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Abstract

Hyperspectral sensors provide high spectral resoluivhich contributes to material identification.
However, due to low spatial resolution, pixels ncaptain a mixture of more than one distinct materia
spectrum. In order to exploit the mixed hypers@aata, spectral unmixing is applied, which inesv
the decomposition of the mixed spectra into comstit spectra, also called endmembers, weighted by
their corresponding fractional abundances. Thisishaddresses the spectral unmixing problem so that
the full potential of hyperspectral data explotatio be employed. The main contributions include t
exploitation of novel concepts and the developnet¢iitve new methods dedicated to the steps involved
in spectral unmixing; the signal subspace estimattbe dimensionality reduction, the endmember
extraction, and the abundance estimation.

The first method, calledutlier detection metho{ODM), is a new automatic non-parametric method
for estimating the signal subspace dimension. Theber of the signal vectors is much lower compared
to the number of the noise vectors. Thus, estirgatire population distribution and/or its statistica
characteristics could comprise errors. The noveftYpDM lies in the fact that it considers only the
existence of noise and treats signals as outlfemsise. It searches for the signals whose radilxy ifar
larger than the one of the noise introducing fer filst time in virtual dimension theory, a robostlier
detection method. The ODM achieves the performanas competitors and outperforms them in case
of small image scenes.

The second method is a new band selection (BS)oapprfor optimizing the performance of the
endmember extraction and classification. The fevistesg BS methods which address spectral
unmixing issues set fixed criteria to the spedtrdrmation on the whole set of wavelengths. They a
based on generalised approaches which disregaspdwtral characteristics of a particular matesfal
interest, the image diversity and the endmembeaabiity. The proposed method enables endmember
extraction and classification algorithms to actalbe in the hyperspectral space. It tries to define
subspaces in which spectra of materials vary thetimao case of endmember extraction, the new
method accounts for spectrally closed endmembet&$p— a term introduced in the frame of this
study- which are likely overshadowed by the prevaEndmembers, by exploiting the original bands.
In order to extract the SCEs, the concept of migltgmnvex hulls is used for the first time in BSeT
proposed approach is effective at detecting lowtresh materials, which imply different biophysical
chemical properties of a material class. In caselagsification, the proposed BS method accounts fo
subspaces where classes are separable. It achievedme overall accuracy as if the whole bandsset

used, by selecting less than 50% of the total hands



The third method, calledimple endmember extractidi®EE) is a new convex-based endmember
extraction method which searches for the mostriispectra at the vertices of a simplex defineithén
signal subspace. The novelty of the SEE methdadkiit searches for the extreme values that lighen
end points of the existing transformed axes witHatther projections that imply iterative procedure
Thus, it bears the advantage of simultaneouslyaetitry endmembers with low computational cost.
The fourth method is an enhanced version of SElledcanhanced-SEE (E-SEE) and it is an empirical
method which compensates the tendency that therityapd the convex-based endmember extraction
methods encounter to select high contrast endmentver less contrast endmembers. On this account,
it changes the distribution of the initial data géenby increasing the distance between candidate
endmembers and the data mean, a technique whicmevaes been explored before. Both methods
provided the same and even better performance aeahp the state-of-the-arts methods. The
computation complexity of the new methods is mumker than those of vertex component analysis
(VCA) and N-FINDR, approximately one and three osd&f magnitude lower, respectively.

Last but not least, the fifth method is a new nplétiendmember spectral signature analysis (MESMA)
based on spectral angle distance, called MESMA-SWBSMA accounts for within class spectral
variability, however, it needs to calculate all thetential endmember combinations of each pixel to
find the best-fit one, demanding a time-consumimgnixing technology. The new non-parametric
method significantly minimizes the time-processaampared to the existing MESMA algorithms by
combining the spectral angle distance values amdnban absolute errors.

Extensive simulated and real image-based expersmemicate the effectiveness of the proposed
methods to improve the data exploitation, renderthgir implementation very promising in
hyperspectral image processing.



[Iepiinyn

H moAd vynAn eacpatikn avédilvon Tov Y TEpQACUOTIKOV aliotnTt)pmv cuVTeAEL 6TO va elval duvathy N
avoyvopion vAkov/avtikelévoy ta omoio. Bpickoviar oto £8apoc. Qotdco, AOY® TG YOUNANG
YOPIKNG OVAALGTNG TO EIKOVOSTOLXELD TNG AMEIKOVIOTG Elval TOOVOV VO TEPIEXOVY PUCUATIKY] VITOYPOPT|
N omoia Tpoépyetal and Hién meplocdTEP®VY TOL £VOC LAIKOV. ['tal var elvar duvati 1 avdAvon TG LIKTNG
VIEPPAGUATIKNG TANPOQOpiag, eapuoletal 0 QUGHATIKOS Ooym®PIoHOg 0 omoiog meptloupdvel v
avAALGN TOL IKTOV QPACUOTOG G KUPIEG (QOCUOTIKEG CUVIOTMOES M OAMMG KAOUPES POGUOTIKES
VIOYPAPES, OOV KAOE o avTioTotyel g £va Lovadikd VAKO, Kol 6T, AVTIGTOLY0, TOCOGTH GUUUETONNG
tovg. H ouykekpipévn swrpipn mpaypatedetonr 10 QacuaTikod Stoyopiopd pe okomd va aglomoinfovv
TAPOG 01 TANPOPOPIES TOL EUTEPIEXOVTOL OTO VIEPPACHATIKA dedopéva. Ta kupla onueion GLUPOANGC
™m¢ SwtpPng mepriapuPdvovov TV €1G0Y®YY KOWOTOU®MV WEDV OTO Tedlo NG emeEepyaciog g
VIEPPOUCUATIKNG OMEIKOVIONG Kol TNV avanTuén mévte vEov pebddwv, ot omoieg oyetiCovion pe to
otadw To omoio amaptiCovy T0 PACUATIKO JlaX®PIGUO Kot givorl To €ENG: EKTIUNON TG J1AOTOCNG TOL
VOY®POV TOV ONUATOG, HEIMON TNG LAEPPOUCUOTIKNG Oldotaons, eSaywyn Kabop®dvV (ACUATIKOV
VTOYPOPOV Kol EKTIUNCT TOV TOGOGTMOV GUUUETOYNG TOVG.

H npd pnébodog kareiton outlier detection methoODM). [pdkerton yio pion un emPrenopevn, un
nopapeTpikn néBodo yioo v ektipnom g SdoTaong Tov VIOYWPOL ToL oNuaTos. O apBudS TV
SLVUOUATOV TOV OVTIGTOLYOVV G€ GO EIvVOl OPKETA UIKPOTEPOG Amd TOV avTicToryo tov BopvHfov.
E&attiag avtov, n 6TaTIoTIK avaAvomn TV SIVUGHATOV TOV GLOTOG UTopel va empépel opdipota. H
kowvotopio tov ODM éykertan 6to 011 Bewpel poévo v vVapén tov Bopvfov kot petayepiletor Ta
onuata og akpaieg Trég Tov BopvPov. H pébodog evromilel ta onpata péocw e pebddov aviyvevong
TOV OKPOi®V THOV, pio TPOGEYYIoN TOL OV £XEL EPUPUOCTEL TPMOTOTEPO GTO GLYKEKPEVO Oépa. H
nébodoog ODM emtvyydver axpifela Opola pe vtV TV VROPYOLSHV UeBOd®V, evd Tapovcoildlel
KOADTEPO ATOTEAEGULATO GTNV EQAPUOYT TNG, OF AMEIKOVIGELG LIKPOD HEYEBOLG.

H devtepn pébodog elvar pio véa mpocéyyion emAoyng Kovol®y yio T BeAtiotonoinon g e&aymyng
KaBopOV PACUATIKOV DTOYPAP®OV Kot NG dtadtkaciog tagvounons. Ot Ayootés vrapyovoeg pnébodot
EMAOYNG KOVOA®Y Ol 0Toieg amevfuvovTol OMOKAEIGTIKA GTO QACHATIKO Oloywplopd epapuolovron
0T0 OUVOAO NG OBEGIUNG PACUATIKNG TANpOoPopiog ympic va Aapupdvovv vaodyn To QOCLATIKA
YOPOKTNPLOTIKA KGOe vAKoV/avTikelwévoy Eey®plotd Kot Tn QoouUatikny dloupoporoinon o€ ke
anewovion. H véa pébodoc kobiotd dvvor v eeappoyn aiyopiumv aviyvevong kaboapov
(QOGLOTIKOV DITOYPOPAOV KOl TASIVOUNONG G€ TOMIKO EMIMEDO GTOV VIEPPACUATIKO Ydpo. [Ipocmabei va
Bpet ekeivovg Tovg PAGHATIKOVG VITOYM®POVS OTOL T VAIKE S10.p0poTo10vVTaL 6T0 PéEYLeTo. Ocov apopd
0TOVG OAYopiBHOVg aviyvevong Kabapdv VIToYpPaP®V, 1 VEL HEBOJOG EMKEVIPAOVETOL GTOV EVIOMIGUO
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TOV QOCUOTIKA KOVIWVOV KOOBOPOV QUCUOTIKOV VTOYPUE®OV, Ol omoieg emokidloviol amd Tig
(QOGLOTIKEG VIOYPOUPEG VYNANG PACUOTIKNG ovTiBeons, a&lomolmvTog Yo TpdT GopA GTNV ETAOYN
KOVOA®V TNV €Vvoll TOV TOAATAGV Kuptdv mepoydv. H pébodog aviyvedel amoTeAeGHATIKA TIG
QOCUOTIKEG LTOYPAPEG TOL VIO UEAETN VAIKOD Ol OTOIEG EUTEPLEYOVV YPNOIUEG TANPOPOPIES Yo TN
Bropuoh/ynuikn Wt to tov. Ocov aeopd oty ta&vounon, n véo péEB0d0C ETKEVIPOVETAL GTNV
e0peOT EKEIVOV TOV QOGUATIKOV VTOY®OP®Y OToL 01 Kotnyopieg elvarl daywpioes oto péytoto. H
nmpotevopevn pébodog, petwdvovtag kotd 50% to mAnBoc tv KavoAiwv, méTvxe TV O axpipela
Ta&vounong OTwe oty TEPITT®MON OV YPNoLoTo|OnKay OAa To KavAALa.

H tpitn pébodog wareitoan simple endmember extractiqi®EE) kot mpoxerton yuo pio véa pébodo
eCayoyne xabopdv @acuoTiK®V vroypoedv. Boaciletor oTn YE®UETPIKN OVAALGY TOV KLPTOV
neploydv. H xovotopio g £ykettal 6to 01t avalntd tig Kopueéc e xopikng oataéng (simplex),ot
omoieg Pplokovtal OTIG AKPES TOV UETACYNUATIOUEVOV advov, yopic mepattépm TPoPorES Kot
EMOVOANTITIKES O10OIKOGIEC. ZUVETMG, 1 MEBOOOC €xel TO MALOVEKTNUO NG TOLTOYXPOVNG €&ay®YNG
KOOUpOV PAGUATIKOV DTOYPAP®V, EVAO €ivar amaAlaypuévn arnd 1o avénuévo vroloylotikd koéotog. H
Beltiopévn ekdoyn e SEEkoleitor enhanced-SEE (E-SEkq sivan pio epmepikn uébodog, n omoia
avtiotofpilel v thon TtV vropyovcov UeBOd®V eEaymyNe KabapdV QUCUOTIKOV VTOYPAPOV VO
AVLVEDOVV TIG PAGLOTIKES VTOYPAPEG VYNANG avtifeong €1¢ fapog exelvav pe yapnAn avtifeon. Avtd
EMTLYYAVETAL AVEAVOVTAG TNV OTOGTACT| LETAED VTOYNPL®V KABOPOV PUGUOTIKOV VITOYPUPADV KOl TNG
HEOTG TIUNG TNG EIKOVAG, YEYOVOS IOV EMPEPEL OAAAYT) TNV KATAVOUT TV 0gdopévmv. Ot 600 pébodot
TOPOVCIOCOV OTOTEAECHOTO 1010G Kol KAADTEPNG aKpiPeElag 6 cVYKPIoN UE TIS avTioTolyeg HeBodovg,
EVAD TO LIOAOYIGTIKO TOVG KOGTOG &ivar yaunAodtepo amd 1o avtictoyo tov pedddov VCA kar N-
FINDR xatd pio kot tpeig taéetg peyéboug, aviictorya.

H wéuntn mpotewvouevn pébodog eivar pia véa ekdoyn e uebddov multiple endmember spectral
signature analysis (MESMA}, onoia Boaciletor otn gacpatiky yovio kot kodeiton MESMA-SAD. H
npwtoTLTN pEBodog MESMA av kot emtpénel o aplfudg TV Kabopdv QUCUATIKOV VTOYPOODV Vi
etvat SopopeTikodg Yoo Kabe elkovooTtoryeio, yapaktnpileTol vToAoyloTIKA aKpiPn], Kabng eEetdloviot
O\t o1 mhavoi GLVOLAGHOT KOBUPDOV PAGUATIKOV DIOYPUPOV Y10, TV EVPECT] TOV PEATIGTOV GLVOAOV.
H véa pun moapapetpikr néBodog HEUDVEL CNUAVTIKA TO XPOVO EMEEEPYNCIOG OEIOTOUDVTOS TN POCUOTIKN
YOVIio KoL TV T TOV HEGOL OTOAVTOL GOAALATOG.

H oa&oldynon tov mpotewduevov pebBddwv g mpog TNV amodotikotepn aflomoinon Tov
VIEPPACUATIKOV OEGOUEVOV  VAOTOMONKE HECH EKTETAPEVOV TEWPAUATOV ©€ GLVOETIKES Kot
TPAYUATIKEG amelkovioels. Ta amoteléopota TG 0E0AOYNoNG NTOV TOAD IKOVOTOMNTIKA YEYOVOS TOV
KaO1otd TIg pHeBOOOVE TOALGL vmooydueveG o010 Tedlo NG eMeEEPYACIOG TOV VIEPPAGLOTIKMV

OTTELKOVIOEMV.
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Chapter 1

Introduction

1.1 Hyperspectral remote sensing

Generally, remote sensing can be defined as thectioh of information about an object without
making physical contact with it. The sense of sighables the humans to perceive the surroundings
without the need of close contact with the objeBtng visual species, we have evolved the alitity
understand the world around us through visual imddje Broadly speaking we are performing remote
sensing in everyday life. In more restricted senseote sensing refers to the technology of cotigct
information about the Earth’s surface and atmosph&ing sensors which record electromagnetic
radiation. The advantages of this technical phesyam derive from the fact that remote measurements
are related to the familiar realm of what we seetba ground, rendering its use urgent for
understanding our changing environment. Large asé#se Earth’s surface, among of which locations
which are difficult to be approached, or large wodiof atmosphere can be recorded in a short pace of
time [1], [2]. The applications of remote sensarg enormous; ranging from monitoring environmental
changes and evaluating natural resources to nyilidperations. In the 1980’s, the convergence af tw
related but distinct technological fields; speota@sy and remote imaging led to the development of
hyperspectral remote sensing, also called imagosgtsoscopy [3], [4]. Since then, the evolution of

passive remote sensing has witnessed the colleatioreasurements with significantly greater spéctra



breadth and resolution comparable with the onalobdiatory spectrometers. Hyperspectral imaging is
produced by complex sensors, called imaging speetiers, which use hundreds of detectors recording
over a wide wavelength range, from visible regidmotigh the near-infrared and short-infrared
spectrum (typically at least 0.4 to 2utn). In other words, within the sensor the receieeergy is
transformed into an electric impulse which in tigitranslated into a data volume. This data volisree
3-dimensional structure, also callddta cubewith two spatial dimensions and one spectral disian.
Each plane of the data cube comprises reflectadmegl at one spectral band for all pixels, whilehea
pixel column of the data cube is a spectral vectonprising the values of the reflected radiancéhat
whole wavelength (Fig. 1.1). If we extract a pixelumn and plot its spectral values as a functibn o
wavelength, the result is the average spectrumllotha materials in the corresponding ground
resolution cell at every wavelength.

Different materials reflect and emit varying amtsuaf radiance across the electromagnetic spectrum.
The reflected light from the surface interacts irumique way for each material and even slight
variations of it are quantified and characterizewagh hyperspectral imagery [5]. In other words;he
material generally has a unique spectral signatdrieh can be treated as fimgerprint Therefore,
hyperspectral sensors can be used to identify atithgliish between different materials in a scedje [
Acquiring the same scene using hundreds of narmoav@ntiguous spectral bands (on the order of
5nm), hyperspectral images offer an invaluable mitae of information, enabling the accurate phykica
description and discrimination of the sensed maleriOver the past decades, hyperspectral remote
sensing became more and more popular, with a blegpmimber of available sensors, for airborne or
spaceborne platforms. Table 1.1 presents a suliseelb known present and future hyperspectral
Sensors.

The wealth of spectral information available fromivanced hyperspectral imaging has opened new
perspectives in many application domains, from faadety, precision agriculture and biomedical
analysis, to the monitoring of the environment,amtareas and natural hazards, mineral exploration,

forestry or defence related issues [5], [7], [8], [10].
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Figure 1.1: Hyperspectral image structure.
Table 1.1: Overview of present and future hyperspesensors

Sensor Platform Spectral range | No. of bands Ground pixel | Ground

(um) size (m) swath

(km)

AISA* Airborne 0.4-2.5 500 1 0.4
AVIRIS® | Airborne 0.4-2.5 224 20 11
CASP Airborne 0.4-1.1 288 1 1.4
EnMap”’ Spaceborne 0.42-2.4 232 30 30
HYDICE®> | Airborne 0.4-2.5 210 3 1
HyMAP® Airborne 0.45-2.5 126 5 2.3
Hyperion | Spaceborne 0.4-2.5 200 30 7.5
HySpexX Airborne 0.4-2.5 316 0.4-7 0.5

! http://www.spectralcameras.com/aisa

2 http://aviris.jpl.nasa.gov

3 http://www.itres.com/products/imagers/casi1500/

4 http://www.enmap.org/sensor

5 http://rsd-www.nrl.navy.mil/hydice

8 http://www.hyvista.com/

7 http://eol.usgs.gov/sensors/hyperion

8 http://www.hyspex.no/




There are many ways to extract information fronpectral image. It would not be wise to anticipdie t
existence of any single technique that can outparfall others in every practical situation. It degse

on the nature of the problem and the availableé@igmowledge related to it. Images that fuse isphat
spectral and/or temporal information are neededet@xploited using flexible strategies [1]. As &sv
mentioned above, hyperspectral images are hypegrdilonal, each pixel has a spectral signaturetand i
is represented as a vector with several hundredsoaiponents. Exploiting these data is very
challenging and specific image and signal processiethods have been developed [11]. The existing

approaches are related to one of the following gssing tasks [6], [5], [12], [13]:

Atmospheric correction:

Atmosphere is responsible for solar radiation’sttecamg and absorption and affects the radiance
recorded by the detectors. Since the radiant emaggynot interact with the Earth’s surface, it pdes

no physical meaning in terms of the spectral messant and the latter should be corrected.
Atmospheric correction is a daunting process bex#us atmosphere’s properties vary through space
and time. One of the most widely applied approachése conversion of radiance to reflectance data.
should be noted that the atmospheric correctionga®is optional and might not be required dependin

on the fidelity of the data required.

Dimensionality reduction:

High dimensionality is inherent to hyperspectraladdhe trade-off of high spectral resolution which
allows for the extraction of material spectra i® ¥olume of data which poses many challenging
problems in terms of data storage, computationfitieficy, algorithms performance. Therefore,
dimensionality reduction techniques aim at defirengew spectral space of much lower dimensionality

than the number of the bands of the input hypetsgetata.



Target/anomaly detection:

Target detection aims at identifying a relativetyadl number of objects with fixed shape or spectiom

a scene. It is possible to detect the targetstefest in an unknown image scene from which theetks
target knowledge can be generated directly frormian unsupervised way using either matched
filtering or quadratic forms. In case there is nari@ri information to specify the statistics oktharget,
anomaly detection is applied. Anomaly detector dees for targets which are generally unknown and
spectrally distinct from their surroundings, bufaterely small with low probabilities of occurrenoe

an image scene using the statistics derived freanwole image.

Change detection:

Acquiring two or more hyperspectral images of tame geographic location at different times enables
the detection of changes of objects of interestcivimay not be distinguishable at the visible speatr
Most change detection methods require preciseapatistration between the available images and

atmospheric correction in order that pixel to pigenparison to be effective [13].

Classification:

Classification is a pixel-wise technique which iti@s the material class that a pixel spectrum ttgos
resembles. Classes may or may not be predefinelintpd@o supervised and unsupervised methods,
respectively. The output of this process is a diaaion map where each pixel is assigned to dassc
label. The classification techniques can be basestamious mathematical concepts such as statistical

analysis, neural networks, morphology-based appesdierarchical segmentation [12], [14].

Spectral unmixing:

Spectral unmixing contributes to the extractionndbrmation at sub-pixel level. It consists of dgieg

the distinct spectra in the hyperspectral sceneclwimay represent materials and estimating their



apparent quantification in a pixel in terms of fras. The spectral unmixing is an inversion problem

based on the spectral mixture analysis which ises$ed in the next session.

1.2 Spectral mixture analysis

Hyperspectral sensors provide high spectral resoluivhich contributes to material identification.
However, due to their low spatial resolution andtiple scattering of light, sensors record mixtuoés
spectra of materials in the scene [12]. Spatiabludi®n of the hyperspectral sensors may range from
few centimetres to tens of meters depending orlitiie altitude. Consequently, pixels may contain a
mixture of more than one distinct material spectrand therefore, they are calledixed pixels
Regardless the spatial resolution, mixed pixels raage due to intimate mixtures existing on the
ground [15]. For instance, homogeneous areas otnal quite often appear in mixtures such as
sulphur which may present key absorption feature¢le spectral signature of another mineral.

In order to be able to exploit the mixed data dsdifrom hyperspectral imaging we need to apply
physically based models which connect spectroscdpygaterials with remote measurements. Spectral
mixture analysis (SMA) [16] is a technique for appy such models to spectral images. According to
it, pixel spectrum can be expressed as a mixtumdstituent spectra, also calleddmembersA large
proportion of the relevant literature [17], [18fees to endmember as a pure pixel, comprising quai
material. Nevertheless, it should be pointed oat thefinition of endmembers is more complicated
since in real applications pure pixels are unlikedybe found, not only due to spatial resolution
constrains but also due to the spectral signatorgamination of noise, unknown interferes etc.
According to authors in [1], endmembers are spegtrigh may represent materials. Depending on the
spatial resolution and the particular applicatemgdmembers for the same scene may be spectraef pur
materials or spectra of mixtures of materials an@e fundamental scale [1], [12]. In this thesis,
endmember is referred to the dominant distincttspectwhich is constituent part of a spectral migtur
The process of decomposing the pixel spectrumantbmembers and estimating their proportions, also

calledabundancesis known aspectral unmixingAs it was mentioned above, spectral unmixingnis a
6



inversion problem based on spectral mixture analysi fact, spectral unmixing is a very active
research topic. Its enormous potential has arotisethterest of the relevant scientific communityce
the beginning of hyperspectral sensor developnisjt [19]. This thesis focuses on spectral unmixing

and in particular, on developing novel approaclest$ optimization.

1.2.1 Linear and nonlinear spectral unmixing

There are two models of spectral mixture analysisar and nonlinear [16], [19]. Their differenced

on how the electromagnetic spectrum of a mixedlpsxeonsidered to be recorded. The linear mixture
model assumes that incident light interacts onlthvane material in the field of view and thus, the
recorded spectra at the spectrometer can be erprassthe form of a linear combination of
endmembers weighted by their corresponding aburganite nonlinear mixture model assumes that
radiance is modified by one material before inténgc with another one leading to a random
distribution of endmembers [6], [12], [15].

