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Abstra
t

Pro
essor hardware performan
e 
ounters have improved in quality and features

in re
ent years. At the same time, the performan
e monitoring support in Linux has

been signi�
antly revamped with the development of the perf_events subsystem.

Those fa
tors 
on
ur in making performan
e monitoring a more 
ommon pra
ti
e

among developers. However, no performan
e analysis is possible without reliable

hardware 
ounter data.

In this thesis, we fo
us on a published 
orre
tness erratum in the performan
e

monitoring unit of re
ent Intel pro
essors when Hyper-Threading is enabled. This

erratum 
auses 
ross hyper-thread hardware 
ounter 
orruption and may produ
e

unreliable results. We propose a 
a
he-
oheren
e style proto
ol that we implement

in the Linux kernel to 
ir
umvent the issue by introdu
ing 
ross hyper-thread dy-

nami
 event s
heduling. We also introdu
e an event s
heduling algorithm that

a
hieves the optimal s
heduling of events onto hardware 
ounters at all times. The

proposed optimizations do not require any user level 
hanges and leverage the in-

ternal design of the perf_events subsystem. The sour
e 
ode has been 
ontributed

to the upstream Linux kernel.

Keywords

performan
e monitoring, hardware 
ounters, PMU, hyper-threading, Linux kernel,

perf_events, event s
heduling
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Περίληψη

Κατά τα τελευταία έτη, οι μετρητές επιδόσεων υλικού στους επεξεργαστές έχουν
βελτιωθεί τόσο σε ποιότητα, όσο και σε χαρακτηριστικά. Ταυτόχρονα, η υποστήρι-
ξη παρακολούθησης επιδόσεων (performan
e monitoring) στο Linux έχει ανανεωθεί
σημαντικά χάρη στην ανάπτυξη του υποσυστήματος perf_events. Αυτοί οι παράγον-
τες έχουν καταστήσει την παρακολούθηση επιδόσεων μια πιο κοινή πρακτική για τους
προγραμματιστές. Ωστόσο, χωρίς αξιόπιστους μετρητές δεδομένων υλικού η ανάλυση
επιδόσεων δεν είναι δυνατή.
Σε αυτή την εργασία, εστιάζουμε σε ένα δημοσιευμένο σφάλμα ορθότητας με-

τρήσεων στην μονάδα παρακολούθησης επιδόσεων (PMU) των πρόσφατων επεξεργα-
στών της Intel που συμβαίνει όταν η τεχνολογία Υπερ-Νηματισμού (Hyper-Threading)
είναι ενεργοποιημένη. Αυτό το σφάλμα, μπορεί να προκαλέσει αλλοίωση των δεδο-
μένων στους μετρητές υλικού μεταξύ των υπερ-νημάτων (hyper-threads), οδηγώντας
έτσι σε αναξιόπιστα αποτελέσματα. Προκειμένου να παρακάμψουμε αυτό το πρόβλη-
μα, προτείνουμε ένα πρωτόκολλο παρόμοιο με πρωτόκολλα συνάφειας μνημών 
a
he
(
a
he-
oheren
e), το οποίο υλοποιούμε στον πυρήνα του Linux. Η λύση μας στη-
ρίζεται στον προγραμματισμό των συμβάντων υλικού στους μετρητές επίδοσης κατά
δυναμικό τρόπο, βάσει της κατάστασης των υπερ-νημάτων. Παρουσιάζουμε επίσης
έναν αλγόριθμο που επιτυγχάνει πάντοτε βέλτιστο χρονοπρογραμματισμό των συμ-
βάντων στους μετρητές υλικού. Οι βελτιστοποιήσεις που προτείνουμε δεν απαιτούν
αλλαγές σε επίπεδο χρήστη και αξιοποιούν την εσωτερική σχεδίαση του υποσυστήμα-
τος perf_events. Ο πηγαίος κώδικας που αναπτύχθηκε έχει προσφερθεί στον πυρήνα
του Linux.

Λέξεις-Κλειδιά

παρακολούθηση επίδοσεων, μετρητές υλικού, μονάδα παρακολούθησης επιδόσεων,
υπερ-νηματισμός, πυρήνας του Linux, perf_events, χρονοπρογραμματισμός συμβάν-
των

7





A
knowledgments

While a
knowledgments are often 
onsidered as a typi
al obligation of a thesis,

I would like to go beyond and dedi
ate this work, from the depths of my heart, to

all the people who have inspired me to a

omplish little peaks one after the other

and enabled me to look further into the horizon of life.

First of all, I would like to thank my professor, Ne
tarios Koziris, for intro-

du
ing me to the �eld of Systems and Computer Ar
hite
ture. It was through the

quality of his le
tures that I gained knowledge whi
h would prove invaluable later,

while working at Google. When during my se
ond Google internship in Summer

2013, I was made aware of a serious hardware erratum 
orrupting performan
e

measurements on Intel x86 pro
essors, it was this knowledge of Computer Sys-

tems that gave me the insight into a solution to this problem, whi
h had remained

unsolved for the last three pro
essor generations. I am also grateful to him for

en
ouraging me to pursue this work and to lead it to some a

omplishment I 
an

be proud of.

I want to thank Kostis Nikas for his help, his advi
e and for the time he devoted

to me during the writing of this thesis.

I would espe
ially like to thank Stéphane Eranian for engaging me into the

subje
t of Performan
e Monitoring and giving me the opportunity to learn about

its utmost signi�
an
e in software development and 
ontribute in making it more

reliable and powerful. With his 
onstant attention and 
onstru
tive guidan
e, he

helped me move forward with this work, present it at CERN, 
ontribute it in the

Linux kernel and re
eive re
ognition from the Performan
e Monitoring 
ommunity

with an honorary award from Intel. Without him, this work and this thesis would

not have existed.

I would also like to express my thanks and deep gratitude to my professor and

mentor Andreas Stafylopatis for his en
ouragements to pursue the opportunity of

an internship at Google in Summer 2012 and his substantial support as Dean of

the ECE NTUA S
hool at the time. His sin
ere 
are and advi
e have empow-

ered me throughout these life-
hanging years of my studies and have 
ontributed

signi�
antly to my personal evolution and my a

omplishments up to this day.

Finally, this thesis is dedi
ated to my family and Stefanos. Without their


ontinuous love and support simply nothing would be the same.

9





Contents

1 Introdu
tion 15

2 Performan
e Monitoring 19

2.1 PMU hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Operating systems infrastru
ture . . . . . . . . . . . . . . . . . . . 20

2.2.1 Linux perf_events interfa
e . . . . . . . . . . . . . . . . . . 20

2.2.2 Linux OPro�le interfa
e . . . . . . . . . . . . . . . . . . . . 21

2.2.3 Non-Linux interfa
es . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Performan
e monitoring tools . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Perf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.2 Gooda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.3 Intel VTUNE Ampli�er XE . . . . . . . . . . . . . . . . . . 24

2.3.4 Intel Performan
e Bottlene
k Analyzer . . . . . . . . . . . . 25

3 PMU Event S
heduling 27

3.1 Generi
 layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Intel x86 
ore PMU s
heduling algorithm . . . . . . . . . . . . . . 29

3.3 Handling of failures . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 PMU Hardware Erratum 31

4.1 Problem des
ription . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Corruption examples . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Possible solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.1 Disable Hyper-Threading . . . . . . . . . . . . . . . . . . . 35

4.3.2 User warnings . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.3 Monitor one thread per physi
al 
ore . . . . . . . . . . . . . 35

4.3.4 Multiplex PMU measurements . . . . . . . . . . . . . . . . 35

4.3.5 Ban 
orrupting events . . . . . . . . . . . . . . . . . . . . . 35

5 Solving PMU Hardware Erratum: XSU Proto
ol 37

5.1 Dynami
 event 
onstraints . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Dynami
 event s
heduling . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Integrating XSU proto
ol in perf_events subsystem . . . . . . . . . 43

11



5.3.1 Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3.2 Tradeo�s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 Optimizing Event S
heduling 47

6.1 Drawba
ks of existing s
heduling algorithm . . . . . . . . . . . . . 47

6.2 Event s
heduling as graph mat
hing . . . . . . . . . . . . . . . . . 49

6.3 Algorithms for graph mat
hing . . . . . . . . . . . . . . . . . . . . 49

6.3.1 Augmenting paths . . . . . . . . . . . . . . . . . . . . . . . 50

6.3.2 An O(n3) algorithm for �nding maximum mat
hing in bipar-

tite graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.3.3 Hop
roft-Karp algorithm for �nding a maximum mat
hing

in bipartite graphs in O(n2.5) time . . . . . . . . . . . . . . 52

6.4 Integrating Hop
roft-Karp in perf_events s
heduler . . . . . . . . . 54

6.4.1 Tradeo�s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 56

7 Evaluation 59

7.1 XSU proto
ol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.2 S
heduling optimization . . . . . . . . . . . . . . . . . . . . . . . . 69

8 Future Work 75

9 Con
lusions 81



List of Figures

2.1 Kernel ar
hite
ture of perf_events subsystem . . . . . . . . . . . . 20

2.2 The Gooda analysis interfa
e . . . . . . . . . . . . . . . . . . . . . 24

2.3 VTUNE ampli�er top-down analysis s
reenshot . . . . . . . . . . . 25

2.4 Intel PBA Flow of Analysis . . . . . . . . . . . . . . . . . . . . . . 26

2.5 PBA Relating Stati
 and Dynami
 Data . . . . . . . . . . . . . . . 26

3.1 Event list s
heduling and rotation example . . . . . . . . . . . . . . 28

3.2 Event s
heduling on x86 PMU ar
hite
ture . . . . . . . . . . . . . 30

4.1 Corrupting events for SNB, IVB and HSW . . . . . . . . . . . . . . 31

4.2 Possible 
ounter 
orruptions between sibling threads . . . . . . . . 32

4.3 Event assignment on CPU0 and CPU4 . . . . . . . . . . . . . . . . 32

4.4 Simultaneous measurements on CPU0 and CPU4 . . . . . . . . . . 34

4.5 Intel IvyBridge 
orrupting event bla
klisting . . . . . . . . . . . . . 36

5.1 XSU state transition diagram . . . . . . . . . . . . . . . . . . . . . 38

5.2 XSU shared state stru
ture . . . . . . . . . . . . . . . . . . . . . . 39

5.3 XSU 
onstraint bitmask . . . . . . . . . . . . . . . . . . . . . . . . 39

5.4 Initial State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.5 S
heduling �rst event (C) of HT 0 list . . . . . . . . . . . . . . . . . 40

5.6 S
heduling �rst event (NC) of HT 1 list . . . . . . . . . . . . . . . . 41

5.7 S
heduling se
ond event (NC) of HT 0 list . . . . . . . . . . . . . . 41

5.8 S
heduling se
ond event (C) of HT 1 list . . . . . . . . . . . . . . . 42

5.9 S
heduling third event (NC) of HT 0 list . . . . . . . . . . . . . . . 42

5.10 S
heduling third event (C) of HT 0 list . . . . . . . . . . . . . . . . 43

5.11 XSU proto
ol e�e
ts . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.12 Intel Haswell 
orrupting event 
onstraints en
oding . . . . . . . . . 45

6.1 Multiplexing indu
ed ina

ura
ies . . . . . . . . . . . . . . . . . . . 49

6.2 Hop
roft-Karp Pseudo
ode . . . . . . . . . . . . . . . . . . . . . . 55

6.3 Hop
roft-Karp versus Greedy s
heduling algorithm . . . . . . . . . 56

6.4 Iterative DFS for kernel integration . . . . . . . . . . . . . . . . . . 58

7.1 XSU 
orre
ted assignment for 0x81d0 (C) and 0x00
5 (NC) events 60

7.2 Corrupted measurements of 0x20

, 0x81d0, 0x08d1 . . . . . . . . 62

13



7.3 Valid measurements of 0x20

, 0x81d0, 0x08d1 with XSU . . . . . 64

8.1 Measuring 0x81d0, 0x08d1, 0x10d1, 0x01d1 with XSU disabled . . 76

8.2 Measuring 0x81d0, 0x08d1, 0x10d1, 0x01d1 with XSU enabled . . . 77

8.3 Measuring 0x81d0, 0x08d1, 0x10d1, 0x01d1 on one thread . . . . . 78

8.4 XSU state with 4 
orrupting events on HT 0 . . . . . . . . . . . . . 79

14



Chapter 1

Introdu
tion

Nowadays, all pro
essors provide a set of performan
e 
ounters to measure

many key mi
ro-ar
hite
tural events, su
h as the number of elapsed 
y
les, in-

stru
tions exe
uted, mispredi
ted bran
hes, 
a
he and TLB misses [1, 2, 3, 4℄. In

hardware the 
ounters are implemented by a logi
al unit usually referred to as the

Performan
e Monitoring Unit (PMU). PMUs are also present in other hardware

devi
es beyond the pro
essors, su
h as I/O, power, and memory 
ontrollers [5℄

where they 
an be used to measure memory bandwidth, 
a
he 
oheren
y tra�
,

remote memory a

esses, power 
onsumption and read/write bandwidth to disk or

network. PMUs 
an also be found in graphi
s 
ards [6℄.

It is possible to use the PMU to 
ount o

urren
es of mi
ro-ar
hite
tural events

or 
olle
t statisti
al pro�les to determine where there may be resour
e bottlene
ks

using event-based sampling. The advantages of the PMU 
ounters are, �rst, that

they provide low-level data without requiring software modi�
ations and se
ond,

that this information 
an be 
olle
ted with very low overhead (usually < 3%).

The data they deliver, su
h as the number of 
a
he misses, 
annot be obtained

by instrumenting software, but only by using 
y
le-a

urate ma
hine simulators.

However, these are out of rea
h for many developers be
ause they are usually

reserved for internal use by hardware vendors and be
ause they usually in
ur an

extremely large slowdown at the exe
ution of the workload.

The information 
olle
ted by these mi
ro-ar
hite
tural events is 
ru
ial for any

workload performan
e analysis. It is used for workload 
hara
terization, optimiza-

tion of job pla
ements with Google's CPI

2
[7℄ and provision of statisti
al data

for 
ompiler feedba
k dire
ted optimizations with Google's AutoFDO [8℄. It is also


ommonly used by pro�ling tools su
h as Intel's VTUNE [9℄ or Google's Gooda [10℄

to identify performan
e bottlene
ks, su
h as instru
tion starvation or load laten
y

and their lo
ation in the software. Based on the performan
e analysis, developers

may be able to modify their programs to avoid 
ertain bottlene
ks, for instan
e,

separate two �elds of a stru
ture into separate 
a
he lines to avoid false sharing.

Compilers may be able to optimize the hot path of a fun
tion to avoid bran
hes.

Information is also useful to the provision of ma
hines based on workloads, for
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instan
e PMU data 
an tell whether a workload is CPU bound or not determining

the 
hoi
e of a pro
essor model. Furthermore, ea
h workload stresses 
ertain parts

of a mi
ro-ar
hite
ture di�erently. Knowing whi
h mi
ro-ar
hite
tural element is

the weakest link 
an help improve future pro
essors to run workloads better, for

instan
e by adding an extra load fun
tional unit.

The Linux kernel provides full a

ess to the hardware performan
e 
ounters of

hardware devi
es via the perf_events [11, 12℄ interfa
e. This in
ludes the pro
es-

sor, but also 
a
he, PCIe, power, memory 
ontrollers. The interfa
e 
an be used

to 
ount events or 
olle
t pro�les on a per-thread or per-CPU basis from small

handheld devi
es, su
h as phones or tablets, to large servers. It supports all the

major pro
essor ar
hite
tures from Intel x86 and IBM Power to the various �avors

of ARM-based 
hips. It 
an also handle many non-
ore PMUs found on server pro-


essors, su
h as Intel Xeons. All Linux distributions 
omes with an open-sour
e tool


alled Perf whi
h 
an exer
ise all aspe
ts of the interfa
e a
ross all the pro
essor

ar
hite
tures.

With a powerful and integrated kernel monitoring infrastru
ture, more develop-

ers are in
lined to use hardware 
ounters to analyze their appli
ations. New usage

models are emerging with live automati
 feedba
k loop system su
h as Google's

CPI

2
[7℄. As more people, most of whom are not ne
essarily pro
essor mi
ro-

ar
hite
ture experts, 
ome to rely on 
ounter data, it is very important to ensure

the 
orre
tness of the measurements they produ
e and minimize the overhead of

monitoring.

Understanding low-level raw performan
e data is not an easy task given the


omplexity of today's pro
essors. Tools 
an help abstra
t some of that 
omplexity

by using higher level metri
s but that is possible only if the low-level data is

trustworthy. The kernel interfa
e providing a

ess to the PMU must be stable

and thoroughly tested. At the hardware level, mi
ro-ar
hite
tural events must be

validated to ensure they 
ount what they are supposed to at all times. Validating

events 
an be 
hallenging, as it entails developing subtle mi
ro-ben
hmarks with

known behaviors and verifying that the event 
ounts make sense. The 
omplexity

of this job is too often underestimated as the PMU is rarely 
onsidered a 
riti
al


omponent of a hardware devi
e, e.g., a pro
essor 
an operate perfe
tly �ne with

a PMU that produ
es invalid 
ounts for 
a
he misses. If the PMU is known to be

unreliable and expert-only, users will turn away and it will not be further developed,

leaving potential performan
e gain opportunities unexploited.

Re
ent Intel pro
essors with Hyper-Threading [13℄ have a published erratum

whi
h seriously impa
ts the 
orre
tness of hardware 
ounters under 
ertain 
on-

ditions, potentially leading to very large 
ounter 
orruptions. Currently, there is

no hardware or �rmware �x available for the impa
ted pro
essors. In this the-

sis, we des
ribe a 
a
he-
oheren
e style proto
ol that we have implemented in the

Linux kernel to 
ompletely eliminate the 
orruption without any 
hanges to user

tools or metri
s. Our software solution to this erratum leverages the design of

the perf_events subsystem and in parti
ular the way it 
ontrols how events are

16



programmed onto 
ounters, i.e., s
heduled onto the PMU 
ounters.

The event s
heduling algorithm is at the 
ore of the subsystem. Not all events


an be measured on all the 
ounters due to hardware 
onstraints. The goal of

the event s
heduling algorithm is to assign events to valid 
ounters while at the

same time try to maximize the use of the 
ounters. If events are programmed

on the wrong 
ounters, they may silently 
ount in
orre
tly. Thus, the s
heduling

algorithm is 
riti
al to ensure the 
orre
tness of the performan
e monitoring data.

When there are more events to measure than 
ounters or when there are events


ompeting for the same 
ounters, the perf_events subsystem 
an time-share the


ounters. In doing so, it provides �exibility for monitoring tools at the 
ost of

a

ura
y. The total 
ount of a multiplexed event is obtained by s
aling with a

timing fa
tor the raw 
ount a

umulated ea
h time the event is s
heduled. This

approa
h works well, when the rate of o

urren
e of the event is 
onstant but it is

not so a

urate if the monitored workload has rapidly 
hanging phases. In order

to mitigate this e�e
t and improve a

ura
y, the s
heduling algorithm needs to

program as many events as possible on the available 
ounters. Maximizing 
ounter

usage also minimizes the overhead of monitoring be
ause event do not need to

reprogrammed as frequently.

