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Summary 
 
In the context of probabilistic modeling uncertain parameters/functions are quantified as random. In 
general, the characterization of random functions is a difficult task involving the knowledge of the 
hierarchy of the probability distributions of all orders or, equivalently, the knowledge of the 
characteristic functional. If random parameters/functions enter either as random initial conditions or as 
input/excitation (external and/or parametric) to dynamical systems, then the systems output/response 
will also be a random function. In case that the dynamics can be modeled by means of differential 
equations these equations are called Random Differential Equations (RDEs). The difficulty of 
calculating the probabilistic characteristics of the response is drastically reduced when we assume that 
the stochastic excitation is delta correlated. However, this assumption is not plausible when the 
correlation time of the excitation is of the same order of magnitude as the system’s relaxation time, as 
is the case for macroscopic dynamical systems, e.g. for systems excited by sea waves, wind loads, or 
earthquakes. In this case the excitation can be realistically modelled by smoothly correlated (colored) 
random functions. RDEs with colored excitation (also known as generalized Langevin equations) 
involve an increased amount of complexity due to the fact that in order to obtain system’s response 
probabilistic structure one has to consider infinite dimensional differential equations. Although the 
general case of smoothly-correlated excitation is the most interesting case for many applications in 
engineering and applied sciences, existing methodologies fail to treat it in a satisfactory way.  

In response to this situation, the response-excitation (RE) theory, a new method for the probabilistic 
characterization of any non-linear system with any type of smoothly-correlated random excitation, has 
been recently introduced by Athanassoulis & Sapsis (2006) and Sapsis &Athanassoulis (2008). The 
RE theory, proposes the joint treatment of the probabilistic structure of the response and the excitation, 
leaving the space for their stochastic dependence to be determined during the solution of the problem. 
Athanassoulis and Sapsis used the characteristic functional approach to derive an equation for the joint 
RE characteristic functional and showed that, by appropriately projecting this infinite dimensional 
equation, it is possible to obtain equations for the evolution of the joint response-excitation probability 
density function (REPDF). The derived joint REPDF evolution equation is a peculiar one, involving 
two times (one for the excitation, ,s  and one for the response, t ), and partial derivatives only with 
respect to one of them (response time), whereas, after the differentiation, the limit of the excitation 
time s t  should be taken.  I.e., the REPDF evolution equation includes the “half-time” derivative 

( )
( ) ( )

/x y st s t
f t


¶ ¶a,b . This peculiarity gives rise to fundamental questions regarding both the well-

posedness and the methods of its numerical solution. While working on this thesis, it became evident 
that the joint REPDF evolution equation of Athanassoulis and Sapsis in not a closed equation, and thus 
cannot provide a unique REPDF. The same finding has also been stated recently by Venturi et al 

(2012). This is due to the fact that when the half time limit ( )
( ) ( )

/x y st s t
f t


¶ ¶a,b  is considered the 

non-local (in time) characteristics of the problem are partially lost. The present work continues the 
study of the RE theory, aiming at the clarification of various obscure points, and its further 
development towards the implementation of efficient algorithms for numerical solutions.  

In the first part of this thesis, the RE theory, introduced by Athanassoulis and Sapsis, is reviewed and 
generalized to second-order nonlinear systems. The joint REPDF evolution equation for non-linear 
dynamical systems under smoothly-correlated stochastic excitation is re-derived, using the 
characteristic functional approach. To verify the validity of the obtained equations, the latter have been 
used to re-derive the infinite system of the limiting two-time moment equations, which are also 
obtained directly from the dynamical system. Finally the joint REPDF evolution equation is specified 
to the case of the ship roll problem. 

Subsequently, a well-studied, simple problem is considered in the context of the RE theory. More 
precisely, the two-time RE moment equations are developed for a linear scalar dynamical system 
under colored stochastic excitation. These equations are solved analytically and results are obtained 
for different stochastic input functions. For Gaussian excitation, a complete analytical solution of the 
studied problem, both in the transient and in the long-time statistical equilibrium state, is produced. 
The analytical solution of this simple problem is used in order to verify/clarify the REPDF evolution 
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equation for linear RDEs, and prove that it can have multiple solutions. Thus, the need for an a priori 
closure of the REPDF evolution equation, providing additional information about the RE correlation 
structure, becomes evident. The formulation and implementation of an efficient closure of this type is 
one of the fundamental contributions of this Thesis. 

The findings from the study of the linear/Gaussian case are generalized for the non-linear/non-
Gaussian case, drawing, also, on evidence gained looking into Monte Carlo (MC) simulations results, 
performed by Z.G. Kapelonis. In fact, in the long-time statistical equilibrium state the joint REPDF 
tends to concentrate around the equilibrium curve of deterministic problems realized on the RE-phase 
space. Reclaiming these findings, new, auxiliary, local conditions are developed in the RE-phase 
space, by the use of local linearizations/Gaussianizations around the equilibrium curve of the non-
linear scalar dynamical system in the long-time. These, analytically solvable, local conditions, can 
successfully approximate the local RE correlation structure as is verified by comparisons with results 
obtained by MC simulations and, therefore, can be used to form a new a priori closure scheme for the 
non-linear REPDF evolution equation. The analytically obtained local closure information for the RE 
correlation structure is synthesized in the REPDF evolution equation by the use of an appropriate 
representation of the two-time joint REPDF, consisting of a superposition of Gaussian Kernels. The 
reformulated REPDF evolution equation, together with the new local closure conditions, is 
numerically solved using a Galerkin scheme. This allows for the specific structure of the considered 
RDE to enter in the Galerkin coefficients both explicitly thought their dependence from the equations 
of the dynamical system to be solved and implicitly through the Kernel coefficients which contain 
information from the family of the localized problems. The Galerkin coefficients, having the form of 
products of polynomials with bi-dimensional Gaussian densities are analytically calculated, and the 
problem is solved as a constraint minimization problem. This Galerkin scheme has been used for the 
determination of the joint RE probabilistic characteristics of a half-oscillator, subject to asymptotically 
stationary, colored, Gaussian or non-Gaussian (cubic Gaussian) excitation. The obtained results are 
satisfactorily compared with solutions obtained from MC simulations for the same problem. 
 

The selection of the appropriate computational domain for the numerical solution of the joint REPDF 
evolution equation in the long-time, initiated the development of a new methodology for the 
formulation and solution of a system of two-time RE moment equations. These equations can apply to 
any non-linear system with arbitrary polynomial non-linearities, excited by colored Gaussian or 
polynomially non-Gaussian processes. More precisely, moment equations for the response mean value 

( ) ,xm t  the two-time RE cross-covariance ( , ) ,xyC t s  two-time response auto-covariance ( , )xxC t s and 

time-diagonal response auto-covariance ( , )xxC t t  are derived directly from the dynamical system. A 
Gaussian closure condition is, then, applied in order to eliminate the higher order moments from the 
two-time moment equations. Following the Gaussian closure, considering s  as a parameter, the 
derived equations can be considered as linear ODEs with respect to t , having coefficients depended 

on the time-diagonal moments. The equation for ( , )xyC t s  is used to express ( , )xyC t t  as a non-linear, 

non-local in time (causal) operator on the whole history of ( )xm u  and ( , ) ,xxC u u  0t u t£ £ . Using 

the obtained operator for ( , )xyC t t , a closed, non-linear, causal system of evolution equations for 

( )xm t , ( , )xxC t t  is obtained. After solving this causal system, the two-time moments can be calculated 

for all ( , )t s  pairs as well. Results obtained by the direct solution of the two-time RE moment 
equations in the long-time, statistical equilibrium limit are presented. Moreover, a first idea on a bi-
Gaussian moment closure scheme that could extend the presented methodology to bi-stable half 
oscillators in the long-time limit is discussed. Obtained results are compared with MC simulations 
satisfactorily in the mono-stable case. In the bi-stable case the discussed bi-Gaussian moment closure 
scheme gives acceptable, preliminary, results only for the time-diagonal moments and the two-time 
RE cross-correlation, whereas, in its present form, fails to approximate the two-time response auto-
correlation.  
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Σύνοψη 
 
Στo πλαίσιo της πιθανοθεωρητικής μοντελοποίησης οι παράμετροι/συναρτήσεις που ενέχουν 
αβεβαιότητα μοντελοποιούνται ως τυχαίες. Γενικά, ο χαρακτηρισμός των τυχαίων συναρτήσεων είναι 
μια δύσκολη εργασία καθώς αφορά τη γνώση της ιεραρχίας των κατανομών πιθανότητας όλων των 
τάξεων ή, ισοδυνάμως, τη γνώση του χαρακτηριστικού συναρτησιακού. Όταν οι αρχικές συνθήκες 
ή/και η τυχαία είσοδος/διέγερση (εξωτερική ή/και παραμετρική) δυναμικών συστημάτων 
μοντελοποιούνται από τυχαίες παραμέτρους/συναρτήσεις, τότε η έξοδος/απόκριση του συστήματος θα 
είναι επίσης μια τυχαία συνάρτηση. Στην περίπτωση που η δυναμική του συστήματος μπορεί να 
μοντελοποιηθεί με τη χρήση διαφορικών εξισώσεων, τότε οι εξισώσεις αυτές ονομάζονται τυχαίες 
διαφορικές εξισώσεις (ΤΔΕ). Η δυσκολία του υπολογισμού των πιθανοθεωρητικών χαρακτηριστικών 
της απόκρισης μειώνεται δραστικά όταν υποθέσουμε ότι η συνάρτηση συσχέτισης της στοχαστικής 
διέγερσης μπορεί να μοντελοποιηθεί από μια συνάρτηση δέλτα. Εντούτοις, αυτή η υπόθεση δεν είναι 
ευλογοφανής όταν ο χρόνος συσχέτισης της διέγερσης είναι της ίδιας τάξης μεγέθους με τον χρόνο 
ηρεμίας του συστήματος, όπως συμβαίνει σε μακροσκοπικά δυναμικά συστήματα π.χ. συστήματα που 
διεγείρονται από θαλάσσια κύματα, φορτία ανέμου, ή σεισμούς. Σε αυτή την περίπτωση η διέγερση 
μπορεί να μοντελοποιηθεί ρεαλιστικά από τυχαίες συναρτήσεις με λείες συναρτήσεις συσχέτισης 
(ομαλή διέγερση). Οι τυχαίες διαφορικές εξισώσεις με ομαλή διέγερση (γνωστές και ως γενικευμένες 
εξισώσεις Langevin) εμπεριέχουν αυξημένη πολυπλοκότητα λόγω του ότι, προκειμένου να 
χαρακτηρίσει κανείς πιθανοθεωρητικά την απόκριση, πρέπει να θεωρήσει απειροδιάστατες διαφορικές 
εξισώσεις. Παρά το γεγονός ότι η γενική περίπτωση τυχαίων διεγέρσεων με λείες συναρτήσεις 
συσχέτισης παρουσιάζει μεγάλο ενδιαφέρον στη μηχανική και στις εφαρμοσμένες επιστήμες, οι 
υπάρχουσες μεθοδολογίες αποτυγχάνουν να την αντιμετωπίσουν ικανοποιητικά.  

Σε απάντηση αυτής της κατάστασης η θεωρία απόκρισης-διέγερσης (ΑΔ), μια νέα μέθοδος για τον 
πιθανοθεωρητικό χαρακτηρισμό κάθε μη-γραμμικού συστήματος υπό κάθε τύπου τυχαία διέγερση με 
λεία συνάρτηση συσχέτισης, εισήχθη πρόσφατα από τους Αθανασούλη & Σαψή (2006) και Σαψή και 
Αθανασούλη (2008). Η θεωρία ΑΔ, προτείνει την από κοινού αντιμετώπιση της πιθανοθεωρητικής 
δομής της απόκρισης και της διέγερσης, αφήνοντας χώρο για τον καθορισμό της στοχαστικής τους 
εξάρτησης κατά την επίλυση του προβλήματος. Οι Αθανασσούλης και Σαψής χρησιμοποιώντας τη 
μέθοδο του χαρακτηριστικού συναρτησιακού έδειξαν ότι, προβάλλοντας κατάλληλα την 
απειροδιάστατη εξίσωση, είναι δυνατό να παραχθούν εξισώσεις για την εξέλιξη της από κοινού 
συνάρτηση πυκνότητας πιθανότητας (σππ) της απόκρισης και της διέγερσης. H παραχθείσα εξίσωση 
εξέλιξης της από κοινού σππ απόκρισης και διέγερσης (σππΑΔ) παρουσιάζει ιδιαιτερότητες καθώς 
περιέχει δυο χρόνους (έναν για την διέγερση, ,s και έναν για την απόκριση, t ), και μια μερική 
παραγώγο μόνο ως προς έναν από αυτούς (χρόνο απόκρισης), ενώ, μετά την παραγώγιση, πρέπει να 
λαμβάνεται το όριο του χρόνου διέγερσης s t . Δηλαδή η σππΑΔ συμπεριλαμβάνει την παράγωγο 

«μισού χρόνου» ( )
( ) ( )

/x y st s t
f t


¶ ¶a,b . Αυτή η ιδιαιτερότητα προκάλεσε βασικά ερωτήματα σχετικά 

με το αν η εξίσωση είναι καλά ορισμένη αλλά και ως προς τη μέθοδο αριθμητικής της επίλυσης. Κατά 
τη διάρκεια εκπόνησης της παρούσας διατριβής έγινε φανερό ότι η σππΑΔ των Αθανασούλη και 
Σαψή δεν είναι κλειστή και άρα δεν μπορεί να προσδιορίσει κατά μοναδικό τρόπο την από κοινού 
σππΑΔ. Το ίδιο εύρημα διατυπώθηκε πρόσφατα από τους Venturi et al (2012). Αυτό οφείλεται στο 

γεγονός ότι όταν λαμβάνεται το όριο «μισού χρόνου» ( )
( ) ( )

/x y st s t
f t


¶ ¶a,b  τα μη-τοπικά (στο 

χρόνο) χαρακτηριστικά του προβλήματος μερικώς χάνονται. Η παρούσα εργασία συνεχίζει την μελέτη 
της θεωρίας ΑΔ, με σκοπό να ξεκαθαρίσει κάποια ασαφή σημεία και να την αναπτύξει περαιτέρω 
αποσκοπώντας στην εφαρμογή αποτελεσματικών αλγορίθμων για αριθμητικές λύσεις.   

Στο πρώτο μέρος της εργασίας αυτής, η θεωρία ΑΔ, που εισήχθη από τους Αθανασούλη και Σαψή, 
επανεξετάζεται και γενικεύεται σε μη-γραμμικά συστήματα δεύτερης τάξεως. Η εξίσωση εξέλιξης της 
από κοινού σππΑΔ για μη-γραμμικά δυναμικά συστήματα υπό λεία στοχαστική διέγερση παράγεται 
ξανά με τη χρήση της μεθόδου του χαρακτηριστικού συναρτησιακού. Για να επαληθευτεί η ισχύς των 
παραχθεισών εξισώσεων, οι τελευταίες χρησιμοποιούνται για την παραγωγή εκ νέου του άπειρου 
συστήματος οριακών εξισώσεων ροπών δυο χρόνων, οι οποίες μπορούν να παραχθούν και απευθείας 
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από το δυναμικό σύστημα. Τέλος, η εξίσωση εξέλιξης της από κοινού σππΑΔ συγκεκριμενοποιείται 
για την περίπτωση του προβλήματος της κίνησης διατοιχισμού πλοίου (ship roll ploblem). 

Στη συνέχεια ένα ευρέως μελετημένο, απλό πρόβλημα εξετάζεται στα πλαίσια της θεωρίας ΑΔ. 
Συγκεκριμένα αναπτύσσονται οι εξισώσεις ροπών ΑΔ δύο χρόνων για ένα γραμμικό βαθμωτό 
δυναμικό σύστημα υπό ομαλή διέγερση. Αυτές οι εξισώσεις λύνονται αναλυτικά, ενώ αποτελέσματα 
λαμβάνονται για διαφορετικές περιπτώσεις στοχαστικής διέγερσης. Για κανονική (Gaussian) 
διέγερση, λαμβάνουμε μια πλήρη αναλυτική λύση του υπό εξέταση προβλήματος, τόσο στην 
μεταβατική όσο και στην κατάσταση στατιστικής ισορροπίας σε μεγάλους χρόνους. Η αναλυτική 
λύση αυτού του απλού προβλήματος χρησιμοποιείται στη συνέχεια για να επαληθεύσει/αποσαφηνίσει 
την εξίσωση εξέλιξης της από κοινού σππΑΔ για γραμμικές ΤΔΕ, και να αποδείξει ότι αυτή δέχεται 
περισσότερες από μία λύσεις. Επομένως, αναδεικνύεται η ανάγκη συμπλήρωσης της εξίσωσης 
εξέλιξης της από κοινού σππΑΔ με επιπλέον συνθήκες οι οποίες είναι ικανές να παρέχουν επιπλέον 
πληροφορία για τη δομή συσχέτισης της απόκρισης και της διέγερσης του συστήματος. Μια από τις 
θεμελιώδεις συμβολές της παρούσας διατριβής αποτελεί και η ανάπτυξη και εφαρμογή ενός 
αποτελεσματικού σχήματος που οδηγεί σε κλειστές λύσεις της εξίσωσης εξέλιξης της από κοινού 
σππΑΔ. 

Τα ευρήματα από τη μελέτη της γραμμικής/Gaussian περίπτωσης γενικεύονται στη μη-γραμμική/μη-
Gaussian περίπτωση αξιοποιώντας, επιπλέον, ευρήματα που προέκυψαν από τη μελέτη  
αποτελεσμάτων προσομοιώσεων Monte Carlo (MC) οι οποίες πραγματοποιήθηκαν από τον Ζαχαρία 
Γ. Καπελώνη. Συγκεκριμένα, σε μεγάλους χρόνους η από κοινού σππΑΔ τείνει να συγκεντρώνεται 
γύρω από την καμπύλη ισορροπίας των ντετερμινιστικών προβλημάτων που πραγματοποιούνται στο 
χώρο ΑΔ. Λαμβάνοντας υπόψη τα ευρήματα αυτά, παράγονται νέες τοπικές (στο χώρο απόκρισης-
διέγερσης), από κοινού εξισώσεις ροπών ΑΔ δύο χρόνων, χρησιμοποιώντας τοπικές 
γραμματικοποιήσεις/κανονικοποιήσεις (linearizations/Gaussianizations) γύρω από την καμπύλη 
ισορροπίας του μη-γραμμικού βαθμωτού συστήματος σε μεγάλους χρόνους. Οι τοπικές εξισώσεις 
επιλύονται αναλυτικά για διάφορες περιπτώσεις. Τα αποτελέσματα συγκρίνονται ικανοποιητικά με 
αποτελέσματα από προσομοιώσεις ΜC και επομένως μπορούν να χρησιμοποιηθούν για να 
σχηματίσουν ένα νέο σχήμα που συμπληρώνει, a priori, τη μη-γραμμική εξίσωση εξέλιξης της από 
κοινού σππΑΔ. Η πληροφορία για την τοπική δομή συσχέτισης της απόκρισης και της διέγερσης που 
λαμβάνεται αναλυτικά μέσω των νέων εξισώσεων συντίθεται με την εξίσωσης εξέλιξης της από 
κοινού σππΑΔ με τη χρήση κατάλληλης αναπαράστασης αποτελούμενης από Gaussian Kernels, η 
οποία μπορεί να «φέρει» την επιπλέον πληροφορία στην αρχική εξίσωση. Η αναδιαμορφωμένη 
εξίσωση εξέλιξης της από κοινού σππΑΔ μαζί με τις νέες συμπληρωματικές εξισώσεις επιλύονται 
αριθμητικά μέσω ενός σχήματος επίλυσης τύπου Galerkin. Mε τον τρόπο αυτό εισάγεται η δομή της 
συγκεκριμένης ΤΔΕ στους συντελεστές Galerkin τόσο άμεσα, μέσω της εξάρτησης τους από την 
εξίσωση του προς επίλυση δυναμικού συστήματος, όσο και έμμεσα, μέσω των παραμέτρων των 
Kernel που περιέχουν πληροφορίες από την οικογένεια των τοπικών εξισώσεων. Οι συντελεστές του 
σχήματος Galerkin, έχουν τη μορφή γινομένων πολυωνύμων με δυσδιάστατες Gaussian κατανομές 
και μπορούν να υπολογιστούν αναλυτικά, ενώ τελικά το πρόβλημα λύνεται ως πρόβλημα 
ελαχιστοποίησης υπό περιορισμούς. Αυτό το σχήμα Galerkin χρησιμοποιείται για τον προσδιορισμό 
των από κοινού πιθανοθεωρητικών χαρακτηριστικών ΑΔ ενός βαθμωτού ταλαντωτή υπό ασυμπωτικά 
στάσιμη, ομαλή Gaussian ή μη-Gaussian (κυβική Gaussian) διέγερση. Τα αποτελέσματα συγκρίνονται 
με επιτυχία με αποτελέσματα προσομοιώσεων που παρήχθησαν μέσω MC προσομοιώσεων για το ίδιο 
πρόβλημα. 
 

Η επιλογή του κατάλληλου υπολογιστικού πεδίου για την αριθμητική επίλυση της εξίσωσης εξέλιξης 
της από κοινού σππΑΔ σε μεγάλους χρόνους, έδωσε το έναυσμα για την ανάπτυξη μιας νέας 
μεθοδολογίας για τον σχηματισμό και την επίλυση ενός συστήματος εξισώσεων ροπών δυο χρόνων. 
Αυτές οι εξισώσεις μπορούν να εφαρμοστούν σε κάθε μη-γραμμικό σύστημα με πολυωνυμικές μη-
γραμμικότητες, που διεγείρεται από ομαλές Gaussian ή (πολυωνυμικά) μη-Gaussian τυχαίες 
διαδικασίες. Συγκεκριμένα, εξισώσεις ροπών για τη μέση τιμή της απόκρισης ( ) ,xm t  τη συνάρτηση 

συνδιακύμανσης ΑΔ δύο χρόνων ( , ) ,xyC t s  τη συνάρτηση αυτοδιακύμανσης ΑΔ δυο χρόνων 

( , )xxC t s και τη συνάρτηση αυτοδιακύμανσης στη διαγώνιο των χρόνων ( , )xxC t t  παράγονται 
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απευθείας από το δυναμικό σύστημα. Η υπόθεση ότι οι τυχαίες συναρτήσεις είναι Gaussian (Gaussian 
closure condition) τίθεται στη συνέχεια προκειμένου να εξαλειφθούν οι ροπές ανώτερης τάξης από τις 
εξισώσεις ροπών δυο χρόνων. Μετά την εφαρμογή της υπόθεσης αυτής, θεωρώντας το χρόνο s  ως 
παράμετρο, οι εξισώσεις που παίρνουμε μπορούν να θεωρηθούν ως γραμμικές συνήθεις διαφορικές 
εξισώσεις ως προς το χρόνο t , έχοντας παραμέτρους που εξαρτώνται από τις ροπές στη διαγώνιο των 

χρόνων. Η εξίσωση για την ( , )xyC t s  χρησιμοποιείται για να εκφράσει την ( , )xyC t t  ως έναν μη-

γραμμικό, μη-τοπικό στο χρόνο (αιτιατό) τελεστή πάνω σε όλη την ιστορία των ( )xm u  και ( , )xxC u u , 

για 0t u t£ £ . Χρησιμοποιώντας τον τελεστή για το ( , )xyC t t  λαμβάνεται ένα κλειστό, μη-γραμμικό 

αιτιατό σύστημα από εξισώσεις εξέλιξης για τις ( )xm t , ( , )xxC t t . Μετά την επίλυση του αιτιατού συ-

στήματος μπορούν να υπολογιστούν οι ροπές δυο χρόνων για όλα τα ζεύγη ( , )t s . Παρουσιάζονται 
αποτελέσματα από την επίλυση των εξισώσεων ροπών ΑΔ δύο χρόνων στην κατάσταση στατιστικής 
ισορροπίας, σε μεγάλους χρόνους. Επίσης, αποσκοπώντας στην επέκταση της μεθοδολογίας σε 
βαθμωτούς ταλαντωτές με δυο σημεία ευστάθειας (bi-stable), σε μεγάλους χρόνους, παρουσιάζονται 
κάποιες πρώτες ιδέες για ένα σχήμα στο οποίο τίθεται, εναλλακτικά, η υπόθεση ότι οι τυχαίες 
συναρτήσεις είναι μια υπέρθεση από δυο Gaussian τυχαίες συναρτήσεις (bi-Gaussian closure 
condition). Στην περίπτωση συστημάτων με ένα σημείο ευστάθειας τα αποτελέσματα που 
λαμβάνονται συγκρίνονται ικανοποιητικά με αποτελέσματα από προσομοιώσεις MC. Στην περίπτωση 
συστημάτων με δύο σημεία ευστάθειας το υπό συζήτηση σχήμα δίνει αποδεκτά αποτελέσματα για τις 
ροπές στην διαγώνιο των χρόνων και για τη συνάρτηση διασυσχέτισης ΑΔ δύο χρόνων ενώ, υπό την 
παρούσα μορφή του σχήματος, οι συναρτήσεις αυτοσυσχέτισης δεν προσεγγίζονται επιτυχώς. 
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1.1. A general survey of probabilistic methods in stochastic dynamics 

Within physical sciences and engineering, attempts to explain and predict physical systems 
are generally based on translating the interactions among their components and the interaction 
with the environment into mathematical equations. However, due to the system’s complexity 
and/or lack of access/knowledge to all of the involved scales/mechanisms of interactions, the 
information is often insufficient to successfully model all the involved features using 
deterministic mathematical modeling. Probabilistic modeling offers a powerful alternative 
that allows the inclusion and quantification of uncertainty for some of the system’s 
components and/or for the external excitation. Inclusion of the latter to dynamical equations, 
modeling the laws of physics, enables a better understanding on how these uncertainties act 
and evolve in time. (see Prigogine 1997, Chapter 1). 

In the context of probabilistic modeling uncertain parameters/functions are quantified as 
random. In general, the quantification of random functions is a difficult task since their 
complete probabilistic characterization requires the knowledge of the hierarchy of the 
probability distributions of all orders or, equivalently, the knowledge of the characteristic 
functional (Hopf 1952), (Kotulski & Sobczyk 1984), (Vakhania et al. 1987). When random 
parameters/functions enter as random initial conditions or as input/excitation (external and/or 
parametric) to dynamical systems then the systems output/response will also be a random 
function. In case that the dynamics can be modeled by means of differential equations these 
equations are called Random Differential Equations (RDEs). The main goal is to use all the 
available information on the input probabilities and on the dynamics governing the evolution 
of the studied system in order to probabilistically characterize the system’s response. Of 
course there are methods that allow to derive a partial probabilistic characterization of the 
response, fully exploiting the available information concerning the data random functions as 
the solution of moment equations.  

The difficulty of calculating the probabilistic response is drastically reduced when we assume 
that the stochastic excitation is a delta correlated process, also referred to as white noise 
(Pugachev & Sinitsyn 2001), (Di Paola & Falsone 1993), (Soize 1994), (Sun 2006). In this 
context, the response will be a Markovian process that follows the Chapman-Kolmogorov 
equation and can be completely characterized by its transition probability function (Van 
Kampen 1998) when, in the most interesting cases (diffusion processes) it takes the form of a 
probability density function (pdf), and it is governed by the Fokker-Planck-Kolmogorov 
(FPK) equation. Extension of this method to systems subject to other types of noises (e.g. 
Poisson and Lévy have also been developed (e.g.: (Grigoriu 2004), for a review of FPK 
equations see e.g.: (Risken 1989)). However, the assumption of delta-correlated excitation is a 
plausible simplification when the correlation time of the random excitation is much smaller 
than the system’s relaxation time (Lin 1986), (Roberts & Spanos 1986), (Mokshin et al. 
2005). The latter is not generally the case for macroscopic dynamical systems, for which the 
correlation time of the excitation is of the same order of magnitude as the system’s relaxation 
time. This is especially true for many engineering applications, e.g., for systems excited by 
sea waves, wind loads, or earthquakes. Such cases can be realistically modelled by smoothly 
correlated random functions, also known as colored random noises. RDEs with colored 
excitations (also known as generalized Langevin equations) involve an increased amount of 
complexity due to the fact that in order to obtain system’s response probabilistic structure one 
has to consider infinite dimensional differential equations (Hopf 1952)(Beran 1986)(Hanggi 
1978)(Luczka 2005)(Sapsis & Athanassoulis 2008). 
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In cases where the correlation time of the excitation is small but not negligible, i.e. the 
response is nearly Markovian, it is possible to create an Itô SDE for slowly varying 
(compared to the fluctuation of the excitation) quantities of the oscillation as the amplitude of 
the response envelope that can be considered as Markovian processes and pass to the 
corresponding averaged FPK. This technique, known as the stochastic averaging method, was 
first introduced by Stratonovich (1963) and made rigorous, under clearly stated asymptotic 
assumptions by Khasminskii (1966). It has been extensively applied to problems in Physics 
and Engineering. See, e.g., (Lin & Cai 2000), (Luczka 2005), (Ibrahim 1985), (Roberts & 
Spanos 1986), (Red-Horse & Spanos 1992), (Dostal et al. 2012). This is a useful asymptotic 
method that can be used to treat cases where the correlation time is different from zero, but 
small in comparison with the system’s relaxation time.  
 

An approach which can resolve the non-Markovian characteristics of the excitation, keeping a 
close connection with the standard Itô SDE and the FPK equation, is the filtering approach. 
This method is implemented by augmenting the system of dynamical equations with a linear 
filter, excited by a delta-correlated process and providing as output a process modelling a 
more realistic, excitation ((Spanos 1983), (Spanos 1986), (Muscolino 1995), (Pugachev & 
Sinitsyn 2001), (Luczka 2005), (Hu et al. 2012), (Francescutto & Naito 2004)), (Er 2013). For 
instance a first-order filter has as output an Ornstein-Uhlenbeck (OU) Gaussian process, 
whereas a second-order filter produces a Gaussian harmonic noise. Such problems can be 
solved by means of the FPK equation approach or the various generalizations of it. Besides, in 
this case, it is possible to systematically formulate moment equations up to any order that the 
available information concerning the input random functions allows. This method is rather 
general and effective as far as the excitation is Gaussian and the appropriate filter is of low 
order. For non-Gaussian excitation it is not clear how this method can be applied. One should 
solve a system identification problem to define a non-linear filter that could have as output a 
successful approximation of the excitation.  
 

The method of moments is another well-known and extensively used method that allows to 
derive a partial probabilistic characterization of the response. Moment equations can be 
derived either directly from the random system (Beran 1986), or by FPK and generalized FPK 
equations describing the evolution of the response density (Jazwinski 1970), (Soong & 
Grigoriu 1993), (Di Paola & Floris 2008). When the system is linear, the solution of a system 
of moment equations, allows one to exploit the knowledge of excitation moments up to a 
specific order to determine the response moments up to the same order (Di Paola & 
Elishakoff 1996), (Conte & Peng 1996; Lutes & Sarkani 1997; Qiu & Wu 2010). In particular 
when the system is linear and the excitation is Gaussian, the solution is also Gaussian, and 
thus, the solution of the moment system provides a complete probabilistic characterization of 
the problem. However, when the system is non-linear the (truncated) moment system is not 
closed and, thus, some closure scheme should be invoked. The simplest one is the Gaussian 
closure, introduced by Goodman and Whittle in the 50’s and extensively used thenceforth in 
the study of random vibrations (Lutes & Sarkani 1997). It has been found that it works well 
for mono-stable oscillators, while for bi-stable ones may lead to inadequate or erroneous 
results (Hasofer & Grigoriu 1995; Grigoriu 2008). Also, many types of non-Gaussian closures 
have been devised and used for treating moment equations coming from nonlinear stochastic 
systems under delta-correlated excitation. Among them we mention the cumulant-neglect and 
the quasi-moment neglect closure (Roberts & Spanos 2003), (Wu & Lin 1984), (Lutes & 
Sarkani 1997), the use of specific parametric models for the underlying pdf (Crandall 1980), 
(Hampl & Schuëller 1989), (Pugachev & Sinitsyn 2001), (Er 2000), (Er et al. 2011), the 
information closure (Chang & Lin 2002; Sobczyk & Hołobut 2012) and the polynomial-
Gaussian closure (Robson 1981; Anh & Hai 2000). 
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Another approximate method, formally applicable to any non-linear system under colored 
Gaussian excitation, is the equivalent statistical linearization (Roberts & Spanos 2003), 
(Socha 2008). The method is simple and easy to apply but with restricted interest. Its main 
drawback is that it can never give evidence of the characteristic peculiarities on the non-
linearity. An interesting improvement of this method is the local statistical linearization, 
introduced by Pradlwarter (2001). In this approach the linearization is performed locally in 
phase space and, thus, the non-linear characteristics of the dynamical system are not 
superseded and the obtained pdf reflects adequately the non-linear features of the problem. 
 

Another category of methods of uncertainty quantification are the ones that based on 
truncated spectral expansions of random input/output functions (Spanos & Ghanem 1989), 
(Spanos & Ghanem 1991), (Ghanem & Spanos 1990; Ghanem & Spanos 2003). These 
methods may be referred to as spectral stochastic Galerkin methods (other terms used in 
scientific literature are stochastic Galerkin methods, spectral stochastic finite elements 
methods). Among other spectral representations, the Polynomial Chaos (PC) expansion 
(Wiener 1938) (Ghanem & Spanos 2003), in terms of Hermite polynomials, is usually applied 
to the representation of the response random functions, whereas, the random input is usually 
represented by a truncated Karhunen-Loeve (KL) expansion (Karhunen 1947; Loeve 1978), 
(Ghanem & Spanos 2003). A system of linear algebraic equations is then obtained by a 
Galerkin-type projection onto a complete basis in the space of random variables. Xiu and 
Karniadakis (2002, 2003) proposed a generalized polynomial chaos expansion using a trial 
basis from the Askey family of hypergeometric polynomials to account for non-Gaussian 
effects. Moreover, recently, Sapsis and Lermusiaux (2009) introduced a more general 
expansion in which the basis is dynamically evolved. Using the condition of dynamic 
orthogonality (DO) Sapsis and Lermusiaux (2009) derived evolution equations for general 
stochastic systems (including partial differential equations) which can be efficiently solved 
numerically, see e.g. (Sapsis & Lermusiaux 2012), (Ueckermann et al. 2013), (Sapsis et al. 
2013). If the same restrictions for the expansion of the response as in the generalized PC 
expansion are assumed on the dynamically orthogonal field equations the generalized PC 
equations can be recovered.  

An interesting circle of ideas for studying the probabilistic response of non-linear dynamical 
systems under general excitation has also been developed, on the basis of the Karhunen-
Loeve Theorem. The fundamental idea is to replace the given random functions, entering into 
the stochastic system, by their Karhunen-Loeve expansions, reducing the initial problem to a 
problem involving only stochastic variables. Then, in principle, the evolution of the joint, 
response-excitation pdf is governed by a high dimensional Liouville type equation, also 
known as Dostupov-Pugachev equation. In Venturi et al (Venturi et al. 2012) the sparse grid 
collocation method (Foo & Karniadakis 2008; Foo & Karniadakis 2010) is used to find the 
joint response-excitation pdf by the numerical solution of the Dostupov-Pugachev equation, 
whereas, in Cho et al. (2013) the same equation is solved by considering the response and the 
excitation space separately, using the sparse-grid collocation method for excitation space and 
an adaptive discontinuous Galerkin method for the response space. Another, closely related 
approach has been recently developed by Li and co-workers see e.g. (Li et al. 2009; Li et al. 
2012) who have used the Dostupov-Pugachev equation to formulate the generalized density 
evolution equation using a Lagrangian description of the random system. The numerical 
solution of the generalized density evolution equation requires the selection of representative 
points of the random parameter space. That is, the numerical solution of this includes 
elements from the probability domain and the physical domain (Li & Chen 2009).  
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Another circle of ideas for studying dynamical systems initiated and developed mainly by 
physicists aims at the formulation of closed equations governing the evolution of the pdf of 
the system’s response (Hänggi & Jung 1995). In principle such equations are not closed as 
they involve an average that expresses the non-local, in time, correlation between response 
and excitation. To get closed, solvable equations one needs to invoke the statistical properties 
of the excitation in order to calculate the interaction between the response and the excitation. 
Το this end, and after the application of the Furutsu-Novikov-Donsker formula (or 
generalizations of it), several methods have been developed as e.g. the small correlation time 
expansions, with which one can produce effective approximate FPK equations (Dekker 1982), 
(Hänggi & Jung 1995) (Venturi et al. 2012). The decoupling approximation, which does not a 
priori restrict the noise to small correlation time, but neglects correlations between response 
and excitation and is, therefore, valid for weak-intensity random noise excitations (Hänggi & 
Jung 1995). The unified colored noise approximation, that increases in accuracy for 
increasing non-linear damping and decreases in accuracy with color intensity (Jung & Hanggi 
1987), (Luo & Zhu 2003), (Luczka 2005). 

Apart from the above techniques, a new general approach to the probabilistic study of 
dynamical systems under colored (smoothly-correlated) random excitation, was introduced by 
Athanassoulis and Sapsis. The response-excitation theory (RE theory) (Athanassoulis & 
Sapsis 2006; Sapsis & Athanassoulis 2006; Sapsis & Athanassoulis 2008), is based on a 
generic approach introduced by Eberhard Hopf (1952) which treats the evolution of the 
underlying, infinite-dimensional, probability measure, associated with the involved processes, 
by means of the evolution of their joint characteristic functional (Ch.Fnl), termed the 
characteristic functional approach (Ch.Fnl approach). The Ch.Fnl approach has been 
extensively used in the statistical modeling and analysis of turbulent flows (see, e.g., (Lewis 
& Kraichnan 1962; Beran 1986), (Vishik & Furshikov 1988)). The application of this 
approach to treat stochastically excited Ordinary Differential Equations (ODEs) was 
discussed by Beran (1986), see also (Vishik & Furshikov 1988), and used by Kotulski and 
Sobczyk (1984), to obtain a closed form solution for the Ch.Fnl of a stochastically excited 
linear oscillator and other linear problems. Along the lines introduced by Sapsis and 
Athanassoulis (2008), the Ch.Fnl approach can be exploited in order to obtain new Partial 
Differential Equations (PDEs), governing the evolution of the joint, Response-Excitation pdfs 
(REPDFs) by appropriate projections of the Functional Differential Equation (FDE). Venturi, 
Karniadakis et al. (Venturi et al. 2012), (Venturi & Karniadakis 2012), elaborated further this 
approach, confirming the equation derived in (Athanassoulis & Sapsis 2006; Sapsis & 
Athanassoulis 2008) and answered in negative the question raised in (Athanassoulis & Sapsis 
2006; Sapsis & Athanassoulis 2008), if this equation alone ensures uniqueness. Accordingly, 
it becomes evident that a kind of completion of this equation is necessary. The completion 
proposed by (Venturi et al. 2012), results in a complicated equation, that includes the entire 
history of the response process in a functional integral form, while a simplified (computable) 
version of the latter equation, seems to be valid only for weakly colored excitation. 
Alternatively, the same authors (Venturi et al. 2012), (Cho et al. 2013) have proposed 
numerical solutions for special cases of the REPDF evolution equation in which this coincides 
with the Dostupov-Pugachev equation (see also discussion above). The RE theory will be 
further discussed in the next subsection. 

 

1.2. Motivation and scope of the present work 

The motivation for the present work has been the development of technics permitting the 
probabilistic characterization of the solution of RDEs under general (smoothly correlated) 
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random excitation. Since the complete probabilistic characterization of such random functions 
is very complicated (involving infinite dimensional mathematical tools) (Vakhania et al. 
1987), one usually aims at a weaker solution, i.e. the knowledge of some pdfs of the response 
process, or some moment functions of the response. 
 

As we have already discussed in the previous section, the difficulty is drastically reduced 
when the stochastic excitation is a delta correlated function that makes the response a 
Markovian random function. Existing methodologies fail to treat in a satisfactory way the 
general case of smoothly-correlated excitation, which is the most interesting case in 
engineering and applied sciences (see also the discussion below, in this section). In response 
to this situation the RE theory, a new method for the probabilistic characterization of any non-
linear system with any type of smoothly-correlated random excitation, has been recently 
introduced by Athanassoulis & Sapsis (2006) and Sapsis &Athanassoulis (2008). 
 

Τhe RE theory proposes the joint treatment of the probabilistic structure of the response and 
the excitation, leaving the space for their stochastic dependence to be determined during the 
solution of the problem. Athanassoulis and Sapsis used the characteristic functional approach 
to derive an equation for the joint RE characteristic functional and showed that by 
appropriately projecting this infinite dimensional equation it is possible to obtain equations 
for the evolution of the joint REPDF. The derived joint REPDF evolution equation is a 
peculiar equation, involving two times (one for the excitation, ,s  and one for the response, t ), 
and partial derivatives only with respect to one (response) time, whereas, after the 
differentiation, the limit of the excitation time s t  should be taken. I.e. the REPDF 

evolution equation includes the half time derivative 
( ) ( )

( ) /x y st s t
f t


¶ ¶a,b . This peculiarity 

gives rise to fundamental questions regarding both the well-posedness and the methods of its 
numerical solution. While working on this thesis, it became evident that the REPDF evolution 
equation of Athanassoulis and Sapsis in not a closed equation, and thus cannot provide a 
unique REPDF. The same finding has also been stated recently by Venturi et al (2012). This 
is due to the fact that when the half time limit 

( ) ( )
( ) /x y st s t

f t


¶ ¶a,b  is considered the non-

local (in time) characteristics of the problem are lost. 
 

The present work continues the study of the RE theory, aiming at the clarification of various 
obscure points, and its further development towards the implementation of efficient 
algorithms for numerical solutions. To close the joint REPDF evolution equation we need to a 

priori approximate the half-time derivative 
( ) ( )

( ) /x y st s t
f t


¶ ¶a,b  in order to account for the 

non-local (in time) response-excitation correlation structure. For a linear RDE under Gaussian 
excitation, the inclusion of the two-time RE cross-correlation moment equation could provide 
the additional information needed for the problem to be well posed. This finding is 
generalized for the non-linear/non-Gaussian case reclaiming also evidence gained by looking 
into MC simulations results, performed by Z.G. Kapelonis. According to these observations, 
in the long-time statistical equilibrium state the joint REPDF tends to concentrate around the 
equilibrium curve of deterministic problems realized on the RE-phase space. These ideas 
motivated the formulation of new auxiliary local, in the RE-phase space, moment conditions 
that can be combined with the joint REPDF evolution equation through a Kernel density 
representation of the joint REPDF. The closed REPDF evolution equation can be solved 
numerically by a Galerkin scheme.  

The definition of the appropriate computational domain of the Galerkin scheme initiated the 
development of a new methodology that aims at finding moments of non-linear RDEs under 
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arbitrary, smoothly-correlated excitation. The formulation of the two-time RE moment 
equations for scalar RDEs, as well as the two-fold closure (Gaussian moment closure and 
time closure) of these equations is presented. The direct solution of the equations in the long-
time statistical equilibrium state is found in (almost) closed form. Finally, some first ideas on 
the generalization of the methodology to bi-stable half oscillators using, instead of the 
Gaussian, a bi-Gaussian moment closure condition is discussed.  
 

The RE theory can be used for the determination of the response pdfs of nonlinear systems 
with arbitrary polynomial non-linearities excited by colored, Gaussian or non-Gaussian, 
stochastic processes. The determination of the response pdfs is necessary for prediction of 
structural reliability, structural failures and level-crossing events that are problems of great 
importance in engineering sciences. Moreover, this set up, that goes beyond the delta- 
correlated excitation, is the natural way of modeling/study in almost every field of 
macroscopic stochastic dynamics, e.g. systems excited by sea waves (Francescutto & Naito 
2004),(G.A. Athanassoulis et al. 2009), wind (Sura 2003), (Sapsis & Dijkstra 2013) and 
earthquakes (Varotsos et al. 2002)(Yulmetyeva et al. 2009). It also has interesting 
applications in the context of statistical physics (Luczka 2005), (Van Kampen 2007), medical 
physics (Wang 2009), material sciences (Liu et al. 2010), reactions involving macromolecules 
(Guerin et al. 2012)(Guerin et al. 2013), system’s biology (Bratsun et al. 2005; Shahrezaei et 
al. 2008), electrical engineering and neuroscience (Galán 2009). 
 

An important example of the above described set up is the roll motion in a realistic seaway. 
Rolling motion is the degree of freedom of ship dynamics that has perhaps attracted the most 
attention. This is justified since roll motion is easily excited in the sea, most pronounced, 
highly nonlinear and most dangerous; see, e.g., (Belenky & Sevastianov 2003). The 
complicacies of the dynamics of roll motion are due partly to the nonlinearities in the 
restoring moment term and the damping term, and partly to the excitation mechanisms, which 
include external excitation by waves and wind, as well as parametric excitation. Wave loads 
on ships can be considered as Gaussian or nearly Gaussian, smoothly-correlated, stochastic 
processes. Wind velocity and wind loads, also important for roll motion, can be considered as 
superposition of a steady mean and two randomly fluctuating components; one modeling the 
background turbulent wind flow, which is nearly stationary and nearly Gaussian with a broad-
band spectrum ((Simiu & Scanlan 1986), Ch. 14; (Belenky & Sevastianov 2003), Sec. 8.2.1), 
and a second one, modeling squalls, which should be considered non-stationary and non-
Gaussian (see, e.g., (Belenky & Sevastianov 2003), Sec. 8.2.2, (Michelacci 1983)). Therefore, 
in a realistic model the excitation, i.e. the roll moment due to wind and waves is in general, 
non-Gaussian, non-stationary, and has correlation time comparable with the relaxation time of 
roll motion making the roll motion a non-Markovian random function. The RE theory has 
been applied to the ship roll problem with both parametric and external stochastic excitation 
(G.A. Athanassoulis et al. 2009), (Athanassoulis et al. 2012a), however in order to obtain 
interesting results in this setting the solution to problems that involve full oscillators shall be 
obtained. Since now we have managed to solve numerically the joint REPDF evolution 
equation and the two-time RE moment equations for first order equations (half oscillators) 
under general smoothly-correlated (colored) random excitation. However the methodologies 
that will be developed in what follows in this thesis can be extended to full oscillators.  
 

1.3. Preview of Chapters 

The thesis is organized as follows: 
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In the first part of Chapter 2 some existing methods aiming at the probabilistic 
characterization of systems of RDEs are briefly presented. Subsequently, the RE theory, 
introduced by Athanassoulis and Sapsis, is reviewed and generalized to second order 
nonlinear systems. The joint REPDF evolution equation for non-linear dynamical systems 
under smoothly-correlated stochastic excitation is re-derived, using the Characteristic 
functional approach. These equations generalize existing results obtained by Athanassoulis 
and Sapsis to systems of two equations. To verify their validity, the equations are used to re-
derive the infinite system of the limiting two-time moment equations. Finally the obtained 
equations are applied to the ship roll problem.  

Chapter 3 focuses on linear random dynamical systems. The two-time RE moment equations 
are developed for a linear scalar dynamical system under colored stochastic excitation. These 
equations are solved analytically and results are obtained for different stochastic input 
functions. For Gaussian excitation, a complete analytical solution of the studied problem, both 
in the transient and in the long-time statistical equilibrium state, is produced and used to: 

i. Prove that, for linear problems under Gaussian excitation the REPDF evolution 
equation is verified if and only if the two-time RE moment equations are verified on 
the diagonal. 

ii. Prove that the REPDF evolution equation, as it stands, can have multiple solutions.  

iii. Demonstrate that the developed, so far, methodology fails to properly take into 
consideration the RE correlation structure.  

iv. Discuss the need for an a priori closure of the REPDF evolution equation by pro-
viding additional information about the RE correlation structure, as well as how this 
can be accomplished by the use of two-time RE moment equations. 

Chapter 4 builds on the findings from the solution of the linear problem, to develop new 
auxiliary local, in the RE-phase space, conditions by the use of local linearizations/ 
Gaussianizations around the equilibrium curve of the non-linear scalar dynamical system in 
the long-time. The equations are solved analytically and compared with results obtained by 
Monte Carlo (MC) simulations. These local conditions are used to form a new a priori closure 
scheme for the non-linear REPDF evolution equation, providing the necessary additional 
information regarding the RE-correlation structure. This information is synthesized in the RE-
evolution equation by the use of a Gaussian Kernel representation for the joint two-time RE- 
density. The REPDF evolution equation, together with the new local closure conditions, is 
then numerically solved using a Galerkin scheme. The obtained results are discussed and 
compared with Monte Carlo (MC) simulations. 

In Chapter 5 a new method is developed for the formulation and solution of two-time, 
response-excitation moment equations for a non-linear half oscillator excited by colored, 
Gaussian or non-Gaussian processes. To obtain a solution, a two-fold closure (moment and 
time closure) is presented. For a mono-stable half oscillator the moment closure is obtained 
by applying the standard Gaussian closure to the two-time RE moments. The time closure is 
achieved by using an exact non-local (in time) condition for the one-time moments. The same 
moment system is also considered and solved directly in the long-time, statistical equilibrium 
limit. Moreover, a bi-Gaussian moment closure scheme that extends the presented 
methodology to bi-stable cubic non-linear half oscillators in the long-time limit is discussed. 
Obtained results are compared  MC Simulations.  

Finally, directions for future research are discussed. 



1-10 |                                                      CHAPTER 1     Introduction 

 

 

1.4. Main contribution of the present work 

 
1. Derivation of the joint REPDF evolution equation for two-dimensional non-linear 

dynamical systems under smoothly correlated stochastic excitation, using the 
Characteristic functional approach (G. A. Athanassoulis et al. 2009)(G.A. Athanassoulis 
et al. 2009)]. (Generalization of results obtained by Athanassoulis and Sapsis to 2D 
systems)  

 

2. Analytic verification of the REPDF evolution equation for linear problems under 
Gaussian excitation 
 

3. Clarification of the non-uniqueness of solutions of the REPDF evolution equation. Non-
uniqueness is mainly due to the fact that the correlation length of the excitation is not 
properly taken into account as some of the non-local (in time) characteristics are lost when 
taking the limit 

( ) ( )
( ) /x y st s t

f t


¶ ¶a,b .  
 

4. Development of an a priori closure scheme for the REPDF evolution equation via 
localized/linearized problems, accounting for the local, in space, response-excitation 
correlation structure (Athanassoulis et al. 2012b)(Athanassoulis et al. 2012a)(Tsantili et 
al. 2013) 

 

5. Numerical solution of the REPDF evolution equation in the long-time, based on a Kernel 
Density (KD) representation of the REPDF and a Galerkin-type numerical scheme, which 
can embed the acquired information about the local RE structure. (Athanassoulis et al. 
2012b)(Athanassoulis et al. 2012a) (Tsantili et al. 2013) 

 

6. Formulation and solution of two-time, response-excitation moment equations for a 
monostable non-linear half oscillator excited by colored, Gaussian or non-Gaussian 
processes; applying a moment closure and a time closure.(Athanassoulis et al. 
2013a)(G.A. Athanassoulis et al. 2013b)  
 

7. First ideas on a bi-Gaussian moment closure scheme which could work well for bi-stable 
half-oscillators. 

 

1.5. On the validation of the obtained results 

 

The experimental verification of the probabilistic solution of RDEs is either extremely 
difficult or, most often, impossible. To validate the numerical solution of the REPDF 
evolution equation and the two-time RE moment equations developed in this thesis, we need 
to compare the results with similar ones obtained by other methods such us: 

 Analytic solutions, 

 Asymptotic results,  

 Results obtained by other well established methods for cases, if available,  

 Results obtained by mathematical numerical experiments, in the lines of MC 
simulations. 
 

Analytic solutions exist only for linear RDEs under Gaussian excitation. These have been 
exploited for the verification and the clarification of the non-uniqueness of solutions of the 
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joint REPDF evolution equation. Asymptotic methods for tail probabilities are not relevant 
with the present work, whereas, asymptotic methods for long-time statistics have been used 
for the analytic calculation of long-time moments. The most promising and general validation 
method is by comparison with results obtained by mathematical numerical experiments in the 
lines of MC simulations. This method, although computationally expensive, is the generic 
approach with which we can probabilistically characterize any kind of RDEs. The MC 
simulation results that will be presented in this thesis have been obtained by an algorithm 
developed and implemented in Matlab® by Zacharias G. Kapelonis, which involves the 
following steps: 
 

i. The 1-D random-phase model (Longuet-Higgins 1952; Pierson 1952)(Athanassoulis et 
al. 1991) (Athanassoulis 1990) is used to generate sample functions of the random 
excitation. According to this model every zero mean normally distributed random 
function ( ; )y t   with correlation function ( )yyR   can be modeled by a superposition 

of harmonic functions: 

 ( )
1

( ; ) cos ( )
J

j j j

j

y t A t  
=

= ⋅ +å  

where   is the stochastic argument, 0, 1, 2,...,j j J > =  are deterministic constants 

that model the frequencies, 1( ) j j
j jA S

 



-

+

-
=  are the deterministic constants 

that model the amplitudes of the corresponding terms (harmonics) defined by the one 

sided spectrum of the random excitation  

0

( ) 2 ( ) i
yyS R e d  

+¥

-
+ = ⋅ò  and 

( ), 1,2,...,j j J =  are independent random variables, uniformly distributed in 

(0, 2 ) .  

ii. For each sample function of the random excitation the deterministic version of the 
RDE is solved using ODE45, a MATLAB® implementation of the Dormant-Prince 
method (Dormand & Prince 1980), based on an explicit Runge-Kutta (4,5) formula.  

iii. MC pdf estimations are computed using the kernel density estimation via diffusion, 
introduced by Botev et al. (2010) and coded in MATLAB® functions by the same 
author. 
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2.1. Introduction  

 

In the first part of this chapter we present some well-known methods that aim at the 
probabilistic characterization of systems of RDEs. These methods involve equations that 
model the evolution of the system’s pdfs. Firstly, the Liouville equation for the probabilistic 
characterization of the response of systems with random initial conditions is derived. 
Moreover, we discuss the extension of the Liouville equation, known as Dostupov-Pugachev 
equation, that can apply to non-linear dynamical systems under general excitation when the 
latter can be decomposed into a countable set of uncorrelated random variables. Secondly, we 
focus on systems having delta correlated random input and Markovian output. To this end, the 
FPK equation is derived as a special case of the Kramers-Moyal expansion. Finally, we 
discuss the colored noise master equation for the evolution of the response of generalized 
Langevin equations. 
 

Subsequently, the RE theory, introduced by Athanassoulis and Sapsis, is reviewed and 
generalized to second order nonlinear systems. The joint Response Excitation probability 
density function (REPDF) evolution equation for non-linear dynamical systems under 
smoothly correlated stochastic excitation is produced, using the characteristic functional 
approach. To verify their validity, the equations are used to re-obtain the infinite system of the 
limit two-time moment equations. Finally the obtained equations are specialized in the ship 
roll problem.  

 

2.2. Methods for the probabilistic characterization of systems of RDEs  

 

Let us consider the system of RDEs of the form: 

 ( ; ) ( ; ), ( ; )t t t  x G x y ,         (1a) 

0(0; ) ( )x xq q= .          (1b) 

The probabilistic characterization of system (1) is equivalent with the determination of the 

infinite dimensional measure ( ) ( )t dx xP  of the Borel sets of the sample (functional) Banach 

space X  of the responses ( ) ( ; )t tºx x q . The probability measure ( ) ( )t dx xP  can be 

equivalently and more conveniently expressed by the characteristic functional 
( )

( )
tx

uF  of the 

response ( ; )tx q , defined by: 

( )( ) ( )( ) exp ,t ti d= òx xu u x

X

F P ,        (2) 

where the topological dual of¢Î = =u U X X . See (Vakhania et al. 1987)(Pugachev & 

Sinitsyn 2001) for the definition and the basic properties of the characteristic functional. 
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As discussed in Athanassoulis (2009) solving the problem (1) in the probability domain 
means to determine the probability measure ( ) ( )t dx xP  [equivalently, the characteristic 

functional 
( )

( )
tx uF ], of the response function ( ; )tx q , in terms of the deterministic system 

function ( , )⋅ ⋅G , and the joint probability measure of all stochastic elements [initial value 

0 ( )x q  and stochastic functions ( ; )ty q ] appearing in the equation, that is to construct a 

mapping T  such that: 
 

( )

( )
0

,
( )

( ; )
;

Deterministic system function andProbabilistic structure
Probability structure of the initial state

of the response
and stochastic excitation

ì üï ïï ïì üï ï ï ïï ï =í ý í ýï ï ï ïï ïî þ ï ïï ïî þ

G
x

x y

 




q
q q

T    (3) 

 
Mapping (3) can be formalized in terms of the characteristic functionals, as follows: 
 
 
 

( ) ( ) ( )
0

, ,G    
x yx

,é ùë ûFF =T ,         (4) 

where ( )
0 0

,x y uF u  is the joint characteristic functional of the initial state and all input random 

elements. 

In what follows, we shall review various existing approaches for the solution of problem (1) 
in the probability domain. We are going to present equations governing the response pdf 

( ) ( )tfx a  and discuss about their limitations. Subsequently, we shall focus on the recently 

introduced RE theory (Athanassoulis & Sapsis 2006; Sapsis & Athanassoulis 2006; Sapsis & 
Athanassoulis 2008), where the main object of analysis is the joint REPDF ( ) ( ) ( )t sfx y ,a b . 

2.2.1. The Liouville equation and the Dostupov-Pugachev extension  

 
For a system of differential equations with random initial conditions 

 ( ; ) ( ; )t t x G x ,            (1) 

0(0; ) ( )x xq q= ,            (2) 

the following theorem holds true (Soong 1973)(Risken 1996): 
 

Theorem (Liouville-Gibbs): The pdf 
1 2( ) ( ) ( )... ( ) 1 2( ) ( , ,..., )

Nt x t x t x t Nf fx a a aa  of the response 

 1 2( ; ) ( ; ), ( ; ),..., ( ; )Nt x t x t x t   x  of system of Equ.(1) and Equ.(2) verifies the PDE: 

 ( )
( )

1

( )
( , ) ( ) 0

N
t

n t
n n

f
G t f

t 

 
 

 x
xa

a
a a ,        (3) 

which is known as the Liouville equation.  
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Proof: Use is made of the Fourier transforms between the characteristic function of the 

response ( ) ( )tx u  and the response pdf ( ) ( )tf x a , i.e.:  

  T
( ) ( ) ( ) ( )( ) ( ) ; ( ) ( )

N

t t t tf f exp i f d        x x x xu u u uF a a a a a


,    (4) 

 
 1 T

( ) ( ) ( )

1
( ) ( ) ; ( )

2 N

t t tNf exp i d 



       x x xu u u u uFa a a



.    (5) 

The characteristic function ( ) ( )tx u  of ( ; )t x  is given by the equation: 

 ( )
1

( ) ( )
N

t n n
n

exp i u x t ;E  


      
    
x u .        (6) 

Differentiating Equ.(6) with respect to time, then, using Equ.(1) to eliminate the time 

derivatives of the response, we obtain:  

 ( )

1 1

( )
( ) ( )

N N
t

n n n n
n n

exp i u x t ; exp i u x t ;
t t t

E E 
 

 

                                 
 x u

 

    
1 1

( ) ( )
N N

n n m m
n m

exp i u x t ; i u x t ;E   
 

       
    
    

     
1 1

( ) ( )
N N

m m n n
m n

i u G t ; , t exp i u x t ; ,E   
 

      
    

 x   

that is: 

  ( )
( )

1 1

( )
( )

N

N N
t

m m n n t
m n

i u G ,t exp i u f d .
t



 

         
 x

x

u
aa a a



     (7) 

From Equ.(7) we can obtain a closed equation with respect to ( ) ( )tf x a , i.e.:  

  ( )
( )

1 1

( )
( )

N

N N
t

m m n n t
m n

i u G ,t exp i u f d
t



 

         
 x

x

u
aa a a



 

                            ( )
1 1

( )
N

N N

m t n n
m nm

G ,t f exp i u d
 

         
  x a

a
a a a



  

 [integrating by parts, assuming that  
( )

( ) = 0
m t

lim G , t f
 xa

a a ]  

        ( )
1 1

( )
N

N N

n n m t
m n m

exp i u G ,t f d ,
 

         
  xa

a
a a a


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     ( )

1

( ) ;
N

m t
mm

G ,t f


 
   

  
 x uF

a
a a a .        (8) 

Applying the inverse Fourier transform,  1
( ) ;g ,t


 u u aF , of the first and the last term 

of Equ.(8) we obtain Equ.(3).•   
 

On the basis of the Liouville-Gibbs theorem the problem of determining of the response pdf 

( ) ( )tf x a  has been transformed to an initial value problem for first order pdf (Equ.(3)), with 

initial value the given joint pdf of the initial conditions, i.e.: (0) ( ) ( )f fx x0
a a . 

