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ABSTRACT

Development of Methods for Estimating Public Transport Shares under

Complementary Operating Conditions

In this thesis demand aspects of a multimodal public transportation system are investigated
using econometric methods for analyzing non-stationary data. The case of the Athens public
transport system, where different modes may operate in competition or cooperation, is used as

a test bed.

Demand analysis is a necessary condition for efficient decision making in a public transport
system; network expansion, pricing policies, subsidy and operational decisions are based on
demand analysis. Demand is expressed as a function of operational and macroeconomic
factors (fare, GDP, fuel price, unemployment, car and motorcycle sales) and the impact of
each factor on demand is expressed through the elasticity concept. Two different but
complementary aspects of public transport demand are analyzed. Ridership of each mode and
share of each mode in total ridership. The above two issues provide useful information
regarding effective policy measures. Demand analysis for each mode separately allows for
identifying competition and substitution effects and produces more accurate demand
elasticities. The analysis of the share of each transport mode in a multimodal urban public
transport system is a key factor that explains the relative position of each mode in the system.
It may also be a useful index for making investment decisions concerning the public transport

infrastructure and for allocating subsidies.

The econometric analysis adopted is based on cointegration and error correction techniques.
This allows for treating non-stationary data, for determining short and long run elasticities
and at the same time estimating the speed of adjustment towards long run equilibrium.
Briefly, the method consists of the following modules: First, a unit root test is applied to test
non-stationarity. Second, a cointegration test is performed to evaluate long run caused
relation. Third, an error correction method is used to evaluate short run responses. Finally, in

the cases that exists autocorrelation and/or autoregressive conditional heteroskedasticity on



the residuals, new error correction models are developed to account for these effects. A model
with correction for autocorrelation is used to correct serial correlation on the residuals and an

ARCH model is used to capture changes in variability of the time series.

According to the results, fare GDP and gasoline price are the main factors that affect PT
ridership both in the short and in the long run. Of the different modes, metro and urban rail
show the highest elasticities with respect to the factors examined, while bus appears to be
quite inelastic. The fact that demand elasticities with respect to the explaining factors are
significantly different for the different modes demonstrates the merits of demand analysis for

each mode separately.

Results also indicate that fare GDP and total ridership are the main determinants of public
transport mode shares. In the ridership model GDP is the factor that shows the highest
elasticities, while in the shares model fare is the factor that shows the highest elasticity. This
is because the substitution effects between different PT modes resulting from an increase in
fares are more clearly recorded in the share models. Finally, as expected, short run elasticities
appear to be lower than the long run ones both in the models explaining ridership and in the
models explaining the share of each mode, because short run elasticities are governed by

resistance to change.



IHEPIAHYH

Avartoén Mefoowv Extipnong Katavopig g Zitong ota Méoa Malikig
Mera@opag og Zovokeg Zopminpopotikis Agttovpyiog

YKxomog g olatpiPng etvar va depevvnBoldv or mapdyovieg mov emnpedlovv 1060 TIg
Bpayvypodvieg 660 Ko TG pokpoypdvieg petaforég otn {Ntnomn &vog CLGTAUOTOS OCTIKMV
CLUYKOW®VI®V, TOo omoilo amoteleitor amd mMOAAG cvvepyalopeva HEGO TOL AELTOVPYOVV

GUUTAN PO UOTIKA.

H avdivon tg (Rmmong oe éva GUGTNUO OCTIKOV GLYKOWOVIOV TOPEYEL YPNOUUN
TANPOPOPNOT Yo TNV OMOTEAEGUATIKY] AQYTN OTOPAGEDY TOL OPOPOLY GTNV AELTOLPYIC KOt
oV avamntuén vrodoumv Tov cvothuatoc. H (non exepdletor @g cuvaptnon AEITovpyIKGY
KOl LOKPOOIKOVOLIK®V Tapaydviav (tiun swottnpiov, AELL tun Bevlivng, delktng avepyiag,
noioelg [L.X.) ko o Pabudg tg petaPforng g CRmmong A6y petafoAng kdmolwv
TopayOVTOV eKTIHATOL PHEc® TOov peyEBoug g ehaotikotnTog g {ftnong. H pekétm tng
{mong v to KaBe péco palikng HeTaPOpPEs TOL GLGTNUOTOS KGTIKMY GLUYKOWVMVIOV TNG
ToANg Tov ABnvov mpaypoatomoleitor pe dVvo mpoceyyicels. v mpmtn, e&gtaloviat ot
TOPAYOVTEG OV €PUNVEVOLY TNV unvioio emifotikn kivinon tov kabe pécov. Xtn devtepnm,
avaAdETAL TO T060GTO (UEPIdLO ayOpag) Tng cLVOAKNG CNTNong mov KoAvTTEL To kG péGo
poalikng petagopds. O mpoodlopopds Tov pepwdiov ayopds kébe pécov emTpémer ™
AemTOUEPEDTEPT] AVAAVOT GE OTL APOPA OTOV EIKO pOLo KAOE HEGOV GE Eva OAOKANPOUEVO

GUGTI L0 AOTIKOV GUYKOIVOVIDV.

H {imon «éBe péoov ywpiotd, Kabodg kot to pepidio ayopdg kdbe pécov oto GUVOAO TNg
emPatikng  kivnong  avoivovtar  epopuoloviog  TIC  OKOVOUETPIKEG  ueBoddovg  Tng
YvvoroxkAnpmong kot Avvoutkod Yrodelypatog Atopbmong Aabdv, ot onoieg emttpémovy v
avéivon un otdowmy ypovoroyikav oelpd@v. H upebodoroyia avt) omaiidocel amd to
TPOPANUATO 7TOV T OTAN TOAWVOPOUNGCT] TOPAYEL OTNV TEPITTIOON TOV U OTACIU®OV
YPOVOLOYIKDV GEPDV (PUIVOUEVIKEG GUOYETIOEIS, WEPOANTTIKEG EKTIUNOELG) Kol EMTAEOV
TapEYEL TIG PPayvyPOVIES KoL LOKPOYPOVIES EANCTIKOTNTES, KAOMDC Kol TNV ToyVTNTO CUYKAIONG

GTNV LOKPOYPOVIO KATAGTACT| IGOPPOTING.



Ta otddia g pebodoroyiag amoteAovv 0 EAEYYOG GTACILOTNTOS TV UETARANTMV, 0 EAEYYOG
OmapEng ouvolokApwong HETOED TOV U OTAC®V  PETAPANTOV, 1 EKTIUNGN TOL
Yrodeiypatog Atopbmong Aabodv Kot 1 EQAPUOYN CTATIOTIKOV EAEYY®V Y10, Vo SoTIoT®mOEL oV
10 Y7roderypa Adopbwong Aabmv mov extymbnke gival katdAAnio. Télog, oTIC TEPIMTOGELG
mov mapotnpeitor Avtoovoyétion (Autocorrelation) M/kar AvtomaAivdopoun vmd cvvOnkm
Etepookedaotikotnto (Autoregressive Conditional Heteroskedasticity-ARCH) ota katdAowna,
exTip@vTOL kovovplo Ymodeiypoto Adpbwong Aabdv mpokeévou vo aVTIETOTIGTOVY 01

GYETIKEC EMTTMOELS.

SOopemva pe To OmoTEAéouata, Ol Pacikol mapdyovieg mov EmNPeAlOVV  GTOTIGTIKMG
onuoavtike Ty empatiky Kivnon kdbe pécov TOGO OV HOKPOXPOVIL OGO Kol OGN
Bpayvypovia mepiodo eivar To AEIL 1 tun tov ewoumpiov kot 1 T g Peviiving. Amo ta
Méca Moalikng Metapopds mov eEETACTNKAV TO HETPO KOl O MAEKTPIKOG GLONPOOPOLOG
eppavifouv TIc peyoAVTEPEG EAUCTIKOTNTES, €V TO Asw@opeio mapovoidletal Wdwitepa
averaotikd. To yeyovog OTL ot gAaoTIKOTNTEG NG {ATNONG ®OG TPOS TOVG EPHUNVELTIKOVG
TOPAYOVTEG €IVl OMUOVTIKG OpOpPETIKEG Yo To. Opopa M.M.M. avadeikviel

YPNOWOTNTO TNE avdAveng g {RTnong Yo kabe HEGo YwPLoTA.

To amoteAéopoto delyvouv emiong 0tTL M Ty Tov swottmpiov, to AEIT kot 1 Guvolikn
emPatikny xivinon omotelodv TOoVG KLPLOTEPOLS Tapdyovieg mov kobopilovv 10 pepidio
ayopdg kéfe péoov. Ot eLAOTIKOTNTEG OC TPOG TNV TN TOL gottnpiov Tapovsdlovtot
Wwitepa avénpéveg oTo LOVTEAN TOV LEPLOIOV OYOPAS G GUYKPLOT LE TO. LOVTEAQ OVAALGNG
g emPoTikng kivnong, Kabmg ameucovifovy pe peyaddtepn voucincia Tig VTOKATACTAGELS
OV TTPOKVTTTOVY OO Ui, LeTaoAn Tng Tymg Tov ewsttnpiov. Téhog, dnwg avapevotay, TG0
OTO LOVTEAL TNG EMPOTIKNG Kivong 0G0 KOl 6TO LOVTEAD TOL HEPLOIOL ayopd Kabe pHéGov ot
Bpayvypovieg ELOCTIKOTNTEG EIVOL LWKPOTEPEC GO TIG OVTIGTOLYEC UOKPOYPOVIES, ETEDN Ol

oLVETELEG KAOE LeTABOANG amaiTohV poOvo Yid VO pTAGOVV GTNV TANPT ®PILOVOT| TOVG.



EKTETAMENH INEPIAHYH

1. Ewsayomyi] - Avtikeipevo g Avarpifig

‘Eva. ohomnuo aoTIKOV GUYKOWOVIOV amotedeital ond dwopopetikd Méoa Malikng
Metogpopds (M.M.M.), ta omoie OOvaviol Vo  AEITOLPYOVLV  GUUTANPOUATIKA 1)
avtoyovioTikd. H couminpopatikdtmro tTov HEcOV HETOPOPAS M TPOG TV TOPEXOUEVN
efuommpétnon  omotedel avaykaio yOPOKTNPIOTIKO €VOG  OpBOAOYIKOD  LETAPOPLKOD
GULGTHLOTOC KOl ETLTVYXAVETOL LE TN OLPOPOTOINCT| TOV POADY TV doPOp®V pécmy. O
0®WGTOC GYEANUOUOS, 1 AVATTLEN TOV VTOSOUMV KOl 1] KAADYT] TOV AEITOLPYIKOD KOGTOVG
aroteloVV emiong amapaitnteg Tpoimobicelg yia Tnv €bpvOun Agttovpyia evOC GLGTNHATOG

OOTIKOV GLYKOWOVIAV Kol GLVRO®G amaitodv VYNAG TOGE Y1 LOTOdOTNOTG.

H pelém g {qmmong eivon Pacikn npotimdbeon yia va Anebodv opHoroyikéc amopdoelc
OYETIKA UE TNV OVATTLEN Kol TN AEITOLPYID TOV OCTIKOV GLYKOIWVOVIDV LE GKOTO Vo
e€okovopovVvTaL TOPOL KoL VoL emTuyydvetal 1 dplotn eSumnpétnon. Tovtdypova 1 pekét
TOV HEPLOIO ayopds TOL KAOE LEGOL TTOV GUUUETEYEL GTO GLYKOIVMVIOKO GCOGTN O EXITPETEL
NV 0pHOAOYIKN KATAVOUT TOV GUVOAMKOD TOGOV €MOTNONG O0TO dLdpopa. cuvepyalopeva
péco. Me Baon to péyebog kat ™ popen g {NTNoNG TPOYUATOTOEITOL O GYESAGIOC EVOG
GUOTHUOTOC GOTIKOV GLYKOWOVIOV, 1 enéktacn 1 avapdduion evoc vradpyovtog Kot 1
oAdayn oto AetovpyKd yopoktnplotikd tov. [Tio cvykekpéva, n avéivon g {Rtnong oe
éva.  oOOTNUO  OOTIKOV GCLYKOWOVIDV TOPEXEL  YPACUN  TANPOEOpPMNON Yo TNV
OTOTEAECUATIKN AYT OTOQAGENDY TOV APOPOVY GTOV KaBOoPIoUd NG TIUNG TV E1G1TNPILOV,
TOV VYOVE TV EMOOTHOE®V, KAOMG EMIONG, KOl GE OMOPAGELS TOV APOPOLY 6T PEATIO

Aettovpyia, ETEKTOCT Kot ovafaOUon Tov GLGTHUATOC.
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‘Evo 6000 0GTIKOV GUYKOVOVIOV JETETOL 0O TOADTAOKOVG KOVOVEG AELTOVPYIOG Kol 1)
{non tov emnpedleTol OGO OMO ECMTEPIKOVG MG TPOG TO GVGTNUM TAPAYOVTES, OTMG Ol
TipHég tov  ewounpiov kol n mowtto g efummpémong, 6co Kot amd  GAAOLGS
LLOKPOOLKOVOULKOVG KOl  ONUOYPAPIKoLg Tapdyovies, Ommwg &eivor 1o  €60dnua  tov
mAnbvopov mov efumnpeteitar, M T ™g Pevliving, o aplBpdg TV KLKAOPOPOHVI®V
oynuaTev, n mokvotnte tov TANBLoUOD KOl 1 KLKAOQOPLOKY KOVOTNTO TOV O0JKOV
diktoov. O Pabuodg g petafoing g {nong Adyw petafoAng KAmoliov mapoyovimy
pmopel va exktunBel péom tov peyéBoug g eractikdtTag TG CRNong. Xtov topéa TV
IMUOGL®V GLYKOWOVIDY Ol LAKPOYPOVIEG EAACTIKOTNTES CLUVOLOVTAL KUPIMG UE EMEVOVTIKEG
OTOQUCELS, €V Ol PpoyvypOVIEG EAACTIKOTNTEG GUVOEOVTOL KUPI®MG WHE AETOLPYIKEG

OTOPUCELS.

YKxomog G oatpPrg eivor va depevvnBoldv ot mapdyovteg mov emNPeAlovv TOCO TIg
Bpayvypovieg 660 Kol TIG LOKPOYXPOVIEC UETAPOAEC ot (NTNON €VOG GLUGTNOTOG OOTIKMV
GLYKOWV®VIDY TO OTOl0 amoTELEITOL 0O TOAAL cuvepPYalOUEVE HECH UETAPOPAG, TO, OOl

AELTOVPYOVV GUUTANPOUOTIKA.

H perém g {mong yw 10 kdBe péco pallkng HETOQOPAS TOV GUOTHUATOS OOTIKMV
GLYKOWVOVIOV NG TOANG Tov AOnNvav mpoayuatomoteitarl pe 600 Tpoceyyicels. v TpdT™
npocéyylon e€etdlovtal oL TUPAYOVTIEG TOV EPUNVEVOVY TNV unvicio emPatikn kivinorn Tov
Kkd0e pécov. AVt 1 TPOGEYYIOT| EMTPEMEL TN AEMTOUEPESTEPT] AVAAVGT] TOV TAPAYOVTOV TOL
emnpedlovv Vv emPaTIKn Kivnon Tov KAbE PEGOL TOV GLGTHLOTOC AGTIKAOV GLYKOWVOVIDV
1660 o1 pokpoypdvie 6co Kol 6T Ppoyvypovie mEPiodo Kol TOV TPOGIIOPIoUO TMV
aVTIOTOLY®V EAAGTIKOTATOV. TN 0EVTEPT TPOGEYYION AVOAVETOL TO TOGOGTO (UEPidO) TG
ouvolikng {ftnong mov Kahvmtel 10 kébe péco palikng petaeopdc. O TPocdlopiouodg Tov
pepdiov ayopdg kdbe péGOv ©TO0 oLVOAO TG emMPATIKNAG Kiviong emTPEMEL TN
AemTOUEPEDTEPT] OVAALGT GE OTL APOPE GTOV E101KO POLO KGOE HECOV GE v OAOKANP®UEVO
GUGTNUO AOTIKOV GUYKOIVOVIOV.
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Toco 1 {fton kdébe pécov ywpiotd, 660 Kat 1o LePido ayopds Kabe PEGOV GTO GUVOAO TNG
emPatikng kivnong avaibovior epopproloviog OIKOVOUETPIKEG UEBOSOVE OV EMITPETOLY
TNV avOALGT 1] GTACLUMOV XPOVOAOYIKADV GEPAV, KOl 01 0Toieg EXOVV EPOPULOCTEL KUPI®G
oT0 TAQICIOL TNG OKOVOWIKNG Oewpiag, oAAG péEyPL CNUEPE €YOVV TUYEL TEPLOPIGUEVNG

YPNONG GTOV TOUEN TV LETAPOPADV.

O oK0moG NG SIOUKTOPIKNG SATPIPNG, MO OVOAVTIKA, sivar:

1. O mpocdopiopdg TV Tapaydviov mov emnpedlovv tn {Ntnon, yw kdbe péco
LaltkN g LETOPOPAS EeXPLoTd, O £V, GUGTNUN OOTIKOV GUYKOIVOVIDV.

2. H avéivon tov upepidiov ayopdc tov kGbe pécov G€ €vo GOOTNUO, OCTIKMOV
CUYKOWV®VIOV TOV omoTeAeitonl and moAAE cuvvepyoaldpeva HEGO UETAPOPAS T Omoio
AELTOVPYOVV GUUTATPOUOTIKA.

3. H avantoén wog peBodoroyiog yio v avdAvon tng emPatikig Kivnong kot Tov
uepdion ayopdg tov kdBe upécov AauPdvovtag vadyn TN UN  GTAGOTNTO TOV
YPOVOLOYIKADV GEPAOV TOL TEPLYPAPOLY TN CRTNom.

4. H extipnon 1600 10V Bpoyvypdviov 660 Kol T®V HAKPOYPOVIOV EANCTIKOTHTMV,
OALG KO TNG TOYOTNTOG TPOCUPUOYNC OTNV UOKPOYPOVIO, KATAGTACT 1G0PPOTiaG, Yo TNV
emPartikn kivnomn tov kKdbe HEGoL Kot Yo To HePido ayopdg tov Kabe pHécov.

5. H epopupoyn g upebodoroyiog otnv mEPIRTOON TOV OGTIKOD GLGTHLOTOC
CLUYKOWOVIOV T1 TOANG Tov AONVoOV YpNoYOTOIOVTOG UNnviaio. oTowEl YPOVOAOYIKAOV

oelpv Yo v wepiodo 2002-2010.
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H owoktopikny dwatpifny oamotereiton amd T1c €&ng evotnteg (kKepdioua): €loaywyn,
Biproypapikn avackomnor, pebodoroyia, avaivorn g emPartikng kivnong tov Kabe
Méoov Malwkng Metogopdc, avaivon tov pepdiov ayopds kabBe Mécov Malikng

Metapopis Kot GUUTEPAGHLOTAL.

2. Biploypa@ikn Avackonnon

210 0gVTEPO KePAAo TNG OlatpPng mpaypatomomdnke PPAoypaeiky] ovackOmon g
VITAPYOVGOG EPEVVOG OTO OVTIKEINEVO TNG avaAvong tng {fTnong o€ éva GUCTNUN ACTIKOV
GLYKOWV®VI®VY. ZTOYOL TNG OVOCKOTNGNG NTOV OPEVOS 1] KATAYPOPT TNG VPICTAUEVNS YVAOOTSG
OTO OVTIKEINEVO NG épevvag Kot apeTEPOL M avalfTnon Kot eXAoyn TV UeBoSOAOYIK®V
gpyoreiv mov Ba umopodoav va YpNGILoToN0oVY 6TV EKTOVNGT TG EPEVVOC. ATtO TAEVPAC
avdAivong g {Nnomng, 1o evOlpEPOV EGTIACTNKE TOGO 0 UEAETEG TOL avalbovy T CRTnon
v k6Oe péco Eeymplotd, 0G0 KOl G€ WEAETEC TOL AVOADOLY TO UEPIdI0 ayopdg Tov Kibe
pésov. Amd mievpdg pebodoroyiag, To evolapépov emkevipmOnke otig puekétes e {iTnong
v Anudcleg ZVYKOW®VIEG, 01 OTTOIEG AQUPBAVOLY VTTOYN TN UM GTAGUOTNTO YPOVOAOYIKAOV

GEPAV.

H eridpaomn dapdpov mapayoviov ot (Ron vy ta Méoca Malikng Metoagpopdc €xet
epevvn el amd mohhég peréteg debvarg. Or mapdyovieg mov emnpedlovv tn {ftnon o Tt
M.M.M. umopodv vo ympliotobV G€ £0MTEPIKOVE Kol eEMTEPIKOVG MG TPOG TO GVGTIN O
napdyovies. Ot KupldTEPOL EGOTEPIKOL MG TPOG TO GUGTNUO TAPAYOVTEG Elvar 1 TUN TOL
gloumpiov kot to eninedo e&umnpétnone. Ot kupldtepor e€mtepkol MG mPOG TO0 GVOTNHA
napdyovteg, mov Exovv Ppebel ot Piproypaeio va exnpedlovv T {ftnon yio MMM, givar
10 €1000Mua, T0 Akabdpioto Eyydpio IIpoiov (AEID), o deixtng wdoxtnoiog IX, n tiun g
Bevlivng, ot xopikég ocvvinkeg, o deiktng avepyiog, o apludg HETAVOCTOV KOl TO KOGTOG

Y10 TOPKAPIGHLOL.
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O1 ehooTiKOTNTEG OV VTTOAOYILOVTAL MG TPOG KABEVA 0md TOVG EPUNVEVTIKOVE TAPAYOVTEG
oTlg Oldpopeg ueAéteg moapovotalovv  peydAn Swaxdpoven. H o dwukduavorn  mwov

napovoraleton opeiletar (Graham et al., 2009):

1. Zta Aedopéva mov ypnoipomorovvion (m.y. eEatopkevpéva 1 Oyl Ogdopéva
YPOVOLOYIKDV GEPAOV 1) OL0GTPOUOTIKE,)

2. X710 YpoviKO TAOIG1O TOV aVOADETHL (ETNO, UNVIOid, NUEPTOLO. dEdOUEVA)

3. Znv owkovopeTpikn péBodo mov epapproletan

4. X ototikn 1| SUVOULKT SOUN TOL HOVTEAOV

5. Xtov Tpocdlopicud TG cuvaptnong g {nnong

6. Xtov mpocdlopiopd e eEapTNUEVNG LETOPANTNC

7. Xtov apBpd tov Metagopik@v Mécwv mov cupnepilapfavovtal oty £pguva

[opdro mov €yovv mpaypotonomBel moArég pekéteg debBvmg mov avaivovv tn {ftnon yo
MMM, eivar moAd TEPLOPIGUEVOS O APIOUOC TOV UEAET®Y OV AGUPAvVOLY LIOYN TN Un
GTUGILOTNTO TV POVOAOYIKMV GEPDV TOV TEPLYPAPOLV TN {NTNOT, XPOLUOTOIDVTS TIG
TEYVIKEG TNG LVVOAOKANp®oNG kal Tov Avvapkod Yrodeiypatog Atopbmong Aabodv mov
avortoymkov ord tovg Engle and Granger (1987). H pebBodoroyion avth mapéyel mo
0&10mIoTO ATOTEAEGIOTO OTIG TEPUTTAOCELS TOV 1) TOPAO0YN TNG CTAGUUOTNTOC TOV CEPOV
oV ypapuukny molvdpounon mapafidleror (Kulendran and Stephen, 2001). O Romilly
(2001) kou ov Dargay xat Hanly (2002) ypnoipomoincoy thv mapordve pebodoroyio yio va
voAoyifovv pokpoypoviee Kat Ppoyvypovieg eAacTikoTnTEG TG {fTNoNS TOoL Ac@Popeiov
ot Meydin Bpetavia. Apydtepa ot Crotte k.a. (2008) avéivcav ) {ftnon tov petpd oto
Me&icd YpNOLOTOIDVTOG TNG TEYVIKESG TNG ZVVOAOKANPMOTG Kol AAUPAVOVTOC VITOWYT TN Un

OTUGIUOTNTO TV YPOVOLOYIK®OV GEPMV TG EXPATIKNG Kivong.
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3. Me0Oodoroyia

¥ 1pito KeQOLO0 NG SoTpipng peketOnke evdeleydc n Bewpia avaivong un oTdcIumY
YPOVOAOYIKDV GEWPAOV WE GKOTO TNV OvAmTLuEn kol gpoappoyn tng pebodoroyiog yio v

extipmon g Katavoung g {ntmong ota Méoca Malikng Metagpopdc.

Xmv mapovoa ddaktopiky dwrpiPr] ypnowwomomdnke pa pebodoroyio Paciouévn ot
Bewpio g ZvvorokAnpmong mov avartdydnke and tovg Engle kol Granger (1987) wot n
omoia Pmopel va EQUPHROCTEL OTIC TEPIMTAGELS TOL TOGO 1| {TNOoT GGO KOl Ol EPUNVEVTIKES
UETAPANTEG TTEPLYPAPOVTOL OO UN GTAGIUES XPOVOrOYIKEG oelpéc. [ v avamtuén kot
eQapLoYN NG ueBOSOLOYIOG GTOV TOUEN TOV LETOPOPDY XPNCLLOTOONKOY Unviaio cTotyeia
YPOVOAOYIKAV GEPOV OO TO GUGTNUO OCTIKAOV GUYKOWOVIGOV TG ABNvag. Zuykekpiuéva,
Yoo v ektiunon g Koatavoung g {mong ota Méoa Moalwkng Metagopdc
YPNOWOTOMONKAY Ol TEXVIKEG TNG ZUVOAOKANP®ONG Kot TOL Avvopikod Ymodelyportog

AwdpBowong Aabov (Cointegration and Error Correction Model) ot omoieg emtpénovv:

I. Tnv avdAivon pn oTdou®mv YPOVOLOYIK®Y GEPDOV, OMOV Ol KAOGIKEC OIKOVOUETPLKEG
pébodolr ™G TmoAwOpoOUNoNG  mapovotdlovy  un  a&ldmoTo  onmoTeAéopaTe  KOOmG
eppavifovrol “@avouevikés” ovoyeticelg (spurious correlations).

I1. Tov Tpocd10pIoHd TOGO TV HOKPOYPOVIOV OGO KAl TV Bpayuypdviedv ELUCTIKOTATOV TG
{Tnong g mpog KaBEva amd TOVG EPUNVEVTIKOVG TOPAYOVTES.

1. Tnv extipnomn g Toy\TNTAG TPOGUPUOYNG OTNV LAKPOYPOVIN KATAGTAGT 100PPOTIOG.

Hopoakdte, avoldoviar ot €vvoleg ¢ oTaoudtTTag, Tov Pabuod oAokAnpmong, g
GUVOLOKANPOONG Kol TEPLYPAQeTOL 1 Lebodoroyio TG GUVOAOKANP®GNG Kol TOL AVVOULKOD

Ynodeiypatog Awwpbwong Aabov mov avamtoybnke amd tovg Engle and Granger.
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2TOCIUOTNTA

Mo ypovoroyikn oelpd yopaktnpiletal un otdoiun (non-stationary) €6v ot TOPAUETPOL TNG
(néoog 6pog, SLaKHUOVOT] Kol VTOGVVIIIKDLOVGT TOV TGV TNG) dgv givar otabepoi, oAAd
petafdAirovral pe to ypovo. ' va givar po oglpd otdowun (stationary) mpémet va woyvovv

TAVTOYPOVA KOl Ol TPEIS MopukaTt® mpovmobécelc. 'Eotm ko pio va pnv woydel n cepd

yopaktnpiletal un otdoiun.

1. 2108epog Mécog 6pog yo kb t
E(XX)=pVteT @
2. Ytabepn Ataxvpoven yio kade t
Var(X)=E[X+-E(X)]?=c® VtET (2)
3. H avtocvvdwokouaven eéaptdrar uévo omd tnv yxpovikn votépnon peta&d 600
TOPOTPNCEDV

Cov (Xt’ X”S) = Cov (Xt+ky Xt+k+s)=’YS<—>

SE[(Xew) (Xiss1)]= E[(X o) Xers-)]=ys VEET 3)

BaOpég ohoxiipmong

Me v évvola g oTacipotnTog oxetifeTor o fabpog olokhpwong wag cepds. Mia celpd
Aéyetan 011 glvan odokAnpouévn mpatg taéng (integrated of order one) kot cupuBoiileton e
I(1) oav petatpémeton oe otdon AopPfdavovtag mpdTeG Olapopés. Mia oepd  glivon

orokAnpouévn d tééemg I(d) av petatpénetar og otdoiun maipvovtag dropopés d tdEeme.

"Eleyyol povaodraiog piog

Mo tov éleyyo otacwotTog TG OEPAS 0AAG Kou Tov mpoodopiloud tov Poadpon
OAOKATpOGNG TG epapurolovtar ot éleyyol povadwiog piCoag (unit root tests). O éleyyot
povadiaiog pilag spapuootnkay mpmtn aeopd amd tovg Dickey-Fuller (1979). Geswphvtag

pia xpovoroyikn oelpd Yt epoppdletor o mapakdtm EAeyyOC.
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AY; = ag + 0Yi_q1 + u; 4)
u; ~ iid (0, 6%
omov
Yt elvor n ypovoroykn cepd
u; etvon To KoTdAoma

A gtvat 0 TEAEGTNG TOV TPATOV dOPOPADV

Ho: 6=0 & nY,; givou pun otdoun 1(1)

Hi: <0 & 1 Y; otdoun givar 1(0)

Amdppyn g undevikng vedbeong Hy dnidvel 6tL n oe1pd gival GTAGIUN, EVD OVTIGTOTYO

arodoyn ¢ Ho OnAdver v vmopén povadaiog pilag (Un otdoiun xpovoloyikn oelpd).

YuvohoKMpoon

H ypnon g amking moAvdpounong ywo Ty oviAvon Un oTACIU®OV YPOVOAOYIKMV GEPDV
ovyvé odnyel 610 QavOUEVO TV QooueviK®v ocvoyeticewv. Ot Granger and Newbold
(1974) ypnowomnoinoav tov Opo @awvopevikny ovoyétion (spurious correlation) yw vo
EKQPACOVY TNV TEPITTMOOT TNEG TOALVIPOUNCONG UETOED UM OTAGIU®V UETARANTOV 7OV divel
IKAVOTOMTIKG. amoTeléopata omd Thevpds otatioTikdv kprmpiov (R?, otatiotikd kprripio t)
oALG dev ekepdlel oty ovcio Kopio OTIOAOYIKY ox€on HeTald Twv petafintdv. Ztnv
TEPITTOOT TOL VIAPYEL OUTIOAOYIKT o)éon UETOED TOV YN GTACIUOV UETARANTOV TOTE AEUE
ot o1 petafAntéc eivor cuvoroxinpopévec. H évvola tng ocuvolorkinpwong avantoydnke and
toug Engle wor Granger (1987). ITio oavoivtikd, Oswpovue v moapakdte eéicmon

TOAVOPOUNONG

Ye = oo + BXt + & (5)
6mov
Yietvon 1 eEapmmuévn petafintn kot X, eivor pua ave&aptnt eEmyevig petafant.
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Av ko ot 0o petopintég etvan I(1) (yivovron otdoipeg Aapufdvovtag Tig Tp®MTES d0POoPEC),
avapéveTol 0Tl Kot To Kotahowma & = Yy — o + PX; 0a glvan emiong I(1). Yrdpyel tepintmon
VO VILAPYEL £VAG YPOUUKOS GLVOVOGHOG TV dVO HETAPANTAV 0 0oi0g va givol GTAGIHOG. €
VT TNV TEPInT®oN ot PETaPANTEG Aéyovial cuvokAnpmuéveg, 1 e&icwon (5) ovopdaletan
elomon ovvorokAnpmong kot to Odvuoua (1, -f) Swdvocpa TG GUVOAOKANP®GONG
(cointegrated vector).Xtmv mepintmon mov ot PETOPANTEG Eival GUVOAOKANPOUEVES amd TNV

e&lomon (5) TpokhrTovV 01 LAKPOYPOVIEG EAACTIKOTNTEG.

ZOupova pe 1o avTImpoo®nevTikd Bedpnuo tov Engle ko Granger (1987), 6tav 800
petafAntég cuvorokinpmvovtat Tote VIapyel Eva Ymoderypo Atdpbwong Aabov (E&icwon
6) to omoio ovoyetilel Tig Ppayvypovies petaPorés AY;, AX; pe TG amokAicelg omd TNV

HOKPOXPOVLA 1GOPPOTia. TNG TPONYOUHEVNG TIEPLOdOL (&, _; )

AYy =Y ay AYei + X0 gay AXioi + aresid €-1 + € (6)
Omov
A dNhovel T TPOTEG OLAPOPES
P, 4 0 apBuoC TV votepfioemv Tav AX kat AY avtictora dote e ~iid (0, 6°)
€t—1 M LOTEPNON TOV AAODV TNG TPOTYOVUEVNC TEPLOOOV
resid O CUVTEAEGTIG TOV KATAAOIT®V TNG TPOTYOVLEVTG TEPLOSOV

€; To. KorTdhouta

O oULVTELEGTNG TOV KOTOAOITMOV TNG TPONYOVUEVNG TEPLOBOV (Aresiq) EKPPALEL TNV TOYHTNTA
TPOCUPUOYNG OTNV HOKPOYPOVIA KATACTOOT 160ppomiag. ['o va vrdpyel cuvolokAnpmaon
petalld TOV UETAPANTOV 0 GUVTEAEGTNG AVTOG Bol TPEmeL vau EYEL APVNTIKT TN Kol Vo, givart
OTOTIOTIKA ONUOVTIKOS. ATd 10 Avvapukd Yodetypa Atdpbwong Aabdv mpokdatovy Kot ot

Bpayvypovieg ELAGTIKOTNTEG.
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Me0@odolroyio Engle-Granger (1987)

H peBodoroyia avarvong pn otdoipumv ypovoroyik®dv cepov (Engle and Granger, 1987) mov

EPUPUOCTNKE GTNV JOAKTOPIKN SaTpPn TpaypoTonoleital ot e&Ng oTddia:

. 270 Tp®TO OTAd0 Tpayportomoteiton 6 Eheyyog povadiaiog pilag oe kdbe po amd TIg
petafintég mote va Ppebel o Pabuog oroxinpwong tove. Ilpodmodeon yio v vmopén
cuvoloKApwong elvar ot petofAntég va égovv tov 1010 Pabud oroxinpwong Av ot
petafintég eivar otaoiueg 1(0) tote pmopoHv va EQapPUOGTODV 01 KAUGIKES OIKOVOUETPIKEG
pébodot. Av ot petaPAntég eivor pun otdoipes Kot Exovv Tov 010 Pabud oAokinpwong tdte
TPOYWPALE GTO ETOUEVO Prpa.

