NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF ELECTRICAL AND

COMPUTER ENGINEERING

COMPUTING SCIENCE DIVISION

COMPUTING SYSTEMS LABORATORY

m
29
S

t,

et
pth
N
H]
7 NPOMHOBEV S .,
3l
nvPPoPos

Resource Management of Virtual Machines in Cloud
Environments

DIPLOMA THESIS

of

Apostolos N. Diamantis

Supervisor: Nectarios Koziris

Professor N.T.U.A.

Athens, September 2014

E®GNIKO METZOBIO [TOAYTEXNEIO

2 XOAH HAEKTPOAOTON MHXANIKQN
KAI MHXANIKON YTIIOAOTIETON

TOMEAE TEXNOAOTIAE [IAHPO®OPIKHE KAI YITOAOTIZTON

Bl

POMHOEVS .

N

nVPPOPO

Awayeipion Exkovikwv Mnyaveyv e MAat@oppeg
YToAoyloTIK®V Ne@ @V

AITITAQMATIKH EPT'AXIA

Amdéotorog N. Atapdvtng

EmAénwv : Nektdplog Kolopng

Kabnyntg E.M.IL.
EyxpiOnke amo v tpiluedn eetaotikn emttpot tnv 26" Zemtepufplov 2014.

Nextdplog Kolupng T'ewpylog Fkovpag Nw6éAaog [Tamaomdpov

Kabnyntmi¢ E.M.IL Aéxrtopag E.ML.II. Avat. kabnyntig E.M.II.

ABMva, ZemtépPBplog 2014

AméotoAog N. Atapaving

AumAwpatovxog HAektpoAdyog Mnxavikog kat Mnyxavikog YmoAoylotwyv E.M.IL.

Copyright © AmdotoAog Alapdvtng, 2014

Me emupuAaén mavtog Sikatwpatog. All rights reserved.

ATmayopeOETOL 1 OVTLYpaPT), amoBNKeELoT Kol Stvop| TG mapovoag epyaciog, €& oAoKANpov N
TUAIATOG OVTNG, Yo EUTOPIKO okomd. Emitpémetal n avatdmmon, arodnkevon kot dlovopun yo
OKOTO 1] KEPOOGKOTIKO, EKTOLOEVTIKNG 1 EPEVVNTIKNG PVGTG, VIO TNV TPOVTOOEGN Vo avapEpETaL
N YN TPoEAevong Kal va dtatnpeital To Tapodv pnvopa. Epotipate wov agopodv T xpnon g
gpyociog Yo KepOOOKOTIKO OKOTO MPEMEL VA OMELOVVOVTUL TPOC TOV GLYYPAPEQ.

Ot amdWYELS KAl TO GUUTEPAGHOTO TOV TEPIEXOVTAL GE OVLTO TO EYYPAPO EKPPALOVYV TOV GVYYPOPEN
Kol Ogv TTpEmel va epunvevbel 0TL avtmpocwnehovv Tig enionueg 0€ceg Tov EBvikod Metoofov
[MoAvteyveiov.

[TepiAnym

To vmoAoyloTikd VEQOG €xel eEeAixBel WG Evag amd TOUG TILO ONUAVTIKOUG TOUELG
™G TEXVoAoyiag onpepa. To emopevo Priua oe avtny v katevBuvon eivat ot
OLVOHOOTIOVSIEG VEQWY, dNAad) opyaviopol IOV ATOTEAOVVTAL ATO VEPEN TA
omoia Staxelpilovtal amd SLa@opeTIKOVS TTapOXOLS. L va TETOLO TtEPLEALOV, oL
XPNOTEG UTOpPOoVV VA XPNCLUOTIO|00VV TOPOUG ATO OTIOLOSNTIOTE VEQPOG TIOV
QVNKEL OTN OULVOUOOTIOVOL®, OTOTE TPOKUTITEL 1) OAVAYKN ETIAOYNG TOU
KATOAAANAOTEPOL Tt OYOV.

Ye autny ™ SIMAWUATIKY, AQVATTUEAUE Eval CUCTNHA TIOU CUAAEYEL QUTOUATO
TIANPOPOPIEG ATIO OAEG TIG ELKOVIKEG UNXAVESG LLLOG CUVOHOCTIOVSLAS VEQWV KAl TA
amofnkevel oe pa kevtplkn PBaon dedopévwv. Emerta, Snulovpynoape éva
gpyaieio mov, BAom TwWV TANPOPOPLOV QUTWV, CTOXEVEL OTNV E€VPECT TOU
BEATIOTOV CLVELAGHOU VTIOAOYLOTIKWVY TIOPWV CUUPWVA UE TIG TIPOTIUNOELG TOV
XPNOTN KAl Ta KpLTipla €TA0YNG. To cVOTNHA qUTO TIPETEL VA E(VOL KALLXKWOLULO,
onAadn) pemeL va pmopel va vooTnp&el HEYGAo aplOpd amd XP1|OTES KoL VEPT),
WoTe va elval oe BEom va AELTOLPYNOEL O €va TPAYUATIKO TepdAiov. Ot
OXETIKEG SOKLUEG TNG VAOTIOMOTG HAG ATESWOAV LKAVOTIOTIKA XTTOTEAECHUATAL.
To ocVvoTNUA paG aULTH TN OTLYUN) VTTOOTNPIZEL VEEN TIOU AELTOUPYOUV UE TO
Aoylopko Synnefo kot pmopel va emektabel yia va vmootnpilel meploocoTepa
aKOUN AOYLOULKA VEQWV.

A€EeLc KAl

Yuvopoomovdia vepwv, dlaxeiplon moOpwv, CUAAOYT TTANPOPOPLWY, GLVAEBpPOLoN
dedopévwv, kevtplkn Pdorm Sedopevwy, MPOTAOTN VEQOUG, KALAKWOIUOTNTA,
python scripts, APEL, ~okeanos, Synnefo, Openstack, Kamaki

Abstract

Cloud computing has evolved as one of the most important areas of technology
nowadays. The next step in this direction is cloud federations, i.e. unions of
clouds that each is probably operated by a different provider. In such an
environment, users can deploy resources from any of the clouds that belong to
the federation, hence the need for a way to choose the most appropriate provider.

In this thesis, we developed a system that automatically collects information
from all the VMs of a cloud federation and stores them in a central database.
Then, we created a tool that ,based on this information, aims to discover the
optimal combination of cloud resources according to the user demands and
decision criteria. This system has to be scalable, in other words it has to be able
to operate with a great number of users and clouds, so that it can work in a
realistic scenario. We tested this aspect of our implementation and the results
were satisfactory. Our system currently works with clouds running the Synnefo
software and can be extended to support many more.

Keywords

cloud federation, resource deployment, information collection, data aggregation,
central database, cloud proposition, scalability, python scripts, APEL, ~okeanos,
Synnefo, Openstack, Kamaki

Acknowledgements

First of all, I would like to thank Professor Nectarios Koziris, who was the
supervisor of my thesis and gave me the opportunity to get involved with
~~okeanos. I chose to conduct my thesis in the CSLab because of the courses
that he taught, which interested and intrigued me a lot. Next, I want to thank all
the members of the Computing Systems Lab, who were very helpful in many
ways, not only concerning the thesis. At this point, I have to refer specifically to
two people whose help was critical for my work. Nasia Asiki, who is a senior
researcher of the CSLab, was my immediate supervisor. Nasia was always
available when I needed her advice either at the lab, by mail or Skype and she
guided me through the course of this project excellently. Georgios Goumas, who
is a lecturer and a senior research associate at the CSLab, was also extremely
helpful for the completion of my work.

Finally, I would like to thank my family for their support and guidance
throughout the duration of my student life. Their advice, as well as the support of
my friends and classmates, prepared a safe path for my future.

Table of Contents

1 INtrodUCHION ...t e 6
1.1 Thesis MOtivation ... ssssssssss——————" 7
1.2 Thesis StrUCTUIEe ... 8

A 2 U0 1€ 01 11 L 11
2.1 CloUud COMPULING..cciiiiereresnssmsmsesnssssssssnsssassssssssssassssssssssssnssssns 11

2.1.1 The evolution of cloud COMPULING.....ovuureereeureerreerreiseeseseesseiseer s sess s sssesssessseesseens 12
2.1.2 The characteristics of cloud COMPULINGccrreurrerrrriermeireerseireeereee s 13
2.1.3 Cloud SErvice MOAELS ...ttt s sss s 13
2.1.4 Cloud deployment MOAELSereerreeneeeneeeeesseesseesseese e sses s sesssssssessssessessssssseens 15
2.2 Cloud Federations.......mmsss 16
2.3 Related WOTK ... 18
2.3. 1 ClOUd DIOKETINE c.uceieeetreeeeisseieseiseesseiseess it sesssessses s s s s bbb sas s 18
2.3.2 RElAtEA PAPETS ceeueereeeeereeseesseisseissessse st sss s s s bbb a s 19

3 ArCRIECTUTE vt 22

3.1 Collection of dataccusmssmsmsmsmsmsmsmsmsmsmssssn s ———————— 22
3.1.1 Connection to the cloud’s identity MaNAgETccoomeeereenmerneeereeereesseessessseessesseeseens 23
3.1.2 AgEregation Of dAta.... e e b s s s sss s 24

3.2 Storage and organization of data ... ———————— 26
3.2.1 Reception and storing of the data........nee s 26
3.2.2 The database SCHEMA ...t e sss s 27

3.3 Data-mining and smart decision-making ... 30
3.3.1 Strategies for selecting the recommended cloudsccooeneneenreneeseeneesseennenns 31
3.3.2 APPlICAtioN fEALUTES ..ccevreeceerieereiseese et ss s bbb sas s 32

4 Technical Details ..o ——————————— 36

4.1 ~OKEANOS .o 36
4.1.1 CompoNnents Of ~OKEANOS ...c..occureureeureeureesiesseiseese st sesssesssesssessssssse s sssssssssseens 36
4.1.2 Components Of SYNNESO ..ot ssesesssesssess s eas 38
41,3 KAIMAKI ittt sreeeeeseese ettt s ss s s e s s e st 39

4.2 Collecting and sending the information..........————— 40
4.2.1 Retrieving information from the servers of ~0Keanoseereenseerneens 41
4.2.2 Preparing the MmesSSage file ...t seesseens 43

4.2.3 Sending the MeSSAZE file.....o ettt s 45

4.3 Receiving and storing the information........ i ———— 45
4.3.1 Receiving the Message files ...t sssseens 46
4.3.2 Storing the incoming information in the central database........cereenneen. 46

4.4 Data mining and deciSion-mMakKing ... 48
30 S O)3 o) v U o] U= of OO PSTT 49
4.4.2 ClOUd QUETYING cooureuerurrerrereeeseseessesssessssssesssesssesssessse bbbt sesssesssesssasssasssesssssssssasssssesas 50
4.4.3 ClOUd PIrOPOSAL .. ieiecieseieeesetiectseeesees s ssssesse s bbbt s b s ss e ss e s 52

5 Performance Evaluation ... 56

5.1 Setting up the system for the tests....... s ————————— 56
5.1.1 The Synnefo DeMO aCCOUNTieriereereeereeeseesseesseesse e seesessss s sess s sssssssesassssseens 56
5.1.2 Retrieving information about the CPU usage and network download and
UPLOAA SPEEM ..ottt ettt a s s e ss s bbb s R s 57
5.1.3 The benchmarks ... ssssssssssssssessssessssssssssssessanes 59
5.1.4 The scripts that perform the teStS ... 60

5.2 The teSt reSUILS ... —————————— 62
5.2.1 Execution time for queries at the table “CloudRecords”oeomenreenneens 63
5.2.2 Execution time for qUETY 3,4 and 5. sssssssessssssseens 65

6 CONCIUSIONS .ocvirmiisnssssmms s 69
LS00 .) 2 1 10 0 F 69
6.2 Future eXtenSioNS ... —————————— 69

7 BibliOGraphy ... ssssssssssssssssas 72

List of Figures

2-1: The evolution of cloud computing 12
2-2: Consumer Flexibility and loss of control depending on the cloud service model 14
2-3: Deployment models distinction based on their characteristics 16
2-4: An example of a federated cloud, consisting of n clouds. 17
2-5: The cloud broker as an intermediate between the user and the federated clouds. 18
3-1: The three components of the implemented system. 22
3-2: The publisher of User A gathers the information from all his VMs. 23
3-3: The publisher retrieves information from the Identity manager in order to gather data from
the user’s VMs. 24
3-4: Record of the VM “CentOs Apel Server” 25
3-5: Files of the publisher, each one with VM records of a specific cloud 25
3-6: The publishers of 2 users who have VMs in 3 clouds send their data to the collector, which
stores it in a central database. 26
3-7: Aggregation, sending, receiving and storing the data 27
3-8: The database schema 28
3-9: Activity diagram for the arrival of a new record at the procedure “Replace Cloud Records” 29
3-10: Overview of our system 30
3-11: The strategies that lead to the selection of the proposed cloud 31
3-12: All the actions that a user or a provider can do using the Sql component 34
4-1: The components of ~okeanos service and their roles 37
4-2: Layers of the Synnefo software 38
4-3: Detailed layout of Synnefo architecture 39
4-4: Imports and credentials 41
4-5: Setting up the clients 41
4-6: Importing message elements 44
4-7: A message file with one record 44
4-8: The table "CloudRecordsHistory" 47
4-9: Added functionality for "CloudRecordsHistory" 47
4-10: Connecting to the database 48
4-11: Filling the list 'clouds’ 49
4-12: Quota check 49
4-13: Printing the sorted cloud list 50
4-14: Retrieving the cloud's SitelD 50
4-15: SQL query example 50
4-16: Example of a query about all clouds 51
4-17: Retrieving the max values 51
4-18: Setting the weights of the objective function 53
4-19: Normalization of the CPU average values 53
4-20: Calculating the objective function of each cloud 54
4-21: Arriving at the result 54
5-1: Cron_job.sh 57
5-2: Connecting with ssh in order to retrieve the CPU usage and network speeds 58
5-3: test.sh 58
5-4: test2.sh 58
5-5: Bash script for the CPU benchmark 59
5-6: Bash script for the MySQL benchmark 59

5-7: Bash script for the FilelO benchmark

5-8: Bash script for the Iperf

5-9: The loop including the MySQL queries

5-10: Supertest.sh

5-11: Results for Query 1

5-12: Results for Query 2

5-13: Combination of both Query 1 and Query 2

5-14: Graph of the average execution time for query 3
5-15: Graph of the average execution time for query 4
5-16: Graph of the average execution time for query 5

60
60
61
61
63
64
64
65
66
67

Table of tables

Table 1: Average query execution time for queries 1 and 2
Table 2: Average query execution time for query 3

Table 3: Average query execution time for query 4

Table 4: Average query execution time for query 5

63
65
66
66

Chapter 1

Introduction

Cloud computing is currently one of the fastest evolving and most popular areas
of Computer Science and Information Technology. Compared to the traditional
computing model, the cloud offers several benefits in terms of performance,
scalability, reliability, productivity and independence. As far as the end user is
concerned, cloud computing does not require from him to deal with
infrastructure at all, but consists of a service providing resources such as storage,
processing units, networks and applications. The provided resources can be
tailored to his needs and can also be shared with other users, thus maximizing
productivity. For example, a group of scientists can work on a computational
project running in the same (virtual) machine in the cloud from different
physical locations, without having to worry about the management or
administration of the shared resources, while being able to dynamically modify
them on demand, if needed. Their work is always updated and accessible to all
the members of the team.