 

The Liouville equation can be generalized to systems containing time independent random 
variables (Soong 1973). That is, to RDEs of the type  
 

 ( ; ) ( ; ), ( ),t t t  G Ax x ,           (9) 

0(0; ) ( )x xq q= ,          (10) 

where  1 2( ) ( ), ( ),..., ( )MA A A   A  is a known random vector. 

This generalization is obtained as follows. Considering the vector process 
( ; )

( ; )
( )

t
t





 

  
 A

x
z , 

we can write system (9)-(10) in the form: 
  

 ( ; ) ( ; ),t t t Gz z ,          (11) 

0(0; ) ( )z zq q= ,          (12) 

 

where 
 

  
 

G
G

0
 and 

( )
( )

( )
0

0 A

x
z

q
q

q

é ù
ê ú= ê úë û

,             (13a,b) 

 

then applying the Liouville equation to the augmented version of Equs.(9,10), we get: 

 

 ( )
( )

1

( )
( , ) ( ) 0

N M
t

n t
n n

f
G t f

t z





 
 

 z
z

a
a a .      (14) 

 

Substitution of Equ.(13) into Equ.(14) gives an evolution equation for the joint pdf of the 

response ( ; )t x  and the random vector ( )qA ,  

( ) ( , )tf x A a 
1 2 1 2( ) ( )... ( ) ... 1 2 1 2( , ,..., , ,..., )

N Mx t x t x t A A A N Mf   a a a , i.e.: 
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 ( )
( )

1

( , )
( , , ) ( , ) 0

N
t

n t
n n

f
G t f

t 

 
 

 x
xA

a
A

A

a
a a


 ,              (15a) 

 

with initial condition the given joint pdf of 0x , A , i.e.:  

 

(0) ( , ) ( , )f fx x0A A 0a a  .                  (15b) 

 

Equ.(15) is known as the Dostupov-Pugachev equation (Dostupov & Pugachev 1957), (Li & 
Chen 2008) and holds true in general dynamical systems involving random parameters (time-
independent random elements). The above method can also be used for studying 
(approximately) more general random dynamical systems, containing time-dependent random 
elements. This is possible by representing the input random function into a countable set of 
uncorrelated random variables using e.g. the Karhunen-Loeve expansion (Karhunen 1947; 
Loeve 1978)(Ghanem & Spanos 2003):  
 

0

( ; ) ( ) ( ) ( )y m m m
m

t m t A g t  




 y ,        (16) 

 

where 0
m

m  , [ ( ) ( )]m n mnE     ⋅ =  and , ( )m mg t  are the eigenvectors and 

eigenvalues arising from the spectral decomposition of the input covariance Kernel, i.e. 
 

0

( , ) ( ) ( )m m m

m

C t s g t g s
¥

=

=åyy ,        (17) 

 
Equ.(16) must be truncated at a certain finite level that can sufficiently approximate the 
infinite dimensional process ( ; )t y . Under this consideration Equ.(15) is a possibly high 
dimensional equation that holds true for every possible value of the random vector ( )A q . In 
Venturi et al (Venturi et al. 2012) the sparse grid collocation method (Foo & Karniadakis 
2008; Foo & Karniadakis 2010) is used for the numerical solution of Equ.(15). In addition, in 
Cho et al. (2013), Equ.(15) is solved numerically by considering the response and the 
excitation space separately and using the sparse-grid collocation method for excitation space 
and an adaptive discontinuous Galerkin method for the response space. Moreover Li and co-
workers (Li et al. 2009; Li et al. 2012) use the Dostupov-Pugachev equation (15) to formulate 
the generalized density evolution equation using a Lagrangian description of the random 
system (11), (12) aiming to uncouple the values of the physical solutions  1 2, ,..., N= a a aa  

from the density ( ) ( , )tf x A a   in the partial differentiation operator with respect to the state 

variables appearing in Equ.(15). For the numerical solution of the generalized density 
evolution equation requires the selection of representative points of the random parameter 
space. That is, the numerical solution of this includes elements from the probability domain 
and the physical domain (Li & Chen 2009). 
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2.2.2. The Kramers-Moyal expansion and the FPK equation  

 

Let ( ) ( )x tf a  be the pdf of the scalar stochastic function ( ; )x t  , t T , then it is well known 

that: 

( ) ( ) ( )( ) ( , , ) ( )x t t x t t x tf f t t t f d


 


    a a a a a ,                  (1) 

where ( ) ( , , )x t tf t t t  a a  is the conditional pdf of the random variable ( ; )x t t    given 

that ( ; )x t   a . 

 

The conditional pdf ( ) ( , , )x t tf t t t  a a  can be expressed as the inverse Fourier transform 

of the (conditional) characteristic function ( ) ( )x t u,t t ',t   a  of the random variable 

( ; ) ( ; ) ( ; )x t x t t x t       , given that ( ; )x t   a , i.e.: 

     ( ) ( )

1

2
iu

x t t x tf ,t t ',t e u,t t ',t du




 
 



     aa a a ,      (2) 

where ( ; )
( )( ) ( )iu x t

x x t tu,t t ',t e f ,t t ',t d



 



    a a a a . 

Expanding ( ) ( )x t u,t t ',t   a  on a Taylor series around 0u   (assuming that 

 x u,t t ',t   a  is an analytic function) we get:  

    
( )

0

1
, ( )

2 !
q q iu

x t t
q

a t t ',t
f t t ',t iu e du

q


 


 

 
     aa

a a ,      (3) 

where          ; ;
qq

qa t t ',t = E x ',t E x t t x t ',t         a a a ,                              (4) 

are the conditional incremental moments of the stochastic function ( ; )x t  .  

 

Substituting Equ.(4) into Equ.(1), after integration it is obtained: 
 

 ( ) ( ) ( )
1

( 1)
( ) ( ) ( )

!

q

x t t x t q x tq
q

f f a t t ,t f
q x






       a a a a .                           (5) 

 

Dividing Equ.(5) with t then taking the limit 0t  , we have: 
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 ( )
( )

1

( ) ( 1)
( ) 0

!

q
x t

q x tq
q

f
A t t ,t f

t q x





         
a

a a ,                 (6) 

 

where 

         1
; ; ;

q

q
Δt 0

A t t ,t lim x t t x t x t
t

E   


         
a a   1,2,...q  .1          (7) 

are called derivative moments of the stochastic function ( ; )x t  , whereas Equ.(6) is known as 

the Kramers-Moyal expansion (Moyal 1949) (Risken 1996) as well as kinetic equation 

(Soong 1973). It is straightforward to generalize the Kramers-Moyal equation to vector 

processes case  1( ; ) ( ; ),..., ( ; )Nt x t x t  x . In this case Equ.(1) takes the form: 

( ) ( ) ( )( ) ( , , ) ( )t t t t tf f t t t f d


 


    x x xa a a a a .       (8) 

Following the same steps it is obtained: 
  

 
( )

, ,..., ( )1 2
, ,..., 1, 11 2

( ) ( 1)
( ) ( ) 0

!

q qN n n
t

q q q tq Nn
q q q n n nN

f
A ,t f

t q x



 

            
 x

x

a
a a ,  (10) 

where 

 , ,...,1 2
1

1
( ) ( ; ) ( ; ) ( ; )

qN n

q q q n nN Δt 0
n

A ,t = lim x t t x t t
t

E   




 
         

 xa a .  (11) 

 

According to Pawula theorem (Pawula 1967)(Soong 1973), if the derivative moment 

 qA t t ,t  a  exists for every q  and is zero for some even q , then   0qA t t ,t  a , for 

all 3q  . In this case, it follows that , ,...,1 2
( ) 0q q qN

A ,t a  (with probability one) for all nq  that 

are such that 
1

3
N

nn
q


 . In fact, it can be proved that when the stochastic input is a 

Gaussian delta correlated process all derivative moments for 3q   are equal to zero, and the 

Kramers-Moyal expansion takes the form of the Fokker-Planck Kolmogorov (FPK) 

equation, i.e.:  
 

1 2

1 2 1 2

2
( )

( ) ( )
1 , 1

( ) 1
( ) ( ) ( ) ( ) .

2

N N
t

n t n n t
n n nn n n

f
A ,t f A ,t f

t  

              a a a
x

x x

a
a a a a            (12) 

 

                                                 
1 The derivation is formal. Questions concerning the existence of the derivative moments and the convergence of 
the infinite series appearing in the derivation are not considered here.  
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See e.g. (Risken 1996). Supplied with the appropriate initial and boundary conditions 

Equ.(12) can be uniquely solved providing the response pdf ( ) ( )tf x a .  

 

For the derivation of the Kramers-Moyal expansion (6), as well as for its reduction to the FPK 
equation (12), we did not make use of any information about the dynamical system that 
governs the evolution of the random function ( ; )tx q . In what follows, we shall use specific 

dynamical system equations in order to specify the derivative moments ( )nA ,ta , 
1 2

( )n nA ,ta  

appearing in the FPK equation (12).  
 
Let us assume that the stochastic excitation is a delta correlated M -  dimensional Wiener 
Process { }( ; ) ( ; ), 1, 2,...,mt B t m M= =B q q  (Pugachev & Sinitsyn 2001), (Soize 1994), 

(Sun 2006) with components ( ; )mB t q , 1,2,..., ,m M=  that have the properties: 
 

( ) ( ) ( ); ; ; 0m m mE B t E B t t B tq qD q q qé ù é ù= +D - =ë û ë û ,                (13a) 

( ) ( )
1 2 1 2

; ; 2m m m mE B t B t D tq D q D qé ù = Dê úë û , 1 2, 1, 2,...,m m M= , where 
1 2m mD  are constants,  

                     (13b) 
 
and the system of RDE’s (Equ.(1)_Sec(2.2)) is a system of the Itô stochastic differential 
equations, i.e. Equ.(1a)_Sec(2.2.2) takes the form:  
 

( ) ( )( ; ) ( ; ) ( ; ) ( ; )d t t dt t d t= +x Q x G x Bq q q q ,      (14) 
 

where  ( ) , 1, 2,...,nQ n N Q   is a deterministic vector, and  

( )G =  { , 1, 2,..., ,nmG n N=  }1, 2,...,m M=  is a deterministic matrix.  
 

In this context, the response ( ; )tx q  will be a Markovian process that follows the Chapman-

Kolmogorov equation, i.e:  

3 3 2( ) 3 3 1 1 ( ) 3 3 2 2 ( ) 2 2 1 1 2 1 2 3( , , ) ( , , ) ( , , ) ,x t x t x tf t t f t t f t t d t t t




  a a a a a a a ,  (15) 

 

and can be completely characterized by its transition probability density function  

 ( ) , ,tf t t x a a . The transition pdf  ( ) , ,tf t t x a a  will also verify Equ.(12) (this is ( ) ( )tf x a  

for special initial condition ( ) ( ) ( )tf   x a a a , (Risken 1996)).  
 

We shall prove (following the derivation presented in (Soong, 1973)) that the Fokker-Planck-

Kolmogorov (FPK) Equ.(12) governing the evolution of the conditional pdf  ( ) 0tf ,t ,tx a a  

of the response ( ; ) 0t , t t x , has the form: 
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 

     
1 1 1 2 2 2

1 2 1 21 2

( ) 0
( ) 0

1

2

( ) 0
, 1 , 1

( )
( , )

, (16)

n

N
t

t
n n

N M

n m m m n m t
n n m mn n

Q
f ,t ,t

t f ,t ,t
t

G ,t D G ,t f ,t ,t



 



 

       

        



 

x
x

x

a a
a a a

a a a a

 
Proof  
 

As already discussed the transition probability  ( ) 0, ,tf t tx a a  will satisfy the FPK equation 

(Equ.12), i.e.:    
 

   

 
1 2

1 2 1 2

( ) 0

( ) 0
1

2

( ) 0
, 1

, ,
( ) , ,

1
( ) , , ,

2

N
t

n t
n n

N

n n t
n n n n

f t t
A ,t f t t

t

A ,t f t t





       

     





x

x

x

a

a a

a a
a a a

a a a

   (17) 

 
where  

 1
( ) ( ; ) ( ; ) ( ; ) ,n n n

Δt 0
A ,t = lim x t t x t t

t
E   


     

xa a      (18) 

 

  1 2 1 1 2 2

1
( ) ( ; ) ( ; ) ( ; ) ( ; ) ( ; ) .n n n n n n

Δt 0
A ,t = lim x t t x t x t t x t t

t
E     



         
xa a    (19) 

 
Τhe derivative moments ( )nA ,ta , 

1 2
( )n nA ,ta  can be calculated by the use of the specific 

dynamical equations of the system. More precisely, from Equ.(14) we have:  
 

( ) ( )
1

;( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ( ) ( )
M

m

n n n n nm m tx t x t t x t Q t t G t B o tqD q D q q q D q Dx x
=

= - = ++ +å ,   (20) 

whereas:  

1 2 1 1 1 1

1

2 2 2 2

2

1

1

( ; ) ( ; ) ( , ) ( , ) ( ; )

( , ) ( , ) ( ; ) ( )

M

n n n n m m

m

M

n n m m

m

x t x t Q t t G t B t

Q t t G t B t o t

D q D q D D q

D D q

x x

x x

=

=

æ ö÷ç ÷ç ÷= + ´ç ÷ç ÷ç ÷çè ø
æ ö÷ç ÷ç ÷´ + + =ç ÷ç ÷ç ÷çè ø

å

å
 

( )
1 2 1 2 2 2

2

2 1 1 1

1

2

1

1

( , ) ( , ) ( , ) ( , ) ( ; )

( , ) ( ; )( , )

M

n n n n m m

m

M

n n m m

m

Q t Q t t Q t G t t B t

Q G t t B tt

D D D q

D D q

x x x x

xx

=

=

= + +

+ +

å

å
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1 1 2 2 1 2

1 21 1

( , ) ( , ) ( ; ) ( ; ) ( )
M M

n m n m m m

m m

G t G t B t B t o tD q D qx x
= =

+ +åå .  (21) 

 
From Equs.(18,20) we obtain: 
 

( )

1

1

0

0 0

, ; ( )

, ;

1
( ) ( ; ) ( ; ) ( ; )

1
lim ( , ) ( ) ( ) ( ; )

1
lim ( , ) ( ; ) lim ( ) ( ) ( ; )

M

n n m m

m

M

n nm m

m

n n n
Δt 0

t

t t

Q t G t B t o t
t

Q G t B t
t

A ,t = lim x t t x t t
t

E t t

E t t E t

E

=

=



D 

D  D 

+ +

é ù+D - = =ê úë ûD
é ù
ê ú= = =ê ú
ê úë û

é ù
ê úé ù= = + =êë û
êë û

å

å

x

x

x

x x

x x x

q

q

q q

D q
D

q
D

q q q

D q

q D q

a a

a

a a

[ ]
1

0

( ; ) i ( ; )

, ;

[ ]

1
( , ) lim ( ) ( ) ( , ). (22)

m

M

n nm m n

m
t

since B t s independent of t

Q G t E B t Q
t

t t
=

D 
=

=ú
ú

+ =å
x

x q

D q q

D q
D

a a

 
Then, from Equs.(19,21) we have: 
 

( ) ( )

( ) ( )

1 1 2 2 1 2

1 2

1 1

1 2

1 2 1 2

2 2 1 2

1 1

1

0

0

0
,

, , ( ; ) ( ; )

,

1
( ) lim ( ; ) ( ; ) ( ; )

1
lim ( ; )

1
, lim ( ; ) ( ; ) ( ; )

n n

M M

n m n m m m

m m

M

n m

m m

n n
t

t

n m m m
t

x x
t

G t G t B t B t
t

G t
t

A ,t t t t

E t

G t E B t B t t

 

= =

=

D 

D 

D 

=

⋅

é ù= = =ê úë û

é ù
ê ú= =ê ú
ê úë û

= ⋅ ⋅ =

åå

å

x x

x

x

xq

q

q

D

D q D q
D

D

q q q

q

D q D q qa

a a

a

a

( ) ( )

1 2

1 1 2 2 1 2

1 2

1

1

,

,

, , 2 . (23)

M

m m

M

n m n m m m

m m

G t G t D

=

=

⋅

é ù
ê úé ù =ê úê úë ûê úë û

=

å

å a a

a

 

 
Combining Equs.(17, 22, 23) we obtain Equ.(16). 
 
In Equ.(14) the stochastic input ( ; )d t qB , being the derivative of the Wiener process is a 
delta-correlated stochastic function that is well-known as white noise. However, in case that 
this process is in fact a limiting approximation of a non-white process one must consider, 
instead of the Itô SDE Equ.(14), the Stratonovich SDE (Stratonovich 1966)(Risken 1996), 
which is equivalent to Equ.(14), when each component of the drift term 
 
 ( )( ; )t q =Q x   ( ){ }( ; ) , 1, 2,...,nQ t n Nq =x  is replaced by:  

 

( ) ( )
( )

( )2

1 2

11 21 1

( ; )1
( ; ) ( ; ) ( ; )

2

M M
nm

n n m m
mm m

G t
Q t Q t G t

x

q
q q q

= =

¶
= +

¶åå
x

x x x .            (24) 
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2.2.3. The colored noise master equation   

In this section we shall present a theory aiming at the formulation of closed equations 
governing the system’s response pdf ( ) ( )x tf a  by the use of the system’s dynamical equations 

and without any a priori simplifying assumptions for the involved stochastic elements. This 
theory was primarily developed from physicists in the context of statistical mechanics (see 
e.g. (Hanggi 1978)). 

Let us consider a scalar dynamical system that is excited by a smoothly correlated random 
function ( ; )y t  :  

( ; ) ( ( ; ) ) ( ( ; )) ( ; )x t Q x t G x t y t      ,       (1a) 

0(0; ) ( )x xq q= .          (1b) 

 
We shall formulate an equation for the evolution of the response pdf ( ) ( )x tf a . To this end, the 

response pdf is represented by an average over the realizations of ( ; )y t  (Hänggi & Jung 
1995) (Hänggi et al. 1984), i.e.: 
 

 ( ) ( ) ( )x tf x t a a .         (2) 

 

Differentiation of Equ.(2) with respect to time, using Equ.(1a) and exploiting the properties of 
the   function, yields: 

 

 

 

( )

( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ,

x t

x t

f x t x t
t

Q f G x t y t





 
   

 
       

a a
a

a a a a
a a

    (3) 

 

Εqu.(3) is not closed since it involves an average that expresses the non-local, in time, 
correlation between the response pdf, in terms of a functional average over the response 
realizations, and the excitation. One needs to invoke the statistical properties of the excitation 
in order to produce a closed expression for this functional average. Assuming that the 
excitation ( ; )y t   is a Gaussian process, this can be accomplished by an application of the 

Furutsu-Novikov-Donsker formula (Luczka 2005) that for an arbitrary functional  W y of a 

Gaussian process ( ; )y t   reads as follows: 

 

0

[ ]
[ ] ( ) ( ) ( )

( )

t

t

W y
W y y t y s y t ds

y s




  .        (4) 
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Applying Equ.(4) to Equ.(3) for the functional  ( )x t  a , it is obtained: 

 
0

( ) ( )

( )
( ) ( ) ( ) ( ) ( ) ( )

( )x t x t yy

t

t

x t
f Q f G C t s x t ds

t y s




           a a a a a
a a

,   (5) 

where the functional derivative 
( )

( )

x t

y s




2 is given by the integral equation (Hänggi et al. 1984), 

(Luczka 2005): 

   ( )
( ) ( ) exp ( ( )) ( ( )) ( )

( ) s

tx t
t s G x s Q x u G x u y u du

y s

 


         ,                (6) 

or alternatively: 
 

   
 

( )( )
( ) ( ) exp ( ( )) ( ( ))

( ) ( )s

t G x ux t
t s G x t Q x u Q x u du

y s G x u

 


         
    

 ,     (7) 

 
where ( )t s   is the unit step function expressing causality. Indeed, the function ( ; )x t   de-
pends on the noise ( ; )y s   only for s t . 
 
Combining Equs.(5-7) we obtain 
 

   
 0

( ) ( )( ) ( ) ( ) ( ) ( )

( )
( ) ( ) exp ( ( )) ( ( )) .

( )

x t x t

yy
s

t t

t

f Q f G G
t

G x u
C t s x t Q x u Q x u du ds

G x u


           
                 



a a a a a
a a a

a
  (8) 

 

In Equ.(8), that is known as the colored noise master equation (Hänggi et al. 1984), the 
response is no longer coupled with the excitation in the functional average appearing in the 
third term of its right hand side. Nevertheless, Equ.(8) remains not closed since the function 
 ( )x t  a  is in general dependent on the response probabilities ( ) ( ) 1 2( , )x t x sf a a  for 

0t s t   . A review of classes of closed colored noise master equations can be found in 

(Hänggi et al. 1984). The colored noise master equation as given by Equ.(8) can however be 
the starting point of approximations. In fact, several methods have been developed. The most 
widely used method is the small correlation time approximation with which one can 
produce the approximate FPK equation (Dekker 1982), (Hänggi & Jung 1995)(Venturi et al. 
2012). More precisely, in case that the excitation function is assumed to be an Ornstein–
Uhlenbeck process, i.e. the excitation auto-covariance in Equ.(8) is given by the formula:  

                                                 

2 Being the solution of Equ.(1) ( )x t is a function of ( )x s  for 
0

t s t  , i.e. 
0

( ) ; ( )
s

t

x t x t y s  
  
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 ( ) exp /yy

D
C t s t s 


    .        (9) 

the approximate FPK that is valid only for small correlation time   reads as follows (Hänggi 
& Jung 1995): 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( , ) ( )x t x t x tf Q f D G G h t f
t

              
a a a a a a a

a a a
,  (10) 

where: 

 ( )
( , ) [1 exp( / )] ( ) 1 exp( / ) exp( / )

( )

Q t
h t t G t t

G
   



              
  

a
a a

a
.  (11) 

Another method of approximation that aims at the closure of Equ.(8) is the decoupling 
approximation, that does not a priory restrict the noise to small correlation times, however it 
neglects correlations between the response and the excitation and is therefore valid for narrow 
random excitations having narrow distributions, i.e. the noise intensity 1D  (Hänggi & 
Jung 1995). Moreover, the unified colored noise approximation is an alternative method 
whose accuracy increases with the system’s non-linear damping and decreases with color 
intensity (Jung & Hanggi 1987) (Luo & Zhu 2003). 

It is evident that although no a priori restriction for the systems random input were made, both 
Equ.(3) and the colored noise master equation (Equ.(8)) are closed and/or computable only 
under specific assumptions/approximations. The probabilistic characterization of the response 
of a dynamical system under general colored excitation remains an open problem. In what 
follows we shall present an alternative approach that intends to contribute to its solution.
 

2.3. The RE theory in stochastic dynamics  

 
The RE theory proposes another approach to deal with the controversy stemming from the 
stochastic dependence between response and excitation, that is to “accept” this dependence 
and focus on its study. This point of view, which necessarily must lean on the joint 
consideration of response and excitation, was apparently initiated by Lewis & Kraishman 
(Lewis & Kraichnan 1962), in the context of their study on the statistical formulation of the 
Navier-Stokes equations, as a generalization of Eberhard Hopf’s approach to statistical 
formulation of turbulence (Hopf 1952), (see also (Beran 1986)). The means to treat jointly the 
probabilistic structure of response and excitation, leaving all the space for their stochastic 
dependence (to be determined during the solution of the problem) is the joint, response-
excitation, characteristic functional, defined as follows:  
 

( ) ( )

( ){ } ( )

, ,

exp , , ,

u u

i u x y dxdy

º =

= < >+< >ò ò
xy x y

xy

YX

F F

P

u u

u          (1)  

where 
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( )dxdyxyP  is the joint RE probability measure on the Borel sets of the joint sample 

(function) space ´X Y , and 

 , ,u< > + < >x yu   is the duality pairing in the dual topological system :  

 ( ) ( ), , , ,> = ´ ´ >< U V X Y < U V X Y . 

 

On the basis of the above discussion the solution of problem (1) in the probability domain 

requires to find an extended mapping 
ext
T  that is such that: 

( ) ( ) ( )
0, , , ,Gé ù

ê úë û,= ⋅xx y yF F     
extT ,        (2) 

Following the methodology of Lewis & Kraichnan (Lewis & Kraichnan 1962) [see (Beran 
1986)], Athanassoulis and Sapsis (Athanassoulis & Sapsis 2006; Sapsis & Athanassoulis 
2006; Sapsis & Athanassoulis 2008) derived functional differential equations for the joint 
characteristic functional ( ),uFxy u  and showed that by appropriately projecting this infinite 

dimensional equation it is possible to obtain equations for the evolution of the joint REPDF. 
 

2.3.1. The REPDF evolution equation in the scalar case     

 
Let us consider the scalar, first-order, RDE:  
 

21

21

1 2

1 2

, ,

( ; ) ( ) ( ; ) ( ; ) ( ; )Q Qq
q Q Q

q Q Q

x t A t x t y t y t= å q q q q ,              (1a)  

 

with stochastic initial condition  
 
 
 

0 0( ) ( )x t x= q ,                                (1b)  
 
 

where ( )1 ;y t q , ( )2 ;y t q  are given smoothly correlated random functions, both defined on the 

common domain 
*

,t T0
é ù´ ´ê úë û=Q Q , Q  is an appropriate sample space [thus, q  is the 

stochastic argument], ( )0x q  is a given stochastic variable, and 
21
( )q Q QA t  are known deter-

ministic functions. 
 
The joint REPDF of the RDE (1) will follow the joint REDPF evolution equation 
(Athanassoulis & Sapsis 2006; Sapsis & Athanassoulis 2006; Sapsis & Athanassoulis 2008): 

1 2

1 2 1 2

1 2

1 2

, , 1 2 1 2( ) ( ) ( )

1 2( ) ( ) ( )

, ,

( ) ( )

( )

0,
Q Qq

q Q Q y s y sx t

y yx sst
s t

q Q Q

A t f

t
f



¶
¶

é ù
¶ ê ú

ê ú
¶ ê ú

ë û

+

+ å a b b a,b ,b

a,b ,b

a
=

  (2) 
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supplemented by the initial conditions: 
 

0 1 2 0 1 21 2 1 2

0

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

.

x y y x y ys s s st t

trivariate pdf known at any time s t

f f f= ⋅ =

³a

a,b ,b a b ,b
       (3a) 

the marginal-compatibility constrain: 
 

1 2 1 21 2 1 2( ) ( ) ( ) ( ) ( )

0

( ) ( ) =

, ,

x y y y ys s s st

bivariate pdf known at any time

f d f

s tÎ

=

³ " Î

ò
a

a

a,b ,b a b ,b

b 
              (3b) 

and constitutive conditions: 
  

1 2 1 2( ) ( ) ( ) ( ) 0x y ys stf ³a,b ,b ,   
1 2 1 2( ) ( ) ( ) ( ) 1x y ys stf d

Î Î

=ò ò
a

a,b ,b a
 

.                            (3c,3d) 

 
In what follows we shall review the derivation of the REPDF evolution equation following 
the same steps as Athanassoulis and Sapsis (Athanassoulis & Sapsis 2006; Sapsis & 
Athanassoulis 2006; Sapsis & Athanassoulis 2008), generalizing and focusing on 2D random 
systems. Preliminary results obtained during the period I was working on this thesis have 
been presented in (G. A. Athanassoulis et al. 2009; G.A. Athanassoulis et al. 2009).    
 

2.4 Derivation of the REPDF evolution equation for the general 2D-system 

2.4.1. Formulation of the problem 

 
Let us consider the system of RDEs : 
 

( )
1 2 3 4

21 3 4

21 3 4

1 1 22

, , ,

( ) ( ) ( ) ( ) ( ; ) ( ; )
n q q q q

n q q q q

q q q q

x t A t x t x t y t y t= ⋅å q q ,     1,2n = ,    (1) 

 
with initial conditions:  
 

0 0( ) ( )n nx t x= q ,       1,2n = .                    (2) 

 
where 1 ( ; )y t q , 2 ( ; )y t q  are given random functions, both defined on the common domain 

*
,t T

0
´ ´é ù= ë ûQ Q , Q  is an appropriate sample space [q  denotes the stochastic argument], 

0 ( )x q  is a given random variable, and 
( )

21 3 4
( )

n

q q q qA t , 1,2n =  are known deterministic 

functions. Clearly, if a solution ( )x t  of Equ.(1) exists, it will also be a stochastic function. 
Thus ( )x t  may equally well be denoted as ( ; )x t q .  
 

The summation is over non-negative integers, non-exceeding some maximum values. Some 

of the terms 
( )

1 2 3 4

21 3 4
1 1 22

( ) ( ) ( ) ( ; ) ( ; )
n q q q q

q q q qA t x t x t y t y t⋅ q q  with indices 
1 2 3 4

( , , , )q q q q  lying 

within the admissible range, might be absent because the corresponding coefficients 

21 3 4

( ) ( )n
q q q qA t  are (taken to be) zero.  



SECTION: 2.4. Derivation of the REPDF evolution equation for general 2D-systems                                     |2-17 

 

 

 

 

In some cases it is expedient to use a different letter for the exponents of 1 ( ; )y t q  and 

2 ( ; )y t q  and the corresponding indices. When this is the case, Equ.(1) will be written in the 

form  
 

( ) 1 21 2

2 1 21

21 1 2

1 1 22, , ,

, , ,

( ; ) ( ) ( ; ) ( ; ) ( ; ) ( ; )
n q q

n q q r r

q q r r

r rx t A t x t x t y t y t = ⋅åq q q q q ,     1,2n = .         (3) 

 
Equ.(1) (or equivalently Equ.(3)) can model any kind of random 2D systems with polynomial 
non-linearities. We shall present some interesting special cases:  
 
1.   Deterministic equation with random initial condition (without excitation): 
 

( )
1 2

21

21

1 2
( ; ) ( ) ( ; ) ( ; )

n q q

n q q

q q

x t A t x t x t = ⋅åq q q ,     1,2n = ,     (4) 

 

0 0( ) ( )n nx t x= q ,       1,2n = .        (5) 

 
2.   Deterministic equation with random initial condition and simple external random 

excitation  
 

1 2

21

21

1 2

( ) ( )

,

( ) ( ) ( ; ) ( ; ) ( ) ( ; )n

n

n

q q rn n
n q q r n

q q r

x t A t x t x t A t y t = ⋅ + ⋅å åq q q ,     1, 2n = ,   (6)  

 

0 0( ) ( )n nx t x= q ,       1,2n = .                    (7) 

 
3.   Deterministic system with random initial conditions and self-multiplicative external      
      random excitations   

 
( ) ( )

1 2 3 4

21 3 4

21 3 4

1 1 22

, ,

( ) ( ) ( ; ) ( ; ) ( ) ( ; ) ( ; )
n nq q q q

n q q q q

q q q q

x t A t x t x t A t y t y t = ⋅ + ⋅å åq q q q ,     1, 2n = ,  (8)  

 

0 0( ) ( )n nx t x= q ,       1,2n = .                    (9) 

 
 
4.   Stochastic equation with random excitation (including random parametric excitation) and 

random initial conditions  
 

( ) ( )
1 2 3 4

21 3 4

21 3 4

1 1 22

1 1 1

, ,

( ) ( )
1 2 2 2

( ) ( ) ( ; ) ( ; ) ( ) ( ; ) ( ; )

( ) ( ; ) ( ; ) ( ) ( ; ) ( ; ) ( ; ) , 1, 2,

n nq q q q

n q q q q

q q q q

n n

x t A t x t x t A t y t y t

a t x t y t a t x t y t y t n

 = ⋅ + ⋅ +

+ ⋅ ⋅ + ⋅ ⋅ ⋅ =

å åq q q q

q q q q q
            (10) 

0 0( ) ( )n nx t x= q ,       1,2n = .         (11) 
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More complicated forms of the cross-multiplicative terms (random parametric excitation) can 
easily be obtained.  
 

2.4.2. The characteristic functional(s) associated with the system’s RE 

 
In Sections 2.4.2 -2.4.4 we shall use the general random 2D dynamical system 
(Equs.(1,2)_Sec(2.4.1)) in order to derive functional differential equations governing the 
evolution of the characteristic functional associated with the system’s response and excitation 
random functions. The derivation follows the same steps as in (Athanassoulis 2009). 
 

Assuming that the excitation function ( )1 2( ; ) ( ; ), ( ; )t y t y t=y q q q  is a given 2D stochastic 

function, taking values in an appropriate Banach space (2) = ´Y Y Y . Its probabilistic 

structure is fully described by means of its characteristic functional  
 

( ) { } ( )
1 2

( 2)

1 2( , ) exp ,y y i dº = << >>òy y y

Y

F F Pu uu u b ,           (1) 

where   

 ( )(2) (2) (2)
1 2( , ) The topological dual of¢= Î = = =´V V V Y Yu uu ,  

 

 1 1 2 2, υ , υ ,b b<< >> = < > +< >u b ,    

,< >     is the duality pairing in the system ,¢=< V Y Y>   

,<< >>u b    is the duality pairing in (2) (2), >< V Y , and  
 

( )dPy y  is the probability measure on the Borel sets of the sample (function) space 
(2) = ´Y Y Y .  

 

Concerning the response function ( )1 2( ; ) ( ; ), ( ; )t x t x t=x q q q , we assume that it exists and 

belongs to another (appropriate) Banach space (2) = ´X X X . Its probabilistic structure 
is also described by means of its characteristic functional  
 

{ } ( )
1 2

( 2)

1 2( ) ( , ) exp ,x x u u i dº = << >>òx xu u

X

F F Pa a ,             (2) 

where   

 ( ) ( )(2) (2) (2)
1 2,u u The topological dual of¢= Î = = =´U U U X Xu ,  

 

 1 1 2 2, u , u ,a a<< >> = < > + < >u a ,    

,< >     being the duality pairing in the system ,¢=<U X X > ,  

,<< >>u a    being the duality pairing in (2) (2), ><U X , and  
 

( )dPx a  is the probability measure on the Borel sets of the sample (function) space 
(2) = ´X X X .  
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Solving the Problem given by Equ.(1, 2)_Sec(2.4.1) in the probabilistic domain means to de-
termine the probability measure ( )dPx a  [equivalently, characteristic functional ( )Fx u ], of 

the response function ( )1 2( ) ( ), ( )t x t x t=x , in terms of the system parameters 
21 3 4

( ) ( )n

q q q qA t , 

the probability distribution 
10 20 1 2( , )x xF a a  of the initial values, and the probability measure 

( )dPy b  [equivalently, characteristic functional ( )F y u ], of the excitation function 

( ) ( ) ( )( )1 2; ; , ;t y t y tq q q=y .   

 
To pursue in this direction the joint, response-excitation, characteristic functional is con-
sidered  
 

    

( ) ( )

( ){ } ( )

1 2 1 2

( 2) ( 2)

1 2 1 2, , , ,

exp , , ,

x x y y u u

i d d

º =

= << >>+<< >>ò ò
xy

xy

u

u

YX

F F

P

u uu

a u b a b           (3) 

where    
 

( )d dPx y a b  is the joint, response-excitation, probability measure on the Borel sets of 

the joint sample (function) space (2) (2)´ = ´ ´ ´X Y X X Y Y , and  
 

1 1 2 2 1 1 2 2, , u , u , υ , υ ,a a b b<< >> + << >> = < > + < > + < > + < >u a u b   

 
is the duality pairing in the system  
 

           
( ) ( )(2) (2) (2) (2), , ,

,

> =

= ´ ´ ´ ´ ´ ´ >

< U V X Y

< U U V V X X Y Y
 

 
Following the methodology of Hopf (1952) [see also Beran 1968], we shall first derive func-
tional differential equations for the joint characteristic functional ( ),Fxy u u .  
 

2.4.3. Functional derivatives of the joint RE characteristic functional  
 

To facilitate the symbolics in performing the functional differentiation, we write the joint 
characteristic functional in the following form  
 

( ) ( )

( ){ } ( )

{ } { } { } { } ( )
1 1 2 2 1 1 2 2

1 2 1 2

( 2) ( 2)

1 2 1 2

exp , exp , exp , exp ,

, , , ,

exp , ,

x x y y

i u i u i i d d

u u

i d d

< > < > < > < >

º =

= << >>+<< >> =

=ò ò

ò ò

x y

xy

xy

u

u

YX

P

F F

P

a a u b u b

u u

a b

u

a u b a b  

 
and we shall abbreviate it as follows, in accordance with our special needs:  
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( ) { } ( )

{ } ( )

{ } ( )

{ } ( )

1 1

2 2

1 1

2 2

exp , [ ]

exp , [ ]

exp , [ ]

exp ,

,

.

or

or

or

i u d d

i u d d

i d d

i d d

...

...

...

...

a

a

u b

u b

< >

< >

< >

< >

= =

= =

= =

=

ò ò
ò ò
ò ò
ò ò

P

P

P

P

F xy

xy

xy

xy

u a b

a b

a b

a b

u

 

 

There are four first-order Gateaux functional derivatives of ( ), ºF u u ( )1 2 1 2, , ,u u u uF . 

The one with respect to the first variable ( 1u ), taken along the direction 
1uh  is defined and 

calculated as follows  

( ) ( ) ( ) ( )

{ } { }( ) ( )

{ } { }( )
( )

{ }( )

1

1

1

1

1

1 1

1 2 1 2 1 2 1 2
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1 1 1 1

1 1 1 1

1 1

0

0

0

0

, , , , , ,
; , , , lim

exp , exp ,
lim
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exp , 1 exp ,
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,
u

u

u

u

u

u u

u h u u u
u h u

i u h i u d d

i u h i u

i h i u

d d








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


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






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=
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ê úë û

ò ò

ò ò
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u

P

P

F F
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a a
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a
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... a b

u
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( )

{ }( ) { }
( )

{ } ( )

1

1

1
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1 1 1

0
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exp , 1 exp ,

,
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, exp ,

u

u

assuming that the may pass through the functional integral sign

i h i u

d d

d d

d di h i u















>
=

< > - < >
= =

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷çè ø

= < > < >

ò ò

ò ò

ò ò
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P

P

P

a
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...
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that is  
 

   

( ) ( )
{ } ( )

11 1

1

1 2 1 2

1

, ; ,

, exp ,

,u u u

u

u h ,u

i h d d

   é ù= =ê úë û

= < >ò ò xy

u

P

F F

a ...

u

a b
         (1) 

 

where { }exp ...  stands for ( ){ }exp , ,i << >>+<< >>u a u b .  
 

The definition and corresponding calculations for the other three Gateaux functional deriva-
tives are similar. The results are as follows:  
 

    
( ) ( )

{ } ( )

22 2

2

1 2 1 2

2

, ; , ,

, exp ,

,u u u

u

u u h

i h d d

= =é ù
ê úë û

= < >ò ò xy

u

P

F F u u

a

d d

...

u

a b
          (2) 
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( ) ( )

{ } ( )

1 1 1

1

1 2 1 2

1

, , ; ,

, exp ,

,u u h

i h d d...

u u u

u

u u

b

d d é ù= =ê úë û

= < >ò ò P

F F

xy

u u

a b
          (3) 

 

   
( ) ( )

{ } ( )

22 2

2

1 2 1 2

2

, , , ;

, exp .

,u u h

i h d d

é ù= =ê úë û

= < >ò ò xy

u

P

F Fu u u

u

u u

b

d d

...

u

a b
          (4) 

 

Applying Equ.(1) and Equ.(2) for ( )
nu th d= ⋅ , the Dirac delta functional supported at t , we 

obtain  
 

    
( ) { } ( )

{ } ( )

1
1 2 1 2 1

1

; ( ) , ( ) , exp

exp ,

,u t tu ,u i d d

i t d d

...

...

d u u d a

a

d é ù = < > =ê úë û

= ( )

⋅ ⋅ò ò
ò ò

P

P

F xy

xy

a b

a b
 

 

    
( ) { } ( )

{ } ( )

2 1 2 1 2 2

2

, ; ( ) , , ( ) , exp

exp .

u t tu u i d d

i t d d

...

...

d u u d b

b

d é ù = < > =ê úë û

= ( )

⋅ ⋅ò ò
ò ò

P

P

F xy

xy

a b

a b
 

 

Differentiating now with respect to time, assuming that time derivative 
d

dt


 can be inter-

changed with the functional integral ( ) ( )d dò ò ... Pxy x y , we obtain  

 

   ( ) { } ( )
1

1 2 1 2 1

1
; ( ) , exp,u t

d
u ,u t d d

i dt
...d u u ad é ù = ( )ê úë û⋅ ò ò PF xy a b ,                         (5) 

 

   ( ) { } ( )
2 1 2 1 2 2

1
, ; ( ) , , expu t

d
u u t d d

i dt
...d u u ad é ù = ( )ê úë û⋅ ò ò PF xy a b .              (6) 

 
Assume now that 

1
q  is a non-negative integer, and apply 

1
q -fold Gateaux differentiation to 

the first functional variable 1u  in the directions 1

1 1 1

( )(1) (2), ,...,
q

u u uh h h :  

 

( ) ( )
{ } ( )

11 1

1 1 11 1

1 1

1 1 1

( ) ( ) ( )(1) (2)

1 2 1 2

( )(1) (2)

1 1 1

, ; , ,..., ,

, , , exp .

,
q q q

u u u u u

q q

u u u

u h h h ,u

i h h h d d...

u u

a a a

d d é ù= =ê úë û

= < > < > ... < >ò ò P

F F

xy

u u

a b
 

 
In a similar manner, assuming that all functional derivatives considered do exist, we obtain 

the following result for the ( )1 2 3 4
q q q q+ + + - fold derivative with respect to 1 2 1 2,,u ,u u u  

successively, as indicated in the notation:  
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( )

( )

31 2 4

1 2 1 2

3 11 2 4 2 3 4

1 1 2 2 1 1 2 21 2 1 2

1 2 3 4

1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )(1) (1) (1) (1)

1 2 1 2

(1)

1

,

; , ..., ; , ..., ; ,..., , ; , ...,

,

,

q q q q

u u

q q q q q q q q

u u u u u u

q q q q

u

u h h , u h h h h h h

i h+ + +

=

é ù é ù é ù é ù= =ê ú ê ú ê ú ê úë û ë û ë û ë û
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uF

F

u u

u u u u u uu u

a

d d d d

d d d d

u

(
{ } ( )
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1 2 2

3 4

2 21 1
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1 2 2

( ) ( )(1) (1)

1 1 2 2 exp

, , ,

, , , , .

q q

u u u

q q

h h h

h h h h d d⋅

.. < >⋅< > ... < >⋅

< > ... < >⋅< > ... < >⋅

ò ò
xyPu u u u

a a a

b b b b ... a b

 

              (7) 
 

 
Applying the above general formula (Equ.(7)) to the directions  
 

 1 2 3 4

1 1 2 2 1 1 2 2

( ) ( ) ( ) ( )(1) (1) (1) (1)
... ... ... ... ( )

q q q q

u u u u th h h h h h h h    = = = = = = = = = = = ⋅= ,  

 
we find  
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31 2 4
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4
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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,
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q q q qq q q q
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q q q q

u u ,
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i d d

 

          

   

   

+ + +

⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅

⋅

=
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u
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F

F
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u

 
Thus  
 

( ) ( ) ( ) ( ) ( ) { } ( )31 2 4

1 2 1 21 2 3 4

1 2 3 4
1 1 22

( ) ( ) ( ) ( )
exp .,

1 q q q q q q q q

u uq q q q
t t t t d d

i
    

+ + +
⋅= ò ò xyu PF a a b b ... a bu

 
 (8) 

2.4.4. The functional differential equations 

 
Combining now the differential system given by Equs.(1, 2)_Sec(2.4.1) with the functional 
derivatives given by Equs.(5, 6, 8)_Sec(2.4.3), we obtain  
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) { } ( )

31 2 4

1 2 3 4

1 2 3 4

21 3 4 1 2 1 2

21 3 4

21 3 4
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( ) ( ) ( ) ( )

1 1 22

, , ,

, , ,

, ,

exp

1 1

0,

q q q q

q q q q

q q q qn

n

n

q q q q u u

q q q q

n q q q q

q q q q

u
i

A t t t t t d d

d
A t

i dt

t ...

+ + +
- =

= ( )- =
æ ö÷ç ÷ç ÷ç ÷ç ÷÷çè ø

å

å

ò ò xy

u uF F

P

u u

a a b ba

d d d dd u u

a b

  (1) 

1,2n = .  
 
Thus, we have established that the following  
 
 
 



SECTION: 2.4. Derivation of the REPDF evolution equation for general 2D-systems                                     |2-23 

 

 

 

a. Functional Differential Equation:  
 

( ) ( ) ( ) ( )

( ) ( )

31 2 4

21 3 4 1 2 1 21 2 3 4

21 3 4

( ) ( ) ( ) ( )

, , ,

(2) (2)

, ,
1 1

0 ,

,, , 1, 2.

q q q q

q q q qn

n

u q q q q u u

q q q q
i

d
A t

i dt

n

+ + +
- =

Î =

åu u

u

F F

U V

u ud d d dd u u

u
        (2) 

 
The above functional differential equation (2) should be supplemented by appropriate 
compatibility conditions and initial conditions for the joint characteristic functional.  
 
b. Compatibility conditions:  
 
Although the joint characteristic functional ( ) ( ), ,= xyu uF Fu u  is the principal unknown 

quantity, the marginal characteristic functional ( ) ( ),0= =y xyF Fu u  ( )0, 0 , 1 2xyF u ,u , 

related to the excitation only, is known, i.e.  
 
 

( ) ( ) ( )
( ) (2)

, 0, 0 , ,a known characteristic functional

where

1 2

1 2

= = =

= Î = ´
y xy xyF F F

V V V .

u ,u

u ,u

0u u

u
  (3) 

 
c. Initial conditions:  
 
Τhe joint characteristic function- functional of the initial state – excitation of the system,  
 

0 0 0 0

1 0 2 0 1 2 10 20 1 2( ), ( ), ( ), ( ) ( ), ( ), ( ; ), ( ; )
t t t t

t t t t

x t x t y s y s x x y s y sq q q q
æ ö æ ö÷ ÷ç ç÷ ÷=ç ç÷ ÷ç ç÷ ÷ç çè ø è ø

,  

 

is known, i.e., if we set ( )
0n n tu = u δ ⋅ , nu Î  , 1,2n= , then 

 

( ) ( )
( )

2
1 2 1 2 1 2

(2)
1 2

( ), ( ), ,

,

0 0t t a known characteristic function with respect to

and a known characteristic functional with respect to

u δ u δ u ,u⋅ ⋅ = Î

Î

xyF

V .

   u u

u u



            (4) 
 
Making the plausible assumption that the initial state is independent from the history of the 
excitation, the initial condition is simplified as follows  

 

( ) ( )

( )
0 01 2 1 21 2 ( ) ( )

2
1 2

,( ), ( ), 0, 0
0 0t t x xt t a known characteristic functionu uu δ u δ

u ,u

⋅ ⋅ = =

Î

xyF   

  
 

            (5) 
The derivation of Equ.(5) goes as follows:  
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exp ( ) , ( ) exp ( ) , ( ) exp 0 , exp 0 ,
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where 

0 01 2 1 2( ) ( ) ( , )x t x t u u    is the (known) joint characteristic function of the initial state 

( )10 20( ), ( )x xq q . 

 

2.4.5. Projection of the FDEs to finite dimensions. Derivation of an equation for the 
 joint RE characteristic function 

 
We shall first recall the relation between the (infinite-dimensional) joint, response-excitation, 
characteristic functional and a specific, finite-dimensional joint, response-excitation, char-
acteristic function.  
 
Consider the joint characteristic functional  
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and make the substitution  
  

   ( ) ( )
1 21 2 1 2( ) ( ) ( )t t tu ,u u ,ud d⋅ ⋅ ⋅= = º´ '  U U u u d

21,
Ä ,      where ( ) 2
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and  
  

   ( ) ( )1 21 2 1 2( ) ( ) ( )s s s, ,d du u u u⋅ ⋅ ⋅´ = = º'   V V du u
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1 2,u u Î   .  

 
Then, we obtain  
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that is  
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If, in addition the vector 

1 21 1 2 2 1 2
( ) ( ) ( ) ( )x x y yt t s s  is continuously distributed, then  
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t
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            (2) 
 

Now, exploiting the above equations, we shall express the time derivatives 
1

u

d

dt
d F  and 

2u

d

dt
d F , applied to appropriate functional derivatives of the characteristic functional, as 

time derivatives applied to the corresponding characteristic function.  
 
From  

   ( ) { } ( )1 2 1 2
1

1; ( ) ,
1

, ( ) exp
tu u ,u

d
t d d

i dt
é ù =⋅ë û ò ò xyPF d u u ad ... a b ,  

 

   ( ) { } ( )
2 1 2 1 2 2

1
, ; ( ) , , ( ) expu t

d
u u t d d

i dt
é ù =ê úë û⋅ ò ò xyPF d d u u a ... a b .  

 
We obtain  
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►The proof of the last equality is based on the equation ( ) ( )* **= , already established 

above, with 1 2t t t= =  and 1 2s s s= = :  
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Differentiating both sides of the above equation with respect to the current time t , we obtain    
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which concludes the proof of Equ.(3) ◄  
 
Consider now the following expression, corresponding to the second term of the left hand 
side of Equ.(2)_ Sec(2.4.4), evaluated at  
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Using now the equation (see below for the proof):  
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we obtain  
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►The proof of the Equ.(5) goes as follows: consider again Equ.(4) and differentiate both sides 
first 1q -times with respect to the parameter 1u ,  
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In a similar fashion we obtain  
 



2-28 |                                     CHAPTER 2     On the RE theory in stochastic dynamics 

 

 

 

( )

( ){ } ( )
1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 1 2 2 1 1 2 2

1 2 1 2

1 2 1 2

1 2 3 4

1 2 3 4 1 21 2
1 2 1 2

1 2 1 2
( ) ( ) ( ) ( )

exp ( ) ( ) ( ) ( )

exp

, , ,

q q q q

q q q q

q q q q

q q q q

q q q q

q q q q x x y yt t s s

i u t u t s s d d
u u

i
u u

u u
u u



¶ ¶ ¶ ¶
= + + +

¶ ¶ ¶ ¶

¶ ¶ ¶ ¶
=

¶ ¶ ¶ ¶

=

¶ ¶ ¶ ¶
=

¶ ¶ ¶ ¶

ò ò x y
P   

   

   

   
   

a a u b u b
u u

u u

u u
u u

a b

( ){ } ( )

( ){ } ( )1 2 3 4 1 2 3 4

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 21 2 1 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) exp ( ) ( ) ( ) ( )
q q q q q q q q

u t u t s s d d

t t t t i u t u t s s d di
+ + +

+ + +

= + + +

=ò ò

ò ò

x y

x y

P

P

   

   

a a u b u b

a a b b a a u b u b

a b

a b

 

which is exactly what we wanted to prove.◄  
 
Combining now Equ.(3) and Equ.(6), we obtain an equation for the evolution of the joint RE 
characteristic function of Equ.(1)_Sec(2.4.1): 
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The above equation should be supplemented by:  
 
Compatibility conditions: 
 
The marginal characteristic function related to the excitation is known, i.e.  
 

( ) ( )
1 2 1 21 2

1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) 0,, 0, 0, ,y s y x x y s ys t t s
known characteristic function s t  " ³= =   u u u u   (8) 

 
Initial conditions:  
 
Τhe joint characteristic function of the initial state – excitation of the system, 

( )1 0 2 0 1 2( ), ( ), ( ), ( )x t x t y s y s = ( )10 20 1 2( ), ( ), ( ), ( )x x y s y sq q , is probabilistically known, i.e.  

( )
0 0 1 21 2

1 2 1 2( ) ( ) ( ) ( ) 0,, , ,x x y s y st t
known characteristic function s tu u    u u " ³= .  

 
Making the plausible assumption that the initial state is independent from the excitation, the 
initial condition is simplified as follows  
 

( )
0 01 2

1 2( ) ( )
,x xt t

known characteristic functionu u =        (9)  
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2.4.6. Derivation of the joint REPDF evolution equation. 

 
We shall use the equation for the evolution of the joint RE characteristic function (Equ.(7)_ 
Sec(2.4.5)) to find the joint REPDF evolution equation 
 
For any 1 2 1 2 0, , ,t t s s t³ , the characteristic function 

1 2 1 21 21 2 1 2 1 2( ) ( ) ( ) ( )
( , , , )x x y s y st t
u u u u  and the 

corresponding pdf 
1 21 1 2 2 1 2 1 21 2( ) ( ) ( ) ( ) ( )x x y yt t s sf , , ,a a b b  form a Fourier transform pair, and thus 

being connected by means of the formula  
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Using the notational conventions  
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( ) ( )1 1 2 2 1 1 2 2( ), ( ) ( ), ( ) ,( ) ( )x t x t y s y s= =x , yt s  

 
Equ.(1) can be written in the more compact form:  
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Note that in the following analysis symbols ( ) ( )x , yt s  will be given the (more restricted) 

meaning ( )1 2( ), ( )( ) ( ) x t x tt= =x xt  and ( )1 2( ), ( )( ) ( ) y s y ss= =y ys .  

 
Sometimes use is made of the following symbolic form of the Fourier Transform Equ.(1) or 
Equ.(2):  
 

( ) ( ) ( ) ( )( ) ( )( ) ( ) ;f é ù= ê úë ûx yt sx yt s u uourierF, , , ,u a b a b u .                     (3) 

 
Substituting now the characteristic function in Equ.(7)_Sec(2.4.5) with the Fourier transform 
of the pdf (Equ.2) we obtain: 
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[assuming that differentiations can pass under the integral sign], 
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[applying integration by parts in each term ] 
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[substituting 
1 2
,r r  for the exponents and subscripts 

3 4
,q q , and using the notational conventions ( )1 2
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That is, Equ.(7)_Sec(2.4.5) has been given the following form  
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Applying now the inverse Fourier Transform to both sides of the above equation, we obtain  
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which is the sought-for equation in terms of the joint REPDF. Clearly, it is equivalent with 
Equ.(7)_Sec(2.4.5).  
 
Theorem: If the stochastic function ( ; )x t q  satisfies the differential system  
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then, the joint, response-excitation, pdf  
 
 

1 2 1 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( )( ) ( )x x y yt t tt t t
f f=x y , a ,a ,b ,ba b       (6) 

 
satisfies the differential equation (4), that we repeat here for convenience:   
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r q
x y , ,

a
ba b a a b     (7) 

 
The above equation should be supplemented by:  
 
Compatibility conditions ensuring that the marginal pdf related to the excitation is known at 
any time 0t t³ , i.e.  

 

( )

1 2 1 2

2

2

1 2 1 2 1 2 0

( ) ( ) ( )

( ) ( ) ( ) ( )
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( ) .

tt t

x x y yt t t t
known at any time

d

d d t t

f f

f
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ò

ò

y x y ,

a ,a ,b ,b a a

a b ab




     (8) 

 
Initial conditions ensuring that, here assuming that the initial state is independent from the 

excitation, the joint pdf of the initial state ( )1 0 2 0( ), ( )x t x t = ( )10 20( ), ( )x xq q , is probabilis-

tically known, i.e.  
 

1 0 2 0 1 2( ) ( ) .( )x xt t known probability density functionf =a ,a       (9) 

 
 

Equ.(7) must also be supplemented by constitutive conditions ensuring that 

1 2 1 2( ) ( ) ( ) ( )x y ys stf a,b ,b  is a pdf: 
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1 2 1 21 2 1 2( ) ( ) ( ) ( ) ( ) ( )( ) 0, ( ) 1x y y x y ys s s st tf f d

Î Î

³ =ò ò
a

a,b ,b a,b ,b a
 

.                                 (10a,b) 

 

The derived joint REPDF evolution equation (7) is a peculiar equation, involving two times 
and four probability arguments (two for the excitation, and two for the response) and partial 
derivatives only with respect to one (response) time and the two response probability 
arguments. This peculiarity gives rise to fundamental questions regarding both the well-
posedness of the problem (7-10) and the methods of its numerical solution. Recently, (Venturi 
et al. 2012) re-examined the RE theory using a different (but essentially equivalent) method. 
They confirmed the validity of the REPDF evolution equation derived in (Sapsis & 
Athanassoulis 2008) and answered in negative the question regarding its well-posedness, by 
presenting a simple example in which the REPDF evolution equation is valid but it does not 
ensure uniqueness of solutions(this will be discussed in Section 3.6). Accordingly, it becomes 
clear that a kind of completion of problem (7-10) is necessary. The type of completion 
proposed by (Venturi et al. 2012) results in a complicated equation, including the entire 
history of the response process in a functional integral form, which cannot be considered as an 
attractive alternative. In Section 3.6 we shall use a simple problem, i.e. a scalar linear RDE 
with Gaussian excitation, to prove that the REPDF evolution equation does not have a unique 
solution, since when the equation is considered only time diagonally ( )s t , the non-local 
(in time) characteristics of the problem are lost. In Chapter 4 an a priori closure technique, by 
formulating and using localized linear problems accounting for the RE correlation structure, 
shall be introduced and used for the numerical solution of the long-time, steady-state REPDF 
evolution equation that corresponds to non-liner scalar RDEs (see also the discussion in 
Section 4.3) 

 

2.5. Infinite system of limiting two-time RE moment equations  

 
To verify the validity of the REPDF evolution equation (Equ.(8)_Sec(2.4.6)), this is used to 
re-obtain the infinite system of the limit two-time moment equations. More precisely, in this 
section the infinite system of moment equations are derived both directly from the dynamical 
system (Equ.(1)_Sec(2.4.1)) and from the equation for the evolution of the joint response-
excitation characteristic function (Equ.(7)_Sec(2.4.5)).  
 

