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Summary

In the context of probabilistic modeling uncertain parameters/functions are quantified as random. In
general, the characterization of random functions is a difficult task involving the knowledge of the
hierarchy of the probability distributions of all orders or, equivalently, the knowledge of the
characteristic functional. If random parameters/functions enter either as random initial conditions or as
input/excitation (external and/or parametric) to dynamical systems, then the systems output/response
will also be a random function. In case that the dynamics can be modeled by means of differential
equations these equations are called Random Differential Equations (RDEs). The difficulty of
calculating the probabilistic characteristics of the response is drastically reduced when we assume that
the stochastic excitation is delta correlated. However, this assumption is not plausible when the
correlation time of the excitation is of the same order of magnitude as the system’s relaxation time, as
is the case for macroscopic dynamical systems, e.g. for systems excited by sea waves, wind loads, or
earthquakes. In this case the excitation can be realistically modelled by smoothly correlated (colored)
random functions. RDEs with colored excitation (also known as generalized Langevin equations)
involve an increased amount of complexity due to the fact that in order to obtain system’s response
probabilistic structure one has to consider infinite dimensional differential equations. Although the
general case of smoothly-correlated excitation is the most interesting case for many applications in
engineering and applied sciences, existing methodologies fail to treat it in a satisfactory way.

In response to this situation, the response-excitation (RE) theory, a new method for the probabilistic
characterization of any non-linear system with any type of smoothly-correlated random excitation, has
been recently introduced by Athanassoulis & Sapsis (2006) and Sapsis &Athanassoulis (2008). The
RE theory, proposes the joint treatment of the probabilistic structure of the response and the excitation,
leaving the space for their stochastic dependence to be determined during the solution of the problem.
Athanassoulis and Sapsis used the characteristic functional approach to derive an equation for the joint
RE characteristic functional and showed that, by appropriately projecting this infinite dimensional
equation, it is possible to obtain equations for the evolution of the joint response-excitation probability
density function (REPDF). The derived joint REPDF evolution equation is a peculiar one, involving
two times (one for the excitation, S, and one for the response,t), and partial derivatives only with

respect to one of them (response time), whereas, after the differentiation, the limit of the excitation
time s —t should be taken. I.e., the REPDF evolution equation includes the “half-time” derivative
0 fx(l)y(s) (a,ﬁ)/@t L i This peculiarity gives rise to fundamental questions regarding both the well-

posedness and the methods of its numerical solution. While working on this thesis, it became evident
that the joint REPDF evolution equation of Athanassoulis and Sapsis in not a closed equation, and thus
cannot provide a unique REPDF. The same finding has also been stated recently by Venturi et al

(2012). This is due to the fact that when the half time limit O f a,ﬂ)/&t |H is considered the
non-local (in time) characteristics of the problem are partially lost. The present work continues the

study of the RE theory, aiming at the clarification of various obscure points, and its further
development towards the implementation of efficient algorithms for numerical solutions.

X(1)Y(s) (

In the first part of this thesis, the RE theory, introduced by Athanassoulis and Sapsis, is reviewed and
generalized to second-order nonlinear systems. The joint REPDF evolution equation for non-linear
dynamical systems under smoothly-correlated stochastic excitation is re-derived, using the
characteristic functional approach. To verify the validity of the obtained equations, the latter have been
used to re-derive the infinite system of the limiting two-time moment equations, which are also
obtained directly from the dynamical system. Finally the joint REPDF evolution equation is specified
to the case of the ship roll problem.

Subsequently, a well-studied, simple problem is considered in the context of the RE theory. More
precisely, the two-time RE moment equations are developed for a linear scalar dynamical system
under colored stochastic excitation. These equations are solved analytically and results are obtained
for different stochastic input functions. For Gaussian excitation, a complete analytical solution of the
studied problem, both in the transient and in the long-time statistical equilibrium state, is produced.
The analytical solution of this simple problem is used in order to verify/clarify the REPDF evolution
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equation for linear RDEs, and prove that it can have multiple solutions. Thus, the need for an a priori
closure of the REPDF evolution equation, providing additional information about the RE correlation
structure, becomes evident. The formulation and implementation of an efficient closure of this type is
one of the fundamental contributions of this Thesis.

The findings from the study of the linear/Gaussian case are generalized for the non-linear/non-
Gaussian case, drawing, also, on evidence gained looking into Monte Carlo (MC) simulations results,
performed by Z.G. Kapelonis. In fact, in the long-time statistical equilibrium state the joint REPDF
tends to concentrate around the equilibrium curve of deterministic problems realized on the RE-phase
space. Reclaiming these findings, new, auxiliary, local conditions are developed in the RE-phase
space, by the use of local linearizations/Gaussianizations around the equilibrium curve of the non-
linear scalar dynamical system in the long-time. These, analytically solvable, local conditions, can
successfully approximate the local RE correlation structure as is verified by comparisons with results
obtained by MC simulations and, therefore, can be used to form a new a priori closure scheme for the
non-linear REPDF evolution equation. The analytically obtained local closure information for the RE
correlation structure is synthesized in the REPDF evolution equation by the use of an appropriate
representation of the two-time joint REPDF, consisting of a superposition of Gaussian Kernels. The
reformulated REPDF evolution equation, together with the new local closure conditions, is
numerically solved using a Galerkin scheme. This allows for the specific structure of the considered
RDE to enter in the Galerkin coefficients both explicitly thought their dependence from the equations
of the dynamical system to be solved and implicitly through the Kernel coefficients which contain
information from the family of the localized problems. The Galerkin coefficients, having the form of
products of polynomials with bi-dimensional Gaussian densities are analytically calculated, and the
problem is solved as a constraint minimization problem. This Galerkin scheme has been used for the
determination of the joint RE probabilistic characteristics of a half-oscillator, subject to asymptotically
stationary, colored, Gaussian or non-Gaussian (cubic Gaussian) excitation. The obtained results are
satisfactorily compared with solutions obtained from MC simulations for the same problem.

The selection of the appropriate computational domain for the numerical solution of the joint REPDF
evolution equation in the long-time, initiated the development of a new methodology for the
formulation and solution of a system of two-time RE moment equations. These equations can apply to
any non-linear system with arbitrary polynomial non-linearities, excited by colored Gaussian or
polynomially non-Gaussian processes. More precisely, moment equations for the response mean value

m,(t), the two-time RE cross-covariance C,(t,s), two-time response auto-covariance C,,(t,s) and

time-diagonal response auto-covariance Cy(t,t) are derived directly from the dynamical system. A
Gaussian closure condition is, then, applied in order to eliminate the higher order moments from the
two-time moment equations. Following the Gaussian closure, considering s as a parameter, the
derived equations can be considered as linear ODEs with respect to t, having coefficients depended

on the time-diagonal moments. The equation for C,,(t,s) is used to express C,, (t,t) as a non-linear,
non-local in time (causal) operator on the whole history of m,(u) and C,,(u,u), t, <u <t. Using
the obtained operator for C,,(t,t), a closed, non-linear, causal system of evolution equations for
m, (), C,.(t,t) is obtained. After solving this causal system, the two-time moments can be calculated

for all (t,s) pairs as well. Results obtained by the direct solution of the two-time RE moment

equations in the long-time, statistical equilibrium limit are presented. Moreover, a first idea on a bi-
Gaussian moment closure scheme that could extend the presented methodology to bi-stable half
oscillators in the long-time limit is discussed. Obtained results are compared with MC simulations
satisfactorily in the mono-stable case. In the bi-stable case the discussed bi-Gaussian moment closure
scheme gives acceptable, preliminary, results only for the time-diagonal moments and the two-time
RE cross-correlation, whereas, in its present form, fails to approximate the two-time response auto-
correlation.
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Tovoyn

Y10 7mhaico g TOOvVOBEPNTIKNG HOVTEAOTOINGNG Ol TOPAUETPOV/GUVOPTHGE; TOL EVEYOLV
afefardnTa povrelomolovvtal og Tuyaies. I'evikd, 0 YOpaKINPIGHOG TOV TUXOIOV CUVOPTAGE®V gival
po. SVGKOAN gpyacio KaBMg apopd TN YVMOON TG 1EPUPYING TMV KATAVOU®MY THAVOTNTAS OA®V TMV
Ta&e@V 1M, 100JVVAUM®G, TN YVAOGTN TOL YOPOKTINPIOTIKOL cuvaptnolakov. Otav ot apyikég cuvonikeg
Wkar 1m  toyaio €lcodog/OiEyepon (emtepikny M/Kol TOPAUETPIKY]) SUVOUIKDOV  GUGTNUATOV
LOVTEAOTOLOVVTOL Gt TUYOUEG TOPAUETPOVS/ GUVAPTNGELS, TOTE 1| ££0505/ATOKPLOT] TOV GVGTNUATOG Oa
glval emiong (o Tuyoio GUVAPTNOT. TNV TEPITTOOTN TOL 1) SVVOUIKT] TOV GUGTAHOTOS UTOpE vo
povtelomombei pe t ypnon dweopikmv eélodoewv, t0te o1 e€lodoels avtég ovopdlovtat Tuyaieg
dwpopikég e€icmoelg (TAE). H duokoria Tov vToloyiopod tov movobempnTik®dy opaKTploTIKOV
NG AmOKPIoNG UELMVETAL OPACTIKA OTAV VTOBEGOVUE OTL 1] GLUVAPTIOY GLOYETIONG TNG GTOYOCTIKNG
diéyepong umopei vo povrelomoindet amd pia cuvaptnon dédta. Evtovtolg, avt) 1 vwobeon dev gival
EVAOYOPAVIG OTAV 0 ¥POVOG GLGYETIONG TG d1€yepong eivar g 1dwog tééng peyébovg pe tov xpodvo
NPEUOS TOV GLOTAUATOG, OO GVUPAIVEL GE LAKPOGKOTIKG SUVOUIKA GUGTAIOTA .Y, GUGTHUATO, TTOV
deyeipovtar omd Boddooio KOHOTO, POPTIO AVELOV, 1] GEICUOVG. € OUTH TNV TEPITT®ON 1 d1€yepon
pmopei va poviehomomBel peaMoTiKd amd TuYOiEG CUVAPTNOES UE AElEC GUVOPTNOEL; GLGYETIONG
(opodn diéyepon). Ot Tuyaieg dtopopikég eEIGMOELS pe OPOAT S1€yepoT (YVMGTEG KOl (G YEVIKEVUEVEG
efloooelg Langevin) eumepiéyovv avénuévn molvmhokdtnta AOY® TOL OTL, TWPOKEWEVOL Vo
YopoKTNpicel Kovelg mhavobewmpntikd TNV andkpion, Tpénet vo, OmpnoeL 0mEPOSIAGTATES OOPOPIKEG
eCioooeis. Iopd 10 yeyovog OTL M yevikn mepintwon tuyaimv dieyépoemv pe Aeleg cuvaptnoElg
OLOYETIONG TOPOVOLAlEL HEYOAO EVOLOPEPOV OTN UNYXOVIKN KOl OTIS EPUPUOCUEVEG EMIGTNUESG, OL
VILAPYOVCES LEBOSOAOYIEG ATOTVYYAVOLV VO TNV OVTIHETMOTICOVY IKOVOTOTIKA.

Yg amdvrnon avtng g Katdotaong 1 Oewpio andkpiong-oEyepong (AA), o véa pébodog yio tov
mOovoBe®PNTIKO YOPAKTNPIGUO KAOE Un-YPOULKOD GLCTHUATOG VIO KAOE TOTOL TuYain S1EyEpoN UE
Aelo cuvapTnon cuoyEtiong, Ny tpdceata amd Toug ABavacovin & Zayr (2006) kot oy Kot
ABavocovin (2008). H Bewpia AA, mpoteivel TV amd KOOV GVTILETOTION TNG THovoDemPNTIKNG
SOUNG TG OmOKPIONG KoL TNG OLEYEPONG, APTVOVTAG YDPO Yo TOV KAHOPIGUO TNG GTOYAGTIKNG TOVG
e€apmong katd v enilvon tov wpoPAnuatoc. Ot ABavaccoding Kot Zayng ¥pNoYOTOIOVTIOS T
péBodo  TOv  YOPOKTINPIGTIKOL GLVOPTNOLOKOD  €deiEav 0T, mpoPdAloviag KOTtdAANAo TNV
amepodidotatn e&iowon, givar duvatd va mopaybovv eiomoelc Yo v €EEMEN TG amd Kooy
cuvaptnon tukvotntag mhovotntag (onm) g amokplong kat g oyepons. H mapaybeica e&icwon
e&EMENG ™G omd KOvoL ont amdKpiong kol diéyepong (ontAA) mapovoldlet WlontepodTNTEG KOOADS
mePIEXEL 6vo YPOVOLG (Evav Yoo TV O1€yepom, S,Kat €vav Yo TNV omdkpion, t), kol p pepikn
TAPOYDYO HOVO MG TTPOG Evav omd avTovg (YpOvo AmOKPIoTG), EVM, HETA TNV TAPUYDYIOT], TPETEL VO
Aappdvetatl To 6plo Tov ¥povov diEyepong S — t. Anradn N onmAA copmepthapPdvel TNV Tapdywyo

«ueob ypdvovy O f a,3)/ ot L . Avtn 1 18101TEPHTNTO TPOKAAESE PAGIKE EPOTHHATO GYETIKG

X(©Y(s) (
pe 1o av 1 e€lomon givar kaAd opiopévn aAld Kot o¢ Tpog ) néBodo apBunTikng g entivong. Katd
TN SLAPKELD EKTOVNONG TNG TapovGog STping €ywve @avepd Ot 1 onttAA tov ABavacovin Kot
Yayn ogv glvan KAEGTN Kol dpo OV UTopel Vo TPOGdlopicEl KATA HOVOIIKO TPOTO TNV 0md KOWOoU
onnAA. To 1610 dpnpo dotvnddnke Tpoceata omd tovg Venturi et al (2012). Avtd ogeiketar ot0

yeyovog 6t otov AapPdvetor to dpro «ucov ypovovy O f a, ﬁ)/ 8t| T Un-tomkd (oto

X()Y(s) (
APOVO) YOPOKTNPIGTIKG TOV TPOPANUATOG LEPIK®G YavovTal. H mapodoa epyacio cuveyilel tnv peAém
g Bewpiag AA, pe okond va Eekabapioel Kamowo aoaPn onueio Kol vo TNV ovOTTHEEL TEPALTEP®
OTOCKOTAVTAG TNV EPOPLOYT ATOTEAECUATIKAOV aAYOPiBL@V Yo aptBunTikég AVGELC.

210 IPMOTO UEPOG TG EPYACING OVTNG, M Bempian AA, mov gwonNydn amd tovg ABovacovin kot Zoy,
emaveEeTAleTaol Kol YEVIKEDETAL GE UN-YPAUIUKA cvuoThpata dgvTepns TaEems. H eiowon e&éMEng g
oo KOWoU OMTAA Yo Un-YPOUUKE duvapikd cuotiuate VIO Agio GTOYOOTIKY O1EYEPCT TOPAYETAL
Eava pe ™ gpnon g HebBOd0L TOL YAPUKTNPLETIKOD GVVAPTNGLoKOD. ['a va emaAnBevtel | 10y0G TV
napoyfeicov e£lo®oE®V, Ol TEAEVTAIEG XPTMOUOTOOVVTOL Y10 TNV TOPAY®YN €K VEOU TOV GTELPOV
GUGTILLOTOG OPLK®V EEIGMCEMV POTMV VO YPOV@V, Ol OTOiEg LTOPOVV va TtapayBovy Kot amevdeiog
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amd o duvapukd cvatnua. Téhog, 1 e€icwon eEEMENG g amd Kool omAA GuyKEKpIUEVOTTOLEiTAL
Y0 TNV TEPIMTMON TOL TPOPANLATOC TG Kiviong dtatoyyiopov mhoiov (ship roll ploblem).

21 ovuvéyela éva gup€mc peAetnuévo, amid mpoPAnuo eEetdleTon ota mAaicwo tng OBsmpiog AA.
YUYKEKPYEVO OVOTTOGGOVTOL Ol €E1I0DGES portdy AA 800 ypdvav yio €va Ypopuko Poabuoto
duvapkd cHoTNHO VIO OHaAR 01€yEPOT. AVTEG Ol €£1I0MGELG ADVOVTOL OVOAVTIKA, EVD OTOTEAECUATO.
Aoppdvovior yio OlQOPETIKEG TEPMTMOEL; OTOYOOTIKNG O€yepons. o kavovikny (Gaussian)
diéyepon, AouPdavovpe o TAAPN OVOAVTIKY] AVom Tov VIO eE€taoTm TPOPANUOTOC, TOGO OTNV
petafatiki 060 Kol GTNV KOTAGTOOT OTOTIGTIKNG GOPPOTIiNG GE UEYAAOVG xpovous. H avolvtikn
ADGM AVTOL TOV ATAOV TPOPANUATOG YPTCILOTOLEITOL GTN GUVEXELL Y10 VO, ETOANOgVGEV amocaPnVicEL
v e€icmon eEEMEng ¢ and Kovov ontAA Yo ypappkég TAE, kot va amodei&el 6T avtn déyeTon
neplocotepeg and pion Aoelg. Emopévog, avadewvietar 1 avaykn cvuminpmong g e&icwong
e€EMENc g amd kool onmAA pe emmAEoV GUVONKEG O OTTOIEC EIVaL IKAVES VO TOPEYOVV EMITAEOV
TAnpopopia yuo T SO GLGYETIONG TNG AMOKPIOTG KoL TNG OLEYEPONG TOV GLOTNATOG. M amtd Tig
Oeperddel; oupPforég ¢ mopovooc OSlaTpiPng OmoTEAEL Kot M OVATTLUEN KOL EQUPLOYT €VOG
OOTEAECLOATIKOD GYNUOTOG OV 0dNYEl 68 KAEOTEG Avoelg g e&icwong e&éMEng g and Kowvov
onnAA.

Ta gvpfjuota amd T HeAéTn TG Ypaupkie/Gaussian TepinTmong YEVIKEDOVTOL GTI| WN-YPOLLLLKT/UN-
Gaussian mepintoon  aflOTOIOVTAG, EMTAEOY, ELPNUOATO TOL TPOEKLYAV OTO Tn UEAET
arotelecudtov tposopoimcewv Monte Carlo (MC) ot omoieg mpaypatorombnkay and tov Zoyopio
I'. Kanehdvrn. Zoykekpipéva, o HeYGAovg xpovoug 1 amd Kowvoy onmAA TeIVEL VO GUYKEVTPMOVETOL
YOP® OO TNV KOUTOAN 1GOPPOTING TV VIETEPLUVIGTIKOV TPORANUAT®OV TOV TPOYUATOTOLOVVTHL GTO
1dpo AA. AopPdvovog vaoyn To EVPHLOTO AVTH, TUPAYOVTIOL VEEG TOTIKEG (OTO YMPO OTOKPIOTG-
déyepong), omd Kowov gflomoel pomdv  AA VO ¥pOVOV, YPNOLUOTOIOVTOG TOTIKEG
ypappatikoromoeiy/kavovikonomoels  (linearizations/Gaussianizations) yop® omd TNV  KOUTOAN
1GOPPOTIOG TOV UN-YPOUUIKOD BabU®mTod GLOTHUATOG o0 PEYAAOVG Ypovovs. Ot Tomikég eEl0MGELG
EMADOVTAL OVOAVTIKA Y10 SLAPOPEG TEPWITMOGES. Ta AMOTELECUATA GUYKPIVOVTOL IKOVOTOWTIKG UE
amoTEAECUOTO OO Tpooopowwoel; MC kol emopéveog Umopodv vo  ypnoilpomomboldv  yio va
oYNUOTicovy éva, VEO GYfLO TTOV GLUUTANPGOVEL, a priori, T un-ypauukn eéicoon eEEMENG ¢ amd
Kooy onmAA. H TAnpo@opia yio TV TOTIKY| SO GUOYETIONG TNG ATOKPLONG Kol TNG O1EYEPONG TOV
Aappdvetar avolutikd pécm tov vémv eélomcemv cvvtifetar pe v egicmong e&EMEng g omd
KowoVO onmAA pe ) ¥pNoT KATEAANANG avamapdoTtacng amrotelodpevng ond Gaussian Kernels, n
omoio. pmopel vo. «pépey v emmAéov mTAnpoeopic otnv opyikn e&icwon. H avadiapopeopévn
elomon e&éMéng g amd kool onmAA poll pe TG véeg GUUTANPOUATIKES EEIGMOELS EMADOVTOL
aplBunTikd pécw evog oynuotog exilvong tonov Galerkin. Mg Tov tpomo ovtd €16AYETAL 1] SOUN TNG
ovykekpévng TAE otovug ocvvtedeotég Galerkin téco dueca, pécwm g €£GPTNONG TOVG OO TNV
eklomon tov mpog emiAvon Svvapkod GLGTAUATOS, OGO KOl EUUEGO, LECH TMOV TAPAUETPOV TOV
Kernel mov mepiéyovv mAnpo@opiec amd TV OIKOYEVELN TV TOTIKAV eEl0MGE®V. Ol GUVTEAEGTEC TOL
oynuatog Galerkin, égovv tn popen ywopévev moAvovopmv pe ducdidotateg Gaussian KoTAVOUEG
KOl UTOPOVV VO DTOAOYIGTOUV OVOALTIKG, €VO TEAWKG TO TPOPANUa ADvetol ®¢ mTPOPANUa
glaylotomoinong vo mepopiopovs. Avtd 1o oynuoe Galerkin ypnoipomotgital yio Tov TPoGdl0pIGHO
TV and KowoL THavoBempnTIKGOV YapaKTPoTIKOV AA gvog BabioTol TolavTet Vad ACVUTMTIKG
otaoun, opaAr Gaussian 1 pn-Gaussian (kvopkny Gaussian) di€yepon). Ta anotedécpato cuykpivovrol
pe emtuyio Le OMOTEAEGUATO TPOGOUOIMGE®V OV TopnyOncav pécm MC mpocopoidcemy yia to idto
TpoOPAN L.

H egmidoyn tov KatdAAniov LTOAOYIGTIKOV TTEdiov Yo TV apduntikn exilvon g e&icwong e&EMEng
™G omd Kool ONTAA og Peydlovg XpOvovus, £0MCE TO £VOVGHO YloL TNV OVATTLEN WG VENG
pebodoloyiog yioo ToV GYNUATIGUO KOl TNV EXIAVGN €EVOC GLOTHLATOG EEIGAOCEMY POTMV dVO YPOVOV.
AvTég 01 e£loMOEIG HTOPOVV VAL EPAPUOGTOVV GE KAOE UN-YPOUUIKO GUGTNUO LE TOAVMOVOUIKES LT)-
YPOUULKOTNTEG, TOL dleyeipetar omd oparéc Gaussian 1 (moAvovopikd) upn-Gaussian Tvyoieg
dlodikaoiec. Zuykekpléva, EI0AMCELG POTTMOV Yo TN HEOT TN TNG omdkpiong m, (t), tn cvvdptnon
cvvdloxvpoveng AA dbo ypovov C,(t,s), ™ ovvlptnon avtodwakdpaveng AA dvo xpdvev

Cy(1,5) kot ™ ovvdptmon ovtodlokvpovong otn dydvio tov xpovov Cy(t,t) mapdyovtar
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amevbeiog omd o duvapkd cuatnua. H veobeon 6t ot tuyaieg cuvaptioeig eivar Gaussian (Gaussian
closure condition) tiBgton 6T GLUVEKELD TPOKEWEVOL Va eEaAelpBohV o1 pomég avdTepns TAENS amd Tig
e&lomoelg pondv dvo ypovev. Metd v epoppoyn g vrdbeons avtc, BepOVTOS TO XPOVO S ®OC
TAPAUETPO, Ol EEIGMGELS TOV TTOUPVOVUE PTopoVV va BempnBodv @¢ ypappukég cuvnOelg dlopopikég
e€16MGEIS G TPOG TO YPOVO t, £OVTAG TAPAUETPOVS TOV eEOPTMOVTAL OO TIG POTEG GT JAYADVIO TOV
xpovav. H eficwon yio v Cyy(t,s) ypnowomnoteiton yio va exppdoet tnv Cy (t,1) og évav pn-
YPOULUIKO, UN-TOTIKO GTO YpOVOo (0TlTd) TEAESTN TAV® o8 OAN TV 1oTopia TV m, (u) kot Cyy (U, U),
v ty < u <t. Xpnowonoidvrag tov terestr] Yo t0 Cyy (t,t) AoapPdveror £va kAeloTo, Un-ypopLko
a1tatd ovotnpo ond eElomoelg eEEMEng Yo tig my (t), C,, (t,1) . Metd v eniivon tov aitiatov ov-

OTAROTOG UTOPOHY Vo, VITOAOYIGTOUV 01 porég dvo ypdvav Yo Ora ta (edyn (T, S). Mapoveidlovat

OTOTEAECLATO. OO TNV EMIAVOT TOV EE1I0DGEOV potdV AA dV0 YPOVOV GTNV KOTAGTOCT] GTATICTIKNG
woppomiag, o€ peydAovg ypdvovs. Emione, amookondvtag oty eméktaon tng pebodoroyiog o€
Babumtovg Tahavtotéc pe dvo onpueio gvotdbetlag (bi-stable), oe peydhovg ypovovg, Tapovoidlovral
KOTOlEG TPMTES 1066 Yoo €va oyfuUe 610 omoio TifeTon, EVOAMOKTIKG, 1 VIOOeon OTL oL TVYOiES
ocuvoptioelg eivor pa veépbeon amd Svo Gaussian tvyoieg ocvvaptioelg (bi-Gaussian closure
condition). Xtnv TEPITTOON CLOTNUAT®V pHE £€va ONUElo €VoTAOEG TO AMOTEAEGUOTO 7OV
AopPavovTol GUYKPIVOVTOL IKAVOTTOINTIKG LE OTOTEAESUATO OO TPocopolmoels MC. Xty nepintwon
GLOTNUATOV UE VO onpeio evoTabelng To VIO cu{NTNOTN GO SIVEL ATOJEKTA OMOTEAEGHLOTA Y10 TIG
POTEG GTNV SLOYDVIO TV XPOVOV KAl Yo T1 GLVEAPTNON dlacvoyétions AA 600 ypovev evd, vrd v
TAPOoVGO, LLOPPT] TOV GYNHUATOG, Ol GLVAPTIGEIS CLTOGVGYETIONG OgV TPoceYYilovTal ETTVYMG.
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1.1. A general survey of probabilistic methods in stochastic dynamics

Within physical sciences and engineering, attempts to explain and predict physical systems
are generally based on translating the interactions among their components and the interaction
with the environment into mathematical equations. However, due to the system’s complexity
and/or lack of access/knowledge to all of the involved scales/mechanisms of interactions, the
information is often insufficient to successfully model all the involved features using
deterministic mathematical modeling. Probabilistic modeling offers a powerful alternative
that allows the inclusion and quantification of uncertainty for some of the system’s
components and/or for the external excitation. Inclusion of the latter to dynamical equations,
modeling the laws of physics, enables a better understanding on how these uncertainties act
and evolve in time. (see Prigogine 1997, Chapter 1).

In the context of probabilistic modeling uncertain parameters/functions are quantified as
random. In general, the quantification of random functions is a difficult task since their
complete probabilistic characterization requires the knowledge of the hierarchy of the
probability distributions of all orders or, equivalently, the knowledge of the characteristic
functional (Hopf 1952), (Kotulski & Sobczyk 1984), (Vakhania et al. 1987). When random
parameters/functions enter as random initial conditions or as input/excitation (external and/or
parametric) to dynamical systems then the systems output/response will also be a random
function. In case that the dynamics can be modeled by means of differential equations these
equations are called Random Differential Equations (RDEs). The main goal is to use all the
available information on the input probabilities and on the dynamics governing the evolution
of the studied system in order to probabilistically characterize the system’s response. Of
course there are methods that allow to derive a partial probabilistic characterization of the
response, fully exploiting the available information concerning the data random functions as
the solution of moment equations.

The difficulty of calculating the probabilistic response is drastically reduced when we assume
that the stochastic excitation is a delta correlated process, also referred to as white noise
(Pugachev & Sinitsyn 2001), (Di Paola & Falsone 1993), (Soize 1994), (Sun 2006). In this
context, the response will be a Markovian process that follows the Chapman-Kolmogorov
equation and can be completely characterized by its transition probability function (Van
Kampen 1998) when, in the most interesting cases (diffusion processes) it takes the form of a
probability density function (pdf), and it is governed by the Fokker-Planck-Kolmogorov
(FPK) equation. Extension of this method to systems subject to other types of noises (e.g.
Poisson and Lévy have also been developed (e.g.: (Grigoriu 2004), for a review of FPK
equations see e.g.: (Risken 1989)). However, the assumption of delta-correlated excitation is a
plausible simplification when the correlation time of the random excitation is much smaller
than the system’s relaxation time (Lin 1986), (Roberts & Spanos 1986), (Mokshin et al.
2005). The latter is not generally the case for macroscopic dynamical systems, for which the
correlation time of the excitation is of the same order of magnitude as the system’s relaxation
time. This is especially true for many engineering applications, e.g., for systems excited by
sea waves, wind loads, or earthquakes. Such cases can be realistically modelled by smoothly
correlated random functions, also known as colored random noises. RDEs with colored
excitations (also known as generalized Langevin equations) involve an increased amount of
complexity due to the fact that in order to obtain system’s response probabilistic structure one
has to consider infinite dimensional differential equations (Hopf 1952)(Beran 1986)(Hanggi
1978)(Luczka 2005)(Sapsis & Athanassoulis 2008).
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In cases where the correlation time of the excitation is small but not negligible, i.e. the
response is nearly Markovian, it is possible to create an I[t6 SDE for slowly varying
(compared to the fluctuation of the excitation) quantities of the oscillation as the amplitude of
the response envelope that can be considered as Markovian processes and pass to the
corresponding averaged FPK. This technique, known as the stochastic averaging method, was
first introduced by Stratonovich (1963) and made rigorous, under clearly stated asymptotic
assumptions by Khasminskii (1966). It has been extensively applied to problems in Physics
and Engineering. See, e.g., (Lin & Cai 2000), (Luczka 2005), (Ibrahim 1985), (Roberts &
Spanos 1986), (Red-Horse & Spanos 1992), (Dostal et al. 2012). This is a useful asymptotic
method that can be used to treat cases where the correlation time is different from zero, but
small in comparison with the system’s relaxation time.

An approach which can resolve the non-Markovian characteristics of the excitation, keeping a
close connection with the standard It6 SDE and the FPK equation, is the filtering approach.
This method is implemented by augmenting the system of dynamical equations with a linear
filter, excited by a delta-correlated process and providing as output a process modelling a
more realistic, excitation ((Spanos 1983), (Spanos 1986), (Muscolino 1995), (Pugachev &
Sinitsyn 2001), (Luczka 2005), (Hu et al. 2012), (Francescutto & Naito 2004)), (Er 2013). For
instance a first-order filter has as output an Ornstein-Uhlenbeck (OU) Gaussian process,
whereas a second-order filter produces a Gaussian harmonic noise. Such problems can be
solved by means of the FPK equation approach or the various generalizations of it. Besides, in
this case, it is possible to systematically formulate moment equations up to any order that the
available information concerning the input random functions allows. This method is rather
general and effective as far as the excitation is Gaussian and the appropriate filter is of low
order. For non-Gaussian excitation it is not clear how this method can be applied. One should
solve a system identification problem to define a non-linear filter that could have as output a
successful approximation of the excitation.

The method of moments is another well-known and extensively used method that allows to
derive a partial probabilistic characterization of the response. Moment equations can be
derived either directly from the random system (Beran 1986), or by FPK and generalized FPK
equations describing the evolution of the response density (Jazwinski 1970), (Soong &
Grigoriu 1993), (Di Paola & Floris 2008). When the system is linear, the solution of a system
of moment equations, allows one to exploit the knowledge of excitation moments up to a
specific order to determine the response moments up to the same order (Di Paola &
Elishakoff 1996), (Conte & Peng 1996; Lutes & Sarkani 1997; Qiu & Wu 2010). In particular
when the system is linear and the excitation is Gaussian, the solution is also Gaussian, and
thus, the solution of the moment system provides a complete probabilistic characterization of
the problem. However, when the system is non-linear the (truncated) moment system is not
closed and, thus, some closure scheme should be invoked. The simplest one is the Gaussian
closure, introduced by Goodman and Whittle in the 50’s and extensively used thenceforth in
the study of random vibrations (Lutes & Sarkani 1997). It has been found that it works well
for mono-stable oscillators, while for bi-stable ones may lead to inadequate or erroneous
results (Hasofer & Grigoriu 1995; Grigoriu 2008). Also, many types of non-Gaussian closures
have been devised and used for treating moment equations coming from nonlinear stochastic
systems under delta-correlated excitation. Among them we mention the cumulant-neglect and
the quasi-moment neglect closure (Roberts & Spanos 2003), (Wu & Lin 1984), (Lutes &
Sarkani 1997), the use of specific parametric models for the underlying pdf (Crandall 1980),
(Hampl & Schuéller 1989), (Pugachev & Sinitsyn 2001), (Er 2000), (Er et al. 2011), the
information closure (Chang & Lin 2002; Sobczyk & Hotobut 2012) and the polynomial-
Gaussian closure (Robson 1981; Anh & Hai 2000).
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Another approximate method, formally applicable to any non-linear system under colored
Gaussian excitation, is the equivalent statistical linearization (Roberts & Spanos 2003),
(Socha 2008). The method is simple and easy to apply but with restricted interest. Its main
drawback is that it can never give evidence of the characteristic peculiarities on the non-
linearity. An interesting improvement of this method is the local statistical linearization,
introduced by Pradlwarter (2001). In this approach the linearization is performed locally in
phase space and, thus, the non-linear characteristics of the dynamical system are not
superseded and the obtained pdf reflects adequately the non-linear features of the problem.

Another category of methods of uncertainty quantification are the ones that based on
truncated spectral expansions of random input/output functions (Spanos & Ghanem 1989),
(Spanos & Ghanem 1991), (Ghanem & Spanos 1990; Ghanem & Spanos 2003). These
methods may be referred to as spectral stochastic Galerkin methods (other terms used in
scientific literature are stochastic Galerkin methods, spectral stochastic finite elements
methods). Among other spectral representations, the Polynomial Chaos (PC) expansion
(Wiener 1938) (Ghanem & Spanos 2003), in terms of Hermite polynomials, is usually applied
to the representation of the response random functions, whereas, the random input is usually
represented by a truncated Karhunen-Loeve (KL) expansion (Karhunen 1947; Loeve 1978),
(Ghanem & Spanos 2003). A system of linear algebraic equations is then obtained by a
Galerkin-type projection onto a complete basis in the space of random variables. Xiu and
Karniadakis (2002, 2003) proposed a generalized polynomial chaos expansion using a trial
basis from the Askey family of hypergeometric polynomials to account for non-Gaussian
effects. Moreover, recently, Sapsis and Lermusiaux (2009) introduced a more general
expansion in which the basis is dynamically evolved. Using the condition of dynamic
orthogonality (DO) Sapsis and Lermusiaux (2009) derived evolution equations for general
stochastic systems (including partial differential equations) which can be efficiently solved
numerically, see e.g. (Sapsis & Lermusiaux 2012), (Ueckermann et al. 2013), (Sapsis et al.
2013). If the same restrictions for the expansion of the response as in the generalized PC
expansion are assumed on the dynamically orthogonal field equations the generalized PC
equations can be recovered.

An interesting circle of ideas for studying the probabilistic response of non-linear dynamical
systems under general excitation has also been developed, on the basis of the Karhunen-
Loeve Theorem. The fundamental idea is to replace the given random functions, entering into
the stochastic system, by their Karhunen-Loeve expansions, reducing the initial problem to a
problem involving only stochastic variables. Then, in principle, the evolution of the joint,
response-excitation pdf is governed by a high dimensional Liouville type equation, also
known as Dostupov-Pugachev equation. In Venturi et al (Venturi et al. 2012) the sparse grid
collocation method (Foo & Karniadakis 2008; Foo & Karniadakis 2010) is used to find the
joint response-excitation pdf by the numerical solution of the Dostupov-Pugachev equation,
whereas, in Cho et al. (2013) the same equation is solved by considering the response and the
excitation space separately, using the sparse-grid collocation method for excitation space and
an adaptive discontinuous Galerkin method for the response space. Another, closely related
approach has been recently developed by Li and co-workers see e.g. (Li et al. 2009; Li et al.
2012) who have used the Dostupov-Pugachev equation to formulate the generalized density
evolution equation using a Lagrangian description of the random system. The numerical
solution of the generalized density evolution equation requires the selection of representative
points of the random parameter space. That is, the numerical solution of this includes
elements from the probability domain and the physical domain (Li & Chen 2009).
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Another circle of ideas for studying dynamical systems initiated and developed mainly by
physicists aims at the formulation of closed equations governing the evolution of the pdf of
the system’s response (Hénggi & Jung 1995). In principle such equations are not closed as
they involve an average that expresses the non-local, in time, correlation between response
and excitation. To get closed, solvable equations one needs to invoke the statistical properties
of the excitation in order to calculate the interaction between the response and the excitation.
To this end, and after the application of the Furutsu-Novikov-Donsker formula (or
generalizations of it), several methods have been developed as e.g. the small correlation time
expansions, with which one can produce effective approximate FPK equations (Dekker 1982),
(Hénggi & Jung 1995) (Venturi et al. 2012). The decoupling approximation, which does not a
priori restrict the noise to small correlation time, but neglects correlations between response
and excitation and is, therefore, valid for weak-intensity random noise excitations (Hinggi &
Jung 1995). The unified colored noise approximation, that increases in accuracy for
increasing non-linear damping and decreases in accuracy with color intensity (Jung & Hanggi
1987), (Luo & Zhu 2003), (Luczka 2005).

Apart from the above techniques, a new general approach to the probabilistic study of
dynamical systems under colored (smoothly-correlated) random excitation, was introduced by
Athanassoulis and Sapsis. The response-excitation theory (RE theory) (Athanassoulis &
Sapsis 2006; Sapsis & Athanassoulis 2006; Sapsis & Athanassoulis 2008), is based on a
generic approach introduced by Eberhard Hopf (1952) which treats the evolution of the
underlying, infinite-dimensional, probability measure, associated with the involved processes,
by means of the evolution of their joint characteristic functional (Ch.Fnl), termed the
characteristic functional approach (Ch.Fnl approach). The Ch.Fnl approach has been
extensively used in the statistical modeling and analysis of turbulent flows (see, e.g., (Lewis
& Kraichnan 1962; Beran 1986), (Vishik & Furshikov 1988)). The application of this
approach to treat stochastically excited Ordinary Differential Equations (ODEs) was
discussed by Beran (1986), see also (Vishik & Furshikov 1988), and used by Kotulski and
Sobczyk (1984), to obtain a closed form solution for the Ch.Fnl of a stochastically excited
linear oscillator and other linear problems. Along the lines introduced by Sapsis and
Athanassoulis (2008), the Ch.Fnl approach can be exploited in order to obtain new Partial
Differential Equations (PDEs), governing the evolution of the joint, Response-Excitation pdfs
(REPDFs) by appropriate projections of the Functional Differential Equation (FDE). Venturi,
Karniadakis et al. (Venturi et al. 2012), (Venturi & Karniadakis 2012), elaborated further this
approach, confirming the equation derived in (Athanassoulis & Sapsis 2006; Sapsis &
Athanassoulis 2008) and answered in negative the question raised in (Athanassoulis & Sapsis
2006; Sapsis & Athanassoulis 2008), if this equation alone ensures uniqueness. Accordingly,
it becomes evident that a kind of completion of this equation is necessary. The completion
proposed by (Venturi et al. 2012), results in a complicated equation, that includes the entire
history of the response process in a functional integral form, while a simplified (computable)
version of the latter equation, seems to be valid only for weakly colored excitation.
Alternatively, the same authors (Venturi et al. 2012), (Cho et al. 2013) have proposed
numerical solutions for special cases of the REPDF evolution equation in which this coincides
with the Dostupov-Pugachev equation (see also discussion above). The RE theory will be
further discussed in the next subsection.

1.2. Motivation and scope of the present work

The motivation for the present work has been the development of technics permitting the
probabilistic characterization of the solution of RDEs under general (smoothly correlated)
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random excitation. Since the complete probabilistic characterization of such random functions
is very complicated (involving infinite dimensional mathematical tools) (Vakhania et al.
1987), one usually aims at a weaker solution, i.e. the knowledge of some pdfs of the response
process, or some moment functions of the response.

As we have already discussed in the previous section, the difficulty is drastically reduced
when the stochastic excitation is a delta correlated function that makes the response a
Markovian random function. Existing methodologies fail to treat in a satisfactory way the
general case of smoothly-correlated excitation, which is the most interesting case in
engineering and applied sciences (see also the discussion below, in this section). In response
to this situation the RE theory, a new method for the probabilistic characterization of any non-
linear system with any type of smoothly-correlated random excitation, has been recently
introduced by Athanassoulis & Sapsis (2006) and Sapsis &Athanassoulis (2008).

The RE theory proposes the joint treatment of the probabilistic structure of the response and
the excitation, leaving the space for their stochastic dependence to be determined during the
solution of the problem. Athanassoulis and Sapsis used the characteristic functional approach
to derive an equation for the joint RE characteristic functional and showed that by
appropriately projecting this infinite dimensional equation it is possible to obtain equations
for the evolution of the joint REPDF. The derived joint REPDF evolution equation is a
peculiar equation, involving two times (one for the excitation, S, and one for the response, 1),

and partial derivatives only with respect to one (response) time, whereas, after the
differentiation, the limit of the excitation time s —t should be taken. l.e. the REPDF

evolution equation includes the half time derivative of, . (a,3)/ 8t| - This peculiarity
S —

gives rise to fundamental questions regarding both the well-posedness and the methods of its
numerical solution. While working on this thesis, it became evident that the REPDF evolution
equation of Athanassoulis and Sapsis in not a closed equation, and thus cannot provide a
unique REPDF. The same finding has also been stated recently by Venturi et al (2012). This

is due to the fact that when the half time limit of, (o, 3)/0t | t is considered the non-
S —
local (in time) characteristics of the problem are lost.

The present work continues the study of the RE theory, aiming at the clarification of various
obscure points, and its further development towards the implementation of efficient
algorithms for numerical solutions. To close the joint REPDF evolution equation we need to a

priori approximate the half-time derivative Of Wy (@:0)/ ot | t in order to account for the
s —

non-local (in time) response-excitation correlation structure. For a linear RDE under Gaussian
excitation, the inclusion of the two-time RE cross-correlation moment equation could provide
the additional information needed for the problem to be well posed. This finding is
generalized for the non-linear/non-Gaussian case reclaiming also evidence gained by looking
into MC simulations results, performed by Z.G. Kapelonis. According to these observations,
in the long-time statistical equilibrium state the joint REPDF tends to concentrate around the
equilibrium curve of deterministic problems realized on the RE-phase space. These ideas
motivated the formulation of new auxiliary local, in the RE-phase space, moment conditions
that can be combined with the joint REPDF evolution equation through a Kernel density
representation of the joint REPDF. The closed REPDF evolution equation can be solved
numerically by a Galerkin scheme.

The definition of the appropriate computational domain of the Galerkin scheme initiated the
development of a new methodology that aims at finding moments of non-linear RDEs under
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arbitrary, smoothly-correlated excitation. The formulation of the two-time RE moment
equations for scalar RDEs, as well as the two-fold closure (Gaussian moment closure and
time closure) of these equations is presented. The direct solution of the equations in the long-
time statistical equilibrium state is found in (almost) closed form. Finally, some first ideas on
the generalization of the methodology to bi-stable half oscillators using, instead of the
Gaussian, a bi-Gaussian moment closure condition is discussed.

The RE theory can be used for the determination of the response pdfs of nonlinear systems
with arbitrary polynomial non-linearities excited by colored, Gaussian or non-Gaussian,
stochastic processes. The determination of the response pdfs is necessary for prediction of
structural reliability, structural failures and level-crossing events that are problems of great
importance in engineering sciences. Moreover, this set up, that goes beyond the delta-
correlated excitation, is the natural way of modeling/study in almost every field of
macroscopic stochastic dynamics, e.g. systems excited by sea waves (Francescutto & Naito
2004),(G.A. Athanassoulis et al. 2009), wind (Sura 2003), (Sapsis & Dijkstra 2013) and
earthquakes (Varotsos et al. 2002)(Yulmetyeva et al. 2009). It also has interesting
applications in the context of statistical physics (Luczka 2005), (Van Kampen 2007), medical
physics (Wang 2009), material sciences (Liu et al. 2010), reactions involving macromolecules
(Guerin et al. 2012)(Guerin et al. 2013), system’s biology (Bratsun et al. 2005; Shahrezaei et
al. 2008), electrical engineering and neuroscience (Galan 2009).

An important example of the above described set up is the roll motion in a realistic seaway.
Rolling motion is the degree of freedom of ship dynamics that has perhaps attracted the most
attention. This is justified since roll motion is easily excited in the sea, most pronounced,
highly nonlinear and most dangerous; see, e.g., (Belenky & Sevastianov 2003). The
complicacies of the dynamics of roll motion are due partly to the nonlinearities in the
restoring moment term and the damping term, and partly to the excitation mechanisms, which
include external excitation by waves and wind, as well as parametric excitation. Wave loads
on ships can be considered as Gaussian or nearly Gaussian, smoothly-correlated, stochastic
processes. Wind velocity and wind loads, also important for roll motion, can be considered as
superposition of a steady mean and two randomly fluctuating components; one modeling the
background turbulent wind flow, which is nearly stationary and nearly Gaussian with a broad-
band spectrum ((Simiu & Scanlan 1986), Ch. 14; (Belenky & Sevastianov 2003), Sec. 8.2.1),
and a second one, modeling squalls, which should be considered non-stationary and non-
Gaussian (see, e.g., (Belenky & Sevastianov 2003), Sec. 8.2.2, (Michelacci 1983)). Therefore,
in a realistic model the excitation, i.e. the roll moment due to wind and waves is in general,
non-Gaussian, non-stationary, and has correlation time comparable with the relaxation time of
roll motion making the roll motion a non-Markovian random function. The RE theory has
been applied to the ship roll problem with both parametric and external stochastic excitation
(G.A. Athanassoulis et al. 2009), (Athanassoulis et al. 2012a), however in order to obtain
interesting results in this setting the solution to problems that involve full oscillators shall be
obtained. Since now we have managed to solve numerically the joint REPDF evolution
equation and the two-time RE moment equations for first order equations (half oscillators)
under general smoothly-correlated (colored) random excitation. However the methodologies
that will be developed in what follows in this thesis can be extended to full oscillators.

1.3.  Preview of Chapters

The thesis is organized as follows:
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In the first part of Chapter 2 some existing methods aiming at the probabilistic
characterization of systems of RDEs are briefly presented. Subsequently, the RE theory,
introduced by Athanassoulis and Sapsis, is reviewed and generalized to second order
nonlinear systems. The joint REPDF evolution equation for non-linear dynamical systems
under smoothly-correlated stochastic excitation is re-derived, using the Characteristic
functional approach. These equations generalize existing results obtained by Athanassoulis
and Sapsis to systems of two equations. To verify their validity, the equations are used to re-
derive the infinite system of the limiting two-time moment equations. Finally the obtained
equations are applied to the ship roll problem.

Chapter 3 focuses on linear random dynamical systems. The two-time RE moment equations
are developed for a linear scalar dynamical system under colored stochastic excitation. These
equations are solved analytically and results are obtained for different stochastic input
functions. For Gaussian excitation, a complete analytical solution of the studied problem, both
in the transient and in the long-time statistical equilibrium state, is produced and used to:

i.  Prove that, for linear problems under Gaussian excitation the REPDF evolution
equation is verified if and only if the two-time RE moment equations are verified on
the diagonal.

ii.  Prove that the REPDF evolution equation, as it stands, can have multiple solutions.

iii.  Demonstrate that the developed, so far, methodology fails to properly take into
consideration the RE correlation structure.

iv.  Discuss the need for an a priori closure of the REPDF evolution equation by pro-
viding additional information about the RE correlation structure, as well as how this
can be accomplished by the use of two-time RE moment equations.

Chapter 4 builds on the findings from the solution of the linear problem, to develop new
auxiliary local, in the RE-phase space, conditions by the use of local linearizations/
Gaussianizations around the equilibrium curve of the non-linear scalar dynamical system in
the long-time. The equations are solved analytically and compared with results obtained by
Monte Carlo (MC) simulations. These local conditions are used to form a new a priori closure
scheme for the non-linear REPDF evolution equation, providing the necessary additional
information regarding the RE-correlation structure. This information is synthesized in the RE-
evolution equation by the use of a Gaussian Kernel representation for the joint two-time RE-
density. The REPDF evolution equation, together with the new local closure conditions, is
then numerically solved using a Galerkin scheme. The obtained results are discussed and
compared with Monte Carlo (MC) simulations.

In Chapter 5 a new method is developed for the formulation and solution of two-time,
response-excitation moment equations for a non-linear half oscillator excited by colored,
Gaussian or non-Gaussian processes. To obtain a solution, a two-fold closure (moment and
time closure) is presented. For a mono-stable half oscillator the moment closure is obtained
by applying the standard Gaussian closure to the two-time RE moments. The time closure is
achieved by using an exact non-local (in time) condition for the one-time moments. The same
moment system is also considered and solved directly in the long-time, statistical equilibrium
limit. Moreover, a bi-Gaussian moment closure scheme that extends the presented
methodology to bi-stable cubic non-linear half oscillators in the long-time limit is discussed.
Obtained results are compared MC Simulations.

Finally, directions for future research are discussed.
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1.4.

15.

Main contribution of the present work

Derivation of the joint REPDF evolution equation for two-dimensional non-linear
dynamical systems under smoothly correlated stochastic excitation, using the
Characteristic functional approach (G. A. Athanassoulis et al. 2009)(G.A. Athanassoulis
et al. 2009)]. (Generalization of results obtained by Athanassoulis and Sapsis to 2D
systems)

Analytic verification of the REPDF evolution equation for linear problems under
Gaussian excitation

Clarification of the non-uniqueness of solutions of the REPDF evolution equation. Non-
uniqueness is mainly due to the fact that the correlation length of the excitation is not
properly taken into account as some of the non-local (in time) characteristics are lost when
taking the limit afxmy(s)(a 3 /8t|H .

Development of an a priori closure scheme for the REPDF evolution equation via
localized/linearized problems, accounting for the local, in space, response-excitation
correlation structure (Athanassoulis et al. 2012b)(Athanassoulis et al. 2012a)(Tsantili et
al. 2013)

Numerical solution of the REPDF evolution equation in the long-time, based on a Kernel
Density (KD) representation of the REPDF and a Galerkin-type numerical scheme, which
can embed the acquired information about the local RE structure. (Athanassoulis et al.
2012b)(Athanassoulis et al. 2012a) (Tsantili et al. 2013)

Formulation and solution of two-time, response-excitation moment equations for a
monostable non-linear half oscillator excited by colored, Gaussian or non-Gaussian
processes; applying a moment closure and a time closure.(Athanassoulis et al.
2013a)(G.A. Athanassoulis et al. 2013b)

First ideas on a bi-Gaussian moment closure scheme which could work well for bi-stable
half-oscillators.

On the validation of the obtained results

The experimental verification of the probabilistic solution of RDEs is either extremely
difficult or, most often, impossible. To validate the numerical solution of the REPDF
evolution equation and the two-time RE moment equations developed in this thesis, we need
to compare the results with similar ones obtained by other methods such us:

Analytic solutions,
Asymptotic results,
Results obtained by other well established methods for cases, if available,

Results obtained by mathematical numerical experiments, in the lines of MC
simulations.

Analytic solutions exist only for linear RDEs under Gaussian excitation. These have been
exploited for the verification and the clarification of the non-uniqueness of solutions of the
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joint REPDF evolution equation. Asymptotic methods for tail probabilities are not relevant
with the present work, whereas, asymptotic methods for long-time statistics have been used
for the analytic calculation of long-time moments. The most promising and general validation
method is by comparison with results obtained by mathematical numerical experiments in the
lines of MC simulations. This method, although computationally expensive, is the generic
approach with which we can probabilistically characterize any kind of RDEs. The MC
simulation results that will be presented in this thesis have been obtained by an algorithm
developed and implemented in Matlab® by Zacharias G. Kapelonis, which involves the
following steps:

The 1-D random-phase model (Longuet-Higgins 1952; Pierson 1952)(Athanassoulis et
al. 1991) (Athanassoulis 1990) is used to generate sample functions of the random
excitation. According to this model every zero mean normally distributed random
function y(t;6) with correlation function R, (7) can be modeled by a superposition

of harmonic functions:
J
y(t;0) = Z A; cos(a)j -1 +Ej(9)>
i=1

where 6 is the stochastic argument, @; >0, j=12,...,J are deterministic constants

0 —w;j_ C
that model the frequencies, A; = \/ S, (a)j)J—Jl are the deterministic constants
T

that model the amplitudes of the corresponding terms (harmonics) defined by the one
+00

sided spectrum of the random excitation S, (w)=2 f Ryy(r)oe_i“”dr and
0

E;(@), j=12,..,d are independent random variables, uniformly distributed in

(0,27).

For each sample function of the random excitation the deterministic version of the

RDE is solved using ODE45, a MATLAB® implementation of the Dormant-Prince
method (Dormand & Prince 1980), based on an explicit Runge-Kutta (4,5) formula.

