-channel model that we previously showed for SMT is again the one that is

used:

ŝ = arg maxs p(s)p(f |s)

with the difference that now the reverse translation probability of the whole sentence

p(f |s) is now further decomposed to the product of the translation probabilities of the

individual phrases φ(fi|si) and the reordering model. The reordering model can either

be a simple cost function, eg. a distance-based cost function, or even better, a lexicalised

one, also taking into account the probability that a particular phrase needs to be swapped

or reordered.

Apart from the noisy-channel model, Och and Ney (2002) have suggested a more flixible

translation model for phrase-based MT, using the maximum entropy framework. In

this model, the posterior probability p(s|f) is modelled directly as a combination of M

feature functions hm with λ weights:

ŝI = arg maxsI
[
ΣM
m=1λmhm(sI , fJ)

]
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Figure 2.2: Two domains that require adaptation of a model.

where I, J are the number of phrases in s and f respectively. The advantage of this model

is that enables an arbitrary number of features to be used, instead of just the reverse

translation probability and the language model score. Other common additional features

include translation probabilities, phrase and word counts, or phrase pair frequency.

2.3.4 Domain Adaptation for SMT

The task of domain adaptation is common for most problems that deal with natural

language, as they are tackled as supervised learning problems, resulting into a kind

of “overfitting” into the domain(s) of the training data. State-of-the-art performance

is achieved for in-domain testing, but when the methods are applied to out-domain

samples, the performance drops significantly. This is due to the fact that the parameters

of the translation and language models reflect the empirical distribution of the training

data domain, which can be very different from the distribution of the other domain.

For Language Processing and SMT, such domains can be the news domain, the IT or

the Legal domain, or, more recently, the domains of Twitter, email or scientific articles.

Each has its own characteristics, ranging from the language and the words used (for

example, the IT domain is comprised of much more technical language) to the way the

sentences/texts are structured (as, for example, in the news domain), or even other

limitations, such as in sentence length (as Twitter only allows 140 characters).

An example that vividly illustrates the need for domain adaptation in a generic task is

shown in figure 2.2. A model trained on one of the domains would perform badly on the

other.

This can be due to several reasons:

• Different Distributions: The distribution of training and test data are different

• Unknown words: For a model trained in a specific domain, there are many unseen

words in the new domain.
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Figure 2.3: Adapting the model between two domains.

What is needed is a way to adapt the trained model so as to also fit the new domain,

as figure 2.3 illustrates.

Several solutions have been suggested to tackle this problem that is evident in almost

all Machine Learning tasks, according to the reasons that produce it:

• The problem of different distributions across the two domains can be tackled by

weighting the instances accordingly (Bickel et al., 2007, Jiang and Zhai, 2007).

• Regularization was suggested to deal with the different labels of same instances,

assuming that the labels across the domains are somehow close (Daumé III, 2007,

Evgeniou and Pontil, 2004).

In the field of SMT, there has been intense interest in the task of domain adaptation, with

several notable works, investigating the use of cheap monolingual resources (Bertoldi and

Federico, 2009) or mixture modelling (Civera and Juan, 2007) to improve performance.

This interest in research for Domain Adaptation in SMT proves that indeed it is a

problem that needs to be tackled, as it poses significant constraints over the performance

of the SMT systems. However, the same applies to the QE task, since the differences

on SMT performance due to domain change are also reflected in the quality of the MT

output. Thus, Domain Adaptation is as needed for the QE task as it is for MT.

2.3.5 The CAT-tool scenario

An obvious application, witnessing the increasing adoption of MT technology, is aiding

the work of professional (human) translators. This is called Computer Assisted Trans-

lation (CAT) and is done through dedicated software which are called CAT-tools.

Instead of humans translating sentences or whole documents from scratch, the CAT-

tools provide them with translation suggestions, which are created using MT systems.
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Figure 2.4: Example of a CAT-tool interface

Then the translators can post-edit the suggested translation, if needed, producing the

final translation.

This process, post-editing MT output, is nowadays common practice among professional

translators, since it increases their productivity. As estimated, the EU spends more

than 1 billion € on translation costs per year. Semi-automating this process (as is the

objective of the MateCat project - see §1.1.1) could lead to huge financial savings.

In a typical CAT-tool, the source/target text is split into segments and the translation

progresses segment by segment. In addition, the CAT-tool provides help to the trans-

lators from different sources, like spell checkers, dictionaries, terminology managers,

concordancers and translation memory. More recently, there is also research into using

MT suggestions to aid the translators.

2.3.5.1 The Translation Memory (TM) Approach

Traditionally, CAT-tools were using translation memories (TMs). All the previous work

of the translator is stored in a database, called translation memory. The CAT-tool then,

produces translation suggestions for the new instances by comparing them to the TM

and finding perfect or fuzzy matches. The matches are then ranked according to the

percentage of their match (100% matches are of course the top preference) and presented

to the user as candidates for post-editing.

A TM can be shared among and simultaneously updated by several translators working

on the same project. Thus, TM can model the style and terminology of a particular

project or customer and help make a coherent and consistent translation.
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In fact, professional translators had been relying on TMs long before SMT managed to

produce reasonably good results. It is indeed helpful on a number of cases:

• on highly repetitive documents, like technical manuals or reports,

• on newer versions of previously translated documents, or

• when several translators work on the same project, ensuring consistency across the

team.

Although TM can speed up the translation process in certain cases, in the general

case the number of useful matches is rather small (5-10%), significantly limiting the

helpfulness of TM.

2.3.5.2 Integrating Statistical MT into a CAT-tool

The advances on the field of Statistical Machine Translation have increased the interest in

using SMT for a CAT-tool. For example, probably the most usually used among Google’s

special features is Google Translate, which provides translations for a large variety of

language pairs for any input text. Instead of the TM, the translation suggestions towards

the translators could be the outcome of an SMT system.

However, TMs are indeed quite useful. They, in fact, represent the translator’s previous

work and thus the fuzzy matches that produce translation suggestions are usually a good

option for post-editing them and producing the final suggestion, at least in certain cases

described in the previous section.

Thus, the creation of CAT-tools that use both SMT and TMs to produce translations

has been suggested (He et al., 2010), in a framework where post-editors still work with

TMs while benefiting from (better) SMT outputs. Deciding what the best outcome

is, or what is the best way to combine the suggestions from SMT and TM, is still an

open issue. Recent work (Federico et al., 2012), though, reports that such a system

would benefit the translator’s post-editing time, with the time gains being statistically

significant for most translators that participated in the experiments.

2.4 MT Evaluation

The task of evaluating the quality of the machine translation output by using reference

sentences is generally described as MT Evaluation.

http://translate.google.com/


Chapter 2. Quality Estimation 11

2.4.1 Reference based MT Evaluation

The most commonly used metrics for SMT output quality evaluation are usually auto-

matic ones, which compare the resulting translations with reference sentences.

Several metrics have been suggested, with the most notable being:

• BLEU (Papineni et al., 2002)) which currently represents the dominant evaluation

metric

• NIST (Doddington, 2002)

• Meteor (Lavie and Agarwal, 2007)

All of these metrics measure the overlap of n-grams between the MT outputs and the

reference sentences. BLEU uses a modified version of the standard machine learning

precision, taking into account the times that an n-gram appears in the reference sentence.

NIST is a modification of BLEU, also taking into account how informative each n-gram

is. METEOR, on the other hand, is calculated by the harmonic mean of both precision

and recall, giving 9 times more importance to recall.

The need, however, for reference sentences, makes these metrics quite costly to produce

and are not actually usable in a real-life scenario. Furthermore, they have been shown

to not correlate as well with human judgements at sentence level. In fact, results from

Albrecht and Hwa (2007) indicate that high human-likeness does not imply good MT

quality and vice-versa. Other metrics such as the one suggested by Specia et al. (2010),

that are not based on reference-dependent features, but are rather based on the input

and output sentences and (possibly) external corpora, have been shown to correlate

much better with human evaluation.

2.4.2 Metrics of post-editing effort

The emergence of CAT-tools and the widespread application of SMT in the industry,

has resulted in a growing interest on evaluating the MT output Quality, not compared

to reference sentences (which in a real life scenario are not available), but in relation

to the post-editing effort needed in order to produce the correct translation from the

suggestion of the SMT system.

2.4.2.1 Human Annotations

One of the first metrics that were suggested was based on human annotations. Profes-

sional translators where presented with source sentences and the translation suggestion
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and, after post-editing it in order to produce a publishable translation, they were asked

to rate the post-editing effort according to the following scale:

• 1 = requires complete re-translation

• 2 = requires some re-translation, but post-editing is still quicker than re-translation

• 3 = very little post-editing needed

• 4 = fit for purpose.

Another suggested scale for the estimated effort is the following:

• 1 = The MT output is incomprehensible, with little or no information transferred

accurately. It cannot be edited, needs to be translated from scratch.

• 2 = About 50-70% of the MT output needs to be edited. It requires a significant

editing effort in order to reach publishable level.

• 3 = About 25-50% of the MT output needs to be edited. It contains different

errors and mistranslations that need to be corrected.

• 4 = About 10-25% of the MT output needs to be edited. It is generally clear and

intelligible.

• 5 = The MT output is perfectly clear and intelligible. It is not necessarily a perfect

translation, but requires little or no editing.

2.4.2.2 Human Translation Edit Rate (HTER)

The Human Translation Edit Rate (HTER) has been introduced by (Snover et al., 2006)

and it is a metric of the distance between the suggested translation and the final post-

edited version.

It is computed as:

HTER =
#edits

#postedited words

where the number of edits include insertion, deletion and substitution of single words,

and the shifting of word sequences.

The result is a continuous score in [0, 1], where 0 denotes an excellent suggested trans-

lation which didn’t need any alternation and 1 denotes a translation of very low quality

which, in fact, needed to be rewritten from scratch, as the number of the edits is at least

equal to the number of the words.

For example, given this source sentence
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Because I also have a penchant for tradition , manners and customs .

the produced spanish translation from the SMT system:

Porque también tengo una inclinación por tradición , modales y

costumbres .

and the post-edited sentence:

Porque también tengo una inclinación por la tradición , los modales y

las costumbres .

the HTER score, because the number of edits is 3 (insertions of the words la, los

and las) and the number of the post-edited words equals the length of the post-edited

sentence of 15, is

HTER =
3

15
= 0.20

2.4.2.3 Post-editing Time

Another suggested measure of post-editing effort was the average number of seconds

needed to post-edit each word in a sentence1. For a sentence s with n words that

required t seconds to post-edit, this is computed as:

time =
t

n

It is considered that a low time needed for post-editing indicates a good translation,

whereas larger time indicates a bad translation. However, the measured time usually

includes:

• reading time,

• searching for information on external sources,

• typing time,

• extra time for any secondary activity (e.g. correction).

All these variables might significantly vary across sentences and translators, thus this

metric includes high variability and “noise”.

1suggested in (Specia, 2011) and further examined in(Koponen et al., 2012)
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2.5 Quality Estimation

Although the current standard is reference-based MT evaluation, the ultimate goal is

to be able to predict the quality of the MT output at run-time and without reference

translations (Blatz et al., 2003, Specia et al., 2009). This task, consisting in estimat-

ing the quality of a system’s output for a given input, without information about the

expected output, is called Quality Estimation (QE).

Traditionally, QE was viewed as a binary classification problem, where the task was

to decide whether the output was relatively “good” or “bad”. However, the boundary

between what could be called a “good” or a “bad” translation is rather blurry, not to

mention the fact that such information might be useless in certain applications, such as

post-editing MT output, where one needs an estimation of the post-editing effort and

not of the quality of the translation.

The first attempts on QE for MT aimed at estimating the quality at word or phrase level.

Starting with (Blatz et al., 2004), QE at sentence level used regressors and classifiers

trained on extracted features and labels from MT metrics like NIST. For classification,

the threshold for “good” translations was set at the 5th or 30th percentile of the trans-

lations’ NIST scores.

Quirk (2004) also used classification and a pre-defined threshold, building upon manually

labelled data for quality, which outperformed models trained on even larger, automati-

cally annotated though, data. On the other hand, Gamon et al. (2005) focused more on

human-likeness classification, using linguistic features and trying to distinguish between

machine- or human-generated translations.

Finally, Specia et al. (2010) extend QE from a binary classification task and propose that

it can be seen as a regression task, producing a score (either continuous or discrete) in a

given range. They also suggest that such a score, based on a number of features extracted

from the source/target sentences and/or monolingual or parallel corpora, would me more

valuable for practical applications like filtering out bad translations for human post-

editing. They show, finally, that such a score would be more suitable than reference-

based metrics for MT evaluation for certain tasks like selecting the best translation from

a collection of MT systems to present to a user.

2.5.1 Comparison of the suggested metrics

Although any of the non-reference-based metrics for MT evaluation would be suitable

for Quality Estimation, there are certain advantages or disadvantages associated with

each one’s use.

It has been shown (Koponen, 2012) that human annotations of post-editing effort, which

reflect the translators’ perception, do not always correlate well with edit distance metrics
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such as HTER. This means (Koponen et al., 2012) that technical and cognitive effort

are not always equal.

In addition, although the metric of post-editing time has been advocated as the best

metric (Koponen et al., 2012), or used (Specia, 2011) in experiments, it is highly un-

reliable. It might vary among post-editors, based on their experience, knowledge of

the translation subject/domain, it might even vary due to various unexpected - and

uncountable - factors (eg. someone interrupting the translator while working).

To conclude, throughout this thesis we will focus only on QE (and not MT evaluation)

and we will use HTER as the measure of post-editing effort, because, by only relying

on the data, it is more coherent that the other metrics that involve individual opinions

(human annotations) or unpredictable factors (time).

2.6 Related Work

2.6.1 Evaluation Campaigns

Throughout the last years there have been evaluation campaigns in the form of shared

tasks in major conferences. The most important is held once per year, at the Work-

shop on Machine Translation (WMT) which, in the last years, is hosted by the Annual

Conference of the Association of Computational Linguistics (ACL).

These shared tasks focus on different areas of research on MT:

• Performance of SMT systems on the Translation task

• Performance of SMT systems on featured translation tasks (eg. WMT11 (Callison-

Burch et al., 2011) featuring English-Haitian Creole translation)

• Performance on ranking translations of sentences

• Deciding on appropriate evaluation metrics

In the last two years, one of the shared tasks was dedicated on Quality Estimation. The

results of these shared tasks are presented in the next section.

2.6.1.1 WMT 12 Quality Estimation Shared Task

In the first year that the Shared Task on Quality Estimation was introduced (Bojar

et al., 2013), its goals were to:

• identify new and effective quality indicators (features)
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• identify alternative machine learning techniques for the problem

• test the suitability of the proposed evaluation metrics for quality estimation sys-

tems

• establish the state of the art performance in the field

• contrast the performance of regression and ranking techniques

It featured two subtasks, one for predicting the score of QE and another for rank-

ing instances according the QE. 11 teams submitted systems for both tasks, with 5

of them performing above the very competitive baseline system used for comparison.