Derivation of the infinite system of moment equations from the dynamical system 

 
Let us consider the dynamical system with polynomial non-linearities: 

 
1 2 3 4

21 3 4

1 2 3 4

21 3 4

21 3 4

1 1 22

1 1 22

21 3 4

(1)
1

, , ,

(2)

, , ,

2

( ; ) ( ) ( ; ) ( ; ) ( ; ) ( ; ), (1a)

( ; ) ( ) ( ; ) ( ; ) ( ; ) ( ; ). (1b)

q q q q

q q q q

q q q q

q q q q

q q q q

q q q qx t A t x t x t y t y t

t A t x t x t y t y tx

⋅

⋅

=

=

å

å





q q q q q

q q q q q

  



SECTION: 2.5. Infinite system of limiting two-time RE moment equations                                                     |2-33 

 

 

 

Multiplying equation (1a) with 1 2 1 2
1

1 1 2 1 2( ; ) ( ; ) ( ; ) ( ; )mn n mn t x t y s y sx      and equation (1b) 

with 21 211

2 1 2 1 2( ; ) ( ; ) ( ) ( )n mn mn x t x t y s y s  , respectively, we get: 
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Adding equations (2a), (2b) we have: 
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Considering the limit s t , we obtain: 
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Applying the mean value operator to Equ.(4) we get the infinite system of moment equations 
of system (1): 
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that is (interchanging the mean square derivative with the mean value operator): 
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Derivation of the infinite system of moment equations from the evolution equation  of 
the joint response-excitation characteristic function    

 
The new equation derived for the evolution of the joint response-excitation characteristic 
function that corresponds to system (1) is (we repeat Equ.(7)_Sec(2.4.5) for convenience): 
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Applying the differential operator [ ]
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along with the fact that for every nC  differential function ( ) :f x   , we have (Sapsis & 
Athanassoulis 2008): 
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Specifically, applying the differential operator [ ]
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for the first term, 
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for the second term:  
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[using (9) ] 
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Similarly, for the third term we obtain: 
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Combining equation (8) with equations (11), (12), (13), equation (7) is re-obtained. 
 

2.6. Application to the ship roll problem

 
The RE theory has been applied to the ship roll problem with both parametric and external 
stochastic excitation (G.A. Athanassoulis et al. 2009). As an example case we shall consider 
the roll motion equation with external stochastic excitation (see, e.g., (Belenky & Sevastianov 
2003)): 
 

33
1 31 3( ) ( ) ( ) ( ) ( ) ( ) ( ; )K x K xI A x t b x t b x t t t y t + + =+ + +   ,    (1) 

 
where: 
 

( ) ( ; )x xt t =  is the roll motion (angle), 
I A+  is the inertia coefficient,  

1 3,b b  are the damping coefficients, 

( ; )y t   is the external excitation, 

1 3,K K  are
 
hydrostatic coefficients. 
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The external excitation ( ; )y t  , that is the roll moment due to wind and waves, contains  a 
mean steady component (wind), two nearly stationary, nearly Gaussian components (gust/ 
waves), a non-stationary, non-Gaussian component (squall), whereas a quadratic component 
might also be important in some cases. In this case ( ; )y t   is in general, non-Gaussian, non-
stationary, and has correlation time comparable with the relaxation time of roll motion ( ; )x t  . 
Therefore, roll motion ( ; )x t   will be a non-Markovian random function requiring specific 
modeling techniques for its probabilistic characterization. One approach is to model the 
excitation as the output of a filter driven by white noise (solving an inverse/identification 
problem) and study the augmented dynamical system in the sense of Itô (Francescutto & 
Naito 2004). Another approach is to use stochastic averaging techniques, formulating an 
approximate Itô SDE for a slowly varying motion parameter (e.g., energy) (Stratonovich 
1963; Khasminskii 1966), this was applied to ship roll motion e.g. by Roberts (Roberts 1982; 
Roberts & Dacunha 1985; Roberts & Vasta 2000), Kreuzer & Sichermann (Kreuzer & 
Sichermann 2007). 
 
The response-excitation theory allows to obtain an equation for the evolution of the joint roll 
motion ( 1 ( ) ( )x t x t= ), roll velocity ( 2 1( ) ( )x t x t=  ) and excitation ( )y s  PDF (joint REPDF 

1 2
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( , , )
x t x t y s

f a a b ). More precisely, applying Equ.(7)_Sec(2.4.5) to system (1) we obtain 

the joint REPDF evolution equation: 
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  (3) 

The above equation should be supplemented by compatibility conditions (Equ.(8) in 
Sec(2.4.6)), initial conditions (Equ.(9)_Sec(2.4.6)) and constitutive conditions (Equs(10a,b) in 
Sec(2.4.6)))  
 

As discussed in Section 2.4.6, pp.32, fundamental questions regarding both the well-
posedness and the methods for the numerical solution of the REPDF evolution equation (2) 
have been raised. This will be discussed in the context of a simple problem (linear scalar RDE 
with Gaussian input) in Chapter 3, whereas, in Chapter 4 an a priori closure technique shall 
be introduced and used for the numerical solution of the long-time, steady-state REPDF 
evolution equation that corresponds to non-liner scalar RDEs  
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3.1. Introduction  
 
Chapter 3 will explore the well-studied (Qiu & Wu 2010), simple problem of the probabilistic 
characterization of a linear Random Differential Equation (RDE) under smoothly correlated 
(colored) stochastic excitation (input) in the context of the RE theory. To this end, we develop 
and solve analytically two-time RE moment equations for the response mean value ( )xm t , the 

two-time response-excitation cross-correlation ( , )xyR t s , the two-time response auto-

correlation ( , )xxR t s  and the one-time response auto-correlation ( , )xxR t t . The obtained 

formulae are implemented for the case that the two-time auto-correlation function ( , )yyR t s  of 

the random input is a low pass Gaussian Filter (lpGF), an Ornstein-Uhlenbeck (OU) process 
or, alternatively, a shifted OU (sOU) process.  
 

Assuming that the input ( ; )y t q  in the linear RDE is a Gaussian random function (hereafter 

referred to as linear/Gaussian case) the joint REPDF 
( ) ( )

( )x y st
f a,b  is a 2D Gaussian density, 

uniquely defined by the solution of the two-time RE moment equations. This analytically 
obtained joint REPDF 

( ) ( )
( )x y st

f a,b  is used to verify the REPDF evolution equation. In fact, 

we will prove that, in the linear/Gaussian case, the REPDF evolution equation becomes 
equivalent with the limit two-time RE moment equations.  
 

Thereafter, the equivalence between the REPDF evolution equation and the limit two-time RE 
moment equations will be invoked, in order to clarify that the REPDF evolution equation does 
not have a unique solution, as also stated in Venturi et al.(Venturi et al. 2012). As will be 
shown the non-uniqueness is due to the fact that the correlation length of the excitation is not 
properly taken into account since some of the non-local (in time) characteristics are lost when 

taking the limit 
( ) ( )

)( /x y st ts
f t


¶ ¶a,b .  

 

Subsequently, the need for an a priori closure of the REPDF evolution equation, providing 
additional information about the RE correlation structure, will be discussed. In the 
linear/Gaussian case this could be provided by the moment equation for the two-time RE 
cross-correlation ( , )xyR t s . 
 

Lastly, we examine the connection between the REPDF evolution equation response-marginal 
with the two-time RE moment equation in the linear/Gaussian case. 

3.1.1. The underlying deterministic problem. The scalar case  
 
Consider the scalar RDE, subject to a known mean square (m.s.) continuous stochastic 
excitation ( ; )y t q , and a known stochastic initial condition 0 ( )x q : 

 
( ; ) ( ; )( ; ) A x t B y tx t q qq ⋅ + ⋅= ,         (1a)  

0 0( ; ) ( )x t x=q q ,  ,A BÎ .                            (1b) 

 
Hereafter, the RDEs will be studied in the m.s. sense (for the m.s. calculus and its application 
to the study of RDEs see e.g. (Soong 1973; Loeve 1978; Saaty 1981; Sobczyk 1991)). 
 

In order to determine the probabilistic characteristics of the unknown through the known 
stochastic quantities, use shall be made of the deterministic transformation that defines the 
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sample function of the system’s response for a specific realization of the excitation, and a 
specific value of the initial condition. We shall thus need first to consider the deterministic 
version of the initial value problem (1), i.e.: 
 

( ) ( )( ) A x t B y tx t ⋅ + ⋅= ,        (2a)  

0 0( )x t x= .          (2b) 

 
and its general solution, given by the integral: 
 

( ) ( ) ( ) ( )0 0

0

0

t

A t t A s t

t

x t e B y s e ds x⋅ - - ⋅ -

æ ö÷ç ÷ç ÷ç= ⋅ + ÷ç ÷ç ÷ç ÷è ø
ò .      (3) 

 
For 0A£ ,

 

the solution given by Equ. (3) is asymptotically (as t  ) stable, whereas for 
0A> the solution is asymptotically unstable.  

 

3.1.2 The underlying deterministic problem. The vector case 
 
Some of the results presented in this chapter will also be generalized to linear dynamical 
systems of the form: 
 

( ; ) ( ; )( ; ) t tt ⋅ + ⋅= q qq A x B yx ,       (4a)  

0( ; ) ( )t =q q0x x ,         (4b) 

 

where 
11 2

2

1,2,...,
1,2,...,

n Nn n
n N

A =
=

é ù= ê úë ûA  , 1,2,...,
1,2,...,

n Nn m
m M

B =
=

é ù= ê úë ûB  are deterministic, time invariant matrices, 

( )1 2( ; ) ( ; ), ( ; ),..., ( ; )Mt y t y t y t
T

=q q q qy  is a known stochastic excitation, 

( )1 2( ; ) ( ; ), ( ; ),..., ( ; )Mt x t x t x t
T

=q q q qx  is system’s response and ( ) (0; )=q q0x x  is a known 

stochastic initial condition.  
 

The deterministic transformation that defines the sample function of the system’s response 
that corresponds to a specific realization of the excitation and a specific value of the initial 
condition are given by the deterministic version of the initial value problem (4), i.e.: 

 
( ) ( ) ( )t t t⋅ + ⋅=x A x B y ,        (5a)  

0( )t = 0x x .          (5b) 
 

and its general solution ( pp.80 in (Ahmad & Rao 1999)) that is given by the integral: 
 

0

1 1 1( ) ( ) ( ) ( )

t

t

t t s s d s t= - ⋅ ⋅ +ò 0x Φ B y Φ x ,                  (6) 



3-4 |                        CHAPTER 3 Application of the RE theory to linear dynamical systems 

 

 

 

where 
11 2

2

1,2,...,
1,2,...,

( ) n Nn n
n N

t =
=

é ù= Fê úë ûΦ  is the fundamental matrix of the corresponding homogeneous 

system: 
 
   ( ) ( )t t⋅=x A x .        (7)  
 
The stability of the homogeneous linear system (7) is determined by the eigenvalues of the 
matrix A .

 

3.2. Analytical solution to the moment problem. The scalar case  
 
In this section, we shall derive moment equations for the RDE given by Equ.(1)_Sec.(3.1.1). 
These equations allow us to determine the response mean value ( )xm t , the RE cross-

correlation ( , )x yR t s  and the two-time response auto-correlation ( , )x xR t s
 
, through the known 

mean value ( )ym t  and auto-correlation ( , )y yR t s  of the excitation
 

as well the known 

moments of the excitation and response initial conditions 
0xm
 
, 

0 0x xR , 
0ym , 

0 0y yR . Hereafter, 

it will be assumed that the initial value 0 ( )x q
 
is independent from the excitation ( ; )y t q . 

 

3.2.1. Analytical solution to the moment problem in the transient regime 

 
To calculate the response mean value function ( )xm t , we take mean values in linear RDE, 

Equs.(1a,b)_Sec(3.1.1), i.e.: 
 

[ ] [ ]( ; ) ( ; )( ; )
d

A x t B y t
dt

E x t E Eq q qq qq
é ù
ê ú ⋅ + ⋅
ê úë û

= ,     (1a)  

( ) ( )00 ;x xE Eq qq qé ù é ù=ë û ë û .        (1b) 

 
Interchanging the m.s.-derivative of the ( ; )x t q  with the mean value operator (see e.g. Soong 
1973), we obtain the following differential equation and initial condition for the response 
mean value: 

 

( ) ( ) ( )x x ym t A m t B m t= ⋅ + ⋅  ,        (2a) 

 

( )
0x o xm t m=  , 0t t" ³ .       (2b) 

 
Applying the analytic solution given by the integral Equ.(3)_Sec(3.1.1) to the initial value 
problem given by Equ.(2), we obtain the response mean value for 0t t³ , i.e. : 

 

 ( ) ( ) ( )0

0

0

0,

t

A t tA t A s
x y x

t

m t e B m s e ds e m t t⋅ -⋅ - ⋅= ⋅ ⋅ ⋅ + ⋅ " ³ò  .    (3) 
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Alternatively, let us denote that the response mean value (Equ.(3)) can be obtained, if we 
consider Equ.(3)_Sec(3.1.1) applied on the sample functions, i.e:  

 

 

( ) ( ) ( ) ( ) ( )0 1 0

0

1 1 0; ;

s

A s t A s t

t

x s e B y s e ds xq q q⋅ - - ⋅ -

æ ö÷ç ÷ç ÷ç= ⋅ ⋅ + ÷ç ÷ç ÷ç ÷è ø
ò  ,    (4) 

 
then apply the mean value operator. 
 

To calculate the two-time RE cross-correlation function ( , )x yR t s , Equs.(1a,b)_Sec(3.1.1) 

are multiplied with ( );y s q , where 0s t³ , i.e.: 

 
( ) ( ) ( ); ( ; ) ; ( ; ) ;( ; ) y s A x t y s B y t y sx t q q q q qq ⋅ + ⋅⋅ = ⋅ ⋅ ,    (5a) 

( ) ( ) ( ) ( )0 0; ; ;x t y s x y sq q q q=⋅ ⋅ .       (5b) 

 
Applying the mean value operator to Equs.(5a,5b) and interchanging the ms-derivative with 
the mean value operator, we obtain: 

 

( ) ( ) ( ); ; ;( ; ) ( ; ) ( ; )E y s A E y s B E y s
t

x t x t x tq q qq q qq q q¶ é ù é ù é ù⋅ + ⋅ë û ë û ë û¶
⋅ = ⋅ ⋅ ,  (6a) 

( ) ( ) ( ) ( )0 0; ; ;x t y s x y sq qq q q qé ù é ùE = Eë û ë û⋅ ⋅ .         (6b) 

 
Since we have assumed that the response initial condition 0 ( )x q

 
is independent from 

excitation ( ; )y s q , Equ.(6b) becomes: 
 
 ( ) ( ) ( ) ( ) ( )

00 0; ; x yx y s x y s m m sq q qq q q qé ù é ù é ùE = E ⋅E ⋅ë û ë û ë û⋅ = .  (7) 

 
Combining Equ.(6) and Equ.(7), we obtain the following differential equation and initial 
condition for the two-time RE cross-correlation function: 
 

 
( ) ( ) ( ), , ,x y x y y yR t s A R t s B R t s

t

¶
⋅ + ⋅

¶
=  ,    (8a) 

 

  

( ) ( )
00 ,x y x yR t s m m s⋅=  , 0 0,t t s t" ³ " ³ .   (8b) 

 
Applying the analytic solution given by the integral Equ.(3)_Sec(3.1.1) to the initial value 
problem given by Equ.(8), we obtain the two-time RE cross-correlation function ( , )x yR t s   

at time 0t t³ , 0s t³ , i.e.: 

 

 

( ) ( ) ( ) ( )01

0

0

1 1 0 0, , , ,

t

A t tA tA t
x y y y x y

t

R t s e B R t s e dt e m m s t t s t⋅ -- ⋅⋅= ⋅ ⋅ ⋅ + ⋅ ⋅ " ³ " ³ò  .

   

(9) 
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As shown in Equ.(9), in order to calculate ( , )x yR t s , integration is performed over all values 

of 1( , )y yR t s  for 0 1t t t£ £ , which takes into consideration the non-local effects of the colored 

stochastic excitation.  
 

Taking the limit s t  to both sides of Equ.(9), we obtain further the one-time RE cross-
correlation function ( , )x yR t t , i.e.: 

 

 

( ) ( ) ( ) ( )01

0

0

1 1 0, , ,

t

A t tA tA t
x y y y x y

t

R t t e B R t t e dt e m m t t t⋅ -- ⋅⋅= ⋅ ⋅ ⋅ + ⋅ ⋅ " ³ò  . (10) 

 
Similarly, to calculate the two-time response auto-correlation function ( , )x xR t s ,

 
we multi-

ply Equ.(1a) _Sec(3.1.1)  and Equ.(1b) _Sec(3.1.1) with ( ; )x s q  and ( ; )x t q , respectively, 
i.e: 

 
( ; ) ( ; ) ( ; ) ( ; ) ( ; )( ; ) x s A x t x s B y t x sx t ⋅ + ⋅⋅ = ⋅ ⋅ q q q q qq ,             

 

0 0( ; ) ( ; ) ( ) ( ; )x t x t x x t⋅ = ⋅q q q q .                  
 

Applying the mean value operator, we then obtain: 
 

( ) ( ) ( ); ( ; ) ; ( ; ) ;( ; )E x s A E x t x s B E y t x s
t

x tq q qq q q q qq¶ é ù é ù é ù⋅ + ⋅ë û ë û ë û¶
⋅ = ⋅ ⋅ ,                (11a) 

( ) ( ) ( ) ( )0 0; ; ;E x t x s E x x sq qq q q qé ù é ù⋅ = ⋅ë û ë û .               (11b) 

 
Since the response ( ; )x t q , 0t t" ³  depends on its initial condition 0 ( )x q , an additional 

equation for the 0( , )xxR t t
 

is needed, so as to calculate the two-time response auto-

correlation ( , )x xR t s . Multiplying Equs.(1a,1b)_Sec(3.1.1) with 0 ( )x q  and subsequently 

applying the mean value operator, we obtain: 
 

 

( ) ( ) ( )

( )
0

0 0 0

0

( ; ) ( ; )

( ; ) ( ) ,

( ; )

x y

E x A E x t x B E y t x
t

A E x t x B m m t

x t
¶ é ù é ù é ù⋅ + ⋅ =ë û ë û ë û¶

é ù⋅ + ⋅ ⋅ë û

⋅ = ⋅ ⋅

= ⋅

q q q

q

q q q q q

q q

q
.           (11c) 

 [ ] [ ]0 0 0 0( ; ) ( ) ( ) ( )E x t x E x x⋅ = ⋅q qq q q q .               (11d) 

 
Combining Equ.(11a), (11c) and (11d), we get the following initial value problem for the 
two-time response auto-correlation function ( , )x xR t s : 

 

 ( ) ( ) ( ), , ,x x x x xyR t s A R t s B R s t
t

¶
⋅ + ⋅

¶
= ,                (12a) 

 

( ) ( )
0 0 0

( )x x x x x yR t A R t B m m t
t

¶
⋅ + ⋅ ⋅

¶
=

 
,              (12b) 
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( )
0 00 0,xx x xR t t R=  .      0 0,t t s t" ³ " ³          (12c)

 The solution of Equs.(12b,c) is given by the formula: 
  

 ( ) ( ) ( ) ( ) ( )0 1 0 0

0 0 0

0

0 1 1,

s

A s t A t t A s t
xx x y x x

t

R t s e B m m t e dt e R⋅ - - ⋅ - ⋅ -= ⋅ ⋅ ⋅ ⋅ + ⋅ò .                (13) 

 
Combining Equ.(12a) and (13), the initial value problem for the two-time response auto-
correlation function ( , )x xR t s  becomes: 

 

( ) ( ) ( ), , ,x x x x xyR t s A R t s B R s t
t

¶
⋅ + ⋅

¶
=

 

,                 (14a)

      

  

 ( ) ( ) ( ) ( ) ( )0 1 0 0

0 0 0

0

0 1 1,

s

A s t A t t A s t
xx x y x x

t

R t s e B m m t e dt e R⋅ - - ⋅ - ⋅ -= ⋅ ⋅ ⋅ ⋅ + ⋅ò , 0 0,t t s t" ³ " ³ .  (14b) 

 
Applying the analytic solution given by the integral Equ.(3)_Sec(3.1.1) to the initial value 
problem given by Equs.(14a,b), we get the two-time auto- correlation function of the 
response ( , )x xR t s  as a function of the two-time RE cross-correlation function ( , )x yR s t  

and the response mean value ( )ym t , 0,t s t" ³ ,  i.e.: 
 

            

( ) ( )

( ) ( ) ( )

1

0

0 01

0 0 0

0

1 1

2
1 1

, ,

.

t

A tA t
x x x y

t

s

A t s t A t s tA t
x y x x

t

R t s e B R s t e dt

e B m m t e dt e R

- ⋅⋅

⋅ + - ⋅ + - ⋅- ⋅

= ⋅ ⋅ +

+ ⋅ ⋅ ⋅ ⋅ + ⋅

ò

ò
       (15) 

 
Alternatively, we can derive a relationship that provides the two-time response auto-
correlation ( , )x xR t s  as a function of two-time auto-correlation function of the excitation 

( , )y yR t s  , 0,t s t" ³ . In fact, from Equ. (9): 

 

                 

( ) ( ) ( ) ( )02

0

0

1 2 1 2 1, ,

s

A s tA tA s
x y y y x y

t

R s t e B R t t e dt e m m t⋅ -- ⋅⋅= ⋅ ⋅ ⋅ + ⋅ ⋅ò .              (16) 

 

Substituting 1( , )x yR s t  in Equ.(15) with Equ.(16), the first integral in the right hand side of 

Equ.(15) becomes: 
 

( ) ( ) ( ) ( )01 2 1

0

0 0 0

1 1 2 1 2 1 1, ,

t t s

A s tA t A t A tA s
x y y y x y

t t t

R s t e dt e B R t t e dt e m m t e dt⋅ -- ⋅ - ⋅ - ⋅⋅

æ ö÷ç ÷ç ÷ç⋅ = ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ =÷ç ÷ç ÷ç ÷è ø
ò ò ò  
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 ( )1 2

0 0

2 1 2 1,

t s

A t A tA s
y y

t t

e e B R t t e dt dt- ⋅ - ⋅⋅

æ ö÷ç ÷ç ÷ç= ⋅ ⋅ ⋅ +÷ç ÷ç ÷ç ÷è ø
ò ò                (17)  

( ) ( )0 1

0

0

1 1.

t

A s t A t
x y

t

e B m m t e dt⋅ - - ⋅+ ⋅ ⋅ò  

 
Substituting 1( , )x yR s t  in Equ.(15) with Equ.(17), we get the two-time response auto-

correlation function ( , )x xR t s  as a function of the two-time excitation auto-correlation 

function ( , )yyR t s , ( )ym t , 0,t s t" ³  , i.e.: 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

01 2 1

0

0 0 0

0 01

0 0 0

0

( )
2 1 2 1 1 1

2
1 1 0

, ,

, , . (18)

t s t

A t s tA t A t A tA s t
x x y y x y

t t t

s

A t s t A t s tA s
x y x x

t

R t s B e e B R t t e dt dt e B m m t e dt

e B m m s e ds e R t s t

⋅ + -- ⋅ - ⋅ - ⋅⋅ +

⋅ + - ⋅ + - ⋅- ⋅

æ ö÷ç ÷ç ÷ç= ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅÷ç ÷ç ÷ç ÷è ø

+ ⋅ ⋅ ⋅ ⋅ + ⋅ " ³

ò ò ò

ò
            
Moreover, taking the limit s t  in both sides of Equ.(18), we obtain the one-time response 
auto-correlation ( , )x xR t t , i.e.: 

 

( ) ( ) ( ) ( )

( )

01 2 1

0

0 0 0

0

0 0

22 2
2 1 2 1 1 1

2
0

, , 2

, . (19)

t t t

A t tA t A t A tA t
x x y y x y

t t t

A t t
x x

R t t B e e B R t t e dt dt e B m m t e dt

e R t t

⋅ ⋅ -- ⋅ - ⋅ - ⋅⋅ ⋅

⋅ ⋅ -

æ ö÷ç ÷ç ÷ç= ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅÷ç ÷ç ÷ç ÷è ø

+ ⋅ " ³

ò ò ò

 
We shall now derive an equation that describes the evolution of ( , )x xR t t . In Chapter 5, a 

moment equation for the evolution of ( , )x xR t t  will be used in conjunction with an evolution 

equation for the evolution of ( , )x yR t s , in order to obtain a time closure for the two-time RE 

moment equations that are developed there for non-linear RDEs. 
 

Multiplying Equ.(1a)_Sec(3.1.1) and Equ.(1b)_Sec(3.1.1) with 2 ( ; )x t q⋅  and (0; )x q , re-
spectively, we obtain: 
 

 
( )2

2 ( ; ) 2 ( ; ) 2 ( ; ) ( ; )( ; )x t A x t B x t y tx tq q q qq⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅= ,             (20a) 

 
( ) ( ) ( ) ( )00; 0; 0;x x x x⋅ = ⋅q q q q ,              (20b) 

 
that is: 
 

 
( ) ( )2 2

( ; ) 2 ( ; ) 2 ( ; ) ( ; )
d

x t A x t B x t y t
dt

q q q q= ⋅ ⋅ + ⋅ ⋅ ⋅ ,              (21a) 
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 ( )( ) ( )( )2 2

00;x x=q q .                  (21b) 

 
Applying the mean value operator to Equs.(21a,b), we obtain an initial value problem for the 
one time response auto-correlation function ( , )x xR t t , i.e.: 

 ( ) ( ) ( ), 2 , 2 ,x x x x xy

d
R t t A R t t B R t t

dt
⋅ ⋅ + ⋅ ⋅=  ,              (22a) 

 

 
( )

0 00 0,x x x xR t t R=  .                  (22b) 

 
Subsequently, substituting ( , )xyR t t  in Equ.(22a) with ( , )xyR t t  from Equ.(10), Equ.(22a) 

becomes: 
 

( ) ( ) ( ) ( ) ( )01

0

0

1 1, 2 , 2 , ,

t

A t tA tA t
x x x x y y x y

t

d
R t t A R t t B e B R t t e dt e m m t

dt
⋅ -- ⋅⋅

æ ö÷ç ÷ç ÷ç⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ÷ç ÷ç ÷ç ÷è ø
= ò  

 
which is equivalent to: 
 

 1 1 1( ) 2 ( ) 2 ( )
d

x t A x t B y t
dt

⋅ ⋅ + ⋅ ⋅= ,                (23) 

 
where 
 
 1( ) ( , )x xx t R t t= ,                 (23b) 

 ( ) ( ) ( )01

0

0

1 1 1( ) 2 , 2

t

A t tA tA t
y y x y

t

y t e B R t t e dt e m m t⋅ -- ⋅⋅= ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ò .           (23c) 

 
Applying the analytic solution given by the integral Equ.(3)_Sec(3.1.1) to the initial value 
problem given by Equs.(23,22b), we obtain: 
 

( ) ( )02

0 0

0

222
1 2 2, 2 ( ) 2

t

A t tA tA t
xx x x

t

R t t e B y t e dt e R⋅ -- ⋅⋅= ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ò ,     (24) 

where: 
 

( ) ( ) ( )

( )

( ) ( )
2

2 01 22

0

0 0 0 01 2

2 2
1 2 2 1 2 1 2 2 2

,

,

tt t t

A t tA t tA t
y y x y

t t t tg t t

B y t e dt B R t t e dt dt B e m m t dt- ⋅ -- ⋅ +- ⋅⋅ = ⋅ ⋅ + ⋅ ⋅ ⋅ò ò ò ò
 

            (25) 
 
Notice that 1 2( , )g t t is symmetric with respect to the diagonal 1 2t t= ,  i.e.: ( ) ( )1 2 2 1, ,g t t g t t= , 

therefore, the first integral of the right hand side of Equ.(25) can be written as: 
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 ( ) ( ) ( ) ( )
2

1 2 1 2

0 0 0 0

2 2
1 2 1 2 1 2 1 2

1
, ,

2

tt t t

A t t A t t
y y y y

t t t t

B R t t e dt dt B R t t e dt dt- ⋅ + - ⋅ +⋅ ⋅ = ⋅ ⋅ò ò ò ò             (26) 

 
Combining Equ.(24) and (26), we re-obtain Equ.(19). 

 

Finally, we shall present an alternative derivation of the one-time response auto-correlation 
function ( , )x xR t t . More precisely, Equ.(20) can be considered as non-linear RDE for the 

stochastic process ( )2
( ; ) ( ; )u t x tºq q . In this case, the initial value problem given by 

Equs.(20a,b) becomes: 
 

 
( )1/2( ; )

2 ( ; ) 2 ( ; )) ( ; )
du t

A u t B u t y t
dt

= ⋅ ⋅ + ⋅ ⋅ ⋅
q

q q q ,              (27a) 

 ( )2

0 0( )u t x= .                   (27b) 

 

The solution of the deterministic problem 
 

 
( )1/2( )

2 ( ) 2 ( ) ( )
du t

A u t B u t y t
dt

= ⋅ ⋅ + ⋅ ⋅ ⋅ ,               (28a) 

 ( )2

0 0( )u t x= ,                              (28b) 
 

is given by the formula 
 

 

01

0

2

2
1 1 02

1
( ) 2 ( )

4

t

A tA t

t

A tu t e e xB e u t dt- ⋅⋅ ⋅ - ⋅

æ ö÷ç ÷ç ÷ç= ⋅ ⋅ ⋅ ⋅ + ÷ç ÷ç ÷ç ÷è ø
⋅ ⋅ò .     (29) 

 
Applying Equ.(29) on the sample functions of ( ; )u t q , we obtain: 

( ) ( )

( ) ( )

( ) ( ) ( )

0 1

1 2

0 01

0

0

2

2
0 1 1

2 2
1 2 2 1

2 2
0 1 1 0

2
(

1
2 2 ;

4
; ) ( ; )

; ;

2 ( ) (

o o

t

A t A tA t

t t

A t A tA t

t t

t

A t t A t tA

t

t

t

e e x B e y t dt

e B e e y t y t dt dt

e x B e y t dt e

u t

x

x t - ⋅ - ⋅⋅ ⋅

- ⋅ - ⋅⋅ ⋅

⋅ ⋅ - ⋅ ⋅ -- ⋅

⋅ ⋅ ⋅ + ⋅ ⋅

æ ö÷ç ÷ç ÷ç= ⋅ ⋅ ⋅

æ ö÷ç ÷ç ÷ç= = ⋅ ⋅ =÷ç ÷ç ÷ç

⋅ ⋅ +÷ç ÷ç ÷ç ÷è ø

+ ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅

÷è ø
ò

ò ò

ò

q

q q

q

q q

q( )2
) .

 (30) 

 
Taking mean values in Equ.(30), we re-obtain Equ.(19). 
 

3.2.3.  Analytical solution of the moment problem in the long-time, statistical 
equilibrium limit. 
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In this section, we shall focus on the asymptotic (long-time) behavior of the linear RDE 
given by Equ.(1)_Sec(3.1.1). We shall consider the case that in the long-time the system 
reaches a statistical equilibrium limit. To this end, we shall assume that 0A£ , i.e. the 

corresponding deterministic problem is asymptotically stable, and that the random input 
( ; )y t q  is a wide sense stationary random process, i.e. the following properties hold true: 

 

a) ( ) 0steady ,y ym t m t t= = <¥ " ³ ,       (1a)  

b) ( ),yyR t s <¥ ,    for 0,t s t³ ,                (1b) 

c) ( ) ( ), , ,yy yyR t s R t s= + +t t  for 0,t s t³ , Ît .                                                           (1c) 

We shall first apply Equs.(1a-1c) to Equs.(3,9,15,18)_Sec(3.2.1) to get the mean value of the 

response ( )xm t , the two-time RE cross-correlation ( ),x yR t s , the two-time response auto-

correlation function ( , )x xR t s  in terms of ( , )x yR t s , and the two-time response auto-

correlation function ( , )x xR t s  in terms of ( )y yR t s-  for stationary random input ( ; )y t q .  

Performing elementary algebraic manipulations, we obtain: 

 
( ) ( )0 0

0
( ) A t t A t t

x y y x

B B
m t m e m e m

A A
⋅ - ⋅ -=- ⋅ + ⋅ + ⋅  ,     (2) 

 ( ) ( )01

0

0

1 1( , ) ( )

t

A t tA tA t
x y y y x y

t

R t s e B R t s e dt e m m⋅ -- ⋅⋅= ⋅ ⋅ - ⋅ + ⋅ ⋅ò  ,    (3) 

( ) ( ) ( ) ( )001

0 0 0

0

2( )
1 1, ,

t

A t s tA tA tA t A t s A s
x x x y x y x x

t

B
R t s e B R s t e dt m m e e e e R⋅ + - ⋅- ⋅- ⋅⋅ ⋅ + - ⋅= ⋅ - ⋅ ⋅ ⋅ ⋅ - + ⋅

Aò .(4) 

( ) ( )

( ) ( )( ) ( )

1 2

0 0

0 0 0

0 0 0 0

2 ( )
2 1 2 1

2

,

2

t s

A t A tA s t
x x y y

t t

A s t A t t A t s t
x y x x x y

R t s B e e R t t e dt dt

B B
m m e e e R m m

A A

- ⋅ - ⋅⋅ +

⋅ - ⋅ - ⋅ + - ⋅

æ ö÷ç ÷ç ÷ç= ⋅ ⋅ - ⋅ +÷ç ÷ç ÷ç ÷è ø
æ ö÷ç- ⋅ ⋅ ⋅ + + ⋅ + ⋅ ⋅ ⋅ ÷ç ÷çè ø

ò ò
 .  (5) 

 
Let us now focus on the long-time asymptotic limit ( ,s t ¥ ) of the moments of the linear 

RDE given by Equs.(2-5) for finite time lag, i.e. t s- = <¥t .  

Taking the limit t ¥  of Equ.(2), we get that the asymptotic response mean value 

lim ( )x xt
m t m¥

¥
º  is time invariant and equals: 
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 ( )
x y

B
m m

A
¥ =- ⋅  .                                (6) 

Moreover, applying the limit ,s t ¥  for t s- = <¥t  to Equs.(3-5), we get the 

asymptotic cross-correlation ( ) ( , )x yR t s¥  

 ( ) ( ) 1

0

( )
1 1,

, lim ,

t

A tA t
x y y yt s

t s t

R t s B e R t s e dt- ⋅¥ ⋅

¥ ¥
- =

é ù
ê ú
ê ú= ⋅ ⋅ ⋅
ê ú
ê úë û

ò
t

 ,                             (7) 

the asymptotic response auto-correlation ( )( ) ,x xR t s¥  in terms of ( ),x yR t s  

 ( ) ( ) 1

0

( )
1 1,

, lim ,

t

A tA t
x x x yt s

t s t

R t s B e R s t e dt- ⋅¥ ⋅

¥ ¥
- =

é ù
ê ú
ê ú= ⋅ ⋅
ê ú
ê úë û

ò
t

 ,                                   (8a) 

and the asymptotic response auto-correlation ( )( ) ,x xR t s¥  in terms of ( )y yR t s- : 

 ( ) ( ) ( )1 1

0 0

( ) 2
1 1 1 1,

, lim

t s

A t s A t A s
x x y yt s

t s t t

R t s B e e R s t e ds dt⋅ + - ⋅ - ⋅¥

¥ ¥
- =

= ⋅ ⋅ - ⋅ò ò
t

 .                    (8b) 

We shall now prove the following theorem: 

Theorem 1: Let 0A£ , if the linear RDE (Equ.(1)_Sec(3.1.1)) is excited by a stationary 

stochastic process, then, in the asymptotic limit that ,t s ¥ , both the asymptotic response-

excitation cross-correlation ( ) ( , )x yR t s¥  and the asymptotic excitation auto-correlation 

( ) ( , )x xR t s¥  tend to become stationary. That is: 

a) ( ) ( ) ( )( ) ( )lim , , ,x y x y x y
t
s

R t s R t s R t s¥ ¥

¥
¥

+ + º + + =t t t t ,      (9) 

b) ( ) ( ) ( )( ) ( )lim , , ,x x x x x x
t
s

R t s R t s R t s¥ ¥

¥
¥

+ + º + + =t t t t .               (10) 

Proof:  

a) From Equ.(3), we have: 

( ) ( ) ( ) ( ) ( )01

0

0

1

1 1, ,

t

A t tA t A t
x y y y x y

t

I

R t s e B R t s e dt e m m⋅ + -⋅ + - ⋅+ + = ⋅ ⋅ ⋅ + ⋅ ⋅ò


ttt t  .             (11) 
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We shall first calculate the integral 1I .  

Let 1t u= +t  then 1dt du=  and 0t u t- £ £t , then: 

( ) ( ) ( ) ( )1

0 0

, , ,

t t

A u A A u
y y y y

t t

I t s R u s e du e R u s e du- ⋅ + - ⋅ - ⋅

- -

= + + ⋅ = ⋅ + + ⋅ò òt t

t t

t t t t  .               (12 )

 

Therefore, invoking the stationarity hypothesis for ( ; )y t  , we obtain: 

( ) ( ) ( ) ( )
0

1

0 0 0

, , , ,

tt t

A A u A A u A u
y y y y y y

t t t

I t s e R u s e du e R u s e du R u s e du- ⋅ - ⋅ - ⋅ - ⋅ - ⋅

- -

æ ö÷ç ÷ç ÷ç= ⋅ = ⋅ + ⋅ ÷ç ÷ç ÷ç ÷è ø
ò ò òt t

t t

. (13) 

Substituting ( )1
,I t s  in Equ.(11) by Equ.(13), we obtain:  

( ) ( ) ( ) ( )

( )

0

0 0

0

0

, , ,

,

t t

A t A A u A u
x y y y y y

t t

A t t
x y

R t s e B e R u s e du R u s e du

e m m

⋅ + - ⋅ - ⋅ - ⋅

-

⋅ + -

æ öæ ö÷ç ÷ç ÷÷ç ç ÷÷ç ç+ + = ⋅ ⋅ ⋅ ⋅ + ⋅ ÷÷ç ç ÷÷ç ç ÷÷ç ÷ç ÷÷ç è øè ø

+ ⋅ ⋅

ò òt t

t

t

t t
        (14) 

or 

( ) ( ) ( )

( )

0

0 0

0

0

, , ,

.

t t

A t A u A t A u
x y y y y y

t t

A t t
x y

R t s e B R u s e du e B R u s e du

e m m

⋅ - ⋅ ⋅ - ⋅

-

⋅ + -

+ + = ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅

+ ⋅ ⋅

ò ò
t

t

t t
               (15) 

Taking the limit ,t s ¥  in Equ.(15), we obtain: 

( ) ( ) ( )
0

( ) ( ), lim , ,

t

A t A u
x y y y x yt

t

R t s e B R u s e du R t s¥ ⋅ - ⋅ ¥

¥

é ù
ê ú
ê ú+ + = ⋅ ⋅ ⋅ =
ê ú
ê úë û

òt t           (16)  

b) (b) is proved in exactly the same way as (a)       ■ 

 

Corollary: Let 0A£ . Assuming that the linear RDE is excited by a stationary stochastic 

process, then in the limiting case ,t s ¥ : 

1. The response ( );x t q  is a wide sense stationary stochastic process. 
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2. The vector process ( ) ( ) ( )( ); ; , ;t x t y t=q q qXY  is a wide sense stationary stochastic 

process.  

In Chapter 5 (Section 5.3.1), it will be proved that the following asymptotic formulae hold 
true:  

 ( ) ( )lim ( , ) ( ) .A u w
x y y y

t
w constant w

R t t w B R u due¥ - -

 ¥
=

¥

+ = ⋅ ⋅ò    (17) 

 
1 2

1 2

2
( )

1 2
,

lim ( , ) ( ) .
2

A v w
x x y y

t t w

v

t t
v

B
R t t R v dv

A
e

= + ¥

- -¥

= - ¥- =
 ¥  ¥

= ⋅ ò   (18) 

 

3.2.4. Application to specific excitation functions. 

 
In this section, we are going to implement the obtained formulae for the two-time RE cross-
correlation ( , )xyR t s , the two-time response auto-correlation ( , )xxR t s  and the one-time 

response auto-correlation ( , )xxR t t  of the RDE given by Equ.(1)_Sec(3.1.1), for specific input 

two-time auto-correlation functions ( , )yyR t s . We will consider the cases that the stochastic 

input is a low pass Gaussian Filter (lpGF), an Ornstein-Uhlenbeck (OU) or, alternatively, a 
sifted OU (sOU) process. 
 

3.2.4.a. Low-pass Gaussian filter (lpGF) 

 
The low-pass Gaussian filter (lpGF) two-time auto-correlation function and the spectrum are 
given by Equ.(1a) and Equ.(1b), respectively: 
 

( ) ( )( )22, expy yR t s a t ss= ⋅ - -    (1a),  ( )
2

21
exp

42
yyS

aa

w
w s

p

æ ö÷ç ÷= ⋅ ⋅ -ç ÷ç ÷ç ⋅è ø⋅ ⋅
. (1b) 

 

Parameter a  controls the correlation time corr
y y 1 of the excitation processes which is given by 

Equ.(1c)  
 

  corr ( )
2

0

1
| ( )| / ( 2 )y y y y

y

C u d u a 


¥
¥= =ò .    (1c) 

 

                                                           
1 In general there are several ways to define the correlation time see e.g. (Hristopoulos & Žucovič 2011) for the 
a definition of the correlation time which also applies to covariance models having more than two parameters. 
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In fact, as illustrated in Fig.1a, corr
y y  decreases with a . The limiting values of corr

y y  with 

respect to a  are: corr

0
lim y y
a




=¥ , corrlim 0y y
a


¥

= . In Fig.1b-1c, the lpGF two-time auto-

correlation function and spectrum are plotted for various values of the auto-correlation time, 

i.e. corr 0.93, 0.51, 0.33y y = , corresponding to 2 1s =  and 0.9, 3, 7a = , respectively. We can 

observe that, when corr
y y  decreases, the excitation auto-correlation ( , )yyR t s  tends to the delta 

correlated one, whereas the excitation spectrum is flattened.  
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Case I : Ryy(t-s)  when  y(t;) is an lpGF process

t-s

R
yy

 

 

  yy
corr =0.93

  yy
corr =0.51

  yy
corr =0.33

 
 
 
 
 

We shall obtain analytic formulae of the two-time response auto-correlation and response - 
excitation cross-correlation functions in the transient and in the long-time statistical 
equilibrium limit. These results will be illustrated by an example case (Case I) that we are 
going to use throughout this section when the excitation is a lpGF function. More precisely, 
we are going to show results for the 3 cases of correlation time of the lpGF excitation that we 

have just mentioned ( corr 0.93, 0.51, 0.33y y =  and for 2 1s = ) when the parameters of the RDE 

Figure 1:a. The correlation time corr

y y of the lpGF stochastic excitation against parameter a . b.The lpGF 

auto-correlation function ( ),
y y

R t s .c. The lpGF spectrum ( )
yy

S w . 
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given by Equ.(1)_Sec(3.1.1) are 1A=- , 1B = . Moreover, in this example case we willm 
assume that ( ) 0ym t =  and 

0
0xm = , then from Equ.(3)_Sec(3.2.1) it is straightforward to find 

that ( ) 0xm t = . 
 

In what follows, use will be made of the following integration formulae that are derived in 
Appendix 1 (see Equs.(1,8)_Sec(A.1)): 
 

( ) ( )( )

( ) ( )

1

0

2

2 1 1

2

0

, exp

exp ,
4 2 2 2

t
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Applying integration formula (2) in Equ.(3)_Sec(3.2.3), we find the transient two-time RE 
cross-correlation function for the lpGF excitation ( ),x yR t s : 
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Taking the limit s t  to Equ.(4a), we obtain the one–time RE correlation function:  
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(4b) 

 
In Fig.2, results obtained by using Equ.(4a) and Equ.(4b) are plotted for the considered Case 
I. In Fig.2a, the one-time RE cross-correlation function ( ),x yR t t  is plotted against the actual 

time t. As expected, the more correlated excitation results in more correlated RE cross-
correlation function. It is also interesting to notice that in the most correlated case 

corr 0.93y y = , ( ),x yR t t  becomes time invariant almost a second latter than the less correlated 
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case corr 0.33y y = . In Fig.2b, the transient, two-time, RE cross-correlation ( ),x yR t s  is plotted 

against the response time t  for fixed excitation time 1s = . Notice that in all the considered 
cases there is a correlation of the response with future values of the excitation. This is verified 
by the non-zero values of ( ),x yR t s  for 1t s< = . The latter feature is a significant difference 

of the examined correlation structure from the delta-correlated one, and we can see that for 
the less correlated case ( corr 0.33y y = ) this feature tends to vanish. As expected, the correlation 

of the response with the past values of the excitation lasts for a larger time interval, having a 
maximum value for 0.2t s- »  sec for the less correlated case and for 0.5t s- »  sec for the 
more correlated case. The response after 6t »  de-correlates with the excitation at 1s = . 
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In Fig.3 the transient, two-time RE cross-correlation function is plotted against the excitation  
time s  for fixed response time 0.5t =  sec (Fig.3a) and 6t =  (Fig.3b), when the system has 
already reached the long-time statistical equilibrium state. The comments reported in relation 
to Fig.2b hold true in this case as well.  

Figure 3: a. The transient two-time  RE cross-correlation function of Case I against the rexcitation time s , for 

excitation time  0.5t =  sec. b. The same for excitation time  6t =  sec 

 
 

Figure 2: a. The transient diagonal (one-time) RE cross-correlation function  of Case I . b. The transient (two-times) 

RE cross-correlation function of Case I against the response time t , for excitation time  1s =  sec. 
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Let us now proceed to the calculation of the transient two-time response auto-correlation 
for the lpGF excitation using the obtained results that are summarized in Equ.(5)_ 
Sec(3.2.3), that we repeat here for convenience: 
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Assuming that ( , )y yR t s  is given by Equ.(1a), we apply subsequently the integration formulae 

(2), (3) to Equ.(5), to obtain:  
 

( )

( ) ( ) ( )

( ) ( )( ) ( )

1

0

0 0 0

0 0 0 0

2
2 2

2
0 1 1 1

2

, exp
42

2 2

2

x x

t

A t s A t

t

A s t A t t A t s t
x y x x x y

A
R t s B

a

A A
e e erf a t t erf a s t dt

a a

B B
m m e e e R m m

A A

⋅ + - ⋅

⋅ - ⋅ - ⋅ + - ⋅

æ ö÷ç ÷= ⋅ ⋅ ⋅ ´ç ÷ç ÷çè ø

æ öæ ö æ ö÷ç ÷ ÷ç ç ÷´ ⋅ ⋅ - ⋅ - + + ⋅ - + -÷ ÷ç ç ç ÷÷ ÷ç ÷ ÷ç ç ÷ç è ø è øè ⋅ ⋅ ø

æ ö÷ç- ⋅ ⋅ ⋅ + + ⋅ + ⋅ ⋅ ⋅ ÷ç ÷çè ø

ò

p
s

        

 

( ) ( ) ( ) ( )( )
( ) ( )( ) ( )0 0 0

0 0 0

2
2 2

3 3 0

2

exp , ,
42

,

A t s A t s

A s t A t t A t s t
x y x x

A
B e I t s e I t t

a

B
m m e e e R

A

⋅ + ⋅ +

⋅ - ⋅ - ⋅ + - ⋅

æ ö÷ç ÷= ⋅ ⋅ ⋅ ´ ⋅ - ⋅ç ÷ç ÷çè ø

- ⋅ ⋅ ⋅ - + ⋅

p
s

   (6a) 

where 
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After some algebraic manipulations to Equ. (6), we obtain the following formula for the 
transient, two-time auto correlation function of the response: 
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As expected,

 

( , )x xR t s  is symmetric function of the two time arguments ,t s .

 

Taking the limit 

s t  to Equ.(7a), we obtain the one–time (diagonal) response auto-correlation function:  
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In Figs.4-5, results obtained by the use of Equs.(7a,7b) are plotted for Case I. In Fig.4, the 
diagonal response auto-correlation functions ( ),x xR t t  is plotted against the actual time t for 

initial value 
0 0

0x xR =  (Fig.4a) and 
0 0

1x xR =  (Fig.4b). Again as expected the more correlated 

excitation results in a more correlated response auto-correlation function. In Fig.5, the 
transient, two-time, auto-correlation function is plotted against the response time t  for fixed 
excitation time 1s =  and for two different initial values 

0 0
0x xR =  (Fig.5a) and 

0 0
1x xR =  

(Fig.5b).  
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We shall now study the long-time statistical equilibrium limit of the two-time response and 
RE cross-correlation functions of the RDE given by Equ.(1)_Sec(3.1.1) under lpGF 
excitation. 
 

In fact, applying the integration formula (2) in Equ. (7)_Sec.(3.2.3) for the long-time limit of 
the two-time RE cross-correlation function under excitation that has lpGF auto-correlation 
function (given by Equ.(1a)), we obtain: 
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Figure 4: a.b The transient diagonal (one-time) response auto-correlation function of Case I. In a. the initial value of 

the response auto-correlation function 
0 0

0x xR = , in b. 
0 0

1x xR = . 

Figure 5:a.,b.: The transient (two-time)  RE cross-correlation function of Case I against the response time t , for fixed 

excitation time  1secs = . In a. the initial value of the response auto-correlation function 
0 0

0x xR = , in b 
0 0

1x xR = . 
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Assuming that t s= -t  remains finite, the following asymptotic formulae hold true:  
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Using Equ.(9) and Equ.(10), Equ.(8) becomes: 
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As expected, in the limiting case the RE cross-correlation does not depend on the initial time 

0t . Moreover, ( )( )
x yR t s¥ -  is a non-symmetric function, that is, the degree of correlation 

depends on whether the time lag t s= -t  is positive or negative.  
 

To find the long-time limit of the response auto-correlation function ( )( ) ,x xR t s¥ , we con-

sider the limit ,s t ¥  of Equ.(7a), for finite time lag t s- = <¥t , i.e: 
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The following asymptotic formulae hold true:  
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That is, for 0A£ ,  
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In Fig.6, the long-time RE cross-correlation ( )( )
x yR t s¥ -  (Fig.6a) and the long-time response  

auto-correlation function ( )( )
x xR t s¥ -  (Fig.6b) are plotted for Case I. 
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R t s¥ - , of Case I plotted against the time lag t s-  
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Comparing Figs.1a, 6a and 6b, an interesting feature emerges: for 0t s- < , the long-time RE 
cross-correlation function ( )( )

x yR t s¥ -  resembles more the excitation auto-correlation function, 

whereas for 0t s- >  resembles the response auto-correlation function.  
 

In Appendix 2, the formulae for the long-time statistical equilibrium RE cross-correlation 
function ( )( )

x yR t s¥ -  and the response auto-correlation function ( )( )
x xR t s¥ -  are re-obtained 

treating the same problem in the frequency domain. In fact, using the transfer function 

( )xy

B
H

i
w

w
=

⋅ -A
 of the linear RDE under stochastic excitation with the lpGF spectrum 

( )yyS w , we find that its stationary RE spectrum ( )xyS w  and stationary response spectrum 

( )xxS w  are given by  
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2 2
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B B
S i

a aa a

G i Q

æ ö æ ö- ⋅A ÷ ÷ç ç÷ ÷= ⋅ ⋅ ⋅ - + ⋅ ⋅ ⋅ ⋅ - =ç ç÷ ÷ç ç÷ ÷ç ç+A ⋅ +A ⋅è ø è ø⋅ ⋅ ⋅ ⋅
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w w w
w s s
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 (16) 

 

( )
2 2

21
exp

42
xx

B
S

i aa

w
w s

w p

æ ö÷ç ÷= ⋅ ⋅ ⋅ -ç ÷ç ÷ç⋅ -A ⋅è ø⋅ ⋅
.      (17) 

 
from which, applying the inverse Fourier transform, we can re-obtain Equs.(11) and (15) 
 

In Figs.7-8, Equs.(16),(17) are used to plot the stationary RE cross-spectrum ( )xyS w (Fig.7) 

and stationary response auto-spectrum ( )xxS w  (Fig.8) for Case I. In contrast to the auto- 

spectrum, cross-spectrum is a complex function. In Fig.7 the co-spectrum 
( ) ( )}Re{xy xyG S   (Fig.7a) and the (quadrature) quad-spectrum ( ) ( )Im{ }xy xyQ S   

(Fig.7b) are plotted separately. 
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Figure 7: The real and the imaginary part of the RE spectrum ( )

xy
S   of Case I in the long time statistical equilibrium 

state. a. The co-spectrum  ( ) ( )}Re{
xy xy

G S  , b. The quad-spectrum ( ) ( )Im{ }
xy xy

Q S   
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3.2.4.b. Ornstein-Uhlenbeck (OU) excitation 

 
We shall now implement the formulae obtained in Sec.(3.2.1) for the two-time RE moments 
to another case study where the stochastic excitation of the RDE given by Equ.(1)_Sec(3.1.1). 
is a sifted or centered Ornstein-Uhlenbeck(OU) random function. The formulae that we are 
going to obtain will be for the more general case that the excitation is a shifted Ornstein-
Uhlenbeck process (sOU). The auto-correlation function of the sOU process is given by 
Equ.(18a) and the spectrum of the sOU by Equ.(18b) 
 

( ) ( ) ( )( )2
0, exp cosy yR t s a t s t ss w= ⋅ - ⋅ - ⋅ ⋅ - ,                  (18a) 

2

2 2 2 2
0 0

( )
2 ( ) ( )

y y
a a

S
a a




    

ì üï ïï ïï ï= +í ýï ï+ + + -ï ïï ïî þ
.             (18b) 

 

Parameters a  and 0w  control the correlation time corr
y y  of the excitation processes, which is 

given by Equ.(18c): 
0

0

/( 2 )
0corr

02 2 /( ) 2 2
0 0

2
, 0

1

a

y y a

a e

a ae

 

 


 

 
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+ +-
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Figure 8: The Response spectrum ( )
xy

S   for the lpGF excitation  in the long time statistical equilibrium state 
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In fact, as we can see in Fig.9 corr
y y  decreases with a  and increases with 0w . The limiting 

values of corr
y y  with respect to a , 0w  are corr

0
lim y y
a




=¥ , corrlim 0y y
a


¥

=  and 
0

corrlim 0y y


¥
= . 

 

When the central frequency 0w  of the sOU process (Equ.(18a)) is equal to zero, we get the 

centered Ornstein-Uhlenbeck (cOU) process. This is generally known as the Ornstein-
Uhlenbeck (OU) process, and that is how it is going to be referred hereafter. More precisely, 
the OU auto-correlation function is given by Equ.(19a), the OU spectrum by Equ.(19b) and 
the OU correlation time by Equ.(19c): 
 

( ) ( )2, expy yR t s a t ss= ⋅ - ⋅ -  ,         
2

2
( )

1
y y

a
S

a




= ⋅
+

 ,         corr 1/y y a = .      

(19a,b,c) 
 
The OU excitation is a very well-studied stochastic process, being also the solution of the Itô 
SDE.  
 

( ; ) ( ; ) ( ; )y t a y t t = - +q q x q ,        (20)  
 

where ( ; )tx q  is a Gaussian with noise, with 2 22 ya = . Following the filtering approach 

((Benfratello & Muscolino 1999),(Francescutto & Naito 2004; Weiss & van de Beld 2007)(Di 
Paola & Floris 2008)) it is possible to consider Equ.(20) along with Equ.(1)_Sec.(3.1.1) as a 
system of two Itô Stochastic Differential Equations (SDEs) for the stochastic process ( ; )x t q  
and ( ; )y t q , and derive moment equations from these (Soong & Grigoriu 1993). Hereafter, 
this approach will be referred to as the Itô/filtering approach. 
 
 
 

Figure 9: a. The correlation time corr

y y of the sOU stochastic excitation against parameter a  and for various values 

of the central spectral frequency 
0

w . b. The sOU input correlation function ( ),
y y

R t s  and c. the sOU spectrum 

( )
yy

S w  for the study Case II 

b. c. 
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We shall now proceed to the implementation of the formulae obtained in Section 3.2.1. 
Results will be illustrated for two cases. In Case II, all parameters are same as in case I 
except from the stochastic input that is a sOU process, with = 0.68,1 .26, 2a , 5w= , 

corr 0.93y y = , 0.51 , 0.33  and all other parameters are as in case I. In Case III, the stochastic 

input is an OU process with = 1.07,1 .95, 3a  and correlation time corr 0.93, 0.51, 0.33y y = . All 

other paramet-ers are as in Case I. The values of parameter a  have been chosen to be such 
that Case I, Case II and Case III have the same correlation time, so as to be able to compare 

cases. The auto-correlation function ( ),y yR t s  and the spectrum ( )y yS   for Cases II and III 

are plotted in Fig.9, Fig.10 respectively.  
 

Considering that the two-time input auto-correlation is given by Equ.(19a), from Equ.(3)_ 
Sec(3.2.2) we have that the transient two-time RE cross-correlation function ( , )x yR t s  for 

the sOU excitation is given by the formula: 
 

( ) ( ) ( )( ) ( )01

0

0

2
1 0 1 1, exp cos

t

A t tA tA t
x y x y

t

R t s e B a t s t s e dt e m ms w ⋅ -- ⋅⋅= ⋅ ⋅ ⋅ - ⋅ - ⋅ ⋅ - ⋅ + ⋅ ⋅ò . (21) 

 
Due to the presence of the absolute value of the time lag in Equ.(21), two separate cases have 
to be considered, i.e.: t s³ , the response follows the excitation and  t s< , the response is in 
advance of the excitation. In the first case ( t s³ ), we obtain: 

( ) ( )( ) ( )( )

( )( ) ( )( ) ( )
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1 0
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( ) 2
0 1 1
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s w

w

- ⋅ -⋅ -

³

- + ⋅ - ⋅ -

æççç= ⋅ ⋅ ⋅ ⋅ ⋅ - +çççè
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ò .  (22) 

 

Figure 10:a.The OU correlation function ( ),
y y

R t s  and the OU spectrum ( )
yy

S w (b.) for Case IΙI. 
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Applying 

 

the integration formula given by Equ.(1)_App.(3) to Equ.(22), we have:
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(23)  

 
In the second case ( t s< ), Equ.(21) takes the form: 

( ) ( ) ( ) ( )1 0

0

0

( ) ( )2
0 1 1, cos ( )

t

a A t s A t tA t s
x y x yt s

t
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é ù
ê ú
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ê ú
ê úë û
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Applying 

 

Equ.(1)_App(3) to Equ.(24a), we obtain: 
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Comparing Equ.(23) with Equ.(24b), we notice that the terms that depend on the initial 
conditions are the same. Hereafter, we shall denote these common terms with 

( )
00, , ,x y xTR t s t m , whereas those that are independent from the initial conditions will be 

denoted by ( ),x y t s
SR t s

³
and ( ),x y t s

SR t s
<

 in ( ),x y t s
R t s

³
and ( ),x y t s

R t s
<

, respectively. 