Theoretically, both linear and non-linear models te effective for interpreting the mixed spectra,
depending on the nature of the materials on thergtand the spatial resolution. In practice, spéctr
unmixing based on nonlinear model is an extremagnmex ill-posed problem since it requires
complex physical models which infer the dominanécd and their proportions based on radiative
transfer theory [12], [20]. Although there has bemn attempt to exploit simpler physically based
models for nonlinear unmixing, development of dyfuinsupervised method seems a daunting essay.
Ideally, the applied physical model should accdangll the processes and factors, such as illutiina
geometry and atmospheric effects, which are agwsaciaith the observed spectrum. Since this is not
attainable, a good estimate is satisfactory.

In this thesis, focus was given on spectral unng>ased on linear mixture model which is the most
widely used model, adequate for unsupervised appesa The interest of decomposing the observed
spectra based on linear mixture model remains wirogdor the last 25 years. Among the advantages of

linear unmixing is its effectiveness in a wide rargf applications due to its acceptable approxiomati



of light scattering mechanics in many real scersgd@]. Indeed, in macroscopic scale which is ligua
the scale of hyperspectral remote sensing, lineginghdominates for most scenes because the amount
of intimate mixing at patch boundaries is negligiffl], [12]. Another advantage of linear spectral
mixture is its clear conceptual meaning which dbotes to a computationally simple implementation

and an easy interpretation.
Consider that ifLis the total number of bands, each observed speaciory, ye<R", can be
expressed under the linear spectral mixture maellinear combination afonstituent deterministic

spectral signaturess and their corresponding abundanees

p
y=> as +n=Sa+n (1.1)
k=1

where the Lxpmatrix S=[s,....s;]Jcomprises the endmember spectra, thexlvector

a =[a,,...,a,]their corresponding abundances and R represents the additive noise.

Two abundance constraints are generally imposatiemodel described in eqg. (1.1) in order to assure

physically meaningful results:

z a =1 abundance non-negativity constraint CAN

a > 0 abundance sum-to-one constraint (ASC)

The geometrical interpretation of the linear migtanodel is associated with the mathematical thebry
convex setd6], [21], [22]. More precisely, assuming that botonstraints are satisfied and noise
variance is finite, spectra can be restricted simgplex lying on a signal subspace of dimensionless
than the number of the endmembers.

The only parameter which is given in eq. (1.1)he bbserved spectral vectgror, in terms of an
image, a seth[yl,...ym]of m observedL-dimensional spectral vectors. The objective ofctp

unmixing is to estimate the matri@of endmembers and the matréixof abundances for each pixel.



Since the number of bands is usually larger thantimber of the endmembers, a common approach for

abundance estimation is the least squares miniimzat

main||Sa— y||§ subject to ANC and ASC (1.2)

1.2.2 Spectral unmixing process

The spectral unmixing process includes severakstgpich are crucial for the accuracy of the result
estimations. Fig. 1.2 shows schematically the petlof spectral unmixing. The first step contains
atmospheric correction which leads to the conversioradiance values to reflectance values. Aad h
already been noted, this step is optional and lin@anixing may be conducted on radiance values as
well. The second step contains the estimation e@fitimber of distinct signals (endmembexsyvhich
exist in the hyperspectral dataset. An accuraterahation of the number of the endmembers infers
the signal subspace and significantly contributethé accuracy of the spectral unmixing. The thtap

is related to the dimensionality reduction. The bemof endmembers is much lower than the number
of bandsL. Based on the linear spectral mixture analysissgpectral vectors lie on a linear subspace
whose dimension is one less than the number of emdrars, i.ep-1. Thus, dimensionality reduction
techniques contribute to challenging problems sagllata storage and computational efficiency. The
forth step contains the endmember extraction leptiinthe spectral signatures of the endmembers and
finally, last step contains the abundance estimatising a least square method which leads to
abundance maps each one assigned to an endmerbanglits quantification at each pixel. The two
final steps can be implemented sequentially or Kanaously. In the latter case, where no infornmatio

is provided regarding the endmembers, is more primpeefer toendmember determinatioather than
endmember extraction [13]. As a matter of factsuch case all the available data sample vectors are
considered to be candidate endmembers, and viadgaare minimization the optimum set of spectral

signatures is determined as endmembers.
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Figure 1.2: Schematic outline of spectral unmixing.

1.3 Motivation

Over the past few years, hyperspectral remote sgrigs intrigued scientists from vast disciplinary
areas as the potential applications on which it banimplemented are multifarious, ranging from
climate change research, natural hazard risk asses$sgeological, forestry and urban environment
mapping to military services, and there are plentre to be explored. Hyperspectral sensors provide
high spectral resolution which contributes to mateidentification. However, due to low spatial
resolution, multiple scattering of light, and intite mixtures, sensors record mixtures of spectra of
materials in the scene and consequently, pixelscoatain a mixture of more than one distinct materi
spectrum. In order to exploit the mixed hypers@@alata, spectral unmixing should be applied, which

provides information contained at sub-pixel levetl deads to an efficient overall representationhef
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materials. On this account, hundreds of new allgorst have been developed from the fast-growing
relevant scientific community to optimize spectramixing process. Nevertheless, spectral unmixsng i
still the most fundamental problem in hyperspecttala exploitation since there are several issues
which need to be addressed so that its full paktdibe employed.

The first issue concerns the estimation of theaigubspace dimension. It has been a long-standing
daunting task whose unresolvedness prevents thelogewent of unsupervised methods in terms of
dimensionality reduction, endmember extractiongetidetection and classification. Estimation of the
correct number of endmembers has significant impadhe performance of the endmember extraction
algorithms (EEAs) and consequently on the accumdcihe spectral unmixing process. Furthermore,
based on linear spectral unmixing, the number divembers is associated with the optimal number of
dimensions to be retained after dimensionality cida in order to represent the dataset. Hence, an
accurate determination of the number of the endneesndignificantly contributes to the accuracy @& th
spectral unmixing process and enables low-dimeasi@presentation of spectral vectors. The existing
methods for estimation of the number of endmemidessgnal subspace dimension consider the
existence of two different distributions, the oméated to noise and the other related to signaln or
geometrical approach they consider two differetispaces one of noise and one of signal. However, in
hyperspectral space, signal vectors are very fevorder to estimate their population distribution
properly or to statistically analyze them and thihss thesis focuses on designing new approaches to
overcome this shortcoming.

Another issue arises in how to reduce the high dsiomality of the hyperspectral data defining the
observed spectra into a lower dimension in ordebdcanalyzed more effectively, yielding gains in
computational time and complexity, data storage sigdal-to-noise ratio. Dimensionality reduction
(DR) is widely used as a pre-processing step adtgnéerest as it affects directly the performaotthe
following processing tasks. Band selection (BSnsfficient DR approach which searches for a dubse
of the original spectral channels retaining thegitgl meaning of the data set, based on a critéaon

optimality. There are a few BS methods which haeerbaddressed to spectral unmixing. These
11



methods set criteria to the spectral informationveel by the whole set of wavelengths; a generdlise
approach which disregards the spectral charadterisf a particular material of interest, the image
diversity and the endmember variability. BS apphaacexisting in the literature do not account Far t
aforementioned matters. In this thesis a new BSbasa designed which is material-based.

The third issue concerns the endmember extractmhthe argument over the optimum way to be
accomplished. Depending on the spatial resolutrmh the particular application, endmembers of the
same scene may be spectra of pure materials ouraigf spectra at a more fundamental scale [1], [12
Therefore, it should be wiser to consider the endber as the dominant distinct spectrum which is
constituent part of a spectral mixture. On thisoact, extracting endmembers from the image can be
promising; image endmembers have the advantageo afafibration need, refraining from adding
calibration errors in the mixture model, as weltl@sy have the same scale of measurement as the dat
Furthermore, according to author in [13], an optiBBA must select all the endmembers at the same
time rather than sequentially. Another concernteeldao endmember extraction is the tendency of the
majority of the convex-geometrical based EEAs tedehigh contrast endmembers over less contrast
endmembers. In this thesis, new simultaneous a#hgos for the extraction of the optimum set of
reliable endmembers are designed which could duri&ito spectral unmixing optimization.

Abundance estimation yields the last output of 8pecinmixing which represents the proportion of
each endmember in the pixel. Multiple endmembertsgle mixture analysis (MESMA) [23] is an
effective method which accounts for within claseapal variability, however, it needs to calculate

the potential endmember combinations of each pigefind the best-fit one, demanding a time-
consuming unmixing technology. The growing demahtyperspectral image processing on real-time
applications sets the development of new specimalixing methods, comprising EEAs and abundance
estimation techniques of low computational compiexmore urgent than ever. Hence, the new

methods should be of low computational burden.
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1.4 Main Contributions of the Thesis

In wide sense, the particular thesis contributi@s lon the optimization of the spectral unmixing
process for the hyperspectral imagery. In morerictstl sense, the main contributions include the
exploitation of novel concepts and the developmanfive new methods dedicated to the signal
subspace estimation, the dimensionality reductibie, endmember extraction and the abundance
estimation.

The first method is a new automatic non-parametniethod for estimating the signal subspace
dimension and, by extension, the number of the emdloers. Its novelty lies in the fact that it coesgd
only the existence of noise and treats signals w@fiers of noise. No estimation of statistical
distributions is required. The new method, caltdlier detection methodODM), explores the
geometrical properties of the noise hypersphergedtches for the signals whose radius is by fgefa
than that of the noise, introducing for the fiigte in virtual dimension theory a robust outlietestgion
method. Parts of the particular research have pablished in [24], [25].

The second method is a new band selection (BS)oapprfor optimizing the performance of the
endmember extraction and classification. BS metloftdsn disregard the small differences in spectral
signatures which may imply crucial information. ts thesis, it is given an attempt to address the
detection of spectrally closed endmembers (SCEs)erm introduced in the frame of this study- by
exploiting the original bands. This approach hasnbexplored before. In order to extract the SClss, t
concept of multiple convex hulls [26] is used fboe tfirst time in BS. Contrary to the existing BS
methods, the proposed approach accounts for thexetit distribution of each material’'s convex Huoll

the data cloud. For this reason, in terms of endbegrextraction, the proposed BS approach allows the
final number of endmembers assigned to a matetadscto vary, resulting in more physically
meaningful spectra. In terms of classification, greposed BS approach results in selected bands of
much lower number than the number of the origihanmels yielding gains in the required trainingadat
set quantity. Furthermore, the proposed BS acsofamtimage diversity and is tied to the available

13



information derived from the image’s spectral clotgestics. Thus, different sets of bands are etgao

for detecting different materials depicted in theng image scene. Being image-dependent compensates
the endmember variability contrary to the existapgproaches which use a priori information related t
the absorption features at fixed wavelengths. Rafrthie particular research have been published in
[27], [28].

Two new non sequential, i.e. simultaneous, simpl@sed unsupervised endmember extraction
methods, the simple endmember extraction (SEE)tlaadnhanced-SEE (E-SEE) empirical method,
respectively, have been also developed. The prdposethods have light computational burden
compared to the-state-of-the-art EEAs and are cheriaed by their clear conceptual meaning. The
novelty of the SEE method is that it searches lier éxtreme values that lie on the end points of the
existing transformed axes without further projessiothat imply iterative procedures. The E-SEE
empirical method compensates the tendency thatnthgrity of the convex-geometrical based
endmember extraction methods encounter to selegdt bontrast endmembers over less contrast
endmembers. Its novelty lies in the fact that iarees the distribution of the initial data sample
increasing the distance between candidate endmenavet the data mean. Parts of the particular
research have been published in [9], [29], [30]]3

Last but not least, the fifth method is a new npldtiendmember spectral mixture analysis (MESMA)
[23], based on spectral angle distance, called MESWD, and it is used for the estimation of the
fractional abundances for the endmembers in eacH. pihe new method significantly minimizes the
time-processing compared to the existing MESMA atgms by combining the spectral angle distance
(SAD) values and the mean absolute errors (MAER algorithm does not require any threshold. The
new method attempts to exploit the advantage of $#\De insensitive to differences in the albedo of
the modeled spectrum. Parts of the particular reedeave been published in [32].

To conclude this section, simulated and real imaagged experiments indicate the effectiveness of the

proposed methods to improve the data exploitatiendering their implementation very promising in
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hyperspectral image processing. In addition to, thignificant remarks derived from the long-stagdin

study define new research paths to be explored.

1.5 Thesis organisation

This introductory chapter provided a basic backgdbaf hyperspectral remote sensing and it covered
the main aspects which this thesis is focused ba.rémainder of the thesis is organised as follows:

In Chapter 2, the estimation of the signal subsmhiceension is described. In particular, the relévan
state-of-the-art methods are presented and revieaeelaborate description of the proposed method
for signal subspace estimation, caltedlier detection metho@©DM) is given along with its evaluation
using real and simulated data sets. Remarkabldusioos are presented at the end of the chapter.

In Chapter 3, the dimensionality reduction of hygpexctral data is discussed. A thorough overview of
the latest developments related to dimensionaditiuction is provided. Then, the new proposed band
selection method to optimize the extraction of sdly close endmembers (SCES) is described. Its
effectiveness is shown in the experiments with et sets and the results are discussed in the
conclusions. In addition to this, the proposed B&hmod for optimizing classification procedure is
precented in second part of this chapter. Resnliscanclusions of the method are finally given.

In Chapter 4, focus is given on the endmember etitra and several relevant issues of great
importance are addressed. A review of the stathefart EEAs is given. Then, two new proposed
methods for endmember extraction, callgidhple endmember extractiogftEE) and its empirical
enhanced version (E-SEE) are described. Analysasis provided concerning their computational
complexity. For performance evaluation, extensitadies of simulated and real image-based
experiments are included. Concluding remarks aseudsed at the end of the chapter.

In Chapter 5, abundance estimation is describedoverview of the latest relevant developments is

provided. A new proposed method, callediltiple endmember spectral mixture analysis based
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spectral angle distancMESMA-SAD) is described. Evaluation is accompdidh using real
hyperspectral data sets and results are discusstx @onclusions.

Finally, Chapter 6 draws the main conclusions ardré research lines derived from the present study
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Chapter 2

Estimation of the signal subspace
dimension

2.1 Introduction

Estimation of the number of signals is a fundamigrablem in signal processing. In the scientifeld

of hyperspectral imagery, signals are related ¢éouthique constituent deterministic spectral sigrestu
called endmembers [6]. A predetermined number afireembers is required by the majority of the
existing endmember extraction methods in ordereteat the optimal set of endmembers. Estimation of
the correct number of endmembers has significaqgaoh on the performance of the endmember
extraction algorithms and consequently on the amyuof the spectral unmixing process. According to
authors in [33], the accuracy of spectral unmiximdj be the highest when the exact number of
endmembers that are required to account for thetrgp@ariability is utilized in the model. Usingwer
endmembers than the actual number would lead tintrease of the root mean square error between
the original and the reconstructed image, whilstrtany endmembers would make the model sensitive
to instrumental noise, atmospheric influences aatdral variability in spectra, resulting in abundan

estimation error. Furthermore, the number of endbemis associated with the intrinsic or in a more
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wide sense with the virtual dimensionality of a ésgpectral dataset [34], [35], as it determines the
optimal number of dimensions to be retained afteredsionality reduction in order to represent the
dataset. Hence, an accurate determination of thebauof the endmembers significantly contributes to
the accuracy of the spectral unmixing processing anables low-dimensional representation of
spectral vectors, yielding gains in computatiomalktand complexity, data storage and signal-toenois

ratio (SNR) [12].

2.2 Review of methods for the estimation of the sighdlspace dimension

In recent years, many algorithms have been develofrch contribute to the estimation of the number
of endmembers. The available methods can be alksiito separate categories (Fig.2.1). The first
category comprises eigen-based energy methods [B&]], Typical examples of this category are the
principal component analysis (PCA) and the maxinmmse fraction (MNF). These methods involve a
dimensionality reduction method and estimate th@mmum number of the transformed components for
which the total variance of the data is equal gpecified percentage of energy. However, the dut-of
threshold should be manually chosen, which is wdifficult to determine since the eigenvalues
corresponding to signals and noise are sometinmssimilar [37]. In the second category, informatio
criteria based on likelihood functions [38], [39ka&mployed. Two well-known information criteria fo
model order selection are Akaike information crdar(AIC) [38] and minimum description length
(MDL) [39]. Since the criteria require the priordwledge of the mixture model or likelihood functjon
the estimation may suffer from model mismatch errggsulting from incorrect prior information.
Moreover, it has been shown in [35] that the resaft AIC and MDL when applied to hyperspectral
data are seriously overestimated due to the inv@kdissian distribution assumption made on the
abundances [37]. The third category consists @reiglue-based methods [35], [37]. Harsanyi-Farrand-
Chang (HFC) and noise-whitened HFC (NWHFC) [35] et estimate the virtual dimensionality

(VD) based on the fact that the eigenvalues of dbkelation matrix and of the covariance matrix
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should be equal if noise exists. Thus, eigenvatidsoth data correlation and covariance matrices ar
calculated and if their difference is positive -caiing to a determined probability false alarm
parameter- then a signal source is present. VD adstimight overestimate the number of the
endmembers because they estimate the spectraigctlisignal sources which could comprise known
and unknown image endmembers, background signatutesferences and anomalies [35]. HFC and
NWHFC methods impose limitations to automation sitieey result in different estimates for different
false alarm parameters. Recently, a new empiricthad for estimating the number of endmembers
presented in [37] modifies the VD concept. The rodtis called eigenvalue likelihood maximization
(ELM) and it is based on the fact that the eigemeslof the covariance and the correlation matrices
which correspond to the noise are identical, whalgenvalues of the correlation matrix correspogdin
to the signal are larger than the ones of the cavee matrix. The eigenvalue-based methods aralbase
only on the eigenvectors of the observed data lediwa or covariance matrix. Since signal subspace
dimension is unknown in most real applicationsnitst be inferred from data leading to a model-order
problem which may lead to poor results [40]. Author [40] presented hyperspectral signal subspace
identification by minimum error (HySime) method whiselects the subset of eigenvectors that best

represents the signal subspace in the minimum isepaare error sense.

Estimation of the number

of endmembers
Eigen-based t',ggé?gﬂ??kgﬂ'ﬁg% Eigenvalue-based (Virtual Signal subspace
energy e dimensionality) indentification
PCA MNF AlC MDL HFC NWHFC ELM HySime

Figure 2.1: Categorization of methods for estingthe signal subspace dimension.
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Among the methods for estimating the signal subsgimension, HFC, NWHFC and HySime are in
the front rank of high performance. Therefore, aeretailed description of these methods is given i

the next subsections.

Estimation of virtual dimensionality (HFC-NWHFC)

The HFC method [35] uses the eigenvalues to measgnal energies in the detection model. More
specifically, let {il , > iL} the eigenvalues generated by the sample covariaratex and

{11 >, 2. } the eigenvalues generated by the sample cornelatiatrix, wherelL is the data
dimensionality. Since the data dimensionality iuaqto the total number of eigenvalues, each
eigenvalue specifies a component dimension andigesvan indication of the significance of that
particular component in terms of energy or variagsuming white noise, if there is no signal seurc
contained in a particular component, the correspanccorrelation eigenvalue and covariance
eigenvalue in this component should reflect onlg tioise energy and therefore, both eigenvalues

should be equal,

A > 202 forl=1..VD

A=A =02 forl=VD+1..L (2.1)

nl

where o ? is the noise variance in i spectral band and VD is the virtual dimensidgaibove

which noise dominates.
This fact provides us with a base from which we fmamulate the difference between the correlation
eigenvalue and its corresponding covariance eideavas a binary composite hypothesis testing

problem,

o
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forl =12,...,.L. (2.2)

I T
_;\; ..
Il
oy
|
RS
Y
o O

20



The null hypothesis represents the case of thedifemence, while the alternative hypothesis iatis
the case that the difference is greater than Zetbreshold is needed to be set in order to indidathe
difference between the eigenvalues should be cereidmportant. Thus, the Neyman—Pearson test is
applied to each pair of correlation eigenvalue asdcorresponding covariance eigenvalue. The

detection powerP, is maximized and the probability of the false alaBnis set equal to a constant

value a. In mathematical terms we have

P, = [N(0,02 fz=a

= —38

P, :TN(M,GZ hiz (2.3)

where g is an unknown constant am:lj is the variance of the difference between the eigeres

72 2
A, —A,and can be approximated a§ :%+% [35]. The thresholdr, is determined by the fixed

value a and it isl-dependent. The number of times the test failscatés how many signal sources are
present in the image. In other words, a failuréhef Neyman—Pearson test in a component indicates a
truth of the alternative hypothesis, which impligst there is a signal source in this particular
component. Using this approach, we can estimatevibewith the receiver operating characteristic
(ROC) analysis for evaluating the effectivenesshefdecision. This method is sensitive to noiseesi

it does not have a noise-whitening process thatodeslates noise with signal sources to enhancebig
detection performance.

An alternative approach includes a noise-whitemragess in the HFC method to remove noise effects
on eigenvalues [35]. The modified method is reféteas noise-whitened HFC (NWHFC) method. In
this case, noise estimation is required for the NRMZHmethod. Since both the HFC and NWHFC
methods model the correlation eigenvalue and threegponding covariance eigenvalue as random
parameters in [40], the sample size must be seffiby large to ensure that the covariance between

these two types of eigenvalues is asymptoticalig.ze
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Hyperspectral signal subspace identification by minimum error (HySime)
HySime [40] estimates the signal subspace dimeakigrby searching the subset of eigenvectors of

the signal correlation matrix that best represémssignal subspace in the sense of least squaces e
Consider that ifL is the total number of bands, each observed spa@ictory, yeR", consists of a

signal vectorx, xe9R" and an error terrm,ne R"for additive noise which includes sensor noise,

endmember variability, and other model inadequdékg$19], [37], [40]:

y=X+n. (2.4)
Assuming that signal and noise matrices are uniedect the correlation matrix of observed spectra y
can be expressed by:

R, =R +R, (2.5)

The estimatelin of the noise correlation matrix results via mu#ipegression [41], while the estimate

Iix of the signal correlation matrix is given by trguation:

A

R =R -R,. (2.6)

X y

Let {4, >4,>..21} the eigenvalues of signal correlation mati and e the corresponding

eigenvector of 4,, for 1<i<L. Assume thatEp=<[ql,q2,...,qp]> is the subspace inferred hy
eigenvectors -not necessary the figstbut any possible permutation @f eigenvectors- and the
projection of the observed spectyanto this subspace is expressed by:

X,=U.y, (2.7)
whereU | = EpE‘T) the projection matrix ont<)Ep>.

The mean square error (MSE) between the signfibm eq. (2.4), (wherex =y —n) and the estimated

%, is computed byMSHp/x)= E[(X—XD)T(X—RD) xJ and MSHp)= E[MSHp/x)], where E()

p

stands for expectation operator. Noting ttj%t =1-U , the optimization problem is expressed as:
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p=argimin,__, (tracdu :R ]+ 2tracdu ,R || (2.8)

and by further simplification of eq. (2.8) is retien:

p= arg{minmSL |Zf:1(— v, + 20']-2)J} (2.9)
where v, =e/R e, o’ =€ Re for 1<j<L, and{g,e,..& | are the eigenvectors @R, . The first
term, —v; is related to the projection error and it is ardasing function op, while the second term,

20j2 Is related to the noise power and it is an ingnggRinction ofp. The minimization of eq. (2.9) is

accomplished when negative values of the function be minimized are encountered. The

corresponding number of eigenvectors is the signl$pace dimension.

