
NATIONAL TECHNICAL UNIVERSITY OF ATHENS

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

COMPUTER SCIENCE DIVISION

COMPUTING SYSTEMS LABORATORY

Improving Reliability & E�
ien
y Of Performan
e

Monitoring In Linux

DIPLOMA THESIS

of

Maria N. Dimakopoulou

Supervisor: Ne
tarios Koziris

Professor N.T.U.A.

Athens, June 2014

NATIONAL TECHNICAL

UNIVERSITY OF ATHENS

SCHOOL OF ELECTRICAL AND

COMPUTER ENGINEERING

COMPUTER SCIENCE DIVISION

COMPUTING SYSTEMS LABORATORY

Improving Reliability & E�
ien
y Of Performan
e

Monitoring In Linux

DIPLOMA THESIS

of

Maria N. Dimakopoulou

Supervisor: Ne
tarios Koziris

Professor N.T.U.A.

Approved by the
ommittee on the 10th of June 2014.

..

Ne
tarios Koziris

Professor

N.T.U.A.

..

Andreas Stafylopatis

Professor

N.T.U.A.

..

Stéphane Eranian

Senior Software Engineer

Google

Athens, June 2014

...................................

Maria N. Dimakopoulou

Ele
tri
al & Computer Engineer

© (2014) National Te
hni
al University of Athens. All rights reserved.

No part of this thesis may be reprodu
ed, stored in retrieval systems, or transmitted

in any form or by any means - ele
troni
, me
hani
al, photo
opying, or otherwise

- for pro�t or
ommer
ial advantage. It may be reprinted, stored or distributed

for a non- pro�t, edu
ational or resear
h purpose, given that its sour
e of origin

and this noti
e are retained. Any questions
on
erning the use of this thesis for

pro�t or
ommer
ial advantage should be addressed to the author. The opinions

and
on
lusions stated in this thesis are expressing the author. They should not

be
onsidered as a pronoun
ement of the National Te
hni
al University of Athens.

Abstra
t

Pro
essor hardware performan
e
ounters have improved in quality and features

in re
ent years. At the same time, the performan
e monitoring support in Linux has

been signi�
antly revamped with the development of the perf_events subsystem.

Those fa
tors
on
ur in making performan
e monitoring a more
ommon pra
ti
e

among developers. However, no performan
e analysis is possible without reliable

hardware
ounter data.

In this thesis, we fo
us on a published
orre
tness erratum in the performan
e

monitoring unit of re
ent Intel pro
essors when Hyper-Threading is enabled. This

erratum
auses
ross hyper-thread hardware
ounter
orruption and may produ
e

unreliable results. We propose a
a
he-
oheren
e style proto
ol that we implement

in the Linux kernel to
ir
umvent the issue by introdu
ing
ross hyper-thread dy-

nami
 event s
heduling. We also introdu
e an event s
heduling algorithm that

a
hieves the optimal s
heduling of events onto hardware
ounters at all times. The

proposed optimizations do not require any user level
hanges and leverage the in-

ternal design of the perf_events subsystem. The sour
e
ode has been
ontributed

to the upstream Linux kernel.

Keywords

performan
e monitoring, hardware
ounters, PMU, hyper-threading, Linux kernel,

perf_events, event s
heduling

5

Περίληψη

Κατά τα τελευταία έτη, οι μετρητές επιδόσεων υλικού στους επεξεργαστές έχουν
βελτιωθεί τόσο σε ποιότητα, όσο και σε χαρακτηριστικά. Ταυτόχρονα, η υποστήρι-
ξη παρακολούθησης επιδόσεων (performan
e monitoring) στο Linux έχει ανανεωθεί
σημαντικά χάρη στην ανάπτυξη του υποσυστήματος perf_events. Αυτοί οι παράγον-
τες έχουν καταστήσει την παρακολούθηση επιδόσεων μια πιο κοινή πρακτική για τους
προγραμματιστές. Ωστόσο, χωρίς αξιόπιστους μετρητές δεδομένων υλικού η ανάλυση
επιδόσεων δεν είναι δυνατή.
Σε αυτή την εργασία, εστιάζουμε σε ένα δημοσιευμένο σφάλμα ορθότητας με-

τρήσεων στην μονάδα παρακολούθησης επιδόσεων (PMU) των πρόσφατων επεξεργα-
στών της Intel που συμβαίνει όταν η τεχνολογία Υπερ-Νηματισμού (Hyper-Threading)
είναι ενεργοποιημένη. Αυτό το σφάλμα, μπορεί να προκαλέσει αλλοίωση των δεδο-
μένων στους μετρητές υλικού μεταξύ των υπερ-νημάτων (hyper-threads), οδηγώντας
έτσι σε αναξιόπιστα αποτελέσματα. Προκειμένου να παρακάμψουμε αυτό το πρόβλη-
μα, προτείνουμε ένα πρωτόκολλο παρόμοιο με πρωτόκολλα συνάφειας μνημών
a
he
(
a
he-
oheren
e), το οποίο υλοποιούμε στον πυρήνα του Linux. Η λύση μας στη-
ρίζεται στον προγραμματισμό των συμβάντων υλικού στους μετρητές επίδοσης κατά
δυναμικό τρόπο, βάσει της κατάστασης των υπερ-νημάτων. Παρουσιάζουμε επίσης
έναν αλγόριθμο που επιτυγχάνει πάντοτε βέλτιστο χρονοπρογραμματισμό των συμ-
βάντων στους μετρητές υλικού. Οι βελτιστοποιήσεις που προτείνουμε δεν απαιτούν
αλλαγές σε επίπεδο χρήστη και αξιοποιούν την εσωτερική σχεδίαση του υποσυστήμα-
τος perf_events. Ο πηγαίος κώδικας που αναπτύχθηκε έχει προσφερθεί στον πυρήνα
του Linux.

Λέξεις-Κλειδιά

παρακολούθηση επίδοσεων, μετρητές υλικού, μονάδα παρακολούθησης επιδόσεων,
υπερ-νηματισμός, πυρήνας του Linux, perf_events, χρονοπρογραμματισμός συμβάν-
των

7

A
knowledgments

While a
knowledgments are often
onsidered as a typi
al obligation of a thesis,

I would like to go beyond and dedi
ate this work, from the depths of my heart, to

all the people who have inspired me to a

omplish little peaks one after the other

and enabled me to look further into the horizon of life.

First of all, I would like to thank my professor, Ne
tarios Koziris, for intro-

du
ing me to the �eld of Systems and Computer Ar
hite
ture. It was through the

quality of his le
tures that I gained knowledge whi
h would prove invaluable later,

while working at Google. When during my se
ond Google internship in Summer

2013, I was made aware of a serious hardware erratum
orrupting performan
e

measurements on Intel x86 pro
essors, it was this knowledge of Computer Sys-

tems that gave me the insight into a solution to this problem, whi
h had remained

unsolved for the last three pro
essor generations. I am also grateful to him for

en
ouraging me to pursue this work and to lead it to some a

omplishment I
an

be proud of.

I want to thank Kostis Nikas for his help, his advi
e and for the time he devoted

to me during the writing of this thesis.

I would espe
ially like to thank Stéphane Eranian for engaging me into the

subje
t of Performan
e Monitoring and giving me the opportunity to learn about

its utmost signi�
an
e in software development and
ontribute in making it more

reliable and powerful. With his
onstant attention and
onstru
tive guidan
e, he

helped me move forward with this work, present it at CERN,
ontribute it in the

Linux kernel and re
eive re
ognition from the Performan
e Monitoring
ommunity

with an honorary award from Intel. Without him, this work and this thesis would

not have existed.

I would also like to express my thanks and deep gratitude to my professor and

mentor Andreas Stafylopatis for his en
ouragements to pursue the opportunity of

an internship at Google in Summer 2012 and his substantial support as Dean of

the ECE NTUA S
hool at the time. His sin
ere
are and advi
e have empow-

ered me throughout these life-
hanging years of my studies and have
ontributed

signi�
antly to my personal evolution and my a

omplishments up to this day.

Finally, this thesis is dedi
ated to my family and Stefanos. Without their

ontinuous love and support simply nothing would be the same.

9

Contents

1 Introdu
tion 15

2 Performan
e Monitoring 19

2.1 PMU hardware . 19

2.2 Operating systems infrastru
ture 20

2.2.1 Linux perf_events interfa
e 20

2.2.2 Linux OPro�le interfa
e . 21

2.2.3 Non-Linux interfa
es . 21

2.3 Performan
e monitoring tools . 22

2.3.1 Perf . 22

2.3.2 Gooda . 23

2.3.3 Intel VTUNE Ampli�er XE 24

2.3.4 Intel Performan
e Bottlene
k Analyzer 25

3 PMU Event S
heduling 27

3.1 Generi
 layer . 27

3.2 Intel x86
ore PMU s
heduling algorithm 29

3.3 Handling of failures . 30

4 PMU Hardware Erratum 31

4.1 Problem des
ription . 31

4.2 Corruption examples . 32

4.3 Possible solutions . 34

4.3.1 Disable Hyper-Threading 35

4.3.2 User warnings . 35

4.3.3 Monitor one thread per physi
al
ore 35

4.3.4 Multiplex PMU measurements 35

4.3.5 Ban
orrupting events . 35

5 Solving PMU Hardware Erratum: XSU Proto
ol 37

5.1 Dynami
 event
onstraints . 37

5.2 Dynami
 event s
heduling . 39

5.3 Integrating XSU proto
ol in perf_events subsystem 43

11

5.3.1 Advantages . 43

5.3.2 Tradeo�s . 44

5.3.3 Implementation . 44

6 Optimizing Event S
heduling 47

6.1 Drawba
ks of existing s
heduling algorithm 47

6.2 Event s
heduling as graph mat
hing 49

6.3 Algorithms for graph mat
hing . 49

6.3.1 Augmenting paths . 50

6.3.2 An O(n3) algorithm for �nding maximum mat
hing in bipar-

tite graphs . 51

6.3.3 Hop
roft-Karp algorithm for �nding a maximum mat
hing

in bipartite graphs in O(n2.5) time 52

6.4 Integrating Hop
roft-Karp in perf_events s
heduler 54

6.4.1 Tradeo�s . 55

6.4.2 Implementation . 56

7 Evaluation 59

7.1 XSU proto
ol . 59

7.2 S
heduling optimization . 69

8 Future Work 75

9 Con
lusions 81

List of Figures

2.1 Kernel ar
hite
ture of perf_events subsystem 20

2.2 The Gooda analysis interfa
e . 24

2.3 VTUNE ampli�er top-down analysis s
reenshot 25

2.4 Intel PBA Flow of Analysis . 26

2.5 PBA Relating Stati
 and Dynami
 Data 26

3.1 Event list s
heduling and rotation example 28

3.2 Event s
heduling on x86 PMU ar
hite
ture 30

4.1 Corrupting events for SNB, IVB and HSW 31

4.2 Possible
ounter
orruptions between sibling threads 32

4.3 Event assignment on CPU0 and CPU4 32

4.4 Simultaneous measurements on CPU0 and CPU4 34

4.5 Intel IvyBridge
orrupting event bla
klisting 36

5.1 XSU state transition diagram . 38

5.2 XSU shared state stru
ture . 39

5.3 XSU
onstraint bitmask . 39

5.4 Initial State . 40

5.5 S
heduling �rst event (C) of HT 0 list 40

5.6 S
heduling �rst event (NC) of HT 1 list 41

5.7 S
heduling se
ond event (NC) of HT 0 list 41

5.8 S
heduling se
ond event (C) of HT 1 list 42

5.9 S
heduling third event (NC) of HT 0 list 42

5.10 S
heduling third event (C) of HT 0 list 43

5.11 XSU proto
ol e�e
ts . 44

5.12 Intel Haswell
orrupting event
onstraints en
oding 45

6.1 Multiplexing indu
ed ina

ura
ies 49

6.2 Hop
roft-Karp Pseudo
ode . 55

6.3 Hop
roft-Karp versus Greedy s
heduling algorithm 56

6.4 Iterative DFS for kernel integration 58

7.1 XSU
orre
ted assignment for 0x81d0 (C) and 0x00
5 (NC) events 60

7.2 Corrupted measurements of 0x20

, 0x81d0, 0x08d1 62

13

7.3 Valid measurements of 0x20

, 0x81d0, 0x08d1 with XSU 64

8.1 Measuring 0x81d0, 0x08d1, 0x10d1, 0x01d1 with XSU disabled . . 76

8.2 Measuring 0x81d0, 0x08d1, 0x10d1, 0x01d1 with XSU enabled . . . 77

8.3 Measuring 0x81d0, 0x08d1, 0x10d1, 0x01d1 on one thread 78

8.4 XSU state with 4
orrupting events on HT 0 79

14

Chapter 1

Introdu
tion

Nowadays, all pro
essors provide a set of performan
e
ounters to measure

many key mi
ro-ar
hite
tural events, su
h as the number of elapsed
y
les, in-

stru
tions exe
uted, mispredi
ted bran
hes,
a
he and TLB misses [1, 2, 3, 4℄. In

hardware the
ounters are implemented by a logi
al unit usually referred to as the

Performan
e Monitoring Unit (PMU). PMUs are also present in other hardware

devi
es beyond the pro
essors, su
h as I/O, power, and memory
ontrollers [5℄

where they
an be used to measure memory bandwidth,
a
he
oheren
y tra�
,

remote memory a

esses, power
onsumption and read/write bandwidth to disk or

network. PMUs
an also be found in graphi
s
ards [6℄.

It is possible to use the PMU to
ount o

urren
es of mi
ro-ar
hite
tural events

or
olle
t statisti
al pro�les to determine where there may be resour
e bottlene
ks

using event-based sampling. The advantages of the PMU
ounters are, �rst, that

they provide low-level data without requiring software modi�
ations and se
ond,

that this information
an be
olle
ted with very low overhead (usually < 3%).

The data they deliver, su
h as the number of
a
he misses,
annot be obtained

by instrumenting software, but only by using
y
le-a

urate ma
hine simulators.

However, these are out of rea
h for many developers be
ause they are usually

reserved for internal use by hardware vendors and be
ause they usually in
ur an

extremely large slowdown at the exe
ution of the workload.

The information
olle
ted by these mi
ro-ar
hite
tural events is
ru
ial for any

workload performan
e analysis. It is used for workload
hara
terization, optimiza-

tion of job pla
ements with Google's CPI

2
[7℄ and provision of statisti
al data

for
ompiler feedba
k dire
ted optimizations with Google's AutoFDO [8℄. It is also

ommonly used by pro�ling tools su
h as Intel's VTUNE [9℄ or Google's Gooda [10℄

to identify performan
e bottlene
ks, su
h as instru
tion starvation or load laten
y

and their lo
ation in the software. Based on the performan
e analysis, developers

may be able to modify their programs to avoid
ertain bottlene
ks, for instan
e,

separate two �elds of a stru
ture into separate
a
he lines to avoid false sharing.

Compilers may be able to optimize the hot path of a fun
tion to avoid bran
hes.

Information is also useful to the provision of ma
hines based on workloads, for

15

instan
e PMU data
an tell whether a workload is CPU bound or not determining

the
hoi
e of a pro
essor model. Furthermore, ea
h workload stresses
ertain parts

of a mi
ro-ar
hite
ture di�erently. Knowing whi
h mi
ro-ar
hite
tural element is

the weakest link
an help improve future pro
essors to run workloads better, for

instan
e by adding an extra load fun
tional unit.

The Linux kernel provides full a

ess to the hardware performan
e
ounters of

hardware devi
es via the perf_events [11, 12℄ interfa
e. This in
ludes the pro
es-

sor, but also
a
he, PCIe, power, memory
ontrollers. The interfa
e
an be used

to
ount events or
olle
t pro�les on a per-thread or per-CPU basis from small

handheld devi
es, su
h as phones or tablets, to large servers. It supports all the

major pro
essor ar
hite
tures from Intel x86 and IBM Power to the various �avors

of ARM-based
hips. It
an also handle many non-
ore PMUs found on server pro-

essors, su
h as Intel Xeons. All Linux distributions
omes with an open-sour
e tool

alled Perf whi
h
an exer
ise all aspe
ts of the interfa
e a
ross all the pro
essor

ar
hite
tures.

With a powerful and integrated kernel monitoring infrastru
ture, more develop-

ers are in
lined to use hardware
ounters to analyze their appli
ations. New usage

models are emerging with live automati
 feedba
k loop system su
h as Google's

CPI

2
[7℄. As more people, most of whom are not ne
essarily pro
essor mi
ro-

ar
hite
ture experts,
ome to rely on
ounter data, it is very important to ensure

the
orre
tness of the measurements they produ
e and minimize the overhead of

monitoring.

Understanding low-level raw performan
e data is not an easy task given the

omplexity of today's pro
essors. Tools
an help abstra
t some of that
omplexity

by using higher level metri
s but that is possible only if the low-level data is

trustworthy. The kernel interfa
e providing a

ess to the PMU must be stable

and thoroughly tested. At the hardware level, mi
ro-ar
hite
tural events must be

validated to ensure they
ount what they are supposed to at all times. Validating

events
an be
hallenging, as it entails developing subtle mi
ro-ben
hmarks with

known behaviors and verifying that the event
ounts make sense. The
omplexity

of this job is too often underestimated as the PMU is rarely
onsidered a
riti
al

omponent of a hardware devi
e, e.g., a pro
essor
an operate perfe
tly �ne with

a PMU that produ
es invalid
ounts for
a
he misses. If the PMU is known to be

unreliable and expert-only, users will turn away and it will not be further developed,

leaving potential performan
e gain opportunities unexploited.

Re
ent Intel pro
essors with Hyper-Threading [13℄ have a published erratum

whi
h seriously impa
ts the
orre
tness of hardware
ounters under
ertain
on-

ditions, potentially leading to very large
ounter
orruptions. Currently, there is

no hardware or �rmware �x available for the impa
ted pro
essors. In this the-

sis, we des
ribe a
a
he-
oheren
e style proto
ol that we have implemented in the

Linux kernel to
ompletely eliminate the
orruption without any
hanges to user

tools or metri
s. Our software solution to this erratum leverages the design of

the perf_events subsystem and in parti
ular the way it
ontrols how events are

16

programmed onto
ounters, i.e., s
heduled onto the PMU
ounters.

The event s
heduling algorithm is at the
ore of the subsystem. Not all events

an be measured on all the
ounters due to hardware
onstraints. The goal of

the event s
heduling algorithm is to assign events to valid
ounters while at the

same time try to maximize the use of the
ounters. If events are programmed

on the wrong
ounters, they may silently
ount in
orre
tly. Thus, the s
heduling

algorithm is
riti
al to ensure the
orre
tness of the performan
e monitoring data.

When there are more events to measure than
ounters or when there are events

ompeting for the same
ounters, the perf_events subsystem
an time-share the

ounters. In doing so, it provides �exibility for monitoring tools at the
ost of

a

ura
y. The total
ount of a multiplexed event is obtained by s
aling with a

timing fa
tor the raw
ount a

umulated ea
h time the event is s
heduled. This

approa
h works well, when the rate of o

urren
e of the event is
onstant but it is

not so a

urate if the monitored workload has rapidly
hanging phases. In order

to mitigate this e�e
t and improve a

ura
y, the s
heduling algorithm needs to

program as many events as possible on the available
ounters. Maximizing
ounter

usage also minimizes the overhead of monitoring be
ause event do not need to

reprogrammed as frequently.

The
urrent perf_events s
heduling algorithm uses a �rst mat
h greedy ap-

proa
h whi
h works well when events are mostly un
onstrained, whereas it is not

so e�
ient when many events are
onstrained. A
onsequen
e of our erratum

workaround is that events whi
h do not have hardware
onstraints, be
ome
on-

strained based on what is s
heduled on the pro
essor's hyper-threads. More
on-

straints put more pressure on the existing s
heduling algorithm and this results

in degraded quality of produ
ed s
hedules. In this thesis, following our work on

the erratum, we des
ribe how, based on an advan
ed graph algorithm, we have

improved the perf_events event s
heduler with an optimal s
heduling algorithm.