Then, Equs. (23,24b) can be rewritten in the more compact form that will simplify the 
calculations for the two-time response auto-correlation function ( ),x xR t s , i.e.: 
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where:
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The obtained results given by Equs.(25,26) are illustrated in Figs.11-14. The description and 
general remarks made in Figs. 2-3 for Case I apply also in Figs.11-12 for Case II and Figs. 
13-14 for Case III. Moreover, in Figs.11-12 that the one-time and two-time RE cross-
correlation functions are plotted for the sOU random input (Case II) that the excitation has a 
non-zero central frequency, 0 5 = , we notice that the frequency of both the one- and two- 

time RE cross-correlation functions increase with the correlation time of the excitation. In 
Figs.13-14 results for the case that the excitation is an OU are plotted. These are given by 
Equs.(25-26) for 0 0 = . The obtained results are indicated with diamond marker (♦), in 

order to distinguish these from the case that the excitation is a lpGF random function (Case I) 
(are also illustrated in Figs.13-14) for comparison reasons. The most important finding here is 
that the two-time RE moments are significantly affected by the shape of the input function 

(lpGF vs OU, see Figs.(1,10)), especially for the more correlated case corr 0.93y y = , despite 

the fact that all other parameters ( 2
y , corr

y y ) are the same. The response auto-correlation 

obtained under lpGF random input is always higher than the response auto-correlation 
obtained under OU input. Around 0t s- =  the difference is as high as 15%. Moreover, in all 
cases the response stays correlated with the input for more time, when the stochastic input is 
an OU(Case III in figures) process than when it is a lpGF(Case I in figures). 
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Figure 11: a. The transient diagonal (one-time) RE cross-correlation function of Case II. b. The transient (two-times) 

RE correlation function of Case II against the response time t , for excitation time  1s =  sec. 

 

Figure 12: a. The transient two-time RE cross-correlation function of Case II against the excitation time s , for 

excitation time  1t =  sec. b. The same for excitation time 6t =  sec 

 

Figure 13: The same as in Fig.11 for Case III (lines with diamond markers). Same results for Case I are also 
depicted (lines with no markers) 
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Proceeding now to the calculation of the transient two-time response auto-correlation 

( , )x xR t s , for the sOU excitation using Equ.(4)_Sec(3.2.3), we have: 

( ) ( )
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1 1
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         (27) 

 
Since ( , )x xR t s  is a function of ( , )x yR s t  we shall calculate separately ( , )x xR t s  for t s<  and  

t s³ . More precisely, from Equs.(25,27) we obtain:  
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All integrals appearing in Equs.(28a,b) are computed in Appendix 3. Combining Equs.(28a) 
and Equs.(5,7)_App(3), we obtain: 
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Combining Equ.(28b) and  Equs.(7,8,10)_App.(3) we get:  
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Comparing Equs.(30a), (30b) we see  that as expected ( ) ( ), ,x x x xt s s t
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The one- and two-time response auto-correlation functions, ( , )x xR t t  and ( , )x xR t s , 

respectively, of Case II as calculated by the use of Equs.(30,31) are illustrated in Fig.(15). In 
Fig.(16), results for the Case study III are illustrated together with the results from case I, for 
comparison reasons.  
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Figure 15: a. The transient diagonal (one-time) response correlation function of Case II. b. The transient (two-time) RE 
cross-correlation function of Case II against the response time s , for fixed excitation time  1sect = . The initial value 

of the response correlation function 
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Having found the transient two-time moments for the random initial value problem given by 
Equ.(1)_Sec(3.1.1) for a sOU random input, it is straightforward to find the long-time limits 
of the two-time response-excitation cross-correlation function ( ) ( , )x yR t s¥

 
and the two-time 

response auto-correlation function ( ) ( , )x xR t s¥ . In fact, considering the limits ,s t ¥  and for 

finite time lag t s- = <¥t  in Equs. (25b), (25a), (30b) and (30a), respectively, we 

have: 
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Figure 16: The same as in Fig.15 for Case III (lines with diamond markers). Same results for Case I are also depicted 
(lines with no markers) 
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Combining Equ.(34) and Equ.(35) we have 
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The long-time RE cross-correlation function ( )( ) ,x yR t s¥  and response auto-correlation 

function ( )( ) ,x xR t s¥  for Case Study II as computed by Equs.(32,33) and Equ.(35) respectively 

are plotted in Fig.17. 
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Same results for the Case III are illustrated in Fig.18. In fact, in Fig.18 results are also 
compared with Case I that the excitation is a lpGF process. Differences between the two 
Cases due to the shape of the stochastic input are significant, reaching a 10% at the peaks of 
the most correlated case. These finding highlights the importance of methods that treat 
random ODEs under general random excitation, beyond the limitations of Itô/Filtering 
approach.  
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3.3. Analytical solution to the moment problem. The vector case 
 
Let us consider the stochastic system that is given by Equ.(4)_Sec.(3.1.1), we repeat here for 
convenience: 
 

( ; ) ( ; )( ; ) t tt A x B yx q qq ⋅ + ⋅= ,        (1a) 

0( ; ) ( )t 0x xq q= .          (1b) 

 

where 
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é ù= ê úë û  are deterministic, time invariant 

matrices, ( )1 2( ; ) ( ; ), ( ; ),..., ( ; )Mt y t y t y ty q q q q
T

=  is a known stochastic excitation, 

( )1 2( ; ) ( ; ), ( ; ),..., ( ; )Mt x t x t x tx q q q q
T

=  is the system’s response and ( ) (0; )0x xq q=  is a 

known stochastic initial condition. 
 

In this section we shall find integral formulae from which we can obtain the first and second 
order moments of the stochastic system (Equ.(1)), i.e. the unknown mean value of the 
response [ ]( ) ( ; )t E t=m q qx x , the two-time RE cross-covariance 

( ) ( )( ), ( ; ) ( ) ( ; ) ( )yt s E t t s s
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C m mq q qxy xx y , and the two-time response auto-
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C m mq q qxx x xx x . The calculations are made 

in terms of the known excitation mean value ( )( ) ;t E té ù= ë ûm q qy y , the excitation auto-

covariance ( ) ( )( ), ( ; ) ( ) ( ; ) ( )t s E t t s s
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C m mq q qy y y yy y , the initial response mean 
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0 0x x 0 0C x x . In what follows it will be assumed that the initial 

value ( )q0x  is independent from the excitation ( ; )t qy . The realizations of the stochastic 

function of the response ( );t qx
 
are defined thought the realizations of the excitation by 

means of the relationship: 
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Simarly, to find an integral formula for the two-time RE cross covariance ( , )t sC xy  we 

subtract Equ.(4) from Equ.(2). 
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That is:  
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To find an integration formula that provides the two time-response auto- covariance 

( , )t sC xx ,  we multiply Equ. (5) with ( )T
( ; ) ( )s s-mq xx , then apply the mean value operator, 

i.e. : 
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Taking the limit ( s t ) to Equ.(7) and Equ.(8), respectively we obtain integration formulae 
for the one-time RE-cross covariance ( , )t tC x y  and the one-time response variance 

( , )t tC xx , i.e.:

 

0

1 1 1( , ) ( ) ( , )

t

t

t t t s s t d s= - ⋅ ⋅òC Cxy y yΦ B ,       (9) 

( )
0 0

0 0

T T T
1 1 2 2 1 2, ( ) ( , ) ( ) ( ) ( )

t t

t t

t t t s s s t s d s d s t t= - ⋅ ⋅ ⋅ ⋅ - +ò òC C Cxx y y x xΦ B B Φ Φ Φ .   (10) 

 
 

3.4. The two-time joint REPDF of the scalar linear stochastic problem under 
Gaussian excitation. 

 
Assuming that the input ( ; )y t q  of the linear RDE (Equ.(1)_Sec(3.2.1)) is a Gaussian random 

function then the joint two-time REPDF 
( ) ( )

( )x y st
f a,b  is a 2D Gaussian density. In this case, 

the solution of the two-time RE moment equations (given by Equ.(3,9,19)_Sec.(3.2.1), here 
repeated for convenience) : 

( ) ( ) ( )0

0

0

0,

t

A t tA t A s
x y x

t

m t e B m s e ds e m t t⋅ -⋅ - ⋅= ⋅ ⋅ ⋅ + ⋅ " ³ò ,     (1) 

( ) ( ) ( ) ( )01

0

0

1 1 0, , ,

t

A t tA tA t
x y y y x y

t

R t s e B R t s e dt e m m t t⋅ -- ⋅⋅= ⋅ ⋅ ⋅ + ⋅ ⋅ " ³ò ,   (2) 
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0
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2 2
1 1 0

, ,

2 , .

t t

A t A tA t
x x y y

t t

t

A t t A t tA t
x y x x

t

R t t B e e B R t t e dt dt

e B m m t e dt e R t t

- ⋅ - ⋅⋅ ⋅

⋅ ⋅ - ⋅ ⋅ -- ⋅

æ ö÷ç ÷ç ÷ç= ⋅ ⋅ ⋅ ⋅ ⋅ +÷ç ÷ç ÷ç ÷è ø

+ ⋅ ⋅ ⋅ + ⋅ " ³

ò ò

ò
,  (3) 

 

uniquely defines the joint REPDF 
( ) ( )

( )x y st
f a,b . More precisely, for each selection of the 

stochastic excitation ( ; )y t   and of the response initial condition 0 ( )x  , which are assigned to 

the problem by the moments: ( )ym t , ( , )yyR t s , 0,t s t³   and 
0xm , 

0 0x xR ,  the joint REPDF 

( ) ( )
( )x y st

f a,b  is given  by the formula: 
 

( )
( )

( ) ( )( ) ( ) ( )
( )( )

( ) ( ) 2

22

2

1
(4)

2 ( , ) ( , ) ( , )

( , ) ( ) 2 ( , ) ( ) ( ) , ( )
exp ,

2 ( , ) ( , ) ( , )

x t y s

xx yy xy

yy x xy x y xx y

xx yy xy

f
C t t C s s C t s

C s s m t C t s m t m s C t t m s

C t t C s s C t s

= ´
-

é é ù
ê ê ú⋅ - - - - + ⋅ -ê ê ú´ -ê ê ú
ê -ê ú

ê úê ë ûë

a,b
p

a a b b

 

where: ( ) ( ) ( )2
, , ( )xx xx xC t t R t t m t= - ,  ( ) ( ) ( )2

, , ( )yy xx yC s s R s s m s= - , 

( ) ( ), , ( ) ( )xy xx x yC t s R t s m t m s= - ⋅ .              

(5a,b,c) 
 
 

In Fig.19, the two-time joint REPDFs 
( ) ( )

( )x y st
f a,b  of the linear/Gaussian case are plotted in 

the RE-space for lpGF stochastic input (Case I studied in Section 3.2.4), with 
0 0

1x xR = . Two 

different cases of input correlation time, i.e. corr 0.93y y =  sec (left column) and corr 0.33y y =  

sec (right column), are considered. The time evolution of 
( ) ( )

( )x y st
f a,b  for each case of input 

correlation time is illustrated in each column. More precisely, three different values of the 
time variable t  are considered, i.e. 1.5t =  sec (Figs.19c,19d) and 2t =  sec (Figs.19e,19f), 
whereas in all cases s  remains constant, i.e. 1s =  sec. Results are in accordance with the 
results obtained for the two-time RE moments in Section 3.2.4.a, for example, the two-time 
RE cross-correlation reaches its maximum at 1.5t =  sec in the pdf plotted in Fig.19c (for 

corr 0.93y y =  sec) that is in agreement with the results plotted in Fig.2b. It is apparent, that for 

different input auto-correlation the joint REPDFs evolve differently in time, having increased 
one-time response auto-correlation and two-time RE cross-correlation in the case that 

corr 0.93y y =  sec (left column). In Fig.20, the transient time diagonal ( t s ) joint REPDF 

( )( ) ( )x y tt
f a,b  is plotted for the same parameters of the linear/Gaussian problem as in Fig.19 

and for the same values of correlation time, i.e. corr 0.93y y = sec (left column) and corr 0.33y y =  

(right column). Here, joint REPDFs are illustrated at 0.5t = sec (Figs.20a, 20b), 1.5t = sec 
(Figs.20c,20d) and 4t = sec (Figs.20e,20f). It becomes evident that, as time evolves, the 
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correlation of the joint REPDF increases until it reaches the long-time statistical equilibrium 
state, in accordance with the time evolution of ( , )xyR t t , ( , )xxR t t  (see also Figs.2a,4a).  

 
 

 
 

 
 
 
 

a. b. 

c. d. 

e. f. 

Figure 19: The time evolution of the joint two-time REPDF 
( ) ( )

( )
x y st

f a,b  for Case I. The time variable s is constant, 

i.e. 1s = sec, whereas t  evolves in time, i.e.: 0.5,1.5, 2t =  sec. In the left column (Figs.19a,c,e) the most correlated 

case is considered, i.e.: stochastic input correlation time, corr 0.93y y = sec. In the right column (Figs.19b,d,f) the less 

correlated one, corr 0.33y y = sec 
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a. b. 

c. d. 

e. f. 

Figure 20: The time evolution of the joint diagonal REPDF 
( ) ( )

( )
x y tt

f a,b  for Case I. The time variable t  evolves in 

time, i.e.: 0.5,1, 4t = sec. In the left column (Figs.20a,c,e) the most correlated case is considered, i.e.: stochastic input 

correlation time, corr 0.93y y = sec. In the right column (Figs.19b,d,f) the less correlated one, corr 0.33y y = sec 
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3.5. Verification of the REPDF evolution equation. 

 
In Section 3.4 the solution of the two-time RE moment equations was used to analytically 
define the joint REPDF of the RDE (Equ.(1)_Sec.(3.1.1)) under smoothly correlated Gaussian 
stochastic excitation. In this section the analytically obtained joint REPDF, given by 
Equ.(4)_Sec(3.4), is going to be used in order to: 
 

1. Examine the connection between the two–time RE moment equations and the joint 
REPDF evolution equation in the linear/Gaussian case. 

2. Verify the joint REPDF evolution equation in the linear/Gaussian case.  
 

Following the methodology developed in Athanassoulis & Sapsis (Athanassoulis & Sapsis 
2006) and Sapsis & Athanassoulis (Sapsis & Athanassoulis 2006; Sapsis & Athanassoulis 
2008) (see also Section 2.3.1), the joint REPDF evolution equation in the linear/Gaussian case 
reads as follows:  
 

[ ]( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( ) ,0x y x ys st t

x y st
s t

f f
A f A B

t 

" Î Î

é ù¶ ¶
ê ú+ ⋅ + ⋅ ⋅+ ⋅ê ú¶ ¶ë û

a,b a,b
a,b a b

a

a b,

=

           (1) 

Supplemented by the initial conditions: 
 

0 0 0( ) ( ) ( ) ( )( ) ( ) ( )x y x ys st t pdf known at any time s tf f f= ⋅ = ³aa,b a b ,   (2a) 

 
the marginal-compatibility constrain: 
 

( ) ( ) ( )( ) ( ) a known pdf ,=x y st y sf d f
Î

= " Îò
a

a,b a b b


 ,     (2b) 

 
and the constitutive conditions: 
  

( ) ( ) ( ) 0 ,x y stf a,b ³     ( ) ( ) ( ) 1x y stf d d

b a

a,b b a
Î Î

=ò ò
 

 .                                                (2c,2d) 

 
The REPDF evolution equation (1) before applying the limit s t  will be called hereafter 
“off-diagonal REPDF differential constraint”.  

Let us assume that 0t t" ³ , ( ) ( ) 0y xm t m t= = . Replacing the joint REPDF ( )( ) ( )x y st
f a,b  in 

the off-diagonal REPDF differential constraint with the Gaussian joint REPDF given by 
Equ.(4)_Sec(3.4), after some extensive algebraic manipulations included in Appendix 5, we 
find that the left hand side of the off-diagonal REPDF differential constraint can be 
equivalently written as (we repeat Equs.(3b,3c,9,12, 15, 17)_App.(5) for convenience):  
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( ) ( ) ( ) ( )
( ) ( )

2 2
00 00 11 022
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( )

( , )exp ( , ; , )
( , ) ( , ) ( , ) ( , )

2 ( , ) ( , )

x y x ys st t
x y st

yy

f f
A f A B

t

R s sE t t
Q t s Q t s Q t s Q t s

W t s W t s

¶ ¶
+ ⋅ + ⋅ ⋅+ ⋅ =

¶ ¶
é ùæ ö÷çê ú÷ç⋅ - + ⋅ - ⋅ ⋅ + ⋅÷ê úç ÷ç⋅ ⋅ ÷çê úè øë û

a,b a,b
a,b a b

a

a b
a a b b

p

 ,     (3) 

  where: 

  
( )2

( , ) ( , ) ( , ) ( , )xx yy xyW t s R t t R s s R t sº ⋅ - ,       (4a)
 

  2 2( , ; , ) ( , ) 2 ( , ) ( , )yy xy xxE t s R s s R t s R t tº ⋅ - ⋅ ⋅ ⋅ + ⋅a b a a b b ,     (4b) 

  

( )
00 2

,1
( , ) ( , ) 2 ( , ) 2 ( , )

( , ) 2

( , ) ( , ) ( , ) ( , ) ,

yy
xx xx xy

xy xy xy yy

R s s
Q t s R t t A R t t B R t s

W t s

R t s R t s A R t s B R s s

d
dt

t

é æ ö÷çê ÷= ⋅ ⋅ - ⋅ ⋅ - ⋅ ⋅ -ç ÷ê ç ÷çè øêë
ùæ ö÷ç ú÷- ⋅ - ⋅ - ⋅ç ÷úç ÷çè øû

¶
¶

        (4c) 

    

( )

( )( )

11 4

2

1
( , ) ( , ) ( , ) ( , ) 2 ( , ) 2 ( , )

( , )

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) , (4d)

xy yy xx xx xy

xy xx yy xy xy yy

Q t s R t s R s s R t t R t t R t s
W t s

R t s R t t R s s R t s R t s R s s

A B

A B

d
dt

t

é æ ö÷çê ÷= ⋅ - ⋅ - ⋅ -ç ÷ê ç ÷çè øë
ùæ ö÷ç ú÷- + ⋅ ⋅ - -ç ÷úç ÷çè øû

⋅ ⋅

⋅ ⋅¶
¶

 

( )
( )( )

( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

02 4

2

1
, , , , , ,

,

1
, , 2 , 2 , .

2

xy xx xy xy yy

xy xx xx xy

Q t s R t s R t t R t s A R t s R s s
W t s

d
R t s R t t A R t t R t s

dt

B

B

t

é æ ö÷çê ÷= ⋅ - ⋅ ⋅ - ⋅ - +ç ÷ê ç ÷çè øë

ùæ ö÷ç ú+ - ⋅ ⋅ - ⋅ ÷ç ÷ç úè øû

⋅

⋅

¶
¶

     (4e) 

 

It is evident that Equs.(4c-4e) include two differential expressions of the moments ( , )xyR t s  

and ( , )xxR t t  that resemble the differential expressions appearing in the two-time moment 

equations Equs.(8,22)_Sec.(3.2.1) with different time arguments.  
 

Let us now drop the zero mean value assumption for the stochastic excitation ( ; )y t  . The 

joint density REPDF 
( ) ( )

( )x y st
f   a,b  of the Gaussian random functions ( ; ) ( ; ) ( ),xx t x t m t q q= -  

( ; ) ( ; ) ( )yy s y s m s q q= -  will verify Equ.(3). Substituting 
( ) ( )

( )x y st
f   a,b in Equ.(3) and 

following algebraic manipulations (see Equs.(18-27) in Appendix 5), we find that the left 
hand of the off-diagonal REPDF differential constraint is equivalently written as: 
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  where: 
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   ( ) ( ) ( ) ( )( )2
, , ,xx xx xx xR t t C t t R t t m t = = - ,                 (6f) 

   ( ) ( ) ( ) ( )( )2
, , ,yy yy yy yR s s C s s R s s m s = = - ,                 (6g) 

   ( ) ( ) ( ) ( ) ( ), , ,xy xy xy x yR t s C t s R t s m t m s = = - ⋅ .                                                 (6h) 

That is, the off-diagonal REPDF differential constraint has been transformed to an equivalent 

form that contains differential expressions of the moments ( ), ( )x ym t m s , ( , )xyR t s  and ( , )xxR t t . 

The connection between the off-diagonal REPDF differential constraint and these differential 
expressions is given by the following theorem:  

Theorem 1: The joint two-time RE Gaussian pdf ( )( ) ( )x y st
f a,b , 0,t s t³ , of the linear RDE 

(Equ.(1)_Sec.(3.1.1)) under Gaussian excitation verifies the off-diagonal REPDF 
differential constraint: 

( )
( ) [ ]

( )( ) ( ) ( ) ( )
( ) ( )

, , , (7)0x y x ys st t
x y st

f f
A f A B

t
" Î Î

¶ ¶
+ ⋅ + ⋅ ⋅+ ⋅

¶ ¶

a,b a,b
a,b a b a b

a
=  �

 

if and only if

 

 0,t s t" ³  the auxiliary two-time RE moment constraints hold true, i.e: 

( , ) ( , ) ( , ) 0xy xy yyR t s A R t s R s sB
t

- ⋅ - =⋅¶
¶

,                  (8a) 

( , ) 2 ( , ) 2 ( , ) 0xx xx xy

d
R t t A R t t R t s

dt
B- ⋅ ⋅ - ⋅ =⋅ ,      (8b) 

( ) ( ) ( ) 0x x ym t A m t B m s
d
dt

- ⋅ - ⋅ = .                   (8c) 

Proof  

Since the left hand side of Equ.(7) can be equivalently expressed by Equ.(5), it follows that if 
Equs. (8a-8c) holds true, so does Equ.(7).  

To prove the converse, two cases are considered, i.e. ( ) ( ) 0y xm t m s= =  and ( ) 0ym t ¹ . 

Let ( ) ( ) 0y ym t m s= = . Equation (8c) is a priori verified. 

Moreover, the left hand of Equ.(7) can be equivalently expressed by Equ.(3) that holds true 

" Î Îa b,  . Letting 0= =a b , from Equ.(3) we obtain that ( )00 , 0Q t s = . Similarly, 

for 10,= =a b , from Equ.(3) we also have that ( )02 , 0Q t s = . Lastly, for 11,= =a b , since 

( ) ( )00 02, , 0Q t s Q t s= = , from Equ.(3) we get that, if Equ.(7) holds true, ( )11 , 0Q t s = .  
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Since we have proved that ( ) ( )00 11, , 0Q t s Q t s= = , then: 

( )
( )
( )( )

( )11 002

,
, , 0

,

xyR t s
Q t s Q t s

W t s
- ⋅ = ,        (9) 

where 

( )
( ) ( )

( )( )
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( ) ( ) ( )00

11 2 4

, , , ,
, , , , .
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(10)

xy xx yy
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R t s Q t s R t t R s s
Q t s R t s R t s R s s

W t sW t s
A B

t

æ ö⋅ ⋅ ÷ç ÷- = - ⋅ - -ç ÷ç ÷çè ø
⋅ ⋅¶

¶

Since 
( ) ( )

( )4

, ,
0

,

xx yyR t t R s s

W t s

⋅
¹ , from Equ.(10) it is straightforward that Equ.(8a) holds true. 

Then, it easy to conclude e.g. from Equ.(4c), that Equ.(8b) also holds true. 

  

Let us now assume that ( ) 0ym t ¹ . In this case, the left hand of Equ.(7) can be equivalently 

expressed by Equ.(5). Since Equ.(5) holds true " Î Îa b,  , then for ( )xm t=-a , 

( )ym s=-b  from Equ.(5) we have that, if Equ.(7) holds true, ( )00 , 0Q t s = .Similarly, for 

( ), ( ) 1x ym t m s=- =- +a b  we obtain that ( )02 , 0Q t s = . Finally, for ( ) 1xm t=- +a , 

( ) 1ym s=- +b  similarly, we get that ( )11 , 0Q t s = .  
 

Since, ( ) ( )00 11, , 0Q t s Q t s= =  then: 

( )
( )
( )( )

( )02 002

,
, , 0

,

xxR t t
Q t s Q t s

W t s
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

- ⋅ = .        (11) 

Subsequently, considering the system of equations: 

( )
( )
( )( )

( )02 002

,
, , 0

,

xxR t t
Q t s Q t s

W t s

  


- ⋅ = ,      ( )11 , 0Q t s = ,      ( )00 , 0Q t s = .                            (12a-c) 

in terms of the variables: 

( ) ( ) ( )1 , 2 , 2 ,xx xx xyx R t t A R t t B R t s
d
dt

= - ⋅ ⋅ - ⋅ ⋅ ,              (13a) 

( ) ( ) ( )2 x x yx m t A m t B m s
d
dt

= - ⋅ - ⋅ ,               (13b) 

( ) ( ) ( )3 , , ,xy xy yyx R t s R t s R s sA B
t

= - -⋅ ⋅¶
¶

,              (13c) 

we get the homogeneous linear system of equations: 
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( )1 2

1
0

2 xx m t x- + ⋅ = ,                  (14a) 

( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( )( ) ( ) ( )( )

1

2

2

2

3

, ,

, , , 2 , ,

, , , 0, (14b)

xy yy

y xy y xx yy x xy yy

xy xx yy

R t s R s s x

m s R t s m s R t t R s s m t R t s R s s x

R t s R t t R s s x

⋅ +

+ ⋅ + ⋅ ⋅ - ⋅ ⋅ ⋅ -

- + ⋅ ⋅ =

 

     

  

 

( ) ( ) ( ) ( ) ( )( ) ( )1 2 3

1
, , , , 0

2 yy x yy y xy xyR s s x m t R s s m s R t s x R t s x⋅ ⋅ - ⋅ - ⋅ ⋅ - ⋅ =     .            (14c) 

The determinant D  of the linear system of Equs.(14) is analytically calculated in Appendix 5 
(see Equs.(28-34)_App(5)) and is equal to: 

( ) ( )( ) ( ) ( )( )2
( ) , , , , 0y xy xy xx yyD m s R t s R t s R t t R s s    = ⋅ + ⋅ ¹ ,                   (15) 

therefore, the homogeneous system of Equs.(14) only has the zero solution 

1 2 3 0x x x= = = .          ■ 

 
Corollary 1: The REPDF evolution equation for the linear RDE under Gaussian excitation:  
 

[ ]( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( ) ,0x y x y tst t

x yt t

s t

f f
A f A B

t


" Î Î

¶ ¶
+ ⋅ + ⋅ ⋅+ ⋅

¶ ¶

a,b a,b
a,b a b

a

a b,

=

 

         (16) 

holds true if and only if the moments of the sought for density 
( ) ( )

( )x y tt
f a,b  verify the limit 

two-time RE moment equations: 
 

( , ) ( , ) ( , ) 0xy xy yy

s t

R t s A R t t R t tB
t



- ⋅ - =⋅¶
¶

 ,               (17a) 

( , ) 2 ( , ) 2 ( , ) 0xx xx xy

d
R t t A R t t R t t

dt
B- ⋅ ⋅ - ⋅ =⋅ ,               (17b) 

( ) ( ) ( ) 0x x ym t A m t B m t
d
dt

- ⋅ - ⋅ = .                    (17c) 

 
Theorem 2: The auxiliary two-time RE moment constraints (Equs.(8a-8c)) of the linear RDE:  
i) Do not hold true 0,t s t" ³  

ii) Hold true in the limiting case s t    
  
Proof 
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The moments of ( , )xyR t s  and ( , )xxR t t  of the linear RDE follow the two-time RE moment 

equations (Equs.(8a,22a,2a)_Sec.(3.2.1)): 
 

( , ) ( , ) ( , ) 0xy xy yyR t s A R t s R t sB
t

- ⋅ - =⋅¶
¶

,                (18a) 

( , ) 2 ( , ) 2 ( , ) 0xx xx xy

d
R t t A R t t R t t

dt
B- ⋅ ⋅ - ⋅ =⋅ ,               (18b) 

( ) ( ) ( ) 0x x ym t A m t B m t
d
dt

- ⋅ - ⋅ = ,                    (18c) 

where ( , )yyR t s is the given input auto-correlation function and ( )ym t is the given input mean 

value. 

Let us suppose that Equs.(8a-8c) hold true, then from Equs.(18a-18c) we obtain that : 
 
 ( , ) ( , )yy yyR t s R s s= , ( , ) ( , )xy xyR t s R t t=  and ( ) ( )y ym t m s= , 0,t s t" ³ , 

 
that is not true, therefore part (i) has been proved. 
 

Taking the limit s t  of Equs.(18a-18c) we obtain the limit two-time RE moment equations, 
i.e. Equs.(17a-17c), respectively, therefore Equs.(17a-17c) hold true. Moreover, taking the 
limit s t  of Equs.(8a-8c) we re-obtain Equs.(17a-17c). Part (ii) has also been proved.  ■ 
 
Corollary 2: The Gaussian pdf 

( ) ( )
( )x y st

f a,b (see Equ.(4)_Sec(3.4)) of the linear RDE (Equ. 

(1)_Sec.(3.1.1)) verifies the  REPDF evolution equation (Equs.(1a)) together with conditions 
(2a-2d). 
 
Proof 
 
The moments of the Gaussian pdf 

( ) ( )
( )x y st

f a,b  are the solutions of the two-time RE moment 

equations. It follows that these will also verify the limit two-time RE moment equations and 
therefore according to Corollary 1 the REPDF evolution equation. Moreover, in the case that 
the sought for density is Gaussian, the initial conditions of the two-time REPDF evolution 
equation, Equ.(2a), and the initial conditions of the two-time RE moment equations, 
Equs.(8b,22b,2b)_Sec.(3.2.1), are equivalent so Equ.(2a) is verified. In addition, the marginal 
constraint Equ.(2b) is also verified, since the marginal moments ( )ym t , ( , )yyR t t is the given 

input of the moment problem. Finally, it is obvious that the constitutive conditions Equs.(2c-
2d) are verified too. 
 

3.6. On the non-uniqueness of solutions of the REPDF evolution equation 

 
In Section 3.5, we have proved that the jointly Gaussian REPDF 

( ) ( )
( )x y st

f a,b  of the linear 

RDE under Gaussian excitation verifies the REPDF evolution equation if and only if the limit 
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two-time RE moment equations are verified (see Corollary 1). In this section this equivalence 
will be used in order to clarify that the REPDF evolution equation does not have a unique 
solution, as also stated in Venturi et al.(2012).  
 

As we have seen in Section 3.4, the solution of the two-time RE moment equations i.e: 
 

( ) ( ) ( )0

0

0

0,

t

A t tA t A s
x y x

t

m t e B m s e ds e m t t⋅ -⋅ - ⋅= ⋅ ⋅ ⋅ + ⋅ " ³ò              (19a) 

( ) ( ) ( ) ( )01

0

0

1 1 0, , ,

t

A t tA tA t
x y y y x y

t

R t s e B R t s e dt e m m t t⋅ -- ⋅⋅= ⋅ ⋅ ⋅ + ⋅ ⋅ " ³ò            (19b) 

( ) 1

0

0 01

0 0 0

0

1 1

(2 ) 2 ( )
1 1

, ( , )

( )

t

A tA t
x x x y

t

t

A t t A t tA t
x y x x

t

R t t e B R t t e dt

e B m m t e dt e R

- ⋅⋅

⋅ - ⋅ -- ⋅

= ⋅ ⋅ +

+ ⋅ ⋅ ⋅ ⋅ + ⋅

ò

ò
                          (19c) 

 
can uniquely define the joint Gaussian REPDF 

( ) ( )
( )x y st

f a,b  (see Equ.(4)_Sec(3.4)).  
 

However, differentiating equations (19a)-(19c) with respect to time t , then taking the limit 
s t  it is easy to confirm that Equs. (19a)-(19c) verify the limit two-time RE moment 
equations, and according to Corollary 1, so is the case for the joint REPDF evolution 
equation, regardless of the correlation time of the stochastic input. Therefore the solution to 
both the limit two-time RE moment equations and the joint REPDF evolution equation is not 
unique. 
 

In fact, when the moment equation for the two-time RE cross-correlation ( , )x yR t s  is 

considered time diagonally ( s t ) the two-time auto-correlation ( , )yyR t s  of the stochastic 

input, appearing in the left hand of Equ.(18a), is replaced by the one-time auto-correlation  of 
the stochastic input ( , )y yR t t . Thus parameters of the input two-time auto-correlation 

( , )y yR t s  that control the correlation time (e.g. the parameter a  for lpGF or OU input and 

a , 0w  for sOU stochastic input) are not taken into account. On the contrary, when ( , )x yR t t  is 

calculated based on the whole history of 1( , )y yR t t  for 0 1t t t£ £  (i.e. taking the limit s t  of 

Equ.(19)) the non-local effects of the colored stochastic excitation that are controlled by the 
correlation time of the input are taken into account.  
 

It becomes evident that some of the non-local (in time) characteristics of the problem are lost 
when we also take the limit 

( ) ( )
( ) /x y st s t

f t


¶ ¶a,b  in the REPDF evolution. Therefore, 

additional information about the joint RE correlation structure should be supplied to the 
REPDF evolution equation so that this has a unique solution. In the linear/Gaussian case this 
additional information could be provided by the equation for the evolution of the two-time RE 
cross-correlation ( , )xyR t s , i.e. Equ.(18a).  
. 
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Finally in this section, we shall discuss the counter-example presented by Venturi et al.( 
2012) in order to demonstrate the non-uniqueness of solutions of the REPDF evolution 
equation. More specifically, in the following RDE was considered:   
 

( ; ) ( ; ) ( ; )x t x t y t    ,                (24a) 
 

( ; ) sin( ) ( )y t t    ,                         (24b) 
 

0 0( ; ) ( )x t x  ,                 (24c) 
 

where ( )  is a Gaussian random variable, 0 ( )x   is a Gaussian zero mean random variable 

that is independent from ( )  .  
 

The analytical solution of Equ.(24) (this is given by Equ.(2.18) of (Venturi et al. 2012)) reads 
as follows: 
 

0 0

0

0 0 0

( ) ( )
0

( ) ( )
0 0 0

( ; ) ( ; ) ( ) (25)

1 1
[ ( ) ( 1) ( ) (sin( ) cos( )) (sin( ) cos( ))].

2 2

t

t t s t

t

t t t t t t

x t e y s e ds x

e e x e t t t t

- - -

- - - -

æ ö÷ç ÷ç ÷ç= ⋅ + =÷ç ÷ç ÷ç ÷è ø

= ⋅ ⋅ - + + ⋅ - - ⋅ -

òq q q

x q q

 

 
In the RDE given by Equ.(24) the time dependence is present only in the deterministic part of 
the stochastic excitation that is given by Equ.(24b), whereas all the other stochastic quantities 
of the RDE are time invariant. Therefore, Equ.(25) can be considered as a mapping between 
the random variables  
 

0( ; ) ( ) ( ) ( ) ( ) ( ) , (26a)x t A t B t x C t= ⋅ + ⋅ +q x q q

 ( ; ) sin( ) ( )y t t     ,                 (26b) 
 
where 
 

0 0( ) ( )( ) 1 , ( ) ,t t t tA t e B t e- - - -º - º               (26c,d) 

0( )
0 0

1
( ) (sin( ) cos( )) (sin( ) cos( ))

2
[ ]t tC t e t t t t-º ⋅ - - - .           (26e) 

 
Using the mapping approach (pp.142 in (Papoulis 1991)) from Equ.(25), the joint pdf that 
corresponds to the RDE (Equ.24) is obtained, i.e.: 
 

( )
2

2
2( ) ( )

1 1 ( ( ) ( ) sin( ) ( ))
exp ( sin( ))

2 ( ) 2 2 ( )x y st

A t A t s C t
f s

B t B t

é ù- ⋅ + ⋅ -ê ú= - - -ê ú⋅ ⋅ë û

a b
a,b b

p
 .     (27) 

 
It is straightforward that ( )( ) ( )x y st

f a,b  verifies the REPDF-evolution equation that corre-

sponds to the RDE Equ.(24), i.e.: 
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( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( ( )) ,x y x yst t t

x yt t

s t

f f
f

t


" Î Î
¶ ¶¶

= ⋅ - ⋅
¶ ¶ ¶

a,b a,b
a a,b b a b

a a
,   .         (28) 

 
In Ventury et al. (2012) it is argued that ( )C t  could be instead any function ( ) ( )C t a t= , with 

0( ) 0a t =  and the density given by Equ.(27) would still satisfy the REPDF evolution 

equation (28). The latter argument seems not to be correctly stated as, in order for ( )C t  to be 
such that Equ.(27) satisfies Equ.(28), there should be some information on the relationship 
between ( )C t  and ( )C t¢  (the latter appears in the right hand of Equ.(28) after the time 

differentiation of the joint REPDF
( ) ( )

( )x y st
f a,b  given by Equ.(27)). Nevertheless, it is true 

that Equ.(28) followed by conditions given by Equs.(2a-2d) admits more than one solution 
and, therefore, the boundary value problem of Equs.(28, 2a-2d) is indeed not well-posed. We 
shall now prove that when the two-time RE moment equation that corresponds to the RDE 
(Equ.24) is also considered, ( )C t  is uniquely defined and given by Equ.(26e).  
 

Multiplying Equ.(24a-c) with ( ; ) sin( ) ( )y s s     and taking mean values we obtain the 

two-time RE moment equation that governs the RE cross-correlation ( ),xyR t s of the random 

differential equation (24), i.e.: 
 

( ) ( ) ( ), , , 0xy xy yyR t s R t s R t s
t

+ - =
¶
¶

 ,                (29a) 

 

0( , ) 0xyR t s   ,                   (29b) 

 
where 
 

 ( , ) (sin( ) ( )) (sin( ) ( )) sin( ) sin( ) sin( ) sin( )yyR t s E t s t s t m s m R
                . (30) 

 
We shall use the dynamical system equations (26a) and (26b) to express ( ),xyR t s  in terms of 

( )C t , then, we shall use the two-time RE moment equation to find the deterministic function 
( )C t . More precisely, multiplying Equ.(26a) with ( ; ) sin( ) ( )y s s    (as given by 

Equ.(26b)) and taking mean values we get: 
 

0

0

0

0

( )

( , ) ( ) ( ) ( ) ( ) ( ) sin( ) ( )

( ) ( ) sin( ) ( ) ( ) sin( ) ( ) sin( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 sin( ) ( ) sin( ) , (31a

( ) ( )

( ) ( ) ( )

[ ]

[
]

xy

t t

R t s E A t B t x C t s

E A t s B t x s C t s

A t B t x C t

e s m R C t s m- -

= ⋅ + ⋅ + ⋅ + =

= ⋅ ⋅ + ⋅ ⋅ + ⋅ +

+ ⋅ ⋅ + ⋅ ⋅ + ⋅ =

= - ⋅ ⋅ + + ⋅ +

q

q

x xx x

x q q x q

x q q

x q x q q x q x q

)

 

0 0( , ) ( ) sin( )( )xyR t s C t s mx= ⋅ + .                 (31b)

 Subsequently, replacing Equ.(31a) in Equ.(29) we get an equation for the evolution of ( )C t :
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0 0( ) ( )( )
sin( ) sin( ) (1 ) sin( )

( ) sin( ) sin( ) sin( ) sin( ) sin( ) 0,

( ) ( ) ( )

( )

t t t tdC t
t m e t m R e t m R

dt
C t t m t t t m t m R

- - - -⋅ + ⋅ ⋅ + + - ⋅ ⋅ + +

+ ⋅ + - ⋅ - ⋅ - ⋅ - =

+x x xx x xx

x x x xx

     (32a) 

 

0( ) sin( )( ) 0.C t t m⋅ + =x                   (32b) 
 
All the terms that depend on the time variable s  are simplified here, and we get: 
 

( )
( ) sin( ) 0

dC t
C t t

dt
+ - = ,                       (33a) 

 

0( ) 0C t = .                                                                                                                             (33b) 

 
The solution of the initial value problem of Equs.(33) is exactly Equ.(26e)  

 

3.7. Equation for the evolution of response pdf in the linear/Gaussian case. 
 
As discussed in Section 2.2.3 in order to find the pdf of the response of stochastic systems 
excited by colored noise, several methods have been developed focusing on the solution of an 
equation for the response density (Hänggi & Jung 1995). In fact, in Ventury et al. (2012) the 
consistence of the response-marginal REPDF with Equ.(8)_Sec(2.2.3) has been established. 
In this section we are going to discuss the connection of the response-marginal REPDF 
evolution equation with the two-time RE moment equations. We focus on two points: 
 

1. We shall show the connection of the response-marginal REPDF evolution equation 
with the one-time RE moment equation (see Equ.(22)_Sec.(3.2.a)) in the 
linear/Gaussian case. 
 

2. We shall use this simple case in order to demonstrate how the system of the two-time 
RE moment equations could be used as an alternative way to approximate the non-
local term appearing in the response-marginal REPDF evolution equation.  

3.7.1. Connection with the one-time response moment equation  

 
For convenience and without this being restrictive, in this section, we shall assume that 

( ) 0ym t = , 
0

0xm =  and therefore, from Equ.(1)_Sec(3.4), ( ) 0xm t = . To find an equation for 

the evolution of the response we integrate with respect to the excitation variable the REPDF 
evolution equation Equ(1)_Sec(3.5). Subsequently, assuming that the integration can be 
performed before the partial differentiation, we obtain the following equation for the 
evolution of the response density: 
 

( ) ( ) ( )( ) ( ) ( ) ( )
, .0x x x y st t t

f A f B f d
t

¶ ¶ ¶
+ ⋅ ⋅ + ⋅ ⋅

¶ ¶ ¶
" Î Îòa a a b a,b b

a a
a b,=  �

              (1) 
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When the excitation is a Gaussian stochastic function, as discussed in Section 3.4, the joint 
REPDF will be a 2D Gaussian density given by Equ.(4)_Sec(3.4). Moreover, all terms in 
Equ.(1) can be analytically computed, i.e.: 
 

( )

( )
( ) ( ) ( )

( )
( )

( )

( ) ( )

2

( )

, ,1
exp .

, 2 , ,2 ,

x y st

xy xy
x t

xx xx xxxx

f d

R t s R t t
f

R t t R t t R t tR t t

⋅ =

é ù
ê ú⋅ ⋅ - = ⋅ ⋅ê ú⋅⋅ ⋅ ê úë û

=

ò b a,b b

a
a a

p

  (2) 

Then,  

( )
( )
( )

( )
( )
( )

( )( )
( ) ( ) ( )

, ,

, ,
xxy xy t

x y xst t
xx xx

d fR t t R t t
f d f

R t t R t t d

¶
⋅ = ⋅ + ⋅ ⋅

¶ ò
a

b a,b b a a
a a

 .  (3) 

Moreover, since: 

( )
( ) ( ) ( )

( )
2

( )
( )

1
exp

2 , ,2 ,

x t
x t

xx xxxx

f
f

R t t R t tR t t

é ù¶ ¶ ê ú- =- ⋅ê ú¶ ¶ ⋅⋅ ⋅ ê úë û

a a a
a

a ap
=  .  (4) 

Combining Equs.(3,4) we obtain: 

( )
( )

( )2
2( ) ( ) ( )

( , ) ( , )

( , ) ( , )

xy xy
x y xst t

xx xx

R t t R t t
f d f

R t t R t t

æ ö÷ç¶ ÷ç ÷⋅ = - ⋅ ⋅ç ÷ç ÷¶ ç ÷÷çè ø
ò b a,b b a a

a
.    (5) 

Moreover for the time derivative of the Gaussian pdf we have: 

( )
( )

( ) ( )
( )( )

( ) ( )
2

2( ) ( ) ( )

1
, ,

2 , 2 ,
x xx x xx xt t t

xx xx

f R t t f R t t f
t R t t t tR t t

¶ ¶ ¶
=- ⋅ ⋅ + ⋅ ⋅

¶ ⋅ ¶ ¶⋅

a
a a a . (6) 

Introducing Equs.(4-6) in Equ.(1) we get: 

 

 

              (7) 

that is: 

( )
( ) ( ) ( )

( )
( )

( )

( )( )
( ) ( )

( )
( )

( )

( )( )
( )

( ) ( ) ( )

2 2
2

2 2( ) ( ) ( )

,1
,

2 , ,

,
, 0,

,2 , ,

xy
xx x x xt t t

xx xx

xy
xx x x xt t t

xxxx xx

R t td
R t t f A f B f

R t t dt R t t

R t td
R t t f A f B f

dt R t tR t t R t t

- ⋅ ⋅ + ⋅ + ⋅ ⋅ +
⋅

+ ⋅ ⋅ - ⋅ ⋅ - ⋅ ⋅ ⋅ =
⋅

a a a

a a
a a a a
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( )
( ) ( ) ( ) ( )

( )( )
( ) ( ) ( ) ( )

( )

2

2 ( )

1
, 2 , 2 ,

2 ,

, 2 , 2 , 0.
2 ,

xx xx xy x t
xx

xx xx xy x t

xx

d
R t t A R t t B R t t f

R t t dt

d
R t t A R t t B R t t f

dtR t t

æ ö÷ç- - ⋅ ⋅ - ⋅ ⋅ ⋅ +÷ç ÷çè ø⋅

æ ö÷ç+ - ⋅ ⋅ - ⋅ ⋅ ⋅ =÷ç ÷çè ø⋅

a

a
a

 (8) 

Since Equ.(8) holds true "a  it is easy to verify that  Equ.(7) holds true if and only if 

( , ) 2 ( , ) 2 ( , ) 0xx xx xy

d
R t t A R t t B t

t
R t

d
- ⋅ ⋅ - ⋅ ⋅ = .                   (9) 

3.7.2. Approximation of the non-local term using the two-time-RE moment equations   
 
In Section 3.7.1 we wrote the non-local term of Equ.(1)_Sec(3.7.2) in terms of the diagonal 

moments ( , ), ( , )xy xxR t t R t t , i.e.: 

( )
( )

( )2
2( ) ( ) ( )

( , ) ( , )

( , ) ( , )

xy xy
x y xst t

xx xx

R t t R t t
f d f

R t t R t t

æ ö÷ç¶ ÷ç ÷⋅ = - ⋅ ⋅ç ÷ç ÷¶ ç ÷÷çè ø
ò b a,b b a a

a
,     (1) 

Equ.(1) can be used in conjunction with the solution of the two-time RE moment equations in 
order to obtain a closed form of Equ.(1)_Sec(3.7.2). That is, Equ.(1)_Sec(3.7.2) can be 
rewritten as:  

( ) ( )
( )

( )2
2( ) ( ) ( )

( , ) ( , )
, (2)

( , ) ( , )

,

0xy xy
x x xt t t

xx xx

R t t R t t
f A f B f

t R t t R t t

æ ö÷ç¶ ¶ ÷ç ÷+ ⋅ ⋅ + ⋅ - ⋅ ⋅ç ÷ç ÷¶ ¶ ç ÷÷çè ø

" Î Î

a a a a a
a

a b,

=

 �
where: 

1

0

1 1 0( , ) ( , ) , ,

t

A tA t
x y y y

t

R t t e B R t t e dt t t- ⋅⋅= ⋅ ⋅ ⋅ " ³ò                                               (3) 

01

0 0

0

2 ( )
1 1( , ) ( , ) .

t

A t tA tA t
x x x y x x

t

R t t e B R t t e dt e R⋅ -- ⋅⋅= ⋅ ⋅ + ⋅ò                                                                  (4) 
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4.1. Introduction 

 
In the previous chapter the joint REPDF of the linear Random Differential Equation (RDE) 
(Equ.(1)_Sec(3.1.1)) under smoothly correlated (colored) Gaussian excitation was obtained 
analytically through the solution of two-time RE moment equations. The obtained solution 
was used to verify the REPDF evolution equation as well as to demonstrate that the REPDF 
evolution equation, as it stands, can have multiple solutions. In fact, the correlation length of 
the excitation constitutes a degree of freedom that is not properly taken into consideration 
when the equation is considered only time diagonally ( )s t , as the non-local (in time) 
characteristics of the problem are lost. Nevertheless, in the linear/Gaussian case, the inclusion 
of an additional constraint for the two-time RE cross-correlation could provide the additional 
information needed for the problem to be well posed.   
 

In this chapter, we show how these ideas take shape and are generalized for the probabilistic 
characterization of a steady state non-linear half oscillator under non-Gaussian excitation. The 
problem is treated in the context of response-excitation theory, introduced by Athanassoulis 
& Sapsis (Athanassoulis & Sapsis 2006) and Sapsis & Athanassoulis (Sapsis & Athanassoulis 
2006; Sapsis & Athanassoulis 2008).  
 

More precisely, taking into consideration the findings from the solution of the linear problem 
we develop auxiliary local conditions, in the RE-phase space, that provide the necessary 
additional information regarding the RE correlation structure of the non-linear random 
problem. The local information is synthesized in the REPDF evolution equation by the use of 
an appropriate representation of the two-time joint REPDF, consisting of a superposition of 
Gaussian Kernels. The REPDF evolution equation, together with the new local closure 
conditions, is numerically solved using a Galerkin scheme. Let it be noted that, in the linear 
case under Gaussian excitation, the additional constraints coincide with the global two-time 
RE moment equations discussed in Chapter 3. Some preliminary results of this method have 
been presented in Athanassoulis, Tsantili & Kapelonis (Athanassoulis et al. 2012b), 
(Athanassoulis et al. 2012a).  
  
An important question, related with the process of the numerical solution of the joint REPDF 
evolution equation in the long-time, is how to define the appropriate computational domain. A 
methodology for the approximate, a priori, determination of the computational domain has 
been developed based on the solution of a system of two-time RE moment equations for the 
non-linear/non-Gaussian problem. The derivation and solution of these equations is presented 
in Chapter 5.  
 

The development of the presented methodology drew on results obtained by MC simulations 
performed by Z.G. Kapelonis. The evidence gained by looking into these results, made clear 
that, in the long-time statistical-equilibrium state the joint REPDF tends to concentrate around 
the equilibrium curve of deterministic problems which are naturally realized on the RE-phase 
space. In accordance with this observation, it was made clear that the implementation of the 
numerical solution of REPDF evolution equation can exploit information coming from the 
stability analysis of the corresponding deterministic problems.  
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4.2. Formulation of the problem 
 
Consider a non-linear half oscillator, of the form: 
 

( ) ( )( ; ) ( ; ) ( ; ) ,x t x t y tH = + Yq q q                                      (1a) 

0(0 ; ) ( )x x=q q ,                                                    (1b)  

 
where ( )H · , ( )·Y  are non-linear functions,   is the stochastic argument (the sample-point 
indicator), ( ; )y t q  is a given, smoothly correlated, asymptotically stationary, Gaussian 
stochastic process (regular colored noise) with continuous path functions. The initial 
condition 0 ( )x   is a given random variable, independent from the process ( ; )y t  . In what 

follows we shall assume that ( )H · , ( )·Y  are polynomial function of ( ; )x t q , ( ; )y t q , 
respectively,  i.e.  
 

( )
0

( ; ) ( ) ( ; )
N

H x t A t x t


 
=

= ⋅å ,       (2a) 

( )
0

( ; ) ( ) ( ; )
M

m
m

m
y t B t y t 

=
= ⋅å .               (2b) 

 
The polynomial excitation ( )( ; )y t   can model (strongly) non-Gaussian processes. 

 

A special case of the stochastic initial problem given by Equ.(1) is the cubic half oscillators 
under non Gaussian Excitation. The probabilistic description of cubic half-oscillator excited 
by delta-correlated processes has been studied by many authors. Hasofer and Grigoriu 
(Hasofer & Grigoriu 1995), and Grigoriu (Grigoriu 2008) studied the case of Gaussian white-
noise excitation, solving the corresponding moment problem and commenting on the 
properties of the moment closures. Wojtkiewicz, Grigoriu et al. (Wojtkiewicz et al. 1999), 
(Grigoriu 1995) generalized various techniques developed for the case of Gaussian excitation 
to systems driven by Poisson or Gaussian plus Poisson white-noises, and studied the cubic 
half oscillator as an example. The same problem, under OU excitation, has been treated by 
Jung & Risken, and others ((Jung & Risken 1985), (Debnath et al. 1990)), in the context of 
the filtering approach (augmented state space, two-dimensional FPK equation). Furthermore, 
the same problem has been also studied using approximate one-dimensional FPK equation in 
conjunction with the short relaxation time approximation (Hänggi et al. 1984). Here we 
consider the following special form of Equ.(1): 

 
3 3

1 3 1 3( ; ) ( ; ) ( ; ) ( ; ) ( ; )x t x t x t y t y t= ⋅ + ⋅ + ⋅ + ⋅ q m q m q k q k q ,    (3a)  

00 ( )( ; )x xt  = ,           (3b)  

 
In this case the excitation  
 

3
1 3( ; ) ( ; ) ( ; )z t y t y t= ⋅ + ⋅q k q k q ,          (4)  

 
is a linear-plus-cubic-Gaussian process, having a bimodal first-order pdf in the case 

1 3 0 ⋅ < . Without any loss of generality, we shall assume that 1 0 > . The signs of 
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1 3 3, ,    may be either 1+ , or 1- , affecting the structure of the solution to both the 

deterministic and the stochastic problem. The case 1 30 , 0 < <  will be referred as the 

monostable case and the case 1 30 , 0 > <  as the bistable case, in accordance with the 

stability properties of the homogeneous equation. 
 

The condition of asymptotic stationarity means that there exist a constant ( )
ym ¥  and a 

bounded stationary covariance function ( ) ( )y yC ¥ , such that  

 

( )( ) ( )
00 ( )> y yt t t t m t m  ¥" $ > ³  - <é ù

ë û: ,    (5a)  
 

and  
 

( )( ) ( )
00 ( , ) ( )> y y y yt t t t s t C t s C t s   ¥" $ > ³ ³  - - <é ù

ë û: .  (5b)  

 
In what follows we will consider the system for time instances ,t s T³ , where time T is 
advanced enough, so that the statistical equilibrium state has been reached. In this state the 
system no longer depends on the initial condition. In this connection we are going to ignore 
the initial condition (1b). Through the development of the theory four special cases of 
monostable non-linear half oscillators (Equ.3a) will be considered, i.e. 
 
1. A cubic non-linear half oscillator under Gaussian excitation (the non-linear/Gaussian Case) 
 

3( ; ) ( ; ) ( ; ) ( ; )t x t x t y tx     - -= + .       (6) 
 
2. A linear half oscillator under cubic Gaussian excitation (the linear/non-Gaussian Case) 
 

3( ; ) ( ; ) ( ; )t x t y tx    -= + .        (7) 
 
3. A cubic non-oscillator under a superposition of a Gaussian and a cubic Gaussian excitation 
(the non-linear/non-Gaussian Case) 
 

3 3( ; ) ( ; ) ( ; ) ( ; ) 0.2 ( ; )x t x t x t y t y t    =- - + + ⋅ .     (8) 
 
A linear half oscillator under Gaussian excitation will also be considered for comparison 
purposes (the linear/Gaussian Case) 
 

( ; ) ( ; ) ( ; )t x t y tx    -= +  .        (9) 
 
Moreover, the non-linear bi-stable half oscillator under Gaussian excitation (bi-stable/ 
Gaussian) will also be discussed in Chapter 5  
 

3( ; ) ( ; ) 0.4 ( ; ) ( ; )x t x t x t y t   = - ⋅ + ,            (10) 
 
The considered excitation functions ( ; )y t   follow three different correlation structures, 
either lpGF, given by Equ.(1)_Sec(3.2.4), sOU given by Equ.(18)_Sec(3.2.4), or OU, given 
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by Equ.(19)_Sec(3.2.4) and three different correlation times (colors), 

i.e. corr 0.93, 0.51, 0.33y y =  (the same as in the linear case studied in Chapter 3). In all cases the 

correlation time of the excitation is of the same order of magnitude with the relaxation time 
of the non-linear half oscillator, i.e. the characteristic time for the system to reach its 
equilibrium position after being perturbed. The latter is smaller than that of the linear 
oscillator, for which (lin)

relax 1 = , since the nonlinearity contributes to the damping term. 
 

In Fig.(1a) we can see the trajectory of the system of the non-linear/non-Gaussian Case (see 
Equ.(8)) in the RE phase space. The considered excitation is a strongly colored lpGF 

( corr 0.93y y = ). The time evolution of the response and the excitation along with their cross-

covariance function ( , )xyC t s , are shown in Fig.(1b) and Fig.(1c). The RE cross-covariance 

has been computed by the Monte Carlo simulation data up to the current time (i.e. 250 sec), 
which is long enough so that the system has reached the long-time statistical equilibrium state 
and it is plotted against the time lag t s   . Negative time lag ( 0 < ) corresponds to future 
lag values (excitation in advance of response). As already discussed in the linear case, and in 
contrast to cases of delta-correlated excitation, there is a correlation between the current 
response value and the future excitation. These results were obtained by Z.G. Kapelonis, from 
Monte Carlo simulation of the RDE given by Equ.(8).  
 
 

 
 
 
 
 
We shall now proceed to the description of the RE method for the probabilistic characteriza-
tion of the considered non-linear half oscillators in the long-time statistical equilibrium state. 
 

4.3. The REPDF evolution equation in the long-time 
 
Using the procedure developed by Athanassoulis & Sapsis (Athanassoulis & Sapsis 2006) and 
Sapsis & Athanassoulis (Sapsis & Athanassoulis 2008), that is also explained in Chapter 2 of 
this thesis, a partial (response) time, evolution equation is obtained for the joint REPDF 

( )( ) ( )x y stf a,b , which is valid in the limit s t . More precisely, for the RDE given by 

Equ.(1)_Sec(4.2), the REPDF evolution equation takes the form:  

a b

c

Figure 1: Results obtained by MC simulation. a. The trajectory of the half oscillator in 
the RE-phase space. b. The time evolution of the response and the excitation. c. The RE 
cross covariance ( , )xyC t s   
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( ) 2
( ) ( )( ) ( )

( ) ( ) , ( )( ) ( ) 0x y st tsx y st
ts

fHf
t 



¶ é ù+ ⋅ " Îê úë û¶
+ Y¶

¶
a b a,b a,b

a
a,b =  . (1)  

 
Since the REPDF evolution equation is valid for all t , it is, thus, valid when t  is considered 
in the long-time regime. In this case the system is no longer affected by the initial condition, 
therefore no initial conditions need to be considered for the sought for joint REPDF. 
Nevertheless, the REPDF evolution equation is supplemented by the marginal-compatibility 
constraint,  
 

( ) ( ) ( ) a known pdf ,( ) ( ) =x y st y sf d f

Î

= " Î Îò
a

a,b a b a , b



  ,                  (2a) 

 
 
ensuring that ( ) ( ) ( )x y stf a,b  has the appropriate (given) marginal, as well as by the 

constitutive conditions:  
 

( ) ( )
( ) 0x y st

f ³a,b ,                                  (2b)  

 

( ) ( )
( ) 1x y st

f d d

ÎÎ

=ò ò
ab

a,b b a



.                               (2c)  

 
Equ.(1) is of a very peculiar type and has, as analytically shown in Chapter 3 for the linear 
case, multiple solutions. More precisely, Equ.(1) contains two times, the excitation time s  
and the response time t  and it is crucial that the time derivative is considered only with 
respect to the response time t  (half-time derivative). The distinction is essential since:  
 

 ( ) ( )( ) ( ) ( ) ( )x y x yst t t

ts

f f
t t

¶ ¶
¹

¶ ¶
a,b a,b  

 
and especially in the considered long-time regime: 
 

 ( )( ) ( )
lim 0x yt tt

f
t ¥

¶
=

¶
a,b ,     while    ( )( ) ( )

lim 0x y stt
ts

f
t ¥



¶
¹

¶
a,b .  

