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Περίληψη 

 
Οι σύγχρονες αρχιτεκτονικές επεξεργαστών βασίζονται στην παρουσία πολλών 

υπολογιστικών πυρήνων πάνω στο ίδιο τσιπ, οι οποίοι μοιράζονται τη χρήση 

υποσυστημάτων της ιεραρχίας της μνήμης, όπως το τελευταίο επίπεδο της cache και το 

memory bus. Το γεγονός αυτό έχει ως αποτέλεσμα η παράλληλη εκτέλεση προγραμμάτων 

που κάνουν έντονη χρήση των υποσυστημάτων αυτών, σε γειτονικούς πυρήνες, να 

επηρεάζεται και να σημειώνεται πτώση της απόδοσης των εφαρμογών. 

Ο σκοπός αυτής της διπλωματικής εργασίας ήταν η μελέτη των φαινομένων 

ανταγωνισμού μεταξύ των εφαρμογών για τους διαμοιραζόμενους αυτούς πόρους, που 

μπορεί να προκύψουν κατά τη συνεκτέλεση προγραμμάτων, και την επίδραση που έχουν 

στην απόδοση των εφαρμογών. Για να δημιουργηθεί ένα σύνολο εφαρμογών με ποικίλη 

συμπεριφορά και απαιτήσεις από τα υποσυστήματα της μνήμης, ώστε να προσομοιωθούν 

προγράμματα που κάνουν διαφορετική χρήση τους, αναπτύχθηκε μία εφαρμογή μέτρησης 

επιδόσεων μνήμης (benchmark). Το πρόγραμμα αυτό μπορεί να μετρήσει το ρυθμό 

μεταφοράς δεδομένων (bandwidth) στα διάφορα επίπεδα ιεραρχίας της μνήμης. Στη συνέχεια 

έγιναν πειράματα συνεκτέλεσης στιγμιοτύπων του benchmark, με διαφορετική συμπεριφορά 

και εκμεταλλευόμενων διαφορετικά υποσυστήματα. Τα πειράματα έγιναν σε δύο 

αρχιτεκτονικές, ώστε να μελετηθεί πώς οι ιδιαιτερότητες στη σχεδίαση και την ιεραρχία της 

μνήμης μπορούν να επηρεάσουν περεταίρω. Σε όλα τα πειράματα μετρήθηκαν οι επιδόσεις 

των εφαρμογών, ώστε να υπολογιστεί κατά πόσο μεταβάλλεται ο χρόνος εκτέλεσής τους 

κατά τη συνεκτέλεση, αλλά και η γενικότερη συμπεριφορά τους. 

Τα αποτελέσματα μπορούν να χρησιμοποιηθούν για τον έλεγχο και την επιβεβαίωση 

εκτιμήσεων της συμφόρησης στα υποσυστήματα μνήμης, που υπολογίζονται από 

προτεινόμενα μοντέλα πρόβλεψης και αποφυγής τέτοιων φαινομένων, ώστε να γίνει πιο 

αποδοτική η δρομολόγηση (scheduling) των εφαρμογών σε πολυπύρηνα συστήματα. Τέλος, 

το μετρητικό πρόγραμμα που υλοποιήθηκε, μπορεί να χρησιμοποιηθεί ως εναλλακτική λύση 

τόσο για μετρήσεις επιδόσεων μνήμης, όσο και για την προσομοίωση προγραμμάτων που 

κάνουν έντονη χρήση των υποσυστημάτων μνήμης για πειράματα συνεκτέλεσης. 

 

 

 
Λέξεις Κλειδιά: Πολυπύρηνες αρχιτεκτονικές, συνδρομολόγηση, συμφόρηση, ανταγωνισμός στους 

μοιραζόμενους πόρους, memory benchmark 
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Abstract 

 

Modern processor architectures have moved towards utilizing multiple cores on the 

same physical package, which share resources of the memory hierarchy, e.g. last-level cache, 

memory bus bandwidth. As a result, concurrent execution of programs that make significant 

use of shared memory subsystems, on cores of the same package, leads to performance 

degradation phenomena for co-executed applications. 

The objective of this thesis was to study contention effects in shared memory resources, 

as a result of co-execution, and its impact on applications’ performance. A memory 

benchmark program was developed, which can measure bandwidth in all levels of the 

memory hierarchy. This benchmark was used to create a set of instances with different 

behavior and memory usage intensity, in order to emulate a variety of memory-bound 

applications that utilize different memory hierarchy subsystems. Co-scheduling scenarios 

with all combinations of the aforementioned suite were tested on two architectures, with 

different characteristics. This also enabled us to observe how specific architecture features 

and design differences may further affect applications’ interference. Performance metrics 

were used for all experiments in order to detect impact on execution time, as well as 

alterations on their general behavior. 

Results of the experiments can be used to validate contention estimations based on 

application classification models of literature-suggested contention-aware co-scheduling 

approaches. Additionally, the proposed benchmark program can be further used and 

expanded as an alternative choice for both memory performance evaluation and emulation of 

various memory-intensive workloads for experiments. 

 

 
Keywords: Multicore architectures, CMPs, co-scheduling, contention-aware scheduling, application 

classification, memory benchmark 
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Chapter 1 

Introduction 

 

 

1.1 Multicore architectures concepts 

 

Modern computer architectures’ design and principles have changed in the last decade. In 

previous years, processors consisted of a single core which handled and executed the whole 

workload. Performance of uni-core systems was increased by microarchitecture 

improvements, progress in manufacturing methods that allowed for higher clock frequencies 

with lower power consumption and implementation of more complex and efficient memory 

hierarchy designs. Progress using this model has declined in recent years, as reaching the 

physical limits of semiconductor microelectronic materials and manufacturing techniques 

causes intractable problems, related to increased heat dissipation and data synchronization, 

among others. These limitations have resulted in a different approach in newer designs, using 

multiple cores on the same chip, sharing the workload instead of a single core running all 

tasks. 

The concept of a computer system consisting of two or more physical processors sharing the 

main memory was known and used in previous decades on mainframe, server and 
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workstation implementations (e.g. symmetric multi-processing, SMP). Demand for increased 

performance in general purpose systems with single processors and the previously mentioned 

limitations of uni-core designs led to a new trend in computer architecture, combining two or 

more CPU cores on the same physical processor package. All cores, operating 

simultaneously, can execute instructions independently, resulting in tremendous increase of 

the system’s throughput potential. Usage of such chip multi-processors (CMPs) has seen 

excessive growth in recent years, being present in all types of computer systems, from servers 

to mobile phones. 

However, contrary to systems with multiple physical processors, cores of a CMP share more 

resources, such as cache memory, main memory bus bandwidth available to the socket, data 

prefetchers. As a result, cores are not completely independent from each other. Applications 

executed concurrently on different cores may cause contention in these shared resources, 

leading to reduced hardware efficiency and subsequently performance degradation. It 

becomes apparent that conflicts for shared resources utilization need to be minimized to 

avoid such unwanted effects. 

 

1.2 Operating system - Scheduling 

 

The operating system is an essential component of a computer system. It is responsible for 

hardware and software management, providing services needed by applications, enabling 

them to utilize hardware resources, communicate with each other and the user. The scheduler 

plays a critical role in operating systems, being responsible for application execution and 

resource allocation. A scheduler has to make decisions about how CPU time, I/O and other 

resources will be shared among processes, which processes will be assigned to specific cores, 

starting and stopping applications in order to provide efficiency for the system. Different 

types of systems may require different scheduler approaches, for instance a personal 

computer needs optimized application responsiveness, while the objective for a server 

running multiple tasks is throughput maximization.  

For single CPU systems, dominant in the market until recently, main concern of OS 

scheduling was the allocation of processor time among processes. In this context, scheduling 
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techniques had been highly optimized over the years and became very efficient, to the point 

that there was no demand for further improvement. This was also the case for SMP systems, 

processors of which only share main memory. Notable open source examples of highly 

efficient schedulers are the 2 latest scheduler implementations of the Linux kernel, known as 

O(1) scheduler [2] and CFS [3]. With CMPs, the scheduling problem becomes much more 

complex. Shared memory resources among multiple cores make decisions about process 

execution much more difficult, as architecture specific parameters must be considered (e.g. 

what levels of cache hierarchy and other resources are shared, among which cores) to make 

the optimal choices. It becomes apparent that space-sharing of the CMP needs to be 

optimized along with time-sharing, since the choice of processor assigned to execute a task 

may have negative effects on programs’ execution [1].  

 

1.3 Problem definition 

 

Scheduler implementations in mainstream operating systems, optimized for SMP 

architectures, when used with multi-core single chip processors, treat all cores as independent 

from each other. This simplified approach may result in concurrent execution of applications 

that make intense use of shared memory resources, leading to contention and causing 

significantly reduced efficiency and performance. Optimization of scheduling algorithms to 

better utilize resources in CMP context is an active field of research, due to multicore 

designs’ massive adoption, even on handheld devices.  

Many approaches suggest contention-aware scheduling techniques. It is assumed that if 

architecture details are known, including memory hierarchy and shared resources, then a 

program’s behavior in co-execution and potential interference suffered or caused can be 

estimated by observing its memory utilization needs. Such approaches rely on various 

application classification schemes, based mainly on memory-associated behavior, in order to 

facilitate scheduling related decisions. Knowing the overall picture of how classes interact in 

co-scheduling scenarios on a certain architecture, concurrent execution of programs 

potentially harmful for the system’s efficiency and throughput might be avoided.  
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The objective of this work is to study concurrent execution of memory intensive applications 

on multicore architectures and the impact it has on shared memory hierarchy and other 

programs’ performance. Co-execution experiments are used to evaluate a literature-suggested 

memory contention estimation model based on an application classification scheme. To 

emulate different class memory-bound programs, a versatile memory pseudo-benchmark with 

user-controlled behavior was developed. 

 

1.3.1 Contribution 

Co-scheduling experiments were conducted on multicore architectures with different design 

characteristics and memory hierarchy organization. To evaluate performance of all levels in 

the memory hierarchy we created a benchmark program. This benchmark is extensively 

tested on the systems we intend to use for co-execution experimentation and results are 

compared with other known benchmarks to estimate its validity. Taking advantage of its 

versatile design, the benchmark was used to create a suite of instances with different 

behavior. It is suggested that this benchmark program can be used as an in-house alternative 

to emulate a wide range of memory-bound processes. Application performance is profiled 

using the aforementioned classification scheme and data collected is used to make general 

contention estimations for various co-execution scenarios. 

All applications of the proposed set are co-executed in pairs with each other. In each 

experiment we observe if contention on the memory hierarchy occurs and how it affects co-

running applications’ execution time. Slowdown results are compared with expected 

behavior, to discuss the validity of the contention-based slowdown estimation model. We 

show that excessive application slowdown may occur in certain co-scheduling scenarios due 

to contention in memory subsystems. It is also demonstrated how architecture specific 

characteristics can drastically affect programs’ performance degradation in co-execution 

context. 
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1.4 Chapter description 

 

Chapter 2 describes the slowdown estimation model and classification algorithm used in this 

work, along with similar research examples. 

A detailed description of the proposed benchmark program, its results and evaluation are 

found in chapter 3. Additionally, that chapter contains information about the specific 

computer systems used, including architecture details, and the co-scheduling infrastructure 

used for experiments 

Chapter 4 contains all co-scheduling experimentation related work: workload description, 

preliminary evaluation, experimental procedure and results. 

Conclusions, along with ideas for future work are summarized in chapter 5. 
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Chapter 2 

Motivation and current approaches 

 

 

2.1 The scheduling problem on CMPs 

 

Chip multi-processors are designed to improve performance by providing parallel 

computational cores to share workload, executing programs concurrently. Although there are 

huge potential gains from this approach, scheduling execution of threads on a CMP in an 

efficient way is a very complex problem. The main reason for this is that cores are not 

completely independent from each other, as they are sharing cache memory, access to the 

main memory bus, controllers, hardware prefetchers and, possibly, other resources with 

neighboring or all cores.  

When multicore processors appeared, they were handled by existing OS schedulers similarly 

with cores of symmetric multi-proccessing (SMP) systems, which differ significantly as they 

consist of separate physical processors on different sockets. However, processors of SMP 

system are independent, as they only share main memory. Even with the shared memory, 

NUMA architectures (Non-Uniform Memory Access) provide mechanisms for avoiding 
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memory bus related conflicts, as each socket can access its relatively closer located memory 

faster. Thus, the OS scheduling problem is addressed as mainly managing run-queues, 

ensuring that cpu-time is efficiently allocated for overall throughput. Very efficient and 

optimized algorithms have been developed, which led to the scheduling problem being 

considered as solved.  

Applying the same scheduling techniques on systems with CMPs can have largely 

unpredictable effects. Sharing memory resources can be very beneficial or extremely 

destructive for running applications. Threads of an application, using the same data, can 

largely take advantage of shared cache, when executed concurrently on cores of a multicore 

processor. Similar speed-up can occur when different programs, sharing libraries, are 

simultaneously scheduled. On the other hand, a process streaming large amounts of data, 

intensely replacing the content of cache levels, can be extremely harmful for other running 

programs, forcing them to continuously re-fetch data from main memory and subsequently 

suffer from highly increased time penalties. These examples demonstrate extreme cases and 

help to intuitively understand how complex co-scheduling scenarios can be. 

Details of the architecture, mapping of shared resources and behavior of the programs 

consisting the workload are all very significant factors in order to make efficient scheduling 

decisions. Space-sharing the CMP is equally important to time-sharing it, as the choice of 

which core is assigned for a programs’ execution may dramatically affect, positively or 

negatively, the program’s behavior, as well as other running processes. Sharing memory 

resources between cores running different applications can create contention in some or even 

all levels of the memory hierarchy that are shared. Contention is the main reason for 

performance degradation in CMP co-execution context. Thus, current research approaches, 

found in literature, try to address the problem on CMPs with contention-aware scheduling 

methods. 

For contention-aware scheduling, it is assumed that in architectures with multiple cores, 

different resources are shared among core subsets, since if all cores shared all resources 

equally, space-sharing decisions would have no effect. Additionally, all resource sharing is 

considered to cause negative effects, as contention aware-schedulers try to avoid such 

interference. Suggested prediction schemes are based on classifying programs of the 

workload, using their behavior profile, attempting to keep apart applications that cause stress 

to the memory hierarchy [1]. These prediction mechanisms use performance metrics, such as 
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LLC misses and cache utilization patterns or other heuristic methods to detect potential 

application interference in co-execution scenarios. But even with an ideal, very accurate 

prediction model, finding the optimal mapping in systems with more than 2 cores is shown to 

be an NP-complete problem [4]. However, it is possible to suggest a much more efficient 

mapping, compared to initial contention-unaware scheduling.  

 

2.2 Related work 

 

Contention aware scheduling methodologies, for CMP and SMP or cluster systems, found in 

literature use classification schemes to characterize workload behavior. Many approaches 

have been suggested, ordering applications by performance characteristics, such as LLC miss 

rate, cache re-use patterns, main bus utilization. Bhadauria and McKee [6] use cache miss 

rate (hits/misses) or bus occupancy metrics, trying to balance resource utilization to be fairly 

shared among processes. Xie and Loh [8] use an approach classifying programs in animal 

categories. There are 4 such classes: Turtles, sheep, rabbits and Tasmanian devils. Turtles 

make zero or very low use of shared resources, relying in the lower level private cache of the 

core. Sheep and rabbits re-use LLC intensely, with the difference being that rabbits are very 

sensitive to the ways of the cache allocated to them, while sheep are not easily affected. 

Finally, devils heavily use cache, but also have a large number of misses; as a result they are 

very harmful for co-running applications. 

Blagodurov et al.[7] proposed the Pain classification scheme. In this approach, the terms 

cache “sensitivity” and “intensity” are suggested. Sensitivity shows how likely it is for a 

program’s cached data to be replaced, using probabilities based on stack-distance profile 

(SDP) and reuse frequency. To calculate intensity, authors use the ratio of cache access 

operations per million instructions, to indicate how aggressively an application uses the 

shared cache. The product of sensitivity and intensity is then used to calculate the “pain” an 

application will suffer from and cause to co-runners, due to co-scheduling. A similar 

approach was proposed by Tang et al. [11], with contentiousness and sensitivity metrics for 

applications to estimate performance degradation. 
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Jaleel et al. [10] suggest a categorization model base on applications’ cache utilization. There 

are 4 classes in this model: Core Cache Fitting (CCF), LLC Thrashing (LLCT), LLC Fitting 

(LLCF) and LLC Friendly (LLCFR) applications. CCF programs have small working sets 

and fit in private caches, without need to use the shared LLC. LLCT are applications with 

working sets much larger than LLC, making streaming accesses and replacing cache content 

and thus being very harmful for co-running programs that use the LLC. LLCF programs need 

a large part of the LLC, and are affected if competition for the cache occurs. LLCFR 

applications benefit from cache re-use, but are not so sensitive when available cache 

resources are reduced.  

Lin et al. [12] used a color-based classification scheme to allocate cache usage by 

applications. Mars et al. [16] introduced “bubble”, a stress test for the memory subsystem, 

with gradually increasing intensity, in order to characterize applications’ sensitivity by their 

performance curve, as the “bubble” grows. They also observe how much an application 

stresses the subsystem itself. Being aware of contentiousness and sensitivity, co-scheduling 

behavior may be predicted. 

Other approaches try to balance shared memory bus utilization and avoid saturation [9] as 

memory bus contention is seen as the major factor of performance degradation. Merkel et al. 

[13] try to address the issue by scheduling programs that use complementary resources for 

co-execution. Numerous other examples are present in literature, as research for CMP-

optimized scheduling is an active and challenging field. 

 

2.3 LCA: A memory Link and Cache-Aware approach 

 

A recent approach suggested in literature is LCA [5]. LCA tries to address the CMP co-

scheduling problem using a classification scheme based on the overall picture of memory 

resources utilization. Data flow in all levels of memory hierarchy is observed to predict 

interference problems, attempting to deal with dual contention on both memory link and 

shared cache. 
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The contention-avoidance scheme, suggested by this approach divides applications in classes, 

using information that can be collected by modern processors’ performance monitoring 

mechanisms during execution time, without need for additional hardware modifications or 

support. The next step is contention estimation, based on the workload’s classification, and 

corresponding decisions for time-and-space allocation of the CMP. This thesis, however, 

focuses only on interference caused by co-execution of memory intensive applications, thus 

scheduling algorithms are not discussed in detail. The following four application classes are 

used: 

Class N: Applications that display activity on the core’s private part of the memory hierarchy. 

This may include application with computational load, very small working sets, fitting in 

lower level cache, optimized data accesses, or any combination of these characteristics. 

Programs of this class create no contention on shared memory resources. 

Class C: This class includes a wide range of applications, which benefit from shared cache 

(mainly LLC) reuse. Programs of this class can have different characteristics, e.g. 

applications intensely accessing a dataset small enough to partially fit in cache, latency-

bound processes that make irregular memory accesses and benefit from cache hits. Since they 

rely on cache reuse, applications in this class can be affected by LLC intereference. 

Class LC: Applications that require significant use of both memory link and cache, at varying 

levels. Again, this class contains many different applications with varied behavior, for 

instance programs that need to fetch large amounts of data from main memory, which are 

then processed, displaying intense cache reuse.  

Class L: Applications included are stressing the memory bus, consuming a significant 

percentage of its bandwidth. Examples of programs belonging to this class are applications 

that use datasets much larger than cache, performing streaming memory accesses with very 

little or zero cache reuse. Such applications are also expected to utilize data prefetchers to 

achieve high levels of memory bandwidth. 
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Figure 2.1: Application classes’ activity [5] 

Although all classes contain applications with different execution patterns and behavior, this 

scheme can be used to capture the overall picture of co-execution scenarios and detect 

potential contention situations. Co-scheduling scenarios between different classes and 

expected behavior, as a primary objective of this work, are discussed in more detail in chapter 

4, yet a concise, per-class estimation guide follows: 

Class N: No interference is expected, as application execution mostly relies on the core’s 

private resources.  

Class C: The wide variation of applications result in many difficult to predict scenarios, being 

affected by many factors. However, most cases of LLC-sharing (C-C combination) co-

execution are expected to display minimum to moderate slowdown effects, a generally “low 

contention” scenario. Increased contention can occur when co-runner class shifts to a more 

memory intensive, LC or L, resulting even in severe slowdown effects, for instance when a L 

program continuously wipes cached data. 

Class LC: Moderate interference is expected in the case of an LC-LC combination, as a result 

of medium contention in both link and cache. C class competition for the LLC could also 

cause low performance degradation to an LC instance, while an L co-runner can have much 

more impact, reducing available memory bandwidth and replacing data in the cache. 

Class L: Relying solely on the memory link, L processes are expected to be affected only by 

other L instances competing for the bus, or LC that have increased memory link bandwidth 

demand as a result of interference caused by the L itself. 

To classify applications in the aforementioned classes, this approach suggests a method of 

inspecting data flow to the core, through the levels of the memory hierarchy to detect at 
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which levels higher utilization is noted, using runtime performance statistics. To achieve that, 

memory bandwidth is measured first, to determine if a program belongs in class L, or LC. If 

not, LLC data towards the core bandwidth is inspected to decide if LLC or other shared cache 

data reuse occurs, and classify the program into N or C classes accordingly. If overall data 

flow is low, IPC (Instructions per Cycle) and the ratio of memory micro-operations to all 

micro-operations metrics are used to classify an application in N and C classes. 

To apply this decision scheme, five thresholds need to be set:  

α: High memory link bandwidth utilization 

β: Medium memory link bandwidth utilization 

γ: High cache-to-core bandwidth utilization 

δ: 
        

        
 ratio, higher than which shows a memory bound application 

ε: IPC threshold, higher than which indicates a more CPU-intensive N application 

The respective values, adapted for single threaded applications*, are calculated as follows:  

α = 0.5∙Bmax, β = 0.025∙Bmax, γ = 0.15∙Bmax, δ = 0.25, ε = 0.25∙IPCmax, where Bmax is 

maximum memory link bandwidth and IPCmax maximum theoretical IPC of the processor. 

This classification scheme can be described by the following decision tree: 

*Note: Thresholds mentioned in the original work are calculated for 4-threaded applications. 
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Memory Link Utilization

L LC

High
{Bin > α}

Medium
{β < Bin < α}
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{maxBin > γ}
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memuops/alluops > δ and IPC < ε

C N

yes no

C N

LLC Private Caches

 

Figure 2.2: Decision tree for application classification [5] 

In this work, the aforementioned scheme will be used to classify instances of a single-

threaded memory pseudo-benchmark. Through extensive co-scheduling tests, the objective is 

to observe all classes’ variations interaction with each other, and interference effects caused 

by contention in all levels of the memory hierarchy. Results will be compared with the 

estimation model and further discussed. 
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Chapter 3 

Hardware and software systems used 

 

In the following chapter, hardware and software infrastructure used is explained. Description 

of computer systems is followed by presentation of the memory benchmark program we 

created to study memory contention. Subsequently, the program is evaluated by comparing 

results with expected behavior, as well as other known benchmarks’ metrics. 

 

3.1 System characteristics 

For co-scheduling tests, two processor architectures were chosen, with different 

characteristics, both, of course, belonging to x86_64 family: Intel
®
 Sandy Bridge and Intel 

Dunnington. 

3.1.1 Intel® Sandy Bridge 

The first system consists of four Intel Xeon
®
 E5-4620 processors on Intel C600 series 

chipset, with 256 GB of DDR3 main memory. Each physical package contains 8 cores with 

private 32 KB instruction and 32 KB data Level 1 cache and 256 KB L2 cache, both 8-way 

associative. All cores share the package’s 16 MB, 16-way associative L3 cache. Cache line 

size is 64 bytes. It should be mentioned that this processor features hyper-threading 
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technology with two threads per core, thus system appears to have two logical CPUs for 

every core; however, we will not be utilizing hyper-threading in this work, as well as other 

parallelization technologies featured, like QuickPath-Interconnect (QPI) bus, thus they will 

not be further explained. Each package communicates with main DDR3 memory through 4 

channels, greatly beneficial for concurrent access requests, with maximum bandwidth being 

~14GB/s per core, 18GB/s per package, and 52GB/s total maximum for all four sockets. It 

also features hardware data prefetching for both memory link and caches. Figure 3.1 shows a 

diagram of a single package, while the system’s four packages (0-3) with the corresponding 

Linux kernel CPU numbering (e.g. cpu0) are shown in figure 3.2. 

Core 0

L1 32KB

Core 1

L1 32KB

Core 2

L1 32KB

Core 3

L1 32KB

Core 4

L1 32KB

Core 5

L1 32KB

Core 6

L1 32KB

Core 7

L1 32KB

Th. 0 Th. 1
(cpu 0) (cpu 32)

Th. 0 Th. 1
(cpu 1) (cpu 33)

Th. 0 Th. 1
(cpu 2) (cpu 34)

Th. 0 Th. 1
(cpu 3) (cpu 35)

Th. 0 Th. 1
(cpu 4) (cpu 36)

Th. 0 Th. 1
(cpu 5) (cpu 37)

Th. 0 Th. 1
(cpu 6) (cpu 38)

Th. 0 Th. 1
(cpu 7) (cpu 39)

L2 256KB L2 256KB L2 256KB L2 256KB L2 256KB L2 256KB L2 256KB L2 256KB

L3 16MB

FSB

Package 0

Figure 3.1: 1
st
 of 4 Intel

®
 Xeon

®
 E5-4620 packages 

This processor was chosen for co-execution tests since it features private L2 cache for each 

core, ensuring that cache level contention will only affect LLC. Additionally, its four-channel 

memory bus of relatively high performance can let us experiment with different behavior of 

applications with varied levels of memory link stressing needs and how they interact. It also 

enables us to observe how data prefetching affects memory intensive applications with 

different data access patterns.  

Finally, Intel also provides performance monitoring capabilities. Using performance counters 

extracted directly from the processor gives the ability to study application behavior and its 

alterations in greater depth and to better explain the effects of co-scheduling. Intel’s Sandy 

Bridge performance monitoring infrastructure offers a very wide range of performance events 

counters [19]. Counters used for this work will be mentioned further in this chapter, along 

with the respective performance metrics. 
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Overall, it is a modern, high performance system, able to handle demanding workloads and is 

expected to be a suitable platform to evaluate the previously described contention estimation 

model. 

This system runs Debian 6.0.9 GNU/Linux operating system, using Linux kernel 3.7.10, gcc 

version 4.6.3 and glibc version 2.11.3. Table 3.1 summarizes the system’s hardware 

characteristics: 

 

# of packages 4 

Cores/Socket 8 

Threads/Core 2 

CPU frequency 
2.2 GHz (TurboBoost™ up 

to 2.6 GHz) 

L1 Cache 
32KB data + 32KB instr., 
private per core, 8-way  

L2 Cache 
256KB private per core, 8-

way  

L3 Cache 16MB shared, 16-way  

RAM 
256GB DDR3, 4-channel 

bus 
 

Table 3.1 
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3.1.2 Intel® Dunnington 

This system features Intel
®
 Xeon

®
 X7460 “Dunnington” processors [23]. Again it is a four-

socket system with Intel’s 7300 chipset. Each package consists of six cores with private 32 

KB instruction and 32 KB data, 8-way associative Level 1 cache. Cores in a package are in 3 

pairs, each pair sharing 3 MB of 12-way associative L2. Each package comes with 16 MB, 

16-way associative L3 cache, shared between all 6 cores. Again, cache line size is 64 bytes. 