Our thesis is de
omposed in three majors parts. In the �rst part, we des
ribe the

performan
e monitoring hardware of re
ent Intel pro
essors and give an overview

of the Linux perf_events subsystem fo
using on the event s
heduling algorithm.

In the se
ond part, we des
ribe the hardware erratum and give examples of the

measurement
orruption it in
urs. Then, we enumerate the possible solutions and

justify why the our workaround is by far the most preferable approa
h. We de-

s
ribe our solution and we demonstrate our results. In the third part, we analyze

the
urrent event s
heduling algorithm and explain how we have identi�ed a bet-

ter approa
h based on a graph algorithm. We des
ribe our implementation and

evaluate our solution.

The work presented in our thesis will be integrated to the upstream Linux

kernel.

17

18

Chapter 2

Performan
e Monitoring

2.1 PMU hardware

Every modern pro
essor provides a set of hardware
ounters to measure mi
ro-

ar
hite
tural events, su
h as the number of elapsed
lo
k
y
les, instru
tions retired

and
a
he misses [1, 2, 3℄. Those
ounters are implemented in sili
on by a logi
al

unit
alled the Performan
e Monitoring Unit (PMU). Nowadays, PMUs are found

in pro
essor physi
al
ores, last level
a
he
ontrollers, memory
ontrollers, graphi
s

ards and I/O devi
es [5, 14, 6℄. They provide
ru
ial data to understand how the

hardware resour
es are used by software. Interpretation of the data
an identify

sour
e of bottlene
ks and give hints on how to eliminate them.

In our thesis, we fo
us on Intel Sandy Bridge, Ivy Bridge and Haswell pro-

essors. They all have a very sophisti
ated and powerful PMU [1℄. When Hyper-

Threading is enabled, ea
h logi
al CPU has 3 �xed
ounters and 4 generi

ounters.

The �xed
ounters measure only one event ea
h, whereas the generi

ounters
an

be programmed to measure up to 4 di�erent events simultaneously. The
ounters

are implemented by privileged model-spe
i�
 registers (MSR). There is a
on�g-

uration register where the event is programmed and a
ounter register where the

o

urren
es are a

umulated. The width of the
ounter
an vary. It is 48-bit on the

pro
essors we use in our thesis. There is also a set of global
ontrol and status reg-

isters to start and stop the PMU easily. Managing the PMU requires kernel-level

support, either in the form of a devi
e driver or a system
all.

The list of supported events is spe
i�
 to ea
h pro
essor implementation as it

is
losely tied to the mi
ro-ar
hite
ture [1℄. However, ea
h implementation tends

to build on the previous. The
ounters
an be programmed to
ount o

urren
es of

an event or to
olle
t a pro�le using event-based sampling. Counters
an interrupt

on over�ow, whi
h is how sampling is implemented. To
apture a sample after

p o

urren
es of an event, a
ounter is programmed to the value of −p. When

the
ounter over�ows, i.e., wraps ba
k to 0, an interrupt is generated. The kernel

at
hes the interrupt and saves the
urrent instru
tion pointer in a sampling bu�er

19

whi
h is eventually parsed by a performan
e tool.

Events may have
ounter
onstraints due to hardware limitations. For instan
e,

some events may only be measured on a spe
i�
 PMU
ounter only, e.g,
ounter

2, otherwise in
orre
t
ounts may be
aptured. Some events may require an extra

on�guration register and therefore only one instan
e of the event may be measured

at any time. Any kernel driver or tool needs to enfor
e these restri
tions.

2.2 Operating systems infrastru
ture

2.2.1 Linux perf_events interfa
e

Sin
e Linux kernel version 2.6.31, there is an o�
ial kernel interfa
e to a

ess

the hardware performan
e
ounters. It is
alled perf_eventsand it provides a high-

level, generi
 interfa
e to
ount and sample hardware and software events or Linux

kernel tra
e-points. The ar
hite
ture of this kernel subsystem is depi
ted in Fig. 2.1.

The user visible interfa
e provides a new system
all, perf_event_open(), and a

series of new �le entries in sysfs to simplify event naming and
on�guration for

tools. The
ore logi
 is en
apsulated into the generi
 layer,
ommon to all pro
essor

ar
hite
tures. There is a layer per ar
hite
ture and a set of PMU spe
i�
 support

routines to handle model spe
i�
 features. To make it easy to develop tools a
ross

various hardware platforms, and unlike many other interfa
es su
h as OPro�le [15℄,

the interfa
e is event-driven. Users pass events to measure and not register value

pairs. The kernel is responsible for programming these events onto the
orre
t

ounters, i.e., managing the PMU resour
e. Users are never aware of the a
tual

number of
ounters nor of event
onstraints.

perf_event_open() sysfs

generic

architecture specific

PMU1 PMU2 PMUn...

Figure 2.1: Kernel ar
hite
ture of perf_events subsystem

The interfa
e provides a set of generi
 events for basi
 monitoring, su
h as

y
les, instru
tions and bran
hes. These are mapped onto a
tual events by the

kernel. It is also possible to program any model-spe
i�
 event supported by the

host PMU. To program an event, a tool uses the new perf_event_open() system

all. Ea
h event is then identi�ed by a �le des
riptor. To start or stop an event,

the �le des
riptor is passed to the standard io
tl() system
all with a spe
i�

20

ommand, su
h as PERF_IOC_ENABLE to a
tivate an event. To read an event,

the �le des
riptor is passed to the regular read() system
all.

Ea
h event is managed individually. It is possible to
reate event groups to

ensure a set of events is always measured together, whi
h helps with
ertain metri

omputations. An event
an be measured in system-wide or per-thread mode,

where it is atta
hed to a physi
al
ore or a logi
al CPU respe
tively. On a ma
hine

with 8 logi
al CPUs, it is ne
essary to
reate 8 instan
es of an event, ea
h atta
hed

to one logi
al CPU. Similarly to monitor a multi-threaded program, there needs to

be one instan
e of ea
h event atta
hed to ea
h thread. As of Linux kernel 3.14, the

perf_events subsystem supports all major pro
essors on whi
h Linux runs, from

mainframes to hand-held devi
es.

2.2.2 Linux OPro�le interfa
e

The OPro�le interfa
e [15℄ is a Linux spe
i�
 hardware performan
e monitoring

interfa
e inspired by DEC's DCPI [16℄. It provides a

ess to the pro
essor hard-

ware
ounters. For a long time, it has been the o�
ial monitoring interfa
e of the

Linux kernel providing only system-wide pro�ling
apabilities a
ross all major pro-

essor ar
hite
tures. Nowadays it has been superseded by perf_events. The whole

infrastru
ture
onsists of a kernel level driver, a user level daemon (opro�led), and

a set of
ommands to start and stop monitoring and pro
ess the samples: op
on-

trol, opreport, opannotate. These
ommands intera
t with the daemon whi
h is

responsible for
ommuni
ating with the kernel and for symbolizing the samples,

i.e., asso
iate symbols to sampled addresses.

Although OPro�le is depre
ated, the user level
ommands persist and are now

implemented on top of the perf_events interfa
e to maintain ba
kward
ompati-

bility for the many s
ripts developed for the OPro�le
ommand set.

The OPro�le kernel interfa
e is a register-driven interfa
e. The user level
ode

is passing (register, value) pairs to program an event on a
ounter.

2.2.3 Non-Linux interfa
es

Hardware performan
e monitoring interfa
es exist in many other open-sour
e

or
ommer
ial operating systems.

The FreeBSD [17℄ operating system provides a system-
all based interfa
e
alled

hwpm
 [18℄. It exposes a
ounter based interfa
e and supports
ounting and sam-

pling on a per-pro
ess or system-wide basis. The user level tool is
alled pm
stat

and intera
ts with the kernel via a helper library
alled libpm
.

Commer
ial operating systems su
h as HPUX, Ora
le's Solaris and IBM AIX

also have hardware performan
e monitoring interfa
es. However, they are not pub-

li
 and they are used by proprietary tools su
h as Ora
le Solaris Studio Performan
e

Analyzer [19℄.

21

For Mi
rosoft Windows, there is no standard kernel interfa
e. Instead, tools

ome with their own drivers. On Intel, the VTUNE ampli�er XE analysis[9℄ tool

omes with an open-sour
e driver
alled sep. The same driver is also used by

Intel's Performan
e Bottlene
k Analyzer [20, 21℄. The driver provides a register

based interfa
e to program the hardware performan
e
ounters.

2.3 Performan
e monitoring tools

2.3.1 Perf

The perf tool [11, 12℄ is the Linux o�
ial open-sour
e performan
e monitoring

tool. It is developed as part of the Linux kernel and is o�ered by all standard Linux

distributions.

This is a
ommand line tool used to
olle
t performan
e data from many dif-

ferent
ounter sour
es su
h as hardware
ounters, kernel software
ounters and

tra
e-points. From ea
h sour
e, it is possible to
ount event o

urren
es or
ol-

le
t event based statisti
al pro�les. It is possible to measure on system-wide or

per-thread mode.

The tool is built on top of the Linux kernel perf_events interfa
e and o�er

a

ess to all the features of that interfa
e.

For pro�ling, the tool operates in a two-stage pro
ess. The pro�le is
olle
ted

using the perf re
ord
ommand. The fun
tion level pro�le is obtained with perf

report. The assembly and sour
e level pro�le is generated by the perf annotate

ommand. There is a simple text-based user interfa
e but no advan
ed
y
le anal-

ysis. Below we demonstrate a simple example of pro�ling the dd
ommand:

$ perf re
ord dd if=/dev/urandom of=/dev/null
ount=100000

$ perf report --stdio

Samples: 12K of event '
y
les'

Event
ount (approx.): 10659132347

#

Overhead Command Shared Obje
t Symbol

........

#

57.99% dd [kernel.kallsyms℄ [k℄ sha_transform

18.55% dd [kernel.kallsyms℄ [k℄ _mix_pool_bytes

16.50% dd [kernel.kallsyms℄ [k℄ extra
t_buf

1.50% dd [kernel.kallsyms℄ [k℄ __ti
ket_spin_lo
k

For
ounting, the perf stat must be used. It
an aggregate
ounts per pro
ess,

per
ore and per pro
essor so
ket. It is also possible to print
ount deltas at regular

time intervals:

$ perf stat dd if=/dev/urandom of=/dev/null
ount=100000

100000+0 re
ords in

100000+0 re
ords out

22

51200000 bytes (51 MB)
opied, 3,24949 s, 15,8 MB/s

Performan
e
ounter stats for 'dd if=/dev/urandom of=/dev/null
ount=100000':

3251,489215 task-
lo
k (mse
) # 1,000 CPUs utilized

284
ontext-swit
hes # 0,087 K/se

3
pu-migrations # 0,001 K/se

252 page-faults # 0,078 K/se

10 643 745 482
y
les # 3,273 GHz

3 399 485 751 stalled-
y
les-frontend # 31,94% frontend
y
les idle

<not supported> stalled-
y
les-ba
kend

25 823 470 801 instru
tions # 2,43 insns per
y
le

0,13 stalled
y
les per insn

459 733 444 bran
hes # 141,392 M/se

125 222 bran
h-misses # 0,03% of all bran
hes

3,251198688 se
onds time elapsed

The list of supported events depends on the underlying hardware platform.

However, the perf_events subsystem de�nes a set of generi
 events whi
h the tool

an dire
tly leverage as shown in the example above, e.g.,
y
les, instru
tions.

These events are mapped by the kernel onto a
tual hardware events if they exist.

The kernel may also export model spe
i�
 events in the sysfs �lesystem. They

an be used dire
tly by the perf stat tool. This is demonstrated in the example

below where the tool is used to a

ess a pro
essor so
ket level set of
ounters
alled

RAPL whi
h measures the energy
onsumption of the
hip. The
ount deltas are

printed every se
ond for 100s. Events may have units whi
h are also shown: here

the pro
essor in
onsuming about 2.10 Joules per se
ond, i.e, Watts. as follows:

$ perf stat -a -e power/energy-
ores/,power/energy-pkg/,power/energy-gpu/\

-I 1000 sleep 100

time
ounts unit events

1.000123322 2.11 Joules power/energy-
ores/ [100.00%℄

1.000123322 5.96 Joules power/energy-pkg/ [100.00%℄

1.000123322 0.31 Joules power/energy-gpu/

2.000354464 2.09 Joules power/energy-
ores/

2.000354464 5.95 Joules power/energy-pkg/

2.000354464 0.31 Joules power/energy-gpu/

...

2.3.2 Gooda

The Gooda [10℄ tool is an open-sour
e performan
e analysis tool developed by

Google for Linux.

It provides a system-wide
y
le-breakdown analysis using the hardware
ounters

of Intel pro
essors. It breaks down how ea
h
y
le is spent, i.e., whether it does

useful or useless work. Stalled
y
les are
lassi�ed in high level
ategories, su
h as

load laten
y or instru
tion starvation. These get eventually mapped onto a
tual

hardware events.

The tool is built on top of the Linux perf_events subsystem and the Perf tool.

To
olle
t the system-wide pro�le, Gooda uses the perf re
ord
ommand. The

pro�le data is then analyzed by Gooda to produ
e a series of text �les (JSON

23

format) whi
h
ontain the full analysis. Those �les
an then be visualized in a

standard web browser using a Javas
ript program.

The web-based GUI allows navigating from the pro
ess level analysis down to

the basi
-blo
k level analysis providing assembly,
ontrol �ow graph and sour
e

views.

The advantage of this web-based tool is that the entire analysis is
ontained

in the produ
ed text �les. The analysis
an be shared easily by simply passing

URLs. Remote users do not need the binaries or the sour
e
ode of the monitored

programs to look at the data.

Figure 2.2: The Gooda analysis interfa
e

2.3.3 Intel VTUNE Ampli�er XE

Intel VTUNE Ampli�er XE [9℄ is an advan
ed
ommer
ial tool available on

Windows and Linux. It works on a variety of Intel hardware platforms: laptops,

desktops, servers and
o-pro
essors su
h as Xeon Phi. It leverages the hardware

performan
e
ounters on those platforms to provide a set of system-wide analysis,

su
h as memory bandwidth, top-down
y
le analysis [22, 23℄. It is possible to drill

down from pro
esses, to fun
tions and assembly.

On Linux, it is
omposed of three parts:

1. amplxe-gui: the graphi
al user interfa
e (GUI)

2. amplxe-
l: the
ommand line tool (sep
li) to a
tually
olle
t the data

3. sep: the open-sour
e Linux kernel driver

24

On Linux, the tool does not use the o�
ial perf_events interfa
e but instead the

sep open-sour
e driver for
ompatibility with Windows systems.

The ri
h GUI interfa
e allows many �ltering and navigation options. Fig. 2.3

shows a s
reenshot of a top-down analysis of a simple test program,
alled triad

whi
h streams data from and to memory. As expe
ted, the analysis shows the

program is ba
k-end bound, i.e., it is waiting for memory a

esses.

Figure 2.3: VTUNE ampli�er top-down analysis s
reenshot

2.3.4 Intel Performan
e Bottlene
k Analyzer

The Intel Performan
e Bottlene
k Analyzer framework (PBA) [21, 20℄ is an

experimental monitoring tool whi
h uses a di�erent approa
h to analyze perfor-

man
e. It is built on top of the same kernel driver interfa
e as VTUNE, namely

the sep driver. The tool utilizes the PMU hardware of Intel X86 pro
essors, and in

parti
ular the ability to sample taken bran
hes. It uses these performan
e moni-

toring data to re
reate the hottest paths of instru
tion exe
ution through a binary

in order to �nd bottlene
ks along it. It also samples
ommon stalls events. The

re
reated paths of exe
ution are then passed through an analysis related to well

known
ode generation issues. The �ow of analysis for this tool is illustrated in

Fig. 2.4.

The exe
ution paths are displayed in a graph with addresses on the horizontal

axis and events histograms on the verti
al axis in Fig. 2.5.

Any spike denotes a high event
ount, i.e., a potential bottlene
k
ause whi
h

users
an further analyze.

25

VTune Data

Module for

Disassembly

Software Logging

OS/Driver/Application

Parses through

profilind data

and disassembly

ModuleData

FunctionData

StreamData

SpikeData

BlockData

Architectural

Specific

Static Issue Finders

To Categorize

Instructions

Architectural

Specific

Templates

(Prioritization etc)

Input from other

Toolsets

PBA GUI

User Data Initialization
Objects

Created

GUI Reports
Dynamic

Finders

Static

Finders

Figure 2.4: Intel PBA Flow of Analysis

Figure 2.5: PBA Relating Stati
 and Dynami
 Data

26

Chapter 3

PMU Event S
heduling

3.1 Generi
 layer

Users
an measure an arbitrary long list of events. Multiple tools may monitor

the same pro
ess or pro
essor in parallel. To ensure
orre
t measurements, the

kernel, whi
h is responsible for managing the PMU resour
e, must arbitrate
ounter

usage and assign events to the proper
ounters. This is
alled event s
heduling. It

takes as input a list of events and the output is an assignment of these events to

the hardware
ounters.

S
heduling o

urs when events are added or removed and on
ontext swit
hes

for per-thread events. In
ase the PMU is over-subs
ribed, i.e., there are more

events than
ounters, the kernel
an time multiplex events onto the
ounters. Ea
h

time the multiplexing timer expires, the
urrent events are s
heduled out and they

get repla
ed by others.

Multiplexing may also o

ur as a
onsequen
e of event s
heduling
on�i
ts, i.e.,

two or more events
ompeting for the same
ounter. The event s
heduler should

attempt to maximize
ounter usage in order to minimize the need for time-sharing

whi
h
ould in
ur ina

ura
ies.

Ea
h PMU may have di�erent s
heduling restri
tions. Therefore, the a
tual

s
heduling algorithm is implemented in the ar
hite
ture spe
i�
 layer of the Linux

kernel. If multiple PMUs share the same kind of restri
tions, they
an use the

same s
heduling algorithm. This is the
ase for all Intel x86
ore PMUs whi
h we

des
ribe hereafter.

S
heduling o

urs independently on ea
h CPU and operates at the event group

granularity. A group is treated atomi
ally. Either all the events in a group
an be

s
heduled or none is s
heduled. We assume one event per group in our des
ription.

In the generi
 perf_events layer (
.f. Fig. 2.1), events are inserted into one of

two lists based on their type: per-thread or system-wide. To keep the des
ription

simple, we assume one event list.

S
heduling is always driven from the generi
 perf_events layer. Events are

27

in
rementally passed down from the linked list in the generi
 layer to the low level

event s
heduling algorithm. S
heduling operates in passes, Px, using an in
remental

event window on the linked list. In the �rst pass (P1), the window starts with a

size of 1, i.e., one event is passed down. If it
an be s
heduled, then, in the se
ond

pass (P2), the window grows to a size of two, i.e., �rst and se
ond events are passed

down, and so on and so forth. The passes stop at the �rst s
heduling error or when

the window
ontains all the events on the linked list. In
ase of an error with a

window size of K, the
ounter assignment generated for size K−1 is programmed.

The algorithm is bound by the number of
ounters. If the PMU has N
ounters,

s
heduling stops when at most N events are passed down (window size K ≤ N).

This guarantees that if an arbitrary long list of events is provided, the system will

not slow down proportionally due to time
onsuming event s
heduling.

L E1 E2 E3

E1

E1 E2

E1 E2 E3

Figure 3.1: Event list s
heduling and rotation example

In Fig. 3.1, we illustrate the iterative pro
ess between the generi
 and ar
hite
-

ture spe
i�
 layers with 3 events: E1, E2, E3. The events E2 and E3 are
on�i
ting,

i.e., E2 and E3
an only be measured on the same spe
i�
 PMU
ounter and thus,

they
annot be s
heduled simultaneously. Fig. 3.1 shows 3 su

essive iterations of

the algorithm: T0 − T2. In the �rst iteration of the algorithm (T0), the �rst two

passes (P1, P2) su

eed but the third (P3) fails be
ause there is no
ounter avail-

able for E3, as it is already o

upied by E2. Thus, only two events are s
heduled

during this iteration, these from the P2 pass. On
e s
heduling is
omplete, events

are a
tually programmed onto the
ounters and a
tivated. On the next s
heduling

iteration (T1), the list of events is rotated, i.e., the head is moved to the tail and

the s
heduling algorithm starts again. On the se
ond iteration, only one event is

s
heduled from the P1 pass. Eventually, on the third s
heduling iteration (T2),

E3 gets to the head of the list and is s
heduled in P1 and P2 passes. Hen
e, the

algorithm guarantees that all events are eventually s
heduled.