Apart from the scientific community, cloud computing is also a very strong tool
for financial, accounting, administration and many other applications. Even
entertainment is increasingly developing cloud characteristics, with content
uploaded and ready to be shared across many different devices. In most cases,
especially in the commercial ones, the provided quality of service is very critical.
Moreover, the pay-as-you-go model is essential both for companies and for
consumers, ensuring a flexible and more fair charging policy for any intended
use.

The growing number of companies providing cloud-computing services has
resulted in a heterogeneous cloud market, where users have the ability to select
among a variety of offered services (e.g. VMs), pricing models etc. Additionally, a
single provider cannot guarantee truly global coverage due to limitations of
geographic presence, causing latency and communication issues, which have a
negative impact to the quality of service provided. The solution to these
problems is Cloud Federations, in other words unions of clouds. A cloud
federation across different cloud resource pools allows user applications to run
in the most suitable infrastructure environment. Moreover, such a federation
allows a cloud provider to distribute workloads around the globe, move data
between disparate networks and implement innovative security models for user
access to cloud resources. Finally, it enables the client to choose the best cloud
service provider in terms of price, availability and need of use.

The question that now arises is how to make more efficient, either for the cloud
service provider or the client of a cloud federation, the decision of the cloud in

which the VM should be deployed. From the user point of view, one needs to
know the price, the suitability and the quality of service of each cloud option for
the intended use in order to make the correct choice. From the cloud providers’
point of view, the load distribution and some more technical parameters and
constraints (e.g. peaks in resource demand, possible maintenance issues) should
be taken into account for this decision to be made. In most cases, a broker is used
for the management of this data for all the federated clouds. If all this
information is available to both parts and can be suitably processed, the user
should be able to decide the best-fitted resources, but this is very complex to be
achieved without the use of capable tools.

1.1 Thesis Motivation

The goal of this thesis is the implementation of a systematic way to aggregate in
a central database real-time and historic information from the runtime execution
of applications (e.g. statistics) and the cloud infrastructure specifications of
multiple cloud infrastructures participating in a federation. The purpose of this is
to be able to make efficient and fast decisions about the cloud solution that offers
the best fitted resources.

The collection of all this data is a difficult task, mainly because of its vast amount.
There can be thousands of VMs in a medium-sized cloud federation and each one
has to provide its statistics. Also, the form of this data may differ according to the
type of VM that sends it and their sequence has to be preserved. All the above
requirements have to be fulfilled in a way that is automated, reliable and scalable
and demands as few resources as possible.

After having all this data collected and stored in a central aggregation point, it
must be properly processed in order to produce the optimal results. The system
responsible for this processing has to be flexible and scalable, as the amount of
data and the specifications are different each time. Moreover, quality and speed
must be ensured. The best combinations of resources among different cloud
providers have to be proposed according to the user demands, the QoS each
provider offers and the historical information about actual performance metrics
of their infrastructure.

Our motivation is to develop a system that is expandable, scalable and
interoperable with different types of cloud infrastructures. This is why we
exploited technologies and tools that can interact with different cloud software,
such as OpenStack and OpenNebula (references). To showcase the developed
system, our current implementation is based on Synnefo, an open-source cloud
software used to power ~okeanos, which is GRNET's (Greek Research and
Technology Network) cloud service for the Greek Research and Academic
Community, providing Virtual Machines, Networks and Storage.

This implementation consists of two components, a client-side executable that
needs to be installed in one of the user’s VMs, collects all the data needed from all
the VMs of his account and sends it to the second part, a central database in
another VM, where an executable is responsible for the insertion of that data in
the database and the proposition of the most suitable cloud for the deployment
of a new VM. This VM, where the database exists, can either be one of the user’s
VMs (even the same that collects the data) in the scenario where the user makes
the cloud choice, or a server-like VM that decides for every user of the federation.

The first part of the implementation is compatible with the Synnefo software, as
it communicates through its API in order to collect the required information. It is
easy, though, to add compatibility with any given cloud software, such as the
open-source Openstack. The second part is independent of the Cloud Software
and it only prerequisites MySQL and Python support. Since ~okeanos is a single
Cloud, the tests that we ran included cloud sites instead of different clouds.
However, the only thing that has to be changed in our project in order to fully
perform in a cloud federation is the client-side data-mining executable, which
has to be updated with the API of each cloud.

1.2 Thesis Structure

This thesis is organized in the following Sections:
Chapter 2:

We provide all the necessary theoretical background for the concepts and
entities discussed throughout this thesis and briefly discuss related work.

Chapter 3:

We describe the architecture of every component of our implementation,
its features and the criteria by which one cloud is preferred over another.

Chapter 4:

We describe all the technical details of our implementation, including the
software we used that was already available and the one that we designed.
We explain why we chose that software and how we modified it in order
to serve our goals. Finally, we outline what should be supplemented if
support for more Cloud types is to be added.

Chapter 5:

We test our implementation in a pseudo-Cloud Federation Environment,
using Cloud Sites instead of separate Clouds, and evaluate its performance.
Every decision derives from an objective function, the parameters of

which are discussed. We also observe its behavior in case of the current
VM stats or their history.

Chapter 6:

We provide our conclusion remarks and examine the possibility of future
extensions in order to include support for several cloud types and more
advanced decision-making techniques.

Chapter 7:

Bibliography.

10

Chapter 2

Background

In this Chapter, we will cover the theoretical background that is required in
order to make this document comprehensible to the reader. The concepts that
will be explained are clouds, cloud federations and cloud brokers.

More specifically, Section 2.1 provides the definitions of cloud computing and
describes its evolution and its characteristics, service models and deployment
models. Section 2.2 describes cloud federations and explains the concept of
brokering. Finally, Section 2.3 discusses similar approaches to our goal,
demonstrating ways to propose the best matching cloud of a federation for the
deployment of a new VM.

2.1 Cloud Computing

The growing importance of cloud computing in numerous aspects of the world of
technology such as entertainment, business and research, have created the need
for its specific definition. Given the diversity of its nature, there is no strict
definition of cloud computing. However, according to the National Institute of
Standards and Technology of USA (NIST) [1]:

Cloud computing is a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or service provider
interaction. This cloud model is composed of five essential characteristics, three
service models, and four deployment models.

Below, we will discuss these characteristics, service models and deployment
models as they are described by NIST. We will also point out the service and
deployment models that are used in our project. But first, we will make a brief
presentation of the historical evolution of cloud computing, in order to observe
how the basic concept of resource sharing has taken advantage of the capabilities
of the Internet and has resulted in what we call the cloud.

11

2.1.1 The evolution of cloud computing

One of the main ideas behind cloud computing is the resource provisioning from
a shared pool. Having this in mind, the use of terminal computers in order to
access the resources of a mainframe during the 50s can be considered as the
starting point of the concept of cloud computing. Those terminals had no
computing capabilities and their sole role was to connect their users to the
central computer, where all of the processing took place [2].

The following decades came with the establishment of the personal computer,
but also the concept of virtual machines was created. Virtualization made
possible the simultaneous and parallel execution of operating systems in an
isolated environment, which took the terminal-mainframe model to the next
level. Moreover, the introduction of the Internet further enforced the client-
server concept, giving an idea of what could follow.

Web-

| Services

Figure 2-1: The evolution of cloud computing

In the 90s, telecommunication companies began offering Virtual Private
Networks (VPNs), which were able to switch traffic in order to balance server
use. It was the first time that the cloud symbol was used, marking the boundaries
between the parts of the network for which were responsible either the
providers or the users. The breakthrough of the World Wide Web established the
concept of grid computing, where distributed systems worked under the same
goal.

All these developments led to the formal introduction of the term of cloud
computing in 2007, when Amazon presented Eucalyptus, the first open-source
platform for deploying private clouds. Amazon used this software for the test
version of its Elastic Computing Cloud (EC2). Since then, cloud computing has
become a trending area of computer science and an increasing amount of cloud
applications appear. Finally, as we probably approach a post-pc era, where
smartphones and tablets surpass PCs in data and entertainment consumption,

12

cloud solutions guarantee that the end-devices are not burdened and limited by
the storage and processing of data when someone else could take care of that [2].

2.1.2 The characteristics of cloud computing

The characteristics of cloud computing as described by the NIST [1] are the
following:

¢ On-demand self-service:

The client can automatically modify the computing resources that he is offered,
without the need of human act from the part of the provider.

e Broad Network Access

The services are available over the network for any supported device - client
platform, such as mobile phones, laptops, tablets or workstations, and from
whatever location. The only requirement is access to the Internet.

e Resource pooling

The total of the provider’s resources of storage, processing, memory and
network bandwidth are pooled and can be reassigned dynamically according to
user demands. This multi-tenant model provides location independence and
efficient use of the available resources, tailored to everyone’s needs. Additionally,
the pay-per use model is the user-friendliest, as one does not have to pay for
resources that he does not use.

e Rapid elasticity

Resources can be elastically provisioned. The client can change the provided
capabilities upon request and according to his needs without restraints and
without affecting the operation of the existing resources.

e Measured service

The usage and provision of resources is monitored, controlled and optimized for
both the provider and the user. This is possible by the use of metrics and
statistics.

2.1.3 Cloud service models

According to NIST [1], the service model of a cloud can be one of the following:

e Software as a Service - SaaS

13

The user is provided with applications running on cloud infrastructure that he
cannot modify and about which he does not need to know anything. These
applications are accessible from a client interface compatible with many types of
devices, most commonly a web browser.

e Platform as a Service - PaaS

The user is provided with the capability to create applications or application
environments, using programming tools and services supported by the provider.
He may have the possibility to conFigure the hosting environment, but he has no
control over the cloud infrastructure.

e Infrastructure as a Service - [aaS

The consumer is provided with computing resources such as processors, storage
and networks, on which he can deploy and run operating systems and
applications. While he can modify the capabilities of the provided resources, he
has no further control over the cloud infrastructure.

e (Other models

On top of those service models, there are many subsets that are more specialized
in specific needs and markets, such as Communication as a Service (CaaS) for
telephony, Network as a Service (NaaS) for network optimizations and Database
as a Service (DBaaS).

As is shown in Figure 2-2, the more flexibility that a service model provides a
consumer with, the more control he has over the provided resources. For
example, in the SaaS model, the user has little flexibility, as he is only capable of
running specific applications. In the same time, he has the least possible control
over his resources, being able to interact only with the environment of the
application in use. In contrast, in the [aaS model, a user has full flexibility and
control, as he can use his resources almost anyway he wants.

Less More

Software -as-a-service
(Saas)

Consumer Platform-as-a-service Consumer
Flexibility (Paas) Loss of Control

More Less

Figure 2-2: Consumer Flexibility and loss of control depending on the cloud service model

14

Our project addresses mostly the [aaS service model, as our main goal is to
decide how resources will be distributed inside a cloud federation. In other
words, we are dealing with Infrastructure. However, our system can also be
viewed as a platform that provides tools to find the best-fitted resources for a
deployment, so maybe a hybrid [aaS and PaaS model is the most suitable
description.

2.1.4 Cloud deployment models

Finally, according to who operates the cloud infrastructure, there are different
deployment models, as described by the NIST [1]:

e Private cloud

Private cloud is cloud infrastructure operated for exclusive use by a single
organization with multiple consumers and it is owned and managed either
internally or by a third party. Its location may be on or off the organization’s
premises.

e Community cloud

Infrastructure is shared by several organizations and supports a community that
has shared interests. It may be managed by the organizations or a third party
and usually exists on the premises.

e Public cloud

The cloud infrastructure is provisioned by a cloud service provider for open use
by the general public over the Internet. It may be owned, managed, and operated
by a business, academic, or government organization, or some combination of
them. It exists on the premises of the cloud provider.

e Hybrid cloud

This Cloud Computing model is a combination of two or more clouds (private,
community, or public) that remain unique entities but are bound together by
standardized or proprietary technology that enables data and application
portability.