Il. 70 0e0TEPO GTASI0 TPOYUATOTOLEITOL O EAEYYOG VTTUPENC GUVOAOKANP®GNG UETAED TMV UN
OGTAGIL®V YPOVOAOYIKOV GEPAV. LE MEPIMTMGT TOL 01 UETAPANTES €IVl GUVOAOKANP®UEVESG
EKTIULATOL 1] OTACIUN HOKPOYPOVIO OXEGT UETAED TOV UN OTACIU®V UETOPANTOV UECH TV
eflodoemv GUVOLOKANPWOTG (cointegrating regressions) kot voloyilovTal ot paKpoypOVvIES
Mo TIKOTNTEG TNG CNTNONG OC TPOG KABEVE ammd TOVG EPUNVEVTIKODS TAPAYOVTES,

Il. Zto tpito otddio ektipdror 1o Avvapkd Ymoderypo Awopbmong Aobdv. Zdpemva pe to
Bedpnpa tov Engle and Granger, av ot pletaPAntég elvar GUVOAOKANPOUEVES, 1| LETOED TOVG
oyéon avicopporiag pmopel vo datvnmbel pe Eva Ymodderyua Avpbwong Aabmv (Error
Correction Model). Mg 1o Avvapkd Ymoderypo Awdpboong Aabmv vmoloyilovior ot
Bpayvypovieg eractikdtnTeS TG {TnoNg Kobmg emiong Kot 1 TaVTNTO TPOGUPUOYNG TNG
{nong otV KatdoTaoT TG HOKPOYPOVINS IGOPPOTIOGS.

IV. Téhog eléyxetar av 1o Avvopkd Ymoderypo Awopbwong Acbov eivor katdAinio

€QapUOlovVTOG GTATIOTIKOVG EAEYYOVE. LTIC TEPUTTMGELS OV TAPATNPEITAL AVTOGVGYETION

(Autocorrelation) 1/kor  Avtomoiivopoun  vmd  ocuvOnkn  EtepookedacTtikotnto

(Autoregressive Conditional Heteroskedasticity-ARCH) ota  xotdlowta, eKTipdvTOL

Kowvovple, Yrodeiypata Awwpbwong Aabdv TPOKEWEVOL VO OVTILETOTIGTOOY Ol GYETIKEG

EMNTAOCELG.
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4. Avéivon g empotucng kivinong Tov ka0e Méoov Malikiic Metagopdg

Ewayoym

H pebBodoroyla g Zvvoloxinpwong kot tov Ymodeiypotog Awopbwong Acbov
EPUPUOCTNKE Y0 TNV avilvor tng {Nmong kdbe HECOV TOV GLYKOIWVMOVIOKOD GUGTHUATOG
g AOMvag, YPNOYLOTOIOVTOC MG POCTKES EPUNVEVTIKEG LETAPANTES TNV TN EIG1TNPIOV TOL
Kkd0e pécov, v Tun g Peviivng kot to Akabdpioto Eyympro IIpoidv, to deiktn avepyiag,
TG moioelg dwOklwv kot Tic moinoelg IX. T'a kdbe péoo polikng petapopdcs
exTyMOnKay ot pokpoyxpovies Kot ol PBpayvypovieg eractikdtreg TS CRTNong g mpog
kaBéva and Tovg epuNVELTIKOVS TaPAYoVTES, KBS Emiong Kot 1) ToyOTNTO TPOSUPUOYNGS

TNV LOKPOYPOVIL KATAGTOOT) IGOPPOTIOG.

H avéivon g {Rmong tov cuykoveoviakod cuotipatog g ABnvag tpaypatomombnke
YPNOUYLOTOLDOVTOG OEGOUEVE XPOVOAOYIK®V GEp®V amd tov lavovdplo tov 2002 péypt to
Aegképppro tov 2010. To ocvykowmviakd cvotnua g ABnvog omotedeiton omd mévte
UETAPOPIKA HECT (UETPO, Ae@POpEio, NAEKTPIKOG GLOMNPOSpOLOG TPOAET Kkal Tpap). To tpap
dev cvumepleAenke oty épevva, kabng dlabécio oTorygia OYETIKG e TNV ETPATIKT TOL
kivnon vapyav pwovo amd to 2006. 1o peyaADTEPO UEPOC TOV SIKTVOL TO UECH OVTA
AELTOVPYOVY VIO GVVONKEC GUUTANPOUOTIKNG AELTOLPYING, EVD LILAPYOVY KOl KOUUATIO TOV
OIKTVOV 7OV TO LEGO AELTOLPYOVV OVTOYMVIOTIKG ONUIOVPYDVTOG GUVONKES AVTOY®VIGHOD
Kot vrokatdotoons. Ot petafintég mov ypnopomomdnkay oty avaivon tapovctilovron
GTOV TAPOUKAT® TIVOKAL.

Hivaxag 1. Mécog 6pog kot Tumikn andékiien Pacik®dv pnetafintov

Meropintég Méoog 6pog Tomun Amoékiion
EmBarticn kivnon petpd 14,295,245 2,544,766
EmBartucn kivinon Asogopeiov 30,338,756 3,127,397
EmBarticn xivinon TpoAet 6,573,172 7,852,62
EmBarticn kivinon HA. Z1dnpddpopov 9,661,460 1,526,618
T Ewoumpiov Metpo (€) 0.922 0.074
T Ewourmpiov Aemgopeiov/ Tpodet (€) 0.695 0.205
T Etoumpiov HA. 61dnpodpduov (€) 0.879 0.095
Agiktng avepyiag (tocootd) 9.076 1.752
Ty Bevlivg (€) 0.799 0.143
Axabdpioto Eyydpio Ipoiov (og ekotoppipro, €) 19.768 1.657
Axabdpioto Eyyaopro TIpoidv avd kdtoko (€) 1,772 138
IMAnBvopog g Adnvog 4,014,567 71,742
HoMoeg Awdkiov 2,763.57 1,043.26
Moioeig 1.X. 10.755,55 3.471,38
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E&lohogic XuvoAokANpmong

Y10 WPMTO OTASI0 NG ovdivong  eA&yxbnke m U OTAGWOTNTO T®V UETOPANTOV
epappolovrog toug eréyyovg povadwaiog pifog oe Kabepd amd tic petafAntés (emParikn
kivnon tov ke pécov, AEIL tun Beviivng, tipn ewoumpiov, avepyla KTd). AwwmotdOnke

OTL OAeC 01 PETUPANTEG Elvan U GTAGIUES KOl OAOKAT POUEVEG TPOTNG TAENC.

Y10 dgbTEPO OTAOIO TNG avAAvoNG eKTUNONKOY 01 €£IGMGEIC GLVOAOKANPMOOTG OO TIG
omoieg mpoékuyav ol pakpoypovieg ehactikotntes. H e€icmon cuvolokAnpmong yio Kabe

UEGO | eKTIUNONKE YPNOILOTOIDVTOC TNV TPUKAT® Paotkn e&icwmon.

EmBotuch kivnon pécov, =

ay + a; T eworrnpiov + a, tyn Peviivig + a3 AEIT avd kdtowo + o, [oroeig Awdkhov + u,  (7)

Extiuntnke n eicmon cvvoloxinpwong v kabe puéco Eexwplotd kol EAEYXTNKE oV TO
KatdAowto u; gival otdoa 1 0xl. H otacipuomta tov katoloitov Guvendystol Kol Ty

Yap&n cuvolokANpwong Leta&h Tmv PHeETafAnTOV TG e&lcmong.

Hivakag 2. E&iomoegig Zovolokipoong
(t-statistic otv mapévBeon)

Eaptnuévny Metafinti

AveEaptnreg Metapintéc MeTpd Agmoopeio Tporel Hlextpukog
210 p6opopog

¥t0epog Opog 9.21 (9.29) 17.23 (1250.95)  15.68 (1049.59) 10.33(9.34)

Ty Ewormpiov_Metpd -0.23 (-1.92)

Ty Ewoumpiov_Aem@opeiov/tpdrei -0.05 (-1.83) -0.16 (-5.18)

Ty Ewoumpiov HA, Zidnpddpopov -0.33(-3.18)

AEII avé kdrtotko 1.03 (7.57) 0.76 (5.20)

Moinoelg Adkhov -0.04 (-1.92)

Ty Bevlivig 0.13 (2.12) 0.08 (1.53)

TovAog -0.23 (-6.99) -0.07 (-2.71) -0.09 (-3.51) -0.25 (-6.13)

Abyovetog -0.69 (-20.55) -0.29 (-11.14) -0.37 (-14.34) -0.47 (-11.53)

"Exeyyoc Ipocappoyng R? 0.809 0.547 0.690 0.599

Durbin-Watson stat 1.57 1.71 1.83 1.02

DF-GLS teot yio éleyyo povadioiog pilog -8.27 -7.88 -9.34 -5.41

Kpirikég tipnég tov MacKinnon (5% -4.20 -2.88 -3.39 -3.39

critical level)

ApBudc IMapatnpnoewv 108 108 108 108
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Ta anoteléopata TV eEIGOCEDOY GLVOLOKANPMOONG Kot TV eAEYYOV povadiaiag pilag yio
K0 éva and Ta péca paltkng petapopdg mapovataoviol otov [livaka 2. Bacilouevol otig
Kprrikég Tipég tov Mackinnon (1991) yia tovg eAEyX0VG GULVOAOKANPMGNG, TO KATAAOLTOL KOl
TV 1e064pev eElcdoemv Bpiokovton va glvar pn otdopa 1(0) Befardvoviag v dmapén

GUVOLOKANPMOOTG AVAUESH OTIG METAPANTEC TG KGOe e€icmong.

H bdmapén cvvolokinpwong cuverdyetatl TV Dapén oG LoKpoypOVIoS GXEGTC 1IGOPPOTTING
petadd tav pun otdopmv petafAntov. Ta anotedéopata deiyvovv Ot 1 emPatikn Kivnon tov
UETPO GUVOAOKANPMVETOL UE TNV TN €lottnpiov tov petpod, 1o AEIT avd kdtowo, v Tiun
¢ Peviivne ko Ti¢ ToAncelg dtkokAwy. H emPartikn kivinon tov tpoAel cuvolokinpdvetal
pe v TR ewounpiov tov kot v Tiun g Peviivng. H emPotikn kivinon tov niektpucon
o1ONPOSOPOLOV GLVOAOKANPOVETOL PE TNV TN lottnpiov ko to AEIT avd kdrouco. Télog, n
emPatiky Kivnon Tov AE®POPEIOL GLVOAOKANPMVETOL HOVO UE TNV TIUN EoUnpiov Tov
Aeogopeiov. Ot HOkpOYpOVIEG EAMOCTIKOTNTEG 7OV TPOEKLYOYV omd TNV ovdAvon
napovotdlovtol avorvtikd otov Ilivoka 4. ZOUQOVO LE TO OTOTEALCUOATO TO UETPO KOl O
NAEKTPIKOG GLONPOIPOLOG ERPaVIiOVY TIG PEYOADTEPES EAAGTIKOTITEG MG TPOG TNV TLUN TOV

glournpiov ko 1o AEI, evd 1 (o tov Aew@opeiov mapovctdleTol 110iTEPO AVEAUGTIKT.

Yrodeiypato Atopdwone Aadav

¥10 Tpito oTASI0 TNG avdAivong ektiunnikay to Yrodeiypata Adpbwoong Aobodv and ta
omoia TPoEKLYav o1l PpoyuypOVIEG ELACTIKOTNTES, KOOMG Kot 1) TOYVTNTA TPOGOPUOYNG OTIV
Hokpoypovia katdotaor wwopporiag yio ke M.M.M. To Avvouikd Ymooeryuo Adpbwong

A0B®V eKTIUNONKE YPNCILOTOIDOVTOS TNV TAPUKAT® e&icwon yia kabe M.M. M.

Aegmpatuch kivnon, =
YL, apy A emBotikn kivnon,_; + PN ap; Aty ewoumpiov,_; + >, ag At Beviivng,_; +

Y4 Jag AAEIL_; + Y0, am; A toMosig SUVOKA®V, _; + Aresid Ug—1 + € (8)
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EmnAéov, oe kdbe e&icmon meprlappdvovror dvadikés peTafAntés v kKabe puvoa dote va

avaAvBovv ot emoyikég drokvudvoelg g {tmone. Ta anotedéopata topovslalovial GTov

ITivaxa 3.

Hivakag 3. Yaoderypo AtopO@mong Aadaov

E&optnuéveg Metafintég

AveEaptnteg Metapintég Metpo Ago@opeio Tporel Hlextpikog
2101 pOOPOROS

A_Metpd_Yotépnon 1 -0.12 (-1.50)

A_Aesoeopeio  Yotépnonl

A _Tpoiei_ Yotépnonl -0.75 (-8.66)

A _HA. Zudnpodpopoc_ Yotépnonl -0.21 (-2.16)

A Ty Ewoumpiov_Metpd -0.04 (-0.13)

A Ty Ewoumpiov Asw@opeiov/tpdrei -0.041 (-0.31)

A Ty Ewoumpiov HA. Zidnpodpopov -0.18 (-0.59)

A _AEII avd kdtoiko 0.28 (1.45) 0.06 (0.27)

A Tloinoglg SikdKAmv -0.05 (-2.21)

A Ty Beviivng_ Yotépnonl 0.03 (0.24) 0.06 (0.32)

DePpovaprog -0.45 (-1.92) -0.06 (-1.72)

MaépTiog 0.08 ( 3.67)

A¥yoveTog -0.46 (-16.99) -0.22 (-9.52) -0.36 (-10.72) -0.25 (-8.27)

TovAtog -0.17 (-6.83) -0.07 (-2.99) -0.10 (-3.32) 0.19 (-6.17)

Yemtépupprog 0.47 (11.36) 0.28 (11.90)

Oxtdfprog 0.12 (2.31) 0.06 (2.86) 0.35 (7.52)

Noéufprog 0.07 (2.52)

Ut -0.55 (-5.76) -0.88 (-8.70) -0.25 (-1.60) -0.32 (-3.60)

"Eeyyoc Ipocappoyic R? 0.91 0.76 0.69 0.73

Ap1Bpoc [apatnpnoemv 108 108 108 108

"Ereyyor Kataroirmv

Breusch-Godfrey LM 1g6T Y10 00T0600Y£TI61] KOTOLOITOV

Yotépnonl
Yortépnon2
Yotépnon3
Yortépnond
Yotépnons
Yotépnonb
Yotépnon7
Yotépnon8
Yotépnon9
Yotépnonl0
Yotépnonll
Yotépnonl2

1.63 (p=0.201)
2.28 (p=0.320)
4.10 (p=0.251)
4.13 (p=0.388)
5.04 (p=0.410)
6.80 (p=0.339)
6.92 (p=0.437)
12.47 (p=0.131)
12.76 (p=0.174)
12.82 (p=0.234)
13.44 (p=0.265)
13.46 (p=0.336)

0.53 (p=0.467)
1.49 (p=0.474)
2.45 (p=0.485)
3.14 (p=0.534)
5.37 (p=0.372)
5.46 (p=0.486)
5.60 (p=0.587)
6.34 (p=0.609)
6.35 (p=0.704)
6.56 (p=0.766)
6.69 (p=0.823)
6.98 (p=0.859)

0.05 (p=0.816)
6.78 (p=0.034)
7.60 (p=0.055)
15.25 (p=0.004)
17.76 (p=0.003)
17.80 (p=0.007)
17.93 (p=0.012)
17.94 (p=0.021)
18.44 (p=0.030)
18.44 (p=0.048)
18.54 (p=0.070)
23.30 (p=0.025)

0.57 (p=0.450)
0.59 (p=0.745)
1.01 (p=0.798)
2.23 (p=0.693)
3.26 (p=0.660)
3.37 (p=0.761)
4.60 (p=0.708)
4.77 (p=0.782)
4.96 (p=0.838)
5.01 (p=0.891)
5.89 (p=0.881)
9.62 (p=0.649)

Engle’ s LM tg67T Y10 Avtortahivopoun vaé cuvOikn ETepookedasTikoTnTa

Yotépnonl
Yortépnon2
Yotépnon3
Yotépnond
Yotépnons
Yotépnonb
Yotépnon7
Yotépnon8
Yotépnon9
Yotépnonl0
Yotépnonll
Yotépnonl2

0.01 (p=0.911)
0.13 (p=0.936)
0.15 (p=0.985)
0.16 (p=0.997)
0.45 (p=0.994)
0.54 (p=0.997)
0.55 (p=0.999)
0.56 (p=0.999)
0.58 (p=0.999)
0.83 (p=0.999)
1.25 (p=0.999)
1.26 (p=0.999)

0.81 (p=0.369)
1.95 (p=0.377)
2.03 (p=0.566)
3.35 (p=0.500)

3.36 (p=0.645).

4.04 (p=0.672)
4.08 (p=0.769)
4.11 (p=0.847)
4.22 (p=0.896)
4.26 (p=0.935)
4.82 (p=0.939)
5.17 (p=0.952)

36.88 (p=0.000)
39.81 (p=0.000)
40.88 (p=0.000)
41.73 (p=0.000)
42.94 (p=0.000)
44.99 (p=0.000)
45.03 (p=0.000)
45.14 (p=0.000)
45.15 (p=0.000)
45.24 (p=0.000)
45.24 (p=0.000)
45.34 (p=0.000)

0.34 (p=0.558)
0.35 (p=0.841)
0.39 (p=0.943)
0.81 (p=0.937)
0.92 (p=0.968)
2.22 (p=0.898)
3.19 (p=0.867)
3.59 (p=0.892)
3.85 (p=0.921)
5.10 (p=0.884)
5.22 (p=0.917)
8.51 (p=0.744)
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[Tpoxewévov va ehéyCovpe TV KATOAANAOTNTO TOV VTOSEYUAT®OV TPOYLUATOTOWONnKaY
oToTIoTIKOL éAeyYOl oto. katdAowma g kéOe e&icwong (Breusch-Godfrey LM teot kot
Engle’s LM teot). Ot éLeyyot vmodeikvoovy 01t 6to Avvopukd Yroderypa Aopbwong Aabdv
T0V  TpOAEl  eppavileTol  OVTOGVLOYETION, Kol avTomaAivopoun  vmd  cuvOnkm
etepookedootikotnta (Autoregressive Conditional Heteroskedasticity, ARCH). Tw v
amaitovpevn 610pbwon avartoydnke évo vroderypa ARCH vy v emPartikn kivnon tov

TPOAEL TNV Ppoyvypodvia mepiodo.

O OULVIEAEOTNG TPOCAPUOYNG OTNV  HOKPOXPOVIa Katdotoon 1coppomtiog (Apesiq) Eivon
OPVNTIKOG KOl OTATIOTIKG oNUovTIkOg ot Yodeiypato Atdpbmong Aabdv mov extiunmonkay
emPePordvovrag v Vmapln cvvorokAnpwong peta&d tov petofintodv. O cvvieleoTtig
ovtdc pag Oeiyvel tov axpifny ypdvo mov ypedletor yoo vo oAokAnpwBel m TANPNG
TPOCUPUOYN CTNV HAKPOYPOVIL KOTAGTACT 160ppomioc. [ To petagopikd HéGo tov HeTpo
naipver v T 0.55 vrodewvoovtag 0Tt t0 55% NG TPOGAPUOYHG OTNV LOKPOXPOVIQ
KOTAGTOOT) 100PPOTIOG EMTVYYAVETOL 6TV TPAOTN Tepiodo (unva). H taydnta mpocapproyng
CTNV LOKPOXPOVIL KOTAGTAOT 1G0PPOTiaG TopovstdleTol laitepa VYNAN Yo T0 Ae®POPEio
(0.88% NG TPOGAPLOYNG EMTVYYAVETOL GTOV TPATO UVE) EVA YIO TO LETOPOPIKA HLEGO TOV

TPOAEL KOl TOV NA G1ONPASPOLOL 0 GLVTEAESTNG VIIoAoYioTnKe -0.25 Kot -0.32 avtictorya.

Elootukdtnteg
O1 Bpayuypdvieg Kot ot pakpoypOVIEG EAAOTIKOTNTES TG CNTNOoMG G TPog KabEva amd TovGg
EPUNVEVTIKOVG TAPAYOVTEG TTOL TPOEKVY Y amd To. Yodeiypato Atdopbmong Aabdv Kot Tic

e&lomoelg GUVOLOKANP®ONG avtioTotya mapovstdiovtal avaivutikd otov [ivaka 4.

O Bpayvypovieg eAacTiKOTNTEG TOV VIOAOYioTnKaY Yoo kdfe péco palikng petapopdc
ToPoLCIGlovTol HKPOTEPEG amd TIC OVTIOTOLKEG WOKPOYPOVIEC KOOMG Ol OAAAYEC OTIC
ovvnbeleg Tov petakvovuevemy ypeltdlovtal xpovo Yo Vo TECOVY GTNV TANPN ®pPipaven
TOVG.
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Mivakag 4. Bpayvypovieg kot Makpoypovieg ELaotikotnTeg

Moaxpoypoévia ITepiodog Bpayvypévia Ilepiodog
Metpéd
AEIT avé kdtowo 1.03 0.28
Moinoelg Adkriov -0.05 -0.05
Ty Ewotmpiov_Metpd -0.23 -0.04
Ty Bevlivng 0.13 0.03
Ago@opeio
T Ewoumpiov_Aegm@opegiov/tpodei -0.05 -0.04
HA. Z1dnpd6dpopog
AEIT avé kdtouo 0.76 0.06
T Ewoumpiov_HA. Zidnpddpopiog -0.33 -0.18
Tporel
T Ewoumpiov_Aegm@opeiov/tpodei -0.16 -
T Bevlivng 0.08 0.03

H vynin ehootikdtnta mov TopovctdleTol Yio To HETPO Kol TOV NAEKTPIKO GLONPASPOLO (OC
npog 10 AEIl (shaotikdémreg 1.03 kot 0.76 avtictoyya) mbavotato eEnyesitor and 10
yeyovog ot o avénon oto AEIT odnyel otnv mopaywmyn mepiocoTEP®V LETOKIVIGEDY Ol
0TO1EC OTOPPOPOVTAL KUPIMG amd ot T, 000 péoa. Ot avtioToyeg ELUCTIKOTNTEG Y1 TO
Vo autd péoa ot Ppayvypovia tepiodo eppaviCovral moAv pikpotepes (0.28 yuo 1o peTpd
kot 0.06 ywoo Tov mMAexTpikd o1dNpddpopo). Emumiéov To petpd KOl O TMAEKTPIKOC
o1ONPOdPOUOG TOPOVGLALOVY TIG VYNAOTEPEG EAAGTIKOTNTEG GE GYECT UE TNV T TOL

€1o1TNpiov T060 GTNV PpayvyPOVIK 0G0 Kol TNV LOKPOXPOVIa TEPI0d0.

H {qtnon tov Aewpopeiov Tapovcialetar 1010itepa OVEANGTIKT TOGO GTNV Ppayvypovia 66O
Kol 6TV pokpoypévia mepiodo. To amotélecua avtd cuvdEeTol mOUVOTOTU UE TO YEYOVOC
OTL T0 Ae®QOpPelo amoteAel TO HOVOOIKO LEGO Tov eEumnpetel OPIGUEVE KOUUATIO TOL
dwktvov. Téhog, o avénon oty Ty g Peviivng av&davel v emiPatiky Kivinon tov pHeTpod

KOL TOV TPOAEL.

I'evikd oe 6Aa to péoa Palikng HETAPOPAS 1 UIKPT) OPVNTIKY T TG EAACTIKOTNTOG MG
TPOG TNV T TOL EGITNPIOV VTOOMAMVEL OTL o avénon g TWNS tov glottnpiov Oa

EMPEPEL ODENCT TOV GUVOMK®DV EGOOMV.
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5. Avdivon Tov pepdiov ayopag kaBs Mésov Malikig Metapopdg

Ewayoym

AxolovBdvTog v uebodoroyikn TPoGEYYIoT TG ZLVOAOKANP®MONG Kol TOV ALVOUIKOV
Yrodetypatog AopBwong Aabmv, oty gvotnta avtn avaADeTol T0 HePidlo ayopds Tov
KGO pécov otV cLVOAIKT (\TNoT YPNOUOTOLDVTAG MG EPUNVEVTIKEG UETAPANTEG TN
GLVOMKY] eMPOTIKY Kiviom, TNV TN glotnpiov Tov kdbe pésov, v Tiun g Peviivng, tov
delktn avepylog kot 1o Akafdpioto Eyydpro Ilpoidv. O mpoodiopiopds tov pepdiov
ayopdg kdbe HEGOL OTO GUVOAO NG EMPOTIKNG KIVNONG EMITPEMEL TN AETTOUEPESTEPT
avdAvon oe OTL 0Qopd otov €0IKO POAO KAOe HEGOVL GE €va OAOKANPOUEVO GOGTNHO
0OTIKOV GLYKOW®OVIGOV. [ TV avdivon ypnoipomodnkay ypovoroyikd dedouéva omd

tov lavovdpio Tov 2002 w¢ tov Askéuppio tov 2010.

E&omogic 2uvolokAnpmonc

310 TPOTO 6TAd10 EAEYYONKE 1 GTOCIUOTNTA OAMV TOV UETARANTOV TOV XPTCLUOTOION KOV
oTNV avAaivon kol Smotddnke 0t OAeg givol PN OTAGIUES Kol OAOKANPOUEVES TPMTNG
TaENC. TN ouvéxel ypnoonoldvtag v e&icmon cvuvorokAnpwong (9) aveibonke to
uepiolo  ayopdc Kkabe pHECOV TOL GULYKOWVOVIOKOD GCLGTAUHOTOC TG AOfMvag oty
pokpoypovia mepiodo.
Mepidio ayopag péoov i = ay + a;In Twun eortnpiov + a, In ZuvoAwkn EmBatkn Kivnon +
az InAEIl + a, In Twn Bevlivng + u, 9)
Ytov Ilivaxa 5 mapovoidlovior povo ot petaPintéc mov Ppébniav vo emmpedlovv
OTOTIOTIKMG OTUOVTIKG TO HEPIdI0 ayopdg Tov KAbe pEcov. ZOUQ@VO UE TOVEC EAEYXOVG
GUVOLOKANPOGCTG OV TPy aTomoliOniay ta KotdAowa e Kabe e&icwong sivol otdoio

BePardvovtag Ty Vapén cuvorlokANpwoNg HETAED TOV U GTACIH®V LETAPANTOV.

To pepido ayopdg Tov peETPO, TOL TPOAET KOl TOL TMAEKTPIKOV  GlONPOSPOLOV

GUVOLOKANPAOVOVTOL HE TNV T TOV EGITNPIOV, TN GUVOMKN EMPOATIKN Kivion Kol TO
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oKa0dploTo EYYMPLO TPOTOV, VM TO UEPIOO OyOPAC TOL AEMPOPEIOL GUVOALOKANPMVETOL LE

NV TN €161TNPIiov ToL HETPO, TN GUVOMKT emPoTiky Kivnor kot v Tiun g Peviivng.

ivaxag 5. EElo@oelg XuvorokApmong

E&aptnpéveg Metapintés (t-Statistic in parenthesis)

Avelaptnreg Metapintéc Mgepiowo Mgepiowo Mgepiowo Mgepiowo
Ayopéc Ayopéc Ayopég Ayopdg H.
MeTpd Agm@opegiov Tporei 2101 p0dpo oV

100epog Opog -2.524 (-7.67) 1.939 (6.06) 0.548( 4.54) -0.711 (-2.58)

Ty Ewoumpiov. Metpd -0.186 (-3.83) 0.166 (4.84)

Ty EwoumpiovAem@opeiov/tpodei -0.009 (-3.51)

Ty Ewoutmpiov HA. Zidnpodpopov -0.027 (-1.85)

Zvvohkn EmPartcr Kivion 0.103 (7.53) -0.076 (-4.22) -0.012 (-2.54) 0.021 (1.83)

AEII 0.090 (4.44) -0.022(-2.83) 0.049 (2.84)

Ty Bevlivig 0.054 (2.50)

Eviwio Ewotrpilo 0.047 (5.15)

Tdon -0.001(-6.62)

"EAeyyog Ipocappoync R? 0.539 0.503 0.234 0.115

Durbin-Watson stat 1.164 1.359 1.494 1.075

ADF te071 yio éAeyyo povodiaiog pilog -6.23 -1.25 -4.84 -6.29

Kprcég tipéc tov MacKinnon -3.82 -3.51 -3.82 -3.82

ApBuoc [Mapatnpnoewv 108 108 108 108

®o1 aveldpntes uetafintéc eivau oe AoyaprOuixi 1opei

Yrodetypato Atdopbwonc Aabov

AoV VTTOLOYIGTNKOV 01 LOKPOYPOVIEC ELOCTIKOTNTEG, TO EXOUEVO PriLa lval 1) EKTIUNGT TOV
Ynoderypdtov Adpbwong Aabdv yw 1o pepidio ayopds kdbe péoov (E&icwon 10)
TPOKEUEVOL VO DTOAOYIGTOVV Ol Pporyvypovieg ELOCTIKOTNTEG Kal 0 XPOVOC OV OToLTELTOL

v va. eTavELDEL TO GVGTNUA GTNV HOKPOYPOVIL IGOPPOTTIa.

Apepido ayopag pécov, =
YL, ay Apepidio ayopég péoov,_; + >, apj Alntyn eworpiov,_; + Zfzo agj Alntym Beviivng,_; +

YL oaq AINAEI_; + X2 am; AlnZvvohikhi EmBoruch Kivnon, _; + aresia U—1 + € (10)

Ot doyvootikol €Aeyyol 0T0 KOTAAOWTE VTOSEKVOOVY TV Vmapén GVTOCLGYETIONG GTO
Ynroderypa Aopbmong Aabdv tov pepidiov ayopds tov petpo. Ipokeévou va dtopBmbei 1
OVTOGLGYETION 6T KoTtdAowma 10 Yodetypua Adpbwone Aabodv extiundnke pe m pébodo
™m¢ péylotng mbavoeavelog (Maximum Likelihood) Aappdvovrag vadyn 6t ta koTddoura

£YOVV TNV TOPUKAT® LOPOT

€it=P1*€it—1 T P2*¥€t T "t Pp*€ pn+ U (11)
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Hivaxag 6. Avvopiko Yooerypa AvopOowong Aaddv

E&apmnuéves Metafintég (t-Statistic in parenthesis)

AveEaptnteg Metopintéic’ Mgepiowo Mgepiowo Mgepiowo Mgepido

Ayopdg Metpd Ayopég Avyopbc Tporei Avyopéc HA.
Agm@opegiov 2101 p0dpoov

A Mepidio ayopdg uetpod_Yotépnonl -0.124 (-1.69)

A _Mepidio ayopag Aempopeiov Yotépnonl -0.187 (-1.94)

A Mepido ayopdg Tporei Yotépnonl -0.472 (-3.57)

A _Mepidio ayoplg HA Zidnpodpopov_Yotépnonl -0.080 (-0.85)

A Mepido ayopdg petpd_Yotépnon?2

A_Mepidio ayoplg Aswpopeiov Yotépnon?2 -0.172 (-1.87)

A Mepidio ayopdg Tporei Yotépnon?2 -0.181 (-1.72)

A Ty ewlounpiovMetpd -0.066 (-1.27)

A_Tym Ewournpiov_Aesoeopeiov/Tporei 0.049 (0.67) -0.001 (-0.11)

A Ty Ewoumpiov HA. Z1d1p6dpopov -0.017 (-0.41)

A_AEII -0.023 (-0.67) -0.016 (-1.04) 0.008 (0.26)

ATy Beviivng 0.028 (0.73)

A Zvvolxn EmPartikn Kivnon 0.051 (-6.64) -0.042 (-3.11) 0.002 (0.43) -0.023 (-2.86)

DePpovdprog 0.010 (2.00)

Maprtiog -0.003 (-1.58)

Tobviog 0.005 (2.72)

Abyovotog -0.021 (-3.87)

TovA10g 0.011 (1.66) 0.004 (2.01) -0.013 (-3.17)

Noéupprog -0.017 (-2.26)

Aexéupprog 0.017 (3.82) -0.026 (-3.88) -0.003 (-1.58) 0.007(1.72)

Kotéhowra Uy 4 -0.574 (-6.64) -0.557 (-4.90) -0.443 (-3.52) -0.430 (-5.03)

"EAeyyoc Iposappoyic R? 0.595 0.495 0.450 0.393

Apuodg Iopatnpnoemv 108 108 108 108

a r ’ . r r , ’. ’ ,
OAeg o1 avelaptites HeTafANTES EKTOC QO TOVS UITVES EIval o€ AoyaplOuiki Lopen

"EAgyyor Kataroinwv

Breusch-Godfrey LM t£07T Y10 00T06V6%£TI61 KOTOAOITOV

Yotépnonl
Yotépnon2
Yotépnon3
Yotépnond
Yotépnons
Yotépnon6
Yotépnon?
Yotépnon8
Yotépnon9
Yotépnonl0
Yotépnonll
Yotépnonl?2

4.37 (p=0.037)
9.39 (p=0.009)
9.53 (p=0.023)
10.20 (p=0.037)
10.20 (p=0.069)
10.31 (p=0.112)
10.55 (p=0.159)
10.96 (p=0.204)
11.85 (p=0.222)

13.02 (p=0.222)

13.04 (p=0.291)

13.89 (p=0.307)

0.11 (p=0.736)
0.38 (p=0.826)
1.32 (p=0.725)
2.05 (p=0.726)
2.18 (p=0.824)
2.25 (p=0.895)
2.84 (p=0.899)
3.21(p=0.921)
3.25 (p=0.953)
3.92 (p=0.951)
3.98 (p=0.971)
4.00(p=0.984)

0.07 (p=0.795)
1.81 (p=0.404)
2.51 (p=0.474)
2.52 (p=0.641)
2.87 (p=0.719)
3.05 (p=0.802)
3.34 (p=0.852)
3.34 (p=0.911)
4.41(p=0.882)
5.96 (p=0.818)
6.44 (p=0.842)
6.54 (p=0.886)

2.02 (p=0.155)
2.16 (p=0.339)
2.23 (p=0.526)
4.59 (p=0.332)
4.86 (p=0.433)
5.54 (p=0.477)
7.58 (p=0.371)
8.13 (p=0.421)
8.83 (p=0.453)
10.03 (p=0.438)
10.36 (p=0.498)
15.52 (p=0.214)

Engle’ s LM tgot Y. Avtomtodivépoun vté cuvdkn EtepockedactikéTnro

Yotépnonl
Yotépnon2
Yotépnon3
Yotépnond
Yotépnons
Yotépnon6
Yotépnon7
Yotépnon8
Yotépnon9
Yotépnonl0
Yotépnonll
Yotépnonl2

0.308 (p=0.579)
0.352 (p=0.839)
0.488 (p=0.922)
0.524 (p=0.971)
0.815 (p=0.976)
0.905 (p=0.989)
1.057 (p=0.994)
1.220 (p=0.996)
1.232(p=0.999)
1.239 (p=0.999)
1.357(p=0.999)
19.958(p=0.068)

0.181 (p=0.670)
0.182 (p=0.913)
0.585 (p=0.900)
0.616 (p=0.961)
0.921 (p=0.969)
1.082 (p=0.982)
1.468 (p=0.983)
1.554 (p=0.992)
4.759 (p=0.859)
4.832 (p=0.902)
5.670 (p=0.894)
6.937 (p=0.962)

0.247 (p=0.619)
0.354 (p=0.838)
1.365 (p=0.714)
1.411 (p=0.842)
1.724 (p=0.886)
1.741 (p=0.942)
2.090 (p=0.955)
2.131 (p=0.978)
2.378 (p=0.984)
2.519 (p=0.991)

5.251 (p=0.918)
5.400 (p=0.943)

0.280 (p=0.597)
0.549 (p=0.760)
1.406 (p=0.704)
2.008 (p=0.734)
2.734 (p=0.741)
3.861 (p=0.695)
4.396 (p=0.733)
5.658 (p=0.685)
6.307 (p=0.709)
7.199 (p=0.707)
7.277 (p=0.776)
12.381(p=0.416)
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O Bpayvypovieg Kol 01 HOKPOYPOVIEC EAACTIKOTNTEC TOV TPOEKLYOV OO TNV OvOIAvon
nmapovctaiovior otov [livaka 7. H oyxéon peta&d tov paxpoypdviov kol Tov Bpayvuypovioy
elaoTIKoTATOV KoBMG emiong Kot n TodTNTO TPOCUPUOYNG OTY HOKPOYXPOVIQ 1G0PPOTia

delyvouv v gueMéia TPOGAPLOYNS TOV GUOTHUATOS GE KABE emyelpovevn LeTABOAT.

ivaxag 7. Bpayvypovies kor Makpoypovies ELaotikétnTeg

Moakpoypovia Ilgpiodog Bpayvypoévia Ilgpiodog

Metpo

AEII 0.39 -0.10

Ty Ewotmpiov_Metpd -0.80 -0.28

Yvvoakn Empatikn Kivnon 0.44 0.22

Ago@opeio

Ty EwounpiovMetpd 0.33 0.10

T Bevivng 0.10 0.06

Yvvoakn EmPartikn Kivnon -0.15 -0.08

HA. Z10np6dpopog

AEII 0.32 0.05

Twn Ewoumpiov HA. Zidnpddpopov -0.17 -0.11

Yvvoakn EmPatikn Kivnon 0.13 -0.14
Tporei

Ty Ewoumpiov_Aem@opeiov/Tpoiei -0.08 -0.01

AEII -0.20 -0.15

Yvvoakn EmPatikn Kivnon -0.11 0.02

O oVLVTEAEGTIG TPOGUPUOYAG GTNV LOKPOYPOVIN KATAGTOGCT) 100PPOTTIOG TaipVEL TIHEG Omd -
0.43 péypr -0.64 oto téooepo. Ymodeiypata Adpbwong Aabdv vrodeikviovtag mmg M
TPOCAPUOYN OTNV LOKPOYPOVIK KOTACTAGY 1GOPPOTING TPUYUATOTOEITAL 8 TEpimov dv0

unveg (kopouvopevn amd 1.6 péypt 2.3 unveg).