28

3.2 Intel x86
ore PMU s
heduling algorithm

The
urrent Intel x86 algorithm uses a greedy, �rst mat
h approa
h to assign

events to
ounters. At ea
h pass, on
e an event is assigned to a
ounter, it
annot

be reassigned even though it
ould run on another
ounter. Events may have stati

onstraints, i.e., they may run on a limited subset of
ounters. For ea
h Intel x86

PMU, the kernel maintains a table of
onstrained events keyed o� of event
odes.

For ea
h
onstrained event, a bit mask of supported
ounters is returned to the

s
heduling algorithm. Generi
 hardware
ounters are indexed starting at 0 and

thus ea
h bit in the mask represents a supported
ounter. For instan
e, a mask of

0x3 means
ounters 0 and 1 are supported. We de�ne the weight of a
onstraint

as the number of set bits. The bigger the weight, the less
onstrained an event is,

i.e., more
ounter
hoi
es.

stru
t event_
onstraint snb_
onstraints[℄={

CNST(0x48,0x4), /*L1D_PEND_MISS.PENDING */

U_CNST(0x01
0,0x2),/*INST_RETIRED.PREC_DIST*/

};

In the
ode snippet above, we show an ex
erpt of the
onstraint table for

the Intel SandyBridge pro
essor. Event L1D_PEND_MISS.PENDING, with
ode

0x48,
an only be programmed on
ounter 2. If an event is not de�ned in the table,

it
an run on any generi

ounters and therefore in a PMU ar
hite
ture with 4

generi

ounters, the
onstraint mask is 0xf.

On
e the event list of window size K is passed by the generi
 layer to the

low-level Intel x86 s
heduler pro
eeds in the following 2 steps:

1. The event
onstraints are
olle
ted from the
onstraint tables and the weight

of ea
h event is
al
ulated. The K events are distributed to the di�erent

weight
ategories.

2. The s
heduling algorithm is invoked and tries to assign the K events to

ounters starting from smallest weight
ategory (most
onstrained events)

and moving to biggest one (least
onstrained events). For ea
h event in a

weight
ategory, the algorithm iterates over the N PMU
ounters until the

�rst
ounter mat
hing this event's
onstraints is found.

sort weights[℄ in as
ending order ;

for ea
h weight in weights[℄

for ea
h (event in weight.events[℄)

for ea
h (
ounter in
ounters[℄)

if ((event.
onstraint allows
ounter) and (
ounter is available)) {

assign event to
ounter;

mark
ounter as unavailable;

break;

}

29

The event is assigned to this
ounter without a possibility of future reassign-

ment to another mat
hing
ounter. Therefore, the s
heduling is done based

on a greedy, �rst mat
h approa
h algorithm. This step is des
ribed at the

pseudo
ode below.

As explained before, the window size K is bound by the number of PMU

ounters N . Thus, the
omplexity of the Intel x86 s
heduling algorithm is O(N2).
An assignment example for 3 events is given in Fig. 3.2. The event window

grows from 1 to 3. At ea
h pass (P1−P3) , the events are s
heduled in
onstrained

order. With a window size of 2 (E1, E2), E1 is s
heduled �rst and se
ond E2,

be
ause of their weights, respe
tively 1 and 4. With a window size of 3 (E1, E2,

E3), E1 is s
heduled �rst, se
ond
omes E3 and last E2. For ea
h pass, the array

on the right of the �gure shows the
ounter assignment.

L E1

0x1

E2

0xf

E3

0x3

E1

0x1

E1

0x1

0 1 2 3

E1

E2

0xf

0 1 2 3

E1 E2

E1

0x1

E2

0xf

E3

0x3

0 1 2 3

E1 E3 E2

P1

P2

P3

T0

Figure 3.2: Event s
heduling on x86 PMU ar
hite
ture

To minimize the
ost of s
heduling, for ea
h event, the algorithm �rst tries to

reuse the
ounter assigned to the event the previous time, i.e., fast path s
heduling.

If that works, then nothing else is needed. If this fails, then the normal algorithm

(normal path) is exe
uted.

3.3 Handling of failures

When no assignment is possible for a window size of K, an error is returned

to the generi
 layer whi
h stops trying to in
rease the event window size. The

previous window of K − 1 events is s
heduled on the
ounters.

To ensure all events get a
han
e to be s
heduled, errors trigger multiplexing.

When the multiplexing timer expires (default timeout is ea
h timer ti
k), the linked

list is rotated by one event and a new s
heduling iteration is performed starting

with a window size of 1. All
ommon events are guaranteed to be s
heduled be
ause

they all eventually rea
h the head of the linked list and thus will be s
heduled, at

the worst
ase, with the event window size of 1.

30

Chapter 4

PMU Hardware Erratum

4.1 Problem des
ription

On Intel Sandy Bridge (SNB), Ivy Bridge (IVB) and Haswell (HSW) pro-

essors, there are do
umented PMU errata, respe
tively BJ122 [24℄, BV98 [25℄,

HSD129 [26℄, whi
h
ause silent
orruption of
ounts when Hyper-Threading is

enabled.

Name Code Des
ription

MEM_UOPS_RETIRED.* 0xd0 Memory µ-ops retired

MEM_LOAD_UOPS_RETIRED.* 0xd1 Load mi
ro-ops retired

MEM_LOAD_UOPS_LLC_HIT_RETIRED.* 0xd2 L3 load hits retired

MEM_LOAD_UOPS_LLC_MISS_RETIRED.* 0xd3 L3 load misses retired

Figure 4.1: Corrupting events for SNB, IVB and HSW

We de�ne sibling threads as hyper-threads sharing the same physi
al
ore. We

also de�ne sibling
ounters as the
ounters with the same index in the PMU of

the sibling thread. Hereafter, we refer to the hyper-thread j as HTj and to a

PMU
ounter with index i as Ci. If
ertain memory events, listed in Table 4.1, are

measured on Ci of one hyper-thread, they may
orrupt any event measured on Ci

of the sibling thread at the same time. In other words, the
rosstalk
orruption

o

urs between sibling
ounters.

Fig. 4.2 shows the possible
ombinations for
orrupting (C) and non
orrupting

(NC) events on sibling threads HT 0 and HT 1 with 4
ounters. The dire
tion of

the arrows indi
ates whi
h
ounter is
orrupting its sibling. For instan
e, C1 of

HT 0 is
orrupting C1 of HT 1.

The
orruption
auses over-
ounting on the impa
ted
ounter. The severity of

the
orruption
annot be predi
ted. It depends on the workload and the events

measured on both hyper-threads. Event s
heduling is not syn
hronized between

31

C0

C1

C2

C3

C0

C1

C2

C3

HT0 HT1

NC

C

NC

CC

CC

NC

NC

Figure 4.2: Possible
ounter
orruptions between sibling threads

hyper-threads, hen
e, events
an be programmed in and out of
ounters in any

order and at any one time relative to the other hyper-thread making it even harder

to predi
t the
orruption error.

4.2 Corruption examples

The problem is very severe when a high rate memory event is leaking into

a low rate event. To demonstrate this
ase, we run a simple memory intensive

workload on an Intel Haswell
lient pro
essor where logi
al CPU0 and logi
al

CPU4 are sibling threads (threads HT0 and HT1 respe
tively). We use triad [10℄

workload, whi
h
omputes c[i] = a[i] + k ∗ b[i], and we measure the
orrupt-

ing MEM_LOAD_RETIRED.ALL_LOADS event (
ode 0x81d0) and the non-

orrupting BRANCH_MISPREDICTION event (
ode 0x00
5). We expe
t the

value of the bran
h mispredi
tion event to be low, sin
e it does not o

ur in tight

loops. However, if the two events are measured on sibling
ounters of the sibling

threads HT 0 and HT 1, then the
orruption of the bran
h mispredi
tion event
an

be orders of magnitude.

We use the perf tool for all of our experiments. It a

epts raw PMU events

using the rXXXX notation where XXXX is the hexade
imal event
ode.

C0

C1

C2

C3

C0

C1

C2

C3

HT0 HT1

0x00c5

(a) Add 0x00
5 on Thread 1

C0

C1

C2

C3

C0

C1

C2

C3

HT0 HT1

0x00c5

(b) Add 0x81d0 on Thread 0

Figure 4.3: Event assignment on CPU0 and CPU4

32

First, we measure the bran
h mispredi
tion event only at the user level (:u

modi�er) on CPU4 (-C option), in system-wide mode (-a option) for 10 times (-r

option), while also running the same triad test on CPU0 to generate the same load

on ea
h hyper-thread. We pin the triad program on CPU4 using the taskset tool:

$ taskset -
 0 triad &

$ perf stat -r 10 -a -C 4 -e r00
5:u taskset -
 4 triad

644 r00
5:u

This generates the
ounter assignment shown in Fig. 4.3a and we get 644 as the

total
ount for the bran
h mispredi
tion event. Then, we add the measurement of

the
orrupting retired loads event on CPU0 (sibling thread):

$ perf stat -a -C 0 -e r81d0:u taskset -
 0 triad &

$ perf stat -r10 -a -C 4 -e r00
5:u taskset -
 4 triad

40,960,843 r00
5:u

We get the
ounter assignment shown in Fig. 4.3b and the measurement output

is now 40,960,843 for the bran
h mispredi
tion event instead of 644.

Comparing the results of the two tests, we see that the over-
ount is more than

60,000 times greater. This leads to very serious misinterpretation of the behavior

of the workload, as triad may be assumed to be penalized by bran
h mispredi
tion

when in fa
t it is not.

To demonstrate that the problem is not spe
i�
 to the bran
h mispredi
tions

event, we run the example with another event for whi
h we
an �gure out the

ount in advan
e su
h as ROB_MISC_EVENT.LBR_INSERTS (
ode 0x20

)

whi
h
ounts the number of entries inserted in the Last Bran
h Re
ord (LBR)

bu�er [27℄. The event assignment is similar to the one in Fig. 4.3b, ex
ept for the

event
ode in C1. As the LBR is not used on the test system, the
ount for this

event must be zero.

$ perf stat -a -C 0 -e r81d0:u taskset -
 0 triad &

$ perf stat -r 10 -a -C 4 -e r20

:u taskset -
 4 triad

41,284,632 r20

:u

However, instead of zero the measurement output is 41,284,632. There is again

a huge
orruption due to the large number of load o

urren
es on the sibling thread.

Note that the
orrupted measurements of the non-
orrupting LBR and bran
h mis-

predi
tion events are about the same, whi
h is reasonable given that the workloads

are identi
al and the
orrupting event measured on the sibling
ounter is the same.

There is also an error for the
ount of the
orrupting event be
ause it misses

the
ounts that it leaked into the sibling
ounter. However, this error is small. To

show that, we use again our se
ond example but this time by also gathering the

ounts of the
orrupting event on CPU0:

$ taskset -
 0 triad & taskset -
 4 triad &

$ perf stat -a -C 0 -e r81d0:u sleep 5 &

$ perf stat -a -C 4 -e r20

:u sleep 5

2,827,304,988 r81d0:u

71,654,800 r20

:u $

33

The
orrupted
ount of the non-
orrupting event 0x20

 is what leaked from the

ount of the
orrupting event 0x81d0. Thus, the total
ount for the event 0x81d0

would be the sum of these two
ounts. If we
ompare the ratio of the leaked
ount

with the total
ount of the event 0x81d0, we get a ratio of 2.5%. In other words,

missing
ounts of the
orrupting event are negligible.

To prove that the
orruption o

urs only between sibling
ounters, we run two

instan
es of the triad program pinned to CPU0 and CPU4 respe
tively. We invoke

perf for a single measurement on the two hyper-threads. We use fewer events than

there are
ounters, thus the
ounter assignment remains
onstant throughout the

run and no res
heduling is needed. We use perf with the -a -A options to get a per

logi
al CPU breakdown of the
ounts:

$ taskset -
 0 triad & taskset -
 4 triad &

$ perf stat -a -C0,4 -A -e r81d0:u,r20

:u sleep 5

CPU0 2,823,288,122 r81d0:u

CPU0 0 r20

:u

CPU4 2,823,018,913 r81d0:u

CPU4 0 r20

:u

On CPU4, there is no
orruption on the LBR event: the
ount is zero as

expe
ted. The
ounter assignment for this example is shown in Fig. 4.4. In other

words, C0 of HT0 does not
orrupt C1 of HT1.

C0

C1

C2

C3

C0

C1

C2

C3

HT0 HT1

0x20cc 0x20cc

Figure 4.4: Simultaneous measurements on CPU0 and CPU4

It should be noted that in the
on�guration of Fig. 4.4, C0 of HT 0 does
orrupt

C0 of HT 1, as shown by the arrow, be
ause
orrupting events
an
orrupt ea
h

other a
ross sibling threads. This is not a problem though, be
ause the
orruption

is always small relative to the
orrupting event total
ount as we have already

demonstrated.

4.3 Possible solutions

The problem is severe and needs to be addressed. Several potential software

workarounds have been dis
ussed or implemented. However, these solutions avoid

the problem by either preventing simultaneous measurements on sibling threads

or by preventing the
orrupting events from being measured. We present these

workarounds below.

34

4.3.1 Disable Hyper-Threading

An obvious approa
h is to disable Hyper-Threading. This not only has a non-

negligible performan
e impa
t for most workloads, but it is also impra
ti
al as

Hyper-Threading
an only be turned on/o� on reboot, and not just when a
or-

rupting event is measured.

4.3.2 User warnings

Users
an be warned to measure only on one thread per physi
al
ore. This

requires knowledge of the CPU topology and tools whi
h
an operate on subsets of

pro
essors. However, it is not very pra
ti
al be
ause it assumes a single measure-

ment and single user ma
hine; otherwise there is still a risk of
orruption depending

on what other users measure on the sibling threads. Furthermore, when measur-

ing in per-thread mode, the problem still remains be
ause program threads
an

migrate.

4.3.3 Monitor one thread per physi
al
ore

The kernel
an ban half of the CPUs from monitoring. Only one hyper-thread

per physi
al
ore
an be used by the monitoring tools. Appli
ations
ould still run

on all logi
al CPUs but only half
ould be monitored. Again, not a very pra
ti
al

solution, espe
ially if all threads of an appli
ation do not exe
ute the same
ode.

4.3.4 Multiplex PMU measurements

The kernel
an multiplex measurements between the two hyper-threads. Only

one PMU per physi
al
ore
an be a
tive at any one time. This implementation

in perf_events would be
omplex be
ause it would require mutual ex
lusion logi

between CPUs for event s
heduling, something that is not there today. More

importantly though, it would require turning o� the hardware wat
hdog, whi
h

onstantly uses a
ounter to sample on
y
les event and trigger a non-maskable

interrupt (NMI) to dete
t CPU deadlo
k. However, disabling the wat
hdog is

not a

eptable in many produ
tion environments where it is used for postmortem

analysis of kernel deadlo
ks.

4.3.5 Ban
orrupting events

The kernel
an simply prevent the use of any
orrupting events. This is, in

fa
t, the
urrent solution in the upstream Linux kernel running on Intel IvyBridge.

But the
orrupting events whi
h are shown in Table 4.1 and whi
h are banned

in the kernel as shown in the
ode above, are all very important memory events,

needed in any serious performan
e analysis tools su
h as Gooda [10℄. Thus, banning

them
ompletely is not a viable solution.

35

stati
 stru
t event_
onstraint intel_ivb_event_
onstraints[℄ __read_mostly =

{

...

/*

* Errata BV98 -- MEM_*_RETIRED events
an leak between
ounters of SMT

* siblings; disable these events be
ause they
an
orrupt unrelated

*
ounters.

*/

INTEL_EVENT_CONSTRAINT(0xd0, 0x0), /* MEM_UOPS_RETIRED.* */

INTEL_EVENT_CONSTRAINT(0xd1, 0x0), /* MEM_LOAD_UOPS_RETIRED.* */

INTEL_EVENT_CONSTRAINT(0xd2, 0x0), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */

INTEL_EVENT_CONSTRAINT(0xd3, 0x0), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */

};

Figure 4.5: Intel IvyBridge
orrupting event bla
klisting

36

Chapter 5

Solving PMU Hardware Erratum:

XSU Proto
ol

A proto
ol has been developed in perf_events subsystem to allow
orrupt-

ing events to be used while avoiding any random
orruption to the sibling thread

ounts. This proto
ol a
hieves �ne-grained
ounter-level
ontrol between hyper-

threads by enfor
ing mutual ex
lusion for sibling
ounters measuring the
orrupt-

ing events and allowing sibling
ounters to measure simultaneously non-
orrupting

events.

Our solution leverages the perf_events event-oriented interfa
e and the fa
t

that event s
heduling and multiplexing are entirely
ontrolled by the kernel. Mutual

ex
lusion between hyper-threads is a
hieved through
oordinated event s
heduling.

5.1 Dynami
 event
onstraints

As des
ribed earlier, event s
heduling is based on stati
 event
onstraints im-

plemented as bit masks. Our solution introdu
es dynami
 event
onstraints. The

stati

onstraint, i.e., the hardware imposed
onstraint, is
ombined with a new

onstraint based on what is measured on the sibling thread at the same time to

form the dynami

onstraint. The perf_events s
heduler operates on the dynami

onstraints without any modi�
ation.

The key innovative idea in our solution is to leverage existing proto
ols main-

taining
a
he
oheren
e to generate the dynami

onstraints for ea
h event. The

inspiration for this
omes from the fa
t that there is an analogy between the
ounter

orruption problem and
a
he line in
onsisten
y issues in multi-pro
essor systems.

A
ounter pair, i.e., two sibling
ounters,
orresponds to a
a
he line and the sibling

threads a

essing the
ounter pair
orrespond to the pro
essors a

essing the
a
he

line.

The proto
ol we have developed is
alled XSU. It uses three states required for

any hyper-thread in order to distinguish whi
h PMU
ounters
an perform mea-

37

surements without yielding
orrupting results. The three states are ex
lusive (X),

shared (S) and unused (U). It is similar to the MSI
a
he
oheren
e proto
ol [28℄, an

invalidation-based proto
ol for write-ba
k
a
hes, but with fewer state transitions,

as shown in Fig. 5.1.

X

U

free

free

Figure 5.1: XSU state transition diagram

Initially, there is no event s
heduled on the
ounter pair and it is marked unused

(U state). This state
orresponds to the Invalid state of MSI where no pro
essor

has a valid
opy of the
a
he line. If a non-
orrupting event is s
heduled on one of

the sibling
ounters, the state of the pair
hanges from unused to shared (S state).

In the S state, another non-
orrupting event
an be measured simultaneously on

the
ounter pair, i.e., sharing of the pair is allowed between the hyper-threads. This

orresponds to the Shared state of MSI where more than one pro
essor may have

a valid
opy of the
a
he line in their
a
hes. If a
orrupting event is s
heduled on

one of the sibling
ounters, the state of the pair
hanges from unused to ex
lusive

(X state). This implies that no other event
an be measured on the
ounter pair.

To a
hieve measurement
orre
tness, a
orrupting event measurement requires ex-

lusive use of a
ounter pair. The X state
orresponds to the Modi�ed state of MSI

where only one pro
essor has a valid
opy of the
a
he line in its
a
he.

The transitions from the S and X states ba
k to the U state happen when the

events are s
heduled out of the
ounters. During measurements, the pair is set to

either S or X state and no other transitions are possible. To summarize, for ea
h

event type, the following is required:

• Corrupting: Allowed on
ounters in U state

• Non-Corrupting: Allowed on
ounters in U or S state

The kernel maintains the XSU state for ea
h
ounter in a new data stru
ture

a

essible from both hyper-threads as shown in Fig. 5.2.