The weighted average of 3 human annotations was used as the training label and the

predicted value should be a value in the [1,5] range, depicting the post-editing effort

according to the scale described in §2.4.2.1.

The metrics for evaluating the performance of systems were the Mean Absolute Error

(MAE) and the Root Mean Square Error (RMSE), which are defined in §2.6.1.3.

2.6.1.2 WMT 13 Quality Estimation Shared Task

Given the experience obtained from the previous year, the QE shared task of WMT13

featured wider coverage of the issues of QE (Bojar et al., 2013). To begin with, it didn’t

focus only on sentence-level QE, but also on word-level QE.

Suggested probable uses of word-level QE are:

• Highlight words that need editing in post-editing tasks.

• Inform readers/translators for portions of the text that might not be reliable.

• Select the best segments among multiple options coming from various SMT sys-

tems, eg. for the creation of an MT system from other MT systems combinations.

So, the goals of this shared task were to:

• explore various granularity levels for the task (sentence-level and word-level).

• explore the prediction of more objective scores such as edit distance and post-

editing time.

• explore the use of quality estimation techniques to replace reference-based MT

evaluation metrics in the task of ranking alternative translations generated by

different MT systems.
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• identify new and effective quality indicators (features) for all variants of the quality

estimation task.

• identify effective machine learning techniques for all variants of the quality esti-

mation task.

• establish the state of the art performance in the field.

It featured 4 subtasks. Three of them focused on sentence-level QE:

• Predicting post-editing distance in terms of HTER

• Selecting the best translation for post-editing

• Predicting post-editing time

and the other was dedicated on classification for word-level QE.

For the scoring variant of the post-editing distance prediction, 9 out of the 16 submissions

performed significantly better than the baseline system, with the results being in general

better than the previous year’s results. Again, the metrics for evaluating the performance

of systems were the MAE and RMSE.

2.6.1.3 Evaluated Systems

In this section the best performing systems of the WMT12 and WMT13 QE shared

tasks are presented.

The metrics for evaluating the performance of the systems (which produced yi predictions

over n sentences with ŷi true labels) were the Mean Absolute Error (MAE)

MAE =
Σn
i=1|ŷi − yi|

n

and the Root Mean Square Error (RMSE)

RMSE =

√
Σn
i=1(ŷi − yi)2

n

In both the tasks, a baseline system was developed. It used a feature extraction software

which provided 17 baseline features (the baseline features are more thoroughly described

in §3.5.1). These features were used to train an SVM regression algorithm with RBF

kernel, using the LIBSVM package (Chang and Lin, 2011) in WMT12 and the Scikit-

learn toolkit (Pedregosa et al., 2011) in WMT13, having optimized parameters through

grid-search and 5-fold cross-validation.
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System ID MAE RMSE

SDLLW M5PbestDeltaAvg 0.61 0.75

UU best 0.64 0.79

SDLLW SVM 0.64 0.78

UU bltk 0.64 0.79

Loria SVMlinear 0.68 0.82

Table 2.1: Best performing systems at WMT 12 Quality Estimation Shared Task

System ID MAE RMSE

SHEF FS 12.42 15.74

SHEF FS-AL 13.02 17.03

CNGL SVRPLS 13.26 16.82

LIMSI 13.32 17.22

DCU-SYMC combine 13.45 16.64

Table 2.2: Best performing systems at WMT 13 Quality Estimation Shared Task

The best performing systems in each year’s task for predicting a QE score (1-5 scale for

WMT12 and HTER score for WMT13) are presented in tables 2.1 and 2.2.

It is worth noting the difference in the MAE between the two years, which is the result

of using human annotations in a 1-5 scale (WMT12) and using HTER (WMT13).

The main characteristics of the best-performing systems were:

• WMT12:

– SDLLW : This system, which was ranked as best in the WMT12 workshop,

was developed by the SDL Language Weaver (USA, (Soricut et al., 2012)).

It uses three sets of features

∗ the 17 baseline features

∗ 8 system-dependent features from the decoder logs of Moses

∗ 20 features developed internally

and feature-selection algorithms that optimize towards the relevant metric

for each task. This feature-selection process, though, is computationally in-

tensive. The M5PbestDeltaAvg variant uses a resulting 15 features set and

builds a decision tree using an M5P model. The SVM variant uses a re-

sulting 20 feature set to build an SVM epsilon regression model with RBF

kernel.

– UU : Developed by the Uppsala University (Sweden, (Hardmeier et al., 2012))

this system uses the 17 baseline features, 82 additional features (Hardmeier,

2011)) and information from constituency and dependency trees, extracted

from the Stanford and Malt Parser respectively. The models for both variants

are SMV regression models with polynomial kernels.
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– Loria SVMlinear : This system, developed at LORIA Institute (France,

(David et al., 2012)), builds SVM regression models with linear kernel, us-

ing feature selection over the 17 baseline features and 49 additional features

(Raybaud et al., 2011).

From all the systems that achieved good results in the WMT12 shared task, it

is worth noting the importance of feature selection. Starting from a large set of

features, extracted with various tools, the top 5 systems employed some kind of

feature-selection in order to identify the more appropriate features for the task.

• WMT13:

– SHEF : The two submissions that were ranked in the two top places at the

WMT13 workshop, developed at University of Sheffield, (UK (Beck et al.,

2013)) are the current state-of-the-art at QE. These systems use Gaussian

Processes along with feature selection using optimizing hyperparameters and

active learning that is used to reduce the training size. The features are

selected by their relevance for the model by the gaussian process algorithm

itself. The query selection strategy for active learning is based on the infor-

mativeness of the features.

– CNGL SVRPLS : This system was developed at the Centre for Next Gen-

eration Localization (Ireland (Bicici, 2013)). It builds SVR models with Par-

tial Least Squares with features selected in such a way (MTPP (Biçici et al.,

2013)) so as to enable language independent and MT system independent

predictions.

– LIMSI : Developed by the Laboratoire d’Informatique pour la Mécanique

et les Sciences de l’Ingénieur, (France (Singh et al., 2013)), this system uses

simple elastic regression. However, it employs features that are somehow

not-traditional. Several features are based on large span continuous space

language models; apart from that, though, the features are always calculated

in normalised forms against both the source and target sentences length, or

in a ratio form, giving the ratio of the feature when calculated against the

source sentence and when calculated against the target sentence.

– DCY-SYMC combine: This system is the result of the collaboration of

the University of Dublin and Symantec (Ireland, (Rubino et al., 2013)) and it

uses SVR models, combined with regression tree models for feature selection,

which reduce the initial set of 442 features (extracted with several NLP tools)

to 134.

Again, the focus of the attention was the struggle to define the features that are

more appropriate for the QE task. The features and the feature selection methods

are getting more “fancy” or “complex”. In addition the issue of the learning

methods that should be used is investigated, with the best performing system

diverging from the “norm” of SVM regression and employing Gaussian Processes.
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2.7 Challenges

Despite the substantial progress done so far in the field, also boosted by the previously

mentioned successful evaluation campaigns, focusing on concrete market needs makes

possible to further define the scope of research on QE.

For instance, moving from the controlled lab testing scenario to a real working envi-

ronment poses additional constraints in terms of adaptability of the QE models to the

variable conditions of a translation job. Systems’ capability to self-adapt to the be-

haviour of specific users and domain changes are facets of the problem that so far have

been disregarded. Current systems, typically designed for the controlled setting of QE

shared tasks, are in fact static and optimized for datasets where training and test in-

stances reflect similar distributions. Besides, in the controlled experiment environment,

the train and test are available in advance.

Ideally, instead, the CAT-tools should confront with the fact that:

1. The notion of MT output quality is highly subjective (Koponen, 2012,

Turchi et al., 2013). Since the quality standards of individual users may vary con-

siderably (e.g. according to their knowledge of the source and target languages),

the estimates of a static model trained with data collected from a group of post

editors might not fit with the actual judgements of a new user.

2. Each translation job has its own specificities (domain, complexity of the

source text, average target quality). Since the data from a new job may differ

from those used to train the QE component, its estimates on the new instances

might result to be biased or uninformative.



Chapter 3

Adaptive Quality Estimation

3.1 Introduction

In order to respond to the challenges mentioned in the conclusion of the previous chapter,

one possible direction would be to create an adaptive Quality Estimation system. This

means moving from the current trend of tackling Quality Estimaion as a supervised

machine learning regression task with batch methods, to employing online (or adaptive)

learning methods.

On the MT system side, research on adaptive approaches tailored to interactive SMT

and CAT scenarios explored the online learning protocol (Littlestone, 1988) to improve

various aspects of the decoding process (Bertoldi et al. (2013), Cesa-Bianchi et al. (2008),

Mart́ınez-Gómez et al. (2011, 2012), Mathur et al. (2013), Ortiz-Mart́ınez et al. (2010)).

However, as regards QE models, so far there has been no investigation on incremental

adaptation by exploiting users’ feedback to provide targeted (system, user, domain or

project specific) quality judgements.

Incremental methods should be able to adapt to the changes that result from varying

the post-editor or the translation domain across translation jobs, resulting in better

performance than the currently employed batch methods, thus motivating the use of the

online framework and specific, adaptive algorithms.

In the remainder of this section, the basic concepts of machine learning are introduced.

In addition, algorithms for adaptive learning are described, along with the framework

through which they can be applied to the QE task.

21
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3.2 Machine Learning

3.2.1 Definition

Machine Learning as defined by A.L. Samuel (Samuel, 2000) is the field of study that

gives computers the ability to learn without being explicitly programmed.

A Learning problem can be defined (Mitchell, 1999) as follows:

A computer program is said to learn from experience e with respect to some

task t and some performance measure p, if its performance on t, as mea-

sured by p, improves with experience e.

Typical fields in which Machine Learning has been used are Natural Language Processing

(NLP), Pattern Recognition, Computer Vision. In addition, it is now widely adopted

by the commercial sector, being useful in applications such as database mining, spam

detection, or self-customizing programs.

3.2.2 Machine Learning Process

Machine learning algorithms can be divided into these main categories (Haykin et al.,

2009):

• Supervised Learning

• Unsupervised Learning

• Reinforcement Learning

• others, like semi-supervised learning, recommender systems, etc.

Supervised Learning

Supervised Learning is a technique trying to infer a function from labeled training data.

A supervised learning algorithm receives data pairs of input (typically a vector) and

desired output. Based on the input, it infers a function which can be used to map new

examples. The output of the function can be either a continuous value (regression task)

or a discrete value/class label of the input (classification task).
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Unsupervised Learning

Unsupervised Learning, in contrast to supervised learning, does not receive labeled data,

but only uses unlabeled input, trying to infer a “hidden” structure of the input, in a self-

organising way. Typical unsupervised learning tasks include clustering, social network

analysis or astronomical data analysis.

Reinforcement Learning

Reinforcement Learning is concerned with how agents in certain states ought to behave

in certain environments in order to maximize some notion of cumulative reward.

3.3 Adaptive (online) Machine Learning

Adaptive Learning, or online learning, is a way of performing supervised learning that

takes place in a sequence of consecutive rounds. In each round, the model is given a

question and is required to provide an answer to this question.

This answer can be as simple as a yes/no decision, as in the case of binary classification,

or as complex as a string or a real number, as in the case of regression.

To answer the question, the model uses a prediction mechanism, a hypothesis, which

actually is a mapping from the set of questions to the set of admissible answers. After

predicting an answer, the algorithm receives feedback indicating the correct answer and

uses it to modify the prediction mechanism, if it is needed.

The model is updated according to the quality of the answer that it previously gave.

The quality of the answer is assessed by a loss function, which measures the discrepancy

between the prediction and the correct answer.

The goal is for the model to, ultimately, minimize the cumulative loss suffered along its

run, by using the feedback of every round, so that it will be more accurate in the next

rounds.

3.4 Online Learning Algorithms

This section is dedicated to the description of the online learning algorithms that we

are using and the theory that lies behind them.
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3.4.1 Online Support Vector Regression (OnlineSVR)

3.4.1.1 Support Vector Machines

Support Vector Machines (SVM) were formulated by Vapnik and although they were

used initially for classification, they have been adapted for use in the regression task

(Vapnik et al., 1997).

The basic idea, for classification, was that

given a training set, the support vector machine creates a hyperplane as a

decision rule, in a way that the distance between the training points of either

class and the hyperplane (called margin) is maximised.

3.4.1.2 Support Vector Regression

Support Vector Regression (SVR) is the adaptation of SVMs for the regression task.

The main idea is the same (creating a hyperplane which maximizes the margin) but this

time an error tolerance value ε is introduced.

Given a training set {(x1, y1), (x2, y2), ..., (xn, yn)} ⊂ X×< of n training points, were xi

is a vector of dimensionality d (so X = <d), and yi ∈ < is the target, the goal is to find

a hyperplane (or function) f(x) that has at most ε deviation from the target yi, and at

the same time it is as flat as possible.

The solution now, instead of a line (in the case of d = 1), is an ε-tolerant to errors “tube”,

as shown in figure 3.1. In the general case (d > 0, d ∈ Z), instead of a hyperplane (which

was created for classification), the solution is a hyper-slab of 2ε width.

Figure 3.1: The SVR tube

Note that, in the high dimensionality setting, the data might not be linearly separable.

The easiest way to deal with this problem is to pre-process the training data and map

them to a feature space F.
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In the end, given the training set mentioned before, the linear regression function is

f(x) = WTΦ(x) + b

on a feature space F, where W is a vector in F and Φ(x) maps the input x to a vector

in F. This can be written formally as a convex optimization problem by requiring:

minimize
1

2
‖W‖2

subject to

{
yi −WTΦ(x)− b ≤ ε
WTΦ(x) + b− yi ≤ ε

The dual optimization problem based on Lagrange multipliers, after substituting for the

condition that the partial derivatives of the dual problem with respect to the primal

variables have to vanish for optimality, can be written as follows (Smola and Schölkopf,

2004):

maximize

{
−1

2
Σi,j=1(αi − α∗i )(αj − α∗j )〈xi, xj〉 − εΣi=1yi(αi − α∗i )

}
subject to Σi=1(αi − α∗i ) = 0 and αi, α

∗
i ∈ [0, C]

where αi, α
∗
i are Langrange multipliers.

Now finding the optimal values for W and b is done by solving this dual optimization

problem by utilizing the Karush-Kuhn-Tacker (KKT) conditions. These conditions

state that at the optimal solution the product between dual variables and constraints

has to vanish. The final solution is easily found by using Mercer (Mercer, 1909) kernels:

f(x) = ΣN
i=1(α

∗
i − αi)k(xi, x) + b

The most common kernels (k(xi, x)) used are:

• Linear kernel

• Polynomial kernel

• RBF kernel

• Gaussian kernel

3.4.1.3 Online Support Vector Regression

The previously described theory of SVM and SVR was only used in a batch fashion.