MC pdf estimations are computed using the kernel density estimation via diffusion,
introduced by Botev et al. (2010) and coded in MATLAB® functions by the same
author.
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2.1 Introduction

In the first part of this chapter we present some well-known methods that aim at the
probabilistic characterization of systems of RDEs. These methods involve equations that
model the evolution of the system’s pdfs. Firstly, the Liouville equation for the probabilistic
characterization of the response of systems with random initial conditions is derived.
Moreover, we discuss the extension of the Liouville equation, known as Dostupov-Pugachev
equation, that can apply to non-linear dynamical systems under general excitation when the
latter can be decomposed into a countable set of uncorrelated random variables. Secondly, we
focus on systems having delta correlated random input and Markovian output. To this end, the
FPK equation is derived as a special case of the Kramers-Moyal expansion. Finally, we
discuss the colored noise master equation for the evolution of the response of generalized
Langevin equations.

Subsequently, the RE theory, introduced by Athanassoulis and Sapsis, is reviewed and
generalized to second order nonlinear systems. The joint Response Excitation probability
density function (REPDF) evolution equation for non-linear dynamical systems under
smoothly correlated stochastic excitation is produced, using the characteristic functional
approach. To verify their validity, the equations are used to re-obtain the infinite system of the
limit two-time moment equations. Finally the obtained equations are specialized in the ship
roll problem.

2.2. Methods for the probabilistic characterization of systems of RDEs

Let us consider the system of RDEs of the form:
X(t;0) =G (x(1:0),y(;0)) , (1a)
X(0;0) = X,(0). (1b)

The probabilistic characterization of system (1) is equivalent with the determination of the

infinite dimensional measure gf(t)(dx) of the Borel sets of the sample (functional) Banach

space .4 of the responses X(¢)= X(#;0). The probability measure @(t)(dx) can be
equivalently and more conveniently expressed by the characteristic functional ffyzm(u) of the

response X(t;0), defined by:

,O/—&m(u) IfexP(i<u,x>)d?/X)m, @

P2

where ue 24 =.2" = the topological dual of .% . See (Vakhania et al. 1987)(Pugachev &

Sinitsyn 2001) for the definition and the basic properties of the characteristic functional.
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As discussed in Athanassoulis (2009) solving the problem (1) in the probability domain

means to determine the probability measure ?fxm(dx) [equivalently, the characteristic

functional 5{ (W], of the response function X(t;0), in terms of the deterministic system

function G(,-), and the joint probability measure of all stochastic elements [initial value
X,(0) and stochastic functions Y(#;0)] appearing in the equation, that is to construct a

mapping T such that:

Deterministic system function G (,) and
= T Probability structure of the initial state X, (0) 3)

{Probabilistic structure
and stochastic excitation y( . ;9)

of the response X(-;0)

Mapping (3) can be formalized in terms of the characteristic functionals, as follows:

T (+)=TI6() 7, (0, “

where .7, | (uo,v) is the joint characteristic functional of the initial state and all input random

elements.

In what follows, we shall review various existing approaches for the solution of problem (1)
in the probability domain. We are going to present equations governing the response pdf
Jxn(@) and discuss about their limitations. Subsequently, we shall focus on the recently

introduced RE theory (Athanassoulis & Sapsis 2006; Sapsis & Athanassoulis 2006; Sapsis &
Athanassoulis 2008), where the main object of analysis is the joint REPDF f, ), (., 8) .

2.2.1. The Liouville equation and the Dostupov-Pugachev extension

For a system of differential equations with random initial conditions

X(,0) =G (x(1;0)), (D
X(0;0) = x,(0), ()
the following theorem holds true (Soong 1973)(Risken 1996):

Theorem (Liouville-Gibbs): The pdf f,, (@) = 1, 110 ().x, 1) (@15 Qs ) Of the response

X(t;0)= (x1 (t;6’),x2(t;9),...,xN(t;9)) of system of Equ.(1) and Equ.(2) verifies the PDE:

0f yin(@) Yoo
# + ;aT(Gn(a,t)fxm(a)) _ o] o

n

which is known as the Liouville equation.
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Proof: Use is made of the Fourier transforms between the characteristic function of the

response @, ,,(U) and the response pdf f, , (), i.e.:

00 (W) = F [ fup(@ia—u] = f,,u) = j exp{iu” o £y, (@) der, (4)

fun@ =F [p,iusal = ¥ I ~iu"-al} g, (U)du. (5)
RY

The characteristic function @, ,,(U) of X(¢; B) is given by the equation:

Py W =E’ {exp{ i, B)H- (6)

Differentiating Equ.(6) with respect to time, then, using Equ.(1) to eliminate the time

derivatives of the response, we obtain:

a N N
%(u) = %E{exp{i;unxn(t;ﬁ)H = E{%exp{i;unxn(t;@)H =
= E{exp{iﬁ:unxn(t 6’)} iﬁ:umxm(t;ﬁ)} =

P E )

m=1 n=1

that 1s:

w o J‘ (1) exp{zZu an}fx(t)(a)da. %

m=1 n=1

R"

From Equ.(7) we can obtain a closed equation with respect to f, (), i.e.:

a(PXU)(u) ﬁ: I iu,G, (ot exl?{lzu an}fx(t)(a)da =

3 J-G (1) f, X(,)(a) exp{lZu o } =

[integrating by parts, assuming that /im G, (a , t) f;m(a) =0]
a—>0

=1

m=1 n=1

- J. exp{zZu a } P G, (a.t) fy,(@da,
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N
[ &
- _;Qf @Gm(a’t)fx(t)(a);a—)u . (8)

Applying the inverse Fourier transform, .7 - [ gu);u— a] , of the first and the last term

of Equ.(8) we obtain Equ.(3).®

On the basis of the Liouville-Gibbs theorem the problem of determining of the response pdf
Sy (@) has been transformed to an initial value problem for first order pdf (Equ.(3)), with

initial value the given joint pdf of the initial conditions, i.e.: f, (@)= f, ().

The Liouville equation can be generalized to systems containing time independent random
variables (Soong 1973). That is, to RDEs of the type

X(t;0) =G (x(t;0),A(0),t), )
x(0;0) = X, (0), (10)

where A(0) = (A1 (0),4,(0),...,4,,( 9)) is a known random vector.

X(t;60

This generalization is obtained as follows. Considering the vector process z(¢;60) = [ A(\(H))} ,
we can write system (9)-(10) in the form:
2(t;0) =G (2(t;0),1), (11)
2(0;0)=z,(0), (12)

=_|G X, (0)
where G = and z,(0) = , (13a,b)

0 A()

then applying the Liouville equation to the augmented version of Equs.(9,10), we get:
0f,n(@) & o -
—H—= Y (G (e D) fy (@) = 0. (14)

ot 5y

n

Substitution of Equ.(13) into Equ.(14) gives an evolution equation for the joint pdf of the

response X(¢;0) and the random vector A(0),

fx(t)A(a’A) = fxl(z)xz(t)“.xN(t)AlAz...AM (), 0,0y, A1, Ay Ay ) 5 e
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afx(t)A(a,‘A) + i 8

~ %0 (G.(a, AD) S ale, ) = 0| (15a)

n

with initial condition the given joint pdf of X, A, i.e.

fx(O)A(aaA):fon(o‘o,A)- (15b)

Equ.(15) is known as the Dostupov-Pugachev equation (Dostupov & Pugachev 1957), (Li &
Chen 2008) and holds true in general dynamical systems involving random parameters (time-
independent random elements). The above method can also be used for studying
(approximately) more general random dynamical systems, containing time-dependent random
elements. This is possible by representing the input random function into a countable set of
uncorrelated random variables using e.g. the Karhunen-Loeve expansion (Karhunen 1947,
Loeve 1978)(Ghanem & Spanos 2003):

Y(6:0)=m,()+Y_ 4,(0)\[4, g,(1), (16)

m=0

where m, =0, E‘g[fm(é’)-fn(e)] = 0,, and \/Z , g,(t) are the eigenvectors and

eigenvalues arising from the spectral decomposition of the input covariance Kernel, i.e.
Coy(t:5) =Y 2 8,(D)2,(), (17)
m=0

Equ.(16) must be truncated at a certain finite level that can sufficiently approximate the
infinite dimensional process Y(#;#). Under this consideration Equ.(15) is a possibly high

dimensional equation that holds true for every possible value of the random vector A(#). In

Venturi et al (Venturi et al. 2012) the sparse grid collocation method (Foo & Karniadakis
2008; Foo & Karniadakis 2010) is used for the numerical solution of Equ.(15). In addition, in
Cho et al. (2013), Equ.(15) is solved numerically by considering the response and the
excitation space separately and using the sparse-grid collocation method for excitation space
and an adaptive discontinuous Galerkin method for the response space. Moreover Li and co-
workers (Li et al. 2009; Li et al. 2012) use the Dostupov-Pugachev equation (15) to formulate
the generalized density evolution equation using a Lagrangian description of the random

system (11), (12) aiming to uncouple the values of the physical solutions = (al,az,...,aN)
from the density f, a(c,A) in the partial differentiation operator with respect to the state

variables appearing in Equ.(15). For the numerical solution of the generalized density
evolution equation requires the selection of representative points of the random parameter
space. That is, the numerical solution of this includes elements from the probability domain
and the physical domain (Li & Chen 2009).
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2.2.2. The Kramers-Moyal expansion and the FPK equation

Let f, . (a) be the pdf of the scalar stochastic function x(z;6), t€T, then it is well known

that:
L@ = [ Frpom (@t +aila’,0) £, (a)d o, (1)

where f

ean Q1+ At|a',t) is the conditional pdf of the random variable x(7+A¢;8) given

that x(;60)=a’.

The conditional pdf f. (a,t+At|o/,t) can be expressed as the inverse Fourier transform

(t+At)

of the (conditional) characteristic function ¢Ax(t)(u,t+At|a’,t) of the random variable

Ax(t;0)=x(t+At;0)—x(t;0), given that x(¢;0) =/, i.e.:

1 )
Secsan (a,t + At| « ’,t)zE I e’”‘A"¢Mt) (u,t + At| « ’,t)du , 2

—0

0

where @, (u,t+Afla't) = '[ei””(’;g) et + Ao D da

—0

Expanding ¢, (u,t+ At| a';t) on a Taylor series around u=0 (assuming that
On, (u,t + At|a ’,t) is an analytic function) we get:

a,(t+Alalt) =

1 N . —iuAo
fv(t+At) (Oé,t + AZ|O/,Z) = E; q! :[c (lu)qe Ay y (3)
where a, (t+At|a’,t) =E’ (Ax"|a’,t) =E’ ((x(t + At 9)—x(t; 9))q‘a’,t), 4)

are the conditional incremental moments of the stochastic function x(¢;6).

Substituting Equ.(4) into Equ.(1), after integration it is obtained:
=D o
fx(HAz)(a) - f;((t) ()= ;Tﬁ[aq (t + AZ‘| a:t)fx(z) (a):l . ®)

Dividing Equ.(5) with At then taking the limit Az — 0, we have:




2-8 | CHAPTER 2 On the RE theory in stochastic dynamics

aﬂ(,)(a)_i(—nqi[/l (

= O 1) fo(@) ] =0} ©)

where

4,(

«, t) = jfToA_tEg [(x(t+At;6’)—x(t;<9))q

x(t;@)za} g=12,.." (7)
are called derivative moments of the stochastic function x(z¢;6), whereas Equ.(6) is known as

the Kramers-Moyal expansion (Moyal 1949) (Risken 1996) as well as kinetic equation

(Soong 1973). It is straightforward to generalize the Kramers-Moyal equation to vector

processes case X(t;60) = (x1 (t;0),....xy (t;@)) . In this case Equ.(1) takes the form:

Seoan@= [ S (et +Atled,0) £, () de . )

Following the same steps it is obtained:

i () 5 {N (—1)" %
q1-9p qN71

ot - (C] )| A q,,:|[ 4154 - (a t)fx(;)(a):|: (10)

where
ql‘l

ﬁ[xn(t +AL0)—x,(t:0) ]

n=l1

(a )= lzm —E‘g

‘11 LR

X(Z;H)za]. (11)

According to Pawula theorem (Pawula 1967)(Soong 1973), if the derivative moment

A, (t+At|a,t) exists for every ¢ and is zero for some even g, then 4, (t+At|a,t) =0, for

all ¢ >3. In this case, it follows that Aqu — (a,t) =0 (with probability one) for all g, that

are such that Zivzl q,=>3. In fact, it can be proved that when the stochastic input is a

Gaussian delta correlated process all derivative moments for g >3 are equal to zero, and the

Kramers-Moyal expansion takes the form of the Fokker-Planck Kolmogorov (FPK)

equation, i.e.:

a N
fx(t)(a) Z a_I:An(a’t)fx(t)(a)J *

n=1 aan

N 62
glm[élmnz(a,t)fx(,)(a)}, (12)

! The derivation is formal. Questions concerning the existence of the derivative moments and the convergence of
the infinite series appearing in the derivation are not considered here.
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See e.g. (Risken 1996). Supplied with the appropriate initial and boundary conditions
Equ.(12) can be uniquely solved providing the response pdf f, ().

For the derivation of the Kramers-Moyal expansion (6), as well as for its reduction to the FPK
equation (12), we did not make use of any information about the dynamical system that
governs the evolution of the random function X(¢;6). In what follows, we shall use specific

dynamical system equations in order to specify the derivative moments 4, (evt), 4, , (o1)
appearing in the FPK equation (12).

Let us assume that the stochastic excitation is a delta correlated M — dimensional Wiener
Process B(#;0) = {Bm(t;é)), m= 1,2,...,M} (Pugachev & Sinitsyn 2001), (Soize 1994),
(Sun 2006) with components B, (¢;0), m=1,2,...,M, that have the properties:

E’[AB, (t:0)]=E’[B, (t+At;0)— B, (1:0)]=0, (13a)
E'|AB, (1:0)AB,, (1:0)|=2D,,, At, m,m,=12,..M ,where D

mym,

are constants,

(13b)

and the system of RDE’s (Equ.(1) Sec(2.2)) is a system of the It0 stochastic differential
equations, i.e. Equ.(1a) Sec(2.2.2) takes the form:

dx(t;0) = Q(x(#;0))dt + G(x(;0))dB(¢;0), (14)

where Q(e) = {Qn, n=12,...N } is a deterministic vector, and

G()= {G n=12,..N, m=1, 2,...,M} is a deterministic matrix.

nm?

In this context, the response X(z;0) will be a Markovian process that follows the Chapman-
Kolmogorov equation, i.e:

f;c(IS)(a3’t3‘aI’tl): J. fx(z3)(aa’ta‘azatz)fx(zz)(azatz‘al,tl)daza t, <t,<lty, (15)

—00

and can be completely characterized by its transition probability density function
frw (out]ed,t"). The transition pdf f,,, (ovf|cr,t') will also verify Equ.(12) (this is £, (c)
for special initial condition f, () =d(ax—a'), (Risken 1996)).

("
We shall prove (following the derivation presented in (Soong, 1973)) that the Fokker-Planck-
Kolmogorov (FPK) Equ.(12) governing the evolution of the conditional pdf f, (a,t| a',to)

of the response X(¢;0), t >t,, has the form:
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6fx(1)(a’t|a”t0) = _ii[gn(a;t)fx(t)(a’t|a,’t0)} +

ot o,
N 52 M
t 2 | 2 G (@)D, G, () fi (t] @) | (16)

ny,n,=1 aan]aanz my,m,=1

Proof

As already discussed the transition probability £, (a, t| a',zo) will satisfy the FPK equation
(Equ.12), i.e.:

! N
e (CZZ a) X o[t (eden)] + )
+l 3 a—Z[A (1) f, (at|a't)} "
2,54 0a, 0o, e A N A
where
A (ot)= Alfi”,oAitEg [(xn (t+A,0) —x,(1:0))| x(t;0) = a], (18)

4,, ()= ﬁfToA%EG [(x (t+A60)-x, (1:0))(x,, (t+A50)—x, (:0)) ‘ X(t;0) = a}. (19)

The derivative moments A4, (a,7), 4,, (et) can be calculated by the use of the specific

dynamical equations of the system. More precisely, from Equ.(14) we have:

Ax,(1:0) = x, (t+ At:0)— x, (50) = O, (X(1:0) At + Y "G, (X(1:0)) AB, (1:0) + (1), (20)

m=1

whereas:

M
Ax, (50)Ax, (1:0) = [Qﬂ (XA + ZGn W (GDAB, (:0) |x

m=1

M
X an(x,t)At+Zanmz(x,t)ABmz(t;H) Fo(t) =

my=l1

= 0, (x,00, (%0(A) +0, (X,I)Z G, (XAt AB, (t;0) +

my=l

M
+ 0, (x,t)z G, (X,0)AtAB, (t;0) +
m =1
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+ )Y Gy (600G, (60 AB, (:0)AB,, (6:0) + o). (1)

my=1 m,=1

From Equs.(18,20) we obtain:
4,(eu0)= lim —— L [(x, (¢ 4+ AL:0) = x,(6:0))| x(1:0) = o] =

— lim —E|0 (x, t)At+ZG (%,1)AB, (1:0) + o(1)

Jim — X(t;0) = a|=

m=1

= lim £'[0,(x0)|x(:0)=a] + lim —E" ZG (x.0)AB_ (1:0) | X(t;0) = a|=

[since AB (t;0) is independent of X(t;0) ]

Ll & ,
= 0(eun) + lim - G, (xE'[AB,(:0)] = O,(evp) (22)

m=1

Then, from Equs.(19,21) we have:

1
A (a,t)= lim —E°
(1) = Y

e At—0

Ax”l(t;Q)Axnz(t;G)‘X(t;@):a} _

J— _— 9 . . . — —_—
= lim AtE ZZG x,1)G, , (x,t) AB, (,0)AB, (1;0) |X(;0) = | =
M l M
_ . Clim 0 . . .0 — _
- ZG (e1)-G,,, (001 lim — ZE |AB, (1:0)AB,, (::0)| x(1:0) = o
M
= Gn‘ml (a,t)'anm: (a’t) 21)m|m2 * (23)

my ,my =1

Combining Equs.(17, 22, 23) we obtain Equ.(16).

In Equ.(14) the stochastic input dB(¢;60), being the derivative of the Wiener process is a

delta-correlated stochastic function that is well-known as white noise. However, in case that
this process is in fact a limiting approximation of a non-white process one must consider,
instead of the 1t6 SDE Equ.(14), the Stratonovich SDE (Stratonovich 1966)(Risken 1996),
which is equivalent to Equ.(14), when each component of the drift term

Q(x(#;0))= {Qn(x(t;Q)),n:LZ,...,N} is replaced by:

x(t 0)
0, (x(1:0))=0, (x(1:6)) + ZZ ) G, (x(t;0)). (24)

my=1 m,=1
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2.2.3. The colored noise master equation

In this section we shall present a theory aiming at the formulation of closed equations
governing the system’s response pdf f,, (a) by the use of the system’s dynamical equations

and without any a priori simplifying assumptions for the involved stochastic elements. This
theory was primarily developed from physicists in the context of statistical mechanics (see
e.g. (Hanggi 1978)).

Let us consider a scalar dynamical system that is excited by a smoothly correlated random
function y(z;60):

x(2;0) = 0(x(1;0)) + G(x(2;0))-y(1;0), (la)
x(0;0) = x,(0). (1b)

We shall formulate an equation for the evolution of the response pdf f,, («). To this end, the

response pdf is represented by an average over the realizations of y(¢;0) (Hénggi & Jung
1995) (Hénggi et al. 1984), i.e.:

L@ =(3(x(t)—a)). 2)

Differentiation of Equ.(2) with respect to time, using Equ.(1a) and exploiting the properties of
the & function, yields:

0 b '
L@ = =——(3(x(1) - 0 )i(0) ) = N

o 0
= [0/ @] - -Gla){8(x() ~a)y(0)).

Equ.(3) is not closed since it involves an average that expresses the non-local, in time,
correlation between the response pdf, in terms of a functional average over the response
realizations, and the excitation. One needs to invoke the statistical properties of the excitation
in order to produce a closed expression for this functional average. Assuming that the
excitation y(z;6) is a Gaussian process, this can be accomplished by an application of the

Furutsu-Novikov-Donsker formula (Luczka 2005) that for an arbitrary functional W[ y] of a

Gaussian process y(¢;6) reads as follows:

t

ilan)) = [ <y(s)y(z)><5W[y]>ds . @)

oy(s)

Lo
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Applying Equ.(4) to Equ.(3) for the functional &( x(7) — «v), it is obtained:

0 0 0 d o
Efxm(a)=—E[Q(a)fxm(a)]—aG(a)J.tOCw(t—S)<5(X(t)— )x(”>d, (5)

oy(s)
. . oox(t) . . _ . o
where the functional derivative 5—() is given by the integral equation (Hénggi et al. 1984),
V(s
(Luczka 2005):
Sx(t) . |
53(5) =0(t—s)-G(x(s))exp I {0'(x(u)) + G'(x(u))-y(u)ldu |, ©)

or alternatively:

Sx(1)
oy(s)

=9<z—s)~G(x(r))exp“ {Q(X(u))—Q(X(u)) (( ”))))}du] ™

where 6(¢—s) is the unit step function expressing causality. Indeed, the function x(z;6) de-
pends on the noise y(s;8) only for s<¢.

x(
(

Combining Equs.(5-7) we obtain

0 0 0 0
= (@) = === 0(e) /(@) | + 2= G(a) —~G(a)x

| , (8)
J. C (t S)< x(t) -« )(CXI{L {Q'(X(u)) - Q(X(u)).%}du:lj>ds-

In Equ.(8), that is known as the colored noise master equation (Hénggi et al. 1984), the
response is no longer coupled with the excitation in the functional average appearing in the
third term of its right hand side. Nevertheless, Equ.(8) remains not closed since the function

o (x(t ) — a) is in general dependent on the response probabilities f,, ., (a,,,) for

t,<s<t . A review of classes of closed colored noise master equations can be found in

(Héanggi et al. 1984). The colored noise master equation as given by Equ.(8) can however be
the starting point of approximations. In fact, several methods have been developed. The most
widely used method is the small correlation time approximation with which one can
produce the approximate FPK equation (Dekker 1982), (Hanggi & Jung 1995)(Venturi et al.
2012). More precisely, in case that the excitation function is assumed to be an Ornstein—
Uhlenbeck process, i.e. the excitation auto-covariance in Equ.(8) is given by the formula:

% Being the solution of Equ.(1) x(¢)is a function of x(s) for t,<s<t,ie x(t)= x[t; y(s )J
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cw(z—s)=2exp(—|z—s|/f). 9)
T

the approximate FPK that is valid only for small correlation time 7 reads as follows (Hanggi
& Jung 1995):

0 0 0 0

= (@) = === 0(e) [, (@) |+ D—=G(a)—~ Gle)h(e,1) (@) ], (10)

where:

h(a,t)=[1—exp(—t/r)]+r-G(a)-£wj {[1—exp(—t/r)]—iexp(—t/r)}. (11)
G(a) T

Another method of approximation that aims at the closure of Equ.(8) is the decoupling
approximation, that does not a priory restrict the noise to small correlation times, however it
neglects correlations between the response and the excitation and is therefore valid for narrow
random excitations having narrow distributions, i.e. the noise intensity D <« 1 (Héinggi &
Jung 1995). Moreover, the unified colored noise approximation is an alternative method
whose accuracy increases with the system’s non-linear damping and decreases with color
intensity (Jung & Hanggi 1987) (Luo & Zhu 2003).

It is evident that although no a priori restriction for the systems random input were made, both
Equ.(3) and the colored noise master equation (Equ.(8)) are closed and/or computable only
under specific assumptions/approximations. The probabilistic characterization of the response
of a dynamical system under general colored excitation remains an open problem. In what
follows we shall present an alternative approach that intends to contribute to its solution.

2.3. The RE theory in stochastic dynamics

The RE theory proposes another approach to deal with the controversy stemming from the
stochastic dependence between response and excitation, that is to “accept” this dependence
and focus on its study. This point of view, which necessarily must lean on the joint
consideration of response and excitation, was apparently initiated by Lewis & Kraishman
(Lewis & Kraichnan 1962), in the context of their study on the statistical formulation of the
Navier-Stokes equations, as a generalization of Eberhard Hopf’s approach to statistical
formulation of turbulence (Hopf 1952), (see also (Beran 1986)). The means to treat jointly the
probabilistic structure of response and excitation, leaving all the space for their stochastic
dependence (to be determined during the solution of the problem) is the joint, response-
excitation, characteristic functional, defined as follows:

Ty(uv) = F (u,v) =
ex

. Xy =

XY

p{i(<u,x>+<v,y>)} A, (dxdy), M)

where
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%(dxdy) is the joint RE probability measure on the Borel sets of the joint sample
(function) space & x4/ , and

<u,X>+ <w,y> is the duality pairing in the dual topological system :
<(UT)(EHY)> = <UT, T'xY >.

On the basis of the above discussion the solution of problem (1) in the probability domain
requires to find an extended mapping (I; that is such that:

Ty (onse) = TG (2): 7y ()], @

Xy ext

Following the methodology of Lewis & Kraichnan (Lewis & Kraichnan 1962) [see (Beran
1986)], Athanassoulis and Sapsis (Athanassoulis & Sapsis 2006; Sapsis & Athanassoulis
2006; Sapsis & Athanassoulis 2008) derived functional differential equations for the joint

characteristic functional .%y (u,v) and showed that by appropriately projecting this infinite

dimensional equation it is possible to obtain equations for the evolution of the joint REPDF.

2.3.1. The REPDF evolution equation in the scalar case

Let us consider the scalar, first-order, RDE:

5(150) = > A, g0 (DX (130)7 (1:0)y1 (130), (la)

9,01,0,

with stochastic initial condition

x(1y) = x,(0), (Ib)

where y, (¢;6), »,(¢;6) are given smoothly correlated random functions, both defined on the
common domain 7' x6@ = [zo, T, *}x@, © is an appropriate sample space [thus, @ is the

stochastic argument], x, (0) is a given stochastic variable, and 4, 0,0, (t) are known deter-

ministic functions.

The joint REPDF of the RDE (1) will follow the joint REDPF evolution equation
(Athanassoulis & Sapsis 2006; Sapsis & Athanassoulis 2006; Sapsis & Athanassoulis 2008):

3}

_f;c(t)y](s)yz(s)(a’BUBZ)

ot +

s—t

2)

a q Q1 Qz
Tl 2 A0 008, 8L (@880 = 0,
q,0,,0,
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supplemented by the initial conditions:

f;c(to)y](s)yz(s)(a7/8|762) = f:'c(tg)(a)'fyl(s)yz(s)(ﬁl’62) =

(3a)
« trivariate pdf known at any time § >t .
the marginal-compatibility constrain:
f Fromomaw (@ Prb)da = 1, o, B1:0,) = (3b)
ack «a bivariate pdf known at any time S >t , VBER,
and constitutive conditions:
Feo a0 (@:01:82) 20, f f Feamisso(@:B1,8)de = 1. (3¢,3d)

a€ER PeR

In what follows we shall review the derivation of the REPDF evolution equation following
the same steps as Athanassoulis and Sapsis (Athanassoulis & Sapsis 2006; Sapsis &
Athanassoulis 2006; Sapsis & Athanassoulis 2008), generalizing and focusing on 2D random
systems. Preliminary results obtained during the period I was working on this thesis have
been presented in (G. A. Athanassoulis et al. 2009; G.A. Athanassoulis et al. 2009).

2.4  Derivation of the REPDF evolution equation for the general 2D-system

2.4.1. Formulation of the problem

Let us consider the system of RDEs :

50 =Y A O OXTOp GO0, n=12, (1)

9,:4,.95:9,
with initial conditions:

x,(t,) = x,(0), n=12. (2)

where y, (¢;0), y,(¢;0) are given random functions, both defined on the common domain

TxO = [IU, T*]x@ , © is an appropriate sample space [# denotes the stochastic argument],
(n)

x,(0) is a given random variable, and Aql 02004,

(1), n=1,2 are known deterministic

functions. Clearly, if a solution x(¢) of Equ.(1) exists, it will also be a stochastic function.

Thus x(¢#) may equally well be denoted as x(¢;6) .

The summation is over non-negative integers, non-exceeding some maximum values. Some
(n) 9, q, 930, q, /. . T .

of the terms Aqlqzng4(t)'xl ()x, (1), (,0) y," (t;0) with indices (q,,9,,9,,q,) lying

within the admissible range, might be absent because the corresponding coefficients

(n)
o'4.q.q, (1) are (taken to be) zero.
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In some cases it is expedient to use a different letter for the exponents of y (#;6) and

»,(t;0) and the corresponding indices. When this is the case, Equ.(1) will be written in the

form

5(60) = A () (GO0 (50 (150), =12 3)

415945157,

Equ.(1) (or equivalently Equ.(3)) can model any kind of random 2D systems with polynomial
non-linearities. We shall present some interesting special cases:

1. Deterministic equation with random initial condition (without excitation):

£,(60) = Y A (OGO (50), n=12, (4)
9,49,
x,(t,) = x,,60), n=12. (5)

2. Deterministic equation with random initial condition and simple external random

excitation
5,00 = Y AN (OGO 0 + ) AN Y (50), n=12, (6)
4,.9, ry
x, (1) = x,,0), n=12. (7)

3. Deterministic system with random initial conditions and self-multiplicative external
random excitations

5,0 = 34l (X0 (0) + S AL, ()P0 n0), a=12, ®)

4,54, 4544,

x () = x,0), n=12. (9)

4. Stochastic equation with random excitation (including random parametric excitation) and
random initial conditions

5,(0) = Y A) (-2 GO (10) + Y 4 (0P (0)yE(150)+
9,:9, 939,
+a1(")(t)-x,(t;9)-y,(t;0)+a§”’(t)-x2(t;9)-y,(t;@)-yz(t;H), n=1,2,
(10)
x, () = x,,00), n=12. (11)
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More complicated forms of the cross-multiplicative terms (random parametric excitation) can
easily be obtained.

2.4.2. The characteristic functional(s) associated with the system’s RE

In Sections 2.4.2 -2.44 we shall use the general random 2D dynamical system
(Equs.(1,2) Sec(2.4.1)) in order to derive functional differential equations governing the
evolution of the characteristic functional associated with the system’s response and excitation
random functions. The derivation follows the same steps as in (Athanassoulis 2009).

Assuming that the excitation function Yy(¢#;0)= ( »,(8:0), yz(t;Q)) is a given 2D stochastic

p

function, taking values in an appropriate Banach space ‘j?/(z) = O?/X//?/ Its probabilistic
structure is fully described by means of its characteristic functional

Q%('U)E%yz(vl,vz):fexp{i<<'u,ﬁ>>}?/?(dy), (1)

/;/ (2)
where

) !/
v=,,0,) L P =T"'XV" = (”7 (2’) = The topological dual of Y/ ?,

<<v,B>> = <v,8,>+<0,,6,>,
<e,+> is the duality pairing in the system < 7" = (j?// , (j? >
<<w,B>> is the duality pairingin <7~ ®, %/ ® >, and

573 (dy) is the probability measure on the Borel sets of the sample (function) space

? (Z)Z%X?,?/.

Concerning the response function X(z;0)= (xl(t;ﬁ),xz(t;9)>, we assume that it exists and

belongs to another (appropriate) Banach space .2 * =. %% x.%". Its probabilistic structure
is also described by means of its characteristic functional

%(U)E,%/:xz(u,,uz):fexp{i<<u,a>>}?fx(da), 2)
x®

where
- 19 / oy’
u= (ul,uz) €l =96 xP = <% (2)> = The topological dual of A" *,

<Ua>> = <u,o, >+ <u,,a, >,
<e,e> being the duality pairing in the system < 26 =. %", % >,
<< wv,a>> being the duality pairing in < 26* ,.%"® > and

?]X) (d a) is the probability measure on the Borel sets of the sample (function) space

XD =B XX
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Solving the Problem given by Equ.(1, 2)_Sec(2.4.1) in the probabilistic domain means to de-
termine the probability measure </ (dcx) [equivalently, characteristic functional .7, (u)], of

the response function X(¢)= (xl(t),xz(t)), in terms of the system parameters A;; oa (1),
the probability distribution F, _ (a,,«,) of the initial values, and the probability measure

% (dB) [equivalently, characteristic functional .7 (v)], of the excitation function

y(t;@):(y1 (t;@),yz(t;9)>.

To pursue in this direction the joint, response-excitation, characteristic functional is con-
sidered

‘%y(u"v) =7, (ulauzavlavz) =

XX Y1V
= f f exp{i(<<U,a>>+<<v,B8>>)} A, (dadB), 3)
a2 "/}/(2)

where

QZ()y(d adl ) is the joint, response-excitation, probability measure on the Borel sets of
the joint sample (function) space & P x Y @ =X X' XY XYY , and

LU a>> 4+ <<Kv,B>> = <u,a, >+ <u,,a, >+ <0,6,>+ <0,,5, >

is the duality pairing in the system
<<OZé(2’ (7/‘(2>> (3@;(2) P (2))> —
= < UXUXT XV, B X B XY XY >

Following the methodology of Hopf (1952) [see also Beran 1968], we shall first derive func-
tional differential equations for the joint characteristic functional Zy (u,v).

2.4.3. Functional derivatives of the joint RE characteristic functional

To facilitate the symbolics in performing the functional differentiation, we write the joint
characteristic functional in the following form

o = 97 —
Ty (uv) = 7 (ul,uz,vl,vz) =

XXV Yy

:f fexp{i(<<u,a>>+<<v,ﬁ>>)}fjxy(dadﬂ):

@ @

:ffexp{i<ul,a] >}exp{i<uz,oz2 >}exp{i<vl,ﬁ1 >}exp{i<v2,62 >} %(dadﬂ)

and we shall abbreviate it as follows, in accordance with our special needs:
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T (uw) = [ [ewficua, >} (dadp) = (o]
:ffexp{i<u2, a, >} (dadB) = [or ]
_ffexp{l<vl,ﬁl>} A, (devdB) = [ or ]

ffexp{l<vz,ﬁz>} A (dadp).

There are four first-order Gateaux functional derivatives of .7 (u,v) = T (u,,uz,vl,vz) .
The one with respect to the first variable (u,), taken along the direction 4, is defined and

calculated as follows
;”77<u1—|—5h u,,v U) J(u u,,v U)

w 2227102 1272271272

5u].7(u, )zé‘ulJ([u sh, }u v,V )_ lim =

c—0
ff exp i<u, +€h ,Q >}fexp{z<u1,oz >}) dadﬁ
g—»O & -
. ff(exp{i<u1+€hul,a1>}—exp{z<ul,a >}) /; (dadlg)
e—0 &
. ff exp l<8h Q> }—1) exp{1<ul,oz >} 7 (dad,(-])
c—0 &

[assuming that the lim may pass through the functional integral sign]

& —0

ff lim exp z<gh ],a]>}—1) exp{z<u], ]>} "Z(’y(dadﬁ) _

e—0 &

:ffi<h ,Q >exp{l<u1,a >} ﬁ(dadﬂ)

that is

5u].9)7(u,'v) =0 .@-([ul;hul},uz,ul,uz) =

lll

()
:ffi<hul,al>exp{---}?/x’y(dadﬁ),

where exp{---} stands for exp {i(<< U >>+ <<v,3 >>)}.

The definition and corresponding calculations for the other three Gateaux functional deriva-
tives are similar. The results are as follows:

(Suzy(u,v) =0, J(ul,{ huz},vl,vz) =

,, @)
:ffi<huz,a2>exp{---}9/x’y(dadﬁ),
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51,,]vy(U,v) (ul,uz,[vl,h, } Uz) =
ffl<h‘ B> exp{-} £, (dad), @)

5,U25¢-<u,v) =90, J (ul,uz,vl,[vz,h ]) =
(4)

ffl<hl B, > exp{-} A, (dad).

Applying Equ.(1) and Equ.(2) for 2, =4,(-), the Dirac delta functional supported at 7, we

obtain

([ u,;6,(- )] uz,Ul,Uz ffl<6()a >exp{ } (dad,@) =

:ffial(t)exp{--'}%)y(dad5>a

0.7 (mfnioons) = [ [1<000.0,> exple} 4 (daap) -
~ [ [is.00ew(-) 5 (dccap),
de

Differentiating now with respect to time, assuming that time derivative % can be inter-
t

changed with the functional integral f f ( . ) g]iy(dx a’y) , we obtain

ld ([ U, z( )] uz,’Ul,’Uz ff exp{} *J]x)y<dad5>> (5)
1d
=6, T (u[uy36,())0,0, ) ff t)exp{-} %, (dadB). (6)

Assume now that g, is a non-negative integer, and apply ¢, —fold Gateaux differentiation to
()
M p@ .

uy oy ety

the first functional variable u, in the directions £

@) = @) = @ 42 (q1)
0 J‘(u,'u):(suI S [ shy Shy seh, l,uz,vl,vz =

:ff <h"a, > <h? ;> <k oy > exp -} #, (dadB).

In a similar manner, assuming that all functional derivatives considered do exist, we obtain
the following result for the (ql +q9,+49,+q 4)— fold derivative with respect to u,u,,v,,v,

successively, as indicated in the notation:
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(4)) (q,) (q5) (q)

66,788 F (uw) =

= (S(q )5(q )5(q )(5(q 7 ([ l,h(l) h(q')Huz;hf[lz),...,h(qz)},[vl;h(l) h(q‘)],[vz;hi}:,...,h(q‘)}):

ERARS] ) > v
uy u, u, v, v, v,

. (a1 (42)
= ffz‘“*"“"-’*‘“(<h“’ a > <h, o> <k a,> . <ha,>

<k B> < B > < b By > < B, > exp {1} A (davdB).
(7)

Applying the above general formula (Equ.(7)) to the directions

1 (q,) 1 (¢,) 1 1 (q,)
B = =n"=hn" = =n" =0 = =0 =" = =h " =6,0),
u, u u v v v v,

uy 2 2 1 1 2

we find
5(q )5(q )§(q )§(q4),~< ,’U) _
5(q )5@ )5(q )5(q‘)"([ul;5,(.),...,5,(.)],[%;5,(.),...,5,(.)],[01;5[(.),...,5[(.)],[1)2;5[(.),...,5t(.)]) =

= [ [l et 08 05 e () 4, (daan).

Thus

1 (q)(q)(q)(q)

T 4.4q +q_+q 5 6 5 5 ff ‘11 ‘12 (t)ﬂq3 (t)ﬂ‘M (t) CXP{ } J/X)y(dadﬁ)
i T T

u,

®)

2.4.4. The functional differential equations

Combining now the differential system given by Equs.(1, 2) Sec(2.4.1) with the functional
derivatives given by Equs.(5, 6, 8) Sec(2.4.3), we obtain

_36 y( )— Z 1 Ain)qqq()é(q)é(q)é(q)é(q) (u U):
l t " L4, T, T 1129394

4,440,494,

f f [ oAl al (el ()8 (06 (1) | ep{~} L, (dedp)

q,:9,:95:9,

Thus, we have established that the following
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a. Functional Differential Equation:

1 d O 1 n 9, q, q, q,
__614 ,% (U,U) _ § A;l - ()6( )6( )6( )6( ) (u U) _ 0’
idt " i"|+qz+qs+‘74 19295

4,:4,-459, (2)

,U /9( ,,n , n=1,2.
(uw)e(26?,77?) 1,2

The above functional differential equation (2) should be supplemented by appropriate
compatibility conditions and initial conditions for the joint characteristic functional.

b. Compatibility conditions:

Although the joint characteristic functional .7 (u,v)= 7y( v) is the principal unknown

X
quantity, the marginal characteristic functional .7 (v)=.%7,(0,v)= .7, (0.0,v,.v,),

sV Y Yy

related to the excitation only, is known, i.e.

7(1)) / (0 U) / (0 0,v,,v ) = a known characteristic functional,

bl b l 3
where ’UI(UI,UZ)Eq/(z):O]/‘Xq/. ®)

c. Initial conditions:

The joint characteristic function- functional of the initial state — excitation of the system,

) Lo Lo )

[xlao),xz(m,yl(é),yz(é)] = [xww),xm(a),yl(é;9>,y2<§;9)

is known, i.e., if weset u, =u,0, (-), i, € R, n=1,2, then

n-ty

a |~ ~ . . . S 2
%y (uléta(-),uzéta(-),’ul,vz) = a known characteristic function with respect to <u1,u2) ER

and a known characteristic functional with respect to (’Ul,vz) ce7"?,

4)

Making the plausible assumption that the initial state is independent from the history of the
excitation, the initial condition is simplified as follows

a7 (= ~ _ ~ . .
"/xy(uléta (.),uzétu ), 0, 0) = ¢xl(t0)xz(zu)<ul’u2) = a known characteristic function

(i) € R?
(5)

The derivation of Equ.(5) goes as follows:
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T (00, (11,9, (1,0,0) =
:ffexp{i<ﬁ15[0(-),al(-) >}exp{i<ﬁ2(5t0(-),a2(-) >}exp{i<0,ﬁ1 >}exp{i<0,ﬁ2 >} ?/%(dadﬂ)

:fexp{i<ﬁlét0(~),al(-) >}exp{i<1225t0(-),a2(-)>} S (da) =

:fexp{i<ﬁlal+ﬁ2a2>} fxl(to)xz(to)(al’a2)da1da2 = xl(to)x2(10)<izl’l’72)’

RxR

where P (1) t0) (#1,,u,) is the (known) joint characteristic function of the initial state

(310(0).x,(0)).

2.4.5. Projection of the FDEs to finite dimensions. Derivation of an equation for the
joint RE characteristic function

We shall first recall the relation between the (infinite-dimensional) joint, response-excitation,
characteristic functional and a specific, finite-dimensional joint, response-excitation, char-
acteristic function.

Consider the joint characteristic functional

Ty (U,v) = ’O/lezylyz (ul,uz,vl,vz) =
= f f exp{i(<<u,a>>+<<v,B>>)} A (dadB) =
PACIEIC)

:ffexp{m,,a,>}exp{,~<uz,a2 Sep{i<v .8, > Yenli<v,.8, 5} P (dads)
and make the substitution
UXUsu=(u,u,) = (ﬁlétl(-),ﬁzétz(-)) = 083,(),  where (i, i, )€ R*,
and

T xT 2v=(v,,v,) = (06,0, 0,6,,0)) = BRE,(), where (&,,7,)c R’

Then, we obtain

Ty (u.v)

v=090.0 = T, (i,6, (0ii,0,,00,5,8, (5,8, () =
v:ﬁ%éy()

()
= f fexp{i(ﬂlal(tl)+ﬂ2a2(t2)+ﬁlﬁl(sl)+ﬁzﬁz(sz))} A (dadB) =

X Yo
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ffexp o, i, +0,06, +v6)} (Y s (0) (dadﬁ)z

R® R
f fexp i 0, 0,6, 46,5, >} )5 () (507 (55) (aﬁazﬂﬂﬂz) = (#%)
R® R
= P, (fz)yl(él)yz(92)<u ”Z’Ul’“2)’
that is
ora — a7 (s 5 5 5
T (Wv)umosser = T (8, 008, (0,5,8, (00,8:6,,0)) =
v—v®6 ) (1)
- q)1(’1)"202))’1(51))’2(52)( 1’”2’“1’“2>'

If, in addition the vector x (¢ )x (z,)y,(s)y,(s,) 1s continuously distributed, then

7 — o7 (7 ~ ~ ~ _
‘yxy(u ’U>u7u®6() = ‘yxy (u](stl(.)ﬂu26t2 (')5U16SI(')9U26s2 ()) -
v= v®5 ©)
T )% )G )V2(52)<u ”2’U1’U2) -
_f fexp{i(ﬁ]xl+ﬁ2x2+ﬁlyl+ﬁzyz>} f;l(fl)xz(fz)yl(sl)yz(sz)(a]’az’ﬁl’ﬁz)daldazdﬁldﬁz.

R® R®

2)

o : . o d
Now, exploiting the above equations, we shall express the time derivatives ;(Zl 7 and
t 1

36" -/ , applied to appropriate functional derivatives of the characteristic functional, as
t 2

time derivatives applied to the corresponding characteristic function.

From
1 d

- o T ([u38,0)) 0,0, ) = ff a,(t) exp{} £, (dadB),

;Eé 2.7<u1,[u2,5 (- )] UI,UZ ff d, (1) exp{-} £ (dad,@).

We obtain
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i, d

— il - B
TE ul‘% ([ 19 t( )] u27vlﬂvz> + T_ uz'% (ul’[ 2’ t( )] Ul’vz) -
fflu a, exp{ }J 2 dxdy fflu a, exp{ }f (dxdy)
3)
ff i, ¢, + i, o, )exp{ } /) (dxdy) [see proof below]
- E (0%, (07 ()7 (5) (ﬁ UPRURY )
» The proof of the last equality is based on the equation () = (), already established
above, with t, =¢, =¢ and 5, =5, =5
(pl(z>x2(r>y1(s)yz(s)(~ iy, 0, 6) -
4)

ffexp{ 0, (0) + 1,0, (1) + 8,6,(9) +5,6,())} Z0, (devdB)

Differentiating both sides of the above equation with respect to the current time ¢, we obtain

0
o5 ()%, (0)1( (
ot 1% 1(5)Y2(s)

_ %ffexp{i(alal(mu L0+ 8,8,)+5,0,())} 7, (deacdB) =

u uz,vl,vz) =

- ffgexp{i@lal(t)—i-u (O+5,8,(5)+7,8,)} F, (dodB) =
= ff<i111d1(t)—i—iﬁzdz(t))exp{i(dlal(t)+d2a2(t)+ﬁlﬁl(s)—i-f)zﬁz(s))}%(dadﬁ)

which concludes the proof of Equ.(3) «

Consider now the following expression, corresponding to the second term of the left hand
side of Equ.(2) Sec(2.4.4), evaluated at

(u,,uy) = (@,6,(),u,6,()) and (v,,v,) = (0,64(),0,054()),

1 (1) @) (@) (@) (a)
.~ 4 )
i, E : q,tq,ta +q, Aqlqzqsq ( ) 6 6 6 6 (U U)“ u®s,0) +
4,04,-454, v= “1@;5 ©
1 (2) @) (@) (@) (a)
117 3
+ iu, E : q et tq, Aq,qijq ( )6 6 6 6 (U U)“ e, —

4,.4,.4,.4, v= “®5 ©
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cit [ A 00 00 0 05 el 4 aa) +

+ iil, ff Z ;ZL o ) ()al ()8 (s)B87 (s) exp{} 2 (dadB) =
:iﬂl Aot ff (6)87 (5)82" (s) exp{-} %, (dadB) +
i Z ) f o (1o ()87 (3)85 (5) exp -} 7 (dexdB) = (&

Using now the equation (see below for the proof):

1 8‘11 842 aqs 8%

iq1+42+43+114 8111‘71 811;12 861‘71 aﬁm X ()% (D) Y1(8)Y () (I/l uz,Ul,Uz) —
(5)
= | [ et warsr@or© eo(-) 4 (dadp)
we obtain
.\~ (1)
§ mlAq 9,4,9 (Z) o 9" 9" 9™
- i ity 5,,5,) +
-4 2 3 4 ~ 4 ~ 4> ~ {3 ~qy xl([)x ([)y (:)_v (S) Uy, »U,
q,:9,.9,:9, lq q,t93+9 a],{lq 8”; a’UIq 8/02 2 1 2 (6)

o (2) )
S A 0) 0 0 0 o (7,7,.2,5,)
* PRI ERE AR a~ql 8"‘72 % aﬁ;h DX (D)1 ()Y (5) u uz’ Vs

q,:9,-9,-4,

» The proof of the Equ.(5) goes as follows: consider again Equ.(4) and differentiate both sides
first g, —times with respect to the parameter u,,

aql o . 3
8aq1¢1(’)X2(f)«"1(?)}2(9)(u u2’U1’U2) =
8‘11
-2 [ [ expifa @+ .0.00+ 6,6,6)+ 0.6,5))} £ (aaap) =
1
_ ffsl exp{i (7,0, (1) + #,0, (0 4+ 5,8,(5) +5,6,())} L, (dadB) =

ff “a) (0) exp{i(i,0, (0 + 1,0, +5,8,()+5,6,(5) )} L (deedB).

In a similar fashion we obtain
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8111 8‘12 8‘13 6‘14
oul ou®* 9o ool (px1<z)xz(r)y1(s)yz<s) (“l’
1 2 1 2

_ 9 9 9 9 ffexp{ (@,0,(0) +i,0,()+0,6,(5)+0,6,())} £ (dadB) =

~4q, ~4q, ~ 4 ~ 4,
Ju,' ou,” 0v,” 0v,"

- ff 0 : 8; 9 - 9 - exp{i(ﬁla](l)-i-l;z@z(f)+6.5|(S)+ﬁzﬂz(s))} (J/;’y(dadﬂ) =
oa' 9i. 95" 9o

ff P 0 ad (087 (083 (1) exp {i (0, () 0,0+ 0,8,(5) +5,8,())} A (dacdB)
which is exactly what we wanted to prove. <«

Combining now Equ.(3) and Equ.(6), we obtain an equation for the evolution of the joint RE
characteristic function of Equ.(1) Sec(2.4.1):

0

5q)ﬂwz(r)y.<S>.vz(s> <ul Uz VU, )

s—t

_ Z iu Aq)q 44, ([) 9 9% 9t 9

u
R ~ - - ~ xtxtytyt<1
jOTaTat 8uf1 81/!;12 avlqs 8’054 1(DX (DY) Y2 (2)

,u2,U1,U2) + (7)

4159554554,

ul,u2,vl,v2)

.~ (2
N luZAq|q2q3q4 ([) aql aqz 8‘13 a‘h <
ql’;z‘q}:’qz‘ l-111+‘]z+q3+‘]4 a~q1 812;12 a,ﬁlqs 8’554 X ()X, ()Y (1)Y (1)

The above equation should be supplemented by:
Compatibility conditions:

The marginal characteristic function related to the excitation is known, i.e.

?, P <U1’U2> =0 O (171519 (5) (0,0,Ul,vz) = known characteristic function, Vs>t ()

Initial conditions:
The joint characteristic function of the initial state — excitation of the system,

(3,220, (2). (), 75(9)) = (x,0(0),,9(0), ,(5), 5 (s))., is probabilistically known, i.e.

Q"lm)xz(tm’l(l‘)yz(s) (u],uz,vl ,Uz) = known characteristic function, Vs >t,.

Making the plausible assumption that the initial state is independent from the excitation, the
initial condition is simplified as follows

u,,u 2) = known characteristic function )]

¢"'\(10V(2(10)(
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2.4.6. Derivation of the joint REPDF evolution equation.

We shall use the equation for the evolution of the joint RE characteristic function (Equ.(7)
Sec(2.4.5)) to find the joint REPDF evolution equation

Forany ¢,,t,,s,,5, >t,, the characteristic function ¢

xl(ll)xz(fz)yl(3'1)y2(52)(u1’uz’vl’Uz) and the

corresponding pdf f, B,) form a Fourier transform pair, and thus

1(’1)X2(f2)y1(s1)y2(52)(al’az’ﬁl’
being connected by means of the formula

¢X|(t,)xz(tz)yl(:,)yz(sz) (ul,u2,vl,v2> - f;(l(tl)xz(tz)yl(ﬁ)yz(sz) (al’az,ﬁl)ﬁz) X

R R@

X exp{i(ulozl +u,o, +v B, —|—v2ﬂ2)} dada dB3dg,.

Using the notational conventions M
U=(uu), v=(vpv), a=(apas). B=(8,0),

X(1) = (x,(1), (1)), Y(5)= (1105, 7:(52)),

Equ.(1) can be written in the more compact form:

Peyyis (W) fofxmy(s>(a;5) exp{i(u-a+v-B)}dadB. )

R R
Note that in the following analysis symbols X(t), y(s) will be given the (more restricted)
meaning X(t) = X(£) = (x,(t).x,(1)) and y(s)= y(s) = (,(s).7,(5)).