15

Shared
Community '::‘I'b“:
ou
Access Cloud
& Hybrid
Control Cloud
Dedicated Private Hosted
Cloud Private Cloud
On-premise Off-premise

Location

Figure 2-3: Deployment models distinction based on their characteristics

In Figure 2-3, we can see how the deployment models are differentiated
according to the location of their infrastructure and their access and control. A
private cloud, for example, has dedicated access and control, being administrated
by a single organization, and depending on the location of its resources it may be
hosted on or off the organization’s premises.

Our system is developed to work with any cloud deployment model. Our current
implementation is based on a public cloud (~okeanos (REFERENCE), but it is
also designed to work in a Community cloud or a federation of public clouds. It
also has the capability to be operated in private cloud environments, with only
small modifications required.

2.2 Cloud Federations

Cloud federation is the result of interconnecting the cloud computing
environments of two or more service providers for the purpose of load balancing
traffic and accommodating spikes in demand [3].

16

/ \ C|0;Jd 3
cloud 1
e /

cloud n

Federated cloud

Figure 2-4: An example of a federated cloud, consisting of n clouds.

The concept of such a federation is that each single cloud does not have infinite
physical resources or ubiquitous geographic footprint. Subsequently, if it
saturates the computational and storage resources of its infrastructure, or is
requested to use resources in a location where it has no footprint, it can still
satisfy further user requests by providing resources from the infrastructure of
other clouds of the same federation.

The cloud of clouds is an analogy to the Internet, which is a network of networks.
Indeed, a service provider to which an endpoint is attached, will access or deliver
traffic from/to source/destination addresses outside of its service area by using
Internet routing protocols with other service providers with whom it has a pre-
arranged exchange or peering relationship. Another analogy is the way mobile
operators implement roaming and inter-carrier operability.

Cloud federations have many benefits for both the clients and the providers.
Clients have virtually access to unlimited resources on demand and with full
geographic coverage. Additionally, they are able to choose (when such choice
exists) between providers offering the required services and resources,
according to their criteria such as price, cloud type, performance demands or
network preferences. Providers, on the other hand, are enabled to expand their
geographic footprints and accommodate sudden demand spikes without having
to invest in broader infrastructure. Moreover, they have the possibility to earn
revenue from resources that would otherwise be idle or underutilized, while not
compromising their quality of service (QoS) due to demand peaks [4].

17

2.3 Related work

The common practice in order to distribute resources inside a cloud federation is
using a cloud broker. Below, we are going to describe what cloud brokering is
and we will discuss some related papers and their approaches.

2.3.1 Cloud brokering

Cloud
Broker

-

Figure 2-5: The cloud broker as an intermediate between the user and the federated clouds.

In a cloud federation environment, a user has many options of which to choose a
provider of cloud services. Each one has different characteristics and very rarely
can one be the most suitable in every case, even for the same client, as the
client’s requirements are not always the same. This choice becomes more
difficult as the number of available clouds increases and it is no longer a simple
task for the user to examine his options and choose the optimal. In fact, in most
cases a user should not have to deal with this at all, meaning that the selection
procedure should be transparent for him. Additionally, sometimes the optimal
choice is related to factors that cannot be assessed by the user, such as the
network topology or the resource constraints that a cloud may face due to a
demand peak. Even for the providers, advertising their offer and comparing it to
the others, which almost always is not even possible due to information that is
not accessible to anyone outside the interested provider, is a job that should be
done by someone else. Hence the need for cloud brokers.

The term cloud broker may refer to either a third-party business that acts as an
intermediary between the client and the provider of a cloud computing service,
or to a software application that automatically facilitates the distribution of work
between different cloud service providers. In any case, the broker has access to
all the relevant information of each cloud, such as its resource availability, its
price scheme, its geographic location and its QoS and based on that and the user

18

demands, it can negotiate with cloud providers and propose the best solution or
give the user an abstraction of all the info in order to let him make his own
choice. After the choice is made, the broker contacts the provider and arranges
the service [5].

In a cloud federation environment, the broker is a core entity of that federation,
coordinating the distribution of resources of the common pool across its users.
In addition to acting as an intermediary for the client-provider negotiations, the
broker might also provide additional services facilitating the monitoring of all
resources and the storage and safety of all user data. As each provider may use a
different API, the broker must use a software adapter layer to deal with this.

Given the importance of the cloud broker, many papers have been published
suggesting functionalities and principles of such brokers. The ones that we are
going to discuss are “CloudCmp: Comparing Public Cloud Providers” [6], “A
Coordinator for Scaling Elastic Applications Across Multiple Clouds” [7] and
“Cloud Brokering as a Service“ [8].

2.3.2 Related papers

The first paper [6] presents a comparison of existing providers in order to find a
static way to propose the best fit according to the intended resource use. For the
needs of it, various tests were performed on a set of commercial cloud services
providers. Those tests included evaluation of the elastic compute cluster (CPU,
memory and disk [/0), the persistent storage, the intra-cloud network and the
wide-area network. The evaluation was based on running benchmarks and on
the assessment of their finishing time, cost per benchmark and scaling latency.

The results produced, which were anonymous due to legal concerns, show that
each cloud solution has its strengths and weaknesses. Taking the cost of each
cloud into account, three case studies were deployed in order to find the most
appropriate cloud for every case. These applications include a storage intensive
e-commerce website, a computation intensive application for DNA alignment and
a latency sensitive website, and each time the clouds’ overall performance was
different.

The brokering model presented in the second paper [7] embraces the concept of
a cloud proposition (in this case selection) after a resource request. The main
differentiating point is that the user only communicates with the cloud provider
to which he belongs. If this cloud can provide the resources he demands, then it
is the one that serves him. Otherwise, the cloud contacts the Cloud Exchange,
which is the central component of this implementation, in order to place a
request. Besides requests, the Cloud Exchange is also where the resource offers
are made, and it is responsible for the start of negotiations between different
clouds. Each cloud with spare resources sends such an offer to the Cloud
Exchange, including the number of available VMs, their amount of memory and

19

number of cores, the computational capacity of each core and the hourly price of
each machine.

After the Cloud Exchange finds a match for a request, he gets the two interested
clouds in touch. These clouds now communicate through the Cloud Coordinator
component of each one, which includes a negotiation engine. The Cloud
Coordinator is also the component through which each cloud communicates with
the Cloud Exchange. If the demands of the first cloud are not met, the offer of the
second one may change in order to be accepted. When these demands are finally
fulfilled, the resources of the second cloud are assigned to the user of the first.

Finally, paper [8] proposes a distributed cloud broker model, where each
customer request is handled by a cloud agency that creates a dynamic broker
specifically for this request. This request is called Call For Proposal (CFP) and
contains both the list of resources to be acquired as an SLA (Service Level
Agreement) Template defining the technical requirements for user’s applications,
and the broker policy to be enforced. The broker policy sets constraints and
objectives on multiple parameters, such as the best price per time unit, the
greatest number of cores, the best-accredited provider or the minimum accepted
availability.

These constraints are divided into hard constraints and soft constraints. Hard
constraints refer to the fact that the cloud offer must have the required
condition; otherwise it is to be excluded. Soft constraints refer to desired
requirements that can make a provider preferred with respect to another. For
each parameter the user will eventually choose some constraints and define if
they have to be hard or soft. Finally, the broker will use an objective function
over all the proposals of the cloud providers that are matching to the CFP in
order to find the most suitable.

20

21

Chapter 3

Architecture

The system that we developed proposes the cloud from which the resources
demanded by the user should be deployed. This is achieved by examining the
user requests and the information that is collected from the current
infrastructure or its historic pattern. It can be designed to operate either per
user or per cloud and we chose the per user approach.

In this Chapter, we are going to describe the architecture of our implementation,
which consists of three main components:

e Collection of information
e Storage and organization of this information
e Data mining and decision-making.

Our goal was to make these components scalable, efficient and as platform-
independent as possible. They can work either all together as a serial process or
separately as stand-alone applications.

. anda .
collection - S - making
organization

Figure 3-1: The three components of the implemented system.

3.1 Collection of data

This component collects information about the virtual machines of a cloud or a
cloud site on a per-user basis. Its development is platform-dependent, since it
needs to be integrated with the provided API of a specific cloud middleware in
order to interact with the infrastructure and collect information.

22

In the case that the data is collected on a per user basis, a Publisher is
responsible for collecting the information of all the VMs that belong to this user.
This publisher can either be a special VM or it can be installed on a random VM
of the user, as it generally presents very low resource consumption and does not
affect the performance and load of a VM.

of User A

Figure 3-2: The publisher of User A gathers the information from all his VMs.

3.1.1 Connection to the cloud’s identity manager

The Publisher connects directly to the cloud’s identity management service for
each cloud that the user has an account in. This service is responsible for all the
user details including account info and quota limit. It also provides information
about the user VMs (such as the unique ID of each one), so that the publisher can
retrieve their stats and characteristics. The aforementioned connection requires
that the API of this service is known and supported. In our case, the publisher is
Openstack-compatible, which is an API well known for its compatibility,
simplicity and reliability. A single publisher may support multiple APIs in order
to be able to connect to all the clouds in which the user has an account.

The publisher requests all the desired information via method calls of the
service’s API that encapsulate HTTP requests to the appropriate server. This is
repeated for every cloud that interests the user, in a repetition pattern that may
be adjusted by either the user or the service provider. In most cases, the identity
manager and the other servers will provide more information than what is
needed, so the publisher is responsible for creating the records containing the
appropriate data for each cloud.

23

User A Cloud User A
VMs Services VMs

N —— — ——— e

e

Figure 3-3: The publisher retrieves information from the Identity manager in order to gather data
from the user’s VMs.

So, as is pictured in Figure 3-3, the publisher, which is run in a user VM, requests
information from the identity manager, which is a service provided by the cloud
federation, in order to aggregate the required data of all the user VMs. This data
is either provided directly from the identity manager’s info (e.g. the quotas) or it
can be retrieved from other sources thanks to this info. We will show in Chapter
4 how this is achieved.

3.1.2 Aggregation of data

Subsequently, the publisher creates one message file for each cloud containing a
record for every VM that the user has deployed in that cloud. The key for each
record is the VM’s Universal Unique Identifier (VMUUID). The information per
VM includes data concerning the user account in that cloud and the cloud itself,
such as Local User ID, Local Group ID, cloud type, site name (cloud name), and
the usage and limit of the user’s resource quotas. Additionally, the VM
configuration and statistic information are provided, such as CPU count and
usage, memory, network type and speed and the image ID that operates the VM.

These files are stored in a queue, sorted by the time of their creation. Depending
on the current policy, these files may be sent either instantly to the central
database that accumulates all the data, or they may be kept and summarized by
the publisher, who will later choose and send only some representatives ones.
The sorting is very important both while storing and when sending the files, as
possible inaccuracies can cause many inconsistencies to the service provided. So,
in order to make them sortable, the files are named upon creation in a way that
is easy for the queuing system to recognize.

24

In Figure 3-4 we can see an example of a VM record for a machine named
“CentOs Apel Server” and with the VMUUID 213260, deployed in the cloud site
“~okeanos” and belonging to the user with the ID 70c32715-cd13-4eaf-b923-
d6a62952659f.

APEL-cloud-message: v0.2
VMUUID: 213260

SiteName: Okeanos

MachineName: CentOs Apel Server
LocalUserId: 70c¢32715-cd13-4eaf-b823-d6a62952659f
LocalGroupId: 70c¢32715-cd13-4eaf-b823-d6a62952659f
Status: ACTIVE

StartTime: 1405507839
WallDuration: 1837750
NetworkType: IP_LESS_ROUTED
NetworkInbound: 1
NetworkQOutbound: 1

CpuCount: 1

Memory: 4096

CpuUsage: 3

Disk: 5

ImageId: 1le2a33cl-fdcb-4b44-8675-84de786770f5
CloudType: synnefo

DiskUsage: 45

DiskLimit: 150

VMUsage: 6

VMLimit: 7
PithosDiskspacelUsage: 3
PithosDiskspacelLimit: 100
RAMUsage: 9

RAMLimit: 26

CPUCoreUsage: 10

CPUCoreLimit: 12
FloatingIpUsage: 6
FloatingIpLimit: 6
PrivateNetworksUsage: 1
PrivateNetworksLimit: 9
PendingAppUsage: ©
PendingAppLimit: 1

%%

Figure 3-4: Record of the VM “CentOs Apel Server”

In Figure 3-5 we can see an example of 3 message files produced by the
publisher of a user who has VMs in 3 clouds, more specifically 3 VMs in “Cloud 1”,
1 VM in “Cloud 2” and 2 VMs in “Cloud 3”. These files are independent and named
differently, but are all sent to the next aggregation point with the same
mechanism.

Cloud1 Cloud 2 Cloud 3

VM1
wr I

VM 2

Figure 3-5: Files of the publisher, each one with VM records of a specific cloud

25

3.2 Storage and organization of data

All the publishers send the files with the data that they accumulated to one
central database, which may either exist in a VM of the cloud federation, or it
may be on a physical machine operated by the federation. For now, this machine
will be referred to as the Collector. The data is then organized and imported
into a MySQL database with an automatic procedure. The collector will be
responsible for information collection, information processing and querying.

Cloud 1

Cloud 1

Cloud 2

Cloud 3

Figure 3-6: The publishers of 2 users who have VMs in 3 clouds send their data to the collector,
which stores it in a central database.

3.2.1 Reception and storing of the data

All the files sent from the publishers are destined to a queue of the collector. As
the collector uses the same queuing system with the publisher, it is ensured that
there will be no temporal inconsistencies between the incoming messages.

In the collector, there are two running daemons responsible for the insertion of
data in the database. The first one receives the message files sent from the
publishers through the network and forwards them to the defined queue of the
server, using protocols and frameworks that we will present in Chapter 4. It
constantly checks for incoming connections and checks the authenticity of the
sender in order to continue its task.