That means that the solution to the optimization problem was found after taking all
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training instances into account. Building upon the theory of ε-insensitive SVR, Ma et al

(Ma et al., 2003) described an incremental algorithm for Accurate Online SVR, which

did not require re-training over the whole training set if a new instance was to be added.

The incremental algorithm updates the trained SVR function for each sample that is

added (in an online fashion this time) to the training set. The details are skipped, but

”...the main idea is to update the coefficient θc of the margin of the new

sample xc in a finite number of steps until it meets the KKT conditions. In

the same time, though, it must be ensured that also the rest of the existing

samples continue to satisfy the KKT conditions.”

Solving the simplified optimization problem as before, we end up with three sets into

which the training samples are classified in each iteration:

• the E set of the Error Support Vectors, for which the margin is greater than ε

• the S set of the Margin Support Vectors, for which the margin is exactly ε

• the R set of the Remaining Samples, for which the margin is less than ε.

3.4.2 Passive Aggressive Algorithms (PA)

Passive Aggressive (PA) Algorithms were presented at (Cramer et al., 2007). They are

based on the same idea as SVMs, using hypotheses from the set of linear predictors.

Again, each instance is represented by a feature vector. The prediction mechanism is

based on an ε-insensitive loss function, meaning that it creates a hyper-slab of width 2ε

dividing the instance space, and the margin of an instance is its distance to the borders

of the hyperplane.

The difference with SVMs lies in the way that the incrementally learned vector, which

describes the hyper-slab, is updated.

The loss that is suffered is ε-insensitive. This means that for a margin up to ε, the loss

is 0. Thus, the loss function now used is the ε-insensitive loss function

lεW; (x, y) =

{
0, if |W · x− y| ≤ ε
|W · x− y| − ε, otherwise

where W is the incrementally learned vector, x ∈ <d is an instance of dimensionality d

and y is its respective target.



Chapter 3. Online (adaptive) Learning 27

The result of the loss function is used to update the model. If the loss for a certain

instance xt is zero, then the algorithm reacts passively and does not update the model:

Wt+1 = Wt.

However, if the loss for an instance xt is not zero, the algorithm reacts aggressively and

forces the model to update in order to satisfy the constraint l(Wt+1, (xt, yt)) = 0. The

solution to this optimization problem is simple:

Wt+1 = Wt + sign(yt − ŷt)Ttxt,

where Tt = lt
‖xt‖2 is the update needed to satisfy the constraint.

However, in certain cases this aggressive update for every instance might completely

“confuse” the model, resulting in worse performance, in case, e.g. an outlier is present

in the set of the instances. To avoid such problems, an aggressiveness parameter C is

introduced, signifying the maximum allowed update.

In the end, the process for the PA algorithms is the following:

1. initialize aggressiveness parameter C > 0

2. initialize tolerance parameter ε > 0

3. initialize vector W1 = (0, 0, ..., 0)

4. For t = 1, 2, ...:

(a) Receive instance xt ∈ <n

(b) Predict value ŷt = Wt · xt
(c) Receive correct label yt ∈ <

(d) Suffer ε-insensitive loss: lεWt; (xt, yt) = max(0, |Wt · xt − yt| − ε)

(e) Set update Tt = min(C, lt
‖xt‖2 )

(f) Update model: Wt+1 = Wt + sign(yt − ŷt)Ttxt

3.4.3 Online Gaussian Process (OnlineGP)

3.4.3.1 Gaussian Processes

Rasmussen (2006) and Williams and Rasmussen (1996) define a Gaussian Process (GP)

as “a collection of random variables, any finite number of which have a joint Gaussian
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distribution” and show that any Gaussian Process can be completely defined by its mean

function m(x) and the covariance function k(x,x′) of a real process f(x):

m(x) = E [f(x)]

k(x,x′) = E [(f(x)−m(x))(f(x′)−m(x′))]

As a result, the Gaussian Process can be written as:

GP(m(x), k(x,x′)).

Again, denoting x ∈ <d as an instance of dimensionality d and y its respective target,

we consider that the whole data set consists of n pairs D = {(xi, yi)}.

The Gaussian Process assumes that every target yi is generated from the corresponding

data xi and an added white noise η as:

yi = f(xi) + η, where η ∼ N (0, σ2n)

This function f(x) is drawn from a GP prior:

f(x) ∼ GP(m(x), k(x,x′)).

where the covariance is encoded using the kernel function k(x,x′).

In addition, the kernel function can be modified so as to enable feature selection. For

example for an RBF kernel, the kernel function can incorporate a matrix A:

k(x,x′) = σ2f exp

(
−1

2
(x− x′)TA−1(x− x′)

)
This matrix A is diagonal and encodes the smoothness of functions f with respect to

each feature. This means that, for unimportant features the functions are relatively

flat, whereas for important features the functions are more jagged. The values for

A are learned automatically from the data, creating a so-called automatic relevance

determination (ARD) kernel.

In the end, the prediction yi for an instance xi can be found from:

p(yi|xi,D) =

∫
f
p(yi|xi, f)p(f |D)

which, when solved analytically, gives:

yi ∼ N
(
kTi (K + σ2nI)−1y,k(xi,xi)− kTi (K + σ2nI)−1ki

)
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where ki = [k(xi,x1), k(xi,x2), ..., k(xi,xn)]T are the kernel evaluations between the

test point and the training set, and K is the kernel matrix over the training points with

values Kij = k(xi, xj).

Note the posterior p(f |D) which reflects a belief, updated according to the training set,

over the possible functions f .

GPs are considered the state-of-the-art for regression in general, because:

• they are probabilistic models and support Bayesian inference (as compared to

SVMs that are not probabilistic)

• they provide greater flexibility in fitting the kernel hyperparameters even in com-

plex cases

Finally, Cohn and Specia (2013) and Beck et al. (2013) have introduced Multi-Task

Gaussian Models, which enable for learning from multiple labels over the same instances.

This can prove quite useful for modelling multiple different post-editors.

3.4.3.2 Online Gaussian Processes (Online GPs)

Csató and Opper (2002) introduced the online version of gaussian processes. As de-

scribed in the previous section, in the GP framework, the parameters that are learnt are

functions and the GP priors specify a Gaussian distribution over a function space.

Thus, for f = {f(x1), ..., f(xN )} a set of functions values such that fD ⊆ f , where fD is

the set of f(xi) = fi with xi in the observed set of inputs, the posterior distribution can

be computed by using the data likelihood together with the prior p0(f) as:

ppost(f) =
P (D|f)p0(f)

〈P (D|fD)〉0

where 〈P (D|fD)〉0 is the average of the likelihood with respect to the prior GP, which

for online learning is GP at time ′.

Following simple properties of Gaussian distribution, Csató and Opper (2002) proves

that the result of a bayesian update using a GP prior with mean function 〈fx〉0, kernel

K(x, x′) and data D = {(xi, yi)|i = 1, ..., N}, is a process with mean and kernel function

given by:

〈fx〉post = 〈fx〉0 + ΣN
i=1K0(x, x

′)q(i)

Kpost(x, x
′) = K0(x, x

′) + ΣN
i=1K0(x, x

′)R(ij)K0(xj , x
′).

where the parameters q(i), R(ij) only have to be computed once during training and can

be used when making predictions. However, this representation is immediately helpful,
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because the posterior process is usually not Gaussian. It is therefore needed to approx-

imate the process with a Gaussian one. This approximation is computed by trying to

minimize the Kullback-Leibler divergence between the true and the approximate distri-

bution. The Kullback-Leibler divergence between two distributions p, q with densities

p(θ), q(θ) is defined as:

KL(p, q) =

∫
p(θ)ln

p(θ)

q(θ)
dθ

Assuming, now, that we have computed the Gaussian approximation p̂t after t training

samples, the updated posterior can be computed using the Bayesian rule:

ppost(f) =
P (yt+1|f)p̂t(f)

〈P (yt+1|fD)〉t

Now it is fairly easy to project this non-Gaussian posterior to a Gaussian approximation

p̂t+1 by minimizing the divergence KL(ppost|p̂t+1), as the posterior only contains the

likelihood of one sample. Using again parametrisation, the mean and kernel of the

update after this step will be:

〈fx〉t+1 = 〈fx〉t + qt+1Kt(x, xt+1)

Kt+1(x, x
′) = Kt(x, x

′) + rt+1Kt(x, xt+1)Kt(xt+1, x
′)

where qt+1 and qt+1 are again easily computed.

One interesting variant suggested by Csató and Opper (2002), is the one where the

update is only performed when a certain measure for the approximation error is not

exceeded. A Basis Vector set BV with pre-defined capacity will store the set of inputs

for which the exact update is performed and for which the number of parameters is

increased. As samples come in an online fashion, some will be included in the BV and

others will be left out. If the BV is full and a new sample is found to be important,

the BV vector with the smallest error is removed from BV and is replaced, in an online

fashion, by the new input vector.

Thus, unfolding the recursion over the recursion steps in the update rules, the posterior

GP can be written only in terms of the BV and the initial kernel and likelihoods:

〈fx〉 = Σi∈BVK0(x, xi)a(i)

K0(x, x
′) = K0(x, x

′) + Σi,j∈BVK0(x, xi)C(ij)Ko(xj , x
′)

where the parameters a,C and an extra parameter s (introduced for clarity) are com-

puted in an online fashion:

at+1 = Tt+1(at) + qt+1st+1

Ct+1 = Ut+1(Ct) + rt+1st+1s
T
t+1
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st+1 = Tt+1(Ctkt+1) + et+1

where kt+1 = kxt+1 and et+1 is the (t+ 1)-th unit vector.

The error of the approximation at each step can be computed as

εt+1 = |qt=1|γt+1

where

γt+1 = k∗t+1 − kTt+1K
−1
t kt+1

In order to reduce computational complexity, the inverse Gram matrix Qt = K−1t is also

kept and updated in an online fashion:

Qt+1 = Ut+1(Qt) + γ−1t+1(Tt+1(êt+1)− et+1)(Tt+1(êt+1)− et+1)
T .

The final algorithm is initializing BV as an empty set with maximal number of elements

d, a prior kernel K0 and a tolerance parameter εtol. The GP parameters a,C and the

inverse Gram matrix Q are set to empty values.

Then, for each iteration for data (xt+1, yt+1):

1. Compute qt+1, rt+1, k∗t+1,kt+1, êt+1 and γt+1

2. If γt+1 < εtol then perform a reduced update (without adding the sample to the

BV or extending the size of a or C

3. Else perform full update by adding the current input to the BV set computing the

update for the inverse Gram matrix Q

4. If the size of BV exceeds d, then compute the scores εi for all vectors in the BV
and delete the one with the minimum score.

3.5 Applying Online Learning Methods to the QE task

The QE task is generally treated as a supervised learning regression task. As shown in

section §2.5 it has been so far treated in the batch learning mode.

This section provides the framework through which online learning methods can be

applied to the QE task, firstly in a general overview and secondly in the CAT-tool

environment.
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3.5.1 General Framework

When dealing with Quality Estimation, all we have is [src, trg, pe] tuples. However, a

supervised machine learning regression task requires (x, y) tuples, where x is a vector

with features describing the input and y is the desired output.

Thus, what is needed is a mapping of [src, trg, pe] tuples to (x, y) tuples.

As input is considered the [src, trg] tuple. The answer to transforming it into a x vector

is using features extracted from this tuple as values for the vector.

Suggested (Specia et al., 2009, 2010) features are:

• source and target sentence length (in tokens)

• ratio of source and target sentence length

• source and target sentence 3-gram language model probabilities and perplexities

• source and target sentence type/token ration

• average source word length

• percentage of 1 to 3-grams in the source sentence belonging to each frequency

quartile of a monolingual corpus

• number of mismatching opening/closing brackets and quotation marks in the target

sentence

• number of punctuation marks in the source and target sentences

• average number of occurrences of all target words within the target sentence

• average number of translations per source word in the sentence (as given by IBM

1 table thresholded so that prob(t|s) > 0.2)

• average number of translations per source word in the sentence (as given by IBM

1 table thresholded so that prob(t|s) > 0.01) weighted by the inverse frequency of

each word in the source corpus

On the other hand, there has to be a mapping from this tuple to a y value, to represent

the desired output.

This is done by using one of the metrics described in §2.4.2. For example a suitable y

value could be the HTER of the [trg, pe] pair.

Given these mappings, applying online learning to the QE task is straightforward:

In consecutive rounds t = 1, 2, 3...:



Chapter 3. Online (adaptive) Learning 33

1. the model receives a vector xt of the features extracted from the [src, trg] pair and

returns a prediction ŷ.

2. then it receives the true value y which responds to a metric of quality

3. and, using this feedback, the model is updated.

3.5.2 CAT-tool Framework

In the real-life scenario of a translator using a CAT-tool, in each round i of the online

learning process:

1. the QE Server receives a [srci, trgi] pair, as produced by the SMT system.

2. extracts the features xi and produces a prediction ŷi

3. the post-editor corrects the sentence or writes it from scratch (hopefully being

aided in his decision by the prediction of the QE Server)

4. the QE Server receives the post-edited sentence [pei] and computes the true value

yi

5. the QE Server updates the model by training with the (xi, yi) tuple.





Chapter 4

An open-source infrastructure for

Adaptive Quality Estimation

4.1 Introduction

The software package that we created includes all necessary components for a server that

performs Adaptive Quality Estimation, with input that is given in an online fashion. It

also includes other components for setting up a client for this server, which is needed

for all the experiments.

The QEServer package supports different configurations for choosing the learning algo-

rithms, their parameters, and other properties, such as storing the weights of the regres-

sors, or for performing other actions, such as cross-validation after a certain amount of

training points.

The QEClient package is only used to simulate the scenario of a post-editor using a

CAT-tool, providing the QE Server with [src,trg,pe] tuples.

Both packages, along with a detailed manual, and demo data are available at https:

//bitbucket.org/antonis/adaptiveqe.

The rest of this chapter describes the basic user scenario and required system specifi-

cations. Then, the embedded and used libraries are roughly presented, along with the

final architecture and other details of the implementation.

4.2 System Specifications

In this section the system specifications that will ensure usability of the current software

are described.

35
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According to the International Organization for Standardization (ISO), usability is de-

fined as the capability of a system to provide effectiveness, efficiency, and subjective

satisfaction to its users. As sub-characteristics of usability the following can be consid-

ered: learnability, understandability and operability.

4.2.1 Functional Requirements

Having in mind that the software was developed as part of the MateCat project, the

most important requirements were the following:

• Since the QE Server would be embedded in the CAT-tool as a separate module, it

should communicate with the other modules in the standardised way and provide

output in the required format.

• The time needed for giving a prediction when a [src,trg] pair is received, and

the time needed for updating the model when the post-edited sentence is received

should be reasonably small. Otherwise, the module wouldn’t be useful in a real-life

scenario, since the overall goal of the CAT-tool is to increase the productivity of

the translators.

• Since the MateCat project is still under development and research on QE is still

going on, the QE Server modules should be designed and implemented in a modular

way, so as to enable future additions or modifications to the software.