Figure 3.3 shows the topology of a package, with the respective Linux kernel CPU 

numbering, while figure 3.4 shows all packages: 

P
ac

ka
ge

 0

Core 0

L1 32KB

L2 3MB

L3 16MB

Core 1

L1 32KB

Core 2

L1 32KB

L2 3MB

Core 3

L1 32KB

Core 4

L1 32KB

L2 3MB

Core 5

L1 32KB

cpu 0 cpu 12 cpu 1 cpu 13 cpu 2 cpu 14

FSB

 

Figure 3.3: Intel
®

 Xeon
®

 X7460 package. 

 

The system features 1066 MHz memory bus, connecting processors with the 27 GB DDR2 

RAM. System’s characteristics are summarized in table 3.2: 
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# of packages 4 

Cores/Socket 6 

Threads/Core 1 

CPU frequency 2.66 GHz 

L1 Cache 
32KB data + 32KB instr., 
private per core, 8-way  

L2 Cache 
3MB shared per 2 cores, 

12-way  

L3 Cache 16MB shared, 16-way  

RAM 27GB DDR2, 1066MHz  

 

Table 3.2 

This system runs Debian 6.0.7 GNU/Linux operating system, using Linux kernel 3.7.10, gcc 

version 4.4.7 and glibc version 2.13. 

Dunnington was chosen for additional testing, since it features interesting differences in 

memory hierarchy, most notably the large but shared L2 cache. This gives us the opportunity 

to experiment with co-execution on cores sharing L2 and directly compare results with the 

same experiment on non-adjacent cores that will not compete for L2. It also gives potential to 

see the accumulated effects of contention when it occurs on all three levels of shared memory 

hierarchy (L2, LLC, memory link). Additionally, disabling memory bus data prefetching is 

expected to alter differences in performance between access patterns, comparing to the 

equivalent Sandy Bridge tests. However, prefetching mechanisms are present between caches 

and in the main memory DRAM controller. Also, contrary to the previous architecture, each 

socket is connected to main memory through a single memory bus (instead of four), thus 

concurrent memory access requests are expected to be serialized in order to be served by the 

memory link. This set of differences, especially L2 sharing and memory bus performance, 

may alter predicted behavior patterns in co-scheduling context. 
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3.2 Co-scheduling environment 

3.2.1 Scaff 

For all co-execution experiments, scaff infrastructure was used. Scaff is a runtime system 

used to coordinate the execution of a workload consisting of multithreaded applications on a 

multi-core/multi-processor system. It operates on user-level, on Linux-based systems. It is 

used to provide a communication mechanism between a scheduler and the programs 

executed. Scaff’s infrastructure consists of two basic systems: the executor and the scheduler. 

The executor handles execution events, e.g. creation and termination of processes, while the 

scheduler is responsible for decisions concerning resources sharing, with the ability to 

implement various scheduling policies and utilize hardware performance counters. In this 

work, however, scheduling policy is not important since all tests conducted involve a single 

process on each core. Thus, there is no need for cpu time-sharing and context switching. 

The executor keeps information about the programs executed and events during execution-

time and stores data from the scheduler’s output, programs’ output, error messages and 

performance counters data. For each co-execution test, the executor is run, with given 

arguments a configuration file, an output folder, the set of CPUs and scheduler to be used. 

The configuration files contains the executables’ paths, along with information about 

execution, such as the number of cores needed for each one, its place in the execution group 

and other scheduler-decision related parameters (e.g. starting time if a delay is desired), most 

of which do not concern the current work.  

As mentioned before, Scaff also provides the infrastructure to extract performance data for 

each process. Apart from a number of fixed counters (unhalted cycles, instructions retired), 

users can modify the scheduler code to take advantage of additional counters from the set 

provided by the architecture. Scaff stores performance data from the counters in 

approximately 1 sec. intervals in a counters file, with the corresponding PID and execution 

time elapsed. 
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3.2.2 System tools and mechanisms used 

Scaff uses Linux kernel’s cgroups and cpusets subsystems. Cgroups (Control groups) provide 

a mechanism for creating sets of tasks with specialized behavior, in hierarchical organized 

groups [17,21]. A cgroup is a set of tasks with common execution parameters, such as 

resource limitations. User can control execution of processes belonging in a cgroup by editing 

the specific group’s configuration files. Cgroups are exported as a virtual filesystem and can 

be easily handled from userspace. User-level code can create, handle and destroy cgroups by 

name in an instance of the cgroup virtual filesystem, which includes files that contain 

information about this cgroup instance and the subsystems associated with it. Userspace code 

can define behavior of a cgroup by changing values of those files. For example, when using 

cpusets, every cgroup of the cpuset filesystem contains the files ‘cpus’ and ‘tasks’. If a task is 

to be executed in CPU 1, we can write its PID in tasks and value 1 in cpus.  

Cpusets use the generic cgroups subsystem [18,21] and constrain the execution of tasks to a 

set of cpus and memory nodes. Cpusets can be created and deleted from user-space, as they 

are using the cgroups virtual filesystem. This mechanism can restrain selected processes not 

only in which CPUs they are allowed to use, but also in other parameters, such as memory 

nodes. This is achieved by filtering system calls made by these processes; a task will not be 

scheduled on a CPU that is not allowed in its cpus_allowed vector, and the kernel page 

allocator will not allocate a page on a node that is not allowed in the requesting task's 

mems_allowed vector. 

Scaff allocates a structure for every program (aff_prog_t) which will be used to store the 

program’s information during execution, also containing a pointer to the shared memory used 

by the executor to communicate with the process. This structure also contains a cpuset field 

which serves as a handler for the program’s cpuset. The executor uses the fork system call to 

start execution. Scaff creates a new cgroup in the cpusets filesystem and attaches the program 

to it.  

Additionally scaff initializes signal handlers; signals important for the executor are 

SIGCHLD and SIGTERM. The latter indicates unexpected termination of the program and is 

handled as an error (e.g. stopped with a SIGKILL). A normal termination of a running task is 

indicated by SIGCHLD. 
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3.3 Benchmark program 

Our goal was to create a benchmark to test the various levels of the memory hierarchy. The 

idea was to test both sequential access (which takes advantage of hardware data prefetchers, 

if any available, and cache re-use) and random access pattern, to limit the gains of 

prefetching and cache usage. It is based on continuously accessing the structures for a user 

given number of iterations. The program is implemented in C, all executables compiled with 

gcc’s O3 optimization flags. 

3.3.1 Design 

Data structures used: 

The benchmark utilizes a user-defined number of linked lists (up to 8 implemented, but very 

easily extendable to any desired number) for both sequential and random access. The purpose 

of that is to have more than one independent access requests in each loop, in order to exploit 

instruction level parallelism (ILP). 

At this point, it may be noteworthy to mention the various structures we experimented with, 

some of which are used to create the ones we finally chose. The benchmark was initially 

using arrays instead of lists, but the latter were found to offer much more consistent 

performance. The basic unit used as a starting point is a sequential access array, a simple 

single-dimensional array of unsigned integers, in which each element contains the position of 

the next element to access. In our case a[i] = i + 1, imitating a pointer to the subsequent 

memory element. Structure initialization and access subroutines are as follows:  

create_sequential_access_array (integer: size) 

 allocate array[size] a of long integers //contains elements a[0]…a[size – 1] 
 for i  0 to size – 2 
  a[i]  i + 1 
 a[size – 1]  0  //last element value points to start 
 
 return pointer to a 
 end 

 
 



25 

 

 
 

Figure 3.5: Example array with 10 elements 

 

 
access_sequential_array (array:a) 
 
 temp  0 
 for i  1 to (size of a)  
  temp  a[temp] 
 end 

 

Figure 3.6: Example of sequential array access sequence 

 

For the random access of elements, the numbers in the sequential access array need to be 

randomly permuted so that each element points to a random element to be accessed next. The 

Fisher – Yates permutation algorithm [22] is used, along with Galois linear feedback shift 

register (LFSR) for randomization. The LFSR produces a pseudo-random sequence with a 

very long cycle, making it suitable for use with large numbers of elements. Fisher – Yates 

shuffle algorithm, if provided with an unbiased random sequence, will produce an unbiased, 

random permutation of a finite set. It is ensured that each element is only repeated once and 

that the access is cyclic, all elements are accessed at the end of an iteration.  

create_random_access_array(integer: size) 

 allocate array a of size //contains elements a[0]…a[size-1] 
 for i  0 to size – 1 
  a[i]  i + 1 
 fisher_yates_permute(a) 
 
 return pointer to a 
 end 
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fisher_yates_permute(array:a) 
 for i ((size of a) – 1) to 1  //with decrement step 1 
  j  galois_LSFR mod i 
  swap (array[i], array[j]) 
 end 
 

 

 

Figure 3.7: Example array after a random permutation of the elements 

The array can be accessed in the same way with the sequential: 

access_random_array(array:a) 
 
 temp  0 
 for i  1 to (size of a)  
  temp  a[temp] 
 end 

 

 

Figure 3.8: Sample of random array access sequence 

 

The aforementioned array types are used, indirectly, for creating the linked lists the 

benchmark utilizes. The structure used for the list elements consists of 7 long integers 

forming an array of 56 bytes and a pointer (another 8 bytes) to the next element. Thus, it is 

ensured that each element has a total size of 64 bytes (the size of a cache line) and for every 

new access a new line must be loaded to the cache. The 7 long-integer elements, apparently, 

do not contain any useful data and are serving as the payload of the structure. 

 



27 

 

Struct L: 

 next: pointer to struct l element 
 pad: array[0..7] of long integers  
 

Long 
int

Long 
int

Long 
int

Long 
int

Long 
int

Pointer to next
(8 byte)

Long 
int

Long 
int

Long 
int

Long 
int

Long 
int

Long 
int

56 byte payload
 

Figure 3.9: List element structure 

Using this structure, the sequential access lists are created. The size of the list is variable and 

is given by the user, depending on which level of the cache hierarchy (or the main memory) 

is to be targeted. 

create_sequential_access_list(integer: size) 

 allocate array list_elements[size] of type: struct L   
 for i  0 to size – 2 

list_elements[i].next  list_elementsi[i + 1]; //next points at the 
element //subsequent in 
memory 

 
list_elements[i].next  &list_elements[0]; //last element value points at 

start 
 
 return pointer to list_elements    //first element 
 end 
 
access_sequential_list(pointer to list: a) 
 s  a 
 for i  0 to (size – 1) 
  s  s.next 
 end 
 

Pointer to next
(8 byte)56 byte payload

Pointer to next
(8 byte)56 byte payload

 

Figure 3.10: accessing consecutive memory elements. 
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To create the random access list, the idea is randomly permuting the pointers-to-next-element 

of a same type list, ensuring again that each element needs a separate cache line. 

In order to implement a random access list, the same principle is used: A random access array 

(of size n), basically a randomly permuted list of the numbers [0, n-1], is used to assign the 

pointers on each element of the list: 

create_random_access_list(integer: size) 

 allocate array list_elements[size] of type: struct L  
 permut  create_random_access_array(size) 
 for i  0 to (size – 1) 

list_elements[i].next  list_elements[permut[i]]; 
  
 return pointer to list_elements    //first element 
 end 
 

Access is the same with sequential list: 

access_random_list(pointer to list: a) 
 s  a 
 for i  0 to (size – 1) 
  s  s.next 
 end 
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Figure 3.11: Example of a randomly accessed list. 

 

 

 



30 

 

Using the benchmark 

The benchmark has a relatively simple approach: The user defines the data size (in kilobytes), 

number of loop iterations and number of accesses on each loop. The program first initializes 

sequential access structures according to user input, then it starts accessing the elements as 

defined previously. This repeated procedure (post initialization) is timed using system time. 

When finished, the number of iterations, size of data and consequently the total data accesses 

are known, as well as the execution time for the loop alone. Thus, it is possible to calculate 

the bandwidth ( 
    

    
  ratio) achieved. The procedure is repeated for random access. 

benchmark_sequential(iterations, size_inKB) 
 size  size_inKB convert to number of elements 
 seq_list  create_sequential_access_list(size) 
 start timing 
 for i  1 to iterations 
  access_sequential_list(seq_list) 
 end timing 
 output results //Total data accessed, Total time, Bandwidth as calculated from size 
and 

//time 
 end 
 
benchmark_random(iterations, size_inKB) 
 size  size_inKB convert to number of elements 
 ran_list  create_random_access_list(size) 
 start timing 
 for i  1 to iterations 
  access_random_list(ran_list) 
 end timing 
 output results //Total data accessed, Total time, Bandwidth as calculated from size 

//and time 
 end 

 

Example output: Benchmark with 4MB size and 20000 iterations: 
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4096 KB converted to 65536 elements. 

 

                   Benchmark 1 

       Sequential access list of 65536 elements, element size:64 

bytes 

 

Number of iterations: 20000      Total data: 80000.0000 MBytes 

 

Total time 7.942 sec             Average rate: 10073.2831 MB/sec 

 

 

                   Benchmark 2 

       Random access list of 65536 elements, element size:64 bytes 

 

Number of iterations: 20000      Total data: 80000.0000 MBytes 

 

Total time 26.147 sec            Average rate: 3059.5720 MB/sec 

 

=================================END================================

== 

 

When accessing more than one structures, the procedure is almost the same. The difference is 

that we create smaller independent structures, the total size of which is the target size, and 

each one’s next element is accessed independently in every loop iteration. 

benchmark_sequential(iterations, size_inKB, no_of_streams)  
 size  size_inKB convert to number of elements 
 size  size / no_of_streams 
 seq_list_1  create_sequential_access_list(size) 
 seq_list_2  create_sequential_access_list(size) 
 . 
 .    //up to no_of streams lists are created 
 .     
 start timing 
 for i  1 to iterations 
  s1  seq_list_1 
  s2  seq_list_2 
  .  
  . 
  .   
  for j  1 to size 
   s1  s1.next 
   s2  s2.next 
   . 
   .  //in each loop no_of_streams elements are accessed 
   .   
 end timing 
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output results  //Total data accessed, Total time, Bandwidth as calculated from size 
//and time 

 end 
 

The same is applied for the random counterpart. An example output with 4MB, 4 streams 

(thus meaning 4 streams of 1MB each) and 20000 iterations: 

4096 KB converted to 65536 elements. 

 

                  Benchmark 3 

Parallel sequential access of 4 lists, 16384 elements each, element 

size:64 bytes 

 

Number of iterations: 20000      Total data: 80000.0000 MBytes 

 

Total time 3.319 sec             Average rate: 24105.1418 MB/sec 

 

 

                 Benchmark 4 

Parallel random access of 4 lists, 16384 elements each, element 

size:64 bytes 

 

Number of iterations: 20000      Total data: 80000.0000 MBytes 

 

Total time 7.798 sec             Average rate: 10259.5394 MB/sec 

 

 

=================================END================================

== 

 

 

3.3.2 Results and evaluation  

The program was used to evaluate the performance of the different memory hierarchy levels 

of specific architectures, using a variety of configurations, ranging from 1 kilobyte to 128 

megabytes and from 1 up to 8 independent streams for each size. This range of target sizes 

was chosen to demonstrate how the performance alters when gradually moving from a dataset 

that can fit in a fraction of the L1, to sizes much larger than the last-level-cache (LLC), where 

the program has to continuously access the main memory. 

The number of iterations for each test was decided accordingly in order to achieve a running 

time of at least 5 seconds, in almost all cases more than 6 sec. The purpose of that was to 

minimize the effects of possible random factors during execution by providing a relatively 

long running time, and a large number of iterations to provide better statistical sample 
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quality, also eliminating the impact of initial data fetching penalties, which will occur on the 

first cycles. Each benchmark (with the same parameters: size, iterations and number of 

streams) was also executed 2 to 4 times, so that possible performance inconsistencies would 

be easier to detect. 

3.3.2.1 Intel Sandy Bridge architecture 

The first processor architecture on which it was tested was Intel’s Xeon E5-4620 Sandy 

Bridge with the following features, as mentioned before in this chapter: 8 hyper-threaded 

cores per package, 32 KB data + 32 KB instruction, 8-way associative Level 1 cache per 

core, 256 KB 8-way associative Level 2 cache per core, 16 MB, 16-way associative Level 3 

cache per package and hardware data prefetching both for main memory and cache. It should 

be noted that the benchmark, however, only utilizes a single core (or a single thread, in 

hyperthreaded architectures as this one), in order to be able to measure per-core-performance 

and be independently executed on more cores to study the behavior when contention is 

caused on shared resources (e.g. LLC, Memory bus usage), which is the objective of this 

thesis.  

Average per core data bandwidth for sequential access measured by the benchmark is shown 

on table 3.3, while table 3.4 contains results for random access. Actual performance, of 

course, may vary from 0.01% up to ~4-5% for the same tests repeated more times, but this is 

expected, as the tests were run in user-level within a normally running Linux OS. It is 

important to state that our objective is to study the order of magnitude of achievable 

bandwidth in normal runtime context, and not theoretical maximum or high precision. For 

these reasons, the presented results are considered satisfying, focusing on the 3-4 most 

significant digits. 

The expected behavior of the tests is described below: 

 For sizes less than the size of L1 cache (32 KB), bandwidth should be higher, as the 

data can fit in the L1 cache, which is the fastest in the hierarchy. It was also expected 

to be increasing even more as the number of streams is increased, utilizing ILP. As 

long as all data is loaded on L1 cache, no noticeable difference should be noticed 

between sequential and random access patterns. 

 For more than 32 KB and less than 256 KB, significant performance degradation is 

expected, as the data can no longer fit in L1 and the slower L2 must be used. Again, 
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because of ILP, increasing the number of streams should increase bandwidth. As 

mentioned before, since all data has been fetched to the cache, no major difference 

between sequential and random access should occur. 

 As data size gets close to and exceeds 256 KB, the L2 is not sufficient to hold it 

without having to use L3. Thus, a decrease in bandwidth is expected as data has to be 

fetched from L3, replacing higher level cache lines each time. Increasing the number 

of streams accessed should, again, increase throughput, at least to the limit up to 

which the LLC cache can perform. 

 When data size verges the L3 size (16 MB), the program should start accessing data 

using the memory bus alongside the cache, and so slowing down even more. At larger 

sizes when continuous cache line replacements are expected, the sequential 

benchmark should very noticeably take advantage of the hardware prefetchers, while 

the random part should be excessively slowed down because of higher LLC-miss 

penalties. 

Results of the benchmark for sizes corresponding to the above remarks are shown in the 

tables below, 3.3 for sequential access and 3.4 for random access pattern: 

 

        Sequential Bandwidth (in MB/s)     

                    

Size (KB)         Number of streams       

    Single 2 3 4 5 6 7 8 

16   42,257.9 79,032.8 111,928.4 141,378.1 168,441.0 192,163.0 200,749.1 225,497.5 

32   40,893.9 72,536.5 103,288.7 142,248.8 153,478.4 183,356.6 184,678.0 230,070.3 

38   13,168.2 26,134.6 37,675.5 38,319.8 59,253.4 59,788.2 63,556.0 68,606.7 

45   13,091.2 25,948.5 37,634.7 45,587.1 55,498.9 58,037.8 62,757.9 65,374.2 

128   12,810.3 25,405.3 36,676.9 44,752.7 46,074.7 57,366.0 60,664.5 58,034.6 

200   11,992.1 23,380.9 29,944.9 32,800.1 38,179.0 47,494.6 49,717.1 48,382.3 

256   11,089.4 21,667.7 27,333.7 23,663.3 34,515.6 38,685.5 42,360.0 45,586.5 

384   10,304.4 16,665.5 21,585.7 19,678.0 27,860.9 26,681.2 28,493.6 29,630.9 

3,072   10,099.3 16,095.4 20,482.3 24,226.6 26,017.0 26,692.8 27,154.0 27,317.3 

10,240   9,774.7 15,953.6 20,102.7 22,911.3 24,742.0 25,227.1 25,450.1 26,582.5 

13,302   9,428.1 15,224.2 18,708.2 19,954.8 20,670.3 23,442.2 23,896.6 24,252.0 

16,384   7,760.6 12,880.6 16,693.7 18,122.9 18,471.1 18,191.8 18,163.4 17,991.0 

20,480   6,916.9 11,802.3 14,752.6 15,111.1 15,156.8 14,889.2 14,765.5 14,703.5 

32,768   6487.106 11206.05 13423.85 12957.71 13042.74 12777.82 12595.26 12525.88 

131,072   6521.119 11024.08 13445.06 12820.52 12818.46 12605.11 12416.24 12368.46 

Table 3.3 
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        Random Bandwidth (in MB/s)     

                    

Size (KB)         Number of streams       

    Single 2 3 4 5 6 7 8 

16   42,259.6 79,036.2 112,915.3 141,370.5 162,941.3 192,502.7 204,920.5 225,528.0 

32   40,894.8 72,175.9 106,969.6 134,536.1 152,955.7 187,909.6 202,198.3 211,157.9 

38   13,938.6 27,365.4 40,808.6 39,143.1 59,489.0 66,377.3 71,454.7 73,594.3 

45   13,670.3 26,685.6 38,255.9 44,201.3 53,855.8 59,221.2 63,471.4 65,960.4 

128   13,338.1 25,752.9 32,380.9 45,031.1 51,441.2 57,905.7 60,786.1 60,495.0 

200   10,380.3 19,810.2 26,245.2 26,315.0 41,984.5 42,492.3 47,652.4 50,005.4 

256   5,159.4 12,021.0 17,085.2 15,610.3 28,707.0 27,694.8 37,751.7 33,450.9 

384   3,981.8 7,385.6 10,996.7 12,149.1 17,727.0 20,901.1 23,281.7 26,585.3 

3,072   3,176.7 6,141.9 8,869.7 11,299.8 13,396.5 15,162.7 16,488.7 17,100.0 

10,240   2,466.5 5,178.4 6,853.5 7,141.6 7,419.7 7,672.1 7,656.8 7,589.6 

13,302   2,663.9 5,052.8 6,535.2 7,061.1 7,080.6 7,105.2 6,947.2 6,981.9 

16,384   1,137.5 2,169.8 3,349.6 3,947.2 4,892.8 5,460.4 5,982.0 6,235.1 

20,480   810.1 1,528.6 2,296.8 2,976.0 3,670.4 4,271.7 4,830.2 5,320.4 

32,768   647.8 1,267.9 1,873.9 2,449.4 3,032.1 3,582.1 4,092.2 4,542.0 

131,072   589.5 1,154.6 1,691.2 2,203.5 2,625.0 2,908.9 3,032.1 3,062.2 

Table 3.4 

Full benchmark data for all dataset sizes tested are presented in Appendix. A graphical 

representation of the data can be seen in figures 3.12 (sequential) and 3.13 (random). Data 

size is on the horizontal axis and bandwidth on the vertical. 

 

 

Figure 3.12 
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Figure 3.13 

The actual results, as seen above, largely confirm the expected behavior, described 

previously, but also lead to additional interesting conclusions.  

For tests up to 256 KB, each additional data stream increases bandwidth noticeably for both 

random and sequential access patterns. Also, performance is almost the same, for a given 

number of streams, for both patterns, with the random being marginally faster in many cases. 

This could be explained, given that the sequential access will make a constant number of 

misses, fetching and replacing data serially, while the randomized one may take advantage of 

elements fetched on a previous miss that weren’t accessed nor replaced, and thus happen to 

be in the cache when the program needs to access them. However, these performance 

differences are extremely low. 

Performance degradation, when approaching the limits of a cache level, is very noticeable 

when reaching 32 KB, 256 KB and 16 MB for sequential access. For random access, there is 

an additional point of noticeable throughput drop: when exceeding 2.5 MB and this can be 

explained as in the specific architecture, despite having a 16MB L3 shared among all 

processors of the package, maximum per core L3 is limited to 2.5 MB [20], resulting in 

relatively higher access times for other parts of the cache. However, the sequential 

counterpart is not affected, taking advantage of cache level prefetching.  

For larger sizes than 128 MB, already 8 times the size of the LLC, bandwidth achieved 

remained constantly in the same levels, thus further results are omitted. It also becomes 
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apparent that for large data sizes (bigger than LLC) increasing the number of streams more 

than 3 starts to cause slight decrease in performance for sequential pattern, indicating that 

contention on the memory bus starts to occur with the concurrent accesses. Between 1 and 2 

streams, however, a direct doubling is noted, before achieving the maximum with 3 streams, 

interestingly demonstrating the performance gains of ILP. Similarly, the random pattern 

seems to constantly gain 0.5 GB/s for each stream up to 4, where contention on memory link 

seems to begin. These observations suggest the benchmark’s predictable behavior, making it 

suitable for co-scheduling study, which is the objective of the current thesis. 

To evaluate the results, “STREAM” benchmark was used for sequential access, and “pChase” 

benchmark for random patterns. 

STREAM: 

STREAM [14] is a benchmark program, designed to stretch the memory bus of a multicore 

system and measure its maximum sustainable bandwidth, by making streaming memory 

accesses. STREAM, is widely used as a standard for large-SMP systems bandwidth 

measurement. It implements a kernel that accesses 3 single-dimensional arrays of double-

precision floating point elements, much larger than the LLC. The access pattern ensures each 

request has to access the main memory, eliminating cache re-use, a concept quite similar to 

the benchmark program described in this chapter. STREAM takes advantage of multicore 

architectures by running a thread on each core, in order to maximize memory bus utilization. 

Therefore, to compare it with the present results, it was needed for STREAM to be limited to 

a number of cores, in the same physical package since, as stated before, our benchmark is 

single threaded, running on only one core. 

The best bandwidth performance achieved with STREAM running on 1, 2, 3 and 4 cores 

respectively is presented below, in table 3.5. 

  Bandwidth in MB/s     

  1 Core 2 Cores 3 Cores 4 Cores 

Best 12,012.9 14,253 14,234.5 14,166 

  
   

  

Size 2.2 GB 2.2 GB 2.2 GB 2.2 GB 

Table 3.5 

Maximum theoretical memory bandwidth per package on the specific system is 18 GB/s. 

