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ATmoryopevETaL 1] OVTLYPOOT], OO KELGT] KOt S10VOUT TNG TAPOVGAS EPYaciag, £ OAOKATpOV
N TUWLOTOG AVTAGS, Yo epmoptkd okond. Emrpénetor n avatimmon, amodnKevuon Kot dtovoun
YL GKOTO U1 KEPSOOKOTIKO, EKTOUOEVTIKNG 1] EPEVVNTIKNG GVUONGC, VO TNV Tpoimdbeon va
AVOQEPETOL 1| TTNYN TPOEAELONG Kol va dlatnpeitor to mopdv pnvopa. Epotiuate mov
apOPOVV TN XPNON NG EPYACIAG Y10, KEPOOGKOTIKO OKOTO TPEMEL Vo amevfHvovTal Tpog Tov
GLYYPOUPEQ.

Ol amOYelS Kol TO. GUUTEPAGLOTO TOL TEPIEYOVIOL GE OVTO TO EYYPOPO €KPPALOLV TOV
ocvyypagéo Kot dev mpémel v gpunvevdetl Ot avimmposwnehovv TG emionueg B€oglg Tov
EBvucov Metoofrov TToAvteyveiov.



Iepidnyn

Ov oOyypoveg apyrtektovikég emelepyactdv Pacilovtal otV Topovcic. TOAA®V
VTOAOYIOTIKOV TUPHVOV TOVe oT0 {00 Tow, ot omoiot powpdlovior tn  ypnon
VIOGVOTNUATOV NG 1EPUPYING TG UVAUNG, Omw¢ To Tehevtaio eminedo tng cache kot 1o
memory bus. To yeyovdg avtd €xel OC amOTEAECUO 1 TOPAAANAT EKTELECT] TPOYPUUUATOV
TOL KAVOLV £VTOVN YPNOT TOV VTOCLOTNUATOV VIOV, GE YEITOVIKOVUG TUPNVEG, VO
emnpedleTon KOl Vo CNUEIDVETOL TTAOGT TNG ATOS0CNG TOV EPAPLOYDV.

O okomdg avutig TG OWAMUATIKNAG €pyaciag NTov 1 UEAETN TOV QOIVOUEVOV
avVTOYOVIGHOD HETAED TOV EQUPUOYDV Yo TOLG OOUOPalOUEVOVG OTOVS TOPOVG, TTOV
pmopel va TPOKOWYOLV KT Tr GUVEKTEAEGT TPOYPOUUATOV, KOl TNV EMIOPACT] OV EXOLV
omv omddoon TV gpappoydv. o va dnpiovpyndel éva chvolo €QaploYdV HE TOKIAN
CUUTEPLPOPE KOl OMOUTHGELS OO TO VTOGLGTHUOTO TNG UVIUNG, DGTE VA TPOCGOHOIwOHovV
TPOYPAUUOTO TTOV KAVOLV SLOQOPETIKY ¥PNOT TOVG, avomtuydnke pio epappoyn pETpnong
emdooewv pvaung (benchmark). To wpdypoppo ovtd pmopei vo peTPHoEl 10 PLOUO
uetapopag dsdopévav (bandwidth) ota didpopa eninedo tepapyiog TG UvHUNG. TN CLUVEXELD
EYvav TEWPAUATO GUVEKTEAEOT|G oTYoTOHTT®V Tov benchmark, pe dtapopetikn cupmeptpopd
KOl  EKUETOALELOUEVOV  JLOPOPETIKG  vrocvotiuota. Ta  mepduato €ywvav o€ VO
OPYLTEKTOVIKES, OGTE va LeAeTnBel TAG o1 WonTepOTNTEG GTN GYEdIAOT Kot TNV epapyio. TG
UVIUNG UTOPOVV VO EXNPEAGOLY TEPETAIP®. X& OAO TO TEPAUATO LETPNONKAY Ol EMOOCELG
TOV EPAPULOYDV, DOCTE VO VIOAOYIOTEL KOTA TOGO pHeTAPAAAETAL O XPOVOG EKTEAECNG TOVG
KOTA TN GUVEKTEAEGT, GAAG KOL 1] YEVIKOTEPT CLUTEPIPOPE TOVG,.

Ta amoteléopata pmopovv va ypnoipomomBovv yio tov Ereyyo kot v emPefaionon
EKTIUNCE®V TNG OLUEOPNONG OTO VTOGLOTNUATO UVAUNG, 7oL vroloyilovior omd
TPOTEWOUEVO, LOVTELD TPOPAEYTG KOl OTOPLYNG TETOL®V (QOIVOUEVOV, MGTE Vo Yivel O
amodoTikn 1 dpopordynon (scheduling) tov epappoydv oe Tolvmopnva cvetiuoata. TEAog,
TO UETPNTIKO TPOYPOLLLLO TTOL VAOTOMONKE, umopel vo ypnoiponomBel mg EVOALAKTIKY AVoT)
OGO Y10 PETPNOELS EMOOGEMY UVIUNG, OGO KOl Y10l TNV TPOCOUOIMCT] TPOYPUUUATOV TOV
KEVOUV €VTOV XP1OT TOV VITOCLGTNUATOV LVAUNG Y10 TEWPALOTO GUVEKTEAECNG,.

AéEarg Kheaona: Tlolvmdpnveg apyltekTovikég, GUVOPOLOAOYNGT, GLUPOPTOT], OVTAYMOVIGHOG GTOVG

potpalouevoug mopovg, memory benchmark
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Abstract

Modern processor architectures have moved towards utilizing multiple cores on the
same physical package, which share resources of the memory hierarchy, e.g. last-level cache,
memory bus bandwidth. As a result, concurrent execution of programs that make significant
use of shared memory subsystems, on cores of the same package, leads to performance
degradation phenomena for co-executed applications.

The objective of this thesis was to study contention effects in shared memory resources,
as a result of co-execution, and its impact on applications’ performance. A memory
benchmark program was developed, which can measure bandwidth in all levels of the
memory hierarchy. This benchmark was used to create a set of instances with different
behavior and memory usage intensity, in order to emulate a variety of memory-bound
applications that utilize different memory hierarchy subsystems. Co-scheduling scenarios
with all combinations of the aforementioned suite were tested on two architectures, with
different characteristics. This also enabled us to observe how specific architecture features
and design differences may further affect applications’ interference. Performance metrics
were used for all experiments in order to detect impact on execution time, as well as
alterations on their general behavior.

Results of the experiments can be used to validate contention estimations based on
application classification models of literature-suggested contention-aware co-scheduling
approaches. Additionally, the proposed benchmark program can be further used and
expanded as an alternative choice for both memory performance evaluation and emulation of
various memory-intensive workloads for experiments.

Keywords: Multicore architectures, CMPs, co-scheduling, contention-aware scheduling, application

classification, memory benchmark
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Chapter 1

Introduction

1.1 Multicore architectures concepts

Modern computer architectures’ design and principles have changed in the last decade. In
previous years, processors consisted of a single core which handled and executed the whole
workload. Performance of uni-core systems was increased by microarchitecture
improvements, progress in manufacturing methods that allowed for higher clock frequencies
with lower power consumption and implementation of more complex and efficient memory
hierarchy designs. Progress using this model has declined in recent years, as reaching the
physical limits of semiconductor microelectronic materials and manufacturing techniques
causes intractable problems, related to increased heat dissipation and data synchronization,
among others. These limitations have resulted in a different approach in newer designs, using
multiple cores on the same chip, sharing the workload instead of a single core running all

tasks.

The concept of a computer system consisting of two or more physical processors sharing the

main memory was known and used in previous decades on mainframe, server and



workstation implementations (e.g. symmetric multi-processing, SMP). Demand for increased
performance in general purpose systems with single processors and the previously mentioned
limitations of uni-core designs led to a new trend in computer architecture, combining two or
more CPU cores on the same physical processor package. All cores, operating
simultaneously, can execute instructions independently, resulting in tremendous increase of
the system’s throughput potential. Usage of such chip multi-processors (CMPSs) has seen
excessive growth in recent years, being present in all types of computer systems, from servers
to mobile phones.

However, contrary to systems with multiple physical processors, cores of a CMP share more
resources, such as cache memory, main memory bus bandwidth available to the socket, data
prefetchers. As a result, cores are not completely independent from each other. Applications
executed concurrently on different cores may cause contention in these shared resources,
leading to reduced hardware efficiency and subsequently performance degradation. It
becomes apparent that conflicts for shared resources utilization need to be minimized to

avoid such unwanted effects.

1.2 Operating system - Scheduling

The operating system is an essential component of a computer system. It is responsible for
hardware and software management, providing services needed by applications, enabling
them to utilize hardware resources, communicate with each other and the user. The scheduler
plays a critical role in operating systems, being responsible for application execution and
resource allocation. A scheduler has to make decisions about how CPU time, 1/0O and other
resources will be shared among processes, which processes will be assigned to specific cores,
starting and stopping applications in order to provide efficiency for the system. Different
types of systems may require different scheduler approaches, for instance a personal
computer needs optimized application responsiveness, while the objective for a server

running multiple tasks is throughput maximization.

For single CPU systems, dominant in the market until recently, main concern of OS

scheduling was the allocation of processor time among processes. In this context, scheduling



techniques had been highly optimized over the years and became very efficient, to the point
that there was no demand for further improvement. This was also the case for SMP systems,
processors of which only share main memory. Notable open source examples of highly
efficient schedulers are the 2 latest scheduler implementations of the Linux kernel, known as
O(1) scheduler [2] and CFS [3]. With CMPs, the scheduling problem becomes much more
complex. Shared memory resources among multiple cores make decisions about process
execution much more difficult, as architecture specific parameters must be considered (e.g.
what levels of cache hierarchy and other resources are shared, among which cores) to make
the optimal choices. It becomes apparent that space-sharing of the CMP needs to be
optimized along with time-sharing, since the choice of processor assigned to execute a task

may have negative effects on programs’ execution [1].

1.3 Problem definition

Scheduler implementations in mainstream operating systems, optimized for SMP
architectures, when used with multi-core single chip processors, treat all cores as independent
from each other. This simplified approach may result in concurrent execution of applications
that make intense use of shared memory resources, leading to contention and causing
significantly reduced efficiency and performance. Optimization of scheduling algorithms to
better utilize resources in CMP context is an active field of research, due to multicore

designs’ massive adoption, even on handheld devices.

Many approaches suggest contention-aware scheduling techniques. It is assumed that if
architecture details are known, including memory hierarchy and shared resources, then a
program’s behavior in co-execution and potential interference suffered or caused can be
estimated by observing its memory utilization needs. Such approaches rely on various
application classification schemes, based mainly on memory-associated behavior, in order to
facilitate scheduling related decisions. Knowing the overall picture of how classes interact in
co-scheduling scenarios on a certain architecture, concurrent execution of programs

potentially harmful for the system’s efficiency and throughput might be avoided.



The objective of this work is to study concurrent execution of memory intensive applications
on multicore architectures and the impact it has on shared memory hierarchy and other
programs’ performance. Co-execution experiments are used to evaluate a literature-suggested
memory contention estimation model based on an application classification scheme. To
emulate different class memory-bound programs, a versatile memory pseudo-benchmark with

user-controlled behavior was developed.

1.3.1 Contribution

Co-scheduling experiments were conducted on multicore architectures with different design
characteristics and memory hierarchy organization. To evaluate performance of all levels in
the memory hierarchy we created a benchmark program. This benchmark is extensively
tested on the systems we intend to use for co-execution experimentation and results are
compared with other known benchmarks to estimate its validity. Taking advantage of its
versatile design, the benchmark was used to create a suite of instances with different
behavior. It is suggested that this benchmark program can be used as an in-house alternative
to emulate a wide range of memory-bound processes. Application performance is profiled
using the aforementioned classification scheme and data collected is used to make general

contention estimations for various co-execution scenarios.

All applications of the proposed set are co-executed in pairs with each other. In each
experiment we observe if contention on the memory hierarchy occurs and how it affects co-
running applications’ execution time. Slowdown results are compared with expected
behavior, to discuss the validity of the contention-based slowdown estimation model. We
show that excessive application slowdown may occur in certain co-scheduling scenarios due
to contention in memory subsystems. It is also demonstrated how architecture specific
characteristics can drastically affect programs’ performance degradation in co-execution

context.



1.4 Chapter description

Chapter 2 describes the slowdown estimation model and classification algorithm used in this

work, along with similar research examples.

A detailed description of the proposed benchmark program, its results and evaluation are
found in chapter 3. Additionally, that chapter contains information about the specific
computer systems used, including architecture details, and the co-scheduling infrastructure

used for experiments

Chapter 4 contains all co-scheduling experimentation related work: workload description,

preliminary evaluation, experimental procedure and results.

Conclusions, along with ideas for future work are summarized in chapter 5.



Page intentionally left blank.



Chapter 2

Motivation and current approaches

2.1 The scheduling problem on CMPs

Chip multi-processors are designed to improve performance by providing parallel
computational cores to share workload, executing programs concurrently. Although there are
huge potential gains from this approach, scheduling execution of threads on a CMP in an
efficient way is a very complex problem. The main reason for this is that cores are not
completely independent from each other, as they are sharing cache memory, access to the
main memory bus, controllers, hardware prefetchers and, possibly, other resources with

neighboring or all cores.

When multicore processors appeared, they were handled by existing OS schedulers similarly
with cores of symmetric multi-proccessing (SMP) systems, which differ significantly as they
consist of separate physical processors on different sockets. However, processors of SMP
system are independent, as they only share main memory. Even with the shared memory,

NUMA architectures (Non-Uniform Memory Access) provide mechanisms for avoiding



memory bus related conflicts, as each socket can access its relatively closer located memory
faster. Thus, the OS scheduling problem is addressed as mainly managing run-queues,
ensuring that cpu-time is efficiently allocated for overall throughput. Very efficient and
optimized algorithms have been developed, which led to the scheduling problem being

considered as solved.

Applying the same scheduling techniques on systems with CMPs can have largely
unpredictable effects. Sharing memory resources can be very beneficial or extremely
destructive for running applications. Threads of an application, using the same data, can
largely take advantage of shared cache, when executed concurrently on cores of a multicore
processor. Similar speed-up can occur when different programs, sharing libraries, are
simultaneously scheduled. On the other hand, a process streaming large amounts of data,
intensely replacing the content of cache levels, can be extremely harmful for other running
programs, forcing them to continuously re-fetch data from main memory and subsequently
suffer from highly increased time penalties. These examples demonstrate extreme cases and

help to intuitively understand how complex co-scheduling scenarios can be.

Details of the architecture, mapping of shared resources and behavior of the programs
consisting the workload are all very significant factors in order to make efficient scheduling
decisions. Space-sharing the CMP is equally important to time-sharing it, as the choice of
which core is assigned for a programs’ execution may dramatically affect, positively or
negatively, the program’s behavior, as well as other running processes. Sharing memory
resources between cores running different applications can create contention in some or even
all levels of the memory hierarchy that are shared. Contention is the main reason for
performance degradation in CMP co-execution context. Thus, current research approaches,
found in literature, try to address the problem on CMPs with contention-aware scheduling

methods.

For contention-aware scheduling, it is assumed that in architectures with multiple cores,
different resources are shared among core subsets, since if all cores shared all resources
equally, space-sharing decisions would have no effect. Additionally, all resource sharing is
considered to cause negative effects, as contention aware-schedulers try to avoid such
interference. Suggested prediction schemes are based on classifying programs of the
workload, using their behavior profile, attempting to keep apart applications that cause stress

to the memory hierarchy [1]. These prediction mechanisms use performance metrics, such as

8



LLC misses and cache utilization patterns or other heuristic methods to detect potential
application interference in co-execution scenarios. But even with an ideal, very accurate
prediction model, finding the optimal mapping in systems with more than 2 cores is shown to
be an NP-complete problem [4]. However, it is possible to suggest a much more efficient

mapping, compared to initial contention-unaware scheduling.

2.2 Related work

Contention aware scheduling methodologies, for CMP and SMP or cluster systems, found in
literature use classification schemes to characterize workload behavior. Many approaches
have been suggested, ordering applications by performance characteristics, such as LLC miss
rate, cache re-use patterns, main bus utilization. Bhadauria and McKee [6] use cache miss
rate (hits/misses) or bus occupancy metrics, trying to balance resource utilization to be fairly
shared among processes. Xie and Loh [8] use an approach classifying programs in animal
categories. There are 4 such classes: Turtles, sheep, rabbits and Tasmanian devils. Turtles
make zero or very low use of shared resources, relying in the lower level private cache of the
core. Sheep and rabbits re-use LLC intensely, with the difference being that rabbits are very
sensitive to the ways of the cache allocated to them, while sheep are not easily affected.
Finally, devils heavily use cache, but also have a large number of misses; as a result they are

very harmful for co-running applications.

Blagodurov et al.[7] proposed the Pain classification scheme. In this approach, the terms
cache “sensitivity” and “intensity” are suggested. Sensitivity shows how likely it is for a
program’s cached data to be replaced, using probabilities based on stack-distance profile
(SDP) and reuse frequency. To calculate intensity, authors use the ratio of cache access
operations per million instructions, to indicate how aggressively an application uses the
shared cache. The product of sensitivity and intensity is then used to calculate the “pain” an
application will suffer from and cause to co-runners, due to co-scheduling. A similar
approach was proposed by Tang et al. [11], with contentiousness and sensitivity metrics for

applications to estimate performance degradation.



Jaleel et al. [10] suggest a categorization model base on applications’ cache utilization. There
are 4 classes in this model: Core Cache Fitting (CCF), LLC Thrashing (LLCT), LLC Fitting
(LLCF) and LLC Friendly (LLCFR) applications. CCF programs have small working sets
and fit in private caches, without need to use the shared LLC. LLCT are applications with
working sets much larger than LLC, making streaming accesses and replacing cache content
and thus being very harmful for co-running programs that use the LLC. LLCF programs need
a large part of the LLC, and are affected if competition for the cache occurs. LLCFR
applications benefit from cache re-use, but are not so sensitive when available cache

resources are reduced.

Lin et al. [12] used a color-based classification scheme to allocate cache usage by
applications. Mars et al. [16] introduced “bubble”, a stress test for the memory subsystem,
with gradually increasing intensity, in order to characterize applications’ sensitivity by their
performance curve, as the “bubble” grows. They also observe how much an application
stresses the subsystem itself. Being aware of contentiousness and sensitivity, co-scheduling

behavior may be predicted.

Other approaches try to balance shared memory bus utilization and avoid saturation [9] as
memory bus contention is seen as the major factor of performance degradation. Merkel et al.
[13] try to address the issue by scheduling programs that use complementary resources for
co-execution. Numerous other examples are present in literature, as research for CMP-

optimized scheduling is an active and challenging field.

2.3 LCA: A memory Link and Cache-Aware approach

A recent approach suggested in literature is LCA [5]. LCA tries to address the CMP co-
scheduling problem using a classification scheme based on the overall picture of memory
resources utilization. Data flow in all levels of memory hierarchy is observed to predict
interference problems, attempting to deal with dual contention on both memory link and
shared cache.

10



The contention-avoidance scheme, suggested by this approach divides applications in classes,
using information that can be collected by modern processors’ performance monitoring
mechanisms during execution time, without need for additional hardware modifications or
support. The next step is contention estimation, based on the workload’s classification, and
corresponding decisions for time-and-space allocation of the CMP. This thesis, however,
focuses only on interference caused by co-execution of memory intensive applications, thus
scheduling algorithms are not discussed in detail. The following four application classes are
used:

Class N: Applications that display activity on the core’s private part of the memory hierarchy.
This may include application with computational load, very small working sets, fitting in
lower level cache, optimized data accesses, or any combination of these characteristics.

Programs of this class create no contention on shared memory resources.

Class C: This class includes a wide range of applications, which benefit from shared cache
(mainly LLC) reuse. Programs of this class can have different characteristics, e.g.
applications intensely accessing a dataset small enough to partially fit in cache, latency-
bound processes that make irregular memory accesses and benefit from cache hits. Since they

rely on cache reuse, applications in this class can be affected by LLC intereference.

Class LC: Applications that require significant use of both memory link and cache, at varying
levels. Again, this class contains many different applications with varied behavior, for
instance programs that need to fetch large amounts of data from main memory, which are

then processed, displaying intense cache reuse.

Class L: Applications included are stressing the memory bus, consuming a significant
percentage of its bandwidth. Examples of programs belonging to this class are applications
that use datasets much larger than cache, performing streaming memory accesses with very
little or zero cache reuse. Such applications are also expected to utilize data prefetchers to

achieve high levels of memory bandwidth.

11
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Figure 2.1: Application classes’ activity [5]

Although all classes contain applications with different execution patterns and behavior, this
scheme can be used to capture the overall picture of co-execution scenarios and detect
potential contention situations. Co-scheduling scenarios between different classes and
expected behavior, as a primary objective of this work, are discussed in more detail in chapter

4, yet a concise, per-class estimation guide follows:

Class N: No interference is expected, as application execution mostly relies on the core’s

private resources.

Class C: The wide variation of applications result in many difficult to predict scenarios, being
affected by many factors. However, most cases of LLC-sharing (C-C combination) co-
execution are expected to display minimum to moderate slowdown effects, a generally “low
contention” scenario. Increased contention can occur when co-runner class shifts to a more
memory intensive, LC or L, resulting even in severe slowdown effects, for instance when a L

program continuously wipes cached data.

Class LC: Moderate interference is expected in the case of an LC-LC combination, as a result
of medium contention in both link and cache. C class competition for the LLC could also
cause low performance degradation to an LC instance, while an L co-runner can have much

more impact, reducing available memory bandwidth and replacing data in the cache.

Class L: Relying solely on the memory link, L processes are expected to be affected only by
other L instances competing for the bus, or LC that have increased memory link bandwidth

demand as a result of interference caused by the L itself.

To classify applications in the aforementioned classes, this approach suggests a method of

inspecting data flow to the core, through the levels of the memory hierarchy to detect at
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which levels higher utilization is noted, using runtime performance statistics. To achieve that,
memory bandwidth is measured first, to determine if a program belongs in class L, or LC. If
not, LLC data towards the core bandwidth is inspected to decide if LLC or other shared cache
data reuse occurs, and classify the program into N or C classes accordingly. If overall data
flow is low, IPC (Instructions per Cycle) and the ratio of memory micro-operations to all

micro-operations metrics are used to classify an application in N and C classes.
To apply this decision scheme, five thresholds need to be set:

a: High memory link bandwidth utilization
B: Medium memory link bandwidth utilization

v: High cache-to-core bandwidth utilization

: —H;elinigzs ratio, higher than which shows a memory bound application

e: IPC threshold, higher than which indicates a more CPU-intensive N application

The respective values, adapted for single threaded applications*, are calculated as follows:
o = 0.5Bmax, B = 0.025Bmax, ¥ = 0.15Bmax, 8 = 0.25, € = 0.25:IPCpax, Where Bpmax IS
maximum memory link bandwidth and IPCy.x maximum theoretical IPC of the processor.

This classification scheme can be described by the following decision tree:

*Note: Thresholds mentioned in the original work are calculated for 4-threaded applications.
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Figure 2.2: Decision tree for application classification [5]

In this work, the aforementioned scheme will be used to classify instances of a single-
threaded memory pseudo-benchmark. Through extensive co-scheduling tests, the objective is
to observe all classes’ variations interaction with each other, and interference effects caused
by contention in all levels of the memory hierarchy. Results will be compared with the

estimation model and further discussed.
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Chapter 3

Hardware and software systems used

In the following chapter, hardware and software infrastructure used is explained. Description
of computer systems is followed by presentation of the memory benchmark program we
created to study memory contention. Subsequently, the program is evaluated by comparing

results with expected behavior, as well as other known benchmarks’ metrics.

