National Technical University of Athens (NTUA)
School of Civil Engineering
Institute of Structural Analysis and Antiseismic Research

SEISMIC SOIL-STRUCTURE
INTERACTION WITH FINITE
ELEMENTS AND THE METHOD
OF SUBSTRUCTURES

PhD dissertation

George Stavroulakis

Advisor:

Professor Manolis Papadrakakis

June 2014

National Technical University of Athens
School of Civil Engineering
Institute of Structural Analysis and Antiseismic Research

Seismic Soil-Structure Interaction with
Finite Elements and the Method of
Substructures

by George Stavroulakis

Advisor:
Professor Manois Papadrakakis

Athens,
June 2014

EOviké Metaopro ITorvteyveio
Yyoan ToAtikdv Mnyavikadv
Epyaoctpilo Ztatikng kot Avticeispuikov Epguvov

£

f .
13
Berc) g
-
{ap” OPOMHBEY S
-‘Ijlll"E
nvp$op

YELGUIKT] OAMAETIOPAGT) £0APOVS-
Kotaokeg pe Hemepaouéva Xroyyeia
Kot 1 n€0060 TV vToPOoPE®YV

amo Tov I'epyro Ztavpovidxn

Empiénov:
KoOnynmic Mavéing Momadpoxaxng

Abnva,
Iovviog 2014

Dedicated to my parents Michael and Elli,
my beloved brother Manolis,

my dearest friend and best man Spyros,
my colleague Pantelis

and my musical companions Chris, Dimitris and Michael

Copyright © 2014 by George Stavroulakis. All rights reserved.

PhD Examination Committee

I certify that | have read this dissertation and that in my opinion it is fully adequate, in
scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Manolis Papadrakakis

Professor

(Principal advisor)

School of Civil Engineering

National Technical University of Athens

I certify that | have read this dissertation and that in my opinion it is fully adequate, in
scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Konstantinos V. Spiliopoulos
Associate Professor

(Member of advisory committee)
School of Civil Engineering

National Technical University of Athens

I certify that | have read this dissertation and that in my opinion it is fully adequate, in
scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Andreas Boudouvis

Professor

(Member of advisory committee)
School of Chemical Engineering
National Technical University of Athens

I certify that | have read this dissertation and that in my opinion it is fully adequate, in
scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Konstantinos Spyrakos

Professor

School of Civil Engineering

National Technical University of Athens

I certify that | have read this dissertation and that in my opinion it is fully adequate, in
scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Manolis Kavvadas

Associate Professor

School of Civil Engineering

National Technical University of Athens

I certify that | have read this dissertation and that in my opinion it is fully adequate, in
scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Vissarion Papadopoulos

Assistant Professor

School of Civil Engineering

National Technical University of Athens

I certify that | have read this dissertation and that in my opinion it is fully adequate, in
scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Nikos D. Lagaros

Assistant Professor

School of Civil Engineering

National Technical University of Athens

Abstract

One of the most fundamental problems in structural engineering deals with the behavior of
structures under seismic loading. Such a problem can prove to be very cumbersome to solve
accurately due to the various factors that contribute to its solution, including the presence
of water inside the soil pores, the inherent uncertainties of both the structure and the soil,
the interaction of the structure foundations with the soil and the difficulty to solve

computationally the resulting numerical model due to its massive scale.

This Thesis deals with all of the above problems with the aim to provide a computational
toolbox for addressing the solution of this complicated problem and is organized as follows:
Chapter 1 is an introduction, chapter 2 describes the u-p formulation of the porous media
problem along with its spatial and temporal discretization. Chapter 3 describes the
theoretical background for stochastic analysis and describes the Spectral Stocahastic Finite
Element Method (SSFEM). Chapter 4 is dedicated to solution algorithms for solving problems
described in the previous chapters and suggests novel and computationally efficient
methods for the solution of both porous media and stochastic problems using the Monte
Carlo and SSFEM. Chapter 5 describes the programming paradigms used in order to
implement the methods described in the previous chapters while chapter 6 is dedicated to
parallel programming for the CPU. Chapter 7 describes the nVidia GPU architecture and how
domain decomposition methods were implemented on this architecture and chapter 8 is a
collection of numerical examples based on the material of all the previous chapters. Finally,

chapter 9 is concludes with an overview of the present work, followed by bibliography.

Page | xi

Hepidnyn

‘Eva anod ta nmAéov BepeAiwdn mpofAnpata tou MoAtikol Mnxavikou gival n avaluon tng
CUUTEPLPOPAG TWV KOTAOKEUWY UTIO OELOULKA GOpTLoN. Eva TETOLo TIPOPANUA elval apKETA
6UoKOAO Kal TEPIMAOKO OTO XELPOMO TOU AOYyWw Twv Sladopwv TapayovIwv Tou
UTIELOEPXOVTOL KOTA TNV €MIAUGK TOU OMwe N UTIAPEN PEUCTOU OTOUC MOPOUG Tou eddadouc,
ol eyyeveic aBeBaldtnteg TG00 TNC KATAOKEUNE 000 Kol Tou e8ddouc. n aAAnAenidpacn tng
KOTOOKEUNG HE TOo €6adog KaBwg Kal To HEYAAO UTOAOYLOTIKO KOOTOG TO OTNoio €XEL N

eniAuon evoc aplBunTikol povtéhou mou Ba ta AapBdvel autd umoPLy.

H napovoa Slatplpr evtpudel 6 GAOUC TOUC WG AVW TTAPAYOVTEG LE OTOXO VA TIPOTELVEL Pl
UTIOAOYLOTIK «EPYAA£lOBnKkn» yla tnv emilucn outol Tou TPOPAAUATOC Kol eivot
OpPYaVWUEVN WG akoAoUBwWC: To MPwTo KePAAaLo amotelel TNV eloaywyn tng SlatpPhg evw
To SeUtepo keddhalo meplypddel TN u-p HOpdwWan Tou MPORANUATOC TWV MOPWSWV HECWY
podl e TOV TPOTIO XWPLKNG KOL XPOVIKNG ToU Slakpltonoinong. To tpito kedahalo mMePLEXEL TO
BewpnTikd UTOBABPO YLl OTOXAOTIKN OVAAUGCN Kol TIEPLYPAdEL TN GACUATIK OTOXOOTIKN
pEBOSO Twv Temepacpévwy otolxeiwv. To TEtapto kedbdhalo TEeplypddel TOUG
umoAoyLoTikoUG aAyopiBuouc yla Ttnv emiluon Twv MPOPANUATWY TIOU TeEpLypddnKay oTa
nponyoUpeva kepahala Kol TPOTEIVEL VEEC Kal UTTOAOYLOTIKA PBEATiotec peBddoug yla tn
eMiAuon t6o0 MPoBANUATWY TTOPWSWV LECWY OCO KAl OTOXOOTIKWY TIPOPRANUATWY, TOCO UE
™ HuEBodo Monte Carlo 600 Kkal pe TN GACHOTIK OTOXOOTIKA HEOOSO TWV TIEMEPATUEVWV
otoxelwv. To méunto kedAlalo TEPLYPAPEL TO TIPOYPOULOTIOTIKO HOVTIEAO TIOU
XPNOoLomoLBnkKe yla TNV vAomoinon Twv aAyopiBuwv Tou mponyoUpevou KedaAaiov evw
TO £KTO KeEAAaLo TEPLEXEL TANPOPOPIES YIa TOV MOPAAANAO TIPOYPOUUATIOUO UTIOAOYLOTWV.
To €Bdopo KepaAalo MepLypAPEL TNV APXLITEKTOVLIKH TWV Kaptwy ypadikwv (GPU) tne nVidia
KoOwg Kol tov TPOmo uAomoinong Twv aAyopibuwv tou tpitou kepoAaiou oe autd TO
nieptBaAlov. To dydoo keddhalo ival pla suAhoyn oplBOUNTIKWY MAPASELYUATWY BACLOPEVO
0T0 UAKO Twv Tponyoluevwv kedaloiwv. TEAog to £€voto Kepalalo KAelvel pe pla

avakedaaiwon tng StatpPng kat akoAouBel n BLBAloypadia.

Page | xii

Acknowledgements

First, | would like to thank my advisor, Professor Manolis Papadrakakis, for his spirit, vision,
patience and scientific guidance throughout the years, starting from my graduate studies

until now.

For their valuable suggestions and comments, | would also like to express my gratitude to
the other two members of the PhD advisory committee, namely Professor Andreas
Boudouvis and Associate Professor Konstantinos V. Spiliopoulos, as well as Assistant

Professor Vissarion Papadopoulos from my graduate and post-graduate advisory committee.

Special thanks to Pantelis Petrogiannakis, Kostas Rammos, Apostolos Zafiris and Nick
Palladinos of Nessos for directing me towards sound programming foundations and for

shaping my attitude towards life.

| would also like to thank Spyros Massinas for existing in this world, my co-authors Alex
Karatarakis and Dimitris Giovanis for their work and commitment, Theofilos Manitaras for
his support and Konstantinos Papanikolopoulos for this hard work, dedication and focused
research. Finally | would like to thank the rest of the research team of Professor

Papadrakakis for constantly providing stimuli and promoting research.

Athens, June 2014

George Stavroulakis.

Page | xiii

Extetapévn mepiinyn

Mo uAikd ta omoia amotshoUvtal and pia pdaon (single phase materials), 6mw¢ autd ta
omola cUVAVTOUUE 0T UNXAVLKA OTIWE 0 XAAUBAC sival apKeTd eUKOAO VO TIPOCGSLOPLOOUE
Ta Stadopa poptia actoxiog ylo Hia KATAOKEUT HE OXETLKA OMAOUG UTIOAOYLOLOUG, LOLWG av
pog adopolv otatikd mpofAnuata. Kat’ avriotolyia Kol otov Topéa TnG e6adopnyavikig,
Me avtiotolyoug umoAoylopoUg, Unopol e va poodlopicoupe doptia aoToxiag av Kat oxt
pe €€ loou gUlkolo tpodmo. Evioutolg, oe mpoPAnpota eSadpoSuvaplkig, N Xpron TEToLwV
UTIOAOYLOMWV ELVOLL OTLC TIEPLOCOTEPEG TIEPUITTWOELG [N ATIOSEKTH.

O Aoyog yla Tov onoio cupPaivel autd, EYKELTOL OTO YEYOVOS OTL N cupnepldopd edadwv
Bpaxopalwv oTIC Omoleg oL TOPOoL TNG oTEPEAC SOUAC TOUC iVl YEUATOL PE KATIOLO UYPO,
Sev umopel va mapaAAnAiotel pe tn oupmepidopd UAKWY piag ¢pdaong. Mdallota, yia
KATOLOUC aOTeAEL €val avoLYTO EPWTNUA TO KOTA TOCO TETOLOU £(60UG UAIKA gival Suvatov
va eplypadouv Ue TIG HeBOSoUC TNG UNXAVLKAG CUVEXOUG LECOU.

ALOTILOTWVOUE AOUTOV OTL OTN YEVIKN Mepimtwon, n mARpng AUon tou TPoPANUATOC TG
TOPAUOPPWAONG TOU OTEPEOY UALKOU ouleuyuévn e pla awdvidia (transient) por) peuotol
xpelaletal va gupebei, Abon n omola amattel TNV KATaokeurn Kot emilucn culeuyHEVwY
eflowoewv oL omoieg Ba meplypadolV EKTEVWCE TTAPAKATW.

Jkitoo 2.1 — Mwa Bpaxopala, LOVTEAOTIOLNEVN WG TOPWOEC LECO

Av Moutov OpicOUUE TNV OAKN TACH O ME TG OUVLOTWOEG TNG Oy XPNOLLOTIOWWVTAS TN
cUpBaon tTwv dslktwy, autég Kabopilovtal amd tnv abpolon Twv KAt@AANAwv Suvapewv
otnv i-katelBuvon oTIC SLOTOUES de. Ot enidpdveleg Twv Slatopwv yia duo StadopeTikd

€(6n mopwdwv VALKWV daivovtal oto okitoo 2.2.

Page | xiv

L [+7 g,
+’y o Solid i
Qli

Jkitoo 2.2 — Emudaveila topwv SUo SladopeTIKWY MopwdwV LECWY

‘Etol £Xoupe:

Entl mAéov av ol TAOELG TOU AOKOUVTOL OTn OTePed pAon TOu UALKOU LAG OPLOTOUV WG
EVEPYEG TAOELG O ML TWV AVWTEPW SLATOUWY TOTE OL USPOCTATIKEG TILECELG TTOU odeilovtal
OTLG TILECELG TIOPWV) KAL OL OTIOLEG EVEPYOUV LOVO OTNV TEPLOXN Twv topwv Ba elval logg

HE:
—o;np

omou N elval To MopwdEG Tou UALKOU Kal 5” elvatl to &éAta tou Kronecker. To apvntikod

TIPOCNUO ELOAYETAL Yl Vo LkavomolnBel n yevikn cUUBacn tou BeTikol MPOCHUOU TWV

£DEAKUOTIKWY TACEWV.

OL w¢ Avw opLopol 06nNyoUV OTNV MOPOKATW OXECN N OTOLA CUVOEEL TLG EVEPYEC LE TLG OALKEG
TAOELG KL £XEL WG €ENG:
o =0 —0;Np

EVW OV XPNOLLOTIOLCOUE SLOVUCUATIKY onpeloypadia TOTe:

6 =o'—-Mmnp (1.1)

Page | xv

OTIOU M €1vaL TO MOPOKATW SLAVUOUOL:

o O O -

Y€ MPOAKTLKA MPOBARUOTA, OL TTOPOL EVOC TIOPWSOOUC LECOU UTIOPEL Vol €lval KOTEIANUUEVOL
and U0 N MEPLOCOTEPA PEVUOTA. ITA MAPAKATW, Ba Bewpriooupe pévo SUo PEVUOTA LE TO
BaBuod kKopeopoU yla KABe peLOTO va opileTal amo TNV avaAoylo TOU CUVOALKOU OYKOU TwV
Topwv n (Mopwdeg) o omoiog elval KATeANUUEVOC amo KABe peuotd. Exovrag Katd vou oOtL
To MPOPANUA Twv Mopwdwv péocwv avadepetal os edddn, Ba Bewprjooupe OtL T SUO
PEVUCTA TIOU HOC amacXoAouv eival to vepd Kol o agpag. Kat' autov tov tpomo Ba
avapepouooTe LOVo o€ SV0 BaBUOUG KOPETUOU, AUTOV YLA TO VEPO KAl AUTOV yla Tov aépa
oL ormoiot eivat ioot pe S, kot S, avrtiotolxa, £xoviag OHWG TAVIA KATA Vou OTL Ta

ypadopeva .oxouv yla onotadnmote U0 peuotd

Eival mpodaveg otL av apdotepa ta Vo uypd KatalapBavouy Toug TOPOUG TOU UALKOU Uag,
Ba LoxLel mavra:

Ta SU0 pevota umopel va €xouv dLadopeg emipaveleg emadng LE TOUC KOKKOUC TOU UALKOU
OTwG Mmopel va 8el kavel¢ kal oto okitco 1.2. Etol n mieon mopwv p n omoia
XPNOLLOTIOONKE OTOV OPLOMO TWV EVEPYWV TACEWV Elval lon pe:

P=XubPw+ ZaPa

OTIOU OL OUVTEAEOTEG y,, Kal ¥, avadepovtal oTo VEPO Kal OTOV agpa avtioToa Kot

LKOLVOTIOLOUV TNV MOPAKATW OXEON:

Yot Xa=1

Page | xvi

(b

Jkitoo 2.3 — Emudavela diemadng plag pucaiidag agpa os €va mopwdeg HECO

0 -200 —400 0
hw (Cm) hw (Cm)

2Kkito0 2.4 — ZUVAPTNON CUGXETLONG KOPEOKOU Kal SLAmeEPATOTNTAG OE OXECN LIE TLG TILEDELG

TOpwWV
XPNOLUOTIOLWVTAG TNV MPOCAUENTIKY LEB0SO, OL KATAOTATIKEG OXEOELG £XOUV WC €ENG:
de''=do +am’dp

MNna Aoyouc cadrvelag, ailel vo oNUELWCOUUE OTL:

de
de

y
d
de = &
dy,
dy,,

1dy, |

X

OL mpocauénoelg Twv napapopPwoewv TnG oTEPEACG dAcnc Unopet va kaboploBel pe 6poug

npocauénTkwv petartornioewv du; wg e§ng:

Page | xvii

de = Sdu

ME:
o 0 O
OX

0 i 0

oy
u, 0O O 82
_ _ z
u=|u, kot S = i i .

u, oy ox
g 2 9
oL oy
9 4 9
| 07 OX

H e€lowon wooppormiag Twv SUVAEWY TTOU OCKOUVTAL 0€ OAO TO UALKO pag (OTeEped Kal uypn
daon) exeL wg e&AG:

STe - pli—p, (v‘v +WVTW)+ pb =0 (2.28)

omnou

2

ko U =

TS P dt?