2.3 Outlier detection method

All the existing methods for estimation of the ffrsubspace dimension, arguably, consider the
existence of two different distributions, the oméated to noise and the other related to signain or
geometrical approach they consider two differefispaces one of noise and one of signal. However, in
hyperspectral space, signal vectors are very fevorder to estimate their population distribution
properly or to statistically analyze them.

A new automatic non-parametric method for estingatime number of endmembers is introduced. Its
novelty lies in the fact that it considers only thastence of noise and treats signals as outlienise.

No estimation of statistical distributions is reqa. The new method, called outlier detection meth
(ODM), explores the geometrical properties of tlese hypersphere. It searches for the signals whose
radius is by far larger than that of the noiseddtrcing for the first time in virtual dimension trg a
robust outlier detection method. In particular, @®M performs noise estimation and whitening
process. Afterwards, observed data are transforntech new principal component space, where noise
is expected to lie in a hypersphere of constanusadstimation of the number of noise hypersphere
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outliers using a robust inter quartile range basdtier detection method [42] results in the estiora
of the number of endmembers. In [24] an empiricathad for estimating the number of endmembers is

presented which implies the approach adopted by ODM

2.3.1 Data model and problem formulation
Recall the fact that each observed spectral vgctoy € R-, where Lis the total number of bands,

consists of a signal vector, xe R" and an error ternm, n e R"that models the additive noise which

includes sensor noise, endmember variability, dhdranodel inadequacies [6], [19], [37], [40], ,.e.

y=X+n. (2.10)

Furthermore, a signal vector lies in an unkngwatimensional subspac&E<([s,,...,s,] >) of the band

space, wherey< L and it is described by:

x=Y as =Sa. (2.11)

Under the subspace model scenario, thel signalvectors s, are linearly independent (or otherwise
Sis a full rank L x pmatrix), serving as a basis for the spectral sulssp@] and« is considered a
px1vector containing coefficients . Under the linear spectral mixing concept (seéi@ed.2.1) [19],

matrix S=[s,...,,]Jcomprises the endmember spectra and=[a,...,a, thgir corresponding

p
abundances. The latter should obey to the sum-+osmd the positivity constraints in order to be
physically meaningful. In this work, the subspacedel is being studied which specifies the linear
vector subspace region of the spectral space ishvpectral vectors are allowed to reside regasdles

the adopted spectral mixing model, linear or nowedir [6], [40].
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According to [43], in the case of independent ashehtically distributed (i.i.d.) zero mean noisetwit

variancec’l, signal subspace can be estimated, even if sigmabrgeare unknown, by the orthogonal

decomposition of the covariance matrix of the obsérvectorsy, R, . The estimate of the signal
subspace is the span of the eigenvectordRpf <M>:<[el,e?,..,ep]> whose respective eigenvalues

A > A, >...> A, are larger tham; of noise. Of course, in most real applicationsdimeensionp of the

signal subspace is unknown and noise is not i.THerefore, in many cases noise estimation is a
prerequisite for the denoising or whitening procésplethora of signal subspace estimation methods
[35], [36], [37], [38], [39], [44] are based on tkeeenvalues of the covariance or correlation matfi

the observed spectral vectgrsThe drawbacks of using only the eigenvalues eesgmted in [40]. In
this work, the estimation of the signal subspaamedision is based on the transformation of the

observed vectorsy using the eigenvectors dR . The new transformed space is then statistically

analysed based on information theory concepts wdnietpresented in the following section.

2.3.2 Definition of Noise Hypersphere
Multivariate normal distribution
Let X =[X,,X,,...,X, ]"be aLx1lrandom vector. Its mean value is givemiy E(X), E(-) stands for

expectation operator, and its covariance matrixRgy=E(X — m)(X —m)" . Assuming that randox is
multivariate normal andR, is a non-singular matrix, the following quadregtem

r?2=(x-m)’ R, (x-m) )1
is a weighted norm which is called the Mahalanalistance fromx to m. The locus of pointx for
which r?is constant is also a locus of points for which dieesity f (x) is constant. Geometrically, this

represents a hyper-ellipse. In case that the Iscasypersphere, its radius is equat tf43].

Noise hypersphere
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Based on information theory [45], [46] the zero m&aite Gaussian noise vect0r~N(O,an2I) has
constant noise spectral denshy . It is spherically symmetric in all directionstime spectral space and
lies on the surface of a hypersphere with radiusaktp o,. More specifically, in arL-dimensional

hypersphere, the distance of poms[n,,n,,..n, ]" from the origin (zero) point is according to egl1@)

JnZ+n2+.4n?
r =

n

and the distance of the normalized noise vect%—, which is theo,, .
o, L

The advantages of considering the normalized versiorise vector as well as further details related
to the above can be found in [45], [46], [47].

Thereupon,c,, =0, =...=0,, are the standard deviations of the normalizedenweisctor in each
dimension of the hypersphere and are equal tadsis as it shown in Fig. 2.2. The signal vectonas

evidently o, > o, and sinceo, varies in all directionsx lies in a hyperellipsoid. In order to utilize the

aforementioned properties of the noise hyperspherg,requisite that the noise is zero mean iod.
that noise is known and therefore it can be transéd to zero mean i.i.d.. Both requisites do nandt
in real applications. However, many approaches haes developed for noise estimation. Two of them

are presented in the following section.

Band 2

Qn2

O Ont Band 1

Figure 2.2: lllustration of noise hypersphere irethdimensions.
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2.3.3 Noise Estimation

Noise estimation is of great importance not only ligperspectral imagery but generally for signal
processing. In this section, nearest neighbor rdiffee (NND) [48] and multiple regression theory][41
based methods are analyzed since these are wisletlyhy signal subspace estimation algorithms [39],

[40]. Both these noise estimation methods are et@tlusing simulated data in section 2.4.

Nearest neighbor difference

The nearest neighbour difference (NND) method [48jp called shift difference method, is considered
to be the easiest method for noise estimation.prbeedure exploits the fact that signal exhibitersj
spatial correlation among nearby pixels in an imagheilst the spatial correlation for noise is very
weak. Therefore, it is assumed that noise sampéemdependent and have the same statistics [4@]. T
shift difference method should be applied on a hggneous area. More precisely, it is performed on
the data by differencing the two adjacent pixelth®right and above each pixel and averagingwioe t
computed differences to obtain the noise valuesgiga to the pixel being processed. The idea can be
illustrated using two adjacent observed vectgrand ¥, with essentially the same target. Subtracting

them yields:

Y=Y, =X +n) = (X +n,)=n —n, (203

where x;, X, are the signal vectors am,n,are noise vectors. Depending on the image, theenois
estimation may be performed in a homogeneous sudispixels, assuming that noise is the same
throughout the whole image. Therefore the covagamatrix of noiseR can be estimated, instead of

noise value per observed spectral vector. The draekinf the NND method is that due to its

assumption that adjacent pixels have the samelsigioamation, the method is not proper for all the
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datasets, because the amount of pixels belongirgieogeneous areas may not be adequate for an

accurate calculation of noise statistics.

Multiple regression theory based method
The multiple regression theory based approach [4Q],is amenable to hyperspectral data sincent ca
accommodate many explanatory variables which magdoeelated, such as data in adjacent spectral

bands. In particular, leY be aLx N data matrix, wheréN are theL x1 observed spectral vectors, and

L the spectral bands. Defining=Y", a Nx1 vector z =[Z]., containing the'f band values of all the
pixels andZ, =[z,...,z ,,Z ,,...,z, ]is @ Nx(L-1) matrix containing the pixel values of all the bands

except for band. Assuming that vectog, can be expressed as a linear combination of theingmg

data of L-1 bands, the following equation can be written:

z=7Z;b+n (2.14)
where Z is the N x (L — Dexplanatory data matrixp is the (L—-1)x 1regression vector and is the

residual error of sizéN x .IThe linear regression coefficients are determimed

b =(212,)"2lz. (2.15)

Noise estimation of bands accomplished by the following equation:

A =2z-2,b. (2.16)

2.3.4 Analysis of the proposed method

In this section the proposed method for estimatimggnumber of endmembers, called outlier detection

method (ODM), is introduced and described analifficdhe method is fully automatic and non-

28



parametric. It comprises three steps: 1) noisemesibn, 2) MNF transformation and 3) outlier
detection. The main key points of the proposed pttre summarised as follows:
a) There is a big effort in hyperspectral commundydefine a threshold between signal and noise
[37]. The ODM introduces a new concept which coesdonly the existence of noise and treats
signal as outlier. Consequently, no threshold exled.
b) Contrary to the existing relevant algorithms e¥hfocus on signal subspace, the ODM exploits the
properties of noise subspace. It relies on the ema#ttical description of the noise hypersphere sadiu
which is given by information theory.
c) A new modified version of MNF is introduced whimitially performs multiple regression theory
based method for noise estimation, instead of NR&sults showed that this modification improves
the MNF method.
d) For the first time in virtual dimensionality gy, a robust outlier detection method is usededal
inter quartile range (IQR) based method. Its berefs in the fact that it can be used when data
distribution is unknown and thus, no statisticalgpaeter estimation is needed. The risk of estirgatin
erroneously the signal distribution due to its drpapulation is omitted.
e) The proposed method exhibits high degree oflgsityp
The first step of the proposed method is noisenedion. Experiments with simulated and real data
(section 2.4) show that the performance of the @sed method is better when multiple regression
based method is applied instead of the NND method.
The second step includes noise whitening and toamsition into a new principal component space.

More analytically, the noise covariance maRjxis estimated. The orthogonal decompositionRyf
results in the matrib, =[d,;,d,,,....d, df size LxL which consists of noise eigenvectals, each

one of sized x1. Suppose that the observéd«N data matrixY, where N are theLx1 observed
spectral vectors and the spectral bands, is transformed using the regenvectors. The transformed

dataF is given by
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F=D,Y. (2.17)
The matrix F of sizeL x N consists o transformed spectral vectofof sizeL x1. DefiningW =F",
a N x1 vector w, =[W].; contains the values of all the transformed pixelbandi . Dividing each data

of bandi with the standard deviation of noigg, (symbol ~ stands for the estimated value) of the

corresponding band

o] 18)

results in theN x L matrix W’ which is the transformed data with equal noisearae s’ in each band,
which means that noise is whitened in the transéarspace.
The next step is the orthogonal decomposition ef abvariance matrix oV'" which results in the

LxL matrix D, . containing thed . eigenvectors of sizé x1. The transformation oW'" using the
eigenvectors oD,

' T 1T
Y'=D] ;W (2.19)

defines a new principal component space in whiamdiormed data ol x N matrix Y'consist of
uncorrelated noise which increases with the componank. Thus, the well-known MNF [48] is
modified by applying different noise estimation had.

Assuming that noise is white, rotation of a sigstalicture, i.e. in eq. (2.19), does not changentiise
distribution [47]. Consequently, noise remains sjladly distributed about the mean value and lres i

hypersphere of radiug, . It is reasonable that noise estimation comprsesrror, which is justified in

terms of fluctuations. Therefore, it cannot be exge that standard deviations of noise componests a

exactly equal tas, but it should be expected to be close to zero nvaare as the minimum standard
deviation of a component corresponds to the maxinmmse fraction [48]. Conversely, standard
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deviation &, of signal x,, wherei=1,...,p, is larger thang,and decreases as component’s rank

increases. Fig. 2.3 shows the histogram of thethree transformed components of a zero mean image
with three endmembers and signal-to-noise ratio RBRO0:1. As it is observed, the first two
transformed components present high variance, whéethird transformed component has very low

variance which is close to the mean value.

F  Transformed Component 1 .
F  Transformed Component 2 B
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Figure 2.3: Histogram of the three first transfodhemponents of an image with three endmembers.

The third step of ODM includes outlier detectionngsquartile range. Outlier detection is widely dise
to detect and/or remove anomalous observations finendata. It is a primary step in many data-mining
applications [42]. There are many definitions givien outliers. The one that fits on the particular
approach is given by Hawkins [49] who defines atli@uas an observation that deviates so much from
other observations as to arouse suspicion thastgenerated by a different mechanism.

The sample mean and the sample variance give gstodation for data location and data shape, but
they are affected by outliers. Inter quartile rarffgR) based method [42], [50] is one of the most
common methods for outlier detection as IQR iskausb statistic compared to total range and standard

deviation. The method can be used when data disimibis unknown. Assume that observed values are
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placed in ascending order. The lower quartilei€the observation at the 2%ercentile, the second
quartile Q is defined the observation at thé"5@ercentile and the third quartile; @ the observation at
the 78" percentile. The quantity£D; is called the inter quartile range (IQR) and i\pdes a means to
indicate the boundary beyond which the data will lakelled as outliers. More precisely, if an
observation is below Q- 1.5%IQR or above £+ 1.5xIQR, it is viewed as being too far from the
central values to be reasonable.

In most real applications signal subspace, andezprently signal vectors are unknown and even ¥f the
are known they are very few in order to be statdly analysed. Noise subspace consists always of
some hundreds of components which are much more ttiea signal components in the transformed
hyperspectral space. Assuming that standard demsmbf all the principal components correspond to
noise, it is expected that the whole data lie hypersphere of radius, . Thus, signal components can
be considered as outliers of noise hypersphere.

As it is referred in previous section, the radifi;ioise hypersphere is much smaller than the raafius
the signal hyperellipsoid and since search is fedusn detecting noise hypersphere outliers, ordy th

upper bound is of interest in this particular pchee. Let us assume tha=[s,,5,,....0. ]is a
Lx1vector which consists of the standard deviatiah®f each i"transformed component. The
transformed components are ranked according td&StR, which implies thai, are in descending
order and thus, the firsp values ofZ correspond to signal vectors. Taking h& =[5, ,5, ,,....,6, as]
the Lx1vector which consists of the standard deviatiens reverse order, meaning in ascending
order, the firstL — p values of>"correspond to noise vectors. Asis unknown we suppose that all the

values of"correspond to noise. Euclidean distance (ED) of a@ajt values of =F,
ED=[ED(6,,6,,),ED(6, ,,0, ,),..,.ED(6,,5,)] reflects possible divergences which are considered

reasonable whe#; corresponds to noise, but outliers whgrcorresponds to signal.
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The pseudo-code for ODM is shown in Algorithm 2.1.

Algorithm 2.1: ODM

Data: The LxN matrixY , where N are thelL x1 observed spectral vectors ahdhe spectral bands
Result: Estimation of the number of endmembprs

Step 1: Noise estimation

z=Y"

fori=1 toL, z =[Z].; all the pixels of band i
Z,=[z,...2 ,,%,,,...,Z ] the pixels of all the bands except i
6, =(2%Z,)"Z1z calculation of coefficient b

N =z —Z,b noise estimation for band i

end for
OUTPUT hA

Step 2: White noisalata transformation
Estimation of the noise covariance mafrx

Computational of the matrix associated with thévegbnal decompositon dR.: D, =[d,;,d,,....d,, ]

F=D,Y

W=F",

W =[W].; are the transformed pixels in baind
fori=1 toL, estimation of 0., (standard deviation of noise)

W
Wi = -
Oni

end for

Estimation of the covariance matrix of W'"

Computational of the matrix associated with théegonal decomposition &V'" : D,

Transformation of whitened data Y' = DVTV,TW'T
OUTPUT: Transformed whitened data Y’

Step 3: Outlier detection
Estimation of standard deviation of Y X =[&,,0,,...,0 ]
Normalization of X
Sortingd; in descending order SR=[6,,6, 1,010]
Calculation of Euclidean distance far. of adjacent bands
ED :[EDL,L—1(6L’6-L—1)’ EDL—l,L—Z(OA-L—l’OA_L—Z)""’EDZ,l(&Z’OA-l)]
Retrieval of quartiles from EDs:

foriz1to4
k=i*(25%) * (L-1)
Q =EDy k1
end for
IQR = @Qy
Definition of the number p of endmembers:
p=0
fori=2toL
ifED;;.; is greater than Q3+1.5*IQR then
increase p by 1
end for

OUTPUT: Number of endmembers p




Geometrical point of view: An example

For illustration purposes, the following experimentsimulated hyperspectral data is implemented. Th
simulated data generated according to the lineaingniscattering mechanism using seven random
spectral signatures from the U.S. Geological Sufi$§GS) digital spectral library and consist of 10
pixels and 423 spectral bands. The abundancedrectollow a Dirichlet distribution according toq@
enforcing positivity and full additivity constrast Gaussian colored noise was added to the data
resulting in a signal-to-noise ratio (SNR) of 20dBe procedure described previously containingenois
estimation using multiple regression theory, naidgtening and transformation into a new principal
component space and outlier detection is implenaente

Fig. 2.4 shows the distribution of the transfornteda through overlapping scattergrams of pairs of
adjacent components. Only two axes are used a¢h component is kept on the same axis for the
two pairs in which is encountered. The extent afheacattergram in i and j directions implies the
magnitude of the standard deviation of Ci and Gmponent, respectively. As it is observed, standard
deviations of the first six principal components aglatively high and as band rank increases, atdnd

deviations also increase. More precisely, supppgtenotes the standard deviation of band i. As it is

shown in the overlapping scattergram the following relation exists

0,>0,>..>0>>0,~0y ...~ 0,5, ~0_. Furthermore, it is remarkable that noise cirdle this

case it is not hypersphere since scattergramsaresin two dimensions) can be detected from the C7
C8 pair (orange circle) and after. This means thahe hyperspectral space, the radius of the noise

hypersphere is associated to the standard deviafitine 7' component which is right after the—1

component. It should be noted that since simulakse are generated according to a linear mixing

model, the dimension of the signal subspacpis Thd.scattergram of the 4Band 402° components
was randomly selected to testify the equality ef tioise standard deviatiein all the directions (Fig.

2.4). The difference between the radius of the geasircle (Components 7-8) compared to the radius o
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the yellow circle (Components 401-402) can be amrsdd without loss of generality as a result of

fluctuations.
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Figure 2.4: Overlapping scattergrams of pairs ¢d@eht principal components. Only two axes are used
@, ). Each component (B) is kept on the same #dshe pairs in which is encountered.

Another approach for studying the standard dewviatiof the principal components is by plotting them

on a diagram. Fig. 2.5 shows the standard devstaineach principal component resulted from the

above experiment. By observing the diagram, iasyeo perceive that standard deviations of theenoi

(in black color) are almost similar while standaeliations of signal (in blue color) differ a lab

each other. The optimum threshold by which sigaa¢sdiscerned from noise is estimated by using the

inter quartile range based method.
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Figure 2.5: Diagram of the standard deviationsazheprincipal componenp£7). A logarithmic scale
is used on y-axis.
A graphical display on which outliers can be intichis a Box plot [42]. Figure 2.6 shows the Boatpl
created by using the EDs between the standardtaeviaalues. The majority of the EDs are close to
one and reside on the left side of the green Vitéch indicates the upper bound. Black points repné
the outliers. As it is observed, the differencesBBs between the three quartiles are negligible

compared to the values of the six outliers.
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Median=1,00002629

Quartile1=1,00000943 Quartile3=1,00005463

Min=1,00000011 Max=585,05385462
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Figure 2.6: Box plot indicating the existence oflieus (on the right side of green line). A loghritic
scale is used on y-axis.

2.4 Experiments

Simulated data experiments

The ODM algorithm was applied on simulated data anthpared with the state-of-the-art signal
subspace methods, the HySime method and the NWHi&h-based Neyman-Pearson detector. The
simulated data were generated by a random seftteéri spectral signatures with 423 spectral bands
from the U.S. Geological Survey (USGS) digital gpdclibrary. The abundance fractions follow a
Dirichlet distribution according to [40] enforcinmpsitivity and full additivity constraints. Experants
were conducted with respect to 1) the size of thageN , 2) the number of endmembeys, 3) the

SNR values, 4) the type of noise (white noise amaisBian shaped noiSednd 5) the existence of

outliers.

° The algorithm which was used for the generatiothefsimulated data is available at
http://www.Ix.it.pt/~bioucas/code.htm.
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The reason that different image sizes are intradiuise twofold. Firstly, due to sampling error,

estimation of the noise covariance matRx and estimation of standard deviatiérare both affected

by the sample size and they should be examinedeaatliated using smaller image size, as well.
Secondly, recent developed endmember extractiohadsttend to integrate spatial information into the
endmember extraction process [50]. Towards thection, these methods search for local endmembers
in subsets of image data. Therefore, effectivené€3DM is examined for such a scenario. Thus, two
sets of simulated hyperspectral images were creetézh differ in size, containing 2500 pixels ar@f 1
pixels respectively. Furthermore, evaluation of fireposed method regarding various numbers of
endmembers should also be tested. According to, [t number of endmembers that may be
practically identified typically ranges from thrée seven, depending on the number of bands and the
spectral variability of the scene components. Isecaf high spectral resolution the hyperspectral
datasets may comprise even more, i.e. AVIRIS Capntage consists of at least 18 distinct spectral
signatures according to USGS. Therefore, the nurmbendmemberp was determined to be 3, 7, and

15. Two different types of noise were added indimeulated images; white noise and Gaussian shaped
noise with variances? equal to 0.02, leading to SNR values of 50dB, B02D dB and 10 dB. Noise

estimation step is required in order to transforois@ to zero mean i.i.d.. In the case of simulated
images with white noise, the last is sphericallgngyetric in all directions and lies on the surfatao
hypersphere with a constant radius Therefore, resieation can be omitted.

Figures 2.7 and 2.8 show the standard deviatiomegalor each transformed component of images with
N=10%, with p equal to 3, 7 and 15 and white and colored naspectively. It is observed that standard
deviation values minimize and stabilize when thehar of the transformed components is equal to the
number of the endmembers. For clarity purposesag chosen to present a subset of the transformed
components of all the simulated images in a stapketl and therefore the scale of the values infeg

2.7 and 2.8 has changed. Table 2.1 shows the sesuthe applied methods for images with white

noise. As it is concluded from the results, regagdhe images of 2500 pixels, the ODM yielded quite
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satisfactory results outperforming the HySime antfH\-C algorithms when SNR values were very
low (30dB-10dB). For the images of “@ixels, all the applied methods vyielded the sarigh h
performance for the images which contain 3 endmesplsegardless the amount of noise. When the
space dimension increasedpo?/, the proposed method outperformed the NWHFC oaktind it had
the same high performance with HySime, except fier itnage with SNR of 10 dB for which the
proposed method performed better. For the imagts 16 endmembers, the proposed method yielded

systematically better results than both HySime l[di#W¢HFC.
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Figure 2.7: Stacked plots of standard deviationesffor each PC band for the images Witti10" and
white noise.
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Figure 2.8: Stacked plots of standard deviationesffor each PC band for the images Witti10" and
Gaussian shaped noise.
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Table 2.1: Estimated number of endmembers from @wath white noise as function of SNRandN.

White Noise
SNR Method 2500 pixels 104 pixels
p=3 p=7 p=15 p=3 p=7 p=15

ODM 3 7 15 3 7 15
HySime 3 7 15 3 7 15
50dB NWHFC P=10" 3 4 5 3 5 9
P=10+ 3 4 4 3 5 7
P=10"% 3 4 4 3 5 7
ODM 3 7 15 3 7 15
HySime 21 23 24 3 7 14
30dB NWHFC P=10" 3 5 4 3 6 6
P=10+ 3 4 3 3 5 6
P=10"% 3 4 3 3 5 5
ODM 3 7 13 3 7 13
HySime 23 26 25 3 7 11
20dB NWHFC P=10 3 4 1 3 6 5
P=10+ 3 4 1 3 5 4
P=10"% 3 4 1 3 5 3
ODM 3 7 10 3 7 11
HySime 20 27 24 3 6 7
10dB NWHFC P=10" 3 3 1 3 5 3
P=10+ 3 3 1 3 5 3
P=10-* 3 3 1 3 4 3

Table 2.2 shows the results of the applied metifodamages with Gaussian shaped noise. Two
different methods for noise estimation were implatad. As it was expected, NND noise estimation
led to the worst results. This is reasonable bexa@lidD needs to calculate the shift difference in
homogeneous area while pixels in simulated data wezated randomly without homogeneous areas.
The most satisfactory results were given by ODMbioth image sizes when multiple regression theory
based method was used for noise estimation. Edlyeriacase of low SNR, results are much more
satisfactory compared to the results from HySimia]ernboth methods provided similar results for high

SNR. The NWHFC methd@gave the worst results.