3.1 System characteristics

For co-scheduling tests, two processor architectures were chosen, with different
characteristics, both, of course, belonging to x86_64 family: Intel® Sandy Bridge and Intel

Dunnington.
3.1.1 Intel® Sandy Bridge

The first system consists of four Intel Xeon® E5-4620 processors on Intel C600 series
chipset, with 256 GB of DDR3 main memory. Each physical package contains 8 cores with
private 32 KB instruction and 32 KB data Level 1 cache and 256 KB L2 cache, both 8-way
associative. All cores share the package’s 16 MB, 16-way associative L3 cache. Cache line

size is 64 Dbytes. It should be mentioned that this processor features hyper-threading
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technology with two threads per core, thus system appears to have two logical CPUs for
every core; however, we will not be utilizing hyper-threading in this work, as well as other
parallelization technologies featured, like QuickPath-Interconnect (QPI) bus, thus they will
not be further explained. Each package communicates with main DDR3 memory through 4
channels, greatly beneficial for concurrent access requests, with maximum bandwidth being
~14GB/s per core, 18GB/s per package, and 52GB/s total maximum for all four sockets. It
also features hardware data prefetching for both memory link and caches. Figure 3.1 shows a
diagram of a single package, while the system’s four packages (0-3) with the corresponding

Linux kernel CPU numbering (e.g. cpu0Q) are shown in figure 3.2.

Package 0

L1 32KB L1 32KB L1 32KB L132KB | L1 32KB ‘ L1 32KB L1 32KB L1 32KB

Figure 3.1: 1" of 4 Intel® Xeon® E5-4620 packages

This processor was chosen for co-execution tests since it features private L2 cache for each
core, ensuring that cache level contention will only affect LLC. Additionally, its four-channel
memory bus of relatively high performance can let us experiment with different behavior of
applications with varied levels of memory link stressing needs and how they interact. It also
enables us to observe how data prefetching affects memory intensive applications with

different data access patterns.

Finally, Intel also provides performance monitoring capabilities. Using performance counters
extracted directly from the processor gives the ability to study application behavior and its
alterations in greater depth and to better explain the effects of co-scheduling. Intel’s Sandy
Bridge performance monitoring infrastructure offers a very wide range of performance events
counters [19]. Counters used for this work will be mentioned further in this chapter, along

with the respective performance metrics.
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Overall, it is a modern, high performance system, able to handle demanding workloads and is
expected to be a suitable platform to evaluate the previously described contention estimation

model.

This system runs Debian 6.0.9 GNU/Linux operating system, using Linux kernel 3.7.10, gcc
version 4.6.3 and glibc version 2.11.3. Table 3.1 summarizes the system’s hardware

characteristics:

# of packages 4
Cores/Socket 8
Threads/Core 2

2.2 GHz (TurboBoost™ up

CPU frequency

to 2.6 GHz)
L1 Cache 32.KB data + 32KB instr.,
private per core, 8-way
L2 Cache 256KB private per core, 8-
way
L3 Cache 16MB shared, 16-way
RAM 256GB DDR3, 4-channel
bus

Table 3.1
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Package 0 Package 1

4 channel memory bus

RAM

Package 2 Package 3

Figure 3.2
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3.1.2 Intel® Dunnington

This system features Intel® Xeon® X7460 “Dunnington” processors [23]. Again it is a four-
socket system with Intel’s 7300 chipset. Each package consists of six cores with private 32
KB instruction and 32 KB data, 8-way associative Level 1 cache. Cores in a package are in 3
pairs, each pair sharing 3 MB of 12-way associative L2. Each package comes with 16 MB,
16-way associative L3 cache, shared between all 6 cores. Again, cache line size is 64 bytes.
Figure 3.3 shows the topology of a package, with the respective Linux kernel CPU
numbering, while figure 3.4 shows all packages:

Package O

L1 32KB L1 32KB L1 32KB L1 32KB L1 32KB L1 32KB

Figure 3.3: Intel® Xeon® X7460 package.

The system features 1066 MHz memory bus, connecting processors with the 27 GB DDR2

RAM. System’s characteristics are summarized in table 3.2:
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# of packages 4

Cores/Socket 6
Threads/Core 1
CPU frequency 2.66 GHz

L1 Cache 32KB data + 32KB instr.,

private per core, 8-way
3MB shared per 2 cores,

L2 Cache 12-way
L3 Cache 16MB shared, 16-way
RAM 27GB DDR2, 1066 MHz

Table 3.2

This system runs Debian 6.0.7 GNU/Linux operating system, using Linux kernel 3.7.10, gcc

version 4.4.7 and glibc version 2.13.

Dunnington was chosen for additional testing, since it features interesting differences in
memory hierarchy, most notably the large but shared L2 cache. This gives us the opportunity
to experiment with co-execution on cores sharing L2 and directly compare results with the
same experiment on non-adjacent cores that will not compete for L2. It also gives potential to
see the accumulated effects of contention when it occurs on all three levels of shared memory
hierarchy (L2, LLC, memory link). Additionally, disabling memory bus data prefetching is
expected to alter differences in performance between access patterns, comparing to the
equivalent Sandy Bridge tests. However, prefetching mechanisms are present between caches
and in the main memory DRAM controller. Also, contrary to the previous architecture, each
socket is connected to main memory through a single memory bus (instead of four), thus
concurrent memory access requests are expected to be serialized in order to be served by the
memory link. This set of differences, especially L2 sharing and memory bus performance,

may alter predicted behavior patterns in co-scheduling context.

20



Package 0

Package 2

FSB

RAM

Figure 3.4

1 98exydeq

€ a8eyoed

21



3.2 Co-scheduling environment

3.2.1 Scaff

For all co-execution experiments, scaff infrastructure was used. Scaff is a runtime system
used to coordinate the execution of a workload consisting of multithreaded applications on a
multi-core/multi-processor system. It operates on user-level, on Linux-based systems. It is
used to provide a communication mechanism between a scheduler and the programs
executed. Scaff’s infrastructure consists of two basic systems: the executor and the scheduler.
The executor handles execution events, e.g. creation and termination of processes, while the
scheduler is responsible for decisions concerning resources sharing, with the ability to
implement various scheduling policies and utilize hardware performance counters. In this
work, however, scheduling policy is not important since all tests conducted involve a single
process on each core. Thus, there is no need for cpu time-sharing and context switching.

The executor keeps information about the programs executed and events during execution-
time and stores data from the scheduler’s output, programs’ output, error messages and
performance counters data. For each co-execution test, the executor is run, with given
arguments a configuration file, an output folder, the set of CPUs and scheduler to be used.
The configuration files contains the executables’ paths, along with information about
execution, such as the number of cores needed for each one, its place in the execution group
and other scheduler-decision related parameters (e.g. starting time if a delay is desired), most

of which do not concern the current work.

As mentioned before, Scaff also provides the infrastructure to extract performance data for
each process. Apart from a number of fixed counters (unhalted cycles, instructions retired),
users can modify the scheduler code to take advantage of additional counters from the set
provided by the architecture. Scaff stores performance data from the counters in
approximately 1 sec. intervals in a counters file, with the corresponding PID and execution

time elapsed.
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3.2.2 System tools and mechanisms used

Scaff uses Linux kernel’s cgroups and cpusets subsystems. Cgroups (Control groups) provide
a mechanism for creating sets of tasks with specialized behavior, in hierarchical organized
groups [17,21]. A cgroup is a set of tasks with common execution parameters, such as
resource limitations. User can control execution of processes belonging in a cgroup by editing
the specific group’s configuration files. Cgroups are exported as a virtual filesystem and can
be easily handled from userspace. User-level code can create, handle and destroy cgroups by
name in an instance of the cgroup virtual filesystem, which includes files that contain
information about this cgroup instance and the subsystems associated with it. Userspace code
can define behavior of a cgroup by changing values of those files. For example, when using
cpusets, every cgroup of the cpuset filesystem contains the files ‘cpus’ and ‘tasks’. If a task is
to be executed in CPU 1, we can write its PID in tasks and value 1 in cpus.

Cpusets use the generic cgroups subsystem [18,21] and constrain the execution of tasks to a
set of cpus and memory nodes. Cpusets can be created and deleted from user-space, as they
are using the cgroups virtual filesystem. This mechanism can restrain selected processes not
only in which CPUs they are allowed to use, but also in other parameters, such as memory
nodes. This is achieved by filtering system calls made by these processes; a task will not be
scheduled on a CPU that is not allowed in its cpus_allowed vector, and the kernel page
allocator will not allocate a page on a node that is not allowed in the requesting task's

mems_allowed vector.

Scaff allocates a structure for every program (aff_prog_t) which will be used to store the
program’s information during execution, also containing a pointer to the shared memory used
by the executor to communicate with the process. This structure also contains a cpuset field
which serves as a handler for the program’s cpuset. The executor uses the fork system call to
start execution. Scaff creates a new cgroup in the cpusets filesystem and attaches the program
to it.

Additionally scaff initializes signal handlers; signals important for the executor are
SIGCHLD and SIGTERM. The latter indicates unexpected termination of the program and is
handled as an error (e.g. stopped with a SIGKILL). A normal termination of a running task is
indicated by SIGCHLD.
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3.3 Benchmark program

Our goal was to create a benchmark to test the various levels of the memory hierarchy. The
idea was to test both sequential access (which takes advantage of hardware data prefetchers,
if any available, and cache re-use) and random access pattern, to limit the gains of
prefetching and cache usage. It is based on continuously accessing the structures for a user
given number of iterations. The program is implemented in C, all executables compiled with

gcc’s O3 optimization flags.
3.3.1 Design

Data structures used:

The benchmark utilizes a user-defined number of linked lists (up to 8 implemented, but very
easily extendable to any desired number) for both sequential and random access. The purpose
of that is to have more than one independent access requests in each loop, in order to exploit

instruction level parallelism (ILP).

At this point, it may be noteworthy to mention the various structures we experimented with,
some of which are used to create the ones we finally chose. The benchmark was initially
using arrays instead of lists, but the latter were found to offer much more consistent
performance. The basic unit used as a starting point is a sequential access array, a simple
single-dimensional array of unsigned integers, in which each element contains the position of
the next element to access. In our case a[i] = i + 1, imitating a pointer to the subsequent

memory element. Structure initialization and access subroutines are as follows:

create_sequential_access_array (integer: size)

allocate array[size] a of long integers//contains elements a[0]...a[size — 1]
fori € 0tosize—2

alij<i+1
alsize—1] <0 //\ast element value points to start

return pointer to a
end
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content ‘1‘2‘3‘4‘5‘6‘7‘8 910
element 0 1 2 3 4 65 6 7 8 9

Figure 3.5: Example array with 10 elements

access_sequential_array (array:a)

temp €< 0

fori € 1 to (size of a)
temp € aftemp]

end

7 8 9

Figure 3.6: Example of sequential array access sequence

For the random access of elements, the numbers in the sequential access array need to be
randomly permuted so that each element points to a random element to be accessed next. The
Fisher — Yates permutation algorithm [22] is used, along with Galois linear feedback shift
register (LFSR) for randomization. The LFSR produces a pseudo-random sequence with a
very long cycle, making it suitable for use with large numbers of elements. Fisher — Yates
shuffle algorithm, if provided with an unbiased random sequence, will produce an unbiased,
random permutation of a finite set. It is ensured that each element is only repeated once and

that the access is cyclic, all elements are accessed at the end of an iteration.

create_random_access_array(integer: size)

allocate array a of size //contains elements a[0]...a[size-1]
fori € Otosize—1

alij€i+1
fisher_yates_permute(a)

return pointer to a
end
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fisher_yates_permute(array:a)
fori €« ((sizeofa)—1)to1l //with decrement step 1
j € galois_LSFR mod i
swap (arrayli], array[j])
end

content ‘9‘3‘4’0‘5‘6‘7‘8 1 2
element 0 1 2 3 4 5 6 7 8 9

Figure 3.7: Example array after a random permutation of the elements

The array can be accessed in the same way with the sequential:
access_random_array(array:a)

temp <0

fori € 1to (size of a)

temp < a[temp]
end

m

9 3/,4/0 5/6|7/8|1]2

0o 1 3 4 5 8 9

Figure 3.8: Sample of random array access sequence

The aforementioned array types are used, indirectly, for creating the linked lists the
benchmark utilizes. The structure used for the list elements consists of 7 long integers
forming an array of 56 bytes and a pointer (another 8 bytes) to the next element. Thus, it is
ensured that each element has a total size of 64 bytes (the size of a cache line) and for every
new access a new line must be loaded to the cache. The 7 long-integer elements, apparently,

do not contain any useful data and are serving as the payload of the structure.
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Struct L:

next: pointer to struct | element
pad: array[0..7] of long integers

Long Long Long Long Long Long Long
int int int int int int int

Pointer to next

56 byte payload (8 byte)

Figure 3.9: List element structure

Using this structure, the sequential access lists are created. The size of the list is variable and
is given by the user, depending on which level of the cache hierarchy (or the main memory)

is to be targeted.

create_sequential_access_list(integer: size)

allocate array list_elements[size] of type: struct L
fori € 0tosize—2

list_elements[i].next < list_elementsi[i + 1]; //next points at the
element //subsequent in
memory
list_elements[i].next < &list_elements[0]; //last element value points at
start
return pointer to list_elements //first element

end

access_sequential_list(pointer to list: a)

s€<€a
fori € 0to (size—1)
s € s.next
end
56 byte payload P°"I;e£;fe;‘e” B i el Poir;;ek: ;:e)next

Figure 3.10: accessing consecutive memory elements.
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To create the random access list, the idea is randomly permuting the pointers-to-next-element

of a same type list, ensuring again that each element needs a separate cache line.

In order to implement a random access list, the same principle is used: A random access array
(of size n), basically a randomly permuted list of the numbers [0, n-1], is used to assign the
pointers on each element of the list:

create_random_access_list(integer: size)

allocate array list_elements[size] of type: struct L
permut € create_random_access_array(size)
fori €< 0to (size—1)

list_elements[i].next €< list_elements[permut[i]];

return pointer to list_elements //first element
end

Access is the same with sequential list:

access_random_list(pointer to list: a)
s€<a
fori € 0to (size—1)
s € s.next
end
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Long Long Long Long Long Long Long
int int int int int int int

56 byte payload POiT;et;\:tC)\e)m&

Long Long Long Long Long Long Long

int int int int int int int
Pointer tongext
56 byte payload (8 byt\e)\

Long Long Long Long Long Long Long
int int int int int int int

Pointer to next

56 byte payload (8 byte)

Long Long Long Long Long Long Long

int int int int int int int /
Pointer to next
56 byte payload (8 byte)
Long Long Long Long Long Long Long
int int int int int int int
Pointerw
56 byte payload (8 byte)
Long Long Long Long Long Long Long
int int int int int int int
Pointerm{
56 byte payload (8 byte)

Long Long Long Long Long Long Long

int int int int int int int /
Pointer to next
56 byte payload (8 byte)
Long Long Long Long Long Long Long
int int int int int int int /
Pointer to next
56 byte payload (8 byte)
Long Long Long Long Long Long Long
int int int int int int int
Pointer to next
56 byte payload (8 byte)

Figure 3.11: Example of a randomly accessed list.
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Using the benchmark

The benchmark has a relatively simple approach: The user defines the data size (in kilobytes),
number of loop iterations and number of accesses on each loop. The program first initializes
sequential access structures according to user input, then it starts accessing the elements as
defined previously. This repeated procedure (post initialization) is timed using system time.
When finished, the number of iterations, size of data and consequently the total data accesses

are known, as well as the execution time for the loop alone. Thus, it is possible to calculate

. dat : i :
the bandwidth (ﬁ ratio) achieved. The procedure is repeated for random access.

benchmark_sequential(iterations, size_inKB)

size € size_inKB convert to number of elements

seq_list € create_sequential_access_list(size)

start timing

fori € 1 to iterations

access_sequential_list(seq_list)

end timing

output results //Total data accessed, Total time, Bandwidth as calculated from size
and

//time
end

benchmark_random(iterations, size_inKB)
size € size_inKB convert to number of elements
ran_list € create_random_access_list(size)
start timing
for i € 1to iterations
access_random_list(ran_list)

end timing

output results //Total data accessed, Total time, Bandwidth as calculated from size
//and time

end

Example output: Benchmark with 4MB size and 20000 iterations:
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4096 KB converted to 65536 elements.

Benchmark 1
Sequential access list of 65536 elements, element size:64

bytes
Number of iterations: 20000 Total data: 80000.0000 MBytes
Total time 7.942 sec Average rate: 10073.2831 MB/sec
Benchmark 2
Random access list of 65536 elements, element size:64 bytes
Number of iterations: 20000 Total data: 80000.0000 MBytes
Total time 26.147 sec Average rate: 3059.5720 MB/sec

When accessing more than one structures, the procedure is almost the same. The difference is
that we create smaller independent structures, the total size of which is the target size, and

each one’s next element is accessed independently in every loop iteration.

benchmark_sequential(iterations, size_inKB, no_of_streams)
size € size_inKB convert to number of elements
size € size / no_of _streams
seq_list_1 € create_sequential_access_list(size)
seq_list_2 € create_sequential_access_list(size)

//up to no_of streams lists are created

start timing

fori € 1 to iterations
sl < seq_list_1
s2 < seq_list_2

for j € 1to size
s1 € sl.next
s2 € s2.next

//in each loop no_of streams elements are accessed

end timing
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output results //Total data accessed, Total time, Bandwidth as calculated from size
//and time
end

The same is applied for the random counterpart. An example output with 4MB, 4 streams

(thus meaning 4 streams of 1MB each) and 20000 iterations:
4096 KB converted to 65536 elements.
Benchmark 3
Parallel sequential access of 4 lists, 16384 elements each, element
size:64 bytes
Number of iterations: 20000 Total data: 80000.0000 MBytes
Total time 3.319 sec Average rate: 24105.1418 MB/sec
Benchmark 4

Parallel random access of 4 lists, 16384 elements each, element
size:64 bytes

Number of iterations: 20000 Total data: 80000.0000 MBytes
Total time 7.798 sec Average rate: 10259.5394 MB/sec
=================================FND================================

3.3.2 Results and evaluation

The program was used to evaluate the performance of the different memory hierarchy levels
of specific architectures, using a variety of configurations, ranging from 1 kilobyte to 128
megabytes and from 1 up to 8 independent streams for each size. This range of target sizes
was chosen to demonstrate how the performance alters when gradually moving from a dataset
that can fit in a fraction of the L1, to sizes much larger than the last-level-cache (LLC), where

the program has to continuously access the main memory.

The number of iterations for each test was decided accordingly in order to achieve a running
time of at least 5 seconds, in almost all cases more than 6 sec. The purpose of that was to
minimize the effects of possible random factors during execution by providing a relatively

long running time, and a large number of iterations to provide better statistical sample
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quality, also eliminating the impact of initial data fetching penalties, which will occur on the
first cycles. Each benchmark (with the same parameters: size, iterations and number of
streams) was also executed 2 to 4 times, so that possible performance inconsistencies would
be easier to detect.

3.3.2.1 Intel Sandy Bridge architecture

The first processor architecture on which it was tested was Intel’s Xeon E5-4620 Sandy
Bridge with the following features, as mentioned before in this chapter: 8 hyper-threaded
cores per package, 32 KB data + 32 KB instruction, 8-way associative Level 1 cache per
core, 256 KB 8-way associative Level 2 cache per core, 16 MB, 16-way associative Level 3
cache per package and hardware data prefetching both for main memory and cache. It should
be noted that the benchmark, however, only utilizes a single core (or a single thread, in
hyperthreaded architectures as this one), in order to be able to measure per-core-performance
and be independently executed on more cores to study the behavior when contention is
caused on shared resources (e.g. LLC, Memory bus usage), which is the objective of this
thesis.

Average per core data bandwidth for sequential access measured by the benchmark is shown
on table 3.3, while table 3.4 contains results for random access. Actual performance, of
course, may vary from 0.01% up to ~4-5% for the same tests repeated more times, but this is
expected, as the tests were run in user-level within a normally running Linux OS. It is
important to state that our objective is to study the order of magnitude of achievable
bandwidth in normal runtime context, and not theoretical maximum or high precision. For
these reasons, the presented results are considered satisfying, focusing on the 3-4 most

significant digits.
The expected behavior of the tests is described below:

e For sizes less than the size of L1 cache (32 KB), bandwidth should be higher, as the
data can fit in the L1 cache, which is the fastest in the hierarchy. It was also expected
to be increasing even more as the number of streams is increased, utilizing ILP. As
long as all data is loaded on L1 cache, no noticeable difference should be noticed
between sequential and random access patterns.

e For more than 32 KB and less than 256 KB, significant performance degradation is

expected, as the data can no longer fit in L1 and the slower L2 must be used. Again,
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Results

because of ILP, increasing the number of streams should increase bandwidth. As
mentioned before, since all data has been fetched to the cache, no major difference
between sequential and random access should occur.

As data size gets close to and exceeds 256 KB, the L2 is not sufficient to hold it
without having to use L3. Thus, a decrease in bandwidth is expected as data has to be
fetched from L3, replacing higher level cache lines each time. Increasing the number
of streams accessed should, again, increase throughput, at least to the limit up to
which the LLC cache can perform.