STREAM manages to achieve up to ~14 GB/s when running on 2 or more cores of the 
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package. When on a single core, it achieves 12 GB/s. Comparing it to our benchmark, 

performance is quite similar: the maximum bandwidth achieved was about 13.5 GB/s, 

utilizing 3 independent lists (see t. 3.3): 

        Sequential Bandwidth (in MB/s)     

                    

Size (KB)         Number of streams       

    Single 2 3 4 5 6 7 8 

131,072   6521.119 11024.08 13445.06 12820.52 12818.46 12605.11 12416.24 12368.46 

 

It should be noted that STREAM uses 3 structures on each thread, thus making its single-

threaded instance directly comparable with the 3-stream variation of the benchmark, which 

seems to achieve slightly increased bandwidth (13.4 GB/s instead of 12 GB/s). Further results 

of STREAM, as mentioned before, do not exceed 14.2 GB/s, indicating that it is close to the 

maximum bandwidth that can be achieved from a single process. Additionally, a final test 

series with STREAM utilizing all eight cores of the package, making use of hyper-threading, 

resulting to a 16-thread instance using 2.2 GB of main memory, achieved 13445 MB/s, a 

number that happens to precisely match our 3-stream benchmark instance. Also, running 

STREAM without thread limitations resulted on a 64-thread instance which measured 50 

GB/s total bandwidth on all four packages, but this is mentioned only for the sake of 

completeness, since it does not fall in the context of the current work. 

pChase: 

pChase [15] is another memory performance benchmark, which measures performance and 

latency for various access patterns. It is based on pointer accessing and offers randomized 

access pattern and adjustable number of accessing threads, suitable to evaluate the random 

access results given by our benchmark. Table 3.6 contains the results of pChase using the 

random pattern it provides, limited to single core execution for all numbers of threads. The 

size of each data chain accessed by the respective thread is decided similarly, e.g. on the 2 

MB experiment with 1 thread, it uses one chain of 2 MB, with 2 threads, 2 chains of 1MB 

etc. 
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    Bandwidth in MB/s     

          

Size 1 Thread 2 Threads 3 Threads 4 Threads 

128 KB 13,614 13,516 13,855 27,631 

256 KB 10,490 13,530 13,661 13,650 

1 MB 8,271 8,590 8,906 10,112 

2 MB 8,412 8,454 8,396 8,526 

3 MB 8,230 8,418 8,403 8,362 

6 MB 8,109 8,219 8,375 8,371 

12 MB 6,321 8,059 8,094 8,148 

16 MB 4,100 7,342 7,753 7,748 

32 MB 2,617 3,022 5,051 4,971 

128 MB 2,582 2,561 2,570 2,571 

Table 3.6 

Same sizes results from table 3.4: 

 

        Random Bandwidth (in MB/s)     

                    

Size (KB)         Number of streams       

    Single 2 3 4 5 6 7 8 

128   13,338.1 25,752.9 32,380.9 45,031.1 51,441.2 57,905.7 60,786.1 60,495.0 

256   5,159.4 12,021.0 17,085.2 15,610.3 28,707.0 27,694.8 37,751.7 33,450.9 

1,024   3,511.0 6,889.5 10,096.4 11,238.6 16,100.2 18,861.7 21,470.7 23,936.6 

2,048   3,438.2 6,754.8 9,902.0 12,878.3 15,765.5 18,448.3 20,999.1 23,431.1 

3,072   3,176.7 6,141.9 8,869.7 11,299.8 13,396.5 15,162.7 16,488.7 17,100.0 

6,144   2,934.9 5,553.1 7,601.0 8,881.5 9,404.8 9,559.7 9,490.4 9,410.6 

12,288   2,711.5 5,137.0 6,614.4 7,175.2 7,262.5 7,253.5 7,220.6 7,152.4 

16,384   1,137.5 2,169.8 3,349.6 3,947.2 4,892.8 5,460.4 5,982.0 6,235.1 

32,768   647.8 1,267.9 1,873.9 2,449.4 3,032.1 3,582.1 4,092.2 4,542.0 

131,072   589.5 1,154.6 1,691.2 2,203.5 2,625.0 2,908.9 3,032.1 3,062.2 

 

It can be easily observed that the order of magnitude, comparing the results of the two 

benchmarks, is the same for the sizes tested. However, increasing the number of streams in 

pChase does not affect performance very noticeably for the vast majority of cases. A closer 

look indicates that pChase for 128 KB, up to 3 threads, performs similarly to the 1-stream 

variation of our benchmark, for 256 KB (for all number of threads) it is similar to the 2-

stream, up to 6 MB compares with the 3-stream and for the larger sizes it performs close to 

the 4 or more streams. Additionally, pChase performance remains constant for all sizes in the 

LLC range (less than 16 MB) for all number of threads. On the contrary, our benchmark’s 
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performance constantly degrades as size is increased, and increases with additional data 

streams. Figure 3.14 features comparative performance of pChase and instances of our 

benchmark using 1 up to 5 streams. Since no significant differences are noticed between 

pChase thread numbers, average values were taken for the graph. It becomes apparent how 

similarly the two programs perform. 

 

Figure 3.14: Comparison with pChase 

Once more, these observations suggest that the benchmark presented in this chapter has a 
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of contention levels. 
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The expected behavior of the benchmark remains mostly as described for the Sandy Bridge 

processor, with performance being decreased when reaching the sizes of the L1, L2 and L3 
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patterns are shown below, in tables 3.7 and 3.8, while complete results tables are in 

Appendix. 

 

        Sequential Bandwidth (in MB/s)     

                    

Size (KB)         Number of streams       

    Single 2 3 4 5 6 7 8 

16   53,282.4 77,413.5 116,444.4 127,305.5 132,916.4 136,191.7 138,461.6 140,195.9 

32   53,640.4 79,141.1 93,761.1 122,190.1 114,750.3 121,475.2 118,081.8 138,596.5 

38   13,168.2 26,134.6 37,675.5 35,586.3 39,896.1 42,419.5 40,808.9 38,276.1 

45   12,849.7 23,435.8 31,865.3 35,543.2 39,933.6 42,358.4 37,494.2 34,623.1 

256   12,838.8 23,652.3 31,918.5 35,868.0 40,236.5 42,616.5 37,531.2 33,539.3 

768   12,837.7 23,635.6 31,959.5 36,366.9 41,972.8 42,868.5 37,556.2 33,580.0 

1,024   12,835.8 23,624.5 25,506.2 36,377.2 41,624.3 42,893.7 37,327.5 34,569.4 

2,048   11,725.2 22,623.2 28,174.8 31,647.0 37,097.4 35,768.5 34,538.6 32,772.9 

3,072   9,976.5 16,047.5 18,204.5 19,364.6 20,993.3 20,661.0 21,063.4 21,384.5 

4,096   8,531.1 11,846.9 11,967.0 12,442.9 12,342.4 12,805.5 12,772.7 13,015.0 

6,144   7,948.8 9,570.3 9,907.9 10,057.8 10,153.1 10,098.3 10,143.3 10,146.3 

12,288   5,381.6 6,317.1 6,453.9 6,432.2 6,621.7 7,577.4 7,718.1 8,130.4 

16,384   3,030.4 3,486.6 3,609.2 3,791.9 3,802.9 3,760.9 3,998.7 4,193.2 

20,480   2,078.5 2,629.0 2,650.4 2,737.9 2,728.3 2,745.0 2,703.3 2,691.0 

131,072   1,872.7 2,322.8 2,362.5 2,386.3 2,429.0 2,422.6 2,422.9 2,363.0 

Table 3.7 

        Random Bandwidth (in MB/s)     

                    

Size (KB)         Number of streams       

    Single 2 3 4 5 6 7 8 

16   53,281.5 77,555.2 115,802.4 128,106.4 132,928.9 136,191.7 138,453.9 140,197.1 

32   53,634.6 79,147.2 96,329.2 114,466.4 120,876.0 122,764.6 125,908.8 128,006.2 

38   13,938.6 27,365.4 40,808.6 39,606.4 47,208.8 41,838.2 41,715.1 38,784.2 

45   10,894.2 21,355.7 32,016.7 40,604.9 48,372.0 45,322.8 38,097.5 36,427.4 

256   9,826.0 19,558.1 29,200.6 38,639.6 43,788.0 38,544.6 37,047.8 35,683.8 

768   9,625.2 19,220.3 28,775.8 37,745.9 43,024.9 38,209.8 36,693.1 35,438.9 

1,024   9,599.0 19,126.4 28,421.8 37,544.5 42,429.3 36,947.8 34,475.0 33,625.4 

2,048   7,167.0 11,504.5 18,523.7 21,323.7 23,443.3 22,949.5 26,250.9 25,890.6 

3,072   3,778.5 7,475.8 9,132.6 11,340.2 13,203.9 14,974.1 16,037.1 16,934.3 

4,096   2,515.1 4,849.1 6,773.6 8,576.0 9,836.0 10,738.8 11,383.2 11,887.9 

6,144   1,931.1 3,683.4 5,285.9 6,554.0 7,512.0 8,348.9 9,107.9 9,545.6 

12,288   1,495.2 2,369.9 2,691.9 5,414.4 5,813.0 6,902.7 5,891.8 6,383.1 

16,384   928.3 1,582.1 2,257.1 2,481.7 2,894.9 3,314.3 3,582.2 3,777.4 

20,480   643.2 1,236.3 1,560.6 1,939.2 2,190.2 2,345.3 2,463.7 2,571.3 

131,072   334.1 609.9 839.2 1,061.2 1,286.5 1,497.7 1,699.4 1,852.7 
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Table 3.8 

A graphical representation of the data can be seen in figures 3.15 (sequential) and 3.16 

(random) 

 

Figure 3.15 

 

Figure 3.16 
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Results in this architecture are, again, as predicted above. A huge performance drop is noted 

when data size exceeds 32 KB (L1), followed by a second decrease while verging L2 size. 

While being on the LLC size range, bandwidth continues to gradually decrease, for both 

access patterns, until it finally gets stable for the largest size instances. As expected, the lack 

of hardware prefetching results in much smaller differences between sequential and random 

access, compared to the equivalent Sandy Bridge results. 

Effects of ILP when increasing the number of data streams accessed are noticeable, similarly 

to the Sandy Bridge Xeon, with a most notable example the steady 0.2-0.25 GB/s gain for 

each additional stream on the largest sizes for the random access pattern. 

STREAM: 

Once again, STREAM was used to evaluate measured bandwidth and performance of the 

benchmark on this architecture. Bandwidth measured with STREAM is shown in table 3.9 

 

  Bandwidth in MB/s     

          

  1 Core 2 Cores 3 Cores 4 Cores 

Best 2,336 2,580 2,602 2,613 

  
   

  

Size 2.2 GB 2.2 GB 2.2 GB 2.2 GB 

Table 3.9 

As seen above, performance of the two benchmarks is very similar, both measuring 

maximum per-core bandwidth at 2.4 GB/s. The corresponding entries of table 3.7 follow: 

        Sequential Bandwidth (in MB/s)     

                    

Size (KB)         Number of streams       

    Single 2 3 4 5 6 7 8 

131,072   1,872.7 2,322.8 2,362.5 2,386.3 2,429.0 2,422.6 2,422.9 2,363.0 

 

For completing the overall picture, it should be mentioned that maximum per-package 

bandwidth, as measured by STREAM, is 2.6 GB/s, while overall bandwidth, utilizing all four 

packages, was found to be 8.7 GB/s. 
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pChase 

As before, in order to evaluate the random access pattern behavior the pChase benchmark 

was used, running the same series of tests: 

    Bandwidth in MB/s     

          

Size 1 Thread 2 Threads 3 Threads 4 Threads 

128 KB 11,780 12,493 12,335 35,800 

256 KB 13,003 12,443 12,200 11,957 

1 MB 13,026 13,022 13,000 13,003 

2 MB 10,850 13,013 13,019 13,000 

3 MB 5,838 12,556 12,907 12,904 

6 MB 3,509 5,311 9,078 11,632 

12 MB 2,383 3,395 3,744 5,222 

16 MB 1,237 2,795 2,880 3,020 

32 MB 807 804 815 811 

128 MB 797 798 793 794 

Table 3.10 

Same sizes results from table 3.8: 

        Random Bandwidth (in MB/s)     

                    

Size (KB)         Number of streams       

    Single 2 3 4 5 6 7 8 

128   10,130.8 19,977.3 29,953.1 39,677.8 45,465.5 39,182.1 37,060.0 35,895.1 

256   9,826.0 19,558.1 29,200.6 38,639.6 43,788.0 38,544.6 37,047.8 35,683.8 

1,024   9,599.0 19,126.4 28,421.8 37,544.5 42,429.3 36,947.8 34,475.0 33,625.4 

2,048   7,167.0 11,504.5 18,523.7 21,323.7 23,443.3 22,949.5 26,250.9 25,890.6 

3,072   3,778.5 7,475.8 9,132.6 11,340.2 13,203.9 14,974.1 16,037.1 16,934.3 

6,144   1,931.1 3,683.4 5,285.9 6,554.0 7,512.0 8,348.9 9,107.9 9,545.6 

12,288   1,495.2 2,369.9 2,691.9 5,414.4 5,813.0 6,902.7 5,891.8 6,383.1 

16,384   928.3 1,582.1 2,257.1 2,481.7 2,894.9 3,314.3 3,582.2 3,777.4 

32,768   427.1 777.3 1,077.7 1,337.7 1,554.3 1,755.2 1,934.3 2,069.0 

131,072   334.1 609.9 839.2 1,061.2 1,286.5 1,497.7 1,699.4 1,852.7 

 

Similar to the previous architecture comparison, the bandwidth’s order of magnitude for the 

two benchmarks is the same, with pChase being much less affected by additional data 

streams and displaying a far narrower range of results. Figure 3.17 graphically shows pChase 

bandwidth compared to instances of our benchmark 
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Figure 3.17 

3.3.3 Class evaluation with performance counters 

Finally, the hardware performance counters (provided by the Sandy Bridge architecture) were 

used to confirm the benchmark’s application class (as described in chapter 2) for the various 

size instances. Performance counters used for this evaluation were unhalted clock cycles 

counter, instructions retired counter, per-core Bandwidth counter, L2 lines counter (data from 

L3 to L2), L1 lines counter (data from L2 to L1), LLC misses counter, memory micro-

operations counter (mem_uops) and the total micro-operations (all_uops) counter. Mem_uops 

counts retired micro-operations (loads and stores) to any part of the memory hierarchy, while 

all_uops is total number of micro-operations. Usage of all other performance counters is 

explained in chapter 4. Ratio 
        

        
 shows if an application is memory-bound.  

Table 3.11 shows the memory micro-operations ratio for a wide range of data sizes. (For the 

last instances, the ones with the highest bandwidth were chosen, to maximize contention, thus 

3 streams instance for the sequential pattern, and 8 streams for the random respectively). 
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      Memory micro-operations ratio   

  
      

  

Size (KB) Pattern   1 Stream 2 Streams   4 Streams*   

24 seq.   0.331 0.426   0.551   

24 random   0.331 0.426   0.551   

204 seq.   0.333 0.428   0.555   

204 random   0.333 0.428   0.555   

3072 seq.   0.333 0.429   0.556   

3072 random   0.334 0.429   0.556   

13107 seq.   0.333 0.429   0.555   

13107 random   0.333 0.428   0.554   

122880 seq.   0.332 0.428   0.499* *(3 Streams) 

122880 random   0.333 0.427   0.686** **(8 Streams) 

Table 3.11 

As expected, memory micro-operations ratio is only affected by the number of accesses 

(streams) and not the size of datasets. It can also be observed, that for all cases, ratio is over 

0.25, confirming this benchmark is a memory-bound application, since all it does, after 

dataset initialization, is accessing datasets. 

To decide the application class of each instance, the decision tree described previously was 

used (figure 3.18) with its parameters as follows: α = 7 GB/s, stands for 50% of maximum 

memory bandwidth (in our case 14 GB/s), β = 0.35 GB/s is 2.5% of maximum memory 

bandwidth, γ = 2 GB/s, δ = 0.25, ε = 1, as maximum IPC of this system is 4. 
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Figure 3.18 

 

Table 3.12 contains profiling metrics for the benchmark, as extracted with the 

aforementioned performance counters (all bandwidth values in MB/s), for a variety of dataset 

sizes and number of streams, along with each instance’s classification for this architecture in 

N, C, LC, or L application classes using the classification scheme of figure 3.18. IPC is 

calculated from the number of unhalted clock cycles and instructions retired, bandwidth 

caused by LLC misses (LLC miss BW) from LLC misses counter. 
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Size, No. of streams Pattern IPC per Core BW L3 -> L2 BW L2 -> L1 BW LLC miss BW Class 

  
      

  

204 KB, 1 Stream sequential 0.322 0 7.64 13061.92 0 N 

204 KB, 1 Stream random 0.3352 0 9.77 13617.21 0 N 

204 KB, 2 Streams sequential 0.6335 0 10.24 25705.43 0 N 

204 KB, 2 Streams random 0.3594 0 8660.46 14580.69 0 C 

204 KB, 4 Streams sequential 0.5238 0 16027.64 33992.71 0 C 

204 KB, 4 Streams random 0.445 0 9268.86 28891.07 0 C 

1.5 MB, 1 Stream sequential 0.2624 0 10650.38 10650.29 0 C 

1.5 MB, 1 Stream random 0.0886 0 3594.82 3594.96 0 C 

1.5 MB, 2 Streams sequential 0.4112 0 16639.6 16695.15 0 C 

1.5 MB, 2 Streams random 0.1737 0 7049.35 7049.78 0 C 

1.5 MB, 4 Streams sequential 0.3873 0 22946.76 25168.58 0 C 

1.5 MB, 6 Streams random 0.2376 0 19288.74 19291.63 0 C 

3 MB, 1 Stream sequential 0.2603 0 10588.67 10587.49 0 C 

3 MB, 1 Stream random 0.081 0 3295.24 3544.97 0 C 

3 MB, 2 Streams sequential 0.4073 0 16517.03 16565.68 0 C 

3 MB, 2 Streams random 0.1568 0 6376.51 6865.18 0 C 

3 MB, 4 Streams sequential 0.3837 0 22729.61 24983.86 0 C 

3 MB, 4 Streams random 0.1795 0 11690.68 12575.37 0 C 

13 MB, 1 Stream sequential 0.2269 1862.31 9168.62 9168.46 385.48 LC 

13 MB, 1 Stream random 0.0428 330.38 1760.18 2536.42 330.4 C 

13 MB, 2 Streams sequential 0.3628 3058.99 14639.19 14697.43 524.51 LC 

13 MB, 2 Streams random 0.0804 621.71 3266.29 4753.77 621.71 LC* 

13 MB, 4 Streams sequential 0.3217 3499.8 18861.3 20877.91 730.21 LC 

13 MB, 8 Streams random 0.0764 1214.93 7098.76 10352.99 1215.33 LC 

128 MB, 1 Stream sequential 0.1677 6753.77 6748.64 6754.1 1358.62 L** 

128 MB, 1 Stream random 0.0149 604.06 943.6 1165.77 604.07 LC 

128 MB, 2 Streams sequential 0.2802 11270.97 11094.01 11272.11 1244.91 L 

128 MB, 2 Streams random 0.0293 1184.48 1831.94 2283.66 1184.51 LC 

128 MB, 3 Streams sequential 0.2582 13851.04 12401.27 13866.71 1136.57 L 

128 MB, 8 Streams random 0.0352 3245.13 5020.1 6259.44 3245.23 LC 

Table 3.12 

Notes: 

* This instance could also be classified as C, strictly using the decision algorithm, but its 

behavior suggests it is more a link-and-cache intensive application. 

** Another marginal decision, could also be classified as LC, but it is mostly a link intensive 

application, thus L is more appropriate. 
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It can be easily observed that applications of the same class can have different behavior, with 

the most notable example being class C, which contains a large number of benchmark 

instances. Applications in this class can have dataset sizes small enough to fit completely in 

the cache, without being much affected by other programs sharing LLC, but as memory needs 

increase they become more vulnerable to getting slowed down by other applications. This 

happens because they need to use a large part of the cache and continuous cache data 

replacements caused by other programs result in continuous LLC misses with the respective 

data fetching time penalties, while programs with smaller datasets will have smaller penalties 

as a result of fewer data replacements. High associativity of LLC (16-way for both 

architectures) in conjunction with the unpredictable way OS memory management system 

allocates datasets in memory pages explains why programs with datasets smaller than cache 

size need to additionally use the memory link. The point up to which no need for main 

memory utilization occurs is found (by observing and experimentation) at approximately 

50% of cache size; programs with datasets smaller can practically fit entirely in the cache, 

while larger have an –increasing with size– need to use the memory link as well. Utilization 

of the main memory bus is low when there is no other program destroying cached data, but 

when contention occurs, program’s behavior is forced to change, even into a different class. 

All these expected effects are to be confirmed and further discussed in chapter 4. 

 

Usage in co-execution 

Given all the above observations, the benchmark’s results appear to be valid comparing it to 

other well-known and widely used benchmark programs and, therefore, useful to estimate the 

memory performance of a single core in a multi-core architecture. Additionally, it is 

suggested that it can be used to cause variable contention, in all levels of the memory 

hierarchy. Being solely a single-thread application, it gives users versatility to concurrently 

execute various configurations on desired cores of the architecture, observing the effects of 

contention for shared memory resources without being affected by synchronization or other 

problems of multithreaded applications. Different instances of the program cover all classes 

in the application classification scheme used in this work. Thus, it is possible to create a suite 

of programs with different behavior to emulate memory-intensive applications (with various 

levels of intensity) in order to study the effects of memory contention and application 

behavior differences caused by it in MCP co-scheduling context. 
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Chapter 4 

Co-scheduling experimental evaluation 

 

 

4.1 Co-scheduling on Intel Sandy-Bridge 

4.1.1 Workload profile: 

For co-scheduling tests, aiming to observe memory contention and its effects in all memory 

hierarchy levels, a variety of memory intensive programs with different behavior was deemed 

necessary. To achieve that, we opted for various configurations of the proposed memory 

benchmark program, as described in chapter 3. In order to keep running time relatively stable 

and predictable, as well as enough for providing sufficient performance data using the 

architecture counters, we chose and tested for each instance a number of iterations that 

ensures running time for about 1 minute. Data set sizes should be ranging from relatively 

small, fitting in the private cache of a single core, to much larger than LLC. Specifically, 

based on observations made and explained previously, we selected five dataset sizes: 

 204 KB: Given that the Sandy-Bridge architecture we used has larger L2 caches (256 

KB private), this size was selected to emulate applications reusing only small datasets, 

but not fitting solely in private caches as low LLC utilization may occur. It has been 
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observed from random pattern benchmark performance that datasets can completely 

fit in a cache level as long as dataset is smaller than approximately half of cache size 

(see fig. 3.13). As a result, LLC utilization is additionally expected for these 

instances. We named this category L2. 

 1.5 MB: Although much larger than the L2 cache, datasets can very easily fit in the 16 

MB L3 (LLC), even in the single-core dedicated 2.5 MB of the LLC. However, if 

another program on an adjacent core is thrashing the cache, contention should become 

very noticeable, making this size an interesting co-scheduling candidate. This 

category was named L3s (L3 small). 

 3 MB: Benchmarks using this dataset size are excessively reusing LLC but do not 

need to utilize main memory link at all. Being co-executed with another program with 

larger datasets, however, it is very likely that it will be noticeably affected and forced 

to use the memory link as well. Thus it appears as another interesting dataset size for 

experimentation. This size category was named L3m (L3 medium). 

 13 MB: Datasets of 13 MB do not fit in the LLC (due to high associativity, although 

being less than 16 MB), with low need to constantly use the memory link as well. Co-

executing an instance of this size with any other program is expected to alter the 

behavior of both, and increase the demand for memory link utilization. We named this 

category L3l (L3 large). 

 128 MB: Finally, a size category not fitting in the caches, 8 times larger than LLC, 

demanding continuous use of the memory link and, potentially, being able to be 

thrashing the cache for any other program co-executed. We named it MEM (Memory). 

 

Having decided different data sizes to be used with sequential and random access patterns, it 

was also desired to create variation in the memory resources demand for each size and 

pattern. It was observed, while evaluating the benchmark, that increasing the number of data 

streams exploits ILP and causes increased benchmark performance and, consequently, 

increased memory use demand, as is shown by memory micro-operations ratio in table 3.11 

and benchmark results (tables A.1.a and b). Thus it was decided to create three variations for 

each size and pattern combination: 1 stream-, 2 stream- and max stream-instances.  

Single stream instances utilize a single data structure and cause less cache replacements, but 

also have lower performance since only a single element access occurs in each iteration of the 

inner loop. Additionally 1-stream programs are expected to be experiencing longer delays 
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since they are practically depending on a single memory access; if this access is delayed due 

to contention in memory resources, the program must only wait (stall) until requested data is 

fetched, while in more, independent accesses implementations next instructions and, 

consequently, new memory requests can be issued in this waiting time. Dual stream 

variations, as explained and shown previously, can display even double performance 

compared to the 1-streamed and were found suitable for increased -but not maximized- 

memory resources demand. 

For the final set of variations, the objective was to maximize (or at least keep at a high level) 

memory utilization without causing “self-contention”. As seen in tables with benchmark 

results, when increasing the number of streams for larger datasets, performance starts to 

degrade because of contention caused by the programs’ data structures continuously 

replacing each other in the caches. This, as mentioned before, happens because of the way 

memory management system allocates data into memory pages, which is unpredictable and -

in contrast with an ideal scenario, where all data would be allocated continuously on a page- 

causes frequent cache replacement conflicts, which increase as the number of structures 

accessed increases –since they are allocated on different areas of the memory. To avoid this 

phenomenon, we picked the sequential variation with maximum performance for the 128MB 

(MEM) category, which was the 3-stream instance. For all other sizes, using 4 streams for the 

sequential pattern was found sufficient (despite not having strictly maximum performance in 

all cases), in order to utilize the 4 memory bus channels, provided by the architecture. Four 

streams are also sufficient for the majority of the random pattern benchmarks max-stream 

instances, although the previously described “self-contention” does not occur because of the 

pattern’s random nature. Exception is the 128 MB (MEM), in which we used 8 streams to 

maximize bandwidth caused by LLC misses, and the 1.5 MB (L3s) instance, in which 6 

streams were used, having the maximum combination of bandwidth and bandwidth-per-

stream ratio. 

Using the benchmark in the aforementioned configurations, we created a suite of 30 programs 

with the desired characteristics, covering all application classes (see table 3.12), shown 

below, in table 4.1.1: 
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  Sequential pattern     

Category size Category name   Variations 

        

204 KB L2   1, 2, 4 Streams 

1.5 MB L3s   1, 2, 4 Streams 

3 MB L3m   1, 2, 4 Streams 

13 MB L3l   1, 2, 4 Streams 

128 MB MEM   1, 2, 3 Streams 

 

  Random pattern     

Category size Category name   Variations 

        

204 KB L2   1, 2, 4 Streams 

1.5 MB L3s   1, 2, 6 Streams 

3 MB L3m   1, 2, 4 Streams 

13 MB L3l   1, 2, 4 Streams 

128 MB MEM   1, 2, 8 Streams 

Table 4.1.1 

 

For convenience, a standard name formatting was chosen to name each of the instances 

above, consisting of three parts: category name, number of streams, and access pattern. For 

example, a 13 MB, 2 stream sequential benchmark is abbreviated as L3l_2Str_seq, while the 

128 MB, single stream random access instance is named MEM_1Str_rdm. Workload 

classification according to preliminary standalone execution is shown in table 4.1.2 below: 

Task Pattern Class  Task Pattern Class  Task Pattern Class 

L2_1Str seq N  L3s_4Str seq C  L3l_2Str seq LC 

L2_1Str rdm N  L3s_6Str rdm C  L3l_2Str rdm LC 

L2_2Str seq N  L3m_1Str seq C  L3l_4Str seq LC 

L2_2Str rdm C  L3m_1Str rdm C  L3l_4Str rdm LC 

L2_4Str seq C  L3m_2Str seq C  MEM_1Str seq L 

L2_4Str rdm C  L3m_2Str rdm C  MEM_1Str rdm LC 

L3s_1Str seq C  L3m_4Str seq C  MEM_2Str seq L 

L3s_1Str rdm C  L3m_4Str rdm C  MEM_2Str rdm LC 

L3s_2Str seq C  L3l_1Str seq LC  MEM_3Str seq L 

L3s_2Str rdm C  L3l_1Str rdm C  MEM_8Str rdm LC 

Table 4.1.2 
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4.1.2 Experimental procedure 

 

Our objective was to study how application behavior changes when contention on shared 

memory resources takes place. All programs of the table above were co-executed in pairs in 

all possible combinations, using adjacent cores of the same package. Scaff’s infrastructure 

was used for co-execution and performance metrics, without a need for specific scheduling 

policy, since the only requirement was concurrent but independent execution of two 

applications on two cores, with no cpu-time sharing demand.  