The second daemon is the database loader, which is responsible for the loading
of the data into the database. It parses the raw text from the files and, after
checking their consistency, inserts the data into the appropriate tables of the
schema. The queue is checked and when new files are found the loading

26

application starts, determining which fields are to be added or updated in the
database. Finally, the loader calls the MySQL procedures required to store that
data to the suitable tables.

Network

Publisher Collector

- Receiver =

Aggregator

DB Loader

Aggregator

Figure 3-7: Aggregation, sending, receiving and storing the data

In Figure 3-7, we can see an overview of the main procedures so far. First, the
publishers aggregate the data using the cloud software API, and then they send it
to the collector who stores it in a central database.

3.2.2 The database schema

We will now describe the central database that we saw in Figure 3-7, where the
collector stores all the information about the users and the VMs. The tables of
this database that currently interest us are Cloud Records, Cloud Records History
and Sites, while the only procedure that we use is Replace Cloud Records.

27

—| CloudRecords v

@ UpdateTime TIMESTAMP
! VMUUID VARCHAR(255
(255) ~] CloudRecordsHistory ¥
2 SitelD INT
UpdateTime TIMESTAMP
MachineName VARCHAR(255)
VMUUID VARCHAR(255)
LocalUserld VARCHAR(255)
SitelD INT
LocalGroupld VARCHAR(255)
1.* 1 MachineName VARCHAR(255)
GlobalUserNamelD INT - -———
- - = CpuUsage INT
FQAN VARCHAR(255)
Networkinbound INT
»VOID INT
NetworkOutbound INT
VOGrouplD INT
Memory INT
» VORolelD INT >
Status VARCHAR(255)
StartTime DATETIME
EndTime DATETIME
SuspendDuration INT _1;*_ .
WallDuration INT |
CpuDuration INT :
| Sites v
CpuCount INT |
CpuUsage INT I_ _ _1 # N
NetworkType VARCHAR(255) DRams VARGHARI266)
>
Networkinbound INT

Figure 3-8: The database schema

“CloudRecords” is the table where the most current information is stored for
each VM of the cloud federation. It is completely updated every time a new
message arrives, as the most recent VM record replaces the old one. All the VMs
that are active, building, restarting or stopped-shut down are included in this
table. When a VM is deleted, its record is no longer updated but stays in the
database with the last valid Update Time. It is up to the cloud administrator to
decide how often the records of deleted VMs will be erased from the database.
The table’s primary key is the VM Universal Unique Identifier (VMUUID) and the
fields Update Time and Site ID are foreign keys.

“Cloud Records History” is the table where a history is kept for specific metrics
of the VMs. These metrics include CPU usage, Memory and Network Download /
Upload speed. The primary key is the tuple of VMUUID and Update Time, as the
most common use of this table is to find the values of these metrics of a VM at a
certain time or during a time period. Additionally, Site ID is stored in order to be
able to directly compare the history of different clouds (sites), and Machine
Name is used with a semantic meaning, in order to be able to declare the
intended use of the VM. Thus, different use cases will provide different historical

28

patterns and, when in need to create a new VM for a specific use, the
performance of each cloud for this use can be taken into account.

In the table “Sites”, there is a record for every cloud or cloud site, assigning it to
an ID. The reason of this decision is that using an integer is much more efficient
when performing queries. Cloud sites will be used in many lists , structures and
queries, as we will see in Chapter 4, so using strings each time would be
meaninglessly aggravating.

Finally, the procedure “Replace Cloud Records” is the one called each time by
the database loader. When a record for a new VM arrives, a new entry for that
VM is added to the tables “Cloud Records” and “Cloud Records History”. If it
belongs to a cloud site that has not been reported before, a new entry is also
added to the “Sites” table. If a record of a VM that already exists in the database
arrives, its entry in “Cloud Records” is replaced and a new entry is added to
“Cloud Records History”, if the time that the stats were collected (declared by
the collector) are different from last time’s. This is pictured in the simple activity
diagram of Figure 3-9.

Replace Cloud Records - New Record

Arrival
Does the VM already
have an entry in
Cloud Records table?
r Yes ——— No —I
Is the update time Does it belong to a
more recent than the Site that has an entry
last? in table Sites?
Yes l |
No N
Replace entry in °
Cloud Records, add -
entry in Cloud Do nothing Add entries in Cloud
Records History Yes — Records, Cloud
Records History and
Add entries in Cloud Sites
Records and Cloud
Records History

Figure 3-9: Activity diagram for the arrival of a new record at the procedure “Replace Cloud Records”

29

3.3 Data-mining and smart decision-making

After all the necessary data is collected in a central database, we must find a way
to use it in order to make decisions about the deployment of future VMs. This is
achieved by using Sql, a script that we created and is responsible for all the data
mining and decision-making. In this way, both a user and a provider can query
any information that they want in order to make their decision, or request an
automatic provider proposition by the application, given their required
specifications and intended use.

Figure 3-10 sums up the capabilities of our system. The publishers aggregate all
the VM statistics from all clouds on a per user basis. Then this data is stored in
the central database and the user (in our case) or the provider has the ability to
query information and ask for an optimal cloud in order to deploy resources
from.

User / Provider

query best-matching
VM specs/use cloud provider

Publisher 2

Publisher 1

VM1 VM 2 VM 1 VM2 VM3 VM 1

Figure 3-10: Overview of our system

30

3.3.1 Strategies for selecting the recommended clouds

In order to propose the most suitable cloud, our system uses certain strategies
and the user can select which one will be used for the result.

1. Enough quota

The cloud site must be able to provide the resources requested from the user.
Typically, a user is granted a limited access to cloud resources from a specific
provider, especially in cases of free (educational) or otherwise confined
providers. If the user’s demands exceed his quota limit given his current usage -
meaning the VMs that he has already deployed-, then the cloud is no longer a
candidate.

2. Price

Besides the practical issue of quotas, price is always one of the most important
factors in commercial environments. There can be different pricing models, most
of which are proportionate to the resources provided but with possible details
differentiating them. Thus, every time and for every cloud, the price is calculated
taking into account the exact pricing policy and the requested resources.

3. Best match for the intended use

The user can choose whether his intended use is cpu-intensive, memory
intensive or network intensive. Furthermore, he can create a custom scenario by
providing his own preferences in a personalized model. In Chapter 4 we will see
how these standard or custom scenarios have been implemented in order to
make a final cloud proposition.

List of available clouds

l

Quota check

:

Reduced list of
clouds

y
Reduced list of clouds
sorted by price

=

Decision-making
v

Proposed cloud

Figure 3-11: The strategies that lead to the selection of the proposed cloud

31

As it is shown in Figure 3-11, the decision-making process must start with the
quota check. Optionally, the produced list of clouds can be sorted by price before
the final proposition is made.

3.3.2 Application features

The query interface we developed offers a list of features presented in a
command-line interface, trying to be as user-friendly, versatile and efficient as
possible. Its fundamental functionalities are listed below, but it must be noted
that the modification or addition of more capabilities is a straightforward task,
due to the well-organized database in which the information is stored. During
the application’s initialization, a list of all the clouds belonging to the federation
is created.

1. Quota check

The user types in the resources that he demands and the application checks
the availability in each cloud according to its registered resources. If a cloud
is not able to provide any resource, it is subtracted from the active cloud list
and the user is informed about its deficiency. By the time that all clouds are
checked, the list includes only those that can offer the demanded resources
without restrictions. Then, the price of each case is calculated and the list is
sorted by this factor and presented to the user.

2. Specific cloud query

This function provides the user with the capability to select a specific cloud
from the cloud list and execute queries about it. These queries may relate to
specification or performance issues. General information about the selected
cloud can be obtained, or more complex requests can be answered, for
example how many dual-core machines are currently active inside that cloud.

3. General queries about all clouds

Using this function, the user can pose queries similar to the above, but
concerning all the clouds in the list. In this way, he can compare specs and
stats from different clouds, or he can filter the list by enquiring all the clouds
fulfilling certain specifications. For example, he can demand a list of all clouds
that have more than 10 VMs with CPU usage below 50%.

4. General queries about the clouds’ history

The user can retrieve information about the historical pattern of all the
clouds. Queries regarding this feature include the retrieval of information
such as the min, max and average of the metrics stored, and can also see the
specs of the VMs that have produced those values. Additionally, he can
demand the same information for the machines running a specific application
type, such as a cpu-intensive one etc., so that the comparisons between
different clouds are better defined and more specialized for his needs. As we

32

have already mentioned, the type of the application running on a VM (if any)
is stated in its Machine Name. For example, a VM running network-intensive
apps should be named “Net_Bench” in order to make such a capability
feasible. This naming should be noted that it is optional. In this case, our
system could use the “Net_Bench” term in order to query historical stats (e.g.
the network inbound) of only those VMs that had explicitly stated that they
were executing network-intensive tasks.

5. Cloud proposal

This is the function that automatically proposes a cloud provider to the user,
taking his intended use into account. Currently, this is implemented by using
an objective function, whose weights are defined by the user’s preferences, in
order to find the best match. The latter can either choose a standard use case
or he can set the weights manually. The data on which the decision is based
can either be the current values from the Cloud Records table, or it may be a
combination of those values and the ones from the Cloud Records History
table.

6. Advanced query

The purpose of this function is to give full potential to an expert user to make
his custom MySQL queries directly to the database. He can just type the query
manually and the results are returned with exactly the same way that they
would if the MySQL application was used. A simple database schema is
presented as help for the queries.

A user or a provider, in order to make queries and/or ask for a proposition of the
most suitable cloud to deploy the requested resources from, can choose any of
these actions, as it is shown in Figure 3-12.

As it can be observed, all the functions except for the Quota check are
independent and can be called in any sequence unaffected. If they are executed
before Quota check, then the produced results will include all the clouds of the
federation, even those who do not have enough resources to match the user
demands. Otherwise, the user may first execute Quota check and then proceed
with the other functions. In this way, the produced results will concern only
clouds that are able to offer the required resources and will be presented in a list
of ascending price.

33

Sql.py

Specific
cloud query

Queries
about all
clouds

AN

Queries
about cloud
history

User/
Provider

Cloud
Proposal

Manual
query

Figure 3-12: All the actions that a user or a provider can do using the Sql component

34

35

Chapter 4

Technical Details

In this Chapter, we are going to present the full technical details of our
implementation. These details concern the cloud environment that we worked in
(~okeanos), the application that gathers information from the clouds, the
messaging frameworks to send the files from the publishers to the collector, the
database schema and the application that is responsible for querying the
collected data and proposing a cloud for deployment. Some of the code used was
developed for the purposes of this project, while other parts were available from
the Internet and were either modified or used unaltered.

The operating system of the machines that we used as publisher and collector
was CentOS 6.5, as some of the already existing code that we used was at the
time only available in rpm packages. However, even this code can be executed in
other Linux OSes with the proper modifications, it just was easier for the
purposes of this thesis to use CentOS. In our tests, we also used Debian and
Ubuntu virtual machines for collecting stats.

4.1 ~okeanos

~okeanos is GRNET’s cloud service for the Greek Research and Academic
Community, providing cloud services such as virtual machines, networks and
storage [9]. It is powered by Synnefo, a complete open source cloud stack written
in Python that provides Compute, Network, Image, Volume and Storage services.
Synnefo manages multiple Ganeti clusters at the backend and uses the OpenStack
API at the frontend.

4.1.1 Components of ~okeanos
~okeanos is a collection of the components below:
e Identity Management (codename: astakos)

e Object Storage Service (codename: pithos+)
e Compute Service (codename: cyclades)

36

Network Service (part of Cyclades)

Image Registry (codename: plankton)

Billing Service (codename: aquarium)

Volume Storage Service (codename: archipelago)

Astakos

Pithos Archipelago Cyclades

H ﬂ ;n Docl) B e]
Plankton ig\—@’
y -

J

Figure 4-1: The components of ~okeanos service and their roles

The only user-visible ~okeanos services are Cyclades and Pithos. Cyclades is the
Compute and Network part of ~okeanos. It provides access to the virtual
machines that can be created, booted, shutdown or destroyed on demand, and to
networking functionalities including firewalls, Internet access and virtual
networks. Cyclades also keeps the statistics of the VMs concerning the compute
and network resources that are used.

Pithos is the file storage service of ~okeanos, where everything can be stored,
from user documents to custom Images for the creation of new VMs. So, it can be
viewed either as a stand-alone service, accessible via a web browser, command-
line or a native client, or as an integral part of ~okeanos.

Astakos, the identity management service, provides the single point of
authentication and authorization for Cyclades and Pithos. Via Astakos, ~okeanos
users can register, login and manage their account tokens.

Plankton is the Image Registry service, implemented on top of Pithos. Every
Image of Plankton is a file stored on the Pithos backend and users can
synchronize or upload their Images to Pithos, then register them with Plankton.

37

Aquarium is the accounting and billing service of ~okeanos, which is currently
under development. It monitors the resources used by each user and matches
them to credits.

Finally, Archipelago is the volume storage service, a custom storage layer that
handles volumes as set of distinct blocks in the backend. [10]

4.1.2 Components of Synnefo

Synnefo has a completely layered architecture, at the lowest level of which every
VM operates using KVM, an open-source full virtualization solution that supports
virtual machines running Linux and Windows images. Those VMs are organized
in clusters, the management of which is assigned to Ganeti nodes. Ganeti is a
virtual machine cluster management tool developed by Google, which was
chosen thanks to its scalability and reliability as a software infrastructure for
managing VMs. [11]

Synnefo runs on top of Ganeti, having the components that we mentioned before,
such as Cyclades, Astakos, Pithos etc. There is a strong bond between ~okeanos
and Synnefo components, as the latter was mainly developed for the needs of the
former.

At the front end, Synnefo uses a superset of the Openstack API, achieving this
way compatibility and simplicity. One of the tools of Synnefo for the management

of a deployment is Kamaki.

This transition between the layers of Synnefo is portrayed in Figure 4-2.