H efiowon wooppormiag Twv SUVAUEWVY TTOU AOKOUVTAL OVO OTO PEVCTO TIOU KataAapBavel

TOU TOPOUG TOU UALKOU G, kavovtag xprion tou iou dykou avadopdg dx - dy - dz mou
KAVOUE Kal yla TG eElowoelg (2.2) kat AapBavovtag Katd vou OTL TO PEUCTO aUTO KLveiTal
padl e tn oteped ¢Aon, EXeL WG EENG:

pf(v'v+WVTw)

-Vp-R-p,l- +,p.0=0 23p)

O1 duvapelg avtiotaong Adyw tou LEwdoug Tou peuotol cupPoAilovtal pe R kal kavovtag
Xprion Tou vopou tou Darcy, €XOUpE:

kR = w (2.4p)

TéAog, n emopevn e€lowon elval ekeivn n omola pag Staodalilel tn datipnon tng palog
KOTA TN por) Tou peuotol (e€iocwon cuvéxelag) Kal €xel w¢ eEAC:

Page | xviii

PP
Viw+amé+2+nfl1g, =0 e
P

onou:

A B

Jkitoo 2.5 — Por} katd Darcy, 6nwg auth mpokUTtel Aoyw dladopdg mieong LeTAY Twv
onueiwv A koL B

MNa va mopatoupe tnv mpwtn eflowon n omola Ba eival xwplka Slakpltomolnuévn,

.
noAAamAaclalovpe v (3.2) pe (N”) KOL OAOKANPWVOULE KATA TOPAYOVIEG, OTOTE Kal

€XOUUE:
jBTchJ{j(N“)T pN“dQ]ﬁ — O
Q Q

E:

O :J‘(NU)prdQ+I(N“)deF

o I,

To omoio to ovopaloupe kot Siavuopo optiong, £xel SlAoTACELS (OlEG PE QUTEC TOU
Slavuoparog U Kol TepleEXeL TIg 5pdoelc AOyw KaBoAKWVY Kal embaveLOKWY SUVAPEWVY Kal
ME:

B =SN"

Kavovtag xprion tng e€lowong (3.3) kat Aappavovrag urt’ 6PV o GALVOUEVO TOU HEPLKOU
KOPETHOU, €XW:

Page | xix

c=¢"-ay,mp

Kat’ autov tov Tpomo, n mapanavw Slakpltomolnuévn cuvnbng Stadopikn e€lowon maipvet
™V akoAoubn popdn:

M + j BT6"dQ—Qp" —f® =0)
Q

onou:

M = [(N*] pN“de
Q
gival To unTpwo pAalog Tou CUCTUATOG,
Q= _[BTa;(WmN PAQ
Q

glval To oUVOETIKO UNTPWO TO OMoio CUVEEEL TIG £ELOWOELG LOOPPOTILAG LE TIC EELOWOELS

CUVEXELAG, EVW:

FO :J‘(NU)prdQ+j(N“)deF

Q I,

O UTIOAOYLOMOG TWV EVEPYWV TACEWV YIveTaL TpooauénTikd, onote n efiowon (3.4) umopet
va ypadel oe Slakplromolnuévn popdn we e€nc:

do''= D(BdU —de’) (3.7)

.
Télog, OlakpltomoloUpe tnv eflowon (3.5) moAAamiacldlwviag tnv He (N“) Kol

OAOKANPWVOVTAC KATA TOPAYOVTEC, OTIOTE KOl EXOULLE:
QU + Hp" + §EW —f® =0 @g

onou:

H = [(VN°] kvNPdO
Q

S={(N°*] L ned
Jve) Sonran

@ =—[(VN*) ks, p,bd02+ [(N?) qdr
I

Q

Page | xx

ME:

omou ot apdpetpot S, K, kaw C, e€aptwvrat and tv nieon p,, .

‘Eotw ot

Uy =0 + [(l_ 5)Ut + 00,]At (3.10)

: 1 N .
Vpn = U + O AL+ [(E - ajut +ab,, }At2 (3.11)

omou o Kal & elval mapdapetpol oL omoie¢ kaBopilovtal avdloya pPe TO MPOBAnUA yla
1 1
akpifela kal otabepotnta tng uebodou. Av a = Z Kat o = E' TOTE oUUdWVA UE EPYAOLES

tou Newmark (1956) n péBodog eival mavia otabepry kal ovopaletal pEBodog NG
otaBepng-péong emttayuvong (constant-average-acceleration method).

Kavovtag xprion tng e€iowonc (3.9) yia to xpovikd onueio t + At éxoupe:

Mo, +Coy + Koy =Ry, 312)

AUvovtag Tic e€lowoelg (3.10) kat (3.11) w¢ mMPOC TG XPOVLKEG TTOPOAYWYOUC TOU U, UMOPOUUE
va BpoUE TN OXEON TIOU CUVSEEL TIG XPOVIKEG TIOPAYWYOUG TOU U HE To U. Kdvovtag xprnon

TWV Mapandvw oxecewv otnv efiowon (3.12), pmopolue va AVCOUUE WG TPOG V., ,, KOl

HETA, PE YVWOTN QUTH TNV TOCOTNTA, VA BPOUHE TIG TOCOTNTEG Dy, ,, KAL Uy, -

MNapakdtw, mapatiBetal o alyoplBuog Newmark o omoiog €xeL wg e€nc:

e EmAéyoupe vy, U, Kat ¥V, TO Xpoviko Pripa At kat TG mapouétpous a kat &

2
oUTWE WOTE O Z% Kal o > %(l+§j .

1 o 1
e Ymoloyiloupe TIC TMopakdatw otabepéc: a4y =——, A4 =—— , A, = ——,
vioun ¢ P Pee: %o aAt? oant 2 oAt
1) At o
a,=—-1, a,==-1, a, =—£——2j, a, = At(1-5), a, = oAt
20 a a

e Mopdwvoupe TO €evepyd untpwo OSuockaupioc to omolo elvat (oo pe:

K=a,M+a,C+K

Page | xxi

e [a kaBe Xpovikd PBruo umoAoyiloupe TIG evePYEC SPACELS OTO XPOVIKO OnUElo
1+ At oL OTIOlEG elvat loeg LE:
Ren =Ruu + |\7|(aol)t + a,v, +a3i5t)+ C(al\)t +a,v, + asiit) , €MAVoUpE

10 cuoTnUA K0t+At =R, Kol UTIOAOYI{OULE TIG XPOVIKEG TIAPAYWYOUG amd TIG

OXEOELG: Vy, 5y = &y (Dt+AI _vt)_aZDt — 30 KA Dy =V + X0 + A0y

3 (U, +Uppy,)

t t+ At

2kitoo 2.6 — H otaBepn-katd péco 6po HEBodog emitdyuvong

OL o amoteAecpaTIKEG apeoeg peEBodol emiluong Bacilovtal otnv kAaolki HEBodo tng
amoAoldng Tou Gauss. MpakTika, avadlatdcoovTag TIG MPALels TnG analoldng tou Gauss,
AapBavovtal ot dtadopeg péBodol. Etal, Staywpilovrag tig mpaelg mou oxetilovtal Pe TO
6€€16 nENOG Tou TPOG eMmiAuon YPAUULKOU CUCTAATOC A0 TLG UTIOAOLITES TIPAEELG TIPOKUTITEL
n néBodocg Cholesky.

H pébodoc Cholesky xpnotpomnoleital eupgwg otnv YmoAoylotiky Mnxavikn kat ebapuoletol
enavelAnuuéva otnv nopoloa Slatplpr). To mpwto otddlo TnG uebddou autig adopd Tig
npatelg tng analowdng tou Gauss mou eival avedptnteg amo 1o Sldvuouo Tou Seflou
MEAOUC Kal LooSuvapoUv HE TNV avaAuchn TOU UNTPWOU TWV CUVTEAECTWV O YWOUEVO
mapayoviwy. Avadoplkd pe To oloTnUa €eflOWOEWV, TIAPAYOVIOTIOLEITOL TO HUNTPWO

ouvteAeotwv A wg €ENG:
A=LL
Mot GAAN QVTILETWIILON lval n tapayovtonoinon wg eERc:
A=LDL'
Ze auth TNV epintwon n entAuon yivetat wg g€ng:

e YMOAOYLOUOG TOU eVSLAUECTOU Slaviopatog X1 LECw ULAG EUTIPOC AVIIKOTACTOONG:

Page | xxii

Lx, =b < x, =L"
e YMOAOYLOUOG TOU EVOLAUEGOU SLavOOUATOC X2:
Dx, =X, < X, = D7,
® YmoAoylopog tou dyvwotou Slavuopatog X Je pia miow avikatdotaon:

L'x=X, < x=L"x,

Ztnv YroAoylotikp Mnxavikr Kot el8kotepa otnv YmoAoyLotiky Mnxaviki twv Kataokeuwv
€xouv edapuooTel MOAEG emavaAnmTikéG LEBoSoL emiluong cuoTtnUATWY oTo TapeABov.
AvadEpPOUE XOPOKTNPLOTIKA TG HeBOSoug Jacobi, Gauss Seidel, Sladoxikng
unepxaldpwong (successive overrelaxation —SOR), amotoung kabBodou (steepest descent)
Kol ouluywv Slavuopatikwy KAloewv (conjugate gradient method — CG). Itnv mapouoca
napaypado Oa mopoucldcoupe TV HEB0SO Twv oculUYWV SLOVUCUATIKWY KAICEWV HE
npootaBeponoinon (1 oAMwg TNV TNpootabepomoinuévn pEBodo Twv ouluywv
Stavuopatikwy KAlosewv 11 oe ayyAlkn opoAoyia tnv preconditioned conjugate gradient
method — PCG. H puéBodog PCG adopd tnv emiluon ypapplkwy OMOU To UNTpwo A eival
OUMMETPLKO Kal BeTikA nuLoplopévo (positive semidefinite). Eva pntpwo ovopdletal Betika

NULOPLOPEVO, AV OL LOLOTIUEG TOU elval LeYOAUTEPEC i LOEC Ao TO UNSEV.

Y& TePIMTWON OUCTNUATWY KOKAG KOTACTAONG KOL YEVIKWG YlO TIEPUTTWOEL, HUEYAAWV

oboAudtwy otpoyyuvlomoinong, o oaAyoplOpog PCG umopel va edapupootel e

enavopBoywvornoinon.
, L0 0 0 __ A-1.0 ~0_ 0 ~0 __ 0 O_poro
Apxworoinon: ' =b—-AX", 2 =A"r,p =z2,q =Ap,n = s
P q
EnavaAnyn yia k=1,2,... uéxpt cuykALong:
Extipnon Abong K = ykL _l_nk—l pk—l
YroAelypatiko dtavuoua = pkt_ nk—lqk—l
MpootabepomolnUéVo UTIOAELUUATLKO SLAvuoua 7K — Alpk
3] ekl KTk
Awavuopa ATAn ektipnon C_ gk 7K r .
KateuBuvong P = Zk—lTrk—l P
; r—
EnavopBoywvornoinon « kel Sk q
pi=2->—p
i=0 p q
Mvouevo Slavuopatog katelBuvong e To A qk — Apk

Page | xxiii

YrioAoylopog AN ektipnon) 75 K
Brinarog n m = o g
EnavopBoywvomnoinon - kark

="

P q

Table 4.1 - The PCG algorithm

210 XWPOo tNG YmoAoylotikng Mnxavikng twv Kataokeuwv, ot DDM yvwploov onUavTikn
avanrtuén amo tv apxn NG Sekaetiog tou '90. Tnv mepiodo ekeivn, N mo SnuodAng
péBobdog Atav n péBodog tou cupmAnpwpato¢ Schur (Schur complement method). H
pEBoSog autr dépel SUo akopo ovopara: pEBodoc Neumann-Neumann (Neumann-
Neumann method) kal mpwtoyevic péBodog emiluong pe unodopeic (Primal Substructuring
Method — PSM). lNa tnv akpifela, tnv teAeutaia ovopaocia tnv £AaBe apyotepa, otav
avantuxbnke n Suikn péBodog emiluong pe umodopeic (Dual Substructuring Method —
DSM). H ovopaoia «Mpwtoyevrg neBodog enihuong pe unodopeic (PSM)» odeiletal otig
Sladopec NG neBodou autnc e tn HEBodo mou dEpel To dvopa «Auikr LEBodog emiluong
pe umtodopeic (DSM)».

Jta mAaiola tng PSM, ta Tomikda mpofARuata umodpopEwV AVILLETWI{O vTal UE Hia AUEDN
pEBobdo emiduong omwg n péBodog Cholesky, evw To KaBoAlkd TPOPANUA Tou cuvopou
petafl tTwv umodopéwv (subdomain interface) emilUetal pe pia emavaAnmrtiky pébodo.
JuvnBwe, yla TO OKOTIO OUTO Xpnolpomoleitat n péBodog PCG, emeldn ta YypAUUIKA
TIPOBAALATA TIOU OIMAVIWVTAL OTNV AVAAUOHN KATAOKEUWV e DDM eival Kotd Kavovo BeTikd

OpLOMEVO.

Page | xxiv

Ykitoo 4.1 —'Evag SounTikog dpopéag, dlaywplopévog os utodopelc. Ta BEAN umoSelkviouy

TI§ Suvapelg aAAnAemnidpaong petafl Twy anoouvdedeuévwy UTIOPoPEWY

Eniong, otic apyxéc tng dekaetiag tou 90, Atav AdnN yvwoto otL ol DDM xpelalovtal éva
punxaviopo, ikavo va efaodpoaliosl pia kabBoAwkn avtallayn mAnpodopiag LETALU LaKPLVWV
unodopéwv ot KABe emavalnyn (akolouBwvtag oavdaloyn Aoylkr We eKeivn TOU
umodelkvUel OTL amatteital éva mPoPAnua apatol TAEyuatog (coarse-grid problem) otig
peBOSoug moAAamAwy mAeypatwy (multigrid methods). E€GAAou, tnv enoyn ekeivn ixe yivel
QVTIANTITO OTL 0 aplBUoG emavaAnPewv tng PSM aufdvetal onpaviikd oétav augdvetal o
aplOpog unopopéwv evog mpoPAnpatoc. H avénon odeiletal otnv EAAeln emikowvwviag

HETAEL paKpWVWV UTIodopEWY o KABe emavaindn tng peboddou autnc.