The first step was to execute each application of the suite independently on a single core 

(core 0, first of the package). This procedure let us store performance counters data of each 

benchmark instance running alone, as a reference point for comparison with the respective 

data from co-execution. Performance data collected shows the application’s behavior in terms 

of execution and memory resources usage. IPC (instructions per cycle), a very important 

index for a program’s execution, can be extracted from the performance counters as the ratio 

of instructions retired counter and unhalted clock cycles: 
         

           
 . Higher IPC generally 

means an application is utilizing more CPU resources, staying in private parts of the core 

with little or no interaction with memory resources (e.g. calculation intensive), as memory 

operations are slowing the program down even in the L2. Thus, all of the benchmark 

instances have IPCs much lower than 1, as presented already in chapter 3. Other counters 

used are:  

 LLC misses: From this number we can measure bandwidth caused by LLC misses, as 

each miss means fetching a new line (64 bytes) into the cache. Bandwidth in 

Bytes/sec is 
        

 
   where T is the period of time during which the misses were 

measured. 

 L1 lines: This counter show how many lines were transferred from L2 to L1 cache for 

a time period T. Knowing line size (64 bytes) and T, we can calculate bandwidth used 

between L2 and L1 as  
       

 
   (in B/s). 

 L2 lines: Similarly, this is the number of lines transferred in L2 from the LLC in time 

T. Thus, L3 to L2 bandwidth is  
       

 
   (in B/s). 
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 Per core bandwidth: Data (in 64B lines) fetched from the memory bus, from the 

requests and misses of the specific core in time T. It can also be noted as L3 

bandwidth and is calculated as  
           

 
   in B/s. 

 Bandwidth: This is total socket bandwidth (again in lines), for all cores of the package 

in time T. It is similarly converted in B/s via 
         

 
   . 

 Power: Core power consumption in Watts, a fixed counter that we will not use in this 

work. 

 

4.1.3 Preliminary evaluation 

 

Table 4.1.3 (same as 3.12) contains performance data from all instances being executed alone 

with scaff on cpu0. 

Instance IPC package BW per Core BW L3->L2 BW L2->L1 BW LLC miss BW 

  
     

  

L2_1Str_seq 0.322 25.83 0 7.64 13061.92 0 

L2_1Str_rdm 0.3352 25.82 0 9.77 13617.21 0 

L2_2Str_seq 0.6335 25.82 0 10.24 25705.43 0 

L2_2Str_rdm 0.3594 25.81 0 8660.46 14580.69 0 

L2_4Str_seq 0.5238 25.76 0 16027.64 33992.71 0 

L2_4Str_rdm 0.445 25.74 0 9268.86 28891.07 0 

L3s_1Str_seq 0.2624 25.89 0 10650.38 10650.29 0 

L3s_1Str_rdm 0.0886 25.99 0 3594.82 3594.96 0 

L3s_2Str_seq 0.4112 25.91 0 16639.6 16695.15 0 

L3s_2Str_rdm 0.1737 25.86 0 7049.35 7049.78 0 

L3s_4Str_seq 0.3873 25.73 0 22946.76 25168.58 0 

L3s_6Str_rdm 0.2376 26.09 0 19288.74 19291.63 0 

L3m_1Str_seq 0.2603 25.84 0 10588.67 10587.49 0 

L3m_1Str_rdm 0.081 26.08 0 3295.24 3544.97 0 

L3m_2Str_seq 0.4073 26.31 0 16517.03 16565.68 0 

L3m_2Str_rdm 0.1568 25.82 0 6376.51 6865.18 0 

L3m_4Str_seq 0.3837 26.21 0 22729.61 24983.86 0 

L3m_4Str_rdm 0.1795 25.91 0 11690.68 12575.37 0 

L3l_1Str_seq 0.2269 1900.43 1862.31 9168.62 9168.46 385.48 

L3l_1Str_rdm 0.0428 359.08 330.38 1760.18 2536.42 330.4 

L3l_2Str_seq 0.3628 3096.99 3058.99 14639.19 14697.43 524.51 

L3l_2Str_rdm 0.0804 657.78 621.71 3266.29 4753.77 621.71 

L3l_4Str_seq 0.3217 3533.06 3499.8 18861.3 20877.91 730.21 

L3l_4Str_rdm 0.0764 1247.52 1214.93 7098.76 10352.99 1215.33 



57 

 

MEM_1Str_seq 0.1677 6815.18 6753.77 6748.64 6754.1 1358.62 

MEM_1Str_rdm 0.0149 631.25 604.06 943.6 1165.77 604.07 

MEM_2Str_seq 0.2802 11340.09 11270.97 11094.01 11272.11 1244.91 

MEM_2Str_rdm 0.0293 1213.4 1184.48 1831.94 2283.66 1184.51 

MEM_3Str_seq 0.2582 13932.8 13851.04 12401.27 13866.71 1136.57 

MEM_8Str_rdm 0.0352 3284.2 3245.13 5020.1 6259.44 3245.23 

Table 4.1.3 

 

For the co-scheduling experiment, application pairs were executed in the first pair of cores 

(cpu 0 and 1) in the package. Each application was co-run with every other, including itself, 

resulting in a number of 465 execution pairs. Performance data was stored for each 

application in all co-scheduled pairs. The primary index observed is application slowdown, 

which is calculated by the ratio of IPC of an application when executed alone and its IPC 

during co-execution: 
        

             
. As a result, slowdown 1 means no slowdown, 2 means 

double execution time etc.  

 

4.1.4 Results estimation 

In the next paragraphs, we will discuss expected behavior of execution pairs, according to the 

contention prediction scheme presented in Ch. 2, based on application classification [5]. 

 N – All: As long as processes are running on different cores (which is always the case 

in this work), most N class applications are not expected to interfere with other 

programs since they are not sharing resources. However, in some cases programs with 

very low LLC usage, which are classified as N, may be slowed down if another 

program is continuously swiping cache data (e.g. from L class). This slowdown case 

is still expected to be far less than 2. 

 C – C: Class C displays the greatest variation in application behavior. As discussed 

previously, some applications are more vulnerable to be slowed down by interference 

from other programs than others. Depending on working set size, a pair of C class 

processes may be using a very small part of LLC, in which case no contention occurs, 

up to all of the L3 and with need for continuous data replacement. In the latter case, 

application behavior changes from C to LC and slowdown is significant, as every 

replacement results in memory fetching penalty. Between those two extreme cases, a 

lot of intermediate combinations can occur, for which contention and its effects are 
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generally expected to be low. (Paper: cache organization and replacement policies are 

expected to handle high activity from different applications on the shared LLC). 

 C – LC: In this scenario, there is potential contention on the LLC, which is expected 

to mostly affect the C member of the pair. This effect is expected to be maximized 

when a C with a relatively large working set and random pattern –which is memory 

latency bound, if forced to act like an LC by constantly having its data wiped out of 

the cache– conflicts with a streaming LC instance that keeps replacing data. Moderate 

slowdown may occur in this case. In the majority of cases, however, low contention 

with mostly unnoticeable effects for the LC processes is expected, while C’s, 

especially the vulnerable ones using larger datasets, may be slowed down, but not 

dramatically.  

 C – L: Another class pair in which a wide range of results is expected, as the two 

classes have intense activity in different levels of the hierarchy. L applications are not 

expected to be affected. However, an L instance streaming data in the cache at a very 

high rate can excessively slow down a C application with heavy cache reuse, by 

destroying its dataset and forcing it to continuously use the memory link as well, like 

an LC application. Especially if the access pattern is latency bound, as is the case for 

random benchmarks that cannot take advantage of prefetching, we expect to see the 

highest slowdown compared to all other tests. 

 LC – LC: In this co-execution scenario, medium contention is caused on both levels 

of the hierarchy –bus and cache– on which these applications display significant 

activity. Moderate slowdown effects (around 2) are expected in the worst case, since 

instances of this class do not stress memory link to its limits, thus it can serve the 

augmented number of requests caused by cache contention, with processes wiping out 

each other’s data. Other instances may not face any interference, if they are not 

heavily reusing cache. 

 LC – L: Memory link contention may occur in this combination, affecting both sides 

noticeably but not significantly. Although slowdown from memory link increased 

demand is not dramatic, LC applications with heavy cache reuse and latency-bound 

pattern suffer from L instances’ cache thrashing, along with memory bus competition, 

accumulatively causing higher slowdown. In cases were the L process does not stress 

memory bus at such high level, slowdown is expected to be lower. 
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 L – L: Worst case in this co-scheduling pair of L’s competing for the memory link is 

slowdown about 2, as bandwidth is shared (not necessarily equally) between them. In 

this architecture it is expected to be even lower, as maximum package bandwidth is 

measured at 18 GB/s, while a single core can have 14 GB/s. These details will be 

further discussed along with the results from performance counters. Applications do 

not share any other memory resource, since they are thrashing the cache even in solo 

execution and don’t have need for data reuse. 

  

4.1.5 Results 

Data gathered from all co-execution tests will be presented, along with more detailed analysis 

for some interesting examples, to evaluate and further discuss the validity of the previously 

described prediction model. In all tables presented below, each line contains slowdown of the 

program in the first cell of the row, caused by co-execution with the program on the title of 

each column, for instance: 

  L2_1Str_seq L2_1Str_rdm L2_2Str_seq 

L2_1Str_seq 1.038 1.000 1.000 

In this example table slowdown suffered by L2_1Str_seq is shown, when it was co-scheduled 

with itself, L2_1Str_rdm and L2_2Str_seq respectively. Additionally, increasingly dark cell 

background for higher slowdown values facilitates visual detection of high contention 

scenarios. 

For many cases, results may vary for the same experiment repeated more times, since there is 

dependency on factors that cannot be controlled in user-level, such as data allocation on 

memory pages by the OS, potentially causing more or fewer data replacements – and varying 

slowdown as a result – in one experiment that may not occur in a later repetition of the same 

test. This also explains slowdowns and cache conflicts that occur in cases with small working 

sets, where theoretically both programs should completely fit in a small part of the cache. 

 

N – N 

As expected, in most cases no important slowdown is noticed. According to our initial 

classification N-N co-execution scenarios are the ones in table 4.1.4. 
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  L2_1Str_seq L2_1Str_rdm L2_2Str_seq 

L2_1Str_seq 1.038 1.000 1.000 

L2_1Str_rdm 1.493 1.398 1.001 

L2_2Str_seq 1.001 1.180 1.105 

Table 4.1.4 

If dataset sizes used were smaller (less than 128K), no slowdown at all would occur. 

L2_1Str_rdm appears to be more vulnerable to slowdown. Further examination of 

performance counters reveals that almost all co-execution scenarios force this instance to 

higher LLC utilization; running alone it uses much less than 1GB/s L3-to-L2 bandwidth (in 

the order of tens of MB/s). In almost all co-scheduling tests this number increases to several 

GB/s, explaining the constant –up to 1.5– slowdown displayed, as it acts more like a C class 

application (even with some MB/s main bus utilization in extreme cases, caused by LLC 

misses). 

However, runtime behavior alterations in co-scheduling context also occur for other 

instances: L2_2Str_rdm, L2_2Str_rdm, L2_2Str_rdm benchmarks’ performance counters when 

executed alone, indicate relatively high LLC reuse and suggest C classification. Despite that 

fact, in most co-execution tests –and for all repetitions of the respective experiments–, 

performance counters have shown that LLC-to-L2 bandwidth used has been reduced, while 

L2 utilization becomes more intense, as in typical N class behavior, and thus IPC increases, 

since L2 is much faster. This phenomenon results in application speedup as IPC slowdown 

ratio is lower than 1 and, consequently, execution time is lower. All these speedup cases are 

marked in yellow in all following result tables. It is safe to assume that for most co-execution 

scenarios, these applications can also be classified as N, a fact confirmed by actual 

performance data. Their working set sizes (2x101KB or 4x51KB) suggest that it is unlikely 

for cached data to suffer continuous contamination by a larger streaming application. The 

new N – N co-execution results are shown in table 4.1.5. 

  L2_1Str_seq L2_1Str_rdm L2_2Str_seq L2_2Str_rdm L2_4Str_seq L2_4Str_rdm 

L2_1Str_seq 1.038 1.000 1.000 1.000 1.000 1.001 

L2_1Str_rdm 1.493 1.398 1.001 1.001 1.001 1.001 

L2_2Str_seq 1.001 1.180 1.105 1.004 1.002 1.001 

L2_2Str_rdm 0.884 1.036 0.885 0.809 0.740 0.757 

L2_4Str_seq 0.917 0.938 0.922 0.887 0.847 0.756 

L2_4Str_rdm 0.643 0.641 1.010 0.647 0.947 0.978 

Table 4.1.5 : N-N slowdown 
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It is apparent that, with the exception of the L2_1Str_rdm instance, no slowdown occurs in any 

case, with speedup effect discussed in the previous paragraph. 

 

N – All 

All L2 size programs cause no slowdown to any other program of any class, confirming 

preliminary estimations. Additionally they are not affected by other applications in almost all 

cases. L2_1Str_rdm benchmark’s behavior is different, and it is classified as a C class program 

when co-run, hence it will not be included with N’s. Speed-up phenomena for the three last 

applications are present in almost all experiments. In only a few cases with L3 or memory 

link intense streaming applications IPC ratio was slightly over 1. Slowdown effect averages 

for N co-execution with other classes are shown below: 

Class Co-runner class 

  N C LC L 

N 1.00 1.02 1.10 1.07 

 

 

C – C 

C class contains more applications than any other, yet in all experiments no major 

interference was noted between C processes. Results for the vast majority of experiments 

were very near or equal to 1. Only the L3l random instance, having the largest working set 

and which can be marginally classified also as LC, suffered minor slowdown due to 

competition in LLC utilization when executed with instances with more streams, accessing 

data more intensely. Figure 4.1.1 shows average slowdown for all other applications in the 

class and this instance alone. Average slowdown effect noticed was found 1.06. 
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Figure 4.1.1 

 

 

 

C – LC 

Low to unnoticeable delay was observed for most tests of this class co-execution. Instances 

affected were random pattern benchmarks of C class, slowed down by streaming LC 

instances.  

 
L3l_1Str_seq L3l_2Str_seq L3l_4Str_seq 

L3s_1str_rdm 1.018 1.034 2.718 

L3m_1Str_rdm 2.903 2.765 2.842 

L3m_2Str_rdm 1.045 2.830 2.936 

Table 4.1.6: C instances slowdown by LC 

As it can be seen, increasing the number of accessing streams results in more intense cache 

data replacements. The L3s instance has a working set small enough to avoid being wiped 

from LLC, when being run concurrently with the –not so intense– single and 2-stream L3l 

programs. Counters show ~5000 LLC misses/sec causing a very low ~300KB/s bandwidth, 

while LLC-to-L2 bandwidth is 3.5 GB/s, very close to its solo performance. However, the 4 

stream L3l program, making more access requests, is much more destructive for cached data 

and forces the previously unaffected L3s application in ~8.4 million misses/sec, resulting in 

an additional 500MB/s main memory bandwidth, while L3 reuse bandwidth has reduced to 

0.9
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1.3 GB/s. As expected, since the program only does memory accesses and solely depends on 

them, the ratio of L3-to-L2 bandwidth in the two cases is equal to slowdown (
   

   
    ),. 

This example was explained in more detail in order to better demonstrate how contention 

practically affects a program’s execution. 

Average slowdown suffered by C applications was 1.27. LC classes were mostly unaffected 

as well, suffering unnoticeable slowdown for the vast majority of experiments, averaging 

1.06. Again, pre-experiment estimations are confirmed. 

 

C – L 

As predicted, results in this section ranged from unnoticeable effects to excessive slowdown 

for C applications. The 3-stream sequential MEM benchmark uses almost the maximum 

available bandwidth; as a result it can wipe cached data at nearly the highest possible rate. 

For some C programs this can be disastrous, especially for random pattern instances that 

can’t use the prefetchers. 

 

 

 
MEM_1Str_seq MEM_2Str_seq MEM_3Str_seq 

L3s_1str_rdm 1.023 1.029 8.204 

L3m_1Str_rdm 5.063 5.956 7.642 

L3m_2Str_rdm 1.029 5.723 6.908 

L3m_4Str_rdm 1.022 1.026 6.575 

L3l_1Str_rdm 2.779 3.101 3.891 

Table 4.1.7: Random pattern C instances suffering excessive slowdown by L 

 

Sequential and more intense (with more streams) C processes suffered very limited slowdown 

effects, taking advantage of prefetchers and the memory link’s 4-channel parallelism. C class 

average slowdown was 2.15. 

L programs, as expected, were not affected at all. 

 

LC – LC 

Medium contention occurred in this scenario resulting in varying results, from unnoticeable 

up to moderate slowdown. Figure 4.1.2 shows all results in this section. Average slowdown 

was 1.34 
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Figure 4.1.2: LC instances slowdown 

 

LC – L 

Predicted behavior is again confirmed here. LC programs are affected and delayed 

increasingly, as streams of L applications increase, and consequently the rate of cache data 

replacement. Figure 4.1.3 shows this effect and how slowdown increases uniformly for all 

instances. Average LC slowdown was 1.76. 

 

 

Figure 4.1.3: LC instances slowdown by L streaming programs 

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

L3l_1Str_seq

L3l_2Str_seq

L3l_2Str_rdm

L3l_4Str_seq

L3l_8Str_rdm

MEM_1Str_rdm

MEM_2Str_rdm

MEM_8Str_rdm

1.0

1.5

2.0

2.5

3.0

3.5

4.0

MEM_1Str_seq MEM_2Str_seq MEM_3Str_seq

L3l_1Str_seq

L3l_2Str_seq

L3l_2Str_rdm

L3l_4Str_seq

L3l_8Str_rdm

MEM_1Str_rdm

MEM_2Str_rdm

MEM_8Str_rdm



65 

 

L applications were mostly delayed by streaming L3l instances, which were forced to utilize 

much more main memory bandwidth due to the same L thrashing the cache, resulting in 

medium memory link contention, with maximum L slowdown near 1.5 and average 1.12 

Behavior of these LC instances becomes similar to that of L class. For example if we inspect 

performance counters data for the L3l_4Str_seq co-execution with MEM_3Str_seq, it can be 

seen that memory link bandwidth utilization has increased more than 2x, from 3.5GB/s to 

8.5GB/s, changing the program’s behavior to class L. Such class behavior switches occur in 

many cases, a result of contention. 

 

Figure 4.1.4: L instances slowdown, co-run with LC 

 

L – L 

In this scenario, memory link-only contention occurs, that results in moderate slowdown: 
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Figure 4.1.5: L-L class slowdown 

Maximum slowdown is slightly over 1.5 for a pair of intensely streaming benchmarks. Data 

from performance counters can be used to explain this. On preliminary execution of the 

program (MEM_3Str_seq) maximum bandwidth noted was ~13.9 GB/s, very close to the 

system’s per-core maximum. Performance data from co-execution indicate that one instance 

was using 8.4 GB/s, while the other was using 9.6 GB/s. This means maximum per-socket 

bandwidth can reach 18 GB/s and average bandwidth for a pair of applications competing for 

the memory bus is 9 GB/s. As our benchmark is exclusively memory bound, the ratio of 

bandwidth in solo execution and when sharing the memory link equals slowdown, in this case 

    

 
     , which is exactly the result of IPC ratio as well. On a system with equal per-core 

and per socket maximum bandwidth, average for this situation would be 2, with worst case 

being slightly over 2, as applications do not share the bus equally and one may use less than 

half bandwidth. 

Overview 

Assumptions made in the co-scheduling estimation model described were confirmed. 

Application behavior was generally as predicted. It was confirmed that shared resources 

contention may cause change in application behavior, moving it to another class. The 

phenomenon, in which applications with small enough datasets to fit in private cache often 

performed as C class processes when executed solo, but co-scheduled with another 

application they shifted into N class, resulting in speedup effect, was also noticed. Apart from 

this exception, it was observed that contention situation in shared resources can potentially 
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cause significant change in an application’s behavior in co-execution context, moving it to a 

more memory demanding class, like, for example, from LC to L or from C to LC. 

Overall co-scheduling scenarios interference is shown in table 4.1.8, which contains all class 

co-execution slowdown averages: 

Class  Co-runner class  

  N C LC L 

N 1.00 1.02 1.10 1.07 

C 1.00 1.06 1.27 2.15 

LC 1.00 1.06 1.34 1.76 

L 1.00 1.00 1.12 1.30 

Table 4.1.8: Average class slowdown 

 

4.2 Co-scheduling on Intel Dunnington 

4.2.1 Workload profile 

For experiments on this architecture we needed an altered set of applications, to expose the 

effects of co-execution caused shared by memory contention on this different memory 

hierarchy scheme. Except for the shared 16 MB LLC, pairs of cores also share 3 MB of L2. 

This makes the choice of cores executing the task inside the package much more significant.  

Again, we aimed for about 1 minute solo execution time for all instances. Dataset sizes were 

selected to cover the following range: 

 1 MB: Can fit in the 3MB L2, but if contention occurs caused by another application 

on the adjacent core, sharing the L2, utilization of LLC is also expected. The 

difference between co-execution scenarios, utilizing shared L2 or shared LLC only, is 

expected to be noticeable. This size class was named L2s (L2 small) 

 2 MB: Datasets cannot completely fit in L2 (because of associativity) and benchmarks 

of this size are expected to intensively utilize LLC in co-execution, especially when 

run on a pair of cores with shared L2. This size class was named L2m (L2 medium) 

 3 MB: This dataset class is expected to use both L2 and LLC intensively. Thus it is 

very likely for these benchmark instances to be largely affected by applications 

making extended use or thrashing the caches. We named this class L2l (L2 large). 
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 6 MB: Benchmarks using this dataset size can rely on LLC when executed alone, but 

when another program also needs to use a significant part of the cache, contention is 

very likely to cause slowdown and the need to use the memory link as well. These 

instances also thrash L2 caches for other applications when executed on adjacent 

cores. Class name is L3s. 

 15 MB: Cannot fit in cache but makes very intense re-use, making it vulnerable to 

excessive slowdown, when co-scheduled with a program that also makes use of the 

LLC or continuously destroys its data. We named this category L3l. 

 128 MB: Similar to the previous architecture, datasets much larger than LLC cause 

the need for continuous memory bus use and cached data replacements, affecting all 

other programs being executed. Class was named MEM. 

As with Sandy Bridge architecture procedure, to create varied memory requests and 

bandwidth utilization needs, three instances were used for each size class and pattern 

combination, 1- 2- and max-streams. For max-stream variations, five streams were selected 

for all class sizes, sequential pattern instances since results indicate that memory bandwidth 

utilization is maximized using this configuration. Using more datasets, previously described 

self-contention starts to occur. For random instances 8 streams were used, since the 

aforementioned effect does not occur in this access pattern. 

Table 4.2.1 contains all instances used for co-scheduling experiments, a total number of 36. 

The same standard name formatting was followed. 

 

  Sequential pattern     

Category size Category name   Variations 

        

1 MB L2s 
 

1, 2, 5 Streams 

2 MB L2m 
 

1, 2, 5 Streams 

3 MB L2l 
 

1, 2, 5 Streams 

6 MB L3s 
 

1, 2, 5 Streams 

15 MB L3l 
 

1, 2, 5 Streams 

128 MB MEM  1, 2, 5 Streams 
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  Random pattern     

Category size Category name   Variations 

        

1 MB L2s 
 

1, 2, 8 Streams 

2 MB L2m 
 

1, 2, 8 Streams 

3 MB L2l 
 

1, 2, 8 Streams 

6 MB L3s 
 

1, 2, 8 Streams 

15 MB L3l 
 

1, 2, 8 Streams 

128 MB MEM  1, 2, 8 Streams 

Table 4.2.1 

For this suite of applications on Dunnington architecture, there are no N class members, since 

the only private cache is L1. Classification is as follows:  

− Class L: all three MEM size, sequential access instances and MEM_maxstr_rdm 

− Class LC: The two remaining MEM size, random access instances, all -five, with the 

exception- L3l, both pattern instances, except the single stream random benchmark 

(L3l_1Str_rdm), which is on the margin between C and LC classes, a total of 7 -or 8 

with  L3l_1Str_rdm- applications. 

− Class C: all other programs. 

However, if co-executed on cores not sharing L2 but only LLC, some benchmark instances, 

mentioned in the following paragraphs, are expected to act as N and will be noted as C (N). 

4.2.2 Preliminary evaluation and experimental procedure 

Co-scheduling tests on this architecture aim, again, to observe slowdown effects caused by 

contention on the memory hierarchy. This system’s characteristics may affect the general 

model described in 4.1.4, particularly due to low memory bus performance, that results in 

much lower cache wiping pace compared to the previously tested Sandy Bridge system and 

other, more recent implementations. 

Benchmark instances were co-executed in all possible pairs. To better understand and 

demonstrate slowdown caused by contention on shared resources, two identical series of co-

scheduling tests were conducted, the only difference being the choice of hardware cores. To 

determine the slowdown effect for these series of experiments, the execution time was used. 

All programs were timed in single execution with scaff, and time measured for each was used 
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to divide its co-execution time in an experiment to calculate the corresponding slowdown 

ratio: slowdown =  
        

      
  . 

The first series of co-execution experiments were run on core 0 and core 2 of the first 

package (package0, cores cpu0 and cpu1, as named by the Linux kernel). This configuration 

enables us to observe performance degradation caused by contention on LLC and the main 

memory bus, as the cores selected do not share L2 and so, in the absence of additional 

workload, can use the 3 MB L2 without other programs replacing cached data. Due to this 

fact, L2s and some L2m instances are expected to act like N class processes, with minimum 

or zero interference.  

On the next round of tests, cores 0 and 1 were chosen (cpu0 and cpu12 Linux kernel devices), 

which share L2. Thus, on this configuration, contention is likely to occur on 3 levels of the 

hierarchy, L2, LLC and main memory link, potentially causing excessive slowdown. 

Interference in cache utilization between programs is expected to occur even with small L2 

instances and as working set sizes increase, congestion in all 3 levels of shared memory 

resources are expected to cumulatively cause delays in program execution. 

4.2.3 Results estimation 

Application class interaction in co-scheduling scenarios is generally expected as described in 

4.1.3, but with some additional remarks: 

 N – *: There are no strictly N classified applications in our testing suite. However, in 

a non-shared L2 scenario some may behave similarly with N and will be discussed 

further. 

 C – C: As explained in 4.1.4, this scenario is probably the most complex to estimate, 

even when only one level of cache is shared. Moderate slowdown (generally below 2) 

is expected in this case. If L2 is also shared, effects are expected to be higher, even 

when both applications have small working sets, causing L2 conflicts and forcing 

each other to higher LLC utilization. With larger working sets, dual competition is 

likely in L2 and L3, potentially resulting in high slowdown. 