Sometimes use is made of the following symbolic form of the Fourier Transform Equ.(1) or
Equ.(2):

(pX(t)Y(s) (u,v) =7 [fx([)y(s) (04;5) ; (04,5) — (u,v)]. (3)

Substituting now the characteristic function in Equ.(7) Sec(2.4.5) with the Fourier transform
of the pdf (Equ.2) we obtain:

3 —
5-%,,,,-,, [fX(z)y(s) (a,,@) 8 (a,ﬁ) - (ufv)]

s—t

G L
T i A, ,, (1) 9" 9% 9" 9%

i?]*’i:*‘l:*’h aul‘ll 61/[;1: avl’h GU‘N

ffexp{i(u'a—}—v-,@)} fx([)y(t)(a,ﬁ)dadﬁ +

q,-9,-95-9, R® R®

.~ (2
mqu v ([) 9l 9 9" 9% .
4\ td,+d, s o’ ou’ 9" du’ ffexp{l(Ua—i—'u-ﬂ)} fxmy(r)<a”3)dadﬁ =
9,240,299, ! u, U, Yy Y, R® RO

[assuming that differentiations can pass under the integral sign],
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il AV
= E % ff(la )ql(laz) (lﬂ) (lﬁ )(h exp{l Uu-a+uv- IB)} fx(l)y(,)( H@)dadﬁ +

q,-9,-94°9, R R

i A‘jz:i 954 () q q q q
+ Z q‘+q]24:13+4q f f(ial) '(iaz) (lﬁl) 1(l.ﬁz) ) exp{i(u-a+u-ﬁ)} fx(t)y(t)(a,ﬁ)dad,@ =
i

q,:4,:9,9, R® Rp®

- Z Ai?qzqzq‘(t) ffaquazq:ﬁlqjﬁz‘h(iul)exp{i(u.a—l—v-ﬁ)}fx(t)y([)(a,ﬂ)dadﬁ+

q,+9,:959, R R®™

+ E Aijzzizqgh(t) ffalqlaquﬁl%ﬂzq* (IMQ)EXP{Z(UCY—F'Uﬁ)} fx(l)y(,)(afﬁ)dadlg =

q,:4,:959, R® R®

- Ar:)qzqm(t) ffa o,”B,"8," dar [exp{ u-a+uv- ﬁ)}]fx(,)y(t)(a,ﬁ)dadﬂ +

9292959, R RM™

2) 9, 9 q5 qy4
+ E Aq‘qzq%(t) ffozl a, 6,70, 3

4,040,954, R® RO

‘Z lexp{i(u-a+v-B)} £y, (0 B)dadB =

[applying integration by parts in each term ]

= - Z 40, . ® f f 26,8,  exp{i(u-a+v-p }—[ oy (@ ﬁ)}dadﬁ _

909,959, R® R
(] 9 a4 .
_ Aqﬂzq,q @) ffoz 8,8, exp{l u-a+v- ,3}—[ o, X(I)y(z)( ,ﬁ)}dad,@ =
90920959, R RO

[substituting r,,r, for the exponents and subscripts q ,,q ,, and using the notational conventions (| = (ql ,q, ) s

r= (r,,rz) o' =aa BI=pp"=5"5"],
fo Aélr(t)ﬁ mem(a,ﬂ)]exp{i(u-a+v~ﬁ)}dad,3

& ro po

fo A“’(;)ﬁ —[ @ fry (e B)|exp{i(u-a+v-B)}dadB =

or

R R

= = E 'mewr
q,r

q,r

1 . 0
Aér)(t)/@ 87[ aq fX(,)y(t)<a;ﬁ)] 5 (a7/8)4> (U,'U)
1

Agf (DB’ _[a oo (@:B)] (e.8) = (u)

That is, Equ.(7) Sec(2.4.5) has been given the following form

9 oF
E'%ww [fxmy(:) (a’ '6) ) (a,,@) - (U,’U)]

— Of
— S
ourier

n=1,2 q,r

0 ;0
418 aT[ o fyve (06 8)] 5 (2. 8) = (u.)

n

Applying now the inverse Fourier Transform to both sides of the above equation, we obtain
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0
Efxmy(s) <a’ﬂ)

Z Z A0 (0B" —[ N C)] ()

n=1,2 ,r

which is the sought-for equation in terms of the joint REPDF. Clearly, it is equivalent with
Equ.(7)_Sec(2.4.5).

Theorem: If the stochastic function x(¢; 6) satisfies the differential system

500 =Y A (O Ox (0] (50)y7(50) =

qy:9507)57,

CYNIN YN (3)
> A Xy e, n=12,
EIREE LIS
then, the joint, response-excitation, pdf
Sy @B) = L mwrimn(@:@2:01:52) (6)

satisfies the differential equation (4), that we repeat here for convenience:

Z Z A [ qfxmvm (a,,@)} (7)

n=1,2 ,r

9
ot

Fxwyveo <a’ﬂ)

The above equation should be supplemented by:

Compatibility conditions ensuring that the marginal pdf related to the excitation is known at
any time ¢ >¢, 1.e

y(t) ffx(twm(a Byda =

®)
= ffr,(z)xz(z)y‘(;)yz(;)(al’awﬂwﬁz)daid@z = known at any time t >t .

RZ

Initial conditions ensuring that, here assuming that the initial state is independent from the
excitation, the joint pdf of the initial state (x](to),xz(zo)): <x10(0),x20(9)), is probabilis-

tically known, i.e.

f;fl(to)xz(to)(al7a2) = known probability density function. (9)

Equ.(7) must also be supplemented by constitutive conditions ensuring that
fx(;)yl(s)yz(s)(ayﬁlaﬂz) iS apdf:
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f;C(t)yl(S)}'z(s)(a’ﬂ“ﬁz)20’ f f f;c(t)yl(s)yz(s)(aflgl7/62)da = 1 . (1oa,b)

a€ER PER

The derived joint REPDF evolution equation (7) is a peculiar equation, involving two times
and four probability arguments (two for the excitation, and two for the response) and partial
derivatives only with respect to one (response) time and the two response probability
arguments. This peculiarity gives rise to fundamental questions regarding both the well-
posedness of the problem (7-10) and the methods of its numerical solution. Recently, (Venturi
et al. 2012) re-examined the RE theory using a different (but essentially equivalent) method.
They confirmed the validity of the REPDF evolution equation derived in (Sapsis &
Athanassoulis 2008) and answered in negative the question regarding its well-posedness, by
presenting a simple example in which the REPDF evolution equation is valid but it does not
ensure uniqueness of solutions(this will be discussed in Section 3.6). Accordingly, it becomes
clear that a kind of completion of problem (7-10) is necessary. The type of completion
proposed by (Venturi et al. 2012) results in a complicated equation, including the entire
history of the response process in a functional integral form, which cannot be considered as an
attractive alternative. In Section 3.6 we shall use a simple problem, i.e. a scalar linear RDE
with Gaussian excitation, to prove that the REPDF evolution equation does not have a unique
solution, since when the equation is considered only time diagonally (s — ¢), the non-local
(in time) characteristics of the problem are lost. In Chapter 4 an a priori closure technique, by
formulating and using localized linear problems accounting for the RE correlation structure,
shall be introduced and used for the numerical solution of the long-time, steady-state REPDF

evolution equation that corresponds to non-liner scalar RDEs (see also the discussion in
Section 4.3)

2.5.  Infinite system of limiting two-time RE moment equations

To verify the validity of the REPDF evolution equation (Equ.(8) Sec(2.4.6)), this is used to
re-obtain the infinite system of the limit two-time moment equations. More precisely, in this
section the infinite system of moment equations are derived both directly from the dynamical
system (Equ.(1) Sec(2.4.1)) and from the equation for the evolution of the joint response-
excitation characteristic function (Equ.(7) Sec(2.4.5)).

Derivation of the infinite system of moment equations from the dynamical system

Let us consider the dynamical system with polynomial non-linearities:

50 = Y AL, (X (B0 (50)y ] (50)y7 (1:0), (1)
4,:95:95:9,

B(60) = Y AP, (0)-x (GO (50)y] (50)y1(50) (1b)
q,:4,:95:9,
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Multiplying equation (la) with #, oxl'"_l(t;e)x (1;0)y," (5;0)y7>(s;0) and equation (1b)
with n, - x]"(£;0)x,*" (1 0)y"'(s)y,*(s), respectively, we get:

n- X (G0)%,(450) X2 (660) y" (5:0)5 (5;0) =
n-xN(60) X0 (50) Y (5;0) Y0 (530) %
X Z AL ()0 (10)y 1 (1:0)y1 (1:0), (2a)

91>92>95-94

1y %y (50)3%,(50)x (50) y1" (530)y2" (530) =

=, X" (50) X2 (50) 1" (5:0)y) 7 (5:0) % (2b)
ST AT O (O (0)5 (1:0)y (1:0),
4,,4,:45:9,

Adding equations (2a), (2b) we have:

d n n
—o 0 (10) X (B0) " (550077 (53:0) =
=n,-x"(5:0) X2 (50) 3] (5:0)¥57 (530) + 3)
XY AL, O X O (50)y] (50)y5 (150) +

4,540,545+,
o, (50) 2 (50) 3 (5:0)50" (5:0) x
XY A (O (GOX0)y ] (50)yE (16).

4,545:954,

Considering the limit s — ¢ , we obtain:

n

d n m m
— X (6:0) x,7(£:0) 3,7 (5:0)y, 7 (5:0)

dt s—t
=Y AL O 0 (B0)y T (50)y5 " (10) + @)
q,:95-95-9,
Fry > A X GO 0y (50)y) T (10).
q1:97-93:94

Applying the mean value operator to Equ.(4) we get the infinite system of moment equations
of system (1):
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£’ RN 0) x," (£:0) " (5:0) ;" (5:0)

J N 5)

=B AR (O O (B0 (150)y4 " (130)| +

4,4,49,9,
ql’qzvq3’q4

+n, E Z AL (x0T (50) Y (60) 1 (10),

9,9,9549,
915929594

that is (interchanging the mean square derivative with the mean value operator):

iE(’[ (5:0) %7 (50) v (5:0)p) (S;H)LJ -

dt
= 3 AL, (OB [ GO GO B0 0]+ ©
4195954,
Fnge YA OB [ 0 (600 (50) " (150)
4,:92:95:9,

Let R\ (1,t,5,8) = E° [ 5" (£0) %, (£:0) 37" (5:0)}"(5:0) |, then Equ.(6) is equiva-

X1,%2,V1,V2

lently written:

ny,ny .My, my
aRxl’Xz’J’hyz (t,t,S,S) A(l) R‘11+"1*],qz+”2v‘13+’"1,‘14+”’2(t t.1 t) +
ot 9,4,9549, ) X15X2,15)2 2T
St 91°92:93°94 (7)
(2) q +n1.4,+n,—1,45+m,q,+m,
+n2 E : Aqq 959, ) X1,X2,Y15Y2 (t’t’t’t)
4,95:95:4,

Derivation of the infinite system of moment equations from the evolution equation of
the joint response-excitation characteristic function

The new equation derived for the evolution of the joint response-excitation characteristic
function that corresponds to system (1) is (we repeat Equ.(7) Sec(2.4.5) for convenience):

0 o
E(p'ﬂ(r)xz(r))fl(s)m(s)(”1’”2’UI’U2)

s—t

Z lu A;l)q q q4( ) aql a‘!z a‘ls 8‘]4

. q1+q,+q3+ ~ ~ ~ ~
l(il qrTq3+4q4 aulfil 8”;2 81}1{’3 av;M

120, (a0 B2 U Un) F (8)

419,954,

(2)
" lu Aq 4,4, q4() 8‘11 8(12 8‘13 8‘14 (ﬁ ﬁ i} )
: : - q1tq2+tq3+q, ~q ~q; ~ 3 ~qy X (D)X () (DY (N2 F 1 T2
i ou,' 0u,’ 00, 00,

4145454,
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nytny+my+m,
Applying the differential operator —————————[ | at the point
u,'0u,* 00, '00,
u,=u,=0,=0,=0 to Equ.(8), we can re-obtain Equ.(7). To this end, the following
known relationships are used:

ny+n,+m;+m,
0
~ ~ o~ _ .n|+n2+ml+m2 ny,ny,my,m,
Uy,0,,0,)|a,=0 = R (ts,s), (9)
u270
vl =0
Dy=0

oii, ' 0it,* O 18””2 ¢x1(t)x2(t)yl(s)y2(s)(ul’
1 2

along with the fact that for every C" differential function f(x):R — R, we have (Sapsis &
Athanassoulis 2008):

n—l

d
» = d n— l[f(x)]

dﬂ
pati]

(10)

x=0

an1+nz+ml+mz

Specifically, applying the differential operator

P ———— [ ] in each one of the
o, '0u,’ 00, '00,
terms of Equ.(8), we obtain:

for the first term,

8n1+nz+ml+m2 8
i,,i,,0,0,) =
~Ny O~y 0~y l(l)xz(l)}l(s)}z(f)( 1l U1, Uy it,=0
ou,' 0, 00, 00, ot st |in=0
0,;=0
0,=0
8 6n|+n2+ml+mz
7 (i1,210,.,,8, ) = [using (9)]
~ ~ ~ ~ X (DX, (0) V()Y (s 1272515 Y2 Jli;=0
8t 81/{”]8 ”zavlmlavéﬂz 1(DX5 ()Y 1(5)Y 2 (s) 51270
7,=0
n=0
ORGSO RUL
_ enytnytmytm, X15X2,015Y (t t $ S)|
=i , (11
8t

s—t

for the second term:

8n1+n2+m1+m2

ou, ' 0, 00, 00,

(O]
y Z iu Aq 010, q4(t) 841 8‘12 a‘h 844

u,,u,,v U)
. g, +q,+q5+ ~ ~ X, (1)x [ytyt(l’ 2271072 0=
lql 9279437494 8 ql 814;]2 avqs 8 q4 1(DX ()Y 1(H)Y2(H) ;=0

9,4,
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(0] ny+n,4m +m, q 9, q q
ZA”””"U) 0 ;2 0 0 9., @015, o =
cq,tq,+q,+g, 1 ~7 ~Ty N~ ~T 1 ~q ~4q ~q ~q XX, ()Y (DY, (D) 12522 e 2 /e =0 T
P00 0, 00, 00, Oa,t du,yt 90,0 9oyt T 7,0
4,.9,.4,:9,
[ 0,=0
500

[using (10) ]
A(l) (1) anl+n2+m1+m2+ql+q2+q3+q471
E 72920307, » (1211325, 0, )20 =
iqﬁrqurqz*‘Irl 18111”1‘Hh—laﬁ;z‘*'qz8,&]’”1‘*"138,&;‘2‘“}4 X (DX ()Y (DY, (H) 712722 712 72 lei(()) B
4,:4,4594 5,=0
0,=0
[using (9) ]
o I+, my+m, 1) L pditm=Ld,tng dytmy g, tmy
=n,i E Aq1q2q3q4(t) R (t,t,1,1). (12)
41>92:95:94
Similarly, for the third term we obtain:
a”w*”z*”ﬁ*’”z iﬁZA;Zqu ‘ (Z‘) 6’1| aqz 8‘13 8‘14 o o
e 4 (w,,u,,0,,0,) =
o 9L, 5" O PO gt gt gt gl OO0 TR I R
q,-9, 2
1 0,=0
,=0
(2) ql+nl,q2+)12—1,q3+m1,q4+m2
n, z : Aq,qzqiql,(t) Rxhxz’y]ayZ (t’t’t’t)' (13)
9,:9,.9,.4,

Combining equation (8) with equations (11), (12), (13), equation (7) is re-obtained.

2.6.  Application to the ship roll problem

The RE theory has been applied to the ship roll problem with both parametric and external
stochastic excitation (G.A. Athanassoulis et al. 2009). As an example case we shall consider

the roll motion equation with external stochastic excitation (see, e.g., (Belenky & Sevastianov
2003)):

U+ 4)X(@) + b, x(t) + by )'c3(t) + K\ x(¢) + K3x3(t) = y(t;0), (1)
where:

x(t) =x(t;0) is the roll motion (angle),
I + A is the inertia coefficient,

b,, b, are the damping coefficients,
y(t;0) is the external excitation,

K,, K, are hydrostatic coefficients.
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The external excitation y(#;6), that is the roll moment due to wind and waves, contains a
mean steady component (wind), two nearly stationary, nearly Gaussian components (gust/
waves), a non-stationary, non-Gaussian component (squall), whereas a quadratic component
might also be important in some cases. In this case y(#;6) is in general, non-Gaussian, non-
stationary, and has correlation time comparable with the relaxation time of roll motion x(z;6).
Therefore, roll motion x(¢;6) will be a non-Markovian random function requiring specific
modeling techniques for its probabilistic characterization. One approach is to model the
excitation as the output of a filter driven by white noise (solving an inverse/identification
problem) and study the augmented dynamical system in the sense of Itd6 (Francescutto &
Naito 2004). Another approach is to use stochastic averaging techniques, formulating an
approximate [to SDE for a slowly varying motion parameter (e.g., energy) (Stratonovich
1963; Khasminskii 1966), this was applied to ship roll motion e.g. by Roberts (Roberts 1982;
Roberts & Dacunha 1985; Roberts & Vasta 2000), Kreuzer & Sichermann (Kreuzer &
Sichermann 2007).

The response-excitation theory allows to obtain an equation for the evolution of the joint roll
motion (x,(¢)=x(t)), roll velocity (x,(¢)=x%,(¢)) and excitation y(s) PDF (joint REPDF

B3)). More precisely, applying Equ.(7) Sec(2.4.5) to system (1) we obtain

X ()x, (r)y<s>(a1 » %2

the joint REPDF evolution equation:

0
ot xl(r>x2(r>y<s)(a1’aZ’ﬁ) +
s—t
2
+L (a,,0,,8) + ﬂfx‘(”"z(”””(a“%ﬂ) ~0
L2oy0, 7 5 (x, () 120 da, -
where:
- 1 2 0 0 3 0
V4 )=|——1|b,+3bya;,—a,— + K, a,— + K, — +
”50410‘2() I+4|" P27 By " da, > da,
3)
0 3 0 0 3 0
+ b ay, —+ by, — + bja,— + bya; —||(*
1 5, 2 50 1250, 250, ()

The above equation should be supplemented by compatibility conditions (Equ.(8) in
Sec(2.4.6)), initial conditions (Equ.(9) Sec(2.4.6)) and constitutive conditions (Equs(10a,b) in
Sec(2.4.6)))

As discussed in Section 2.4.6, pp.32, fundamental questions regarding both the well-
posedness and the methods for the numerical solution of the REPDF evolution equation (2)
have been raised. This will be discussed in the context of a simple problem (linear scalar RDE
with Gaussian input) in Chapter 3, whereas, in Chapter 4 an a priori closure technique shall
be introduced and used for the numerical solution of the long-time, steady-state REPDF
evolution equation that corresponds to non-liner scalar RDEs
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APPLICATION OF RE THEORY TO LINEAR DYNAMICAL SYSTEMS
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3.1. Introduction

Chapter 3 will explore the well-studied (Qiu & Wu 2010), simple problem of the probabilistic
characterization of a linear Random Differential Equation (RDE) under smoothly correlated
(colored) stochastic excitation (input) in the context of the RE theory. To this end, we develop
and solve analytically two-time RE moment equations for the response mean value m, (t), the

two-time response-excitation cross-correlation R, (t,s), the two-time response auto-
correlation R, (t,s) and the one-time response auto-correlation R, (t,t). The obtained
formulae are implemented for the case that the two-time auto-correlation function R, (t,s) of

the random input is a low pass Gaussian Filter (IpGF), an Ornstein-Uhlenbeck (OU) process
or, alternatively, a shifted OU (sOU) process.

Assuming that the input y(t;0) in the linear RDE is a Gaussian random function (hereafter

referred to as linear/Gaussian case) the joint REPDF f (o, 3) is a 2D Gaussian density,

X(D)Y(s)
uniquely defined by the solution of the two-time RE moment equations. This analytically
obtained joint REPDF f, Y (s)(a, () is used to verify the REPDF evolution equation. In fact,

we will prove that, in the linear/Gaussian case, the REPDF evolution equation becomes
equivalent with the limit two-time RE moment equations.

Thereafter, the equivalence between the REPDF evolution equation and the limit two-time RE
moment equations will be invoked, in order to clarify that the REPDF evolution equation does
not have a unique solution, as also stated in Venturi et al.(Venturi et al. 2012). As will be
shown the non-uniqueness is due to the fact that the correlation length of the excitation is not
properly taken into account since some of the non-local (in time) characteristics are lost when

taking the limit 8fx(t)y(s)(a ,8)/ 0t

—

Subsequently, the need for an a priori closure of the REPDF evolution equation, providing
additional information about the RE correlation structure, will be discussed. In the
linear/Gaussian case this could be provided by the moment equation for the two-time RE
cross-correlation R, (t,s).

Lastly, we examine the connection between the REPDF evolution equation response-marginal
with the two-time RE moment equation in the linear/Gaussian case.

3.1.1. The underlying deterministic problem. The scalar case

Consider the scalar RDE, subject to a known mean square (m.s.) continuous stochastic
excitation Y(t;6), and a known stochastic initial condition X,(0):

X(t;0) = A-x(t;0)+B -y(t;0), (1a)
X(t,;0)=X%,(0), ABeR. (1b)
Hereafter, the RDEs will be studied in the m.s. sense (for the m.s. calculus and its application

to the study of RDEs see e.g. (Soong 1973; Loeve 1978; Saaty 1981; Sobczyk 1991)).

In order to determine the probabilistic characteristics of the unknown through the known
stochastic quantities, use shall be made of the deterministic transformation that defines the
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sample function of the system’s response for a specific realization of the excitation, and a
specific value of the initial condition. We shall thus need first to consider the deterministic
version of the initial value problem (1), i.e.:

X(t) = A-x(t)+B -y(), (2a)
X(t) =X,. (2b)

and its general solution, given by the integral:

t

x(t)=e" fB-y(s)e‘A'<s‘t“)ds+x0 . (3)
Y

For A<0, the solution given by Equ. (3) is asymptotically (as t — o) stable, whereas for
A > 0 the solution is asymptotically unstable.

3.1.2 The underlying deterministic problem. The vector case

Some of the results presented in this chapter will also be generalized to linear dynamical
systems of the form:

X(t;0) = A-x(t;0)+B -y(t;0), (4a)
X(tOQQ):Xo(G)’ (4b)

where A:[Anlnz}n]:1 2N ,B:[B 12y are deterministic, time invariant matrices,

n,=12...N m
y(t;0)= (y (t50),y,(t;0),..., Y (t; 9))T is a known stochastic excitation,
x(t;0)= (xl(t;e), X,(t;0),.... Xy, (t;H))T is system’s response and X,(0) =x(0;0) is a known
stochastic initial condition.

The deterministic transformation that defines the sample function of the system’s response
that corresponds to a specific realization of the excitation and a specific value of the initial
condition are given by the deterministic version of the initial value problem (4), i.e.:

x(t) = A-x(t)+B -y(t), (5a)
x(t)) = x,. (5b)

and its general solution ( pp.80 in (Ahmad & Rao 1999)) that is given by the integral:

x(D= [ @(t=5)By(s)ds, + B(1)x,, (©)
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where ®(t)= [@n]nz] n,—12..n 18 the fundamental matrix of the corresponding homogeneous

n,=12,..,N

system:
x(t) = A-x(t). @)

The stability of the homogeneous linear system (7) is determined by the eigenvalues of the
matrix A.

3.2.  Analytical solution to the moment problem. The scalar case

In this section, we shall derive moment equations for the RDE given by Equ.(1) Sec.(3.1.1).
These equations allow us to determine the response mean value m,(t), the RE cross-

correlation R, (t,s) and the two-time response auto-correlation R, (t,s) , through the known
mean value m (t) and auto-correlation R, (t,s) of the excitation as well the known

moments of the excitation and response initial conditions m R m, , R, . . Hereafter,

X 7 X% Yo2 " YoYo
it will be assumed that the initial value x,(6) is independent from the excitation y(t;6).

3.2.1. Analytical solution to the moment problem in the transient regime

To calculate the response mean value function m (t), we take mean values in linear RDE,
Equs.(1a,b) Sec(3.1.1), i.e.:

E9

%x(t;&)] = A-E’[x(t;0)]+B -E"[y(t;0)], (1a)

E’[x(0;6)]=E"[x,(6)]. (1b)

Interchanging the m.s.-derivative of the X(t;#) with the mean value operator (see e.g. Soong

1973), we obtain the following differential equation and initial condition for the response
mean value:

m,(t)=A-m(t)+B-m,(t)

(2a)

m,(t,)=m, |, Vi>t,. (2b)

Applying the analytic solution given by the integral Equ.(3) Sec(3.1.1) to the initial value
problem given by Equ.(2), we obtain the response mean value for t >t , i.e. :

t
m, (t)=e""B- f m, (s)e **ds+e* " .m, , vt>t, | (3)

t()
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Alternatively, let us denote that the response mean value (Equ.(3)) can be obtained, if we
consider Equ.(3) Sec(3.1.1) applied on the sample functions, i.e:

S

X(s;0) =€) fB-y(sl;G)eA'(sl‘(’)dsl+x0(9) : (4)

)

then apply the mean value operator.
To calculate the two-time RE cross-correlation function R, (t,s), Equs.(1a,b)_Sec(3.1.1)

are multiplied with y(s;6), where s > 1, i.e.:

X(t;0)-y(s;0) = A-x(t;0)-y(s;0)+B -y(t;6)-y(s;0). (5a)
X(t)30)-y(s:0)=x%,(0)-y(s;0). (5b)

Applying the mean value operator to Equs.(5a,5b) and interchanging the ms-derivative with
the mean value operator, we obtain:

%E"[x(t;&)-y(s;@)] = A-E'[x(t;0)-y(s:0)|+ B -E’[x(t;60)- y(s:0)], (6a)

B [x(t,30)- y(s:0)] = E'[x,(0)-y(s:0)]. (6b)
Since we have assumed that the response initial condition X,(f) is independent from
excitation Yy(s;6), Equ.(6b) becomes:

E’[%,(0)-y(s:0)] = E'[%,(0)]- E’[y(s;0)] = m, -m,(s). (7)

Combining Equ.(6) and Equ.(7), we obtain the following differential equation and initial
condition for the two-time RE cross-correlation function:

%ny(t,s) = AR, (t,s)+B R, (53 (8a)
R, (t,s) = m _-m (s) . Vi>t,Vs>t, . (8b)

Applying the analytic solution given by the integral Equ.(3) _Sec(3.1.1) to the initial value
problem given by Equ.(8), we obtain the two-time RE cross-correlation function R, (t,s)

attime t>t,, s>t ,ie.

t
ny(t,s):e“-fB-Ryy(t,,s)e—A"ldtl+eA‘<‘t“-mxo-my(s), VE>t,Vs>t|.  (9)

)
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As shown in Equ.(9), in order to calculate R, (t,S), integration is performed over all values
of R, (t,s) for t; <t <t, which takes into consideration the non-local effects of the colored

stochastic excitation.

Taking the limit Ss—1t to both sides of Equ.(9), we obtain further the one-time RE cross-
correlation function R, (t,1),1.e.

t
Ry =t [BR, (e dt e, (), ezt (o)

)

Similarly, to calculate the two-time response auto-correlation function R, (t,s), we multi-
ply Equ.(1a) Sec(3.1.1) and Equ.(1b) _Sec(3.1.1) with x(s;0) and X(t;6), respectively,
Le:

X(t;0)-x(s;0)= A-x(t;0)-X(s;0) + B -y(t;0)-x(s;0),

X(430)-X(1:60) = %,(0)-x(1;6).

Applying the mean value operator, we then obtain:

% E'[x(t;0)-x(s;0)|= A-E’[x(t;0)-x(s;0)]+ B -E’[y(t;0)-x(s;6)], (11a)
E’[X(t,30)-x(s:0)] = E”[ %, (6)-x(s:0)]. (11b)

Since the response X(t;0),Vt>t, depends on its initial condition X,(f), an additional
equation for the R, (t,,t) is needed, so as to calculate the two-time response auto-
correlation R, (t,s). Multiplying Equs.(1a,1b) Sec(3.1.1) with X,(f) and subsequently
applying the mean value operator, we obtain:

%E”[x(t;@)-xo(Q)]: A-E"[x(t;0)-%,(0)]+ B -E’[y(t;0)-%,(0)] =
= A-E"[x(t;e)-x0 (0)]+B -m, -m, (1), (11e)
E’[X(t,30)-%,(0)] = E’[%,(8)-%,(0)). (11d)

Combining Equ.(11a), (11c) and (11d), we get the following initial value problem for the
two-time response auto-correlation function R, (t,s):

%Rxx(t,s): AR, (LS)+B R, (s.t)) (12a)
0
SR ()= AR (t)+B -m, -m, 1), (12b)
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Vi>t, Vs>t  (120)

R (tooty)= R, . |-
The solution of Equs.(12b,¢) is given by the formula:

Ry (to’ s) — M), B'mxo .fmy (tl)-e_A'(t‘_tO)dtl +eA‘(S—t0) . quxo ) (13)

)

Combining Equ.(12a) and (13), the initial value problem for the two-time response auto-
correlation function R, (t,S) becomes:

%Rxx(t,s)z AR, (t,s)+B R (s,t) . (14a)

R, (to,s):eA'<5‘°)-B-mX0-fmy (t,)-e 0 dt +e R V=1, Vs>t (14b)

f

Applying the analytic solution given by the integral Equ.(3) Sec(3.1.1) to the initial value
problem given by Equs.(14a,b), we get the two-time auto- correlation function of the
response R, (t,s) as a function of the two-time RE cross-correlation function R, (s,t)

and the response mean value m, (1), V t,s >t,, i.e.

t
R (t,s)=¢e"" B-f R, (s.t)e ""dt, +

K (15)

+eA,(t+s—t0) . B'mxo 'fmy <t1>. e—A-t]dtl +eA-(t+s—2,t0) ‘R

f

XoXo *

Alternatively, we can derive a relationship that provides the two-time response auto-
correlation R, (t,S) as a function of two-time auto-correlation function of the excitation

R,,(t,s) .,V t,s >t,. In fact, from Equ. (9):

ny(s,t]):e’*s-B-fRyy(tz,tl)eA“Zdt2+eA'<S‘°>-m,¥)-my(tl). (16)

)

Substituting R, (s,t,) in Equ.(15) with Equ.(16), the first integral in the right hand side of
Equ.(15) becomes:

t t

foy(s,tl)-e‘A‘ldtlzf eA‘S-fB-Ryy(tz,t,)e‘A"Zdtz+eA‘(S‘0)-mxo-my(tl) oMt =

t f f
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t S

—ehs f ef B-Ry, (t,.t,) e "“dt, |dt, + (17)

t )
t

+etuiB. f m, -m, (t)e " dt,.

)

Substituting R, (s,t,) in Equ.(15) with Equ.(17), we get the two-time response auto-
correlation function R, (t,s) as a function of the two-time excitation auto-correlation
function R (t,s), m (1), Vt,s>t, ,ie.:

S t

t
Rxx(tas):B’eA(SH)f eA{tl‘fB’RyyaZatl)‘eAltzdtz dtl+eA‘(”S‘°)B.me-fmy (t,)e "dt,

t(J t() tl)

S
+ ph(trs—t) B'mxl, 'fmy (Sl)-efA‘s‘dSI + phlts24) o

f

Vs>t (18)

XXp ?

Moreover, taking the limit S —t in both sides of Equ.(18), we obtain the one-time response
auto-correlation R, (t,1), 1.e.:

t t t
Rxx(t,t):Bz~ez'A"~f e‘A"l-fB-Ryy(tz,t,)e‘A'tzdtz dtl+2-eA'(2"‘°>B~fmxo-my(tl)e‘“‘dtl
t, ty t

| Pl Ryw s Vit>t,. (19)

We shall now derive an equation that describes the evolution of R,,(t,t). In Chapter 5, a
moment equation for the evolution of R, (t,t) will be used in conjunction with an evolution
equation for the evolution of R, (t,s), in order to obtain a time closure for the two-time RE
moment equations that are developed there for non-linear RDE:s.

Multiplying Equ.(1a) Sec(3.1.1) and Equ.(1b) Sec(3.1.1) with 2-x(t;0) and x(0;0), re-
spectively, we obtain:

2-X(t;0)-X(t;0) = 2-A-(x(t:0))" +2-B -x(t;0)- y(t;0), (20a)

x(0;0)-x(0;60)=x,(6)-x(0;6), (20b)
that 1s:

i(x(t;a))2 =2-A-(x(t;0))" +2-B -x(t;0)- y(t;6), (21a)

dt
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(x(0:0))" = (%,(6))". (21b)

Applying the mean value operator to Equs.(21a,b), we obtain an initial value problem for the
one time response auto-correlation function R, (t,t), i.e.:

%Rxx(t,t): 2-A-R,, (t,t)+2:B -R, (L), (22a)
R (tost) =R, . |- (22b)

Subsequently, substituting R, (t,t) in Equ.(22a) with R, (t,t) from Equ.(10), Equ.(22a)

becomes:

t

%RXX (t,t): 2-AR,, (t,t)—|—2-B ) eA‘t_fB.Ryyal,t),eA,t]dtl_i_eAA(t—to),mxo.my (t) ,

)

which is equivalent to:

%xl(t): 2-A-X(t)+2-B -y (1), (23)
where
x(t)=R, (t1), (23b)
t
yl(t):z-eA"-f B-R,, (t,t)-e*dt +2-e*"".m _.m(t). (23¢)

ty

Applying the analytic solution given by the integral Equ.(3) Sec(3.1.1) to the initial value
problem given by Equs.(23,22b), we obtain:

t
RXX (t,t) —=2.g2At f B. Y, (tz).esz-tzdtz +92. ez/.\.(t,tﬂ) R

)

(24

where:

t

t t, t
f B- Y, ('[2>672A‘t2dt2 = B? ff R vy (tptz)-efA'(t]Hz)dtldtz + B'fe_AA(tz_tU) ’ mxﬂ ’ my <t2>dt2
h T ¢}

(tt) t

)

(25)

Notice that g(t,,t,) is symmetric with respect to the diagonal t, =t,, ie.: g(t.t,)=9(t,.t),
therefore, the first integral of the right hand side of Equ.(25) can be written as:
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t

t t t
ff Bz .R vy (tljtz>.e—A-(Il+tz)dt1dt2 — %ff Bz ‘R vy (tl’tz)‘efA»(tﬁtz)dtldtz
h b

h Y

Combining Equ.(24) and (26), we re-obtain Equ.(19).

(26)

Finally, we shall present an alternative derivation of the one-time response auto-correlation
function R, (t,t). More precisely, Equ.(20) can be considered as non-linear RDE for the

stochastic process u(t;@)z(x(t;@))z. In this case, the initial value problem given by

Equs.(20a,b) becomes:

du(t;0)
dt
u(to):(xo)z.

=2 A-u(t;0)+2-B -(u(t;0)) - y(t;0),

The solution of the deterministic problem

%zZ-A-u(t)%—Z-B () (),

ut) = (%),
is given by the formula

2
t

u(t) :ie“‘- fz- B-e "u(t)dt, +2-e* - x,

f

Applying Equ.(29) on the sample functions of u(t;6), we obtain:

2
t

u(t;@):(x(t;&)f: ¥ At 2-eA"U-x()JrP/ﬂ2-B-e‘A"l-y(tl;e)dt1 =

S

t
t t
_ e2At g2, feA-tl -feA'tz.y(tl;e)'Y(t2;9>dtzdt1 +
t t
t

+2-e*% % (9)-B- f e My (t)dt, +e* ) (x,(6)).

)

Taking mean values in Equ.(30), we re-obtain Equ.(19).

3.2.3. Analytical solution of the moment problem in the long-time, statistical
equilibrium limit.

(27a)

(27b)

(28a)

(28b)

(29)

(30)
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In this section, we shall focus on the asymptotic (long-time) behavior of the linear RDE
given by Equ.(1) Sec(3.1.1). We shall consider the case that in the long-time the system
reaches a statistical equilibrium limit. To this end, we shall assume that A<O0, i.e. the
corresponding deterministic problem is asymptotically stable, and that the random input
y(t;6) is a wide sense stationary random process, i.e. the following properties hold true:

a)ym, (t): m, =steady <oo, Vt>t,, (1a)
bR, (t,s)<c>o, fort,s>t,, (1b)
R, (t,s)=R, (t+7,547), fort,s>t,7eR. (lc)

We shall first apply Equs.(1a-1c) to Equs.(3,9,15,18) Sec(3.2.1) to get the mean value of the

response M, (1), the two-time RE cross-correlation R Xy (t,s), the two-time response auto-
correlation function R, (t,s) in terms of R, (t,s), and the two-time response auto-
correlation function R, (t,s) in terms of R (t—s) for stationary random input Yy(t;0).

Performing elementary algebraic manipulations, we obtain:

B B Aft-t)) Aft-t))
mx(t):_xmy +Ke 'my_‘_e .mxu 5 (2’)

t

R,y (t,s) =€ f B-R,,(t,—s)-e "Vdt +-e"m, .m, |, (3)

)

t
R, (t,5) =€"B- f ny(s,tl)eA"‘dtl—%.mxo.my.eA‘<t+S>.(eA‘S—eA't°)+eA'(t+s_2't‘)>-RW0 (4)
t

t S

Rxx(t,s):Bz-eA'(s“’f e’“l-f‘Ryy(tz—tl)eA‘tZdt2 dt, +
t s - ()

Bm .(eA-(s—tO)+eA-(t—tU))+eA-(t+s—2.to)‘[R +2-E-m m ]
XoXo A X y

Let us now focus on the long-time asymptotic limit (S,t — oo ) of the moments of the linear
RDE given by Equs.(2-5) for finite time lag, i.e. |t - S| = |7'| <00.
Taking the limit t— oo of Equ.(2), we get that the asymptotic response mean value

o0

limm, (t)=m. is time invariant and equals:
t—oo
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y

me =~ Zom,|. ©)
A

Moreover, applying the limit S,t — oo for |t—s|:|7|<oo to Equs.(3-5), we get the

. . (OO)
asymptotic cross-correlation R\7’(t,s)

t

R (e)= tm B[R, (s)e | o
t—s=r1

f

the asymptotic response auto-correlation R}’ (t,s) in terms of R Xy (t,s)

t

RV (t,s)= lim |B-e™: f R, (s.t)e "dt |, (8a)

t—00,5—00
t—s=7

)

and the asymptotic response auto-correlation R{>*) (t, S) interms of R, (t - S) :

t s
R)((c))(o) (t,S) — B2 _ngsriooeA-(HS) -fe“‘ f R vy (Sl _t1>, g As dSl dtl ) (8b)
tos=r ) t

We shall now prove the following theorem:

Theorem 1: Let A<O0, if the linear RDE (Equ.(1) Sec(3.1.1)) is excited by a stationary
stochastic process, then, in the asymptotic limit that t,s — oo, both the asymptotic response-

00)

excitation cross-correlation Riy (t,s) and the asymptotic excitation auto-correlation

R(t,s) tend to become stationary. That is:

X

a) tlil}olny(t+7',s+7'>z RS (t+7.5+7)=R(t,s). )
b) tlimex<t+T,S+T>E R (t+7,54+7)=R(t,s). (10)
Proof:

a) From Equ.(3), we have:

t

ny <t—|—T,S+T) :eA-(t+T)'B'fRyy<tl,S>eA<(tl)dt1+eA-(t+Tlo>,m .m . (11)

Xo y
f

|
1
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We shall first calculate the integral |, .

Let t, =u+7 then dt, =du and t,—7 <u<t, then:

t t
|l(t,s):fRyy(u+T,s+r)-eA‘<“”>du:eA’T-fRyy(u+r,s+r)-eA'“du : (12)

-7 t-7
Therefore, invoking the stationarity hypothesis for y(t; &), we obtain:

t t

t
Il(t,s):eA'TfRyy(u,s)-eA‘”du:eA'T fRyy(u,s)-eA’“du+fRyy(u,s)-eA'“du . (13)

ty—7 ty—7 ty
Substituting |, (t, S) in Equ.(11) by Equ.(13), we obtain:

)

t
ny<t+T’S+T>ZeA-(t+T)'B. e fRyy<uas>'eA'udu+fRyy<U,$>'eA'udu

! (14)
Aft+r—1,)
+e -m, -mg,
or
ty t
R, (t+7,s+7)=e"" B-f R,, (us)-e"du+e™- B-fR sy (U,s)-e7*du
(15)
to—7 t
+ eA-(t+T—t0) m m
Xo y
Taking the limit t,S — oo in Equ.(15), we obtain:
t
R (t+7,s+7):111;2 eA"-B-fRyy(u,s)-eA'“du =R (t,3) (16)
t
b) (b) is proved in exactly the same way as (a) "

Corollary: Let A<0. Assuming that the linear RDE is excited by a stationary stochastic

process, then in the limiting case t,5S — oo

1. The response X(t; 9) is a wide sense stationary stochastic process.




3-14 | CHAPTER 3 Application of the RE theory to linear dynamical systems

2. The vector process XY(t;@):<X<t;9),y(t;0)) is a wide sense stationary stochastic

process.

In Chapter 5 (Section 5.3.1), it will be proved that the following asymptotic formulae hold
true:

oo
Jim R (1, t+w) :B-feA(“W)-Ryy(u)du. (17)
w = constant w

82 V =+ o0
Cm o RPL) = 2o [ R, me oy, (1)
]‘tlft;‘zzw V=—o0

3.2.4. Application to specific excitation functions.

In this section, we are going to implement the obtained formulae for the two-time RE cross-
correlation R, (t,s), the two-time response auto-correlation R, (t,s) and the one-time

response auto-correlation R (t,t) of the RDE given by Equ.(1)_Sec(3.1.1), for specific input
two-time auto-correlation functions R, (t,s). We will consider the cases that the stochastic

input is a low pass Gaussian Filter (IpGF), an Ornstein-Uhlenbeck (OU) or, alternatively, a
sifted OU (sOU) process.

3.2.4.a. Low-pass Gaussian filter (IpGF)

The low-pass Gaussian filter (IpGF) two-time auto-correlation function and the spectrum are
given by Equ.(1a) and Equ.(1b), respectively:

1 W’
R, (t,s)=0" ex (—at—s2 l1a), S, (w)=———-0%-exp|———|. (Ib
s (6:5) p(-a( ))() yy()z.m p4_a()
Parameter a controls the correlation time r;"ynl of the excitation processes which is given by
Equ.(1c)
corr 1 > oo
e :?f ICEN(wldu= Jz/(2va). (1c)
0

y

" In general there are several ways to define the correlation time see e.g. (Hristopoulos & Zucovi¢ 2011) for the
a definition of the correlation time which also applies to covariance models having more than two parameters.
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corr

yy decreases with a. The limiting values of 77" with

In fact, as illustrated in Fig.1a, 7 vy

=o0, limz{"=0. In Fig.1b-1¢, the IpGF two-time auto-

respect to a are: limz.o' vy
a—00

a—0 vy

correlation function and spectrum are plotted for various values of the auto-correlation time,
ie. r;‘;," =0.93,0.51,0.33, corresponding to ¢° =1 and a=0.9, 3, 7, respectively. We can
corr

observe that, when Tyy

decreases, the excitation auto-correlation R, (t,s) tends to the delta

correlated one, whereas the excitation spectrum is flattened.

a. IpGF correlation time VS parameter o
4 -
3t
—
O
(]
N2
2+
=
o >
O >
53
1 L
O I I I I I I I ]
0 0.5 1 1.5 2 2.5 3 3.5 4
(04
b. , c.
Case | : Ryy(t-s) when y(t;0) is an IpGF process Case | : Syy(w)
1-
0.3r -,
corr _, s
ool AR e Tyy =0.93 ::. .......... T ;;’" =0.93
corr _ Y
----- Ty =0.51 ] mmmmm £ OO 20 51
08 [ %OMT=g33 025 iin _
W T Ty 038
0.7-
0.2r
0.6+
& 05t o 0.15]
0.4
0.3l 0.1-
0.2r
0.05-
0.1-
0 . 1
-4 -3 2 2 3 4 10

Figure 1:a. The correlation time 7 ;"; of the IpGF stochastic excitation against parameter a.b.The IpGF

auto-correlation function R | (t, S) .c. The IpGF spectrum S | (o.)) .

We shall obtain analytic formulae of the two-time response auto-correlation and response -
excitation cross-correlation functions in the transient and in the long-time statistical
equilibrium limit. These results will be illustrated by an example case (Case I) that we are
going to use throughout this section when the excitation is a IpGF function. More precisely,
we are going to show results for the 3 cases of correlation time of the IpGF excitation that we

have just mentioned (7" = 0.93,0.51,0.33 and for o° =1) when the parameters of the RDE
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given by Equ.(1) Sec(3.1.1) are A=—1, B=1. Moreover, in this example case we willm
assume that m, (t) =0and m = 0, then from Equ.(3) Sec(3.2.1) it is straightforward to find

that m, (t)=0.

In what follows, use will be made of the following integration formulae that are derived in
Appendix 1 (see Equs.(1,8) Sec(A.1)):

: ) r
S A R i '

4-a] 24a

and

t

;I3(t,s):fe‘2"‘"‘-erf [Ja-(s—tl)Jrﬁ]dtl =

)

+ez4A.s[erf [\/g'<t_5)+%]—erf [JE-(tO i ]]

Applying integration formula (2) in Equ.(3) Sec(3.2.3), we find the transient two-time RE
cross-correlation function for the IpGF excitation R, (t, S) :

2
R,,(ts)= B0 \/_e4a><
2/a
A A (4a)
x|exp(A-(t—s))- |—erf [Va-(t, — s +—]+erf[\/§-t—s +—] .
p((t-s) |- erf [V, )+ -9+
Taking the limit S —t to Equ.(4a), we obtain the one—time RE correlation function:
B-o 7 [ A ] [ ]
R,, (t,t e4a —erf[Ja-(t, —t)+ + erf 4b
0= B2 et Vot )+ ] et [ o

In Fig.2, results obtained by using Equ.(4a) and Equ.(4b) are plotted for the considered Case
L. In Fig.2a, the one-time RE cross-correlation function R, (t,t) is plotted against the actual

time t. As expected, the more correlated excitation results in more correlated RE cross-
correlation function. It is also interesting to notice that in the most correlated case

COIT

=093, R, ( ) becomes time invariant almost a second latter than the less correlated
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corr __

yy
against the response time t for fixed excitation time S=1. Notice that in all the considered
cases there is a correlation of the response with future values of the excitation. This is verified

by the non-zero values of R, (t,s) for t <s=1. The latter feature is a significant difference

case 7 0.33. In Fig.2b, the transient, two-time, RE cross-correlation R Xy (t,s) is plotted

of the examined correlation structure from the delta-correlated one, and we can see that for
=0.33) this feature tends to vanish. As expected, the correlation

corr

yy
of the response with the past values of the excitation lasts for a larger time interval, having a
maximum value for t —s= 0.2 sec for the less correlated case and for t —s~ 0.5 sec for the
more correlated case. The response after t =~ 6 de-correlates with the excitation at S=1.

the less correlated case (7

a. Case | : &y(i,t) b. Case | : ny(t,s) , s = 1sec

A D corr _
., T oo =0.93

0.6+ 0.6 -"~_ _____ corr _
: kS Ty 091

corr _
Tyy 0.33

Xy

.......... corr _,
Tyy 0.93

_____ corr _
0.1 Ty 051

corr _
Tyy =0.33

0 I I I I I | | )
0 1 2 3 4 5 6 7 8

Figure 2: a. The transient diagonal (one-time) RE cross-correlation function of Case I. b. The transient (two-times)

RE cross-correlation function of Case I against the response time t, for excitation time S =1 sec.

a. b.
Case | : ny(t,s) ,t=10.5sec Case | : ny(t,s) ,t=6sec
0.81
.......... CorT corr _,
Tyy 093 || e T yyr =0.93 ]
_____ Corr =0 51 o7y corr _, P
Tyy R N Tyy =0.51 4 5
corr _, corr _,
Tyy 0.33 06| — 1 v =0.33
0.5-
>
o mi‘ 0.4+
0.3-
0.2-
0.1-
, e . . ) 0 "
2 25 3 3.5 4 0 1 8

S S
Figure 3: a. The transient two-time RE cross-correlation function of Case I against the rexcitation time S, for
excitation time t = 0.5 sec. b. The same for excitation time t =6 sec

In Fig.3 the transient, two-time RE cross-correlation function is plotted against the excitation
time S for fixed response time t =0.5 sec (Fig.3a) and t =6 (Fig.3b), when the system has
already reached the long-time statistical equilibrium state. The comments reported in relation
to Fig.2b hold true in this case as well.
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Let us now proceed to the calculation of the transient two-time response auto-correlation
for the IpGF excitation using the obtained results that are summarized in Equ.(5)
Sec(3.2.3), that we repeat here for convenience:

t S
R« (t’s> =B eA'<S+"f " f Ryy (tz,t1>eiA{2 dt, |dt, —
b t ®)

B A(s—ty) A(t—ty) A(t+s—21) B
—K-m -m -(e +e )+e IR +2-K-an-my ,

XoXo

Assuming thatR | (t,s) is given by Equ.(1a), we apply subsequently the integration formulae
(2), (3) to Equ.(5), to obtain:

Jr A?
R, (t,s)=B*.0>- -exp|—|x
o (1:8) o a p
t
x eA‘(”S).fe“"'- —erf [«/E(to —t1)+i]+erf Ja'(s—tl)Jri] dt, —
) 2-Ja 2-Ja
_%'mxﬂ 'my'(eA-(s—tg) +eA-(ttg))+eA-(t+s24to),[RXOXO +2'%'mx0 ‘my]
\/; 2
=B 0% ~—-exp| — |x (e 1, (t,5)— e (Lt
T oxp| (e ) 1 1) .
B A1) AAtt)) | aAlths—2t)
_Kmxomy(e —¢€ )+e | .RX()XO,
where
eA-(t+s).|3(t,S):_L‘ eA(s—t).erf [ﬁ-(s—t)—f— A ]_eA(tJrSZ.A-tn)_erf [ﬁ_(s_to)_’_ A ]+
2A 2.Ja 2.\a
1 M) | arf @.(t_ 5) + i] —erf [Jg.(to _ s) + A , (6b)
2\/a 2/a
and
Alt+s) o 1 A(t+s) —2.At A —2.At, A
e Lttt ) =———e e terf |Va-(t, —t +—]—e erf ]+
1) ==t e et (Va1 —

g A [ erf [\/a-(t— t,) + %] —erf [ %] ]]
:—L-[e“'(”)-erf [ﬁ'(to—t)ﬂL A ]+

2A 2-\/5
+eA-(t+s—2-A-tu)[erf [\/5.('[_ t,) + %]—2-erf [ i]]] (6¢0)

24/a
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After some algebraic manipulations to Equ. (6), we obtain the following formula for the
transient, two-time auto correlation function of the response:

R (t,s)= Jr [ A’

4
x[ eA‘(S“)-[erf [\/5-(5 —t)+ 2‘35
_phltrs2n) [erf [\/5-(5 —t,)+

BZ

__0' .

X

}—erf [\/5-(t0—t)Jr

o
%J—erf [ﬁ-(to —s)+

. (eA'(Sfto) + eA'(t7t0>) _|_ eA'(H’S*z'[()) .

}Jrerf [\/E-(t— t,) +

et [ erf [\/5-('[— s) +

B

(7a)

As expected, R, (t,s) is symmetric function of the two time arguments t,s. Taking the limit

s —t to Equ.(7a), we obtain the one—time (diagonal) response auto-correlation function:

|

_e2'A<(t*t0> [erf [\/5 . (t _t0>

wﬂ]*
JH | 2]

Altty) B

B (t—
_K.mxo .my .eA(t tO) +

(7b)

In Figs.4-5, results obtained by the use of Equs.(7a,7b) are plotted for Case 1. In Fig.4, the
diagonal response auto-correlation functions R, (t,t) is plotted against the actual time t for

initial value R, , =0 (Fig.4a) and R, ,

=1 (Fig.4b). Again as expected the more correlated

excitation results in a more correlated response auto-correlation function. In Fig.5, the
transient, two-time, auto-correlation function is plotted against the response time t for fixed

excitation time S=1 and for two different initial values R )
(Fig.5Db).

xwx, =0 (Fig.5a) and R, .

=1
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a b.
° Casel: R (tt), R ;=0 Casel: R _(tt), R =1
0.71 1
T ;3" =0.93
06r corr _
----- Tyy =0.51
corr _
osl Tyy 0.33
0.4}
0.3
0.21 , corr _,
:_;l ---------- Tyy =0.93) o4f NNl
a4 | T ;3" =0.51
corr _
Tyy 0.33
0 L I I L L L L ] 0.2 I I I I I I I )
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

Figure 4: a.b The transient diagonal (one-time) response auto-correlation function of Case I. In a. the initial value of

the response auto-correlation function RX0 X, = 0,inb. R oy = 1.

a. b.

Casel:R (ts), Ry=0,5=1 Case l: R, (ts), Ry=15s=1
041 0.5

e . corr _
.......... T ;3" =0.93 0451 ¢ 3 Tyy 0.93

: corr _,
_____ corr _, —————q =0.51
Ty 051 0.4 vy

corr _,
Tyy 0.33

corr -
S =0.33
yy 0.35

0.3
o 0.25-
0.2
0.151

0.1

0.05

Figure 5:a.,b.: The transient (two-time) RE cross-correlation function of Case I against the response time t, for fixed

excitation time S = 1sec. In a. the initial value of the response auto-correlation function RX0 X, = 0,inb RX0 X, = 1.

We shall now study the long-time statistical equilibrium limit of the two-time response and
RE cross-correlation functions of the RDE given by Equ.(1) Sec(3.1.1) under lpGF
excitation.

In fact, applying the integration formula (2) in Equ. (7) Sec.(3.2.3) for the long-time limit of
the two-time RE cross-correlation function under excitation that has IpGF auto-correlation
function (given by Equ.(1a)), we obtain:

B-o’ -\ 4Af2
————-e*ax
2\/a

x lim exp(A-(t—s))- |—erf|Ja(t, —s)+%]+erf [Ja-(t—s)+i]

S—00

RLy (t.s)=
®
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Assuming that 7 =t — s remains finite, the following asymptotic formulae hold true:

. A )
}Ln;[@.(to —s)+m] = —00 = lim erf (u(s,to)) = -1, 9)
and

. A ‘

t—s=r1 t—s=r1

)

Using Equ.(9) and Equ.(10), Equ.(8) becomes:

iz+A (t— s)] [erf [ﬁ'(t—s) + 2.35]+1] - (11)

RY (t—s) = B-o’- -exp

Jx
2Ja

As expected, in the limiting case the RE cross-correlation does not depend on the initial time
t,. Moreover, R(fj) (t—S) is a non-symmetric function, that is, the degree of correlation

depends on whether the time lag 7 =t —s is positive or negative.

To find the long-time limit of the response auto-correlation function R{;” (t,s), we con-

sider the limit s,t — oo of Equ.(7a), for finite time lag |t — S| = |’7'| <00, i.e:

R““(t,s)__B_zaz.z\/\/—_ [A2 y
tllig [[eA-<st).[erf [x/a.(s—t)+2.f‘/g]+erf [JE.(O +2 'f\/a]]Jr

t—-s=r71

+eA4<t+sz.AArU>[.erf [\E.(s—to)+ﬁ} erf [\F (t—t )+%H (12)
+eA'(‘S)-[erf[\/g-(t—S)wL%}—erf[f (t, —s)+% ]

The following asymptotic formulae hold true:

limu(t,.t) = 11m[JE (t—t,) +

t—oo

%] =00 = lim erf (u(s.t,)) = 1.