To PElOVEKTNUA auTo Twv DDM tng emoxng ekeivng SlopBwBnke to 1991, dtav ot Farhat kot
Roux elonyayav tn péBodo FETI (Finite Element Tearing and Interconnecting method). H
pEBoSog FETI Atav n mpwtn SnuodlAng péBodog mou £depe Eval UNXAVIOUO KABOALKNG
Sladoong mAnpodopiag, r Katd tnv opoloyia twv DDM, éva mpofAnUa apotol TAEYUATOC
(coarse-grid problem) n aAAwwg, éva apatd mpoPAnua (coarse problem). H opoloyia autn
elvat davelopévn amnod tig pebodoug moAAATMAWY MAEYUATWY, OTIOU XPNOLUOTIOLOUVTAL OpOLd
TAéypota (coarse grids) yla tn peiwon tou aplBuol emavaAnPewv. Ta apald mpoPAnuota
XPNOLUOToloUVTAL KATA Topopolo tpoémo ot DDM, aAld dev Boocilovial oe apald
mAgyparta, kaBotL ol cuvrBelg DDM xpnowuomololv €va Povo TAEyud, auto dnAadn mou
opiletal w¢ ouvnBweg amd 1o Ypnotn. Ta apald mpofAnuata twv DDM mpokUmTtouv
outopaTa oo TG BLeg TG e€lowoelg Twv HEBOSWVY Kol amoteAoUV amAd €va YPOoULIKO

MPOPANUa Tou, adevog £XEL UIKPH OXETIKA Sldotacn oe oxéon MeE tn Oldotacn Tou

Page | xxv

ouvoAlkoU TipoBAnpatog, adetépou efaodalilel tnv aueon ovtoaAdayr mAnpodopiag

METAEL HoKpWVWV UTIodopEWY O KABE emavainyn.

H nébodoc FETI éAafe emiong tnv ovopaoia duikn péBodog emihuong pe unodopeic (Dual
Substructuring Method — DSM), Adyw pag Paowkng tng Sdiadopdg pe v PSM.
JUyYKeKpLEva, o avtiBeon mpog tnv PSM, tng omolag to ouvoplako mpofAnua (interface
problem) €xeL w¢ AYVWOTEG TIG UETATOTIOEL TwV KOUPWV TOU OUVOPOU HETAEL TWV
unodopéwv (interface displacements), n FETI §taB&tel éva ocuvoplako MPOBANUA TToU €XEL
W¢ AYVWOTEC TIG SUVAUELS aAAnAeniSpaong petatl twv untodopewv (subdomain interaction
forces). Emeldry Aoumov oL ouvoplakeéG oUTEC Suvapelg yapoktnpilovtol wg Suikég
petoPAntég (dual variables) w¢ mpog TG cuvoplakég petatomioelg, n FETI élaBe tnv
emumA€ov ovopaoia «Auiki péBodog enihuong pe untodopeig (Dual Substructuring Method —
DSM)». Tevikd, OAeg oL pEBoSOL TwV omoiwv To cuvoplakd TPOPANUa ekdpaletal wg mPOgG
TIC CUVOPLOKEG LETATOTIOELG 1 T CUVOPLAKEC SUVAUELS XopakTnpilovtal W MPWTOYEVEIG
(primal) n duikég (dual) péBobdol avtiotolya. Ag onuelwBOel emiong otL otnv opoloyia Twv
DDM ot cuvoplakég Suvapelg aAnAenidpacnc LeETal Twv UTTOPOPEWV OVOUATIOVTAL KOWVWG
w¢ «ToAAMAQOLaOTEG Lagrange», S10TL otn padnuotikr Stotinwon tTwv DDM w¢ puebodwv
gl\aylotomoinong pLog cuvaptnong Suvapkol, ol duvapelg aAANAsTiépaong UTIELGEpYOVTaL
w¢ TmoMamhaoclootég Lagrange mou emuParlouv T ocuvBnkn ocupflBactol Twv

UETOTOMIOEWV 0TO CUVOPO HETALY TWV UTTOPOPEWV.

EmutAéov, €va LOLALTEPO XOPAKTNPLOTIKO TNG UeBOSou FETI eival n xprnon twv KWwhnoswv
unSevIKng evépyelag (zero energy modes) Twv UTTOPOPEWVY YLA TO CXNUATIOUO TOU apaloy
™N¢ mPoBARHATOoG. Q¢ KIVAOELG UNOEVIKAG EVEPYELOC HILOIG KOTOLOKEUNC 0pil{ovTal oL KLVNOELG
€Kelvec Tou 8ev TpoKAAOUV €viaon TNg KOTOOKEUNC, OL KLVNOELC €Kelvec SnAadr mou
Tipaypatonolovvtal pe pundevikd €pyo. Ag¢ umoBEooupe yla Tapadelypa TNV Kivnon oto
Xwpo £vog uttodopéa 0 omoiog Oev £xel kKapla eEwtepkn othpPLEN. Av OyvOr|GOUME TN
ouvbeon tou umodopEéa auTol HE TOUC YELTOVIKOUC Tou Umodopelc, TOTE ol TOAVES
VPOUULKA aVEEAPTNTEC KIVAOELG UNOEVIKNG EVEPYELOC TOU UTtIodOopEa auTol mepAapuBdvouv
TIC 6 avelAPTNTEG KLVAOELS TOU OTO XWPO WG oTePed cwpa (rigid body modes), kaBwg kot
TOUG OTIOLOUC ECWTEPLKOUG UNXOVLIOUOUG SLOOETEL TEVIKA, OL KIVAOELG UNOEVLKNAG EVEPYELAG
Twv urodopLwy, oL omoieg ypnowtomolndnkav yo tn Stotumwon tng FETI pe WSlaitepn

emutuyia, amotéheoav emniong tn aon ylo toAAEG dAAeg DDM mou mpotddnkav apyotepa.

Av u kat f ewvat Ta Staviopota petatoniong Kat ¢poptiong oe 6Aov to dopéa kat u® Kat f°

gwat Sltaviopota mou avadEPoVTal OTLG OVTIOTOLKEG TTOCOTNTEG € OAOV To popEa TOTE:

Page | xxvi

u®=Lu
f=Lf°

pe N, tov apBud twv unodopéwv kat L o teAeotrig amewkoviong kaboAikol/tomikou o

omolog gival éva untpwo Boolean.

Edapuolwvrag Tig e€lowoelg. (4.4.1)-(4.4.4), otoug B.£. TG Slemadng EXOULE:
T
_| O (Ns)'
us—[ub e U }
_[¢ar sy "
R

Utj = Lhub
fb = LbT fbs

OL duvapelg aMnAemnidpaong HeTaty Twv KOUPBwWV Slemadng eival loeg pe:

t=f"-B'1
n
t=f -B'A
Emtiong LoyveL otL:
u(l)
Bu,=[B® - B™] i |=0
yNe)
n
ud
Bu; =B - B[i |=0
Ut()NS)

TNV epIMTWaon TOMKWY TPOoBANUATWY, TPETEL Vo AuBOUY OL TAPAKATW EELOWOELG:
KOU©® = §6 _ge’ 4
EVW yla TNV MEPIMTWON MPpWTOYEVWVY PEBOSWV UTIODOPEWY EXOULE:

Page | xxvii

S(S)Ués) — fb(S) _ Bés) Y
Av avadiatafoupe To pnTpwo K ouTw¢ woTte:
kg k][4 [8],
Ki(bS) Ki(iS) Ui(s) fi(s) 0

ToTtE:
() _ () (s) O 20

O = £© KO (Ki(iS))‘1 £

Ma tnv npwrtoyevn péBodo PSM, mpémnetl va AuBoUV oL mapakatw eELOWOELG:

Su =i
YE
§: LI;SSLb! fb = LL- fAbS
~ AT ~ T
fo=[.
g
S° =

Q¢ npootaBepomnolnTh, XPNOLUOTOLETAL N TIOPAKATW EKdpaon:
A-l_ T st
A= Lpr Lpb

n omoia UAomoleital wg:

A= NJKENS'L,

Itnv nepimtwon tng duikng Leboddou, €xoupe To €NC cUOTNUA:

B Mg

Page | xxviii

pE
F, =BK®B",G=BR®,d =BK® f*,e=R"® f°
Ma TNV anocVleuén Tou MAPATIAVW CUCTHLOTOC XPNOLUOTIOLOUE ToV TIpoBoAEa:
P=1-QG(G'QG) G
‘EtoL TeAika, mpémnet va AuBoUv Ta MOpaKATW ANOCUIEVYUEVO CUCTHUATA:
= FA= P'd

G'a=e

JTNV nepintwaon tTng mPwTtoyevoUg-Suikng HeBOSou AUVOUE TIG EELOWOELG TNG TIPWTOYEVOUG

pueBOS0oU TwV UTtodPopEwy pe Tov €¢ Mpootabepomolnth:
A-1_ T Teost
A= Lprb S Hprb
pE
T T 1 st
H,=1-B]QG(G'QG) R;

Itnv nepintwaon dSuvaptkwy poBAnuatwy, n Sutkn péBodog twv urmodopéwv epapuoletal

yla th Avon tou:
FAi=d
EVW OTNV EPIMTWON ELOAYWYNG EVOC TEXVNTOU apalol PoPAROTOC EXOULE:
PFA=Pd
ue
P=1-C(C'FC) C'F

ITnv avtiotolyn mpwTtoyevrG-duikr uAomolnar, AUVOULE TIG EELOWOELG TNG TIPWTOYEVOUG

pneBOSOoU TwV UTtodPopEwy pe Tov €G pootabepomolnth:
~ 1 1 -1 -1
A=t (ss ~s*'BIC(CTRC) CTB,S*) L,

Mo TNV epimtwon mopwdwyv HECWV UMOPOUE VA XPNOLLOTIOLO0ULE, €lte €éva apalod

TPOBANUA To omoio oxeTileTal e TOV OTEPED OKEAETO:

Page | xxix

ME:

GIZ[B(l)R(l) B(NS)R(NS)}

R®) :nuII(K(S))

elte pe éva apatd mpoPAnUa To onoio oxetTileTal pe TV SLOMEPATOTNTA TOU TOPWSOUG

pUéoou:

JE

R, = null(ﬁ(s))
Ol avtioTolyol mpooTaBepomoLNTEG yLa TNV MPWTOyeVN-6uikn UAomoinon sivat:
At=L (s ~S¥B]QG(G'QF, QG)'lcaTQT BbSS'l)Lpb
Ko
A= (s ~s*'87E, (EFE) & BbSS'l)Lpb

H avtikelpevootpadrg texvoloyia mpoypappatiopol Baciletal os €va CTEPED UNXAVLOTIKO
olkoSounua, otolyela Tou omoiou opadKA KOAOUUE avTlKeElwevooTpadEG povteédo. To
OVTIKELUEVOOTPOPEC HOVTEAO TPOwWOel KoL XpnolUomolel TG apxec tnNg apBpwong
(modularity), t™ng adaipeong (abstraction), tng amopdvwong (encapsulation) kat NG
Lepapyiag (hierarchy). Ano poveg Toug, AUTEG oL apxeg Sev lval VEEG 1) KOLVOTOMKEG-OUTO TO
oTolo lval oNUAVTIKO OUWCE Eival TO YEYOVOG OTL T MOPATIAVW OTOLXELOl EVWVOVTAL UE EVaV

CUVEPYLKO TPOTIO

Oa mpenel va avadEPOULE OTL O AVIIKELLEVOOTPAPNG TPOTOC avaAuong Kal oxeSlaouol
elval ek Bepeliwv Sladopetikéc amd Ttov Mopadoolakd SOUNUEVO TIPOYPAUUATIOUO
(structured programming) Kot Toug TPOMOUG AVAAUGCNG OTOUC oToioug autog Baciletal. Oa
Aéyape mwe amattel éva Sladopetikod Tpomo okéPng doov adopd TV anodopnacn Tou mpog
AUon mpoPANUaTOG, YeYoVOC TO Omolo TapayeL AOYLOULKA OLKOSOUAATA T OTola améXouV

KOTA TTOAU amo auTd TNG oXOANG ToU SOUNUEVOU TIPOYPOUUATIOMOU.

Page | xxx

JuvnBw¢ KATA TNV MPAYUATWON KWOIKWV MEMEPACUEVWY OTOLXELWV O EPELVNTIKO eTtinedo,
TLOPAYOVTAL KATIOLO. TIPOYPAUATA TO OTIOLal UAOTIOLOUV GUYKEKPLUEVEG HEBOSOUG emiAuong
npoPAnuatwy. Eneldn o okomog eival kaBapd epeuvnTikog, dev divetal éudacn oto mMARBog
TWV EBWV TIEMEPACUEVWVY OTOLXELWY TA OTtolaL XPNOLUOTIOLEL TO TIPOYPARMA, OUTE KoL OTa
€lbn twv mpoPfAnuatwyv ta omola emAvovrtal. AvtiBeta, Kataokeudlovtal, 000 IO ATAQ
yivetal, kamola memepacpéva otolxela Kol AUVOUHE HPE QUTOUG TOUC €TUAUTEC OTOTIKA
npoBAfuata adou autd eival Ta o €ukoAa uAoutoinonua. Mpaypatonolol e SnAadn pa
umodopn (infrastructure) tétola mou va eumnpetel amAd TIG OVAYKEG HOC O SOKLUOOTIKO
eninedo. Mahiota, eneldn ot péBodol emiAuong mou vAomolouvtal gival oAU SLopOPETLKES
peTaty Toug, n mpoavadepbeioa umodopur xpelaletal va enavadnuioupynBei i va aAAdEeL
PLUKA ylo va TALpLATEL OTIG OVAYKEG EVOG VEOU KWLIKA Tou Ba uAomolel plar GAAn pébodo

eniAuong.

Ta TpAyUOTO TIEPUTAEKOVTOL OKOUO TIEPLOCOTEPO OTAV KIAQUE ylo. €MAUTEG OL omoiol
AeltoupyoUv oe mepBariov molueneéepyaoiog. Ymapxouv Stadopa MPWTOKOAAO TO omoia
vAomolouv tnv moAvene€epyacia (Suo ek Twv onoiwv eival to MPI kat PVM) kat ta onoia
£€xouv 8LadopeTIkoUC TPOTOUG LAoToinong Kal Asttoupylag. H anddoon Twv mpwTokOAA WV
OQUTWV £XEL VA KAVEL HETOED GAAWV KOL E TOL LNXAVILOTO TOL OTIOL0 XPNOLUOTIOLOUVTOL EVW
TIOAAEG popEc xpeldletal va cuvSeBouv pnyaviuata pe SladopeTikeég MAATHOPLES Ta omoia
Ba ouvepydalovtol kal Ba oavtalddcocouv Oebopéva. TéAog ta Sedopéva ta omoia
ovtaAAdooovtal PeTafl TwV pnxavnuatwyv alalouv avaloya pe tn ¢uon tou emAlTh,
OTOTE N UTOSOUN TIOU XPELAlETAL yla TNV avTtoAAayr HNVURATwWY oAAATEL yla va Tatplalel

OTLG AVAYKEG EVOG VEOU KWSLKA TTou Ba uAomolei pia AAAN péBodo emihuong.