 C – LC: This scenario is expected to mostly affect C instances. However because of 

the specific system’s single, low performance memory bus, additional contention 

phenomena may occur as behavior of C instances with larger working sets is forced to 
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become more LC-like. When sharing L2, slowdown could potentially be multiple, as 

an LC application can continuously replace data in both L2 and L3. Bandwidth 

between L2 and LLC is much higher than main memory bandwidth and also 

prefetching mechanisms exist in this level, thus a relatively large benchmark with 

streaming pattern may thrash cache data, forcing the co-executed program to 

constantly request data from memory. 

 C – L: Streaming L instances are very likely to cause high slowdown to C 

applications by constantly wiping cached data and forcing them to pay highly 

increased number of miss penalties. Again, test results will show how low memory 

link performance may affect this estimation. In shared L2 execution slowdown is 

estimated to be much higher, as programs have their cached data continuously 

destroyed in 2 levels. 

 LC – LC: Applications demand use of both memory link and cache, resulting in 

moderate contention on both levels, with significant slowdown for some scenarios. 

Memory bus performance could be a considerable factor. For the reasons described 

previously, -on C-L and C-LC cases- slowdown is expected to greatly increase when 

L2 becomes shared. 

 LC – L: Both classes will be affected, as explained previously, since they need to 

share the memory link. Additionally, L applications may also replace cache data, 

causing more slowdown to LC instances.  

 L – L: This case remains simple, even with L2 sharing, contention will only occur for 

memory link and programs do not rely on cache reuse. 

 

4.2.4 Results 

4.2.4.1 Co-scheduling with no L2 sharing 

C (N) applications 

A small subset of programs, with relatively small working sets, can be executed relying 

almost only on level 2 cache. These applications, judging from performance and size, are all 

L2s instances, while sequential L2m instances are on the margins of classification criteria. 

Testing behavior confirmed that these instances do not interfere with each other when 

executed on different cores, not sharing L2. Average slowdown was found 1.03, with the vast 
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majority of cases found at 1.00 and maximum slowdown slightly above 1.1. Additionally, 

slowdown caused by this subset to all other programs was very low, as will be further 

explained. 

A part of these tests section results is presented below: 

 

  L2s_1Str_seq L2s_1Str_rdm L2s_2Str_seq L2s_2Str_rdm 

L2s_1Str_seq 1.000 1.051 1.087 1.103 

L2s_1Str_rdm 1.001 1.001 1.035 1.051 

L2s_2Str_seq 1.000 1.000 1.001 1.015 

L2s_2Str_rdm 1.001 1.001 1.001 1.001 

Table 4.2.2 

 

C – C  

Low to moderately high slowdown is noticed on this co-scheduling scenario, due to the 

variation of programs’ behavior. C class includes benchmarks with working sets ranging 

from small enough to fit in cache with minor conflicts, to sizes that can marginally fit and 

therefore very likely to be delayed, if other programs also compete for intense LLC use, 

forcing each other to suffer from increased miss penalties. LLC contention -and its resulting 

slowdown- becomes noticeable when sizes of the co-executed instances occupy a fairly large 

part of the cache, belonging in the L3s (or larger) size category. Before this point slowdown 

is generally unnoticeable, with values very near 1, with a small number of exceptions, which 

do not exceed 1.3. For larger size classes, L3 contention causes gradually increasing 

slowdown, with a maximum value approx. 2.5. The results for these instances can be seen in 

table 4.2.3: 

 

 

 

 



73 

 

 

L3s_1Str_
seq 

L3s_1Str_ 
rdm 

L3s_2Str_
seq 

L3s_2Str_ 
rdm 

L3s_max_
seq 

L3s_max_ 
rdm 

L3l_1Str_ 
rdm 

L3s_1Str_ 
seq 1.590 1.344 1.341 1.463 1.364 1.687 1.606 

L3s_1Str_ 
rdm 1.303 1.171 1.036 1.039 1.012 1.104 1.571 

L3s_2Str_ 
seq 1.360 1.084 1.892 1.507 1.674 2.025 1.036 

L3s_2Str_ 
rdm 1.480 1.084 1.502 1.256 1.141 1.260 1.058 

L3s_max_ 
seq 1.384 1.059 1.675 1.145 1.770 2.153 1.034 

L3s_max_ 
rdm 1.622 1.095 1.920 1.199 2.040 1.779 1.059 

L3l_1Str_ 
rdm 1.809 1.824 1.151 1.178 1.148 1.240 2.378 

Table 4.2.3 

It can be observed that random pattern benchmarks generally interfere with other random 

instances, while sequential ones cause slowdown to both patterns. The way each pattern 

affects applications, as memory requests intensity increases can be observed in figures below: 

 

 

Figure 4.2.1: Slowdown caused by sequential instances 
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Figure 4.2.2: Slowdown caused by random instances, L3l_1Str_rdm instance is affected most 

In the graphs above, moving towards the right side of the plot, it can be observed that 

applications racing for the cache, as competing memory requests increase with more streams, 

alter their behavior close to that of LC class. 

 Average slowdown suffered in this class’ combinations was 1.12, however this includes all 

applications with N class behavior as well. If limited to instances that always need to use L3, 

average is 1.3, with worst case scenario being over 2. From this series of experiments, it is 

suggested that maximum slowdown caused solely by LLC contention on this system is about 

2.5, and can be generally assumed less than 3. 

C – LC  

Moderate contention levels were observed in co-scheduling combinations of benchmark 

instances belonging in these classes. The memory bus of this system is single channel, 

serializing all requests and is not capable of serving more than 2.5 GB/s; there is no data 

prefetching either. This results in programs with large enough datasets (half the LLC size and 

more) to constantly force each other in LLC misses by wiping data, while in the same time 

competing for main memory accesses that can’t be accelerated (if sequential) by prefetching 

mechanisms.  

L3l benchmarks appear to be destroying cache data of other applications at a relatively high 

pace, affecting all C processes, even L2s-sized with minimum LLC utilization. Partially 
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relying on the memory link by definition, these LC applications also face the effects of bus 

contention, as C applications also increase demand and their behavior verges with that of 

their LC competitors. They are also affected by C instances with small working sets but very 

intensive in cache use (2 or max streams). The 2 MEM size random instances (1 Str. and 2 

Str.), however, seem to remain unaffected, as they don’t suffer from noticeable slowdown, 

nor cause delays in any other application. This can be explained as their random pattern 

doesn’t rely on cache reuse and they do not stress the memory link to a high level either, thus 

forcing their pair in less misses, consequently in less bus use demand and overall very low 

combined contention. 

Table 4.2.4 contains all C instances suffered slowdown by the L3l size class, MEM instances 

are omitted as most results were near 1. Slowdown numbers are presented to show the variety 

of results noted. 

  L3l_1Str_seq L3l_2Str_seq L3l_2Str_rdm L3l_max_seq L3l_max_rdm 

L2s_1Str_seq 1.109 1.344 1.744 1.462 1.578 

L2s_1Str_rdm 1.044 1.270 1.633 1.414 1.453 

L2s_2Str_seq 1.190 1.255 1.575 1.356 1.421 

L2s_2Str_rdm 1.468 1.277 1.552 1.354 1.406 

L2s_max_seq 1.268 1.365 1.258 1.379 1.381 

L2s_max_rdm 1.482 1.563 1.298 1.404 1.442 

L2m_1Str_seq 1.179 1.447 1.919 1.644 1.723 

L2m_1Str_rdm 1.037 1.288 1.653 1.398 1.489 

L2m_2Str_seq 1.641 1.375 1.780 1.545 1.571 

L2m_2Str_rdm 2.132 1.493 1.871 1.664 1.705 

L2m_max_seq 1.661 1.843 1.419 1.577 1.554 

L2m_max_rdm 1.741 2.201 1.451 1.399 1.533 

L2l_1Str_seq 1.125 1.340 1.931 1.471 1.710 

L2l_1Str_rdm 1.107 1.390 1.872 1.593 1.672 

L2l_2Str_seq 1.497 1.385 1.928 1.521 1.696 

L2l_2Str_rdm 1.698 1.263 1.887 1.434 1.617 

L2l_max_seq 1.375 1.543 1.278 1.510 1.712 

L2l_max_rdm 1.555 1.755 1.287 1.530 1.748 

L3s_1Str_seq 1.260 1.577 2.487 1.755 2.095 

L3s_1Str_rdm 1.307 1.514 2.477 1.645 1.750 

L3s_2Str_seq 1.215 1.584 2.583 1.774 2.117 

L3s_2Str_rdm 1.558 1.850 2.556 2.187 2.225 

L3s_max_seq 1.254 1.562 1.072 1.797 2.150 

L3s_max_rdm 1.331 1.738 1.167 1.686 1.995 

L3l_1Str_rdm 3.248 1.722 2.895 1.889 2.023 

Table 4.2.4: C slowdown caused by L3l LC instances 
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As observed above, most results are over 1.5 (table average is 1.6), which is a considerable 

effect. High slowdown was also noted in some cases (2.5 or more) with a maximum point 

greater than 3.2. Average slowdown, including MEM instances, was found 1.5. 

LC applications also suffered considerable delay in numerous cases, some of which are 

presented below: 

 

  
L2s_2Str

_rdm 
L2m_2St

r_seq 
L2m_2Str

_rdm 
L2m_ma

x_seq 
L2m_max

_rdm 
L2l_2Str

_rdm 
L2l_max

_seq 
L3l_1Str

_rdm 

L3l_1Str
_seq 1.729 1.938 2.286 1.959 2.150 2.156 1.685 3.416 

L3l_2Str
_seq 1.179 1.272 1.254 1.702 2.129 1.256 1.481 1.418 

L3l_2Str
_rdm 1.185 1.364 1.302 1.085 1.162 1.553 1.016 1.975 

L3l_max
_seq 1.157 1.324 1.294 1.349 1.252 1.320 1.342 1.441 

L3l_max
_rdm 1.174 1.316 1.296 1.299 1.342 1.455 1.487 1.508 

Table 4.2.5: LC slowdown caused by C instances (selected results) 

LC class, although generally less delayed than C by their interaction, also suffered high 

slowdown (max. 3.4). L3l_1Str_seq seems to be more vulnerable and that is because of the 

stalling phenomenon of a program with a single access explained in the beginning of the 

chapter.  

Average for the LC suffered slowdown caused by C programs was found 1.4, 1.1 for the 

optimistic MEM cases and 1.45 for the pairs with moderate to high contention. In the next 

figures, average slowdown for the 2 classes is presented. It becomes apparent how increasing 

the competing program’s dataset and streams affects delay caused. 
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Figure 4.2.3: Average C slowdown caused by L3l LC instances  

 

Figure 4.2.4: Average L3l LC slowdown caused by C instances  
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C – L  

Contrary to previous estimations, MEM instances with max streams did not cause nor suffer 

significant slowdown in this test (around 1.1 and less in most cases). However, 1 and 2 

Stream MEM sequential benchmarks caused moderate delay to C applications. Figure 4.2.5 

shows slowdown caused by these 2 L instances to all C benchmarks: 

 

Figure 4.2.5: Average C slowdown caused by L instances  

(Note that contrary to all previous graphs, “suffering” class is on horizontal axis, due to high 

population) 

The 2 L applications were also slowed down in numerous cases, as can be seen in the 

following graph: 
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Figure 4.2.6: L suffered slowdown 

It can be observed that increasing concurrent requests (by adding data streams) results in 

augmented memory contention, as all requests are serialized and waiting to be served by the 

single memory bus. However, it is noted for all cases on display that when instances utilize 

the same number of streams, the L application is not affected. When a C process makes more 

requests than the L (C streams > L streams), the L is slowed down. This consistent behavioral 

pattern explains why the 2 MEM_max instances are not affected at all, as all competing 

instances have less or equal data streams. The reason this happens is most probably the way 

this specific architecture handles access requests and allocates bus resources to the processes; 

requests from separate applications seem to be prioritized as different sets. DRAM controller-

level contention  and prefetching mechanisms are also likely to contribute in this effect. A 

relatively similar, yet less obvious pattern can be observed in the way C class processes are 

affected (figure 4.2.5). A C instance is affected only if it uses more streams than its L 

competitor (and they are both delayed). With equal streams no significant delay is noted and 

confirms why MEM_max instances don’t affect any of the C programs tested. 
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LC – LC  

High contention was noted on this series of experiments. A maximum of 5.2 was measured 

(suffered by L3l_1Str_seq co-executed with L3l_2Str_rdm), as well as many results greater than 

3. Average was found to be 2.4, higher than all other class combinations. 

 

 

Figure 4.2.7: LC class slowdown (program on horizontal axis causes the delay) 

High slowdown in all L3l instances is a result of L3 contention, forcing programs to suffer 

from increased number of cache miss penalties in comparison to alone execution. Increased 

contention also occurs on the memory bus, the low bandwidth of which seems to largely 

affect execution. 

 

LC – L  

Moderate to high slowdown appears for programs of both classes, as LC applications seem to 

both cause and suffer more slowdown than any other class. Delay ratio caused by L instances 

is presented in table 4.2.6: 
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  MEM_1Str_seq MEM_2Str_seq MEM_max_seq MEM_max_rdm 

L3l_1Str_seq 1.763 1.679 1.782 1.973 

L3l_2Str_seq 2.549 1.471 1.569 1.741 

L3l_max_seq 2.697 3.002 1.493 1.675 

L3l_2Str_rdm 3.335 1.000 1.000 1.000 

L3l_max_rdm 2.876 3.264 1.338 1.476 

MEM_1Str_rdm 1.407 1.034 1.087 1.148 

MEM_2Str_rdm 1.446 1.609 1.148 1.212 

Table 4.2.6: LC class slowdown by L 

The behavioral pattern noticed in C-L results discussion is present again, especially for L3l 

random instances: slowdown decreases when competitor’s streams (L) are equal or more than 

LC’s (see Fig. 4.2.9). 

 

Figure 4.2.8: LC class slowdown caused by L 

Average slowdown was found to be 1.75. Higher contention scenarios (2.5 and more) are 

very likely to occur, as the results reveal. L applications face even greater average slowdown, 

at 1.95, as it seems the memory bus becomes a bottleneck for both classes. Figure 4.2.9 

presents slowdown each LC application caused to all L. 
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Figure 4.2.9: L class slowdown caused by LC 

MEM random streams of the LC class do not cause or face high slowdown, as they only use a 

relatively small part of the available bandwidth. 

L – L  

In this, quite simpler, scenario, our estimation model is confirmed. Even when competing 

programs can potentially stress the memory bus to its limits, bandwidth is divided and a worst 

case average slowdown will slightly exceed 2. Average for all tests was found to be 1.7 

 

 

  MEM_1Str_seq MEM_2Str_seq MEM_max_seq MEM_max_rdm 

MEM_1Str_seq 1.447 1.378 1.464 1.594 

MEM_2Str_seq 1.561 1.749 1.847 2.057 

MEM_max_seq 1.573 1.752 1.821 2.006 

MEM_max_rdm 1.590 1.811 1.862 1.676 

Table 4.2.7: L-L class slowdown 
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Overview 

Having separate L2 cache on the cores utilized for this series of experiments let us observe 

the effects of memory bus and LLC contention. A combination of system-specific 

characteristics (low memory link performance in conjunction with the way it serially 

prioritizes memory access requests) resulted in a slightly altered overall behavior, compared 

to preliminary estimations.  

Class Co-runner class 

  N C LC L 

N (1.03)  - - -  

C  - 1.15 1.47 1.2 

LC  - 1.34 2.38 1.75 

L  - 1.2 1.95 1.7 

Table 4.2.8: Slowdown average overview, N-N value is the C(N) applications when co-executed. 

Class LC appears to cause most slowdown to other classes, as well as being the most 

vulnerable to be delayed. Taking advantage of not sharing the large L2, C programs also are 

less affected.  

4.2.4.2 Co-scheduling with L2 sharing 

Results of the second round of tests, conducted on a pair of cores with shared L2, are 

presented. N class instances do not exist in our suite, thus all testing is between C, LC and L 

classes. 

C – C  

Moving into co-execution context with shared L2 cache, C class application interaction 

changes dramatically. The set of applications in the suite belonging to this class is quite large 

(25), so results will be presented in sections. 

Starting with L2s and L2m series, tables 4.2.9a and 4.2.9b contain slowdown caused by 

sequential and random instances of the same size classes respectively: 
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  L2s_1Str_seq L2s_2Str_seq L2s_max_seq L2m_1Str_seq L2m_2Str_seq L2m_max_seq 

L2s_1Str_seq 1.098 1.268 1.219 1.228 1.935 2.234 

L2s_1Str_rdm 1.267 1.088 1.325 2.720 3.566 3.543 

L2s_2Str_seq 1.154 1.265 1.356 1.199 1.401 2.480 

L2s_2Str_rdm 1.181 1.478 1.466 1.667 3.502 3.156 

L2s_max_seq 1.283 1.334 1.672 1.217 1.421 2.012 

L2s_max_rdm 1.131 1.240 1.401 1.128 1.244 1.470 

L2m_1Str_seq 1.367 1.466 1.608 2.172 2.316 2.641 

L2m_1Str_rdm 1.830 1.908 1.797 2.970 3.115 3.280 

L2m_2Str_seq 1.905 1.636 1.997 2.071 3.551 4.016 

L2m_2Str_rdm 1.882 1.837 1.975 3.308 3.664 3.734 

L2m_max_seq 1.912 2.318 2.157 1.783 2.710 5.503 

L2m_max_rdm 1.499 1.730 1.663 1.673 2.474 3.421 

Table 4.2.9a 

  L2s_1Str_rdm L2s_2Str_rdm L2s_max_rdm L2m_1Str_rdm L2m_2Str_rdm L2m_max_rdm 

L2s_1Str_seq 1.063 1.096 1.174 1.054 1.117 1.683 

L2s_1Str_rdm 1.261 1.170 1.438 1.463 1.905 2.800 

L2s_2Str_seq 1.042 1.135 1.238 1.032 1.104 1.790 

L2s_2Str_rdm 1.085 1.218 1.309 1.060 1.350 3.015 

L2s_max_seq 1.214 1.324 1.357 1.155 1.285 1.796 

L2s_max_rdm 1.109 1.180 1.338 1.061 1.114 1.441 

L2m_1Str_seq 1.309 1.359 1.588 1.320 1.495 2.325 

L2m_1Str_rdm 1.776 1.750 1.727 2.427 2.753 2.940 

L2m_2Str_seq 1.321 1.537 1.952 1.247 1.513 3.718 

L2m_2Str_rdm 1.799 1.859 1.791 2.081 2.690 3.434 

L2m_max_seq 1.502 1.699 2.300 1.308 1.569 5.718 

L2m_max_rdm 1.226 1.420 1.684 1.116 1.350 3.971 

Table 4.2.9b 

Increasing the working set size and number of requests noticeably increases slowdown. 

Contrary to the memory bus, in-cache bandwidth is sufficient to intensively wipe data if an 

application uses a streaming pattern. Sequential instances cause noticeably more slowdown 

than random ones, despite the lower number of accesses (5 instead of 8), taking advantage of 

cache-level prefetching. Observing L2s instances’ interaction with each other (1+1 MB 

working sets), confirms that cache contention starts to occur when working sets’ size exceeds 

approximately half the size of this cache. Slowdown starts from 1.05, reaching more than 1.5 

as the number of requests increases.  
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Moving to L2m sized instances, slowdown is constantly at least close to 2, in many cases 

greatly exceeding 3. Without loss of generality, it can be assumed that co-running L2m 

working sets (total 4MB) can fit in the LLC with no need for extensive main memory 

accesses. Given this assumption it can be estimated that L2-only contention can excessively 

delay a program. From the results above, a slowdown factor of 4 seems realistic for high 

contention situations and potentially even close to 5 in extreme cases, although in such cases 

it is very difficult to estimate if it’s only L2-caused or in conjunction with possible LLC 

competition, without detailed performance information from counters.  

Increasing the competing instances size, slowdown is even higher (presented in tables 4.2.11 

and 4.2.12) caused by sequential and random instances respectively: 

  L2l_1Str_seq L2l_2Str_seq L2l_max_seq L3s_1Str_seq L3s_2Str_seq L3s_max_seq 

L2s_1Str_seq 1.235 1.920 4.419 1.208 1.978 5.586 

L2s_1Str_rdm 4.495 5.870 6.843 5.066 6.645 8.346 

L2s_2Str_seq 1.220 1.407 4.486 1.226 1.479 4.048 

L2s_2Str_rdm 1.259 5.646 7.634 1.249 2.139 9.127 

L2s_max_seq 1.269 1.356 1.858 1.278 1.405 1.671 

L2s_max_rdm 1.171 1.258 1.461 1.121 1.303 1.464 

L2m_1Str_seq 2.238 3.391 4.925 2.174 3.586 5.543 

L2m_1Str_rdm 3.734 4.698 5.239 4.427 5.226 5.925 

L2m_2Str_seq 2.059 3.727 6.506 2.230 3.784 6.967 

L2m_2Str_rdm 4.455 5.039 5.993 4.933 5.126 6.670 

L2m_max_seq 1.747 2.917 5.964 1.628 2.755 5.585 

L2m_max_rdm 1.623 2.539 3.368 1.586 2.508 3.222 

Table 4.2.10a: L2s-L2m slowdown induced by sequential L2l-L3s instances 

  L2l_1Str_rdm L2l_2Str_rdm L2l_max_rdm L3s_1Str_rdm L3s_2Str_rdm L3s_max_rdm 

L2s_1Str_seq 1.031 1.109 2.359 1.033 1.119 2.820 

L2s_1Str_rdm 1.090 2.259 5.139 1.098 1.671 7.228 

L2s_2Str_seq 1.039 1.074 1.545 1.033 1.086 1.450 

L2s_2Str_rdm 1.068 1.143 5.962 1.030 1.132 7.061 

L2s_max_seq 1.119 1.239 1.560 1.124 1.183 1.391 

L2s_max_rdm 1.055 1.076 1.268 1.050 1.065 1.166 

L2m_1Str_seq 1.279 1.520 3.763 1.260 1.508 3.850 

L2m_1Str_rdm 2.472 3.050 4.307 2.477 3.108 5.099 

L2m_2Str_seq 1.205 1.486 5.202 1.243 1.471 4.962 

L2m_2Str_rdm 2.061 2.811 4.959 2.032 2.869 5.601 

L2m_max_seq 1.290 1.674 6.848 1.258 1.510 6.147 

L2m_max_rdm 1.127 1.393 3.708 1.064 1.316 3.474 

Table 4.2.10b: L2s-L2m slowdown induced by random pattern L2l-L3s instances 
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Results show that slowdown is increasing to very high levels. It can be observed that induced 

slowdown increases depending –in order of significance- on number of streams, dataset size 

and access pattern, with sequential instances being more aggressive to smaller competitors’ 

cached data, as a result of their streaming nature. Slowdown noted was often much higher 

than 5, in some cases even close to 10, as moderate contention starts to take place also on L3, 

forcing small L2 instances to highly increased LLC and main memory accesses, the access 

time of which is much higher. This relative difference is reflected in slowdown ratio. Figures 

4.2.10 and 4.2.11 show average L2s and L2m slowdown caused by L2l and L3s benchmarks. 

 

 

Figure 4.2.10a: L2l and L3s sequential induced slowdown  

 

Figure 4.2.10b: L2l and L3s random induced slowdown  
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L2s instances are not so destructive for the larger L2l and L3s working sets, while L2m 

interfere more, as expected, causing slowdown up to more than 2.5 

 

Figure 4.2.11: L2l and L3s average slowdown caused by L2s and L2m interference 

As observed previously, intense slowdown effects are present when a streaming instance with 

large number of concurrent requests destroys cached data of a smaller instance with lower 

requests. This behavior is also present when larger benchmarks of C class are co-executed. 

  L2l_1Str_seq L2l_2Str_seq L2l_max_seq L3s_1Str_seq L3s_2Str_seq L3s_max_seq 

L2l_1Str_seq 1.997 2.750 3.990 1.977 2.970 4.712 

L2l_1Str_rdm 2.567 2.958 3.281 3.088 3.313 3.674 

L2l_2Str_seq 2.182 3.012 4.642 2.181 2.956 4.717 

L2l_2Str_rdm 2.708 3.038 3.528 2.980 3.013 3.824 

L2l_max_seq 1.865 2.512 3.931 1.860 2.509 3.803 

L2l_max_rdm 2.035 2.568 2.848 1.989 2.468 2.742 

L3s_1Str_seq 1.691 2.241 3.357 2.403 2.859 4.375 

L3s_1Str_rdm 1.547 1.735 1.924 1.943 2.122 2.369 

L3s_2Str_seq 1.492 1.885 2.868 1.504 2.642 3.463 

L3s_2Str_rdm 1.599 1.764 2.082 2.023 2.115 2.349 

L3s_max_seq 1.234 1.503 2.013 1.208 1.374 2.396 

L3s_max_rdm 1.356 1.603 1.712 1.327 1.571 1.923 

Table 4.2.11: L2l – L3s slowdown caused by sequential instances 
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Figure 4.2.12a: L2l and L3s average slowdown caused by same classes sequential interference 

 

Figure 4.2.12b: L2l and L3s average slowdown caused by same classes random interference 

In the latter cases, moderate contention occurs in both L3 and L2 caches. Finally, 

L3l_1Str_rdm behavior is different; its classification in C category was marginal and results 
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Figure 4.2.13a: L3l_1Str_rdm slowdown with all C sequential benchmarks 

 

Figure 4.2.13b: L3l_1Str_rdm slowdown with all C random benchmarks 

In summary, it has been confirmed that shared L2 contention may lead to high slowdown 

effect, which can escalate to excessive levels in conjunction with possible concurrent LLC 

competition. Graphs in figures 4.2.14a and 14b show overall C slowdown progression as size 

and requests increase, as caused by sequential and random instances respectively: 
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Figure 4.2.14a: Size class average slowdown with all C sequential benchmarks 

 

Figure 4.2.14b: Size class average slowdown with all C random benchmarks 

Overall C – C co-scheduling average was found significantly increased, at a value of 2.08. 
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C – LC  

This series of tests confirmed observed class C behavior. Table 4.2.12 contains some of the 

results, ranging from noticeable up to very high slowdown effect:  

  L3l_1Str_seq L3l_2Str_seq L3l_max_seq L3l_1Str_rdm L3l_2Str_rdm L3l_max_rdm 

L2s_1Str_seq 1.427 1.685 2.283 1.124 1.228 1.546 

L2s_1Str_rdm 1.599 2.179 3.113 1.192 1.382 3.021 

L2m_1Str_seq 1.795 2.478 4.483 1.231 1.422 2.906 

L2m_1Str_rdm 3.632 4.066 6.575 1.921 2.687 4.371 

L2m_2Str_seq 1.734 2.338 4.499 1.220 1.355 2.550 

L2m_2Str_rdm 2.821 3.452 4.588 1.671 2.065 3.992 

L2m_max_seq 1.585 2.029 3.594 1.176 1.442 2.193 

L2m_max_rdm 1.403 1.635 1.935 1.185 1.267 1.715 

L2l_1Str_seq 1.752 2.402 4.052 1.160 1.268 2.700 

L2l_1Str_rdm 2.490 8.344 9.372 1.620 1.942 8.511 

L2l_max_seq 1.537 1.895 2.794 1.171 1.300 2.685 

L2l_max_rdm 1.429 1.782 1.925 1.175 1.327 2.128 

L3s_1Str_seq 1.676 2.753 10.615 1.064 1.189 8.411 

L3s_1Str_rdm 5.261 5.888 6.070 1.275 2.364 5.700 

L3s_2Str_seq 1.356 1.695 9.402 1.108 1.215 2.210 

L3s_2Str_rdm 5.510 6.115 6.655 1.144 1.366 6.098 

Table 4.2.12: C slowdown caused by LC applications 

It is interestingly observed that results are similar to those presented in tables 4.2.10a and b, 

for corresponding working set size relevance: For instance L2s instances in C class co-

scheduling were excessively delayed by L2l competitors, and even more from L3s. Similarly, 

in this test series, L2l and L3s instances suffer from combined contention on L2, L3 caches as 

well as moderate memory link competition, caused by L3l. Again, MEM random instances, 

with moderate memory bandwidth demand and low cache reuse, do not interfere significantly 

with the rest of the applications. Graph below (figure 4.2.15) shows average slowdown for 

each size category in C class: 



92 

 

 

Figure 4.2.15: Size class average slowdown with all LC benchmarks 

LC class is also affected, mainly due to LLC competition, with a maximum of 3.1 caused by 

an intensely streaming L3s benchmark. All LC instances behavior is uniform, slowdown 

progressing with increasing co-runner working set and number of streams: 

 

Figure 4.2.16a: Average LC slowdown with C sequential instances 
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Figure 4.2.16b: Average LC slowdown with C random instances 

 

C – L  

Excessive slowdown scenarios were observed, confirming the estimation model. As 

expected, a streaming application with large working set can be very destructive for 

applications that normally rely on cache re-use, by massively wiping their cached data. L2s 

instances were the least affected with maximum slowdown noted 2.6, as their small datasets, 

although displaced from L2, are less vulnerable to be completely wiped of the much larger 

LLC; re-fetching data from LLC has greatly smaller time cost than from main memory. 