(13a)

limu(s.t,) = lim

S—00 S—00

[\/5-(t0 —s)+i] = —oo = limerf (u(s.t))) = —1. (13b)

S—00
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lim u(s,t) = lim [\E-(t —s) +i] = lim erf (u(s,t)) = erf [\E-T+i] (13c)

t—oo t—oo / t—oo /
S—00 S—00 2 a S—00 2 a
t—s=71 t—s=r71 t—s=1

Using Equs.(13), Equ.(12) becomes:

B>.o? r [A2 ]X

R b8) == 20 3

[eA(St),erf [\/g_(s_t)Jrz"f‘/a]JreA-(ts)-[erf [Jg,(t_s)Jr%]H ]JreA.(st)]

9

[eAxst).[erf [\/g,(s_tH

4+ [ erf [\/5-(t— s) + m]ﬂ

)

(14)

That is, for A<O0,

R (-9) =
= %E{i—z; e“AT:l X [eA‘(“) ~[erf [\/5'(5 —t)+

+ete) [erf [\/5- (t—s)+

A ]+1
2-Ja
(15)
(t—s) (Fig.6a) and the long-time response

el

In Fig.6, the long-time RE cross-correlation R

()
Xy
auto-correlation function R(Y (t — S) (Fig.6b) are plotted for Case .

a b.
’ Casel:R_(ts) Casel:R_(ts)
xy
0.8- 0.7~
.......... corr —,
o R T ;?" =0.93 06 Tyy 0.93
Nas F - corr _,
IR T ;?" =0.63 Tyy 0.63
(04 | o P e
0.5F
0.4
o 04 o
0.3-
0.3r
0.2-
0.2-
01F 0.1r
0 L It bt Iy 0
-8 -6 -4 -2 6 8 -8 6 6 8

Figure 6: a.The long time RE cross-correlation function R(:Cy) (t — s) , b. The long time response auto-correlation

function R(:) (t - S) , of Case I plotted against the time lag t — s
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Comparing Figs.1a, 6a and 6b, an interesting feature emerges: for t—s < 0, the long-time RE
cross-correlation function R(fj’ (t — S) resembles more the excitation auto-correlation function,

whereas for t—s > 0 resembles the response auto-correlation function.

In Appendix 2, the formulae for the long-time statistical equilibrium RE cross-correlation
function R}’ (t—s) and the response auto-correlation function R{;’(t—s) are re-obtained

()
XX
treating the same problem in the frequency domain. In fact, using the transfer function

B
ny (w):—A

- of the linear RDE under stochastic excitation with the IpGF spectrum
l-w—

S,, (w). we find that its stationary RE spectrumS, (w) and stationary response spectrum

S,,(w) are given by

S, (w)=0"- —B-A 1 -exp W +i.o?- B _w -exp W —
Y 2'\/7T'a w2+A2 4.-a 2.\/71—.3_ w2—|-A2 4.a (16)
=Gy (w)+1-Qy (w),
_| B |2_ 1 L2, . w2
SXX(W)_|i-w—A| Py o -exp 1al (17)

from which, applying the inverse Fourier transform, we can re-obtain Equs.(11) and (15)

In Figs.7-8, Equs.(16),(17) are used to plot the stationary RE cross-spectrum S, (w) (Fig.7)
and stationary response auto-spectrum S, (w) (Fig.8) for Case I. In contrast to the auto-

spectrum, cross-spectrum is a complex function. In Fig.7 the co-spectrum
G, (w) = Re{S, (@)} (Fig.7a) and the (quadrature) quad-spectrum Q (@) = Im{S, (@)}
(Fig.7b) are plotted separately.

Case | : ny(w) Case | : Qxy(w)
03 015

“r A | cor—go3| | e corr _
Tyy 0.93 - Tyy 0.93

corr _, corr _,
_____ T =0.51 01l T =0.51

0.25+ Zin S Zgrr

— Ty =0.33 ----- Tyy =0.33

0.2} 005y

>
o 015
0.1- -0.05+

0.05-

Figure 7: The real and the imaginary part of the RE spectrum S (@) of Case I in the long time statistical equilibrium

state. a. The co-spectrum G, (@) = Re{S (@)}, b. The quad-spectrum Q, (») = Im{S (w)}
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Case | : Sxx(w)

03r corr _
P T =0.93
HE S . £ 60T =0 519
025¢ grr
A —— 15T =0.33

0.2
x
o 0.15}
01}

0.05+

Figure 8: The Response spectrum S (@) for the IpGF excitation in the long time statistical equilibrium state

3.2.4.b. Ornstein-Uhlenbeck (OU) excitation

We shall now implement the formulae obtained in Sec.(3.2.1) for the two-time RE moments
to another case study where the stochastic excitation of the RDE given by Equ.(1) Sec(3.1.1).
is a sifted or centered Ornstein-Uhlenbeck(OU) random function. The formulae that we are
going to obtain will be for the more general case that the excitation is a shifted Ornstein-
Uhlenbeck process (sOU). The auto-correlation function of the sOU process is given by

Equ.(18a) and the spectrum of the sOU by Equ.(18b)

R,, (t,s) = 02-exp(—a-|t—s|)-cos<w0-(t—s)) , (18a)

S. () = o a + a (18b)
y 27 |a’+ (o, + @)*  a’+ (o, — o) |

Parameters a and w, control the correlation time 77" of the excitation processes, which is

given by Equ.(18c):
— ar/(2w,) 2
a e (O
corr
T = + : , @, >0. (18c)
yy a2 4 a)g 1 — ef ar/(wy) a2 + a)g 0
a.
sOU correlation time VS parameter ¢, for various g
1.5¢
R
[}
K2
g3
o 0.5¢
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b- Case Il Ryy(t-s) when y(t;0) is an sOU process w0y = 5 C. Case ll : Syy(w)
1r 0.25-
.......... corr _, ) 5| eeevanenn £ €O =
08l Tyy 0.93 Tyy 0.93
_____ corr e _cCOrr_
o Tyy 0.51 02l i . Tyy 0.51
or corr _, ii HE corr _
Tyy 0.33 i i Tyy 0.33

0.4

0.2-

Yy

0

-0.2F

04l

-0.6

-0.8
-8

corr

Figure 9: a. The correlation time 7~ of the sOU stochastic excitation against parameter a and for various values

of the central spectral frequency w, . b. The sOU input correlation function R | (t, s) and c. the sOU spectrum
S, (w) for the study Case I1

corr

In fact, as we can see in Fig.9 7,y

decreases with a and increases with w,. The limiting

corr

yy =00, lim 78" =0 and lim 77" =0.

yy

a—00 ®)—00 yy

values of 7" with respect to a, w, are limz
0

a—
When the central frequency w, of the sOU process (Equ.(18a)) is equal to zero, we get the
centered Ornstein-Uhlenbeck (cOU) process. This is generally known as the Ornstein-
Uhlenbeck (OU) process, and that is how it is going to be referred hereafter. More precisely,

the OU auto-correlation function is given by Equ.(19a), the OU spectrum by Equ.(19b) and
the OU correlation time by Equ.(19c¢):

2

Ryy<t’s>:Uz'exp<—a'|t—5|) 5 Syy(w) = 0-7

a
, " =1/a.
a’+1 vy

(19a,b,c)

The OU excitation is a very well-studied stochastic process, being also the solution of the It6
SDE.

y(t;0) = —ay(t;0) + £(t;0), (20)

where £(t;60) is a Gaussian with noise, with o 2 = 2a 0'5. Following the filtering approach

((Benfratello & Muscolino 1999),(Francescutto & Naito 2004; Weiss & van de Beld 2007)(Di
Paola & Floris 2008)) it is possible to consider Equ.(20) along with Equ.(1) Sec.(3.1.1) as a
system of two It6 Stochastic Differential Equations (SDEs) for the stochastic process X(t;6)

and y(t;6), and derive moment equations from these (Soong & Grigoriu 1993). Hereafter,
this approach will be referred to as the Ité/filtering approach.
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a b.
Case lll : Ryy(t-s) when y(t;0) is an OU process Case lll : Syy(uu)
10 0.35~
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ol ”‘ “\ | N S e S=033
: | i '
HHh to
0.6 t “ I [
M 02 .
I
n; 0.5 i ‘\‘ \ wi ‘\ \
T 015} AN
047 N . ‘// \l
T ) I
U ¢
0.3y (' / \‘ ‘\ “ \‘ 0.1 / ‘/VV’\\\\
[ [ /i/ \&
0.2 | AN // \\\
P AN 0.05} 74 o
0.1} o // \ N ///// p N
0 R S L N S 0 ?/If:é—?f:/{/ 5 L \T' e
-8 6 4 2 0 2 4 6 8  -15 -10 - 0 5 10 15
t-s w
Figure 10:a.The OU correlation function R ”y (t, s) and the OU spectrum SW (w) (b.) for Case III.

We shall now proceed to the implementation of the formulae obtained in Section 3.2.1.
Results will be illustrated for two cases. In Case II, all parameters are same as in case I
except from the stochastic input that is a sOU process, with a = 0.68,1.26,2, w=35,

corr

Tyy = 0.93, 0.51, 0.33 and all other parameters are as in case 1. In Case III, the stochastic

input is an OU process with a = 1.07,1.95,3 and correlation time Tf,"y“ =0.93,0.51,0.33. All

other paramet-ers are as in Case I. The values of parameter a have been chosen to be such
that Case I, Case II and Case III have the same correlation time, so as to be able to compare

cases. The auto-correlation function R, (t,s) and the spectrum S, (@) for Cases II and I1I
are plotted in Fig.9, Fig.10 respectively.

Considering that the two-time input auto-correlation is given by Equ.(19a), from Equ.(3)
Sec(3.2.2) we have that the transient two-time RE cross-correlation function R, (t,s) for
the sOU excitation is given by the formula:

t

R,,(t,s)=e* B¢’ -fexp(—a- ‘tl — S‘)-cos(wo (t,—s))-e Mudt, +e* % m, -m,. 21)

f

Due to the presence of the absolute value of the time lag in Equ.(21), two separate cases have
to be considered, i.e.: t > s, the response follows the excitation and t <'S, the response is in
advance of the excitation. In the first case (t > s), we obtain:

S

R,, <t, S)LZS _rt9) gL ,2. fe(aA)-(tIS) .COS <w0 '<t1 — 3)) dt, +

t()

t

+fe(a+A)'(tls) . cos (wo ~<t1 —S)) dt, _"_eAA(t—[o) ‘m, -m,- (22)

S
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Applying the integration formula given by Equ.(1) App.(3) to Equ.(22), we have:
ny<t,5> =B-o’- a_zA Ata oM

s (a—A) 4w, (A+a) + w

pAlt-to)-alst) A (
————|(a—A)cos(w, - (t, —S))+w, -sin{w,-(t, —S))|+
o e el s sl s |
e7a~(tfs)
+————|—(A+a)-cos(w, (t—S) ) + w,-sin(w-(t—5 )|+
+eM W m m,.
In the second case (t <S), Equ.(21) takes the form:
t
R,, (t,S) L= B.g2. |t _fe(aA)-(tls) .COS (Wo -t — S)) dt,| + pht) m, -m, . (24a)
t
Applying Equ.(1) App(3) to Equ.(24a), we obtain:
, ea'(t—s)
R,,(t,s) =B-0o"||—————((@—A)-cos(w(t—5s)) + w-sin(w-(t—5))|—
y( >t<s g (a—A)2 + w2 (( ) ( < )) ( ( )))
e A(t—ty)—a(s—ty)
———— ((@— A)-cos (w-(t, —S)) + w-sin{w-(t,—S + 24b
AT ((@=A)-cos (w(t, —5)) (w(t,—s))) (24b)
+e" W m m,.

Comparing Equ.(23) with Equ.(24b), we notice that the terms that depend on the initial

conditions are the same. Hereafter,

we shall denote these common terms with

TRXy<t,S,t0,mXO), whereas those that are independent from the initial conditions will be

denoted by SRXy(t,s)‘Dsand Sny<t>5)L<s

in ny<t,s)‘t25and ny(t,s)‘Ks, respectively.

Then, Equs. (23,24b) can be rewritten in the more compact form that will simplify the

calculations for the two-time response auto-correlation functionR ,, (t,5), i.e.:
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Ry (Ls)| _ =SR,,(ts)| _ +TR,, (t.s.t,m, ), (25a)
R,y (L.5) .= SR,, (t,s)\tzs +TR,,, (t.s.t,.m, ), (25b)
where:

eA'(t*to)*a'(S*to)

TR,, (t,s,to,mXO): -B-o?- -[(a— A)cos(w0 (t, —s))+wo -sin(wo-(to —S))]+

(Eil—/—\)2 +w;
+eMm, om,, (26a)
a-(t-s)
Sny<t’S) t<s B-o’ 'm'((a— A)'COS(W'(t—S)> + w'sin(w(t—s ))), (26b)
SR, (t:5)),, =B-0"- cak lan. KN LY HE
) (@=AF +w)’) (A+a) + («))
—a(t-s)
+—° - ~[—(A+a)-cos(wo-<t—s)) - wo-sin(wo-<t—s))} . (260)

(A+a)” + (w,)

The obtained results given by Equs.(25,26) are illustrated in Figs.11-14. The description and
general remarks made in Figs. 2-3 for Case I apply also in Figs.11-12 for Case II and Figs.
13-14 for Case IIl. Moreover, in Figs.11-12 that the one-time and two-time RE cross-
correlation functions are plotted for the sOU random input (Case II) that the excitation has a
non-zero central frequency, @, =5, we notice that the frequency of both the one- and two-

time RE cross-correlation functions increase with the correlation time of the excitation. In
Figs.13-14 results for the case that the excitation is an OU are plotted. These are given by
Equs.(25-26) for w,=0. The obtained results are indicated with diamond marker (¢), in

order to distinguish these from the case that the excitation is a IpGF random function (Case I)
(are also illustrated in Figs.13-14) for comparison reasons. The most important finding here is

that the two-time RE moments are significantly affected by the shape of the input function
corr

(IpGF vs OU, see Figs.(1,10)), especially for the more correlated case 7" = 0.93, despite

corr
Tyy

obtained under IpGF random input is always higher than the response auto-correlation
obtained under OU input. Around t—s =0 the difference is as high as 15%. Moreover, in all
cases the response stays correlated with the input for more time, when the stochastic input is
an OU(Case III in figures) process than when it is a ]pGF(Case I in figures).

the fact that all other parameters (0)2,, ) are the same. The response auto-correlation
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Case ll: R, (t.1) Casell:R, (ts), s = 1sec

.......... corr _, evevaann - COIT
Tyy =093 Tyy 0.93

_____ corr e _COIT _
Ty, 051 Ty =0.51

corr _, corr _,
Tyy —0.33 Tyy =033

Figure 11: a. The transient diagonal (one-time) RE cross-correlation function of Case II. b. The transient (two-times)

RE correlation function of Case II against the response time t , for excitation time S =1 sec.
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Figure 12: a. The transient two-time RE cross-correlation function of Case II against the excitation time s, for
excitation time t =1 sec. b. The same for excitation time t = 6 sec
a. Case lll : ny(t,l) b Case lll : ny(t,s) , s = 1sec
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Figure 13: The same as in Fig.11 for Case III (lines with diamond markers). Same results for Case I are also
depicted (lines with no markers)
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Case lll : ny(t,s) ,t=1sec b Case lll : ny(t,s) ,t=6sec
0.71 0.8
Corr —_naQ | e corr _,
e 7 00 =0.93 i e 00T =0.93
o6r corr g 54 07r 2 e L GO g Bg
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Figure 14: The same as in Fig.12 for Case III (lines with diamond markers). Same results for Case I are also depicted
(lines with no markers)

Proceeding now to the calculation of the transient two-time response auto-correlation
R,,(t,s), for the sOU excitation using Equ.(4)_Sec(3.2.3), we have:

t

RXX(t,s):eA"-B-fRXy(s,tl)e‘A“'dtl+

t

27)
_X' m, -m, - pAltrs—) | (e—As _e M ) + eA~(t+572-to) . Rxoxo )

Since R,,(t,s) is a function of R, (s,t) we shall calculate separately R,, (t,s) for t <s and
t >s. More precisely, from Equs.(25,27) we obtain:

t t

t<s - eA.t ’ B.fSR Xy (S’tl >‘ s>t .eiA'tldtl +eA't . B 'fTR Xy <Satl)t07 mxﬂ )- eiA'tldtl
b d (28a)
_X. m, -m, - pAts—t) (efA-s _e M ) + ehirs=24) p

Ry (t,5)

Xo%o >

s t
Rxx(t,s) t>5:B'eA"-fSny(satl)LNl'e_A'tldt1+B'9A‘t-fSny<5»t1>L<t e Mt +
t, s

t

+B-eA“-fTRXy(s,tl,to,mXO)-eA"'dt1 — (28b)

f

_ 2. . CaAtts—t) [LA—As _ 4—Al, A{t+s—21))
LM, m, e (e —e*)+e Ry, -

where:
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SR (S tl) — B.o2. 2.a'<(a2_A2)+w2) PG
Xy \™? s>t _Az 2\ A 5 )
(=AY +7){(A+a) + o) (292)
—a-(s—t)
(A—eka)z—+ wé-<_(A+a).cos(w0.(s—tl)) + wo'Sin(wO-<5—t, ))) ,
a-(s—t)
SR, (s.t)[, , =B-o’ 'm'((a—‘\)‘cos(w'@—tl)) T wesin(w(s—t,))),
(29b)
(s—t)—a(ti—t)
TR, (88,8, ) = B~ S (a Aoos(i (1, 1) +
0 (a—A) +w (29¢)

+w, -sin <w0.(t0 —t, ))) —I—eA‘(S"tO).mXn -m, |.

All integrals appearing in Equs.(28a,b) are computed in Appendix 3. Combining Equs.(28a)
and Equs.(5,7) App(3), we obtain:

B?.o?

I
(a-Af +w’)-((A+a)" + w?)

eA-(s—t) o eA(tJrs)szt0 )

Rxx(t’s>|t<s_( A
FEH. (@~ A+ ()7 00wy (1 5)) 22w, (- 9)) |+
MR (@A) = (w,)°)- 0w, (—t)) 2w, -assin(w, - (s—t))+ (30)

fehsatH@aA,, {((a2 - AZ)—(WO)Z)-cos(WO(t—to))—z-wo.a-sin(wo(t—to))}—

_e AA(t+s—2»t0).((a2 _ Az) o (wo)z)}_%'e/x(ws—to) . mx(, _my _(efm _I_e—As _ 2.e—A~10)+eAA(t+sz.t0) ‘R

XoXo *

Combining Equ.(28b) and Equs.(7,8,10) App.(3) we get:

az_Az)+w2)
A

_ B?.o? o _<e
s ((a—A)zthz).((AjLa)2 + wz)

+e 29 [(—(@ — A%) +(w,)")-cos (w, (t — ) — 2w, -a-sin (w- (s 1))]

A(t—s)

e

Rxx (t, S) A(tts)-2At, ) a ((

e THHERY (@ — A) = (w,)?)- cos (w, (t— 1)) = 2-w, -a-sin (w, (t—t,)) | -

—e A-('H*sz-to). ((aZ . AZ) - (wo)Z)] _% eA‘<H’37[0) . mxo . my i (e—A.t + e—A-S o 2 e—A«t0)+ eA'(t+572't0) . R

L phtast@-AY ,K(az _AY —(w0)2)~cos<w0 (t, —s)>—2-w0 . a~sin<w0 (s _to)>}+ (30b)

XoXo *

Comparing Equs.(30a), (30b) we see that as expected R, (t,5) L<s =R, (s,t)

s>t
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Moreover, for the response auto-correlation R, (t,t) on the diagonal, i.e. for S —t, we have

that R, (tt) =R, (tt)| =R, (tt)| _,thatis:

R, (tL.t)= . B0 . X
(2= A +w)-(A+a)" + o)
% _(l_eZA.(ttn))a-((a —AA )+w )+((_(a2 —A2)+(w0)2)+ 31)
+2.e @A -(((a2 — AT = (wy)?)-cos (w, - (t— 1))~ 2wa-sin (w, - (t —to))>—
e 2‘A'(t*t0)-((a2 _ Az) . (wo)z)]__,mxo -m, .e”lt) ,(2.e—A-t _2.e—Al<))_|_e2AA.(t—tg) . RXOXO_

The one- and two-time response auto-correlation functions, R, (t,t) and R, (t,9),

respectively, of Case II as calculated by the use of Equs.(30,31) are illustrated in Fig.(15). In
Fig.(16), results for the Case study III are illustrated together with the results from case I, for

comparison réasons.
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0.1

Case Il : Rxx(t,s) s Rxo =0.05,t = 1sec

0.1-

corr _,
Tyy 0.93

corr _
=0.51
Tyy 0.5

corr _,
Tyy 0.33

corr _
Tyy 0.33

corr _,
Tyy 0.93

corr _,
Tyy =0.51

-----------
. e ——————————————————

XX

0.04 -
0 0.02O

Figure 15: a. The transient diagonal (one-time) response correlation function of Case II. b. The transient (two-time) RE
cross-correlation function of Case II against the response time s, for fixed excitation time t = 1sec . The initial value

of the response correlation function R Yoxo = 0.05,
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Figure 16: The same as in Fig.15 for Case III (lines with diamond markers). Same results for Case I are also depicted
(lines with no markers)

Having found the transient two-time moments for the random initial value problem given by
Equ.(1)_Sec(3.1.1) for a sOU random input, it is straightforward to find the long-time limits
of the two-time response-excitation cross-correlation function R(”(t,s) and the two-time

y
(o0)

o (t,8). In fact, considering the limits S,t — oo and for

response auto-correlation function R

finite time lag |t—S|=|7‘|<OO in Equs. (25b), (25a), (30b) and (30a), respectively, we

have:
‘ . —A A+a (t
R(XOC) t,S == hm RX t,S :B 2. a —|— .eA(t 5)+
2 )‘tzs P /{ )“23 7 (a—A) +w? (A+a) + &}
t—-s=r (32)
e ((Ata)cos(i(t=5) + wysinfart—5))
+——————(A+2a)-cos(w, (t—S)) + w,-sin{w-(t—5)]]|,
(A+a)’ + o ’ ’
RE) <t,s)‘t<S = }l{}.? R,,(ts) =
t—s=r71 a.([ S) (33)
= B-az-;- ((a—A)-cos<w-(t—S)) - w-sin(w-(t—s)))
(@A + o |
U [ AP | . —
ts tooe t<s ((a—A) +w2)-((A+a) + wz)
t—s=r1
x| —gAt a~((a2 _ Az) +w2) _
A
(34)

—e*( 9 (@ = A) = (w,)")-cos(w, - (t=3)) + 2-w,-a-sin(w,-(t—9))],
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B*.o’
= X

= (@AY +w?)((A+a)” + o)

a-((@ - A" +w?)
A

x| —e*® —g ) -[(—(al2 =A%)+ (w,)?)-cos (w, (t—s))— (35)
~2-a-w,-sin(w (t—s))]|

Combining Equ.(34) and Equ.(35) we have

BZ '0_2 y _eA-‘tfs‘ a((a2 —A2)+w2>

((a=A) +w?)-((A+a)" + w?) A (36)

e R+ P)-cos( 5]+ 22 sin 5.

RC (t,5) =

(c0)
Xy

function R}’ (t,s) for Case Study II as computed by Equs.(32,33) and Equ.(35) respectively

The long-time RE cross-correlation function R (t, S) and response auto-correlation

are plotted in Fig.17.
a b
Casell: R (t-s) ) Case Il : R_(t-s)
0.25- 01-
.......... corr erreeenee o GO =
0l Tyy 0.93 Tyy 0.93
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0.15 —— 1t {o7=033 I — 1 97=0.33

Figure 17: a.The long time RE correlation funcrion R(fy) (t — s) , b. The long time response correlation function

R™ (t—s), of Case II plotted against the time lag t —s

Same results for the Case III are illustrated in Fig.18. In fact, in Fig.18 results are also
compared with Case I that the excitation is a IpGF process. Differences between the two
Cases due to the shape of the stochastic input are significant, reaching a 10% at the peaks of
the most correlated case. These finding highlights the importance of methods that treat
random ODEs under general random excitation, beyond the limitations of Itd/Filtering
approach.
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Figure 18: The same as in Fig.17 for Case III (lines with diamond markers). Same results for Case I are also depicted
(lines with no markers)

3.3.  Analytical solution to the moment problem. The vector case

Let us consider the stochastic system that is given by Equ.(4) Sec.(3.1.1), we repeat here for
convenience:

x(t;0) = A-x(t;0)+B -y(t;0), (la)

X(1);0) =x,(0). (1b)

where A:[An]nz] n—12.n and B:[Bnm n—12..n are deterministic, time invariant
n,=12,.,N m=1,2,..,M

matrices, y(t;0):(yl(t;G),yz('[;Q),...,yM(t;¢9))T is a known stochastic excitation,

x(t;@):(xl(t;H),xz(t;H),...,xM(t;@))T is the system’s response and x,(f)=x(0;60) is a
known stochastic initial condition.

In this section we shall find integral formulae from which we can obtain the first and second
order moments of the stochastic system (Equ.(1)), i.e. the unknown mean value of the

response m_(t)= E’ [x(t ; 9)] , the two-time RE cross-covariance
(x(t:0)—m (1))(y(s:0)—m,(5))’
(x(t:0)—m (s))(x(t:0)—m (9))

in terms of the known excitation mean value m (t)= E(’[y<t;9)], the excitation auto-

(¥(t:0)—m, (1)) (y(s:0)—m,(5))’

value m, = E’ [xo («9)] and the initial response auto-covariance

C,(ts)=E’

, and the two-time response auto-

covariance C _(t,5)= E’ . The calculations are made

: _rcf
covariance C (t, s) =E

, the initial response mean
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C =E’ . In what follows it will be assumed that the initial

Xo Xo

<X0(‘9)_m0 ><Xo(‘9)_mo )T

value x,(0) is independent from the excitation y(t;#). The realizations of the stochastic

function of the response x(t;@) are defined thought the realizations of the excitation by

means of the relationship:
t
x(t;e)zf@(t—s»B-y(sl;e)dsl + B(1)x,(0). 2
Taking mean Vah;Oes in Equ. (2) we obtain:
t
E’[x(t:0)]= fcp(t—s1 )-B-E’[y(s;0)]ds, + ®(t)E"[x,(6)]. 3)
That is the mean valltloe of the response is given by the integral formula:

mxm=f<1><t—sl>'B-my<s1>ds1 L ot)m,. @)

Simarly, to find an integral formula for the two-time RE cross covariance C  (t,5) we
subtract Equ.(4) from Equ.(2).
t

x(t;&)—mx(t):fd>(t—sl)-B-(y(sl;9)—my(s, ))ds, + @(t)(x,(0)—m,), (5)
then multiply Equ. (5) with (y(s;@)—my(s))T,where s >t,, and apply the mean value
operator :
E’|(xt:0)~m, ())(y(s:0)-m, () | =
:fq)(t—sl).B.EG[(y(sl;(9)—my(s,))(y(s;e)—my(s)ﬂds1 + (6)
+ OOE|(x,(0)-m,)|E|(y(s30)-m, )|
That is:

ny(t,s):f(I)(t—sl)-B-Cyy(sl,s)ds1 (7

To find an integration formula that provides the two time-response auto- covariance
C .. (t,s), we multiply Equ. (5) with (X(S ;) —m ( S))T , then apply the mean value operator,

1.€.

Eb‘

(X(t;9)—mx(t))(x(s;0)—mx(s)ﬂ:
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t

= [ [ot—s)BE|(v:0-m,))(3:0-m, ()

to

‘BT-®(t—s,)"dsds, +

S

+ (D(t)E"[(xo(e)—mo)]fEe[y(sz;H)—my(sz)r.BT.cI)(t—sz)Tdser

ty

+fd)(t—sl)-B-Eg[y(sl;e)—my(sl)]dslEQ[XO(G)—mO]Ttb(s)T +

+ BE <x0(9)—m0)<x0(9)—m0)T}®(S)T.

That is:

t S
C“(t,s):ffq)(t—sl)-B-Cyy(sl,sz)-BT-CI)(t—sz)Tdslds2 + ®(1)C,, ®(s). (8
to

to

Taking the limit (s — t) to Equ.(7) and Equ.(8), respectively we obtain integration formulae
for the one-time RE-cross covariance C  (t,t) and the one-time response variance

C., . (tY), e

cxy(t,t):fcp(t—sl).]s.cyy(sl,t)o|s1 : 9)

t t
C“(t,t):j‘j‘d)(t—sl)-B-Cyy(sl,sz)-BT-(D(t—sz)Tdslds2 + ®(t)C,, ®(1)". (10)
to

to

3.4. The two-time joint REPDF of the scalar linear stochastic problem under
Gaussian excitation.

Assuming that the input y(t;0) of the linear RDE (Equ.(1) Sec(3.2.1)) is a Gaussian random

function then the joint two-time REPDF f (a,0) is a 2D Gaussian density. In this case,

X()Y(s)
the solution of the two-time RE moment equations (given by Equ.(3,9,19) Sec.(3.2.1), here

repeated for convenience) :
t

m, (t):eA"-B-fmy (s)e*ds+e* ™ m , vi>t, (1)

t
t

R . (t, S) _ M f B-R vy (E,S)e*A‘(“)dtl _}_eAA(tfto) . mxo .my , Vt> to , ()

f
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t t

Rxx(t,t):Bz-ez‘A‘t-f e“"l-fB-Ryy(tz,tl)e""zdt2 dt, +

f t: ’ (3)
+2.e* 4B, fm ‘m, (t)e "dt +e VR, L V>t
b

uniquely defines the joint REPDF f (a,8). More precisely, for each selection of the

X(1)Y(s)
stochastic excitation Y(t;&) and of the response initial condition X,(€), which are assigned to

the problem by the moments: m (t), R (t,s), t,s>t, and m, , R, -, the joint REPDF

Feovis) (@2 8) is given by the formula:

1
Feoys (@ 8)= X 4)

2m(C(.0C,(5:5) - (C, (t.9)

C,,(5.5)-(a—m, (1)) —2C, (t,5)(a—m,(1))(3—m,(s)) + C,, (t,t)-(ﬁ—my(s))2

X |exp|— 5 5
Z(Cxx(t,t)ny(s, $)—(C,y (1,9)) )
where: C, (t,t)=R(t,t)—(m, 1)), C,, (5.8)= Ry, (5,5)—(m,(s)) .
C, (t.5) =R, (t,s)—m,(t)-m,(s).
(5a,b,c)

In Fig.19, the two-time joint REPDFs f, O¥)
the RE-space for IpGF stochastic input (Case I studied in Section 3.2.4), with R, , =1. Two

(a,8) of the linear/Gaussian case are plotted in

different cases of input correlation time, i.e. 75" =0.93 sec (left column) and rc"“ 0.33

sec (right column), are considered. The time evolution of f ,[3) for each case of input

s (@
correlation time is illustrated in each column. More precisely, three different values of the
time variable t are considered, i.e. t =1.5 sec (Figs.19¢,19d) and t =2 sec (Figs.19¢,191),
whereas in all cases S remains constant, i.e. S=1 sec. Results are in accordance with the
results obtained for the two-time RE moments in Section 3.2.4.a, for example, the two-time
RE cross-correlation reaches its maximum at t=1.5 sec in the pdf plotted in Fig.19c (for

COYT

=0.93 sec) that is in agreement with the results plotted in Fig.2b. It is apparent, that for
dlfferent input auto-correlation the joint REPDFs evolve differently in time, having increased
one-time response auto-correlation and two-time RE cross-correlation in the case that

7.5 =0.93 sec (left column). In Fig.20, the transient time diagonal (t — S) joint REPDF

f, (t)y(t>< ,ﬁ) is plotted for the same parameters of the linear/Gaussian problem as in Fig.19

and for the same values of correlation time, i.e. 7" = 0.93sec (left column) and 77" = 0.33

(right column). Here, joint REPDFs are illustrated at t =0.5sec (Figs.20a, 20b), t— 1.5sec
(Figs.20c,20d) and t =4sec (Figs.20e,20f). It becomes evident that, as time evolves, the
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correlation of the joint REPDF increases until it reaches the long-time statistical equilibrium
state, in accordance with the time evolution of R, (t,t), R, (t,t) (see also Figs.2a,4a).

S flt.8), t=05sec s=1sec, 50" =053 b. f,lts) t=05sec,s=1sec, 150" =0.33
8 3 0.2
2 ' 2
’ _ 1 015
0 0
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Figure 19: The time evolution of the joint two-time REPDF f (c, B) for Case 1. The time variable S is constant,

X(t)Y(s)

i.e. S =1sec, whereas t evolves in time, i.e.: t = 0.5,1.5,2 sec. In the left column (Figs.19a,c,e) the most correlated

case is considered, i.e.: stochastic input correlation time, 7 7" = 0.93 sec. In the right column (Figs.19b,d,f) the less

corTeiated one, T;Oy" =0335eC
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Figure 20: The time evolution of the joint diagonal REPDF f (a, ) for Case L. The time variable t evolves in

XYy

time, i.e.: t = 0.5,1,4 sec. In the left column (Figs.20a,c,e) the most correlated case is considered, i.e.: stochastic input

correlation time, 7 ;"y“ = 0.93 sec. In the right column (Figs.19b,d,f) the less correlated one, 7 ;°y” =0.33 sec
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3.5. Verification of the REPDF evolution equation.

In Section 3.4 the solution of the two-time RE moment equations was used to analytically
define the joint REPDF of the RDE (Equ.(1) Sec.(3.1.1)) under smoothly correlated Gaussian
stochastic excitation. In this section the analytically obtained joint REPDF, given by
Equ.(4) Sec(3.4), is going to be used in order to:

1. Examine the connection between the two—time RE moment equations and the joint
REPDF evolution equation in the linear/Gaussian case.
2. Verity the joint REPDF evolution equation in the linear/Gaussian case.

Following the methodology developed in Athanassoulis & Sapsis (Athanassoulis & Sapsis
2006) and Sapsis & Athanassoulis (Sapsis & Athanassoulis 2006; Sapsis & Athanassoulis
2008) (see also Section 2.3.1), the joint REPDF evolution equation in the linear/Gaussian case
reads as follows:

afx(l)y(s)(a’ﬂ) afxmy(s)(a7ﬂ)

ot + A gy (@0 +[Aa-+B-j] da =0,
s—t
YVaeR,BeR (1)

Supplemented by the initial conditions:

fx(tﬂ)y(s)(a,ﬁ) = fx(to)(a)- fy(s)(ﬁ) = a pdf known at any time S>t, , (2a)
the marginal-compatibility constrain:

f foye(@-Dda = f, (8) = aknownpdf, VFER, (2b)
aeER
and the constitutive conditions:

@@ 20, [ [ fg@pdsda =1 (2¢,2d)

BER eER

The REPDF evolution equation (1) before applying the limit s —t will be called hereafter
“off-diagonal REPDF differential constraint”.

Let us assume that Vt >t,, m (t)=m,(t)=0. Replacing the joint REPDF fx(t)y(s) (oz,ﬂ) in

the off-diagonal REPDF differential constraint with the Gaussian joint REPDF given by
Equ.(4) Sec(3.4), after some extensive algebraic manipulations included in Appendix 5, we
find that the left hand side of the off-diagonal REPDF differential constraint can be
equivalently written as (we repeat Equs.(3b,3¢,9,12, 15, 17) App.(5) for convenience):
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f f
W—FA' fX(tW(s)(O"ﬁ)HA'a"FB'ﬁ]am)yg%’ﬁ):
(et} o oo (BED o )i o iauues|
2.7 W(L,S) W was) e e e
where:
W(t,s) = \/ Ry (t.1) R, (5.8) — (R, &,5)) . (4a)
E(a, ;1,5 =R, (5,5)-a” —2-R_(4,5)-a- B+ R, (L,1)- 37, (4b)
QO (ts) =— . Ry (5:5) (d o (t,)—2-A-R_(t,t)—2-B-R_(t,)|—
00 \™> W(t,5)2 2 dt XX AT XX\ Xy \ -2
(4c)
R, (t,s)-[QR (t,s)— A-R,(t,s)—B-R (s,s)] ,
y 81: Xy y Yy
1 d
Qll(t,S)—Wley(t,S)RW(S,S)'[aRxx(t,t)—z’A Rxx(tat)_z'B ny(t,S)]—
—((ny(t, $))' + Ry (t,0)-R, (s, s))-[% R, (t,s)— AR, (t,5)— B- Rw(s,s)] , (4d)

Qu(ts)=— | R, (t.5)R, (t,t)-[% R, (t.s)— AR, (Ls)~B-R (s,s)]+

iR (SR -2 AR (-2 8.8, 1)

It is evident that Equs.(4c-4e) include two differential expressions of the moments R, (t,$)
and R_(t,t) that resemble the differential expressions appearing in the two-time moment
equations Equs.(8,22) Sec.(3.2.1) with different time arguments.

Let us now drop the zero mean value assumption for the stochastic excitation Yy(t;8). The
joint density REPDF f (o, ) of the Gaussian random functions X(t;0) = x(t;6)—m, (1),
,3)in Equ.(3) and

X(®)Y(s)

¥(s;0)=y(s;0)—m (s) will verify Equ.(3). Substituting fi(t)?(s)(a

following algebraic manipulations (see Equs.(18-27) in Appendix 5), we find that the left
hand of the off-diagonal REPDF differential constraint is equivalently written as:
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N )] M, 50, (@)
%+ A fx(t)y(s)(a,6)+[A-a-+B-m#: 5)
E(t,t;a+m, (1), 84+m,(s . ,S) «
= exp{ ( . ~ ( ) ﬂ ( )>}X _Qoo(tas)+ C~yy(s S)z Qoo(tas) ~(Oz—|—mx(t))2 -
2-m-W(t,s) <W(t,S))
~Q(t,9)- (a+m, (1) (B+m, () +Qyy (1,5)- (B+M, (5)) ],
where:

W (t,s) = \/cxx (t.1)-C,y(5.5)—(Cy (t,5)) . (6a)

E(t.s;a+m, (1), 8+m,(5))=C,, (s,5)-(a+m, 1) —2:C, (t,5)-(a+m,®)-(B+m,(s))+

+Cy (Lt)-(B+m,(9)) (6b)

LR, (s,s).[% R, (Lt)—2-A-R, (Lt)—2-B-R, (t,s)]—

12

o
(W (es)

_(mx (t)-Ryy (s,8)—m,(s) Ry (t’s>)'

Qu (t.8) =

d

g™ (t)—A-m (t)—B-m,(s)|+ (6¢)

0
—Ry (t,s)- 5t R, (t,;s)—A-R, (t,s)—B-R,, (s,s)] ,

09 {Ro )R, ()R- 2 A, ()2 81, 5] ¢
- (5): (R (5)) +m, ()R (1)-Ryy (5.5) (6d)
2., (1) Ry (L) (5,9 e, (0~ A-m (1)~ B-m, (5)|-
(R () 4R (1R, 5.} SR (15)- AR, (1) BB, s8]
% <t,s>:m-|§m )] SR ()2 AR, (1) -2 B, (15) -
(1 (0)(Ry (65)) Ry (65) R (60)m, (5)| Sm, (1)~ A, ()~ B-m (5] - 6

R, (Ls)R, (t,t)-[% R, (L5)— AR, (t.5)~B-R, (s,s)] ,
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Ry (L) =C,, (t,t) =R, (t,t)—(m, (1)), (6f)
Ryy(5.5)=C,y (5.5) =R, (5.5) = (m, (5))". (6g)
Ry (t,5)=C,, (t.5) =R, (t,s)—m,(t)-m,(s). (6h)

That is, the off-diagonal REPDF differential constraint has been transformed to an equivalent
form that contains differential expressions of the moments m, (t),m, (s),R,, (t,s) and R, (t,t).

The connection between the off-diagonal REPDF differential constraint and these differential
expressions is given by the following theorem:

Theorem 1: The joint two-time RE Gaussian pdf fxmy(s) (a,ﬁ) , t,s>1t,, of the linear RDE

(Equ.(1) Sec.(3.1.1)) under Gaussian excitation verifies the off-diagonal REPDF
differential constraint:

8f><(t))’(s) (O“ﬁ)

]8fx(t)Y(s) <O"ﬂ>
ot

(07

+A-f, e (@ 8)+[Aa-+B-8 =0VacR,Ber, (1)

ifand only if V t,s >t the auxiliary two-time RE moment constraints hold true, i.e:

0

ERW(LS)—A-ny(t,s)—B-Ryy(s,s):O, (8a)
%Rxx(t,t)—z-A-Rxx(t,t)—z.B-ny(t,s):o, (8b)
%mx(t)—A-mx(t)—B-my(s):O. (8c)
Proof

Since the left hand side of Equ.(7) can be equivalently expressed by Equ.(5), it follows that if
Equs. (8a-8c) holds true, so does Equ.(7).

To prove the converse, two cases are considered, i.e. m (t)=m,(s)=0 and m,(t) = 0.
Let m (t)=m,(s)=0. Equation (8c) is a priori verified.

Moreover, the left hand of Equ.(7) can be equivalently expressed by Equ.(3) that holds true
VaeR,[eR. Letting a = =0, from Equ.(3) we obtain that Q, (t,s)=0. Similarly,

for « =0,8 =1, from Equ.(3) we also have that Q,, (t,s) =0. Lastly, for a =1, =1, since
Qu (t,5)=Qy, (t,5) =0, from Equ.(3) we get that, if Equ.(7) holds true, Q,, (t,5)=0.
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Since we have proved that Qy, (t,5)=Q,, (t,s)=0, then:

o, <t,s>—ﬁ@m (1.5) =0, ©)
where
Qu(t9)- 2 <<‘W(>t f;;f"s> - Rl R AR, (-8R, 5]

(10)

R, (t,t)-R, (s,9)
W (t, 3)4

Then, it easy to conclude e.g. from Equ.(4c), that Equ.(8b) also holds true.

=0, from Equ.(10) it is straightforward that Equ.(8a) holds true.

Since

Let us now assume that m (t) = 0. In this case, the left hand of Equ.(7) can be equivalently
expressed by Equ.(5). Since Equ.(5) holds true VY a e R, 3 € R, then for a =—m,(1),
B=-m,(s) from Equ.(5) we have that, if Equ.(7) holds true, QOO (t,S) = 0.Similarly, for
a=-m(t), B=—my(s)+1 we obtain that Q,(t,s)=0. Finally, for o =-m(t)+1,
B =-—m,(s)+1 similarly, we get that (511 (t,s)=0.

Since, Q, (t,5)=Q,, (t,s)=0 then:

5 ey Ralbt) s 0o
Qp, (t,9) i (0s)) Qy (t,8)=0. (11)

Subsequently, considering the system of equations:

Q~02 (tas)_Lt’t)z'Qoo <t,S):O, Q~11<t,S):0, Q~00 (t’S)IO' (12a-c)
(W (t,s))

in terms of the variables:

X, :%RXX (t,t)—2-A-R, (t,t)—2-B-R,(t,s), (13a)
d

xz:amx(t)—A-mx(t)—B-my(s), (13b)
0

X3ZERXV (t,s)— AR, (t,;5)—B-R,(s,s), (13¢)

we get the homogeneous linear system of equations:
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Lm0 14
Ry (t,5) Ry (s,8)- X +
+(my (S>'<Riv (t»5)>2 +m, (8) Ry (t,t)-Ryg (5,5)—2-m, (t)- Ry (t,5) Ry, (S’5>). %=

_(<Riy (t.5)) + Ry (L) R, (5. s)). X, =0, (14b)

%-RW (5,5)- % —(m, (t)-Ry (5,5)—m, (5)-Ry (£,5))- X, Ry (t,5)- %, =0 (140)

The determinant D of the linear system of Equs.(14) is analytically calculated in Appendix 5
(see Equs.(28-34) App(5)) and is equal to:

2
D=m,(5)-Rg (1,5)|(Ry (L5))" + R (1) Ry (5,5)) =0, (15)
therefore, the homogeneous system of Equs.(14) only has the zero solution

X, =X, =X =0. "

Corollary 1: The REPDF evolution equation for the linear RDE under Gaussian excitation:

6f><(t)y(5) (Oé ’ ﬁ)
ot

8fX([)y(t) (a7ﬁ) — 0 ,
foJe! (16)
VaeR,BeR
holds true if and only if the moments of the sought for density f, oY (a, B) verify the limit

+A-f (o, 3)+][A-a-+B- ]

XY

s—t

two-time RE moment equations:

%ny(t,s) — AR, (t.t)—B-R, (1) =0, (17a)
%Rxx(t,t)—z AR, (t,)—2-B R, (t,1) =0, (17b)
d

gEMO—Am O —B-m, =0, (17¢)

Theorem 2: The auxiliary two-time RE moment constraints (Equs.(8a-8c)) of the linear RDE:
1) Do not hold true V t,s >t

i1) Hold true in the limiting case S —t

Proof
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The moments of R (t,s) and R, (t,t) of the linear RDE follow the two-time RE moment
equations (Equs.(8a,22a,2a) Sec.(3.2.1)):

%ny(t,s)—A.ny(t,s)—B-Rw(t,s):o, (18a)
%Rxx(t,t)—z- AR, (t,t)—2-B-R, (t,H)=0, (18b)
d

amx(t)—A-mX(t)—B-my(t):o, (18c)

where R (t,s)is the given input auto-correlation function and m,(t) is the given input mean

value.

Let us suppose that Equs.(8a-8c) hold true, then from Equs.(18a-18c) we obtain that :
R, (t,s)=R,(5,5), R, (t,8) =R, (t,t) and m (t)=m, (s),V t,s > t,

that is not true, therefore part (i) has been proved.

Taking the limit s —t of Equs.(18a-18c) we obtain the limit two-time RE moment equations,
i.e. Equs.(17a-17c), respectively, therefore Equs.(17a-17¢) hold true. Moreover, taking the
limit s —t of Equs.(8a-8c) we re-obtain Equs.(17a-17c). Part (ii) has also been proved. =

Corollary 2: The Gaussian pdf f, Y (S)(oz, 0) (see Equ.(4) Sec(3.4)) of the linear RDE (Equ.

(1) _Sec.(3.1.1)) verifies the REPDF evolution equation (Equs.(1a)) together with conditions
(2a-24).

Proof

The moments of the Gaussian pdf f (a, ) are the solutions of the two-time RE moment

X(0)Y(9)
equations. It follows that these will also verify the limit two-time RE moment equations and
therefore according to Corollary 1 the REPDF evolution equation. Moreover, in the case that
the sought for density is Gaussian, the initial conditions of the two-time REPDF evolution
equation, Equ.(2a), and the initial conditions of the two-time RE moment equations,
Equs.(8b,22b,2b) Sec.(3.2.1), are equivalent so Equ.(2a) is verified. In addition, the marginal

constraint Equ.(2b) is also verified, since the marginal moments m, (t), R (t,t) is the given

input of the moment problem. Finally, it is obvious that the constitutive conditions Equs.(2c-
2d) are verified too.

3.6.  On the non-uniqueness of solutions of the REPDF evolution equation

In Section 3.5, we have proved that the jointly Gaussian REPDF f, (t)y(s)(a, () of the linear

RDE under Gaussian excitation verifies the REPDF evolution equation if and only if the limit
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two-time RE moment equations are verified (see Corollary 1). In this section this equivalence
will be used in order to clarify that the REPDF evolution equation does not have a unique
solution, as also stated in Venturi et al.(2012).

As we have seen in Section 3.4, the solution of the two-time RE moment equations i.e:

t
m, <t) — . B'fmy (S>e—A-SdS+eA'(l—ln) m,, Vit (19a)

t
t

ny(t,s):e“-fB-Ryy(tl,s)eA‘(")dtl+eA'<tt“)-mXO-my, Vi >t, (19b)

t
t

Ry (t,t)=e"" B.f R, (tt)e *dt +

o (19¢)

t
+eM*.B.m, - f m,(t)-e~*dt, +e**.R

)

can uniquely define the joint Gaussian REPDF f (a, ) (see Equ.(4) Sec(3.4)).

X()Y(s)

However, differentiating equations (19a)-(19c) with respect to time t, then taking the limit
S —t it is easy to confirm that Equs. (19a)-(19¢c) verify the limit two-time RE moment
equations, and according to Corollary 1, so is the case for the joint REPDF evolution
equation, regardless of the correlation time of the stochastic input. Therefore the solution to
both the limit two-time RE moment equations and the joint REPDF evolution equation is not
unique.

In fact, when the moment equation for the two-time RE cross-correlation R, (t,s) is

considered time diagonally (s —t) the two-time auto-correlation R (t,s) of the stochastic

input, appearing in the left hand of Equ.(18a), is replaced by the one-time auto-correlation of
the stochastic input R (t,t). Thus parameters of the input two-time auto-correlation

R,,(t,s) that control the correlation time (e.g. the parameter a for IpGF or OU input and
a,w, for sOU stochastic input) are not taken into account. On the contrary, when R, (t,t) is
calculated based on the whole history of R, (t,,t) for t, <t <t (i.e. taking the limit s —t of

Equ.(19)) the non-local effects of the colored stochastic excitation that are controlled by the
correlation time of the input are taken into account.

It becomes evident that some of the non-local (in time) characteristics of the problem are lost
when we also take the limit Of, (t)y(s)(a,ﬂ) / 3t|H in the REPDF evolution. Therefore,

additional information about the joint RE correlation structure should be supplied to the
REPDF evolution equation so that this has a unique solution. In the linear/Gaussian case this
additional information could be provided by the equation for the evolution of the two-time RE

cross-correlation R, (t,5), i.e. Equ.(18a).
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Finally in this section, we shall discuss the counter-example presented by Venturi et al.(
2012) in order to demonstrate the non-uniqueness of solutions of the REPDF evolution
equation. More specifically, in the following RDE was considered:

X(t;0)+ X(t;0) = y(t;0), (24a)
y(t;0) =sin(t) + £(0), (24b)
X(ty;0) = %,(0) , (24¢)

where £(6)is a Gaussian random variable, X,(€) is a Gaussian zero mean random variable
that is independent from &(6).

The analytical solution of Equ.(24) (this is given by Equ.(2.18) of (Venturi et al. 2012)) reads
as follows:

t
X(t;@):ef(tft") IY(S;Q)'G(StD)dS—f—XO(@) — (25)
t

=e “YE0)- (e =)+ X, (0) + % e (sin(t) — cos(t)) — % (sin(t,) —cos(t,))].

In the RDE given by Equ.(24) the time dependence is present only in the deterministic part of
the stochastic excitation that is given by Equ.(24b), whereas all the other stochastic quantities
of the RDE are time invariant. Therefore, Equ.(25) can be considered as a mapping between
the random variables

X(t;0) = A(t)- £(0) + B(t)- %, () +C(1), (26a)
y(t;0) =sin(t)+5(0) , (26b)

where

At =1—e "W Bt)y=e Y, (26¢,d)
CiH= % [ (sin(t) — cos(t)) — (sin(t,) —cos(ty))] - (26¢)

Using the mapping approach (pp.142 in (Papoulis 1991)) from Equ.(25), the joint pdf that
corresponds to the RDE (Equ.24) is obtained, i.e.:

_ (a—Ab)- B+ A(t)-sin(s) - C (1))’
2-B(t)?

27)

1 . 2
fX(t)y(s) (a )5) = €Xp _E(/B - Sln(S))

27 B(t)

It is straightforward that fx(t)y(s) (a, B) verifies the REPDF-evolution equation that corre-
sponds to the RDE Equ.(24), i.e.:
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Ky @B 0 UL
% t:a(a'fwt)y(t)(a’ﬁ))_ﬁl%’

—

VaeR,B€eR. (28)

In Ventury et al. (2012) it is argued that C(t) could be instead any function C(t) = a(t), with
a(t,) =0 and the density given by Equ.(27) would still satisfy the REPDF evolution
equation (28). The latter argument seems not to be correctly stated as, in order for C(t) to be

such that Equ.(27) satisfies Equ.(28), there should be some information on the relationship
between C(t) and C’(t) (the latter appears in the right hand of Equ.(28) after the time

differentiation of the joint REPDF f, (t)y(s)(a,ﬁ) given by Equ.(27)). Nevertheless, it is true

that Equ.(28) followed by conditions given by Equs.(2a-2d) admits more than one solution
and, therefore, the boundary value problem of Equs.(28, 2a-2d) is indeed not well-posed. We
shall now prove that when the two-time RE moment equation that corresponds to the RDE
(Equ.24) is also considered, C(t) is uniquely defined and given by Equ.(26¢).