 
Notice that, the presence of the half-time derivative is a significant difference between the 
steady state REPDF-evolution equation and steady state FPK equation. The latter does not 
contain a time derivative, being stationary (Soize 1994; Risken 1996; Wang et al. 2000). 
 
However, the half-time derivative ( )( ) ( )

/x y st
f t¶ ¶a,b  cannot be properly evaluated 

(implemented), without knowing the specific form of ( )( ) ( )x y st
f a,b  , since there is no way to 

separate the effect of the response time t  from the effect of the excitation time s  in the 
unknown function ( )( ) ( )x y st

f a,b . The essence of this difficulty stems from the fact that, 
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behind of the half-time differentiation, some non-local in time effects are hidden. 
Accordingly, the term ( )( ) ( )

lim /x y sts t
f t


¶ ¶a,b , should somehow be approximated and 

introduced in Equ.(1), before any attempt to formulating a numerical scheme for solving. This 
will be taken on in the next section, where a local (in state variables a,b ) approximation of 

( )( ) ( )
lim /x y sts t

f t


¶ ¶a,b  will be constructed, by formulating and solving a localized 

(linear/Gaussian) differential equation at each a,b . 
 

4.4. A priori closure conditions: Local linear equations with local Gaussian excitation 

4.4.1. Formulation and solution of the localized problem  

In case that the oscillator is linear and the excitation Gaussian the RE correlation structure can 
be fully determined by the solution of the two-time, linear, RE moment equations (Chapter 3). 
Nevertheless, in case that the oscillator is non-linear and/or the excitation non-Gaussian, the 
correlation structure of the REPDF needs also higher order moments to be defined. In this 
section we present how this complicacy can be overcome by approximating the non-linear 
and/or non-Gaussian random problem by many locally linear, locally Gaussian sub-problems. 
To this end we define and solve localized linear problems, providing information concerning 
the local RE-correlation structure, in the long-time statistical equilibrium state. These 
problems are going to be used as an a priori closure scheme for the REPDF evolution 
equation (Equ.(1)_Sec.(4.3)).  
 
 

Focusing on a (any) specific point 0y  of the excitation state space, we find the corresponding 
(deterministic) long-time equilibrium point 0x  in the response state space of the RDE given 

by Equ.(1a)_Sec(4.2), by solving the equation 

 ( )( ) ( )( ); ;( ; ) 0x t y tt Hx   + == .        (1) 
 

The curve 0 0( ) ( )H x y= -  will be called 0 0 )( ,x y - or RE-equilibrium curve. For instance, for 
the cubic half-oscillator described by Equ.(3a)_Sec(4.2), the RE-equilibrium curve is given 
by the equation 3 3

1 0 3 0 1 0 3 0 0x x y y⋅ + ⋅ + ⋅ + ⋅ =m m k k . In agreement with results obtained 

by extensive MC simulations for various cases, the RE-equilibrium curve is around where the 
joint REPDF is concentrated when the system reaches the long-time statistical equilibrium 
state. For example, in Fig.2a and Fig.2b the equilibrium curves 3

0 0 0x x y+ =  of the non-

linear/Gaussian Case (see Equ.(6)_Sec(4.2)) and 3 3
0 0 0 00.2x x y y+ = + ⋅  of the non-linear/non-

Gaussian Case (see Equ.(8)_Sec(4.2)) are, respectively, plotted. 
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To find the localized sub-problems, we introduce a linear approximation of the right-hand 
side of Equ.(1a)_Sec(4.2) around each point 0 0( , )x y , i.e. 
 

( ) ( )0 0 0 0( ; ) ( ) ( ; ) ( ) ( ; )x t H x x t x y y t y  ¢ ¢» ⋅ - + ⋅ - ,                                                    (2) 
 

and formulate the following localized version of Equ.(1a)_Sec(4.2):   
 

( ) ( )0 0 0 0( ; ) ( ) ( ; ) ( ) ( ; )oc oc ocx t H x x t x y y t y  ¢ ¢= ⋅ - + ⋅ -   .                                         (3) 
 

The subscript ( )oc  has been introduced in order to remind us that Equ.(3) is just a localized 

version of Equ.(1a)_Sec(4.2). The localized random excitation, 0( ; )ocy t y - , is taken 

Gaussian (as the global one), with zero mean value and appropriate two-time response auto-
covariance function ( , )

oc ocy yC t s
 

. Since we are interested in the long-time, steady-state 

solution, we can choose ( )( , ) ( )
oc oc oc ocy y y yC t s C t s¥= -
   

. Compatible with the localization is 

a scaled version of the long-time limit of the global autocovariance function ( ) ( )y yC t s¥ - , 

that is ( ) ( )
oc ocy yC t s¥ - =
 

2 ( ) 2( ) /
oc y y yy C t s ¥ -


. The solution of Equ.(3) will provide us 

with the long-time local correlation structure between ( ; )x t q  and ( ; )y s q  in the vicinity of 

0 0( ) ( )x y=a,b , , i.e. the elements of the long-time covariance matrix  

 

 

( ) ( )

( )

( ) ( )

( ) ( )
( ; )

( ) ( )

oc oc oc oc

oc oc oc oc

x x x y

oc

x y y y

C t s C t s
t s

C t s C t s


¥ ¥

¥
¥ ¥

æ ö- - ÷ç ÷ç ÷= ç ÷ç ÷ç - - ÷÷çè ø

   

   

       (4) 

 
where 
 

( ) ( )

, ,
( ) lim ( , ), ( ) lim ( , )

oc oc oc ococ oc oc ocx y x xx y x xt s t s
C t s C t s C t s C t s¥ ¥

 ¥  ¥  ¥  ¥
- = - =

      
 

Figure 2: The 0 0 )( ,x y - or RE-equilibrium curve plotted in the RE-phase space: a. For 
the non-linear/Gaussian case (Equ.(6)_Sec(4.2)), b. for the non-linear/non-Gaussian case 
(Equ.(8)_Sec(4.2)). 

a. b.
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Let it be noted that the correlation time is not affected by the choice of the scaling factor of 
the localized excitation, i.e., will have the same correlation time (see Equ.(1c)_Sec(3.2.4)) 
with the global one.  
 

Since the localised stochastic problems (Equs.(3)) are linear with Gaussian excitation, they 
can be solved analytically, following the procedure discussed in Sections 2 and 4 of Chapter 
3. More precisely, taking mean values to Equ.(3) it is straightforward to find that in the long-
time statistical equilibrium state the response mean value ( )

0ocxm x¥ =


, a fact that is compatible 

with the considered localization. Subsequently, multiplying Equ.(3) first by ( )0( ; )locy s y -  

then with ( )0( ; )locx s x -  we get  

 

 
( ) ( ) ( )

( ) ( )
0 0 0 0

0 0 0

( ; ) ( ; ) ( ) ( ; ) ( ; )

( ) ( ; ) ( ; )

oc loc oc loc

loc loc

x t y s y H x x t x y s y

y y t y y s y

   

 

  ¢⋅ - = ⋅ - ⋅ - +

¢+ ⋅ - ⋅ -
      (5) 

 
and  
 

( ) ( ) ( )

( ) ( )
0 0 0 0

0 0 0

( ; ) ( ; ) ( ) ( ; ) ( ; )

( ) ( ; ) ( ; ) .

oc loc oc loc

loc

x t x s x H x x t x x s x

y y t y x s x

   

 

¢⋅ - = ⋅ - ⋅ - +

¢+ ⋅ - ⋅ -

 
        (6) 

 
Applying the mean value operator to Equs.(5,6) we obtain the local, two-time, RE moment 
equations. Consider now that both , st  ¥ , and write the moment equations in terms of the 

elements of the covariance matrix given by Equ.(4), i.e.  
 

( )

( ) ( )
0 0

( )
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   
,                           (7) 
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C t s
H x C t s y C s t

t

¥

¥ ¥
¶ -
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¶

 

   
.    (8) 

 
From Equs.(7,8) it is deduced that the local correlation matrix (Equ.4) is scaled uniformly by 

2 2/
oc yy 


. Moreover, Equs.(7,8) are, respectively, of the same type as Equ.(8a,12a)_Sec 

(3.2.1) whose long-time solution is given by Equs.(7,8b)_Sec.(3.2.3). Applying them to the 
localized moment problem (Equs.(7,8)) we obtain  

 

0 10
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 ,                                    (9) 

and 
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x x y y
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ò ò .
(10) 
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Alternatively the localized moment problem could be directly solved in the lag-time domain, 
taking into consideration that  
 

 
( ) ( )( ) ( )
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t s

C t s dC

t d




¥ ¥

- =

¶
=

¶
   (11a,11b) 

 
and subsequently write Equs.(7,8) in the form 
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( ) ( )
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( )
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x y

x y y y

dC
H x C y C

d

¥
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t
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                           (12) 

 
and 
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( ) ( )
0 0
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x x
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dC
H x C y C

dt

¥
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t
t t .               (13) 

 
These equations are of the same type as Equs.(14,15)_Sec(5.3.1), the latter are solved 
analytically and their solution is given by Equs.(19,23)_Sec(5.3.1) respectively. Applying 
these to Equs.(12,13) we find  
 

0( ) ( )( )
0

const

( ) lim ( , ) ( ) ( )
oc oc oc ococ oc

H x u
x y y yx y t

.

C C t t y C u due 

 

   ¢ ⋅ +¥

 ¥
=

¥

-

¢= - = ⋅ ⋅ò    
  (14)  

 

( )
( )

0

2

0 ( )( )

0

( )
( ) ( )

2 ( ) oc ococ oc

H x v
y yx x

v

v

y
C C v dv

H x
e 


= + ¥

¢ ⋅ -¥

= - ¥

¢
= ´ ⋅

¢⋅ - ò   
                 (15) 

 
or equivalently for t s = -  
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In Athanassoulis, Tsantili & Kapelonis(Athanassoulis et al. 2013), it is proved that the two 
approaches coincide, that is the long-time limits described by Equs(9,10) are exactly 
Equs.(16,17). 
 
 The half-time derivative of the local RE cross-covariance 
 
Combining Equs.(7,16) we calculate the half-time derivative of ( ) ( )

oc ocx yC t s
 

¥ -  with respect to 

the excitation time t ,  
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as well as its limit as s t , 
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                                                                                                                                       (19) 

The above result will be used, in conjunction with an appropriate representation for the joint 
REPDF, to implement the correlation structure of the sought for joint REPDF, especially the 
long-time limit ( )( ) ( )lim /x y sts t

f t


¶ ¶a,b . Clearly, the obtained results can apply to any choice of 

the functions ( )H · , ( )·Y (see Section 4.2 for their definition). For instance, setting 
2 2

0 1 3 0 0 1 3 0( ) 3 , ( ) 3H x x y y¢ ¢= + ⋅ Y = + ⋅m m k k , Equs.(18,19) specialize for the cubic half 

oscillator given by Equ.(3a)_Sec(4.2). We shall now see how these formulae further 
particularize in case that the correlation structure of the random excitation is a lpGF or an 
sOU process (see Equ.(1)_Sec(3.2.4.a) and Equ.(18)_Sec(3.2.4.b) for the definition of the two 
processes).  
 

4.4.2. The case of lpGF excitation 
 

Since the moment Equs.(7,8)_Sec(4.4.1) are linear we can use the analytic calculations 
performed in Sec.(3.2.4) for the linear RDF (Equ.(1)_Sec(3.1.1)) under lpGF input to 

calculate the local RE cross-covariance ( ) ( )
oc ocx yC t s¥ -
 

 and the local response auto-covariance 

( ) ( )
oc ocx xC t s¥ -
 

 of the non-linear RDE Equ.(3a)_Sec(4.2) for the same input. More precisely, 

assuming that the local input is a lpGF random process, i.e.   
 

 ( )2 22 ( ) 2( ) ( / ) ( ) exp ( ) ,
oc oc oc ocy y y y yy yC t s C t s a t s  ¥- = ⋅ - = ⋅ - ⋅ -
   

                              (1) 

 
and setting 0( )A H x¢=  and 0( )B y¢=  to Equs.(11,15)_Sec(3.2.4), we obtain the following 

formulae for that the local RE cross-covariance and the local auto-covariance of the local 
problem: 
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Taking the limit s t , Equs.(2-3) reduce to the corresponding local covariances on the 
diagonal s t=  
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Now, using Equs.(19)_Sec(4.4.1) and Equs.(1,4), we can explicitly compute the half-time 
derivative ( )lim ( )

oc ocx ys t
C t s t¥


¶ - ¶

 
, when the excitation is a lpGF:  
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In Figs.3-5 the local correlation characteristics ( ) (0)
oc ocx yC
 

¥ , ( ) (0)
oc ocx xC
 

¥  and 

( )lim ( )
oc ocx ys t

C t s t¥


¶ - ¶

 
 are plotted against the “centers” 0y  for the four half-oscillators 

considered in Section 4.2 (Equs.(6-9)_Sec(4.2)), and for 3 values of correlation time, 
corr 0.93, 0.51, 0.33y y = , of the lpGF input process. For the local input variance we have 

assumed that 2 0.1
ocy =


. As we can see, and as expected, in the case that a linear half 

oscillator is considered (Case a in Figs.3-5), for the same input correlation time, all the three 
quantities have the same value at any “center 0y ” in the excitation space. In the linear/Non-
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Gaussian case (Case b in Figs.3-5) all three quantities exhibit local characteristics following 
the pattern of 2

0 1 0( ) 3y y ¢ = + ⋅  in the right hand side of Equs.(4-6). More precisely, the 

three quantities have a minimum at 0 0y =  as does 0( )y¢ (the minimum value is zero in this 
case (Equ.(7)_Sec(4.2) since 1 0 = ) . On the contrary, in the non-linear/Gaussian case (Case 

c in Figs.3-5) a maximum is developed at 0 0y = , due to the varying values of 
2

0 0( ) 1 0.6H x x¢ = - - ⋅  in Equs.(4-6). Let it be noted that the excitation “centers” 0y  form a 

monoton (increasing) function of 0x  on the RE curve (Fig.2a).  
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In the non-linear/non-Gaussian case (Case d in Figs.3-5) the above effects are combined, de-
pending on the correlation time of the excitation. For instance, in Fig.3d we can see that the 

RE cross-covariance in the least correlated case, corr 0.33yy = , is minimized at 0 0y = , similar 

to the linear/non-Gaussian case. On the contrary, in the most correlated case, corr 0.93yy = , the 

non-linearity prevails over the non-Gaussianity resulting in the creation of a local maximum 

Figure 3: The long time response-excitation covariance ( ) (0)
oc ocx yC ¥

 
 for different values of correlation 

time of the lpGF stochastic excitation against the excitation state space for: a. the linear/ Gaussian case b. 
the Linear/non-Gaussian Case. c. the non-linear/Gaussian case. d. the non-linear/non-Gaussian case.  

linear/Gaussian linear/non-Gaussian 

non-linear/Gaussian non-linear/non-Gaussian 
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at 0 0y = . In all examined cases in Figs.3-5, the local (co)variances ( ) (0)
oc ocx yC
 

¥ , ( ) (0)
oc ocx xC
 

¥ , 

increase with the correlation time of the lpGF input, as expected.  
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On the contrary, the half-time derivative ( ) ( ) /
oc ocx y

s t
C t s t¥


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 
, Fig.5, decreases with the 

correlation time in the considered cases of non-linear half oscilators. The latter is due to the 

fact that, while ( ) ( ) /
oc ocx y

s t
C t s t¥


¶ - ¶

 
is an increasing function of ( ) (0)

oc ocy yC ¥
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, it is also a 

decreasing function of ( ) (0)
oc ocx yC
 

¥  and a linear combination of the two (co)variances (see 

Equ.(19)_Sec(4.4.1)). 

 

 

 

Figure 4: The same as in Fig.3 for ( ) (0)
oc ocx xC ¥
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.  
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4.4.3. The case of sOU and OU excitation 

 

Similarly, we shall now use the results obtained in Section 3.2.4 to calculate the local RE 

cross-covariance, ( ) ( )
oc ocx yC t s¥ -
 

, and local response variance, ( ) ( )
oc ocx xC t s¥ -
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, of the non-

linear RDE (Equ.(3a)_Sec(4.2)) when the input is an sOU process, i.e.  
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      (1)   

 
For instance, setting 0( )A H x¢= , 0( )B y¢=  to Equs.(32,33,36)_Sec(3.2.4) we have: 
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Figure 5: The same as in Fig.3 for ( ) ( ) /
oc ocx y

s t
C t s t¥


¶ - ¶

 
 



SECTION: 4.4. A priori closure conditions                                                                                 |4-17 

 

 

( ) ( )
( )

( )
( ) ( )( ) ( )( )( )

0( ) ( )( ) 2 0 0
0 2 22 2

0 0 0 0

0 0 0 02 2
0 0

( )
0

( ) ( )
( ) ( )

( ) ( )

( ) cos sin
( )

( ) ( )

oc oc oc

oc oc

H x t s
x y y

t s

t s

x y
t s

a

a H x H x a
C t s y e

a H x H x a

H x a t s t s
H x a

C t s y

e

¢ ⋅ -¥

³

-

¥

<

- ⋅

⋅
éæ ö÷¢ ¢ç - +ê ÷ç¢ ÷- = Y ⋅ + ⋅ +êç ÷ç ÷ê ¢ ¢ ÷- + + +çè øë

ù
ú¢+ ⋅ - + ⋅ ⋅ - + ⋅ ⋅ - ú

¢ ú+ + û

¢- = Y ⋅

  

 

s
w w

w w w
w

( )
( ) ( )( )

2

0 0 02 2
0 0

( )

( ( )) cos ( ) sin ( )
( )

ocy

a t s

a H x t s t s
a H x

e ⋅ -

´

¢´ ⋅ - ⋅ ⋅ - + ⋅ ⋅ -
¢- +


s

w w w
w

 

                                                                                                                                         (2,3) 

( )( ) ( )( )
( )( )

( )( ) ( ) ( )]

0

0
0

22 2( )2 2
0 0( )( )

2 22 2
00 0 0 0

0 0

22 2
0 0

( )( ( ))
( )

( )( ) ( )

cos 2 sin( )

oc

oc oc

H x t

y H x t s

x x

t sa

y a a H xe
C e

H xa H x H x a

t s a t s

t s

e a H x

¢ ⋅

¢ ⋅ -¥

-- ⋅

¢¢ ⋅ - +Y ⋅ ⋅
= ⋅ - +

¢¢ ¢- + ⋅ + +

+ ⋅ ⋅ ⋅ - + ⋅ ⋅ ⋅ ⋅ -

é
ê- ê
êêë

é ¢- + +êë



 

ws

w w

w w ww

 

                                                                                                                                          (4) 

Then taking the limit s t  to Equs.(2-4), since the left and the right limit of ( ) ( )
oc ocx yC t s¥ -
 

 

(limits of Equs.(2-3), respectively) coincide, Equs.(2-4), reduce to: 
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Subsequently combining Equs.(19)_Sec(4.4.1) and Equs.(5,6), we get that the half-time 
derivative is given by the formula 
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.                            (7) 

 
Finally, setting 0 0 =  in Equs.(2-7) we obtain the corresponding results for the case that the   

excitation is an OU process. We write the ones that correspond to the limit case s t , (i.e. 
setting 0 0 =  to Equs.(5-7)) 
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In Figs.6-8, the local correlation characteristics ( ) (0)
oc ocx yC
 

¥ , ( ) (0)
oc ocx xC
 

¥ , 

( )lim ( )
oc ocx ys t

C t s t¥


¶ - ¶

 
 are plotted against the “centers” 0y , for the four cases of half-

oscillators considered in section 4.2. (Equs.(6-9)_Sec.(4.2)), and three values of the 

correlation time ( corr 0.93, 0.51, 0.33y y = ) of the OU process. The local input variance is 

2 0.1
ocy =


. All parameters have been selected to be identical with the ones discussed for 

lpFG input (Sec.(4.4.2)) for comparison reasons. In agreement with findings discussed 
previously, the local correlation characteristics develop a minimum at zero in the linear/non-
Gaussian case (Case b, Figs.6-8), a maximum at zero in the non-linear/Gaussian (Case c, 
Figs.6-8). These effects are combined in the non-linear/non-Gaussian case following a similar 

pattern as in the case that the input is a lpGF stochastic process to both ( ) (0)
oc ocx yC
 

¥ , 

( ) (0)
oc ocx xC
 

¥ , (Case d, Figs.6,7), this compatibility is lost in ( )lim ( )
oc ocx ys t

C t s t¥


¶ - ¶

 
(Case d, 

Figs.8), especially for large absolute values of the excitation “centers” 0y . In general all the 

local correlation characteristics are significantly affected by the shape of the input function 

(lpGf vs OU). The local covariances ( ) (0)
oc ocx yC
 

¥  and ( ) (0)
oc ocx xC
 

¥  obtained under OU random 

input are always lower than the ones obtained under lpGF input and around 0 0y = , this 

difference is as high as 18%. On the contrary, the local half-time derivatives 
( )lim ( )

oc ocx ys t
C t s t¥


¶ - ¶

 
 obtained under OU random input have always higher values than the 

ones obtained by the lpGF excitation with these differences being as high as 400%  (in the 

non-linear/non-Gaussian case) for large absolute values of the excitation “centers” 0y .  
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¥  for different values of correlation time of the OU stochastic excitation against the 

excitation state space for: a. the linear/ Gaussian case b. the linear/non-Gaussian Case. c. the non-
linear/Gaussian case. d. the non-linear/non-Gaussian case. 
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4.4.4. Local Gaussian REPDFs  

 

The formulae for the two-time moments in the long-time regime obtained in Sections 4.4.1, 
allow us to have a complete probabilistic characterisation of the linearized/localised RDE 
given by Equ.(3)_Sec(4.4.1) (we repeat here for convenience):  

( ) ( )0 0 0 0( ; ) ( ) ( ; ) ( ) ( ; )oc oc ocx t H x x t x y y t y  ¢ ¢= ⋅ - + ⋅ -    

where: 0 0 )( ,x y  are points of the RE-equilibrium curve defined in Section 4.4.1 

More precisely, if ( ) ( )y yC t s¥ -  is the long-time covariance of the random input of the non-

linear half-oscillator given by Equ.(1)_Sec(4.2) (we repeat here for convenience):  

( )( ) ( )( ); ;( ; ) 0x t y tt Hx   + == ,  

Figure 8: The same as in Fig.6 for ( )lim ( )
oc ocx ys t

C t s t¥


¶ - ¶

 
.  

linear/Gaussian 

linear/non-Gaussian 

non-linear/Gaussian 

non-linear/non-Gaussian 

a b. 

c. d.  
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then, for each choice of the scaling parameter 2

ocy


, the local, long-time, joint, REPDFs 

( )
( ) ( ) ( )

loc locx t y sf ¥ a,b  of the linearized/localised RDE, will be Gaussian pdfs centered around the 

0 0 )( ,x y -points (see also Section 3.4), i.e: 
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Moreover, the local RE cross-covariance ( ) ( )
oc ocx yC t s¥ -
 

 and local auto-covariance 

( ) (0)
oc ocx xC ¥
 

, given by Equs.(2,3), further particularize to Equs.(2,5)_Sec(4.4.2) when the 

stochastic input ( ) ( )y yC t s¥ -  is a lpGF and to Equs.(2,3,6)_Sec(4.4.3) when the input is a 

sOU or OU process. 
 

In Figs.9-11 the local joint REPDFs ( )
( ) ( ) ( )

loc locx t y tf ¥ a,b  (in the limiting case t s ) are plotted 

in the RE space for three half-oscillators considered in Section (4.2), i.e. the linear/Gaussian 
case (Fig.9), the non-linear/Gaussian case (Fig.10) and the non-linear/non-Gaussian case 
(Fig.11),  with lpGf excitation function and for two values of the excitation correlation time 

( corr 0.93, 0.33y y = ). The scaling parameter, 2

ocy 
s , that also defines the excitation variance of 

each local REPDF, has been selected to be equal to 1/10 of the global excitation variance 2
ys , 

i.e. 2 0.1
ocy


= . In each of the cases (Cases a, b of each Figure), five local REPDF’s are 

plotted, centered at five different points 0 0( , )x y of the equilibrium curve. Let it be noted that 

the “centers 0y ” are all points of the essential support of the input function ( ; )y t  . The 

characteristics of the local REPDFs, in the RE space, follow the local characteristics of the 
local (co)variances ( ) (0)

oc ocx yC ¥
 

, ( ) (0)
oc ocx xC ¥
 

 discussed in Figs.(3,4). More precisely, in the 

linear/Gaussian case (Fig.9) all the five Gaussian REPDFs are the same for each excitation 
correlation time, whereas, in both the non-linear/Gaussian case (Fig.10) and the non-
linear/non-Gaussian case (Fig.(11)) the (co)variances of each local REPDF are different, e.g. 
the local REPDF’s that are centered at zero have larger response variance and RE cross-
covariance than the other four local joint REPDFs. Another important feature, developed in 
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all the three cases of the half oscillators illustrated in Figs.(9-11), is that the (co)variances of 

the local REPDFs increase with the excitation time of the stochastic input corr
y y .  

 

 

a. b. 

 

 

a. b. 

 

 

 

 

 

 

 

 

a.  b. 

 

Figure 10: The same as in Fig.9 for the non-linear/Gaussian case. 

Figure 11: The same as in Fig.8 for the non-linear/non-Gaussian case. 
 

Figure 9: Local REPDFs plotted in the RE-phase space for the linear/Gaussian case with lpGF excitation 

and two cases of excitation correlation time corr 0.93y y = (a) and corr 0.33y y = (b) 
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a. b. 

 
 

Figure 13: The same as in Fig.12 for the non-linear/Gaussian case 
 

Figure 12: Local REPDFs plotted in the RE-phase space for the linear/non-Gaussian case with OU 

excitation and two cases of excitation correlation time corr 0.93y y = (a) and corr 0.33y y = (b) 

Figure 14: The same as in Fig.12 for the non-linear/non-Gaussian case. 
 

a.  b.  

a.  b.  
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In Figs.12-14 the local REPDFs ( )
( ) ( ) ( )

loc locx t y tf ¥ a,b  (in the limiting case t s ) are plotted in 

the RE space for three non-linear half-oscillators considered in Section (4.2), i.e. the 
linear/non-Gaussian case (Fig.12), the non-linear/Gaussian case (Fig.13) and the non-
linear/non-Gaussian case (Fig.14), with OU excitation function and for two values of the 

excitation correlation time ( corr 0.93, 0.33y y = ). The scaling parameter has been selected to be 

the same as in Figs.(9-11), i.e. 2 0,1
ocy =


s . In fact, comments for Figs. (10, 11) also apply to 

Figs.13,14 respectively. In the linear/non-Gaussian case, Fig.(12), the local REPDF given by 
Equ.(1) is not defined at  “ 0 0y =  center” since both the local (co)variances ( ) (0)

oc ocx yC ¥
 

, 

( ) (0)
oc ocx xC ¥
 

 are zero (see case b in Figs.(6-7)). Nevertheless, in Fig.12, we can see that the two 

local REPDFs centered close to zero have significantly decreased (co)variances in 
comparison with the four other local REPDFs plotted for each case of the correlation time 
(a,b in Fig.12). 

4.4.5. Comparison of local REPDFs with MC simulation results 

The analytically calculated local REPDFs ( )
( ) ( ) ( )

loc locx t y tf ¥ a,b , given by Equs.(1-3)_Sec(4.4.4), 

of the linearized /localised RDE given by Equ.(3)_Sec (4.4.1), which is repeated herewith for 
easy reference,  
 

( ) ( )0 0 0 0( ; ) ( ) ( ; ) ( ) ( ; )oc oc ocx t H x x t x y y t y  ¢ ¢= ⋅ - + ⋅ -   ,    (1) 

 

have been compared with by MC simulation results performed by Z. Kapelonis. The results 
of the MC simulation are obtained by generating samples functions ( )ocy t , of the local 
excita-tion ( ; )ocy t  , using the 1-D random-phase model. For instance, the local excitation 

pdf is centered at the “centers 0y ” and the local excitation covariance is a scaled version of 

the global, i.e., 2 2( , ) ( , ) /
oc oc oc y y yy y yC t s C t s =
  

. Subsequently, the non-linear equation,  
 

( ) ( )( ) ( ) ( ) ,oc oc ocx t x t y tH= + Y                                        (2a) 

(0 ) 0ocx = ,                                                                (2b)  

 

(that is, the deterministic version of the RDE, Equ.(1)_Sec.(4.4.1), with zero initial 
condition), is solved using ODE45, a MATLAB® implementation of the Dormant-Prince 
method (Dormand & Prince 1980), an explicit Runge-Kutta (4,5) formula. The MC pdf 
estimations are computed using the kernel density estimation via diffusion, introduced by 
Botev et al. (Botev et al. 2010) and coded in MATLAB® functions by the same author. 
 

In Figs.15,16 the local Gaussian REPDFs ( )
( ) ( ) ( )

loc locx t y tf ¥ a,b  obtained by the analytical 

solution of locally linear/ locally Gaussian problem (left column, cases a,c,e in Figs.15,16) are 
compared with local non-Gaussian REPDF’s obtained by MC simulations (right column, 
cases b,d,f in Figs.15,16). For each method of solution, three local REPDFs are plotted for 
three different “centers 0y ”. In Fig.15 the non-linear/Gaussian case is considered, whereas in 

Fig.16 the non-linear/non-Gaussian case. In all cases the stochastic input is a lpGF with 
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2 0.1
locy =  and corr 0.93y y = . In general, results obtained by the two methods compare pretty 

satisfactorily. 
 

 

 

 

a. b. 

c. d. 

e. f. 

 

 

 
 

Figure 15: Local REPDF’s obtained by the analytic solution of the local linear problem (left column) and MC 
simulations (right column)  on the non-linear problem. Here the non-linear/Gaussian case in considered. 
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a. b. 

c. d. 

e. f. 

 
 
 
 

 
 
 
 

Figure 16: The same as in Fig.15 for the non-linear/non-Gaussian case. 
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4.5. Numerical Solution of the REPDF evolution equation in the long-time-statistical 
equilibrium regime 

 

4.5.1. Kernel density representation for the joint response-excitation and marginal 
pdfs. 

 
The target of the numerical solution to the REPDF evolution equation, Equ.(1,2a,b)_Sec(4.3), 
supplemented by all appropriate auxiliary conditions about the RE correlation structure, is to 
find the time-independent (statistical equilibrium) joint REPDF 

( ) ( )( ) lim ( )
t

x y x y ttf f
¥

=a,b a,b . However, in order to cope with the appearance of the 

unusual, response-time (half-time) derivative in 
( ) ( )

( ) /x y st ts
f t


¶ ¶a,b we have to 

introduce a suitable representation of the lag-time dependent joint REPDF ( ) ( ) ( )x y stf a,b . The 

selection that has been made aims to provide the ability to embed the additional information 
concerning the local RE-correlation structure, acquired in Sec.(4.4), to the REPDF evolution 
equation. 
 

Setting ( ) ( ) ( ); ( )x y ttf -= tj a,b t a,b , the representation problem concerns functions of the 

type ( )( ; ) ;  a,b a,b , defined on (0)V´ ´  , where (0)V  is a neighborhood of 

zero, and having non-negative values. In addition, we assume that, for each (0)V Î , 

( )( ) ; a,b a,b  is continuous, it has continuous partial derivative with respect to a , 

tends uniformly to zero as 2 2+  ¥a b , and satisfy the integral constraint 

( )
2

; 1d d  =òò a,b a b



 (in order to be a pdf). As a function of the lag time, 

( );   a,b  should be continuously differentiable.  
 

The implementation of an efficient representation of functions ( ; ) a,b , preserving all 
above stated properties, is a difficult problem, without any supporting theoretical background. 
On the basis of previous (successful) experience in representing bivariate pdfs by 
superposition of Kernel Density Functions (KDFs) (Athanassoulis & Belibassakis 2002; 
Athanassoulis & Gavriliadis 2002), and in view of the fact that ( ) ( ) ( )x y stf a,b  is locally (in 

( )-a,b space) approximated and investigated in terms of a Gaussian pdf (see Section 4.4) 
we adopt the following representation, which will be subsequently called Kernel Density 
Representation (KDR):  
 

( ) ( ),( ) ( )
,

; , , ( )x y i j i j i jst
i j

f p t s   = ⋅ -åa,b a,bK ,      (1) 

 
where ( ) , ( , ),i j i j Î ´a b   , is a grid of points in the phase space ´  , each ( ),i ja b  

serving as the center of a Gaussian kernel density function ; , ,( ⋅ ⋅ )⋅a,bK , while  
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,

( 0 ) ( )
( )

( ) (0)
i i i j

i j j j

i j

C C t s
t s

C t s C

   
 

   


æ ö- ÷ç ÷ç- = ÷ç ÷ç - ÷çè ø
       (2)  

 
is the covariance matrix of ; , ,( ⋅ ⋅ )⋅a,bK . To ensure that (1) will always be a legitimate pdf, 

the following constraints are imposed on the unknown coefficients , ( , )i jp i j Î ´  .  

 

0 i jp£    and  
,

1i j

i j

p =å .                 (3a,b) 

 
In principle ( ) ( ) ( , )x y ttf - t a b , (0)V Î , is supported on the whole plane ´  . In the 

present work we focus on the main-mass part of ( ) ( )( ) ( )x y x y ttf f=a,b a,b , that is, on its 

form in its essential support essD . The latter is conventionally defined as the subset of ´   

where { }3( , ) 10 max ( , )x y x yf f -> » ⋅a b a b .  

 

{ }{ }3( , ) : ( , ) 10 max ( , )ess x y x yD f f -= Î ´ > » ⋅a b a b a b     

 
Thus, the approximation will be restricted in a compact subdomain  
 

min max min max, ,D    é ù é ù= ´ê ú ê úë û ë ûb ,   

 
of ´  , such that essD DÍ b  (tail questions are not considered herewith), and the indices 

( , )i j  will run over the finite set ( ) ( )N I N J´ , where { }( ) 1, 2, ... ,N I I=  and ( )N J  is 

similarly defined. Since essD  is not known a priori, some preliminary information is 

necessary in order to choose the computational domain D b . This information is provided by 

the long-time solution of the two-time RE moment equations (studied in Section 5.3), in 
conjunction with the essential support of the known excitation pdf ( )yf b .  
 

The known marginal pdf of the excitation ( )yf b  also admits a KDR which reserves the 

marginal compatibility (Athanassoulis & Belibassakis 2002). In fact, the excitation pdf admits 
the following marginal KDR, when the grid points ( ),i ja b , ( , )i j Î ´   are regularly 

spaced: 
 

( ) ( ) ( )( ) ,

,

( ) ; ,, ,;
jy i j j j js i j i j

i j j

f p pt s dK K
Î

= ⋅ = ⋅-Så åò


ba b

a

bb b b sba,b a a , 

            (4) 

where j i j

i

p p= å . 

The above representation generalizes to: 
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( ) ( ) ( ) ( )( ) ,

, ,

( ) ( ; , ),, , ( );
j iy i j i j j i j is i j i j

i j i j

f p pdt sK K
Î

⋅ ⋅= =-Så åò


ba b

a

bb b b sba,b a a  

            (5) 
when the 2D-Kernels span a non-regularly spaced grid, i.e. when to each response grid point 

ia  correspond ( )j i  Kernels in the RE space. 

 

4.5.2. Reformulation of the long-time limit form of the joint REPDF evolution equation 
using the KDR representation 

 
Introducing the KDR, given by Equ(1)_Sec(4.5.1) in Equ.(1,2a)_Sec(4.3), (the constitutive 
conditions, Equ.(2b,2c)_Sec(4.3) are automatically satisfied thanks to the defining properties 
of the KDR), we obtain the following reformulation of problem Equ.(1,2)_Sec(4.3):  
 

( )( ),

,

, ; , ,i j i j i j

tsi j
t
Kp t s   



¶

¶

é
ê
ê
êë

+-å a b   

( ) ( )( ){ },,( ) ( ) , ; , 0 0,i j i j ts
H K   



ù¶
ú+ + ⋅ =
ú¶ û

a b a b
a

       (1) 

, )( Î ´" a b    

 
under the marginal compatibility constraint  
 

( )
( ) ( ) ( )

,

; , ( ) 0
j ii j j i j i y

i j

p K f- =å bb b b s b ,          (2) 

 
where  

( ) ( )( )
( ) ,( ) ( ) , ,; , ;

j i i j i jj i j i t s dKK
Î

-= Sò a bb

a

b b ab b s a,b a


,         (3) 

 
is the induced marginal kernel density function.  
 

The local character of the introduced KDR allows us to supplement Equ.(1) with previously 
obtained information about the local correlation structure. Assuming Gaussian Kernels 
(although other choices are possible), i.e. 

( )( )
( )

( )

( )( )
, 2

, ;1
, , exp ,

2 2
; ij

i j i j
ij ij

E t s
t s

W t s W t s
K

é ù-ê ú
S - = -ê ú

⋅ ⋅ - ê ú⋅ -ê úë û

⋅a b

a b
a b a b

p
,   (5) 

where: 

( ) ( )( )
2

i i j j i jijW t s C C C t s- = ⋅ - -a a b b a b ,       (6a) 

( ) ( ) ( ) ( ) ( ) ( )2 2
, ; 2 .

j j i j i iij i i j jE t s C C t s C- = ⋅ - ⋅ - ⋅ ⋅ + ⋅b b a b a aa b a-a a-a b-b b-b    (6a) 

 
Then, after performing some algebra (see Appendix 6) in the first term of Equ.(1), we have:  
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( )( ) ( )
( )

( ) ( ) ( ) ( ) ( )

( )

( )

, 5

22 2

2

, ,
2

, ;
exp , (7)

2

;
i j

i i j j

j j i i i j

i j

i j

i j i j

s t ts ij

ij i j i j

ij

ij

C
t s C t s

t W

C C
W C C C

C

E t s

W

t
K

 

⋅¶
S - = - ⋅ ´

¶ ⋅ ⋅

ùæ ö⋅ ÷ç úé ÷ç´ - ⋅ - ⋅ + + ⋅ ⋅ ´÷ úê ç ÷çë ÷÷ úçè ø û
é ù-ê ú

´ -ê ú
ê ú⋅ê úë û

¶
¶ a b a b

a a b b
b b a a a b

a b

a b

a b a b
p

a-a b-b a-a b-b

a b

,

 
( ) ( )where 0 , 0

i i i i j j j j
C C C Cº ºa a a a b b b b . 

 

The kernel variances ,
i i j j

C Ca a b b  are adjusted to D b  and the resolution of the grid, aiming at 

a certain degree of overlapping between contiguous Kernels. The details of the 
implementation of the KDF parameters will be further discussed in Section 4.5.5. However, it 
is important to mention that the RE cross-covariance 

i j
Ca b  and the half-time derivative 

( ) /
i j ts

C t s t


¶ - ¶a b , appearing in Equs.(5-7), are estimated (approximated) using obtained 

information about the local correlation structure from the closest to ( , )i ja b  point of the 

equilibrium curve, which will be denoted as 0 0 ,
( , )

i j
x y   . That is, the solution of the 

localized/linearized problem at 0 0 ,
( , )

i j
x y    (Equ.(3)_Sec(4.4.1)) is used to a priori approxi-

mate ( ) /
i j ts

C t s t


¶ - ¶a b and 
i j

Ca b , rendering the localized/linearized problems a priori 

closure conditions to the reformulated REPDF evolution equation (given by Equs.(1,2)).  
 

On the basis of the KDR given by Equ.(1)_Sec(4.5.1), and the a priori approximation of the 
Gaussian KDF coefficients by the solution of the localized/linearized problem, the 
determination of the sought-for joint REPDF has been reduced to the determination of the 
coefficients i jp , ( , ) ( ) ( )i j I JN NÎ ´ , from the system of Equs.(1,2).  

 

4.5.3. Galerkin discretization of the problem  

 
Since the reformulated joint REPDF evolution equation, Equs.(1,2)_Sec(4.5.2), should be 
satisfied for every ( , ) Î ´a b   , a discretization is necessary in order to obtain numerical 
solutions. We shall use a Galerkin type, weighted-residual method (Kantorovich & Krylov 
1964)(Zeidler 1990) to find a discrete system of equations, approximately equivalent to Equs. 
(1,2)_Sec(4.5.2). Similar methods have been used by various authors for solving the steady 
state FPK equation. see e.g. (Bhandari & Sherrer 1968; Langley 1985; McWilliam et al. 
2000).  
 

Let us define the residuals  
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{ }( ) ( )( )2 ,
,

, ; ; , ,d i j i j i j i j
tsi j

R p p K t s
t 

é
ê= ê
êë

+¶ S -
¶å a ba b a,b a b  

( ) ( )( ),; , , 0(( ) ) i j i jKH¶ é ù+ + ⋅ Sê úë û¶
Y a ba b a,b b

a
a ,   (1a)  

{ }( ) ( )
( )1 ( ) ( )

,

; ; , ( )
j ii jd i j yj i j i

i j

R p p K f= -å b bb b b s b .      (1b)  

 
According to the weighted-residual method, the unknowns i jp , ( , ) ( ) ( )i j I JN NÎ ´ , are 

evaluated by imposing the condition that the projection of the residuals on a system of 
linearly independent functions is zero:  
 

{ }( )
2

2 ,, ; ( ) 0 , ( , ) ( ) ( )d i jR p K Ld d N N   ⋅ = " Î ´òò a b a,b a b



,  (2a)  

{ }( )1 ; ( ) 0 , ( )d i jR p d LN  ⋅ = " Îò 
 b b



,      (2b)  

 
where { }( ) 1, 2, ... ,N K K= , etc. There is quite a flexibility in choosing the functions 

, ( )  a,b  and ( ) 
 b , which we shall call subsequently Galerkin kernels. In the present 

work the Galerkin kernels are chosen to be Gaussian kernels, similar to the representation 
kernels ; , ,( ⋅ ⋅ )⋅a,bK . Combining Equs.(1) and (2), we obtain  
 

( ),
,

, ( ) ( )0 ,i j i j
i j

K LN Np G     Î ´"⋅ =å ,      (3a)  

( ),
,

( ) , ( )i j yj i
i j

p g f LG N
L

⋅ = " Îå 


 
l

l
l ,          (3b)  

 

where  
 

( 1 ) ( 2 )
, , ,i j i j i jG G G     = + ,          (4a)  

( )
2

(1)
, ,, ( ) ( ), ; , ,i j i j i j

ts

G d dK t s
t       


= ⋅

¶ -
¶òò a,b a ba b



,    (4b)  

( ) ( )( )( 2 )
, , ,

2

, ; , , 0 ( )( ) ( )i j i j i jG K d dH        é ù= + ⋅ ⋅ =ê úë û
¶
¶òò a b a b a,b a b
a



( ) ( )( ) (1)

, ,

2

, ; , , 0 ( , ) ,( ) ( ) i j i j d dH K       = - + ⋅ ⋅òò a b a b a b a b



 (4c) 

 
(1)

,
,( , )

( , )
 

  =
¶

¶
a b

a b
a

,         (4d)  

( )
( )( ), ( ) ( ) ( ); ,

j ij i j i j i dG K= ⋅Lò 
 

ll b b b bb b s


,       (4e) 
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( ) ( )( )y yg f df


 


⋅= ò


 bb



.         (4f)  

 
The specific structure of the equation to be solved enters in the coefficients 

( ) ,j i
G 
 ,

( )1
,i jG   , ( )2

,i jG    implicitly through Kernel coefficients which contain information 

from the family of the localized problems. Moreover ( )2
,i jG    is also explicitly dependent from 

the structure to be solved, e.g. for the case study that the RDE is a cubic half-oscillator 

described by Equ.(3a)_Sec(4.2), ( 2)
,i jG    specifies to 

 

( )( ) ( )

( 2 ) 3 3
, 1 3 1 3

(1)

, ,

2

( )

, ; , , 0 , .

i j

i j i j

G

d dK

 

   

   

   

= - ⋅ + ⋅ + ⋅ + ⋅ ´

´ ⋅

òò a a b b

a b a b a b
      (5) 

 
On the basis of the above discussion, the problem of calculating the expansion coefficients 

i jp  of the joint REPDF takes the following form:  

 
Find i jp , ( , ) ( ) ( )i j I JN NÎ ´ , satisfying the homogeneous equation  
 

,
,

( , ) ( ) ( )0 ,i j i j
i j

K LN Np G    = " Î ´⋅å ,    (6a) 

 
 

under the marginal compatibility constraint  
 

( ) ,
,

( ) , ( )i j yj i
i j

p g f LG N


 


⋅ = " Îå 
  ,          (6b)  

 

and the constitutive constraints  
 

,

1i j

i j

p =å ,       0 , ( , ) ( ) ( )i j i j I JNNp ³ " Î ´ .                  (6c)  

 

Recall that the problem, defined by Equ.(6), is supplemented by the family of the linearized/ 
Gaussianized problems, that embed information about the RE correlation structure to the 

Galerkin coefficient 
( ) ,j i

G 
 , ,i jG   . 

4.5.4. Analytic Computation of the Galerkin Coefficients.  
 

Assuming that the Galerkin kernels are Gaussian pdfs, i.e.
 

( )L 


l b , , ( )  a,b , are given by 

the formulae  
2( )1

exp
22 CC

é ù-ê ú= ⋅ -ê ú⋅⋅ ⋅ ê úë û
L

  





l ll l

l

b bb b
l

b b

p
,        (1) 
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( )
, , 2

, ;1
( ) , , exp

2 ( ) 2 ( )
;

E t s

W t s W t s
K

 
      

   





é ù

-ê ú
ê ú= = -
ê ú⋅ ⋅ - ⋅ -ê úë û

⋅
a b

a,b a,b a , (2) 

 
where  
 

( )
2

( ) ( )W t s C C C t s- = ⋅ - -
k k l l k lkl a a b b a b ,      (3a) 

2 2( , ; ) ( ) 2 ( ) ( ) ( ) ( )E t s C C t s C- = ⋅ - ⋅ - ⋅ ⋅ + ⋅
l l k l k kkl b b k a b k l a a la b a-a a-a b-b b-b  

            (3b) 
 
and, therefore, (applying Equ.(7)_App(4))  
 

( )
( )

( )

(1)

,

3 2

,( , )

( ) ( ) , ;
exp .

2 ( ) 2 ( )

( , )

C C E t s

W t s W t s

    

 

     

   

 





 = =

é ù
- ⋅ + ⋅ ê ú-

ê ú= ⋅ -
ê ú⋅ ⋅ - ⋅ -ê úë û

¶
¶

a b

a-a b- a b

a b
a

              (4) 

 

The Galerkin coefficients, (1)
,i jG    (Equ.(4b)_Sec(4.5.3)), ( )2

,i jG   ((Equ.(4c)_Sec(4.5.3) or 

Equ.(5)_Sec(4.5.3) for the cubic half oscillator) and , ( )j iG l  (Equs.(4e)_Sec(4.5.3)), can be 

analytically computed. The marginal Galerkin coefficient , ( )j iG l , after some algebraic 

calculations, takes the form: 
 

( ) ( )( ) ( )

2
( )

( ),

( )1
exp

2 ( )2
j i j ij i j i

j i
j i C CC C

G
é ù-ê ú= ⋅ -ê ú⋅ +⋅ ⋅ + ê úë û


l ll l

l

b b b bb b b b
l

b b

p
,      (5) 

 
where ( )j ib , 

( ) ( )j i j i
Cb b  are, respectively, the marginal mean value and variance of the 

representation Kernel ( ),, , ( ); i j i j t sK -Sa bba,b a (see Equ.(5)_Sec(4.5.1)). Let it be noted 

that the marginal Galerkin coefficients ,jG l , are compatible with the locality of the marginal 

KDR, since, as we can see in Equ.(5) , ( ), 0j iG 
l , as  j  ¥lb -b . 

 

Moreover, as shown in Appendix 7, the Galerkin coefficients (1)
,ijG kl , ( )2

,ijG kl , can be written in 

the equivalent form (see Equs.(4,15)_ App(7)) 
 

( )

( )
2

(1) 2 2
, 1,20 1,02 1,11 1,002 5

2 2
1,20 1,11 1,02 1,10 1,01 1,00

1
(6)

4 ( )

exp

i j

ij
ij

C

W W

Q Q Q Q Q Q d d

G
¶

= ⋅ ⋅ P ⋅ + P ⋅ + P ⋅ ⋅ + P ´
⋅ ⋅

é ù´ - ⋅ + ⋅ ⋅ + ⋅ + ⋅ + ⋅ +ê úë û

òò


kl
kl

a b
a b a b

p

a a b b a b a b

 

and 
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where: 

( )2 2( ) , ( ) , 8a,8b
i i j j i jijW C C C W C C C= ⋅ - = ⋅ -

k k l l k la a b b a b kl a a b b a b

1,20 1,02, , (8c,8d)
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The explicit calculation of the Galerkin coefficients is tedious. The details of calculations are 

presented in Appendices 8-9. Herewith we present the results: 
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Explicit Calculation of the Galerkin coefficient 
(1)
,ijG kl

   
The explicit calculation of the Galerkin coefficient (1)

,ijG kl

 

is performed by the application of 

integration formulas for the up to 2nd order polynomial exponential integral derived in 
Appendix 8. More precisely, in Appendix 8 it is proved that when 
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the following integration formula  holds true (see Equ.(1)_App(8)):
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Applying Equ.(11) to Equ.(6), after some extensive algebraic manipulations that we skip in 

this work, we find that the constrains given by Equ.(10a) and Equ.(10b), respectively, reduce 

to:  
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whereas the Galerkin coefficient (1)

,ijG kl is given by the explicit formula:  
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Let it be noted that as we can see in Equ.(13a) the Galerkin coefficients (1)

,ijG kl  reserve a local 

character, since (1)
, 0ijG kl , as i  ¥ka -a ,  j  ¥lb -b . 

 
Explicit Calculation of the Galerkin coefficient 

( )2
,ijG kl

   
Similarly, for the explicit calculation of the Galerkin coefficient ( )2

,ijG kl , integration formulae 

for the calculation of up to 4th order quadratic exponential integrals are applied to Equ.(7). 
More precisely, Equ.(1)_App(8) is used for the calculation of the quadratic exponential 
integrals and Equ.(2)_App.(9) for the calculation of 3,4-polynomial/quadratic-exponential 
integrals. Being laborious the involved substitutions are directly performed in Matlab®. Let it 
be noted that the local character of the KDR is retained to the Galerkin coefficient ( )2

,ijG kl  also. 

4.5.5. Solution of the half oscillator problem 
 

The problem P  defined by Equs.(6)_Sec(4.5.3) is solved as a constraint minimization 
problem, using the LSQLIN function of MATLAB®. As a rule, it is assumed that K I³  and 
L J³ , and thus, the number of equations K L´  is greater than the number of unknowns 
I J´ . The numerical solution involves three steps. In the first step representation kernels and 
Galerkin kernels are identified. Concerning the representation kernels, their centers 

, ,i jba ( ) , ( )i j JN NÎ ÎI , are placed on a regularly spaced grid over the computational 
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domain Db . The latter is defined as the Cartesian product of the essential supports of the 

two marginal density functions D D D = ´b b . The essential support of the excitation 

density ( )Db  is known, whereas the essential support of the response density ( D ) is initially 

estimated by means of the long-time equilibrium state global variance of the response (0)xxC¥ . 

This is accomplished by the direct solution of the two-time RE moment equations in the long-
time, presented in Chapter 5. . The essential support, Da , of the excitation is assumed to be  

 

( )4.5 (0) , 4.5 (0)xx xxD C C¥ ¥» - ⋅ ⋅a .                  (1) 

 
(0 )xxC¥  can be calculated using Equs.(24)_Sec(5.3.1) for any smoothly correlated stochastic 

input. Explicit formulas providing (0)xxC¥  when the excitation is a lpGF or an sOU process or 

are provided by Equs.(6,14)_Sec(5.3.2) (for 0ym¥ = ), respectively.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The kernel variances ,

i i j j
C Ca a b b  are adjusted to Db  and the resolution of the grid, aiming at 

a certain degree of overlapping between contiguous Kernels. For each examined case the RE 
equilibrium curve is found by solving Equ.(1)_Sec(4.4.1). The Kernel covariances and half-
time derivatives take values from the analytically calculated local correlation structure of the 
closest point of the RE equilibrium curve as it is shown in Fig.17a for the non-
linear/Gaussian case (see Equ.(6)_Sec(4.2)), and in Fig.21a for the non-linear/non-Gaussian 
case (see Equ.(8)_Sec(4.2)). More precisely, the kernel covariances 

i j
Ca b , 

( ) , ( )i j JN NÎ ÎI , are defined by means of the formula  
 

( ) ( 0 )
i j i i j jloc

C C C¥= ⋅ ⋅a b a a b br ,                   (2) 

 

Figure 17: Non-linear/Gaussian case: a. The regularly spaced grid over the computational domain Db  

where the representation Kernels are placed. Each Kernel’s RE correlation structure is defined by the 
local correlation structure of the closest point of the equilibrium curve. b. After one iteration the grid 
densifies around the high probability mass area.  
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where the local correlation coefficient ( ) ( 0 )
loc

 ¥  is calculated from the localized problem 

studied in Section 4.4, at the point 0 0 ,
( , )

i j
x y   and is given by the equation: 
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and as explained in Section 4.2 particularize to Equs.(4,5)_Sec(4.4.2) for a lpGF excitation 
and Equs.(5,6)_Sec(4.4.3) for OU excitation. Let it be noted that the correlation coefficient 

( ) ( 0 )
loc

 ¥  is independent from the scaling parameter 2

ocy


, that defines the variance of the 

localized excitation , i.e. 2 ( ) 2( ) ( ) /
ococ oc

y y yyy y C t sC  ¥¥ = -
 

. 
 

The long-time limit lim ( ) /
i j i js t

C C t s t


¶ = ¶ - ¶a b a b , necessary in order to fully specify the 

coefficients ,i jG   , is estimated from the localized approximation given by 

Equs.(19)_Sec(4.4.1) for any smoothly correlated stochastic excitation 
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            (6) 
 
by Equ.(6)_Sec.(4.4.2) for lpGF and by Equ.(7)_Sec.(4.4.3) for sOU stochastic excitation. For 
the calculation of the half-time derivative the scaling parameter defining the local excitation 

variance ( ) 2(0)
oc oc ocy y yC ¥ =
  

, is independent from the Kernel variances that are defined in 

terms of the of the overlapping between contiguous Kernels and is selected to be equal with 

the global excitation variance, i.e. 2 2

oc yy =


.  
 

In the present work the Galerkin Kernels have been selected to be identical with the 
representation Kernels. Other choices are also possible, and some of them have been tested 
successfully in various numerical experiments performed. The marginal Galerkin Kernels 
were selected to span the computational domain of the excitation density, with standard 
deviation ensuring the necessary overlapping between adjacent kernel, enabling an accurate 
and smooth approximation of the known density ( )yf b . Having defined all parameters 
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appearing in the representation and Galerkin kernels, all Galerkin coefficients ,i jG   , 

( ) ,j i
G 
 , ( )yg f

 
, can be calculated, and thus we can proceed to the second step, namely, 

the numerical solution of problem Equ.(6)_Sec(4.5.3). This is performed using LSQLIN, the 
constrained least squares MATLAB® function. The solution yields i jp , from which a first 

estimate of the joint REPDF is obtained. Then, we proceed to the third step. Now, the 
solution obtained in the second step is exploited in order to estimate the essential support 

essD , to redistribute the kernels, and redefine the kernel parameters. More precisely, kernel 

centers densify where most probability mass is concentrated, space out at the low-mass areas, 
and vanish completely outside essD  (see Figs.17b,21b) for the non-linear/Gaussian and non-

linear/non-Gaussian case, respectively). The kernel variances ,
i i j j

C Ca a b b  are adjusted to the 

new grid, and Kernel parameters ,
i j i j

C C¶a b a b  are calculated again in the same way as in step 

one. Similarly, Galerkin Kernels are redefined using the new centers and new parameters of 
the representation kernels. With the new parameter-set, problem Equ.(6)_Sec(4.5.3)., is 
solved again. Within usually one or two iterations, the essential support converges, and the 
final solution ( )x yf a,b  is extracted. This solution compares pretty good with the 

corresponding one calculated by means of the MC method.  
 

The final ijp  estimations can be used in the representation formula, Equ.(1)_Sec(4.5.1), for 

the evaluation of the joint REPDF. The marginal pdfs can be calculated by the integration of 
the joint density.  
 

4.5.6. Results  
 

Numerical results are presented for three cases of the half oscillator discussed in Section 4.2., 
namely, the non-linear/Gaussian, the non-linear/non-Gaussian and the linear/non-Gaussian 
case (see Equs.(6,8,7)_Sec(4.2), respectively). The correlation structure of the excitation is 
lpGF and two different correlation times are considered for each half oscillator. The joint 
REPDFs ( )x yf a,b  and the marginal pdfs ( )xf a   derived by the numerical solution of the 

constraint optimization problem P  (hereby referred to as RE solution) are systematically 
compared with the results obtained by a conventional Monte Carlo scheme developed by Z.G. 
Kapelonis (hereby referred to as MC simulation).  
 

In Figs.18-19, the joint REPDF are shown, as using RE theory and MC simulations, 
respectively, for the non-linear/Gaussian case. Two different correlation times of the lpGF are 

considered, i.e. corr 0.93y y = sec (case a) and corr 0.4y y = sec (case b). Figs.18-19 also depict the 

marginals obtained by the two methods. The absolute difference between the joint REPDFs 
obtained by the MC and RE method for cases a, b is shown in Fig.20 (case a, b, respectively). 
This difference is, in general, less than 5% in all cases, except for the high probability areas in 
the strongly colored case where it locally reaches a maximum of 15%. In general, the pdfs 
shapes, as obtained by the two methods, are very similar. In addition, the response pdfs 
calculated by the two methods, compare very satisfactorily, regardless of the colour strength 
with the difference in the response marginal been less than 2%. An interesting and somewhat  
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Figure 19: Non-linear/Gaussian case: REPDFs as calculated the MC solution for the same cases as in 
Fig.18. The projections depict the marginal pdfs.  
 
 

Figure 20: Non-linear/Gaussian case: The absolute difference between RE and MC solutions 
illustrated in Figs.18 and 19, respectively. Cases a, b are defined as in Fig.18.  
 

Figure 18: Non-linear/Gaussian case: REPDFs as calculated using the RE solution for lpGF stochastic 

input with correlation time corr 0.93y y = (case a) and corr 0.4y y =  (case b). The marginal projections depict 

both MC (solid lines) and RE solutions (dashed lines). 
 

a. b. 

a. b. 

a. b. 
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surprising feature, confirmed by both methods, is that, in the case of high values of corr
y y , 

the joint REPDF becomes bimodal, although the examined system is mono-stable (the 
corresponding potential is 2 4/ 2 / 4x x- - ). This leads to a quite flattened marginal response 
PDF. Note that the bi-modality of the joint REPDF, as well as the response PDF, is a well-
documented feature of the bi-stable systems (Jung & Risken 1985)(Grigolini et al. 1988). 
 

