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ΠΡΟΛΟΓΟΣ 

 

Η διεθνής έρευνα στην σεισμική αλληλεπίδραση εδάφους‐κατασκευής τις τελευταίες δεκαετίες 

έχει ως επί το πλείστον βασισθεί σε δύο θεμελιώδεις παραδοχές: (α) γραμμική (ή ισοδύναμη‐

γραμμική),  ιξωδο‐ελαστική  εδαφική  συμπεριφορά  και  (β)  πλήρη  επαφή  του  θεμελίου  με  το 

υποστηρίζον  έδαφος.  Ωστόσο,  σε  συστήματα  υψίκορμων  κατασκευών  με  επιφανειακή 

θεμελίωση,  ακόμα  και  υπό  καθεστώς  μέτριας  σεισμικής  εξαίτησης,  η  αναπτυσσόμενη  ροπή 

στο  θεμέλιο  (λόγω  της  αδράνειας  της  ανωδομής)  ενδέχεται  να  οδηγήσει  σε  εξάντληση  της 

αντοχής  της  διεπιφάνειας  (και  κατά  συνέπεια  σε  αποκόλληση  του  θεμελίου).  Επιπλέον,  η 

ανάληψη  της  αδρανειακής  ροπής  του  θεμελίου  από  το  έδαφος  έχει  ως  αποτέλεσμα  την 

ανάπτυξη σημαντικών πλαστικών ζωνών στο εδαφικό υλικό πλησίον της θεμελίωσης. Από τα 

παραπάνω  αναδεικνύεται  η  αναγκαιότητα  ενδελεχούς  αντιμετώπισης  των  μη‐γραμμικών 

φαινομένων  που  σχετίζονται  με  την  δυναμική  συμπεριφορά  συστημάτων  επιφανειακού 

θεμελίου‐εδάφους. 

Στην παρούσα διατριβή μελετάται η σεισμική απόκριση επιφανειακών θεμελίων με θεώρηση 

των  μη‐γραμμικών  φαινομένων  που  απορρέουν  αφ’ενός  μεν  από  την  αποκόλληση  του 

θεμελίου  από  το  έδαφος  και  αφετέρου  δε  από  την  πλαστική  συμπεριφορά  του  εδαφικού 

υλικού  στην  περιοχή  της  θεμελίωσης.  Θεμελιώδης  προϋπόθεση  για  την  γένεση  των  δύο 

ανωτέρω μορφών μη‐γραμμικής συμπεριφοράς είναι η ανάπτυξη από την ανωδομή μεγάλων 

λικνιστικών  ταλαντώσεων.  Προς  τον  σκοπό  αυτόν  η  έρευνα  εστιάζεται  στην  ανάλυση 

υψίκορμων  (slender)  συστημάτων  με  επιφανειακή  θεμελίωση  όπου  η  κύρια  μορφή 

αδρανειακής  ταλάντωσης  είναι  η  λικνιστική.  Εν  κατακλείδι,  η  μελέτη  του  προβλήματος 

επιμερίζεται στις κατωτέρω βασικές ενότητες: 



 

 Δυναμική απλών συστημάτων λικνισμού. 

 Μη γραμμικές καμπύλες δύναμης–μετακίνησης για επιφανειακά θεμέλια. 

 Φέρουσα ικανότητα επιφανειακών θεμελίων λόγω μεγάλης σεισμικής ροπής. 

 Ελατηριωτό  προσομοίωμα  για  την  ανάλυση  της  λικνιστικής  απόκρισης  υπό  καθεστώς 

μεγάλων δομητικών και εδαφικών μετακινήσεων. 

Δυναμική  απλών  λικνιστικών  συστημάτων:  Ως  εισαγωγή  στην  ανάλυση  της  λικνιστικής 

συμπεριφοράς  υψίκορμων  κατασκευών  έχει  μελετηθεί  η  δυναμική  μερικών  τυπικών 

συστημάτων υψίκορμων κατασκευών:  

 Άκαμπτη κατασκευή σε ανένδοτη θεμελίωση (πλήρης αποκόλληση του θεμελίου). 

 Μονοβάθμιος  ιξωδο‐ελαστικός  ταλαντωτής  σε  ανένδοτη  θεμελίωση  (πλήρης 

αποκόλληση του θεμελίου). 

 Μονοβάθμιος  ελαστικός  ταλαντωτής  σε  ενδόσιμη  (ελαστική  ή  ελαστοπλαστική) 

θεμελίωση χωρίς αποκόλληση του θεμελίου. 

Η  μελέτη  των  ανωτέρω  συστημάτων  περιλαμβάνει  σε  πρώτο  στάδιο  την  κατά  Lagrange 

κατάστρωση  των  εξισώσεων  κινήσεως.  Σε  όλες  τις  περιπτώσεις  έχουν  συμπεριληφθεί  στις 

εξισώσεις  οι  μη‐γραμμικοί  όροι  ώστε  να  είναι  εφικτή  η  μελέτη  της  απόκρισης  σε  επίπεδα 

μεγάλων δομητικών μετακινήσεων, ακόμα και κοντά στα όρια της ανατροπής. Η αριθμητική 

επίλυση των εξισώσεων πραγματοποιήθηκε με βήμα‐προς‐βήμα εν‐χρόνω ολοκλήρωση, μέσω 

της  μεθόδου  άμεσης  διατύπωσης  (explicit  algorithm).  Ως  διέγερση  στην  βάση 

χρησιμοποιήθηκαν πραγματικές καταγραφές σεισμικών επεισοδίων αλλά και εξιδανικευμένοι 

παλμοί της εδαφικής κίνησης (κυρίως τριγωνομετρικοί παλμοί ενός κύκλου και παλμοί τύπου 

Ricker).  Στην  μέχρι  τώρα  μελέτη  των  ανωτέρω  συστημάτων  πραγματοποιήθηκε  πλήθος 



 

παραμετρικών  αναλύσεων  και  εξήχθησαν  κανονικοποιημένα  διαγράμματα  του  πλάτους 

ταλάντωσης  (γωνία  λικνισμού  θ,  καμπτική  παραμόρφωση  u)  ως  προς  τις  ιδιότητες  της 

ανωδομής  (γεωμετρία,  ιδιοπερίοδος),  την ενδοσιμότητα του εδάφους καθώς και την ένταση 

και  τα  χαρακτηριστικά  της  σεισμικής  διέγερσης.  Ειδικότερα  για  τον  λικνισμό  άκαμπτης 

κατασκευής  σε  ανένδοτη  θεμελίωση  (η  πιο  απλή  περίπτωση  λικνιστικού  συστήματος) 

διαφάνηκε  ότι  για  επαρκώς  μεγάλες  κατασκευές  η  απόκριση  είναι  προβλέψιμη.  Στην 

περίπτωση μάλιστα εξιδανικευμένων παλμικών διεγέρσεων το πλάτος της γωνίας προέκυψε 

υπό κανονικοποιημένη μορφή μέσω απλών  εμπειρικών διαγραμμάτων.  Από  το σύνολο  των 

αποτελεσμάτων προέκυψε ότι το πλάτος της γωνίας λικνισμού είναι ανάλογο του υψίκορμου 

(slenderness)  της  κατασκευής,  της  έντασης  και  κυρίως  της  δεσπόζουσας  περιόδου  της 

σεισμικής  διέγερσης.  Οι  συνθήκες  κατά  τις  οποίες  τα  υψηλά  επίπεδα  λικνισμού  οδηγούν 

τελικώς  σε  ανατροπή  μελετήθηκαν  διεξοδικά  στην  μέχρι  τώρα  έρευνα.  Ειδικότερα, 

υπολογίσθηκε  παραμετρικά  η  ελάχιστη  απαιτούμενη  σεισμική  επιτάχυνση  για  ανατροπή ως 

προς την γεωμετρία του συστήματος και την περίοδο της διέγερσης. 

Ανάλυση της σεισμικής απόκρισης του συστήματος εδάφους‐θεμελίου με πεπερασμένα στοιχεία: 

Σε αυτήν την ενότητα η ανάλυση της σεισμικής απόκρισης του συστήματος ευωδούται με την 

αριθμητική μέθοδο των πεπερασμένων στοιχείων. Προς τον σκοπόν αυτόν χρησιμοποιείται ο 

γενικής  χρήσεως  κώδικας  πεπερασμένων  στοιχείων  ABAQUS  (διαθέσιμος  στο  ΕΜΠ).  Η 

προσομοίωση  του  θεμελίου  και  του  εδάφους  πραγματοποιείται  με  τετραπλευρικά  στοιχεία 

επίπεδης παραμόρφωσης  ενώ η ανωδομή περιγράφεται απλοποιητικά με στοιχεία δοκού.  Η 

αποκόλληση του θεμελίου από το  έδαφος  επιτυγχάνεται με  χρήση  ειδικών στοιχείων κενού 

(gap  elements)  μέσω  ενός  εξελιγμένου  αλγόριθμού  επαφής  διαθέσιμου  στο  ABAQUS  που 

επιτρέπει  την ρεαλιστική προσομοίωση της λικνιστικής συμπεριφοράς ακόμα και κοντά στα 

όρια  της  ανατροπής.  Η  ολοκλήρωση  των  εξισώσεων  κινήσεως  γίνεται  εν‐χρόνω  (βήμα προς 

βήμα)  μέσω  επαναληπτικής  διαδικασίας  σύγκλισης  (implicit  algorithm).  Στις  μέχρι  τώρα 



 

αναλύσεις  η  συμπεριφορά  του  εδαφικού  υλικού  θεωρήθηκε  είτε  ιξωδο‐ελαστική  ή 

ελαστοπλαστική σύμφωνα με το κριτήριο αστοχίας Mohr‐Coulomb. 

Φέρουσα  ικανότητα επιφανειακών θεμελίων λόγω μεγάλης σεισμικής ροπής: Η προκαταρκτική 

διερεύνηση  της  σεισμικής  συμπεριφοράς  των  επιφανειακών  θεμελίων  κοντά  στην  αστοχία 

κατέδειξε  ότι  η  οριακή  ροπή  ανατροπής  επηρεάζεται  αφενός  μεν  από  την  αποκόλληση  του 

θεμελίου  σε  περιπτώσεις  σχετικώς  μεγάλων  συντελεστών  ασφαλείας  έναντι  κατακόρυφου 

φορτίου  (FS  >  2),  αφετέρου  δε  από  τις  αναπτυσσόμενες  πλαστικοποιήσεις  στο  έδαφος 

θεμελίωσης για κατακόρυφα φορτία κοντά στο μέγιστο επιτρεπόμενο (1 < FS < 2). Απόρροια 

της αλληλεπίδρασης της γεωμετρικής και “υλικών” μη‐γραμμικότητας του συστήματος είναι η 

μεγιστοποίηση  της  οριακής  ροπής  ανατροπής  για  κατακόρυφο  στατικό  φορτίο  κοντά  στο 

ήμισυ του μέγιστου επιτρεπομένου. 

Ελατηριωτό προσομοίωμα  για  την ανάλυση  της  λικνιστικής απόκρισης  υπό καθεστώς  μεγάλων 

δομητικών  και  εδαφικών  μετακινήσεων:  Στην  ενότητα  αυτήν  αναπτύχθηκε  απλοποιητική 

μεθοδολογία  για  τον  αναλυτικό  υπολογισμό  των  καταστατικών  σχέσεων  δύναμης‐

μετακίνησης στο σύστημα θεμελίου‐εδάφους μέσω του ελατηριωτού προσομοιώματος (beam‐

on‐Winkler‐foundation). Αντίθετα με την έως τώρα διαθέσιμη στην βιβλιογραφία προσεγγιστική 

επίλυση  του  προβλήματος  που  περιορίζει  το  εύρος  εφαρμογής  της  σε  πολύ  μικρές 

μετακινήσεις  της ανωδομής,  στην παρούσα μελέτη λαμβάνεται  υπ’  όψιν η αναπτυσσόμενη  ‐

γεωμετρικής φύσεως‐ μη‐γραμμικότητα του προβλήματος (p‐δ effects) που λαμβάνει χώρα σε 

μεγάλες  γωνίες  λικνισμού  λόγω  της  αποκόλλησης  του  θεμελίου.  Η  ανωτέρα  θεώρηση 

επιτρέπει  την  ρεαλιστική  βαθμονόμηση  της  δυσκαμψίας  του  συστήματος  εδάφους‐θεμελίου 

από την περιοχή των μικρών παραμορφώσεων έως κοντά στην ανατροπή. 
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Notation 

 

g  acceleration of gravity 

m  structural mass 

N mg=  vertical (gravitational) load of the foundation 

Q  horizontal load of the foundation 

M  overturning moment of the foundation 

B  width of a strip or rectangular footing 

b  half-width of a strip or rectangular footing 

b  half-width of the effective footing 

2 2
cR b z= +  half-diagonal of a rigid block 

oJ  moment of inertia about a corner point 

bJ  moment of inertia about the footing bottom mid-point 

/ op mgR J=  size or frequency parameter 

2
23

1 sin
2 cr q

æ ö÷ç= - ÷ç ÷÷çè ø
 impact coefficient of restitution 

( )sgn   signum function of ( )  

it  time of impact 

 /g ca a=  ‘dynamic’ amplification of the overturning acceleration 

ca b h= /  ‘static’ overturning acceleration 



PGA  peak ground acceleration 

q  angle of rocking rotation 

 / cq qQ =  dimensionless rocking rotation 

qmax  amplitude of rocking rotation 

( )arctan /c b hq =  critical rocking angle of overturning 

upliftq  critical rocking angle of incipient uplift 

f q=   angular velocity of rocking 

bu  horizontal displacement of the footing 

bw  vertical displacement of the footing 

 p tt =  stretched time 

 Y  phase shift 

Ew  excitation frequency 

 /E pwW =  frequency ratio 

E  Young modulus of soil 

us  undrained shear strength of soil 

uN  ultimate vertical load of the foundation (under static conditions) 

/v uFS N N=  safety factor of the foundation against vertical loading 

( ) 1
vFSc -

=  inverse of the safety factor against vertical loading or simpler vertical load factor 

uM  ultimate moment of the foundation 

uq  angle of rocking rotation at uM M=  
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Chapter 1: 

Introduction 

 

1.1 DESCRIPTION of the PROBLEM 

Research on seismic soil-structure interaction (SSI) over the last decades has mostly relied on the 

assumption of linear (or at most equivalent-linear) elastic soil behaviour and fully bonded contact 

between footing and soil. Seismic design of structure-foundation systems has followed a somewhat 

parallel path: the still prevailing ‘capacity design’ philosophy allows substantial plastic deformation in 

the superstructure but requires that no significant plastification should be developed below ground 

level. With respect to shallow foundations this assumption implies that: 

 foundation elements (e.g. piles, footings, caissons) must remain structurally elastic (or nearly 

elastic) 

 bearing capacity soil failure mechanisms must not be mobilised 

 sliding at the soil-foundation interface must not take place, while the amount of foundation 

uplift must be restricted to about half of the fully-bonded contact area. 

However, seismic accelerograms recorded in the last twenty years, especially after the Northridge 

1994 and Kobe 1995 earthquakes, have revealed that very substantial ground and spectral acceleration 

levels can be experienced in the near-fault zones. Seismic loads transmitted onto shallow foundations 

in such cases will most probably induce significant nonlinear inelastic action in the soil and soil–

foundation interface. Three possible types of foundation-soil nonlinearity as sketched in Fig. 1.1 

emerge: 

 sliding at the soil-structure interface 
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 uplifting of the foundation from the supporting soil 

 bearing capacity type of soil failure 

Observations of shallow foundations in recent earthquakes confirm the above argument. The most 

spectacular examples of strongly nonlinear foundation response which led to bearing capacity and 

uplifting failures of buildings took place in the city of Adapazari during the Kocaeli 1999 earthquake 

(Gazetas et al., 2003). But such phenomena are not limited to buildings: the Rion-Antirrion cable-

stayed bridge is mentioned as an example of a contemporary monumental bridge, the shallow 

foundations of which, despite their colossal 90 m diameter had to be designed allowing for strong 

nonlinear response. Hence, sliding, uplifting and partial mobilisation of soil bearing capacity are 

expected to occur in order to resist the prescribed high levels of seismic excitation (Pecker & 

Teyssandier, 1998; Gazetas, 2001). Offshore platforms are also a type of structures where nonlinear 

mechanisms are likely to develop on the soil-foundation system as a result of (a) the large overturning 

moments of the environmental loads, and (b) the usually poor subsoil conditions. Under such 

circumstances conventional foundation design is inadequate and inefficient, and more rigorous 

analytical methods are most often employed. 

 

Foundation uplif ting f rom the 
supporting soil

Sliding at the soil-foundation 
interface 

Bearing capacity type of  
soil failure  

Figure 1.1  ‘Plastic hinges approach’ at soil-foundation interface (Gazetas and Apostolou, 2004). 

Finally, for seismically retrofitting structures designed with the small acceleration levels of the past, 

the necessity to explicitly consider the occurrence of one or more of the above-mentioned 

nonlinearities is often unavoidable. The 1997 NEHRP Guidelines for the Seismic Rehabilitation of 
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Buildings (FEMA, 1997) first acknowledge that the ductility demands on structures could be reduced 

when allowing the ultimate moment capacity of the foundation to be mobilised, particularly for shear 

walls. A typical example of concrete frame with a slender shear wall for a retrofitted multi-storey 

building is portrayed in Fig. 1.2.  

Under such an alternative approach, the task of the geotechnical seismic design lies with the adoption 

of a foundation configuration, capable of exploiting the benefits of the nonlinear, softening response 

under severe ground shaking, without ‘facilitating’ excessive permanent displacements to develop. 

B

L = 11.0 m

W

7.3 m

27.4 m

Elevation

Foundation plan

3.0 m

3.0 m  

Figure 1.2  Typical example of concrete frame with shear wall for a 8-storey building (after NEHRP, 
1997). 

 

1.2 OBJECTIVES of the STUDY 

The study is focused on the nonlinear effects associated with the response of a shallow foundation 

subjected to large overturning moment. Slender structural systems are more vulnerable to develop 
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high levels of foundation moment even during a moderate seismic shaking  and evidently rocking 

component of motion is predominant. In the domain of large displacements, nonlinear features of such 

a soil-foundation system may be summarised in: 

 separation of a footing undergoing rocking oscillations from the supporting soil (‘uplifting’), 

and 

 mobilisation of bearing capacity type failure surface mechanisms under large cyclic 

overturning moments (‘soil failure’). 

These fundamental nonlinear effects associated with foundation rocking arise from: 

 the negligible tensile capacity of the soil-foundation interface during swaying-rocking motion, 

which results in uplifting of the foundation as well as in inadvertently, creating second order 

( )P d-  effects (geometrical nonlinearity – type A),  

 the plastification of the supporting soil, especially in the vicinity of the corner points of the 

foundation stemming from the concentration of high vertical stresses and amplified by the 

cyclic response of the superstructure (material nonlinearity – type B).  

Within this framework the main objectives of the study can be summarised as follows: 

(a) To gain insight on the profoundly nonlinear dynamics of rocking on rigid soil. In light of this it 

is of great importance to distinguish uplifting from overturning which are identical under 

static consideration. 

(b) To identify the key parameters affecting the rocking response of a structure on compliant 

supporting medium. In case of inelastic soil medium to study the interplay of the two 

predescribed sources of nonlinear actions. 

(c) To estimate levels of fail-safe response under severe ground excitation. 
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(d) To establish design criteria for shallow foundations to withstand strong shaking with minor 

permanent displacements. 

Three elementary slender systems with a strip footing subjected to rocking vibrations can be 

employed to distinguish linear from nonlinear SSI either due to type A or B mechanisms, as illustrated 

in Fig.1.3: 

(a) Rocking without uplift on elastic soil. Tensile capacity along the interface is considered large 

enough to prevent uplifting. When overturning moment is imposed to the footing, coupled 

swaying-rocking motion initiates due to soil compliance. Foundation is then rotating around a 

point which lies along the central vertical axis of the interface (pole of rotation). For a very 

slender structure, this pole is fixed on the interface midpoint. The linear response of the 

system may be obtained through conventional SSI studies available in literature. 

(b) Rocking on rigid soil. In this case soil-foundation interface has no tensile capacity. 

Consequently, under large overturning moment, the footing can rotate only around its corner 

points (poles of rotation). Once rocking initiates, subsequent uplifting occurs. In slender 

systems sliding is prevented. A geometrically-induced, profoundly non linear response 

emerges (type A). 

(c) Rocking without uplift on inelastic soil. Tensile capacity along the interface is considered large 

enough to prevent uplifting. In this way non linear response is attributed exclusively to 

inelastic soil behaviour (type B). Compared to the linear system, the pole of rotation now 

shifts towards the unloading edge. 

It is worthy of note that a strip footing on elastic soil with a tensionless contact interface is also an 

example of pure geometric nonlinear SSI. In this case though, nonlinear rocking response is 

‘cushioned’ by the deformability of supporting soil. As a result, rocking without uplift occurs at low 

levels of the overturning moment whereas at higher levels, the footing uplifts partially from the 



Chapter 1: Introduction 

Apostolou, doctoral dissertation 2011    8

supporting soil. Accordingly, rocking response is bounded by the limiting cases of (a) and (b). 

Nevertheless, this system will also be examined in detail as it simplifies (for a lightly-loaded footing) 

the actual problem of nonlinear SSI in which both geometric and material nonlinearities develop. 
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rotation pole
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Figure 1.3  Large displacement analysis of rocking behaviour for a slender structural system; 
Simplified states of response.  
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1.3 OUTLINE of the STUDY 

An overview of the fundamental analytical tools to address the SSI effects in a rigorous or simplified 

linear formulation is presented in Chapter 2. The most widespread techniques available in the 

literature to assess nonlinear phenomena related to inelastic soil behaviour or large structural 

displacements are also discussed in the same chapter. 

An introduction to study the geometrically nonlinear SSI is attempted in Chapter 3. To this extent, 

rocking behaviour of a rigid, block-type or one-storey structure supported on a rigid, horizontally 

oscillating base is examined. In the case of a one-storey structure the flexibility of the pier is also 

considered. The profound nonlinear aspects of the dynamic rocking response are highlighted under (a) 

free vibration, (b) harmonic shaking, (c) earthquake shaking. 

In Chapter 4 the compliance of the supporting soil is implemented in the analysis of the rocking 

response of shallow foundations. To this end, a series of sophisticated nonlinear finite element analyses 

is performed with soil medium described with (a) visco-elastic and (b) inelastic material. In the latter, 

nonlinear soil behaviour is described with advanced plasticity models. Hence, nonlinear behaviour of 

soil is approached by: (a) the elastic–perfectly plastic model determined by the elastic parameters 

,  E n  and the Mohr-Coulomb failure criterion described with the strength parameters ,  c f  and, (b) 

the von Mises failure criterion combined with an isotropic and kinematic hardening model in the post-

yielding domain. The latter is most suitable for the analysis of the dynamic behaviour of cohesive soils 

under undrained conditions. Monotonic response is calculated with static ‘push-over’ analysis to 

extract backbone load-displacement curves. Moreover, time-domain analysis using simple pulses or 

earthquake records as bedrock excitation is carried out to elucidate the nonlinear features of the 

dynamic response of the soil-foundation system. 

In Chapter 5, the afore-discussed nonlinear finite element analysis is focused on the limiting case that 

the capacity of the foundation is reached. Interaction curves are produced under static conditions and 

compared to the existing solutions of the literature. The analysis is extended in the time-domain by 
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using both pulse-type time histories and earthquake records. Permanent cumulative displacements are 

also calculated in light of a fundamental sensitivity study.  

The limitations of conventional Winkler-based modelling under strong overturning moments are 

highlighted in Chapter 6. To overcome these drawbacks, a macroscopic modelling of the soil–

foundation system is developed, capable of representing the large-displacement domain of the 

response. Analytical equations for the monotonic load-displacement relationship are extracted 

incorporating both geometric and material nonlinearities. Such analytical backbone curves may be 

implemented in dynamic SSI analysis through the concept of nonlinear macro-element to represent 

the near-field soil-foundation system.  

The conditions under which uplifting leads to large angles of rotation and eventually to overturning 

are investigated in Chapter 7 through rigorous, large displacement approach. The structure is resting 

on the surface of either a rigid base or a linearly elastic continuum. Directivity–affected near-fault 

ground motions, idealised as Ricker wavelets or trigonometric pulses, are used as excitation. A 

profoundly nonlinear rocking behaviour is revealed for both rigid and elastic soil conditions. This 

geometrically nonlinear response is further amplified by unfavourable sequences of long–duration 

pulses in the excitation. 
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Chapter 2: 

Overview of linear and nonlinear soil–structure interaction 

methods for shallow foundations 

 

2.1 INTRODUCTION 

Shallow mat foundations are generally chosen for buildings and bridges on stiff and strong soils. Under 

certain circumstances however, surface foundation may be the most suitable solution even when soft 

or poor soil conditions are encountered. As an example, for critical offshore facilities deep foundation 

is often an impracticable method. Moreover in many regions around the world with soft soils and high 

water table (e.g. Adapazari, Turkey) shallow mat foundations may be the only economically feasible 

solution.  

A schematic of soil-structure interaction problem for a spread footing is depicted in Fig. 2.1. During 

earthquake shaking, soil deforms under the influence of the arriving ‘incident’ seismic waves and 

‘carries’ dynamically with it the foundation and the supported structure. In turn, the induced motion 

of the superstructure generates inertia forces which result in dynamic forces and moments at the 

foundation that are subsequently transmitted into the supporting soil. Thus, superstructure-induced 

deformations develop in the soil while additional waves emanate from the soil–foundation interface. In 

response, foundation and superstructure undergo further dynamic displacements, which generate 

further inertial forces and so on (Gazetas and Mylonakis, 1998).  



Chapter 2: Overview of linear and nonlinear SSI methods for shallow foundations 

Apostolou, doctoral dissertation 2011    12

 

 

 

 

 

 

 

 

 

 

Figure 2.1  Schematic of the soil-structure interaction problem in a horizontally–layered soil profile. 

 

2.2 LINEAR SOIL–STRUCTURE INTERACTION 

The phenomena of seismic SSI described in the preceding occur simultaneously. Within the limits of a 

linear procedure however, it is convenient (both conceptually and computationally) to obtain the 

response of the soil–foundation–structure system as a superposition of the two interaction effects: 

(a) ‘Kinematic interaction’, (KI) referring to the distress of the structure as the incident seismic 

waves are reflected and scattered by the foundation which in turn develops curvatures and 

bending moments due to its different rigidity with respect to the surrounding soil (Fig. 2.2a), 
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(b) ‘Inertial interaction’, (II) referring to the oscillation of the superstructure generated by the 

motion induced at the foundation level which in turn imposes additional dynamic loading to 

the foundation and the surrounding soil (Fig. 2.2b). 

Before proceeding to the analysis of SSI, a site response analysis must be preceded to calculate the 

free-field motion which will be applied as input for the KI analysis. This task requires that the design 

motion be known at a specific (‘control’) point, usually taken at the rock-outcrop surface.  

For a linear soil–foundation–structure system the mathematical validity of this multistep approach 

emerges from the so-called superposition theorem (Whitman, 1972; Kausel and Roesset, 1974; Gazetas 

and Mylonakis, 1998) which states that the equation of motion for the overall system in its matrix 

formulation, 

[ ] { } [ ] { } [ ] { } rM u K u M I a⋅ + ⋅ =- ⋅  [2.1] 

can be decoupled in the two following differential equations: 

[ ] { } [ ] { } [ ] { }so kin kin so rM u K u M I a⋅ + ⋅ =- ⋅  [2.2a] 

[ ] { } [ ] { } [ ] { } { }( )st iner iner st kin rM u K u M u I a⋅ + ⋅ =- ⋅ +   [2.2b] 

where: { }u  is the relative displacement vector of points in the soil or the structure with respect to the 

top of the ‘rock’, { }kinu  and { }ineru  are respectively the kinematic and the inertial relative 

displacements, { }I  is the unit vector, [ ]K  is the stiffness matrix of the system, [ ]M  is the mass matrix 

of the system, [ ]soM  is the mass matrix assuming that only the soil and the foundation have mass (i.e. 

the mass of the superstructure is made zero), and [ ]stM  is the mass matrix assuming that there is mass 

only in the superstructure (i.e. the mass of foundation and soil are made zero). By definition it is 

[ ] [ ] [ ]so stM M M= +  and { } { } { }kin ineru u u= + .  
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For computational convenience, analysis of the inertial interaction described with Eq. 2.2b is further 

subdivided into two consecutive independent analysis steps, as follows (Kausel and Roesset, 1974): 

(b1) Computation of the dynamic foundation impedances (springs and dashpots) associated with 

the swaying and rocking motion of the foundation (for shallow foundations cross-swaying-

rocking terms are usually neglected) as shown in Fig. 2.2b1; and 

(b2) Analysis of the dynamic response of the superstructure supported on the springs and 

dashpots of step (b1), subjected to the kinematic foundation input motion of step (a) (Fig. 

2.2b2). 

 

 

 

 

 

 

 

 

 

 

Figure 2.2  The geometry of SSI problem; decomposition into kinematic and inertial response (Kausel 
et al., 1976). 
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Given that the analysis in each individual step is performed rigorously, the superposition theorem 

provides the exact solution of the linear problem. In addition, it can be a reasonable approximation in 

cases of moderately–nonlinear soil behaviour (Gazetas and Mylonakis, 1998). 

The conventional approach to foundation design is based on such a linear, frequency-domain SSI 

analysis, to derive dynamic forces and moments transmitted onto the foundation along with 

considerations for inelastic structural response (e.g. by reducing the moments in columns through the 

behaviour ‘ductility’ factor q ). Factors of safety against sliding and exceedance of ultimate capacity, 

are introduced in the design, in a way similar to the traditional static design. The foundations are then 

designed in such a way that these transmitted horizontal forces and overturning moments, increased 

by ‘overstrength’ factors, would not induce sliding or bearing capacity failure. 

The relative importance of the kinematic and inertial effects on the structural response depends on the 

foundation characteristics and the nature of the incoming wave field (Pecker and Pender, 2000). In 

particular, for structural systems with a surface or an embedded at a shallow depth foundation, the 

kinematic effect on the structural response is often small and could be neglected. 

An important step in terms of inertial interaction analysis is the determination of the dynamic 

impedance of an ‘associated’ rigid but massless foundation subjected to harmonic loading of 

frequency, w . This is defined as the ratio between the steady-state force (moment) and the resulting 

displacement (rotation) at the base of the foundation. Since dynamic force and displacement are 

generally out of phase, any dynamic displacement can be resolved into two components: one in phase 

and one 090  out of phase with the imposed harmonic load. Impedances may therefore be written in 

complex notation: 

1 2K iK= +K  [2.3] 

in which, 1K  and 2K  are the dynamic impedance functions. 
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In his seminal work (1936), Reissner motivated by Lamb’s earlier studies on the dynamic Boussinesq 

problem (1904) demonstrated theoretically that a vertically loaded circular foundation vibrating on a 

halfspace could be represented with 1-dof visco-elastic oscillator. By comparing his analytical results 

from the halfspace theory with those from the lumped-mass system he showed that the equivalent 

lumped parameters should be frequency dependent. In this way he established the displacement 

functions, ( )1f w  and ( )2f w , to express the vertical displacement vu  by: 

( )
( )0

1 2

exp
v

P i t
u f i f

GR

w
= +  [2.4] 

in which, 0P  is the amplitude of the total force applied to the circular contact area, G  is the shear 

modulus of the halfspace, and R  is the radius of the circular contact area. According to Reissner’s 

findings, the dynamic impedance components of Eq. 2.3 are functions of the vibrational frequency w  

as well. In addition, soil visco-elastic parameters ( ),  ,  and G n r  should also be included in these 

components. Hsieh (1962) showed that in analogy with the 1-dof oscillator, the real part in Eq. 2.3 

represents the stiffness and inertia of the supporting soil whereas the imaginary part describes the 

absorption of energy within the soil medium through radiation damping. By a reorganisation of 

dynamical equilibrium equation of the lumped system and in combination with Reissner’s equation 

(Eq. 2.4) the complex dynamic impedance of steady-state vibration can be written:  

2K m i Cw w= - +K  [2.5a] 

1 2
2 2 2 2

1 2 1 2

in which, and
f fGR

K GR C
f f f fw

= =-
+ +

 [2.5b] 

The parameters  and K C  in Eq. 2.5b are the familiar spring and damping terms respectively, of the 

equivalent lumped system, both functions of the frequency of vibration. Lysmer (1965) uncovered 

that when multiplying the displacement function 1 2f f i f= +  by a factor ( )4 1 n- , a new 

displacement function 1 2F F iF= +  is obtained which is essentially independent of n . By adopting 
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the dimensionless frequency factor , 0
S

b
a

V

w
= , he was able to derive charts of 1F  and 2F  as functions 

solely determined by 0a . This discovery allowed Lysmer to provide values for the lumped parameters 

 and K C . By introducing a modified dimensionless mass ratio, 
3

1
4z

m

R

n
r

-
=B , for the vertical 

vibration of the rigid circular footing, and based on Reissner’s expression for the displacement 

amplitude, zA , Lysmer developed normalised response curves through the magnification factor 

( ) 0

4
1 z

GR
M A

Qn
=

-
 for several values of zB . After studying the variations of spring and dashpot factors 

with frequency ( )0a , as obtained from the elastic halfspace theory, he further noted that constant 

values of these quantities could be used. Hence, he chose the spring constant equal to the static value 

( )4 1vk GR né ù= -ê úë û  and fitted the damping term for the range ( )00 1a< <  to be 

( )23.4 1vc R Gr n= - . According to this engineering approximation (often called ‘Lysmer’s 

Analog’), the steady-state response of the footing can be computed through the equation of motion of 

the equivalent lumped system: 

23.4 4
1 1v v v

R G GR
mu u u Q

r
n n

+ + =
- -

   [2.6] 

Richart and Whitman (1967) extended Lysmer’s Analog by demonstrating that all modes of vibration 

can be studied by means of visco-elastic lumped systems having properly selected frequency-

independent parameters. A remarkable agreement is revealed from the comparison between the exact 

halfspace and the approximated 1-dof response, as illustrated in the charts of Fig. 2.3 for the different 

modes of vibration. 

An alternative way of Eq. 2.5a is derived by separating the static from the dynamic component and 

expressing stiffness and damping terms as a function of 0a : 
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( ) ( ){ }0 0 0K k a i a c a= ⋅ + ⋅ ⋅K  [2.7] 

in which, K  is the static stiffness, irrelative to the vibration frequency, ( )0k a  and ( )0c a  are 

respectively, dynamic stiffness and radiation dashpot coefficients, both frequency dependent. 

 

Figure 2.3  Comparison between the exact halfspace and the analog 1-dof dynamic response of a rigid 
circular footing, for the different modes of vibration (after Richart et al., 1970). 

Dynamic impedance functions (‘springs’ and ‘dashpots’) may be obtained with various computational 

methods which can be grouped into four categories: (a) analytical and semi-analytical methods that can 

handle multi-layered soil deposits and rectangular surface foundations (e.g. Gazetas and Roesset, 

1976), (b) dynamic finite element methods that can treat any type of soil profile or foundation geometry 

(even three- dimensional) provided that powerful computational resources are available, (c) combined 

analytical–numerical methods which take advantage of the other two methods (e.g. the boundary 

element method), and (d) approximate techniques that simplify the physics of the problem and can 
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provide engineering solutions to some very complicated situations (among others Meek and Veletsos, 

1973; Wolf, 1985, 1988). There is a variety of ready-to-use solutions for dynamic impedance functions 

available in the literature covering a wide range of idealised soil profiles and foundation geometries. 

For example, dynamic spring and dashpot coefficients for arbitrarily shaped and strip footings on 

homogeneous halfspace can be obtained in the form of algebraic formulas and charts illustrated in 

Table 2.1 and Fig. 2.4 respectively. 

Table 2.1  Dynamic stiffnesses and dashpot coefficients for arbitrarily shaped foundations on the 
surface of a homogeneous halfspace (Gazetas, 1991). 

Mode of 
vibration 

Dynamic stiffnesses 0( )* = ⋅K k aK  

Radiation dashpot 
coefficient C  

(General shapes)   

Static stiffness K  

Dynamic stiffness 
coefficient k  (General 

shape; 00 2£ £a )+  

General shape 

(foundation-soil contact surface is of 

area 24=bA x l  and has a 

circumscribed rectangle 2l  by 2b ; 
>l b ) 

Strip                

( )2l ¥  

Vertical, z 0.752
0.73 1.54

1 n
é ù= +ê úë û-v

G l
K x  * 0.73

2 1 n
= @

-
v

v
K G

K
l

 0, ,n
æ ö÷ç= ÷ç ÷÷çè øv v

l
k k a

b
 is 

plotted in Graph a 

( )r= ⋅Lav vbC V A c   

0, ;n
æ ö÷ç= ÷ç ÷÷çè øv v

l
c c a

b
   

is plotted in Graph c 

Swaying, y 

(lateral) 
( )0.85

,
2

2 2.5
2 n

é ù
ê ú= +
ê ú-ë û

h y
Gl

K x  * ,
,

2
2 2 n

= =
-

h y
h y

K G
K

l
 0, , ,

æ ö÷ç= ÷ç ÷÷çè øh y h y
l

k k a
b

 is 

plotted in Graph b 

( ), ,r= ⋅La bh y h yC V A c  

0, , ;
æ ö÷ç= ÷ç ÷÷çè øh y h y

l
c c a

b
   

is plotted in Graph d 

Swaying, x    
(longitudinal) , ,

0.2
1

0.75 n

é ùæ ö÷çê ú= - - ÷ç ÷÷çê úè ø- ë û
h x h y

b
K K Gl

l
 – , 1@h xk  , r@ S bh xC V A  

Rocking, 
around x ( )

0.25
0.75 2.4 0.5

1 n

æ ö æ ö÷ ÷ç ç= +÷ ÷ç ç÷ ÷÷ ÷ç çè ø è ø-rx bx
G l b

K J
b l

 
( )

2
*

2 2 1
p

n
= =

-
rx

rx
K Gb

K
l

 
01 0.20= -rxk a  

( )r= ⋅Larx rxbxC V J c   

0;
æ ö÷ç= ÷ç ÷÷çè ørx rx

l
c c a

b
   

is plotted in Graphs e 
and f 

Rocking, 
around y      ( )

0.15
0.75 3

1 n

é ùæ öê ú÷ç= ÷çê ú÷÷çè ø- ê úë û
ry by

G l
K J

b
 – 

0

0.3

0

1 0.30 ,  

0.45

1 0.25 ,

0.50

n

n

ì @ -ïïïï <ïïïïí æ ö÷ï ç@ - ÷ï ç ÷÷ï çè øïïïï @ïî

ry

ry

k a

l
k a

b

 

( )r= ⋅Lary rybyC V J c   

0;
æ ö÷ç= ÷ç ÷÷çè øry ry

l
c c a

b
   

is plotted in Graph g 

* for the strip footing case is equivalent to a rectangular with / 20=l b  

+ 0 /w= Sa b V  



Chapter 2: Overview of linear and nonlinear SSI methods for shallow foundations 

Apostolou, doctoral dissertation 2011    20

 

 

Figure 2.4  Graphs accompanying Table 2.1 for the dynamic stiffness and radiation dashpot 
coefficients (Gazetas, 1991; reprinted in Mylonakis et al., 2006). 