Emutiéov, n avdlvon deiyver 6t to AEIT ko m tun tov goutnpiov givar ov Pacikoi
napdyovieg mov kobopilovv T pepidia ayopds tTwv pécwv palikng petapopds. H Betikn
oxéon ovvoroxkApmong peta&h Tov pepdiov ayopdg tov petpd kot tov AEIT cuvdéetan
mBovotato pe To yeyovog OTL To UeTpd &gival 1o mo akplpd MMM kot gvvogital og
neplodovg avénong tov AEIT cuykprtikd pe Ao péoa palikng HETapopds Ommg To TPOAET

(apvntikn| oyxéon tov pepdiov ayopdc tov TpOAEl oe oyéon ue 1o AEIN). Emmiéov,
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Béomion Tov eviaiov eloutnpiov £xel EVVONGEL TN ¥PNoN Tov UETPd Kol €xel oENGEL TO

uepioto ayopdg Tov.

Téhog, T amoteléopata VTOSEIKVOOUY TG Ol UETAPOAES GTN GLVOMKY emPBoTiky| Kivion
emnpedlovv 1o pepidto ayopdg tov kabe pécov Eexmpiotd. Ta pepidio ayopdg Tov HETPO Kot
TOV NAEKTPUKOD G1OMPOdpopov avéavovrol kabmg avsdvetal 11 GuVoMKT emPatikn kivnon
(ehaotikotnteg 0.44 xon 0.13 oavtictorya), eved To, pEPiIdOL ayopdg TOL TPOAEL KOl TOL
Aew@opeiov petdvovtol Kabmdg avEdvetatl 1 GUVOMKY EMPOTIKY Kivion 6NV LaKpOoXpOvVie

nepiodo (ehaoticotnteg -0.11 ko -0.15 avrictowym).

6. Xvpnepdopara

H napovoa Awdaktopikn AtatpiPn £xel ®g KOPLO AVTIKEIUEVO T SlEPEDVIOT TOV TAPAYOVTHOV
mov emnpedovv 1000 TG Ppayvypovieg 0G0 Kat TIG LaKpoxpoOvieg LeTaforég atn Cntnon evog
GLOTHOTOC OGTIKOV GLUYKOIWVMVIOV TO 0moio omoteleitan amd moAAG cuvepyaldueva péca
LEeTaPOopds To omoio AEITOVPYOHV GUUTAPOUATIKG SHOVPYDVTOS GUVONKES OVTOYMOVIGHOD
Kot vrokatdotoong. H peiétn g {Rmong mpaypotonoteiton pe dVo mpooeyyicelg. Xtnv
TPMTN TPocEyyion EeTdlovTal Ol TPAYOVTEG TTOL EPUNVEVOVY TNV Unvicia emPatikn kivinon
oV Kk@Be péoov. Xtn SevTEPN MPOCEYYIOT AVOAVETAL TO TOGOGTO (HEPIdIO) TNG GLVOAIKNG

{tnong mov keAvTTEL TO KUOE PHEGo HalIkNG LETAPOPAS.

[Mopdro mov Eyovv mpaypatomombel moArég peréteg d1eBvmdg oL avaklOVY TOVG TAPEYOVTEG
7ov kabopilovv ™ (Rnon yia to péca LalIkNG LETOPOPAC, Ol TEPIGCOTEPES OV £YOVV AGPeL
VIOYT TN YN CTAGIULOTNTA TOV YPOVOAOYIK®Y GEPOV OV TEPLypapovv T {ftnon. Emmiéov
N avdAvoen Tov uePdiov ayopdg tov Kibe pHEcov UalIKNG LETOPOPAC GE EVOL OAOKATPMUEVO
CUCTNUO OOTIKOV CLYKOW®VIOV Ogv €xel depevvnBel kotd 1o mopehBov. H epevvnrikn
oLpPoAn ¢ datpPng £YKELTOL TPMTO, 6TO YEYOVOS OTL 1 AVAALGT TNG METAPOPIKNG CRTNong

n-21



TPOYLLOTOTOLEITOL [LE EUPOOT OTN U1 CTUCIHOTNTO TOV YPOVOAOYIKOV GEPOV Kol O0eVTEPOV
07O YeYOVOG OTL 1] TPOGEYYIOT OLTI XPTCLLOTOIEITAL VIOl TNV GVAADGOT] TOL UEPIOIOL ayopdg
T0V KGBe pécov o1 GLVOAIKN (\TnNomn o€ éva GUGTNUN OOTIKOV GLYKOWOVIDY TOL

amoteleiton amd cuvepyalopeva HEGH PETOPOPAC.

H peBodoroyia mov epapudctmre otV TOPOVGA OO0KTOPIKT daTpPr) omaAAdGGEL Omd Ta
TpoPARUATE TOV M oA TOAWVOPOUNGCT TUPAYEL GTNV TEPITIMON TMOV U GTACIU®OV
YPOVOLOYIKDV GEPDV (POIVOUEVIKEG GULGYETICELS, UEPOANTTIKEG eKTUNoES). Emmiéov
opéxel TIG Ppoyvypovieg Kol HOKPOYPOVIEC EAOOTIKOTNTEG KAOMG Kol Tnv ToydTNTA

GLYKAIONG OTNV LOKPOYPOVIQ KOTAGTACT 1G0PPOTIOGC.

O1 Bacikoi mapdyovteg mov Ppébnie va eanpedlovy GTATIGTIKOG GNUAVTIKA TN (TNoT, T060
oV paKpoypdvia 66o Kot otn Bpoyvypdvia mepiodo, givar to AEIL n tun tov ecutnpiov
kot 1 T ¢ Peviivneg. Emmhiéov, damotmbnie 6Tl 1| EMPPOT| TOV TOPOYOVIOV QLTOV GTNV
emPatikny kivnon eivor SaQopeTikn yioo kdbe péco palikng petapopds. Amd 1o Méca
Molwkng Metagopds mov eEetdotnioy To HETPO Kol 0 NAEKTPIKOG G1OMpOOpopog epeavilovv
TIG UEYOADTEPEC EMAGTIKOTNTEG, EVD TO Ae@@opeio mapovctaletar Wiaitepa avelootikd. To
YEYOVOG OTL Ol EANCTIKOTNTEG TNG CNTNONG MG TPOG TOVG EPUNVEVTIKOVG TaPAYovTES gival
OTUOVTIKG J0POPETIKEG Vi TO, O1apopa M. M. M. avadeikvieL T ¥PNOUOTNTE TS AVAALGNG

g (Romng yia kaOe péco ywpioTd.

H peiétn tov pepidiov g {nmong v kébe péco palikng Letapopdis Tpospépel TpOGHeT
TANPOEOPNOTN Y10 TNV AVAALGT TS CRTNONG 6 €va GUOTNUA OOTIKMY GUYKOWVOVIDY OTTOL TO,
OLPOPal LECH AEITOVPYOVV GUUTANPOUOTIKG, ETITPETOVTAG TNV AETTOUEPESTEPT] OVAALGN OF
OTL 0popa oToV €101KO poAo kdbe péoov. Ta amoteAéopata VTOSEKVOIOLY WS 1 TN TOV
glourtnpiov, to AEIl xoar m ocvvolikn emPatikny kivinon omoteAodv TOLG KLPLOTEPOVG
napdyovteg mov kabopifovv to pepidio ayopdg kabe pésov. Ot EAACTIKOTNTEG OG TPOG TNV
TN TOL €lo1TNPiov Tapovatalovtal Wlnitepa CLENUEVEC OTA LOVTEAL TOV UEPLOIOV ayOPdC
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o€ OLYKPION MHE TO HovTEAO ovOaAvong g emPatikng kivnong, kobm¢ omeucovilovv e
UeYOADTEPT EVONGHNGIN TIG VTOKATAGTAGELS TOV TPOKVATOLY OO U0 LETOPOAN TNG TG TOV
elounpiov. Téhog, Omwe avapevotay, TG0 6Ta LoVTEAR TG eTPOTIKNG Kiviong 660 Kat 6T
povtéla Tov pepldiov ayopds kébe pécov, ot Bpayvypovies EAACTIKOTNTES Elval HIKPOTEPES
OO TIC AVTIOTOLYEG LOKPOYPOVIES, EMELDN Ol CUVETEIEG KAOE UETABOANG amattovy YpOVo Yo

v OTAGOVV GTNV TANPT OPILOVGT] TOVG.

Younepacpotikd, 1 pebodoroyia mov ypnoyomoinke ot SWaKTOPKN daTpPn mapEyet
710 a&lOTIoTN AvAALGT TOV XPOVOLOYIKGV GEPOV TNg emPatikng (Rtnong tov M.M.M. kot
N aVAALGT TOL UEPIOIOV ayopdc KAOE LECOVL TPOGPEPEL YPNOUL TANPOPOPNOT Yo TOV

Gp1oTO TPOTO GLUTANPOUATIKNG AETOVPYING TOV HECMV.
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1. INTRODUCTION

In this dissertation demand aspects of a multimodal urban public transportation system are
investigated using a time series approach based on cointegration and error correction
techniques. This approach allows for the analysis of non stationary data and for the
estimation of short and long run elasticities of the factors affecting demand. Ridership is
examined for each transport mode separately. The share of each mode in total ridership is
also analyzed. The Athens multimodal public transport system serves as a test bed for the

developed models.

1.1. Public Transport Demand

Public transportation offers equitable and environmentally friendly services to societies and as
such is an important player in sustainable transportation and mobility in urban areas. Public
transportation (PT) frequently operates in a highly competitive and complex environment and
its demand is affected by various socioeconomic and operational characteristics. For instance,
higher incomes and lower fuel prices encourage the use of private vehicles, while suboptimal

scheduling and increased fares could have a negative impact on public transport usage.

Public transport —particularly fixed track- is both expensive to built in terms of infrastructure
and highly costly to run in terms of operational costs. At the same time it is largely considered
as a societal good, a fact that puts pressure to keep fares as low as possible. This inevitably
leads to high subsidies and raises the question of allocating these subsidies to the various
public transport modes in the most effective way. The limited availability of resources and the
need to reduce operating subsidies, as current economic conditions dictate, increase the
complexity, but also the importance, of efficient management of public transportation

systems. Demand analysis is a necessary condition for efficient decision making in a public



transport system; network expansion, pricing policies, subsidy and operational decisions are

based on demand analysis.

Transport demand analysis investigates how certain key factors such as fares, GDP, income,
fuel prices and quality of public transport services affect transport demand. Demand variation
is measured using the concept of elasticity, i.e. the ratio of the percentage change of demand
to the percentage change of a factor in question. Fare is the most widely studied factor in the
context of transport demand analysis because it is a controllable factor that regulates revenues
and it has a distinct impact on demand. Therefore, it is a factor directly related to policy
issues. The ever increasing cost of a transport system requires frequent fare increases which
have to seek a compromise between the financial and the social aspect of the transport
system. Fare restructuring attempts to satisfy two goals; first, to achieve a specified level of
revenues which is defined after the desired level of subsidy has been defined; second, to
contribute to the optimal expansion and operation of the system by reducing peak effects and
by exploiting existing capacity in the best possible way. It is evident that revenue estimation
resulting from a fare increase, or, a fare restructuring such as off-peak pricing can be
effectively achieved through the estimation of demand elasticities with respect to fares and,

that the best way to produce such elasticities is via an advanced econometric analysis.

Other factors such as income, Gross Domestic Product (GDP) although they have an
important impact on demand they are not related directly to transportation policy issues.
Variations in income or GDP may affect demand in conflicting ways; an increase in income
level or GDP will, generally, induce more trips resulting to an increased public transport
demand; but, it may also have a negative effect because it creates a shift to private cars. GDP
and income are closely related so only one of the two is used in any particular study. Fuel
price is directly related to the cost of car use and, thus, fuel cost usually discourages car use
and positively affects public transport demand. Quality of service and parking costs are other

important factors that positively affect demand for public transportation.



1.2. Motivation

In a multimodal environment different modes have differing characteristics and may operate
in competition or cooperation depending on a variety of circumstances. In a multimodal
public transport system that operates under common pricing policies, a variation in fares, or
any relevant factor, affects in different ways demand for different public transport modes.
Therefore, treating each mode of the multimodal PT system as a separate entity provides
clearer information regarding the role and contribution of each mode to the system. Moreover,
demand analysis for each mode separately allows for identifying substitution effects among
the different modes. This is particularly useful for an effective policy differentiation taking
into account the particular contribution of each mode to total demand and the manner in
which the demand for each mode is affected by various factors. For example, demand mode
analysis may lead to fare differentiation or to conclusions as to how a unified ticket affects

demand of each mode.

In the present thesis two different but complementary aspects of public transport demand are
investigated; (i) the ridership of each mode and, (ii) the share of each mode in total ridership.
The above two issues provide useful information regarding effective policy measures.
Demand analysis for each mode separately produces more accurate demand elasticities, while
the study of the share of each mode in total public transport demand facilitates the equitable

distribution of total subsidy to the various modes.

In the first part of the dissertation demand characteristics of a multimodal public
transportation system are investigated using a time-series modeling approach. The aims of the
analysis are: First, to quantify the effects of various factors (i.e. fare, fuel prices, income,
unemployment rate, private cars, motorcycle sales) that affect the demand for different PT
modes. Second, to estimate the elasticities of different modes of public transport with respect
to the above factors (both in the short and in the long run), and thus analyze the trends of
demand in these modes. This analysis provides useful information for the design of policy

3



measures concerning pricing policies regarding fares and fuel prices and, also, policies for

strengthening and expanding the public transport network.

In the second part of the dissertation, market shares for each public transport mode in total
public transport ridership are analyzed. The analysis of the share of each transport mode in a
multimodal urban public transport system is a key factor that explains the relative position of
each mode in a system where, depending on the particular conditions, different modes act
cooperatively or competitively. It may also be a useful index for making investment decisions

concerning the public transport infrastructure and for allocating subsidies.

1.3. Methodology

A main goal of this thesis is to provide a framework for analyzing public transport demand
while explicitly considering the non-stationary nature of the demand time series. Non-
stationarity is a common property of many macroeconomic time series such as GDP, income,
prices and so on. The use of standard regression techniques with independent, non-stationary
variables can lead to spurious regressions (Granger and Newbold, 1974). In a spurious
regression, fitted coefficients appear statistically significant while there is no true relationship
between the dependent variable and the regressors. Thus, correlation between non stationary
series may not imply the kind of causal relationship that might be inferred in the case of
stationary series. However, there may exist a linear combination among non-stationary time
series that yields a stationary time series. If such a combination does exist, then the variables
are said to be cointegrated (Granger and Weiss, 1983). Engle and Granger (1987) formalize
the idea of cointegration and provide an estimation procedure for analyzing long run as well

as short run relations among non-stationary variables.



Demand elasticity is a dynamic concept; i.e. following a fare change, or -more generally- a
variation on an independent variable affecting demand, demand variation does not remain
constant but usually increases as time elapses. This happens because certain choices and
attributes that develop following a fare change take time to reach maturity. In dynamic
phenomena following a shock (a change in one of the dependent variables) the system
requires some time to reach stability (the new state of equilibrium). Accurate estimation
(evaluation) of the total impact of the change requires to take account not only the effect of
the final state but also the transition effects. Estimating the effects resulting from the new
equilibrium state requires knowledge of the long run elasticities. Estimating the effects of the
transition process from the initial to the new state of equilibrium requires knowledge of the
short run elasticities and the speed of adjustment (i.e. the time that takes to reach the new

equilibrium state).

It is therefore useful to consider the effect that fares, GDP, gasoline prices and other relevant
factors have on public transport demand both in the transition period and in the new
equilibrium state by estimating short run as well as long run elasticities. In the public
transport sector the long run responses are mainly associated with investment decisions, while
the short run responses are associated with operational decisions. Regarding the policy
measures, however, it is useful to know not only the long run effects of fares and other
relevant factors on ridership as well as the time required to complete total response (Dargay
and Hanly, 2002a). Cointegration techniques and error correction models help in this
direction by explicitly accounting for short and long run effects as well as the speed of

adjustment towards long run equilibrium.

1.4. Objectives and Contribution
Advanced econometric modeling including cointegration and error correction techniques is a
field closely related to economic analysis. All the pioneering work on non-stationary time
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series data was developed and tested in the context of economic models. However,

transportation time series data also exhibit non-stationarity. Related work in the transportation

field considering non-stationary time characteristics of the variables is rather limited

(Balcombe et al., 2004; Liddle, 2009). This study fills this gap by exploiting the use of

advanced econometric modeling in the context of transportation demand analysis. Public

transport demand analysis and public transport mode shares are analyzed using cointegration

and error correction techniques in a time series analysis framework, since this methodology

allows for treating non-stationary data and for determining short term and long term

elasticities and the speed of adjustment towards long run equilibrium. This is a field of

research that has not attracted attention in the transportation literature.

The main objectives of the dissertation are the following:

1.

To analyze the share of each mode in total public transport ridership for a multimodal

system where different modes may operate either in competition or cooperation.

. To determine the impact of exogenous factors on multimodal public transport demand by

treating each mode as a separate entity.

To provide a framework for analyzing public transport demand and public trasnsport
mode shares while considering the non-stationary nature of the demand time series. The
analysis is based on advanced econometric methods using cointegration techniques.

To capture short and long run elasticities and the speed of adjustment towards long run
equilibrium for each mode’s ridership and for the share of each mode in total ridership.
To apply the methodology in the case of the Athens multimodal public transport system
using monthly data for the period 2002-2010 while explicitly accounting seasonal

effects.

1.5. Thesis Outline

In chapter two, an overview of demand analysis in transportation is presented. Demand

analysis procedures are characterized by the nature of the approach, the data sources, the
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factors chosen to explain demand and the techniques employed in the analysis. Areas that the
present thesis may contribute are identified and emphasis is given on issues related to the

analysis performed.

In chapter three a methodological framework related to dynamic econometric modeling is
presented. The basic concepts of time series analysis including stationarity, serial correlation,
Autoregressive Conditional Heteroskedasticity are discussed. Finally, a methodology for
analysing non-stationary time series, based on the cointegration and error correction

techniques, introduced by Engle and Granger (1987), is presented.

In chapter four a framework for analyzing demand in a multimodal public transport system is
presented. The Athens Public transport system is examined as a case study. The analysis uses
a cointegration and error correction time series approach. This allows for treating non
stationary data, for determining short and long term elasticities and at the same time
estimating the speed of convergence from the short to the long run. Autoregressive

conditional Heteroskedasticity (ARCH) effects (i.e. volatility varies over time) are modeled.

In chapter five the market shares for each public transport mode in total ridership for the
multimodal public transportation system of Athens are explored. Due to the non-stationary
properties of the data, cointegration techniques are applied to investigate the long run
equilibrium relationships and the Error Correction Models are implemented to estimate the
short run dynamics as well as the speed of adjustment from the short to the long run. In
addition serial correlation on the residuals, a phenomenon commonly observed in time series

data, is explicitly modeled.

The last chapter summarizes the major findings of the thesis and provides the overall
conclusions regarding the analysis performed. Policy recommendations based on the findings

are discussed, while indications for future research are given.



2. REVIEW OF THE LITERATURE

“...competition between modes, routes or firms gives rise to a wide range of price elasticities,
generally much more elastic than conventional wisdom would suggest...”

Oum, Waters and Yong (1992)

2.1. Introduction

Demand analysis procedures are characterized by the nature of the approach, the data sources,
the factors chosen to explain demand and the techniques employed in the analysis. A very
detailed account of almost all aspects of public transport demand analysis is presented in “The
Demand for public transit: A Practical Guide” (Balcombe et al., 2004). The publication by
Paulley et al. (2006) consists a condensed form of this account focusing on the effects of

fares, quality of service, income and car ownership on public transport demand.

This chapter attempts to review the large body of public transport demand literature which
includes a variety of methodological and modeling approaches. First a general formula for the
public transport demand function is presented and the concept of elasticity is discussed. In
section 2.3 public transport demand studies are classified according to the type of the data
used, the nature of the study and the level of analysis. In section 2.4 a review of the main
factors that have been found to affect public transport demand is presented. The factors are
classified into two board categories; internal and external to the system analyzed. It should be
noted that the focus on this section will be on causal aggregate studies. Finally, emphasis is
given on public transport demand studies that take into account the non-stationarity of the
demand time series as well as on studies that analyze multimodal public transport demand

treating each mode as a separate entity.



2.2. Demand Function
The starting point of demand analysis is the assumption of an underlying demand function
connecting the dependent variable (public transport demand) to the independent variables (the

factors considered to affect demand).

A General Formulation for the Demand Function is given by:

Y =Xy, oo Xy) (2.1)
Where:
Y is the dependent variable (level of demand)
X; (i = 1,....n) are the independent (explanatory) variables such as travel cost, gasoline price,

income and so on.

2.2.1. The Dependent Variable

In the greatest part of the literature public transport demand is modeled using travel volume as
the independent variable. Travel volume is usually measured by (a) the number of trips or (b)
the distance travelled. The total number of ‘trips’ or ‘journeys’ recorded is commonly used to
model aggregate demand. Such data are usually derived through ticketing systems. The
distance travelled, expressed in passenger kilometers, is also a measure of aggregate demand.
The passenger kilometers are derived by multiplying the number of trips with the kilometers
travelled. The kilometers travelled are usually measured through on-vehicle surveys or

household surveys.

Mode share of public transport, tariff revenues and user expenditure are also indicators of
public transport demand. Mode share of public transport and user expenditure may be used as
dependent variables that indicate the importance of public transport modes in relation to one
another or to other modes. However, the number of trips computed is a preferable measure of

public transport demand, since it does not include aspects related to supply of service (like



passenger-kms) and it is not related to pricing policies (like tariff revenues). Finally, modal
choice and route choice may also represent measures of public transport demand and they are

usually used in disaggregated models.

2.2.2. The Independent Variables
Independent (or explanatory) variables are factors assumed to affect Public Transport

Demand. The explanatory variables may be

@ Continuous variables such as income, GDP, fare gasoline price
(b) Discrete or categorical variables such as monthly dummies and

(c) Variables that account for dynamic effects such as lagged dependent variables

The choice of the dependent variables depends on a number of factors including scope of the
analysis, data availability as well as on problems that may arise from the statistical analysis
such as multicollinearity of the regressors, endogeneity issues. Concerning the data
availability, there are some important factors affecting public transport demand (reliability,
comfort) which are difficult to quantify in variables and thus include them in the model.
Multicollinearity is a statistical phenomenon in which two or more independent variables in a
multiple regression model are highly correlated. The presence of multicollinearity may affect
the sign of the coefficients as well as the estimated standard errors, resulting to invalid results.
In public transportation studies multicollinearity usually occurs among socioeconomic and
demographic variables (for example multicollinearity may occur between income and car
ownership or between population and employment). Moreover, when analyzing multimodal
public transport demand, multicollinearity occurs among the fares of the different public
transport modes. A loop of causality between the independent and dependent variables of a
model leads to the problem of endogeneity (Gries and Redlin, 2012). In public
transportation studies endogeneity usually occurs between supply and demand variables

(Taylor et al., 2009).
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2.2.3. Elasticity

The effect of the variation of an independent variable on the dependent variable is usually
measured using the concept of elasticity. Elasticity is the ratio of the percentage variation of
the dependent variable to the percentage variation of the independent variable. Let Y be the
dependent variable (demand) and X the independent or explanatory variable. Relatively to a
starting state, represented by the values (Y1, X;), a finite variation AX of the independent
variable, causes a variation AY to the dependent variable, resulting to a new state represented

by values (Y5, X,), where Y,=Y+AY, X,=X;+AX Elasticity ey is then defined as:

AY
% change in demand Y (2 2)

% change in the explanatory variable X

ex =

Where:

AY is the change in Demand from Y, to Y,
AX is the change in the explanatory variable from X, to X,
Y; is the level of demand prior to the change from X, to X,

Y, is the level of demand after the change

2.2.3.1. Point and Arc Elasticities
Arc elasticity is the elasticity of one variable with respect to another between two given
points. Taking into account the two points P;=(Y1, X;) and P,=(Y,, X,) arc elasticity can be

defined as:

AY
arc_vyi+yz
X =Tix (2-3)
X1+X2

where AX, AY are finite variations, either observed or computed via a mathematical or an
estimated function, Y=f(X). Arc elasticity is used when there is no general function to define

the relationship of the two variables.

11



Assume now that there are many independent variables represented by a vector X=(Xy, X,,
.....Xq). If there is a mathematical relation between Y and X represented by a multivariate
function Y=f(X), then for arbitrarily small variation AY, implied by a small variation AX; in
X, elasticity can be defined in terms of the partial derivatives of f(X) of a particular point

P=(Y, X) as:

AY
point _ limit [ 5 | _ X; (E)_Y)
i = AXi-»0 \ 2% | 7y \ox; (2.4)

Xj

This is called point elasticity because, in general, the partial derivative depends on the
particular point P computed. Therefore the point elasticity refers to a particular level of
demand and it can be computed only if the demand formula for the demand function is

known.

2.2.3.2. Elasticities in Linear Regression

Empirically elasticity is estimated using a linear regression fitted to a series of observations
(Y, X). Let B; be the regression coefficient related to variable X;. The exact formula of
elasticity in this case depends on the way the variables are expressed. If both variables X and
Y are expressed in terms of their natural logarithms (log-log model) then elasticity takes the

form

. AQl
exi = (A /) (Mi/ys) = (HY)/ AlnX;) =P (2.5)

If Y is in terms of its original (linear) form and X in terms of its natural logarithm form

(linear-log form) thrn elasticity takes the form

ex = (YY) (M) = Yy agnxy = B (5) 26)
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In general if |e[<l we say that the dependent variable is inelastic with respect to the
independent variable (i.e. that the absolute percentage variation of the dependent variable is

smaller than the percentage variation of the independent variable).

2.2.3.3. Types of Demand Elasticities
Depending on the kind of the independent variable that explains demand we may consider
different types of demand elasticities. The most commonly used elasticities in public

transportation studies are:

(a) Price elasticity of demand

Price (or fare) elasticity of demand measures the percentage change in quantity demanded
caused by 1% change in price. This elasticity is almost always negative and it is referred to as
the own-price elasticity of demand for a particular mode. In this case if demand is inelastic
this means that for relatively small changes, although demand, following an increase in fare,

may decrease, total revenues will increase.

(b) Cross price elasticity of demand

Cross price elasticity of demand measures the percentage change in demand for a particular
good (transport mode) caused by 1% change in the price of another good (competing
transport mode). When analyzing multimodal public transport demand it should be mentioned
whether we refer to own or cross price elasticities. For example, the elasticity which measures
the change in the demand for metro with respect to a change in metro fare is the own price
elasticity, while the elasticity which measures the change in the demand for metro with
respect to a change in bus fare is a cross price elasticity. In public transport analysis own price

elasticities with respect to fare are expected to be negative, while cross price elasticities are
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expected to be either positive or negative depending on whether the other transport mode is a

substitute (competitive) or a complementary one.

(c) Income elasticity of demand

Income elasticity of demand measures the percentage change in demand caused by 1%
change in income. Income elasticity can be used to classify goods as normal or inferior. In
case of a normal good, demand varies in the same direction as income. In case of an inferior

good, demand and income move in opposite directions.

2.2.3.4. Short Long Run Elasticities

There is a set of factors that affect the size of transit elasticities; for example, elasticities tend
to be higher when substitutes are available, and when consumers have more time to adjust
their behavior. Therefore, the length of time period that people have to respond to price
changes plays an important role; thus, demand elasticity is a dynamic concept i.e. following a
fare change, more generally a variation on an independent variable affecting demand, demand
variation does not remain constant but, usually increases as time elapses because certain
choices and attributes that develop following a fare change take time to reach maturity. It is

therefore quite useful to distinguish between short run and long run elasticities.

Demand tends to be more elastic in the long run rather than in the short run, because short run
elasticities are governed by resistance to change, while long run elasticities are affected by
consequential changes on behavior that take time to be realized (Mankiw, 2004). For
example in the short run demand for public transport is more price inelastic as public
transport users often need more time to respond and change their habits. In the long
run passengers have enough time to respond to price changes switching to other

modes of transport.

14


http://en.wikipedia.org/wiki/Income_elasticity_of_demand

As a general comment, it should be noted that, in practice the elasticity value depends on the
initial values of the variables and also on the magnitude of the variation considered. For
example, demand elasticities with respect to fares depend on the particular fare variation.
Usually a greater fare increase corresponds to a greater elasticity (proportionally greater
decrease in demand). Also, demand elasticity with respect to income depends on the income
level and on the income variation. Moreover, elasticities are not symmetric with respect to
positive and negative variations and thus is due to different captive effects along the two

directions.

2.3. Classification of Public Transport Demand Studies

Demand analysis studies may be classified into two broad categories (Taylor and Fink, 2004):
(1) descriptive analysis studies that examine attitudes and perceptions about the transport
system analyzed (2) causal analysis studies that examine the internal and external factors
affecting the transport system analyzed. In the first class studies are mainly descriptive in
nature using subjective qualitative data, while in the second class studies are mainly causal
using measurable and more objective data. Figure 2.1 presents a classification of public
transport demand studies. The classes presented are analyzed in the following sections, while

the main advantages and disadvantages of each class are summarized in Table 2.1.

Public transport

demand studies

1 Descriptive ’ Causal

Static (short or long run

I Dynamic (short and
analysis)

long run analysis)

Aggregate Disaggregate Disaggregate
| |

Cross
sectional

Cross
sectional

‘ Panel ’ SP
surveys

Time
series

Figure 2.1. Classification of public transport demand studies
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Table 2.1. Advantages and Disadvantages of PT demand Studies

Advantages Disadvantages
Descriptive Analyze attit_udes and Data are highly subjective; no
perceptions model structure
Causal Empirical cau;al analysis; Some variable§ are hard to
econometric models quantify
Ecor)ometric models;_ Endogeneity, multi-collinearity
Aggregate Aggregation; Data are easier to '
' problems
obtain and more robust
Disaggregate Analyze individual choices; ng_eralizability_is limited;
more precise results difficult to obtain the data

Do not account for variations
across time, dynamic effects;
exhibit heteroskedasticity

Account for variations across

Cross sectional g . .
cities, countries, regions

. . Examine variation in PT Exhibit non-stationarity,
Time series . .
demand over time autocorrelation, arch
Examine variations across units Data are more difficult to
Panel - -
and over time obtain;

2.3.1. Descriptive Analysis

Descriptive analysis is mainly based on the use of survey and interview data derived from
well designed questionnaires addressed both to managers and transit operators, with an aim to
assess perceptions of the factors affecting ridership (for example Abdel-Aty and Jovanis,
1995; Bianco et al., 1998; Brown et al., 2001; Dueker et al., 1998; Jenks, 1995; Sale, 1976).
Taylor et al. (2009) report that descriptive studies usually analyze five general categories of
possible actions, strategies affecting public transport demand: service improvements; fare
restructuring and fare level changes; marketing and information; new planning approaches

and partnerships; service quality and coordination.

2.3.2. Causal Analysis

Causal studies use measurable and more objective data than descriptive studies to quantify the
factors affecting public transport demand. Causal analysis includes (a) aggregate studies that
use the transit system as the unit of analysis and (b) disaggregate studies that depict individual
decision—making process of travelers. Since some transport policies are based on aggregate
models and some others on disaggregate models both approaches are useful in public

transport demand analysis.
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Small (1992) discusses the main advantages and disadvantages of aggregated as well as of
disaggregated models. The main advantage of disaggregated models is that, exploiting the
microeconomic theory, they can simulate with greater accuracy particular aspects of a system
and thus lead to more precise policy proposals. However, aggregate models still play a basic
role in transport demand analysis because they are based on data that are easier and cheaper to
obtain and, in a sense, more robust. Moreover, conclusions concerning aggregate demand

cannot be obtained by simply combining the results of disaggregated models (Asensio, 2000).

