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Abstract

Processor hardware performance counters have improved in quality and features
in recent years. At the same time, the performance monitoring support in Linux has
been significantly revamped with the development of the perf events subsystem.
Those factors concur in making performance monitoring a more common practice
among developers. However, no performance analysis is possible without reliable
hardware counter data.

In this thesis, we focus on a published correctness erratum in the performance
monitoring unit of recent Intel processors when Hyper-Threading is enabled. This
erratum causes cross hyper-thread hardware counter corruption and may produce
unreliable results. We propose a cache-coherence style protocol that we implement
in the Linux kernel to circumvent the issue by introducing cross hyper-thread dy-
namic event scheduling. We also introduce an event scheduling algorithm that
achieves the optimal scheduling of events onto hardware counters at all times. The
proposed optimizations do not require any user level changes and leverage the in-
ternal design of the perf events subsystem. The source code has been contributed
to the upstream Linux kernel.

Keywords
performance monitoring, hardware counters, PMU, hyper-threading, Linux kernel,
perf events, event scheduling






ITepirndm

Kotd ta teheutador €11, oL yetentés embOceEwY LAXOU 0TOUG ENEEERY IO TEG €Y 0LV
Behtiwdel 600 o ToLOTNTA, 660 xan oE yopoxTneloTixd. Tautdypova, 1 uToc THpL-
&n mapaxohovinone emdboewy (performance monitoring) oto Linux éyet avavewiel
ONUOVTIXE Y 8T oTNY avdmTuén Tou unocuc thuatog perf events. Autol ol napdyov-
TEC €Y 0UV XATAC THCEL TNV TAaXoAoVINCT) ETOOCEMY ULl TUO XOWVT| TEOXTIXT VLo TOUS
TpoYPoUpATIO TEC. 20TO00, Ywelc aELOTIOTOUC HETENTES BEBOUEVKY UAXOU 1 avdAuoT
EMBOOEWY OeV elvan duVaTH).

Ye outh Vv epyacio, cotidloupe o €va BNUOCIELUEVO G@dua opldTNTaC e-
TpfioEwY oty Lovdda tapaxohovinons emddoewy (PMU) tov npdogatwy enelepyo-
oty e Intel mou cupBaiver dtav N teyvoroyio Trep-Nnuotiopol (Hyper-Threading)
elvan evepyomomuévn. Autd to o@dhyo, punopel vo tpoxakécel ahlolwon Twv dedo-
HEVOY 6ToUC UETENTES UAXOU YeTodl Twv utep-vudtoy (hyper-threads), odnydvtog
€tol oe avollomoto anotehéopata. Ilpoxewévou va nopoxdudoupe autd 0 TEOBAN-
Mo, TEOTEIVOUUE EVal TPWTOXOAAO TOPOUOLO UE TEWTOXOMAA GUVAPELNG UVNU®Y cache
(cache-coherence), to onolo ulonotolue otov Tuphva tou  Linux. H Aon pog otn-
olleton 0TOV TEOYPOUUATIONS TWY GUUPBAVTLY LAXOU GToug PeTenTtés enidoong xatd
duvopxd TEoTo, PBdoel TNg xatdotoone Twv unep-vnudtwy. Ilapovoidlouvpe eniong
€vay aAYOpLIUO TOU ETUTUYYAVEL TAVTOTE BEATIOTO YPOVOTROYEAUUUATIOUO TV GUU-
Bavtwy otoug petentéc LAXOU. Ol BEATIOTOTOACELS TOU TEOTEVOUUE BEV amoutoly
oaMayég oe eninedo ypnotn xat aloTololV TNV ECWTERXT OYEDNCT TOU UTOCUGC THUd-
to¢ perf _events. O mnyolog xo8uxag mou avantiydnxe €xel mpoopepdel oTov TUEHva
Tou Linux.

AgZeic-KAsd1d

TopoxohovinoT ETBOCEWY, UETENTEC LALXOU, HOVAdA TopoxohoLUNoTe ETOOCEWY,
UTER-VNHATIoUOS, Tuprvag Tou Linux, perf events, ypovompoypoupatiouos cuufdv-
WY
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Chapter 1

Introduction

Nowadays, all processors provide a set of performance counters to measure
many key micro-architectural events, such as the number of elapsed cycles, in-
structions executed, mispredicted branches, cache and TLB misses [1, 2, 3, 4]. In
hardware the counters are implemented by a logical unit usually referred to as the
Performance Monitoring Unit (PMU). PMUs are also present in other hardware
devices beyond the processors, such as I/O, power, and memory controllers [5]
where they can be used to measure memory bandwidth, cache coherency traffic,
remote memory accesses, power consumption and read/write bandwidth to disk or
network. PMUs can also be found in graphics cards [6].

It is possible to use the PMU to count occurrences of micro-architectural events
or collect statistical profiles to determine where there may be resource bottlenecks
using event-based sampling. The advantages of the PMU counters are, first, that
they provide low-level data without requiring software modifications and second,
that this information can be collected with very low overhead (usually < 3%).
The data they deliver, such as the number of cache misses, cannot be obtained
by instrumenting software, but only by using cycle-accurate machine simulators.
However, these are out of reach for many developers because they are usually
reserved for internal use by hardware vendors and because they usually incur an
extremely large slowdown at the execution of the workload.

The information collected by these micro-architectural events is crucial for any
workload performance analysis. It is used for workload characterization, optimiza-
tion of job placements with Google’s CPI? |7 and provision of statistical data
for compiler feedback directed optimizations with Google’s AutoFDO [8]. It is also
commonly used by profiling tools such as Intel’s VIUNE [9] or Google’s Gooda [10]
to identify performance bottlenecks, such as instruction starvation or load latency
and their location in the software. Based on the performance analysis, developers
may be able to modify their programs to avoid certain bottlenecks, for instance,
separate two fields of a structure into separate cache lines to avoid false sharing.
Compilers may be able to optimize the hot path of a function to avoid branches.
Information is also useful to the provision of machines based on workloads, for
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instance PMU data can tell whether a workload is CPU bound or not determining
the choice of a processor model. Furthermore, each workload stresses certain parts
of a micro-architecture differently. Knowing which micro-architectural element is
the weakest link can help improve future processors to run workloads better, for
instance by adding an extra load functional unit.

The Linux kernel provides full access to the hardware performance counters of
hardware devices via the perf events [11, 12| interface. This includes the proces-
sor, but also cache, PCle, power, memory controllers. The interface can be used
to count events or collect profiles on a per-thread or per-CPU basis from small
handheld devices, such as phones or tablets, to large servers. It supports all the
major processor architectures from Intel x86 and IBM Power to the various flavors
of ARM-based chips. It can also handle many non-core PMUs found on server pro-
cessors, such as Intel Xeons. All Linux distributions comes with an open-source tool
called Perf which can exercise all aspects of the interface across all the processor
architectures.

With a powerful and integrated kernel monitoring infrastructure, more develop-
ers are inclined to use hardware counters to analyze their applications. New usage
models are emerging with live automatic feedback loop system such as Google’s
CPI? [7]. As more people, most of whom are not necessarily processor micro-
architecture experts, come to rely on counter data, it is very important to ensure
the correctness of the measurements they produce and minimize the overhead of
monitoring.

Understanding low-level raw performance data is not an easy task given the
complexity of today’s processors. Tools can help abstract some of that complexity
by using higher level metrics but that is possible only if the low-level data is
trustworthy. The kernel interface providing access to the PMU must be stable
and thoroughly tested. At the hardware level, micro-architectural events must be
validated to ensure they count what they are supposed to at all times. Validating
events can be challenging, as it entails developing subtle micro-benchmarks with
known behaviors and verifying that the event counts make sense. The complexity
of this job is too often underestimated as the PMU is rarely considered a critical
component of a hardware device, e.g., a processor can operate perfectly fine with
a PMU that produces invalid counts for cache misses. If the PMU is known to be
unreliable and expert-only, users will turn away and it will not be further developed,
leaving potential performance gain opportunities unexploited.

Recent Intel processors with Hyper-Threading [13] have a published erratum
which seriously impacts the correctness of hardware counters under certain con-
ditions, potentially leading to very large counter corruptions. Currently, there is
no hardware or firmware fix available for the impacted processors. In this the-
sis, we describe a cache-coherence style protocol that we have implemented in the
Linux kernel to completely eliminate the corruption without any changes to user
tools or metrics. Our software solution to this erratum leverages the design of
the perf events subsystem and in particular the way it controls how events are
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programmed onto counters, i.e., scheduled onto the PMU counters.

The event scheduling algorithm is at the core of the subsystem. Not all events
can be measured on all the counters due to hardware constraints. The goal of
the event scheduling algorithm is to assign events to valid counters while at the
same time try to maximize the use of the counters. If events are programmed
on the wrong counters, they may silently count incorrectly. Thus, the scheduling
algorithm is critical to ensure the correctness of the performance monitoring data.

When there are more events to measure than counters or when there are events
competing for the same counters, the perf events subsystem can time-share the
counters. In doing so, it provides flexibility for monitoring tools at the cost of
accuracy. The total count of a multiplexed event is obtained by scaling with a
timing factor the raw count accumulated each time the event is scheduled. This
approach works well, when the rate of occurrence of the event is constant but it is
not so accurate if the monitored workload has rapidly changing phases. In order
to mitigate this effect and improve accuracy, the scheduling algorithm needs to
program as many events as possible on the available counters. Maximizing counter
usage also minimizes the overhead of monitoring because event do not need to
reprogramimed as frequently.

The current perf events scheduling algorithm uses a first match greedy ap-
proach which works well when events are mostly unconstrained, whereas it is not
so efficient when many events are constrained. A consequence of our erratum
workaround is that events which do not have hardware constraints, become con-
strained based on what is scheduled on the processor’s hyper-threads. More con-
straints put more pressure on the existing scheduling algorithm and this results
in degraded quality of produced schedules. In this thesis, following our work on
the erratum, we describe how, based on an advanced graph algorithm, we have
improved the perf events event scheduler with an optimal scheduling algorithm.

Our thesis is decomposed in three majors parts. In the first part, we describe the
performance monitoring hardware of recent Intel processors and give an overview
of the Linux perf events subsystem focusing on the event scheduling algorithm.
In the second part, we describe the hardware erratum and give examples of the
measurement corruption it incurs. Then, we enumerate the possible solutions and
justify why the our workaround is by far the most preferable approach. We de-
scribe our solution and we demonstrate our results. In the third part, we analyze
the current event scheduling algorithm and explain how we have identified a bet-
ter approach based on a graph algorithm. We describe our implementation and
evaluate our solution.

The work presented in our thesis will be integrated to the upstream Linux
kernel.
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Chapter 2

Performance Monitoring

2.1 PMU hardware

Every modern processor provides a set of hardware counters to measure micro-
architectural events, such as the number of elapsed clock cycles, instructions retired
and cache misses [1, 2, 3]. Those counters are implemented in silicon by a logical
unit called the Performance Monitoring Unit (PMU). Nowadays, PMUs are found
in processor physical cores, last level cache controllers, memory controllers, graphics
cards and I/O devices [5, 14, 6]. They provide crucial data to understand how the
hardware resources are used by software. Interpretation of the data can identify
source of bottlenecks and give hints on how to eliminate them.

In our thesis, we focus on Intel Sandy Bridge, Ivy Bridge and Haswell pro-
cessors. They all have a very sophisticated and powerful PMU [1|. When Hyper-
Threading is enabled, each logical CPU has 3 fixed counters and 4 generic counters.
The fixed counters measure only one event each, whereas the generic counters can
be programmed to measure up to 4 different events simultaneously. The counters
are implemented by privileged model-specific registers (MSR). There is a config-
uration register where the event is programmed and a counter register where the
occurrences are accumulated. The width of the counter can vary. It is 48-bit on the
processors we use in our thesis. There is also a set of global control and status reg-
isters to start and stop the PMU easily. Managing the PMU requires kernel-level
support, either in the form of a device driver or a system call.

The list of supported events is specific to each processor implementation as it
is closely tied to the micro-architecture [1|. However, each implementation tends
to build on the previous. The counters can be programmed to count occurrences of
an event or to collect a profile using event-based sampling. Counters can interrupt
on overflow, which is how sampling is implemented. To capture a sample after
p occurrences of an event, a counter is programmed to the value of —p. When
the counter overflows, i.e., wraps back to 0, an interrupt is generated. The kernel
catches the interrupt and saves the current instruction pointer in a sampling buffer
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which is eventually parsed by a performance tool.

Events may have counter constraints due to hardware limitations. For instance,
some events may only be measured on a specific PMU counter only, e.g, counter
2, otherwise incorrect counts may be captured. Some events may require an extra
configuration register and therefore only one instance of the event may be measured
at any time. Any kernel driver or tool needs to enforce these restrictions.

2.2 Operating systems infrastructure

2.2.1 Linux perf events interface

Since Linux kernel version 2.6.31, there is an official kernel interface to access
the hardware performance counters. It is called perf eventsand it provides a high-
level, generic interface to count and sample hardware and software events or Linux
kernel trace-points. The architecture of this kernel subsystem is depicted in Fig. 2.1.
The user visible interface provides a new system call, perf event open(), and a
series of new file entries in sysfs to simplify event naming and configuration for
tools. The core logic is encapsulated into the generic layer, common to all processor
architectures. There is a layer per architecture and a set of PMU specific support
routines to handle model specific features. To make it easy to develop tools across
various hardware platforms, and unlike many other interfaces such as OProfile [15],
the interface is event-driven. Users pass events to measure and not register value
pairs. The kernel is responsible for programming these events onto the correct
counters, i.e., managing the PMU resource. Users are never aware of the actual
number of counters nor of event constraints.

perf_event_open() | sysfs

generic

architecture specific

PMU1| |PMU2 e PMUn

Figure 2.1: Kernel architecture of perf events subsystem

The interface provides a set of generic events for basic monitoring, such as
cycles, instructions and branches. These are mapped onto actual events by the
kernel. It is also possible to program any model-specific event supported by the
host PMU. To program an event, a tool uses the new perf event open() system
call. FEach event is then identified by a file descriptor. To start or stop an event,
the file descriptor is passed to the standard ioctl() system call with a specific
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command, such as PERF 10C ENABLE to activate an event. To read an event,
the file descriptor is passed to the regular read() system call.

Each event is managed individually. It is possible to create event groups to
ensure a set of events is always measured together, which helps with certain metric
computations. An event can be measured in system-wide or per-thread mode,
where it is attached to a physical core or a logical CPU respectively. On a machine
with 8 logical CPUs, it is necessary to create 8 instances of an event, each attached
to one logical CPU. Similarly to monitor a multi-threaded program, there needs to
be one instance of each event attached to each thread. As of Linux kernel 3.14, the
perf events subsystem supports all major processors on which Linux runs, from
mainframes to hand-held devices.

2.2.2 Linux OProfile interface

The OProfile interface [15] is a Linux specific hardware performance monitoring
interface inspired by DEC’s DCPI [16]. It provides access to the processor hard-
ware counters. For a long time, it has been the official monitoring interface of the
Linux kernel providing only system-wide profiling capabilities across all major pro-
cessor architectures. Nowadays it has been superseded by perf events. The whole
infrastructure consists of a kernel level driver, a user level daemon (oprofiled), and
a set of commands to start and stop monitoring and process the samples: opcon-
trol, opreport, opannotate. These commands interact with the daemon which is
responsible for communicating with the kernel and for symbolizing the samples,
i.e., associate symbols to sampled addresses.

Although OProfile is deprecated, the user level commands persist and are now
implemented on top of the perf events interface to maintain backward compati-
bility for the many scripts developed for the OProfile command set.

The OProfile kernel interface is a register-driven interface. The user level code
is passing (register, value) pairs to program an event on a counter.

2.2.3 Non-Linux interfaces

Hardware performance monitoring interfaces exist in many other open-source
or commercial operating systems.