For the type of structural systems examined in this study (e.g. shear walls and bridge piers) the 

dimensionless frequency factor ranges over values less than 0.5. As derived from the graphs of Fig. 

2.4, for such low levels of 0a , the response is marginally affected by the dynamic stiffnesses 

coefficients ( 1, , ,ak a h v r@ = ). Static stiffnesses coefficients such those presented in Table 2.1 may be 

adequate to represent the stiffness of the elastic supporting medium. In addition, rocking vibration 

(and consequently the overall response of a slender structure) in the lateral (weak) direction is 

practically undamped as 0rc @ . Significant damping is predicted for the translational modes of 

response when 0 0.5a < , and particularly for strip footings. 
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2.2.1 Simplified procedures 

As described above, within the limits of a linear formulation, the SSI effects can be considered as a 

superposition of the kinematic and the inertial components. For simplicity, in case of a shallow 

foundation the kinematic component can be neglected without loss of accuracy. The effect of the 

inertial soil-structure interaction on the dynamic response of the structure may be summarised in an 

increase in the natural period and a change (usually an increase) of the effective damping of the fixed-

base system. The increase in the natural period, 0 2 /T m kp= , of the fixed-base system is attributed 

to soil flexibility under swaying and rocking motion and can be quantified according to Dunkerley’s 

rule (Dunkerley, 1894; Jeffcott, 1918): 

2 2 2
0 h mT T T T= + +  [2.8] 

in which, 2 /h hT m Kp=  and 2 /m cb mT J Kp=  are respectively the natural period in the swaying 

and rocking mode whereas hK  and mK  are the static stiffnesses of the foundation in these modes. The 

mass moment of inertia cbJ  is calculated with reference to the midpoint of the foundation baseline. In 

addition the change of the effective damping can be evaluated approximately, through the following 

expression: 

( )
0

3

0

i
T T

x
x x= +


 [2.9a] 

in which, 0x  is the effective damping ratio of the fixed-based system and ix  is the damping ratio of the 

foundation associated to radiation damping within soil medium (frequency dependent). Wolf (1985) 

proposed an alternative way for evaluating effective damping directly from ,  h mx x , namely the 

foundation damping components in the swaying and rocking mode respectively: 
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2 2 2
0 0

2
h h m mT T T

T

x x x
x

+ +
=   [2.9b] 

A 1-dof, fixed-base system with equivalent lumped parameters from Eqs 2.8 and 2.9 can be utilised 

instead of the actual coupled system to assess the effects of SSI through a simplified response spectrum 

analysis. In so doing, response spectra of the equivalent fixed-base system in terms of the normalised 

shear force are computed for different values of the relative flexibility parameter, 0 0sh V Tf = , in the 

graphs of Fig. 2.5 (dotted lines), as derived by Veletsos and Meek (1974). In the same graphs the 

shear force of the 3-dof, compliant-base system is also plotted for comparison (solid lines).  

 

Figure 2.5  Response spectra of the normalised shear force computed with the illustrated structural 
system on compliant soil (solid lines) and the equivalent 1-dof fixed-base system (Veletsos and Meek, 
1974, reprinted in FEMA 369 document, 2000). 

The structural model proposed by Veletsos and Meek (1974) to address the SSI effects, comprises two 

masses at the deck and the foundation mat. When the foundation is relatively small compared to the 
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mass of the superstructure, a one-storey structure with a mass m  at height h  and mass moment of 

inertia 2
cb cmJ J mh= +  can be employed. In this case Eq. 2.8 becomes: 

2

2 cm

m h

J mhm m
T

k K K
p

+
= + +  [2.10a] 

and for a concentrated mass cm  at point C ( 0cmJ = ):  

2

2
m h

m mh m
T

k K K
p= + +  [2.10b] 

This simplified, one-storey coupled system as illustrated in Fig. 2.6, will be employed in this study to 

examine the nonlinear features of SSI. 
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Figure 2.6  Kinematics of the simplified one-storey coupled system; (a) at rest, (b) displaced due to a 
base acceleration ( )gx t .   

Interplay of structural and soil compliance 

Quite often, swaying vibration is not a key parameter in inertial interaction due to the large lateral 

stiffness of the soil–foundation system especially for embedded foundations. Soil compliance in the 
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rocking mode however, may affect significantly the dynamic response. This is more evident in slender 

systems imposing large overturning moments to the foundation. In addition, for slender but quite 

flexible structures, inertia loading results to flexural vibrations of the superstructure with marginal 

rocking motion. Consequently, it is of great importance to predict the predominant mode of response 

when designing for slender structural systems. An interesting way to outline the interplay between 

structural and soil flexibility on the dynamic response is through the pattern of a bridge pier. It is a 

typical example of highway bridge piers constructed in Greece, however the pile-foundation which is 

usually adopted in design practice has been substituted by a rectangular spread footing of 9 m  in 

width. A vertical load of 1000 t  representing the deck mass is applied at 11 m  above the ground 

surface (slenderness ratio 11/4.5 2.44= ). As depicted in Fig. 2.6, the total horizontal displacement of 

the lumped mass is the sum of the horizontal components of the three vibration modes: the horizontal 

and rocking oscillation of the footing (swaying and rocking respectively), and the relative 

displacement of the mass centre to the pier base, due to flexural deformations of the pier (story drift): 

b stru u u uq= + +  [2.11] 

Within the context of a linear SSI approach, the rotation pole is constantly located at the footing 

midpoint, hence u hq q= . A quantitative estimate of the participation of rocking on the overall 

response of the bridge pier can be given by the following period ratio as derived by Dunkerley’s 

formula: 

1

2 21m m m

h

T K K

T h k h K

-æ ö÷ç ÷ç= + + ÷ç ÷÷çè ø
 [2.12] 

The rocking period ratio of the employed bridge pier is calculated with Eq. 2.12 and presented in 

Table 2.2 for different types of the pier cross section. Accordingly, the period in each independent 

mode of response can also be calculated with Eq. 2.8. Both soft and stiff soil conditions are considered 

(soil Young modulus of 20 MPa  and 100 MPa  respectively) to elucidate the effect of the flexural 
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rigidity on the fundamental natural period of the structure. While the diameter of 2 mpd =  seems to 

be a lower bound in the design practice of bridge piers, for the sake of analysis even lower values pd  

are implemented. Moreover, the rocking period ratio is plotted in the graphs of Fig 2.7 as a function 

of the slenderness for three different pier sections: (a) a cyclic section of diameter 2 mpd = , (b) a 

cyclic section of diameter 3 mpd = , and (c) a rectangular section of width 1 mpd =  in the 

longitudinal direction, and 2pd b=  in the transverse (rocking) direction.  

Table 2.2  The period of the structural system calculated for two different soil conditions. 

Pier section dp (m) Tm (sec)  Th (sec)  To (sec) T (sec)          

Esoil = 20 MPa 

Cyclic 1 1.17 0.47 3.46 3.68 

Cyclic 1.5 1.17 0.47 1.53 1.98 

Cyclic 2 1.17 0.47 0.86 1.53 

Cyclic 3 1.17 0.47 0.38 1.32 

Rectangular    10 1.17 0.47 0.10 1.26 

Esoil = 100 MPa 

Cyclic 1 0.51 0.21 3.46 3.50 

Cyclic 1.5 0.51 0.21 1.53 1.63 

Cyclic 2 0.51 0.21 0.86 1.02 

Cyclic 3 0.51 0.21 0.38 0.67 

Rectangular    10 0.51 0.21 0.10 0.56 

In the limiting case of 1 mpd =  the flexural mode apparently accompanied with large displacement 

demands, dominates the response. On the other hand, in the structural system with a rectangular pier 

section, rocking is the predominant mode of response even for relatively low values of slenderness 

ratio and regardless soil conditions. Similar behaviour is expected for the stiff cyclic pier section of 

3 mpd =  with an exception of a very slender structure on stiff soil. A more complicated response is 

revealed for the 2 m  width pier due to its increased flexibility. Hence, depending on its slenderness 

and soil deformability, the structural system can respond either as a rocking or as a flexural oscillator. 
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Figure 2.7  The ratio of the rocking period to the effective period of the system as a function of the 
slenderness of the structure. 

 

2.3 NONLINEAR LINEAR SOIL–STRUCTURE INTERACTION 

Decomposition of the SSI problem into the afore-described tasks (site response analysis, kinematic 

interaction, inertial interaction) is a convenient tool for calculating the dynamic response of the 

structural system. Nevertheless, it does not necessarily entail that these steps must be performed 

separately. The advent of powerful computational machines nowadays, makes feasible a one-step 

numerical analysis of SSI (e.g. through the finite element method). Such a rigorous, time-domain 

analysis however, should also incorporate complex three- dimensional geometry, a detailed 

representation of soil profile, and most importantly sophisticated nonlinear algorithms to describe 

inelastic soil behaviour (material nonlinearity). The latter together with nonlinearities arising from 

large structural displacements (geometrical nonlinearities) comprise the nonlinear SSI effects.  

2.3.1 Material nonlinearity 

Soil response under large deformations is generally nonlinear, hysteretic and irreversible. Such a 

nonlinear behaviour is more pronounced in the near field (i.e. the soil medium in the vicinity of the 

structural foundation) where considerable concentration of stresses transmitted by the structural 
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system may take place. On the other hand, a far field domain may also be determined at a sufficient 

distance from the foundation where inelastic soil action is only governed by the seismic waves 

propagation (Pecker and Pender, 2000). Nonlinear, inelastic behaviour of soil and the structural 

elements is usually addressed in the SSI literature as material nonlinearities. 

In early SSI studies only a little work had been done to incorporate soil nonlinearities. In the 

pioneering work of Idriss and Seed (1968) nonlinear soil behaviour was approached by the equivalent 

linear method (ELM). According to this iterative procedure, soil visco-elastic characteristics (i.e. shear 

stiffness and damping ratio) are modified after each iteration of a linear, wave propagation analysis 

until they reach values which are consistent with the calculated strains. The equivalent linear method 

is a valid engineering approximation for calculating moderately nonlinear soil response induced by the 

propagating seismic waves in the free field. It does not however address the need for predicting 

inelastic soil strains developed in the near field primarily due to foundation vibration. These additional 

plastic strains may be very significant in particular for slender structural systems which can generate 

large overturning moments even under moderate ground shaking. 

Considerable attention has been given since the late 1960’s to the development of constitutive models 

to describe nonlinear soil characteristics. Among the numerous soil models developed, elasto- (visco)- 

plastic models appear to be most promising. It may be argued that plastic models based on isotropic 

plastic hardening rules are adequate for situations in which only loading (and moderately unloading) 

occurs, however it is unlikely that such restrictions can be met at every point in general boundary 

value problems. In order to account for hysteretic effects, more elaborate plastic models based on a 

combination of isotropic (Hill, 1950) and kinematic (Prager, 1959) plastic hardening rules have been 

proposed. An important theoretical development in plasticity has been made simultaneously by Mroz, 

1967 and Iwan, 1967. They showed how continuous yielding could be represented by a set of nested 

yield surfaces in stress space. The notion, in combination with kinematic and isotropic 

hardening/softening plastic rules, can give rise to a material representation of considerable power and 

flexibility. The concept has been adopted and enlarged by Prevost (1977, 1978 and 1985) and Mroz 
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(1980). Both theories suffer inherent limitations namely storage requirements for the multi-surface 

theory, a priori selection of an evolution law and arbitrariness in the mapping rule for the bounding 

surface theory. 

2.3.2 Geometric nonlinearity 

In terms of a rigorous SSI analysis procedure geometric nonlinearity can be generated either at the 

structural centre of mass when undergoing a large lateral movement ( ) effectP d-  or at the soil-

foundation interface. Geometrically nonlinear behaviour of the foundation may arise when a large 

horizontal force (sliding) or overturning moment (uplift) is applied. The latter case is associated with 

loss of contact (partial or total) between the structural foundation and the supporting soil because of 

the inability of soil to sustain tensile stress. Uplift onset results to a soil-foundation interface of 

transient geometry and imposes the moment-rotation relationship to a softening behaviour even under 

elastic soil conditions.  

For structure with a shallow foundation on a horizontally vibrating soil two states of response can be 

distinguished: (a) the full-contact phase and (b) the uplifting phase. In the former case the structure 

whether remains at rest (rigid superstructure) or exhibits flexural oscillations (deformable 

superstructure). The transition from the full-contact to the uplifting case is determined by an uplifting 

criterion. For rigid soil conditions uplifting occurs when the overturning moment reaches the ultimate 

moment capacity of the foundation.  

The important effects of foundation uplift on the dynamic response of structures have been 

demonstrated in early analytical and experimental studies of the simplified ‘rigid soil’ model (Meek, 

1975; Huckelbridge and Clough, 1978; Chopra and Yim, 1985). It has been found that uplifting 

modifies the dynamics of the structure in a way qualitatively similar with the sliding isolation which 

cuts-off accelerations larger than a critical value. Later studies incorporated soil compliance and 

material nonlinearities to extract similar conclusions for the uplifting response (Yim and Chopra, 
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1984; Crémer et al., 2002; Gazetas and Apostolou, 2004; Gajan and Kutter, 2008; Anastasopoulos et 

al., 2008). But while sliding systems survive strong seismic forces with (large) permanent 

displacements, for an uplifting structure the ‘penalty’ to pay is large rotations (permanent for soils of 

poor strength) and occasional overturning. 

2.3.3 Recent developments in nonlinear SSI 

Nonlinear numerical modelling of the entire soil-foundation-structure system through realistic 

representation of the exact geometry and sophisticated tools for inelastic soil behaviour has nowadays 

become a challenging task given the computational resources and capabilities available nowadays. 

However such a sophisticated numerical analysis (e.g. with the finite element method) requires also 

extensive discretisation of soil medium, which may not be feasible to perform in common geotechnical 

design practice. 

An engineering approximation to efficiently evaluate the nonlinear effects of inertial interaction in the 

domain of large displacements can be obtained if the supporting medium is substructured into two 

subdomains (Pecker and Pender, 2000): (a) a far field domain which extends a sufficient distance from 

the foundation, in which soil nonlinearities only governed by the propagation of seismic waves, and 

(b) a near field domain, in the vicinity of foundation where both geometrical and material 

nonlinearities associated to SSI are important. The exact boundary between these two domains does 

not need to be precisely determined. The far field domain is approached by linear or equivalent linear 

impedance function in which only radiation damping (viscous type) is implemented. On the other 

hand, a macroscopic approach is adopted for the near field domain which is represented with a 

nonlinear macro-element of six degrees of freedom in the general case (three translational and three 

rotational). Damping now arises from inelastic soil behaviour underneath the foundation and obeys 

Masing’s law. A schematic of the macroscopic modelling is illustrated in Fig. 2.8. 
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A dynamic macro-element based on this macroscopic consideration was developed by Cremer et al., 

2001 for shallow foundation on cohesive soil. Later studies on macro-element modelling have been 

presented by Gajan and Kutter, 2009; Chatzigogos et al., 2009; Figini et al., 2011. A detailed review of 

the available macro-element models in literature will be presented in Chapter 5.  

 

Figure 2.8   Conceptual subdomains for dynamic soil-structure analyses (Pecker and Pender, 2000). 

 

2.4 SEISMIC CODE PROVISIONS 

According to almost every seismic building code, the structural response and consequently the 

foundation loads are computed considering fixed base conditions at the support and therefore 

neglecting soil-structure interaction. Inherent to this approach is the belief that the effect of SSI is 

always towards reducing seismic loads (Pecker and Pender, 2000). Admittedly, the increase in the 

damping ratio due to SSI explicitly reduces the seismic forces developed to the superstructure and the 

foundation. However, the most important effect of SSI which is the increase in the natural period of 

the structural system does not necessarily lead towards smaller spectral accelerations. Examples of 

detrimental effect of the increased natural period in cases of unusually soft soil profiles have been 

recently demonstrated in literature (e.g. Gazetas and Mylonakis, 1998). 
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The ambiguous role of SSI has been recognised in some modern codes. According to Eurocode 8 

(prEN 1998-5:1999) provisions, ‘the effects of dynamic soil-structure interaction shall be taken into 

account in the case of: (a) structures where P d-  effects play a significant role; (b) structures with 

massive or deep seated foundations; (c) slender tall structures; (d) structures supported on very soft 

soils, with average shear velocity less than 100 m/s’. 

Although not widely used in practice, engineering guidelines exist in the United States for simple 

characterisation of SSI effects.  

One set of guidelines is intended for use with force-based characterisation of seismic design, as is 

commonly used for new building construction. These procedures were introduced by the Applied 

Technology Council document (ATC-3-06, 1978, 1984) and an updated version has recently been 

published in the NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other 

Structures (BSSC, 2004).  According to these procedures the fixed-base building period and damping 

ratio are modified to account for the effects of foundation compliance. The derived flexible-base 

vibration properties are used with the site design response spectrum to obtain the base shear for 

seismic design. The foundation-soil characterisation inherent to these procedures consists of 

foundation springs for translational and rotational degrees of freedom that depend on a strain-

compatible soil shear modulus. The soil behaviour is modelled as visco-elastic with no limiting shear 

stress.  

The second set of guidelines is intended for use with nonlinear static methods for structural 

performance assessment, as commonly used for building retrofit design (ATC-40, 1994; BSSC, 1997). 

In this approach, the structural performance is characterised by a nonlinear static pushover curve. 

The shape of the pushover curve, as well as the distribution of member shears and moments, can be 

sensitive to foundation modelling. Accordingly, the afore mentioned documents provide 

recommendations for modelling the soil-foundation system as elastic-perfectly-plastic elements 

positioned at each footing. The elastic portion is based on the real part of well-known impedance 
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functions for foundation lateral translation, vertical translation, and rocking. The plastic portion of the 

foundation springs is based on limiting soil pressures associated with bearing capacity failure (in the 

vertical direction) and sliding/passive failure (in the lateral direction). It has to be made clear however, 

that these procedures are intended for relatively simply calculations of base shear or pushover curves, 

and are not immediately amenable for use in the relatively sophisticated nonlinear response history 

analyses that are becoming increasingly common for major projects. In addition, while the afore-

discussed procedures implicitly account for soil nonlinearity through the use of an equivalent-linear 

shear modulus, such springs inadequately represent the nonlinear response of foundations, which may 

include relatively complex gapping and energy-dissipation mechanisms. Accordingly, there is a 

recognised need in common geotechnical practice for the development of relatively sophisticated 

engineering tools for characterising the nonlinear, time-dependent behaviour of the foundation-soil 

interface.  
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Chapter 3: 

Dynamics of rocking structures on rigid soil; an introduction 

to geometric nonlinearity 

 

3.1 INTRODUCTION 

The most vivid illustration of geometrically nonlinear rocking behaviour stems from the paradigm of a 

slender structure on rigid (undeformable) soil. For the analysis purposes of such a system two 

different states of response can be distinguished: (a) the full-contact phase and (b) the uplift phase. In 

the full-contact (linear) phase the structure remains at a relative rest (rigid body) or undergoes 

flexural oscillations (deformable body). On the other hand, in the uplifting (nonlinear) phase solely 

rocking with total uplift may take place with the edges of the foundation being alternately the pivot 

points. Uplifting and correspondingly geometrically nonlinear behaviour is initiated when the 

overturning moment reaches the gravitational moment which is equivalent to the ultimate moment 

capacity of the foundation. From this point on the moment-rotation relationship follows a declining 

branch due to the gradually amplifying P d-  effects. This reduction of the foundation moment is 

totally reversible though, when the direction of rotation changes. Rocking vibration on rigid soil is 

damped as a part of the mechanical energy dissipates during each impact. Consequently, after 

transient motion has expired, the rocking body eventually settles back at its initial position due to 

gravity. Clearly, the only likely failure mode of such a structural system is overturning about a corner 

point. The more slender the structure the more vulnerable to toppling is. While nonlinear dynamic 

features of rocking on rigid soil are investigated in depth in this Chapter, overturning response will be 

discussed separately in Chapter 7. 
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Two simplified structural systems on rigid soil undergoing rocking motion are involved in this 

Chapter: 

 a rigid block-type structure, and 

 a rigid or flexible one-storey structure with a foundation mat  

The driving equations of motion of both systems are extracted using a large-displacement approach. 

To this end, in the case of a flexible oscillator a Lagrange formulation is adopted. The dynamic 

response is then calculated by a direct (explicit) integration of the equations of motion during each 

time increment. A fundamental parametric study of the uplifting response is presented next, in terms 

of the flexural and rocking displacements. 

 

3.2 ROCKING of a RIGID STRUCTURE 

3.2.1 Statement of the problem – Equations of motion 

Consider a rigid rectangular block simply supported on rigid soil which is subjected to horizontal 

shaking. The coefficient of friction is adequately large so that sliding is prevented. For small levels of 

the ground acceleration ( )g ga a t=  (in units of g ) the moment of the inertia force with reference to 

the foundation midpoint ( gma h ) does not exceed the restoring, gravitational moment (mgb ). In this 

way, the block remains attached to, and follows the oscillation of the ground. As soon as the ultimate 

moment mgb  is reached, uplifting initiates setting the block on rocking motion. The system 

configuration together with the acting forces and moments are illustrated in Fig. 3.1.  

George Housner (1963) first investigated in depth the rocking behaviour of block-type structures on 

rigid soil subjected to earthquake shaking. Using an energy approach he uncovered the role of the 

excitation frequency and of the block size on the overturning potential. Ishiyama (1982) determined 

the possible modes of response for a rigid body on rigid floor and established transition criteria from 
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one to another. Makris and his co-workers (1998, 1999) focused on the transient rocking response of 

rigid blocks under near-source ground shaking idealised as trigonometric pulses, and derived the 

acceleration amplitude needed for overturning. 

 

 

 

 

 

 

Figure 3.1  The rocking block on a rigid oscillating base: configuration of the system and acting forces 
and moments. 

Under pseudo-static conditions, once uplifting is initiated about the corner point, the body will 

unavoidably overturn. In other words, the critical acceleration for uplifting is identical to the 

minimum required to statically overturn the block. It is given by the so called West formula (Milne and 

Omori, 1893); in units of g : 

,over st c
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h
º =  [3.1] 

 On the contrary, under dynamic base excitation reaching ca  simply initiates rocking motion. In this 

case ca  is the maximum acceleration that can be developed at the mass centre of the block. The 

moment of the foundation is therefore bounded by ca  to an ultimate value of cma h Nb=  where 

N mg=  is the central, vertical (gravitational) load. This peak value is reached instantaneously as soon 

as uplift initiates ( 0)q=  and from then on the moment is gradually decreasing due to P d-  effects. 
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Finally, the moment reduces to zero at a rotational angle of cq q=  where tan /c b hq =  is the aspect 

ratio (or the half width/half height ratio). The moment-rotation response of the foundation from the 

uplift onset to overturning is portrayed in Fig. 3.2.  

 

 

 

 

 

Figure 3.2  Moment–rotation relationship of the rocking block. 

The dynamic response is determined by the rocking equation of motion: 

[ ] [ ]{ }2( ) sin sgn ( ) ( ) ( )cos sgn ( ) ( )c g ct p t t a t t tq q q q q q q=- - + -  [3.2] 

where: ( ) 0tq <  (or 0> ) denotes the angle of rotation about O (or, respectively, about O’); 

arctan( / )c b hq =  is the angle shown in Fig. 3.1; and / op mgR J=  is a characteristic frequency 

parameter of the block; R  is half the diagonal of the block. The frequency parameter is a measure of 

the block size in a sense that large values of p  correspond to relatively small structures and vice versa. 

For a solid rectangular block the moment of inertia about its pivot point is 2(4/3)oJ mR=  and 

therefore 3 /4p g R= . The vertical component of base acceleration is neglected, as its effect has been 

found to be negligible on rocking. It is clear that whether the block will safely undergo rocking or 

eventually overturn depends on its size and slenderness as well as on the nature and intensity of 

ground shaking. The conditions for dynamic overturning of a rigid block are discussed in detail in 
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Chapter 7. The effects of the vertical acceleration of the base on the overturning response will be also 

discussed in that chapter. 

When a rigid body is rocking back and forth about its pivot points, it impacts the ground and loses a 

part of its kinetic energy, even after a purely elastic impact. Its angular velocity right after the impact 

(at time it
+ ) is a fraction of that just prior to impact (at time it

- ): 

2 2( ) ( )i it r tq q+ -=   [3.3] 

where r  is known in the literature as the coefficient of restitution. An upper bound of r  can be obtained 

by applying conservation of the angular momentum with respect to the pivot point (Housner, 1963; 

Makris & Black, 2001): 

c
o

mR
r

J
q

æ ö÷ç ÷= -ç ÷ç ÷çè ø

22
22

1 sin  [3.4a] 

or for a rectangular block, 

2
23

1 sin
2 cr q

æ ö÷ç= - ÷ç ÷÷çè ø
 [3.4b] 

From this relationship it is shown that the coefficient of restitution is dependent only upon the 

slenderness of the structure. For example, for a five-story building with an angle 0.4 radcq =  it 

is 0.60r = . In general lines slender bodies tend to preserve their angular velocity after impact 

whereas others with a lower mass centre undergo a more ‘dissipative’ impact. In the limiting case 

where 00.95 rad (54 )cq  , the coefficient of restitution reduces down to zero even under elastic 

impact condition. A sophisticated impact model has been recently presented based on Dirac-delta type 

forces (Prieto et al., 2004). It results into a smooth (exponential) reduction of the velocity during 

impact, however such an in-depth analysis of impact mechanism is beyond the scope of this study. 
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Typical theoretical values of r  are presented in Table 3.1.  

Table 3.1  Dynamic parameters for typical rocking systems. 

Rocking system 
Slenderness 

angle,         
θc: degrees 

Half-
diagonal,       

h: m 

Frequency 
parameter,       
p: rad/sec 

Max. 
coefficient of 
restitution, 

rmax 

Precarious rocks 20 - 30 0.5 – 1 3 – 4 0.4 – 0.7 

Tombstones 9 0.6 3.4 0.93 

Electrical 
transformers 

22 2.5 1.7 0.62 

Five-story 
building 

25 - 30 8 - 10 0.8 – 1 0.4 – 0.55 

These values have been calculated with Eq. 3.4 considering elastic impact conditions. In reality, some 

additional energy is lost, dependent on the nature of the materials at the impact surface. Experimental 

values of r  have been recently presented by Uematsu et al. (2000) from shaking table tests as shown 

in Table 3.2. In the same table, measured values of the static and kinematic coefficient of friction are 

also presented (Ishiyama et al., 1982 and Uematsu et al., 2000). In the analytical study of this chapter 

though, it is presumed that the static coefficient of friction is large enough to prevent sliding.  

Table 3.2 Experimental values of r  from shake-table tests (Ishiyama et al., 1982 and Uematsu et al., 
2000). 

Base Surface Specimen 
Static 

coefficient of 
friction 

Kinematic 
coefficient of 

friction 

Coefficient of 
restitution 

Concrete casing 
wood (oak) 0.29 0.44 0.52 

wood (fir) 0.30 0.11 0.49 

Carpet 
wood (oak) 0.35 0.45 0.49 

wood (fir) 0.45 0.35 0.49 

Vinyl resin 

hard rubber 0.96 0.47 0.86 

plastic 0.74 0.35 0.83 

wood 0.81 0.49 0.59 

Granite 

hard rubber 0.81 0.68 0.86 

plastic 0.44 0.54 0.90 

wood 0.35 0.40 0.53 
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The rocking response of a rigid block can be obtained at any time increment through numerical 

integration of Eqs. 3.2 and 3.3. For slender blocks subjected to harmonic excitation however, Eq. 3.2 

can be reduced to the following piecewise linearised and dimensionless form: 

cos( ) sgntQ-Q=- W +Y - Q  [3.5] 

in which / cq qQ = , /g ca a= , /E pwW = , p tt = , and Y  are respectively the dimensionless 

rotation, ‘dynamic’ amplification of the overturning acceleration, dimensionless frequency, time and 

phase shift. The double-dot superscript denotes differentiation with respect to ‘stretched’ time t . 

The closed-form solution of Eq. 3.5 has been derived by Spanos and Koh (1984): 

( ) sinh cosh 1 cos( )t a t b t g t+ + +Q = + + + W +Y  0q >  [3.6a] 

( ) sinh cosh 1 cos( )t a t b t g t- - -Q = + - + W +Y  0q <  [3.6b] 

where a a b b+ - + -, , ,  are integration constants and  ( )2/ 1g=- +W .  

Although Eq. 3.2 has been extracted from the dynamic (moment) equilibrium of a rectangular 

structure, it is also applicable to a rigid structure of any geometry. In this case, the half-diagonal R  

refers to the distance of the mass centre to the pivot point. Also, b  and h  are respectively, the 

horizontal and vertical projection of the half-diagonal. 

An interesting case of a rocking vibrator is a rigid one-storey structure with his mass concentrated at 

height h  (Apostolou and Gazetas, 2004). Neglecting the rotary inertia about the mass centre, the 

frequency parameter and the coefficient of restitution are respectively: 

2

mgR g
p

RmR
= =  [3.7a] 
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( )c c

mR
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mR
q q

æ ö÷ç ÷= - = -ç ÷ç ÷çè ø

22 22 2
2

2
1 sin 1 2sin  [3.7b] 

Notably, in terms of the rocking response this single-d-o-f system is equivalent to a rectangular block 

of the same slenderness when ( )4/3=sdof blockR R  and , ,c sdof c blockr r=  (inelastic impact). 

3.2.2 Free rocking vibrations 

Unlike the simple pendulum case, the free-vibration response of a rocking structure (inverted 

pendulum) is nonlinear even at small amplitudes of rotation. The nonlinearities of the inverted 

pendulum are more pronounced as the rocking amplitude increases. Considering small displacements 

and slender structures the governing equation of motion (Eq. 3.5) reduces as follows ( )= 0 :  

2 2 sgnq q qq- =-
cp p  [3.9] 

Although this simplified equation of motion is piecewise linear, the response preserves its nonlinear 

features. A general solution of Eq. 3.9 may be obtained as originally derived by Perry (1881): 

( ) ( )1 2( ) cosh sinh sgnq qq= + + ct C pt C pt  [3.10] 

in which 1 2  and  C C  are integration constants. This analytical solution of the free-vibration response 

may also be extracted by the general solution of the driven system (Eq. 3.6). For free vibrations 

induced by an initial rotation of oq  ( )0oq =  the rocking rotation is 

( )( ) coshc c ot ptq q q q= - -  [3.11] 

The latter analytical expression of rocking rotation was originally presented by Yasumi and Akao 

(1951) as a special case of Perry’s general solution and revisited by Housner in 1963. The validity of 

this equation is however limited to the interval of time from the initial condition of rest to the first 
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impact. From this point and on integration constants 1 2  and  C C  should be re-calculated after each 

impact taking into account the new initial conditions ( ) 0q + =it  and ( ) ( )q q+ -= 
i it r t . Time histories of 

the free-vibration rocking response of a slender rectangular block ( )0.8 rad/sec ,  tan 0.2q= =cp  due 

to initial rotation qo  are computed with explicit integration of Eq. 3.2 and plotted in Fig. 3.3 for three 

levels of qo  (solid lines): a small ( )0.25o cq q= , a moderate ( )0.5o cq q= , and a strong near-failure 

( )0.9o cq q=  level. The coefficient of restitution at each impact is calculated with Eq. 3.4 (‘elastic’ 

impact conditions are regarded). Clearly, the natural period is strongly dependent upon the amplitude 

of rotation in such a way that large amplitudes are associated with slow rocking at first. Then the 

amplitude decreases after each impact resulting in a gradually decreasing period which eventually 

approaches zero. In the same figure time histories calculated with the linear formulation (Eqs 3.10 and 

3.11) are also plotted (dotted lines). For all levels of initial rotation, it yields that the linearised 

equation of motion can efficiently predict the nonlinear rocking response. 
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Figure 3.3  Time histories of the normalised rocking rotation and velocity under free vibrations 
( )0.8 rad/sec,  tan 0.2,  0.889q= = =cp r , due to initial rotation qo : comparison of the nonlinear 

solution (solid lines) with the linearised solution (dotted lines) for three levels of qo . 
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Natural period 

The required time for the block to move from the position of oq q=  to 0q =  is equal to the quarter 

of the free-vibration period. Neglecting the energy dissipation at each impact, the period of motion 

during each cycle can be calculated from Eq. 3.11 as a hyperbolic function of the rocking 

amplitude qn (Yasumi and Akao, 1951; Housner, 1963): 

1
4acosh

1 /
( )

q q
q

æ ö÷ç ÷ç ÷ç ÷ç -è ø
= n cT

p
 

[3.12] 

Due to the profoundly nonlinear behaviour of the inverted pendulum, for 0q  the free-vibration 

period does not approach a constant (linear) value oT  but it continuously decreases and eventually 

reaches zero. On the other hand, for large amplitudes of rocking, the period of the rocking block 

increases in a way similar to the simple pendulum. In the limiting case of q qn c  it is derived 

that T ¥ . 

On the basis of a nonlinear formulation, the period of motion during free vibration is derived from the 

conservation of the total (kinetic and potential) energy at an angle q  and at qn : 

21
cos( ) cos( )

2
q q q q q+ - = -

o c c nJ mgR mgR  
[3.13] 

which leads to 

[ ]d
2 cos( ) cos( )

d
q

q q q q q= = - - -
c n cp

t
 [3.14] 

By separating variables and integrating, we can finally express the period as a function of the rocking 

amplitude: 
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( ) ( )
0

2 2 d
( )

cos cos

q

q
q

q q q q
=

- - -ò
n

n

c n c

T
p

 [3.15] 

The elliptic integral of the first kind in Eq. 3.15 is calculated by its normal mode: 

2

2

0

(2 1)!!
( )

2 (2 )!!
p

¥

=

é ù-ê ú= ê úë û
å m

m

m
K a a

m
 [3.16] 

in which ( )a a q= . The nonlinear calculation of the rocking period at the free-vibration regime is 

plotted in the graph of Fig. 3.4 together with the closed-form simplified solution. A perfect match 

between the linear and nonlinear solution is achieved, which confirms the efficiency of the linearised 

system in predicting the free-vibration response.  
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Figure 3.4  Normalised free-vibration period of the inverted pendulum from linear and nonlinear 
formulation (white circles and black line respectively) and comparison to that of the simple pendulum 
(grey line). 
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Effective damping 

During free rocking vibrations energy dissipation of the system is associated exclusively with the 

energy loss at each impact. A relation between the peak rotation after the nth impact nq  and the initial 

amplitude oq  may be extracted analytically from the linear formulation (Housner, 1963): 

2

1 1 1 1
q q
q q

é ùæ öê ú÷ç ÷= - - - -çê ú÷ç ÷çê úè øë û

nn o

c c

r  [3.17] 

In this study Housner assumed that rocking on a rigid base would be an effective means of dissipating 

energy. Priestley et al. (1978) motivated by the analytical expression for the amplitude reduction, 

utilised the logarithmic decrement of the rocking amplitude after thn  impact to calculate an equivalent 

viscous damping ratio x  in a similar way with that of the lightly damped harmonic oscillator: 

1
ln

q
x

p q

æ ö÷ç ÷= ç ÷ç ÷çè ø
o

nn
 [3.18a] 

And after substituting Eq. 3.17 into Eq. 3.18a  

( )2

1 1
ln

1 1 1 1 /

oqx
p q q q

ì üï ïï ïï ïï ïï ï= í ýï ïé ùï ï- - - -ï ïê úï ïë ûï ïî þ
nc

o c
n r

 [3.18b] 

From the latter equation it is revealed that the energy dissipates more rapidly during large amplitude 

motion (see Fig. 3.5a). Makris and Konstantinidis (2003) suggested a simple expression to 

approximately obtain the equivalent viscous damping irrespective of the number of impacts or the 

initial rocking amplitude: 

( )0.34 ln rx @-  [3.19] 
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According to the Federal Emergency Management Agency document Prestandard and commentary for 

the seismic rehabilitation of buildings (FEMA 356, 2000) an empirical expression for the damping ratio 

as a function of the coefficient of restitution is recommended: 

( )0.4 1x= - r  [3.20] 
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Figure 3.5  The equivalent viscous damping ratio of the rocking block calculated from the Priestley et 
al. analogy as a function of the initial rocking amplitude for different impact numbers (a1) and for 
different values of the coefficient of restitution (a2). Comparison with the empirical formulae of 
Makris & Konstantinidis (dashed lines) and FEMA Guidelines (dotted lines) for 2, 0.9n r= =  (b1) 
and for 2, 0.7n r= =  (b2). 

Makris and Konstantinidis revealed in their study that the FEMA-recommended empirical expression 

underestimates the damping ratio by a factor of about 2. On the other hand, their proposed formula 

derived values of x  in a good agreement with Priestley’s results. A comparison of the afore-discussed 
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methods for estimating the equivalent viscous damping ratio of the rocking block is presented in the 

graphs of Fig. 3.5b for 2, 0.9n r= =  (b1) and for 2, 0.7n r= =  (b2). It is evident that for small 

values of ratio /o cq q , i.e. for stable rocking motion, Eq. 3.19 provides results in close agreement with 

Priestley’s formula especially in the range of small rocking amplitudes where a linearised solution 

could be adopted. It is also clear that the FEMA-recommended expression leads to substantially 

underestimated values of x . 