19 |mplemented using Open Source MATLAB Hyperspectiablbox. 2012. Version 0.06.
http://matlabhyperspec.sourceforge.net/

Endmember Induction Algorithms (EIAs) toolb@rupo de Inteligencia Computacional,(UPV/EHU)alBp
http://www.ehu.es/computationalintelligence/indéwpfiEndmember_Induction_Algorithms
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Table 2.2: Estimated number of endmembers from énaigh Gaussian shaped noise as function of
SNR,p andN. [1] stands for multiple regression, [2] standsNIND.

Gaussian shaped noise (g=0.02)
SNR Method 2500 pixels 104 pixels
p=3 p=7 p=15 p=3 p=7 p=15

ODM [1] 3 7 15 4 7 15

ODM [2] 49 39 48 32 38 33

50 dB HySime 3 7 15 3 7 15
NWHFC P=10¢ 62 13 8 47 23 13

P=104 53 12 7 4 22 11

P=10° 52 12 6 37 20 11

ODM [1] 3 8 16 4 7 15

ODM [2] 39 40 47 34 A 35

30 dB HySime 3 7 13 3 7 14
NWHFC P=10-" 45 58 37 66 48 13

P=104 4 54 k| 59 43 13

P=10° 38 47 29 56 36 12

ODM [1] 4 8 17 4 8 16

ODM [2] 48 48 45 30 25 42

NWHFC P=10" 30 23 72 23 56 45

P=104 24 20 60 18 48 38

P=10° 23 17 49 17 43 32

ODM [1] 5 9 17 5 8 17

ODM [2] 47 38 40 37 34 32

NWHFC P=10-3 12 16 5 56 67 45

P=10* 8 14 5 48 60 36

P=10° 5 14 4 45 50 32

In order to test the method’s resistance to oustlierthe image pixels, simulated images contaiffing
endmembers and Gaussian shaped noise with SNRswvaifllB)dB and 50dB were used. Outliers were
added to the images by randomly sampling threg/iogtipoints from a uniform distribution, according
to [26]. Table 2.3 reports the results. Estimatiohthe proposed method are satisfactory and vésfy

resistance to outliers.

Table 2.3: Estimated number of endmembers from @wdth three outliers.

p=7
Method 50dB | 30dB
ODM[2] 7 8
HySime 7 6
NWHEC P=103 7 5
P=104 6 5
P=105 6 5
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Real data experiments

The proposed algorithm was applied on two real rggectral remote sensing images in order to be
evaluated in case of unequally distributed noidee Tirst image was acquired in June, 1992 by the
Airborne Visible/Infrared Imaging Spectrometer (ARIS) sensor over an agricultural area of north-
western Indiana (Indian Pines) (Fig. 2.9). It cetssiof 145 x 145 pixels with 220 spectral bands
covering a spectral range from 400 to 2500 nm. mamber of bands was reduced to 186 after
removing 34 bands due to water absorption and IdIR.SAccording to the associate ground based
observation¥, 16 land cover classes exist in the image; alfaléan-notill, corn-mintill, corn, grass-
pasture, grass-trees, grass-pasture-mowed, hayemied, oats, soybean-notill, soybean-mintill,
soybean-clean, wheat, woods, buildings-grass-tleges and stone-steel-towers. It should be noted
that the aforementioned classes do not represergrttire scene and some of them are not associated
with pure materials. Consequently, the number efahdmembers is expected to be higher than 16. Fig.
2.10 shows the standard deviation values for eatsfiormed component of the AVIRIS image and
Table 2.4 shows the estimated number of endmenfioensthe applied methods.

As itis listed in Table 2.4, the ODM using NDD amdiltiple regression theory based method for noise
estimation and the NWHFC resulted in a reasonabieber of the distinct classes while the HySime
underestimated it. The fact that NWHFC estimateseweuch higher than its competitors is reasonable
since the method searches for signal sources wimal include not only endmembers but also

unknown interferences, such as clutters, backgreigrhtures and anomalies [12].

1" https://engineering.purdue.edu/~biehl/MultiSpecArgpectral.html
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Figure 2.9: AVIRIS Indian pines hyperspectral datas
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Figure 2.10: Standard deviation values of the franged bands for AVIRIS Indian pine image.

Table 2.4: Estimated number of endmembers for MEAS Indian Pines image
[1] stands for multiple regression, [2] standsNIND.

Estimated number of
endmembers
(reference number:
higher than 18)
ODM [1] 17
ODM [2] 24
HySime 14
NWHFC P=10- 27

P=10+ 23
P=10° 22

Method

The second real hyperspectral dataset which has sl for evaluation was collected in 1997 by the

AVIRIS sensor over a well-known mining region of gite in Nevada. The image scene is well
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understood mineralogically and the ground truthcpé signatures are available in the USGS digital
library. According to the associated ground badeseovations and the mineral map produced in 1995
by USGS? 18 minerals can be identified in the image. Besinhinerals, there should be other distinct
classes depicted in the image, whose amount isawknThus, the number of the endmembers is
expected to be higher than 18. The original imaage220 spectral bands covering a spectral range fro
0.4 to 2.5um. The number of bands was reduced to 188 afteovemg bad bands due to water
absorption and low SNR. Fig. 2.11 shows the subaregene of 351 x 350 pixels with reflectance
values which was selected for the experiments. EitR shows the standard deviation values for each
transformed component of the AVIRIS image. Tabk shows the estimated number of endmembers
from the applied methods.

As it is shown in Table 2.5, the ODM using NDD amdiltiple regression theory based method for
noise estimation and the NWHFC resulted in numbahe distinct classes higher than 18 while the
HySime underestimated it. Particularly, ODM usin@IN significantly overestimates the number of
endmembers since the Cuprite image does not inchderiuate number of pixels belonging to

homogeneous areas.

e
Ll ) S |

Figure 2.11: AVIRIS Cuprite hyperspectral data.

12 http://speclab.cr.usgs.gov/cuprite95.tgif.2.2um_mifip
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Figure 2.12: Standard deviation values of the fransed bands for AVIRIS Cuprite image.

Table 2.5: Estimated Number of Endmembers for TRERAS Cuprite Image
[1] stands for multiple regression, [2] standsNIND.

Estimated number of
endmembers
(reference number:
higher than 18)
ODM [1] 20
ODM [2] 29
HySime 15
NWHFC P=107 22

P=104 Py
P=10° 19

Method

2.5 Conclusions

In this work, a new automatic and non-parametri¢cho@ for the estimation of the number of the
endmembers in hyperspectral imagery was introdu€kd. proposed method, called outlier detection
method (ODM) develops a novel approach considesiggal as outlier of the noise hypersphere. In
particular, after noise estimation and whiteninggess, the transformed data reside in a principal
component space where noise presents sphericatiynsyry towards all the directions, having a
constant radius. Conversely, signal radius varieslithe directions and it is much larger thannbese
radius in the components which include it. Estioraf the number of noise hypersphere outliersgusin

a robust inter quartile range based outlier dedacthethod results in the estimation of the numifer o
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endmembers. The proposed method is characterizeits bsimplicity and its significant benefit to
refrain from estimation of statistical distributgn

Experiments using simulated data proved the effiyeof the ODM which outperformed compared to
its competitors. The performance of the proposethatkis quite satisfactory in real data, as well.
Through this particular work it is concluded thaguccessful estimation of the number of endmembers
strongly depends on how well signal and noise aseedned. Outlier detection theory could be
efficiently used for this goal. Future researchudti@lso focus on combining the proposed method wit
endmember extraction methods which integrate dpafarmation, taking advantage of its successful

estimation of the number of endmembers in smadicsimages.
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Chapter 3

Dimensionality reduction

3.1 Introduction

High dimensionality is inherent to hyperspectraladdlyperspectral sensors record over hundreds of
narrow contiguous spectral bands. The trade-offigh spectral resolution is the huge volume of data
which poses many challenging problems in terms atia dstorage, computational efficiency and
algorithms performance [12]. In addition to thessues, high dimensionality arises the curse of
dimensionality [51]. According to this, the spaysihcreases exponentially with the dimensionality
given a fixed amount of data sample and in ordera¢bieve the same accuracy of regression,
classification etc. in a higher dimensional spdbe,data sample needs also to increase which ys ver
difficult, if not impossible, in practice. Dimensiality reduction (DR) aims at mitigating the
aforementioned issues. It has been widely used @sm@ocessing technique to define the data into a
lower dimension in order to be analyzed more effett. Thus, DR affects directly the performance of
the following processing tasks. In this study, ®asl given to DR in terms of spectral unmixing and

classification purposes.
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3.2 Review of the relevant literature

A significantly large proportion of the relevantsearch is devoted to the development of new
approaches of DR since the traditional ones dedifmremultispectral data are not applicable witghi
success on hyperspectral data. The large amoubRafethods renders impossible their inclusion in
this section, which is also out of the intentiortlaé work. The particular review includes the mamd
most commonly used approaches for DR of hyperspledata sets. These DR approaches can be
classified into two main groups (Fig. 3.1). Thestfione includes feature extraction (FE) methods and
the second one includes band selection (BS) metod§E method uses transformations to represent
the data sample in a lower dimensional space dkmidihe information given from the entire data. set
On the other hand, BS methods search for a subské mriginal spectral channels, which comprises
the most distinctive and informative ones, basedestain criteria.

Depending on whether there is information in adearetated to the materials existing in the scene or
not, the FE methods can be further categorisedsiatitstic-based methods and feature-based methods.
The former use statistics to de-correlate the dataple and it is an unsupervised approach which
requires no a priori knowledge. Such statistic-dag& methods are the second-order statistics
transforms, principal component analysis (PCA) Whises the variance [52], maximum noise fraction
(MNF) or noise-adjusted principal component (NAR@nsform which use the signal-to-noise ratio
(SNR), and the singular value decomposition (S\Rpsform [53]. According to [54], [55], second-
order statistics transforms cannot retain infororatrelated to subtle materials whose proportion
compared to the entire data sample is relativelpalisend thus, their contribution to second-order
statistics is very little. To overcome this issuegher-order statistic-based methods have been
developed; third-order and fourth-order statistsdd transforms which use skewness and kurtosis,
respectively [13]; and infinite-order statistic-bdsndependent component analysis (ICA) method, [56]
[55] which is an unsupervised source separatiorcga® assuming that sample vectors are linearly

mixed by a set of separate independent signal eswand can be used to unmix these signal sources
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according to their statistical independency meakine mutual information [57]. The aforementioned
high-order statistic-based methods are speciakoafsprojection pursuit (PP) [54], [58], [59], [6RP
uses a projection index (PI) as a criterion to fitiekctions of interestingness of data to be preegs
and then represents the data in the data spacdiexghday these new interesting directions [13].
Variance, mutual information, skewness etc. candmsidered as PIs.

The feature-based FE methods produce a set ofréeatectors by which data sample can be
represented. These methods exploit associated ipformation of the data set such as the spegftra
the classes or of the endmembers included in tbeesand therefore, they are used for representation
tasks or classification purposes rather than aprpcessing step for endmember extractian.
representative feature-based FE approach is thetrapenixture analysis (SMA) which besides a
technique for applying physical-based model todhserved spectral vectors in order to analyse them,
it can also be viewed as DR technique [1]. The Sidgults in a reduction in the dimensionality of the
data from the initial spectral bands to a few, nedeéfined axes in the data space. These axes, also
called feature vectors, correspond to pher p-1 endmembers which are quite fewer than the Initia
spectral bands and the entire data can then besamed by the-dimensional endmember space. In
section 4.2, there is a description of several lbgezl methods based on SMA. Another well known
feature-based FE method is the Fisher’s ratio-b&éeedr discriminant analysis (FLDA) [61] which is
implemented for supervised classification. The FLIDg®s the ratio of among-class variances to within-
class variances so as to achieve the best postitsie separability. The derived feature vectorindef
the decision boundaries among fhelasses and the data can be represented by them.

Contrary to FE, band selection (BS) is a DR apgraggich retains the physical meaning of the data se
[62]. Based on this approach, a set of spectrahrodla from the original hyperspectral data set is
selected comprising the information needed for egbent hyperspectral image spectroscopy.
Moreover, band selection results in a more geragpioach than FE as the used features are assbciate
with the original spectral channels of the hypectaé image and/or with measures that extract

information from the original channels and from thaatial context of each single pixel [63]. The
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majority of the BS techniques have been developmdtlie optimization of classification tasks.
Assuming that there is information related to thesses of interest, BS methods comprise a search
algorithm and a criterion function. The search gt generates and compares the solutions resulted
from different subsets of bands by applying théecdion function as a measure of the effectivendss o
each considered band subset. The criterion furetioclude class separability based criteria such as
Bhatacharyya, Jeffries-Matusita and Mahalanobisadees [64], [65], [66] which according to [67]
require enough class samples to examine classti&tstiand similarity based criteria such as spéctr
angle mapper (SAM) [68], euclidean minimum distaE® D) measures and orthogonal projection
divergence (OPD) [11], [69]. The aforementionedecia measure all the possible pair-wise class
distances which has a heavy computational cosavbad testing all the possible combinations, subset
searching strategies, e.g., sequential forwarccsefe (SFS) and sequential forward floating setecti
(SFFS), can be used [70]. The minimum estimatech@dmce covariance (MEAC) method, is a
supervised BS method proposed in [67], which sgleahds based on class spectral signatures only. BS
methods used for classification may also performege algorithm and particle swarm optimization
[71], [72] which do not require class knowledgeadvance.

A relatively small proportion of the existing bamseélection DR methods can also be applied for
optimizing the spectral unmixing process. Among stae-of-the-art techniques, some may include
band ranking using criteria such as correlatior] pf8l/or information entropy and mutual information
[62], [74]. The band selecting sparsity promotitegated constrained endmember (B-SPICE) algorithm
[75] has been developed for simultaneous BS ananember extraction using the band weighting

proposed in [72] and sparsity promoting priors aggpto band weights.

50



Dimensionality
Reduction (DR)
I

Feature Band
extraction selection
Statistic- Feature- For classification For spectral
based based tasks unmixing
Statistical Supervised Unsupervise: Band
i_ ranking B-SPICE
( N

Projection
pursuit

i
L

2" order Class Genetic De-
statistics separability [ algorithm | correlation
(& J -
Higher orde Similarity- Particle swarm Information
statistics based [ optimization ] entropy
- -
M T
MEAC Mutual
- —1 information
| N — —

Figure 3.1: Categorization of dimensionality redmcimethods.

3.3 Study of new band selection approach

The high spectral resolution of the hyperspectathdffers an invaluable diversity of information,
enabling the accurate physical description andridisication of the sensed materials. Specific spéctr
characteristics between similar materials are ptesecertain wavelengths and this crucial andcatit
information may be compromised and distorted ifoniginal data are used. BS preserves the original
data information by selecting a subset of speb@alds based on a criterion for optimality. The mgjo

of the existing BS methods set the fixed critewathe spectral information on the whole set of
wavelengths in order to define the optimum spec@ispace. As a result, the redundant or overlapped
data information of adjacent bands is removed. Algh, this is an effective way to reduce the vast
amount of data information, it is a generalisedrapph which disregards the spectral characterisfics
the particular materials of interest. For instarinegase of an image which depicts water and variou

types of vegetation, the existing BS techniquesld/oetain the same set of bands whether it is reeede
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to extract a representative spectrum of water agdtation or it is needed to extract the diffetgpes

of vegetation. In the latter case, the differemtety of vegetation present their biophysical varediat
specific sequential wavelengths. For instanceetampn stress can be detected using red edgeashift
wavelengths ranging from 650 to 700nm [76]. In sacénario, BS methods would select uncorrelated
bands from different wavelengths jeopardizing tbsslof important but subtle absorption features
which imply such significant biophysical variations

In this work, a new band selection approach is @eol which defines the optimum spectral subspace
associated with a specific material. More preciselgch spectral signature of a pure material has
spectral characteristics which contribute to dgaish it from other spectral signatures at specific
consecutive wavelengths. Band selection shouldidze to the desired analysis task and therefore,
different sets of bands should be selected forctiatg different materials depicted in the same scen
i.e. lentil plants from tare (vicia hirsula), or teaals under various biophysical status, i.e. thgablive
trees from those affected by disease. Instead afinge bands or transforming the data, the new
approach maintains only those sequential bandsatieatiseful for a specific hyperspectral applicatio
The advantage of maintaining physically meanindfahds has great impact both on the endmember
extraction and classification of hyperspectral sendata. Hence, a new BS method is proposed which
can be adopted by the endmember extraction andifatasion techniques. More precisely, the
proposed method enables endmember extraction asdifatation algorithms to act locally in the
hyperspectral space, and instead of a list of webands, the outcome results in optimized

performance of the endmember extraction and otldmesification algorithms.
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3.3.1 Exploration of the new band selection method fotimozing spectrally close
endmember extraction

Although the majority of the endmember extractitgoethms (EEAS) are preceded by a DR method,
as it is concluded from section 3.2., most of tt# Bethods have been developed for classification
purposes and require labeled training data in otdedetermine the optimum set of bands for
discriminating the desired classes. Based on tleatispectral mixture analysis, DR is associatedeo
number of the endmembers existing in the scene shre dimension of the signal subspace is one less
than the number of the endmembers. This is of aruciportance for the implementation of convex-
geometry based EEAs (see section 4.3.1). The egistnvex-geometry based EEAs usually find the
most prevalent endmembers on the scene whilst filiéyo extract less ubiquitous materials [77].
Therefore, they implicitly assume that the prevalmimembers could provide global characterization
of the image. Furthermore, by searching for endnemlat the vertices of the simplex, elementary
material signatures are imposed to be far from e#toér. Nevertheless, each elementary materiataue
biophysical/chemical/environmental factors may enésspectral signatures with absorption features
that differ at a few wavelengths only. In ordepptevent confusion with the prevalent endmembess, th
latter are termed in the frame of this work as spdyg close endmembers (SCEs). The SCEs
correspond to spectral signatures of a specifienatclass under different physical and/or chemica
status bearing significant detailed information @it

Fig. 3.2 presents such scenario using a CASI intaflected over a littoral Greek region. Fig.3.2(b)
shows the clustering using the prevalent endmemibersseawater, vegetation, soil, sand, roads and
buildings whose corresponding spectral classeplatied in Fig. 3.2(c) using two bands. Each sctr
class bears its own participation into the datad]aefining a particular region. Inside this regithere

are spectra which correspond to the same mateutawith subtle differences due to a) signature
variability [78], and b) SCEs whose spectral déferes imply different biophysical or chemical
properties. The latter are of great importance taradexamples of those are shown in Fig. 3.2(c); two

correspond to vegetation (grass, tree) and oneawater (seawater with algae).
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Due to inter-band correlation of adjacent bands, B methods lack to retain the certain range of
wavelengths where these spectral differences eXssa result, EEAs fail to extract the aforemengidn
SCEs which present strong spectral similaritiea@live whole spectrum. Moreover, due to the spectra
signature variability [78] and the image diversigw BS approaches should be devised which will be
tied to the spectral characteristics of the mategamprised in the scene. The proposed BS approach

aims at overcoming the shortcomings of the exis#®) methods by considering the existence of

multiple convex hulls [79].

Grass

& . Vegetation

Buildings

Soil

Sand

Band 92 (940.10nm)

_ 5 Seawater with sediment
Seawater

Band 36 (618.10nm)

(a) (b) (©)
Figure 3.2: (a) CASI RGB (640,8nm, 550,6nm, 461, lnmage, (b) spectral classes obtained by

clustering based on prevalent endmembers, (c) rgpatasses illustrated in the scatter plot witto tw
spectral bands. Symbols x and o represent theraflgaiose endmembers (SCE).

Analysis of the proposed method

The new band selection approach is based on tbeytbé convex sets. According to it, all the obsetv
spectral vectors lie in the convex hull definedtbg endmember signatures [22], [57], [8Dhe new

approach considers the existence of more than omeeg hulls, each of them defined by the spectral
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vectors of a particular material class presentethénscene. Thus, the SCEs are expected to ligeat t
vertices of the convex hulls which are spannedgecsal vectors of the same material. The conckept o
considering multiple convex hulls, which may be risgped, has been introduced recently in [79] for
the endmember extraction. The necessity of devedppew methods for identifying multiple simplex
regions was also pointed out in [12]. In this wotke multiple convex sets are expanded to BS
purposes.

More precisely, the new approach explores the in&dion given from the entire range of wavelengths
spectral characteristics implying different bioplegs or chemical properties of the same materidll wi
be retained. For each subset of bamdsandidate SCEs are extracted based on a convexegecal
based EEA. In particular, the N-FINDR [81] algonthis employed but instead of using the MNF
bands, subsets of original bands are used. N-FINDEbnsidered one of the state-of-the-art EEAS,
characterized by its coherent concept of volumeimization [13]. Then, candidate SCEs are spectrally
compared to the material of interest containedhim prevalent endmembers (PE). The PEs can be
selected manually from the image or by using an EBAour case, the PEs are extracted by the N-
FINDR algorithm. Matching between the candidate S@gkd the material of interest is accomplished
by using the spectral angle distance (SAD) meaSuBased on this measure, the final setnof

candidate endmembers related to the material efast is defined, wher@<n< p. The procedure is

repeated until all subsets of bands are selected cansequently until all the sets of candidates
endmembers from each subset of bands are defired oftimum set of endmembers related to the
material of interest is user defined. In case themo matching, SCEs are considered as new miateria
and they can be labeled by the user or by usingeatsal library. Fig.3.3 presents the flowchart!od

proposed method.

Z cos < el’ Ce|>
3 SAD is computed byS(cq , where gis a prevalent endmember and e

|ee|-[e.

candidate SCE.
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For each subset, the number of bands is set equbktsignal subspace dimensipil , wherep is
estimated by the ODM [25] becaugel is much smaller than the initial number of bamdsich
contributes to a desirable division scale of thpdngpectral space, whilst at the same time it idow
small to produce overlapping results. It shoulchbeed that this number serves as an indicatorhier t
maximum possible number of SCEs assigned to eatériadan one iteration, and it may vary for each
material depending on the SAD values. This is atial importance as for the first time in BS, nulki
convex hulls with various shapes assigned to eaatienal are introduced. Convex hulls of spectrally
similar materials may be overlapped and often are detected. Detecting SCEs compensates this
shortcoming and may detect materials which areemtracted by conventional methods. Furthermore,
because there is spectral variability among diffedata sets, detected SCEs are image-based.d3ar th
reasons, the proposed BS approach is tied to thiéable data and the material of interest, ancedaifit

sets of bands are selected for different images.

2ol o[ [ o] L ﬂ ppedent
bands

_ 1%iteraton — . _ . __ _ _ __ _

P .
/ ! \ i
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| Material of interest
N-FINDR using @
original bands o pl; "'@ .
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material of interest
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Figure 3.3: Flowchart of the new BS method for eadrher extraction.
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3.3.1.1Experiments

A real hyperspectral image collected by CASI-556raw Greek littoral region in 2007 was used for the
experiments (Fig.3.2(a)). It consists of 100 x pdeIs with 97 spectral bands covering a specaiage
from 421nm to 963nm. After bad band removal (1,98:97) due to low SNR values, 92 spectral bands
were retained. The spatial resolution of the imiagém. The radiance values were converted to tep-of
atmosphere reflectance.