SYNNEFO ul I:l
[=
OPENSTACK API I
—
SYNNEFO cLouD ’HE: H‘
= || = || =
s
CLUSTER
GANETI
NODE
KVM HYPERVISOR
-]

Figure 4-2: Layers of the Synnefo software

38

In Figure 4-3 we can see a more detailed layout of the Synnefo architecture. A
user can access Synnefo either by command-line (Kamaki) or by the web user
interface from the official site. In both cases, the communication with the lower
level is achieved by using the Openstack API. The cloud level’s architecture is the
one of ~okeanos, the components of which we have already described. Below,
there are the cluster, node and hypervisor levels, accessible only by the
administrators, which are operated by Ganeti and KVM. The storing service uses
Rados (reliable autonomic distributed object store), a free object-based storage
system provided by Ceph. [12]

9 yser 2 user2
v ve
CLIENTS
T T =
OpenStack OpenStack OpenStack OpenStack OpenStack Synnefo OpenStack
Compute/ Compute Glance Cinder Keystone Account Object Store + API
Network Extensions

SYNNEFO

Y a CLOUD — [—) [—]
CYCLADES r ,‘ ASTAKOS ¢ ,‘ PITHOS | ===

(Compute/Network/Image/Volume) (Identity) (Storage)
7

RADOS BACKEND NFS BACKEND
(MONITORS)

RADOS RADOS
oee NODE —

HYPERVISOR
-]

a GANETI

s CLUSTER —=
gt S| MAsTERD

Figure 4-3: Detailed layout of Synnefo architecture

4.1.3 Kamaki

Kamaki is an interactive command-line tool and a client development API for
managing clouds, which implements OpenStack together with other custom
extensions. Kamaki has many uses, including testing of the Synnefo software,
operating the ~okeanos services by the deployment team of GRNET, being the
command-line tool for the Pithos client, testing and debugging of software
developed by third-party Synnefo deployers and as an API for other Synnefo
components or external applications. [13]

Kamaki has a long list of commands, the most important of which are listed
below:

39

e User: info, authenticate, add, delete are some of the capabilities of this
command, which is used to access or modify attributes of an existing
~okeanos user (or create a new one).

¢ Quota: request the user quotas.

Flavor: flavor corresponds to the list of specifications of a VM, such as the
number of CPU cores, the ram and the hard disk size.

e Image: list, get info about, (un) register and modify images accessible by
the user.

e Server: the most important command, it gives the capability to the user to
list, get info about, create, modify, start - shutdown - reboot, delete or use
by console the VM with the provided VMUUID.

e Network: manage the network capabilities of ~okeanos.

File: manage files and images stored in the Pithos service.

We will use Kamaki as a client development AP]I, as the part of our project that
gathers data and stats from the VMs uses it to request information from
~okeanos. This API is responsible for and makes the appropriate HTTP requests
to the ~okeanos server. Most of the methods used are paired one to one with
shell commands of the command-line application of Kamaki.

At first, the application run by the publisher uses Kamaki to connect to the
identity manager (Astakos), who will provide information about the user
account, his quotas and his VMs. Then, using the information about these VMs,
the publisher will connect to the compute and network services of Cyclades, in
order to retrieve all the data required. In the following Section, we will see how
the publisher connects to those servers, which API calls it uses and how this
information is returned and processed.

4.2 Collecting and sending the information

This is the first stage of the operation of our system, where all the required
information about each user and his VMs is collected from the ~okeanos servers
or the VMs directly. As we explained in Chapter 3, the component responsible for
this task is the publisher. The software that implements the publisher is a python
script developed entirely for the needs of our project and is named publisher.py.
It is a platform-dependent script, since it needs to be integrated with the
provided API of Synnefo in order to interact with the ~okeanos servers and
retrieve the required information.

As we have already mentioned, the information that we collect is on a per-user
basis, and this script is developed to work with the Synnefo software.
Consequently, the publisher.py script is responsible for acquiring information
from all the user’s VMs in the cloud ~okeanos.

40

4.2.1 Retrieving information from the servers of ~okeanos

The first thing to do in publisher.py is to import the Kamaki packages that we are
going to need. Next, we have to load the user credentials that will be demanded
by Astakos (the identity manager of ~okeanos). These credentials are the
authentication URL of Synnefo and the token, which is unique for each user, and
they are loaded by parsing the configuration file .kamakirc, which is stored in the
user directory. The indicative code is shown in Figure 4-4.

from kamaki.clients.astakos import AstakosClient
from kamaki.clients.compute import ComputeClient
from kamaki.clients.network import NetworkClient

config = ConfigParser.ConfigParser()
config.read("/Users/Apostolis/.kamakirc")
AUTHENTICATION_URL = config.get('cloud "mycloud"', ‘url")
TOKEN = config.get('cloud "mycloud"', 'token')

Figure 4-4: Imports and credentials

Then, we need to set up a client instance for every service that we are going to
use, in our case the compute, network and astakos clients, which will
respectively provide information about the VM capabilities and stats (except for
network), the network capabilities and stats and the user attributes and quotas.
This is achieved by retrieving the endpoints of each service. The astakos service’s
endpoint is the authentication URL and the endpoints of the other two services
are requested from astakos, as shown in Figure 4-5.

user = AstakosClient(AUTHENTICATION_URL, TOKEN)
cyclades_endpoints = user.get_service_endpoints('compute’)
network_endpoints = user.get_service_endpoints('network"’)
CYCLADES_URL = cyclades_endpoints['publicURL"]

NETWORK_URL = network_endpoints['publicURL"]

compute ComputeClient(CYCLADES_URL, TOKEN)

network = NetworkClient (NETWORK_URL, TOKEN)

Figure 4-5: Setting up the clients

The next thing to do is iterate over all the VMs of this user. Now that the clients
have been initialized, we can use their methods that correspond to the Kamaki
commands. For example the following method returns a dictionary containing
records for every VM and its VMUUID.

servers = compute.list servers()

Using this dictionary, we create a list containing only the VMUUIDs of all the VMs.
This is the list that will drive our iteration over all the user’s VMs. We then create
a list of dictionaries, extracts, which consists of one extract for each VM. Each
extract has fields for every bit of information that we want to collect from the
VMs and for their quotas. These fields are:

41

VMUUID

SiteName: the name of the cloud or the cloud site

MachineName: the name of the VM

LocalUserld: the user’s ID in ~okeanos

LocalGroupld: the ID of the group of ~okeanos to which the user belongs
Status: the status of the VM, e.g. Active, Deleted etc.

StartTime: time of the last boot of the VM

WallDuration: the time that the VM has been active (if its status is active)
NetworkInbound: network’s download speed

NetworkOutbound: network’s upload speed

CpuCount: number of CPUs of the VM

Memory: the size of the VM’s RAM

CpuUsage: the VM’s current CPU usage

Disk: the size of the VM’s hard disk

Imageld: the ID of the image of the VM

CloudType: the software that runs on the cloud infrastructure (in our case
Synnefo)

DiskUsage: the total of the currently used GBs by the user as VM disk
space

DiskLimit: the quota of disk space of the user

VMUsage: the total of the VMs of the user

VMLimit: the quota of VMs

PithosDiskspaceUsage: the total of GBs used for Pithos service
PithosDiskspaceLimit: the quota of Pithos disk space

RAMUsage: the total GBs of the RAM of the user’s VMs

RAMLimit: the quota of RAM

CPUCoreUsage: the total number of CPU cores deployed by the user
CPUCoreLimit: the quota of CPU cores

FloatinglpUsage: the total number of [P addresses used

FloatinglpLimit: the quota of IP addresses

PrivateNetworksUsage: the total number of private networks used
PrivateNetworksLimit: the quota of private networks

Now that we have the extracts, we just need to fill them with the information
that we will retrieve from the servers of ~okeanos.

Inside the loop that iterates for every VMUUID in the list that we previously
created, we call the method shown below in order to get all the details for the VM
(server) with the current id.

server = compute.get server details(id)

Now all the information we need for this VM, except for the network, is stored in
the dictionary server. In order to place the pieces of that information that we
want in the dictionary extract, we use commands like in the following example,
which stores the MachineName in our desired dictionary.

extract['MachineName'] = server['name']

42

In order to fill all the fields of the extract we need to do the same thing for the
respective fields of server. Accordingly, in order to get the network information
that we want we do the following

extract['NetworkType'] =
(network.get network details(server['attachments']
[0]['network id']))['type']

Next, with the following commands we retrieve the user’s quotas and store them
in the dictionary extracts.

r quotas = user.get quotas()

extract['DiskUsage’] =
r quotas['system']['cyclades.disk']['usage']/1073741824

The last command stores the total of the currently used GBs by the user as VM
disk space in the field 'DiskUsage’ of our dictionary extract. In the same way we
store the other fields for the rest of the quotas.

Finally, at the end of our iteration per VM, we store the dictionary extract in the
list of dictionaries of all our VMs, extracts.

extracts[id] = extract

4.2.2 Preparing the message file

At this point, we have a list of dictionaries, one for every VM that the user owns
in this particular cloud. The message file is plain text, so we need to transform all
the information from the fields of these dictionaries in plain text. In order to
form this text, we have to follow the standards required by our messaging
system.

The messaging system that we use is the Secure Stomp Messenger (SSM), which
is designed to send messages using the STOMP protocol. It was developed as a
way of using python and STOMP to securely and reliably send messages from
APEL clients to the APEL server [14]. APEL is an accounting tool designed by the
European Grid Infrastructure (EGI) in order to collect accounting data from sites
participating in EGI infrastructures [15]. SSM and APEL are open-source, so we
are going to use some of their code in our system. Finally, APEL/SSM Openstack
(OSSSM) is a system that extracts usage records of monitored tenants and
forwards them to APEL/SSM accounting system, interacting with OpenStack [16].

This means that OSSSM has the same functionality as our Publisher, but it is
developed to interact with the OpenStack API, which has many similarities but
also a few differences with the Kamaki API of Synnefo. Since OSSSM uses the
same messaging system as we do, we will use one of its configuration files,
osssmrc, which includes all the necessary information about forming our
message file according to the requirements of our messaging system.

43

conf = ConfigParser.ConfigParser()
conf.read('/etc/osssmrc')
config = {}
for item in (
'ssm_input_header"',
'ssm_input_sep',
'ssm_input_path'
):
config[item] = conf.get('Main', item)

Figure 4-6: Importing message elements

Figure 4-6 shows how we parse the required elements for the message file.
These elements are the input header, which is the header of the message file as
required by the messaging system SSM, the input separator, which separates the
records of each VM and the input path, which specifies the directory where the
file will be saved.

Next, we create the message file, starting with the header. For every extract (VM),
we add its fields to the file in the form of one line of plain text for each field.
When we finish with the fields of this extract/VM, we add the input separator
and we follow the same procedure for the next extract/VM until every one has
been recorded to the message file.

In Figure 4-7, we can see a message file with only one record of VM (one extract).
The input header is “APEL-cloud-message: v0.2”, followed by all the fields and
their values and the input separator is “%%". If there were more VMs in this file,
then the line right after the input separator would Figure the VMUUID of the next
VM, followed by the rest of its fields and so on.

APEL-cloud-message: v0.2
VMUUID: 213260

SiteName: Okeanos

MachineName: CentOs Apel Server
LocalUserId: 70c¢32715-cd13-4eaf-b923-d6ab2952659f
LocalGroupId: 70c¢32715-cd13-4eaf-b923-d6ab62952659f
Status: ACTIVE

StartTime: 1405507839
WallDuration: 1837750
NetworkType: IP_LESS_ROUTED
NetworkInbound: 1
NetworkOutbound: 1

CpuCount: 1

Memory: 4096

CpulUsage: 3

Disk: 5

ImageId: 1le2a33cl-fdcb-4b44-8675-94de786770f5
CloudType: synnefo

DiskUsage: 45

DiskLimit: 150

VMUsage: 6

VMLimit: 7
PithosDiskspaceUsage: 3
PithosDiskspacelLimit: 100
RAMUsage: 9

RAMLimit: 26

CPUCoreUsage: 10

CPUCoreLimit: 12
FloatingIpUsage: 6
FloatingIpLimit: 6
PrivateNetworksUsage: 1
PrivateNetworksLimit: 9
PendingAppUsage: 0
PendingAppLimit: 1

%%

Figure 4-7: A message file with one record

44

Finally, we add this file to a queue in the directory that is specified by the input
path. This is achieved by using Dirqg. The goal of this module is to offer a simple
queue system using the underlying filesystem for storage, security and to
prevent race conditions via atomic operations, focusing on simplicity, robustness
and scalability [17]. As Dirq is used throughout our messaging system, it ensures
that the message files will be stored, sent and received with correct order based
on the time of their creation.

4.2.3 Sending the message file

So far, the publisher collects the required information from the servers of
~okeanos and saves it in the form of message files in a queue. In order to send it
to the Collector, we use the SSM messaging system. In the configuration file of
the SSM sender (sender.cfg), we define that outgoing messages will be read and
removed from the directory of the queue. We also define the host name, port and
queue of the destination as well as the certificate that will be used, as SSM
supports signing and encryption of the messages during transit. In our use case,
however, we have deactivated the encryption, as we only had test purposes.

When all is set, executing the command ssmsend will start the SSM messenger,
which will look for any message files in our queue. If none is found, nothing more
happens. Otherwise, the SSM sends the file(s) to the appropriate destination, and
then terminates. As we will explain later in Chapter 5, in working conditions the
publisher.py and the ssmsend should be included in a single cron task that,
according to our settings, will be scheduled and executed in order to retrieve,
aggregate and send the VM and user information to the Collector, where it will be
stored in a central database.

4.3 Receiving and storing the information

The destination of the message files of all the publishers is the collector. After
receiving all these files, the collector has to store their data in a central database.
The reception and storing of this data is an automated procedure, based on two
daemons that are constantly waiting for new data to arrive.