State-space formulation 

Global information concerning the nonlinear dynamics of the rocking block under free vibration can 

be drawn through a so-called state-space formulation. In particular, by letting f q=  , f q=   and 

substituting them into the governing equation of motion the rocking angular displacement and 

velocity ( )and respectivelyq f  are the independent state variables of the two-dimensional system: 

( , )fq f q f= =  [3.21a] 

( )2 sin sgn ( , )cp gf qq q q f= - =  [3.21b] 

The solution of this dynamical system can be uniquely defined by the state vector ( )Tq f=x . Such a 

system is often called autonomous in a sense that time has been explicitly eliminated. For a given initial 

condition ( ),o oq f  the total amount of the points ( ),q f  which satisfy Eqs 3.21 comprise an orbit of the 

response in the phase plane. The orbits of stable and unstable solutions are portrayed in Fig. 3.6 for a 

rocking block of 0.2 radcq =  and 0.8 rad/secp = . In the same graph a closed curve (limit cycle) 

separating the stable from the unstable region of the phase plane is also plotted. This seperatrix 

encloses all the stable orbits of the response whereas it is surrounded by the unbounded orbits which 

eventually lead to overturning. Each trajectory is characterised by a unique energy level: 
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21
cos( )

2 o cE J mgRq q q= + -  
[3.22a] 

or in normalised form: 

2 21
cos( )

2 c
o

E
p

J
q q q= + - =   

[3.22b] 

which is also known as the first integral of motion.  
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Figure 3.6  The phase portrait of the rocking block ( tan 0.2cq =  and 0.8rad/secp =  ). 

The equilibrium points of the system are calculated from the condition ( )( , ) 0,0q f =   or 

equivalently ( ) ( ),  sgn 0,  c kq qq q p- = . Unlike the simple pendulum case, for a rocking block on a 

rigid base 0k = . The system therefore possesses two equilibrium points: 

( ,0)cq  and ( ,0)cq-  [3.23] 



Chapter 3:  Dynamics of rocking structures on rigid soil  

Apostolou, doctoral dissertation 2011    
 

48

The former equilibrium point represents critical overturning for a clockwise rotation whereas the 

latter corresponds to a counter-clockwise rotation. Zero point (0,0)  is also an equilibrium point since 

for initial conditions 0o oq f= =  it is ( ) ( ) 0t tq f= =  at any time. It is remarked that equilibrium 

points defined with Eq. 3.23 are vertices of the limit cycle at its intersection with the horizontal axis. 

Given that the total energy of the equilibrium point is eE mgR= , the first integral of motion of the 

limit cycle is 2p= . This is the lowest energy level of a trajectory required to ‘escape’ from the 

stable region. Similarly, for the simple pendulum with 2 /g lw =  it is 2w= .  

Linearisation around the equilibrium points 

For a point = +x a v  close to equilibrium point a  the nonlinear system described with Eqs 3.21 can 

be represented with the linear system A=v v  where ,Y Y
q q
f f

æ öæ ö ÷÷ çç ÷÷= =çç ÷÷ çç ÷ ÷ç çè ø è ø


  and A  is the Jacobian with 

reference to a : 

2

( ) ( )
0 1

( ) ( ) 0

f f

A

g g p

q f

q f

é ù¶ ¶ê ú
é ùê ú¶ ¶ ê úê ú
ê úê ú= = ê úê ú
ê úê ú¶ ¶ ë ûê ú

ê ú¶ ¶ë û

a a

a a

 [3.24] 

The characteristic polynomial of this matrix is 2 2( )p pl l= -  with eigenvalues 1,2 pl = . 

Consequently, the equilibrium point ( ,0)cq  is a saddle point. For the eigenvalue 1 pl =  the 

corresponding eigenvector is 1 (1 )Tp=v  whereas for the eigenvalue 2 pl =-  it is 2 (1 )Tp= -v . 

In the neighbourhood of the point ( ,0)cq  the vectors 1v  and 2v  generate the field of the vectors 

( )Tq f=v  which satisfy the linearised system ( )F=v v : 

1 1 2 2
pt ptc e c e-= +v v v  [3.25] 
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The direction determined by the eigenvector 1 (1 )Tp=v  ( ){ }respectively, 1
T

p= -2v  comprises 

the unstable {respectively, stable} invariant manifold of the vector field at equilibrium point ( ,0)cq . 

Each trajectory originating on the invariant manifold remains attached to it and departs from 

{respectively, approaches} the equilibrium point at a rate of p . These conclusions may also be 

applied to the equilibrium point ( ,0)cq-  as the corresponding eigenvalues and eigenvectors remain 

the same. Such a trajectory which is a limit cycle (for pendulum case also known as heteroclinic orbit), 

is generated by the invariant manifolds of the equilibrium points and represents a critical overturning 

condition. As the stable manifold is defined by the second part of Eq. 3.25 (i.e. the red vectors in the 

phase-portrait of Fig. 3.6), it is derived that critical overturning of a rocking structure requires a 

theoretically infinite long time. This is a very important conclusion for the study of overturning 

response as discussed in Chapter 7. 

3.2.3 Rocking under harmonic excitation 

Within the limits of the analysis of geometrically induced nonlinear rocking of shallow foundations, 

the present study is generally focused on the transient response, capable of representing the response 

under strong earthquake excitation. Nevertheless, when rocking on a rigid base in considered, steady-

state response can be an efficient tool to elucidate the profoundly nonlinear features of rocking 

behaviour. Moreover, an earthquake record of many significant cycles could conservatively be 

represented with a harmonic excitation. The governing equation of rocking motion in its rigorous 

formulation (Eq. 3.2) is highly nonlinear and therefore, extracting a closed-form analytical solution is 

rather impossible even under harmonic loading. When the piecewise linear system is considered 

though (a reasonable simplification for slender blocks), an analytical treatment of rocking under 

harmonic base excitation may be feasible leading to the solution of Eq. 3.6, as developed by Spanos 

and Koh (1986). Initially, a comparison between the nonlinear and the linearised response is carried 

out to determine limits of applicability of the linear formulation. Then, nonlinear formulation of the 

governing equation of motion (i.e. Eq. 3.2 and Eq. 3.3) is adopted to examine in-depth the nonlinear 
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features of the harmonically driven rocking vibration. To this end the response is computed through 

numerical integration explicitly at each time increment. 

Linearised vs nonlinear response 

Time histories of the rocking response of a slender rectangular block ( )tan 0.2,  0.8q = =c r  are 

computed first comparatively with both linear and nonlinear formulation of the equation of motion. 

To this end, a harmonic excitation of max 1.0 ga =  (namely five times larger than the pseudo-static 

overturning acceleration, , tan 0.2 gover st ca q= = ) and 0.4 secET =  is applied at the base. Three 

different values of the frequency (size) parameter p  are implemented in the analysis: 

1 0.8 rad/secp = , 2 1.6 rad/secp = , and 3 3.2 rad/secp = , representing a large, a moderately large, 

and a small block respectively. Linear formulation is based on the closed-form solution of Eqs 3.6a 

and as derived by Spanos and Koh (1984). The response is plotted in the graphs of Fig. 3.7 in terms of 

the normalised rotation and velocity time histories (dotted lines). Nonlinear solution of the rocking 

steady-state response is obtained with explicit integration of Eq. 3.2 (solid lines).  

Originally, the response of the large block is computed, where an excellent agreement between 

piecewise linear and nonlinear response is achieved. When downsizing the block (by doubling the 

frequency parameter, p ), time histories predicted by linear formulation match those of the nonlinear 

formulation in the beginning, however they diverge from the nonlinear ones, shortly after the first few 

loading cycles. Actually, it seems that linear formulation predicts a steady-state response which is 

dominated by a single frequency, whereas nonlinear formulation unveils an enhanced response by 

‘capturing’ more subharmonic frequencies. Nevertheless, the rocking amplitude computed with both 

methods is still practically the same. Finally, by further decreasing the size of the block it yields that 

overturning is inevitable in both solutions, however according the nonlinear formulation it comes 

quite later than ‘linear’ failure.  
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Figure 3.7  Time histories of the normalised rocking rotation and velocity of a rigid rectangular block 
( )tan 0.2,  0.8q = =c r  under harmonic base excitation ( )max0.4 sec,  1.0 g= =ET a : comparison 

between the nonlinear (solid lines) and the linearised solution (dotted lines) for three different values 
of p . 

The analysis of rocking response is repeated next for the same parameters tan 0.2 and  0.8q = =c r . 

The three different values of the frequency (size) parameter p  implemented before 

( 1 2 30.8 rad/sec, 1.6 rad/sec, and 3.2 rad/secp p p= = = ) are used again. The excitation period of the 

harmonic shaking at the base has been doubled (0.8 sec), whereas the amplitude has been reduced to 

half ( )0.5 g , in such a way that the peak ground velocity ( )/PGV PGA w=  remains unchanged. 

Time histories of the rotation and velocity are plotted in the graphs of Fig. 3.8, computed with both 

linear (dotted lines) and nonlinear formulation (solid lines). By comparing the results of Figs 3.7 and 

3.8 it turns out that the rotation and velocity amplitudes remain at the same levels as the peak ground 

velocity is kept constant. Also, an excellent agreement between piecewise linear and nonlinear 

response is obtained in the response of the large block ( )1 0.8 rad/secp = , as before. What is more 

interesting now is that for the moderately large block ( )2 1.6 rad/secp = , linear formulation manages 
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to predict the exact solution. Even in the ‘small block’ case, the rocking response and overturning 

computed with linear formulation is in a quite satisfactory agreement with the exact solution. 

In concluding, both series of analyses presented above, reveal that rocking response of large blocks is 

well predicted even when a linear formulation of the equation of motion is utilised. On the other hand, 

steady-state analysis of a small rocking block is quite sensitive to whether a linear or nonlinear 

formulation is adopted. The lower threshold of what is called ‘a large block’ may be expressed with 

the frequency parameter, p . This distinction however between small and large blocks is affected by 

the excitation frequency in such a manner that a block of a certain size may be considered as small for 

a ground shaking of relatively short period while being regarded as large for a motion of longer period. 
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Figure 3.8  Time histories of the normalised rocking rotation and velocity of a rigid rectangular block 
( )tan 0.2,  0.8q = =c r  under harmonic base excitation ( )max0.8 sec,  0.5 g= =ET a : comparison 

between the nonlinear (solid lines) and the linearised solution (dotted lines) for three different values 
of p . 

Rocking spectra 

All analyses presented above with both linear and nonlinear formulation reveal among others the 

sensitivity of the rocking response to the size of the block as described with the parameter p . It is 
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concluded that the smaller the block the larger the amplitude is, and eventually for blocks smaller than 

a limiting size overturning occurs. An interesting way of portraying the response of a rigid structure 

under rocking vibration is in the form of the rotation response spectrum or simply rocking spectrum, as 

introduced by Makris and Konstantinidis (2003). For a certain value of slenderness, the 

amplitude of rotation is plotted as a function of the period parameter, 2pT pp=  or simpler the 

frequency parameter, p . For a rectangular block the period parameter is 4 3 2.3pT R g Rp= @ , 

whereas for a rigid one-storey structure it is 2 2pT R g Rp= @ . Note that the latter period is equal 

to the natural period of a linearised pendulum of length, R  (see also Fig. 3.4).  

The slender block considered before ( )tan 0.2,  0.8q = =c r  is revisited to compute rocking spectra 

under harmonic excitation with both linear and nonlinear formulation. Extending the previous 

analyses, a moderate and a strong ground motion is regarded ( max  = 0.5 ga  and 1.0 g  respectively) 

whereas for the excitation period the same levels are used again ( 0.4 secET =  and 0.8 sec ). These 

values yield four sets of rocking spectra: (a) 2.5= , 0.4 secET = , 31.2 cm/secPGV = , (b) 5= , 

0.4 secET = , 62.4 cm/secPGV = , (c) 2.5= , 0.8 secET = , 62.4 cm/secPGV = , and (d) 5= , 

0.8 secET = , 124.8 cm/secPGV = . The computed rocking spectra with both linear and nonlinear 

formulation are plotted in the graphs of Fig. 3.9. The beneficial role of block size (large values of p  

correspond to small blocks) is revealed again through all computed spectra. The detrimental effect of 

the excitation period is also clear as the long period motion ( 0.8 secET =  - bottom spectra) results to 

higher rocking amplitudes and requires smaller levels of p  for critical overturning. A comparison of 

the linear to the nonlinear formulation may also be extracted from the rocking spectra of Fig. 3.9. 

Apart from the rocking amplitude which can readily be obtained from the spectra, the capability to 

efficiently predict the rocking time history with the linear formulation is also of special interest. The 

range of values of p  in which the linearised solution is in good agreement with the exact (nonlinear) in 

terms of time histories is also shown in Fig. 3.9 above each spectrum. It is shown that there is a 
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threshold value of p  under which, the linear formulation predicts satisfactory the rocking response. 

Additionally, the range of p  formed by this threshold value can nearly cover the whole bandwidth of 

safe rocking under harmonic shaking, provided the peak ground velocity is sufficiently small. 

Nevertheless, linear formulation can efficiently predict the rocking amplitude and critical overturning 

in most cases even when this threshold value of p  has been exceeded.    
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Figure 3.9  Rocking spectra of a slender block ( )tan 0.2,  0.8q = =c r , subjected to harmonic shaking 

at the base: (a) 31.2 cm/secPGV = , (b) 62.4 cm/secPGV = , (c) 62.4 cm/secPGV = , (d) 
124.8 cm/secPGV = . 

A major advantage of linear formulation over nonlinear, is that the response can be expressed through 

dimensionless parameters. It is therefore interesting to develop normalised diagrams of the linearised 
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response regarding that for relatively large bodies (including common civil engineering structures) 

rocking can be efficiently predicted by linear formulation. Hence, by introducing the dimensionless 

rotation, / cq qQ= , frequency, / /E p Ep T TwW= = , and amplitude (i.e. dynamic amplification), 

max / ca a=  rocking spectra under harmonic shaking can be computed for different levels of the 

coefficient of restitution. In Fig. 3.10 the rocking spectra for 0.97r =  and 0.90  are presented. 
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(a) r = 0.97                                                                                 (b) r = 0.90

 

Figure 3.10  Rocking spectra of the dimensionless rotation, cq qQ = /  with respect to the dimensionless 
frequency pwEW = /  for a harmonic excitation. The response has been computed with the linear 
formulation of the equation of motion, for different levels of the dynamic amplification /g ca a=  and 

two values of the coefficient of restitution: (a)  0.97r =  and (b) 0.90r = .  

Modes of response 

Depending on the amplitude and the frequency of the harmonic excitation, rocking of a rigid body 

may either be a bounded or unbounded motion. In the latter, rocking motion inevitably leads to 

overturning. In the former, the rigid block undergoes safe rocking vibration which can be 

distinguished into periodic, quasi-periodic, and chaotic response with a single dominant frequency, a 

finite number of incommensurate frequencies, and an infinite number of frequencies, respectively (Yim 

and Lin, 1991).  
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Rocking response of a rigid block ( tan 0.2cq = , 0.8 rad/secp = ) subjected to a harmonic base 

excitation of period 0.4secET =  is computed next. Two levels of the peak ground acceleration are 

employed: (i) max 0.5ga =  and (ii) max 1.0ga =  namely 2.5  and 5  times respectively larger than the 

pseudo-static overturning acceleration ( ), 0.2gover sta = . A coefficient of restitution 0.8r =  is first 

adopted. The results are plotted in the graphs of Fig. 3.11a in terms of time histories of the rotation q  

and the angular velocity f , and phase portraits ( ),q f . Unlike pseudo-static consideration which 

would predict toppling, the rocking block safely undergoes rocking vibration even for a peak ground 

acceleration 5  times larger than ,over sta . Moreover, for max 0.5ga =  rocking is symmetric to the 

vertical axis and the response is periodic with a frequency equal to the excitation frequency 

( )1/0.4sec 2.5hzEf = = . After doubling the excitation amplitude ( )max 1.0ga = , the motion is still 

symmetric to the vertical axis. Remarkably, it is now enhanced with two more frequencies which are 

rational multiple of the fundamental frequency, evidence of a one-third subharmonic response or a 

( )1,3  mode. It is recalled that a ( ),n m  mode represents a symmetric response of n  impacts per cycle 

and m  frequencies.   

The analysis of rocking response of the afore-discussed block is repeated next by modifying impact 

conditions, i.e. by setting 1r = . Stable rocking motion is computed again for both levels of base 

shaking (Fig 3.11b). In contrast to the periodic motion discussed before, rocking is not symmetric to 

the vertical axis and the response is not dominated by a single frequency equal to the excitation 

frequency. Interestingly, the dynamical system possesses a finite number of frequencies as portrayed 

in the phase diagram of Fig. 3.11b., none of these frequencies however, is any longer a rational 

multiple of the fundamental frequency. This feature of rocking vibration first unveiled by Yim and 

Lin (1991), is well-known in the nonlinear dynamics literature as quasi-periodic response and is 

considered a transition between periodic and chaotic response.  
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                 (i)  max 0.5ga =                                                        (ii) max 1.0ga =  

         Periodic response                                                Periodic response 

          Symmetric (1,1) mode                                         Symmetric (1,3) mode 
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Figure 3.11a Periodic response of a rocking block ( tan 0.2cq =  and 0.8rad/secp =  ) subjected to a 
medium (i) and strong (ii) harmonic base excitation of period 0.4secET = . The coefficient of 
restitution is 0.8r = . 
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                 (i)  max 0.5ga =                                                        (ii) max 1.0ga =  

         Quasi-periodic response                                      Quasi-periodic response 
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Figure 3.11b Quasi-periodic response of a rocking block ( tan 0.2cq =  and 0.8rad/secp =  ) subjected 
to a medium (i) and strong (ii) harmonic base excitation of period 0.4secET = . The coefficient of 
restitution is 1.0r = . 
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Periodic and quasi-periodic response can be readily identified by inspection of the Poincare map (i.e. 

the intersection of a periodic orbit in the state space with a section transversal to the flow). In this 

way, the periodic response is illustrated as a one-dot or a three-dot map, representing the harmonic 

[case (i)] or the one-third subharmonic response [case (ii)] respectively (Fig. 3.12a). Quasi-periodic 

response is depicted by a closed dotted line called torus (Fig. 3.12b). 

                 (a)  0.8r =                                                        (b) 1.0r =  

         Periodic response                                      Quasi-periodic response 

 

Figure 3.12  Poincare maps of a rocking block ( tan 0.2cq =  and 0.8rad/secp = ) for the analysis 
presented in Fig3.11. 

3.2.4 Rocking under earthquake excitation 

Analysis of the steady-state response is a useful tool to explore the nonlinear features of rocking 

behaviour. Nevertheless, earthquake loading often contains only a few significant cycles. In addition, 
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near-fault ground motion should be represented with sine or cosine pulses of one cycle (Makris and 

Roussos, 1998) or more efficiently with Ricker pulses especially when studying rocking (Apostolou et 

al., 2007). Many examples of these pulses have been uncovered in near-fault records of  6.5SM ³  

earthquakes, such as the Imperial Valley 1979, Erzincan 1992, Northridge 1994, Kobe 1995, Kocaeli 

1999, Chi-Chi 1999 (Gerolymos et al., 2005). These pulses are the result of two effects: the ‘forward 

rupture directivity’ effect and ‘permanent offset’ (or ‘fling’) effect (Somerville, 2003; Hisada and Bielak, 

2003). Some of the most common idealised pulses to represent near-fault ground motion which will be 

employed in the analysis are illustrated in Fig. 3.13. 
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Figure 3.13  Idealised pulses utilised to represent near-fault ground motion. 

For the analysis of rocking under earthquake excitation, a slender block of tan 0.2cq =  and 

1.387rad/secp =  is employed. In the beginning, the rigid base is excited with a Ricker pulse of peak 

ground acceleration 0.4 g  and predominant period 0.67sec  and 2 0.67 sec 1.33 sec´ = . The time 

histories of rocking displacement and velocity are plotted in the graphs of Fig. 3.14. In the same 

Figure, the trajectories of rocking motion in the normalised Q-F  plane are also plotted. The 

response has been separated into a transient part (white circles) and a free vibration part (black solid 

line). The beginning and the end of the transient response occurs at the moment of the onset and 

expiration of base excitation respectively (large white circles). In the phase portrait the bounding cycle 

separating safe from overturning area is also shown.  
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During transient mode, the solution is obtained with the equation of rocking motion (Eq. 3.2). As in 

the case of harmonic shaking, the increase of the excitation period results in amplifying rocking 

vibration. At the moment ground excitation expires (large white circle) the response engages the free 

vibration mode. Hence, the response is computed with the homogeneous solution of Eq. 3.2 

(nonlinear formulation) or Eq. 3.10 (the analytical solution according to linear formulation) with 

initial values 0q  and 0f  being computed from the last increment of the transient mode. As depicted in 

the predescribed study of free vibrations,  larger rocking amplitudes correspond to larger vibration 

period and damping. Consequently, each subsequent cycle of free vibration regime becomes smaller 

and shorter. In the time histories portrayed in Fig.3.14 this dissipative mechanism is more 

pronounced for the short-period excitation (left-hand side) in which, the initial rotation 0q  is smaller. 

Another interesting conclusion from the phase portraits of Fig. 3.14 is that the trajectory can 

temporarily reach or even cross the limit cycle during transient mode without overturning to occur if 

the point ( )0 0,q f  at the moment the excitation expires is bounded by this cycle. 

The sensitivity analysis of rocking response is focused next on the size parameter p . In this respect, 

the analysis with the initial parameters (Fig. 3.14, left-hand side) is repeated after doubling p  to 

2 1.387 2.774 rad/sec´ = . The results are plotted in Fig. 3.15. When compared to the analysis of a 

double ET  (Fig. 3.14, right-hand side), the rocking displacement and velocity amplitude is still the 

same as the dimensionless period E

p

w
W=  has not changed. On the other hand, time seems to be 

running quite faster as the dimensionless time ptt =  has now become double. These conclusions can 

also be extracted from the comparison of the phase portraits which are identical as time has been 

eliminated. 
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Figure 3.14  Rocking response of a rigid structure ( tan 0.2cq = , 1.387rad/secp = , and 0.85r = ) 

subjected to a Ricker pulse excitation at base ( )0.4 gPGA=  with predominant period of (a) 

0.67 secET =  and (b) 2 1.33 secET = . 



Chapter 3:  Dynamics of rocking structures on rigid soil  

Apostolou, doctoral dissertation 2011    
 

63

-1

-0.5

0

0.5

1

0 4 8 12 16 20
θ 

/ θ
c

-1

-0.5

0

0.5

1

0 4 8 12 16 20

φ
 / 

p
θ c

t : sec

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

φ
 / 

p
θ

c

θ / θc

Transient response

Free vibration

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

φ
 / 

p
θ

c

θ / θc

Transient response

Free vibration

-1

-0.5

0

0.5

1

0 4 8 12 16 20

φ
 / 

p
θ c

t : sec

-1

-0.5

0

0.5

1

θ 
/ θ

c

θ

Ricker wavelet, 
PGA  = 0.4 g, TE = 0.67 sec

TETE
TETETE

tanθc = 0.2,

r = 0.85

p = 1.387 rad/sec p = 2.774 rad/sec

 

Figure 3.15  Rocking response of a rigid structure ( tan 0.2cq = , and 0.85r = ) of size parameter (a) 
1.387rad/secp = , and (b) 2 2.774 rad/secp = . A Ricker pulse excitation of 0.4gPGA=  and 

0.67secET =  is applied at base. 

Rocking spectra 

As for the steady-state response, linearised rocking spectra of the dimensionless rotation, Q  with 

respect to the dimensionless frequency W  can be computed for a pulse-type excitation. Originally, a 

Ricker pulse is imposed as excitation for different levels of the dynamic amplification ( =�2, 4, 6, and 
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8) and two values of the coefficient of restitution ( 0.97r =  and 0.90 ). The computed spectra are 

plotted in Fig. 3.16.  
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(a) r = 0.97                                                                                 (b) r = 0.90

 

Figure 3.16  Rocking spectra of the dimensionless rotation, cq qQ = /  with respect to the dimensionless 
frequency pwEW = /  for a Ricker pulse-type excitation. The response has been computed with the 
linear formulation of the equation of motion, for different levels of the dynamic amplification 

/g ca a=  and two values of the coefficient of restitution: (a)  0.97r =  and (b) 0.90r = .  

An interesting normalisation can result when both dimensionless rotation and frequency are 

compacted to a single parameter, QP = QW2 . In this way, QP  can be plotted in terms of the 

amplification   or its inverse 1/ , providing a single rocking spectrum for a certain value of the 

coefficient of restitution. Under such a consideration, a series of analyses is performed to derive the 

normalised rocking spectra of the basic pulses for different levels of r , as portrayed in Fig. 3.13. For 

comparison, the rocking spectrum QP -1/  under harmonic excitation is also plotted in Fig. 3.13. 

A measure for potential destructiveness of the basic motions utilised (or in general, of any recorded 

motion) can be drawn from these spectra as shown in Fig. 3.13. Hence, it can be seen that among 

these motions, the one-sine pulse is the most detrimental for a rocking block whereas the one-cosine is 

the most beneficial. The Ricker pulse results in large values of QP  in a range of 1/ 0.15 0.30= -� . 
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Finally, the one-directional pulses (T-Ricker, rectangular) follow a unique exponential decay curve 

for all values of r , as in these cases, the largest rocking amplitude is observed before the first impact. 
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Figure 3.17  Normalised rocking spectra of a rigid block, subjected to pulse-type shaking at the base, 
for three different values of the coefficient of restitution and comparison to those from harmonic 
shaking (bottom right).  
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The afore described methodology can be extended to compute rocking spectra of recorded ground 

motions and accordingly, to derive estimates for the potential destructiveness. Indicatively, the 

rocking spectra of two typical near-fault records are illustrated in Fig. 3.18. 
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Figure 3.18  Normalised rocking spectra of a rigid block, subjected to the earthquake records of Düzce 
and Aegion, for three different values of the coefficient of restitution. 

Structural response 

After examing the rocking response of rigid rectangular blocks in terms of rocking rotation and 

angular velocity, we can now further study the response of rocking structures through the one-storey 

uplifting oscillator introduced earlier. Both the pier of the superstructure and footing are considered 

rigid and massless. In contrast to the block-type structure, the structural mass is now concentrated at 

the top of the pier. Once the system is set on rocking motion the inertial forces developed at the mass 

point result in section shear forces and moments along the pier. As in the study of the rigid block, the 

governing equation of rocking motion (Eq. 3.2) can be applied in which the size parameter p  is given 

by Eq. 3.7a. A slender one-storey oscillator of tan 0.2cq =  and 1.387 rad/secp =  is considered, 
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submitted to a long duration, Ricker wavelet pulse of peak ground acceleration, 0.4 gPGA=  and 

excitation period, (a) 0.67 secET =  and (b) 1.33 secET = . The results are shown in Fig. 3.19, in 

terms of: (a) time histories of the normalised rocking angle, structural acceleration (at the mass point), 

and base moment, and (b) moment-rotation curves. The time history of the rocking angle is identical 

to the block portrayed in Fig. 3.15, as both systems share common rocking parameters p  and cq . In 

the beginning, the structure follows the accelerating base with its footing fixed on the ground. As soon 

as the ground acceleration reaches the critical acceleration, /ca b h= , the rocking motion enters the 

uplifting regime. During this mode, the structural acceleration departs from the excitation 

acceleration at the base, tracking on a plateau which is defined by the critical value ca . This plateau 

exhibits a sudden reversal and shortening during each impact. Accordingly, the time histories of the 

base shear force and moment track on the same path, being linear functions of cma  ( cmQ mga=-  and 

cmM mga h=- ). Eventually, due to energy loss at every impact, rocking terminates. The period of 

the time history of any structural quantity is determined from the duration of each cycle of rocking 

motion. The moment-rotation curves of the earthquake response are also plotted in Fig. 3.19 together 

with the monotonic curves in both directions. Throughout the response the dynamic, cyclic curve 

traces the static one, whereas after reversing direction of rotation it follows the beaten track. 

This restoring mechanism of the uplifting response together with the bounded motion in terms of the 

structural quantities are two major advantages of rocking structures.    
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Figure 3.19  Structural response of a rigid one-storey structure ( tan 0.2cq = , 1.387rad/secp = , and 
0.85r = ). A long-duration Ricker wavelet is applied as a base excitation of peak ground acceleration, 

0.4gPGA=  and excitation period, (a) 0.67secET =  (left-hand side) and (b) 1.33secET =  right-
hand side. 
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3.3 ROCKING of a FLEXIBLE 1-DOF STRUCTURE 

3.3.1 Statement of the problem, Equations of motion 

In the foregoing, only rigid bodies were employed to analyse rocking response. This may be a 

reasonable approximation of block-type (usually small) non-structural elements. However, slender 

engineering structures such as high-rise buildings which are vulnerable to experience rocking with 

uplift may not be efficiently represented with rigid structural models. An elastic sdof oscillator with a 

foundation mat allowed to uplift from its rigid base is employed here as illustrated in Fig. 3.20. This 

model comprises a lumped mass m  located at a height h  above a rigid and massless foundation of 

width 2b . The mass point is connected to the foundation with a vertical beam characterised with the 

visco-elastic parameters k  and x . The coefficient of friction at the foundation interface is considered 

large enough to prevent sliding of the structure. 

 

 

 

 

 

 

Figure 3.20  Configuration of the sdof uplifting oscillator. 

Depending on whether the foundation mat is in full contact with the supporting base or not, two 

different states of response can be distinguished: (a) the full-contact phase and (b) the uplift phase. In 

the full-contact phase the structure undergoes only flexural oscillations. During this state the system 

ag
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reduces to a sdof harmonic oscillator and the dynamic response may be determined by the relative 

displacement of the mass centre u . Provided that no plastic deformations develop, the uplifting model 

yields to the well-known visco-elastic sdof system. However, once uplifting occurs the dynamic 

response is a result of coupled flexural and rocking oscillations with u  and q  being the independent 

variables. A highly nonlinear response is unveiled in this mode attributed to P   effects which is 

amplified by the flexural deformation of the superstructure.  

The independent variables and the system parameters of the uplifting oscillator are summarised in 

Table 3.3. 

Table 3.3  Independent variables and system parameters of the uplifting oscillator. 

u  Structural (relative) displacement 
Independent 

variables 
q  Rocking angle 

tan /c b hq =  Aspect ratio 
Inverted pendulum 

parameters 
p  Frequency (size) parameter 

w  Natural frequency 
Harmonic oscillator 

parameters x  Critical damping ratio 

Muto et al. (1960) first incorporated such a structural model to investigate experimentally the effect of 

the structural flexibility on the uplifting response. Meek (1975) utilised the same model to derive the 

equations of motion and to calculate the response for a harmonic base excitation. In these pioneering 

articles the beneficial effects of foundation uplift on the dynamic distress of the structure were 

demonstrated. Substantial contribution to the analysis of the uplifting response has been also provided 

by subsequent researchers, mainly by Psycharis (1983, 1991), Yim and Chopra (1985), and more 

recently by Oliveto et al. (2003). 

All previous analytical studies have been based on a small-displacement approach, which is not 

suitable for near-overturning conditions. Only Oliveto et al. (2003) derived equations of motion 
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appropriate to large rotations (but small elastic deformations of the pier). A large displacement 

approach is involved in this study for both rocking and flexural modes of response. In this respect, a 

Lagrangian non-linear formulation is utilised to extract the equations of motion for the one-storey 

structure portrayed in Fig. 3.20. To this extent the governing equation of motion can be expressed as 

a function of the Lagrangian   in the following compact form: 

d
0

d i i i

D

t q q q

æ ö¶ ¶ ¶÷ç ÷- + =ç ÷ç ÷ç¶ ¶ ¶è ø

 

 
 [3.26] 

where iq  is the generalised variable and D  is the dissipation function adopted to incorporate 

hysteretic damping. The Lagrangian function is defined as the difference between the kinetic energy 

T  and the potential energy V : 

T V= -�  [3.27] 

The generalised variables of the system comprise the angle of rocking rotation ( )qqq =  and the 

relative (flexural) displacement of the mass centre ( )uu q= . 

The kinematics of the system employed to formulate the Lagrangian equations of motion are 

portrayed in Fig. 3.21. The horizontal supporting base is represented with a rigid plane which can 

undergo horizontal and vertical vibrations relative to the inertial frame XY . The position of the mass 

point relative to the base is determined with respect to the frame xy  which is parallel to inertial frame 

and fixed to the contact point.  
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Figure 3.21  Kinematics of the sdof uplifting oscillator. 

The absolute position vector (with respect to the inertial frame) to the centre of mass is given by: 

t gr r r uq= + +
   

 [3.28] 

where ˆ ˆ
g g gr x i y j= +


 is the position vector of the contact point with ˆ ˆ  and  i j  being respectively the 

horizontal and vertical unit vectors.  ˆr Rrq q=


 is the relative position vector of the mass centre due to 

rocking rotation, and ˆu us=


 is the relative position vector of the mass centre due to flexural 

oscillation of the superstructure. The formulation of the vectors rq


 and u


 and their time derivatives 

with reference to the inertial frame is obtained by examming all possible directions of rocking and 

flexural displacement as shown in Fig. 3.22. To this end the unit vectors r̂q  and ŝ  are expressed with 

reference to the inertial frame: 

( ) ( )ˆ ˆˆ sin sgn cos sgnc cr i jq qq q qq q=- - + -  [3.29a] 

and  

ˆ ˆˆ cos sins i jq q= -  [3.29b] 

θ
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where sgn   is the signum function. 

 

 

 

 

 

 

Figure 3.22  The different modes of the uplifting response. 

Finally, the following expressions are derived satisfying the above combinations: 

ˆ ˆcos sinu u i u jq q= -


 [3.30a] 

( ) ( )d ˆ ˆcos sin sin cos
d
u

u u i u u j
t

q q q q q q= - - +


    [3.30b] 

( ) ( )ˆ ˆsin sgn cos sgnc cr R i R jq qq q qq q=- - + -


 [3.30c] 

( ) ( )d ˆ ˆcos sgn sin sgn
d c c

r
R i R j

t
q q qq q q qq q= - + -


   [3.30d] 

where the dot symbol indicates differentiation with respect to time. The absolute velocity vector is 

derived by differentiating tr


 with respect to time: 

dd d d
d d d d

gt
rr r u

v
t t t t

q= = + +
  

 [3.31] 

u

u u

u

θ θ

θ θ

θ > 0
u > 0

θ > 0
u < 0

θ < 0
u > 0

θ < 0
u < 0
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where 
d ˆ ˆ
d

g
g g

r
x i y j

t
= +


   is the velocity vector of the contact point. Also, 

d
d
u

t


 and 

d
d
r

t
q


 are given by 

Eqs 3.30b and 3.30d respectively. Finally we get: 

( )

( )

ˆcos sgn cos sin

ˆsin sgn sin cos

g c

g c

v x R u u i

y R u u j

q qq q q q q

q qq q q q q

é ù= + - + -ê úë û
é ù+ + - - -ê úë û

   

  
 [3.32] 

and therefore: 

2 2
x yv v v v⋅ = +

 
 [3.33a] 

or  

( )( )
( )( )

2

2

cos sgn cos sin

sin sgn sin cos

g c

g c

v v x R u u

y R u u

q qq q q q q

q qq q q q q

⋅ = + - + -

+ + - - -

    

  
 [3.33b] 

Eventually after some algebraic manipulations:  

[ ] [ ]

2 2 2 2 2 2 2

2

2 cos cos sgn sin sin 2 cos sin sgn sin cos

2 cos 2 sin 2 sin 2 cos

2 cos 2 sgn sin

g g

g c c g c c

g g g g

c c

v v x y R u u

x R y R

x u y u x u y u

R u R u

q q

q q q q q q q q q q q q

q q q q q q

q q q q q

⋅ = + + + +

+ + + - +

+ - - -

+ -

     
  

      
 

 [3.33c] 

The kinetic energy of the system is: 

1
2

T mv v= ⋅
 

 [3.34a] 

or  



Chapter 3:  Dynamics of rocking structures on rigid soil  

Apostolou, doctoral dissertation 2011    
 

75

[ ] [ ]

2 2 2 2 2 2 2

2

1 1 1 1 1
2 2 2 2 2

cos cos sgn sin sin cos sin sgn sin cos

cos sin sin cos

cos sgn sin

g g

g c c g c c

g g g g

c c

T mx my mR mu mu

mx R my R

mx u my u mx u my u

mR u mR u

q q

q q q q q q q q q q q q

q q q q q q

q q q q q

= + + + +

+ + + - +

+ - - -

+ -

   

  
      

 

 [3.34b] 

The potential energy of the system is 

gravity flexuralV V V= +  [3.35] 

in which ˆ
gravity tV mgr j=


 is the potential energy due to gravity and 21

2flexuralV ku=  is the potential 

energy due to flexural deformations of the superstructure. However, the quantity ˆ
tr j


 in the former is 

the vertical component of the position vector ( )cos sgn siny g cr y R uqq q q= + - - . Eventually, the 

potential energy of the system becomes: 

21
cos cos sgn sin sin sin

2g c cV mgRy mgR mgR mgu kuq q q q q q= + + - +  [3.36] 

By substitution of Eqs 3.34b and 3.36 to Eq. 3.28 we can formulate the Lagrangian of the system as a 

function of the independent variables and their time derivatives: 

[ ] [ ]

2 2 2 2 2 2 2

2

1 1 1 1 1
2 2 2 2 2

cos cos sgn sin sin cos sin sgn sin cos

cos sin sin cos

cos sgn sin

cos cos

g g

g c c g c c

g g g g

c c

g c

mx my mR mu mu

mx R my R

mx u my u mx u my u

mR u mR u

mgRy mgR m

q q

q q q q q q q q q q q q

q q q q q q

q q q q q

q q

= + + + +

+ + + - +

+ - - -

+ -

- - -

   

  
      

 



21
sgn sin sin sin

2cgR mgu kuq q q q+ -

 [3.37] 

The derivatives of the Lagrangian with respect to   and  q q  are: 
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cos sin sgn sin cos sgn sin sin

cos cos sin cos cos

sin cos sin sgn sin cos cos

g c g c g c

g c g g g

g c

mx R mx R my R

my R mx u my u mx u

my u mgR mgR mgu

q q q q q q q q q q q
q

q q q q q q q

q q q q q q q q

¶
=- + -

¶
- - - -

+ + - +

    

      




 [3.38a] 

and  

[ ]

[ ]

2 2 cos cos sgn sin sin

cos sin sgn sin cos sin

cos cos 2 sgn sin

g c c

g c c g

g c c

mR mu mx R

my R mx u

my u mRu mR u

q q q q q q q
q

q q q q q q

q q q q q

¶
= + + +

¶
+ - + -

- + -

  

 
 



 [3.38b] 

By differentiating Eq 3.38b with respect to time we get: 

2 2d
2

d

cos cos cos sin sgn sin sin sgn sin cos

cos sin cos cos sgn sin cos sgn sin sin

sin

g c g c g c g c

g c g c g c g c

g

mR mu mu u
t

mx R mx R mx R mx R

my R my R my R my R

mx u

q q q
q

q q q qq q q q q q qq

q q q qq q q q q q qq

q

æ ö¶ ÷ç = + +÷ç ÷÷çè ø¶

+ - + +

- - + -

-

   

    
    





sin cos cos cos sin

cos 2 sgn sin 2 sgn sin

g g g g g

c c c

mx u mx u my u my u my u

mRu mR u mR u

q q q q q q q

q q q q q q q

- - - - +

+ - -

       
  

 [3.39] 

The dissipation function is: 

21
2

D cu=   [3.40] 

Its derivative with respect to q  is: 

0
D

q
¶

=
¶ 

 [3.41] 

The first equation of motion is: 

d
0

d
D

t qq q

æ ö¶ ¶ ¶÷ç - + =÷ç ÷÷çè ø ¶¶ ¶
 
   [3.42a] 
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and after substituting and eliminating m :  

( )
( ) ( )

( ) ( )

2 2 2 sgn sin cos

cos sgn sin sin sgn cos

sin sgn cos 2 sgn sin 0

c c

g c g c

c c

R u Ru R u

x R u y R u

gR gu u u R

q q q q

qq q q qq q q

qq q q q q q

+ - +

é ù é ù+ - - + - -ê ú ê úë û ë û
+ - - + - =

 

 



 [3.42b] 

Similarly, the derivatives of the Lagrangian with respect to   and  u u  are: 

2 2sin cos sgn sin sing g cm u mx my mR mg ku
u

q q q q q q q q q
¶

= - - - + -
¶
       [3.43a] 

and  

cos sin cosg g cmu mx my mR
u

q q q q
¶

= + - +
¶
   


 [3.43b] 

By differentiating Eq 3.43b with respect to time we get: 

d
cos sin sin cos cos

d g g g g cmu mx mx my my mR
t u

q qq q qq q q
æ ö¶ ÷ç = + - - - +÷ç ÷÷çè ø¶
       


 [3.44] 

The derivative of the dissipation function with respect to u  is: 

D
cu

u

¶
=

¶



 [3.45] 

The second equation of motion is: 

d
0

d
D

t u u u

æ ö¶ ¶ ¶÷ç - + =÷ç ÷÷çè ø¶ ¶ ¶
 

 
 [3.46a] 

and after substituting and eliminating m :  

( )2 2cos sin cos sin sgn sin 2 0c g g cu R g u x y u R uq q q w q q q q q xw+ - + + - - - + =      [3.46b] 
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Eqs 3.42b and 3.46b form the Lagrangian equations of motion for the studied system. 