38

C0

C1

C2

C3

HT0 HT1

XSU State

C0

C1

C2

C3

HT0
C0

C1

C2

C3

HT1

Physical Core

Figure 5.2: XSU shared state stru
ture

5.2 Dynami
 event s
heduling

During s
heduling, the XSU state of the requesting hyper-thread is read and

ombined with the stati

onstraint of ea
h event. The dynami

onstraint mask of

an event is simply the logi
al AND between the stati

onstraint and the
onstraint

mask built from the XSU
ounter state on the requesting hyper-thread. The bit

mask
onstraint for ea
h event type is
onstru
ted as shown in Fig 5.3.

Corrupting Non-
orrupting

X 0 0

S 0 1

U 1 1

Figure 5.3: XSU
onstraint bitmask

Based on its dynami

onstraint, the event is assigned to a
ounter on the re-

questing hyper-thread. Then, the XSU state of the sibling (non-requesting) hyper-

thread is modi�ed to re�e
t what it
an measure after s
heduling is
omplete.

In order to demonstrate how the XSU proto
ol operates, let us assume that

the kernel needs to s
hedule a list of one
orrupting (C) and two non-
orrupting

(NC) events on HT 0 and a list of one non-
orrupting and two
orrupting events

on HT 1, where HT 0 and HT 1 are sibling threads.

For simpli
ity, let us also assume that all events are stati
ally un
onstrained.

With 4
ounters, the stati

onstraint is therefore 0b1111. The dynami

onstraint

of ea
h event, as the logi
al AND of its stati

onstraint and the XSU state
on-

straint is therefore equal to the XSU state
onstraint. Note that at the formulation

of the
onstraints, C0 is represented to the least signi�
ant bit and C3 to the most

signi�
ant bit.

39

HT0

XSU State

C0

C1

C2

C3

HT0
C0

C1

C2

C3

HT1

Physical Core

U

U

U

U U

U

U

U

HT0

HT1

C

NC C C

NC NC

Figure 5.4: Initial State

As shown in Fig. 5.4, initially the PMU
ounters of both sibling threads are

empty and the XSU state for ea
h of them is marked as U.

C0

C1

C2

C3

HT0 HT1

XSU State

C0

C1

C2

C3

HT0
C0

C1

C2

C3

HT1

Physical Core

U

U

U

X

U

U

U

U

C HT0

HT1

C

NC C C

NC NC

⇒
HT0

constraint

0xf

1

1

1

1

Figure 5.5: S
heduling �rst event (C) of HT 0 list

The kernel starts with the �rst event (C) of HT 0. The dynami

onstraint

is 0b1111 as all the PMU
ounters of HT 0 are marked as U. Thus, this event

an run on any
ounter of HT 0. As shown in Fig. 5.5, the s
heduler
hooses the

�rst available
ounter and the event is s
heduled on C0. The XSU state of C0 of

HT 1 is updated to X. This implies that C0
an no longer be used for any event

measurement by HT 1 be
ause of the
orrupting event measured by HT 0 on its

sibling
ounter.

In Fig. 5.6, the kernel pro
eeds with the �rst event (NC) of HT 1. The dynami

onstraint is now 0b1110 be
ause of C0 marked as X. Thus, this event
an run

40

C0

C1

C2

C3

HT0 HT1

XSU State

C0

C1

C2

C3

HT0
C0

C1

C2

C3

HT1

Physical Core

S

U

U

X

U

U

U

U

C
NC

HT0

HT1

C

NC C C

NC NC

⇒
HT1

constraint

0xe

1

1

1

0

Figure 5.6: S
heduling �rst event (NC) of HT 1 list

on one of C1, C2 or C3 of HT 1. The event is s
heduled on the �rst available

whi
h is C1. The XSU state of C1 of HT 0 is updated to S and HT 0
an only use

this
ounter for measuring a non-
orrupting event be
ause measuring a
orrupting

would impa
t the measurements of the NC event on the sibling C1 of HT 1. This

implies that C0
an no longer be used for any event measurement by HT 1 be
ause

of the
orrupting event measured by HT 0 on its sibling
ounter.

C0

C1

C2

C3

HT0 HT1

XSU State

C0

C1

C2

C3

HT0
C0

C1

C2

C3

HT1

Physical Core

S

U

U

X

S

U

U

U

C
NCNC

HT0

HT1

C

NC C C

NC NC

⇒
HT0

constraint

0xf

1

1

1

1

Figure 5.7: S
heduling se
ond event (NC) of HT 0 list

Next
omes the se
ond event (NC) of HT 0 as shown in Fig. 5.7. The dynami

onstraint is 0b1111 sin
e, stati

onstraint permitting, a non-
orrupting event

an be s
heduled on any
ounter that is in shared or unused state. The event is

s
heduled on C1, the �rst available
ounter of HT 0. The XSU state of C1 of HT 1

41

is updated it to S in order to reserve the
ounter only for non-
orrupting events.

C0

C1

C2

C3

HT0 HT1

XSU State

C0

C1

C2

C3

HT0
C0

C1

C2

C3

HT1

Physical Core

S

X

U

X
S

U

U

U

C
NCNC
C

HT0

HT1

C

NC C C

NC NC

⇒
HT1

constraint

0xc

1

1

0

0

Figure 5.8: S
heduling se
ond event (C) of HT 1 list

C0

C1

C2

C3

HT0 HT1

XSU State

C0

C1

C2

C3

HT0
C0

C1

C2

C3

HT1

Physical Core

S

X

U

X
S

U

S

U

C
NCNC
C

HT0

HT1

C

NC C C

NC NC

⇒
HT0

constraint

0xd

1

1

0

1

NC

Figure 5.9: S
heduling third event (NC) of HT 0 list

In Fig. 5.7 and Fig. 5.8 the kernel pro
eeds with the s
heduling of the third

event (NC) of HT 0 and the se
ond event (C) of HT 1 based on the XSU proto
ol

prin
iples. Now, let us fo
us on the last event (C) of HT 1.

A
orrupting event
an be s
heduled only on
ounters that are in unused state,

stati

onstraint permitting. Therefore, as shown in Fig. 5.10 the event
an only

be s
heduled on C2 and the dynami

onstraint is 0b0100. However, C2 of HT 1

is o

upied by another event. Thus, the last event in the list of HT 1
annot be

s
heduled. As des
ribed, in
hapter 3 this will indu
e multiplexing. When an event

42

C0

C1

C2

C3

HT0 HT1

XSU State

C0

C1

C2

C3

HT0
C0

C1

C2

C3

HT1

Physical Core

S

X

U

X
S

U

S

U

C
NCNC
C

C

HT0

HT1

C

NC C C

NC NC

⇒
HT1

constraint

0x4

0

1

0

0

NC

Figure 5.10: S
heduling third event (C) of HT 0 list

is eventually s
heduled out, the
ounter is freed and its XSU state is
hanged ba
k

to the U state in the sibling thread.

5.3 Integrating XSU proto
ol in perf_events

subsystem

5.3.1 Advantages

The integration of the XSU proto
ol in perf_events guarantees measurement

orre
tness. At the same time, it enables measurements of all the performan
e

events, in
luding the
orrupting memory events whi
h are needed for any serious

performan
e analysis. It makes it possible to reliably use Intel pro
essors' PMU

ounters and features for advan
ed performan
e analysis by tools su
h as Perf and

Gooda. The XSU proto
ol has several key advantages
ompared to the solutions

dis
ussed in se
tion 4.3 of the previous
hapter.

• Hyper-Threading remains enabled.

• There are no
hanges at the user level, so existing
olle
tion s
ripts and tools

do not need to be modi�ed.

• No event is bla
klisted.

• All logi
al CPUs
an be monitored simultaneously.

43

5.3.2 Tradeo�s

When the XSU proto
ol is used, there is ne
essarily more pressure on event

s
heduling. Common events whi
h were not
onstrained before may be
ome
on-

strained dynami
ally, depending on what is measured on the sibling thread. S
hedul-

ing be
omes more di�
ult as more
orrupting events appear in the event lists of

the sibling threads.

C0

C1

C2

C3

HT0
C0

C1

C2

C3

HT1

Physical Core

C NC

NC

NC

C

C

(a) No multiplexing but
or-

rupted results

C0

C1

C2

C3

HT0 HT1

XSU State

C0

C1

C2

C3

HT0
C0

C1

C2

C3

HT1

Physical Core

S

X

U

X
S

U

S

U

C
NCNC
C

C

NC

(b) Corre
t results but mul-

tiplexing

Figure 5.11: XSU proto
ol e�e
ts

Ba
k to the example we saw above, as the Fig. 5.11 demonstrates, without the

XSU proto
ol all the events
an be s
heduled in one s
heduling pass but
orrupted

results will be yielded for all the NC events. Whereas with the XSU proto
ol,

measurement
orre
tness is now guaranteed but multiplexing is needed.

Under
ertain
onditions, it is quite possible for the dynami

onstraint mask

to
ome out as zero, meaning that the event
annot be
urrently s
heduled. This

also indu
es multiplexing whi
h will give a
han
e for the event to be s
heduled

later.

If no
orrupting event is programmed, our solution does not modify existing

event s
heduling
onstraints and it only in
urs the extra book-keeping
ost of the

XSU state stru
ture.

The key implementation
hallenge is to tune the XSU proto
ol with the in
re-

mental perf_events s
heduler. This
an happen assuming the dynami

onstraints

as
onstant for a given events list only for as long the resour
es are atomi
ally

a
quired by the spe
i�
 thread.

5.3.3 Implementation

We have su

essfully implemented our XSU proto
ol in Linux kernel 3.15. We

have modi�ed 5 �les and about 600 lines of
ode. The
ode has been published

44

on the Linux kernel mailing list (LKML) and at the time of this writing is under

review by subsystem maintainers.

The implementation was relatively straightforward. We added the shared XSU

state stru
ture to ea
h pair of threads and prote
ted it with a spinlo
k.

The
orrupting events are added to the
onstraint table for ea
h pro
essor with

the erratum using the INTEL_EXCLEVT_CONSTRAINT() ma
ro as shown in Fig. 5.12

for the Haswell pro
essor.

stati
 stru
t event_
onstraint intel_hsw_event_
onstraints[℄ = {

...

INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */

INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */

INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */

INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */

...

};

Figure 5.12: Intel Haswell
orrupting event
onstraints en
oding

Ea
h time an event is used, the table is looked up and if the mat
hing event is

found, then the
onstraint and some �ags are extra
ted. For the
orrupting events,

the �ags indi
ates that the event requires ex
lusive
ounter a

ess via the XSU

proto
ol. The
onstraint on the
orrupting events is 0xf, i.e., any generi

ounter

be
ause those events do not have stati
 hardware
onstraints.

When running on a pro
essor with the erratum, all events must go through

the XSU proto
ol to
ompute their dynami

onstraint. If no
orrupting event

is present, then the regular
onstraint on the event is not modi�ed. The XSU

proto
ol
ode is spe
i�
 to Intel PMU and there lives in the perf_event_intel.
 �le

ex
lusively. No
hanges to the generi
 X86 perf_events
ode is required.

In order to ensure
orre
tness of the dynami

onstraints, the XSU shared state

is lo
ked during s
heduling by either hyper-thread. S
heduling must appear as a

atomi
 transa
tion to ensure that if s
heduling su

eeds the new XSU state
an be

ommitted safely, i.e., without the risk of the sibling having run and modi�ed the

state in the meantime. This lo
king is implemented through a new set of PMU

spe
i�
 optional
allba
ks. They are de�ned only for Intel X86 PMU models with

the erratum. The rest of the s
heduling algorithm is unmodi�ed.

The dynami

onstraints are built on the �y and require memory allo
ation per

event. The new
ode ensures that memory is freed appropriately by �agging the

events with dynami

onstraints.

The
ode also provide a way to disable the workaround for debugging purposes

via a sysfs �le entry for the
ore PMU: /sys/devi
es/
pu/ht_bug_workaround.

The workaround is enabled by default. To disable the workaround, a system ad-

ministrator must do:

45

e
ho 0 >/sys/devi
es/
pu/ht_bug_workaround

To re-enable the workaround:

e
ho 1 >/sys/devi
es/
pu/ht_bug_workaround

We will evaluate the e�e
t of the XSU proto
ol in perf_events measurement

orre
tness with spe
i�
 examples in
hapter 7.

46

Chapter 6

Optimizing Event S
heduling

6.1 Drawba
ks of existing s
heduling algorithm

As des
ribed in
hapter 3, the
urrent Intel x86 algorithm uses a greedy, �rst

mat
h approa
h to assign events to
ounters. The �rst available
ounter whi
h

satis�es an event's
onstraint is sele
ted for the event to be s
heduled on. On
e an

event is assigned to a
ounter, it
annot be reassigned even though its
onstraint

ould permit its assignment on another
ounter.

The s
heduling algorithm stops adding events at the �rst error, whi
h o

urs

at most after N events, if there are N
ounters. However, in reality, the s
heduler

stops mu
h earlier. It stops at the �rst error due to event
onstraints whi
h
annot

be satis�ed simultaneously from the remaining set of free
ounters.

The major issue of the algorithm des
ribed is that the event s
heduler may not

hoose wisely the
ounter to s
hedule the event on. In order to maximize the pos-

sibilities for the subsequent events to be s
heduled, it needs to have knowledge of

their
onstraints and make a
ounter sele
tion based on that and not by
hoosing

the �rst available
ounter. Furthermore, with N
ounters, the s
heduling algo-

rithm only uses the �rst N events of the linked list at ea
h iteration, potentially

leaving aside events whi
h
ould use the
ounters left over by event
on�i
ts. The

on�uen
e of these two fa
tor leads to a suboptimal allo
ation of events to
ounters

and results in under-utilization of the available resour
es or even failure to resolve

s
heduling problems of
ertain
ombinations of events and
onstraints.

As we have seen, in situations where not all events
an be s
heduled at on
e, the

kernel multiplexes them, i.e., time-sharing of the
ounters is required. The fewer

events s
heduled by the s
heduling algorithm, the more multiplexing is needed.

However, with multiplexing, the events are not measured at all times be
ause of

the time-sharing. The kernel keeps tra
k of the time the event was enabled versus

the time it is a
tually ran on the PMU hardware. The information is passed ba
k

to the performan
e monitoring tools whi
h then s
ale the event
ount based on the

47

timing ratio. The
omputation is shown in equation 6.1 below.

count =
countraw ∗ timeenabled

timerunning
(6.1)

In that
ase, the �nal
ount is an approximation of what it would have a
tually

been, had the event been measured throughout the entire time it was indi
ated as

enabled. This
al
ulation works very well if the workload has a
onstant behavior,

as it assumes the events always o

ur at the same rate.

However, if the workload has rapidly
hanging phases, as shown in Fig. 6.1,

this s
aling
al
ulation
ould yield ina

urate results. Let us assume that there are

two events measured, L3_CACHE_MISS and INSTRUCTIONS_RETIRED. Let

us also assume that both events
ompete for the same
ounter. The measurements

run for 10 equal time intervals of duration T , T1 = ...T10 = T . The blue histogram

orresponds to the
ounts of the
a
he misses events ea
h on of these 10 time

intervals. The blue slots
orrespond to the time intervals where the
a
he misses

event is running on the
ounter while the beige slots
orrespond to the ones where

the instru
tions event o

upies the
ounter. The
a
he misses event is enabled for

all the 10 time intervals, thus timeenabled = 10T . In reality, it runs on the hardware
only for the slots T1, T3, T5, T7 and T9, thus timerunning = 5T . The total
ount

that the kernel passes to the performan
e monitoring tools
orresponds to the 5

slots the event was measured and it is countraw = 50M. Based on equation 6.1

the s
aled
ount we obtain for the
a
he misses event is 100M. However, if we add

up the measurements for ea
h interval of the histogram the a
tual
ount of
a
he

misses is 75M. Thus, s
aling of the
ounts due to multiplexing is not always reliable

and
an yield signi�
ant ina

ura
ies.

An obvious way to mitigate the error is to in
rease the rate of multiplexing, but

that also in
reases the overhead of monitoring whi
h is not desirable, as the behav-

ior of the workload would be impa
ted. Another way is to minimize multiplexing

and thus make the timerunning approximate the timeenabled, is by maximizing the

use of the PMU
ounters. This requires that the s
heduling algorithm stops as late

as possible and maximizes the number of events s
heduled at ea
h run.

The existing Intel x86 s
heduling does not always maximize
ounter usage when

many events are
onstrained. The greedy algorithm works better when most events

are not
onstrained. However, as dis
ussed in se
tion 5, the XSU proto
ol guar-

antees measurement
orre
tness at the
ost of more
onstrained s
heduling. Al-

though, the
urrent event s
heduling algorithm performs well when most events are

un
onstrained, the deterioration of the quality of s
hedules in a more
onstrained

environment is unavoidable and raises the need of a more e�e
tive s
heduling al-

gorithm to solve the event/
ounter assignment.

48

a

L
3
_
C
A
C
H
E
_
M
IS
S
E
S

Time

Figure 6.1: Multiplexing indu
ed ina

ura
ies

6.2 Event s
heduling as graph mat
hing

The perf_events s
heduling
an be modeled as a mat
hing problem in an un-

weighted bipartite graph G. The events and the
ounters are the two disjoint sets

of the bipartite graph (let us
all them X and Y respe
tively) and they form the

set V of verti
es in the graph. The
onstraints allowing ea
h event to be measured

only on
ertain PMU
ounters, form the set E of edges in the graph. To s
hed-

ule the events optimally on the hardware, we need to �nd the maximum bipartite

mat
hing in G(V,E). This model is equivalent to adding a super sour
e s with

edges to all verti
es in the events set X and a super sink t with edges from all

verti
es in the
ounters set Y , and �nding a maximal �ow from s to t. All edges

with �ow from X to Y then
onstitute a maximum mat
hing.

6.3 Algorithms for graph mat
hing

We now des
ribe the theoreti
al ba
kground of graph mat
hing problem algo-

rithms as presented in [29℄.

De�nition 6.3.1. Let G = (V,E) be a graph. M ⊆ E is
alled mat
hing of G if

∀ v ∈ V we have | {e ∈M : v is in
ident on e ∈ E} | ≤ 1.

De�nition 6.3.2. A mat
hing M of G is
alled maximal if ∀ e ∈ E \M the set

of edges given by M ∪ {e} is not a mat
hing of G.

De�nition 6.3.3. The size of a mat
hing M of G is the number of the edges it

ontains and is denoted by |M |.

49

De�nition 6.3.4. A mat
hing M of G is
alled maximum if ∀ mat
hing M ′
of

G we have |M | ≥ |M ′|.
De�nition 6.3.5. LetM be mat
hing of G. A vertex v ∈ V is
alled M-saturated

if M
ontains an edge in
ident on v. Otherwise v it is
alled M-unsaturated or

M-free.

6.3.1 Augmenting paths

De�nition 6.3.6. LetM be mat
hing of G. A path P in G is
alled M-alternating

if the edges of P are alternately in and out of M .

De�nition 6.3.7. LetM be mat
hing of G. A path P in G is
alled M-augmenting

if it is a maximal, M-alternating path with unsaturated start and end verti
es.

Clearly, an M-augmenting path has odd number of edges.

Lemma 6.3.8. Let G be a graph whose maximum degree is at most 2. Then every

omponent of G is either an isolated point, a path or a
y
le.

Proof. Consider any non-isolated vertex v of G. Its, at most two, neighbors further

have degree at most 2 and so on. So the
omponent of G
ontaining v is either a

path or a
y
le. This holds true for all non-isolated verti
es of G. QED.

Lemma 6.3.9. (Berge 1957) A mat
hing M is maximum if and only if G has no

M-augmenting path.