Similar results have been obtained in the non-linear/non-Gaussian case. In Figs.22-24, the 
joint REPDF are shown, as using RE theory and MC simulations for the non-linear/non-

Gaussian case under lpGF input with corr 0.93y y =  (case a) and corr 0.4y y =  (case b). The RE 

solution is provided by a superposition of the representation Kernels whose RE correlation 
structure is defined by the correlation structure of the closest point in the equilibrium curve as 
shown in Fig.21. Comments on Figs.18-20 also apply here. Moreover, we can see that in this 
case the presence of non-Gaussian excitation results in joint REPDFs (Figs.22,23) with 
enhanced tales in comparison to the previous case that the excitation is Gaussian (Figs.18,19). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Response PDF 

Figure 22: Non-linear/non-Gaussian case: REPDFs as calculated using the RE solution , for lpGF 

stochastic input with correlation time corr 0.93y y = (case a)and corr 0.4y y = (case b). The marginal 

projections depict both MC (solid lines) and RE solutions (dashed lines) 

Figure 21: Non-linear/non-Gaussian case: a. The regularly spaced grid over the computational domain 

Db  where the representation Kernels are placed. Each Kernels RE correlation structure is defined by 

the local correlation structure of the closest point of the equilibrium curve. b. After on iteration the grid 
densifies around the high probability mass area.
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In Figs.25-27 results are demonstrated for the linear/non-Gaussian case for lpGF input with 

excitation correlation time corr 0.51y y =  (case a) and corr 0.33y y =  (case b). The absolute difference 

between the RE (Fig.25) and MC method (Fig.26) is in general, less than 5% in all cases, 
except for the high probability areas in the strongly colored case where it locally reaches a 
maximum of 20%. The latter, local, high mismatch should be associated, with the local 
steepness of the corresponding PDFs. It is interesting to notice the strong deviations of the 
calculated PDFs from the “equivalent” 2D Gaussian distributions, for all the examined cases. 
The same also holds for the response densities, as intuitively expected.  

 
 

Figure 24: Non-linear/non-Gaussian case: The absolute difference between RE and MC solutions illustrated in 

Figs.22 and 23 respectively, for lpGF input with correlation time corr 0.93y y = (case a) and corr 0.4y y = (case b).  

Figure 23: Non-linear/non- Gaussian case: REPDFs as calculated the MC solution for the same case 
as in Fig.22. The projections depict the marginal pdfs. 

Figure 25: Linear/non-Gaussian case: REPDFs as calculated using the RE solution for lpGF stochastic 

input with correlation time corr 0.51y y = (case a) and corr 0.33y y = (case b). The marginal projections 

depict both MC (solid lines) and RE solutions (dashed lines). 

a. 

a. 

b. 

b. 

a. b. 
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5.1. Introduction  
 
In this Chapter, we will present the formulation and solution of two-time ( , )t s , response-
excitation (RE) moment equations for the computation of the evolution of the response mean 
value ( )xm t , response-excitation cross-covariance ( , )x yC t s  and response auto-covariance  

( , )x xC t s  of a cubic half oscillator, excited by colored (Gaussian or non-Gaussian) noise.  
 

The derivation of these moment equations is, similarly to the linear case, straightforward  
based on the repeated use of the dynamical equation multiplied by the excitation or the 
response function and been averaged. However, unlike the linear case, the non-linearity 
makes the moment system an infinite hierarchy of moment equations that must be closed at a 
certain level. Moreover, the presence of two time variables that is essential in order to capture 
the non-local in time effects of the colored stochastic input, makes the system not closed in 
time as well.  
 

In the monostable case, to obtain a moment closure, a standard Gaussian closure assumption      
will be invoked. The latter will lead us to a system of two-time RE moment equations for 

( , )x yC t s , ( , )x xC t s , ( )xm t  that is closed in terms of moments but not closed in terms of 

time. To obtain a time closure an exact time-closure condition will be used for the one-time 
moments ( , )x yC t t , ( , )x xC t t , ( )xm t . Let it be noted that the extra condition for the one-

time moments (see Equ.(22)_Sec(3.2.1)) is not required in order to obtain a time closure in 
the linear case. 
 

The two-fold closure of the two-time RE moment equations for the non-linear half oscillator 
will be presented both in the transient state as well as directly in the long-time limit. 
Subsequently, the solution is presented in the long-time only. As we have already discussed in 
Chapter 4, the long-time solution of the two-time RE moment equations is used to define the 
computational domain of the numerical scheme, for the solution of the REPDF evolution 
equation in the long-time. However, the two-time RE moment equations have also been 
numerically solved in the time domain, by the use of a two-scale iterative scheme. (see 
Athanassoulis, Tsantili & Kapelonis, 2013a). 
 

Finally, a first idea for a bi-Gaussian moment closure scheme that generalizes the two-time 
RE moment equations for the bi-stable case will be discussed. The obtained equations will be 
solved directly in the long-time for an example case. The solution requires the use of auxiliary 
information, obtained by MC simulations, concerning the mean values of the two stable 
modes around which the probability mass is concentrated. Results are subsequently discussed.  
 
 

5.2. Two-time RE moment equations. The monostable case  

 
In this section we shall develop two-time RE moment equations for a monostable non-linear 
half oscillator given by Equ.(3)_Sec(4.2). In consistence with the linear case we shall first 
develop a set of differential equation, for up to second order moments of the non-linear half 
oscillator i.e. ( ), ( , ), ( , )x xy xxm t R t s R t s . Here

 
moment equations will be also developed in 

terms of the central moments ( , ), ( , )xy xxC t s C t s .  
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5.2.1. Derivation of the two-time RE moment equations  
 
Applying the mean value operator to Equ.(3)_Sec(4.2), we obtain a differential equation for 
the mean value of the response 

 

2 1 2 1
1 3 1 3

( )
( ) ( , ) ( ) ( , )x

x x x y y y

d m t
m t R t t m t R t t

dt
   = ⋅ + ⋅ + ⋅ + ⋅ ,    (1a)  

 

0 0( )xm t m= .           (1b)  

 
Multiplying Equ.(3)_Sec(4.2) subsequently by ( ; )y s q , and ( ; )x s q , then applying the mean 
value operator, we get the following differential equation for the correlation functions 

( , )x yR t s  and ( , )x xR t s :  

 

3 1 3 1
1 3 1 3

( , )
( , ) ( , ) ( , ) ( , )x y

x y x y y y y y

R t s
R t s R t s R t s R t s

t
   

¶
⋅ + ⋅ + ⋅ + ⋅

¶
= ,  (2a)  

00 0( , ) ( ) ( ; ) ( )Ex y x yR t s x y s m m s  é ù= = ⋅ê úë û⋅      (2b) 

 
and  
 

3 1 1 3
1 3 1 3

( , )
( , ) ( , ) ( , ) ( , )x x

x x x x x y x y

R t s
R t s R t s R s t R s t

t
  

¶
⋅ + ⋅ + ⋅ + ⋅

¶
= ,  (3a)  

[ ]
00 0( , ) ( ) ( ) ( ; )Ex x x xR t s R s x x s  º = ⋅ .      (3b) 

 
The initial condition (3b) is not known, since it depends on the unknown response ( ; )x s  . 

We have, thus, to derive an equation permitting us to calculate the one-time moment 

00( , ) ( )x x x xR t t R t= . Such an equation is easily obtained by multiplying Equ.(3)_Sec(4.2) 

by 0 ( )x   and taking mean values:  

 

0

0 0 0 0

3 2 1
1 3 1 3

( )
( ) ( ) ( ) ( , )

x x

x x x x y x y y x

d R t
R t R t m t m R t t m

dt
= ⋅ + ⋅ + ⋅ + ⋅m m k k .   (3c)  

 
The initial condition for the latter equation is the known quantity  
 

[ ]
0 0 00 0 0( ) ( ) ( )Ex x x xR t x x R  = ⋅ = .        (3d)  

 

Since, ( , ) / ( , ) /x x x xs t
R t s t d R t t dt

=
¶ ¶ ¹ , differential equations (2) and (3) cannot be 

applied (as they stand) to the time-diagonal case s t= . It is possible, however, to obtain a 

differential equation for ( , )x xR t t .This can be done by multiplying Equ.(3)_Sec(4.2) by 
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2 ( ; )x t q  and then applying the mean value operator. The resulting equation and the 
corresponding initial conditions are: 
 

3 1 1 3
1 3 1 3

( , )
2 ( , ) ( , ) ( , ) ( , )2 2 2x x

x x x x x y x y

R t t
R t t R t t R t t R t t

t
  

¶
⋅ ⋅ + ⋅ + ⋅ + ⋅

¶
= ⋅ ⋅ ⋅ ,(4a)

 

 
0 00 0( , )x x x xR t t R= .         (4b) 

 
Let it be noted that Equ.(4a) will be proved essential in order to obtain a time closure of the 
two-time RE moment equations (in Section 5.2.3). Since, after the moment closure 
(performed in Section 5.2.2.), the equations that will be obtained for the two-time RE 
moments will include the (also unknown) time-diagonal moment. The corresponding equation 
was not required to obtain a time closure in the linear case (see Equ.(22)_Sec(3.2.1), since in 
this case such a dependence between the two-time and the diagonal moments, does not exist. 
 

The two-time RE cross-covariance ( , )x yC t s  and two-time response auto-covariance 

( , )x xC t s , as well as the response variance ( , )x xC t t  can be calculated from the corresponding 

correlations and the system’s mean values using the equations: 
 

( , ) ( , ) ( ) ( )x y x y x yC t s R t s m t m s= - ,                              (5a) 

( , ) ( , ) ( ) ( )x x x x x xC t s R t s m t m s= - .                              (5b) 

 
Nevertheless, we shall also develop equations for the evolution of the mean value of the 
response, the two-time RE cross-covariance, the two-time response auto-covariance.  
 

It can be easily proved that the following identities hold true: 
 

( ) ( ) ( )3 23 2 3( ; ) ( ; ) ( ) 3 ( ) ( ; ) ( ) 3 ( ) ( ; ) ( ) ( )x x x x x xx t x t m t m t x t m t m t x t m t m t   = - + - + - + , (6a) 

( ) ( ) ( )
3 23 2 3( ; ) ( ; ) ( ) 3 ( ; ) ( ) 3 ( ) ( ; ) ( ) ( )y y y y x yy t y t m t m y t m t m t y t m t m t   = - + - + - + .   (6b) 

 
Substituting (6a), (6b), in Equs.(3)_Sec(4.2) we get: 
 

( ) ( ) ( )

( ) ( ) ( )

1 1

3 2 2 3
3

3 2 2 3
3

( ; ) ( ; ) ( ; )

( ; ) ( ) 3 ( ) ( ; ) ( ) 3 ( ) ( ; ) ( ) ( )

( ; ) ( ) 3 ( ; ) ( ) 3 ( ) ( ; ) ( ) ( ) ,

x x x x x x

y y y y x y

x t x t y t

x t m t m t x t m t m t x t m t m t

y t m t m y t m t m t y t m t m t

= ⋅ + ⋅ +

é ù+ ⋅ - + - + - + +ê úë û
é ù+ ⋅ - + - + - +ê úë û

 q m q k q

m q q q

k q q q

 (7a) 

00 ( )( ; )x xt  = .          (7b) 

 
Applying the mean value operator  in Equ.(7) we get a differential equation for the response 
mean value in terms of central moments: 
 

( ) ( ) ( )( )

( ) ( ) ( )( )

2 3 0
1 2 3

2 3 0
1 2 3

( )
( ) ( ) , 3 ( ) ,

( ) ( ) , 3 ( ) , ,

x
x x x x x x x

y y y y y y y

d m t
m t m t C t t m t C t t

dt

m t m t C t t m t C t t

  

  

= + ⋅ + ⋅ + +

+ + ⋅ + ⋅ +

           (8a) 
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0 0( )xm t m= .          (8b)
 

 

To obtain a differential equation for the two-time RE-cross covariance ( , )x yC t s  we first 

multiply Equ.(7) with ( ; ) ( )yy s m s-q  to obtain: 

 

( ) ( ) ( )( )

( ) ( )(
( ) ( )

( ) ( )( ) ( ))
( )

1 1

3

3

2

2 3

3

3

( ; ) ( ; ) ( ) ( ; ) ( ; ) ( ) ; ( ; ) ( )

( ; ) ( ) ( ; ) ( )

3 ( ) ( ; ) ( ) ( ; ) ( )

3 ( ) ( ; ) ( ) ( ; ) ( ) ( ) ( ; ) ( )

( ; ) ( ) ( ; )

y y y

x y

x x y

x x y x y

y

x t y s m s x t y s m s y t y s m s

x t m t y s m s

m t x t m t y s m s

m t x t m t y s m s m t y s m s

y t m t y s m

- = ⋅ - + ⋅ -

+ ⋅ - - +

+ - - +

+ - - + -

+ ⋅ - -

 q q m q q k q q

m q q

q q

q q q

k q q( )(
( ) ( )

( ) ( )( ) ( ))

2

2 3

( )

3 ( ) ( ; ) ( ) ( ; ) ( )

3 ( ) ( ; ) ( ) ( ; ) ( ) ( ) ( ; ) ( ) ,

y

y y y

y y y y y

s

m t y t m t y s m s

m t y t m t y s m s m t y s m s

+

+ - - +

+ - - + -

q q

q q q

                                  (9a) 

( ) ( )00 ( )( ; ) ( ; ) ( ) ( ; ) ( )y yx xt y s m s y s m s  =- - .     (9b) 

 
Taking mean values in Equ. (9) and  making use of the formula: 

 

 

( )( ) ( )
( , )

( ; ) ( ) ( ; ) ( ) ( ; ) ( ; ) ( )x y
x y y

C t s
E x t m t y s m s E x t y s m s

t
 

¶ é ù é ù= - - = -ê ú ê úë û ë û¶
q qq q q q ,        (10)

 
 
we have: 
  

( )
( )

1 1

3 1 2 1 2
3

3 1 2 1 2
3

( , )
( , ) ( , )

( , ) 3 ( ) ( , ) 3 ( ) ( , )

( , ) 3 ( ) ( , ) 3 ( ) ( , ) ,

x y
x y y y

x y x x y x x y

y y y y y y y y

C t s
C t s C t s

t

C t s m t C t s m t C t s

C t s m t C t s m t C t s

 





¶
⋅ + ⋅ +

¶

+ ⋅ + + +

+ ⋅ + +

=

(11a) 

0( , ) 0 .x yC t s =                    (11b)
 

 
Similarly, multiplying Equ.(7) with ( ; ) ( )xx s m s-q , then taking mean value we get a differ-

ential equation for  the two-time response auto-covariance, i.e: 
 

( )
( )

1 1

3 1 2 1 2
3

1 3 1 2 2
3

( , )
( , ) ( , )

( , ) 3 ( ) ( , ) 3 ( ) ( , )

( , ) 3 ( ) ( , ) 3 ( ) ( , ) ,

x x
x x x y

x x x x x x x x

x y y x y y x y

C t s
C t s C s t

t

C t s m t C t s m t C t s

C s t m t C s t m t C s t









¶
⋅ + ⋅ +

¶

⋅ + + +

⋅ + +

=

+

+
      (12a) 
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0 00 0( , ) ( ) ( ) ( ; ) ( ) ,Ex x x x x xC t s C s x x s m m s  é ùº = ⋅ - ⋅ê úë û              (12b)  

 

In order to calculate the one-time moment 
0 00( , ) ( )x x x xC t t C t=  we multiply Equ.(7) with 

00 ( ) xx m-q . Then taking mean values we obtain: 

 

( ) ( )0

0 0 0

2 3 2
1 3 3

( )
3 ( ) ( ) ( ) 3 ( ) ( ) ,

x x

x x x xx x x x

dC t
m t C t C t m t C t

dt
  = + ⋅ + ⋅ +         (12c)  

0 0 00( )x x x xC t C= ,                    (12d)  

 
Multiplying Equ.(7) with 2 ( ( ; ) ( ))xx t m t⋅ -q  , then take mean values we obtain an equation 

for the evolution of the one-time response variance, i.e: 
 

( ) ( )

( ) ( )

2 2
1 3 1 3

31 2 1 1 3 1 2
3 3

( , )
2 3 ( ) ( , ) 2 3 ( ) ( , )

2 ( , ) 3 ( ) ( , ) 2 ( , ) 3 ( ) ( , ) ,

x x
x x x y x y

x x x x x x y y x y

dC t t
m t C t t m t C t t

dt

C t t m t C t t C t t m t C t t

= ⋅ + ⋅ + ⋅ + ⋅ +

+ ⋅ ⋅ + + ⋅ ⋅ +

m m k k

m k
 
(13a) 

 

0 00 0( , )x x x xC t t C=                     (13b) 

 
The five differential equations (8), (11a), (12a), (12c) and (13a) will be considered as a 

system of equations for the five moment functions ( ) , ( , ) , ( , ) , ( , )x x y x x x xm t C t s C t s C t t . 

Unlike the linear case, these contain higher-order moments, like 31 2 1( , ) , ( , )x x x xC t s C t s . On 

the other hand, as in the linear case, two of them, namely Eqs. (11a) and (12a), being 
differential equations only with respect to the response time t , contain a second time variable 
s , acting as a parameter. This fact renders them in the examined here non-linear case not 
closed in time as well. We shall elaborate closure schemes in both respects. As far as the time 
closure is concerned we shall present two approaches, one for the transient state and one that 
closes the problem directly in the long-time statistical equilibrium state. 
 

Lastly, in this section we shall comment on an apparently controversial feature of Equ. (12a), 
describing the evolution of ( , )x xC t s . In this equation, terms containing ( , )x yC s t , 

1 2 ( , )x yC s t  and 1 3 ( , )x yC s t  are included in the last term of right-hand side, bringing into play 

an apparently non-causal dependence: the effect of ( ; )y t   on ( ; )x s  , for s t< . This 
apparent controversy is resolved in the next section, by appropriately combining Equs. (11a) 

and (12a), resulting in a dependence of ( , )x xC t s  upon the whole history of the data moment 

( , )y yC t , for all 0 ,t t é ùÎ ê úë û . (See more on this on Athanassoulis, G. A., Tsantili, I. C., 

Kapelonis 2013). 
 
 



SECTION: 5.2. Two-time moment equations. The monostable case                                                                 |5-7 

 

 

5.2.2. Moment Closure of the two-time RE moment equations  
 
To eliminate higher-order moments from the right-hand side of Equs.(8,11-13)_Sec(5.2.1), 
use will be made of the Gaussian closure assumption. This is the simplest moment closure 
assumption, introduced by Goodman and Whittle in the 50’s and extensively used thenceforth 
in the study of random vibrations and more general stochastic dynamical systems (Lutes & 
Sarkani 1997; Socha 2008).  
 

More precisely, assuming that the joint two-time REPDF ( ) ( ) ( )x y stf a,b  and the joint two-

time response density 
1 2( ) ( )

( )x x st
f a ,a  are Gaussian all the third-order central moments 

vanishes, and the forth-order ones are expressed by means of second-order central moments, 
in accordance to Isserlis’ Theorem (Isserlis 1918):  
 

31 ( , ) 3 ( , ) ( , )x x x x x xC t s C t t C t s= ⋅ ⋅ ,                   (1a)  
3 1 ( , ) 3 ( , ) ( , )x y x x x yC t s C t t C t s= ⋅ ⋅ ,                   (1b)  
1 3 ( , ) 3 ( , ) ( , )x y y y x yC s t C t t C s t= ⋅ ⋅ ,                     (1c)  
3 1 ( , ) 3 ( , ) ( , )y y y y y yC t s C t t C t s= ⋅ ⋅ ,                     (1d)  

( )
00

3 ( ) 3 , ( )x x x xx xC t C t t C t= ⋅ ⋅ .        (1e) 

 
Introducing the approximations (1) into Equs.(8, 11-13)_Sec(5.2.1), we obtain:  
 

( )

( )

2
1 3 3

2
1 3 3

( )
( ) 3 ( , ) ( )

( ) 3 ( , ) ( )

x
x x x x

y y y y

d m t
m t C t t m t

dt

m t C t t m t

  

  

= + + ⋅ +

+ + + ⋅

,    (2) 

( )

( )

2
1 3 3

2
1 3 3

( , )
3 ( ) 3 ( , ) ( , )

3 ( ) 3 ( , ) ( , )

x y
x x x x y

y y y y y

C t s
m t C t t C t s

t

m t C t t C t s

¶
= + + +

¶

+ + +

m m m

k k k ,    (3) 

( )

( )

2
1 3 3

2
1 3 3

( , )
3 ( ) 3 ( , ) ( , )

3 ( ) 3 ( , ) ( , )

x x
x x x x x

y y y x y

C t s
m t C t t C t s

t

m t C t t C s t

¶
= + + +

¶

+ + + ⋅

m m m

k k k

,     (4) 

( )0

0

2
1 3 3

( )
3 ( ) 3 ( , ) ( ) ,

x x

x x x x x

dC t
m t C t t C t

dt
  = + +       (5) 

( )2
1 3 3

2
1 3 3

( , )
2 3 ( ) 3 ( , ) ( , )

2 ( 3 ( ) 3 ( , )) ( , ).

x x
x x x x x

y y y x y

dC t t
m t C t t C t t

d t

m t C t t C t t

= ⋅ + + ⋅ +

+ ⋅ + + ⋅

m m m

k k k

     (6) 

 
Having been working off the higher-order moments, it remains to elaborate on the second 
special feature of the two-time moment equations, the simultaneous appearance of the two 
time variables ,t s .  
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5.2.3.  Time Closure of the two-time RE moment equations 
 
We shall now implement a time closure, obtaining an one-time, closed, causal subsystem of 
two equations for the time-diagonal moments ( )xm t  and ( , )x xC t t . Setting  

 
2

1 3 3( ) ( ) , ( , ) 3 ( ) 3 ( , )x x x x x x x xA t A m t C t t m t C t té ùº = + +ê úë û m m m ,                 (1a)  

2
1 3 3( ) 3 ( ) 3 ( , )y y y yB t m t C t t  = + +       (1b) 

 
we rewrite Equ.(3)_Sec(5.2.2) in the form  
 

( , )
( ) ( , ) ( ) ( , )x y

x x y y y y

C t s
A t C t s B t C t s

t

¶
= ⋅ + ⋅

¶
.        (2) 

 

Although the function ( )xA t  is not known, it possesses two important properties: First, it is 

not dependent on the ( , )x yC t s  itself and, second, in the monostable case studied herewith 

( 1 3, 0  < ), it is always negative:  

 

0( ) 0 , for allxA t t t< ³ .         (3)  

 
On the basis of the first property, we can consider Equ.(2) as a linear, first-order ODE for the 

two-time cross-covariance ( , )x yC t s  with respect to t  ( s  being considered as a parameter). 

In accordance with the standard theory of first-order ODEs (Teschl 2012), the solution of 
Equ. (2) with initial condition Equ.(11b)_Sec(5.2.1), can be expressed by the following 

integral formula, in terms of the unknown function ( )xA t :  

 

0

( , ) ( ) ( , ) exp ( )x y y y y x

t

t

t

C t s B C s A u du d



  
æ ö÷ç ÷ç ÷ç= ÷ç ÷ç ÷÷çè ø
òò .        (4)  

 

This solution is valid for any 0t t³  and for any s t¹ . However, looking closer at the 

structure of the right-hand side of Equ.(4), we observe that it is a continuous function on s  

for all 0s t³  (since it depends on s  only through the continuous data function ( , )y yC s ). 

Thus, taking the limit of both sides of Equ.(4) for s t , we obtain  
 

( )
0

( , ) ( ) ( , ) exp ( ) , ,x y y y y x x x x

t

t

t

C t t B C t A m u C u u du d



  
æ ö÷ç ÷ç é ù ÷ç= ÷ê úç ë û ÷ç ÷÷çè ø
òò .                 (5)  
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Equ.(5) expresses the time-diagonal cross-covariance ( , )x yC t t  as a non-linear, causal 

operator on the whole history of the (unknown) response mean value 0( ) ,xm u t u t£ £ , and 

response, time-diagonal auto-covariance ( ) 0, ,x xC u u t u t£ £ .  
 

Substituting ( , )x yC t t  from Equ. (5) in Equ.(6)_Sec(5.2.2), we obtain  

 

( )

0

2
1 3 3

2
1 3 3

( , )
2 3 ( ) 3 ( , ) ( , )

2 ( ) ( ) ( , ) exp 3 ( ) 3 ( , ) .

x x
x x x x x

y y y y x x x

t

t

t

dC t t
m t C t t C t t

d t

B t B C t m u C u u du d

= ⋅ + + ⋅ +

æ ö÷ç ÷ç ÷+ ⋅ ⋅ + +ç ÷ç ÷ç ÷÷çè ø
òò
t

m m m

t t m m m t

(6)  

 
Equ.(2)_Sec(5.2.2) and Equ.(6), with initial conditions Equ.(8b)_Sec(5.2.1) and 
Equ.(13b)_Sec(5.2.1), respectively, form a closed, non-linear, causal system of evolution 

equations for the moment functions ( ) , ( , )x x xm t C t t .  

More precisely, as discussed in Athanassoulis et al (Athanassoulis et al. 2013a), system of 
Equ.(6) and Equ.(2)_Sec(5.2.2) belongs to the family of causal differential systems, for which 
an extensive literature has been developed in the last two decades; see the books (Corduneanu 
2002; Lakshmikantham et al. 2009; Burton 2005; Gripenberg et al. 1990), and the references 
cited there. In Athanassoulis et al (Athanassoulis et al. 2013a) discussion about local 
existence and uniqueness of this system is presented as well as a robust and efficient, 

iterative, numerical solution of this system in the whole time domain 0[ , )t +¥ . 

 

Representation of the off-diagonal moments ( , )x yC t s  and ( , )x xC t s  in terms of the  

        diagonal ones  
 
Having solved the system of Equ.(2)_Sec(5.2.2) and Equ.(6) and obtained the functions 

( )xm t  and ( , )x xC t t , Equ.(4) provides us with the two-time cross-covariance ( , )x yC t s  in 

the interval ( ){ }0 0,( ) ,t s t T t TT t s t sR £ £ £ £= : . Furthermore, substituting 

( , )x yC s t  in the right-hand side of Equ.(4)_Sec(5.2.2) from Equ.(4) (with arguments t  and 

s interchanged), Equ.(4)_Sec(5.2.2) becomes a first-order ODE with known variable 
coefficients of the form  
 

( )
( ) ( )

,
( ) , ,x x

x x x x y

C t s
A t C t s F t s

t

¶
= +

¶
,                  (8a)  

 

where  

( )
0

, ( ) ( , ) ( ) exp ( )x y y y y y x

u s

t

s

u

F t s B C t B t A u du d







  
=

==

=æ ö÷ç ÷ç ÷ç= ÷ç ÷ç ÷÷çè ø
òò .               (8b)  
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For any 0s t³ , the initial condition 
00( , ) ( )x x x xC t s C s=  is calculated by solving 

Equ.(5)_Sec(5.2.2) with initial condition 0 0( , )x xC t t =  
0 0x xC :  

 

0 0 0

0

( ) exp ( )x x x x x

t

s

C s C A u du

æ ö÷ç ÷ç ÷ç ÷= ⋅ ç ÷ç ÷ç ÷ç ÷è ø
ò .                   (8c)  

 

The solution of Equ.(8a) with initial condition Equ.(8c) is given by the formula  
 

 

( )
0 0

1 1 2

1 1 2 21

0 0

2

20 0

1 2 1 1 2 2 1 2

, exp ( ) ( )

( , ) exp ( ) exp ( ) ,

x x x x x x

y y x x

t t

u

t t

t s

st u t s

u u

C t s C A u du A u du

G A u du A u du d d









 

   

= =

= ==

= =

=

æ ö÷ç ÷ç ÷ç ÷= ⋅ + +ç ÷ç ÷ç ÷ç ÷è ø
æ ö æ ö÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç+ ÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷÷ ÷ç çè ø è ø
ò ò

ò ò

ò ò
             (9a)  
where  
 

1 2 1 1 2 2( , ) ( ) ( , ) ( )y y y y y yG B C B     = .                  (9b)  
 

The symmetry relation ( , ) ( , )x x x xC t s C s t=  is clearly revealed by Equs.(9).  

 
In Athanassoulis et al.(2013) it is shown that in the case where the input random process can 
be obtained as the solution of an Itô equation (as, e.g., happens with an Ornstein-Uhlenbeck 
process), the proposed non-local system is localized, leading to moment equations identical 
with the usual ones. The latter indicates that the presented approach consistently generalizes 

the Itô/filtering approach, remaining valid for any kind of covariance ( , )y yC t s . Furthermore, 

in (Athanassoulis et al. 2013a) the two-time RE moment system Equs.(2-6)_Sec(5.2.2)  is 
numerically solved by means of an appropriate, two-scale, iterative scheme. The solution of 

the latter allows to also numerically calculate the two-time moments ( , )x yC t s  and ( ),x xC t s  

using Equs.(4,9a). Numerical results are presented for lpGF, OU and sOU colored stochastic 
excitations. It is found that both the correlation time and the details of the shape of the input 
random function affect appreciably the response covariance which in general cannot be taken 
into account in the Itô/FPK/filtering approaches. The obtained results compare satisfactorily 
with extensive MC simulations results for all the examined cases except when a bi-stable half 
oscillator is considered, the latter is attributed to the failure of the Gaussian closure. In fact, as 
it will be discussed in Section 5.4., in the bi-stable case the structure of the joint REPDF, 

( ) ( ) ( , )x t y tf a b , becomes bi-modal, making the Gaussian closure inappropriate. In Section 

5.4. a first idea for the generalization of the two-time RE moment equations for the bi-stable 
case, in the long-time, will be discussed. In the next section we shall present how the derived 
two-time moment equations can be directly solved in the long-time. 
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5.3. Two-time moment equations in the long-time 
 

5.3.1. Direct solution in the long-time 
 
In the long-time that the system reaches an equilibrium state the mean values become time 
independent whereas the second order moments depend only on the time lag t s - = , i.e: 
 

( ) ( )lim ( ) , lim ( )x x y y
t s

m t m m s m¥ ¥

 ¥  ¥
º º , 

( ) ( )

,
lim , ( )x y x y

t s
t s

C t s C t s


¥

 ¥  ¥
- =

º -    and   ( ) ( )

,
lim , ( )x x x x

t s
t s

C t s C t s


¥

 ¥  ¥
- =

º - . 

 
Then the two time moment equations given by Equs.(2-6)_Sec(5.2.2) take the form : 
 

( )
( )

( ) ( ) ( )
1 3 3

( ) ( ) ( )
1 3 3

0 3 (0)

3 (0)

x x x x

y y y y

m C m

m C m

  

  

¥ ¥ ¥

¥ ¥ ¥

= + + ⋅ +

+ + + ⋅
 ,                 (1) 

 

( )

( )( )

( ) ( ) ( ) 2 ( )
1 2 2

( ) ( ) 2 ( )
1 2 2

( ) 3 ( 0) 3 ( ) ( )

3 (0) 3 ( )

x y x x x x y

y y y y y

C t s C m C t s
t

C m C t s

¥ ¥ ¥ ¥

¥ ¥ ¥

¶
- + ⋅ ⋅ + ⋅ -

¶

+ + ⋅ ⋅ + ⋅ -

= +m

k

m m

k k
 ,                       (2)

 

 

( )

( )

( ) ( ) ( ) 2 ( )
1 2 2

( ) ( ) 2 ( )
1 2 2

( ) 3 (0) 3 ( ) ( )

3 (0) 3 ( ) ( )

x x x x x x x

y y y x y

C t s C m C t s
t

C m C s t

¥ ¥ ¥ ¥

¥ ¥ ¥

¶
- + ⋅ ⋅ + ⋅ - +

¶
+ + ⋅ ⋅ + ⋅ -

= m

k k k

m m
,                    (3)

 

 

( )
( )

( ) 2
1 3 3

( ) 2
1 3 3

0 3 ( ) 3 ( 0 ) ( 0 )

3 ( ) 3 ( 0 ) ( 0 )

x x x x x

y y y x y

m C C

m C C

¥

¥

= + + ⋅ +

+ + + ⋅

m m m

k k k ,                    (4) 

or, equivalently :  
 

( ) ( ) ( ) ( )0 x x y yA m B m¥ ¥ ¥ ¥= ⋅ + ⋅  ,           (5)
 

 
( ) ( ) ( ) ( ) ( )( ) ( ) ( )x y x x y y y yC t s A C t s B C t s

t
¥ ¥ ¥ ¥ ¥¶

- ⋅ - ⋅ -
¶

= +  ,                       (6)
 

 
( ) ( ) ( ) ( ) ( )( ) ( ) ( )x x x x x y x yC t s A C t s B C s t

t
¥ ¥ ¥ ¥ ¥¶

- ⋅ - + ⋅ -
¶

=  ,                                                  (7)
 

 
( ) ( )0 ( 0 ) ( 0 )x x x y x yA C B C¥ ¥= ⋅ + ⋅ ,          (8) 

 
where 
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( ) ( ) ( )
1 3 33 (0)x x x xA m C  ¥ ¥ ¥= + + ,       (9a) 

( ) ( ) 2 ( )
1 3 33 ( ) 3 (0)y y y ym CB   ¥ ¥ ¥º + + ,                 (9b) 

( ) ( ) 2 ( )
1 3 33 ( ) 3 (0) ,x x x xA m C  ¥ ¥ ¥º + +                  (9c) 

( ) ( ) 2 ( )
1 3 3( ) 3 (0)y y y ym CB   ¥ ¥ ¥º + + .      (9d) 

 
We observe that in the long-time steady state the system of two-time RE moment equations 
becomes a system of algebraic-differential equations containing four unknowns: the numbers 

( )
xm ¥  and ( ) (0 )x xC ¥  (appearing also in ( )

xA ¥  and ( )
xA ¥ ), and the functions ( ) ( )x yC t s¥ -  and 

( ) ( )x xC t s¥ - .  
 

For the monostable half oscillator 1 30 , 0 < <  therefore ( ) 0xA ¥ < . Since Equs.(2,3) are 

linear we can apply the formulae obtained from our study for the long-time behavior of the 
linear half oscillator. More precisely applying Equs.(7,8b)_Sec.(3.2.3) to Equs.(2,3) we can 
obtain the long-time moments as limits of the transient solution: 
 

( )
( ) ( )

1

0

( ) ( ) ( )
1 1lim ( )x x

t

A t A s

x y y y y
t
s tt s

C t s e B C s s e ds
¥ ¥⋅ - ⋅¥ ¥ ¥

¥
¥

- =

é ù
ê ú
ê ú- = ⋅ ⋅ ⋅ - ⋅
ê ú
ê úë û

ò
t

          ,                                  (10) 

and  

( ) ( ) ( )( )( )
1 2

0 0

( ) ( ) 2 ( )
1 2 1 2lim ( ) ( ) xx

s t

A s sA t s

x x y y yt
s t tt s

C t s e B C s s e d s d s
¥¥ - ⋅ +⋅ +¥ ¥ ¥

¥
¥

- =

é ù
ê ú
ê ú- = ⋅ ⋅ - ⋅
ê ú
ê úë û

ò ò
t

  .       (11) 

 
Alternatively we can consider the solution of the long-time problem in the lag time domain, 
taking into consideration that  
 

( )

,

( , ) ( )
lim ,x y x y

t s
t s

C t s d C

t d





¥

 ¥  ¥
- =

¶
=

¶
                (12a) 

( )

,

( , ) ( )
lim x x x x

t s
t s

C t s d C

t d





¥

 ¥  ¥
- =

¶
=

¶
 .                (12b) 

 
Equs.(5-8) can be equivalently written as:   
 

( ) ( ) ( ) ( )0 x x y yA m B m¥ ¥ ¥ ¥= ⋅ + ⋅  ,                     (13) 
( )

( ) ( ) ( ) ( )( )
( ) ( )x y

x x y y y y

C
A C B C


 



¥
¥ ¥ ¥ ¥¶

⋅ ⋅
¶

= + ,                  (14) 

( )
( ) ( ) ( ) ( )( )

( ) ( )x x
x x x y x y

C
A C B C


 



¥
¥ ¥ ¥ ¥¶

⋅ ⋅ -
¶

= + ,                 (15)
 

( ) ( ) ( ) ( )0 (0) (0)x x x y x yA C B C¥ ¥ ¥ ¥⋅ + ⋅= .                   (16) 
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The general solution of Equ. (14) can be written in the form  
 

{ }

{ }
1

1 *

( ) ( ) ( )
*

( ) ( ) ( )
1 1 1

*( ) ( ) exp ( )

( ) exp ( ) ,

x y x y x

y y y x

C C A

B C A d

 

 

   

   

¥ ¥ ¥

=

¥ ¥ ¥

=

= ⋅ ⋅ - +

+ ⋅ ⋅ ⋅ -ò
             (17) 

 
where *  is any fixed time in the lag domain. Despite the explicit appearance of *  in the 

right-hand side of Equ.(17), the latter is independent from * . Since ( ) 0xA ¥ <  and ( ) ( )x yC ¥  

is bounded, the limit of the first term of the right-hand side of Equ.(17), as * -¥ , is ze-

ro. Thus, the choice  * =-¥  is legitimate, and Equ.(17) can be written in the more conve-

nient form  
 

{ }
1

1

( ) ( ) ( ) ( )
1 1 1( ) ( ) exp ( )x y y y y xC B C A d

 



    

=

¥ ¥ ¥ ¥

= -¥

= ⋅ ⋅ ⋅ -ò ,                (18) 

 
or, equivalently, by reversing the limits of integration and performing the change of variable 

1u  , in the form  

 

{ }( ) ( ) ( ) ( )( ) ( ) exp ( )

u

x y y y y x

u

C B C u A u du



 
= ¥

¥ ¥ ¥ ¥

= -

= ⋅ ⋅ ⋅ +ò .               (19) 

 
Equ.(15) is of the same type as Equ.(14), thus performing similar steps we obtain   
 

{ }
1

1

( ) ( ) ( ) ( )
1 1 1( ) ( ) exp ( )x x y x y xC B C A d

 



    

=

¥ ¥ ¥ ¥

= -¥

= ⋅ - ⋅ ⋅ -ò ,            (20)  

 

where ( )
1( )x yC ¥ -  follows Equ.(19), that is 

 

( ) { }
1 2

1 2 1

2( ) ( ) ( ) ( )
2 1 2 2 1( ) ( ) exp ( 2 ) .x x y y y xC B C A d d

  

  

      

= = + ¥

¥ ¥ ¥ ¥

= - ¥ =

= ⋅ ⋅ ⋅ - ⋅ +ò ò
                     (21) 
 

The domain of integration of the repeated integrals appearing in the right-hand side of Equ. 
(21) is shown in Fig. (1). 
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              Fig. 1.  The domain of integration in the 1 2( , )  -plane  

 
The 1  integration can be explicitly performed by changing the order of integration:  

{ } { } { }
1 2 2 1 2 2 1

1 2 1 2 1 2 1

. . . . . . . . .

         

       

= = + ¥ = = = + ¥ =

= - ¥ = = -¥ = - ¥ = = - ¥

= +ò ò ò ò ò ò .       (22) 

 
Changing the order of integration, as shown in Equ.(22), Equ.(21) becomes 
 

( )
2 1 2

2

2 1

2 1

2

2 1

( )( )
1

( )( )
1

2( ) ( ) ( )
2 1 2

( )
2 1 2

( 2 )( )

( 2 )( )

( ) ( )

( )

e e

e e

xx

xx

x x y y y

y y

AA

AA

C B C d d

C d d

   

 

  

  

 

 

   

  

¥¥

¥¥

= =

¥ ¥ ¥

= -¥ = - ¥

= + ¥ =

¥

= = - ¥

⋅ - ⋅⋅ +

⋅ - ⋅⋅ +

æççç= ⋅ ⋅ +ççççè

ö÷÷÷÷+ ⋅ =÷÷÷÷ø

ò ò

ò ò
 

        

( ) 2

2

2

2

2

1

( )

( )

2( )

( )
2 2( )

( )
2 2

( )

( )

( )
2

( )

e

e

x

x

y

y y
x

y y

A

A

B
C d

A

C d

 





 

 

 

 

 

¥

¥

=¥
¥

¥

= -¥

= + ¥

¥

=

⋅ -

⋅ - +

æççç= - ⋅ ⋅ +çç⋅ ççè
ö÷÷÷÷⋅ =÷÷÷÷ø

ò

ò
 

       . 
 
   

 

1 =

2  

1  

2 1 

2 =
 

( ) 2

2

2

( )

2( )

( )
2 2( )

( ) .
2

e xy

y y
x

AB
C d

A



 



 
¥

= - ¥¥
+¥

¥

= + ¥

⋅
= ⋅ ⋅

⋅ ò
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That is: 
 

     ( ) ( ) { }2( ) ( ) ( ) ( )

( )

1
( ) ( ) exp

2

u

x x y y y x

x u

C B C u A u du
A

 

= + ¥

¥ ¥ ¥ ¥
¥

= - ¥

= ⋅ ⋅ +
- ⋅ ò .  (23) 

 
Integral representations (19) and (23) together with Equ.(13) cannot completely solve the lim-
iting form of the two -time RE moment system (Equs.(13–16)) since the unknown values of 

the response long-time moments ( )
xm ¥  and ( ) ( 0)x xC ¥  are contained in the constant ( )

xA ¥ . 

However, we can obtain two equations for these unknowns ( )
xm ¥  and ( ) (0)x xC ¥  from 

Equ.(13) and Equ.(23). More precisely setting 0 =  Equ.(23) becomes 
 

( )

( ) { }

( ) ( ) ( )
1 3 3

2( ) ( ) ( )
2

0

(0) 3 3 (0)

( ) exp .

x x x x x

u

y y y x

u

C m C

B C A u du

  



¥ ¥ ¥

=+¥
¥ ¥ ¥

=

⋅ + + =

= - ⋅ ⋅ ⋅ò
     (24) 

 
Remark: Setting 0   to Equ.(19) we have   
 

{ }( ) ( ) ( ) ( )
1

0

(0) ( ) exp

u

x y y y y x

u

C B C A u du
= + ¥

¥ ¥ ¥ ¥

=

= ⋅ ⋅ ⋅ò ,     (25) 

 

then using Equ.(16), Equ.(24) is re-obtained. That is, in order to solve the system of two-time 
RE moment equations directly in the long-time, the time closure can be obtained with two 
equivalent ways, one of which does not involve the use of Equ.(15).  
 

Combining Equs. (13), (19), (23) and (24) we can have a closed long-time solution. In fact: 
 

 If 3 0 =  (linear half oscillator) the system of Equs. (13), (19), (23) is trivialized since the 

constant  ( )
xA ¥  does not contain the unknown ( ) (0 )x xC ¥ , providing explicit solutions 

directly, i.e. from Equ.(13) 
 

    
( )( ) ( )

1 3 3( ) ( )

1

3 (0)y y y

x y

m C
m m

  



¥ ¥
¥ ¥

+ +
= - ⋅ ,                                      (26) 

 

    then, from Equ.(19) and Equ.(23) it is straightforward to obtain ( ) ( )x yC ¥ , 

 

( ) ( )x xC ¥ . 
 

 If 3 0 ¹ , it is convenient to distinguish two cases. When ( ) 0ym ¥ = , then it is easy to 

see from Equ.(13) that ( ) 0xm ¥ =  as well, then Equ.(24) is simplified to  

  



5-16 |                                        CHAPTER 5     Two-time RE moment equations
 

 

 

   

( )

( ) ( ){ }

( ) ( )
1 3

2( ) ( ) ( )
1 3

0

(0) 3 (0)

( ) exp 3 (0) ,

x x x x

u

y y y x x

u

C C

B C u C u du

 

 

¥ ¥

=+¥
¥ ¥ ¥

=

⋅ + =

=- ⋅ ⋅ - + ⋅ò
 (27) 

    which has a unique solution in the positive real axis. (The uniqueness can be theoretically 
proved in some cases, and has always been confirmed numerically). Having defined 

    ( ) ( 0 )x xC ¥  it is straightforward to obtain ( ) ( )x yC ¥ , 

 

( ) ( )x xC ¥  from Equ.(19) and Equ.(23). 
 

 If 3 0 ¹  and ( ) 0ym ¥ ¹ , we can use Equs.(9a, 13) to express ( ) ( 0)x xC ¥ , and therefore 
( )
xA ¥ , in terms of ( )

xm ¥ , i.e 

 

   ( )
( ) ( )

2( ) ( )
1 3( )

3

1
(0)

3
y y

x x x
x

m
C m

m

B
 



¥ ¥
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then, from Equ.(9c) and Equ.(28) we have  
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    Using Equ.(28) and Equ.(29) we can then eliminate ( ) ( 0 )x xC ¥  from Equ.(24), obtaining: 
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       (30) 

 

     If multiple solutions occur in Equ. (30), we keep the one leading to positive ( ) ( 0 )x xC ¥   

(using Equ. (27)). Having found ( )
xm ¥ , ( ) ( 0 )x xC ¥  it is straightforward to obtain ( ) ( )x yC ¥ , 

    ( ) ( )x xC ¥  from Equ.(19) and Equ.(23).  

 

5.3.2. Analytic computation of the long-time moments for lpGH, OU and sOU 
stochastic input correlation function 

 
In this paragraph we are going to implement the obtained formulae for the long-time RE 

cross- covariance ( ) ( )x yC t s¥ -  and long-time response auto-covariance ( ) ( )x xC t s¥ -  for 

the case that the random input, ( ; )y t  , is a lpGF, a sOU or an OU process. Use shall be 
made of corresponding results obtained in Sec(3.2.4). in the linear case for lpGF, sOU or OU 
random input. The latter is justified since the integrals that provide the long-time moments 
(see Equs.(10,11)_Sec(5.3.1) or Equs(19,23)_Sec(5.3.1)) are of the same type as the ones 
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given for the non-central moments of the linear problem (see Equs.(7,8b)_Sec(3.2.3) or 
Equs.(17,18)_Sec(3.2.3), respectively).  
 
Low-pass Gaussian filter (lpGF) 
 
In case that the excitation is a lpGF 
 

  ( )( ) 2 2( ) exp ( )y y yC t s a t s¥ - = - - ,                                                             (1) 

 
setting ( )

xA A ¥= , ( )
yB B ¥=  to Equs.(11,15)_Sec(3.2.4) we get 
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              (3) 

 
where 
 

( ) ( ) 2 ( )
1 3 33 ( ) 3 (0)y y y ym CB   ¥ ¥ ¥º + + ,                  (4a) 

( ) ( ) 2 ( )
1 3 33 ( ) 3 (0)x x x xA m C  ¥ ¥ ¥º + + .                 (4b) 

 

In order to determine the unknowns ( )
xm ¥  and ( ) (0 )x xC ¥  appearing in Equs.(2,3) three cases 

are distinguished:  
 

 If 3 0 = , ( )
xm ¥  is given by Equ.(26)_Sec(5.3.1), (we repeat here for convenience) 
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In this case ( ) (0 )x xC ¥  does not need to be a priori computed.  
 

 If 3 0 ¹ , ( ) 0ym ¥ =  then ( ) 0xm ¥ =  and the long-time response variance ( ) (0 )x xC ¥  is 

given by Equ.(3) setting  t s=  i.e. 
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 If 3 0 ¹  and ( ) 0ym ¥ ¹ , using Equ(28,29)_Sec(5.3.1) we can express ( ) (0 )x xC ¥  and 
( )
xA ¥  in terms of ( )

xm ¥ (we repeat her for convenience) 
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then combining Equs(6-8) we can obtain a closed equation for the (non-zero) response 

mean value ( )
xm ¥  : 

 

( ) ( )

{ } ( )

( )

( ) ( ) ( )
2 2( ) ( ) ( )

1 3 3( ) ( )
3

( )
2( ) 2 2 ( ) ( )

3 ( )

( )
2( ) ( )

3 ( )

1
2

3

( ) 4 2
2

2

exp exp

y y y
x x y

x x

y
y x y

x

y
x y

x

m
m m m

m m

m m
m

m m
m

B B

B
B a

a

B
erf

  


  



¥ ¥ ¥
¥ ¥ ¥

¥ ¥

¥
¥ ¥ ¥

¥

¥
¥ ¥

¥

æ ö æ ö⋅ ÷ ÷ç ç÷ ÷ç ç- + + ⋅ ⋅ - ⋅ +÷ ÷ç ç÷ ÷ç ç⋅ ÷ ÷ç çè ø è ø
ì üï ïï ïï ï+ ⋅ - ⋅ ⋅ ⋅ - ⋅ ´í ýï ïï ïï ïî þ

´ ⋅ - ⋅

⋅ ⋅

 



 1
1 0,

2 a

é ùæ öæ ö ÷ç ÷çê ú÷÷ç ç ⋅ + =÷÷ê úç ç ÷÷ç ç ÷÷ç ⋅ ÷ê úç è øè øë û

       

(9) 

 

where ( )
yB ¥ , ( )

yB ¥ are given by Equs.(9b,9d)_Sec(5.3.1) respectively . 
 
 
Sifted Ornstein-Uhlenbeck (sOU) stochastic process 
 
In the case that the excitation is a of a sOU process:  
 

( ) ( )( ) 2
0( ) exp cos ( )y yC t s a t s t s¥ - = ⋅ - ⋅ - ⋅ ⋅ -s w ,     (10) 

 
setting ( )

xA A ¥= , ( )
yB B ¥=  to Equs.(32,33,36)_Sec(3.2.4) we get 
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and 
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where ( )
xA ¥ , ( )

yB ¥  are given by Equs.(9c,9b)_Sec(5.3.1).  
 

In order to determine the unknowns ( )
xm ¥  and ( ) ( 0 )x xC ¥  appearing in Equs.(11,12) three 

cases are distinguished:  
 

 If 3 0 = , the response mean value ( )
xm ¥  is given by Equ.(26)_Sec(5.3.1) : 
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In this case ( ) ( 0 )x xC ¥  does not need to be a priori computed.  
 

    If 3 0 ¹ , ( ) 0ym ¥ =  then ( ) 0xm ¥ = , whereas setting t s=  in Equ.(12) we obtain: 
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 If 3 0 ¹ , ( ) 0ym ¥ ¹  using Equ(28,29)_Sec(5.3.1) we can express ( ) ( 0 )x xC ¥  and ( )
xA ¥  in 

terms of ( )
xm ¥ : 

 

     ( )
( ) ( )

2( ) ( )
1 3( )

3

1
(0)

3
y y

x x x
x

m
C m

m

B
 



¥ ¥
¥ ¥

¥

é ù⋅ê ú= - + +ê ú⋅ ê úë û


,               (15) 

( )
( )

2( ) ( ) ( )
3 ( )

2 y
x x y

x

m m
m

B
A 

¥
¥ ¥ ¥

¥= ⋅ - ⋅


,                  (16) 

 

then combining Equs(14-16) we can obtain a closed equation for the (non-zero) response 

mean value ( )
xm ¥   
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  (17), 

 
where ( )

yB ¥ , ( )
yB ¥ are given by Equs.(9b,9d)_Sec(5.2.4) respectively. 

 

In case that the excitation is an OU process, i.e. ( )( ) 2( ) expy yC t s a t s¥ - = ⋅ - ⋅ -s , the 

cor-responding long-time moments are obtained setting 0 0=w  to Equs.(11-12, 14,17) 

  

5.3.3. Results 

 
The direct solution in the long-time of the two-time RE moment equations is used to calculate 
the long-time RE cross-covariance ( ) ( )x yC t s¥ -  and the long-time response auto-covariance 

( ) ( )x xC t s¥ - . The calculations are performed by the use of Equs.(2-9)_Sec(5.3.2) for lpGF 

input and of Equs.(11-17)_Sec(5.3.2) for either sOU or OU input. The solution of the 
transcendental equations Equs.(9,17)_Sec(5.3.2), required in the non-linear cases ( 3 0 ¹ ) 

when the excitation has non-zero asymptotic mean value ( ( ) 0ym ¥ ¹ ), was performed 

numerically in Matlab.  
 

In Figs.2-10 results are illustrated for three half-oscillators, more specifically, for the non-
linear/Gaussian, the linear/non-Gaussian and the non-linear/non-Gaussian considered in 
Section 4.2.(see Equs.(6-8)_Sec(4.2)). The input function ( ; )y t   has been assumed to be 

either lpGF (Figs.2,5), OU (Figs.3,6,8-10) or sOU with central frequency 0 5 =  (Figs.4,7). 

In all cases the input variance 2 1y = , whereas three different cases of input correlation time 

have been considered i.e. corr 0.93, 0.51, 0.33y y = . For the input mean value, we also consider 

three cases, ( ) 0ym ¥ =  (Figs.2-8), ( ) 0.3ym ¥ =  (Fig.9) and ( ) 1.5ym ¥ = (Fig.10). The 

parameters in Figs.2-8 have been selected to be the same as in the linear/Gaussian case 
discussed in Chapter 3 in order to examine the effects of the non-linearity or/and the non-
Gaussianity in the asymptotic covariances.  
 

In Figs.2-4 the long-time RE cross-covariance ( ) ( )x yC t s¥ -  (case a in Figs(2-4)) and the long-

time response auto-covariance ( ) ( )x xC t s¥ - (case b in Figs(2-4)) for the non-linear/Gaussian 

case are illustrated. Comparing these results with the ones obtained in Chapter 3, and more 
precisely by comparing Fig.2  with Fig.6_Sec(3.2.4), Fig.3 with Fig.18_Sec(3.2.4) and Fig.4 
with Fig.17_Sec(3.2.4), we observe that, in all cases, the non-linearity leads to smaller values 
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of the response moments. This is expected since the non-linear term has negative coefficient, 
amplifying the restoring force of the linear term.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: The long time response-excitation cross-covariance ( ) ( ) (where )
x y

C t s¥ = -t t  (a) and 

response covariance ( ) ( )
x x

C ¥ t (b), of the non-linear/Gaussian case under Gaussian lpGF excitation with 

( ) 0ym
¥ = , results are plotted for three cases of the excitation correlation time corr 0.93, 0.51, 0.33y y = . 

Non-linear/ 
Gaussian  
case 

a. b. 
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Figure 3: The same as Fig.2 but now the system has OU excitation. 

Figure 4: The same as Fig.2 but now the system has sOU excitation with central frequency 0 5 =   

 
 

Non-linear/ 
Gaussian  
case 

Non-linear/ 
Gaussian 
case 

b. 

b. a. 

a. 

b. a. 
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On the contrary the results for the linear/non-Gaussian case, illustrated in Figs.5-7 indicate 
that the non-Gaussianity has opposite effects than the non-linearity leading to significantly 
larger values of the response moments. In the non-linear/non-Gaussian case illustrated in 
Fig.8, for OU stochastic input, we can also observe the effect of non-Gaussianity to the non-
linear system, the latter resulting to moments with increased values comparing to the non-
linear/Gaussian case Fig.3 

Figure 5: Long time response-excitation cross-covariance  ( ) ( ) (where )
x y

C t s¥ = -t t (a) and response 

covariance ( ) ( )
x x

C ¥ t  (b), of the lineal/non-Gaussian case linear under lpGF excitation with ( ) 0ym
¥ = , 

results are plotted for three cases of the excitation correlation time corr 0.93, 0.51, 0.33y y = . 

Figure 6: Same as Fig.5 but now the system has OU excitation. 

Linear/ 
non-Gaussian 
case 

Linear/ 
non-Gaussian 
case 

a. b. 
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In all the examined cases in Figs.2-8, the general rule is that the values of the asymptotic RE 
cross-covariance ( ) ( )x yC t s¥ -  (case a) and the asymptotic response auto-covariance 

( ) ( )x xC t s¥ - (case b) increase with the excitation correlation time. Moreover, in all cases, for 

a. b. 

c. d. 

Figure 7: The same as Fig.5 but now the system has sOU excitation with central frequency 0 5 = . 

Figure 8: Long time response-excitation cross-covariance ( ) ( ) (where )
x y

C t s¥ = -t t (a) and response 

covariance ( ) ( )
x x

C ¥ t (b), of the non-linear/non-Gaussian case under OU excitation with ( ) 0ym
¥ = , 

results are plotted for three cases of the excitation correlation time corr 0.93, 0.51, 0.33y y = . 
 

Linear/ 
non-Gaussian 
case 

Non-Linear/ 
non-Gaussian 
case 

b. a. 

b. a. 
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the same central frequency of the excitation, the frequency of both ( ) ( )x yC t s¥ -  and 
( ) ( )x xC t s¥ -  increase with the correlation time of the excitation (see Figs.4,7). In addition, in 

all the examined cases there is a correlation of the response with future values of the 
excitation (for 0t s= - <t ), a feature that tends to vanish as the correlation time of the 
excitation decreases. Another, important finding here is that the two-time RE moments are 
significantly affected by the shape of the input function (lpGF vs OU vs sOU), especially for 
the most correlated case when all other parameters are the same. The latter is an essential 
advantage of the introduced two-time RE moment equations since that kind of details, cannot, 
in general, be taken into account by the Itô/filtering approach. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: The same as Fig.8 but now the system’s input has mean value ( ) 0.3ym
¥ =  

 

Figure 10: The same as Fig.9 but now the system’s input has mean value ( ) 1.5ym
¥ =  

Non-Linear/ 
non-Gaussian 
case 

Non-Linear/ 
non-Gaussian  
case 

b. a. 

a. b. 



5-26 |                                        CHAPTER 5     Two-time RE moment equations
 

 

 

In Figs.9,10 the same case as in Fig. 8 is considered for different input mean values,  
( ) 0.3ym ¥ =  (in Fig.9) and ( ) 1.5ym ¥ =  (in Fig.10). As we can see, the long-time excitation 

mean values does affect the long-time (co)variances. 
 

In order to confirm the obtained results MC simulations have also been performed by Z. 

Kapelonis. In Fig.11-12  the covariances ( ) ( )x yC ¥  and ( ) ( )x xC ¥  are plotted, along with 

corresponding MC results for various cases of the half-oscillator (Equ.(3)_Sec(4.2)), under 

OU input functions ( ; )y t q , with ( ) 0ym ¥ = , 2 1.0y = , corr 1.0y y =  and 0 0 =  (case a in 

figures) or 0 2 =  (case b figures). In Fig.11 a mildly nonlinear case ( 1 1.0=-m , 

3 0.2=-m ) is considered under Gaussian excitation ( 1 1.0=k , 3 0=k ). In Fig.12 similar 

results are shown for stronger nonlinearity ( 1 1.0=-m , 3 0.5=-m ) under non-Gaussian 

excitation (with 1 1.0=k , 3 0.5=k ). The analytical results presented in Figs.11 and 12 are 

confirmed by MC simulations (shown by bullets and open triangles in the figures), displaying 
excellent agreement in the mildly nonlinear case (Fig. 11) and slight discrepancies (especially 
near the local extremes) in the stronger nonlinear/ non-Gaussian case (Fig. 12). The latter can 
be attributed to the combined effect of parameters 3m  and 3k , which makes the Gaussian 

closure assumption less accurate. More comparisons of the obtained results with MC 
simulations can be found in (G.A. Athanassoulis et al. 2013b).  
 