MapatnpoUpe Aowutov oti ota mAaiola tNg €pesuvag, TOAUTIHOG XPOVOG Kal Topol
KOTOVOAWVOVTOL YLO TNV KOTOOKEUN uTtoSoung n omola Ba umootnpiéel Tov Kuplwg Kwdka
VW TtapAAANAa TIOAAG KOLWVA UTIOTIPOYPALOTO TO OTTola XpnoLpomolouvtal omd enAUTN O€
eTUAUTN XpeLdletal va petaypadouv i va Eovaypadolv yla va TapLaiouV e TIG OVAYKES

TOU EKAOTOTE KWOLKAL.

YT6X0¢ Aomdv auToU TOU KWOLKO ELVaL VO EVOTIOLNOEL TG TIAPATIOVW UTTOSOUEG Kol KWOLKES

oUTWC WOTE N ouyypadn VEWV EMIAUTWVY va ToipVeL Tov AlyoTtepo Suvato Xpovo.

Page | xxxi

AladopeTIKA
TIEMEPAOUEVA
otolxeia

Evomotnpévn
nAatpopua

ALaOPETIKEG
SLOTUTIWOELG
TPOPBANUATWY

Al dOPETIKEG
UTIOAOYLOTLKEG

TAQTHOPUEG

Jkitoo 5.3 — Mo evomotnpévn MAatdOpa TEMEPACUEVWV OTOLXELWV

H apBpwon, n omoia ivol N KATATUnon evOg TPOYPAUHUATOC O ETLUEPOUC LEPN, UTTOPEL va
HELWOEL TNV TOAUTIAOKOTNTO EVOG GUOTHAMOTOC WG VAl OPKETA peydlo Babpod. Map’ Ao mou
N Katdtunon svog mpoypaupotog Bonbdel moAl yla outd To AOY0, £Vag Mo LoXUPOG AOYOG
ylo TNV KOTATUNOon €vOC mpoypappatog eivat ott dnuloupyel évav oplOpd kohd
TIPOCSLOPLOUEVWV KOL ETEENYNUEVWV Oplwv HEoa OTO TPOypappo. Autd ta opla sival

avekTipnTng aglag yla tTnv Katavonaor) tou.

To va amnodaaoilel Kaveig To owoTO cUVOAO TwWV apBpwHATWY yla eva SeSopuévo MpoBAnua
elvat pa mapa oAl Suokohn Stadikacia. Auto cupPaivel SLOTL n AUon pnopel va pnv givatl
YVWoTh Katd tn Stadikacio oxedlaong Kal yta auto n amodounon o€ PKpotepa apBpwpoata

va elval apketd SUOKOAN.

Mpaktikd, Ta apBpwuata efumnpetolv w¢ ¢uaoikol umodoxeilc péoa otoug omoloug
SnAwvoupe TIC KAAOELG paG Kal Ta avtikeipeva pag (classes and objects) tou AoywoU pag
oxeblaopou. H éAAeldn tumonolnpévwy apBpwpdtwy yio tn AUon Tou MPoBARUOTOG LOG,
Slvel otov mpoypappatioty codwg meplocotepou Pabuols eleubepiag oto mwg Ba
KOTOOKEVAOEL TA apOpwHATA TOou. ETOL, O£ HIKPA TIPOBANUATA, O TIPOYPAUUOTIOTAG Utopet
va emAé€el va SnAwoel kaBe kKAdon Kol KaBe aviikeipevo o éva apBpwpa. Nop’ 6Aa autd,

OTILC TIEPLOOOTEPEG TEPUTTWOELS [l KOAUTEpn AUon Ba ATav va OPaSOTOLCOUUE TIG

Page | xxxii

OUOXeTI{OUEVEG KAAOELG KAl QVTIKEIpHEVA OTO (610 ApBpwpa Kot va ekBEGOUUE (VO KAVOUUE
6nAadn dpavepa) povo ekeiva ta otolyela Ta omoia Ta omola MPEMEL va elval davepad yla TN

AeLtoupyla TwWV UTIOAOLTIWY APBPWHATWV TA OTola ATAPTI{OUV TO TIPOYPAUUA LAG.

2ToV MapadooLako SOUNUEVO TIPOYPOUUATIONO, N ApBpwon Voeltal Kuplwg Le PLla onpaciag
OMaS0moINCN TWV UTIOTIPOYPOUUATWY, XPNOLLOTIOLWVTAS TO KPLTAPLOL TNG GUVEEDNG Kal TNG
AOYIKNG OUVEXELOC. ZTOV QAVTLKELLEVOOTPAdH TIPOYPAUUATIONO, TO TTPOPBANUA glval KATTWG
Sladopetiko: autd Tou TPEMEL va yivel gival va opadOmMoOINoOUHE TIC KAACELS KOl Ta
avTKe{peva tng Aoykng pag doung ta onola eivat mpopavwg dtadopetikng ducews amod Ta

UTIOTIPOYPAMLOTAL.

H eumelpia umodeLkvUEL OTL UTIAPXOUV QPKETEC TEXVLIKNG Kal Un GUoew odnyleg TIg omoleg
propel va akoAouBrosl kavelg oUTWG WOTE va EMITUXEL Hla eudurn apBpwon Twv KAACEWV
KOL TWV AVTIKELLEVWY. AMWOTE 0 gUpUTEPOC OTOXOG TNC AoSOUNONG EVOC TIPOYPAUUATOC
oe apBpwpata elvat N pelwon Tou KOOTOUG AVATTUENC, ETLTPEMOVTAG TO OXESLACUO Kal TN
S16pBpwon autwv katad aveéaptnto tpomo. H doun kdbe apBpwpatog Ba mpénel va eival
OpKeTA amAn oe cUMNNYPN oUTWG WOoTe va eival Katavontr amd povn tng. MdAwta Ba
MpEnel va elvat duvati n allayn tng ulomoinong evog apbpwpatog xwplg va eival
amapaltntn n yvwon tg vAomoinong twv Aoumwyv apBpwudtwy ta omola amaptilouv to
UTIOAOLTTO TIPOYPOUpO. TEAOG pla Tétola miBavy oAlayr 6 Ba mpémel va emnppedlel tnv

vAormoinon Twv UTOAOLTIWY APOPWUATWV.

YTapxouv Kol GAANEG TTOPAUETPOL OL OTIOLEG UMOPOUV VA EMNPPEACOUV TOV TPOTO LIE TOV
omolo Ba emAééoupe va Snuloupynooupe to apBpwuotd pog. Emedn ta apBpwpata
puropel TOAAEC ¢opéG va emavoypnoldomnolnBolvv oe SLadOPETIKA TPOYPAUUATA, O
TIPOYPOUUATLOTHG UITOpEl va ETUAEEEL va opaSomoLosl KAAOELG KOL QVTIKEEVO KATA TETOLO
TPOTMO OoUTWE WOTE N emavoypnoldomnoinon toug va eivat BoAlkr. Akopa, emeldn n
KatdTunon epyoaoiag yivetal pe faon ta apbpwpuata, Ba nmpénel n oxediaor Toug va ivat
TéTola oUTWG Wwote va efumnpetel TNV avaykn ulomoinong toug amd SlodopeTikolg

TIPOYPAUUATLOTEC.

Oa TPEMEL MAVIWG VA TOVIOCOUUE MWE (ow¢ To coPBapdTeEPO KPLTNPLO yla TNV oxedlaon tng
apBbpwong evog TMPOYPAUMATOC £lval O KOTOUEPLOUOC TOU TIPOPANUATOC OE EMIUEPOUG
aveEAPTNTEG OVTOTNTEG OL OTIOLEC UAALOTA £XOUV TO XAPAKTNPLOTIKO Vo €XOUV GUOLKH Kol
vonuatiki avegaptnoia. Autd onpaivel va €xoupe apBpwota Ta omola TEPLEXOUV KAACELS
KOLL QVTLKElPEVA Ta oTtola elval AUTOTEAN KAl €X0UV T WKPOTEPN Suvartr yvwon yla tn doun

TWV UTIOAOIMWYV APOPWHUATWV.

H adaipeon ival évag akopa Tpomog mou ol aAvBpwrot Staxelpilovral TNV MTOAUTIAOKOTNTO.
AMwoTe N adAPETIKN LKAVOTNTA TIPOKUTITEL ATIO TO YEYOVOG TNG OVAYyVWPELONG OLOLOTHTWY
METAEY OUYKEKPLUEVWY OVTIKELLEVWY, KATAOTACEWY 1 SLASLKOCLWY OTOV TIPAYUATIKO KOO0
KoL otnv amodacr HOC Vo CUYKEVIPWOOUE O QUTEG TIC OUOLOTNTEG MPOOCTIEPVWVTAG KOl

TIAPAKAUITOVIAG TPoowpva TG Oladopés. Etol pmopel kavelg va mpoPel oe

Page | xxxiii

am\omolnuévn meplypadn evog mMoAUTAOKOU, v YEVEL, cuotnuatog Sivovtag €udaocn os
KATIOLEC AEMTOUEPELEC 1 LOLOTNTEG TOU VW TNV (Ol oty va apoPAENEL KATIOLEG AAAEC.
MaAlota, Ba pnmopouoe Kaveig va mel otTL pla owoth xpnon g adaipeong 6o Atav to va
Olvetal €udoon ot AEMTOMEPEL OL OToleg €lval XPRAOLUEG KOL ONUOVTLIKEG KOl va
TapaPAETIOVTOL QUTEC OL OTOLEG, TOUAQXLOTOV Ylo T OUYKEKPLUEVN OTyun, 6o ntav

OVOUOLEG I AKOMOL KOLL TLIOPOUITAOVNTLKEG.

‘Ooov adopd Tov avtlkelpevootpadr oxedlacuo Kat pe Sedopéva Ta avwtépw, N adaipeon
€XEL WG OTOXO VO TIPOPBAAAEL TA OUCLWEN KOL OUCLOOTIKA XOPOKTNPLOTLKA EVOG AVTLKELLEVOU
Ta omoia paAlota to mpooblopilouv kal to Slaywpilouv amd OAa Ta umolouma €idn
OVTLKELLEVWV KOl €TOL VA TIPOCSiSEL cadwC OPLOUEVA VONUATIKA OpLa, OXETIKA TIAVTA LE TV

T(POOTITLKI) TOU T(POYPOUUATLOTH.

Mo cuyKeKpLUEVA, N adaipecn CUKEVIPWVETAL OTNV £EWTEPLKN «OPN» €VOC OVIIKELUEVOU
KoL apa XpNnoLeVel oto va Slaxwploel TNV Kot ouciav cupnepldpopd EVOC OVTIKELLEVOU UE
TNV TIPOYPAUUATLOTIKY UAomoinor Ttou. Itnv 6iebvn BipAloypadia, autrn n Swaipeon g
oUUTEPLPOPAG HE TNV UAoToinon KoAeltal adalpetikd dppdyua (abstraction barrier) kat
grutuyxavetal epappdlwvrag tnv apxn tng ehayotng adooiwong (least commitment) péow
NG OMoLlag O OPLOUOC EVOC AVTIKELUEVOU TIPOOSIdeL TNV oTolXelwdn cuUMEePLPOPA TOU Kal

Timote napanavw.

To va amodaociosl Kavel¢ yla To owotd olUvoAo Twv adalpéoswv yo €va Sedouévo
MPOPANUA €lval N KEVIPLKA O£ KOL TO KEVIPLKO TPOBANUO OTOV QVTIKELUEVOOTPAdN
oXedLaopo Kal, HAALoTa, ival apketd SUOKOAO av GavVTAoTEL KAVELG OTL UTTAPXEL Eva pAaopa
ETIAOYWV OO QVTIKEMEVO TA OTOL0 TIPOCOUOLWVOUV TIOAU KOAA GUGCLKEG OVTOTNTEC TOU
nipoBARUATOg To omolo mApe vo AUCOUUE PEXPL QVTIKELPEVA Tal omola 6ev €Xouv Kavéva

Aoyo umapéng.

H adaipeon (abstraction) kat n anopovwaon (encapsulation) eival CUUMANPWUATIKES EVVOLEG
— n adaipeon €xeL va KAvel Pe TNV gudavhy cuumepLPopd EVOC QAVTIKELUEVOU EVW N
QMOUOVWON ETIKEVIPWVETAL OTNV UAomolnon n omoia Kavel ¢pavepr tn cuunepldpopd Tou
ota umolowuma avtikeipeva. Mpodavweg, n adalpetikn Siadikacio n omoia adopd E£va
avtikelpevo Ba mpémel va mponyeital autng mou adopd tnv ulomoinon dpa Kot TtV
QIOUOVWON Tou. ATIO TN OTLYUN TIOU LA CUYKEKPLUEVN VAOTtoinon €xel eihexBel, Oa mpeémnel
QUTN VO TIAPAUEVEL AYVWOTN oo thv adalpeTikn dtadikaoia aAAd Kal anmd Toug XProTeg
TOU QVTLKELEVOU. ANWOTE, Kavéva PEPOG eVOG oUVBeTou cuotnpatog 6ev Ba mpémel va
gfaptatal amd TIG AEMTOUEPELEG UAOTOLNONG TWV UTOAOLTIWV HEPWV Tou. ETOL svw n
adatpetikn Stadikacia fonbBa tov MPOYPAUMOTLOTH VA SLOTNPEL TNV TPOOTTIKI TOU OTO TL
OKPLPWE EMITUYXAVEL UE éva OVTIKE(PEVO, N amopdvwaon tov BonBdet va kAavel aAAOYEC OE

QUTO |LE TIEPLOPLOEVO KOTIO.

H amopdvwon EMITUYXAVETAL T TEPLOOOTEPEC GOPEC Pe Hla Sadlkaoia Tnv omoia

anokaloupe anokpudn mAnpodoplwv (information hiding), n omoia €wat n dladikacia tng

Page | xxxiv

anmokpuPng OAwV TwV OTOLYElwV TOU aVTIKEIPHEVOU Ta omolo &ev ouvelodEpouv ota
OUCLOOTIKA TOU XOPOKTNPLOTIKA. ETOL, O€ TUTIKEG TIEPUTTWOELG, N SOUN EVOC AVTIKELUEVOU

elval Kpuppévn kabwg emiong kat n uAomoinon Twv peBodwv Tou.

H ebappoyn tTng amopdvwong oToV AVILIKELUEVOOTPAdr OXESLAOUO LOC TTOPEXEL AUECEC KOl
KOAQ OPLOHEVEG SLAXWPLOTIKEG YPAUMEG avapeoa os SladopeTika enineda adaipeong Kot
ME aUTO ToV TPOTo pog odnyel og Evav KaBapd SLOXWPLOUO TWV POAWY TWV AVTIKELLEVWV.
Etol, ywa mapadelypa, ya va KOTaAGBoupe Tov TPOTO He Tov omolo Asttoupyel €vog
ETUAUTNG OF YEVIKEG YPOUUEC, UTTOPOUE VO OYVONOOUUE AEMTOUEPELEG OTwG N dUon A N
VEWUETPla Tou Tipog emihucon dopéa | to Tl eidoug menepacpéva otolyeia anaptilouv Tov
dopéa autov. BAEmoupe Aoumov oTL avTtikeipeva Ta omoia Bpiokovtal og kamolo eminedo
adaipeong (level of abstraction), eival mpootatevpéva amo TG AeMTOUEPELEC UAOTIOINONG

AWV eTunédwy adaipeonc.