Proof. Suppose there exists an M-augmenting path P . Consider the symmetri

di�eren
e M ⊕ P whi
h represent edges that are present in exa
tly one of M

or P . Sin
e P is an M-augmenting path, M ⊕ P is also a mat
hing of G and

|M ⊕ P | = |M | + 1. So M is not maximum. Suppose M is not maximum. Let

M ′
be a maximum mat
hing and so we have |M ′| > |M |. Consider M ⊕M ′

. Ea
h

vertex has degree at most 2 in M ⊕M ′
sin
e ea
h of M and M ′

an
ontribute at

most 1 ea
h to the degree of ea
h vertex in M ⊕M ′
. By Lemma 6.3.8, M ⊕M ′

onsists of
y
les, paths and isolated verti
es. But the edges of M ⊕M ′
alternate

in M and M ′
ex
lusively. Hen
e ea
h
y
le must be even. So M ′

ex
eed M in size

only from the paths. So, there exists at least one path in M ⊕M ′
whi
h has more

edges from M ′
than from M . But su
h a path is M-augmenting.

Corollary 1. (Hop
roft-Karp) Let M∗
be a mat
hing of G. Then for any mat
hing

M of G su
h that |M∗| ≥ |M |, we have |M∗| − |M | vertex-disjoint M-augmenting

paths. The non-M edges on these paths all belong to M∗
.

Proof. From the proof of 6.3.9 every
y
le of M ⊕M∗
is even and every path of

M⊕M∗
whi
h is not M-augmenting must have equal number of edges fromM and

M∗
as M∗

is maximum. Also note that ea
h M-augmenting path has exa
tly one

edge more fromM∗
than fromM . So we need |M∗|−|M | su
h paths. These are all

vertex-disjoint, sin
e in De�nition 6.3.7 we de�ned augmenting paths as maximal

paths starting and ending at unsaturated points.

50

Corollary 2. Let |M∗| be a maximum mat
hing and M be any mat
hing. If M is

not maximum, then the shortest M-augmenting path has length ≤ |V |
|M∗|−|M | − 1

Proof. From Corollary 2 we know that there are |M∗| − |M | vertex-disjoint (and
hen
e edge-disjoint) M-augmenting paths. By Pigeonhole Prin
iple, one of the

paths must have at most

|V |
|M∗|−|M | verti
es and thus has length at most

|V |
|M∗|−|M | −

1.

For �nding the maximum mat
hing of a graph using augmenting paths,
onsider

the following algorithm whi
h follows from Lemma 6.3.9.

1. M = ∅

2. while (there is an M -augmenting path P) do

M ←M ⊕ P

3. return M

The
hallenge now is to dete
t existen
e of and �nd augmenting paths e�
iently.

We
onsider the
ase when G is bipartite.

6.3.2 An O(n3) algorithm for �nding maximum mat
h-

ing in bipartite graphs

Let G = (X ∪ Y,E) be a bipartite graph where X and Y are its disjoint sets

and let M be a mat
hing of G. We want to �nd a maximum mat
hing of G. We

denote by X0 , Y0 the sets of M-unsaturated verti
es in X, Y respe
tively. We

onsider a new dire
ted graph H on the vertex set X ∪ Y and edge set E. Edges

whi
h are in M are dire
ted X → Y and edges not in M are dire
ted Y → X.

Lemma 6.3.10. G has a M -augmenting path if and only if H has a path from Y0
to X0.

Proof. Suppose G has an M -augmenting path say from u ∈ X0 to v ∈ Y0. The

same path dire
ted from v to u is
learly a path in H from Y0 to X0. Suppose H

has a path from y ∈ Y0 to x ∈ X0. The underlying undire
ted path from x to y is

learly an M -augmenting path.

So we do a depth-�rst-sear
h (DFS) from Y0 and stop as soon as we rea
h some

vertex in X0, thus giving us an M -augmenting path P . M is augmented along

P , the new mat
hing is M ⊕ P . The pro
ess is then repeated. If a vertex of X0

annot be rea
hed, then G has no M -augmenting path i.e. M is maximum. The

time
omplexity of the algorithm is analyzed as follows.

1. Without loss of generality, assume |Y | ≤ |X|. Thus |Y0| ≤ |Y | ≤ |V |
2
. Also at

ea
h stage of the algorithm, augmenting saturates a previously unsaturated

vertex from Y without impa
ting verti
es whi
h are already saturated. So

we need at most |Y0| ≤ |V |
2

stages.

51

2. At ea
h stage several DFS are needed, starting from ea
h vertex in Y0. The

maximum number of DFS needed is |Y0|, as in the worst-
ase, only the DFS

starting from the last vertex of Y0 may lead to a path in X0. A single DFS

an be done in O(|V |+ |E|) time.

3. On
e an augmenting path is found, the mat
hing is augmented in O(|E|)
time.

Thus, the algorithm takes at most

|V |
2

[

O(|E|) + |Y0| ∗O(|V |+ |E|)
]

. However,

the |Y0| fa
tor
an be eliminated. If a super-vertex ψ is added and
onne
ted with

edges to to every point in Y0, DFS is needed to be applied only on
e, for vertex ψ.

Thus, the time
omplexity be
omes O
(

|V |
2

[

|E|+(|V |+ |E|)
])

= O
(

|V |2+ |V ||E|
)

.

Sin
e a bipartite graph on |V | verti
es
an
ontain at most (

|V |2

4
) edges, the time

omplexity of the algorithm is O(|V |3) or O(n3).

6.3.3 Hop
roft-Karp algorithm for �nding a maximum

mat
hing in bipartite graphs in O(n2.5) time

The pre
eding algorithm, looked for a single augmenting path at a time and

augmented it. The maximal family of vertex-disjoint shortest-length augmenting

paths
ould be found instead and be augmented all together in a single stage.

This would bring the time
omplexity down to O(n2.5). Consider the following

algorithm.

1. M = ∅

2. while (there is an M -augmenting path) do

�nd a maximal family F of vertex-disjoint shortest M -augmenting paths;

set M ←M ⊕ F ;

3. return M

The
orre
tness of the algorithm follows from Lemma 6.3.9. It
an be shown

that using a maximal family F of shortest augmenting paths instead of a single

augmenting path signi�
antly redu
es the number of stages (Lemma 6.3.14), and

also that the time per stage indu
ed by �nding su
h families does not in
rease

(Lemma 6.3.15). The proof of the above is based on the following lemmas.

Lemma 6.3.11. Let M be a mat
hing of G and let P be an M -augmenting path of

shortest length. Let P ′
be an (M⊕P)-augmenting path. Then |P ′| ≥ |P |+ |P ∩P ′|,

where |P | is the number of edges in P .

Proof. Consider N = (M ⊕ P) ⊕ P ′
. Then N is
learly a mat
hing and |N | =

|M | + 2. Thus by Corollary 1, there are 2 vertex-disjoint M -augmenting paths,

say P1 and P2, with the non-M edges in N . That is, P1 ∪ P2 ⊆ M ⊕ N . Note

52

that M ⊕ N = P ⊕ P ′
and thus we have |P ⊕ P ′| ≥ |P1| + |P2|. But P1, P2

are both M -augmenting paths and P is a shortest M -augmenting path. Therefore

|P ⊕ P ′| ≥ 2|P |. However |P ⊕ P ′| = |P | + |P ′| − |P ∩ P ′| and so the desired

inequality follows.

Lemma 6.3.12. Let M0 = ∅ and
onsider the sequen
e M0, M1, ..., Mi, ... where

∀i, Pi is a shortest Mi-augmenting path, and Mi+1 = Mi ⊕ Pi. Then, for i < j,

|Pi| ≤ |Pj |. Further, |Pi| = |Pj | implies that Pi and Pj are vertex-disjoint.

Proof. It follows from Lemma 6.3.11 that for i < j, |Pi| ≤ |Pj |. Suppose now that

for some i < j, Pi and Pj are not vertex-disjoint, and assume to the
ontrary that

|Pi| = |Pj |. This implies that |Pi| = |Pi+1| = ... = |Pj−1| = |Pj |. Then there

exist some k, l su
h that i ≤ k < l ≤ j and Pk and Pl are not vertex-disjoint

and further for all m between l and k we have Pm is vertex-disjoint from both

Pk and Pl. Therefore Pl is an Mk-augmenting path and so by Lemma 6.3.11 we

have |Pl| ≥ |Pk| + |Pl ∩ Pk|. However we are given that |Pl| = |Pk| whi
h implies

that |Pl ∩ Pk| = 0, i.e., Pl and Pk have no edges in
ommon. However sin
e Pl

and Pk are not vertex-disjoint, they have a
ommon vertex say x and then they

must have in
ommon the edge from Mk ⊕ Pk whi
h is in
ident on x leading to a

ontradi
tion.

Lemma 6.3.13. Let F be an in
lusion-maximal family of vertex-disjoint shortest

M -augmenting paths, all of length l1. Let l2 be the length of a shortest (M ⊕ F)-
augmenting path. Then l2 ≥ l1 + 2.

Proof. Let F = {P1, P2, ..., Pr}. Let P be a shortest (M ⊕ F)-augmenting path.

Note that M ⊕ F = (...(M ⊕ P1) ⊕ P2)...) ⊕ Pr . Suppose P is disjoint from ea
h

element of F . Then P is also an M -augmenting path, but by maximality of F , it

is not a shortest augmenting path. So l2 > l1. Next, suppose that P has a vertex

in
ommon with at least one path in F . By Lemma 6.3.12 we have l2 > l1. Finally

note that l1, l2 are both lengths of augmenting paths and they must be odd; hen
e

l2 > l1 =⇒ l2 ≥ l1 + 2.

We
onsider again the bipartite graph G = (X ∪ Y,E) where X and Y are its

disjoint sets and the dire
ted graph H with vertex set X ∪ Y and edge set E.

Lemma 6.3.14. The algorithm des
ribed at the start of this se
tion makes at most

2
√

|V | iterations.

Proof. Let M∗
be a maximum mat
hing and let M be the mat
hing after

√

|V |
iterations. By Lemma 6.3.13, the length of the shortest M -augmenting path is at

least (2
√

|V | − 1) ≥
√

|V |. By Corollary 2 we have

√

|V | ≤ (length of shortest

M -augmenting path) ≤ |V |
|M∗|−|M | , and so |M∗| − |M | ≤

√

|V |. From this point

onwards, even if we augment just one path in ea
h iteration, we need at most

√

|V |
more iterations, as ea
h augmentation in
reases size of mat
hing by 1. Thus overall

we need no more than 2
√

|V | iterations.

53

Lemma 6.3.15. Ea
h iteration of the algorithm
an be implemented in O(|E|)
time.

Proof. First we will use breadth-�rst-sear
h BFS to �nd the length k of a shortest

path from Y0 to X0. Simultaneously, we produ
e the sequen
e of disjoint layers

Y0 = L0, L1, ..., Lk ⊆ X0 where

• ∀i : 0 ≤ i < k, Li is the set of verti
es at distan
e i from Y0

• Lk is the subset of X0 at distan
e k from Y0 whi
h we look for

To avoid multiple BFSs from ea
h vertex in Y0, a super-vertex ψ is added with edges

onne
ting it to all verti
es of Y0. The distan
e of ψ from X0
an be found with

a BFS starting from ψ. Subtra
ting this by one gives the length of the shortest

path from Y0 to X0. This requires O(|E|) time. Now
onsider a modi�ed DFS

whi
h starts at a vertex v ∈ Y0, stops as soon as it rea
hes a vertex say w in Lk

and outputs this v → w path. Add this M -augmenting path to F and delete all

verti
es visited in the modi�ed DFS. This is
ru
ial; not just the augmenting path

is deleted but also all the other verti
es visited in the modi�ed DFS. Let x be a

vertex seen at some Lj in the DFS started from v ∈ Y0. If x does not lead to anM -

augmenting path of length k starting at v, then x
annot be on anyM -augmenting

path of length k: any su
h path has to begin at some vertex in Y0 and it has to use i

edges to rea
h x. If the pro
edure is repeated starting at another vertex in Y0 until

all verti
es of Y0 are explored, a maximal family of vertex-disjoint shortest-length

augmenting paths is found. Let mi be the number of edges visited in the ith DFS

whi
h takes O(mi) time. Noting that |E| ≥
∑

imi, the time taken is O(|E|).

Theorem 6.3.16. The algorithm runs in O(|V |2.5) time.

Proof. From Lemma 6.3.15 ea
h phase
an be implemented in O(|E|) time. Also
from Lemma 6.3.14 there are at most 2

√
n phases. Thus, the time
omplexity of

the algorithm is O(
√

|V |) ∗O(|E|) = O(|V |2.5).

6.4 Integrating Hop
roft-Karp in perf_events

s
heduler

The Hop
roft-Karp maximum
ardinality mat
hing graph algorithm
an re-

pla
e the greedy, �rst mat
h algorithm whi
h is responsible for assigning the events

on the PMU
ounters in the perf_events subsystem.

The pseudo
ode of the Hop
roft-Karp algorithm is demonstrated in Fig 6.2

that follows.

54

fun
tion Hop
roft-Karp() {

for ea
h (x in X)

pair_Y[x℄ = free;

for ea
h (y in Y)

pair_X[y℄ = free;

mat
hing = 0;

while (BFS() == true)

for ea
h (x in X)

if (pair_Y[x℄ = free)

if (DFS(x) == true)

mat
hing = mat
hing+1;

return mat
hing;

}

fun
tion BFS() {

for ea
h (x in X)

if (pair_Y[x℄ = free) {

distan
e[x℄ = 0;

enqueue(Q, x);

} else {

distan
e[x℄ = ∞;

}

distan
e[free℄ = ∞;

while (!empty(Q)) {

x = dequeue(Q);

if(distan
e[x℄ < distan
e[free℄)

for ea
h (y in Y)

if (adja
ent[x℄[y℄)

if (distan
e[pair_X[y℄℄ == ∞) {

distan
e[pair_X[y℄℄ = distan
e[x℄+1;

enqueue(Q, pair_X[y℄)

}

}

return distan
e[free℄ != ∞;

}

fun
tion DFS(x in X) {

if (x == free)

return true;

for ea
h (y in Y)

if (adja
ent[x℄[y℄)

if (distan
e[pair_X[y℄℄ == distan
e[x℄+1)

if (DFS(pair_X[y℄)) {

pair_Y[x℄ = y

pair_X[y℄ = x

return true;

}

distan
e[x℄ = ∞;

return false;

}

Figure 6.2: Hop
roft-Karp Pseudo
ode

6.4.1 Tradeo�s

As we have shown in se
tion 3.2, the
omplexity of the existing s
heduling

algorithm is O(n2) whereas the
omplexity of Hop
roft-Karp is O(n2.5). However,
n in our
ase is bound by the number of PMU
ounters.

In se
tion 3.1 we have des
ribed that if the PMU has N
ounters, the generi

layer passes at most N events down to the ar
hite
ture spe
i�
 layer of the s
hed-

uler. This guarantees that if an arbitrary long list of events is provided, the system

will not slow down proportionally. This means that any s
heduling instan
e has at

55

most N events to be s
heduled on the N
ounters. In the
omplexity analysis of

the previous se
tion n
orrespond to the number of verti
es in the bipartite graph

of the problem, i.e. the number of
ounters plus the number of events. All major

PMUs nowadays have less than 16
ounters. That number is very likely to remain

low be
ause adding generi

ounters in hardware is a very expensive proposition.

Hen
e, in su
h small s
heduling instan
es, the overhead of our higher
omplexity

s
heduling algorithm is negligible and is at s
ale of nanose
onds.

Our proposal guarantees optimal s
heduling no matter how
ompli
ated the

onstraint might be, without making the event s
heduling more time
onsuming.

This is very
riti
al, espe
ially now with the integration of the XSU proto
ol in

perf_events. Hop
roft-Karp
an
ompensate for the more
onstrained s
heduling

and limit multiplexing. The advantage of our proposal versus the existing s
hedul-

ing algorithm is demonstrated in the Fig. 6.3 below.

E3

E1

E2

E3

E0E0

E1

E2

E3

E0

3/4 Events Scheduled

Multiplexing

4/4 Events Scheduled

No Multiplexing

Model
Greedy

Algorithm

Hopcroft-Karp

Algorithm

E1

E2

E3 E3

C0

C1

C2

C3 E3

C0

C1

C2

C3E3

E0

E1

E2

E3 E3

E0

E1

E2

E3 E3

C0

C1

C2

C3

Figure 6.3: Hop
roft-Karp versus Greedy s
heduling algorithm

6.4.2 Implementation

This high-level graph algorithm has been su

essfully implemented in the Linux

kernel meeting all the requirements asso
iated with kernel development.

Compa
t C Code : The Linux kernel is written in pure C and assembly. It oper-

ates under
ertain
onstraints regarding memory allo
ations. Data stru
tures

are usually fairly simple.

Minimal Exe
ution Time : The event s
heduling algorithm is invoked frequently.

By default, at every timer ti
k (1ms on x86) when multiplexing is ne
essary.

56

It is also invoked on tasks
ontext swit
hes for per-thread events. The
on-

text swit
h
ode path is very laten
y sensitive, this is why the s
heduling

needs to be fast.

Minimal Memory Footprint : The Linux kernel tries to minimize its memory

usage to maximize free memory for appli
ations. In parti
ular, the sta
k size

very limited.

No Re
ursion : On kernel entry, the sta
k of ea
h thread is swit
hed from the

expandable user sta
k to a per-thread �xed-size kernel sta
k. That sta
k

is very limited in size usually two pages (8KB on x86). It
annot grow

automati
ally like the user level sta
k. That prohibits re
ursive fun
tions

be
ause sta
k
onsumption may not easily be predi
table.

The
ode has been designed appropriately to solve the small s
heduling in-

stan
es of perf_events extremely fast while using simple enough data stru
tures.

The re
ursive modi�ed DFS we demonstrated in se
tion 6.3.3, has been redesigned

to be iterative. For eliminating re
ursion in DFS, a sta
k is used in order to keep

tra
k of the verti
es in Y rea
hed by the X verti
es produ
ed by the BFS layer.

The pseudo
ode of the iterative DFS is demonstrated in Fig. 6.4 below.

The algorithm is implemented in the x86 spe
i�
 layer, and is shared by Intel

and AMD pro
essors. The a
tual �le modi�ed is ar
h/x86/kernel/
pu/perf_event.

and about 300 lines of
ode were added. The
olle
tion of event
onstraints and

short path are not modi�ed at all by the new
ode. Only the perf_assign_events()

fun
tion is repla
ed. The bitmasks for the event
onstraints are de
oded to build

the graph on entry and the assignment is translated from the graph ba
k into an

array of integers on exit as expe
ted by the
alling fun
tion.

We will evaluate the the e�e
t of the event s
heduling optimization with spe
i�

examples in the
hapter that follows.

57

fun
tion DFS(x inX) {

if (x == free)

return true;

push(sta
k, (x, y

0

));

while (!empty(sta
k)) {

x = top(sta
k).X;

for ea
h (y

i

in Y) {

top(sta
k).Y = y

i

if (adja
ent[x℄[y

i

℄)

if (distan
e[x_pair[y

i

℄ = distan
e[x℄ + 1) {

if (x_pair[y

i

℄ == free) {

/*

* A free vertex of X is rea
hed and an augmenting path was found.

* Pop the entire sta
k adjusting the pairs and return true.

*/

while (!empty(sta
k)) {

/* Adjust pairs */

x_pair[top(sta
k).Y℄ = top(sta
k).X;

y_pair[top(sta
k).X℄ = top(sta
k).Y;

/* Pop sta
k */

pop(sta
k);

}

return true;

} else {

/*

* The new 'x' node is pushed in the sta
k for further
he
k.

*/

push(sta
k, (x_pair[y

i

℄, y

0

);

}

break;

}

/*

* The 'x' node's neighbors in Y set were fully s
anned and

* nothing interesting was found: pop and
ontinue with the

* other
andidates in X.

*/

distan
e[x℄ = ∞;

pop(sta
k);

}

}

Figure 6.4: Iterative DFS for kernel integration

58

Chapter 7

Evaluation

In this
hapter, we evaluate the results of our solutions for both the XSU

proto
ol and the Hop
roft-Karp improved s
heduling algorithm.

7.1 XSU proto
ol

In this se
tion, we evaluate the e�e
t of our XSU proto
ol to eliminate the

Hyper-Threading
orruption erratum through a set of before and after examples.