The 
urrent perf_events s
heduling algorithm uses a �rst mat
h greedy ap-

proa
h whi
h works well when events are mostly un
onstrained, whereas it is not

so e�
ient when many events are 
onstrained. A 
onsequen
e of our erratum

workaround is that events whi
h do not have hardware 
onstraints, be
ome 
on-

strained based on what is s
heduled on the pro
essor's hyper-threads. More 
on-

straints put more pressure on the existing s
heduling algorithm and this results

in degraded quality of produ
ed s
hedules. In this thesis, following our work on

the erratum, we des
ribe how, based on an advan
ed graph algorithm, we have

improved the perf_events event s
heduler with an optimal s
heduling algorithm.

Our thesis is de
omposed in three majors parts. In the �rst part, we des
ribe the

performan
e monitoring hardware of re
ent Intel pro
essors and give an overview

of the Linux perf_events subsystem fo
using on the event s
heduling algorithm.

In the se
ond part, we des
ribe the hardware erratum and give examples of the

measurement 
orruption it in
urs. Then, we enumerate the possible solutions and

justify why the our workaround is by far the most preferable approa
h. We de-

s
ribe our solution and we demonstrate our results. In the third part, we analyze

the 
urrent event s
heduling algorithm and explain how we have identi�ed a bet-

ter approa
h based on a graph algorithm. We des
ribe our implementation and

evaluate our solution.

The work presented in our thesis will be integrated to the upstream Linux

kernel.
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Chapter 2

Performan
e Monitoring

2.1 PMU hardware

Every modern pro
essor provides a set of hardware 
ounters to measure mi
ro-

ar
hite
tural events, su
h as the number of elapsed 
lo
k 
y
les, instru
tions retired

and 
a
he misses [1, 2, 3℄. Those 
ounters are implemented in sili
on by a logi
al

unit 
alled the Performan
e Monitoring Unit (PMU). Nowadays, PMUs are found

in pro
essor physi
al 
ores, last level 
a
he 
ontrollers, memory 
ontrollers, graphi
s


ards and I/O devi
es [5, 14, 6℄. They provide 
ru
ial data to understand how the

hardware resour
es are used by software. Interpretation of the data 
an identify

sour
e of bottlene
ks and give hints on how to eliminate them.

In our thesis, we fo
us on Intel Sandy Bridge, Ivy Bridge and Haswell pro-


essors. They all have a very sophisti
ated and powerful PMU [1℄. When Hyper-

Threading is enabled, ea
h logi
al CPU has 3 �xed 
ounters and 4 generi
 
ounters.

The �xed 
ounters measure only one event ea
h, whereas the generi
 
ounters 
an

be programmed to measure up to 4 di�erent events simultaneously. The 
ounters

are implemented by privileged model-spe
i�
 registers (MSR). There is a 
on�g-

uration register where the event is programmed and a 
ounter register where the

o

urren
es are a

umulated. The width of the 
ounter 
an vary. It is 48-bit on the

pro
essors we use in our thesis. There is also a set of global 
ontrol and status reg-

isters to start and stop the PMU easily. Managing the PMU requires kernel-level

support, either in the form of a devi
e driver or a system 
all.

The list of supported events is spe
i�
 to ea
h pro
essor implementation as it

is 
losely tied to the mi
ro-ar
hite
ture [1℄. However, ea
h implementation tends

to build on the previous. The 
ounters 
an be programmed to 
ount o

urren
es of

an event or to 
olle
t a pro�le using event-based sampling. Counters 
an interrupt

on over�ow, whi
h is how sampling is implemented. To 
apture a sample after

p o

urren
es of an event, a 
ounter is programmed to the value of −p. When

the 
ounter over�ows, i.e., wraps ba
k to 0, an interrupt is generated. The kernel


at
hes the interrupt and saves the 
urrent instru
tion pointer in a sampling bu�er

19



whi
h is eventually parsed by a performan
e tool.

Events may have 
ounter 
onstraints due to hardware limitations. For instan
e,

some events may only be measured on a spe
i�
 PMU 
ounter only, e.g, 
ounter

2, otherwise in
orre
t 
ounts may be 
aptured. Some events may require an extra


on�guration register and therefore only one instan
e of the event may be measured

at any time. Any kernel driver or tool needs to enfor
e these restri
tions.

2.2 Operating systems infrastru
ture

2.2.1 Linux perf_events interfa
e

Sin
e Linux kernel version 2.6.31, there is an o�
ial kernel interfa
e to a

ess

the hardware performan
e 
ounters. It is 
alled perf_eventsand it provides a high-

level, generi
 interfa
e to 
ount and sample hardware and software events or Linux

kernel tra
e-points. The ar
hite
ture of this kernel subsystem is depi
ted in Fig. 2.1.

The user visible interfa
e provides a new system 
all, perf_event_open(), and a

series of new �le entries in sysfs to simplify event naming and 
on�guration for

tools. The 
ore logi
 is en
apsulated into the generi
 layer, 
ommon to all pro
essor

ar
hite
tures. There is a layer per ar
hite
ture and a set of PMU spe
i�
 support

routines to handle model spe
i�
 features. To make it easy to develop tools a
ross

various hardware platforms, and unlike many other interfa
es su
h as OPro�le [15℄,

the interfa
e is event-driven. Users pass events to measure and not register value

pairs. The kernel is responsible for programming these events onto the 
orre
t


ounters, i.e., managing the PMU resour
e. Users are never aware of the a
tual

number of 
ounters nor of event 
onstraints.

perf_event_open() sysfs

generic

architecture specific

PMU1 PMU2 PMUn...

Figure 2.1: Kernel ar
hite
ture of perf_events subsystem

The interfa
e provides a set of generi
 events for basi
 monitoring, su
h as


y
les, instru
tions and bran
hes. These are mapped onto a
tual events by the

kernel. It is also possible to program any model-spe
i�
 event supported by the

host PMU. To program an event, a tool uses the new perf_event_open() system


all. Ea
h event is then identi�ed by a �le des
riptor. To start or stop an event,

the �le des
riptor is passed to the standard io
tl() system 
all with a spe
i�
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ommand, su
h as PERF_IOC_ENABLE to a
tivate an event. To read an event,

the �le des
riptor is passed to the regular read() system 
all.

Ea
h event is managed individually. It is possible to 
reate event groups to

ensure a set of events is always measured together, whi
h helps with 
ertain metri



omputations. An event 
an be measured in system-wide or per-thread mode,

where it is atta
hed to a physi
al 
ore or a logi
al CPU respe
tively. On a ma
hine

with 8 logi
al CPUs, it is ne
essary to 
reate 8 instan
es of an event, ea
h atta
hed

to one logi
al CPU. Similarly to monitor a multi-threaded program, there needs to

be one instan
e of ea
h event atta
hed to ea
h thread. As of Linux kernel 3.14, the

perf_events subsystem supports all major pro
essors on whi
h Linux runs, from

mainframes to hand-held devi
es.

2.2.2 Linux OPro�le interfa
e

The OPro�le interfa
e [15℄ is a Linux spe
i�
 hardware performan
e monitoring

interfa
e inspired by DEC's DCPI [16℄. It provides a

ess to the pro
essor hard-

ware 
ounters. For a long time, it has been the o�
ial monitoring interfa
e of the

Linux kernel providing only system-wide pro�ling 
apabilities a
ross all major pro-


essor ar
hite
tures. Nowadays it has been superseded by perf_events. The whole

infrastru
ture 
onsists of a kernel level driver, a user level daemon (opro�led), and

a set of 
ommands to start and stop monitoring and pro
ess the samples: op
on-

trol, opreport, opannotate. These 
ommands intera
t with the daemon whi
h is

responsible for 
ommuni
ating with the kernel and for symbolizing the samples,

i.e., asso
iate symbols to sampled addresses.

Although OPro�le is depre
ated, the user level 
ommands persist and are now

implemented on top of the perf_events interfa
e to maintain ba
kward 
ompati-

bility for the many s
ripts developed for the OPro�le 
ommand set.

The OPro�le kernel interfa
e is a register-driven interfa
e. The user level 
ode

is passing (register, value) pairs to program an event on a 
ounter.

2.2.3 Non-Linux interfa
es

Hardware performan
e monitoring interfa
es exist in many other open-sour
e

or 
ommer
ial operating systems.

The FreeBSD [17℄ operating system provides a system-
all based interfa
e 
alled

hwpm
 [18℄. It exposes a 
ounter based interfa
e and supports 
ounting and sam-

pling on a per-pro
ess or system-wide basis. The user level tool is 
alled pm
stat

and intera
ts with the kernel via a helper library 
alled libpm
.

Commer
ial operating systems su
h as HPUX, Ora
le's Solaris and IBM AIX

also have hardware performan
e monitoring interfa
es. However, they are not pub-

li
 and they are used by proprietary tools su
h as Ora
le Solaris Studio Performan
e

Analyzer [19℄.
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For Mi
rosoft Windows, there is no standard kernel interfa
e. Instead, tools


ome with their own drivers. On Intel, the VTUNE ampli�er XE analysis[9℄ tool


omes with an open-sour
e driver 
alled sep. The same driver is also used by

Intel's Performan
e Bottlene
k Analyzer [20, 21℄. The driver provides a register

based interfa
e to program the hardware performan
e 
ounters.

2.3 Performan
e monitoring tools

2.3.1 Perf

The perf tool [11, 12℄ is the Linux o�
ial open-sour
e performan
e monitoring

tool. It is developed as part of the Linux kernel and is o�ered by all standard Linux

distributions.

This is a 
ommand line tool used to 
olle
t performan
e data from many dif-

ferent 
ounter sour
es su
h as hardware 
ounters, kernel software 
ounters and

tra
e-points. From ea
h sour
e, it is possible to 
ount event o

urren
es or 
ol-

le
t event based statisti
al pro�les. It is possible to measure on system-wide or

per-thread mode.

The tool is built on top of the Linux kernel perf_events interfa
e and o�er

a

ess to all the features of that interfa
e.

For pro�ling, the tool operates in a two-stage pro
ess. The pro�le is 
olle
ted

using the perf re
ord 
ommand. The fun
tion level pro�le is obtained with perf

report. The assembly and sour
e level pro�le is generated by the perf annotate


ommand. There is a simple text-based user interfa
e but no advan
ed 
y
le anal-

ysis. Below we demonstrate a simple example of pro�ling the dd 
ommand:

$ perf re
ord dd if=/dev/urandom of=/dev/null 
ount=100000

$ perf report --stdio

# Samples: 12K of event '
y
les'

# Event 
ount (approx.): 10659132347

#

# Overhead Command Shared Obje
t Symbol

# ........ ....... ................. ......................

#

57.99% dd [kernel.kallsyms℄ [k℄ sha_transform

18.55% dd [kernel.kallsyms℄ [k℄ _mix_pool_bytes

16.50% dd [kernel.kallsyms℄ [k℄ extra
t_buf

1.50% dd [kernel.kallsyms℄ [k℄ __ti
ket_spin_lo
k

For 
ounting, the perf stat must be used. It 
an aggregate 
ounts per pro
ess,

per 
ore and per pro
essor so
ket. It is also possible to print 
ount deltas at regular

time intervals:

$ perf stat dd if=/dev/urandom of=/dev/null 
ount=100000

100000+0 re
ords in

100000+0 re
ords out

22



51200000 bytes (51 MB) 
opied, 3,24949 s, 15,8 MB/s

Performan
e 
ounter stats for 'dd if=/dev/urandom of=/dev/null 
ount=100000':

3251,489215 task-
lo
k (mse
) # 1,000 CPUs utilized

284 
ontext-swit
hes # 0,087 K/se


3 
pu-migrations # 0,001 K/se


252 page-faults # 0,078 K/se


10 643 745 482 
y
les # 3,273 GHz

3 399 485 751 stalled-
y
les-frontend # 31,94% frontend 
y
les idle

<not supported> stalled-
y
les-ba
kend

25 823 470 801 instru
tions # 2,43 insns per 
y
le

# 0,13 stalled 
y
les per insn

459 733 444 bran
hes # 141,392 M/se


125 222 bran
h-misses # 0,03% of all bran
hes

3,251198688 se
onds time elapsed

The list of supported events depends on the underlying hardware platform.

However, the perf_events subsystem de�nes a set of generi
 events whi
h the tool


an dire
tly leverage as shown in the example above, e.g., 
y
les, instru
tions.

These events are mapped by the kernel onto a
tual hardware events if they exist.

The kernel may also export model spe
i�
 events in the sysfs �lesystem. They


an be used dire
tly by the perf stat tool. This is demonstrated in the example

below where the tool is used to a

ess a pro
essor so
ket level set of 
ounters 
alled

RAPL whi
h measures the energy 
onsumption of the 
hip. The 
ount deltas are

printed every se
ond for 100s. Events may have units whi
h are also shown: here

the pro
essor in 
onsuming about 2.10 Joules per se
ond, i.e, Watts. as follows:

$ perf stat -a -e power/energy-
ores/,power/energy-pkg/,power/energy-gpu/\

-I 1000 sleep 100

# time 
ounts unit events

1.000123322 2.11 Joules power/energy-
ores/ [100.00%℄

1.000123322 5.96 Joules power/energy-pkg/ [100.00%℄

1.000123322 0.31 Joules power/energy-gpu/

2.000354464 2.09 Joules power/energy-
ores/

2.000354464 5.95 Joules power/energy-pkg/

2.000354464 0.31 Joules power/energy-gpu/

...

2.3.2 Gooda

The Gooda [10℄ tool is an open-sour
e performan
e analysis tool developed by

Google for Linux.

It provides a system-wide 
y
le-breakdown analysis using the hardware 
ounters

of Intel pro
essors. It breaks down how ea
h 
y
le is spent, i.e., whether it does

useful or useless work. Stalled 
y
les are 
lassi�ed in high level 
ategories, su
h as

load laten
y or instru
tion starvation. These get eventually mapped onto a
tual

hardware events.

The tool is built on top of the Linux perf_events subsystem and the Perf tool.

To 
olle
t the system-wide pro�le, Gooda uses the perf re
ord 
ommand. The

pro�le data is then analyzed by Gooda to produ
e a series of text �les (JSON
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format) whi
h 
ontain the full analysis. Those �les 
an then be visualized in a

standard web browser using a Javas
ript program.

The web-based GUI allows navigating from the pro
ess level analysis down to

the basi
-blo
k level analysis providing assembly, 
ontrol �ow graph and sour
e

views.

The advantage of this web-based tool is that the entire analysis is 
ontained

in the produ
ed text �les. The analysis 
an be shared easily by simply passing

URLs. Remote users do not need the binaries or the sour
e 
ode of the monitored

programs to look at the data.

Figure 2.2: The Gooda analysis interfa
e

2.3.3 Intel VTUNE Ampli�er XE

Intel VTUNE Ampli�er XE [9℄ is an advan
ed 
ommer
ial tool available on

Windows and Linux. It works on a variety of Intel hardware platforms: laptops,

desktops, servers and 
o-pro
essors su
h as Xeon Phi. It leverages the hardware

performan
e 
ounters on those platforms to provide a set of system-wide analysis,

su
h as memory bandwidth, top-down 
y
le analysis [22, 23℄. It is possible to drill

down from pro
esses, to fun
tions and assembly.

On Linux, it is 
omposed of three parts:

1. amplxe-gui: the graphi
al user interfa
e (GUI)

2. amplxe-
l: the 
ommand line tool (sep
li) to a
tually 
olle
t the data

3. sep: the open-sour
e Linux kernel driver
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On Linux, the tool does not use the o�
ial perf_events interfa
e but instead the

sep open-sour
e driver for 
ompatibility with Windows systems.

The ri
h GUI interfa
e allows many �ltering and navigation options. Fig. 2.3

shows a s
reenshot of a top-down analysis of a simple test program, 
alled triad

whi
h streams data from and to memory. As expe
ted, the analysis shows the

program is ba
k-end bound, i.e., it is waiting for memory a

esses.

Figure 2.3: VTUNE ampli�er top-down analysis s
reenshot

2.3.4 Intel Performan
e Bottlene
k Analyzer

The Intel Performan
e Bottlene
k Analyzer framework (PBA) [21, 20℄ is an

experimental monitoring tool whi
h uses a di�erent approa
h to analyze perfor-

man
e. It is built on top of the same kernel driver interfa
e as VTUNE, namely

the sep driver. The tool utilizes the PMU hardware of Intel X86 pro
essors, and in

parti
ular the ability to sample taken bran
hes. It uses these performan
e moni-

toring data to re
reate the hottest paths of instru
tion exe
ution through a binary

in order to �nd bottlene
ks along it. It also samples 
ommon stalls events. The

re
reated paths of exe
ution are then passed through an analysis related to well

known 
ode generation issues. The �ow of analysis for this tool is illustrated in

Fig. 2.4.

The exe
ution paths are displayed in a graph with addresses on the horizontal

axis and events histograms on the verti
al axis in Fig. 2.5.

Any spike denotes a high event 
ount, i.e., a potential bottlene
k 
ause whi
h

users 
an further analyze.
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Chapter 3

PMU Event S
heduling

3.1 Generi
 layer

Users 
an measure an arbitrary long list of events. Multiple tools may monitor

the same pro
ess or pro
essor in parallel. To ensure 
orre
t measurements, the

kernel, whi
h is responsible for managing the PMU resour
e, must arbitrate 
ounter

usage and assign events to the proper 
ounters. This is 
alled event s
heduling. It

takes as input a list of events and the output is an assignment of these events to

the hardware 
ounters.

S
heduling o

urs when events are added or removed and on 
ontext swit
hes

for per-thread events. In 
ase the PMU is over-subs
ribed, i.e., there are more

events than 
ounters, the kernel 
an time multiplex events onto the 
ounters. Ea
h

time the multiplexing timer expires, the 
urrent events are s
heduled out and they

get repla
ed by others.

Multiplexing may also o

ur as a 
onsequen
e of event s
heduling 
on�i
ts, i.e.,

two or more events 
ompeting for the same 
ounter. The event s
heduler should

attempt to maximize 
ounter usage in order to minimize the need for time-sharing

whi
h 
ould in
ur ina

ura
ies.

Ea
h PMU may have di�erent s
heduling restri
tions. Therefore, the a
tual

s
heduling algorithm is implemented in the ar
hite
ture spe
i�
 layer of the Linux

kernel. If multiple PMUs share the same kind of restri
tions, they 
an use the

same s
heduling algorithm. This is the 
ase for all Intel x86 
ore PMUs whi
h we

des
ribe hereafter.

S
heduling o

urs independently on ea
h CPU and operates at the event group

granularity. A group is treated atomi
ally. Either all the events in a group 
an be

s
heduled or none is s
heduled. We assume one event per group in our des
ription.

In the generi
 perf_events layer (
.f. Fig. 2.1), events are inserted into one of

two lists based on their type: per-thread or system-wide. To keep the des
ription

simple, we assume one event list.