The first daemon is a part of the messaging system that we use, SSM. In order to
store the incoming data, our collector uses the APEL accounting tool, taking
advantage of its ease of use, stability and compatibility with the SSM. Therefore,
the second daemon is part of the APEL system.

45

4.3.1 Receiving the message files

In order to be able to receive the message files that the publishers send, the
collector needs a message broker. The message broker is an intermediary
program for message validation, transformation and routing, minimizing the
mutual awareness that applications should have of each other in order to be able
to exchange messages. We chose the Apache ActiveMQ open source message
broker, which is written in Java, as it is a certified and stable solution. So,
ActiveMQ should be always running in the background, waiting for new
messages to receive.

Having the message broker running, we can execute the ssmreceive command,
which will start the ssmreceive daemon. This is the daemon of the SSM system,
responsible for the reception of all the messages sent from the publishers using
ssmsend. In the configuration file of the SSM receiver (receiver.cfg), we define
the queue destination and port to which the SSM will listen (which are the same
as those defined in sender.cfg), the certificate and the directory to which the
accepted messages will be saved. When the receiver receives one or more
messages, ssmreceive first validates the sender. If the sender is accepted, then
the messages are stored in the specified path (/var/spool/apel/incoming), from
where they have to be loaded so that their information is stored in the central
database of the collector.

4.3.2 Storing the incoming information in the central database

The database schema is defined by the file cloud.sql, which belongs to the APEL
files and we use it with some modifications. As we described in Chapter 3, the
tables of the schema that we use are three, “CloudRecords”, “CloudRecords
History” and “Sites”, while the only involved procedure is the “ReplaceCloud
Records”.

The first table keeps the latest information about all the VMs. It keeps all the
fields that the publishers’ records contain, which we mentioned in Chapter 4.2.1.
The only difference is in the filed “SiteName”, as in “CloudRecords” it is replaced
by “SiteID”. As we have already explained, the APEL system has a separate table,
“Sites”, for the relation between site names and their ID for reasons of
maintenance and speed for the SQL queries, and we had no reason to change this.
Additionally, as the original database scheme did not include fields for the user
quotas, we had to add those in the cloud.sq] file.

The APEL database scheme did not include at all a table for keeping historical
data of the VMs, so we had to create “CloudRecordsHistory”. As we can see in
Figure 4-8 below, the records of this table consist of UpdateTime, VMUUID,
SiteID, MachineName, CpuUsage, Networklnbound/Outbound and Memory. The
tuple of UpdateTime and VMMUID constitute the primary key of the table, as
every VM has multiple records for different time periods. SiteID and

46

MachineName are used so that more complicated queries can be executed, and
the other fields are the stats of which we want to keep the historical pattern.

CREATE TABLE CloudRecordsHistory (
UpdateTime TIMESTAMP,
VMUUID VARCHAR(255) NOT NULL,
SiteID INT NOT NULL, -- Foreign key
MachineName VARCHAR(255),
CpuUsage INT,
NetworkInbound INT,
NetworkOutbound INT,
Memory INT,

PRIMARY KEY (VMUUID, UpdateTime)

Figure 4-8: The table "CloudRecordsHistory"

Having all the message files saved in the specified directory, we need a tool to
load them into the database. This tool will be a part of the APEL system, the
script apeldbloader that will be executed and then run as a daemon. This loader
checks the directory and finds the new files. If their text is in accordance with the
SSM standards, then it stores the data in the database and moves the message
files to the directory /var/spool/apel/accept. The loader checks that the number,
the field names and the value types are correct, and then it calls the procedure
“ReplaceCloudRecords” from the database schema.

The version of this procedure that is included in the APEL package is only
responsible of replacing the records of the table “CloudRecords” with the new
ones, included in the newly arrived message files. So, in order to add support for
our history table, we had to inject the code that is shown in Figure 4-9 into
“ReplaceCloudRecords”.

IF status <> "DELETED" THEN
REPLACE INTO CloudRecordsHistory(VMUUID, SiteID, MachineName, CpuUsage,
NetworkInbound, NetworkOutbound, Memory)
VALUES (
VMUUID, SitelLookup(site), MachineName, CpuUsage, NetworkInbound,
NetworkOutbound, Memory);
END IF;

Figure 4-9: Added functionality for "CloudRecordsHistory"

This extension first checks that the VM whose record is under inspection is not
deleted. This is mandatory as when an ~okeanos VM is deleted, for a short
period of time it will still exist in the user’s list of VMs in the servers, but its stats
should not be added as a new set of data in our history table, as it will be a
duplicate of its last values. Next, it uses the REPLACE function of MySQL that if
there is not already a record with the provided primary key (and there will not

47

be, as the UpdateTime field keeps changing), a new record will be added. The
same function is used by the procedure for the “CloudRecords” table. In that case,
however, the primary key is just the VMUUID, so when a new record for a VM
that already has been recorded arrives, we only have an update of the fields with
the new values, instead of the addition of a new record for the same VM.

Once the database with our modified schema is set up and the ActiveMQ broker
and our two daemons, ssmreceive and apeldbloader are active, no action is
required by the user or administrator in order to have the information of the
incoming message files stored in the database. Once new messages arrive, our
system automatically updates the “CloudRecords” table and augments the
“CloudRecordsHistory” table.

4.4 Data mining and decision-making

When our system is up-and-running, the incoming information from all the
publishers is automatically stored in the central database of the collector. So now
we need a program to query that information and to automatically suggest the
best-fitted resources for the user requirements. We achieve this by using the Sql
script (sql.py) that we developed, which is written in python and is accountable
for both tasks.

The script begins by connecting to the database, after it has parsed the
configuration info that is needed (username, password, hostname, database
name). This can be seen in the following Figure.

config = ConfigParser.ConfigParser()

config.read("/etc/apel/db.cfg")
hostname = config.get('db’, 'hostname')
username = config.get('db’, 'username')
password = config.get('db’, 'password')
name = config.get('db', 'name’)

db = MySQLdb.connect(hostname,username, password, name)
cursor = db.cursor()

Figure 4-10: Connecting to the database

Next, we construct a list named clouds, which will be the basic element of this
script, used in all the iterations, checks and listings of different clouds or cloud
sites. Clouds can be filled either statically, by modifying the code of sql.py, or can
be input by the user during the execution time of the script (Figure 4-11).

48

item = str(raw_input('Type the name of the first cloud:\n'))
while item != '" :

clouds.append(item)

item = str(raw_input('Type the name of the next cloud:\n'))

Figure 4-11: Filling the list 'clouds’

The first use of this list is to create a new list of dictionaries named price,
consisting of one dictionary for each cloud, containing its name and price. The
price can be set statically, or a calculating function can be inserted in the code of
sql.py. The user is, then, given the option to choose his next step, which can
either be quota check, cloud querying, cloud proposal or advanced querying,
where the user types his own MySQL query. In the last case, the user is given
some information about the database scheme that will help him form correctly
the MySQL query and then is asked to type it in. The description of the first three
options follows.

4.4.1 Quota check

After choosing the quota check, the user is asked to provide the amount of
resources that he requires, that is the number of VMs, the disk capacity, RAM size,
number of cpu cores, number of floating IPs and number of private networks.
These values will be saved in variables that will be compared to the available
resources of every cloud in the list clouds.

cursor.execute('select VMUsage from CloudRecords where SiteID = ' + str(cloud_id) + ' order by UpdateTime DESC')
x1 = cursor. fetchone() [0]
cursor.execute('select VMLimit from CloudRecords where SiteID = ' + str(cloud_id) + ' order by UpdateTime DESC')

x2 = cursor. fetchone() [0]

if (r_w > (x2-x1)) :
print 'Not enough resources in cloud %s : number of WMs (available %d) ' %(item, x2-x1)
capable = False

Figure 4-12: Quota check

The Figure 4-12 displays the part of the iteration over the members of the list
clouds where the requested number of VMs (r_VM) is compared to the
difference between the given cloud’s VMUsage and VMLimit quotas. If the
requirements are met, then nothing happens and the cloud remains in the list.
Otherwise, a message is printed that explains the deficiency and the cloud is
labeled as incapable, thus is later eliminated from the cloud list. The SQL query is
formed using the SitelD of each cloud (as cloud_id) and returns values from the
most recent record of that cloud, as we have mentioned that records of deleted
VMs may remain for a limited time in the table “CloudRecords”, containing
possibly incorrect quota values.

The comparisons for the other resource requirements are done in the same way,
so we end up having a list of clouds having enough resources to meet the user

49

demands. If this list is empty, then the message that there are no available clouds
capable of providing the required resources is printed. If the list is not empty,
then the list price is sorted and the list is printed in ascending order by price.
This is achieved by the code shown in Figure 4-13.

pricel = sorted(price, key=itemgetter('price'}))
print 'The clouds capable of providing the required resources are listed in ascending order by price :
for item in pricel :

print item(['name']

Figure 4-13: Printing the sorted cloud list

At this point, the user is once again given the option to choose from cloud
querying, cloud proposal or advanced querying, but the difference is that this
time the list of clouds is sorted by price and reduced to only those capable of
providing the requested resources.

4.4.2 Cloud Querying

Cloud querying includes three functions, one for querying specific clouds, one for
making queries about all the available clouds and one for making queries
concerning the clouds’ history. In any case, the list of clouds includes either all
the clouds, if cloud querying was the first choice of the user, or only those having
the requested resources, if quota check was executed first.

In order to make queries for a specific cloud, the user first has to choose it from
the list. In order to do so, the cloud list is printed and the user is prompted to
type the name of the desired cloud. If the typed name belongs to a cloud, its
SitelD is retrieved from the table “Sites” and is used in a predefined set of queries,
from which the user can select those that will be executed. In the following
Figures, we will see how the cloud_id is retrieved from “Sites” and a query
example that returns all the VMs whose status is “Active”.

print 'Select one of the clouds listed below:'
for item in clouds :
print '%s'Sitem
cld = str(raw_input(’':\n"))
cursor.execute('select id from Sites where name = "'+cld+'""')
cloud_id = cursor.fetchone()[2]

Figure 4-14: Retrieving the cloud's SiteID

cursor.execute('select VMUUID,MachineName from CloudRecords where SiteID = '
+ str(cloud_id)+' and Status = "ACTIVE"'")
print cursor.fetchall()

Figure 4-15: SQL query example

50

In the second case, when a user wants to make queries about all the available
clouds, again he can choose one from a predefined set. Let’s take an example
where the user asks for the list of clouds that have one or more VMs with a CPU
count greater than one. In this occasion, we work the same way as in the quota
check. While iterating between the available clouds, we perform a MySQL query
that returns a list of all the VMs of the selected cloud that have CpuCount>1. If
this list is empty, then it means that this cloud has no VM with more than 1 CPU
cores, so it is eliminated from the list of clouds that we are going to print as a
result of the user’s query. Otherwise, the iteration continues and the cloud
remains in the list. The respective code is displayed in Figure 4-16.

for item in clouds :

cursor.execute('select id from Sites where name = "'+item+'"")

cloud_id = cursor.fetchone() [0]

cursor.execute('select VMUUID from CloudRecords where SiteID = ' + str(cloud_id)+
and CpuCount > 1')

dumb = cursor.fetchall()
if not dumb :
clouds. remove(item)
if clouds == []
print 'There are no such clouds.'
else :
print 'The clouds who have a VM with CPU Count greater than 1 are listed below :'
for item in clouds :
print item

Figure 4-16: Example of a query about all clouds

The last case is when the user opts to make queries concerning the history of the
available clouds. Once more, the user may choose from a set of predefined
queries. This time, we will describe two examples.

In the first one, the query returns the max, min and average of the CPU usage,
memory and network inbound-outbound of all clouds. In the case of CPU usage,
especially, the query also returns the values for the CPU count and memory, as
they are factors that influence the CPU usage. Inside the iteration between clouds,
we initially retrieve the cloud’s SitelD from the table “Sites”. Then, the commands
displayed in Figure 4-17 are executed.

print 'MAX'

cursor.execute('select MAX(CpuUsage),VMUUID from CloudRecordsHistory where SiteID = '+ str(cloud_id))

dummy = cursor.fetchone()

cursor.execute('select CpuCount from CloudRecords where VMUUID = '+ str(dummy([1]))

cpucount = float(cursor.fetchone()[@])

cursor.execute('select Memory from CloudRecords where VMUUID = '+ str{dummy([1]))

mem = float(cursor.fetchone()[0])

print 'CPU Usage : %d -~ with %d processor(s) and %d MBs of RAM' %(int(dummy[@]),cpucount,mem)
cursor.execute('select MAX(Memory),VMUUID from CloudRecordsHistory where SiteID = '+ str(cloud_id))

print 'Memory : %d' %(float(cursor.fetchone()[0]))

cursor.execute('select MAX(NetworkInbound),VMUUID from CloudRecordsHistory where SiteID = '+ str(cloud_id))
print 'Network Inbound : %d' %(float(cursor.fetchone()[0]))

cursor.execute('select MAX(NetworkOutbound),VMUUID from CloudRecordsHistory where SiteID = '+ str(cloud_id))
print 'Network Outbound : %d\n' %(float(cursor.fetchone()[0]))

Figure 4-17: Retrieving the max values

The first MySQL query returns a tuple of the max value of CU usage and the
VMUUID of the VM that had this max usage. Using this VMUUID we can find the

51

configuration (memory and cpu count) of the VM and print it along with the
maximum value. The queries for the memory and network inbound/outbound
are simpler, since we do not care about VM configurations. Likewise, there is no
need for mentioning the VM configurations for the minimum and average values
of the selected attributes, so the respective queries are as simple as those for the
maximum memory and network speeds.