Multiplying Equ.(24a-c) with y(s;€) =sin(S)+£(#) and taking mean values we obtain the
two-time RE moment equation that governs the RE cross-correlation R, (t,s) of the random
differential equation (24), i.e.:

5t R (t,s)+ R, (t,s)—R, (t,;5)=0, (29a)

R, (t,8)=0 , (29b)
where
R, (t,s)= E’ [(sin(t) +£(60))- (sin(s) + 5(6))] = sin(t) -sin(s) +sin(t) - m, +sin(s)-m, + R, . (30)

We shall use the dynamical system equations (26a) and (26b) to express R, (t,s) in terms of

C(t), then, we shall use the two-time RE moment equation to find the deterministic function
C(t). More precisely, multiplying Equ.(26a) with Yy(s;8)=sin(s)+<&(0)(as given by
Equ.(26b)) and taking mean values we get:

Ry (t,5) = E"[(A(1)-£(0) + B(1)- X, (8) +C(1))-(sin(s) + £(9))] =
— E'[A®)-£(0)-sin(s) + B(t)- X, (8)-sin(s) + C(t)-sin(s) +
+ A1) £(0)-£(0) + B(t)- %,(0)-£(0) + C(1)-£(0)] =
=(1—e "")-(sin(s)-m, + R, ) +C(t)-(sin(s)+m,), (3la)

R, (t,8) =C(t) (sin(s) +m,). (31b)
Subsequently, replacing Equ.(31a) in Equ.(29) we get an equation for the evolution of C(t):
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00D, (ant e (o) 4R+ )+ R )+

+C(t)-(sin(t) +m, ) —sin(t)-sin(t) —sin(t)- m, —sin(t)-m. — R, =0, o
C(ty)-(sin(t) +m,) =0. (32b)
All the terms that depend on the time variable s are simplified here, and we get:
dC;(t) +C(t)—sin(t) =0, (33a)
C(t,)=0. (33b)

The solution of the initial value problem of Equs.(33) is exactly Equ.(26¢)

3.7.  Equation for the evolution of response pdf in the linear/Gaussian case.

As discussed in Section 2.2.3 in order to find the pdf of the response of stochastic systems
excited by colored noise, several methods have been developed focusing on the solution of an
equation for the response density (Hanggi & Jung 1995). In fact, in Ventury et al. (2012) the
consistence of the response-marginal REPDF with Equ.(8) Sec(2.2.3) has been established.
In this section we are going to discuss the connection of the response-marginal REPDF
evolution equation with the two-time RE moment equations. We focus on two points:

1. We shall show the connection of the response-marginal REPDF evolution equation
with the one-time RE moment equation (see Equ.(22) Sec.(3.2.a)) in the
linear/Gaussian case.

2. We shall use this simple case in order to demonstrate how the system of the two-time
RE moment equations could be used as an alternative way to approximate the non-
local term appearing in the response-marginal REPDF evolution equation.

3.7.1. Connection with the one-time response moment equation

For convenience and without this being restrictive, in this section, we shall assume that
m,(t)=0, m, =0 and therefore, from Equ.(1)_Sec(3.4), m,(t) =0. To find an equation for

the evolution of the response we integrate with respect to the excitation variable the REPDF
evolution equation Equ(1) Sec(3.5). Subsequently, assuming that the integration can be
performed before the partial differentiation, we obtain the following equation for the
evolution of the response density:

0

ot a-A- fxm +B—fﬁ fxmy(s) a,3)d6 =0, VaeR,B€R

(M

0
fx(t) (Oé>+ a—

«




3-52 | CHAPTER 3 Application of the RE theory to linear dynamical systems

When the excitation is a Gaussian stochastic function, as discussed in Section 3.4, the joint
REPDF will be a 2D Gaussian density given by Equ.(4) Sec(3.4). Moreover, all terms in
Equ.(1) can be analytically computed, i.e.:

fﬁ fxmy(s)(“’ﬁ)dﬁ =

_ Ry(Ls) I exp| }: Ry(tt) (@) )
Ra(L) Var R (L) | 2RO R (L)
Then,
B R, (t.t) R, (t.t) d f,, (o)
o f dg = f ket L _ 3
3] B T 0,985 Rty 0T UR ) da ©
Moreover, since:
0 fy (o) _ 1 O ple |0 ¢ (q) @)
da V2R, (tt) Do 2R, (LU)|  R,(tt) OV
Combining Equs.(3,4) we obtain:
0 R, (1,1) R, (1,1)
g f dg = | 2 Ny f ) 5
804]6 X(t)y@)(a?ﬂ) p R, (t,t) ¢ (RXX(U))Z] x(t)(a) )

Moreover for the time derivative of the Gaussian pdf we have:

0

= f = =R (t,t)f
at x(t)<a> 2Rxx<t,t> 31: xx(ﬂ) X(t)<a>+

B M szx t,t * IXt « . (6

Introducing Equs.(4-6) in Equ.(1) we get:

1 d R, (t,t)
- —R _(t,t)-f A-f B-—~ f
9. RXX (t,t) dt XX < > ) X(t) (Ot)—f— X(t) (O{)-{- RXX (t,t) X(t) (Oé>+
o’ d a’ R, (t.t
+ —R, (L) f ()= A foo (@) =B-a®—""=f (a)=0,

that is:
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1 d
| R, (tt)—2- AR (L) —2-B-R (t.,t)]- f
2'Rxx(tat> [dt xx( 5 ) xx( ) ) xy( , ) X(t)(a>+
o’ d (3
+— _Rxx t,t _2'A'Rxx [ —2.B.R>< t,t 'fx a)=0.
2'(Rxx(t,t))2[dt (tY) () y (LY fi (@)

Since Equ.(8) holds true V« it is easy to verify that Equ.(7) holds true if and only if

d

RGO -2 AR (D -2:B-R, (L) =0. 9)

3.7.2. Approximation of the non-local term using the two-time-RE moment equations
In Section 3.7.1 we wrote the non-local term of Equ.(1) Sec(3.7.2) in terms of the diagonal

moments R, (t,t), R, (t,1),1.e.:

Ry(LD)  , Ry(LD)
Ra(t) (R, (1)’

0
%f B fx<t>y<s> (o, )dB = ' fxm (a), (1)

Equ.(1) can be used in conjunction with the solution of the two-time RE moment equations in
order to obtain a closed form of Equ.(1) Sec(3.7.2). That is, Equ.(1) Sec(3.7.2) can be
rewritten as:

R.(t,t R.(t,t
9% (a)+ Laat, (o) s D e Ra@D | (=0, o)
ot ‘o e ® R, (t,1) <Rxx(t’t)) ®
YVaeR,[eR,

where:

t
ny(t,t):eA"-B-fRyy(tl,t)-eA'“dtl, Vit>t,, 3)

t

t
S L @

f
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41. Introduction

In the previous chapter the joint REPDF of the linear Random Differential Equation (RDE)
(Equ.(1)_Sec(3.1.1)) under smoothly correlated (colored) Gaussian excitation was obtained
analytically through the solution of two-time RE moment equations. The obtained solution
was used to verify the REPDF evolution equation as well as to demonstrate that the REPDF
evolution equation, as it stands, can have multiple solutions. In fact, the correlation length of
the excitation constitutes a degree of freedom that is not properly taken into consideration
when the equation is considered only time diagonally (s—t), as the non-local (in time)

characteristics of the problem are lost. Nevertheless, in the linear/Gaussian case, the inclusion
of an additional constraint for the two-time RE cross-correlation could provide the additional
information needed for the problem to be well posed.

In this chapter, we show how these ideas take shape and are generalized for the probabilistic
characterization of a steady state non-linear half oscillator under non-Gaussian excitation. The
problem is treated in the context of response-excitation theory, introduced by Athanassoulis
& Sapsis (Athanassoulis & Sapsis 2006) and Sapsis & Athanassoulis (Sapsis & Athanassoulis
2006; Sapsis & Athanassoulis 2008).

More precisely, taking into consideration the findings from the solution of the linear problem
we develop auxiliary local conditions, in the RE-phase space, that provide the necessary
additional information regarding the RE correlation structure of the non-linear random
problem. The local information is synthesized in the REPDF evolution equation by the use of
an appropriate representation of the two-time joint REPDF, consisting of a superposition of
Gaussian Kernels. The REPDF evolution equation, together with the new local closure
conditions, is numerically solved using a Galerkin scheme. Let it be noted that, in the linear
case under Gaussian excitation, the additional constraints coincide with the global two-time
RE moment equations discussed in Chapter 3. Some preliminary results of this method have
been presented in Athanassoulis, Tsantili & Kapelonis (Athanassoulis et al. 2012b),
(Athanassoulis et al. 2012a).

An important question, related with the process of the numerical solution of the joint REPDF
evolution equation in the long-time, is how to define the appropriate computational domain. A
methodology for the approximate, a priori, determination of the computational domain has
been developed based on the solution of a system of two-time RE moment equations for the
non-linear/non-Gaussian problem. The derivation and solution of these equations is presented
in Chapter 5.

The development of the presented methodology drew on results obtained by MC simulations
performed by Z.G. Kapelonis. The evidence gained by looking into these results, made clear
that, in the long-time statistical-equilibrium state the joint REPDF tends to concentrate around
the equilibrium curve of deterministic problems which are naturally realized on the RE-phase
space. In accordance with this observation, it was made clear that the implementation of the
numerical solution of REPDF evolution equation can exploit information coming from the
stability analysis of the corresponding deterministic problems.
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4.2.  Formulation of the problem

Consider a non-linear half oscillator, of the form:

X(t;0) = H(x(t;0)+ ¥(y(t; ), (1a)
x(0;0) = x,(6), (1b)

where H(s), W(s) are non-linear functions, & is the stochastic argument (the sample-point
indicator), y(t;#) is a given, smoothly correlated, asymptotically stationary, Gaussian

stochastic process (regular colored noise) with continuous path functions. The initial
condition x,(@) is a given random variable, independent from the process y(t;#). In what

follows we shall assume that H(s), W(s) are polynomial function of x(t;@0), y(t;60),
respectively, i.e.

H(x(t;9)):ZN:0Av(t)-xV(t;9), (2a)
P(yt0)=Y " B, ()Y (t:60). (25)

The polynomial excitation ¥ (y(t;6)) can model (strongly) non-Gaussian processes.

A special case of the stochastic initial problem given by Equ.(1) is the cubic half oscillators
under non Gaussian Excitation. The probabilistic description of cubic half-oscillator excited
by delta-correlated processes has been studied by many authors. Hasofer and Grigoriu
(Hasofer & Grigoriu 1995), and Grigoriu (Grigoriu 2008) studied the case of Gaussian white-
noise excitation, solving the corresponding moment problem and commenting on the
properties of the moment closures. Wojtkiewicz, Grigoriu et al. (Wojtkiewicz et al. 1999),
(Grigoriu 1995) generalized various techniques developed for the case of Gaussian excitation
to systems driven by Poisson or Gaussian plus Poisson white-noises, and studied the cubic
half oscillator as an example. The same problem, under OU excitation, has been treated by
Jung & Risken, and others ((Jung & Risken 1985), (Debnath et al. 1990)), in the context of
the filtering approach (augmented state space, two-dimensional FPK equation). Furthermore,
the same problem has been also studied using approximate one-dimensional FPK equation in
conjunction with the short relaxation time approximation (Hanggi et al. 1984). Here we
consider the following special form of Equ.(1):

X(1;0) = py-X(t;0) 4+ pg X3 (1;0) + 5,y (t;0) + 75y (1:0), (32)
x(ty;0) = x,(6), (3b)

In this case the excitation
2(t;0) = k- y(1;0) + Ky y3(1:0), (4)

is a linear-plus-cubic-Gaussian process, having a bimodal first-order pdf in the case
K, k3 < 0. Without any loss of generality, we shall assume that x, > 0. The signs of
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MUy, My, K3 may be either +1, or —1, affecting the structure of the solution to both the
deterministic and the stochastic problem. The case yx;, <0, x; <0 will be referred as the
monostable case and the case ux, >0, u; <0 as the bistable case, in accordance with the
stability properties of the homogeneous equation.

The condition of asymptotic stationarity means that there exist a constant m§°°) and a

bounded stationary covariance function C {}’ (7), such that

(Ve>0)(3t,>t,): [t=t,] = |m () -m{?| < &, (5a)
and
y

(ve>0)(3t,>1t,): [t>t, As>t,] = [C, (t,s) —C{P(t-s)| < &. (5b)

In what follows we will consider the system for time instances t, s > T, where time T is
advanced enough, so that the statistical equilibrium state has been reached. In this state the

system no longer depends on the initial condition. In this connection we are going to ignore
the initial condition (1b). Through the development of the theory four special cases of
monostable non-linear half oscillators (Equ.3a) will be considered, i.e.

1. A cubic non-linear half oscillator under Gaussian excitation (the non-linear/Gaussian Case)
X(t;0) = —x(t;0) - x3(t;6) + y(t;6). (6)
2. A linear half oscillator under cubic Gaussian excitation (the linear/non-Gaussian Case)

X(t;0) = —x(t;0) + y(t;0). (7)

3. A cubic non-oscillator under a superposition of a Gaussian and a cubic Gaussian excitation
(the non-linear/non-Gaussian Case)

X(t;0) =—x(t;0) —x3(t;0) + y(t; ) +0.2- y3(t; 6) . (8)

A linear half oscillator under Gaussian excitation will also be considered for comparison
purposes (the linear/Gaussian Case)

X(t;0) = —x(t;0) + y(t;0) . ©)

Moreover, the non-linear bi-stable half oscillator under Gaussian excitation (bi-stable/
Gaussian) will also be discussed in Chapter 5

X(t;0) = x(t;0) — 0.4-x3(t;0) + y(t; ), (10)

The considered excitation functions y(t;&) follow three different correlation structures,
either IpGF, given by Equ.(1)_Sec(3.2.4), sOU given by Equ.(18)_Sec(3.2.4), or OU, given
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by  Equ.(19) Sec(3.24) and three different correlation times  (colors),

i.e.7yy =0.93,0.51,0.33 (the same as in the linear case studied in Chapter 3). In all cases the

correlation time of the excitation is of the same order of magnitude with the relaxation time
of the non-linear half oscillator, i.e. the characteristic time for the system to reach its
equilibrium position after being perturbed. The latter is smaller than that of the linear

oscillator, for which 70" = 1, since the nonlinearity contributes to the damping term.

In Fig.(1a) we can see the trajectory of the system of the non-linear/non-Gaussian Case (see
Equ.(8)) in the RE phase space. The considered excitation is a strongly colored IpGF

(7,5 =0.93). The time evolution of the response and the excitation along with their cross-

covariance function C,(t,s), are shown in Fig.(1b) and Fig.(1c). The RE cross-covariance

has been computed by the Monte Carlo simulation data up to the current time (i.e. 250 sec),
which is long enough so that the system has reached the long-time statistical equilibrium state
and it is plotted against the time lag z =t —s. Negative time lag (z <0) corresponds to future
lag values (excitation in advance of response). As already discussed in the linear case, and in
contrast to cases of delta-correlated excitation, there is a correlation between the current
response value and the future excitation. These results were obtained by Z.G. Kapelonis, from
Monte Carlo simulation of the RDE given by Equ.(8).

i gcitation

———response ..

100 150 200 250 300
t[secs]

-15 -1 -05 a 05 1 18 2 -3 -2 -1 ] 1 2z 3
T

Figure 1: Results obtained by MC simulation. a. The trajectory of the half oscillator in
the RE-phase space. b. The time evolution of the response and the excitation. c. The RE
cross covariance C, (t,s)

We shall now proceed to the description of the RE method for the probabilistic characteriza-
tion of the considered non-linear half oscillators in the long-time statistical equilibrium state.

4.3. The REPDF evolution equation in the long-time

Using the procedure developed by Athanassoulis & Sapsis (Athanassoulis & Sapsis 2006) and
Sapsis & Athanassoulis (Sapsis & Athanassoulis 2008), that is also explained in Chapter 2 of
this thesis, a partial (response) time, evolution equation is obtained for the joint REPDF

LI (v, 3), which is valid in the limit s—t. More precisely, for the RDE given by
Equ.(1)_Sec(4.2), the REPDF evolution equation takes the form:
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0

0 2
a fx(t)y(s)(a76) + %[(H(O‘)"'_\Il(ﬁ)) fX(t)y(s)(a’B)Lﬂt} =0 V(a,B)€ R (1)

s—t

Since the REPDF evolution equation is valid for all t, it is, thus, valid when t is considered
in the long-time regime. In this case the system is no longer affected by the initial condition,
therefore no initial conditions need to be considered for the sought for joint REPDF.
Nevertheless, the REPDF evolution equation is supplemented by the marginal-compatibility
constraint,

f fy oy (@ B)da = fy(s)(ﬁ) = a known pdf, VaeR,BeR, (2a)

aeR

ensuring that f ,3) has the appropriate (given) marginal, as well as by the

xy(s) (@
constitutive conditions:

fx(t)y(s) (a,8)>0, )
f f fy oy (@:0)dBda = 1. 9
BERaER

Equ.(1) is of a very peculiar type and has, as analytically shown in Chapter 3 for the linear
case, multiple solutions. More precisely, Equ.(1) contains two times, the excitation time s
and the response time t and it is crucial that the time derivative is considered only with
respect to the response time t (half-time derivative). The distinction is essential since:

8

8
a X(t Y(s)( ,5)

= 5 X(t Y(t)( 7[3)

s—t

and especially in the considered long-time regime:

.0 . . 3
1|Ln;a Fovw (@:8) =0, while  lim — o feyys (@:0) = 0.

s—t

Notice that, the presence of the half-time derivative is a significant difference between the
steady state REPDF-evolution equation and steady state FPK equation. The latter does not
contain a time derivative, being stationary (Soize 1994; Risken 1996; Wang et al. 2000).

However, the half-time derivative Of «,B)10t cannot be properly evaluated

X(t)Y(s) (
(implemented), without knowing the specific form of f, (a,ﬁ) , since there is no way to

separate the effect of the response time t from the effect of the excitation time s in the
unknown function f, ., . (a,ﬁ). The essence of this difficulty stems from the fact that,
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behind of the half-time differentiation, some non-local in time effects are hidden.
Accordingly, the term Iiman(t)y(s) (a,ﬁ)/@t, should somehow be approximated and

introduced in Equ.(1), before any attempt to formulating a numerical scheme for solving. This
will be taken on in the next section, where a local (in state variables «,3) approximation of

Iimafx(t)y(s)(a,ﬁ)/at will be constructed, by formulating and solving a localized

s—t

(linear/Gaussian) differential equation at each «, (.

4.4. A prioriclosure conditions: Local linear equations with local Gaussian excitation

4.4.1. Formulation and solution of the localized problem

In case that the oscillator is linear and the excitation Gaussian the RE correlation structure can
be fully determined by the solution of the two-time, linear, RE moment equations (Chapter 3).
Nevertheless, in case that the oscillator is non-linear and/or the excitation non-Gaussian, the
correlation structure of the REPDF needs also higher order moments to be defined. In this
section we present how this complicacy can be overcome by approximating the non-linear
and/or non-Gaussian random problem by many locally linear, locally Gaussian sub-problems.
To this end we define and solve localized linear problems, providing information concerning
the local RE-correlation structure, in the long-time statistical equilibrium state. These
problems are going to be used as an a priori closure scheme for the REPDF evolution
equation (Equ.(1)_Sec.(4.3)).

Focusing on a (any) specific point y, of the excitation state space, we find the corresponding
(deterministic) long-time equilibrium point x, in the response state space of the RDE given

by Equ.(1a)_Sec(4.2), by solving the equation
X(t;0) = H(x(t;0)) + ¥(y(t;0))=0. (1)

The curve H(x,)=—¥(y,) will be called (x,,Y,) - or RE-equilibrium curve. For instance, for
the cubic half-oscillator described by Equ.(3a)_Sec(4.2), the RE-equilibrium curve is given
by the equation fu,-X, + p5- X5 + ;- Y, + K4+ Yo =0. In agreement with results obtained

by extensive MC simulations for various cases, the RE-equilibrium curve is around where the
joint REPDF is concentrated when the system reaches the long-time statistical equilibrium

state. For example, in Fig.2a and Fig.2b the equilibrium curves x, + x3 =y, of the non-

linear/Gaussian Case (see Equ.(6)_Sec(4.2)) and X, + x3=Y, +0.2-y3 of the non-linear/non-
Gaussian Case (see Equ.(8)_Sec(4.2)) are, respectively, plotted.
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Figure 2: The (x,,Y,) - or RE-equilibrium curve plotted in the RE-phase space: a. For

the non-linear/Gaussian case (Equ.(6)_Sec(4.2)), b. for the non-linear/non-Gaussian case
(Equ.(8)_Sec(4.2)).

To find the localized sub-problems, we introduce a linear approximation of the right-hand
side of Equ.(1a)_Sec(4.2) around each point (x,,y,), 1.e

X(t;0) = H'(X)-(X(t;0) =Xy )+ ¥'(Yo)-(y(t;0)—Yo), 2

and formulate the following localized version of Equ.(1a)_Sec(4.2):

Xpoe (15 0) = H/(Xo)'(xmc(tig)_xo) + ‘Pl(yo)'(Ye‘oc(t;ig)_YO)- (3)

The subscript ( ,,.) has been introduced in order to remind us that Equ.(3) is just a localized

version of Equ.(1a)_Sec(4.2). The localized random excitation, y,..(t;8)—Y,, is taken

Gaussian (as the global one), with zero mean value and appropriate two-time response auto-
covariance function C, , (t,s). Since we are interested in the long-time, steady-state

solution, we can choose C, , (t,s)= C§f° Vi (t—s). Compatible with the localization is

a scaled version of the long-time limit of the global autocovariance function C(“’)(t—s)

that is C{*) (t—s) = o} C{¥(t—s)/c]. The solution of Equ.(3) will provide us
with the long-time local correlation structure between x(t;#) and y(s;#) in the vicinity of

(o, 8) = (X4, Y,) , 1.€. the elements of the long-time covariance matrix

C) (t—s) CO (t—s
Z(oc)(t,S) _ X/ocx/oc( ) Xsoc Y roc ( )

foc 4)
(t—s) Cymym( —5s)

X/DC y/OC

where

(t—s)_t I|m C (ts), COI (t—s)= lim C (t,s)

X1oc Y roc Xtoc X roc

x
/DConc — 00, S— 00 : t—o00, S—o00
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Let it be noted that the correlation time is not affected by the choice of the scaling factor of
the localized excitation, i.e., will have the same correlation time (see Equ.(1c)_Sec(3.2.4))
with the global one.

Since the localised stochastic problems (Equs.(3)) are linear with Gaussian excitation, they
can be solved analytically, following the procedure discussed in Sections 2 and 4 of Chapter
3. More precisely, taking mean values to Equ.(3) it is straightforward to find that in the long-

time statistical equilibrium state the response mean value m(;f) =X, , a fact that is compatible

with the considered localization. Subsequently, multiplying Equ.(3) first by (y,,.(s;6)—Y,)
then with (X, (s;0) — %, ) We get

X0 (13 0) (Yoo (530) = ¥o) = H'(%) (X0 (t:0) = X5 ) (Vio (53 0) — ¥o ) +

, (5)
+ Y (Y0) (Yiee (1:0) = Yo ) (Vinc (55 0) — Yo )

and

X/oc(t;g)‘(xloc(S;‘g)_Xo) = H/(Xo)‘(xéoc(t;0)_X0)'(Xloc(8;9)_xo) +

, ©)
+¥ (YO)'(y(t;‘9)*YO)'(Xloc(5;‘9)*X0)-

Applying the mean value operator to Equs.(5,6) we obtain the local, two-time, RE moment
equations. Consider now that both t, s— oo, and write the moment equations in terms of the

elements of the covariance matrix given by Equ.(4), i.e.

acio(jc)ymc (t o S) / (o0) / (0)

at - H (Xo)‘cxtocymc (t_s) + qj (yo)'CYLocymc(t_S)’ (7)
oC (XO;)X/OC (t—s) / (c0) ’ ()

at =H (XO).Cchxroc(t_s)_’_\Il(yo)‘cxmc)'/oc(s_t). (8)

From Equs.(7,8) it is deduced that the local correlation matrix (Equ.4) is scaled uniformly by

ajm /03. Moreover, Equs.(7,8) are, respectively, of the same type as Equ.(8a,12a) Sec

(3.2.1) whose long-time solution is given by Equs.(7,8b)_Sec.(3.2.3). Applying them to the
localized moment problem (Equs.(7,8)) we obtain

t

00 - H’ k .. 7H/( )-S
Citoc)YIoc (t - S) - tllorcn \Ijl(yO)e (XO)thy(foc)ymc (Sl - S) e K ldsl ! (9)
S—00 t
t—s=r71 0
and

S t
C™ (t—s)= lim e”’<X°>'<”S>(\1/’(yO))2ffc‘*) (s, —s,)-e "oy ds | (10)

X toc X roc t—00 Y roc Y toc
S—00
t—s=r71 b o
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Alternatively the localized moment problem could be directly solved in the lag-time domain,
taking into consideration that

act), (t—s) dc™ () act)(t,s dc {5 (¢
toc Y roc — roc ¥ roc , # — ¥ (11a,11b)
ot t-s=r dr ot t-s=r dr

and subsequently write Equs.(7,8) in the form

C )Ecz:)y/'oc (T) / (o0)
el = HI(%,)-CLY, (1) + W(%)-C (2 (7) (12)
and
dc, (1)
T = H'(%,)-CP) (1) + ¥'(y,)-C&) (—7). (13)

These equations are of the same type as Equs.(14,15) Sec(5.3.1), the latter are solved
analytically and their solution is given by Equs.(19,23)_Sec(5.3.1) respectively. Applying
these to Equs.(12,13) we find

oo

C, @ = Jim Cy (Lt) = Wly): [eM e, L (w)du (14)
7 =const. -7
‘P/ 2 V=+o00 )
C)((jzc)x/oc (T) = ( (y/0)> x f Cyfocyéoc (V)e " (XO)“Vir‘ dV (15)
2(-H'(x) )
or equivalently for r=t—s
oo
C, 9 = lim Cy (bs) = W) [ eI ep, wdul ()
t— sii%nst. —t+s
<‘{’/(y )>2 V=400
c (t—s) = 0 % f c (v)-e H'(xg)-|v —t+s] dv (17)
Xrocx/oc ,(_H/(XO)) 2 Yoc Y roc

In Athanassoulis, Tsantili & Kapelonis(Athanassoulis et al. 2013), it is proved that the two
approaches coincide, that is the long-time limits described by Equs(9,10) are exactly
Equs.(16,17).

The half-time derivative of the local RE cross-covariance

Combining Equs.(7,16) we calculate the half-time derivative of C{* (t—s) with respect to
the excitation time t,
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5C§f§fyf0c(t—s) / / r H' (%) - (U +t—s) ! (c0)
=) W) [ e Ce, L ydu s W) CY, (t-9),
—t+s
(18)
as well as its limitas s —t,
8C)((Tuoc)yl’oc(t_s) / (o0) / (o0)
(9'[ - H (XO).Cyfcxfoc(O)—i_\P (yo).Cchyfoc(O):
s—t
o0
=HOO)[¥(30)- [[eM00C, | wydu]+w(y)-CY, (0)
0
(19)

The above result will be used, in conjunction with an appropriate representation for the joint
REPDF, to implement the correlation structure of the sought for joint REPDF, especially the
long-time limit Iimta fyves) (o, 8)1 0t Clearly, the obtained results can apply to any choice of

the functions H(e), W(e)(see Section 4.2 for their definition). For instance, setting
2

H (%) =ty +3- 13 X, W'(Y,) =k, +3-5, Y, Equs.(18,19) specialize for the cubic half

oscillator given by Equ.(3a)_Sec(4.2). We shall now see how these formulae further
particularize in case that the correlation structure of the random excitation is a IpGF or an
sOU process (see Equ.(1)_Sec(3.2.4.a) and Equ.(18)_Sec(3.2.4.b) for the definition of the two
processes).

4.4.2. The case of IpGF excitation

Since the moment Equs.(7,8) Sec(4.4.1) are linear we can use the analytic calculations
performed in Sec.(3.2.4) for the linear RDF (Equ.(1)_Sec(3.1.1)) under IpGF input to

calculate the local RE cross-covariance Cim)y (t—s) and the local response auto-covariance

Cc ) (t—s) of the non-linear RDE Equ.(3a)_Sec(4.2) for the same input. More precisely,

Xoc X roc

assuming that the local input is a IpGF random process, i.e.
CYﬁocyloc (t_s) = (0-5('00 /O-i)Cy;'C)(t_S) = o-jljoc eXp(_a(t_S)z), (1)

and setting A=H'(x,) and B="¥'(y,) to Equs.(11,15)_Sec(3.2.4), we obtain the following

formulae for that the local RE cross-covariance and the local auto-covariance of the local
problem:
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. Jz (H'(%))°
C)((/Oc)yVOC(t_S) - 2\/5 O-y/DC (yo) e 4a ><
H'00)| || ?
x g H'0oH1=s), erf[\/g- t—s) 4+ 0 ]+1
(t—s) 7 Ja
(! 22 H'(x,)?
(oo) ( i )_\/;<‘P(y0)) O-y,;r,c.e 4a y
x(ocxfoc 4\/5(_H/(X0)>
x e 0o erf | Ja- (s —t) + a0l P 3)
2-\a

4 H00)(t9)

2-Ja

erf[\/g-(t—s)+H/(X°)]+1

].

Taking the limit s—t, Equs.(2-3) reduce to the corresponding local covariances on the
diagonal s =t

Jz e [ H(x )]
c (0) = Y=-02 e 4 .lerf 0% +1]f, 4
X roc Y/oc( ) 2\/5 y/OC (yo) 2\/5 ( )
Jz-(¥'(y,)) o2 A H(x,)
c ) — i < .e 42 xlerf|a-+ Cl+1 5
X/ocxfoc( ) 2\/7 ( H (XO ) 2'\/5 ( )

Now, using Equs.(19) Sec(4.4.1) and Equs.(1,4), we can explicitly compute the half-time
derivative lim ac), (t—s)/at , when the excitation is a IpGF:
s — foc ¥ foc

S ) Jr U [ H (%)

L L —— = H'(x) ——. e 4a .lerf %o +1| + ¥/ o2 | (6

81: ( 0) 2\/5 GY{oc (yo) [ 2\/5} (yo) O-Yroc ( )
s—t

In Figs.3-5 the local correlation characteristics C{* (0), C (0) and

I|m 5C§f§3y{ t—s) / ot are plotted against the “centers” vy, for the four half-oscillators

con5|dered in Section 4.2 (Equs.(6-9)_Sec(4.2)), and for 3 values of correlation time,
5 =0.93,0.510.33, of the IpGF input process. For the local input variance we have

assumed that ayﬁ =0.1. As we can see, and as expected, in the case that a linear half
oscillator is considered (Case a in Figs.3-5), for the same input correlation time, all the three

quantities have the same value at any “center y,” in the excitation space. In the linear/Non-
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Gaussian case (Case b in Figs.3-5) all three quantities exhibit local characteristics following
the pattern of ¥/(y,)=x, + 3-yZ in the right hand side of Equs.(4-6). More precisely, the

three quantities have a minimum at y, =0 as does ¥'(y,) (the minimum value is zero in this
case (Equ.(7)_Sec(4.2) since «, = 0) . On the contrary, in the non-linear/Gaussian case (Case

c in Figs.3-5) a maximum is developed at y,=0, due to the varying values of
H'(x,) =—1-0.6-x. in Equs.(4-6). Let it be noted that the excitation “centers” y, form a
monoton (increasing) function of x, on the RE curve (Fig.2a).

a. CXY ot IPGF, g = -1, iy = 0, 1 =1, i3 =0 b. CXY,et IPGF, g = -1, iy = 0, 1; =0, 15 =1
0.06 14,
.......... corr _, evvrnnnes o COIT
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0.05}F Ty 033 ik — 197033
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3 3
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0.035+
0.03
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005 T vy 0.51
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0.04 5 0.045-

nyIoc

0.035} 004l
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.......... =0.93
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_____ corr _
Tyy 0.51

0.02p" corr _,
Tyy =0.33

0.015 0.025 . . . . . . . . . )
2. 5 -2.5

-2 -1.5 -1 -0.5 0 0.5 1 15 2 2.5

Figure 3: The long time response-excitation covariance C i”o)y (0) for different values of correlation

time of the IpGF stochastic excitation against the excitation state space for: a. the linear/ Gaussian case b.
the Linear/non-Gaussian Case. c. the non-linear/Gaussian case. d. the non-linear/non-Gaussian case.

In the non-linear/non-Gaussian case (Case d in Figs.3-5) the above effects are combined, de-
pending on the correlation time of the excitation. For instance, in Fig.3d we can see that the

RE cross-covariance in the least correlated case, z,;" = 0.33, is minimized at y, =0, similar

to the linear/non-Gaussian case. On the contrary, in the most correlated case, 7" = 0.93, the
non-linearity prevails over the non-Gaussianity resulting in the creation of a local maximum
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at y, =0. In all examined cases in Figs.3-5, the local (co)variances Cij:c)ymc (0), C™ (0),

X oc X roc

increase with the correlation time of the IpGF input, as expected.

a b.
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Figure 4: The same as in Fig.3 for C*)  (0).

toc 7 foc

On the contrary, the half-time derivative oC) (t—s)/ot| , Fig.5, decreases with the
‘oc Y foc s—t

correlation time in the considered cases of non-linear half oscilators. The latter is due to the
fact that, while oC™ (t—s)/ot| is an increasing function of C{) (0), it is also a
oc oc s t foc foc

—

decreasing function of Ci‘j@yﬁ (0) and a linear combination of the two (co)variances (see

Equ.(19)_Sec(4.4.1)).
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Figure 5: The same as in Fig.3 for 8C£j°)y (t—s)/ ot
oc Y foc s

4.4.3. The case of sOU and OU excitation

Similarly, we shall now use the results obtained in Section 3.2.4 to calculate the local RE
Ccross-covariance, Cif")y (t—s), and local response variance, Cif:c)xm (t—s), of the non-

linear RDE (Equ.(3a)_Sec(4.2)) when the input is an sOU process, i.e.

(0) _ 2
yy (t—s) = Sy

1)

(o0) _ 2 2
Cylocyloc (tis) - (Gyioc /O-y)C

_-exp(—a-[t—s])-cos(wq - (t—5))

For instance, setting A=H'(x,), B="¥'(y,) to Equs.(32,33,36)_Sec(3.2.4) we have:
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a—H'(x,) N H'(x,)+a
(a—H'0) +uf  (H'()+a)" +

Xioc Y toc

Ci,, (t=9)| _ =y)-0], -

—a-(t-s)

e
+
(H'(x)+a)" +

Ce, (t=9)| =¥'(y)0}, x

Xoc Y roc

e a-(t—s)

X -((@=H'(x%,))-cos(w, - (t—5)) + w,-sin(w - (t—s)))

(a—H'(x))" + o?

PLUCS GO

2 (= (H'(x) +a)-cos(wy-(t—5) ) + w-sin(wy: (t—s)))

(2.3)

H' (%) t—9|

a.(a2 —(H’(xo))2 +w

(T'(y,)) ol et I
((a—H/(XO))Z—I—w;)-((H/(XO)—Fa)Z + wj) H'(x,)

CH (t—s)=

XrDE X/BE

+e’a'“’s‘~[(—a2 - (H’(XO))2 + w§)~cos(w0 {t=s|)+2-a-w, sin(w|t—s|)]

2
)
+

(4)

Then taking the limit s —t to Equs.(2-4), since the left and the right limit of C{* (t—s)

(limits of Equs.(2-3), respectively) coincide, Equs.(2-4), reduce to:

(a—H'(x))
(a—H’(xo))2 + |

Coy . (0)=T'(y,) 0y -

Xoc Y roc

— (T'(y, )0},
I Y (UM

a.(aZ_H/(xo)2+wg> ) , 2 )
_ H(x) —a +(H (Xo)) +w,

X

Subsequently combining Equs.(19)_Sec(4.4.1) and Equs.(5,6), we get that the half-time
derivative is given by the formula

aCcLd) (t—s)

Xyoc ¥ roc

ot

a—H'(x
= lp/(yo).o-jt‘oc. / (20) 2 +\Pl(y0).o-§foc i
(a—H'(%))" + o5

s—t

()

. (6)

()

Finally, setting w, =0 in Equs.(2-7) we obtain the corresponding results for the case that the
excitation is an OU process. We write the ones that correspond to the limit cases —t, (i.e.

setting w, =0 to Equs.(5-7))
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'(Y,)- oy (W'(y,))* -0y
e, O e o (g O
o Yt (a—H'(x,)) o Yoo H'(%,)-(a—H'(x,))
(8-
X/oc /oc( _S) a_H/ X
= IR S L CS BT
. (a—H'(%))"
10)

In  Figs.6-8, the local correlation characteristics C{* (0), C{, (0),

I|m 8C§j“)y (t—s) / ot are plotted against the “centers” vy,, for the four cases of half-

oscillators considered in section 4.2. (Equs.(6-9)_Sec.(4.2)), and three values of the
correlation time (75" =0.93,0.51,0.33) of the OU process. The local input variance is

ajm =0.1. All parameters have been selected to be identical with the ones discussed for

IpFG input (Sec.(4.4.2)) for comparison reasons. In agreement with findings discussed
previously, the local correlation characteristics develop a minimum at zero in the linear/non-
Gaussian case (Case b, Figs.6-8), a maximum at zero in the non-linear/Gaussian (Case c,
Figs.6-8). These effects are combined in the non-linear/non-Gaussian case following a similar

pattern as in the case that the input is a IpGF stochastic process to both C‘°°’{ (0),

x/ocxl

Cc®™ (0, (Case d, Figs.6,7), this compatibility is lost in I|m oC, (“’ (t—s)/at (Case d,
Figs.8), especially for large absolute values of the excitation “centers” y,. In general all the

local correlation characteristics are significantly affected by the shape of the input function
(IpGf vs OU). The local covariances Cif:’c)ym (0) and Cif:c)xmc (0) obtained under OU random

input are always lower than the ones obtained under IpGF input and around y, =0, this

difference is as high as 18%. On the contrary, the local half-time derivatives
I|m aC (> —s)/ ot obtained under OU random input have always higher values than the

X soc Y ro

ones obtained by the IpGF excitation with these differences being as high as 400% (in the
non-linear/non-Gaussian case) for large absolute values of the excitation “centers” y,.
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Figure 6. C X@y (0) for different values of correlation time of the OU stochastic excitation against the

excitation state space for: a. the linear/ Gaussian case b. the linear/non-Gaussian Case. c. the non-
linear/Gaussian case. d. the non-linear/non-Gaussian case.
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Figure 7: The same as in Fig.6 for C iw)x 0).
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Figure 8: The same as in Fig.6 for lim 8C§°°)yf (t— s)/ ot.
s—t toc ¥ (oc

4.4.4. Local Gaussian REPDFs

The formulae for the two-time moments in the long-time regime obtained in Sections 4.4.1,
allow us to have a complete probabilistic characterisation of the linearized/localised RDE

given by Equ.(3)_Sec(4.4.1) (we repeat here for convenience):
Xyoe (15 0) = H/(Xo)'(xzoc(t ; ‘9)_)(0) + lPl(Yo)'(Yeoc(t 0)— yo)

where: (X,,Y,) are points of the RE-equilibrium curve defined in Section 4.4.1

o0)

More precisely, if C{>

(t—s) is the long-time covariance of the random input of the non-

linear half-oscillator given by Equ.(1)_Sec(4.2) (we repeat here for convenience):

X(t;0) =H(x(t;0)) + ¥(y(t;0))=0,
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2

then, for each choice of the scaling parameter oy,

, the local, long-time, joint, REPDFs

fx(lj:(t) yu(s) (@ B) of the linearized/localised RDE, will be Gaussian pdfs centered around the

(X, Yo) -points (see also Section 3.4), i.e:

1
fx(OO) Xoc (8 Oé,ﬁ = (1)
10c (1) (oc()( ) 27_(_\/(:)5(:060))(( (0)0-32, )((?:c)y/oc( _S)
< exp|— oy (@ =%)=2CL9 (t—s)-(a=%) (8- Y)+C, (0)-(8—y,)
( iii)x‘oc(o) )S?:Z:)y/oc (t - S))
where
me/oc( —S) = v (yo) (o'y/ | g2 ) f H(XO)‘(“H’S)'C}(S,O)(U) du, (2)
—t+s
N (\I}I(yo))z V=-+o00 ) oo
G O = 3 Thipgy <4 193 [ e e o, 3
V=-—o00

Moreover, the local RE cross-covariance C("O’ _(t—s) and local auto-covariance

c™ _(0), given by Equs.(2,3), further partlcularlze to Equs.(2,5)_Sec(4.4.2) when the

stochastic input C(oo)(t—s) is a IpGF and to Equs.(2,3,6)_Sec(4.4.3) when the input is a
sOU or OU process.

In Figs.9-11 the local joint REPDFs f ™) (a,3) (in the limiting case t — s) are plotted

oc(t) yloc(t)
in the RE space for three half-oscillators considered in Section (4.2), i.e. the linear/Gaussian
case (Fig.9), the non-linear/Gaussian case (Fig.10) and the non-linear/non-Gaussian case
(Fig.11), with IpGf excitation function and for two values of the excitation correlation time

(zy5 =0.93,0.33). The scaling parameter,ajmc, that also defines the excitation variance of
each local REPDF, has been selected to be equal to 1/10 of the global excitation variance 05,

i.e. ay . =01.1In each of the cases (Cases a, b of each Figure), five local REPDF’s are

plotted, centered at five different points (x,, y,) of the equilibrium curve. Let it be noted that
the “centers y,” are all points of the essential support of the input function y(t;6). The

characteristics of the local REPDFs, in the RE space, follow the local characteristics of the

- (OC) (OO) - - - - -
local (co)variances C,>) (0), C,>, (0) discussed in Figs.(3,4). More precisely, in the

linear/Gaussian case (F|g.9) all the five Gaussian REPDFs are the same for each excitation
correlation time, whereas, in both the non-linear/Gaussian case (Fig.10) and the non-
linear/non-Gaussian case (Fig.(11)) the (co)variances of each local REPDF are different, e.g.
the local REPDF’s that are centered at zero have larger response variance and RE cross-
covariance than the other four local joint REPDFs. Another important feature, developed in
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all the three cases of the half oscillators illustrated in Figs.(9-11), is that the (co)variances of

the local REPDFs increase with the excitation time of the stochastic input z ;5" .
Local RE pdfs : [pGF with t?" =093sec, ;= 0,%,=0 Local RE pdfs : IpGF with twr =0.33sec, py =0,x,=0
a 4 b. 4 35
3
3 3

Pl ' |
1 ’ L ’

’ S

Figure 9: Local REPDFs plotted in the RE-phase space for the linear/Gaussian case with IpGF excitation
and two cases of excitation correlation time ' = 0.93 (a) and 73" =0.33(b)

yy —
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Figure 10: The same as in Fig.9 for the non-linear/Gaussian case.
a Local RE pdfs : IpGF with tw’ =093sec, p, =-1, 1, =02 b. . Local RE pdfs : IpGF with Ix' =0.33sec, iy =-1,1,=0.2
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Figure 11: The same as in Fig.8 for the non-linear/non-Gaussian case.
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Figure 12: Local REPDFs plotted in the RE-phase space for the linear/non-Gaussian case with OU
excitation and two cases of excitation correlation time 7 %" = 0.93 (a) and 7" =0.33 (b)
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Figure 13: The same as in Fig.12 for the non-linear/Gaussian case
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Figure 14: The same as in Fig.12 for the non-linear/non-Gaussian case.
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In Figs.12-14 the local REPDFs f (t) yu(v (@, 0) (in the limiting case t — s) are plotted in

the RE space for three non-llnear half-oscillators considered in Section (4.2), i.e. the
linear/non-Gaussian case (Fig.12), the non-linear/Gaussian case (Fig.13) and the non-
linear/non-Gaussian case (Fig.14), with OU excitation function and for two values of the

excitation correlation time (77" =0.93, 0.33). The scaling parameter has been selected to be
the same as in Figs.(9-11), |.e.aym = 0,1. In fact, comments for Figs. (10, 11) also apply to

Figs.13,14 respectively. In the linear/non-Gaussian case, Fig.(12), the local REPDF given by
Equ.(1) is not defined at *“y, =0 center” since both the local (co)variances C(°°) _(0),

C ™ (0) are zero (see case b in Figs.(6-7)). Nevertheless, in Fig.12, we can see that the two

local REPDFs centered close to zero have significantly decreased (co)variances in
comparison with the four other local REPDFs plotted for each case of the correlation time
(a,b in Fig.12).

4.45. Comparison of local REPDFs with MC simulation results
The analytically calculated local REPDFs f ) ,(a.3), given by Equs.(1-3)_Sec(4.4.4),

Xioc (1) Yioc (t
of the linearized /localised RDE given by Equ.(3)_Sec (4.4.1), which is repeated herewith for
easy reference,

K00 (£:0) = H'(X)+ (X0 (t:0) =X ) + ¥/ (¥o) - (oo (£:0) = Yo ). 1)

have been compared with by MC simulation results performed by Z. Kapelonis. The results
of the MC simulation are obtained by generating samples functions vy, (t), of the local

excita-tion vy, (t; @), using the 1-D random-phase model. For instance, the local excitation
pdf is centered at the “centers y,” and the local excitation covariance is a scaled version of

- 2 2 - -
the global, ie, C,  (t,s)=0o, C, (t,s)/oy.Subsequently, the non-linear equation,

Xioo (1) = H (X0 (1) ) + W[y ,0(1)), (2a)
(0)=0, (2b)

/OC

(that is, the deterministic version of the RDE, Equ.(1)_Sec.(4.4.1), with zero initial
condition), is solved using ODE45, a MATLAB® implementation of the Dormant-Prince
method (Dormand & Prince 1980), an explicit Runge-Kutta (4,5) formula. The MC pdf
estimations are computed using the kernel density estimation via diffusion, introduced by
Botev et al. (Botev et al. 2010) and coded in MATLAB® functions by the same author.

In Figs.15,16 the local Gaussian REPDFs f(‘”m yom(c,B) obtained by the analytical

Xloc

solution of locally linear/ locally Gaussian problem (left column, cases a,c,e in Figs.15,16) are
compared with local non-Gaussian REPDF’s obtained by MC simulations (right column,
cases b,d,f in Figs.15,16). For each method of solution, three local REPDFs are plotted for
three different “centers y,”. In Fig.15 the non-linear/Gaussian case is considered, whereas in

Fig.16 the non-linear/non-Gaussian case. In all cases the stochastic input is a IpGF with
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Yi
satisfactorily.

y

aanalytic
2-.Solution

analytie
-.$solution

analytic
2b$olution...

b.

4~

*"Monte Carlo
2---simulation

oy =01 and 7" =0.93. In general, results obtained by the two methods compare pretty

¥ Monte Catlo
z--simulation

¥Monte Carlo

2=-simulkation

Figure 15: Local REPDF’s obtained by the analytic solution of the local linear problem (left column) and MC
simulations (right column) on the non-linear problem. Here the non-linear/Gaussian case in considered.
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‘MonteCarlo

Zrsimilatio

. analytic
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Figure 16: The same as in Fig.15 for the non-linear/non-Gaussian case.
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4.5.  Numerical Solution of the REPDF evolution equation in the long-time-statistical
equilibrium regime

4.5.1. Kernel density representation for the joint response-excitation and marginal
pdfs.

The target of the numerical solution to the REPDF evolution equation, Equ.(1,2a,b) Sec(4.3),
supplemented by all appropriate auxiliary conditions about the RE correlation structure, is to
find the time-independent (statistical equilibrium) joint REPDF
foy(a,B) = tILrpc fx(t)y(t)(a,ﬂ). However, in order to cope with the appearance of the

unusual, response-time (half-time) derivative in 6fx(t)y(s)(a,5)/8t‘ e have to
S—

introduce a suitable representation of the lag-time dependent joint REPDF fx(t)y(s) (a,5). The

selection that has been made aims to provide the ability to embed the additional information
concerning the local RE-correlation structure, acquired in Sec.(4.4), to the REPDF evolution
equation.

Setting ¢(a,3;7) = fX(t)y(t—T
type (,83;7) — ¢(c,3;7), defined on Rx RxV (0), where V(0) is a neighborhood of
zero, and having non-negative values. In addition, we assume that, for each 7€V (0),
(a,3) — (p(a,ﬁ;r) is continuous, it has continuous partial derivative with respect to «,

tends uniformly to zero as . a?+ 32 — 0o, and satisfy the integral constraint

ff¢r<a76;7)dad6 =1 (in order to be a pdf). As a function of the lag time,

RZ
T — go(a,ﬂ;r) should be continuously differentiable.

)(a, (), the representation problem concerns functions of the

The implementation of an efficient representation of functions ¢(a,3;7), preserving all

above stated properties, is a difficult problem, without any supporting theoretical background.
On the basis of previous (successful) experience in representing bivariate pdfs by
superposition of Kernel Density Functions (KDFs) (Athanassoulis & Belibassakis 2002;

Athanassoulis & Gavriliadis 2002), and in view of the fact that fx(t)y(s) (a,B) is locally (in
(o, 8) — space) approximated and investigated in terms of a Gaussian pdf (see Section 4.4)

we adopt the following representation, which will be subsequently called Kernel Density

Representation (KDR):

fxoyyes) (.8)= Z pij'K(afﬂ; a;, p; ’Zai,ﬁj(t_s))’ 1)
L]

where («;,8;), (i,]) € ZxZ , is a grid of points in the phase space R xR, each (a;,0;)
serving as the center of a Gaussian kernel density function K (a,3;-,-,*), while
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Caa (0) Ca-ﬂ- (t—S)
Y pi(t—s)= o . (2)
i Caiﬂj (t—S) Cﬁjﬂj (0)
is the covariance matrix of K («,3;-,-,+). To ensure that (1) will always be a legitimate pdf,
the following constraints are imposed on the unknown coefficients p;, (i,j) € ZxZ.

0<p, and ) p,=1. (3a,b)
i

In principle f )(a,ﬁ), 7€V (0), is supported on the whole plane Rx R . In the

)(a,ﬁ), that is, on its

X@)yt—r

present work we focus on the main-mass part of f, (a,3) = fx(t)y(t
form in its essential support D, . The latter is conventionally defined as the subset of R x &

where fy, (a,3) > gw10’3-max{fxy(a,ﬁ)}.

Des = {(a,ﬁ)ERxR: fuy(a,B) > ¢ z10’3-max{fxy(a,/6)}}
Thus, the approximation will be restricted in a compact subdomain
Daﬁ = [amin ’amax]x[ﬁmin ’IBmax]7

of RxR,suchthat D CD,, (tail questions are not considered herewith), and the indices
(i, j) will run over the finite set N(1)xN(J), where N(1)={1,2,..,1} and N(J) is
similarly defined. Since D, is not known a priori, some preliminary information is
necessary in order to choose the computational domain D, ;. This information is provided by

the long-time solution of the two-time RE moment equations (studied in Section 5.3), in
conjunction with the essential support of the known excitation pdf f,(3).

The known marginal pdf of the excitation f () also admits a KDR which reserves the

marginal compatibility (Athanassoulis & Belibassakis 2002). In fact, the excitation pdf admits
the following marginal KDR, when the grid points («;,3;), (i,j)€ZxZ are regularly

spaced:

fy(s)(ﬁ): Z pij'fK(a,ﬂ;ai,ﬁj,iam(t—s))daz Z Py K, (5;5,-,%,- )

) @

where p; = E p;; -

The above representation generalizes to:
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fys(0) = Z pij'fK(Oé;ﬁ; ai'ﬁjiiai,ﬂj(t_s))dazz Pij- Kﬁj(i)(ﬂ; Bidy» %55 i)

(5)
when the 2D-Kernels span a non-regularly spaced grid, i.e. when to each response grid point
a; correspond j(i) Kernels in the RE space.

4.5.2. Reformulation of the long-time limit form of the joint REPDF evolution equation
using the KDR representation

Introducing the KDR, given by Equ(1)_Sec(4.5.1) in Equ.(1,2a)_Sec(4.3), (the constitutive
conditions, Equ.(2b,2c)_Sec(4.3) are automatically satisfied thanks to the defining properties
of the KDR), we obtain the following reformulation of problem Equ.(1,2) Sec(4.3):

Zpija ( 05 fi X alﬂ1< S)) +

i,j s—t

+ aa—a{(H(a)—i— ‘P(ﬂ))-K(a,ﬂ;ai,ﬁj,Zmﬁj (o))‘sﬁt} =0, (1)

V(a,ﬂ)eRxR

under the marginal compatibility constraint

Zp” (B:8 .0 ) - 1,03) =0, ©)
where

K54 CHETLATIES fK<0475iOéwﬂ;vEm,sj (t—s))da (3)

aceR

is the induced marginal kernel density function.

The local character of the introduced KDR allows us to supplement Equ.(1) with previously
obtained information about the local correlation structure. Assuming Gaussian Kernels
(although other choices are possible), i.e.

, (5)

K(a;ﬁ;awﬁj’iai,m (t—s)) = _W

2.71'-Wij (t—S). 2'(Wij S>>2

where:

_ \/c% Cyy — (Caﬁ,] (t— s))2 , (6a)
E;(a.8;t—s) = C,, (a—a,) ~2:C,, (t—s)-(a—a,)-(8-8,)+C,.-(5-5,). (©a)

Then, after performing some algebra (see Appendix 6) in the first term of Equ.(1), we have:
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8 . w a Cai‘lj
EK(aaﬁ, Q; yﬂj DI (t_S)>5Ht = acawaj <t_S)SHt 2-7T-(j/Vij>5 X
2 2 2 Caiai 'Cﬂjﬁj
X[<Wii> —Cos, ~(a—ai> ~Caa '<ﬁ_ﬁj) * C—_g_+caiﬁi '(O‘_O‘i)‘<5—5j) x
X exp 5 (a,ﬂ;tz—s) : 7
2- (W, )

where C, =C,, (0),C,, =C,; (0).

e

The kernel variances C C,a,,a,. are adjusted to D, ; and the resolution of the grid, aiming at

a certain degree of overlapping between contiguous Kernels. The details of the
implementation of the KDF parameters will be further discussed in Section 4.5.5. However, it

is important to mention that the RE cross-covariance C,; and the half-time derivative
oC,, (t—s)/ot| , appearing in Equs.(5-7), are estimated (approximated) using obtained
itj s—t

information about the local correlation structure from the closest to (a,, ;) point of the
equilibrium curve, which will be denoted as (xO,y0)|a_ 5 That is, the solution of the
LA

localized/linearized problem at (x,, y0)|a_‘ﬁ_ (Equ.(3)_Sec(4.4.1)) is used to a priori approxi-

mate oC_, (t—s)/ot| and Cn,q]_, rendering the localized/linearized problems a priori
i85 o il

closure conditions to the reformulated REPDF evolution equation (given by Equs.(1,2)).