Juunepaivoupe Aowtdv, OTL yla va eival amoteAeopotikn n adalpetiky Stadkaoia, ot
UAOTIOLNOELC TWV SLOPOPWY AVTIKELLEVWVY TIPETIEL VO EVOL ATOMOVWHEVEG (encapsulated).
TNV MPAEN, AUTO onuaivel OTL KAOe QVTIKEEVO TIPETEL val amoteAeital and duo pépn —
Slaouvdeon tou (interface) kol tnv ulomoinon tou (implementation). H StacUvdeon evog
OVTLKELUEVOU QVTIKATOMTPIlEL LOvo TNV e€WTEPLKN TOU 0PN TiepLKAELOVTOC TNV CUUTEPLPOPA
TOU n omola eivatl kown mPog OAa To UTTOAOLTTA AVTIKELPEVA. H UAOTIOINON TOU QVTIKELUEVOU
ouvteAel otnv uAomoinon aUTAG tNg cupmeplPopd¢ KaBwE £mionNg Kol TWV UNXAVICUWV
EKELVWV TIOU EMUTUYXAVOUV TNV WC AVw cupmeptdopd. H StaclvEean ToU avTIKELWEVOU Eival
TO UEPOC eKkeivo oTo omoio mpoBAaAloupe OAEC TIC UTTOBEDELG TTOU XPELAETOL VA KAVOUV TO!
uTtOAoua avtikeipyeva ta omola oAAnAemidépolv UE QUTO Evw OTNV UAomoinon
amopovwvovtal (are encapsulated) 0Aeg ekeilveg ol AemTOUEPELEG OL oTtoieg Sev €xouv Kaula

XPNOLUOTNTO 0T UTIOAOUTA QVTIKELUEVAL.

‘Exovtog um’ oyn HOC Ta QVWTEPW, MMOPOUME Vol TIOUHE OTL N AMOUOVWOoN €elvol pia
Sladlkaoia mou £XeL WG 0TOXO TN SLAEPLOUOTONOLNON TWV OTOLXELWY EVOG QVTIKELMEVOU Ta
omnola cuvBétouv tn Sopn Tou Kol Th cupmnepldopd Tou. H amopdvwon xpnolpelel oTo va
propel va Stoxwpilel tn Slaclvdeon (interface) evog aviikelpévou amod tnv uvlomoinon

(implementation) tou.

Onwc eidape kal mapanavw, n adaipeon eivat éva oAl kalo epyaleio yla tnv katavonon
€VOG oUVOeTOU MPOPARUATOG AAAG O OAd EKTOG TWV TILO TETPLUUEVWY TPORBANUATWY, Umopel
VO CUVOVTAOOUUE OPKETA TEPLOOOTEPEG ADALPETIKEG SLASIKACIEC AmMO AUTEC TIG OMOLEg
UTOPOUME VA XELPLOTOUUE KOL va Katavonooupe. H amopovwon pag Ponbast va
XELPLOTOUE KOl VA SLOXELPLOTOUHE QUTH TNV EYYEVH TTOAUTIAOKOTNTO UE TNV OmOKpun Twv
vlomolnoewv poag. Akopa kat n apBpwon pag Bonbast divovrog pag pla pébodo yia va
KOTATUACOUUE AOYLKA OUOXETWIOUEVEG adalpeTikeég Sladikooieg. Evtoltolg, ol &LOTNTEG
oUTéC Sev elval apKeTEC — €va oUVOAO adalpeTikwv Sladlkaolwy Umopel cuxvd va
popdWOoEL Ulat Lepapxio KOl PE TO va TAUTOTOLOUME KOl VO avoyvVwplloUUE QUTEC TIG

LEPAPXLEG, LTTOPOUE VA AMAOUCTEUCOUE SPAOTLKA TNV KOTAVONGN TOU TIPoBAAUATOC Hag.

Page | xxxv

H dotnta tng tepapyiag, Aowndv, sivat n dwafabuon n n taflvounon twv odalpeTkwy
SladkaoLwyv ot onoieg anaptifouv to MPOBANUA pag. Ta Svo o onoudaia idn Lepdpxnong
TOL OMola CUVAVTOUE OTOV QVTIKELUEVOOTPadr OXESLAOUO cUVOETWY cuoTnUATWY Elval n
Soun twv KAdoewv (Lepapyia eldoug — “is a” hierarchy, kAnpovoukotnta - inheritance) kat n

Soun Twv avtikelpévwy (Lepapxia pépoug — “part of” hierarchy, cuocowpeuon - aggregation).

H kAnpovoulkdtnta elval moAU omoubaio £(60¢ Lepdpxnong kot onwg avadépbnke Kot
TIPONYOUUEVWC, OTOTEAEL OUGCLOOTIKO OTOLXEI0 TWV OVIIKELLEVOOTPAGWY CUCTNUATWV.
Baolkd, n KANPOVOULKOTNTA OPLleL [l oxEon HETOEU TwV KAAOEWV otnv omola pia kKAdon
polpaletal tn dopun f tn cuunepldopd n omolo opileTal oe KAMOLO 1 KATIOLEG KAQOELG
(evéelkvUovtag povn kKAnpovoukotnta — single inheritance) TOAAQITAR KANPOVOULKOTNTO —
multiple inheritance avtiotoixwg). ETol, N KANPOVOULIKOTNTA QVIUTPOOWTEVEL UL LEpapyia
apaLPETIKWY SLAdIKOOLWY, GTNV OToLa Lo UTTO-KAAGN KANPOVOUEL Ao LLa 1) TEPLOCOTEPES
UTtEP-KAQOELG. XTI TIEPLOCOTEPEG TEPUITWOEL, MUl UTto-KAAon, HeyeBuvel R

£Mavanpocdlopilel TNV untdpyxouaca Sopn Kol cUUTEPLPOPE TWV UTIEP-KAACEWV TNG.

INUAGCLOAOYIKA, N KANPOVOULKOTNTA UTIOSNAWVEL pla oxEoh eidoug (“is-a” relationship). Etol
yla mopadelypa, €vog okUAog eival eidoug BnAaotikd, N éva e€oedplkd TEMEPACUEVO
otolxelo eival eidoug tplodldotato menepacuévo otolyeio. Kat’ autdv tov Tpomo, n
kKAnpovoplkotnta opilel eupéow Mol Lepapyio yevikeuong/e€elbikeuong, oOmou pLa
UTIOKAGON €€eLOLKEVEL TNV VEVIKOTEPN Soun 1 OCUUTEPLPOPA TWV UTEP-KAACEWV TNG.
Mpayuatl, autdg 0 EUUECOC OPLOUOG €ival €vacg KOAOG €Aeyxog ylo Tnv edappoyn Tng
KAnpovouLkotnTag — av n KAaon Y dev eival eldoug X, tote To Y Sev mMPEMEL va KANPOVOLLOEL

XOPAKTNPLOTIKA Ao To X.

KaBwg efelicooupe v lepapyla TNG KANPOVOULIKOTNTAG, N Soun Kal n cupnepldopd n
omola gival kown yla SLadopeTIKEG KAAOELG, TelveL val amOSNUAOEL KAL VO CUGCWPEUTEL OE
Ml Kown umep-kAdon. Kat' autdv Ttov Tpomo, N KANPOVOULKOTNTO LOG ETULTPEMEL VA
SLOTUTIWOOUUE TG AdALPETIKEG Mg SLASIKACIEG e OLKOVOULKO TPOTO. ETOL, QUEAWVTAG TLG
Lepapyxieg ldoug oL omoieg umapyxouv, Pmopel va odnynbolpe o €vav SLOYKWHEVO Kol
akopPo oxeblaopod. ANMwote, Xwpic tnv KAnpovoulkotnta Kabe kAdon Ba Atav Hla
avegaptntn povada n onoia Ba Ntav xtwopévn €€’ apxnc. Ou dtadopeg kKAdoelg 6 Ba pEpav
Kopio oxéon petafld toug, kaB' OTL 0 MpPoypoppoTIoTAG KaBe plag Ba mapeiye ™
ouuneplpopd Toug KB’ OmMoLoV TPOTO AUTOG emlBupolos. OMoLadNTIOTE CUVENELA UETOED
TwWvV KAACEwv elval amotédeopa melBapyiog peTafl Twv TMpoypappotiotwyv. H
KANPOVOULKOTNTA KABLOTA SuVATO TOV OPLOUO EVOG VEOU AOYLOULKOU UE TOV (610 TPOTO UE
TOV OTIOI0 E€LOAYOUE €V OKETITIKO OE £vav apXApLo, cUYKpivovtdg to dnAadn pe Katil To

ormolo tou elval én olkeio.

ATO TNV GAAN UepLd, £XOULE TN CUCCWPEUON N omola eival pia tepapyia pépoug (“part of”
hierarchy), n omnoia pdAlota dev epdaviletal HOVO 0T OVTLKELUEVOOTPADK CUOTAHATO KO
OTLG avTlkellevootpadel¢ yA\wooeg. Mpaypatt, omoladnmote yAwooa uTootnpilel SoUEG

TuTou eyypadng (record-type structures), umootnpilel kal SLEMETAL AMO TNV EVvOlA TNG

Page | xxxvi

ocuoowpeuong. Evtoltolg, o ouvluaopOg KANPOVOULIKOTNTOG KoL Ouoowpeuong ¢EPEL
MEYAAn oxV — n cUCCWPEUON ETUTPEMEL TN GUGCLKN opadomoinon Aoylkd cuCXETW{OUEVWY
SOoHWV Kal N KANPOVOULKOTNTO ETUTPETEL OE QUTEC TIC KOLVEG OUASEG va UItopouv eUKOAA va

gnavaypnotomnotn8olv avapueoa os SLaPoPeTIKES APALPETIKEG SLASIKACLEG.

H ouocowpeuon ¢épvel oto TPooKNVo Kal To Béua tng Wloktnolag. H adalpetikn
Slodlkaola Tmou ouvdéstal pe Evav umodopéa, emitpénel SladopeTikol eiboug
TIEMEPACHEVA OTOLXELO VOl XPNOLLOTIOLOUVTAL OTO TIEPAG TOU XPOvou aAAd dev aldlel tnv
1810TNTA TOU UTtodopEa WG ULa OAGTNTA, OUTE TO va dltaypaloupe évav umtodopea onuaivet
amopaltnta va StaypdPoupe OAa TOU Ta TEMEPAOCHEVA OTOLXELO (Umopel autd va €xouv
Vivel pépog evog ahlou urmodopea). Me dAAa AoyLa, o KUKAOG {wh ¢ evOg UTIOPOPED KAl TWV

oTolyelwv Mou Tov amoteAouV gival ev yével avefaptnta.

2e O,TL adopd TIG ApLOUNTIKEG EMIOOO0ELS TWV HEBOSWY, e€eTAleTal TO MAPOKATW TPORANUA

OTEPEOTIOLNONG:

YYVYlYYYYYYYYey
A

p=0

A

< 15m >
Jkitoo 8.1 — Toun Tou POoPANUATOC OTEPEOTIOLRONG

AlakpLronolwvtag og UTIodOPEIC EXOUE TA TAPAKATW EVOEIKTIKA O LOTAL:

Page | xxxvii

|
P
) L~ P
- - —
- F || - b
] L |
o4 i 1%
|4 }‘/ _/

Figure 8.1 - Partitioning in 45 and 125 subdomains

21O MOPAKATW OKitoo, BAemou e Tov aplBuod enavaAnPewyv Twv peBOSwv yLo S1adopeTIKN

KoTtatunon os untogopelc.

40

= -D-DDM-S

i —D-DDM-P
----- P-DDM-S —P-DDM-P /
30

Subdomains

-
m25 /\/_/ﬁ ‘\
5 g .
% 20 o — /_/,' .

2 ,’\\ — . / e
B - B i R T .
THERREY T ,
/ ..
10 :
5
0 I T T | : ‘
45 54 75 90 108 125 150 180 216 250 300

Jkitoo 8.3 —Mpadnua aplBuov untodopLwv Kal emavalfPewv

3e 0,TL adopad TIG BEATIOTEG TS OOELC TWV HEBOS WY, £XOUE TO MOPAKATW ypadnua:

Page | xxxviii

4500
4000
3500
3000
2500
2000
1500
1000
500
0
D-DDM-S D-DDM-P P-DDM-5 P-DDM-P

Jkitoo 8.4 — TuVOALKN entidoon Twv PeBOSwv

Je O,TL adopd mpoPfAnuata oaAAenidpaong e6ddouUC KATACKEUNG, YIVETAL LA TIOPOUETPLKN
Slepelivnon evog 5-0podou Ktipiou amo xaAuPa ot éva £60¢og Pe TPELS OTPWOELG, OTIWG

dalvetal oTo TaPAKATW OKIToO.

Jkitoo 8.5 — AmAomolnpévo HoviéAo aAAnAentidpacng e6AdoUG-KATATKEUNG

O oelopog mou edpappoletal amelkovileTal 0TO MAPAKATW OKIToO.

Page | xxxix

0.4

e | gteral
0.3 Longitudinal
Axial

0.2

C

e 0.1 -

2

=]

o

o

8 o0 -

(5]

<

Time (s)

Jkitoo 8.7 — Emtayuvoloypddnpa oelopoU oTig 3 dleubuvoelg

Ot otpwpatoypadia Tou edadoug £xel we €€NG:

. Young Cohesion | Friction | Dilation Dry . Poro- | Permeabi-

Sail modulus | v (kPa) (deg) (deg) density it lity (m/s)
(kPa) g & t/m3) | =Y y

Clay 6000 | 0.25 175 20 0 19| 035| 1.026-06
(0-5m)
sand 20000 | 0.3 0 35 5 1.8 0455 | 3.06E-03
(5-15m) ' ol '
Dense
sand 60000 | 0.35 300 30 ol 18| 03 1.02E-07
(15-20m)

Mo TNV MapapeTpIky avaluon n onota adopd To KTiplo xwpic TNV enidpaon tou edddoug
(No soil), pe embpaon edadoug ypapuiky (Dry soil), pe enidpaocn MANPwWG KOPECUEVOU
edadoug (Saturated soil), pe enidpaon edadoug un-ypapuikr (Dry soil-nonlinear) kat pe
enibpaon MAAPWC Kopeouevou e6adoug pn-ypouukn (Saturated soil — nonlinear), ot

S1adOopEC LETAKIVAOELG EXOUV WG 0LKOAOUBWC:

Max roof Max soil Max axial Settlement

Foundation . . .
displacement | displacement | displacement | (m)

Page | xI

(m) (m) (m)
No soil 0.1313 0 0.1067 0
Dry soil 0.50494 0.11278 0.06578 0
Saturated soil 0.45885 0.10137 0.03569 0
Dry soil (nonlinear) 0.48531 0.10538 0.09729 0.04763
?:;Z;Iﬁfr)so" 0.39891 0.08723 0.09755 | 0.07502

H xpovoioTtopia TwV HETOTOMIOEWY 0pOdN ¢, AMELKOVIIETAL OTO TTAPAKATW OKIToO.