When data size verges the L3 size (16 MB), the program should start accessing data
using the memory bus alongside the cache, and so slowing down even more. At larger
sizes when continuous cache line replacements are expected, the sequential
benchmark should very noticeably take advantage of the hardware prefetchers, while
the random part should be excessively slowed down because of higher LLC-miss

penalties.

of the benchmark for sizes corresponding to the above remarks are shown in the

tables below, 3.3 for sequential access and 3.4 for random access pattern:

Sequential Bandwidth (in MB/s)

Size (KB) Number of streams
Single 2 3 4 5 6 7 8

16 42,257.9 | 79,032.8 | 111,928.4 | 141,378.1 | 168,441.0 | 192,163.0 | 200,749.1 | 225,497.5
32 40,893.9 | 72,536.5 | 103,288.7 | 142,248.8 | 153,478.4 | 183,356.6 | 184,678.0 | 230,070.3

38 13,168.2 | 26,134.6 | 37,675.5 38,319.8 59,253.4 59,788.2 63,556.0 68,606.7

45 13,091.2 | 25,948.5 | 37,634.7 45,587.1 55,498.9 58,037.8 62,757.9 65,374.2

128 12,810.3 | 25,405.3 | 36,676.9 44,752.7 46,074.7 57,366.0 60,664.5 58,034.6

200 11,992.1 | 23,380.9 | 29,944.9 32,800.1 38,179.0 47,494.6 49,717.1 48,382.3

256 11,089.4 | 21,667.7 | 27,333.7 23,663.3 34,515.6 38,685.5 42,360.0 45,586.5
384 10,304.4 | 16,665.5 | 21,585.7 19,678.0 27,860.9 26,681.2 28,493.6 29,630.9
3,072 10,099.3 | 16,095.4 | 20,482.3 24,226.6 26,017.0 26,692.8 27,154.0 27,317.3
10,240 9,774.7 15,953.6 | 20,102.7 22,911.3 24,742.0 25,227.1 25,450.1 26,582.5
13,302 9,428.1 15,224.2 18,708.2 19,954.8 20,670.3 23,442.2 23,896.6 24,252.0
16,384 7,760.6 12,880.6 | 16,693.7 18,122.9 18,471.1 18,191.8 18,163.4 17,991.0
20,480 6,916.9 11,802.3 14,752.6 15,111.1 15,156.8 14,889.2 14,765.5 14,703.5
32,768 6487.106 | 11206.05 | 13423.85 | 12957.71 | 13042.74 | 12777.82 | 12595.26 | 12525.88
131,072 6521.119 | 11024.08 | 13445.06 | 12820.52 | 12818.46 | 12605.11 | 12416.24 | 12368.46

Table 3.3
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Random Bandwidth (in MB/s)

Size (KB) Number of streams
Single 2 3 4 5 6 7 8
16 42,259.6 | 79,036.2 | 112,915.3 | 141,370.5 | 162,941.3 | 192,502.7 | 204,920.5 | 225,528.0
32 40,894.8 | 72,175.9 | 106,969.6 | 134,536.1 | 152,955.7 | 187,909.6 | 202,198.3 | 211,157.9
38 13,938.6 | 27,365.4 | 40,808.6 39,143.1 59,489.0 66,377.3 71,454.7 73,594.3
45 13,670.3 | 26,685.6 | 38,255.9 44,201.3 53,855.8 59,221.2 63,471.4 65,960.4
128 13,338.1 | 25,752.9 | 32,380.9 45,031.1 51,441.2 57,905.7 60,786.1 60,495.0
200 10,380.3 | 19,810.2 | 26,245.2 26,315.0 41,984.5 42,492.3 47,652.4 50,005.4
256 5,159.4 | 12,021.0 | 17,085.2 15,610.3 28,707.0 27,694.8 37,751.7 33,450.9
384 3,981.8 7,385.6 10,996.7 12,149.1 17,727.0 20,901.1 23,281.7 26,585.3
3,072 3,176.7 6,141.9 8,869.7 11,299.8 13,396.5 15,162.7 16,488.7 17,100.0
10,240 2,466.5 5,178.4 6,853.5 7,141.6 7,419.7 7,672.1 7,656.8 7,589.6
13,302 2,663.9 5,052.8 6,535.2 7,061.1 7,080.6 7,105.2 6,947.2 6,981.9
16,384 1,137.5 2,169.8 3,349.6 3,947.2 4,892.8 5,460.4 5,982.0 6,235.1
20,480 810.1 1,528.6 2,296.8 2,976.0 3,670.4 4,271.7 4,830.2 5,320.4
32,768 647.8 1,267.9 1,873.9 2,449.4 3,032.1 3,582.1 4,092.2 4,542.0
131,072 589.5 1,154.6 1,691.2 2,203.5 2,625.0 2,908.9 3,032.1 3,062.2
Table 3.4

Full benchmark data for all dataset sizes tested are presented in Appendix. A graphical

representation of the data can be seen in figures 3.12 (sequential) and 3.13 (random). Data
size is on the horizontal axis and bandwidth on the vertical.

Sequential Access

35

250,000.0
200,0000 |/ A Single
—25tr
150,000.0
'\, ——35tr
——4Str
100,000.0 N\
~ ——5Str
50,000.0 6 Str
ﬂ 7 Str
—_—
0.0 8 Str
< o0 (Vo] < 0 (o] wmn o0 O o < o < o o0 o <t [oe] (Ce] o
— o n o o — o o o o ~ i o
S MO O N <G o o
— — — — o (o] 2
Figure 3.12




Random Access

250000
200000 __/?741 Single
——2str
150000 | N\
W ——35tr
——45tr
100000
~ ——55tr
)(\\ ———6 Str
50000
k o
0 8 Str

< 00 O F 0 VW N N VW AN T N T O O I 0 O
— N M N 0 N N H N N & < 0 O 0 O oo
- N 1N O O =< N &N MM o I~ «H O
- MM OW O N < OV N 1n
T = = = N O N
i
Figure 3.13

The actual results, as seen above, largely confirm the expected behavior, described

previously, but also lead to additional interesting conclusions.

For tests up to 256 KB, each additional data stream increases bandwidth noticeably for both
random and sequential access patterns. Also, performance is almost the same, for a given
number of streams, for both patterns, with the random being marginally faster in many cases.
This could be explained, given that the sequential access will make a constant number of
misses, fetching and replacing data serially, while the randomized one may take advantage of
elements fetched on a previous miss that weren’t accessed nor replaced, and thus happen to
be in the cache when the program needs to access them. However, these performance

differences are extremely low.

Performance degradation, when approaching the limits of a cache level, is very noticeable
when reaching 32 KB, 256 KB and 16 MB for sequential access. For random access, there is
an additional point of noticeable throughput drop: when exceeding 2.5 MB and this can be
explained as in the specific architecture, despite having a 16MB L3 shared among all
processors of the package, maximum per core L3 is limited to 2.5 MB [20], resulting in
relatively higher access times for other parts of the cache. However, the sequential

counterpart is not affected, taking advantage of cache level prefetching.

For larger sizes than 128 MB, already 8 times the size of the LLC, bandwidth achieved

remained constantly in the same levels, thus further results are omitted. It also becomes
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apparent that for large data sizes (bigger than LLC) increasing the number of streams more
than 3 starts to cause slight decrease in performance for sequential pattern, indicating that
contention on the memory bus starts to occur with the concurrent accesses. Between 1 and 2
streams, however, a direct doubling is noted, before achieving the maximum with 3 streams,
interestingly demonstrating the performance gains of ILP. Similarly, the random pattern
seems to constantly gain 0.5 GB/s for each stream up to 4, where contention on memory link
seems to begin. These observations suggest the benchmark’s predictable behavior, making it

suitable for co-scheduling study, which is the objective of the current thesis.

To evaluate the results, “STREAM” benchmark was used for sequential access, and “pChase”

benchmark for random patterns.
STREAM:

STREAM [14] is a benchmark program, designed to stretch the memory bus of a multicore
system and measure its maximum sustainable bandwidth, by making streaming memory
accesses. STREAM, is widely used as a standard for large-SMP systems bandwidth
measurement. It implements a kernel that accesses 3 single-dimensional arrays of double-
precision floating point elements, much larger than the LLC. The access pattern ensures each
request has to access the main memory, eliminating cache re-use, a concept quite similar to
the benchmark program described in this chapter. STREAM takes advantage of multicore
architectures by running a thread on each core, in order to maximize memory bus utilization.
Therefore, to compare it with the present results, it was needed for STREAM to be limited to
a number of cores, in the same physical package since, as stated before, our benchmark is

single threaded, running on only one core.

The best bandwidth performance achieved with STREAM running on 1, 2, 3 and 4 cores

respectively is presented below, in table 3.5.

Bandwidth in MB/s
1 Core 2 Cores 3 Cores 4 Cores
Best 12,012.9 14,253 14,234.5 14,166
Size 2.2GB 2.2GB | 2268 | 2268
Table 3.5

Maximum theoretical memory bandwidth per package on the specific system is 18 GB/s.
STREAM manages to achieve up to ~14 GB/s when running on 2 or more cores of the
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package. When on a single core, it achieves 12 GB/s. Comparing it to our benchmark,
performance is quite similar: the maximum bandwidth achieved was about 13.5 GBI/s,

utilizing 3 independent lists (see t. 3.3):

Sequential Bandwidth (in MB/s)

Size (KB) Number of streams

Single 2 3 4 5 6 7 8

131,072 6521.119 | 11024.08 | 13445.06 | 12820.52 | 12818.46 | 12605.11 | 12416.24 | 12368.46

It should be noted that STREAM uses 3 structures on each thread, thus making its single-
threaded instance directly comparable with the 3-stream variation of the benchmark, which
seems to achieve slightly increased bandwidth (13.4 GB/s instead of 12 GB/s). Further results
of STREAM, as mentioned before, do not exceed 14.2 GB/s, indicating that it is close to the
maximum bandwidth that can be achieved from a single process. Additionally, a final test
series with STREAM utilizing all eight cores of the package, making use of hyper-threading,
resulting to a 16-thread instance using 2.2 GB of main memory, achieved 13445 MB/s, a
number that happens to precisely match our 3-stream benchmark instance. Also, running
STREAM without thread limitations resulted on a 64-thread instance which measured 50
GB/s total bandwidth on all four packages, but this is mentioned only for the sake of

completeness, since it does not fall in the context of the current work.

pChase:

pChase [15] is another memory performance benchmark, which measures performance and
latency for various access patterns. It is based on pointer accessing and offers randomized
access pattern and adjustable number of accessing threads, suitable to evaluate the random
access results given by our benchmark. Table 3.6 contains the results of pChase using the
random pattern it provides, limited to single core execution for all numbers of threads. The
size of each data chain accessed by the respective thread is decided similarly, e.g. on the 2
MB experiment with 1 thread, it uses one chain of 2 MB, with 2 threads, 2 chains of 1MB

etc.
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Bandwidth in MB/s
Size 1 Thread 2 Threads 3 Threads 4 Threads

128 KB 13,614 13,516 13,855 27,631
256 KB 10,490 13,530 13,661 13,650
1 MB 8,271 8,590 8,906 10,112

2 MB 8,412 8,454 8,396 8,526

3 MB 8,230 8,418 8,403 8,362

6 MB 8,109 8,219 8,375 8,371
12 MB 6,321 8,059 8,094 8,148
16 MB 4,100 7,342 7,753 7,748
32 MB 2,617 3,022 5,051 4,971
128 MB 2,582 2,561 2,570 2,571

Table 3.6

Same sizes results from table 3.4:

Random Bandwidth (in MB/s)

Size (KB) Number of streams
Single 2 3 4 5 6 7 8
128 13,338.1 | 25,752.9 | 32,380.9 45,031.1 51,441.2 57,905.7 | 60,786.1 | 60,495.0
256 5,159.4 12,021.0 | 17,085.2 15,610.3 28,707.0 27,694.8 | 37,751.7 | 33,450.9
1,024 3,511.0 6,889.5 10,096.4 11,238.6 16,100.2 18,861.7 | 21,470.7 | 23,936.6
2,048 3,438.2 6,754.8 9,902.0 12,878.3 15,765.5 18,448.3 | 20,999.1 | 23,431.1
3,072 3,176.7 6,141.9 8,869.7 11,299.8 13,396.5 15,162.7 | 16,488.7 | 17,100.0
6,144 2,934.9 5,553.1 7,601.0 8,881.5 9,404.8 9,559.7 9,490.4 9,410.6
12,288 2,711.5 5,137.0 6,614.4 7,175.2 7,262.5 7,253.5 7,220.6 7,152.4
16,384 1,137.5 2,169.8 3,349.6 3,947.2 4,892.8 5,460.4 5,982.0 6,235.1
32,768 647.8 1,267.9 1,873.9 2,449.4 3,032.1 3,582.1 4,092.2 4,542.0
131,072 589.5 1,154.6 1,691.2 2,203.5 2,625.0 2,908.9 3,032.1 3,062.2

It can be easily observed that the order of magnitude, comparing the results of the two
benchmarks, is the same for the sizes tested. However, increasing the number of streams in
pChase does not affect performance very noticeably for the vast majority of cases. A closer
look indicates that pChase for 128 KB, up to 3 threads, performs similarly to the 1-stream
variation of our benchmark, for 256 KB (for all number of threads) it is similar to the 2-
stream, up to 6 MB compares with the 3-stream and for the larger sizes it performs close to
the 4 or more streams. Additionally, pChase performance remains constant for all sizes in the

LLC range (less than 16 MB) for all number of threads. On the contrary, our benchmark’s

39




performance constantly degrades as size is increased, and increases with additional data
streams. Figure 3.14 features comparative performance of pChase and instances of our
benchmark using 1 up to 5 streams. Since no significant differences are noticed between
pChase thread numbers, average values were taken for the graph. It becomes apparent how

similarly the two programs perform.
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Figure 3.14: Comparison with pChase

Once more, these observations suggest that the benchmark presented in this chapter has a
very predictable and consistent behavior and gives the user versatility to create a wide range

of contention levels.

3.3.2.2 Intel Dunnington architecture

The same series of tests were also conducted on Intel’s Xeon X7460 “Dunnington”. This
architecture, as mentioned before, features six cores (non hyper-threaded) per package, 32
KB instruction + 32 KB data L1 cache per core, 3 MB L2 cache, shared between core pairs,

16 MB L3 cache per package, no hardware prefetching.

The expected behavior of the benchmark remains mostly as described for the Sandy Bridge
processor, with performance being decreased when reaching the sizes of the L1, L2 and L3
caches. Because of the absence of memory bus hardware prefetchers, performance of
sequential pattern for larger data sizes is expected to be decreased and, accordingly, the

difference between random and sequential patterns should be reduced. Results for both
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patterns are shown below, in tables 3.7 and 3.8, while complete results tables are in

Appendix.
Sequential Bandwidth (in MB/s)
Size (KB) Number of streams
Single 2 3 4 5 6 7 8
16 53,282.4 | 77,413.5 | 116,444.4 | 127,305.5 | 132,916.4 | 136,191.7 | 138,461.6 | 140,195.9
32 53,640.4 | 79,141.1 | 93,761.1 | 122,190.1 | 114,750.3 | 121,475.2 | 118,081.8 | 138,596.5
38 13,168.2 | 26,134.6 | 37,675.5 35,586.3 39,896.1 42,419.5 40,808.9 38,276.1
45 12,849.7 | 23,435.8 | 31,865.3 35,543.2 39,933.6 42,358.4 37,494.2 34,623.1
256 12,838.8 | 23,652.3 | 31,918.5 35,868.0 40,236.5 42,616.5 37,531.2 33,539.3
768 12,837.7 | 23,635.6 | 31,959.5 36,366.9 41,972.8 42,868.5 37,556.2 33,580.0
1,024 12,835.8 | 23,624.5 | 25,506.2 36,377.2 41,624.3 42,893.7 37,327.5 34,569.4
2,048 11,725.2 | 22,623.2 | 28,174.8 31,647.0 37,097.4 35,768.5 34,538.6 32,772.9
3,072 9,976.5 16,047.5 | 18,204.5 19,364.6 20,993.3 20,661.0 21,063.4 21,384.5
4,096 8,531.1 11,846.9 | 11,967.0 12,442.9 12,342.4 12,805.5 12,772.7 13,015.0
6,144 7,948.8 9,570.3 9,907.9 10,057.8 10,153.1 10,098.3 10,143.3 10,146.3
12,288 5,381.6 6,317.1 6,453.9 6,432.2 6,621.7 7,577.4 7,718.1 8,130.4
16,384 3,030.4 3,486.6 3,609.2 3,791.9 3,802.9 3,760.9 3,998.7 4,193.2
20,480 2,078.5 | 2,629.0 | 2,650.4 2,737.9 2,728.3 2,745.0 2,703.3 2,691.0
131,072 1,872.7 2,322.8 2,362.5 2,386.3 2,429.0 2,422.6 2,422.9 2,363.0
Table 3.7
Random Bandwidth (in MB/s)
Size (KB) Number of streams
Single 2 3 4 5 6 7 8
16 53,281.5 | 77,555.2 | 115,802.4 | 128,106.4 | 132,928.9 | 136,191.7 | 138,453.9 | 140,197.1
32 53,634.6 | 79,147.2 | 96,329.2 | 114,466.4 | 120,876.0 | 122,764.6 | 125,908.8 | 128,006.2
38 13,938.6 | 27,365.4 | 40,808.6 39,606.4 47,208.8 41,838.2 41,715.1 38,784.2
45 10,894.2 | 21,355.7 | 32,016.7 40,604.9 48,372.0 45,322.8 38,097.5 36,427.4
256 9,826.0 19,558.1 | 29,200.6 38,639.6 43,788.0 38,544.6 37,047.8 35,683.8
768 9,625.2 19,220.3 | 28,775.8 37,745.9 43,024.9 38,209.8 36,693.1 35,438.9
1,024 9,599.0 19,126.4 | 28,421.8 37,544.5 42,429.3 36,947.8 34,475.0 33,625.4
2,048 7,167.0 11,504.5 | 18,523.7 21,323.7 23,443.3 22,949.5 26,250.9 25,890.6
3,072 3,778.5 7,475.8 9,132.6 11,340.2 13,203.9 14,974.1 16,037.1 16,934.3
4,096 2,515.1 4,849.1 6,773.6 8,576.0 9,836.0 10,738.8 11,383.2 11,887.9
6,144 1,931.1 3,683.4 5,285.9 6,554.0 7,512.0 8,348.9 9,107.9 9,545.6
12,288 1,495.2 2,369.9 2,691.9 5,414.4 5,813.0 6,902.7 5,891.8 6,383.1
16,384 928.3 1,582.1 2,257.1 2,481.7 2,894.9 3,314.3 3,582.2 3,777.4
20,480 643.2 1,236.3 1,560.6 1,939.2 2,190.2 2,345.3 2,463.7 2,571.3
131,072 334.1 609.9 839.2 1,061.2 1,286.5 1,497.7 1,699.4 1,852.7
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Table 3.8

A graphical representation of the data can be seen in figures 3.15 (sequential) and 3.16

(random)
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Results in this architecture are, again, as predicted above. A huge performance drop is noted
when data size exceeds 32 KB (L1), followed by a second decrease while verging L2 size.
While being on the LLC size range, bandwidth continues to gradually decrease, for both
access patterns, until it finally gets stable for the largest size instances. As expected, the lack
of hardware prefetching results in much smaller differences between sequential and random

access, compared to the equivalent Sandy Bridge results.

Effects of ILP when increasing the number of data streams accessed are noticeable, similarly
to the Sandy Bridge Xeon, with a most notable example the steady 0.2-0.25 GB/s gain for
each additional stream on the largest sizes for the random access pattern.

STREAM:

Once again, STREAM was used to evaluate measured bandwidth and performance of the
benchmark on this architecture. Bandwidth measured with STREAM is shown in table 3.9

Bandwidth in MB/s
1 Core 2 Cores 3 Cores 4 Cores
Best 2,336 2,580 2,602 2,613
Size ‘ 2.2 GB 2.2 GB 2.2 GB 2.2 GB
Table 3.9

As seen above, performance of the two benchmarks is very similar, both measuring

maximum per-core bandwidth at 2.4 GB/s. The corresponding entries of table 3.7 follow:

Sequential Bandwidth (in MB/s)

Size (KB) Number of streams
Single 2 3 4 5 6 7
131,072 1,872.7 2,322.8 2,362.5 2,386.3 2,429.0 2,422.6 2,422.9 2,363.0

For completing the overall picture, it should be mentioned that maximum per-package
bandwidth, as measured by STREAM, is 2.6 GB/s, while overall bandwidth, utilizing all four
packages, was found to be 8.7 GB/s.
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pChase

As before, in order to evaluate the random access pattern behavior the pChase benchmark

was used, running the same series of tests:

Bandwidth in MB/s

Size 1 Thread 2 Threads 3 Threads 4 Threads

128 KB 11,780 12,493 12,335 35,800

256 KB 13,003 12,443 12,200 11,957

1 MB 13,026 13,022 13,000 13,003

2 MB 10,850 13,013 13,019 13,000

3 MB 5,838 12,556 12,907 12,904

6 MB 3,509 5,311 9,078 11,632

12 MB 2,383 3,395 3,744 5,222

16 MB 1,237 2,795 2,880 3,020

32 MB 807 804 815 811
128 MB 797 798 793 794
Table 3.10
Same sizes results from table 3.8:
Random Bandwidth (in MB/s)
Size (KB) Number of streams
Single 2 3 4 5 6 7 8

128 10,130.8 | 19,977.3 | 29,953.1 39,677.8 45,465.5 39,182.1 37,060.0 35,895.1
256 9,826.0 19,558.1 | 29,200.6 38,639.6 43,788.0 38,544.6 37,047.8 35,683.8
1,024 9,599.0 19,126.4 | 28,421.8 37,544.5 42,429.3 36,947.8 34,475.0 33,6254
2,048 7,167.0 11,504.5 | 18,523.7 21,323.7 23,443.3 22,949.5 26,250.9 25,890.6
3,072 3,778.5 7,475.8 9,132.6 11,340.2 13,203.9 14,974.1 16,037.1 16,934.3
6,144 1,931.1 3,683.4 5,285.9 6,554.0 7,512.0 8,348.9 9,107.9 9,545.6
12,288 1,495.2 2,369.9 2,691.9 5,414.4 5,813.0 6,902.7 5,891.8 6,383.1
16,384 928.3 1,582.1 2,257.1 2,481.7 2,894.9 3,314.3 3,582.2 3,777.4
32,768 427.1 777.3 1,077.7 1,337.7 1,554.3 1,755.2 1,934.3 2,069.0
131,072 334.1 609.9 839.2 1,061.2 1,286.5 1,497.7 1,699.4 1,852.7

Similar to the previous architecture comparison, the bandwidth’s order of magnitude for the

two benchmarks is the same, with pChase being much less affected by additional data

streams and displaying a far narrower range of results. Figure 3.17 graphically shows pChase
bandwidth compared to instances of our benchmark
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3.3.3 Class evaluation with performance counters

Finally, the hardware performance counters (provided by the Sandy Bridge architecture) were
used to confirm the benchmark’s application class (as described in chapter 2) for the various
size instances. Performance counters used for this evaluation were unhalted clock cycles
counter, instructions retired counter, per-core Bandwidth counter, L2 lines counter (data from
L3 to L2), L1 lines counter (data from L2 to L1), LLC misses counter, memory micro-
operations counter (mem_uops) and the total micro-operations (all_uops) counter. Mem_uops
counts retired micro-operations (loads and stores) to any part of the memory hierarchy, while

all_uops is total number of micro-operations. Usage of all other performance counters is

explained in chapter 4. Ratio rr:m;ugps shows if an application is memory-bound.

11_uops

Table 3.11 shows the memory micro-operations ratio for a wide range of data sizes. (For the
last instances, the ones with the highest bandwidth were chosen, to maximize contention, thus

3 streams instance for the sequential pattern, and 8 streams for the random respectively).
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Memory micro-operations ratio
Size (KB) | Pattern 1 Stream 2 Streams 4 Streams*

24 seq. 0.331 0.426 0.551

24 | random 0.331 0.426 0.551

204 seq. 0.333 0.428 0.555

204 | random 0.333 0.428 0.555

3072 seq. 0.333 0.429 0.556

3072 | random 0.334 0.429 0.556

13107 seq. 0.333 0.429 0.555

13107 | random 0.333 0.428 0.554
122880 seq. 0.332 0.428 0.499* *(3 Streams)
122880 | random 0.333 0.427 0.686** **(8 Streams)

Table 3.11

As expected, memory micro-operations ratio is only affected by the number of accesses
(streams) and not the size of datasets. It can also be observed, that for all cases, ratio is over
0.25, confirming this benchmark is a memory-bound application, since all it does, after

dataset initialization, is accessing datasets.