2.3.2.1. Disaggregated Models

The use of disaggregated modeling in transport economics and transport demand analysis has
shown a considerable increase in the number of publications over the recent years. This is due
to the development of discrete choice modeling. Disaggregate or behavioral demand
modeling analyzes travel behavior at the level of a person or a household using (a) Stated
preference (SP) data, (b) Revealed Preference (RP) data or (c) a combination of both
(Louviere and Henser, 2001). Examples of disaggregated cross sectional studies in public
transport demand analysis can be found in: Iseki and Taylor (2010), Henser (1998), Henser

and King (1998).

2.3.2.2. Aggregated Models
Aggregate studies can be classified into three main categories according to the type of the

data analyzed: (a) cross sectional data (b) time series data (c) panel data.

(@  Cross Sectional

Cross-sectional analysis refers to data collected by observing many units (such as countries,
regions) at the same point in time. The distinguishing feature of cross sectional data is the

independence of observations. In cross sectional data the order of the observations in the
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sample has no significance. Cross sectional data usually exhibit heteroskedasticity (unequal

error variance across observations).

Cross sectional studies analyze public transport demand by taking into account variations
across countries, across cities or across locations within a city (Wabe and Coles, 1975; Kain
and Liu, 1999; Taylor and Miller, 2004; Taylor et al., 2009). In these studies, the internal
factors of a transit system such as fare and service level, as well as factors outside the control
of the transit system, are analyzed. Concerning the factors outside the control of the transit
system, Taylor et al. (2009) found that regional geography (size of the area, population
density, area of urbanization), population characteristics (percentage of immigrants, the
percentage of college students) and regional economy (carless households, income) appear to

have the greatest impact on public transport demand.

(b) Time Series

A time series is a collection of observations of the same phenomenon obtained through
repeated measurements over time. Aggregated time series analysis implies the use of
econometric models based on daily, monthly, quarterly, or annual data. The main advantage
of using time series data in public transport demand analysis is that it makes possible to
examine variation in public transport demand over time; using monthly or quarterly data
seasonal fluctuation of transit ridership may be modeled. Moreover, time series analysis
permits the dynamic model structure of demand; short run and long run elasticities can be
estimated. The problems that usually arise from the analysis of time series data are: (a) non-
stationarity (time-varying mean or a time-varying variance or both), (b) autocorrelation
(disturbances from different time periods are correlated) and (c) autoregressive conditional

heteroskedasticity (time varying error variance).
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Several studies in the literature analyze aggregate public transport demand for a single area

using:

o annual time series data (for example Hendrickson, 1986; FitzPoy and Smith, 1988;
Kyte et al., 1988, Gomez-lbanez, 1996; Romilly, 2001)

e quarterly time series data (Doti and Adibi, 1991)

e monthly time series data (Gaudry, 1975; Doi and Allen, 1986; Rose, 1986; Agthe and
Billings, 1978; Gkritza et al., 2004; 2011; Currie and Phung, 2008; Chen et al., 2011;
Chiang et al., 2011)

o daily time series data (Guo et al., 2007; Stover and McCormack, 2012)

(c) Panel Data

Panel data analysis is used when the data set has information derived from many different
units (indexed by i) observed over many periods of time (indexed by t). Thus, both the time
series and the cross sectional nature of the data are present. Since panel data combine both
dimensions (unit and time), they have advantages comparing to pure time series and pure
cross sectional data. Apart from the fact that panel data take into account heterogeneity across
units, they give more informative data, fewer degrees of freedom, and fewer collinearity
effects among the variables (Baltagi, 1995). Several studies have been conducted that analyze
public transport demand studies using panel data (De Rus, 1990; Dargay and Hanly, 2002;

Bresson et al., 2003; Crotte et al., 2008; Abrate et al., 2009; Lane, 2010; 2012).

The use of different types of data sources (time series, cross sectional, panel and stated
preference data) results to different estimates of the elasticities. In particular the use of time
series data, in most cases, leads to elasticities of smaller magnitude than the elasticities
produced by the use of cross sectional data (Nijkamp and Pepping, 1988). Nijkamp and
Pepping (1988) also report that estimated elasticities using stated preference data are higher

than those estimated using cross sectional data.

19



2.4. Factors Analyzed

Usually explanatory factors are divided into internal and external to the system analyzed.
Internal are the factors controlled by the system and external the factors exogenous to the
system. However, this classification is purely schematic because some factors such as fares,
which are considered internal, may be controlled by the government and thus, in such cases
they are exogenous to the system (Taylor and Fink, 2004). Moreover some external factors
may directly affect internal factors. Among the most important internal factors are fares and
quality of service. Among the most important external factors are income, car ownership,

GDP and gasoline price.

The elasticities of public transport demand with respect to a particular factor computed in
various studies exhibit strong variation. According to Graham et al. (2009) most of the
variation across studies is due to:

(a) Data used (aggregate or disaggregate; time series, cross sectional or panel)

(b) Time frame analyzed (yearly data, monthly data, quarterly data, daily data)

(c) Econometric method employed

(d) Static or dynamic model structure

(e) Demand specification

(f) Specification of the dependent variable (travel volume, modal choice or route choice)

(9) Number of PT modes analyzed

In this section the focus will be on aggregate demand studies. The main factors analyzed and

the elasticities computed in these studies will be presented. Table 2.2 (page 38 at the end of

this chapter) provides a summary of selected publications.
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2.4.1. Internal Factors

2.4.1.1. Fare

Urban transport systems —particularly fixed track- require high expenditures both for
infrastructure and for operating costs. On the other hand the services offered by public
transport are considered a basic societal good and this fact puts pressure on keeping fares as
low as possible. This usually results to an operating deficit, usually covered by appropriate
subsidies. Regulating revenues by increasing fares is, therefore a problem of compromise
between the social and the financial aspect of public transport. Normally, a fare increase is
followed by a continuous drop of demand for some time until the level of demand reaches a
steady state. As demand variation with respect to fares is, in most cases, inelastic (i.e.
elasticity is between zero and one) revenues, following a fare increase, will also increase. For
the above reasons public transport demand elasticity with respect to fare has been extensively
studied. Many papers have appeared in the literature analyzing the following aspects of

demand elasticities with respect to fares:

@) Short and long run elasticities

As mentioned in section 2.2.3.4 the full effect of a fare change on demand occurs after some
time and therefore, it is useful to distinguish between short and long run elasticities. Usually
long run elasticities are higher because they reflect the full extent of the fare impact. Goodwin
(1992) in his review study emphasizes the importance of analyzing both short run and long
run elasticities, as this distinction has important policy implications. In the literature, long run
elasticities are found to be, generally, 1.5 over 3 times higher than the short run ones (Dargay

and Hanly, 1999).
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(b) Elasticities of different transport modes

Different public transport modes have different elasticities with respect to the same factor.
For example fare elasticities are different for the bus and the rail mode. Therefore, in a
multimodal context, it is useful to analyze demand for each mode separately since it produces
different results from analyzing public transport ridership as a whole. Comparing the
elasticities among different transit modes, Balcombe et al. (2004) report that the total public
transport price elasticity appears to be -0.40, while the price elasticities for the bus and the rail

mode are -0.42 and -0.29 respectively.

(©) Cross price Elasticities

In the context of transport demand analysis fare cross elasticities indicate the way that an
increase, more generally a variation, in the fares of one mode affects demand of any other
mode. In a multimodal public transport system that operates under common pricing policies, a
variation in fares affects in different ways demand for different public transport modes. This
is partly due to the substitution effects that are present in each mode as well as to the

particular service characteristics of each mode.

(d) Elasticities with respect to time of day (peak and off-peak demand elasticities)

For a particular transport mode, or transport system, demand elasticities are different during
different times of the day. Usually, demand during peak hours is highly inelastic (Wabe and
Coles, 1975), while demand during off-peak hours is much more elastic. This type of
elasticity provides useful information either for planning purposes, when optimal capacity is
under consideration, or, for designing effective time of day pricing policies with an aim to
reduce peak effects. Linsalata and Pham (1991) found that peak hour fare elasticity is -0.23,

while the off-peak hour elasticity is -0.42.
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(e Variations in elasticities according to level of increase and the fare level

Demand elasticity is usually a function of the fare increase. Usually higher fare increases
produce higher value of elasticity (Paulley et al., 2006). The price elasticity is also related to
the current fare level. When fare levels are too low relative to income, marginal changes do
not affect ridership. In their study Dargay and Hanly (2002a) have found that bus ridership in
London is more price elastic at higher fare levels. The elasticities computed are higher for the
highest fares (ranging from -0.1 in the short run to -0.2 in the long run) and lower for the
lowest fares (ranging from -0.8 in the short run to -1.4 in the long run). Bresson et al. (2003)
used a random coefficient model and found that fare elasticity in England increases with fare

level.

() Variation with the type of the area

Public transport demand is usually more elastic in rural than in urban areas, reflecting the fact
that bus users are more captive in urban areas. There is evidence from the study by Dargay
and Hanly (1999), where fare elasticities are higher in the shire counties in Great Britain than

in the metropolitan areas, both in the short and in the long run.

(9) Variation with the type of the ticket

There is a variation in elasticities for different ticket types (single ticket, travel cards, season
tickets). The effect of different types of tickets on ridership has been investigated in many
studies including FitzRoy and Smith (1988), Gkritza eta al. (2011) and Garcia and Ferrer
(2006). FitzRoy and Smith (1988) found that the introduction of the low cost travel cards in
the German city of Freiburg resulted to the increase of both tram and bus use. Garcia and
Ferrer (2006) in their study for the city of Madrid report that price and cross price elasticities
differ according to the type of the ticket and the mode of transport. Generally there is
evidence of an increase in fare elasticities moving from travel cards to single tickets, since
travel card is a more captive form of fare. Fare integration in Italy led to a demand increase
2% and 12% in the short and in the long run respectively (Abrate et al., 2009).
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2.4.1.2. Quality of Service

(a) Measures of quality of service
Quality of service includes a number of factors that affect demand in a positive or negative
way. An indicative list of these factors follows:

1)  Access time to boarding point
2)  Quality of vehicle

3)  Frequency

4)  Service Reliability

5)  Time spent on board

6) Interchange conditions

7)  Waiting time

8)  Waiting environment

9) Information provision

Some of these factors (time spent on board, waiting time, access time to boarding point) take
values that can be subjected to formal measurement. Usually these factors are analyzed using
revealed preference methods (RP). Some other factors (quality of vehicle, waiting
environment) can only be assessed by appropriate questionnaires to operators and users and
the measurement of these factors is inevitably highly subjective. These factors are usually
analyzed using stated preference (SP) methods. For example quality of vehicle could include
measures such as space available per pass, seating pass/total pass, but it is hard to find data
and results for these variables. Disaggregated demand models is the most appropriate method
for analyzing the above factors, since it is very difficult to quantify them in the aggregate

level (Taylor et al., 2009).

The most common indices that can be incorporated to an aggregate demand model, as factors

reflecting the quality of service are:

1) Number of vehicles in operation
2) Vehicle-kms operated

3) Vehicle hours operated
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The frequency operation, as a service quality indicator, depends on the number of vehicles in
use and, thus, as the number of vehicles in operation increases, the level of service is
improved resulting to an increase in transit ridership. McLeod et al. (1991) used the size of
bus fleet as a measure of service quality and it was found to be an important indicator of

transit ridership in Honolulu.

Vehicle-kms operated is the most commonly used indicator of quality of service in aggregate
public transport demand studies (Agthe and Billings, 1978; Gomez-lbanez, 1996; Rose, 1986;
Chen et al., 2011). According to Balcombe et al. (2004) bus demand elasticity with respect to
vehicle kilometers is approximately 0.4 in the short run and 0.7 in the long run. For rail
services elasticities are found to be greater. Rose (1986) found the long run rail demand

elasticity with respect to rail service, measured in vehicle-miles, to be 1.84 in the long run.

Elasticities for PT demand have also been estimated with respect to vehicle hours operated
(Yanmaz-Tuzel and Ozbay, 2010). Service levels may also be expressed in terms of
passenger waiting times or in transit times (Gaudry, 1975). However, this indicator of quality

of service is rarely examined in aggregate demand studies due to unavailability of data.

(b) Supply and demand

The fact that public transport demand is a function of service supply and, vice versa, service
supply is a function of service demand usually leads to the problem of endogeneity. As a
result the estimated parameters will be biased, when both demand and supply variables are
incorporated to the same model. Many researchers have attempted to address this issue by
solving the demand and supply equations separately. Taylor et al. (2009) employed two stage
regression models in order to solve demand and supply equations separately and avoid

endogeneity problems.
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(c) Variation in service elasticities with the type or the area, the time of day
As with fare demand elasticities, demand elasticities with respect to service level depend on
the type of the area (rural, urban), the time of day ( off- peak, peak ) and the type of the mode.

Generally, elasticities tend to be higher for rural areas, off-peak journeys and the rail mode.

(d) Short and long run service elasticities

Service elasticities are different between short and long run. Kyte et al. (1988) found that
service level responses range from 8 to 10 months. Service elasticities computed by Chen et
al. (2011) are 0.13 in the short and 0.27 in the long run, where the long run elasticity refers to

four months after a service change.

(e) Service vs fares

Some studies have found that changes in the quality of service factors are more important in
attracting riders than changes in fares (Iseki and Taylor, 2010; Taylor and Miller, 2004;
Litman, 2004), while others conclude that a decrease in fares will have greater impacts in

ridership than an increase in service quality (McLeod et al., 1991; Chen et al., 2011).

2.4.2. External Factors
2.4.2.1. Income

The degree to which variability in income affects public transport demand has been
investigated by many studies (for example Gomez Ibanez, 1996; Graham et al., 2009; Crotte
et al., 2008; Dargay and Hanly, 2002a). Variations in income affect demand in conflicting
ways. An increase in income level will, generally, induce more trips, but also will lead, in
most cases, to an increased number of private cars. Thus, a part of the increased trips will be
absorbed by public transport, and another part will be diverted to private cars. The actual split

between public transport and car use will be depended on the level of the income to which the
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increase is applied and also to the level of service provided by public transport. Generally, the
higher the level of income, the greater the shift towards private cars (Paulley et al., 2006).
Indeed, some studies have found that the income has a positive effect on public transport
demand because it creates additional activities that require more transport services (Romilly,
2001), while others have found that it has a negative effect because it creates a shift to private
cars (Crotte et al., 2008; Dargay and Hanly 2002a). In their study Bresson et al. (2003) found
that income effect on PT ridership is negative in most areas in France with the exception of
Paris, where income effect is marginally positive. In most transport aggregate demand studies
income is represented by GDP per capita, since since it is a more accurate value at the
aggregate level (Balcombe et al., 2004). For exapmle, Clark (1997) estimated short and long

run GDP bus demand elasticities for Great Britain to be 0.33 and 0.45 respectively.

2.4.2.2. Car Ownership

Private car use is a substitute for public transport use. Therefore, an increase in private cars is
expected to affect negatively demand. Taylor et al. (2009) include per cent carless households
in their models and found a positive significant relationship between per cent carless
households and transit ridership. Gkritza et al. (2011) found that an increase in automobiles
per capita increases the travel card sales in Athens, Greece. It should be noted that, income
and car ownership are highly correlated. However, when they are both included in the model
income is positively related to PT ridership. An example is the study of Clark (1997) in Great
Britain. The long run bus demand elasticity with respect to car ownership was estimated to be
-1.42, while the income long run elasticity was estimated to be 0.45. Income is negatively
related to PT ridership when car ownership is not included in the model; in this case income

incorporates the negative impact of car ownership on PT ridership (Paulley et al., 2006).
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2.4.2.3. Employment

Several studies have proved that employment level has a positive impact on PT ridership
(Hendrickson, 1986; McLeod, 1991; Doti and Adibi, 1991; Gomez lIbanez, 1996; Chung,
1997; Kuby et al., 2004). Hendrickson (1986) examined the relationship between Central
Business District (CBD) employees and commuting by public transportation in 25 US
metropolitan areas and found that they are intimately related. Doti and Adibi (1991) estimated
the elasticity of monthly PT ridership in Orange country in California with respect to the
employment level 1.74. Gomez lbanez, (1996) show that employment level is the main
determinant of transit ridership in Boston between 1970 and 1980. Some studies have found
that unemployment rate is also related to transit ridership. An increase in unemployment rate

increases bus ridership in Athens (Gkritza et al., 2004; 2011).

2.4.2.4. Immigrants

More recently, researchers examined the impact of the number of immigrants on transit
ridership. Immigration appears to be a demographic factor that significantly affects ridership
(Blumenberg and Evans, 2007; Gkritza et al., 2004; 2011; Taylor et al., 2009). Gkritza et al.
(2011) found that an increase in the number of immigrants increases travel card riders. Taylor
et al. (2009) conclude that population characteristics and specifically the percent of recent
immigrants in population and the percent of college students in population were found to

significantly affect transit ridership.

2.4.2.5. Fuel Price

Fuel price is directly related to the cost of car use. It is therefore expected, in general, that an
increase in fuel price will lead to a decrease in private car use, which in turn will result to an
increase in public transport. The exact extent of substitution depends on the particular level of

income and other side conditions such as quality of service and road congestion. Many studies
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have estimated the degree to which variablitiy in transit ridership is related to fuel price and
have found that transit demand elasticities with respect to fuel prices are positive and inelastic
ranging from 0.08 to 0.80 (Agthe and Billings, 1978; Wang and Skinner, 1984; Doi and
Allen, 1986; Yanmaz and Tuzel, 2010, Currie and Phung, 2008; Lane, 2010; 2012). In most
of these studies, the estimated elasticities are small ranging from 0.10 to 0.30. This is
probably explained by the fact that fuel prices represent only a small share of automobile

operating costs (Taylor and Fink, 2004; Small and VVan Vender, 2006).

Agthe and Billings (1978) examined the effect of gasoline prices, bus system size and other
variables on bus ridership during and after the US energy crisis and estimated a gasoline price
elasticity of bus rides of 0.42. Wang and Skinner (1984) analyzed the impact of fares and
gasoline prices on monthly ridership in seven US cities and found that the elasticities of
gasoline prices are positive and inelastic ranging from 0.08 to 0.80. Rail ridership in greater
Philadelphia was modeled by Doi and Allen (1986) as a function of fares, gasoline prices,
seasonal dummies and real bridge tolls for the competing automobile trips. The elasticity

estimated with respect to gasoline prices was 0.11.

The full effect of a gasoline price change on demand occurs after some time and therefore it is
useful to separate short and long run effects. Rose (1986) examined the effect of fares, service
and gasoline prices on rail ridership using time series analysis. The estimated gasoline price
elasticities are 0.11 in the short run and 0.18 in the long run. Similar values take the
elasticities estimated by Chen et al. (2011) (0.11 and 0.19 in the short and in the long run
respectively). Lane (2012) analyzed the presence of lagged effects of gasoline prices on rail
and bus ridership and concluded that it takes time to see the full impact of gasoline prices.
The estimated elasticities take values up to 0.40 for bus and up to 0.80 for rail for various

gasoline price lags. Moreover, fuel price elasticities are different for different public transport
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modes. Haire and Machemehl (2009) have found that rail is more elastic with respect to fuel

price comparing to bus.

2.4.2.6. Parking Fares

Parking cost is another factor that positively affects public transport demand. An increase in
parking fares causes shifts to alternative modes including public transport. Some studies have
found that policies related to increased parking fares are more effective in increasing transit
ridership compared to policies of increased quality of service (Mukhija and Soup, 2006).
However this factor is usually analyzed using stated preference methods (Tsamboulas, 2001;
Hensher and King, 2001). TRACE (1999) based on numerous European studies provides a

total cross elasticity of public transport demand with respect to parking price equal to 0.02.

2.4.2.7. Weather

A limited number of papers have examined the impacts of weather on public transport
ridership. Weather conditions such as rain, snow or extreme temperatures may affect transit
ridership in two ways. First, they may create a shift to other modes of transport that are more
comfortable (e.g. a shift from bus to car). Second, extreme weather conditions may lead
people to cancel their activities, resulting to a decreased overall ridership. Rose (1986), in
order to account for weather effects on monthly rail ridership, incorporated two weather series
(average daily rainfall and average daily snowfall) into a rail ridership model, but they were
found to be insignificant. In their cross sectional study Kuby et al. (2004) found that cities

with extreme temperatures presented reduced levels of ridership.

Guo et al. (2007) investigate the impact of five weather elements (wind, temperature, rain,
snow, fog) on rail and bus ridership in Chicago. The results showed that, although good

weather tends to increase ridership and bad weather tends to reduce it, extremely bad weather
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resulted to an increase in ridership. Comparing the two modes, they found that bus ridership is
more sensitive to weather than is rail ridership. Stover and McCormack (2012) estimated
separate ordinary least squares regression models for each season to examine the effects of
weather conditions on bus ridership in Washington for the years 2006-2008. The results
indicate that each of the four weather variables (wind, temperature, rain, snow) significantly
affects ridership at least in one season. As a general conclusion, adverse weather conditions

lead to a decrease in ridership.

2.4.3. Review Studies

2.4.3.1. Literature Review Studies

Since there is a great number of studies investigating the effect of different factors on the
demand for public transport and also a great variation in elasticities among these studies,
review papers and reports are very important in summarizing relevant findings. Several
rewiew studies have been conducted (Goodwin and Williams, 1985; Goodwin, 1992; Oum et
al., 1992; TRACE, 1999; TRL, 2004; Paulley et al., 2006; Litman, 2004; Taylor and Fink,

2004; Buehler and Pucher, 2012).

2.4.3.2. Meta-analysis Studies

Meta-analysis is a statistical procedure that integrates and compares the results of several
independent studies focusing on similar phenomena. Meta analysis studies on public transport
demand analysis offer useful information regarding the factors that should be included in the
models, the mean elasticities with respect to various factors and the major influences on
variations in the estimates of the mean public transport demand elasticities (Nijkamp and

Pepping, 1988; Kremers et al., 2002; Holmgren, 2007; Henser, 2008).
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2.5. Non-stationary Multimodal Public Transport Demand

Time series data usually suffer from non-stationarity. A time series Y, is said to be non-
stationary if its mean, its variance and the covariance between two time periods (Y Yix)
depend on time t. The use of standard regression techniques with independent, non-stationary
variables can lead to spurious regressions (Granger and Newbold, 1974). In a spurious
regression, fitted coefficients are found to be statistically significant while there is no true
relationship between the dependent variable and the regressors. Thus, correlation between
non-stationary series may not imply the kind of causal relationship that might be inferred in
the case of stationary series. Non-stationarity is a common property of many macroeconomic
time series such as Gross Domestic Product (GDP), income, prices and so on. Transportation
time series data also exhibit non-stationarity. However, there is a limited number of papers in
the literature that analyze public transport demand considering the non-stationary time

characteristics of the variables.

In this section the focus will be on studies that analyze public transport demand taking into
account the non-stationary nature of the demand time series (Chen et al., 2011; Crotte et al.,
2008; Dargay and Hanly, 2002a; 2002 b; Romilly, 2001) as well as on studies that analyze

multimodal public transport demand (Garcia-Ferrer et al., 2006; Gkritza et al., 2004; 2011).

2.5.1. Cointegration and Non-stationary Time Series

Research using cointegration techniques for estimating demand elasticities in transportation is
limited, with papers by Crotte et al. (2008), Dargay and Hanly (2002b) and Romilly (2001)
being the exceptions. The Cointegration/Error Correction Model Approach is likely to offer
much more reliable information, particularly when the stationarity assumption underlying
least squares regression is violated (Kulendran and Stephen, 2001). Further, it allows for the
specification of the long run equilibrium properties and the short run dynamics (via the

cointegration relationships and the Error Correction Models respectively). Moreover, the
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estimation of the speed of adjstustment towards long run equilibrium becomes possible. Table
2.3. presents a comparison between the existing approaches for analyzing public transport

demand and the proposed approaches using cointegration techniques.

Table 2.3 Comparison between existing and proposed approaches

Existing Approaches Proposed Approaches

Demand characteristics; Demand characteristics;

Inputs internal and external factors Internal fnd exterr’l’al fa}ctors;
Lagged “previous” residuals
Elasticities (short or long run) Elasticities (short_and long run)
Outputs - Speed of adjustment
Predictions S
Predictions
Proposed approaches yield
Existing approaches are straight Improved estimates
Comparison g.app g Unbiased elasticities

forward Short and long run elasticities

Speed of adjustment

PwopnE

Romilly’s study (2001) used both system and single equation cointegration methods to
determine long and short run bus demand elasticities and identify the influence of subsidy
reduction on bus fares in Britain (excluding London). The study was based on 45annual
observations between 1953 and 1997 on passenger journeys per capita, bus fares, motoring
costs, vehicle kilometers, subsidies, income and population. All the variables were found to
be non-stationary in levels and stationary after first differencing. A trend and a dummy
variable that captured the effects of deregulation and subsidy reduction were also included in
the model. The results from the single estimation method, in the form of autoregressive
distributed lag (ARDL) estimation method, indicated that demand for bus travel, income, bus
fares, motoring costs and service frequency are cointegrated. The speed of adjustment
coefficient was estimated 0.37 implying that 37% of the adjustment of passenger journeys
towards their long run equilibrium is occuring in the first year. The system estimation method
using Johansen Maximum Likelihood (JML) approach gave poor results in terms of
coefficient significance both on the variables included on the model and the error correction

term (speed of adjustment coefficient).
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Crotte et al. (2008) estimated time series and panel cointegration models to determine the
effect that fares, income, quality of service, and fuel prices have on the demand for the
Mexico City metro ridership. Using annual data from 1980 to 2005, they found that all the
variables were non-stationary. In order to deal with non-stationarity of the data they estimated
cointegrating regressions based on three models: (1) OLS static model (Engle Granger two
step procedure, 1987) (2) the Phillips and Hansen (1990) fully-modified OLS (FMOLS)
model and (3) the Saikkonen (1991) Dynamic OLS (DOLS) model. In the time series
analysis, they found that the metro ridership is cointegrated with income and quality of
service. The three models suggest similar results. The estimated long run income elasticities
derived from the three cointegrating regressions range from -0.78 to -0.82 and the long run
service elasticities range from 0.35 to 0.40. The short run elasticities were estimated via the
Error Correction Models (ECM). Short run income elasticities were 3 to 4 times lower in the

short run, while service elasticities were only 1.5 times lower in the short run.

Dargay and Hanly (1999) estimated both a partial adjustment model and an error correction
model to analyze bus demand in English metropolitan areas and compared the two
approaches. They noted that the error correction model was more appropriate given the fact
that the data were found to be non-stationary. The speed of adjustment coefficient was
estimated -0.68 and -0.32 for the error correction and the partial adjustment model

respectively. This work is presented in two papers published by Dargay and Hanly (2000a, b).

The paper by Dargay and Hanly (2002a) is based on a dynamic econometric model relating
per capita bus partonage to fares, income and service level combibing time series (1987-1996)
and cross sectional data (46 English counties). A dynamic partial adjustment model was
developed and two specifications were estimated; a fixed effects model and a random effects
model. The results indicate that bus partonage is relatively fare-sensitive and that long run

elasticities are at least twice those of short-run elasticities.
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The results from the cointegration models are presented in the paper by Dargay and Hanly
(2002b). The evidence of non-stationarity of the variables (using augmented Dickey—Fuller
tests) suggests that cointegration techniques are appropriate. Applying the Engle-Granger
two-step procedure the long run elasticities were estimated via the cointegrating regressions
and the short run elasticities and the speed of adjustment were derived via the Error
Correction Model (ECM). Two datasets were analyzed; (a) data at national level (Great
Britain as a whole) from 1975 to 1996 (b) data at regional level (Greater London, English
metropolitan counties, English shire counties, Wales, Scotland) from 1986 to 1996. Results at
the national level relate bus demand (journeys per capita, passenger kilometers) with income
and fare (fare index, cost per journey). Both bus fare variables (fare index, cost per journey)
yield similar short-run fare elasticities (about —0.3 for journeys and —0.2 for passenger
kilometers), but show a greater variation in long-run elasticities (0.6 to —0.9 for journeys and

—0.4 and —0.7 for passenger kilometers).

Table 2.4. Summary of the elasticities comptuted in cointegration studies

) ) ) Motoring Speed of
Cointegration and ECM Country Fare Income Service i
Costs adjustment
SR LR SR LR SR LR SR LR
Romilly (2001) Britain -0.38 -1.03 0.22 0.61 0.3 0.52 0.16 0.45 -0.37
Dargay and Hanly (2002b) Britain -0.3 -0.54 -0.81 -147 023 0.28 -0.68
Crote et al. (2008) Mexico -0.17 -0.78 029 0.35 -0.25

Table 2.4 summarizes the elasticities computed in the

above studies estimated using

cointegration and error correction techniques. The fact that there are some important
differences between these studies with respect to the short and long run bus elasticities and
particularly with income elasticity reflects the sensitivity of Error Correction Models to data

and model spesifications (TRL, 2004).

2.5.2. Monthly Ridership and Non-stationary Data
All the above studies were based on annual time series data and their analyses using

cointegration techniques did not model seasonality of public transport demand. This suggests
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that these studies may have missed important dynamics connecting the explanatory factors
with demand on a monthly time frame. On the contrary, Chen et al. (2011) used monthly data
from January 1996 to February 2009 to investigate the impacts of various factors in rail
ridership. In order to deal with the seasonality and non-stationarity issues, they estimated a
dynamic ARFIMA (Autoregressive Fractionally Integrated Moving Average) model
developed by Granger and Joyeux (1980). The time series ARFIMA model allows a fractional
integration to force the series to become stationary. Moreover it makes possible to test lead
and lag effects of various factors on ridership. However, this method uses first differences of
the time series to achieve stationarity and thus throws away useful information about the long

run conditions and about the speed of adjustment towards long run equilibrium.

The results indicate that fare, gasoline price, service level and employment level are the main
determinants of rail ridership in New Jersey. Short and long run elasticities with respect to
these factors were calculated and transit fare was found to exert the strongest impact both in
the sort and in the long run (elasticities of 0.13 and 0.27 respectively). Gasoline price had a
lag effect of 13 months and employment level a lag effect of 4 months. Transit demand is

influenced by transit supply with zero and four month lag.