In this experiment, the results of the proposedraiyn have been visually interpreted by the user
based on the spectral signatures and their locaticine area of interest. Extensive reference data
certainly could complete the evaluation processitwuch case specific laboratory analysis by other
scientific groups would be required, which haslvextn foreseen in the framework of this study.

At first, the conventional N-FINDR was applied fitre extraction of the prevalent endmembers. The
number of endmembers to be extracted was resultéd using the ODM [25], (see section 2), for the
estimation of the signal subspace dimension. Fi§.cBntains the spectral signatures of the exitacte
prevalent endmembers. The majority of the extraetedinembers correspond to roof materials (RM)
which can be explained by the fact that N-FINDR lempents DR using FE method which has the
tendency to select high contrast signals (i.e. urbaterials) over low contrast signals [54], [55ince
urban materials, i.e. tiles, concrete, marbles,athetroofs etc., are satisfactorily detected ahdyt
correspond to different elementary substanceseg tisaro point in searching for SCEs of each RM<tlas

Among the extracted prevalent endmembers, threesmond to vegetation and one to seawater.
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Figure 3.4: Prevalent endmembers extracted by NBIRNRM stands for roof materials.

Following the methodology described in Fig. 3.3/esal SCEs were extracted. In particular, six SCEs
were assigned to vegetation class among which tf@eemember#1/#2/#6) belong to the prevalent
endmembers, and their spectral signatures areeg@lott Fig. 3.5. The spectral signatures present
differences regarding the chlorophyll absorptioreaff pigments which is implied by the peak shown a
550nm. Moreover, based on the location of the etdth SCEs in the image and after visual
interpretation of the scene, various types of \&gmt have been detected, such as grass, trees, and
bushes. Parts of the classified images are prasemtEig. 3.5(c) and (d). In Fig.3.5(c), classitica
uses the prevalent endmembers, while in Fig.3.5(d)gsification uses the final set of endmembers
related to vegetation. It is worth to mention ttiegt reason for including classification resultemsy for
facilitating the visual interpretation of the SCHss not intended to evaluate the proposed methad
the classified images since the extracted endmembey be present only in few pixels and

classification errors may be embedded in the result
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Figure 3.5: (a) Extracted SCEs assigned to vegetafb) a part of the original data set, (c) cl@sdi
image using the prevalent vegetation endmembers,cl@bksified image using the final set of
endmembers.

A set of seven SCEs were also extracted which spored to seawater class among which one
(seawater#1) belongs to the prevalent endmembéss effectiveness of using the proposed approach
over a conventional EEA is evident in Fig. 3.64a0d (d) where in the latter the observed vectogs ar
classified into categories which could be labeledtase that extended reference data were available

regarding the bottom depth and cover (algae, s#toll,as well as the suspended materials.
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Figure 3.6: (a) Extracted SCEs assigned to seaw@er part of the original data set, (c) classifi
image using the prevalent seawater endmemberlgshifted image using the final set of endmembers.

Besides the SCEs which match to a class defined fh@ prevalent endmembers, there are also sets of
SCEs which correspond to newly defined classeseNboecisely, in our case, extracted SCEs indicate
reasonably the existence of three new classessfeadd, and shadow.

The SCEs of roads are shown in Fig. 3.7. Basecheradcation of the extracted SCEs in the image,
asphalt road#1 corresponds to the main road netwittk asphalt, while asphalt road#2 to open-air
parking places. Fig. 3.8 shows the SCEs of sand;hwinainly differ regarding their concentration in

water. Finally, in Fig. 3.9, the two last SCEs tbatrespond to shadow are shown.
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Figure 3.7: (a) Extracted SCEs assigned to ro&#sy part of the original data set, (c) classiiage
using the SCEs of roads.
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Figure 3.8: (a) Extracted SCEs assigned to sand fart of the original data set, (c) classifiethge
using the SCEs of sand.
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Figure 3.9: (a) Extracted SCEs assigned to shadts, part of the original data set, (c) a sub$d¢he
original data set overlaid with the classified ireagsing the SCEs of shadows.

3.3.1.2Conclusions

In this work, a new band selection approach has br@eoduced for optimizing the performance of the
endmember extraction. The proposed method accdomnthe existence of elementary material which
due to biophysical/chemical/environmental factoraynpresent spectral signatures with absorption
features that differ at a few wavelengths only. Sehepectra are termed in the frame of this work as
spectrally close endmembgiSCESs). The SCEs correspond to spectra of the szaterial class which
present subtle spectral differences, crucial feirttistinction. In order to extract the SCEs, thacept

of multiple convex hulls [79] is exploited for tHiest time in BS. Each convex hull is defined by th
spectral vectors of a particular material classs@méed in the scene and the SCEs which lie at its
vertices. Contrary to the existing BS methods, pmeposed approach accounts for the different
distribution of each material’s convex hull to ttieta cloud. For this reason, the proposed BS apbroa
allows the number of SCEs for each material classary resulting in more physically meaningful
spectra. Furthermore, the proposed BS accountsnfage diversity and is tied to the available
information derived from the image’s spectral clotgestics. Thus, different sets of bands are etqao

for detecting different materials depicted in theme image. Being the method image-dependent

62



compensates the endmember variability, contrarjth® existing approaches which use a priori
information related to the absorption featuresxad wavelengths.

Experiments were implemented using a CASI real mggextral image leading to the following

concluding remarks. Firstly, the proposed approaohtributed to the detection of low contrast
materials, disregarded by the N-FINDR algorithm athi-as the majority of the convex-based EEAs-
has the tendency to detect the prevalent endmen{bersurban materials) over less ubiquitous
endmembers. Secondly, the extracted SCEs providmdthwand elaborate information for material

classes defined by the prevalent endmembers. lti@ddhe effectiveness of the proposed approach i
also shown on classification results. The inclusidrthe optimum set of spectral signatures, which
represent a certain material class in the classifin process, enables studying it without need of
masking the background. Last but not least, it khbe noted that the aim of the proposed apprasch i
to develop a BS method able to extract spectralsiges of SCEs which contain subtle informatian fo

a material.

3.3.2 Exploration of the new band selection method fdmoging classification

High dimensionality demands special attention i ¢hassification process. The main problem caused
by the increased dimensionality is the reductionttoa efficiency of the classifiers. This problem is
known as the Hughes phenomenon. According to #sighe dimensionality increases and the number
of the available training samples is kept fixede thredictive power of the classification methods
reduces. The number of pixels included in trairsagiples is affected by the number of bands [82]. In
case of hyperspectral imagery, training data sets rever enough to achieve classification
requirements. Thus, dimensionality reduction besigeelding gains in computational time and
complexity, and data storage, it also contributesgtimizing the classification performance whea th

available training data sets are limited.
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The advantage of maintaining physically meanindfahds is associated to the identification of the
useful wavelengths for a particular classificatiask [27]. Furthermore, it is critical to find useaind
effective features associated to the defined ctasdfeinterest for image classification tasks of
hyperspectral sensed data. The spectrum of eas afanterest has unique spectral characteristias
narrow region of the spectrum, which contribute distinguish it from other classes at specific
sequential wavelengths. Thus, investigation orbtdred selection technique can be performed using the
original data, instead of merging bands or tramsfog the data. The main goals of the present study
are:

1) to examine how robust are the classificatiomltesvhen different bands are selected to be used,

2) to explore whether there is an optimum set glisatial bands which contribute more for a specific
hyperspectral application compared to other sebmnoils, and

3) to explore whether the classification of difierelasses can be improved by using different et o
bands for each class.

In order to accomplish this, the spectral spacdivgled into subsets of equal number of sequential
bands. Each subset is used as input to a classificalgorithm and results are examined separately.
The dimension of the band subsets is equgb-19 wherep is the number of signals. The outlier
detection method (ODM) [24], [25] is implemented fbe estimation of the number of signals. SVM is
implemented for all the possible subsetg-df sequential bands and classification accuraeyasnined

per class. SVM has been chosen to be implementédhas proven to be much more effective than
other parametric classifiers in terms of classifara accuracies, computational complexity and
robustness to parameter setting [83]. Those subsktbands which contribute to the highest
classification accuracy of each class are kepthasoptima. Fig.3.10 shows the flowchart of the
proposed method.

For evaluation purposes, two well-known unsupedsisand selection methods based on information
entropy and correlation were also applied priorctassification. Evaluation of the classification

accuracy leads to remarkable conclusions.
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Figure 3.10: Flowchart of the new BS method fossification.

Support vector machine

Support vector machines (SVM) are widely known siféexs based on statistical learning theory. The
use of kernels leads to data transformation imewa feature space where the data is hoped to bl nea
linearly separable [84]. The SVM method attemptsdparate training samples belonging to different

classes by tracing maximum margin hyperplanesersgface where the samples are mapped.

Assume a binary classification problem in a B-disienal spaceR®. Let N be the training samples
x eR®,i=1..,N and lety; = +1: {(x;, y) | i € [1,N]} be their corresponding labels. The SVM method

aims at finding a hyperplankl jthat has the largest distance from the closestitigidata points in

both classes. Denoting < R°®as the vector normal to the hyperplaHeandb R as its biasH, is

given by
W-Xx+b=0, VX e H,. (3.1)

In case thake H,, the distance of to H, is given by
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f () _x-w+if (3.2)

Maximizing the distance of samples from the optim@tision hyperplane is equivalent to minimizing

the norm ofw, leading to the following quadratic optimizatioroplem:

min{M} (3.3)

2

subjectto yi(w-x +b)>1, VI € [1,N] in case of linearly separable data
Il
or min T+CZ§ (3.4)

subjecttoy; (W -xi+b)>1- ¢, & >0 VI € [1,N] in case of non-linearly separable data,

where C (0<C <) is a regularization parameter that controls teegity value and are the so-called
slack variables which are introduced to deal witlsatassified samples. Based on Lagrangian

formulation of the problemy is given by
N,
w=> 3yXx, (3.5)
i=1

where N, is the number of the support vectors, i.e. theedbvectors to the hyperplane, amdare the

positive Lagrange multipliers. For an unseen sampldabel y, is derived by the following equation:

Yu = Sgr(w X +b)= sgr{(i ay X jxu + b] =sg i ay, (x,T xu)+ bj (3.6)

where (v, b) are the hyperplane parameters found after theplagion of the training process. Eq. (3.6)

uses dot products af, with w, which can be replaced by kernel functions, inrecasnonlinear SVM

solutions in the data.
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Two kernel functions are widely used for hypersp@dimage classification, the polynomial function
and the Gaussian radial basis function (RBF). Mimtailed analysis of the SVM can be found in [84],

[85].

3.3.2.1Experiments

Experiments were implemented using the AVIRIS Indi@nes real hyperspectral remotely sensed
image which was described in section 2.4. Clasgiba of this dataset is very challenging sinca a)
significant amount of pixels has no ground trutfoimation, b) the crops in the image are in early

growth stages and thus have only about a 5% cregrco) moderate spatial resolution is 20m.
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Corn-mintill
Corn

M stone-steal-towers

Figure 3.11: (a) Sample band of Indian Pine datéiseground-truth dataset.

At first, ODM was applied and resulted in the numbgsignals equal to 17. Therefore, the original
data was divided into subsets of 16 sequentialdahide 16 land-cover classes were used to gererate
set of 3046 training samples (used for learningcthssifiers) and a set of 3058 test samples (arploi

for assessing their accuracies) (see Fig.3.11 abteT3.1).
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Table 3.1: Number of training and test samples usdice experiments.

Category Training data Testing data
Soybean-notill 254 260
Soybean-mintill 468 466
Corn-notill 627 624
Grass/Pasture 207 206
Corn-mintill 311 315
Grass/Trees 326 327
Soybean-clean 170 169
Buildings/Grass/Trees 102 102
Stone-Steel-Towers 35 36
Alfalfa 27 26
Corn 97 105
Grass-pasture-moved 12 12
Hay-windrowed 213 216
Oats 10 10
Wheat 87 84
Woods 100 100
Total 3046 3058

In total, the SVM method was run 172 times, (18@inal bands — 14 dimensions of the signals). A
nonlinear SVM based on Gaussian radial basis kefmettions has been considered for the
experiments. The nonlinear SVM requires the detestion of the width parameter of the Gaussian
radial basis kernels, which tunes the smoothingp@fdiscriminant function. For the considered dattas

the best value of the parameter C was 5000. Thienapkernel width parameter was found equal to
0.005. These values were estimated empiricallyherbasis of the available training samples. Talfle 3

reports the highest accuracy per class using diftesubsets of original bands, which are equal6to 8

non-overlapped bands.
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Table 3.2: The highest accuracy per class usirigrdifit subsets of original bands.

Bands Prod. Acci/Category
C c = = C . )
= = _ = oW = . = o ] Lo o = w
$= | 8% |2 25 |E ae |85 |£8 |2ss % = 5% 23 |2 -
£ 1= £ = = g ] z ] £ L T = oz =2 S 8w 5| £5 o g ]
& £ =) E =1 L] 3 = ol = o © 50 (R |E <L (U] g E = §
w0 143 O S W m =
217 38.08 | 81.55 | 57.73 | 88.83 | 21.27 | 87.77 | 7.0 | 26.47 | 94.44 | 9231 | 476 0.00 89.81 | 0.00 88.10 | 49.00
12-27 63.08 | 77.25 | 40.71 | 89.81 | 6.03 | 93.88 2.37 | 39.22 | 100.00 | 11.54 |14.29 |58.33 |97.69 | 10.00 | 86.90 | 71.00

13-28 52.69 | 77.90 | 38.46 | 90.29 | 7.30 93.58 1.78 | 3824 | 100.00 | 11.54 |10.48 | 41.67 | 98.15 | 70.00 | 86.30 | 69.00

16-31 60.38 86.70 24.84 93.69 11.75 95.72 4.14 37.25 | 100.00 | 11.54 | 23.81 25.00 100.00 | 50.00 97.62 66.00

18-33 70.38 | 86.48 | 22.60 | 97.57 | 27.30 | 93.58 | 12.43 | 37.25 | 100.00 | 7.69 | 48.57 |50.00 | 98.61 | 30.00 | 96.43 | 60.00

23-38 58.08 89.48 | 40.87 | 92.23 | 34.92 95.41 11.83 | 42.16 | 100.00 | 15.23 | 48.57 | 25.00 97.69 50.00 95.24 | 48.00

2540 51.54 | 85.84 | 35.58 | 90.78 | 42.54 | 96.94 9.47 | 45.0 | 100.00 | 11.54 | 42.86 | 41.67 | 97.69 | 50.00 | 96.43 | 39.00

28-43 55.38 83.26 | 47.92 | 87.38 [ 29.21 97.25 8.88 48.04 | 100.00 | 3.85 | 34.29 | 25.00 99.54 | 50.00 95.24 32.00

47-62 36.92 | 46.14 | 41.83 | 86.41 | 19.05 | 85.63 4,73 69.61 | 77.7%8 | 61.54 | 5.71 8.33 96.76 | 0.00 100.00 | 35.00

132-147 | g5.00 | 76.18 | 79.49 | 69.42 | 16.19 | 83.79 1.78 | 19.61 | 75.00 3.85 | 6.67 0.00 98.61 | 0.00 92.86 | 55.00

154-169 | p.00 56.87 | 65.87 | 65.05 | 16.83 | 74.62 | 23.08 | 16.67 | 100.00 | 0.00 | 9.52 0.00 98.61 | 0.00 71.43 | 67.00

In order to investigate the effectiveness of th@oreed 86 bands (Table 3.2) on the overall accyracy
SVM was applied using them (Table 3.3). Table Bdvws the SVM results using the whole set of 186

bands.

Table 3.3: Overall and class-by-class accuragesyu Table 3.4: Overall and class-by-class

subset of 86 bands. accuracies using whole set of bands.
Overall Accuracy = (2388/3058) 78.0903% Overall Accuracy = (2417/3058) 79.0386%
Kappa Coefficient = 0.7505 Kappa Coefficient=0.7616
Class Prod. Ace. | User Ace. Prod. Acc. User Acc. Class Prod. Acc. | User Acc. | Prod. Acc. | User Acc.
(Percent) (Percent) (Pixels) (Pixels) (Percent) | (Percent) (Pixels) (Pixels)

Soybean-notill 91.15 99.58 237/260 237/238 Soybean-notill 9231 99.59 240/260 240/241
Soybean-mintill 97.42 64.58 454/466 454/703 Soybean-mintill 97.21 62.31 453/466 453/727
Corn-notill 80.93 68.24 505/624 505/740 Corn-notill 81.41 71.75 508/624 508/708
Grass-pasture 100.00 78.03 206/206 206/264 Grass-pasture 100.00 §1.10 206/206 206/254
Corn-mintill 22.54 88.75 71/315 71/80 Corn-mintill 20.95 90.41 66/315 66/73
Grass-trees 96.94 01.62 317/327 317/346 Grass-trees 96.02 88.95 314/327 314/353
Soybean-clean 50.30 85.00 85/169 85/100 Soybean-clean 59.76 90.99 101/169 101/111
Buildings-Grass-Trees 46.08 75.81 47/102 47/62 Buildings-Grass-Trees 43.14 80.00 44/102 44/55
Stone-Steel-Towers 100.00 100.00 36/36 36/36 Stone-Steel-Towers 100.00 100.00 36/36 36/36
Alfalfa 92.31 100.00 24/26 24/24 Alfalfa 96.31 100.00 2526 25/25
Corn 37.14 46.99 39/105 39/83 Corn 45.71 52.75 48/105 48/91
Grass-pasture-moved 75.00 64.29 9/12 9/14 Grass-pasture-moved 58.33 100.00 7/12 777
Hay-windrowed 100.00 98.63 216/216 216/219 Hay-windrowed 100.00 99.08 216/216 216/218
Oats 90.00 100.00 9/10 9/9 Oats 90.00 100.00 9/10 9/9
Wheat 100.00 97.67 84/84 84/86 Wheat 100.00 100.00 84/84 84/84
Woods 49.00 90.74 49/100 49/54 Woods 60.00 90.91 60/100 60/66
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For comparison reasons, SVM was also applied &#féed selection using information entropy and
correlation criteria. Using the entropy criteri&® bands were selected. These bands had entrapy val
higher that 1. Using the correlation criterion 18nts were used, which had correlation value below

0.2. The results are shown on Tables 3.5 and 3.6.

Table 3.5: Overall and class-by-class accuraciesTable 3.6: Overall and class-by-class

using information entropy criterion. accuracies using correlation criterion.
Overall Accuracy = (2311/3058) 75.5723% Overall Accuracy = (2066/3058) 67.5605%
Kappa Coefficient=0.7221 L S 0
Class Prod. Acc. User Acc. Prod. Acc. User Acc. Class Prod. Acc. User Acc. Prod. Acc. User Acc.
(Percent) (Percent) (Pixels) (Pixels) (Percent) (Percent) (Pixels) (Pixels)

Soybean-notill 91.92 100.00 239/260 239/239 Soybean-notill 75.77 98.01 197/260 197/201
Soybean-mintill 96.14 60.46 448/466 448/741 Soybean-mintill 86.91 54.00 405/466 405/750
Corn-notill 72.12 64.94 450/624 450/693 Corn-notill 61.22 52.33 382/624 382/730
Grass-pasture 100.00 78.63 206/206 206/262 Grass-pasture 91.26 82.46 188/206 188/228
Corn-mintill 17.78 61.54 56/315 56/91 Corn-mintill 19.05 71.43 60/315 60/84
Grass-trees 97.25 89.08 318/327 318/357 Grass-trees 95.72 87.92 313/327 313/356
Soybean-clean 42.01 86.59 71/169 71/82 Soybean-clean 7.10 38.71 12/169 12/31
Buildings-Grass-Trees 44.12 77.59 45/102 45/58 Buildings-Grass-Trees 44.12 84.91 45/102 45/53
Stone-Steel-Towers 100.00 100.00 36/36 36/36 Stone-Steel-Towers 100.00 100.00 36/36 36/36
Alfalfa 76.92 100.00 20/26 20/20 Alfalfa 73.08 86.36 19/26 19/22
Corn 52.38 56.12 55/105 55/98 Corn 28.57 19.61 30/105 30/153
Grass-pasture-moved 50.00 100.00 6/12 6/6 Grass-pasture-moved 50.00 66.67 6/12 6/9
Hay-windrowed 100.00 93.63 216/216 216/219 Hay-windrowed 98.61 94.67 2137216 213/225
Oats 50.00 71.43 5/10 517 Oats 60.00 75.00 6/10 6/8
‘Wheat 100.00 100.00 84/84 84/84 Wheat 100.00 96.55 84/84 84/87
Woods 56.00 86.15 56/100 56/65 Woods 70.00 82.35 70/100 70/85

Finally, Fig. 3.12 shows the SVM classification rmaysing the whole set of bands and subsets of bands

resulted from the aforementioned band selectidmigcies.
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Figure 3.12: Classification maps using (a) wholea$dands , (b) subset of 86 bands selected fham t
new approach, (c) entropy criterion, (d) correlatioiterion.

3.3.2.2Conclusions

Implementation of the SVM using all the possibldsets of 16 sequential bands led to remarkable
conclusions. The majority of the selected banderigd to the visible light and few to the mid-inédr
Compared to the classification accuracies whenimemisionality reduction method was applied (Table
3.4), classification accuracy per class using chffie set of bands was improved for 7 out of 16sdas
and it was deteriorated for the same amount (bAbWli6). Analysis on the experimental results showed
that there was no optimum subset of 16 sequengiadi® which could lead to the improvement of the
classification accuracy for all the classes sirmdtaisly. Nevertheless, it should be noted thaingett
the number of bands to be equal to the numbergolass is rather arbitrary. Although, in the franfe o
the particular study it seemed a good indicatdneotriteria for separating the spectral space lshou

also be considered. The overall accuracy when éhge&cted bands were used (Table 3.3) was almost
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1% less than the overall accuracy when no dimeastgrmreduction method was applied. Taking into
account that the number of bands was significareiyuced from 186 to 86, the results are very
satisfactory.

For comparison reasons, two well-known criteriadand selection were used; entropy and correlation.
It should be referred that these two criteria apé wery practical to be used as there is no defined
threshold which would lead to a certain amount arids. Consequently, several trials should be made
which lead to a time-consuming process. The prapasethod outperformed compared to the two
criterion-based methods. Analysis of the resultstrdoutes to remarkable conclusions; SVM presents
higher accuracy when the number of bands is ineckddowever, there is a threshold on the number of
selected bands above which the rate of the imprenemf the classification accuracy is very low. The
selected bands in this case are the optimal onssauBe they facilitate the SVM regarding the
hyperplanes searching. The proposed BS method vachieverall accuracy very close to the
corresponding one (only 1% less) when all avail&laleds are used, by reducing the number of selected
bands more than 50%. This is of great importanceesibesides yielding gains in terms of
computational time and data storage, it signifipartduces requirements in terms of the number of

training data sets.
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Chapter 4

Endmember extraction

4.1 Introduction

As it is previously noted in section 1.2.2, anaysi hyperspectral images requires spectral unmjxin
which consists of identifying the unique constituetleterministic spectral signatures, called
endmembers [6] and determining their apparent dfiGation, also called abundance fraction, at pixel
level [19]. The accuracy of the quantification dege strongly on the accuracy with which endmembers
are identified [86]. In the past, due to low spadiad spectral resolution of multispectral sensibnsas
unlikely to detect endmembers and therefore, endmeemxtraction has presented low activity. Recent
advances in hyperspectral imaging sensors haveilwatetd to the exposure of many indistinct material
substances which are unknowipriori and can be analyzed only by high spectral reswiyti3]. These
substances can be considered as endmembers.