To decide the application class of each instance, the decision tree described previously was
used (figure 3.18) with its parameters as follows: o = 7 GB/s, stands for 50% of maximum
memory bandwidth (in our case 14 GB/s), B = 0.35 GB/s is 2.5% of maximum memory

bandwidth, y =2 GB/s, 6 = 0.25, ¢ = 1, as maximum IPC of this system is 4.
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Table 3.12 contains profiling metrics for the benchmark, as extracted with the
aforementioned performance counters (all bandwidth values in MB/s), for a variety of dataset
sizes and number of streams, along with each instance’s classification for this architecture in
N, C, LC, or L application classes using the classification scheme of figure 3.18. IPC is
calculated from the number of unhalted clock cycles and instructions retired, bandwidth

caused by LLC misses (LLC miss BW) from LLC misses counter.
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Size, No. of streams | Pattern ‘ IPC | per Core BW | L3 ->1L2BW | L2 ->L1 BW | LLC miss BW | Class
204 KB, 1 Stream sequential | 0.322 0 7.64 13061.92 0 N
204 KB, 1 Stream random | 0.3352 0 9.77 13617.21 0 N
204 KB, 2 Streams | sequential | 0.6335 0 10.24 25705.43 0 N
204 KB, 2 Streams random | 0.3594 0 8660.46 14580.69 0 C
204 KB, 4 Streams | sequential | 0.5238 0 16027.64 33992.71 0 C
204 KB, 4 Streams random 0.445 0 9268.86 28891.07 0 C
1.5 MB, 1 Stream | sequential | 0.2624 0 10650.38 10650.29 0 C
1.5 MB, 1 Stream random | 0.0886 0 3594.82 3594.96 0 C
1.5 MB, 2 Streams | sequential | 0.4112 0 16639.6 16695.15 0 C
1.5 MB, 2 Streams random | 0.1737 0 7049.35 7049.78 0 C
1.5 MB, 4 Streams | sequential | 0.3873 0 22946.76 25168.58 0 C
1.5 MB, 6 Streams random 0.2376 0 19288.74 19291.63 0 C

3 MB, 1 Stream sequential | 0.2603 0 10588.67 10587.49 0 C
3 MB, 1 Stream random 0.081 0 3295.24 3544.97 0 C
3 MB, 2 Streams sequential | 0.4073 0 16517.03 16565.68 0 C
3 MB, 2 Streams random 0.1568 0 6376.51 6865.18 0 C
3 MB, 4 Streams sequential | 0.3837 0 22729.61 24983.86 0 C
3 MB, 4 Streams random | 0.1795 0 11690.68 12575.37 0 C
13 MB, 1 Stream sequential | 0.2269 1862.31 9168.62 9168.46 385.48 LC
13 MB, 1 Stream random | 0.0428 330.38 1760.18 2536.42 330.4 C
13 MB, 2 Streams | sequential | 0.3628 3058.99 14639.19 14697.43 524,51 LC
13 MB, 2 Streams random | 0.0804 621.71 3266.29 4753.77 621.71 LC*
13 MB, 4 Streams | sequential | 0.3217 3499.8 18861.3 20877.91 730.21 LC
13 MB, 8 Streams random | 0.0764 1214.93 7098.76 10352.99 1215.33 LC
128 MB, 1 Stream | sequential | 0.1677 6753.77 6748.64 6754.1 1358.62 L**
128 MB, 1 Stream random | 0.0149 604.06 943.6 1165.77 604.07 LC
128 MB, 2 Streams | sequential | 0.2802 11270.97 11094.01 11272.11 124491 L
128 MB, 2 Streams random | 0.0293 1184.48 1831.94 2283.66 1184.51 LC
128 MB, 3 Streams | sequential | 0.2582 13851.04 12401.27 13866.71 1136.57 L
128 MB, 8 Streams random | 0.0352 3245.13 5020.1 6259.44 3245.23 LC
Table 3.12

Notes:

* This instance could also be classified as C, strictly using the decision algorithm, but its

behavior suggests it is more a link-and-cache intensive application.

** Another marginal decision, could also be classified as LC, but it is mostly a link intensive

application, thus L is more appropriate.
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It can be easily observed that applications of the same class can have different behavior, with
the most notable example being class C, which contains a large number of benchmark
instances. Applications in this class can have dataset sizes small enough to fit completely in
the cache, without being much affected by other programs sharing LLC, but as memory needs
increase they become more vulnerable to getting slowed down by other applications. This
happens because they need to use a large part of the cache and continuous cache data
replacements caused by other programs result in continuous LLC misses with the respective
data fetching time penalties, while programs with smaller datasets will have smaller penalties
as a result of fewer data replacements. High associativity of LLC (16-way for both
architectures) in conjunction with the unpredictable way OS memory management system
allocates datasets in memory pages explains why programs with datasets smaller than cache
size need to additionally use the memory link. The point up to which no need for main
memory utilization occurs is found (by observing and experimentation) at approximately
50% of cache size; programs with datasets smaller can practically fit entirely in the cache,
while larger have an —increasing with size— need to use the memory link as well. Utilization
of the main memory bus is low when there is no other program destroying cached data, but
when contention occurs, program’s behavior is forced to change, even into a different class.

All these expected effects are to be confirmed and further discussed in chapter 4.

Usage in co-execution

Given all the above observations, the benchmark’s results appear to be valid comparing it to
other well-known and widely used benchmark programs and, therefore, useful to estimate the
memory performance of a single core in a multi-core architecture. Additionally, it is
suggested that it can be used to cause variable contention, in all levels of the memory
hierarchy. Being solely a single-thread application, it gives users versatility to concurrently
execute various configurations on desired cores of the architecture, observing the effects of
contention for shared memory resources without being affected by synchronization or other
problems of multithreaded applications. Different instances of the program cover all classes
in the application classification scheme used in this work. Thus, it is possible to create a suite
of programs with different behavior to emulate memory-intensive applications (with various
levels of intensity) in order to study the effects of memory contention and application
behavior differences caused by it in MCP co-scheduling context.
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Chapter 4

Co-scheduling experimental evaluation

4.1 Co-scheduling on Intel Sandy-Bridge

4.1.1 Workload profile:

For co-scheduling tests, aiming to observe memory contention and its effects in all memory
hierarchy levels, a variety of memory intensive programs with different behavior was deemed
necessary. To achieve that, we opted for various configurations of the proposed memory
benchmark program, as described in chapter 3. In order to keep running time relatively stable
and predictable, as well as enough for providing sufficient performance data using the
architecture counters, we chose and tested for each instance a number of iterations that
ensures running time for about 1 minute. Data set sizes should be ranging from relatively
small, fitting in the private cache of a single core, to much larger than LLC. Specifically,

based on observations made and explained previously, we selected five dataset sizes:

e 204 KB: Given that the Sandy-Bridge architecture we used has larger L2 caches (256
KB private), this size was selected to emulate applications reusing only small datasets,

but not fitting solely in private caches as low LLC utilization may occur. It has been
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observed from random pattern benchmark performance that datasets can completely
fit in a cache level as long as dataset is smaller than approximately half of cache size
(see fig. 3.13). As a result, LLC utilization is additionally expected for these
instances. We named this category L2.

1.5 MB: Although much larger than the L2 cache, datasets can very easily fit in the 16
MB L3 (LLC), even in the single-core dedicated 2.5 MB of the LLC. However, if
another program on an adjacent core is thrashing the cache, contention should become
very noticeable, making this size an interesting co-scheduling candidate. This
category was named L3s (L3 small).

3 MB: Benchmarks using this dataset size are excessively reusing LLC but do not
need to utilize main memory link at all. Being co-executed with another program with
larger datasets, however, it is very likely that it will be noticeably affected and forced
to use the memory link as well. Thus it appears as another interesting dataset size for
experimentation. This size category was named L3m (L3 medium).

13 MB: Datasets of 13 MB do not fit in the LLC (due to high associativity, although
being less than 16 MB), with low need to constantly use the memory link as well. Co-
executing an instance of this size with any other program is expected to alter the
behavior of both, and increase the demand for memory link utilization. We named this
category L3I (L3 large).

128 MB: Finally, a size category not fitting in the caches, 8 times larger than LLC,
demanding continuous use of the memory link and, potentially, being able to be

thrashing the cache for any other program co-executed. We named it MEM (Memory).

Having decided different data sizes to be used with sequential and random access patterns, it

was also desired to create variation in the memory resources demand for each size and

pattern. It was observed, while evaluating the benchmark, that increasing the number of data

streams exploits ILP and causes increased benchmark performance and, consequently,

increased memory use demand, as is shown by memory micro-operations ratio in table 3.11

and benchmark results (tables A.1.a and b). Thus it was decided to create three variations for

each size and pattern combination: 1 stream-, 2 stream- and max stream-instances.

Single stream instances utilize a single data structure and cause less cache replacements, but

also have lower performance since only a single element access occurs in each iteration of the

inner loop. Additionally 1-stream programs are expected to be experiencing longer delays
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since they are practically depending on a single memory access; if this access is delayed due
to contention in memory resources, the program must only wait (stall) until requested data is
fetched, while in more, independent accesses implementations next instructions and,
consequently, new memory requests can be issued in this waiting time. Dual stream
variations, as explained and shown previously, can display even double performance
compared to the 1-streamed and were found suitable for increased -but not maximized-
memory resources demand.

For the final set of variations, the objective was to maximize (or at least keep at a high level)
memory utilization without causing ‘“self-contention”. As seen in tables with benchmark
results, when increasing the number of streams for larger datasets, performance starts to
degrade because of contention caused by the programs’ data structures continuously
replacing each other in the caches. This, as mentioned before, happens because of the way
memory management system allocates data into memory pages, which is unpredictable and -
in contrast with an ideal scenario, where all data would be allocated continuously on a page-
causes frequent cache replacement conflicts, which increase as the number of structures
accessed increases —since they are allocated on different areas of the memory. To avoid this
phenomenon, we picked the sequential variation with maximum performance for the 128MB
(MEM) category, which was the 3-stream instance. For all other sizes, using 4 streams for the
sequential pattern was found sufficient (despite not having strictly maximum performance in
all cases), in order to utilize the 4 memory bus channels, provided by the architecture. Four
streams are also sufficient for the majority of the random pattern benchmarks max-stream
instances, although the previously described “self-contention” does not occur because of the
pattern’s random nature. Exception is the 128 MB (MEM), in which we used 8 streams to
maximize bandwidth caused by LLC misses, and the 1.5 MB (L3s) instance, in which 6
streams were used, having the maximum combination of bandwidth and bandwidth-per-
stream ratio.

Using the benchmark in the aforementioned configurations, we created a suite of 30 programs
with the desired characteristics, covering all application classes (see table 3.12), shown
below, in table 4.1.1:
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Sequential pattern

Category size Category name Variations
204 KB L2 1, 2, 4 Streams
1.5 MB L3s 1, 2, 4 Streams

3 MB L3m 1, 2, 4 Streams
13 MB L3I 1, 2,4 Streams
128 MB MEM 1, 2, 3 Streams

Random pattern

Category size Category name Variations
204 KB L2 1, 2, 4 Streams
1.5 MB L3s 1, 2, 6 Streams

3 MB L3m 1, 2, 4 Streams

13 MB L3I 1, 2, 4 Streams

128 MB MEM 1, 2, 8 Streams
Table 4.1.1

For convenience, a standard name formatting was chosen to name each of the instances
above, consisting of three parts: category name, number of streams, and access pattern. For
example, a 13 MB, 2 stream sequential benchmark is abbreviated as L3|_2Str_seq, while the
128 MB, single stream random access instance is named MEM_1Str_rdm. Workload

classification according to preliminary standalone execution is shown in table 4.1.2 below:
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Task Pattern | Class Task Pattern | Class Task Pattern | Class
L2_1Str seq N L3s_4Str seq C L3l_2Str seq LC
L2_1Str rdm N L3s_6Str rdm C L3l_2Str rdm LC
L2_2Str seq N L3m_1Str seq C L3l_4Str seq LC
L2_2Str rdm C L3m_1Str rdm C L31_4Str rdm LC
L2_A4Str seq C L3m_2Str seq C MEM_1Str seq L
L2_4Str rdm C L3m_2Str rdm C MEM_1Str rdm LC
L3s_1Str seq C L3m_4Str seq C MEM_2Str seq L
L3s_1Str rdm C L3m_A4Str rdm C MEM_2Str rdm LC
L3s_2Str seq C L3I_1Str seq LC MEM_3Str seq L
L3s_2Str | rdm C L3l_1Str rdm C MEM_8Str rdm LC

Table 4.1.2




4.1.2 Experimental procedure

Our objective was to study how application behavior changes when contention on shared
memory resources takes place. All programs of the table above were co-executed in pairs in
all possible combinations, using adjacent cores of the same package. Scaff’s infrastructure
was used for co-execution and performance metrics, without a need for specific scheduling
policy, since the only requirement was concurrent but independent execution of two
applications on two cores, with no cpu-time sharing demand.

The first step was to execute each application of the suite independently on a single core
(core 0, first of the package). This procedure let us store performance counters data of each
benchmark instance running alone, as a reference point for comparison with the respective
data from co-execution. Performance data collected shows the application’s behavior in terms
of execution and memory resources usage. IPC (instructions per cycle), a very important

index for a program’s execution, can be extracted from the performance counters as the ratio

instr_ret

of instructions retired counter and unhalted clock cycles: . Higher IPC generally

unh_clk_cls
means an application is utilizing more CPU resources, staying in private parts of the core
with little or no interaction with memory resources (e.g. calculation intensive), as memory
operations are slowing the program down even in the L2. Thus, all of the benchmark
instances have IPCs much lower than 1, as presented already in chapter 3. Other counters
used are:

e LLC misses: From this number we can measure bandwidth caused by LLC misses, as

each miss means fetching a new line (64 bytes) into the cache. Bandwidth in

llc_miss

Bytes/sec is 64 where T is the period of time during which the misses were

measured.
e L1 lines: This counter show how many lines were transferred from L2 to L1 cache for

a time period T. Knowing line size (64 bytes) and T, we can calculate bandwidth used

I1lines
T

between L2 and L1 as 64 (in B/s).

e L2 lines: Similarly, this is the number of lines transferred in L2 from the LLC in time

12lines
T

T. Thus, L3 to L2 bandwidth is 64 (in B/s).
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e Per core bandwidth: Data (in 64B lines) fetched from the memory bus, from the

requests and misses of the specific core in time T. It can also be noted as L3

per_core_bw

bandwidth and is calculated as 64 in B/s.

e Bandwidth: This is total socket bandwidth (again in lines), for all cores of the package
o L . . bandwidth
in time T. It is similarly converted in B/s via anTWlt 64 .

e Power: Core power consumption in Watts, a fixed counter that we will not use in this

work.
4.1.3 Preliminary evaluation

Table 4.1.3 (same as 3.12) contains performance data from all instances being executed alone

with scaff on cpuO.

Instance | IPC | package BW | per Core BW | L3->L2 BW | L2->L1 BW | LLC miss BW
12_1Str_seq | 0.322 25.83 0 7.64 | 13061.92 0
12_1Str_rdm | 0.3352 25.82 0 9.77 | 13617.21 0
12_25tr_seq | 0.6335 25.82 0 10.24 | 25705.43 0
L2_25tr_rdm | 0.3594 25.81 0| 866046 | 14580.69 0
12_45tr_seq | 0.5238 25.76 0| 16027.64| 33992.71 0
L2_4Str_rdm | 0.445 25.74 0| 926886 28891.07 0
L3s_1Str_seq | 0.2624 25.89 0| 1065038 | 10650.29 0
L3s_1Str_rdm | 0.0886 25.99 0| 359482 3594.96 0
13s_2Str_seq | 0.4112 25.91 0| 16639.6| 16695.15 0
L3s_2Str_rdm | 0.1737 25.86 0| 704935| 704978 0
L3s_4str_seq | 0.3873 25.73 0| 22946.76 | 25168.58 0
13s_65tr_rdm | 0.2376 26.09 0| 1928874 | 19291.63 0
L3m_1Str_seq | 0.2603 25.84 0| 10588.67 | 10587.49 0
L3m_1Str_rdm | 0.081 26.08 0| 329524 354497 0
L3m_25tr_seq | 0.4073 26.31 0| 16517.03| 16565.68 0
L3m_2Str_rdm | 0.1568 25.82 0| 637651 6865.18 0
L3m_4str_seq | 0.3837 26.21 0| 22729.61| 24983.86 0
L3m_astr_rdm | 0.1795 25.91 0| 11690.68 | 12575.37 0
L31_1Str_seq | 0.2269 |  1900.43 1862.31 | 9168.62 | 9168.46 385.48
L31_1Str_rdm | 0.0428 359.08 33038 | 1760.18 | 253642 3304
L31_25tr seq | 0.3628 |  3096.99 3058.99 | 14639.19 | 14697.43 524.51
L31_2Str_rdm | 0.0804 657.78 62171 | 326629 | 475377 621.71
L31_4Str_seq | 0.3217 |  3533.06 3499.8 | 18861.3 | 20877.91 730.21
L31_4Str_rdm | 0.0764 | 124752 1214.93 | 709876 | 10352.99 1215.33
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MEM_1Str_seq | 0.1677 6815.18 6753.77 6748.64 6754.1 1358.62

MEM_1Str_rdm | 0.0149 631.25 604.06 943.6 1165.77 604.07

MEM_2Str_seq | 0.2802 11340.09 11270.97 | 11094.01 | 11272.11 124491

MEM_2Str_rdm | 0.0293 1213.4 1184.48 1831.94 2283.66 1184.51

MEM_3Str_seq | 0.2582 13932.8 13851.04 | 12401.27 | 13866.71 1136.57

MEM_8Str_rdm | 0.0352 3284.2 3245.13 5020.1 6259.44 3245.23
Table 4.1.3

For the co-scheduling experiment, application pairs were executed in the first pair of cores
(cpu 0 and 1) in the package. Each application was co-run with every other, including itself,
resulting in a number of 465 execution pairs. Performance data was stored for each
application in all co-scheduled pairs. The primary index observed is application slowdown,

which is calculated by the ratio of IPC of an application when executed alone and its IPC

. . IPC solo
during co-execution: —— . As a result, slowdown 1 means no slowdown, 2 means
IPC in coexec

double execution time etc.

4.1.4 Results estimation
In the next paragraphs, we will discuss expected behavior of execution pairs, according to the
contention prediction scheme presented in Ch. 2, based on application classification [5].

e N -—All: As long as processes are running on different cores (which is always the case
in this work), most N class applications are not expected to interfere with other
programs since they are not sharing resources. However, in some cases programs with
very low LLC usage, which are classified as N, may be slowed down if another
program is continuously swiping cache data (e.g. from L class). This slowdown case
is still expected to be far less than 2.

e C — C: Class C displays the greatest variation in application behavior. As discussed
previously, some applications are more vulnerable to be slowed down by interference
from other programs than others. Depending on working set size, a pair of C class
processes may be using a very small part of LLC, in which case no contention occurs,
up to all of the L3 and with need for continuous data replacement. In the latter case,
application behavior changes from C to LC and slowdown is significant, as every
replacement results in memory fetching penalty. Between those two extreme cases, a

lot of intermediate combinations can occur, for which contention and its effects are
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generally expected to be low. (Paper: cache organization and replacement policies are
expected to handle high activity from different applications on the shared LLC).

C — LC: In this scenario, there is potential contention on the LLC, which is expected
to mostly affect the C member of the pair. This effect is expected to be maximized
when a C with a relatively large working set and random pattern —which is memory
latency bound, if forced to act like an LC by constantly having its data wiped out of
the cache— conflicts with a streaming LC instance that keeps replacing data. Moderate
slowdown may occur in this case. In the majority of cases, however, low contention
with mostly unnoticeable effects for the LC processes is expected, while C’s,
especially the vulnerable ones using larger datasets, may be slowed down, but not
dramatically.

C — L: Another class pair in which a wide range of results is expected, as the two
classes have intense activity in different levels of the hierarchy. L applications are not
expected to be affected. However, an L instance streaming data in the cache at a very
high rate can excessively slow down a C application with heavy cache reuse, by
destroying its dataset and forcing it to continuously use the memory link as well, like
an LC application. Especially if the access pattern is latency bound, as is the case for
random benchmarks that cannot take advantage of prefetching, we expect to see the
highest slowdown compared to all other tests.

LC — LC: In this co-execution scenario, medium contention is caused on both levels
of the hierarchy —bus and cache— on which these applications display significant
activity. Moderate slowdown effects (around 2) are expected in the worst case, since
instances of this class do not stress memory link to its limits, thus it can serve the
augmented number of requests caused by cache contention, with processes wiping out
each other’s data. Other instances may not face any interference, if they are not
heavily reusing cache.

LC — L: Memory link contention may occur in this combination, affecting both sides
noticeably but not significantly. Although slowdown from memory link increased
demand is not dramatic, LC applications with heavy cache reuse and latency-bound
pattern suffer from L instances’ cache thrashing, along with memory bus competition,
accumulatively causing higher slowdown. In cases were the L process does not stress

memory bus at such high level, slowdown is expected to be lower.
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e L — L: Worst case in this co-scheduling pair of L’s competing for the memory link is
slowdown about 2, as bandwidth is shared (not necessarily equally) between them. In
this architecture it is expected to be even lower, as maximum package bandwidth is
measured at 18 GB/s, while a single core can have 14 GB/s. These details will be
further discussed along with the results from performance counters. Applications do
not share any other memory resource, since they are thrashing the cache even in solo

execution and don’t have need for data reuse.

4.1.5 Results

Data gathered from all co-execution tests will be presented, along with more detailed analysis
for some interesting examples, to evaluate and further discuss the validity of the previously
described prediction model. In all tables presented below, each line contains slowdown of the
program in the first cell of the row, caused by co-execution with the program on the title of

each column, for instance:

L2_1Str_seq | L2_1Str rdm | L2_2Str_seq
L2_1Str_seq 1.038 1.000 1.000

In this example table slowdown suffered by L2_1Str_seq is shown, when it was co-scheduled
with itself, L2_1Str_rdm and L2_2Str_seq respectively. Additionally, increasingly dark cell
background for higher slowdown values facilitates visual detection of high contention
scenarios.

For many cases, results may vary for the same experiment repeated more times, since there is
dependency on factors that cannot be controlled in user-level, such as data allocation on
memory pages by the OS, potentially causing more or fewer data replacements — and varying
slowdown as a result — in one experiment that may not occur in a later repetition of the same
test. This also explains slowdowns and cache conflicts that occur in cases with small working
sets, where theoretically both programs should completely fit in a small part of the cache.

N-—N

As expected, in most cases no important slowdown is noticed. According to our initial

classification N-N co-execution scenarios are the ones in table 4.1.4.
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L2_1Str_seq | L2_1Str_rdm | L2_2Str_seq

L2_1Str_seq 1.038 1.000 1.000

L2_1Str_rdm 1.493 1.398 1.001

L2_2Str_seq 1.001 1.180 1.105
Table 4.1.4

If dataset sizes used were smaller (less than 128K), no slowdown at all would occur.
L2_1Str_rdm appears to be more wvulnerable to slowdown. Further examination of
performance counters reveals that almost all co-execution scenarios force this instance to
higher LLC utilization; running alone it uses much less than 1GB/s L3-to-L2 bandwidth (in
the order of tens of MB/s). In almost all co-scheduling tests this number increases to several
GBI/s, explaining the constant —up to 1.5- slowdown displayed, as it acts more like a C class
application (even with some MB/s main bus utilization in extreme cases, caused by LLC

misses).

However, runtime behavior alterations in co-scheduling context also occur for other
instances: L2_2Str_rdm, L2_2Str_rdm, L2_2Str_rdm benchmarks’ performance counters when
executed alone, indicate relatively high LLC reuse and suggest C classification. Despite that
fact, in most co-execution tests —and for all repetitions of the respective experiments—,
performance counters have shown that LLC-to-L2 bandwidth used has been reduced, while
L2 utilization becomes more intense, as in typical N class behavior, and thus IPC increases,
since L2 is much faster. This phenomenon results in application speedup as IPC slowdown
ratio is lower than 1 and, consequently, execution time is lower. All these speedup cases are
marked in yellow in all following result tables. It is safe to assume that for most co-execution
scenarios, these applications can also be classified as N, a fact confirmed by actual
performance data. Their working set sizes (2x101KB or 4x51KB) suggest that it is unlikely
for cached data to suffer continuous contamination by a larger streaming application. The

new N — N co-execution results are shown in table 4.1.5.