The structural mass has been eliminated from the governing equations of motion as in the case of a 

rigid rocking body or a harmonic oscillator.  

In the limiting case of a infinitely rigid system ( )0w=  Eq. 3.46b yields 0u = . In this way Eq. 3.42b 

reduces to the following equation: 

( ) ( ) ( )2 cos sgn sin sgn sin sgn 0g c g c cR x R y R gRq qq q qq q qq qé ù é ù+ - + - + - =ê ú ê úë û ë û
    [3.47a] 

or  

( ) ( ) ( )2 2 2cos sgn sin sgn sin sgn 0g g
c c c

x y
p p p

g g
q qq q qq q qq qé ù é ù+ - + - + - =ê ú ê úë û ë û

   [3.47b] 

The latter is the well-known rocking equation of motion for a rigid structure with a lumped-mass 

( /p g R= ) as described in Eq. 3.2. 

For simplicity we neglect the vertical component of the base acceleration gy . In this way, the 

following nonlinear equations of motion are derived in each state of response: 
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Full-contact phase: 

For a rocking oscillator on a rigid base, full-contact conditions entail that no rocking displacements are developed ( )q = 0 . In this regime Eq. 3.46b 

reduces to the well-known linear equation of the sdof oscillator: 

2 2 gu u u xw xw+ + =-    [3.48] 

Uplift phase: 

During the uplift regime the independent variables u  and q  are calculated by the Lagrange formulation:  

Equation Lagrange (1) 

[ ]2 2
12 sgn sin cos sin(sgn ) cos ( , , , ) cos(sgn ) sinc c c g cR u Ru R u gR ug u u x R uq q q q qq q q q q qq q qé ù+ - + + - - +O =- - -ê úë û

     [3.49a] 

Equation Lagrange (2) 

2
2cos sin 2 ( , , ) cosc gu R g u u u xq q q w xw q q q+ - + + -O =-     [3.49b] 

where 1( , , , )u u q qO   and 2( , , )u q qO   the non-linear terms 1( , , , ) 2 ( sgn sin )cu u u u Rq q q q qO = -    and 2
2( , , ) ( sgn sin )cu u Rq q q q qO = -  . These two 

equations of motion can be formed in a matrix equation: 

2 2

2

sin(sgn )0 0 0 cos cos(sgn ) sin2 sgn sin cos
0 2 0 cossincos 1

c cc c
g

c

gRg R uR u Ru R
x

u gR u u

qq qq q qq q qq q q q q
xw w qqq

é ù é ù é ù é ùé ù é ù é ù é ù-- - -+ -ê ú ê ú ê ú ê úê ú ê ú ê ú ê ú⋅ + ⋅ + ⋅ + + =-ê ú ê ú ê ú ê úê ú ê ú ê ú ê ú-ê ú ë û ë û ë û ë ûë ûë û ë ûë û
O

 


 
 [3.50] 
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Uplift criterion 

The foundation uplifts from the supporting rigid soil when the overturning moment (with reference to 

the foundation centre) due to inertia moments ( )mah  exceeds the restoring moment ( )[ ]mg b u- . 

From this moment on, the structural system enters a coupled flexural-rocking oscillation with the 

corner points O and O’ being alternately the rotation pole. From equilibrium of the overturning and 

the restoring moment the acceleration of the mass at marginal uplift is: 

uplift
uplift

b u
a g

h

-
=  [3.51] 

For an undamped system, the uplifting criterion can be also expressed in the form of the displacement 

upliftu  given that 2
uplift upliftu a gw = : 

( )

2

2

tan /
1

1
/ cos

c
uplift

c

u g

p

q w

w q

=
+

 
[3.52] 

For /pw ¥  (i.e. for a quite stiff or large structure) the latter equation reduces to the well-known 

criterion for uplift, originally presented by Meek (1975): 

2

tan c
upliftu g

q
w

=  [3.53] 

The normalised displacement /upliftu b  calculated with the exact uplift criterion of Eq. 3.52 is plotted 

in Fig. 3.23 with respect to the natural circular frequency w  for different values of the frequency 

parameter p  and constant aspect ratio ( )0.2 radcq = . In the same graph the uplifting displacement is 

compared to that extracted with the simplified approach (Eq. 3.53). It is shown that for sufficiently 

stiff systems, Meek’s criterion may give a close approximation of the uplifting displacement. For more 
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flexible systems however ( )2 3 rad/secw< - , and particularly for quite small structures 

( )1 rad/secp>  the simplified approach fails to accurately predict the displacement upliftu . 

 

 

 

 

 

 

Figure 3.23  Comparison of the normalised displacement /upliftu b  derived from the exact uplift 

criterion (Eq. 3.52) to that extracted with the simplified approach (Eq. 3.53), for different values of 
the size parameter p . The aspect ratio of the structure is 0.2 radcq = . 

Re-establishment of full-contact 

After the uplift phase is launched, impacts occur intermittently every time the foundation mat 

instantaneously rocks back to its initial position. For analysis purposes of this study, the impact is 

considered elastic, hence conservation of angular momentum exists and the coefficient of restitution is 

obtained by Eq. 3.7b. Whether the structure continues to rock after an impact by shifting direction or 

full-contact conditions are re-established, it depends upon the total energy of the uplifting phase 

( ).up phaseE  compared to that of the full contact phase ( ). .f c phaseE  . Hence, if the total energy in the 

uplifting phase right after impact is smaller than the full contact energy, ( ). . .up phase f c phaseE E< , the 

structure will be set on rocking again in the reverse direction. Nevertheless, in the opposite case, 

( ). . .f c phase up phaseE E£ , the structure may still uplift if the overturning moment due to inertial force, 
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iM , is larger than the available resisting moment due to gravity GM . Consequently, the system 

returns to full contact conditions if the two following conditions are satisfied simultaneously. 

. . .f c phase up phaseE E£  [3.54a] 

G iM M>  [3.54b] 

In contrast to early studies on the uplifting oscillator, the exact formulation for re-establishment of full 

contact as described above was introduced by Oliveto et al., 2003. 

Linearisation of the uplifting equations 

Meek (1991). In this pioneering work, Meek first studied analytically the undamped uplifting 

oscillator and extracted the linearised equations of motion in the small-displacement domain. To this 

extent, he examined dynamic forces equilibrium of the mass and moment equilibrium of the structural 

system about the foundation toe. Considering only the horizontal component of the mass displacement 

( )h uq+  Meek concluded with the following coupled equations for the uplift regime in matrix 

notation:  

2

2

0 0 1 11/cos 1
sgn tan

0 1 01 1
c

g c

hh
x g

uu

qqq
q q

w

é ù é ù é ù é ù é ù é ù
ê ú ê ú ê ú ê ú ê ú ê ú⋅ + ⋅ =- -ê ú ê ú ê ú ê ú ê ú ê úë û ë û ë û ë ûë ûë û





 [3.55] 

By eliminating the rocking component of the structural acceleration, hq , and after some algebraic 

manipulations the uncoupled equations of motion are obtained: 

2

2

sgn
tantan cc

g
h u

w q
q

qq
- =-  [3.56a] 

2

2

sgn
tansin g

cc

g
u u x

w q
qq

+ =- +   [3.56b] 
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In the latter, 
sin c c

w w
q q

@  is the increased natural circular frequency in the uplift regime. 

Chopra and Yim (1985). In their study the linearised coupled equations (Eq. 3.55) were re-derived 

accounting also for the damping terms. In this way, the equations of motion (Eqs 3.56) were written 

as: 

2

2 2

2 sgn
tantan tan cc c

g
h u u

xw w q
q

qq q
- - =-   [3.57a] 

2

2 2

2 sgn
tansin sin g

cc c

g
u u u x

xw w q
qq q

+ + =- +    [3.57b] 

In Eq. 3.57b the quantity 
sin c c

x x
q q

@  corresponds to the increased damping ratio in the uplift regime. 

Psycharis (1991). Applying Newton’s second law in the horizontal and rocking direction with the 

assumption of small displacements, Psycharis extracted the equations of motion for the uplift regime, 

which are identical to those of Eqs 3.57, given that 2 21 1/tan 1/sinc cq q+ = .  

The proposed model. In the present work, linearised equations of motion are not derived explicitly 

through a small-displacement configuration but from the exact Lagrange equations (Eqs 3.49) 

neglecting only the quadratic non-linear terms ( )1 2 and O O . In this way, the coupled equations of 

motion are written in a matrix form: 

2

2

0 0 0 sgn

0 2 1 01 g

g h g bR h
x

g uu uh

q qq q
xw w

é ù é ù é ùé ù é ù é ù é ù é ù-ê ú ê ú ê úê ú ê ú ê ú ê ú ê ú⋅ + ⋅ + ⋅ = - -ê ú ê ú ê úê ú ê ú ê ú ê ú ê ú-ë û ë û ë û ë û ë ûë û ë ûë û

 


 
 [3.57] 

Eventually, we get for the uplift regime: 

( )2 2

2 2 2

/cos2 sgn
tantan tan tan

c

cc c c

pg g
h u u

w qxw q
q q

qq q q

+
+ - - =-   [3.58a] 
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2 2

2 2 2

cos2 sgn
tansin sin sin

c
g

cc c c

p g g
u u u x

w qxw q
q

qq q q
+

+ + - =- +    [3.58b] 

3.3.2 Earthquake excitation 

In a similar way to conventional response spectrum analysis, structural displacement, velocity, or 

acceleration amplitudes of the uplifting oscillator can be computed as a function of the natural period. 

In this respect, for a certain geometry (described with the parameters p  and cq ) the time domain 

analysis (by direct integration of Eqs 3.48 and 3.49) can be repeated each time for a different value of 

the pier stiffness, 33 /k EI h=  (and therefore the natural period). Thus, response spectra can be 

computed for different levels of damping. 

A one-story oscillator of 0.909 rad/se cp =  and 0.388 radcq =  is first considered to explore the 

dynamics of the combined uplifting and flexural response. These dynamic parameters correspond to a 

half-width of the footing, 4.5 mb =  and height of the mass point from base, 11 mh = . A long 

duration Ricker wavelet ( )1.33secET =  is imposed to represent near-fault moderate and strong 

shaking ( 0.4 g  and 0.6 g  respectively). The response spectra of the normalised displacement are 

plotted in Fig. 3.24. In the same graphs the response spectra of the equivalent fixed base system are 

also plotted together with the criterion for incipient uplift. It is remarked that for 0T = , the response 

of the uplifting oscillator must also be computed with the equivalent rigid system, discussed above. 

Under a moderate shaking, a very stiff system cannot experience uplift, as the critical acceleration of 

the rigid system ( )tan 0.41 guplift ca q= @  is slightly larger than the imposed ( )0.4 g . As the flexibility 

of the pier increases however, the developing structural displacement (equal to that of the fixed base 

system) exceeds that required for marginal uplift, engaging rocking motion. The amplitude of rocking 

angle as a function of the natural period is also plotted in Fig. 3.24. Remarkably, within a range of 

periods around the excitation period ( )1.33 sec , the displacements of the uplifting system are much 
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less than those of the equivalent fixed base system. Eventually, for sufficiently flexible systems (i.e. 

for values of T  larger than a critical one), uplift cannot initiate and therefore, the response can be 

predicted with the fixed base system. As observed in Fig. 3.24, the critical period beyond which uplift 

does not occur, is larger under strong shaking conditions ( )0.6 g . Similar results can be extracted by 

plotting the acceleration spectra (see also Fig. 3.24) 

A flexural-uplifting oscillator with visco-elastic parametres 0.5 sec, 5%oT x= =  and rocking 

parametres 1.387 rad/se c, 0.2 radcp q= =  is involved next. The rotation spectrum of the oscillator 

calculated for different levels of ground shaking is presented in Fig. 3.24. Excitation at the base is a 

one-sine pulse with a period ranging from 0.01 sec to 2.5 sec. Initially, a weak base excitation 

( )0.10gPGA=  is employed such that a linear resonance curve is obtained with maximum rotation 

at 2 hzE of f@ = . A gradually increasing base acceleration is applied next and the resonance curve is 

recalculated for each level as plotted in Fig. 3.25. The emerging nonlinearities of the system 

progressively shift the resonance frequency towards the left side of the spectrum. A large increase of 

the rotation amplitude is also encountered in this area. Eventually, after a sufficiently strong level of 

shaking, the resonance curve is distorted such that there is a range of excitation frequencies for which 

there are more than one possible output amplitudes (instability area).  
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Figure 3.24  Displacement, rotation, and acceleration spectra of the uplifting oscillator in comparison 
with the fixed-base system. A long-period (1.33 sec) Ricker pulse is used for moderate (left) and 
strong shaking (right). 
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Figure 3.25  Displacement, rotation, and acceleration spectra of the uplifting oscillator in comparison 
with the fixed-base system. A short-period (0.33 sec) Ricker pulse is used for moderate (left) and 
strong shaking (right). 
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Figure 3.26  Displacement, rotation, and acceleration spectra of the uplifting oscillator in comparison 
with the fixed-base system. A short-period (0.33 sec) Ricker pulse is used for moderate (left) and 
strong shaking (right). 
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Figure 3.27  Displacement, rotation, and acceleration spectra of the uplifting oscillator calculated with 
the linear (grey lines) and the nonlinear formulation (black lines). A long-period (1.33 sec) Ricker 
pulse is used for moderate (left) and strong shaking (right). 
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Figure 3.28  Displacement, rotation, and acceleration spectra of the uplifting oscillator calculated with 
the linear (grey lines) and the nonlinear formulation (black lines). A short-period (0.33 sec) Ricker 
pulse is used for moderate (left) and strong shaking (right). 
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Figure 3.29  Rotation spectra of the uplifting oscillator with respect to the excitation frequency for 
different levels of ground shaking. A one-cycle sine pulse is used. 
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Chapter 4: 

Finite element analysis of the uplifting response 

 

4.1 INTRODUCTION 

In Chapter 3 the dynamic behaviour of a tall structure with a shallow foundation allowed to uplift was 

explored in depth assuming that the supporting soil is undeformable. Emphasis was given on the 

(geometrical) nonlinear features of the response, amplified in the large displacement domain due to 

the gradually developed second order ( )P d-  effects. For some cases such as the analysis of appended 

equipment, the model of a rocking body on a rigid base may be a reasonable approximation of reality. 

In civil engineering applications however, the foundation mat is in general supported directly by a soil 

medium which may experience substantial deformations when undertaking the superstructure loads. 

Due to soil compliance, a free-standing rigid structure may sustain rocking motion without uplift at 

low amplitudes of rotation. In this regime, the response can be linear provided that soil material 

deforms elastically and conventional soil–structure interaction procedures may be applied. For 

sufficiently large rocking amplitudes though, separation of the footing from the underlying soil occurs 

and the response alternates between the modes of full contact and uplift. Rocking motion is then 

nonlinear even under the assumption of elastic soil behaviour. For a very stiff soil, uplifting initiates at 

a very low rotation and the full contact mode tends to diminish. Hence, rocking is associated with 

large amplitudes of uplift and the response is similar to the rigid base case. On the contrary, under soft 

soil conditions, deformations of the supporting soil around the footing edges are significant and impact 

during the uplifting mode becomes more absorbing. Consequently, dissipation mechanisms (radiation 

and hysteretic damping) are generated through soil medium, uplift is limited and attenuation of 

motion is faster. Reasonably, large soil deformations underneath the foundation are accompanied with 
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generation of plastification zones which further amplifies the dissipative mechanisms and shrinks the 

uplift mode. 

Apart from the size parameter and aspect ratio of the block (  and cp q  respectively), the main 

parameters affecting now the dynamics of rocking are: 

 the visco-elastic soil properties ,   and G n x  considering homogeneous and isotropic medium,  

 the structural weight N ,  

 the presence of bedrock at a shallow depth, and also 

 the ultimate load uN , when limited soil strength is implemented in the analysis. 

Several analytical studies have been published in the past to elucidate the effect of soil compliance on 

the uplifting response. In these early studies (Psycharis and Jennings, 1983; Yim and Chopra, 1985; 

Koh et al., 1986) the underlying soil was represented with distributed tensionless spring-dashpot 

elements (the beam-on-winkler-foundation model). Recently, with the advent of powerful 

computational resources, some finite element studies have modelled the supporting soil with two- 

dimensional continuum, either elastic or inelastic (among others Crémer and et al., 2001; Gazetas and 

Apostolou, 2004). In addition, during the last decade, many experimental studies (primarily 

centrifuge tests) cast insight on the nonlinear features of the uplifting response (Gajan et al., 2003; 

Paolucci et al., 2008). Crémer and et al., 2002 also analysed a foundation on inhomogeneous 

continuum and developed a constitutive law to represent the uplift mechanics in an elastic or 

elastoplastic soil through a single macro-element. Late studies focused on the macro-element approach 

aimed at developing simplified yet realistic modelling of soil and foundation (Houlsby and Cassidy, 

2002; Gajan and Kutter, 2009; Chatzigogos et al., 2009; Figini et al., 2011). In a parallel path, a new 

generation of beam-on-winkler-foundation models have been developed to overcome the 

shortcomings of the early ones (Allotey and El Naggar, 2003, 2008). A detailed review of recently 

elaborated macro-element models will be discussed in Chapter 5. 
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In this Chapter, the uplifting response of shallow foundation on compliant soil medium is examined 

under both monotonic and earthquake loading conditions. The analysis is performed with the finite 

element method where emphasis is given on the rigorous computation of the response in the domain 

of large displacements. In this way the results can be utilised to elaborate a sophisticated macro-

element model efficient in both static and dynamic analysis.  

The system configuration of Fig. 4.1 is considered, comprising a 1-dof structure with shallow 

foundation supported on deformable soil medium. Compared to the ‘rigid soil’ problem, the uplifting 

structure possesses now additional degrees of freedom due to the compliance of the supporting soil. 

Hence, for such a structural system the independent variables are: 

 The horizontal displacement of the footing bu  

 The vertical displacement of the footing bw  (upward is positive) 

 The rocking rotation of the footing q  

 The contact ratio /bl b= , where b  is the half-width of the footing remaining in contact with 

the soil (from now on the effective footing). 

For simplicity, in all numerical analyses of this stage the structural system is considered rigid and 

therefore the superstructure displacements are explicitly derived from the foundation displacements. 

θ

wb

wbo

2b

centre 
of mass

N

M

Q
ub

us = ub + l sinθ

l

ws = wb + l cosθ

 

Figure 4.1  Rocking and uplifting on deformable soil: system configuration. 

 



Chapter 4: Finite element analysis of uplifting foundation  

Apostolou, doctoral dissertation 2011    
 

96

4.2 METHOD of ANALYSIS 

4.2.1 Finite element modelling 

Nonlinear analysis of rocking and uplifting response under static (monotonic) and earthquake loading 

is implemented numerically with the finite element method. To this extent the sophisticated code 

ABAQUS (Hibbit, Karlsson and Sorensen; 2004) is utilised. In most of the analyses performed in this 

study the structure and the underlying soil are represented with plane-strain elements. For the 

purposes of the two- dimensional modelling soil medium is represented with quadrilateral, continuum 

elements whereas boundary conditions at the far field are described with infinite elements. General-

section beam elements are utilised to model the superstructure whilst a massless rigid foundation is 

obtained by a combination of solid and rigid (beam) elements. The structural weight is concentrated at 

a mass element located at the gravity centre of the superstructure. An advanced contact algorithm has 

been adopted to incorporate potential slipping or uplifting of the foundation, considering purely 

elastic impact. To this end soil-foundation interface is modelled with gap elements of zero tensile 

capacity allowing for a rigorous treatment of finite separation and sliding. The latter is calculated by a 

Coulomb-type frictional law at the interface. Geometric nonlinearity attributed to ( )P d-  effects is 

taken into account through appropriate large displacement formulation. A static step is preceding any 

static or dynamic analysis to establish geostatic conditions within. 

For the analysis of the earthquake response, seismic excitation is imposed to soil medium through the 

underlying rigid bedrock. In so doing, time histories of recorded earthquake motion or pulse-type 

Ricker wavelets are used. The latter is a very useful tool in numerical wave propagation analysis 

through soil due to its ability to represent records with distinguishable, long-duration pulses 

attributed to near-source effects (directivity, fling). An implicit direct-integration algorithm 

incorporated in the code ABAQUS is utilised to compute the nonlinear dynamic response of the 

system. With this technique the global equations of motion are integrated through time using the 

implicit Hilber-Hughes-Taylor operator. Equilibrium solution within each time increment is obtained 
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by an iterative process applying Newton’s method. An automatic incrementation scheme is also used 

with the general implicit dynamic integration method. The scheme uses a half-step residual control to 

ensure an accurate dynamic solution. The half-step residual is the equilibrium residual error (out-of-

balance forces) halfway through a time increment. This half-step residual check is the basis of the 

adaptive time incrementation scheme. If the half-step residual is small, the accuracy of the solution is 

high and the time step can be increased safely; conversely, if the half-step residual is large, the time 

step should be reduced. The automatic incrementation scheme is especially effective in cases where a 

sudden event is introduced to the dynamic problem e.g. the moment when the foundation impacts the 

ground during cyclic rocking motion associated with large uplift. In such studies small time 

increments are required immediately after the sudden event. At later times the response can be 

modelled accurately with large time increments because most of the high frequency content of the 

solution has been damped out by the dissipation mechanisms present in the model.  

A typical two- dimensional finite element discretisation and the types of elements implemented are 

portrayed in Fig. 4.2. 
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Figure 4.2  Two- dimensional finite element discretisation and the types of elements applied. 

4.2.2 Constitutive soil modelling 

Mohr-Coulomb model 

Soil yielding is represented with the M-C criterion and the critical parametres c  and f . For stress 

levels inside the yield surface, soil response is determined by the visco-elastic parametres E , n , and 

x . In the post-yield regime, a perfectly plastic behaviour is considered for soil, hence the stress field 

remains invariant to the development of plastic strains. In the finite element study performed here the 

Mohr-Coulomb model is confined to static analysis procedures. 

Kinematic isotropic/hardening model 

This constitutive soil model is based on the simulation of nonlinear cyclic behaviour of cohesive soils 

under undrained conditions with the behaviour of ductile metals. It is characterised by an initial, 
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pressure independent yield surface ( )1 2 3 3p s s sé ù= + +ê úë û  which is inflated and translated in the stress 

space through the development of plastic strains. Yield surface is described with Von-Mises criterion 

ijq s= , where q  is the deviatoric stress: 
( ) ( ) ( )

1/22 2 2
1 2 2 3 3 1

2
q

s s s s s sé ù- + - + -ê ú= ê ú
ê úë û

 and ijs  is the yield 

stress under uniaxial loading. During two-dimensional (plane-strain) conditions, the yield surface is 

determined in the principal stress space by the following equation: 2 2
1 1 2 2 ijs s s s s- + = . An 

isotropic/kinematic hardening flow rule is also incorporated in the model to simulate the post-yield 

behaviour of soil subjected to cyclic loading. This evolution law consists of two components: a 

nonlinear kinematic hardening component, which describes the translation of the yield surface in 

stress space and an isotropic hardening component, which describes the change of the equivalent 

stress defining the size of the yield surface, as a function of plastic deformation. For stress levels inside 

the yield surface, soil behaviour is determined by the visco-elastic parametres E , n , and x . One- and 

three-dimensional representation of the nonlinear isotropic/kinematic hardening flow rule 

implemented in the numerical analysis for soil behaviour is presented in Fig. 4.3. Nonlinear aspects of 

the cyclic behaviour predicted by the constitutive model for load- and displacement-controlled 

loading conditions are illustrated in Fig. 4.4. 
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Figure 4.3  One- and three-dimensional representation of the nonlinear isotropic/kinematic hardening 
flow rule implemented in the finite element analysis to simulate cyclic soil behaviour. 
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(α) Displacement-controlled harmonic loading

(b) Stress-controlled harmonic loading  

Figure 4.4  Cyclic soil behaviour predicted by the isotropic/kinematic hardening model implemented 
in the finite element analysis. 

4.2.3 Parameters of the soil-foundation models 

The soil-foundation models have been implemented to examine the uplifting response as presented in 

Table 4.1. These models also portrayed in Fig. 4.5 differ on the aspect ratio and size of the structure, 

the height of soil stratum over the rigid bedrock, as well as the soil parameters (elastic and strength). 

It is noted that all soil profiles describe homogeneous soil, apart of one in which increasing stiffness 

and strength over depth have been implemented.  
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Table 4.1  The soil-foundation models implemented in the analyses of the present 
study 

Parameters 
Numerical model 

Model v.01 Model v.02 Model v.03 Model v.04 

Soil 

(MPa)E  -20 100  3000 us  -20 100  -20 100  

(MPa)G  -7 33  1000 us  -7 33  -7 33  

(kPa)us  -50 100  +'0.2 10voσ  -50 100  -5 200  

max 0/σ σ  0.19  0.19  0.19  0.19  

 (m)sH  5  20  20  20  

0  (sec)T  -0.30 0.19  0.64  -1.28 0.59  -1.28 0.59  

Structure 

2  (m)b  2  6  2  11 

 (m)cmh  5  12  5  9  

su = 0.2 σ’vo + 10

suo = 10 kPa

ν = 0.5

ξ = 0.05

Go = 1000 su

FI

N

h = 12 m 

G(z) = Go[1 + 0.94z/B]

Rigid bedrock

2b = 6 m

Ricker wavelet: PGA, TE

Model v.02

HS = 20 m

su = 50 – 100 kPa

ν = 0.5

ξ = 0.05

Go = 7 – 33 MPa

FI

N

h = 5 m 

G(z) = Go

Rigid bedrock

2b = 2 m

Ricker wavelet: PGA, TE

Model v.03

HS = 20 m

su = 50 – 100 kPa

ν = 0.5

ξ = 0.05

Go = 7 – 33 MPa

FI

N

h = 5 m 

G(z) = Go

Rigid bedrock

2b = 2 m

Ricker wavelet: PGA, TE

Model v.01

HS = 5 m

su = 5 – 200 kPa

ν = 0.5

ξ = 0.05

Go = 7 – 33 MPa

FI

N

h = 11 m 

G(z) = Go

Rigid bedrock

2b = 9 m

Ricker wavelet: PGA, TE

Model v.04

HS = 20 m

 

Figure 4.5  Soil-foundation models utilised in the finite element analysis. 
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4.3 UPLIFT on VISCO-ELASTIC SOIL 

The idealised case of an uplifting foundation on elastic soil is directly applicable only to the case of 

very stiff soil which experiences small deformations limited in the vicinity of the foundation edges. 

Nevertheless, it serves as a useful tool for highlighting the profoundly nonlinear dynamics of the soil–

structure system. The geometrically induced nonlinear behaviour arises primarily from the 

exceedance of the tensile strength at the soil-foundation interface which engages the uplifting regime. 

It is amplified though, by the developing second order effects as the mass centre is drifting away from 

the vertical axis of symmetry during uplift. 

4.3.1 Monotonic response 

The rocking response of a shallow foundation allowed to uplift under static conditions is investigated 

first. To this extent, the system configuration of Fig. 4.5a is considered (model v.01). In the first step 

the vertical (gravitational) load is applied through the mass centre (symmetric loading). Then a 

gradually increasing horizontal displacement d  is applied at the mass centre up to a maximum value of 

max bd =  (antisymmetric loading). For a sufficiently slender structure the horizontal translation of the 

footing bu  is negligible compared to d  and therefore, the moment at which maxcmu bd= = , the 

footprint of the mass centre has reached the foundation edge. Evidently, critical overturning has 

already occurred at this loading point. The displacement-controlled loading at the mass centre is 

restrained by a horizontal shear force Q  and an overturning moment M  imposed to the foundation 

by the supporting soil so that static equilibrium is attained. From the vertical displacements of the 

foundation edges ( )1 3,  w w  and the mass centre ( )cmw , the rocking rotation q  and the foundation 

moment M  with respect to the corner point (3) can be computed:  
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1 3arcsin
2

w w
q

æ ö- ÷ç= ÷ç ÷÷çè ø
 [4.1] 

( )3cm cmM Q h w w= -  [4.2] 

in which cmQ Q=  is an output of the finite element analysis as well. The foundation moment M  can 

be calculated alternatively by integrating soil pressures over the contact interface: 

1

( ) cos sin
n

p v i i i

i

M M p x x x Nhq q
=

= = D -å  [4.3] 

where n  is the total number of nodes on which soil pressures are computed, ix  and ( )v ip x  are 

respectively the distance of the -i th  node from the footing midpoint and its corresponding soil 

pressure, and 1i i ix b b-D =D +D  ( 1,  i ib b-D D  are the half-lengths of the neighbouring elements). Soil 

pressure at a node of the foundation is calculated from the axial force of the gap element linking this 

node to its corresponding soil node. 

The half-width of the effective footing b  is calculated at each increment through the number of the 

nodes remaining in contact with the supporting soil. Hence for a m n< number of foundation nodes 

attached to the corresponding soil nodes, upper and lower bounds of uplift can be estimated: 

min max
1

2    and   2
m m

b b
n n

b b
-

= =  [4.4a] 

Then the half-width of the effective footing is: 

( )max min /2b b b= +  [4.4b] 

It is obvious that for m n=  (full-contact regime) it is min max bb b= = . 
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During the linear regime of rocking without uplift, the rotation pole remains fixed at the midpoint of 

the contact interface and therefore 2 /b vw w N K= = . After uplift initiates however, the rotation pole 

shifts towards the pivot point as the area of the effective footing decreases and an upward vertical 

incremental displacement  is developed: 

sinb pw xd q=  [4.5] 

 where px  is the instantaneous position of the rotation pole with reference to the foundation midpoint. 

In the limiting case of a rigid soil the pole moves from the midpoint to the pivot point right at the 

uplift onset and sinbw b q= . From kinematic analysis of the rocking foundation the displacement of 

the pole px  along the contact interface can be calculated as a function of the incremental vertical 

displacements of corner points (1) and (3) and the half-width b : 

1 3

1 3
p

w w
x b

w w

d d
d d

+
=

-
 [4.6] 

Contact pressures 

A key issue in the analysis of rocking response is to study the constitutive laws that govern the 

development of soil pressures acting on the foundation. The soil-structure configuration of model v.01 

(Fig. 4.5a) with soil modulus of elasticity  ( )20 MPa 7 MPao oE G= =  is adopted to compute p w-  

curves along the foundation base. In the graphs of Fig. 4.6 the development of contact pressures is 

plotted for the interface nodes from the left edge towards the midpoint (red circles) in comparison 

with their equidistant nodes on the right (solid black lines). Initially, a vertical load is applied to the 

footing through the mass centre, gradually increasing to reach gravitational load of 500 kN . During 

this step, the distribution of the contact pressures along the interface is symmetrical to the midpoint 

and can be validated with the elastic medium solutions available in literature (Sadowsky, 1928) as 

shown in Fig. 4.7. These soil reactions must be in equilibrium with the external load, and therefore 

integration along the foundation should lead to the gravitational load N . In the p w-  curves of Fig. 
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4.6 this step is represented by the linear branch determined by the points of rest ( )0p w= =  and full 

loading ( )/ / 0.025 mv vw p k N K= = = . As symmetrical nodes are represented on each graph, their 

load-displacement curves are identical during this phase. Unlike the conventional winkler modelling, 

the stiffness vk  is not uniform along the foundation, but increases close to the edges. In the succeeding 

step, a gradually increasing horizontal load is applied at the mass centre. The overturning moment 

resulted from the imposed displacement generates additional soil pressures and differential 

settlements. Hence, this antisymmetric loading separates the contact interface to the loading side (on 

the right of the midpoint) and the unloading side (on the left of the midpoint). Along the loading side 

soil pressures increase at a steeper rate determined by mk . Likewise, for the unloading side soil 

pressures gradually reduce at the same rate until they drop down to zero. Interestingly, at this point 

the vertical displacement has not become zero as well (as the conventional winkler model predicts) but 

has converged to a residual value. Evidently, uplift is engaged right after the contact pressure of the 

left corner node becomes zero. As the separation zone is expanding towards the midpoint, the 

unloading area is shifting rightwards. For the contact pressures on the foundation area remaining in 

contact with soil,  an upperbound exists now beyond which, unloading initiates. 
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Figure 4.6  p w-  curves of a foundation on elastic soil ( )20 MPaoE =  during: (a) pure vertical load, 

(b) displacement-controlled horizontal load at the mass centre. 
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Figure 4.7  Distribution of contact pressures on the foundation computed with finite element analysis 
(white circles) and analytical equations (solid lines) for poor or medium soil stiffness: (a) under pure 
vertical loading, (b) at incipient uplift, and (c) at ultimate moment. 
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Figure 4.8  Vertical displacement along the foundation at incipient uplift normalised to the 
gravitational settlement. Elastic soil of medium or poor stiffness (white circles and black crosses 
respectively) is considered. 
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Static stiffnesses 

Many researchers have developed analytical solutions for the static stiffness of the soil-foundation 

system under any type of loading. In this way the static stiffness is expressed as a function of the 

elastic soil parameters and the width (or diameter) of the footing. Parameters such as the shape of the 

footing, the embedment, the distribution of soil stiffness with depth, and the possible presence of a 

shallow bedrock have also been implemented in these equations. Among them, Gazetas (1991) 

recommendations are the most widely adopted for both analysis and design purposes. For the case of a 

strip footing on the surface of a homogeneous soil stratum over a rigid bedrock, Gazetas equations for 

swaying, vertical, and rocking vibrations are simplified as follows: 

2
1 2

2h

G b
K

Hn
æ ö÷ç= + ÷ç ÷÷çè ø-

 [4.7a] 

1.2
1 3.5

1v

G b
K

Hn
æ ö÷ç= + ÷ç ÷÷çè ø-

 [4.7b] 

( )

2

1 0.2
2 1m

Gb b
K

H

p
n

æ ö÷ç= + ÷ç ÷÷çè ø-
 [4.7c] 

The comparison of these equations with the finite element analysis is summarised in Table 4.2.  

Table 4.2  Static stiffnesses of a rigid strip footing on homogeneous soil over bedrock 
computed for different values of soil Young’s modulus (a) with the finite element method, 
(b) analytically (Gazetas, 1991). 

 ( )MNm/radmK  ( )MN/mvK  ( )MN/mhK  

( )MPaE  100 20 100 20 100 20 

Analytical equation 
(Gazetas, 1991) 

89.7 17.9 112.1 22.4 63.3 12.7 

Finite elements 92.6 16.5 98.6 19.8 45.2 8.8 

An excellent agreement is achieved in the rocking mode for both soft and medium soil conditions, 

whereas in the vertical mode the analytical solution slightly overestimates the stiffness. In the swaying 



Chapter 4: Finite element analysis of uplifting foundation  

Apostolou, doctoral dissertation 2011    
 

110

mode, the analytical solution is by 1.5 times larger than the numerical values. This difference 

however, can be attributed to the coupled swaying and rocking motion in the finite element analysis. 