• The package should enable the user to keep track of everything that takes place

while the software is running.

• The package should enable the user to choose the parameters of its use (learning

method, learning rate, etc)

However, since the QE Server is also going to be released publicly to be used as a

collection of libraries for online Quality Estimation, the package should also:

• Provide all the components (that would otherwise be part of of the CAT-tool)

needed for the QE Server to run as standalone.

• Provide a simple Client for the QE Server, which will simulate a simple interface

for experiments on online QE.

4.2.2 Functional Specifications

Each functional requirement is matched with functional specifications, which are the

guidelines through which the project must be designed and implemented. This mapping

is presented in table 4.1.
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Requirements Specifications

Communicating in a
standardised way

Input and output are given by reading/writing from/to the
standard input/output, as do the other MateCat
components.

Input/Output in
standardised format

Require input/output to be in the standardised format.
Develop parsers for input and standard print methods for
output.

Time Efficiency Use C++ (considered quite fast) and optimize the code
wherever possible.

Modularity Use the adapter mode for all modules that are subject to
change (see figure 4.2).

Have full visibility
during the execution
of the project

Use a log file to write all important steps taken by the QE
Server and enable for various levels of verbosity.

Enable parameters
choice

Use a ’properties’ file with all parameters and their choices
which is used for instantiating the parameters of the QE
Server, during initialization.

Table 4.1: Functional Requirements and Specifications

4.2.3 Non functional Requirements

The non functional requirements, related to the nature of the project, include:

• Extensive documentation of all the components used and created, in order to be

included in the documentation of the MateCat project.

• A User Manual that will guide a potential user into installing, configuring and

running the QE Server outside a CAT-tool.

4.2.4 Development Platform

The software was developed in two phases. The first was the development in FBK,

during which the operating system was Red Hat Enterprise Linux 6. The second phase

was conducted in NTUA and the operating system was Ubuntu 12.04.

The programming language chosen for the implementation of the QE Server is C++,

since it combines high-level object oriented features with the speed of a low-level pro-

gramming language. In addition, several of the libraries implementing online learning

methods are written in C++ and therefore would be easier and more efficient to embed

in a C++ project rather than a project implemented in another programming language.

Given the complexity and the volume of the project and the estimated size of the code

needed to implement it, the use of an established platform for large-scale C++ project

development is vital. In both phases, the platform used is NetBeans IDE 7.3.1. (with

the appropriate plugin to support C/C++ projects).
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One advantage of NetBeans over other IDEs like eg. Eclipse, is that it supports virtual

folders, so the organisation of the source code is quite easy, without need for complicated

Makefiles.

The standalone version of the project, in addition, needs components that also require

the Java and Perl programming languages.

Java is needed for the QuEst module. QuEst1 is a tool for translation quality estimation

Specia et al. (2013) and is running in parallel with the main QE system. The tool, which

implements a large number of features proposed by participants to the WMT QE shared

tasks, has been modified to process one sentence at a time, as requested for integration

in the CAT framework and it is included as an executable .jar file. The “online” version

of QuEst can also be downloaded from http://www.quest.dcs.shef.ac.uk/.

Perl, on the other hand, is needed for the Faucet code (myFaucet.pl) which is responsible

for the connection between the language models and the QuEST module.

4.2.5 UML diagrams

The standard use case scenario is the following:

1. The CAT-tool provides the QE Server with a [src,trg] pair.

2. The QE Server responds with a prediction for this pair.

3. The translator post-edits the sentence and commits it, so that the CAT-tool can

provide the QE Server with the [pe] of the tuple.

4. The QE Server updates the model and waits for the next instance.

The sequential diagram, showing the internal steps followed by the QE Server for this

standard use case scenario, is presented in figure 4.1.

Figure 4.2 shows a general class diagram for the ’Adapter’ pattern that is used for

creating compatible interfaces for both the online learning libraries and the TER library.

This programming pattern enables the main class to always use the same interface when

communicating with any library that has certain functionalities.

1http://www.quest.dcs.shef.ac.uk/

http://www.quest.dcs.shef.ac.uk/
http://www.quest.dcs.shef.ac.uk/
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Figure 4.1: Sequence Diagram for the standard use case scenario

Figure 4.2: General Class Diagram for the Adapter pattern.

4.3 Libraries

This section presents the external libraries that were embedded in the code. The TerCpp

library is responsible for calculating the HTER between the suggestion and the posti-

edited sentence. The rest of the libraries implement or support the implementation of

adaptive learning methods.

4.3.1 Online SVR Library

The Online SVR library was created by Parrella (2007) as part of his MSc thesis.

(http://onlinesvr.altervista.org/)

http://onlinesvr.altervista.org/
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It implements an online version of SGD-SVM, enabling selection for various kernels:

LINEAR, POLYNOMIAL, RBF, and others. It also enables for parameters selection (ε,

C, kernel parameters)

It implements three classes:

• OnlineSVR: The main class, which incorporates:

– the parameters and the Get(), Set() methods for their manipulation

– methods for Kernel function

– methods that implement training and predicting

– methods for input/output from/to files

– methods for defining informational messages, according to the set verbosity

• Vector : The class that defines a vector and implements methods for:

– Set(), Get() for basic parameters (length, cell values)

– Basic Vector operations (Sum, Product, Power, Divide, Subtract, Min, Max,

Mean, Variance)

– Sorting operations

– I/O operations

• Matrix : The class that defines a matrix building upon the class Vector, and im-

plements methods for:

– Set(), Get() for basic parameters (rows and columns length, cell values)

– Add(), Remove() rows or columns

– Basic Vector operations (Sum, Product, Power, Divide, Subtract)

– Basic initialization operations (with random numbers or zeroes)

– Sorting operations

– I/O operations

This library is also the basis for the main software. We use the Vector and Matrix

classes also for storing the training set and the instances that are received.

4.3.2 sofiaml library

SofiaML implements various online learning algorithms, such as Passive-Aggressive,

SGD-SVM, Pegasos, Margin Perceptron and others. It was developed by Sculley (2010)

and is hosted by google (https://code.google.com/p/sofia-ml/).

https://code.google.com/p/sofia-ml/
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It focuses mostly on the speed of the learning process and the initial release intended to

aid researchers and practitioners who require fast methods for classification and ranking

on large, sparse data sets.

It implements 7 classes:

• 5 of these classes (SFDataSet, SFHashInline, SFHasWeightVector, SFSparseVec-

tor, SFWeightVector are dedicated to data representation, in order to deal with

data sparseness and also aid with maximizing speed performance

• class SofiamlMethods, which defines the learning methods and several sampling

Gradient Descent methods through which they can be applied for different tasks

(binary classification, ranking, optimizing ROC area). The defined methods are:

– Pegasos SVM

– Stochastic Gradient Descent (SGD) SVM

– Passive-Aggressive Perceptron

– Perceptron with Margins

– ROMMA

– Logistic Regression (with Pegasos Projection)

• class Sofiaml, which incorporates:

– the parameters and the Get(), Set() methods for their manipulation

– methods for input/output from/to files

Since the original SofiaML distribution had only implemented online learning algorithms

for the Classification problem, we had to modify the code in order to enable learning for

the regression problem.

This modification only required changing the functions that calculate the ε−insensitive

loss function and the function for updating the weights of the model.

The only currently supported (and modified for the regression task) algorithm from

SofiaML is the Passive-Aggressive algorithm.

4.3.3 newmat library

This C++ library (Davies, 2000) defines various classes, which enable manipulation for

a variety of types of matrices using standard matrix operations.

Among the various classes, there are:

• Matrix Types:
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– Matrix (rectangular matrix)

– UpperTriangularMatrix

– LowerTriangularMatrix

– DiagonalMatrix

– SymmetricMatrix

– BandMatrix

– UpperBandMatrix

– LowerBandMatrix

– SymmetricBandMatrix

– IdentityMatrix

– RowVector

– ColumnVector

• Matrix operations: product, sum, subract, Kronecker product, Schur product,

concatenation, inverse, transpose, conversion between types, submatrix, determi-

nant, Cholesky decomposition, QR triangularisation, singular value decomposition,

eigenvalues of a symmetric matrix, sorting, fast Fourier and trig. transforms and

printing.

4.3.4 OnlineGP library

This library was created by Grollman (2010), for his PhD Thesis in EPFL (http://lasa.ep

fl.ch/ dang/code.shtml). It implements the Sparse Online Gaussian Process learning

algorithm. For representing vectors, matrices and their operations it uses the classes

and methods defined by the newmat library.

Its classes are:

• SOGPParams: The class that defines the basic parameters (capacity, s20 and

kernel type)

• SOGPKernel : The class that defines the kernel used. It extends to:

– POLKernel, which implements a polynomial kernel

– RBFKernel, which implements an RBF kernel

• SOGP : the main class, which implements methods for:

– get(), set() methods for basic parameters

– learning operations (add(), predict())

– I/O operations from/to files

http://lasa.epfl.ch/~dang/code.shtml
http://lasa.epfl.ch/~dang/code.shtml
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4.3.5 TerCpp library

Created by Cristophe Servan, this library implements Snover’s algorithm for calculating

the TER metric (http://sourceforge.net/p/tercpp/wiki/Home/).

It implements various libraries, for input/output from .txt and .xml documents and also

for computing the alignments and shifts between the documents, which are needed for

the TER calculation.

4.4 Final Architecture

4.4.1 Flowchart for main.cpp

The source file ’main.cpp’ is the main function for this project. A - basic - flowchart is

the following:

1. Connect to QuEST

2. Initialize the TER and Learning Adaptors (more on the relevant section)

3. Initialize the configuration, by parsing the ’PROPERTIES.CONFIG’ file

4. Establish the connection with client (the server will wait until a client connects)

5. While the client is connencted:

(a) Receive input

(b) Parse the input (break it into separate queries) and store the queries in a

queue.

(c) While the queue is NOT empty:

i. Take the head of the queue (query from client)

ii. Parse it

iii. Execute the appropriate action (give prediction or train or do nothing if

the input is not structured correctly)

iv. Respond appropriately to the client (send prediction or send confirmation

that training is finished or send error message)

6. shut down the server if the client sends the appropriate message (’ENDEND’)

before disconnecting

http://sourceforge.net/p/tercpp/wiki/Home/
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Figure 4.3: Component Diagram for the QE Server

Figure 4.4: Class Diagram for the Learning Model Component.

4.4.2 QE Server Classes

In this section the main objects/classes of the QE Server are described. The general

UML component diagram is presented in figure 4.3.

The rough UML class diagrams for the Learning Method component is presented in

figure 4.4. The component for the calculation of the label is structured in the same way

(using an public and a virtual interface, as instructed by the Adapter pattern).
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4.4.2.1 TrainInstance

This is the class that represents the segments of the document. Its specifiers, which

describe a whole training Instance object, are:

• id: the segment ID, which must be unique (provided by the parsed input)

• src: the source sentence

• trg: the target sentence

• FeatureVals: a hashmap with the values of the features (provided by QuEST) of

the [src,trg] pair

• hterPrediction: the prediction for the HTER value, provided by the learning

model

• PostEditorID: the ID of the post-editor. It can be the ID of the client.

• pe: the post-edited sentence

• HTER: the true value of the HTER (provided by TERCpp)

4.4.2.2 Features and Labels

The Features and the Labels of the segments, are not only stored in the TrainInstance

object.

The main class also creates a Matrix ’FeaturesSet ’ (for the Features) and a Vector ’Labels’

(for the Labels). This matrices are storing incrementally the features and labels needed

for re-training the model.

For Each new training instance, its features are added to this FeaturesSet matrix and

its Label is added to the Labels vector. These matrices are, then, the parameters of the

’Train’ function of the Learning Interface.

4.4.2.3 Online Learning Libraries Classes

Each online learning library embedded in the project is represented as a class, with

its own specifiers and functions. These classes are not changed from their original

distribution. As described in section 4.3 the online learning libraries embedded are:

1. OnlineSVR

2. OnlineGP
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3. SofiaML

The functions of the learning libraries are not used directly from the main, but there is

an intermediate level between the main and libraries. This level is the Learning Adapter,

which provides an adaptor to all the supported learning algorithms.

That way, the main code always calls the same function, eg. ’Predict’, and the adaptor

selects the correct function according to the selected learning algorithm.

4.4.2.4 Learning Interface

This is the class of the interface of the adaptors for the online learning libraries. Its

specifiers are virtual functions. These virtual functions are the ones used in the main

programme to address the learning libraries.

The virtual functions are mapped to the ’original’ ones for each learning algorithm and

whenever called, they point to the correct function to be used.

The mapping from the virtual to the real functions is provided independently for each

library, through their specific interfaces:

• OnlineSVRInterface: Includes the mapping from the virtual functions to the

functions of the OnlineSVR class.

• OnlineGPInterface: Includes the mapping from the virtual functions to the

functions of the OnlineGP class.

• SofiaInterface: Includes several interfaces, one for each learning algorithm sup-

ported by SofiaML.

Each interface includes the mapping from the virtual functions to the functions of

the SofiaML-[Algorithm] class.

Note that the sofiaml interfaces also implement different ’Predict’ and ’Train’

functions (than the ones used for OnlineSVR) because they also implement and

incorporate the normalisation of the data (which is not needed by OnlineSVR

since it was already implemented in its class, but necessary for sofiaml).

4.4.2.5 TER and TERInterface

This is the class that embeds the TERCpp code into the project. It receives a pair of

[trg,pe] sentences and returns the HTER score, which shows their ’post-edit difference’.

Again, there is an intermediate level between TERCpp and the main programme, im-

plemented with the ”Adapter” pattern.
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The TERAdaptor specifies only one virtual function (’execute’) which receives the sen-

tence pair and returns the HTER score.

The TERInterface class implements the interface of the TERAdaptor, through which

one can set the configuration of TERCpp (eg. choose whether to tokenize the text or

not, choose whether to take punctuation into account, etc).





Chapter 5

Experiments with

English-Spanish

5.1 Introduction

In this section we present two sets of experiments, with an artificially created English-

Spanish dataset.

First, we experiment with different training set sizes and algorithms, in order to inves-

tigate how their performance is affected by the training set size.

Second, we present experiments with completely different label distributions, aiming

to show that batch methods are not the best choice for such cases, when compared

to adaptive methods. As discussed in chapter 3, differences in the label distribution

between the training and test set result in a drop of performance, which can hopefully

be addressed by using adaptive methods.

Meanwhile, we also compare the various online algorithms among themselves, in order

to determine their differences and whether one is outstandingly better than the others.

The results indeed confirm that in datasets with homogeneous label distribution the

adaptive algorithms are as good as the batch ones regardless of the training set size, but

they are significantly better in cases where the label distribution across training and test

set is different.

The final section of the chapter provides a summarization of the observed results and

tries to explain them, viewed from various points of view.

