

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

Μελέτη επιπτώσεων συνδρομολόγησης εφαρμογών σε

πολυπύρηνες αρχιτεκτονικές

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

του

 ΟΡΕΣΤΗ Ρ. ΚΟΡΑΚΙΤΗ

Επιβλέπων : Νεκτάριος Κοζύρης

Καθηγητής Ε.Μ.Π.

Αθήνα, Σεπτέμβριος 2014

Page intentionally left blank.

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ

ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

Μελέτη επιπτώσεων συνδρομολόγησης εφαρμογών σε

πολυπύρηνες αρχιτεκτονικές

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

του

ΟΡΕΣΤΗ Ρ. ΚΟΡΑΚΙΤΗ

Επιβλέπων : Νεκτάριος Κοζύρης

Καθηγητής Ε.Μ.Π.

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την 26
η
 Σεπτεμβρίου 2014.

(Υπογραφή) (Υπογραφή) (Υπογραφή)
...................................
Νεκτάριος Κοζύρης Γεώργιος Γκούμας Νικόλαος Παπασπύρου

Καθηγητής Ε.Μ.Π. Λέκτορας Ε.Μ.Π. Αν. Καθηγητής Ε.Μ.Π.

Αθήνα, Σεπτέμβριος 2014

 (Υπογραφή)

...................................

ΟΡΕΣΤΗΣ ΚΟΡΑΚΙΤΗΣ

Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

Copyright © Ορέστης Ρ. Κορακίτης, 2014

Με επιφύλαξη παντός δικαιώματος. All rights reserved

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου

ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή

για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να

αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που

αφορούν τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον

συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον

συγγραφέα και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του

Εθνικού Μετσόβιου Πολυτεχνείου.

i

Περίληψη

Οι σύγχρονες αρχιτεκτονικές επεξεργαστών βασίζονται στην παρουσία πολλών

υπολογιστικών πυρήνων πάνω στο ίδιο τσιπ, οι οποίοι μοιράζονται τη χρήση

υποσυστημάτων της ιεραρχίας της μνήμης, όπως το τελευταίο επίπεδο της cache και το

memory bus. Το γεγονός αυτό έχει ως αποτέλεσμα η παράλληλη εκτέλεση προγραμμάτων

που κάνουν έντονη χρήση των υποσυστημάτων αυτών, σε γειτονικούς πυρήνες, να

επηρεάζεται και να σημειώνεται πτώση της απόδοσης των εφαρμογών.

Ο σκοπός αυτής της διπλωματικής εργασίας ήταν η μελέτη των φαινομένων

ανταγωνισμού μεταξύ των εφαρμογών για τους διαμοιραζόμενους αυτούς πόρους, που

μπορεί να προκύψουν κατά τη συνεκτέλεση προγραμμάτων, και την επίδραση που έχουν

στην απόδοση των εφαρμογών. Για να δημιουργηθεί ένα σύνολο εφαρμογών με ποικίλη

συμπεριφορά και απαιτήσεις από τα υποσυστήματα της μνήμης, ώστε να προσομοιωθούν

προγράμματα που κάνουν διαφορετική χρήση τους, αναπτύχθηκε μία εφαρμογή μέτρησης

επιδόσεων μνήμης (benchmark). Το πρόγραμμα αυτό μπορεί να μετρήσει το ρυθμό

μεταφοράς δεδομένων (bandwidth) στα διάφορα επίπεδα ιεραρχίας της μνήμης. Στη συνέχεια

έγιναν πειράματα συνεκτέλεσης στιγμιοτύπων του benchmark, με διαφορετική συμπεριφορά

και εκμεταλλευόμενων διαφορετικά υποσυστήματα. Τα πειράματα έγιναν σε δύο

αρχιτεκτονικές, ώστε να μελετηθεί πώς οι ιδιαιτερότητες στη σχεδίαση και την ιεραρχία της

μνήμης μπορούν να επηρεάσουν περεταίρω. Σε όλα τα πειράματα μετρήθηκαν οι επιδόσεις

των εφαρμογών, ώστε να υπολογιστεί κατά πόσο μεταβάλλεται ο χρόνος εκτέλεσής τους

κατά τη συνεκτέλεση, αλλά και η γενικότερη συμπεριφορά τους.

Τα αποτελέσματα μπορούν να χρησιμοποιηθούν για τον έλεγχο και την επιβεβαίωση

εκτιμήσεων της συμφόρησης στα υποσυστήματα μνήμης, που υπολογίζονται από

προτεινόμενα μοντέλα πρόβλεψης και αποφυγής τέτοιων φαινομένων, ώστε να γίνει πιο

αποδοτική η δρομολόγηση (scheduling) των εφαρμογών σε πολυπύρηνα συστήματα. Τέλος,

το μετρητικό πρόγραμμα που υλοποιήθηκε, μπορεί να χρησιμοποιηθεί ως εναλλακτική λύση

τόσο για μετρήσεις επιδόσεων μνήμης, όσο και για την προσομοίωση προγραμμάτων που

κάνουν έντονη χρήση των υποσυστημάτων μνήμης για πειράματα συνεκτέλεσης.

Λέξεις Κλειδιά: Πολυπύρηνες αρχιτεκτονικές, συνδρομολόγηση, συμφόρηση, ανταγωνισμός στους

μοιραζόμενους πόρους, memory benchmark

ii

Page intentionally left blank.

iii

Abstract

Modern processor architectures have moved towards utilizing multiple cores on the

same physical package, which share resources of the memory hierarchy, e.g. last-level cache,

memory bus bandwidth. As a result, concurrent execution of programs that make significant

use of shared memory subsystems, on cores of the same package, leads to performance

degradation phenomena for co-executed applications.

The objective of this thesis was to study contention effects in shared memory resources,

as a result of co-execution, and its impact on applications’ performance. A memory

benchmark program was developed, which can measure bandwidth in all levels of the

memory hierarchy. This benchmark was used to create a set of instances with different

behavior and memory usage intensity, in order to emulate a variety of memory-bound

applications that utilize different memory hierarchy subsystems. Co-scheduling scenarios

with all combinations of the aforementioned suite were tested on two architectures, with

different characteristics. This also enabled us to observe how specific architecture features

and design differences may further affect applications’ interference. Performance metrics

were used for all experiments in order to detect impact on execution time, as well as

alterations on their general behavior.

Results of the experiments can be used to validate contention estimations based on

application classification models of literature-suggested contention-aware co-scheduling

approaches. Additionally, the proposed benchmark program can be further used and

expanded as an alternative choice for both memory performance evaluation and emulation of

various memory-intensive workloads for experiments.

Keywords: Multicore architectures, CMPs, co-scheduling, contention-aware scheduling, application

classification, memory benchmark

iv

Page intentionally left blank.

v

Ευχαριστίες

Θα ήθελα να ευχαριστήσω όλο το προσωπικό του εργαστηρίου Υπολογιστικών συστημάτων

και τον επιβλέποντα καθηγητή μου, κ. Ν. Κοζύρη, για την ευκαιρία να δουλέψω στο CSLab,

τους Δρ. Γ. Γκούμα και Δρ. Κ. Νίκα για τις χρήσιμες συμβουλές τους. Ειδικότερα, θα ήθελα

να εκφράσω τις ευχαριστίες μου στον Δρ. Νίκο Αναστόπουλο, που με καθοδήγησε από την

αρχή στην εκπόνηση της παρούσας εργασίας και στον Αλέξανδρο Χαριτάτο, χωρίς τη διαρκή

βοήθεια και υποστήριξη του οποίου δε θα μπορούσα να προχωρήσω. Τέλος θα ήθελα να

ευχαριστήσω την οικογένειά μου και τους φίλους, οι οποίοι με την υποστήριξή τους

συνέβαλαν στην περάτωση της εργασίας.

vi

Page intentionally left blank.

Table of contents

1 Introduction .. 1

1.1 Mulitcore architectures concepts .. 1

1.2 Operating system - Scheduling ... 2

1.3 Problem definition .. 3

1.3.1 Contribution.. 4

1.4 Chapter description ... 5

2 Motivation and current approaches .. 7

2.1 The scheduling problem on CMP ... 7

2.2 Related work ... 9

2.3 LCA: A memory Link and Cache-Aware approach ... 10

3 Hardware and software systems used ... 15

3.1 System characteristics ... 15

3.1.1 Intel
®

 Sandy Bridge .. 15

3.1.2 Intel
®

 Dunnington ... 19

3.2 Co-scheduling environment .. 22

3.2.1 Scaff .. 22

3.2.2 System tools and mechanisms used ... 23

3.3 Benchmark program ... 24

3.3.1 Design ... 24

3.3.2 Results and evaluation .. 32

 3.3.2.1 Intel
®

 Sandy Bridge architecture .. 33

 3.3.2.2 Intel
®

 Dunnington architecture... 40

3.3.3 Class evaluation with performance counters .. 45

4 Co-scheduling experimental evaluation .. 51

4.1 Co-scheduling on Intel Sandy Bridge ... 51

4.1.1 Workload profile ... 51

4.1.2 Experimental procedure ... 55

4.1.3 Preliminary evaluation ... 56

4.1.4 Results estimation ... 57

4.1.5 Results ... 59

 N-N... 59

 N-All... 61

 C-C... 61

 C-LC .. 62

 C-L ... 63

 LC-LC .. 63

 LC-L ... 64

 L-L ... 65

 Overview .. 66

4.2 Co-scheduling on Intel Dunnington .. 67

4.2.1 Workload profile ... 67

4.2.2 Preliminary evaluation and experimental procedure ... 69

4.2.3 Results estimation ... 70

4.2.4 Results ... 71

 4.2.4.1 Co-scheduling with no L2 sharing ... 71

 C(N) ... 71

 C-C... 72

 C-LC .. 74

 C-L ... 78

 LC-LC .. 80

 LC-L ... 80

 L-L ... 82

 Overview .. 83

 4.2.4.2 Co-scheduling with L2 sharing .. 83

 C-C... 83

 C-LC .. 91

 C-L ... 93

 LC-LC .. 97

 LC-L ... 97

 L-L ... 99

 Overview .. 99

5 Conclusions and future work ... 101

5.1 Results evaluation ... 101

5.2 Future work .. 103

Bibliography & references ... 105

Appendix A ... 107

Appendix B .. 121

Page intentionally left blank.

1

Chapter 1

Introduction

1.1 Multicore architectures concepts

Modern computer architectures’ design and principles have changed in the last decade. In

previous years, processors consisted of a single core which handled and executed the whole

workload. Performance of uni-core systems was increased by microarchitecture

improvements, progress in manufacturing methods that allowed for higher clock frequencies

with lower power consumption and implementation of more complex and efficient memory

hierarchy designs. Progress using this model has declined in recent years, as reaching the

physical limits of semiconductor microelectronic materials and manufacturing techniques

causes intractable problems, related to increased heat dissipation and data synchronization,

among others. These limitations have resulted in a different approach in newer designs, using

multiple cores on the same chip, sharing the workload instead of a single core running all

tasks.

The concept of a computer system consisting of two or more physical processors sharing the

main memory was known and used in previous decades on mainframe, server and

2

workstation implementations (e.g. symmetric multi-processing, SMP). Demand for increased

performance in general purpose systems with single processors and the previously mentioned

limitations of uni-core designs led to a new trend in computer architecture, combining two or

more CPU cores on the same physical processor package. All cores, operating

simultaneously, can execute instructions independently, resulting in tremendous increase of

the system’s throughput potential. Usage of such chip multi-processors (CMPs) has seen

excessive growth in recent years, being present in all types of computer systems, from servers

to mobile phones.

However, contrary to systems with multiple physical processors, cores of a CMP share more

resources, such as cache memory, main memory bus bandwidth available to the socket, data

prefetchers. As a result, cores are not completely independent from each other. Applications

executed concurrently on different cores may cause contention in these shared resources,

leading to reduced hardware efficiency and subsequently performance degradation. It

becomes apparent that conflicts for shared resources utilization need to be minimized to

avoid such unwanted effects.

1.2 Operating system - Scheduling

The operating system is an essential component of a computer system. It is responsible for

hardware and software management, providing services needed by applications, enabling

them to utilize hardware resources, communicate with each other and the user. The scheduler

plays a critical role in operating systems, being responsible for application execution and

resource allocation. A scheduler has to make decisions about how CPU time, I/O and other

resources will be shared among processes, which processes will be assigned to specific cores,

starting and stopping applications in order to provide efficiency for the system. Different

types of systems may require different scheduler approaches, for instance a personal

computer needs optimized application responsiveness, while the objective for a server

running multiple tasks is throughput maximization.

For single CPU systems, dominant in the market until recently, main concern of OS

scheduling was the allocation of processor time among processes. In this context, scheduling

3

techniques had been highly optimized over the years and became very efficient, to the point

that there was no demand for further improvement. This was also the case for SMP systems,

processors of which only share main memory. Notable open source examples of highly

efficient schedulers are the 2 latest scheduler implementations of the Linux kernel, known as

O(1) scheduler [2] and CFS [3]. With CMPs, the scheduling problem becomes much more

complex. Shared memory resources among multiple cores make decisions about process

execution much more difficult, as architecture specific parameters must be considered (e.g.

what levels of cache hierarchy and other resources are shared, among which cores) to make

the optimal choices. It becomes apparent that space-sharing of the CMP needs to be

optimized along with time-sharing, since the choice of processor assigned to execute a task

may have negative effects on programs’ execution [1].

1.3 Problem definition

Scheduler implementations in mainstream operating systems, optimized for SMP

architectures, when used with multi-core single chip processors, treat all cores as independent

from each other. This simplified approach may result in concurrent execution of applications

that make intense use of shared memory resources, leading to contention and causing

significantly reduced efficiency and performance. Optimization of scheduling algorithms to

better utilize resources in CMP context is an active field of research, due to multicore

designs’ massive adoption, even on handheld devices.

Many approaches suggest contention-aware scheduling techniques. It is assumed that if

architecture details are known, including memory hierarchy and shared resources, then a

program’s behavior in co-execution and potential interference suffered or caused can be

estimated by observing its memory utilization needs. Such approaches rely on various

application classification schemes, based mainly on memory-associated behavior, in order to

facilitate scheduling related decisions. Knowing the overall picture of how classes interact in

co-scheduling scenarios on a certain architecture, concurrent execution of programs

potentially harmful for the system’s efficiency and throughput might be avoided.

4

The objective of this work is to study concurrent execution of memory intensive applications

on multicore architectures and the impact it has on shared memory hierarchy and other

programs’ performance. Co-execution experiments are used to evaluate a literature-suggested

memory contention estimation model based on an application classification scheme. To

emulate different class memory-bound programs, a versatile memory pseudo-benchmark with

user-controlled behavior was developed.

1.3.1 Contribution

Co-scheduling experiments were conducted on multicore architectures with different design

characteristics and memory hierarchy organization. To evaluate performance of all levels in

the memory hierarchy we created a benchmark program. This benchmark is extensively

tested on the systems we intend to use for co-execution experimentation and results are

compared with other known benchmarks to estimate its validity. Taking advantage of its

versatile design, the benchmark was used to create a suite of instances with different

behavior. It is suggested that this benchmark program can be used as an in-house alternative

to emulate a wide range of memory-bound processes. Application performance is profiled

using the aforementioned classification scheme and data collected is used to make general

contention estimations for various co-execution scenarios.

All applications of the proposed set are co-executed in pairs with each other. In each

experiment we observe if contention on the memory hierarchy occurs and how it affects co-

running applications’ execution time. Slowdown results are compared with expected

behavior, to discuss the validity of the contention-based slowdown estimation model. We

show that excessive application slowdown may occur in certain co-scheduling scenarios due

to contention in memory subsystems. It is also demonstrated how architecture specific

characteristics can drastically affect programs’ performance degradation in co-execution

context.

5

1.4 Chapter description

Chapter 2 describes the slowdown estimation model and classification algorithm used in this

work, along with similar research examples.

A detailed description of the proposed benchmark program, its results and evaluation are

found in chapter 3. Additionally, that chapter contains information about the specific

computer systems used, including architecture details, and the co-scheduling infrastructure

used for experiments

Chapter 4 contains all co-scheduling experimentation related work: workload description,

preliminary evaluation, experimental procedure and results.

Conclusions, along with ideas for future work are summarized in chapter 5.

6

Page intentionally left blank.

7

Chapter 2

Motivation and current approaches

2.1 The scheduling problem on CMPs

Chip multi-processors are designed to improve performance by providing parallel

computational cores to share workload, executing programs concurrently. Although there are

huge potential gains from this approach, scheduling execution of threads on a CMP in an

efficient way is a very complex problem. The main reason for this is that cores are not

completely independent from each other, as they are sharing cache memory, access to the

main memory bus, controllers, hardware prefetchers and, possibly, other resources with

neighboring or all cores.

When multicore processors appeared, they were handled by existing OS schedulers similarly

with cores of symmetric multi-proccessing (SMP) systems, which differ significantly as they

consist of separate physical processors on different sockets. However, processors of SMP

system are independent, as they only share main memory. Even with the shared memory,

NUMA architectures (Non-Uniform Memory Access) provide mechanisms for avoiding

8

memory bus related conflicts, as each socket can access its relatively closer located memory

faster. Thus, the OS scheduling problem is addressed as mainly managing run-queues,

ensuring that cpu-time is efficiently allocated for overall throughput. Very efficient and

optimized algorithms have been developed, which led to the scheduling problem being

considered as solved.

Applying the same scheduling techniques on systems with CMPs can have largely

unpredictable effects. Sharing memory resources can be very beneficial or extremely

destructive for running applications. Threads of an application, using the same data, can

largely take advantage of shared cache, when executed concurrently on cores of a multicore

processor. Similar speed-up can occur when different programs, sharing libraries, are

simultaneously scheduled. On the other hand, a process streaming large amounts of data,

intensely replacing the content of cache levels, can be extremely harmful for other running

programs, forcing them to continuously re-fetch data from main memory and subsequently

suffer from highly increased time penalties. These examples demonstrate extreme cases and

help to intuitively understand how complex co-scheduling scenarios can be.

Details of the architecture, mapping of shared resources and behavior of the programs

consisting the workload are all very significant factors in order to make efficient scheduling

decisions. Space-sharing the CMP is equally important to time-sharing it, as the choice of

which core is assigned for a programs’ execution may dramatically affect, positively or

negatively, the program’s behavior, as well as other running processes. Sharing memory

resources between cores running different applications can create contention in some or even

all levels of the memory hierarchy that are shared. Contention is the main reason for

performance degradation in CMP co-execution context. Thus, current research approaches,

found in literature, try to address the problem on CMPs with contention-aware scheduling

methods.

For contention-aware scheduling, it is assumed that in architectures with multiple cores,

different resources are shared among core subsets, since if all cores shared all resources

equally, space-sharing decisions would have no effect. Additionally, all resource sharing is

considered to cause negative effects, as contention aware-schedulers try to avoid such

interference. Suggested prediction schemes are based on classifying programs of the

workload, using their behavior profile, attempting to keep apart applications that cause stress

to the memory hierarchy [1]. These prediction mechanisms use performance metrics, such as

9

LLC misses and cache utilization patterns or other heuristic methods to detect potential

application interference in co-execution scenarios. But even with an ideal, very accurate

prediction model, finding the optimal mapping in systems with more than 2 cores is shown to

be an NP-complete problem [4]. However, it is possible to suggest a much more efficient

mapping, compared to initial contention-unaware scheduling.

2.2 Related work

Contention aware scheduling methodologies, for CMP and SMP or cluster systems, found in

literature use classification schemes to characterize workload behavior. Many approaches

have been suggested, ordering applications by performance characteristics, such as LLC miss

rate, cache re-use patterns, main bus utilization. Bhadauria and McKee [6] use cache miss

rate (hits/misses) or bus occupancy metrics, trying to balance resource utilization to be fairly

shared among processes. Xie and Loh [8] use an approach classifying programs in animal

categories. There are 4 such classes: Turtles, sheep, rabbits and Tasmanian devils. Turtles

make zero or very low use of shared resources, relying in the lower level private cache of the

core. Sheep and rabbits re-use LLC intensely, with the difference being that rabbits are very

sensitive to the ways of the cache allocated to them, while sheep are not easily affected.

Finally, devils heavily use cache, but also have a large number of misses; as a result they are

very harmful for co-running applications.

Blagodurov et al.[7] proposed the Pain classification scheme. In this approach, the terms

cache “sensitivity” and “intensity” are suggested. Sensitivity shows how likely it is for a

program’s cached data to be replaced, using probabilities based on stack-distance profile

(SDP) and reuse frequency. To calculate intensity, authors use the ratio of cache access

operations per million instructions, to indicate how aggressively an application uses the

shared cache. The product of sensitivity and intensity is then used to calculate the “pain” an

application will suffer from and cause to co-runners, due to co-scheduling. A similar

approach was proposed by Tang et al. [11], with contentiousness and sensitivity metrics for

applications to estimate performance degradation.

10

Jaleel et al. [10] suggest a categorization model base on applications’ cache utilization. There

are 4 classes in this model: Core Cache Fitting (CCF), LLC Thrashing (LLCT), LLC Fitting

(LLCF) and LLC Friendly (LLCFR) applications. CCF programs have small working sets

and fit in private caches, without need to use the shared LLC. LLCT are applications with

working sets much larger than LLC, making streaming accesses and replacing cache content

and thus being very harmful for co-running programs that use the LLC. LLCF programs need

a large part of the LLC, and are affected if competition for the cache occurs. LLCFR

applications benefit from cache re-use, but are not so sensitive when available cache

resources are reduced.

Lin et al. [12] used a color-based classification scheme to allocate cache usage by

applications. Mars et al. [16] introduced “bubble”, a stress test for the memory subsystem,

with gradually increasing intensity, in order to characterize applications’ sensitivity by their

performance curve, as the “bubble” grows. They also observe how much an application

stresses the subsystem itself. Being aware of contentiousness and sensitivity, co-scheduling

behavior may be predicted.

Other approaches try to balance shared memory bus utilization and avoid saturation [9] as

memory bus contention is seen as the major factor of performance degradation. Merkel et al.

[13] try to address the issue by scheduling programs that use complementary resources for

co-execution. Numerous other examples are present in literature, as research for CMP-

optimized scheduling is an active and challenging field.

2.3 LCA: A memory Link and Cache-Aware approach

A recent approach suggested in literature is LCA [5]. LCA tries to address the CMP co-

scheduling problem using a classification scheme based on the overall picture of memory

resources utilization. Data flow in all levels of memory hierarchy is observed to predict

interference problems, attempting to deal with dual contention on both memory link and

shared cache.

11

The contention-avoidance scheme, suggested by this approach divides applications in classes,

using information that can be collected by modern processors’ performance monitoring

mechanisms during execution time, without need for additional hardware modifications or

support. The next step is contention estimation, based on the workload’s classification, and

corresponding decisions for time-and-space allocation of the CMP. This thesis, however,

focuses only on interference caused by co-execution of memory intensive applications, thus

scheduling algorithms are not discussed in detail. The following four application classes are

used:

Class N: Applications that display activity on the core’s private part of the memory hierarchy.

This may include application with computational load, very small working sets, fitting in

lower level cache, optimized data accesses, or any combination of these characteristics.

Programs of this class create no contention on shared memory resources.

Class C: This class includes a wide range of applications, which benefit from shared cache

(mainly LLC) reuse. Programs of this class can have different characteristics, e.g.

applications intensely accessing a dataset small enough to partially fit in cache, latency-

bound processes that make irregular memory accesses and benefit from cache hits. Since they

rely on cache reuse, applications in this class can be affected by LLC intereference.

Class LC: Applications that require significant use of both memory link and cache, at varying

levels. Again, this class contains many different applications with varied behavior, for

instance programs that need to fetch large amounts of data from main memory, which are

then processed, displaying intense cache reuse.

Class L: Applications included are stressing the memory bus, consuming a significant

percentage of its bandwidth. Examples of programs belonging to this class are applications

that use datasets much larger than cache, performing streaming memory accesses with very

little or zero cache reuse. Such applications are also expected to utilize data prefetchers to

achieve high levels of memory bandwidth.

12

Core Core Core Core...

L1 L1 L1 L1

LLC

DRAM

Core Core Core Core...

L1 L1 L1 L1

LLC

DRAM

Core Core Core Core...

L1 L1 L1 L1

LLC

DRAM

Core Core Core Core...

L1 L1 L1 L1

LLC

DRAM

Class N Class C Class LC Class L

Figure 2.1: Application classes’ activity [5]

Although all classes contain applications with different execution patterns and behavior, this

scheme can be used to capture the overall picture of co-execution scenarios and detect

potential contention situations. Co-scheduling scenarios between different classes and

expected behavior, as a primary objective of this work, are discussed in more detail in chapter

4, yet a concise, per-class estimation guide follows:

Class N: No interference is expected, as application execution mostly relies on the core’s

private resources.

Class C: The wide variation of applications result in many difficult to predict scenarios, being

affected by many factors. However, most cases of LLC-sharing (C-C combination) co-

execution are expected to display minimum to moderate slowdown effects, a generally “low

contention” scenario. Increased contention can occur when co-runner class shifts to a more

memory intensive, LC or L, resulting even in severe slowdown effects, for instance when a L

program continuously wipes cached data.

Class LC: Moderate interference is expected in the case of an LC-LC combination, as a result

of medium contention in both link and cache. C class competition for the LLC could also

cause low performance degradation to an LC instance, while an L co-runner can have much

more impact, reducing available memory bandwidth and replacing data in the cache.

Class L: Relying solely on the memory link, L processes are expected to be affected only by

other L instances competing for the bus, or LC that have increased memory link bandwidth

demand as a result of interference caused by the L itself.

To classify applications in the aforementioned classes, this approach suggests a method of

inspecting data flow to the core, through the levels of the memory hierarchy to detect at

13

which levels higher utilization is noted, using runtime performance statistics. To achieve that,

memory bandwidth is measured first, to determine if a program belongs in class L, or LC. If

not, LLC data towards the core bandwidth is inspected to decide if LLC or other shared cache

data reuse occurs, and classify the program into N or C classes accordingly. If overall data

flow is low, IPC (Instructions per Cycle) and the ratio of memory micro-operations to all

micro-operations metrics are used to classify an application in N and C classes.

To apply this decision scheme, five thresholds need to be set:

α: High memory link bandwidth utilization

β: Medium memory link bandwidth utilization

γ: High cache-to-core bandwidth utilization

δ:

 ratio, higher than which shows a memory bound application

ε: IPC threshold, higher than which indicates a more CPU-intensive N application

The respective values, adapted for single threaded applications*, are calculated as follows:

α = 0.5∙Bmax, β = 0.025∙Bmax, γ = 0.15∙Bmax, δ = 0.25, ε = 0.25∙IPCmax, where Bmax is

maximum memory link bandwidth and IPCmax maximum theoretical IPC of the processor.

This classification scheme can be described by the following decision tree:

*Note: Thresholds mentioned in the original work are calculated for 4-threaded applications.

14

Memory Link Utilization

L LC

High
{Bin > α}

Medium
{β < Bin < α}

Cache Links Utilization

Low
{Bin < β}

Reuse Location
Memory-Latency Bound

High
{maxBin > γ}

Low
{maxBin < γ}

memuops/alluops > δ and IPC < ε

C N

yes no

C N

LLC Private Caches

Figure 2.2: Decision tree for application classification [5]

In this work, the aforementioned scheme will be used to classify instances of a single-

threaded memory pseudo-benchmark. Through extensive co-scheduling tests, the objective is

to observe all classes’ variations interaction with each other, and interference effects caused

by contention in all levels of the memory hierarchy. Results will be compared with the

estimation model and further discussed.

15

Chapter 3

Hardware and software systems used

In the following chapter, hardware and software infrastructure used is explained. Description

of computer systems is followed by presentation of the memory benchmark program we

created to study memory contention. Subsequently, the program is evaluated by comparing

results with expected behavior, as well as other known benchmarks’ metrics.

3.1 System characteristics

For co-scheduling tests, two processor architectures were chosen, with different

characteristics, both, of course, belonging to x86_64 family: Intel
®
 Sandy Bridge and Intel

Dunnington.

3.1.1 Intel® Sandy Bridge

The first system consists of four Intel Xeon
®
 E5-4620 processors on Intel C600 series

chipset, with 256 GB of DDR3 main memory. Each physical package contains 8 cores with

private 32 KB instruction and 32 KB data Level 1 cache and 256 KB L2 cache, both 8-way

associative. All cores share the package’s 16 MB, 16-way associative L3 cache. Cache line

size is 64 bytes. It should be mentioned that this processor features hyper-threading

16

technology with two threads per core, thus system appears to have two logical CPUs for

every core; however, we will not be utilizing hyper-threading in this work, as well as other

parallelization technologies featured, like QuickPath-Interconnect (QPI) bus, thus they will

not be further explained. Each package communicates with main DDR3 memory through 4

channels, greatly beneficial for concurrent access requests, with maximum bandwidth being

~14GB/s per core, 18GB/s per package, and 52GB/s total maximum for all four sockets. It

also features hardware data prefetching for both memory link and caches. Figure 3.1 shows a

diagram of a single package, while the system’s four packages (0-3) with the corresponding

Linux kernel CPU numbering (e.g. cpu0) are shown in figure 3.2.

Core 0

L1 32KB

Core 1

L1 32KB

Core 2

L1 32KB

Core 3

L1 32KB

Core 4

L1 32KB

Core 5

L1 32KB

Core 6

L1 32KB

Core 7

L1 32KB

Th. 0 Th. 1
(cpu 0) (cpu 32)

Th. 0 Th. 1
(cpu 1) (cpu 33)

Th. 0 Th. 1
(cpu 2) (cpu 34)

Th. 0 Th. 1
(cpu 3) (cpu 35)

Th. 0 Th. 1
(cpu 4) (cpu 36)

Th. 0 Th. 1
(cpu 5) (cpu 37)

Th. 0 Th. 1
(cpu 6) (cpu 38)

Th. 0 Th. 1
(cpu 7) (cpu 39)

L2 256KB L2 256KB L2 256KB L2 256KB L2 256KB L2 256KB L2 256KB L2 256KB

L3 16MB

FSB

Package 0

Figure 3.1: 1
st
 of 4 Intel

®
 Xeon

®
 E5-4620 packages

This processor was chosen for co-execution tests since it features private L2 cache for each

core, ensuring that cache level contention will only affect LLC. Additionally, its four-channel

memory bus of relatively high performance can let us experiment with different behavior of

applications with varied levels of memory link stressing needs and how they interact. It also

enables us to observe how data prefetching affects memory intensive applications with

different data access patterns.

Finally, Intel also provides performance monitoring capabilities. Using performance counters

extracted directly from the processor gives the ability to study application behavior and its

alterations in greater depth and to better explain the effects of co-scheduling. Intel’s Sandy

Bridge performance monitoring infrastructure offers a very wide range of performance events

counters [19]. Counters used for this work will be mentioned further in this chapter, along

with the respective performance metrics.

17

Overall, it is a modern, high performance system, able to handle demanding workloads and is

expected to be a suitable platform to evaluate the previously described contention estimation

model.