Load-displacement curves 

A rigorous approach of the static overturning moment about the foundation midpoint as a function of 

the rocking rotation for a rigid foundation allowed to uplift on elastic soil is depicted in Fig. 4.9. When 

an undeformable soil is regarded, at incipient uplift the moment instantaneously climbs from zero up 

to the ultimate value uM Nb= . From this point on, the moment is gradually decreasing due to the 

amplifying ( )P d-  effects and eventually drops down to zero when the rocking rotation reaches the 

critical value /c b hq = . On the other hand, in the full-contact regime the soil-foundation stiffness is 

kept constant and therefore the moment is a linear function of the rocking angle. It is concluded that 

in case of deformable supporting soil and a foundation allowed to uplift, the moment–rotation curve is 

bounded by the afore-mentioned limiting curves (Apostolou and Gazetas, 2005). This curve 

comprises: (a) a linear branch from zero up to the point where uplift initiates, (b) a softening branch 

to the ultimate moment capacity point, in which the soil-foundation rocking stiffness decreases due to 

the gradually amplifying uplifting mechanism, and (c) a declining branch which is dominated by the 

( )P d-  effects and eventually leads to the overturning failure of the foundation at the critical angle cq  

(Fig. 4.9). 

In the full-contact regime the moment is a linear function of rocking rotation and the rocking stiffness 

is calculated analytically from the afore-described solutions of the literature (e.g. Gazetas, 1991). 

From all finite element analyses of this study, the moment at incipient uplift is computed equal to half 

the ultimate value of the ‘rigid soil’ case, uM Nb= , irrespective of soil stiffness: 

/2upliftM Nb=  [4.8] 
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This expression for the uplifting moment has also been extracted from the parametric study of Crémer 

et al. (2002). Regarding the moment capacity of the footing, it reaches a maximum value when a rigid 

soil is considered. Then, by reducing the stiffness of soil medium, it gradually decreases until 

eventually drops down to zero for an infinitely compliant soil ( )0E = . 
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Figure 4.9   Moment – rotation curves of a rigid strip footing on elastic (soft or medium) or rigid soil.  
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Figure 4.10   Moment – vertical displacement curves of a rigid strip footing on elastic (soft or 
medium) or rigid soil. 

Coupling of foundation displacements with rocking angle 

Apart from force-displacement curves, remarkable conclusions can be drawn from correlating the 

translational ( bu  and bw ) with the rotational displacements (q ) of the footing. 

The correlation of horizontal displacement, bu  with rocking angle, q  for the case of soft and medium 

soil ( 20 MPaE =  and 100 MPa  respectively), is plotted in Fig. 4.11. The bu q-  relationship of the 

‘rigid soil’ case is also plotted in the same graph. The latter curve can be computed analytically, from 

the geometry of the problem ( )1 cosbu b qé ù= -ê úë û . On the other hand, for a footing in full contact with 

elastic soil, the horizontal displacement bu  can be correlated with rocking rotation by eliminating the 

moment from its constitutive relationships m mh bM K K uq= =  ( )then /b m mhu K K qé ù=ê úë û . Evidently, for 

a footing prevented to uplift, the trend is linear for any rotation. This linear correlation is followed by 

the ‘elastic soil’ curves (Fig. 4.11), at small rotations where uplift has not yet initiated. Nevertheless, 

after uplift onset, these curves tend to track on the ‘rigid soil’ curve as the rocking angle approaches 

the critical value cq . The stiffer the soil, the more rapidly the ‘elastic soil’ curve reaches the limiting 
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curve. In general the uplifting response weakens coupling between bu  and q  and sets an upper bound 

for the horizontal displacement, ( ),max 1 cosb cu b q= - , as resulted from limit equilibrium. For the 

slender block examined, it is ,max 0.1 0.02 mb cu bq@ = . Regarding that maxb d=  (where maxd  is the 

maximum imposed displacement at the mass centre during pushover loading), the following 

relationship is derived: 

,max

max

1 cosb
c

u
q

d
= -  [4.9] 

It is evident that for slender systems, the imposed displacement at the mass centre is transferred to the 

footing as rocking displacement, the horizontal component of which can be considered negligible.  
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Figure 4.11   Coupling of horizontal displacement with rotation of a rigid strip footing on elastic (soft 
or medium) or rigid soil. 

The correlation of the vertical displacement with the rocking angle is plotted in Fig. 4.12. The bw q-  

relationship of the ‘rigid soil’ case is also plotted in the same graph, computed with the analytical 

relationship,  sinbw b q= . This equation results in a linear curve starting from the point (0,0)  and 

leading to upward displacement, 2 /b cw b b hq@ =  at critical equilibrium. The numerically computed 

‘elastic soil’ curves have an initial vertical displacement at rest (gravitational settlement) 
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/bo vw N K=- . Like the footing on elastic soil prevented to uplift, this value is kept constant in the full 

contact regime regardless the rocking angle. Once uplift initiates though, the incremental 

displacement bwd  becomes upward at a rate which depends on the soil stiffness. In general this rate is 

close to b , whereas for a sufficiently stiff soil (in this example 100 MPaE = ) it can be considered 

equal to b . Under a gross estimate (considering bilinear bw q-  curve), the maximum available 

upward displacement of an uplifting footing on elastic soil is then ( )/ /2 /b vw b b h Nb N K= - - . 
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Figure 4.12   Coupling of vertical displacement with rotation of a rigid strip footing on elastic (soft or 
medium) or rigid soil. 

Rotation pole 

The exact positioning of the rotation pole during rocking vibrations is of great importance as it 

governs the distribution of soil pressures. When a strip footing is rocking in full contact with elastic 

soil, the pole of rotation lies on the interface midaxis. For a sufficiently slender structure the 

translational mode can be neglected and the pole is located constantly at the interface midpoint. In any 

case for the projection of the pole on the footing interface it holds 0px = . On the other hand, in case 

of a rigid soil the pole of rotation jumps from the midpoint to the corner of the footing as rocking 

initiates (Fig. 4.13). In the general case of rocking with uplift on a compliant soil, the pole departs 
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from the midpoint right after uplift onset moving towards the corner point. The stiffer the supporting 

soil the more rapid this transition is (Fig. 4.13).    
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Figure 4.13   The transition of the rotation pole from the midpoint to the corner of the foundation 
during rocking. 

Uplift 

According to Eqs 4.4a, lower and upper bounds of the half-width of the effective footing b  can be 

computed from finite element analysis. It is reminded that the effective footing bb l=  is the part of 

the footing remaining in full contact with the underlying soil. A mean curve can then be derived 

according to Eq. 4.4b. The b q-  curves for the medium and stiff soil are plotted in Fig. 4.14. During 

full contact regime, the effective footing width is equal to 2b . As uplift initiates, the width 2b  follows 

an exponential decay and eventually approaches a residual value, resb  as cq q . The stiffer the soil, 

the smaller this residual value is. In the limiting case of rigid soil, it yields 0resb = . 
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Figure 4.14   Upper, lower, and average curves of foundation uplift (described with the effective 
footing) on elastic soil of poor or medium stiffness. 
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Figure 4.15   Analytical curves of a rigid strip footing without p – delta effects and comparison with 
finite element results. 
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4.3.2 Free vibration response 

In Chapter 3, the free vibration period of a rigid one-story structure was computed as a function of the 

rocking amplitude according to linear and nonlinear formulation. It was outlined that the linear 

formulation as derived by Housner can adequately predict the period. It was also pointed out that in 

the free vibration regime, the frequency of a rocking structure on a rigid soil is amplitude-dependent 

even at low levels of rotation, and therefore, the dynamic parameter p  is not the eigenfrequency of 

the system. Contrary to the rigid soil case in which the free vibration period tends to zero under low 

levels of rocking, postulation of a deformable supporting medium results in linear response before 

uplifting initiates. In this state the fundamental period of the rigid structure is provided by linear SSI 

theory for an oscillator with two degrees of freedom (i.e. the horizontal displacement of the base 

midpoint, bu  and the rotation q ): 

2 2 2 cb
h m

m h

J m
T T T

K K
p= + = +  [4.10] 

The influence of the vibration in the horizontal direction on the overall response can be estimated by 

the following period ratio: 

2/ 2
1 1 0.75 tan

/ 1
h

c
m cb m

m KT

T J K

n
q

n
-

= + @ +
-


 [4.11] 

in which the mass moment of inertia is 2
cbJ mh=  and the elastic medium is considered as 

homogeneous halfspace. As demonstrated in Chapter 2, for sufficiently slender structures the 

fundamental period can eventually yield: 

2 cb
m

m

J
T T

K
p@ =  [4.12] 

Psycharis and Jennings (1983) studied rocking and uplifting of slender structures on a flexible 

foundation by modelling soil continuum with independent linear springs of zero tensile capacity. In 
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this study the rocking period was computed as a function of the normalized impulse max / upliftb q q=  

where maxq  is the amplitude of rocking of the equivalent fixed base system and upliftq  is the critical 

angle at incipient uplift.  For values of b  smaller than 1.65, a linear correlation was established 

between the amplitude of rotation and the rocking period:   

0.903 0.097
m

T

T
b= +


 [4.13] 

The influence of soil stiffness to the rocking period of rigid uplifting structures is outlined next 

through the pattern of a bridge pier with a spread foundation on elastic soil, as represented with model 

v.02 of Fig. 4.5. The vertical load of the bridge pier is applied at the mass centre, which is located 

12 m  above the ground surface. In the transverse direction the footing of the pier is 6 m  wide, 

whereas in the longitudinal direction is considered infinite so that plain strain assumption can be 

adopted. Sliding at the soil-foundation interface is prevented thereby rocking is the dominant mode of 

the response. Unlike the soil profile associated with the model v.02, the supporting medium is now an 

elastic halfspace of stiffness 10 MPasE =  and 20 MPa  (case 1 and 2 respectively) and Poisson ratio 

0.3n = . For these levels of soil stiffness the rocking period prior to uplift is 3.1 secsT =  sec and 

2.2 sec . A finite element analysis is performed to compute the rocking response of the pier at the free 

vibration regime. In Fig. 4.16 the free vibration period is plotted in terms of the rocking amplitude for 

the two values of soil stiffness (case 1 and 2) and in comparison with the limiting case of a rigid soil 

medium (case 3). The aspect ratio of the structure is tan 0.25cq =  meaning that when the peak angle 

is close to 0.25 rad , the period of rocking tends to infinity. The response can be separated in two 

states depending on whether uplift occurs or not. Initially, for rotation amplitude below the threshold 

of uplift the rocking system exhibits harmonic oscillations on the flexible base of constant period mT . 

Once uplifting occurs the period of free vibration converges gradually to the period of the rigid base 

system even when an extremely soft soil is regarded (case 1). This is a result of the amplifying role of 

the P d-  effects on the soil-foundation stiffness (on the expense of soil modulus sE ) at large 
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rotations, as portrayed in Fig. 4.9. Hence, for a peak angle of rotation 0.1 radcq =  (40 % of the 

critical value cq ), the period of the rigid soil system (case 3) is 5.1 sec , which is merely increased to 

5.6 sec  and 5.3 sec in cases 1 and 2 respectively.  It can therefore be assumed that for high levels of 

rotation (comparable to the critical angle) a rigid base system can be adequate to compute the free 

vibration period of an uplifting structure. 
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Figure 4.16  The rocking period of a rigid, one-storey structure supported on, (a) rigid soil, (b) soft 
soil ( )20MPaE = , and (c) very soft soil ( )10MPaE = . 

4.3.3 Earthquake response 

The dynamic response of an uplifting structure subjected to earthquake excitation is next 

investigating.  

At first, rocking of the one-storey structure allowed to uplift is computed for different values of soil 

stiffness. Each analysis is repeated by preventing uplift. In this way, rocking displacement spectra 

with respect to the fundamental period, mT  can be computed for both the uplifting and the fixed base 

system. For the purposes of finite element analysis, the model v.01 of Fig. 4.5 is considered. A long 

duration Ricker wavelet of 0.3 gPGA=  and 1.3 secET =  is used as excitation at the bedrock.. For 
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the range of soil stiffness values used in the analysis, the fundamental period of soil layer can be 

considered adequately small in such a way that no perceptible filtration of the bedrock motion may 

occur through soil. Time histories of the rocking response are plotted in the upper two graphs of Fig. 

4.17, in comparison to that of the fixed base system. For the flexible system of 1.66 secmT =  (left-

hand side), the rocking amplitude is not sensitive to whether uplift is prevented or not. A difference in 

the period of vibration between two systems is also observed. As the pulse-type excitation has ceased 

after the first three seconds of rocking, this is practically the free vibration period. It turns out that the 

period of the uplifting system is nearly twice as much as the period of the fixed base, which is 

attributed to the increase of the amplitude-dependent period due to uplift as predicted in Fig. 4.16. 

When a stiffer system is regarded by increasing soil modulus ( 0.74 secmT = , right-hand side), uplift 

results in a fundamentally different response compared to that of the fixed base system. In fact, the 

amplitude of rocking of the uplifting system is still at high levels much larger than the one of the fixed 

base system which has significantly reduced. As shown from the rocking displacement spectrum of 

Fig. 4.16, the rocking amplitude tends to zero as soil becomes infinitely stiff when uplift is prevented, 

whereas for the uplifting system this amplitude converges to a value of about 0.06 rad .  
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Figure 4.17  The effect of uplifting on the rocking response of a one-story rigid structure for different 
values of the rocking period mT .  

The structural response of the uplifting structure is examined next, in comparison to that of the rigid 

soil case, through the pattern of model v.01. A soft soil profile of 20 MPaE =  is first employed to 

highlight the effect of the compliant supporting medium. The results are plotted in Fig. 4.18 in terms 
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of normalised time histories of (a) rocking rotation, (b) acceleration of mass point, and (c) foundation 

moment.  
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Figure 4.18  Rocking response of a rigid structure ( 1.387 rad/secp = , tan 0.2cq = , and 0.85r = ), (a) 

on elastic soil ( )20 MPa,   0.5E n= =  and (b) on rigid soil. A Ricker pulse excitation of 0.4gPGA=  

and 1.33secET =  is applied at the bedrock. 
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Figure 4.19   Moment – rotation curves of a rigid footing on elastic soil under earthquake shaking and 
comparison to the static response. A Ricker wavelet of 0.3 gPGA=  and 1.33 secET =  is used as 
bedrock excitation. 
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Figure 4.20   Moment – vertical displacement curves of a rigid footing on elastic soil under earthquake 
shaking and comparison to the static response. A Ricker wavelet of 0.3 gPGA=  and 1.33 secET =  is 
used as bedrock excitation. 



Chapter 4: Finite element analysis of uplifting foundation  

Apostolou, doctoral dissertation 2011    
 

126

-0.2

-0.1

0

0.1

0.2

-0.2 -0.1 0 0.1 0.2

w
b

 :
m

θ: rad

E = 100 MPa

Earthquake response

Static response

Rigid soil boundary

-0.2

-0.1

0

0.1

0.2

-0.2 -0.1 0 0.1 0.2

w
b

 :
m

θ: rad

E = 20 MPa

Earthquake response

Static response

Rigid soil boundary

 

Figure 4.21   Vertical displacement – rotation curves of a rigid footing on elastic soil under earthquake 
shaking and comparison to the static response. A Ricker wavelet of 0.3 gPGA=  and 1.33 secET =  is 
used as bedrock excitation. 
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4.4 UPLIFT on INELASTIC SOIL 

4.4.1 Preliminary analysis – Validation of soil models 

The failure mechanism of a rigid strip footing resting on a cohesive soil under central vertical loading 

is illustrated in Fig. 4.22 (model v.03). In the numerical computation of bearing capacity the 

kinematic/hardening soil model was utilised. A displacement-controlled loading was applied at the 

centre of the footing and eventually an ultimate load of about 550 kN was computed. As shown in Fig. 

4.22, a good approximation to the theoretically predicted slip lines (white dashed line) was obtained. 

Also, the ultimate load of 550 kN is close to the analytical Prandtl’s solution which gives 

( ) ( )2 514 kPa  = 50 kPau u uN As sp= + = .  

 

Figure 4.22   Failure mechanism of a rigid strip footing on a cohesive soil under central vertical 
loading: Finite element plane strain analysis and comparison to the theoretically predicted slip lines 
(white dashed line). 

 

45o 45o

90o 90o



Chapter 4: Finite element analysis of uplifting foundation  

Apostolou, doctoral dissertation 2011    
 

128

The computed failure mechanism of a foundation in the general case of a combined loading 

( )M Q N- -  over cohesive soil is presented in Fig. 4.23. The computed response is in good 

agreement with the theoretical prediction of Salencon and Pecker (1995).    

Without foundation uplift With foundation uplift

δ

F F

δ

Ω
Ω

 

Figure 4.23   Failure mechanism of a rigid strip footing on a cohesive soil under eccentric inclined 
loading: Finite element plane strain analysis and comparison to the theoretical mechanism (Salencon & 
Pecker, 1995). 

Comparison of the soil constitutive models 

A fundamental comparative study is presented next to highlight the effect of soil constitutive 

modelling on the foundation response. Nonlinear behaviour of soil is approached by: (a) the elastic – 

perfectly plastic model, (b) the nonlinear kinematic/isotropic model. In the latter two different values 

of the yield stress 
0

s  are employed: (a) max0
/10s s=  and (b) max0

/3s s= . A uniform distribution 

of the elastic modulus and the undrained strength ( 100 MPaE =  and 50 kPaus =  respectively) is 

considered throughout soil medium according to model v.03 (Fig. 4.5). 
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Initially, a monotonic displacement-controlled vertical loading is applied at the foundation midpoint, 

which is gradually increasing up to failure. An ultimate load of 550 kN  is calculated with both 

methods. This value is consistent to the analytical estimation according to Prandtl’s theory 

( )2 514 kPaus Ap+ = . Nevertheless, Mohr-Coulomb model provides a more stiff backbone curve 

with an insignificant hardening behaviour after initial yield as shown in Fig. 4.24a. This is a result of 

perfectly plastic, post-yield behaviour. On the other hand, implementation of the kinematic hardening 

model leads to a softer behaviour which can be fitted by a log-type curve. From Fig. 4.24a also, it is 

clear that the yield stress of the kinematic model has a minimal effect on the backbone curve. Similar 

curves have been computed for a very soft soil profile ( )10 MPaE =   as plotted in Fig. 4.24b. 
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Figure 4.24   Monotonic curves for vertical loading extracted from two different models for nonlinear 
soil behaviour: (1) elastic – perfectly plastic model, and (2) von Mises failure criterion with 
isotropic/kinematic hardening law. 

In Fig. 4.25a the M q-  curves are plotted for horizontal monotonic loading (displacement-

controlled) under a constant vertical load of 100 kN . In Fig. 4.25b the same curves are plotted, 

zoomed in the small-displacement region. Similar conclusions to those concerning vertical loading can 

be drawn. It is worthy of note that the computed (from both models) ultimate moment of about 

80 kNm  can be approximated by closed-form equation of limit analysis 

( ) ( )1 100 1 1 100 514uM Nb N N= - = ´ - . 
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Figure 4.25   Monotonic curves for moment loading extracted from two different models for nonlinear 
soil behaviour: (1) elastic – perfectly plastic model, and (2) von Mises failure criterion with 
isotropic/kinematic hardening law. 

Cyclic behaviour of the foundation under a Ricker pulse-type excitation at the seismic bedrock 

( )0.33 sec, 0.2 gET PGA= =  is investigated next. The results are plotted in Fig. 4.26 in the form of 

the foundation moment M  and rigid-body displacements ,bw q  calculated from: (a) the Mohr-

Coulomb elastoplastic model, (b) the kinematic hardening model. A good agreement between the two 

models is obtained in terms of the moment-rotation loops. The elastoplastic model though is not 

sufficient enough to provide accurate estimates of the cyclic (accumulative) foundation settlement. A 

harmonic excitation is also employed to compare the two models and the resulting loops are presented 

in Fig. 4.27. From the results of both analyses it is derived that the M-C elastoplastic model 

underestimates the additional cyclic settlement of the foundation by a factor of two (see Fig. 4.27). 
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Figure 4.26   Foundation cyclic behaviour under a Ricker pulse-type excitation 
( )0.33 sec, 0.2 gET PGA= = : (1) elastic – perfectly plastic model, and (2) von Mises failure criterion 

with isotropic/kinematic hardening law. 
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Figure 4.27   Foundation cyclic behaviour under a long-period harmonic excitation 
( )1.00 sec, 0.4 gET PGA= = : (1) elastic – perfectly plastic model, and (2) von Mises failure criterion 

with isotropic/kinematic hardening law. 

4.4.2 Monotonic response 

As for the study of elastic soil, rocking with uplift under static conditions is investigated first. The 

system configuration of Fig. 4.5a is revisited (model v.01). In addition to the ‘elastic soil’ problem, the 

rocking response is also affected by the limited strength of soil material. The soil strength parameter 

can be implemented to the ultimate load against vertical loading uN  or in a normalised form, to the 
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load factor / uN Nc=  (i.e. the inverse of the factor of safety against vertical loading). In the first step 

the vertical (gravitational) load is applied through the mass centre (symmetric loading). Then a 

gradually increasing horizontal displacement d  is applied at the mass centre up to a maximum value of 

max bd =  (antisymmetric loading). For a sufficiently slender structure the horizontal translation of the 

footing bu  is negligible compared to d  and accordingly, at the moment that maxcmu bd= = , the 

footprint of the mass centre has reached the foundation edge. Evidently, critical overturning has 

already occurred at this loading point. The displacement-controlled loading at the mass centre is 

restrained by a horizontal shear force Q  and an overturning moment M  imposed to the foundation 

by the supporting soil so that static equilibrium is attained. The rocking rotation q  and the foundation 

moment M  can be computed again from Eqs 4.1 and 4.2. Alternatively the foundation moment M  

can be calculated by integrating soil pressures over the contact interface (Eq. 4.3). 

The half-width of the effective footing b  is calculated at each increment through Eqs 4.4. 

Unlike the elastic soil case, during rocking without uplift, the rotation pole does not lie along the 

midpoint axis of the footing. It starts moving towards the unloading corner right after the onset of 

antisymmetric loading. Depending on the load factor, c , the rotation pole may shift during uplift 

either towards the loading or the unloading corner. In any case the incremental vertical displacement 

bwd  can be calculated from Eq. 4.5. 

Contact pressures 

The soil-structure configuration of model v.01 (Fig. 4.5a) with soil modulus of elasticity  

( )20 MPa 7 MPao oE G= =  is revisited to compute p w-  curves along the foundation base. An 

ultimate shear strength 100 kPaus =  is also introduced leading to an ultimate vertical load 

1000 kNuN @ . 

In the graphs of Fig. 4.28 the development of contact pressures is plotted for the interface nodes from 

the left edge towards the midpoint (red circles) in comparison with their equidistant nodes on the 
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right (solid black lines). Initially, a vertical load is applied to the footing through the mass centre, 

gradually increasing to reach gravitational load of 500 kN . During this step, the distribution of the 

contact pressures along the interface is symmetrical to the midpoint and can be validated with the 

elastic medium solutions available in literature (Sadowsky, 1928) as shown in Fig. 4.29. These soil 

reactions must be in equilibrium with the external load, and therefore integration along the foundation 

should lead to the gravitational load N . In the p w-  curves of Fig. 4.28 this step is represented by 

the linear branch determined by the points of rest ( )0p w= =  and full loading 

( )/ / 0.025 mv vw p k N K= = = . As symmetrical nodes are represented on each graph, their load-

displacement curves are identical during this phase. Unlike the conventional winkler modelling, the 

stiffness vk  is not uniform along the foundation, but increases close to the edges. In the succeeding 

step, a gradually increasing horizontal load is applied at the mass centre. The overturning moment 

resulted from the imposed displacement generates additional soil pressures and differential 

settlements. Hence, this antisymmetric loading separates the contact interface to the loading side (on 

the right of the midpoint) and the unloading side (on the left of the midpoint). Along the loading side 

soil pressures increase at a steeper rate determined by mk . Likewise, for the unloading side soil 

pressures gradually reduce at the same rate until they drop down to zero. Interestingly, at this point 

the vertical displacement has not become zero as well (as the conventional winkler model predicts) but 

has converged to a residual value. Evidently, uplift is engaged right after the contact pressure of the 

left corner node becomes zero. As the separation zone is expanding towards the midpoint, the 

unloading area is shifting rightwards. For the contact pressures on the foundation area remaining in 

contact with soil,  an upperbound exists now beyond which, unloading initiates. 
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Figure 4.28  p w-  curves of a foundation on elastoplastic soil ( )100 MPa, 0.5oE c= =  during: (a) 

pure vertical load, (b) displacement-controlled horizontal load at the mass centre. 
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Figure 4.29  Distribution of contact pressures on the foundation computed with finite element 
analysis: (1) under pure vertical loading, (2) at incipient uplift, (3) at ultimate moment, and (4) at the 
declining branch. 

Load-displacement curves 

A rigorous approach of the static overturning moment about the foundation midpoint as a function of 

the rocking rotation for a rigid foundation allowed to uplift on elastic soil is depicted in Fig. 4.30. 

When an undeformable soil is regarded, at incipient uplift the moment instantaneously climbs from 

zero up to the ultimate value uM Nb= . From this point on, the moment is gradually decreasing due 

to the amplifying ( )P d-  effects and eventually drops down to zero when the rocking rotation reaches 

the critical value /c b hq = . On the other hand, in the full-contact regime the soil-foundation stiffness 

is kept constant and therefore the moment is a linear function of the rocking angle. It is concluded that 
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in case of deformable supporting soil and a foundation allowed to uplift, the moment–rotation curve is 

bounded by the afore-mentioned limiting curves. This curve comprises: (a) a linear branch from zero 

up to the point where uplift initiates, (b) a softening branch to the ultimate moment capacity point, 

where the soil-foundation rocking stiffness decreases due to the gradually amplifying uplifting 

mechanism, and (c) a declining branch which is dominated by the ( )P d-  effects and eventually leads 

to the overturning failure of the foundation at the critical angle cq  (Fig. 4.30). 

In the full-contact regime the moment is a linear function of rocking rotation and the rocking stiffness 

is calculated analytically from the afore-described solutions of the literature (e.g. Gazetas, 1991). 

Uplift initiates for a moment of /2Nb . This value for the uplifting moment is also extracted from the 

parametric study of Crémer et al. (2002). 
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Figure 4.30   Moment – rotation curves of a rigid strip footing on inelastic (soft and medium) or rigid 
soil. In the deformable soil the vertical load factor is 0.5c= . 
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Figure 4.31   Moment – rotation curves of a rigid strip footing on inelastic soil for different values of 
c  and comparison to the rigid soil case. 
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Figure 4.32   Moment – vertical displacement curves of a rigid strip footing on inelastic soil for 
different values of c  and comparison to the rigid soil case. 

Coupling of foundation displacements and rocking angle 

+++ 



Chapter 4: Finite element analysis of uplifting foundation  

Apostolou, doctoral dissertation 2011    
 

139

-0.1

-0.05

0

0.05

0.1

0 0.05 0.1 0.15 0.2

w
b:

m

θ: rad

χ = 0.5 χ = 0.7

χ = 0.2 χ = 0

 

Figure 4.33   Coupling of vertical displacement – rotation of a rigid strip footing on inelastic soil for 
different values of c  and comparison to the rigid soil case. 

Rotation pole 

The exact positioning of the rotation pole during rocking vibrations is of great importance as it 

governs the distribution of soil pressures. When a strip footing is rocking in full contact with elastic 

soil, the pole of rotation lies on the interface midaxis. For a sufficiently slender structure the 

translational mode can be neglected and the pole is located constantly at the interface midpoint. In any 

case for the projection of the pole on the footing interface it holds 0px = . On the other hand, in case 

of a rigid soil the pole of rotation jumps from the midpoint to the corner of the footing as rocking 

initiates (Fig. 4.34). In the general case of rocking with uplift on a compliant soil, the pole departs 

from the midpoint right after uplift onset moving towards the corner point. The stiffer the supporting 

soil the more rapid this transition is (Fig. 4.34).    
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Figure 4.34   Shift of the rotation pole along the foundation during rocking for different levels of the 
capacity factor c . 
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Figure 4.35   Reduction curves of the contact area (effective footing) during uplift for different levels 
of the capacity factor c . 

4.4.3 Earthquake response 

The significance of uplifting and soil inelasticity on the seismic response of the slender structure of 

Fig. 4.5 is explained in Figs 4.36 and 4.37. Seismic excitation in the form of a long-period Ricker 

pulse (TE = 2.2 sec, PGA = 0.20 g) is applied at the bedrock and is propagated through soil to 

produce a free-field “input motion” of a dominant period TE = 1.8 sec and PGA = 0.34 g. Such a 

Ricker-type excitation represents long-period pulses that are often  attributed to near-source rupture-

directivity effects.  

The response is highlighted in terms of M-θ and M-w hysteresis loops (Fig. 15), as well as time-

histories of rotation θ, settlement w, and acceleration Acm at the superstructure (Fig. 16). Two cases 

are considered : 

• a “light” weight structure : N = (1/4) Nu = 1000 kN, corresponding to χ = 0.25 

• a “heavy” weight structure : N = (3/4) Nu = 3000kN, corresponding to χ = 0.75 

Several conclusions may be drawn from Figs 4.36 and 4.37: 
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• For the light structure : The initial loading cycle follows the monotonic pushover M–θ curve. 

Upon unloading after a small excursion in the descending branch of the monotonic curve, the path 

follows with small deviations the original monotonic curve. This is evidence of reversible behaviour � 

the result of nonlinearly elastic uplifting response. However, after a substantial excursion into the 

descending branch unloading departs slightly from the virgin curve, as soil inelasticity is “activated” 

due to the large concentration of the applied normal stress when uplifting reduces substantially the 

area of contact. 

• For the heavy structure: The departure of all branches of loading–unloading–reloading cycles 

from the monotonic curve is far more substantial � apparently the result of strongly inelastic soil 

behaviour as the bearing capacity failure mechanisms (left and right) are fully “activated” in this case. 

• The moment-settlement curves (M–w) reflect the above M–θ response, with the curve of the 

light-weight case showing the smallest deviation from the monotonic curve, and of the heavy weight 

the largest.   

• From a design perspective, soil-foundation-structure interaction (SFSI) plays a beneficial role 

in reducing the acceleration ACM at the centre of mass of the superstructure.  This reduction is much 

greater in the heavy-load case, as result of significant soil inelasticity induced by the rocking 

foundation (“inertial” nonlinearities). 

• The “penalty” of the heavily loaded foundation is to sustain substantial additional vertical 

settlements, ΔW (of about 20 cm) ; by contrast the lightly-loaded foundation ends-up with the same 

settlement as its original static settlement, w � wo � 5 cm. 

• Particularly significant, although somewhat coincidental, is the very small residual rotation in 

both cases.  This is due to the largely symmetric nature of the excitation, as a result of which the 

heavily-loaded foundation develops “left” and “right” bearing-capacity failure mechanisms. The 
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resulting two-sided inelastic deformations lead to a symmetric downward displacement (: Δw) with 

only  a minor residual rotation Δθ. 

1)  N = 1000 kN / m    (FS = 4)                        2)  N = 3000 kN / m    (FS = 1.3)
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Figure 4.36   M q-  and M w-  curves for the soil-foundation system of Fig. 4.5. 
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Figure 4.37   M q-  and M w-  curves for the soil-foundation system of Fig. 4.5. 

 

4.5 SIMULATION of CENTRIFUGE EXPERIMENT 

In the framework of the ‘QUAKER’ research project a series of centrifuge tests have been performed 

at LCPC to investigate a building with a slenderness ratio of two resting on clay under monotonic and 

cyclic loading. Ultimate capacity and permanent deformation of the foundation have been recorded 

and discussed. Nonlinear finite element modelling of the experimental tests highlights the effects of 

the problem parameters on the foundation response. In this series of experiments, a 100x100 mm2 

footing (80x80 mm2 in few cases) over soft saturated clay is submitted to (a) purely vertical, (b) 

monotonic horizontal and (c) cyclic horizontal loading. To this end, a servo-controlled actuator was 
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used to operate as displacement-controlled for the static tests and force-controlled for cyclic loading. 

The tests were performed under a centrifugal acceleration of 100 g meaning that a scale of 1/100 

should be applied to derive the prototype model. Horizontal loading is applied to the structural centre 

of gravity at a height of 100 mm above the foundation level leading to a height-to-width ratio of two. 

Two values of the structural dead weight were chosen to investigate the influence of the vertical load 

on the rocking response. Principally, a building with a dead weight of 1284 t (for test Tub3 - T07) or 

1370 t is implemented, corresponding to a heavily-loaded foundation (M1). A building with a dead 

weight of 580 t is also used corresponding to a lightly-loaded foundation (M2). The former gives a 

vertical loading ratio of χ = N/Nu = 0.6 whereas for the latter it is χ = N/Nu = 0.26. Soil material used 

in the experiments is saturated kaolin Speswhite clay at a water content of about 42 % and density of 

about 17 kN/m3. The total depth of the soil sample inside the container is 263 mm corresponding to a 

soil stratum width of 248 mm. Each container has been prepared by consolidation under stress in lab 

with three or four successive layers of clay. Cone Penetrometer tests were performed at 1 g before 

consolidation in the centrifuge, and also in-flight after reconsolidation and just before loading the 

structure. Shear vane tests were also carried out at several points to estimate su. Profiles of su with 

depth were determined using CPT and well-established correlation between qc and su measured in-

flight on Speswhite clay (Garnier, 2001): 

/ 18.5c uq s =  [4.14] 

Geometry and instrumentation of the model utilised at the centrifuge tests are shown in Fig. 4.38. 
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Figure 4.38   Loading device (left) and deformed position of model M2 after loading (right). 

4.5.1 Loading program 

Within the framework of the Quaker project the following loading conditions have been applied 

during the centrifuge experiments: 

 monotonic, displacement-controlled vertical loading to failure (determination of vertical 

bearing capacity),  

 monotonic horizontal loading to failure (with constant vertical dead weight either M1 or M2). 

The load is always applied at the centre of gravity, regardless of settlement or rotation,  

 cyclic horizontal loading at the gravity centre, under self weight (with and without a sand layer 

below the footing). The amplitude of the displacement-controlled loading is 0.4 mm (0.4 m in 

prototype dimensions) and the driving frequency ranges between 0.10 Hz and 0.16 Hz. 

The list of the loading tests performed is presented in chronological order in Table 4.3 together with 

the values of the ultimate capacity. 



Chapter 4: Finite element analysis of uplifting foundation  

Apostolou, doctoral dissertation 2011    
 

147

Table 4.3  Loading program of the centrifuge tests and ultimate load 

Tub no Test Foundation (mm x mm) Loading sequences 
Ultimate load 

(MN) 
Tub 1 T01 8 x 8 Vertical static (DC) 10 

 
T02 10 x 10 

Vertical static (DC) 
(cancelled) 

- 

Tub 2 T03 8 x 8 Vertical static (DC) 16.5 
 T04 10 x 10 Vertical static (DC) 24 

Tub 3 T05 10 x 10 Vertical static (DC) - 
 T06 10 x 10 Vertical static (LC) 22 
 T07 10 x 10 - Building M1 Horizontal static (DC) 1.4 

Tub 4 T08 10 x 10 - Building M1 Horizontal static (DC) 1.2 
 

T09 10 x 10 - Building M1 
Horizontal static (DC) 
Horizontal cyclic (DC) 

1.3 
2.0 

 T10 
10 x 10 - Building M1 

Horizontal static (DC) 
Horizontal cyclic (DC) 

- 

Tub 5 T10 
10 x 10 - Building M1 

Horizontal static (DC) 
Horizontal cyclic (DC) 
Horizontal cyclic (LC) 

- 

 T11 10 x 10 - Building M2 Horizontal cyclic (LC) - 
Tub 6 T12 10 x 10 - Building M2 Horizontal static (DC) 0.75 

 
T13 

10 x 10 - Building M1 
(+sand layer) 

Horizontal cyclic (LC) - 

Tub 7 T14 10 x 10 - Building M1 Horizontal static (DC) - 
 T15 10 x 10 - Building M2 

(+sand layer) 
Horizontal cyclic (LC) - 

Prior to lateral loading, preliminary displacement-controlled tests have been performed to estimate 

the vertical bearing capacity of the foundation for the two structural configurations (tests T01 to T06). 

Due to the log-type shape of the vertical load-settlement curve no clear failure point could be 

identified. To overcome this, two ‘conventional’ failure criteria were established for settlement level 

of 4.5 mm and 10 mm. On the other hand, horizontal load-displacement monotonic curve after initial 

yielding tends to a horizontal line determining the lateral load capacity of the foundation. Ultimate 

loads in horizontal and vertical loading direction are presented in Table 4.3. 

4.5.2 Finite element simulation 

A series of two-dimensional finite element analysis was performed to simulate the centrifuge 

experiments. The prototype model has been implemented in the numerical study so that all 

dimensions at the centrifuge model have been properly scaled up. A lumped-mass structure with a 
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square footing (10x10m2) is considered to represent the building. The mass point located at a height 

of 10 m above the foundation level is connected to the foundation with a (rigid) beam element so that 

no flexural deformation of the superstructure is permitted. Horizontal loading is applied at this level. 

Rigid beam elements have been also utilised to prevent foundation mat deformations. The rigid 

boundary at the bottom is placed at a depth of 25 m below the foundation level. Nonlinear soil 

behaviour is described with the above discussed nonlinear constitutive model which incorporates the 

von Mises yield criterion combined with an isotropic and kinematic hardening model in the post-yield 

domain. This model is most suitable for the analysis of the dynamic behaviour of cohesive soils under 

undrained conditions. Some of the analyses were repeated by utilising the elastic–perfectly plastic 

Mohr-Coulomb model. Linear undrained strength profiles were estimated from in-flight CPT results 

in association with Eq. 4.14 as presented in Table 4.4. These profiles have been utilised in the two-

dimensional finite element analysis. The favourable effect of vertical loading to soil strength 

underneath the foundation has been taken into account by increasing the values of su at surface, up to 

su(B/4). Due to lack of experimental data for the soil stiffness, Young’s modulus at low deformations 

is considered as a linear function of the undrained shear strength. Different formulae are implemented 

to estimate the soil stiffness during horizontal and vertical direction. 