In the second example, the user demands the same values (max, min, average) of
the same attributes (CPU usage, memory, network inbound/outbound) per cloud,
but only for the VMs who are running a specified type of application. As we have
already mentioned, the type of application that a VM is running can be optionally
stated in its MachineName field. Consequently, our application asks the user to
input the name of the selected application and then all the MySQL queries inside
the iterations include a clause for the MachineName field. For example, the one
that retrieves the maximum network inbound becomes

'select MAX (NetworkInbound) from CloudRecordsHistory
where SiteID = '+ str(cloud id)+' and MachineName =
"I+name+llll

4.4.3 Cloud proposal

This is the function responsible for the decision-making in order to propose the
best-fitted resources that meet the user requirements. The basic idea is that the
user states his preferences in the sense of the preferred use of the resources, for
example he can opt for CPU performance or memory size. These preferences will
define the weights of an objective function, according to the outcome of which
the proposed cloud will result.

The first step is to set the weights of the function. The user is given five choices,
each one setting different values for the weights of CPU (wcpu), memory
(wmem), network inbound (wnetin) and network outbound (wnetout). There is
one choice where each of the above values is the most important one, e.g. the
CPU weight for a CPU-intensive use case, plus one more where the user can input
the weights that he wants, as long as their sum is equal to one. The
corresponding code and the values of the weights in each case can be seen in
Figure 4-18 below.

52

opt = int(raw_input('Press "1" if you opt for CPU\nor press "2" if you opt for
Memory Capacity\nor press "3" if you opt for Download Speed\nor
press "4" if you opt for Upload speed\nor press "5" if you want to set
the parameters yourself:\n'))
if opt ==
wcpu
wmem
wnetin 1
wnetout = 0.1
elif opt == 2 :
wcpu = 0.2
wmem = 0.6
wnetin = 0.1
wnetout = 0.1
elif opt == 3 :
wcpu = 0.2
wmem = 0.2
wnetin = 0.5
wnetout = 0.1
elif opt == 4 :
wcpu = 0.2
wmem = 0.2
wnetin = 0.1
wnetout = 0.5
else :
wcpu = float(raw_input('Enter the weight for CPU:\n'))
wmem = float(raw_input('Enter the weight for Memory Capacity:\n'))
wnetin = float(raw_input('Enter the weight for Download Speed:\n'))
wnetout = float(raw_input('Enter the weight for Upload Speed:\n'))

0.6
0.2
= 0.

Figure 4-18: Setting the weights of the objective function

Next, we retrieve the current average of the values of the respective weights for
each cloud in the list. For example, in order to fetch the average CPU usage of a
cloud, the MySQL query is the following

'select AVG(CpuUsage) from CloudRecords where SiteID = '+
str(cloud_id)

Therefore, we create a dictionary for each attribute (cpu, mem, netin, netout),
which contains a record for the average value of every cloud. Since the values of
each attribute are of different scale but should be combined in a single objective
function, we divide all the values by the maximum one, in order to have a
normalized number for each one, like a percentage. For example, if the max of
CPU usage is 80% and a certain cloud has an average of 40%, then the CPU
dictionary value of this cloud will be 0.5. The code for the CPU part follows in
Figure 4-19.

maxcpu = max(cpu.values())
for key, value in cpu.items():
cpulkey] = value / maxcpu

Figure 4-19: Normalization of the CPU average values

The next step is to calculate the result of the objective function for each cloud by
adding the products of the weights times their corresponding normalized value,
as displayed in Figure 4-20. The results are stored in a dictionary named
objective_function.

53

for item in clouds :

objective_function[item] = wcpu * cpulitem] + wmem % mem[item]
+ wnetin % netin[item] + wnetout * netout[item]

Figure 4-20: Calculating the objective function of each cloud

Then, we have to find the maximum of these results and trace it back to the cloud
that produced it. This procedure is shown below. The best_cloud is the cloud that
will be proposed to the user as the best option for his needs.

max_obj = max(objective_function.values())

best_cloud = [key for key, value in objective_function.iteritems() if value == max_obj] [0]
print best_cloud

Figure 4-21: Arriving at the result

54

55

Chapter 5

Performance Evaluation

In this Chapter, we are going to describe the tests that we run on our system.
These tests concern the database and its ability to handle thousands of records
and a big number of clients, all accessing it at the same time. In order to have
realistic data stored in the database, we set up a number of VMs running
different benchmarks. Then, for different number of records stored in our
database, we ran scripts that perform various queries and measured the average
response time. We ran the same tests evaluating the performance of the database
when more than one clients were accessing it and found its limits. We are going
to present and discuss the results of the tests to find out how these conditions
affect our system.

During the tests, we also created another account in the Demo service of Synnefo,
practically a second account in the ~okeanos cloud but with different credentials
from our proper account. The VMs of this new account are registered in a
different cloud site, giving us the opportunity to test our system with a simulated
environment of multiple cloud sites.

5.1 Setting up the system for the tests

The topics that are related to our preparation for the tests are the demo Synnefo
account and how our system supported it, how we retrieved some metrics that
are not yet supported by the Synnefo API, the description of the benchmarks that
we used and the scripts perform the testing.

5.1.1 The Synnefo Demo account

The Synnefo Demo is a service providing a demo cloud environment, where the
VMs that a user creates are deleted after 3 hours. It is solely meant for testing
purposes and demonstrates the basic functionality of the Synnefo cloud stack.
The reason that we chose to include VMs from Synnefo Demo was to test the

56

ability of our system to support more than one cloud sites, specifically the
performance of our Sql script.

As we have mentioned in previous Chapters, each publisher.py script creates one
file per cloud (if the user has VMs in this cloud). In this case, even the user is
different and has different Authentication URL and token, but for convenience
we used a second publisher2.py script in order to collect the data from the demo
cloud in the same machine that executes publisher.py. The only difference of the
two publisher scripts is the way they retrieve the user’s credentials, and how
they also retrieve some data that the Kamaki API cannot currently provide (more
information on this later).

In order to have a constant and automatic flow of data from the VMs through the
publishers and to the collector, we created a bash script named cron_job.sh,
containing the two scripts responsible for collecting the information per user
and the ssmsend so that the concentrated information is sent to the collector.
Then, the bash script is recorded in the crontab so that it is executed as a
daemon once per minute.

#!/bin/bash

/usr/local/bin/python2.7 /home/publisher.py
/usr/local/bin/python2.7 /home/publisher2.py
ssmsend

Figure 5-1: Cron_job.sh

As the VMs of the demo cloud were deleted every three hours, we used the tool
snf-image-creator provided by Synnefo, which enables the creation of images
from the current state of a VM. In this way, as soon as a VM was deleted, we
could recreate a duplicate so that more data could fill our database.

5.1.2 Retrieving information about the CPU usage and network
download and upload speed

At this time, the Kamaki API does not support a function or call that returns the
current CPU usage of a VM, neither its network inbound and outbound. Even
though these will be included in the API list in the near future, our need to
measure these statistics led us to find other ways of collecting them.

The method that was preferred was the access via ssh. After connecting to the
VM, our publisher script executes remotely two test files that we have already
installed in every VM, that measure the current CPU usage and the network’s
inbound and outbound. In order to be able to make successive ssh connections,
the pubic keys of the related VMs had to be exchanged. We are now going to see
first how the publisher connects to the VMs and then what are the tests that are
run in order to retrieve the statistics and send them back to the publisher.

57

cmd = ‘ssh ' + server['metadata']['users'] + '@' + server['SNF:fadn'] + ' \'./test.sh\''
output = subprocess.check_output{cmd, shell=True)

list = output.split('.',1)

extract['Cpulsage'] = list[0]

cmd = ‘ssh ' + server['metadata']['users'] + '@" + server['SNF:fadn'] + ' \'./test2.sh\"'
output = subprocess.check_output{cmd, shell=True)

list = output.split(' ')

extract['NetworkInbound'] = int(list[@])

extract['NetworkOutbound'] = int(list[1])

Figure 5-2: Connecting with ssh in order to retrieve the CPU usage and network speeds

As we can see in Figure 5-2, in both cases the publisher connects to the VM in a
background task (as a subprocess), using information stored in the dictionaries
that were returned from previous API calls of Kamaki in order to construct the
address of the target VM. The publisher2.py script that is responsible for
gathering the information of the VMs belonging to the Synnefo Demo cloud,
require different fields from the dictionaries acquired by the Kamaki API. This is
the last difference between the two publisher scripts that we mentioned but did
not explain before.

In the case of CPU usage, the target is set to execute the bash script test.sh and
return its output in a list. This list is created by the “split” command, which splits
a string into parts using the provided character (in our case “.”) as a separator
and limiting the number of splits to a given number (in our case 1). Consequently,
the resulting list contains two members, the integer and the decimal part of the
CPU usage. We choose to store only the integer part in our extract dictionary, as
its level of detail is satisfactory. Respectively, the publisher connects to the VM
again and starts the execution of test2.sh, the output of which provides a list with

two members, the network inbound and outbound.

The test.sh script, which is used in order to retrieve the current CPU usage of a
VM, is shown below.

top =b -n2 -p 1 | fgrep "Cpu(s)” | tail -1 | awk =F'id,' =-v prefix=
"¢$prefix" '{ split($1, vs, ","); v=vs[length(vs)]; sub("s", "", v);
printf "s%s%.1f%%\n", prefix, 100 — v }'

Figure 5-3: test.sh

Finally, the test2.sh script that calculates the current download and upload
speeds of the VM is presented in Figure 5-4.

awk '{if(11){print $2-11,%10-12} else{11=%$2; 12=%$10;}}' \
<(grep ethl /proc/net/dev) <(sleep 1; grep ethl /proc/net/dev)

Figure 5-4: test2.sh

58

5.1.3 The benchmarks

For the purpose of our tests, we used four different benchmarks. Three of those
benchmarks are part of the sysbench suite and consist of a CPU benchmark, a
File I0 benchmark and a MySQL benchmark [18]. As a network benchmark, we
use the Iperf, which is a tool to measure network performance [19]. For every
benchmark there is one VM in the ~okeanos cloud that runs only this particular
one. In the case of the network benchmark, Iperf's operation requires a client
and a server. We have set up the server in the VM that executes the publisher
scripts and the client in the VM used for the benchmark. While the Iperf is
capable of calculating the current network speeds, we only use it as a means of
creating network traffic, because our simple bash script presented before and
shown in Figure 5-4 provides a preferable form of response.

As each VM runs a specific benchmark, we used its MachineName field to
indicate the type of benchmark that it is running. As a result, we have four VMs
added to our pair of the VM that executes the publishers and the one that
executes the collector and contains the central database. These four VMs are
named as CPU_Bench, Net_Bench, MySQL_Bench and FileIO_Bench.

e (CPU Benchmark

while true
do

sysbench --test=cpu --cpu-max-prime=20000 run
done

Figure 5-5: Bash script for the CPU benchmark

Above, in Figure 5-5 we can see the bash script that continuously executes the
CPU test of the sysbench suite. This script is run in the background (using the
screen command) and practically has the processor work under full load,
resulting in a CPU usage of approximately 100% for a single-core or 50% for a
double-core VM, as our test is 1-threaded.

e MySQL Benchmark

while true
do
sysbench --test=oltp --oltp-table-size=1000000 --mysql-db=test --mysql-user=root
-=mysql-password=1234 --max-time=60 --oltp-read-only=on --max-requests=0 --num-threads=8 run
done

Figure 5-6: Bash script for the MySQL benchmark

In Figure 5-6, we can see the bash script that runs in the background and is
executing the MySQL benchmark. This benchmark requires the creation of a
database and a test table and then performs various queries providing statistics
such as the achieved transactions per second.

59

e FilelO Benchmark

while true

do
sysbench --test=fileio --file-total-size=10G --file-test-mode=rndrw --init-rng=on
—--max-time=300 --max-requests=0 run

done

Figure 5-7: Bash script for the FilelO benchmark

The script that runs in the background and is responsible for the execution of the
Filel0 benchmark is shown in Figure 5-7 above. As an initial step, this
benchmark requires the creation of a file much bigger than the available RAM of
the VM, so that it will not be possible for a large part of it to be cached there.
Then, during the execution time, the benchmark performs several reads and
writes and measures the time of the transactions (read and write times).

e Network Benchmark

while true
do

iperf -c 83.212.87.22
done

Figure 5-8: Bash script for the Iperf

In the above Figure, we can see the script that executes the iperf command in
client mode, connecting to the server with the provided IP address. This is the IP
of the VM that operates the publishers, which has executed the command

iperf -s

in order to host an iperf server. In this way, the client and server perform
transactions meant to measure the maximum and average download and upload
speeds between the two. As we have already mentioned, we are just taking
advantage of the created traffic in order to get our own measurements.

5.1.4 The scripts that perform the tests

The core of the tests consists of five python scripts, named test1-5.py. These
scripts contain a loop of 20 iterations of a MySQL query to the central database.
Each script contains a different query and we are going to present all five of them
later on. At the beginning, those scripts connect to the database after they have
parsed the required information from the db.cfg file, as our sql.py script did.
Then, they execute the following for-loop, as shown in Figure 5-7 for the case of
the first type of query.

60

for i in range(@, 20) :

cursor.execute('select * from CloudRecords')
x1 = cursor.fetchall()

Figure 5-9: The loop including the MySQL queries

These python test scripts are then used inside a bash script, named
superscript.sh, which is responsible for executing these tests simultaneously in
order to simulate queries to the central database by multiple clients at the same
time.

start=%$(date +%5.%N)

for i in {1..50}
do

nohup python testl.py & =>output.out
done

end=$(date +%s.%N)
runtime=$(python -c "print ${end} - ${start}")

echo "Runtime was $runtime"

Figure 5-10: Supertest.sh

As we can see in Figure 5-10, the superscript.sh also measures the time of its
execution. Thus, if we divide this time by the number of the iterations (50 in the
example above) and by 20, which are the iterations of the loop inside the test
python scripts, we will calculate the average time per query.