S
heduling is always driven from the generi
 perf_events layer. Events are
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in
rementally passed down from the linked list in the generi
 layer to the low level

event s
heduling algorithm. S
heduling operates in passes, Px, using an in
remental

event window on the linked list. In the �rst pass (P1), the window starts with a

size of 1, i.e., one event is passed down. If it 
an be s
heduled, then, in the se
ond

pass (P2), the window grows to a size of two, i.e., �rst and se
ond events are passed

down, and so on and so forth. The passes stop at the �rst s
heduling error or when

the window 
ontains all the events on the linked list. In 
ase of an error with a

window size of K, the 
ounter assignment generated for size K−1 is programmed.

The algorithm is bound by the number of 
ounters. If the PMU has N 
ounters,

s
heduling stops when at most N events are passed down (window size K ≤ N).

This guarantees that if an arbitrary long list of events is provided, the system will

not slow down proportionally due to time 
onsuming event s
heduling.

L E1 E2 E3

E1

E1 E2

E1 E2 E3

Figure 3.1: Event list s
heduling and rotation example

In Fig. 3.1, we illustrate the iterative pro
ess between the generi
 and ar
hite
-

ture spe
i�
 layers with 3 events: E1, E2, E3. The events E2 and E3 are 
on�i
ting,

i.e., E2 and E3 
an only be measured on the same spe
i�
 PMU 
ounter and thus,

they 
annot be s
heduled simultaneously. Fig. 3.1 shows 3 su

essive iterations of

the algorithm: T0 − T2. In the �rst iteration of the algorithm (T0), the �rst two

passes (P1, P2) su

eed but the third (P3) fails be
ause there is no 
ounter avail-

able for E3, as it is already o

upied by E2. Thus, only two events are s
heduled

during this iteration, these from the P2 pass. On
e s
heduling is 
omplete, events

are a
tually programmed onto the 
ounters and a
tivated. On the next s
heduling

iteration (T1), the list of events is rotated, i.e., the head is moved to the tail and

the s
heduling algorithm starts again. On the se
ond iteration, only one event is

s
heduled from the P1 pass. Eventually, on the third s
heduling iteration (T2),

E3 gets to the head of the list and is s
heduled in P1 and P2 passes. Hen
e, the

algorithm guarantees that all events are eventually s
heduled.
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3.2 Intel x86 
ore PMU s
heduling algorithm

The 
urrent Intel x86 algorithm uses a greedy, �rst mat
h approa
h to assign

events to 
ounters. At ea
h pass, on
e an event is assigned to a 
ounter, it 
annot

be reassigned even though it 
ould run on another 
ounter. Events may have stati



onstraints, i.e., they may run on a limited subset of 
ounters. For ea
h Intel x86

PMU, the kernel maintains a table of 
onstrained events keyed o� of event 
odes.

For ea
h 
onstrained event, a bit mask of supported 
ounters is returned to the

s
heduling algorithm. Generi
 hardware 
ounters are indexed starting at 0 and

thus ea
h bit in the mask represents a supported 
ounter. For instan
e, a mask of

0x3 means 
ounters 0 and 1 are supported. We de�ne the weight of a 
onstraint

as the number of set bits. The bigger the weight, the less 
onstrained an event is,

i.e., more 
ounter 
hoi
es.

stru
t event_
onstraint snb_
onstraints[℄={

CNST(0x48,0x4), /*L1D_PEND_MISS.PENDING */

U_CNST(0x01
0,0x2),/*INST_RETIRED.PREC_DIST*/

};

In the 
ode snippet above, we show an ex
erpt of the 
onstraint table for

the Intel SandyBridge pro
essor. Event L1D_PEND_MISS.PENDING, with 
ode

0x48, 
an only be programmed on 
ounter 2. If an event is not de�ned in the table,

it 
an run on any generi
 
ounters and therefore in a PMU ar
hite
ture with 4

generi
 
ounters, the 
onstraint mask is 0xf.

On
e the event list of window size K is passed by the generi
 layer to the

low-level Intel x86 s
heduler pro
eeds in the following 2 steps:

1. The event 
onstraints are 
olle
ted from the 
onstraint tables and the weight

of ea
h event is 
al
ulated. The K events are distributed to the di�erent

weight 
ategories.

2. The s
heduling algorithm is invoked and tries to assign the K events to


ounters starting from smallest weight 
ategory (most 
onstrained events)

and moving to biggest one (least 
onstrained events). For ea
h event in a

weight 
ategory, the algorithm iterates over the N PMU 
ounters until the

�rst 
ounter mat
hing this event's 
onstraints is found.

sort weights[℄ in as
ending order ;

for ea
h weight in weights[℄

for ea
h (event in weight.events[℄)

for ea
h (
ounter in 
ounters[℄)

if ((event.
onstraint allows 
ounter) and (
ounter is available)) {

assign event to 
ounter;

mark 
ounter as unavailable;

break;

}
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The event is assigned to this 
ounter without a possibility of future reassign-

ment to another mat
hing 
ounter. Therefore, the s
heduling is done based

on a greedy, �rst mat
h approa
h algorithm. This step is des
ribed at the

pseudo
ode below.

As explained before, the window size K is bound by the number of PMU


ounters N . Thus, the 
omplexity of the Intel x86 s
heduling algorithm is O(N2).
An assignment example for 3 events is given in Fig. 3.2. The event window

grows from 1 to 3. At ea
h pass (P1−P3) , the events are s
heduled in 
onstrained

order. With a window size of 2 (E1, E2), E1 is s
heduled �rst and se
ond E2,

be
ause of their weights, respe
tively 1 and 4. With a window size of 3 (E1, E2,

E3), E1 is s
heduled �rst, se
ond 
omes E3 and last E2. For ea
h pass, the array

on the right of the �gure shows the 
ounter assignment.

L E1

0x1

E2

0xf

E3

0x3

E1

0x1

E1

0x1

0 1 2 3

E1

E2

0xf

0 1 2 3

E1 E2

E1

0x1

E2

0xf

E3

0x3

0 1 2 3

E1 E3 E2

P1

P2

P3

T0

Figure 3.2: Event s
heduling on x86 PMU ar
hite
ture

To minimize the 
ost of s
heduling, for ea
h event, the algorithm �rst tries to

reuse the 
ounter assigned to the event the previous time, i.e., fast path s
heduling.

If that works, then nothing else is needed. If this fails, then the normal algorithm

(normal path) is exe
uted.

3.3 Handling of failures

When no assignment is possible for a window size of K, an error is returned

to the generi
 layer whi
h stops trying to in
rease the event window size. The

previous window of K − 1 events is s
heduled on the 
ounters.

To ensure all events get a 
han
e to be s
heduled, errors trigger multiplexing.

When the multiplexing timer expires (default timeout is ea
h timer ti
k), the linked

list is rotated by one event and a new s
heduling iteration is performed starting

with a window size of 1. All 
ommon events are guaranteed to be s
heduled be
ause

they all eventually rea
h the head of the linked list and thus will be s
heduled, at

the worst 
ase, with the event window size of 1.
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Chapter 4

PMU Hardware Erratum

4.1 Problem des
ription

On Intel Sandy Bridge (SNB), Ivy Bridge (IVB) and Haswell (HSW) pro-


essors, there are do
umented PMU errata, respe
tively BJ122 [24℄, BV98 [25℄,

HSD129 [26℄, whi
h 
ause silent 
orruption of 
ounts when Hyper-Threading is

enabled.

Name Code Des
ription

MEM_UOPS_RETIRED.* 0xd0 Memory µ-ops retired

MEM_LOAD_UOPS_RETIRED.* 0xd1 Load mi
ro-ops retired

MEM_LOAD_UOPS_LLC_HIT_RETIRED.* 0xd2 L3 load hits retired

MEM_LOAD_UOPS_LLC_MISS_RETIRED.* 0xd3 L3 load misses retired

Figure 4.1: Corrupting events for SNB, IVB and HSW

We de�ne sibling threads as hyper-threads sharing the same physi
al 
ore. We

also de�ne sibling 
ounters as the 
ounters with the same index in the PMU of

the sibling thread. Hereafter, we refer to the hyper-thread j as HTj and to a

PMU 
ounter with index i as Ci. If 
ertain memory events, listed in Table 4.1, are

measured on Ci of one hyper-thread, they may 
orrupt any event measured on Ci

of the sibling thread at the same time. In other words, the 
rosstalk 
orruption

o

urs between sibling 
ounters.

Fig. 4.2 shows the possible 
ombinations for 
orrupting (C) and non 
orrupting

(NC) events on sibling threads HT 0 and HT 1 with 4 
ounters. The dire
tion of

the arrows indi
ates whi
h 
ounter is 
orrupting its sibling. For instan
e, C1 of

HT 0 is 
orrupting C1 of HT 1.

The 
orruption 
auses over-
ounting on the impa
ted 
ounter. The severity of

the 
orruption 
annot be predi
ted. It depends on the workload and the events

measured on both hyper-threads. Event s
heduling is not syn
hronized between
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Figure 4.2: Possible 
ounter 
orruptions between sibling threads

hyper-threads, hen
e, events 
an be programmed in and out of 
ounters in any

order and at any one time relative to the other hyper-thread making it even harder

to predi
t the 
orruption error.

4.2 Corruption examples

The problem is very severe when a high rate memory event is leaking into

a low rate event. To demonstrate this 
ase, we run a simple memory intensive

workload on an Intel Haswell 
lient pro
essor where logi
al CPU0 and logi
al

CPU4 are sibling threads (threads HT0 and HT1 respe
tively). We use triad [10℄

workload, whi
h 
omputes c[i] = a[i] + k ∗ b[i], and we measure the 
orrupt-

ing MEM_LOAD_RETIRED.ALL_LOADS event (
ode 0x81d0) and the non-


orrupting BRANCH_MISPREDICTION event (
ode 0x00
5). We expe
t the

value of the bran
h mispredi
tion event to be low, sin
e it does not o

ur in tight

loops. However, if the two events are measured on sibling 
ounters of the sibling

threads HT 0 and HT 1, then the 
orruption of the bran
h mispredi
tion event 
an

be orders of magnitude.

We use the perf tool for all of our experiments. It a

epts raw PMU events

using the rXXXX notation where XXXX is the hexade
imal event 
ode.

C0

C1

C2

C3

C0

C1

C2

C3

HT0 HT1

0x00c5

(a) Add 0x00
5 on Thread 1

C0

C1

C2

C3

C0

C1

C2

C3

HT0 HT1

0x00c5

(b) Add 0x81d0 on Thread 0

Figure 4.3: Event assignment on CPU0 and CPU4
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First, we measure the bran
h mispredi
tion event only at the user level (:u

modi�er) on CPU4 (-C option), in system-wide mode (-a option) for 10 times (-r

option), while also running the same triad test on CPU0 to generate the same load

on ea
h hyper-thread. We pin the triad program on CPU4 using the taskset tool:

$ taskset -
 0 triad &

$ perf stat -r 10 -a -C 4 -e r00
5:u taskset -
 4 triad

644 r00
5:u

This generates the 
ounter assignment shown in Fig. 4.3a and we get 644 as the

total 
ount for the bran
h mispredi
tion event. Then, we add the measurement of

the 
orrupting retired loads event on CPU0 (sibling thread):

$ perf stat -a -C 0 -e r81d0:u taskset -
 0 triad &

$ perf stat -r10 -a -C 4 -e r00
5:u taskset -
 4 triad

40,960,843 r00
5:u

We get the 
ounter assignment shown in Fig. 4.3b and the measurement output

is now 40,960,843 for the bran
h mispredi
tion event instead of 644.

Comparing the results of the two tests, we see that the over-
ount is more than

60,000 times greater. This leads to very serious misinterpretation of the behavior

of the workload, as triad may be assumed to be penalized by bran
h mispredi
tion

when in fa
t it is not.

To demonstrate that the problem is not spe
i�
 to the bran
h mispredi
tions

event, we run the example with another event for whi
h we 
an �gure out the


ount in advan
e su
h as ROB_MISC_EVENT.LBR_INSERTS (
ode 0x20

)

whi
h 
ounts the number of entries inserted in the Last Bran
h Re
ord (LBR)

bu�er [27℄. The event assignment is similar to the one in Fig. 4.3b, ex
ept for the

event 
ode in C1. As the LBR is not used on the test system, the 
ount for this

event must be zero.

$ perf stat -a -C 0 -e r81d0:u taskset -
 0 triad &

$ perf stat -r 10 -a -C 4 -e r20

:u taskset -
 4 triad

41,284,632 r20

:u

However, instead of zero the measurement output is 41,284,632. There is again

a huge 
orruption due to the large number of load o

urren
es on the sibling thread.

Note that the 
orrupted measurements of the non-
orrupting LBR and bran
h mis-

predi
tion events are about the same, whi
h is reasonable given that the workloads

are identi
al and the 
orrupting event measured on the sibling 
ounter is the same.

There is also an error for the 
ount of the 
orrupting event be
ause it misses

the 
ounts that it leaked into the sibling 
ounter. However, this error is small. To

show that, we use again our se
ond example but this time by also gathering the


ounts of the 
orrupting event on CPU0:

$ taskset -
 0 triad & taskset -
 4 triad &

$ perf stat -a -C 0 -e r81d0:u sleep 5 &

$ perf stat -a -C 4 -e r20

:u sleep 5

2,827,304,988 r81d0:u

71,654,800 r20

:u $
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The 
orrupted 
ount of the non-
orrupting event 0x20

 is what leaked from the


ount of the 
orrupting event 0x81d0. Thus, the total 
ount for the event 0x81d0

would be the sum of these two 
ounts. If we 
ompare the ratio of the leaked 
ount

with the total 
ount of the event 0x81d0, we get a ratio of 2.5%. In other words,

missing 
ounts of the 
orrupting event are negligible.

To prove that the 
orruption o

urs only between sibling 
ounters, we run two

instan
es of the triad program pinned to CPU0 and CPU4 respe
tively. We invoke

perf for a single measurement on the two hyper-threads. We use fewer events than

there are 
ounters, thus the 
ounter assignment remains 
onstant throughout the

run and no res
heduling is needed. We use perf with the -a -A options to get a per

logi
al CPU breakdown of the 
ounts:

$ taskset -
 0 triad & taskset -
 4 triad &

$ perf stat -a -C0,4 -A -e r81d0:u,r20

:u sleep 5

CPU0 2,823,288,122 r81d0:u

CPU0 0 r20

:u

CPU4 2,823,018,913 r81d0:u

CPU4 0 r20

:u

On CPU4, there is no 
orruption on the LBR event: the 
ount is zero as

expe
ted. The 
ounter assignment for this example is shown in Fig. 4.4. In other

words, C0 of HT0 does not 
orrupt C1 of HT1.

C0

C1

C2

C3

C0

C1

C2

C3

HT0 HT1

0x20cc 0x20cc

Figure 4.4: Simultaneous measurements on CPU0 and CPU4

It should be noted that in the 
on�guration of Fig. 4.4, C0 of HT 0 does 
orrupt

C0 of HT 1, as shown by the arrow, be
ause 
orrupting events 
an 
orrupt ea
h

other a
ross sibling threads. This is not a problem though, be
ause the 
orruption

is always small relative to the 
orrupting event total 
ount as we have already

demonstrated.

4.3 Possible solutions

The problem is severe and needs to be addressed. Several potential software

workarounds have been dis
ussed or implemented. However, these solutions avoid

the problem by either preventing simultaneous measurements on sibling threads

or by preventing the 
orrupting events from being measured. We present these

workarounds below.
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4.3.1 Disable Hyper-Threading

An obvious approa
h is to disable Hyper-Threading. This not only has a non-

negligible performan
e impa
t for most workloads, but it is also impra
ti
al as

Hyper-Threading 
an only be turned on/o� on reboot, and not just when a 
or-

rupting event is measured.

4.3.2 User warnings

Users 
an be warned to measure only on one thread per physi
al 
ore. This

requires knowledge of the CPU topology and tools whi
h 
an operate on subsets of

pro
essors. However, it is not very pra
ti
al be
ause it assumes a single measure-

ment and single user ma
hine; otherwise there is still a risk of 
orruption depending

on what other users measure on the sibling threads. Furthermore, when measur-

ing in per-thread mode, the problem still remains be
ause program threads 
an

migrate.

4.3.3 Monitor one thread per physi
al 
ore

The kernel 
an ban half of the CPUs from monitoring. Only one hyper-thread

per physi
al 
ore 
an be used by the monitoring tools. Appli
ations 
ould still run

on all logi
al CPUs but only half 
ould be monitored. Again, not a very pra
ti
al

solution, espe
ially if all threads of an appli
ation do not exe
ute the same 
ode.

4.3.4 Multiplex PMU measurements

The kernel 
an multiplex measurements between the two hyper-threads. Only

one PMU per physi
al 
ore 
an be a
tive at any one time. This implementation

in perf_events would be 
omplex be
ause it would require mutual ex
lusion logi


between CPUs for event s
heduling, something that is not there today. More

importantly though, it would require turning o� the hardware wat
hdog, whi
h


onstantly uses a 
ounter to sample on 
y
les event and trigger a non-maskable

interrupt (NMI) to dete
t CPU deadlo
k. However, disabling the wat
hdog is

not a

eptable in many produ
tion environments where it is used for postmortem

analysis of kernel deadlo
ks.

4.3.5 Ban 
orrupting events

The kernel 
an simply prevent the use of any 
orrupting events. This is, in

fa
t, the 
urrent solution in the upstream Linux kernel running on Intel IvyBridge.

But the 
orrupting events whi
h are shown in Table 4.1 and whi
h are banned

in the kernel as shown in the 
ode above, are all very important memory events,

needed in any serious performan
e analysis tools su
h as Gooda [10℄. Thus, banning

them 
ompletely is not a viable solution.
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stati
 stru
t event_
onstraint intel_ivb_event_
onstraints[℄ __read_mostly =

{

...

/*

* Errata BV98 -- MEM_*_RETIRED events 
an leak between 
ounters of SMT

* siblings; disable these events be
ause they 
an 
orrupt unrelated

* 
ounters.

*/

INTEL_EVENT_CONSTRAINT(0xd0, 0x0), /* MEM_UOPS_RETIRED.* */

INTEL_EVENT_CONSTRAINT(0xd1, 0x0), /* MEM_LOAD_UOPS_RETIRED.* */

INTEL_EVENT_CONSTRAINT(0xd2, 0x0), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */

INTEL_EVENT_CONSTRAINT(0xd3, 0x0), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */

};

Figure 4.5: Intel IvyBridge 
orrupting event bla
klisting
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Chapter 5

Solving PMU Hardware Erratum:

XSU Proto
ol

A proto
ol has been developed in perf_events subsystem to allow 
orrupt-

ing events to be used while avoiding any random 
orruption to the sibling thread


ounts. This proto
ol a
hieves �ne-grained 
ounter-level 
ontrol between hyper-

threads by enfor
ing mutual ex
lusion for sibling 
ounters measuring the 
orrupt-

ing events and allowing sibling 
ounters to measure simultaneously non-
orrupting

events.