Table 4.4  Linear distributions of the undrained strength with depth based 
on the CPT results at 100g. These values of su have been implemented in 
the finite element analysis 

Test Undrained shear strength (kPa) Notes 

Tub1 T01 12.5 3.24 us z   

Tub2 T03/T04 8.9 1.74 us z   

Tub3 
T06 18.5 4.24us z   Profile b 

T07 7.6 2.64us z   Profile c 

Tub4 T09 6.4 3.65us z    

Tub6 T012 5.6 5.87 us z    

A typical comparison of the numerical and the experimental vertical load-settlement curve (tub3 test) 

is presented in Fig. 4.39. Upper and lower bound distributions of su from tub3 (profiles b and c 

respectively) have been utilised in the numerical simulation. Both numerically computed backbone 
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curves capture the initial stiffness and the hardening behaviour (after the yield onset), of the 

centrifuge test. The large-displacement response and the ultimate bearing capacity calculated with 

profile b however are much closer to the centrifuge results. Similar trends for the vertical backbone 

curve are extracted from the simulation of the other tests. The experimental load-displacement curve 

under monotonic horizontal loading (tub3 test) is presented in Fig. 4.40. Both profiles b and c of su 

were used for the numerical interpretation. In this case however, the soil underneath the foundation 

has been strengthened due to the gravitational preloading (12.6 MN). Hence, an increase of the 

undrained strength is considered as shown in Fig. 4.40. A correlation of E = 1200su was adopted for 

the elastic soil modulus. An excellent agreement between the experimental and the numerical results 

is achieved when the profile b is considered. It is also uncovered from the numerical analysis that the 

foundation response is marginally influenced by the contact conditions at the interface (rough or 

smooth). On the contrary, the ultimate horizontal load merely reaches up to 300 kN when the profile 

c is used; a value which is far less than the centrifuge result. 

The foregoing analysis procedure was repeated with profile b, for different values of the initial load N 

varying from near zero to the ultimate value Nu. The horizontal load was obtained (a) at incipient 

yield and (b) at u/B = 0.1. The derived failure envelope in the N-Q space (plotted in Fig. 4.41) can be 

approximated by a parabola with a local maximum at near the half of Nu. This maximum value of the 

shear force reaches merely 1.7 MN which is significantly lower than Asuo = 2.9 MN. The difference 

between the two values is attributed to the interaction in Q-M space in the former case. Furthermore, 

for values of N close to Nu the lateral load at u/B = 0.1 exceeds increasingly the yield load, due to a 

hardening effect. 
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Figure 4.39   Monotonic vertical load-settlement curve calculated with centrifuge experiment (tub3, 
testT06) and comparison with the two-dimensional FE analysis. 
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Figure 4.40   Monotonic lateral load-displacement curve calculated with centrifuge experiment (tub3, 
testT07) and comparison with the two-dimensional FE analysis 

+++ 



Chapter 4: Finite element analysis of uplifting foundation  

Apostolou, doctoral dissertation 2011    
 

151

0

500

1000

1500

2000

2500

3000

0 5000 10000 15000 20000 25000

N : kN

Q
 : 

kN

at u/B = 0.1

at yield point

 

Figure 4.41   Monotonic failure envelope in the N-Q space calculated with two-dimensional FE 
analysis (tub3). For each level of vertical load, the ultimate horizontal force is calculated at incipient 
yield and at u/B = 0.1 

Cyclic horizontal loading at the level of the gravity centre, under a constant vertical load was also 

performed in centrifuge. Typical results of the tub4 test (T09) are presented in Fig. 4.42. Initially, a 

monotonic loading is applied to the structure until a prototype displacement of 0.2 m is obtained. 

Then the building is removed automatically to its initial position. The second (dynamic) loading phase 

is subdivided in three displacement-controlled cyclic sequences: (a) 10 cycles at 0.1 Hz with an 

amplitude of 0.4 mm (0.04 m in prototype dimensions), (b) 10 cycles at 0.16 Hz with an amplitude of 

0.4 mm, and (c) 9 cycles at 0.16 Hz with an amplitude of 0.4 mm. After cyclic loading, a monotonic 

loading is applied to re-calculate the ultimate horizontal force. In this step the maximum force has 

increased from 1.2 MN to 2.1 MN which is attributed to the preceding cyclic loading. The 

interpretation of tub4 cyclic test is also presented in Fig. 4.42. Finite element analysis captures both 

the initial and the residual (increased) shear force capacity of the foundation. Also dynamic numerical 

analysis provides the same maximum force with the experimental value (1.8 MN). In the numerical 

loops however an isotropic behaviour is revealed in the loading and unloading directions. 
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Figure 4.42   Backbone Q-u curves before and after cyclic loading (tub4) from the centrifuge (left) 
and numerical simulation (right) 
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Chapter 5: 

Foundation capacity and permanent displacements under 

earthquake loading 

 

5.1 INTRODUCTION – DESCRIPTION of PROBLEM 

One of the most important issues in the design of a shallow foundation is to estimate the ultimate 

capacity under combined vertical, horizontal and moment loading. Under a statically applied central 

vertical load bearing capacity failure of a shallow foundation occurs when the supporting soil fails in 

shear. This may involve either a general failure mechanism or punching shear failure. The former is a 

sudden, catastrophic type of failure and usually occurs in soils that exhibit brittle stress-strain 

behaviour. The latter develops in soils that exhibit compressible, plastic stress-strain behaviour and is 

accompanied by progressive downward movement or punching of the foundation into the underlying 

soil (Poulos et al., 2002).  

Under a combined vertical, horizontal, and moment loading, foundation failure may also occur by 

horizontal shear failure of soil (sliding) or excessive rotation (overturning). Slender structural systems 

are most vulnerable to the latter. There are two distinct types of overturning failure depending on the 

level of vertical loading, as outlined in Chapter 4. Hence, overturning of a lightly-loaded foundation is 

associated with large amplitudes of uplift. In this case mobilisation of the moment capacity under 

dynamic conditions does not necessarily lead to overturning. Depending on the dynamic parameters of 

the structural system and the kinematic characteristics of ground motion the foundation may safely 

undergo rocking after the ultimate moment has been exceeded or eventually overturn. It is worthy of 

note that structural displacements are almost reversible if toppling is prevented. On the contrary, for a 

heavily-loaded foundation overturning is attributed to a bearing capacity type of failure. Mobilisation 
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of moment capacity implies permanent displacements which are amplified due to the cyclic nature of 

loading. In the context of geotechnical design, serviceability issues demand the control of these 

cumulative foundation displacements. 

The bearing capacity problem of a shallow foundation is revisited here with emphasis given on the 

effect of the dynamic and cyclic characteristics of the (transient) earthquake motion. In this respect a 

nonlinear finite element method in the time domain is utilised. 

 

5.2 AVAILABLE BEARING CAPACITY SOLUTIONS 

5.2.1 Conventional bearing capacity method 

The static bearing capacity of a shallow foundation under central vertical loading was initially 

calculated by L. Prandtl, back in 1921. In his pioneering work, Prandtl utilised the method of stress 

characteristics to estimate the ultimate vertical load of a strip footing on weightless soil. Provided that 

soil medium is described as homogeneous half-space under undrained conditions ( ), 0uc s f= =  the 

ultimate vertical soil reaction up  is: 

( )2u up sp= +  [5.1] 

After Prandtl’s work, analytical research on the bearing capacity problem was based on the upper and 

lower bound theorems of limit analysis. According to this procedure the ultimate load can be calculated 

by prescribing either a statically admissible stress field (lower bound theorem) or a kinematically 

admissible velocity field (upper bound theorem). It was found that Prandtl’s slip line method gives the 

exact solution for a strip footing on cohesive undrained soil (Drucker, 1952). 

Terzaghi (1943) introduced the general bearing-capacity factors cN , Ng  and qN  to calculate the 

bearing capacity of a soil described by strength parameters c  and f  with the following formula: 
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1
2u c qp cN B N qNgg= + +  [5.2] 

Where g  is the unit weight of soil and q  is the overburden pressure. This empirically-based method 

is widely applicable in common foundation engineering practice up to nowadays. Notably, for a 

cohesive soil under undrained conditions it yields 2cN p= +  and 0N g = . If the overburden pressure 

is neglected, Terzaghi’s method leads to Prandtl’s analytical solution (Eq. 5.1).  

Additional empirical factors have been appended to the Terzaghi formula (Meyerhof, 1953; Vésic, 

1975) to account for the effects of (a) the foundation shape and (b) load inclination and eccentricity 

leading to the following equation: 

1
2u c c c c q q q qp cN i R s B N i R s qN i R sg g g gg= + +  [5.3] 

The factors i  and R  stand for the inclination and eccentricity of the load whereas s  accounts for the 

foundation shape. Some of the most common empirical correlations of the bearing capacity factors are 

plotted in the graphs of Figs 5.1 and 5.2. 
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Figure 5.1  Bearing capacity factors of strip footing for central, vertical load as a function of the 
friction angle f . Comparison of classical methods against numerical (finite difference) results 
(Apostolou et al., 2006). 
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Figure 5.2  Modification factors for inclination, eccentricity of loading and shape of the footing 
(Apostolou et al., 2006). 

5.2.2 Static interaction curves in the N – Q – M loading space 

Bearing capacity factors have been established in common engineering practice as a simple tool to 

estimate the ultimate loading of a shallow foundation. It is broadly accepted however, that in some 

cases such as for foundations subjected to eccentric inclined loads, the existing empirical bearing 

capacity factors with the proper correction factors attached may not provide reliable failure criteria. 

For example in case of undrained homogeneous clay the calculated ultimate load may be 

underestimated by more than 25% compared to the exact collapse solutions. On the other hand for 
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undrained clay with significant strength gradient with depth these factors may become completely 

unreliable (Ukritchon et al., 1999). 

The accuracy of ultimate load calculations is of great importance particularly for foundations under 

large lateral and moment loading such as offshore structures (Ukritchon et al., 1999; Bransby and 

Randolph, 1997). In this respect much of the recent research has been focused on the development of 

more reliable failure criteria for general planar loading conditions ( ), ,N Q M . It has been found that 

for any foundation there is a unique closed surface in the generalised loading space , ,N Q M  

containing all possible combinations of loads that would cause failure of the foundation. This surface 

defines a failure envelope representing the bearing capacity of the foundation under combined 

loading. It is calculated analytically by a function f  of the foundation loads , ,N Q M : 

( , , ) 0f N Q M =  [5.4] 

In the special case of a purely vertical, horizontal or moment loading Eq. 5.4 must satisfy the ultimate 

loads ,u uN Q  and uM  respectively. The failure envelope is independent of load path and encloses all 

possible combinations of loads which would cause only elastic deformations. It is also independent of 

soil characteristics (e.g. cohesion, inhomogeneity) and footing geometry (Butterfield and Gottardi, 

1994; Ukritchon et al., 1998; Taiebat and Carter, 2002) and reasonably has prevailed over the 

conventional Terzaghi method. 

Although the hypothesis of a unique failure surface has originally been formulated by Roscoe and 

Schofield back in 1957, its experimental validation came merely in 1979 by Butterfield and Ticof 

through small-scale tests with footings on sand. In this study it was uncovered that the combinations 

of vertical load N  and moment M  that cause failure to the footing lie on a simple parabolic curve. 

Additionally it was shown that bearing capacity in the N Q-  plane may also be represented by similar 

parabolic-shaped failure loci. A simple fit of these curves was given by Butterfield and Gottardi 

(1994): 
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( )h u
u

N
Q t N N

N
= -  [5.5a] 

( )m u
u

M N
t N N

B N
= -  [5.5b] 

where ht  ( )mt  is the slope of the N Q-  ( )N M-  parabola at the intersection points with the 

horizontal axis (i.e. at the origin and at uN ). The failure envelopes of Eqs 5.5 can be rewritten in a 

non-dimensional formulation: 

1h
u u u

Q N N
t

N N N

æ ö÷ç ÷= -ç ÷ç ÷çè ø
 [5.6a] 

1m
u u u

M N N
t

N B N N

æ ö÷ç ÷= -ç ÷ç ÷çè ø
 [5.6b] 

Normalised loads ˆ / un N N= , ˆ / uq Q N= , and ˆ / um M N B=  can be defined in accordance with Eqs 5.6 

leading to the following simplified formulas (Fig. 5.3):  

( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ1         and        1h mq t n n m t n n= - = -  [5.7] 

For very small values of vertical load N  it yields /ht N Q@  and / 0.5 /mt M NB M Nb@ = . Evidently, 

ht  represents the static coefficient of friction. Also, the coefficient mt  must be always smaller than 0.5 

given that the moment capacity of the foundation cannot exceed the rigid soil capacity ( ),u rigidM Nb= . 

Actually, due to elastic soil behaviour at this level of loading ( )ˆ / 0un N N=   it can be assumed that 

the moment capacity approaches the rigid soil capacity and eventually mt  is close to 0.5. Furthermore, 

the maximum horizontal and moment capacity is obtained at ˆ / 0.5un N N= = . In combination with 

Eqs 5.7 this gives the normalised maximum horizontal and moment loads maxˆ 0.25 hq t=  
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and maxˆ 0.25 mm t= . Based on experimental results Butterfield and Gottardi (1994) have proposed 

maxˆ 0.125q =  and maxˆ 0.1m =  and correspondingly 0.5ht =  and 0.4mt = .  

Houlsby and Puzrin (1999) utilised the lower bound theorem of limit analysis to study the bearing 

capacity problem for a shallow footing on undrained cohesive soil. They derived a closed-form 

solution for the failure envelope in the N M-  plane: 

( ) 2
2 1u

N M
s

A NB
p

æ ö÷ç= + - ÷ç ÷÷çè ø
 [5.8] 

Given that the ultimate central vertical load is ( )2u uN s Ap= +  and taking 0.5mt =  the failure 

envelope of Eq. 5.8 reduces to that of Eq. 5.6b. It is also interesting that Eq. 5.8 can be rewritten after 

introducing the inverse of the safety factor ( )/ / 2u uN N N s Ac pé ù= = +ê úë û  in the following simple form: 

( )1M Nb c= -  [5.9] 
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Figure 5.3  Failure envelope in the non-dimensional N M-  and N Q-  plane for 0.5m ht t= = . 

In recent years, a plethora of centrifuge tests has led to more systematic work focused on the 

prediction of the failure envelopes in the three-dimensional space. Based on these experiments 

together with analytical predictions through advanced plasticity models several analytical expressions 
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of the function f  have been proposed in the literature. For a shallow footing on sand it has been 

shown that the general form of the three-dimensional failure locus is a rugby-shaped closed surface 

with its principal axis coinciding with the N - axis. According to Butterfield and Gottardi (1994) the 

analytical expression of the failure surface in the non-dimensional space ˆ ˆ ˆn q m- -  is: 

( )
2 2

2ˆ ˆ ˆ ˆ
ˆ ˆ2 1

h m h m

q m qm
C n n

t t t t

æ ö æ ö÷ ÷ç ç é ù÷ ÷+ - = -ç ç÷ ÷ ê úç ç ë û÷ ÷ç çè ø è ø
 [5.10] 

where ( ),h mC C t t= . The afore-discussed two-dimensional failure envelopes can be obtained from 

Eq. 5.10. In this way by putting ˆ 0m =  it yields ( )ˆ ˆ ˆ1hq t n né ù= -ê úë û  which is equivalent to the failure 

surface in the N Q-  plane (Eq. 5.7a). Also, for ˆ 0q =  it is derived ( )ˆ ˆ ˆ1mm t n né ù= -ê úë û  corresponding to 

the failure surface in the N M-  plane (Eq. 5.7b).  

 

5.3 LARGE-DISPLACEMENT ANALYSIS of the FOUNDATION CAPACITY 

5.3.1 Simplified analytical modelling at limit state 

A simplified closed-form expression of the  failure locus in the N M-  plane can be obtained with the 

beam-on-winkler-foundation model. In this case a rigid strip footing of width 2b  is supported by 

distributed uncoupled springs with no tensile capacity so that uplift is allowed. Compressional load-

displacement behaviour of each spring is described with the elastic–perfectly plastic law characterised 

by the axial stiffness vk  and the ultimate value up . At first, a small-displacement configuration is 

adopted as illustrated in Fig. 5.4a. Equation of the overturning and the restoring moment at the state 

of limit equilibrium provides: 

( ) ( )( )2 uM b N b pb b b= - = -  [5.11] 
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where bb l=  is the half-width of the effective footing. Provided that 2u uN p b=  it is easy to show 

through Eq. 5.11 that at limit equilibrium it holds: 

l c=  [5.12] 

From Eqs 5.11 and 5.12 it yields that: 

1 1
M

Nb
l c= - = -  

[5.13] 

The latter describes the failure locus in the N M-  plane derived by a beam-on-winkler-foundation 

model. Obviously it is the same with the lower-bound solution for a strip footing on undrained, 

cohesive soil (Eq. 5.9). 

A large-displacement configuration is adopted next (Fig. 5.4b) allowing for P d-  effects to be 

incorporated in the analysis. The rotation of the structural system as monotonic loading increases and 

the accompanying drift of the mass point are taking now into account. In this case equation of the 

overturning and the restoring moment at the state of limit equilibrium provides: 

( ) ( ) ( )cos sin 2 cos sinu u u u uM N b h p b hb q q b b q qé ù é ù= - - = - -ê ú ê úë û ë û  [5.14] 

where ( )u uM Mq q= =  is the rocking angle at limit equilibrium. From Eqs 5.12 and 5.14 the failure 

locus becomes: 

( ) tan
cos 1 1

tan
u u

u
c c

M Nb Nb
q q

q c c
q q

é ù æ ö÷çê ú ÷= - - @ - -ç ÷çê ú ÷çè øë û
 [5.15] 

or in non-dimensional variables: 

0.5 1 u

u u u c

M N N

N B N N

q
q

æ ö÷ç ÷= - -ç ÷ç ÷çè ø
 [5.16a] 
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( )1ˆ ˆ ˆ0.5 1m n n qm
-= - -  [5.16b] 

where c uqm q q=  is the ductility demand of rocking displacements. It is worthy of note that this term 

is dependent on the normalised vertical load n̂  as the angle uq  is a function of N . The ultimate 

rocking response in the large-displacement domain will be further investigated in Chapter 6 in order 

to derive analytical curves of the moment capacity through macroscopic modelling of the soil-

foundation system.   
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Figure 5.4  Schematic of a rigid strip footing at limit equilibrium with and without P d-  effects. 
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5.3.2 Finite element study 

Small-displacement analysis – Comparison with the analytical solutions 

+++ 
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Figure 5.5  Interaction curves in the Q – N space for cohesive soils computed with finite elements and 
comparison with analytical solutions. 

+++ 
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Figure 5.6  Interaction curves in the M – N space for cohesive soils computed with finite elements and 
comparison with analytical solutions. 

Large-displacement analysis 

In principle, a series of static finite element analyses is conducted to derive levels of the moment 

capacity and compare the calculated failure envelopes to the analytical solutions. Unlike the limit-state 

theoretical curves, P d-  effects are now incorporated in the analysis. A homogeneous, cohesive soil 

medium under undrained conditions is considered. The soil-foundation system described with model 

v.01 ( )2 2 m,  5 m,  100 MPa,  100 kPauB b h E s= = = = =  is assumed for the analysis. For this 

configuration, an ultimate vertical load of ( )2 2 100 1028 kNuN p= + ´ ´ =  is predicted. Monotonic 

M theta-  curves are computed for different levels of vertical load by applying a displacement-

controlled loading to the mass point. The results are plotted in normalised values ( )/ ,  /c uM ABsq q  in 

the graphs of Fig. 5.7. The corresponding failure envelope is also portrayed in Fig. 5.7, in normalised 

values / ,  /u uN As M ABs . The upper and lower bound analytical curves (Houlsby and Puzrin, 1999) 

are plotted in the same graph. As expected, the maximum moment is obtained for the vertical load of 

500 kN which is about half the ultimate vertical load (1028 kN). In the normalised form of the derived 

failure envelope this optimum behaviour occurs at ( )/ 2.5 2.57 2 2uN As pé ù= @ = +ê úë û . However, a 
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reduction of the ultimate moment occurs when compared to the analytical values, attributed to P d-  

effects. At this point the reduction of the capacity is about 15 %. Taking into account that in common 

foundation design a value of 0.5c@  is rather typical, it seems that P d-  effects should not be 

neglected in analysis of slender structural systems. The reduction of the moment capacity is further 

amplifying as the vertical loading is heading towards the ultimate value. Remarkably, for values of N  

close to uN  a small ‘bulging’ of the numerical curve is also observed, attributed to the passive forces 

developed behind the footing corner point.  
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Figure 5.7  Monotonic M theta-  curves for different levels of vertical load and the corresponding 
failure envelope, computed with finite elements (P d-  effects are incorporated). Analytical upper and 
lower bound failure curves are also plotted. 2 2 m,  5 m,  100 MPa,  100 kPauB b h E s= = = = = . 
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Figure 5.8  Interaction curves of (i) the moment capacity and (ii) the rocking rotation at the 
mobilisation of capacity, computed with finite elements (P d-  effects are incorporated). Winkler-
based, analytical failure curves with and without P d-  effects are also plotted in the N M-  plane. 

2 2 m,  5 m,  100 MPa,  100 kPauB b h E s= = = = = . 

 

5.4 DYNAMIC MOMENT CAPACITY CURVES 

It is quite often in geotechnical practice to treat the earthquake-induced loading from soil or 

superstructure upon the foundation with pseudo-static mechanism in order to derive estimates of the 

ultimate capacity. However, dynamic rocking of a footing with several significant cycles may lead to 
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substantially higher levels of the moment capacity especially for large values of the vertical load as 

hinted by recent experimental findings (Fig. 5.9). 

**

*  Centrifuge experiments (cyclic loading) at Davis, California.
** Limit-state pseudostatic analysis.

*
*
*

 

Figure 5.9  Failure envelope and experimental failure points on sands in the normalised N M-  plane 
ˆ ˆ,   M VF m F n= =  for / 4.9 mM Q =  (Gajan et al., 2005). 

A series of finite element analyses in the time-domain will try to highlight the effect of the dynamic 

and cyclic nature of earthquake loading on the foundation moment capacity. 

For the analysis purposes the soil-foundation system described by the model v.01 (Fig. 4.5) is assumed 

with undrained shear strength of 50 kPa throughout the soil. The seismic bedrock is merely at the 

depth of 5 m so that any filtration of the excitation frequency components through soil is prevented 

( )4 / 0.1 secs s sT H V= < . Despite the presence of a shallow bedrock, the footing (2 m in width) can 

undergo rocking oscillations as if it was supported on a half-space ( ), 5m ,1.04
sm H m half spaceK K= -@ . A 

Ricker wavelet excitation is applied in the seismic bedrock with a predominant period of 0.33 sec, 

0.67 sec, and 1.33 sec [Ricker nominal frequency ( )Rf  of 2.0, 1.0, and 0.5 Hz respectively]. It is 

considered that these values cover the period range of a typical near–fault pulse–type motion. For a 
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slender system, rocking is the prevailing mode of response and therefore a simplified calculation of the 

eigenperiod can be obtained with the following expression: 

2

2 2b

m m

J Nh
T

K K g
p p= =  [5.17] 

Non-linear response is taking into consideration by adopting the secant foundation stiffness, 

equivalent to the ultimate capacity point, namely ,secm u uK M q= . The secant rocking stiffness and 

the corresponding eigenperiod are depicted in Table 5.1 for different values of vertical load. 

Table 5.1  Equivalent (secant) stiffness and the corresponding eigenperiod in the rocking 
mode for the soil-foundation system of model v.01 ( )50 kPaus = .  

( )kNN  100 200 300 400 

( ),sec MNm/radmK  14900 12300 9400 6200 

( ),sec secmT  0.82 1.28 1.79 2.55 

Three levels of ground shaking have been implemented in the analysis; a weak, a moderate and a 

strong shaking level (PGA : 0.2 g, 0.4 g, and 0.6 g, respectively). For each loading case the ‘dynamic’ 

moment capacity of the foundation is calculated for different values of the gravitational load N  and 

failure envelopes in the N M-  loading space are derived.  

Initially, the moment capacity of the footing is calculated for the short-period (high–frequency) 

excitation 1.33 secET =  and plotted in the graph of Fig. 5.10. In the same graph are also presented: 

(a) the parabolic lower bound solution ( )1M Nb cé ù= -ê úë û  and (b) the linear ‘rigid soil’ failure envelope 

( )M Nb= . For the moderate and strong shaking level, a dynamic over-strength develops which is 

enhanced with the increase of the vertical load. Counter-intuitively, this beneficial dynamic behaviour 
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is highly amplified close to the limiting value of / 1uN Nc= @  where the static ultimate moment is 

approached. On the other hand, for low levels of vertical load the ultimate dynamic response is similar 

with the static curve or even with the ‘rigid soil’ linear curve ( )0c . Only for the weak level of 

ground shaking, the dynamic failure locus plots below the static curve, over most of the range of N .  

Two more Ricker wavelets with a long-duration pulse are utilised, under the same shaking levels. The 

resulting failure envelopes are plotted in the graphs of Fig. 5.10. What is more interesting now is that 

not only the dynamic over-strength is even higher, but also that the results tend to approach the ‘rigid 

soil’ moment capacity, especially for the case of 1.33 secET = . 

The afore-discussed series of finite element analysis is repeated for the soil-foundation configuration 

of model v.02 (see Fig. 4.5). A larger footing ( )9 mB =  and a less slender structure ( )0.388 radcq =  

are now adopted. Moreover soil stiffness and undrained strength are linearly increasing with depth 

( 4.74 30E z= + , 15.7 10us z= + ). Failure loci in the N M-  plane are presented in the graphs of 

Fig. 5.11. It is worthy of note that the short-period excitation of Ricker2.0 demands levels of moment 

substantially lower than the capacity of the foundation. This can be explained by comparing the 

period of this pulse ( )0.33 secET =  with the effective eigenperiod of the structural system (Table 

5.2). The latter ranges from 1.30 to 4.68 sec, meaning that it is in any case essentially higher than the 

predominant period of ground motion. On the contrary, for a long-period excitation of Ricker1.0 

( )0.67 secET =  and especially Ricker0.5 ( )1.33 secET = , mobilisation of the foundation capacity is 

attained even under a weak ground shaking. Interestingly, the dynamic over-strength is limited when 

compared to the model v.01 case and only in the Ricker2.0 case is observed over a wide range of 

vertical load. It is also common in all excitations the minimal effect of the ground shaking intensity on 

the foundation moment which can be roughly attributed to the high flexibility of the structural 

system. 
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Table 5.2  Equivalent (secant) stiffness and the corresponding eigenperiod in the rocking 
mode for the soil-foundation system of model v.01 ( )50 kPaus = .  

( )kNN  100 200 300 400 

( ),sec MNm/radmK  34400 43900 31200 10600 

( ),sec secmT  1.30 1.63 2.36 4.68 

A preliminary explanation for the favourable nonlinear behaviour during dynamic conditions can be 

offered by revisiting the model v.01 case as portrayed in Figs 5.12, 5.13 and 5.14. The maximum 

moment for five different values of N  (from 100 to 500 kN) obtained statically with finite elements 

and with the lower bound solution (Houlsby and Puzrin, 1999) are depicted in Fig. 5.12. In the same 

figure, distributions of contact pressures on the footing (at 0M =  and uM M= ) are presented for 

each loading case. Interestingly, it is confirmed that the theoretical prediction of the bearing capacity 

( ) 2 255 kPau up spé ù= + @ê úë û  is the upper bound of the developed stresses under both vertical and 

moment loading conditions. In the interaction diagram of Fig. 5.12 a dynamic failure envelope due to 

a Ricker-type excitation ( )0.67 sec,  0.40 gET PGA= =  is also plotted. The beneficial role of the 

dynamic nature of loading can be interpreted through the comparison of the distributions of contact 

pressures at uM M= . In any loading case and particularly for values of N  close to ultimate load, the 

dynamic distribution of the contact pressures exceeds the static bearing capacity in the vicinity of the 

pivot point. As the foundation moment is derived from integration of the contact pressures with 

respect to the midpoint, the exceedance of up  provides higher levels of dynamic uM  than the 

statically predicted. Remarkably, for ( )500 kN  0.97N c= =  the dynamic pressure may reach up to 

twice the static bearing capacity at the right corner point of the foundation. Time-histories of the 

contact pressures for this loading case are presented in Fig. 5.14. 
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Figure 5.10  Finite element calculation of N M-  interaction curves under earthquake loading and 
comparison with the static case. The excitation at the seismic bedrock is a Ricker pulse of 

0.2, 0.4, and 0.6 gpga =  and period 0.33, 0.67, and 1.33 secET =  (Ricker 2.0, 1.0, and 0.5 
respectively). 2 2 mB b= = , 5 mh = , 100 MPaE = , 50 kPaus =  (model v.01). 
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Figure 5.11  Finite element calculation of N M-  interaction curves under earthquake loading and 
comparison with the static case. The excitation at the seismic bedrock is a Ricker pulse of 

0.2, 0.3, and 0.4 gpga =  and period 0.33, 0.67, and 1.33 secET =  (Ricker 2.0, 1.0, and 0.5 
respectively). 2 9 mB b= = , 11 mh = , 1.57 10us z= +  (model v.02). 
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Figure 5.12  Failure envelope for a strip footing in the N M-  space calculated with the finite element model and soil pressure distributions at 
different points. 2 2 mB b= = , 5 mh = , 50 kPaus =  (model v.01). 
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Figure 5.13  Failure envelope in the N M-  space calculated with the finite element model (a) for monotonic loading, (b) for seismic loading with a 
Ricker-type excitation ( )0.67 sec,  0.40 gET PGA= = . Contact pressure distributions at different loading points are also presented. 2 2 mB b= = , 

5 mh = , 50 kPaus =  (model v.01). 
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Figure 5.14  Time-histories of soil pressures at symmetric points underneath the footing. 500 kNN = , 2 2 mB b= = , 5 mh = , 50 kPaus =  (model 

v.01). Excitation at the seismic bedrock is a Ricker pulse ( )0.67 sec,  0.40 gET PGA= = . 
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5.5 DYNAMIC UPLIFT CURVES 

During strong seismic shaking, rocking motion of a shallow footing is often associated with large uplift 

from the supporting soil. The uplifting level is higher in case of a lightly-loaded foundation or a 

slender structural system. A simplified estimation for the uplifting level at static overturning 

conditions can be derived from the schematic of Fig. 5.4 which leads to Eqs 5.13 and 5.14. 

A finite element validation of this approximation comes from the static results portrayed in Fig. 5.15, 

for the soil-foundation configuration of model v.01 ( )50 kPaus = .  
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Figure 5.15  Finite element calculation of the effective width under monotonic loading (a) at the 
increment of maximum moment ( )uM M= , (b) at failure ( )0M =  and comparison with the 

elastoplastic Winkler model. 2 2 mB b= = , 50 kPaus =  (model v.01). 

The earthquake-induced uplift of a shallow foundation is investigated for a Ricker-type excitation. In 

Figs 5.16 and 5.17 the width of the effective footing ( )2b  at ( )uM M=  is computed from the afore-

discussed finite element study of the dynamic moment capacity. Depending on the frequency of 

ground shaking, the dynamic failure envelope in the 2 Nb-  plane may be located above or below the 

static linear trend l c= . The divergence of the dynamic from the static failure envelope is enlarged 
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by the intensity of ground shaking. Hence, for a strong shaking ( )0.6 gPGA=  the dynamically-

induced uplift may be substantially lower ( )for 0.33 secET =  or higher ( )for 1.33 secET =  than the 

static prediction. On the other hand, for a weak excitation ( )0.2 gPGA=  the expression l c=  can 

practically describe the uplifting level. 

Slightly different conclusions can be drawn when the soil-foundation system of model v.02 is 

considered. Unlike the model v.01 case, the uplift at ultimate capacity is kept constantly at low levels 

compared to the static, Winkler-based prediction. Furthermore, when the Ricker1.0 and Ricker0.5 

pulses are applied the uplifting response is pretty close to that calculated with pseudostatic finite 

element analysis. Dynamic uplift is even more limited under the high-frequency excitation of 

Ricker2.0 and far less than the static predictions, however such a response is expected as the moment 

capacity is not mobilised in this case. 
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Figure 5.16  Finite element calculation of 2N b-  interaction curves under earthquake loading and 
comparison with the static case. The excitation at the seismic bedrock is a Ricker pulse of 

0.2, 0.4, and 0.6 gpga =  and period 0.33, 0.67, and 1.33 secET =  (Ricker 2.0, 1.0, and 0.5 
respectively). 2 2 mB b= = , 5 mh = , 50 kPaus =  (model v.01). 
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Figure 5.17  Finite element calculation of 2N b-  interaction curves under earthquake loading and 
comparison with the static case. The excitation at the seismic bedrock is a Ricker pulse of 

0.2, 0.3, and 0.4 gpga =  and period 0.33, 0.67, and 1.33 secET =  (Ricker 2.0, 1.0, and 0.5 
respectively). 2 9 mB b= = , 11 mh = , 15.7 10us z= +  (model v.02). 
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5.6 DEVELOPMENT of CUMULATIVE DISPLACEMENTS 

It has been found in the literature from experimental and numerical studies that cyclic rocking motion 

of the foundation may lead to significant accumulation of permanent settlement (Gajan et al., 2005 

among others). This ‘cyclic’ vertical displacement reswd  which is added to the initial (static) 

settlement wo , is primarily sensitive to the vertical load factor c , the footing width, the number of 

cycles, and the frequency content of ground shaking.  

The additional (residual) displacements ( ) or simply resw wd d  computed from a series of finite element 

analyses with the soil-foundation systems of model v.01 and v.02 are summarised and plotted as a 

function of the vertical load in Figs 5.18 and 5.19 respectively. These settlements are also normalised 

to the initial static settlement ( )/w wod  and plotted in Figs 5.20 and 5.21. 

It is revealed that the cyclic settlement is very sensitive to the level of vertical loading. Particularly, for 

a lightly-loaded foundation subjected to rocking vibration ( )1/3c< , the additional settlement is less 

than 1% the width of the footing even under strong seismic shaking. This was expected as under such 

low levels of vertical load uplifting response is prevailing and dynamic displacements ( ),wq  are 

almost reversible. For higher levels of the vertical load however, the additional settlement increases in 

an exponential growth and eventually reaches values of about 3% the footing width or even larger. 

The detrimental effect of the vertical load on the cyclic settlement is amplified when a long-period 

excitation is applied ( )1.33 secET = .  

An interesting way of presenting the cyclic settlement is as a function of the rocking amplitude maxq . 

Gajan et al. (2005) first published a maxwd q-  correlation extracted from a large database of centrifuge 

tests as portrayed in Fig. 5.22. The vertical load factor ( )vFSc=  over all the experiments ranges 

from 3.4 to 9.6 representative of moderately to lightly loaded foundation. All the results of the 
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parametric finite element analyses performed in this study are utilised to correlate the cyclic 

settlement to the rocking amplitude for different levels of c  as illustrated in the graph of Fig. 5.23.  
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Figure 5.18  Finite element calculation of N wd-  interaction curves under earthquake loading. The 
excitation at the seismic bedrock is a Ricker pulse of 0.2, 0.4, and 0.6 gpga =  and period 

0.33, 0.67, and 1.33 secET =  (Ricker 2.0, 1.0, and 0.5 respectively). 2 2 mB b= = , 5 mh = , 
100 MPaE = , 50 kPaus =  (model v.01). 
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Figure 5.19  Finite element calculation of N wd-  interaction curves under earthquake loading. The 
excitation at the seismic bedrock is a Ricker pulse of 0.2, 0.3, and 0.4 gpga =  and period 

0.33, 0.67, and 1.33 secET =  (Ricker 2.0, 1.0, and 0.5 respectively). 2 9 mB b= = , 11 mh = , 
4.74 30E z= + , 15.7 10us z= +  (model v.02). 
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Figure 5.20  Finite element calculation of / oN w wd-  interaction curves under earthquake loading. 
The excitation at the seismic bedrock is a Ricker pulse of 0.2, 0.4, and 0.6 gpga =  and period 

0.33, 0.67, and 1.33 secET =  (Ricker 2.0, 1.0, and 0.5 respectively). 2 2 mB b= = , 5 mh = , 
100 MPaE = , 50 kPaus =  (model v.01). 
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Figure 5.21  Finite element calculation of / oN w wd-  interaction curves under earthquake loading. 
The excitation at the seismic bedrock is a Ricker pulse of 0.2, 0.3, and 0.4 gpga =  and period 

0.33, 0.67, and 1.33 secET =  (Ricker 2.0, 1.0, and 0.5 respectively). 2 9 mB b= = , 11 mh = , 
4.74 30E z= + , 15.7 10us z= +  (model v.02). 
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Figure 5.22  Normalised cyclic (additional) settlements of the foundation from centrifuge experiments 
(Gajan et al., 2005). 
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Figure 5.23  Normalised cyclic (additional) settlements of the foundation from numerical analysis. 
The excitation at the seismic bedrock is a Ricker wavelet. 
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Chapter 6: 

Macroscopic modelling for large-displacement analysis of 

uplifting foundation 

 

6.1 CONVENTIONAL WINKLER MODELLING 

In common SSI analysis procedures, Winkler modelling of soil medium has been found a simple and 

efficient tool because of its ability to incorporate different nonlinear aspects of the rocking behaviour 

at relatively low levels of computational cost. For example, no-tension springs can capture uplifting 

effects at the soil-foundation interface whereas soil yielding can be represented with elastic – perfectly 

plastic springs. In the context of a conventional Winkler model the following postulations are often 

encountered:  

 A unique spring modulus vk  is adopted for any type of loading (symmetric or antisymmetric) 

which is independent of the distance from the mid-point x . Correspondingly, a purely 

vertical or moment loading results to a uniform or triangular distribution of contact pressures 

along the foundation. 

  The rotation pole of the structural system remains fixed at the foundation mid-point even 

after uplift or soil yield initiates. 

 During a clockwise (counter-clockwise) rotation, uplift onsets when the vertical displacement 

at the left edge (right edge) of the foundation becomes zero. 