On the basis of the KDR given by Equ.(1)_Sec(4.5.1), and the a priori approximation of the
Gaussian KDF coefficients by the solution of the localized/linearized problem, the
determination of the sought-for joint REPDF has been reduced to the determination of the
coefficients P, (i,j)€N(1)xN(J), from the system of Equs.(1,2).

4.5.3. Galerkin discretization of the problem

Since the reformulated joint REPDF evolution equation, Equs.(1,2) Sec(4.5.2), should be
satisfied for every («,3) € Rx R, a discretization is necessary in order to obtain numerical

solutions. We shall use a Galerkin type, weighted-residual method (Kantorovich & Krylov
1964)(Zeidler 1990) to find a discrete system of equations, approximately equivalent to Equs.
(1,2)_Sec(4.5.2). Similar methods have been used by various authors for solving the steady
state FPK equation. see e.g. (Bhandari & Sherrer 1968; Langley 1985; McWilliam et al.
2000).

Let us define the residuals
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0
de(a,ﬁ;{pij}) = Zpij It ( B, al’/BJ’EO”ﬁJ( S)) +
1] s—t
+ %[(H(a)+ \P(ﬁ))'K<a7ﬂ;ai’ﬁjiiai,ﬁj<0>)}’ (1a)
Ry (B3P }) = D puKy, (8585005 0) — (8) (1b)

According to the weighted-residual method, the unknowns p,;, (i,j)€N(1)xN(J), are

evaluated by imposing the condition that the projection of the residuals on a system of
linearly independent functions is zero:

ff 2d Kl(a,ﬁ)dadﬂ—o V(xk,1)eN(K)x N(L), (2a)
led(ﬁ;{pij})-Az(ﬁ)dﬂzo, v ZeN(D), (2b)
R

where N(K) = {1,2, .., K } etc. There is quite a flexibility in choosing the functions

AM(a,B) and [\i (8), which we shall call subsequently Galerkin kernels. In the present

work the Galerkin kernels are chosen to be Gaussian kernels, similar to the representation
kernels K(«,3;-,-,*). Combining Equs.(1) and (2), we obtain

S P Gy = 00 Yk AEN(K) X N(L), @)
Iy

Zpij-éjm =g, (1), vAeN(D), (3b)
¥

where

Gij KA GIJ KA + Gl(JZ)K/I’ (43.)

Gl = ffat @B @B Zapt-9)| Ao dads @

ffa (H(@) + ) K055 @005, % 0, (0)) | A i) dad =

—f H(a) + ‘P(ﬁ)) (a,ﬁ; a;, B ,Zai’m( )) A(,l()l(a B3) dadg, (4c)
2

M oA . ;(a,B)
A /‘L( ﬂ) Ta

éJ'(i),X - f B (ﬂ /8](I)’ 8i (|)) A (6) da, (4e)

R

(4d)
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0, (1) = [ 1,0 ap. (4)
R

The specific structure of the equation to be solved enters in the coefficients

Gj(i) Z,Gi(jl’)M,Gi(f’)M implicitly through Kernel coefficients which contain information

from the family of the localized problems. Moreover fo)m is also explicitly dependent from
the structure to be solved, e.g. for the case study that the RDE is a cubic half-oscillator

described by Equ.(3a)_Sec(4.2), G,(JZ)K , Specifies to
G, = _f (py-a + pg-a® + 510 + Ky 57)%
R2 (5)

<K(a,8; a1, B % 4.5 (0))-AY , (a.5) dadB.

On the basis of the above discussion, the problem of calculating the expansion coefficients
p;; of the joint REPDF takes the following form:

Find p;;, (i,j)€ N (1)xN (J), satisfying the homogeneous equation

Zpij'Gij,mz 0, V(x,4)e N(K)xN(L), (62)
By

under the marginal compatibility constraint

> piGiy s =9, (F),  vZeN(D), (6b)
i :

and the constitutive constraints

S Py =1 Py =0, V(i,i)eN()xNQ). (6c)
i

Recall that the problem, defined by Equ.(6), is supplemented by the family of the linearized/
Gaussianized problems, that embed information about the RE correlation structure to the

Galerkin coefficient Gj(i),/i’ Gijxa

4.5.4. Analytic Computation of the Galerkin Coefficients.

Assuming that the Galerkin kernels are Gaussian pdfs, i.e. ]\x(ﬁ) : Am(a,ﬂ) , are given by
the formulae

@)
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_ : - 1 _ E,,(a,8;t=5s)
AraleB) = KlooBi o Ba 2] = 2:-W,.,(t—5) exp_z.(w,d(t—sﬁz “
where
W, (t— s)_\/C oo —(Cot=9)) (3a)
Ea(a,Bit=s) = Cm~(a—ah~)z—2~Cm(t—5)~(a—aﬁ)~(ﬁ—ﬂx)+CaNﬂ, (B8,
(3b)
and, therefore, (applying Equ.(7)_App(4))
AY (a.5) = oA, ,(a,B)
4 foJe" B
(4)
_CﬂAﬁA~(a—ak)+CaKﬂx.(ﬂ—ﬁi)‘exp_Em(a,ﬂ;t—s)
2'”'(\/\/1(},(1:_5))3 2'(Wkl(t_s))2

The Galerkin coefficients, G(l),(,1 (Equ.(4b)_Sec(4.5.3)), G(Z) , ((Equ.(4c)_Sec(4.5.3) or
Equ.(5)_Sec(4.5.3) for the cubic half oscillator) and Gj Ay (Edus.(4e)_Sec(4.5.3)), can be

analytically computed. The marginal Galerkin coefficient G Ay after some algebraic
calculations, takes the form:

(ﬁj(i) - B, )2

~ 1 B
2:(C BiiyFic) +C5A5A) ’

G -exp
A~ \/2 \/ BimPia +C‘ﬁ*‘ﬁ*

(®)

where 3, are, respectively, the marginal mean value and variance of the

i *’i(')ﬁj(i)
representation Kernel K <a,ﬁ; . B, ,Eaiﬁj(t,s))(see Equ.(5)_Sec(4.5.1)). Let it be noted
that the marginal Galerkin coefficients GM, are compatible with the locality of the marginal

KDR, since, as we can see in Equ.(5) 'é'j(i),A —0,as ‘5,- —ﬁA‘ — 0.

Moreover, as shown in Appendix 7, the Galerkin coefficients G\"
the equivalent form (see Equs.(4,15) _ App(7))

., G2\, can be written in

1 uﬂ
Gﬁ-x— (W) Vi/ ff 120 @ 1L gy B2+ 10 B+H100) (6)
ij

XeXp[_(Ql,zo " +Q1,11'O"ﬁ +Q1,02 ﬁ +Q1,10 @ +Q1y°1 0 +Q1~00) }dadﬁ
and
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G;Z:A_Ll 2 W ff 210 01,0 ﬁ""szo « +H211 Q- ﬂ""Hzozﬁz
+ 11,4 "‘1_[2,21'052 'ﬂ"""nz,zl'a 'ﬂ+H2,o3ﬁ + (7
+ H2,40 a’ ‘f'Hz,sl'O‘3 'ﬁ‘f"f'ﬂz,ls 'O"ﬁB +H2,0464 )X
xeXp{_(Qz,zo 0’ + QB+ Qypy 7 +Qp +Q2,01‘ﬁ+Qz,oo)d0‘dﬁ:
where:
W, =/C,,-C,y —(C,)" W, =4C,, -Cyy —(C,, )", (8a,8b)
1_[1,20 - _Caiﬁj CJJdJ ’ 1_Il,OZ = _Caiﬂj 'Caiai ’ (8C!8d)
1_[1,11 = (Cuiai 'Cajaj + (Caiﬂj )2)1 1_[1,00 = Caiﬂj '(Wij)zv (8e,8f)
Hz,lo _CgAgA'(Na‘aHS‘FMl'aN + k- B, +53'5A3), (89)
]‘_‘[2,01 = CahﬂA .(MS .ah‘,s +/‘Ll 'ah‘, +K’1 'ﬁA +K’3 ./8A3)l (8h)
11,1, =3 g 'Cah@ 'Oﬂgz +/L1'Caw;@ _/il'cg' —3-k,5-C, NN 'ﬁxz ; (8i)
I, = _(3'M3'CﬂwA 'O‘nz +M1'CBABA)’ I, = (K +3k3-C 0,6, ﬁxz) C., By ! (8k,8l)
Iy 50 = 3- 41 'Cah:@ o, 1L, =—=3£;-C 3,8, By g = =3 ptg- C@@ Qs (8m-80)
I, 0 = 3k, 'Ca,cﬂA B, 1,0 = piy 'Caw@y ,, = _ﬁs'c@;ﬁy (8p-83)
Hy0 =r3C, 5, ;0 ==t 'C@;JA (8u,8v)
1 CB»B- Cg 8 Cn Bi Ca 8
=—|—5+—""5, — +—=, 9a,9b
%073 [(vvi,- Pl T oy e
Q=7 oz Quo = LN s . (9c,9d)
2 W) W) ( 2 )
C.o (B;—8,)-C,; (a;—«,)
Qo = - 7 ) (%e)
(WH)\>
1
Qo= g (O (010 =2 =0, )09, 8,) +C,.,(5,-0,)) (0
KA
1
Qz,lo = w )2 '(Cﬁjﬁj (o, — ai)_Cai/jj (8, — ﬁj )) (99)
ij
1 h
Qo =g 7 (G (81 = 8)=Co (o, = ) (9h)
ij
1 .
Qo0 = m'(czajzaj (a, _Oéi)2 +Ca|a| (8, _51')2 _2'Cn(|{ij (o, —ay)- (8, _61‘)) (91)
ij

The explicit calculation of the Galerkin coefficients is tedious. The details of calculations are

presented in Appendices 8-9. Herewith we present the results:
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Explicit Calculation of the Galerkin coefficient G,

The explicit calculation of the Galerkin coefficient G,jl)A is performed by the application of

integration formulas for the up to 2" order polynomial exponential integral derived in
Appendix 8. More precisely, in Appendix 8 it is proved that when

4'Qoz 'on _ (Qn)z

>0 and
QZO 4 . on

>0, (10a,b)

the following integration formula holds true (see Equ.(1)_App(8)):

ff(ﬂzo'az+H11'04ﬂ+H0262+H10'a+H01-ﬂ+HOO>><
RZ
Xexp{_<Q2°.a2+Q11'a'ﬂ+Q02'ﬂ2+Q10'04+Q01'5+Q00)d0‘dﬁ:
2.7

B \/4'Qoz 'on _<Q11)2

'(Czo 'Hzo + Gy 1_111 + Coz 'Hoz + Cpo- HlO + Cor- 1_101 + 1_Ioo) X (11)

X eXp [_ Qp ‘(Qlo )2 — Q11 Q- Qo + (Qn)z "Qoo +Qp '(Qm )2 —4-Qp - Qpz Qo ’
—4-Qp - Qp +(Qn)z
where
Cp = —2-Qpp Qo +Q112'Qo1 , (12a)
4-Qy- Q. — Q1
_ —2:Qy-Qy +Qy-Qp , (12b)

Q0]
o 2Qp  (QuQu-20Qu)
4-Qp Qe —(Qyy)° (4.Q02 Q, _(Qn)Z)Z
. Q (QuQ=2:00'Qu)(QuQu=2QuQ)
(4-Qup Q0 —(Qu)')

- 4'Q02 'on _(Q11>
Cor = 2:Qu + (220 Qu +Qu Q) (12€)

(400 Qu=(Qu)] (40w Qu-(Qu)]

(12c)

CZO

(12d)

Applying Equ.(11) to Equ.(6), after some extensive algebraic manipulations that we skip in
this work, we find that the constrains given by Equ.(10a) and Equ.(10b), respectively, reduce

to:

C,. C..
”‘”‘2 +-—22- >0 and
W; ) (W)
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2
C,'Cys +C,. Cyy +C ~(Cup, +Cu,) =

:( a0 \/CaH \/C?? \/Caa) >0,

whereas the Galerkin coefficient Gi% is given by the explicit formula:

'Ca IoN ""Ce-a- -C

a0y .,

G(l) . 1 3Caiﬁj ’ (CahﬁA + Calﬂj )
ijEA 2. : 5 X
<Wij,m>\>

x| Wy,)2 = (e =) (C 5 +C, ) = (8= 6 (C,,, +C,0 )+

CLW, Coo, TCa Cﬁ,u, 1 Coo, Cis, T Caa Cis,

Q.

+(oy—oy)- (B —-B)|C, 5, +C, , + X
( i k) B j ﬁx) 0,0 i) Cah% i Ca,u
1
X ExXp _—2'<(Cﬂjﬂj +C;3M9A)'(O[i —a,)’ _2'(Cahﬂ)\ +Caiﬂj)'(ai —a,) (8, -8,)+
2. (Wij,r;/\)
+(Caa, +Ca ah)' (ﬁj _ﬁA)Z]’ (133.)

where
Wiiv'i)\ - \/C(’i“‘i .Cﬁjﬁjj +C<M% Cd)\d)\ +Cai&i ’ Cﬁxﬁ; +Cd]d o, (Caﬁ +Ca Oy )2 (13b)

Let it be noted that as we can see in Equ.(13a) the Galerkin coefficients G\, reserve a local

ij,KA

character, since G,

—0,as ‘ai—an‘—m)o,

Explicit Calculation of the Galerkin coefficient GIJ o

(2)

Similarly, for the explicit calculation of the Galerkin coefficient G;°,, ,

integration formulae

for the calculation of up to 4™ order quadratic exponential integrals are applied to Equ.(7).
More precisely, Equ.(1)_App(8) is used for the calculation of the quadratic exponential
integrals and Equ.(2)_App.(9) for the calculation of 3,4-polynomial/quadratic-exponential
integrals. Being laborious the involved substitutions are directly performed in Matlab®. Let it
be noted that the local character of the KDR is retained to the Galerkin coefficient G,ji) , also.

4.5.5. Solution of the half oscillator problem

The problem & defined by Equs.(6)_Sec(4.5.3) is solved as a constraint minimization
problem, using the LSQLIN function of MATLAB®. As a rule, it is assumed that K > | and
L > J, and thus, the number of equations K x L is greater than the number of unknowns
I x J . The numerical solution involves three steps. In the first step representation kernels and
Galerkin kernels are identified. Concerning the representation kernels, their centers
a;,B;, 1eN(I), je N(J), are placed on a regularly spaced grid over the computational
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domain D, ;. The latter is defined as the Cartesian product of the essential supports of the
two marginal density functions D,, =D, xD,. The essential support of the excitation
density (D;) is known, whereas the essential support of the response density (D, ) is initially

estimated by means of the long-time equilibrium state global variance of the response C. (0).

This is accomplished by the direct solution of the two-time RE moment equations in the long-
time, presented in Chapter 5. The essential support, D, , of the excitation is assumed to be

D, ~ ( 45./C3(0), 45 [c (0)) )

C, (0) can be calculated using Equs.(24)_Sec(5.3.1) for any smoothly correlated stochastic
input. Explicit formulas providing C,, (0) when the excitation is a IpGF or an sOU process or
are provided by Equs.(6,14)_Sec(5.3.2) (for m* =0 ), respectively.
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Figure 17: Non-linear/Gaussian case: a. The regularly spaced grid over the computational domain DW

where the representation Kernels are placed. Each Kernel’s RE correlation structure is defined by the
local correlation structure of the closest point of the equilibrium curve. b. After one iteration the grid
densifies around the high probability mass area.

The kernel variances C C are adjusted to D, ; and the resolution of the grid, aiming at

;o !

a certain degree of overlappmg between contiguous Kernels. For each examined case the RE
equilibrium curve is found by solving Equ.(1)_Sec(4.4.1). The Kernel covariances and half-
time derivatives take values from the analytically calculated local correlation structure of the
closest point of the RE equilibrium curve as it is shown in Fig.17a for the non-
linear/Gaussian case (see Equ.(6)_Sec(4.2)), and in Fig.21a for the non-linear/non-Gaussian
case (see Equ.(8)_Sec(4.2)). More precisely, the kernel covariances C, 5

ieN(I), jeN(J), are defined by means of the formula

C.o. = P(0)-{/C,. -y/Cys, » 2)
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where the local correlation coefficient pl‘;c‘”(O) is calculated from the localized problem
studied in Section 4.4, at the point (x,, y0)|a> 5 and is given by the equation:
P

- N ()
P (0) = \/ 0, 0 : (3)

XfOC X/DC

c) (0), € (0) are obtained from Equs.(16,17)_Sec(4.4.1) by setting 7 = 0, i.e

X/oc Y roc Xoc X 1o

Gt @ = ¥'o f ety (W) du, (4)
Yy) T ,

c () 0 :(—O C v .eH(XO)“V‘ dv | c

xlocxf;oc( ) 2'<—H/(X0)) X f y,ocy,oc( ) ( )

=—00

and as explained in Section 4.2 particularize to Equs.(4,5)_Sec(4.4.2) for a IpGF excitation
and Equs.(5,6)_Sec(4.4.3) for OU excitation. Let it be noted that the correlation coefficient

(x)(O) is independent from the scaling parameter ay , that defines the variance of the

localized excitation , ie. C{*) =o) C{F(t—s)/oy.

IOC y/DC
The long-time limit 6’Cai_Jj = Iirrlacaigj(t—s)lat, necessary in order to fully specify the

coefficients G is estimated from the localized approximation given by

ij,xA
Equs.(19)_Sec(4.4.1) for any smoothly correlated stochastic excitation

o0

\P,(yo).feH/(XO)Au- onc)'toc (u)du +‘{I(y0) 5’7:3)’!00(0)’
0

(t—s)

X/uc Y roc

= HI .
ot (%)

s—t

(6)

by Equ.(6)_Sec.(4.4.2) for IpGF and by Equ.(7)_Sec.(4.4.3) for sOU stochastic excitation. For
the calculation of the half-time derivative the scaling parameter defining the local excitation

variance Cﬁ)y, (0):0-5/ , 1S independent from the Kernel variances that are defined in

terms of the of the overlapping between contiguous Kernels and is selected to be equal with

the global excitation variance, i.e. o-im = o-j.
In the present work the Galerkin Kernels have been selected to be identical with the
representation Kernels. Other choices are also possible, and some of them have been tested
successfully in various numerical experiments performed. The marginal Galerkin Kernels
were selected to span the computational domain of the excitation density, with standard
deviation ensuring the necessary overlapping between adjacent kernel, enabling an accurate
and smooth approximation of the known density fy(ﬁ). Having defined all parameters
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appearing in the representation and Galerkin kernels, all Galerkin coefficients G

. .. g

i@, A" YA
the numerical solution of problem Equ.(6)_Sec(4.5.3). This is performed using LSQLIN, the
constrained least squares MATLAB® function. The solution yields p;;, from which a first

estimate of the joint REPDF is obtained. Then, we proceed to the third step. Now, the
solution obtained in the second step is exploited in order to estimate the essential support
D, to redistribute the kernels, and redefine the kernel parameters. More precisely, kernel

centers densify where most probability mass is concentrated, space out at the low-mass areas,
and vanish completely outside D (see Figs.17b,21b) for the non-linear/Gaussian and non-

ij,kA?
(f,), can be calculated, and thus we can proceed to the second step, namely,

linear/non-Gaussian case, respectively). The kernel variances C Cﬁjﬁj are adjusted to the

. 1
[erens

new grid, and Kernel parameters C 8Cai(,j are calculated again in the same way as in step

;!
one. Similarly, Galerkin Kernels are redefined using the new centers and new parameters of
the representation kernels. With the new parameter-set, problem Equ.(6) Sec(4.5.3)., is
solved again. Within usually one or two iterations, the essential support converges, and the
final solution f («,3) is extracted. This solution compares pretty good with the

corresponding one calculated by means of the MC method.

The final p; estimations can be used in the representation formula, Equ.(1)_Sec(4.5.1), for

the evaluation of the joint REPDF. The marginal pdfs can be calculated by the integration of
the joint density.

45.6. Results

Numerical results are presented for three cases of the half oscillator discussed in Section 4.2.,
namely, the non-linear/Gaussian, the non-linear/non-Gaussian and the linear/non-Gaussian
case (see Equs.(6,8,7) Sec(4.2), respectively). The correlation structure of the excitation is
IpGF and two different correlation times are considered for each half oscillator. The joint
REPDFs f,,(a,3) and the marginal pdfs f,(a) derived by the numerical solution of the

constraint optimization problem =& (hereby referred to as RE solution) are systematically
compared with the results obtained by a conventional Monte Carlo scheme developed by Z.G.
Kapelonis (hereby referred to as MC simulation).

In Figs.18-19, the joint REPDF are shown, as using RE theory and MC simulations,
respectively, for the non-linear/Gaussian case. Two different correlation times of the IpGF are

considered, i.e.7 " =0.93sec (case a) and 75" =0.4 sec (case b). Figs.18-19 also depict the

marginals obtained by the two methods. The absolute difference between the joint REPDFs
obtained by the MC and RE method for cases a, b is shown in Fig.20 (case a, b, respectively).
This difference is, in general, less than 5% in all cases, except for the high probability areas in
the strongly colored case where it locally reaches a maximum of 15%. In general, the pdfs
shapes, as obtained by the two methods, are very similar. In addition, the response pdfs
calculated by the two methods, compare very satisfactorily, regardless of the colour strength
with the difference in the response marginal been less than 2%. An interesting and somewhat
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Figure 18: Non-linear/Gaussian case: REPDFs as calculated using the RE solution for IpGF stochastic

corr corr

input with correlation time 7 =~ =0.93 (case a) and r = =0.4 (case b). The marginal projections depict
both MC (solid lines) and RE solutions (dashed lines).

a b.

response PDF:

probability mass
probability mass

Figure 19: Non-linear/Gaussian case: REPDFs as calculated the MC solution for the same cases as in
Fig.18. The projections depict the marginal pdfs.
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Figure 20: Non-linear/Gaussian case: The absolute difference between RE and MC solutions
illustrated in Figs.18 and 19, respectively. Cases a, b are defined as in Fig.18.
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corr
yy !

the joint REPDF becomes bimodal, although the examined system is mono-stable (the
corresponding potential is — x*/2 — x*/4). This leads to a quite flattened marginal response
PDF. Note that the bi-modality of the joint REPDF, as well as the response PDF, is a well-
documented feature of the bi-stable systems (Jung & Risken 1985)(Grigolini et al. 1988).

surprising feature, confirmed by both methods, is that, in the case of high values of 7

Similar results have been obtained in the non-linear/non-Gaussian case. In Figs.22-24, the
joint REPDF are shown, as using RE theory and MC simulations for the non-linear/non-

Gaussian case under IpGF input with =" =0.93 (case a) and 7' =0.4 (case b). The RE

solution is provided by a superposition of the representation Kernels whose RE correlation
structure is defined by the correlation structure of the closest point in the equilibrium curve as
shown in Fig.21. Comments on Figs.18-20 also apply here. Moreover, we can see that in this
case the presence of non-Gaussian excitation results in joint REPDFs (Figs.22,23) with
enhanced tales in comparison to the previous case that the excitation is Gaussian (Figs.18,19).
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Figure 21: Non-linear/non-Gaussian case: a. The regularly spaced grid over the computational domain
Daﬂ where the representation Kernels are placed. Each Kernels RE correlation structure is defined by

the local correlation structure of the closest point of the equilibrium curve. b. After on iteration the grid
densifies around the high probability mass area.

1. Response PDF

probability mass
probability mass

Figure 22: Non-linear/non-Gaussian case: REPDFs as calculated using the RE solution , for IpGF

corr corr

stochastic input with correlation time z = =0.93 (case a)and z = = 0.4(case b). The marginal
projections depict both MC (solid lines) and RE solutions (dashed lines)
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©
=

probability mass
probability mass

Figure 23: Non-linear/non- Gaussian case: REPDFs as calculated the MC solution for the same case
as in Fig.22. The projections depict the marginal pdfs.

Figure 24: Non-linear/non-Gaussian case: The absolute difference between RE and MC solutions illustrated in
Figs.22 and 23 respectively, for IpGF input with correlation time ¢ %" =0.93 (case a) and ¢ 7" = 0.4 (case b).

In Figs.25-27 results are demonstrated for the linear/non-Gaussian case for IpGF input with
excitation correlation time 7 %" =0.51 (case a) and 7" =0.33 (case b). The absolute difference

between the RE (Fig.25) and MC method (Fig.26) is in general, less than 5% in all cases,
except for the high probability areas in the strongly colored case where it locally reaches a
maximum of 20%. The latter, local, high mismatch should be associated, with the local
steepness of the corresponding PDFs. It is interesting to notice the strong deviations of the
calculated PDFs from the “equivalent” 2D Gaussian distributions, for all the examined cases.
The same also holds for the response densities, as intuitively expected.

a. b.
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@

probability mass
=
-
probability mass

£
ha
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Figure 25: Linear/non-Gaussian case: REPDFs as calculated using the RE solution for IpGF stochastic

corr corr

input with correlation time z = =0.51(case a) and 7 = =0.33(case b). The marginal projections
depict both MC (solid lines) and RE solutions (dashed lines).
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B

2

probabllty mass

Figure 26: Linear/non-Gaussian case: REPDFs as calculated the MC solution for the same case as in
Fig.25. The projections depict the marginal pdfs.

Figure 27: Non-linear/non-Gaussian case: The absolute difference between RE and MC solutions illustrated in
Figs.25 and 26, respectively, for IpGF input with correlation time z " =0.51 (case a) and 7 " = 0.33 (case b).
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APPLICATION OF RE THEORY TO NON LINEAR DYNAMICAL
SYSTEMS: Two-TIME RE MOMENT EQUATIONS FOR NON
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5.1. Introduction

In this Chapter, we will present the formulation and solution of two-time (t,s), response-
excitation (RE) moment equations for the computation of the evolution of the response mean
value m, (t), response-excitation cross-covariance C, (t,s) and response auto-covariance

C,,(t,s) of acubic half oscillator, excited by colored (Gaussian or non-Gaussian) noise.

The derivation of these moment equations is, similarly to the linear case, straightforward
based on the repeated use of the dynamical equation multiplied by the excitation or the
response function and been averaged. However, unlike the linear case, the non-linearity
makes the moment system an infinite hierarchy of moment equations that must be closed at a
certain level. Moreover, the presence of two time variables that is essential in order to capture
the non-local in time effects of the colored stochastic input, makes the system not closed in
time as well.

In the monostable case, to obtain a moment closure, a standard Gaussian closure assumption
will be invoked. The latter will lead us to a system of two-time RE moment equations for
C,, (t,;s), C,(t,s), m,(t) thatis closed in terms of moments but not closed in terms of

time. To obtain a time closure an exact time-closure condition will be used for the one-time
moments C, (t,t), C,(t,t), m,(t). Let it be noted that the extra condition for the one-

time moments (see Equ.(22)_Sec(3.2.1)) is not required in order to obtain a time closure in
the linear case.

The two-fold closure of the two-time RE moment equations for the non-linear half oscillator
will be presented both in the transient state as well as directly in the long-time limit.
Subsequently, the solution is presented in the long-time only. As we have already discussed in
Chapter 4, the long-time solution of the two-time RE moment equations is used to define the
computational domain of the numerical scheme, for the solution of the REPDF evolution
equation in the long-time. However, the two-time RE moment equations have also been
numerically solved in the time domain, by the use of a two-scale iterative scheme. (see
Athanassoulis, Tsantili & Kapelonis, 2013a).

Finally, a first idea for a bi-Gaussian moment closure scheme that generalizes the two-time
RE moment equations for the bi-stable case will be discussed. The obtained equations will be
solved directly in the long-time for an example case. The solution requires the use of auxiliary
information, obtained by MC simulations, concerning the mean values of the two stable
modes around which the probability mass is concentrated. Results are subsequently discussed.

5.2.  Two-time RE moment equations. The monostable case

In this section we shall develop two-time RE moment equations for a monostable non-linear
half oscillator given by Equ.(3)_Sec(4.2). In consistence with the linear case we shall first
develop a set of differential equation, for up to second order moments of the non-linear half
oscillator i.e. m,(t), R (t,s), R, (t,s). Here moment equations will be also developed in

terms of the central moments C, (t,s),C,,(t,s).
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5.2.1. Derivation of the two-time RE moment equations

Applying the mean value operator to Equ.(3)_Sec(4.2), we obtain a differential equation for
the mean value of the response

dmdxt(t) = py-M, () + pg RE(E, 1) +a-m (1) + &5 R (L), (1)
m, (to) = m,. (1b)

Multiplying Equ.(3)_Sec(4.2) subsequently by y(s;6), and x(s;#), then applying the mean
value operator, we get the following differential equation for the correlation functions
Ry (t,s) and R, (t,s):

8ny(t,s) B

o = 43R, (t,5) + ug R3S, (t,8) + &1 -R,, (t,5) + k5 R3; (1,5), (2a)
Ruy (to,8) = E”[X0(0)-y(s;0)] = m, -m,(s) (2b)
and
%ﬁtﬁ) - ﬂl'RXX(t,S)—I—ILI3'Ri}((t,S)—|—K1'ny(S,t)—|—K3'Ri§(s,t), (38.)
Rux (to,8) = Ry, (s) = E[%(0)-x(s5:0)]. (3b)

The initial condition (3b) is not known, since it depends on the unknown response X(s;8&).
We have, thus, to derive an equation permitting us to calculate the one-time moment
Ry« (to,t) = R, ,(t). Such an equation is easily obtained by multiplying Equ.(3)_Sec(4.2)

by X, (@) and taking mean values:

d RXO X (t)

dt ::ul'qux(t)+P’3'Rx0i(t)+"$l'my(t) m><0—|_"$3'|:e§l (t1t) mxu' (30)

y

The initial condition for the latter equation is the known quantity

Ry (to) = E[%(0)-%(0)] = Ry, - (3d)
Since, OR,, (t,s)/0t ‘S_t = dR,, (t,t)/dt, differential equations (2) and (3) cannot be

applied (as they stand) to the time-diagonal case s =t. It is possible, however, to obtain a
differential equation for R,, (t,t).This can be done by multiplying Equ.(3)_Sec(4.2) by
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2x(t;0) and then applying the mean value operator. The resulting equation and the
corresponding initial conditions are:

IR (1,1) _ 31 13
T - 2':Ul'l:\)xx(t’t) + 2':uB'Rxx (tvt) + 2'K1'ny(t1t)+ 2'K3'ny(t’t) ’(48')
Rxx (tO’tO) = Rxoxo' (4b)

Let it be noted that Equ.(4a) will be proved essential in order to obtain a time closure of the
two-time RE moment equations (in Section 5.2.3). Since, after the moment closure
(performed in Section 5.2.2.), the equations that will be obtained for the two-time RE
moments will include the (also unknown) time-diagonal moment. The corresponding equation
was not required to obtain a time closure in the linear case (see Equ.(22)_Sec(3.2.1), since in
this case such a dependence between the two-time and the diagonal moments, does not exist.

The two-time RE cross-covariance C,,(t,s) and two-time response auto-covariance

C,.(t,s), as well as the response variance C,, (t,t) can be calculated from the corresponding
correlations and the system’s mean values using the equations:

C ooy (,8) =R, (t,8) —m, (M, (5), (52)
Cxx(tvs): Rxx(tis)_mx(t)mx(s)' (5b)

Nevertheless, we shall also develop equations for the evolution of the mean value of the
response, the two-time RE cross-covariance, the two-time response auto-covariance.

It can be easily proved that the following identities hold true:
X3(t;6) = (x(t;0) —m, (1))° +3m, (t) (X(£;60) —m, (£))° +3m2(t) (x(t; ) —m, (t))+m>(t), (6a)
Y(t:0) =(yt6)—m,®) +3m, (yt:0)—m, 1) +3m2t)(y(t:0)—m, (1)) +m3(@). (6b)
Substituting (6a), (6b), in Equs.(3)_Sec(4.2) we get:
X(t0) = py-x(t0) + k- y(t0) +

g (X(60) = m, () +3m, () (x(6:60)— M, (O) +3m2 (@) (x(t:0) —m, (1) +m(®)] +

+ iy '[(y(t;e)— m, @) +3m, (y(t:0)—m, ©) +3m2@) (y(t:6) - m, ©)+ mi(t)}’
X(tg:0) = x,(0). (7b)

(7a)

Applying the mean value operator in Equ.(7) we get a differential equation for the response
mean value in terms of central moments:

dm, (t)
dt

:(ul—k oM (t)z)'mx (t)+ y3-(CfXO (t,t)+3mx(t)CXX(t,t)) * (8a)

(k5 + 1my (1)7)-my (1) + x5-(CJy (1) +3m, (1) C (1)),
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mx(to) = M. (Sb)

To obtain a differential equation for the two-time RE-cross covariance C,, (t,s) we first
multiply Equ.(7) with y(s;0)—m (s) to obtain:
X(t:0)(y(s:0) = m(s) ) = - x(t:0)( y(5:0) — m (s) ) + - y(£:0)( y(s:0) — m(s))

(x50 = m, (O (v(s:) — m,(5)) +

+3m, (1) (X(t;0) — m, (1)) y(s:0) — m(s) )+
+3(m, (O) (x(t:0) = m(O)( y(s:6) = m,(5) + M) y(s:6)-m,(5) )
+e((y(t:0) =m0 (v(s:0) = my(5)) +
+3m, () y(t:0) —m, (1)) (y(s:0) — m,(s) )+

+3(m, (O) (Y(66) = m, (1) ¥(s:6) — m,(8) ) + m 2O y(s:0) = my(s) ).

(%)
X(to:0)(¥(5:0) = my(5) ) = %, (0)(y(5:0) —m,(s) ). (9b)

Taking mean values in Equ. (9) and making use of the formula:

oc ., (t, ol o[y
TS e -m,0)(ys:0)-m, @) = Exe(ysi0-m,©). @0
we have:
oC,, (t,s)
At H1-Cyy (t,8) +&,-Cyy (1,8) +
+ ﬂg.(cf;(t,s) +3m, (1) CZr(t,s) + 3mf(t)CXy(t,S)) + (11a)
+k5-(C3H(E8) + 3m, () CZE(t,s) +3m2(1)C,y (t,5)),
C,, (tg,8) = 0. (11b)

Similarly, multiplying Equ.(7) withx(s; 8) —m,(s), then taking mean value we get a differ-
ential equation for the two-time response auto-covariance, i.e:

oC ., (t,s)

ot = ﬂl'cxx(tvs)+Kl'ny(S’t)+

 pa(CR(ts) +3m, (DC (L) + 3MIM C o (L) + 150

+ K3-(c 5 (s,t) +3m (1) CL(s,t) + 3mi (1) C,, (5,1)),




5-6 | CHAPTER 5 Two-time RE moment equations

Cox (t0,8) = Cy () = E[xo(8)-x(5;0)| — m, -m,(s), (12b)

In order to calculate the one-time moment C, , (t,,t) = C, , (t) we multiply Equ.(7) with

X, (0) —m,_. Then taking mean values we obtain:

dc, ,(t
dt( ) _ (1 + 3aamE (©)C (1) + 15-(C  F(1) + 3m, (OC  2(1)),  (120)
Froxllo) = G (120)

Multiplying Equ.(7) with 2-(x(t;0) —m,(t)) , then take mean values we obtain an equation
for the evolution of the one-time response variance, i.e:

4, ) _ 2-(py + 3pym?(1))-C (1,1) + 2:(k, + 3k, mi(1))-C, (L,1) +
dt 1 3 X XX 1 1 3 y Xy ! (138.)
+ 2.5 (CoE(E 1) + 3m (1) C2H(t, 1)) + 2-k4-(Cly (1, 1) + 3m, (1) C}2 (1, 1)),
Cux(toity) = Cy (13b)

The five differential equations (8), (11a), (12a), (12c) and (13a) will be considered as a
system of equations for the five moment functions m, (t), C,, (t,s), C,,(t,s), C,,(t,t).

Unlike the linear case, these contain higher-order moments, like C 3! (t,s), C 2X(t,s). On

the other hand, as in the linear case, two of them, namely Egs. (11a) and (12a), being
differential equations only with respect to the response time t, contain a second time variable
s, acting as a parameter. This fact renders them in the examined here non-linear case not
closed in time as well. We shall elaborate closure schemes in both respects. As far as the time
closure is concerned we shall present two approaches, one for the transient state and one that
closes the problem directly in the long-time statistical equilibrium state.

Lastly, in this section we shall comment on an apparently controversial feature of Equ. (12a),
describing the evolution of C,, (t,s). In this equation, terms containing C,, (s,t),
C12(s.,t) and C}3(s,t) are included in the last term of right-hand side, bringing into play
an apparently non-causal dependence: the effect of y(t;8) on x(s;@), for s<t. This
apparent controversy is resolved in the next section, by appropriately combining Equs. (11a)
and (12a), resulting in a dependence of C ,, (t,s) upon the whole history of the data moment
C,,(z,1), forall re[to, t]. (See more on this on Athanassoulis, G. A., Tsantili, I. C.,
Kapelonis 2013).
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5.2.2. Moment Closure of the two-time RE moment equations

To eliminate higher-order moments from the right-hand side of Equs.(8,11-13) Sec(5.2.1),
use will be made of the Gaussian closure assumption. This is the simplest moment closure
assumption, introduced by Goodman and Whittle in the 50’s and extensively used thenceforth
in the study of random vibrations and more general stochastic dynamical systems (Lutes &
Sarkani 1997; Socha 2008).

More precisely, assuming that the joint two-time REPDF fx(t)y(s) (a,3) and the joint two-

time response density f, . . (o ,c,) are Gaussian all the third-order central moments

X(t
vanishes, and the forth-order ones are expressed by means of second-order central moments,
in accordance to Isserlis” Theorem (Isserlis 1918):

C¥(t,s) = 3-C,(t,t)-C, (t,s), (1)
C3 (t,s) = 3:C,(t,1)-C,(t,s), (1b)
Cl(sit) =3-C, (t,1)-C, (s.1), (1c)
Cl(t,s) = 3:C, (t,1)-C,  (t,9), (1d)
C o o(t) = 3:Cy (t,1)-C, (1), (1e)

Introducing the approximations (1) into Equs.(8, 11-13)_Sec(5.2.1), we obtain:

d
)y b am? (0 + 342, C oo (L), () +
dt : (2)
+ Ky + wgm (1) + 3k Cy (8, 1))-m (1)
ac,. (t,
% = (Ml + 3:““3 mf(t) + 3M3Cxx(tit)) ny (t,S) +
+(ky + 3rym (1) + 3K, C (1,1))C (t,8), 3)
0C ., (t,s)

ST (112 + 3pam2(t) + 31, C,., (1,1)) C (L) + | o

+ (K, + Bram2 (1) + 3k, Cy, (1,1))-C,, (s,1)

dC t

%” = (/11+3,U3mf(t)+3y3CXX(t,t))CXOX(t), (5)
dcxx(t’t) - ,

T = 2.<,U/1 +3M3 mx(t) +3,U3CXX (t’t))'cxx(t,t) + (6)

+2- (K, +3k,mJ () + 35, C,, (t,1))-C,, (t,1).

Having been working off the higher-order moments, it remains to elaborate on the second
special feature of the two-time moment equations, the simultaneous appearance of the two
time variables t,s.
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5.2.3. Time Closure of the two-time RE moment equations

We shall now implement a time closure, obtaining an one-time, closed, causal subsystem of
two equations for the time-diagonal moments m (t) and C,, (t,t). Setting

A1) = A [m (1),C,, (t,1)] = gy +3pymi(t) +3u,C,, (t,1), (1a)
B, (t) = &, +3xym2(t) +3x,C,, (1) (1b)

we rewrite Equ.(3)_Sec(5.2.2) in the form

oC,, (t,s)

o = ALD)Cy (15) + B, (1)C,y (1) @)

Although the function A (t) is not known, it possesses two important properties: First, it is
not dependent on the C, (t,s) itself and, second, in the monostable case studied herewith

(., 13 <0), itis always negative:
A (t) <0, forall t>t,. (3)

On the basis of the first property, we can consider Equ.(2) as a linear, first-order ODE for the
two-time cross-covariance C, (t,s) with respect to t (s being considered as a parameter).

In accordance with the standard theory of first-order ODEs (Teschl 2012), the solution of
Equ. (2) with initial condition Equ.(11b)_Sec(5.2.1), can be expressed by the following
integral formula, in terms of the unknown function A, (t):

t

t
C,, (t,s) = fo(r)ny(r,s)eXp fAX(u)du dr. )

to

This solution is valid for any t>t, and for any s ==t. However, looking closer at the

structure of the right-hand side of Equ.(4), we observe that it is a continuous function on s
for all s >t, (since it depends on s only through the continuous data function C, (z,s)).

Thus, taking the limit of both sides of Equ.(4) for s —t, we obtain

t t

C,, (t,1) = fo(r)ny(r,t)eXp [ Admw.c ()] dufar. (5)

t T
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Equ.(5) expresses the time-diagonal cross-covariance C,, (t,t) as a non-linear, causal
operator on the whole history of the (unknown) response mean value m,(u), t, <u <t, and

response, time-diagonal auto-covariance C,, (u,u),t, <u <t.

Substituting C,, (t,t) from Equ. (5) in Equ.(6)_Sec(5.2.2), we obtain

dc, (t.t) )
T = 2(:“1 + 3”3 mx(t) =+ 3:“‘3 Cxx (t’t)>Cxx (t!t) =+

(6)

t t
+2.By(t)-fo(T)ny(T,t)eXp fu1+3u3mf(u)+3uscxx(u,u)du dr.

to

Equ.(2)_Sec(5.2.2) and Equ.(6), with initial conditions Equ.(8b)_Sec(5.2.1) and
Equ.(13b)_Sec(5.2.1), respectively, form a closed, non-linear, causal system of evolution
equations for the moment functions m, (t),C,, (t,t).

More precisely, as discussed in Athanassoulis et al (Athanassoulis et al. 2013a), system of
Equ.(6) and Equ.(2)_Sec(5.2.2) belongs to the family of causal differential systems, for which
an extensive literature has been developed in the last two decades; see the books (Corduneanu
2002; Lakshmikantham et al. 2009; Burton 2005; Gripenberg et al. 1990), and the references
cited there. In Athanassoulis et al (Athanassoulis et al. 2013a) discussion about local
existence and uniqueness of this system is presented as well as a robust and efficient,
iterative, numerical solution of this system in the whole time domain [t,, +oc0).

Representation of the off-diagonal moments C,, (t,s) and C,, (t,s) interms of the

diagonal ones

Having solved the system of Equ.(2)_Sec(5.2.2) and Equ.(6) and obtained the functions
m.(t) and C,, (t,t), Equ.(4) provides us with the two-time cross-covariance C,, (t,s) in

the interval R, (T) = {(t,s): t, <t<T, t,<s<T } Furthermore, substituting
C,, (s,t) in the right-hand side of Equ.(4)_Sec(5.2.2) from Equ.(4) (with arguments t and

sinterchanged), Equ.(4) Sec(5.2.2) becomes a first-order ODE with known variable
coefficients of the form

0C,,(t,s

% = A, (1) C,(t,s) + F, (t.s), (8a)
where

F,, (ts) = f B, (r)C,,(z,1) B, (t) exp f A, (u)du|dz. (8b)

T=t, U=r¢
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For any s>t,, the initial condition C,,(t,,s)=C, ,(s) is calculated by solving

Equ.(5)_Sec(5.2.2) with initial condition C (t,,t,) =

Xo Xo

S

Cun(8) = Cypoexp| [ AWy du . (80)

to

The solution of Equ.(8a) with initial condition Equ.(8c) is given by the formula

t S

Cux(t,s) = Cy y, -€Xp fo(u)du +fo(u)du +

to to

=t 7,=8 u, =t u,=Ss
+ f f Gy, (7y,7,) EXp f A, (u;) du; [exp f A, (u,)du, |dzr,d7, ,
=ty T,=1g U =rw; U, =r,
(9a)
where
ny(fl’fz) = By(Tl)ny(Tl'TZ) By(Tz)- (9b)

The symmetry relation C,, (t,s) = C,, (s,t) isclearly revealed by Equs.(9).

In Athanassoulis et al.(2013) it is shown that in the case where the input random process can
be obtained as the solution of an Ité equation (as, e.g., happens with an Ornstein-Uhlenbeck
process), the proposed non-local system is localized, leading to moment equations identical
with the usual ones. The latter indicates that the presented approach consistently generalizes

the Ito/filtering approach, remaining valid for any kind of covariance C,(t,s). Furthermore,

in (Athanassoulis et al. 2013a) the two-time RE moment system Equs.(2-6) Sec(5.2.2) is
numerically solved by means of an appropriate, two-scale, iterative scheme. The solution of

the latter allows to also numerically calculate the two-time moments C, (t,s) and C,, (t,s)

using Equs.(4,9a). Numerical results are presented for IpGF, OU and sOU colored stochastic
excitations. It is found that both the correlation time and the details of the shape of the input
random function affect appreciably the response covariance which in general cannot be taken
into account in the 1t6/FPK/filtering approaches. The obtained results compare satisfactorily
with extensive MC simulations results for all the examined cases except when a bi-stable half
oscillator is considered, the latter is attributed to the failure of the Gaussian closure. In fact, as
it will be discussed in Section 5.4., in the bi-stable case the structure of the joint REPDF,
frw) vy (@, B), becomes bi-modal, making the Gaussian closure inappropriate. In Section

5.4. a first idea for the generalization of the two-time RE moment equations for the bi-stable
case, in the long-time, will be discussed. In the next section we shall present how the derived
two-time moment equations can be directly solved in the long-time.
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5.3.  Two-time moment equations in the long-time

5.3.1. Direct solution in the long-time

In the long-time that the system reaches an equilibrium state the mean values become time
independent whereas the second order moments depend only on the timelagt — s = 7, i.e:

lim m, (t) = m{, lim m,(s) = m{,
t—o0 S — 00

lim C,,(t,s) = C{{’(t—s) and lim C,(t,s)=C{I(t—s).
TS T

Then the two time moment equations given by Equs.(2-6)_Sec(5.2.2) take the form :

0 = (s + psm$) +3u,CH(0)):mE +

, 1
+ (K + x3mG) 4 31, C(0))-m G

a_cw(t $) = (1 +341,-C5(0)+3,(m?)?)-CHO(t—s) + @
+ (Kl +3:4,-C{;7(0) 43k, (Ml ) )C(x)(t )

C(’C)(t s) = +341,-C5(0)+31,(mE?)?)-CH(t—s) +

®3)
+ (K, +3-5,-C{(0) +3k,(m§?) ?)-C Y (s—t)
0 = (py + 3p5 (M) + 341, C,, (0))-C,, (0) +
+ (1, + 3k (M) + 3k, C, (0))-C,, (0): 4)
or, equivalently :
0= AP m + B -mE), 5)
0 (0) . p(o0) (oo) (c0)
50 (t—s) = AL.CE(t—s) + B .CP(t-s), (6)
c<°<>(t s) = A -C(t—s) + BYX.c(s—t) )
0 = A.C, (0)+B.C,, (0), 8)

where
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AP = gy + um$? +3u5C(0), (9a)
B(™ = ) + 3k, (m{™)? + 3k, {3 (0), (9b)
A = g+ 3y (M) + 3u, C(0), (9c)
BCY = ) + x5 (m()? + 31, C 3 (0). (9d)

We observe that in the long-time steady state the system of two-time RE moment equations
becomes a system of algebraic-differential equations containing four unknowns: the numbers

m$ and C{’(0) (appearing also in AL and A{*), and the functions C{;”(t—s) and
C(w)(t )

For the monostable half oscillator sz, <0, u; <0 therefore AL <0. Since Equs.(2,3) are

linear we can apply the formulae obtained from our study for the long-time behavior of the
linear half oscillator. More precisely applying Equs.(7,8b) Sec.(3.2.3) to Equs.(2,3) we can
obtain the long-time moments as limits of the transient solution:

t

C(t— )—tllorcn B, fC§"y°)(sl—s)-eA&x)'sldsl , (10)

S—00

t—s=r71 b

and

C& (t—s) = lim eAix"““W(B(;@)Z-ffc<°°>(s —s)e M Rlgs ds | L @)

t—oo
§—00

t—s=r71 b b

Alternatively we can consider the solution of the long-time problem in the lag time domain,
taking into consideration that

aC. . (t,s dc )
lim wy (8:9) = Xy (T), (12a)
t—>t03,S:ST—>oo ot dr

dC. . (t,s dc )
lim xx (1,5) _ (7) | (12b)
tﬂtog,S:S?oc ot dr

Equs.(5-8) can be equivalently written as:

0= AP.m{ 4 BL) .m0, (13)
ac Y

a;”ZA@CMM+BWCMU) (14)
oC ) (¢
—7;L2=AP*Q?ur+B$-<@<r) (15)

0 =AM.C(0) + B -CS(0). (16)
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The general solution of Equ. (14) can be written in the form

CG(r) = () - exp{Al)(r — 7))} +

Ty =7

+ B(yoo)- f C(m)(rl) exp{A(oo) (r — rl)}drl,

=7

(17)

where 7, is any fixed time in the lag domain. Despite the explicit appearance of 7, in the
right-hand side of Equ.(17), the latter is independent from z,,. Since A{™) <0 and C{’(r)
is bounded, the limit of the first term of the right-hand side of Equ.(17), as 7, — —oc, is ze-

ro. Thus, the choice 7, =—oc is legitimate, and Equ.(17) can be written in the more conve-
nient form

T,=7

c&(r) = BY). f C& (ry): exp{A<°°> (T—Tl)}drl, (18)

Ty = —00

or, equivalently, by reversing the limits of integration and performing the change of variable
u=-7,, in the form

U= o0

Uu=-7

Equ.(15) is of the same type as Equ.(14), thus performing similar steps we obtain

T,=7

c&(r) = BY). f CH (=) exp{ AL (r — 7y) } dry (20)

7] =—00

where C ( 7,) follows Equ.(19), that is

=T

C(r) = (B ) f f c(“ (r,)- exp{AW (r—2-1, ~|—r2)}drzdrl.

(21)

The domain of integration of the repeated integrals appearing in the right-hand side of Equ.
(21) is shown in Fig. (1).
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Fig. 1. The domain of integration in the (z,,7,)—plane

The 7, integration can be explicitly performed by changing the order of integration:

Ty =7 Ty=7 Ty =17,

ff ff{ﬂff{-m)

Ty =71y =-00 Ty = Ty =7

Changing the order of integration, as shown in Equ.(22), Equ.(21) becomes

T4 =17,

2 (o0) . () . (_ 2.
C(r)=( By )" f C&(r,) e () f e ™20 dr de, +
Ty =+ 00 T,=7
(0, () . (_ 2.
- f CEN(r,) e () f e UF M) dr de, |=
2 Ty= 7
) [
. y (oo (T 7,)
= i CO(r,)-e” dr, +
2- Al J
T, =+
(0) . (—
f Ci () e M, | =
2 T,=—00
( B () ) Zf %) |
y ) (OO)( ) - e ‘”TZ‘dT
00 T 2
2. AL

T, =+ 00
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That is:
1 U=+ o0
C(r) = (BYY )2 — f C () - exp{AL|u + |} du (23)
’ (~2-A) J

Integral representations (19) and (23) together with Equ.(13) cannot completely solve the lim-
iting form of the two -time RE moment system (Equs.(13-16)) since the unknown values of

the response long-time moments m{>) and C{>)(0) are contained in the constant A{>).

However, we can obtain two equations for these unknowns m{>) and C{>(0) from
Equ.(13) and Equ.(23). More precisely setting =0 Equ.(23) becomes

CH(0)- (1 +3psm) 431, C(0)) =

U=+ o0
2 (24)
= —(B(ym)) : CEI(z,)- exp{A(“) u}du
u=0
Remark: Setting 7=0 to Equ.(19) we have
U=+ oo
CeI(0) = B, f ¢ (ry)-exp{ALu ]} du, (25)
u=20

then using Equ.(16), Equ.(24) is re-obtained. That is, in order to solve the system of two-time
RE moment equations directly in the long-time, the time closure can be obtained with two
equivalent ways, one of which does not involve the use of Equ.(15).

Combining Equs. (13), (19), (23) and (24) we can have a closed long-time solution. In fact:
o If x5 =0 (linear half oscillator) the system of Equs. (13), (19), (23) is trivialized since the

constant A{*) does not contain the unknown C {>*)(0), providing explicit solutions
directly, i.e. from Equ.(13)

(00) (OO)
Ky + xzmy™ + 3x3 CyU7(0)
m(xx) _ _( 1 3 y 3 ) m(y:)o), (26)
H

then, from Equ.(19) and Equ.(23) it is straightforward to obtain C {3 (z) , C{¥ (7).

o If uy =0, itis convenient to distinguish two cases. When m(yx) = 0, then it is easy to

see from Equ.(13) that m{™) = 0 as well, then Equ.(24) is simplified to
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CE(0): (g + 315 CY(0)) =

B<°°> ufooc:<°°>(u) exp{ (4 +3u,C52(0) ) } @

which has a unique solution in the positive real axis. (The uniqueness can be theoretically
proved in some cases, and has always been confirmed numerically). Having defined

C{5(0) itis straightforward to obtain C ) (r) , C ) (r) from Equ.(19) and Equ.(23).

e If g5 =0and m{) =0, we can use Equs.(9a, 13) to express C{;’(0), and therefore

AL interms of m{™) i.e

BEREIS

L+ g (m69), (28)

C(OO)(O) —
3 g my

then, from Equ.(9c) and Equ.(28) we have

2 B(yx)
AR = 2pp () —em (. (29)
X

Using Equ.(28) and Equ.(29) we can then eliminate C (°°)(0) from Equ.(24), obtaining:

BO)m® NEREIR
A B N ) -y Ty (0)
3uym (oc) 3<mX) ) o+ s (m$)|
u= . (30)
()2 h (0) By -m () ()
+ (BS) fc (u) exp T+2;13( ) du = 0.
m)(
u=0

If multiple solutions occur in Equ. (30), we keep the one leading to positive C > (0)
(using Equ. (27)). Having found m{>), ¢ (") (0) it is straightforward to obtain C{3” (z) ,
Cc 9 (z) from Equ.(19) and Equ.(23).