All examples in this se
tion are run on an Intel Core i7-4770 pro
essor with Hyper-

Threading enabled. For all the examples, we are using the triad program whi
h is

a single-threaded, very stable workload performing loads and stores. We pin one

instan
e on ea
h of the sibling threads and we let these instan
es run "forever".

The sibling threads we are measuring on are CPU0 (also referred to as HT0) and

CPU4 (also referred to as HT1). We �rst
ompare with the examples showed in

se
tion 4.1.

In the �rst example, we measure the
orrupting event MEM_UOPS_RETIRED:

ALL_LOADS event (
ode 0x81d0) and the non-
orrupting event MISPREDICTED_

BRANCH_RETIRED event (
ode 0x00
5). As we have explained, we expe
t the

value of the bran
h mispredi
tion event to be low, sin
e it does not o

ur in tight

loops. Indeed, if we only measure the bran
h mispredi
tions on CPU4 we get a

value of 772 as the total
ount.

$ taskset -
 0 triad &

$ perf stat -r 10 -a -C 4 -e r00
5:u taskset -
 4 triad

772 r00
5:u

Then, we add the measurement of the
orrupting retired loads event on CPU0

(sibling thread) with the XSU proto
ol disabled:

e
ho 0 >/sys/devi
es/
pu/ht_bug_workaround

59

$ taskset -
 0 triad &

$ taskset -
 4 triad &

$ perf stat -a -C 0 -e r81d0:u &

$ perf stat -r10 -a -C 4 -e r00
5:u

40 581 657 r00
5:u

We see the huge
orruption of the bran
h mispredi
tion event whose value is 40

581 657 instead of 772. Finally, we enable the XSU proto
ol and we try the same

measurement:

e
ho 1 >/sys/devi
es/
pu/ht_bug_workaround

$ taskset -
 0 triad &

$ taskset -
 4 triad &

$ perf stat -a -C 0 -e r81d0:u &

$ perf stat -r10 -a -C 4 -e r00
5:u

781 r00
5:u

The output is now ba
k to expe
ted, at 781. We manage to get the
orre
t result

be
ause the XSU proto
ol s
heduled the 0x81d0 and 0x00
5 events on di�erent

ounters on ea
h sibling thread, taking into a

ount the dynami

onstraints, not

just the stati
 ones as it was happening before. The valid
on�guration of the

ounters is shown in Fig. 7.1.

C0

C1

C2

C3

HT0 HT1

XSU State

C0

C1

C2

C3

HT0
C0

C1

C2

C3

HT1

Physical Core

0����0

0�00��

U

U

U

U

S

XU

U

Figure 7.1: XSU
orre
ted assignment for 0x81d0 (C) and 0x00
5 (NC) events

If we measure just enough events in a single run in order not to have multi-

plexing, then there is a
ase where we
an avoid
orruption even without enabling

the XSU proto
ol. This
ase relies on the fa
t that the same event list is s
heduled

on both sibling threads at exa
tly the same time and that the list is not modi-

�ed during the run. The two event lists are then syn
hronized and a
ross sibling

ounters the same events are s
heduled. This way, non-
orrupting events
annot

get
orrupted by the
orrupting ones. However, this implies that no other tool

60

is monitoring the same pro
ess or CPU at the same time. This may be valid on

single user systems, but not on shared servers. The XSU proto
ol eliminates the

risk of
orruption should the event lists on the sibling threads di�er or run asyn-

hronously, but it
omes at the pri
e of extra multiplexing as we demonstrate in

the next example.

We measure 3 events, 2
orrupting (0x81d0, 0x08d1) and 1 non-
orrupting

(0x20

) as shown below:

0x81d0 MEM_UOPS_RETIRED:ALL_LOADS

0x08d1 MEM_LOAD_UOPS_RETIRED:L1_MISS

0x20

 ROB_MISC_EVENTS:LBR_INSERTS

These events are stati
ally un
onstrained, i.e., they
an be s
heduled on any of

the 4 generi

ounters, hen
e they should all �t without requiring multiplexing. The

non-
orrupting event is the ROB_MISC_EVENT.LBR_INSERTS (
ode 0x20

)

whi
h
ounts the number of entries inserted in the Last Bran
h Re
ord (LBR)

bu�er. We
hoose this event be
ause, as the LBR is not used on the test system,

its value must always be zero. Hen
e, the
orruption is easily identi�able. Indeed,

when we measure it alone on CPU4 for ten times (-r10), we get 0 as value with 0%

deviation for all the ten runs.

$ perf stat -a -C4 -r10 -e r20

:u taskset -
 4 triad

0 r20

:u (+- 0,00\%)

Now, with XSU disabled, we measure the list of these three events, on both

siblings, in a single,
ombined run, for 10 se
onds.

e
ho 0 >/sys/devi
es/
pu/ht_bug_workaround

$ taskset -
 0 triad &

$ taskset -
 4 triad &

$ perf stat -a -A -C0,4 -e r20

:u,r81d0:u,r08d1:u sleep 10

CPU0 0 r20

:u [100,00%℄

CPU4 0 r20

:u [100,00%℄

CPU0 5 747 793 793 r81d0:u [100,00%℄

CPU4 5 711 985 901 r81d0:u [100,00%℄

CPU0 305 944 783 r08d1:u [100,00%℄

CPU4 305 472 307 r08d1:u [100,00%℄

10,000860002 se
onds time elapsed

As we explained there is no multiplexing (100% s
aling fa
tor) sin
e in ea
h

thread there are three events to be measured on four
ounters. But also, there is

no
orruption even without XSU, be
ause the event lists are
ompletely aligned

and they do not
hange during the run.

Now, if the event lists on the sibling threads are not identi
al or the measure-

ments are not initiated at the same time, whi
h is most
ommonly the
ase, we

will obtain
orrupted results.

Indeed, with XSU disabled, we now measure the events in parallel but separate

runs on the sibling threads and we
hange the order of these events in the two lists.

61

e
ho 0 >/sys/devi
es/
pu/ht_bug_workaround

$ taskset -
 0 triad &

$ taskset -
 4 triad &

$ perf stat -a -A -C0 -e r81d0:u,r08d1:u,r20

:u sleep 10 &

$ perf stat -a -A -C4 -e r20

:u,r81d0:u,r08d1:u sleep 10

CPU0 5 609 439 398 r81d0:u [100,00%℄

CPU0 304 559 413 r08d1:u [100,00%℄

CPU0 137 640 089 r20

:u [100,00%℄

10,000851695 se
onds time elapsed

CPU4 137 641 709 r20

:u [100,00%℄

CPU4 5 713 420 846 r81d0:u [100,00%℄

CPU4 166 553 900 r08d1:u [100,00%℄

10,000824227 se
onds time elapsed

The output shows that there is still no multiplexing but there is
orruption. The

LBR inserts event (0x20

) of CPU0 is
orrupted by 137 640 089
ounts leaked from

the L1 misses event (0x08d1) s
heduled on the sibling
ounter of CPU4. Similarly,

the LBR inserts event of CPU4 is
orrupted by 137 641 709
ounts leaked from

the loads retired event (0x81d0) s
heduled on the sibling
ounter of CPU0. The

orruption is shown in Fig 7.2.

C0 0x81d0

C1 0x08d1

C2 0x20cc

C3

C0 0x20cc

C1 0x81d0

C2 0x08d1

C3

HT0 HT1

Figure 7.2: Corrupted measurements of 0x20

, 0x81d0, 0x08d1

Next, we enable the XSU proto
ol and we run the same test.

e
ho 1 >/sys/devi
es/
pu/ht_bug_workaround

$ taskset -
 0 triad &

$ taskset -
 4 triad &

$ perf stat -a -A -C0 -e r81d0:u,r08d1:u,r20

:u sleep 10 &

$ perf stat -a -A -C4 -e r20

:u,r81d0:u,r08d1:u sleep 10

CPU0 5 650 303 673 r81d0:u [100,00%℄

CPU0 166 632 879 r08d1:u [100,00%℄

CPU0 0 r20

:u [100,00%℄

10,000773541 se
onds time elapsed

CPU4 0 r20

:u [66,68%℄

CPU4 5 509 435 203 r81d0:u [66,66%℄

62

CPU4 162 522 829 r08d1:u [33,35%℄

10,000779763 se
onds time elapsed

With the XSU dynami

onstraints, there is now multiplexing as we
an see

from the de
reased fra
tion of time ea
h event of CPU4 is measured on the hard-

ware. The LBR inserts event value is ba
k to zero for both threads. The XSU

proto
ol prote
ts the non-
orrupting events from
orruption. In Fig. 7.3, we show

the
on�guration of the
ounters for the two threads, whi
h also explains the s
aling

fa
tors seen above.

As perf on CPU0 is initiated �rst, the events of CPU0 �nd all the
ounters in

unused state and they are all s
heduled in. As all events manage to get s
heduled,

there is no need of multiplexing and thus the s
heduler of the generi
 layer will

not s
hedule them out until the 10 se
onds measurement is
ompleted (Fig 7.3a).

When CPU4 starts its measurements, some of the
ounters are already marked

as ex
lusive or shared by CPU0. For the two
orrupting events of CPU4 only

C3 is available while the non-
orrupting event
an use both C2 and C3. Hen
e,

multiplexing will be needed and the generi
 s
heduler will exe
ute multiple passes

rotating the event list as explained in
hapter 3 At the �rst pass (Fig 7.3b), non-

orrupting 0x20

 is the �rst event of the list and it is s
heduled on C2. The se
ond

event, the
orrupting 0x81d0, is s
heduled on C3. The s
heduler stops here be
ause

it fails s
heduling the third event of the list, the
orrupting 0x08d1, and the event

list is rotated by one. At the se
ond pass (Fig 7.3
),
orrupting 0x81d0 is the �rst

event of the list and it is s
heduled on C3. The s
heduler fails to pro
eed be
ause of

la
k of
ounters for the
orrupting event 0x08d1 and both 0x08d1 and 0x20

 that

follows, remain uns
heduled. The event list is rotated by one. At the third pass

(Fig 7.3d),
orrupting 0x08d1 is at the head of the list and gets the opportunity

to be s
heduled on C3. The se
ond event, the non-
orrupting 0x20

, is s
heduled

on C2. The s
heduler fails to s
hedule the
orrupting 0x81d0, the list is rotated

and we return to the
on�guration of the �rst pass. Ea
h pass lasts for a duration

of a timer ti
k, whi
h is by default 1 millise
ond in the system we are testing on.

For our 10 se
onds measurement, the s
heduler will do 10 000 passes. As we saw

in the analysis above and the respe
tive �gures, every 3 passes the events 0x20

and 0x81d0 are s
heduled twi
e and the event 0x08d1 is s
heduled on
e. Hen
e,

the s
aling fa
tors 66.68% for 0x20

 and 66.66% for 0x81d0, whi
h show that the

events run on the hardware for 2/3rds of the time, are justi�ed. Similarly, the

s
aling fa
tor 33.35% for 0x08d1 shows
orre
tly that this event is a
tivated for

1/3rd of the time.

During the multiple passes of the s
heduling algorithm, XSU guarantees valid

assignment of the events on the
ounters. However, as it
an be seen from the

ounts, the memory events have very di�erent
ounts. Espe
ially, the L1 misses

event (0x08d1) drops from 305 944 783 to 166 632 879 on CPU0 and from 305

472 307 to 162 522 829 on CPU4, losing approximately 50% of its
ounts. We will

63

HT0 HT1

XSU State

Physical Core

C0

C1

C2

C3

C0

0x20cc

C1

0x81d0

C2

C3

HT0 HT1

C0

C1

C2

C3

X

X

S

U

0x08d1

U

U

HT0 0x81d0 0x08d1 0x20cc

HT1

U

U

(a)

HT0 HT1

XSU State

Physical Core

C0

C1

C2

C3

C0

0x20cc

C1

0x81d0

C2

C3

HT0 HT1

C0

C1

C2

C3

X

X

S

U

0x08d1

U

U

S

X

0x20cc

0x81d0

0x08d1

HT0 0x81d0 0x08d1 0x20cc

HT1 0x20cc 0x81d0 0x08d1

(b)

HT0 HT1

XSU State

Physical Core

C0

C1

C2

C3

C0

0x20cc

C1

0x81d0

C2

C3

HT0 HT1

C0

C1

C2

C3

X

X

S

U

0x08d1

U

U

U

X

0x81d0

0x08d1

0x20cc

HT0 0x81d0 0x08d1 0x20cc

HT1 0x81d0 0x08d1 0x20cc

(
)

HT0 HT1

XSU State

Physical Core

C0

C1

C2

C3

C0

0x20cc

C1

0x81d0

C2

C3

HT0 HT1

C0

C1

C2

C3

X

X

S

U

0x08d1

U

U

S

X

0x08d1

0x81d0

0x20cc

HT0 0x81d0 0x08d1 0x20cc

HT1 0x08d1 0x20cc 0x81d0

(d)

Figure 7.3: Valid measurements of 0x20

, 0x81d0, 0x08d1 with XSU

explain this
hange later in
hapter 8.

Now, let us examine
ases where there are more events than
ounters in
luding

orrupting and non-
orrupting events, without and with the XSU proto
ol.

In this �rst
ase, we are using 1
orrupting memory event (0x08d1) and 4

64

non-
orrupting events (0x02
4, 0x20

, 0x00
4, 0x010e) as shown below:

0x08d1 MEM_LOAD_UOPS_RETIRED:L1_MISS

0x02
4 BR_INST_RETIRED:NEAR_CALL

0x20

 ROB_MISC_EVENTS:LBR_INSERTS

0x10
4 BR_INST_RETIRED:NOT_TAKEN

0x08
4 BR_INST_RETIRED:NEAR_RETURN

We have our triad workload running on both sibling threads (CPU0, CPU4).

Be
ause we will in
ur multiplexing and that will likely
ause
orruption, we �rst

measure the non-
orrupting events by themselves to get the a
tual
ounts in a

single run with XSU disabled:

e
ho 0 >/sys/devi
es/
pu/ht_bug_workaround

$ taskset -
 0 triad &

$ perf stat -r10 -a -C0 -e r02
4:u,r20

:u,r10
4:u,r08
4:u sleep 10

Performan
e
ounter stats for 'system wide' (10 runs):

342 r02
4:u (+- 0,04%) [100,00%℄

0 r20

:u (+- 0,00%) [100,00%℄

1 025 r10
4:u (+- 0,04%) [100,00%℄

342 r08
4:u (+- 0,04%) [100,00%℄

As we
an see, these are very stable events as shown by the deviation per
entage

over the 10 runs. These are our baseline numbers for the non-
orrupting events

obtained with no multiplexing. It is interesting to note that the values of the events

BR_INST_RETIRED:NEAR_CALL (
ode 0x02
4) and BR_INST_RETIRED:

NEAR_RETURN (
ode 0x08
4) in both threads are the same be
ause they
ount

the number of fun
tion
alls and fun
tion returns respe
tively. Next, we add the

orrupting memory event and we run the measurements of the �ve events with

XSU disabled:

e
ho 0 > /sys/devi
es/
pu/ht_bug_workaround

$ perf stat -a -C4 -e r81d0:u,r02
4:u,r20

:u,r10
4:u,r08
4:u sleep 10 &

$ perf stat -a -C0 -e r81d0:u,r02
4:u,r20

:u,r10
4:u,r08
4:u sleep 10

5 587 605 755 r81d0:u [80,00%℄

77 512 989 r02
4:u [80,00%℄

6 087 383 r20

:u [80,00%℄

6 080 780 r10
4:u [80,00%℄

18 218 197 r08
4:u [79,99%℄

10,000809054 se
onds time elapsed

5 585 007 977 r81d0:u [80,00%℄

18 233 527 r02
4:u [80,00%℄

6 104 578 r20

:u [80,00%℄

6 091 492 r10
4:u [80,00%℄

77 517 725 r08
4:u [79,99%℄

65

10,000739612 se
onds time elapsed

As expe
ted, there is multiplexing. The s
aling fa
tor is about 80% whi
h in-

di
ates that ea
h event is a
tive about 4/5th of the time, i.e., at any one time 4

out of 5 events are a
tive on the hardware. Be
ause of multiplexing, the event lists

on both threads rotate at ea
h timer ti
k. Thus, a
ross the 10 se
onds measure-

ments, the
orrupting event of the one thread ends up in fa
ing and
orrupting

ea
h one of the non-
orrupting events of the other thread and vi
e-versa. All the

non-
orrupting events of both sibling threads have their results
orrupted by sev-

eral million of leaked
ounts. The more time a non-
orrupting event �nds itself

s
heduled with a
orrupting event on a pair of sibling
ounters, the more unrea-

sonably higher its value be
omes due to
orruption. The errors are prominent on

these low frequen
y non-
orrupting events we have
hosen.

Next, we run the same test
ase but with XSU enabled and look at the impa
t

on the
ounts of the non-
orrupting events and on the multiplexing.

e
ho 1 > /sys/devi
es/
pu/ht_bug_workaround

$ perf stat -a -C4 -e r81d0:u,r02
4:u,r20

:u,r10
4:u,r08
4:u sleep 10 &

$ perf stat -a -C0 -e r81d0:u,r02
4:u,r20

:u,r10
4:u,r08
4:u sleep 10

5 554 095 990 r81d0:u [30,99%℄

342 r02
4:u [50,60%℄

0 r20

:u [60,40%℄

1 021 r10
4:u [70,20%℄

350 r08
4:u [70,17%℄

10,000809047 se
onds time elapsed

5 543 881 332 r81d0:u [40,77%℄

336 r02
4:u [50,59%℄

0 r20

:u [60,39%℄

1 030 r10
4:u [70,19%℄

343 r08
4:u [79,99%℄

10,000782512 se
onds time elapsed

The
ounts have returned ba
k their expe
ted values a

ording to the baseline

numbers we
olle
ted at the beginning of this test. The other interesting part of

these results is the s
aling fa
tor whi
h has de
reased, denoting a smaller a
tive

time on the hardware for ea
h event. The di�eren
e between the values of the events

BR_INST_RETIRED:NEAR_CALL (
ode 0x02
4) and BR_INST_RETIRED:

NEAR_RETURN (
ode 0x08
4) in both threads, is due to multiplexing ina

u-

ra
ies. The pattern of fun
tion
alls and fun
tion returns may present
hanging

phases whi
h
annot always be
aptured be
ause the events are not measured at

all times. In any
ase, the values of these two events are very similar and the

66

dis
repan
ies of less than 10
ounts we obtain now is far from the dis
repan
ies of

60 000 000 we were obtaining when measuring without the XSU proto
ol.

In this example the sibling threads are
ompeting to a
quire the shared state

and s
hedule their events on the
ounters every timer ti
k, be
ause they are both

subje
t to multiplexing. Hen
e, the time that ea
h event of the two threads is

a
tually ran on the hardware and thus the s
aling fa
tors of ea
h event,
annot

be predi
ted be
ause of these ra
e
onditions. What the XSU proto
ol o�ers is a

guarantee of valid
on�guration of the
ounters at all times and
orre
t results for

the non-
orrupting events.

If we add more events to measure in a single run, we
an see the e�e
t of

the XSU proto
ol on multiplexing. For this se
ond
ase, we use an event list of

10 events on ea
h thread, 4
orrupting memory events (0x81d0, 0x08d1, 0x10d1,

0x01d1) and 6 non-
orrupting events (0x02
4, 0x20

, 0x10
4, 0x08
4, 0x01
9,

0x04
8), as shown below:

0x81d0 MEM_UOPS_RETIRED:ALL_LOADS

0x08d1 MEM_LOAD_UOPS_RETIRED:L1_MISS

0x10d1 MEM_LOAD_UOPS_RETIRED:L2_MISS

0x01d1 MEM_LOAD_UOPS_RETIRED:L1_HIT

0x02
4 BR_INST_RETIRED:NEAR_CALL

0x20

 ROB_MISC_EVENTS:LBR_INSERTS

0x10
4 BR_INST_RETIRED:NOT_TAKEN

0x08
4 BR_INST_RETIRED:NEAR_RETURN

0x01
9 RTM_RETIRED:START

0x04
8 HLE_RETIRED:ABORTED

The run without XSU will in
ur multiplexing, so we need to measure the a
tual

ounts of the events. We have the baseline numbers for the �rst 4 non-
orrupting

events (0x02
4, 0x20

, 0x10
4, 0x08
4) from the previous example. We now mea-

sure the a
tual values of the 2 new non-
orrupting events (0x01
9, 0x0408) in a

single run with XSU disabled:

e
ho 0 >/sys/devi
es/
pu/ht_bug_workaround

$ taskset -
 0 triad &

$ perf stat -r10 -a -C0 -e r02
4:u,r20

:u,r10
4:u,r08
4:u sleep 10

Performan
e
ounter stats for 'system wide' (10 runs):

0 r01
9:u (+- 0,00%) [100,00%℄

0 r04
8:u (+- 0,00%) [100,00%℄

The RTM_RETIRED:START and the HLE_RETIRED:ABORTED are events

related to transa
tional memory support in Haswell pro
essors. The RTM_RETIRED:

START
ounts the number of times the restri
ted transa
tional memory exe
ution

starts and the HLE_RETIRED:ABORTED
ounts the number of aborted hard-

ware lo
k elison transa
tions. The workload does not use transa
tional memory,

so these events should have zero
ounts.