 
 
 
 
 

Figure 11: Excitation auto-covariance ( ) ( )y yC ¥ , response-excitation cross-covariance ( ) ( )x yC ¥ , and 

response auto-covariance ( ) ( )x xC ¥  for a non-linear/Gaussian  case (
1

1.0= -m , 
3

0.2= -m , 

1 3
1.0, 0= =k k ) excited by an OU random function ( ; )y t q  with ( ) 0ym ¥ = , 2 1.0y = , corr 1.0y y = , 

and central spectral frequency 0 0 =  (a), and 0 2 =  (b). Bullets and open triangles denote MC 

simulation results. 
 



SECTION: 5.3. Two-time moment equations in the long time                                                                          |5-27 

 

 

 
 

Fig. 12.  The same as Fig. 11, but with 
3

0.5= -m , 
3

0.5=k . In this case the excitation is non-Gaussian. 

Central spectral frequency is again 0 0 =  (a), and 0 2 =  (b).   

 
 

5.4. Two-time RE moment equations. The bi-stable Case  

 
The introduced system of the two-time, RE moment equations for a cubic half-oscillator, 
excited by colored (Gaussian or non-Gaussian) noise, was made solvable by the use of a 
moment closure and time closure. Time closure is exact (given the moment closure), however 
moment closure is approximate and valid as long as the joint two-time REPDF ( ) ( ) ( )x y stf a,b  

and the joint two-time response pdf 
1 2( ) ( )

( )x x st
f a ,a , of the studied system, remain close to the 

Gaussian structure.  
 

Several cases where the Gaussian closure has led to inadequate results have been extensively 
discussed for stochastic differential equations excited by white or second order filtered white 
noises. More precisely, this method is considered unsuitable when the system is strongly non-
linear, has multiplicative random excitations (Er 1998) or has more than one stable points 
(Hasofer & Grigoriu 1995), (Grigoriu 2008). A case where the strong non-Gaussian character 
of the excitation made the Gaussian assumption incompatible with the system’s REPDFs and 
response pdfs is also discussed in Athanassoulis et al. (2013). 
 

In this section we shall make an attempt to generalize the presented methodology to treat 
problem that the Gaussian closure is not a valid assumption. To this end, we shall consider the 
closure of the two-time RE moment equations for a bi-stable half oscillator under Gaussian 
excitation. The closure and solution of the moment system will be performed directly in the 
long-time limit. As a test case we shall use the bi-stable/Gaussian half oscillator that is 
described by Equ.(10)_Sec(4.2), assuming that this is excited by an OU random function  

( ; )y t q , with ( ) 0ym ¥ = , 2 2.0y = , corr 0.5y y = . In Figs.13-15 joint densities corresponding
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Figure 13: The long time statistical equilibrium joint REPDF 1 1( , ; )x yf x y   for a bistable/Gaussian  half oscillator with 

OU input functions ( ; )y t q , with ( ) 0ym ¥ = , 2 2.0y = , corr 0.5y y = , obtained by MC simulations, for positive 

time lags t s = - between the response and the excitation  
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Figure 14: The same as Fig.13 now for negative time lags 
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Figure 15: The same as in Fig 13 for the long time statistical equilibrium joint response pdf 

1 1( , ; )x xf x y   
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to this test case are plotted as obtained by MC simulations performed by Z.G. Kapelonis. 
More precisely, in Figs.13,14 the joint lag-time asymptotic REPDF 1 1( , ; )x yf x y   is plotted 

for positive ( 0 ³ , Fig.13) and negative ( 0 £ Fig.14) time lag, whereas, in Fig.15 the joint 
asymptotic response pdf 1 1( , ; )x xf x y   for the same problem is shown. Looking into this 

figures we can notice that: 
 

i) The joint REPDF is concentrated around two skew symmetric stable modes 
 

ii) The mean values of the probability mass that is concentrated around each one of the      
      stable modes depends on the time lag 

 

These remarks allow to understand why the Gaussian assumption is inappropriate for this 
case. Taking into consideration the above we will present some first ideas on a bi-Gaussian 
moment closure scheme. For its solution we will use auxiliary information obtained from MC 
simulations, concerning the mean values of the two stable modes around which the 
probability mass is concentrated. 
 

Let us rewrite the two-time RE moment equations for ( )xm t , ( , )x yR t s , ( , )x xR t s  and 

( , )x xR t t  , that where obtained in section 5.2, for the case of a non-linear half oscillator 

under Gaussian excitation (i.e. setting 3 0 = , to Equs.(1-4)_Sec(5.2.1)). Since our focus is 

on the long-time limit, we are going to ignore the initial conditions. Under these assumptions, 
the differential equations for ( )xm t , ( , )x yR t s , ( , )x xR t s  and ( , )x xR t t  reduce to 

 

2 1
1 3 1

( )
( ) ( , ) ( )x

x x x y

d m t
m t R t t m t

dt
  = ⋅ + ⋅ + ⋅ ,        (1)  

 

3 1
1 3 1

( , )
( , ) ( , ) ( , )x y

x y x y y y

R t s
R t s R t s R t s

t
 

¶
⋅ + ⋅ + ⋅

¶
= ,       (2)  

 

3 1
1 3 1

( , )
( , ) ( , ) ( , )x x

x x x x x y

R t s
R t s R t s R s t

t
 

¶
⋅ + ⋅ + ⋅

¶
= ,       (3)  

 

and 
 

3 1
1 3 1

( , )
2 ( , ) ( , ) ( , )2 2x x

x x x x x y

d R t t
R t t R t t R t t

dt
 ⋅ ⋅ + ⋅ + ⋅= ⋅ ⋅ ,     (4) 

 

5.4.1. Direct solution of the non-central two-time RE moment equations 

 
We shall solve the reformulated system of two-time RE moment equations directly in the 
long-time, therefore we assume that the joint, RE, stationarity has been achieved, i.e. 
 
 

( ) ( , )
lim 0 lim

i j
x x x

t t

d m t d R t t

dt dt ¥  ¥
= = ,                   (1a)  

and  
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( ) ( )

, ,

( , ) ( ) ( , ) ( )
lim , limx y x y x x x x

t s t s
t s t s

R t s d R R t s d R

t d t d
 

 
 

¥ ¥

 ¥  ¥  ¥  ¥
- = - =

¶ ¶
= =

¶ ¶
.(1b,1c) 

 

 
( , ) ( , )( , ) ( )i j i j
x x x xR t s R ¥ ¥= , ( , ) ( , )( , ) ( )i j i j

x y x yR t s R ¥ ¥= , (for t s = - )                (1d) 

 
Taking the limits of both sides of Equs.(1-4)_Sec(5.4) as t ¥ , s ¥  and applying 
Equ.(1), we obtain  
 

( ) ( 21, ) ( )
1 3 10 (0)x x x ym R m  ¥ ¥ ¥= ⋅ + ⋅ + ⋅                    (2) 

 
       

( )
( ) (3 1, )

1 3 1

( )
( ) ( ) ( )x y

x y x y y y

d R
R R R

d


   


 

¥
¥ ¥⋅ + ⋅ + ⋅=                            (3) 

 
 

( )
( ) (3 1, ) ( )

1 3 1

( )
( ) ( ) ( )x x

x x x x x y

d R
R R R

d


   


 

¥
¥ ¥ ¥⋅ + ⋅ + ⋅ -=

 
                                      (4)

  
 

( ) (3 1, ) ( )
1 3 10 (0) (0) (0)x x x x x yR R R ¥ ¥ ¥⋅ + ⋅ + ⋅=                              (5) 

 

Assuming that the asymptotic mean value of the excitation ( ) 0ym ¥ = , since the response 

density is a symmetric function, for the third order moments of the response appearing in 

Equ.(2) it is straightforward that ( 21, ) ( 0) 0x xR ¥ = . Therefore, from Equ.(2) the response 

mean value ( ) 0xm ¥ = . In the next section, we are going to introduce a bi-Gaussian moment 

closure aiming to approximate the asymptotic RE cross-correlation ( ) ( )x yR ¥  and the 

asymptotic response auto-covariance ( ) ( )x xR ¥  using Equs.(3-5) .  

 

5.4.2. Bi-Gaussian Closure 

 
In line with the observations discussed in the previous section, we are going to assume that 
the asymptotic joint REPDF 1 1( , ; )x yf x y   and the asymptotic response pdf 1 2( , ; )x xf x x   

can be expressed as sums of Gaussian densities  
 

( ) ( ){ }1 1
1

( , ; ) ( ), ( ); ( ) ( ), ( ); ( )
2x y x y x y x y x yf x y G m m G m m      + + - -= ⋅ +     (1) 

( ) ( ){ }1 2
1

( , ; ) ( ), ( ); ( ) ( ), ( ); ( )
2x x x x x x x x x xf x x G m m G m m      + + - -= ⋅ +     (2) 

 
where 
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( ) ( ; ) 0 ( ) 0xm E x t x t  + é ù= + > >ë û , ( ) ( ; ) ( ) 0ym E y t x t  + é ù= + >ë û           (3a,b) 

( ) ( )x xm m + -= - ,   ( ) ( )y ym m + -= -                               (4a,b) 

 
 
and 

(0) ( )
( )

( ) (0)

x x x y

x y

x y y y






 

 

æ ö÷ç ÷ç= ÷ç ÷ç ÷÷çè ø
 ,    

( 0 ) ( )
( )

( ) (0)

x x x x

x x

x x x x






 

 

æ ö÷ç ÷ç= ÷ç ÷ç ÷÷çè ø
 .                 (5a,b) 

 
Consequently, the long-time moments appearing in Equs (3-5)_Sec(5.4.1) can be written as 

functions of the introduced variables ( )ym + , ( )xm + , ( 0)y y , ( 0 )x x , ( )x x  , ( )x y  . 

More precisely, for the asymptotic RE cross-correlation  ( ) ( )x yR ¥  we have: 

 

( ) ( ){ }

( )( ) ( )

( )( ) ( )

( )
1 1

[ setting  ( ) , ( ) ]

( ) ( , ; )

1
( ), ( ); ( ) ( ), ( ) ; ( )

2

1
( ) ( ) , ; ( )

2

1
( ) ( ) , ; ( )

2

x y

x y x y

x y x y x y x y

x y x y

x y x y

u x m v y m

R x y f x y dx dy

x y G m m G m m dx dy

u m v m G u v du dv

u m v m G u v

 

 

     

  

  

+ +

¥

´

+ + - -

´

+ +

´

- -

´

= - = -

= =

= + =

= + + +

+ ⋅ + +

òò

òò

òò

òò

 





 

 

 

 

du dv =

 

( ) ( )

( ) ( )

1
( ) ( ) ( ) ( ) , ; ( )

2

1
( ) ( ) ( ) ( ) , ; ( ) .

2

x y x y x y

x y x y x y

uv m v um m m G u v du dv

uv m v um m m G u v du dv

    

    

+ + + +

´

- - - -

´

= + + + +

+ + + +

òò

òò





 

 

  
 
That is, 
 

( ) ( )( ) ( ) ( ) ( ) , ; ( ) ( ) ( )x y x y x y x y x yR uv m m G u v du dv m m     ¥ + + + +

´

= + = +òò 
 

.  (6) 

 
Similarly we find that: 
 

( ) ( ) ( ) ( ) ( )x x x x x xR m m   ¥ + += + ,             ( ) ( 0 ) (0) (0) (0)x x x x x xR m m¥ + += +            (7, 8) 
( ) ( 0 ) (0) (0) (0)x y x y x yR m m¥ + += + .                               (9) 
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Subsequently, 
 

( ) ( ){ }

(3 1, ) 3
1 1

3

( ) ( , ; )

1
( ), ( ) ; ( ) ( ), ( ); ( )

2

x y x y

x y x y x y x y

R x y f x y dx dy

x y G m m G m m dx dy

 

     

¥

´

+ + - -

´

= =

= +

òò

òò  

 

 

 

[ setting  ( ) , ( ) ]x yu x m v y m + += - = -  

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )( )( ) ( )

( ) ( ) ( )( )( ) ( )

3

3

2 33 2

2 33 2

1
( ) ( )

2

1
( ) ( )

2

1
3 ( ) 3 ( ) ( ) ( )

2

1
3 ( ) 3 ( ) ( ) ( )

2

, ; ( )

, ; ( )

, ; ( )

, ; ( )

x y

x y

x x x y

x x x y
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x y

x y

x y

u m v m du dv

u m v m du dv

u u m u m m v m du dv

u u m u m m v m

G u v

G u v

G u v

G u v

 

 

   
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







+ +

´

- -

´

+ + + +

´

- - - -

´

= + + +

+ ⋅ + + =

= + + + + +

+ + + + +

òò

òò

òò









 

 

 

 

( ) ( )( ) ( )33 2 23 ( ) 3 ( ) ( ) ( ) ( ) ,, ; ( )x x y x y x y

du dv

u v u m v u m m m m du dvG u v     + + + + +

´

=

= + + +

òò

òò 
 

 
that is: 
 

( ) ( )2 3(3 1, ) 3 1( ) ( ) 3 ( ) ( ) 3 ( ) ( ) (0) ( ) ( )x y x y x x y x y x x x yR m m m m m         ¥ + + + + += + + + . 

                         (10) 
 
Similarly,  
 

( ) ( ){ }

( ) ( ) ( )

( ) ( ) ( )

(3 1, ) 3
1 2 1 2

3
1 2

1 2

3

3
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´
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òò

òò

 
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´

=òò
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( ) ( )( )( ) ( )

( ) ( )( )( ) ( )

2 33 2

2 33 2

1
3 ( ) 3 ( ) ( ) ( ) , ; ( )

2

1
3 ( ) 3 ( ) ( ) ( ) , ; ( )

2

x x x x x x

x x x x x x

u u m u m m v m G u v du dv

u u m u m m v m G u v du dv

    
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+ + + +

´

- - - -

´

= + + + + +

+ + + + + =

òò

òò





 
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( ) ( ) ( )( ) ( )2 33 2 23 ( ) 3 ( ) ( ) , ; ( ) .x x x x x x xu v uv m u m m m m G u v du dv   + + + + +

´

= + + +òò 
 

 

 
that is,           
 

(3 1, ) 3 1 2 2 4( ) ( ) 3( ( )) ( ) 3( ( )) (0) ( ( ))x x x x x x x x x x xR m m m       ¥ + + += + + + .  (11) 

 

Since ( )( ), ( ); ( )x y x yG m m  + +  , ( )( ), ( ); ( )x x x xG m m  + +   are Gaussian, we can apply 

the Isserlis theorem in order to express the 4th order moments, appearing in Equs.(10,11), in 
terms of 2nd order moments. More precisely from Equs.(1a,1b)_Sec(5.2.2) we have: 
 

3 1 ( ) 3 (0) ( )x y xx xy   = ⋅ ⋅ ,    3 1 ( ) 3 (0) ( )x x xx xx   = ⋅ ⋅ .      (12), (13) 
 
Substituting Equs.(12, 13) to Equs.(10, 11) we obtain: 
 

( )
( )

( )
( ) ( ) ( )

2(3 1, )

3

2 3

( ) 3 (0) ( ) 3 ( ) ( )

3 ( ) ( ) (0) ( ) ( )

3 (0) ( ) ( ) ( )

3 ( ) ( ) ( ) ( ) 2 ( ) ( )

x y xx xy x x y

x y x x x y

xx xy x y

x x y x y x y

R m

m m m m

m m

m m m m m

   

   

  

     

  



 



¥ +

+ + + +

+ +

+ + + + +

= ⋅ ⋅ + +

+ + =

= ⋅ ⋅ + +

+ + - =

 

( )( )
( ) ( )

2( ) ( )

2 3( )

3 (0) (0) ( )

3 ( ) ( ) 2 ( ) ( )

x x x x y

x x y x y

R m R

m R m m



   

¥ + ¥

+ ¥ + +

= ⋅ - +

+ - =
 

( ) ( )( ) ( )2 2( ) ( ) 33 ( 0) (0) ( ) ( ) 2 ( ) ( ) , (14)x x x x x y x yR m m R m m   ¥ + + ¥ + += ⋅ - + -

 
and    
 

( ) ( )( ) ( )2 2 4(3 1, ) ( ) ( )( ) 3 (0) (0) ( ) ( ) 2 ( ) , (15)x x x x x x x x xR R m m R m   ¥ ¥ + + ¥ += ⋅ - + ⋅ - ⋅

 
setting 0 =  to Equ.(15) we also obtain 
 

( ) ( )2 4(3 1, ) ( )( 0 ) 3 (0) 2 (0)x x x x xR R m¥ ¥ += ⋅ - ⋅ ,       (16) 

 



5-36 |                                        CHAPTER 5     Two-time RE moment equations
 

 

 

Replacing Equs.(14-16) to Equs(3-5)_Sec(5.4.1) we get a closed (in terms of moments) 
version of the latter, i.e. 
 

( ) ( )( )
( )

2 2( ) ( )
1 3

3
3 1

( )
3 (0) (0) ( ) ( )

2 ( ( ) ( ) ( ) , (17)

x y
x x x x x y

x y y y

d R
R m m R

d

m m R


 


   

 



¥
¥ + + ¥

+ +

æ ö÷ç + ⋅ ⋅ - + -÷ç ÷çè ø

- ⋅ + ⋅

=

 

( ) ( )( )
( )

( )
2 2( ) ( )

1 3

4 ( )
3 1

( )
3 (0) (0) ( ) ( )

2 ( ) ( ) , (18)

x x
x x x x x x

x x y

d R
R m m R

d

m R


 



  

 



¥
¥ + + ¥

+ ¥

æ ö÷ç + ⋅ ⋅ - + ⋅ -÷ç ÷çè ø

- ⋅ ⋅ ⋅ -

=

+
 

( ) ( )4( ) ( ) ( )
1 3 3 10 3 (0) (0) 2 (0) (0)x x x x x x yR R m R  ¥ ¥ + ¥+ ⋅ ⋅ ⋅ - ⋅ ⋅ + ⋅= .  (19) 

 
Let: 

( ) ( )( )2 2( ) ( )
1 3( ) 3 (0) (0) ( )x x x x xA R m m¥ ¥ + += + ⋅ ⋅ - +t tm m ,                (20) 

 
then Equs.(17-19) can be written in the more compact form 
 

( )
( ) ( ) 3

3 1

( )
( ) ( ) 2 ( ( ) ) ( ) ( )x y

x x y x y y y

d R
A R m m R

d


     




¥
¥ ¥ + +⋅ - ⋅ + ⋅= ,              (21) 

 

( )
( )

4( ) ( ) ( )
3 1

( )
( ) ( ) 2 ( ) ( )x x

x x x x x y

d R
A R m R

d


    




¥
¥ ¥ + ¥⋅ - ⋅ ⋅ + ⋅ -= ,                            (22) 

 

( )4( ) ( ) ( )
3 10 (0) (0) 2 (0) (0)x x x x x yA R m R¥ ¥ + ¥= ⋅ - ⋅ ⋅ + ⋅km .       (23) 

 
The general solution of Equs.(21, 22) is given by the formula: 
 

( )
1

1 1

*

*

( ) ( ) ( )

3 ( ) ( )
3 1 1

*( ) ( ) exp ( )

2 ( ( ) ) ( ) ( ) exp ( )

u

x y x y x

u

u

x y y y x

u

R R A u d u

m m R A u d u d





  

  

 

    

=

¥ ¥ ¥

=

= =

+ + ¥ ¥

= =

ì üï ïï ïï ïï ï= ⋅ +í ýï ïï ïï ïï ïî þ
ì üï ïï ïï ïï ï+ - ⋅ + ⋅ ⋅ í ýï ïï ïï ïï ïî þ

ò

ò ò
    (24) 

 
and 
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1

1 1

*

*

( ) ( ) ( )

4 ( ) ( )
3 1 1 1 1
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2 ( ( ) ) ( ) exp ( ) ,

u

x x x x x

u

u

x x y x

u

R R A u d u

m R A u d u d




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 
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=

¥ ¥ ¥

=

= =

+ ¥ ¥

= =
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ì üï ïï ïï ïï ï+ - ⋅ + ⋅ - ⋅ í ýï ïï ïï ïï ïî þ

ò

ò ò

      (25) 

 
where *  is any fixed time in the lag domain. 

 

Following the procedure presented in the solution of the two-time RE moment equations in  
the long-time (see Section 5.3.1), under the assumption that 1 30 , 0 > <   are such that 

( ) ( ) 0A ¥ <  , Equs.(24 ,25) can be written in the more convenient form: 

 

( )
1

1 1

( ) 3 ( ) ( )
3 1 1 1 1 1( ) 2 ( ( ) ) ( ) ( ) exp ( ) ,

u

x y x y y y x

u

R m m R A u d u d

  

 

     
= =

¥ + + ¥ ¥

= -¥ =

ì üï ïï ïï ïï ï= - ⋅ + ⋅ ⋅ í ýï ïï ïï ïï ïî þ
ò ò

            (26) 

( )
1

1 1

( ) 4 ( ) ( )
3 1 1 1 1( ) 2 ( ( ) ) ( ) exp ( ) ,

u

x x x x y x

u

R m R A u d u d

  

 

    
= =

¥ + ¥ ¥

= -¥ =

ì üï ïï ïï ïï ï= - ⋅ + ⋅ - ⋅ í ýï ïï ïï ïï ïî þ
ò ò  

            (27) 
where 

( )
2 1 1

2 2

( ) 3 ( ) ( )
1 3 2 2 1 2 2( ) 2 ( ( ) ) ( ) ( ) exp ( ) .

u

x y x y y y x

u

R m m R A u d u d

  

 
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= - =

¥ + + ¥ ¥
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ì üï ïï ïï ïï ï- = - ⋅ + ⋅ ⋅ í ýï ïï ïï ïï ïî þ
ò ò

                     (28) 
 

Since ( ) ( )xA ¥ t  is a function of ( ) ( 0)xxR ¥ , to obtain a closed form of the system of Equs.(26-

28) we need an extra constraint for ( ) ( 0)xxR ¥ . Combining Equs.(23, 26) we obtain an extra 

condition, that allows us to compute ( ) ( 0 )xxR ¥ : 

 
 

( )

( )
1

1 1

4( ) ( )
3

0 0

3 ( ) ( )
1 3 1 1 1 1 1

0 (0) (0) 2 (0)

2 ( ( ) ) ( ) ( ) exp ( ) (29)

x x x x

u

x y y y x

u

A R m

m m R A u d u d

¥ ¥ +

= =

+ + ¥ ¥

=-¥ =

= ⋅ - ⋅ ⋅

ì üï ïï ïï ïï ï+ ⋅ - ⋅ + ⋅ ⋅ í ýï ïï ïï ïï ïî þ

+

ò ò
t

t t

k t t k t t

m

m

 

The conditional mean values ( )xm + , ( )ym + , defined by Equs.(3,4), are auxiliary data 

provided by MC simulations. 
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 In conclusion, the closed in terms of both moments and time system is given by the equations 
(for convenience we repeat here Equs.(29, 26, 27):  
 
 

( )

( )

( )

1

1 1

1

4( ) ( )
3

0 0

3 ( ) ( )
1 3 1 1 1 1 1

( ) 3 ( ) ( )
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2 ( ( ) ) ( ) ( ) exp ( ) , (30)
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x y x y y y x
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m m R A u d u d
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
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+
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1

1

1

1 1

1

( ) 4 ( ) ( )
3 1 1 1 1

2 2( ) ( )
1 3

(31)

( ) 2 ( ( ) ) ( ) exp ( ) , (32)

where:

( ) 3 (0) (0) ( )
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u

u

x x x x y x
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x

d

R m R A u d u d
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m
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

  

 


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



 

= =

= -¥

= =
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+
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= + ⋅ ⋅ - +

ò ò

ò ò

( ) are provided by MCsimulationsym +

 

5.4.3. Preliminary results- Discussion 
 

In Fig.16,17 the long-time RE cross-correlation ( ) ( )x yR ¥ t  and response auto-correlation 
( ) ( )x xR ¥ t  of the bi-stable/Gaussian half oscillator obtained by the solution of the system of 

Equs.(30-32) are plotted and compared with results obtained by MC simulations. As we can 
see in Fig.16 the two methods compare pretty satisfactorily in the approximation of ( ) ( )x yR ¥ t , 

having a local mismatch that reaches 10%, around 0 = . On the contrary, as we can see in 
Fig.17, the proposed scheme fails as the time lag increases, providing an acceptable 
approximation of ( ) ( )x xR ¥ t  only around 0 = . The latter is attributed to the failure of the bi-

Gaussian closure condition to approximate the joint asymptotic response density 

1 1( , ; )x xf x y   since as the lag time  increases 1 1( , ; )x xf x y   develops two extra modes 

making the bi-Gaussian closure inadequate, as shown in Fig.18. In this case the long-time 
statistical equilibrium joint response pdf 1 1( , ; )x xf x y   would be more efficiently 

approximated by the use of a superposition of four Gaussian densities.  
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  Figure 17: The shame as in Fig.16 for the asymptotic response auto-correlation ( ) ( )

x x
R ¥ t ).  

 
 

Figure 16: The asymptotic RE cross-correlation ( ) ( )
x x

R ¥ t  for the bi-stable/Gaussian half oscillator with 

the same parameters as in Fig13 obtained by the solution of the two-tome moment problem (solid lines) 
compared with results obtained with MC simulations (dashed lines).  
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Directions for future work 

1. Extension and further development of the numerical solution of the joint REPDF evolution 
equation in the steady state to bi-stable and to second order random oscillators. 

 

2. Numerical solution of the transient joint REPDF evolution equation of scalar RDEs by the 
    use of transient local two-time RE moment equations.   
 

3. Use the characteristically functional approach, presented in Section 2.4, to find equations 
for the evolution of the joint two-time RE pdf 

( ) ( )
( )x y st

f a,b  and the joint two-time 

response pdf 1 2( ) ( )
( )x x st

f a ,a . Then, solve the system of the new two-time equations for the 

evolution of 
( ) ( )

( )x y st
f a,b  and 1 2( ) ( )

( )x x st
f a ,a , together with the REPDF evolution 

equation (for ( ) ( ) ( )x t y tf a,b ), applying a time closure similar with the one used for the 

solution of the two-time RE moment equations in Section 5.2.3. 
 

4. Extensions of the two-time RE moment equations to bi-stable and second order stochastic       
    oscillators 
 

5. Use the system of the two-time RE moment equations obtained in Chapter 5 to close the 
response-marginal REPDF (Equ.(3)_Sec(2.2.3)) for non-linear generalized Langevin 
equations.  
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A.1. Auxiliary integrals used in Section 3.2.4. for lpGF input 
 

We shall prove the following integration formula: 
 

( ) ( )( )

( ) ( )
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2 1 1 1
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            (2) 

Let us define: 

 ( ) ( )/ 2
,

2

a s A A
u u s t a t a t s

a a

⋅ −
= ≡ ⋅ − = ⋅ − + ,     (3a)  

( ) ( )0 0 0,
2

A
u u s t a t s
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2

A
u u s t a t s

a
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then:   

 ( ) ( ) ( )0 0 1 1, , ,u u s t u u s t u u s t= ≤ = ≤ = ,                   (4)  
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∫ ∫ ∫  .    (5) 

The integrals of normal distributions, appearing in Equ.(5), can be approximated by error 
functions. Specifically, the following formula holds true: 

( )2
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exp
2

x

s ds erf x
π − =  ∫  ,                                   (6) 

therefore:  
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From Equ.(2) and Equ.(7) we obtain the integration formula (1) .       ■ 

 

We shall also prove that: 
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.  (9) 

The integral ( )31 ,I s t , appearing in Equ.(9), shall be calculated separately. The derivative of 

the error function follows from its definition, that is: 
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Therefore, by the chain rule, for the derivative appearing in the integral ( )31 ,I s t  we have: 
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⋅
= − ⋅ − ⋅ − + ⋅ −

π

π

π
( )

2

1 ,
4

A

a

    +     ⋅  

              
(10)    

 

therefore, combining Equs.(9,10), we obtain: 

( ) ( ) ( )

( )

( )( )( )

0

0

0

2
2

31 1 1 1 1

2
2

1 1 1 1

2
2

1 1 1

2
, exp 2

4

2
exp 2

4

2
exp exp

4

2
exp

t

t

t

t

t

t

a A
I t s a s t A s t A t dt

a

a A
a s t A s A t A t dt

a

a A
A s a s t A t dt

a

a

    = − ⋅ − ⋅ − + ⋅ − + + ⋅ ⋅ =     ⋅  

  = − ⋅ − ⋅ − − ⋅ + ⋅ − − ⋅ ⋅ =   ⋅ 

  = − ⋅ − ⋅ − ⋅ − ⋅ − − ⋅ =   ⋅ 

= − ⋅ −

∫

∫

∫

π

π

π

π
( )

2

2 ,
4

A
A s I t s

a

  ⋅ − ⋅ =   ⋅ 

              

           ( ) ( ) ( )0exp 2
2 2

A A
A s erf a t s erf a t s

a a

        = − ⋅ ⋅ ⋅ ⋅ − + − ⋅ − +              
 .  (11)  
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A.2. Frequency Domain Analysis of the linear RDE with lpGf input 

 
Purpose of this Αppendix is to calculate the response auto-spectrum ( )xxS ω and the joint 

(stationary) RE cross-spectrum ( )xyS ω  of the linear RDE (Equ(1)_Sec(3.1.1)) under lpGF 

excitation. Subsequently, by applying the inverse Fourier transform we shall re-obtain the 
long-time RE cross-correlation ( )( )

x yR t s∞ −  and the long-time response auto-correlation 

( )( )
x xR t s∞ −  (these were also obtained in Section 3.2.4.a by the solution of the two-time RE 

moment equations). 
 

Let us assume that the stationary excitation has zero mean value, i.e. 0ym = , then: 

 

 ( ) ( ) ( )( )22, , expy y y yC t s R t s a t s= = ⋅ − −σ  ,     (1)  

 

or, for t sτ = − , ( ) ( )2 2expy yC aτ σ τ= ⋅ − ⋅ .      (2)  

 
From Equ.(6)_Sec(3.2.3) we have : 

 

0x y

B
m m

A
∞ = − ⋅ = .         (3)  

 
The spectrum of the stationary excitation can be found using the formula below (see 
(Athanassoulis 2000)): 
 

( ) ( ) ( ) ( ) ( )2 2

0 0

1 1
cos exp cosyy y yS C d a dω τ ω τ ω σ τ ω τ ω

π π

∞ ∞

= ⋅ ⋅ = ⋅ − ⋅ ⋅ ⋅∫ ∫ .      (4) 

 
 
From Equ.(4) we obtain (using the integration formula of pp. 480 in (Gradshteyn & Ryzhik 
1965)): 
 

 ( )
2 2

2 21 1
exp exp

4 42 2
yyS

a aa a

π ω ω
ω σ σ

π π

      = ⋅ ⋅ ⋅ − = ⋅ ⋅ −     ⋅ ⋅   ⋅ ⋅ ⋅
.   (5)  

 
Let:  
 

( ) ( )0Re expY t Y i tω = ⋅ ⋅ ⋅  ,      ( ) ( )0Re expX t X i tω = ⋅ ⋅ ⋅  ,            (6a,b)  

 
then from Equ.(2a)_Sec(3.1.1) we have: 
 
 ( ) ( ) ( )0 0 0exp exp expX i i t A X i t B Y i tω ω ω ω⋅ ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ,   (7)  

or 
 
 ( )0 0X i A B Yω⋅ ⋅ − = ⋅ ,         (8)  
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and the transfer function ( )xyH ω  of system given by Equ.(2)_Sec(3.1.1) is given by the 

formula: 
 

 ( ) 0

0
xy

X B
H

Y i
ω

ω
= =

⋅ −Α
.        (9)  

 
We shall use ( )xyH ω  to calculate the joint RE spectrum( )xyS ω , i.e.  

 

( ) ( ) ( )
2

21
exp

42
xy xy yy

B
S H S

i aa

ω
ω ω ω σ

ω π

  = ⋅ = ⋅ ⋅ ⋅ − =  −Α + ⋅ ⋅ ⋅ ⋅
   

( ) 2
2

2 2

1
exp

42

B i

aa

ω ω
σ

ω π

 −Α + ⋅  = ⋅ ⋅ ⋅ − =  +Α ⋅ ⋅ ⋅
   

    
2 2

2 2
2 2 2 2

1
exp exp

4 42 2

B B
i

a aa a

ω ω ω
σ σ

ω ωπ π

   − ⋅Α    = ⋅ ⋅ ⋅ − + ⋅ ⋅ ⋅ ⋅ −     +Α ⋅ + Α ⋅   ⋅ ⋅ ⋅ ⋅
.          (10) 

 
Then, from ( )xyS ω , applying the inverse Fourier transform, we find the long-time RE cross-

correlation ( ) ( )x yR ∞ τ : 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

( )

( )

2
2

2 2

0

2

2 2

0

exp cos sin

1
exp cos (11)

4

exp sin .
4

x y xy xy xyR S i d S d i S d

B
d

aa

d
a

+∞ +∞ +∞

∞

−∞ −∞ −∞

+∞

+∞

= ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ =

     = ⋅ ⋅ −Α⋅ ⋅ − ⋅ ⋅ ⋅ −    +Α ⋅ ⋅ 
   − ⋅ − ⋅ ⋅ ⋅   +Α ⋅  

∫ ∫ ∫

∫

∫

τ ω ω τ ω ω ω τ ω ω ω τ ω

ω
σ ω τ ω

ωπ

ω ω
ω τ ω

ω

 
 
To calculate the sin and cosine transforms appearing in Equ.(11) we use the following 
integration formulae (from (Magnus et al. 1954) (see Equ.15, pp.15 and Equ.26, pp.74)): 
 

( )
2

2 2

0

1
exp cos

4
d

a

ω
ω τ ω

ω

+∞
  ⋅ − ⋅ ⋅ ⋅ =  +Α ⋅ ∫  

2

4 1 1
1 1

4 ( ) 2 2

A
A Aae e erf a A e erf a A

A a a
− ⋅ ⋅⋅

              = ⋅ ⋅ + ⋅ + ⋅ + + − ⋅ + ⋅           ⋅ −     ⋅   ⋅  

τ τπ
τ τ , (12) 

and 
 

( )
2

2 2

0

exp sin
4

d
a

ω ω
ω τ ω

ω

+∞
  ⋅ − ⋅ ⋅ ⋅ =  +Α ⋅ ∫  
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2

4 1 1
1 1

4 2 2

A
A Aae e erf a A e erf a A

a a
− ⋅ ⋅⋅

              = ⋅ ⋅ + ⋅ + ⋅ − + − ⋅ + ⋅               ⋅   ⋅  

τ τπ
τ τ  .           (13) 

 
Substituting Equs.(12) and (13) in Equ. (11), we get: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( )
2

2 2

2 2 2 2

0 0

( )

2

2 4

1
exp cos exp sin

4 4

exp cos sin

4

x y xy xy xy

A

a

d d
a a

R S i d S d i S d

B

a

B
e

a

+∞ +∞

+∞ +∞ +∞

∞

−∞ −∞ −∞

⋅

−Α ⋅ ⋅ − ⋅ ⋅ ⋅ − ⋅ − ⋅ ⋅ ⋅
+ Α ⋅ + Α ⋅

= ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ =

= ⋅ ⋅
⋅

−Α⋅
= ⋅ ⋅ ⋅

⋅

                        
∫ ∫

∫ ∫ ∫
ω ω ω

ω τ ω ω τ ω
ω ω

τ ω ω τ ω ω ω τ ω ω ω τ ω

σ
π

π
σ

1 1
1 1

( ) 2 2

1 1
1 1 ,

2 2

A A

A A

e erf a A e erf a A
A a a

e erf a A e erf a A
a a

− ⋅ ⋅

− ⋅ ⋅

⋅ + ⋅ + ⋅ + + − ⋅ + ⋅ −
− ⋅ ⋅

− + − ⋅ + ⋅ − + ⋅ + ⋅
⋅ ⋅

                                
                                

τ τ

τ τ

τ τ

τ τ

 

 
that is:  

( )
2

( ) 2 4 1
1

2 2

A
Aa

x y

B
R e e erf a A

a a
τπ

τ σ τ∞ ⋅⋅
  ⋅   = ⋅ ⋅ ⋅ + ⋅ + ⋅       ⋅  ⋅ 

.   (14) 

 
We shall now calculate the spectrum of the response ( )xxS ω : 

 

( ) ( ) ( )
2 2

2 21
exp

42
xx xy yy

B
S H S

j aa

ω
ω ω ω σ

ω π

  = ⋅ = ⋅ ⋅ ⋅ −  ⋅ −Α ⋅ ⋅ ⋅
.   (15)  

 
Then, applying the inverse Fourier transform to ( )xxS ω we obtain the long-time response auto-

correlation ( ) ( )x xR ∞ τ : 

 

( ) ( ) ( )
( )2 2

( ) 2
2 2

0 0

cos
2 cos exp

4x x x x

B
R S d d

A aa

∞ ∞

∞
 ⋅  = ⋅ ⋅ ⋅ = ⋅ ⋅ −  + ⋅ ⋅∫ ∫

ω τ ω
τ ω ω τ ω σ ω

ωπ
 . (16)  

 
Applying Equ.(12) to Equ.(16) we obtain: 
 

( )

( )
( ) ( ) ( )

2

2

( )

2
2 4

2 2
4

1 1
1 1

2 2

1
2

,

4 ( )

4

A A

A s t A t s

x x

A

a

A

a

e erf a A e erf a A
a a

A
e erf a s t e erf a

a

R t s

B
e

Aa

B
e

Aa

− ⋅ ⋅

⋅ − ⋅ −

∞

⋅

⋅

+ ⋅ + ⋅ + + − ⋅ + ⋅
⋅ ⋅

⋅ ⋅ − + + +
⋅

=

            = ⋅ ⋅ ⋅ =                ⋅ −⋅  
  ⋅  = ⋅ ⋅ ×       −

τ τ
τ τ

π
σ

π

π σ ( ) 1
2

.
A

t s
a

⋅ − + +
⋅

                
 
            (17)
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A.3. Auxiliary integrals used in Section 3.2.4. for OU input  

 

In what follows we shall make use of the formulae: 

 

( ) ( ) ( )( ) ( )

( )

1

0 0

0

1
4 0 1 1

2 2

, , , , cos cos

cos ( ) sin ( )

t t s
t s

t t s

x t s

x t s

a t s a

a

I a t t s t s dt d

a
a

e e

e

−
= −

−

= −

= −

⋅ − ⋅= ⋅ ⋅ − = ⋅ ⋅ =

= ⋅ ⋅ + ⋅
+

∫ ∫
τ

τ

τ

ω ω ω τ τ

ωτ ω ωτ
ω

  (1) 

 

( )

( ) ( )( )

1
1

0 0

0

5 0 1 1

2 2

( ), , , , sin ( ( ) ) sin ( )

cos sin

t t s
t s

s

t t s

t s

t s

a t a

a

I a t t s t s dt d

a
a

e e

e

τ

τ

τ

τ

τ

ω ω ωτ τ

ω ωτ ωτ
ω

−
= −

−

−

= −

= −

= ⋅ − = ⋅

= ⋅ − ⋅ + ⋅
+

∫ ∫
   (2) 

 
and 

 
( ) ( ) ( )

( ) ( )( )
0

6 4 5 0 4 4 0 5 5 0

4 5 4 52 2

, , , , , , , , , , , , , ,

( ) cos ( ) sin
t s

t s

a

I c c a t t s c I a t t s c I a t t s

c a c c c a
a

e
τ

τ

τ

ω ω ω

ω ωτ ω ωτ
ω

= −

= −

= ⋅ + ⋅ =

= ⋅ ⋅ − ⋅ ⋅ + ⋅ + ⋅ ⋅
+

        (3) 

 
 
We shall first consider the integrals appearing in Equ.(28a)_Sec(3.2.4). For the first integral 
appearing in Equ.(28a)_Sec(3.2.4) we have: 
 

( )

( )
( )( ) ( )( )

( )
( ) ( )( ) ( )( )( )

1

1

0

1

0

0

1

1 1

2 2 2

22
12 22 2

)
0 1 0 0 1 12 2

0

( ) (

Substituting from Equ.(29a) _ Sec(3.2.4), ( )

2 ( )

cos sin

t

A t
x y s t

t

t

A tA s

t

t
A s

s

t

a A t

SR s t e dt

a a A
B e e dt

a A A a

e
A a t s t s dt

A a
e

− ⋅

≥

− ⋅ ⋅⋅

− ⋅
−− ⋅

⋅ =

 ⋅ ⋅ − +
= ⋅ ⋅ ⋅ +
 − + ⋅ + +

 
 
 − ⋅ + ⋅ ⋅ − + ⋅ ⋅ −
+ +  

∫

∫

∫

ω
σ

ω ω

ω ω ω
ω

=


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( ) ( )
( )( ) ( )( )

( )
( )

0

2 2 2

22 2

2 22 2

6 0 0 02 2
0

( )

, , , , , , .

A tA s A t

A s

a a A
B e e e

A a A A a

e
I A a a A t t s

a A

− ⋅⋅ − ⋅

− ⋅


⋅ − +

= ⋅ ⋅ − ⋅ − −
 − + ⋅ + +


 − ⋅ + −  − + 

ω
σ

ω ω

ω ω
ω

 (4) 

 
Applying Equ.(3) to Equ.(4), we obtain: 
 

( )
( )( ) ( )( )

( ) ( )

( ) ( ) ( )

( )

1

1

0

0

0

2

1 1 2 22 2

2 2 2

22

2 2 2
0 0 0 0

2 2
0 0

( ) ( )

( ) ( )

,

( )

( ) ( ) cos ( ) 2 sin ( )

( ) cos ( )

t

A t
x y s t

t

A tA s A t

A s a A t s

A s a A t s

B
SR s t e dt

a A A a

a a A
e e e

A

a A t s a t s

a A t s

e

e

− ⋅

≥

− ⋅⋅ − ⋅

− ⋅ + − ⋅ −

− ⋅ + − ⋅ −

⋅
⋅ = ×

− + ⋅ + +

 ⋅ − +× − ⋅ − −


 ⋅ − − ⋅ ⋅ − + ⋅ ⋅ ⋅ ⋅ −  
+ ⋅ − ⋅ ⋅ − +

−

∫ σ

ω ω

ω

ω ω ω ω

ω ( )0 0 02 sin ( ) .a t s ⋅ ⋅ ⋅ ⋅ −  
ω ω

  (5) 

 
For the second integral of Equ.(28a)_Sec(3.2.4) we have: 
 

( )

( )
( ) ( )( ) ( )( )( )

( )

1

0

0

0

1 0

0

0 1

0

0

1 0 1

( 2 )2
( ) ( )

0 1 0 0 0 1 0 12 2
0

1

Substituting from Equ.29c _ Sec(3.2.4), , , ( )

cos sin

t

A t
x y x

t

t
A s t

a A t t

t

t

A s t A t
x y

t

TR s t t m e dt

B e
e a A t t t t dt

a A

e m m e dt

− ⋅

⋅ − ⋅
− + ⋅ −

⋅ − − ⋅

⋅ = =

 
 ⋅ ⋅
 = − ⋅ − ⋅ ⋅ − − ⋅ ⋅ − +
 − +   

+ ⋅ ⋅ ⋅

∫

∫

∫

σ
ω ω ω

ω

( )
( )

( ) ( )

0

0 0

0

( 2 )
2

6 0 0 0 02 2
0

, , ( ), , , ,

.

A s t

A s t A tA t
x y

e
B I a A a A t t t

A a

B
e m m e e

A

⋅ − ⋅

⋅ − − ⋅− ⋅


 = − ⋅ ⋅ ⋅ − − − + + + + 

− ⋅ ⋅ ⋅ ⋅ −

σ ω ω
ω              (6) 

 
Applying Equ.(3) to Equ.(6) we obtain: 
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t
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x y x

t
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x y
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a A t t
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B
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A

e

e
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⋅ + − − ⋅− ⋅

⋅ − ⋅ − + ⋅ −

⋅ − ⋅

⋅
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+ + ⋅ − +

× ⋅ − − + ⋅ − +
+ ⋅ ⋅ ⋅ − − ⋅ − + 

− ⋅ ⋅ ⋅ ⋅ −

−

∫ σ

ω ω

ω ω

ω ω ω

         (7) 

 
Let us now calculate the integrals appearing in Equ.(28b)_Sec(3.2.4). The first integral of 
Equ.(28b)_Sec(3.2.4), using Equ.(5), is equivalently written : 
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( )( ) ( )( )

( ) ( ) ( )

( ) ( ) ( )

1

1

0

0

0

2
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2 2 2
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0
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,
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A

a A t s a t s

e
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 + ⋅ − − ⋅ ⋅ − + ⋅ ⋅ ⋅ ⋅ −    

−

∫ σ

ω ω

ω
ω

ω ω ω ω

  (8) 

 
whereas the second integral appearing in Equ.(28b) becomes: 
 

( )

( )
( )( ) ( )( )( )

( )
( )

1

1

1

1 1

2 2
)

1 1 12 2

2 2

6 0 02 2

( ) (

Substituting from Equ.(29b) _ Sec(3.2.4), ( )

( ) cos sin

( ), , ( ), , , , .

t

A t
x y s t

s

t
A s

s

s

A s

a A t

SR s t e dt

B e
a A t s t s dt

a A

B e
I a A a A s t s

a A

e

− ⋅

<

− ⋅
−

− ⋅

− + ⋅

⋅ =

⋅ ⋅
= ⋅ − ⋅ ⋅ − − ⋅ ⋅ −

− +

⋅ ⋅
= ⋅ − − − +

− +

∫

∫σ
ω ω ω

ω

σ
ω ω

ω

     (9) 

 
Applying Equ.(4) in Equ.(9) we get:  
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( )( ) ( )

( )( ( ))

1

1

2 2

1 1 2 2 2 2
0

2 2 2
0 0 0

2 2 2
0

( ) ( ),
( ) ( )

( ( ) ( ) ) cos ( ) 2 sin ( )

( ( ) ( ) ) .

t

A t
x y s t

s

A s

A s a A t sB
SR s t e dt

a A a A

a A t s a t s

e a A

e− ⋅

<

− ⋅

− ⋅ − + ⋅ −⋅ ⋅ = ⋅ ×− + ⋅ + +

× − − + ⋅ ⋅ − + ⋅ ⋅ ⋅ ⋅ − −

− ⋅ − − + 

∫ σ

ω ω

ω ω ω ω

ω

   (10) 

 
 
A.4. Some auxiliary formulae concerning the Gaussian joint REPDF. 
 
The joint REPDF ( )( ) ( )x y st

f α,β  that corresponds to the linear RDE given by Equ.(1) 

_Sec(3.1.1), when the excitation is assumed to Gaussian, will be a 2D-Gaussian pdf: 
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C s s m t C t s m t m s C t t m s

×
⋅ ⋅ −



− ×

⋅ ⋅ −


× ⋅ − ⋅ ⋅ ⋅ + ⋅ 


=

×

α,β

π

α− α− β− β−

 

 
where s , t  represent the excitation and the response time respectively. 
 
Let: 

( ) ( ) ( ) ( )( )2
, , , ,xx yy xyW t s C t t C s s C t s≡ ⋅ − ,        (2) 

( ) ( ) ( )( ) ( ) ( )( ) ( )( )
( ) ( )( )

2

2

, ; , , 2 ,

, ,

yy x xy x y

xx y

E t s C s s m t C t s m t m s

C t t m s

≡ ⋅ − ⋅ ⋅ ⋅ +

+ ⋅

α β α− α− β−

β−
          (3) 

then ( )( ) ( )x y stf α,β  can equivalently be written: 
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, ; ,1
2 , 2 ,
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E t s
f

W t s W t s

 
 
 
 
  

⋅ −
⋅ ⋅

=
α β
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π

.       (4) 

 
The partial derivative of ( ) ( ) ( )x y stf α,β  with respect to the response time t  will be: 
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2 2
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E t s
W t s W t s E t s

W t sW t s W t s

f
t

t

tt

=

       = ⋅ ⋅ − =    ⋅    ⋅   
  
  −      ⋅    = ⋅ − + ⋅ − =  ⋅  ⋅    
 
  

∂
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∂
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α β
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where: 
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,
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⋅ − ⋅ ⋅
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⋅

∂ ∂
∂ ∂
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and 
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m s C t t
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∂
∂
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∂

∂ ∂ ∂
∂ ∂ ∂

∂
∂

∂
∂

∂
∂
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That is: 
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( )( )
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( )

2 4 3

2
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, , , ; , , ; ,
1

2 , , 2 ,
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W t s W t s E t s E t s
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f
t t t

t

 
  ⋅  

 = ⋅ − + − ×
 ⋅ ⋅ 
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 ⋅ 

∂ ∂ ∂
∂ ∂ ∂ ∂
∂

α β α β

π

α β

α,β

 
 
where: 
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⋅
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( )

( )( ) ( )( ) ( ) ( )
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x
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t
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t

t

= ⋅ ⋅ ⋅ −

    − ⋅ ⋅ ⋅ − ⋅      

 + ⋅   

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

α β α−

β− α−
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               (5c) 

 
Consequently, the partial derivative of ( )( ) ( )x y stf α,β , with respect to the response variable α  

will be: 
 

( )
( )
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( )( )2( ) ( )

, ; ,1
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2 , 2 ,
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E t s

W t s W t s
f

  
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∂

∂
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∂
∂

α β
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                       (6a)

 
where: 
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yy x xy yC s s m t C t s m s

E t s
= ⋅ ⋅ − ⋅ ⋅

∂
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That is: 
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∂
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α− β− α β

π
α,β

α
. (7) 

 
In case that the long-time statistical equilibrium state of Equ.(1)_Sec(3.1.1) is considered, the 
partial derivative with respect t  ( half time derivative) given by Equ.(5) simplifies to:  
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where: 
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∂
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∂
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α β β− α− .                                                   (8) 

 
 

A.5. Equivalent expression for the off - diagonal REPDF evolution constrain  
 
Let us consider the left hand side of the off - diagonal REPDF evolution constrain in the 
linear/ Gaussian case Equ.(1) _Sec(3.5) : 
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f f
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t
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We shall first assume that ( ) ( ) 0x ym t m s= = . In this case the joint REPDF ( )( ) ( )x y st

f α,β  IS 

given by the formula:  
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For ( ) ( ) 0x ym t m s= =  the first term of the right hand side of Equ.(1) (see Equ(5)_App.4) 

reduces to: 
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(3a) 

where: 

( ) ( ) ( ) ( )( )2
, , , ,xx yy xyW t s R t t R s s R t s≡ ⋅ − ,                  (3b)
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( ) ( ) ( ) ( )2 2, ; , , 2 , ,yy xy xxE t s R s s R t s R t t≡ ⋅ − ⋅ ⋅ ⋅ + ⋅α β α α β β ,
               (3c)
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From Equs.(3c, 3d), the 2nd term appearing in the summation in the right hand of Equ.(3a), 
becomes: 
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Then, from Equs.(4,3e) for the 2nd  and  3rd term of Equ.(3a) we obtain:
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Applying Equ.(5) in Equ.(3a), Equ.(3a) becomes:  
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We shall now compute the partial derivative of 
( ) ( )

( )x y st
f α,β with respect to α . Setting 

( ) ( ) 0x ym t m s= =  in Equ.(7)_App(4), we have: 

 

( )
( ) ( )

( )( )
( )

( )( )3 2( ) ( )

, , , ; ,
exp .

2 , 2 ,

yy xy
x y st

R s s R t s E t s

W t s W t s
f

 ⋅ − ⋅  = − ⋅ − 
 ⋅ ⋅ ⋅ 

∂
∂

α β α β

π
α,β

α
                                  

(7) 

 

Then, the 3rd term of the right hand side of Equ.(1) is equivalently written:  

 

[ ] ( )

[ ]
( ) ( )

( )( )
( )

( )( )3 2

( ) ( )

, , , ; ,
exp

2 , 2 ,

yy xy

x y st

R s s R t s E t s

W t s W t s

A B f

A B

+ =

 ⋅ − ⋅  = − + ⋅ − = 
 ⋅ ⋅ ⋅ 

⋅ ⋅ ⋅

⋅ ⋅ ⋅

∂
∂

α

α β α β
α

π

β α,β

β

α
 

( )
( )

[ ] ( ) ( )( )( )

( )
( )

( ) ( ) ( ) ( )

3

3

2 2

exp , ; ,
, ,

2 ,

exp , ; ,

2 ,

, , , , ,

yy xy

yy xy yy xy

E t s
R s s R t s

W t s

E t s

W t t

R s s R t s R s s R t s

A B

A A B B

  = − ⋅ + ⋅ − ⋅ =
⋅ ⋅

 
 = − ×
⋅ ⋅

 × ⋅ − ⋅ ⋅ ⋅  

⋅ ⋅ ⋅

⋅ ⋅ + ⋅ ⋅ ⋅ − ⋅

α β
α α

π

α β

π

α α α

β β

β β β
 

that is: 

[ ] ( )
( )

( )
( )

( ) ( )
( )

( )
( )

( )2 2
2 2 2

( ) ( )

1
(8)

2 ,

, , , ,
exp , ; , .

, , ,
yy xy yy xy

x y st W t s

R s s R t s R s s R t s
E t s

W t s W t s W t s

A B f

A A B B

+ = ×
⋅ ⋅

 −   × − ⋅ + ⋅ ⋅ ×   
  

⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅
+

∂
∂

α
π

α α α β

β α,β

β β

α

 

From Equs.(6,8) we get that the right hand side of Equ.(1) becomes:

 

( )
( ) [ ]

( )( ) ( ) ( ) ( )
( ) ( )

x y x ys st t
x y st

f f
A f A B

t

∂ ∂
+ ⋅ + ⋅ ⋅+ ⋅ =

∂ ∂

α,β α,β
α,β α β

α
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( ){ }
( )

( )
( )

( )( )
( ) ( ) ( )2 2

00 00 11 022

exp , ; , ,
, , , ,

2 , ,

yyE t t R s s
Q t s Q t s Q t s Q t s

W t s W t s

    ⋅ − + ⋅ − ⋅ ⋅ + ⋅   ⋅ ⋅      

α β
α α β β

π
,

              (9) 

where: 

( )
( )

( )00

1
, ,

,
Q t s W t s A

W t s t
= ⋅ −

∂
∂

,                 (10a) 

( )
( )( )

( )
( )
( )

( ) ( ) ( )11 2

,1
, 2 , , , ,

,,

xy
xy xy yy

R t s
Q t s W t s R t s R t s R s s

W t s tW t s
A B

t

 ∂ = ⋅ ⋅ − − + ∂  
⋅ ⋅∂

∂
,   (10b) 

( )
( )( )

( )
( )

( )( )
( ) ( )02 2

,1 1
, , , ,

2,,

xx
xx xy

R t t
Q t s W t s R t t R t s

tW t sW t s
B

t

 ∂  = ⋅ − +   ∂  
⋅∂

∂
.                        (10c) 

 

We shall treat each one of Equs.(10a-c) separately, trying to express them in terms of  
differential expressions that look like the two-time RE moment equations (Equs.(8,22) 
_Sec.(3.2.1)).  

For ( )00 ,Q t s from Equ.(3d, 10a), we have: 

( )
( ) ( ) ( ) ( ) ( )

( )

( )
( )

( ) ( ) ( ) ( ) ( ) ( )( )

( )
( )

( ) ( ) ( )

00 2

2

2

2

, , 2 , , 2 ,
,

2 ,

,1
, , , , , ,

2,

,1
, 2 , , ,

2,

yy xx xy xy

yy
xx xy xy xx yy xy

yy
xx xx xy xy

R s s R t t R t s R t s A W t s

Q t s
W t s

R s s
R t t R t s R t s A R t t R s s A R t s

W t s

R s s
R t t A R t t R t s R t

W t s

t t

t t

t t

⋅ − ⋅ ⋅ − ⋅ ⋅
= =

⋅

 = ⋅ ⋅ − ⋅ − ⋅ ⋅ + ⋅ = 
  = ⋅ ⋅ − ⋅ ⋅ − ⋅   

∂ ∂
∂ ∂

∂ ∂
∂ ∂

∂ ∂
∂ ∂

( ) ( )( ), . (11)xys A R t s
   − ⋅      

 

Adding and subtracting ( ) ( ), ,yy xyB R s s R t s⋅ ⋅  in Equ.(11), we obtain: 

( )
( )

( )
( ) ( ) ( )

( ) ( ) ( ) ( )

00 2

,1
, , 2 , 2 ,

2,

, , , , . (12)

yy
xx xx xy

xy xy xy yy

R s s
Q t s R t t A R t t B R t s

W t s

R t s R t s A R t s B R s s

t

t

   = ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅    
  − ⋅ − ⋅ − ⋅   

∂
∂

∂
∂

 

Let us now proceed to ( )11 ,Q t s . From Equs.(3d, 10b) we have: 



A-18 |                                                                     Appendices 

 

( )
( )( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )( )( )

( )( )
( ) ( ) ( ) ( )( ) ( )

( )

11 4

2

2

4

1
, , , , 2 , , ,

,

, , ,

, , ,

1
, , , 2 , ,

,

, ,

xy yy xx xy xy xy

xy xy yy

xx yy xy

xy yy xx xy xy

xx yy

Q t s R t s R s s R t t R t s R t s R t s
W t s

R t s R t s R s s
t

R t t R s s R t s

R t s R s s R t t R t s R t s
W t s

R t t R s

A B

t t

t t


= ⋅ ⋅ − ⋅ ⋅ +

 ∂ + − − + ×  ∂
× ⋅ − =



= ⋅ ⋅ − ⋅ ⋅ −

− ⋅

⋅ ⋅

∂ ∂
∂ ∂

∂ ∂
∂ ∂

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

2

2

2 2

, , ,

, , , , ,

, , , , . (13)

xy xy xy

xy xx yy xy xy

xx yy yy xy

s R t s R t s R t s
t t

R t s R t t R s s R t s R t s

R t t R s s R s s R t s

A A

B B

∂ ∂
⋅ + ⋅ +
∂ ∂

− ⋅ ⋅ + ⋅ +

+ ⋅ − ⋅ 

⋅ ⋅

⋅ ⋅

 

Adding and subtracting ( ) ( ) ( ) ( )( ) ( )
2

, , , , ,xy xx yy xy yyR t s R t t R s s R t s R s sA B⋅ ⋅ + ⋅⋅ ⋅  to Equ.(13) 

we obtain:

 

( )
( )( )

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )
( )( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( )

2

11 4

2

2 2

2

1
, , , , , ,

,

, , ,

, , , , ,

, , , ,

, , , , ,

xy yy xx xy xy

xx yy xy

xy xx yy xy xy

yy xx xy yy

xy xx yy xy yy

Q t s R t s R s s R t t R t s R t s
W t s

R t t R s s R t s
t

R t s R t t R s s R t s R t s

R s s R t t R t s R s s

R t s R t t R s s R t s R s s

A A

B B

A B

t t


= ⋅ ⋅ − ⋅ −

∂
− ⋅ ⋅ +

∂

− ⋅ ⋅ + ⋅ +

+ ⋅ − ⋅ −

− ⋅ ⋅ − ⋅

⋅ ⋅

⋅ ⋅

⋅ ⋅

∂ ∂
∂ ∂

( ) ( ) ( ) ( )( ) ( )
2

, , , , , . (14)xy xx yy xy yyR t s R t t R s s R t s R s sA B

+

+ ⋅ ⋅ + ⋅ 
⋅ ⋅

 

That is: 

( )
( )( )

( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( )( ) ( ) ( ) ( )

11 4

2

1
, , , , 2 , 2 ,

,

, , , , , , . (15)

xy yy xx xx xy

xy xx yy xy xy yy

Q t s R t s R s s R t t R t t R t s
W t s

R t s R t t R s s R t s R t s R s s

A B

A B

t

t

   = ⋅ − ⋅ − ⋅ −    

  − + ⋅ ⋅ − −   

⋅ ⋅

⋅ ⋅

∂
∂

∂
∂

 

For 02( , )Q t s , from Equ.(3d,10c) we have: 
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( )
( )( )

( )
( )

( )( )
( ) ( )

( )( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )( )

( )( )

02 2

4

2

4

,1 1
, , , ,

2,,

1 1
, , , , , ,

2,

1
, , , , ,

2

1

,

xx
xx xy

xx yy xx xx xy xy

xx xy xx yy xy

x

R t t
Q t s W t s R t t R t s

tW t sW t s

R t t R s s R t t R t t R t s R t s
W t s

R t t R t s R t t R s s R t s
t

R
W t s

B

B

t

t t

 ∂  = ⋅ ⋅ − + =  ∂  


= ⋅ ⋅ ⋅ − ⋅ ⋅ +

 ∂  + − + ⋅ ⋅ − =   ∂ 

= ⋅ −

⋅

⋅

∂
∂

∂ ∂
∂ ∂

( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )( )2 2

, , , , , ,

1
, , , , . (16)

2

y xx xy xy xx yy

xy xx xy xy

t s R t t R t s R t s R t t R s s

R t s R t t R t s R t s
t

B

B

t


 ⋅ ⋅ + ⋅ ⋅ +

∂
+ − ⋅
∂ 

⋅

⋅

∂
∂

    

Finally, adding and subtracting ( ) ( )( )2
, ,xx xyA R t t R t s⋅ ⋅  in Equ.(16), we obtain: 

( )
( )( )

( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

02 4

2

1
, , , , , ,

,

1
, , 2 , 2 , . (17)

2

xy xx xy xy yy

xy xx xx xy

Q t s R t s R t t R t s A R t s R s s
W t s

R t s R t t A R t t R t s
t

B

B

t

   = ⋅ − ⋅ ⋅ − ⋅ − +    

 ∂  + − ⋅ ⋅ − ⋅    ∂ 

⋅

⋅

∂
∂

  

Comparing Equs.(12,15,17) we notice that these are all written in terms of two differential 

expressions of the two-time moments ( ) ( ) ( ), , , , ,yy xy xxR s s R t s R t t . In what follows we shall 

drop the zero mean value assumption to show that in this case, an additional differential 
expression for the mean value also appears.  