The FreeBSD [17| operating system provides a system-call based interface called
hwpmec [18]. It exposes a counter based interface and supports counting and sam-
pling on a per-process or system-wide basis. The user level tool is called pmcstat
and interacts with the kernel via a helper library called libpmec.

Commercial operating systems such as HPUX, Oracle’s Solaris and IBM AIX
also have hardware performance monitoring interfaces. However, they are not pub-
lic and they are used by proprietary tools such as Oracle Solaris Studio Performance
Analyzer [19].
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For Microsoft Windows, there is no standard kernel interface. Instead, tools
come with their own drivers. On Intel, the VTUNE amplifier XE analysis[9] tool
comes with an open-source driver called sep. The same driver is also used by
Intel’s Performance Bottleneck Analyzer [20, 21]. The driver provides a register
based interface to program the hardware performance counters.

2.3 Performance monitoring tools

2.3.1 Perf

The perf tool [11, 12] is the Linux official open-source performance monitoring
tool. It is developed as part of the Linux kernel and is offered by all standard Linux
distributions.

This is a command line tool used to collect performance data from many dif-
ferent counter sources such as hardware counters, kernel software counters and
trace-points. From each source, it is possible to count event occurrences or col-
lect event based statistical profiles. It is possible to measure on system-wide or
per-thread mode.

The tool is built on top of the Linux kernel perf events interface and offer
access to all the features of that interface.

For profiling, the tool operates in a two-stage process. The profile is collected
using the perf record command. The function level profile is obtained with perf
report. The assembly and source level profile is generated by the perf annotate
command. There is a simple text-based user interface but no advanced cycle anal-
ysis. Below we demonstrate a simple example of profiling the dd command:

perf record dd if=/dev/urandom of=/dev/null count=100000

$
$ perf report --stdio

# Samples: 12K of event ’cycles’

# Event count (approx.): 10659132347
#
#

Overhead Command Shared Object Symbol
B e i i s e e e e e e
#
57.99% dd [kernel.kallsyms] [k] sha_transform
18.55Y% dd [kernel.kallsyms] [k] _mix_pool_bytes
16.50% dd [kernel.kallsyms] [k] extract_buf
1.50% dd [kernel.kallsyms] [k] __ticket_spin_lock

For counting, the perf stat must be used. It can aggregate counts per process,
per core and per processor socket. It is also possible to print count deltas at regular
time intervals:

$ perf stat dd if=/dev/urandom of=/dev/null count=100000
10000040 records in
100000+0 records out
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51200000 bytes (51 MB) copied, 3,24949 s, 15,8 MB/s
Performance counter stats for ’dd if=/dev/urandom of=/dev/null count=100000’:

3251,489215 task-clock (msec) # 1,000 CPUs utilized
284 context-switches # 0,087 K/sec
3 cpu-migrations # 0,001 K/sec
252 page-faults # 0,078 K/sec
10 643 745 482 cycles # 3,273 GHz
3 399 485 751 stalled-cycles-frontend #  31,94% frontend cycles idle

<not supported> stalled-cycles-backend
25 823 470 801 instructions 2,43 insns per cycle

0,13 stalled cycles per insn
141,392 M/sec

0,03% of all branches

459 733 444 branches
125 222 branch-misses

HHHFH

3,251198688 seconds time elapsed

The list of supported events depends on the underlying hardware platform.
However, the perf events subsystem defines a set of generic events which the tool
can directly leverage as shown in the example above, e.g., cycles, instructions.
These events are mapped by the kernel onto actual hardware events if they exist.

The kernel may also export model specific events in the sysfs filesystem. They
can be used directly by the perf stat tool. This is demonstrated in the example
below where the tool is used to access a processor socket level set of counters called
RAPL which measures the energy consumption of the chip. The count deltas are
printed every second for 100s. Events may have units which are also shown: here
the processor in consuming about 2.10 Joules per second, i.e, Watts. as follows:

$ perf stat -a -e power/energy-cores/,power/energy-pkg/,power/energy-gpu/\
-I 1000 sleep 100

# time counts unit events
1.000123322 2.11 Joules power/energy-cores/ [100.00%]
1.000123322 5.96 Joules power/energy-pkg/ [100.00%]
1.000123322 0.31 Joules power/energy-gpu/
2.000354464 2.09 Joules power/energy-cores/
2.000354464 5.95 Joules power/energy-pkg/
2.000354464 0.31 Joules power/energy-gpu/

2.3.2 Gooda

The Gooda [10] tool is an open-source performance analysis tool developed by
Google for Linux.

It provides a system-wide cycle-breakdown analysis using the hardware counters
of Intel processors. It breaks down how each cycle is spent, i.e., whether it does
useful or useless work. Stalled cycles are classified in high level categories, such as
load latency or instruction starvation. These get eventually mapped onto actual
hardware events.

The tool is built on top of the Linux perf events subsystem and the Perf tool.
To collect the system-wide profile, Gooda uses the perf record command. The
profile data is then analyzed by Gooda to produce a series of text files (JSON

23



format) which contain the full analysis. Those files can then be visualized in a
standard web browser using a Javascript program.

The web-based GUI allows navigating from the process level analysis down to
the basic-block level analysis providing assembly, control flow graph and source
views.

The advantage of this web-based tool is that the entire analysis is contained
in the produced text files. The analysis can be shared easily by simply passing
URLs. Remote users do not need the binaries or the source code of the monitored
programs to look at the data.

| GOoDA Visualizer viit  x

< € | @ https://gooda-visualizer.googlecode.com, e repo [CIE =

iti Galileo | PMU events

i Apps

LT reports/Sample Hotspots | _cpp_lex_direct

[Brepotsisample ||| = ¢ cydes Samples & Cyces Samples

2500
ay s
GxefoSrl 1988 H Basic Block | <oxefoal. 748

if (buffer->need_line)

Oxefosrl 1988  push  %rbp «
Oxefosr2 1984 mov  %rsp %rbp a1 w55 rm st 1 1905 It (pfile->state. in_ 1 1
Oxerosis 1984 push  %rbx 1995 «

6xefOIf6 1084  sub  $9X98.%rsp 1 w3 G®) 11 13 1997 resule->type = C

Oxefosta 1984 mov  %rdi,-8x38(krbp)
OxefoaDs 1988  mov  -0x9B(Krbp) rax
Bxefoaoh 1988  mov  BxlbB(%rax) Srax

Oxefoal? 1988  mov  %rax,-Dx38(%rbp)

1588

1588

1088

1953

28 1991

Help

Figure 2.2: The Gooda analysis interface

2.3.3 Intel VITUNE Amplifier XE

Intel VIUNE Amplifier XE [9] is an advanced commercial tool available on
Windows and Linux. It works on a variety of Intel hardware platforms: laptops,
desktops, servers and co-processors such as Xeon Phi. It leverages the hardware
performance counters on those platforms to provide a set of system-wide analysis,
such as memory bandwidth, top-down cycle analysis |22, 23|. It is possible to drill
down from processes, to functions and assembly.

On Linux, it is composed of three parts:

1. amplxe-gui: the graphical user interface (GUI)
2. amplxe-cl: the command line tool (sepcli) to actually collect the data

3. sep: the open-source Linux kernel driver

24



On Linux, the tool does not use the official perf events interface but instead the
sep open-source driver for compatibility with Windows systems.

The rich GUI interface allows many filtering and navigation options. Fig. 2.3
shows a screenshot of a top-down analysis of a simple test program, called triad
which streams data from and to memory. As expected, the analysis shows the
program is back-end bound, i.e., it is waiting for memory accesses.
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Figure 2.3: VITUNE amplifier top-down analysis screenshot

2.3.4 Intel Performance Bottleneck Analyzer

The Intel Performance Bottleneck Analyzer framework (PBA) [21, 20] is an
experimental monitoring tool which uses a different approach to analyze perfor-
mance. It is built on top of the same kernel driver interface as VIUNE, namely
the sep driver. The tool utilizes the PMU hardware of Intel X86 processors, and in
particular the ability to sample taken branches. It uses these performance moni-
toring data to recreate the hottest paths of instruction execution through a binary
in order to find bottlenecks along it. It also samples common stalls events. The
recreated paths of execution are then passed through an analysis related to well
known code generation issues. The flow of analysis for this tool is illustrated in
Fig. 2.4.

The execution paths are displayed in a graph with addresses on the horizontal
axis and events histograms on the vertical axis in Fig. 2.5.

Any spike denotes a high event count, i.e., a potential bottleneck cause which
users can further analyze.
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Figure 2.4: Intel PBA Flow of Analysis
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Chapter 3

PMU Event Scheduling

3.1 Generic layer

Users can measure an arbitrary long list of events. Multiple tools may monitor
the same process or processor in parallel. To ensure correct measurements, the
kernel, which is responsible for managing the PMU resource, must arbitrate counter
usage and assign events to the proper counters. This is called event scheduling. It
takes as input a list of events and the output is an assignment of these events to
the hardware counters.

Scheduling occurs when events are added or removed and on context switches
for per-thread events. In case the PMU is over-subscribed, i.e., there are more
events than counters, the kernel can time multiplex events onto the counters. Each
time the multiplexing timer expires, the current events are scheduled out and they
get replaced by others.

Multiplexing may also occur as a consequence of event scheduling conflicts, i.e.,
two or more events competing for the same counter. The event scheduler should
attempt to maximize counter usage in order to minimize the need for time-sharing
which could incur inaccuracies.

Each PMU may have different scheduling restrictions. Therefore, the actual
scheduling algorithm is implemented in the architecture specific layer of the Linux
kernel. If multiple PMUs share the same kind of restrictions, they can use the
same scheduling algorithm. This is the case for all Intel x86 core PMUs which we
describe hereafter.

Scheduling occurs independently on each CPU and operates at the event group
granularity. A group is treated atomically. Either all the events in a group can be
scheduled or none is scheduled. We assume one event per group in our description.
In the generic perf events layer (c.f. Fig. 2.1), events are inserted into one of
two lists based on their type: per-thread or system-wide. To keep the description
simple, we assume one event list.

Scheduling is always driven from the generic perf events layer. Events are
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incrementally passed down from the linked list in the generic layer to the low level
event scheduling algorithm. Scheduling operates in passes, P, using an incremental
event window on the linked list. In the first pass (P;), the window starts with a
size of 1, i.e., one event is passed down. If it can be scheduled, then, in the second
pass (P,), the window grows to a size of two, i.e., first and second events are passed
down, and so on and so forth. The passes stop at the first scheduling error or when
the window contains all the events on the linked list. In case of an error with a
window size of K, the counter assignment generated for size K — 1 is programmed.

The algorithm is bound by the number of counters. If the PMU has N counters,
scheduling stops when at most N events are passed down (window size K < N).
This guarantees that if an arbitrary long list of events is provided, the system will
not slow down proportionally due to time consuming event scheduling.

Ol -[ET] >[E2] ~[E3] «
Pl 1|V
P2 2|V
Py [EXl -2} B3] |3 X

T, o B2} ~[E3] ~[E1]

Pl 1V

r2 [E2]~{E3] 2|x
2|, . B3] ~[Ell-[E2]

Pl 1|V

p2 [E3]~[E1] 2|V

P3 [E3}>El}—>[E2] |[3|X

Figure 3.1: Event list scheduling and rotation example

In Fig. 3.1, we illustrate the iterative process between the generic and architec-
ture specific layers with 3 events: E1, E2, E3. The events E2 and E3 are conflicting,
i.e., E2 and E3 can only be measured on the same specific PMU counter and thus,
they cannot be scheduled simultaneously. Fig. 3.1 shows 3 successive iterations of
the algorithm: Ty — T5. In the first iteration of the algorithm (7j), the first two
passes (Pp, P) succeed but the third (Ps) fails because there is no counter avail-
able for E3, as it is already occupied by E2. Thus, only two events are scheduled
during this iteration, these from the P, pass. Once scheduling is complete, events
are actually programmed onto the counters and activated. On the next scheduling
iteration (77), the list of events is rotated, i.e., the head is moved to the tail and
the scheduling algorithm starts again. On the second iteration, only one event is
scheduled from the P; pass. Eventually, on the third scheduling iteration (73),
E3 gets to the head of the list and is scheduled in P; and P> passes. Hence, the
algorithm guarantees that all events are eventually scheduled.
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3.2 Intel x86 core PMU scheduling algorithm

The current Intel x86 algorithm uses a greedy, first match approach to assign
events to counters. At each pass, once an event is assigned to a counter, it cannot
be reassigned even though it could run on another counter. Events may have static
constraints, i.e., they may run on a limited subset of counters. For each Intel x86
PMU, the kernel maintains a table of constrained events keyed off of event codes.
For each constrained event, a bit mask of supported counters is returned to the
scheduling algorithm. Generic hardware counters are indexed starting at 0 and
thus each bit in the mask represents a supported counter. For instance, a mask of
0x3 means counters 0 and 1 are supported. We define the weight of a constraint
as the number of set bits. The bigger the weight, the less constrained an event is,
i.e., more counter choices.

struct event_constraint snb_constraints[]={

CNST (0x48,0x4), /*L1D_PEND_MISS.PENDING */
U_CNST(0x01c0,0x2) ,/*INST_RETIRED.PREC_DIST*/
};

In the code snippet above, we show an excerpt of the constraint table for
the Intel SandyBridge processor. Event L1D PEND MISS.PENDING, with code
0x48, can only be programmed on counter 2. If an event is not defined in the table,
it can run on any generic counters and therefore in a PMU architecture with 4
generic counters, the constraint mask is 0xf.

Once the event list of window size K is passed by the generic layer to the
low-level Intel x86 scheduler proceeds in the following 2 steps:

1. The event constraints are collected from the constraint tables and the weight
of each event is calculated. The K events are distributed to the different
weight categories.

2. The scheduling algorithm is invoked and tries to assign the K events to
counters starting from smallest weight category (most constrained events)
and moving to biggest one (least constrained events). For each event in a
weight category, the algorithm iterates over the N PMU counters until the
first counter matching this event’s constraints is found.

sort weights|| in ascending order;
for each weight in weights|]
for each (event in weight.events||)
for each (counter in counters||)
if ((event.constraint allows counter) and (counter is available)) {

assign event to counter;
mark counter as unavailable;
break;

}
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The event is assigned to this counter without a possibility of future reassign-
ment to another matching counter. Therefore, the scheduling is done based
on a greedy, first match approach algorithm. This step is described at the
pseudocode below.

As explained before, the window size K is bound by the number of PMU
counters N. Thus, the complexity of the Intel x86 scheduling algorithm is O(N?).

An assignment example for 3 events is given in Fig. 3.2. The event window
grows from 1 to 3. At each pass (P — P3) , the events are scheduled in constrained
order. With a window size of 2 (E1, E2), E1 is scheduled first and second E2,
because of their weights, respectively 1 and 4. With a window size of 3 (E1, E2,
E3), E1 is scheduled first, second comes E3 and last E2. For each pass, the array
on the right of the figure shows the counter assignment.
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Figure 3.2: Event scheduling on x86 PMU architecture

To minimize the cost of scheduling, for each event, the algorithm first tries to
reuse the counter assigned to the event the previous time, i.e., fast path scheduling.
If that works, then nothing else is needed. If this fails, then the normal algorithm
(normal path) is executed.

3.3 Handling of failures

When no assignment is possible for a window size of K, an error is returned
to the generic layer which stops trying to increase the event window size. The
previous window of K — 1 events is scheduled on the counters.

To ensure all events get a chance to be scheduled, errors trigger multiplexing.
When the multiplexing timer expires (default timeout is each timer tick), the linked
list is rotated by one event and a new scheduling iteration is performed starting
with a window size of 1. All common events are guaranteed to be scheduled because
they all eventually reach the head of the linked list and thus will be scheduled, at
the worst case, with the event window size of 1.
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Chapter 4

PMU Hardware Erratum

4.1 Problem description

On Intel Sandy Bridge (SNB), Ivy Bridge (IVB) and Haswell (HSW) pro-
cessors, there are documented PMU errata, respectively BJ122 [24], BV98 [25],

HSD129 26|, which cause silent corruption of counts when Hyper-Threading is
enabled.