2.5.3. Multimodal Pubic Transport Demand

There are few papers investigating the factors affecting multimodal public transportation
system ridership (Garcia-Ferrer et al., 2006; Gkritza et al., 2004; 2011; Lane, 2010; 2012;
Gilbert and Jalilian, 1991; Glaister, 2001). Using time series data, Gkritza et al. (2004; 2011)
investigated the factors that affect public transport ridership by mode for the multi-modal
public transport system of Athens through seemingly unrelated regression equations.
Although these papers estimate elasticities for multimodal transport demand, they do not

consider the non-stationary nature of the demand time series.
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Garcia-Ferrer et al. (2006) investigated user response to changes in prices and to the
characteristics of the service for Madrid’s multimodal public transport system. Due to the
unavailability of the data only two modes (metro and bus) of the multimodal public transport
system of Madrid were included in the study. Two different approaches capable of dealing
with the non-stationarity and strong seasonality of the data were developed; Dynamic
Harmonic Regression (DHR) model developed by Young et al. (1999) and Dynamic Transfer
Function Causal Model developed using intervation analysis (Box and Tiao, 1975). Although
these models take into account the non-stationarity of the time series they are not capable of
estimating both short and long run elasticities. The results indicate a great variation in the
price elasticites computed; ranging from -0.52 to -2.17 according to the type of the ticket

(travel card or single ticket) and the transport mode (metro or bus).
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Table 2.2. Summary of selected aggregate public transport demand elasticity studies

Study Data Modes of Indicator of Independent variables Method of Results-Elasticities
Transport demand estimation
Cross sectional Data
Kuby et al. (2004).
Factors influencing light- Five categories e Employment, population, percent renters within
rail station boardings in Cross sectional (1) land use walking distance, bus lines, park-and-ride
the United States. AR Average weekdays | (2) intermodal connection . . spaces, and centrality, were significant.
(261 stations in 11 Light rail boardings (3) citywide Regression analysis ') v variables for terminal and transfer
metropolitan areas) mmy vari: .
(4) network structure stations, and international borders were all
(5) socioeconomic positive and significant.
(6) weather (degree-days)
Taylor et al. (2009) (1) Fares
Nature and /or nurture? (2) Service e Most of the variation in PT ridership across
Analyzing the (3) Population density urbanized areas is explained by factors outside
determinants of transit Cross sectional Total Transit (4) Population in college Regression analysis | the control of PT system
ridership across US (265 US urbanized Public ridershin/transit (5) Carless households with two stage e Public transit use is strongly correlated with
urbanized areas areas for the year Transport idershi per canita (6) Gas price simultaneous equation | urbanized area size.
2000) ridership percaprta |7y immigrants regression models | 26% of the variance in transit patronage is
explained by service and frequency levels.
Souche (2010) Measuring (1) Average cost of a car trip
the structural (2) Average cost of a PT trip o Statistically significant variables: cost of the
determinants of urban (3) GDP per capita transport mode and urban density
travel demand Number of daily PT | (4) Urban density e Urban car travel increases when the average
Cross sectional Car trips per person (5) Length of Regression (OLS, user cost of a car and the urban density fall
(1995) 100 world’s Public roads/inhabitants 25LS, 3SLS) ° An increase in these two variables combined
cities Number of daily car | (6) PT Vehicle Km per with a reduction in the average user cost of
transport trips per person | capita/surface area of the city public transport encourages public transport use.
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Time Series Data

Gaudry (1975) An
aggregate time series
analysis of urban transit

Monthly data from

(1) Fare
(2) Car index
(3) Waiting time

Linear regression in
conjunction with Box-
Jenkins procedures for

Elasticities of monthly PT ridership with respect
to:
Fare (0.15)

demand: the Montreal Public . (4) In transit time L Car index (0.10)
case 19'?/? to 1971, Transport Number of trips (5) Car in transit time trtlhe specification of t_he Waiting time (0.54)
ontreal R™-order autoregressive L
(6) Weather rocess of the error In transit time (0.27)
(7) Income P X Car in transit time (-0.42)
(8) Employment erms. Income( -0.08)
Agthe and Billings (1) Gasoline prices, Multiole rearession [ Elasticities of monthly transit ridership with
(1978) The impact of Number of B (2) Service (total miles) pmo de% respect to
gasoline prices on urban Monthly data from B u r us (3) energy crisis dummy T S q Gasoline prices (0.42)
bus ridership. 1973 t0 1976 us passengetﬁ per variable v meq;sn. Improvements in bus service ( 0.50)
mon (4) student use dummy Of%agrlzti (;‘?]IC » Energy crisis and student use increased bus
variable demand
FitzRoy and Smith (1) Fare e The introduction of the low cost travel cards
(1988) Yearly data from Public (2) Real Income per capita and the improvements in the network resulted to
Public transport demand 1969-1995 Number of (3) Service (Frequency, Route | Ordinary Least Squares | the increase of both tram and bus use
in Freiburg: why did Freiburg Transport passenger trips length) Regression
patronage double in a (4) Lagged dependent variable
decade? (5) Low cost travel cards
Doi and Allen (1986) A (1) Fare eElasticities of monthly PT ridership with respect
time series analysis of (2) Gasoline price to :
monthly ridership for an (3) Toll Time series multiple  [real gasoline price (0.113/0.112)
urban rail rapid transit Monthly data from Number of (4) Seasonal dummies regression models real transit fare (-0.233/-0.245)
line 1978 to 1984 Rail ASSENGErs v' linearand |real bridge tolls for the competing automobile
passeng v logarithmic [trips (0.167/0.185)
form eSeasonal variations of ridership are around -
6.20 for summer period and 4.70 for October
period.
Rose (1986) Transit (1) Fare e Short run (SR) and long run (LR) elasticities of
passenger response: Short (2) Service (train miles) Box and Jenkins monthly PT ridership with respect to :
and long term elasticities (3) Gas price (ARIMA) Time series gas prices (SR:0.11, LR:0.18)
using time series analysis | Monthly data from Rail Unlinked passenger | (4) Cost of car trips analvsis rail service (SR:0.00, LR:1.84)
1970 to 1981 trips (5) Weather effects (average Multivari Y : fare are zero both in the short and in the long
daily rainfall, snowfall) ultivariate regression run
y models

(6) Lagged values of the
explanatory variables
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Hendrickson (1986). A
note on trends in transit

Annual data from

(1) Central Business District
(CBD) employees

» PT increases whenever CBD increases
» CDB Employment is more highly correlated to

commuting in the united - PT (rail, bus, Number of (2) Workers Ordinary Least Squares | transit commuting than overall metropolitan
; 1960 to 1980 in 25 . . -
states relating to US cities taxi) commuters regression size.
employment in the
central business district.
Kyte et al. (1_988) A time Public (1) Fare e The effect of fare changes can be measured for
ffa[rlles?tar?g?r/;i m;npubllc time-series from -I;rs‘r"n;';ﬁ:t Total originating gg E(rerzwlge r'ﬁ:g: v Box and Jenkins up to_ 8 Tontlhs
Portland. Ore Ign 1971 to 1982, Ievely sector riders (transfer % Gas%lir):e Price Time series analysis -Serwﬁe evel responses range from 8 to 10
» regon, Portland. ' passengers v forecasting months .
level, route excluded) () Seasonal factors eEmployment and Gasoline price do have
level) (6) Lagged variables immediate effects
McLeod et al. (1991) (1) Fare eFare elasticities -0.56 and -0.61
Multivariate time_series_ (2) Income per capita Y ) ) eService elasticities 0.25 and 0.28.
model of transit ridership | Annual data from , . (3) Employment Multiple linear «The income elasticities are negative indicating
based on historical, 1958 to 1986 Public Revenue trips (4) Size of bus fleet regression techniques | - acs transit is an inferior good.
aggregated data: the past, Honolulu Transport Linked trips (5) Dummy for strikes )
present and future of vforecasting
Honolulu.
Doti and Adibi (1991). A (1) Total wage and salary . . eElasticities of monthly PT ridership with
model for forecasting employment v' Multiple linear respect to :
public transit ) (2) Transit vehicle regression model | oyp oy ment (1.74)
Quarterly data from Public Total number of service/total population v Cochrane and Orcutt public transit service (0.37)
1974 to 1988 Transport passengers (3) Fares/gasoline prices to remove

(4) Seasonal factors
(5) External shocks

autocorrelation
v’ Forecasting

price of public transit (-0.31)
eSeasonal variation

Gomez_lbanez (1996).
Big city transit rider snip,
deficits and Politics:
Avoiding Reality in
Boston

Annual data from
1970 to 1990
Boston

(bus, street
car and rapid
transit
services)

Annual Ridership

(1) Income

(2) Employment

(3) Trend

(4) Lagged Fare

(5) Lagged vehicle miles

Regression with first
order serial correction
of the error term

p External factors (employment, income) have a
greater impact on ridership than internal factors
(service level, fares)
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Romilly (2001) Subsidy
and Local Bus Service
Deregulation in Britain:

Annual data from

(1) Fare
(2) Income
(3) Vehicle-kms

v Single equation
estimation (ARDL
estimation method)

e The positive effects of deregulation on fares and
passenger trips are cancelled out by the negative
effects of subsidy reduction.

A re-evaluation 1953 to 1997, (4) Motoring costs e Short run (SR) and long run (LR) elasticities of
Britain Passenger journeys | (5) Operating costs S bus ridership with respect to:
Bus per person (6) Subsidies Y Jsof;ﬁ;ner? srzzwx?:rl]%r;n Bus fare (SR:-0.38, LR:-1.03)
Non-stationary (7) Population likelihood method Income (SR:0.22, LR:0.61)
time series (8) Fleet structured Motoring costs (SR:0.16, LR:0.45)
(9) Deregulation (dummy : Service level (SR:0.3, LR:0.52)
variable) ¥ Forecasting Speed of adjustment coefficient 0.37
Gkritza et al. (2004) (1) Ticket price and Travel e Different transit modes have different
Estimating Elasticities for card price (per mode) elasticities
Multi-modal public Metro Total Bus Riders (2') Monthly hours of strikes e PT demand is inelastic with respect to fares
Transport Demand: A Monthly data from Electric Bus Riders, | (3) Vehicle Kms (per mode) e Travel card sales seem to be more sensitive in
time series Approach 1995 to 2001 Bus Metro Riders (4) Income per capita SURE model comparison to ticket sales
Athens (ticket sales travel | (5) Unemployment
Electric bus cards) (6) Fuel price
(7) Automobile ownership
(8) Immigrants
Garcia-Ferrer et al. Monthly data from (1) Fare (single ticket-travel v' Dynamic Harmonic (e Price and cross price elasticities differ
(2006) Demand Forecast 1987 to 2000 Metro card) regression Model  faccording to the type of the ticket and the
and Elasticities Madrid Trip tickets (2) Changes in fares v Transfer Function  [fransport mode
Estimation of Public Non stationary time Bus (3) Changes in service causal Model e With the exception of travel cards tickets show
Transport series (4) Strikes v Forecasting significant negative own price elasticities
Guo et al. (2007) The . (1) wind e Good weather tends to increase ridership while
impact of weather on Daily data (2) temperature bad weather tends to reduce it. Extremely bad
g?]r_lsit ridership in Monthly from 2001 Bus Bus and rail (3) Rain Ordinary Least Squares Weathe_r may_in(_:rease riders_hip.
icago . - (4) Snow Regression ® Bus ridership is more sensitive to weather than
to 2004 Rail passenger trips (5) Fog is rail
Chi (6) Seasonal dummies o Weekend ridership is more sensitive to weather
cago : . .
than is weekday ridership.
Yanmaz —Tuzel and Monthly data from (1) Transit fare p Several months elapse before travelers respond
Ozbay (2010). Impacts of 2005 to 2008 (2) Gasoline prices to gasoline price changes.
Gasoline prices on New Public (3) Lagged Gasoline prices b Elasticity values with respect to gasoline prices
Jersey Transit ridership Yearly data from Transit ridership (4) Service (vehicle hours) Time-series regression | are quite low ranging from 0.12 to 0.22 (short
1980 to 2008 Transport (5) Employment models term) and from 0.03 to 0.18 (medium term).

New Jersey

(6) economic growth factor
(7) seasonal dummies

p Service rate, economic growth, and transit fares
are found to affect ridership
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Stover and McCormack

(1) Wind, Temperature, Rain,

e Cold temperatures led to decreases in ridership

(2011) The impact of Snow n winter.
weather on bus ridership Daily data from Unlinked bus (2) Gas price Multiple regression  |e Rain negatively impacted ridership in all four
in Pierce Country, 2006-2008, Bus passenger trips (3) Unemployment Ordinary least squares feasons and snow was associated with lower
Washington Washington (4) Fare estimator idership in autumn and winter.
(5) Service
(6) Seasonal dummies
Gkritza, et al. (2011) (1) Ticket price and Travel o Different transit modes have different
Estimating Multimodal card price (per mode) elasticities
Transit Ridership with a Metro (2) Immigrants SURE model under the | The effect of fare type on ridership varies by
Varying Fare Structure Monthly data from Bus Riders (3) Income per capita Moael under Me 1 mode and by relative ticket to travel card
1995 to 2006 Bus Electric Bus Riders | (4) GDP assumption of higher | o
Athens Metro Riders (5) Unemployment autf%rre?hr:ses:r\ger Ft);?r;ess e An increase in unemployment increases
Electric bus (6) Fuel price ridership
Eg éutomo:ndles per capita « Seasonal fluctuations especially during the
IC::hiang te_t al. (501#) . Eg gare i fund v Multiple-regression oOpebrIating funds was the most significant
orecasting ridership for perating funds model with \variable
a metropolitan transit (3) participation data for the autoregressive error  [» Gas prices were not statistically significant
authority Monthly data from Number of number of individuals correction e Bus fare had an expected negative impact on
October 1998 to passengers receiving food stamps v Neutral networks,  [ridership.
August 2008 Bus (4) Gas prices v ARIMA models and | A combination of the models yields greater
(5) Seasonal factors v'Combination of these [forecast accuracy than the individual models
forecasting separately.
methodologies
Chen et al. (2011) What 1)Fare e Short and Long run Elasticities of monthly PT
affects transit ridership? (2)Service level ridership with respect to :
A Dynamic analysis (3)Employment Fare (SR:-0.40, LR:-0.80)
involving multiple 'Vgomh'y dla;ggrom (4)Fuel Price VARFIMA (auto | Service level (SR:0.13, LR:0.27)
factors, lags and ;nkl:ary 20050 _ (5)Seasonal factors regressive Employment (SR:0.00, LR:0.59)
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3. METHODOLOGY

The non-stationary time series analysis is a field in econometrics of active research and
continuous progress. In this chapter a survey of the related contributions and techniques is
presented including: stationary properties, unit root tests, autocorrelation, Autoregressive
Conditional Heteroskedasticity, cointegration tests, cointegrating regressions and Error
Correction Models. Finally, a methodology for analysing non-stationary time series,

introduced by Engle and Granger (1987), is presented.

3.1. Stationarity
“Experience with real-world data, however, soon convinces one that both stationarity and

Gaussianity are fairy tales invented for the amusement of undergraduates.” (Thomson, 1994)

3.1.1. Stochastic Process

A random variable X, is a variable which takes values with some probabilities. A collection of
random variables indexed by time is called a stochastic process {X:}. The word stochastic has
a Greek origin and means pertaining to change. For many applications t is taken to be a
discrete variable and although t belongs to an infinite set, under certain regularity conditions
the process can be described by a finite dimensional distribution. The joint distribution F (X,
..., Xmn) completely specifies the probabilistic structure of the stochastic process {X} for all
values of n (a positive integer) and any subset (ts,.., t,) of T (Maddala and Kim, 1998). Since
the joint distribution is hard to define, the stochastic process is usually characterized by the
first moment (mean) and the second moments (variance and covariance) which are both
functions of t. An observed realization of a stochastic process indexed by time is called a time

series.
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3.1.2. Stationary Time Series
3.1.2.1. Definition of Stationarity

The concept of stationarity appears mainly with two forms in econometrics: strict stationarity
and weak or second order stationarity. A stochastic process is said to be strongly stationary if
its distribution is constant through time. It is second order weakly or covariance stationary if
it has a constant mean, constant variances and the covariances depend only upon the distance
between two time periods and not upon the particular time period. In practice weak
stationarity is the most commonly used form of stationarity. This is partly due to the fact that
in the case of a normal stationary process weak stationarity is equivalent to strict stationarity,
because the first two moments completely characterize the normal distribution. In the

following the two main forms of stationarity are described in greater detail.

Definition: Strict stationarity. A time series process {X; t € T} is said to be strictly
stationary if the joint distribution of (X, Xi2, . . ., Xin ) is the same as that of (Xig+s, Xip+s, - - -
, Xinss) or all t4,...t, and s. In other words, strict stationarity means that the joint distribution
only depends on the lag s, not the time (t, . ., t,). This implies that the joint distribution (X,

X, « .., X¢n ) IS time invariant.

Definition: weak or covariance stationarity. A time series process {Xt, t € T} is said to be
covariance stationary (or weakly stationary) if the following conditions are satisfied (Enders,
1995):
4. Constant mean () for all t
E(X)=pVteT (3.2)

5. Constant variance (c°) for all t

Var(X)=E[X-E(X)]*=0c’ VtET (3.2)
6. Covariances depend only upon the lag s

Cov (X, Xirs) = CoV (Kpsk, Xerkes)=Ys

SE[(Xep) Ko ) 1= B[R i) Kiss)]=ys VIET (3.3)

46



The first condition implies that the unconditional mean of the process {X} is the same and it
is constant for all t. The second condition implies that the variance of {X;} does also not
depend on time, it is constant and equal to o2 The third condition implies that the covariances
depend only upon the distance (lag s) between the two time periods, but not on the actual time

at which the covariance is computed.

The covariance between X; and X, is called autocovariance ys and is given by
Yg = COV Xy, Xeys ) = E[Xe — WX — w] (3.4)
For the lag s=0 Yo = cov (Xy, X¢) = var(Xp). (3.5

The autocorrelation coefficient of a time series X; for lag s is defined as:

_ cov(Xe, Xt+s) (3.6)

p
S Jvar(k) |var(iess)

If the time series is stationary the variance is constant over time var(X;)=var(X:s). Combining

the Equations (3.4), (3.5), (3.6) the autocorrelation coefficient is simplified as

_ CovXy, Xeys) Vs
s var(Xt) Yo (3'7)

The sample autocorrelation coefficient is given by p_ = ﬁ (3.8)
Where

To = L1 X —0?/T (3.9)

Vs = Zif (e — D) (Keps —%)/T (3.10)

The plot of p_ against s is called the sample Autocorrelation Function (ACF) or sample

correlogram. For a stationary process, the sample ACF declines sharply as the number s of
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lags increases. For non-stationary time series the sample ACF declines towards zero at a slow

rate as s increases.

3.1.2.2. The White Noise Process
Among stationary processes there is a simple type of process, called white noise process,
which is widely used in constructing more complicated processes. A stochastic process (ey) is

said to be a white noise process if:

1. E(e) =0forallt (3.11)
2. Var(e) = o’ forall t, 6° < o0 (3.12)
3. Cov(e, ens) =0ifs#0 (3.13)

The three conditions imply that a white noise is a serially uncorrelated, zero-mean, constant
and finite variance process. Since all three requirements of weak stationarity are satisfied
(Equations 3.1, 3.2 and 3.3), a white noise process is a second—order stationary process and
has no memory. The white noise process (e;) is Independently and Identically Distributed (iid)

denoted as:
e, ~ iid (0, 6%

If e, ~ iid (0, 6°) then the autocovariance function is

2 .
_foe ifs=0
Ye(s) {0 ifs =0

and the autocorrelation function is

(1 ifs=0
pe(s)_{o ifs =0
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3.1.3. Non-stationary Time Series

3.1.3.1. Definition of Non-sationarity

Stationarity is a usual assumption in the analysis of standard econometric time series models.
However, many observed time series in economics, as well as in transportation, have
empirical features that are inconsistent with the assumptions of stationarity. A non-stationary
process X is, by definition, one which violates the stationarity requirements (Hendry and
Juselius, 1999). Non-stationarity means that a time series has no clear tendency to return to a
constant value or to a linear trend and, therefore, a non-stationary time series will have a time-

varying mean or a time-varying variance or both.

3.1.3.2. The Non-stationary Random Walk Process

The simplest example of a non-stationary process (or a process with a uint root) is a random
walk process of the form:
Xi = X2 + et (3.14)
e~ iid (0, 6%
In a random walk model the expected value of X; will be constant over time but the variance

and the autocovariances will increase with t.

1. EX)=pVvteT (3.15)
2. Var(X)=E[X+-E(X)]’=te®* VtET (3.16)
3. Cov (Xy X)) =E[(Xe1)(Xess-)]= (t-5)o” VLET. (3.17)

Thus, a random walk model is a non-stationary process since the last two conditions of

stationarity (Equations 3.2 and 3.3) are not satisfied.

3.1.4. Trend vs Difference Stationarity

The persistence of a trend in a stochastic process is a common violation of stationarity. The

trend can be either deterministic (the trending variable changes by a constant amount each
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period) or stochastic (the trending variable changes by a random amount each period). Since
classical econometric models are not valid for non-stationary time series, the series should be
made stationary by removing the trend. The method used for detrending (removing the trend)

depends on identifying the type of trend.

I. If the trend is deterministic the non-stationary time series can be made stationary by
estimating the trend and removing it from the data. In this case the time series is a trend
stationary process (TSP).

Il. If the trend is stochastic the non-stationary time series can be made stationary by
differencing the series D times. In this case the series is a difference stationary process

(DSP).

3.1.5. Order of Integration

Time series that can be made stationary by differencing are called integrated processes.
Specifically, when D differences are required to make a series stationary, that series is said to
be integrated of order D, denoted I(D). The order of integration is the number of times a series
needs to be differenced in order to be made stationary. A series X; is said to be:

e Integrated of order zero, 1(0), if X; is stationary

o Integrated of order one, I(1), if the first difference AX; =X-Xy is stationary

e Integrated of order two, 1(2), if the second difference A2X=AX; -AX, is stationary

The most commonly observed time series are 1(0) or 1(1), each of them with the following

features as described by Engle and Granger (1987) and Dolado et al. (1990).

For the case of an 1(0) series:

Q) the variance is finite and time independent

(i) the process has short memory (effects due to an innovation are temporary)
(iii)  the process tends to fluctuate around a mean or a deterministic trend

(iv) the autocorrelations decline sharply as the lag increases
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For the case of an I(1) series:

() the variance is time dependent and goes to infinity as time goes to infinity,
(i) the process has long memory (effects due to an innovation are permanent)
(iii) the process has a stochastic trend

(iv) the autocorrelations tend to one in magnitude for all time separations

3.2. Unit Root Tests

3.2.1. Introduction

When analyzing time series models, it is important to identify the order of integration of each
variable in a model to establish whether it is stationary or not. The order of integration of a
series is ascertained by the application of a set of tests, commonly known as tests for unit
roots. Several tests are used in the literature in order to test for the presence of a unit root. The
most popular unit root tests are the Dickey-Fuller (DF) test (1976, 1979), the Augmented
Dickey-Fuller (ADF) test (1979), the Phillips-Perron (PP) test (1988) and the Kwiatkowski,
Phillips, Schmidt, and Shin (KPSS) test (1992). In this section, the emphasis will be on tests

of the Dickey-Fuller type, which have been described in detail by Dickey et al. (1986).

3.2.2. The Dickey Fuller (DF) Test

3.2.2.1. The DF Test

Unit root tests were first implemented by Dickey (1976) and Dickey and Fuller (1979) in a

simple AR(1) model of the form
Y: = pYioq + Ut (3.18)
u; ~ iid (0, 6°)

where:

Y is the variable of interest

t is the time index

p is a coefficient

u; is the error term
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Equation 3.18 can be reparameterized as
AYt = (p - 1)Yt—1 + Uy = 6Yt_1 + Ug

where A is the first difference operator (i.e. AY;=YY1) and  is a coefficient (6=p-1).

Testing whether a unit root exists (p=1 and 3=0) is equivalent to testing that the variable Y is
integrated of order one I(1). Using the above notation Dickey and Fuller (1979) consider the
following three main regression equations that can be used to test for the presence of a unit

root.

1. Test for a unit root:

AYy = 8Y¢—1 + ue (3.19)
2. Test for a unit root with constant (a,):
AYy = ag + 0Ye—1 + u (3.20)
3. Test for a unit root with constant (a,) and deterministic time trend (t):

AYt = ao + al t+ 6Yt_1 + ut (321)

The difference between the above three regression equations lies in the presence of three
different combinations of the deterministic component. The first is a pure random walk
model, the second includes a constant term and the third includes both a constant term and a
linear time trend. The null hypothesis in the Dickey-Fuller test is that a series contains a unit

root (i.e. it is non-stationary) against the alternative of stationarity.

Ho: 6=0 Series contains a unit root < Y, is I(1)

H;: 6<0 Series is stationary < Y; is 1(0)
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To test for the presence of a unit root it is required to calculate the Dickey-Fuller t statistic.

3

DFT:?@

(3.22)

Once a value for the Dickey-Fuller t statistic is computed it can be compared to the
corresponding critical value at a particular level of significance to see if the null hypothesis is
rejected. If the null hypothesis is rejected, it is concluded that a series Y, doesn’t contain a
unit root and therefore is stationary. Non rejection of the null hypothesis means that we do not
reject the presence of a unit root and hence the non-stationarity of a time series. If the variable
is found to be non-stationary the next step is to apply a unit root test to the differenced

variable and test its order of integration.
A(AYy) = 8AY;_; + & (3.23)
Ho: 6=0 Series is integrated of order 2 or higher
H;: 6<0 Series is integrated of order one < Y; is 1(1)

If the null hypothesis is rejected, then the series is integrated of order 1, as most of the
observed time series in transportation and in economics. Failure to reject the null hypothesis

again means that the series is integrated of order two or higher.

3.2.2.2. Critical Values for the Dickey Fuller Test
In order to test the null hypothesis of a unit root, the standard approach would be to construct
a t-test. However under non-stationarity, it is not possible to use standard t-distribution to
obtain critical values. Therefore, in place of the classical t statistic the t statistic is used,
which has a specific distribution simply known as the Dickey—Fuller distribution. The critical
values of the DF distribution depend on:

1. the sample size

2. the regression model which is consider in describing the data (3.19, 3.20 or 3.21).
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Approximate critical values for specific sample sizes in all three cases represented by
Equations 3.19, 3.20 and 3.21, have first been provided first by Fuller (1976) and then by
Dickey and Fuller (1979, 1981) and were derived using simulations. MacKinnon (1991)
provided finite sample critical values at various significance levels based on the DF
distribution using Monte Carlo simulations. These critical values were obtained for models
used to test the null hypothesis of a unit root containing i) no constant or trend, ii) only a
constant, iii) both a constant and a trend. MacKinnon (1996) provided also a computer
program to calculate numerically highly accurate critical values at any desired level and for

any sample size.

3.2.3. The Augmented Dickey Fuller (ADF) Test

3.2.3.1. The ADF Test

The above testing procedures assume that the time series (or as it is alternatively said the data
generating mechanism) is a random walk model. However, it is well-known that not all time-
series variables can be well represented by the first-order autoregressive AR(1) process. In
case an AR(1) model of the form 3.19, 3.20 or 3.21 is used to conduct the DF test when Y,
actually follows an AR(p) process, then, the misspecification of the dynamics from the
regression tests will lead to autocorrelated errors (see section 3.3 for details). Since the DF
distributions, are based on the assumption that u, follows a white noise process, autocorrelated
errors will make the use of the DF distributions invalid (Harris and Sollis, 2003). Thus,
omission of the higher order dynamics from the regression tests may lead to small biases in
the tests. To avoid these biases we must add dynamics to the model by supplementing lags of
the first differences of the dependent variable. These tests are known as Augmented Dickey
Fuller (ADF) tests. As with the simple DF model, the augmented model can be extended to
take care the possibility that the time series contains deterministic components (constant and
trend). In the case that the error term u, is autocorrelated, the three versions of the ADF test
take the following form.
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1. Test for a unit root:
AY; = 8Y,_, + Z}O=1 BlAYt_i +u, (3.24)
2. Test for a unit root with constant (a,):
AYy = ag + 8Yyq + Xh; BAY; +uq (3.25)
3. Test for a unit root with constant (ay) and deterministic time trend (t):
AYy = ag + oyt + Y + X1, BAY; +ug (3.26)
where p is the lag order of the first-differences autoregressive process.

The null hypothesis of non-stationarity is the same as in DF test. Besides this, the ADF test
statistic has the same asymptotic distribution as the DF statistic, so the critical values are
unchanged if the models used to test for the null of a unit root (Equations 3.19, 3.20 and 3.21)

are extended to allow for higher order autoregressive processes.

3.2.3.2. Issues in the ADF Test
When using ADF tests to detect the stationarity of a time series two main issues usually arise:
e Which version of the ADF test should be used?

e How the optimal lag length of the dependent variable is decided?

Selecting the correct form for the ADF test: When testing for the presence of a unit root it is

important to determine the appropriate form for the ADF test (3.24, 3.250r 3.26) before
conducting the test, since the inclusion or exclusion of deterministic components lead to
different critical values for the ADF test (Harris and Sollis, 2003). The applicability of each
model (Equations 3.24, 3.25 and 3.26) depends on what is known about the properties of the
time series. Verbeek (2004) reports that the appropriate form of the ADF test can be based on
graphical inspection. From the plot it can be estimated if the time series has a mean around
zero (Equation 3.24), if the time series has a mean different from zero (Equation 3.25) or if

there is a clear upward or downward trend in the time series (Equation 3.26). For example, if
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the plot of a series indicates that the time series exhibits a deterministic trend (a clear upward
or downward movement), it is most appropriate to use model 3.26 for the test. By applying
3.26 and rejecting the null of a unit root it is concluded that the time series is stationary

around a deterministic trend.

Selection of the optimal lag length: By including lags of the order p the ADF formulation

allows for higher-order autoregressive processes. The choice of the lag order p in ADF test is
an important step of the unit root procedure. If p is too small then the remaining serial
correlation will biased the test. If p is too large then the power of the test will suffer, since too
many lags reduce the number of observations available. Using different lag lengths often
results in different outcomes with respect to rejecting the null hypothesis of non-stationarity.
However, the literature is not at all precise on the choice of the order of the approximating
autoregression (Agiakloglou and Newbold, 1992). Schwert (1989), Agiakloglou and Newbold
(1992) and Harris (1992) examine in detail the sensitivity of the ADF test to the number of
lagged terms (p) used. Ng and Perron (1995) provide a formal analysis of the relevance of p

in the ADF test and suggest several guidelines for the choice of the lag length p.

One possible approach is to start with a relatively long lag length and pare down by
examining the t-values on coefficients. Repeat the process until all the lags are significantly
different from zero (Enders, 1995). An alternative approach of the determination of the
appropriate lag length can be also used based on the lower value of information criteria such
as the Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) or the
Hannan-Quinn information criterion. The information criteria suggest choosing p to minimize
an objective function (Equation 3.27) that trades off parsimony against reduction in sum of
squared residuals (Ng and Perron, 1995). The Akaike Information Criterion (AIC) (Akaike,

1974) chooses Ct =2 and the Schwarz (1978) chooses C+=logT.

~ C
I, = logé +p— (3.27)
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where p is the lag length , T is the sample size and Ct is a sequence that satisfies C+>0,

3.2.4. The DF-GLS Test

The DF-GLS test is a second generation ADF unit root test proposed by Elliot, Rothenberg
and Stock (1996). Elliott et al. (1996) as well as later studies have shown that this test has
significantly greater power than the previous versions of the augmented Dickey—Fuller test. In
essence, the test is an Augmented Dickey-Fuller test, except that the time series is
transformed via a generalized least squares regression before performing the test. Thus, the
DF-GLS test is accomplished in two steps. Let Y; be the process we consider. The first step is
GLS detrending of Y; and the second step is to apply an ADF test to the locally detrented
series YZ. The local detrending depends on whether we consider a model with a drift only or a

linear trend. DF-GLS and ADF test for the same hypotheses:

Ho: Y has a unit root

Hy: Y, is stationary

The DF-GLS t test is performed by testing the hypothesis a;=0 in the regression
AYY = 0o, + 30, wAL, +u (3.28)

Elliot, Rothenberg and Stock (1996) provide critical values for the DF-GLS test.

3.2.5. Seasonality and Unit Roots

When dealing with seasonality in the data, the Augmented Dickey Fuller test must be
modified in order to test for seasonal unit roots. When seasonality is deterministic, a test to
examine whether a non-stationary time series can be made stationary by removing the

seasonality is performed following the next two steps.
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Let D1, D2, D3...... , D12 represent monthly dummy variables (D; is unity in month i and

zero otherwise).

I.  Regress Y, variable to all dummies and take the residuals
Y =a;D; +a,D, + -+ a,Dq5 + e (3.29)
Il.  Check whether the residuals e are stationary or not by applying an ADF test.
Aey = vyer_q + Zip:lbiet_i + & (3.30)
Ho: €, has a unit root
H,: e, is stationary
If the null hypothesis is rejected then the variable Yt can be made stationary by properly

removing the seasonality.

3.3. Autocorrelation

3.3.1. Introduction -Definition

Ordinary regression analysis is based on several statistical assumptions. The assumption of no
serial correlation in the linear regression model states that the covariances and the correlations

between two different disturbances are all zero.
Cov (&,6) =0, Vi#]j (3.31)

The violation of this assumption is most likely to occur in time series data. In this case
disturbances from different time periods are correlated and the problem is called disturbance
serial correlation or autocorrelation. Autocorrelation refers to the correlation of a time series

with its own past and future values and results to a non zero covariance in the error term.
Cov (si, sj) #0, i#]j (3.32)

Autocorrelation can be positive as well as negative. Economic and Transportation time series

generally exhibit positive autocorrelation (consecutive errors usually have the same sign) as
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the series move in an upward or downward pattern. If the series move in a constant upward
and downward movement, then autocorrelation is negative (consecutive errors typically have

opposite signs).
Consider the model Yi = ag + 21 X1 + aXip + a3Xiz + o+ ap X + & (3.33)

First order autocorrelation occurs when the current observation of the error term ¢ is a
function of the previous observation of the error term

& = PyEr—1 T Uy Uy~ iid (0, 6% (3.34)
Higher order autocorrelation occurs when the current observation of the error term g, is a
function of the previous observations of the error term

St = plgt—l + ngt_z + .- +pp8p_1 + ut Ut ~||d (O, 02) (335)

The major causes of autocorrelation existence are (Washington et al., 2011):
e Systemic measurement errors in the explanatory variables

e Cyclical movements and shocks

e Omitting an important independent variable from the model

e Misspecified dynamics

e ARCH effects

A non-stationarity property in the time series data also gives rise to the phenomenon of
autocorrelation. However if the series are cointegrated the autocorrelation is not a problem

due to the superconsistency property of the OLS estimator (see section 2.5.2.2. for details).

In the presence of autocorrelation, the major consequences of using OLS are:

¢ Although OLS estimators are unbiased and consistent, they are inefficient.

o The estimated variances of the regression coefficient will be biased and inconsistent
o The hypothesis tests based on t and F distributions will give invalid results

e R?will be overestimated and the t-statistics will tend to be higher.
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3.3.2. Breusch-Godfrey Test for Autocorrelation

Although, the Durbin-Watson is the most commonly used test for autocorrelation in time
series analysis, it is important to know that it is not relevant in many cases, for instance when

the error distribution is not normal. Durbin Watson test has the following limitations:

e |tassumes that the regression model contains an intercept

e |tassumes that the error term is normally distributed

e Thetest is inconclusive if the computed value falls in the indeterminate range.

e  The statistic is biased (towards two, thus falsely showing that there is no autocorrelation)
when lagged values of the dependent variable are used as independent variables.

e  The statistic tests only for first-order serial correlation.

In the above cases, Durbin-Watson is not an appropriate test for autocorrelation. Breusch-
Godfrey (BG) test (1979) or Lagrance Multipier test (LM) is useful in that it allows for lagged
dependent variables and it can be generalized to higher order of autocorrelation. The null

hypothesis is that there is no serial correlation of any order up to p.

COHSIder the mOde| Yt = ao + alxtl + azxtz + 33Xt3 + M + akth + St (336)

where g; might follow an AR(p) autoregressive scheme, as follows:

& = plgt—l + ngt_z + e +pp8t_p + €t (337)

The basic steps for conducting the test are:

1. Estimate the model (Equation 3.32) by OLS and save the residuals &;.

2. Regress the residuals &, on all of the independent variables included in the original model
and on the lagged values of the residuals &._,, €., ....E_p. This regression is called the
auxiliary regression.

= v TV, X + 7, X2 + ¥, XKes + o+ Ko + P81 P82+ ppﬁt—p + Vi (3.38)
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Compute the Breusch-Godfrey statistic:
LMg; = (T —p) X R? (3.39)
where
T= number of observations
P=number of lagged residual terms

R? =the coefficient of determination

Compare the Breusch-Godfrey statistic with the relevant critical value and conclude. The
null hypothesis in the Breusch-Godfrey test (BG) is that there is no autocorrelation up to

order p against the alternative of autocorrelation in the residuals.

Hoip, =p, =ps;=...=p, =0 No autocorrelation
Hiip, # 0orp, # 0...orp, # 0  Autocorrelation

If the sample size is large, Breusch and Godfrey proved that under the null hypothesis of

no autocorrelation the statistic is distributed chi-squared with p degrees of freedom.
LMpg = (T —p) X R? ~x¢,)

If LMpg exceeds the critical value x(zp) at the chosen level of significance, then the null

hypothesis of no serial correlation is rejected.

3.3.3. Correction for Autocorrelation

In order to avoid the consequences of the violation of the uncorrelated errors assumption

underlying least squares regression model, Beach and MacKinnon (1978) proposed the

estimation of the ordinary regression under the assumption of higher order autoregressive

process of the error term.
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Instead of the usual regression model, the following autoregressive error model is used:

Yt = ao + alxtl + aZth + a3Xt3 + -+ akth + St (340)
& = P18t—1 T Pp&—2 + . +pp8p_1 + U (3.41)
u, ~ iid (0, 6°) (3.42)

By simultaneously estimating the regression coefficients a; and the autoregressive error model
parameters p;, the procedure corrects the regression estimates for autocorrelation. The
regression analysis under the assumption of higher order autoregressive process of the error
term is often called autoregressive error correction or serial correlation correction. The
Maximum Likelihood (ML) method obtained by Beach and MacKinnon (1978 a, b) is usually

used for the estimation of the autocorrelation coefficients p;.