L2_1Str_seq | L2_1Str_rdm | L2_2Str_seq | L2_2Str_rdm | L2_4Str_seq | L2_4Str_rdm
L2_1Str_seq 1.038 1.000 1.000 1.000 1.000 1.001
L2_1Str_rdm 1.493 1.398 1.001 1.001 1.001 1.001
L2_2Str_seq 1.001 1.180 1.105 1.004 1.002 1.001
L2_2Str_rdm 0.884 1.036 0.885 0.809 0.740 0.757
L2_4Str_seq 0.917 0.938 0.922 0.887 0.847 0.756
L2_4Str_rdm 0.643 0.641 1.010 0.647 0.947 0.978

Table 4.1.5 : N-N slowdown
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It is apparent that, with the exception of the L2_1Str_rdm instance, no slowdown occurs in any

case, with speedup effect discussed in the previous paragraph.

N-All

All L2 size programs cause no slowdown to any other program of any class, confirming
preliminary estimations. Additionally they are not affected by other applications in almost all
cases. L2_1Str_rdm benchmark’s behavior is different, and it is classified as a C class program
when co-run, hence it will not be included with N’s. Speed-up phenomena for the three last
applications are present in almost all experiments. In only a few cases with L3 or memory
link intense streaming applications IPC ratio was slightly over 1. Slowdown effect averages

for N co-execution with other classes are shown below:

Class Co-runner class
N C LC L
N 1.00 1.02 1.10 1.07

c-C

C class contains more applications than any other, yet in all experiments no major
interference was noted between C processes. Results for the vast majority of experiments
were very near or equal to 1. Only the L3I random instance, having the largest working set
and which can be marginally classified also as LC, suffered minor slowdown due to
competition in LLC utilization when executed with instances with more streams, accessing
data more intensely. Figure 4.1.1 shows average slowdown for all other applications in the

class and this instance alone. Average slowdown effect noticed was found 1.06.
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e C average

L3l_1Str_rdm

Figure 4.1.1

C-LC
Low to unnoticeable delay was observed for most tests of this class co-execution. Instances
affected were random pattern benchmarks of C class, slowed down by streaming LC

instances.
L3l_1Str_seq | L3l _2Str_seq | L3I_4Str_seq
L3s_1str_rdm 1.018 1.034 2.718
L3m_1Str_rdm 2.903 2.765 2.842
L3m_2Str_rdm 1.045 2.830 2.936

Table 4.1.6: C instances slowdown by LC

As it can be seen, increasing the number of accessing streams results in more intense cache

data replacements. The L3s instance has a working set small enough to avoid being wiped

from LLC, when being run concurrently with the —not so intense— single and 2-stream L3l

programs. Counters show ~5000 LLC misses/sec causing a very low ~300KB/s bandwidth,

while LLC-to-L2 bandwidth is 3.5 GBY/s, very close to its solo performance. However, the 4

stream L3I program, making more access requests, is much more destructive for cached data

and forces the previously unaffected L3s application in ~8.4 million misses/sec, resulting in

an additional 500MB/s main memory bandwidth, while L3 reuse bandwidth has reduced to
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1.3 GB/s. As expected, since the program only does memory accesses and solely depends on
them, the ratio of L3-to-L2 bandwidth in the two cases is equal to slowdown (j—'g = 2.7),.

This example was explained in more detail in order to better demonstrate how contention
practically affects a program’s execution.

Average slowdown suffered by C applications was 1.27. LC classes were mostly unaffected
as well, suffering unnoticeable slowdown for the vast majority of experiments, averaging

1.06. Again, pre-experiment estimations are confirmed.

C-L

As predicted, results in this section ranged from unnoticeable effects to excessive slowdown
for C applications. The 3-stream sequential MEM benchmark uses almost the maximum
available bandwidth; as a result it can wipe cached data at nearly the highest possible rate.
For some C programs this can be disastrous, especially for random pattern instances that

can’t use the prefetchers.

MEM_1Str_seq | MEM_2Str_seq | MEM_3Str_seq
L3s_1str_rdm 1.023
L3m_1Str_rdm
L3m_2Str_rdm
L3m_4Str_rdm
L31_1Str_rdm

Table 4.1.7: Random pattern C instances suffering excessive slowdown by L

Sequential and more intense (with more streams) C processes suffered very limited slowdown
effects, taking advantage of prefetchers and the memory link’s 4-channel parallelism. C class
average slowdown was 2.15.

L programs, as expected, were not affected at all.

LC-LC
Medium contention occurred in this scenario resulting in varying results, from unnoticeable
up to moderate slowdown. Figure 4.1.2 shows all results in this section. Average slowdown
was 1.34
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Figure 4.1.2: LC instances slowdown

LC-L

Predicted behavior is again confirmed here. LC programs are affected and delayed
increasingly, as streams of L applications increase, and consequently the rate of cache data
replacement. Figure 4.1.3 shows this effect and how slowdown increases uniformly for all

instances. Average LC slowdown was 1.76.
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Figure 4.1.3: LC instances slowdown by L streaming programs
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L applications were mostly delayed by streaming L3I instances, which were forced to utilize

much more main memory bandwidth due to the same L thrashing the cache, resulting in

medium memory link contention, with maximum L slowdown near 1.5 and average 1.12

Behavior of these LC instances becomes similar to that of L class. For example if we inspect

performance counters data for the L3I_4Str_seq co-execution with MEM_3Str_seq, it can be

seen that memory link bandwidth utilization has increased more than 2x, from 3.5GB/s to

8.5GB/s, changing the program’s behavior to class L. Such class behavior switches occur in

many cases, a result of contention.

1.5
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B MEM_2Str_seq

1.1 4

m MEM_3Str_seq
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Figure 4.1.4: L instances slowdown, co-run with LC

L-L

In this scenario, memory link-only contention occurs, that results in moderate slowdown:
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Figure 4.1.5: L-L class slowdown

Maximum slowdown is slightly over 1.5 for a pair of intensely streaming benchmarks. Data
from performance counters can be used to explain this. On preliminary execution of the
program (MEM_3Str_seq) maximum bandwidth noted was ~13.9 GB/s, very close to the
system’s per-core maximum. Performance data from co-execution indicate that one instance
was using 8.4 GB/s, while the other was using 9.6 GB/s. This means maximum per-socket
bandwidth can reach 18 GB/s and average bandwidth for a pair of applications competing for
the memory bus is 9 GB/s. As our benchmark is exclusively memory bound, the ratio of

bandwidth in solo execution and when sharing the memory link equals slowdown, in this case

% = 1.54, which is exactly the result of IPC ratio as well. On a system with equal per-core

and per socket maximum bandwidth, average for this situation would be 2, with worst case
being slightly over 2, as applications do not share the bus equally and one may use less than
half bandwidth.

Overview

Assumptions made in the co-scheduling estimation model described were confirmed.
Application behavior was generally as predicted. It was confirmed that shared resources
contention may cause change in application behavior, moving it to another class. The
phenomenon, in which applications with small enough datasets to fit in private cache often
performed as C class processes when executed solo, but co-scheduled with another
application they shifted into N class, resulting in speedup effect, was also noticed. Apart from

this exception, it was observed that contention situation in shared resources can potentially
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cause significant change in an application’s behavior in co-execution context, moving it to a

more memory demanding class, like, for example, from LC to L or from C to LC.

Overall co-scheduling scenarios interference is shown in table 4.1.8, which contains all class

co-execution slowdown averages:

Class Co-runner class
N C LC L
N 1.00 1.02 1.10 | 1.07
C 1.00 1.06 1.27
LC 1.00 1.06 1.34
L 1.00 1.00 1.12 | 1.30

Table 4.1.8: Average class slowdown

4.2 Co-scheduling on Intel Dunnington

4.2.1 Workload profile

For experiments on this architecture we needed an altered set of applications, to expose the
effects of co-execution caused shared by memory contention on this different memory
hierarchy scheme. Except for the shared 16 MB LLC, pairs of cores also share 3 MB of L2.
This makes the choice of cores executing the task inside the package much more significant.
Again, we aimed for about 1 minute solo execution time for all instances. Dataset sizes were
selected to cover the following range:

e 1 MB: Can fit in the 3MB L2, but if contention occurs caused by another application
on the adjacent core, sharing the L2, utilization of LLC is also expected. The
difference between co-execution scenarios, utilizing shared L2 or shared LLC only, is
expected to be noticeable. This size class was named L2s (L2 small)

e 2 MB: Datasets cannot completely fit in L2 (because of associativity) and benchmarks
of this size are expected to intensively utilize LLC in co-execution, especially when
run on a pair of cores with shared L2. This size class was named L2m (L2 medium)

e 3 MB: This dataset class is expected to use both L2 and LLC intensively. Thus it is
very likely for these benchmark instances to be largely affected by applications
making extended use or thrashing the caches. We named this class L2I (L2 large).
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e 6 MB: Benchmarks using this dataset size can rely on LLC when executed alone, but
when another program also needs to use a significant part of the cache, contention is
very likely to cause slowdown and the need to use the memory link as well. These
instances also thrash L2 caches for other applications when executed on adjacent
cores. Class name is L3s.

e 15 MB: Cannot fit in cache but makes very intense re-use, making it vulnerable to
excessive slowdown, when co-scheduled with a program that also makes use of the
LLC or continuously destroys its data. We named this category L3lI.

e 128 MB: Similar to the previous architecture, datasets much larger than LLC cause
the need for continuous memory bus use and cached data replacements, affecting all

other programs being executed. Class was named MEM.

As with Sandy Bridge architecture procedure, to create varied memory requests and
bandwidth utilization needs, three instances were used for each size class and pattern
combination, 1- 2- and max-streams. For max-stream variations, five streams were selected
for all class sizes, sequential pattern instances since results indicate that memory bandwidth
utilization is maximized using this configuration. Using more datasets, previously described
self-contention starts to occur. For random instances 8 streams were used, since the

aforementioned effect does not occur in this access pattern.

Table 4.2.1 contains all instances used for co-scheduling experiments, a total number of 36.

The same standard name formatting was followed.

Sequential pattern
Category size Category name Variations
1MB L2s 1, 2, 5 Streams
2 MB L2m 1, 2, 5 Streams
3 MB L2 1, 2,5 Streams
6 MB L3s 1, 2, 5 Streams
15 MB L3I 1, 2, 5 Streams
128 MB MEM 1, 2, 5 Streams
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Random pattern
Category size Category name Variations
1MB L2s 1, 2, 8 Streams
2 MB L2m 1, 2, 8 Streams
3 MB L2l 1, 2, 8 Streams
6 MB L3s 1, 2, 8 Streams
15 MB L3I 1, 2, 8 Streams
128 MB MEM 1, 2, 8 Streams
Table 4.2.1

For this suite of applications on Dunnington architecture, there are no N class members, since

the only private cache is L1. Classification is as follows:

— Class L: all three MEM size, sequential access instances and MEM_maxstr_rdm

— Class LC: The two remaining MEM size, random access instances, all -five, with the
exception- L3I, both pattern instances, except the single stream random benchmark
(L3I_1Str_rdm), which is on the margin between C and LC classes, a total of 7 -or 8
with L3I_1Str_rdm- applications.

— Class C: all other programs.

However, if co-executed on cores not sharing L2 but only LLC, some benchmark instances,
mentioned in the following paragraphs, are expected to act as N and will be noted as C (N).

4.2.2 Preliminary evaluation and experimental procedure

Co-scheduling tests on this architecture aim, again, to observe slowdown effects caused by
contention on the memory hierarchy. This system’s characteristics may affect the general
model described in 4.1.4, particularly due to low memory bus performance, that results in
much lower cache wiping pace compared to the previously tested Sandy Bridge system and

other, more recent implementations.

Benchmark instances were co-executed in all possible pairs. To better understand and
demonstrate slowdown caused by contention on shared resources, two identical series of co-
scheduling tests were conducted, the only difference being the choice of hardware cores. To
determine the slowdown effect for these series of experiments, the execution time was used.

All programs were timed in single execution with scaff, and time measured for each was used
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to divide its co-execution time in an experiment to calculate the corresponding slowdown

t_coexec

ratio: slowdown =
t_solo

The first series of co-execution experiments were run on core 0 and core 2 of the first
package (packageO, cores cpuO and cpul, as named by the Linux kernel). This configuration
enables us to observe performance degradation caused by contention on LLC and the main
memory bus, as the cores selected do not share L2 and so, in the absence of additional
workload, can use the 3 MB L2 without other programs replacing cached data. Due to this
fact, L2s and some L2m instances are expected to act like N class processes, with minimum

or zero interference.

On the next round of tests, cores 0 and 1 were chosen (cpu0 and cpul2 Linux kernel devices),
which share L2. Thus, on this configuration, contention is likely to occur on 3 levels of the
hierarchy, L2, LLC and main memory link, potentially causing excessive slowdown.
Interference in cache utilization between programs is expected to occur even with small L2
instances and as working set sizes increase, congestion in all 3 levels of shared memory

resources are expected to cumulatively cause delays in program execution.

4.2.3 Results estimation

Application class interaction in co-scheduling scenarios is generally expected as described in

4.1.3, but with some additional remarks:

e N —*: There are no strictly N classified applications in our testing suite. However, in
a non-shared L2 scenario some may behave similarly with N and will be discussed
further.

e C - C: Asexplained in 4.1.4, this scenario is probably the most complex to estimate,
even when only one level of cache is shared. Moderate slowdown (generally below 2)
is expected in this case. If L2 is also shared, effects are expected to be higher, even
when both applications have small working sets, causing L2 conflicts and forcing
each other to higher LLC utilization. With larger working sets, dual competition is
likely in L2 and L3, potentially resulting in high slowdown.

e C — LC: This scenario is expected to mostly affect C instances. However because of
the specific system’s single, low performance memory bus, additional contention

phenomena may occur as behavior of C instances with larger working sets is forced to
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become more LC-like. When sharing L2, slowdown could potentially be multiple, as
an LC application can continuously replace data in both L2 and L3. Bandwidth
between L2 and LLC is much higher than main memory bandwidth and also
prefetching mechanisms exist in this level, thus a relatively large benchmark with
streaming pattern may thrash cache data, forcing the co-executed program to
constantly request data from memory.

C — L: Streaming L instances are very likely to cause high slowdown to C
applications by constantly wiping cached data and forcing them to pay highly
increased number of miss penalties. Again, test results will show how low memory
link performance may affect this estimation. In shared L2 execution slowdown is
estimated to be much higher, as programs have their cached data continuously
destroyed in 2 levels.

LC — LC: Applications demand use of both memory link and cache, resulting in
moderate contention on both levels, with significant slowdown for some scenarios.
Memory bus performance could be a considerable factor. For the reasons described
previously, -on C-L and C-LC cases- slowdown is expected to greatly increase when
L2 becomes shared.

LC — L: Both classes will be affected, as explained previously, since they need to
share the memory link. Additionally, L applications may also replace cache data,
causing more slowdown to LC instances.

L — L: This case remains simple, even with L2 sharing, contention will only occur for

memory link and programs do not rely on cache reuse.

4.2.4 Results

4.2.4.1 Co-scheduling with no L2 sharing

C (N) applications

A small subset of programs, with relatively small working sets, can be executed relying

almost only on level 2 cache. These applications, judging from performance and size, are all

L2s instances, while sequential L2m instances are on the margins of classification criteria.

Testing behavior confirmed that these instances do not interfere with each other when

executed on different cores, not sharing L2. Average slowdown was found 1.03, with the vast
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majority of cases found at 1.00 and maximum slowdown slightly above 1.1. Additionally,
slowdown caused by this subset to all other programs was very low, as will be further

explained.

A part of these tests section results is presented below:

L2s_1Str_seq | L2s_1Str_rdm | L2s_2Str_seq | L2s_2Str_rdm

L2s_1Str_seq 1.000 1.051 1.087 1.103

L2s_1Str_rdm 1.001 1.001 1.035 1.051

L2s_2Str_seq 1.000 1.000 1.001 1.015

L2s_2Str_rdm 1.001 1.001 1.001 1.001
Table 4.2.2

c-C

Low to moderately high slowdown is noticed on this co-scheduling scenario, due to the
variation of programs’ behavior. C class includes benchmarks with working sets ranging
from small enough to fit in cache with minor conflicts, to sizes that can marginally fit and
therefore very likely to be delayed, if other programs also compete for intense LLC use,
forcing each other to suffer from increased miss penalties. LLC contention -and its resulting
slowdown- becomes noticeable when sizes of the co-executed instances occupy a fairly large
part of the cache, belonging in the L3s (or larger) size category. Before this point slowdown
is generally unnoticeable, with values very near 1, with a small number of exceptions, which
do not exceed 1.3. For larger size classes, L3 contention causes gradually increasing
slowdown, with a maximum value approx. 2.5. The results for these instances can be seen in
table 4.2.3:
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L3s 1Str_ | L3s_1Str_ | L3s_2Str | L3s_2Str | L3s_max_ | L3s max_ | L3I _1Str_
seq rdm seq rdm seq rdm rdm
L3s_1Str_
seq 1.590 1.344 1.341 1.463 1.364 1.687 1.606
L3s_1Str_
rdm 1.303 1.171 1.036 1.039 1.012 1.104 1.571
L3s_2Str_
seq 1.360 1.084 1.892 1.507 1.674 2.025 1.036
L3s_2Str_
rdm 1.480 1.084 1.502 1.256 1.141 1.260 1.058
L3s_max_
seq 1.384 1.059 1.675 1.145 1.770 2.153 1.034
L3s_max_
rdm 1.622 1.095 1.920 1.199 2.040 1.779 1.059
L3l_1Str_
rdm 1.809 1.824 1.151 1.178 1.148 1.240 2.378
Table 4.2.3

It can be observed that random pattern benchmarks generally interfere with other random
instances, while sequential ones cause slowdown to both patterns. The way each pattern

affects applications, as memory requests intensity increases can be observed in figures below:
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Figure 4.2.1: Slowdown caused by sequential instances
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Figure 4.2.2: Slowdown caused by random instances, L3l_1Str_rdm instance is affected most

In the graphs above, moving towards the right side of the plot, it can be observed that
applications racing for the cache, as competing memory requests increase with more streams,

alter their behavior close to that of LC class.

Average slowdown suffered in this class’ combinations was 1.12, however this includes all
applications with N class behavior as well. If limited to instances that always need to use L3,
average is 1.3, with worst case scenario being over 2. From this series of experiments, it is
suggested that maximum slowdown caused solely by LLC contention on this system is about

2.5, and can be generally assumed less than 3.
C-LC

Moderate contention levels were observed in co-scheduling combinations of benchmark
instances belonging in these classes. The memory bus of this system is single channel,
serializing all requests and is not capable of serving more than 2.5 GB/s; there is no data
prefetching either. This results in programs with large enough datasets (half the LLC size and
more) to constantly force each other in LLC misses by wiping data, while in the same time
competing for main memory accesses that can’t be accelerated (if sequential) by prefetching

mechanisms.

L3I benchmarks appear to be destroying cache data of other applications at a relatively high

pace, affecting all C processes, even L2s-sized with minimum LLC utilization. Partially
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relying on the memory link by definition, these LC applications also face the effects of bus
contention, as C applications also increase demand and their behavior verges with that of
their LC competitors. They are also affected by C instances with small working sets but very
intensive in cache use (2 or max streams). The 2 MEM size random instances (1 Str. and 2
Str.), however, seem to remain unaffected, as they don’t suffer from noticeable slowdown,
nor cause delays in any other application. This can be explained as their random pattern
doesn’t rely on cache reuse and they do not stress the memory link to a high level either, thus
forcing their pair in less misses, consequently in less bus use demand and overall very low

combined contention.

Table 4.2.4 contains all C instances suffered slowdown by the L3I size class, MEM instances
are omitted as most results were near 1. Slowdown numbers are presented to show the variety

of results noted.

L3l_1Str_seq | L3l_2Str_seq | L3l _2Str_rdm | L3|_max_seq | L3|_max_rdm

L2s_1Str_seq 1.109 1.344 1.744 1.462 1.578
L2s_1Str_rdm 1.044 1.270 1.633 1.414 1.453
L2s_2Str_seq 1.190 1.255 1.575 1.356 1.421
L2s_2Str_rdm 1.468 1.277 1.552 1.354 1.406
L2s_max_seq 1.268 1.365 1.258 1.379 1.381
L2s_max_rdm 1.482 1.563 1.298 1.404 1.442
L2m_1Str_seq 1.179 1.447 1.919 1.644 1.723
L2m_1Str_rdm 1.037 1.288 1.653 1.398 1.489
L2m_2Str_seq 1.641 1.375 1.780 1.545 1.571
L2m_2Str_rdm 2.132 1.493 1.871 1.664 1.705
L2m_max_seq 1.661 1.843 1.419 1.577 1.554
L2m_max_rdm 1.741 2.201 1.451 1.399 1.533
L2l_1Str_seq 1.125 1.340 1.931 1.471 1.710
L2|_1Str_rdm 1.107 1.390 1.872 1.593 1.672
L2]_2Str_seq 1.497 1.385 1.928 1.521 1.696
L2|_2Str_rdm 1.698 1.263 1.887 1.434 1.617
L2]l_max_seq 1.375 1.543 1.278 1.510 1.712
L2]_max_rdm 1.555 1.755 1.287 1.530 1.748
L3s_1Str_seq 1.260 1.577 2.487 1.755 2.095
L3s_1Str_rdm 1.307 1.514 2.477 1.645 1.750
L3s_2Str_seq 1.215 1.584 2.583 1.774 2.117
L3s_2Str_rdm 1.558 1.850 2.556 2.187 2.225
L3s_max_seq 1.254 1.562 1.072 1.797 2.150
L3s_max_rdm 1.331 1.738 1.167 1.686 1.995
L3l_1Str_rdm 3.248 1.722 2.895 1.889 2.023

Table 4.2.4: C slowdown caused by L3I LC instances
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As observed above, most results are over 1.5 (table average is 1.6), which is a considerable
effect. High slowdown was also noted in some cases (2.5 or more) with a maximum point

greater than 3.2. Average slowdown, including MEM instances, was found 1.5.

LC applications also suffered considerable delay in numerous cases, some of which are

presented below:

L2s_2Str | L2m_2St | L2m_2Str | L2m_ma | L2Zm_max | L2I_2Str | L2|_max | L3l_1Str
_rdm r_seq _rdm X_seq _rdm _rdm _seq _rdm
L31_1Str
_seq 1.729 1.938 2.286 1.959 2.150 2.156 1.685 3.416
L31_2Str
_seq 1.179 1.272 1.254 1.702 2.129 1.256 1.481 1.418
L31_2Str
_rdm 1.185 1.364 1.302 1.085 1.162 1.553 1.016 1.975
L3l_max
_seq 1.157 1.324 1.294 1.349 1.252 1.320 1.342 1.441
L3l_max
_rdm 1.174 1.316 1.296 1.299 1.342 1.455 1.487 1.508

Table 4.2.5: LC slowdown caused by C instances (selected results)

LC class, although generally less delayed than C by their interaction, also suffered high
slowdown (max. 3.4). L3|_1Str_seq seems to be more vulnerable and that is because of the
stalling phenomenon of a program with a single access explained in the beginning of the
chapter.