Our solution leverages the perf_events event-oriented interfa
e and the fa
t

that event s
heduling and multiplexing are entirely 
ontrolled by the kernel. Mutual

ex
lusion between hyper-threads is a
hieved through 
oordinated event s
heduling.

5.1 Dynami
 event 
onstraints

As des
ribed earlier, event s
heduling is based on stati
 event 
onstraints im-

plemented as bit masks. Our solution introdu
es dynami
 event 
onstraints. The

stati
 
onstraint, i.e., the hardware imposed 
onstraint, is 
ombined with a new


onstraint based on what is measured on the sibling thread at the same time to

form the dynami
 
onstraint. The perf_events s
heduler operates on the dynami



onstraints without any modi�
ation.

The key innovative idea in our solution is to leverage existing proto
ols main-

taining 
a
he 
oheren
e to generate the dynami
 
onstraints for ea
h event. The

inspiration for this 
omes from the fa
t that there is an analogy between the 
ounter


orruption problem and 
a
he line in
onsisten
y issues in multi-pro
essor systems.

A 
ounter pair, i.e., two sibling 
ounters, 
orresponds to a 
a
he line and the sibling

threads a

essing the 
ounter pair 
orrespond to the pro
essors a

essing the 
a
he

line.

The proto
ol we have developed is 
alled XSU. It uses three states required for

any hyper-thread in order to distinguish whi
h PMU 
ounters 
an perform mea-
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surements without yielding 
orrupting results. The three states are ex
lusive (X),

shared (S) and unused (U). It is similar to the MSI 
a
he 
oheren
e proto
ol [28℄, an

invalidation-based proto
ol for write-ba
k 
a
hes, but with fewer state transitions,

as shown in Fig. 5.1.

X

U

free

free

Figure 5.1: XSU state transition diagram

Initially, there is no event s
heduled on the 
ounter pair and it is marked unused

(U state). This state 
orresponds to the Invalid state of MSI where no pro
essor

has a valid 
opy of the 
a
he line. If a non-
orrupting event is s
heduled on one of

the sibling 
ounters, the state of the pair 
hanges from unused to shared (S state).

In the S state, another non-
orrupting event 
an be measured simultaneously on

the 
ounter pair, i.e., sharing of the pair is allowed between the hyper-threads. This


orresponds to the Shared state of MSI where more than one pro
essor may have

a valid 
opy of the 
a
he line in their 
a
hes. If a 
orrupting event is s
heduled on

one of the sibling 
ounters, the state of the pair 
hanges from unused to ex
lusive

(X state). This implies that no other event 
an be measured on the 
ounter pair.

To a
hieve measurement 
orre
tness, a 
orrupting event measurement requires ex-


lusive use of a 
ounter pair. The X state 
orresponds to the Modi�ed state of MSI

where only one pro
essor has a valid 
opy of the 
a
he line in its 
a
he.

The transitions from the S and X states ba
k to the U state happen when the

events are s
heduled out of the 
ounters. During measurements, the pair is set to

either S or X state and no other transitions are possible. To summarize, for ea
h

event type, the following is required:

• Corrupting: Allowed on 
ounters in U state

• Non-Corrupting: Allowed on 
ounters in U or S state

The kernel maintains the XSU state for ea
h 
ounter in a new data stru
ture

a

essible from both hyper-threads as shown in Fig. 5.2.
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Physical Core

Figure 5.2: XSU shared state stru
ture

5.2 Dynami
 event s
heduling

During s
heduling, the XSU state of the requesting hyper-thread is read and


ombined with the stati
 
onstraint of ea
h event. The dynami
 
onstraint mask of

an event is simply the logi
al AND between the stati
 
onstraint and the 
onstraint

mask built from the XSU 
ounter state on the requesting hyper-thread. The bit

mask 
onstraint for ea
h event type is 
onstru
ted as shown in Fig 5.3.

Corrupting Non-
orrupting

X 0 0

S 0 1

U 1 1

Figure 5.3: XSU 
onstraint bitmask

Based on its dynami
 
onstraint, the event is assigned to a 
ounter on the re-

questing hyper-thread. Then, the XSU state of the sibling (non-requesting) hyper-

thread is modi�ed to re�e
t what it 
an measure after s
heduling is 
omplete.

In order to demonstrate how the XSU proto
ol operates, let us assume that

the kernel needs to s
hedule a list of one 
orrupting (C) and two non-
orrupting

(NC) events on HT 0 and a list of one non-
orrupting and two 
orrupting events

on HT 1, where HT 0 and HT 1 are sibling threads.

For simpli
ity, let us also assume that all events are stati
ally un
onstrained.

With 4 
ounters, the stati
 
onstraint is therefore 0b1111. The dynami
 
onstraint

of ea
h event, as the logi
al AND of its stati
 
onstraint and the XSU state 
on-

straint is therefore equal to the XSU state 
onstraint. Note that at the formulation

of the 
onstraints, C0 is represented to the least signi�
ant bit and C3 to the most

signi�
ant bit.
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Figure 5.4: Initial State

As shown in Fig. 5.4, initially the PMU 
ounters of both sibling threads are

empty and the XSU state for ea
h of them is marked as U.
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HT1
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U

U

C HT0

HT1

C

NC C C

NC NC

⇒
HT0

constraint

0xf

1

1

1

1

Figure 5.5: S
heduling �rst event (C) of HT 0 list

The kernel starts with the �rst event (C) of HT 0. The dynami
 
onstraint

is 0b1111 as all the PMU 
ounters of HT 0 are marked as U. Thus, this event


an run on any 
ounter of HT 0. As shown in Fig. 5.5, the s
heduler 
hooses the

�rst available 
ounter and the event is s
heduled on C0. The XSU state of C0 of

HT 1 is updated to X. This implies that C0 
an no longer be used for any event

measurement by HT 1 be
ause of the 
orrupting event measured by HT 0 on its

sibling 
ounter.

In Fig. 5.6, the kernel pro
eeds with the �rst event (NC) of HT 1. The dynami



onstraint is now 0b1110 be
ause of C0 marked as X. Thus, this event 
an run
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Figure 5.6: S
heduling �rst event (NC) of HT 1 list

on one of C1, C2 or C3 of HT 1. The event is s
heduled on the �rst available

whi
h is C1. The XSU state of C1 of HT 0 is updated to S and HT 0 
an only use

this 
ounter for measuring a non-
orrupting event be
ause measuring a 
orrupting

would impa
t the measurements of the NC event on the sibling C1 of HT 1. This

implies that C0 
an no longer be used for any event measurement by HT 1 be
ause

of the 
orrupting event measured by HT 0 on its sibling 
ounter.
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⇒
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Figure 5.7: S
heduling se
ond event (NC) of HT 0 list

Next 
omes the se
ond event (NC) of HT 0 as shown in Fig. 5.7. The dynami



onstraint is 0b1111 sin
e, stati
 
onstraint permitting, a non-
orrupting event


an be s
heduled on any 
ounter that is in shared or unused state. The event is

s
heduled on C1, the �rst available 
ounter of HT 0. The XSU state of C1 of HT 1
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is updated it to S in order to reserve the 
ounter only for non-
orrupting events.
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Figure 5.8: S
heduling se
ond event (C) of HT 1 list
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Figure 5.9: S
heduling third event (NC) of HT 0 list

In Fig. 5.7 and Fig. 5.8 the kernel pro
eeds with the s
heduling of the third

event (NC) of HT 0 and the se
ond event (C) of HT 1 based on the XSU proto
ol

prin
iples. Now, let us fo
us on the last event (C) of HT 1.

A 
orrupting event 
an be s
heduled only on 
ounters that are in unused state,

stati
 
onstraint permitting. Therefore, as shown in Fig. 5.10 the event 
an only

be s
heduled on C2 and the dynami
 
onstraint is 0b0100. However, C2 of HT 1

is o

upied by another event. Thus, the last event in the list of HT 1 
annot be

s
heduled. As des
ribed, in 
hapter 3 this will indu
e multiplexing. When an event

42



C0

C1

C2

C3

HT0 HT1

XSU State

C0

C1

C2

C3

HT0
C0

C1

C2

C3

HT1

Physical Core

S

X

U

X
S

U

S

U

C
NCNC
C

C

HT0

HT1

C

NC C C

NC NC

⇒
HT1

constraint

0x4

0

1

0

0

NC

Figure 5.10: S
heduling third event (C) of HT 0 list

is eventually s
heduled out, the 
ounter is freed and its XSU state is 
hanged ba
k

to the U state in the sibling thread.

5.3 Integrating XSU proto
ol in perf_events

subsystem

5.3.1 Advantages

The integration of the XSU proto
ol in perf_events guarantees measurement


orre
tness. At the same time, it enables measurements of all the performan
e

events, in
luding the 
orrupting memory events whi
h are needed for any serious

performan
e analysis. It makes it possible to reliably use Intel pro
essors' PMU


ounters and features for advan
ed performan
e analysis by tools su
h as Perf and

Gooda. The XSU proto
ol has several key advantages 
ompared to the solutions

dis
ussed in se
tion 4.3 of the previous 
hapter.

• Hyper-Threading remains enabled.

• There are no 
hanges at the user level, so existing 
olle
tion s
ripts and tools

do not need to be modi�ed.

• No event is bla
klisted.

• All logi
al CPUs 
an be monitored simultaneously.
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5.3.2 Tradeo�s

When the XSU proto
ol is used, there is ne
essarily more pressure on event

s
heduling. Common events whi
h were not 
onstrained before may be
ome 
on-

strained dynami
ally, depending on what is measured on the sibling thread. S
hedul-

ing be
omes more di�
ult as more 
orrupting events appear in the event lists of

the sibling threads.
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(a) No multiplexing but 
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(b) Corre
t results but mul-

tiplexing

Figure 5.11: XSU proto
ol e�e
ts

Ba
k to the example we saw above, as the Fig. 5.11 demonstrates, without the

XSU proto
ol all the events 
an be s
heduled in one s
heduling pass but 
orrupted

results will be yielded for all the NC events. Whereas with the XSU proto
ol,

measurement 
orre
tness is now guaranteed but multiplexing is needed.

Under 
ertain 
onditions, it is quite possible for the dynami
 
onstraint mask

to 
ome out as zero, meaning that the event 
annot be 
urrently s
heduled. This

also indu
es multiplexing whi
h will give a 
han
e for the event to be s
heduled

later.

If no 
orrupting event is programmed, our solution does not modify existing

event s
heduling 
onstraints and it only in
urs the extra book-keeping 
ost of the

XSU state stru
ture.

The key implementation 
hallenge is to tune the XSU proto
ol with the in
re-

mental perf_events s
heduler. This 
an happen assuming the dynami
 
onstraints

as 
onstant for a given events list only for as long the resour
es are atomi
ally

a
quired by the spe
i�
 thread.

5.3.3 Implementation

We have su

essfully implemented our XSU proto
ol in Linux kernel 3.15. We

have modi�ed 5 �les and about 600 lines of 
ode. The 
ode has been published
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on the Linux kernel mailing list (LKML) and at the time of this writing is under

review by subsystem maintainers.

The implementation was relatively straightforward. We added the shared XSU

state stru
ture to ea
h pair of threads and prote
ted it with a spinlo
k.

The 
orrupting events are added to the 
onstraint table for ea
h pro
essor with

the erratum using the INTEL_EXCLEVT_CONSTRAINT() ma
ro as shown in Fig. 5.12

for the Haswell pro
essor.

stati
 stru
t event_
onstraint intel_hsw_event_
onstraints[℄ = {

...

INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */

INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */

INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */

INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */

...

};

Figure 5.12: Intel Haswell 
orrupting event 
onstraints en
oding

Ea
h time an event is used, the table is looked up and if the mat
hing event is

found, then the 
onstraint and some �ags are extra
ted. For the 
orrupting events,

the �ags indi
ates that the event requires ex
lusive 
ounter a

ess via the XSU

proto
ol. The 
onstraint on the 
orrupting events is 0xf, i.e., any generi
 
ounter

be
ause those events do not have stati
 hardware 
onstraints.

When running on a pro
essor with the erratum, all events must go through

the XSU proto
ol to 
ompute their dynami
 
onstraint. If no 
orrupting event

is present, then the regular 
onstraint on the event is not modi�ed. The XSU

proto
ol 
ode is spe
i�
 to Intel PMU and there lives in the perf_event_intel.
 �le

ex
lusively. No 
hanges to the generi
 X86 perf_events 
ode is required.

In order to ensure 
orre
tness of the dynami
 
onstraints, the XSU shared state

is lo
ked during s
heduling by either hyper-thread. S
heduling must appear as a

atomi
 transa
tion to ensure that if s
heduling su

eeds the new XSU state 
an be


ommitted safely, i.e., without the risk of the sibling having run and modi�ed the

state in the meantime. This lo
king is implemented through a new set of PMU

spe
i�
 optional 
allba
ks. They are de�ned only for Intel X86 PMU models with

the erratum. The rest of the s
heduling algorithm is unmodi�ed.

The dynami
 
onstraints are built on the �y and require memory allo
ation per

event. The new 
ode ensures that memory is freed appropriately by �agging the

events with dynami
 
onstraints.

The 
ode also provide a way to disable the workaround for debugging purposes

via a sysfs �le entry for the 
ore PMU: /sys/devi
es/
pu/ht_bug_workaround.

The workaround is enabled by default. To disable the workaround, a system ad-

ministrator must do:

45



# e
ho 0 >/sys/devi
es/
pu/ht_bug_workaround

To re-enable the workaround:

# e
ho 1 >/sys/devi
es/
pu/ht_bug_workaround

We will evaluate the e�e
t of the XSU proto
ol in perf_events measurement


orre
tness with spe
i�
 examples in 
hapter 7.
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Chapter 6

Optimizing Event S
heduling

6.1 Drawba
ks of existing s
heduling algorithm

As des
ribed in 
hapter 3, the 
urrent Intel x86 algorithm uses a greedy, �rst

mat
h approa
h to assign events to 
ounters. The �rst available 
ounter whi
h

satis�es an event's 
onstraint is sele
ted for the event to be s
heduled on. On
e an

event is assigned to a 
ounter, it 
annot be reassigned even though its 
onstraint


ould permit its assignment on another 
ounter.

The s
heduling algorithm stops adding events at the �rst error, whi
h o

urs

at most after N events, if there are N 
ounters. However, in reality, the s
heduler

stops mu
h earlier. It stops at the �rst error due to event 
onstraints whi
h 
annot

be satis�ed simultaneously from the remaining set of free 
ounters.

The major issue of the algorithm des
ribed is that the event s
heduler may not


hoose wisely the 
ounter to s
hedule the event on. In order to maximize the pos-

sibilities for the subsequent events to be s
heduled, it needs to have knowledge of

their 
onstraints and make a 
ounter sele
tion based on that and not by 
hoosing

the �rst available 
ounter. Furthermore, with N 
ounters, the s
heduling algo-

rithm only uses the �rst N events of the linked list at ea
h iteration, potentially

leaving aside events whi
h 
ould use the 
ounters left over by event 
on�i
ts. The


on�uen
e of these two fa
tor leads to a suboptimal allo
ation of events to 
ounters

and results in under-utilization of the available resour
es or even failure to resolve

s
heduling problems of 
ertain 
ombinations of events and 
onstraints.

As we have seen, in situations where not all events 
an be s
heduled at on
e, the

kernel multiplexes them, i.e., time-sharing of the 
ounters is required. The fewer

events s
heduled by the s
heduling algorithm, the more multiplexing is needed.

However, with multiplexing, the events are not measured at all times be
ause of

the time-sharing. The kernel keeps tra
k of the time the event was enabled versus

the time it is a
tually ran on the PMU hardware. The information is passed ba
k

to the performan
e monitoring tools whi
h then s
ale the event 
ount based on the
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timing ratio. The 
omputation is shown in equation 6.1 below.

count =
countraw ∗ timeenabled

timerunning
(6.1)

In that 
ase, the �nal 
ount is an approximation of what it would have a
tually

been, had the event been measured throughout the entire time it was indi
ated as

enabled. This 
al
ulation works very well if the workload has a 
onstant behavior,

as it assumes the events always o

ur at the same rate.

However, if the workload has rapidly 
hanging phases, as shown in Fig. 6.1,

this s
aling 
al
ulation 
ould yield ina

urate results. Let us assume that there are

two events measured, L3_CACHE_MISS and INSTRUCTIONS_RETIRED. Let

us also assume that both events 
ompete for the same 
ounter. The measurements

run for 10 equal time intervals of duration T , T1 = ...T10 = T . The blue histogram


orresponds to the 
ounts of the 
a
he misses events ea
h on of these 10 time

intervals. The blue slots 
orrespond to the time intervals where the 
a
he misses

event is running on the 
ounter while the beige slots 
orrespond to the ones where

the instru
tions event o

upies the 
ounter. The 
a
he misses event is enabled for

all the 10 time intervals, thus timeenabled = 10T . In reality, it runs on the hardware
only for the slots T1, T3, T5, T7 and T9, thus timerunning = 5T . The total 
ount

that the kernel passes to the performan
e monitoring tools 
orresponds to the 5

slots the event was measured and it is countraw = 50M. Based on equation 6.1

the s
aled 
ount we obtain for the 
a
he misses event is 100M. However, if we add

up the measurements for ea
h interval of the histogram the a
tual 
ount of 
a
he

misses is 75M. Thus, s
aling of the 
ounts due to multiplexing is not always reliable

and 
an yield signi�
ant ina

ura
ies.

An obvious way to mitigate the error is to in
rease the rate of multiplexing, but

that also in
reases the overhead of monitoring whi
h is not desirable, as the behav-

ior of the workload would be impa
ted. Another way is to minimize multiplexing

and thus make the timerunning approximate the timeenabled, is by maximizing the

use of the PMU 
ounters. This requires that the s
heduling algorithm stops as late

as possible and maximizes the number of events s
heduled at ea
h run.

The existing Intel x86 s
heduling does not always maximize 
ounter usage when

many events are 
onstrained. The greedy algorithm works better when most events

are not 
onstrained. However, as dis
ussed in se
tion 5, the XSU proto
ol guar-

antees measurement 
orre
tness at the 
ost of more 
onstrained s
heduling. Al-

though, the 
urrent event s
heduling algorithm performs well when most events are

un
onstrained, the deterioration of the quality of s
hedules in a more 
onstrained

environment is unavoidable and raises the need of a more e�e
tive s
heduling al-

gorithm to solve the event/
ounter assignment.

48



a

L
3
_
C
A
C
H
E
_
M
IS
S
E
S

Time

Figure 6.1: Multiplexing indu
ed ina

ura
ies

6.2 Event s
heduling as graph mat
hing

The perf_events s
heduling 
an be modeled as a mat
hing problem in an un-

weighted bipartite graph G. The events and the 
ounters are the two disjoint sets

of the bipartite graph (let us 
all them X and Y respe
tively) and they form the

set V of verti
es in the graph. The 
onstraints allowing ea
h event to be measured

only on 
ertain PMU 
ounters, form the set E of edges in the graph. To s
hed-

ule the events optimally on the hardware, we need to �nd the maximum bipartite

mat
hing in G(V,E). This model is equivalent to adding a super sour
e s with

edges to all verti
es in the events set X and a super sink t with edges from all

verti
es in the 
ounters set Y , and �nding a maximal �ow from s to t. All edges

with �ow from X to Y then 
onstitute a maximum mat
hing.