Increasing working set sizes of C applications, co-executed with Streaming L programs, 

creates simultaneous competition for all 3 shared memory levels, L2, L3 and memory Link. 

This results in extreme slowdown for programs with limited number of streams, as they have 

fewer requests, examples of which can be seen in table 4.2.13:  
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  MEM_1Str_seq MEM_2Str_seq MEM_max_seq MEM_max_rdm 

L2m_1Str_seq 1.754 2.448 5.087 2.758 

L2m_1Str_rdm 3.228 3.682 4.343 3.921 

L2m_2Str_seq 1.803 2.434 4.646 2.520 

L2l_1Str_seq 1.851 2.526 4.500 2.638 

L2l_1Str_rdm 2.348 3.164 11.157 2.697 

L2l_2Str_seq 1.790 2.489 4.378 2.632 

L3s_1Str_seq 1.744 2.458 12.114 6.730 

L3s_1Str_rdm 6.205 6.563 6.926 6.481 

L3s_2Str_seq 1.377 1.871 9.183 2.161 

L3s_2Str_rdm 5.494 6.328 7.121 6.391 

Table 4.2.13: C class slowdown with L instances 

Overall slowdown caused by L instances is presented in figure 4.2.17. Fig. 4.2.18 shows 

average class C slowdown:. 

 

Figure 4.2.17: C class slowdown caused by L instances interference 
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Figure 4.2.18: Average C class slowdown  

L applications may also be affected by C instances with increased requests, due to 
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Figure 4.2.19: Average L class slowdown, by C sequential and random instances respectively  
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LC – LC  

With both co-running applications in LC class, performance dependence on L2 utilization is 

insignificant. This is suggested by the results being similar to the non-shared L2 scenario: 

 

Figure 4.2.20: LC class co-execution slowdown 

The effect of shared L2 is increased contention when we have streaming pattern applications, 

but overall behavior is same. Average slowdown is 2.3 

 

LC – L  

Exactly as estimated in our model, LCs suffered from cache contamination by the L instances 

in conjunction with bus contention caused by their increased requests. Increased memory 

access due to cache misses also affects L programs. LC instances of the same class category 

and pattern behave similarly, figure 4.2.21 shows slowdown per size-and-pattern: 
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Figure 4.2.21: LC slowdown by L instances  

L application slowdown was maximized by L3l sequential instances, reaching its maximum 

value at 3. Average slowdown of L applications co-executing with LC: 

 

Figure 4.2.22: Average L slowdown by LC instances 
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L – L  

This co-execution scenario’s experimental results have also confirmed the predicted 

behavior. Maximum bandwidth streaming instances are sharing the bus and slowdown in this 

case does not exceed 2 (was found to be 1.85). Again programs with fewer streams are more 

vulnerable to higher slowdown, as requests are handled serially. 

 

 

Figure 4.2.23: L co-execution slowdown 

Overview 

Experimenting with shared L2 cache has shown that application behavior changes drastically. 

Average co-scheduling induced slowdown for class pairs was found: 

Class  Co-runner class  

  C LC L 

C 2.08 2.20 3.00 

LC 1.44 2.30 2.85 

L 1.20 1.50 1.83 

Table 4.2.14: Class average slowdown in shared L2 execution 
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experiments. It has been shown that combined contention in memory hierarchy levels can 

cause multiplied slowdown. As expected, C class suffers the most from this effect, with some 

extreme case programs having comparative slowdown over 11. To calculate this relative 

slowdown, we simply divide slowdown in shared L2 context, with the respective number 

from non-shared L2 experiments: 
                

               
. Indicative co-executed pairs that 

displayed escalating slowdown effect with shared L2 are shown: 

  L2l_max_seq L2l_max_rdm L3s_1Str_seq L3s_2Str_seq L3s_max_seq L3s_max_rdm 

L2s_1Str_seq 3.836 2.230 1.090 1.804 5.134 2.337 

L2s_1Str_rdm 6.330 5.139 4.806 6.376 8.121 6.575 

L2s_2Str_seq 3.937 1.528 1.226 1.479 4.042 1.363 

L2s_2Str_rdm 7.631 5.866 1.245 2.139 9.127 6.598 

L2s_max_seq 1.708 1.540 1.271 1.397 1.624 1.322 

L2s_max_rdm 1.288 1.258 0.943 1.289 1.374 1.072 

L2m_1Str_seq 4.345 3.474 1.955 3.267 4.904 3.277 

L2m_1Str_rdm 5.211 4.307 4.427 5.226 5.925 5.099 

L2m_2Str_seq 5.400 5.202 2.155 3.444 6.928 4.459 

L2m_2Str_rdm 5.143 4.453 4.478 4.462 6.094 4.735 

L2m_max_seq 5.156 6.775 1.436 2.302 5.163 5.060 

Table 4.2.15a: Relative slowdown ratio for selected C class pairs. The number indicates how many 

times slower execution was with the pair sharing L2 than with separate L2 per core. 

  MEM_2Str_seq MEM_max_seq MEM_max_rdm 

L2l_1Str_rdm 3.164 11.157 2.516 

L3s_1Str_seq 2.458 11.556 5.964 

L3s_1Str_rdm 6.563 6.669 5.882 

L3s_2Str_seq 1.824 8.558 1.855 

L3s_2Str_rdm 6.202 6.789 5.420 

Table 4.2.15b: Maximum/worst-case relative slowdown ratio noted. 

Finally, table 4.2.16 shows how class C and LC co-execution averages were affected from 

change to L2 sharing, while L was generally not affected: 

Class  Co-runner class  

  C LC L 

C 1.81 1.50 2.50 

LC 1.07 1.00 1.63 

L 1.00 1.00 1.08 

Table 4.2.16: Overall relative slowdown. 
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Chapter 5 

Conclusions and future work 

 

 

5.1 Results evaluation 

 

Memory contention in co-execution scenarios is very hard to predict. Results can largely 

differ with slight alterations in the executed applications and on different architectures. 

However, a well-designed prediction estimation model can be used to indicate at which 

scenarios the possibilities for increased interference are higher. The classification and 

prediction scheme described in chapter 2, according to experimental results, appears being 

able to capture the big picture, as in most cases behavior and interaction between processes 

when co-scheduled were found close to that predicted. Overall average slowdown for the 

systems used was found: 
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Class  Co-runner class  

  N C LC L 

N 1.00 1.02 1.10 1.07 

C 1.00 1.06 1.27 2.15 

LC 1.00 1.06 1.34 1.76 

L 1.00 1.00 1.12 1.30 

Overall slowdown map for Sandy Bridge system 

Class   Co-runner class   

  N C LC L 

N (1.03) -  -  -  

C  - 1.48 1.48 1.85 

LC  - 1.21 1.67 1.69 

L  - 1.10 1.36 1.39 

Overall slowdown map for Dunnington system, average of L2 shared and non-shared results 

Thus, avoidance of specific class combinations’ co-execution, as suggested by this approach, 

may result in significant efficiency improvement. That, of course, does not mean that such 

scenarios will always have negative results because, as it was seen in the experiments, each 

application class includes programs with varying behavior, and such differences can be 

further affected by architecture features. Further division of large classes (e.g. C) to 

subclasses could possibly be a future choice. 

It was observed that competition for shared memory resources, apart from the obvious 

slowdown effect, caused affected applications’ general behavior to shift to that of a “higher” 

class (if we consider the order from smaller to higher being N, C, LC, L).  

Additionally, it is confirmed that applying increasing pressure to the memory hierarchy 

causes slowdown effects to all applications. Figure 5.1 shows average slowdown (all 

programs for all classes) caused as the streaming co-running application becomes more 

intense and with increasing dataset size. Similar phenomena have been noted in other 

research works, e.g. BubbleUp [16]. 
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Figure 5.1: Overall average slowdown by sequential applications on Sandy Bridge system 

The benchmark program created was found to be sufficiently accurate for bandwidth 

measurement. Its versatility, single-threaded execution and predictable behavior make it 

suitable for use as an in-house alternative to complement testing workloads, along with other 

known benchmarks and programs used for this purpose. 

 

5.2 Future work 

 

As an expansion of this work, more co-scheduling experiments could be conducted, using 

more concurrent instances on more cores and observe contention caused by multiple 

applications. Using class “shifting” phenomena, also observed in this work, it would be 

interesting to see how multi-core variations of the experiment, with more than 2 cores and 

instances, could be reduced, for instance to a 2- or more- class generalized scenario. 

Additionally, the benchmark program could be quite easily extended to include an adjustable 

dummy computational module, in order to emulate CPU-and-memory intensive application 

for further experimentation. Such a modification could also result in being able to control, if 
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desired, the amount of bandwidth used by the program by adding computational load when 

needed to limit memory requests and subsequently the contention it causes. 
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Appendix A 

Benchmark test results 

All results in MB/s 

 

A.1 Intel
™

 Xeon
™

 E5-4620 (Sandy Bridge) 

 

        Sequential Bandwidth (in MB/s)     

                    

Size (KB)         Number of streams       

    Single 2 3 4 5 6 7 8 

1   76,684.0 57,617.8 81,926.7 101,361.4 124,983.8 126,620.6 138,612.8 158,452.0 

2   75,088.9 60,402.4 88,060.8 112,735.1 139,852.2 157,666.7 170,685.8 195,100.0 

4   52,744.3 65,186.1 86,840.4 119,170.0 148,604.7 172,729.0 195,819.7 220,528.8 

6   47,512.5 74,974.7 100,108.8 112,983.8 129,828.2 178,846.1 203,166.9 230,476.3 

8   45,260.0 78,442.8 105,630.6 127,552.8 145,710.5 162,208.3 208,051.2 235,944.6 

12   43,217.6 79,014.0 109,878.8 136,454.7 160,035.3 180,407.7 192,043.1 213,608.2 

16   42,257.9 79,032.8 111,928.4 141,378.1 168,441.0 192,163.0 200,749.1 225,497.5 

20   41,706.1 74,932.6 110,882.3 138,851.3 173,135.3 189,925.6 202,191.4 232,973.0 

24   41,346.2 78,111.0 113,649.0 146,224.7 171,001.9 206,384.5 203,931.2 238,594.9 

32   40,893.9 72,536.5 103,288.7 142,248.8 153,478.4 183,356.6 184,678.0 230,070.3 

38   13,168.2 26,134.6 37,675.5 38,319.8 59,253.4 59,788.2 63,556.0 68,606.7 

45   13,091.2 25,948.5 37,634.7 45,587.1 55,498.9 58,037.8 62,757.9 65,374.2 

56   13,008.9 25,871.2 37,413.6 38,775.9 55,295.1 56,380.5 61,229.5 64,913.0 

64   12,979.9 25,722.4 37,120.6 38,694.0 55,374.8 56,586.6 63,378.9 61,492.7 

85   12,894.8 25,402.3 36,696.2 47,655.4 49,255.8 58,068.3 60,651.5 64,232.3 

100   12,861.5 25,485.3 36,822.4 46,099.3 51,632.6 57,445.8 61,472.4 64,867.1 

128   12,810.3 25,405.3 36,676.9 44,752.7 46,074.7 57,366.0 60,664.5 58,034.6 

200   11,992.1 23,380.9 29,944.9 32,800.1 38,179.0 47,494.6 49,717.1 48,382.3 

256   11,089.4 21,667.7 27,333.7 23,663.3 34,515.6 38,685.5 42,360.0 45,586.5 

384   10,304.4 16,665.5 21,585.7 19,678.0 27,860.9 26,681.2 28,493.6 29,630.9 

512   10,261.1 16,253.8 20,590.5 20,570.7 26,362.5 27,522.5 27,581.0 26,594.4 

768   10,213.4 16,260.0 20,592.1 18,142.5 26,172.9 26,895.2 27,497.8 27,708.2 

1,024   10,219.2 16,256.5 20,592.5 20,047.0 26,178.5 26,879.5 27,348.1 27,709.0 

2,048   10,214.6 16,244.1 20,563.5 22,956.2 26,138.7 26,832.1 27,313.6 27,689.4 

3,072   10,099.3 16,095.4 20,482.3 24,226.6 26,017.0 26,692.8 27,154.0 27,317.3 

4,096   10,094.8 16,094.2 20,479.1 24,225.1 26,020.7 26,616.0 27,158.5 27,318.7 

6,144   10,050.9 16,073.4 20,468.0 24,210.3 25,828.2 26,489.4 27,157.8 27,231.5 

8,192   10,060.9 16,083.9 20,446.8 23,845.5 25,376.7 26,070.8 26,635.6 26,755.8 
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Size (KB)         Number of streams       

    Single 2 3 4 5 6 7 8 

10,240   9,774.7 15,953.6 20,102.7 22,911.3 24,742.0 25,227.1 25,450.1 26,582.5 

11,264   9,729.3 15,969.9 19,765.4 23,373.5 23,482.6 24,778.1 25,401.3 26,427.4 

12,288   9,669.6 15,804.9 19,275.5 21,104.4 21,861.0 24,205.3 25,276.1 26,563.8 

13,302   9,428.1 15,224.2 18,708.2 19,954.8 20,670.3 23,442.2 23,896.6 24,252.0 

14,300   9,021.5 13,946.0 17,482.9 19,931.2 20,903.4 21,886.0 22,537.3 23,851.4 

15,400   8,516.4 13,316.0 17,180.8 19,066.3 20,162.6 21,158.4 21,034.4 21,487.0 

16,384   7,760.6 12,880.6 16,693.7 18,122.9 18,471.1 18,191.8 18,163.4 17,991.0 

20,480   6,916.9 11,802.3 14,752.6 15,111.1 15,156.8 14,889.2 14,765.5 14,703.5 

32,768   6487.106 11206.05 13423.85 12957.71 13042.74 12777.82 12595.26 12525.88 

45,000   6484.498 11223.3 13316.38 12828.89 12870.51 12583.86 12396.58 12388.12 

65,136   6492.599 11115.37 13224.01 12706.62 12907.63 12620.56 12441.67 12366.19 

78,453   6497.135 11182.61 13312.1 12657.7 12890.7 12631.37 12446.39 12368.64 

131,072   6521.119 11024.08 13445.06 12820.52 12818.46 12605.11 12416.24 12368.46 

Table A.1.a 

 

        Random Bandwidth (in MB/s)     

                    

Size (KB)         Number of streams       

    Single 2 3 4 5 6 7 8 

1   76,847.4 57,651.3 81,995.4 101,444.4 125,142.9 126,790.2 138,709.6 158,573.6 

2   75,154.0 60,403.6 88,071.3 112,730.1 139,865.1 158,198.6 170,702.7 195,138.4 

4   52,753.9 65,312.7 82,538.3 119,277.9 148,618.5 172,938.8 195,835.8 219,836.3 

6   47,514.0 74,968.1 98,184.4 113,555.5 129,847.2 179,021.4 203,177.4 230,632.2 

8   45,267.3 78,587.9 107,343.7 127,595.5 145,714.7 162,373.3 208,081.8 235,950.6 

12   43,219.3 79,015.4 110,916.2 136,471.0 156,892.0 181,761.6 194,578.1 214,413.4 

16   42,259.6 79,036.2 112,915.3 141,370.5 162,941.3 192,502.7 204,920.5 225,528.0 

20   41,708.0 78,550.6 113,882.0 144,528.3 165,796.3 201,603.8 215,296.6 233,791.0 

24   41,347.0 75,218.9 111,363.1 144,796.9 162,971.1 206,633.4 217,964.0 238,262.9 

32   40,894.8 72,175.9 106,969.6 134,536.1 152,955.7 187,909.6 202,198.3 211,157.9 

38   13,938.6 27,365.4 40,808.6 39,143.1 59,489.0 66,377.3 71,454.7 73,594.3 

45   13,670.3 26,685.6 38,255.9 44,201.3 53,855.8 59,221.2 63,471.4 65,960.4 

56   13,533.7 26,273.2 37,666.6 39,498.7 52,433.7 59,025.4 60,082.8 66,538.8 

64   13,496.5 26,300.5 37,667.5 42,601.9 53,264.1 58,681.8 60,932.7 63,113.8 

85   13,405.0 26,190.0 37,778.3 46,154.7 52,990.5 58,260.0 61,943.7 66,531.4 

100   13,380.7 26,143.0 37,083.8 46,220.6 52,355.2 58,179.9 61,017.0 66,065.6 

128   13,338.1 25,752.9 32,380.9 45,031.1 51,441.2 57,905.7 60,786.1 60,495.0 

200   10,380.3 19,810.2 26,245.2 26,315.0 41,984.5 42,492.3 47,652.4 50,005.4 

256   5,159.4 12,021.0 17,085.2 15,610.3 28,707.0 27,694.8 37,751.7 33,450.9 

384   3,981.8 7,385.6 10,996.7 12,149.1 17,727.0 20,901.1 23,281.7 26,585.3 

512   3,667.0 7,175.4 10,784.2 11,528.4 16,756.6 19,636.0 22,330.5 24,861.5 
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Size (KB)         Number of streams       

    Single 2 3 4 5 6 7 8 

768   3,563.0 6,975.7 10,245.9 11,064.5 16,310.3 19,112.2 21,794.4 24,238.5 

1,024   3,511.0 6,889.5 10,096.4 11,238.6 16,100.2 18,861.7 21,470.7 23,936.6 

2,048   3,438.2 6,754.8 9,902.0 12,878.3 15,765.5 18,448.3 20,999.1 23,431.1 

3,072   3,176.7 6,141.9 8,869.7 11,299.8 13,396.5 15,162.7 16,488.7 17,100.0 

4,096   3,060.8 5,855.2 8,283.6 10,255.2 11,570.7 12,303.6 12,501.6 12,529.6 

6,144   2,934.9 5,553.1 7,601.0 8,881.5 9,404.8 9,559.7 9,490.4 9,410.6 

8,192   2,815.9 5,308.4 6,976.2 8,074.7 8,338.4 8,358.0 8,320.6 8,229.0 

10,240   2,466.5 5,178.4 6,853.5 7,141.6 7,419.7 7,672.1 7,656.8 7,589.6 

11,264   2,506.8 5,160.2 6,729.7 7,330.3 7,461.2 7,436.8 7,421.5 7,316.9 

12,288   2,711.5 5,137.0 6,614.4 7,175.2 7,262.5 7,253.5 7,220.6 7,152.4 

13,302   2,663.9 5,052.8 6,535.2 7,061.1 7,080.6 7,105.2 6,947.2 6,981.9 

14,300   2,657.1 5,032.9 6,380.3 6,888.2 6,974.5 6,851.4 6,781.3 6,872.6 

15,400   1,642.8 4,143.6 5,423.6 6,347.5 6,488.2 4,692.7 6,695.0 6,682.1 

16,384   1,137.5 2,169.8 3,349.6 3,947.2 4,892.8 5,460.4 5,982.0 6,235.1 

20,480   810.1 1,528.6 2,296.8 2,976.0 3,670.4 4,271.7 4,830.2 5,320.4 

32,768   647.8 1,267.9 1,873.9 2,449.4 3,032.1 3,582.1 4,092.2 4,542.0 

45,000   629.0 1,240.8 1,819.3 2,396.3 2,943.9 3,444.0 3,929.5 4,285.4 

65,136   617.5 1,209.1 1,779.5 2,330.2 2,866.1 3,340.3 3,708.8 3,928.2 

78,453   608.3 1,189.3 1,748.6 2,290.6 2,790.6 3,215.5 3,523.2 3,644.9 

131,072   589.5 1,154.6 1,691.2 2,203.5 2,625.0 2,908.9 3,032.1 3,062.2 

Table A.1.b 
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Figure A.1.1 

 

 

Figure A.1.2 
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Figure A.1.3 

 

 

Figure A.1.4 
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Figure A.1.5 

 

 

Figure A.1.6 
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Figure A.1.7 

 

 

Figure A.1.8 
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A.2 Intel
™

 Xeon
™

 X-7460 (Dunnington) 

 

        Sequential Bandwidth (in MB/s)     

                    

Size (KB)         Number of streams       

    Single 2 3 4 5 6 7 8 

1   78,596.7 68,256.8 81,065.2 99,766.1 105,716.7 97,262.8 98,668.2 99,760.1 

2   79,801.2 74,105.4 88,429.6 112,767.6 118,623.6 118,612.5 116,381.2 117,881.0 

4   75,727.4 77,420.5 92,852.0 120,664.9 126,313.4 127,998.1 129,250.4 129,670.3 

6   52,045.4 78,592.3 94,330.6 123,527.7 129,420.5 131,894.7 132,880.5 134,140.9 

8   52,530.2 79,193.7 95,014.4 125,001.6 130,722.1 133,496.2 135,235.3 136,506.0 

12   53,033.3 76,283.4 95,771.8 126,530.8 132,171.0 135,322.5 137,362.0 138,939.3 

16   53,282.4 77,413.5 116,444.4 127,305.5 132,916.4 136,191.7 138,461.6 140,195.9 

20   53,426.6 78,112.3 115,258.3 124,493.2 133,351.9 136,750.7 134,850.8 139,198.8 

24   53,526.9 78,596.5 118,114.5 125,753.0 125,195.8 136,910.7 135,114.9 141,145.3 

32   53,640.4 79,141.1 93,761.1 122,190.1 114,750.3 121,475.2 118,081.8 138,596.5 

38   13,168.2 26,134.6 37,675.5 35,586.3 39,896.1 42,419.5 40,808.9 38,276.1 

45   12,849.7 23,435.8 31,865.3 35,543.2 39,933.6 42,358.4 37,494.2 34,623.1 

56   12,858.6 23,265.6 31,956.7 35,740.2 40,046.2 42,398.7 39,348.5 34,628.0 

64   12,861.8 23,367.5 31,962.2 35,778.7 40,028.5 42,430.1 37,471.2 34,422.0 

85   12,829.7 23,445.7 31,844.7 35,739.7 39,959.8 42,309.7 37,341.8 34,592.2 

100   12,836.8 23,436.3 31,873.7 35,813.5 40,668.7 40,898.4 37,424.6 34,591.5 

128   12,836.4 23,353.8 31,987.7 35,758.5 40,145.5 42,571.8 37,471.8 33,510.3 

200   12,838.8 23,419.5 31,957.4 35,891.9 40,678.0 42,558.1 37,502.1 34,620.9 

256   12,838.8 23,652.3 31,918.5 35,868.0 40,236.5 42,616.5 37,531.2 33,539.3 

384   12,837.9 23,630.9 31,894.6 35,880.3 40,202.7 39,945.4 37,547.6 33,757.7 

512   12,838.2 23,653.4 31,934.2 36,392.7 40,248.6 42,679.7 37,554.5 33,563.8 

768   12,837.7 23,635.6 31,959.5 36,366.9 41,972.8 42,868.5 37,556.2 33,580.0 

1,024   12,835.8 23,624.5 25,506.2 36,377.2 41,624.3 42,893.7 37,327.5 34,569.4 

2,048   11,725.2 22,623.2 28,174.8 31,647.0 37,097.4 35,768.5 34,538.6 32,772.9 

3,072   9,976.5 16,047.5 18,204.5 19,364.6 20,993.3 20,661.0 21,063.4 21,384.5 

4,096   8,531.1 11,846.9 11,967.0 12,442.9 12,342.4 12,805.5 12,772.7 13,015.0 

6,144   7,948.8 9,570.3 9,907.9 10,057.8 10,153.1 10,098.3 10,143.3 10,146.3 

8,192   7,890.5 9,416.3 9,481.3 9,896.9 9,826.8 9,856.5 9,785.9 10,020.3 

10,240   7,353.5 7,734.3 8,643.4 8,780.5 8,378.2 8,946.7 9,060.2 9,215.7 

11,264   6,036.4 7,133.6 7,985.4 8,022.3 7,997.0 8,493.4 8,595.9 8,817.0 

12,288   5,381.6 6,317.1 6,453.9 6,432.2 6,621.7 7,577.4 7,718.1 8,130.4 

13,302   4,996.6 5,129.0 5,572.1 5,968.3 5,983.9 6,315.4 6,528.1 6,505.7 

14,300   4,383.0 4,640.7 4,442.9 4,774.2 5,173.2 5,270.0 5,207.8 5,410.4 

15,400   3,546.8 4,273.3 4,005.0 3,978.7 4,202.2 4,273.3 4,504.3 4,448.6 

16,384   3,030.4 3,486.6 3,609.2 3,791.9 3,802.9 3,760.9 3,998.7 4,193.2 

20,480   2,078.5 2,629.0 2,650.4 2,737.9 2,728.3 2,745.0 2,703.3 2,691.0 
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Size (KB)         Number of streams       

    Single 2 3 4 5 6 7 8 

32,768   1,873.9 2,330.1 2,359.7 2,400.1 2,420.3 2,410.6 2,412.3 2,380.0 

45,000   1,872.8 2,333.1 2,358.8 2,414.7 2,427.8 2,429.0 2,404.9 2,416.2 

65,136   1,874.8 2,331.9 2,358.2 2,414.1 2,428.3 2,421.4 2,422.7 2,402.6 

78,453   1,873.3 2,331.6 2,360.6 2,397.4 2,427.8 2,422.0 2,418.1 2,398.9 

131,072   1,872.7 2,322.8 2,362.5 2,386.3 2,429.0 2,422.6 2,422.9 2,363.0 

Table A.2.a 

 