49
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5.2 Experimental Framework

The following set of experiments is carried out in controlled conditions. This means that

the dataset is artificially obtained, but also that the training and test sets are chosen

beforehand in order to certify certain conditions.

Using English-Spanish tuples of [src,trg,pe] sentences, for all the algorithms we train

and test according to the process described in §3.

5.3 Dataset

The dataset used for experiments 1 and 2 is an English-Spanish corpus, which was

created for the Shared QE task of the WMT12 workshop (1832 for training and 422 for

test).

All sentences are from the news domain. Target sentences are produced by a phrase-

based SMT system (Moses) trained on Europarl and News Commentaries corpora as

provided by WMT.

The HTER labels for our regression task are calculated from the post-edited version of

the target sentences provided in the dataset.

5.4 Homogeneous label distribution

The motivations for experiments with training and test data featuring homogeneous

label distributions are twofold.

Firstly, since in this artificial scenario adaptation capabilities are not required to the

QE component, batch methods operate in the ideal conditions. This makes possible to

obtain from them the best possible performance to compare with.

Secondly, this scenario provides the fairest conditions for such comparison since, in

principle, online algorithms are not favoured by the possibility to learn from the diversity

of the test instances.

5.4.1 Experimental Setup

In order to avoid biases in the label distribution, the WMT12 training and test data

have been merged, shuffled, and eventually separated, in order to generate three training

sets of different size (200, 600, and 1500 instances), and one test set with 754 instances.
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For each algorithm, an adaptive and an empty model are compared against a Support

Vector Regressor trained in batch mode. The adaptive model builds upon a model

created1 from the training data and also exploits the test instances to stepwise refine its

predictions. The empty model learns from scratch from the test set, not having been

trained on any instances before. The empty model simulates the worst, but also realistic,

conditions, were no training data are available for the creation of a model.

The notation that is used for the next experiment is ALGi, where ALG refers to the

model obtained using a given learning algorithm and i refers to the training sets. The

parameter i can take the values 200, 600, 1500, referring to the training set with the

equivalent size, whereas it is always the same test set that is used throughout this

experiment.

In Table 5.1 is presented the distribution of the labels across the training and the test

sets. It is clear that all sets reflect the same distribution, since the differences that are

observed are not significant.

This can be further supported by using a distribution similarity metric. A suitable

such metric is the Hellinger distance (Hellinger, 1909), which, for two distributions2

P ∼ N (µ1, σ
2
1) and Q ∼ N (µ2, σ

2
2) can be computed as:

H2(P,Q) = 1−

√
2σ1σ2
σ21 + σ22

e
− 1

4
(µ1−µ2)

2

σ21+σ
2
2 .

The closer to 0 the Hellinger distance is, the more similar the two distributions.

Training Labels Test Labels Distribution
Training Set Avg. HTER St. Deviation Avg. HTER St. Deviation Distance

200 32.71 14.99
32.32 17.32

0.072
600 33.64 16.72 0.033
1500 33.54 18.56 0.042

Table 5.1: Label Distribution across training and test sets for Experiment 1.

For each algorithm, the training sets are used to learn the QE models, optimizing param-

eters through grid search in 10-fold cross-validation. For each algorithm, the parameters

that are optimized are:

• SVR-OSVR: C, ε and the kernel type

• PA: C (aggressiveness) and ε (tolerance)

• OGP: the capacity of the BV vector.

1Training is also performed in an online fashion.
2We show in section §6.4 that the labels’ distributions are indeed Gaussian.
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Evaluation is carried out by measuring the adaptability of batch, adaptive, and empty

models in terms of global MAE scores on the test set.

It is important to note that, in order for the results to be completely comparable, the

parameters used in the experiments with the empty models are the ones that resulted

from the optimization for the adaptive models.

Computing the statistical significance of the results will also enable us to further under-

stand the results. The null hypothesis in all the next experiments is that the batch and

online methods perform differently, by providing different predictions. With approxi-

mate randomization (Yeh, 2000), we calculate the probability that this null hypothesis

can be rejected. If this probability p is lower than 0.005, then the null hypothesis

stands and the differences of the performance are significant. In the inverse case, when

p > 0.005, the differences in the performance of the algorithms are not statistically

significant.

The predictions of the best batch model are compared to the predictions of the best

online model. If the statistical significance test gives that p < 0.005, then the difference

in the performances of the best online model and the best batch model is statistically

significant. Otherwise (p > 0.005), the results of the online and batch models do not

differ significantly and are marked with an asterisk (*)3.

5.4.2 Experiment 1: Varying the size of the Training Set

The results of Experiment 1 are reported in Table 5.2. The batch, adaptive and empty

models are compared for the three training sets. A similar behaviour is visible for all

the algorithms.

With the same amount of training data, performance differences between batch and

adaptive models are rather small. Even in the worst case, the performance of the worst

online model (OSV R−RBF ) is only one MAE point worse that the performance of the

best batch model (SV R−RBF ); this is observed in the case were we have 600 training

instances.

This demonstrates that, as expected, the online algorithms do not take further advan-

tage from test data with a label distribution similar to the training set and do not

improve further than the batch models. On the other hand, they do manage to achieve

performance comparable to the performance of the batch models. In fact, the difference

between the results of the best batch and the best online model is not statistically sig-

nificant. Thus, we can conclude that, in this experiment, the online models perform

almost as good as the batch models.

3Statistical significance is always calculated in the same way and the same notation is used for the
rest of the thesis
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Algorithm Kernel
MAE MAE MAE

(i = 200) (i = 600) (i = 1500)

Batch

SV Ri
Linear 13.5 13.0 12.8
RBF 13.2* 12.7* 12.7*

Adaptive

OSV Ri
Linear 13.2* 12.9 12.8
RBF 13.6 13.7 13.5

PAi - 14.0 13.4 13.3

OGPi RBF 13.2* 12.9 12.8

Empty

OSV R0
Linear 13.5
RBF 13.7

PA0 14.4

OGP0 RBF 13.3

Table 5.2: MAE of batch, adaptive and empty models
on data with homogeneous label distributions.

At the same time, however, these results bring some interesting indications about the

behaviour of the different online algorithms.

First, the good results achieved by the empty models (less than two MAE points separate

the worse model, PA754
0 , from the best ones built on larger training sets) suggest their

high potential when training data are not available.

Second, the results show higher MAE variations but slightly worse results for PA than

for OSVR and OGP. While for PA the MAE of empty and adaptive models ranges

from 13.3 to 14.4, the results for OSVR (with Linear kernel) range from 12.8 to 13.5

and for OGP (RBF kernel) range from 12.8 to 13.2. This difference in performance

suggests a slightly lower capability of PA, compared to OSVR and OGP, to learn from

new instances.

5.5 Disjoint label distributions

In order to explore the full potential of adaptive models in a controlled scenario, it is

interesting to investigate the situation where the training and test sets reflect completely

different label distributions.

On the one hand, this setting provides the worst conditions for batch learning. Since the

training and test sets are completely different, and the batch model can only produce

predictions based on data of the training set, its performance on the test set is expected
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to drop, compared to the excellent results of the previous scenario. On the other hand,

this is a more favourable situation for online methods, since they have the advantage to

learn from user feedback also in the test set, gradually adapting their predictions to the

new label distribution.

The following experiment aims to verify these intuitions.

5.5.1 Experimental Setup

In order to obtain maximally different label distributions, the WMT12 training and test

data have been merged, sorted based on the HTER labels and eventually separated to

generate two datasets.

The first one (Top) contains the top 600 instances, where the high HTER labels (ranging

from 0.43 to 1) indicate a poor translation quality. The second one (Bottom) contains the

600 instances with the lowest HTER labels (from 0 to 0.21) indicating a good translation

quality. The two datasets are alternatively used for training and test.

As in §5.4.1, for each algorithm, an adaptive and an empty model are compared against

a Support Vector Regressor trained in batch mode.

The notation that is used for the next experiment is ALGtesttrain, where ALG refers to the

model obtained using a given learning algorithm and train and test refer to the training

and test sets. The parameters train and test take the values Top and Bottom alternating

referring to the training sets mentioned in the previous paragraph.

The distribution of the labels across the training and the test sets is presented in Table

5.3. It is clear that the two sets reflect disjointed label distributions. Another factor that

could affect the performance of the learning methods is the different standard deviation

(and, naturally, different range) that the two sets cover, with the bottom set having a

range of [0, 21.05] HTER points, whereas the top set features instances within the range

of [43.48, 1] HTER points, almost three times the range of the bottom set.

The Hellinger distance between the Top and the Bottom distribution is

H(Top,Bottom) = 0.95.

Note that the highest possible Hellinger distance between two distributions is 1, meaning

that the Top and Bottom distributions are quite different.

Set Average HTER HTER St. Deviation

Top 56.27 12.59

Bottom 12.35 6.43

Table 5.3: Label Distribution for Top and Bottom sets for Experiment 2.
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Again, as in §5.4.1, for each algorithm, the training sets are used to learn the QE models,

optimizing parameters through grid search in 10-fold cross-validation.

Evaluation is carried out by measuring the adaptability of batch, adaptive, and empty

models in terms of global MAE scores on the test set.

5.5.2 Experiment 2: Testing on different label distribution

The results reported in Table 5.4 confirm the expectations about the potential of online

models. All algorithms, OSVR, OGP and and PA achieve significantly better perfor-

mance than SVR, with MAE reductions of about 15 points on the Top test set and at

least 8 points on the Bottom one.

Test on Top Test on Bottom
Algorithm Kernel MAE Algorithm Kernel MAE

Batch Batch

SV RTopBottom

Linear 43.7
SV RBottomTop

Linear 39.3
RBF 43.2 RBF 40.7

Adaptive Adaptive

OSV RTopBottom

Linear 28.7
OSV RBottomTop

Linear 27.0
RBF 31.1 RBF 29.5

PATopBottom
- 28.2 PABottomTop - 31.0

OGP TopBottom
RBF 27.2 OGPBottomTop RBF 28.3

Table 5.4: MAE of batch and adaptive models
on data with disjointed label distributions.

These results confirm that batch learning methods cannot cope with differences between

the training and test sets, whereas online approaches manage to perform better.

In contrast with the results of previous experiments, when dealing with disjointed label

distributions we do not observe systematic differences between the online algorithms,

with the best results achieved by OGP and OSVR for the two datasets.

Algorithm Kernel MAE on Top MAE on Bottom

Empty

OSV R0
Linear 8.42 5.67
RBF 8.55 5.37

PA0 - 8.37 5.30

OGP0 RBF 8.83 5.22

Table 5.5: MAE of empty models on data with disjointed label distributions.

No significant differences between algorithms are also observed in the results achieved

by the empty models, reported in Table 5.5, which in all cases are very good and similar
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No of instances OSV RLINEAR OSV RRBF PA OGPRBF
Training Time (ms)

954 44.10 34.69 7.56 10.69

1354 120.55 227.38 8.87 11.47

2254 277.71 318.62 11.79 13.75

Predicting Time (ms)

954 0.364 1.254 0.996 38.35

1354 0.510 1.513 1.925 38.41

2254 0.759 2.053 4.517 37.85

Table 5.6: Average training and predicting time for the adaptive algorithms.

to each other. In these cases the MAE on both test sets is always below 9 points. This

excellent performance can be explained by the artificial construction of the two sets.

Due to the small range and small standard deviation of the labels in each set, an empty

model can quickly converge and eventually overfit the data. Note that, the smaller the

range (as in the Bottom set), the better the performance. The three times larger range

of the Top set, results in 3 MAE points worse performance, compared to the Bottom

set.

In this setting, however, the good results of the empty models are not particularly infor-

mative since the artificial distortions in the data labels produce an unrealistic scenario

where training data are more harmful than useful (thus penalizing batch and adaptive

models).

5.6 Time performance of the algorithms

This section analyses the efficiency of the adaptive algorithms in terms of the time

needed to provide a prediction and to update the model.

For the three modes of experiment 1 (§5.4.2, training with 200,600 and 1500 instances)

the average training and prediction time for the algorithms is computed and reported in

table 5.6. Note that the final sum of the instances is, 954, 1354 and 2254 for each case

respectively.

It is obvious that all algorithms and kernels need more time to train as the instances

increase. The prediction time for all algorithms is very low, ranging from less than 1ms

to almost 40ms, a range more than acceptable for the CAT-tool.

However, PA needs significantly less time than the others for training. The times of

OGP are also quite competent. By far, the worse times are the ones of OSVR (still

acceptable for a CAT-tool, though); this can be attributed to the complexity of the

OSVR algorithm and to the fact that it needs to explicitly use all previous instances in

every iteration.
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Figure 5.1: Updating Time according to training instances

The same results are also evident in the trend plots shown in figure 5.1, which show

how the update time for the model of each algorithm is affected by the number of the

previous training instances.

5.6.1 Computational Complexity of the Algorithms

Another aspect that would explain the time performance of the online methods is their

computational complexity.

Given a number of seen samples n and a number of features f for each sample, we

calculate the computational complexity of updating a trained model with a new instance

for each of the methods we use:

• The complexity for training standard (not online) Support Vector Machines is

O(n2f)(Bottou and Lin, 2007) but it depends on the implementation and the

various optimizations suggested.

• The complexity for updating a trained model with OSVR is in the worst case

O(n3f) and in the average case it is O(n2f) (Parrella, 2007).

• The complexity for updating a trained model with the Passive-Aggressive algo-

rithm is O(f) as the previous instances are not taken in account.
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• For an Online Gaussian Process method with bounded BV vector with maximum

capacity d, the complexity of a single update of the model is bounded by O(nd2f)

(Csató and Opper, 2002), and on run-time it is Θ(nd̂2f) where d̂ is the actual

number of vectors in the BV vector.

The fact that OSVR’s complexity is quadratic with respect to the previously seen in-

stances justifies the time plot seen in figure 5.1. The similarity in PA’s and OGP ’s time

performance can be justified by the following facts:

1. For both PA and OGP there is a preprocessing step taking place, where the fea-

tures of the new instance are normalised according to the previously seen ones, a

calculation with Θ(nf), for n previously seen instances with f features. This adds

up to the the actual algorithm’s complexity, only affecting PA’s complexity and

making it also bounded by O(nf).

2. In our experiments, the actual value of d for the BV vector of OGP does not exceed

100 or 200, according to the configuration, thus it does not affect significantly the

time performance of OGP.

5.7 Summary of the English-Spanish results

The results of the previous sections allow us to draw useful conclusions. Firstly, regarding

the performance of online methods against batch methods:

• When dealing with homogeneous label distributions, batch methods perform slightly

better than online methods, but not significantly better. When the training data

are relatively fewer than the test data, online and batch perform equally well.

• When dealing with disjoint label distributions, online methods perform signifi-

cantly better than the batch methods, adapting to the test set at a satisfactory

level.

• Empty adaptive models, also produce competent results, showing that using online

models when no training data are available, can be useful. Especially when the

distribution of the HTER labels is narrow (with very small standard deviation),

as in the cases of Top and Bottom, empty models seem to be the best choice.