5.3.2. Analytic computation of the long-time moments for IpGH, OU and sOU
stochastic input correlation function

In this paragraph we are going to implement the obtained formulae for the long-time RE
cross- covariance C(* (t—s) and long-time response auto-covariance C > (t—s) for
the case that the random input, y(t;0), is a IpGF, a sOU or an OU process. Use shall be

made of corresponding results obtained in Sec(3.2.4). in the linear case for IpGF, sOU or OU
random input. The latter is justified since the integrals that provide the long-time moments
(see Equs.(10,11)_Sec(5.3.1) or Equs(19,23)_Sec(5.3.1)) are of the same type as the ones
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given for the non-central moments of the linear problem (see Equs.(7,8b) Sec(3.2.3) or
Equs.(17,18)_Sec(3.2.3), respectively).

Low-pass Gaussian filter (IpGF)

In case that the excitation is a IpGF
CiN(t—s) =0} exp(—a(t —s)? ), (1)

i __ A (c0) __ R0
setting A= A{™, B=B*) to Equs.(11,15)_Sec(3.2.4) we get

C(oc)(t )
Jr [ (AP AL
= B™ ¢? ex + AP (t—s)||erf|Va-(t—s)+—=—|+1]
y y 2\/5 p 4.a X ( ) ( ) 2\/5
(2)
and
()2 2 (A)
C(w)(t_s):_\/\/_ﬂ'_(By () )Gye 4.a X
” 4Ja Al
(c0) (c0) ®)
AL (s—t) A AL (t—s) A
e Jerf|[Va-(s—t)+ +1f +e erf [Va-(t—s)+ +1
R (O et [ 2|
where
BCY = k) +3x,(m{™)? + 3k, C {37 (0), (4a)
AL =+ 3, (M) + 34, CEI(0). (4b)

In order to determine the unknowns m{>) and C (>(0) appearing in Equs.(2,3) three cases
are distinguished:

o If g;=0, m <) is given by Equ.(26)_Sec(5.3.1), (we repeat here for convenience)

(00) (30)
Ky +Kxkzmy™ + 3x3 C Y7 (0)
neo _ _ it T Jneo ©
1

In this case C oC)(O) does not need to be a priori computed.

e If g0, m{) =0 then m{™) =0 and the long-time response variance C{;(0) is
given by Equ.(3) setting t=s i.e.

A(OO)

N

(6)

+1].

C(w)(o) - _ . .o 4a

2Ja A

N

(00)\2
B(®*))2. 52 (A
Jr (BY) oy Lert
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o If y3=0and m{*) =0, using Equ(28,29)_Sec(5.3.1) we can express C{;’(0) and

A>) in terms of m{> (we repeat her for convenience)

N 1 [BE).me 2
¢ (0) = - L+ (M) (7)
3'”3 m X
2 é(yoo)
then combining Equs(6-8) we can obtain a closed equation for the (non-zero) response
mean value m{>) :
1 By -m§ m () m () B
\/_ ()2 ey BV ©)
2\/_ -(B{)?.0%-exp{—4-a}-exp 2,u3( ) m(;”)'my X
B () 1
() y () _
[erf 2 114 ( ) m(xoc).my e +1|=0,
where B({), B{*) are given by Equs.(9b,9d)_Sec(5.3.1) respectively .
Sifted Ornstein-Uhlenbeck (sOU) stochastic process
In the case that the excitation is a of a sSOU process:
Ci(t—s) = o%-exp(—a-|t —s|)-cos(wy (t —5)), (10)
setting A= A", B=B{*) to Equs.(32,33,36)_Sec(3.2.4) we get
a— AL A(OO) +a s
CioyC)(t_s)‘ =By o) CSEY ( N
tzs (a— A ) + e (A°°+a) + wi
efa (t—-s) )
(A‘°°’+a) ( (A +a)-cos(wy (t—s) ) + wy-sin( w,- (t—s)))
(11a)
9 _
ny (t_s)‘t<s o
) ) a'(t—s) (
=B . g2 . A(*)) — ((a AL)-c0s(wy- (t—5) ) + wy-sin(wy: (t—s)))

(11b)
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and

Col(t—s)=

B(OO) 2'0'2 o Alt—s|
:<(a_A§°°’)2 —l—(wg).)((Aii)_i_a)z_i_wg)' eAix) 'a'(<az—(Ax(°°))2>+w§)+

4 e—a~\t—s\ . [(_(az N (Aioc))Z ) + wg )'COS(WO'|t — s|)+ 2-a-wo-Sin(a)0-|t — S|>],
(12)

where A B are given by Equs.(9c,9b) Sec(5.3.1).
X y

In order to determine the unknowns m{> and C {>*(0) appearing in Equs.(11,12) three
cases are distinguished:

. If 4, =0, the response mean value m{™ is given by Equ.(26)_Sec(5.3.1) :

(c0) (c0)
K, + k;myY + 3k, C Y7 (0)
m(xx) _ _( 1 3 y 3 yy )m(oo), (13)

Hy ’
In this case C (>(0) does not need to be a priori computed.

If 4130, m{>) =0 then m{*) =0, whereas setting t =s in Equ.(12) we obtain:

2 a— A
C)Eic)(O) - (B}(/oc)) o2 X

2 (14)
ypqu“a_Aww-Hﬁ}

e If uy=0, m{>) =0 using Equ(28,29)_Sec(5.3.1) we can express C ) (0) and AL in

X

terms of m{>):

C)Ex)(o) = = : (OO)y +’u1+'u3(m(x )> ! (15)
3':”3 my
2 B(oo)
0 = 2 - S a
X

then combining Equs(14-16) we can obtain a closed equation for the (non-zero) response
mean value m{>)
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3 (00)

B
2 y
{245 (M) 2 — —m(oo)-m(y”)
X

1 (BO . N
- ! e (OC)Y +,u1+/u3(m(x ))2
3y ms

+

(o0)

B
a— 24, (M) 2+ L mG)
m

" (B§w>)2_02. x =0

’ B(oo) 2 1),

X

where B{), B{) are given by Equs.(9b,9d)_Sec(5.2.4) respectively.

In case that the excitation is an OU process, i.e. C{7’(t—s) = o*-exp(—a-|t — s|), the
cor-responding long-time moments are obtained setting w, = 0 to Equs.(11-12, 14,17)

5.3.3. Results

The direct solution in the long-time of the two-time RE moment equations is used to calculate
the long-time RE cross-covariance C(x’ (t—s) and the long-time response auto-covariance

C)(t—s). The calculations are performed by the use of Equs.(2-9)_Sec(5.3.2) for IpGF
input and of Equs.(11-17)_Sec(5.3.2) for either sOU or OU input. The solution of the
transcendental equations Equs.(9,17)_Sec(5.3.2), required in the non-linear cases (x5 =0)
when the excitation has non-zero asymptotic mean value (m(y°°)¢0), was performed
numerically in Matlab.

In Figs.2-10 results are illustrated for three half-oscillators, more specifically, for the non-

linear/Gaussian, the linear/non-Gaussian and the non-linear/non-Gaussian considered in
Section 4.2.(see Equs.(6-8)_Sec(4.2)). The input function y(t;@) has been assumed to be

either IpGF (Figs.2,5), OU (Figs.3,6,8-10) or sOU with central frequency @, =5 (Figs.4,7).
In all cases the input variance 02 =1, whereas three different cases of input correlation time

corr

have been considered i.e. 7.’ =0.93,0.51,0.33. For the input mean value, we also consider

three cases, m{*) =0 (Flgs.2-8), m{> =03 (Fig.9) and m{* =15(Fig.10). The

parameters in Figs.2-8 have been selected to be the same as in the linear/Gaussian case
discussed in Chapter 3 in order to examine the effects of the non-linearity or/and the non-
Gaussianity in the asymptotic covariances.

- - - (OO) - -
In Figs.2-4 the long-time RE cross-covariance C,7”(t—s) (case a in Figs(2-4)) and the long-

time response auto-covariance C ) (t —s)(case b in Figs(2-4)) for the non-linear/Gaussian

case are illustrated. Comparing these results with the ones obtained in Chapter 3, and more
precisely by comparing Fig.2 with Fig.6_Sec(3.2.4), Fig.3 with Fig.18_Sec(3.2.4) and Fig.4
with Fig.17_Sec(3.2.4), we observe that, in all cases, the non-linearity leads to smaller values
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of the response moments. This is expected since the non-linear term has negative coefficient,
amplifying the restoring force of the linear term.

a. b.
CXY('L): GF,my=EI,|.1.3=-1,r:1 =1,I{3=|:| Cxx[t): GF,mY=D, |.13=-1,1:1 =1,1{3=D
E|5 ! T T ' T E'-d T T T T T
Non-linear/: U : : S P T 2 =093
Gaussian : EEEAE : O35t R ¥
n4}.case:i.... L LA SR P i ; - tﬁﬂ” =051
N - . E|3 _________ ......... ........ . o :D 33 4
: : Yy :
03 |:|25 ......... ......... ....... :: ....... ........ ....... 4
0.2

02} 0.15

0.1
0.1

0.05

Figure 2: The long time response-excitation cross-covariance CX(;“) (7) (where 7 =t—s) (a) and

response covariance C:f’ (7) (b), of the non-linear/Gaussian case under Gaussian IpGF excitation with

m (yx) =0, results are plotted for three cases of the excitation correlation time r;°y" =0.93, 0.51, 0.33.
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CXY['L):DU,mY=EI,|.13=-1,1:1=1,K3=D Cxx(t):OU,mY=D,|.1.3=-1,r:1=1,1c3=EI

Non:linear/: e ; : :
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1] TR Lo ........
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01f

Figure 3: The same as Fig.2 but now the system has OU excitation.

a b.

CXY['L:IISOU,my=D,|.L3=-1,1C1=1,1C3=U,UJD=5 Cxx(t): SOU,mY=D,|.13=-1,1:1=1,113=EI,mD=5
0.25 T . T , . . . .

Non—iinear/ 04 e ........ llllllllllllllll L5 g3 [1

0.2} Gaussian i [PEETE e e : : WY
: . : : 012_, ........ REEREE ___T.CDrr:D.51 J
: : Wy

........ corr _ |
1NN SR | 5 ot =033

15t - SRR ........ .

Ok R L
: : 0.05

0.05 0.06

0.04

005k ....... LF om

Otk ......... ...... _. ........ ........ ....... i 0

i i ; ; i 0.0z i i L i i
- - 5 - - 0

Figure 4: The same as Fig.2 but now the system has sOU excitation with central frequency @, = 5
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ny[tj:GF,my=D,|.J.3=D,K1 =D,1c3=1

248

Linear/ : : : : : : : : :
non-Gaussian § E : E 5 5 : .

1]
B

T T
Figure 5: Long time response-excitation cross-covariance C ™ (7) (where 7 =t —s) (a) and response

covariance C > (7) (b), of the lineal/non-Gaussian case linear under IpGF excitation with m (y“’ =0,

results are plotted for three cases of the excitation correlation time 7 %" = 0.93, 0.51, 0.33.

a. b.
CW('LJ:OU,mY=EI,|.L3=EI,1:1=D,1c3=1
18 ————————
Linear/
1B o Gauss)
120 .................
CF? Ogh..- .............. ' ..... 'l ................. ]
OGk-- .............
Oabo. .......... _;
o2t ........... o ..........
0
H -4

)

Coltl
45—

:OU,my=D,|.L3=EI,1<:1=EI,1c3=1,mD=EI

4
35t

3
25

2
1.5
1}
0.5

T
Flgure b: Same as Fi1g.5 but now the system has OU excitation.

On the contrary the results for the linear/non-Gaussian case, illustrated in Figs.5-7 indicate
that the non-Gaussianity has opposite effects than the non-linearity leading to significantly
larger values of the response moments. In the non-linear/non-Gaussian case illustrated in
Fig.8, for OU stochastic input, we can also observe the effect of non-Gaussianity to the non-
linear system, the latter resulting to moments with increased values comparing to the non-
linear/Gaussian case Fig.3
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a b.
ny[t):sOU,mY=D,|.1.3=D,K1=D,K3=1 Cxx(tj:sOU,m
1 ; ; ; ; . : 04
Linear/ : j : j : : : ]
D_g...non—@Gaussi;an ..... ST P 0.8 [ o '
case: : : : : | T 2 SR ST AR

a b.
nyl:'lljli o, mY=EI, |.1.3=-1,1c1 =1,113=EI.2 Cxx(t]: OU,rﬂ\f=lj,|.1.3=-1,1c1 =1,1c3=EI.2
0.7 : _ . 0.4 .
Non-Linear/ _ :
0.6} -non:Gaussian.....;........ Lo L] 0.35
case : : : :
: 03
DE ..........................
0.25
P 1 1 S A A
[
‘—3;2 0.z
L T S e S e I
015
E|2 T | M.
0.1
oqfk-- 0.05
0 0
5 4 i

Figure 8: Long time response-excitation cross-covariance ij) (7) (where 7 =1t —s) (a) and response
covariance Cx‘:‘) (7) (b), of the non-linear/non-Gaussian case under OU excitation with m (y“) =0,

results are plotted for three cases of the excitation correlation time 7 %" = 0.93, 0.51, 0.33.

In all the examined cases in Figs.2-8, the general rule is that the values of the asymptotic RE

cross-covariance Cx‘°y°)(t—s) (case a) and the asymptotic response auto-covariance

C ) (t—s)(case b) increase with the excitation correlation time. Moreover, in all cases, for

X
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the same central frequency of the excitation, the frequency of both Cf;’(t—s) and
C)(t—s) increase with the correlation time of the excitation (see Figs.4,7). In addition, in

X

all the examined cases there is a correlation of the response with future values of the
excitation (for r=t—s<0), a feature that tends to vanish as the correlation time of the
excitation decreases. Another, important finding here is that the two-time RE moments are
significantly affected by the shape of the input function (IpGF vs OU vs sOU), especially for
the most correlated case when all other parameters are the same. The latter is an essential
advantage of the introduced two-time RE moment equations since that kind of details, cannot,
in general, be taken into account by the Itd/filtering approach.

a. b.
nyt‘tj s ou, mv= 0.3, m, = 0.23, Hy = -1, Lo =0.2 Cxx(t) C o, my= 0.3, tn, = 0.23, e = -1, = 0.2
0s _ : , : . 035 _ . , :
Non-Linear/: . 5 : E : o T
- s A - : - : : . I
non-(?;aussm_n 03k SRR L N s ]
: : T =0 33
0.25 ¥
1 . T P 4
ML
i
) [ T S I |
E|1 ........................
|:||:|5 1 .......................
0 o
- 4 B
T T
Figure 9: The same as Fig.8 but now the system’s input has mean value m (y”) =0.3
a. b.
val:t:l C o, fr, = 1.5, tn, = 1.1, e = -1, 1c3=EI.2 Cxx(tj s ou, m,= 1.5, m, = 1.1, |.1.3=-1,1c3 =02
07 : , : _ 0.35
Non:Linear/ : ; :
OG- nor.].:Gaus,si{an ..... ........ e ......... 03
case: j :
05k ......... ........ ___ ....... ........ ........ _ 0.25
T I T . . nz
< L
x 5
L T e T R E IR
E|2 I T |:| 1
E| 1 ....................... DDS
1] 1]
G 4 _

Figure 10: The same as Fig.9 but now the system’s input has mean value m (y“) =15
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In Figs.9,10 the same case as in Fig. 8 is considered for different input mean values,
m{*) =0.3 (in Fig.9) and m{* =1.5 (in Fig.10). As we can see, the long-time excitation
mean values does affect the long-time (co)variances.

In order to confirm the obtained results MC simulations have also been performed by Z.
Kapelonis. In Fig.11-12 the covariances C{}”’(z) and C{;’(r) are plotted, along with
corresponding MC results for various cases of the half-oscillator (Equ.(3)_Sec(4.2)), under
OU input functions y(t;0), with m{™ =0, 62 =1.0, 75" =1.0 and @, =0 (case a in
figures) or @, =2 (case b figures). In Fig.11 a mildly nonlinear case (u,=—1.0,

p, =—0.2) is considered under Gaussian excitation (x, =1.0, x, =0). In Fig.12 similar
results are shown for stronger nonlinearity (u, =—1.0, p; =—0.5) under non-Gaussian
excitation (with x, =1.0, x, = 0.5). The analytical results presented in Figs.11 and 12 are

confirmed by MC simulations (shown by bullets and open triangles in the figures), displaying
excellent agreement in the mildly nonlinear case (Fig. 11) and slight discrepancies (especially
near the local extremes) in the stronger nonlinear/ non-Gaussian case (Fig. 12). The latter can
be attributed to the combined effect of parameters ., and x,, which makes the Gaussian

closure assumption less accurate. More comparisons of the obtained results with MC
simulations can be found in (G.A. Athanassoulis et al. 2013b).

i (@) . | 08 ) | Ot

081

04

Figure 11: Excitation auto-covariance C;?) (z), response-excitation cross-covariance CX(T) (z), and
response auto-covariance Cif) (z) for a non-linear/Gaussian  case (p, =—1.0, p, =-02,
k, =1.0,r, = 0) excited by an OU random function y(t;6) with m{™’ =0, o’ =10, r;)' =10,

and central spectral frequency w, =0 (a), and @, = 2 (b). Bullets and open triangles denote MC
simulation results.




SECTION: 5.3. Two-time moment equations in the long time |5-27

Fig. 12. The same as Fig. 11, but with x, = —0.5, x, = 0.5. In this case the excitation is non-Gaussian.

Central spectral frequency is again @, = 0 (a), and @, = 2 (b).

5.4.  Two-time RE moment equations. The bi-stable Case

The introduced system of the two-time, RE moment equations for a cubic half-oscillator,
excited by colored (Gaussian or non-Gaussian) noise, was made solvable by the use of a
moment closure and time closure. Time closure is exact (given the moment closure), however
moment closure is approximate and valid as long as the joint two-time REPDF fx(t)y(s) (a,)

and the joint two-time response pdf f, , (e, c,), of the studied system, remain close to the
Gaussian structure.

Several cases where the Gaussian closure has led to inadequate results have been extensively
discussed for stochastic differential equations excited by white or second order filtered white
noises. More precisely, this method is considered unsuitable when the system is strongly non-
linear, has multiplicative random excitations (Er 1998) or has more than one stable points
(Hasofer & Grigoriu 1995), (Grigoriu 2008). A case where the strong non-Gaussian character
of the excitation made the Gaussian assumption incompatible with the system’s REPDFs and
response pdfs is also discussed in Athanassoulis et al. (2013).

In this section we shall make an attempt to generalize the presented methodology to treat
problem that the Gaussian closure is not a valid assumption. To this end, we shall consider the
closure of the two-time RE moment equations for a bi-stable half oscillator under Gaussian
excitation. The closure and solution of the moment system will be performed directly in the
long-time limit. As a test case we shall use the bi-stable/Gaussian half oscillator that is
described by Equ.(10)_Sec(4.2), assuming that this is excited by an OU random function

y(t;0), with m{>) =0, o2 = 2.0, r{3" = 0.5. In Figs.13-15 joint densities corresponding
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Figure 13: The long time statistical equilibrium joint REPDF f,_ (x,,y,;7) for abistable/Gaussian half oscillator with

OU input functions y(t; ), with m* =0, o =

time lags = =t — s between the response and the excitation

: P :
0 0 5
x(t x(t
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Figure 14: The same as Fig.13 now for negative time lags
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Figure 15: The same as in Fig 13 for the long time statistical equilibrium joint response pdf
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to this test case are plotted as obtained by MC simulations performed by Z.G. Kapelonis.
More precisely, in Figs.13,14 the joint lag-time asymptotic REPDF f,, (x;,y,;7) is plotted

for positive (7 >0, Fig.13) and negative (7 <0 Fig.14) time lag, whereas, in Fig.15 the joint
asymptotic response pdf f,, (x,,y,;7) for the same problem is shown. Looking into this
figures we can notice that:

i) The joint REPDF is concentrated around two skew symmetric stable modes

i) The mean values of the probability mass that is concentrated around each one of the
stable modes depends on the time lag

These remarks allow to understand why the Gaussian assumption is inappropriate for this
case. Taking into consideration the above we will present some first ideas on a bi-Gaussian
moment closure scheme. For its solution we will use auxiliary information obtained from MC
simulations, concerning the mean values of the two stable modes around which the
probability mass is concentrated.

Let us rewrite the two-time RE moment equations for m, (t), R, (t,s), Ry, (t,s) and
R, (t,t) , that where obtained in section 5.2, for the case of a non-linear half oscillator
under Gaussian excitation (i.e. setting x; = 0, to Equs.(1-4)_Sec(5.2.1)). Since our focus is

on the long-time limit, we are going to ignore the initial conditions. Under these assumptions,
the differential equations for m, (t), R,, (t,s), R, (t,s) and R,, (t,t) reduce to

dm, (t) ’1

dt = /ul'mx(t)+1u3'Rxx (t!t)+Kl'my(t) J (1)
OR,, (t,s)
o T ARy (68) 4 R (68) iRy (Ls) 2)
OR,, (t,8) 31
TR Ry (68) + py RE(S) Ky Ry, (5,0), ©
and
dR,, (t,t) 31
T = 2'/ul'Rxx(t't) =+ 2':”3'Rxx (t’t) + 2'K1'ny(t!t) ) (4)

5.4.1. Direct solution of the non-central two-time RE moment equations

We shall solve the reformulated system of two-time RE moment equations directly in the
long-time, therefore we assume that the joint, RE, stationarity has been achieved, i.e.

dm, (t i
lim () 0= lim —dRXX(t’t), (1a)
t— oo dt t— o0 dt

and
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OR, (t,s dR&) OR  (t,s dR(°°)
t—o00, S— 00 ot dr t—oo, $— o0 ot dr
t—s=r t—s=r1
ROL) (t,5) = RUL®) (7), RUJ™)(t,5)=RUJ™)(r), (for r =t—s) (1d)

Taking the limits of both sides of Equs.(1-4) Sec(5.4) as t — oo, s— oo and applying
Equ.(1), we obtain

0 = py-m™ 4 25 R (0) 4 #,-m @
dR{ (1)
# - 'ul'R)EOyO)(T) + ’u3'RE<3y1’OO)(T) +xoRyy (7) (3)
—R(OO)(T) 31
d PRE) () 4 g REE (2) xR (1) @
T
0 =ty REV(0) + a5 REL(0) + 1,-RE (0) )

Assuming that the asymptotic mean value of the excitation m§°°) =0, since the response

density is a symmetric function, for the third order moments of the response appearing in
Equ.(2) it is straightforward that R(2">)(0) =0 . Therefore, from Equ.(2) the response

mean value m{™) =0. In the next section, we are going to introduce a bi-Gaussian moment
closure aiming to approximate the asymptotic RE cross-correlation Rioyo)(r) and the

asymptotic response auto-covariance Ry (°°) (7) using Equs.(3-5) .

5.4.2. Bi-Gaussian Closure
In line with the observations discussed in the previous section, we are going to assume that

the asymptotic joint REPDF f,, (X;,Y;;7) and the asymptotic response pdf f,, (x;,x,;7)
can be expressed as sums of Gaussian densities

oy (X0, ¥137) = %{G(mi(r),mt(r):zw))+ G(m,().m,(1):2,, (7))} (1)
(X X57) = %-{G(mi(r),mi(r);zxx () + 6 My (), M) 2 4 (7)) } ()

where
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m} () = E’[ x(t+7;0) > 0|x(t) > 0], m!(r) = E’[ y(t+7;0)|x(t)>0] (3a,b)
My (@) = —m (@), my()=-m() (4a,b)
and

Z,x(0) Z,,(7)

Pl @ 5,0

Z (1) = (5a,b)

2.,(00) Z,,(7)
(1) =00

Consequently, the long-time moments appearing in Equs (3-5)_Sec(5.4.1) can be written as
functions of the introduced variables m*(r) my(z), = yy(O) 2,x(0), 2, (7). 24, (7).

More precisely, for the asymptotic RE cross-correlation R (1') we have:

R<°C><r)—ff Xy £, (X1 yy:7) dxdy =

RxR

:%ff xy{G(mi(r),m;(r);ny(r))+G<m;(r),m;(r);zxy(r))}dxdy:

[setting u=x-—m(z) , v=y-m ()]

:%ff (U+mi(r))(v+m§(r))G(u,v;ny(r))dudv+

+%ff (utm,(@))(v+m,(2))G(uV;Z,, () Jdudv =

RxR

-~ ff (W mj @)V -+ um (7) + My ()M (7)) (Vi Z (7) Jdudy +

RxR

1 %ff (v 2V +umy (2) + Mo (2)m (7)) G (u,v; 2, () Jdudv

RxR

That is,

R<x>(f)—ff (W mE @M @)6(uviT,, Jdudv=2 () +mi@miE). (6

RxR

Similarly we find that:

R (7) = £ (@) +mi (2)m (7)), R (0) = £,,(0) +my (0)my (0) (7, 8)
Ry (0) = =, (0)+m} (0)m (0). (9)
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Subsequently,

R(fyl‘“)(f):ff X*y £ (xy,y,;7) dxdy =

RxR

:%ff X2y {G(mi @M@, (D)) + 6( M ()M ()2, () )} dxdy

RxR

[ setting u=x-m(z) , v=y-m ()]

:%ff <u+m§(r))3(v+m§(r))6(u,v;ZXy(r))dudv+
ff <u+m;(r)>3<v+m*y(r))G(u,v;zxy(f))dudv:

RxR

f u’® +3u m (7) +3u<m (r)) (mj(r))3)<v+m;(r))G(u,v;2xy(r))dudv+

RxR

% f u’® +3u m L(7) +3u<m (r)) <m;(r))3)(v+m;(r)>G(u,v;ny(r))dudv =

+

N |-

N|I—‘

3

u v+ 3u( mi(0)) v+3u2m§(r)m§(r)+(m;r(f))3m;(r))G<U,V;ZXy(1))dudv,

%\

that is:

REL) (1) = z3l(r)+3(m+(f))2 %,,(7) +3mL (D) M} (0)2,,(0) +(mi(2) )3 m’ (7)
Xy Xy X Xy X y XX X y :
(10)

Similarly,

R(><3X1VOO)(T) = ff (X1)3X2 fxx(X]_aXz;T) dXdy -

RxR

=5[] ot {e(mimiiz )+ 6 (mymyiz )} iy -

RxR

[setting u=x; —m (z) , v=X,—m ()]

:%ff (u+mI(r))3(v+m§(r))G(u,v;2xx(r))dudv+
+%ff (u+m;(r))3(v+m;(r)>6(u,v;ZXX(r))dudv:
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:%ff (ua+3u2m§(r)+3u(m§(r))2+(m§(r)>3)(v+mj(r))e(u,v;zxx(r))dudv+

RxR

s [ e arm o+ 3u(m @) + () v+ m @) vz, () Jdudy -

RxR

- ff (u3v+3uv(m§(r))2+ 3u?(m} (@) m; +(m @) m; )G(u,v;zxx(r))dudv .

RxR

that is,
RGN (1) = £5,(2) +3(M (2))°Z (1) + 3(m] (7)) °Z,,(0) +(m} (z))*. (11)

Since G(mj(r),m;(r);zxy(r)), G( m’(z),m}(z); 2, (r)) are Gaussian, we can apply

the Isserlis theorem in order to express the 4™ order moments, appearing in Equs.(10,11), in
terms of 2" order moments. More precisely from Equs.(1a,1b)_Sec(5.2.2) we have:

23(1)=332,(0)-2,(r), Z3i(r)=32,(0)-2,(7). (12), (13)

Substituting Equs.(12, 13) to Equs.(10, 11) we obtain:

(31,00) _ 2, . + 2
RE (1) = 3:24(0)-Zy (7) +3(m (7)) T, (7) +
T 3mL (D) M (2)Z,,(0) +(mi (@) mi(2) =
=3:2,(0)-(Z () + My (1) My ()] +

+3(m5 @) (2, (7)) +m (@)m () —2(m} () ) (7) =
—3(RE (@)~ (m; @) |RE (1) +

2 3
+3(mi(0)) R (2)—2(m} (z)) my () =
(RW(O) (m 1(0))2+(mi(r))2)R§‘;°’(r)—z(mi(r)) *m; (@), (14)

and
RES(r) =3(RE (0) - (@) + (mi(0)) | RG () — 2:(mi@)" (15)
setting 7 = 0 to Equ.(15) we also obtain

REH)(0) = 3-(REY (0)) —2:(m} (@), (16)
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Replacing Equs.(14-16) to Equs(3-5)_Sec(5.4.1) we get a closed (in terms of moments)

version of the latter, i.e.

(o) (1
% = [/11+3'/13 (R(OO)(O) ( i(o)>2+(mi(r)>2)]R(x)(7)

— 2p5(m} () *m} () 1R, (2),

R (7)

0 3 (R = (my @) + (i (0 || R ) -

-2 us( m @)+ kRE (-0,
0 = (1 +3-415-RE) (0))- R (0)~ 2415 (m(0))" + x,-RE(0) .

Let:
AR() = 1 +3-113- (R (0) —(m @) +(mi (1)),

then Equs.(17-19) can be written in the more compact form

dR(oo) r .]n-‘r r K T
dR(oo) r + K R —T

0= A (0)-RE)(0)—~2-p1,-(m;(0)" + x,-RE(0) .

The general solution of Equs.(21, 22) is given by the formula:

u=r

(c0) _ p(x) (o0)
Ry (7) =R, (7.) - exp f A (u)du t +
T, =1 u=r
+ [ e i@ m@ R () el [ AD@

T,=1, u=r1,

and

7)

(18)

(19)

(20)

(21)

(22)

(23)

(24)
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R (7) = R (7.) - exp f AL u)du | +
u= . (25)

T=1 u=r

t f ( 2p5-(M) (7)) + 5y R(x)( fl))'exp f A U)du fdry,

T =1, u=ry

where 7, is any fixed time in the lag domain.

Following the procedure presented in the solution of the two-time RE moment equations in
the long-time (see Section 5.3.1), under the assumption that z, > 0, x5 <0 are such that

Aé?‘”(z-) <0, Equs.(24 ,25) can be written in the more convenient form:

T=7T Uu=r
R (7) = f (~2415- (M (20))°m} (22) + 1, -RGY) (1)) -exp f AP U)du | dr,,
(26)
R = [ (2 mi @) +eRG ) en! [ AP e,
T, = —00 Uu=r7,
(27)
where
Ty =—Ty u=r,
RP )= [ (2 (M ) mye) 4R ()0l [ AGWdu | dr,
(28)

Since A™(r) is a function of R (0), to obtain a closed form of the system of Equs.(26-
28) we need an extra constraint for R®? (0) . Combining Equs.(23, 26) we obtain an extra

condition, that allows us to compute RS (0):

0= AL (0)-RE)(0)—~2-p1,-(M(0)" +

+ Ky f <_2M3'(m: (Tl))gm;(Tl) +Ry R(ygyo) (Tl))'exp f Aioc) (u)du dTl (29)

Ty =—00

The conditional mean values m} (), mt(r) , defined by Equs.(3,4), are auxiliary data

provided by MC simulations.
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In conclusion, the closed in terms of both moments and time system is given by the equations
(for convenience we repeat here Equs.(29, 26, 27):

0= AL R (0)-2- 15+ (m(0))" +

7,=0 u=2~0

Ty = —00 (u=121

T =7 u=r

RE (¢) = f (~2p25- (% () * + 41 RE (— 1) )-exp fA&”(u)du dr,,

where:
A1) = g1, +3- 1y (R<°°><0) (m i(o))2+(m§(r))2)

m, (z), m, (z) areprovided by MCsimulations

+ Ky f (_Zﬂs‘(mi (71))3m§(f1)+’f1 R(x)(Tl)) €Xp f AP (u)du tdry, (30)

RO = [ (2w ) e+ R () ewl [ AR fdr (@

(32)

5.4.3. Preliminary results- Discussion

In Fig.16,17 the long-time RE cross-correlation R(*’(T) and response auto-correlation

RV (7) of the bi-stable/Gaussian half oscillator obtained by the solution of the system of

Equs.(30-32) are plotted and compared with results obtained by MC simulations. As we can
see in Fig.16 the two methods compare pretty satisfactorily in the approximation of Ri‘f) (1),
having a local mismatch that reaches 10%, around z=0. On the contrary, as we can see in
Fig.17, the proposed scheme fails as the time lag increases, providing an acceptable
approximation of R (7) only around 7 =0. The latter is attributed to the failure of the bi-
Gaussian closure condition to approximate the joint asymptotic response density
f. (X{,Yy;7) since as the lag time zincreases f,,(x,,Yy,;7) develops two extra modes
making the bi-Gaussian closure inadequate, as shown in Fig.18. In this case the long-time
statistical equilibrium joint response pdf f,, (x,,y,;7) would be more -efficiently

approximated by the use of a superposition of four Gaussian densities.
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ny(‘t]iOU,my=D,|J.‘1=1,|,L3=-D.f-1,1(1=1,1c3=ﬂ

— TTM

Figure 16: The asymptotic RE cross-correlation RX(:“’ (7) for the bi-stable/Gaussian half oscillator with

the same parameters as in Fig13 obtained by the solution of the two-tome moment problem (solid lines)
compared with results obtained with MC simulations (dashed lines).
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Figure 17: The shame as in Fig.16 for the asymptotic response auto-correlation Rx‘j) (7)).
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Figure 18: For the same case as in Fig.13, the asymptotic (statistical equilibrium) joint response pdf
f.(X.,y,;7). Asthetime lag r =t — s increases the joint density develops 2 extra modes
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Directions for future work

1. Extension and further development of the numerical solution of the joint REPDF evolution
equation in the steady state to bi-stable and to second order random oscillators.

2. Numerical solution of the transient joint REPDF evolution equation of scalar RDEs by the
use of transient local two-time RE moment equations.

3. Use the characteristically functional approach, presented in Section 2.4, to find equations

for the evolution of the joint two-time RE pdf f, , (c,3) and the joint two-time

response pdf fx(t)x(s) (v ,0,) . Then, solve the system of the new two-time equations for the
evolution of f, . (a,8) and f, . (a;,.a,), together with the REPDF evolution
equation (for  f, ., (a,3)), applying a time closure similar with the one used for the
solution of the two-time RE moment equations in Section 5.2.3.

4. Extensions of the two-time RE moment equations to bi-stable and second order stochastic
oscillators

5. Use the system of the two-time RE moment equations obtained in Chapter 5 to close the
response-marginal REPDF (Equ.(3)_Sec(2.2.3)) for non-linear generalized Langevin
equations.
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Appendices

A.l. Auxiliary integralsused in Section 3.2.4. for IpGF input

We shall prove the following integration formula:

W

A r A A
—exp—A-s+—| ——|—ef|Ja(t, = s)+ ——| + ef|Va-(t— s) + —
_________ p[42f(>2f()2f
Pr oof
t t
Iz(t,s):fexp(—a(tl—s)z—A~t1)dt1:f exr(—a-tf+ 2a~s-t1—a~sz—A-t1)dt1:
t to
t
:exp(—a~sz)~f exp—a-t’+ 2t a-s—g]dtlz
to
t 2 2
A) (a-s—A/2 a-s—A/2
:exp(—a-sz)-f exp—a-t2+ 2t as—- _ S ) -l—( S ) dt, =
fo
t 2
(a-s—A/2) ) f A
—exp—— _a.&| | exp—|Va:-(t, —s)+ dt, =
P t WA
t 2
a’-s°—a-s-A+A%/4 ) f A
=exX —a-s?|- | exp—|Va-(t, —s)+ dt, =
p ~ | -85 7] |
AP\ | a-s—A/2)
= “A-s+—| — S il I P
exp S+4-a] fexp Ja 1 7 "
to
I24(t,s)
(2)
Let us define:
a-s—A/2 A
u:us,tzx/a-t——:\/a-t—s—i-—, 3a
(s:t) 7 (t=s)+- = (3a)
u, = ufs,ty) = Ja:(t, - s)-l—i, u, = u(s.ty) = va(t, - s)-i—i, (3b,c)
2Ja 2Ja
then:
uo:u(s,to) < ulzu(s,tl) < u=u(s,t), (4)
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and

I21(u(s,t)):%fexp(—uf)dulzﬁ —f exp(—ui)dul-l—f ex#ui)dul . (5)

The integrals of normal distributions, appearingEqu.(5), can be approximated by error
functions. Specifically, the following formula hadrue:

X

fexp[—sz]ds:ﬁerf (x), (6)
J 2
therefore:
Jr
L,y (u(s,t)) = 2—\/5(— erf (u(s,t,)) + erf (u(s,t))) : (7)
From Equ.(2) and Equ.(7) we obtain the integratomula (1) . |

We shall also prove that:

________________________________________________________________________________________________________

é A :
0,(ts)= | e erf|Ja-(s—t)+ dt, = i
L= (4457 |
E 1( on A 2nt A
i =——/\e“".eafiVa(s—t)+ +eMoerf |Va (s—t)+ +i 8
| A Va(s-t)+o— (s—1) 2va) " (8)
| +e 2| erf \/5-(t—s)-|—i —erf Ja-(to—s)-i—i |
i 2Ja 2/a |
Pr oof
| A
I,(t,s e 2 erf|Va-(s—t)+ dt, =
9= [ (s=t)+ 5z o
1 A A
=——||le*Mef|Ja (s—t)+ —fe“’tl- erf [Va-(s—t,)+ dt,| =
2A ( l) 2\/5 L ) a ( l) 2\/5 1
1 _om A 1 oa A
=—— erf [Va (s—t)+—=|+— e *ef|Ja (s—t,)+ +
T va( )+2.\/5 2A (5-) 2./a
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t

I (P P
2A at,

fo

A

\/a'<S—tl)+m

dt, . (9)

I31(t,8)
The integrall ,, (s,t), appearing in Equ.(9), shall be calculated sepBrathe derivative of

the error function follows from its definition, this:

%erf (z):%-exp(—zz).

™

Therefore, by the chain rule, for the derivativpesring in the integrdl31(s,t) we have:

0 A
i[erf \/a'<s_tl)+2-\/5 N
2 0|V (s—t)+ -2
_ 2 el [Var(sot) s A 2-Ja)] _
= exp Ja(s t1>+2-\5 i o)
_2fa (e o AT
=T exp \/a(s tl>+2-\/5 —
:—Zj_a'-exp - a-(s—tl)z-l—A-(s—tl)-l—%;]],
- .
therefore, combining Equs.(9,10), we obtain:
|31(t,s):—2—j_f- exp[— a-(s—tl)2+A-(s—tl)+£+ 2-A-t1] dt, =
:—ZTf-fexp —a-(s—tl)z—A-s-l—A-tl—Ar'%— 2-A-t1]dt1:
2Ja A | )
:—ﬁaexp[—As—R]-f exp{—(a(s—tl) —A~t1))dt1:
__2a K _
_—ﬁ-exp[—A-s—ra]-lz(t,s)—
A A
:exp(—Z-A-s)-[erf Ja-(to_s)+2—\/a — erf x/a-(t—s)—i-z—\/a]] . (11)
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A.2. Frequency Domain Analysisof thelinear RDE with IpGf input

Purpose of thisAppendix is to calculate the response auto-spect8yw)and the joint
(stationary) RE cross-spectruff) (w) of the linear RDE (Equ(1)_Sec(3.1.1)) under IpGF

excitation. Subsequently, by applying the inversairter transform we shall re-obtain the
long-time RE cross—correlatiorRﬁjf) (t—s) and the long-time response auto-correlation

R (t—s) (these were also obtained in Section 3.2.4.a bystiiution of the two-time RE
moment equations).

Let us assume that the stationary excitation hesrmean value, i.en, =0, then:

C,,(ts)= Ryy(t,s):az-exp(—a(t—s)z) , 1)
or, for r=t—s, C  (r)=0"-exp(-a-7°) . 2)

From Equ.(6)_Sec(3.2.3) we have :
B
©=——-m,=0. 3
m=——m, ®)

The spectrum of the stationary excitation can lbmdousing the formula below (see
(Athanassoulis 2000)):

o0 oo

Sw(w):—nyy(T)-COS(w-T)dw:%az-f ex;ﬁ—a-fz)- cofw-7)dw. (4)

From Equ.(4) we obtain (using the integration folaaf pp. 480 in (Gradshteyn & Ryzhik
1965)):

Sw(w):%-zﬁa-az-exp—Z; = 2_\/%-02- ex;{—%; . (5)
Let:
Y(t)=ReY, exdi-w-t)],  X(t)=ReX,- exgi-w-t)], (6a,b)
then from Equ.(2a)_Sec(3.1.1) we have:

Xo-i-w-exp(i-w-t)=A Xy exdi-w-t)+B-Y,- exfi-w-t), )

or

Xo-(i-w—A)=B-Y,, (8)
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and the transfer functiohl, (w) of system given by Equ.(2)_Sec(3.1.1) is givenhay
formula:

ny(w):é:._ - 9

We shall useH, (w) to calculate the joint RE spectr@ip(w), i.e.

B 1 2
=H . — . . z.ex _— | =
SXy<w) W(w) Syy(w) —A+i-w Zm g P 4.a
B(—A+i-w) 1 ) w?
— 2 > . e .exp —_—— =
w-+A 2-\m-a 4.a
2 _BA 1 wz . 2 B w wz
=0°. . -expl——|+1-0°- . -exp———|. 10
7 2.\m-a W HA® " 2a T o dra F+A? 4-a (10)

Then, fromS (w) applying the inverse Fourier transform, we fihd tong-time RE cross-

i () (Y -
correlation Ry (7)

+00

Ry ()= [ sxy<w>-exp<i~w-¢>dw=Tsw<w>~coiw)-dijm Siflo 7)-ds =

—00

+00
B 1 w?
:O'z' ,—ﬂ-.a' —A'fm'exp[—n]'CO%LU'T)'du)— (11)
0
+00 w 2
— — _.e —— |- si -7)-d .
fw2+A2 X~ iNw-7) dw
0

To calculate the sin and cosine transforms appganiikqu.(11) we use the following
integration formulae (from (Magnus et al. 1954)(&®u.15, pp.15 and Equ.26, pp.74)):

+00

1 w?
fmexp[—ﬂ] CO&{W'T)' dw=
0

AZ
s s 1 1
= eta e |1+ erf |[Va T+ A+ [1rerf | a - —— ] , (12
4-(—A) 2-\/a 2.\Ja (12)
and
+00 w 2 .
fmexp “1a -sinfw-7)- dw =

0
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AZ
T e,

e |14 ef 14 erf (13)

\/5'7+2-—T/E'A]]_em

—\/5-T+2.}/5~A]] .

Substituting Equs.(12) and (13) in Equ. (11), we ge

+00 +00 +00

R(;;)(T):foy(w)-exp(i-w-T)dw:fSXy(w)-Coiw-T)-diji-fSXy(w)- sitfe- ) dw =

—00 —00 —00

1 w’ r w w’
A(=A) | ——— exp|— -cofw-T)-dw— - exp— - Sifw-7)-d
( ) fw2+Az p[ 4-a] S(w T) “ fwerAz % 4.a] <]w T) w]

oo
e |1+ erf [\/E-TJF 2-%/5'A]]

, B

=g -
NVm-a

2 BT
04\/_

7AT

7AT

1+ ef

1+erf[ —/a-

1
A=
2:-\a ]]
that is:

RY) (1) = o B-r & e“’f’1 e’ [1+ erf

2-\a

Va-r+—=All. (14)

1
2a
We shall now calculate the spectrum of the resp@)ge) :

2

4.a)

2
2 1
S (w)=[H_(w) - w:| | .o?.ex 15
Then, applying the inverse Fourier transfornm§(w) we obtain the long-time response auto-
correlationRCY (1) :

o0

. (T):z.fsx (o) coxeo ) \/i b COS<w~7;). EXFE_‘%‘

dw . 16
o w (16)
0

Applying Equ.(12) to Equ.(16) we obtain:

) (1,9) =
:\/%-024‘(7:'0\)-62\; eA'T[lJrerf [x/a-ﬁtz.f/;A]]jLeA”[Herf _\/E'TJFZ-T/;A]”:
45_ ?z " " o eA'(S‘)-[erf \/5-(S—t)+2f/£]+l]+e‘\'(‘S)[erf Ja-(t_s)+2‘35]+1].

17)
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A.3. Auxiliary integralsused in Section 3.2.4. for OU input

In what follows we shall make use of the formulae:

é T=t,—s :
gI4(a,w,t0,t,s):fea(tl 9. codw-(t, —5))dt, = fe"” cofw- 7 )dr =|

: ty th—s : (1)
: eaT . X=t—s :

i = -(a-cos Wt )+ w- sinr )X_tOS i
o oo s
iIs(a,a),to,t,s):fe""(tls)-sin(a)tl—s))dt1 - fear-sin@r Xr|

i to to—s :

e . A ?
i = ——  (—wcodwr) + a- sifawr i

: g ooson) asitan))

and

T(CaCoawtot,s)=cyl (a@tol S)+csl dawtots) =

| o™ N i B
i = m-((c4-a—cs-a))-cos(ajr) + €4 w+csa) sifar)) i

: -

We shall first consider the integrals appearingdu.(28a) Sec(3.2.4). For the first integral
appearing in Equ.(28a)_Sec(3.2.4) we have:

t
f xR,, (S, t1)‘ - e Mdt, =  (Substituting from Equ.(29a) _ Sec(3.2.4)
f

o2 2. a.((a2 —A) 4w 2) eA'S]ez‘Atldt +
=B.o°- '
s A

t
—AsS

S -Lfe“‘”“1$«A+aico#w¢0y—$)+u%-ﬂdwdﬁf-$»dh =

(A+a)” + i

0
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|- (e ) a-((a> — A% +w?) i

A((a—A)2 +w2).((A+ a)” + wz)

(4)
¢ [ls(A+a,wg,a— Awgtot )
N yWoyd— AW, , .
(a—A>2+u)§ 6 0 0'"0
Applying Equ.(3) to Equ.(4), we obtain:
t B 2
R, (st) ettt = 7 x
‘[ (s, l ((a—A)2+w2)-((A+a)2+w2)
_pAS (ar2At 42At a'<(a2_A2)+w2)_
x|—e"* (e e *¥) A (5)

_ @ Ast@-A)(t-s) .[((a2 — A" —(w,) 2>'C05(wo' ¢—3)> t2wya Sidwo' (-s )}

+e,A.5+(a7A)-(t0—s) -[(az—Az)-CO#wo' ¢O_S))+2-wo-a~sin(wo- ¢O—S)>” .

For the second integral of Equ.(28a) Sec(3.2.4have:

t
fTny <S,t1,t0 m ) e Mt = (Substituting from Equ.29¢ _ Sec(3.2)4) =

f

t
B.o2. M2k

A AT fe‘a*’*)'““"’ ((a= A)-cos{wy - (t, —t5)) — wy- Siwg (t,~ty)))dt

t
+eA(S’t°)-m~m~ f e “udt,
to
e/—\~(s.—2~t0)

= —B.o%. -
(A+a)” + wg

ls(a= A—wo,—@+ A)wo to 1) |+

(6)

%_GA(sto) . m(o ‘rny‘(e—Af( _e—,’-\t()) .

Applying Equ.(3) to Equ.(6) we obtain:

+
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o At B-o? o
f olStitom, e, ((A+a)2 + WZ){(A-a)" + wg)

x | e MEEREA L (a2 A%) 1 () 2)-cos(w, € to)+ )
+ 2-w,-a Sin(wo ([—to)>) —e A'(S*Z'to).( (@ — A*)+ (W, )Zﬂ

At+s—1)

B g A
— T m m (M e ).

Let us now calculate the integrals appearing in.28b) Sec(3.2.4). The first integral of
Equ.(28b)_Sec(3.2.4), using Equ.(5), is equivayentitten :

0 B.o
R (st) -etud
[ XY(S tl)‘ s>t e tl ( 2) ( A+a + w )X
2 2
X —e“'s-(e2’*5—e2’*t°)a< SAPALY —e ™ (@ = A)—(w,) )+ (8)

A

L g AR (-9 .[((az—Az)—(wo)z)ﬁos(wo' ¢0_S))+ 2wqa Sir(“’O' (s >”

whereas the second integral appearing in Equ.(@28t)mes:

t
fSny<S1t1)‘ ot ‘e_A'tldtl = (Substituting from Equ.(29b) _ Sec(3.2)4)

s
t

:m#‘fe(a+A)'(t15)((a_A).Cos<w-<tl—S)) - w- Sil"(w-(tl—S)))dtl ©)
a-A" +w

BZ ‘O_Z'e—A-S
=2 9% ((a— A)—we—@+ A)wy,SitS).

(a- A 1 w2

Applying Equ.(4) in Equ.(9) we get:
t

At 4 B*.0? _ As—(atA)(t-9)
R,y (sh)_ e dt, = 5 - - ~|€ X
f ( )‘ ((a—A) + w )~<(a+A) + (w)?) [
X((—(a® = A%+ (w,)?)-coq(wy- t—S) + 22w, sirfw (—s))— (10)

—e* (@ — A +(wp)?)] -

A.4. Some auxiliary formulae concer ning the Gaussian joint REPDF.

The joint REPDFf,  (a,3) that corresponds to the linear RDE given by Equ.(1
_Sec(3.1.1), when the excitation is assumed to Sauswill be a 2D-Gaussian pdf:
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1
Xt Y(s ( 75) 2 X
v 21/C, (11)-C,. (5,5)—(C, (t.9)
X exp— 1 X @
2(C.(t)-C, (5.9 -(C, (t.9)) )
<(Cy (8.9 (a=m, (1)) =2:C, (1.5)-(a = m (1)-(8 =, (8] +C,(t0)-(8-m, (5]
wheres, t represent the excitation and the response tinpecésely.
Let
W(t,s)= \/C t,t)- C,(t.s) (2)
E(019)= W<s,s>-<a—nx<>> ~2.C, [t om0 (3-m,(3)+ o
+Cultt)(8-my ()",
then f, v (v, 3) can equivalently be written:
1 E(a,0;t,9)
X(0)Y(s s exXp ——— |- 4
()Y()( ﬁ) 7T-W('[,S) D{ 2-(W(t,8>> (4)

The partial derivative oﬁx(t)y(s) (a

6
ot Feows (@:8)=

10 1 ] Ess|_
- 2.1 Ot|W(t,s) 2~<W(t,s))2 B
9 0| E(a8;t,9)
1 ‘_mW(t S)+3t 2-<W(t,s))2 ‘exp_E(a,ﬁ; ) _
27| W) w(t,s) 2-(W(t.s))

,3) with respect to the response timavill be:
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| Gwes) Wi ee oy Sewais
= - + 4 5%
2m | (wit,s)) (W(t,s)) 2:(W(ts))
_2.(W(t,s)>2.E(Oéﬂ;t,S> |
where:
_Wts [\/c (t,s): (t,S))z]
ny(s,s)-gt C.(t,t)=2-C, (t;s >68t o (1:8)
- 2-W(t,s)
and
9

That is:

0, | Swig D@ty Leains

at X“’y(s)m’ﬁ):z.w'_(W(t s))’ (W(t,s))’ C2(W(ts) ’
_2-(wj(Lt s)) (@83t (5a)

where:
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c, (ss-2c,(tt)-2C, (ts)-2c, (ts)
9 wits)——— O Cooa (5b)
ot " 2-W(t,s) '
om, (t
0 Ea5i19)= 2{a-m (1)-c, (9. T

ot

—2-<ﬂ—m<s>)-[<a—mx<t>>§[cw<t,s>-]—cm,<t,s>-a”"‘“)] 50

ot
(-, (5) e[ 0]

Consequently, the partial derivative w(t)y(s) (a,b’), with respect to the response variable
will be:

0 _o]_ 1 Elesits))
9a Powe 0= 50 27 W(ts) T 2 w(ts) |
_ 1 OE(o,B;1,8) exp E(a,ﬁ,tsz) 6
4-m (W(t,s)) Do 2: (W (t s))
where:
OE(a, 31,
E(aai L Cy(s:8)-(a—m,(t))~2.C, (t.s)-(5—m(s)). (6b).
That is:

5% Fxoves (v, 8)=~ Cy(s9){a-m(t)-GC, <t’s)'(5_ m (S))

E(a,0;1,s
3 -exp —<—2) .(7)
2-7-(W(t,s)) 2-(W(t.s))
In case that the long-time statistical equilibristate of Equ.(1) Sec(3.1.1) is considered, the
partial derivative with respedt( half time derivative) given by Equ.(5) simplii¢o:
0 0 0
—W(t —|W(t,s)|-E it —E it
0 e o TR TSy Fe )
e e Wit.s)) 2(W(t.s))’
X exp|—

(8a)
where:
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0
2.C,(t,s)- 4, C,(t.s)
Swits)=— ﬁ’fs) (@)
O ot = 2~<ﬁ—n»<s>>~<a—m<t>>mg—§t’s>- ®

A.5. Equivalent expression for the off - diagonal REPDF evolution constrain
Let us consider the left hand side of the off -gdimal REPDF evolution constrain in the
linear/ Gaussian case Equ.(1) _Sec(3.5)

LH = of X(t)y(s)( ’5) +A-f
ot

X(t)Y(s) ( :ﬁ) [A-a--}— B.ﬁ]w.

e (1)

We shall first assume that, (t)=m, (s)=0. In this case the joint REPDE, , , (,0)
given by the formula:

1
fx(t)y(s) (O"ﬁ) =
27r-\/R(X(t,t)-F§,y

X

(59 ~(R, (t.5)]
ool Rul38)07=2R, (1)

2)
a-B+R(tt)-5° |
2(R(t)-R, (55)~ (R, (t9))

For m (t)=m,(s)=0 the first term of the right hand side of Equ.(1¢g<Equ(5)_App.4)
reduces to:

0 1

at fove (4:9)= 2-7-(W(t,8))’ "

5 at[Wts] E(a,8;1,8) gE(a,ﬁ'ts)
——W(t,s)+ 5 - 3
T ) zig) |
— E(a,0;t
X exp > Wit ()8t 9)

t,s z\/R« t,t

(3b)
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E(a,0;1,8)=R,(5,5)-a®— 2R, (t,8)-a- B+ R, (t 1)- 52, (30)
) R, (5:5) o Ru(60)- 2R, (1.9 0 R, (t.9

)= 2W () | =9
%E(a,ﬁ;t,s):—2-a-6-%Rw(t,S)Jrﬁz-%R«(ti)- (3e)

From Equs.(3c, 3d), thé®term appearing in the summation in the right hahBqu.(3a),
becomes:

Qw(t,s).w_gw(t’s), R,(ss)-a’—2-R (t,5)-a-3+R,(t1) B _

o wits)” Ot W(t,s)’
O RulsS) o 0 RS 8 Rt
= (ts) wis)y o (b Wit.s) g wigy

Then, from Equs.(4,3e) for th82and &' term of Equ.(3a) we obtain:
0

2:W(t,s)

s 45
gwa,s»(;w(fz;z-az-[zgwa,s»ﬁ-gW»W;,S) a:p+
2w (Vﬁft;; SR g ©
Applying Equ.(5) in Equ.(3a), Equ.(3a) becomes:
Bt s (0:0) = 5 WIS () &"vw(i;l-ak
|9 Rultl) 0 g )L ].52X

" g o
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—%-E(a Bits) .