Average for the LC suffered slowdown caused by C programs was found 1.4, 1.1 for the
optimistic MEM cases and 1.45 for the pairs with moderate to high contention. In the next
figures, average slowdown for the 2 classes is presented. It becomes apparent how increasing

the competing program’s dataset and streams affects delay caused.
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C-L

Contrary to previous estimations, MEM instances with max streams did not cause nor suffer
significant slowdown in this test (around 1.1 and less in most cases). However, 1 and 2
Stream MEM sequential benchmarks caused moderate delay to C applications. Figure 4.2.5

shows slowdown caused by these 2 L instances to all C benchmarks:
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Figure 4.2.5: Average C slowdown caused by L instances
(Note that contrary to all previous graphs, “suffering” class is on horizontal axis, due to high
population)

The 2 L applications were also slowed down in numerous cases, as can be seen in the

following graph:
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Figure 4.2.6: L suffered slowdown

It can be observed that increasing concurrent requests (by adding data streams) results in
augmented memory contention, as all requests are serialized and waiting to be served by the
single memory bus. However, it is noted for all cases on display that when instances utilize
the same number of streams, the L application is not affected. When a C process makes more
requests than the L (C streams > L streams), the L is slowed down. This consistent behavioral
pattern explains why the 2 MEM_max instances are not affected at all, as all competing
instances have less or equal data streams. The reason this happens is most probably the way
this specific architecture handles access requests and allocates bus resources to the processes;
requests from separate applications seem to be prioritized as different sets. DRAM controller-
level contention and prefetching mechanisms are also likely to contribute in this effect. A
relatively similar, yet less obvious pattern can be observed in the way C class processes are
affected (figure 4.2.5). A C instance is affected only if it uses more streams than its L
competitor (and they are both delayed). With equal streams no significant delay is noted and

confirms why MEM_max instances don’t affect any of the C programs tested.
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LC-LC

High contention was noted on this series of experiments. A maximum of 5.2 was measured
(suffered by L3I_1Str_seq co-executed with L3I_2Str_rdm), as well as many results greater than

3. Average was found to be 2.4, higher than all other class combinations.

5.0

4.0

W L3|_1Str_seq
m L3|_2Str_seq
W L3|_2Str_rdm

B L3I_max_seq

m L3|_max_rdm

= MEM_1Str_rdm
= MEM_2Str_rdm

Figure 4.2.7: LC class slowdown (program on horizontal axis causes the delay)

High slowdown in all L3I instances is a result of L3 contention, forcing programs to suffer
from increased number of cache miss penalties in comparison to alone execution. Increased
contention also occurs on the memory bus, the low bandwidth of which seems to largely

affect execution.

LC-L

Moderate to high slowdown appears for programs of both classes, as LC applications seem to
both cause and suffer more slowdown than any other class. Delay ratio caused by L instances
is presented in table 4.2.6:
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MEM_1Str_seq | MEM_2Str_seq | MEM_max_seq | MEM_max_rdm

L31_1Str_seq 1.763 1.679 1.782 1.973
L3l_2Str_seq 2.549 1.471 1.569 1.741
L3l_max_seq 2.697 3.002 1.493 1.675
L31_25tr_rdm __1.000 1.000 1.000
L3l_max_rdm 2.876 1.338 1.476
MEM_1Str_rdm 1.407 1.034 1.087 1.148
MEM_2Str_rdm 1.446 1.609 1.148 1.212

Table 4.2.6: LC class slowdown by L

The behavioral pattern noticed in C-L results discussion is present again, especially for L3I

random instances: slowdown decreases when competitor’s streams (L) are equal or more than

LC’s (see Fig. 4.2.9).

3.5

3.0

B MEM_1Str_seq
B MEM_2Str_seq

B MEM_max_seq
B MEM_max_rdm

Figure 4.2.8: LC class slowdown caused by L

Average slowdown was found to be 1.75. Higher contention scenarios (2.5 and more) are
very likely to occur, as the results reveal. L applications face even greater average slowdown,
at 1.95, as it seems the memory bus becomes a bottleneck for both classes. Figure 4.2.9
presents slowdown each LC application caused to all L.
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Figure 4.2.9: L class slowdown caused by LC

MEM random streams of the LC class do not cause or face high slowdown, as they only use a

relatively small part of the available bandwidth.

L-L

In this, quite simpler, scenario, our estimation model is confirmed. Even when competing
programs can potentially stress the memory bus to its limits, bandwidth is divided and a worst

case average slowdown will slightly exceed 2. Average for all tests was found to be 1.7

MEM_1Str_seq | MEM_2Str_seq | MEM_max_seq | MEM_max_rdm
MEM_1Str_seq 1.447 1.378 1.464 1.594
MEM_2Str_seq 1.561 1.749 1.847 2.057
MEM_max_seq 1.573 1.752 1.821 2.006
MEM_max_rdm 1.590 1.811 1.862 1.676

Table 4.2.7: L-L class slowdown
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Overview

Having separate L2 cache on the cores utilized for this series of experiments let us observe
the effects of memory bus and LLC contention. A combination of system-specific
characteristics (low memory link performance in conjunction with the way it serially
prioritizes memory access requests) resulted in a slightly altered overall behavior, compared

to preliminary estimations.

Class Co-runner class
N C LC L
N (1.03) - - -
C - 1.15 | 147 | 1.2
LC - 1.34 1.75
L - 1.2 [ 195 | 1.7

Table 4.2.8: Slowdown average overview, N-N value is the C(N) applications when co-executed.

Class LC appears to cause most slowdown to other classes, as well as being the most
vulnerable to be delayed. Taking advantage of not sharing the large L2, C programs also are

less affected.
4.2.4.2 Co-scheduling with L2 sharing

Results of the second round of tests, conducted on a pair of cores with shared L2, are
presented. N class instances do not exist in our suite, thus all testing is between C, LC and L

classes.

c-C

Moving into co-execution context with shared L2 cache, C class application interaction
changes dramatically. The set of applications in the suite belonging to this class is quite large

(25), so results will be presented in sections.

Starting with L2s and L2m series, tables 4.2.9a and 4.2.9b contain slowdown caused by

sequential and random instances of the same size classes respectively:
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L2s_1Str_seq

L2s_2Str_seq

L2s_max_seq

L2m_1Str_seq

L2m_2Str_seq

L2m_max_seq

L2s_15tr_seq 1.098 1.268 1.219 1.228 1.935 2.234
12s_15tr_rdm 1.267 1.088 1.325 2.720 3.566 3.543
L2s_25tr_seq 1.154 1.265 1.356 1.199 1.401 2.480
L2s_25tr_rdm 1.181 1.478 1.466 1.667 3.502 3.156
12s_max_seq 1.283 1.334 1,672 1.217 1.421 2.012
L2s_max_rdm 1.131 1.240 1.401 1.128 1.244 1.470
L2m_1Str_seq 1.367 1.466 1.608 2172 2.316 2.641
L2m_1Str_rdm 1.830 1.908 1.797 2.970 3.115 3.280
L2m_25tr_seq 1.905 1.636 1.997 2.071 3.551 4.016
L2m_2Str_rdm 1.882 1.837 1.975 3.308 3.664 3.734

L2m_max_seq 1.912 2.318 2.157 1.783 2.710 H
L2m_max_rdm 1.499 1.730 1.663 1.673 2.474 3.421

Table 4.2.9a

L2s_1Str_rdm | L2s_2Str_rdm | L2s_max_rdm | L2m_1Str_rdm | L2m_2Str_rdm | L2m_max_rdm
L2s_15tr_seq 1.063 1.096 1.174 1.054 1.117 1.683
L2s_1Str_rdm 1.261 1.170 1.438 1.463 1.905 2.800
L2s_25tr_seq 1.042 1.135 1.238 1.032 1.104 1.790
L2s_2Str_rdm 1.085 1.218 1.309 1.060 1.350 3.015
L2s_max_seq 1.214 1.324 1.357 1.155 1.285 1.796
L2s_max_rdm 1.109 1.180 1.338 1.061 1.114 1.441
L2m_1Str_seq 1.309 1.359 1.588 1.320 1.495 2.325
L2m_1tr_rdm 1.776 1.750 1.727 2.427 2.753 2.940
L2m_25tr_seq 1.321 1,537 1.952 1.247 1.513 3.718
L2m_25tr_rdm 1.799 1.859 1.791 2.081 2.690 3.434

L2m_max_seq 1.502 1.699 2.300 1.308 1.569 q
L2m_max_rdm 1.226 1.420 1.684 1.116 1.350 3.971

Table 4.2.9b

Increasing the working set size and number of requests noticeably increases slowdown.

Contrary to the memory bus, in-cache bandwidth is sufficient to intensively wipe data if an

application uses a streaming pattern. Sequential instances cause noticeably more slowdown

than random ones, despite the lower number of accesses (5 instead of 8), taking advantage of

cache-level prefetching. Observing L2s instances’ interaction with each other (1+1 MB

working sets), confirms that cache contention starts to occur when working sets’ size exceeds

approximately half the size of this cache. Slowdown starts from 1.05, reaching more than 1.5

as the number of requests increases.
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Moving to L2m sized instances, slowdown is constantly at least close to 2, in many cases

greatly exceeding 3. Without loss of generality, it can be assumed that co-running L2m

working sets (total 4MB) can fit in the LLC with no need for extensive main memory

accesses. Given this assumption it can be estimated that L2-only contention can excessively

delay a program. From the results above, a slowdown factor of 4 seems realistic for high

contention situations and potentially even close to 5 in extreme cases, although in such cases

it is very difficult to estimate if it’s only L.2-caused or in conjunction with possible LLC

competition, without detailed performance information from counters.

Increasing the competing instances size, slowdown is even higher (presented in tables 4.2.11

and 4.2.12) caused by sequential and random instances respectively:

L21_1Str_seq

L2]1_2Str_seq

L2s_1Str_seq

1.235

L2s_1Str_rdm

L2s_2Str_seq

L2s_2Str_rdm

L2s_max_seq

1.920

L2]_max_seq

L3s_1Str_seq

L3s_2Str_seq

L3s_max_seq

1.208

1.978

L2s_max_rdm

L2m_1Str_seq

L2m_1Str_rdm

L2m_2Str_seq

L2m_2Str_rdm

L2m_max_seq

L2m_max_rdm

Table 4.2.10a: L2s-L2m slowdown induced by sequential L2I-L3s instances

L2]_1Str_rdm | L2]_2Str_rdm | L2l_max_rdm | L3s_1Str_rdm | L3s_2Str_rdm | L3s_max_rdm
L2s_1Str_seq 1.031 1.109 2.359 1.033 1.119 2.820
L2s_1Str_rdm 1.090 2.259 1.098 1.671
L2s_2Str_seq 1.039 1.074 1.033 1.086
L2s_2Str_rdm 1.068 1.143 5.962 1.030 1.132
L2s_max_seq 1.119 1.239 1.560 1.124 1.183 1.391
L2s_max_rdm 1.055 1.076 1.268 1.050 1.065 1.166
L2m_1Str_seq 1.279 1.520 3.763 1.260 1.508 3.850
L2m_1Str_rdm 2.472 3.050 2.477 3.108
L2m_2Str_seq 1.205 1.486 1.243 1.471
L2m_2Str_rdm 2.061 2.811 2.032 2.869
L2m_max_seq 1.290 1.674 6.848 1.258 1.510
L2m_max_rdm 1.127 1.393 3.708 1.064 1.316 3.474

Table 4.2.10b: L2s-L2m slowdown induced by random pattern L2I-L3s instances
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Results show that slowdown is increasing to very high levels. It can be observed that induced
slowdown increases depending —in order of significance- on number of streams, dataset size
and access pattern, with sequential instances being more aggressive to smaller competitors’
cached data, as a result of their streaming nature. Slowdown noted was often much higher
than 5, in some cases even close to 10, as moderate contention starts to take place also on L3,
forcing small L2 instances to highly increased LLC and main memory accesses, the access
time of which is much higher. This relative difference is reflected in slowdown ratio. Figures
4.2.10 and 4.2.11 show average L2s and L2m slowdown caused by L2] and L3s benchmarks.
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Figure 4.2.10a: L2l and L3s sequential induced slowdown
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Figure 4.2.10b: L2l and L3s random induced slowdown
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L2s instances are not so destructive for the larger L2l and L3s working sets, while L2m

interfere more, as expected, causing slowdown up to more than 2.5
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Figure 4.2.11: L2l and L3s average slowdown caused by L2s and L2m interference

As observed previously, intense slowdown effects are present when a streaming instance with

large number of concurrent requests destroys cached data of a smaller instance with lower

requests. This behavior is also present when larger benchmarks of C class are co-executed.

L2|_1Str_seq | L2I_2Str_seq | L2I_max_seq | L3s_1Str_seq | L3s_2Str_seq | L3s_max_seq
L2_15tr_seq 1.997 2.750 3.990 1.977 2.970
L21_15tr_rdm 2.567 2.958 3.281 3.088 3.313
L21_25tr_seq 2.182 3.012 2.181 2.956
L21_25tr_rdm 2.708 3.038 3.528 2.980 3.013 3.824
L2I_max_seq 1.865 2.512 3.931 1.860 2.509 3.803
12I_max_rdm 2.035 2.568 2.848 1.989 2.468 2.742
L3s_15tr_seq 1.691 2.241 3.357 2.403 2859 | 4375
L3s_15tr_rdm 1.547 1.735 1.924 1.943 2.122 2.369
L3s_25tr_seq 1.492 1.885 2.868 1.504 2.642 3.463
L3s_25tr_rdm 1.599 1.764 2.082 2.023 2.115 2.349
L3s_max_seq 1.234 1.503 2.013 1.208 1.374 2.396
L3s_max_rdm 1.356 1.603 1.712 1.327 1571 1.923

Table 4.2.11: L2l — L3s slowdown caused by sequential instances
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Figure 4.2.12a: L2l and L3s average slowdown caused by same classes sequential interference

3.5

3.0 /\ /

2.5
/ \ / — 121 AVG
2.0 / L3s_AVG

1.5 /
1.0 T T T T T 1
< <& &
S S SE S s
X0 ¥ X0 X0
N o W N N N

Figure 4.2.12b: L2l and L3s average slowdown caused by same classes random interference

In the latter cases, moderate contention occurs in both L3 and L2 caches. Finally,
L3I_1Str_rdm behavior is different; its classification in C category was marginal and results
show that in this context it acts as an LC application, not following the patterns displayed by
all other applications, but the LC behavior, as will be seen in next sections:
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Figure 4.2.13a: L3|_1Str_rdm slowdown with all C sequential benchmarks
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Figure 4.2.13b: L3I_1Str_rdm slowdown with all C random benchmarks

In summary, it has been confirmed that shared L2 contention may lead to high slowdown

effect, which can escalate to excessive levels in conjunction with possible concurrent LLC

competition. Graphs in figures 4.2.14a and 14b show overall C slowdown progression as size

and requests increase, as caused by sequential and random instances respectively:
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Figure 4.2.14a: Size class average slowdown with all C sequential benchmarks
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Figure 4.2.14b: Size class average slowdown with all C random benchmarks

Overall C — C co-scheduling average was found significantly increased, at a value of 2.08.
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C-LC

This series of tests confirmed observed class C behavior. Table 4.2.12 contains some of the

results, ranging from noticeable up to very high slowdown effect:

L3l _1Str_seq | L3I _2Str seq | L3I_max_seq | L3l_1Str_rdm | L3l _2Str_rdm | L3]_max_rdm
L2s_1Str_seq 1.427 1.685 2.283 1.124 1.228 1.546
L2s_1Str_rdm 1.599 2.179 3.113 1.192 1.382 3.021
L2m_1Str_seq 1.795 2.478 1.231 1.422 2.906
L2m_1Str_rdm 3.632 4.066 6.575 1.921 2.687 _
L2m_2Str_seq 1.734 2.338 1.220 1.355 2.550
L2m_2Str_rdm 2.821 3.452 1.671 2.065 3.992
L2m_max_seq 1.585 2.029 3.594 1.176 1.442 2.193
L2m_max_rdm 1.403 1.635 1.935 1.185 1.267 1.715
L2l_1Str_seq 1.752 2.402 4.052 1.160 1.268 2.700
L21_15tr_rdm 2.490 1.620 1.942
L2]_max_seq 1.537 1.895 2.794 1.171 1.300 2.685
L2]_max_rdm 1.429 1.782 1.925 1.175 1.327 2.128
L3s_1Str_seq 1.676 2.753 1.064 1.189
L3s_1Str_rdm 1.275 2.364
L3s_2Str_seq 1.108 1.215
L3s_2Str_rdm 1.144 1.366

Table 4.2.12: C slowdown caused by LC applications

It is interestingly observed that results are similar to those presented in tables 4.2.10a and b,

for corresponding working set size relevance: For instance L2s instances in C class co-

scheduling were excessively delayed by L2l competitors, and even more from L3s. Similarly,

in this test series, L21 and L3s instances suffer from combined contention on L2, L3 caches as

well as moderate memory link competition, caused by L3I. Again, MEM random instances,

with moderate memory bandwidth demand and low cache reuse, do not interfere significantly

with the rest of the applications. Graph below (figure 4.2.15) shows average slowdown for

each size category in C class:
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Figure 4.2.15: Size class average slowdown with all LC benchmarks

LC class is also affected, mainly due to LLC competition, with a maximum of 3.1 caused by
an intensely streaming L3s benchmark. All LC instances behavior is uniform, slowdown

progressing with increasing co-runner working set and number of streams:
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Figure 4.2.16a: Average LC slowdown with C sequential instances
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Figure 4.2.16b: Average LC slowdown with C random instances

C-L

Excessive slowdown scenarios were observed, confirming the estimation model. As
expected, a streaming application with large working set can be very destructive for
applications that normally rely on cache re-use, by massively wiping their cached data. L2s
instances were the least affected with maximum slowdown noted 2.6, as their small datasets,
although displaced from L2, are less vulnerable to be completely wiped of the much larger
LLC; re-fetching data from LLC has greatly smaller time cost than from main memory.
Increasing working set sizes of C applications, co-executed with Streaming L programs,
creates simultaneous competition for all 3 shared memory levels, L2, L3 and memory Link.
This results in extreme slowdown for programs with limited number of streams, as they have

fewer requests, examples of which can be seen in table 4.2.13:

93



MEM_1Str_seq | MEM_2Str_seq
L2m_1Str_seq 1.754 2.448
L2m_1Str_rdm 3.228
L2m_2Str_seq 1.803 2.434
L2l_1Str_seq 1.851 2.526
L2]_1Str_rdm 2.348 3.164
L2|_2Str_seq 1.790 2.489
L3s_1Str_seq 1.744 2.458
L3s_1Str_rdm 6.20 6.56
1.377 1.871

L3s_2Str_seq

L3s_2Str_rdm

Table 4.2.13: C class slowdown with L instances

MEM_max_seq

MEM_max_rdm

2.758

2.520

2.638

2.697

2.632
6 0

6.43

2.161

Overall slowdown caused by L instances is presented in figure 4.2.17. Fig. 4.2.18 shows

average class C slowdown:.
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Figure 4.2.17: C class slowdown caused by L instances interference
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Figure 4.2.18: Average C class slowdown

L applications may also be affected by C instances with increased requests, due to

serialization for memory bus usage, but, as expected, in a much lesser degree.
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Figure 4.2.19: Average L class slowdown, by C sequential and random instances respectively




LC-LC

With both co-running applications in LC class, performance dependence on L2 utilization is

insignificant. This is suggested by the results being similar to the non-shared L2 scenario:
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Figure 4.2.20: LC class co-execution slowdown

The effect of shared L2 is increased contention when we have streaming pattern applications,

but overall behavior is same. Average slowdown is 2.3

LC-L

Exactly as estimated in our model, LCs suffered from cache contamination by the L instances
in conjunction with bus contention caused by their increased requests. Increased memory
access due to cache misses also affects L programs. LC instances of the same class category

and pattern behave similarly, figure 4.2.21 shows slowdown per size-and-pattern:
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Figure 4.2.21: LC slowdown by L instances

L application slowdown was maximized by L3I sequential instances, reaching its maximum

value at 3. Average slowdown of L applications co-executing with LC:
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Figure 4.2.22: Average L slowdown by LC instances
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L-L

This co-execution scenario’s experimental results have also confirmed the predicted
behavior. Maximum bandwidth streaming instances are sharing the bus and slowdown in this
case does not exceed 2 (was found to be 1.85). Again programs with fewer streams are more

vulnerable to higher slowdown, as requests are handled serially.
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Figure 4.2.23: L co-execution slowdown
Overview

Experimenting with shared L2 cache has shown that application behavior changes drastically.
Average co-scheduling induced slowdown for class pairs was found:

Class Co-runner class
C LC L
C 00
LC 1.44 3
L 1.20 1.50 1.83

Table 4.2.14: Class average slowdown in shared L2 execution

Additionally, the contention estimation model presented has been mostly confirmed, with the

system’s peculiar characteristics playing a less significant role, compared to non-shared L2
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experiments. It has been shown that combined contention in memory hierarchy levels can
cause multiplied slowdown. As expected, C class suffers the most from this effect, with some
extreme case programs having comparative slowdown over 11. To calculate this relative
slowdown, we simply divide slowdown in shared L2 context, with the respective number

slowdowngharedL2

from non-shared L2 experiments: Indicative co-executed pairs that

SlOWdOWI‘lindisz

displayed escalating slowdown effect with shared L2 are shown:

L2l_max_seq | L2l_max_rdm | L3s_1Str_seq | L3s_2Str _seq | L3s_max_seq | L3s_max_rdm

L2s_1Str_seq 2.230 1.090 1.804 2.337

L2s_1Str_rdm

L2s_2Str_seq

L2s_2Str_rdm

L2s_max_seq

L2s_max_rdm

L2m_1Str_seq

L2m_1Str_rdm

L2m_2Str_seq

L2m_2Str_rdm

L2m_max_seq

Table 4.2.15a: Relative slowdown ratio for selected C class pairs. The number indicates how many

times slower execution was with the pair sharing L2 than with separate L2 per core.

MEM_2Str_seq | MEM_max_seq | MEM_max_rdm

L2]_1Str_rdm
L3s_1Str_seq
L3s_1Str_rdm
L3s_2Str_seq
L3s_2Str_rdm

Table 4.2.15b: Maximum/worst-case relative slowdown ratio noted.

Finally, table 4.2.16 shows how class C and LC co-execution averages were affected from

change to L2 sharing, while L was generally not affected:

Class Co-runner class
C LC L
C 1.50 0
LC 1.07 1.00 1.63
L 1.00 1.00 1.08

Table 4.2.16: Overall relative slowdown.
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Chapter 5

Conclusions and future work

5.1 Results evaluation

Memory contention in co-execution scenarios is very hard to predict. Results can largely
differ with slight alterations in the executed applications and on different architectures.
However, a well-designed prediction estimation model can be used to indicate at which
scenarios the possibilities for increased interference are higher. The classification and
prediction scheme described in chapter 2, according to experimental results, appears being
able to capture the big picture, as in most cases behavior and interaction between processes
when co-scheduled were found close to that predicted. Overall average slowdown for the

systems used was found:
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Class Co-runner class

N C LC L
N 1.00 1.02 1.10 1.07
C 1.00 1.06 1.27

LC 1.00 1.06 1.34

L 1.00 1.00 1.12 1.30

Overall slowdown map for Sandy Bridge system

Class Co-runner class
N C LC L
N (1.03) - - -
C - 1.48 1.48
LC - 1.21
L - 1.10 1.36 | 1.39

Overall slowdown map for Dunnington system, average of L2 shared and non-shared results

Thus, avoidance of specific class combinations’ co-execution, as suggested by this approach,
may result in significant efficiency improvement. That, of course, does not mean that such
scenarios will always have negative results because, as it was seen in the experiments, each
application class includes programs with varying behavior, and such differences can be
further affected by architecture features. Further division of large classes (e.g. C) to
subclasses could possibly be a future choice.