In general, we could claim that, adaptive methods are not worse than batch methods

when dealing with similar data distributions and are not only much better when dealing

with different distributions of training and test set labels, but also quite competent when

no training data are available. Thus, this advantage of the online methods makes them

a good option for use in a CAT-tool.



Chapter 5. English-Spanish 59

In addition we can draw conclusions regarding the performance of each online learning

method:

• Online SVR and Online GP show stable and coherent performance across the

experiments and are the online methods that perform as good as the batch method

in Experiment 1.

• PA shows slightly worse performance that the other two in most cases (the only

exception is testing on the Top set in experiment 2), but shows good performance

when the HTER label distribution is narrow.

As regards OSVR, we also compare the significance of the difference of the results, when

using RBF and when using Linear kernel. In almost all cases these differences turn out

not to be significant.

To conclude, probably OSVR or OGP would be a better choice than PA as default

methods for a potential CAT-tool. Should one also require time efficiency, then the

best solution is OGP, since its update or prediction time is stable and does not heavily

depend on the number of instances that are being processed.





Chapter 6

Experiments with English-Italian

6.1 Introduction

In this section we present a series of experiments, with an English-Italian dataset, which

reflects much more accurately a real translation job than the dataset of the previous

experiments of §5.

Section 6.3 describes the dataset, which provides instances for different translators over

the same document, for documents coming from two domains, IT and Legal.

A number of evaluation settings can be obtained by considering data from different

post-editors. These range from simpler situations where training and test data come

from post-editors with similar post-editing behaviour (either both conservative or both

aggressive), to harder situations where training and test data come from post-editors

with different behaviour (one conservative and one aggressive).

We take advantage of the characteristics of the dataset to experiment on the performance

of the adaptive methods:

• within particular translation domains,

• when the training and test sets are created by different translators, but are both

in the same translation domain,

• when the training and test sets fall within different domains and are created by

different translators.

Section §6.4 describes an effort to model post-editors behaviour according to the data

that they have provided, by suggesting several metrics. This section motivates the use of

HTER as a metric of the translators’ post-editing behaviour in the experiments’ section.

61
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The following sections describe the experiments in detail. In each experiment, the results

are constituted by calculating global Mean Average Error scores and by presenting point-

wise error plots.

The MAE aids in comparing the adaptability of each algorithm to heterogeneous test

sets, obtained from different users or domains. The introduction of the point-wise plots,

instead, aims at a more fine-grained analysis of the sensitivity of the online models to

such differences.

For each experiment, in order to enable better understanding of its results, we provide

a short summary of the information presented in the tables and the figures in the form

of answers to the following questions:

1. Do online methods perform better than batch methods?

2. Which adaptive method performs better?

3. Do empty methods provide competent results, compared to the adaptive version?

The ”Results Discussion” sections provide an overview of the results, along with ex-

planations for the variations on the performance of the adaptive methods. The results

show that online methods for QE can be a way to handle changes in the user or the

translation domain, as is expected in the user scenaria of a CAT-tool.

6.2 Experiment Framework

The following set of experiments is carried out in more realistic conditions, compared

to the experiments of §5. The datasets are obtained directly from translation jobs,

involving different human translators working on texts from different domains.

All algorithms are trained and tested using English-Italian tuples of [src,trg,pe] sen-

tences, according to the process described in §3.

6.3 Dataset

The dataset for the following experiments is constituted of two sub-datasets. The first

one is a dataset of English-Italian tuples of [src,trg,pe] sentences, coming from the infor-

mation technology (henceforth IT) domain. The second is another dataset of English-

Italian tuples of [src,trg,pe] sentences, coming from the Legal (henceforth L) domain.

The source sentences were translated with a SMT system developed with the Moses

toolkit (Koehn et al., 2007) trained on parallel data from the domain.
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Post-editions were collected from four professional translators operating with the CAT

tool in real working conditions. The four professional post-editors were faced with a

document to translate and presented with MT suggestions for each sentence, that they

could either accept or post-edit to reach publication quality. Note that the translators

were not the same for the IT and the Legal document.

6.3.1 IT Domain Dataset

The dataset for the IT domain is taken from a software user manual, containing 280

sentences.

For the IT domain, training data (about 2M parallel sentences) were extracted from the

OPUS corpus (Tiedemann, 2012), and from a proprietary translation memory built from

real translation projects, provided by Translated (http://www.translated.net/en/), a

commercial translation company and partner of the MateCat project.

The data for the label’s distribution and the variation among different translators, com-

puted in the whole IT document, are presented in Table 6.1.

Post-editor Avg HTER HTER St. Deviation

1 39.32 21.03

2 47.77 20.49

3 37.72 20.05

4 36.60 19.71

Table 6.1: Label Distribution across the IT document for each post-editor.

From table 6.1, differences among the various post-editor’s pairs are visible. This differ-

ent or similar behaviour of the translators is further discussed in §6.4

6.3.2 Legal Domain Dataset

The L document, extracted from a European Parliament resolution published on the

EUR-Lex platform,1 contains 164 sentences.

Training data for the legal domain (about 1.5M segments) come from the JRC-Acquis

collection (Steinberger et al., 2006).

The data for the label’s distribution and the variation among different translators, com-

puted in the whole L document, are presented in Table 6.2.

Similar to the IT domain, the L data make possible to obtain different evaluation settings

featuring different levels of complexity depending on the post-editors behaviour. In

1http://eur-lex.europa.eu/

http://www.translated.net/en/
http://eur-lex.europa.eu/
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Post-editor Avg HTER HTER St. Deviation

1 29.04 16.84

2 32.33 18.87

3 43.25 14.86

4 23.52 15.80

Table 6.2: Label Distribution across the Legal document for each post-editor.

table 6.2, differences among the various post-editor’s pairs are notable. This different

or similar behaviour of the translators is further discussed in §6.4.

6.4 Modelling Post-Editor Behaviour

This section attempts to deal with the problem of modelling the behaviour of human

post-editors, through which identifying differences or similarities might be possible.

In order to confirm that there are indeed different behaviours, we compute the proba-

bility distribution of each posteditor’s HTER labels, by estimating the kernel density

function.

These HTER probability distributions are presented in figure 6.1. The difference, or

similarity, of these distributions can be roughly identified even by the naked eye. To

begin with, all post-editors’ labels follow a gaussian distribution, a finding that is also

confirmed for all post-editors, using the X 2−Goodness-of-Fit method (Nikulin, 1973).

However, certain post-editors’ work results in gaussian distributions with 1 mode, other’s

results in gaussian distributions with two modes, or with right skewed gaussians.

The rest of the chapter suggests several metrics that could be used for measuring differ-

ences or similarities in the post-editing behaviour of different post-editors.

6.4.1 Metrics of similarity between post-editors

Through the following subsections only the results for the Legal document are presented

as examples. The results of the IT document can be found in the Results section (§6.4.9).

All rankings tables show the pairs of post-editors in descending order of similarity. This

means that, in the first row the more similar post-editors are presented, and in the last

row the most different post-editors, according to each metric. The values of each metric

for the pairs are presented in parenthesis.

In the rankings that are produced from each metric, the results of the previously men-

tioned metrics are also presented for easier comparison.
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Figure 6.1: HTER Probability Distributions for all post-editors

6.4.2 Average HTER and St. Deviation

For each post-editor, the Average HTER and the Standard Deviation of the distribution

of the labels that he assigns are calculated. The pairs of post-editors are ranked according

to the difference of their average HTERs (the difference of the standard deviations are

not really informative)

6.4.3 Vocabulary Size

This metric compares the vocabularies of the post-editors (the number of distinct words

that they use). For each pair of post-editors, the size of the intersection of their vocab-

ularies is calculated. The size is presented as the percentage of the vocabulary of each

translator and the pairs are ranked according to the average percentage of vocabulary

that they share in common. Results are presented in table 6.3.

6.4.4 n-grams

For each post-editor, we compute the 2-, 3-, 4- and 5-grams of the document that he has

translated. For each pair of post-editors, we compute the percentage of n-grams that
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the post-editors have in common. The ranking for each pair is produced by averaging

over the two post-editors of the pair and the results are presented in table 6.3.

HTER diff Vocabulary 2-gram 3-gram 4-gram 5-gram

1,2 (3.29) 1,4 (0.79) 1,4 1,4 1,4 1,4

1,4 (5.52) 1,3 (0.77) 1,2 1,2 1,2 1,2

2,4 (8.81) 3,4 (0.76) 2,4 2,4 2,4 2,4

2,3 (10.92) 1,2 (0.76) 1,3 1,3 1,3 1,3

1,3 (14.21) 2,4 (0.75) 3,4 3,4 3,4 3,4

3,4 (19.73) 2,3 (0.72) 2,3 2,3 2,3 2,3

Table 6.3: Ranking of all pairs for the Legal document according to n-grams metrics.

The results do not vary when using 2,3,4 or 5-grams, thus from here on they will be

presented as ”n-grams”. The score will be computed by multiplying the scores for 2,3,4

and 5-grams, as in table 6.4.

HTER diff Vocabulary n-grams

1,2 (3.29) 1,4 (0.79) 1,4 (55.5)

1,4 (5.52) 1,3 (0.77) 1,2 (48.9)

2,4 (8.81) 3,4 (0.76) 2,4 (36.1)

2,3 (10.92) 1,2 (0.76) 1,3 (18.7)

1,3 (14.21) 2,4 (0.75) 3,4 (14.6)

3,4 (19.73) 2,3 (0.72) 2,3 (11.8)

Table 6.4: Ranking of all pairs for the Legal document according to n-gram metric.

6.4.5 Average Overlap

For every pair of post-editors, this metric computes the average length of the longest

common sub-sequence, normalised by the average length of the sentences. The results

are shown is table 6.5.

The results show that, either by using normalisation, or not, the rankings are the same,

so henceforth only the normalised version will be presented.

HTER diff Vocabulary n-grams Norm. Overlap

1,2 (3.29) 1,4 (0.79) 1,4 (55.5) 1,4 (33.1)

1,4 (5.52) 1,3 (0.77) 1,2 (48.9) 1,2 (9.4)

2,4 (8.81) 3,4 (0.76) 2,4 (36.1) 2,4 (9.2)

2,3 (10.92) 1,2 (0.76) 1,3 (18.7) 1,3 (6.9)

1,3 (14.21) 2,4 (0.75) 3,4 (14.6) 3,4 (6.6)

3,4 (19.73) 2,3 (0.72) 2,3 (11.8) 2,3 (5.9)

Table 6.5: Ranking of all pairs for the Legal document according to the overlap metric.
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6.4.6 Distribution Difference

This metric quantifies the similarity of the distributions of the labels of two post-editors.

We use two established metrics (Cha, 2007, Deza and Deza, 2009) for comparing distri-

butions:

• Bhattacharyya distance (DB)

• Hellinger distance (DH)

The Bhattacharyya distance is defined by DB = −ln(BC(p, q)), where BC(p, q) =

Σx∈X
√
p(x)q(x) is the Bhattacharyya coefficient. The Hellinger distance can also be

defined by the BC as it stands that DH =
√

1−BC(p, q).

For two gaussian distributions p, q, with means µp, µq and variances σp, σq (we assume

that the HTER labels of the post-editors follow a gaussian distribution), the distances

are defined as:

DB(p, q) =
1

4
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1

4
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It stands 0 < DB, DH < 1 but the triangle inequality is obeyed only by DH . A result

of DB = 0 or DH = 0 means that the distributions are the same, whereas a result of

DB = 1 or DH = 1 means that the distributions are completely different. Of course,

DB/H(p, q) = DB/H(q, p).

The ranking of the pairs according to these metrics is shown in table 6.6

HTER Vocabulary
n-grams

Norm. Avg. Distr. Diff. Distr. Diff.
diff Size Overlap (Bhattach.) (Hellinger)

1,2 (3.29) 1,4 (0.79) 1,4 (55.5) 1,4 (33.1) 1,2 (0.007) 1,2 (0.007)

1,4 (5.52) 1,3 (0.77) 1,2 (48.9) 1,2 (9.4) 1,4 (0.015) 1,4 (0.015)

2,4 (8.81) 3,4 (0.76) 2,4 (36.1) 2,4 (9.2) 2,4 (0.04) 2,4 (0.039)

2,3 (10.92) 1,2 (0.76) 1,3 (18.7) 1,3 (6.9) 2,3 (0.066) 2,3 (0.066)

1,3 (14.21) 2,4 (0.75) 3,4 (14.6) 3,4 (6.6) 1,3 (0.104) 1,3 (0.099)

3,4 (19.73) 2,3 (0.72) 2,3 (11.8) 2,3 (5.9) 3,4 (0.208) 3,4 (0.188)

Table 6.6: Ranking of all pairs for the Legal document according to the distribution
distance metrics.

In the next tables we will only use the Hellinger distance, since the results do not vary

between these two metrics of distribution distance.
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6.4.7 Instance-wise difference

The previous metrics are calculated using the means and variances of the distributions.

However, two post-editors might have a “similar” distribution of labels, but when com-

pared instance by instance they might prove to be quite different.

Since the post-editors work on the same document, we can compare their HTER labels

one by one, and find, for each instance, the pair that has the most similar and the most

different pair of labels. The metric counts, for each pair, the number of instances for

which the pair shows the highest, or lowest HTER difference. The pairs are then ranked

accordingly, in table 6.7.

Note: This metric is only applicable in the in-domain scenario, where the instances are

comparable.

HTER
n-grams

Norm. Avg. Distr. Diff. Distr. Diff. #times #times
diff Overlap (Bhattach.) (Hellinger) Different Similar

1,2 (3.29) 1,4 (55.5) 1,4 (33.1) 1,2 (0.007) 1,2 (0.007) 1,2 (14) 1,4 (52)

1,4 (5.52) 1,2 (48.9) 1,2 (9.4) 1,4 (0.015) 1,4 (0.015) 1,4 (19) 1,2 (43)

2,4 (8.81) 2,4 (36.1) 2,4 (9.2) 2,4 (0.04) 2,4 (0.039) 2,4 (26) 2,4 (36)

2,3 (10.92) 1,3 (18.7) 1,3 (6.9) 2,3 (0.066) 2,3 (0.066) 2,3 (29) 1,3 (27)

1,3 (14.21) 3,4 (14.6) 3,4 (6.6) 1,3 (0.104) 1,3 (0.099) 1,3 (46) 2,3 (25)

3,4 (19.73) 2,3 (11.8) 2,3 (5.9) 3,4 (0.208) 3,4 (0.188) 3,4 (78) 3,4 (11)

Table 6.7: Ranking of all pairs for the Legal document according to instance-wise
metrics.

6.4.8 Reordering

This metric is based on the amount of reordering of the permutations needed in order

to transform the sentence of one post-editor to the sentence of another.