Name Code | Description
MEM_UOPS_RETIRED. * 0xd0 | Memory p-ops retired
MEM_LOAD_UOPS_RETIRED. * 0Oxd1l | Load micro-ops retired

MEM_LOAD_UOPS_LLC_HIT_RETIRED. * 0xd2 | L3 load hits retired
MEM_LOAD_UOPS_LLC_MISS_RETIRED.* | Oxd3 | L3 load misses retired

Figure 4.1: Corrupting events for SNB, IVB and HSW

We define sibling threads as hyper-threads sharing the same physical core. We
also define sibling counters as the counters with the same index in the PMU of
the sibling thread. Hereafter, we refer to the hyper-thread j as HT; and to a
PMU counter with index i as C;. If certain memory events, listed in Table 4.1, are
measured on C; of one hyper-thread, they may corrupt any event measured on Cj
of the sibling thread at the same time. In other words, the crosstalk corruption
occurs between sibling counters.

Fig. 4.2 shows the possible combinations for corrupting (C) and non corrupting
(NC) events on sibling threads HTy and HT with 4 counters. The direction of
the arrows indicates which counter is corrupting its sibling. For instance, C of
HTy is corrupting Cy of HT'.

The corruption causes over-counting on the impacted counter. The severity of
the corruption cannot be predicted. It depends on the workload and the events
measured on both hyper-threads. Event scheduling is not synchronized between
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Figure 4.2: Possible counter corruptions between sibling threads

hyper-threads, hence, events can be programmed in and out of counters in any
order and at any one time relative to the other hyper-thread making it even harder
to predict the corruption error.

4.2 Corruption examples

The problem is very severe when a high rate memory event is leaking into
a low rate event. To demonstrate this case, we run a simple memory intensive
workload on an Intel Haswell client processor where logical CPUO and logical
CPU4 are sibling threads (threads HTy and HT) respectively). We use triad [10]
workload, which computes c[i] = a[i] + k = b[i], and we measure the corrupt-
ing MEM_ LOAD RETIRED.ALL LOADS event (code 0x81d0) and the non-
corrupting BRANCH _MISPREDICTION event (code 0x00cb). We expect the
value of the branch misprediction event to be low, since it does not occur in tight
loops. However, if the two events are measured on sibling counters of the sibling
threads HTy and HT', then the corruption of the branch misprediction event can
be orders of magnitude.

We use the perf tool for all of our experiments. It accepts raw PMU events
using the rXXXX notation where XXXX is the hexadecimal event code.

HTO HT1
CO0 COJf 0x00c5
Cl Cl
C2 C2
C3 C3

(a) Add 0x00c5 on Thread 1

HTO HT1
COJ) 0x81d0 —»{COf 0x00c5
Cl Cl
C2 C2
C3 C3

(b) Add 0x81d0 on Thread 0

Figure 4.3: Event assignment on CPUQ and CPU4
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First, we measure the branch misprediction event only at the user level (:u
modifier) on CPU4 (-C option), in system-wide mode (-a option) for 10 times (-r
option), while also running the same triad test on CPUO to generate the same load
on each hyper-thread. We pin the triad program on CPU4 using the taskset tool:
$ taskset -c O triad &

$ perf stat -r 10 -a -C 4 -e r00cb:u taskset -c 4 triad
644 1r00c5:u

This generates the counter assignment shown in Fig. 4.3a and we get 644 as the
total count for the branch misprediction event. Then, we add the measurement of
the corrupting retired loads event on CPUO (sibling thread):
$ perf stat -a -C 0 -e r81d0:u taskset -c O triad &

$ perf stat -r10 -a -C 4 -e r00c5:u taskset -c 4 triad
40,960,843 r00c5:u

We get the counter assignment shown in Fig. 4.3b and the measurement output
is now 40,960,843 for the branch misprediction event instead of 644.

Comparing the results of the two tests, we see that the over-count is more than
60,000 times greater. This leads to very serious misinterpretation of the behavior
of the workload, as triad may be assumed to be penalized by branch misprediction
when in fact it is not.

To demonstrate that the problem is not specific to the branch mispredictions
event, we run the example with another event for which we can figure out the
count in advance such as ROB_MISC EVENT.LBR_INSERTS (code 0x20cc)
which counts the number of entries inserted in the Last Branch Record (LBR)
buffer [27]. The event assignment is similar to the one in Fig. 4.3b, except for the
event code in Cy. As the LBR is not used on the test system, the count for this
event must be zero.
$ perf stat -a -C 0 -e r81d0:u taskset -c 0 triad &

$ perf stat -r 10 -a -C 4 -e r20cc:u taskset -c 4 triad
41,284,632 r20cc:u

However, instead of zero the measurement output is 41,284,632. There is again
a huge corruption due to the large number of load occurrences on the sibling thread.
Note that the corrupted measurements of the non-corrupting LBR and branch mis-
prediction events are about the same, which is reasonable given that the workloads
are identical and the corrupting event measured on the sibling counter is the same.
There is also an error for the count of the corrupting event because it misses
the counts that it leaked into the sibling counter. However, this error is small. To
show that, we use again our second example but this time by also gathering the
counts of the corrupting event on CPUO:
$ taskset -c 0 triad & taskset -c 4 triad &
$ perf stat -a -C 0 -e r81d0:u sleep 5 &
$ perf stat -a -C 4 -e r20cc:u sleep 5

2,827,304,988 r81d0:u
71,654,800 r20cc:u $
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The corrupted count of the non-corrupting event 0x20cc is what leaked from the
count of the corrupting event 0x81d0. Thus, the total count for the event 0x81d0
would be the sum of these two counts. If we compare the ratio of the leaked count
with the total count of the event 0x81d0, we get a ratio of 2.5%. In other words,
missing counts of the corrupting event are negligible.

To prove that the corruption occurs only between sibling counters, we run two
instances of the triad program pinned to CPUO and CPU4 respectively. We invoke
perf for a single measurement on the two hyper-threads. We use fewer events than
there are counters, thus the counter assignment remains constant throughout the
run and no rescheduling is needed. We use perf with the -a -A options to get a per
logical CPU breakdown of the counts:

$ taskset -c O triad & taskset -c 4 triad &
$ perf stat -a -C0,4 -A -e r81d0:u,r20cc:u sleep 5

CPUO 2,823,288,122 r81d0:u
CPUO 0 r20cc:u
CPU4 2,823,018,913 r81d0:u
CPU4 0 r20cc:u

On CPU4, there is no corruption on the LBR event: the count is zero as
expected. The counter assignment for this example is shown in Fig. 4.4. In other
words, Cy of HTy does not corrupt C; of HT7.

HTO HT1
COf 0x81d0 —»COJf 0x81d0
C1| 0x20cc C1}| 0x20cc
C2 C2
C3 C3

Figure 4.4: Simultaneous measurements on CPUO and CPU4

It should be noted that in the configuration of Fig. 4.4, Cy of HT'y does corrupt
Cy of HT4, as shown by the arrow, because corrupting events can corrupt each
other across sibling threads. This is not a problem though, because the corruption
is always small relative to the corrupting event total count as we have already
demonstrated.

4.3 Possible solutions

The problem is severe and needs to be addressed. Several potential software
workarounds have been discussed or implemented. However, these solutions avoid
the problem by either preventing simultaneous measurements on sibling threads
or by preventing the corrupting events from being measured. We present these
workarounds below.
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4.3.1 Disable Hyper-Threading

An obvious approach is to disable Hyper-Threading. This not only has a non-
negligible performance impact for most workloads, but it is also impractical as
Hyper-Threading can only be turned on/off on reboot, and not just when a cor-
rupting event is measured.

4.3.2 User warnings

Users can be warned to measure only on one thread per physical core. This
requires knowledge of the CPU topology and tools which can operate on subsets of
processors. However, it is not very practical because it assumes a single measure-
ment and single user machine; otherwise there is still a risk of corruption depending
on what other users measure on the sibling threads. Furthermore, when measur-
ing in per-thread mode, the problem still remains because program threads can
migrate.

4.3.3 Monitor one thread per physical core

The kernel can ban half of the CPUs from monitoring. Only one hyper-thread
per physical core can be used by the monitoring tools. Applications could still run
on all logical CPUs but only half could be monitored. Again, not a very practical
solution, especially if all threads of an application do not execute the same code.

4.3.4 Multiplex PMU measurements

The kernel can multiplex measurements between the two hyper-threads. Only
one PMU per physical core can be active at any one time. This implementation
in perf events would be complex because it would require mutual exclusion logic
between CPUs for event scheduling, something that is not there today. More
importantly though, it would require turning off the hardware watchdog, which
constantly uses a counter to sample on cycles event and trigger a non-maskable
interrupt (NMI) to detect CPU deadlock. However, disabling the watchdog is
not acceptable in many production environments where it is used for postmortem
analysis of kernel deadlocks.

4.3.5 Ban corrupting events

The kernel can simply prevent the use of any corrupting events. This is, in
fact, the current solution in the upstream Linux kernel running on Intel IvyBridge.

But the corrupting events which are shown in Table 4.1 and which are banned
in the kernel as shown in the code above, are all very important memory events,
needed in any serious performance analysis tools such as Gooda [10]. Thus, banning
them completely is not a viable solution.
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static struct event_constraint intel_ivb_event_constraints[]

{

read_mostly =

/%

* Errata BV98 -- MEM_x_RETIRED events can leak between counters of SMT

* siblings; disable these events because they can corrupt unrelated

* counters.

*/

INTEL_EVENT_CONSTRAINT (0xd0, 0x0), /* MEM_UOPS_RETIRED.* */
INTEL_EVENT_CONSTRAINT(0xd1, 0x0), /* MEM_LOAD_UOPS_RETIRED.* */
INTEL_EVENT_CONSTRAINT (0xd2, 0x0), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
INTEL_EVENT_CONSTRAINT(0xd3, 0x0), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */

Figure 4.5: Intel IvyBridge corrupting event blacklisting
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Chapter 5

Solving PMU Hardware Erratum:
XSU Protocol

A protocol has been developed in perf events subsystem to allow corrupt-
ing events to be used while avoiding any random corruption to the sibling thread
counts. This protocol achieves fine-grained counter-level control between hyper-
threads by enforcing mutual exclusion for sibling counters measuring the corrupt-
ing events and allowing sibling counters to measure simultaneously non-corrupting
events.

Our solution leverages the perf events event-oriented interface and the fact
that event scheduling and multiplexing are entirely controlled by the kernel. Mutual
exclusion between hyper-threads is achieved through coordinated event scheduling.

5.1 Dynamic event constraints

As described earlier, event scheduling is based on static event constraints im-
plemented as bit masks. Our solution introduces dynamic event constraints. The
static constraint, i.e., the hardware imposed constraint, is combined with a new
constraint based on what is measured on the sibling thread at the same time to
form the dynamic constraint. The perf events scheduler operates on the dynamic
constraints without any modification.

The key innovative idea in our solution is to leverage existing protocols main-
taining cache coherence to generate the dynamic constraints for each event. The
inspiration for this comes from the fact that there is an analogy between the counter
corruption problem and cache line inconsistency issues in multi-processor systems.
A counter pair, i.e., two sibling counters, corresponds to a cache line and the sibling
threads accessing the counter pair correspond to the processors accessing the cache
line.

The protocol we have developed is called XSU. It uses three states required for
any hyper-thread in order to distinguish which PMU counters can perform mea-
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surements without yielding corrupting results. The three states are ezclusive (X),
shared (S) and unused (U). It is similar to the MSI cache coherence protocol [28], an
invalidation-based protocol for write-back caches, but with fewer state transitions,
as shown in Fig. 5.1.

C free
NC free

Figure 5.1: XSU state transition diagram

Initially, there is no event scheduled on the counter pair and it is marked unused
(U state). This state corresponds to the Invalid state of MSI where no processor
has a valid copy of the cache line. If a non-corrupting event is scheduled on one of
the sibling counters, the state of the pair changes from unused to shared (S state).
In the S state, another non-corrupting event can be measured simultaneously on
the counter pair, i.e., sharing of the pair is allowed between the hyper-threads. This
corresponds to the Shared state of MSI where more than one processor may have
a valid copy of the cache line in their caches. If a corrupting event is scheduled on
one of the sibling counters, the state of the pair changes from unused to exclusive
(X state). This implies that no other event can be measured on the counter pair.
To achieve measurement correctness, a corrupting event measurement requires ex-
clusive use of a counter pair. The X state corresponds to the Modified state of MSI
where only one processor has a valid copy of the cache line in its cache.

The transitions from the S and X states back to the U state happen when the
events are scheduled out of the counters. During measurements, the pair is set to
either S or X state and no other transitions are possible. To summarize, for each
event type, the following is required:

e Corrupting: Allowed on counters in U state
e Non-Corrupting: Allowed on counters in U or S state

The kernel maintains the XSU state for each counter in a new data structure
accessible from both hyper-threads as shown in Fig. 5.2.
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Figure 5.2: XSU shared state structure

5.2 Dynamic event scheduling

During scheduling, the XSU state of the requesting hyper-thread is read and
combined with the static constraint of each event. The dynamic constraint mask of
an event is simply the logical AND between the static constraint and the constraint
magk built from the XSU counter state on the requesting hyper-thread. The bit
mask constraint for each event type is constructed as shown in Fig 5.3.

Corrupting | Non-corrupting
X 0 0
S 0 1
U 1 1

Figure 5.3: XSU constraint bitmask

Based on its dynamic constraint, the event is assigned to a counter on the re-
questing hyper-thread. Then, the XSU state of the sibling (non-requesting) hyper-
thread is modified to reflect what it can measure after scheduling is complete.

In order to demonstrate how the XSU protocol operates, let us assume that
the kernel needs to schedule a list of one corrupting (C) and two non-corrupting
(NC) events on HT( and a list of one non-corrupting and two corrupting events
on HT:, where HTy and HT'; are sibling threads.

For simplicity, let us also assume that all events are statically unconstrained.
With 4 counters, the static constraint is therefore O0b1111. The dynamic constraint
of each event, as the logical AND of its static constraint and the XSU state con-
straint is therefore equal to the XSU state constraint. Note that at the formulation
of the constraints, Cy is represented to the least significant bit and C'5 to the most
significant bit.
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Physical Core

HTO HT1
C0 CO0
Cl Cl
C2 C2
C3 C3
Y A 4
HTO HT1
CoOjU | U
ClyjuU| U
C2lU | U
c3l U| U
XSU State

HTO > C [—={NC|—{NC]|
HTl > NC|—>{ C | C |

Figure 5.4: Initial State

As shown in Fig. 5.4, initially the PMU counters of both sibling threads are
empty and the XSU state for each of them is marked as U.

Physical Core
HTO HT1
Co] C Co0
Cl Cl
C2 C2
C3 C3
Y Y
HTO HT1
Cojl U | X
CljU | U
C2l U U
c3jlulu
XSU State

HTO0 «—>{ C [—=>NC|—={NC]|

HT1e>NC}—={ C | C |

constraint

1
1
1
1

Oxf

Figure 5.5: Scheduling first event (C) of HT list

The kernel starts with the first event (C) of HTy. The dynamic constraint
is Ob1111 as all the PMU counters of HTy are marked as U. Thus, this event
can run on any counter of HTy. As shown in Fig. 5.5, the scheduler chooses the
first available counter and the event is scheduled on Cy. The XSU state of Cy of
HTy is updated to X. This implies that Cy can no longer be used for any event
measurement by HT because of the corrupting event measured by HTy on its

sibling counter.

In Fig. 5.6, the kernel proceeds with the first event (NC) of HT;. The dynamic
constraint is now 0b1110 because of Cy marked as X. Thus, this event can run
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Figure 5.6: Scheduling first event (NC) of HT' list

on one of C7, Cy or C3 of HT'y. The event is scheduled on the first available
which is Cy. The XSU state of Cy of HTg is updated to S and HTy can only use
this counter for measuring a non-corrupting event because measuring a corrupting
would impact the measurements of the NC event on the sibling Cy of HT;. This
implies that Cp can no longer be used for any event measurement by H7T'; because
of the corrupting event measured by HTy on its sibling counter.