This system runs Debian 6.0.9 GNU/Linux operating system, using Linux kernel 3.7.10, gcc

version 4.6.3 and glibc version 2.11.3. Table 3.1 summarizes the system’s hardware

characteristics:

of packages 4

Cores/Socket 8

Threads/Core 2

CPU frequency
2.2 GHz (TurboBoost™ up

to 2.6 GHz)

L1 Cache
32KB data + 32KB instr.,
private per core, 8-way

L2 Cache
256KB private per core, 8-

way

L3 Cache 16MB shared, 16-way

RAM
256GB DDR3, 4-channel

bus

Table 3.1

18

19

3.1.2 Intel® Dunnington

This system features Intel
®
 Xeon

®
 X7460 “Dunnington” processors [23]. Again it is a four-

socket system with Intel’s 7300 chipset. Each package consists of six cores with private 32

KB instruction and 32 KB data, 8-way associative Level 1 cache. Cores in a package are in 3

pairs, each pair sharing 3 MB of 12-way associative L2. Each package comes with 16 MB,

16-way associative L3 cache, shared between all 6 cores. Again, cache line size is 64 bytes.

Figure 3.3 shows the topology of a package, with the respective Linux kernel CPU

numbering, while figure 3.4 shows all packages:

P
ac

ka
ge

 0

Core 0

L1 32KB

L2 3MB

L3 16MB

Core 1

L1 32KB

Core 2

L1 32KB

L2 3MB

Core 3

L1 32KB

Core 4

L1 32KB

L2 3MB

Core 5

L1 32KB

cpu 0 cpu 12 cpu 1 cpu 13 cpu 2 cpu 14

FSB

Figure 3.3: Intel
®

 Xeon
®

 X7460 package.

The system features 1066 MHz memory bus, connecting processors with the 27 GB DDR2

RAM. System’s characteristics are summarized in table 3.2:

20

of packages 4

Cores/Socket 6

Threads/Core 1

CPU frequency 2.66 GHz

L1 Cache
32KB data + 32KB instr.,
private per core, 8-way

L2 Cache
3MB shared per 2 cores,

12-way

L3 Cache 16MB shared, 16-way

RAM 27GB DDR2, 1066MHz

Table 3.2

This system runs Debian 6.0.7 GNU/Linux operating system, using Linux kernel 3.7.10, gcc

version 4.4.7 and glibc version 2.13.

Dunnington was chosen for additional testing, since it features interesting differences in

memory hierarchy, most notably the large but shared L2 cache. This gives us the opportunity

to experiment with co-execution on cores sharing L2 and directly compare results with the

same experiment on non-adjacent cores that will not compete for L2. It also gives potential to

see the accumulated effects of contention when it occurs on all three levels of shared memory

hierarchy (L2, LLC, memory link). Additionally, disabling memory bus data prefetching is

expected to alter differences in performance between access patterns, comparing to the

equivalent Sandy Bridge tests. However, prefetching mechanisms are present between caches

and in the main memory DRAM controller. Also, contrary to the previous architecture, each

socket is connected to main memory through a single memory bus (instead of four), thus

concurrent memory access requests are expected to be serialized in order to be served by the

memory link. This set of differences, especially L2 sharing and memory bus performance,

may alter predicted behavior patterns in co-scheduling context.

21

22

3.2 Co-scheduling environment

3.2.1 Scaff

For all co-execution experiments, scaff infrastructure was used. Scaff is a runtime system

used to coordinate the execution of a workload consisting of multithreaded applications on a

multi-core/multi-processor system. It operates on user-level, on Linux-based systems. It is

used to provide a communication mechanism between a scheduler and the programs

executed. Scaff’s infrastructure consists of two basic systems: the executor and the scheduler.

The executor handles execution events, e.g. creation and termination of processes, while the

scheduler is responsible for decisions concerning resources sharing, with the ability to

implement various scheduling policies and utilize hardware performance counters. In this

work, however, scheduling policy is not important since all tests conducted involve a single

process on each core. Thus, there is no need for cpu time-sharing and context switching.

The executor keeps information about the programs executed and events during execution-

time and stores data from the scheduler’s output, programs’ output, error messages and

performance counters data. For each co-execution test, the executor is run, with given

arguments a configuration file, an output folder, the set of CPUs and scheduler to be used.

The configuration files contains the executables’ paths, along with information about

execution, such as the number of cores needed for each one, its place in the execution group

and other scheduler-decision related parameters (e.g. starting time if a delay is desired), most

of which do not concern the current work.

As mentioned before, Scaff also provides the infrastructure to extract performance data for

each process. Apart from a number of fixed counters (unhalted cycles, instructions retired),

users can modify the scheduler code to take advantage of additional counters from the set

provided by the architecture. Scaff stores performance data from the counters in

approximately 1 sec. intervals in a counters file, with the corresponding PID and execution

time elapsed.

23

3.2.2 System tools and mechanisms used

Scaff uses Linux kernel’s cgroups and cpusets subsystems. Cgroups (Control groups) provide

a mechanism for creating sets of tasks with specialized behavior, in hierarchical organized

groups [17,21]. A cgroup is a set of tasks with common execution parameters, such as

resource limitations. User can control execution of processes belonging in a cgroup by editing

the specific group’s configuration files. Cgroups are exported as a virtual filesystem and can

be easily handled from userspace. User-level code can create, handle and destroy cgroups by

name in an instance of the cgroup virtual filesystem, which includes files that contain

information about this cgroup instance and the subsystems associated with it. Userspace code

can define behavior of a cgroup by changing values of those files. For example, when using

cpusets, every cgroup of the cpuset filesystem contains the files ‘cpus’ and ‘tasks’. If a task is

to be executed in CPU 1, we can write its PID in tasks and value 1 in cpus.

Cpusets use the generic cgroups subsystem [18,21] and constrain the execution of tasks to a

set of cpus and memory nodes. Cpusets can be created and deleted from user-space, as they

are using the cgroups virtual filesystem. This mechanism can restrain selected processes not

only in which CPUs they are allowed to use, but also in other parameters, such as memory

nodes. This is achieved by filtering system calls made by these processes; a task will not be

scheduled on a CPU that is not allowed in its cpus_allowed vector, and the kernel page

allocator will not allocate a page on a node that is not allowed in the requesting task's

mems_allowed vector.

Scaff allocates a structure for every program (aff_prog_t) which will be used to store the

program’s information during execution, also containing a pointer to the shared memory used

by the executor to communicate with the process. This structure also contains a cpuset field

which serves as a handler for the program’s cpuset. The executor uses the fork system call to

start execution. Scaff creates a new cgroup in the cpusets filesystem and attaches the program

to it.

Additionally scaff initializes signal handlers; signals important for the executor are

SIGCHLD and SIGTERM. The latter indicates unexpected termination of the program and is

handled as an error (e.g. stopped with a SIGKILL). A normal termination of a running task is

indicated by SIGCHLD.

24

3.3 Benchmark program

Our goal was to create a benchmark to test the various levels of the memory hierarchy. The

idea was to test both sequential access (which takes advantage of hardware data prefetchers,

if any available, and cache re-use) and random access pattern, to limit the gains of

prefetching and cache usage. It is based on continuously accessing the structures for a user

given number of iterations. The program is implemented in C, all executables compiled with

gcc’s O3 optimization flags.

3.3.1 Design

Data structures used:

The benchmark utilizes a user-defined number of linked lists (up to 8 implemented, but very

easily extendable to any desired number) for both sequential and random access. The purpose

of that is to have more than one independent access requests in each loop, in order to exploit

instruction level parallelism (ILP).

At this point, it may be noteworthy to mention the various structures we experimented with,

some of which are used to create the ones we finally chose. The benchmark was initially

using arrays instead of lists, but the latter were found to offer much more consistent

performance. The basic unit used as a starting point is a sequential access array, a simple

single-dimensional array of unsigned integers, in which each element contains the position of

the next element to access. In our case a[i] = i + 1, imitating a pointer to the subsequent

memory element. Structure initialization and access subroutines are as follows:

create_sequential_access_array (integer: size)

 allocate array[size] a of long integers //contains elements a[0]…a[size – 1]
 for i  0 to size – 2
 a[i]  i + 1
 a[size – 1]  0 //last element value points to start

 return pointer to a
 end

25

Figure 3.5: Example array with 10 elements

access_sequential_array (array:a)

 temp  0
 for i  1 to (size of a)
 temp  a[temp]
 end

Figure 3.6: Example of sequential array access sequence

For the random access of elements, the numbers in the sequential access array need to be

randomly permuted so that each element points to a random element to be accessed next. The

Fisher – Yates permutation algorithm [22] is used, along with Galois linear feedback shift

register (LFSR) for randomization. The LFSR produces a pseudo-random sequence with a

very long cycle, making it suitable for use with large numbers of elements. Fisher – Yates

shuffle algorithm, if provided with an unbiased random sequence, will produce an unbiased,

random permutation of a finite set. It is ensured that each element is only repeated once and

that the access is cyclic, all elements are accessed at the end of an iteration.

create_random_access_array(integer: size)

 allocate array a of size //contains elements a[0]…a[size-1]
 for i  0 to size – 1
 a[i]  i + 1
 fisher_yates_permute(a)

 return pointer to a
 end

26

fisher_yates_permute(array:a)
 for i ((size of a) – 1) to 1 //with decrement step 1
 j  galois_LSFR mod i
 swap (array[i], array[j])
 end

Figure 3.7: Example array after a random permutation of the elements

The array can be accessed in the same way with the sequential:

access_random_array(array:a)

 temp  0
 for i  1 to (size of a)
 temp  a[temp]
 end

Figure 3.8: Sample of random array access sequence

The aforementioned array types are used, indirectly, for creating the linked lists the

benchmark utilizes. The structure used for the list elements consists of 7 long integers

forming an array of 56 bytes and a pointer (another 8 bytes) to the next element. Thus, it is

ensured that each element has a total size of 64 bytes (the size of a cache line) and for every

new access a new line must be loaded to the cache. The 7 long-integer elements, apparently,

do not contain any useful data and are serving as the payload of the structure.

27

Struct L:

 next: pointer to struct l element
 pad: array[0..7] of long integers

Long
int

Long
int

Long
int

Long
int

Long
int

Pointer to next
(8 byte)

Long
int

Long
int

Long
int

Long
int

Long
int

Long
int

56 byte payload

Figure 3.9: List element structure

Using this structure, the sequential access lists are created. The size of the list is variable and

is given by the user, depending on which level of the cache hierarchy (or the main memory)

is to be targeted.

create_sequential_access_list(integer: size)

 allocate array list_elements[size] of type: struct L
 for i  0 to size – 2

list_elements[i].next  list_elementsi[i + 1]; //next points at the
element //subsequent in
memory

list_elements[i].next  &list_elements[0]; //last element value points at

start

 return pointer to list_elements //first element
 end

access_sequential_list(pointer to list: a)
 s  a
 for i  0 to (size – 1)
 s  s.next
 end

Pointer to next
(8 byte)56 byte payload

Pointer to next
(8 byte)56 byte payload

Figure 3.10: accessing consecutive memory elements.

28

To create the random access list, the idea is randomly permuting the pointers-to-next-element

of a same type list, ensuring again that each element needs a separate cache line.

In order to implement a random access list, the same principle is used: A random access array

(of size n), basically a randomly permuted list of the numbers [0, n-1], is used to assign the

pointers on each element of the list:

create_random_access_list(integer: size)

 allocate array list_elements[size] of type: struct L
 permut  create_random_access_array(size)
 for i  0 to (size – 1)

list_elements[i].next  list_elements[permut[i]];

 return pointer to list_elements //first element
 end

Access is the same with sequential list:

access_random_list(pointer to list: a)
 s  a
 for i  0 to (size – 1)
 s  s.next
 end

29

Long
int

Long
int

Long
int

Long
int

Long
int

Pointer to next
(8 byte)

Long
int

Long
int

Long
int

Long
int

Long
int

Long
int

56 byte payload

Long
int

Long
int

Long
int

Long
int

Long
int

Pointer to next
(8 byte)

Long
int

Long
int

Long
int

Long
int

Long
int

Long
int

56 byte payload

Long
int

Long
int

Long
int

Long
int

Long
int

Pointer to next
(8 byte)

Long
int

Long
int

Long
int

Long
int

Long
int

Long
int

56 byte payload

Long
int

Long
int

Long
int

Long
int

Long
int

Pointer to next
(8 byte)

Long
int

Long
int

Long
int

Long
int

Long
int

Long
int

56 byte payload

Long
int

Long
int

Long
int

Long
int

Long
int

Pointer to next
(8 byte)

Long
int

Long
int

Long
int

Long
int

Long
int

Long
int

56 byte payload

Long
int

Long
int

Long
int

Long
int

Long
int

Pointer to next
(8 byte)

Long
int

Long
int

Long
int

Long
int

Long
int

Long
int

56 byte payload

Long
int

Long
int

Long
int

Long
int

Long
int

Pointer to next
(8 byte)

Long
int

Long
int

Long
int

Long
int

Long
int

Long
int

56 byte payload

Long
int

Long
int

Long
int

Long
int

Long
int

Pointer to next
(8 byte)

Long
int

Long
int

Long
int

Long
int

Long
int

Long
int

56 byte payload

Long
int

Long
int

Long
int

Long
int

Long
int

Pointer to next
(8 byte)

Long
int

Long
int

Long
int

Long
int

Long
int

Long
int

56 byte payload

Figure 3.11: Example of a randomly accessed list.

30

Using the benchmark

The benchmark has a relatively simple approach: The user defines the data size (in kilobytes),

number of loop iterations and number of accesses on each loop. The program first initializes

sequential access structures according to user input, then it starts accessing the elements as

defined previously. This repeated procedure (post initialization) is timed using system time.

When finished, the number of iterations, size of data and consequently the total data accesses

are known, as well as the execution time for the loop alone. Thus, it is possible to calculate

the bandwidth (

 ratio) achieved. The procedure is repeated for random access.

benchmark_sequential(iterations, size_inKB)
 size  size_inKB convert to number of elements
 seq_list  create_sequential_access_list(size)
 start timing
 for i  1 to iterations
 access_sequential_list(seq_list)
 end timing
 output results //Total data accessed, Total time, Bandwidth as calculated from size
and

//time
 end

benchmark_random(iterations, size_inKB)
 size  size_inKB convert to number of elements
 ran_list  create_random_access_list(size)
 start timing
 for i  1 to iterations
 access_random_list(ran_list)
 end timing
 output results //Total data accessed, Total time, Bandwidth as calculated from size

//and time
 end

Example output: Benchmark with 4MB size and 20000 iterations:

31

4096 KB converted to 65536 elements.

 Benchmark 1

 Sequential access list of 65536 elements, element size:64

bytes

Number of iterations: 20000 Total data: 80000.0000 MBytes

Total time 7.942 sec Average rate: 10073.2831 MB/sec

 Benchmark 2

 Random access list of 65536 elements, element size:64 bytes

Number of iterations: 20000 Total data: 80000.0000 MBytes

Total time 26.147 sec Average rate: 3059.5720 MB/sec

=================================END================================

==

When accessing more than one structures, the procedure is almost the same. The difference is

that we create smaller independent structures, the total size of which is the target size, and

each one’s next element is accessed independently in every loop iteration.

benchmark_sequential(iterations, size_inKB, no_of_streams)
 size  size_inKB convert to number of elements
 size  size / no_of_streams
 seq_list_1  create_sequential_access_list(size)
 seq_list_2  create_sequential_access_list(size)
 .
 . //up to no_of streams lists are created
 .
 start timing
 for i  1 to iterations
 s1  seq_list_1
 s2  seq_list_2
 .
 .
 .
 for j  1 to size
 s1  s1.next
 s2  s2.next
 .
 . //in each loop no_of_streams elements are accessed
 .
 end timing

32

output results //Total data accessed, Total time, Bandwidth as calculated from size
//and time

 end

The same is applied for the random counterpart. An example output with 4MB, 4 streams

(thus meaning 4 streams of 1MB each) and 20000 iterations:

4096 KB converted to 65536 elements.

 Benchmark 3

Parallel sequential access of 4 lists, 16384 elements each, element

size:64 bytes

Number of iterations: 20000 Total data: 80000.0000 MBytes

Total time 3.319 sec Average rate: 24105.1418 MB/sec

 Benchmark 4

Parallel random access of 4 lists, 16384 elements each, element

size:64 bytes

Number of iterations: 20000 Total data: 80000.0000 MBytes

Total time 7.798 sec Average rate: 10259.5394 MB/sec

=================================END================================

==

3.3.2 Results and evaluation

The program was used to evaluate the performance of the different memory hierarchy levels

of specific architectures, using a variety of configurations, ranging from 1 kilobyte to 128

megabytes and from 1 up to 8 independent streams for each size. This range of target sizes

was chosen to demonstrate how the performance alters when gradually moving from a dataset

that can fit in a fraction of the L1, to sizes much larger than the last-level-cache (LLC), where

the program has to continuously access the main memory.

The number of iterations for each test was decided accordingly in order to achieve a running

time of at least 5 seconds, in almost all cases more than 6 sec. The purpose of that was to

minimize the effects of possible random factors during execution by providing a relatively

long running time, and a large number of iterations to provide better statistical sample

33

quality, also eliminating the impact of initial data fetching penalties, which will occur on the

first cycles. Each benchmark (with the same parameters: size, iterations and number of

streams) was also executed 2 to 4 times, so that possible performance inconsistencies would

be easier to detect.

3.3.2.1 Intel Sandy Bridge architecture

The first processor architecture on which it was tested was Intel’s Xeon E5-4620 Sandy

Bridge with the following features, as mentioned before in this chapter: 8 hyper-threaded

cores per package, 32 KB data + 32 KB instruction, 8-way associative Level 1 cache per

core, 256 KB 8-way associative Level 2 cache per core, 16 MB, 16-way associative Level 3

cache per package and hardware data prefetching both for main memory and cache. It should

be noted that the benchmark, however, only utilizes a single core (or a single thread, in

hyperthreaded architectures as this one), in order to be able to measure per-core-performance

and be independently executed on more cores to study the behavior when contention is

caused on shared resources (e.g. LLC, Memory bus usage), which is the objective of this

thesis.

Average per core data bandwidth for sequential access measured by the benchmark is shown

on table 3.3, while table 3.4 contains results for random access. Actual performance, of

course, may vary from 0.01% up to ~4-5% for the same tests repeated more times, but this is

expected, as the tests were run in user-level within a normally running Linux OS. It is

important to state that our objective is to study the order of magnitude of achievable

bandwidth in normal runtime context, and not theoretical maximum or high precision. For

these reasons, the presented results are considered satisfying, focusing on the 3-4 most

significant digits.

The expected behavior of the tests is described below:

 For sizes less than the size of L1 cache (32 KB), bandwidth should be higher, as the

data can fit in the L1 cache, which is the fastest in the hierarchy. It was also expected

to be increasing even more as the number of streams is increased, utilizing ILP. As

long as all data is loaded on L1 cache, no noticeable difference should be noticed

between sequential and random access patterns.

 For more than 32 KB and less than 256 KB, significant performance degradation is

expected, as the data can no longer fit in L1 and the slower L2 must be used. Again,

34

because of ILP, increasing the number of streams should increase bandwidth. As

mentioned before, since all data has been fetched to the cache, no major difference

between sequential and random access should occur.

 As data size gets close to and exceeds 256 KB, the L2 is not sufficient to hold it

without having to use L3. Thus, a decrease in bandwidth is expected as data has to be

fetched from L3, replacing higher level cache lines each time. Increasing the number

of streams accessed should, again, increase throughput, at least to the limit up to

which the LLC cache can perform.

 When data size verges the L3 size (16 MB), the program should start accessing data

using the memory bus alongside the cache, and so slowing down even more. At larger

sizes when continuous cache line replacements are expected, the sequential

benchmark should very noticeably take advantage of the hardware prefetchers, while

the random part should be excessively slowed down because of higher LLC-miss

penalties.

Results of the benchmark for sizes corresponding to the above remarks are shown in the

tables below, 3.3 for sequential access and 3.4 for random access pattern:

 Sequential Bandwidth (in MB/s)

Size (KB) Number of streams

 Single 2 3 4 5 6 7 8

16 42,257.9 79,032.8 111,928.4 141,378.1 168,441.0 192,163.0 200,749.1 225,497.5

32 40,893.9 72,536.5 103,288.7 142,248.8 153,478.4 183,356.6 184,678.0 230,070.3

38 13,168.2 26,134.6 37,675.5 38,319.8 59,253.4 59,788.2 63,556.0 68,606.7

45 13,091.2 25,948.5 37,634.7 45,587.1 55,498.9 58,037.8 62,757.9 65,374.2

128 12,810.3 25,405.3 36,676.9 44,752.7 46,074.7 57,366.0 60,664.5 58,034.6

200 11,992.1 23,380.9 29,944.9 32,800.1 38,179.0 47,494.6 49,717.1 48,382.3

256 11,089.4 21,667.7 27,333.7 23,663.3 34,515.6 38,685.5 42,360.0 45,586.5

384 10,304.4 16,665.5 21,585.7 19,678.0 27,860.9 26,681.2 28,493.6 29,630.9

3,072 10,099.3 16,095.4 20,482.3 24,226.6 26,017.0 26,692.8 27,154.0 27,317.3

10,240 9,774.7 15,953.6 20,102.7 22,911.3 24,742.0 25,227.1 25,450.1 26,582.5

13,302 9,428.1 15,224.2 18,708.2 19,954.8 20,670.3 23,442.2 23,896.6 24,252.0

16,384 7,760.6 12,880.6 16,693.7 18,122.9 18,471.1 18,191.8 18,163.4 17,991.0

20,480 6,916.9 11,802.3 14,752.6 15,111.1 15,156.8 14,889.2 14,765.5 14,703.5

32,768 6487.106 11206.05 13423.85 12957.71 13042.74 12777.82 12595.26 12525.88

131,072 6521.119 11024.08 13445.06 12820.52 12818.46 12605.11 12416.24 12368.46

Table 3.3

35

 Random Bandwidth (in MB/s)

Size (KB) Number of streams

 Single 2 3 4 5 6 7 8

16 42,259.6 79,036.2 112,915.3 141,370.5 162,941.3 192,502.7 204,920.5 225,528.0

32 40,894.8 72,175.9 106,969.6 134,536.1 152,955.7 187,909.6 202,198.3 211,157.9

38 13,938.6 27,365.4 40,808.6 39,143.1 59,489.0 66,377.3 71,454.7 73,594.3

45 13,670.3 26,685.6 38,255.9 44,201.3 53,855.8 59,221.2 63,471.4 65,960.4

128 13,338.1 25,752.9 32,380.9 45,031.1 51,441.2 57,905.7 60,786.1 60,495.0

200 10,380.3 19,810.2 26,245.2 26,315.0 41,984.5 42,492.3 47,652.4 50,005.4

256 5,159.4 12,021.0 17,085.2 15,610.3 28,707.0 27,694.8 37,751.7 33,450.9

384 3,981.8 7,385.6 10,996.7 12,149.1 17,727.0 20,901.1 23,281.7 26,585.3

3,072 3,176.7 6,141.9 8,869.7 11,299.8 13,396.5 15,162.7 16,488.7 17,100.0

10,240 2,466.5 5,178.4 6,853.5 7,141.6 7,419.7 7,672.1 7,656.8 7,589.6

13,302 2,663.9 5,052.8 6,535.2 7,061.1 7,080.6 7,105.2 6,947.2 6,981.9

16,384 1,137.5 2,169.8 3,349.6 3,947.2 4,892.8 5,460.4 5,982.0 6,235.1

20,480 810.1 1,528.6 2,296.8 2,976.0 3,670.4 4,271.7 4,830.2 5,320.4

32,768 647.8 1,267.9 1,873.9 2,449.4 3,032.1 3,582.1 4,092.2 4,542.0

131,072 589.5 1,154.6 1,691.2 2,203.5 2,625.0 2,908.9 3,032.1 3,062.2

Table 3.4

Full benchmark data for all dataset sizes tested are presented in Appendix. A graphical

representation of the data can be seen in figures 3.12 (sequential) and 3.13 (random). Data

size is on the horizontal axis and bandwidth on the vertical.

Figure 3.12

0.0

50,000.0

100,000.0

150,000.0

200,000.0

250,000.0

1 4 8

1
6

2
4

3
8

5
6

8
5

1
2

8

2
5

6

5
1

2

1
,0

2
4

3
,0

7
2

6
,1

4
4

1
0

,2
4

0

1
2

,2
8

8

1
4

,3
0

0

1
6

,3
8

4

3
2

,7
6

8

6
5

,1
3

6

1
3

1
,0

7
2

Sequential Access

Single

2 Str

3 Str

4 Str

5 Str

6 Str

7 Str

8 Str

36

Figure 3.13

The actual results, as seen above, largely confirm the expected behavior, described

previously, but also lead to additional interesting conclusions.

For tests up to 256 KB, each additional data stream increases bandwidth noticeably for both

random and sequential access patterns. Also, performance is almost the same, for a given

number of streams, for both patterns, with the random being marginally faster in many cases.

This could be explained, given that the sequential access will make a constant number of

misses, fetching and replacing data serially, while the randomized one may take advantage of

elements fetched on a previous miss that weren’t accessed nor replaced, and thus happen to

be in the cache when the program needs to access them. However, these performance

differences are extremely low.

Performance degradation, when approaching the limits of a cache level, is very noticeable

when reaching 32 KB, 256 KB and 16 MB for sequential access. For random access, there is

an additional point of noticeable throughput drop: when exceeding 2.5 MB and this can be

explained as in the specific architecture, despite having a 16MB L3 shared among all

processors of the package, maximum per core L3 is limited to 2.5 MB [20], resulting in

relatively higher access times for other parts of the cache. However, the sequential

counterpart is not affected, taking advantage of cache level prefetching.

For larger sizes than 128 MB, already 8 times the size of the LLC, bandwidth achieved

remained constantly in the same levels, thus further results are omitted. It also becomes

0

50000

100000

150000

200000

250000
1 4 8

1
6

2
4

3
8

5
6

8
5

1
2

8

2
5

6

5
1

2

1
0

2
4

3
0

7
2

6
1

4
4

1
0

2
4

0

1
2

2
8

8

1
4

3
0

0

1
6

3
8

4

3
2

7
6

8

6
5

1
3

6

1
3

1
0

7
2

Random Access

Single

2 Str

3 Str

4 Str

5 Str

6 Str

7 Str

8 Str

37

apparent that for large data sizes (bigger than LLC) increasing the number of streams more

than 3 starts to cause slight decrease in performance for sequential pattern, indicating that

contention on the memory bus starts to occur with the concurrent accesses. Between 1 and 2

streams, however, a direct doubling is noted, before achieving the maximum with 3 streams,

interestingly demonstrating the performance gains of ILP. Similarly, the random pattern

seems to constantly gain 0.5 GB/s for each stream up to 4, where contention on memory link

seems to begin. These observations suggest the benchmark’s predictable behavior, making it

suitable for co-scheduling study, which is the objective of the current thesis.

To evaluate the results, “STREAM” benchmark was used for sequential access, and “pChase”

benchmark for random patterns.

STREAM:

STREAM [14] is a benchmark program, designed to stretch the memory bus of a multicore

system and measure its maximum sustainable bandwidth, by making streaming memory

accesses. STREAM, is widely used as a standard for large-SMP systems bandwidth

measurement. It implements a kernel that accesses 3 single-dimensional arrays of double-

precision floating point elements, much larger than the LLC. The access pattern ensures each

request has to access the main memory, eliminating cache re-use, a concept quite similar to

the benchmark program described in this chapter. STREAM takes advantage of multicore

architectures by running a thread on each core, in order to maximize memory bus utilization.

Therefore, to compare it with the present results, it was needed for STREAM to be limited to

a number of cores, in the same physical package since, as stated before, our benchmark is

single threaded, running on only one core.

The best bandwidth performance achieved with STREAM running on 1, 2, 3 and 4 cores

respectively is presented below, in table 3.5.

 Bandwidth in MB/s

 1 Core 2 Cores 3 Cores 4 Cores

Best 12,012.9 14,253 14,234.5 14,166

Size 2.2 GB 2.2 GB 2.2 GB 2.2 GB

Table 3.5

Maximum theoretical memory bandwidth per package on the specific system is 18 GB/s.

STREAM manages to achieve up to ~14 GB/s when running on 2 or more cores of the

38

package. When on a single core, it achieves 12 GB/s. Comparing it to our benchmark,

performance is quite similar: the maximum bandwidth achieved was about 13.5 GB/s,

utilizing 3 independent lists (see t. 3.3):

 Sequential Bandwidth (in MB/s)

Size (KB) Number of streams

 Single 2 3 4 5 6 7 8

131,072 6521.119 11024.08 13445.06 12820.52 12818.46 12605.11 12416.24 12368.46

It should be noted that STREAM uses 3 structures on each thread, thus making its single-

threaded instance directly comparable with the 3-stream variation of the benchmark, which

seems to achieve slightly increased bandwidth (13.4 GB/s instead of 12 GB/s). Further results

of STREAM, as mentioned before, do not exceed 14.2 GB/s, indicating that it is close to the

maximum bandwidth that can be achieved from a single process. Additionally, a final test

series with STREAM utilizing all eight cores of the package, making use of hyper-threading,

resulting to a 16-thread instance using 2.2 GB of main memory, achieved 13445 MB/s, a

number that happens to precisely match our 3-stream benchmark instance. Also, running

STREAM without thread limitations resulted on a 64-thread instance which measured 50

GB/s total bandwidth on all four packages, but this is mentioned only for the sake of

completeness, since it does not fall in the context of the current work.

pChase:

pChase [15] is another memory performance benchmark, which measures performance and

latency for various access patterns. It is based on pointer accessing and offers randomized

access pattern and adjustable number of accessing threads, suitable to evaluate the random

access results given by our benchmark. Table 3.6 contains the results of pChase using the

random pattern it provides, limited to single core execution for all numbers of threads. The

size of each data chain accessed by the respective thread is decided similarly, e.g. on the 2

MB experiment with 1 thread, it uses one chain of 2 MB, with 2 threads, 2 chains of 1MB

etc.