It was observed that competition for shared memory resources, apart from the obvious
slowdown effect, caused affected applications’ general behavior to shift to that of a “higher”

class (if we consider the order from smaller to higher being N, C, LC, L).

Additionally, it is confirmed that applying increasing pressure to the memory hierarchy
causes slowdown effects to all applications. Figure 5.1 shows average slowdown (all
programs for all classes) caused as the streaming co-running application becomes more
intense and with increasing dataset size. Similar phenomena have been noted in other
research works, e.g. BubbleUp [16].
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Figure 5.1: Overall average slowdown by sequential applications on Sandy Bridge system

The benchmark program created was found to be sufficiently accurate for bandwidth
measurement. Its versatility, single-threaded execution and predictable behavior make it
suitable for use as an in-house alternative to complement testing workloads, along with other

known benchmarks and programs used for this purpose.

5.2 Future work

As an expansion of this work, more co-scheduling experiments could be conducted, using
more concurrent instances on more cores and observe contention caused by multiple
applications. Using class “shifting” phenomena, also observed in this work, it would be
interesting to see how multi-core variations of the experiment, with more than 2 cores and

instances, could be reduced, for instance to a 2- or more- class generalized scenario.

Additionally, the benchmark program could be quite easily extended to include an adjustable
dummy computational module, in order to emulate CPU-and-memory intensive application

for further experimentation. Such a modification could also result in being able to control, if
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desired, the amount of bandwidth used by the program by adding computational load when

needed to limit memory requests and subsequently the contention it causes.
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Appendix A

Benchmark test results

All results in MB/s

A.1 Intel” Xeon " E5-4620 (Sandy Bridge)

Sequential Bandwidth (in MB/s)

Size (KB) Number of streams
Single 2 3 4 5 6 7 8
1 76,684.0 | 57,617.8 | 81,926.7 | 101,361.4 | 124,983.8 | 126,620.6 | 138,612.8 | 158,452.0
2 75,088.9 | 60,402.4 | 88,060.8 | 112,735.1 | 139,852.2 | 157,666.7 | 170,685.8 | 195,100.0
4 52,744.3 | 65,186.1 | 86,840.4 | 119,170.0 | 148,604.7 | 172,729.0 | 195,819.7 | 220,528.8
6 47,512.5 | 74,974.7 | 100,108.8 | 112,983.8 | 129,828.2 | 178,846.1 | 203,166.9 | 230,476.3
8 45,260.0 | 78,442.8 | 105,630.6 | 127,552.8 | 145,710.5 | 162,208.3 | 208,051.2 | 235,944.6
12 43,217.6 | 79,014.0 | 109,878.8 | 136,454.7 | 160,035.3 | 180,407.7 | 192,043.1 | 213,608.2
16 42,257.9 | 79,032.8 | 111,928.4 | 141,378.1 | 168,441.0 | 192,163.0 | 200,749.1 | 225,497.5
20 41,706.1 | 74,932.6 | 110,882.3 | 138,851.3 | 173,135.3 | 189,925.6 | 202,191.4 | 232,973.0
24 41,346.2 | 78,111.0 | 113,649.0 | 146,224.7 | 171,001.9 | 206,384.5 | 203,931.2 | 238,594.9
32 40,893.9 | 72,536.5 | 103,288.7 | 142,248.8 | 153,478.4 | 183,356.6 | 184,678.0 | 230,070.3
38 13,168.2 | 26,134.6 | 37,675.5 38,319.8 59,253.4 59,788.2 63,556.0 68,606.7
45 13,091.2 | 25,948.5 | 37,634.7 45,587.1 55,498.9 58,037.8 62,757.9 65,374.2
56 13,008.9 | 25,871.2 | 37,413.6 38,775.9 55,295.1 56,380.5 61,229.5 64,913.0
64 12,979.9 | 25,722.4 | 37,120.6 38,694.0 55,374.8 56,586.6 63,378.9 61,492.7
85 12,894.8 | 25,402.3 | 36,696.2 47,655.4 49,255.8 58,068.3 60,651.5 64,232.3
100 12,861.5 | 25,485.3 | 36,822.4 46,099.3 51,632.6 57,445.8 61,472.4 64,867.1
128 12,810.3 | 25,405.3 | 36,676.9 44,752.7 46,074.7 57,366.0 60,664.5 58,034.6
200 11,992.1 | 23,380.9 | 29,944.9 32,800.1 38,179.0 47,494.6 49,717.1 48,382.3
256 11,089.4 | 21,667.7 | 27,333.7 23,663.3 34,515.6 38,685.5 42,360.0 45,586.5
384 10,304.4 | 16,665.5 | 21,585.7 19,678.0 27,860.9 26,681.2 28,493.6 29,630.9
512 10,261.1 | 16,253.8 | 20,590.5 20,570.7 26,362.5 27,522.5 27,581.0 26,594.4
768 10,213.4 | 16,260.0 | 20,592.1 18,142.5 26,172.9 26,895.2 27,497.8 27,708.2
1,024 10,219.2 | 16,256.5 | 20,592.5 20,047.0 26,178.5 26,879.5 27,348.1 27,709.0
2,048 10,214.6 | 16,244.1 | 20,563.5 22,956.2 26,138.7 26,832.1 27,313.6 27,689.4
3,072 10,099.3 | 16,095.4 | 20,482.3 24,226.6 26,017.0 26,692.8 27,154.0 27,317.3
4,096 10,094.8 | 16,094.2 | 20,479.1 24,225.1 26,020.7 26,616.0 27,158.5 27,318.7
6,144 10,050.9 | 16,073.4 | 20,468.0 24,210.3 25,828.2 26,489.4 27,157.8 27,231.5
8,192 10,060.9 | 16,083.9 | 20,446.8 23,845.5 25,376.7 26,070.8 26,635.6 26,755.8
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Size (KB) Number of streams
Single 2 3 4 5 6 7 8
10,240 9,774.7 15,953.6 | 20,102.7 22,911.3 24,742.0 25,227.1 25,450.1 26,582.5
11,264 9,729.3 15,969.9 | 19,765.4 23,373.5 23,482.6 24,778.1 25,401.3 26,427.4
12,288 9,669.6 15,804.9 | 19,275.5 21,104.4 21,861.0 24,205.3 25,276.1 26,563.8
13,302 9,428.1 15,224.2 18,708.2 19,954.8 20,670.3 23,442.2 23,896.6 24,252.0
14,300 9,021.5 13,946.0 | 17,482.9 19,931.2 20,903.4 21,886.0 22,537.3 23,851.4
15,400 8,516.4 13,316.0 | 17,180.8 19,066.3 20,162.6 21,158.4 21,034.4 21,487.0
16,384 7,760.6 12,880.6 | 16,693.7 18,122.9 18,471.1 18,191.8 18,163.4 17,991.0
20,480 6,916.9 11,802.3 14,752.6 15,111.1 15,156.8 14,889.2 14,765.5 14,703.5
32,768 6487.106 | 11206.05 | 13423.85 | 12957.71 | 13042.74 | 12777.82 | 12595.26 | 12525.88
45,000 6484.498 | 11223.3 | 13316.38 | 12828.89 | 12870.51 | 12583.86 | 12396.58 | 12388.12
65,136 6492.599 | 11115.37 | 13224.01 | 12706.62 | 12907.63 | 12620.56 | 12441.67 | 12366.19
78,453 6497.135 | 11182.61 13312.1 12657.7 12890.7 12631.37 | 12446.39 | 12368.64
131,072 6521.119 | 11024.08 | 13445.06 | 12820.52 | 12818.46 | 12605.11 | 12416.24 | 12368.46
Table A.l.a
Random Bandwidth (in MB/s)
Size (KB) Number of streams
Single 2 3 4 5 6 7 8

1 76,847.4 | 57,651.3 | 81,995.4 | 101,444.4 | 125,142.9 | 126,790.2 | 138,709.6 | 158,573.6

2 75,154.0 | 60,403.6 | 88,071.3 | 112,730.1 | 139,865.1 | 158,198.6 | 170,702.7 | 195,138.4

4 52,753.9 | 65,312.7 | 82,538.3 | 119,277.9 | 148,618.5 | 172,938.8 | 195,835.8 | 219,836.3

6 47,514.0 | 74,968.1 | 98,184.4 | 113,555.5 | 129,847.2 | 179,021.4 | 203,177.4 | 230,632.2

8 45,267.3 | 78,587.9 | 107,343.7 | 127,595.5 | 145,714.7 | 162,373.3 | 208,081.8 | 235,950.6

12 43,219.3 | 79,015.4 | 110,916.2 | 136,471.0 | 156,892.0 | 181,761.6 | 194,578.1 | 214,413.4

16 42,259.6 | 79,036.2 | 112,915.3 | 141,370.5 | 162,941.3 | 192,502.7 | 204,920.5 | 225,528.0

20 41,708.0 | 78,550.6 | 113,882.0 | 144,528.3 | 165,796.3 | 201,603.8 | 215,296.6 | 233,791.0

24 41,347.0 | 75,218.9 | 111,363.1 | 144,796.9 | 162,971.1 | 206,633.4 | 217,964.0 | 238,262.9

32 40,894.8 | 72,175.9 | 106,969.6 | 134,536.1 | 152,955.7 | 187,909.6 | 202,198.3 | 211,157.9

38 13,938.6 | 27,365.4 | 40,808.6 39,143.1 59,489.0 66,377.3 71,454.7 73,594.3

45 13,670.3 | 26,685.6 | 38,255.9 44,201.3 53,855.8 59,221.2 63,471.4 65,960.4

56 13,533.7 | 26,273.2 | 37,666.6 39,498.7 52,433.7 59,025.4 60,082.8 66,538.8

64 13,496.5 | 26,300.5 | 37,667.5 42,601.9 53,264.1 58,681.8 60,932.7 63,113.8

85 13,405.0 | 26,190.0 | 37,778.3 46,154.7 52,990.5 58,260.0 61,943.7 66,531.4

100 13,380.7 | 26,143.0 | 37,083.8 46,220.6 52,355.2 58,179.9 61,017.0 66,065.6

128 13,338.1 | 25,752.9 | 32,380.9 45,031.1 51,441.2 57,905.7 60,786.1 60,495.0

200 10,380.3 | 19,810.2 | 26,245.2 26,315.0 41,984.5 42,492.3 47,652.4 50,005.4

256 5,159.4 | 12,021.0 | 17,085.2 15,610.3 28,707.0 27,694.8 37,751.7 33,450.9

384 3,981.8 7,385.6 10,996.7 12,149.1 17,727.0 20,901.1 23,281.7 26,585.3

512 3,667.0 7,175.4 10,784.2 11,528.4 16,756.6 19,636.0 22,330.5 24,861.5
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Size (KB)

Number of streams

Single 2 3 4 5 6 7 8
768 3,563.0 6,975.7 10,245.9 11,064.5 16,310.3 19,112.2 21,794.4 24,238.5
1,024 3,511.0 6,889.5 10,096.4 11,238.6 16,100.2 18,861.7 21,470.7 23,936.6
2,048 3,438.2 6,754.8 9,902.0 12,878.3 15,765.5 18,448.3 20,999.1 23,431.1
3,072 3,176.7 6,141.9 8,869.7 11,299.8 13,396.5 15,162.7 16,488.7 17,100.0
4,096 3,060.8 5,855.2 8,283.6 10,255.2 11,570.7 12,303.6 12,501.6 12,529.6
6,144 2,934.9 5,553.1 7,601.0 8,881.5 9,404.8 9,559.7 9,490.4 9,410.6
8,192 2,815.9 5,308.4 6,976.2 8,074.7 8,338.4 8,358.0 8,320.6 8,229.0
10,240 2,466.5 5,178.4 6,853.5 7,141.6 7,419.7 7,672.1 7,656.8 7,589.6
11,264 2,506.8 5,160.2 6,729.7 7,330.3 7,461.2 7,436.8 7,421.5 7,316.9
12,288 2,711.5 5,137.0 6,614.4 7,175.2 7,262.5 7,253.5 7,220.6 7,152.4
13,302 2,663.9 5,052.8 6,535.2 7,061.1 7,080.6 7,105.2 6,947.2 6,981.9
14,300 2,657.1 5,032.9 6,380.3 6,888.2 6,974.5 6,851.4 6,781.3 6,872.6
15,400 1,642.8 4,143.6 5,423.6 6,347.5 6,488.2 4,692.7 6,695.0 6,682.1
16,384 1,137.5 2,169.8 3,349.6 3,947.2 4,892.8 5,460.4 5,982.0 6,235.1
20,480 810.1 1,528.6 2,296.8 2,976.0 3,670.4 4,271.7 4,830.2 5,320.4
32,768 647.8 1,267.9 1,873.9 2,449.4 3,032.1 3,582.1 4,092.2 4,542.0
45,000 629.0 1,240.8 1,819.3 2,396.3 2,943.9 3,444.0 3,929.5 4,285.4
65,136 617.5 1,209.1 1,779.5 2,330.2 2,866.1 3,340.3 3,708.8 3,928.2
78,453 608.3 1,189.3 1,748.6 2,290.6 2,790.6 3,215.5 3,523.2 3,644.9
131,072 589.5 1,154.6 1,691.2 2,203.5 2,625.0 2,908.9 3,032.1 3,062.2
Table A.1.b
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A.2 Intel” Xeon X-7460 (Dunnington)

Sequential Bandwidth (in MB/s)

Size (KB) Number of streams
Single 2 3 4 5 6 7 8

1 78,596.7 | 68,256.8 | 81,065.2 99,766.1 | 105,716.7 | 97,262.8 98,668.2 99,760.1

2 79,801.2 | 74,1054 | 88,429.6 | 112,767.6 | 118,623.6 | 118,612.5 | 116,381.2 | 117,881.0

4 75,727.4 | 77,420.5 | 92,852.0 | 120,664.9 | 126,313.4 | 127,998.1 | 129,250.4 | 129,670.3

6 52,045.4 | 78,592.3 | 94,330.6 | 123,527.7 | 129,420.5 | 131,894.7 | 132,880.5 | 134,140.9

8 52,530.2 | 79,193.7 | 95,014.4 | 125,001.6 | 130,722.1 | 133,496.2 | 135,235.3 | 136,506.0

12 53,033.3 | 76,283.4 | 95,771.8 | 126,530.8 | 132,171.0 | 135,322.5 | 137,362.0 | 138,939.3

16 53,282.4 | 77,413.5 | 116,444.4 | 127,305.5 | 132,916.4 | 136,191.7 | 138,461.6 | 140,195.9

20 53,426.6 | 78,112.3 | 115,258.3 | 124,493.2 | 133,351.9 | 136,750.7 | 134,850.8 | 139,198.8

24 53,526.9 | 78,596.5 | 118,114.5 | 125,753.0 | 125,195.8 | 136,910.7 | 135,114.9 | 141,145.3

32 53,6404 | 79,141.1 | 93,761.1 | 122,190.1 | 114,750.3 | 121,475.2 | 118,081.8 | 138,596.5

38 13,168.2 | 26,134.6 | 37,675.5 35,586.3 39,896.1 42,419.5 40,808.9 38,276.1

45 12,849.7 | 23,435.8 | 31,865.3 35,543.2 39,933.6 42,358.4 37,494.2 34,623.1

56 12,858.6 | 23,265.6 | 31,956.7 35,740.2 40,046.2 42,398.7 39,348.5 34,628.0

64 12,861.8 | 23,367.5 31,962.2 35,778.7 40,028.5 42,430.1 37,471.2 34,422.0

85 12,829.7 | 23,445.7 | 31,844.7 35,739.7 39,959.8 42,309.7 37,341.8 34,592.2

100 12,836.8 | 23,436.3 | 31,873.7 35,813.5 40,668.7 40,898.4 37,424.6 34,591.5
128 12,836.4 | 23,353.8 | 31,987.7 35,758.5 40,145.5 42,571.8 37,471.8 33,510.3
200 12,838.8 | 23,419.5 | 31,9574 35,891.9 40,678.0 42,558.1 37,502.1 34,620.9
256 12,838.8 | 23,652.3 | 31,918.5 35,868.0 40,236.5 42,616.5 37,531.2 33,539.3
384 12,837.9 | 23,630.9 | 31,894.6 35,880.3 40,202.7 39,9454 37,547.6 33,757.7
512 12,838.2 | 23,653.4 | 31,934.2 36,392.7 40,248.6 42,679.7 37,554.5 33,563.8
768 12,837.7 | 23,635.6 | 31,959.5 36,366.9 41,972.8 42,868.5 37,556.2 33,580.0
1,024 12,835.8 | 23,624.5 | 25,506.2 36,377.2 41,624.3 42,893.7 37,327.5 34,569.4
2,048 11,725.2 | 22,623.2 | 28,174.8 31,647.0 37,097.4 35,768.5 34,538.6 32,772.9
3,072 9,976.5 16,047.5 | 18,204.5 19,364.6 20,993.3 20,661.0 21,063.4 21,384.5
4,096 8,531.1 11,846.9 11,967.0 12,442.9 12,342.4 12,805.5 12,772.7 13,015.0
6,144 7,948.8 9,570.3 9,907.9 10,057.8 10,153.1 10,098.3 10,143.3 10,146.3
8,192 7,890.5 9,416.3 9,481.3 9,896.9 9,826.8 9,856.5 9,785.9 10,020.3
10,240 7,353.5 7,734.3 8,643.4 8,780.5 8,378.2 8,946.7 9,060.2 9,215.7
11,264 6,036.4 7,133.6 7,985.4 8,022.3 7,997.0 8,493.4 8,595.9 8,817.0
12,288 5,381.6 6,317.1 6,453.9 6,432.2 6,621.7 7,577.4 7,718.1 8,130.4
13,302 4,996.6 5,129.0 5,572.1 5,968.3 5,983.9 6,315.4 6,528.1 6,505.7
14,300 4,383.0 4,640.7 4,442.9 4,774.2 5,173.2 5,270.0 5,207.8 5,410.4
15,400 3,546.8 4,273.3 4,005.0 3,978.7 4,202.2 4,273.3 4,504.3 4,448.6
16,384 3,030.4 3,486.6 3,609.2 3,791.9 3,802.9 3,760.9 3,998.7 4,193.2
20,480 2,078.5 2,629.0 2,650.4 2,737.9 2,728.3 2,745.0 2,703.3 2,691.0
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Size (KB)

Number of streams

Single 2 3 4 5 6 7 8

32,768 1,873.9 2,330.1 2,359.7 2,400.1 2,420.3 2,410.6 2,412.3 2,380.0
45,000 1,872.8 2,333.1 2,358.8 2,414.7 2,427.8 2,429.0 2,404.9 2,416.2
65,136 1,874.8 2,331.9 2,358.2 2,414.1 2,428.3 2,421.4 2,422.7 2,402.6
78,453 1,873.3 2,331.6 2,360.6 2,397.4 2,427.8 2,422.0 2,418.1 2,398.9
131,072 1,872.7 2,322.8 2,362.5 2,386.3 2,429.0 2,422.6 2,422.9 2,363.0

Table A.2.a
Random Bandwidth (in MB/s)
Size (KB) Number of streams
Single 2 3 4 5 6 7 8

1 78,602.3 | 70,102.3 | 93,538.2 | 108,083.8 | 105,710.5 | 97,269.5 98,676.1 99,757.3

2 79,806.0 | 75,182.6 | 105,738.7 | 117,891.0 | 118,629.1 | 118,600.9 | 116,373.9 | 117,882.7

4 75,725.7 | 78,006.6 | 113,493.9 | 123,547.9 | 126,330.5 | 128,010.7 | 129,262.8 | 129,674.9

6 52,049.2 | 78,989.4 | 116,164.9 | 125,510.6 | 129,411.0 | 131,894.1 | 132,887.3 | 134,158.3

8 52,536.7 | 79,492.3 | 117,401.1 | 126,543.2 | 130,721.1 | 133,504.0 | 135,250.5 | 136,497.9

12 53,036.6 | 76,468.4 | 118,798.4 | 127,572.1 | 132,205.1 | 135,317.5 | 137,369.1 | 138,928.2

16 53,281.5 | 77,555.2 | 115,802.4 | 128,106.4 | 132,928.9 | 136,191.7 | 138,453.9 | 140,197.1

20 53,425.8 | 78,229.6 | 116,909.2 | 124,703.9 | 133,359.6 | 136,756.9 | 139,123.2 | 140,966.8

24 53,529.8 | 78,691.5 | 112,167.8 | 123,195.3 | 130,356.8 | 137,074.0 | 139,547.3 | 141,284.6

32 53,634.6 | 79,147.2 | 96,329.2 | 114,466.4 | 120,876.0 | 122,764.6 | 125,908.8 | 128,006.2

38 13,938.6 | 27,365.4 | 40,808.6 39,606.4 47,208.8 41,838.2 41,715.1 38,784.2

45 10,894.2 | 21,355.7 | 32,016.7 40,604.9 48,372.0 45,322.8 38,097.5 36,427.4

56 10,798.3 | 20,338.0 | 30,400.1 39,720.2 47,034.1 40,999.2 37,902.5 36,338.3

64 10,800.2 | 20,274.8 | 30,179.1 39,890.4 48,091.6 41,039.5 37,787.4 36,240.7

85 10,439.5 | 20,243.6 | 30,192.7 39,864.6 47,421.3 40,027.4 37,525.8 36,077.1
100 10,333.1 | 20,176.4 | 30,102.8 40,048.5 46,533.5 39,7149 37,414.0 35,928.6
128 10,130.8 | 19,977.3 | 29,953.1 39,677.8 45,465.5 39,182.1 37,060.0 35,895.1
200 9,903.4 19,671.8 | 29,371.0 38,849.2 44,243.9 38,668.4 37,074.2 35,719.0
256 9,826.0 19,558.1 | 29,200.6 38,639.6 43,788.0 38,544.6 37,047.8 35,683.8
384 9,718.7 19,383.5 | 28,973.2 38,278.8 42,964.3 38,347.8 36,833.9 35,543.2
512 9,676.0 19,305.1 | 28,852.3 38,121.3 43,517.2 38,199.9 36,839.3 35,527.0
768 9,625.2 19,220.3 | 28,775.8 37,745.9 43,024.9 38,209.8 36,693.1 35,438.9
1,024 9,599.0 19,126.4 | 28,421.8 37,544.5 42,429.3 36,947.8 34,475.0 33,625.4
2,048 7,167.0 11,504.5 | 18,523.7 21,323.7 23,443.3 22,949.5 26,250.9 25,890.6
3,072 3,778.5 7,475.8 9,132.6 11,340.2 13,203.9 14,974.1 16,037.1 16,934.3
4,096 2,515.1 4,849.1 6,773.6 8,576.0 9,836.0 10,738.8 11,383.2 11,887.9
6,144 1,931.1 3,683.4 5,285.9 6,554.0 7,512.0 8,348.9 9,107.9 9,545.6
8,192 1,698.4 3,308.3 4,754.7 5,929.0 6,884.9 7,768.4 8,602.4 8,873.0
10,240 1,585.0 3,068.6 4,077.9 5,628.9 5,614.1 6,302.3 7,013.4 7,612.6
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Size (KB)