0.5
No soil
04 Dy soil
=== Dry soil (nonlinear)

03 - = Saturated soil

02 - == Saturated soil (nonlinear)
— 0.1 -
E
€
S 0
£ ?)) Q 101 0
@ < ~ NP NN
(] _01 _ Vo on <t <t LN N ((e] ((e]
(C
-
L2
[=) 4

-0.2 !

-0.3 -

-0.4

-0.5

-0.6

Time (s)

3e 0,TL adopa TIg kKabLnoeLg, n xpovolotopla anelkovileTal 0To MAPAKATW OKIToO.

Page | xli

0.06
e Dry 50l

0.04 = Saturated soil

=== Dry soil (nonlinear)

0.02 == Saturated soil (nonlinear)

-0.02

-0.04

Displacement (m)

-0.06

Time (s)

TEAOC, Ol KOUTTUAEC TACEWV-TIAPALOPDWOEWV SLATUNONG, £XOUV WG aKoAoUBwG:

Surface Surface
20 20
© —_
g § 10
a e
g g S
+#0. 01 =
- “0.015 -0. 0 0.005
(5] S 10
Q 20 © ERv)
-: rAav, -g
? 30 @ 20
Shear strain Shear strain
5m 5m
40 40
21N
-0.01 0 0.005
40

Page | xlii

10m

(e}

(¥l

-0.01 0.005 0.01
15m 15m
20 pd
-0.006 -0.004 -0.00 0 0.002 ! ! 6 !
5o -0 -) 0.002

N
(e}

/

[REY
(e}
(en)
[!
()

(e}
[0.e]
(e}

H
(¥l

T€AOC, OTO MOPAKATW OKITOO dalveTal VO OTLYULOTUTIO TNG OELOWLKAG SLEyeponG Ladl e TIg

TUEDELG TTOPWV.

W2
L1 164.9

1454

1259

"‘"--...______
COutpu . Caze 416 Time 4.15
Defoérmed[0. 107 Tatal Translation

Contour: Pore pressure

Page | xliii

0 CONTENTS

ADSEIACT. ..ttt ettt e et e e e b e b e bbbt R e e b et ehe s b et ereseen e e ebe s Xi
TE DI NI Nttt ettt ettt ettt et ettt et et etesteebestesbe e beasessesaesseseasaasabeatesbensensesensassesses st eassrsateateetesenn Xii
ACKNOWIEAZEMENTS ..ottt sttt seebeste st st s e e s s et e se st asease st steses sesansnsenes xiii
EKTETOULEVI TEEPIANWIN tititeet ettt ettt ste sttt st et e st es b eae st ses et aresteessesensaresensnssnseen Xiv
N [) oo [¥ Lot T o OO P RO PSTPUPPRUPRRPRO 1
2 POFOUS MEAIG ettt ettt e s et e bt e b e she e san e s r e e b b nee 2
2.1 Nature of soils and POrous MEdiacceccuiiieiiiieie e 3
2.2 The notion of effectiVe StreSS.....ccui i 4
2.3 An alternative approach to effective Stresscccocvveeiiciee e 6
2.4 Effective stress and partial saturation.........ccccccveeiiiiiiie i 8
2.5 Solid matrix and pore pressure dynamic interactioncccceeeveviieeeeciieeeeecieeeeens 10
2.6 The u— p formulation for fully saturated behavior ..., 15
2.7 The u— p formulation for partially saturated behavior..........ccccoveeveiircennnenne, 16
2.8 Finite element method discretizationc.ccceeeiiriininnieee e 18
2.9 Spatial discretization of the U— p formulationc.ccccoeviniiiiininiiiiii, 20
2.10 Temporal discretization of the U— p formulation..........ccccooviiiiiiiiiiiiiiinn, 24
I ool s - I Aol [0 T= 1 AV PP 27
3.1 Stochastic mechanics apProaches.......cuueiiiciiiiiiciiie e 28
3.2 Random field disCretization.........cocueiiieeiiiieiecee e 29
3.3 Related Hilbert SPaces.......uuiiiiiiiiiiiiiie ettt e e e s s 30
3.4 The Karhunen-LoEVe eXPanSioNc.ueecveerieeeiieeeceeeseeesieeeseeesaeesreeeseeeesseeennnas 31
3.5 Karhunen-LoBVE ProPertis......ccieciierciieeieeeiieeectee et e steeeseeeeeseeesreeesteeesraeesnseeenes 32
3.6 The integral eigenvalue problem........ccuviiiiiiiiiiii e 33
3.7 The Spectral Stochastic Finite Element Methodccccoveiiviiiiiiiiiiiicieeceiee, 34
3.8 SSFEM in linear elastic problems.........cuiii it 35
3.9 Polynomial Chaos EXPanSiONcccecuiiieiiiiiieiiiieeeesireeessivee e siree e s ree e s sareeessnreeas 40
3.10 SSFEM with a Log-normal input random field..........cccceeeeiiieiiiiiee e, 44
3.11 Karhunen-Loéve expansion of Log-normal random fieldscccccccuveeeeiiieeennnnnn. 46
4 SOIULION METHOAS ... s 48
4.1 SOIULION METNOASeiieiee e 49
4.2 Direct solution with Cholesky factorizationccccueeeeeiieieiccee e, 49
4.3 Iterative solution with the Preconditioned Conjugate Gradient method............... 50
43.1 Preconditioned conjugate projected gradientccccceeeeiieeieiciee e, 52
4.3.2 Implementation for multiple right-hand sides........ccccceeeiiiiiieciee e, 53
433 PCG — The two-level teChNIQUEcevviieiieeecceeeeee e 54

Page | xliv

4.4 [BTeT s YT oW [=Tole] g oY oo 1Y 14 o o PSSR 55

44.1 Subdomains and MapPINg OPEratorsccccceeecciiieeee e 55
4.4.2 Local problem SOIULIONcceee i e 58
4.4.3 Interface problem SOIULION...........ii i 59
444 Rigid body MOESeeeiiieeeee e e e e e ranees 60
4.5 Solution methods for static Problems........cccueeiieciiee i 62
45.1 P-DDM: The Primal Substructuring Method (PSM)........ccceevvveviieeceeecieeene, 62
4.5.2 D-DDM: The finite element tearing and inteconnectiing (FETI) method 63

45.3 P-DDM for static analysis with D-DDM based preconditioners: The PFETI
method 65

4.6 Solution methods for dynamic and porous media problems..........cccccvveeeiecveennnnns 67
4.6.1 D-DDM with no coarse problem for implicit dynamics........cccoecveeeeicieeeennnen. 67
4.6.2 D-DDM family with an artificial coarse problem for implicit dynamics 67
4.6.3 P-DDM family with an artificial coarse problem for implicit dynamics........... 69
4.6.4 D-DDM-S and P-DDM-S: SOLID based D-DDM and P-DDM for one-phase and
POroUSs Media ProBIEMSc..eeiiie et e e et e e et ae e e e e araeeeenes 70
4.6.5 D-DDM-P and P-DDM-P: Permeability based D-DDM and P-DDM for porous
L Y<Yo [T oY o] o] [=T 0 YT 71

4.7 Solution methods for stochastic problemscccoocieeiiciiii e 72
471 The MC-PCG method familyoooviiiiiicee e 73
4.7.2 The SSFEM-PCG method family.......cccueeieciieeicciee e 74
Programming Paradi@Msccioceceiiiiieeee et e e e e e e e e e e e e e e enanes 84

5.1 The object-oriented ParadigM........ccccvveeiiieiiieecee e 85

5.2 Goals of a finite element computer Code........cccuiiiieiiiiiiciiiee e 88

5.3 Aspects of object-oriented programmingcccceccueeeeriiieeeciieee e e 89
53.1 Y [T o 0] F= T o Y2 PP 90
5.3.2 ADSErACION .eeeiiiiieiee ettt ettt ettt s s ba e e e s e e e 93
533 ENCAPSUIALtION .. e 96
534 o 11T T o1 USSR 97
5.3.5 Ty P N e 99

5.4 Applied Object Oriented Programming.......cccccveeeeeiuieeeeciieeeeciieeeeciree e eeeee e e 101
5.4.1 The subdomain @Ntity......cccveei i e 101
5.4.2 Iterative solvers and domain decomposition.........cccceeevcieeeccciee e, 102
5.4.3 Homogeneous single- and multi-core programmingccccecveeeevcvveeeennnen. 104
5.4.4 The vector and array Classesicoccieeeiicieee et 107
Parallel Programmingccccci i e e e e e e e e e e e e e e e esreraeeeeeeeeennrnnes 109

6.1 SErAl NANAWAIE ...eevieiiciiee e ae e e s sabaeeeean 110
6.1.1 The von Neumann archite@CtUre.......cceveivcieee e 110
6.1.2 Processes, multi-tasking and threads..........cccccceeieicciiiieee e 112
6.1.3 07Tl o ¥ oV -SSR 113
6.1.4 VAT (U F- | 0 1= 0o U 118
6.1.5 Instruction level parallelism ... 120
6.1.6 Hardware multithreadingcoeeeeeiie et 124

6.2 Parallel hardWareooooiieei e 124

Page | xlv

6.2.1) 1771 2R3 =] 0 3 125

6.2.2 MIMD SYStEMS e e e, 128
6.2.3 Interconnection NEIWOIKSoccuviiiiiiiiei e 130
6.2.4 (07Tl o 1=l ole] o T=T =T o [ol IO ST SPR 138
6.2.5 Shared-memory versus distributed-memory........cccccceeieeiiiieeee e, 142

6.3 Parallel SOftWAIE. ...cccuiiiiiee ettt s 142
6.3.1 Process and thread coordinationccocueeviiiinieinieniniecee e 142
6.3.2) o= T =T M g 1T 1 4T VPSP 143
6.3.3 Distributed MEMOIY ...oiiiiieee e e e e e e 148
6.3.4 Parallel program desSiN........ceccuueieiiiieeeecieee e e e 152

6.4 P OIMANCE ...ei ittt et st st e s be e s bt e e sabe e sbae e sabeesbaeens 152
6.4.1 Speedup and effiCiENCYeeivcciiii i 153
6.4.2 AMAANTS TAW weeiiiiiiiee e 155
6.4.3 SCAlADITITY et ettt 156

7 GPGPU PrOSramIMiNg ..cccceiiiiiiiiiiieeeeeiiiiiiieteeeeessssinreseeesssssssssseseesssssssssssseseeesssssssssseees 158
7.1 GPUs as general purpose processing platforms.......cccoeeeeeiiieiiccieec e 159
7.2 (@101 4 T =T Vo R 161
7.3 (LU 7 47T 0.0 o PPN 162
7.4 2T o o] - Lot o [0l 164
7.5 Hybrid CPU-GPU implementation of DDM..........ccoecieiieciiieeeeiee et 164
7.5.1 The Cholesky direct SOIVEN.........uuviiieeei e 165
7.5.2 The solution at the projection StePccccceeeeeciiie e 167
7.5.3 [0 A o] o 1o [1 13U PURR 167
7.5.4 Sparse matrix-vector multiplicationccceccveeiiciiie e 169

7.6 Dynamic [0ad balanCing........coccuuiii e e e e 170
7.6.1 Task PAralleliSm ..ccceeeeee e 170
7.6.2 Dynamic load balancing implementation.........cccccoeecieiiieciee e 171

8 NUMENICAl EXAMPIES ...uviiii ittt e e st e e e e sate e e e snta e e e sntaeeesantaeeesanes 173
8.1 X-DDM-S and Xx-DDM-P nUMEFiICal rESUILSccvveeriiiiiriieiiie e 174
8.2 Performance of D-DDM-P in hybrid CPU/GPU environmentc.cccceeveeeveenneens 180
8.3 StOChASTIC SOIVEN FESUILSeviiiieiiiiciee et s 185
8.3.1 Solver assessMeNnt ProCEAUIE.cuvieeeiciiiee et e e e e e e e e e 186
8.3.2 Computation of the second moments of the response fieldc......... 187
8.3.3 Reliability @analysis.........coociieiiiciiie e 193
8.3.4 Performance of the proposed solution procedures.........ccccceecveveercrveeeenneen. 194

8.4 Soil-structure interaction numerical results.........cccvvvviiieiiniiiiir e 202

9 Concluding remarks and fULUre WOIK........cceeeieiiiieieiiiee ettt 209
O = 11 o] [T =4 =Y o] V7SR 212

Page | xlvi

1 INTRODUCTION

One of the most fundamental problems in structural engineering deals with the behavior of
structures under seismic loading. Such a problem can prove to be very cumbersome to solve
accurately due to the various factors that contribute to its solution, including the presence
of water inside the soil pores, the inherent uncertainties of both the structure and the soil,
the interaction of the structure foundations with the soil and the difficulty to solve

computationally the resulting numerical model due to its massive scale.

This Thesis deals with all of the above problems with the aim to provide a computational
toolbox for addressing the solution of this complicated problem. In the sequence of chapters
to follow, the reader will get a grasp of porous media mechanics, stochastic analysis and
high-performance algebraic solvers along with the programming techniques and
programming platforms that were utilized in order to efficiently tackle these kinds of

problems.

The final chapter gathers all numerical data produced during this investigation and presents

an extensive comparison of the capabilities of the methodologies proposed in this Thesis.

Page | 1

2 POROUS MEDIA

The flow of fluid inside a porous medium specimen.

Page | 2

2.1 NATURE OF SOILS AND POROUS MEDIA

The numerical simulation of the behavior of structures composed of single phase material is
quite straightforward, especially for the case of static loading. In the case of a soil medium
under static loading the same principle applies, although calculations involved can be more
intricate, particularly for dynamic loading which needs special care in order to avoid non-

realistic predictions.

This discrepancy between the static and dynamic case is due to the fact that the behavior of
media, whose pores are partially or fully filled with a fluid is very different when compared
to the behavior of single phase material. Moreover, the usage of continuum mechanics for
modeling such media is still an open issue. Since the dimension of interest and the so called
'infinitesimals' dx, dy, dz are large enough when compared to the size of the grains and the
pores, it is evident that the approximation of a continuum behaviour holds. Moreover,
intergranular forces will be affected by the pore pressures due to the fluid’s presence.
Consequently, the evaluation of these pore pressures is of great importance for the accurate

prediction of the medium’s strains and stresses.

Figure 2.1 — A rock mass modeled as a porous medium

Having evaluated the pore pressures, the notion of effective stress is used which allows the
handling of porous media as if they were single phase media. In certain cases, such as the
long-term loading conditions on materials of known permeability, limit loading procedures
can be used for the evaluation of a soil’s behavior. This possibility stems from the fact that
draining is constant and the pore pressures are not related with the medium’s strains, thus

enabling the usage of uncoupled computations.

Such drained behavior, however is rarely observed, even in problems which may be

tempting to consider as static due to the slow movement of the pore fluid and the

Page | 3

(theoretically) infinite time required to reach this asymptotic behaviour. In very finely
grained materials, such as silts or clays, this situation may never be established, even as an

approximation.

As an alternative, the so-called undrained behaviour can be adopted and is frequently
assumed for rapidly loaded soil. Indeed, if the fluid motion is prevented by zero permeability
or by extreme speed of the loading phenomena, the pressures developed in the fluid will be
linked in a unique manner to deformation of the solid material and a single-phase behaviour
can again be specified. While this approach is occasionally useful in static studies, it is not
applicable to dynamic phenomena such as those which occur in earthquakes as the
pressures developed will, in general, be linked again to the straining (or loading) history and

this must always be taken into account.