6.3 Algorithms for graph mat
hing

We now des
ribe the theoreti
al ba
kground of graph mat
hing problem algo-

rithms as presented in [29℄.

De�nition 6.3.1. Let G = (V,E) be a graph. M ⊆ E is 
alled mat
hing of G if

∀ v ∈ V we have | {e ∈M : v is in
ident on e ∈ E} | ≤ 1.

De�nition 6.3.2. A mat
hing M of G is 
alled maximal if ∀ e ∈ E \M the set

of edges given by M ∪ {e} is not a mat
hing of G.

De�nition 6.3.3. The size of a mat
hing M of G is the number of the edges it


ontains and is denoted by |M |.
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De�nition 6.3.4. A mat
hing M of G is 
alled maximum if ∀ mat
hing M ′
of

G we have |M | ≥ |M ′|.
De�nition 6.3.5. LetM be mat
hing of G. A vertex v ∈ V is 
alled M-saturated

if M 
ontains an edge in
ident on v. Otherwise v it is 
alled M-unsaturated or

M-free.

6.3.1 Augmenting paths

De�nition 6.3.6. LetM be mat
hing of G. A path P in G is 
alled M-alternating

if the edges of P are alternately in and out of M .

De�nition 6.3.7. LetM be mat
hing of G. A path P in G is 
alled M-augmenting

if it is a maximal, M-alternating path with unsaturated start and end verti
es.

Clearly, an M-augmenting path has odd number of edges.

Lemma 6.3.8. Let G be a graph whose maximum degree is at most 2. Then every


omponent of G is either an isolated point, a path or a 
y
le.

Proof. Consider any non-isolated vertex v of G. Its, at most two, neighbors further

have degree at most 2 and so on. So the 
omponent of G 
ontaining v is either a

path or a 
y
le. This holds true for all non-isolated verti
es of G. QED.

Lemma 6.3.9. (Berge 1957) A mat
hing M is maximum if and only if G has no

M-augmenting path.

Proof. Suppose there exists an M-augmenting path P . Consider the symmetri


di�eren
e M ⊕ P whi
h represent edges that are present in exa
tly one of M

or P . Sin
e P is an M-augmenting path, M ⊕ P is also a mat
hing of G and

|M ⊕ P | = |M | + 1. So M is not maximum. Suppose M is not maximum. Let

M ′
be a maximum mat
hing and so we have |M ′| > |M |. Consider M ⊕M ′

. Ea
h

vertex has degree at most 2 in M ⊕M ′
sin
e ea
h of M and M ′


an 
ontribute at

most 1 ea
h to the degree of ea
h vertex in M ⊕M ′
. By Lemma 6.3.8, M ⊕M ′


onsists of 
y
les, paths and isolated verti
es. But the edges of M ⊕M ′
alternate

in M and M ′
ex
lusively. Hen
e ea
h 
y
le must be even. So M ′

ex
eed M in size

only from the paths. So, there exists at least one path in M ⊕M ′
whi
h has more

edges from M ′
than from M . But su
h a path is M-augmenting.

Corollary 1. (Hop
roft-Karp) Let M∗
be a mat
hing of G. Then for any mat
hing

M of G su
h that |M∗| ≥ |M |, we have |M∗| − |M | vertex-disjoint M-augmenting

paths. The non-M edges on these paths all belong to M∗
.

Proof. From the proof of 6.3.9 every 
y
le of M ⊕M∗
is even and every path of

M⊕M∗
whi
h is not M-augmenting must have equal number of edges fromM and

M∗
as M∗

is maximum. Also note that ea
h M-augmenting path has exa
tly one

edge more fromM∗
than fromM . So we need |M∗|−|M | su
h paths. These are all

vertex-disjoint, sin
e in De�nition 6.3.7 we de�ned augmenting paths as maximal

paths starting and ending at unsaturated points.

50



Corollary 2. Let |M∗| be a maximum mat
hing and M be any mat
hing. If M is

not maximum, then the shortest M-augmenting path has length ≤ |V |
|M∗|−|M | − 1

Proof. From Corollary 2 we know that there are |M∗| − |M | vertex-disjoint (and
hen
e edge-disjoint) M-augmenting paths. By Pigeonhole Prin
iple, one of the

paths must have at most

|V |
|M∗|−|M | verti
es and thus has length at most

|V |
|M∗|−|M | −

1.

For �nding the maximum mat
hing of a graph using augmenting paths, 
onsider

the following algorithm whi
h follows from Lemma 6.3.9.

1. M = ∅

2. while (there is an M -augmenting path P ) do

M ←M ⊕ P

3. return M

The 
hallenge now is to dete
t existen
e of and �nd augmenting paths e�
iently.

We 
onsider the 
ase when G is bipartite.

6.3.2 An O(n3) algorithm for �nding maximum mat
h-

ing in bipartite graphs

Let G = (X ∪ Y,E) be a bipartite graph where X and Y are its disjoint sets

and let M be a mat
hing of G. We want to �nd a maximum mat
hing of G. We

denote by X0 , Y0 the sets of M-unsaturated verti
es in X, Y respe
tively. We


onsider a new dire
ted graph H on the vertex set X ∪ Y and edge set E. Edges

whi
h are in M are dire
ted X → Y and edges not in M are dire
ted Y → X.

Lemma 6.3.10. G has a M -augmenting path if and only if H has a path from Y0
to X0.

Proof. Suppose G has an M -augmenting path say from u ∈ X0 to v ∈ Y0. The

same path dire
ted from v to u is 
learly a path in H from Y0 to X0. Suppose H

has a path from y ∈ Y0 to x ∈ X0. The underlying undire
ted path from x to y is


learly an M -augmenting path.

So we do a depth-�rst-sear
h (DFS) from Y0 and stop as soon as we rea
h some

vertex in X0, thus giving us an M -augmenting path P . M is augmented along

P , the new mat
hing is M ⊕ P . The pro
ess is then repeated. If a vertex of X0


annot be rea
hed, then G has no M -augmenting path i.e. M is maximum. The

time 
omplexity of the algorithm is analyzed as follows.

1. Without loss of generality, assume |Y | ≤ |X|. Thus |Y0| ≤ |Y | ≤ |V |
2
. Also at

ea
h stage of the algorithm, augmenting saturates a previously unsaturated

vertex from Y without impa
ting verti
es whi
h are already saturated. So

we need at most |Y0| ≤ |V |
2

stages.
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2. At ea
h stage several DFS are needed, starting from ea
h vertex in Y0. The

maximum number of DFS needed is |Y0|, as in the worst-
ase, only the DFS

starting from the last vertex of Y0 may lead to a path in X0. A single DFS


an be done in O(|V |+ |E|) time.

3. On
e an augmenting path is found, the mat
hing is augmented in O(|E|)
time.

Thus, the algorithm takes at most

|V |
2

[

O(|E|) + |Y0| ∗O(|V |+ |E|)
]

. However,

the |Y0| fa
tor 
an be eliminated. If a super-vertex ψ is added and 
onne
ted with

edges to to every point in Y0, DFS is needed to be applied only on
e, for vertex ψ.

Thus, the time 
omplexity be
omes O
(

|V |
2

[

|E|+(|V |+ |E|)
])

= O
(

|V |2+ |V ||E|
)

.

Sin
e a bipartite graph on |V | verti
es 
an 
ontain at most (

|V |2

4
) edges, the time


omplexity of the algorithm is O(|V |3) or O(n3).

6.3.3 Hop
roft-Karp algorithm for �nding a maximum

mat
hing in bipartite graphs in O(n2.5) time

The pre
eding algorithm, looked for a single augmenting path at a time and

augmented it. The maximal family of vertex-disjoint shortest-length augmenting

paths 
ould be found instead and be augmented all together in a single stage.

This would bring the time 
omplexity down to O(n2.5). Consider the following

algorithm.

1. M = ∅

2. while (there is an M -augmenting path) do

�nd a maximal family F of vertex-disjoint shortest M -augmenting paths;

set M ←M ⊕ F ;

3. return M

The 
orre
tness of the algorithm follows from Lemma 6.3.9. It 
an be shown

that using a maximal family F of shortest augmenting paths instead of a single

augmenting path signi�
antly redu
es the number of stages (Lemma 6.3.14), and

also that the time per stage indu
ed by �nding su
h families does not in
rease

(Lemma 6.3.15). The proof of the above is based on the following lemmas.

Lemma 6.3.11. Let M be a mat
hing of G and let P be an M -augmenting path of

shortest length. Let P ′
be an (M⊕P )-augmenting path. Then |P ′| ≥ |P |+ |P ∩P ′|,

where |P | is the number of edges in P .

Proof. Consider N = (M ⊕ P ) ⊕ P ′
. Then N is 
learly a mat
hing and |N | =

|M | + 2. Thus by Corollary 1, there are 2 vertex-disjoint M -augmenting paths,

say P1 and P2, with the non-M edges in N . That is, P1 ∪ P2 ⊆ M ⊕ N . Note
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that M ⊕ N = P ⊕ P ′
and thus we have |P ⊕ P ′| ≥ |P1| + |P2|. But P1, P2

are both M -augmenting paths and P is a shortest M -augmenting path. Therefore

|P ⊕ P ′| ≥ 2|P |. However |P ⊕ P ′| = |P | + |P ′| − |P ∩ P ′| and so the desired

inequality follows.

Lemma 6.3.12. Let M0 = ∅ and 
onsider the sequen
e M0, M1, ..., Mi, ... where

∀i, Pi is a shortest Mi-augmenting path, and Mi+1 = Mi ⊕ Pi. Then, for i < j,

|Pi| ≤ |Pj |. Further, |Pi| = |Pj | implies that Pi and Pj are vertex-disjoint.

Proof. It follows from Lemma 6.3.11 that for i < j, |Pi| ≤ |Pj |. Suppose now that

for some i < j, Pi and Pj are not vertex-disjoint, and assume to the 
ontrary that

|Pi| = |Pj |. This implies that |Pi| = |Pi+1| = ... = |Pj−1| = |Pj |. Then there

exist some k, l su
h that i ≤ k < l ≤ j and Pk and Pl are not vertex-disjoint

and further for all m between l and k we have Pm is vertex-disjoint from both

Pk and Pl. Therefore Pl is an Mk-augmenting path and so by Lemma 6.3.11 we

have |Pl| ≥ |Pk| + |Pl ∩ Pk|. However we are given that |Pl| = |Pk| whi
h implies

that |Pl ∩ Pk| = 0, i.e., Pl and Pk have no edges in 
ommon. However sin
e Pl

and Pk are not vertex-disjoint, they have a 
ommon vertex say x and then they

must have in 
ommon the edge from Mk ⊕ Pk whi
h is in
ident on x leading to a


ontradi
tion.

Lemma 6.3.13. Let F be an in
lusion-maximal family of vertex-disjoint shortest

M -augmenting paths, all of length l1. Let l2 be the length of a shortest (M ⊕ F )-
augmenting path. Then l2 ≥ l1 + 2.

Proof. Let F = {P1, P2, ..., Pr}. Let P be a shortest (M ⊕ F )-augmenting path.

Note that M ⊕ F = (...(M ⊕ P1) ⊕ P2)...) ⊕ Pr . Suppose P is disjoint from ea
h

element of F . Then P is also an M -augmenting path, but by maximality of F , it

is not a shortest augmenting path. So l2 > l1. Next, suppose that P has a vertex

in 
ommon with at least one path in F . By Lemma 6.3.12 we have l2 > l1. Finally

note that l1, l2 are both lengths of augmenting paths and they must be odd; hen
e

l2 > l1 =⇒ l2 ≥ l1 + 2.

We 
onsider again the bipartite graph G = (X ∪ Y,E) where X and Y are its

disjoint sets and the dire
ted graph H with vertex set X ∪ Y and edge set E.

Lemma 6.3.14. The algorithm des
ribed at the start of this se
tion makes at most

2
√

|V | iterations.

Proof. Let M∗
be a maximum mat
hing and let M be the mat
hing after

√

|V |
iterations. By Lemma 6.3.13, the length of the shortest M -augmenting path is at

least (2
√

|V | − 1) ≥
√

|V |. By Corollary 2 we have

√

|V | ≤ (length of shortest

M -augmenting path) ≤ |V |
|M∗|−|M | , and so |M∗| − |M | ≤

√

|V |. From this point

onwards, even if we augment just one path in ea
h iteration, we need at most

√

|V |
more iterations, as ea
h augmentation in
reases size of mat
hing by 1. Thus overall

we need no more than 2
√

|V | iterations.
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Lemma 6.3.15. Ea
h iteration of the algorithm 
an be implemented in O(|E|)
time.

Proof. First we will use breadth-�rst-sear
h BFS to �nd the length k of a shortest

path from Y0 to X0. Simultaneously, we produ
e the sequen
e of disjoint layers

Y0 = L0, L1, ..., Lk ⊆ X0 where

• ∀i : 0 ≤ i < k, Li is the set of verti
es at distan
e i from Y0

• Lk is the subset of X0 at distan
e k from Y0 whi
h we look for

To avoid multiple BFSs from ea
h vertex in Y0, a super-vertex ψ is added with edges


onne
ting it to all verti
es of Y0. The distan
e of ψ from X0 
an be found with

a BFS starting from ψ. Subtra
ting this by one gives the length of the shortest

path from Y0 to X0. This requires O(|E|) time. Now 
onsider a modi�ed DFS

whi
h starts at a vertex v ∈ Y0, stops as soon as it rea
hes a vertex say w in Lk

and outputs this v → w path. Add this M -augmenting path to F and delete all

verti
es visited in the modi�ed DFS. This is 
ru
ial; not just the augmenting path

is deleted but also all the other verti
es visited in the modi�ed DFS. Let x be a

vertex seen at some Lj in the DFS started from v ∈ Y0. If x does not lead to anM -

augmenting path of length k starting at v, then x 
annot be on anyM -augmenting

path of length k: any su
h path has to begin at some vertex in Y0 and it has to use i

edges to rea
h x. If the pro
edure is repeated starting at another vertex in Y0 until

all verti
es of Y0 are explored, a maximal family of vertex-disjoint shortest-length

augmenting paths is found. Let mi be the number of edges visited in the ith DFS

whi
h takes O(mi) time. Noting that |E| ≥
∑

imi, the time taken is O(|E|).

Theorem 6.3.16. The algorithm runs in O(|V |2.5) time.

Proof. From Lemma 6.3.15 ea
h phase 
an be implemented in O(|E|) time. Also
from Lemma 6.3.14 there are at most 2

√
n phases. Thus, the time 
omplexity of

the algorithm is O(
√

|V |) ∗O(|E|) = O(|V |2.5).

6.4 Integrating Hop
roft-Karp in perf_events

s
heduler

The Hop
roft-Karp maximum 
ardinality mat
hing graph algorithm 
an re-

pla
e the greedy, �rst mat
h algorithm whi
h is responsible for assigning the events

on the PMU 
ounters in the perf_events subsystem.

The pseudo
ode of the Hop
roft-Karp algorithm is demonstrated in Fig 6.2

that follows.
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fun
tion Hop
roft-Karp() {

for ea
h (x in X)

pair_Y[x℄ = free;

for ea
h (y in Y)

pair_X[y℄ = free;

mat
hing = 0;

while (BFS() == true)

for ea
h (x in X)

if (pair_Y[x℄ = free)

if (DFS(x) == true)

mat
hing = mat
hing+1;

return mat
hing;

}

fun
tion BFS() {

for ea
h (x in X)

if (pair_Y[x℄ = free) {

distan
e[x℄ = 0;

enqueue(Q, x);

} else {

distan
e[x℄ = ∞;

}

distan
e[free℄ = ∞;

while (!empty(Q)) {

x = dequeue(Q);

if(distan
e[x℄ < distan
e[free℄)

for ea
h (y in Y)

if (adja
ent[x℄[y℄)

if (distan
e[pair_X[y℄℄ == ∞) {

distan
e[pair_X[y℄℄ = distan
e[x℄+1;

enqueue(Q, pair_X[y℄)

}

}

return distan
e[free℄ != ∞;

}

fun
tion DFS(x in X) {

if (x == free)

return true;

for ea
h (y in Y)

if (adja
ent[x℄[y℄)

if (distan
e[pair_X[y℄℄ == distan
e[x℄+1)

if (DFS(pair_X[y℄)) {

pair_Y[x℄ = y

pair_X[y℄ = x

return true;

}

distan
e[x℄ = ∞;

return false;

}

Figure 6.2: Hop
roft-Karp Pseudo
ode

6.4.1 Tradeo�s

As we have shown in se
tion 3.2, the 
omplexity of the existing s
heduling

algorithm is O(n2) whereas the 
omplexity of Hop
roft-Karp is O(n2.5). However,
n in our 
ase is bound by the number of PMU 
ounters.

In se
tion 3.1 we have des
ribed that if the PMU has N 
ounters, the generi


layer passes at most N events down to the ar
hite
ture spe
i�
 layer of the s
hed-

uler. This guarantees that if an arbitrary long list of events is provided, the system

will not slow down proportionally. This means that any s
heduling instan
e has at
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most N events to be s
heduled on the N 
ounters. In the 
omplexity analysis of

the previous se
tion n 
orrespond to the number of verti
es in the bipartite graph

of the problem, i.e. the number of 
ounters plus the number of events. All major

PMUs nowadays have less than 16 
ounters. That number is very likely to remain

low be
ause adding generi
 
ounters in hardware is a very expensive proposition.

Hen
e, in su
h small s
heduling instan
es, the overhead of our higher 
omplexity

s
heduling algorithm is negligible and is at s
ale of nanose
onds.

Our proposal guarantees optimal s
heduling no matter how 
ompli
ated the


onstraint might be, without making the event s
heduling more time 
onsuming.

This is very 
riti
al, espe
ially now with the integration of the XSU proto
ol in

perf_events. Hop
roft-Karp 
an 
ompensate for the more 
onstrained s
heduling

and limit multiplexing. The advantage of our proposal versus the existing s
hedul-

ing algorithm is demonstrated in the Fig. 6.3 below.
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Figure 6.3: Hop
roft-Karp versus Greedy s
heduling algorithm

6.4.2 Implementation

This high-level graph algorithm has been su

essfully implemented in the Linux

kernel meeting all the requirements asso
iated with kernel development.

Compa
t C Code : The Linux kernel is written in pure C and assembly. It oper-

ates under 
ertain 
onstraints regarding memory allo
ations. Data stru
tures

are usually fairly simple.

Minimal Exe
ution Time : The event s
heduling algorithm is invoked frequently.