Physical Core
HTO HT1
Tl B 6o -
C2 C2
~ 3 HTl e>NC|—{ C |—={ C |
L
Y Y
HTO HT1
COlU | X . 1
Cif S| s HT0 1
——4
C2 8 g constraint 1
C3
XSU State

0xf

Figure 5.7: Scheduling second event (NC) of HT) list

Next comes the second event (NC) of HTy as shown in Fig. 5.7. The dynamic
constraint is Ob1111 since, static constraint permitting, a non-corrupting event
can be scheduled on any counter that is in shared or unused state. The event is
scheduled on C7, the first available counter of HTg. The XSU state of C; of HT
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is updated it to S in order to reserve the counter only for non-corrupting events.

Physical Core
HTO HT1
Ccoj C €0 HTO —>{ C —>{NC|—{NC]|
C1|NC C1|NC
C2| C
2 HT1 NG~ €] —~[C]
C3 C3
-
Y Y
HTO HT'1
COjU | X . 1
Clf S| S — 1
C2] X U constraint 0
c3lU| U
XSU State
0Oxc

Figure 5.8: Scheduling second event (C) of HT'; list
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HTO HT1
COjU | X o 1
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c3lU | S 1
XSU State
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Figure 5.9: Scheduling third event (NC) of HT), list

In Fig. 5.7 and Fig. 5.8 the kernel proceeds with the scheduling of the third
event (NC) of HTy and the second event (C) of HT'; based on the XSU protocol
principles. Now, let us focus on the last event (C) of HT'.

A corrupting event can be scheduled only on counters that are in unused state,
static constraint permitting. Therefore, as shown in Fig. 5.10 the event can only
be scheduled on C5 and the dynamic constraint is 0b0100. However, Cy of HT
is occupied by another event. Thus, the last event in the list of HT'; cannot be
scheduled. As described, in chapter 3 this will induce multiplexing. When an event
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Figure 5.10: Scheduling third event (C) of HTy list

is eventually scheduled out, the counter is freed and its XSU state is changed back
to the U state in the sibling thread.

5.3 Integrating XSU protocol in perf events
subsystem

5.3.1 Advantages

The integration of the XSU protocol in perf events guarantees measurement
correctness. At the same time, it enables measurements of all the performance
events, including the corrupting memory events which are needed for any serious
performance analysis. It makes it possible to reliably use Intel processors’ PMU
counters and features for advanced performance analysis by tools such as Perf and
Gooda. The XSU protocol has several key advantages compared to the solutions
discussed in section 4.3 of the previous chapter.

Hyper-Threading remains enabled.

There are no changes at the user level, so existing collection scripts and tools
do not need to be modified.

No event is blacklisted.

All logical CPUs can be monitored simultaneously.
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5.3.2 Tradeoffs

When the XSU protocol is used, there is necessarily more pressure on event
scheduling. Common events which were not constrained before may become con-
strained dynamically, depending on what is measured on the sibling thread. Schedul-
ing becomes more difficult as more corrupting events appear in the event lists of
the sibling threads.

Physical Core
HTO HTI
Co] C C0
CI|NC C1|NC
C2 C2| C
C3|NC C3‘
Physical Core —é——%
HTO HT1 HTO HT1
Co] C > COf NC col U T x
Cl|NC [« Cl| C Cil s TS
C2|NC C2| C 2l xXTu
C3 c3 a3l U s
XSU State
(a) No multiplexing but cor- (b) Correct results but mul-
rupted results tiplexing

Figure 5.11: XSU protocol effects

Back to the example we saw above, as the Fig. 5.11 demonstrates, without the
XSU protocol all the events can be scheduled in one scheduling pass but corrupted
results will be yielded for all the NC events. Whereas with the XSU protocol,
measurement correctness is now guaranteed but multiplexing is needed.

Under certain conditions, it is quite possible for the dynamic constraint mask
to come out as zero, meaning that the event cannot be currently scheduled. This
also induces multiplexing which will give a chance for the event to be scheduled
later.

If no corrupting event is programmed, our solution does not modify existing
event scheduling constraints and it only incurs the extra book-keeping cost of the
XSU state structure.

The key implementation challenge is to tune the XSU protocol with the incre-
mental perf events scheduler. This can happen assuming the dynamic constraints
as constant for a given events list only for as long the resources are atomically
acquired by the specific thread.

5.3.3 Implementation

We have successfully implemented our XSU protocol in Linux kernel 3.15. We
have modified 5 files and about 600 lines of code. The code has been published
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on the Linux kernel mailing list (LKML) and at the time of this writing is under
review by subsystem maintainers.

The implementation was relatively straightforward. We added the shared XSU
state structure to each pair of threads and protected it with a spinlock.

The corrupting events are added to the constraint table for each processor with
the erratum using the INTEL_EXCLEVT_CONSTRAINT () macro as shown in Fig. 5.12
for the Haswell processor.

static struct event_constraint intel_hsw_event_constraints[] = {

INTEL_EXCLEVT_CONSTRAINT(0xdO, Oxf), /* MEM_UOPS_RETIRED.* */
INTEL_EXCLEVT_CONSTRAINT(Oxdl, Oxf), /* MEM_LOAD_UOPS_RETIRED.* x*/
INTEL_EXCLEVT_CONSTRAINT(0xd2, Oxf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.x* */
INTEL_EXCLEVT_CONSTRAINT (0xd3, Oxf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */

Figure 5.12: Intel Haswell corrupting event constraints encoding

Each time an event is used, the table is looked up and if the matching event is
found, then the constraint and some flags are extracted. For the corrupting events,
the flags indicates that the event requires exclusive counter access via the XSU
protocol. The constraint on the corrupting events is 0xf, i.e., any generic counter
because those events do not have static hardware constraints.

When running on a processor with the erratum, all events must go through
the XSU protocol to compute their dynamic constraint. If no corrupting event
is present, then the regular constraint on the event is not modified. The XSU
protocol code is specific to Intel PMU and there lives in the perf event intel.c file
exclusively. No changes to the generic X86 perf events code is required.

In order to ensure correctness of the dynamic constraints, the XSU shared state
is locked during scheduling by either hyper-thread. Scheduling must appear as a
atomic transaction to ensure that if scheduling succeeds the new XSU state can be
committed safely, i.e., without the risk of the sibling having run and modified the
state in the meantime. This locking is implemented through a new set of PMU
specific optional callbacks. They are defined only for Intel X86 PMU models with
the erratum. The rest of the scheduling algorithm is unmodified.

The dynamic constraints are built on the fly and require memory allocation per
event. The new code ensures that memory is freed appropriately by flagging the
events with dynamic constraints.

The code also provide a way to disable the workaround for debugging purposes
via a sysfs file entry for the core PMU: /sys/devices/cpu/ht bug workaround.
The workaround is enabled by default. To disable the workaround, a system ad-
ministrator must do:
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# echo 0 >/sys/devices/cpu/ht_bug_workaround

To re-enable the workaround:

# echo 1 >/sys/devices/cpu/ht_bug_workaround

We will evaluate the effect of the XSU protocol in perf events measurement
correctness with specific examples in chapter 7.
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Chapter 6

Optimizing Event Scheduling

6.1 Drawbacks of existing scheduling algorithm

As described in chapter 3, the current Intel x86 algorithm uses a greedy, first
match approach to assign events to counters. The first available counter which
satisfies an event’s constraint is selected for the event to be scheduled on. Once an
event is assigned to a counter, it cannot be reassigned even though its constraint
could permit its assignment on another counter.

The scheduling algorithm stops adding events at the first error, which occurs
at most after N events, if there are N counters. However, in reality, the scheduler
stops much earlier. It stops at the first error due to event constraints which cannot
be satisfied simultaneously from the remaining set of free counters.

The major issue of the algorithm described is that the event scheduler may not
choose wisely the counter to schedule the event on. In order to maximize the pos-
sibilities for the subsequent events to be scheduled, it needs to have knowledge of
their constraints and make a counter selection based on that and not by choosing
the first available counter. Furthermore, with N counters, the scheduling algo-
rithm only uses the first N events of the linked list at each iteration, potentially
leaving aside events which could use the counters left over by event conflicts. The
confluence of these two factor leads to a suboptimal allocation of events to counters
and results in under-utilization of the available resources or even failure to resolve
scheduling problems of certain combinations of events and constraints.

As we have seen, in situations where not all events can be scheduled at once, the
kernel multiplexes them, i.e., time-sharing of the counters is required. The fewer
events scheduled by the scheduling algorithm, the more multiplexing is needed.
However, with multiplexing, the events are not measured at all times because of
the time-sharing. The kernel keeps track of the time the event was enabled versus
the time it is actually ran on the PMU hardware. The information is passed back
to the performance monitoring tools which then scale the event count based on the
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timing ratio. The computation is shown in equation 6.1 below.

count * tiMEenabled
count = T e (6.1)
timerynning

In that case, the final count is an approximation of what it would have actually
been, had the event been measured throughout the entire time it was indicated as
enabled. This calculation works very well if the workload has a constant behavior,
as it assumes the events always occur at the same rate.

However, if the workload has rapidly changing phases, as shown in Fig. 6.1,
this scaling calculation could yield inaccurate results. Let us assume that there are
two events measured, L3 CACHE MISS and INSTRUCTIONS RETIRED. Let
us also assume that both events compete for the same counter. The measurements
run for 10 equal time intervals of duration T, 71 = ...T1p = T'. The blue histogram
corresponds to the counts of the cache misses events each on of these 10 time
intervals. The blue slots correspond to the time intervals where the cache misses
event is running on the counter while the beige slots correspond to the ones where
the instructions event occupies the counter. The cache misses event is enabled for
all the 10 time intervals, thus timec,apieq = 107" In reality, it runs on the hardware
only for the slots 11, T3, T5, T7 and Ty, thus timerunning — 51. The total count
that the kernel passes to the performance monitoring tools corresponds to the 5
slots the event was measured and it is count,q, = 50M. Based on equation 6.1
the scaled count we obtain for the cache misses event is 100M. However, if we add
up the measurements for each interval of the histogram the actual count of cache
misses is 75M. Thus, scaling of the counts due to multiplexing is not always reliable
and can yield significant inaccuracies.

An obvious way to mitigate the error is to increase the rate of multiplexing, but
that also increases the overhead of monitoring which is not desirable, as the behav-
ior of the workload would be impacted. Another way is to minimize multiplexing
and thus make the time,ynning approximate the timeepapicq, is by maximizing the
use of the PMU counters. This requires that the scheduling algorithm stops as late
as possible and maximizes the number of events scheduled at each run.

The existing Intel x86 scheduling does not always maximize counter usage when
many events are constrained. The greedy algorithm works better when most events
are not constrained. However, as discussed in section 5, the XSU protocol guar-
antees measurement correctness at the cost of more constrained scheduling. Al-
though, the current event scheduling algorithm performs well when most events are
unconstrained, the deterioration of the quality of schedules in a more constrained
environment is unavoidable and raises the need of a more effective scheduling al-
gorithm to solve the event/counter assignment.
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Figure 6.1: Multiplexing induced inaccuracies

6.2 Event scheduling as graph matching

The perf events scheduling can be modeled as a matching problem in an un-
weighted bipartite graph G. The events and the counters are the two disjoint sets
of the bipartite graph (let us call them X and Y respectively) and they form the
set V' of vertices in the graph. The constraints allowing each event to be measured
only on certain PMU counters, form the set E of edges in the graph. To sched-
ule the events optimally on the hardware, we need to find the maximum bipartite
matching in G(V, E). This model is equivalent to adding a super source s with
edges to all vertices in the events set X and a super sink ¢ with edges from all
vertices in the counters set Y, and finding a maximal flow from s to ¢. All edges
with flow from X to Y then constitute a maximum matching.

6.3 Algorithms for graph matching

We now describe the theoretical background of graph matching problem algo-
rithms as presented in [29].

Definition 6.3.1. Let G = (V, E) be a graph. M C E is called matching of G if
VveV wehave | {e € M : v is incident on e € E} | < 1.

Definition 6.3.2. A matching M of G is called maximal if V e € E\ M the set
of edges given by M U{e} is not a matching of G.

Definition 6.3.3. The size of a matching M of G is the number of the edges it
contains and is denoted by |M]|.
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Definition 6.3.4. A matching M of G is called mazimum if ¥V matching M’ of
G we have |M| > |M'|.

Definition 6.3.5. Let M be matching of G. A vertex v € V is called M-saturated
if M contains an edge incident on v. Otherwise v it is called M-unsaturated or
M-free.

6.3.1 Augmenting paths

Definition 6.3.6. Let M be matching of G. A path P in G is called M-alternating
if the edges of P are alternately in and out of M.

Definition 6.3.7. Let M be matching of G. A path P in G is called M-augmenting
of it is a mazimal, M-alternating path with unsaturated start and end vertices.
Clearly, an M-augmenting path has odd number of edges.

Lemma 6.3.8. Let G be a graph whose mazimum degree is at most 2. Then every
component of G is either an isolated point, a path or a cycle.

Proof. Consider any non-isolated vertex v of G. Its, at most two, neighbors further
have degree at most 2 and so on. So the component of G containing v is either a
path or a cycle. This holds true for all non-isolated vertices of G. QED. O

Lemma 6.3.9. (Berge 1957) A matching M is mazimum if and only if G has no
M-augmenting path.

Proof. Suppose there exists an M-augmenting path P. Consider the symmetric
difference M & P which represent edges that are present in exactly one of M
or P. Since P is an M-augmenting path, M & P is also a matching of G and
|IM @ P| = |M|+ 1. So M is not maximum. Suppose M is not maximum. Let
M’ be a maximum matching and so we have |M’'| > |M|. Consider M @& M’'. Each
vertex has degree at most 2 in M & M’ since each of M and M’ can contribute at
most 1 each to the degree of each vertex in M & M’. By Lemma 6.3.8, M & M’
consists of cycles, paths and isolated vertices. But the edges of M & M’ alternate
in M and M’ exclusively. Hence each cycle must be even. So M’ exceed M in size
only from the paths. So, there exists at least one path in M & M’ which has more
edges from M’ than from M. But such a path is M-augmenting. O

Corollary 1. (Hopcroft-Karp) Let M* be a matching of G. Then for any matching
M of G such that |M*| > |M|, we have |M*| — |M| vertex-disjoint M-augmenting
paths. The non-M edges on these paths all belong to M*.

Proof. From the proof of 6.3.9 every cycle of M @& M* is even and every path of
M & M* which is not M-augmenting must have equal number of edges from M and
M* as M* is maximum. Also note that each M-augmenting path has exactly one
edge more from M* than from M. So we need |M*|—|M| such paths. These are all
vertex-disjoint, since in Definition 6.3.7 we defined augmenting paths as maximal
paths starting and ending at unsaturated points. O
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Corollary 2. Let |M*| be a mazimum matching and M be any matching. If M is

not mazximum, then the shortest M-augmenting path has length < % -1

Proof. From Corollary 2 we know that there are |M*| — | M| vertex-disjoint (and
hence edge-disjoint) M-augmenting paths. By Pigeonhole Principle, one of the
paths must have at most m vertices and thus has length at most ﬁ —

1.

For finding the maximum matching of a graph using augmenting paths, consider
the following algorithm which follows from Lemma 6.3.9.

1. M=10

2. while (there is an M-augmenting path P) do
M—MaP

3. return M

The challenge now is to detect existence of and find augmenting paths efficiently.
We consider the case when G is bipartite.

6.3.2 An O(n?) algorithm for finding maximum match-
ing in bipartite graphs

Let G = (X UY, E) be a bipartite graph where X and Y are its disjoint sets
and let M be a matching of G. We want to find a maximum matching of G. We
denote by Xg , Yy the sets of M-unsaturated vertices in X, Y respectively. We
consider a new directed graph H on the vertex set X UY and edge set E. Edges
which are in M are directed X — Y and edges not in M are directed ¥ — X.