39

 Bandwidth in MB/s

Size 1 Thread 2 Threads 3 Threads 4 Threads

128 KB 13,614 13,516 13,855 27,631

256 KB 10,490 13,530 13,661 13,650

1 MB 8,271 8,590 8,906 10,112

2 MB 8,412 8,454 8,396 8,526

3 MB 8,230 8,418 8,403 8,362

6 MB 8,109 8,219 8,375 8,371

12 MB 6,321 8,059 8,094 8,148

16 MB 4,100 7,342 7,753 7,748

32 MB 2,617 3,022 5,051 4,971

128 MB 2,582 2,561 2,570 2,571

Table 3.6

Same sizes results from table 3.4:

 Random Bandwidth (in MB/s)

Size (KB) Number of streams

 Single 2 3 4 5 6 7 8

128 13,338.1 25,752.9 32,380.9 45,031.1 51,441.2 57,905.7 60,786.1 60,495.0

256 5,159.4 12,021.0 17,085.2 15,610.3 28,707.0 27,694.8 37,751.7 33,450.9

1,024 3,511.0 6,889.5 10,096.4 11,238.6 16,100.2 18,861.7 21,470.7 23,936.6

2,048 3,438.2 6,754.8 9,902.0 12,878.3 15,765.5 18,448.3 20,999.1 23,431.1

3,072 3,176.7 6,141.9 8,869.7 11,299.8 13,396.5 15,162.7 16,488.7 17,100.0

6,144 2,934.9 5,553.1 7,601.0 8,881.5 9,404.8 9,559.7 9,490.4 9,410.6

12,288 2,711.5 5,137.0 6,614.4 7,175.2 7,262.5 7,253.5 7,220.6 7,152.4

16,384 1,137.5 2,169.8 3,349.6 3,947.2 4,892.8 5,460.4 5,982.0 6,235.1

32,768 647.8 1,267.9 1,873.9 2,449.4 3,032.1 3,582.1 4,092.2 4,542.0

131,072 589.5 1,154.6 1,691.2 2,203.5 2,625.0 2,908.9 3,032.1 3,062.2

It can be easily observed that the order of magnitude, comparing the results of the two

benchmarks, is the same for the sizes tested. However, increasing the number of streams in

pChase does not affect performance very noticeably for the vast majority of cases. A closer

look indicates that pChase for 128 KB, up to 3 threads, performs similarly to the 1-stream

variation of our benchmark, for 256 KB (for all number of threads) it is similar to the 2-

stream, up to 6 MB compares with the 3-stream and for the larger sizes it performs close to

the 4 or more streams. Additionally, pChase performance remains constant for all sizes in the

LLC range (less than 16 MB) for all number of threads. On the contrary, our benchmark’s

40

performance constantly degrades as size is increased, and increases with additional data

streams. Figure 3.14 features comparative performance of pChase and instances of our

benchmark using 1 up to 5 streams. Since no significant differences are noticed between

pChase thread numbers, average values were taken for the graph. It becomes apparent how

similarly the two programs perform.

Figure 3.14: Comparison with pChase

Once more, these observations suggest that the benchmark presented in this chapter has a

very predictable and consistent behavior and gives the user versatility to create a wide range

of contention levels.

3.3.2.2 Intel Dunnington architecture

The same series of tests were also conducted on Intel’s Xeon X7460 “Dunnington”. This

architecture, as mentioned before, features six cores (non hyper-threaded) per package, 32

KB instruction + 32 KB data L1 cache per core, 3 MB L2 cache, shared between core pairs,

16 MB L3 cache per package, no hardware prefetching.

The expected behavior of the benchmark remains mostly as described for the Sandy Bridge

processor, with performance being decreased when reaching the sizes of the L1, L2 and L3

caches. Because of the absence of memory bus hardware prefetchers, performance of

sequential pattern for larger data sizes is expected to be decreased and, accordingly, the

difference between random and sequential patterns should be reduced. Results for both

0.00

10,000.00

20,000.00

30,000.00

40,000.00

50,000.00

60,000.00

128 KB 256 KB 1 MB 2 MB 3 MB 6 MB 12 MB 16 MB 32 MB 128 MB

1 Stream

2 Streams

3 Streams

4 Streams

5 Streams

pChase

41

patterns are shown below, in tables 3.7 and 3.8, while complete results tables are in

Appendix.

 Sequential Bandwidth (in MB/s)

Size (KB) Number of streams

 Single 2 3 4 5 6 7 8

16 53,282.4 77,413.5 116,444.4 127,305.5 132,916.4 136,191.7 138,461.6 140,195.9

32 53,640.4 79,141.1 93,761.1 122,190.1 114,750.3 121,475.2 118,081.8 138,596.5

38 13,168.2 26,134.6 37,675.5 35,586.3 39,896.1 42,419.5 40,808.9 38,276.1

45 12,849.7 23,435.8 31,865.3 35,543.2 39,933.6 42,358.4 37,494.2 34,623.1

256 12,838.8 23,652.3 31,918.5 35,868.0 40,236.5 42,616.5 37,531.2 33,539.3

768 12,837.7 23,635.6 31,959.5 36,366.9 41,972.8 42,868.5 37,556.2 33,580.0

1,024 12,835.8 23,624.5 25,506.2 36,377.2 41,624.3 42,893.7 37,327.5 34,569.4

2,048 11,725.2 22,623.2 28,174.8 31,647.0 37,097.4 35,768.5 34,538.6 32,772.9

3,072 9,976.5 16,047.5 18,204.5 19,364.6 20,993.3 20,661.0 21,063.4 21,384.5

4,096 8,531.1 11,846.9 11,967.0 12,442.9 12,342.4 12,805.5 12,772.7 13,015.0

6,144 7,948.8 9,570.3 9,907.9 10,057.8 10,153.1 10,098.3 10,143.3 10,146.3

12,288 5,381.6 6,317.1 6,453.9 6,432.2 6,621.7 7,577.4 7,718.1 8,130.4

16,384 3,030.4 3,486.6 3,609.2 3,791.9 3,802.9 3,760.9 3,998.7 4,193.2

20,480 2,078.5 2,629.0 2,650.4 2,737.9 2,728.3 2,745.0 2,703.3 2,691.0

131,072 1,872.7 2,322.8 2,362.5 2,386.3 2,429.0 2,422.6 2,422.9 2,363.0

Table 3.7

 Random Bandwidth (in MB/s)

Size (KB) Number of streams

 Single 2 3 4 5 6 7 8

16 53,281.5 77,555.2 115,802.4 128,106.4 132,928.9 136,191.7 138,453.9 140,197.1

32 53,634.6 79,147.2 96,329.2 114,466.4 120,876.0 122,764.6 125,908.8 128,006.2

38 13,938.6 27,365.4 40,808.6 39,606.4 47,208.8 41,838.2 41,715.1 38,784.2

45 10,894.2 21,355.7 32,016.7 40,604.9 48,372.0 45,322.8 38,097.5 36,427.4

256 9,826.0 19,558.1 29,200.6 38,639.6 43,788.0 38,544.6 37,047.8 35,683.8

768 9,625.2 19,220.3 28,775.8 37,745.9 43,024.9 38,209.8 36,693.1 35,438.9

1,024 9,599.0 19,126.4 28,421.8 37,544.5 42,429.3 36,947.8 34,475.0 33,625.4

2,048 7,167.0 11,504.5 18,523.7 21,323.7 23,443.3 22,949.5 26,250.9 25,890.6

3,072 3,778.5 7,475.8 9,132.6 11,340.2 13,203.9 14,974.1 16,037.1 16,934.3

4,096 2,515.1 4,849.1 6,773.6 8,576.0 9,836.0 10,738.8 11,383.2 11,887.9

6,144 1,931.1 3,683.4 5,285.9 6,554.0 7,512.0 8,348.9 9,107.9 9,545.6

12,288 1,495.2 2,369.9 2,691.9 5,414.4 5,813.0 6,902.7 5,891.8 6,383.1

16,384 928.3 1,582.1 2,257.1 2,481.7 2,894.9 3,314.3 3,582.2 3,777.4

20,480 643.2 1,236.3 1,560.6 1,939.2 2,190.2 2,345.3 2,463.7 2,571.3

131,072 334.1 609.9 839.2 1,061.2 1,286.5 1,497.7 1,699.4 1,852.7

42

Table 3.8

A graphical representation of the data can be seen in figures 3.15 (sequential) and 3.16

(random)

Figure 3.15

Figure 3.16

0.00

20,000.00

40,000.00

60,000.00

80,000.00

100,000.00

120,000.00

140,000.00

160,000.00

1 4 8

1
6

2
4

3
8

5
6

8
5

1
2

8

2
5

6

5
1

2

1
0

2
4

3
0

7
2

6
1

4
4

1
0

2
4

0

1
2

2
8

8

1
4

3
0

0

1
6

3
8

4

3
2

7
6

8

6
5

1
3

6

1
3

1
0

7
2

Sequential Access

Single

2 Str

3 Str

4 Str

5 Str

6 Str

7 Str

8 Str

0.00

20,000.00

40,000.00

60,000.00

80,000.00

100,000.00

120,000.00

140,000.00

160,000.00

1 4 8

1
6

2
4

3
8

5
6

8
5

1
2

8

2
5

6

5
1

2

1
0

2
4

3
0

7
2

6
1

4
4

1
0

2
4

0

1
2

2
8

8

1
4

3
0

0

1
6

3
8

4

3
2

7
6

8

6
5

1
3

6

1
3

1
0

7
2

Random Access

Single

2 Str

3 Str

4 Str

5 Str

6 Str

7 Str

8 Str

43

Results in this architecture are, again, as predicted above. A huge performance drop is noted

when data size exceeds 32 KB (L1), followed by a second decrease while verging L2 size.

While being on the LLC size range, bandwidth continues to gradually decrease, for both

access patterns, until it finally gets stable for the largest size instances. As expected, the lack

of hardware prefetching results in much smaller differences between sequential and random

access, compared to the equivalent Sandy Bridge results.

Effects of ILP when increasing the number of data streams accessed are noticeable, similarly

to the Sandy Bridge Xeon, with a most notable example the steady 0.2-0.25 GB/s gain for

each additional stream on the largest sizes for the random access pattern.

STREAM:

Once again, STREAM was used to evaluate measured bandwidth and performance of the

benchmark on this architecture. Bandwidth measured with STREAM is shown in table 3.9

 Bandwidth in MB/s

 1 Core 2 Cores 3 Cores 4 Cores

Best 2,336 2,580 2,602 2,613

Size 2.2 GB 2.2 GB 2.2 GB 2.2 GB

Table 3.9

As seen above, performance of the two benchmarks is very similar, both measuring

maximum per-core bandwidth at 2.4 GB/s. The corresponding entries of table 3.7 follow:

 Sequential Bandwidth (in MB/s)

Size (KB) Number of streams

 Single 2 3 4 5 6 7 8

131,072 1,872.7 2,322.8 2,362.5 2,386.3 2,429.0 2,422.6 2,422.9 2,363.0

For completing the overall picture, it should be mentioned that maximum per-package

bandwidth, as measured by STREAM, is 2.6 GB/s, while overall bandwidth, utilizing all four

packages, was found to be 8.7 GB/s.

44

pChase

As before, in order to evaluate the random access pattern behavior the pChase benchmark

was used, running the same series of tests:

 Bandwidth in MB/s

Size 1 Thread 2 Threads 3 Threads 4 Threads

128 KB 11,780 12,493 12,335 35,800

256 KB 13,003 12,443 12,200 11,957

1 MB 13,026 13,022 13,000 13,003

2 MB 10,850 13,013 13,019 13,000

3 MB 5,838 12,556 12,907 12,904

6 MB 3,509 5,311 9,078 11,632

12 MB 2,383 3,395 3,744 5,222

16 MB 1,237 2,795 2,880 3,020

32 MB 807 804 815 811

128 MB 797 798 793 794

Table 3.10

Same sizes results from table 3.8:

 Random Bandwidth (in MB/s)

Size (KB) Number of streams

 Single 2 3 4 5 6 7 8

128 10,130.8 19,977.3 29,953.1 39,677.8 45,465.5 39,182.1 37,060.0 35,895.1

256 9,826.0 19,558.1 29,200.6 38,639.6 43,788.0 38,544.6 37,047.8 35,683.8

1,024 9,599.0 19,126.4 28,421.8 37,544.5 42,429.3 36,947.8 34,475.0 33,625.4

2,048 7,167.0 11,504.5 18,523.7 21,323.7 23,443.3 22,949.5 26,250.9 25,890.6

3,072 3,778.5 7,475.8 9,132.6 11,340.2 13,203.9 14,974.1 16,037.1 16,934.3

6,144 1,931.1 3,683.4 5,285.9 6,554.0 7,512.0 8,348.9 9,107.9 9,545.6

12,288 1,495.2 2,369.9 2,691.9 5,414.4 5,813.0 6,902.7 5,891.8 6,383.1

16,384 928.3 1,582.1 2,257.1 2,481.7 2,894.9 3,314.3 3,582.2 3,777.4

32,768 427.1 777.3 1,077.7 1,337.7 1,554.3 1,755.2 1,934.3 2,069.0

131,072 334.1 609.9 839.2 1,061.2 1,286.5 1,497.7 1,699.4 1,852.7

Similar to the previous architecture comparison, the bandwidth’s order of magnitude for the

two benchmarks is the same, with pChase being much less affected by additional data

streams and displaying a far narrower range of results. Figure 3.17 graphically shows pChase

bandwidth compared to instances of our benchmark

45

Figure 3.17

3.3.3 Class evaluation with performance counters

Finally, the hardware performance counters (provided by the Sandy Bridge architecture) were

used to confirm the benchmark’s application class (as described in chapter 2) for the various

size instances. Performance counters used for this evaluation were unhalted clock cycles

counter, instructions retired counter, per-core Bandwidth counter, L2 lines counter (data from

L3 to L2), L1 lines counter (data from L2 to L1), LLC misses counter, memory micro-

operations counter (mem_uops) and the total micro-operations (all_uops) counter. Mem_uops

counts retired micro-operations (loads and stores) to any part of the memory hierarchy, while

all_uops is total number of micro-operations. Usage of all other performance counters is

explained in chapter 4. Ratio

 shows if an application is memory-bound.

Table 3.11 shows the memory micro-operations ratio for a wide range of data sizes. (For the

last instances, the ones with the highest bandwidth were chosen, to maximize contention, thus

3 streams instance for the sequential pattern, and 8 streams for the random respectively).

0.00

5,000.00

10,000.00

15,000.00

20,000.00

25,000.00

30,000.00

35,000.00

40,000.00

45,000.00

50,000.00

128 KB 256 KB 1 MB 2 MB 3 MB 6 MB 12 MB 16 MB 32 MB 128 MB

1 Stream

2 Streams

3 Streams

4 Streams

5 Streams

pChase

46

 Memory micro-operations ratio

Size (KB) Pattern 1 Stream 2 Streams 4 Streams*

24 seq. 0.331 0.426 0.551

24 random 0.331 0.426 0.551

204 seq. 0.333 0.428 0.555

204 random 0.333 0.428 0.555

3072 seq. 0.333 0.429 0.556

3072 random 0.334 0.429 0.556

13107 seq. 0.333 0.429 0.555

13107 random 0.333 0.428 0.554

122880 seq. 0.332 0.428 0.499* *(3 Streams)

122880 random 0.333 0.427 0.686** **(8 Streams)

Table 3.11

As expected, memory micro-operations ratio is only affected by the number of accesses

(streams) and not the size of datasets. It can also be observed, that for all cases, ratio is over

0.25, confirming this benchmark is a memory-bound application, since all it does, after

dataset initialization, is accessing datasets.

To decide the application class of each instance, the decision tree described previously was

used (figure 3.18) with its parameters as follows: α = 7 GB/s, stands for 50% of maximum

memory bandwidth (in our case 14 GB/s), β = 0.35 GB/s is 2.5% of maximum memory

bandwidth, γ = 2 GB/s, δ = 0.25, ε = 1, as maximum IPC of this system is 4.

47

Memory Link Utilization

L LC

High
{Bin > α}

Medium
{β < Bin < α}

Cache Links Utilization

Low
{Bin < β}

Reuse Location
Memory-Latency Bound

High
{maxBin > γ}

Low
{maxBin < γ}

memuops/alluops > δ and IPC < ε

C N

yes no

C N

LLC Private Caches

Figure 3.18

Table 3.12 contains profiling metrics for the benchmark, as extracted with the

aforementioned performance counters (all bandwidth values in MB/s), for a variety of dataset

sizes and number of streams, along with each instance’s classification for this architecture in

N, C, LC, or L application classes using the classification scheme of figure 3.18. IPC is

calculated from the number of unhalted clock cycles and instructions retired, bandwidth

caused by LLC misses (LLC miss BW) from LLC misses counter.

48

Size, No. of streams Pattern IPC per Core BW L3 -> L2 BW L2 -> L1 BW LLC miss BW Class

204 KB, 1 Stream sequential 0.322 0 7.64 13061.92 0 N

204 KB, 1 Stream random 0.3352 0 9.77 13617.21 0 N

204 KB, 2 Streams sequential 0.6335 0 10.24 25705.43 0 N

204 KB, 2 Streams random 0.3594 0 8660.46 14580.69 0 C

204 KB, 4 Streams sequential 0.5238 0 16027.64 33992.71 0 C

204 KB, 4 Streams random 0.445 0 9268.86 28891.07 0 C

1.5 MB, 1 Stream sequential 0.2624 0 10650.38 10650.29 0 C

1.5 MB, 1 Stream random 0.0886 0 3594.82 3594.96 0 C

1.5 MB, 2 Streams sequential 0.4112 0 16639.6 16695.15 0 C

1.5 MB, 2 Streams random 0.1737 0 7049.35 7049.78 0 C

1.5 MB, 4 Streams sequential 0.3873 0 22946.76 25168.58 0 C

1.5 MB, 6 Streams random 0.2376 0 19288.74 19291.63 0 C

3 MB, 1 Stream sequential 0.2603 0 10588.67 10587.49 0 C

3 MB, 1 Stream random 0.081 0 3295.24 3544.97 0 C

3 MB, 2 Streams sequential 0.4073 0 16517.03 16565.68 0 C

3 MB, 2 Streams random 0.1568 0 6376.51 6865.18 0 C

3 MB, 4 Streams sequential 0.3837 0 22729.61 24983.86 0 C

3 MB, 4 Streams random 0.1795 0 11690.68 12575.37 0 C

13 MB, 1 Stream sequential 0.2269 1862.31 9168.62 9168.46 385.48 LC

13 MB, 1 Stream random 0.0428 330.38 1760.18 2536.42 330.4 C

13 MB, 2 Streams sequential 0.3628 3058.99 14639.19 14697.43 524.51 LC

13 MB, 2 Streams random 0.0804 621.71 3266.29 4753.77 621.71 LC*

13 MB, 4 Streams sequential 0.3217 3499.8 18861.3 20877.91 730.21 LC

13 MB, 8 Streams random 0.0764 1214.93 7098.76 10352.99 1215.33 LC

128 MB, 1 Stream sequential 0.1677 6753.77 6748.64 6754.1 1358.62 L**

128 MB, 1 Stream random 0.0149 604.06 943.6 1165.77 604.07 LC

128 MB, 2 Streams sequential 0.2802 11270.97 11094.01 11272.11 1244.91 L

128 MB, 2 Streams random 0.0293 1184.48 1831.94 2283.66 1184.51 LC

128 MB, 3 Streams sequential 0.2582 13851.04 12401.27 13866.71 1136.57 L

128 MB, 8 Streams random 0.0352 3245.13 5020.1 6259.44 3245.23 LC

Table 3.12

Notes:

* This instance could also be classified as C, strictly using the decision algorithm, but its

behavior suggests it is more a link-and-cache intensive application.

** Another marginal decision, could also be classified as LC, but it is mostly a link intensive

application, thus L is more appropriate.

49

It can be easily observed that applications of the same class can have different behavior, with

the most notable example being class C, which contains a large number of benchmark

instances. Applications in this class can have dataset sizes small enough to fit completely in

the cache, without being much affected by other programs sharing LLC, but as memory needs

increase they become more vulnerable to getting slowed down by other applications. This

happens because they need to use a large part of the cache and continuous cache data

replacements caused by other programs result in continuous LLC misses with the respective

data fetching time penalties, while programs with smaller datasets will have smaller penalties

as a result of fewer data replacements. High associativity of LLC (16-way for both

architectures) in conjunction with the unpredictable way OS memory management system

allocates datasets in memory pages explains why programs with datasets smaller than cache

size need to additionally use the memory link. The point up to which no need for main

memory utilization occurs is found (by observing and experimentation) at approximately

50% of cache size; programs with datasets smaller can practically fit entirely in the cache,

while larger have an –increasing with size– need to use the memory link as well. Utilization

of the main memory bus is low when there is no other program destroying cached data, but

when contention occurs, program’s behavior is forced to change, even into a different class.

All these expected effects are to be confirmed and further discussed in chapter 4.

Usage in co-execution

Given all the above observations, the benchmark’s results appear to be valid comparing it to

other well-known and widely used benchmark programs and, therefore, useful to estimate the

memory performance of a single core in a multi-core architecture. Additionally, it is

suggested that it can be used to cause variable contention, in all levels of the memory

hierarchy. Being solely a single-thread application, it gives users versatility to concurrently

execute various configurations on desired cores of the architecture, observing the effects of

contention for shared memory resources without being affected by synchronization or other

problems of multithreaded applications. Different instances of the program cover all classes

in the application classification scheme used in this work. Thus, it is possible to create a suite

of programs with different behavior to emulate memory-intensive applications (with various

levels of intensity) in order to study the effects of memory contention and application

behavior differences caused by it in MCP co-scheduling context.

50

Page intentionally left blank.

51

Chapter 4

Co-scheduling experimental evaluation

4.1 Co-scheduling on Intel Sandy-Bridge

4.1.1 Workload profile:

For co-scheduling tests, aiming to observe memory contention and its effects in all memory

hierarchy levels, a variety of memory intensive programs with different behavior was deemed

necessary. To achieve that, we opted for various configurations of the proposed memory

benchmark program, as described in chapter 3. In order to keep running time relatively stable

and predictable, as well as enough for providing sufficient performance data using the

architecture counters, we chose and tested for each instance a number of iterations that

ensures running time for about 1 minute. Data set sizes should be ranging from relatively

small, fitting in the private cache of a single core, to much larger than LLC. Specifically,

based on observations made and explained previously, we selected five dataset sizes:

 204 KB: Given that the Sandy-Bridge architecture we used has larger L2 caches (256

KB private), this size was selected to emulate applications reusing only small datasets,

but not fitting solely in private caches as low LLC utilization may occur. It has been

52

observed from random pattern benchmark performance that datasets can completely

fit in a cache level as long as dataset is smaller than approximately half of cache size

(see fig. 3.13). As a result, LLC utilization is additionally expected for these

instances. We named this category L2.

 1.5 MB: Although much larger than the L2 cache, datasets can very easily fit in the 16

MB L3 (LLC), even in the single-core dedicated 2.5 MB of the LLC. However, if

another program on an adjacent core is thrashing the cache, contention should become

very noticeable, making this size an interesting co-scheduling candidate. This

category was named L3s (L3 small).

 3 MB: Benchmarks using this dataset size are excessively reusing LLC but do not

need to utilize main memory link at all. Being co-executed with another program with

larger datasets, however, it is very likely that it will be noticeably affected and forced

to use the memory link as well. Thus it appears as another interesting dataset size for

experimentation. This size category was named L3m (L3 medium).

 13 MB: Datasets of 13 MB do not fit in the LLC (due to high associativity, although

being less than 16 MB), with low need to constantly use the memory link as well. Co-

executing an instance of this size with any other program is expected to alter the

behavior of both, and increase the demand for memory link utilization. We named this

category L3l (L3 large).

 128 MB: Finally, a size category not fitting in the caches, 8 times larger than LLC,

demanding continuous use of the memory link and, potentially, being able to be

thrashing the cache for any other program co-executed. We named it MEM (Memory).

Having decided different data sizes to be used with sequential and random access patterns, it

was also desired to create variation in the memory resources demand for each size and

pattern. It was observed, while evaluating the benchmark, that increasing the number of data

streams exploits ILP and causes increased benchmark performance and, consequently,

increased memory use demand, as is shown by memory micro-operations ratio in table 3.11

and benchmark results (tables A.1.a and b). Thus it was decided to create three variations for

each size and pattern combination: 1 stream-, 2 stream- and max stream-instances.

Single stream instances utilize a single data structure and cause less cache replacements, but

also have lower performance since only a single element access occurs in each iteration of the

inner loop. Additionally 1-stream programs are expected to be experiencing longer delays

53

since they are practically depending on a single memory access; if this access is delayed due

to contention in memory resources, the program must only wait (stall) until requested data is

fetched, while in more, independent accesses implementations next instructions and,

consequently, new memory requests can be issued in this waiting time. Dual stream

variations, as explained and shown previously, can display even double performance

compared to the 1-streamed and were found suitable for increased -but not maximized-

memory resources demand.

For the final set of variations, the objective was to maximize (or at least keep at a high level)

memory utilization without causing “self-contention”. As seen in tables with benchmark

results, when increasing the number of streams for larger datasets, performance starts to

degrade because of contention caused by the programs’ data structures continuously

replacing each other in the caches. This, as mentioned before, happens because of the way

memory management system allocates data into memory pages, which is unpredictable and -

in contrast with an ideal scenario, where all data would be allocated continuously on a page-

causes frequent cache replacement conflicts, which increase as the number of structures

accessed increases –since they are allocated on different areas of the memory. To avoid this

phenomenon, we picked the sequential variation with maximum performance for the 128MB

(MEM) category, which was the 3-stream instance. For all other sizes, using 4 streams for the

sequential pattern was found sufficient (despite not having strictly maximum performance in

all cases), in order to utilize the 4 memory bus channels, provided by the architecture. Four

streams are also sufficient for the majority of the random pattern benchmarks max-stream

instances, although the previously described “self-contention” does not occur because of the

pattern’s random nature. Exception is the 128 MB (MEM), in which we used 8 streams to

maximize bandwidth caused by LLC misses, and the 1.5 MB (L3s) instance, in which 6

streams were used, having the maximum combination of bandwidth and bandwidth-per-

stream ratio.

Using the benchmark in the aforementioned configurations, we created a suite of 30 programs

with the desired characteristics, covering all application classes (see table 3.12), shown

below, in table 4.1.1:

54

 Sequential pattern

Category size Category name Variations

204 KB L2 1, 2, 4 Streams

1.5 MB L3s 1, 2, 4 Streams

3 MB L3m 1, 2, 4 Streams

13 MB L3l 1, 2, 4 Streams

128 MB MEM 1, 2, 3 Streams

 Random pattern

Category size Category name Variations

204 KB L2 1, 2, 4 Streams

1.5 MB L3s 1, 2, 6 Streams

3 MB L3m 1, 2, 4 Streams

13 MB L3l 1, 2, 4 Streams

128 MB MEM 1, 2, 8 Streams

Table 4.1.1

For convenience, a standard name formatting was chosen to name each of the instances

above, consisting of three parts: category name, number of streams, and access pattern. For

example, a 13 MB, 2 stream sequential benchmark is abbreviated as L3l_2Str_seq, while the

128 MB, single stream random access instance is named MEM_1Str_rdm. Workload

classification according to preliminary standalone execution is shown in table 4.1.2 below:

Task Pattern Class Task Pattern Class Task Pattern Class

L2_1Str seq N L3s_4Str seq C L3l_2Str seq LC

L2_1Str rdm N L3s_6Str rdm C L3l_2Str rdm LC

L2_2Str seq N L3m_1Str seq C L3l_4Str seq LC

L2_2Str rdm C L3m_1Str rdm C L3l_4Str rdm LC

L2_4Str seq C L3m_2Str seq C MEM_1Str seq L

L2_4Str rdm C L3m_2Str rdm C MEM_1Str rdm LC

L3s_1Str seq C L3m_4Str seq C MEM_2Str seq L

L3s_1Str rdm C L3m_4Str rdm C MEM_2Str rdm LC

L3s_2Str seq C L3l_1Str seq LC MEM_3Str seq L

L3s_2Str rdm C L3l_1Str rdm C MEM_8Str rdm LC

Table 4.1.2

55

4.1.2 Experimental procedure

Our objective was to study how application behavior changes when contention on shared

memory resources takes place. All programs of the table above were co-executed in pairs in

all possible combinations, using adjacent cores of the same package. Scaff’s infrastructure

was used for co-execution and performance metrics, without a need for specific scheduling

policy, since the only requirement was concurrent but independent execution of two

applications on two cores, with no cpu-time sharing demand.

The first step was to execute each application of the suite independently on a single core

(core 0, first of the package). This procedure let us store performance counters data of each

benchmark instance running alone, as a reference point for comparison with the respective

data from co-execution. Performance data collected shows the application’s behavior in terms

of execution and memory resources usage. IPC (instructions per cycle), a very important

index for a program’s execution, can be extracted from the performance counters as the ratio

of instructions retired counter and unhalted clock cycles:

 . Higher IPC generally

means an application is utilizing more CPU resources, staying in private parts of the core

with little or no interaction with memory resources (e.g. calculation intensive), as memory

operations are slowing the program down even in the L2. Thus, all of the benchmark

instances have IPCs much lower than 1, as presented already in chapter 3. Other counters

used are:

 LLC misses: From this number we can measure bandwidth caused by LLC misses, as

each miss means fetching a new line (64 bytes) into the cache. Bandwidth in

Bytes/sec is

 where T is the period of time during which the misses were

measured.

 L1 lines: This counter show how many lines were transferred from L2 to L1 cache for

a time period T. Knowing line size (64 bytes) and T, we can calculate bandwidth used

between L2 and L1 as

 (in B/s).

 L2 lines: Similarly, this is the number of lines transferred in L2 from the LLC in time

T. Thus, L3 to L2 bandwidth is

 (in B/s).

56

 Per core bandwidth: Data (in 64B lines) fetched from the memory bus, from the

requests and misses of the specific core in time T. It can also be noted as L3

bandwidth and is calculated as

 in B/s.

 Bandwidth: This is total socket bandwidth (again in lines), for all cores of the package

in time T. It is similarly converted in B/s via

 .

 Power: Core power consumption in Watts, a fixed counter that we will not use in this

work.

4.1.3 Preliminary evaluation

Table 4.1.3 (same as 3.12) contains performance data from all instances being executed alone

with scaff on cpu0.

Instance IPC package BW per Core BW L3->L2 BW L2->L1 BW LLC miss BW

L2_1Str_seq 0.322 25.83 0 7.64 13061.92 0

L2_1Str_rdm 0.3352 25.82 0 9.77 13617.21 0

L2_2Str_seq 0.6335 25.82 0 10.24 25705.43 0

L2_2Str_rdm 0.3594 25.81 0 8660.46 14580.69 0

L2_4Str_seq 0.5238 25.76 0 16027.64 33992.71 0

L2_4Str_rdm 0.445 25.74 0 9268.86 28891.07 0

L3s_1Str_seq 0.2624 25.89 0 10650.38 10650.29 0

L3s_1Str_rdm 0.0886 25.99 0 3594.82 3594.96 0

L3s_2Str_seq 0.4112 25.91 0 16639.6 16695.15 0

L3s_2Str_rdm 0.1737 25.86 0 7049.35 7049.78 0

L3s_4Str_seq 0.3873 25.73 0 22946.76 25168.58 0

L3s_6Str_rdm 0.2376 26.09 0 19288.74 19291.63 0

L3m_1Str_seq 0.2603 25.84 0 10588.67 10587.49 0

L3m_1Str_rdm 0.081 26.08 0 3295.24 3544.97 0

L3m_2Str_seq 0.4073 26.31 0 16517.03 16565.68 0

L3m_2Str_rdm 0.1568 25.82 0 6376.51 6865.18 0

L3m_4Str_seq 0.3837 26.21 0 22729.61 24983.86 0

L3m_4Str_rdm 0.1795 25.91 0 11690.68 12575.37 0

L3l_1Str_seq 0.2269 1900.43 1862.31 9168.62 9168.46 385.48

L3l_1Str_rdm 0.0428 359.08 330.38 1760.18 2536.42 330.4

L3l_2Str_seq 0.3628 3096.99 3058.99 14639.19 14697.43 524.51

L3l_2Str_rdm 0.0804 657.78 621.71 3266.29 4753.77 621.71

L3l_4Str_seq 0.3217 3533.06 3499.8 18861.3 20877.91 730.21

L3l_4Str_rdm 0.0764 1247.52 1214.93 7098.76 10352.99 1215.33

57

MEM_1Str_seq 0.1677 6815.18 6753.77 6748.64 6754.1 1358.62

MEM_1Str_rdm 0.0149 631.25 604.06 943.6 1165.77 604.07

MEM_2Str_seq 0.2802 11340.09 11270.97 11094.01 11272.11 1244.91

MEM_2Str_rdm 0.0293 1213.4 1184.48 1831.94 2283.66 1184.51

MEM_3Str_seq 0.2582 13932.8 13851.04 12401.27 13866.71 1136.57

MEM_8Str_rdm 0.0352 3284.2 3245.13 5020.1 6259.44 3245.23

Table 4.1.3

For the co-scheduling experiment, application pairs were executed in the first pair of cores

(cpu 0 and 1) in the package. Each application was co-run with every other, including itself,

resulting in a number of 465 execution pairs. Performance data was stored for each

application in all co-scheduled pairs. The primary index observed is application slowdown,

which is calculated by the ratio of IPC of an application when executed alone and its IPC

during co-execution:

. As a result, slowdown 1 means no slowdown, 2 means

double execution time etc.