There are three main ways to find endmembers; ffenmage (image endmembers), from a spectral
library (reference endmembers) and by creatingi@irendmembers using a trial-and-error approach.
Working with reference endmembers premises thattsgelibrary comprises the corresponding
spectral signatures of the substances existingarstene, which is not always the case. Assumiyg th

for a particular study the desired reference spestgnatures exist in a spectral library, we havtake
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into consideration that these signatures have beguired in totally different conditions compared t
those the remotely sensed image has been acquitethgpheric conditions, illumination effects).
Consequently, data sample vectors need to be aediband corrected for radiometric effects in otder

be properly compared with the reference endmembtwever, the calibration process is not always
likely to be accomplished nor to be evaluated. Thuadibration errors are embedded in the spectral
unmixing error. Another issue that is encounteré@nvusing reference endmembers is the difficulty to
interpret the scene of remote-sensing scale ugergti® measured at centimetre or millimeter scales
[1], [87]. On the other hand, creating virtual endmemberdribates to minimizing the spectral
unmixing error but mathematically correct endmenaliby not always represent physically meaningful
spectra able to interpret the imagery. This isswercome by extracting endmembers from the image
Image endmembers have the advantage of no catibraéed, refraining from adding calibration errors
in the mixture model. Another advantage of imagdneembers is that they have the same scale of
measurement as the data. In this work, new endnreediection methods have been developed for
extracting image endmembers.

Depending on the captured area, endmembers migiepbesented by a few sample vectors or even by
one sample vector which in fact could mislead &ating endmembers as anomalies. Because of the
aforementioned characteristics, detecting endmesnbefery challenging.

Over the last decades, researchers have been foonsgevising several models which result in more
stable and efficient endmember extraction algorgi(EBEAS). However, the majority of these models
are characterized by their high computational cexipf which imposes limits to endmember

extraction on real-time application demands.
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4.2 Review of endmember extraction methods

In recent years, a high level of activity has bebserved regarding the development of new methods
for endmember extraction. Categorization of thistexg endmember extraction methods is a daunting
task as a method may fit to more than one categisyit is mentioned in section 1.2, endmember
extraction and abundance estimation may be implesdesimultaneously instead of sequentially. In
such case it should be more accurate to refer dmember determination rather than endmember
extraction since the entire sample vectors servegp@ential endmembers and their selection is
accomplished based on the minimization of the iibacerror. Nevertheless, in this section an attempt
was given to include the main aspects of finding éhdmember whether this includes simultaneously
abundance estimation or not. With this clarificatithe majority of the existing methods are based o
one of the four following approaches (see Fig.:Acbhvex-geometrical approach, statistical apprpach
sparse regression approach and spatial-contexasebtapproach.

Convex geometry-based EEAs assume that the measpecira can be expressed as a linear
combination of the endmembers presented in thedrnpweel and thus, mixed vectors lie irpavertex
simplex, whosep vertices correspond to the endmembers. Two prhapteria to materialise the
concept of convex-geometry are the orthogonal ptige and the simplex volume [13]. The convex
geometry-based EEAs could be categorized into taim roategories. The first category contains EEAs
which assume the presence of pure pixels in thgénaad seek for them at the vertices of the simplex
defined by the data. Some of the most widely useck pixel based algorithms are a) maximum
volume-based algorithms: the N-finder algorithm KNNDR) [81], the simplex growing algorithm
(SGA) [88] and the alternative volume maximizati@®](AVMAX), b) orthogonal subspace-based
algorithms: the automated target generation pro@B&P) [90], the vertex component analysis (VCA)
[91], the pixel purity index (PPI) [92] and the sassive volume maximization (SVMAX) [89], c) other
algorithms: the sequential maximum angle convexecMACC) [93], the iterative error analysis
(IEA) [94] and lattice associative memories (LAMY5] algorithms. The second category of
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geometrical-based EEAs comprise methods which daassume the presence of pure spectra in the
image such as the convex cone analysis (CCA) [9é],terative constrained endmembers (ICE) [77]
and the sparsity-promoting ICE (SPICE) [97] whishan extension of the ICE algorithm that estimates
the number of endmembers incorporating sparsityaptong priors, or minimum volume based
algorithms [98] such as the minimum volume consewdi nonnegative matrix factorization method
(MVC-NMF) [99], the minimum volume simplex analys{#VSA) algorithm [100], the convex
analysis-based minimum volume enclosing simplexordlgn (MVES) [101], [89] and the simplex
identification via variable splitting and augmenteshgrangian algorithm (SISAL) [102]. Recently, a
new concept of geometric endmember extraction nastihtas been examined which assumes the
existence of more than one convex region in hymetspal space. These methods are called piecewise
convex methods [79] and account for endmember iditia For each convex region, an individual set
of endmember distributions and proportion values @determined using either fuzzy or probabilistic
clustering.

EEAs based on a statistical approach assume thanihmember components are randomly distributed
in the image. The main idea is that the endmenmyield the most uncorrelated data sample among the
same number of other sample vectors [13]. In [12fhars present a comprehensive review of
parametric EEAs such as Bayesian self-organizingsnBSOM), and non parametric algorithms such
as independent component analysis ICA [103] ancmiggnt component analysis (DECA) [104]. The
majority of the statistical based methods imposastaints and regularizations in order to give
physically meaningful solutions [12]. Compared wille geometrical based approaches, the statistical
methods have higher computational complexity.

The sparse regression based methods are basiealiysspervised and assume that the observed data
can be expressed by linear combinations of a satpoiori known pure spectral signatures [105],6J10

In this case, inversion problem is decomposed waiitring direction method of multipliers (ADMM)
[107] into a sequence of simpler ones. ADMM cardbgved as a variable splitting procedure, which is

followed by the adoption of an augmented Lagrangrathod to solve the inversion problem. The
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sparse unmixing via variable splitting and augmeénteagrangian (SUnSAL) [108] computes
abundances through the minimization of an objedtivmetion which measures the lack of fithess to the
observed data vectors and the lack of sparsity cdralidate solution. By imposing ACS and ANC
constraints the constrained version of SUnNSAL (G¥SAL) is obtained [105].

Linear sparse regression is a very active reseaneh but there are some issues to be noted. Tlee pur
spectral signatures are presumed to be availakdesipectral library which is not always the casel a
even if there are available they are not necegsacduired under the same conditions as airborne or
satellite image data and may not be good reprets@maof the image component [109]. Searching for
the optimum set of signatures which model eachlpsxea combinatorial problem which requires
efficient linear regression techniques since ther-g@vowing dimensionality and availability of the
spectral libraries is much higher than the numbéendmembers participated in a mixed pixel [19]. A
step forward, termedparse coding110], consists of learning the dictionary from tth&ta and, thus,
avoiding not only the need of libraries but als@ibration issues related to different conditiongden
which the libraries and the data were acquired.[12]

Spatial-spectral contextual based methods useabgéditistics to improve the geometrical selectobn
endmembers, but with additional computational cdé&tll known EEAs which use such an approach
are the automated morphological endmember extra@AEE) [111], the spatial-spectral endmember
extraction algorithm (SSEE) [112], and the spati@processing (SPP) algorithm [113]. The SPP can

also be used in order to boost the endmember éxtnguerformance of other EEAs.
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4.2.1 Convex geometry-based endmember extraction methods

Endmember extraction methods based on convexityngeg use either the criterion of orthogonal

projection or the criterion of simplex volume [13ccording to the first, endmember candidates are
considered those data samples whose orthogona&cpim)s on selected vectors lie at their end points
Three well known methods using orthogonal projeti@are PPl, ATGP and VCA. Based on the
simplex volume criterion, endmembers are those Eamgrtors which are found at the vertices of the
simplex yielding the maximum volume among all siexgls formed by the same number of sample
vectors as vertices. N-FINDR is a representativéhotkof such approach.

In this sub-section, a more detailed description tlné state-of-the-art convex geometry-based

Figure 4.1: Categorization of EEAs.

endmember extraction methods is given.

Pixel purity index

The pixel purity index (PPI) [92] was the first etl to exploit the principle of orthogonal projecti
in order to detect endmembers. Due to convexityyogonal projections of potential endmembers onto

randomly generated unit vectors, cale@wersshould present minimal or maximal at their enth{so
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compared to the projections of the data sampleovecPPI is a simultaneous endmember extraction
algorithm, extracting all the desired endmembershat same time which according to [13] is the
optimal approach technically speaking.

In particular, dimensionality reduction is accorspikd by applying MNF transform [48] and thus, a
signal subspace is defined where convexity exiBten, each data sample vector is orthogonally
projected onto a skewer and those who appear atneatpoints of the skewer are counted. The
procedure is repeated for several skewers and tthaisesample vectors, whose frequency of having
extreme values as they are projected on the rargkmwers is above a certain cut-off threshold, are
considered candidate endmembers.

There are several issues related to the PPI mefdy, no criteria are provided for how to detéme

the number of endmembers and therefore the dimensiobe retained after MNF transform. Secondly,
results are sensitive to tuning parameters, thebeurof skewersk and the threshold factarwhich
effects the extreme values selection. Thirdly,rame@omness of the skewers creation results inrdifte
subsets of candidate endmembers each time the dhethapplied. Consequently, setting number of
K+1 skewers leads to implementation of all the step® the beginning without exploiting the results
from a previous implementation usikgskewers. The last issue of PPI is that it needs inserference

in order to define the optimum set of endmembersranthe candidate ones, using a visualization tool.

Automated target generation process

The automated target generation process (ATGP) ¢®nds the orthogonal subspace projection
(OSP) [114], which was developed for abundancemesibn in order to perform mixed pixel
classification, to an unsupervised version of O3B],[[11]. ATGP is a sequential endmember
extraction method which finds one endmember ame &xploiting the endmembers already extracted
using a sequence of orthogonal subspaces with eddiimensionality.

Let the initial endmembels, be the pixel vector with a maximum length. The AT®&gins by

applying an orthogonal subspace projector:
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P =I-UU'U)'U" 4.%)
to every pixel vectoy in the data, specified by = [sl] It then finds the second endmember, which is
denoted bys,, with the maximum absolute projection in the spagiogonal to the space linearly

spanned bys . The third endmembes, can be found by applying another orthogonal sulespac
projector P; with U :[sl sz} to the original image, and taking the sample vestith the maximum

orthogonal projection in the space that is orth@do the one spanned by the first two extracted
endmembers. The preceding procedure is repeatéd sat of a pre-defined number of endmembers is
extracted.

Using sequence orthogonal projections the compmurtaticomplexity of ATGP is high. Furthermore,
ATGP searches for the spectra which are most distam the data sample and thus, it has the ternydenc
to extract high contrast endmembers (e.g. urbaenmig) over less contrast endmembers (e.g. differe

types of vegetation or soil).

Vertex component analysis

Vertex component analysis (VCA) [91] works simitarATGP but instead of selecting the vector with
the largest magnitude as the next orthogonal piiojgcit chooses a random one. Additionally, itsise
the maximum orthogonal projection as a criteriorP& does to grow its convex hulls but instead of
using random skewers it exploits the subspace gghhy the endmembers already extracted. For that
reason, VCA can be considered as a random versi¢df GP and a sequential EEA version of PPI
[13].

VCA initially performs dimensionality reduction amdscaling procedure. The dimensionality reduction
depending on the signal-to-noise (SNR) estimataised out via either singular value decompaosition
(SVD) or via PCA. The scaling procedure is to natgytopographic modulation. It projects the origina
data onto a direction orthogonal to the subspaemrsgd by the endmembers already extracted and
selects as new endmember the vector with the mawriprojection.

80



Because of random initialization, a final set ofle®embers produced by VCA is not repeatable. Each

implementation leads to a different set of endmeasbich should be carefully examined by the user.

N-finder

N-FINDR [81] is the most popular simplex-based alipon and has been served as a base to develop
new simplex-based algorithms [88], [115], [116]islta simultaneous algorithm which finds the sgb of
data sample vectors that define fleertex simplex with the maximum volume among asgiblep-
vertex simplexes formed by any setmptlata sample vectors. First, a dimensionality redooof the
original image is accomplished by using the MNksfarm [48]. Next, randomly selected data sample

vectors qualify as endmembers, and a trial volwsralculated as follows. L& be defined as
1 1 ... 1
E= : (4.2)
where S, are 1xp-1) endmember column vectors, am is the number of endmembers used to

calculate the simplex volume. The volume of thepdex formed by the endmembers is proportional to

the determinant d&

V(E)= ﬁabs([ED (4.3)

In order to refine the initial volume estimate, ralt volume is calculated for every pixel in each
endmember position by replacing that endmemberrandiculating the volume. If the replacement
results in a volume increase, the pixel replacesstidmember. This procedure, which does not require
any input parameters, is repeated until there aneplacements of endmembers left.

In order to find the optimum set of endmembers WhHarms the simplex with the maximum volume,
all the possible permutations pfdata sample vectors are needed to be checkedisTamsexhausting
search which requires huge computing time. Several versions of N-FINDR have been developed
which aim at decreasing the computational burdemthEr description of these new methods can be

found at [13].
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Sequential maximum angle convex cone

The sequential maximum angle convex cone (SMACZ3] fethod solves linear unmixing using a
convex factorization technique that simultaneougbnerates the set of endmembers and their
abundances. When the abundance coefficients astraored to sum to one, the convex cone reduces to
a convex hull and the extreme vectors form a simipleée endmembers and abundance coefficients are
determined sequentially. To obtain the endmemt&KkACC first selects a group of pixels that are
extreme vectors in the data. They become a badisam a convex cone within their subspace. The
data that is outside of the cone is called residliz¢ determination of the next endmember is based
the spectral angle that it makes with the existingvex cone. The data sample vector which has the
maximum spectral angle with the cone is selectethasext endmember. After an endmember has
been identified, its contribution to the residuslremoved by oblique projections. The sequence is

repeated until the desired number of endmembeistasned.

4.3 Proposed endmember extraction methods

As the research activity is increased more comdctapproaches are adopted in order to develop more
efficient endmember extraction algorithms. The pmesapproaches and their combinations can be
endless, but it should be taken into considerai@ncomputational burden and the reliability ofreac
method. For instance, if the performance of an esrdber extraction algorithm is slightly better thtsn
competitors but its computational complexity is fesders of magnitude higher, this should be cakeful
evaluated. Moreover, the reliability of the algbnts which do not extract endmembers directly from
the image can be questioned if the estimated pgratsires lead to a satisfying unmixing result but
they have no physical meaning.

This work introduces new simultaneous simplex-baseslipervised endmember extraction methods,

the so-called simple endmember extraction (SEEhatetand the Enhanced-SEE (E-SEE) empirical
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method which have light computational burden amdciiaracterised by their clear conceptual meaning.
The SEE method exploits the dimensionality redunctbility of the eigen-based projection techniques
for seeking the vertices of the simplex which ifirde=l by the new lower dimensional space. The main
concept of the SEE algorithm is that a subset ®fetktreme values of the projected pixels onto itisé f
p-1 transformed components, wherés the number of the endmembers to be definedesponds to
the vertices of the simplex. Analysis of the defir@mplexes using images of various proportions of
endmembers in the mixed pixels concluded that tie weakness in extracting those endmembers
which are comprised in many mixed pixels and tloeeefthe data mean is closer to them. This
weakness was overcome by the development of thérieade-SEE method. The E-SEE exploits the
fact that the maximum projected value (extremepdhe first transformed component is always the
endmember which is far away from the data mean.ifdghixels in the image, whose spectral
signatures correspond to the endmember which isnib&t distant from the data mean leads to a new
data space where the distance between candidateeemukers and data mean is increased. The proposed
methods were evaluated using simulated and rearbgpctral data and they were also compared with
well-known simplex-based endmember extraction nathoThe proposed methods have lower
computational complexity compared with their conitpes and despite their simplicity, they can be

promising in the field of endmember extraction.

4.3.1 Theoretical Background

Simplex approach

Recall the fact that each observed spectral vectore R", can be expressed, under the linear spectral

mixing concept [19], as linear combination of ppieels s, , each one multiplied by its corresponding

abundances, , plus a noise vectan,ne R":

p
y:quKJrn:SoHn (4.4)
k=1
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where L is the total number of bands, the< pmatrix S=[s,...,s.] comprises the endmember spectra
and the pxlvector a =[a,,...,a,] their corresponding abundances. The solution ofitiear spectral

mixture problem described by eq. (4.4) relies @uecessful estimation of the number of endmembers,
p, presented in the input hyperspectral sc&neand also on the correct determination of a set of
endmembers and their corresponding fractional admuecel[117]. Two physical constrains are generally
imposed on the fractional abundances: the abundaoecenegativity constraint (ANC) and the
abundance sum-to-one constraint (ASC). The georaktnterpretation of the linear mixture model is
associated with the mathematical theorycohvex set$6], [21], [22]. More precisely, assuming that
both constraints are satisfied and noise is limigpectra can be restricted in a simplex lying sigaal

subspace of dimension one less than the numbaeatdmembers.

The following points are the basis for the proposedhods:

1. Abundances are unit-sum and mixed spectra areoaltipe linear combinations of the pure
endmember spectra [22].

2. Mixed spectra are interior to the convex hull defirboy the endmember vertices [22].

3. The endmembers can be found at the vertices cfitglex whose existence is guaranteed when
the dimensionality of the mixed data is one lessttihe number of linearly independent
endmembers [22].

4. In case of uncorrelated noise with equal variancalibands, the noise is spherically distributed
about the data mean [48].

5. A data sample vector with maximum Euclidean norragmtude) must be located at one of the

vertices of the simplex [115], [118].

According to the first three points, inference dadtnix Sis equivalent to identifying the vertices of the
defined simplex. Based on points (3) and (4) arereigased projection technique such as principal

component analysis (PCA) [52] or minimum noise tiat (MNF) [48] could determine the lowest
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dimensional subspace that spans all the informditiamot the noise, if the numbgis known. Thigp-

1 dimensional subspace is defined by the mean efddta and the eigenvectors of the significant
dimensions. Point (5) has been implied in [90], eha&uthors claim that the first generated endmember
from SGA is always a pixel which has either a maximor a minimum value in the first principal

component. Nevertheless, there was no further aisaby this observation.

Eigen-based projection techniques
Principal component analysis (PCA) [52] is a welblwn mathematical procedure which is used for

dimensionality reduction, feature extraction, visgaion of high-dimensional data, etc. As its cepic
is well known, analysis will be limited to the basi PCA is the simplest of the true eigenvectoetlas
multivariate analyses. It uses an orthogonal tansdtion to convert a set of observations of pagsib
correlated variables into a set of values of uredated variables called principal components (PCs).
The number of PCs is equal to the number of originaables. An orthogonal linear transformation
transforms the dat¥ to a new coordinate systepd such that the greatest variance among all the
variances resulting by the projection of the dadh & any direction is associated with the first
coordinate, called the first PC, the second gréatmsance on the second coordinate, and so on [52]
Basically, the covariance matrix of the datain the new coordinate system is diagonal. Theirmaig
covariance matrix;, , becomes the diagonalized covariance matix, The solution to this problem
becomes a generalized eigenvalue problem of time: for

U =Uz, (4.5)
where the eigenvalues are the diagonal elemenk, ofand the eigenvectors form the columngJof
Each eigenvalue is proportional to the portionhsd variance, and more accurately to the sum of the
squared distances of the points from their mult&hisional mean that is correlated with each
eigenvector. The original daté is multiplied by the eigenvectors of the origimiata covariancg, .
The PCA transformation is then computed by:

X=UTY (4.6)
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PCA rotates the set of points around their meaorder to align with the PCs. This moves as much of
the variance as possible into the first few dimemnsi Given a set of points in Euclidean spacefitbie

PC corresponds to a line that passes through tHedmensional mean and minimizes the sum of
squares of the distances of the points from the Mime next PC is orthogonal to the first PC arsbes
through the data mean.

Another eigen-based method, the MNF is effectiveraating a set of images that is ordered according
to image quality. MNF consists of two separate P@G#ations and a noise whitening process. More
precisely, decomposition of the noise covariancérimas performed using PCA and then noise is
rescaled resulting in transformed data in whicts@as uncorrelated and has unit variance. Aftersjard

PCA is performed on the noise-whitened data.

Noise estimation
As it was mentioned previously, the proposed metreogloit the fact that in case of uncorrelategaoi

with equal variance in all bands, the noise is gphlly distributed about the data mean. In case of
independent and identically distributed (i.i.d.)is& by applying either PCA or MNF on zero mean
data, the same set of eigenvectors will be produi¢¢lde noise is not known it cannot be transfodme
to zero mean i.i.d., which stands in real applarai Thus, noise estimation should be performedyMa
approaches have been developed for noise estimaigually, the nearest neighbour difference (NND)
[48] method is initially performed on real datasé&is noise estimation and then noise-whitening is

applied using MNF.

4.3.2 Simple endmember extraction (SEE) method

The SEE method is a simultaneous convex-geometoaséd endmember extraction method which
seeks for the unique constituent deterministic spkesignatures, image endmembers, contained in
hyperspectral images. Principles of the SEE metimde been initially introduced in [29]. The SEE

method exploits the lower dimensional space defimgdhe eigenvectors computed by the minimum
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noise fraction (MNF) [48]. More precisely, the fing-1 eigenvectors, wherg is the number of the
linearly independent endmembers, define a spaceush lower dimension than that of the initial
hyperspectral space. Given that endmembers arel fauthe vertices of the simplex that exists when
the dimensionality of the mixed data is one lesstthe number of linearly independent endmembers
[22], the subset of the minimum and maximum valoéshe projected pixels onto the firgtl
transformed components correspond to the vertitdsecsimplex which is created by the data. To find
the optimum subset, the method computes the spectgle distances (SAD) between each candidate
endmember with the others. Consequently, the pemposethod only projects data onto the fpst
MNF axes and uses the two sample vectors with #ve@mum and minimum projected value per axis.
SEE results in a stable solution compared to diteks such as PPl and VCA which use projections
onto random vectors presuming different set of amtéd endmembers for each implementation.
Moreover, unlike other orthogonal-based algorith®EE is a simultaneously endmember extraction
algorithm exploiting the total data sample at thene time and omitting the computational burden of
iterative projections or projective projections odme space defined by the already determined
endmembers.

The pseudo-code of SEE is shown in Algorithm 4.1.

Algorithm 4.1: SEE
INPUT: The LxN matrixY , where N are theL x1 observed spectral vectors ahdhe spectral bands

Step 1: Estimation of numbep using ODM

Step 2: MNF transformation

Step 3: Projection of data sample vectors onto the firgteigenvectors

Step 4: Selection of the maximum and minimum projecteldi@dor each eigenvecte? 2p-2 candidate endmembers
Step 5: Definition the set of unique endmembers using SAD

OUTPUT: Image endmembers

The novelty of the method is that it searches fer éxtreme values that lie on the end points of the
existing transformed axes without further projectidhat imply iterative procedures. It uses only th
most extreme projected vectors of fhé transformed components unlike the existing ERlgch set
thresholds for defining a set of extremes pixelsaath random vector, estimating their frequen@@$. |

The SEE merely uses the projected sample vectaifseafransformed subspace without proceeding to
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high computational approaches such as orthogomgé¢qiions onto the space defined by the already
estimated endmembers or iterative volume computaticof all the possible combinations of
endmembers [81], [91].