By default, at every timer ti
k (1ms on x86) when multiplexing is ne
essary.
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It is also invoked on tasks 
ontext swit
hes for per-thread events. The 
on-

text swit
h 
ode path is very laten
y sensitive, this is why the s
heduling

needs to be fast.

Minimal Memory Footprint : The Linux kernel tries to minimize its memory

usage to maximize free memory for appli
ations. In parti
ular, the sta
k size

very limited.

No Re
ursion : On kernel entry, the sta
k of ea
h thread is swit
hed from the

expandable user sta
k to a per-thread �xed-size kernel sta
k. That sta
k

is very limited in size usually two pages (8KB on x86). It 
annot grow

automati
ally like the user level sta
k. That prohibits re
ursive fun
tions

be
ause sta
k 
onsumption may not easily be predi
table.

The 
ode has been designed appropriately to solve the small s
heduling in-

stan
es of perf_events extremely fast while using simple enough data stru
tures.

The re
ursive modi�ed DFS we demonstrated in se
tion 6.3.3, has been redesigned

to be iterative. For eliminating re
ursion in DFS, a sta
k is used in order to keep

tra
k of the verti
es in Y rea
hed by the X verti
es produ
ed by the BFS layer.

The pseudo
ode of the iterative DFS is demonstrated in Fig. 6.4 below.

The algorithm is implemented in the x86 spe
i�
 layer, and is shared by Intel

and AMD pro
essors. The a
tual �le modi�ed is ar
h/x86/kernel/
pu/perf_event.


and about 300 lines of 
ode were added. The 
olle
tion of event 
onstraints and

short path are not modi�ed at all by the new 
ode. Only the perf_assign_events()

fun
tion is repla
ed. The bitmasks for the event 
onstraints are de
oded to build

the graph on entry and the assignment is translated from the graph ba
k into an

array of integers on exit as expe
ted by the 
alling fun
tion.

We will evaluate the the e�e
t of the event s
heduling optimization with spe
i�


examples in the 
hapter that follows.
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fun
tion DFS(x inX) {

if (x == free)

return true;

push(sta
k, (x, y

0

));

while (!empty(sta
k)) {

x = top(sta
k).X;

for ea
h (y

i

in Y) {

top(sta
k).Y = y

i

if (adja
ent[x℄[y

i

℄)

if (distan
e[x_pair[y

i

℄ = distan
e[x℄ + 1) {

if (x_pair[y

i

℄ == free) {

/*

* A free vertex of X is rea
hed and an augmenting path was found.

* Pop the entire sta
k adjusting the pairs and return true.

*/

while (!empty(sta
k)) {

/* Adjust pairs */

x_pair[top(sta
k).Y℄ = top(sta
k).X;

y_pair[top(sta
k).X℄ = top(sta
k).Y;

/* Pop sta
k */

pop(sta
k);

}

return true;

} else {

/*

* The new 'x' node is pushed in the sta
k for further 
he
k.

*/

push(sta
k, (x_pair[y

i

℄, y

0

);

}

break;

}

/*

* The 'x' node's neighbors in Y set were fully s
anned and

* nothing interesting was found: pop and 
ontinue with the

* other 
andidates in X.

*/

distan
e[x℄ = ∞;

pop(sta
k);

}

}

Figure 6.4: Iterative DFS for kernel integration
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Chapter 7

Evaluation

In this 
hapter, we evaluate the results of our solutions for both the XSU

proto
ol and the Hop
roft-Karp improved s
heduling algorithm.

7.1 XSU proto
ol

In this se
tion, we evaluate the e�e
t of our XSU proto
ol to eliminate the

Hyper-Threading 
orruption erratum through a set of before and after examples.

All examples in this se
tion are run on an Intel Core i7-4770 pro
essor with Hyper-

Threading enabled. For all the examples, we are using the triad program whi
h is

a single-threaded, very stable workload performing loads and stores. We pin one

instan
e on ea
h of the sibling threads and we let these instan
es run "forever".

The sibling threads we are measuring on are CPU0 (also referred to as HT0) and

CPU4 (also referred to as HT1). We �rst 
ompare with the examples showed in

se
tion 4.1.

In the �rst example, we measure the 
orrupting event MEM_UOPS_RETIRED:

ALL_LOADS event (
ode 0x81d0) and the non-
orrupting event MISPREDICTED_

BRANCH_RETIRED event (
ode 0x00
5). As we have explained, we expe
t the

value of the bran
h mispredi
tion event to be low, sin
e it does not o

ur in tight

loops. Indeed, if we only measure the bran
h mispredi
tions on CPU4 we get a

value of 772 as the total 
ount.

$ taskset -
 0 triad &

$ perf stat -r 10 -a -C 4 -e r00
5:u taskset -
 4 triad

772 r00
5:u

Then, we add the measurement of the 
orrupting retired loads event on CPU0

(sibling thread) with the XSU proto
ol disabled:

# e
ho 0 >/sys/devi
es/
pu/ht_bug_workaround
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$ taskset -
 0 triad &

$ taskset -
 4 triad &

$ perf stat -a -C 0 -e r81d0:u &

$ perf stat -r10 -a -C 4 -e r00
5:u

40 581 657 r00
5:u

We see the huge 
orruption of the bran
h mispredi
tion event whose value is 40

581 657 instead of 772. Finally, we enable the XSU proto
ol and we try the same

measurement:

# e
ho 1 >/sys/devi
es/
pu/ht_bug_workaround

$ taskset -
 0 triad &

$ taskset -
 4 triad &

$ perf stat -a -C 0 -e r81d0:u &

$ perf stat -r10 -a -C 4 -e r00
5:u

781 r00
5:u

The output is now ba
k to expe
ted, at 781. We manage to get the 
orre
t result

be
ause the XSU proto
ol s
heduled the 0x81d0 and 0x00
5 events on di�erent


ounters on ea
h sibling thread, taking into a

ount the dynami
 
onstraints, not

just the stati
 ones as it was happening before. The valid 
on�guration of the


ounters is shown in Fig. 7.1.

C0

C1

C2

C3

HT0 HT1

XSU State

C0

C1

C2

C3

HT0
C0

C1

C2

C3

HT1

Physical Core

0����0

0�00��

U

U

U

U

S

XU

U

Figure 7.1: XSU 
orre
ted assignment for 0x81d0 (C) and 0x00
5 (NC) events

If we measure just enough events in a single run in order not to have multi-

plexing, then there is a 
ase where we 
an avoid 
orruption even without enabling

the XSU proto
ol. This 
ase relies on the fa
t that the same event list is s
heduled

on both sibling threads at exa
tly the same time and that the list is not modi-

�ed during the run. The two event lists are then syn
hronized and a
ross sibling


ounters the same events are s
heduled. This way, non-
orrupting events 
annot

get 
orrupted by the 
orrupting ones. However, this implies that no other tool
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is monitoring the same pro
ess or CPU at the same time. This may be valid on

single user systems, but not on shared servers. The XSU proto
ol eliminates the

risk of 
orruption should the event lists on the sibling threads di�er or run asyn-


hronously, but it 
omes at the pri
e of extra multiplexing as we demonstrate in

the next example.

We measure 3 events, 2 
orrupting (0x81d0, 0x08d1) and 1 non-
orrupting

(0x20

) as shown below:

0x81d0 MEM_UOPS_RETIRED:ALL_LOADS

0x08d1 MEM_LOAD_UOPS_RETIRED:L1_MISS

0x20

 ROB_MISC_EVENTS:LBR_INSERTS

These events are stati
ally un
onstrained, i.e., they 
an be s
heduled on any of

the 4 generi
 
ounters, hen
e they should all �t without requiring multiplexing. The

non-
orrupting event is the ROB_MISC_EVENT.LBR_INSERTS (
ode 0x20

)

whi
h 
ounts the number of entries inserted in the Last Bran
h Re
ord (LBR)

bu�er. We 
hoose this event be
ause, as the LBR is not used on the test system,

its value must always be zero. Hen
e, the 
orruption is easily identi�able. Indeed,

when we measure it alone on CPU4 for ten times (-r10), we get 0 as value with 0%

deviation for all the ten runs.

$ perf stat -a -C4 -r10 -e r20

:u taskset -
 4 triad

0 r20

:u (+- 0,00\%)

Now, with XSU disabled, we measure the list of these three events, on both

siblings, in a single, 
ombined run, for 10 se
onds.

# e
ho 0 >/sys/devi
es/
pu/ht_bug_workaround

$ taskset -
 0 triad &

$ taskset -
 4 triad &

$ perf stat -a -A -C0,4 -e r20

:u,r81d0:u,r08d1:u sleep 10

CPU0 0 r20

:u [100,00%℄

CPU4 0 r20

:u [100,00%℄

CPU0 5 747 793 793 r81d0:u [100,00%℄

CPU4 5 711 985 901 r81d0:u [100,00%℄

CPU0 305 944 783 r08d1:u [100,00%℄

CPU4 305 472 307 r08d1:u [100,00%℄

10,000860002 se
onds time elapsed

As we explained there is no multiplexing (100% s
aling fa
tor) sin
e in ea
h

thread there are three events to be measured on four 
ounters. But also, there is

no 
orruption even without XSU, be
ause the event lists are 
ompletely aligned

and they do not 
hange during the run.

Now, if the event lists on the sibling threads are not identi
al or the measure-

ments are not initiated at the same time, whi
h is most 
ommonly the 
ase, we

will obtain 
orrupted results.

Indeed, with XSU disabled, we now measure the events in parallel but separate

runs on the sibling threads and we 
hange the order of these events in the two lists.
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# e
ho 0 >/sys/devi
es/
pu/ht_bug_workaround

$ taskset -
 0 triad &

$ taskset -
 4 triad &

$ perf stat -a -A -C0 -e r81d0:u,r08d1:u,r20

:u sleep 10 &

$ perf stat -a -A -C4 -e r20

:u,r81d0:u,r08d1:u sleep 10

CPU0 5 609 439 398 r81d0:u [100,00%℄

CPU0 304 559 413 r08d1:u [100,00%℄

CPU0 137 640 089 r20

:u [100,00%℄

10,000851695 se
onds time elapsed

CPU4 137 641 709 r20

:u [100,00%℄

CPU4 5 713 420 846 r81d0:u [100,00%℄

CPU4 166 553 900 r08d1:u [100,00%℄

10,000824227 se
onds time elapsed

The output shows that there is still no multiplexing but there is 
orruption. The

LBR inserts event (0x20

) of CPU0 is 
orrupted by 137 640 089 
ounts leaked from

the L1 misses event (0x08d1) s
heduled on the sibling 
ounter of CPU4. Similarly,

the LBR inserts event of CPU4 is 
orrupted by 137 641 709 
ounts leaked from

the loads retired event (0x81d0) s
heduled on the sibling 
ounter of CPU0. The


orruption is shown in Fig 7.2.

C0 0x81d0

C1 0x08d1

C2 0x20cc

C3

C0 0x20cc

C1 0x81d0

C2 0x08d1

C3

HT0 HT1

Figure 7.2: Corrupted measurements of 0x20

, 0x81d0, 0x08d1

Next, we enable the XSU proto
ol and we run the same test.

# e
ho 1 >/sys/devi
es/
pu/ht_bug_workaround

$ taskset -
 0 triad &

$ taskset -
 4 triad &

$ perf stat -a -A -C0 -e r81d0:u,r08d1:u,r20

:u sleep 10 &

$ perf stat -a -A -C4 -e r20

:u,r81d0:u,r08d1:u sleep 10

CPU0 5 650 303 673 r81d0:u [100,00%℄

CPU0 166 632 879 r08d1:u [100,00%℄

CPU0 0 r20

:u [100,00%℄

10,000773541 se
onds time elapsed

CPU4 0 r20

:u [66,68%℄

CPU4 5 509 435 203 r81d0:u [66,66%℄
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CPU4 162 522 829 r08d1:u [33,35%℄

10,000779763 se
onds time elapsed

With the XSU dynami
 
onstraints, there is now multiplexing as we 
an see

from the de
reased fra
tion of time ea
h event of CPU4 is measured on the hard-

ware. The LBR inserts event value is ba
k to zero for both threads. The XSU

proto
ol prote
ts the non-
orrupting events from 
orruption. In Fig. 7.3, we show

the 
on�guration of the 
ounters for the two threads, whi
h also explains the s
aling

fa
tors seen above.

As perf on CPU0 is initiated �rst, the events of CPU0 �nd all the 
ounters in

unused state and they are all s
heduled in. As all events manage to get s
heduled,

there is no need of multiplexing and thus the s
heduler of the generi
 layer will

not s
hedule them out until the 10 se
onds measurement is 
ompleted (Fig 7.3a).

When CPU4 starts its measurements, some of the 
ounters are already marked

as ex
lusive or shared by CPU0. For the two 
orrupting events of CPU4 only

C3 is available while the non-
orrupting event 
an use both C2 and C3. Hen
e,

multiplexing will be needed and the generi
 s
heduler will exe
ute multiple passes

rotating the event list as explained in 
hapter 3 At the �rst pass (Fig 7.3b), non-


orrupting 0x20

 is the �rst event of the list and it is s
heduled on C2. The se
ond

event, the 
orrupting 0x81d0, is s
heduled on C3. The s
heduler stops here be
ause

it fails s
heduling the third event of the list, the 
orrupting 0x08d1, and the event

list is rotated by one. At the se
ond pass (Fig 7.3
), 
orrupting 0x81d0 is the �rst

event of the list and it is s
heduled on C3. The s
heduler fails to pro
eed be
ause of

la
k of 
ounters for the 
orrupting event 0x08d1 and both 0x08d1 and 0x20

 that

follows, remain uns
heduled. The event list is rotated by one. At the third pass

(Fig 7.3d), 
orrupting 0x08d1 is at the head of the list and gets the opportunity

to be s
heduled on C3. The se
ond event, the non-
orrupting 0x20

, is s
heduled

on C2. The s
heduler fails to s
hedule the 
orrupting 0x81d0, the list is rotated

and we return to the 
on�guration of the �rst pass. Ea
h pass lasts for a duration

of a timer ti
k, whi
h is by default 1 millise
ond in the system we are testing on.

For our 10 se
onds measurement, the s
heduler will do 10 000 passes. As we saw

in the analysis above and the respe
tive �gures, every 3 passes the events 0x20



and 0x81d0 are s
heduled twi
e and the event 0x08d1 is s
heduled on
e. Hen
e,

the s
aling fa
tors 66.68% for 0x20

 and 66.66% for 0x81d0, whi
h show that the

events run on the hardware for 2/3rds of the time, are justi�ed. Similarly, the

s
aling fa
tor 33.35% for 0x08d1 shows 
orre
tly that this event is a
tivated for

1/3rd of the time.

During the multiple passes of the s
heduling algorithm, XSU guarantees valid

assignment of the events on the 
ounters. However, as it 
an be seen from the


ounts, the memory events have very di�erent 
ounts. Espe
ially, the L1 misses

event (0x08d1) drops from 305 944 783 to 166 632 879 on CPU0 and from 305

472 307 to 162 522 829 on CPU4, losing approximately 50% of its 
ounts. We will
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Figure 7.3: Valid measurements of 0x20

, 0x81d0, 0x08d1 with XSU

explain this 
hange later in 
hapter 8.

Now, let us examine 
ases where there are more events than 
ounters in
luding


orrupting and non-
orrupting events, without and with the XSU proto
ol.

In this �rst 
ase, we are using 1 
orrupting memory event (0x08d1) and 4
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non-
orrupting events (0x02
4, 0x20

, 0x00
4, 0x010e) as shown below:

0x08d1 MEM_LOAD_UOPS_RETIRED:L1_MISS

0x02
4 BR_INST_RETIRED:NEAR_CALL

0x20

 ROB_MISC_EVENTS:LBR_INSERTS

0x10
4 BR_INST_RETIRED:NOT_TAKEN

0x08
4 BR_INST_RETIRED:NEAR_RETURN

We have our triad workload running on both sibling threads (CPU0, CPU4).

Be
ause we will in
ur multiplexing and that will likely 
ause 
orruption, we �rst

measure the non-
orrupting events by themselves to get the a
tual 
ounts in a

single run with XSU disabled:

# e
ho 0 >/sys/devi
es/
pu/ht_bug_workaround

$ taskset -
 0 triad &

$ perf stat -r10 -a -C0 -e r02
4:u,r20

:u,r10
4:u,r08
4:u sleep 10

Performan
e 
ounter stats for 'system wide' (10 runs):

342 r02
4:u (+- 0,04%) [100,00%℄

0 r20

:u (+- 0,00%) [100,00%℄

1 025 r10
4:u (+- 0,04%) [100,00%℄

342 r08
4:u (+- 0,04%) [100,00%℄

As we 
an see, these are very stable events as shown by the deviation per
entage

over the 10 runs. These are our baseline numbers for the non-
orrupting events

obtained with no multiplexing. It is interesting to note that the values of the events

BR_INST_RETIRED:NEAR_CALL (
ode 0x02
4) and BR_INST_RETIRED:

NEAR_RETURN (
ode 0x08
4) in both threads are the same be
ause they 
ount

the number of fun
tion 
alls and fun
tion returns respe
tively. Next, we add the


orrupting memory event and we run the measurements of the �ve events with

XSU disabled:

# e
ho 0 > /sys/devi
es/
pu/ht_bug_workaround

$ perf stat -a -C4 -e r81d0:u,r02
4:u,r20

:u,r10
4:u,r08
4:u sleep 10 &

$ perf stat -a -C0 -e r81d0:u,r02
4:u,r20

:u,r10
4:u,r08
4:u sleep 10

5 587 605 755 r81d0:u [80,00%℄

77 512 989 r02
4:u [80,00%℄

6 087 383 r20

:u [80,00%℄

6 080 780 r10
4:u [80,00%℄

18 218 197 r08
4:u [79,99%℄

10,000809054 se
onds time elapsed

5 585 007 977 r81d0:u [80,00%℄

18 233 527 r02
4:u [80,00%℄

6 104 578 r20

:u [80,00%℄

6 091 492 r10
4:u [80,00%℄

77 517 725 r08
4:u [79,99%℄

65



10,000739612 se
onds time elapsed

As expe
ted, there is multiplexing. The s
aling fa
tor is about 80% whi
h in-

di
ates that ea
h event is a
tive about 4/5th of the time, i.e., at any one time 4

out of 5 events are a
tive on the hardware. Be
ause of multiplexing, the event lists

on both threads rotate at ea
h timer ti
k. Thus, a
ross the 10 se
onds measure-

ments, the 
orrupting event of the one thread ends up in fa
ing and 
orrupting

ea
h one of the non-
orrupting events of the other thread and vi
e-versa. All the

non-
orrupting events of both sibling threads have their results 
orrupted by sev-

eral million of leaked 
ounts. The more time a non-
orrupting event �nds itself

s
heduled with a 
orrupting event on a pair of sibling 
ounters, the more unrea-

sonably higher its value be
omes due to 
orruption. The errors are prominent on

these low frequen
y non-
orrupting events we have 
hosen.

Next, we run the same test 
ase but with XSU enabled and look at the impa
t

on the 
ounts of the non-
orrupting events and on the multiplexing.