4.1.4 Results estimation

In the next paragraphs, we will discuss expected behavior of execution pairs, according to the

contention prediction scheme presented in Ch. 2, based on application classification [5].

 N – All: As long as processes are running on different cores (which is always the case

in this work), most N class applications are not expected to interfere with other

programs since they are not sharing resources. However, in some cases programs with

very low LLC usage, which are classified as N, may be slowed down if another

program is continuously swiping cache data (e.g. from L class). This slowdown case

is still expected to be far less than 2.

 C – C: Class C displays the greatest variation in application behavior. As discussed

previously, some applications are more vulnerable to be slowed down by interference

from other programs than others. Depending on working set size, a pair of C class

processes may be using a very small part of LLC, in which case no contention occurs,

up to all of the L3 and with need for continuous data replacement. In the latter case,

application behavior changes from C to LC and slowdown is significant, as every

replacement results in memory fetching penalty. Between those two extreme cases, a

lot of intermediate combinations can occur, for which contention and its effects are

58

generally expected to be low. (Paper: cache organization and replacement policies are

expected to handle high activity from different applications on the shared LLC).

 C – LC: In this scenario, there is potential contention on the LLC, which is expected

to mostly affect the C member of the pair. This effect is expected to be maximized

when a C with a relatively large working set and random pattern –which is memory

latency bound, if forced to act like an LC by constantly having its data wiped out of

the cache– conflicts with a streaming LC instance that keeps replacing data. Moderate

slowdown may occur in this case. In the majority of cases, however, low contention

with mostly unnoticeable effects for the LC processes is expected, while C’s,

especially the vulnerable ones using larger datasets, may be slowed down, but not

dramatically.

 C – L: Another class pair in which a wide range of results is expected, as the two

classes have intense activity in different levels of the hierarchy. L applications are not

expected to be affected. However, an L instance streaming data in the cache at a very

high rate can excessively slow down a C application with heavy cache reuse, by

destroying its dataset and forcing it to continuously use the memory link as well, like

an LC application. Especially if the access pattern is latency bound, as is the case for

random benchmarks that cannot take advantage of prefetching, we expect to see the

highest slowdown compared to all other tests.

 LC – LC: In this co-execution scenario, medium contention is caused on both levels

of the hierarchy –bus and cache– on which these applications display significant

activity. Moderate slowdown effects (around 2) are expected in the worst case, since

instances of this class do not stress memory link to its limits, thus it can serve the

augmented number of requests caused by cache contention, with processes wiping out

each other’s data. Other instances may not face any interference, if they are not

heavily reusing cache.

 LC – L: Memory link contention may occur in this combination, affecting both sides

noticeably but not significantly. Although slowdown from memory link increased

demand is not dramatic, LC applications with heavy cache reuse and latency-bound

pattern suffer from L instances’ cache thrashing, along with memory bus competition,

accumulatively causing higher slowdown. In cases were the L process does not stress

memory bus at such high level, slowdown is expected to be lower.

59

 L – L: Worst case in this co-scheduling pair of L’s competing for the memory link is

slowdown about 2, as bandwidth is shared (not necessarily equally) between them. In

this architecture it is expected to be even lower, as maximum package bandwidth is

measured at 18 GB/s, while a single core can have 14 GB/s. These details will be

further discussed along with the results from performance counters. Applications do

not share any other memory resource, since they are thrashing the cache even in solo

execution and don’t have need for data reuse.

4.1.5 Results

Data gathered from all co-execution tests will be presented, along with more detailed analysis

for some interesting examples, to evaluate and further discuss the validity of the previously

described prediction model. In all tables presented below, each line contains slowdown of the

program in the first cell of the row, caused by co-execution with the program on the title of

each column, for instance:

 L2_1Str_seq L2_1Str_rdm L2_2Str_seq

L2_1Str_seq 1.038 1.000 1.000

In this example table slowdown suffered by L2_1Str_seq is shown, when it was co-scheduled

with itself, L2_1Str_rdm and L2_2Str_seq respectively. Additionally, increasingly dark cell

background for higher slowdown values facilitates visual detection of high contention

scenarios.

For many cases, results may vary for the same experiment repeated more times, since there is

dependency on factors that cannot be controlled in user-level, such as data allocation on

memory pages by the OS, potentially causing more or fewer data replacements – and varying

slowdown as a result – in one experiment that may not occur in a later repetition of the same

test. This also explains slowdowns and cache conflicts that occur in cases with small working

sets, where theoretically both programs should completely fit in a small part of the cache.

N – N

As expected, in most cases no important slowdown is noticed. According to our initial

classification N-N co-execution scenarios are the ones in table 4.1.4.

60

 L2_1Str_seq L2_1Str_rdm L2_2Str_seq

L2_1Str_seq 1.038 1.000 1.000

L2_1Str_rdm 1.493 1.398 1.001

L2_2Str_seq 1.001 1.180 1.105

Table 4.1.4

If dataset sizes used were smaller (less than 128K), no slowdown at all would occur.

L2_1Str_rdm appears to be more vulnerable to slowdown. Further examination of

performance counters reveals that almost all co-execution scenarios force this instance to

higher LLC utilization; running alone it uses much less than 1GB/s L3-to-L2 bandwidth (in

the order of tens of MB/s). In almost all co-scheduling tests this number increases to several

GB/s, explaining the constant –up to 1.5– slowdown displayed, as it acts more like a C class

application (even with some MB/s main bus utilization in extreme cases, caused by LLC

misses).

However, runtime behavior alterations in co-scheduling context also occur for other

instances: L2_2Str_rdm, L2_2Str_rdm, L2_2Str_rdm benchmarks’ performance counters when

executed alone, indicate relatively high LLC reuse and suggest C classification. Despite that

fact, in most co-execution tests –and for all repetitions of the respective experiments–,

performance counters have shown that LLC-to-L2 bandwidth used has been reduced, while

L2 utilization becomes more intense, as in typical N class behavior, and thus IPC increases,

since L2 is much faster. This phenomenon results in application speedup as IPC slowdown

ratio is lower than 1 and, consequently, execution time is lower. All these speedup cases are

marked in yellow in all following result tables. It is safe to assume that for most co-execution

scenarios, these applications can also be classified as N, a fact confirmed by actual

performance data. Their working set sizes (2x101KB or 4x51KB) suggest that it is unlikely

for cached data to suffer continuous contamination by a larger streaming application. The

new N – N co-execution results are shown in table 4.1.5.

 L2_1Str_seq L2_1Str_rdm L2_2Str_seq L2_2Str_rdm L2_4Str_seq L2_4Str_rdm

L2_1Str_seq 1.038 1.000 1.000 1.000 1.000 1.001

L2_1Str_rdm 1.493 1.398 1.001 1.001 1.001 1.001

L2_2Str_seq 1.001 1.180 1.105 1.004 1.002 1.001

L2_2Str_rdm 0.884 1.036 0.885 0.809 0.740 0.757

L2_4Str_seq 0.917 0.938 0.922 0.887 0.847 0.756

L2_4Str_rdm 0.643 0.641 1.010 0.647 0.947 0.978

Table 4.1.5 : N-N slowdown

61

It is apparent that, with the exception of the L2_1Str_rdm instance, no slowdown occurs in any

case, with speedup effect discussed in the previous paragraph.

N – All

All L2 size programs cause no slowdown to any other program of any class, confirming

preliminary estimations. Additionally they are not affected by other applications in almost all

cases. L2_1Str_rdm benchmark’s behavior is different, and it is classified as a C class program

when co-run, hence it will not be included with N’s. Speed-up phenomena for the three last

applications are present in almost all experiments. In only a few cases with L3 or memory

link intense streaming applications IPC ratio was slightly over 1. Slowdown effect averages

for N co-execution with other classes are shown below:

Class Co-runner class

 N C LC L

N 1.00 1.02 1.10 1.07

C – C

C class contains more applications than any other, yet in all experiments no major

interference was noted between C processes. Results for the vast majority of experiments

were very near or equal to 1. Only the L3l random instance, having the largest working set

and which can be marginally classified also as LC, suffered minor slowdown due to

competition in LLC utilization when executed with instances with more streams, accessing

data more intensely. Figure 4.1.1 shows average slowdown for all other applications in the

class and this instance alone. Average slowdown effect noticed was found 1.06.

62

Figure 4.1.1

C – LC

Low to unnoticeable delay was observed for most tests of this class co-execution. Instances

affected were random pattern benchmarks of C class, slowed down by streaming LC

instances.

L3l_1Str_seq L3l_2Str_seq L3l_4Str_seq

L3s_1str_rdm 1.018 1.034 2.718

L3m_1Str_rdm 2.903 2.765 2.842

L3m_2Str_rdm 1.045 2.830 2.936

Table 4.1.6: C instances slowdown by LC

As it can be seen, increasing the number of accessing streams results in more intense cache

data replacements. The L3s instance has a working set small enough to avoid being wiped

from LLC, when being run concurrently with the –not so intense– single and 2-stream L3l

programs. Counters show ~5000 LLC misses/sec causing a very low ~300KB/s bandwidth,

while LLC-to-L2 bandwidth is 3.5 GB/s, very close to its solo performance. However, the 4

stream L3l program, making more access requests, is much more destructive for cached data

and forces the previously unaffected L3s application in ~8.4 million misses/sec, resulting in

an additional 500MB/s main memory bandwidth, while L3 reuse bandwidth has reduced to

0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6

C average

L3l_1Str_rdm

63

1.3 GB/s. As expected, since the program only does memory accesses and solely depends on

them, the ratio of L3-to-L2 bandwidth in the two cases is equal to slowdown (

),.

This example was explained in more detail in order to better demonstrate how contention

practically affects a program’s execution.

Average slowdown suffered by C applications was 1.27. LC classes were mostly unaffected

as well, suffering unnoticeable slowdown for the vast majority of experiments, averaging

1.06. Again, pre-experiment estimations are confirmed.

C – L

As predicted, results in this section ranged from unnoticeable effects to excessive slowdown

for C applications. The 3-stream sequential MEM benchmark uses almost the maximum

available bandwidth; as a result it can wipe cached data at nearly the highest possible rate.

For some C programs this can be disastrous, especially for random pattern instances that

can’t use the prefetchers.

MEM_1Str_seq MEM_2Str_seq MEM_3Str_seq

L3s_1str_rdm 1.023 1.029 8.204

L3m_1Str_rdm 5.063 5.956 7.642

L3m_2Str_rdm 1.029 5.723 6.908

L3m_4Str_rdm 1.022 1.026 6.575

L3l_1Str_rdm 2.779 3.101 3.891

Table 4.1.7: Random pattern C instances suffering excessive slowdown by L

Sequential and more intense (with more streams) C processes suffered very limited slowdown

effects, taking advantage of prefetchers and the memory link’s 4-channel parallelism. C class

average slowdown was 2.15.

L programs, as expected, were not affected at all.

LC – LC

Medium contention occurred in this scenario resulting in varying results, from unnoticeable

up to moderate slowdown. Figure 4.1.2 shows all results in this section. Average slowdown

was 1.34

64

Figure 4.1.2: LC instances slowdown

LC – L

Predicted behavior is again confirmed here. LC programs are affected and delayed

increasingly, as streams of L applications increase, and consequently the rate of cache data

replacement. Figure 4.1.3 shows this effect and how slowdown increases uniformly for all

instances. Average LC slowdown was 1.76.

Figure 4.1.3: LC instances slowdown by L streaming programs

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

L3l_1Str_seq

L3l_2Str_seq

L3l_2Str_rdm

L3l_4Str_seq

L3l_8Str_rdm

MEM_1Str_rdm

MEM_2Str_rdm

MEM_8Str_rdm

1.0

1.5

2.0

2.5

3.0

3.5

4.0

MEM_1Str_seq MEM_2Str_seq MEM_3Str_seq

L3l_1Str_seq

L3l_2Str_seq

L3l_2Str_rdm

L3l_4Str_seq

L3l_8Str_rdm

MEM_1Str_rdm

MEM_2Str_rdm

MEM_8Str_rdm

65

L applications were mostly delayed by streaming L3l instances, which were forced to utilize

much more main memory bandwidth due to the same L thrashing the cache, resulting in

medium memory link contention, with maximum L slowdown near 1.5 and average 1.12

Behavior of these LC instances becomes similar to that of L class. For example if we inspect

performance counters data for the L3l_4Str_seq co-execution with MEM_3Str_seq, it can be

seen that memory link bandwidth utilization has increased more than 2x, from 3.5GB/s to

8.5GB/s, changing the program’s behavior to class L. Such class behavior switches occur in

many cases, a result of contention.

Figure 4.1.4: L instances slowdown, co-run with LC

L – L

In this scenario, memory link-only contention occurs, that results in moderate slowdown:

1.0

1.1

1.1

1.2

1.2

1.3

1.3

1.4

1.4

1.5

1.5

MEM_1Str_seq

MEM_2Str_seq

MEM_3Str_seq

66

Figure 4.1.5: L-L class slowdown

Maximum slowdown is slightly over 1.5 for a pair of intensely streaming benchmarks. Data

from performance counters can be used to explain this. On preliminary execution of the

program (MEM_3Str_seq) maximum bandwidth noted was ~13.9 GB/s, very close to the

system’s per-core maximum. Performance data from co-execution indicate that one instance

was using 8.4 GB/s, while the other was using 9.6 GB/s. This means maximum per-socket

bandwidth can reach 18 GB/s and average bandwidth for a pair of applications competing for

the memory bus is 9 GB/s. As our benchmark is exclusively memory bound, the ratio of

bandwidth in solo execution and when sharing the memory link equals slowdown, in this case

 , which is exactly the result of IPC ratio as well. On a system with equal per-core

and per socket maximum bandwidth, average for this situation would be 2, with worst case

being slightly over 2, as applications do not share the bus equally and one may use less than

half bandwidth.

Overview

Assumptions made in the co-scheduling estimation model described were confirmed.

Application behavior was generally as predicted. It was confirmed that shared resources

contention may cause change in application behavior, moving it to another class. The

phenomenon, in which applications with small enough datasets to fit in private cache often

performed as C class processes when executed solo, but co-scheduled with another

application they shifted into N class, resulting in speedup effect, was also noticed. Apart from

this exception, it was observed that contention situation in shared resources can potentially

1.0

1.1

1.2

1.3

1.4

1.5

1.6

MEM_1Str_seq MEM_2Str_seq MEM_3Str_seq

MEM_1Str_seq

MEM_2Str_seq

MEM_3Str_seq

67

cause significant change in an application’s behavior in co-execution context, moving it to a

more memory demanding class, like, for example, from LC to L or from C to LC.

Overall co-scheduling scenarios interference is shown in table 4.1.8, which contains all class

co-execution slowdown averages:

Class Co-runner class

 N C LC L

N 1.00 1.02 1.10 1.07

C 1.00 1.06 1.27 2.15

LC 1.00 1.06 1.34 1.76

L 1.00 1.00 1.12 1.30

Table 4.1.8: Average class slowdown

4.2 Co-scheduling on Intel Dunnington

4.2.1 Workload profile

For experiments on this architecture we needed an altered set of applications, to expose the

effects of co-execution caused shared by memory contention on this different memory

hierarchy scheme. Except for the shared 16 MB LLC, pairs of cores also share 3 MB of L2.

This makes the choice of cores executing the task inside the package much more significant.

Again, we aimed for about 1 minute solo execution time for all instances. Dataset sizes were

selected to cover the following range:

 1 MB: Can fit in the 3MB L2, but if contention occurs caused by another application

on the adjacent core, sharing the L2, utilization of LLC is also expected. The

difference between co-execution scenarios, utilizing shared L2 or shared LLC only, is

expected to be noticeable. This size class was named L2s (L2 small)

 2 MB: Datasets cannot completely fit in L2 (because of associativity) and benchmarks

of this size are expected to intensively utilize LLC in co-execution, especially when

run on a pair of cores with shared L2. This size class was named L2m (L2 medium)

 3 MB: This dataset class is expected to use both L2 and LLC intensively. Thus it is

very likely for these benchmark instances to be largely affected by applications

making extended use or thrashing the caches. We named this class L2l (L2 large).

68

 6 MB: Benchmarks using this dataset size can rely on LLC when executed alone, but

when another program also needs to use a significant part of the cache, contention is

very likely to cause slowdown and the need to use the memory link as well. These

instances also thrash L2 caches for other applications when executed on adjacent

cores. Class name is L3s.

 15 MB: Cannot fit in cache but makes very intense re-use, making it vulnerable to

excessive slowdown, when co-scheduled with a program that also makes use of the

LLC or continuously destroys its data. We named this category L3l.

 128 MB: Similar to the previous architecture, datasets much larger than LLC cause

the need for continuous memory bus use and cached data replacements, affecting all

other programs being executed. Class was named MEM.

As with Sandy Bridge architecture procedure, to create varied memory requests and

bandwidth utilization needs, three instances were used for each size class and pattern

combination, 1- 2- and max-streams. For max-stream variations, five streams were selected

for all class sizes, sequential pattern instances since results indicate that memory bandwidth

utilization is maximized using this configuration. Using more datasets, previously described

self-contention starts to occur. For random instances 8 streams were used, since the

aforementioned effect does not occur in this access pattern.

Table 4.2.1 contains all instances used for co-scheduling experiments, a total number of 36.

The same standard name formatting was followed.

 Sequential pattern

Category size Category name Variations

1 MB L2s

1, 2, 5 Streams

2 MB L2m

1, 2, 5 Streams

3 MB L2l

1, 2, 5 Streams

6 MB L3s

1, 2, 5 Streams

15 MB L3l

1, 2, 5 Streams

128 MB MEM 1, 2, 5 Streams

69

 Random pattern

Category size Category name Variations

1 MB L2s

1, 2, 8 Streams

2 MB L2m

1, 2, 8 Streams

3 MB L2l

1, 2, 8 Streams

6 MB L3s

1, 2, 8 Streams

15 MB L3l

1, 2, 8 Streams

128 MB MEM 1, 2, 8 Streams

Table 4.2.1

For this suite of applications on Dunnington architecture, there are no N class members, since

the only private cache is L1. Classification is as follows:

− Class L: all three MEM size, sequential access instances and MEM_maxstr_rdm

− Class LC: The two remaining MEM size, random access instances, all -five, with the

exception- L3l, both pattern instances, except the single stream random benchmark

(L3l_1Str_rdm), which is on the margin between C and LC classes, a total of 7 -or 8

with L3l_1Str_rdm- applications.

− Class C: all other programs.

However, if co-executed on cores not sharing L2 but only LLC, some benchmark instances,

mentioned in the following paragraphs, are expected to act as N and will be noted as C (N).

4.2.2 Preliminary evaluation and experimental procedure

Co-scheduling tests on this architecture aim, again, to observe slowdown effects caused by

contention on the memory hierarchy. This system’s characteristics may affect the general

model described in 4.1.4, particularly due to low memory bus performance, that results in

much lower cache wiping pace compared to the previously tested Sandy Bridge system and

other, more recent implementations.

Benchmark instances were co-executed in all possible pairs. To better understand and

demonstrate slowdown caused by contention on shared resources, two identical series of co-

scheduling tests were conducted, the only difference being the choice of hardware cores. To

determine the slowdown effect for these series of experiments, the execution time was used.

All programs were timed in single execution with scaff, and time measured for each was used

70

to divide its co-execution time in an experiment to calculate the corresponding slowdown

ratio: slowdown =

 .

The first series of co-execution experiments were run on core 0 and core 2 of the first

package (package0, cores cpu0 and cpu1, as named by the Linux kernel). This configuration

enables us to observe performance degradation caused by contention on LLC and the main

memory bus, as the cores selected do not share L2 and so, in the absence of additional

workload, can use the 3 MB L2 without other programs replacing cached data. Due to this

fact, L2s and some L2m instances are expected to act like N class processes, with minimum

or zero interference.

On the next round of tests, cores 0 and 1 were chosen (cpu0 and cpu12 Linux kernel devices),

which share L2. Thus, on this configuration, contention is likely to occur on 3 levels of the

hierarchy, L2, LLC and main memory link, potentially causing excessive slowdown.

Interference in cache utilization between programs is expected to occur even with small L2

instances and as working set sizes increase, congestion in all 3 levels of shared memory

resources are expected to cumulatively cause delays in program execution.

4.2.3 Results estimation

Application class interaction in co-scheduling scenarios is generally expected as described in

4.1.3, but with some additional remarks:

 N – *: There are no strictly N classified applications in our testing suite. However, in

a non-shared L2 scenario some may behave similarly with N and will be discussed

further.

 C – C: As explained in 4.1.4, this scenario is probably the most complex to estimate,

even when only one level of cache is shared. Moderate slowdown (generally below 2)

is expected in this case. If L2 is also shared, effects are expected to be higher, even

when both applications have small working sets, causing L2 conflicts and forcing

each other to higher LLC utilization. With larger working sets, dual competition is

likely in L2 and L3, potentially resulting in high slowdown.

 C – LC: This scenario is expected to mostly affect C instances. However because of

the specific system’s single, low performance memory bus, additional contention

phenomena may occur as behavior of C instances with larger working sets is forced to

71

become more LC-like. When sharing L2, slowdown could potentially be multiple, as

an LC application can continuously replace data in both L2 and L3. Bandwidth

between L2 and LLC is much higher than main memory bandwidth and also

prefetching mechanisms exist in this level, thus a relatively large benchmark with

streaming pattern may thrash cache data, forcing the co-executed program to

constantly request data from memory.

 C – L: Streaming L instances are very likely to cause high slowdown to C

applications by constantly wiping cached data and forcing them to pay highly

increased number of miss penalties. Again, test results will show how low memory

link performance may affect this estimation. In shared L2 execution slowdown is

estimated to be much higher, as programs have their cached data continuously

destroyed in 2 levels.

 LC – LC: Applications demand use of both memory link and cache, resulting in

moderate contention on both levels, with significant slowdown for some scenarios.

Memory bus performance could be a considerable factor. For the reasons described

previously, -on C-L and C-LC cases- slowdown is expected to greatly increase when

L2 becomes shared.

 LC – L: Both classes will be affected, as explained previously, since they need to

share the memory link. Additionally, L applications may also replace cache data,

causing more slowdown to LC instances.

 L – L: This case remains simple, even with L2 sharing, contention will only occur for

memory link and programs do not rely on cache reuse.

4.2.4 Results

4.2.4.1 Co-scheduling with no L2 sharing

C (N) applications

A small subset of programs, with relatively small working sets, can be executed relying

almost only on level 2 cache. These applications, judging from performance and size, are all

L2s instances, while sequential L2m instances are on the margins of classification criteria.

Testing behavior confirmed that these instances do not interfere with each other when

executed on different cores, not sharing L2. Average slowdown was found 1.03, with the vast

72

majority of cases found at 1.00 and maximum slowdown slightly above 1.1. Additionally,

slowdown caused by this subset to all other programs was very low, as will be further

explained.

A part of these tests section results is presented below:

 L2s_1Str_seq L2s_1Str_rdm L2s_2Str_seq L2s_2Str_rdm

L2s_1Str_seq 1.000 1.051 1.087 1.103

L2s_1Str_rdm 1.001 1.001 1.035 1.051

L2s_2Str_seq 1.000 1.000 1.001 1.015

L2s_2Str_rdm 1.001 1.001 1.001 1.001

Table 4.2.2

C – C

Low to moderately high slowdown is noticed on this co-scheduling scenario, due to the

variation of programs’ behavior. C class includes benchmarks with working sets ranging

from small enough to fit in cache with minor conflicts, to sizes that can marginally fit and

therefore very likely to be delayed, if other programs also compete for intense LLC use,

forcing each other to suffer from increased miss penalties. LLC contention -and its resulting

slowdown- becomes noticeable when sizes of the co-executed instances occupy a fairly large

part of the cache, belonging in the L3s (or larger) size category. Before this point slowdown

is generally unnoticeable, with values very near 1, with a small number of exceptions, which

do not exceed 1.3. For larger size classes, L3 contention causes gradually increasing

slowdown, with a maximum value approx. 2.5. The results for these instances can be seen in

table 4.2.3:

73

L3s_1Str_
seq

L3s_1Str_
rdm

L3s_2Str_
seq

L3s_2Str_
rdm

L3s_max_
seq

L3s_max_
rdm

L3l_1Str_
rdm

L3s_1Str_
seq 1.590 1.344 1.341 1.463 1.364 1.687 1.606

L3s_1Str_
rdm 1.303 1.171 1.036 1.039 1.012 1.104 1.571

L3s_2Str_
seq 1.360 1.084 1.892 1.507 1.674 2.025 1.036

L3s_2Str_
rdm 1.480 1.084 1.502 1.256 1.141 1.260 1.058

L3s_max_
seq 1.384 1.059 1.675 1.145 1.770 2.153 1.034

L3s_max_
rdm 1.622 1.095 1.920 1.199 2.040 1.779 1.059

L3l_1Str_
rdm 1.809 1.824 1.151 1.178 1.148 1.240 2.378

Table 4.2.3

It can be observed that random pattern benchmarks generally interfere with other random

instances, while sequential ones cause slowdown to both patterns. The way each pattern

affects applications, as memory requests intensity increases can be observed in figures below:

Figure 4.2.1: Slowdown caused by sequential instances

0.9

1.4

1.9

2.4

L2l_max_
seq

L3s_1Str
_seq

L3s_2Str
_seq

L3s_max
_seq

L3s_max
_rdm

74

Figure 4.2.2: Slowdown caused by random instances, L3l_1Str_rdm instance is affected most

In the graphs above, moving towards the right side of the plot, it can be observed that

applications racing for the cache, as competing memory requests increase with more streams,

alter their behavior close to that of LC class.

 Average slowdown suffered in this class’ combinations was 1.12, however this includes all

applications with N class behavior as well. If limited to instances that always need to use L3,

average is 1.3, with worst case scenario being over 2. From this series of experiments, it is

suggested that maximum slowdown caused solely by LLC contention on this system is about

2.5, and can be generally assumed less than 3.

C – LC

Moderate contention levels were observed in co-scheduling combinations of benchmark

instances belonging in these classes. The memory bus of this system is single channel,

serializing all requests and is not capable of serving more than 2.5 GB/s; there is no data

prefetching either. This results in programs with large enough datasets (half the LLC size and

more) to constantly force each other in LLC misses by wiping data, while in the same time

competing for main memory accesses that can’t be accelerated (if sequential) by prefetching

mechanisms.

L3l benchmarks appear to be destroying cache data of other applications at a relatively high

pace, affecting all C processes, even L2s-sized with minimum LLC utilization. Partially

0.9

1.4

1.9

2.4

2.9

L3s_1Str_
seq
L3l_1Str_
rdm
Average

75

relying on the memory link by definition, these LC applications also face the effects of bus

contention, as C applications also increase demand and their behavior verges with that of

their LC competitors. They are also affected by C instances with small working sets but very

intensive in cache use (2 or max streams). The 2 MEM size random instances (1 Str. and 2

Str.), however, seem to remain unaffected, as they don’t suffer from noticeable slowdown,

nor cause delays in any other application. This can be explained as their random pattern

doesn’t rely on cache reuse and they do not stress the memory link to a high level either, thus

forcing their pair in less misses, consequently in less bus use demand and overall very low

combined contention.

Table 4.2.4 contains all C instances suffered slowdown by the L3l size class, MEM instances

are omitted as most results were near 1. Slowdown numbers are presented to show the variety

of results noted.

 L3l_1Str_seq L3l_2Str_seq L3l_2Str_rdm L3l_max_seq L3l_max_rdm

L2s_1Str_seq 1.109 1.344 1.744 1.462 1.578

L2s_1Str_rdm 1.044 1.270 1.633 1.414 1.453

L2s_2Str_seq 1.190 1.255 1.575 1.356 1.421

L2s_2Str_rdm 1.468 1.277 1.552 1.354 1.406

L2s_max_seq 1.268 1.365 1.258 1.379 1.381

L2s_max_rdm 1.482 1.563 1.298 1.404 1.442

L2m_1Str_seq 1.179 1.447 1.919 1.644 1.723

L2m_1Str_rdm 1.037 1.288 1.653 1.398 1.489

L2m_2Str_seq 1.641 1.375 1.780 1.545 1.571

L2m_2Str_rdm 2.132 1.493 1.871 1.664 1.705

L2m_max_seq 1.661 1.843 1.419 1.577 1.554

L2m_max_rdm 1.741 2.201 1.451 1.399 1.533

L2l_1Str_seq 1.125 1.340 1.931 1.471 1.710

L2l_1Str_rdm 1.107 1.390 1.872 1.593 1.672

L2l_2Str_seq 1.497 1.385 1.928 1.521 1.696

L2l_2Str_rdm 1.698 1.263 1.887 1.434 1.617

L2l_max_seq 1.375 1.543 1.278 1.510 1.712

L2l_max_rdm 1.555 1.755 1.287 1.530 1.748

L3s_1Str_seq 1.260 1.577 2.487 1.755 2.095

L3s_1Str_rdm 1.307 1.514 2.477 1.645 1.750

L3s_2Str_seq 1.215 1.584 2.583 1.774 2.117

L3s_2Str_rdm 1.558 1.850 2.556 2.187 2.225

L3s_max_seq 1.254 1.562 1.072 1.797 2.150

L3s_max_rdm 1.331 1.738 1.167 1.686 1.995

L3l_1Str_rdm 3.248 1.722 2.895 1.889 2.023

Table 4.2.4: C slowdown caused by L3l LC instances

76

As observed above, most results are over 1.5 (table average is 1.6), which is a considerable

effect. High slowdown was also noted in some cases (2.5 or more) with a maximum point

greater than 3.2. Average slowdown, including MEM instances, was found 1.5.

LC applications also suffered considerable delay in numerous cases, some of which are

presented below:

L2s_2Str

_rdm
L2m_2St

r_seq
L2m_2Str

_rdm
L2m_ma

x_seq
L2m_max

_rdm
L2l_2Str

_rdm
L2l_max

_seq
L3l_1Str

_rdm

L3l_1Str
_seq 1.729 1.938 2.286 1.959 2.150 2.156 1.685 3.416

L3l_2Str
_seq 1.179 1.272 1.254 1.702 2.129 1.256 1.481 1.418

L3l_2Str
_rdm 1.185 1.364 1.302 1.085 1.162 1.553 1.016 1.975

L3l_max
_seq 1.157 1.324 1.294 1.349 1.252 1.320 1.342 1.441

L3l_max
_rdm 1.174 1.316 1.296 1.299 1.342 1.455 1.487 1.508

Table 4.2.5: LC slowdown caused by C instances (selected results)

LC class, although generally less delayed than C by their interaction, also suffered high

slowdown (max. 3.4). L3l_1Str_seq seems to be more vulnerable and that is because of the

stalling phenomenon of a program with a single access explained in the beginning of the

chapter.