Lemma 6.3.10. G has a M-augmenting path if and only if H has a path from Yy
to Xo.

Proof. Suppose G has an M-augmenting path say from u € Xy to v € Yy. The
same path directed from v to w is clearly a path in H from Yy to Xg. Suppose H
has a path from y € Y to z € Xy. The underlying undirected path from x to y is
clearly an M-augmenting path. O

So we do a depth-first-search (DFS) from Y} and stop as soon as we reach some
vertex in Xy, thus giving us an M-augmenting path P. M is augmented along
P, the new matching is M @ P. The process is then repeated. If a vertex of Xy
cannot be reached, then G has no M-augmenting path i.e. M is maximum. The
time complexity of the algorithm is analyzed as follows.

1. Without loss of generality, assume |Y| < |X|. Thus |Yp| < |Y| < % Also at
each stage of the algorithm, augmenting saturates a previously unsaturated
vertex from Y without impacting vertices which are already saturated. So
we need at most |Yp| < % stages.
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2. At each stage several DFS are needed, starting from each vertex in Yy. The
maximum number of DFS needed is |Yp|, as in the worst-case, only the DFS
starting from the last vertex of Y may lead to a path in Xy. A single DFS
can be done in O(|V| + |E|) time.

3. Once an augmenting path is found, the matching is augmented in O(|E|)
time.

Thus, the algorithm takes at most % [O(|E|) + Yol «O(|V| + |E|)} However,
the |Yp| factor can be eliminated. If a super-vertex v is added and connected with
edges to to every point in Yy, DFS is needed to be applied only once, for vertex .
Thus, the time complexity becomes O(% [[E\ + (V| + \E!)D = O(!V!z + ]VHE!)

2
Since a bipartite graph on |V| vertices can contain at most (&) edges, the time

1
complexity of the algorithm is O(|V[?) or O(n?).

6.3.3 Hopcroft-Karp algorithm for finding a maximum
matching in bipartite graphs in O(n??) time

The preceding algorithm, looked for a single augmenting path at a time and
augmented it. The maximal family of vertex-disjoint shortest-length augmenting
paths could be found instead and be augmented all together in a single stage.
This would bring the time complexity down to O(n?®). Consider the following
algorithm.

1. M=0

2. while (there is an M-augmenting path) do
find a maximal family F' of vertex-disjoint shortest M-augmenting paths;
set M +— M & F;

3. return M

The correctness of the algorithm follows from Lemma 6.3.9. It can be shown
that using a maximal family F' of shortest augmenting paths instead of a single
augmenting path significantly reduces the number of stages (Lemma 6.3.14), and
also that the time per stage induced by finding such families does not increase
(Lemma 6.3.15). The proof of the above is based on the following lemmas.

Lemma 6.3.11. Let M be a matching of G and let P be an M -augmenting path of
shortest length. Let P’ be an (M @ P)-augmenting path. Then |P'| > |P|+|PNFP'|,
where |P| is the number of edges in P.

Proof. Consider N = (M @ P) @ P’. Then N is clearly a matching and |N| =
|M| + 2. Thus by Corollary 1, there are 2 vertex-disjoint M-augmenting paths,
say P; and P, with the non-M edges in N. That is, P, UP, C M & N . Note
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that M @ N = P @ P’ and thus we have |P @ P'| > |Pi| + |P|. But P, P
are both M-augmenting paths and P is a shortest M-augmenting path. Therefore
|P @ P'| > 2|P|. However |P @ P'| = |P|+ |P'| — |P N P’'| and so the desired
inequality follows. O

Lemma 6.3.12. Let My = () and consider the sequence My, My, ..., M;, ... where
Vi, P; is a shortest M;-augmenting path, and M;1 1 = M; & P;. Then, for i < j,
|P;| < |Pj|. Further, |P;| = |P;| implies that P; and P; are vertez-disjoint.

Proof. 1t follows from Lemma 6.3.11 that for i < j, |P;j| < |P;|. Suppose now that
for some ¢ < j, P; and P; are not vertex-disjoint, and assume to the contrary that
|P;| = |P;|. This implies that |P;| = |Pi+1| = ... = |Pj—1| = |Pj|. Then there
exist some k, [ such that ¢ < k < [ < j and P, and P, are not vertex-disjoint
and further for all m between ! and k we have P, is vertex-disjoint from both
Py and P,. Therefore P, is an Mp-augmenting path and so by Lemma 6.3.11 we
have |P;| > |Px| + |P, N Pg|. However we are given that |P;| = |Pg| which implies
that [P, N Pg| = 0, i.e., P, and Py have no edges in common. However since P,
and Py are not vertex-disjoint, they have a common vertex say x and then they
must have in common the edge from M} @& P; which is incident on x leading to a
contradiction. O

Lemma 6.3.13. Let F' be an inclusion-mazximal family of vertex-disjoint shortest
M -augmenting paths, all of length ly. Let ly be the length of a shortest (M @ F')-
augmenting path. Then ly > 11 + 2.

Proof. Let F = {Py, P3,..., P,}. Let P be a shortest (M @ F)-augmenting path.
Note that M & F = (...(M & Py) & P»)...) ® P. . Suppose P is disjoint from each
element of F'. Then P is also an M-augmenting path, but by maximality of F', it
is not a shortest augmenting path. So lo > [;. Next, suppose that P has a vertex
in common with at least one path in F'. By Lemma 6.3.12 we have l; > [;. Finally
note that Iy, lo are both lengths of augmenting paths and they must be odd; hence
lo >l = 1ly>11 +2. O

We consider again the bipartite graph G = (X UY, E) where X and Y are its
disjoint sets and the directed graph H with vertex set X UY and edge set E.

Lemma 6.3.14. The algorithm described at the start of this section makes at most

2./|V'| iterations.

Proof. Let M* be a maximum matching and let M be the matching after \/|V|
iterations. By Lemma 6.3.13, the length of the shortest M-augmenting path is at
least (24/]V] — 1) > /[V]. By Corollary 2 we have \/[V] < (length of shortest
M-augmenting path) < ﬁ, and so |M*| — [M| < /][V]. From this point
onwards, even if we augment just one path in each iteration, we need at most /[V]
more iterations, as each augmentation increases size of matching by 1. Thus overall

we need no more than 2,/|V| iterations. O
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Lemma 6.3.15. Each iteration of the algorithm can be implemented in O(|E|)
time.

Proof. First we will use breadth-first-search BFS to find the length k of a shortest
path from Yy to Xy. Simultaneously, we produce the sequence of disjoint layers
Yb = Lo, Ll, ,Lk - XO where

e Vi:0<1i<k, L;is the set of vertices at distance ¢ from Yj
e [} is the subset of X at distance k from Y{; which we look for

To avoid multiple BFSs from each vertex in Yp, a super-vertex v is added with edges
connecting it to all vertices of Yy. The distance of ¢ from Xy can be found with
a BF'S starting from . Subtracting this by one gives the length of the shortest
path from Yy to Xy. This requires O(|E|) time. Now consider a modified DFS
which starts at a vertex v € Yy, stops as soon as it reaches a vertex say w in Ly
and outputs this v — w path. Add this M-augmenting path to F' and delete all
vertices visited in the modified DFS. This is crucial; not just the augmenting path
is deleted but also all the other vertices visited in the modified DFS. Let = be a
vertex seen at some L; in the DF'S started from v € Yy. If x does not lead to an M-
augmenting path of length £ starting at v, then x cannot be on any M-augmenting
path of length k: any such path has to begin at some vertex in Yj and it has to use ¢
edges to reach z. If the procedure is repeated starting at another vertex in Yy until
all vertices of Yy are explored, a maximal family of vertex-disjoint shortest-length
augmenting paths is found. Let m; be the number of edges visited in the i*» DFS
which takes O(m;) time. Noting that |E| > Y, m;, the time taken is O(|E]). O

Theorem 6.3.16. The algorithm runs in O(|V|*®) time.

Proof. From Lemma 6.3.15 each phase can be implemented in O(|E|) time. Also
from Lemma 6.3.14 there are at most 24/n phases. Thus, the time complexity of
the algorithm is O(\/[V]) * O(|E|) = O(|V|*9). O

6.4 Integrating Hopcroft-Karp in perf events
scheduler

The Hopcroft-Karp maximum cardinality matching graph algorithm can re-
place the greedy, first match algorithm which is responsible for assigning the events
on the PMU counters in the perf events subsystem.

The pseudocode of the Hopcroft-Karp algorithm is demonstrated in Fig 6.2
that follows.
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function Hopcroft-Karp() {
for each (x in X)
pair_ Y[x| = free;
for each (y in Y)
pair_ X|y| = free;

matching = 0;

while (BFS() == true)
for each (x in X)
if (pair  Y[x] = free)
if (DFS(x) == true)
matching = matching+1;

return matching;

}

function BFS() {

for each (x in X)
if (pair Y[x] = free) {
distance|x| = 0;
enqueue(Q, x);
} else {
distance|x] = oo;

distance[free] = oo;

while (lempty(Q)) {
x = dequeue(Q);

if (distance[x] < distance|[free])
for each (y in Y)
if (adjacent[x]|[y])
if (distance[pair X[y|| == o) {
distance[pair X[y]] = distance[x]+1;
enqueue(Q, pair_ X][y])
}
}

return distance[free| != oo;

}

function DFS(x in X) {
if (x == free)
return true;

for each (y inY)
if (adjacent([x][y])
if (distance|[pair_ X|y]] == distance|[x|+1)
if (DFS(pair_X[y])) {
pair Y[x| =y
pair_ X[y] = x
return true;

}

distance[x| = oo;
return false;

}

Figure 6.2: Hopcroft-Karp Pseudocode

6.4.1 Tradeoffs

As we have shown in section 3.2, the complexity of the existing scheduling
algorithm is O(n?) whereas the complexity of Hopcroft-Karp is O(n?%). However,
n in our case is bound by the number of PMU counters.

In section 3.1 we have described that if the PMU has N counters, the generic
layer passes at most N events down to the architecture specific layer of the sched-
uler. This guarantees that if an arbitrary long list of events is provided, the system
will not slow down proportionally. This means that any scheduling instance has at
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most N events to be scheduled on the N counters. In the complexity analysis of
the previous section n correspond to the number of vertices in the bipartite graph
of the problem, i.e. the number of counters plus the number of events. All major
PMUs nowadays have less than 16 counters. That number is very likely to remain
low because adding generic counters in hardware is a very expensive proposition.
Hence, in such small scheduling instances, the overhead of our higher complexity
scheduling algorithm is negligible and is at scale of nanoseconds.

Our proposal guarantees optimal scheduling no matter how complicated the
constraint might be, without making the event scheduling more time consuming.
This is very critical, especially now with the integration of the XSU protocol in
perf events. Hopcroft-Karp can compensate for the more constrained scheduling
and limit multiplexing. The advantage of our proposal versus the existing schedul-
ing algorithm is demonstrated in the Fig. 6.3 below.

Greedy Hopcroft-Karp
Algorithm Algorithm

Model

N

3/4 Events Scheduled 4/4 Events Scheduled
Multiplexing No Multiplexing

Figure 6.3: Hopcroft-Karp versus Greedy scheduling algorithm

6.4.2 Implementation

This high-level graph algorithm has been successfully implemented in the Linux
kernel meeting all the requirements associated with kernel development.

Compact C Code : The Linux kernel is written in pure C and assembly. It oper-
ates under certain constraints regarding memory allocations. Data structures
are usually fairly simple.

Minimal Execution Time : The event scheduling algorithm is invoked frequently.
By default, at every timer tick (1ms on x86) when multiplexing is necessary.
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It is also invoked on tasks context switches for per-thread events. The con-
text switch code path is very latency sensitive, this is why the scheduling
needs to be fast.

Minimal Memory Footprint : The Linux kernel tries to minimize its memory
usage to maximize free memory for applications. In particular, the stack size
very limited.

No Recursion : On kernel entry, the stack of each thread is switched from the
expandable user stack to a per-thread fixed-size kernel stack. That stack
is very limited in size usually two pages (8KB on x86). It cannot grow
automatically like the user level stack. That prohibits recursive functions
because stack consumption may not easily be predictable.

The code has been designed appropriately to solve the small scheduling in-
stances of perf events extremely fast while using simple enough data structures.
The recursive modified DFS we demonstrated in section 6.3.3, has been redesigned
to be iterative. For eliminating recursion in DFS, a stack is used in order to keep
track of the vertices in Y reached by the X vertices produced by the BFS layer.
The pseudocode of the iterative DFS is demonstrated in Fig. 6.4 below.

The algorithm is implemented in the x86 specific layer, and is shared by Intel
and AMD processors. The actual file modified is arch /x86 /kernel/cpu/perf event.c
and about 300 lines of code were added. The collection of event constraints and
short path are not modified at all by the new code. Ounly the perf assign events()
function is replaced. The bitmasks for the event constraints are decoded to build
the graph on entry and the assignment is translated from the graph back into an
array of integers on exit as expected by the calling function.

We will evaluate the the effect of the event scheduling optimization with specific
examples in the chapter that follows.
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function DFS(x inX) {
if (x == free)
return true;

push(stack, (x, y,));

while (lempty(stack)) {
x = top(stack).X;

for each (y; in Y) {
top(stack).Y =y,

if (adjacent(x][y;])
if (distance[x_pair[y,] = distance[x] + 1) {
if (x_pair[y;] == free) {
/*
* A free vertex of X is reached and an augmenting path was found.

* Pop the entire stack adjusting the pairs and return true.
*

while (lempty(stack)) {
/* Adjust pairs */
x_ pair[top(stack).Y]| = top(stack).X;
y_ pair[top(stack).X] = top(stack).Y;
/* Pop stack */
pop(stack);

return true;
} else {
/*
* The new ’x’ node is pushed in the stack for further check.
*/
push(stack, (x_ pair[y,], yO);

}

break;
}
/*
* The ’x’ node’s neighbors in Y set were fully scanned and

* nothing interesting was found: pop and continue with the
* other candidates in X.

*/

distance|x] = oo;

pop(stack);

Figure 6.4: Iterative DFS for kernel integration
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Chapter 7

Evaluation

In this chapter, we evaluate the results of our solutions for both the XSU
protocol and the Hopcroft-Karp improved scheduling algorithm.

7.1 XSU protocol

In this section, we evaluate the effect of our XSU protocol to eliminate the
Hyper-Threading corruption erratum through a set of before and after examples.
All examples in this section are run on an Intel Core i7-4770 processor with Hyper-
Threading enabled. For all the examples, we are using the triad program which is
a single-threaded, very stable workload performing loads and stores. We pin one
instance on each of the sibling threads and we let these instances run "forever".
The sibling threads we are measuring on are CPU0 (also referred to as HTp) and
CPU4 (also referred to as H77). We first compare with the examples showed in
section 4.1.

In the first example, we measure the corrupting event MEM _UOPS RETIRED:
ALL LOADS event (code 0x81d0) and the non-corrupting event MISPREDICTED _
BRANCH_ RETIRED event (code 0x00c5). As we have explained, we expect the
value of the branch misprediction event to be low, since it does not occur in tight
loops. Indeed, if we only measure the branch mispredictions on CPU4 we get a
value of 772 as the total count.

$ taskset -c O triad &
$ perf stat -r 10 -a -C 4 -e r00cb:u taskset -c 4 triad

772 r00ch:u

Then, we add the measurement of the corrupting retired loads event on CPUO
(sibling thread) with the XSU protocol disabled:

# echo 0 >/sys/devices/cpu/ht_bug_workaround
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$ taskset -c O triad &

$ taskset -c 4 triad &

$ perf stat -a -C 0 -e r81d0:u &

$ perf stat -r10 -a -C 4 -e r00c5:u

40 581 657 r00cb:u

We see the huge corruption of the branch misprediction event whose value is 40
581 657 instead of 772. Finally, we enable the XSU protocol and we try the same
measurement:

echo 1 >/sys/devices/cpu/ht_bug_workaround
taskset -c 0 triad &

taskset -c 4 triad &

perf stat -a -C 0 -e r81d0:u &

perf stat -r10 -a -C 4 -e r00cb:u

“hH L PR HH

781 r00cbh:u

The output is now back to expected, at 781. We manage to get the correct result
because the XSU protocol scheduled the 0x81d0 and 0x00c5 events on different
counters on each sibling thread, taking into account the dynamic constraints, not
just the static ones as it was happening before. The valid configuration of the
counters is shown in Fig. 7.1.