 P d-  effects are ignored even in the domain of large lateral displacements of the 

superstructure mass centre. 
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 A schematic of a rigid footing resting on a Winkler foundation is shown in Fig. 6.1. Bartlet (1979) 

used a conventional soil model of distributed elastic – perfectly plastic springs to study the rocking 

response of a footing on clay. His considerations on the different states of moment-rotation response 

have been implemented by FEMA guidelines (273/274 documents) in the modelling of shear walls as 

portrayed in the graph of Fig. 6.2. The following considerations of the backbone M theta-  

relationship are presented in this plot: (a) the extreme case of elastic soil conditions represented with 

the path 1-2-3-5a, (b) the case of a soil with limited strength where uplift occurs before yield (path 1-

2-3-4-5b-6), and (c) the case of a soil with limited strength where yield initiates first (path 1-2c-3c-

4c-5c-6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1  Conventional beam-on-winkler-foundation model: (a) configuration of the model and (b) 
superposition of soil contact pressures at full-contact state. 
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Figure 6.2  Rocking of a shear wall on strip footing: the different states of the M-theta curve under 
monotonic loading (Bartlet, 1979, reprinted in FEMA274 document). 

Elastic soil: 

For purely elastic soil behaviour, nonlinearity of the moment-rotation response emerges once uplifting 

occurs and leads to an ultimate capacity of uM Nb= . During full-contact conditions (state 1), the 

moment with reference to the centre of the footing can be easily extracted by integrating distributed 

moments over the foundation: 

3
2

1
2

d
3

b

v
v

b

k b
M k x xq q

-

= =ò  [6.1] 

1   Elastic prior to uplift

2   Elastic at uplift2   Elastic at uplift

3   Elastic with uplift

(a) Elastic soil behaviour (c) Elastoplastic soil behaviour 
(yield initiates before uplift)

3c  Yield prior to uplift

5c  Yield after uplift

6   Limit state

5c

5a

5b

3c

2c

4

4c

(a)

(c)

(b)



Chapter 6: Macroscopic modelling for large-displacement analysis of uplifting foundation  

Apostolou, doctoral dissertation 2011    
 

192

The rocking rotation and moment at incipient uplift (state 2) can be derived by the uplifting criterion 

w b- =( ) 0  ( )/(2 )uplift vb N k bq= -  together with Eq. 6.1: 

22uplift
v

N

k b
q =    and   23uplift

Nb
M M= =  [6.2] 

After the uplift onset, the moment–rotation curve enters a softening mode (state 3 and 5a). The 

moment at this level is derived after integration over the remaining in contact part of the footing b2  

as follows (Siddharthan et al., 1992): 

2
3,5 2 2

2

1 2 2
d 1 3

3

b

a v uplift
v v

b

N N
M k x x Nb M

k b k b
b

q
q q

-

æ ö æ ö÷ ÷ç ç÷ ÷ç ç= = - = -÷ ÷ç ç÷ ÷ç ç÷ ÷ç çè ø è øò  [6.3] 

This curve reaches a maximum value of maxM Nb=  which represents the ultimate moment capacity 

of the foundation for elastic soil response when P d-  effects are ignored. 

Elastoplastic soil: 

In the general case of soil with limited strength, an ultimate value of the spring reaction /2u up N b=  is 

implemented with uN  being the foundation bearing capacity under central vertical load. It is revealed 

that the inverse of the safety factor under purely vertical loading ( )1 /v uFS N Nc -= =  has a 

significant effect on the rocking behaviour (Allotey et al., 2003). In particular, two separate modes of 

the moment-rotation curve can be distinguished dependent upon the value of c : an uplift prevailing 

state corresponding to a lightly-loaded foundation ( )0.5c<  and a soil-yield prevailing state in case of 

a heavily-loaded foundation ( )0.5c> . The former follows the path 1-2-3-5b-6 in the graph of Fig. 

6.2 whereas the latter is represented with the path 1-2c-3c-4c-5c-6. As shown in Fig. 6.1b uplift 

initiates before soil yield if o u op p p< -  or 0.5o up p<  ( )0.5c< . The rocking rotation and moment at 
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uplift onset are given by Eq. 6.2. Similarly if 0.5o up p>  ( )0.5c>  soil yield occurs first. In this case 

the yield criterion becomes (Siddharthan et al., 1992): 

22
u

y
v v

q N

k b k b
q = -    and   

2

2
2

3 3
u

y c

q b Nb
M M= - =  [6.4] 

Allotey et al., (2003) derived the analytical M theta-  relationship during concurrent uplift and yield 

(state 5b or 5c): 

( )

32

5 , 22 24 q
= - - u

b c
u v

pN
M Nb

p k
 [6.5] 

Regardless the value of c  the ultimate moment capacity of the foundation derived from Eq. 6.5 

( )for  q¥  is: 

2

6 2
= -

u

N
M Nb

p
 [6.6a] 

The equation of the ultimate moment can be also obtained from moment equilibrium at limit state 6 

(see Fig. 6.2). After some algebraic manipulations, Eq. 6.6a yields to the analytical solution of the 

failure curve in the N M-  plane (Eq. 5.9): 

( )1
2
c

c= -
u

M

N B
 [6.6b] 

The failure curve in the dimensionless ˆ ˆ-n m  plane calculated with Eq. 6.6b is plotted in Fig. 6.3 

together with the analytical curves for uplift and soil yield onset, as extracted from the foregoing 

discussion. By plotting these curves, the loading plane bounded by the failure envelope is partitioned 

in regions of linear and nonlinear response. The nonlinear area is subdivided in smaller parts 

depending on whether uplift or soil yield or both are encountered. It is worthy of note that a perfectly 
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symmetric response is achieved about the vertical axis at 0.5c= . At this point the optimum 

foundation behaviour in terms of the moment ultimate capacity is attained: 

max 0.125= uM N B  [6.7] 

In addition, at 0.5c=  the maximum range of linearly elastic response is achieved before nonlinear 

conditions due to uplift or soil yield are engaged, with a threshold moment 

of ( )0.083 2/3 max=uN B M . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3  Interaction curves in the normalised N–M plane for critical failure (overturn) on rigid or 
deformable soil (curves (1) and (2) respectively), uplift onset (3), and initiation of soil yield (4). 
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6.2 MACROSCOPIC FOUNDATION MODELLING – PREVIOUS STUDIES 

Nonlinear numerical modelling of the entire soil-foundation-structure system through realistic 

representation of the exact geometry and sophisticated tools for inelastic soil behaviour has nowadays 

become a challenging task given the computational resources and capabilities available nowadays. 

However such a sophisticated numerical analysis (e.g. with the finite element method) requires also 

extensive discretisation of soil medium, which may not be feasible to perform in common geotechnical 

design practice. 

An engineering approximation to efficiently evaluate the nonlinear effects of inertial interaction in the 

domain of large displacements can be obtained if the supporting medium is substructured into two 

subdomains (Pecker and Pender, 2000):  

(a) a far field domain which extends a sufficient distance from the foundation, in which soil 

nonlinearities only governed by the propagation of seismic waves, and  

(b) a near field domain, in the vicinity of foundation where both geometrical and material 

nonlinearities associated to SSI are important. The exact boundary between these two domains does 

not need to be precisely determined.  

The far field domain is approached by linear or equivalent linear impedance function in which only 

radiation damping (viscous type) is implemented. On the other hand, a macroscopic approach is 

adopted for the near field domain which is represented with a nonlinear macro-element of six degrees 

of freedom in the general case (three translational and three rotational). Damping now arises from 

inelastic soil behaviour underneath the foundation and obeys Masing’s law. A schematic of the 

macroscopic modelling is illustrated in Fig. 2.8. 

A dynamic macro-element based on this macroscopic consideration was developed by Cremer et al., 

2001 for shallow foundation on cohesive soil. Later studies on macro-element modelling have been 

presented by Gajan and Kutter, 2009; Chatzigogos et al., 2009; Figini et al., 2011.  
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6.3 FORMULATION of a MACRO-ELEMENT TYPE MODEL 

6.3.1 Elastic soil 

Rigorous finite element analysis of a footing under monotonic loading (Chapter 4) revealed that for a 

vertical load factor 1c<<  (i.e. for a lightly loaded foundation or for very stiff soil conditions) 

foundation rocking is associated with large levels of uplift and small soil deformations. Under such 

circumstances the assumption of elastic soil behaviour is generally a reasonable approximation in 

analysing the rocking response. Nonlinear behaviour under moment loading is then attributed 

primarily to the reduction of the footing contact area (geometric nonlinearity). In slender structures 

geometrical nonlinearity is even more amplified at large rotations due to the accompanying lateral 

movement of the mass centre ( d-P  effect).  

In light of an elastic approach for the soil response, concentration of contact pressures occurs in the 

vicinity of corner points which cannot be captured by the conventional Winkler modelling. The 

increase in ‘local’ soil stiffness with the distance from the footing midpoint is higher under anti-

symmetric loading which corresponds to larger values of rocking stiffness mK  compared to the 

vertical stiffness vK . Table 6.1 shows the ratio of rocking-to-vertical stiffness calculated (a) with the 

classical ‘elastic medium’ solutions (e.g. Gazetas, 1991) and (b) with the convectional Winkler 

modelling. Remarkably the rigorous ‘elastic approach’ gives a stiffness ratio of about four times higher 

than the ratio predicted by the simplified Winkler model. It is therefore evident that a more efficient 

and precise soil model should be incorporated in the non-linear analysis of footings subjected to severe 

overturning moments. Neglecting the effects of soil nonlinearity, such a rigorous macroscopic 

modelling of rocking behaviour should be in agreement with: (a) the classical ‘elastic medium’ 

solutions of the soil-foundation stiffnesses during full-contact conditions, and (b) the limiting case of 

an uplifting foundation on a rigid soil discussed in Chapter 3.  
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Table 6.1  Rocking and vertical stiffnesses for a strip footing calculated with the analytical approach of 
the elastic medium (infinite half-space) and the Winkler modelling. 

 mK  vK  /m vK K  
 
 

/

/
m v medium

m v winkler

K K

K K
 

Elastic medium  
2

2 1

G b


 
1.2

1

G


 21.3b  

3.9  

Winkler 
32

3
vk b

 2 vk b  20.33b  

To formulate a macroscopic model for the rocking response we consider a rigid strip footing of width 

B b= 2  resting on the surface of a homogeneous half-space. Initially the footing is subjected only to a 

vertical loading N . Then a gradually increasing horizontal force is applied at the mass centre of the 

superstructure (located at height h ) leading to an overturning moment cosM Nh q=  about the 

foundation centre. It is postulated that tensile forces cannot be undertaken by the soil-foundation 

interface. In this way uplift onsets whenever the subgrade reaction due to moment loading at a corner 

point mp  reaches the initial vertical reaction vp .  

The different states rocking response of the foundation in terms of a large-displacement analysis 

procedure are illustrated in Fig. 6.4. 
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Figure 6.4  Rocking of a rigid strip footing on elastic soil: different states of response. 
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Full-contact phase: 

For sufficiently low levels of moment, the confinement due to vertical loading ensures a full-contact 

condition at the interface. At this state, the strip is rocking about its midpoint and therefore any 

vertical displacement w  at a distance x  from the centre comprises (a) a vertical component bow  and 

(b) a rocking component x qsin : 

b bow x w x q= +( ) sin  [6.7] 

Moreover, the contact pressure to the footing at a distance x  can be determined with the 

superposition of the symmetric (vertical) and the anti-symmetric (moment) components of loading: 

z v mp x p x p xq q= +( , ) ( ) ( , )  [6.8] 

Where v v bop x k x w=( ) ( )  and m mp x k x xq q=( , ) ( ) sin  are the vertical contact pressures for the case (a) 

and (b) respectively and vk , mk  are the subgrade moduli for the two loading cases. 

It is remarked that in contrast to the conventional beam-on-winkler-foundation modelling, the 

sensitivity of soil response to the loading conditions is now incorporated by adopting two separate 

spring constants for vertical and moment loading.  

The problem of a rigid strip on a homogeneous isotropic medium can be analysed in a variety of ways. 

These include Green’s function techniques, complex variable methods and integral transform 

methods. Within the assumption of a smooth interface, closed-form solutions can be derived for 

simple loading cases. Sadowsky (1928) and Muskhelishvili (1953) developed solutions for the contact 

pressures in symmetric or anti-symmetric loading:  

2 2
( )

1 /
v

N
p x

b x bp
=

-
     and     m

M x
p x

b x b
q

p
=

-3 2 2

2
( , )

1 /
 [6.9] 
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Evidently, the contact pressure for each loading case theoretically approaches infinity at the edges of 

the footing. In reality the maximum value of the contact pressure is bounded due to the finite soil 

strength and redistribution of stresses. The subgrade modulus for vertical and moment loading at a 

distance x  from the foundation mid-point is derived after dividing Eqs 6.9 by bow  and x qsin  

respectively: 

v
v

K
k x

b x bp
=

- 2 2
( )

1 /
     and     m

m

K
k x

b x bp
=

-3 2 2

2
( )

1 /
 [6.10] 

Where v boK N w= /  and /mK M q=  are the global soil-foundation stiffnesses for each loading 

case. As mentioned above, for a rigid strip on a homogeneous half-space the closed-form solutions for 

these static stiffnesses are (Gazetas, 1991): 

vK G n= -0.73 /(1 )      and     mK Gbp n= -2 /2(1 )  [6.11] 

Recalling Eqs 6.10 the subgrade moduli ratio at a distance x  from the centre is: 

v v

m m

k x K b

k x K
=

2( )
( ) 2

 [6.12] 

Which is independent of the distance x  and therefore it is also satisfied for x b= - . It is noted that 

Eq. 6.12 is validated from the findings of the foregoing finite element analysis (Chapter 4), regardless 

the footing size and the presence of a shallow bedrock. 

The sensitivity of the subgrade modulus to the distance from the midpoint and the loading conditions 

is reflected in the p w-  curves, calculated with two-dimensional finite element analysis at the centre 

and at the edges of the foundation, as plotted in Fig. 6.5. The vertical load which is initially applied to 

the footing induces a uniform settlement bow . The horizontal (displacement-controlled) loading 

imposed at the level of the superstructure mass centre invokes an additional loading in the right part 

of the footing (see curve 3) with stiffer subgrade modulus as well as unloading of the left part (see 
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curve 1). At this state of response, symmetric points of the footing with respect to the vertical central 

axis have equal subgrade moduli (i.e. 1 3m mk k= ). 
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Figure 6.5  p w-  curves underneath the footing at the middle [(2)] and at the corner points [(1) and 
(3)] for horizontal loading and unloading at the superstructure mass centre. 

The resultant moment of the contact pressures with reference to the centre can be computed with 

integration over the foundation: 

2
, , ( ) cos d cos sin d

b b

p v p m v bo m

b b

M M M k x w x x k x xq q q

- -

= + = +ò ò  [6.13] 

where , ,  and  p v p mM M  are the moments associated with the symmetric and anti-symmetric loading 

respectively. Setting the transformation sinx b w=  ( x b w w=d cos d ), these moment components 

yield: 

/2

, 2 2

/2

cos
cos d sin d 0

1 /

b

p v

b

Nx Nb
M x

b x b

p

p

q
q w w

pp
- -

= = =
-ò ò  [6.14a] 
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and  

/2
2

, 3 2 2

/2

sin 2 sin 2 1 cos2
d d

21 /

b

m m
p m m

b

K x K
M x K

b x b

p
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q q w
w q

pp
- -

-
= = @

-ò ò  [6.14b] 

Through Eqs. 6.14 it is verified that symmetric loading does not contribute to the resultant moment 

whereas a linear moment-rotation relationship is established under antisymmetric loading. 

Uplift initiation: 

For a clockwise rotation, the footing marginally lifts off the supporting soil when the contact pressure 

at the left edge counter-balances the initial reaction of vertical loading: 

z v mp b = p b p b- - - - =( ) ( ) ( ) 0  [6.15] 

Unlike the conventional Winkler models, in the proposed model moment loading is associated with 

stiffer subgrade moduli. This is a result of the two-dimensional geometry of the supporting medium 

and induces uplift to initiate at a vertical displacement ( )w b-  larger than zero. This is evident in the 

numerical analysis results depicted in Fig. 6.5 where uplift onsets before the normalised vertical 

displacement of the unloading (left) edge /bo bw w  becomes zero. Taking into account that at marginal 

uplift the vertical displacement of the footing pivot point is ( ) upliftw b w- =  (see Fig. 6.4b) the 

following expression for the rotation at incipient uplift is derived: 

bo uplift bo v
uplift

m

w w w k b

b b k b
q

-
= =

( )
sin

( )
 [6.16] 

Substitution of Eq. 6.12 into Eq. 6.16 derives the following uplifting criterion for the angle of rotation: 

2 2
rigid

uplift
m m

MNb

K K
q @ =  [6.17a] 



Chapter 6: Macroscopic modelling for large-displacement analysis of uplifting foundation  

Apostolou, doctoral dissertation 2011    
 

203

and therefore:  

   
2 2

rigid
uplift

MNb
M @ =  [6.18b] 

According to the conventional model, the uplifting criterion of Eq. 6.15 is satisfied when w b- =( ) 0   

meaning that at the uplift onset the footing edge reaches its initial position. On the contrary, from the 

proposed model uplifting occurs before the foundation corner point returns to its initial position. For a 

homogeneous soil profile the arising ‘restitution’ ratio is depending upon the footing geometry and the 

presence of shallow bedrock. In fact this ratio is approximately according to Eq. 6.12: 

bo uplift v v

bo m m

w w k b K b

w k b K

-
= = @

2( )
0.32

( ) 2
 [6.18] 

which is non-zero in contrast to that of the conventional model ( upliftw = 0 ). On the other hand, in 

terms of the conventional model the critical angle for incipient uplift is ( )uplift bow bq -= 1sin /  or 

/ /3uplift v mN K b Nb Kq @ =  and therefore the uplifting moment is /3 /3uplift rigidM N b M= = . 

Evidently, the conventional model underestimates the moment at incipient uplift by a factor of 1.5 in 

comparison to the ‘exact’ two-dimensional solution. 

Uplifting phase: 

Once uplifting occurs the foundation area remaining in contact with the ground is gradually 

decreasing (see Fig. 6.4c). As a result the rocking response enters a non-linear regime even under 

purely elastic soil conditions. During the uplift mode, the moment of the foundation with respect to its 

midpoint is the sum of (a) the moment due to the contact pressures ( p vM ,  and p mM , ) and (b) the 

moment ensued by the lateral movement of the superstructure (P d-  effects). In this way the 

foundation moment becomes: 
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, ,

2 2

( ) cos d ( , ) cos d sin

b b

p v p m P v m

b b

M M M M p x x x p x x x N hd

b b

q q q q-

- -

= + + = + -ò ò  [6.20] 

It is reminded that b  is the half-width of the footing remaining in contact with the ground. We define 

x  the distance of a point in contact with the ground from the effective footing midpoint. In this case: 

x bx b= + -  [6.21] 

The contact pressures of the effective footing on the basis of elastic soil behaviour are calculated with 

the hypothesis of the incipient uplift:  

The distribution of subgrade reactions along the footing due to combined vertical and moment loading once 

uplifting occurs is equal to that of a fictitious footing of width b2 , which under the same combined loading is 

being at incipient uplift. 

A consequence of this hypothesis is that the centre of the effective footing at each step is the 

instantaneous rotation pole of the footing. This can be expressed by the following incremental 

equation: 

( )1bw bd l dq= -  [6.22] 

Where l  is the effective-to-initial footing width ratio ( )/bb . 

Now, the vertical displacement of the foundation bw  can be derived by integration: 

( )1

b

bo uplift

w

b

w

w b

q

q

d l dq= -ò ò   

or ( ) 1
1 lnb bw w bo l q lq

l
= + - -  [6.23] 
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The latter equation provides the analytical relationship between the vertical displacement and the 

rocking angle of the footing over the elastic soil. The hypothesis of the incipient uplift allows for the 

superposition principle to be applied for the analytical calculation of the contact pressures developed 

along the effective footing: 

2 2
( )

1
v

N
p x

pb x b
=

-
     and     m

M
p

x
x q

pb x b
=

-3 2 2

2
( , )

1
 [6.24] 

By virtue of Eqs 6.21  and 6.24 the moment due to purely vertical loading for the uplifting footing 

yields: 

( )
/2

, 2 2

/2

( ) cos
cos d ( sin )d cos

1 /
p v

N b N
M b N b

pb

b p

x b q
q x b w b w q b

pp b x b
- -

+ -
= = + - = -

-ò ò  [6.25] 

This denotes that the moment p vM ,  is the product of the vertical reaction resultant times the distance 

from the effective footing centre to the footing midpoint. The moment of the foundation due to purely 

moment loading is: 

/2

, , 2
, 3 2 2

/2
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sin 2 ( ) d sin sin ( 1) d

1 /
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K K b
M b
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/2
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2 2
 [6.26] 

The equation above verifies the expression adopted for the subgrade stiffness due to moment loading. 

Finally, the total overturning moment of the uplifting foundation yields: 

( )m effM K N b Nhq b q q= + - -, cos sin  [6.27] 

However, the rocking stiffness of the effective footing is: 
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( )m eff m

G
K K

b

p b b
n

= =
-

2 2

, 22 1
 [6.28] 

By substituting Eq. 6.28 into Eq. 6.27 we finally get: 

( )mM K N b Nh
b

b
q b q q= + - -

2

2
cos sin  [6.29a] 

or ( )mM K Nb Nhl q l q q= + - -2 1 cos sin  [6.29b] 

In the finite element study of the uplifting response (Chapter 4) it was shown that the half-width of 

the effective footing b  is inversely proportional to the rotation q  as shown in Fig. 6.6: 

b

b
l = = 1  upliftq q£  [6.30a] 

uplift

b

qb
l

q
= =  upliftq q>  [6.30b] 

According to Eqs 6.29 and 6.30 the moment can be determined by a closed-form expression as a non-

linear function of rotation. It is worthy of note that the above analytical procedure can be utilised to 

the computation of the moment: (a) in the linear domain where full-contact conditions are established, 

(b) in the large-amplitude region where the gradually amplified P d-  effects dominate the response, 

and (c) at near-overturning conditions where c b hq q -@ = 1tan ( / ) . In the limiting case that the footing 

is supported by rigid soil it yields l= 0  for any q> 0  and therefore Eq. 6.29 leads to the well-known 

moment–rotation relationship: 

( )cM Nb Nh NRq q q q= - = -cos sin sin  [6.31] 
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While the analytical formulation of the foundation moment was based on a strip footing it can also be 

applied to any rectangular spread foundation where the direction of horizontal loading runs parallel to 

a normal axis of the foundation cross-section. 
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Figure 6.6   Comparison of the numerical curves of the l q-  relationship with the analytical 
prediction. 

A comparison of the analytical calculation of the foundation moment and vertical displacement to the 

results of the finite element analysis is shown in Fig. 6.7 in form of ,  ,  and  M w M wq q- - -  curves 

for a strip footing ( )2 2 m,  5 m,  500 kNb h N= = =  on elastic soil layer over rigid bedrock 

( )1 220  and  =100 MPaE E= . An excellent agreement between the analytical and the numerical 

method is achieved throughout the range of the rocking rotation. 
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Figure 6.7   Analytical curves of a rigid strip footing on elastic soil and comparison with two-
dimensional finite element results. 
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Moment capacity of the foundation: 

During the uplift regime the foundation moment may be expressed explicitly as a function of the 

effective footing ratio l  by substituting the rocking angle given by Eq. 6.30b to Eq. 6.29b: 

2 2uplift
m

Nh
M M

K
l

l

æ ö÷ç ÷= - -ç ÷ç ÷çè ø
 [6.32a] 

 or without P d-  effects 

( )2upliftM M l= -  [6.32b] 

The latter equation has also been presented by Crémer et al. (2002) extracted empirically from the 

results of a parametric numerical study.  

In the foregoing it was pointed out that once uplifting initiates the foundation stiffness enters into a 

softening fashion which bounds the overturning moment to an ultimate value. This upper limit 

corresponds to the moment capacity of the foundation. It is well known that for the extreme case of an 

infinitely rigid soil this ultimate moment equals to the vertical load times the half-width of the footing. 

In reality though, soil deformations in the vicinity of the base edge are inevitable even when dealing 

with very stiff soils. Thus, soil compliance shifts the axis of the resultant vertical reaction towards the 

base centre, reducing the moment capacity of the foundation. For elastic soil conditions, the moment 

uM  is the local maximum of the function M M q= ( )  as defined in Eq. 6.29. Hence it can be calculated 

by the condition d /d 0M q= . For small angles of rotation (compared to the critical angle cq ) it is 

sinq q@  and cos 1q@ . In this case Eq. 6.29 in combination with Eqs. 6.19 and 6.30 can be written: 

( )m
m

N b
M K Nb N h N b N h

K
l q l q q

q
= + - - =- + -

2 2
2 1

4
 [6.33] 

The rotation at which the ultimate moment of the foundation occurs can be computed with derivation 

of Eq. 6.33 with respect to q : 
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2 2

2

d
d 4 m

M N b
N h

Kq q
= -  [6.34] 

Therefore the angle that satisfies the equality 
d

0
d
M

q
=  is: 

2

tan
4 4u c

m m

Nb Nh

K h K
q q= =  [6.35a] 

and the moment at this point: 

1u
m

Nh
M Nb

K

æ ö÷ç ÷ç= - ÷ç ÷÷çè ø
 [6.35b] 

or  

2
1 1 2

tan
u u

u
c c

M Nb Nb
q q
q q

æ ö æ ö÷ ÷ç ç÷ ÷= - @ -ç ç÷ ÷ç ç÷ ÷ç çè ø è ø
 [6.35c] 

We notice that when 0uq   the ultimate moment approaches the rigid soil limiting value (Nb ), while 

for /2u cq q  the moment uM  tends to zero. This means that the locus of points ( ),u uMq  tracks onto 

the median of the angle defined by the ordinate and the ‘rigid’ M theta-  softening line as portrayed 

in Fig. 6.8. The exact location of an ultimate point ( ),u uMq  at this locus depends on the vertical load, 

the height of the mass-point and the soil-foundation rocking stiffness. 
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Figure 6.8  Comparison of the numerical curves of the l q-  relationship with the analytical 
prediction. 

As shown in Chapter 3 for a one-story uplifting oscillator with a concentrated mass, the period 

parameter pT  is: 

2 2
cosp

c

R h
T

g g
p p

q
= =  [6.36] 

Moreover, when full-contact conditions are considered, the natural period of the rocking structure 

over elastic soil is: 

2 2

2 2m
m m

mh N h
T

K gK
p p= =  [6.37] 

The period ratio /m pT T  is then: 

cos
2 2

4
m c u

p m c

T N h

T K

q q
q

= @  [6.38] 

Hence, the ultimate moment of the foundation is rewritten: 
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[6.39a] 

or 
1u

m

p
M Nb

w

æ ö÷ç ÷@ -ç ÷ç ÷çè ø
 

[6.39b] 

The failure locus on the N M-  plane determined by Eq. 6.39 can be applied to any strip or 

rectangular foundation allowed to uplift on elastic soil. Nonetheless, it is very important on the 

estimate of the ultimate foundation moment as it incorporates the interplay of the two rocking modes 

of the structural system: (a) the linear component of rocking without uplift on elastic soil which is 

represented by the rocking period (frequency) and (b) the uplifting (non-linear) component of 

rocking on a rigid base represented by the period (frequency) parameter. These two simplified 

rocking systems are illustrated in Fig. 6.??. An interesting way of presenting Eq. 6.39 is portrayed in 

Fig. 7.??. The ratio of the ultimate to the uplifting moment is plotted as a function of the rocking 

period for different values of the period parameter. 

6.3.2 Inelastic soil 

The simplification of elastic soil behaviour allows for a tractable analytical calculation of the uplifting 

response. Excluding some cases of lightly loaded foundations( )0.2 0.3c< - , yielding zones of the 

supporting soil emanating from the area underneath the foundation edges are often inevitable. This 

may lead to a ‘visible’ non-linear fashion of the moment-rotation relationship even under full-contact 

conditions. Moreover, once uplift initiates, soil material nonlinearity counterbalances the uplifting 

displacements and contributes to substantially non-linear foundation behaviour.   

We consider again a rigid, strip footing of width B b= 2  resting on the surface of a homogeneous half-

space. Initially the footing is subjected to a vertical loading N . The vertical displacement of the 

footing (settlement) bow  is now a non-linear function of the applied load. Two analytical curves are 
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most suitable to describe the backbone N w-  curve according to the exponential and the hyperbolic 

law (Eqs 6.40a and b respectively): 

1 bw

v

e
N K

y

y

--
=  [6.40a] 

1 1
b

b
v u

w
N

w
K N

=
+

 
[6.40b] 

Where /v uK Ny= . In Fig. 6.9 the analytical N w-  curves are plotted in comparison with those 

calculated from finite element analysis of a strip footing ( )2 2 m,  5 mb h= =  on homogeneous soil 

layer over rigid bedrock ( )100 MPa,  100 kPauE s= = .  
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Figure 6.9  Comparison of the exponential and the hyperbolic model with the finite element analysis 
in the calculation of the N w-  curve. 

An excellent agreement is achieved for both models with the numerical results. According to the 

afore-discussed models the settlement at the end of this loading phase may be calculated as follows: 

( ) ( )ln 1 / ln 1

/
u

b
v u

N N
w

K N

c

y

- -
= =-  [6.41a] 

( )
1 1

1 / 1 1/
u

b
v u

N
w

K N N y c
=- =-

- -
 [6.41b] 
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The analytical calculation of the settlement with the exponential model has been successfully 

evaluated by Nova and Montrasio (1991) through experimental N w-  curves on sand. 

At the second loading stage, a gradually increasing horizontal force is applied at the level of the 

superstructure mass (located at height h ) leading to an overturning moment cosM Nh q=  about the 

foundation centre. As in the elastic case uplift onsets whenever the subgrade reaction due to moment 

loading at a corner point mp  reaches the initial vertical reaction op . 

Full-contact phase: 

For sufficiently low levels of moment the confinement due to vertical loading ensures a full-contact 

condition at the interface. In contrast to the elastic case the strip is rocking about a point (rotation 

pole) which is not fixed at the centre of the base but shifts towards the unloading edge. This leftward 

(for a clockwise rotation) movement of the instantaneous pole is attributed to the plastification of the 

supporting soil underneath the loading edge of the footing. The larger the structural weight is, the 

more rapidly the pole moves towards the unloading edge. In the limiting case of 1c   the footing 

tends immediately to rotate about its unloading edge even under a very small overturning moment. In 

this case the vertical displacement (settlement) becomes: 

sinbw b q=-  [6.42] 

On the other hand, for elastic soil behaviour ( )0c =  the displacement bw  prior to uplift initiation is 

zero. 

The M theta-  curve at the full-contact phase may be calculated with the exponential or the 

hyperbolic model as follows (Eqs 6.43a and b respectively): 

1
m

e
M K

yq

y

--
=  [6.43a] 
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1 1

m u

N

K M

q

q
=

+
 

[6.43b] 

Where /m uK My=  and uM  is the ultimate moment of the foundation if uplift is prevented. The 

afore-mentioned analytical models are evaluated in the calculation of the M theta-  relationship 

through finite element analysis for a strip footing ( )500 kN,  2 2 m,  5 mN b h= = =  on homogeneous 

soil layer over rigid bedrock ( )100 MPa,  100 kPauE s= =  as plotted in Fig. 6.10. Both models seem 

to capture the basic features of the backbone curve. Nevertheless, a slightly closer fit is achieved with 

the exponential model throughout the loading sequence. 

Figure 6.10  Comparison of the exponential and the hyperbolic model with the finite element analysis 
in the calculation of the M theta-  curve. 

Uplift initiation: 

As in the elastic case, the footing marginally lifts off the supporting soil when the uplifting criterion 

described with Eq. 6.15 is satisfied. By applying the exponential law to the p w-  curve of the 

unloading edge, the following uplifting criterion is obtained:  

( )v m
vo bo uplift

u u

k b k b
w w w

p p
u up e p e

- -
- - -é ù é ù

ê ú ê ú- = -ê ú ê ú
ê ú ê úë û ë û

( ) ( )

1 1   
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or ( )( ) ( )v m
bo bo uplift

u u

k b k b
w w w

p pe e

- -
- - -

=   

and finally 
( )
( )

vo upliftv

m vo

w wk b

k b w

--
=

-
      [6.44] 

where   and  v mk k  are the elastic stiffnesses as determined above.  

From the latter equation it is derived that the critical rotation for marginal uplift is equal to the 

‘elastic’ one: 

2uplift
m

N b

K
q @  [6.45] 

The moment at incipient uplift is then derived by substituting Eq. 6.45 to the exponential law for the 

M theta-  relationship: 

   21
m

u m

K Nb

M K
uplift uM M e

-æ ö÷ç ÷ç ÷= -ç ÷ç ÷ç ÷è ø
  

  or  21 u

Nb

M
uplift uM M e

-æ ö÷ç ÷ç ÷= -ç ÷ç ÷÷çè ø
 [6.46] 

Equivalently in the dimensionless N M-  plane: 

( )
1

2 11uplift

u

M
e

M
c

-
-

æ ö÷ç ÷ç ÷= -ç ÷ç ÷ç ÷çè ø
 [6.47] 

Evidently, the uplifting moment is not anymore a linear function of the vertical load N  but exhibits a 

softening behaviour as N  increases. As the failure curve in the N M-  plane is described with a 

parabola, it is expected that a threshold value of N  exists where the uplift and failure curves intersect 

and beyond which no uplifting occurs. 
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Uplifting phase: 

Once uplifting occurs the foundation area remaining in contact with the ground is gradually 

decreasing. However the magnitude of uplifting (i.e. expressed with the effective footing ratio l ) is 

limited with the increase in the structural weight (expressed with the load factor c ). 

The vertical displacement bw  in the limiting cases of 0c =  and 1c =  is given by Eqs 6.23 and 6.42 

respectively. From these two states of response, linear interpolation may provide the vertical 

displacement bw  of a load factor c  as follows: 

( )b bow w b bl q lq c q
l

@ + - - -
1

1 ln  [6.48a] 

or  

( )b bow w b l c q lq
l

@ + - - -
1

1 ln  [6.48b] 

During the uplift mode the moment of the foundation with respect to its midpoint is the sum of (a) the 

moment due to the contact pressures ( p vM ,  and p mM , ) and (b) the moment ensued by the lateral 

movement of the superstructure (P d-  component): 

, ,p m p v PM M M M d-= + +  [6.49] 

The components of the moment associated with the eccentricity of the resultant reaction ( ),p vN M  

and the P d-  effects PM d-  are the same with those of the elastic case.  

For the analytical calculation of the moment component associated with the antisymmetric part of the 

external loading ( )p mM ,  calculation of soil reactions due to that loading and integration along the 

effective footing is required. For inelastic soil conditions however, this method leads to complex 

integral expressions of the resultant moment even when simple analytical p w-  curves are employed 

(for example the exponential law). More than that, the shift of the rotation pole towards the edge of 
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the footing, further complicates the decoupling of the developed soil reactions into symmetric and 

antisymmetric components. An alternative approximate method to calculate the moment component 

p mM ,  may arise through the extrapolation of the linear M l-  correlation extracted for elastic soil 

conditions.  

This linear trend of the M l-   correlation is confirmed by the numerical results plotted in Fig. 6.11. 

In addition, the effective footing ratio l  must satisfy: (a) the limiting case of elastic soil ( )0c =  and 

(b) the limit state condition l c= . The exponential law of the effective footing ratio l  with respect 

to the rocking angle which satisfies both limitations is given by the following equation: 

( )upliftq c cq
l

q

- +
=

1
 [6.50] 

Numerical validation of the latter equation through nonlinear finite element analysis of rocking 

response is presented in Fig. 6.11. Eventually, the moment of the foundation for inelastic soil 

conditions becomes: 

2

(1 )cos sin
1mM K Nb Nh
l c

q l q q
c

æ ö- ÷ç ÷= + - -ç ÷ç ÷ç -è ø
 [6.51] 

Eqs 6.50 and 6.51 comprise the analytical expression of the foundation moment as a non linear 

function of the rocking rotation for the general case of inelastic soil.  

A comparison of the analytical calculation of the foundation moment and vertical displacement to the 

results of the finite element analysis is shown in Fig. 6.12 for a strip footing 

( )500 kN,  2 2 m,  5 mN b h= = =  on inelastic soil layer over rigid bedrock 

( )100 MPa,  100 kPauE s= = . A close agreement of the analytical results to those obtained from 

numerical analysis is attained throughout the range of the rocking rotation. 
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Figure 6.11  Nonlinear rocking response of a strip footing on inelastic soil, calculated with two-
dimensional finite element analysis: (a) distribution of soil reactions in characteristic increments prior 
to uplift, (b) M l-  correlation, and (c) the effective width 2b  with respect to the rocking angle q  

and comparison with the analytical prediction. 
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Figure 6.12  Analytical curves of a rigid strip footing on inelastic soil and comparison with two-
dimensional finite element results 

 

6.4 ULTIMATE MOMENT CAPACITY 

As shown in the foregoing discussion, the M q-  backbone curve follows a softening fashion due to 

geometric and soil material nonlinearities. As a result the moment developed by the foundation is 

bounded by an ultimate value uM . In the optimum case of a rigid supporting soil the foundation 

undertakes the maximum possible moment which corresponds to the vertical load N  times the half-

width of the footing b . In common geotechnical applications however soil compliance and 

plastification of the supporting soil result in substantial reduction of the ultimate moment. Moreover, 

further decrease in uM  is expected in tall structures due to P d-  effects. In the general case the 

ultimate moment of the foundation may be derived analytically as the local maximum of Eq. 6.51. To 

this extent derivation of Eq. 6.51 yields: 
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m

dM N b
Nh

d Kq q
= - =

2 2

2
0

4
 [6.52] 

The rocking angle uq  at which the ultimate moment is attained is therefore: 

u c
m

Nh

K
q q= =tan 0

4
 [6.53] 

Eventually, the ultimate moment is: 

u
m

Nh
M Nb

K

æ ö÷ç ÷ç= - ÷ç ÷÷çè ø
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or  

u u
u

c c

M Nb Nb
q q
q q

æ ö æ ö÷ ÷ç ç÷ ÷= - @ -ç ç÷ ÷ç ç÷ ÷ç çè ø è ø

2
1 1 2

tan
 [6.54b] 

After some algebraic manipulations, the ultimate moment may be expressed as a function of the 

nonlinear parameters 
m

Nh

K
h=  and c , which represent respectively geometrical and soil material 

nonlinearities. 