Average for the LC suffered slowdown caused by C programs was found 1.4, 1.1 for the

optimistic MEM cases and 1.45 for the pairs with moderate to high contention. In the next

figures, average slowdown for the 2 classes is presented. It becomes apparent how increasing

the competing program’s dataset and streams affects delay caused.

77

Figure 4.2.3: Average C slowdown caused by L3l LC instances

Figure 4.2.4: Average L3l LC slowdown caused by C instances

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

L3l_1Str_seq L3l_2Str_seq L3l_2Str_rdm L3l_max_seq L3l_max_rdm

AVG_C

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

L2
s_

1
St

r_
se

q

L2
s_

1
St

r_
rd

m

L2
s_

2
St

r_
se

q

L2
s_

2
St

r_
rd

m

L2
s_

m
ax

_s
e

q

L2
s_

m
ax

_r
d

m

L2
m

_1
St

r_
se

q

L2
m

_1
St

r_
rd

m

L2
m

_2
St

r_
se

q

L2
m

_2
St

r_
rd

m

L2
m

_m
ax

_s
e

q

L2
m

_m
ax

_r
d

m

L2
l_

1
St

r_
se

q

L2
l_

1
St

r_
rd

m

L2
l_

2
St

r_
se

q

L2
l_

2
St

r_
rd

m

L2
l_

m
ax

_s
eq

L2
l_

m
ax

_r
d

m

L3
s_

1
St

r_
se

q

L3
s_

1
St

r_
rd

m

L3
s_

2
St

r_
se

q

L3
s_

2
St

r_
rd

m

L3
s_

m
ax

_s
e

q

L3
s_

m
ax

_r
d

m

L3
l_

1
St

r_
rd

m

AVG…

78

C – L

Contrary to previous estimations, MEM instances with max streams did not cause nor suffer

significant slowdown in this test (around 1.1 and less in most cases). However, 1 and 2

Stream MEM sequential benchmarks caused moderate delay to C applications. Figure 4.2.5

shows slowdown caused by these 2 L instances to all C benchmarks:

Figure 4.2.5: Average C slowdown caused by L instances

(Note that contrary to all previous graphs, “suffering” class is on horizontal axis, due to high

population)

The 2 L applications were also slowed down in numerous cases, as can be seen in the

following graph:

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

L2
s_

1
St

r_
se

q

L2
s_

1
St

r_
rd

m

L2
s_

2
St

r_
se

q

L2
s_

2
St

r_
rd

m

L2
s_

m
ax

_s
e

q

L2
s_

m
ax

_r
d

m

L2
m

_1
St

r_
se

q

L2
m

_1
St

r_
rd

m

L2
m

_2
St

r_
se

q

L2
m

_2
St

r_
rd

m

L2
m

_m
ax

_s
e

q

L2
m

_m
ax

_r
d

m

L2
l_

1
St

r_
se

q

L2
l_

1
St

r_
rd

m

L2
l_

2
St

r_
se

q

L2
l_

2
St

r_
rd

m

L2
l_

m
ax

_s
eq

L2
l_

m
ax

_r
d

m

L3
s_

1
St

r_
se

q

L3
s_

1
St

r_
rd

m

L3
s_

2
St

r_
se

q

L3
s_

2
St

r_
rd

m

L3
s_

m
ax

_s
e

q

L3
s_

m
ax

_r
d

m

L3
l_

1
St

r_
rd

m

MEM_1Str_
seq

MEM_2Str_
seq

79

Figure 4.2.6: L suffered slowdown

It can be observed that increasing concurrent requests (by adding data streams) results in

augmented memory contention, as all requests are serialized and waiting to be served by the

single memory bus. However, it is noted for all cases on display that when instances utilize

the same number of streams, the L application is not affected. When a C process makes more

requests than the L (C streams > L streams), the L is slowed down. This consistent behavioral

pattern explains why the 2 MEM_max instances are not affected at all, as all competing

instances have less or equal data streams. The reason this happens is most probably the way

this specific architecture handles access requests and allocates bus resources to the processes;

requests from separate applications seem to be prioritized as different sets. DRAM controller-

level contention and prefetching mechanisms are also likely to contribute in this effect. A

relatively similar, yet less obvious pattern can be observed in the way C class processes are

affected (figure 4.2.5). A C instance is affected only if it uses more streams than its L

competitor (and they are both delayed). With equal streams no significant delay is noted and

confirms why MEM_max instances don’t affect any of the C programs tested.

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

L2
s_

1
St

r_
se

q

L2
s_

1
St

r_
rd

m

L2
s_

2
St

r_
se

q

L2
s_

2
St

r_
rd

m

L2
s_

m
ax

_s
e

q

L2
s_

m
ax

_r
d

m

L2
m

_1
St

r_
se

q

L2
m

_1
St

r_
rd

m

L2
m

_2
St

r_
se

q

L2
m

_2
St

r_
rd

m

L2
m

_m
ax

_s
e

q

L2
m

_m
ax

_r
d

m

L2
l_

1
St

r_
se

q

L2
l_

1
St

r_
rd

m

L2
l_

2
St

r_
se

q

L2
l_

2
St

r_
rd

m

L2
l_

m
ax

_s
eq

L2
l_

m
ax

_r
d

m

L3
s_

1
St

r_
se

q

L3
s_

1
St

r_
rd

m

L3
s_

2
St

r_
se

q

L3
s_

2
St

r_
rd

m

L3
s_

m
ax

_s
e

q

L3
s_

m
ax

_r
d

m

L3
l_

1
St

r_
rd

m

MEM_1Str_
seq

MEM_2Str_
seq

80

LC – LC

High contention was noted on this series of experiments. A maximum of 5.2 was measured

(suffered by L3l_1Str_seq co-executed with L3l_2Str_rdm), as well as many results greater than

3. Average was found to be 2.4, higher than all other class combinations.

Figure 4.2.7: LC class slowdown (program on horizontal axis causes the delay)

High slowdown in all L3l instances is a result of L3 contention, forcing programs to suffer

from increased number of cache miss penalties in comparison to alone execution. Increased

contention also occurs on the memory bus, the low bandwidth of which seems to largely

affect execution.

LC – L

Moderate to high slowdown appears for programs of both classes, as LC applications seem to

both cause and suffer more slowdown than any other class. Delay ratio caused by L instances

is presented in table 4.2.6:

1.0

2.0

3.0

4.0

5.0

L3l_1Str_seq

L3l_2Str_seq

L3l_2Str_rdm

L3l_max_seq

L3l_max_rdm

MEM_1Str_rdm

MEM_2Str_rdm

81

 MEM_1Str_seq MEM_2Str_seq MEM_max_seq MEM_max_rdm

L3l_1Str_seq 1.763 1.679 1.782 1.973

L3l_2Str_seq 2.549 1.471 1.569 1.741

L3l_max_seq 2.697 3.002 1.493 1.675

L3l_2Str_rdm 3.335 1.000 1.000 1.000

L3l_max_rdm 2.876 3.264 1.338 1.476

MEM_1Str_rdm 1.407 1.034 1.087 1.148

MEM_2Str_rdm 1.446 1.609 1.148 1.212

Table 4.2.6: LC class slowdown by L

The behavioral pattern noticed in C-L results discussion is present again, especially for L3l

random instances: slowdown decreases when competitor’s streams (L) are equal or more than

LC’s (see Fig. 4.2.9).

Figure 4.2.8: LC class slowdown caused by L

Average slowdown was found to be 1.75. Higher contention scenarios (2.5 and more) are

very likely to occur, as the results reveal. L applications face even greater average slowdown,

at 1.95, as it seems the memory bus becomes a bottleneck for both classes. Figure 4.2.9

presents slowdown each LC application caused to all L.

1.0

1.5

2.0

2.5

3.0

3.5

MEM_1Str_seq

MEM_2Str_seq

MEM_max_seq

MEM_max_rdm

82

Figure 4.2.9: L class slowdown caused by LC

MEM random streams of the LC class do not cause or face high slowdown, as they only use a

relatively small part of the available bandwidth.

L – L

In this, quite simpler, scenario, our estimation model is confirmed. Even when competing

programs can potentially stress the memory bus to its limits, bandwidth is divided and a worst

case average slowdown will slightly exceed 2. Average for all tests was found to be 1.7

 MEM_1Str_seq MEM_2Str_seq MEM_max_seq MEM_max_rdm

MEM_1Str_seq 1.447 1.378 1.464 1.594

MEM_2Str_seq 1.561 1.749 1.847 2.057

MEM_max_seq 1.573 1.752 1.821 2.006

MEM_max_rdm 1.590 1.811 1.862 1.676

Table 4.2.7: L-L class slowdown

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

MEM_1Str_seq

MEM_2Str_seq

MEM_max_seq

MEM_max_rdm

83

Overview

Having separate L2 cache on the cores utilized for this series of experiments let us observe

the effects of memory bus and LLC contention. A combination of system-specific

characteristics (low memory link performance in conjunction with the way it serially

prioritizes memory access requests) resulted in a slightly altered overall behavior, compared

to preliminary estimations.

Class Co-runner class

 N C LC L

N (1.03) - - -

C - 1.15 1.47 1.2

LC - 1.34 2.38 1.75

L - 1.2 1.95 1.7

Table 4.2.8: Slowdown average overview, N-N value is the C(N) applications when co-executed.

Class LC appears to cause most slowdown to other classes, as well as being the most

vulnerable to be delayed. Taking advantage of not sharing the large L2, C programs also are

less affected.

4.2.4.2 Co-scheduling with L2 sharing

Results of the second round of tests, conducted on a pair of cores with shared L2, are

presented. N class instances do not exist in our suite, thus all testing is between C, LC and L

classes.

C – C

Moving into co-execution context with shared L2 cache, C class application interaction

changes dramatically. The set of applications in the suite belonging to this class is quite large

(25), so results will be presented in sections.

Starting with L2s and L2m series, tables 4.2.9a and 4.2.9b contain slowdown caused by

sequential and random instances of the same size classes respectively:

84

 L2s_1Str_seq L2s_2Str_seq L2s_max_seq L2m_1Str_seq L2m_2Str_seq L2m_max_seq

L2s_1Str_seq 1.098 1.268 1.219 1.228 1.935 2.234

L2s_1Str_rdm 1.267 1.088 1.325 2.720 3.566 3.543

L2s_2Str_seq 1.154 1.265 1.356 1.199 1.401 2.480

L2s_2Str_rdm 1.181 1.478 1.466 1.667 3.502 3.156

L2s_max_seq 1.283 1.334 1.672 1.217 1.421 2.012

L2s_max_rdm 1.131 1.240 1.401 1.128 1.244 1.470

L2m_1Str_seq 1.367 1.466 1.608 2.172 2.316 2.641

L2m_1Str_rdm 1.830 1.908 1.797 2.970 3.115 3.280

L2m_2Str_seq 1.905 1.636 1.997 2.071 3.551 4.016

L2m_2Str_rdm 1.882 1.837 1.975 3.308 3.664 3.734

L2m_max_seq 1.912 2.318 2.157 1.783 2.710 5.503

L2m_max_rdm 1.499 1.730 1.663 1.673 2.474 3.421

Table 4.2.9a

 L2s_1Str_rdm L2s_2Str_rdm L2s_max_rdm L2m_1Str_rdm L2m_2Str_rdm L2m_max_rdm

L2s_1Str_seq 1.063 1.096 1.174 1.054 1.117 1.683

L2s_1Str_rdm 1.261 1.170 1.438 1.463 1.905 2.800

L2s_2Str_seq 1.042 1.135 1.238 1.032 1.104 1.790

L2s_2Str_rdm 1.085 1.218 1.309 1.060 1.350 3.015

L2s_max_seq 1.214 1.324 1.357 1.155 1.285 1.796

L2s_max_rdm 1.109 1.180 1.338 1.061 1.114 1.441

L2m_1Str_seq 1.309 1.359 1.588 1.320 1.495 2.325

L2m_1Str_rdm 1.776 1.750 1.727 2.427 2.753 2.940

L2m_2Str_seq 1.321 1.537 1.952 1.247 1.513 3.718

L2m_2Str_rdm 1.799 1.859 1.791 2.081 2.690 3.434

L2m_max_seq 1.502 1.699 2.300 1.308 1.569 5.718

L2m_max_rdm 1.226 1.420 1.684 1.116 1.350 3.971

Table 4.2.9b

Increasing the working set size and number of requests noticeably increases slowdown.

Contrary to the memory bus, in-cache bandwidth is sufficient to intensively wipe data if an

application uses a streaming pattern. Sequential instances cause noticeably more slowdown

than random ones, despite the lower number of accesses (5 instead of 8), taking advantage of

cache-level prefetching. Observing L2s instances’ interaction with each other (1+1 MB

working sets), confirms that cache contention starts to occur when working sets’ size exceeds

approximately half the size of this cache. Slowdown starts from 1.05, reaching more than 1.5

as the number of requests increases.

85

Moving to L2m sized instances, slowdown is constantly at least close to 2, in many cases

greatly exceeding 3. Without loss of generality, it can be assumed that co-running L2m

working sets (total 4MB) can fit in the LLC with no need for extensive main memory

accesses. Given this assumption it can be estimated that L2-only contention can excessively

delay a program. From the results above, a slowdown factor of 4 seems realistic for high

contention situations and potentially even close to 5 in extreme cases, although in such cases

it is very difficult to estimate if it’s only L2-caused or in conjunction with possible LLC

competition, without detailed performance information from counters.

Increasing the competing instances size, slowdown is even higher (presented in tables 4.2.11

and 4.2.12) caused by sequential and random instances respectively:

 L2l_1Str_seq L2l_2Str_seq L2l_max_seq L3s_1Str_seq L3s_2Str_seq L3s_max_seq

L2s_1Str_seq 1.235 1.920 4.419 1.208 1.978 5.586

L2s_1Str_rdm 4.495 5.870 6.843 5.066 6.645 8.346

L2s_2Str_seq 1.220 1.407 4.486 1.226 1.479 4.048

L2s_2Str_rdm 1.259 5.646 7.634 1.249 2.139 9.127

L2s_max_seq 1.269 1.356 1.858 1.278 1.405 1.671

L2s_max_rdm 1.171 1.258 1.461 1.121 1.303 1.464

L2m_1Str_seq 2.238 3.391 4.925 2.174 3.586 5.543

L2m_1Str_rdm 3.734 4.698 5.239 4.427 5.226 5.925

L2m_2Str_seq 2.059 3.727 6.506 2.230 3.784 6.967

L2m_2Str_rdm 4.455 5.039 5.993 4.933 5.126 6.670

L2m_max_seq 1.747 2.917 5.964 1.628 2.755 5.585

L2m_max_rdm 1.623 2.539 3.368 1.586 2.508 3.222

Table 4.2.10a: L2s-L2m slowdown induced by sequential L2l-L3s instances

 L2l_1Str_rdm L2l_2Str_rdm L2l_max_rdm L3s_1Str_rdm L3s_2Str_rdm L3s_max_rdm

L2s_1Str_seq 1.031 1.109 2.359 1.033 1.119 2.820

L2s_1Str_rdm 1.090 2.259 5.139 1.098 1.671 7.228

L2s_2Str_seq 1.039 1.074 1.545 1.033 1.086 1.450

L2s_2Str_rdm 1.068 1.143 5.962 1.030 1.132 7.061

L2s_max_seq 1.119 1.239 1.560 1.124 1.183 1.391

L2s_max_rdm 1.055 1.076 1.268 1.050 1.065 1.166

L2m_1Str_seq 1.279 1.520 3.763 1.260 1.508 3.850

L2m_1Str_rdm 2.472 3.050 4.307 2.477 3.108 5.099

L2m_2Str_seq 1.205 1.486 5.202 1.243 1.471 4.962

L2m_2Str_rdm 2.061 2.811 4.959 2.032 2.869 5.601

L2m_max_seq 1.290 1.674 6.848 1.258 1.510 6.147

L2m_max_rdm 1.127 1.393 3.708 1.064 1.316 3.474

Table 4.2.10b: L2s-L2m slowdown induced by random pattern L2l-L3s instances

86

Results show that slowdown is increasing to very high levels. It can be observed that induced

slowdown increases depending –in order of significance- on number of streams, dataset size

and access pattern, with sequential instances being more aggressive to smaller competitors’

cached data, as a result of their streaming nature. Slowdown noted was often much higher

than 5, in some cases even close to 10, as moderate contention starts to take place also on L3,

forcing small L2 instances to highly increased LLC and main memory accesses, the access

time of which is much higher. This relative difference is reflected in slowdown ratio. Figures

4.2.10 and 4.2.11 show average L2s and L2m slowdown caused by L2l and L3s benchmarks.

Figure 4.2.10a: L2l and L3s sequential induced slowdown

Figure 4.2.10b: L2l and L3s random induced slowdown

1.0

2.0

3.0

4.0

5.0

6.0

L2s_AVG

L2m_AVG

1.0

2.0

3.0

4.0

5.0

L2s_AVG

L2m_AVG

87

L2s instances are not so destructive for the larger L2l and L3s working sets, while L2m

interfere more, as expected, causing slowdown up to more than 2.5

Figure 4.2.11: L2l and L3s average slowdown caused by L2s and L2m interference

As observed previously, intense slowdown effects are present when a streaming instance with

large number of concurrent requests destroys cached data of a smaller instance with lower

requests. This behavior is also present when larger benchmarks of C class are co-executed.

 L2l_1Str_seq L2l_2Str_seq L2l_max_seq L3s_1Str_seq L3s_2Str_seq L3s_max_seq

L2l_1Str_seq 1.997 2.750 3.990 1.977 2.970 4.712

L2l_1Str_rdm 2.567 2.958 3.281 3.088 3.313 3.674

L2l_2Str_seq 2.182 3.012 4.642 2.181 2.956 4.717

L2l_2Str_rdm 2.708 3.038 3.528 2.980 3.013 3.824

L2l_max_seq 1.865 2.512 3.931 1.860 2.509 3.803

L2l_max_rdm 2.035 2.568 2.848 1.989 2.468 2.742

L3s_1Str_seq 1.691 2.241 3.357 2.403 2.859 4.375

L3s_1Str_rdm 1.547 1.735 1.924 1.943 2.122 2.369

L3s_2Str_seq 1.492 1.885 2.868 1.504 2.642 3.463

L3s_2Str_rdm 1.599 1.764 2.082 2.023 2.115 2.349

L3s_max_seq 1.234 1.503 2.013 1.208 1.374 2.396

L3s_max_rdm 1.356 1.603 1.712 1.327 1.571 1.923

Table 4.2.11: L2l – L3s slowdown caused by sequential instances

1.0

1.5

2.0

2.5

3.0

L2l_AVG

L3s_AVG

1.0

1.5

2.0

2.5

3.0

L2l_AVG

L3s_AVG

88

Figure 4.2.12a: L2l and L3s average slowdown caused by same classes sequential interference

Figure 4.2.12b: L2l and L3s average slowdown caused by same classes random interference

In the latter cases, moderate contention occurs in both L3 and L2 caches. Finally,

L3l_1Str_rdm behavior is different; its classification in C category was marginal and results

show that in this context it acts as an LC application, not following the patterns displayed by

all other applications, but the LC behavior, as will be seen in next sections:

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

L2l_AVG

L3s_AVG

1.0

1.5

2.0

2.5

3.0

3.5

L2l_AVG

L3s_AVG

89

Figure 4.2.13a: L3l_1Str_rdm slowdown with all C sequential benchmarks

Figure 4.2.13b: L3l_1Str_rdm slowdown with all C random benchmarks

In summary, it has been confirmed that shared L2 contention may lead to high slowdown

effect, which can escalate to excessive levels in conjunction with possible concurrent LLC

competition. Graphs in figures 4.2.14a and 14b show overall C slowdown progression as size

and requests increase, as caused by sequential and random instances respectively:

1.0

1.5

2.0

2.5

L3l_1Str_rdm

1.0

1.5

2.0

2.5

L3l_1Str_rdm

90

Figure 4.2.14a: Size class average slowdown with all C sequential benchmarks

Figure 4.2.14b: Size class average slowdown with all C random benchmarks

Overall C – C co-scheduling average was found significantly increased, at a value of 2.08.

1.0

2.0

3.0

4.0

5.0

6.0

L2s_AVG

L2m_AVG

L2l_AVG

L3s_AVG

1.0

2.0

3.0

4.0

5.0

6.0

L2s_AVG

L2m_AVG

L2l_AVG

L3s_AVG

91

C – LC

This series of tests confirmed observed class C behavior. Table 4.2.12 contains some of the

results, ranging from noticeable up to very high slowdown effect:

 L3l_1Str_seq L3l_2Str_seq L3l_max_seq L3l_1Str_rdm L3l_2Str_rdm L3l_max_rdm

L2s_1Str_seq 1.427 1.685 2.283 1.124 1.228 1.546

L2s_1Str_rdm 1.599 2.179 3.113 1.192 1.382 3.021

L2m_1Str_seq 1.795 2.478 4.483 1.231 1.422 2.906

L2m_1Str_rdm 3.632 4.066 6.575 1.921 2.687 4.371

L2m_2Str_seq 1.734 2.338 4.499 1.220 1.355 2.550

L2m_2Str_rdm 2.821 3.452 4.588 1.671 2.065 3.992

L2m_max_seq 1.585 2.029 3.594 1.176 1.442 2.193

L2m_max_rdm 1.403 1.635 1.935 1.185 1.267 1.715

L2l_1Str_seq 1.752 2.402 4.052 1.160 1.268 2.700

L2l_1Str_rdm 2.490 8.344 9.372 1.620 1.942 8.511

L2l_max_seq 1.537 1.895 2.794 1.171 1.300 2.685

L2l_max_rdm 1.429 1.782 1.925 1.175 1.327 2.128

L3s_1Str_seq 1.676 2.753 10.615 1.064 1.189 8.411

L3s_1Str_rdm 5.261 5.888 6.070 1.275 2.364 5.700

L3s_2Str_seq 1.356 1.695 9.402 1.108 1.215 2.210

L3s_2Str_rdm 5.510 6.115 6.655 1.144 1.366 6.098

Table 4.2.12: C slowdown caused by LC applications

It is interestingly observed that results are similar to those presented in tables 4.2.10a and b,

for corresponding working set size relevance: For instance L2s instances in C class co-

scheduling were excessively delayed by L2l competitors, and even more from L3s. Similarly,

in this test series, L2l and L3s instances suffer from combined contention on L2, L3 caches as

well as moderate memory link competition, caused by L3l. Again, MEM random instances,

with moderate memory bandwidth demand and low cache reuse, do not interfere significantly

with the rest of the applications. Graph below (figure 4.2.15) shows average slowdown for

each size category in C class:

92

Figure 4.2.15: Size class average slowdown with all LC benchmarks

LC class is also affected, mainly due to LLC competition, with a maximum of 3.1 caused by

an intensely streaming L3s benchmark. All LC instances behavior is uniform, slowdown

progressing with increasing co-runner working set and number of streams:

Figure 4.2.16a: Average LC slowdown with C sequential instances

1.0

2.0

3.0

4.0

5.0

6.0

L2s_AVG

L2m_AVG

L2l_AVG

L3s_AVG

1.0

1.5

2.0

2.5

L3l_AVG

MEM_AVG

93

Figure 4.2.16b: Average LC slowdown with C random instances

C – L

Excessive slowdown scenarios were observed, confirming the estimation model. As

expected, a streaming application with large working set can be very destructive for

applications that normally rely on cache re-use, by massively wiping their cached data. L2s

instances were the least affected with maximum slowdown noted 2.6, as their small datasets,

although displaced from L2, are less vulnerable to be completely wiped of the much larger

LLC; re-fetching data from LLC has greatly smaller time cost than from main memory.

Increasing working set sizes of C applications, co-executed with Streaming L programs,

creates simultaneous competition for all 3 shared memory levels, L2, L3 and memory Link.

This results in extreme slowdown for programs with limited number of streams, as they have

fewer requests, examples of which can be seen in table 4.2.13:

1.0

1.5

2.0

2.5

L3l_AVG

MEM_AVG

94

 MEM_1Str_seq MEM_2Str_seq MEM_max_seq MEM_max_rdm

L2m_1Str_seq 1.754 2.448 5.087 2.758

L2m_1Str_rdm 3.228 3.682 4.343 3.921

L2m_2Str_seq 1.803 2.434 4.646 2.520

L2l_1Str_seq 1.851 2.526 4.500 2.638

L2l_1Str_rdm 2.348 3.164 11.157 2.697

L2l_2Str_seq 1.790 2.489 4.378 2.632

L3s_1Str_seq 1.744 2.458 12.114 6.730

L3s_1Str_rdm 6.205 6.563 6.926 6.481

L3s_2Str_seq 1.377 1.871 9.183 2.161

L3s_2Str_rdm 5.494 6.328 7.121 6.391

Table 4.2.13: C class slowdown with L instances

Overall slowdown caused by L instances is presented in figure 4.2.17. Fig. 4.2.18 shows

average class C slowdown:.

Figure 4.2.17: C class slowdown caused by L instances interference

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

L2
s_

1
St

r_
se

q

L2
s_

1
St

r_
rd

m

L2
s_

2
St

r_
se

q

L2
s_

2
St

r_
rd

m

L2
s_

m
ax

_s
e

q

L2
s_

m
ax

_r
d

m

L2
m

_1
St

r_
se

q

L2
m

_1
St

r_
rd

m

L2
m

_2
St

r_
se

q

L2
m

_2
St

r_
rd

m

L2
m

_m
ax

_s
e

q

L2
m

_m
ax

_r
d

m

L2
l_

1
St

r_
se

q

L2
l_

1
St

r_
rd

m

L2
l_

2
St

r_
se

q

L2
l_

2
St

r_
rd

m

L2
l_

m
ax

_s
eq

L2
l_

m
ax

_r
d

m

L3
s_

1
St

r_
se

q

L3
s_

1
St

r_
rd

m

L3
s_

2
St

r_
se

q

L3
s_

2
St

r_
rd

m

L3
s_

m
ax

_s
e

q

L3
s_

m
ax

_r
d

m

MEM_1Str_seq

MEM_2Str_seq

MEM_max_seq

MEM_max_rdm

95

Figure 4.2.18: Average C class slowdown

L applications may also be affected by C instances with increased requests, due to

serialization for memory bus usage, but, as expected, in a much lesser degree.

1.0

2.0

3.0

4.0

5.0

6.0

AVERAGE

96

Figure 4.2.19: Average L class slowdown, by C sequential and random instances respectively

1.0

1.5

2.0

Average

1.0

1.5

2.0

Average

97

LC – LC

With both co-running applications in LC class, performance dependence on L2 utilization is

insignificant. This is suggested by the results being similar to the non-shared L2 scenario:

Figure 4.2.20: LC class co-execution slowdown

The effect of shared L2 is increased contention when we have streaming pattern applications,

but overall behavior is same. Average slowdown is 2.3

LC – L

Exactly as estimated in our model, LCs suffered from cache contamination by the L instances

in conjunction with bus contention caused by their increased requests. Increased memory

access due to cache misses also affects L programs. LC instances of the same class category

and pattern behave similarly, figure 4.2.21 shows slowdown per size-and-pattern:

1.0

2.0

3.0

4.0

5.0

6.0

L3l_1Str_seq

L3l_2Str_seq

L3l_max_seq

L3l_1Str_rdm

L3l_2Str_rdm

L3l_max_rdm

MEM_1Str_rdm

MEM_2Str_rdm

98

Figure 4.2.21: LC slowdown by L instances

L application slowdown was maximized by L3l sequential instances, reaching its maximum

value at 3. Average slowdown of L applications co-executing with LC:

Figure 4.2.22: Average L slowdown by LC instances

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

MEM_1Str_seq MEM_2Str_seq MEM_max_seq MEM_max_rdm

L3l seq

L3l rdm

MEM

1.0

1.5

2.0

2.5

L Average

99

L – L

This co-execution scenario’s experimental results have also confirmed the predicted

behavior. Maximum bandwidth streaming instances are sharing the bus and slowdown in this

case does not exceed 2 (was found to be 1.85). Again programs with fewer streams are more

vulnerable to higher slowdown, as requests are handled serially.

Figure 4.2.23: L co-execution slowdown

Overview

Experimenting with shared L2 cache has shown that application behavior changes drastically.

Average co-scheduling induced slowdown for class pairs was found:

Class Co-runner class

 C LC L

C 2.08 2.20 3.00

LC 1.44 2.30 2.85

L 1.20 1.50 1.83

Table 4.2.14: Class average slowdown in shared L2 execution

Additionally, the contention estimation model presented has been mostly confirmed, with the

system’s peculiar characteristics playing a less significant role, compared to non-shared L2

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

MEM_1Str_seq MEM_2Str_seq MEM_max_seq MEM_max_rdm

MEM_1Str_seq

MEM_2Str_seq

MEM_max_seq

MEM_max_rdm

100

experiments. It has been shown that combined contention in memory hierarchy levels can

cause multiplied slowdown. As expected, C class suffers the most from this effect, with some

extreme case programs having comparative slowdown over 11. To calculate this relative

slowdown, we simply divide slowdown in shared L2 context, with the respective number

from non-shared L2 experiments:

. Indicative co-executed pairs that

displayed escalating slowdown effect with shared L2 are shown:

 L2l_max_seq L2l_max_rdm L3s_1Str_seq L3s_2Str_seq L3s_max_seq L3s_max_rdm

L2s_1Str_seq 3.836 2.230 1.090 1.804 5.134 2.337

L2s_1Str_rdm 6.330 5.139 4.806 6.376 8.121 6.575

L2s_2Str_seq 3.937 1.528 1.226 1.479 4.042 1.363

L2s_2Str_rdm 7.631 5.866 1.245 2.139 9.127 6.598

L2s_max_seq 1.708 1.540 1.271 1.397 1.624 1.322

L2s_max_rdm 1.288 1.258 0.943 1.289 1.374 1.072

L2m_1Str_seq 4.345 3.474 1.955 3.267 4.904 3.277

L2m_1Str_rdm 5.211 4.307 4.427 5.226 5.925 5.099

L2m_2Str_seq 5.400 5.202 2.155 3.444 6.928 4.459

L2m_2Str_rdm 5.143 4.453 4.478 4.462 6.094 4.735

L2m_max_seq 5.156 6.775 1.436 2.302 5.163 5.060

Table 4.2.15a: Relative slowdown ratio for selected C class pairs. The number indicates how many

times slower execution was with the pair sharing L2 than with separate L2 per core.

 MEM_2Str_seq MEM_max_seq MEM_max_rdm

L2l_1Str_rdm 3.164 11.157 2.516

L3s_1Str_seq 2.458 11.556 5.964

L3s_1Str_rdm 6.563 6.669 5.882

L3s_2Str_seq 1.824 8.558 1.855

L3s_2Str_rdm 6.202 6.789 5.420

Table 4.2.15b: Maximum/worst-case relative slowdown ratio noted.