67

We disable the XSU proto
ol and we run the measurements of these 10 events

on both sibling threads for 10 se
onds.

e
ho 0 > /sys/devi
es/
pu/ht_bug_workaround

$ perf stat -a -C4 -e r81d0:u,r08d1:u,r10d1:u,r01d1:u,r02
4:u, \

r20

:u,r10
4:u,r08
4:u,r01
9:u,r04
8:u sleep 10 &

$ perf stat -a -C0 -e r81d0:u,r08d1:u,r10d1:u,r01d1:u,r02
4:u,r20

:u, \

r10
4:u,r08
4:u,r01
9:u,r04
8:u sleep 10

5 580 691 917 r81d0:u [40,00%℄

196 376 492 r08d1:u [40,01%℄

204 266 718 r10d1:u [40,01%℄

3 112 470 528 r01d1:u [40,01%℄

74 285 531 r02
4:u [40,00%℄

8 669 406 r20

:u [40,00%℄

8 603 632 r10
4:u [40,00%℄

12 409 r08
4:u [40,00%℄

13 341 193 r01
9:u [40,00%℄

17 087 329 r04
8:u [39,99%℄

10,000915604 se
onds time elapsed

5 633 519 354 r81d0:u [40,00%℄

187 004 134 r08d1:u [40,00%℄

133 622 500 r10d1:u [40,00%℄

3 014 317 138 r01d1:u [40,01%℄

10 734 813 r02
4:u [40,00%℄

3 792 868 r20

:u [40,00%℄

6 031 812 r10
4:u [40,00%℄

16 528 567 r08
4:u [40,00%℄

83 827 911 r01
9:u [40,00%℄

100 139 343 r04
8:u [39,99%℄

10,000943248 se
onds time elapsed

As we
an see, the values of all non-
orrupting events have been severely im-

pa
ted by the
orrupting ones and the results we obtain are
ompletely irrelevant

with the a
tual behavior of our workload. We now enable the XSU proto
ol and

repeat the measurements.

e
ho 1 > /sys/devi
es/
pu/ht_bug_workaround

$ perf stat -a -A -C4 -e r81d0:u,r08d1:u,r10d1:u,r01d1:u,r02
4:u, \

r20

:u,r10
4:u,r08
4:u,r01
9:u,r04
8:u sleep 10 &

$ perf stat -a -A -C0 -e r81d0:u,r08d1:u,r10d1:u,r01d1:u,r02
4:u,r20

:u, \

r10
4:u,r08
4:u,r01
9:u,r04
8:u sleep 10

CPU4 5 491 248 074 r81d0:u [1,61%℄

CPU4 161 579 927 r08d1:u [1,62%℄

CPU4 108 975 096 r10d1:u [1,63%℄

CPU4 2 962 988 436 r01d1:u [1,64%℄

CPU4 436 r02
4:u [11,24%℄

CPU4 0 r20

:u [20,82%℄

CPU4 1 056 r10
4:u [30,39%℄

CPU4 323 r08
4:u [30,36%℄

68

CPU4 0 r01
9:u [39,93%℄

CPU4 0 r04
8:u [39,94%℄

10,000895995 se
onds time elapsed

CPU0 5 518 336 748 r81d0:u [39,99%℄

CPU0 162 876 379 r08d1:u [39,98%℄

CPU0 109 572 002 r10d1:u [39,98%℄

CPU0 2 965 128 722 r01d1:u [39,97%℄

CPU0 328 r02
4:u [39,97%℄

CPU0 0 r20

:u [39,98%℄

CPU0 990 r10
4:u [39,99%℄

CPU0 328 r08
4:u [40,00%℄

CPU0 0 r01
9:u [39,99%℄

CPU0 0 r04
8:u [40,00%℄

10,000943248 se
onds time elapsed

The results have returned to their expe
ted levels but multiplexing has sig-

ni�
antly in
reased espe
ially on CPU4. Obviously, CPU0 is the winner of the

ra
e
onditions between the sibling threads for a

essing the XSU shared state and

s
heduling the events. CPU0 manages to keep the s
aling fa
tors at the same levels

as without XSU. On the other hand, the fra
tion of time the events of CPU4 are

s
heduled on the hardware has de
rease. The de
rease is most severe for the
or-

rupting events where the s
aling fa
tor drops below 2%. This is reasonable sin
e

these events
an only be measured on unused
ounters, something very di�
ult to

�nd given that CPU0 wins most of the ra
e
onditions and has its events s
heduled

�rst. However, the ina

ura
ies in the results of the
orrupting memory events of

CPU4 are not signi�
ant be
ause, as we have explained, the workload has a very

stable behavior with respe
t to memory operations. Again, we observe dis
repan-

ies between the fun
tion
all event (
ode 0x02
4) and the fun
tion return event

(
ode 0x08
4) on CPU4 but this
an be attributed to the di�erent s
aling fa
tors

ombined with the phases of the fun
tion
all and return pattern. On the other

hand, on CPU0 the s
aling fa
tors are the same and the values of 0x02
4 an 0x08
4

are also the same.

7.2 S
heduling optimization

To test various s
heduling optimizations, we have developed a event s
heduling

simulator. With su
h a tool, we
an more easily experiment with s
heduling options

without having to re
ompile a kernel and reboot the ma
hine (real or virtual).

The simulator is a C program whi
h in
ludes the verbatim
ode from the

perf_events subsystem with a shim layer to glue with standard user level
ode.

The simulator in
ludes the
onstraint tables for Intel and AMD X86 pro
essors. It

an be exer
ised with a
tual event names be
ause it is linked with the libpfm4 [30℄

69

open-sour
e library whi
h provides event tables for all pro
essors. Events
an easily

be listed with their stati

onstraints as shown below:

--

Pro
essor Name : Sandy Bridge

Generi
 Counters No : 4

Fixed-Purpose Counters No : 3

--

#--------------#----------------#--------------------------------

CODE # CONSTRAINTS # NAME

#--------------#----------------#--------------------------------

0x0000000001b6 | 0x00000000000f | AGU_BYPASS_CANCEL:COUNT

0x000000000114 | 0x00000000000f | ARITH:FPU_DIV_ACTIVE

0x000001040114 | 0x00000000000f | ARITH:FPU_DIV

0x000000001fe6 | 0x00000000000f | BACLEARS:ANY

0x000000004188 | 0x00000000000f | BR_INST_EXEC:NONTAKEN_COND

0x000000008188 | 0x00000000000f | BR_INST_EXEC:TAKEN_COND

0x000000008288 | 0x00000000000f | BR_INST_EXEC:TAKEN_DIRECT_JUMP

The simulator in
ludes multiplexing support, though it is not timed-based but

simply based on the number of maximum s
heduling iterations spe
i�ed by the

user. On
e an iteration of the s
heduling is done, it is followed by another until

this number is rea
hed. In
ase multiplexing is required, the event list is rotated

by one event before the next s
heduling iteration, emulating the behavior of the

perf_events generi
 layer des
ribed in
hapter 3. Ea
h iteration
an be dumped by

the simulator for inspe
tion. Below we demonstrate a simple example, using the

standard s
heduling algorithm (default) for two events (-e option) and measuring

for 10 iterations (-n option). The
ounter assignment shown before every event

name at ea
h iteration is the
ounter on whi
h the event was s
heduled the last

time it ran. In the example below we have
ntr0 for uops_retired:any event and

and
ntr1 for mispredi
ted_bran
h_retired event. The number in front of the

ounter index is the
umulative per
entage of time the event was s
heduled up to

the iterations shown, i.e., the s
aling fa
tor we were obtaining in our
ommand line

examples of the previous se
tion. Here 100% means that both event were s
heduled

at ea
h one of the 10 iterations.

$ s
hed_sim -n 10 -e uops_retired:any, mispredi
ted_bran
h_retired

--

Pro
essor Name : Haswell

Generi
 Counters No : 4

Fixed-Purpose Counters No : 3

--

Event List:

1 - ---- ---- uops_retired:any (
ode=0x5301
2,
onstraint=0xf)

2 - ---- ---- mispredi
ted_bran
h_retired (
ode=0x5300
5,
onstraint=0xf)

...

Iteration 10

1 - 100.00%
ntr0 uops_retired:any (
onstraint=0xf)

2 - 100.00%
ntr1 mispredi
ted_bran
h_retired (
onstraint=0xf)

If events
ompete for
ounters, multiplexing is triggered and the per
entages

show the degree of multiplexing:

70

$ s
hed_sim -n 1000 -e l2_lines_in:any, \

l1d_pend_miss:o

urren
es,\

y
le_a
tivity:stalls_l1d_pending

--

Pro
essor Name : Haswell

Generi
 Counters No : 4

Fixed-Purpose Counters No : 3

--

Event List:

1 - ---- ---- l2_lines_in:any (
ode=0x5307f1,
onstraint=0xf)

2 - ---- ---- l1d_pend_miss:o

urren
es (
ode=0x0x1570148,
onstraint=0x4)

3 - ---- ----
y
le_a
tivity:stalls_l1d_pending (
ode=0x85308a3,
onstraint=0x4)

...

Iteration 1000

s
heduled 2 out of 3 events

1 + 66.70%
ntr0 l2_lines_in:any (
onstraint=0xf)

2 + 66.70%
ntr2 l1d_pend_miss:o

urren
es (
onstraint=0x4)

3 - 33.30%
ntr2
y
le_a
tivity:stalls_l1d_pending (
onstraint=0x4)

In the above example, l1d_pend_miss:o

urren
es and
y
le_a
tivity:stalls_

l1d_pending have
onstraint 0x4 whi
h means they
ompete for
ounter 2. Only 2

out of 3 events
an be s
heduled at ea
h iteration be
ause of event list rotation and

multiplexing. The + sign at an event row denotes that the event is s
heduled on the

urrent iteration while the - sign denotes that the event failed to be s
heduled. The

s
aling fa
tor re�e
ts the multiplexing: 2/3rds of the time for l2_lines_in:any and

l1d_pend_miss:o

urren
es and 1/3rd of the time for
y
le_a
tivity:stalls_l1d_

pending.

The Hop
roft-Karp s
heduling algorithm is implemented in the simulator along

with the greedy, �rst-mat
h approa
h s
heduling algorithm
urrently existing in

the kernel. The algorithm used by the event s
heduler
an be sele
ted from the

ommand line.

It is also possible to experiment with the event
onstraints. Constraints masks

an be passed from the
ommand line to help with simulating more
onstrained

environments su
h as when the XSU proto
ol is enabled. Below, we have an

example with measuring events for whi
h we have provided their dynami

on-

straints using the -C option. The order of the
onstraints is respe
tive to the

order in whi
h the events are given in the event list. In the example below,

l2_lines_in:any has
onstraint 0x6 and thus it supports
ounter 1 and
ounter

2, l1d_pend_miss:o

urren
es has
onstraint 0x8 and supports only
ounter 3,
y-

le_a
tivity_stalls_l1d_pending has
onstraint 0x9 and supports
ounter 0 and

ounter 3 and �nally inst_retired_any_p event has
onstraint 0xb and supports

ounter 0,
ounter 1 and
ounter3 (-C 0x6,0x8,0x9,0xb).

We �rst run this simulation with the default, greedy s
heduling algorithm:

$ s
hed_sim -n 1000 -e l2_lines_in:any,

l1d_pend_miss:o

urren
es,\

y
le_a
tivity_stalls_l1d_pending,\

inst_retired_any_p\

-C 0x6,0x8,0x9,0xb

--

Pro
essor Name : Haswell

71

Generi
 Counters No : 4

Fixed-Purpose Counters No : 3

--

Event List:

1 - ---- ---- l2_lines_in:any (
ode=0x5307f1,
onstraint=0x6)

2 - ---- ---- l1d_pend_miss:o

urren
es (
ode=0x1570148,
onstraint=0x8)

3 - ---- ----
y
le_a
tivity:stalls_l1d_pending (
ode=0x85308a3,
onstraint=0x9)

4 - ---- ---- inst_retired:any_p (
ode=0x5300
0,
onstraint=0xb)

...

Iteration 1000

S
heduled 3 out of 4 events

1 + 75.00
ntr-0 l2_lines_in:any (
onstraint=0x6)

2 + 75.00
ntr-1 l1d_pend_miss:o

urren
es (
onstraint=0x8)

3 + 75.00
ntr-3
y
le_a
tivity:stalls_l1d_pending (
onstraint=0x9)

4 - 00.00
ntr-0 inst_retired:any_p (
onstraint=0xb)

We
an run the same s
heduling instan
e using the Hop
roft-Karp algorithm

(-M option) and
ompare the results:

$ s
hed_sim -M -n 1000 -e l2_lines_in:any,\

l1d_pend_miss:o

urren
es,\

y
le_a
tivity_stalls_l1d_pending,\

inst_retired_any_p\

-C 0x6,0x8,0x9,0xb

--

Pro
essor Name : Haswell

Generi
 Counters No : 4

Fixed-Purpose Counters No : 3

--

Event List:

1 - ---- ---- l2_lines_in:any (
ode=0x0x5307f1,
onstraint=0x6)

2 - ---- ---- l1d_pend_miss:o

urren
es (
ode=0x1570148,
onstraint=0x8)

3 - ---- ----
y
le_a
tivity:stalls_l1d_pending (
ode=0x85308a3,
onstraint=0x9)

4 - ---- ---- inst_retired:any_p (
ode=0x5300
0,
onstraint=0xb)

...

Iteration 1000

s
heduled 4 out of 4 events

1 + 100.00
ntr-2 l2_lines_in:any (
onstraint=0x6)

2 + 100.00
ntr-3 l1d_pend_miss:o

urren
es (
onstraint=0x8)

3 + 100.00
ntr-0
y
le_a
tivity:stalls_l1d_pending (
onstraint=0x9)

4 + 100.00
ntr-1 inst_retired:any_p (
onstraint=0xb)

The goal of the optimal s
heduling algorithm we have implemented is to max-

imize the use of the
ounters while respe
ting the
onstraints. In the
omparison

above, we see that the s
aling fa
tor of the events using Hop
roft-Karp algorithm

is maxed out at 100%, whi
h means that all the events were s
heduled at ea
h

iteration. At the same s
heduling instan
e the standard, greedy algorithm yields

a 75% s
aling fa
tor meaning it
ould only s
hedule 3 out of 4 events at ea
h iter-

ation. Thus, for this
onstraint
on�guration, the Hop
roft-Karp algorithm fares

mu
h better. The PMU is more utilized, resulting in no multiplexing and in
reased

a

ura
y.

In order to evaluate the improvement that Hop
roft-Karp brings, we generalize

the test
ase. We run all possible
onstraint
on�gurations of 4 events to 4 generi

ounters from -C 0xf,0xf,0xf,0xf to -C 0x1,0x1,0x1,0x1, i.e. 154 = 50625 s
heduling
instan
es and we get a full evaluation of ea
h s
heduling algorithm. By being

72

optimal, the Hop
roft-Karp algorithm is either giving the same s
heduling with

the existing, greedy algorithm or it is performing better, i.e., it a
hieves more

events to be s
heduled on the
ounters. The Hop
roft-Karp algorithm gives better

s
heduling to 5950 instan
es, a
hieving approximately 12% improvement on
ounter

utilization and thus on measurement a

ura
y.

With the simulator we have implemented, it is also possible to modify the way

the generi
 perf_events layer is in
rementally passing events to the x86 ar
hite
ture

spe
i�
 layer. For instan
e, it is possible to
ontinue passing events
ontinuing

beyond the event for whi
h the �rst error o

urred. For N generi

ounters we have

experimented passing s
heduling instan
es with 2 ∗ N events regardless on whi
h

event the �rst failure o

urs. With su
h small
hange, we have demonstrated that

the Hop
roft-Karp algorithm
an provide an in
reased utilization of the
ounters

and a better measurement a

ura
y in up to 18% of the
ases, while the e�e
t on

the exe
ution time is negligible. In the future, we intend to modify the perf_events

generi
 layer in the kernel to
ontinue after the �rst error for a number of events

whi
h is a polynomial expression of the number of generi

ounters.

73

74

Chapter 8

Future Work

In the previous examples we have seen that the values of the
orrupting events

hange between the single-thread measurements, the runs without the XSU and

the runs with XSU. In the following example we fo
us on the measurements of the

four
orrupting events we en
ountered so far and we explain how their
ounts
an

di�er throughout the tests.

0x81d0 MEM_UOPS_RETIRED:ALL_LOADS

0x08d1 MEM_LOAD_UOPS_RETIRED:L1_MISS

0x10d1 MEM_LOAD_UOPS_RETIRED:L2_MISS

0x01d1 MEM_LOAD_UOPS_RETIRED:L1_HIT

First, we measure these events on both siblings, in a single,
ombined run, with

XSU disabled.

e
ho 0 >/sys/devi
es/
pu/ht_bug_workaround

$ taskset -
 0 triad &

$ taskset -
 4 triad &

$ perf stat -a -A -C0 -e r81d0:u,r08d1:u,r10d1:u,r01d1:u sleep 10 &

$ perf stat -a -A -C4 -e r81d0:u,r08d1:u,r10d1:u,r01d1:u sleep 10

CPU0 5 565 857 411 r81d0:u [100,00%℄

CPU0 292 858 367 r08d1:u [100,00%℄

CPU0 213 411 639 r10d1:u [100,00%℄

CPU0 2 908 809 947 r01d1:u [100,00%℄

10,004670257 se
onds time elapsed

CPU4 5 605 756 134 r81d0:u [100,00%℄

CPU4 292 211 911 r08d1:u [100,00%℄

CPU4 213 045 877 r10d1:u [100,00%℄

CPU4 2 938 263 812 r01d1:u [100,00%℄

10,004583900 se
onds time elapsed

All the events �t in the 4 generi

ounters, thus there is no multiplexing (100%

s
aling fa
tor). With XSU proto
ol disabled the
on�guration of the
ounters

75

is shown in Fig. 8.1 below and there is
orruption between the memory events

s
heduled on the same
ounter.

C0 0x81d0

C1 0x08d1

C2 0x10d1

C3

HT0 HT1

0x01d1

C0 0x81d0

C1 0x08d1

C2 0x10d1

C3 0x01d1

Figure 8.1: Measuring 0x81d0, 0x08d1, 0x10d1, 0x01d1 with XSU disabled

If we rerun the test with XSU enabled we get the following results.

e
ho 1 >/sys/devi
es/
pu/ht_bug_workaround

$ taskset -
 0 triad &

$ taskset -
 4 triad &

$ perf stat -a -A -C0 -e r81d0:u,r08d1:u,r10d1:u,r01d1:u sleep 10 &

$ perf stat -a -A -C4 -e r81d0:u,r08d1:u,r10d1:u,r01d1:u sleep 10

CPU0 5 465 161 580 r81d0:u [50,01%℄

CPU0 157 542 131 r08d1:u [50,00%℄

CPU0 104 608 156 r10d1:u [49,99%℄

CPU0 2 879 525 359 r01d1:u [50,00%℄

10,004670257 se
onds time elapsed

CPU4 5 418 290 816 r81d0:u [50,01%℄

CPU4 156 484 117 r08d1:u [50,00%℄

CPU4 103 779 978 r10d1:u [49,99%℄

CPU4 2 918 604 417 r01d1:u [50,00%℄

10,004583900 se
onds time elapsed

The
on�guration of the
ounters with XSU proto
ol is shown in Fig 8.2 below.