3.4. Autoregressive Conditional Heteroskedasticity

3.4.1. Introduction-Definition

One of the assumptions of ordinary least squares regression is that the error variance (¢ is
constant across the sample. The violation of this assumption results to the existence of
heteroskedasticity. Heteroskedasticity (unequal error variance across observations) usually
occurs in cross sectional data. In time series analysis heteroskedasticity (time varying error
variance) may be due to business cycles or monetary and fiscal changes. When
heteroskedasticity is observed in time series data it is analyzed using Autoregressive
Conditional Heteroskadastic (ARCH) models, introduced by Engle (1982). ARCH models
assume that while the unconditional error variance is constant, the conditional error variance
is non constant over time and is denoted as o2 (Nobel Prize Committee, 2003). The essential
characteristic of these models is that they capture systematic features in the movements of

variance over time (Washington et al., 2011).
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3.4.2. The ARCH Model

An ARCH (p) Model (Engle, 1982) assumes that the conditional variance of the disturbance
term at time t is related to the squared disturbance terms in the recent past. More formally,

consider the following basic model
Yi = BX¢ + & (3.43)
Engle (1982) assumed that the error term can be decomposed as
g = ViyJo2  ve~iid (0, 1) (3.44)
The conditional error variance (c?) is the variance of ¢, conditional on information available
up to the end of a period t-1 and is given by
of = var(e|F) = 8, + 81621 + 0288 5 + -+ 3p8l, =8 + Xir, Si60;  (3.45)
Where

o2= the conditional error variance

g¢= the error term defined as &= Y+E[Y| X{]

F; = the information set defined as F, = [g,_j:i = 1]
g2 =ARCH terms

&y >0, 6 =0, i=1,....,p and

p=the the number of lags of the error term

The ARCH (p) Model is usually estimated using feasible GLS or maximum likelihood

methods.
The simplest model is an ARCH(1) model. The unconditional variance is 6? = 8, + 8;82_;
And hence the model is

Yt == BXt + Vi 80 + 618%_1 (346)

where v ~iid (0,1), 8, > 0 and 3, >0
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The unconditional mean and variance of the error term are:

E(e,) =0

g
(1—ay)
The conditional mean and variance of the error term are:

var(e,) =

E(e|Fi-1) =0
var(e|Fi_1) = E(ef|F_1) = 8¢ + 81684

The ARCH(1) model has a short-run (conditional) variance (volatility) which is a function of
the squared error term from the last period €2_,. This means that the effect of each new shock

depends, in part, on the size of the shock in the previous period.

The concept of ARCH can be extended to multiple regression models. The ARCH (p)

multiple regression model can be written as (Harris and Sollis, 2003):

Yy = B, + X BiXie + & (3.47)
& = Vi, /G%
ve~iid (0,1)
p
G% = 60 + 51 8t2_i
i=1
where X;, are exogenous explanatory variables or lagged values of the dependent variable.
In case of seasonal monthly data dummy variables may also be included in the model for the

conditional mean to capture seasonal features. In this case the Equation 3.41 is replaced by

the following equation:

Ye = B, + 2icq BiXie + T2y ajDye + & (3.48)
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3.4.3. Engle’s LM test for ARCH

Engle (1982) proposed a Lagrange Multiplier test for ARCH disturbances. There is a clear
intuition behind this test. In the case that the data are homoskedastic, the variance cannot be
predicted and variations in 2 will be purely random. However, in the presence of ARCH,
large values of the present squared residuals ( €2) will be predicted by large values of the past
squared residuals (Bollerslev et al., 1994). Engle’s Lagrange multiplier test for the p™ order

ARCH process has the following steps:

1. Estimate the model (Equation 3.43) by OLS and save the residuals &;.
2. Generate the squared residuals.
3. Regress the squared residuals on the lagged squared residuals. This regression is called
the auxiliary regression.
8 = 80+ 0,801 + 8,805+ + 8pfep + Vi (3.49)
4. Compute the LM statistic:
LMpgcn = (T — p) X R? (3.50)
where
T= number of observations
p=number of lagged residual terms

R? =the coefficient of determination
5. Compare the LM statistic with the critical value and conclude .The null hypothesis in the
LM test for ARCH is that the error term is a normal white noise process. The alternative
hypothesis is that the error term is driven by an ARCH (p) model.
Hp: 81 =08, =83 =....=8,=0 No ARCH

Hi:0; #0o0rd, #0....ord3 # 0 ARCH
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Under the null hypothesis of no ARCH errors, the test statistic converges asymptotically
to a Chi-squared (p, o) distribution, where p is the number of lags of the squared

residuals included in the auxiliary regression and a is the level of significance.

LMagcy = (T —p) X R? ~ x¢,,
If LMagrcy €xceeds the critical value x(zp) at the chosen level of significance, then the

null hypothesis of no ARCH is rejected and the regression presents time varying

variance.

3.5. Cointegration
3.5.1. Unit root, Spurious Regression and Cointegration
The results of classical econometric theory are derived under the assumption that variables of
concern are stationary. However, many time series do not conform to the assumptions of
classical econometric theory. Using standard regressions techniques with non-stationary data
can lead to the problem of spurious regressions. This problem originated from Yule (1926). In
a spurious regression, the results suggest the presence of significant relationships among time
series variables, when, in fact, there is no true relationship between the dependent variable
and the regressors. Consider two uncorrelated random walk processes

Y = Yooy + V¢ Vi~ iid (0, 6°) (3.51)

X¢ = Xeoq + up U ~iid (0, 6%) (3.52)
where u; and v; are assumed to be serially uncorrelated as well as mutually uncorrelated. In
their simulation study Granger and Newbold (1974) regressed two independently generated
random walks on each other.

Y: = oy + BX¢ + & (3.53)

Since both Y, and X; are uncorrelated non-stationary variables it would be expected that the
R? corresponding to the regression (3.53) would tend to zero. Granger and Newbold (1974)
observed that the least squares regression parameters did not converge towards zero, but

towards random variables with a non generated distribution. Testing these parameters by
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employing the critical values of the t distribution, the null hypothesis of a zero coefficient was
rejected too frequently (Kirchgassner and Wolters, 2007). The regression gave a high R? but a
low Durbin Watson statistic. When the regression was run in first differences, the R? was
close to zero and the Durbin Watson statistic close to 2, thus demonstrating that there was no
relationship between Y and X and that the R® obtained was spurious (Maddala and Kim,

1998).

Granger and Newbold (1974) called this phenomenon a spurious regression. In a spurious
regression as T—oo the OLS estimate of the regression coefficient  and its t ratio will not go
to zero, as they should, but to non zero random variables. Indeed, Phillips (1986) showed that
in a spurious regression the corresponding t statistic will reject Ho; p=0 with probability one
as T—oo. Moreover, the R? of the regression will go to unity and the Durbin Watson statistic

to zero.

If X;, Y are non-stationary and the residual series ¢, from the regression is also non-stationary,
then the equation is spurious and necessarily meaningless. In that case the correlation between
the two time series, which is reflected in the regression model, is due to the fact that the two
series are growing together, although each one may be growing for different reasons. Thus,
non-stationary time series may show a correlation just because they share a common trend,
without thus necessarily implying the causal relationship that might be inferred in the case of

stationary series (Harris and Sollis, 2003).

However, in some cases, there may exist a linear combination of two series that yields a
stationary series. If such a combination does exist, then the variables are known to be
cointegrated and their long run relationship is a valid one (Granger and Weiss, 1983).
Cointegration states that there is a long run relationship between non-stationary variables
towards which they always come back. The absence of cointegration leads back to the

problem of spurious regression (Harris and Sollis, 2003).
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3.5.2. Cointegration

3.5.2.1. Cointegrating Regressions

In the previous section the need to test for the presence of unit roots in order to avoid spurious
regressions was stressed. In order to overcome the problem of spurious regressions
statisticians suggested analyzing the relationships between the differences of the series, which
are usually stationary. However, this approach is not suitable since it throws away useful
information about the long run. A model that includes only differenced variables assumes the
effects of the X variables on Y never last longer than one time period. The development of the

concept of cointegration helped to avoid this problem.

Granger (1981) and Granger and Weiss (1983) observe that two non-stationary variables,
which become stationary after differencing, may have a linear combination which achieves
stationarity without differencing. If such a combination does exist, then the variables are said
to be cointegrated (Granger and Weiss, 1983). Cointegrated series share a stochastic
component and a long term equilibrium relationship. Engle and Granger (1987) formalize the
idea of cointegration and provide an estimation procedure for analyzing long run as well as
short run relations among non-stationary variables. More formally consider a regression
model

Y: = oy + BX¢ + & (3.54)
where Y, is the dependent variable and X; is a single exogenous regressor. If both Y, and X;
are 1(1), then, in general, it is expected that &; = Y, — ay — BX; will be also I1(1). However if
there exists a linear combination of X; and Yt, which is stationary 1(0), then the variables are
cointegrated. In that case, the Equation (3.54) is the cointegrating regression and (1-f) is the
cointegrating vector. Since there exists only one such combination, the coefficient B is unique.
If X; and Y, are I(1) and the residuals from the regression (Equation 3.54) are also I(1) then
the variables are not cointegrated and the regresion is spurious. The above definition of

cointegration can be extended to a vector of more than two time series.
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Engle and Granger (1987) generalized the concept of cointegration to time series that are
integrated of a higher order. Assume that Y,and X are integrated of order d. Then, in general, any linear
combination of these valiables will be also 1(d). However, there may exist a linear combination of I(d) variables
such that the error term & of the regression (e; = Yy — ag — BX¢) will be of a lower order of
integration 1(d-b) where b>0 and d>b. If such a combination does exist then the variables are
cointegrated of order (d, b). In practice, however, variables are usually integrated of order one

and their combination is stationary 1(0).

3.5.2.2. Superconsistency Property of the OLS estimator
Stock (1987) found that if the variables Y, and X; are non-stationary I(1) and the estimated
residuals from the cointegrating regression are stationary 1(0) (the variables are cointegrated),
then OLS estimates of g will be consistent. Indeed, Stock went further and suggested that
estimated coefficients from the cointegrating regression are super consistent, they converge
towards their true value at a much faster rate than normal as sample sizes increases

(GOLS—B) =0asT—- o
The superconsistency property of the OLS estimator implies that the parameters estimated
from the cointegrating regression converge with a rate of T (T is the number of observations)
towards their true value. Therefore, their convergence is faster than the convergence of the
OLS estimators in a regression with stationary variables, which converge with a rate of +/T to

their true values (consistency property of the OLS estimator).

Due to the superconsistency property of the OLS estimator when the series are cointegrated:
. The rate T of convergence is very quick and thus the bias of Bols [E(B, s — B)] is

expected to be very small.
Il. The dynamic misspecification and the consequent serial correlation in the residuals &

of the cointegrating regression is not a problem (Harris and Sollis, 2003)
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3.5.3. Cointegration Tests

3.5.3.1. Residual Based Tests

The earlier tests for the presence of cointegration were introduced by Engle and Granger
(1987). The basic idea behind these tests for cointegration is to test whether the estimated
residulals from the regression (Equation 3.54) g, are 1(0) against the alternative that &, are 1(1).
Since these tests are performed by applying a unit root to the residuals, they are called
residual based tests. There are several unit root tests that can be applied to the residuals to test
whether they are stationary or not, for example the Dickey -Fuller (DF) test, the Augmented
Dickey-Fuller (ADF) test, the Phillips-Perron (PP) test. Engle and Granger (1987) used the
DF test to test if the estimated residuals from the regression (Equation 3.54) contain a unit

root.

The Engle Granger cointegration test is carried out in two steps.
I.  Run the OLS regression (3.54) and obtain the residuals & = Y, — 4, — X,

Il.  Apply a unit root to €, and test the null hypothesis of non-stationarity. Since serial
correlation is often a problem in time series data, an augmented version of DF test is
usually used. The version of the ADF test without deterministic terms should be used
(3.24), since the estimated residuals from the cointegrating regression using OLS have

a zero mean by construction (Kirchgassner and Wolters, 2007).
A& =884 + X bi Ag_; + w, (3.55)

we-iid (0, 62)

The null hypothesis is that the residuals contain a unit root against the alternative of

stationarity.
Ho: 6=0 Residuals contain a unit root-No cointegration

Ho: 6<0 Residuals are stationary- Cointegration
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If the residuals are stationary, then there is a cointegrating relationship between the variables.
If the residuals have a unit root, there is no cointegrating relationship between the variables
and the results are spurious. Thus, a test for a unit root in the residuals is a test for non-

cointegration.

3.5.3.2. Critical Values for Residual Based Tests

Critical values for cointegration tests are not the same as in ordinary unit root tests. Two
reasons explain why the asymptotic distribution is not the same. First, the test is applied on
the estimated residuals and not on the true disturbances. Since the OLS estimator is used to
estimate the cointegrating regression, the estimated residuals are chosen so as to have the
smallest sample variance, resulting to over rejecting the null hypothesis of non-stationarity
(Harris and Sollis, 2003). Second, the asymptotic distribution, under the null hypothesis of
non-stationarity, is affected by the number of regressors included in the cointegrating
regression (3.54). The asymptotic distributions will also differ according to the number of
deterministic components of the equilibrium relation. The cointegrating regression may

contain a constant and a deterministic trend taking one of the following forms.

@ Y.=pBX;+¢ (3.56)
() Yy =ag+ BX¢+ g (3.57)
€ Yy=ag+at+pX¢+ & (3.58)

Thus, the critical values for cointegration tests will depend on:
I the sample size (number of observations T)
Il. the number of regressors included on the Cointegrating regression

Il whether a constant or a deterministic trend is included in the Cointegrating regression

In order to derive critical values for cointegration tests, MacKinnon (1991) estimated

response surface regressions by feasible GLS with an approximation formula
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Ce(p,T) = B, + B, T " +B,Te” +ex (3.59)
Where
K: the number of variables included in the cointegrating regression
Ty = the sample size
Cx(p, T) =the per cent critical values for the sample size Ty
p= the level of one-tail test of the unit root null against the alternative of stationarity

B_= an estimate of the asymptotic critical for the test at level p

B, By, B, = response surface estimates derived from MacKinnon’s table

The GLS estimates of all Bs parameters for the three cases (a), (b) and (c) are presented in a
Table entitled Response surface Estimates of Critical Values of cointegration tests
(MacKinnon, 1991). Critical values for finite sample sizes T can be computed using the
estimates for the three parameters (derived from MacKinnon’s table) and the following

relation:

Ce(p, T) = B, +B, T +B,Tc? (3.60)

3.5.4. Valid Regressions with Stationary and Non-stationary Variables
When dealing with stationary and non-stationary time series there are four cases to consider
regarding whether the regression models are valid or not:

1. X;and Y are stationary —Classical regression model can be applied.

2. X;and Y, are integrated of different orders —Regressions are meaningless. However,
if some of the variables are I(1) and some 1(2), they may be multicointegrated
(Granger and Lee, 1990).

3. X; and Y, are integrated of the same order and the residual time series is non-
stationary (contains a stochastic trend) —The regression is spurious.

4. X; and Y, are integrated of the same order and the residual time series is

stationary—X; and Y are cointegrated.
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3.6. Error Correction Models

3.6.1. Granger Representation Theorem

The Granger Representation Theorem (GRT) states that if a set of variables are cointegrated
the short run dynamic relationship between them can be represented by an Error correction
Mechanism (ECM). According to Granger Representation Theorem cointegration is a
necessary condition for the Error Correction and vice versa. If there is an Error Correction
Mechanism, the variables are cointegrated. The principle behind the Granger Representation
Theorem is that cointegrated time series share a long run equilibrium relation to which the
system converges in the long run. Short run deviations from this equilibrium will be corrected

over time by an ECM.

3.6.2. The Error Correction Model
The ECM brings together the static long run equilibrium relationship of cointegrated time
series with its dynamic short run disequilibrium. The error correction model is a representaion
of the short run dynamic relationship between X, and Y, , in which the error correction term
incorporates the long run information about X; and Y, in the Model. This has a nice economic
interpretation: Y, can wander away from its long-run (equilibrium) path in the short run, but
will be pulled back to it by the ECM over the longer term. The ECM contains information on
both the short and the long run properties of the model and it can be used to estimate:

I Short run effects of X; on Y;

Il. Accelaration speed of the short run deviation to the long run equilibrium
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An Error Correction Model is applied by using the estimated residuals from the cointegrating
Equation (3.54) as a regressor in Equation (3.61) and takes the following general form.
AY; = Ziq:l ayj AYe g + Zipzo ayxi AXi—i + Aresid Et—1 T €t (3.61)
Where
A denotes the first time differences
p, g the lag lengths chosen so as the e; ~iid (0, 6°)
€;—1 the lagged residuals namely the lagged Error Correction Term (ECT)
arwesia the coefficient of the lagged residuals or speed of adjustment coefficient

e, the error term

Equation (3.61) implies that the current changes in AY,; are a linear function of the past
cointegration residuals &._; , the lags of the first differenced dependent variables and the lags
of the first differenced independent variables. All the variables in the ECM are stationary and
therefore the estimates of the parameters of the ECM do not exhibit spurious regression
effects. If there are other stationary variables that affect the short-run behavior of Y, (ex.
seasonal dummy variables), they can be included in the ECM. The lagged residuals derived
from the cointegrating regression, namely the lagged Error Correction Term (ECT), represent
the speed of adjustment towards the long run equilibrium. The coefficients a,; of the first

differenced independent variable (AX;) represent the short run effects of X; on Y.

3.6.2.1. Speed of adjustment coefficient:

The coefficient of the lagged ECT (aresiq) tells us the speed with which the model returns to
equilibrium following an exogenous shock. It should be negatively signed, indicating a move
back towards equilibrium. A positive sign indicates movement away from equilibrium. The
interpretation given to this negative reaction of AY,on u; is that changes in AY, are due to an
error correction to Y, due to its past deviations from equilibrium captured by & =Y, —d, —
PX,. This is the reason that ., is usually called disequilibrium error. The coefficient of the
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disequilibrium error should lie between zero and one, zero suggesting no adjustment one time

period later, one suggesting full adjustment one time period later.

3.7. Single Equation Esimation with 1(1) variables - The Engle Granger two-step

Procedure.

Engle Granger procedure is an appropriate technique when there is one dependent variable

(endogenous variable) that is explained by other variables which are assumed to be weakly

exogenous. Engle Granger two step procedure (1987) is implemented in the following four

steps (shown also in the flow chart of figure 3.1):

1.

Identify the statistical properties of the variables. The first step in the analysis is to
implement a unit root test for each of the variables and test their order of integration.
By definition, cointegration necessitates that the variables are integrated of the same
order. If the variables are integrated of order zero (they are stationary) it is not
necessary to proceed, since standard time series methods can be applied. If the
variables are integrated of different orders, it is possible to conclude that they are not
cointegrated. However, if some of the variables are I(1) and some 1(2), they may be
multicointegrated (Granger and Lee, 1990). If the variables are integrated of the same

order we proceed to the next step.

Demonstrate that the series are cointegrated. Estimate the long run relationship
including all variables that (a) are expected to be cointegrated (b) have sustained
shocks on the equilibrium. The variables that have sustained shocks on the equilibrium
are usually regarded as exogenous shocks and often take the form of dummy variables.
Apply a cointegrating regression (Equation 3.54) and test whether the residuals are
stationary. This is determined by a unit root test to the residuals with MacKinnon’s
Critical values, since critical values for cointegration tests are not the same as in
ordinary unit root tests. If the residuals €; are stationary, then there is a cointegration
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relationship between the variables and the long run parameters are estimated through

the cointegrating regression.

Estimate the Error Corrrection Model. Once the long run equilibrium relationship is
established, the residuals from the equilibrium regression can be used to estimate the
error Correction Model. Thus, the short run elasticities and the rate of adjustment from
the short to the long run are estimated through the Error Correction Model (ECM,

Equation 3.61).

Determine whether the ECM estimated is appropriate. Performe diagnostic checks to
determine whether the residuals of the error correction equations are approximately
white noise (Gerrard and Godfrey, 1998). Apply Engle’s LM test to check the existence
of autocorrelation (first order or higher) and Breusch-Godfrey test to check the
existence of or autoregressive conditional heteroskadasticity (first order or higher) in
the residuals. In case that exist serial correlation and/or ARCH effects on the ECM,
correct it by running the appropriate model. Moreover, cointegrating regressions imply
that the speed of adjustment coefficient (osig) should be significantly different from
zero. If it zero the variables are not cointegrated and they do not converge to the long

run equilibrium.
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4. MULTIMODAL PUBLIC TRANSPORT DEMAND:
A COINTEGRATION TIME-SERIES APPROACH

4.1. Introduction

Public transportation offers low cost, equitable and environmentally friendly services to
societies and as such is an important player in sustainable transportation and mobility in urban
areas. Public transportation (PT) frequently operates in a highly competitive and complex
environment and its demand is affected by various socioeconomic and operational
characteristics. For instance, higher incomes and lower fuel prices encourage the use of
private vehicles, while suboptimal scheduling and increased fares could have a negative

impact on public transport usage.

In this chapter we explore demand characteristics of a multimodal public transportation
system using a non-stationary time-series modeling approach. Demand data for the Athens
public transportation system are exploited, and the aims of the analysis are: First, to quantify
the effects of various factors (i.e. fares, fuel prices, income, motorcycle sales) that affect the
demand for different PT modes. Second, to estimate the elasticities of different modes of
public transport with respect to the above factors (both in the short and in the long run), and
thus analyze the trends of demand in these modes. This study provides useful information for
the design of policy measures concerning pricing policies regarding fares and fuel prices and,
also, policies for strengthening the public transport network. The analysis is performed using
cointegration techniques in a time series analysis framework since this allows for treating
non-stationary data and for determining short and long term elasticities. At the same time it
allows for estimating the speed of convergence towards long term equilibrium. The modeling
approach addopted is presented in section 4.3 following a brief literature review in section
4.2. Data and system description are given in section 4.4. Finally, the results and the

conclusions of the chapter are presented in sections 4.5 and 4.6 respectively.

78



4.2. Background
The effect of different factors on the demand for public transport has been investigated in
several publications, with many of them summarizing relevant findings (Goodwin, 1992;

Litman, 2004; Oum et al., 1992; Paulley et al., 2006; Taylor and Fink, 2004; TRACE, 1999).

Fare has been an important parameter affecting demand and has thus been widely examined
in the literature (for example, Dargay and Hanly, 1999; de Rus, 1990; Gillen, 1994; Litman,
2004). In general, when fares increase, ridership decreases (Balcombe et al., 2004). Fare
elastisities are dynamic, varying over time and following fare changes. However, fare
elasticities depend not only on the time period examined, but also on a number of other
factors such as the type of the public transportation mode analyzed, user characteristics, and
so on. This explains the differences in the values of fare elastisities among different studies
(Paulley et al., 2006). The quality of service is another important factor that affects demand
for public transportation. Some studies have found that quality of service factors are more
important in attracting riders than changes in fares (Iseki and Taylor, 2010; Litman, 2004).
Moreover, many studies have estimated the degree to which variablitiy in transit ridership is
related to fuel price (Agthe and Billings, 1978; Chiang et al., 2011; Currie and Phung, 2007;
Lane 2010; Doi and Allen, 1986; Rose, 1986; Storchman, 2001; Wang and Skinner, 1984).
Most of these studies found that transit demand elasticities with respect to fuel prices are
positive and lower than unity. Concerning the effect of income on public transport demand,
some studies have found that it has a positive effect because it creates additional activities that
require more transport services (Romilly, 2001), while others have found that it has a negative
effect because it creates a shift to private cars (Crotte et al., 2008; Dargay and Hanly 2002a).
The effect of car ownership and the effect of employment level have been studied by Gomez
Ibanez (1996), Hendrikscon (1986) and Kain and Liu (1999). More recently, researchers
examined the impact of the number of immigrants on transit ridership (Blumenberg and
Evans, 2007; Gritza et al., 2011), as well as the impact of weather on transit (Guo et al., 2007;
Stover and McCormark, 2012).
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However, research using cointegration techniques for estimating demand elasticities in
transportation is limited, with papers by Crotte et al. (2008), Dargay and Hanly (2002b) and
Romilly (2001) being the exceptions. The Cointegration/Error Correction Model Approach is
likely to offer much more reliable information, particularly when the stationarity assumption
underlying least squares regression is violated (Kulendran and Stephen, 2001; Gil-Alana et
al., 2012). Further, it allows for the specification of the long run equilibrium properties and
the short run dynamics (via the cointegration relationships and the Error Correction Models
respectively). The paper by Dargay and Hanly (2002b) is based on a dynamic econometric
model relating per capita bus partonage to fares, income and service level. The results
indicate that bus partonage is relatively fare-sensitive and that long run elasticities are at least
twice those of short-run elasticities. Romilly’s study (2001) used both system and single
equation cointegration methods to determine long and short run bus demand elasticities and
identify the influence of subsidy reduction on bus fares. The fact that there are some
important differences between these studies with respect to the short and long run bus fare
elasticities reflects the sensitivity of Error Correction Models to data and model spesifications
(Balcombe et al., 2004). Crotte et al. (2008) estimated time series and panel cointegration
models to determine the effect that fares, income, quality of service, and fuel prices have on
the demand for the Mexico City metro ridership. They found that the metro ridership is

cointegrated with income and quality of service.

All the above studies were based on annual time series data and their analyses using
cointegration did not model seasonality of public transport demand. This suggests that these
studies may have missed important dynamics connecting the explanatory factors with demand
on a monthly time frame. On the contrary, Chen et al. (2011) used monthly data to investigate
the impacts of various factors in rail ridership. In order to deal with the seasonality and non-
stationarity issues, they estimated a dynamic model and they quantified short and long run

effects.
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There are few papers investigating the factors affecting multimodal public transportation
system ridership (Garcia-Ferrer et al., 2006; Gkritza et al., 2004; 2011). Gkritza et al. (2004,
2011) investigated the factors that affect public transport ridership by mode for the multi-
modal public transport system of Athens through seemingly unrelated regression equations.
Although these papers estimate elasticities for multi modal transport demand, they do not
consider the non-stationary nature of the demand time series. Garcia-Ferrer et al. (2006)
investigated user response to changes in prices and to the characteristics of the service for
Madrid’s multimodal public transport system using two different approaches capable of

dealing with the nonstationarity and strong seasonality of the data.

Our contribution to the literature includes the use of cointegration and error correction
approaches for investigating demand in a multimodal public transportation system by
considering a number of operational and macroeconomic factors and estimating short and

long run demand elasticities for the different modes of the system.

4.3. Methodology
In the third chapter a detailed description of the methodology followed in order to estimate
short and long run elasticities for the multimodal public transprotation system of Athens was

given. Here we include a brief description in order to make the chapter self contained.

In economics, long run is the equilibrium state where no changes occur, while short run is the
period of time during which adjustment to the long run equilibrium is occuring. In the case of
non-stationary data, the existence of a long run equilibrium state is synonymous with the

concept of cointegration (Harris and Sollis, 2003).

The use of standard regression techniques with independent, non-stationary variables can lead
to spurious regressions since the statistical significance of the parameters is overstated
(Granger and Newbold, 1974). In a spurious regression, the estimated parameters are
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statistically significant while there is no true relationship between the dependent variable and
the regressors. Thus, correlation between non-stationary series may not imply the kind of
causal relationship that might be inferred from stationary series. Granger and Newbold (1974)

showed this phenomenon using Monte Carlo Simulation.

However, in some cases, there may exist a linear combination of two series that yields a
stationary series. If such a combination does exist, then the variables are known to be
cointegrated and their long run relationship in is a valid one (Granger and Weiss, 1983). More

formally, if y; and x; are both 1(1), but there exists a linear combination of

Ye—a—Pxy =u (4.1)

which is 1(0), then y; and x; are cointegrated, equation (4.1) is the cointegrating regression,
and f is the cointegrating parameter. The estimated parameters will be superconsistent. The
superconsistency property implies that if all the variables (dependent and independent) are
non-stationary and the residuals are stationary, the OLS estimators in Equation (4.1) converge
to their true value at a much faster rate than the usual OLS estimators with stationary

variables (Stock, 1987).

This idea can be extended to a vector of more than two time series. Engle and Granger (1987)
proved that the cointegrated series have an Error Correction Mechanism (ECM)

representation which permits the derivation of short run parameters. The ECM is defined as
AP, = Zg=1 ayi APe; + Z?:o Qi AX¢_i + Qresig Up—1 T €; (4.2)

where 4 defines the difference variable, p, g the number of the lags needed to make e, white

noise, and u.; the lagged residuals derived from equation (4.1).

All the variables in the ECM are stationary and therefore the estimates of the parameters of
the ECM do not exhibit spurious regression effects. The ECM equation implies that Ay, can
be explained by the lagged u., the lagged Ay, and Ax; Notice that u.; can be thought of as an

equilibrium error (or disequilibrium term) occurred in the previous period. If it is nonzero, the
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model is not at equilibrium state and vice verca. Most cointegration econometric models that

have been examined in the literature follow the Engle-Granger two step procedure (1987) to

estimate short and long run elasticities. A general strategy for examining and modeling

cointegrated series according to the Engle-Granger procedure includes the following:

1.

Pre-testing the variables for their order of integration. The first step in the analysis is to
implement a unit root test for each of the variables. By definition, cointegration
necessitates that the variables are integrated of the same order. If the variables are
stationary it is not necessary to proceed, since standard time series methods can be
applied. If the variables are integrated of different orders, it is possible to conclude that
they are not cointegrated. However, if some of the variables are 1(1) and some 1(2),
they may be multicointegrated (Granger and Lee, 1990).

Applying a cointegrating regression and testing the residuals for stationarity. If the
residuals are stationary, then there is a cointegration relationship between the variables
and the long run parameters are estimated through the cointegrating regression. Thus, a
test for a unit root in the residuals is a test for non-cointegration. In practice, any of the
unit root tests can be applied. However, the critical values are not the same because we
are applying the tests to the residuals and not to the true disturbances (Maddala and
Kim, 1998). The critical values will depend on the number of regressors and whether a
constant or/and a time trend is included in the cointegrating regression.

Once the long run equilibrium relationship is established, the residuals from the
equilibrium regression can be used to estimate the error correction model. Thus, the
short run elasticities and the rate of adjustment from the short to the long run are
estimated through the Error Correction Model (ECM, Equation 4.2).

Determining whether the ECM estimated is appropriate. Performing diagnostic checks
to determine whether the residuals of the error correction equations are approximately
white noise. Moreover, cointegrating regressions imply that the speed of adjustment

coefficient (oesig) Should be significantly different from zero.
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4.4. Public Ttransport System and Data Description

4.4.1. The Athens Multimodal Public Transport System

The Athens multimodal public transport system includes five modes: metro, urban rail, bus,
electric bus and tram. The network has an average daily passenger demand of 2.5 million
passengers and is spread over an area of about 650 km? The underground metro system in
Athens has 2 metro lines with a total length of 32 km and 36 stations. The frequency of the
trips is 3 minutes during peak-hour periods and 5 to 10 minutes during non peak periods.
Urban rail is the ‘oldest” Public Transport Mode in the city of Athens with a length 25.6 km.

The two metro lines and the urban rail line are connected in four central stations.

The bus network includes approximately 330 bus lines covering the entire greater Athens
Metropolitan Area, with a fleet of almost 2,500 buses. The electric bus network consists of 22
lines that primarily serve the Athens city centre with 366 trolley (electric) buses. There are
dedicated bus lanes (total length 50.53 km) for the bus and the electric bus mode in the most
congested parts of the network, in hopes that this will increase speed and reduce traveler
times. The bus and electric bus networks are connected to the metro and the urban rail
through bus/electric bus stops that are close to the metro stations. The Tram has 3 lines
mainly linking the south suburbs of Athens to the city center with a limited network of
approximately 26 km and 48 stops. We do not analyze the tram because sufficient data were

not available and its modal share of daily public transport trips is below 3%.

The modes discussed are interconnected. The integrated ticket, which was applied during the
last two years of the study, encourages the use of different modes in a single journey.
However, for large parts of the network there are parallel lines of different public transport
modes that serve the proximate OD pairs (particularly for bus and metro). To this extent, there
is competition between PT modes because fares, although centrally regulated, differ among

modes.
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4.4.2. The Data

The dataset used originates from the Athens Public transportation System described in the
previous section. In order to investigate short and long run elasticities for the Athens
multimodal transit system, monthly data from January 2002 to December 2010 (a total of 108
observations) were used. The variables used in this study were grouped in two general
categories: public transport variables (internal factors) and macroeconomic and demographic
variables (external factors). Table 4.1 shows the mean and the standard deviation of each
variable.

Table 4.1: Summary statistics per mode (monthly)

Variable Mean Standard Deviatior
Public Transport variables

Metro Riders 14,295,245 2,544,766
Bus Riders 30,338,756 3,127,397
Electric bus Riders 6,573,172 7,852,62
Urban Rail Riders 9,661,460 1,526,618
Metro ticket price (in €) 0.922 0.074
Bus/electric bus ticket price (in €) 0.695 0.205
Urban rail ticket price (in €) 0.879 0.095
Macroeconomic and Demographic Variables

Unemployment Rate (percent) 9.076 1.752
Gasoline price (in €) 0.799 0.143
Gross Domestic Product (in millions €) 19.768 1.657
Gross Domestic Product per capita (in €) 1,772 138
Population of Athens 4,014,567 71,742
Population of Greece 11,149,942 112,053
Number of motorcycle sales 2,763.57 1,043.26
Number of cars sales 10.755,55 3.471,38

Public transport data (monthly ridership and single ticket price per mode) were obtained from
the Athens Urban Transport Organization. It should be noted that in the absence of reliable
and consistent monthly data on factors such as comfort and service, these variables were not
included in our analysis." Figure 4.1 depicts monthly ridership for each of the four transit
modes (metro, bus electric bus, train). As shown in Figure 4.1, the summer months

particularly August have a clear negative effect on transit demand.

! Data such as comfort and service are potentially important for obtaining demand estimates at least at
the “line” level. However, these data are usually collected by questionnaires (del Castillo and Benistez,
2012) and it is this impossible to obtain them on a monthly basis.
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Figure 4.1. Monthly transit ridership (2002-2010)

Population of Greece, population of Athens, Unemployment rate and Gross Domestic Product
(GDP) were obtained from the Hellenic Statistical Authority. Population estimation at
monthly intervals was not available, so a monthly estimation of the labor force was
incorporated here as a proxy, while daily gasoline price data provided by the Greek Ministry
of Development were used in this analysis. The monthly range of gasoline prices is calculated
and tested for significance in explaining transit ridership. Finally, monthly motorcycle and car
sales in Attika per month were obtained from the Association of Motor Vehicle Importers
Representatives. Ticket prices, fuel prices and gross domestic product were normalized at

year 2010 € using the consumer price index for Greece.

4.5. Results

4.5.1. Unit Root Tests
The first step in the analysis is to implement a unit root test for each of the variables in order
to test their sationarity. To determine whether the logarithmic form of each of the variables

examined in this study contains a unit root or not, we employ the Dickey-Fuller —GLS test.
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Then, if the variables are non-stationary, we proceed to determine the order of integration of

the variables by applying a unit root test to each differenced variable (Table 4.2).