Finally, table 4.2.16 shows how class C and LC co-execution averages were affected from

change to L2 sharing, while L was generally not affected:

Class Co-runner class

 C LC L

C 1.81 1.50 2.50

LC 1.07 1.00 1.63

L 1.00 1.00 1.08

Table 4.2.16: Overall relative slowdown.

101

Chapter 5

Conclusions and future work

5.1 Results evaluation

Memory contention in co-execution scenarios is very hard to predict. Results can largely

differ with slight alterations in the executed applications and on different architectures.

However, a well-designed prediction estimation model can be used to indicate at which

scenarios the possibilities for increased interference are higher. The classification and

prediction scheme described in chapter 2, according to experimental results, appears being

able to capture the big picture, as in most cases behavior and interaction between processes

when co-scheduled were found close to that predicted. Overall average slowdown for the

systems used was found:

102

Class Co-runner class

 N C LC L

N 1.00 1.02 1.10 1.07

C 1.00 1.06 1.27 2.15

LC 1.00 1.06 1.34 1.76

L 1.00 1.00 1.12 1.30

Overall slowdown map for Sandy Bridge system

Class Co-runner class

 N C LC L

N (1.03) - - -

C - 1.48 1.48 1.85

LC - 1.21 1.67 1.69

L - 1.10 1.36 1.39

Overall slowdown map for Dunnington system, average of L2 shared and non-shared results

Thus, avoidance of specific class combinations’ co-execution, as suggested by this approach,

may result in significant efficiency improvement. That, of course, does not mean that such

scenarios will always have negative results because, as it was seen in the experiments, each

application class includes programs with varying behavior, and such differences can be

further affected by architecture features. Further division of large classes (e.g. C) to

subclasses could possibly be a future choice.

It was observed that competition for shared memory resources, apart from the obvious

slowdown effect, caused affected applications’ general behavior to shift to that of a “higher”

class (if we consider the order from smaller to higher being N, C, LC, L).

Additionally, it is confirmed that applying increasing pressure to the memory hierarchy

causes slowdown effects to all applications. Figure 5.1 shows average slowdown (all

programs for all classes) caused as the streaming co-running application becomes more

intense and with increasing dataset size. Similar phenomena have been noted in other

research works, e.g. BubbleUp [16].

103

Figure 5.1: Overall average slowdown by sequential applications on Sandy Bridge system

The benchmark program created was found to be sufficiently accurate for bandwidth

measurement. Its versatility, single-threaded execution and predictable behavior make it

suitable for use as an in-house alternative to complement testing workloads, along with other

known benchmarks and programs used for this purpose.

5.2 Future work

As an expansion of this work, more co-scheduling experiments could be conducted, using

more concurrent instances on more cores and observe contention caused by multiple

applications. Using class “shifting” phenomena, also observed in this work, it would be

interesting to see how multi-core variations of the experiment, with more than 2 cores and

instances, could be reduced, for instance to a 2- or more- class generalized scenario.

Additionally, the benchmark program could be quite easily extended to include an adjustable

dummy computational module, in order to emulate CPU-and-memory intensive application

for further experimentation. Such a modification could also result in being able to control, if

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Average

104

desired, the amount of bandwidth used by the program by adding computational load when

needed to limit memory requests and subsequently the contention it causes.

105

Bibliography & references

[1] Zhuravlev, Sergey, Juan Carlos Saez, Sergey Blagodurov, Alexandra Fedorova, and Manuel

 Prieto. "Survey of scheduling techniques for addressing shared resources in multicore

 processors." ACM Computing Surveys (CSUR)45, no. 1 (2012): 4.

[2] Jones, Tim. Inside the Linux 2.6 Completely Fair Scheduler,

 http://www.ibm.com/developerworks/linux/library/l-completely-fair-scheduler/

[3] The Linux kernel Documentation, CFS Scheduler

 https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt

[4] Jiang, Yunlian, Xipeng Shen, Jie Chen, and Rahul Tripathi. "Analysis and approximation of

 optimal co-scheduling on chip multiprocessors." InProceedings of the 17th international

 conference on Parallel architectures and compilation techniques, pp. 220-229. ACM, 2008.

[5] Haritatos, Alexandros-Herodotos, Georgios Goumas, Nikos Anastopoulos, Konstantinos Nikas,

 Kornilios Kourtis, and Nectarios Koziris. "LCA: a memory link and cache-aware co-scheduling

 approach for CMPs." In Proceedings of the 23rd international conference on Parallel

 architectures and compilation, pp. 469-470. ACM, 2014.

[6] Bhadauria, Major, and Sally A. McKee. "An approach to resource-aware co-scheduling for

 cmps. " In Proceedings of the 24th ACM International Conference on Supercomputing, pp. 189-

 199. ACM, 2010.

[7] Blagodurov, Sergey, Sergey Zhuravlev, and Alexandra Fedorova. "Contention-aware scheduling

 on multicore systems." ACM Transactions on Computer Systems (TOCS) 28, no. 4 (2010): 8.

[8] Xie, Yuejian, and Gabriel Loh. "Dynamic classification of program memory behaviors in CMPs."

 In the 2nd Workshop on Chip Multiprocessor Memory Systems and Interconnects. 2008.

[9] Koukis, Evangelos, and Nectarios Koziris. "Memory bandwidth aware scheduling for SMP

 cluster nodes." In Parallel, Distributed and Network-Based Processing, 2005. PDP 2005. 13th

 Euromicro Conference on, pp. 187-196. IEEE, 2005.

106

[10] Jaleel, Aamer, Hashem H. Najaf-Abadi, Samantika Subramaniam, Simon C. Steely, and Joel

 Emer. "Cruise: cache replacement and utility-aware scheduling." In ACM SIGARCH Computer

 Architecture News, vol. 40, no. 1, pp. 249-260. ACM, 2012.

[11] Tang, Lingjia, Jason Mars, and Mary Lou Soffa. "Contentiousness vs. sensitivity: improving

 contention aware runtime systems on multicore architectures." In Proceedings of the 1
st

 International Workshop on Adaptive Self-Tuning Computing Systems for the Exaflop Era, pp.

 12-21. ACM, 2011.

[12] Lin, Jiang, Qingda Lu, Xiaoning Ding, Zhao Zhang, Xiaodong Zhang, and P. Sadayappan.

 "Gaining insights into multicore cache partitioning: Bridging the gap between simulation and

 real systems." In High Performance Computer Architecture, 2008. HPCA 2008. IEEE 14
th

 International Symposium on, pp. 367-378. IEEE, 2008.

[13] Merkel, Andreas, Jan Stoess, and Frank Bellosa. "Resource-conscious scheduling for energy

 efficiency on multicore processors." In Proceedings of the 5th European conference on

 Computer systems, pp. 153-166. ACM, 2010.

[14] McCalpin, John D. "A survey of memory bandwidth and machine balance in current high

 performance computers." IEEE TCCA Newsletter (1995): 19-25.

[15] pChase benchmark. https://github.com/maleadt/pChase

[16] Mars, Jason, Lingjia Tang, Robert Hundt, Kevin Skadron, and Mary Lou Soffa. "Bubble-up:

 Increasing utilization in modern warehouse scale computers via sensible co-locations."

 In Proceedings of the 44th annual IEEE/ACM International Symposium on Microarchitecture,

 pp. 248-259. ACM, 2011.

[17] The Linux kernel Documentation, Cgroups

 https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt

[18] The Linux kernel Documentation, Cpusets

 https://www.kernel.org/doc/Documentation/cgroups/cpusets.txt

[19] Intel
®
 Performance Counter Monitor - A better way to measure CPU utilization.

 http://software.intel.com/en-us/articles/intel-performance-counter-monitor

[20] Intel
®
 Xeon

®
 Processor E5-1600/E5-2600/E5-4600 Product Families Datasheet - Volume One

 http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-e5-1600-

 2600-vol-1-datasheet.pdf

[21] Χαλιός, Χαράλαμπος. Δρομολόγηση Παράλληλων Εφαρμογών σε Πολυπύρηνα Συστήματα.

 Diploma thesis, School of Electrical and Computer Engineering, N.T.U.A., 2013.

[22] Knuth, Donald E. (1969). Seminumerical algorithms. The Art of Computer Programming 2.

 Reading, MA: Addison–Wesley. pp. 124–125.

[23] Intel
®
 Xeon

®
 Processor 7400 Series Datasheet, 2008

 http://www.intel.com/Assets/en_US/PDF/datasheet/320335.pdf

107

Appendix A

Benchmark test results

All results in MB/s

A.1 Intel
™

 Xeon
™

 E5-4620 (Sandy Bridge)

 Sequential Bandwidth (in MB/s)

Size (KB) Number of streams

 Single 2 3 4 5 6 7 8

1 76,684.0 57,617.8 81,926.7 101,361.4 124,983.8 126,620.6 138,612.8 158,452.0

2 75,088.9 60,402.4 88,060.8 112,735.1 139,852.2 157,666.7 170,685.8 195,100.0

4 52,744.3 65,186.1 86,840.4 119,170.0 148,604.7 172,729.0 195,819.7 220,528.8

6 47,512.5 74,974.7 100,108.8 112,983.8 129,828.2 178,846.1 203,166.9 230,476.3

8 45,260.0 78,442.8 105,630.6 127,552.8 145,710.5 162,208.3 208,051.2 235,944.6

12 43,217.6 79,014.0 109,878.8 136,454.7 160,035.3 180,407.7 192,043.1 213,608.2

16 42,257.9 79,032.8 111,928.4 141,378.1 168,441.0 192,163.0 200,749.1 225,497.5

20 41,706.1 74,932.6 110,882.3 138,851.3 173,135.3 189,925.6 202,191.4 232,973.0

24 41,346.2 78,111.0 113,649.0 146,224.7 171,001.9 206,384.5 203,931.2 238,594.9

32 40,893.9 72,536.5 103,288.7 142,248.8 153,478.4 183,356.6 184,678.0 230,070.3

38 13,168.2 26,134.6 37,675.5 38,319.8 59,253.4 59,788.2 63,556.0 68,606.7

45 13,091.2 25,948.5 37,634.7 45,587.1 55,498.9 58,037.8 62,757.9 65,374.2

56 13,008.9 25,871.2 37,413.6 38,775.9 55,295.1 56,380.5 61,229.5 64,913.0

64 12,979.9 25,722.4 37,120.6 38,694.0 55,374.8 56,586.6 63,378.9 61,492.7

85 12,894.8 25,402.3 36,696.2 47,655.4 49,255.8 58,068.3 60,651.5 64,232.3

100 12,861.5 25,485.3 36,822.4 46,099.3 51,632.6 57,445.8 61,472.4 64,867.1

128 12,810.3 25,405.3 36,676.9 44,752.7 46,074.7 57,366.0 60,664.5 58,034.6

200 11,992.1 23,380.9 29,944.9 32,800.1 38,179.0 47,494.6 49,717.1 48,382.3

256 11,089.4 21,667.7 27,333.7 23,663.3 34,515.6 38,685.5 42,360.0 45,586.5

384 10,304.4 16,665.5 21,585.7 19,678.0 27,860.9 26,681.2 28,493.6 29,630.9

512 10,261.1 16,253.8 20,590.5 20,570.7 26,362.5 27,522.5 27,581.0 26,594.4

768 10,213.4 16,260.0 20,592.1 18,142.5 26,172.9 26,895.2 27,497.8 27,708.2

1,024 10,219.2 16,256.5 20,592.5 20,047.0 26,178.5 26,879.5 27,348.1 27,709.0

2,048 10,214.6 16,244.1 20,563.5 22,956.2 26,138.7 26,832.1 27,313.6 27,689.4

3,072 10,099.3 16,095.4 20,482.3 24,226.6 26,017.0 26,692.8 27,154.0 27,317.3

4,096 10,094.8 16,094.2 20,479.1 24,225.1 26,020.7 26,616.0 27,158.5 27,318.7

6,144 10,050.9 16,073.4 20,468.0 24,210.3 25,828.2 26,489.4 27,157.8 27,231.5

8,192 10,060.9 16,083.9 20,446.8 23,845.5 25,376.7 26,070.8 26,635.6 26,755.8

108

Size (KB) Number of streams

 Single 2 3 4 5 6 7 8

10,240 9,774.7 15,953.6 20,102.7 22,911.3 24,742.0 25,227.1 25,450.1 26,582.5

11,264 9,729.3 15,969.9 19,765.4 23,373.5 23,482.6 24,778.1 25,401.3 26,427.4

12,288 9,669.6 15,804.9 19,275.5 21,104.4 21,861.0 24,205.3 25,276.1 26,563.8

13,302 9,428.1 15,224.2 18,708.2 19,954.8 20,670.3 23,442.2 23,896.6 24,252.0

14,300 9,021.5 13,946.0 17,482.9 19,931.2 20,903.4 21,886.0 22,537.3 23,851.4

15,400 8,516.4 13,316.0 17,180.8 19,066.3 20,162.6 21,158.4 21,034.4 21,487.0

16,384 7,760.6 12,880.6 16,693.7 18,122.9 18,471.1 18,191.8 18,163.4 17,991.0

20,480 6,916.9 11,802.3 14,752.6 15,111.1 15,156.8 14,889.2 14,765.5 14,703.5

32,768 6487.106 11206.05 13423.85 12957.71 13042.74 12777.82 12595.26 12525.88

45,000 6484.498 11223.3 13316.38 12828.89 12870.51 12583.86 12396.58 12388.12

65,136 6492.599 11115.37 13224.01 12706.62 12907.63 12620.56 12441.67 12366.19

78,453 6497.135 11182.61 13312.1 12657.7 12890.7 12631.37 12446.39 12368.64

131,072 6521.119 11024.08 13445.06 12820.52 12818.46 12605.11 12416.24 12368.46

Table A.1.a

 Random Bandwidth (in MB/s)

Size (KB) Number of streams

 Single 2 3 4 5 6 7 8

1 76,847.4 57,651.3 81,995.4 101,444.4 125,142.9 126,790.2 138,709.6 158,573.6

2 75,154.0 60,403.6 88,071.3 112,730.1 139,865.1 158,198.6 170,702.7 195,138.4

4 52,753.9 65,312.7 82,538.3 119,277.9 148,618.5 172,938.8 195,835.8 219,836.3

6 47,514.0 74,968.1 98,184.4 113,555.5 129,847.2 179,021.4 203,177.4 230,632.2

8 45,267.3 78,587.9 107,343.7 127,595.5 145,714.7 162,373.3 208,081.8 235,950.6

12 43,219.3 79,015.4 110,916.2 136,471.0 156,892.0 181,761.6 194,578.1 214,413.4

16 42,259.6 79,036.2 112,915.3 141,370.5 162,941.3 192,502.7 204,920.5 225,528.0

20 41,708.0 78,550.6 113,882.0 144,528.3 165,796.3 201,603.8 215,296.6 233,791.0

24 41,347.0 75,218.9 111,363.1 144,796.9 162,971.1 206,633.4 217,964.0 238,262.9

32 40,894.8 72,175.9 106,969.6 134,536.1 152,955.7 187,909.6 202,198.3 211,157.9

38 13,938.6 27,365.4 40,808.6 39,143.1 59,489.0 66,377.3 71,454.7 73,594.3

45 13,670.3 26,685.6 38,255.9 44,201.3 53,855.8 59,221.2 63,471.4 65,960.4

56 13,533.7 26,273.2 37,666.6 39,498.7 52,433.7 59,025.4 60,082.8 66,538.8

64 13,496.5 26,300.5 37,667.5 42,601.9 53,264.1 58,681.8 60,932.7 63,113.8

85 13,405.0 26,190.0 37,778.3 46,154.7 52,990.5 58,260.0 61,943.7 66,531.4

100 13,380.7 26,143.0 37,083.8 46,220.6 52,355.2 58,179.9 61,017.0 66,065.6

128 13,338.1 25,752.9 32,380.9 45,031.1 51,441.2 57,905.7 60,786.1 60,495.0

200 10,380.3 19,810.2 26,245.2 26,315.0 41,984.5 42,492.3 47,652.4 50,005.4

256 5,159.4 12,021.0 17,085.2 15,610.3 28,707.0 27,694.8 37,751.7 33,450.9

384 3,981.8 7,385.6 10,996.7 12,149.1 17,727.0 20,901.1 23,281.7 26,585.3

512 3,667.0 7,175.4 10,784.2 11,528.4 16,756.6 19,636.0 22,330.5 24,861.5

109

Size (KB) Number of streams

 Single 2 3 4 5 6 7 8

768 3,563.0 6,975.7 10,245.9 11,064.5 16,310.3 19,112.2 21,794.4 24,238.5

1,024 3,511.0 6,889.5 10,096.4 11,238.6 16,100.2 18,861.7 21,470.7 23,936.6

2,048 3,438.2 6,754.8 9,902.0 12,878.3 15,765.5 18,448.3 20,999.1 23,431.1

3,072 3,176.7 6,141.9 8,869.7 11,299.8 13,396.5 15,162.7 16,488.7 17,100.0

4,096 3,060.8 5,855.2 8,283.6 10,255.2 11,570.7 12,303.6 12,501.6 12,529.6

6,144 2,934.9 5,553.1 7,601.0 8,881.5 9,404.8 9,559.7 9,490.4 9,410.6

8,192 2,815.9 5,308.4 6,976.2 8,074.7 8,338.4 8,358.0 8,320.6 8,229.0

10,240 2,466.5 5,178.4 6,853.5 7,141.6 7,419.7 7,672.1 7,656.8 7,589.6

11,264 2,506.8 5,160.2 6,729.7 7,330.3 7,461.2 7,436.8 7,421.5 7,316.9

12,288 2,711.5 5,137.0 6,614.4 7,175.2 7,262.5 7,253.5 7,220.6 7,152.4

13,302 2,663.9 5,052.8 6,535.2 7,061.1 7,080.6 7,105.2 6,947.2 6,981.9

14,300 2,657.1 5,032.9 6,380.3 6,888.2 6,974.5 6,851.4 6,781.3 6,872.6

15,400 1,642.8 4,143.6 5,423.6 6,347.5 6,488.2 4,692.7 6,695.0 6,682.1

16,384 1,137.5 2,169.8 3,349.6 3,947.2 4,892.8 5,460.4 5,982.0 6,235.1

20,480 810.1 1,528.6 2,296.8 2,976.0 3,670.4 4,271.7 4,830.2 5,320.4

32,768 647.8 1,267.9 1,873.9 2,449.4 3,032.1 3,582.1 4,092.2 4,542.0

45,000 629.0 1,240.8 1,819.3 2,396.3 2,943.9 3,444.0 3,929.5 4,285.4

65,136 617.5 1,209.1 1,779.5 2,330.2 2,866.1 3,340.3 3,708.8 3,928.2

78,453 608.3 1,189.3 1,748.6 2,290.6 2,790.6 3,215.5 3,523.2 3,644.9

131,072 589.5 1,154.6 1,691.2 2,203.5 2,625.0 2,908.9 3,032.1 3,062.2

Table A.1.b

110

Figure A.1.1

Figure A.1.2

0.0

20,000.0

40,000.0

60,000.0

80,000.0

100,000.0

120,000.0

140,000.0

160,000.0

1 4 8

1
6

2
4

3
8

5
6

8
5

1
2

8

2
5

6

5
1

2

1
,0

2
4

3
,0

7
2

6
,1

4
4

1
0

,2
4

0

1
2

,2
8

8

1
4

,3
0

0

1
6

,3
8

4

3
2

,7
6

8

6
5

,1
3

6

1
3

1
,0

7
2

Size (KB)

Single Stream Bandwidth

Sequential

Random

0.0

20,000.0

40,000.0

60,000.0

80,000.0

100,000.0

120,000.0

140,000.0

160,000.0

1 4 8

1
6

2
4

3
8

5
6

8
5

1
2

8

2
5

6

5
1

2

1
,0

2
4

3
,0

7
2

6
,1

4
4

1
0

,2
4

0

1
2

,2
8

8

1
4

,3
0

0

1
6

,3
8

4

3
2

,7
6

8

6
5

,1
3

6

1
3

1
,0

7
2

2 Streams

Sequential

Random

111

Figure A.1.3

Figure A.1.4

0.0

20,000.0

40,000.0

60,000.0

80,000.0

100,000.0

120,000.0

140,000.0

160,000.0

1 4 8

1
6

2
4

3
8

5
6

8
5

1
2

8

2
5

6

5
1

2

1
,0

2
4

3
,0

7
2

6
,1

4
4

1
0

,2
4

0

1
2

,2
8

8

1
4

,3
0

0

1
6

,3
8

4

3
2

,7
6

8

6
5

,1
3

6

1
3

1
,0

7
2

3 Streams

Sequential

Random

0.0

20,000.0

40,000.0

60,000.0

80,000.0

100,000.0

120,000.0

140,000.0

160,000.0

1 4 8

1
6

2
4

3
8

5
6

8
5

1
2

8

2
5

6

5
1

2

1
,0

2
4

3
,0

7
2

6
,1

4
4

1
0

,2
4

0

1
2

,2
8

8

1
4

,3
0

0

1
6

,3
8

4

3
2

,7
6

8

6
5

,1
3

6

1
3

1
,0

7
2

4 Streams

Sequential

Random

112

Figure A.1.5

Figure A.1.6

0.0

20,000.0

40,000.0

60,000.0

80,000.0

100,000.0

120,000.0

140,000.0

160,000.0

180,000.0

200,000.0

1 4 8

1
6

2
4

3
8

5
6

8
5

1
2

8

2
5

6

5
1

2

1
,0

2
4

3
,0

7
2

6
,1

4
4

1
0

,2
4

0

1
2

,2
8

8

1
4

,3
0

0

1
6

,3
8

4

3
2

,7
6

8

6
5

,1
3

6

1
3

1
,0

7
2

5 Streams

Sequential

Random

-10,000.0

10,000.0

30,000.0

50,000.0

70,000.0

90,000.0

110,000.0

130,000.0

150,000.0

170,000.0

190,000.0

210,000.0

230,000.0

250,000.0

1 4 8

1
6

2
4

3
8

5
6

8
5

1
2

8

2
5

6

5
1

2

1
,0

2
4

3
,0

7
2

6
,1

4
4

1
0

,2
4

0

1
2

,2
8

8

1
4

,3
0

0

1
6

,3
8

4

3
2

,7
6

8

6
5

,1
3

6

1
3

1
,0

7
2

6 Streams

Sequential

Random

113

Figure A.1.7

Figure A.1.8

0.0

50,000.0

100,000.0

150,000.0

200,000.0

250,000.0

1 4 8

1
6

2
4

3
8

5
6

8
5

1
2

8

2
5

6

5
1

2

1
,0

2
4

3
,0

7
2

6
,1

4
4

1
0

,2
4

0

1
2

,2
8

8

1
4

,3
0

0

1
6

,3
8

4

3
2

,7
6

8

6
5

,1
3

6

1
3

1
,0

7
2

7 Streams

Sequential

Random

0.0

50,000.0

100,000.0

150,000.0

200,000.0

250,000.0

1 4 8

1
6

2
4

3
8

5
6

8
5

1
2

8

2
5

6

5
1

2

1
,0

2
4

3
,0

7
2

6
,1

4
4

1
0

,2
4

0

1
2

,2
8

8

1
4

,3
0

0

1
6

,3
8

4

3
2

,7
6

8

6
5

,1
3

6

1
3

1
,0

7
2

8 Streams

Sequential

Random

114

A.2 Intel
™

 Xeon
™

 X-7460 (Dunnington)

 Sequential Bandwidth (in MB/s)

Size (KB) Number of streams

 Single 2 3 4 5 6 7 8

1 78,596.7 68,256.8 81,065.2 99,766.1 105,716.7 97,262.8 98,668.2 99,760.1

2 79,801.2 74,105.4 88,429.6 112,767.6 118,623.6 118,612.5 116,381.2 117,881.0

4 75,727.4 77,420.5 92,852.0 120,664.9 126,313.4 127,998.1 129,250.4 129,670.3

6 52,045.4 78,592.3 94,330.6 123,527.7 129,420.5 131,894.7 132,880.5 134,140.9

8 52,530.2 79,193.7 95,014.4 125,001.6 130,722.1 133,496.2 135,235.3 136,506.0

12 53,033.3 76,283.4 95,771.8 126,530.8 132,171.0 135,322.5 137,362.0 138,939.3

16 53,282.4 77,413.5 116,444.4 127,305.5 132,916.4 136,191.7 138,461.6 140,195.9

20 53,426.6 78,112.3 115,258.3 124,493.2 133,351.9 136,750.7 134,850.8 139,198.8

24 53,526.9 78,596.5 118,114.5 125,753.0 125,195.8 136,910.7 135,114.9 141,145.3

32 53,640.4 79,141.1 93,761.1 122,190.1 114,750.3 121,475.2 118,081.8 138,596.5

38 13,168.2 26,134.6 37,675.5 35,586.3 39,896.1 42,419.5 40,808.9 38,276.1

45 12,849.7 23,435.8 31,865.3 35,543.2 39,933.6 42,358.4 37,494.2 34,623.1

56 12,858.6 23,265.6 31,956.7 35,740.2 40,046.2 42,398.7 39,348.5 34,628.0

64 12,861.8 23,367.5 31,962.2 35,778.7 40,028.5 42,430.1 37,471.2 34,422.0

85 12,829.7 23,445.7 31,844.7 35,739.7 39,959.8 42,309.7 37,341.8 34,592.2

100 12,836.8 23,436.3 31,873.7 35,813.5 40,668.7 40,898.4 37,424.6 34,591.5

128 12,836.4 23,353.8 31,987.7 35,758.5 40,145.5 42,571.8 37,471.8 33,510.3

200 12,838.8 23,419.5 31,957.4 35,891.9 40,678.0 42,558.1 37,502.1 34,620.9

256 12,838.8 23,652.3 31,918.5 35,868.0 40,236.5 42,616.5 37,531.2 33,539.3

384 12,837.9 23,630.9 31,894.6 35,880.3 40,202.7 39,945.4 37,547.6 33,757.7

512 12,838.2 23,653.4 31,934.2 36,392.7 40,248.6 42,679.7 37,554.5 33,563.8

768 12,837.7 23,635.6 31,959.5 36,366.9 41,972.8 42,868.5 37,556.2 33,580.0

1,024 12,835.8 23,624.5 25,506.2 36,377.2 41,624.3 42,893.7 37,327.5 34,569.4

2,048 11,725.2 22,623.2 28,174.8 31,647.0 37,097.4 35,768.5 34,538.6 32,772.9

3,072 9,976.5 16,047.5 18,204.5 19,364.6 20,993.3 20,661.0 21,063.4 21,384.5

4,096 8,531.1 11,846.9 11,967.0 12,442.9 12,342.4 12,805.5 12,772.7 13,015.0

6,144 7,948.8 9,570.3 9,907.9 10,057.8 10,153.1 10,098.3 10,143.3 10,146.3

8,192 7,890.5 9,416.3 9,481.3 9,896.9 9,826.8 9,856.5 9,785.9 10,020.3

10,240 7,353.5 7,734.3 8,643.4 8,780.5 8,378.2 8,946.7 9,060.2 9,215.7

11,264 6,036.4 7,133.6 7,985.4 8,022.3 7,997.0 8,493.4 8,595.9 8,817.0

12,288 5,381.6 6,317.1 6,453.9 6,432.2 6,621.7 7,577.4 7,718.1 8,130.4

13,302 4,996.6 5,129.0 5,572.1 5,968.3 5,983.9 6,315.4 6,528.1 6,505.7

14,300 4,383.0 4,640.7 4,442.9 4,774.2 5,173.2 5,270.0 5,207.8 5,410.4

15,400 3,546.8 4,273.3 4,005.0 3,978.7 4,202.2 4,273.3 4,504.3 4,448.6

16,384 3,030.4 3,486.6 3,609.2 3,791.9 3,802.9 3,760.9 3,998.7 4,193.2

20,480 2,078.5 2,629.0 2,650.4 2,737.9 2,728.3 2,745.0 2,703.3 2,691.0

115

Size (KB) Number of streams

 Single 2 3 4 5 6 7 8

32,768 1,873.9 2,330.1 2,359.7 2,400.1 2,420.3 2,410.6 2,412.3 2,380.0

45,000 1,872.8 2,333.1 2,358.8 2,414.7 2,427.8 2,429.0 2,404.9 2,416.2

65,136 1,874.8 2,331.9 2,358.2 2,414.1 2,428.3 2,421.4 2,422.7 2,402.6

78,453 1,873.3 2,331.6 2,360.6 2,397.4 2,427.8 2,422.0 2,418.1 2,398.9

131,072 1,872.7 2,322.8 2,362.5 2,386.3 2,429.0 2,422.6 2,422.9 2,363.0

Table A.2.a

 Random Bandwidth (in MB/s)