We observe that the values of the memory events have signi�
antly dropped.

Espe
ially, the L1 misses event (0x08d1) and the L2 misses event (0x10d1) have

lost more than 46% and 51% of their
ounts respe
tively. The memory loads event

(0x81d0) and the L1 hits event (0x01d1) are high-frequen
y events and their per
ent

losses are lower but still important. This is explained by the fa
t that these event

are leaking their
ounts on the unused sibling
ounters and these leaked
ounts are

not taken into a

ount for the �nal value. In Fig. 8.2 above, this leak is represented

as a dashed-line. This loss of
ounts did not appear when we measured with XSU

disabled. At this
ase, the events measured on sibling
ounters were identi
al and

the out
oming leaked
ounts of one were
ompensated by a similar number of

in
oming leaked
ounts from the other. Thus, the leaked
ounts were aggregated

on the sibling
ounter and reported. It needs to be noted that the loss of
ounts

is not a side e�e
t of the XSU proto
ol and this
an be shown easily with the

following test. With XSU disabled we run the measurements of the same events

only on one thread so that the
ounters of the sibling thread are unused:

76

HT0 HT1

XSU State

Physical Core

C0

C1

C2

C3

C0

C1

0x81d0

C2

C3

HT0 HT1

C0

C1

C2

C3

X

U

X

U

0x08d1

U

X

U

X

0x08d1

0x10d1

0x01d1

0x81d0

0x10d1

0x01d1
HT0 HT1

XSU State

Physical Core

C0

C1

C2

C3

C0

C1

0x08d1

C2

C3

HT0 HT1

C0

C1

C2

C3

X

U

X

U

0x10d1

U

X

U

X

0x10d1

0x10d1

0x81d0

0x08d1

0x01d1

0x81d0

HT0 HT1

XSU State

Physical Core

C0

C1

C2

C3

C0

C1

0x10d1

C2

C3

HT0 HT1

C0

C1

C2

C3

X

U

X

U

0x01d1

U

X

U

X

0x01d1

0x81d0

0x10d1

0x81d0

0x08d1
HT0 HT1

XSU State

Physical Core

C0

C1

C2

C3

C0

C1

0x08d1

C2

C3

HT0 HT1

C0

C1

C2

C3

X

U

X

U

0x10d1

U

X

U

X

0x10d1

0x10d1

0x08d1

0x01d1

0x81d0

HT0 0x81d0 0x08d1 0x10d1 0x01d1

HT1 0x81d0 0x08d1 0x10d1 0x01d1

HT0 0x08d1 0x10d1 0x01d1 0x81d0

HT1 0x08d1 0x10d1 0x01d1 0x81d0

0x81d0

HT0 0x08d1 0x10d1 0x01d1 0x81d0

HT1 0x08d1 0x10d1 0x01d1 0x81d0

HT0 0x10d1 0x01d1 0x81d0 0x08d1

HT1 0x10d1 0x01d1 0x81d0 0x08d1

0x08d1 0x81d0

Figure 8.2: Measuring 0x81d0, 0x08d1, 0x10d1, 0x01d1 with XSU enabled

e
ho 1 >/sys/devi
es/
pu/ht_bug_workaround

$ taskset -
 0 triad &

$ perf stat -a -A -C0 -e r81d0:u,r08d1:u,r10d1:u,r01d1:u sleep 10 &

CPU0 5 471 662 581 r81d0:u [100,00%℄

CPU0 159 592 403 r08d1:u [100,00%℄

CPU0 105 259 023 r10d1:u [100,00%℄

CPU0 2 920 631 823 r01d1:u [100,00%℄

10,004670257 se
onds time elapsed

The
on�guration of the
ounters during this run is shown in Fig 8.3.

77

C0 0x81d0

C1 0x08d1

C2 0x10d1

C3

HT0 HT1

0x01d1

C0

C1

C2

C3

Figure 8.3: Measuring 0x81d0, 0x08d1, 0x10d1, 0x01d1 on one thread

In the output above we observe almost the same loss of
ounts as we did for the

measurements on two threads with XSU enabled. Hen
e, the loss of
ounts is not

aused by XSU but it is not prevented either. The primary goal of XSU is to prote
t

non-
orrupting events from getting
orrupted by
orrupting events when measured

on sibling
ounters. The re-integration of the leaked
ounts in the �nal values of

the
orrupting events is not taken
are of by XSU. However, XSU makes this re-

integration simpler be
ause when a
orrupting event is measured on one
ounter,

it is guaranteed by XSU that no valid event uses the sibling
ounter and thus all

the
ounts a

umulated there
ome from the measurement of the
orrupting event.

As future work, we intend to extend the XSU proto
ol in order to re-integrate the

leaked
ounts in the �nal values of the
orrupting events.

The XSU proto
ol addresses the PMU hardware erratum and su

essfully elim-

inates the
ounter
orruption. However, the
orre
tness
omes at the
ost of more

onstrained events, as shown in the examples above. The more
onstraints in-

urred by the XSU proto
ol
ombined with the ra
e
onditions between the sibling

threads, may even
ause an event of one thread to never get s
heduled be
ause of

what is measured on the
ounters of the sibling thread. A simple arti�
ial example

is to measure on CPU0 our 4 known
orrupting memory events for 10 se
onds and

on CPU4 the non-
orrupting bran
hes event for 5 se
onds.

e
ho 1 >/sys/devi
es/
pu/ht_bug_workaround

$ taskset -
 0 triad &

$ taskset -
 4 triad &

$ perf stat -a -A -C0 -e r81d0:u,r08d1:u,r10d1:u,r01d1:u sleep 10 &

$ perf stat -a -A -C4 -e bran
hes sleep 5

CPU0 5 470 671 639 r81d0:u [100,00%℄

CPU0 157 698 323 r08d1:u [100,00%℄

CPU0 106 859 230 r10d1:u [100,00%℄

CPU0 2 918 823 504 r01d1:u [100,00%℄

10,004326725 se
onds time elapsed

CPU4 <not
ounted> bran
hes

5,004713819 se
onds time elapsed

On CPU0, the 4 generi

ounters are used by
orrupting events. On CPU4,

only one event is measured yet it
annot get s
heduled while the measurement runs

78

on CPU0, even though it
an stati
ally run on any of the 4 generi

ounters. As per

the XSU algorithm all 4
ounters of CPU4 are in X state whi
h means they
annot

be used as shown in Fig. 8.4. No multiplexing is triggered on CPU0 be
ause the

number of events is equal to the number of
ounters and there is no error s
heduling

all the events at the �rst pass. This means that the events of CPU0 will not be

s
heduled out until the measurement of 10 se
onds is over. Therefore, no event

using the generi

ounters on CPU4
an be s
heduled for this time period. This is

why the
y
les event is not
ounted.

HT0 HT1

XSU State

Physical Core

C0

C1

C2

C3

C0

C1

0x81d0

C2

C3

HT0 HT1

C0

C1

C2

C3

X

X

X

X

0x10d1

U

U

U

U

branches

HT0 0x81d0

HT1 branches

0x08d1

0x01d1

0x08d1 0x10d1 0x01d1

Figure 8.4: XSU state with 4
orrupting events on HT 0

It should be noted that this is not a weakness of the XSU proto
ol. To the

ontrary, it is an expe
ted
onsequen
e of the more
onstrained environment re-

quired by the proto
ol in order to a
hieve
orre
t results. Without this behavior,

measurements, like the one of the example above, would yield
orrupted
ounts.

However, we need ensure fairness between the two hyper-threads and give events

on ea
h thread's linked list a
han
e to a

ess the
ounters, i.e., the hardware

resour
e. No hyper-thread
an starve the other one. We intend to address this

issue in the future.

79

80

Chapter 9

Con
lusions

In this thesis, we address several important issues related to hardware-based

performan
e monitoring. Nowadays, all pro
essors have a Performan
e Monitoring

Unit (PMU) whi
h provides a set of hardware
ounters to measure various mi
ro-

ar
hite
tural events su
h as elapsed
y
les or
a
he misses (
.f. Se
tion 2.1). The

PMU provides a unique insight into how software uses the underlying hardware

resour
es. It is used
ount o

urren
es of mi
ro-ar
hite
tural events or
olle
t

statisti
al pro�les with very low overhead to determine where there may be resour
e

bottlene
ks.

As demand for
ompute power in
reases
onstantly, the pressure on hardware

resour
es rises. It is, therefore, important to making best use of available hard-

ware resour
es. The s
ienti�

omputing
ommunity, su
h as at CERN, has many

physi
ists using PMU-based tools to improve the
ode analyzing data
aptured by

Large Hadron Collider (LHC). In
ompanies su
h as Google, PMU data help im-

prove hardware utilization in data
enters,
ode quality via feedba
k-dire
ted
om-

piler optimizations, hardware
apa
ity planning and pro
essor mi
ro-ar
hite
tural

features.

The PMU is exposed to Linux users via the perf_events subsystem and system

all (
.f. Se
tion 2.2.1). This interfa
e provides a large palette of features
overing

all the needs of performan
e analysts and developers. The event-based interfa
e

simpli�es development of tools. Events may have
onstraints with regard to whi
h

PMU
ounters they
an be measured and the event s
heduling is at the
ore of the

subsystem. The a
tual management of the PMU resour
e is handled by the kernel

in
luding how events are s
heduled on
ounters (
.f. Se
tion 3).

Re
ent Intel pro
essors with Hyper-Threading support have a published erra-

tum whi
h may
ause serious
ounter
orruption a
ross sibling hyper-threads, i.e.

hyper-threads sharing the same physi
al
ore. Counters on one hyper-thread mea-

suring
ertain
orrupting events, leak their
ounts on sibling
ounters and
orrupt

their values (
.f. Se
tion 4.1). The erratum impa
ts three generations of popular

Intel pro
essors: SandyBridge, IvyBridge and Haswell and there is no hardware or

�rmware solution to this problem. The
orruption of the performan
e monitoring

81

data makes any performan
e analysis unreliable and often misleading. This results

in losing a valuable tool for understanding low-level performan
e problems and

improving thousands of
riti
al appli
ations.

The �rst part of our e�ort has fo
used on developing a software workaround to

eliminate the
ounter
orruption. Mutual ex
lusion between
ounters a
ross hyper-

threads is enfor
ed when
orrupting events are used. Inspired by the MSI
a
he-

oheren
e proto
ol, we have developed a sophisti
ated me
hanism
alled XSU,

whi
h uses three states (eX
lusive, Shared, Unused) required for any hyper-thread

in order to distinguish whi
h PMU
ounters
an perform measurements without

yielding
orrupting results (
.f. Se
tion 5). The integration of the proto
ol in

leverages the perf_events event s
heduling infrastru
ture.

Our XSU solution guarantees that all events
an be measured safely. Cor-

rupting events whi
h are
riti
al for any serious performan
e analysis need not to

be banned to ensure
orre
tness and non-
orrupting events measurements
an be

trusted to re�e
t workload behavior. The proto
ol is implemented in the Linux

kernel and there is no
hange to any user level tools. We have published the
ode

to the Linux kernel
ommunity and our pat
hes will be in
luded in a future kernel

releases soon.

The integration of XSU proto
ol in perf_events but the additional
onstraints

derived the mutual ex
lusion requirements produ
e more
onstrained event s
hedul-

ing instan
es. The
urrent perf_events event s
heduling algorithm uses a greedy,

�rst-mat
h approa
h whi
h works very well when most events are un
onstrained

but the quality of its
ounter assignments degrades with XSU as events whi
h were

not
onstrained may be
ome
onstrained be
ause of events measured on the sibling

hyper-thread.

In the se
ond part of our e�ort, we have fo
used on improving the perf_events

s
heduling algorithm. We have �rst developed an event s
heduling simulator in

whi
h we have imported the a
tual perf_events Intel and AMD x86 s
heduling

ode from the kernel (
.f. Se
tion 7.2). We use the simulator to experiment with

s
heduling algorithms, event
onstraints and their impa
t on multiplexing, i.e. the

time-sharing of the PMU resour
e when all event
onstraints
annot be satis�ed at

on
e.

We have identi�ed that the perf_events s
heduling
an be modeled as a mat
h-

ing problem in an unweighted bipartite graph. Hop
roft-Karp algorithm is a max-

imum
ardinality mat
hing algorithm for bipartite graphs whi
h
an be integrated

in perf_events subsystem and provide optimal s
heduling of events on
ounters

with respe
t to the event
onstraints (
.f. Chapter 6). We have �rst implemented

the Hop
roft-Karp algorithm in our simulator and have run several
omparisons

with the existing, greedy algorithm. Results show that for Intel's 4-
ounter
on-

�guration, the integration of Hop
roft-Karp algorithm in the Intel ar
hite
ture

spe
i�
 layer of the perf_events subsystem improves
ounter utilization by 12%.

Furthermore, we have also demonstrated that if the generi
 layer of the perf_events

subsystem is modi�ed slightly, the improvement
an rea
h up to 18%. We have

82

su

essfully implemented the
omplex Hop
roft-Karp algorithm in the Linux kernel

following the stringent
oding standards, in
luding no re
ursion. The
ode exports

a single entry point whi
h
an just be swapped with the existing
all to the greedy

algorithm. This
ode will eventually be
ontributed to the Linux kernel
ommunity.

Although, the XSU solution avoids the
orruption, it does not produ
e valid

ounts for the
orrupting events be
ause their leaked
ounts are not re-integrated.

We believe this
ould be �xed for
ounting mode events. Furthermore, we have

shown that in
ertain
onditions, some events may not be s
heduled despite the

integration of Hop
roft-Karp s
heduling algorithm and the multiplexing support,

be
ause the PMU
ounters are unavailable due to events measured in the sibling

thread. This issue
ould be solved at a higher level by ensuring more fairness

between hyper-threads.

In summary, in this thesis, we have addressed two important issues related to

the
orre
tness and e�
ien
y of hardware performan
e monitoring in the Linux

kernel on Intel X86 pro
essors. We have developed a sophisti
ated workaround

for a serious
ross hyper-thread
ounter
orruption erratum guaranteeing measure-

ment
orre
tness and enabling usage of all events. With the help of the results from

our PMU event s
heduling simulator, we have implemented an alternative s
hedul-

ing algorithm based on the Hop
roft-Karp maximum
ardinality mat
hing graph

algorithm whi
h
an yield up to 18% better s
heduling in the more
onstrained

environment imposed by the XSU solution. We have
ontributed our
ode to the

Linux kernel
ommunity and we have identi�ed several possible extensions whi
h

we intend to address in the future. This work has re
eived re
ognition from the

performan
e monitoring
ommunity with an honorary award issued by Intel.

83

84

Bibliography

[1℄ Intel 64 and IA-32 ar
hite
ture software developer manual. Intel Corporation,

February 2014, vol. 3b.

[2℄ BIOS and Kernel Developer's Guide for AMD Family 15h pro
essors. Ad-

van
ed Mi
ro Devi
es, January 2013, rev 3.14.

[3℄ ARM Cortex-A15 MPCore Pro
essor Te
hni
al Referen
e Manual. ARM,

2013,
h. 11, rev 4p0.

[4℄ PowerISA. IBM, 2013,
h. 9, version 2.07.

[5℄ Intel Xeon Pro
essor E5-2600 Produ
t Family Un
ore Performan
e Monitoring

Guide. Intel, Mar
h 2012.

[6℄ AMD GPU Performan
e API. Advan
ed Mi
ro Devi
es, 2014.

[7℄ X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale, and J. Wilkes,

�Cpi2: Cpu performan
e isolation for shared
ompute
lusters,� in Pro
eedings

of the 8th ACM European Conferen
e on Computer Systems, ser. EuroSys

'13. New York, NY, USA: ACM, 2013, pp. 379�391. [Online℄. Available:

http://doi.a
m.org/10.1145/2465351.2465388

[8℄ D. Chen and D. Li, �AutoFDO,� https://www.youtube.
om/wat
h?v=

26SrOC6MXWg.

[9℄ �Intel VTUNE Ampli�er XE,� https://software.intel.
om/en-us/

intel-vtune-ampli�er-xe.

[10℄ D. Levinthal, �The gooda performan
e analysis tool,� http://
ode.google.
om/

p/gooda.

[11℄ �Perf_events tutorial,� http://perf.wiki.kernel.org/.

[12℄ V. Weaver, �Perf_events programming guide,� http://web.ee
e.maine.edu/

~weaver/proje
ts/perf_events/programming.html.

[13℄ Intel Hyper-Threading Te
hnology: Te
hni
al User's Guide. Intel Corpora-

tion, January 2003.

85

[14℄ Intel Xeon Pro
essor E5 v2 and E7 v2 Produ
t Families Un
ore Performan
e

Monitoring Referen
e Manual. Intel, February 2014.

[15℄ �OPro�le,� http://opro�le.sf.net/.

[16℄ J. M. Anderson, L. M. Ber
, J. Dean, S. Ghemawat, M. R. Henzinger, S.-T. A.

Leung, R. L. Sites, M. T. Vandevoorde, C. A. Waldspurger, and W. E. Weihl,

�Continuous pro�ling: Where have all the
y
les gone?� in ACM Transa
tions

on Computer Systems, 1997, pp. 1�14.

[17℄ �FreeBSD,� http://freebsd.org/.

[18℄ �FreeBSD Pm
Tools Wiki,� https://wiki.freebsd.org/Pm
Tools.

[19℄ �Ora
le Solaris Studio,� http://www.ora
le.
om/te
hnetwork/server-storage/

solarisstudio/overview/index.html.

[20℄ M. Chynoweth and R. Chabukswar, �PBA: Performan
e and Power Analysis

utilizing Intel Performan
e Bottlene
k Analyzer,� https://sites.google.
om/

site/analysismethods/is
a2013/program-1, June 2013, iSCA 2013, workshop

on Analysis Methodologies and Tools, Tel Aviv, Israel.

[21℄ M. Chynoweth, �Utilizing Performan
e Bottlene
k Analyzer to debug issues

on Intel's future SOCs,� http://indi
o.
ern.
h/event/280897/, Nov 2013, 2nd

CERN Advan
ed Performan
e Tuning Workshop.

[22℄ A. Yasin, �Top down analysis : Never lost with perf
ounters,� https://sites.

google.
om/site/analysismethods/is
a2013/program-1, June 2013, ISCA'13,

workshop on Analysis Methodologies and Tools, Tel Aviv, Israel.

[23℄ ��, �Top down analysis : Never lost with perf
ounters,� http://indi
o.

ern.
h/event/280897/, Nov 2013, 2nd CERN Advan
ed Performan
e Tuning

Workshop.

[24℄ 2nd Generation Intel Core Pro
essor Family Desktop, Intel Pentium pro
essor

Family Desktop, Intel Celeron pro
essor family desktop spe
i�
ation update.

Intel Corporation, De
ember 2013.

[25℄ Desktop 3rd Generation Intel Core Pro
essor Family spe
i�
ation update. Intel

Corporation, Mar
h 2014.

[26℄ Desktop 4th Generation Intel Core Pro
essor Family, Desktop Intel Pentium

pro
essor Family, and desktop Intel Celeron pro
essor family spe
i�
ation up-

date. Intel Corporation, Mar
h 2014.

[27℄ Intel 64 and IA-32 ar
hite
ture software developer manual. Intel Corporation,

February 2014, vol. 3a.

86

[28℄ D. Culler, J. P. Singh, and A. Gupta, Parallel Computer Ar
hite
ture, A Hard-

ware/Software Approa
h. Morgan Kaufman, September 1998.

[29℄ M. Karpinski and W. Rytter, Fast parallel algorithms for graph mat
hing prob-

lems. Oxford University Press, May 1998.

[30℄ �Libpfm4: a helper library for performan
e tools,� http://perfmon2.sf.net/.

87