# e
ho 1 > /sys/devi
es/
pu/ht_bug_workaround

$ perf stat -a -C4 -e r81d0:u,r02
4:u,r20

:u,r10
4:u,r08
4:u sleep 10 &

$ perf stat -a -C0 -e r81d0:u,r02
4:u,r20

:u,r10
4:u,r08
4:u sleep 10

5 554 095 990 r81d0:u [30,99%℄

342 r02
4:u [50,60%℄

0 r20

:u [60,40%℄

1 021 r10
4:u [70,20%℄

350 r08
4:u [70,17%℄

10,000809047 se
onds time elapsed

5 543 881 332 r81d0:u [40,77%℄

336 r02
4:u [50,59%℄

0 r20

:u [60,39%℄

1 030 r10
4:u [70,19%℄

343 r08
4:u [79,99%℄

10,000782512 se
onds time elapsed

The 
ounts have returned ba
k their expe
ted values a

ording to the baseline

numbers we 
olle
ted at the beginning of this test. The other interesting part of

these results is the s
aling fa
tor whi
h has de
reased, denoting a smaller a
tive

time on the hardware for ea
h event. The di�eren
e between the values of the events

BR_INST_RETIRED:NEAR_CALL (
ode 0x02
4) and BR_INST_RETIRED:

NEAR_RETURN (
ode 0x08
4) in both threads, is due to multiplexing ina

u-

ra
ies. The pattern of fun
tion 
alls and fun
tion returns may present 
hanging

phases whi
h 
annot always be 
aptured be
ause the events are not measured at

all times. In any 
ase, the values of these two events are very similar and the
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dis
repan
ies of less than 10 
ounts we obtain now is far from the dis
repan
ies of

60 000 000 we were obtaining when measuring without the XSU proto
ol.

In this example the sibling threads are 
ompeting to a
quire the shared state

and s
hedule their events on the 
ounters every timer ti
k, be
ause they are both

subje
t to multiplexing. Hen
e, the time that ea
h event of the two threads is

a
tually ran on the hardware and thus the s
aling fa
tors of ea
h event, 
annot

be predi
ted be
ause of these ra
e 
onditions. What the XSU proto
ol o�ers is a

guarantee of valid 
on�guration of the 
ounters at all times and 
orre
t results for

the non-
orrupting events.

If we add more events to measure in a single run, we 
an see the e�e
t of

the XSU proto
ol on multiplexing. For this se
ond 
ase, we use an event list of

10 events on ea
h thread, 4 
orrupting memory events (0x81d0, 0x08d1, 0x10d1,

0x01d1) and 6 non-
orrupting events (0x02
4, 0x20

, 0x10
4, 0x08
4, 0x01
9,

0x04
8), as shown below:

0x81d0 MEM_UOPS_RETIRED:ALL_LOADS

0x08d1 MEM_LOAD_UOPS_RETIRED:L1_MISS

0x10d1 MEM_LOAD_UOPS_RETIRED:L2_MISS

0x01d1 MEM_LOAD_UOPS_RETIRED:L1_HIT

0x02
4 BR_INST_RETIRED:NEAR_CALL

0x20

 ROB_MISC_EVENTS:LBR_INSERTS

0x10
4 BR_INST_RETIRED:NOT_TAKEN

0x08
4 BR_INST_RETIRED:NEAR_RETURN

0x01
9 RTM_RETIRED:START

0x04
8 HLE_RETIRED:ABORTED

The run without XSU will in
ur multiplexing, so we need to measure the a
tual


ounts of the events. We have the baseline numbers for the �rst 4 non-
orrupting

events (0x02
4, 0x20

, 0x10
4, 0x08
4) from the previous example. We now mea-

sure the a
tual values of the 2 new non-
orrupting events (0x01
9, 0x0408) in a

single run with XSU disabled:

# e
ho 0 >/sys/devi
es/
pu/ht_bug_workaround

$ taskset -
 0 triad &

$ perf stat -r10 -a -C0 -e r02
4:u,r20

:u,r10
4:u,r08
4:u sleep 10

Performan
e 
ounter stats for 'system wide' (10 runs):

0 r01
9:u (+- 0,00%) [100,00%℄

0 r04
8:u (+- 0,00%) [100,00%℄

The RTM_RETIRED:START and the HLE_RETIRED:ABORTED are events

related to transa
tional memory support in Haswell pro
essors. The RTM_RETIRED:

START 
ounts the number of times the restri
ted transa
tional memory exe
ution

starts and the HLE_RETIRED:ABORTED 
ounts the number of aborted hard-

ware lo
k elison transa
tions. The workload does not use transa
tional memory,

so these events should have zero 
ounts.
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We disable the XSU proto
ol and we run the measurements of these 10 events

on both sibling threads for 10 se
onds.

# e
ho 0 > /sys/devi
es/
pu/ht_bug_workaround

$ perf stat -a -C4 -e r81d0:u,r08d1:u,r10d1:u,r01d1:u,r02
4:u, \

r20

:u,r10
4:u,r08
4:u,r01
9:u,r04
8:u sleep 10 &

$ perf stat -a -C0 -e r81d0:u,r08d1:u,r10d1:u,r01d1:u,r02
4:u,r20

:u, \

r10
4:u,r08
4:u,r01
9:u,r04
8:u sleep 10

5 580 691 917 r81d0:u [40,00%℄

196 376 492 r08d1:u [40,01%℄

204 266 718 r10d1:u [40,01%℄

3 112 470 528 r01d1:u [40,01%℄

74 285 531 r02
4:u [40,00%℄

8 669 406 r20

:u [40,00%℄

8 603 632 r10
4:u [40,00%℄

12 409 r08
4:u [40,00%℄

13 341 193 r01
9:u [40,00%℄

17 087 329 r04
8:u [39,99%℄

10,000915604 se
onds time elapsed

5 633 519 354 r81d0:u [40,00%℄

187 004 134 r08d1:u [40,00%℄

133 622 500 r10d1:u [40,00%℄

3 014 317 138 r01d1:u [40,01%℄

10 734 813 r02
4:u [40,00%℄

3 792 868 r20

:u [40,00%℄

6 031 812 r10
4:u [40,00%℄

16 528 567 r08
4:u [40,00%℄

83 827 911 r01
9:u [40,00%℄

100 139 343 r04
8:u [39,99%℄

10,000943248 se
onds time elapsed

As we 
an see, the values of all non-
orrupting events have been severely im-

pa
ted by the 
orrupting ones and the results we obtain are 
ompletely irrelevant

with the a
tual behavior of our workload. We now enable the XSU proto
ol and

repeat the measurements.

# e
ho 1 > /sys/devi
es/
pu/ht_bug_workaround

$ perf stat -a -A -C4 -e r81d0:u,r08d1:u,r10d1:u,r01d1:u,r02
4:u, \

r20

:u,r10
4:u,r08
4:u,r01
9:u,r04
8:u sleep 10 &

$ perf stat -a -A -C0 -e r81d0:u,r08d1:u,r10d1:u,r01d1:u,r02
4:u,r20

:u, \

r10
4:u,r08
4:u,r01
9:u,r04
8:u sleep 10

CPU4 5 491 248 074 r81d0:u [1,61%℄

CPU4 161 579 927 r08d1:u [1,62%℄

CPU4 108 975 096 r10d1:u [1,63%℄

CPU4 2 962 988 436 r01d1:u [1,64%℄

CPU4 436 r02
4:u [11,24%℄

CPU4 0 r20

:u [20,82%℄

CPU4 1 056 r10
4:u [30,39%℄

CPU4 323 r08
4:u [30,36%℄
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CPU4 0 r01
9:u [39,93%℄

CPU4 0 r04
8:u [39,94%℄

10,000895995 se
onds time elapsed

CPU0 5 518 336 748 r81d0:u [39,99%℄

CPU0 162 876 379 r08d1:u [39,98%℄

CPU0 109 572 002 r10d1:u [39,98%℄

CPU0 2 965 128 722 r01d1:u [39,97%℄

CPU0 328 r02
4:u [39,97%℄

CPU0 0 r20

:u [39,98%℄

CPU0 990 r10
4:u [39,99%℄

CPU0 328 r08
4:u [40,00%℄

CPU0 0 r01
9:u [39,99%℄

CPU0 0 r04
8:u [40,00%℄

10,000943248 se
onds time elapsed

The results have returned to their expe
ted levels but multiplexing has sig-

ni�
antly in
reased espe
ially on CPU4. Obviously, CPU0 is the winner of the

ra
e 
onditions between the sibling threads for a

essing the XSU shared state and

s
heduling the events. CPU0 manages to keep the s
aling fa
tors at the same levels

as without XSU. On the other hand, the fra
tion of time the events of CPU4 are

s
heduled on the hardware has de
rease. The de
rease is most severe for the 
or-

rupting events where the s
aling fa
tor drops below 2%. This is reasonable sin
e

these events 
an only be measured on unused 
ounters, something very di�
ult to

�nd given that CPU0 wins most of the ra
e 
onditions and has its events s
heduled

�rst. However, the ina

ura
ies in the results of the 
orrupting memory events of

CPU4 are not signi�
ant be
ause, as we have explained, the workload has a very

stable behavior with respe
t to memory operations. Again, we observe dis
repan-


ies between the fun
tion 
all event (
ode 0x02
4) and the fun
tion return event

(
ode 0x08
4) on CPU4 but this 
an be attributed to the di�erent s
aling fa
tors


ombined with the phases of the fun
tion 
all and return pattern. On the other

hand, on CPU0 the s
aling fa
tors are the same and the values of 0x02
4 an 0x08
4

are also the same.

7.2 S
heduling optimization

To test various s
heduling optimizations, we have developed a event s
heduling

simulator. With su
h a tool, we 
an more easily experiment with s
heduling options

without having to re
ompile a kernel and reboot the ma
hine (real or virtual).

The simulator is a C program whi
h in
ludes the verbatim 
ode from the

perf_events subsystem with a shim layer to glue with standard user level 
ode.

The simulator in
ludes the 
onstraint tables for Intel and AMD X86 pro
essors. It


an be exer
ised with a
tual event names be
ause it is linked with the libpfm4 [30℄
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open-sour
e library whi
h provides event tables for all pro
essors. Events 
an easily

be listed with their stati
 
onstraints as shown below:

----------------------------------------

Pro
essor Name : Sandy Bridge

Generi
 Counters No : 4

Fixed-Purpose Counters No : 3

----------------------------------------

#--------------#----------------#--------------------------------

# CODE # CONSTRAINTS # NAME

#--------------#----------------#--------------------------------

0x0000000001b6 | 0x00000000000f | AGU_BYPASS_CANCEL:COUNT

0x000000000114 | 0x00000000000f | ARITH:FPU_DIV_ACTIVE

0x000001040114 | 0x00000000000f | ARITH:FPU_DIV

0x000000001fe6 | 0x00000000000f | BACLEARS:ANY

0x000000004188 | 0x00000000000f | BR_INST_EXEC:NONTAKEN_COND

0x000000008188 | 0x00000000000f | BR_INST_EXEC:TAKEN_COND

0x000000008288 | 0x00000000000f | BR_INST_EXEC:TAKEN_DIRECT_JUMP

The simulator in
ludes multiplexing support, though it is not timed-based but

simply based on the number of maximum s
heduling iterations spe
i�ed by the

user. On
e an iteration of the s
heduling is done, it is followed by another until

this number is rea
hed. In 
ase multiplexing is required, the event list is rotated

by one event before the next s
heduling iteration, emulating the behavior of the

perf_events generi
 layer des
ribed in 
hapter 3. Ea
h iteration 
an be dumped by

the simulator for inspe
tion. Below we demonstrate a simple example, using the

standard s
heduling algorithm (default) for two events (-e option) and measuring

for 10 iterations (-n option). The 
ounter assignment shown before every event

name at ea
h iteration is the 
ounter on whi
h the event was s
heduled the last

time it ran. In the example below we have 
ntr0 for uops_retired:any event and

and 
ntr1 for mispredi
ted_bran
h_retired event. The number in front of the


ounter index is the 
umulative per
entage of time the event was s
heduled up to

the iterations shown, i.e., the s
aling fa
tor we were obtaining in our 
ommand line

examples of the previous se
tion. Here 100% means that both event were s
heduled

at ea
h one of the 10 iterations.

$ s
hed_sim -n 10 -e uops_retired:any, mispredi
ted_bran
h_retired

----------------------------------------

Pro
essor Name : Haswell

Generi
 Counters No : 4

Fixed-Purpose Counters No : 3

----------------------------------------

Event List:

1 - ---- ---- uops_retired:any (
ode=0x5301
2, 
onstraint=0xf)

2 - ---- ---- mispredi
ted_bran
h_retired (
ode=0x5300
5, 
onstraint=0xf)

...

Iteration 10

1 - 100.00% 
ntr0 uops_retired:any (
onstraint=0xf)

2 - 100.00% 
ntr1 mispredi
ted_bran
h_retired (
onstraint=0xf)

If events 
ompete for 
ounters, multiplexing is triggered and the per
entages

show the degree of multiplexing:
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$ s
hed_sim -n 1000 -e l2_lines_in:any, \

l1d_pend_miss:o

urren
es,\


y
le_a
tivity:stalls_l1d_pending

----------------------------------------

Pro
essor Name : Haswell

Generi
 Counters No : 4

Fixed-Purpose Counters No : 3

----------------------------------------

Event List:

1 - ---- ---- l2_lines_in:any (
ode=0x5307f1, 
onstraint=0xf)

2 - ---- ---- l1d_pend_miss:o

urren
es (
ode=0x0x1570148, 
onstraint=0x4)

3 - ---- ---- 
y
le_a
tivity:stalls_l1d_pending (
ode=0x85308a3, 
onstraint=0x4)

...

Iteration 1000

s
heduled 2 out of 3 events

1 + 66.70% 
ntr0 l2_lines_in:any (
onstraint=0xf)

2 + 66.70% 
ntr2 l1d_pend_miss:o

urren
es (
onstraint=0x4)

3 - 33.30% 
ntr2 
y
le_a
tivity:stalls_l1d_pending (
onstraint=0x4)

In the above example, l1d_pend_miss:o

urren
es and 
y
le_a
tivity:stalls_

l1d_pending have 
onstraint 0x4 whi
h means they 
ompete for 
ounter 2. Only 2

out of 3 events 
an be s
heduled at ea
h iteration be
ause of event list rotation and

multiplexing. The + sign at an event row denotes that the event is s
heduled on the


urrent iteration while the - sign denotes that the event failed to be s
heduled. The

s
aling fa
tor re�e
ts the multiplexing: 2/3rds of the time for l2_lines_in:any and

l1d_pend_miss:o

urren
es and 1/3rd of the time for 
y
le_a
tivity:stalls_l1d_

pending.

The Hop
roft-Karp s
heduling algorithm is implemented in the simulator along

with the greedy, �rst-mat
h approa
h s
heduling algorithm 
urrently existing in

the kernel. The algorithm used by the event s
heduler 
an be sele
ted from the


ommand line.

It is also possible to experiment with the event 
onstraints. Constraints masks


an be passed from the 
ommand line to help with simulating more 
onstrained

environments su
h as when the XSU proto
ol is enabled. Below, we have an

example with measuring events for whi
h we have provided their dynami
 
on-

straints using the -C option. The order of the 
onstraints is respe
tive to the

order in whi
h the events are given in the event list. In the example below,

l2_lines_in:any has 
onstraint 0x6 and thus it supports 
ounter 1 and 
ounter

2, l1d_pend_miss:o

urren
es has 
onstraint 0x8 and supports only 
ounter 3, 
y-


le_a
tivity_stalls_l1d_pending has 
onstraint 0x9 and supports 
ounter 0 and


ounter 3 and �nally inst_retired_any_p event has 
onstraint 0xb and supports


ounter 0, 
ounter 1 and 
ounter3 (-C 0x6,0x8,0x9,0xb).

We �rst run this simulation with the default, greedy s
heduling algorithm:

$ s
hed_sim -n 1000 -e l2_lines_in:any,

l1d_pend_miss:o

urren
es,\


y
le_a
tivity_stalls_l1d_pending,\

inst_retired_any_p\

-C 0x6,0x8,0x9,0xb

----------------------------------------

Pro
essor Name : Haswell
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Generi
 Counters No : 4

Fixed-Purpose Counters No : 3

----------------------------------------

Event List:

1 - ---- ---- l2_lines_in:any (
ode=0x5307f1, 
onstraint=0x6)

2 - ---- ---- l1d_pend_miss:o

urren
es (
ode=0x1570148, 
onstraint=0x8)

3 - ---- ---- 
y
le_a
tivity:stalls_l1d_pending (
ode=0x85308a3, 
onstraint=0x9)

4 - ---- ---- inst_retired:any_p (
ode=0x5300
0, 
onstraint=0xb)

...

Iteration 1000

S
heduled 3 out of 4 events

1 + 75.00 
ntr-0 l2_lines_in:any (
onstraint=0x6)

2 + 75.00 
ntr-1 l1d_pend_miss:o

urren
es (
onstraint=0x8)

3 + 75.00 
ntr-3 
y
le_a
tivity:stalls_l1d_pending (
onstraint=0x9)

4 - 00.00 
ntr-0 inst_retired:any_p (
onstraint=0xb)

We 
an run the same s
heduling instan
e using the Hop
roft-Karp algorithm

(-M option) and 
ompare the results:

$ s
hed_sim -M -n 1000 -e l2_lines_in:any,\

l1d_pend_miss:o

urren
es,\


y
le_a
tivity_stalls_l1d_pending,\

inst_retired_any_p\

-C 0x6,0x8,0x9,0xb

----------------------------------------

Pro
essor Name : Haswell

Generi
 Counters No : 4

Fixed-Purpose Counters No : 3

----------------------------------------

Event List:

1 - ---- ---- l2_lines_in:any (
ode=0x0x5307f1, 
onstraint=0x6)

2 - ---- ---- l1d_pend_miss:o

urren
es (
ode=0x1570148, 
onstraint=0x8)

3 - ---- ---- 
y
le_a
tivity:stalls_l1d_pending (
ode=0x85308a3, 
onstraint=0x9)

4 - ---- ---- inst_retired:any_p (
ode=0x5300
0, 
onstraint=0xb)

...

Iteration 1000

s
heduled 4 out of 4 events

1 + 100.00 
ntr-2 l2_lines_in:any (
onstraint=0x6)

2 + 100.00 
ntr-3 l1d_pend_miss:o

urren
es (
onstraint=0x8)

3 + 100.00 
ntr-0 
y
le_a
tivity:stalls_l1d_pending (
onstraint=0x9)

4 + 100.00 
ntr-1 inst_retired:any_p (
onstraint=0xb)

The goal of the optimal s
heduling algorithm we have implemented is to max-

imize the use of the 
ounters while respe
ting the 
onstraints. In the 
omparison

above, we see that the s
aling fa
tor of the events using Hop
roft-Karp algorithm

is maxed out at 100%, whi
h means that all the events were s
heduled at ea
h

iteration. At the same s
heduling instan
e the standard, greedy algorithm yields

a 75% s
aling fa
tor meaning it 
ould only s
hedule 3 out of 4 events at ea
h iter-

ation. Thus, for this 
onstraint 
on�guration, the Hop
roft-Karp algorithm fares

mu
h better. The PMU is more utilized, resulting in no multiplexing and in
reased

a

ura
y.