Let us assume that ( ) ( ) 0x ym t m s≠ ≠ . Then, the Gaussian random functions:  

( ) ( ) ( ); ; xx t x t m t= −ɶ θ θ , ( ) ( ) ( ); ; yy s y s m s= −ɶ θ θ  will have zero mean values, i.e. 

( ) 0ym s =ɶ , ( ) 0xm t =ɶ , therefore 
( ) ( )

( )x y st
f ɶ ɶ α,β  will verify Equ.(9). Thereafter we shall use the 

equivalent expression for the parameters 00( , ),Q t s  11( , )Q t s , 02( , )Q t s  given by 

Equs.(12,15,17), when we refer to the random functions ( ; )x tɶ θ , ( ; )y sɶ θ  these parameters are 

denoted by 00( , ),Q t sɶ  11( , )Q t sɶ , 02( , )Q t sɶ . More precisely for 
( ) ( )

( )x y st
f ɶ ɶ α,β  will verify the 

following equation:  
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( ){ }
( )

( )
( )

( )( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )

2 2
00 00 11 022

( ) ( )
( ) (18)

exp , ; , ,
, , , , ,
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x y x ys st t
x y st

yy

f f
A f A B
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E t t R s s
Q t s Q t s Q t s Q t s

W t s W t s

∂ ∂
+ ⋅ + ⋅ ⋅+ ⋅ =

∂ ∂
     ⋅ − + ⋅ − ⋅ ⋅ + ⋅  ⋅ ⋅     

ɶ ɶ ɶ ɶ

ɶ ɶ

ɶ ɶ
ɶ

ɶ ɶ ɶ ɶ
ɶ ɶ

α,β α,β
α,β α β

α

α β
α α β β

π

 

where: 
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( ) ( ) ( ) ( )( )2
, , ,xx xx xx xR t t C t t R t t m t= = −ɶ ɶ ,                (19a) 

( ) ( ) ( ) ( )( )2
, , ,yy yy yy yR s s C s s R s s m s= = −ɶ ɶ ,                (19b) 

( ) ( ) ( ) ( ) ( ), , ,xy xy xy x yR t s C t s R t s m t m s= = − ⋅ɶɶ ,                                                (19c) 

( ) ( ) ( ) ( )( )2
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t

   = × − ⋅ ⋅ − ⋅ − +    
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⋅
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∂ɶɶ ɶɶ ɶɶ ɶɶ ɶ ɶ
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ɶ
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The joint REPDF ( )( ) ( )x y st
f α,β  can be expressed through

( ) ( )
( )x y st

f ɶ ɶ α ,β , i.e.: 

( )( ) ( ) ( ) ( )
( ( ) ( ))x y x y x ys st t

f f m t m t= + +ɶ ɶα,β α ,β .  

 

Then, from Equ.(18) we obtain: 
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( ) ( )
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ɶ ɶ
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11 02
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, ( ( )) ( ( )) , ( ( )) , (20)
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x y y

m t

Q t s m t m t Q t s m t

   ⋅ + −  
− ⋅ + ⋅ + + ⋅ + 

ɶ

ɶ ɶ

α

α β β
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that is: 
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( )
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( ) ( ) ( ) ( )
( ) ( )

2
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x y x ys st t
x y st

x y yy
x

x y y

f f
A f A B

t
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Q t s Q t s m t

W t s W t s

Q t s m t m t Q t s m t

∂ ∂
+ ⋅ + ⋅ ⋅+ ⋅ =

∂ ∂
  + +    = × − + ⋅ + − ⋅ ⋅    

− ⋅ + ⋅ + + ⋅ +

ɶ ɶ

ɶ
ɶ ɶ ɶ

ɶ ɶ

ɶ ɶ

α,β α,β
α,β α β

α

α β
α

π

α β β 2)) , (21)
 

under the constrains given by Equs.(19a-19i).  

The differential expressions for the moments ( ) ( ) ( ), , , , ,xx yy xyR t t R s s R t sɶ ɶ ɶɶ ɶɶ  that appear in Equs. 

(19g-19i) can be written in terms of differential expressions for the moments ( ), ,xxR t t  

( ),xyR t s , ( ),yyR s s . In fact from Equs.(19a-c) we have: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( )( ) ( ) ( )( )( ) ( ) ( ) ( )( )2 2

, 2 , 2 , , 2 , 2 ,

, 2 , 2 , .
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t t
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∂ ∂
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∂
∂

ɶ ɶ ɶ ɶ ɶɶ

 

That is: 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

, 2 , 2 ,

, 2 , 2 , 2 , (22)
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xx xx xy x x x y
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t
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∂ ∂
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and 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )( )2

, , , , , ,

, , , .
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B
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∂
∂

ɶɶ ɶɶ ɶɶ

 

That is:  

 

 
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

, , ,

, , , . (23)

xy xy yy

xy xy yy y x x y

R t s A R t s R s s
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B
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− ⋅ − =

  = − ⋅ − ⋅ − ⋅ − ⋅ − ⋅   

⋅∂
∂

∂ ∂
∂ ∂
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Replacing the differential expressions for the moments ( ) ( ) ( ), , , , ,xx yy xyR t t R s s R t sɶ ɶ ɶɶ ɶɶ  that appear 

in Equs.(19g-19i), from Equs.(22,23) we obtain: 
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( )( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( )
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⋅

∂
∂

∂
∂
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ɶɶ ɶɶ ɶɶ
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ɶ
ɶ
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   

 

Moreover, from Equs.(24,26) we obtain: 
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t

t
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ɶ
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that is:  

( )
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( )( )
( )

( )( )
( )( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )

02 002

2

4
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,
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, . (27)
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R t t
Q t s Q t s

W t s

W t s R t t A R t t B R t s
W t s

m t W t s m t A m t B m s

t

t

− ⋅ =
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     + ⋅ × − ⋅ − ⋅      

∂
∂

∂
∂

ɶ ɶɶ ɶ
ɶ

ɶ
ɶ

ɶ

 

Let us now consider the system of Equations (27), (25), (24): 

( )
( )

( )( )
( )02 002

,
, , 0

,

xxR t t
Q t s Q t s

W t s

ɶ ɶɶ ɶ
ɶ

− ⋅ = ,     ( )11 , 0Q t sɶ = ,      ( )00 , 0Q t sɶ = ,                             (28a-c) 

in terms of the variables: 

( ) ( ) ( )1 , 2 , 2 ,xx xx xyx R t t A R t t B R t s
t

= − ⋅ ⋅ − ⋅ ⋅
∂
∂

,              (29a) 

( ) ( ) ( )2 x x yx m t A m t B m s
t

= − ⋅ − ⋅
∂
∂

,                 (29b) 

( ) ( ) ( )3 , , ,xy xy yyx R t s R t s R s sA B
t

= − −⋅ ⋅∂
∂

.                (29c) 

Combining Equs.( 27, 25, 24,29), the linear system (28a-c) is written as: 

( )1 2

1
0

2 xx m t x− + ⋅ =  ,                  (30a) 
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2

2

3
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, , , 2 , , (30b)

, , , 0,

xy yy

y xy y xx yy x xy yy
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R t s R s s x

m s R t s m s R t t R s s m t R t s R s s x

R t s R t t R s s x

⋅ +

+ ⋅ + ⋅ ⋅ − ⋅ ⋅ ⋅ −

− + ⋅ ⋅ =

ɶɶ ɶɶ

ɶɶ ɶ ɶ ɶɶ ɶɶ ɶɶ

ɶɶ ɶɶ ɶɶ

 

( ) ( ) ( ) ( ) ( )( ) ( )1 2 3

1
, , , , 0

2 yy x yy y xy xyR s s x m t R s s m s R t s x R t s x⋅ ⋅ − ⋅ − ⋅ ⋅ − ⋅ =ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ .            (30c) 

 

The determinant of the linear system of Equs.(30) is: 
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1 2

1
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where: 
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that is: 
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From Equs.(31-33) we obtain: 

( ) ( ) ( )( ) ( ) ( ) ( )( )
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A.6. Some auxiliary formulae concerning lag-time 2D Gaussian Kernels 
 
Let us assume lag time dependent Gaussian Kernels : 
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, , exp ,

2 2
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i j i j
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⋅α β

α β
α β α β

π
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where: 
 

( ) ( )( )
2

i i j j i jijW t s C C C t s− = ⋅ − −α α β β α β , 

( ) ( ) ( ) ( ) ( ) ( )2 2
, ; 2

j j i j i iij i i j jE t s C C t s C− = ⋅ − ⋅ − ⋅ ⋅ + ⋅β β α β α αα β α−α α−α β−β β−β . 

 
Applying Equs.(8)_App(4)  to the Gaussian Kernels given Equ.(1) we get: 
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and 
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That is: 
 

( )( )

( )( )
( ) ( )

( ) ( ) ( )

( )( )

( ) ( ) ( )
( )

( )( )

,

3 2

2

, ,

, ;
1 1

2

, ;
exp

2

;

i j

i j i j

i j i j

i j i j

ij

ij ij

ij
i j

ij

t s

C t s C t s E t s
C t s C t s

W t s W t s

E t s
C t s

W t s

t

t
t

t

K Σ − =


 − ⋅ − ⋅ −

= ⋅ − ⋅ − − +
⋅ − −


  − + ⋅ ⋅ − ⋅ −   ⋅ −   

∂
∂

∂
∂ ∂
∂

∂
∂

α β

α β

α β α β

α β α β

α β α β

α β

π

α β
α−α β−β

,

( ) ( )

( )( ) ( )( )
3/223

1

2
i i j j i j

i j i j

ij

C t s C t s

W t s C C C t s

t
− ⋅ −

= ⋅ ×
⋅  − ⋅ − −   

∂
∂

α α β β α β

α β α β

π

( ) ( ) ( ) ( ) ( )
( )( )

( ) ( )
( )

2 2

2

2
1 j j i j i i

i i j j i j
i j

i i j j i jC C t s C

C t sC C C t s

 − ⋅ + ⋅ − ⋅ ⋅ − ⋅ ⋅ × + + × − ⋅ − − 

β β α β α α

α α β β α β
α β

α−α α−α β−β β−β α−α β−β
 

( ) ( ) ( ) ( ) ( )
( )( )

2 2

2

2
exp ,

2

j j i j i i

i i j j i j

i i j jC C t s C

C C C t s

 
 ⋅ − ⋅ − ⋅ ⋅ + ⋅ × −   ⋅ ⋅ − −     

β β α β α α

α α β β α β

α−α α−α β−β β−β
 

            (5) 
or:  
 
            (6) 
 
 
 
 
 
 
 
 
 
 

( )( )
( ) ( )

( )( )

( ) ( )
( )( )

( )( ) ( ) ( )

( )( )

, 3/22

2
2 2

2 2

1
, ,

2

1

;

i i j j i j

i j i i j j
j j i i

i i j j i j i i j j i j

i j i j

i j i j

i j
i j

C t s C t s
t s

C C C t s

C t s C CC C

C C C t s C C C t s

t
t
K

− ⋅ −
Σ − = ⋅ ×

⋅   ⋅ − −   

   − + ⋅ ⋅ ⋅⋅ + ⋅  × − + ⋅ − − ⋅ − − 

∂
∂ ∂
∂ α β

α α β β α β

α β α α β β
β β α α

α α β β α β α α β β α β

α β α β

α β α β
π

α−α β−βα−α β−β

,

( )

( ) ( ) ( ) ( ) ( )
( )( )

2 2

2

2
exp .

2

j j i j i i

i i j j i j

i j

i i j j

C t s

C C t s C

C C C t s



×  ⋅ −   

 
 ⋅ − ⋅ − ⋅ ⋅ + ⋅ × −   ⋅ ⋅ − −     

β β α β α α

α α β β α β

α β

α−α α−α β−β β−β
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A.7. Computation of Galerkin coefficients 
 
For Gaussian representation and the Galerkin Kernels, substituting Equ.(7)_Sec(4.5.2) and 
Equ.(2)_Sec(4.5.4) in Equ.(4b)_Sec(4.5.3), we obtain that the first Galerkin coefficient, (1)

,ijG
κλ

 

will be given by the formula:  
 

( )
2

2

(1)

, , ,

2 5

2 2 2

( ); , , ( )

1

4 ( )

( ) ( ) ( ) ( ) ( )

exp

i j i j

i i j j

j j i j i i

j j

ij

i j i j

i j

ts

i j

i i j j ij

G t s
t

C C

W W

C C
C C C W

C

C

d d
→

∂
= Σ − ⋅Λ =

∂

⋅∂
= ⋅ ×

⋅ ⋅

  ⋅  × − ⋅ + + ⋅ ⋅ − ⋅ + ×      

× −

∫∫

∫∫

κλ α β κ λ

κλ

α α β β

β β α β α α

β β

α β α β

α β

α,β α β α,β α β

π

α−α α−α β−β β−β

ℝ

ℝ

K

( )
2

2 2

2

2 2

2

1 12 5

( ) 2 ( ) ( ) ( )

2 ( )

( ) 2 ( ) ( ) ( )

2 ( )

1
( , ) exp ( , ) . (1)

4 ( )

i j i i

i j i j

i i j j

ij

ij

i j

C C

W

C C C

W

C C
Q

W W

d d

d d

 ⋅ − ⋅ ⋅ ⋅ + ⋅ − ⋅
⋅ − ⋅ ⋅ ⋅ + ⋅ − ≡⋅ 

⋅∂
≡ ⋅ ⋅ Π ⋅

⋅ ⋅ ∫∫

λ λ κ λ κ κλ λ

α β α α

β β κ α β κ α α

κλ

α β α β

α−α α−α β−β β−β

α−α α−α β−β β−β
α β

α β α β α β
π

ℝ

 
We shall write Equ.(1) in an equivalent form that allows the application of the integration 
formula that is given by Equ(1)_App(8). More precisely, after some algebraic manipulation 
we obtain that 1( , )Π α β  in Equ.(1) can be equivalently written as: 

 
22

1 1,20 1,11 1,02 1,00( , )Π = Π ⋅ +Π ⋅ ⋅ + Π ⋅ +Πα β α α β β ,      (2a) 

 
where 
 

i=α α−α , j=β β−β  

1,20 ,
j j

CΠ = − β β 1,11
i i j j

i j

i j

C C
C

C

⋅
Π = +

α α β β

α β

α β

, 1,02 i i
CΠ = α α ,  2

1,00 ( )ijWΠ =  ,           (2b-e) 

whereas for the exponent 1( , )Q α β  appearing in right hand side of Equ.(1), similarly, we get: 

 
22

1 1,20 1,11 1,02 1,01 2,00( , )Q Q Q Q Q Q= ⋅ + ⋅ ⋅ + ⋅ + ⋅ +α β α α β β β ,    (3a) 

 
where: 
 

i=α α−α , j=β β−β  
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1,20 1,112 2 2 2

1
, , (3b,c)

2 ( ) ( ) ( ) ( )
j j i j

ij ij

C CC C
Q Q

W W W W

       = ⋅ + = − +        
λ λ κ λ

β β α ββ β α β

κλ κλ

 

1,02 2 2

1
, (3d)

2 ( ) ( )
i i

ij

C C
Q

W W

  = ⋅ +   
κ κα α α α

κλ

 

( )

1,10 1,012 2

2
1,00 2

( ) ( ) ( ) ( )
, , (3e,f)

( ) ( )

1
( ) 2 ( ) ( ) ( ) . (3g)

2 ( )

i j j i

i i j j

C C C C
Q Q

W W

Q C C C
W

⋅ − ⋅ ⋅ − ⋅
= =

= ⋅ ⋅ − ⋅ ⋅ ⋅ + ⋅
⋅

λ λ κ λ κ κ κ λ

λ λ κ λ κ κ

λ λ

λ λ

β β κ α β α α α β κ

κλ κλ

β β κ α β κ α α

κλ

α −α β −β β −β α −α

α −α α −α β −β β −β

 
Applying Equs.(2-3) in Equ.(1) we get that (1)

,ijG
κλ

 can be equivalently written as: 

 
 

[ ( )
2

(1) 2 2
, 1 1,20 1,02 1,11 1,00

2 2
1,20 1,11 1,02 1,10 1,01 1,00exp ,

ij

Q Q Q Q Q Q d d

G = Μ ⋅ Π ⋅ + Π ⋅ + Π ⋅ ⋅ + Π ×

× − ⋅ + ⋅ ⋅ + ⋅ + ⋅ + ⋅ +

∫∫
ℝ

κλ α β α β

α α β β α β α β

 (4a) 

 
where: 
 

1 2 5

1
,

4 ( )
i j i j

ij

C C

W W

⋅∂
Μ = ⋅

⋅ ⋅ κλ

α β α β

π
         (4b) 

2 2( ) , ( )
i i j j i jijW C C C W C C C= ⋅ − = ⋅ −

κ κ λ λ κ λα α β β α β κλ α α β β α β ,         (4c,4d) 

1,20 ,
j j

CΠ = − β β 1,11
i i j j

i j

i j

C C
C

C

⋅
Π = +

α α β β

α β

α β

, 1,02 i i
CΠ = α α ,  2

1,00 ( )ijWΠ = ,           (4e-4f) 

1,20 1,112 2 2 2

1
, ,

2 ( ) ( ) ( ) ( )
j j i j

ij ij

C CC C
Q Q

W W W W

       = ⋅ + = − +        
λ λ κ λ

β β α ββ β α β

κλ κλ

          (4g,4h) 

1,02 2 2

1
, (4i)

2 ( ) ( )
i i

ij

C C
Q

W W

  = ⋅ +   
κ κα α α α

κλ

 

1,10 1,012 2

( ) ( ) ( ) ( )
, ,

( ) ( )
i j j iC C C C

Q Q
W W

⋅ − ⋅ ⋅ − ⋅
= =λ λ κ λ κ κ κ λλ λβ β κ α β α α α β κ

κλ κλ

α −α β −β β −β α −α
    (4k,4l)  

( )2
1,00 2

1
( ) 2 ( ) ( ) ( ) .

2 ( ) i i j jQ C C C
W

= ⋅ ⋅ − ⋅ ⋅ ⋅ + ⋅
⋅ λ λ κ λ κ κλ λβ β κ α β κ α α

κλ

α −α α −α β −β β −β      (4m) 

 
We shall now consider the second Galerkin coefficient (2)

,ijG κλ  for the case study that the RDE 

is a cubic half-oscillator described by Equ.(3a)_Sec(4.2). Substituting Equ.(5)_Sec(4.5.2) and 
Equ.(4)_Sec(4.5.4) in Equ.(5)_Sec(4.5.3) we obtain: 
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( ) ( )

( )
2 1

2

2
2

(2)
, 2 3

1 1

( , )

3
3

( , )

3
3

1

4 ( )

( ) ( )

( ) ( )

( ) (

ij
ijW W

C C

C C

C C

G

Π

Π

= − ×
⋅ ⋅ ⋅

× ⋅ − ⋅ + ⋅ +

⋅ − ⋅ + ⋅ +

⋅ − ⋅ + ⋅

⋅ + ⋅

+ ⋅

+ ⋅

∫∫ �����������������������

�������������������

λ λ κ λ

λ λ κ λ

λ λ κ λ

λ

λ

κλ

κλ

β β κ α β

α β

β β κ α β

α β

β β κ α β

π

α α−α β−β

α α−α β−β

α−α β

µ κ β

µ

κ β

ℝ

( ))
3
2 ( , )

)

Π

×
���������������������

λ

α β

−β

 

( )2 2

2

2 2

2

( ) 2 ( ) ( ) ( )
exp

2 ( )

( ) 2 ( ) ( ) ( )
. (5)

2 ( )

j j i j i ii i j j

ij

C C C

W

C C C
d d

W

 ⋅ − ⋅ ⋅ ⋅ + ⋅
× − −

 ⋅


⋅ − ⋅ ⋅ ⋅ + ⋅ − ⋅ 

λ λ κ λ κ κλ λ

β β α β α α

β β κ α β κ α α

κλ

α−α α−α β−β β−β

α−α α−α β−β β−β
α β

 

The terms 1
2( , )Π α β , 2

2( , )Π α β  , 3
2( , )Π α β  appearing in Equ.(5) can be equivalently written 

as:

 

 

( ) ( )1
2 1 1( , ) ) ) ( ) ( )( ( C CΠ = + + ⋅ − ⋅ + ⋅⋅ + ⋅

λ λ κ λλ λ λκ κ β β κ α βα α−α α β β α−α β−ββ µ κ β− , (6)  

( ))2 3
2 3( , ) ) ( ) ( )( C CΠ = + ⋅ − ⋅ + ⋅⋅

λ λ κ λ λκ κ β β κ α βα α−α α α−α β−ββ µ ,     (7) 

( ))3 3
2 3( , ) ) ( ) ( )( C CΠ = + ⋅ − ⋅ + ⋅⋅

λ λ κ λλ λ λβ β κ α βα β β α−α β−ββ κ β− .                                       (8) 

 
After some algebraic manipulations from Equs.(6-8) we obtain that 1

2( , )Π α β , 2
2( , )Π α β  , 

3
2( , )Π α β  can be equivalently given by Equs.(9-11), respectively, i.e.: 

 
1 1 2 1 1 1 1 2
2 2,20 2,11 2,10 2,01 2,02( , )Π = Π ⋅ + Π ⋅ ⋅ + Π + Π ⋅ + Π ⋅⋅α α α αβ β β β ,    (9a) 

 
where =κα−α α , =

λ
β−β β , 

 

1 1 1
2,20 1 2,11 1 1 2,10 1, , ,C C C CΠ = − Π = − Π =⋅ ⋅ ⋅ ⋅

λ λ κ λ λ λ κ λβ β α β β β α βµ µ κ κ        (9b-9e) 
1 1
2,01 1 1 2,02 1 1( ) , ( )C CΠ = − ⋅ + Π = ⋅ +⋅ ⋅ ⋅ ⋅

λ λ κ λλ λβ β κ α β κα β α βµ κ µ κ ,                   (9f,9g)

 
 

2 2 4 2 3 2 3 2 2 2 2
2 2,40 2,31 2,30 2,21 2,20

2 2 2
2,11 2,10 2,01

( , )

,

Π = Π + Π ⋅ +Π +Π ⋅ + Π ⋅ +

+Π ⋅ + Π +Π

⋅α α α α α α

α α

β β β

β β
   (10a) 

 

where, 
 

2 2 2
2,40 2,31 2,30, , 3C C CΠ = − Π = Π = − ⋅ ⋅

λ λ κ λ λ λβ β α β β β κα ,          (10b-10d)

 2 2 2 2 2
2,21 2,20 2,113 , 3 , 3C C CΠ = ⋅ ⋅ Π = − ⋅ ⋅ Π = ⋅ ⋅

κ λ λ λ κ λα β κ β β κ α β κα α α  ,         (10e-10g)
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2 3 2 3
2,10 2,01,C CΠ = − ⋅ Π = ⋅

λ λ κ λβ β κ α β κα α ,                                                                     (10h, 10i)

 
and 

  
3 3 3 2 3 3 3
2 2,11 2,02 2,10 2,01

3 3 3 2 3 3 4
2,03 2,12 2,13

( , )

,

Π = Π ⋅ ⋅ + Π ⋅ + Π + Π ⋅ ⋅

Π ⋅ + Π ⋅ ⋅ + Π ⋅ ⋅ +

⋅ +

+
λ

α α α β

α α

β β β β

β β β β

 

            (11a)

  

where 
 

3 2 3 2 3 3
2,11 3 2,02 3 2,10 33 , 3 ,C C CΠ = − ⋅ ⋅ ⋅ Π = ⋅ ⋅ ⋅ Π = − ⋅ ⋅

λ λ κ λ λ λλ λ λβ β α β β βκ β κ β κ β ,  (11b-11d) 
3 3 3 3
2,01 3 2,03 3 2,12 3, 3 , 3C C CΠ = ⋅ ⋅ Π = ⋅ ⋅ ⋅ Π = − ⋅ ⋅ ⋅

κ λ κ λ λ λλ λ λα β α β β βκ β κ β κ β , (11e-11g) 
3 3
2,13 3 2,04 3,C CΠ = − ⋅ Π = ⋅

λ λ κ λβ β α βκ κ .          (11k,11l) 

 
Finally let 2( , )Q α β  be the exponent in Equ.(5), i.e. 

 

( )2 2

2 2

2 2

2

( ) 2 ( ) ( ) ( )
( , )

2 ( )

( ) 2 ( ) ( ) ( )
.

2 ( )

j j i j i ii i j j

ij

C C C
Q

W

C C C

W

⋅ − ⋅ ⋅ ⋅ + ⋅
≡ − −

⋅

⋅ − ⋅ ⋅ ⋅ + ⋅
−

⋅
λ λ κ λ κ κλ λ

β β α β α α

β β κ α β κ α α

κλ

α−α α−α β−β β−β
α

α−α α−α β−β β−β

β

           (12) 

 
Then, Equ.(12) can be equivalently written as:  
 

( )
( ) ( ) ( )(

( ) )
( )

( )

2

2 2

2 2 2
2

1
( , ) 2

2

1
2 ,

2

j j i j

i i

i i j

ij

j

Q C C
W

C C C C
W

= ⋅ ⋅ + − ⋅ ⋅ + ⋅ + +
⋅

+ ⋅ + + ⋅ ⋅ − ⋅ ⋅ ⋅ + ⋅
⋅ λ λ κ λ κ κ

λ

λ

β β κ α β κ

α α β β α β α α

κλ

α α α −α α α −α β β −β

β β −β α α β β

β

    (13) 

 
where, =κα−α α , =

λ
β−β β .  

 
After some algebraic manipulations Equ.(13) yields: 
 

2 2
2 2,20 2,10 2,11 2,02 2,01 2,00( , ) 2Q Q Q Q Q Q Q= ⋅ + ⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅ +α β α α α β β β  ,           (14a) 

 
where: 

2,20 2,112 2 2 2

1
, ,

2 ( ) ( ) ( ) ( )
j j i j

ij ij

C CC C
Q Q

W W W W

       = ⋅ + = − +        
λ λ κ λ

β β α ββ β α β

κλ κλ

                       (14b, 14c) 

2,02 2 2

1

2 ( ) ( )
i i

ij

C C
Q

W W

  = ⋅ +   
κ κα α α α

κλ

,                  (14d) 

( )2,10 2

1
( ) ( )

( ) j j i ji j
ij

Q C C
W

= ⋅ ⋅ − ⋅
λβ β κ α βα − α β − β ,                         (14e) 
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( )2,01 2

1
( ) ( )

( ) i i i jj i
ij

Q C C
W

= ⋅ ⋅ − ⋅
λα α α β κβ − β α − α ,                                                (14f)

  

( )2 2
2,00 2

1
( ) ( ) 2 ( ) ( )

2 ( ) j j i i i ji j i j
ij

Q C C C
W

= ⋅ ⋅ + ⋅ − ⋅ ⋅ ⋅
⋅ λ λβ β κ α α α β κα −α β −β α −α β −β .     (14g) 

 
Combining Equs.(5-14), performing some algebra, we obtain that the second Galerkin 
coefficient ( )2

,ijG κλ  is equivalently written as: 

 

( )
(

)

2

( )2 2 2
, 2,10 2,01 2,20 2,11 2,0232

3 2 2 2
2,30 2,21 2,21 2,03

4 3 3 4
2,40 2,31 2,13 2,04

2 2
2,20 2,11 2,02 2,10 2,01

1

4

exp

ij

ijW W

Q Q Q Q Q

G = Π +Π ⋅ + Π ⋅ +Π ⋅ ⋅ + Π +
⋅ ⋅ ⋅

+ Π ⋅ +Π ⋅ ⋅ ++Π ⋅ ⋅ + Π +

+ Π ⋅ +Π ⋅ ⋅ ++Π ⋅ ⋅ + Π ×

× − ⋅ + ⋅ ⋅ + ⋅ + ⋅ + ⋅

⋅∫ ∫
ℝ

κλ

κλ

α α α
π

α α α

α α α

α α β β α

β β β

β β β

β β β

( ){ 2,00 , (15a)Q d d+β α β

where: 

( )2 2( ) , ( ) , 15b,15c
i i j j i jijW C C C W C C C= ⋅ − = ⋅ −

κ κ λ λ κ λα α β β α β κλ α α β β α β

3 3
2,10 3 1 1 3( ) , (15d)CΠ = − ⋅ ⋅ + ⋅ + ⋅ + ⋅

λ λ λ λβ β κ κµ α µ α κ β κ β

3 3
2,01 3 1 1 3( ), (15e)CΠ = ⋅ + ⋅ + ⋅ + ⋅⋅

κ λ λ λα β κ κµ α µ α κ β κ β

2 2
2,11 3 1 1 33 3 , (15f)C C C CΠ = ⋅ ⋅ ⋅ + ⋅ − ⋅ − ⋅ ⋅ ⋅

κ λ κ λ λ λ λ λ λα β κ α β β β β βµ α µ κ κ β

2 2
2,20 3 1 2,02 1 3(3 ), ( 3 ) , (15g,15h)C C C CΠ = − ⋅ ⋅ ⋅ + ⋅ Π = + ⋅ ⋅ ⋅⋅

λ λ λ λ κ λ κ λλβ β κ β β α β α βµ α µ κ κ β

2,21 3 2,12 3 2,30 33 , 3 , 3 , (15i-15l)C C CΠ = ⋅ ⋅ ⋅ Π = − ⋅ ⋅ ⋅ Π = − ⋅ ⋅ ⋅
κ λ λ λ λ λλα β κ β β β β κµ α κ β µ α

( )2,03 3 2,31 3 2,13 33 , , , 15m-15oC C CΠ = ⋅ ⋅ Π = ⋅ Π = − ⋅⋅
κ λ κ λ λ λλα β α β β βκ β µ κ

2,04 3 2,40 3, , (15p,15q)C CΠ = Π = − ⋅⋅
κ λ λ λα β β βκ µ

( )2,10 2

1
( ) ( )

( ) j j i ji j
ij

Q C C
W

= ⋅ ⋅ − ⋅
λβ β κ α βα − α β − β ,                         (15r) 

( )2,01 2

1
( ) ( )

( ) i i i jj i
ij

Q C C
W

= ⋅ ⋅ − ⋅
λα α α β κβ − β α − α ,                                               (15s) 

( )2 2
2,00 2

1
( ) ( ) 2 ( ) ( )

2 ( ) j j i i i ji j i j
ij

Q C C C
W

= ⋅ ⋅ + ⋅ − ⋅ ⋅ ⋅
⋅ λ λβ β κ α α α β κα −α β −β α −α β −β  .     (15t) 

 
A8. Calculation of 2-polynomial/quadratic-exponential integrals  
 

In this Appendix we shall prove that for 20 0Q > , ( )2

02 20 114 0Q Q Q⋅ ⋅ − >  the following 

integration formula holds true: 
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⋅ − ⋅ ⋅ + ⋅ + ⋅
× −

⋅

=

 =

∫∫ α α α

α α β β α β α β

π

β β β

ℝ
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2
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4
,

4

Q Q Q

Q Q Q

 − ⋅ ⋅ ⋅      − ⋅ ⋅ + 
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20 02 11

2

4

Q Q Q Q
c

Q Q Q

− ⋅ ⋅ + ⋅
=

⋅ ⋅ −
 ,        (2a) 

20 01 11 10
01 2
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2

4

Q Q Q Q
c

Q Q Q

− ⋅ ⋅ + ⋅
=

⋅ ⋅ −
 ,        (2b) 
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( )

( )( )
20 2 22
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2
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22

4 4

Q Q
c

Q Q Q Q

Q

Q

Q
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⋅ ⋅ −

− ⋅ ⋅

⋅ −
+

⋅

⋅
= ,     (2c) 

( )
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11 10 20 01 11 01 02 1011

2 22
02 20 11 0 1

1

2 0 1

1

2

2 2

4 4

Q Q Q Q Q Q Q Q

Q Q Q Q
c

Q

Q Q

⋅⋅ − ⋅ ⋅ ⋅ − ⋅ ⋅
= − +

⋅ ⋅ − ⋅ ⋅ −
,             (2d) 

( )( )
( )

( )( )

2

20 01 11 1020
02 2 22 2

02 20 11 02 20 11

22

4 4

Q Q Q QQ
c

Q Q Q Q Q Q

− ⋅ ⋅ + ⋅⋅
= +

⋅ ⋅ − ⋅ ⋅ −
.     (2e) 

    
 
To this end, we shall use two (alternative) general closed-form expressions for the integrals 
 

( ) 2, , exp 2n
n

x

I p q c x px qx c dx

∈

 = − + −  ∫
ℝ

, for any value of n ∈ℕ ,  reported by Gradshteyn 

and Ryzhik (1965). These read as follows:  
 

( ) 2, , exp 2n
n

x

I p q c x px qx c dx

∈

 = − + − =  ∫
ℝ

 

( )
1 2

1 1

1
exp exp

2

n

n n

d q
c q

p dq pp

−

− −

      = ⋅ ⋅ − ⋅ ⋅ =      

π
 

2

2

/2

0

1
! exp , 0.

( 2 )!( )! 4

n kn

k

q q p
n c for p

p p n k k qp

   

=

        = − ⋅ ⋅  ⋅  >       −    
∑π

 (3) 

 
That is, for:  
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π

∈

 
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x

q q
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 
   − + − = ⋅ ⋅ −     ∫

ℝ

π
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2 2

2 2
2

1
exp 2 exp

2
x

q q
x px qx c dx c

p p pp
∈
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π
,              (4c) 
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x
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x q c

∈

⋅
 

   − + − = ⋅ − =  ⋅ ⋅ + ⋅  ⋅ ∫
ℝ
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3 2

2 3

3
,

2
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q q

p

q
c

pp p

   
 = ⋅ + ⋅ − 

    
π

                     (4d) 

4 :n = 2 2
2

4
9

4
/2

2 (exp 2 ex3
4

p12 4 )

x

p p q q
q

x px qx c dx c
pp

∈

⋅ ⋅ +
 

   − + − = ⋅ − =    
⋅ ⋅ + ⋅

⋅ ∫
ℝ
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2

2

2 4

3 4

3 3
( ) xp
4

e
q q

p p p

q
c

pp

⋅
=

 
 ⋅ − 

⋅ +
⋅ 

+
π

,             (4e)               

5:n = 2 2 4
11/2

2
5 2 (15exp 2 exp20 4 )

4
x

q q
x p pq qpx qx c d c

p
x

p
∈

⋅ +
 

   − + − = ⋅ − =    
+

∫
ℝ

π
 

 
3 5 2

3 4 5
ex

15
( 5 )

4
p

q q q

p p p

q
c

pp

 
 = ⋅⋅ ⋅ + −

+


⋅
π

.             (4f)    

 
Proof 
 
The integral I  (given by Equ.(1)) can be equivalently written as: 
 

( )

( ){
( )( )

( ) ( )

2

2

2 2
20 11 02 10 01 00

2 2
20 11 02 10 01 00

2 2
20 11 10 02 01 00

11 102 2
20 02 01 00

exp

exp 2
2

I

Q Q Q Q Q Q

Q Q
Q Q Q Q

d d

= Π ⋅ + Π ⋅ ⋅ + Π +Π +Π ⋅ + Π ×

× − ⋅ + ⋅ ⋅ + ⋅ + ⋅ + ⋅ +

= Π ⋅ + Π ⋅ +Π +Π + Π ⋅ +Π ×

   ⋅ +   × − ⋅ + ⋅ − ⋅ − ⋅ + ⋅ +      

⋅

=

⋅

∫∫

∫∫

α α α

α α β β α β α β

α α

β
α α β β

β β β

β β β

ℝ

ℝ

d d =α β

 
  ( ) ( )( ) ( ) ( ){ }

2

2 2
2 1 0 exp 2R R R p q c d d= ⋅ + + ⋅ − ⋅ + ⋅ ⋅ −⋅∫∫ α α α α α ββ β β β

ℝ

(*) 

Let us assume that 20 0Q > , then applying Equs.(4a), (4b) and (4c) from (*) we obtain:  
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( )
( )

( )
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( )
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( )
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d

Π
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π β β β
β β β β

ℝ

, (5a)   

where: 
 

( ) ( ) 2
2 20 1 11 10 0 02 01 00, ,R R R= Π = Π ⋅ +Π = Π +Π ⋅ + Πβ β β β β ,                      (5b-5d)                        

( ) ( ) 211 10
20 02 01 00, ,

2

Q Q
p Q q c Q Q Q

⋅ +
= = − = ⋅ + ⋅ +

β
β β β β .                      (5e-5g) 

 
The term ( )Π β , denoted in Equ.(5), after some elementary algebraic calculations can be 
equivalently written as: 
 

' 2 ' '
2 1 0( ) R R RΠ = ⋅ + ⋅ +β β β ,                   (6a) 

 
where: 

2

' 11 11
2 20 11 02

20 202 2

Q Q
R

Q Q

  = Π ⋅ −Π ⋅ + Π   ⋅ ⋅ 
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' 11 10 10 11
1 20 11 10 012
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2 22

Q Q Q Q
R

Q QQ

⋅
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⋅ ⋅⋅
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2

' 10 10
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20 20 20

1

2 2 2

Q Q
R

Q Q Q

      = Π ⋅ + Π ⋅ +Π    ⋅ ⋅ ⋅   
− ,                                                               (6d) 

 
Similarly, for the exponent ( )Q β , denoted in Equ.(5), we obtain: 
 

' 2 ' '( ) 2Q p q c= − ⋅ + ⋅ ⋅ −β ββ ,        (7a) 
 
where: 

( ) ( )2 2

11 02 20 11'
02

20 20

4

4 4

Q Q Q Q
p Q

Q Q

⋅ ⋅ −
= − =

⋅ ⋅
,       (7b) 

' 11 10 01 11 10 01 20

20 20

2

4 2 4

Q Q Q Q Q Q Q
q

Q Q

⋅ ⋅ − ⋅ ⋅
= − =

⋅ ⋅
,       (7c) 

( ) ( )2 2

10 20 00 10'
00

20 20

4

4 4

Q Q Q Q
c Q

Q Q

⋅ ⋅ −
= − + =

⋅ ⋅
,       (7e) 

 
Combining Equs.(5-7) we obtain: 
 

( ) ( )' 2 ' ' ' 2 ' '
2 1 0 exp 2I R R R p q c

p
d= ⋅ ⋅ + ⋅ + ⋅ − ⋅ + ⋅ ⋅ −∫π β ββ β β

ℝ

.    (8) 
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Let us now assume that 
( )2

02 20 11'

20

4
0

4

Q Q Q
p

Q

⋅ ⋅ −
= >

⋅
, then we can apply integration formulae 

(4a), (4b)  and (4c) to Equ.(8). This will yield:  
  

2' ' '
' ' ' '
2 1 0' ' ' ''

'
'

1
exp

2
Q

q q q
I R R R c

p p p pp p

Π

            = ⋅ ⋅ + + ⋅ + ⋅ −         ⋅     ⋅     ��������������������

π
.    (9) 

 
where the terms appearing in Equ.(9) are given by Equs.(7). 
 
Substituting from Equs.(7) and performing some algebraic calculations, the term 'Π , denoted 
in Equ.(9), can be equivalently written as:  
 

20 20 11 11 02 02 10 10 01 01 00 00' c c c c c cΠ = ⋅Π + ⋅Π + ⋅Π + ⋅Π + ⋅Π + ⋅Π ,             (10a) 

 
where 
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whereas, similarly, the exponent 'Q , denoted in Equ.(9), can be equivalently written as:  
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( )

2 2

02 10 11 10 01 20 01
002

20 02 11
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4

Q Q Q Q Q Q Q
Q Q

Q Q Q

⋅ − ⋅ ⋅ + ⋅
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Substituting Equs.(10,11) in Equ.(9) we obtain Equ.(1).  
 
 
A9. Calculation of 3,4-polynomial/quadratic-exponential integrals  
 
In this Appendix we shall make use of the following formulae that can be easily obtained, 
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20 2 2
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combining Equs.(4a-4e), Equ.(5) and Equ.(8) of Appendix 8. 
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where: 
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Then, we shall prove the following integration formula:
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where:  
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 ′  ′ ′ ⋅  ⋅ + +  ′ ′ ′ ⋅′ 

    ′   = − ⋅ + − ⋅ +     ′ ′⋅ ⋅   

= +

= ⋅ − ⋅


+
⋅ 

−
4

04 2

4

4

2

3

4

)

( )

3 3 ( ) ( )

4 ( ) (

, (4c)

, (4
) (

d)
)

q

p

q q

p p p
c

′

′ ′⋅
+ +

′ ′ ′⋅

             
  =    

( )
(

( ) ( ) )

3 2
31 11 _ 4 10 11 _ 33

20

2 3
11 20 10 11 _ 2 10 20 10 _1

1
3

6 3 6 , (4e

8

)

c Q I Q Q I
Q

Q Q Q Q I Q Q Q I

−
= ⋅ ⋅ + ⋅ ⋅ ⋅ +

+ ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅

⋅

⋅ + ⋅

β β

β β

( )
3 2

30 11 _3 10 11 _ 22
20 2020

3
2 10

11 10 11 _1 10 _ 0
20 20

1 1 1 3

4 2 2

3
3 3 , (4f)

2 2

c Q I Q Q I
Q QQ

Q
Q Q Q I Q I

Q Q

− = ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅

        + ⋅ + ⋅ ⋅ ⋅ + ⋅ + ⋅        ⋅ ⋅    

β β

β β

( )
( )( )( ( ) )2 2

21 20 10 _1 10 11 _ 2 11 _ 32
20

1
2 2 , (4g)

4
c Q Q I Q Q I Q I

Q
= ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅ + ⋅

⋅
β β β

( )

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )

40 4
20

2 2 4 3
20 20 10 10 _ 0 20 10 11 11 10 _1

22 2 3 4
20 11 11 10 _ 2 11 10 _ 3 11 _ 4

1

4

1
3 3 6

4

3 1
3 .

2 4
(4h)

c
Q

Q Q Q Q I Q Q Q Q Q I

Q Q Q Q I Q Q I Q I

β β

β β β

= ×
⋅

  × ⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅ + ⋅  

   + ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅     

 
Proof 
 
We shall break down the integral Iɶ in eight integrals 30 21 12 03 40 31 13 04, , , , , , ,I I I I I I I I , where: 
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( ){
2

2 2
20 11 02 10 01 00exp .i j

ij ijI Q Q Q Q Q Q d d= Π ⋅ − ⋅ + ⋅ ⋅ + ⋅ + ⋅ + ⋅ +∫∫ α α α β β α β α ββ

ℝ

 

Each integral shall be calculated separately. 
 
The first integral 30I  will be given by the formula: 

 

( ){
2

3 2 2
30 30 20 11 02 10 01 00expI Q Q Q Q Q Q d d= Π ⋅ ⋅ − ⋅ + ⋅ ⋅ + ⋅ + ⋅ + ⋅ + =∫∫ α α α β β α β α β

ℝ

 

( ) ( ){ }
2

3 2
30 exp 2 ,p q c d d= Π ⋅ ⋅ − ⋅ + ⋅ ⋅ −∫∫ α α α α ββ β

ℝ

   (5) 

where: 
 

( ) ( ) 211 10
20 02 01 00, ,

2

Q Q
p Q q c Q Q Q

⋅ +
= = − = ⋅ + ⋅ +

β
β β β β .         (6a-6c) 

 
Applying Equ (4d)_App(8) to Equ.(5) we obtain: 
 

( )
( )( ) ( )

( )
3 2

30 30 2

3
exp

2

q q
I q c

p pp p
d

       =Π ⋅ ⋅ ⋅ + ⋅ −          
∫π

β
β β

β β

ℝ

.   (7) 

Then, substituting Equ.(6b) in Equ.(7) and using Equs.(1), after some algebraic manipula-
tions, we get:  

( )
3 2

30 30 11 _3 10 11 _ 22
20 2020 20

3
2 10

11 10 11 _1 10 _ 0
20 20

1 1 1 3

4 2 2'

3
3 3 ,

2 2

I Q I Q Q I
Q QQ p Q

Q
Q Q Q I Q I

Q Q

=−Π ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅⋅ 

        + ⋅ + ⋅ ⋅ ⋅ + ⋅ + ⋅        ⋅ ⋅    

β β

β β

π

      (8) 

 
 

where, _ 0 _1 _ 2 _3, , ,I I I Iβ β β β

 
, 'q are given by Equ.(1) 

 

The second integral 21I  

 

( ){
2

2 2 2
21 21 20 11 02 10 01 00expI Q Q Q Q Q Q d d=Π ⋅ ⋅ ⋅ − ⋅ + ⋅ ⋅ + ⋅ + ⋅ + ⋅ + =∫∫ α α α β β α β α ββ

ℝ
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( )( )
( )

( )
( )

2 2

21 2

1
exp

2

q q
c

p pp p
d

       =Π ⋅ ⋅ ⋅ + ⋅ − =    ⋅      
∫

βπ
β

β
β β

ℝ

 

( ) ( )( ) ( ) ( )

( ) ( )

2
2 23 2

21 11 10 11 102

2 2

21 10 _1 10 11 _ 2 11 _32 2 2

1 1
2 exp

2 4

1 1 1 1
,

2 22 '

q
Q Q Q Q c

p p pp

Q I Q Q I Q I
p p p pp p

d
    =Π ⋅ ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ − =    ⋅ ⋅    

     =Π ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅    ⋅ ⋅ ⋅ ⋅  

∫

β β β

π
β β β β

π

β
β β

ℝ  

 
that is: 
 

( )
( )( ) ( )( )2 2

21 21 20 10 _1 10 11 _ 2 11 _32
20 20

1
2 2

' 4
I Q Q I Q Q I Q I

Q p Q
= Π ⋅ ⋅ ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅ + ⋅

⋅ ⋅
β β β

π
 ,       (9)

 
 
where '

_1 _ 2 _ 3, , ,I I I pβ β β

 

are given by Equ.(1). 

 
The third integral 12I  

 

( ){

( )

2 2 2
12 12 20 11 02 10 01 00

2 ' 2 ' '11 10
12

12 10 _ 2 11 _ 3

20 20

exp

exp 2
2

, (10)
2 '

I Q Q Q Q Q Q

Q Q
p q c

p p

Q I Q I
Q p Q

d d

d

= Π ⋅ ⋅ − ⋅ + ⋅ ⋅ + ⋅ + ⋅ + ⋅ + =

 ⋅ +   =Π ⋅ ⋅ − ⋅ − ⋅ + ⋅ ⋅ − =     ⋅

=−Π ⋅ ⋅ ⋅ + ⋅
⋅ ⋅ ⋅

∫ ∫

∫

β β

α α α β β α β α β

βπ
β β β

π

β

β

ℝ ℝ

ℝ

where '
_ 2 _3, ,I I pβ β

 

are given by Equ.(1). 

 
The forth integral 03I will be given by the formula: 

 

( ){
2

3 2 2
03 03 20 11 02 10 01 00

03 _3

20

exp

, (11)
'

I Q Q Q Q Q Q

I
Q p

d d= Π ⋅ ⋅ − ⋅ + ⋅ ⋅ + ⋅ + ⋅ + ⋅ +

= Π ⋅ ⋅
⋅

∫∫

β

α α β β α β α β

π

β

ℝ

 
where _3Iβ

 

, ',p are given by Equ.(1). 

 
The fifth integral 40I  will be given by the formula: 
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( ){

( ) ( ) ( )
( )

2

4 2 2
40 40 20 11 02 10 01 00

2 4 2

04 2 3 4

exp

33
exp

4

I Q Q Q Q Q Q

q q q
c

p p p pp

d d

d

= Π ⋅ ⋅ − ⋅ + ⋅ ⋅ + ⋅ + ⋅ + ⋅ + =

   ⋅   =Π ⋅ ⋅ + + − =   ⋅      

∫∫

∫

α α α β β α β α β

π
β

β β β
β

ℝ

ℝ

 

( )
( )

( )
2

2

04 _ 02 3

3 3
exp

4'

q
I q c

p p pp p

    =Π ⋅ ⋅ ⋅ + ⋅ ⋅ − +   ⋅⋅     
∫β

π β
β β

ℝ

 

( )
( )

( )
2

4

4

1
exp

q
q c

p p

    + ⋅ −      
∫

β
β β

ℝ

,      (12)
 

then since: 

( ) ( ) ( )( )2 2 22
11 10 11 10

1
2

4
Q Q Q Qq = ⋅ ⋅ + ⋅ ⋅ ⋅ +β ββ ,               (13a) 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )4 4 3 2 2 3 44 3 2
11 11 10 11 10 11 10 10

1
4 6 4 ,

16
(13b)

q Q Q Q Q Q Q Q Q= ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ +β β β ββ

substituting Equs.(13a,b) to Equ.(12) we obtain: 

( ) ( )( )

( )( ( ) ( ) ( )

( ) ( ) ) ( )
( )

2 22
40 04 _ 0 11 10 11 102 3

4 3 2 24 3 2
11 11 10 11 104

2
3 4

11 10 10

3 3
2

4 4'

1 1
4 6

16

4 exp

[performing some algebra and applying

I I Q Q Q Q
p pp p

Q Q Q Q Q
p

q
Q Q Q c d

p

= Π ⋅ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅ + + ⋅ ⋅⋅ 

+ ⋅ ⋅ ⋅ ++ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ +

    + ⋅ ⋅ ⋅ + ⋅ − =     

∫β

π
β β

β β β

β β
β

β

ℝ

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2 4

04 10 10 _ 02 3 4

3 2 2 2

10 11 11 10 _1 11 11 10 _ 23 4 3 4

3 4

11 10 _3 11 _ 44 4

1 3 3 1 1

4 4'

3 1 3 3 1
2

2

1 1 1
.

4

 Equ.(1)]

Q Q I
p p pp p

Q Q Q Q I Q Q Q I
p p p p

Q Q I Q I
p p

  = Π ⋅ ⋅ ⋅ + ⋅ + ⋅ ⋅ +   ⋅ 

     + ⋅ ⋅ ⋅ + ⋅ ⋅  + ⋅ + ⋅ ⋅ ⋅ ⋅ +        

+ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ 

β

β β

β β

π

 
That is: 
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( )

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )

40 04 4
20 20

2 2 4 3
20 20 10 10 _ 0 20 10 11 11 10 _1

22 2 3 4
20 11 11 10 _ 2 11 10 _ 3 11 _ 4

1

' 4

1
3 3 6

4

3 1
3 ,

2 4

I
Q p Q

Q Q Q Q I Q Q Q Q Q I

Q Q Q Q I Q Q I Q I

β β

β β β

πΠ= ⋅ ⋅ ×
⋅ ⋅

   ⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅ + ⋅ +  
  + ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅     

      (14) 

 
where _ 0 _1 _ 2 _3 _ 4, , , ,I I I I Iβ β β β β

 

, 'p are given by Equ.(1). 

 
The sixth integral 13I  will be given by the formula: 

 

( ){

( ) ( )

2

3 2 2
13 13 20 11 02 10 01 00

11 103 2 2
13 20 02 01 00

exp

exp 2
2

I Q Q Q Q Q Q

Q Q
Q Q Q Q

d d

d d

=Π ⋅ ⋅ ⋅ − ⋅ + ⋅ ⋅ + ⋅ + ⋅ + ⋅ +

   ⋅ +   =Π ⋅ ⋅ ⋅ − ⋅ + ⋅ − ⋅ − ⋅ + ⋅ +      

∫∫

∫ ∫

α α α β β α β α β

β
α α α β β α β

β

β

ℝ

ℝ ℝ

 

( ) ( ){ }3 2
13 exp 2p q c d d=Π ⋅ ⋅ ⋅ − ⋅ + ⋅ ⋅ −∫ ∫ α α α α ββ β β

ℝ ℝ

.                          (15) 

 
Applying Equ (4b)_App(8) to Equ.(15) we obtain: 
 

( ) ( )
( )

2

3
13 13 exp ,

q q
I c

p pp
d

 
 = Π ⋅ ⋅ ⋅ ⋅ − 
  

∫ π
β

β β
β β

ℝ

     (16)

 
 
or from Equ (7a)_App(8): 
 

3 ' 2 ' '11 10
13 13 exp 2 ,

2

Q Q
I p q c

p p
d

 ⋅ +   = Π ⋅ ⋅ − ⋅ − ⋅ + ⋅ ⋅ −     ⋅ ∫ βπ
β β ββ

ℝ

   (17)

 
 
that is: 
 

13 13 10 _3 13 11 _ 4

20 20 20 202 2
I Q I Q I

Q Q Q Q
=−Π ⋅ ⋅ Π ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅
β β

π π
− ,    (18)

 

 
where, _3 _ 4,I Iβ β

 

are given by Equ.(1). 

 
The seventh integral 31I  will be given by the formula: 
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( ) ( )11 103 2 2
31 13 20 02 01 00exp 2

2

Q Q
I Q Q Q Q d d

   ⋅ +   =Π ⋅ ⋅ ⋅ − ⋅ + ⋅ − ⋅ − ⋅ + ⋅ +      
∫ ∫

β
α α α β β α ββ

ℝ ℝ

( ) ( ){ }3 2
31 exp 2p q c d d=Π ⋅ ⋅ ⋅ − ⋅ + ⋅ ⋅ −∫ ∫ α α α α ββ β β

ℝ ℝ

      

      ( )
( )( ) ( )

( )
3 2

31 2

3
exp

2

q q
q c

p ppp
d

       = Π ⋅ ⋅ ⋅ + ⋅ −    ⋅       
∫π

β
β β

β β β

ℝ

,   (19) 

however, substituting from Equ.(6b), we obtain 

( )
( )( )

( ) ( )

3

3 3 2 2 2 3
11 10 11 10 11 10 11 10

20

3
3 3 2 2 2 10

11 10 11 11 10 11 10
20 20 20 20

3

2

3 1
3 3

4 8

1 3 3 3 3

8 8 4 8 4 8

q
q

p

Q Q Q Q Q Q Q Q
Q

Q
Q Q Q Q Q Q Q

Q Q Q Q

⋅ + =

= − ⋅ ⋅ + − ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ + =
⋅

      = − ⋅ ⋅ − ⋅ ⋅ ⋅ − ⋅ + ⋅ ⋅ ⋅ − ⋅ +     ⋅ ⋅ ⋅ ⋅   

β β β β

β β β

β
β

, 

                                                                                                                                                 (20) 
therefore, replacing Equ.(20) in Equ.(19) we obtain: 
 

( )
( )

3 4 2 3 2 2
31 31 11 10 11 11 10 112

20 20 20

23
10

10
20

3
31 11 _ 42

20

1 3 3 3

8 8 4 8

3
exp

4 8

1 1 3

4 2 2'

I Q Q Q Q Q Q
Q Q Qp

qQ
Q c d

Q p

Q I
p Qp p

p

    = Π ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ ⋅ − ⋅ + ⋅ ⋅ ⋅ +    ⋅ ⋅ ⋅⋅  

      − ⋅ + ⋅ ⋅ −     ⋅     
= −Π ⋅ ⋅ ⋅ ⋅ ⋅ +⋅ ⋅⋅ 

=

∫
ℝ

β

π
β β β

π

β
β β β

2
10 11 _ 3

20

3
2 10

11 10 11 _ 2 10 _1
20 20

3
3 3 .

2 2

Q Q I
Q

Q
Q Q Q I Q I

Q Q

⋅ ⋅ ⋅ +
⋅

        + ⋅ + ⋅ ⋅ ⋅ + ⋅ + ⋅        ⋅ ⋅    

β

β β

 
That is: 
 

( )
(

( ) ( ) )

3 2
31 31 11 _ 4 10 11 _ 33

20 20

2 3
11 20 10 11 _ 2 10 20 10 _1

1
3

' 8

6 3 6 .

I Q I Q Q I
Q p Q

Q Q Q Q I Q Q Q I

= −Π ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ +
⋅ ⋅

+ ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ + ⋅

β β

β β

π

        (21)  

 
where _1 _ 2 _3, , ,I I Iβ β β

 

'p
 
are given by Equ.(1). 

 
The eighth integral 04I  will be given by the formula: 
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( ){

( )
( )

2

4 2 2
04 04 20 11 02 10 01 00

2

4
04 04 _ 4

20

exp

exp .
'

I Q Q Q Q Q Q

q
c I

pp Q p

d d

d

= Π ⋅ ⋅ − ⋅ + ⋅ ⋅ + ⋅ + ⋅ + ⋅ + =

 
 =Π ⋅ ⋅ ⋅ − = Π ⋅ ⋅  ⋅  

∫∫

∫ β

α α β β α β α β

π π
β

β

β
β β

ℝ

ℝ

 (22) 

 
where _ 4Iβ

 

, 
 

',p
 
are given by Equ.(1). 

 

Adding Equs.(8,9,10,11,14,18,21,22) Equ.(2) is obtained. 
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