        Random Bandwidth (in MB/s)     

                    

Size (KB)         Number of streams       

    Single 2 3 4 5 6 7 8 

1   78,602.3 70,102.3 93,538.2 108,083.8 105,710.5 97,269.5 98,676.1 99,757.3 

2   79,806.0 75,182.6 105,738.7 117,891.0 118,629.1 118,600.9 116,373.9 117,882.7 

4   75,725.7 78,006.6 113,493.9 123,547.9 126,330.5 128,010.7 129,262.8 129,674.9 

6   52,049.2 78,989.4 116,164.9 125,510.6 129,411.0 131,894.1 132,887.3 134,158.3 

8   52,536.7 79,492.3 117,401.1 126,543.2 130,721.1 133,504.0 135,250.5 136,497.9 

12   53,036.6 76,468.4 118,798.4 127,572.1 132,205.1 135,317.5 137,369.1 138,928.2 

16   53,281.5 77,555.2 115,802.4 128,106.4 132,928.9 136,191.7 138,453.9 140,197.1 

20   53,425.8 78,229.6 116,909.2 124,703.9 133,359.6 136,756.9 139,123.2 140,966.8 

24   53,529.8 78,691.5 112,167.8 123,195.3 130,356.8 137,074.0 139,547.3 141,284.6 

32   53,634.6 79,147.2 96,329.2 114,466.4 120,876.0 122,764.6 125,908.8 128,006.2 

38   13,938.6 27,365.4 40,808.6 39,606.4 47,208.8 41,838.2 41,715.1 38,784.2 

45   10,894.2 21,355.7 32,016.7 40,604.9 48,372.0 45,322.8 38,097.5 36,427.4 

56   10,798.3 20,338.0 30,400.1 39,720.2 47,034.1 40,999.2 37,902.5 36,338.3 

64   10,800.2 20,274.8 30,179.1 39,890.4 48,091.6 41,039.5 37,787.4 36,240.7 

85   10,439.5 20,243.6 30,192.7 39,864.6 47,421.3 40,027.4 37,525.8 36,077.1 

100   10,333.1 20,176.4 30,102.8 40,048.5 46,533.5 39,714.9 37,414.0 35,928.6 

128   10,130.8 19,977.3 29,953.1 39,677.8 45,465.5 39,182.1 37,060.0 35,895.1 

200   9,903.4 19,671.8 29,371.0 38,849.2 44,243.9 38,668.4 37,074.2 35,719.0 

256   9,826.0 19,558.1 29,200.6 38,639.6 43,788.0 38,544.6 37,047.8 35,683.8 

384   9,718.7 19,383.5 28,973.2 38,278.8 42,964.3 38,347.8 36,833.9 35,543.2 

512   9,676.0 19,305.1 28,852.3 38,121.3 43,517.2 38,199.9 36,839.3 35,527.0 

768   9,625.2 19,220.3 28,775.8 37,745.9 43,024.9 38,209.8 36,693.1 35,438.9 

1,024   9,599.0 19,126.4 28,421.8 37,544.5 42,429.3 36,947.8 34,475.0 33,625.4 

2,048   7,167.0 11,504.5 18,523.7 21,323.7 23,443.3 22,949.5 26,250.9 25,890.6 

3,072   3,778.5 7,475.8 9,132.6 11,340.2 13,203.9 14,974.1 16,037.1 16,934.3 

4,096   2,515.1 4,849.1 6,773.6 8,576.0 9,836.0 10,738.8 11,383.2 11,887.9 

6,144   1,931.1 3,683.4 5,285.9 6,554.0 7,512.0 8,348.9 9,107.9 9,545.6 

8,192   1,698.4 3,308.3 4,754.7 5,929.0 6,884.9 7,768.4 8,602.4 8,873.0 

10,240   1,585.0 3,068.6 4,077.9 5,628.9 5,614.1 6,302.3 7,013.4 7,612.6 
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Size (KB)         Number of streams       

    Single 2 3 4 5 6 7 8 

11,264   1,537.2 3,033.7 2,974.3 5,512.5 6,322.6 7,375.0 6,604.0 8,302.3 

12,288   1,495.2 2,369.9 2,691.9 5,414.4 5,813.0 6,902.7 5,891.8 6,383.1 

13,302   1,415.9 2,160.7 2,835.5 2,894.0 5,357.8 5,473.6 5,889.9 5,330.4 

14,300   1,233.3 1,713.0 2,635.8 2,885.1 4,576.3 4,814.0 5,036.5 4,844.5 

15,400   965.1 1,508.2 1,912.2 2,516.5 3,430.2 3,661.8 4,157.7 4,502.3 

16,384   928.3 1,582.1 2,257.1 2,481.7 2,894.9 3,314.3 3,582.2 3,777.4 

20,480   643.2 1,236.3 1,560.6 1,939.2 2,190.2 2,345.3 2,463.7 2,571.3 

32,768   427.1 777.3 1,077.7 1,337.7 1,554.3 1,755.2 1,934.3 2,069.0 

45,000   384.7 705.5 973.7 1,221.6 1,450.2 1,659.3 1,854.6 2,006.4 

65,136   359.8 659.1 907.0 1,144.8 1,377.5 1,594.3 1,804.5 1,958.9 

78,453   350.8 640.7 884.3 1,117.8 1,346.4 1,567.7 1,774.5 1,931.9 

131,072   334.1 609.9 839.2 1,061.2 1,286.5 1,497.7 1,699.4 1,852.7 

Table A.2.b 
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Figure A.2.1 

 

 

Figure A.2.2 
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Figure A.2.3 

 

 

Figure A.2.4 
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Figure A.2.5 

 

 

Figure A.2.6 
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Figure A.2.7 

 

 

Figure A.2.8 
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Appendix B 

Co-execution test results 

 

The following pages contain full tables, with all slowdown results from co-execution 

experiments.  
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Class N N C (N) C (N) C (N) C C C C C C C C C C C C C LC LC LC LC LC LC LC LC LC L L L

L2_1Str_seq N 1.04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.09 1.05 1.05 1.00 1.14 1.13 1.06 1.05 1.00 1.09 1.08 1.01 1.14 1.06

L2_2Str_seq N 1.00 1.10 1.00 1.00 1.00 1.18 1.05 1.06 1.00 1.00 1.00 1.00 1.18 1.07 1.00 1.00 1.08 1.07 1.00 1.00 1.16 1.13 1.14 1.14 1.17 1.11 1.13 1.07 1.14 1.11

L2_2Str_rdm C (N) 0.88 0.88 0.81 0.74 0.76 1.04 0.74 0.89 0.74 0.76 0.71 0.97 0.84 0.87 0.56 0.81 0.78 0.90 0.87 0.57 0.73 0.73 1.18 0.57 0.72 0.56 0.78 0.76 0.75 0.90

L2_4Str_seq C (N) 0.92 0.92 0.89 0.85 0.76 0.94 0.90 0.95 0.82 0.92 0.74 0.79 0.98 0.87 0.80 0.94 0.86 0.88 0.95 0.85 0.96 0.81 0.91 0.94 0.87 0.75 0.98 1.02 0.85 0.98

L2_4Str_rdm C (N) 0.64 1.01 0.65 0.95 0.98 0.64 0.95 1.09 0.64 0.95 0.65 0.65 0.90 1.07 1.13 1.01 1.06 0.86 1.69 0.86 1.06 1.01 1.01 0.97 1.02 0.87 0.64 1.04 1.01 1.11

L2_1Str_rdm C 1.49 1.00 1.00 1.00 1.00 1.40 1.00 1.00 1.00 1.00 1.00 1.00 1.59 1.29 1.51 1.23 1.23 1.24 1.24 1.88 1.54 1.47 1.26 1.30 1.29 1.53 1.52 1.60 1.56 1.37

L3s_1str_seq C 1.02 1.02 1.02 1.02 1.02 1.02 1.01 1.00 1.00 1.00 1.00 1.00 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.03 1.02 1.03 1.02 1.02 1.02 1.02 1.02 1.03 1.03

L3s_1str_rdm C 1.01 1.01 1.02 1.02 1.02 1.01 1.02 1.01 1.01 1.00 1.01 1.00 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.03 1.02 2.72 1.02 1.02 1.02 1.02 1.02 1.03 8.20

L3s_2str_seq C 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.01 1.00 1.01 1.00 1.01 1.01 1.00 1.01 1.01 1.01 1.02 1.02

L3s_2str_rdm C 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.02 1.01 1.01 1.00 1.01 1.01 1.02 1.01 1.02 1.01 1.02 1.02 1.03 1.01 1.02 1.02 1.02 1.02 1.02 1.03 1.03 1.03

L3s_maxstr_seq C 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.02 1.02

L3s_maxstr_rdm C 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.03 1.01 1.02 1.01 1.02 1.02 1.01 1.01 1.02 1.02 1.03 1.03

L3m_1Str_seq C 1.00 1.01 1.00 1.01 1.00 1.00 1.01 1.00 1.01 1.00 1.01 1.01 1.01 1.00 1.01 1.00 1.01 1.01 1.01 1.00 1.01 1.01 1.02 1.01 1.00 1.00 1.01 1.01 1.02 1.03

L3m_1Str_rdm C 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.01 1.00 1.02 1.04 1.01 1.01 1.01 1.00 2.90 1.00 2.76 1.01 2.84 3.01 1.00 1.00 1.01 5.06 5.96 7.64

L3m_2Str_seq C 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.01 1.01 1.00 1.01 1.01 1.01 1.00 1.01 1.02 1.02 1.02

L3m_2Str_rdm C 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.01 1.01 1.01 1.01 1.01 1.00 1.05 1.01 2.83 1.01 2.94 1.01 1.01 1.00 1.01 1.03 5.72 6.91

L3m_4Str_seq C 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.01 1.00 1.00 1.00 1.02 1.01 1.01 1.01 1.01 1.00 1.01 1.01 1.01 1.02 1.02 1.02

L3m_4Str_rdm C 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.01 1.01 1.01 1.06 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.01 1.01 1.01 1.02 1.03 6.58

L3l_1Str_seq LC 1.00 1.00 1.00 1.00 1.00 1.00 1.05 1.05 1.07 1.05 1.05 1.06 1.13 1.07 1.12 1.12 1.12 1.14 1.46 1.05 1.55 1.12 1.58 1.45 1.06 1.12 1.34 1.47 1.71 1.99

L3l_1Str_rdm LC 1.01 1.05 1.01 1.05 1.00 1.00 1.18 1.25 1.31 1.22 1.17 1.24 1.48 1.36 1.48 1.51 1.48 1.44 2.61 2.47 2.68 2.61 2.63 2.59 2.43 2.63 2.50 2.78 3.10 3.89

L3l_2Str_seq LC 1.00 1.00 1.00 1.00 1.00 1.00 1.03 1.04 1.03 1.04 1.04 1.05 1.08 1.04 1.07 1.08 1.09 1.08 1.32 1.02 1.60 1.04 1.70 1.25 1.02 1.04 1.18 1.32 1.66 1.86

L3l_2Str_rdm LC 1.01 1.00 1.00 1.00 1.00 1.00 1.20 1.19 1.18 1.17 1.19 1.26 1.43 1.35 1.39 1.34 1.41 1.47 2.52 1.58 2.54 2.37 2.55 2.48 1.57 2.33 2.39 2.66 3.01 3.53

L3l_4Str_seq LC 1.00 1.00 1.00 1.00 1.00 1.00 1.04 1.00 1.03 1.04 1.04 1.04 1.11 1.02 1.12 1.05 1.14 1.13 1.36 1.03 1.93 1.03 2.12 1.18 1.00 1.04 1.12 1.35 2.08 2.28

L3l_8Str_rdm LC 1.00 1.00 1.00 1.00 1.00 1.01 1.02 1.02 1.01 1.01 1.01 1.00 1.05 1.02 1.06 1.04 1.04 1.05 1.53 1.00 1.61 1.03 1.66 1.45 1.02 1.05 1.32 1.58 1.94 2.23

MEM_1Str_rdm LC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.04 1.01 1.06 1.01 1.08 1.04 1.01 1.01 1.03 1.09 1.31 1.84

MEM_2Str_rdm LC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.04 1.01 1.07 1.02 1.07 1.03 1.01 1.01 1.03 1.09 1.29 1.62

MEM_8Str_rdm LC 1.01 1.00 1.00 1.00 1.01 1.01 1.01 1.01 1.02 1.01 1.01 1.01 1.01 1.01 1.02 1.02 1.01 1.01 1.03 1.01 1.04 1.01 1.05 1.03 1.01 1.01 1.02 1.04 1.12 1.21

MEM_1Str_seq L 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.10 1.01 1.15 1.02 1.17 1.10 1.01 1.02 1.06 1.08 1.24 1.36

MEM_2Str_seq L 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.02 1.01 1.03 1.00 1.00 1.08 1.02 1.25 1.03 1.31 1.07 1.01 1.01 1.06 1.09 1.28 1.43

MEM_3Str_seq L 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.01 1.02 1.01 1.05 1.01 1.06 1.14 1.03 1.37 1.05 1.44 1.13 1.01 1.03 1.11 1.19 1.41 1.54
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Table B.1: Total slowdown results for Sandy Bridge (sandman)
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Class C (N) C (N) C (N) C (N) C (N) C (N) C (N) C (N) C C C C C C C C C C C C C C C C LC LC LC LC LC LC LC LC L L L L

L2s_1Str_seq C (N) 1.00 1.05 1.09 1.10 1.10 1.09 1.04 1.19 1.24 1.00 1.09 1.13 1.15 1.15 1.14 1.15 1.15 1.06 1.11 1.14 1.10 1.10 1.09 1.21 1.11 1.09 1.34 1.74 1.46 1.58 1.10 1.20 1.16 1.05 1.11 1.17

L2s_1Str_rdm C (N) 1.00 1.00 1.03 1.05 1.04 1.04 1.01 1.14 1.16 1.00 1.00 1.16 1.09 1.09 1.02 1.15 1.08 1.00 1.05 1.09 1.04 1.05 1.03 1.10 1.04 1.03 1.27 1.63 1.41 1.45 1.05 1.14 1.10 1.00 1.05 1.12

L2s_2Str_seq C (N) 1.00 1.00 1.00 1.02 1.01 1.02 1.00 1.02 1.00 1.00 1.04 1.14 1.00 1.00 1.01 1.08 1.14 1.01 1.00 1.00 1.00 1.02 1.00 1.06 1.19 1.09 1.25 1.57 1.36 1.42 1.09 1.10 1.25 1.00 1.02 1.08

L2s_2Str_rdm C (N) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.06 1.00 1.00 1.06 1.11 1.00 1.02 1.00 1.00 1.00 1.00 1.00 1.07 1.47 1.23 1.28 1.55 1.35 1.41 1.11 1.09 1.45 1.00 1.00 1.06

L2s_max_seq C (N) 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.03 1.00 1.00 1.00 1.00 1.09 1.01 1.01 1.00 1.01 1.01 1.03 1.05 1.27 1.12 1.37 1.26 1.38 1.38 1.10 1.20 1.28 1.42 1.01 1.08

L2s_max_rdm C (N) 1.03 1.03 1.04 1.02 1.00 1.01 1.03 1.02 1.04 1.02 1.11 1.08 1.00 1.00 1.03 1.02 1.13 1.01 1.19 1.04 1.01 1.03 1.07 1.09 1.48 1.10 1.56 1.30 1.40 1.44 1.10 1.25 1.41 1.63 1.04 1.11

L2m_1Str_seq C (N) 1.02 1.04 1.06 1.08 1.07 1.07 1.02 1.13 1.28 1.00 1.16 1.12 1.09 1.06 1.12 1.16 1.13 1.08 1.11 1.14 1.10 1.08 1.13 1.17 1.18 1.21 1.45 1.92 1.64 1.72 1.09 1.19 1.15 1.05 1.11 1.17

L2m_2Str_seq C (N) 1.08 1.08 1.01 1.00 1.00 1.00 1.05 1.04 1.05 1.01 1.07 1.06 1.07 1.04 1.05 1.12 1.20 1.00 1.03 1.07 1.10 1.03 1.01 1.11 1.64 1.30 1.37 1.78 1.55 1.57 1.25 1.11 1.66 1.00 1.03 1.09

L2m_1Str_rdm C 1.06 1.04 1.00 1.00 1.00 1.00 1.12 1.00 1.00 1.00 1.00 1.04 1.00 1.00 1.00 1.05 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.04 1.07 1.29 1.65 1.40 1.49 1.00 1.04 1.00 1.00 1.00 1.02

L2m_2Str_rdm C 1.00 1.00 1.03 1.01 1.10 1.07 1.00 1.12 1.08 1.08 1.15 1.16 1.00 1.10 1.16 1.13 1.17 1.11 1.10 1.08 1.15 1.12 1.09 1.18 2.13 1.29 1.49 1.87 1.66 1.70 1.22 1.21 2.10 1.07 1.13 1.19

L2m_max_seq C 1.00 1.00 1.02 1.00 1.00 1.07 1.08 1.07 1.03 1.05 1.14 1.09 1.05 1.03 1.11 1.19 1.16 1.01 1.13 1.02 1.20 1.17 1.08 1.21 1.66 1.24 1.84 1.42 1.58 1.55 1.12 1.41 1.58 1.92 1.03 1.10

L2m_max_rdm C 1.00 1.06 1.07 1.01 1.00 1.00 1.00 1.01 1.05 1.01 1.04 1.02 1.03 1.00 1.04 1.02 1.06 1.00 1.11 1.04 1.02 1.00 1.03 1.03 1.74 1.21 2.20 1.45 1.40 1.53 1.16 1.37 1.82 2.13 1.00 1.05

L2l_1Str_seq C 1.03 1.03 1.00 1.00 1.00 1.00 1.01 1.07 1.01 1.00 1.04 1.07 1.06 1.01 1.07 1.14 1.10 1.06 1.15 1.10 1.14 1.10 1.15 1.23 1.13 1.25 1.34 1.93 1.47 1.71 1.01 1.11 1.06 1.00 1.02 1.08

L2l_1Str_rdm C 1.01 1.01 1.00 1.00 1.00 1.00 1.00 1.02 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.07 1.03 1.00 1.00 1.02 1.03 1.01 1.04 1.10 1.11 1.22 1.39 1.87 1.59 1.67 1.00 1.08 1.03 1.00 1.00 1.07

L2l_2Str_seq C 1.00 1.00 1.00 1.03 1.00 1.00 1.01 1.03 1.00 1.03 1.08 1.06 1.05 1.00 1.08 1.13 1.20 1.18 1.21 1.00 1.22 1.08 1.24 1.29 1.50 1.14 1.39 1.93 1.52 1.70 1.10 1.11 1.53 1.00 1.01 1.08

L2l_2Str_rdm C 1.00 1.02 1.00 1.03 1.00 1.00 1.00 1.04 1.03 1.00 1.11 1.00 1.06 1.02 1.07 1.03 1.14 1.00 1.11 1.02 1.00 1.00 1.00 1.11 1.70 1.20 1.26 1.89 1.43 1.62 1.13 1.04 1.64 1.00 1.00 1.01

L2l_max_seq C 1.00 1.00 1.08 1.00 1.04 1.05 1.01 1.16 1.03 1.02 1.11 1.07 1.07 1.03 1.19 1.18 1.31 1.15 1.18 1.11 1.32 1.11 1.39 1.46 1.37 1.17 1.54 1.28 1.51 1.71 1.09 1.15 1.49 1.61 1.02 1.08

L2l_max_rdm C 1.00 1.00 1.00 1.02 1.01 1.00 1.01 1.00 1.01 1.02 1.01 1.01 1.07 1.03 1.22 1.07 1.20 1.10 1.12 1.04 1.18 1.07 1.23 1.26 1.55 1.17 1.76 1.29 1.53 1.75 1.07 1.21 1.52 1.69 1.03 1.11

L3s_1Str_seq C 1.00 1.00 1.00 1.00 1.00 1.14 1.03 1.03 1.02 1.00 1.13 1.16 1.15 1.03 1.24 1.19 1.23 1.11 1.59 1.34 1.34 1.46 1.36 1.69 1.26 1.61 1.58 2.49 1.76 2.10 1.04 1.14 1.08 1.00 1.05 1.13

L3s_1Str_rdm C 1.00 1.00 1.00 1.00 1.00 1.00 1.02 1.03 1.01 1.00 1.00 1.05 1.07 1.02 1.00 1.06 1.12 1.00 1.30 1.17 1.04 1.04 1.01 1.10 1.31 1.57 1.51 2.48 1.64 1.75 1.00 1.11 1.07 1.00 1.04 1.10

L3s_2Str_seq C 1.00 1.00 1.00 1.00 1.01 1.00 1.03 1.11 1.01 1.05 1.21 1.07 1.16 1.08 1.26 1.07 1.39 1.19 1.36 1.08 1.89 1.51 1.67 2.02 1.22 1.04 1.58 2.58 1.77 2.12 1.03 1.17 1.24 1.03 1.07 1.16

L3s_2Str_rdm C 1.00 1.00 1.01 1.00 1.01 1.00 1.01 1.04 1.01 1.03 1.18 1.05 1.11 1.05 1.12 1.04 1.16 1.07 1.48 1.08 1.50 1.26 1.14 1.26 1.56 1.06 1.85 2.56 2.19 2.22 1.05 1.17 1.22 1.02 1.05 1.18

L3s_max_seq C 1.00 1.00 1.00 1.00 1.03 1.03 1.06 1.02 1.01 1.01 1.09 1.09 1.18 1.08 1.29 1.08 1.46 1.24 1.38 1.06 1.68 1.15 1.77 2.15 1.25 1.03 1.56 1.07 1.80 2.15 1.02 1.04 1.25 1.43 1.09 1.17

L3s_max_rdm C 1.05 1.00 1.00 1.02 1.00 1.00 1.04 1.07 1.02 1.03 1.16 1.03 1.19 1.09 1.27 1.14 1.45 1.20 1.62 1.09 1.92 1.20 2.04 1.78 1.33 1.06 1.74 1.17 1.69 1.99 1.05 1.10 1.31 1.52 1.01 1.11

L3l_1Str_seq LC 1.19 1.17 1.38 1.73 1.49 1.68 1.29 1.94 1.30 2.29 1.96 2.15 1.34 1.35 1.81 2.16 1.69 1.83 1.49 1.60 1.42 1.83 1.46 1.64 2.53 3.42 3.24 5.16 3.67 4.10 1.61 1.81 1.76 1.68 1.78 1.97

L3l_1Str_rdm LC 1.11 1.10 1.21 1.37 1.24 1.18 1.26 1.46 1.27 1.32 1.39 1.42 1.42 1.41 1.31 1.45 1.36 1.30 1.81 1.82 1.15 1.18 1.15 1.24 3.25 2.38 1.72 2.90 1.89 2.02 1.24 1.33 1.24 1.15 1.21 1.28

L3l_2Str_seq LC 1.13 1.12 1.14 1.18 1.25 1.39 1.24 1.27 1.26 1.25 1.70 2.13 1.25 1.32 1.31 1.26 1.48 1.62 1.46 1.45 1.45 1.70 1.43 1.68 2.54 1.42 2.91 4.66 3.28 3.65 1.40 1.58 2.55 1.47 1.57 1.74

L3l_2Str_rdm LC 1.21 1.19 1.19 1.19 1.00 1.00 1.36 1.36 1.34 1.30 1.09 1.16 1.49 1.47 1.51 1.55 1.02 1.00 1.91 1.96 1.96 1.94 1.00 1.00 3.35 1.97 3.86 2.63 1.77 1.87 1.92 1.00 3.34 1.00 1.00 1.00

L3l_max_seq LC 1.13 1.15 1.14 1.16 1.17 1.15 1.31 1.32 1.27 1.29 1.35 1.25 1.27 1.40 1.34 1.32 1.34 1.31 1.51 1.46 1.50 1.86 1.52 1.51 2.66 1.44 3.03 1.98 3.16 3.50 1.44 1.89 2.70 3.00 1.49 1.67

L3l_max_rdm LC 1.20 1.16 1.17 1.17 1.15 1.16 1.34 1.32 1.32 1.30 1.30 1.34 1.44 1.44 1.46 1.46 1.49 1.46 1.76 1.51 1.75 1.85 1.78 1.74 2.90 1.51 3.31 2.04 3.42 3.11 1.47 1.98 2.88 3.26 1.34 1.48

MEM_1Str_rdm LC 1.01 1.01 1.08 1.12 1.11 1.06 1.02 1.26 1.02 1.12 1.13 1.23 1.03 1.03 1.15 1.23 1.15 1.08 1.06 1.05 1.03 1.06 1.02 1.10 1.38 1.12 1.53 2.53 1.70 1.78 1.12 1.20 1.41 1.03 1.09 1.15

MEM_2Str_rdm LC 1.02 1.02 1.02 1.02 1.12 1.13 1.04 1.04 1.03 1.03 1.32 1.34 1.05 1.04 1.07 1.05 1.12 1.13 1.08 1.08 1.09 1.09 1.00 1.08 1.44 1.12 1.61 1.20 2.08 2.22 1.11 1.19 1.45 1.61 1.15 1.21

MEM_1Str_seq L 1.02 1.01 1.19 1.40 1.23 1.31 1.04 1.61 1.03 1.85 1.53 1.84 1.04 1.03 1.52 1.71 1.49 1.47 1.05 1.07 1.19 1.18 1.20 1.32 1.45 1.07 2.67 4.22 3.05 3.33 1.35 1.49 1.45 1.38 1.46 1.59

MEM_2Str_seq L 1.04 1.04 1.04 1.04 1.54 1.72 1.07 1.08 1.06 1.07 2.11 2.44 1.06 1.07 1.08 1.06 1.84 1.84 1.10 1.12 1.11 1.11 1.55 1.74 1.56 1.12 1.75 1.28 3.85 4.28 1.12 1.88 1.56 1.75 1.85 2.06

MEM_max_seq L 1.04 1.04 1.04 1.04 1.04 1.04 1.08 1.08 1.06 1.07 1.07 1.07 1.07 1.07 1.08 1.06 1.11 1.07 1.09 1.12 1.11 1.08 1.12 1.10 1.57 1.12 1.77 1.28 1.82 1.66 1.12 1.27 1.57 1.75 1.82 2.01

MEM_max_rdm L 1.02 1.03 1.02 1.03 1.03 1.03 1.05 1.05 1.04 1.05 1.06 1.06 1.05 1.07 1.07 1.05 1.09 1.06 1.09 1.10 1.11 1.13 1.12 1.12 1.61 1.10 1.82 1.26 1.89 1.70 1.10 1.25 1.59 1.81 1.86 1.68
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Table B.2: Total slowdown for Dunnington, non-shared L2
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Class C C C C C C C C C C C C C C C C C C C C C C C C LC LC LC LC LC LC LC LC L L L L

L2s_1Str_seq C 1.10 1.06 1.27 1.10 1.22 1.17 1.23 1.94 1.05 1.12 2.23 1.68 1.24 1.03 1.92 1.11 4.42 2.36 1.21 1.03 1.98 1.12 5.59 2.82 1.43 1.12 1.68 1.23 2.28 1.55 1.12 1.24 1.49 1.81 2.61 1.76