Physical Core
HTO HT1
CO0Joxs1do C0
Cl C1 [oxo0cs
C2 C2
C3 C3
Y Y
HTO HT1
COjU | X
Clf S |U
C2lU | U
c3lU | U
XSU State

Figure 7.1: XSU corrected assignment for 0x81d0 (C) and 0x00c5 (NC) events

If we measure just enough events in a single run in order not to have multi-
plexing, then there is a case where we can avoid corruption even without enabling
the XSU protocol. This case relies on the fact that the same event list is scheduled
on both sibling threads at exactly the same time and that the list is not modi-
fied during the run. The two event lists are then synchronized and across sibling
counters the same events are scheduled. This way, non-corrupting events cannot
get corrupted by the corrupting ones. However, this implies that no other tool
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is monitoring the same process or CPU at the same time. This may be valid on
single user systems, but not on shared servers. The XSU protocol eliminates the
risk of corruption should the event lists on the sibling threads differ or run asyn-
chronously, but it comes at the price of extra multiplexing as we demonstrate in
the next example.

We measure 3 events, 2 corrupting (0x81d0, 0x08d1) and 1 non-corrupting
(0x20cc) as shown below:

0x81d0 | MEM_ UOPS RETIRED:ALL LOADS
0x08dl | MEM LOAD UOPS RETIRED:L1 MISS
0x20cc | ROB_MISC EVENTS:LBR_INSERTS

These events are statically unconstrained, i.e., they can be scheduled on any of
the 4 generic counters, hence they should all fit without requiring multiplexing. The
non-corrupting event is the ROB_MISC_EVENT.LBR_INSERTS (code 0x20cc)
which counts the number of entries inserted in the Last Branch Record (LBR)
buffer. We choose this event because, as the LBR is not used on the test system,
its value must always be zero. Hence, the corruption is easily identifiable. Indeed,
when we measure it alone on CPU4 for ten times (-r10), we get 0 as value with 0%
deviation for all the ten runs.

$ perf stat -a -C4 -r10 -e r20cc:u taskset -c 4 triad
0 r20cc:u (+- 0,00\%)
Now, with XSU disabled, we measure the list of these three events, on both
siblings, in a single, combined run, for 10 seconds.

# echo 0 >/sys/devices/cpu/ht_bug_workaround

$ taskset -c 0 triad &

$ taskset -c 4 triad &

$ perf stat -a -A -C0,4 -e r20cc:u,r81d0:u,r08d1:u sleep 10

CPUO 0 r20cc:u [100,00%]
CPU4 0 r20cc:u [100,00%]
CPUO 5 747 793 793 r81d0:u [100,00%]
CPU4 5 711 985 901 r81d0:u [100,00%]
CPUO 305 944 783 r08di:u [100,00%]
CPU4 305 472 307 r08dl:u [100,00%]

10,000860002 seconds time elapsed

As we explained there is no multiplexing (100% scaling factor) since in each
thread there are three events to be measured on four counters. But also, there is
no corruption even without XSU, because the event lists are completely aligned
and they do not change during the run.

Now, if the event lists on the sibling threads are not identical or the measure-
ments are not initiated at the same time, which is most commonly the case, we
will obtain corrupted results.

Indeed, with XSU disabled, we now measure the events in parallel but separate
runs on the sibling threads and we change the order of these events in the two lists.
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# echo 0 >/sys/devices/cpu/ht_bug_workaround

$ taskset -c O triad &

$ taskset -c 4 triad &

$ perf stat -a -A -CO -e r81d0:u,r08d1:u,r20cc:u sleep 10 &

$ perf stat -a -A -C4 -e r20cc:u,r81d0:u,r08d1l:u sleep 10
CPUO 5 609 439 398 r81d0:u [100,00%]
CPUO 304 559 413 r08dl:u [100,00%]
CPUO 137 640 089 r20cc:u [100,00%]

10,000851695 seconds time elapsed

CPU4 137 641 709 r20cc:u [100,00%]
CPU4 5 713 420 846 r81d0:u [100,00%]
CPU4 166 553 900 r08dl:u [100,00%]

10,000824227 seconds time elapsed

The output shows that there is still no multiplexing but there is corruption. The
LBR inserts event (0x20cc) of CPUO is corrupted by 137 640 089 counts leaked from
the L1 misses event (0x08d1) scheduled on the sibling counter of CPU4. Similarly,
the LBR inserts event of CPU4 is corrupted by 137 641 709 counts leaked from
the loads retired event (0x81d0) scheduled on the sibling counter of CPU0O. The
corruption is shown in Fig 7.2.

HTO HTI
CO] 0x81d0 » CO| 0x20cc
C1] 0x08d1 » C1| 0x81d0
C2] 0x20cc C2] 0x08d1
C3 C3

Figure 7.2: Corrupted measurements of 0x20cc, 0x81d0, 0x08d1

Next, we enable the XSU protocol and we run the same test.

# echo 1 >/sys/devices/cpu/ht_bug_workaround

$ taskset -c O triad &

$ taskset -c 4 triad &

$ perf stat -a -A -CO -e r81d0:u,r08dl:u,r20cc:u sleep 10 &
$ perf stat -a -A -C4 -e r20cc:u,r81d0:u,r08d1:u sleep 10

CPUO 5 650 303 673 r81d0:u [100,00%]
CPUO 166 632 879 r08dil:u [100,00%]
CPUO 0 r20cc:u [100,00%]
10,000773541 seconds time elapsed

CPU4 0 r20cc:u [66,68%]
CPU4 5 509 435 203 r81d0:u [66,66%]
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CPU4 162 522 829 r08dl:u [33,35%]

10,000779763 seconds time elapsed

With the XSU dynamic constraints, there is now multiplexing as we can see
from the decreased fraction of time each event of CPU4 is measured on the hard-
ware. The LBR inserts event value is back to zero for both threads. The XSU
protocol protects the non-corrupting events from corruption. In Fig. 7.3, we show
the configuration of the counters for the two threads, which also explains the scaling
factors seen above.

As perf on CPUQO is initiated first, the events of CPUO find all the counters in
unused state and they are all scheduled in. As all events manage to get scheduled,
there is no need of multiplexing and thus the scheduler of the generic layer will
not schedule them out until the 10 seconds measurement is completed (Fig 7.3a).
When CPU4 starts its measurements, some of the counters are already marked
as exclusive or shared by CPUO. For the two corrupting events of CPU4 only
(s is available while the non-corrupting event can use both Co and C3. Hence,
multiplexing will be needed and the generic scheduler will execute multiple passes
rotating the event list as explained in chapter 3 At the first pass (Fig 7.3b), non-
corrupting 0x20cc is the first event of the list and it is scheduled on Cy. The second
event, the corrupting 0x81d0, is scheduled on C3. The scheduler stops here because
it fails scheduling the third event of the list, the corrupting 0x08d1, and the event
list is rotated by one. At the second pass (Fig 7.3¢), corrupting 0x81d0 is the first
event of the list and it is scheduled on C3. The scheduler fails to proceed because of
lack of counters for the corrupting event 0x08d1 and both 0x08d1 and 0x20cc that
follows, remain unscheduled. The event list is rotated by one. At the third pass
(Fig 7.3d), corrupting 0x08d1 is at the head of the list and gets the opportunity
to be scheduled on 3. The second event, the non-corrupting 0x20cc, is scheduled
on Cs. The scheduler fails to schedule the corrupting 0x81d0, the list is rotated
and we return to the configuration of the first pass. Each pass lasts for a duration
of a timer tick, which is by default 1 millisecond in the system we are testing on.
For our 10 seconds measurement, the scheduler will do 10 000 passes. As we saw
in the analysis above and the respective figures, every 3 passes the events 0x20cc
and 0x81d0 are scheduled twice and the event 0x08d1 is scheduled once. Hence,
the scaling factors 66.68% for 0x20cc and 66.66% for 0x81d0, which show that the
events run on the hardware for 2/3rds of the time, are justified. Similarly, the
scaling factor 33.35% for 0x08d1 shows correctly that this event is activated for
1/3rd of the time.

During the multiple passes of the scheduling algorithm, XSU guarantees valid
assignment of the events on the counters. However, as it can be seen from the
counts, the memory events have very different counts. Especially, the L1 misses
event (0x08d1l) drops from 305 944 783 to 166 632 879 on CPU( and from 305
472 307 to 162 522 829 on CPU4, losing approximately 50% of its counts. We will
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HTO o> 0x81d0 — 0x08d1— 0x20cc 11 o » x81d0 —> Ox08d1 —> 0x20cc

HTl e HT1 e—> 0x20cc —> 0x81d0—> 0x08d1
HTO Physical Core HT1 HTO Physical Core HT1
CO| 0x81d0 f----- »CO col 0x81d0 »/CO
C1| 0x08d1 f----- »C1 c1| oxo8d1 »| C1
C2]| 0x20cc c2 C2] 0x20cc C2] 0x20cc
G3 C3 C3 < C3] 0x81d0
AT HTI HT0 0TI
Co|U | X Co| U | X
Cl|U | X Cl|U | X
c2lU|[ S C2| S| S
Cc3|U | U C3| X|U
XSU State XSU State
(a) (b)
HTO e— 0x81d0 — 0x08d1 —> 0x20cc HTO e—> 0x81d0 —> 0x08d1—> 0x20cc
HT1 e— 0x81d0 —> 0x08d1 —= 0x20cc HT1 e— 0x08d1 —> 0x20cc —> 0x81d0
HTO Physical Core HT1 HTO Physical Core HT1
CO| 0x81d0 »{CO CO| 0x81d0 f----- »|CO
C1| 0x08d1 »(Cl1 C1| 0x08d1 f---—-- »|C1
C2| 0x20cc C2 C2| 0x20cc C2| 0x20cc
C3 < C3| 0x81d0 C3 o CERERE C3| 0x08d1
AT HTI HTO HTI
Co| U | X Co|U | X
Cl|U | X Cl|U | X
C2lU | S C2| S| S
C3| X | U C3| X | U
XSU State XSU State
(c) (d)

Figure 7.3: Valid measurements of 0x20cc, 0x81d0, 0x08d1 with XSU

explain this change later in chapter 8.
Now, let us examine cases where there are more events than counters including

corrupting and non-corrupting events, without and with the XSU protocol.
In this first case, we are using 1 corrupting memory event (0x08dl) and 4
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non-corrupting events (0x02c4, 0x20cc, 0x00c4, 0x010e) as shown below:

0x08dl | MEM LOAD UOPS RETIRED:L1 MISS
0x02c4 | BR_INST RETIRED:NEAR CALL
0x20cc | ROB_MISC EVENTS:LBR INSERTS
0x10c4 | BR_INST RETIRED:NOT TAKEN
0x08c4 | BR_INST RETIRED:NEAR RETURN

We have our triad workload running on both sibling threads (CPU0, CPU4).
Because we will incur multiplexing and that will likely cause corruption, we first
measure the non-corrupting events by themselves to get the actual counts in a
single run with XSU disabled:

# echo 0 >/sys/devices/cpu/ht_bug_workaround
$ taskset -c 0 triad &
$ perf stat -r10 -a -CO -e r02c4:u,r20cc:u,r10c4:u,r08c4:u sleep 10

Performance counter stats for ’system wide’ (10 runs):

342 r02c4:u (+- 0,04%) [100,00%]
0 r20cc:u (+- 0,00%) [100,00%]

1 025 r10c4:u (+- 0,04%) [100,00%]
342 r08c4:u (+- 0,04%) [100,00%]

As we can see, these are very stable events as shown by the deviation percentage
over the 10 runs. These are our baseline numbers for the non-corrupting events
obtained with no multiplexing. It is interesting to note that the values of the events
BR_INST RETIRED:NEAR CALL (code 0x02c4) and BR_INST RETIRED:
NEAR_ RETURN (code 0x08c4) in both threads are the same because they count
the number of function calls and function returns respectively. Next, we add the
corrupting memory event and we run the measurements of the five events with

XSU disabled:

# echo 0 > /sys/devices/cpu/ht_bug_workaround
$ perf stat -a -C4 -e r81d0:u,r02c4:u,r20cc:u,r10c4:u,r08c4:u sleep 10 &
$ perf stat -a -CO -e r81d0:u,r02c4:u,r20cc:u,r10c4:u,r08c4:u sleep 10

5 587 605 755 r81d0:u [80,00%]
77 512 989 r02c4:u [80,00%]
6 087 383 r20cc:u [80,00%]
6 080 780 r10c4:u [80,00%]
18 218 197 r08c4:u [79,99%]

10,000809054 seconds time elapsed

5 585 007 977 r81d0:u [80,00%]
18 233 527 r02c4:u [80,00%]
6 104 578 r20cc:u [80,00%]
6 091 492 r10c4:u [80,00%]
77 517 725 r08c4:u [79,99%]
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10,000739612 seconds time elapsed

As expected, there is multiplexing. The scaling factor is about 80% which in-
dicates that each event is active about 4/5th of the time, i.e., at any one time 4
out of 5 events are active on the hardware. Because of multiplexing, the event lists
on both threads rotate at each timer tick. Thus, across the 10 seconds measure-
ments, the corrupting event of the one thread ends up in facing and corrupting
each one of the non-corrupting events of the other thread and vice-versa. All the
non-corrupting events of both sibling threads have their results corrupted by sev-
eral million of leaked counts. The more time a non-corrupting event finds itself
scheduled with a corrupting event on a pair of sibling counters, the more unrea-
sonably higher its value becomes due to corruption. The errors are prominent on
these low frequency non-corrupting events we have chosen.

Next, we run the same test case but with XSU enabled and look at the impact
on the counts of the non-corrupting events and on the multiplexing.

# echo 1 > /sys/devices/cpu/ht_bug_workaround
$ perf stat -a -C4 -e r81d0:u,r02c4:u,r20cc:u,r10c4:u,r08c4:u sleep 10 &
$ perf stat -a -CO -e r81d0:u,r02c4:u,r20cc:u,r10c4:u,r08c4:u sleep 10

5 554 095 990 r81d0:u [30,99%]
342 r02c4:u [50,60%]

0 r20cc:u [60,40%]

1 021 rl0c4:u [70,20%]

350 r08c4d:u [70,17%]

10,000809047 seconds time elapsed

5 543 881 332 r81d0:u [40,77%]
336 r02c4:u [50,59%]

0 r20cc:u [60,39%]

1 030 r10c4:u [70,19%]

343 r08c4:u [79,99%]

10,000782512 seconds time elapsed

The counts have returned back their expected values according to the baseline
numbers we collected at the beginning of this test. The other interesting part of
these results is the scaling factor which has decreased, denoting a smaller active
time on the hardware for each event. The difference between the values of the events
BR_INST RETIRED:NEAR CALL (code 0x02c4) and BR_INST RETIRED:
NEAR_RETURN (code 0x08c4) in both threads, is due to multiplexing inaccu-
racies. The pattern of function calls and function returns may present changing
phases which cannot always be captured because the events are not measured at
all times. In any case, the values of these two events are very similar and the
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discrepancies of less than 10 counts we obtain now is far from the discrepancies of
60 000 000 we were obtaining when measuring without the XSU protocol.

In this example the sibling threads are competing to acquire the shared state
and schedule their events on the counters every timer tick, because they are both
subject to multiplexing. Hence, the time that each event of the two threads is
actually ran on the hardware and thus the scaling factors of each event, cannot
be predicted because of these race conditions. What the XSU protocol offers is a
guarantee of valid configuration of the counters at all times and correct results for
the non-corrupting events.