The modified Dickey—Fuller t test (known as the DF-GLS test) proposed by Elliott et al.
(1996), is an augmented Dickey—Fuller test, except that the time series are transformed via a
generalized least squares (GLS) regression before performing the test. Elliott et al. (1996) as
well as later studies (Maddala and Kim, 1998) have shown that this test has significantly
greater power than the previous versions of the augmented Dickey—Fuller test. It should be
mentioned that the Dickey-Fuller GLS test is sensitive to the choice of the lag length so, in
order to choose the optimum lag length, we apply Akaike Information criteria, Schwarz
Information criteria, and Modified Akaike Information criteria. We choose the lag length

supported by the majority of these criteria.

Table 4.2. DF-GLS test for the presence of Unit Root

level First differences
Variable? Number  DF-GLS Number DF-GLS 5% DF-GLS Order of
of lags test of lags test critical integration
values
Public Transport variables
Metro Riders 12 -0.324 11 -3.453 -1.944 1(1)
Bus Riders 11 -1.290 1 -10.068 -1.944 1(1)
Electric bus Riders 11 -0.569 11 -2.404 -1.944 1(1)
Urban rail Riders 12 -0.562 10 -3.583 -1.944 1(1)
Metro ticket price 0 -1.641 0 -9.2112 -1.944 1(1)
Bus/electric bus ticket price 0 -0.296 0 -10.226 -1.944 1(1)
Urban rail ticket price 0 -1.110 0 -9.383 -1.944 1(1)
Macroeconomic and Demographic Variables
Unemployment Rate 3 -0.604 2 -5.439 -1.944 1(2)
Gasoline price 1 -0.805 0 -7.081 -1.944 1(2)
Gross Domestic Product 12 -1.409 6 -7.930 -1.944 1(2)
Gross Domestic Product per 12 -1.421 6 -7.917 -1.944 1(2)
capita
Population of Athens 1 -1.412 0 -0.845 -1.944 1(2)
Population of Greece 1 -0.271 0 -1.615 -1.944 1(2)
Number of motorcycle sales 12 -0.981 2 -2.77 -1.944 1(1)

% variables are in logarithms

Based on MacKinnon’s (1996) critical values, the null hypothesis that each of the variables

contains a unit root was not rejected at the 5% critical level. That is, all the variables are
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characterized by integration of degree one or higher. The DF-GLS t-statistics for the first
difference of the variables are statistically significant (except for the population of Greece and
the population of Athens), leading to the rejection of the null hypothesis that the first
differences are non-stationary and indicating that almost all the variables are integrated of

order one.

In general, seasonality is a component that is known to influence public transportation
ridership. In Athens, in particular, seasonality takes on a significant value during the summer
period. So, in order to treat seasonality, we create dummy variables for all months. Especially
for the dependent variables (metro, bus, electric bus and urban rail ridership), we checked
whether they may be transformed from non-stationary to stationary, by properly treating
seasonality. We regressed each dependent variable to all dummies, we took the residuals and
then we checked whether the residuals of these equations were stationary or not. The results
from the DF-GLS test indicated that the variables metro and urban rail riders were still non-
stationary at the 5% significance level, whereas bus and electric bus riders were stationary.
We decided to treat all the dependent variables as non-stationary and to treat seasonality by

including dummy variables in the cointegrating regression and in the error correction model.

4.,5.2. Long Run Analysis

According to the previous discussion, the reason for using cointegration techniques is that
non-stationary time series result to spurious regressions and, hence, do not allow statistical
interpretation of the estimated model. Since it is necessary to examine whether there is a long
run co-movement of the variables, we apply Engle-Granger’s two step procedure (Engle and
Granger, 1987). The first step is to estimate the cointegrating regressions and check the

residuals for stationarity. If the residuals (u;) have a unit root, there is no cointegrating
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relationship among the variables. All variables are expressed in logarithms. The cointegrating
regression for every transit mode is estimated using the following general form:

Ridership =

ag + aqticket price + a, gasoline price + a3 GDP per capita + aymotorcycle sales + u; (4.3)

In all cointegrating equations we included a constant, but we did not include a time trend.
Although some transportation studies using cointegration techniques include a time trend,
Liddle (2009) suggests that GDP per capita is a more accurate measure to account for

technical change than a simple linear trend.

Several variables were included in the initial models (GDP per capita, fares, gasoline price,
unemployment rate, car sales, motorcycle sales). Only the variables that were found to
significantly affect the ridership of each mode and to be cointegrated, were included in the
final cointegrating regressions. The results of the cointegrating regressions and the residuals
unit root tests for each of the transit modes (metro, bus, electric bus, urban rail) are reported
in Table 4.3. Based on MacKinnon’s critical values for cointegration tests (1991), the
residuals of the four equations have been found to be stationary 1(0) indicating the existence
of a cointegrating relationship among the variables for each of the transit modes. Therefore,

the estimated coefficients represent the long run elasticities of each transit mode’s ridership.

Estimating the above cointegrating regressions using ordinary least squares (OLS) achieves a
consistent estimate of the long run relationship between the variables in the four models due
to the superconsistency property of the OLS estimator, when the variables are cointegrated
(Harris and Sollis, 2003). However, the omitted dynamic terms in Equation (4.3) will lead to
serial correlation on the residuals of each cointegrating regression; but, this is not a problem
due to the superconsistency property (Harris and Sollis, 2003). So, there is no need to check

the residuals for serial correlation.
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Table 4.3. Cointegrating Regressions

(t-statistic in parenthesis)

Dependent variable

Explanatory variables Metro Bus Electric Bus Urban rail
Constant 9.21 (9.29) 17.23 (1250.95) 15.68 (1049.59)  10.33(9.34)
Ticket price_metro -0.23 (-1.92)

Ticket price_bus/electric bus -0.05 (-1.83) -0.16 (-5.18)

Ticket price_urban rail -0.33(-3.18)
GDP per capita 1.03 (7.57) 0.76 (5.20)
Motorcycle sales -0.04 (-1.92)

Gasoline Price 0.13(2.12) 0.08 (1.53)

July -0.23 (-6.99) -0.07 (-2.71) -0.09 (-3.51) -0.25 (-6.13)
August -0.69 (-20.55) -0.29 (-11.14) -0.37 (-14.34) -0.47 (-11.53)
Test diagnostics

Adjusted R? 0.809 0.547 0.690 0.599
Durbin-Watson stat 1.57 171 1.83 1.02
DF-GLS test for Residual unit -8.27 -7.88 -9.34 -5.41
root

MacKinnon’s Critical Values -4.20 -2.88 -3.39 -3.39

(at the 5% level)

Number of observations 108 108 108 108

Fare level is one of the internal factors most frequently analyzed in relevant studies of transit
use. Table 4.3 shows that ridership for each mode is determined by its ticket price 2
Moreover, according to a-priori expectations, there is a decrease in the transit ridership of all

modes during the summer period and particularly during August.

For the case of metro, it is evident that all coefficients are statistically significant and have the
expected signs. More specifically, the effect of GDP per capita on metro ridership is positive
and very high, as indicated by a long run elasticity above unity (1.03). This can be explained
since GDP per capita is a measure of development both in economic and technical terms.
GDP’s increase is usually related to additional economic activities that require more transport
services. Metro ticket price was found to be among the most significant factors affecting
ridership. An increase in the price of the metro ticket would result in a decrease in metro
riders and vice versa. Further, an increase in the price of gasoline leads to an increase in
transit ridership. This conclusion is based on the assumption that high gasoline prices will

encourage people to use transit (Maghelal, 2011; Mc Leod et al., 1991). However, we found

> Fares of different PT modes were not included in the same model, since there was high collinearity
among them.
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that gasoline price has a small influence on transit ridership. The estimated elasticity is equal
to 0.13. This is in agreement with other studies which argue that fuel prices represent only a
small part of automobile operating costs (Small and van Vender, 2006). Finally, the number
of motorcycle sales in Attica has a statistically significant, though small negative effect, on

metro ridership.

Looking at the specific results for bus riders, the only variable that seems to affect bus
ridership is bus/electric bus ticket price. However, the ticket price elasticity is very low
(-0.05) indicating that bus ridership is inelastic. Ridership for the electric bus system is also
significantly affected by bus/electric bus fare price with an long run elasticity of -0.16.
Electric bus ridership is also affected by the gasoline price (0.08). This elasticity is smaller
than the gasoline price elasticity of the metro system. It is possible that people who switch
from car to metro transit system are more than those who switch from car to electric bus

system and hence, an increase in gasoline price affects them.

The urban rail system has the highest fare price elasticity (-0.33) among all modes in the
multimodal transit system. This can be attributed to the limited network of the urban rail,
which results in an inferior quality of service compared to the bus system and to lower speeds
compared to the metro system. Additionally, as with the metro system, there is a positive
effect of the gross domestic product per capita on the urban rail ridership (the elasticity is

equal to 0.76).

4.5.2.1. Seemingly Unrelated Regression Estimation (SURE)

In the previous step we examined the demand for the four transit modes by estimating four
separate models, with the demand for each mode as the dependent variable. However, the four
dependent variables are from the same process and they may be considered as a group. In this
case the four equations are likely to share unobserved characteristics. They are seemingly

unrelated but include a contemporaneous correlation of error terms (Washington et al.,
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2011). Estimating the four equations separately gives consistent, but not efficient estimates of

the parameters. To obtain efficient estimates the Seemingly Unrelated Regression Estimation
(SURE) methodology, as developed by Zellner (1962) must be implemented. Seemingly
unrelated regression (SUR), also called joint generalized least squares (JGLS) or Zellner
estimation, is a generalization of OLS for multi-equation systems. Gkritza et al (2004; 2011)
used this methodology to estimate public transport demand for the multimodal transit system
of Athens, but they assumed that the variables (both dependent and independent) are

stationary.

Since we are interested in investigating the factors that affect transit ridership by mode in a
multimodal operating environment, we estimate seemingly unrelated regression equation
models, we check the variables for cointegration and we compare the results with those of

single equation estimation, which were discussed earlier.

Table 4.4. Seemingly unrelated equations

Dependent variable

Explanatory variables Metro Bus Electric Bus Urban rail
Constant 9.55 (10.04) 17.23 (1253.00)  15.68 (1087.79) 10.31 (9.38)
Ticket price_metro -0.27 (-2.34)

Ticket price_bus/electric bus -0.05 (-1.83) -0.17 (-5.91)

Ticket price_urban rail -0.33 (-3.24)
GDP per capita 0.99 (7.67) 0.77 (5.24)
Number of motorcycle sales -0.06 (-2.73)

Gasoline price 0.18 (3.48) 0.11 (2.97)

August -0.70 (-20.73) -0.29 (-11.14) -0.37 (-14.50) -0.46 (-11.54)
July -0.23 (-6.97) -0.07 (-2.71) -0.09 (-3.64) -0.24 (-6.13)
Test diagnostics

Adjusted R? 0.8184 0.56 0.70 0.61
Durbin-Watson stat 1.56 1.707 1.83 1.02
DF-GLS test for Residual unit -8.17 -7.87 -9.43 -5.40
root

Critical Values for -4.20 -2.88 -3.39 -3.39
cointegration test

Number of observations 108 108 108 108

*t statistic in parenthesis

The results are similar and the DF-GLS test on the residuals reveals again that there is a
cointegrating relationship between the variables. The long run elasticities are almost equal to

those of the single equation estimation. The gasoline price elasticity of the metro and the
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electric bus system changes slightly (from 0.13 to 0.18 and from 0.07 to 0.11 respectively).
Also there is a small difference in the ticket price elasticity of the metro system (from -0.23 to

-0.27).

4.5.3. Short Run Analysis

45.3.1. Error Correction Models

An efficient time series modeling effort should describe both the short run dynamics and the
long-run equilibrium simultaneously (Enders, 1995). The Granger Representation Theorem
developed by Engle and Granger (1987) suggests that, if a set of variables are 1(1) and
cointegrated, then there exists a valid error correction representation of the time series. So,
once the cointegrating relationship for every public transport mode is found and the long run
elasticities are calculated, the next step is to estimate the Error Correction Model in order to
obtain the short run responses. The Error Correction Model for every transit mode is

estimated using the following general Equation.

Aridership, = Y, a,; Aridership,_; + Yi_, a,; Aticket price,_; + X7_ ag; Agasoline price,_; +

+3% o ag; AGDP,_; + ¥ @i Amotorcycle sales;_; + Gresiq Ue—1 + € (4.4)

In addition, monthly dummies were included in each model to account for seasonal
fluctuations in public transportation ridership. Table 4.5 shows the results from the estimation
of the four Error Correction Models for the transit ridership of each mode. The coefficient of
the residuals, namely the Error correction term, represents the speed of adjustment towards
the long run equilibrium. A cointegrating relationship implies that the coefficient of the
residuals be negative and statistically significant. As presented in Table 4.5, the estimated
coefficient of the ECT (arsiq) is statistically significantly different from zero at the 5% level
for the equations of the metro, the bus and the urban rail ridership, indicating that there is a
cointegrating relationship among the variables. Moreover, the coefficients of the unlagged

differenced variables are the short run elasticities. As expected, short run elasticities are lower
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than their long run counterparts satisfying the Le Chatelier principle (Le Chatelier and

Boudouard, 1898).

Table 4.5. Error Correction Models

Dependent variable (t-statistic in parenthesis)

Explanatory variables Metro Bus Electric Bus  Urban rail
A_metro_lagl -0.12 (-1.50)

A _bus_lagl

A_electric bus_lagl -0.75 (-8.66)

A_urban_rail_lagl -0.21 (-2.16)
A_ticket price_metro -0.04 (-0.13)

A _ticket price_bus/electric bus -0.041 (-0.31)

A _ticket price_urban rail -0.18 (-0.59)
A_GDP per capita 0.28 (1.45) 0.06 (0.27)
A_motorcycle sales -0.05 (-2.21)

A_gasoline price_lagl 0.03 (0.24) 0.06 (0.32)

February -0.45 (-1.92) -0.06 (-1.72)

March 0.08 (13.67)

August -0.46 (-16.99) -0.22 (-9.52) -0.36 (-10.72) -0.25 (-8.27)
July -0.17 (-6.83) -0.07 (-2.99) -0.10 (-3.32) 0.19 (-6.17)
September 0.47 (11.36) 0.28 (11.90)

October 0.12 (2.31) 0.06 (2.86) 0.35 (7.52)

November 0.07 (2.52)
Uy -0.55 (-5.76) -0.88 (-8.70) -0.25 (-1.60) -0.32 (-3.60)
Adjusted R? 0.91 0.76 0.69 0.73
Number of observations 108 108 108 108

Residuals tests

Breusch-Godfrey LM test for autocorrelation

Lagl
Lag2
Lag3
Lag4
Lag5
Lag6
Lag7
Lag8
Lag9
Lag10
Lagll
Lagl?

1.63 (p=0.201)
2.28 (p=0.320)
4.10 (p=0.251)
4.13 (p=0.388)
5.04 (p=0.410)
6.80 (p=0.339)
6.92 (p=0.437)
12.47 (p=0.131)
12.76 (p=0.174)
12.82 (p=0.234)
13.44 (p=0.265)
13.46 (p=0.336)

0.53 (p=0.467)
1.49 (p=0.474)
2.45 (p=0.485)
3.14 (p=0.534)
5.37 (p=0.372)
5.46 (p=0.486)
5.60 (p=0.587)
6.34 (p=0.609)
6.35 (p=0.704)
6.56 (p=0.766)
6.69 (p=0.823)
6.98 (p=0.859)

0.05 (p=0.816)
6.78 (p=0.034)
7.60 (p=0.055)
15.25 (p=0.004)
17.76 (p=0.003)
17.80 (p=0.007)
17.93 (p=0.012)
17.94 (p=0.021)
18.44 (p=0.030)
18.44 (p=0.048)
18.54 (p=0.070)
23.30 (p=0.025)

0.57 (p=0.450)
0.59 (p=0.745)
1.01 (p=0.798)
2.23 (p=0.693)
3.26 (p=0.660)
3.37 (p=0.761)
4.60 (p=0.708)
4.77 (p=0.782)
4.96 (p=0.838)
5.01 (p=0.891)
5.89 (p=0.881)
9.62 (p=0.649)

Engle’ s LM test for ARCH

Lagl
Lag2
Lag3
Lag4
Lag5
Lag6
Lag7
Lag8
Lag9
Lag10
Lagll
Lagl?

0.01 (p=0.911)
0.13 (p=0.936)
0.15 (p=0.985)
0.16 (p=0.997)
0.45 (p=0.994)
0.54 (p=0.997)
0.55 (p=0.999)
0.56 (p=0.999)
0.58 (p=0.999)
0.83 (p=0.999)
1.25 (p=0.999)
1.26 (p=0.999)

0.81 (p=0.369)
1.95 (p=0.377)
2.03 (p=0.566)
3.35 (p=0.500)

3.36 (p=0.645).

4.04 (p=0.672)
4.08 (p=0.769)
4.11 (p=0.847)
4.22 (p=0.896)
4.26 (p=0.935)
4.82 (p=0.939)
5.17 (p=0.952)

36.88 (p=0.000)
39.81 (p=0.000)
40.88 (p=0.000)
41.73 (p=0.000)
42.94 (p=0.000)
44.99 (p=0.000)
45.03 (p=0.000)
45.14 (p=0.000)
45.15 (p=0.000)
45.24 (p=0.000)
45.24 (p=0.000)
45.34 (p=0.000)

0.34 (p=0.558)
0.35 (p=0.841)
0.39 (p=0.943)
0.81 (p=0.937)
0.92 (p=0.968)
2.22 (p=0.898)
3.19 (p=0.867)
3.59 (p=0.892)
3.85 (p=0.921)
5.10 (p=0.884)
5.22 (p=0.917)
8.51 (p=0.744)
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Generally speaking, the above dynamic models for ridership of all modes appear to fit well
into the data showing a high R?. We performed diagnostic checks to determine whether the
residuals or the error correction equations are approximately white noise (Enders, 1995), by
checking the residuals of the ECM for persistence of serial correlation (first or higher order)
and autoregressive conditional heteroskedasticity (first or higher order). We used the
Breusch-Godfrey test (Breusch, 1979; Godfrey, 1978) that can be generalized to higher order
of autocorrelation. Since the data were monthly observations we implement the Breusch-

Godfrey test and the autoregressive conditional heteroskedasticity test for up to 12" order.

The statistical tests for the dynamic equations of metro, bus, and urban rail ridership lead to
the rejection for the presence of autocorrelation of first or higher order and for the presence of
heteroskedasticity. However, the same tests reveal the existence of higher order serial
correlation and autoregressive conditional heteroskedasticity in the Error Correction Model of

electric bus ridership.

4.5.3.2. Autoregressive Conditional Heteroskedasticity

Serial correlation mainly occurs as a result of error term correlation over time, but may be
also the result of an autoregressive error variance (ARCH Effects). ARCH effects observed in
transportation (time series) data should not be ignored (Karlaftis, 2010). The ARCH LM test
(Table 4.5) shows that Autoregressive Conditional Heteroskedasticity (ARCH) is a problem
in the Error Correction Model for the electric bus ridership. To model such data, Engle (1982)
introduced the ARCH model, which captures changes in the variability of a time series
(Washington et al., 2011). The Lagrange Multiplier (LM) tests shown in Table 4.5 are
significant (p<0.001) through order 12, which indicates that an ARCH model is needed to

model heteroskedasticity.
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The simplest ARCH(p) model is a short memory process in that only the most recent p
squared residuals are used to estimate the changing variance and is given as (Shumway and

Stoffer, 2000)
h =var (& 1Y) =ao+Xi-qa; & (4.5)

where ¢ =Y, — E[Y; [X;], the information set ¥, = [&_;:j=1], ap>0, a; =20,j =
1, ...p, and where p is the number of lags of the number of the error term to be included in
estimating volatility. Here, we consider p equal to one. The results for the ARCH model are
presented in Table 4.6. It should be noted that, after the inclusion of the moving average terms
in the ECM of the electric bus, there is no longer evidence of ARCH effects. Engle’s LM test

for ARCH accepts the null hypothesis of no autoregressive conditional heteroskedasticity.

Table 4.6. Arch model

Dependent variable
t statistic in parenthesis

Explanatory variables Electric Bus
A_electric bus_lagl -0.87 (-13.11)
A_electric bus_lag2 -0.12 (-2.62)
A_gasoline price_lagl 0.03 (0.26)
February -0.07 (-2.02)
August -0.42(-7.53)
July -0.10(-4.52)
October 0.35 (8.50)
Uty -0.24 (-1.78)
ARCHO 0.004 (2.97)
ARCH1 0.58 (1.69)
Adjusted R? 0.691
Number of observations 108

Engle’ s LM test for ARCH
Lagl
Lag2
Lag3
Lag4
Lag5
Lag6
Lag7
Lag8
Lag9
Lag10
Lagll
Lagl2

0.23 (p=0.627)
0.14 (p=0.861)
1.11 (p=0.347)
0.84 (p=0.491)
0.99 (p=0.423)
0.81 (p=0.568)
0.68 (p=0.685)
0.66 (p=0.725)
0.61 (p=0.778)
0.60 (p=0.808)
0.57 (p=0.843)
0.58 (p=0.850)

96



Finally, it should be noted that due to the ARCH effects found in the Error correction model
of the electric bus ridership, we could not run seemingly unrelated regression equations in the

short run.

4.5.3.3. Speed of Adjustment Coefficient

The speed of adjustment coefficient of the metro Error Correction Model indicates that the
Athens metro demand adjusted relatively quickly to the long run equilibrium relationship
since the estimated coefficient of the u.; removed 55% of the disequilibrium in the first
month. Short run GDP elasticity is below unity and is estimated to be 0.28, implying that 1%
increase in per capita GDP will increase metro demand at a much slower rate (0.28%). The
short run elasticities of metro demand with respect to ticket price and gasoline price are all
very low and smaller than the long run ones (-0.04 and -0.03 in the short run to -0.23 and 0.13

in the long run respectively).

Bus ridership ECM shows the speed of adjustment to be very high (-0.88) and is also
statistically significant. This implies that bus ridership adjusts towards its long run
equilibrium at a very fast rate, with about 88% of the adjustment occurring within the first
month. This finding agrees with the fact that the long run price elasticity on bus demand is
almost equal to the short run one. No other variables (except of the dummy variables of the
months of February, August, July, September, October) were found to significantly affect bus

ridership, possibly a result of the captive nature of its riders.

The estimated coefficient of the error correction term is -0.32 for the urban rail ridership
model and -0.25 for the electric bus ridership model (Tables 4.5 and 4.6 respectively). This
suggests that ridership for the two modes adjusts towards their long run equilibrium level at a
moderate speed, with about 32% and 24% respectively of the adjustment towards their
equilibrium taking place within the first month. Moreover, the metro demand a month before
the current demand (the lagged dependent variable of the model, A_metro_lagl) has a
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statistically significant negative effect in the transit ridership of metro. The same appears to

also happen in the electric bus and urban rail demand equations.

4.6. Discussion and Conclusions

In this chapter we estimated long and short run demand elasticities for a multimodal public
transportation system. Long run equilibrium properties were estimated via the cointegration
relationships and short run dynamics through the speed of adjustment from the short to the
long run. The results from the cointegrating regressions indicate that metro ridership is
cointegrated with metro ticket price, gasoline price, GDP per capita and number of
motorcycle sales; bus partonage is cointegrated with bus/electric bus ticket price; urban rail
ridership is cointegrated with GDP per capita and urban rail ticket price; electric bus ridership
is cointegrated with fuel price and bus/electric bus ticket price. An ARCH model was

developed to model volatility in the ECM of electric bus ridership.

The estimates of demand elasticities, both in the short and in the long run, for the four main
modes of public transport are summarized in Table 4.7. Generally, the short run elasticities
are lower than the long run because in the short run changes are smaller and, because, to some
extent, the short run behavior is governed by resistance to change. Therefore, the full extent
of a change is realized in the long run (Harris and Sollis, 2003). Indeed, comparing the short
and long run elasticities from Table 4.7 we observe that the impact of fare changes and GDP

per capita take time to reach maturity.
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Table 4.7. Summary of elasticity estimates of cointegration models

Long run Short run
Metro
GDP per capita 1.03 0.28
Motorcycle sales -0.05 -0.05
Metro ticket price -0.23 -0.04
Fuel price 0.13 0.03
Bus

Bus/electric bus ticket price -0.05 -0.04

Urban Rail
GDP per capita 0.76 0.06
Urban rail ticket price -0.33 -0.18

Electric Bus

Bus/electric bus ticket price -0.16 -

Fuel price 0.08 0.03

Metro and urban rail are the most expensive transport modes and in most cases there are bus
lanes, with a cheaper fare, that run in parallel with the metro and the urban rail line. This
probably explains the relatively high elasticities of metro and urban rail demand with respect
to fares (-0.23 and -0.33 respectively). Demand for bus appears to be quite inelastic. Of the
factors examined, only fare was found to significantly affect demand and this with a very low
elasticity (-0.05). This is because bus is the cheapest mode and, in many parts of the PT

network, the only mode available.

The short run ticket price elasticity of all transit modes is either lower than the long run
elasticity or equal to zero, indicating that transit ridership in Athens is rather insensitive to
price changes, at least in the short run. The highest short run elasticity of the urban rail ticket
price elasticity (-0.18), compared to the ticket price elasticities of the other modes, reveals

that urban rail users have a higher response to fare changes in the short run.

The high long run demand elasticity with respect to GDP both for the metro mode (1.03) and
the urban rail mode (0.76) is probably explained by the fact that an increase in GDP will,
generally, induce more trips, which are mainly diverted to metro and urban rail. Since the
consequential changes on travel behavior take time to be realized the corresponding short run

GDP elasticities appear to be much lower (0.28 for the metro and 0.06 for the urban rail).
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It should be mentioned that the elasticities of public transport demand estimated in our study
using cointegration techniques are lower than those estimated by most other studies (Gkritza

et al., 2004; 2011). But, this is common in most cointegration studies (Wadud, 2007).

Current economic conditions in Greece are expected to affect the PT demand in conflicting
ways. First, GDP has already shown significant negative rates resulting to reduced trips, while
public debt limits the possibility of funding the high deficit of PT. Second, a shift from
private car to public transport may be expected. In this work the shift was partly reflected by
the fuel prices which constitute only a small part of total cost of private car usage (elasticities
of 0.13 for the metro and 0.08 for the electric bus in the long run) and by motorcycle sales
(elasticity of 0.05 for the metro mode). Third, the need for restricting subsidies to PT will lead
to a fare increase. The relatively low elasticities of demand with respect to fares for all modes
suggest that fare increase will not have a significant impact on demand and therefore this

policy will succeed in making up for some of PT’s deficit.
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5. ESTIMATING MULTIMODAL PUBLIC TRANSPORT MODE SHARES

5.1. Introduction

The limited availability of resources and the need to reduce operating subsidies as current
economic conditions dictate, increase the complexity of efficient management of public
transportation systems. Demand analysis is a necessary condition for efficient decision
making in a public transport system; network expansion, pricing policies, subsidy and
operational decisions are based on demand analysis. The analysis of the share of each
transport mode in a multimodal urban public transport system is a key factor that explains the
relative position of each mode in the system. It may also be a useful index for making
investment decisions concerning the public transport infrastructure and for allocating

subsidies.

Many researchers have studied the policies and the factors that influence public transport
demand (Dargay and Hanly, 2002; Lane, 2010; 2012; Taylor et al., 2009; Wang and Skinner,
1984), while others have summarized relevant findings (Goodwin, 1992; Litman, 2004; Oum
et al.,, 1992; Paulley et al., 2006; Taylor and Fink., 2004; TRACE 1999). Some of these
studies have analyzed both short and long run demand elasticities, as this distinction has
important policy implications. Rose (1986) examined the short and the long run effects of
fares, service and gasoline prices on rail ridership using time series analysis. In a similar
context, combining cross sectional and time series data, Lane (2012) estimated lagged effects

of gasoline price and service on transit patronage.

There are also papers that investigate the factors influencing ridership in a multimodal public
transportation system (Garcia-Ferrer et al., 2006; Gkritza et al., 2004; 2011). In a multimodal
public transportation context, methodologically acknowledging the coexistence of modes

allows for explicitly considering the substitution effects that competition implies. Competition
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between modes is measured through the use of cross elasticities, which are highly dependent
on the relative market share of each mode (Balcombe et al., 2004). Gilbert and Jalilian (1991)

and Glaister (2001) have developed multimodal models for estimating cross elasticities.

Mode share of public transport is also an indicator of public transport demand (Buehler and
Pucher, 2012), and it is usually related to funding for public transportation (Polzin and Chu,
2005). Numerous studies worldwide have been performed to investigate the determinants of
mode choice between public transport and private car using aggregate descriptive analysis as
well as disaggregated mode choice models (for example, Beirdo and Cabral, 2007; Buehler,
2011; Clark and McKimm, 2005; Moniruzzaman and Paez, 2012; Vovsha, 1997). Although
public transport demand studies differ on the type of data collected, the estimation methods
used, the country and the number of modes included in the study, it is clear that fares, income,

gasoline price and service level are among the most important factors affecting ridership.

We investigate the factors that determine the share of each transport mode in total public
transport ridership for the urban public transport system of the city of Athens, both in the
short and in the long run. The analysis uses cointegration and error correction techniques in a
time series analysis framework, since this methodology allows for treating non-stationary data
and for determining short term and long term elasticities. In the public transport sector the
long run responses are mainly associated with investment decisions, while the short run
responses are associated with operational decisions. The main goal is to distinguish and
quantify short and long term effects of various factors on public transport mode shares since

they provide useful information in the assessment of transport policies.

5.2. Data Description
The monthly time series data used in the analysis concern the period from January 2002 to

December 2010 (a total of 108 observations). The percent share of each public transport mode

102


http://www.sciencedirect.com/science/article/pii/S0967070X07000522
http://www.sciencedirect.com/science/article/pii/S0967070X07000522

is measured by dividing the monthly ridership of each of the four public transport modes

(metro, bus, electric bus, urban rail) by the total public transport trips of the same month.

Table 5.1: Summary statistics (monthly)

Variable Mean Standard Deviatior
Public Transport variables

Metro Riders 14,295,245 2,544,766
Bus Riders 30,338,756 3,127,397
Electric bus Riders 6,573,172 7,852,62
Urban Rail Riders 9,661,460 1,526,618
Metro share 0.233 0.025
Bus share 0.500 0.030
Electric bus share 0.109 0.007
Urban rail share 0.158 0.015
Metro ticket price (in €) 0.922 0.074
Bus/electric bus ticket price (in €) 0.695 0.205
Urban rail ticket price (in €) 0.879 0.095
Integrated ticket (1 if yes; O if no) 0.220 0.410
Macroeconomic and Demographic Variables

Unemployment Rate (percent) 9.076 1.752
Gasoline price (in €) 0.799 0.143
Gross Domestic Product (in millions €) 19.768 1.657
Population of Athens 4,014,567 71,742

Fares of the different public transport modes, dummy variables, as well as macroeconomic
and demographic factors were used in our models. Table 5.1 shows the mean and the

deviation for each of the variables included in the study over the period examined.

5.3. Methodology

In economics, the Almost Ideal Demand System (AIDS) model of Deaton and Muellbauer
(1980 &, b), based on the theory of consumer demand, has been widely used for analyzing
expenditure shares in empirical demand analysis (e.g. De Melo et al., 2002; O’ Hagan and
Harrison, 1984; Syriopoulos and Sinclair, 1993; Chen and Veeman, 1991; Mergos and

Donatos, 1989; Romero-Jordan et al., 2010).

In our analysis, share equations of public transport modes are not based on the consumer

demand theory and thus the AIDS model, in its strict form, is not suitable for analyzing the
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market shares of a multimodal public transport system of Athens. Instead, we estimate the
shares of different modes of the public transport system using cointegration and error
correction techniques. This methodology allows for treating non-stationary time series data

and for evaluating both short and long run responses.

The concept of cointegration and error correction models was first proposed by Engle and
Granger (1987) and has been widely used, particularly in modeling and forecasting
macroeconomic activities. The Cointegration/Error correction Model Approach is likely to
offer much more reliable information because, in cases where the stationarity assumption
underlying least squares regression models is violated, standard regression techniques can
lead to spurious results (Granger and Newbold, 1974). According to the Engle-Granger two
step procerdure (1987), first we estimate the cointegrating regressions to derive the long run
elasticities and second we estimate the Error Correction Models to derive the short run

elasticities of the share of every mode.

5.3.1. Cointegrating Regressions
We start our estimation procedure by considering the following general equation for every
public transport mode share®

Mode share, =

ay, + a,In ticket price + a, Intotal ridership + a; InGDP + a,lngasoline price + u; (5.1)

The first step in the analysis is to check the order of integration of each of the variables
included in Equation (5.1). The order of integration of each variable is found by applying a
unit root test. If the variables are stationary i.e. 1(0), standard time series methods can be

applied. If the variables are integrated of different orders, it is possible to conclude that they

* The model developed in this study is a ‘network level’ model. Therefore, to use an aggregate
estimation for variables such as travel speed, stop frequency, etc would possibly lead to erroneous or
spurious results. These variables should be used for ‘line’ demand models.
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are not cointegrated. However, if some of the variables are 1(1) and some 1(2), they may be
multicointegrated (Granger and Lee, 1990). In order to proceed further, we assume that all the
variables in Equation (5.1) are generally non-stationary and integrated of order one (that is
they become stationary after first differencing). Having established that the variables display
all the characteristics of I(1) variables, the next step is to test the share equations for
cointegration by estimating the cointegrating regression (Equation 5.1) for every mode share
and testing the residuals for stationarity. If the residuals of Equation (5.1) are stationary, then
there is a cointegrating relationship between the variables and the long run parameters are

estimated through the cointegrating regression.

In order to check whether the residuals are stationary and, thus, the variables are cointegrated,
a unit root test (ex. Augmented Dickey Fuller) is applied to the estimated residuals (uy). As
OLS residuals have a zero mean by construction, the version of the Augmented Dickey Fuller
test without deterministic terms is used. However, the critical values are different because the
test is applied to a “generated” and not to an observed time series (Kirchgassner and Wolters,
2007). They depend on the number of observations, on the number of 1(1) variables but also

on the deterministic components of the equilibrium relationship (MacKinnon, 1991).

Estimating the above cointegrating regressions using ordinary least squares (OLS) achieves a
consistent estimate of the long run relationship between the variables in the four models.
Stock (1987) found that if the variables are cointegrated, the estimated coefficients from the
cointegrating regressions will be superconsistent. The superconsistency property of the OLS
estimators implies that the parameters estimated from the cointegrating regression converge
with a rate of T (T is the number of observations) towards their true value. Therefore, their
convergence is faster than the convergence of the OLS estimators in a regression with
stationary variables, which converge with a rate of T to their true values (consistency
property of the OLS estimator). Due to the superconsistency property all dynamics and

endogeneity issues can be ignored asymptotically. Of course, the omitted dynamic terms are
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captured in the residuals of each cointegrating regression which will be serially correlated.