Size (KB) Number of streams

 Single 2 3 4 5 6 7 8

1 78,602.3 70,102.3 93,538.2 108,083.8 105,710.5 97,269.5 98,676.1 99,757.3

2 79,806.0 75,182.6 105,738.7 117,891.0 118,629.1 118,600.9 116,373.9 117,882.7

4 75,725.7 78,006.6 113,493.9 123,547.9 126,330.5 128,010.7 129,262.8 129,674.9

6 52,049.2 78,989.4 116,164.9 125,510.6 129,411.0 131,894.1 132,887.3 134,158.3

8 52,536.7 79,492.3 117,401.1 126,543.2 130,721.1 133,504.0 135,250.5 136,497.9

12 53,036.6 76,468.4 118,798.4 127,572.1 132,205.1 135,317.5 137,369.1 138,928.2

16 53,281.5 77,555.2 115,802.4 128,106.4 132,928.9 136,191.7 138,453.9 140,197.1

20 53,425.8 78,229.6 116,909.2 124,703.9 133,359.6 136,756.9 139,123.2 140,966.8

24 53,529.8 78,691.5 112,167.8 123,195.3 130,356.8 137,074.0 139,547.3 141,284.6

32 53,634.6 79,147.2 96,329.2 114,466.4 120,876.0 122,764.6 125,908.8 128,006.2

38 13,938.6 27,365.4 40,808.6 39,606.4 47,208.8 41,838.2 41,715.1 38,784.2

45 10,894.2 21,355.7 32,016.7 40,604.9 48,372.0 45,322.8 38,097.5 36,427.4

56 10,798.3 20,338.0 30,400.1 39,720.2 47,034.1 40,999.2 37,902.5 36,338.3

64 10,800.2 20,274.8 30,179.1 39,890.4 48,091.6 41,039.5 37,787.4 36,240.7

85 10,439.5 20,243.6 30,192.7 39,864.6 47,421.3 40,027.4 37,525.8 36,077.1

100 10,333.1 20,176.4 30,102.8 40,048.5 46,533.5 39,714.9 37,414.0 35,928.6

128 10,130.8 19,977.3 29,953.1 39,677.8 45,465.5 39,182.1 37,060.0 35,895.1

200 9,903.4 19,671.8 29,371.0 38,849.2 44,243.9 38,668.4 37,074.2 35,719.0

256 9,826.0 19,558.1 29,200.6 38,639.6 43,788.0 38,544.6 37,047.8 35,683.8

384 9,718.7 19,383.5 28,973.2 38,278.8 42,964.3 38,347.8 36,833.9 35,543.2

512 9,676.0 19,305.1 28,852.3 38,121.3 43,517.2 38,199.9 36,839.3 35,527.0

768 9,625.2 19,220.3 28,775.8 37,745.9 43,024.9 38,209.8 36,693.1 35,438.9

1,024 9,599.0 19,126.4 28,421.8 37,544.5 42,429.3 36,947.8 34,475.0 33,625.4

2,048 7,167.0 11,504.5 18,523.7 21,323.7 23,443.3 22,949.5 26,250.9 25,890.6

3,072 3,778.5 7,475.8 9,132.6 11,340.2 13,203.9 14,974.1 16,037.1 16,934.3

4,096 2,515.1 4,849.1 6,773.6 8,576.0 9,836.0 10,738.8 11,383.2 11,887.9

6,144 1,931.1 3,683.4 5,285.9 6,554.0 7,512.0 8,348.9 9,107.9 9,545.6

8,192 1,698.4 3,308.3 4,754.7 5,929.0 6,884.9 7,768.4 8,602.4 8,873.0

10,240 1,585.0 3,068.6 4,077.9 5,628.9 5,614.1 6,302.3 7,013.4 7,612.6

116

Size (KB) Number of streams

 Single 2 3 4 5 6 7 8

11,264 1,537.2 3,033.7 2,974.3 5,512.5 6,322.6 7,375.0 6,604.0 8,302.3

12,288 1,495.2 2,369.9 2,691.9 5,414.4 5,813.0 6,902.7 5,891.8 6,383.1

13,302 1,415.9 2,160.7 2,835.5 2,894.0 5,357.8 5,473.6 5,889.9 5,330.4

14,300 1,233.3 1,713.0 2,635.8 2,885.1 4,576.3 4,814.0 5,036.5 4,844.5

15,400 965.1 1,508.2 1,912.2 2,516.5 3,430.2 3,661.8 4,157.7 4,502.3

16,384 928.3 1,582.1 2,257.1 2,481.7 2,894.9 3,314.3 3,582.2 3,777.4

20,480 643.2 1,236.3 1,560.6 1,939.2 2,190.2 2,345.3 2,463.7 2,571.3

32,768 427.1 777.3 1,077.7 1,337.7 1,554.3 1,755.2 1,934.3 2,069.0

45,000 384.7 705.5 973.7 1,221.6 1,450.2 1,659.3 1,854.6 2,006.4

65,136 359.8 659.1 907.0 1,144.8 1,377.5 1,594.3 1,804.5 1,958.9

78,453 350.8 640.7 884.3 1,117.8 1,346.4 1,567.7 1,774.5 1,931.9

131,072 334.1 609.9 839.2 1,061.2 1,286.5 1,497.7 1,699.4 1,852.7

Table A.2.b

117

Figure A.2.1

Figure A.2.2

0.00

20,000.00

40,000.00

60,000.00

80,000.00

100,000.00

120,000.00

140,000.00

160,000.00

1 4 8

1
6

2
4

3
8

5
6

8
5

1
2

8

2
5

6

5
1

2

1
0

2
4

3
0

7
2

6
1

4
4

1
0

2
4

0

1
2

2
8

8

1
4

3
0

0

1
6

3
8

4

3
2

7
6

8

6
5

1
3

6

1
3

1
0

7
2

Size (KB)

Single Stream

Sequential

Random

0.00

20,000.00

40,000.00

60,000.00

80,000.00

100,000.00

120,000.00

140,000.00

160,000.00

1 4 8

1
6

2
4

3
8

5
6

8
5

1
2

8

2
5

6

5
1

2

1
0

2
4

3
0

7
2

6
1

4
4

1
0

2
4

0

1
2

2
8

8

1
4

3
0

0

1
6

3
8

4

3
2

7
6

8

6
5

1
3

6

1
3

1
0

7
2

2 Streams

Sequential

Random

118

Figure A.2.3

Figure A.2.4

0.00

20,000.00

40,000.00

60,000.00

80,000.00

100,000.00

120,000.00

140,000.00

160,000.00

1 4 8

1
6

2
4

3
8

5
6

8
5

1
2

8

2
5

6

5
1

2

1
0

2
4

3
0

7
2

6
1

4
4

1
0

2
4

0

1
2

2
8

8

1
4

3
0

0

1
6

3
8

4

3
2

7
6

8

6
5

1
3

6

1
3

1
0

7
2

3 Streams

Sequential

Random

0.00

20,000.00

40,000.00

60,000.00

80,000.00

100,000.00

120,000.00

140,000.00

160,000.00

1 4 8

1
6

2
4

3
8

5
6

8
5

1
2

8

2
5

6

5
1

2

1
0

2
4

3
0

7
2

6
1

4
4

1
0

2
4

0

1
2

2
8

8

1
4

3
0

0

1
6

3
8

4

3
2

7
6

8

6
5

1
3

6

1
3

1
0

7
2

4 Streams

Sequential

Random

119

Figure A.2.5

Figure A.2.6

0.00

20,000.00

40,000.00

60,000.00

80,000.00

100,000.00

120,000.00

140,000.00

160,000.00

1 4 8

1
6

2
4

3
8

5
6

8
5

1
2

8

2
5

6

5
1

2

1
0

2
4

3
0

7
2

6
1

4
4

1
0

2
4

0

1
2

2
8

8

1
4

3
0

0

1
6

3
8

4

3
2

7
6

8

6
5

1
3

6

1
3

1
0

7
2

5 Streams

Sequential

Random

0.00

20,000.00

40,000.00

60,000.00

80,000.00

100,000.00

120,000.00

140,000.00

160,000.00

1 4 8

1
6

2
4

3
8

5
6

8
5

1
2

8

2
5

6

5
1

2

1
0

2
4

3
0

7
2

6
1

4
4

1
0

2
4

0

1
2

2
8

8

1
4

3
0

0

1
6

3
8

4

3
2

7
6

8

6
5

1
3

6

1
3

1
0

7
2

6 Streams

Sequential

Random

120

Figure A.2.7

Figure A.2.8

0.00

20,000.00

40,000.00

60,000.00

80,000.00

100,000.00

120,000.00

140,000.00

160,000.00

1 4 8

1
6

2
4

3
8

5
6

8
5

1
2

8

2
5

6

5
1

2

1
0

2
4

3
0

7
2

6
1

4
4

1
0

2
4

0

1
2

2
8

8

1
4

3
0

0

1
6

3
8

4

3
2

7
6

8

6
5

1
3

6

1
3

1
0

7
2

7 Streams

Sequential

Random

0.00

20,000.00

40,000.00

60,000.00

80,000.00

100,000.00

120,000.00

140,000.00

160,000.00

1 4 8

1
6

2
4

3
8

5
6

8
5

1
2

8

2
5

6

5
1

2

1
0

2
4

3
0

7
2

6
1

4
4

1
0

2
4

0

1
2

2
8

8

1
4

3
0

0

1
6

3
8

4

3
2

7
6

8

6
5

1
3

6

1
3

1
0

7
2

8 Streams

Sequential

Random

121

Appendix B

Co-execution test results

The following pages contain full tables, with all slowdown results from co-execution

experiments.

L2
_1

St
r_

se
q

L2
_2

St
r_

se
q

L2
_2

St
r_

rd
m

L2
_4

St
r_

se
q

L2
_4

St
r_

rd
m

L2
_1

St
r_

rd
m

L3
s_

1s
tr

_s
eq

L3
s_

1s
tr

_r
d

m

L3
s_

2s
tr

_s
eq

L3
s_

2s
tr

_r
d

m

L3
s_

m
ax

st
r_

se
q

L3
s_

m
ax

st
r_

rd
m

L3
m

_1
St

r_
se

q

L3
m

_1
St

r_
rd

m

L3
m

_2
St

r_
se

q

L3
m

_2
St

r_
rd

m

L3
m

_4
St

r_
se

q

L3
m

_4
St

r_
rd

m

L3
l_

1S
tr

_s
eq

L3
l_

1S
tr

_r
d

m

L3
l_

2S
tr

_s
eq

L3
l_

2S
tr

_r
d

m

L3
l_

4S
tr

_s
eq

L3
l_

8S
tr

_r
d

m

M
EM

_1
St

r_
rd

m

M
EM

_2
St

r_
rd

m

M
EM

_8
St

r_
rd

m

M
EM

_1
St

r_
se

q

M
EM

_2
St

r_
se

q

M
EM

_3
St

r_
se

q

Class N N C (N) C (N) C (N) C C C C C C C C C C C C C LC LC LC LC LC LC LC LC LC L L L

L2_1Str_seq N 1.04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.09 1.05 1.05 1.00 1.14 1.13 1.06 1.05 1.00 1.09 1.08 1.01 1.14 1.06

L2_2Str_seq N 1.00 1.10 1.00 1.00 1.00 1.18 1.05 1.06 1.00 1.00 1.00 1.00 1.18 1.07 1.00 1.00 1.08 1.07 1.00 1.00 1.16 1.13 1.14 1.14 1.17 1.11 1.13 1.07 1.14 1.11

L2_2Str_rdm C (N) 0.88 0.88 0.81 0.74 0.76 1.04 0.74 0.89 0.74 0.76 0.71 0.97 0.84 0.87 0.56 0.81 0.78 0.90 0.87 0.57 0.73 0.73 1.18 0.57 0.72 0.56 0.78 0.76 0.75 0.90

L2_4Str_seq C (N) 0.92 0.92 0.89 0.85 0.76 0.94 0.90 0.95 0.82 0.92 0.74 0.79 0.98 0.87 0.80 0.94 0.86 0.88 0.95 0.85 0.96 0.81 0.91 0.94 0.87 0.75 0.98 1.02 0.85 0.98

L2_4Str_rdm C (N) 0.64 1.01 0.65 0.95 0.98 0.64 0.95 1.09 0.64 0.95 0.65 0.65 0.90 1.07 1.13 1.01 1.06 0.86 1.69 0.86 1.06 1.01 1.01 0.97 1.02 0.87 0.64 1.04 1.01 1.11

L2_1Str_rdm C 1.49 1.00 1.00 1.00 1.00 1.40 1.00 1.00 1.00 1.00 1.00 1.00 1.59 1.29 1.51 1.23 1.23 1.24 1.24 1.88 1.54 1.47 1.26 1.30 1.29 1.53 1.52 1.60 1.56 1.37

L3s_1str_seq C 1.02 1.02 1.02 1.02 1.02 1.02 1.01 1.00 1.00 1.00 1.00 1.00 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.03 1.02 1.03 1.02 1.02 1.02 1.02 1.02 1.03 1.03

L3s_1str_rdm C 1.01 1.01 1.02 1.02 1.02 1.01 1.02 1.01 1.01 1.00 1.01 1.00 1.02 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.03 1.02 2.72 1.02 1.02 1.02 1.02 1.02 1.03 8.20

L3s_2str_seq C 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.01 1.00 1.01 1.00 1.01 1.01 1.00 1.01 1.01 1.01 1.02 1.02

L3s_2str_rdm C 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.02 1.01 1.01 1.00 1.01 1.01 1.02 1.01 1.02 1.01 1.02 1.02 1.03 1.01 1.02 1.02 1.02 1.02 1.02 1.03 1.03 1.03

L3s_maxstr_seq C 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.02 1.02

L3s_maxstr_rdm C 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.03 1.01 1.02 1.01 1.02 1.02 1.01 1.01 1.02 1.02 1.03 1.03

L3m_1Str_seq C 1.00 1.01 1.00 1.01 1.00 1.00 1.01 1.00 1.01 1.00 1.01 1.01 1.01 1.00 1.01 1.00 1.01 1.01 1.01 1.00 1.01 1.01 1.02 1.01 1.00 1.00 1.01 1.01 1.02 1.03

L3m_1Str_rdm C 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.01 1.00 1.02 1.04 1.01 1.01 1.01 1.00 2.90 1.00 2.76 1.01 2.84 3.01 1.00 1.00 1.01 5.06 5.96 7.64

L3m_2Str_seq C 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.01 1.01 1.00 1.01 1.01 1.01 1.00 1.01 1.02 1.02 1.02

L3m_2Str_rdm C 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.01 1.01 1.01 1.01 1.01 1.00 1.05 1.01 2.83 1.01 2.94 1.01 1.01 1.00 1.01 1.03 5.72 6.91

L3m_4Str_seq C 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.01 1.00 1.00 1.00 1.02 1.01 1.01 1.01 1.01 1.00 1.01 1.01 1.01 1.02 1.02 1.02

L3m_4Str_rdm C 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.01 1.01 1.01 1.06 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.01 1.01 1.01 1.02 1.03 6.58

L3l_1Str_seq LC 1.00 1.00 1.00 1.00 1.00 1.00 1.05 1.05 1.07 1.05 1.05 1.06 1.13 1.07 1.12 1.12 1.12 1.14 1.46 1.05 1.55 1.12 1.58 1.45 1.06 1.12 1.34 1.47 1.71 1.99

L3l_1Str_rdm LC 1.01 1.05 1.01 1.05 1.00 1.00 1.18 1.25 1.31 1.22 1.17 1.24 1.48 1.36 1.48 1.51 1.48 1.44 2.61 2.47 2.68 2.61 2.63 2.59 2.43 2.63 2.50 2.78 3.10 3.89

L3l_2Str_seq LC 1.00 1.00 1.00 1.00 1.00 1.00 1.03 1.04 1.03 1.04 1.04 1.05 1.08 1.04 1.07 1.08 1.09 1.08 1.32 1.02 1.60 1.04 1.70 1.25 1.02 1.04 1.18 1.32 1.66 1.86

L3l_2Str_rdm LC 1.01 1.00 1.00 1.00 1.00 1.00 1.20 1.19 1.18 1.17 1.19 1.26 1.43 1.35 1.39 1.34 1.41 1.47 2.52 1.58 2.54 2.37 2.55 2.48 1.57 2.33 2.39 2.66 3.01 3.53

L3l_4Str_seq LC 1.00 1.00 1.00 1.00 1.00 1.00 1.04 1.00 1.03 1.04 1.04 1.04 1.11 1.02 1.12 1.05 1.14 1.13 1.36 1.03 1.93 1.03 2.12 1.18 1.00 1.04 1.12 1.35 2.08 2.28

L3l_8Str_rdm LC 1.00 1.00 1.00 1.00 1.00 1.01 1.02 1.02 1.01 1.01 1.01 1.00 1.05 1.02 1.06 1.04 1.04 1.05 1.53 1.00 1.61 1.03 1.66 1.45 1.02 1.05 1.32 1.58 1.94 2.23

MEM_1Str_rdm LC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.04 1.01 1.06 1.01 1.08 1.04 1.01 1.01 1.03 1.09 1.31 1.84

MEM_2Str_rdm LC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.04 1.01 1.07 1.02 1.07 1.03 1.01 1.01 1.03 1.09 1.29 1.62

MEM_8Str_rdm LC 1.01 1.00 1.00 1.00 1.01 1.01 1.01 1.01 1.02 1.01 1.01 1.01 1.01 1.01 1.02 1.02 1.01 1.01 1.03 1.01 1.04 1.01 1.05 1.03 1.01 1.01 1.02 1.04 1.12 1.21

MEM_1Str_seq L 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.10 1.01 1.15 1.02 1.17 1.10 1.01 1.02 1.06 1.08 1.24 1.36

MEM_2Str_seq L 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.02 1.01 1.03 1.00 1.00 1.08 1.02 1.25 1.03 1.31 1.07 1.01 1.01 1.06 1.09 1.28 1.43

MEM_3Str_seq L 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.01 1.02 1.01 1.05 1.01 1.06 1.14 1.03 1.37 1.05 1.44 1.13 1.01 1.03 1.11 1.19 1.41 1.54

Orestis
Typewritten text
Table B.1: Total slowdown results for Sandy Bridge (sandman)

L2
s_

1S
tr

_s
eq

L2
s_

1S
tr

_r
d

m

L2
s_

2S
tr

_s
eq

L2
s_

2S
tr

_r
d

m

L2
s_

m
ax

_s
eq

L2
s_

m
ax

_r
d

m

L2
m

_1
St

r_
se

q

L2
m

_2
St

r_
se

q
L2

m
_1

St
r_

rd
m

L2
m

_2
St

r_
rd

m

L2
m

_m
ax

_s
eq

L2
m

_m
ax

_r
d

m

L2
l_

1S
tr

_s
eq

L2
l_

1S
tr

_r
d

m

L2
l_

2S
tr

_s
eq

L2
l_

2S
tr

_r
d

m

L2
l_

m
ax

_s
eq

L2
l_

m
ax

_r
d

m

L3
s_

1S
tr

_s
eq

L3
s_

1S
tr

_r
d

m

L3
s_

2S
tr

_s
eq

L3
s_

2S
tr

_r
d

m

L3
s_

m
ax

_s
eq

L3
s_

m
ax

_r
d

m

L3
l_

1S
tr

_s
eq

L3
l_

1S
tr

_r
d

m

L3
l_

2S
tr

_s
eq

L3
l_

2S
tr

_r
d

m

L3
l_

m
ax

_s
eq

L3
l_

m
ax

_r
d

m

M
EM

_1
St

r_
rd

m
M

EM
_2

St
r_

rd
m

M
EM

_1
St

r_
se

q
M

EM
_2

St
r_

se
q

M
EM

_m
ax

_s
eq

M
EM

_m
ax

_r
d

m

Class C (N) C (N) C (N) C (N) C (N) C (N) C (N) C (N) C C C C C C C C C C C C C C C C LC LC LC LC LC LC LC LC L L L L

L2s_1Str_seq C (N) 1.00 1.05 1.09 1.10 1.10 1.09 1.04 1.19 1.24 1.00 1.09 1.13 1.15 1.15 1.14 1.15 1.15 1.06 1.11 1.14 1.10 1.10 1.09 1.21 1.11 1.09 1.34 1.74 1.46 1.58 1.10 1.20 1.16 1.05 1.11 1.17

L2s_1Str_rdm C (N) 1.00 1.00 1.03 1.05 1.04 1.04 1.01 1.14 1.16 1.00 1.00 1.16 1.09 1.09 1.02 1.15 1.08 1.00 1.05 1.09 1.04 1.05 1.03 1.10 1.04 1.03 1.27 1.63 1.41 1.45 1.05 1.14 1.10 1.00 1.05 1.12

L2s_2Str_seq C (N) 1.00 1.00 1.00 1.02 1.01 1.02 1.00 1.02 1.00 1.00 1.04 1.14 1.00 1.00 1.01 1.08 1.14 1.01 1.00 1.00 1.00 1.02 1.00 1.06 1.19 1.09 1.25 1.57 1.36 1.42 1.09 1.10 1.25 1.00 1.02 1.08

L2s_2Str_rdm C (N) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.06 1.00 1.00 1.06 1.11 1.00 1.02 1.00 1.00 1.00 1.00 1.00 1.07 1.47 1.23 1.28 1.55 1.35 1.41 1.11 1.09 1.45 1.00 1.00 1.06

L2s_max_seq C (N) 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.03 1.00 1.00 1.00 1.00 1.09 1.01 1.01 1.00 1.01 1.01 1.03 1.05 1.27 1.12 1.37 1.26 1.38 1.38 1.10 1.20 1.28 1.42 1.01 1.08

L2s_max_rdm C (N) 1.03 1.03 1.04 1.02 1.00 1.01 1.03 1.02 1.04 1.02 1.11 1.08 1.00 1.00 1.03 1.02 1.13 1.01 1.19 1.04 1.01 1.03 1.07 1.09 1.48 1.10 1.56 1.30 1.40 1.44 1.10 1.25 1.41 1.63 1.04 1.11

L2m_1Str_seq C (N) 1.02 1.04 1.06 1.08 1.07 1.07 1.02 1.13 1.28 1.00 1.16 1.12 1.09 1.06 1.12 1.16 1.13 1.08 1.11 1.14 1.10 1.08 1.13 1.17 1.18 1.21 1.45 1.92 1.64 1.72 1.09 1.19 1.15 1.05 1.11 1.17

L2m_2Str_seq C (N) 1.08 1.08 1.01 1.00 1.00 1.00 1.05 1.04 1.05 1.01 1.07 1.06 1.07 1.04 1.05 1.12 1.20 1.00 1.03 1.07 1.10 1.03 1.01 1.11 1.64 1.30 1.37 1.78 1.55 1.57 1.25 1.11 1.66 1.00 1.03 1.09

L2m_1Str_rdm C 1.06 1.04 1.00 1.00 1.00 1.00 1.12 1.00 1.00 1.00 1.00 1.04 1.00 1.00 1.00 1.05 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.04 1.07 1.29 1.65 1.40 1.49 1.00 1.04 1.00 1.00 1.00 1.02

L2m_2Str_rdm C 1.00 1.00 1.03 1.01 1.10 1.07 1.00 1.12 1.08 1.08 1.15 1.16 1.00 1.10 1.16 1.13 1.17 1.11 1.10 1.08 1.15 1.12 1.09 1.18 2.13 1.29 1.49 1.87 1.66 1.70 1.22 1.21 2.10 1.07 1.13 1.19

L2m_max_seq C 1.00 1.00 1.02 1.00 1.00 1.07 1.08 1.07 1.03 1.05 1.14 1.09 1.05 1.03 1.11 1.19 1.16 1.01 1.13 1.02 1.20 1.17 1.08 1.21 1.66 1.24 1.84 1.42 1.58 1.55 1.12 1.41 1.58 1.92 1.03 1.10

L2m_max_rdm C 1.00 1.06 1.07 1.01 1.00 1.00 1.00 1.01 1.05 1.01 1.04 1.02 1.03 1.00 1.04 1.02 1.06 1.00 1.11 1.04 1.02 1.00 1.03 1.03 1.74 1.21 2.20 1.45 1.40 1.53 1.16 1.37 1.82 2.13 1.00 1.05

L2l_1Str_seq C 1.03 1.03 1.00 1.00 1.00 1.00 1.01 1.07 1.01 1.00 1.04 1.07 1.06 1.01 1.07 1.14 1.10 1.06 1.15 1.10 1.14 1.10 1.15 1.23 1.13 1.25 1.34 1.93 1.47 1.71 1.01 1.11 1.06 1.00 1.02 1.08

L2l_1Str_rdm C 1.01 1.01 1.00 1.00 1.00 1.00 1.00 1.02 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.07 1.03 1.00 1.00 1.02 1.03 1.01 1.04 1.10 1.11 1.22 1.39 1.87 1.59 1.67 1.00 1.08 1.03 1.00 1.00 1.07

L2l_2Str_seq C 1.00 1.00 1.00 1.03 1.00 1.00 1.01 1.03 1.00 1.03 1.08 1.06 1.05 1.00 1.08 1.13 1.20 1.18 1.21 1.00 1.22 1.08 1.24 1.29 1.50 1.14 1.39 1.93 1.52 1.70 1.10 1.11 1.53 1.00 1.01 1.08

L2l_2Str_rdm C 1.00 1.02 1.00 1.03 1.00 1.00 1.00 1.04 1.03 1.00 1.11 1.00 1.06 1.02 1.07 1.03 1.14 1.00 1.11 1.02 1.00 1.00 1.00 1.11 1.70 1.20 1.26 1.89 1.43 1.62 1.13 1.04 1.64 1.00 1.00 1.01

L2l_max_seq C 1.00 1.00 1.08 1.00 1.04 1.05 1.01 1.16 1.03 1.02 1.11 1.07 1.07 1.03 1.19 1.18 1.31 1.15 1.18 1.11 1.32 1.11 1.39 1.46 1.37 1.17 1.54 1.28 1.51 1.71 1.09 1.15 1.49 1.61 1.02 1.08

L2l_max_rdm C 1.00 1.00 1.00 1.02 1.01 1.00 1.01 1.00 1.01 1.02 1.01 1.01 1.07 1.03 1.22 1.07 1.20 1.10 1.12 1.04 1.18 1.07 1.23 1.26 1.55 1.17 1.76 1.29 1.53 1.75 1.07 1.21 1.52 1.69 1.03 1.11

L3s_1Str_seq C 1.00 1.00 1.00 1.00 1.00 1.14 1.03 1.03 1.02 1.00 1.13 1.16 1.15 1.03 1.24 1.19 1.23 1.11 1.59 1.34 1.34 1.46 1.36 1.69 1.26 1.61 1.58 2.49 1.76 2.10 1.04 1.14 1.08 1.00 1.05 1.13

L3s_1Str_rdm C 1.00 1.00 1.00 1.00 1.00 1.00 1.02 1.03 1.01 1.00 1.00 1.05 1.07 1.02 1.00 1.06 1.12 1.00 1.30 1.17 1.04 1.04 1.01 1.10 1.31 1.57 1.51 2.48 1.64 1.75 1.00 1.11 1.07 1.00 1.04 1.10

L3s_2Str_seq C 1.00 1.00 1.00 1.00 1.01 1.00 1.03 1.11 1.01 1.05 1.21 1.07 1.16 1.08 1.26 1.07 1.39 1.19 1.36 1.08 1.89 1.51 1.67 2.02 1.22 1.04 1.58 2.58 1.77 2.12 1.03 1.17 1.24 1.03 1.07 1.16

L3s_2Str_rdm C 1.00 1.00 1.01 1.00 1.01 1.00 1.01 1.04 1.01 1.03 1.18 1.05 1.11 1.05 1.12 1.04 1.16 1.07 1.48 1.08 1.50 1.26 1.14 1.26 1.56 1.06 1.85 2.56 2.19 2.22 1.05 1.17 1.22 1.02 1.05 1.18

L3s_max_seq C 1.00 1.00 1.00 1.00 1.03 1.03 1.06 1.02 1.01 1.01 1.09 1.09 1.18 1.08 1.29 1.08 1.46 1.24 1.38 1.06 1.68 1.15 1.77 2.15 1.25 1.03 1.56 1.07 1.80 2.15 1.02 1.04 1.25 1.43 1.09 1.17

L3s_max_rdm C 1.05 1.00 1.00 1.02 1.00 1.00 1.04 1.07 1.02 1.03 1.16 1.03 1.19 1.09 1.27 1.14 1.45 1.20 1.62 1.09 1.92 1.20 2.04 1.78 1.33 1.06 1.74 1.17 1.69 1.99 1.05 1.10 1.31 1.52 1.01 1.11

L3l_1Str_seq LC 1.19 1.17 1.38 1.73 1.49 1.68 1.29 1.94 1.30 2.29 1.96 2.15 1.34 1.35 1.81 2.16 1.69 1.83 1.49 1.60 1.42 1.83 1.46 1.64 2.53 3.42 3.24 5.16 3.67 4.10 1.61 1.81 1.76 1.68 1.78 1.97

L3l_1Str_rdm LC 1.11 1.10 1.21 1.37 1.24 1.18 1.26 1.46 1.27 1.32 1.39 1.42 1.42 1.41 1.31 1.45 1.36 1.30 1.81 1.82 1.15 1.18 1.15 1.24 3.25 2.38 1.72 2.90 1.89 2.02 1.24 1.33 1.24 1.15 1.21 1.28

L3l_2Str_seq LC 1.13 1.12 1.14 1.18 1.25 1.39 1.24 1.27 1.26 1.25 1.70 2.13 1.25 1.32 1.31 1.26 1.48 1.62 1.46 1.45 1.45 1.70 1.43 1.68 2.54 1.42 2.91 4.66 3.28 3.65 1.40 1.58 2.55 1.47 1.57 1.74

L3l_2Str_rdm LC 1.21 1.19 1.19 1.19 1.00 1.00 1.36 1.36 1.34 1.30 1.09 1.16 1.49 1.47 1.51 1.55 1.02 1.00 1.91 1.96 1.96 1.94 1.00 1.00 3.35 1.97 3.86 2.63 1.77 1.87 1.92 1.00 3.34 1.00 1.00 1.00

L3l_max_seq LC 1.13 1.15 1.14 1.16 1.17 1.15 1.31 1.32 1.27 1.29 1.35 1.25 1.27 1.40 1.34 1.32 1.34 1.31 1.51 1.46 1.50 1.86 1.52 1.51 2.66 1.44 3.03 1.98 3.16 3.50 1.44 1.89 2.70 3.00 1.49 1.67

L3l_max_rdm LC 1.20 1.16 1.17 1.17 1.15 1.16 1.34 1.32 1.32 1.30 1.30 1.34 1.44 1.44 1.46 1.46 1.49 1.46 1.76 1.51 1.75 1.85 1.78 1.74 2.90 1.51 3.31 2.04 3.42 3.11 1.47 1.98 2.88 3.26 1.34 1.48

MEM_1Str_rdm LC 1.01 1.01 1.08 1.12 1.11 1.06 1.02 1.26 1.02 1.12 1.13 1.23 1.03 1.03 1.15 1.23 1.15 1.08 1.06 1.05 1.03 1.06 1.02 1.10 1.38 1.12 1.53 2.53 1.70 1.78 1.12 1.20 1.41 1.03 1.09 1.15

MEM_2Str_rdm LC 1.02 1.02 1.02 1.02 1.12 1.13 1.04 1.04 1.03 1.03 1.32 1.34 1.05 1.04 1.07 1.05 1.12 1.13 1.08 1.08 1.09 1.09 1.00 1.08 1.44 1.12 1.61 1.20 2.08 2.22 1.11 1.19 1.45 1.61 1.15 1.21

MEM_1Str_seq L 1.02 1.01 1.19 1.40 1.23 1.31 1.04 1.61 1.03 1.85 1.53 1.84 1.04 1.03 1.52 1.71 1.49 1.47 1.05 1.07 1.19 1.18 1.20 1.32 1.45 1.07 2.67 4.22 3.05 3.33 1.35 1.49 1.45 1.38 1.46 1.59

MEM_2Str_seq L 1.04 1.04 1.04 1.04 1.54 1.72 1.07 1.08 1.06 1.07 2.11 2.44 1.06 1.07 1.08 1.06 1.84 1.84 1.10 1.12 1.11 1.11 1.55 1.74 1.56 1.12 1.75 1.28 3.85 4.28 1.12 1.88 1.56 1.75 1.85 2.06

MEM_max_seq L 1.04 1.04 1.04 1.04 1.04 1.04 1.08 1.08 1.06 1.07 1.07 1.07 1.07 1.07 1.08 1.06 1.11 1.07 1.09 1.12 1.11 1.08 1.12 1.10 1.57 1.12 1.77 1.28 1.82 1.66 1.12 1.27 1.57 1.75 1.82 2.01

MEM_max_rdm L 1.02 1.03 1.02 1.03 1.03 1.03 1.05 1.05 1.04 1.05 1.06 1.06 1.05 1.07 1.07 1.05 1.09 1.06 1.09 1.10 1.11 1.13 1.12 1.12 1.61 1.10 1.82 1.26 1.89 1.70 1.10 1.25 1.59 1.81 1.86 1.68