Number of streams

Single 2 3 4 5 6 7 8
11,264 1,537.2 | 3,033.7 | 2,974.3 5,512.5 6,322.6 7,375.0 6,604.0 8,302.3
12,288 1,495.2 | 2,369.9 | 2,691.9 5,414.4 5,813.0 6,902.7 5,891.8 6,383.1
13,302 1,415.9 | 2,160.7 | 2,835.5 2,894.0 5,357.8 5,473.6 5,889.9 5,330.4
14,300 1,233.3 | 1,713.0 | 2,635.8 2,885.1 4,576.3 4,814.0 5,036.5 4,844.5
15,400 965.1 1,508.2 1,912.2 2,516.5 3,430.2 3,661.8 4,157.7 4,502.3
16,384 928.3 1,582.1 | 2,257.1 2,481.7 2,894.9 3,314.3 3,582.2 3,777.4
20,480 643.2 1,236.3 1,560.6 1,939.2 2,190.2 2,345.3 2,463.7 2,571.3
32,768 427.1 777.3 1,077.7 1,337.7 1,554.3 1,755.2 1,934.3 2,069.0
45,000 384.7 705.5 973.7 1,221.6 1,450.2 1,659.3 1,854.6 2,006.4
65,136 359.8 659.1 907.0 1,144.8 1,377.5 1,594.3 1,804.5 1,958.9
78,453 350.8 640.7 884.3 1,117.8 1,346.4 1,567.7 1,774.5 1,931.9
131,072 334.1 609.9 839.2 1,061.2 1,286.5 1,497.7 1,699.4 1,852.7
Table A.2.b
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7 Streams
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Figure A.2.7
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Appendix B

Co-execution test results

The following pages contain full tables, with all slowdown results from co-execution
experiments.
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S 5 § 5 £ £ § £ 8§ £ £ 2§ & 85§ 85 £ 55 5 &5 8§ ¢ E§F 4

) © < 9 < S < < o ' / 7 ] | ] | © < © < © < ! A ! ' ! !
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Y ¥y Y v v 3 72 F 4 ¢ 5 2 5 3 92 2 22 575 3 37 & & & 5 8 F

Class N N C(N) C(N) C(N) C C C C C C C C C C C C C LC LC LC LC LC LC LC LC LC L L L

L2_1Str_seq N 1.041100|100|100]100})100]100|100]100]100f2100]1100|12100]100|12100}|1001109]|105}J105(100]1.214|112.13]106|11.05]100|11.09|108)101]|1.124]1.06
L2_2Str_seq N 1.00] 1.10|100]100]100})1.18]105]106|100f100)1210012100f121.128]1071100|100]1081071100]100(12.26(21.23)12141 2114|2127 1111121.131107]1114 111
L2_2Str_rdm C(N) ] 0.88]|0.88|0.81]|0.74(0.76| 1.04|0.74]1 0.8 0.74|1 0.76 | 0.71 | 097 | 0.84| 0.87 | 0.56 | 0.81 | 0.78 | 0.90] 0.87 | 0.57 | 0.73 | 0.73 | 1.18 | 0.57 | 0.72 | 0.56 | 0.78 | 0.76 | 0.75 | 0.90

L2_4Str_seq C(N) | 0.92]0.92]|0.89]|0.85]|0.76] 0.94 | 0.90| 0.95] 0.82 ]| 0.92 | 0.74] 0.79 ]| 0.98 | 0.87 | 0.80 | 0.94 | 0.86 | 0.88 | 0.95| 0.85]| 0.96 | 0.81 | 0.91 | 0.94 | 0.87 | 0.75 ] 0.98 ] 1.02 | 0.85 | 0.98
L2_4Str_rdm C(N) | 0.64]|1.01]0.65|0.95]0.98] 0.64|0.95|1.09]0.64|0.95]|0.65|0.65]|0.90]|1.07]1.13]|1.01]|1.06|0.86|1.69]|0.86]1.06|1.01]1.01|0.97]1.02|0.87]0.64]1.04]1.01]1.11
L2_1Str_rdm 1.00]1.00|1.00f1.00]1.40(1.00| 1.00| 1.00] 1.00| 1.00|1.00| 1.59|1.29 (151 1.23|1.23|1.24]|1.24]188|154|147(1.26(1.30| 1.29| 1.53]|1.52]|1.60]| 1.56 | 1.37
L3s_1str_seq 1.02|1.02|1.02]1.02]|102}1.02(1.01]1.00)1.00]| 1.00| 1.00|1.00]1.02]102](1.02|1.02]1.02]102]1.02(1.02]1.03]1.02]1.03(1.02|1.02]1.02]1.02]1.02|1.03]1.03
L3s_1str_rdm 1.01)101)102|102(102]101(1.02(1.01|101]100]101|100|102f101(1.02(1.01]1.02]1.01]1.02]1.01|1.03|1.02(272(1.02]1.02|1.02]1.02]1.02]1.03
L3s_2str_seq 1.00| 1.00| 1.00]|1.00| 1.00} 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00| 1.00 ] 1.00 | 1.00 | 1.00 | 1.00 ]| 1.01 | 1.00] 1.01|1.00]1.01]|1.00] 1.01|1.01]1.00]1.01]1.01])1.01]1.02]1.02
L3s_2str_rdm 101)101)101f101f(101101|(101101]|102]101}101|100f101|101(1.02(1.01|1.02|1.01|1.02]1.02|1.03(1.01(1.02(1.02|1.02|1.02]1.02|1.03|1.03|1.03
L3s_manxstr_seq 1.00| 1.00| 1.00]|1.00| 1.00} 1.00 | 1.00] 1.00 | 1.00 | 1.00 | 1.00| 1.00 ] 1.00 | 1.00 | 1.00 | 1.00 ]| 1.00| 1.00] 1.01 | 1.00]1.01 101 1.01|1.01]1.01]1.01]1.01]1.01]1.02]1.02
L3s_maxstr_rdm 101)101f101f101})J101(101|101}|101)101)101}101f101|(101|(101(1.01]1.01]1.01}103]1.01|1.02(101(1.02(1.02]1.01|1.01]1.02]1.02|1.03|1.03
L3m_1Str_seq 1.00|1.01|1.00]1.01]|100}100(1.01)100)101}100(1.01)1.01]101]100(1.01|1.00]1.01]|101]1.01(f1.00]1.01)1.01]1.02(1.01|1.00]1.00]1.01]1.01(1.02]1.03
L3m_1Str_rdm 1.00]1.00]1.00|1.00f1.00])1.00|1.00|1.00|1.01]1.00]1.01|1.00(f1.02]|1.04]1.01|1.01|1.01]|1.00)§290|1.00(f2.76(1.01|2.84]3.01| 1.00]|1.00] 1.01 596 7.64
L3m_2Str_seq 1.00| 1.00| 1.00]1.00| 1.00} 1.00 | 1.00| 1.00 ] 1.00 | 1.00 | 1.00 | 1.00 ] 1.00 ] 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.01 | 1.01|1.01]1.00]| 1.01 | 1.01 | 1.01] 1.00] 1.01
L3m_2Str_rdm 1.00]1.00]1.00|1.00f1.00])1.00(1.00|1.00|1.00]1.00]101|100|101f(101(1.01(1.01]|1.01|1.00]1.05]1.01]283|1.01|294(1.01|1.01| 1.00] 1.01] 1.03 |ESPANRK!
L3m_4Str_seq 1.00| 1.00 | 1.00|1.00| 1.00| 1.00 { 1.00| 1.00 | 1.00 | 1.00 | 1.00 | 1.00 ] 1.01 ] 1.00| 1.01 | 1.00|1.00| 100} 1.02 | 1.01|1.01])1.01]|101(1.00f1.01]1.01]1.01]1.02
L3m_4Str_rdm 1.00]100}100|100(100})100|100|100]|100])100}|100|100f101|101|101|101|106)101}102]101({12.02(1.01|1.02|1.01|1.01]1.01]1.01]1.02

(@]
=
i
©

OO OO0 0O0O0O 0000
[any
o
e

L3I_1Str_seq LC |1.00]|1.00]|100]| 1.00| 1.00]1.00]1.05]1.05(1.07|1.05]1.05]106( 1.13|1.07]1.12|1.12|1.12(1.14]11.46|1.05| 155 1.12|1.58]1.45]|1.06( 1.12|1.34|1.47]1.71| 1.99
L31_1Str_rdm LC 11.01]105]|101]|105(1.00]1.00]1.18|1.25(131(1.22|1.17]|124|1.48|1.36|1.48| 151|148 1.44]261|247|268|2.61|263]|259]|243|2.63|2.50]|2.78]3.10 | 3.89
L3I_2Str_seq LC |1.00]|1.00]|100]| 1.00| 1.00]1.00]1.03]|1.04(1.03|1.04]1.04]105(1.08|1.04]1.07]1.08| 1.09(1.08]1.32|1.02|1.60( 1.04|1.70]1.25]|1.02(1.04|1.18]1.32]1.66| 1.86
L31_2Str_rdm LC ]1.01]1.00]|100]| 100 1.00]1.00]1.20]1.19(1.18(1.17]1.19]|1.26(1.43|1.35]|1.39|134|141(1.47]252|158|254|237|255]|248| 157 233|2.39|2.66|3.01]|3.53
L3I_4Str_seq LC |1.00]|1.00]|100]| 1.00| 1.00]1.00]1.04] 100 1.03|1.04]1.04]104(1.11(1.02]1.12|105|1.14(1.13]11.36|1.03|193(1.03|2.12]1.18|1.00( 1.04|1.12|1.35]2.08| 2.28
L31_8Str_rdm L.C J100])100]100f100(f100])101(1.02]1.02]101]1.01)101|1.00f1.05(1.02(1.06|1.04]|1.04]|1.05|153]|100|1.61|1.03(1.66(1.45]1.02|1.05]1.32|1.58| 1.94]| 2.23

1.00| 1.00| 1.00 | 1.00f 1.00 | 1.00| 1.00 | 1.00 ] 1.00 | 1.00 | 1.00 { 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.04 | 1.01 | 1.06 ( 1.01| 1.08 | 1.04 | 1.01 | 1.01 | 1.03 ] 1.09 | 1.31 | 1.84
MEM_2Str_rdm 1.00|1.00|1.00|1.00]1.00(1.00| 1.00| 1.00] 1.00| 1.00|1.00| 1.00| 1.00 | 1.00 | 1.00| 1.00| 1.00| 1.04]1.01|1.07|1.02|1.07|1.03|1.01|1.01]1.03]1.09] 1.29| 1.62
MEM_8Str_rdm 100|100(f100)101f101|101f(101|12102)101|101}|101f101)101)102(102(1.01)101]103])1.01(1.04]1.01]105|103(1.01]|1.01])1.02]104]112](1.21
MEM_1Str_seq L 1.00] 1.00]1.00|1.00f1.00]1.00(1.00| 1.00| 1.00] 1.00]1.00|1.00|1.00(1.01(1.00(1.00|1.00|1.00]1.10]1.01|1.15|1.02(1.17(1.10|1.01|1.02 ]| 1.06] 1.08] 1.24| 1.36
MEM_2Str_seq L 1.00| 1.00 | 1.00 | 1.00 | 1.00} 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00] 1.01| 1.02 | 1.01|1.03]|1.00| 1.00] 1.08 ( 1.02|1.25|1.03| 1.31 | 1.07|1.01]|1.01| 1.06] 1.09 | 1.28 | 1.43
MEM_3Str_seq L 1.00]100)100|100(100})100(100(101]|100]100}|100|100f12101|102|101|105|101)106]114]103(137(1.05|144]|1.13|1.01|1.03]111]11.19(1.41(1.54

,_
g}
=
o
(=}

MEM_1Str_rdm
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g}
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R B . A A A A e e A A e A
Class C(N) C(N) C(N) C(N) C(N) C(N) C(N) C(N)] C C C C C C C C C C C C C C C C LC LC LC LC LC LC LC LC L L L L
C(N) J1.00|1.05|1.09(1.10|1.10{1.09|1.04]1.19)1.24|1.00|21.09(|1.13]1.15(1.15|1.14|1.15(1.15)1.06f1.11|1.14]1.10(1.10|1.09(1.21)J1.11]1.09(1.34|1.74|1.46|1.58]|1.10(1.20)1.16]1.05(1.11|1.17
C(N) J1.00|1.00|21.03(1.05|1.04(1.04|1.01]|1.14)1.16|1.00|1.00|1.16]1.09(1.09|1.02|1.15(1.08)1.00{1.05|1.09]|1.04(1.05|1.03|(1.10]J1.04]1.03(1.27|1.63|1.41|1.45]1.05(1.14)1.10|1.00(1.05]|1.12
C(N) J1.00|1.00|21.00(1.02|1.01{1.02|1.00]|1.02]11.00|1.00|1.04|1.14]1.00{1.00|1.01|1.08(1.14])1.01|(1.00|1.00]|1.00(1.02]|1.00|[1.06]11.19]1.09(1.25|1.57|1.36(1.42]1.09(1.10]J1.25]|1.00(1.02]|1.08
C(N) J1.00|1.00|1.00(1.00|1.00{1.00|1.00|1.00}J1.00]|1.00|{1.00|1.06]|1.00(1.00|1.06f1.11|{1.00]1.02(1.00|1.00|1.00|1.00]|1.00(1.07)1.47|1.23|1.28]|1.55(1.35|1.41|1.11|(1.09]1.45(1.00(1.00]1.06
C(N) J1.00|1.00|1.01(1.00|1.00{1.00|1.00]|1.00}J1.00|1.00|12.01|1.03]1.00{1.00|1.00|1.00(1.09]1.01{1.01|1.00]21.01(1.001|1.03|[1.05)1.27]|1.12(1.37|1.26]1.38|1.38]|1.10(1.20)1.28|1.42(1.01|1.08
C(N) 11.03|1.03|1.04(1.02|1.00{1.01({1.03]1.02]11.04|1.02|1.11|1.08]1.00{1.00|1.03|1.02(1.13]1.01{1.19|1.04]1.01(1.03|1.07|[1.09]11.48]|1.10(1.56|1.30|1.40(1.44]1.10(1.25)J1.41]|1.63(1.04]|1.11
C(N) 11.02|1.04|1.06(1.08]|1.07(1.07|1.02]1.13)J1.28|1.00|1.16|1.12]1.09(1.06|1.12|1.16(1.13)1.08(1.11|1.14]1.10(1.08|1.13|1.17)1.18]|1.21(1.45|1.92|1.64|1.72]1.09(1.19)J1.15]|1.05(1.11|1.17
C(N) J1.08|1.08|1.01(1.00|1.00{12.00[1.05/1.04)11.05|1.01|1.07|1.06]1.07(1.04]1.05|1.12(1.20]1.00{1.03|1.07]|1.10(1.03|1.01|1.11)J1.64]|1.30(1.37|1.78|1.55|1.57|1.25(1.11]J1.66]|1.00(1.03|1.09
C 1.06(1.04)1.00|1.00(1.00]1.00]1.12|1.00}J1.00|1.00(1.00|1.04]100(100]2.00]1.05(101|1.00]1.00(100]2.00]1.00(1.00]2.0041.04(1.07|12.29]1.65|1.40|12.49]1.00(1.04})1.00]1.00|1.00]1.02
C 1.00|1.00|1.03f1.01f1.10f{2.07f(2100(f21.22J1.08(1.08(1.15|1.16(/2.00(/12.20/12.16/2.23|1.17)1.11)1.10]1.08]1.15]1.12]1.09|1.182.13|1.29(1.49(1.87|1.66(1.70(1.22(1.21)2.10(1.07|1.13]1.19
C 1.00({1.00|1.02|1.00(100|1.07]1.08|1.07}]1.03|]105(1.14|1.09]1.05(103|1.11})1.19(1.16/2.01)1.13(1.02|1.20]1.17(1.08|1.21}1.66(1.24|11.84]|1.42|1.58|1.55]1.12(1.4111.58]1.92(1.03|1.10
C 1.00| 1.06| 1.07|1.01|100(f100(21.00f(21.01J21.05(1.01(21.04]2.02(12.03/1.00[/1.04|1.02|1.06/1.0011.111.04]1.02]1.00]1.03|1.03J1.74|1.21|2.20|1.45(1.40(21.53|(1.16(21.37]1.82(2.13]|1.00]1.05
C 1.03(1.03|100|100(100]1.00]101|21.07})201|100(1.04)2.07|106|101|1.07|1.14(1.10|1.06]1.15(1.10(1.14)1.10(1.15|1.231.13|1.25|1.34]193(147|1.71]1.01(1.11)J1.06]1.00|1.02]1.08
C 1.01{101)1.00|1.00(21.00]1.00]1.00(1.02}2.00|100(100|2.00]100(100(2.00]1.07(103|1.00]1.00(102]2.03]101(104]2.101.22|1.22|139]|1.87|159|1.67]|1.00(1.08)1.03]1.00(1.00]1.07
C 1.00{1.00|1.00|1.03(100]1.00]1.01|1.03}J1.00|1.03|(1.08|1.06]1.05(100(121.08]1.13(1.20112.18]1.21(1.00(11.22]1.08(1.24]1.2931.50(1.14|11.39]193|1.52(11.70]1.10f1.11J1.53|1.00|1.01]1.08
C 1.00{1.02)100|1.03(100]1.00]1.00(1.04}2.03|]100f(21.11)2.00]1.06(1.02|1.07|103|(1.14)1.00]1.12(1.02|1.00]1.00(1.00]12.1141.70(1.20|11.26]1.89(1.43|1.62]1.13(1.04]J1.64]1.00(1.00]1.01
C 1.00{1.00|1.08|1.00(1.04]1.05|101|1.16}J2.03|1.02f(1.11}1.07|1.07|103|12.19|1.18(1.31|121.15)1.18(1.11(1.32}1.11(1.39|1.46)1.37(1.17|1.54]|1.28(1.51(11.71]1.09(1.15)J1.49]1.61(1.02(1.08
C 1.00{1.00|100|1.02(101]100]101(100}21.01|1.02(101}|121.01|107|103|1.22|1.07(1.20|12.10]1.12(1.0411.18]1.07(1.23|1.26)1.55(1.17|1.76]1.29(1.53|1.75]1.07(1.21)J1.52]1.69(1.03|1.11
C 1.00{1.00|1.00|1.00(21.00]1.24]1.03|1.03}1.02|100(1.13|12.16]1.15(11.03|1.24]1.19(1.23|1.11]159(134|1134]|146(1.36|1.69)1.26(1.61|1.58]249(1.76/2.10|1.04(1.14]11.08]1.00|1.05(1.13
C 1.00({1.00|1.00|1.00(100]1.00]1.02(1.03]101]|100(100|2.05|1.07|102|100]1.06(1.12|1.00]1.30(1.17|1.04]1.04(1.01|2.10J1.31|(157|151]|248|164|1.75]1.00f1.11)J1.07]1.00|1.04]1.10
C 1.00({1.00|1.00|100(101]1.00]103|1.11}J2.01|105(1.21|1.07]|1.16|1.08|1.26]1.07(1.3911.19]1.36(1.0811.89]|1.51|1.67|2.02|1.22(1.04|11.58]258|1.77|2.1211.03(1.17]11.24]1.03|1.07|1.16
C 1.00{1.00|101|100(2101]1.00]101(104}]201]|103(1.18|1.05/1.11|105|1.12|1.04(1.16|12.07]1.48(1.08]1.50]1.26(1.14|1.26J1.56(1.06|1.85]2.56(2.19|2.22]1.05(1.17]J1.22]1.02|1.05(1.18
C 1.00{1.00|1.00|1.00({21.03]1.03]106(1.02}12.01|1.01(1.09|1.09]|1.18|1.0811.29|1.08(1.46|1.24]1.38(1.0611.68]1.15(1.77]12.1541.25(1.03|1.56|1.07(1.80(2.15]1.02(1.04)1.25]|1.43(1.09(1.17
C 1.05(1.00|1.00|1.02(1.00]1.00|1.04|1.07}12.02|1.03(1.16/1.03|1.19|11.09|1.27|1.14(1.45]11.20]1.62(1.0911.92|1.20(2.04]11.7831.33|(1.06|1.74]11.17(1.69/1.99]1.05(1.10)J1.31]1.52(1.01(1.11
LC 1.19)1.17|1.38|1.73|1.49(1.68(1.29|1.94]11.30(2.29(196|2.15|1.34(1.35(11.81|2.16/1.69|1.83|1.49|1.60|1.42]1.83|1.46|1.64|2.53|3.42 1.97
LC 1.11)1.10|1.21({137(1.24(1.18(1.26(1.4611.27|1.32(1.39(1.42|1.42(1.41|11.31|11.45]|1.36/1.30]1.81|1.82|1.15|1.18| 1.15( 1.24}3.25| 2.38 1.28
LC 1.1311.12|1.14(1.18|1.25(1.39(1.24|1.2711.26(1.25(1.70|2.13|1.25[1.32|11.31|1.26/1.48|1.62|1.46|1.45|1.45]1.70]| 1.43 | 1.68| 2.54| 1.42 1.74
LC 1.21}1.19|1.19|1.19|(1.00f1.00f1.36|13611.34(1.30(21.09(1.16|1.49(1.47|1.51|1.55/1.02|1.00[1.91|11.96|1.96]1.94]|1.00]1.00}3.35]| 1.97 . 1.00
LC 1.13)1.15|1.14|1.16|1.17(1.15(1.31(1.3211.27|1.29(1.35[1.25(1.27[1.40[1.34|1.32|1.34)11.31|11.51|1.46]|1.50|1.86|1.52|1.5112.66|1.44|3.03|1.98|3.16|3.50| 1.44|1.89]12.70|3.00( 1.49| 1.67
LC 1.20|1.16|1.17|1.17|1.15(1.16(1.34(1.3211.32(1.30(1.30(1.34|1.44|144|1.46|1.46|1.49)|11.46|1.76]1.51|1.75]|1.85]|1.78|1.7442.90| 1.51|3.31|2.04 [3.42|3.11|1.47(1.98]2.88|3.26( 1.34| 1.48
LC 1.01{101)1.08|1.12(1.11]1.06]1.02|1.26}1.02|1.12(1.13|1.23|1.03|1.03|1.15|1.23(1.15|1.08]1.06(1.05/1.03|1.06(1.02]1.1041.38|1.12|11.53|253(1.70(11.78]1.12(1.20)J1.41]1.03|1.09(1.15
LC 1.02(1.02)1.02|1.02(1.12]1.13]1.04|1.04}1.03|1.03(132|1.34|1.05(1.04|1.07]1.05(1.12|1.13]1.08(1.08]11.09]1.09(1.00/1.08411.44(1.12|11.61]|1.20(2.08/12.221.11(1.19])J1.45]1.61|1.15(1.21
L 1.0211.011.19|140(1.23|131|1.04(161}1.03]185(153|1.84]1.04(1.03(1.52]1.71(1.49(11.47]11.05(1.07(1.19]1.18|1.20(1.32]1.45]|1.07|2.67 3.05(3.33|135|1.49]1.45|1.38]1.46| 1.59
L 1.0411.04)11.04|1.04(154]11.72|1.07|1.08]1.06|1.07|2.11|2.44|1.06(1.07|1.08|1.06(1.84|1.84]1.10(1.12|1.11)1.11|155|1.74)1.56(1.1211.75]|1.28 1.1211.88]1.56| 1.75 1.85 | 2.06
L 1.0411.04]1.04|1.04(1.04]1.04]1.08|1.08})1.06|1.07(1.07|12.07|1.07|1.07|1.08]|1.06(1.11|121.07]1.09(1.12|1.11})1.08(1.12|1.1041.57(1.12|1.77]|1.28|1.82|1.66]1.12(1.27)J1.57]|1.75|1.82]2.01
L 1.02(11.03]1.02|1.03(1.03]1.03]1.05(1.05]1.04]105(1.06|1.06]1.05(1.07|1.07]1.05(1.09|1.06]1.09(1.10(2.11})1.13f1.12|1.12}1.61(1.10(11.82]|1.26|1.89(/1.70]1.10(1.25]11.59]1.81|1.86|1.68
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