L2s_1Str_rdm C 1.27 1.26 1.09 1.17 1.32 1.44 2.72 3.57 1.46 1.90 3.54 2.80 4.50 1.09 5.87 2.26 6.84 5.14 5.07 1.10 6.64 1.67 8.35 7.23 1.60 1.19 2.18 1.38 3.11 3.02 1.14 1.36 1.63 2.00 2.23 2.24

L2s_2Str_seq C 1.15 1.04 1.27 1.14 1.36 1.24 1.20 1.40 1.03 1.10 2.48 1.79 1.22 1.04 1.41 1.07 4.49 1.55 1.23 1.03 1.48 1.09 4.05 1.45 1.41 1.11 1.63 1.22 2.20 1.59 1.10 1.21 1.46 1.74 2.48 1.67

L2s_2Str_rdm C 1.18 1.09 1.48 1.22 1.47 1.31 1.67 3.50 1.06 1.35 3.16 3.02 1.26 1.07 5.65 1.14 7.63 5.96 1.25 1.03 2.14 1.13 9.13 7.06 1.40 1.15 1.64 1.30 1.91 1.72 1.12 1.25 1.43 1.71 1.94 1.68

L2s_max_seq C 1.28 1.21 1.33 1.32 1.67 1.36 1.22 1.42 1.16 1.29 2.01 1.80 1.27 1.12 1.36 1.24 1.86 1.56 1.28 1.12 1.40 1.18 1.67 1.39 1.40 1.19 1.56 1.33 2.04 1.77 1.16 1.28 1.43 1.67 2.38 1.74

L2s_max_rdm C 1.13 1.11 1.24 1.18 1.40 1.34 1.13 1.24 1.06 1.11 1.47 1.44 1.17 1.06 1.26 1.08 1.46 1.27 1.12 1.05 1.30 1.07 1.46 1.17 1.37 1.14 1.52 1.26 1.64 1.61 1.13 1.27 1.34 1.64 1.84 1.56

L2m_1Str_seq C 1.37 1.31 1.47 1.36 1.61 1.59 2.17 2.32 1.32 1.49 2.64 2.33 2.24 1.28 3.39 1.52 4.92 3.76 2.17 1.26 3.59 1.51 5.54 3.85 1.80 1.23 2.48 1.42 4.48 2.91 1.21 1.35 1.75 2.45 5.09 2.76

L2m_2Str_seq C 1.91 1.32 1.64 1.54 2.00 1.95 2.07 3.55 1.25 1.51 4.02 3.72 2.06 1.21 3.73 1.49 6.51 5.20 2.23 1.24 3.78 1.47 6.97 4.96 1.73 1.22 2.34 1.35 4.50 2.55 1.15 1.28 1.80 2.43 4.65 2.52

L2m_1Str_rdm C 1.83 1.78 1.91 1.75 1.80 1.73 2.97 3.12 2.43 2.75 3.28 2.94 3.73 2.47 4.70 3.05 5.24 4.31 4.43 2.48 5.23 3.11 5.93 5.10 3.63 1.92 4.07 2.69 6.57 4.37 1.36 2.04 3.23 3.68 4.34 3.92

L2m_2Str_rdm C 1.88 1.80 1.84 1.86 1.97 1.79 3.31 3.66 2.08 2.69 3.73 3.43 4.45 2.06 5.04 2.81 5.99 4.96 4.93 2.03 5.13 2.87 6.67 5.60 2.82 1.67 3.45 2.07 4.59 3.99 1.29 1.71 2.22 2.90 3.40 3.07

L2m_max_seq C 1.91 1.50 2.32 1.70 2.16 2.30 1.78 2.71 1.31 1.57 5.50 5.72 1.75 1.29 2.92 1.67 5.96 6.85 1.63 1.26 2.76 1.51 5.58 6.15 1.59 1.18 2.03 1.44 3.59 2.19 1.20 1.38 1.57 2.34 3.83 2.26

L2m_max_rdm C 1.50 1.23 1.73 1.42 1.66 1.68 1.67 2.47 1.12 1.35 3.42 3.97 1.62 1.13 2.54 1.39 3.37 3.71 1.59 1.06 2.51 1.32 3.22 3.47 1.40 1.19 1.63 1.27 1.94 1.72 1.15 1.25 1.42 1.73 1.85 1.59

L2l_1Str_seq C 1.19 1.20 1.30 1.36 1.61 1.53 1.85 2.03 1.23 1.38 2.25 1.98 2.00 1.23 2.75 1.39 3.99 3.08 1.98 1.22 2.97 1.39 4.71 3.14 1.75 1.16 2.40 1.27 4.05 2.70 1.14 1.24 1.85 2.53 4.50 2.64

L2l_1Str_rdm C 1.55 1.53 1.53 1.48 1.57 1.49 2.11 2.20 1.79 1.96 2.27 2.09 2.57 1.85 2.96 2.14 3.28 2.77 3.09 1.85 3.31 2.17 3.67 3.08 2.49 1.62 8.34 1.94 9.37 8.51 1.47 1.71 2.35 3.16 11.16 2.70

L2l_2Str_seq C 1.62 1.33 1.47 1.64 1.63 1.63 2.16 2.70 1.27 1.69 3.07 2.87 2.18 1.29 3.01 1.68 4.64 3.85 2.18 1.26 2.96 1.65 4.72 3.62 1.74 1.16 2.27 1.35 3.79 2.62 1.16 1.33 1.79 2.49 4.38 2.63

L2l_2Str_rdm C 1.54 1.51 1.55 1.51 1.59 1.52 2.25 2.37 1.63 1.92 2.47 2.25 2.71 1.64 3.04 1.98 3.53 2.96 2.98 1.61 3.01 1.97 3.82 3.24 2.26 1.46 2.53 1.78 2.84 2.60 1.34 1.56 2.19 2.44 2.63 2.45

L2l_max_seq C 1.86 1.37 2.04 1.74 1.67 1.66 1.83 2.53 1.36 1.67 3.51 3.63 1.86 1.32 2.51 1.60 3.93 4.39 1.86 1.32 2.51 1.67 3.80 4.19 1.54 1.17 1.90 1.30 2.79 2.68 1.16 1.30 1.44 1.89 3.02 2.55

L2l_max_rdm C 1.69 1.30 1.57 1.53 1.54 1.46 1.98 2.59 1.30 1.58 2.82 3.05 2.03 1.28 2.57 1.56 2.85 3.28 1.99 1.29 2.47 1.56 2.74 3.14 1.43 1.17 1.78 1.33 1.93 2.13 1.18 1.27 1.46 1.74 1.79 2.02

L3s_1Str_seq C 1.04 1.11 1.13 1.29 1.39 1.45 1.57 1.80 1.09 1.19 1.84 1.65 1.69 1.13 2.24 1.22 3.36 2.50 2.40 1.13 2.86 1.24 4.37 2.95 1.68 1.06 2.75 1.19 10.61 8.41 1.06 1.20 1.74 2.46 12.11 6.73

L3s_1Str_rdm C 1.13 1.13 1.15 1.13 1.16 1.12 1.35 1.37 1.24 1.28 1.39 1.28 1.55 1.29 1.74 1.32 1.92 1.60 1.94 1.44 2.12 1.57 2.37 2.09 5.26 1.27 5.89 2.36 6.07 5.70 1.18 1.56 6.21 6.56 6.93 6.48

L3s_2Str_seq C 1.18 1.15 1.09 1.15 1.18 1.16 1.43 1.75 1.14 1.28 1.96 1.92 1.49 1.14 1.88 1.28 2.87 2.50 1.50 1.12 2.64 1.30 3.46 2.66 1.36 1.11 1.69 1.22 9.40 2.21 1.09 1.24 1.38 1.87 9.18 2.16

L3s_2Str_rdm C 1.14 1.14 1.15 1.12 1.16 1.12 1.40 1.47 1.17 1.27 1.48 1.39 1.60 1.17 1.76 1.34 2.08 1.68 2.02 1.21 2.12 1.62 2.35 2.16 5.51 1.14 6.12 1.37 6.66 6.10 1.11 1.26 5.49 6.33 7.12 6.39

L3s_max_seq C 1.23 1.10 1.22 1.21 1.03 1.06 1.25 1.41 1.10 1.20 1.85 1.94 1.23 1.10 1.50 1.20 2.01 2.33 1.21 1.08 1.37 1.23 2.40 2.45 1.13 1.04 1.25 1.09 1.87 1.71 1.05 1.09 1.12 1.25 2.01 1.78

L3s_max_rdm C 1.22 1.08 1.13 1.19 1.11 1.07 1.36 1.55 1.08 1.27 1.74 1.79 1.36 1.08 1.60 1.19 1.71 1.92 1.33 1.08 1.57 1.19 1.92 2.09 1.18 1.04 1.31 1.07 1.35 1.59 1.04 1.07 1.23 1.36 1.32 1.54

L3l_1Str_seq LC 1.20 1.26 1.21 1.37 1.36 1.55 1.37 1.47 1.25 1.33 1.71 1.57 1.61 1.35 1.89 1.40 2.46 2.04 1.94 1.53 2.43 1.72 3.12 2.58 2.85 1.55 3.69 1.83 5.10 4.09 1.54 1.82 2.77 3.68 5.84 4.01

L3l_1Str_rdm LC 1.17 1.14 1.19 1.13 1.21 1.19 1.31 1.47 1.30 1.33 1.40 1.39 1.59 1.42 1.83 1.43 1.96 1.68 2.09 1.89 2.26 1.87 2.36 2.23 3.37 2.43 3.66 2.94 3.77 3.47 2.36 2.82 3.66 3.79 3.91 3.66

L3l_2Str_seq LC 1.22 1.24 1.28 1.39 1.46 1.45 1.41 1.46 1.31 1.37 1.65 1.59 1.52 1.49 1.68 1.42 2.03 1.90 1.90 1.49 1.88 1.91 2.46 2.20 2.30 1.50 3.00 1.90 4.63 3.79 1.49 1.87 2.27 2.95 4.74 3.59

L3l_2Str_rdm LC 1.20 1.17 1.19 1.17 1.24 1.18 1.45 1.43 1.36 1.41 1.59 1.44 1.72 1.52 1.84 1.53 2.01 1.82 2.15 2.01 2.20 2.05 2.30 2.19 3.55 2.02 3.73 2.73 3.99 3.65 1.97 2.68 3.62 3.73 4.07 3.69

L3l_max_seq LC 1.08 1.11 1.19 1.20 1.18 1.26 1.11 1.12 1.23 1.17 1.31 1.38 1.22 1.21 1.24 1.25 1.51 1.76 1.69 1.29 2.04 1.52 1.76 2.10 1.64 1.25 2.16 1.47 3.24 3.68 1.17 1.44 1.62 2.14 3.14 3.27

L3l_max_rdm LC 1.18 1.20 1.18 1.22 1.23 1.22 1.37 1.38 1.33 1.31 1.45 1.43 1.45 1.43 1.45 1.43 1.49 1.52 2.11 1.38 1.76 1.78 1.69 1.76 2.15 1.42 2.51 1.79 2.68 3.13 1.44 1.78 2.13 2.51 2.67 2.93

MEM_1Str_rdm LC 1.02 1.02 1.03 1.02 1.03 1.02 1.06 1.07 1.04 1.05 1.08 1.07 1.12 1.05 1.18 1.08 1.22 1.15 1.18 1.07 1.23 1.10 1.26 1.22 1.31 1.10 1.38 1.19 1.46 1.35 1.11 1.20 1.35 1.39 1.48 1.37

MEM_2Str_rdm LC 1.02 1.02 1.03 1.02 1.03 1.03 1.05 1.06 1.03 1.05 1.08 1.07 1.09 1.04 1.12 1.06 1.14 1.13 1.10 1.06 1.13 1.08 1.18 1.13 1.28 1.10 1.30 1.15 1.39 1.27 1.10 1.16 1.29 1.31 1.41 1.29

MEM_1Str_seq L 1.05 1.13 1.07 1.23 1.19 1.34 1.14 1.22 1.08 1.18 1.35 1.33 1.30 1.07 1.56 1.17 1.88 1.64 1.35 1.06 1.77 1.13 2.22 1.85 1.63 1.06 2.18 1.13 3.03 2.40 1.06 1.14 1.63 2.18 3.48 2.34

MEM_2Str_seq L 1.13 1.15 1.15 1.18 1.21 1.23 1.22 1.25 1.18 1.21 1.33 1.31 1.26 1.20 1.32 1.22 1.56 1.56 1.29 1.21 1.35 1.29 1.87 1.67 1.40 1.21 1.79 1.30 2.76 2.33 1.21 1.30 1.40 1.79 2.91 2.16

MEM_max_seq L 1.03 1.04 1.03 1.07 1.04 1.11 1.01 1.03 1.01 1.05 1.07 1.16 1.02 1.05 1.04 1.04 1.22 1.46 1.15 1.05 1.27 1.13 1.28 1.64 1.15 1.05 1.31 1.13 1.84 2.15 1.05 1.13 1.15 1.31 1.85 1.93

MEM_max_rdm L 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.01 1.02 1.00 1.00 1.00 1.00 1.04 1.07 1.10 1.02 1.02 1.05 1.05 1.07 1.13 1.02 1.23 1.06 1.35 1.50 1.02 1.05 1.13 1.24 1.34 1.44
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Table B.3: Total slowdown for Dunnington, shared L2
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Class C(N) C(N) C(N) C(N) C(N) C(N) C(N) C(N) C C C C C C C C C C C C C C C C LC LC LC LC LC LC LC LC L L L L

L2s_1Str_seq C(N) 1.10 1.01 1.17 0.99 1.11 1.07 1.18 1.63 0.85 1.12 2.05 1.49 1.08 0.90 1.69 0.96 3.84 2.23 1.09 0.90 1.80 1.02 5.13 2.34 1.29 1.03 1.25 0.70 1.56 0.98 1.02 1.03 1.28 1.72 2.36 1.50

L2s_1Str_rdm C(N) 1.27 1.26 1.05 1.11 1.28 1.39 2.68 3.13 1.26 1.90 3.54 2.41 4.14 1.00 5.78 1.96 6.33 5.14 4.81 1.01 6.38 1.60 8.12 6.58 1.53 1.16 1.72 0.85 2.20 2.08 1.09 1.19 1.48 2.00 2.13 2.01

L2s_2Str_seq C(N) 1.15 1.04 1.26 1.12 1.34 1.22 1.20 1.37 1.03 1.10 2.39 1.58 1.22 1.04 1.39 1.00 3.94 1.53 1.23 1.03 1.48 1.07 4.04 1.36 1.18 1.02 1.30 0.78 1.62 1.12 1.01 1.09 1.17 1.74 2.44 1.55

L2s_2Str_rdm C(N) 1.18 1.08 1.48 1.22 1.47 1.31 1.66 3.49 1.06 1.35 3.16 2.84 1.26 1.07 5.31 1.03 7.63 5.87 1.25 1.03 2.14 1.13 9.13 6.60 0.96 0.94 1.28 0.84 1.41 1.22 1.01 1.15 0.98 1.71 1.94 1.58

L2s_max_seq C(N) 1.28 1.21 1.33 1.32 1.67 1.36 1.22 1.42 1.15 1.28 2.00 1.75 1.27 1.12 1.36 1.24 1.71 1.54 1.27 1.12 1.40 1.18 1.62 1.32 1.11 1.06 1.15 1.05 1.48 1.28 1.05 1.06 1.12 1.18 2.36 1.62

L2s_max_rdm C(N) 1.10 1.08 1.19 1.16 1.40 1.32 1.09 1.21 1.02 1.10 1.32 1.33 1.17 1.06 1.22 1.05 1.29 1.26 0.94 1.01 1.29 1.04 1.37 1.07 0.92 1.04 0.97 0.97 1.17 1.12 1.03 1.01 0.95 1.01 1.77 1.41

L2m_1Str_seq C(N) 1.35 1.26 1.38 1.26 1.50 1.48 2.12 2.05 1.04 1.49 2.28 2.08 2.05 1.21 3.02 1.31 4.34 3.47 1.95 1.11 3.27 1.40 4.90 3.28 1.52 1.02 1.71 0.74 2.73 1.69 1.11 1.13 1.52 2.32 4.57 2.35

L2m_2Str_seq C(N) 1.77 1.22 1.63 1.54 2.00 1.95 1.97 3.43 1.18 1.49 3.76 3.51 1.92 1.16 3.54 1.33 5.40 5.20 2.16 1.16 3.44 1.42 6.93 4.46 1.06 0.94 1.70 0.76 2.91 1.62 0.92 1.16 1.09 2.43 4.50 2.32

L2m_1Str_rdm C 1.73 1.71 1.91 1.75 1.80 1.73 2.66 3.12 2.43 2.75 3.28 2.83 3.73 2.47 4.70 2.91 5.21 4.31 4.43 2.48 5.23 3.11 5.93 5.10 3.50 1.80 3.16 1.63 4.70 2.94 1.36 1.96 3.23 3.68 4.34 3.85

L2m_2Str_rdm C 1.88 1.80 1.79 1.85 1.80 1.67 3.31 3.28 1.92 2.50 3.24 2.96 4.45 1.88 4.35 2.49 5.14 4.45 4.48 1.87 4.46 2.56 6.09 4.73 1.32 1.29 2.31 1.10 2.76 2.34 1.06 1.41 1.06 2.71 3.02 2.57

L2m_max_seq C 1.91 1.50 2.27 1.70 2.16 2.16 1.65 2.53 1.27 1.50 4.84 5.24 1.66 1.25 2.63 1.40 5.16 6.77 1.44 1.23 2.30 1.29 5.16 5.06 0.95 0.95 1.10 1.02 2.28 1.41 1.07 0.98 0.99 1.22 3.71 2.06

L2m_max_rdm C 1.50 1.16 1.62 1.40 1.66 1.68 1.67 2.44 1.06 1.34 3.28 3.90 1.58 1.13 2.43 1.36 3.19 3.71 1.43 1.03 2.47 1.32 3.14 3.37 0.81 0.98 0.74 0.87 1.38 1.12 0.99 0.91 0.78 0.81 1.85 1.52

L2l_1Str_seq C 1.16 1.17 1.30 1.36 1.61 1.53 1.84 1.90 1.22 1.38 2.16 1.86 1.89 1.21 2.58 1.22 3.63 2.91 1.72 1.11 2.60 1.27 4.08 2.56 1.56 0.93 1.79 0.66 2.75 1.58 1.13 1.12 1.74 2.53 4.43 2.45

L2l_1Str_rdm C 1.53 1.52 1.53 1.48 1.57 1.49 2.11 2.17 1.79 1.96 2.27 2.09 2.57 1.85 2.96 2.00 3.17 2.77 3.09 1.81 3.20 2.14 3.54 2.80 2.25 1.32 6.00 1.04 5.88 5.09 1.47 1.58 2.28 3.16 11.16 2.52

L2l_2Str_seq C 1.61 1.33 1.47 1.59 1.63 1.63 2.13 2.63 1.27 1.65 2.85 2.69 2.08 1.29 2.79 1.50 3.86 3.26 1.80 1.26 2.43 1.53 3.80 2.80 1.16 1.02 1.64 0.70 2.49 1.54 1.05 1.20 1.17 2.49 4.32 2.44

L2l_2Str_rdm C 1.54 1.48 1.55 1.47 1.59 1.52 2.24 2.29 1.58 1.92 2.23 2.25 2.54 1.60 2.83 1.92 3.09 2.96 2.68 1.57 3.01 1.97 3.82 2.92 1.33 1.21 2.00 0.94 1.98 1.61 1.18 1.50 1.34 2.44 2.63 2.42

L2l_max_seq C 1.85 1.37 1.88 1.74 1.60 1.58 1.80 2.18 1.32 1.64 3.16 3.41 1.75 1.29 2.11 1.35 3.00 3.81 1.57 1.19 1.90 1.51 2.73 2.87 1.12 1.00 1.23 1.02 1.85 1.57 1.06 1.13 0.97 1.17 2.95 2.35

L2l_max_rdm C 1.69 1.30 1.57 1.50 1.53 1.46 1.96 2.59 1.28 1.55 2.79 3.01 1.91 1.25 2.11 1.46 2.37 2.99 1.77 1.25 2.09 1.46 2.22 2.49 0.92 1.01 1.02 1.03 1.26 1.22 1.11 1.05 0.96 1.03 1.74 1.83

L3s_1Str_seq C 1.04 1.11 1.13 1.29 1.39 1.27 1.53 1.75 1.07 1.19 1.63 1.43 1.47 1.11 1.81 1.02 2.74 2.24 1.51 0.84 2.13 0.85 3.21 1.75 1.33 0.66 1.75 0.48 6.05 4.01 1.02 1.05 1.62 2.46 11.56 5.96

L3s_1Str_rdm C 1.13 1.13 1.15 1.13 1.16 1.12 1.32 1.33 1.23 1.28 1.39 1.22 1.45 1.27 1.74 1.24 1.72 1.60 1.49 1.23 2.05 1.51 2.34 1.90 4.03 0.81 3.89 0.95 3.69 3.26 1.18 1.41 5.82 6.56 6.67 5.88

L3s_2Str_seq C 1.17 1.14 1.09 1.15 1.17 1.16 1.38 1.58 1.12 1.22 1.63 1.79 1.29 1.06 1.49 1.20 2.07 2.10 1.11 1.03 1.40 0.86 2.07 1.31 1.12 1.07 1.07 0.47 5.30 1.04 1.06 1.05 1.11 1.82 8.56 1.86

L3s_2Str_rdm C 1.14 1.13 1.14 1.12 1.15 1.12 1.38 1.41 1.15 1.23 1.25 1.32 1.44 1.12 1.58 1.28 1.80 1.56 1.37 1.12 1.41 1.29 2.06 1.71 3.54 1.08 3.31 0.53 3.04 2.74 1.05 1.08 4.49 6.20 6.79 5.42

L3s_max_seq C 1.23 1.10 1.22 1.21 1.00 1.03 1.18 1.39 1.08 1.20 1.70 1.79 1.05 1.02 1.17 1.10 1.38 1.88 0.87 1.02 0.82 1.08 1.35 1.14 0.90 1.01 0.80 1.01 1.04 0.79 1.03 1.05 0.89 0.87 1.84 1.52

L3s_max_rdm C 1.16 1.08 1.12 1.16 1.11 1.07 1.30 1.45 1.06 1.24 1.50 1.73 1.14 1.00 1.26 1.04 1.18 1.60 0.82 0.99 0.82 1.00 0.94 1.17 0.88 0.99 0.75 0.92 0.80 0.80 1.00 0.98 0.94 0.89 1.30 1.38

L3l_1Str_seq LC 1.01 1.07 0.88 0.79 0.92 0.92 1.06 0.76 0.97 0.58 0.87 0.73 1.21 1.00 1.04 0.65 1.46 1.11 1.30 0.96 1.71 0.94 2.13 1.57 1.13 0.45 1.14 0.35 1.39 1.00 0.96 1.00 1.57 2.19 3.28 2.03

L3l_1Str_rdm LC 1.05 1.04 0.98 0.83 0.97 1.01 1.04 1.00 1.02 1.01 1.01 0.98 1.12 1.00 1.40 0.99 1.44 1.29 1.16 1.03 1.96 1.59 2.05 1.80 1.04 1.02 2.12 1.02 1.99 1.71 1.90 2.11 2.95 3.29 3.24 2.86

L3l_2Str_seq LC 1.08 1.11 1.12 1.18 1.16 1.04 1.13 1.15 1.04 1.09 0.97 0.75 1.22 1.13 1.28 1.13 1.37 1.17 1.30 1.03 1.30 1.12 1.72 1.31 0.90 1.06 1.03 0.41 1.41 1.04 1.07 1.18 0.89 2.00 3.02 2.06

L3l_2Str_rdm LC 0.99 0.99 1.00 0.99 1.24 1.18 1.07 1.05 1.01 1.08 1.47 1.24 1.15 1.03 1.22 0.98 1.98 1.82 1.13 1.02 1.12 1.06 2.30 2.19 1.06 1.02 0.97 1.04 2.26 1.95 1.03 2.68 1.09 3.73 4.07 3.69

L3l_max_seq LC 0.95 0.96 1.04 1.04 1.01 1.09 0.85 0.85 0.97 0.90 0.97 1.10 0.96 0.86 0.93 0.94 1.13 1.34 1.12 0.88 1.36 0.82 1.16 1.40 0.61 0.87 0.71 0.74 1.02 1.05 0.81 0.76 0.60 0.71 2.10 1.95

L3l_max_rdm LC 0.99 1.03 1.01 1.04 1.07 1.06 1.02 1.05 1.00 1.01 1.11 1.07 1.00 1.00 0.99 0.98 1.00 1.04 1.20 0.91 1.01 0.96 0.95 1.01 0.74 0.94 0.76 0.88 0.78 1.01 0.97 0.90 0.74 0.77 2.00 1.98

MEM_1Str_rdm LC 1.01 1.01 0.95 0.91 0.94 0.96 1.04 0.84 1.01 0.94 0.95 0.87 1.09 1.02 1.03 0.87 1.06 1.07 1.12 1.02 1.19 1.04 1.24 1.10 0.95 0.99 0.90 0.47 0.86 0.76 0.99 1.00 0.96 1.34 1.36 1.19

MEM_2Str_rdm LC 1.00 1.00 1.01 1.00 0.92 0.91 1.01 1.02 1.00 1.02 0.81 0.79 1.03 0.99 1.05 1.01 1.02 1.00 1.03 0.98 1.04 0.99 1.18 1.05 0.89 0.99 0.81 0.96 0.67 0.57 0.99 0.97 0.89 0.82 1.23 1.07

MEM_1Str_seq L 1.03 1.11 0.90 0.87 0.97 1.02 1.10 0.76 1.05 0.64 0.88 0.72 1.25 1.04 1.03 0.68 1.26 1.11 1.29 0.99 1.49 0.96 1.86 1.40 1.12 0.99 0.82 0.27 0.99 0.72 0.79 0.76 1.12 1.58 2.37 1.47

MEM_2Str_seq L 1.08 1.11 1.10 1.14 0.78 0.72 1.13 1.16 1.11 1.14 0.63 0.54 1.18 1.12 1.22 1.16 0.85 0.85 1.17 1.07 1.21 1.16 1.20 0.96 0.90 1.07 1.02 1.02 0.72 0.54 1.08 0.69 0.90 1.02 1.57 1.05

MEM_max_seq L 0.98 1.00 0.99 1.03 1.00 1.07 0.94 0.96 0.95 0.99 1.00 1.08 0.95 0.98 0.96 0.99 1.10 1.36 1.05 0.94 1.15 1.04 1.14 1.49 0.73 0.94 0.74 0.88 1.02 1.29 0.94 0.89 0.73 0.75 1.01 0.96

MEM_max_rdm L 0.98 0.97 0.98 0.97 0.98 0.97 0.95 0.95 0.96 0.95 0.96 0.96 0.95 0.94 0.93 0.95 0.95 1.01 1.00 0.92 0.92 0.93 0.94 0.95 0.70 0.93 0.68 0.84 0.71 0.88 0.93 0.85 0.71 0.68 0.72 0.86
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Table B.4: Total relative slowdown for Dunnington, ratio of tables B.3/B.2 
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