Orestis
Typewritten text
Table B.2: Total slowdown for Dunnington, non-shared L2

L2
s_
1S
tr
_s
eq

L2
s_
1S
tr
_r
d
m

L2
s_
2S
tr
_s
eq

L2
s_
2S
tr
_r
d
m

L2
s_
m
ax
_s
eq

L2
s_
m
ax
_r
d
m

L2
m
_1
St
r_
se
q

L2
m
_2
St
r_
se
q

L2
m
_1
St
r_
rd
m

L2
m
_2
St
r_
rd
m

L2
m
_m

ax
_s
eq

L2
m
_m

ax
_r
d
m

L2
l_
1S
tr
_s
eq

L2
l_
1S
tr
_r
d
m

L2
l_
2S
tr
_s
eq

L2
l_
2S
tr
_r
d
m

L2
l_
m
ax
_s
eq

L2
l_
m
ax
_r
d
m

L3
s_
1S
tr
_s
eq

L3
s_
1S
tr
_r
d
m

L3
s_
2S
tr
_s
eq

L3
s_
2S
tr
_r
d
m

L3
s_
m
ax
_s
eq

L3
s_
m
ax
_r
d
m

L3
l_
1S
tr
_s
eq

L3
l_
1S
tr
_r
d
m

L3
l_
2S
tr
_s
eq

L3
l_
2S
tr
_r
d
m

L3
l_
m
ax
_s
eq

L3
l_
m
ax
_r
d
m

M
EM

_1
St
r_
rd
m

M
EM

_2
St
r_
rd
m

M
EM

_1
St
r_
se
q

M
EM

_2
St
r_
se
q

M
EM

_m
ax
_s
eq

M
EM

_m
ax
_r
d
m

Class C LC LC LC LC LC LC LC LC L L L L

L2s_1Str_seq C 1.10 1.06 1.27 1.10 1.22 1.17 1.23 1.94 1.05 1.12 2.23 1.68 1.24 1.03 1.92 1.11 4.42 2.36 1.21 1.03 1.98 1.12 5.59 2.82 1.43 1.12 1.68 1.23 2.28 1.55 1.12 1.24 1.49 1.81 2.61 1.76

L2s_1Str_rdm C 1.27 1.26 1.09 1.17 1.32 1.44 2.72 3.57 1.46 1.90 3.54 2.80 4.50 1.09 5.87 2.26 6.84 5.14 5.07 1.10 6.64 1.67 8.35 7.23 1.60 1.19 2.18 1.38 3.11 3.02 1.14 1.36 1.63 2.00 2.23 2.24

L2s_2Str_seq C 1.15 1.04 1.27 1.14 1.36 1.24 1.20 1.40 1.03 1.10 2.48 1.79 1.22 1.04 1.41 1.07 4.49 1.55 1.23 1.03 1.48 1.09 4.05 1.45 1.41 1.11 1.63 1.22 2.20 1.59 1.10 1.21 1.46 1.74 2.48 1.67

L2s_2Str_rdm C 1.18 1.09 1.48 1.22 1.47 1.31 1.67 3.50 1.06 1.35 3.16 3.02 1.26 1.07 5.65 1.14 7.63 5.96 1.25 1.03 2.14 1.13 9.13 7.06 1.40 1.15 1.64 1.30 1.91 1.72 1.12 1.25 1.43 1.71 1.94 1.68

L2s_max_seq C 1.28 1.21 1.33 1.32 1.67 1.36 1.22 1.42 1.16 1.29 2.01 1.80 1.27 1.12 1.36 1.24 1.86 1.56 1.28 1.12 1.40 1.18 1.67 1.39 1.40 1.19 1.56 1.33 2.04 1.77 1.16 1.28 1.43 1.67 2.38 1.74

L2s_max_rdm C 1.13 1.11 1.24 1.18 1.40 1.34 1.13 1.24 1.06 1.11 1.47 1.44 1.17 1.06 1.26 1.08 1.46 1.27 1.12 1.05 1.30 1.07 1.46 1.17 1.37 1.14 1.52 1.26 1.64 1.61 1.13 1.27 1.34 1.64 1.84 1.56

L2m_1Str_seq C 1.37 1.31 1.47 1.36 1.61 1.59 2.17 2.32 1.32 1.49 2.64 2.33 2.24 1.28 3.39 1.52 4.92 3.76 2.17 1.26 3.59 1.51 5.54 3.85 1.80 1.23 2.48 1.42 4.48 2.91 1.21 1.35 1.75 2.45 5.09 2.76

L2m_2Str_seq C 1.91 1.32 1.64 1.54 2.00 1.95 2.07 3.55 1.25 1.51 4.02 3.72 2.06 1.21 3.73 1.49 6.51 5.20 2.23 1.24 3.78 1.47 6.97 4.96 1.73 1.22 2.34 1.35 4.50 2.55 1.15 1.28 1.80 2.43 4.65 2.52

L2m_1Str_rdm C 1.83 1.78 1.91 1.75 1.80 1.73 2.97 3.12 2.43 2.75 3.28 2.94 3.73 2.47 4.70 3.05 5.24 4.31 4.43 2.48 5.23 3.11 5.93 5.10 3.63 1.92 4.07 2.69 6.57 4.37 1.36 2.04 3.23 3.68 4.34 3.92

L2m_2Str_rdm C 1.88 1.80 1.84 1.86 1.97 1.79 3.31 3.66 2.08 2.69 3.73 3.43 4.45 2.06 5.04 2.81 5.99 4.96 4.93 2.03 5.13 2.87 6.67 5.60 2.82 1.67 3.45 2.07 4.59 3.99 1.29 1.71 2.22 2.90 3.40 3.07

L2m_max_seq C 1.91 1.50 2.32 1.70 2.16 2.30 1.78 2.71 1.31 1.57 5.50 5.72 1.75 1.29 2.92 1.67 5.96 6.85 1.63 1.26 2.76 1.51 5.58 6.15 1.59 1.18 2.03 1.44 3.59 2.19 1.20 1.38 1.57 2.34 3.83 2.26

L2m_max_rdm C 1.50 1.23 1.73 1.42 1.66 1.68 1.67 2.47 1.12 1.35 3.42 3.97 1.62 1.13 2.54 1.39 3.37 3.71 1.59 1.06 2.51 1.32 3.22 3.47 1.40 1.19 1.63 1.27 1.94 1.72 1.15 1.25 1.42 1.73 1.85 1.59

L2l_1Str_seq C 1.19 1.20 1.30 1.36 1.61 1.53 1.85 2.03 1.23 1.38 2.25 1.98 2.00 1.23 2.75 1.39 3.99 3.08 1.98 1.22 2.97 1.39 4.71 3.14 1.75 1.16 2.40 1.27 4.05 2.70 1.14 1.24 1.85 2.53 4.50 2.64

L2l_1Str_rdm C 1.55 1.53 1.53 1.48 1.57 1.49 2.11 2.20 1.79 1.96 2.27 2.09 2.57 1.85 2.96 2.14 3.28 2.77 3.09 1.85 3.31 2.17 3.67 3.08 2.49 1.62 8.34 1.94 9.37 8.51 1.47 1.71 2.35 3.16 11.16 2.70

L2l_2Str_seq C 1.62 1.33 1.47 1.64 1.63 1.63 2.16 2.70 1.27 1.69 3.07 2.87 2.18 1.29 3.01 1.68 4.64 3.85 2.18 1.26 2.96 1.65 4.72 3.62 1.74 1.16 2.27 1.35 3.79 2.62 1.16 1.33 1.79 2.49 4.38 2.63

L2l_2Str_rdm C 1.54 1.51 1.55 1.51 1.59 1.52 2.25 2.37 1.63 1.92 2.47 2.25 2.71 1.64 3.04 1.98 3.53 2.96 2.98 1.61 3.01 1.97 3.82 3.24 2.26 1.46 2.53 1.78 2.84 2.60 1.34 1.56 2.19 2.44 2.63 2.45

L2l_max_seq C 1.86 1.37 2.04 1.74 1.67 1.66 1.83 2.53 1.36 1.67 3.51 3.63 1.86 1.32 2.51 1.60 3.93 4.39 1.86 1.32 2.51 1.67 3.80 4.19 1.54 1.17 1.90 1.30 2.79 2.68 1.16 1.30 1.44 1.89 3.02 2.55

L2l_max_rdm C 1.69 1.30 1.57 1.53 1.54 1.46 1.98 2.59 1.30 1.58 2.82 3.05 2.03 1.28 2.57 1.56 2.85 3.28 1.99 1.29 2.47 1.56 2.74 3.14 1.43 1.17 1.78 1.33 1.93 2.13 1.18 1.27 1.46 1.74 1.79 2.02

L3s_1Str_seq C 1.04 1.11 1.13 1.29 1.39 1.45 1.57 1.80 1.09 1.19 1.84 1.65 1.69 1.13 2.24 1.22 3.36 2.50 2.40 1.13 2.86 1.24 4.37 2.95 1.68 1.06 2.75 1.19 10.61 8.41 1.06 1.20 1.74 2.46 12.11 6.73

L3s_1Str_rdm C 1.13 1.13 1.15 1.13 1.16 1.12 1.35 1.37 1.24 1.28 1.39 1.28 1.55 1.29 1.74 1.32 1.92 1.60 1.94 1.44 2.12 1.57 2.37 2.09 5.26 1.27 5.89 2.36 6.07 5.70 1.18 1.56 6.21 6.56 6.93 6.48

L3s_2Str_seq C 1.18 1.15 1.09 1.15 1.18 1.16 1.43 1.75 1.14 1.28 1.96 1.92 1.49 1.14 1.88 1.28 2.87 2.50 1.50 1.12 2.64 1.30 3.46 2.66 1.36 1.11 1.69 1.22 9.40 2.21 1.09 1.24 1.38 1.87 9.18 2.16

L3s_2Str_rdm C 1.14 1.14 1.15 1.12 1.16 1.12 1.40 1.47 1.17 1.27 1.48 1.39 1.60 1.17 1.76 1.34 2.08 1.68 2.02 1.21 2.12 1.62 2.35 2.16 5.51 1.14 6.12 1.37 6.66 6.10 1.11 1.26 5.49 6.33 7.12 6.39

L3s_max_seq C 1.23 1.10 1.22 1.21 1.03 1.06 1.25 1.41 1.10 1.20 1.85 1.94 1.23 1.10 1.50 1.20 2.01 2.33 1.21 1.08 1.37 1.23 2.40 2.45 1.13 1.04 1.25 1.09 1.87 1.71 1.05 1.09 1.12 1.25 2.01 1.78

L3s_max_rdm C 1.22 1.08 1.13 1.19 1.11 1.07 1.36 1.55 1.08 1.27 1.74 1.79 1.36 1.08 1.60 1.19 1.71 1.92 1.33 1.08 1.57 1.19 1.92 2.09 1.18 1.04 1.31 1.07 1.35 1.59 1.04 1.07 1.23 1.36 1.32 1.54

L3l_1Str_seq LC 1.20 1.26 1.21 1.37 1.36 1.55 1.37 1.47 1.25 1.33 1.71 1.57 1.61 1.35 1.89 1.40 2.46 2.04 1.94 1.53 2.43 1.72 3.12 2.58 2.85 1.55 3.69 1.83 5.10 4.09 1.54 1.82 2.77 3.68 5.84 4.01

L3l_1Str_rdm LC 1.17 1.14 1.19 1.13 1.21 1.19 1.31 1.47 1.30 1.33 1.40 1.39 1.59 1.42 1.83 1.43 1.96 1.68 2.09 1.89 2.26 1.87 2.36 2.23 3.37 2.43 3.66 2.94 3.77 3.47 2.36 2.82 3.66 3.79 3.91 3.66

L3l_2Str_seq LC 1.22 1.24 1.28 1.39 1.46 1.45 1.41 1.46 1.31 1.37 1.65 1.59 1.52 1.49 1.68 1.42 2.03 1.90 1.90 1.49 1.88 1.91 2.46 2.20 2.30 1.50 3.00 1.90 4.63 3.79 1.49 1.87 2.27 2.95 4.74 3.59

L3l_2Str_rdm LC 1.20 1.17 1.19 1.17 1.24 1.18 1.45 1.43 1.36 1.41 1.59 1.44 1.72 1.52 1.84 1.53 2.01 1.82 2.15 2.01 2.20 2.05 2.30 2.19 3.55 2.02 3.73 2.73 3.99 3.65 1.97 2.68 3.62 3.73 4.07 3.69

L3l_max_seq LC 1.08 1.11 1.19 1.20 1.18 1.26 1.11 1.12 1.23 1.17 1.31 1.38 1.22 1.21 1.24 1.25 1.51 1.76 1.69 1.29 2.04 1.52 1.76 2.10 1.64 1.25 2.16 1.47 3.24 3.68 1.17 1.44 1.62 2.14 3.14 3.27

L3l_max_rdm LC 1.18 1.20 1.18 1.22 1.23 1.22 1.37 1.38 1.33 1.31 1.45 1.43 1.45 1.43 1.45 1.43 1.49 1.52 2.11 1.38 1.76 1.78 1.69 1.76 2.15 1.42 2.51 1.79 2.68 3.13 1.44 1.78 2.13 2.51 2.67 2.93

MEM_1Str_rdm LC 1.02 1.02 1.03 1.02 1.03 1.02 1.06 1.07 1.04 1.05 1.08 1.07 1.12 1.05 1.18 1.08 1.22 1.15 1.18 1.07 1.23 1.10 1.26 1.22 1.31 1.10 1.38 1.19 1.46 1.35 1.11 1.20 1.35 1.39 1.48 1.37

MEM_2Str_rdm LC 1.02 1.02 1.03 1.02 1.03 1.03 1.05 1.06 1.03 1.05 1.08 1.07 1.09 1.04 1.12 1.06 1.14 1.13 1.10 1.06 1.13 1.08 1.18 1.13 1.28 1.10 1.30 1.15 1.39 1.27 1.10 1.16 1.29 1.31 1.41 1.29

MEM_1Str_seq L 1.05 1.13 1.07 1.23 1.19 1.34 1.14 1.22 1.08 1.18 1.35 1.33 1.30 1.07 1.56 1.17 1.88 1.64 1.35 1.06 1.77 1.13 2.22 1.85 1.63 1.06 2.18 1.13 3.03 2.40 1.06 1.14 1.63 2.18 3.48 2.34

MEM_2Str_seq L 1.13 1.15 1.15 1.18 1.21 1.23 1.22 1.25 1.18 1.21 1.33 1.31 1.26 1.20 1.32 1.22 1.56 1.56 1.29 1.21 1.35 1.29 1.87 1.67 1.40 1.21 1.79 1.30 2.76 2.33 1.21 1.30 1.40 1.79 2.91 2.16

MEM_max_seq L 1.03 1.04 1.03 1.07 1.04 1.11 1.01 1.03 1.01 1.05 1.07 1.16 1.02 1.05 1.04 1.04 1.22 1.46 1.15 1.05 1.27 1.13 1.28 1.64 1.15 1.05 1.31 1.13 1.84 2.15 1.05 1.13 1.15 1.31 1.85 1.93

MEM_max_rdm L 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.01 1.02 1.00 1.00 1.00 1.00 1.04 1.07 1.10 1.02 1.02 1.05 1.05 1.07 1.13 1.02 1.23 1.06 1.35 1.50 1.02 1.05 1.13 1.24 1.34 1.44

Orestis
Typewritten text
Table B.3: Total slowdown for Dunnington, shared L2

L2
s_
1S
tr
_s
eq

L2
s_
1S
tr
_r
d
m

L2
s_
2S
tr
_s
eq

L2
s_
2S
tr
_r
d
m

L2
s_
m
ax
_s
eq

L2
s_
m
ax
_r
d
m

L2
m
_1
St
r_
se
q

L2
m
_2
St
r_
se
q

L2
m
_1
St
r_
rd
m

L2
m
_2
St
r_
rd
m

L2
m
_m

ax
_s
eq

L2
m
_m

ax
_r
d
m

L2
l_
1S
tr
_s
eq

L2
l_
1S
tr
_r
d
m

L2
l_
2S
tr
_s
eq

L2
l_
2S
tr
_r
d
m

L2
l_
m
ax
_s
eq

L2
l_
m
ax
_r
d
m

L3
s_
1S
tr
_s
eq

L3
s_
1S
tr
_r
d
m

L3
s_
2S
tr
_s
eq

L3
s_
2S
tr
_r
d
m

L3
s_
m
ax
_s
eq

L3
s_
m
ax
_r
d
m

L3
l_
1S
tr
_s
eq

L3
l_
1S
tr
_r
d
m

L3
l_
2S
tr
_s
eq

L3
l_
2S
tr
_r
d
m

L3
l_
m
ax
_s
eq

L3
l_
m
ax
_r
d
m

M
EM

_1
St
r_
rd
m

M
EM

_2
St
r_
rd
m

M
EM

_1
St
r_
se
q

M
EM

_2
St
r_
se
q

M
EM

_m
ax
_s
eq

M
EM

_m
ax
_r
d
m

Class C(N) C(N) C(N) C(N) C(N) C(N) C(N) C(N) C C C C C C C C C C C C C C C C LC LC LC LC LC LC LC LC L L L L

L2s_1Str_seq C(N) 1.10 1.01 1.17 0.99 1.11 1.07 1.18 1.63 0.85 1.12 2.05 1.49 1.08 0.90 1.69 0.96 3.84 2.23 1.09 0.90 1.80 1.02 5.13 2.34 1.29 1.03 1.25 0.70 1.56 0.98 1.02 1.03 1.28 1.72 2.36 1.50

L2s_1Str_rdm C(N) 1.27 1.26 1.05 1.11 1.28 1.39 2.68 3.13 1.26 1.90 3.54 2.41 4.14 1.00 5.78 1.96 6.33 5.14 4.81 1.01 6.38 1.60 8.12 6.58 1.53 1.16 1.72 0.85 2.20 2.08 1.09 1.19 1.48 2.00 2.13 2.01

L2s_2Str_seq C(N) 1.15 1.04 1.26 1.12 1.34 1.22 1.20 1.37 1.03 1.10 2.39 1.58 1.22 1.04 1.39 1.00 3.94 1.53 1.23 1.03 1.48 1.07 4.04 1.36 1.18 1.02 1.30 0.78 1.62 1.12 1.01 1.09 1.17 1.74 2.44 1.55

L2s_2Str_rdm C(N) 1.18 1.08 1.48 1.22 1.47 1.31 1.66 3.49 1.06 1.35 3.16 2.84 1.26 1.07 5.31 1.03 7.63 5.87 1.25 1.03 2.14 1.13 9.13 6.60 0.96 0.94 1.28 0.84 1.41 1.22 1.01 1.15 0.98 1.71 1.94 1.58

L2s_max_seq C(N) 1.28 1.21 1.33 1.32 1.67 1.36 1.22 1.42 1.15 1.28 2.00 1.75 1.27 1.12 1.36 1.24 1.71 1.54 1.27 1.12 1.40 1.18 1.62 1.32 1.11 1.06 1.15 1.05 1.48 1.28 1.05 1.06 1.12 1.18 2.36 1.62

L2s_max_rdm C(N) 1.10 1.08 1.19 1.16 1.40 1.32 1.09 1.21 1.02 1.10 1.32 1.33 1.17 1.06 1.22 1.05 1.29 1.26 0.94 1.01 1.29 1.04 1.37 1.07 0.92 1.04 0.97 0.97 1.17 1.12 1.03 1.01 0.95 1.01 1.77 1.41

L2m_1Str_seq C(N) 1.35 1.26 1.38 1.26 1.50 1.48 2.12 2.05 1.04 1.49 2.28 2.08 2.05 1.21 3.02 1.31 4.34 3.47 1.95 1.11 3.27 1.40 4.90 3.28 1.52 1.02 1.71 0.74 2.73 1.69 1.11 1.13 1.52 2.32 4.57 2.35

L2m_2Str_seq C(N) 1.77 1.22 1.63 1.54 2.00 1.95 1.97 3.43 1.18 1.49 3.76 3.51 1.92 1.16 3.54 1.33 5.40 5.20 2.16 1.16 3.44 1.42 6.93 4.46 1.06 0.94 1.70 0.76 2.91 1.62 0.92 1.16 1.09 2.43 4.50 2.32

L2m_1Str_rdm C 1.73 1.71 1.91 1.75 1.80 1.73 2.66 3.12 2.43 2.75 3.28 2.83 3.73 2.47 4.70 2.91 5.21 4.31 4.43 2.48 5.23 3.11 5.93 5.10 3.50 1.80 3.16 1.63 4.70 2.94 1.36 1.96 3.23 3.68 4.34 3.85

L2m_2Str_rdm C 1.88 1.80 1.79 1.85 1.80 1.67 3.31 3.28 1.92 2.50 3.24 2.96 4.45 1.88 4.35 2.49 5.14 4.45 4.48 1.87 4.46 2.56 6.09 4.73 1.32 1.29 2.31 1.10 2.76 2.34 1.06 1.41 1.06 2.71 3.02 2.57

L2m_max_seq C 1.91 1.50 2.27 1.70 2.16 2.16 1.65 2.53 1.27 1.50 4.84 5.24 1.66 1.25 2.63 1.40 5.16 6.77 1.44 1.23 2.30 1.29 5.16 5.06 0.95 0.95 1.10 1.02 2.28 1.41 1.07 0.98 0.99 1.22 3.71 2.06

L2m_max_rdm C 1.50 1.16 1.62 1.40 1.66 1.68 1.67 2.44 1.06 1.34 3.28 3.90 1.58 1.13 2.43 1.36 3.19 3.71 1.43 1.03 2.47 1.32 3.14 3.37 0.81 0.98 0.74 0.87 1.38 1.12 0.99 0.91 0.78 0.81 1.85 1.52

L2l_1Str_seq C 1.16 1.17 1.30 1.36 1.61 1.53 1.84 1.90 1.22 1.38 2.16 1.86 1.89 1.21 2.58 1.22 3.63 2.91 1.72 1.11 2.60 1.27 4.08 2.56 1.56 0.93 1.79 0.66 2.75 1.58 1.13 1.12 1.74 2.53 4.43 2.45

L2l_1Str_rdm C 1.53 1.52 1.53 1.48 1.57 1.49 2.11 2.17 1.79 1.96 2.27 2.09 2.57 1.85 2.96 2.00 3.17 2.77 3.09 1.81 3.20 2.14 3.54 2.80 2.25 1.32 6.00 1.04 5.88 5.09 1.47 1.58 2.28 3.16 11.16 2.52

L2l_2Str_seq C 1.61 1.33 1.47 1.59 1.63 1.63 2.13 2.63 1.27 1.65 2.85 2.69 2.08 1.29 2.79 1.50 3.86 3.26 1.80 1.26 2.43 1.53 3.80 2.80 1.16 1.02 1.64 0.70 2.49 1.54 1.05 1.20 1.17 2.49 4.32 2.44

L2l_2Str_rdm C 1.54 1.48 1.55 1.47 1.59 1.52 2.24 2.29 1.58 1.92 2.23 2.25 2.54 1.60 2.83 1.92 3.09 2.96 2.68 1.57 3.01 1.97 3.82 2.92 1.33 1.21 2.00 0.94 1.98 1.61 1.18 1.50 1.34 2.44 2.63 2.42

L2l_max_seq C 1.85 1.37 1.88 1.74 1.60 1.58 1.80 2.18 1.32 1.64 3.16 3.41 1.75 1.29 2.11 1.35 3.00 3.81 1.57 1.19 1.90 1.51 2.73 2.87 1.12 1.00 1.23 1.02 1.85 1.57 1.06 1.13 0.97 1.17 2.95 2.35

L2l_max_rdm C 1.69 1.30 1.57 1.50 1.53 1.46 1.96 2.59 1.28 1.55 2.79 3.01 1.91 1.25 2.11 1.46 2.37 2.99 1.77 1.25 2.09 1.46 2.22 2.49 0.92 1.01 1.02 1.03 1.26 1.22 1.11 1.05 0.96 1.03 1.74 1.83

L3s_1Str_seq C 1.04 1.11 1.13 1.29 1.39 1.27 1.53 1.75 1.07 1.19 1.63 1.43 1.47 1.11 1.81 1.02 2.74 2.24 1.51 0.84 2.13 0.85 3.21 1.75 1.33 0.66 1.75 0.48 6.05 4.01 1.02 1.05 1.62 2.46 11.56 5.96

L3s_1Str_rdm C 1.13 1.13 1.15 1.13 1.16 1.12 1.32 1.33 1.23 1.28 1.39 1.22 1.45 1.27 1.74 1.24 1.72 1.60 1.49 1.23 2.05 1.51 2.34 1.90 4.03 0.81 3.89 0.95 3.69 3.26 1.18 1.41 5.82 6.56 6.67 5.88

L3s_2Str_seq C 1.17 1.14 1.09 1.15 1.17 1.16 1.38 1.58 1.12 1.22 1.63 1.79 1.29 1.06 1.49 1.20 2.07 2.10 1.11 1.03 1.40 0.86 2.07 1.31 1.12 1.07 1.07 0.47 5.30 1.04 1.06 1.05 1.11 1.82 8.56 1.86

L3s_2Str_rdm C 1.14 1.13 1.14 1.12 1.15 1.12 1.38 1.41 1.15 1.23 1.25 1.32 1.44 1.12 1.58 1.28 1.80 1.56 1.37 1.12 1.41 1.29 2.06 1.71 3.54 1.08 3.31 0.53 3.04 2.74 1.05 1.08 4.49 6.20 6.79 5.42

L3s_max_seq C 1.23 1.10 1.22 1.21 1.00 1.03 1.18 1.39 1.08 1.20 1.70 1.79 1.05 1.02 1.17 1.10 1.38 1.88 0.87 1.02 0.82 1.08 1.35 1.14 0.90 1.01 0.80 1.01 1.04 0.79 1.03 1.05 0.89 0.87 1.84 1.52

L3s_max_rdm C 1.16 1.08 1.12 1.16 1.11 1.07 1.30 1.45 1.06 1.24 1.50 1.73 1.14 1.00 1.26 1.04 1.18 1.60 0.82 0.99 0.82 1.00 0.94 1.17 0.88 0.99 0.75 0.92 0.80 0.80 1.00 0.98 0.94 0.89 1.30 1.38

L3l_1Str_seq LC 1.01 1.07 0.88 0.79 0.92 0.92 1.06 0.76 0.97 0.58 0.87 0.73 1.21 1.00 1.04 0.65 1.46 1.11 1.30 0.96 1.71 0.94 2.13 1.57 1.13 0.45 1.14 0.35 1.39 1.00 0.96 1.00 1.57 2.19 3.28 2.03

L3l_1Str_rdm LC 1.05 1.04 0.98 0.83 0.97 1.01 1.04 1.00 1.02 1.01 1.01 0.98 1.12 1.00 1.40 0.99 1.44 1.29 1.16 1.03 1.96 1.59 2.05 1.80 1.04 1.02 2.12 1.02 1.99 1.71 1.90 2.11 2.95 3.29 3.24 2.86

L3l_2Str_seq LC 1.08 1.11 1.12 1.18 1.16 1.04 1.13 1.15 1.04 1.09 0.97 0.75 1.22 1.13 1.28 1.13 1.37 1.17 1.30 1.03 1.30 1.12 1.72 1.31 0.90 1.06 1.03 0.41 1.41 1.04 1.07 1.18 0.89 2.00 3.02 2.06

L3l_2Str_rdm LC 0.99 0.99 1.00 0.99 1.24 1.18 1.07 1.05 1.01 1.08 1.47 1.24 1.15 1.03 1.22 0.98 1.98 1.82 1.13 1.02 1.12 1.06 2.30 2.19 1.06 1.02 0.97 1.04 2.26 1.95 1.03 2.68 1.09 3.73 4.07 3.69

L3l_max_seq LC 0.95 0.96 1.04 1.04 1.01 1.09 0.85 0.85 0.97 0.90 0.97 1.10 0.96 0.86 0.93 0.94 1.13 1.34 1.12 0.88 1.36 0.82 1.16 1.40 0.61 0.87 0.71 0.74 1.02 1.05 0.81 0.76 0.60 0.71 2.10 1.95

L3l_max_rdm LC 0.99 1.03 1.01 1.04 1.07 1.06 1.02 1.05 1.00 1.01 1.11 1.07 1.00 1.00 0.99 0.98 1.00 1.04 1.20 0.91 1.01 0.96 0.95 1.01 0.74 0.94 0.76 0.88 0.78 1.01 0.97 0.90 0.74 0.77 2.00 1.98

MEM_1Str_rdm LC 1.01 1.01 0.95 0.91 0.94 0.96 1.04 0.84 1.01 0.94 0.95 0.87 1.09 1.02 1.03 0.87 1.06 1.07 1.12 1.02 1.19 1.04 1.24 1.10 0.95 0.99 0.90 0.47 0.86 0.76 0.99 1.00 0.96 1.34 1.36 1.19

MEM_2Str_rdm LC 1.00 1.00 1.01 1.00 0.92 0.91 1.01 1.02 1.00 1.02 0.81 0.79 1.03 0.99 1.05 1.01 1.02 1.00 1.03 0.98 1.04 0.99 1.18 1.05 0.89 0.99 0.81 0.96 0.67 0.57 0.99 0.97 0.89 0.82 1.23 1.07

MEM_1Str_seq L 1.03 1.11 0.90 0.87 0.97 1.02 1.10 0.76 1.05 0.64 0.88 0.72 1.25 1.04 1.03 0.68 1.26 1.11 1.29 0.99 1.49 0.96 1.86 1.40 1.12 0.99 0.82 0.27 0.99 0.72 0.79 0.76 1.12 1.58 2.37 1.47

MEM_2Str_seq L 1.08 1.11 1.10 1.14 0.78 0.72 1.13 1.16 1.11 1.14 0.63 0.54 1.18 1.12 1.22 1.16 0.85 0.85 1.17 1.07 1.21 1.16 1.20 0.96 0.90 1.07 1.02 1.02 0.72 0.54 1.08 0.69 0.90 1.02 1.57 1.05

MEM_max_seq L 0.98 1.00 0.99 1.03 1.00 1.07 0.94 0.96 0.95 0.99 1.00 1.08 0.95 0.98 0.96 0.99 1.10 1.36 1.05 0.94 1.15 1.04 1.14 1.49 0.73 0.94 0.74 0.88 1.02 1.29 0.94 0.89 0.73 0.75 1.01 0.96

MEM_max_rdm L 0.98 0.97 0.98 0.97 0.98 0.97 0.95 0.95 0.96 0.95 0.96 0.96 0.95 0.94 0.93 0.95 0.95 1.01 1.00 0.92 0.92 0.93 0.94 0.95 0.70 0.93 0.68 0.84 0.71 0.88 0.93 0.85 0.71 0.68 0.72 0.86

Orestis
Typewritten text
Table B.4: Total relative slowdown for Dunnington, ratio of tables B.3/B.2

	Thesis_complete.pdf (p.1-135)
	First pages.pdf (p.1-4)
	Abstracts.pdf (p.5-10)
	Table_Of_Contents.pdf (p.11-14)
	Chapter 1.pdf (p.15-20)
	Chapter 2.pdf (p.21-28)
	Chapter 3.pdf (p.29-64)
	Chapter 4.pdf (p.65-114)
	Chapter 5.pdf (p.115-118)
	REFERENCES.pdf (p.119-120)
	Appendix A.pdf (p.121-134)
	AppendixBFull.pdf (p.135-139)
	Appendix B.pdf (p.1)

	Sandman_Appendix.pdf (p.136)
	AppendixBtables.pdf (p.137-139)
	AppendixB_dunnington_non_sharedL2.pdf (p.2)
	AppendixB_dunnington2_sharedL2.pdf (p.3)
	AppendixB_dunnington_relative.pdf (p.4)