We use the Kendall’s Tau distance which, for two permutations π, σ (which corre-

spond to the sentences of two post-editors) is calculated as

dτ (π, σ) = 1−
Σn
i=1Σ

n
j=1zij

Z

where zij = 1 if π(i) < π(j) and σ(i) > σ(j) and 0 otherwise, and

Z =
(n2 − n)

2

Quoting Birch et al. (2010) from “Metrics of MT Evaluation: Evaluating Reordering”,

Kendall’s Tau:
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“... reflects the sum of all pairwise differences in order between the two

permutations. The Kendall’s tau metric is sensitive to relative orderings

between all pairs of words and therefore to the distance that words are re-

ordered. It can be interpreted as the probability that pairs of items in two

different permutations are in the same order as opposed to being in different

orders.”

The permutations are computed using the alignments created by the tercpp library. The

unaligned words (in the cases of Insertion and Deletion) are aligned to the previously

aligned words, following Birch’s guidelines. The result of the metric is the average

reordering over all the instances. In order to make the results more distinguishable, we

only average over the sentences that indeed need to be reordered, excluding from the

calculation the sentences where dτ = 1, meaning that no reordering is needed.

The resulting ranking is shown in table 6.8:

HTER
n-grams

Norm.Av. Distr. Diff. #times #times Reordering
diff Overlap (Hellinger) Different Similar (Kendall)

1,2 (3.29) 1,4 (55.5) 1,4 (33.1) 1,2 (0.007) 1,2 (14) 1,4 (52) 1,4 (0.979)

1,4 (5.52) 1,2 (48.9) 1,2 (9.4) 1,4 (0.015) 1,4 (19) 1,2 (43) 2,4 (0.978)

2,4 (8.81) 2,4 (36.1) 2,4 (9.2) 2,4 (0.039) 2,4 (26) 2,4 (36) 1,2 (0.974)

2,3 (10.92) 1,3 (18.7) 1,3 (6.9) 2,3 (0.066) 2,3 (29) 1,3 (27) 3,4 (0.968)

1,3 (14.21) 3,4 (14.6) 3,4 (6.6) 1,3 (0.099) 1,3 (46) 2,3 (25) 2,3 (0.967)

3,4 (19.73) 2,3 (11.8) 2,3 (5.9) 3,4 (0.188) 3,4 (78) 3,4 (11) 1,3 (0.967)

Table 6.8: Ranking of all pairs for the Legal document according to permutation
metrics.

6.4.9 Ranking Results

The rankings for most metrics (some are excluded for space reasons) for the post-editors

of the Legal document can be found in table 6.8.

First thing to note for the L document is that all metrics agree as to which post-editors

are more similar. The pairs (1, 4), (1, 2) and (2, 4) are always on the top 3 rows of the

table. It is not clear, though, which one of these pairs is the most similar. However, one

could claim that it is possible to identify the most different pair of post-editors to be

pair (3, 4).

The results for the IT document (shown in table 6.9) are more ambiguous. The dif-

ferences of the results are much smaller, compared to the L document, making it more

difficult to distinguish between the pairs. The most probable similar pair could be (3, 4),

despite the fact that it ranks last in the reordering metric.
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HTER
n-grams

Norm.Av. Distr. Diff. #times #times Reordering
diff Overlap (Hellinger) Different Similar (Kendall)

3,4 (1.12) 3,4 (65.5) 2,4 (40.1) 3,4 (0.001) 3,4 (63) 3,4 (102) 1,2 (0.947)

1,3 (1.60) 1,4 (48.8) 3,4 (23.4) 1,3 (0.001) 1,3 (75) 1,4 (71) 1,3 (0.947)

1,4 (2.72) 1,3 (43.3) 1,3 (22.4) 1,4 (0.005) 1,4 (82) 1,3 (68) 2,3 (0.942)

1,2 (8.45) 2,4 (39.3) 2,3 (20.6) 1,2 (0.021) 2,4 (83) 2,4 (63) 2,4 (0.942)

2,3 (10.05) 2,3 (28.8) 1,4 (13.9) 2,3 (0.031) 2,3 (87) 1,2 (54) 1,4 (0.941)

2,4 (11.17) 1,2 (23.5) 1,2 (12.8) 2,4 (0.041) 1,2 (89) 2,3 (51) 3,4 (0.939)

Table 6.9: Ranking of all pairs for the IT document according to various metrics.

Finding the most different pair would be an even more difficult task. In the #times

Different metric, where we count the number of instances for which each pair has the

most different labels, all pairs get comparable results, around the 1
3 or 1

4 of all instances.

(Note: In comparison, for the L document, the most similar pair has the highest HTER

difference for around 1
8 of the instances, whereas the most different pair has the highest

HTER difference in the 1
2 of all instances.)

6.4.9.1 Ranking Results Across Domains

When changing domain, some of the metrics cannot be applied (reordering, instance-wise

HTER difference ranking, probably even overlap and n-grams2), since the post-editors

work on completely different sentences.

Thus we have to use measures of distributions’ similarity.

The results for the n-grams using all words (computed over 2-,3- and 4-grams, since there

are no 5-grams in common in most cases) represent in general a small fraction of the

vocabulary and are not really informative. In this case, it is probably more informative

to use the n-grams of non-content words and punctuation; this result is what is shown

in tables 6.10 and 6.11.

In addition, the average overlap, as expected, is in most cases less than one word and

does not provide any information at all.

6.4.10 Conclusion

Based on the previous results, we can make the following observations:

• Most metrics seem to roughly agree as to which post-editor pairs are more similar

or more different.

2The metrics of overlap and n-grams could indeed be computed, but the results in our case indicate
very small overlap of words or n-grams between sentences of the two datasets. For example, the average
overlap is around 1.2 words for Legal-IT sentences.
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HTER
n-grams

Avg. Distr. Diff. Distr. Diff.
diff Overlap (Hellinger) (Bhatta)

3,1 (3.93) 1,1 (58.0) 3,2 (0.90) 2,4 (0.006) 2,4 (0.006)

2,4 (4.27) 3,4 (51.5) 2,1 (0.87) 2,3 (0.011) 2,3 (0.011)

3,2 (4.52) 2,4 (46.2) 4,2 (0.86) 2,1 (0.018) 2,1 (0.018)

... ... ... ... ...

4,1 (15.80) 3,1 (24.4) 1,4 (0.49) 4,1 (0.105) 4,1 (0.110)

1,2 (18.73) 4,1 (24.1) 1,3 (0.49) 1,2 (0.126) 1,2 (0.134)

4,2 (24.25) 4,2 (21.8) 1,1 (0.47) 4,2 (0.211) 4,2 (0.236)

Table 6.10: Ranking of most similar and most different pairs for L-IT documents
according to various metrics.

HTER
n-grams

Avg. Distr. Diff. Distr. Diff.
diff Overlap (Hellinger) (Bhatta)

1,3 (3.93) 4,1 (91.8) 3,3 (0.91) 4,2 (0.006) 4,2 (0.006)

4,2 (4.27) 2,1 (86.1) 2,2 (0.88) 3,2 (0.011) 3,2 (0.011)

2,3 (4.52) 3,1 (66.2) 2,4 (0.88) 1,2 (0.018) 1,2 (0.018)

... ... ... ... ...

1,4 (15.80) 2,3 (22.8) 3,2 (0.49) 1,4 (0.105) 1,4 (0.110)

2,1 (18.73) 2,4 (22.0) 3,1 (0.49) 2,1 (0.126) 2,1 (0.134)

2,4 (24.25) 4,4 (19.1) 4,1 (0.50) 2,4 (0.211) 2,4 (0.236)

Table 6.11: Ranking of most similar and most different pairs for IT-L documents
according to various metrics.

metric Correlation with other metrics

HTER diff 0.699

n-grams 0.609

Avg. Overlap 0.585

Hellinger Distance 0.589

#times similar 0.284

#times different 0.632

reordering 0.389

Table 6.12: Correlation of post-editor similarity metrics with the other metrics

• Average HTER difference could be an adequate metric of post-editing behaviour

differences, since it is in line with more of the other suggested metrics.

In order to justify the second claim, we compute the correlation of the scores that the

metrics produce, for all possible pairs of metrics. Then for each metric, we average its

correlation with the rest of the metrics and the results are shown in table 6.12.

Of course, one would require more rich models, that could use more rich features, es-

pecially linguistic ones, to accurately define a post-editor’s behaviour. For example, a

tendency of a post-editor to nominalise, compared to the preference of another post-

editor to use more verbs, could only be captured by using, eg. a Part-of-Speech tagger.
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However, a metric like HTER, which incorporates different types of edits (insertion of

words, deletion, substitution, reordering) is adequate to determine pairs of translators

with similar or different behaviour.

6.5 Changing Post-Editor in the same Domain

This setting explores the performance of the online and batch algorithms in the QE task,

when the training and test sets are the result of the work of different post-editors on

the same document.

In this setting, the training and test sets come from the same domain and the features

are extracted using resources according to the respective domain.

According to the way they are created, the datasets allow us to evaluate the reactivity

of different models when training and test data from the same domain are post-edited

by different users, who show either similar (thus resulting in some degree of similarity in

the distribution of the labels) or different behaviour (thus resulting in a smaller degree

of similarity in the distribution of the labels).

6.5.1 Experimental Setup

For each document D (L or IT), the creation of the training and test sets is done as

follows. D, for which post editions by four translators are available, is divided in two

parts of equal size (80 instances for L and 140 for IT). This results in one training

and one test set for each post editor. Note that the instances are selected in such a

way, that all training sets (and, respectively, all test sets) consist of the same instances,

across post-editors. The labels, that result from each post-editor’s work are, of course,

different.

For each learning algorithm (ALG) and all the combinations of users (i,j ), it is now

possible to evaluate ALGij . Based on the predictions of ALGij we can calculate the

overall MAE of each model and the pointwise error (difference between the predictions

and the true HTER labels for each instance of the test set). Parameters i and j can

take the values [1, 2, 3, 4], according to the corresponding translators.

Since, as shown in §5.7 there is no significant difference between the two kernels (RBF

and Linear), for both OSVR and OGP we only use the RBF kernel in this set of exper-

iments.
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6.5.2 Experiment 3: Post-Editors within the same domain

The results for these experiments will be presented independently for each translation

domain (IT and Legal).

6.5.2.1 IT domain

In Table 6.13 we present the results for training and testing on all combinations of

post-editors, for the IT document. The post-editors in the rows correspond to training,

whereas the post-editors in the columns correspond to test. In this setting:

1. Both batch and online methods perform well, depending on the difference of the

post-editors. When the post-editors are similar, as in cases (1,1) or (1,3), the best

results are achieved by SV R (batch), however the difference with online methods

is not statistically significant. In the other hand, when the post-editors are more

different, as in cases (3,1) or (3,2), online methods yield significantly better results.

2. OSVR and OGP consistently outperform PA (with the exception of only one case),

however it is not clear which of the two performs better overall.

3. The empty configuration results are always worse than the adaptive and batch.

6.5.2.2 Legal domain

In Table 6.14 we present the results for training and testing on all the combinations of

post-editors, for the Legal document.

1. Again, both batch and online methods perform well, depending on the difference

of the post-editors. In almost all cases, the best results are achieved by online

methods.

2. OSVR and OGP consistently outperform PA.

3. The empty configuration results are always worse than the adaptive and batch.

6.5.3 Results Discussion

Following the results presented in §6.5.2 for the challenging scenario where training and

test data for each domain are obtained from two different post-editors, we can draw

certain conclusions, regarding the performance of online and batch methods.
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Batch (SVR)

1 2 3 4

1 16.16† 18.14 14.58 14.95

2 17.02 15.97† 16.08 16.73

3 16.62 20.00 14.63 14.98

4 16.65 20.09 14.64 14.98

Adaptive

OSVR

1 2 3 4

1 16.49 17.14 14.74 15.17

2 16.35 16.03 15.25 15.60

3 16.64 17.28 14.76 15.03

4 16.57 18.06 14.52 15.12

empty 16.76 16.56 15.58 15.56

PA

1 2 3 4

1 18.17 22.99 17.17 15.97

2 18.15 23.01 17.15 15.53

3 18.06 22.95 16.95 15.37

4 18.01 22.87 16.51 15.86

empty 19.23 23.46 18.40 16.61

OGP

1 2 3 4

1 16.16 16.81 14.80 14.79

2 16.68 16.17 15.72 15.76

3 15.87 17.17 14.52 14.49

4 16.13 17.25 14.65 14.69

empty 18.28 18.34 16.73 16.33

Table 6.13: MAE of batch, adaptive and empty models on IT document for all pairs
of post-editors. The best performing algorithm for each pair is denoted in bold.

As shown in tables 6.13 and 6.14, global MAE scores for the online algorithms indicate

their good adaptation capabilities in all cases.

From the previously shown results, it is evident that all online methods perform better

in the Legal domain, than in the IT domain. This also holds for the batch method.

In general, the performance of the methods depends heavily on the difference of the

datasets. Selecting the best performing adaptive methods for each translator pair (as

shown in tables 6.15 and 6.16), we calculate the correlation3 between the performance

(in terms of MAE) and the absolute difference of the average HTER label of the two

datasets used for training and test. The same correlation is computed for SVR, the batch

method. The results are shown in table 6.17.

It is obvious that batch methods are more affected from the difference of the datasets.

The online methods are less affected by this difference, indeed confirming their capability

3With the Pearson correlation coefficient(Asuero et al., 2006).
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Batch (SVR)

1 2 3 4

1 13.28 14.68† 16.56 13.93

2 13.48 14.85 15.77 14.55

3 17.02 16.57 10.58 21.09

4 13.63 16.56 23.08 12.01

Adaptive

OSVR

1 2 3 4

1 13.26 14.69 13.12 12.69

2 13.27 14.73 12.57 13.2

3 15.67 16.17 10.39 16.48

4 13.44 15.48 16.77 12.04

empty 13.82 15.81 11.74 12.83

PA

1 2 3 4

1 13.29 14.93 16.25 14.03

2 13.31 14.97 16.17 14.12

3 13.36 15.04 16.13 14.3

4 13.39 15.16 16.06 14.2

empty 16.24 18.24 18.6 16.64

OGP

1 2 3 4

1 12.96 14.89 13.85 12.78

2 13.07 14.65 13.11 13.44

3 14.71 15.43 10.44 16.7

4 13.1 15.25 15.95 11.88

empty 23.06 19.41 28.05 18.82

Table 6.14: MAE of batch, adaptive and empty models on the Legal document for all
pairs of post-editors. The best performing algorithm for each pair is denoted in bold.

1 2 3 4

1 16.16 16.81 14.74 14.79

2 16.35 16.03 15.24 15.53

3 15.87 17.17 14.52 14.49

4 16.13 17.25 14.52 14.69

Table 6.15: Performance in MAE for the best Adaptive method in the IT domain

1 2 3 4

1 12.96 14.69 13.12 12.69

2 13.07 14.65 12.57 13.2

3 13.36 15.04 10.39 14.3

4 13.1 15.16 15.95 11.88

Table 6.16: Performance in MAE for the best Adaptive method in the Legal domain
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Method Legal IT

batch 0.884 0.889

adaptive 0.422 0.729

Table 6.17: Correlation of the average HTER difference and the performance of batch
and online methods

to adapt to differences in the datasets. It is worth noting that, due to the Legal domain

having less training data, it is much easier for online methods to adapt to the test set,

thus resulting in quite low correlation, as compared to the IT domain.