If we add more events to measure in a single run, we can see the effect of
the XSU protocol on multiplexing. For this second case, we use an event list of
10 events on each thread, 4 corrupting memory events (0x81d0, 0x08d1, 0x10d1,
0x01d1) and 6 non-corrupting events (0x02c4, 0x20cc, 0x10c4, 0x08c4, 0x01c9,
0x04c8), as shown below:

0x81d0 | MEM_ UOPS RETIRED:ALL LOADS
0x08d1 | MEM LOAD UOPS RETIRED:L1 MISS
0x10d1 | MEM LOAD UOPS RETIRED:L2 MISS
0x01dl | MEM LOAD UOPS RETIRED:L1 HIT
0x02c4 | BR_INST RETIRED:NEAR CALL
0x20cc | ROB_MISC EVENTS:LBR INSERTS
0x10c4 | BR_INST RETIRED:NOT TAKEN
0x08c4 | BR_INST RETIRED:NEAR RETURN
0x01c9 | RTM_ RETIRED:START

0x04c8 | HLE RETIRED:ABORTED

The run without XSU will incur multiplexing, so we need to measure the actual
counts of the events. We have the baseline numbers for the first 4 non-corrupting
events (0x02c4, 0x20cc, 0x10c4, 0x08c4) from the previous example. We now mea-
sure the actual values of the 2 new non-corrupting events (0x01c9, 0x0408) in a
single run with XSU disabled:

# echo 0 >/sys/devices/cpu/ht_bug_workaround

$ taskset -c 0 triad &
$ perf stat -r10 -a -CO -e r02c4:u,r20cc:u,r10c4:u,r08c4:u sleep 10

Performance counter stats for ’system wide’ (10 rums):

0 r01c9:u (+- 0,00%) [100,00%]
0 r04c8:u (+- 0,00%) [100,00%]

The RTM_RETIRED:START and the HLE  RETIRED:ABORTED are events
related to transactional memory support in Haswell processors. The RI'M RETIRED:
START counts the number of times the restricted transactional memory execution
starts and the HLE RETIRED:ABORTED counts the number of aborted hard-
ware lock elison transactions. The workload does not use transactional memory,
so these events should have zero counts.

67



We disable the XSU protocol and we run the measurements of these 10 events
on both sibling threads for 10 seconds.

# echo 0 > /sys/devices/cpu/ht_bug_workaround

$ perf stat -a -C4 -e r81d0:u,r08dl:u,r10dl:u,r01dl:u,r02c4:u, \
r20cc:u,r10c4:u,r08c4:u,r01c9:u,r04c8:u sleep 10 &

$ perf stat -a -CO -e r81d0:u,r08dl:u,r10dl:u,r01dl:u,r02c4:u,r20cc:u, \
r10c4:u,r08c4:u,r01c9:u,r04c8:u sleep 10

5 580 691 917 r81d0:u [40,00%]
196 376 492 r08dl:u [40,01%]
204 266 718 r10di:u [40,01%]

3 112 470 528 r01di:u [40,01%]

74 285 531 r02c4:u [40,00%]
8 669 406 r20cc:u [40,00%]
8 603 632 r10c4:u [40,00%]

12 409 r08c4:u [40,00%]
13 341 193 r01c9:u [40,00%]
17 087 329 r04c8:u [39,99%]

10,000915604 seconds time elapsed

5 633 519 354 r81d0:u [40,00%]
187 004 134 r08dl:u [40,00%]
133 622 500 ri0di:u [40,00%]

3 014 317 138 r01di:u [40,01%]

10 734 813 r02c4:u [40,00%]
3 792 868 r20cc:u [40,00%]
6 031 812 r10c4:u [40,00%]
16 528 567 r08c4:u [40,00%]
83 827 911 r01c9:u [40,00%]
100 139 343 r04c8:u [39,99%]

10,000943248 seconds time elapsed

As we can see, the values of all non-corrupting events have been severely im-
pacted by the corrupting ones and the results we obtain are completely irrelevant
with the actual behavior of our workload. We now enable the XSU protocol and
repeat the measurements.

# echo 1 > /sys/devices/cpu/ht_bug_workaround

$ perf stat -a -A -C4 -e r81d0:u,r08dl:u,r10d1:u,r01dl:u,r02c4:u, \
r20cc:u,r10c4:u,r08c4:u,r01c9:u,r04c8:u sleep 10 &

$ perf stat -a -A -CO -e r81d0:u,r08dl:u,r10d1:u,r01dl:u,r02c4:u,r20cc:u, \
r10c4:u,r08c4:u,r01c9:u,r04c8:u sleep 10

CPU4 5 491 248 074 r81d0:u [1,61%]
CPU4 161 579 927 r08dil:u [1,62%]
CPU4 108 975 096 r10di:u [1,63%]
CPU4 2 962 988 436 rOldi:u [1,64%]
CPU4 436 r02c4:u [11,24%]
CPU4 0 r20cc:u [20,82%]
CPU4 1 056 rl10c4:u [30,39%]
CPU4 323 r08c4:u [30,36%]
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CPU4 0 r01c9:u [39,93%]
CPU4 0 r04c8:u [39,94%]

10,000895995 seconds time elapsed

CPUO 5 518 336 748 r81d0:u [39,99%]
CPUO 162 876 379 r08dil:u [39,98%]
CPUO 109 572 002 r10di:u [39,98%]
CPUO 2 965 128 722 r0ildil:u [39,97%]
CPUO 328 r02c4:u [39,97%]
CPUO 0 r20cc:u [39,98%]
CPUO 990 r10c4:u [39,99%]
CPUO 328 r08cd:u [40,00%]
CPUO 0 r01c9:u [39,99%]
CPUO 0 r04c8:u [40,00%]

10,000943248 seconds time elapsed

The results have returned to their expected levels but multiplexing has sig-
nificantly increased especially on CPU4. Obviously, CPU0 is the winner of the
race conditions between the sibling threads for accessing the XSU shared state and
scheduling the events. CPUO manages to keep the scaling factors at the same levels
as without XSU. On the other hand, the fraction of time the events of CPU4 are
scheduled on the hardware has decrease. The decrease is most severe for the cor-
rupting events where the scaling factor drops below 2%. This is reasonable since
these events can only be measured on unused counters, something very difficult to
find given that CPU0 wins most of the race conditions and has its events scheduled
first. However, the inaccuracies in the results of the corrupting memory events of
CPU4 are not significant because, as we have explained, the workload has a very
stable behavior with respect to memory operations. Again, we observe discrepan-
cies between the function call event (code 0x02c4) and the function return event
(code 0x08c4) on CPU4 but this can be attributed to the different scaling factors
combined with the phases of the function call and return pattern. On the other
hand, on CPUQ the scaling factors are the same and the values of 0x02c4 an 0x08c¢4
are also the same.

7.2 Scheduling optimization

To test various scheduling optimizations, we have developed a event scheduling
simulator. With such a tool, we can more easily experiment with scheduling options
without having to recompile a kernel and reboot the machine (real or virtual).

The simulator is a C program which includes the verbatim code from the
perf events subsystem with a shim layer to glue with standard user level code.
The simulator includes the constraint tables for Intel and AMD X86 processors. It
can be exercised with actual event names because it is linked with the libpfm4 [30]
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open-source library which provides event tables for all processors. Events can easily

be listed with their static constraints as shown below:

Processor Name

Generic Counters No 4

Fixed-Purpose Counters No : 3

Fom oo - R e E LT L e T
# CODE # CONSTRAINTS  # NAME

Fom oo - R R E LT e T
0x0000000001b6 | 0x00000000000f | AGU_BYPASS_CANCEL:COUNT
0x000000000114 | 0x00000000000f | ARITH:FPU_DIV_ACTIVE
0x000001040114 | 0x00000000000f | ARITH:FPU_DIV

0x000000001fe6 | 0x00000000000f | BACLEARS:ANY

0x000000004188 | 0x00000000000f | BR_INST_EXEC:NONTAKEN_COND
0x000000008188 | 0x00000000000f | BR_INST_EXEC:TAKEN_COND
0x000000008288 | 0x00000000000f | BR_INST_EXEC:TAKEN_DIRECT_JUMP

The simulator includes multiplexing support, though it is not timed-based but
simply based on the number of maximum scheduling iterations specified by the
user. Ounce an iteration of the scheduling is done, it is followed by another until
this number is reached. In case multiplexing is required, the event list is rotated
by one event before the next scheduling iteration, emulating the behavior of the
perf events generic layer described in chapter 3. Each iteration can be dumped by
the simulator for inspection. Below we demonstrate a simple example, using the
standard scheduling algorithm (default) for two events (-e option) and measuring
for 10 iterations (-n option). The counter assignment shown before every event
name at each iteration is the counter on which the event was scheduled the last
time it ran. In the example below we have cntrQ for uops_retired:any event and
and cntrl for mispredicted branch retired event. The number in front of the
counter index is the cumulative percentage of time the event was scheduled up to
the iterations shown, i.e., the scaling factor we were obtaining in our command line
examples of the previous section. Here 100% means that both event were scheduled
at each one of the 10 iterations.

$ sched_sim -n 10 -e uops_retired:any, mispredicted_branch_retired

Processor Name : Haswell

Generic Counters No 4

Fixed-Purpose Counters No : 3

Event List:

1 - — - uops_retired:any (code=0x5301c2, constraint=0xf)
2 - ———— - mispredicted_branch_retired (code=0x5300c5, constraint=0xf)

Iteration 10
1 - 100.00% cntr0 uops_retired:any (constraint=0xf)
2 - 100.00% cntrl mispredicted_branch_retired (constraint=0xf)

If events compete for counters, multiplexing is triggered and the percentages
show the degree of multiplexing:
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$ sched_sim -n 1000 -e 12_lines_in:any, \
11d_pend_miss:occurrences,\
cycle_activity:stalls_l1d_pending

Processor Name : Haswell

Generic Counters No : 4

Fixed-Purpose Counters No : 3

Event List:

1 - - - 12_lines_in:any (code=0x5307f1, constraint=0xf)

2 - - - 11d_pend_miss:occurrences (code=0x0x1570148, constraint=0x4)

I cycle_activity:stalls_l1d_pending (code=0x85308a3, constraint=0x4)

Iteration 1000

scheduled 2 out of 3 events

1 + 66.70% cntrO 12_lines_in:any (constraint=0xf)

2 + 66.70% cntr2 11d_pend_miss:occurrences (constraint=0x4)

3 - 33.30% cntr2 cycle_activity:stalls_l1d_pending (constraint=0x4)

In the above example, 11d pend miss:occurrences and cycle activity:stalls
11d _pending have constraint 0x4 which means they compete for counter 2. Only 2
out of 3 events can be scheduled at each iteration because of event list rotation and
multiplexing. The + sign at an event row denotes that the event is scheduled on the
current iteration while the - sign denotes that the event failed to be scheduled. The
scaling factor reflects the multiplexing: 2/3rds of the time for 12 _lines in:any and
11d_pend miss:occurrences and 1/3rd of the time for cycle activity:stalls 11d
pending.

The Hopcroft-Karp scheduling algorithm is implemented in the simulator along
with the greedy, first-match approach scheduling algorithm currently existing in
the kernel. The algorithm used by the event scheduler can be selected from the
command line.

It is also possible to experiment with the event constraints. Constraints masks
can be passed from the command line to help with simulating more constrained
environments such as when the XSU protocol is enabled. Below, we have an
example with measuring events for which we have provided their dynamic con-
straints using the -C option. The order of the constraints is respective to the
order in which the events are given in the event list. In the example below,
12 lines in:any has constraint 0x6 and thus it supports counter 1 and counter
2,11d _pend miss:occurrences has constraint 0x8 and supports only counter 3, cy-
cle activity stalls 11d pending has constraint 0x9 and supports counter 0 and
counter 3 and finally inst retired any p event has constraint Oxb and supports
counter 0, counter 1 and counter3 (-C 0x6,0x8,0x9,0xb).

We first run this simulation with the default, greedy scheduling algorithm:

$ sched_sim -n 1000 -e 12_lines_in:any,
11d_pend_miss:occurrences,\
cycle_activity_stalls_lld_pending,\
inst_retired_any_p\
-C 0x6,0x8,0x9,0xb

Processor Name : Haswell
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Generic Counters No 4
Fixed-Purpose Counters No : 3

Event List:

1 - ———— ———— 12_lines_in:any (code=0x5307f1, constraint=0x6)

2 - ——em ———- 11d_pend_miss:occurrences (code=0x1570148, constraint=0x8)

C JE cycle_activity:stalls_l1d_pending (code=0x85308a3, constraint=0x9)
4 - oo - inst_retired:any_p (code=0x5300c0, constraint=0xb)

Iteration 1000

Scheduled 3 out of 4 events

1 + 75.00 cntr-0 12_lines_in:any (constraint=0x6)

2 + 75.00 cntr-1 11d_pend_miss:occurrences (constraint=0x8)

3 + 75.00 cntr-3 cycle_activity:stalls_l1d_pending (constraint=0x9)
4 - 00.00 cntr-0 inst_retired:any_p (constraint=0xb)

We can run the same scheduling instance using the Hopcroft-Karp algorithm
-M option) and compare the results:
M opti d th 1t

$ sched_sim -M -n 1000 -e 12_lines_in:any,\
11d_pend_miss:occurrences,\
cycle_activity_stalls_lld_pending,\
inst_retired_any_p\

-C 0x6,0x8,0x9,0xb

Processor Name : Haswell

Generic Counters No s

Fixed-Purpose Counters No : 3

Event List:

1 - - o 12_lines_in:any (code=0x0x5307f1, constraint=0x6)

2 - ——-m ———- 11d_pend_miss:occurrences (code=0x1570148, constraint=0x8)

3 - - - cycle_activity:stalls_l1d_pending (code=0x85308a3, constraint=0x9)
4 - e —eeo inst_retired:any_p (code=0x5300c0, constraint=0xb)

Iteration 1000
scheduled 4 out of 4 events
1 + 100.00 cntr-2 12_lines_in:any (constraint=0x6)

2 + 100.00 cntr-3 1l1ld_pend_miss:occurrences (constraint=0x8)
3 + 100.00 cntr-0 cycle_activity:stalls_l1ld_pending (constraint=0x9)
4 + 100.00 cntr-1 inst_retired:any_p (constraint=0xb)

The goal of the optimal scheduling algorithm we have implemented is to max-
imize the use of the counters while respecting the constraints. In the comparison
above, we see that the scaling factor of the events using Hopcroft-Karp algorithm
is maxed out at 100%, which means that all the events were scheduled at each
iteration. At the same scheduling instance the standard, greedy algorithm yields
a 75% scaling factor meaning it could only schedule 3 out of 4 events at each iter-
ation. Thus, for this constraint configuration, the Hopcroft-Karp algorithm fares
much better. The PMU is more utilized, resulting in no multiplexing and increased
accuracy.

In order to evaluate the improvement that Hopcroft-Karp brings, we generalize
the test case. We run all possible constraint configurations of 4 events to 4 generic
counters from -C 0xf,0xf,0xf,0xf to -C 0x1,0x1,0x1,0x1, i.e. 15* = 50625 scheduling
instances and we get a full evaluation of each scheduling algorithm. By being
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optimal, the Hopcroft-Karp algorithm is either giving the same scheduling with
the existing, greedy algorithm or it is performing better, i.e., it achieves more
events to be scheduled on the counters. The Hopcroft-Karp algorithm gives better
scheduling to 5950 instances, achieving approximately 12% improvement on counter
utilization and thus on measurement accuracy.