In the general case, precise evaluation of the material’s behavior requires the simultaneous
solution of both strains of the solid matrix and the transient fluid flow which occurs inside
the medium’s pores. The form of these coupled equations will be described and analyzed in

the following sections.

2.2 THE NOTION OF EFFECTIVE STRESS

The basic principles which describe the stress distribution that defines the strength and
constitutive behavior of a porous medium with internal pore pressures caused by the
presence of a fluid inside the medium’s pores, have been defined at the end of the 19"
century [1, 2, 3, 4, 5, 6]. These works are related to both soils and concrete and other rock-
type media. In all of these works, a certain principle is adopted where total stress is divided
in two parts: a part which is undertaken by the solid matrix and a part which is undertaken
by the fluid that fills the pores. Moreover, it is assumed that the solid matrix strains are

intrinsic and are not related to pore pressures.

By defining total the stress o with its components 0 and using the index convention,

these components are defined by the summation of the corresponding forces at the i

direction at sections de . The surfaces of these sections for two different kinds of porous

media are depicted in Figure 2.2 for 2D cases.

Page | 4

L [7 a,
+’y =1 Solid %’Y -
Qli

Figure 2.2 — Surface of two sections of different porous media.

For the sake of simplicity and in conformity with the finite element formulation, stresses and

other quantities will be described using matrix and vector notation:

o= (2.21) oro = (2.2.2)

Moreover, if the stresses applied on the solid matrix of a porous medium are defined as

effective stresses o, hydrostatic pressures due to pore pressures p which are present at

the vicinity of the pores are equal to:

—5ijnp (2.2.3)
where N is the medium’s porosity and 5” is Kronecker’s delta. The negative sign is
introduced in order to comply with the assumption that tensile stresses are positive.

The above definitions lead to the following equation which couples the effective and the

total stresses as follows:
0y =0y —o;Np (2.24)or 6 =6'-mnp (2.2.5)
with
m=[1 110 0 0 (2.2.6)

However, eqgs. (2.2.4) and (2.2.5) do not seem to be validated through experimental
procedures since with porosity values in the range of 0.1 to 0.2 it would be possible to
induce failure of a porous medium specimen, such as a specimen of concrete, by exposing to

simultaneous internal and external pressures. Moreover, it is evident from eq. (2.2.5) that

Page | 5

the strength of a certain porous medium would always be related to the pore pressures p .

A new definition of effective stress was suggested [7, 8] which is as follows:
6=c¢'-mn,p (2.2.7)

where N, is the effective area coefficient which, for most cases, is near the vicinity of unity.

2.3 AN ALTERNATIVE APPROACH TO EFFECTIVE STRESS

Assuming that a total hydrostatic pressure and a change of pore pressure, both equal to Ap,

is applied at a porous medium specimen, the total increase of total stress would be equal to:
AO‘ij :—é‘ijAp (2.3.1) or Ao =—mAp (2.3.2)

It is evident that for the described loading, only a uniform and very small volumetric strain
will be applied in the skeleton while the material will not suffer any damage, provided that
the grains of the solid are all made of an identical material. This is simply because all parts of
the porous medium solid component will be subjected to an identical compressive stress.
However, if the grains are composed by different materials, non-uniform concentrated
stresses are likely to occur, which may result to localized grain fractures. Experimental data
related to soils, rock masses and other similar materials have shown that such phenomena
are of secondary importance and it is safe to assume that all grains of the specimen are

under the state of volumetric strain which is equal to:

Ag, = Ag; = Aeyy + A&y + Ay = —KiAp (2.3.3)or Ag, =m'Ae = —KiAp (2.3.4)

S S

where K, is the mean bulk modulus of our specimen’s solid matrix. It is obvious that if the

above specimen is under a simultaneous change of total stress equal to Ao and its pore

pressure equal to Ap, the resulting incremental strain is equal to:

1
Agy =Cy; (Aaij +§ijAp)_5kl 3TAp +Ag’, (2.3.5)

S

or

Ae = Dl(Ac+mAp)—m3%Ap +Ae’ (2.3.6)

S

with:

Page | 6

Cyit Doy = 510 1n8e8p (2:3.7)0r C-D=1 (2.3.8)

mnop im™~ jn

The last term of egs. (2.3.5) and (2.3.6) represents the initial strain increment which may be
attributed to various factors such as temperature fluctuations. The second term represents
the strain increment due to grain compression of the specimen. Matrix D represents the
material constitutive law which in this study is assumed elastic and contains elastic

coefficients.

Although the effects of skeleton deformation due to the effective stress defined in eq.
(2.2.7) (n, =1) have been simply added to the uniform volumetric compression, the

principal of superposition is not going to be used, so that the resulting equations will be valid

in cases of non linear, irreversible elastoplastic and viscoplastic material behavior.

By manipulating egs. (2.3.5) and (2.3.6), we have:

1
Agy =Cy; (Aaij +0;Ap — Dy 0y STAPJ +As% &

& Ag —As’y = Cui (Aaij + aé‘ijAp) < (2.3.9)
< Dy; (Agk, - Agok,) =Ao; +ag;Ap =
= Ac"; =Acy +ad;Ap

U]

or

S

Ae=D" [Ao +m'Ap—Dm’ 3%Apjweo &

< Ae—Ae® = D’l(Ac+ amTAp) & (2.3.10)
& D(Ae-Ae”)=Ac+am'Ap=>

= A¢"=Ac+am'Ap

with ¢'' being an alternative effective stress and:

1 1
ad; = 5; — D5y 3K (23.11) or am’ =m' —Dm’ 3 (2.3.12)

S S

However, due to the fact that 8,5, =3 or, in matrix notation, mm' =3, the following
ij i

stands:

1 1
aé‘ijé‘ij = é‘ijé‘ij _é‘ij Dijkl5kl K <a=1- é‘ij Dijklé‘kl W (2.3.13)

S S

or

Page | 7

T
amm’ =mm’ —mDmTiaazl— mbm (2.3.14)
3K, 9K,
For the case of isotropic material behavior, the following relation stands:
mDm" ;D5 J; (ﬂ’é‘ijékl + /’l(é‘iké‘jl +8,0)))5k| 91 +6u
— = = = K; (2.3.15)

9 9 9 9

where K; is the tangent bulk modulus of an isotropic material with 4 and x being Lame’s

coefficients. In this case:

az1-~o (2.3.16)

S

By using non-incremental notation, egs. (2.3.9) and (2.3.10) can be written as:
oy =0, +ad;p (2.3.17)or 6"=c+am' p (2.3.18)

The above equations are obtained with the assumption that total stress and pore pressures
start from a null initial condition (eg. material which is exposed to the air is considered to
have zero pore pressure). The above definition corresponds to the one used by Biot [9] but is

resulted in a more straightforward manner. In these equations, & is close to unity when
K of the grains is much larger than the bulk modulus of the whole specimen. In this case,

the following relation stands:
o"y=0'y=0;+5,p (23.19)or 6"=6'=6+m'p (2.3.20)

recovering the common definition of effective stress as defined by Terzaghi [8].

2.4 EFFECTIVE STRESS AND PARTIAL SATURATION

In real life problems, the pores of a porous medium might be occupied by two or more
fluids. In this work, it will be assumed that two fluids occupy the pores and the
corresponding saturation degree being defined by the ratio of the corresponding fluid
volume to the total pore volume N. Under the perspective of soil mechanics, the two fluids

are water and air. This way, reference will be made to two saturation degrees, water

saturation S, and air saturation S, .

Page | 8

(b

Figure 2.3 — Contact surface of air bubble inside a porous medium

It is evident that if both fluids occupy the pores of the porous medium, the following

condition stands:
S +S. =1 (2.4.1)

The contact surface of the two fluids with the porous medium solid matrix can have various

shapes like the ones depicted in Figure 2.3. This way, pore pressure p is equal to:

p :zW pw+Za pa (2'4'2)

with coefficients y,, and y, referring to water and air respectively, while complying with

the condition:
Yot 2.=1 (2.4.3)

Pressures P, and P, refer to water and air pressure respectively and their difference

which is equal to

P. =P, P, (2.4.4)

is directly related to surface tension and degree of saturation. Due to the fact that surface
tension occurs from capillary phenomena, it is often called capillary pressure.

Depending on the nature of the solid matrix surface, contact surface between the solid
matrix and the two fluids can take various forms like the ones shown in Figure 2.3 with

X = Zu(Sy) (2.4.5)

and

Za=%a(S) (2.4.6)

As shown in Figure 2.3a, no contact of one of the two fluids with the solid matrix may exist.
If this happens for the case of air, remote air bubbles are created which results to

Page | 9

Z.=0,7,=1 (2.4.7)

0 -200 —400
h,, (em)

Figure 2.4 — Relation of saturation and permeability with pore pressure

Saturation degree influences other variables related to fluid flow as well. One of these is

peremeability K so that:
k, =k, (Sy) (2.4.8)
and

k., =k, (S,) (2.4.9)

In many real life problems, air pressure is very close to zero while the pores themselves are
interconnected. In other cases, negative pore pressures occur with the creation of cavities.

In every case, the influence of negative air pressure P, can be neglected when water
pressure becomes negative. Such negative pore pressures are responsible for the increase of

soil cohesion which is of great importance while studying the conditions met at the free
surface of soils.

2.5 SOLID MATRIX AND PORE PRESSURE DYNAMIC INTERACTION

Following the previous definition of the effective stress, the equations describing the static
and dynamic behavior of porous media will be produced. Specifically, the equations
describing a porous medium whose pores are occupied by a single fluid will be considered
since such conditions include all the basic elements of soil behavior and can describe the
majority of real life soil mechanics problems. An extension of these equations will be
provided for partially saturated soils for the cases of constant air pressure and of
simultaneous water and air flow. The derivation of these equations is being done following a

physical — mechanical approach which makes the solid and fluid phase interaction evident.

Page | 10

As seen in the previous section, effective stresses are described by the egs. (2.3.17) and
(2.3.18), while effective stresses as introduced by Terzaghi [8] are described by egs. (2.3.19)
and (2.3.20).

For sands and clays, egs. (2.3.17) and (2.3.19) and their equivalent (2.3.18) and (2.3.20)
provide almost identical results since for these kinds of soils, 8 ~1. However, for rock

masses or concrete, coefficient a can be in the vicinity of 0.5.

Using incremental notation, the effective stresses can be written as follows:

do"; =do; +ag;dp (2.5.1) or d6"=de + am'dp (2.5.2)

For the case of three dimensions, strains can be written as:

[dey, | de,
de,, de,
de = dez (2.5.3)or de= dz, (2.5.4)
de, d7/xy
de,, d7yz
d‘931 _dyzx_

Strain increments of the solid matrix can be related to displacement increments using the
following equation:

odu.

]

with the comma in the suffix denoting differentiation with respect to the appropriate
specified coordinate and the differential operator S defined as:

i 0O O
OX
9 9
oy
0 O ai
Z
S= (2.5.7)
9 0
oy Ox
0 9 9
oz oy
9 45 9
| 0z OX |

and:

Page | 11

u=|u (2.5.8)

The equation of both solid and fluid phase equilibrium is as follows:

oy.; — PU; — p; (v'\/i +WjWi’j)+pbi =0 (2.5.9)

or

S"6 - pii — p, (v‘v+wVTw)+pb:O (2.5.10)

Dotted quantities denote differentiation with respect to time. Mean velocity of the
percolating water according to Darcy’s law is equal to W while field-induced accelerations

acting upon the whole material mass, such as gravity are equal to b. Moreover, Ps is the

fluid’s density and p is the whole medium’s density, including both solid and fluid phase.

These two magnitudes are interrelated as follows:
p=np; +(1-n)p, (2.5.11)
with o, being the solid phase density and N being equal to the medium’s porosity.

The underlined terms of egs. (2.5.9) and (2.5.10) describe the forces occurring due to fluid
acceleration, in distinction to the solid phase which are usually small and will be generally
omitted. Moreover, the aforementioned equations are referring to an infinitesimal
reference volume equal to dx, -dx, - dx, or dx-dy-dz which refers to both the solid and

fluid phase of the porous medium.

With the usage of the same aforementioned reference volume, the following equation of
equilibrium for the fluid phase of the porous medium is obtained:

Ps (W| +WjWi,j)

—p,—R —p; U - +pb, =0 (2.5.12)

or

pr (W+wVTw)

-Vp-R—-p,U—- +pb=0 (2.5.13)

Page | 12

P-Ap

A B

Figure 2.5 — Darcian fluid flow caused by a pressure differential between A and B

Drag forces due to fluid viscosity are equal to R and by applying the law of Darcy we obtain:

k-R. =w. (2.5.14)

kR =w (2.5.15)

where the porous medium permeability is equal to K . It should be noted that permeability
[Iength]a-[time]

. These dimensions are different
[mass]

dimensions used in these equations are

[length]

from those used in soil mechanics problems which are [t']
ime

. If the latter permeability is
equal to k' then the following relation stands:

k = 'k'
P9

(2.5.16)

with the fluid density being equal to p'; and the acceleration of gravity being equal to '

as measured during the permeability testing for the soil referenced.

The underlined terms of egs. (2.5.12) and (2.5.13) describe forces occurring due to
acceleration of the fluid phase in relation to the solid one. These terms are also small and
are usually neglected.

Finally, mass and flow conservation of the fluid is governed by the following equation:

Ep M_KT(. pJ

+nﬂ+ $, =0 (2.5.17)
P

i T —

s
This equation describes the balance between velocity deviation W, ; and the increased fluid

storage at the pores of the porous medium having volume equal to the reference volume
during an infinitesimal amount of time dt . This increased storage is described by a
multitude of terms which are presented below with order of importance:

Page | 13

 Change of volume due to strain change: J;de; = dg;; = m'de

ndp

e Increase of volume due to fluid compression as a result of fluid pressure increase: ——
f

e Increase of volume due to grain compression as a result of fluid pressure increase:

(L—n)dp

KS
e Change of solid phase volume due to change of intergranular effective stress

o;do’; K
oly=0; o p: _1o890 Ry de; +% :
3 K, K, K,

Using eq. (2.3.13), eq. (2.5.17) can be transformed as follows:

NJ+&%+£+HBL+%=OQ51&orV”w+amé+£+n£l+%=0(z5w)

Pi Q Pi
where:

1 n a-n n 1-n
- 4 ~ 4= (2.5.20)
Q Kf KS Kf KS

The underlined terms of egs. (2.5.18) and (2.5.19) describe the change in the fluid density
and the change of volume change rate due to temperature changes which are small and are
generally neglected in real life problems.