In order to evaluate the improvement that Hop
roft-Karp brings, we generalize

the test 
ase. We run all possible 
onstraint 
on�gurations of 4 events to 4 generi



ounters from -C 0xf,0xf,0xf,0xf to -C 0x1,0x1,0x1,0x1, i.e. 154 = 50625 s
heduling
instan
es and we get a full evaluation of ea
h s
heduling algorithm. By being
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optimal, the Hop
roft-Karp algorithm is either giving the same s
heduling with

the existing, greedy algorithm or it is performing better, i.e., it a
hieves more

events to be s
heduled on the 
ounters. The Hop
roft-Karp algorithm gives better

s
heduling to 5950 instan
es, a
hieving approximately 12% improvement on 
ounter

utilization and thus on measurement a

ura
y.

With the simulator we have implemented, it is also possible to modify the way

the generi
 perf_events layer is in
rementally passing events to the x86 ar
hite
ture

spe
i�
 layer. For instan
e, it is possible to 
ontinue passing events 
ontinuing

beyond the event for whi
h the �rst error o

urred. For N generi
 
ounters we have

experimented passing s
heduling instan
es with 2 ∗ N events regardless on whi
h

event the �rst failure o

urs. With su
h small 
hange, we have demonstrated that

the Hop
roft-Karp algorithm 
an provide an in
reased utilization of the 
ounters

and a better measurement a

ura
y in up to 18% of the 
ases, while the e�e
t on

the exe
ution time is negligible. In the future, we intend to modify the perf_events

generi
 layer in the kernel to 
ontinue after the �rst error for a number of events

whi
h is a polynomial expression of the number of generi
 
ounters.
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Chapter 8

Future Work

In the previous examples we have seen that the values of the 
orrupting events


hange between the single-thread measurements, the runs without the XSU and

the runs with XSU. In the following example we fo
us on the measurements of the

four 
orrupting events we en
ountered so far and we explain how their 
ounts 
an

di�er throughout the tests.

0x81d0 MEM_UOPS_RETIRED:ALL_LOADS

0x08d1 MEM_LOAD_UOPS_RETIRED:L1_MISS

0x10d1 MEM_LOAD_UOPS_RETIRED:L2_MISS

0x01d1 MEM_LOAD_UOPS_RETIRED:L1_HIT

First, we measure these events on both siblings, in a single, 
ombined run, with

XSU disabled.

# e
ho 0 >/sys/devi
es/
pu/ht_bug_workaround

$ taskset -
 0 triad &

$ taskset -
 4 triad &

$ perf stat -a -A -C0 -e r81d0:u,r08d1:u,r10d1:u,r01d1:u sleep 10 &

$ perf stat -a -A -C4 -e r81d0:u,r08d1:u,r10d1:u,r01d1:u sleep 10

CPU0 5 565 857 411 r81d0:u [100,00%℄

CPU0 292 858 367 r08d1:u [100,00%℄

CPU0 213 411 639 r10d1:u [100,00%℄

CPU0 2 908 809 947 r01d1:u [100,00%℄

10,004670257 se
onds time elapsed

CPU4 5 605 756 134 r81d0:u [100,00%℄

CPU4 292 211 911 r08d1:u [100,00%℄

CPU4 213 045 877 r10d1:u [100,00%℄

CPU4 2 938 263 812 r01d1:u [100,00%℄

10,004583900 se
onds time elapsed

All the events �t in the 4 generi
 
ounters, thus there is no multiplexing (100%

s
aling fa
tor). With XSU proto
ol disabled the 
on�guration of the 
ounters
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is shown in Fig. 8.1 below and there is 
orruption between the memory events

s
heduled on the same 
ounter.

C0 0x81d0

C1 0x08d1

C2 0x10d1

C3

HT0 HT1

0x01d1

C0 0x81d0

C1 0x08d1

C2 0x10d1

C3 0x01d1

Figure 8.1: Measuring 0x81d0, 0x08d1, 0x10d1, 0x01d1 with XSU disabled

If we rerun the test with XSU enabled we get the following results.

# e
ho 1 >/sys/devi
es/
pu/ht_bug_workaround

$ taskset -
 0 triad &

$ taskset -
 4 triad &

$ perf stat -a -A -C0 -e r81d0:u,r08d1:u,r10d1:u,r01d1:u sleep 10 &

$ perf stat -a -A -C4 -e r81d0:u,r08d1:u,r10d1:u,r01d1:u sleep 10

CPU0 5 465 161 580 r81d0:u [50,01%℄

CPU0 157 542 131 r08d1:u [50,00%℄

CPU0 104 608 156 r10d1:u [49,99%℄

CPU0 2 879 525 359 r01d1:u [50,00%℄

10,004670257 se
onds time elapsed

CPU4 5 418 290 816 r81d0:u [50,01%℄

CPU4 156 484 117 r08d1:u [50,00%℄

CPU4 103 779 978 r10d1:u [49,99%℄

CPU4 2 918 604 417 r01d1:u [50,00%℄

10,004583900 se
onds time elapsed

The 
on�guration of the 
ounters with XSU proto
ol is shown in Fig 8.2 below.

We observe that the values of the memory events have signi�
antly dropped.

Espe
ially, the L1 misses event (0x08d1) and the L2 misses event (0x10d1) have

lost more than 46% and 51% of their 
ounts respe
tively. The memory loads event

(0x81d0) and the L1 hits event (0x01d1) are high-frequen
y events and their per
ent

losses are lower but still important. This is explained by the fa
t that these event

are leaking their 
ounts on the unused sibling 
ounters and these leaked 
ounts are

not taken into a

ount for the �nal value. In Fig. 8.2 above, this leak is represented

as a dashed-line. This loss of 
ounts did not appear when we measured with XSU

disabled. At this 
ase, the events measured on sibling 
ounters were identi
al and

the out
oming leaked 
ounts of one were 
ompensated by a similar number of

in
oming leaked 
ounts from the other. Thus, the leaked 
ounts were aggregated

on the sibling 
ounter and reported. It needs to be noted that the loss of 
ounts

is not a side e�e
t of the XSU proto
ol and this 
an be shown easily with the

following test. With XSU disabled we run the measurements of the same events

only on one thread so that the 
ounters of the sibling thread are unused:
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U
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X
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0x81d0

HT0 0x81d0 0x08d1 0x10d1 0x01d1

HT1 0x81d0 0x08d1 0x10d1 0x01d1

HT0 0x08d1 0x10d1 0x01d1 0x81d0

HT1 0x08d1 0x10d1 0x01d1 0x81d0

0x81d0

HT0 0x08d1 0x10d1 0x01d1 0x81d0

HT1 0x08d1 0x10d1 0x01d1 0x81d0

HT0 0x10d1 0x01d1 0x81d0 0x08d1

HT1 0x10d1 0x01d1 0x81d0 0x08d1

0x08d1 0x81d0

Figure 8.2: Measuring 0x81d0, 0x08d1, 0x10d1, 0x01d1 with XSU enabled

# e
ho 1 >/sys/devi
es/
pu/ht_bug_workaround

$ taskset -
 0 triad &

$ perf stat -a -A -C0 -e r81d0:u,r08d1:u,r10d1:u,r01d1:u sleep 10 &

CPU0 5 471 662 581 r81d0:u [100,00%℄

CPU0 159 592 403 r08d1:u [100,00%℄

CPU0 105 259 023 r10d1:u [100,00%℄

CPU0 2 920 631 823 r01d1:u [100,00%℄

10,004670257 se
onds time elapsed

The 
on�guration of the 
ounters during this run is shown in Fig 8.3.
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C0 0x81d0

C1 0x08d1

C2 0x10d1

C3

HT0 HT1

0x01d1

C0

C1

C2
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Figure 8.3: Measuring 0x81d0, 0x08d1, 0x10d1, 0x01d1 on one thread

In the output above we observe almost the same loss of 
ounts as we did for the

measurements on two threads with XSU enabled. Hen
e, the loss of 
ounts is not


aused by XSU but it is not prevented either. The primary goal of XSU is to prote
t

non-
orrupting events from getting 
orrupted by 
orrupting events when measured

on sibling 
ounters. The re-integration of the leaked 
ounts in the �nal values of

the 
orrupting events is not taken 
are of by XSU. However, XSU makes this re-

integration simpler be
ause when a 
orrupting event is measured on one 
ounter,

it is guaranteed by XSU that no valid event uses the sibling 
ounter and thus all

the 
ounts a

umulated there 
ome from the measurement of the 
orrupting event.

As future work, we intend to extend the XSU proto
ol in order to re-integrate the

leaked 
ounts in the �nal values of the 
orrupting events.

The XSU proto
ol addresses the PMU hardware erratum and su

essfully elim-

inates the 
ounter 
orruption. However, the 
orre
tness 
omes at the 
ost of more


onstrained events, as shown in the examples above. The more 
onstraints in-


urred by the XSU proto
ol 
ombined with the ra
e 
onditions between the sibling

threads, may even 
ause an event of one thread to never get s
heduled be
ause of

what is measured on the 
ounters of the sibling thread. A simple arti�
ial example

is to measure on CPU0 our 4 known 
orrupting memory events for 10 se
onds and

on CPU4 the non-
orrupting bran
hes event for 5 se
onds.

# e
ho 1 >/sys/devi
es/
pu/ht_bug_workaround

$ taskset -
 0 triad &

$ taskset -
 4 triad &

$ perf stat -a -A -C0 -e r81d0:u,r08d1:u,r10d1:u,r01d1:u sleep 10 &

$ perf stat -a -A -C4 -e bran
hes sleep 5

CPU0 5 470 671 639 r81d0:u [100,00%℄

CPU0 157 698 323 r08d1:u [100,00%℄

CPU0 106 859 230 r10d1:u [100,00%℄

CPU0 2 918 823 504 r01d1:u [100,00%℄

10,004326725 se
onds time elapsed

CPU4 <not 
ounted> bran
hes

5,004713819 se
onds time elapsed

On CPU0, the 4 generi
 
ounters are used by 
orrupting events. On CPU4,

only one event is measured yet it 
annot get s
heduled while the measurement runs
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on CPU0, even though it 
an stati
ally run on any of the 4 generi
 
ounters. As per

the XSU algorithm all 4 
ounters of CPU4 are in X state whi
h means they 
annot

be used as shown in Fig. 8.4. No multiplexing is triggered on CPU0 be
ause the

number of events is equal to the number of 
ounters and there is no error s
heduling

all the events at the �rst pass. This means that the events of CPU0 will not be

s
heduled out until the measurement of 10 se
onds is over. Therefore, no event

using the generi
 
ounters on CPU4 
an be s
heduled for this time period. This is

why the 
y
les event is not 
ounted.

HT0 HT1

XSU State

Physical Core

C0

C1

C2

C3

C0

C1

0x81d0

C2

C3

HT0 HT1

C0

C1

C2

C3

X

X

X

X

0x10d1

U

U

U

U

branches

HT0 0x81d0

HT1 branches

0x08d1

0x01d1

0x08d1 0x10d1 0x01d1

Figure 8.4: XSU state with 4 
orrupting events on HT 0

It should be noted that this is not a weakness of the XSU proto
ol. To the


ontrary, it is an expe
ted 
onsequen
e of the more 
onstrained environment re-

quired by the proto
ol in order to a
hieve 
orre
t results. Without this behavior,

measurements, like the one of the example above, would yield 
orrupted 
ounts.

However, we need ensure fairness between the two hyper-threads and give events

on ea
h thread's linked list a 
han
e to a

ess the 
ounters, i.e., the hardware

resour
e. No hyper-thread 
an starve the other one. We intend to address this

issue in the future.
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Chapter 9

Con
lusions

In this thesis, we address several important issues related to hardware-based

performan
e monitoring. Nowadays, all pro
essors have a Performan
e Monitoring

Unit (PMU) whi
h provides a set of hardware 
ounters to measure various mi
ro-

ar
hite
tural events su
h as elapsed 
y
les or 
a
he misses (
.f. Se
tion 2.1). The

PMU provides a unique insight into how software uses the underlying hardware

resour
es. It is used 
ount o

urren
es of mi
ro-ar
hite
tural events or 
olle
t

statisti
al pro�les with very low overhead to determine where there may be resour
e

bottlene
ks.

As demand for 
ompute power in
reases 
onstantly, the pressure on hardware

resour
es rises. It is, therefore, important to making best use of available hard-

ware resour
es. The s
ienti�
 
omputing 
ommunity, su
h as at CERN, has many

physi
ists using PMU-based tools to improve the 
ode analyzing data 
aptured by

Large Hadron Collider (LHC). In 
ompanies su
h as Google, PMU data help im-

prove hardware utilization in data 
enters, 
ode quality via feedba
k-dire
ted 
om-

piler optimizations, hardware 
apa
ity planning and pro
essor mi
ro-ar
hite
tural

features.

The PMU is exposed to Linux users via the perf_events subsystem and system


all (
.f. Se
tion 2.2.1). This interfa
e provides a large palette of features 
overing

all the needs of performan
e analysts and developers. The event-based interfa
e

simpli�es development of tools. Events may have 
onstraints with regard to whi
h

PMU 
ounters they 
an be measured and the event s
heduling is at the 
ore of the

subsystem. The a
tual management of the PMU resour
e is handled by the kernel

in
luding how events are s
heduled on 
ounters (
.f. Se
tion 3).

Re
ent Intel pro
essors with Hyper-Threading support have a published erra-

tum whi
h may 
ause serious 
ounter 
orruption a
ross sibling hyper-threads, i.e.

hyper-threads sharing the same physi
al 
ore. Counters on one hyper-thread mea-

suring 
ertain 
orrupting events, leak their 
ounts on sibling 
ounters and 
orrupt

their values (
.f. Se
tion 4.1). The erratum impa
ts three generations of popular

Intel pro
essors: SandyBridge, IvyBridge and Haswell and there is no hardware or

�rmware solution to this problem. The 
orruption of the performan
e monitoring
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data makes any performan
e analysis unreliable and often misleading. This results

in losing a valuable tool for understanding low-level performan
e problems and

improving thousands of 
riti
al appli
ations.

The �rst part of our e�ort has fo
used on developing a software workaround to

eliminate the 
ounter 
orruption. Mutual ex
lusion between 
ounters a
ross hyper-

threads is enfor
ed when 
orrupting events are used. Inspired by the MSI 
a
he-


oheren
e proto
ol, we have developed a sophisti
ated me
hanism 
alled XSU,

whi
h uses three states (eX
lusive, Shared, Unused) required for any hyper-thread

in order to distinguish whi
h PMU 
ounters 
an perform measurements without

yielding 
orrupting results (
.f. Se
tion 5). The integration of the proto
ol in

leverages the perf_events event s
heduling infrastru
ture.

Our XSU solution guarantees that all events 
an be measured safely. Cor-

rupting events whi
h are 
riti
al for any serious performan
e analysis need not to

be banned to ensure 
orre
tness and non-
orrupting events measurements 
an be

trusted to re�e
t workload behavior. The proto
ol is implemented in the Linux

kernel and there is no 
hange to any user level tools. We have published the 
ode

to the Linux kernel 
ommunity and our pat
hes will be in
luded in a future kernel

releases soon.

The integration of XSU proto
ol in perf_events but the additional 
onstraints

derived the mutual ex
lusion requirements produ
e more 
onstrained event s
hedul-

ing instan
es. The 
urrent perf_events event s
heduling algorithm uses a greedy,

�rst-mat
h approa
h whi
h works very well when most events are un
onstrained

but the quality of its 
ounter assignments degrades with XSU as events whi
h were

not 
onstrained may be
ome 
onstrained be
ause of events measured on the sibling

hyper-thread.

In the se
ond part of our e�ort, we have fo
used on improving the perf_events

s
heduling algorithm. We have �rst developed an event s
heduling simulator in

whi
h we have imported the a
tual perf_events Intel and AMD x86 s
heduling


ode from the kernel (
.f. Se
tion 7.2). We use the simulator to experiment with

s
heduling algorithms, event 
onstraints and their impa
t on multiplexing, i.e. the

time-sharing of the PMU resour
e when all event 
onstraints 
annot be satis�ed at

on
e.

We have identi�ed that the perf_events s
heduling 
an be modeled as a mat
h-

ing problem in an unweighted bipartite graph. Hop
roft-Karp algorithm is a max-

imum 
ardinality mat
hing algorithm for bipartite graphs whi
h 
an be integrated

in perf_events subsystem and provide optimal s
heduling of events on 
ounters

with respe
t to the event 
onstraints (
.f. Chapter 6). We have �rst implemented

the Hop
roft-Karp algorithm in our simulator and have run several 
omparisons

with the existing, greedy algorithm. Results show that for Intel's 4-
ounter 
on-

�guration, the integration of Hop
roft-Karp algorithm in the Intel ar
hite
ture

spe
i�
 layer of the perf_events subsystem improves 
ounter utilization by 12%.

Furthermore, we have also demonstrated that if the generi
 layer of the perf_events

subsystem is modi�ed slightly, the improvement 
an rea
h up to 18%. We have
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su

essfully implemented the 
omplex Hop
roft-Karp algorithm in the Linux kernel

following the stringent 
oding standards, in
luding no re
ursion. The 
ode exports

a single entry point whi
h 
an just be swapped with the existing 
all to the greedy

algorithm. This 
ode will eventually be 
ontributed to the Linux kernel 
ommunity.

Although, the XSU solution avoids the 
orruption, it does not produ
e valid


ounts for the 
orrupting events be
ause their leaked 
ounts are not re-integrated.

We believe this 
ould be �xed for 
ounting mode events. Furthermore, we have

shown that in 
ertain 
onditions, some events may not be s
heduled despite the

integration of Hop
roft-Karp s
heduling algorithm and the multiplexing support,

be
ause the PMU 
ounters are unavailable due to events measured in the sibling

thread. This issue 
ould be solved at a higher level by ensuring more fairness

between hyper-threads.

In summary, in this thesis, we have addressed two important issues related to

the 
orre
tness and e�
ien
y of hardware performan
e monitoring in the Linux

kernel on Intel X86 pro
essors. We have developed a sophisti
ated workaround

for a serious 
ross hyper-thread 
ounter 
orruption erratum guaranteeing measure-

ment 
orre
tness and enabling usage of all events. With the help of the results from

our PMU event s
heduling simulator, we have implemented an alternative s
hedul-

ing algorithm based on the Hop
roft-Karp maximum 
ardinality mat
hing graph

algorithm whi
h 
an yield up to 18% better s
heduling in the more 
onstrained

environment imposed by the XSU solution. We have 
ontributed our 
ode to the

Linux kernel 
ommunity and we have identi�ed several possible extensions whi
h

we intend to address in the future. This work has re
eived re
ognition from the

performan
e monitoring 
ommunity with an honorary award issued by Intel.
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