( )( )uM Nb h c= - -1 1  [6.55a] 

In dimensionless form:  

( )( )u

u

M

N B

c
h c= - -1 1

2
 [6.55b] 

( )( )n
m nh= - -

ˆ
ˆ ˆ1 1

2
 [6.55c] 
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Eqs 6.55 provide the analytical expression of the failure curve in the nondimensional n m-ˆ ˆ  plane 

when P d-  effects are considered. Remark that for h= 0  (i.e. no P d-  effects are considered) the 

failure curve reduces to that calculated with the conventional Winkler model (Eq. 6.6b). 

6.5 EVALUATION OF THE PROPOSED MODEL 

6.6 APPLICABILITY and LIMITATIONS 

Non linear features of the rocking response of tall structures founded on shallow foundations are 

investigated. Principally, based on conventional Winkler modelling, interaction curves in the 

nondimensional N M-  plane were calculated for failure (overturn) as well as incipient uplift and soil 

yield. A perfectly symmetric response is achieved about the vertical axis at c= 0.5 . At this point the 

optimum foundation behaviour in terms of the moment ultimate capacity is obtained. To highlight the 

induced nonlinearities in the large-displacement domain, a macroscopic modelling of the soil–

foundation system was developed. In this respect analytical equations for the overturning moment and 

the vertical displacement were extracted as a function of the rocking angle (a) for elastic soil, and (b) 

for inelastic soil. From the latter case, analytical equation of the failure curve in the nondimensional 

N M-  plane was obtained, incorporating both geometric and material nonlinearities. 
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Chapter 7: 

Analysis of the overturning response of slender structures 

 

7.1 INTRODUCTION 

The nonlinear features of rocking and uplifting behaviour of a shallow foundation under static and 

dynamic conditions have been investigated in depth in the preceding chapters. When dealing with 

slender structural systems subjected to strong seismic excitation however, rocking vibrations may lead 

to overturning under certain circumstances. In case of rigid or stiff soil conditions toppling of a 

shallow foundation is attributed to the exceedance of the gravitational (resisting) moment  N b  

due to large uplifting. On the other hand, for a foundation on soft soil, overturning failure is usually 

the result of the loss of strength and the excessive yielding of the supporting soil under large 

overturning moment. In the former case overturning under a seismic excitation is a sudden and abrupt 

type of foundation failure associated with the dynamic rocking characteristics of the structural system. 

In the latter case ‘seismic’ overturning can be interpreted as a conventional geotechnical failure which 

is gradually developed and can be described with a ‘pseudostatic’ mechanism.  

 The discovery on the ground surface of slender blocks toppled after an earthquake has for many years 

provided upper-bound and lower-bound estimates of the peak ground acceleration. The fallacy that 

the acceleration needed to just overturn a block is the one obtained from moment equilibrium 

between the statically applied inertia force and the weight of the block (see Eq. 3.1), has prevailed for 

nearly a century and led to the establishment of unrealistically low levels of ground acceleration (of the 

order of 0.05 g to 0.10 g, even in areas of high seismicity). In fact, much greater acceleration levels are 

needed for overturning under seismic shaking, especially for large blocks and at high frequencies. 
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Ironically, this was already known (even if incompletely) as early as 1893 (Milne & Omori), while by 

1927 Kirkpatrick had published a simple formula for estimating the ‘dynamic’ overturning 

acceleration, which captured the role of the basic problem parameters with sufficient degree of 

realism. In the subsequent 40 years, the lack or scarcity of accelerographs prompted many researchers 

and earthquake engineers to study the overturning behaviour of slender bodies. However, the 

dynamic character of the overturning behaviour was not widely understood by the engineering 

community until Housner’s (1963) publication, in which he derived overturning criteria and showed 

the importance of both frequency of excitation and size of structure. In recent years the subject of 

overturning of blocks and structures under seismic excitation has received renewed attention. Makris 

and Roussos (1998) and Anooshehpoor et al. (1999), in particular, focused on the transient response of 

rigid blocks under near-fault ground shaking. They found that distinguishable long-duration pulses 

inherent to such shaking may be particularly detrimental to the rocking response of slender structures. 

Many examples of such pulses have been uncovered in near-fault records of recent Ms�6.5 

earthquakes, such as the Imperial Valley 1979, Erzincan 1992, Northridge 1994, Kobe 1995, Kocaeli 

1999, and Chi-Chi 1999. These pulses are the result of two effects: the ‘forward rupture directivity’ 

effect and ‘permanent offset’ (or ‘fling’) effect (Somerville 2003, Hisada & Bielak 2003).  

In light of the above we investigate the overturning potential of near-fault ground motion, represented 

for simplicity and clarity with the following idealised pulses: the Ricker-wavelet, the (truncated) T-

Ricker wavelet, the one-cycle sinus, the one-cycle cosinus, and the rectangular half-cycle pulse. Their 

time histories are plotted in Fig. 7.1. Time histories of recent earthquake records have been also 

implemented in the analysis. Numerical and analytical solutions of the rocking response are utilised: 

(a) to derive lower-bound estimates of the overturning amplitude, and (b) to demonstrate how 

sensitive the overturning behaviour is not only to the intensity and frequency content of the base 

motion, but also to the presence of strong pulses, to their detailed sequence, and even to their 

asymmetry. In so doing, overturning acceleration and rotation spectra are introduced as an efficient tool 

to quantify the overturning response and to provide criteria for marginal toppling.  
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Although emphasis is given on the overturning over a rigid soil, the effect of soil compliance is also 

examined in view of both elastic and inelastic soil behaviour. Rocking and overturning response on a 

rigid soil is calculated through explicit integration of the governing equation of motion (Eq. 3.2 or 

3.50 for a rigid or flexible structure respectively), whereas for a rocking structure on deformable soil, 

two-dimensional finite element analysis is employed. In any case lower-bound estimates of the 

overturning amplitude are calculated through a trial-and-error procedure. 
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Figure 7.1  Idealised pulses utilised to represent near-fault ground motion. 

 

7.2 OVERTURNING on RIGID SOIL 

7.2.1 Rigid structure 

We consider first the rigid rectangular block shown in Fig. 3.1, which is subjected to horizontal 

shaking. For small levels of the ground acceleration ( )g ga a t=  the moment of the inertia force with 

reference to the foundation midpoint ( gma h ) does not exceed the restoring, gravitational moment 

(mgb ). In this regime, the block remains at rest with respect to the ground. As soon as the ultimate 

moment mgb Nb=  is reached uplifting initiates and the block is set to rocking motion. This peak 

value of the resisting moment is reached instantaneously at the onset of uplift ( 0)q=  and from then 
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on the moment is gradually decreasing due to P d-  effects. On the basis of a pseudo-static approach, 

once uplifting about the corner point initiates, the body will unavoidably overturn. In other words, 

the critical acceleration for uplifting ca  is identical to the minimum required to statically overturn the 

block ( /b h=  in units of g). On the contrary, under a dynamic base excitation reaching ca  simply 

initiates rocking motion. Whether the block will safely undergo rocking or eventually overturn 

depends on its size and slenderness as well as the kinematic characteristics and intensity of ground 

shaking. 

The state-space formulation of a rocking system driven by a one-cycle sinus pulse is: 

( , , )fq f q f t= =  [7.1a] 

( )2 sin sgn sin ( , , )c gop x gf qq q t q f t= - + =   [7.1b] 

( , , )E ht w q f t= = , 0 2t p< <  [7.1c] 

where E tt w=  is the dimensionless time. At 0 2t p=  the base excitation expires and the nonlinear 

system enters into the free vibration regime with initial conditions ( )0 0,q f . For any 2t p<  there are 

no equilibrium points since it is always 0t ¹ . Additionally, due to the limited duration of the forced 

system it cannot be identified an unbounded trajectory representing critical instability. It may be 

generalised that for a structure subjected to a transient base motion, critical overturning may occur only in 

the free vibration regime. As discussed in Chapter 3, critical overturning in the free vibration regime is 

associated with a trajectory which is attracted by the heteroclinic orbit and passes through equilibrium 

point( ),0cq  (see also Fig. 3.6). The phase plane of a slender rocking block ( )2 1m, 2 5mb h= =  is 

revisited in Fig. 7.2 with identified stable and unstable areas separated from the heteroclinic orbit. It is 

notable that the unstable area may be subdivided into (a) an area where overturning occurs without 

any impact in the free vibration regime and (b) an area where overturning occurs after an impact (at 

the instant it ) in the free vibration regime.  
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Figure 7.2 Phase plane of a rocking block with identified stable and unstable areas 
 2 1 m,  2 5 mb h  . 

Along the heteroclinic orbit the total energy (i.e. kinetic and potential) is preserved. Hence, for the 

points of (i) impact ( )0, ( )itq  21
only kinetic energy;   ( )

2 o iJ tq
é ù
ê ú
ê úë û

  and (ii) saddle equilibrium ( )c , 0q  

( )only potential energy;   1 cos cmgR qé ù-ê úë û  preservation of energy gives: 

( )2 2( ) 2 1 cosi ct pq q= -  [7.2a] 

or  

( )( ) 2 1 cosi ct pq q= -  [7.2b] 

The impact points of the heteroclinic orbit can be calculated according to Eq. 7.2b. This equation is 

also a criterion for marginal overturning when an impact occurs during free vibration.  
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The potential of the heteroclinic orbit ( )oE J=  is: 

( )2 2 21
cos sgn

2 cp pq qq q= = + -   [7.3] 

It yields that an unstable trajectory will start from the point ( )0 0,q f  if 2
0 p> . Accordingly, for a 

stable trajectory an initial condition ( )0 0,q f  with ( )2
0 p<  is necessary. From Eq. 7.3 the 

heteroclinic orbit can be determined: 

( )2 1 cos sgn cpq qq qé ù= - -ê úë û
  [7.4] 

Positive (negative) sign in this equation corresponds to an orbit that approaches (departs from) the 

equilibrium point. 

Linearisation of the response in the neighbourhood of the equilibrium point ( ,0)cq  denotes that the 

limit cycle close to this point tracks on the instable manifold 2
ptc e-= 2v v , and therefore: 

0pte- =  [7.5] 

The latter equation indicates that the rocking block approaches the equilibrium point (i.e. critical 

overturning) asymptotically at a theoretically infinite amount of time: pt ¥ . This conclusion is 

well established in the qualitative analysis of nonlinear systems (otherwise uniqueness of solutions 

would be violated) and leads to the following overturning criterion: 

( ) ( )     and     , ,0ct q f q¥ =   [7.6] 

For sufficiently slender bodies linearisation can be extrapolated along the heteroclinic orbit. In this 

case Eq. 7.2b and Eq. 7.4 are simplified respectively: 

( )i ct pq q=  [7.7] 
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( )sgn cpq qq q= -  [7.8] 

For critical overturning under a pulse-type motion the state variables ( ),q q  must satisfy Eq. 7.8 at the 

onset of free-vibration regime (i.e. at Et T= ) as the point ( ),
E Et T t Tq q= =
  must lie on the heteroclinic 

orbit. In this way, Eqs 7.6 and 7.8 summarise the conditions of critical overturning. In case of 

overturning with impact after excitation expires it is evident that Eq. 7.7 can be also implemented 

instead of Eq. 7.8. These equations together with a closed-form solution of the governing equation of 

motion allow for analytical estimate of the minimum overturning amplitudes.  

The aforediscussed findings are depicted qualitatively in the phase portrait of Fig. 7.3. 

-θc θc

p θc

-p θc

0 θ
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Figure 7.3 Phase plane of a linearised rocking block; Analytical calculation of heteroclinic orbits, 
impact, and equilibrium points.  

The overturning criterion described with Eq. 7.5 was originally extracted by Anooshehpoor et al. 

(1999). In that study it was correctly stated for the first time that a block at the instant of critical 

overturning must have zero angular velocity, however it was not considered that this condition should 

occur at theoretically infinite time. Makris and Zhang (1999) presumed that both Eq. 7.6 (in the form 

of ( ) 0tq ¥ = ) and Eq. 7.8 should exist at critical overturning and showed that a one-cycle 

trigonometric pulse may overturn a block either after one impact (mode 1) or without impact at all 
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(mode 2). A ‘safe region’ emerges between the two modes, meaning that while the block overturns for 

a certain level of shaking, it surprisingly remains standing when the amplitude increases. This 

counter-intuitive conclusion is elucidated graphically through the following numerical example. The 

rigid block discussed above ( )2 1m, 2 5mb h= =  is set on rocking under a one-sine pulse of 

0.8secET =  for different levels of shaking. The calculated trajectories in the phase plane are 

presented in Fig. 7.4 together with the time-histories of response (non-linear formulation).  
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Figure 7.4  Critical stable and unstable solutions of the rocking block  2 1 m,  2 5 mb h   under a 

one-sine pulse of 0.8secET  . 
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The block safely experiences rocking motion for acceleration amplitudes lower than 0.428 g whereas it 

marginally overturns after an impact for a PGA  of 0.429 g. The acceleration is further increased 

gradually up to 1.233 g and the block still overturns after an impact. However for acceleration 

amplitude of 1.234 g the block undergoes rocking without toppling. Eventually, when the acceleration 

reaches 1.293 g overturning occurs towards the opposite direction (without impact). 

Block size and excitation frequency: 

The major outcome of the nonlinear nature of rocking motion is that for a specific type of ground 

motion, the required acceleration for overturning is a sensitive function of both the block size and the 

excitation frequency. This has been recognized by many researchers since more than a century (Milne 

and Omori 1893). Eighty years ago, Kirkpatrick (1927), assuming small rotations of slender 

structures, was the first to quantify the effects of the two afore mentioned parameters on the 

overturning response. For a sinusoidal excitation he derived analytically the necessary acceleration for 

overturning: 

2

1 E
over

b
a

h p

wæ ö÷ç= + ÷ç ÷ç ÷è ø
 [7.9] 

Housner (1963) studied thoroughly the overturning response under pulse-type and white-noise 

excitation and re-derived Eq. 7.9 for the case of a half-sine pulse. This simplified formula is a good 

approximation of the exact solution for steady-state harmonic excitation. However, for the case of a 

half-sine pulse it was based on a conceptually incorrect overturning criterion [q q=( ) ct  when the 

pulse expires]. Using trigonometric pulses Makris and Roussos (1998) unveiled the detrimental role of 

long-duration pulses inherent in near-fault ground shaking. In this study it was shown that Housner’s 

overturning criterion is non-conservative and the overturning amplitude for a sine (half or full cycle) 

and cosine pulse excitation can be fitted with the following linear trends (Eqs 7.10a, 7.10b, and 7.10c 

respectively): 
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half-sine pulse:                               1
2

E
over,half -sine

b
a

h p

wæ ö÷ç ÷= +ç ÷ç ÷è ø
,                            3E

p

w
<  [7.10a] 

one-sine pulse:                                 1
6

E
over,sine

b
a

h p

wæ ö÷ç ÷= +ç ÷ç ÷è ø
,                            3E

p

w
<  [7.10b] 

one-cosine pulse:                            1
4

E
over,cosine

b
a

h p

wæ ö÷ç ÷= +ç ÷ç ÷è ø
,                            3E

p

w
<  [7.10c] 

Revisiting the solution of Spanos and Koh (1984) for the linearised system under harmonic excitation, 

Makris and Zhang (1999) derived a transcendental equation to calculate analytically the minimum 

overturning acceleration overa  under a one-sine pulse for both modes. In the same study, they utilised 

this equation to calculate minimum acceleration levels for different values of the excitation frequency 

and derive the overturning acceleration spectrum. Within the limits of the linear approximation, the 

overturning acceleration spectrum can be normalised for a specific value of the coefficient of 

restitution as plotted in Fig. 7.5 for 0.8r = . Overturning accelerations computed numerically in the 

present study are also portrayed in the same graph.  
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Figure 7.5  Overturning amplification ratio (i.e. ratio of dynamic overturning acceleration to the 
pseudostatic overturning acceleration) for slender blocks under a one-sine pulse excitation computed 
by: (i) numerical integration of equation of motion (circles) and (ii) the analytical formula derived by 
Makris and Zhang (solid lines). The coefficient of restitution is 0.8. 
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Evidently, increasing the excitation frequency 2E Efw p=  and the size of the block (i.e. decreasing the 

parameter p ) affects favourably the overturning response. It is notable that for sufficiently high 

frequency pulses the required acceleration for toppling can be substantially larger than the critical 

static value = /ca b h . As an example, for excitation period of 0.3 sec  and block diameter of 0.5 m  

the frequency ratio is / 5.45pW wE= @  which leads to a minimum acceleration about 4 times the static 

acceleration ( 4@ ). On the other hand, an excitation period of 1 sec  could be regarded as a static 

loading as for the same block diameter it results to a minimum acceleration that tends to the static 

value ( 1.2@ ). The profoundly nonlinear-dynamic nature even of the piecewise linear system is not 

reflected only on the overturning amplitudes. In this respect, the two overturning modes, namely 

after one impact or without impact at all are also shown together with the ‘safe region’ emerging 

between the two modes. 

Asymmetry and detailed sequence of pulses: 

Sensitivity of the overturning amplitude to the size of the block and the frequency of excitation was 

previously discussed under a one-sine pulse. In Fig. 7.6 the overturning spectrum for the case of a 

one-cosine pulse is presented as calculated by (a) the analytical solution of Makris and Zhang (1999) 

and (b) numerical integration (trial-and-error approach). The two distinct overturning modes (i.e. 

overturn after one impact or without impact at all) and the ‘safe region’ between the two modes are 

encountered again. However, the difference of the overturning amplitude levels in comparison to 

those computed under a one-sine pulse is remarkable. For all frequency ratios W  larger values of 

acceleration are now required to overturn the block (compared with the one-sine case). Also, the 

critical value of the frequency ratio beyond which only overturning without impact can occur has 

dropped down to about 4. The beneficial effect of the cosine pulse with respect to the sine pulse is 

attributed merely to the phase shift of /2p .  
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Cycloidal pulses are reasonable idealisations of near-fault ground motions, nevertheless, they cannot 

fully capture the effect of a slight asymmetry inherent to near-�fault pulses. The Ricker wavelet has a 

distinct advantage in this respect as will be discussed later. It is thus employed here to excite the 

rectangular block of 2 1mb =  and 2 5mh =  in rocking vibrations (with 0.89r = ). As portrayed in the 

overturning spectrum plotted in Fig. 7.7, more failure loops ‘appear’ in this case. It is also remarkable 

that there is no distinction between overturning with one or no impact as derived from the time-

histories of Fig. 7.8. The difference between two ‘neighbouring’ loops is now in the direction of 

toppling. 
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Figure 7.6  Overturning amplification ratio under a one-cosine pulse excitation computed by: (i) 
numerical integration of equation of motion (circles) and (ii) the analytical formula derived by Makris 
and Zhang (solid lines). The coefficient of restitution is 0.8. 
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Figure 7.7  Overturning amplification ratio under a Ricker pulse excitation computed by numerical 
integration of equation of motion. The coefficient of restitution is 0.8. 
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Figure 7.8  Time-histories of the rocking response for a rectangular block with 2 1mb =  and 
2 5mh =  subjected to a Ricker-wavelet excitation of 0.53 hzEf = . The coefficient of restitution is 
0.89 (elastic impact). 
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Overturning potential of large structures: 

An important question arises as to whether or not large structures such as high-rise buildings or tall 

bridge piers may safely uplift from their foundation during strong shaking. Although such tall 

structures are unlikely to behave as rigid blocks, and their (unavoidable) flexibility is a favourable 

factor, the rigid block assumption may give a conservative glimpse on the threat of overturning. The 

beneficial effect of increased block size to overturning response is already known. However, with very 

tall and slender buildings, the slenderness ratio /h b  is also large. The interplay between slenderness 

and size regarding overturning is clarified with the help of a rectangular block of a constant half-

width b . In the plots of Fig. 7.9 the height of the block is gradually increased so that both its 

slenderness ( /h b ) and its frequency parameter ( p ) keep rising.  
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Figure 7.9  Overturning spectra with respect to the half-height h for blocks with half-width 0.5 m and 
1 m subjected to a one-cycle sinus pulse of period 0.4 sec (left) and 0.8 sec (right). 

Initially, a block of  0.5 mb =  and 1 mh =  is set on rocking under a long-duration one-cycle sinus 

pulse of 0.8 secET = ; to topple it, a peak ground acceleration of 0.7 g  is needed. By increasing h  by 

a mere 1 m , the overturning acceleration drops to 0.35 g  -- an example of detrimental influence of 

slenderness. However, as the height of the structure is further increased, the decrease of the 

overturning acceleration diminishes and the beneficial effect of the size parameter gradually takes 

over. Paradoxically, after reaching a minimum about 0.18 g  the overturning acceleration tends to 
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increase, not decrease, with increasing height and slenderness! All that happens is that the size effect 

overshadows the influence of the slenderness and becomes the prevailing parameter on the 

overturning response. Hence for a sufficiently tall structure of a certain width, the more slender is 

made the less vulnerable to overturning it will be! This can explain why large slender structures 

survive toppling even under severe seismic shaking. In the experimental work of Huckelbridge & 

Clough (1976) it was made clear that for a practical building, transient uplifting response would in no 

way imply imminent toppling. 

Resemblance of near-fault ground motions with idealised pulses: 

The resemblance of near-fault ground motion with cycloidal symmetric pulses has been demonstrated 

by Anooshehpoor et al. (1999), Makris et al. (1998, 1999), Mavroeidis & Papageorgiou (2003). 

Asymmetric pulses can be represented with a Ricker or a T-Ricker wavelet. For example the 

directivity affected Düzce record (in the Kocaeli 1999 earthquake) is compared with a Ricker wavelet 

( 0.28gPGA=  and 1.3secET = ) in Fig. 7.10. The two time histories excite in rocking a slender block 

( 0.2radcq = ) for different values of the period parameter 2 /PT pp= .  
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Figure 7.10  Rocking and overturning spectra for blocks with / 5h b =  ( 0.2 radcq = ) subjected to the 
time-histories of: (a) Düzce, in the Kocaeli Earthquake (plotted with gray solid lines) and (b) a Ricker 
wavelet (plotted with black solid lines and circular dots). 
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The resulting spectra of peak rotational angle qmax  and minimum acceleration level for overturning 

(derived by scaling up and down each motion). Evidently the simple Ricker pulse can simulate the 

long-duration pulse inherent in the Düzce record for all values of PT . This almost excellent 

agreement (with respect to rocking) of the Düzce record with a simply fitted Ricker wavelet indicates 

that the rocking and overturning is practically unaffected by the high-frequency acceleration peaks 

that are ever present in every strong accelerogram.   

The case study of the toppled tombstones (Athens earthquake, 1999): 

While the overturning hazard may not be the key issue in the seismic response of slender structures 

(at least if stiff soils support them), it is usually addressed in engineering practice for two different 

reasons: (a) toppling of non-structural elements are in many cases of special interest in seismic design 

procedures (for example appended equipment, electrical transformers and so on and (b) for nearly a 

century the engineering community analysed overturning failures observed after an earthquake to 

obtain rough estimates of the true intensity of (unrecorded) seismic shaking. To demonstrate how 

difficult it is to obtain reliably such estimates, toppling of a typical cemetery tombstone in the Athens 

earthquake of 1999 is studied (Fig. 7.11). It was expected that back analysis of the overturning would 

reveal the intensity of the unknown ground motion at this location, 2 km away from the causative fault 

(Apostolou et al., 2007). Two different earthquake records are used as the basis of the analyses: 

 The accelerogram of Sepolia station, recorded in the Athens 1999 earthquake, as a typical 

stiff-soil record of a moderate (Ms 5.9) magnitude event, at a distance of about 9 km from the 

ruptured normal fault zone. The record has a peak ground acceleration of 0.35 g and dominant 

periods in the range of 0.15-0.25 seconds.  

 The accelerogram of Düzce in the Kocaeli 1999 earthquake, which is typical of a large (Ms 7.4) 

magnitude event whose strike-slip rupture is directed towards the recording soil site, and 

stops a few kilometres before it. The strong forward-directivity effect has given the Düzce 
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record a characteristic long duration acceleration pulse. Its 0.37 gPGA=  is similar to the one 

of the Sepolia record, but its significant periods range from about 0.40 to at least 1.50 seconds.   

Minimum acceleration levels required to topple the tomb are computed after scaling up or down each 

record. Elastic impact conditions are considered throughout the analysis leading to a 

coefficient 0.928r = . In the case of the Sepolia-type excitation the block can sustain rocking motion 

without overturning until the accelerogram is increased so that it acquires a PGA  of 0.85 g (about 2.5 

times the recorded value). By contrast, the Düzce excitation must be scaled down to a PGA  of 0.27 g 

for overturning to occur (about 0.73 times the recorded value). Ground acceleration and rotation time 

histories for marginal overturning for the two records are plotted in Fig. 7.11. Evidently, the long-

duration pulse in the Düzce record tends to reduce the overturning acceleration towards its static 

value (0.20/1.27 g  0.16 g).  
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Figure 7.11  (a) A typical free-standing tombstone that toppled after the Athens earthquake, (b) the 
up-and-down-scaled accelerograms SPLB/Athens and Düzce/Kocaeli with the corresponding time 
histories of induced rotation just leading to overturning of the tombstone. 
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The rocking response of the tomb under the Sepolia–type motion is revisited next. Now the time 

increment of this accelerogram is artificially increased by 10% and by 20%. This leads to an increase 

of the predominant period of motion from 0.26 sec to 0.29 sec and to 0.31 sec, respectively. The slight 

modification of the excitation period has a dramatic effect on its rocking response: the overturning 

acceleration is reduced from 0.85 g down to 0.61 g and to 0.58 g for the two modified records! A 2–sec 

detail of each modified time-history along with the original time–history (each one scaled to the 

critical acceleration) is plotted in Fig. 7.12.  
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Figure 9.12  The up-and-down-scaled accelerograms SPLB/Athens (original and time-extended) with 
the corresponding time histories of induced rotation just leading to overturning of the tombstone of 
Fig. 7.11. 

The two distinct modes of overturning for trigonometric pulses as discussed by Makris and Zhang 

(1999) are now extracted for the tombstone and plotted in the overturning spectrum of Fig. 7.13. For 
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relatively low values of the excitation period, a rocking block such as the tomb of Fig. 7.10 will not 

overturn even for peak ground acceleration 4 or 5 times the pseudo-static critical acceleration (0.16 g). 

For values of  ET   exceeding about 0.3 sec the minimum PGA  to overturn the block is rapidly 

decreasing. Eventually for sufficiently large periods ( 0.7secET > ) the minimum overturning 

acceleration approaches the pseudo-static value. As seen in Fig. 7.13 the real records and the 

sinusoidal pulses give fairly similar results for the overturning response.  

 

Figure 7.13  Overturning spectra of the cemetery tomb ( / 6.35h b = ) for one-cycle sinus-type and for 
numerous ground motions used as earthquake excitation. 

Concluding, the peak ground acceleration that toppled the cemetery block could vary from about 0.20 

g to 0.80 g within a period range 0.25 sec – 0.5 sec. The former period is closer to the records of the 

Athens 1999 earthquake, which however being far–field. However, it is evident that the practice of 

estimating ground acceleration from observations of toppled and untoppled slender blocks, which has 
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for a century been utilised to assign levels of design acceleration in many parts of the world, is 

meaningless in view of the strong frequency-and detail-dependence and the profoundly nonlinear 

nature of rocking behaviour. 

7.2.2 Flexible 1-dof structure 

While the rigid block is a convenient approximation of a rocking structure in view of estimating the 

overturning potential, for slender systems the structural flexibility may affect the overturning 

response. To this extent, the rocking response of a flexural 1-dof oscillator with a foundation mat (see 

Fig. 3.10) is now revisited. The structural dimensions of the oscillator are chosen in such a way that 

the rocking parametres be the same to those of the afore-discussed rigid 

block ( )1.699rad/sec, 0.2radcp q= = . A one-cycle sinus pulse is imposed to the base with a period 

range from 0.35 sec to 2 sec. Initially, a quite stiff visco-elastic oscillator is employed 

( )0.1sec, 5%oT x= =  so that flexural deformations cannot affect the rocking vibrations. The 

minimum overturning amplitudes are calculated from Eqs 3.48 and 3.50 for elastic impact conditions 

( )0.89r =  as portrayed in the overturning spectrum of Fig. 7.14. In the same graph, the minimum 

acceleration estimates of the equivalent rigid block ( )1.699rad/sec, 0.2radcp q= =  are also plotted. 

It is evident that the sdof oscillator can be considered as a rigid rocking system. The overturning 

analysis is repeated next for two more flexible oscillators of eigen-period 0.3 sec and 0.5 sec 

respectively. The calculated overturning spectra are presented in Fig. 7.15 in comparison with the 

spectrum of the stiff system. It turns out that structural flexibility affects favourable the overturning 

response in such a way that the minimum acceleration amplitude after an impact (‘loop 1’) may be 

significantly increased especially at high-frequency pulses whereas the safe area between the two 

modes expanses. On the other hand no prominent effect on the overturning mode 2 (without impact) 

is revealed. The progressive shrinkage of the overturning ‘loop 1’ is further illustrated in the 

overturning spectrum of Fig. 7.16. In this spectrum the overturning amplitudes are calculated for 
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different values of the structural eigen-period under a base excitation of period 0.6 sec (a vertical 

section at 1.67hzEf =  in the spectrum of Fig. 7.15). It is shown that the increase of the structural 

period results into (a) a slight decrease of the overturning acceleration without impact, and (b) the 

shrinkage of the failure loop with an impact at an accelerating pace, which eventually vanishes at a 

period of 0.6 sec. For even more flexible systems only overturning without impact is possible.  
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Figure 7.14  Overturning acceleration spectra of a one-storey structure 
( )1.699rad/sec, 0.2 radcp q= =  of eigenperiod 0.1 secoT =  and a rigid block 

( )1.699rad/sec, 0.2 radcp q= =  under a one-cycle sinus pulse of frequency Ef . The coefficient of 

restitution is 0.89. 
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Figure 7.15  Overturning acceleration spectra of a one-storey rocking structure 
( )1.699rad/sec, 0.2 radcp q= =  of eigenperiod 0.1,  0.3,  and 0.5 secoT =  (black, grey, and light 

grey lines respectively) under a one-cycle sinus pulse of frequency Ef . The coefficient of restitution is 
0.89. 
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Figure 7.16  Overturning acceleration spectra of a one-storey rocking structure 
( )1.699rad/sec, 0.2radcp q= =  for different values of the eigenperiod oT  under a one-sine pulse 

excitation of 0.60secET =  (a vertical section of the spectrum of Fig. 7.15 at 1.67hzEf = ). The 
coefficient of restitution is 0.89. 
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7.3 OVERTURNING on COMPLIANT SOIL 

The profoundly non-linear behaviour that a rocking structure experiences can be even more 

complicated when a flexible base is considered. In order to gain an insight to the dynamic phenomena 

related to the rocking motion on a flexible base we investigate the response of two rectangular blocks 

on an accelerating base. The dimensions of the two blocks are ( 1 x 5 m ) and  ( 2  x 10 m ) so that the 

critical angle be 0.2 rad for both cases and the frequency parameter be 1.7 rad/sec and 1.2 rad/sec 

respectively. A one-cycle sine pulse (TE = 0.8 sec and 1.2 sec) is applied as an excitation so that the 

results can be comparable to the findings that Makris et al., outlined for the rigid base case. The 

supporting soil medium is assumed to be a homogeneous, elastic halfspace with Poisson ratio 0.3. 

Moreover when the rocking structure impacts the ground, elastic conditions are considered, hence the 

coefficient of restitution is given by Eq. 3.4.  

Minimum acceleration levels for toppling are computed in terms of the rocking period of the fixed-

based system mT , for two different values of the effective density, namely 0.25 t/m3 and 2.5 t/m3. 

The overturning spectra are plotted in Figs 7.17 and 7.18 along with the rigid base case ( 0mT = ). 
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Figure 7.17  Overturning acceleration spectra of a rectangular block (2b = 1m, 2h = 5m) on a rigid (a) 
or deformable (b) base. The structure is subjected to rocking by a one-cycle sinus excitation at the 
base.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.18  Overturning acceleration spectra of a rectangular block (2b = 2m, 2h = 10m) on a rigid 
(a) or deformable (b) base. The structure is subjected to rocking by a one-cycle sinus excitation at the 
base.   
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7.3.1 Elastic soil 

+++ 

7.3.2 Inelastic soil 

+++ 

 

7.4 CONCLUSIONS – CRITERIA for DESIGN        
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Chapter 8: 

Conclusions 

 

8.1 SUMMARY of CONCLUSIONS 

This thesis studies the dynamic response of simple rigid structures with foundation uplift under strong 

seismic shaking. 

Some of the key conclusions of the thesis are as follows: 

 Foundation uplifting has a multiply beneficial role on the dynamic response of the structure.  

 The available rotation ductility of the foundation is substantially higher comparing to a fixed 

base system. Given that uplifting restrains plastification of the supporting soil, the maximum 

rotation that a rocking system with significant uplift can experience tends to the critical angle 

/c b hq @  which is in any case much higher than the angle a fixed base system can tolerate 

without toppling due to soil yielding. 

 The ultimate moment of an uplifting foundation is significantly reduced compared to the 

fixed-base moment resulting to a beneficial effect for the seismic design of structural 

foundations. 

 Overturning of a rigid free-standing structure is a very sensitive function of the nature and 

dominant period of the horizontal excitation, as well as of the aspect ratio and the absolute size 

of the block. Under static conditions, or for an extremely long-period motion, the overturning 

acceleration is equal to the aspect ratio (b/h) of the block times the acceleration of gravity. 

However, under strongly dynamic (short-period) excitation the block can sustain rocking 
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motion without toppling even if peak ground acceleration increases three or four times the 

static critical value. Moreover, increasing the size of the block affects rocking response in a 

similar way to decreasing the dominant period of ground motion. Thus, large blocks can safely 

undergo rocking motion while smaller ones exhibit rocking vibration with higher magnitudes 

of uplifting, and are thus much more vulnerable to toppling. 

 Dynamic failure envelopes in the N M-  plane may reach considerably higher levels than the 

corresponding static curves. This is an outcome of larger dynamic bearing capacity ,u dynp  than 

the static value (e.g. ( 2)u up sp= + ). 

 Under monotonic loading the part of the footing remaining in contact with soil (effective 

width: 2b ) when the moment capacity of the foundation is mobilised ( )uM M=  can be 

estimated by the simple relationship:  (or 2 / )uN pl c b= = . This formula can be easily 

drawn by the elastic-perfectly plastic footing-on-Winkler springs model. Even under 

dynamic-cyclic loading conditions the effective width can be approximately calculated 

through this equation; however the frequency and the amplitude of the seismic excitation may 

be significantly different from the linear trend under certain circumstances. 

 A simplified ‘dynamic’ failure envelope in the N M-  space can be derived by adopting at the 

increment of uM M=  a distribution of contact pressures that is: (a) different from the 

rectangular (as in the conventional static approach), and (b) not bounded by the static ultimate 

capacity up . Considering the linear expression l c=  for the effective width, the distance of 

the vertical reaction axis to the footing midpoint becomes 2 4 /3 2 /3b bz b b b= - + = - . In 

this way the ultimate moment becomes (see also Fig. 8.1): 

2
1

3
M N Nbz c

æ ö÷ç= = - ÷ç ÷÷çè ø
 [8.1] 
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M = N b

M = N b ( 1 - 0.65χ )

Static failure envelopes

 

Figure 8.1  Dynamic failure envelope in the N-M plane for a triangular distribution of contact 
pressures 

According to the findings of the present study, a simplified methodology for the design of footings on 

soft soil against large seismic moment can be proposed, based on the interaction curves of the 

generalised loads: 

(a) The bearing capacity of the supporting soil is first computed. For example, for linearly 

increasing strength with depth ( )u uos s zk= + , the ultimate vertical load is (Davies and 

Booker, 1974): ( ) ( )2 /2u up F s bp ké ù= + +ê úë û , in which F  is a inhomogeneity factor 
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dependent on the coefficient k , the footing width, and the interface conditions. For a 

smooth strip it ranges between 1 and 1.5. 

(b) Based on the vertical design superstructure load, the vertical load factor / uN Nc=  is 

computed. 

(c) The vertical load – moment interaction curve is computed according to the equation: 

( )( )1 1
2u

M

N B

c
h c= - - , in which 

m

N h

K
h=  is a factor describing P – delta effects. 

(d) The moment for incipient uplift is then calculated: 21 u

Nb

M
uplift uM M e

-æ ö÷ç ÷ç ÷= -ç ÷ç ÷÷çè ø
, in which uM  

is the moment capacity considering full contact conditions. 

(e) For vertical load factor smaller than 0.3, and in particular for d upliftM M< , the permanent 

displacement can be neglected. 

(f) For vertical load factor larger than 0.3 and given that limited permanent rotation is developed, 

the cumulative settlement can be estimated from the following conservative formula: 

max4w nbd q= , in which n  is the number of significant cycles of inertial vibration 

( max 3n = , given that foundation soil is gradually hardening due to cyclic rocking), and 

maxq  the effective rocking amplitude. This angle can be estimated from the effective period 

of the system 2 /b mT J Kp@  in combination with the rocking displacement spectrum. 

Alternatively, for a time domain analysis of earthquake response through macroscopic modelling, 

the foundation moment can be estimated analytically as follows: 

2

(1 )cos sin
1mM K Nb Nh
l c

q l q q
c

æ ö- ÷ç ÷= + - -ç ÷ç ÷ç -è ø
, in which 

( )1upliftq c cq
l

q

- +
=  is the 

dimensionless effective half-width of the footing. The cumulative settlement can be predicted 
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as before, given that the effective rocking amplitude and the number of significant cycles will 

be estimated from the nonlinear analysis. 
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Figure 8.2  A proposed methodology for assessment of cumulative displacements during rocking on 
inelastic soil.  
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8.2 EPILOGUE – RECOMMENDATIONS for FURTHER STUDIES 

+++ 
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