Let’s see now the MySQL queries that each test script performs:

1. 'Select * from CloudRecords'

This query accesses the table “CloudRecords” and has a big selectivity as it
returns all the fields of all its records. However, this table has a relatively small
number of records, as it holds a single record for every VM that has been
accounted. In our tests, for example, this table had less than 20 records, 6 for the
VMs of ~okeanos (the 4 benchmarks, the publisher and the collector) and some
more from the Synnefo Demo cloud, as each time a VM was automatically deleted
and redeployed from the same image, it had a different VMUUID. Consequently,
this query did not depend on the number of records of the database in general, as
throughout the tests and the database bulking, the number of its records
remained more or less the same and practically negligible when compared to the
records of the table “CloudRecordsHistory”, as we will see later on.

2. 'Select VMUsage from CloudRecords where SiteID = 1
order by UpdateTime DESC'

61

This query again accesses the “CloudRecords” table, but it is less selective as it
only returns the field “VMUsage” from the VM records that belong to the
Sltename (cloud or cloud site) with ID 1. In our case, this is the ~okeanos cloud,
and the row of this field’s values will be sorted by the UpdateTime of each record,
from the most recent to the older.

3. 'Select * from CloudRecordsHistory'

This query retrieves info from the table “CloudRecordsHistory”. Each record of
this table only has 8 fields, however the number of records is always increasing
as the system is running, so this query is strictly related to the number of records
of the table, thus the number of records of the database. So, in the cases of the
queries that access this table, we measured the average query time both as a
function of the simultaneous client requests and as a function of the database
size (number of records).

4. 'Select VMUUID from CloudRecordsHistory where SiteID
= 1 and CpuUsage > 30'

Again, the table that is accessed is “CloudRecordsHistory”, but this query returns
only the field VMUUID of the VMs belonging to ~okeanos and having a CPU usage
greater than 30%.

5. 'Select AVG (NetworkOutbound) from
CloudRecordsHistory where SiteID = 1'

The last query calculates and returns only one number, the average of the field
NetworkOutbound (meaning the upload speed) from all the VMs belonging to
~okeanos. Even though it is a query that returns only one number, there still is a
cost for its calculation.

5.2 The test results

As we have already mentioned, the measured quantity is the average execution
time of a single query to the central database. For the first two types of query, we
explained that the size of the database did not affect them, so we have only
measured the query time as a function of the number of clients that
simultaneously access the database. In contrast, for the rest of the queries, the
measured time is a function of both the number of records in the database and
the number of clients.

62

In order to get the results for a different number of records in the database, we
left the system working and, consequently, the “CloudRecordsHistory” table
started bulking up. We paused the system and executed the supertest.sh several
times when our database contained 5.000, 10.000, 20.000, 30.000 and 50.000
records. In each milestone, we ran the supertest.sh for 1, 10, 20, 50 or 100
iterations of the loop shown in Figure 5-10 for each of the three queries. Each
iteration of that loop calls the test3.py, test4.py or test5.py, which perform 20
times the respective MySQL query.

5.2.1 Execution time for queries at the table “CloudRecords”

The following table displays the average query time for each of the first two
queries as a function of the number of clients that are simultaneously accessing
the database.

Table 1: Average query execution time for queries 1 and 2

Number of clients Query 1 (time in msec) | Query 2 (time in msec)
1 0.46 0.45
10 0.51 0.52
20 0.74 0.73
50 0.77 0.83
100 1.25 1.25

Based on these results, we created a graph for each query and one that combines
both, as it is displayed in Figures 5-11, 5-12 and 5-13.

1.4

1.2

Time in msec
o o © o9
|

o

1 10 20 50 100
Number of clients

Figure 5-11: Results for Query 1

63

=
N

=
o

=

e
©

Time in msec
o
[e)

<
N

e
[\

o

1 10 20 50 100
Number of clients

Figure 5-12: Results for Query 2

=
NS

=
o

[uny

e
©

e=f=Query 1

Time in msec
o
(@)

ed=Query 2

o
N

e
N

o

1 10 20 50 100
Number of clients

Figure 5-13: Combination of both Query 1 and Query 2

As we can notice from the last Figure, the two queries produced almost identical
results, which was kind of expected since both queries access a small number of
records from the database, so most of their execution time relates to connecting
to the database and generally running the test.py script.

On the other hand, we notice that the query execution time increases alongside
the number of clients. This was expected, as the simultaneous accesses create
traffic in the database. We can say that the delay added is acceptable, as the
duration of a query when 100 clients access the database is only three times
greater than the case of a single client.

64

5.2.2 Execution time for query 3,4 and 5

The 3rd query is 'Select * from CloudRecordsHistory'.

In the Table 2 below, we include all its execution times as a function of the clients
that simultaneously access the database and the number of its records.

Then, we will present a graph that contains one plot for every case of clients’
number as a function of the number of records in the database.

Table 2: Average query execution time for query 3

Clients\Records 5k 10k 20k 30k 50k
1 0.46 0.46 0.46 0.46 0.46
10 0.48 0.52 0.53 0.59 0.56
20 0.68 0.72 0.78 0.75 0.64
50 0.89 0.9 1.02 1.19 1.03
100 1.36 1.35 1.36 1.34 1.36
1.6
1.4
1.2
(5]
é 1 e=(==1 Client
208 @=10 Clients
[}
E 06 ﬁ - 20 Clients
[
0.4 @50 Clients
0.2 100 Clients
0 T T T T 1

5k 10k 20k 30k 50k
Number of records

Figure 5-14: Graph of the average execution time for query 3

The 4t query is 'Select VMUUID from CloudRecordsHistory where
SiteID = 1 and CpuUsage > 30'.

In Table 3, we include all its execution times as a function of the clients that
simultaneously access the database and the number of its records.

Then, we will present a graph that contains one plot for every case of clients’
number as a function of the number of records in the database.

65

Table 3: Average query execution time for query 4

Clients\Records 5k 10k 20k 30k 50k
1 0.48 0.47 0.47 0.46 0.46
10 0.5 0.54 0.55 0.6 0.53
20 0.76 0.73 0.8 0.77 0.72
50 0.84 0.8 0.86 0.8 0.86
100 1.41 1.3 1.45 1.29 1.39
1.6
1.4 s €
1.2
(5]
g 1 e=gm=1 Client
£ 08 W e==10 Clients
)
E 06 % 20 Clients
[
0.4 = = - . =50 Clients
0.2 100 Clients
0
5k 10k 20k 30k 50k
Number of records
Figure 5-15: Graph of the average execution time for query 4
The 5% query s 'Select AVG(NetworkOutbound) from

CloudRecordsHistory where SiteID = 1°'.

In Table 4, we include all its execution times as a function of the clients that
simultaneously access the database and the number of its records.

Then, we will present a graph that contains one plot for every case of clients’
number as a function of the number of records in the database.

Table 4: Average query execution time for query 5

Clients\Records 5k 10k 20k 30k 50k
1 0.46 0.47 0.48 0.46 0.47

10 0.57 0.52 0.51 0.53 0.5

20 0.7 0.78 0.85 0.72 0.77

50 0.88 0.9 0.88 0.78 0.83

100 1.37 1.4 1.35 1.26 1.25

66

=
o

1.4
1.2 e =
(5]
é 1 e=(==1 Client
£ 0 W =10 Clients
)
E 06 20 Clients
2 ey
0.4 - = - = @50 Clients
0.2 100 Clients
0

5k 10k 20k 30k 50k
Number of records

Figure 5-16: Graph of the average execution time for query 5

From Figures 5-14, 5-15 and 5-16, we can observe two things. First, the number
of records does not affect systematically our results. There are many cases where
more results are combined with greater query execution time, but in other cases
the execution time is unaffected or even reduced as the databases grows bigger.
In tests that we ran with more than 100 clients, e.g. 200 or 500, the database
could not serve all the simultaneous requests, and produced errors with the
description “too many connections”. This obviously happened only for the
queries at the table “CloudRecordsHistory”, which is the one with the numerous
records that could not be accessed at the same time. Consequently, we can
conclude that as long as the database can support our queries, then the number
of records does not influence their performance.

The second observation is related to the number of clients. It is evident that as
their number increases, so does the execution time of all the queries, which is
something expected as the extra accesses create a delay for all the database
transactions. This increase also seems to influence all the queries in the same
way as the execution times were similarly extended for every query type.

67

68

Chapter 6

Conclusions

In the previous Chapters, we have explained the motivation, the architecture and
the implementation details of the system that we developed in the context of this
thesis. We are now going to summarize what we achieved and also provide some
thoughts concerning future enhancements and extensions of our system.

6.1 Synopsis

In this thesis, we first introduced the concept of cloud computing, as well as the
benefits of cloud federations and their need for a mechanism that will be
responsible for the deployment of the demanded resources. Then, we presented
our implementation, which gathers information for all the VMs of a federated
environment on a per-user basis, stores it in a central database and can make
propositions for the cloud from which the resources that a user requests can be
deployed. As of now, our system is functional for the ~okeanos and Demo
Synnefo clouds.

The tests that we ran proved that our implementation is stable, efficient and as
scalable as it can be, given the machine that hosted our central database. In a
more realistic scenario, this machine would certainly have better specifications
than our 1-core CentOs VM, so the database limitations concerning the number
of simultaneous requests would be far less. Consequently, we can say that we
achieved our goals, as we created a scalable and lightweight tool that with few
enhancements could be immediately used in real conditions.

6.2 Future extensions

As we have already mentioned, there are many extensions that could be added to
our system, providing better compatibility, performance, precision of
proposition and more functionality. First of all, by adding support for the APIs of
different cloud software, more clouds would be able to be managed in a
federated environment. We have seen that our publisher is generally based on
the OSSSM project that is meant to collect data from Openstack-operated clouds;

69

so adding support for Openstack is a quite straightforward task. In the same way,
more clouds running on different software could be supported just by extending
the publisher in order to use the respective API.

Concerning our current publisher that supports the Synnefo cloud software,
there are two changes that could be made in the future. The first is related to the
pricing. Our current implementation uses either static pricing or a calculation
based on the demanded resources. However, Synnefo now has its own billing
service, Aquarium, and that can be taken into account by our publisher in order
to have a more consistent model of the ~okeanos cloud, providing accurate
prices and, therefore, making more suitable propositions. The second change
concerns the retrieval of the metrics of CPU wusage and network
inbound/outbound, which are not yet provided by the Kamaki API of Synnefo,
forcing us to retrieve them by using ssh. As these functionalities will be soon
added to Kamaki, our publisher executable will need to be updated with the
added API calls.

Relating to the central database, one modification that would alleviate the
database would be to keep another table named “Users”, where the user ID and
his quotas would be stored. This would eliminate the need for storing the quotas
of the VM’s user in the record of every VM, which now creates unnecessary
duplication of data. For example, if a user currently has a large number of VMs in
the same cloud, then the database stores the quota data as many times as the
number of these VMs. In order to make this change, the Apel system would have
to be modified, more specifically the database schema and the database loading
script.

Finally, there are two modifications that could be made to the Sql.py, the script
that queries the database and is responsible for the cloud proposition. The first
of these would be the addition of more queries that could be available for the
user. Giving the user more choices of queries, he could be better informed about
certain aspects of the VMs statistics or specifications that are most important to
him. The second and most sophisticated extension would be the modification of
the objective function that is used in order to propose the best fitted resources
for the user demands. There are many different algorithms that could be used or
maybe even a combination of more than one. These more complex algorithms
would have to be tested so as to prove that they return the desired results, but it
is an area with great research interest.

70

71

Chapter 7

Bibliography

[1] “The NIST definition of Cloud Computing”,
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

[2] “A brief history of cloud computing”,
http://thoughtsoncloud.com /2014 /03 /a-brief-history-of-cloud-computing/

[3] “Cloud Federation”, http://searchtelecom.techtarget.com/definition/cloud-
federation

[4] “Federation is the Future of the Cloud”,
http://www.datacenterknowledge.com/archives/2012/09/17 /federation-is-
the-future-of-the-cloud/

[5] “Cloud Broker”,
http://searchcloudprovider.techtarget.com/definition/cloud-broker

[6] Ang Li, Xiaowei Yang, Srikanth Kandula, Ming Zhang, “CloudCmp: Comparing
Public Cloud Providers”, IMC 10, 2010.

[7] Rodrigo N. Calheiros, Adel Nadjaran Toosi, Christian Vecchiola, Rajkumar
Buyya, “A coordinator for scaling elastic applications across multiple clouds”,
Future Generation Computer Systems, 2012.

[8] Alba Amato, Beniamino Di Martino, Salvatore Venticinque, “Cloud Brokering
as a Service”, Eighth International Conference on P2P, Parallel, Grid, Cloud and
Internet Computing, 2013

[9] About ~okeanos, https://~okeanos.grnet.gr/about/

[10] Evangelos Koukis, Panos Louridas, “~~okeanos [aaS”, EGI Community
Forum 2012 / EMI Second Technical Conference, 2012

[11] About Synnefo, https://www.synnefo.org/about/

[12] Welcome to the Synnefo documentation,
https://www.synnefo.org/docs/synnefo/latest/index.html

[13] Kamaki project documentation,
https://www.synnefo.org/docs/kamaki/latest/overview.html

[14] APEL/SSM, https://wiki.egi.eu/wiki/APEL/SSM

[15] APEL, https://wiki.egi.eu/wiki/APEL

72

[16] APEL/SSM Openstack documentation, https://github.com/EGI-
FCTF/osssm/wiki

[17] dirq, https://code.google.com/p/dirq/

[18] How to benchmark your System with sysbench,
http://www.howtoforge.com/how-to-benchmark-your-system-cpu-file-io-
mysqgl-with-sysbench

[19] iperf, https://iperf.fr

73