N 2 wits)

(6)

We shall now compute the partial derivativef;j(t)y( 9 (o, B) with respect tax . Setting

m, (t)=m,(s)=0 in Equ.(7)_App(4), we have:

E(a,8;t,5)
2(W(ts) |

0 (a7ﬂ>:_a-%(8,8)—ﬁ.%(t’8)

—— Fovs -exp
(9& (t)y(s) 27T(W<t,5)>

(7)

Then, the 3 term of the right hand side of Equ.(1) is equinéiewritten:

0
[Aa+ B'ﬁ]'a—& fX(t)y(s) (O‘ﬁ) =

(Aot Bt REI IR
2.7 (W(t,s))”

- S e BB (a5ha-R 515 -

exp E(t,s;a ,0)
2-m-W3(t,t) )

x[R,(s,5)- Aa*~R(t,5)- Aa-3+R,(s,5) B-a-3—B-R, (t,5)- 7],

that is:

1
A W(ts) ®)
[AR(s9 . ARMI-BR(sS | BRLS

W2(t,s) + W2(t,s) +W.62 xexp[E(t S o ,ﬁ)] _

0
[A-a+ B'ﬂ]'a_& fx(t)y(s) (a;ﬁ)z

From Equs.(6,8) we get that the right hand sidédf.(1) becomes:

af)((t)y(s) (Oé 75) ] afX(t)y(S) (Oé 75)
ot o

+A v (o, B)+[Aa-+B:p
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exp{E(t t i ,3)} R, (ss) ) 2
> T W(LS | —Quo (t,5)+ (W(t,s))z Quo(t,S)|-a® —Qyy(t,S)- - B+ Qy,t,s)- B
(9)
where:
Q00<t's) = W(]t-,S) -%W(t,S)— A, (10a)
Qll(t,s):<W<tls)) 2-%W(t,s)-\F}v“’étt,’;)—%Rw(t,s)—A-Rw(t,s)—i-B-RW(s,s), (10b)
Qu,(t,s) = W(:S)z [%W(t,s).(m—it”st)))_%;&(t t)+B-R,(t, s)] (10c)

We shall treat each one of Equs.(10a-c) separatelyng to express them in terms of
differential expressions that look like the two-€inRE moment equations (Equs.(8,22)
_Sec.(3.2.1)).

For Qy(t,s) from Equ.(3d, 10a), we have:

R, (5:9) o Ru(t0)- 2R, (1.9 O R, t:9) - 2 AW(t 9
u(t-5)= 2.W(t, s)2 -
it e L SRR R (AR R, (53] A (R, ()]
:Wés)z.&y(;s),[%aa( t)— ZAR(Xtt] (t,s)- [8tRW(t S)— (Rw(t,s))]. 11)

Adding and subtractin@®- R, (s,s)- R, (t,s) in Equ.(11), we obtain:

1
Wi(t, s)2

Qo (t,S) = . %(S,S)-[a

. aR(X(t’t)_2.,0\.F{<X(t,t)—2-B-F{0/(t S)]

—Rw(t,s)'[%&,(t,s)—p" R, (t,s)—B- R,y(s,s)] . (12

Let us now proceed tQ,(t,s). From Equs.(3d, 10b) we have:
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1
& ey

Ry (L9IR, (550 R. (1)~ 2R, (1.9 R, (1) 5 R, (1) +

+[—%Rw(t’5)—A- R, (t,s)+BR,(s,s)|x
(Ru0R, (59 (R ()] -

1R, (LR, (5.9 o R, (10)- 2(R, (t.5) SR, (t:9)-

4

Wwit.s)
“RLLY R, (890 R, (65 (R, (t5) IR, (t:5)+
~ AR, (L5) R, (L1)R, (s,9)+ AR, (t,5)-(R, (t.9)) +
FBR,(L1)(R, (89 ~B-R, (s:8)(R, (t9)]. @3

Adding and subtracting\- R (t,s)- R (t,t)- R, (s,s)+ B-(F{W(t,s))z- R, (s.s) to Equ.(13)
we obtain:

2 0

Qu(ts)= 1R (L3R, (55 R, (L) (R, (1)) R, (t.5)-

wit.s)
“RA(LOR, (89S R, L5+
~ AR, (1,5)-R, (1) R, (5,8)+ AR, (t.)(R, (t.5) +
+B-(R, (s:5)) Ry (tt) —B-(R, (t.5)) R, (s.5)-
— AR, (1.5)R, (1) R, (5.5)= B-(R, (t.9)) R, (s.5) +
HAR, (15) R, (L1)R, (5:5)+ B-(R, (t.5) R, (9] 04

That is:

Qu(t,s) =

<W(t1 )’ Rw(t,s)R/y(S,s)'[%Rxx(U)— 2 AR, (t1)- 2B-Rt 5>]_

(R, 09 +Rut0)R, (9

ERW(LS)_A. R, (t,s)—B: Ryy(s,s)] .

(15,

For Q,,(t,s), from Equ.(3d,10c) we have:
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Qp(ts) = ! [Q ( )R«(t,t) 1

0
wiesy (o6 'W‘zawt)w-ws)]:
: 0

1 0
_ W .IE&(t,t). RW(S’S)'ER“W)_ R, (t.t): R(y(ts).a&y(t o)+

! [_%%R«(t,tﬂ B- Rw(t's)]'(R«(U)' R, (5:5)=(R, (t.))
0

R, (9) R, (L) SR, (15)+ BR, (L.5) R, (L) R, (5.9)+

+%(F{W(t,s))2%&x(t,t)—B-&(t,s)-(Rw(t,s))z ] (16)

Finally, adding and subtracting- F{<X(t,t)~<RQ/(t,s))2 in Equ.(16), we obtain:

R R[S R - AR 13- BR (53]

Q2 (t' S) - (W (t, S))

+§(Rw(t,s))2[§|§“(t,t)—2- AR, (tt)—2B-R(t ,s)] Q7
Comparing Equs.(12,15,17) we notice that thesealreritten in terms of two differential
expressions of the two-time momerf®;, (s,s),R, (t,s),R,(t.t). In what follows we shall

drop the zero mean value assumption to show thahighcase, an additional differential
expression for the mean value also appears.

Let us assume tham, (t)==m,(s)= 0. Then, the Gaussian random functions:
X(t;0) = x(t;0)—m(t), ¥(s0)=y(s;6)—m,(s) will have zero mean values, i.e.

m,(s)=0, m(t)=0, thereforef, . (a,B) will verify Equ.(9). Thereafter we shall use the

X(1)(s)
equivalent expression for the paramete@,(t,s), Q,(t,s), Q,(t,s) given by
Equs.(12,15,17), when we refer to the random fonstiX(t;6), y(s,0) these parameters are
denoted byQ,(t,s), Q,(t,s), Q.,(t,s). More precisely for f (o, 8) will verify the
following equation:

M y3s (- 5)
x(09(s) :
ot +A T

X(t)9(s)

] 8f>"<(t)y(s) (Oé ;ﬁ) _

(.0)+[Aa-+B-3 e

(18)

exp{E(t 1 8)} (59 Qoo<t,s>]'“2éu<t,s>~a-ﬁ+Qoz<t'S>-ﬁz ’

2~7r~VV(t,S)

| —Quo(t,5)+

(Wit, s))2

where:
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2

Ry (t,)=C, (t,t)= R, (t,t)—(m (1)), (19a)
Ry (5:5)=C,, (s.5) =R, (s.5)~(m(s))" (19)
Ry (t:5)=Cy (t.5)= R, (t;5)—m(t)-m(s), o)
W(t,s)= R, (t.t)}R, (s.5)—(Ry (t.9)" (19d)
E(a,3;1,5)=Ry(s,5)-a” — 2Ry (t.,5)-a- B+ R (t 1) 5, (191)
Qoo(t,s)(W(tl’s))z-B-Rw(s,s)-[%&i(t,t)—2-A-F{.&(t,t)—2-B-R~Q7(t s)]_
R (LR AR, (18- B R (2], (g
5 (ts)=— 2+ IR (ts)R (s.8)| LR (t1)- 2 AR.(t1)- 2B-R.(ts)|—
Qn(t’s)_(vV/(t,s))“ R, (t,S)R,(S.S) [atR‘X(t’t) 2 AR, (t1)— 2B Ryt s)]
—(<&y<t,s>>2+&(u)-Rﬂas))-[%&(t,s)—A-wt,s)—B-RW(s,s)], (19
5 (ts) =2 | R (s} R (t1)] LR (t.s) AR (t.s)-B-R.
it AR SR 9 AR, (18)-BR, s8]+
+%<R@(t,s))2[%R&(t,t)—2-A-R~&(t,t)—2-B~R~07(t ,s)] . (29)
The joint REPDFf, (a,3) can be expressed througih), s, (@, 3) , i.e..
froma (@:8) = Frgge (@M (B). 5+ m, 1))
Then, from Equ.(18) we obtain:
Prosia (01 ”;xt“) OEMO)  pg e m )5 m, @)+
+[A-(a+mx(t))-+B-(ﬂ+my(t))]8f*<t”<s>(o‘“§§)’ﬁ+”W)) _
Cexpl{E(ttatmO)s+m )} | Ry (5) ) )
- 2.7 W(t,9) A (W(t,s))2Q°°<t’S> armOr=

~Q, (t.5): (a+m 0) (B+m @) +Qy,(t.5)- 5+ m O] (20)
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that is:
8 X S ( 76) X S ( 76)
—(t)y(a)t +A x(t)y(s)< ;6) [A a-+B- 5] (t)y(a)a -

exp{ (t oz+mx¢)5+m/¢))}
2 7rW(t S)

X|—Qpo (t,5)+

R, (s:s) <
T 7 Quo(t,8) |

~Qu(t.9)- (- m t))- (B+m, )+ Qs (t.5)- B+ m, 1))*], (21

(@+m )y -

under the constrains given by Equs.(19a-19i).

The differential expressions for the momeRs(t,t), R, (s,s), R, (t,s) that appear in Equs.
(190-19i) can be written in terms of differentiajpeessions for the momenks, (t,t),
R, (t.s), R,(ss). In fact from Equs.(19a-c) we have:

0 0

a%(t,t)—Z.A.R&(t t)—2B-Ry(t,s)= 5t Co(t)— 2A-C,(t1)— 2B-C [t §)=
gt(Pyx(t t)- (mx(t))Z)_2.A.(R<x(t,t)—(mx(t)) )—ZB-(RW(LS)—M(t)-rny(s)) _

That is:

0

ER&(t,t)—z-AR&(t,t)— 2.B-Ry(t.s)=

:%R“(t,t)—z-A- R, (t.t)—2B-R,(t.s)— an(t>'[%”k(t)—'°“”k(t)— B-my(s)] (22

and

0 )
EF{.@(LS)—A. R, (t,s)—B- R’&<S’S):ECXV (t,5)— A-C,,(tt)—B-C, (s.5)=
I%W(LS)—”&@)-%(@)—A-(&(ts)—nu(t)-rm(s))—B-(Rw<s,s>—<my<s>)2)-
That is:

%&y(t’s)_A'R?y(Ls)— B-R,(s,s)=
:%Rw<t’s)_A' R«/(t’s)_ B- RW(S,S)—ny(S)-[%mX(t)—A.mx(t)_ B-my(s)] . (23)
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Replacing the differential expressions for the mom&, (t,t),R;(s,s),R, (t,s) that appear
in Equs.(19g-19i), from Equs.(22,23) we obtain:

2 E'RW(S,S)-[%R«(t,t)—2~A-F§<X(t ,t)— Z'B'Rq(t 5)]_
_(mx(t)'%y(S’S)_my( s)-Ry [82 )—A-m(t)— B-my(s)]+

Ry 9] SR (15 AR, (1B R, (5]

(24)

1
(W(t,s))
+[my(8):(Ry (1.9)" +m, (9)- R () Ry (5.5) -

“2m ()R, (IR, (s Gpm )~ Am (0 :m )]

Q.(t,s) =

. Rw(t,s)@y(s,s)-[%&(t,t)— 2 AR, (tt)— 2B-R,(t s)]+

((Ry 15+ R (1R, (s8]} SR, (8- AR, (19 BR, (5]

(25)

st YR s R () 2 AR (1] 2R (18]
it 2R [ARA -2 AR, (10 28R, (13)
0

(M (R 8] - R, (1) R m (8] gm0 Am ) 8oy 3]

0
R (1S AR, (1) BR, (s3)]

R, (1,5)- Ry (1) (26)

Moreover, from Equs.(24,26) we obtain:

~ Re(tY)
(W (t, s))

Quo (t,5) + Qe (1 5)=

1

. _E-(R&(t,t)%(s,s)—(%(t,s))z)-[%R«(t,t)— 2 AR, (tt)—2B-R (t S)]—

m, ()R, (5:9)-m (5)-R, (t,8)) —(m. (1) (R, (t.9)) =R, (t.9)-R. (t.)m, ()|
{qmo-amo-sm @),
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that is:

S— -l——;-(VV(t,s))z-[%R(x(t,t)— 2 AR, (t1)- 2B-R,(t ,s)]+

+m, () (W (t,5)) x %mx(t)— A-m,(t)— B-my(s)]] . (27)
Let us now consider the system of Equations (ZB), (24):
Gults)-—= G t9=0, Qut9)=0, Qu(t5)=0. (28a-0)
(W(t,s))

in terms of the variables:

xlzgRa(t,t)—ZA-R(X(t,t)—2-B-Rw(t S), (29a)
0

:EmK(t)—A-mK(t)—B-my(s), (29b)

0

x3:ERW(LS)—A-Rw(t,s)—B-RW(s,s). (29c¢)

Combining Equs.( 27, 25, 24,29), the linear sys{2&a-c) is written as:

XM ()% =0, (302)

Ry (t:8) Ry (8,5)- % +
+(my(5)(Ry (L5) +m (8- Ra(10)-Ry (5.9~ 2m (1) R, (t IR, (s5)) 6~ (00
~((Ry (t:8))"+ Ra(t:)-Ry (5.9)]-x, = 0

'Ry (s,5)- % —(m,(t)- Ry (s,5)—m, (s)- Ry (1,5))- x, — Ry (t,5)- X, = 0. (30c)

N

The determinant of the linear system of Equs.(80) i
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— m, (1) 0

m,(5)-((Ry (1.9))" + Ry (L) R, (5.5)| -
~2:m,(1)R, (LR, (s.9)

Ry(s9) —(m ()R, (s5)+m,(s)R,(t9)) R, (t.9)

D=[R, (LR, (s9) ~(Ry (t.8))" = Ry (t.t)- Ry (s,5)| =

NP

:_%Dl_rnx(t)D2 ! (31)

where:

my(s)'((Rw (t.9)) + R (1): R?V(S'S))_ —(Ry(t.5)) ~ Ry (t,t)- Ry (s.5)

D=l —2m ()R, (LR, (59 -
~m (1)-Ry (5.5)m (5)-Ry (t.9) R, (L9
==, (5):(Ry (6.8))' =M, (8) Ry (1)- Ry (,8)- Ry 1:8)+ 2:m, (1) Ry (5.9)-(Ry (¢ 9)) -
—m (1) Ry (9 (Ry (6:9))" = m, (5)-(Ry (t.9))” = m, (1) R (t.)-(Ry (s.9))" -
~m(8) Ry (1.1)-Ry (5.5 Ry (t.5) =
—-m,(9){(Ry (1.5))" + R (L) Ry (55) Ry (£5)+ (R (£8)] + Re (£4)- Ry (5:8)-Ry . )
+m(s):(Ry (8:9):(Ry (1.9))" ~Ra (L) (Ry (s9))
that is:

D, —=-2:m,(8)[(Ry (1:8))" + Ra (1) Ry (58)- Ry (t.9)] +
+m,(5):(Ry (5.9)-(Ry (1) = Ra(t.0)-(Ry (5.9))). (32)
Ry (LR, (s:5) —(Ry (t.9)" Ry (t)-Ry (s:5)
SRy(s:9) R, (1,9)
=Ry (5:5)(Ry (19))" + 3Ry (8.8 (Ry (t:8) + 5+ Ra [t (R (s.8)) =
=5 Ra(5:9)(Ry (1) + 5 Ra (t0)(Ry (9)) " 3

D, = =
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From Equs.(31-33) we obtain:

1

D=—;Dr«uwDme$«&a@f+&an+%@s+%@%—

M (1) Ry (5:9)(Ry (1.8)) +5- Ra (1)-(Ry (s.8)) +

M, (t)-(Ry (6.9) Ry (58)=m,(1)-2-(R, (5:5))" Ry (t.) =

=, (5)-Ry (t:5)((Ry (t.5))" + Ra (L) R, (s.9)] = 0. (34

|\>I|—\

Ry (t,
1
2

A.6. Some auxiliary formulae concer ning lag-time 2D Gaussian Kernels

Let us assume lag time dependent Gaussian Kernels :

K(‘%ﬁ?auﬁj,iai,@j(t—s)): 1 ~ex% E; (.3;t— s)’ 0

S

where:

[ (t-5)=C,v, Cy —(C, ()]
E; (a,ﬂ; t—S) =C,, ~(Oz—04i>2—2-C0¢i6j (t—s)-(a—ai)-<ﬁ—ﬂj)—i—Caiai ~(ﬂ—ﬁj>2.

17

Applying Equs.(8)_App(4) to the Gaussian Kernél®g Equ.(1) we get:

aK(a,ﬁ a;, B 2|3]( )):

1 gt (t- s)+aat[V\/ij<t—S)]-Eij(t—S)_gtEij(a,ﬂ;t_s)X
2w (t- 5))2 (V\/ij(t—s)>4 2'(V\/i,»(t—s))3

(2)

Ej(epit—s)

X exp 5. (V\/” (t B S))Z

VieN ,VjeN.

where:

e L N 1= R

and
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0 . _
E%(Oﬁﬁ't_s)—
=%(Cs,-a,- fa=a)-a?=2.C,, (t-5)(a—a, (-6, )+ C,. -(3-5,) )= @)
dC,; (t—s)
— 2 2 o o).
That is:
0 . S
EK(O@ﬁ’ai’ﬁj'Eai,ﬂj (t—S)):
0
G,y (=91 0C, (15 E, (cB5t—9
-t . (t_s>ﬁcaﬂ_ (t—s)— i ot ;
27 (w9 ot (W, (t—s))
0 E;(a,8;t—5)
+(O‘_O‘i)'(ﬁ—ﬁj)'acaim (t_5> -exp — 2'<Wi,- (t—s))2
0
Y C.s (t s)-acaﬁ (t—s) )
“n (Vvii (t—s)>3(le Cos (C{m (t_s))z]
LG femaf +20, (9 fo-al{3-8) o (58] (a0} (3-5)
C“fi”fi ng (C 3 (t_s>)2 Caiﬂi (t-S)
exp Cyyla—ai) —2.C,, (t=s)(a—a;)-(3-8,)+C,, '(ﬂ_ﬂj)z
X 2
2(cw C,, —(C. (t—s))]
(5)
or:
0
QK(aﬂ-a B, S (t-9) == Cous (19) g Cous (=) x ©)
ot 2P Qi Dy a2 5 2. 21312
[Caiai Cops _(Caizfi (t _S)) ]
|1 Cyp '(O‘_O‘i)z +Coa '(5—51 )2 N [(C‘Wi (t—S)) +Caa Cop ]'(a_ai)'(ﬁ_ﬁi)

X

Ca‘a‘ ‘C‘giﬂj _(Cai°51 (t - S))Z [Caiai ‘C@Jﬂj _(Caiegj (t o S))Z]‘C@iﬁj <t o S)

ng@j '(a{_ai)z_z.cai@j (t—S)~<Oz—Ozi>~<ﬂ—ﬁj>—|—Caiai '(5_51')2 '

X exp|— _
Z[Calal .Cﬁjﬂj _(C(liﬂj (t—5)> ]

+
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A.7. Computation of Galerkin coefficients

For Gaussian representation and the Galerkin Kgreabstituting Equ.(7)_Sec(4.5.2) and
Equ.(2)_Sec(4.5.4) in Equ.(4b)_Sec(4.5.3), we obttzt the first Galerkin coefficienG "

ij KA
will be given by the formula:

G.fl)A ff% (a’ﬂ;anﬁj’imﬂi(t_s))
T

1 C&iﬂ' -0C g

_ i aidj

am? (W, W,

A\ (o,8)dadp =

s—t

X[J_ 5, (@—ap) 1 yloziﬁjrj ~+Co, | (=) (B-0)=C,, - (B=05;)" +(W)7| x
Cﬁi»"fj '(a_ai)z_z.cai»"j .(a_ai).(ﬂ_ﬁi)-i_cai% .(’B_ﬂi)z
X exp|— X 7 _
C,; (a—a,)-2C, , (a—a,) (B-B,)+C,, - (ﬂ—ﬂA)Tdadﬁz
2-(W, )?
o 1 Caﬂ |[7’J
S TR f [ 109 e0(Q 0 5)dad5 @

We shall write Equ.(1) in an equivalent form thdbws the application of the integration
formula that is given by Equ(1)_App(8). More pretys after some algebraic manipulation
we obtain thatll,(«,3) in Equ.(1) can be equivalently written as:

= _ = —2
(@, 3) = Hl,zo'O‘2 +H1,11'05'ﬁ+ﬂ 1,02'ﬁ +1II 4, (2a)

where

a=a—aq;, 8=06-0,
Caiai ’ Cﬁj@j
H1,20 - _Cﬁjﬂi ) H1,11 = C— + Caiﬁ,- ’
;3

whereas for the exponef, («, 3) appearing in right hand side of Equ.(1), similavige get:

0= Coor Moo= (W, )2 ) (2b-e)

o Ij

Q1(a15) - Q1,2o' az + Q1,11' Q- B + Q 1,02 Bz + Q 1,0'13 + Q 2,00 (3a)

where:
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C3J Cﬂiﬁj C().h_ﬁ

1 - C,,
Q _ . i + PAPA ' Q — + A , (3b,C)
1,20 2 (V\/ij )2 (VVK)\)Z] 111 (Vvij )2 WA)Z
0. — 1(C,. N C..o (3d)
M2 W) WL
C{ Jé '(ai _aﬁ)_C()l (/8 _ﬁ)\) Cu Q (/8 _ﬁ)\)_cal .(Oéi _Oér:,)
Ql,lO — BrBr > N J !Q1,01: 1 O J 5 Oy , (3e’f)
(W.,) W.,)
1
Ql,OO:—Z.(Cﬁ)ﬂ)\ '(ai _aﬁ)z _2'C(J(hﬂ)\ ' (ai _aﬁ)' (/8] _ﬁ)\) _’_C()Ko{h ' (ﬁ] _/BA)) . (39)
2. (\Nm)\)
Applying Equs.(2-3) in Equ.(1) we get th@‘x;,‘”A can be equivalently written as:
Gujl/)a = 1\/[1"[:[&_[1,20'042 +H1,02'ﬁ2+H 1,11'04'B+H 1,00¢
R? (4a)
x exp[— (Ql,zo'az +Qur @ f+Qu8°+Q 50 +Q 18 +Q 1,()od04d5 ,
where:
C(w- i '8C(w- i
M, = 1 oy Tl (4b)
W, =C,.-C,, —(C,.)  W,=C,. C,—(C,,), (4c,4d)
Caiai ’ Cﬁjﬁj 2
H1,20 - _Cﬁjﬂi ) H1,11: C—+ w8, Hl,OZ = Caiai ) H1,00 - (V\/” ) ) (4e'4f)
i B;
1 Cg.g. Cg 3 Ca,ﬂ- C) g
Q —— i + PAPA , Q — iM] + Qo) , (4g,4h)
"2 [(VVU- oW, W)* W,)°
Q 1{C,. N C.a (4
_= ,, o | I
2w W)’
Cyp (0, —,)=C, , -(8,-5)) Coo (B, =) =C, (0, =)
Q]_,]_o — B\5) g O J ’ Q]_’OJ_: Ol J i O , (4k’4|)
W) W)
1
Ql,oozm-(c% (@, —a,)?~2C,, (0, ~a,)-(8,-8,) +C,, -(8,-6,)). (4m)
KA

We shall now consider the second Galerkin coefficid|”, for the case study that the RDE

is a cubic half-oscillator described by Equ.(3a)k(8€). Substituting Equ.(5)_Sec(4.5.2) and
Equ.(4) _Sec(4.5.4) in Equ.(5)_Sec(4.5.3) we obtain:
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Xff (,ul'a + Hl'ﬁ)'(_cﬁm (a—a,) + Cos, (5_6)\)) +

R? 115 (a,8)

+ “3'a3'<_cﬁm (a—a,) + Coss (5_@)) +

3 (cv,8)

+ 5y B°(=Cy (a—0,) + C, , (8- 8,))) |

113 (0, 3)
(€, (a—a)~2.C,, -(@—a) (3-5)+C,, - (3-5))
X exp|— xR _
Cploma)2C, 0-a)B-B)ICL BB
2'(\Nm)2 -

The termsIT;(a,3), 5(a,5) , I3(a,3) appearing in Equ.(5) can be equivalently written
as:

(0. 8) = (- (a—a, +a,)+r (B—5,+8,))(-C,, - (a—a,)+C, , - (8-8,)). (6)
H;(a,ﬁ) =, (a—a, —l—(JzH)g-(—C‘SAﬁA ~(oz—OéH)—|-Cah_5A '(5—@))) , (7)
30, 8) =y (B8, +5,)°(~Cy, (0=, )+C, , -(8-8,))) - (8)

After some algebraic manipulations from Equs.(6a8) obtain thatIl;(a,3), Ii(«a,3) ,
IT3(«, 3) can be equivalently given by Equs.(9-11), respeby i.e.:

Hi(&ﬁ) = le,zo'&2 + le,n'&'a + le,lo'& + le,oia + le,o‘zB 2’ (9a)
wherea—a, =a, f—3, =0,

H;,zo =- Cﬂm "M l_112,11: N 1'Cﬂm ) H12,10: Kk iCah_m ) (9b-9e)
Hg,m =—-C, 5 (pra, +6,:8,), le,ozz Cs (o, +K:8,), (9f,99)

5@, 0) = M3 +115,0% 8 + 115 @ 115 5@ 2B +11 5 50 *+ (10a)
T2 -8 +T12,§ +11%,3,

where,

H5,40 = _CSABA , 11 22,31: C%SA , 11 22,3o: -3 C@AQA e (10b-10d)
H§,21: 3'Cah_ﬂ)\ a,, 1T 22,zo: -3 C/WA '0%,2: 11 22,11: 3Cah_ﬂA o, c, (10e-10g)
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M31==Cys -0’ M0=C, -0’ (10h, 10i)

and

Hg(&,B) = Hg,ll'&'g + Hz,oz'Bz + 11 32,10'a +1I 32,015)\ 3’6 + (118.)
+ Hg,os'Bg + Hi,lz'a'Bz + H%,ls'a'gg‘i‘ 54,
where

Hg,n: -3 Kg CW& 'ﬁxzi I :;oz: 3K 3 CahﬁA 'ﬁAZ’ I 32,10: —K éCﬁM 'ﬁ)\ 3, (11b-11d)
Hg'Ol =Ry Ca’h-ﬁA ) ﬁAg’ I :;,03: 3 kg Cﬂ’,ﬂA ) ﬂA ! H32,12: - 3 Kk éC@)ﬂ)\ ) ﬁA ’ (11e-1lg)
M3,,=—+5C,,, 5=k 3C, . (11k,111)

Finally let Q,(«,3) be the exponent in Equ.(5), i.e.

(Cy (0 —a)?~2:C, (0 —0,)-(B—5)+C,., - (35

Qz(aﬁ) =—- > —
2 W) (12)
Cyy(@=a,)’-2:C,, -(@—a,) (3-8)+C,. - (3-8,
2. (\Nm\ )2
Then, Equ.(12) can be equivalently written as:
_ 5 1 _ 2 _ _
Q,(@,fB)= 5 (W )2 '(Cﬁi»”j -<a+a,€ —ozi> -2C,, -<0z+ozﬁ —ai)-(ﬂ +0, —ﬂj>+
: (13)
+C,, - (B+8,-8 )2)+;2(.c3 , @ -2C, ,-a-B+C,, B,
i 2. (Wh)\) PAPX kP %
where,a—a, =a, 3-8, =0.
After some algebraic manipulations Equ.(13) yields:
Qz(aaB) = Qz,zo'(Yz +Q2,1o'a+Q2,1i&'B+Q 2,0252 +2'Q 2,0'y§+Q 2,0 0 (14a)
where:
1(Css  Cyy C.s, Cus
Q = . a1 ’ Q — L L (14b’ 14C)
2 W) W, ] [(vvi,- ¥ W,
o, 1 Coa_, Coa, (14d)
2w WLy
1
QZ,lO: 2 '(Cﬂiﬁj '(0% - )_Cai[ii (ﬁx - ﬁj )) ) (146)
(W)
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1

Qz,mZW' (Caiai (B, = B)-C.s (a, — )), 461
1

Qz,oo=m-(cgj3,(a ~a) 4G, (8, - B -2C, (0, ~))-(3,-B)).  (149)

Combining Equs.(5-14), performing some algebra, oi¢ain that the second Galerkin
coefficient G‘Z’A Is equivalently written as:

1j,k

1
Glfzh)A 2 3ff (Hz,lo'a‘i‘Hz,ofﬂ‘i‘H2,2da2+H 2,1'104'ﬂ+H 2,0@2""
4.7°- W ) R?
+ l_12,30'053 +H2‘21-042~ﬂ—|——l—1_[ 2,21'042'ﬁ‘i‘H 2,0§2+
+ 1_[2,40'054‘i‘l_[2,31'0‘3'ﬂ‘i“i‘H 2,13'04'534‘1_[ 2,0@4)X
xeXp{_(QZ,ZO'az +Q2,11'O"ﬂ +Q2,02‘ ﬁz +Q 210 +Q 2,o'1ﬂ +Q2,00)dadﬁ’ (lSa)
where:
_ 2 _ 2

W, =/C...-C,, —(C.;, )" ‘W, =C,.. -C,, —(C,, ), (15b,15¢
I, 0= _Cﬁ,\ﬂ,\ (p 3'0%3 tura, +Er B, +k g ﬁxs): (15d)
0,0 = Cah_ﬁ)\ '(Hs'ans tpra, 6006,k 3'ﬂx3) (15€)
I, = 3'”3'0(1,‘_;3,\ 'O‘mz L Ca g, TR Cf 8, -3k C,fm ﬁ ) (15f)
;50 = — (3'M3'C8AﬁA -’ +pu,C 3,8, ), I, 0= (Ft+3~k sC.s, -6,2) Cos (159,15h
I, , = 3'N3.Cahﬁ)\ o, I, =-3k C,WA By = —3p éCﬁAﬂA "y, (15i-150]
I, 05 = 3'/{3.Cahﬂ,\ B ,pm=ps C II,3=—k é.c,«mA ) (15m'15¢’
0 =k5C, 45, P C@@' (15p,15q;

1
Quio==7(Cys (@, = @)=C,, (8, = ), (15r)

)

1
Qo= 7 (Cou (B, = B)-C,, (@, = @), Q5
Qz,ooZW'(Cajsj (o, —)*+C,, -(8,—6)"~2.C,, -(a,—a;)- (3, - B, )) . (151)

ij

A8. Calculation of 2-polynomial/quadr atic-exponential integrals

In this Appendix we shall prove that fQ,, >0 , 4'Q02'on—(Q11)2 > 0 the following
integration formula holds true:
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| :ff(Hzo-a2+H11-a-/6’+H0232+H10-04+H01-/6’4—]_[ 0[) X
RZ
xexp{—(Qu-a” + Q- B+ Quy 5+ Quy a4+ Qi B+Q o) dad 5 =
2.7
- 2 '<C20'H20+C11'H11+C02'H ot C 161l 1 C Il 11 ()(?< @
\/4'Q02'Q20_<Q11)

Qoz ' <Q10>2 - Qll‘ Qlo' Q 01+ (Q 1)2 ’ Q 00+ Q 20<Q ()12 -4 on ' Qoz' Qoo
—4-Q-Qp+ Q) ’

X exp

where

s N
R >

2.Q,, Q- Qo —2-Quy Qu)’
- 4-Qoz-Qz(3—(Qn)2+<(4~QOZ-QZO(Qn)z)Z | -
oo 9 (020w Qu)(QuQe2QuQu (2d)
4-Qyy Quo—(Qu) (4 Qi Qo —(Qu)’)

. 2Qy (20w QutQuQy (2€)

(4'Q02'Q20_<Q11)2)2 (4'Q02'Q 20 (Q 1)2)2

To this end, we shall use two (alternative) geneladed-form expressions for the integrals

I, ( p,q,c) = f X" exq— pX® + 21x—c] dx, for any value o/~ , reported by Gradshteyn

Xe R

and Ryzhik (1965). These read as follows:

l.(pa.c) = f X" exd—pszr qu—c]dx =

Xe R
S
2”71p \/B dqn—l D
q2 \/; q n [n/2] 1 ) ‘
= niexp———Cl—=-|_|" , for p>0. 3
P P Jp [p] g(n—zk)!(k)![mf] P (3)

That is, for:
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2
n=0:fexp[—px2+ x—c|dx = % expd-—¢|, (4a)
XeR p p
2
nzlzfxexp[—pxz-l— 2% — ¢ dx :ﬁ,ﬂ, expl ¢, (4b)
XeR \/6 p p
2 2
n:2:fx2exp[—px2+ qu—c]dx:ﬁ-[i-l—q—z]-ex 9 _¢, (4c)
XeR p 2p p p
2
n:3:fx3exp[—px2+ qu—c]dx:zL;Tm-q-(:%- p+2-0°) ex;%%—c =
XeR
3 2
:ﬁ[ 3q2 +q—3]~equ——c : (4d)
Jp (2p°  p p
2
n:4:fx4exp[—px2+ X — c|dx= 4\/;,2-(3- p>+12.p-g*+ 4q*) exp %—c =
XeR
Go3 s d
R T R R ey (4e)
Jp 48 P p p
. 5 2 B \/;q 2 2 4 q2 i
n=5: | x°exp—px*+ 2x—c|dx= 4|Oll,2-(15p 1 20pg?+ 49*) expl— —c|=
XeR
\/_ 15 3 5 2
M2 A58 9 e d (. 49
Jp 4 p p

Pr oof

The integrall (given by Equ.(1)) can be equivalently written as:

! :ff<H20'O‘2+H11'a'6+H0262+H10'0‘+H 01'/8"‘1_[ o<) X
RZ

XeXp{_<Q20'a2+Q11'O"5+Q02'52—|—Q10'04‘f‘Qoiﬁ-i-QO()dozdﬂ:
N ff<ﬂ2°'o‘2+(Hn'ﬂ+ﬂm)'a+ﬂoﬂ2+ﬂ01-5+H o X

<Q11 B+ QlO)

2 ]'a—(Qoz-52+Qm-ﬁ+Qoo) dadg =

xexp{—onaz + 2 [—

:ff<R2.az+Rl<5).a+Ro(5)).exp{_p.az+z.q(g).a_c(ﬁ)}dadﬁ *)

Let us assume th&),, > 0, then applying Equs.(4a), (4b) and (4c) from (*) ekeain:
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_Ar 1 q(B) a(d) o ()
I _ﬁl R, 2_p+7 +Rl(ﬁ)-T+ R,(3)|-exp . —c(p)|dg (5a)
11(3) Q(B)
where:
R, =11, Rl(ﬁ>:H11'ﬁ+H10 Ro(ﬁ>:H oﬁz""ﬂ oiﬁ+H 0’ (5b-5d)
p:QZOl q<ﬁ>:_%1 C(ﬁ):Qoz'ﬁz"i‘Qofﬁ"i_Qoo- (5e-59)

The termII((), denoted in Equ.(5), after some elementary algelbedculations can be
equivalently written as:

() =R, B°+ Ry B+Ry, (6a)
where: ]

R, =TI, [ 2%20] I, 2%120 +1,, (6b)
R =1II 20~%— IT,,- 2%20 —II4 2%20 +10 4, (6c)
R,—1I,, [2%20 L 2-3320 —nm-z_Q—gmmoo, (60)

Similarly, for the exponen®(3) , denoted in Equ.(5), we obtain:

QB)=-p-B*+2:.q-B-c, (7a)
where:

C_ . <Q11>2 _ 4'Q02'Q20_<Q11>2

b= Q02 4'Q20 - 4 on , (7b)
q':an'Qlo_Q_Ol:Qll'Qlo_z'Q oiQ 20 (7c)

'on 2 4“on

L <Q10)2 . 4'Q20'Qoo_ <Q10)2

C = _4-Q20 +Qoo — 4. on ’ (78)

Combining Equs.(5-7) we obtain:

| :%.l(Ré.ﬁ2+R;~ﬁ+ R;)-exp(—p-B8°+ 2q-B-c)d3. 8)
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4. Qoz'Q2o_ <Q11)2

Let us now assume that =

>0, then we can apply integration formulae

4'Q20
(4a), (4b) and (4c) to Equ.(8). This will yield:
1 \2 . .
PP '
I Q

where the terms appearing in Equ.(9) are givendusK?7).

Substituting from Equs.(7) and performing some lagie calculations, the terii’, denoted
in Equ.(9), can be equivalently written as:

"= Cp- I po+ Cy- I 11+ C o IT g5+ C 1611 45-C Il FC odI (102)
where
Gy = 2:Qp _+ (Qll'QOl_ 2'Q02'Q102 ' (100)
4. Qoz'on_ (Qn) (4' Qoz'on - (Qn)z)
c = — Qu —+ (Qll‘Qlo_z'QZO'QOI)(Q ll'Q201: 2QuQ 1)) , (10c¢)
4‘Q02'Q20 _<Q11> (4‘Q02'Q20_<Q11> )
‘ —2.0..- Q,)
= 2 (200 QutQ (29120) | (10d)
4'Q02‘Q20_<Q11) (4‘Q02'Q20_<Q11) )
Q11'Q01_ 2'Qoz'Qlo
. i) 10e
“ 4. on ’ Qoz - Q11 ( )
G, = _2'Q20'Q01+ Q11'Q10’ (1Of )

4 on ’ Qoz_ Qil

whereas, similarly, the expone@t , denoted in Equ.(9), can be equivalently written a

. Qe <Q10)2 —Qur Qur Qort Qo (Q 0)2

Q'= 2
_4'Q20'Q02+<Q11>

o Qoo- (11)

Substituting Equs.(10,11) in Equ.(9) we obtain EGu.

A9. Calculation of 3,4-polynomial/quadr atic-exponential integrals

In this Appendix we shall make use of the followingmulae that can be easily obtained,
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combining Equs.(4a-4e), Equ.(5) and Equ.(8) of Ajulbe 8.

ls 0 :feXp
R

l; = f ﬁ'eXp[_p"ﬁz‘i‘ 2‘q"ﬂ—C']dﬂ = % ex@Q ]' ,
o)
)

o= [ B exl-p 52+ 205 -clds - 2‘<”'pq,>'2+<2—,)3]- exfQ] |

q*(6)

P

Ly
2-p

lﬁ_2=f B expl—p-5°+2q-B-c|df = -expQ |,

—

= [ 0enl-pst 295 -clds = | +3'(Q)+(Q)].exp[q].

) 4y ) (P

where

p:ng, q(ﬁ):_m, C(/B):Qoz'ﬁz-i'Qofﬁ-i'Qoo-

2
Q' = (q /) = _Qoz'(Qlo) _Qll'Qlo'Q01+Q2 26<Q 0) Q.
<p> _4'Q20'Q02+<Q1])
" _ (Qll)z o 4'Q02'Q20_ (Q“)z
P =Qp 4.Q, = 4Q, ,
q' :M_%: Qll'QlO_Z'Q oiQ 20
4-Qy 2 4-Q,, ’
= _M _ 4'Q20'Qoo_(Q10)2
o 4-Qy = 4-Q, ,

Then, we shall prove the following integration farax

f:ff (H3O-Oz3+H21-a2-ﬁ+1_[12-a-/6’2+ﬂ03,32+
RZ

+ 10 +10,00% B+ 10 3%+, B%)x

xexp{—(Qup-0® + Q-+ -+ Quur 87+ Qu 1+ Qs +Q o) dalf =
™

=7 _,'(H30'C30+H21'C21+H12'C12+H 03C o3t
on' p

+ gy Cppt 1l Cy+ 11,5 C o5t 11 5 C o)xeXp[Q ] ;
where:

TO cfus — [ enj-p-+ 20-5-clas — el

(1b

(1c

(1d)

(%)

(1f-1h)

(1i)

(1))

(1k)

(1))

(@)
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Q' (ql)z ' Qe <Q10)2 —Qur Qi Qo+ Qo (Q 0)2

=7 N ¢ = 2 —Quo - (3a)
< P > —4- on ’ Qoz"’ (Qn)
o . (Q11)2 . 4'Q02'Q20_ (Qll)z
b= QOZ 4'Q20 B 4 on ' (3b)
q':Q11'Q10_Q_01 Q11Q10 2-Q 1Q 20 (30)
4'Q20 2 4Q20
C _<Q10>2 _ 4-Qy- Quo— <Q10>2
Cc = _4-Q20 +Qoo = 4. on ’ (3C)
1 q'2 3 (q)
C,= _Qlo'[ /+T]_Q11' >+ 3| (4a)
2'Q20[ PP [2( p’) (p’) ]]
3 <q'>2]
oo =| —— +—5, (ab)
2(p')" (P)
oot o3 ) [ 3 +3(CI')2+(Q')4] -
3 2'Q20 10 2( p,)Z p/3 11 4(p/)2 (p/)3 (p/)4 ’
3 .3@y,d)
4 = 1\2 + \3 + N4 |? 4d
. [4-(p) ) (p)] )
1
1= 3’ Q113'|;3 4+3'Q10'Qli'|;3 s
- 8'(Q20) < ) B
+<6'Q11'Q20+3'Q102'Q11>'lff 2+(6'Q16Q 20+Q 130>'|ﬁ _) J (49
-1 1 1
0= 5 - 2| A ~ 113'|ff 3 T 1011 ° }3 2+
- 4 (on) [Z'on 'l 2Q20 QuQur
0 4+ Qo |
[ Q11+2 Qy, QlO Q|| 5 1t [3Q10+ 2'Q20] I&_J J (4f)
G = (Ql ) ((2 Q20+(Q10)) 5 1+2:Q4Qily 2+(Q])1 I )a (49)
Cao LI
4'<Q20)
3'(Q20)2+3'Q20'(Q10) ( 10 ] B o+(6onQ 10Q 11 Q #Q J)O)
+ [3'Q20'(Q11)2+g'(Q11) (Q 10)] B +(Q 11 ‘Qugly 3" (Q])l I ]4 (4h)
Pr oof

We shall break down the integriin eight integrals I, 1,1 11 ool 40! 32! 18l o Where:
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i =1 ff o' B exp{—(Qp0” +Quy @ B+ Qo 82+ Quya+ Qo B+ Q oy dad .
Each integral shall be calculated separately.

Thefirst integral 1,, will be given by the formula:

|30:H3O.ff Oég'eXp{_(on'Oéz+Q11'0"5+Qoz'52+Q1(504+Qoiﬁ‘f’Q O})dadﬁz

zﬂso-fzf a3~exp{—p~a2+ 2-q(ﬂ)~a—c(ﬂ)}dadﬁ, (5)

where:

Q11'5+Q10 C(ﬁ)

2 - QOZ'ﬁ2 +Q01'5+Qoo- (6a-6¢)

p:onl q(ﬁ):_

Applying Equ (4d)_App(8) to Equ.(5) we obtain:

Jx
S f 3

Then, substituting Equ.(6b) in Equ.(7) and using<¥(l), after some algebraic manipula-
tions, we get:

-exp —c(B)

a®)’| _ Ja(sy 45 | @
p p

1 T 1 1
|30:_H30'_' 2’ 'Q113 l QlO Ql 3 2+
4 \/on' p’ (on) [ 2: on 2 on

3 Q11+ 2 QZO QlO Qll] B8 l+

3
3Qut 5 A~ ]I ]

where, |, o1, 1, .1, .,qaregiven by Equ.(1)

Thesecond integral |,,

Hzl‘lf az.ﬁ-exp{_<on-a2+Q11'a-ﬂ+Q02.ﬁ2+QldOé+Q O'lﬂ-i-Q O},dadﬁ:
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Sy P N (1) O ) et O
Hnﬁk raare b - O L
. \/; 1 1 2 3 2 2 q(ﬂ)z _
_H21'ﬁ'f z_pﬂ 4. p2 ((Qn) B +2‘Q10'Q11'6 +(Q10) ﬂ)]ex% D _C(ﬁ) dﬂ—
1 1 2 1 2
:HZI.Z-—p-p" [64‘2‘ pz'(Qlo) ] 8 1+ QlO Q11 8 2+ 2. p (Qﬁ ’I/x ;-
that is:
|21: Hzl' T ’ L ((2 Q20+<Q10)) 8 1+2 QlO Q11 8 2+(Q )2 I‘s _)a’ (9)

on' p' 4'<Q20)

wherel, ,,1, ,,1, ,p are given by Equ.(1).

Thethird integral 1,,

|12:le'fﬁzfa'eXp{_(on'az+Q11'O"ﬁ+Q02'ﬁ2+QldO‘+Q i +Q o}dadﬁ:

I, NS pfﬁz[ Q- 52+Q10

™

——T1L.-
- Z'Jon'p"on

cexpl—p-8°+ 2q-p-clds =

'(Qlo' I, ,+Qu 1y _;: (10)

wherel, ,,1, 5 p are given by Equ.(1).
Theforth integral 1 ,will be given by the formula:

03:H03'£fﬁ3'EXp{_(on'az+Q11'05'5+Q02'52+Q1(50‘+Q il +Q o):dadﬁ

™

03’ 'I;f 31 (11)
VQu P

wherel ; ,, p,are given by Equ.(1).

=11

Thefifth integral 1,, will be given by the formula:
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|4o:H4o'ff 054'eXp{_<Q20'O‘2+Q11'O"ﬁ+Q02'52+Q1da+Q 0B +Q O}dadﬁ:

ti S |2 B AO) o SOT () a5
p 4-p Y p p
T |3, .3 a(8)”
S o P f a(8)"-exp = —c(9) +
+i4 q(ﬁ)“-expM c(b’)], (12)
p ) p
then since:
q(ﬁ) %((Q}_l) 52+2Q10Q115+(Q10)2)! (13&)

a(s)* =%-(<Qn)“~ﬁ4+4-<Q11)3~53-Qm+ 6:(Qu)"(Qu A +4Qu(Q4*8+(Q 4 .

(13b)
substituting Equs.(13a,b) to Equ.(12) we obtain:

.i' |3_0+£r;'( (Qll)z'ﬁz"'z'Qm'Q 1iﬁ+<Q 132)—'—

T Q)8+ QU 57 Qo 8(Qu) (@57 +

+4'Q11' (Q10)3 B+ <Q10)4)' eX%Q(g)Z - C(ﬁ) dﬂ] =

[ performing somealgebra and applying Equ.(1)]

3 3 2
N—=T—=CRo 10 JO+
Q) Q)

©

3 1 3 2 3 1
+|—=-2 10" 11+_4' 11"\ Y10 fl+ 1 +_'_4 1 1 12+
32 ul@d |l ot [Seat @)
1 3 11
+——(Qu) Qoo 33+ 1 'Ie 4"
QN Qo sty @ )

That is:
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L—n.. T 1
40 ” \/on'p' 4'<Q20)

1
[[3.(Q20)2 +3~Q20.<Q10)2+Z(Q10)4]- 5 _o+(6~Q 26Q 10Q 11 Q #(Q 1)3) s *

4><

(14)
+ [3'Q20'<Q11)2+g'(Ql])2'(Q1(D2]' I,B _2"‘(Q 1).3'Q 10 Iﬂ _?%'(Q 1)14' |,5 _]a

wherel, o1, .1, .1, 51, ., paregiven by Equ.(1).

Thesixth integral |, will be given by the formula:
=Ty [ [ o5 ep{-(Qua’+Qua- 0+ Q"+ Qu50 +Q I+ Q dadts
RZ

:Hl3~fﬁ3~fa-exp«—on-oz2+2~[—M]'@—<Q@~ﬂz—|—Q01~ﬁ+QOO) dadp

2
:Hl3~fﬁ3-fa~exp{—p-a2+ 2-q(ﬂ)-a—c([3)}dadﬁ. (15)

Applying Equ (4b)_App(8) to Equ.(15) we obtain:

o [T oalB)  JaB)
=11, lb’ N exp ) c(B)|ds, (16)
or from Equ (7a)_App(8):
_ \/; 3 Qll'ﬂ+Q10 Y : :
lla—ng-ﬁ_plﬁ ~[—T]-exp[—p-ﬂ +2q-6-clds, (17)
that is:
Jx Jx

ly=—T Q| oI y——e——-Qul, , (18)
13 13 2'\/Q_20'Q20 1015 3 13 5. /_on‘on 11i'p _

where, I, ;1 , , are given by Equ.(1).

The seventh integral |,, will be given by the formula:
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I31:H13~fﬁ-fa3-exp{—Q20-a2+ 2'[—M;%]-a—<q)zﬁz+Q01~ﬁ+Q00) dadg

R

:H31~fﬁ-fa3~exp{—p-a2+ 2~q(ﬁ)-a—c([3)}dadﬁ

Jr 3 (a(8))’
H3l'm£ﬁ'[§'q<ﬁ)+ " ]'EXP

however, substituting from Equ.(6b), we obtain

ds, (19)

()
p

—c(p)

3 (a(8)°
5‘1(5)"‘ " =
:_§'<Q11'ﬂ+Q10> 8Q (Qll B°+3Q5Q41 % +3Q45-Q i 6+Q 1(3)>:
e T N R !
- 8 on 11 8Q20 10" W11 11 8Q, 10 1 4 <10 8Q,,
(20)
therefore, replacing Equ.(20) in Equ.(19) we ohtain
Jr ; [ 2
|31:H31' ’ - N1 10" W11 ut 10 ' +
pz_ﬁ{ 8'Q20Q Bt — SQZOQQ B°—|=-Q 8Q20Q Qb
[ Qo SQgZO]-ﬁ]-exp@—cw) a5 =
1 1
:_Hsl' -_. 2 ) 113| 10 112 If 3+
\/p'pl 4'p [Z'on Q 2Q20 Q Q
Quo .
+ 3'Q11 2 on QlO Qll] 8 2+ 3Q10+ 2. on] 8 _1]-
That is:
T ‘ 1

Hal' ; 3’ Q113' Iﬂ_4 +3'Q10'Q112' l[i _3+
\/on' p 8'<Q20) ( (21)

+<6'Q11'Q20+3'Q102'Q11)' Ly _2+(6'Q10'Q 25t Q 130)' L _)'

|31:_

wherel, 1, ,,1, ; p are given by Equ.(1).

Theeighth integral 1,, will be given by the formula:
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I _HO4 f ﬂ4 EXp <Q2006 +Q11a 5+Q025 +Q1005+Q 015+Q }dadﬁ_

1 [

wherel ; ,, p, are given by Equ.(1).

(22)
™

Qp' P

;B4

C(ﬂ) dg=1I,,-

Adding Equs.(8,9,10,11,14,18,21,22) Equ.(2) is iolgtch
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