Assuming that the number of endmembgiis known using a signal subspace identificatiainméque
[25], SEE implements MNF in order to eliminate moisomponents and to ensure that the greatest
variances of signals are estimated by the projedtgd. Then, SEE seeks for the endmembers at the
vertices of the simplex which is defined by the meaf the noise-whitened data and thel
eigenvectors. For illustration purposes, simulataeth were generated by three spectral signatuves fr
U.S. Geological Survey (USGS) digital spectraldifyrwhich are presented in Fig. 4.2; (A) almandine,
(B) soail, (C) glauconite. The 50x50-pixel simulategperspectral image with 423 spectral bands was
created in such a way that the abundance fractmlmsv a Dirichlet distribution enforcing positiwit

and full additivity constraints. White Gaussiansewas also added.

Since the simulated image has 3 endmembers, datplesasectors must lie in a triangle with the
endmembers as its three vertices. Fig. 4.3 preskatsoncept of SEE on the scattergram of the data
using the first two eigenvectors. As it is observprbjection of the data sample onto the first PC,
meaning multiplying the data with the first eigector (ev), leads to two candidate endmembers;
maximum projected value corresponds to the endmeniBg and minimum projected value
corresponds to the endmember (C). Projected ddhative greatest variance lie onto the first PC. The
maximum projected pixel value on the first PC wilivays be the endmember whose spectral signature
is the highest concerning radiance/reflectance esaland the minimum projected pixel will be the
endmember with the lowest spectral signature. #hishy the first generated endmember from SGA
[88] is always a pixel which has either a maximurmaaminimum value onto the first component of
dimensionality reduction. Proceeding to the pragecof data onto the second PC, two more candidate
endmembers are defined; maximum projected valuesoonds to the endmember (C) and minimum
projected value corresponds to the endmemberHi)member (B) which has the least distance from the

data mean, compared to the other endmembers, &l fati the last projection. Selecting the maximurd an
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minimum projected values to thpel PCs leads to®22 candidate endmembers. In order to select thenopt

subset ofp endmembers, surfbof the SAD between each candidate endmembey) (with the others ¢g ) is

calculated for each candidate endmember:

& {ca.cq)
) =Y cost A= _
S =2, |c& - Jes| “n

Spectral signatures which are extracted more tim@e bave the same sum of SAD and the duplicates

can be omitted. In this case, the endmember (Chéas extracted twice.
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Figure 4.2: Three USGS spectral signatures usesirfuulated data.
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Figure 4.3: lllustration of SEE.

4.3.3 Enhanced SEE method

An important issue that the majority of the conggoemetrical based endmember extraction methods
encounter is the tendency to select high contradtnembers over less contrast endmembers. Imagine
an image depicting mainly sea and a relatively bara&la of the neighboring coastal zone with urban
materials and vegetation. In this case, data mearoser to the spectral signatures of seawater and
endmembers which represent different types of seaveauld be in the interior of the convex region
and therefore they would fail to be identified agr@me sample vectors. On the other side, highrasnt
endmembers are distant from the mean data andagetcktreme end points during several projections.
In order to overcome this issue, a new empiricathwe has been developed, called enhanced SEE (E-
SEE) whose novelty lies in the fact that it chantdpesdistribution of the initial data sample insieg

the distance between candidate endmembers andathentean. E-SEE exploits the fact that the
maximum projected value (extreme) onto the firangformed component is always the endmember

which is the most distant from the data mean. Thddjng pixels in the original image whose spectral
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signatures represent the first extracted endmemeldrto the less contrast endmembers shifting away
from the data mean.

Simulated data used in the previous section comdisimost equal proportions of pure and mixed
pixels, which are indicated by the location of #&#o mean data quite close to the centroid of #ta.d

In real hyperspectral data, proportions of mixece|s may be uneven. In order to evaluate the pexpos
method in such a scenario, a new simulated hypeirsfhémage was generated by the same spectral
signatures showed in Fig. 4.3, but frequency oélgixontaining spectral signature of (B) is higfidre
reason for changing the frequency of (B) speciguaure is because it is closer to the mean ofithe
than the other endmembers as it is showed in F2gadd it is the last extracted endmember. Generall

it is difficult to extract endmembers which are s#oto each other as well as to the mean. Extreme
endmembers are found easier. Fig. 4.4 presentsethescattergram of the data for the first two ACs.

is clear that the zero mean is close to the endree(). Repeating the processing of SEE, projectio
of the data onto the first PC, leads to two cartdidandmembers; maximum projected value
corresponds to the endmember (A) and minimum pregecalue corresponds to the endmember (C).
Projection of the data onto the second PC leatlsetsame candidate endmembers; maximum projected
value corresponds to the endmember (C) and minipumected value corresponds to the endmember
(A). Despite being at the vertex of the simplexe @mdmember (B) is not found when its distance from
the mean of the data is decreased. It is clearftfa@s rotate a bit, then the projection of (B)tbem

will be one of the extreme values. The questioncvlis raised is how to effectively rotate PCs witho
changing the variance of the data. A simple wagdoomplish it is by adding pixels with the spectral
signature of the maximum projected pixel onto thet fPC. As it is mentioned before, this pixel
corresponds to the endmember which is far away ftemmean of the data and is the brightest. In this
case is endmember (A). By adding these pixelsirtban of the data moves away from the endmember
(B) and goes towards the endmember (A). The vagiarauld be almost the same as only the frequency

of the maximum value is increased. This increaadddo a slight rotation of the first PC towards th
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endmember (A). Fig. 4.5 shows the scattergrant #ite addition of 17% more pixels than the initial

image. The slight rotation of the PCs led to thigaetion of the optimum set of extracted endmembers

PC 2

e1C &i‘:‘-@i;mw‘-t:.:".:f.-.-. e ST '.. :1' q L
T
(B) e2A

Figure 4.4: lllustration of SEE when the frequen€yB) is higher than the others.
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Figure 4.5: lllustration of Enhanced SEE.

In order to define the optimum number of additiopiiels, k, several experiments took place. Results
showed that the addition of pixels with the maximprojected value on the first PC does not change

significantly the direction of the defined PCs @gihhe new shifted data. As shown in Fig. 4.6, the
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angle differences between the first eigenvectdahefinitial image and the first eigenvector of image
with the additional pixels are bellow 0,01 degraed as the number of the extra pixels increases the
angle tends to stabilize. This is reasonable becausntually the first eigenvector will pass thriouige

additional pixels.
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Figure 4.6: Angle rotation of eigenvectors regagdilifferent amount of additional pixels.

In addition, experiments on images with noise shibthat as the signal to noise ratio (SNR) increases
fewer pixels are needed to be added. Moreover,rempetal results were satisfying when adding at

least 300% more pixels than the pixels of theahithage.

The pseudo-code of E-SEE is shown in Algorithm 4.2.

Algorithm 4.2: E-SEE
INPUT: The LxN matrixY , where N are theL x1 observed spectral vectors ahdhe spectral bands

Step 1: Estimation of numbep using ODM

Step 2: MNF transformation

Step 3: Projection of original data onto the first 1 eigector> select the vector with maximum projected value
as°lendmember

Step 4: Addition of pixels having the spectral signatofehe £' endmember (at least 300%) to the original data
—>creation of shifted data

Step 5: MNF transformation to the shifted data

Step 6: Selection of the maximum and minimum projecteldl@dor each eigenvecte® 2p-2 candidate endmembers

Step 7: Definition the set of unique endmembers using SAD

OUTPUT: Image endmembers
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4.3.4 Computational Complexity of SEE and E-SEE

Computational complexity of SEE and3EE algorithms has been evaluated by means ofutiméer of

the floating point operations (flop). SEE performdsnensionality reduction (DR) which includes
computation of covariance matrix of complexity ®I(F) and eigen-decomposition of complexity
O(L%, whereN is the number of pixels and is the number of bands. According to [88], [91],
computational cost of performing dimensionality uetion is relatively small and can be negligible
since: 1) for the sample covariance computatiometiie no need to use all tin pixels to infer the
appropriate signal subspace, but a subsét pixels, called\’, with N'<<N; 2) concerning the eigen-
decomposition, only partial decomposition can befgomed for the computation of the-1
eigenvectors. Consequently, SEE has computati@maplexity of O(N'L+(p-1)%). It is reasonable that
computation of spectral angles has a negligiblepgterity and it is omitted. E-SEE firstly computéet
sample covariance, it uses the first eigenvectdrthen operations are identical with SEE exceptHer
amount of pixels which iBN’ instead ofN’, wherek represents the times of additional pixels by means
of the initials.

At this stage, computational complexity of VCA aNeFINDR has also been estimated in order to be
compared with the proposed methods. These twoitdigs were selected because a) they are widely
used for endmember extraction presenting satisfygsglts, 2) they belong to two different approache
orthogonal subspace approach and volume maximizatespectively and 3) they share the same
concept with the proposed method according to withehendmembers locate at the vertices of the
simplex defined by the data of lower dimensioneéBEk refer to section 4.2.1 for further elaboration
VCA projects all the data vectors onto thalimensional subspace and onto the direction wigch
orthogonal to the determined endmembers. N-FINDRpmgdes the determinant ofpax p matrix Np
times and the computational complexity of each tisn® with 2.3 < 6 < 2.9 [119]. In order to present
proper results, despite being negligible comparedthe remaining operations, computational

complexity of dimensionality reduction has beenetdo the overall complexity of N-FINDR and
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VCA algorithms as they performed it as well. Tablel reports the approximated expressions for the

estimation of the number of flop for each EEA.

Table 4.1: Computational complexity of applied aithons

Algorithm

Number of flop

Enhanced SEE
SEE

VCA

N-FINDR

NPL “+2kN’L*+(p-1)°
N'L>+(p-1)°
2p°N+2N'L%+(p-1)°
p5+1N+2N’L2+(p-1)3

Fig. 4.7(a) plots the number of flop vergufor each of the considered EEAs, with=1(f andN'=10?

[91], L=50 andk=4. As shown, SEE and E-SEE are invariant with ne¢¢ga the number of endmembers

and require less number of flop compared to thero#EAs. Compared to SEE, E-SEE has more flop

but their difference is less than one order of nitage, while forp=15, E-SEE complexity is three

orders of magnitude lower that N-FINDR and one otderer than VCA. Fig. 4.7(b) plots the number

of flop versus the number of pixels, wipk5. As it is observed, SEE presents the lower caatjomal

complexity and along with E-SEE present lower inteat of the number of flop as a function of the

number of pixels compared to the N-FINDR and VCA.
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Figure 4.7: Computational complexity measured ap f{a) in terms of the number of endmembers, (lgims
of the number of pixels.
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Fig. 4.8 plots the number of flop in terms of thergentage of additional pixels required for the
implementation of the E-SEE. It is shown that ewdter adding 500% more pixels, computational
complexity was increased by less than one orderninatge. Since this addition does not make
significant difference to the computational comjilext is proposed to add at least 300% more pixels

(k=4) than the pixels of the initial image.
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Figure 4.8: Number of flop regarding different ambaf additional pixels.

4.4 Experiments

Simulated data experiments
The proposed methods have been tested in sevemalased data. Two sets of simulated data are

selected to be presented among those which havegeeerated for testing and evaluating the proposed
methods. In both cases, the same set of 7 speagradtures from USGS digital spectral library was
used which correspond to sea, blackbrush, soihestall, andradite, almandine, and glauconite (Fig.

4.9).
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Figure 4.9: Spectral signatures from USGS library.

Scenario 1:The first simulated data set was created in susfayaso that the fractional abundances of
each endmember were known for every pixel. In paldr, the 21x45-pixel simulated data was created
in such a way that the abundances are assigneldetpixels in progressive linear mixture for all
endmember combinations. Sum-to-one constraint éas bpplied to the abundances. Pure pixels are in
the first and last row and randomly in the middfettee image. Different levels of noise have been
added with signal to noise ratio (SNR) values 1028JB and 40dB, respectively. These SNR values
are representative of what is typically found ialreensors [96]. The SNR for each band is defirsed a
the ratio of the 50% reflectance signal level te standard deviation of the noise [11]. The additiv
random noise was simulated by using numbers wisttaadard normal distribution obtained from a

pseudorandom number generator. The simulated da@abtained by:

yi = (%ﬁ n; j(Mai ) (4.8)

wherey; is a vector containing the simulated spectrumnis the noise factorM is the matrix of
endmember spectra ands the fractional abundance of endmembers at gixelhe values of the pure
pixels were computed by setting one component @itkiector to one and the rest to zero to indicate

class membership. Scaling the signal by 50% ofSN® is equivalent to reducing the noise standard
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deviation by the inverse factor (2 / SNR), so ttiet simulated data meets the SNR definition. The
vector terms in the parentheses are multiplied eferny element.

Besides SEE, N-FINDR, VCA, PPI, ICA-EEA, SMACC aAdGP were also applied. Independent
component analysis endmember extraction algoritt@A-EEA) [55] is a nonparametric statistical
approach. It finds pure endmembers by decompobmglata using the ICA algorithm into independent
components. The components are scored and ordemgdthe p highest components are kept. Pure
endmembers are derived from the maximum absoluteeva each component. ICA algorithm which
was used for our experiments was FastICA as itchiasen by [55].

The endmember extraction methods have been repeatgolied to the simulated dataset and the best
results are presented on Table 4.2. As it is oleskrthe proposed method, the SEE, had the best
performance for images with noise, compared toother EEAs. Almost all the extracted endmembers
apart from one, are pure pixels regardless the amafunoise in the image. All the other algorithms
extract mixed pixels as endmembers and/or failxtoaet all the endmembers. The ICA-EEA presents

the worst performance, while SMACC failed to extradmandine” in all images.
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Table 4.2: Fractional abundances of extracted entbaes from the applied EEAs using images with
different noise level. Symbol ‘0’ means that endrbemwas not extracted.

EEA Fodmember | o . | Blackbrush | Soil | Stomewall | Andradite | Almandine | Clauconite
SNR10 | o 100% | 100% | 100% 100% 100% 100%
p— ST 10006 | 10004 [ 10004 10004 10004 10004
SNE 40 | 100%% 100% | 100% | 100% 100% 100% 100%
no moise | 10004 1000 | 10004 | 10004 10004 10004 10004
SNR 10 | 9504 1000 o 100% 100% o 100%
vea SNR 20 | 9504 100 o 100% 100% 100% 100%
SNE 40 | 0504 10006 | 10004 [ 10004 10004 10004 10004
no noise | 100% 100% | 100% | 100% 100% 100% 100%
SKR 10 | 10004 0504 9504 o o o 004
SNR 20 | 1000 6504 9004 o 7004 o 3004
e SNR 40 | 100% [ Bstg | 5004 8004 00 8004
no moise | 10004 10006 | 10004 [ 10004 10004 10004 10004
SNE10 | o 6004 o o o 8004 2004
SKRE2 | o 0504 o o o o004 5504
ICAEEA onma0 | s0m o o 2004 o 7304 3004
no noise | 100% 100% | 100% | 100% o 100% 100%
SNE 10 | 10004 10004 o o 10004 o o
apce |SNR20 | 100% 100% o o 100% o 100%
SNE 40 | 10004 10004 o 10004 10004 o 10004
no noise | 100% 1000 | 1000 | 1000 100% o 100%
SNE 10 o 1M} o o 10424 o o
- SNE2 | o 10004 o 0504 10004 o 10004
SNRE40 | o 100% o 100% 100% o 100%
no moise | 10004 1000 | 10004 | 10004 10004 10004 10004
SNR 10 | 10004 1000 | 10004 [ 10004 10004 9s04 10004
SEE SNR 20 | 100%% 100% | 100% | 100% 100% 100% 100%
SNE 40 | 10004 1000 | 10004 | 10004 10004 10004 10004
no noise | 100% 1000 | 1000 | 1000 100% 100% 100%

Fig. 4.10 presents the number of the extracted endmrs per algorithm, as well as, their mixture in
the simulated data. For the images without noiddAGC and ICA-EEA missed to extract one
endmember (Figure 4.10(a)). For images with SNRad@ 20, N-FINDR presents the second best
performance after the proposed method, extractimgectly all the endmembers, but failing to extrac

sea.
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Figure 4.10: Number and abundance of the extraatddhembers per algorithm.

Scenario 2 The 50x50-pixel simulated hyperspectral imagesth 423 spectral bands were created in
such a way that a) the abundance fractions folldirgchlet distribution enforcing positivity and Ifu
additivity constraints and b) the noise is zero-mehite Gaussian, leading to SNR values of 50dB, 30
dB, 20 dB and 10 dB. In this section N-FINDR, VCZEE and E-SEE are tested and compared.
E-SEE was run after adding 300% more pixels ofithigal image having the spectral value of the
maximum projected pixel onto the first transformmamponent derived by PCA. PCA was applied

since noise is zero-mean white Gaussian. Speatgie alistance was used as the spectral similarity

4 The algorithm for the generation of the simuladeth is available at http://www.Ix.it.pt/~bioucasde.htm
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measure between the estimated endmembers fromotineEEAs and their corresponding reference
spectral signatures from USGS library.

Compared to all the remaining applied EEAs, E-SEEgomed better when it was applied on image
with SNR 10 and SNR 20. As it is reported in Tables and 4.4, E-SEE presented the lowest spectral
angles at five out of seven endmembers, whereasysds the second best performance presenting
the lowest spectral angles at three out of seveimembers when applied on the image with SNR 10.
For images with higher SNR, all the applied EEAggrened quite similar.

Table 4.7 reports the average spectral anglespé&Hermance is considered to be better if the aeera
spectral angle is smaller. E-SEE presents bettdonpeance compared to the other EEAs concerning

the average SAD whereas SEE and VCA yield the skbest performance.

Table 4.3: Spectral angles (in rads) between eenaendmembers from each EEA ( SNR 10)
and their corresponding reference spectral sigadtam the USGS library.

SNR 10
sea blackbrush soil stonewall andradite almandine Glauconite
N-FINDR 0.989 0.341 0.460 0.222 0.152 0.353 0.576
VCA 0.941 0.341 0.467 0.243 0.15 0.334 0.576
SEE 0.924 0.316 0.460 0.232 0.139 0.350 0.510
E- SEE 0.924 0.298 0.460 0.232 0.139 0.350 0.422

Table 4.4: Spectral angles (in rads) between edlaendmembers from each EEA ( SNR 20)
and their corresponding reference spectral sigadtam the USGS library.

SNR 20
sea blackbrush soil stonewall andradite almandine Glauconite
N-FINDR 0.726 0.120 0.183 0.085 0.073 0.123 0.259
VCA 0.726 0.120 0.181 0.083 0.075 0.125 0.259
SEE 0.730 0.118 0.185 0.085 0.073 0.125 0.258
E-SEE 0.726 0.118 0.185 0.083 0.073 0.125 0.248

Table 4.5: Spectral angles (in rads) between edrlaendmembers from each EEA ( SNR 30)
and their corresponding reference spectral sigadtam the USGS library.

SNR 30
sea blackbrush soil stonewall Andradite almandine Glauconite
N-FINDR 0.371 0.039 0.082 0.049 0.059 0.067 0.122
VCA 0.371 0.039 0.085 0.049 0.059 0.067 0.122
SEE 0.367 0.039 0.085 0.049 0.059 0.067 0.122
E- SEE 0.367 0.039 0.085 0.049 0.059 0.067 0.122
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Table 4.6: Spectral angles (in rads) between edlaendmembers from each EEA ( SNR 50)
and their corresponding reference spectral sigadtam the USGS library.

SNR 50
sea blackbrush soil stonewall andradite almandine Glauconite
N-FINDR 0.062 0.010 0.062 0.043 0.058 0.056 0.098
VCA 0.062 0.009 0.062 0.043 0.058 0.056 0.098
SEE 0.062 0.010 0.062 0.043 0.058 0.056 0.098
E- SEE 0.062 0.010 0.062 0.043 0.058 0.056 0.098

Table 4.7: Average spectral angles over the endrae{in rads).

SNR 10 SNR 20 SNR 30 SNR 50

N-FINDR 0.44186 0.22414 0.11271 0.05557
VCA 0.43600 0.22414 0.11314 0.05543
SEE 0.41871 0.22486 0.11257 0.05557
E-SEE 0.40357 0.22257 0.11257 0.05557

Real data experiments

The proposed algorithms, SEE and E-SEE were applied real hyperspectral remote sensing image
which was collected in 1997 by the Airborne Visibi&rared Imaging Spectrometer (AVIRIS) sensor
over a well-known mining region of Cuprite in Newad he image scene, which is available on line in
reflectance values after atmospheric correctjois well understood mineralogically and it is wlgde
used to validate the performance of endmember @idraalgorithms. Several of the exposed minerals
are included in the USGS digital librafy According to the associated ground based obsensaa
wide range of minerals can be identified in thegm§l20], [121].

The original image has 220 spectral bands covexiggectral range from 0.4 to 2iB1. A sub-image of
301 x 300 pixels of AVIRIS scene was selected er éxperiments (Fig. 2.11). This dataset contained
50 contiguous spectral bands in the range of 2425 This range present key absorption features
associated with minerals [76].

Outlier detection method [25] resulted in the numbe 20 endmembers. According to [88], [116],

[122], [123] five highly representative mineraldufate, buddingtonite, calcite, kaolinite, musceyit

15 http://aviris.jpl.nasa.gov/html/aviris.freedataiht
18 http://speclab.cr.usgs.gov/spectral-lib.htm
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depicted in the sub-image are extracted with sgcbgsboth N-FINDR and VCA algorithms. In the
current study, an experiment-based cross exammatis been performed in order to evaluate whether
the proposed methods can extract efficiently tloeeghentioned minerals. Analysis of the endmembers
found by the applied EEAs showed that two more naiise(chabazite and sillimanite) - i.e. totally
seven minerals- have also been extracted by alfailnemethods. Consequently for a more complete
comparison, each method is evaluated in termssoadturacy to extract the seven aforementioned
minerals. The USGS spectral signatures of thesenals) shown in Fig. 4.11, are selected as ground
truth references for the evaluation of the appk&ths. The extracted endmembers were compared with
the ground truth signatures using spectral andtes @ntinuum removal function [124].

The spectral angles between the reference mingpelstral signatures and the corresponding extracted
signatures by each EEA are reported in Table 4 dverage spectral angle of each EEA is also
reported. As listed in Table 4.8, E-SEE providedtdseperformance compared to the SEE and it
presents the lowest spectral angles for four ogesEn minerals. N-FINDR performed quite well with
three out of seven lowest spectral angles, andSE®vs with two out of seven lowest spectral arsgle
VCA performed the worst. The performance of the EEfalso reflected to the average spectral angles;

E-SEE presented the lowest average spectral andI8B&E yielded the second best performance.

Table 4.8: Spectral angles (in rads) between eema@ndmembers from each EEA and their
corresponding reference spectral signature fronJt®&S library.

USGS
Algorithm Alunite Buddingtonite Calcite Chabazite Kaolinite Muscovite Sillimanite Average
N-FINDR 0.059 0.050 0.045 0.022 0.060 0.052 0.041 0.0470
VCA 0.075 0.054 0.050 0.037  0.033 0.055 0.038 0.0489
SEE 0.058 0.043 0.051 0.029 0.038 0.052 0.031 0.0431
E-SEE 0.056 0.043 0.045 0.029 0.038 0.063 0.024 0.0426

Fig. 4.11 shows one-to-one comparison of continutemoved spectra between the estimated
endmembers by the applied EEAs and the USGS spébtexy spectra. Topological changes of data

resulted from the E-SEE was implemented by addid@%@ more pixels. Differences between the
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reference spectra and the extracted endmembersapethe absolute value of reflectance are likely

due to atmospheric transmission effects.
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Figure 4.11: Comparison of continuum removed spesfrendmembers found by several EEAs with
USGS spectral library spectra.
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Effectiveness of E-SEE was also evident when it ingdemented for the detection of oil spills. In
particular, in the frame of ARGOMARINE airborne hyperspectral imagery was acquired ugieg
CASI-550 hyperspectral senddrThe scene was depicting the seawater area ofnhaaghay of
Zakynthos island. In this bay a natural non-cordimtusubmarine oil outflow exists, resulting in the
appearance of natural oil-spills on the sea surfétg. 4.12 shows the CASI image, the locatiothef
detected endmember of oil spill and the classifeage using spectral angle mapper (classifier) ($AM

[68].