But this is not a problem due to superconsistency (Harris and Sollis, 2003).

5.3.2. Error Correction Models
Once the long run relationship is established, Engle and Granger (1987) proved that there is
an Error Correction Mechanism (ECM), which allows to derive short run parameters and the

speed of adjustment from the short to the long run. The ECM is simply defined as

Amode share = L= @ri Amode share,_; + ¥b_ a,,; Alnticket price,_; + X7, ag; Alngasoline price,_; +

Y& o aq; AINGDP_; + ¥ am; Alntotal ridership,_; + Gresiq Ue—1 + € (5.2)

where A defines the first differenced variable, p, g, g, d, m the number of the lags needed so
as to make e, white noise and uy, the lagged residuals derived from the Equation (5.1). Thus,
an Error Correction Model is applied by using the estimated residuals from the cointegrating
Equation (5.1) as a regressor in Equation (5.2). The lagged residuals, namely the lagged Error
Correction Term (ECT), represent the speed of adjustment towards the long run equilibrium.
The coefficient of the lagged residuals (avsig) should be negative and statistically significant,
lying between 0 and -1 (0 suggesting no adjustment one time period later, -1 suggesting full
adjustment one time period later). For example, a speed of adjustment coefficient with a value
of -0.25 suggests that 25% of the adjustment occurs within the first period and the full
adjustment occurs after four time periods. Therefore, the long run elasticities refer to the time
period after the full adjustment (in this case after four time periods), while the short run

elasticities refer to the time period in which the adjustment has occurred.

The last step in the Engle-Granger two step procerdure is to determine whether the Error
Correction Model estimated is well specified by performing diagnostic tests to check whether

the residuals of the error correction equations approximate white noise (Enders, 1995).
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5.4. Results

5.4.1. Unit Root

The first step in the empirical analysis is to investigate the time series properties of the data.
In order to determine whether each of the variables examined in this study contains a unit root
or not (i.e. to examine whether they are stationary or non-stationary), we employ the
Augmented Dickey—Fuller test (1979, 1981). Then, if the variables are non-stationary, we
proceed to determine the order of integration of the variables by applying a unit root test to

the differenced variable.

Generally speaking, most economic data series are found to be non-stationary and several
demand studies have shown that it is reasonable to treat economic data series used in demand
analysis (prices, GDP) as non-stationary data series (e.g. Carone, 1996). Non-stationarity has
also been observed in transportation demand studies including the works of Chen et al.
(2011), Dargay and Hanly, (1999) and Romilly (2001). Share variables, in some cases, are
taken to be stationary and in some other cases are taken to be non-stationary. Asche and
Wessells (2002) suggest that there are strong arguments for treating expenditure shares as
stationary. Of course, by construction, share variables are bound between zero and one and
thus they are expected, in the very long run, to be stationary (Attfield, 1997). However, the
mean and the variance of the shares need not be stable. Attfield (1997), Karagiannis and
Mergos (2002), Karagiannis et al. (2000) and Ng (1995) find that shares in their demand
models are non-stationary. Similarly, in our analysis, public transport mode shares display all

the characteristics of I(1) variables and so we treat them as non-stationary.
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Table 5.2. ADF test for the presence of Unit Root

level First differences
Variable® Number  ADFtest Number  ADF test 5% ADF Order of
of lags of lags critical integration
values

Public Transport variables

Metro share 10 -2.547 0 -13.303 -2.89 1(1)

Bus share 11 -1.734 0 -12.807 -2.89 1(1)
Electric bus share 2 -2.763 0 -18.732 -2.89 1(1)
Urban rail share 11 -0.627 10 -13.855 -2.89 1(1)
Total Ridership 11 -0.979 10 16.963 -2.89 1(1)
Metro ticket price 0 -1.621 0 -9.651 -2.89 1(1)
Bus/electric bus ticket price 0 -0.460 0 -10.224 -2.89 1(1)
Urban rail ticket price 0 -1.075 0 -9.736 -2.89 1(1)
Macroeconomic and Demographic Variables

Unemployment Rate 3 -0.110 2 -5.433 -2.89 1(2)
Gasoline price 1 -1.590 0 -7.539 -2.89 1(2)
Gross Domestic Product 12 -1.011 10 -7.278 -2.89 1(1)

%all variables besides shares are in logarithms

Table 5.2 reports Augmented Dickey Fuller test statistics for the null hypothesis that the
processes generating the variables contain unit roots. As unit root tests are sensitive to the
choice of the lag length (Maddala and Kim, 1998), we apply Akaike Information Criteria,
Schwarz Information Criteria, and Modified Akaike Information Criteria to choose the
optimal lag length and we choose the lag length supported by the majority of these criteria.
Based on MacKinnon’s critical values (1996), all the variables were found to be non-

stationary in levels and stationary in first differences, implying that they are 1(1).

5.4.2. Long Run

Having established that the variables display all the characteristics of 1(1) variables, we next
turn to testing the share equations for cointegration using the Engle and Granger methodology
(1987). Cointegration ensures that there is a valid long run stable relationship among non-
stationary variables that are involved in the same regression equation (Granger, 1981;

Maddala and Kim, 1998).

We start our cointegration analysis by examining for the collinearity among the independent
variables. Since collinearity was observed among fares of different transport modes, they

were not included in the same share equation. The cointegrating regression for every public
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transport mode is estimated using the general form of Equation (5.1). From the description of
the multimodal public transportation system of Athens (section 4.3.1), it is clear that different
modes have differing characteristics and may operate in competition or cooperation
depending on a variety of circumstances. To this end, we expect that different modes are

affected by different factors and even by the same factors in different ways.

First, the significance of the parameters included in each share equation was checked. Only
the variables that were found to be statistically significant were included in the final
cointegrating regression®. Then, we tested for cointegration each of the share equations by
obtaining the OLS residuals and testing them for stationarity using Augmented Dickey-Fuller
test. Table 5.3 presents the cointegrating equation of each public transport mode share as well
as the results of the unit root test to the residuals of each equation. Based on MacKinnon’s
critical values for cointegration tests (1991), the residuals of the four equations have been
found to be stationary 1(0) indicating the existence of a cointegrating relationship among the
variables of each share equation. It should be noted that serial correlation of the residuals,
confirmed by the Durbin Watson test, is not a problem due to the superconsistency property

of the OLS estimator when the series are cointegrated (Harris and Sollis, 2003).

* In our initial models we included dummy variables to capture expansion of the metro system. The
metro network started its operation in early 2000 and there has been limited expansion of its network
during the period of our study (in 2004, 2007 and 2009 a total of 8.1 additional network kilometers
were added). Interestingly, however, when both the GDP and the dummy variables were included in
the model the latter were statistically not-significant and thus removed from the model. We decided to
use GDP as a basic explanatory variable in our models both because it is reliably collected and because
of its economic implications. For all other PT modes included in our analysis, the network has
remained almost constant during the entire period of the analysis; to this end, we did not include supply
variables in the model as it would add only limited explanatory power and cause some (possibly
important) statistical problems.
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Table 5.3. Cointegrating Regressions (t-statistics in parentheses)

Dependent variable

Explanatory variables® Metro Bus Electric Bus Urban rail
Share Share Share Share

Constant -2.524 (-7.67) 1.939 (6.06) 0.548( 4.54) -0.711 (-2.58)

Ticket price_metro -0.186 (-3.83) 0.166 (4.84)

Ticket price_bus/electric bus -0.009 (-3.51)

Ticket price_urban rail -0.027 (-1.85)

Total Ridership 0.103 (7.53) -0.076 (-4.22) -0.012 (-2.54) 0.021 (1.83)

GDP 0.090 (4.44) -0.022(-2.83) 0.049 (2.84)

Gasoline Price 0.054 (2.50)

Integrated Ticket 0.047 (5.15)

Trend -0.001(-6.62)

Test diagnostics

Adjusted R? 0.539 0.503 0.234 0.115

Durbin-Watson stat 1.164 1.359 1.494 1.075

ADF test for Residual unit -6.23 -7.25 -4.84 -6.29

root

MacKinnon’s Critical -3.82 -3.51 -3.82 -3.82

Values

Number of observations 108 108 108 108

®explanatory variables are in logarithms

According to the results reported in Table 5.3, mode shares of metro, electric bus and urban
rail are cointegrated with ticket price, GDP and total ridership at 10% significance level,
while bus share is cointegrated with gasoline price, metro fare and total ridership.
Cointegration implies that there is a long run steady relationship between shares and theirs

determinants, showing that these non-stationary variables are moving together in the long run.

5.4.3. Short Run

Once the long run relationship is established, the next step is to estimate the Error Correction
Model for every mode share of the multimodal public transport system of Athens to derive the
short run elasticities as well as the time required for the total response (from the short to the
long run) to be complete. The Error Correction Model for every mode share is estimated
using the general Equation (5.2). The results from the estimation of the four Error Correction
Models for the share of each public transport mode are presented in Table 5.4. For the same
mode (the same share equation), cointegrating regressions (Table 5.3) and Error Correction
Models (Tables 5.4 and 5.5) include the same independent variables. The cointegrating
regressions (Equation 5.1) include the variables in levels. The Error Correction Models
(Equation 5.2) include the first differences of the same, as in Equation 5.1, independent
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variables, lagged first differences of the dependent variable and the lagged residuals from

Equation (5.1).

In order to test the reliability of the four Error Correction Models, the diagnostic tests for

autocorrelation and heteroskedasticity of the error term were applied. We implement the

Breusch-Godfrey test (Breusch, 1979; Godfrey, 1978) (obtained by regressing the residuals

from the original model on all the regressors of that model and the lagged residuals) to check

the residuals for the persistence of serial correlation and ARCH LM test (obtained by

regressing the squared residuals from the model to their lags and a constant) to check the

residuals for the persistence of autoregressive conditional heteroskedasticity. Because the data

are monthly observations, serial correlation and autoregressive conditional heteroskedasticity

from 1% to 12" order was investigated.

Table 5.4. Error Correction Models

Dependent variable (t-Statistic in parenthesis)

Explanatory variables® Metro Bus Electric Bus Urban rail
Share Share Share Share

A_metro share_lagl -0.124 (-1.69)

A _bus share_lagl -0.187 (-1.94)

A_electric bus share_lagl -0.472 (-3.57)

A_urban_rail share_lagl -0.080 (-0.85)

A_metro share_lag2

A _bus share_lag2 -0.172 (-1.87)

A_electric bus share_lag2 -0.181 (-1.72)

A_urban_rail share_lag2

A_ticket price_metro -0.066 (-1.27)

A_ticket price_bus/electric bus 0.049 (0.67) -0.001 (-0.11)

A_ticket price_urban rail -0.017 (-0.41)

A_GDP -0.023 (-0.67) -0.016 (-1.04) 0.008 (0.26)

A_gasoline price 0.028 (0.73)

A_total ridership 0.051 (-6.64) -0.042 (-3.11) 0.002 (0.43) -0.023 (-2.86)

February 0.010 (2.00)

March -0.003 (-1.58)

June 0.005 (2.72)

August -0.021 (-3.87)

July 0.011 (1.66) 0.004 (2.01) -0.013 (-3.17)

November -0.017 (-2.26)

December 0.017 (3.82) -0.026 (-3.88) -0.003 (-1.58) 0.007(1.72)

Utg -0.574 (-6.64) -0.557 (-4.90) -0.443 (-3.52) -0.430 (-5.03)

Adjusted R? 0.595 0.495 0.450 0.393

Number of observations 108 108 108 108

“all explanatory variables besides months are in logarithms
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Residuals tests

Breusch-Godfrey LM test for autocorrelation (probability)

Lagl
Lag2
Lag3
Lag4
Lag5
Lag6
Lag7
Lag8
Lag9
Lag10
Lagll
Lagl2

4.37 (p=0.037)
9.39 (p=0.009)
9.53 (p=0.023)
10.20 (p=0.037)
10.20 (p=0.069)
10.31 (p=0.112)
10.55 (p=0.159)
10.96 (p=0.204)
11.85 (p=0.222)
13.02 (p=0.222)
13.04 (p=0.291)
13.89 (p=0.307)

0.11 (p=0.736)
0.38 (p=0.826)
1.32 (p=0.725)
2.05 (p=0.726)
2.18 (p=0.824)
2.25 (p=0.895)
2.84 (p=0.899)
3.21(p=0.921)
3.25 (p=0.953)
3.92 (p=0.951)
3.98 (p=0.971)
4.00(p=0.984)

0.07 (p=0.795)
1.81 (p=0.404)
2.51 (p=0.474)
2.52 (p=0.641)
2.87 (p=0.719)
3.05 (p=0.802)
3.34 (p=0.852)
3.34 (p=0.911)
4.41(p=0.882)
5.96 (p=0.818)
6.44 (p=0.842)
6.54 (p=0.886)

2.02 (p=0.155)
2.16 (p=0.339)
2.23 (p=0.526)
4.59 (p=0.332)
4.86 (p=0.433)
5.54 (p=0.477)
7.58 (p=0.371)
8.13 (p=0.421)
8.83 (p=0.453)
10.03 (p=0.438)
10.36 (p=0.498)
15.52 (p=0.214)

Engle’ s LM test for ARCH (probability)

Lagl
Lag2
Lag3
Lag4
Lag5
Lag6
Lag7
Lag8
Lag9
Lag10
Lagll
Lagl2

0.308 (p=0.579)
0.352 (p=0.839)
0.488 (p=0.922)
0.524 (p=0.971)
0.815 (p=0.976)
0.905 (p=0.989)
1.057 (p=0.994)
1.220 (p=0.996)
1.232(p=0.999)
1.239 (p=0.999)
1.357(p=0.999)

19.958(p=0.068)

0.181 (p=0.670)
0.182 (p=0.913)
0.585 (p=0.900)
0.616 (p=0.961)
0.921 (p=0.969)
1.082 (p=0.982)
1.468 (p=0.983)
1.554 (p=0.992)
4.759 (p=0.859)
4.832 (p=0.902)
5.670 (p=0.894)
6.937 (p=0.962)

0.247 (p=0.619)
0.354 (p=0.838)
1.365 (p=0.714)
1.411 (p=0.842)
1.724 (p=0.886)
1.741 (p=0.942)
2.090 (p=0.955)
2.131 (p=0.978)
2.378 (p=0.984)
2.519 (p=0.991)
5.251 (p=0.918)
5.400 (p=0.943)

0.280 (p=0.597)
0.549 (p=0.760)
1.406 (p=0.704)
2.008 (p=0.734)
2.734 (p=0.741)
3.861 (p=0.695)
4.396 (p=0.733)
5.658 (p=0.685)
6.307 (p=0.709)
7.199 (p=0.707)
7.277 (p=0.776)
12.381(p=0.416)

The results of the above statistical tests lead to the rejection of the presence of autocorrelation

and heteroskedasticity of first and higher order in the dynamic equations of the bus share, the

electric bus share and the urban rail share. However, the same tests reveal the existence of

higher order serial correlation in the Error Correction Model of the metro share. This result

indicates that the ECM has to be re-estimated in order to remove autocorrelation from

the residuals.

5.4.4. Correction for Autocorrelation

Autocorrelation occurs in time series studies when the errors associated with observations in

one time period are a function of past errors. Higher-order autocorrelation is prevalent in

transportation time series and should not be ignored (Washington et al, 2011). In the Error

Correction Models, if the residuals are serially correlated, lag lengths may be too short

(Enders, 1995). We include different lags of the dependent variable in the ECM for the bus
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share and the electric bus share, to remove autocorrelation (Table 5.4). However, adding more
lags does not resolve the issue of serial correlation on residuals in the ECM of the metro
share. Therefore, in order to correct serial correlation, we estimate the ECM of the metro
share under the assumption of higher-order scalar autoregressive process for the error term,
i.e.

€it=P1*€it—1 T P2*¥€t T "t Pp*€r pn+t U (5.3)

Table 5.5 ECM with Correction for autocorrelation

Dependent variable
(t -Statistic in parenthesis)

Explanatory variables® Metro share

A_metro share_lagl

A_ticket price_metro

A_GDP

A total ridership

February

August

December

Uig

1% order autoregressive parameter g,
2" order autoregressive parameter &,
Adjusted R?

Number of observations

-0.280(-3.37)
-0.052 (-1.08)
-0.056 (-1.64)
0.037 (-2.77)
0.007 (1.42)
-0.026(-4.55)
0.019 (4.51)
-0.637 (-5.68)
0.324 (2.23)
-0.276 (-2.20)
0.614
108

Residuals tests
Breusch-Godfrey LM test for autocorrelation
Lagl

Lag2

Lag3

Lag4

Lag5

Lag6

Lag7

Lag8

Lag9

Lag10

Lagll

Lagl2

(probability)

0.71 (p=0.399)
3.56 (p=0.169)
3.63 (p=0.305)
3.66 (p=0.454)
4.52 (p=0.478)
6.10 (p=0.413)
6.26 (p=0.509)
7.72 (p=0.461)
7.78 (p=0.556)
7.89 (p=0.640)
12.28 (p=0.343)
12.29 (p=0.423)

#all explanatory variables besides months are in logarithms

Table 5.5 presents the results for the ECM of the metro share, using estimation with a
correction for serial correlation. Since the data were monthly observations, serial correlation
from 1% to 12" order was investigated. The augmented Error Correction Model with the
moving average effects has been estimated based on the maximum likelihood method (Beach
and MacKinnon, 1978). On the basis of the t-statistics for the autocorrelation parameter

estimates, it appears that first and second order serial correlation parameters are statistically
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significant in the share equation of metro and conceptually important. This conjecture is
verified by the Breusch-Godfrey LM test, where the null hypothesis of no serial correlation,

after the correction for serial correlation, is accepted.

5.4.5. Long and Short Run Elasticities and the Speed of Adjustment Coefficient

As presented in Table 5.4, the estimated coefficient of the lagged residuals (u;) is negative
and statistically significant different from zero at 5% level in all the Error Correction Models,
indicating that there is a cointegrating relationship between the variables. The coefficient of
the lagged residuals (u.1) or the speed of adjustment coefficient, measures the rate at which
the system adjusts to the equilibrium state after any shock(s) to the determinants. In other

words, it measures how long it takes to reach the long run equilibrium state.

As the metro share ECM shows (Table 5.5), the speed of adjustment is quite high (-0.64) and
it is also statistically significant. This implies that the metro share adjusts towards its long run
equilibrium at a quite fast rate, with about 64% of the adjustment occurring within the first
month. The full adjustment occurs after 1.6 months. Thus, in the case of metro share, long run
elasticities refer to the time period after 1.6 months, while short run elasticities refer to the
time period in which the adjustment occurs. The speed of adjustment is almost equal in the
Error Correction Model of the electric bus share and the urban rail share, taking values -0.44
and -0.43 respectively (Table 5.4). In the case of bus share the speed of adjustment is also

negative and statistically significant with a value of -0.56.

Table 5.6 presents the short and long run mode share elasticities in the Athen’s multimodal
public transport system. Long run elasticities were derived from the models presented in
Table 5.3, while short run elasticities were derived from the models presented in Tables 5.4
and 5.5. Share elasticities show variations in the competitive position of each public transport

mode in relation to the other public transport modes, rather than variations in the demand in
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the particular transport mode. As expected the short run elasticities are lower than the long

run ones for all modes.

Table 5.6. Short and long run Elasticities

Long run Short run
Metro
GDP 0.39 -0.10
Metro ticket price -0.80 -0.28
Total Ridership 0.44 0.22
Bus
Metro ticket price 0.33 0.10
Gasoline price 0.10 0.06
Total Ridership -0.15 -0.08
Urban Rail
GDP 0.32 0.05
Uban rail ticket price -0.17 -0.11
Total Ridership 0.13 -0.14
Electric Bus
Bus/electric bus ticket price -0.08 -0.01
GDP -0.20 -0.15
Total Ridership -0.11 0.02

As with the ridership models presented in the previous chapter, share models are significantly
affected by fare and GDP. In the ridership model GDP is the factor that shows the highest
elasticities, while in the share models fare is the factor that shows the highest elasticity. For
example in the case of the metro mode GDP long run elasticity is 1.03 in the ridership model

and 0.39 in the share model, while fare long run elasticity is -0.23 and -0.80 respectively.

The results show that the share elasticities of the metro take higher values compared to the
elasticities of urban rail, electric bus and bus. Fare elasticity of the metro mode share takes the
highest value compared to the other public transport mode shares, both in the long and in the
short run taking the values of -0.80 and -0.28 respectively. This is probably explained since
the metro is the most expensive public transport mode and in many parts of the network there
exist parallel lines of alternative modes which become more attractive, particularly for short

trips.
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The integrated ticket, which allows people to use several public transport modes by buying
one ticket only, has favored the metro mode in the long run (Table 5.3) since, in case of joint
routes, it encourages the use of metro lines at no extra cost. The non-significance of the
integrated ticket in the short run implies that passengers take time to react to changes in ticket

price structures.

The positive long run elasticity of the metro mode share with respect to GDP (0.39) is
attributed to the consideration that the metro is more expensive and thus favored in periods of
increased GDP. The cointegrating relationship between metro share and total ridership shows
that as total demand grows the metro mode tends to attract a relatively higher share of total
demand. A 10% increase in total ridership results to a 4.4% increase in the metro mode share
in the long run and to a 2.3% increase in the short run. This is explained by the fact that the

metro is the most convenient mode in terms of frequency and speed.

The positive cointegrating relationship that was found between the urban rail share and the
GDP reflects the fact that metro and urban rail operate in a complementary way through
interconnection of their networks and therefore metro demand positively affects urban rail
demand. This also explains the positive relationship between urban rail and total ridership.
The electric bus share is negatively affected by an increase in GDP both in the short and in
the long run (elasticity of -0.20 and -0.15 respectively). This negative relationship is
explained by considering bus and electric bus to be inferior “good” (service) on the basis of
convenience and price (Bresson et al., 2004; Dargay and Hanly, 2002a), particularly in
comparison to the metro system. Electric bus share is negatively affected by total ridership in
the long run, implying that electric bus tends to attract fewer riders compared to the other PT
modes. However, Table 5.6 shows that the response of urban rail and electric bus shares to an

increase in total ridership are different in the short run.
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The bus share shows a positive elasticity to the metro fare explained by the fact that the metro
fare is more expensive than the bus fare and an increase in the metro ticket will divert
passengers to bus routes that run in parallel, particularly for short trips. This cross price
elasticity (0.33 in the long run and 0.10 in the short run) suggests that the metro and the bus
systems act as competitors in the larger part of their network (Gkritza et al., 2011). Gasoline
price appears to have a small positive elasticity with regards to bus share both in the short and

in the long run.

Finally, seasonal variables included in the Error Correction Models were found to
significantly affect the public transport mode shares. Generally, the winter months positively
affect the mode shares of metro and urban rail and negatively affect the mode shares of bus
and electric bus. This is logical since cold temperatures and rain make waiting for bus and
electric bus outside more uncomfortable. The results are in line with other studies that
investigate the effects of weather on public transport usage (Kuby et al., 2004; Guo et al.,
2007; Stover and McCormack, 2012). Stover and McCormack (2012) examined the effects of
weather on bus ridership and found that cold temperatures led to decreases in bus ridership
during winter months. Guo et al. (2007) found that bus ridership is more sensitive to weather

than is rail ridership.

5.5. Conclusions

We investigated the factors that determine the share of each mode in the multimodal public
transportation system of Athens. In order to deal with non-stationarity and seasonality in the
data, cointegration techniques were applied to investigate the long run equilibrium
relationships. The Error Correction Models were implemented to estimate the short run
dynamics as well as the speed of adjustment from the short to the long run. The results from

the cointegrating regressions indicate that the metro mode share is cointegrated with metro
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fare, GDP and total ridership; the bus mode share is cointegrated with metro fare, gasoline
price and total ridership; the urban rail mode share is cointegrated with urban rail fare, GDP
and total ridership; the electric bus mode share is cointegrated with electric bus fare, GDP and

total ridership.

The relation of short run elasticities to their long run ones reflects the transition from the short
run disequilibrium to the long run equilibrium state. It was found that the public transport
mode shares, do not immediately adjust to their long run equilibrium, after a change in their
determinants. Specifically, the coefficient of the lagged Error Correction Term (ranging from
-0.43 to -0.64 in the four Error Correction Models) suggests that convergence to equilibrium
after a shock to public transport mode shares takes approximately two months (ranging from
1.6 to 2.3 months). Moreover, the long run elasticities are consistently found to be statistically
more significant and higher than the short run ones. Specifically, fare elasticities in the short
run appear to be on average three times lower compared to the long run ones for all mode
shares (except for the urban rail mode share). There is statistical evidence that public transport
mode shares are more price sensitive at higher fare levels. The fare elasticity ranges from -
0.80 in the long run and -0.28 in the short run for the metro mode share (metro is the public
transport mode with the highest fares), to -0.08 in the long run and -0.01 in the short run for
the electric bus mode share (electric bus and bus are the public transport modes with the
lowest fares). The results obtained show that a policy of metro fare increase would result to a

decrease in the metro share and to an increase in the bus share.

The analysis also shows that GDP is one of the most important determinants of public
transport mode shares. Metro and urban rail mode shares elasticities with respect to the GDP
are positive in the long run, but negative or very small in the short run, while electric bus

mode share elasticity with respect to GDP is negative both in the short and in the long run.
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Our findings also indicate the role of total ridership fluctuations in explaining variations in
public transport mode shares. The metro and urban rail mode shares increase as total ridership
increases, while the bus and electric bus mode shares decrease as total ridership increases in
the long run. However, the results reveal that the response of urban rail and electric bus shares
to an increase in total ridership is different in sign between the short and the long run. The
relatively high negative short run elasticity of urban rail with respect to total ridership is
probably explained by the reconstruction of some parts of the urban rail system and thus the
related reduced level of service in the short run. Economic recession is expected to create a
further shift from private car to public transport. As total ridership grows, it is useful to know

how the increased demand will be distributed to the multimodal public transport system.
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6. CONCLUSIONS

6.1. Introduction

In this thesis we have applied a methodology for analysing transport demand data when both
demand and causal factors explaining demand are described by non-stationary time series
data, which is the case for most factors such as transit ridership, GDP, fares, and fuel prices.
The procedure for demand analysis proposed is applied to the Athens public transport system,
where different modes may operate in competition or cooperation. Two different but
complementary aspects of public transport demand were explored; first, the ridership of each
mode; second, the share of each mode in total ridership. The second chapter reviewed past
studies on public transport demand in order to identify areas that the present thesis may
contribute. In Chapter three a methodological framework based on dynamic econometric

modeling for analyzing non-stationary time series was presented.

Based on this methodological framework, demand for the multimodal public transportation
system of Athens was investigated in Chapter four. Monthly data for the period 2002-2010
were used to account for seasonal effects. The analysis treats each mode of the public
transport system separately (metro, bus, electric bus and urban rail) in order to account for
substitution effects. Demand is expressed as a function of operational and macroeconomic
factors and is analyzed using a time-series cointegration and error correction approach in
order to treat the non-stationarity of the data. An ARCH model was developed to account for
volatility in the error correction model of the electric bus ridership. Short and long term

elasticities as well as the speed of convergence from the short to the long run were estimated.

Market shares for each public transport mode in total transport ridership were analyzed in
Chapter five. This analysis provides useful information for making investment decisions

concerning the public transport infrastructure and for allocating subsidies. Due to the non-
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stationary properties of the data, cointegration techniques were applied to investigate the long
run equilibrium relationships and the Error Correction Models were implemented to estimate
the short run dynamics as well as the speed of adjustment from the short to the long run. For
the metro mode two models were developed in the short run, one with and one without

correction for autocorrelation.

6.2. Methodology

In the present thesis a methodological framework for analyzing non-stationary transport
demand data based on cointegration and error correction techniques was presented. This
approach (Engle and Granger, 1987) allows for treating non stationary data, for determining
short and long term elasticities and at the same time estimating the speed of convergence from

the short to the long run.

Briefly, the method consists of the following modules: First, a unit root test is applied to test
non-stationarity. Second, a cointegration test is performed to evaluate long run caused
relation. Third, an error correction method is used to evaluate short run responses. Finally, in
the cases that exists autocorrelation and/or autoregressive conditional heteroskedasticity on
the residuals, new error correction models are developed to account for these effects. A model
with correction for autocorrelation is used to correct serial correlation on the residuals and an

ARCH model is used to capture changes in variability of the time series.

6.3. Findings and Discussion

The elasticities computed for the Athens transport system are within the range of elasticities
computed in related international studies (Balcombe et al., 2004) and in other studies made
for the Athens urban transport system (Gkritza et al., 2011). However, when comparing
elasticities derived from different studies, it should be taken into account that each transport
system has its own separate characteristics that affect elasticities and that elasticities
computed by the cointegration methodology, according to experience reported in the
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literature, are lower than the elasticities computed by other methods (Wadud, 2007); this is a

finding with far reaching policy implications.

6.3.1. Short Run and Long Run Elasticities

Most changes described in a complex PT system have a dynamic nature; i.e. following a fare
change, or -more generally- a variation on an independent variable affecting demand, demand
variation does not remain constant but usually increases as time elapses until the long run
equilibrium state is reached. As expected, short run elasticities appear to be lower than the
long run ones both in the models explaining ridership and in the models explaining the share
of each mode. Demand tends to be more elastic in the long run rather than in the short run,
because short run elasticities are governed by resistance to change, while long run elasticities
are affected by consequential changes on behavior that take time to be realized (Mankiw,
2004). For example it was found that demand for public transport is more price inelastic in the
short run as public transport users often need more time to respond and change their habits. In
the long run passengers have enough time to respond to price changes switching to other

modes of transport.

6.3.2. Speed of Adjustment

Regarding the policy measures, however, it is useful to know not only the long and short run
effects of fares and other relevant factors on ridership but also the time required to adjust to
the long run equilibrium state (Dargay and Hanly, 2002). The speed of adjustment coefficient
computed for every PT mode in this study gives an accurate measurement of how long the
short run period lasts. According to the results, convergence to equilibrium is very high for
the bus ridership (bus adjusts to the long run equilibrium approximately in one month). For
the metro mode the short run period lasts two months, while for the other modes (urban rail
and electric bus) adjustment to the long run takes four months. For the four public transport
mode shares adjustment to the long run equilibrium state takes approximately two months
(ranging from 1.6 to 2.3 months).
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6.3.3. Fare and GDP

In both the ridership and the shares model GDP and fares appear to be the factors with the
higher elasticities both in the short and in the long run. Of the different modes, metro and
urban rail show the highest elasticities with respect to the factors examined. Both the bus and
the electric bus modes show a picture of demand stability as the factors affecting demand are

fewer than in the metro and urban rail modes and with lower value elasticities.

Fare elasticities of all transit modes examined are negative and lower than unity in absolute
values indicating that transit ridership in Athens is rather insensitive to price changes both in
the short and in the long run. The relatively low elasticities of demand with respect to fares,
suggest that the fare increase will not have a significant impact on demand and therefore this

policy will succeed in bringing more revenues and making up for some of PT’s deficit.

GDP is not a controllable factor. As such it provides a directive on how the transport system
should adapt to changes in the economy. On the whole GDP contributes positively both to car
sales, thus inducing a shift from public transport to private cars, but also to increased
economic activities which in turn create new trips. The findings in this study show that the
final result of the above influences has a distinct positive effect on public ridership. The
demand elasticities of the metro and the urban rail with respect to GDP are high, showing that
most of the increase in ridership as GDP increases will be absorbed by the metro and the

urban rail modes. This finding is also verified by the share models.

In the ridership model GDP is the factor that shows the highest elasticities, while in the shares
model fare is the factor that shows the highest elasticity. This is because the substitution
effects between different PT modes resulting from an increase in fares are more clearly
recorded in the share models. On the other hand an increase in GDP results to an increase in

ridership in all modes, the greatest increase occurring in the metro and the urban rail modes.
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6.3.4. Other Factors

Gasoline price appears also to have a small and positive impact on transit ridership, increasing
PT demand for the metro and the electric bus modes. However, the very low elasticities with
respect to fuel price, lead to the conclusion that a reasonable increase in fuel cost will not
affect ridership. This happens because fuel cost is only a small part of total cost of car use.
Finally, results indicate the role of total ridership fluctuations in explaining variations in
public transport mode shares. An increase in ridership favors the metro and the urban rail

shares, especially in the long run.

6.4. Directions for Feature Research

The present thesis analyzed public transport demand and public transport mode shares using a
time series analysis framework. In order to correctly analyze such data, it is imperative that
they are stationary; if not, the estimated equation parameters will be biased. However, in
practice, most time series data are non-stationary which affects the estimated models; this
issue, despite its implications for policy recommendations, has not be fully addressed in the
past. The issues of non-stationarity, autocorrelation and autoregressive conditional

heteroskedasticity have to be accounted when analyzing transportation time series data.

There is a need to incorporate additional factors into the model the most important being
guality of service. However, the fact that public transport demand is a function of service
supply and, vice versa, service supply is a function of service demand usually leads to the
issue of endogeneity. Single equation estimation used in this study is not an appropriate

method in this case.

Another methodological development could be to estimate system equation models using
Johansen Maximum Likelihood (GML) or Dynamic Seemingly Unrelated Regressions
(DSURE) methods. In the present thesis, since we are interested in investigating the factors
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that affect transit ridership by mode in a multimodal operating environment, we try to
estimate seemingly unrelated regression equation models. We check the variables for
cointegration and we compare the results with those of single equation estimation. However,
we could not run seemingly unrelated regression equations in the short run, due to the ARCH

effects found in the Error correction model of the electric bus ridership.

Market share models are an additional strand in the transit literature that needs to be
investigated further. In the present study we investigate the share of each PT mode in an
aggregate level exploring the effect of some macroeconomic factors on PT mode shares.
However, additional variables concerning the special characteristic of these models could be
included in the case of line demand models, exploring in greater detail the competition or

collaboration among the public transport modes of Athens.

Finally the models used in this study could be used to investigate the impact of economic
recession on the PT sector. The present study used monthly data from 2002 to 2010.
Economic recession in Greece, started from the beginning of 2010, makes demand analysis
more complicated since it affects demand in a number of conflicting ways. The shrinking of
economic activities, the resulting income reduction and, the increase in fares that a policy of
reduced subsidies implies, affect ridership negatively. On the other hand the reduced use of
private cars creates a shift on PT ridership. In addition, the economic recession destroys
smooth variation of data. The above complicated interactions ask for a sophisticated method
for analyzing demand. It would be interesting to investigate how the models described in this
thesis will behave under such data variation, especially if the period investigated includes a
period of development followed by a period of recession. Data for a complete assessment of
the impact that the economic recession in Greece will have on the transport sector are not yet
available. We hope that current results will provide a reference point for a future evaluation of

the changes that the new economic era will bring to public transport.
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