A closer look at the behaviour of the online algorithms in the two domains leads to other

observations. As regards the L domain, online models almost always outperform SV R

(batch) significantly. For the IT domain, the batch performs (not significantly) better

in three cases (out of sixteen). In general, the performance of the batch algorithm is

competent only in the cases where the difference of the dataset is minimal. In the other

cases, the online algorithms perform significantly better.

The fact than online methods perform significantly better motivates this work and

represents an important finding, especially when seen from the application-oriented per-

spective, considering the high costs of acquiring large and representative QE training

data, which would enable batch methods to be competent.

The performance of the algorithms in the empty setting can be better investigated with

the use of plots of the cumulative MAE for the two domains in figure 6.2. It is evident

that the Legal test set poses additional difficulty especially for OGP in the cases of

translators 1 and 3. This can be explained by the fact that its BV vector is not filled

with informative instances. This obstacle is overcome in the adaptive setting, where the

training set has provided some informative instances.

Considering the performance of each individual algorithm, now, PA does not always

achieve a lower MAE than SV R, especially in the IT domain, showing a quite unstable

behaviour. OGP and OSV R, though, constantly perform better (or not significantly

worse) that SV R.

6.6 Changing User across Domains

This setting explores the performance of the online and batch algorithms in the QE

task, when the training and test sets are the result of the work of different post-editors,

not on the same document, like in §6.5, but on different documents of, in fact, different

domains.

In this setting, the training and test sets come from different domains and the features

used are extracted using the resources according to the domain that is used in training.



Chapter 6. English-Italian 77

Figure 6.2: Cumulative MAE for the empty setting in the Legal and IT domain.
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For example, if the training set comes from the IT domain, then for the features of both

the training and test set, there are IT resources used, even if the test set comes from

the Legal domain. Vice versa, if the training set is from the Legal document, then Legal

resources are used for both the training and test sets, even if the test set comes from

the IT document.

According to the way they are created, the datasets allow us to evaluate the reactivity

of different models when training and test data from different domains are post-edited

by different users, who show either similar behaviour (thus resulting in some degree

of similarity in the distribution of the labels) or different behaviour (thus resulting in

smaller degree of similarity in the distribution of the labels).

6.6.1 Experimental Setup

Following the steps of §6.5.1, for each document D (L or IT) and for each translator there

are two sets created, by dividing the document in two parts of equal size (80 instances

for L and 140 for IT). Note that, again, the instances are selected in such a way, so that

all training sets (and, respectively, all test sets) consist of the same instances, across

post-editors. The labels, though, that result from each post-editor’s work are, of course,

different.

In this setting we will use two of the post-editors in each domain. From the IT domain

we will use the post-editors 2 and 4 (henceforth High,IT and Low,IT ) which are the

post-editors with the most different behaviour in this domain. In an equivalent way, we

choose two translators from the Legal domain, post-editors 3 and 4 (henceforth High,L

and Low,L).

The 8 resulting combinations of post-editors from different domains are ranked according

to the average HTER difference of the datasets, as shown in table 6.18.

Experiment Training Set Test Set HTER Diff.

4.1 Low,L High,IT 24.5

4.2 High,IT Low,L 24

4.3 Low,IT Low,L 13.5

4.4 Low,L Low,IT 12.7

4.5 Low,IT High,L 8.3

4.6 High,L High,IT 6.8

4.7 High,L Low,IT 5

4.8 High,IT High,L 2.2

Table 6.18: Set of experiments for Experiment 4.

It is important to mention that, for the training set, always the first split of the equivalent

translator is used. In the same way, for the test set is always used the second split of the

equivalent translator. This setting will also allow us to compare these experiments to the
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situations where no domain change is happening (as in §6.5.2), enabling full comparison

and understanding of the results.

Another factor that could probably affect the behaviour of all methods is the fact that,

in this setting, the features of the test set are computed using resources from a different

domain and not from its respective domain. For example, the features for the test set

of experiment 5.1 are computed using Legal resources. In order to understand if this

factor can actually play a crucial role, we have computed, for each experiment, the cosine

difference of the features of the training set and the features of the test set. The results

show minimal cosine difference, ranging from 0.006 to 0.043. These results mean that

there is not an important difference between the features of the training and the test

set, despite the fact that the resources used were only designed for the training set.

Thus, the fact that we use different resources for the test set than the “appropriate”

ones, cannot affect significantly the performance of the learning algorithms, or create

the conditions for unstable behaviour.

The notation that is used in the next tables is ALGj,Di,C where C,D refer to the domain

of the training and test set. For this experiment, parameters i and j can take the values

Low and High, referring to the two translators with the more different behaviour (the

most conservative one, with the lowest average label - Low - and the most radical one,

with the highest average label - High - respectively)

Similar to previous experiments, global MAE scores aim to compare the adaptability

of each algorithm to heterogeneous test sets obtained from different users. We also

introduce pointwise error plots, which, instead, aim at a more fine-grained analysis of

the sensitivity of the online models to such differences.

Like in §5.4.1, the statistical significance of the results is calculated with approximate

randomization.

6.6.2 Experiment 4: Post-Editors from different domains

In this section, the results of the experiments regarding a change of both post-editor

and domain across training and test set, are presented. For the sake of brevity, only

the best results from each mode are reported, also indicating the algorithm that yields

these results. The detailed tables with the results of this experiments can be found in

the appendix A.

The pointwise error plots show an 10-point-average moving MAE for all the experiments,

for the batch and the best adaptive and empty systems. These are presented in figure

6.3‘.
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Figure 6.3: Sensitivity plots for Experiment 4.
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Experiment HTER Diff. MAE Batch MAE Adaptive MAE Empty

4.1 ALGHigh,ITLow,L 24.5 27.00
19.77 16.55

(OSVR) (OSVR)

4.2 ALGLow,LHigh,IT 24.0 25.37
19.96 12.46

(OGP) (OSVR)

4.3 ALGLow,LLow,IT 13.5 17.54
15.73 12.46

(OSVR) (OSVR)

4.4 ALGLow,ITLow,L 12.7 17.58
15.50 15.45

(OGP) (OSVR)

4.5 ALGHigh,LLow,IT 8.3 13.00
10.51 11.28

(OGP) (OSVR)

4.6 ALGHigh,ITHigh,L 6.8 16.89
16.38 16.55

(OSVR) (OSVR)

4.7 ALGLow,ITHigh,L 5.0 16.15
14.40 15.45

(OGP) (OSVR)

4.8 ALGHigh,LHigh,IT 2.2 10.84
10.64 11.28

(OSVR) (OSVR)

Table 6.19: Results of Experiment 4.

In order to make the results even more visible, we fit a linear trend into the performance

data4 for all algorithms. The results are presented in figure 6.4. From the trend plots,

we can draw some interesting conclusions:

• the performance of batch methods is in general stable, depending on the difference

of the training and test set.

• in all cases, adaptive methods perform much better than the batch methods. They

always show a downward trend and always achieve a better performance than

batch. This improvement is more visible in the cases where the difference of the

datasets is notable, resulting in very bad results for batch (experiments 4.1 through

4.4 - especially 4.1 and 4.2).

• empty methods perform quite well, especially in the cases were training might

actually worsen the performance over the test set; that is, the cases were the

difference of the datasets is too big.

In addition, we compute the correlation between the performance of the best algorithms

in each sub-experiment and the difference of the average HTER label of the datasets.

The results are presented in table 6.20 and show that both batch and adaptive are heavily

affected by the difference of the datasets, but still batch show worse results. As expected,

the empty models show no correlation to this difference.

4On the actual pointwise error, not on the moving average error.
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Figure 6.4: Trends of the sensitivity plots for Experiment 4.
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Mode Correlation

batch 0.945

adaptive 0.812

empty 0.190

Table 6.20: Correlation of performance and datasets difference for Experiment 4.

6.6.3 Results Discussion

The previous experiments allow us to draw some concrete conclusions.

First of all, when dealing with both changes of post-editor and changes of domain be-

tween training and testing, the adaptive models always have better performance than

the batch models.

The degree of this improvement depends on the difference of the distributions of the

HTER labels between the training and test sets. The higher this difference, the higher

the improvement that is to be expected from using adaptive models. To put it in other

words, the higher this difference, the worse the performance of the batch models.

In fact, when this difference is too big (having, for example, completely different dis-

tributions, like in experiment 4.1 or 4.2 in section §6.6.2), the best performance comes

when using an empty online model. In such cases, the training data work against the

adaptive model. Based on the results in table 6.19, one could identify an approximate

pivot point around 13 HTER points of datasets’ difference, beyond which empty models

perform better than adaptive ones.

However, using an empty model every time a new translation job begins is not a plausible

real scenario. To begin with, one wouldn’t know that the eventual distribution of the

test set would be different enough, in order to justify using an empty model. However,

using an adaptive model would always make sense, since the adaptive models yield very

good results in all the previous experiments and seem to respond quite fast to the new

test instances.

Another definite conclusion we can draw, regards the behaviour of the online algorithms.

For one thing, we can claim that OSVR and OGP show remarkable robustness and

stability, performing reasonably well in all the experiments. OSVR though seems to

perform slightly better (although, not significantly in all cases) also in the empty mode.

On the other hand, we can also support the claim that PA is quite unstable, capable for

both performing as good as the other algorithms, but also for performing significantly

worse, even when compared to batch methods (this is observed in experiments 4.3 and

4.6).





Chapter 7

Conclusion

7.1 Synopsis

This thesis attempted to introduce online methods for the task of Quality Estimation

of MT output and to verify whether an adaptive quality estimation system would be

beneficial for a CAT-tool.

Based on the previously presented experiments (§5,§6) we have shown that the perfor-

mance of the systems depends on the difference of the datasets that are used for training

and testing. In cases where no adaptation is needed, both batch and online methods

achieve good results.

However, as the difference of the datasets increases, due to factors like a change of the

post-editors or a change of the translation domain, adaptation is needed. In these cases,

the adaptive methods perform significantly better than the batch ones.

In addition, we showed that the system (§4) that we created can be not only beneficial

to a CAT-tool, but also easily integrated, as the resources in requires are already used

by the CAT-tool. Furthermore, its response time (either for providing a prediction or

updating the model) is quite small and would not affect negatively the productivity of

the translator.

Finally, the suggested configuration for such a QE server (eg. as a default) would be

the one using Online Gaussian Processes, because they are not only robust in terms

of performance, but are also quite fast, compared to Online SVR. Should an empty

mode be preferred, though, then OSVR prove to be more robust for building a model

from scratch, as shown by experiment 4 ($6.6.2) Although PA is the fastest of the

three methods that we examined, it would not be suggested because it shows unstable

performance.

85
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7.2 Further Work

Despite the substantial progress done so far in the field, there are aspects of research on

Quality Estimation that still need to be investigated.

The use of adaptive methods for the QE task, in order to deal with certain challenges

such as domain adaptation, has just been introduced.

The system that we developed for this thesis does not incorporate all the recent advances.

The current approaches on the task focused more on feature engineering (e.g. alignment

features (de Souza et al., 2013), combinatory categorial grammar features (Rubino et al.,

2013), pseudo-references (Albrecht and Hwa, 2007)), model learning with a variety of

classification and regression algorithms (e.g. SVR with partial least squares (Bicici,

2013), gaussian processes (Beck et al., 2013), M5P (Soricut et al., 2012)), and feature

selection as a way to overcome sparsity and overfitting issues (Soricut et al., 2012)).

In our experiments we only used the 17 baseline features and did not incorporate any

method for feature selection. Thus, one obvious step for further research is to investigate

whether the addition of more features, along with a feature selection mechanism, would

further boost the performance of the online algorithms. However, one should always

keep in mind the time performance of the system. Certain features are time-consuming

to extract, as are for example pseudo-references, which, in order to compute, require all

the sentences to be translated. This is, therefore, another aspect that needs to be taken

into account when one is working in an online fashion.

Such features could either be based on richer linguistic or statistical models, but they

could also be more focused on the post-editor, the potential user of the CAT-tool. Such

features could leverage a specific user’s feedback, be stored as part of the QE model,

and aid in tailoring the performance of the QE component to their individual quality

standards. This step towards “personalisation” of the QE component would hopefully

increase the post-editors productivity.

Moreover, as regards testing the performance of the QE component, developing addi-

tional corpora of [src,trg,pe] tuples for other language pairs and other translation do-

mains is a crucial step for further exploration on this field. This could be achieved with

the help of professional translation companies, either private or institutional. Increasing

the number of available resources could only cause more interest on the field. Should

such resources become available, we would like to test the performance of the adaptive

methods also on these datasets.

Finally, another direction that could be investigated and that would be of interest,

especially for the professional users of a CAT-tool, is the effort to determine the exact

boundaries for which using either of a batch, adaptive or even empty model would be

beneficial. Ideally, we would like to investigate the possibility of defining a metric that
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could suggest, before the start of a translation job, which of the learning modes would

produce the best results, according to the existing resources, the text to be translated,

the domain, etc.





Appendix A

Detailed Results for Experiment 4

This section provides the results on the performance of all algorithms, in terms of MAE,

in experiment 4. As in section §6.6.2, the experiments in tables A.1 and A.2 are ranked

in descending order according to the difference of the average HTER label of the training

and test datasets. The best performing algorithm is marked with bold.

Adaptive mode

Train Test ∆ HTER SVR OSVR OGP PA

Legal Low IT High 24.5 27 19.77 19.92 21.73

IT High Legal Low 24 25.37 20.58 19.96 24.25

IT Low Legal Low 13.5 17.54 15.72 15.78 24.3

Legal Low IT Low 12.7 17.58 15.70 15.50 16.8

IT Low Legal High 8.3 13 12.16 10.51 15.98

Legal High IT High 6.8 16.89 16.38 16.58 21.6

Legal High IT Low 5 16.15 14.68 14.40 16.67

IT High Legal High 2.2 10.84 10.64 11.19 16.17

Table A.1: Detailed results for Experiment 4 in adaptive mode.

Empty mode

Train Test ∆ HTER OSVR OGP PA

Legal Low IT High 24.5 16.55 18.34 23.46

IT High Legal Low 24 12.46 18.82 16.65

IT Low Legal Low 13.5 12.46 18.82 16.65

Legal Low IT Low 12.7 15.45 16.33 16.60

IT Low Legal High 8.3 11.28 28.05 18.60

Legal High IT High 6.8 16.55 18.34 23.46

Legal High IT Low 5 15.45 16.33 16.60

IT High Legal High 2.2 11.28 28.05 18.60

Table A.2: Detailed results for Experiment 4 in empty mode.
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