Shallow seawater
Bottom covered by algae

. Shallow seawater

. Oil spill

Classified image

Figure 4.12: Oil spill detection using E-SEE.

4.5 Conclusions

In this work, new simultaneous simplex-based unsiped endmember extraction methods have been

introduced; the simple endmember extraction (SEH)the Enhanced-SEE (E-SEE) empirical method

" FP7 European program
18 The image was acquired by the Laboratory of RerSetgsing of NTUA
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which have light computational burden and are dtargsed by their clear conceptual meaning. The
SEE method seeks for endmembers at the verticdgedimplex which is spanned by the zero mean
data and a few eigenvectors. The method is simflewery low computational cost. E-SEE has been
developed in order to overcome the tendency that ntajority of the convex-geometrical based
endmember extraction methods encounter to selgtt bontrast endmembers over less contrasted
endmembers. This is accomplished by changing tteedistribution. More precisely, E-SEE moves the
mean of the data by adding pixels which have theetsal signature of the maximum projected pixel
onto the first transformed component. In comparisorSEE, E-SEE presented higher performance
regardless the distance of the extracted endmerfrioenghe data mean and the amount of noise.

For evaluation purposes, VCA and N-FINDR were gisoformed. Experiments on synthetic data
demonstrated the effectiveness of the proposedadstim comparison with VCA and N-FINDR for
various proportions of pure and mixed pixels. E-§iE€&sented the best performance, whereas SEE and
VCA yielded the second best performance in termavefage spectral angles. In case of the AVIRIS
Cuprite real hyperspectral data, results showedBHaEE method outperformed the other methods. It
should be noted that despite its simplicity, theeSHgorithm yielded a better performance than VCA
and N-FINDR in terms of average spectral anglealiin computation complexity of the proposed
methods is much lower than those of VCA and N-FINRRproximately one and three orders of
magnitude lower, respectively. The very low compatacomplexity of SEE as well as its performance
makes the method a very fast and effective toolefafmember extraction, whereas low computation
complexity and high performance of E-SEE make th8HE a reliable and fast tool for endmember

extraction.
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Chapter 5

Abundance estimation

5.1 Introduction

In the previous section we have seen the main sspéendmember extraction and the approaches
which address it. Abundance estimation yields &s¢ dutput of spectral unmixing which represengs th
proportion of each endmember in the pixel. Abunéaestimation can be accomplished having
previously defined the endmembers or at the same tvith endmember determination. It is an
inversion problem based on spectral mixture anal{see section 1.2). Given the observed spectral

vectorsy and the matrix containing the endmembgiia eq. (1.1), the inversion step can be considered

as an optimization problem which minimizes the deal between the observed vectors and the linear
space spanned by the inferred spectral signatd@suging least squares estimation described in eq.
(1.2). Methods which address abundance estimasoa least squares problem can be found in [11],

[13], [125], [126]. Another group of inversion metls address the abundance estimation as a multiple
signal detection problem [114]. In this group, iempkentation is based on orthogonal subspace
projection (OSP) and, instead of estimating thendbuces of all the endmembers at the same time, it
regards a single endmember as the desired sigonatesdo be detected, and all the others as the
undesired sources. Then, all the data sample \&eaterorthogonally projected onto the space spanned

by the undesired sources leading to the suppressgitime latter. More elaborate description of OSP-
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based inversion methods can be found in [11], [180], [127], [128], [129], [13Q] Besides
optimization-based and OSP-based algorithms, the&ve been developed approaches which model the
underlying physics using either neural networksl]|18132], networks of endmembers [133], or more
complicate expressions of multiple photon interatti[15].

The majority of the existing inversion methods aseique set of endmembers for spectral unmixing of
the entire image, failing to account that each Ipirey comprise a different combination of
endmembers. For instance, imagine a hyperspecegaksdepicting 1) a built-up area with metal roofs,
and 2) sea. It is reasonable that pixels with seawaave no participation into metal roof spectra.
Nevertheless, the standard application of spectnahixing would use the spectral signature of the
metal roof as one of the input endmembers for thmixing of seawater pixels. Consequently, the
accuracy of the unmixing method would be low sintiézing more endmembers than the actual set
makes the model sensitive to instrumental noisapgpheric contamination and natural variability in

spectra, resulting in fraction error [33].

5.2 Multiple endmember spectral mixture analysis

Multiple endmember spectral mixture analysis (MESMA3] extends the linear spectral mixture
analysis (LSMA) [16] and allows the number and /¢ endmembers to vary on a per-pixel basis.
LSMA assigns each endmember to one spectral signataglecting the spectral variability of the same
material under different scene conditions. On tifreiohand, MESMA can be used to account for within
class spectral variability because it creates gelandmember pool in which multiple endmembers
belong to the same class. MESMA is a spectral ntegdiechnique which premises the set of candidate
endmembers contained in the endmember pool -didr@red from the entire data sample or reference
endmembers- to be known a priori and seeks fooptenum set of endmembers that composes the
spectral signature of each pixel. Three techniduza® been used for determining the most appropriate

set of endmembers for each pixel; count-based emtimeselection (CoB) [134], endmember average
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root mean squared error (EAR) [135] and minimumrage spectral angle (MASA) [136]. The CoB
selects the endmembers which model the greatesberuonf endmembers within their class whilst
minimizing endmember overlapping with other classése EAR selects the endmembers which
produce the lowest RMSE within a class and MAS/Aedsl those with the lowest average spectral
angle.

According to [23], the selection of the optimum sétendmembers using MESMA is achieved by
setting a threshold to the RMSE between the origind the reconstructed pixel spectra and by keepin
combinations that produce acceptable abundancgs \{elues between -0,01 and 1,01). In [137],
authors proposed two new algorithms - the secoradfest version of the first - in order to seldu t
optimum set of endmembers for each pixel, withaw threshold requirement. The first algorithm
performs unconstrained least squares (UCLS) méitrodll the possible combinations of endmembers
extracted by an endmember extraction algorithm (EBAd for each pixel retains as final set, the one
with the minimum RMSE and nonnegative abundancés. 8forementioned algorithm is very time-
consuming because it runs for all the possible doatibns of endmembers. The second algorithm,
proposed in [137], is mainly based on the RMSE aints to fasten the searching process. It relies on
the concept that if an endmember contained in angpixel is removed the RMSE will become larger.
Results showed that nonnegativity and sum-to-onestcains on abundances can be automatically
satisfied but compared to UCLS method, the two rilyms proposed by authors in [137] presented

very high computational complexity and a bit lovaecuracy.

5.3 MESMA-SAD

MESMA needs to calculate all the potential endmantoenbinations of each pixel to find the best-fit
one. Therefore, MESMA is a time-consuming and Idficiency unmixing technology, especially for
hyperspectral images. In this study, a novel MESBIAtroduced, calledhultiple endmember spectral

mixture analysis based on spectral angle distafMESMA-SAD), [32] which aims to minimize the
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time-processing by combining the Spectral Angletédise (SAD) values and the mean absolute errors
(MAE). The algorithm does not require any thresholthe new method attempts to exploit the
advantage of SAD to be insensitive to differencesthe albedo of the modeled spectrum and
computational inexpensive [136]. More specificalggtimation of SAD between a set of extracted
endmembers and a pixel spectrum provides the reduot the number of endmember combinations
from 2’ -1 top, wherep is the number of endmembers, by retaining the @mdoer combinations with
the minimum SAD values. The fully constraint leasjuares (FCLS) method runs for tpe
combinations and the endmember combination with nttiemum MAE between the original and
reconstructed pixel spectrum is selected as thienapt. The MESMA-SAD requires the endmembers
presented in the image to be known previouslyda@ifplication. In this study, E-SEE algorithm was

firstly applied for endmember extraction.

5.3.1 Analysis of the proposed method

Assuming that there agendmembers in the image, for each pixel, the MESBMD process can be

summarized by the following steps:

1. Estimation of the SAD values between the pixel umatecessing and the endmembers usihgl 2
endmember combinations? 2 SAD values will be produced. For combinatiotssghich contain
more that one endmember, a SAD is initially esteddietween each endmember and the pixel, and
the sum of the estimated SAD values is calculdtedase of a single endmember, there is a unique
SAD value. Hereinafter, both the summed SAD and uhigue SAD values will be referred as
summed spectral angle distance (SSAD).

2. The estimated SSAD values are categorized pnttasses in such a way that each class comprises
SSAD values which are estimated from the same nuoflEndmembers.

3. Selection of one endmember combination with themmum SSAD from each class.

4. Overall,p endmember combinations are selected for which F@egod is performed.
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5. The endmember combination with the minimum MAE hestw the original and reconstructed pixel

spectrum is selected as the optimum.

For illustration purposes, Fig. 5.1 presents fauaginary spectra plotted as vectors in two spectral
bands which represent 3 endmembers, A, B, and Gaaiathdom mixed pixel M. Assuming that the
spectral signature of pixel M is composed by endben A and B only, its vector in the spectral space
will be close to these endmembers, as shown ingig.Since there are three endmembers, there will
be 7 endmember combinations, and 3 SSAD classesynsiin Table 5.1. For each class, the
combination with the minimum SSAD is selected. Assishown in Fig. 5.1, from the first class the
SSADys, from the second class the SS&D: vg, and from the third class, the SSAMQms+mc
combination is selected. FCLS is performed for ¢hitsee endmember combinations. The endmember
combination with the minimum MAE between the orgjiand reconstructed pixel spectrum is selected
as the optimum one. Table 5.2 reports the numbatecdtions during the unmixing process. The
MESMA-SAD algorithm significantly minimizes the cqutational time compared to other MESMA

algorithms as theP2l iterations during the unmixing process becqame

Band 2

\J

Band 1

Figure 5.1: Imaginary spectra in two dimensionaldam.
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Table 5.1: The three SSAD classes and the combimaincluded in each class for the given example.
CLASS COMBINATIONS SSAD

A SSADya
1% B SSADys
C SSADyc
AB SSADvA + MB
ond AC SSADua + mc
BC SSADuB + mc
3¢ ABC SSADua+MBMC

Table 5.2: Number of iterations during the unmixprgcess.

Method Number of
iterations
MESMA 2’1
MESMA-Algorithm 2" px(pt+1)/2
MESMA-SAD p

5.4 Experiments

The proposed algorithm was applied on the same AY[Ruprite dataset used in section 2.4.

For comparison purposes, UCLS and FCLS algorithmealso applied on the AVIRIS data. As it is

reported in Table 5.3, the MAE between the origayadl the reconstructed image is a bit lower when
MESMA-SAD was applied compared to FCLS. UCLS préseéithe lowest MAE but it should be noted

that the estimated fractional abundances do nopbjomith sum-to-one and non-negativity constrains
and results may be unrealistic.

Table 5.3: MAE between the original and the reaareséd image by each applied algorithm.

ALGORITHM MAE between theoriginal
and reconstructed image

MESMA-SAD 0.00264468
UCLS 0.00210867
FCLS 0.00264565

19 Algorithm 2 is referred to [137].
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This fact is depicted in Fig. 5.2-5.4, where théinested abundances of each applied method are
presented for three minerals. Results can be eealuay visually comparing them with the
classification maps [105] produced by USGS Tricordigorithm [120] (Fig.5.5). As it is observed,
MESMA-SAD appeared the best performance regardivey estimation of buddingtonite fractional
abundances. Concerning the muscovite, MESMA-SABgnted satisfactory results since it presented
higher abundances to the pixels indicated by Tdeomap but it presented lower performance for
kaolinite compared to FCLS algorithm. The fractiormbundances resulted from UCLS differ

significantly from those given in the Tricorder map

Buddingtonit M uscovite Kadlinite

_ . : °
Figure 5.2: Fractional abundances resulted from S.CL

Buddintonit M uscovite Kaolinite

e NN <
Figure 5.3: Fractional abundances resulted from$.CL

Buddingtonite M uscovite i Kaolinite

ances resulted from MESSAD.

Figure 5.4: Fractional abu
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Buddingtonite M uscovite Kaolinite

EAY

Figure 5.5: Classi ication mps produced by Trieord

5.5 Conclusions

MESMA concept considers all the possible differeetis of endmembers for each pixel for performing
unmixing. The main constraint of MESMA is the cortgiional complexity required for the retrieval of
the optimum endmember combination which composesitinature of each pixel. This work presents a
new MESMA method, the MESMA-SAD, which uses the Sydues in order to reduce the number of
endmember combinations, and MAEs between the @aligind the reconstructed pixel spectrum for the
selection of the optimum endmember combination. TMESMA-SAD does not require tuning
parameters and reduces significantly the time-msiog as the P21 iterations required during the
unmixing process in the MESMA becornpe In order to evaluate the effectiveness of theppsed
method, experiments on AVIRIS CUPRITE hyperspecatedh was performed. Results showed that the
proposed algorithm has much potential in specinatining field but further work is needed to be done

in order to have a more thorough view of the stand the weak points of the method.

118



Chapter 6

Conclusions and future work

Spectral unmixing is the process of decomposingotheerved pixel spectrum into endmembers and
estimating their proportions, also called abundantieis a very active research topic as its enaisno
potential has aroused the interest of researcliers many different disciplinary areas. This thesis
focused on several issues related to spectral ungniwhich need to be addressed so that the full
potential of hyperspectral data exploitation todmployed. These issues regard the steps which are
involved in spectral unmixing process, includingrell subspace estimation, dimensionality reduction,
endmember extraction and abundance estimation.
The performance of each of the aforementioned stepg affect directly the performance of the
following ones. The following facts are adducedstwow the importance of developing effective
methods for improving the spectral unmixing process
e An accurate determination of the number of the esrdbers significantly 1) contributes to the
development of unsupervised methods in terms ofedsionality reduction, endmember
extraction and target detection, 2) contributegh® accuracy of the spectral unmixing process
and 3) enables low-dimensional representation eftspl vectors.
¢ Dimensionality reduction methods define the hypecsal data into a lower dimension in order

to be analyzed more effectively, yielding gainscmmputational time and complexity, data

119



storage, algorithm performance and signal-to-noéd®. It is widely used as a pre-processing
step of great interest as it affects directly taegfgrmance of the following processing tasks.

» Band selection is a dimensionality reduction teghaiwhich selects the original spectral
channels, retaining the spectral characteristicc@fmaterials. Selecting the optimum
set of bands which comprise the most informativesois of crucial importance for the
data representation in lower dimension and foldbeatification of desired materials.

e Development of new endmember extraction methodsirttysoducing new concepts for
optimizing their performance presents a high levekesearch activity as the image scenes
become more complex and spectral resolution of tegeetral sensors offer an invaluable
diversity of information, enabling the accurate gibgl description and discrimination of the
sensed materials.

e Designing spectral unmixing algorithms of low coepty and/or improving the computational

time of existing algorithms contributes to real-¢immpplications.

In the frame of this thesis, existing relevant roeth have been elaborately studied and extensive
analysis of the hyperspectral data sets have bemoughly conducted seeking to discover the main
issues related to the spectral unmixing procestrbads to be explored. The main issues that are
uncovered and investigated are as follows:

e A successful estimation of the number of endmemsigosgly depends on how well signal and
noise are discerned.

e The existing methods for estimation of the signddspace dimension consider the existence of
two different distributions, the one related to seiand the other related to signal, or in
geometrical approach they consider two differertispaces one of noise and one of signal.
However, in hyperspectral space, signal vectorvang few compared to noise vectors in order

to estimate their population distribution propeshyto statistically analyze them.
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Specific spectral characteristics between similatemals are present at certain wavelengths and
this crucial and critical information may be commised and distorted if no original data are
used.

There are a few band selection (BS) methods whaste lbeen addressed to spectral unmixing
and these methods set criteria to the spectralrn#tion derived by the whole set of
wavelengths; a generalised approach which disregaedspectral characteristics of a particular
material of interest, the image diversity and thdreember variability.

Working with reference endmembers implies severitens: firstly, it is based on the premise
that the data sample vectors are calibrated aneated for radiometric effects in order to be
properly compared with them, a process which isahwtys likely to be accomplished nor to be
evaluated; secondly, when using reference endmentbere exists a difficulty in interpreting
the scene of remote-sensing scale using spectrauneebat centimetre or millimeter scales;
thirdly, the computational complexity of such aprbes using the available spectral libraries
can be quite high.

Creating virtual endmembers contributes to miningzithe spectral unmixing error but
mathematically correct endmembers do not alwaysesemt physically meaningful spectra able
to interpret the imagery.

An optimal EEA must select all the endmembers atsdime time using the whole spectral data
(simultaneous extraction), rather than sequentialyracting them. However, the former is
characterised by its high computational burden.

The majority of the convex-geometrical based endbesraxtraction methods have the tendency
to select high contrast endmembers over less cir@ramembers.

The spectral vectors of endmembers which are clasetata mean are more likely to be
disregarded by the endmember extraction methods.

Multiple endmember spectral mixture analysis (MESM23] is an effective spectral matching

technique which accounts for within class spectaaiability. However, it needs to calculate all
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the potential endmember combinations of each pgixéhd the best-fit one, demanding a time-

consuming unmixing technology.

The main contributions of this thesis include tlpleitation of novel concepts and the developmént o
five new methods dedicated to the spectral unmiyiragess, aiming at overcoming the shortcomings
described above.

e A new method for estimation of the signal subspdiogension, calleautlier detection method
(ODM) has been introduced. ODM is a new automatic-parametric method whose novelty
lies in the fact that it considers only the existeonf noise and treats signals as outliers of noise
It searches for the signals whose radius is byafger than that of the noise and introduces for
the first time in virtual dimension theory a robusttlier detection method. Briefly mentioned,
the main key points of ODM are as follows:

1. ODM exploits the geometrical properties of noisgdrgphere which are given by
information theory.

2. Noise vectors lie in a hypersphere of radius etu#éheir standard deviation value while
the signal vectors have evidently larger standadations values which vary in all
directions and consequently, they lie in a hypgsdid.

3. No threshold is needed between signal and noidengec

4. A robust outlier detection method is used, callateri quartile range (IQR) based
method. Its benefit lies in the fact that it canused when data distribution is unknown
and thus, no statistical parameter estimation isded. The risk of estimating
erroneously the signal distribution due to its dipapulation is omitted.

5. The proposed method is characterized by its sintyalic

Experiments using simulated and real images inglicéte efficiency of the ODM, even when

small sets of sample vectors were used, as it dotpged compared to its competitors.
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A new band selection (BS) approach has been desglofnich can be adopted by endmember
extraction and classification methods leading #itet to enhanced performance. The method is
tied to the materials/classes of interest. It esfitst attempt to address the issue of disreggrdin
spectrally closed endmembers (SCEs) — a term intextlin the frame of this study- exploiting
the original bands. In order to extract the SChEs,concept of multiple convex hulls [79] is used
for the first time in BS. The main key points oétproposed BS approach are as follows:

1. It accounts for the different distribution of eadlaterial’'s convex hull to the data cloud.
For this reason, the proposed BS approach allowsfittal number of endmembers
assigned to a material class to vary resultinganenphysically meaningful spectra.

2. It accounts for image diversity and is tied to #wailable information derived from the
image’s spectral characteristics. Thus, differens ®f bands are exploited for detecting
different materials depicted in the same imageeacen

3. Being image-dependent compensates the endmembabiirar, contrary to the existing
approaches which use a priori information relatedhe absorption features at fixed
wavelengths.

4. The proposed BS contributes to optimizing the diassion performance when the
available training data sets are limited and featiis the SVM classification method.

Experiments were implemented using two real hypstspl images. In terms of endmember
extraction, the proposed approach is effectiveedeading low contrast materials, which were
disregarded by the N-FINDR algorithm. The extrac8®dEs provided wealth and elaborate
information for material classes defined by thevplent endmembers. The potential of the
proposed approach can contribute to the extraciapectral signatures which imply different

biophysical or chemical properties of a materialssl In terms of classification, the proposed
method achieved overall accuracy very close tmtieewhere all available bands are used (only

1% less) while, at the same time, it reduces tmelban of selected bands more than 50%.
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Two new simultaneous simplex-based unsupervisethember extraction methods, the simple
endmember extraction (SEE) and the Enhanced-SEEE@E)- empirical method, respectively,
have been also developed. The proposed methodssed on the linear spectral mixture model
which is the most widely used model, adequate fosupervised approaches, due to its
acceptable approximation of light scattering medasann many real scenarios. Its clear
conceptual meaning contributes to a computationaliyiple implementation and an easy
interpretation. The geometrical interpretation loé tinear mixture model is associated with the
mathematical theory afonvex setbased on which, spectra can be restricted in plexrlying

on a signal subspace of dimension one less thanuimder of the endmembers. The novelty of
the SEE method is that it searches for the extreatges that lie on the end points of the
existing transformed axes without further projegsiohat imply iterative procedures. The E-SEE
empirical method compensates the tendency thatntjerity of the convex-geometrical based
endmember extraction methods encounter to selghtdontrast endmembers over less contrast
endmembers. Its novelty lies in the fact that drges the distribution of the initial data sample
increasing the distance between candidate endmemahdrthe data mean. The main key points
of the proposed EEAs are as follows:

1. Both SEE and E-SEE are simultaneous EEAs exploitieginformation derived from
the whole data in contrast to the existing seqakBf:AS.

2. The proposed methods have light computational bucdenpared to the-state-of-the-art
EEAs and are characterised by their clear conckpteaning.

3. Endmembers are considered as the dominant disfiecttra which are constituent parts
of a spectral mixture. On this account, the progasethods extract image endmembers
which have the advantage of no calibration neeftaireng from adding calibration
errors in the mixture model, as well as they hdneedame scale of measurement as the

data.
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Extensive experiments with simulated and real hggectral data sets showed that the proposed
methods can be promising in the endmember extragifocess. The very low computation
complexity of SEE as well as its performance makesmethod a very fast and effective tool
for endmember extraction, whereas the low comprati complexity and the enhanced

performance of E-SEE make the E-SEE a reliablefastdool for endmember extraction.

Last but not least, the fifth method is a new nplétiendmember spectral mixture analysis
(MESMA) based on spectral angle distance, calledSMB-SAD, and it is used for the

estimation of the fractional abundances for thensmbers in each pixel. The new method
applies fully constraint least squares (FCLS) aonhlmines the spectral angle distance (SAD)
values and the mean absolute errors (MAE). Theri#lhgo does not require any threshold. The
new method attempts to exploit the advantage of $&De insensitive to differences in the
albedo of the modelled spectrum. Results usingah mgperspectral data set showed that
MESMA-SAD significantly minimizes the time-procesgi compared to the existing MESMA

algorithms leading to satisfactory results.

Through the development and the testing of theqgse@ methods, several directions for future regearc

have been revealed. Taking advantage of ODM toesstglly estimate the number of endmembers in

small sized images, future research could focusambining it with endmember extraction methods

which integrate spatial information. Regarding piheposed method for band selection, the number of

is selected to be used for defining the sets oflbdn be exploited. Experimental research could be

conducted to determine the optimum number of baondbe selected using data sets with ground

reference data. In addition to this, based on thpigcal E-SEE an effort is given to develop a retbu

criterion according to which the data distributieitli be changed.
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