With the simulator we have implemented, it is also possible to modify the way
the generic perf events layer is incrementally passing events to the x86 architecture
specific layer. For instance, it is possible to continue passing events continuing
beyond the event for which the first error occurred. For N generic counters we have
experimented passing scheduling instances with 2 * N events regardless on which
event the first failure occurs. With such small change, we have demonstrated that
the Hopcroft-Karp algorithm can provide an increased utilization of the counters
and a better measurement accuracy in up to 18% of the cases, while the effect on
the execution time is negligible. In the future, we intend to modify the perf events
generic layer in the kernel to continue after the first error for a number of events
which is a polynomial expression of the number of generic counters.
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Chapter 8

Future Work

In the previous examples we have seen that the values of the corrupting events
change between the single-thread measurements, the runs without the XSU and
the runs with XSU. In the following example we focus on the measurements of the
four corrupting events we encountered so far and we explain how their counts can
differ throughout the tests.

0x81d0 | MEM_ UOPS RETIRED:ALL LOADS
0x08dl | MEM LOAD UOPS RETIRED:L1 MISS
0x10d1 | MEM LOAD UOPS RETIRED:L2 MISS
0x01dl | MEM LOAD UOPS RETIRED:L1 HIT

First, we measure these events on both siblings, in a single, combined run, with
XSU disabled.

# echo 0 >/sys/devices/cpu/ht_bug_workaround

$ taskset -c 0 triad &

$ taskset -c 4 triad &

$ perf stat -a -A -CO -e r81d0:u,r08d1l:u,r10dl:u,r01dl:u sleep 10 &
$ perf stat -a -A -C4 -e r81d0:u,r08dl:u,r10d1l:u,r01dl:u sleep 10

CPUO 5 565 857 411 r81d0:u [100,00%]
CPUO 292 858 367 r08dl:u [100,00%]
CPUO 213 411 639 ri0di:u [100,00%]
CPUO 2 908 809 947 r0ldl:u [100,00%]
10,004670257 seconds time elapsed

CPU4 5 605 756 134 r81d0:u [100,00%]
CPU4 292 211 911 r08dl:u [100,00%]
CPU4 213 045 877 ri0di:u [100,00%]
CPU4 2 938 263 812 r0ldl:u [100,00%]

10,004583900 seconds time elapsed

All the events fit in the 4 generic counters, thus there is no multiplexing (100%
scaling factor). With XSU protocol disabled the configuration of the counters
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is shown in Fig. 8.1 below and there is corruption between the memory events
scheduled on the same counter.

HTO HTI
CO0] 0x81d0 »CO| 0x81d0
C1] 0x08d1 > C1| 0x08d1
C2| 0x10d1 »C2| 0x10d1
C3| 0x01dl » C3| 0x01d1

Figure 8.1: Measuring 0x81d0, 0x08d1, 0x10d1, 0x01d1 with XSU disabled

If we rerun the test with XSU enabled we get the following results.

# echo 1 >/sys/devices/cpu/ht_bug_workaround
$ taskset -c O triad &
$ taskset -c 4 triad &
$ perf stat -a -A -CO -e r81d0:u,r08dl:u,r10d1l:u,r01dl:u sleep 10 &
$ perf stat -a -A -C4 -e r81d0:u,r08d1l:u,r10d1l:u,r01dl:u sleep 10
CPUO 5 465 161 580 r81d0:u [560,01%]
CPUO 157 542 131 r08di:u [50,00%]
CPUO 104 608 156 r10di:u [49,99%]
CPUO 2 879 525 359 r01ldi:u [50,00%]
10,004670257 seconds time elapsed
CPU4 5 418 290 816 r81d0:u [50,01%]
CPU4 156 484 117 r08dl:u [560,00%]
CPU4 103 779 978 r10di:u [49,99%]
CPU4 2 918 604 417 rO01dl:u [560,00%]

10,004583900 seconds time elapsed

The configuration of the counters with XSU protocol is shown in Fig 8.2 below.

We observe that the values of the memory events have significantly dropped.
Especially, the L1 misses event (0x08d1) and the L2 misses event (0x10d1) have
lost more than 46% and 51% of their counts respectively. The memory loads event
(0x81d0) and the L1 hits event (0x01d1) are high-frequency events and their percent
losses are lower but still important. This is explained by the fact that these event
are leaking their counts on the unused sibling counters and these leaked counts are
not taken into account for the final value. In Fig. 8.2 above, this leak is represented
as a dashed-line. This loss of counts did not appear when we measured with XSU
disabled. At this case, the events measured on sibling counters were identical and
the outcoming leaked counts of one were compensated by a similar number of
incoming leaked counts from the other. Thus, the leaked counts were aggregated
on the sibling counter and reported. It needs to be noted that the loss of counts
is not a side effect of the XSU protocol and this can be shown easily with the
following test. With XSU disabled we run the measurements of the same events
only on one thread so that the counters of the sibling thread are unused:
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HTO > 0x81d0 — 0x08d1 — 0x10d1 — 0x01d1 HTO > 0x08d1 — 0x10d1 — 0x01d1 — 0x81d0

HT1 &> 0x81d0 - 0x08d1 — 0x10d1 — 0x01d1 HT1 &> 0x08d1 & 0x10d1 - 0x01d1 — 0x81d0
HT O Physical Core HT1 HT 0 Physical Core HT1
CO[ 0x81d0 |- »[C0 CO[ 0x08d1 |- »{C0
Cl €------{ C1[ 0x81d0 Cl <----={ C1[ 0x08d1
C2[ 0x08d1 |- »C2 c2] 0x10d1 |- »C2
C3 <----{C3] 0x08d1 C3 <----{C3] 0x10d1
HTO HT1 HTO HT1
0] U | X 0] U | X
Cl| X | U Cl| X | U
C2|U | X C2| U | X
C3| X | U C3| X | U
XSU State XSU State
HTO &> 0x10d1 > 0x01d1 & 0x81d0 — 0x08d1 HTO > 0x08d1 - 0x10d1 - 0x01d1 — 0x81d0
HT1 > 0x10d1 > 0x01d1 > 0x81d0 — 0x08d1 HT1 > 0x08d1 - 0x10d1 - 0x01d1 — 0x81d0
HTO Physical Core HTI1 HTO Physical Core HT1
CO) 0x10d1 ===~ > C0 CO| 0x08dl f----- > C0
Cl - C1] 0x10d1 Cl - Cl1] 0x08dl
C2] 0x01dl ===~ »C2 C2] 0x10d1 |----- > C2
C3 - C3| 0x01d1 C3 Rl C3| 0x10dl
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Figure 8.2: Measuring 0x81d0, 0x08d1, 0x10d1, 0x01d1 with XSU enabled

# echo 1 >/sys/devices/cpu/ht_bug_workaround
$ taskset -c 0 triad &
$ perf stat -a -A -CO -e r81d0:u,r08d1l:u,r10dl:u,r01dl:u sleep 10 &
CPUO 5 471 662 581 r81d0:u [100,00%]
CPUO 159 592 403 r08dl:u [100,00%]
CPUO 105 259 023 r10dil:u [100,00%]
CPUO 2 920 631 823 r01di:u [100,00%]

10,004670257 seconds time elapsed

The configuration of the counters during this run is shown in Fig 8.3.
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C3| 0x01dl |------ »C3

Figure 8.3: Measuring 0x81d0, 0x08d1, 0x10d1, 0x01d1 on one thread

In the output above we observe almost the same loss of counts as we did for the
measurements on two threads with XSU enabled. Hence, the loss of counts is not
caused by XSU but it is not prevented either. The primary goal of XSU is to protect
non-corrupting events from getting corrupted by corrupting events when measured
on sibling counters. The re-integration of the leaked counts in the final values of
the corrupting events is not taken care of by XSU. However, XSU makes this re-
integration simpler because when a corrupting event is measured on one counter,
it is guaranteed by XSU that no valid event uses the sibling counter and thus all
the counts accumulated there come from the measurement of the corrupting event.
As future work, we intend to extend the XSU protocol in order to re-integrate the
leaked counts in the final values of the corrupting events.

The XSU protocol addresses the PMU hardware erratum and successfully elim-
inates the counter corruption. However, the correctness comes at the cost of more
constrained events, as shown in the examples above. The more constraints in-
curred by the XSU protocol combined with the race conditions between the sibling
threads, may even cause an event of one thread to never get scheduled because of
what is measured on the counters of the sibling thread. A simple artificial example
is to measure on CPUQ our 4 known corrupting memory events for 10 seconds and
on CPU4 the non-corrupting branches event for 5 seconds.

# echo 1 >/sys/devices/cpu/ht_bug_workaround
$ taskset -c 0 triad &
$ taskset -c 4 triad &

$ perf stat -a -A -CO -e r81d0:u,r08dl:u,r10d1l:u,r01dl:u sleep 10 &
$ perf stat -a -A -C4 -e branches sleep 5

CPUO 5 470 671 639 r81d0:u [100,00%]
CPUO 157 698 323 r08dl:u [100,00%]
CPUO 106 859 230 ri0di:u [100,00%]
CPUO 2 918 823 504 r01ldil:u [100,00%]

10,004326725 seconds time elapsed

CPU4 <not counted> branches

5,004713819 seconds time elapsed

On CPUO, the 4 generic counters are used by corrupting events. On CPU4,
only one event is measured yet it cannot get scheduled while the measurement runs
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on CPUOQ, even though it can statically run on any of the 4 generic counters. As per
the XSU algorithm all 4 counters of CPU4 are in X state which means they cannot
be used as shown in Fig. 8.4. No multiplexing is triggered on CPUOQ because the
number of events is equal to the number of counters and there is no error scheduling
all the events at the first pass. This means that the events of CPUO will not be
scheduled out until the measurement of 10 seconds is over. Therefore, no event
using the generic counters on CPU4 can be scheduled for this time period. This is
why the cycles event is not counted.

HTO o> 0x81d0 — 0x08d1 — 0x10d1 — 0x01d1
HT1 > branches

HTO Physical Core HT1
COo| 0x81d0 C0
Cl1| 0x08d1 C L
C2| 0x10d1 CH ~
C3| 0x01d1 C3 |
H'TO H'Tl
Co| U [ x
CllU|[x
c2lufx
a|Uu|x
XSU State

Figure 8.4: XSU state with 4 corrupting events on HT

It should be noted that this is not a weakness of the XSU protocol. To the
contrary, it is an expected consequence of the more constrained environment re-
quired by the protocol in order to achieve correct results. Without this behavior,
measurements, like the one of the example above, would yield corrupted counts.

However, we need ensure fairness between the two hyper-threads and give events
on each thread’s linked list a chance to access the counters, i.e., the hardware
resource. No hyper-thread can starve the other one. We intend to address this
issue in the future.
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Chapter 9

Conclusions

In this thesis, we address several important issues related to hardware-based
performance monitoring. Nowadays, all processors have a Performance Monitoring
Unit (PMU) which provides a set of hardware counters to measure various micro-
architectural events such as elapsed cycles or cache misses (c.f. Section 2.1). The
PMU provides a unique insight into how software uses the underlying hardware
resources. It is used count occurrences of micro-architectural events or collect
statistical profiles with very low overhead to determine where there may be resource
bottlenecks.

As demand for compute power increases constantly, the pressure on hardware
resources rises. It is, therefore, important to making best use of available hard-
ware resources. The scientific computing community, such as at CERN, has many
physicists using PMU-based tools to improve the code analyzing data captured by
Large Hadron Collider (LHC). In companies such as Google, PMU data help im-
prove hardware utilization in data centers, code quality via feedback-directed com-
piler optimizations, hardware capacity planning and processor micro-architectural
features.

The PMU is exposed to Linux users via the perf events subsystem and system
call (c.f. Section 2.2.1). This interface provides a large palette of features covering
all the needs of performance analysts and developers. The event-based interface
simplifies development of tools. Events may have constraints with regard to which
PMU counters they can be measured and the event scheduling is at the core of the
subsystem. The actual management of the PMU resource is handled by the kernel
including how events are scheduled on counters (c.f. Section 3).

Recent Intel processors with Hyper-Threading support have a published erra-
tum which may cause serious counter corruption across sibling hyper-threads, i.e.
hyper-threads sharing the same physical core. Counters on one hyper-thread mea-
suring certain corrupting events, leak their counts on sibling counters and corrupt
their values (c.f. Section 4.1). The erratum impacts three generations of popular
Intel processors: SandyBridge, IvyBridge and Haswell and there is no hardware or
firmware solution to this problem. The corruption of the performance monitoring
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data makes any performance analysis unreliable and often misleading. This results
in losing a valuable tool for understanding low-level performance problems and
improving thousands of critical applications.

The first part of our effort has focused on developing a software workaround to
eliminate the counter corruption. Mutual exclusion between counters across hyper-
threads is enforced when corrupting events are used. Inspired by the MSI cache-
coherence protocol, we have developed a sophisticated mechanism called XSU,
which uses three states (eXclusive, Shared, Unused) required for any hyper-thread
in order to distinguish which PMU counters can perform measurements without
yielding corrupting results (c.f. Section 5). The integration of the protocol in
leverages the perf events event scheduling infrastructure.

Our XSU solution guarantees that all events can be measured safely. Cor-
rupting events which are critical for any serious performance analysis need not to
be banned to ensure correctness and non-corrupting events measurements can be
trusted to reflect workload behavior. The protocol is implemented in the Linux
kernel and there is no change to any user level tools. We have published the code
to the Linux kernel community and our patches will be included in a future kernel
releases soon.

The integration of XSU protocol in perf events but the additional constraints
derived the mutual exclusion requirements produce more constrained event schedul-
ing instances. The current perf events event scheduling algorithm uses a greedy,
first-match approach which works very well when most events are unconstrained
but the quality of its counter assignments degrades with XSU as events which were
not constrained may become constrained because of events measured on the sibling
hyper-thread.

In the second part of our effort, we have focused on improving the perf events
scheduling algorithm. We have first developed an event scheduling simulator in
which we have imported the actual perf events Intel and AMD x86 scheduling
code from the kernel (c.f. Section 7.2). We use the simulator to experiment with
scheduling algorithms, event constraints and their impact on multiplexing, i.e. the
time-sharing of the PMU resource when all event constraints cannot be satisfied at
once.

We have identified that the perf events scheduling can be modeled as a match-
ing problem in an unweighted bipartite graph. Hopcroft-Karp algorithm is a max-
imum cardinality matching algorithm for bipartite graphs which can be integrated
in perf events subsystem and provide optimal scheduling of events on counters
with respect to the event constraints (c.f. Chapter 6). We have first implemented
the Hopcroft-Karp algorithm in our simulator and have run several comparisons
with the existing, greedy algorithm. Results show that for Intel’s 4-counter con-
figuration, the integration of Hopcroft-Karp algorithm in the Intel architecture
specific layer of the perf events subsystem improves counter utilization by 12%.
Furthermore, we have also demonstrated that if the generic layer of the perf events
subsystem is modified slightly, the improvement can reach up to 18%. We have
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successfully implemented the complex Hopcroft-Karp algorithm in the Linux kernel
following the stringent coding standards, including no recursion. The code exports
a single entry point which can just be swapped with the existing call to the greedy
algorithm. This code will eventually be contributed to the Linux kernel community.

Although, the XSU solution avoids the corruption, it does not produce valid
counts for the corrupting events because their leaked counts are not re-integrated.
We believe this could be fixed for counting mode events. Furthermore, we have
shown that in certain conditions, some events may not be scheduled despite the
integration of Hopcroft-Karp scheduling algorithm and the multiplexing support,
because the PMU counters are unavailable due to events measured in the sibling
thread. This issue could be solved at a higher level by ensuring more fairness
between hyper-threads.

In summary, in this thesis, we have addressed two important issues related to
the correctness and efficiency of hardware performance monitoring in the Linux
kernel on Intel X86 processors. We have developed a sophisticated workaround
for a serious cross hyper-thread counter corruption erratum guaranteeing measure-
ment correctness and enabling usage of all events. With the help of the results from
our PMU event scheduling simulator, we have implemented an alternative schedul-
ing algorithm based on the Hopcroft-Karp maximum cardinality matching graph
algorithm which can yield up to 18% better scheduling in the more constrained
environment imposed by the XSU solution. We have contributed our code to the
Linux kernel community and we have identified several possible extensions which
we intend to address in the future. This work has received recognition from the
performance monitoring community with an honorary award issued by Intel.
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