Egs. (2.5.9), (2.5.12) and (2.5.18), along with their matrix notation counterparts (2.5.10),
(2.5.13) and (2.5.19), in combination with proper constitutive relations in the form of (2.5.1)
define the behavior of a porous medium, taking into consideration both the solid and fluid
phases under both static and dynamic conditions. The unknown variables of the system
composed of the aforementioned triad of equations are:

e Pore pressures p

e Fluid flow velocities W

e Solid phase displacements U.
In order to complete the problem formulation, boundary conditions are imposed as follows:

e Solid phase boundaries are split into two discrete cases; traction forces t acting at the

surface and displacements U are known. If the boundary is I';, the following stands:

r,=T,url,
t=t,I'=T, (2.5.21)
u=url=rI

Page | 14

e Fluid phase boundaries are also split into two discrete sections: Pore pressures p and

fluid velocities W are known. If the fluid boundary is 1", the following stands:

I

)1
C
)1

r cul,
p=pI'=T, (2.5.22)
w=w,T=T

2.6 THE u—p FORMULATION FOR FULLY SATURATED BEHAVIOR

Egs. (2.5.10), (2.5.13) and (2.5.19), in combination with proper constitutive relations in the
form of (2.5.1), can be used for numerical simulations of porous media [10]. In fact, the
system of equations formed from the above triad is an excellent candidate for explicit time
integration algorithms [11, 12, 13], at the expense of the necessity to use small time steps.
On the other hand, implicit time integration in another candidate for solving coupled
equations provided that efficient strategies are applied for the handling of the resulting
algebraic systems. In order to reduce their size, it is prudent to decrease the amount of
unknown variables by neglecting the underlined quantities of eqgs. (2.5.10) and (2.5.13)
which refer to the fluid velocities W . This way, the simplified porous medium equilibrium
equation can be written as:

oy — Pl + pb, =0 (2.6.1) or STe— pii+pb=0 (2.6.2)

For the complete exclusion of fluid velocities, egs. (2.5.13) and (2.5.19) are combined while
drag forces R are substituted with their Darcian counterpart as shown in eq. (2.5.14). By
neglecting density changes the following relation stands:

(ki (= =ty + 1Dy))i *ag; +£+So =0 (2.6.3)
or
VTk(—Vp—pr+pfb)+amé+%+s'o =0 (2.6.4)

This simplified system of egs. (2.6.1) and (2.6.3) is called the u— p formulation since the

unknown variables are now the displacements U of the solid phase along with the pore
pressures p of the fluid phase. The omission of the dynamic terms of these equations
produce the mathematical formulas used for consolidation problems. It is also possible to
use the static part of the equations for static porous media problems when all time-related
derivatives are equal to zero.

Page | 15

The u— p formulation may result to loss of accuracy when applied to problems involving
high frequency phenomena such as high speed impacts [14]. However, this formulation is
acceptable for low to relatively low frequency phenomena such as earthquakes and is
adopted in this work.

2.7 THE u—p FORMULATION FOR PARTIALLY SATURATED BEHAVIOR

In the general case of non linear behavior, effective stresses and pore pressures have to be
evaluated incrementally since the solution of non linear problems is incremental in nature,
involving a step-by-step solution procedure.

On the other hand, it is very common for certain family of soils to condense under loading.
Such a behavior is related to the soil’s constitutive model where strain history induces
condensation of the solid matrix which results to condensation of the whole porous
medium. Such a condensation leads to an increase of pore pressure and to a decrease of
intergranular surface stresses. When these stresses reach zero, liquefaction occurs.

However, the exact opposite may happen if, using strain history, an expansion of the porous
medium is imposed which will result to negative pore pressures. Such negative pore
pressures cause the formation of separation surfaces and the capillary phenomena that
come along. During this process, voids will be created which by themselves are incapable of
handling any tensile stresses. At that time, pore pressures will become close to zero.

The presence of negative pore pressures obviously increases the strength of a porous
medium and can be seen as being beneficiary. This strength increase can be observed
above water level or the phreatic line as it is alternatively called. The presence of negative
pore pressures above this line guarantees a certain level of cohesion, even for materials
that are not cohesive by nature. Such cohesion fortifies the porous medium when it is
exposed to dynamic loading conditions.

As seen in section 2.4, there is an one-way relation between saturation degree and pore
pressures. Such relations may be expressed using mathematical formulas or graphs as the
one shown in Figure 2.4. Using such a relation, the equations of partially saturated behavior
can be formulated by modifying the equations shown in section 2.4. Moreover, with the
assumption that air pressure remains constant and equal to the atmospheric pressure,
there is no need to introduce new variables.

With the last assumption in mind, pore pressures with respect to effective stress are now
equal to:

P = ZuPu+ XaPa = ZuPu + (1= 2.) P = 24P, (2.7.1)
while the density of the whole porous medium is now equal to:

,1):nSW,0W+(l—n),oS (2.7.2)

Page | 16

This way, the simplified porous medium equilibrium equation can be written as:
;. —(nS,p, +(1-n) p,), +(nS,p, +(1-1) p,)y =0 (2.7.3)
or
S'6—(nS,p, +(1-n)p,)ii+(nS,p, +(1-n)p,)b =0 (2.7.4)

Moreover, the equation of equilibrium for the fluid phase of the porous medium can be
written as:

—py; —R —p, i + p,0, =0 (2.7.5) or -Vp,—-R-p,li+p,b=0(2.7.6)

Finally, the equation of mass and flow conservation of the fluid is re-derived. This equation

describes the balance between velocity deviation W, ; and the increased fluid storage at the

pores of the porous medium having volume equal to the reference volume during dt time
period. This increased storage, considering the existence of both fluids, is described by the
following terms which are presented in order of importance:

e Change of volume due to strain change: &;d¢; =de; =m'de.

e Increase of volume due to fluid compression as a result of fluid pressure increase:
ns,dp,
Ky
e Increase of volume due to grain compression as a result of fluid pressure increase:

(1-n)y,dp,
K '

e Change of solid phase volume due to change of intergranular effective stress

e Change of saturation degree: ndSW.

Using the above terms, the equation of mass and flow conservation is written as:

, amn) v 1 . .
vvi'i+ag'”+nSWpW+()prw+nsw+nswﬂ+s'0:
K, K, Lo
. . (2.7.7)
W,; +ag; + p”ﬁ +nSW&+s'0 =0
_Pu
or
Viw+amée + pv,Z+n&+s'0:0 (2.7.8)
Pw

Page | 17

where:

a—n
1* =C, + NS, - () 2 (2.7.9)
Q Ky Ks
The parameter C, is defined from the relation:
ds ds
n u(Pu) =n «(P.) dp, =C,p, (2.7.10)

dt dp, dt

Parameter Q is now replaced by a new parameter Q* which takes into account the change

of saturation degree. It is worth noting that for the case of full saturation, where S, =1

and g, =1, both parameters Q and Q" are equal.

In order to derive the U— p formulation for the partially saturated case, a procedure

similar to the one described in section 2.6 is followed. This procedure leads to the following

equation:

(kij (= Puj = Swouli; +S,o.b;)). +ag, +Q_p*+ $, =0 (2.7.11)
or

VTk(—pr—SWpWU+SWpr)+amé+cg)* +3$,=0 (2.7.12)

By observing egs. (2.7.4) and (2.7.12), it is evident that by implementing a computer code
which performs analysis of partially saturated soils is prudent since, with the proper choice
of the parameter values, the same equations apply for fully saturated soils. During the

computation of each time step, parameters S, kW and C, are slowly changing and will be

considered constant for each time step. This approach can be used for the simulation of a
large variety of soil mechanics problems [14].

2.8 FINITE ELEMENT METHOD DISCRETIZATION

In this work, the numerical solution of the system of equations describing porous media

problems with the u— p formulation will be spatially discretized using the finite element

method [15, 16]. The solution of this system is similar to the solution of partial differential

equations of the following form:

AD+BD+L(P)=0 (2.8.1)

Page | 18

where A and B are matrices filled with constant values and L is an operator containing

0 0
spatial differentials of the form a—, — etc, which may be linear or non linear. Finally, @ is
X

a vector of unknown variables, like those of the solid phase displacements or the fluid phase

pressures.

In order to reach a solution using the finite element method, the unknown functions @ are
approximated or discretized by using a set of discrete parameters 6,(and shape functions

N, which are defined in spatial dimensions. This approximation is of the form:
n [
O=0"=> N, (2.8.2)
k=1

and shape functions are defined in spatial coordinates as follows:

k

(xy,2)
(

N, =N
N, = N (x) (2.8.3)

=0i(t)

with Ei being the values of the unknown functions @ in certain discrete spatial points

S
]
=

which are called nodes with their values subject to change with respect to time.

Moreover, by introducing the approximation ®" of the unknown functions @ in the partial
differential eq. (2.8.1), a residual occurs which is not identical to zero but for which a set of

weighted residual equations can be derived, having the form:

jw} (AD" +BD" +L(@"))dQ=0 (2.8.4)
Q

which upon integration is simplified to the following form:
M® +CD +P(P) =0 (2.8.5)
where M, C and P are matrices which are sized according to the size of parameters 6,(.

An appropriate choice for weight functions Wj are the shape functions Nj so that the

following stands:

W, =N, (2.8.6)

In fact, such a choice is optimal with respect to accuracy and is known as the Galerkin

procedure.

Page | 19

If parameters 6,(are time-dependent, eq. (2.8.5), which is now a regular differential

equation, requires solution in the time domain. This solution can be evaluated by applying a

time discretization scheme combined with the spatial discretization scheme described.

Usually the parameters 6,(just depict values ®" in certain nodes and the shape functions

are derived as interpolation polyonyms of the finite elements that ae used for the

discretization of the spatial field of a specific problem.

2.9 SPATIAL DISCRETIZATION OF THE u—p FORMULATION

Spatial discretization using the finite element method is simplified with the use of matrix

notation. Hence all derived equations will be subsequently described using matrix notation.

Eqg. (2.6.2) describes the porous medium equation of equilibrium while strains are described
by eq. (2.5.6), total stresses 6 are described by eq. (2.2.2) while effective stresses are
described by eq. (2.3.18).

Total density is equal to:

,1):nSW,0W+(1—n),0S (2.9.1)

and is usually regarded as being a constant while p is the pore pressure which is taken as

equal to:

P = 2Py + ZaPa = 2Py + (1= 24) Pa = 2P, (2.9.2)

Effective stress is usually evaluated by using a proper constitutive law which can be written

in incremental form as follows:
de" = D(de—deo) (2.9.3)

with D being the tangent matrix which depends on state variables and loading history while

e’ corresponds to initial strains which may be attributed to temperature fluctuations or

other phenomena such as creeping.

The main variables of the problem are solid matrix displacements U and pore pressures p,,.
Effective stresses 6" can be evaluated incrementally at any stage and pore pressures Py

also define saturation degree S, and effective area y,, as seen in section 2.3. In many

cases, the following simplification is adopted:

Yo =S, (2.9.4)

Page | 20

Finally, the combined fluid equilibrium and mass/flow conservation equation is used as
follows:
p

VTk(—VpW+Sw,owb)+amg'+€+s}0 =0 (2.9.5)

with k =k (S,,).

Eqg. (2.9.5) is further simplified compared to eq. (2.7.12) by omitting the term corresponding
to the acceleration of the solid phase as influence of this term to the solution accuracy is

insignificant [17].

Finally, in order to completely describe the problem, boundary conditions are introduced

which are as follows:

t=1t attheboundary I' =T, (2.9.6)
U=1U atthe boundary I'=T (2.9.7)
and
p =P attheboundary I'=1"] (2.9.8)
w = k(— vp, + S04 b): W, atthe boundary I'=T", (2.9.9)

Spatial discretization with respect to variables U and p is implemented by choosing the

proper shape functions such as:

uzu"=> N/U, =N‘T (2.9.10)
k=1
w=>. NPy = (2.9.11)
k=1

It is assumed that the above equations are properly constructed so that strong boundary

conditions for F:Fp I, are automatically satisfied by assigning proper values at the

nodal parameters. As for the case of most problem formulations with the application of the
finite element method, natural boundary conditions will be derived by integrating the
weighted equation by parts.

For the derivation of the first of spatially discretized equations, eq. (2.6.2) is multiplied with

T
(N”) and is subsequently integrated, obtaining the following:

jBTch+[j(N“)T pNudQ)i_izf(l) (2.9.12)
Q

Q

Page | 21

where
B =SN" (2.9.13)

and

£9 = [(N)" pbd+ [(N*) Tr (2.9.14)

Q T,

which is called load vector. This vector has the same dimensions as the displacement vector
U and contains all loads due to traction and field forces.

Using eq. (2.3.18) and taking partial saturation under consideration, the following equation
is obtained:

c=c¢"-ay,m p (2.9.15)
By combining eqgs. (2.9.12) and (2.9.15) the following is obtained:

M+ [876"d0- Q5" -9 =0 2936
Q

where

M = I(N“)T oNYdQ (2.9.17)
Q

is the mass matrix of the system and

Q= [Blagz,mNPdQ (2.9.18)
Q

is the coupling matrix and couples the equations of equilibrium and flow.

Calculation of stresses is done incrementally thus providing the discretized form of eq.
(2.9.3) as follows:

do"=D(Bdﬁ—deo) (2.9.19)

Finally, discretization of eq. (2.9.5) is done by multiplying the latter equation with (N”)T and
integrating by parts so that:

Qu+Hp"+Sp" -f@ =0 (2.9.20)
where
Q= J'BTamdiQ (2.9.21)
Q

Page | 22

is the secondary coupling matrix,

H:j(VNp)T KVNPAO
Q

is the permeability matrix

é:i(Np)T Ql NPdQ

is the saturation matrix with

and

£® =—[(VN") kS,p,bd02+ [(N?) qdr
Iy

Q
is the secondary load vector.
If the solid matrix behaves linearly, the effective stress can be written as
¢"=DBu
In such a case, egs. (2.9.16) and (2.9.20) can be written as follows:
MU+Ku-Qp-f® =0

Qu+Hp+Sp-f? =0

(2.9.22)

(2.9.23)

(2.9.24)

(2.9.25)

(2.9.26)

(2.9.27)

(2.9.28)

respectively with p=p" and Kz.[BTDBdQ being the well-known finite element
Q

stiffness matrix which, along with matrices S and H, is symmetric. The above system of

egs. (2.9.27) and (2.9.28) can be written as:
Mv+Co+Kv=r

where

0 0
a_[0 0]
“lo 5

(2.9.29)

(2.9.30)

(2.9.31)

Page | 23

K = {K _Q} (2.9.32)

0 H
and
u
v= {_} (2.9.33)
p
If damping of the solid matrix is also taken into account, eq. (2.9.31) can be rewritten as:
~ | C o
C=|. T = (2.9.34)
Q S

where 6 is the damping matrix of the solid matrix.

2.10 TEMPORAL DISCRETIZATION OF THE u—p FORMULATION

Eg. (2.9.29) depicts a system of second order differential equations. Implicit integration
methods are excellent candidates for solving such equations where, instead of satisfying eq.
(2.9.29) in the whole time continuum, it is enough for the equation to be satisfied in discrete
finite temporal points t, which have a temporal distance At. This means that static
equilibrium is imposed which also takes into account inertial and damping forces. Such a
modified static equilibrium problem can be solved utilizing well known solution procedures
used for static problems. Moreover, change of vector v along with its first and second time
derivatives at the time span equal to At is assumed to be known. The formulas for
calculating these changes define the accuracy, stability and cost of each implicit integration
method.

Assuming that vectors v, ¥ kat ¥ are known at time 0 and equal to v,, v, andV,, we

seek the solution of eq. (2.9.29) for the time interval from 0 to T. During the solution
procedure, this time interval is being divided into n equal time intervals so that the following
stands:

At =

I (2.10.1)
n

while the chosen integration method is providing approximate solutions of eq. (2.9.29) for
each time step 0,At,2At,...,t,t + At,.. T . During the formulation of the aforementioned

integration methods, we assume that the solution for each time step 0, At,2At,...,t is

known and the evaluation of the solution for time step t + At is required. The necessary

calculations for evaluating the solution at time step t + At are the same with the ones

Page | 24

required for evaluating the solution at a time distance At from the current time step and
this way, the solution for all time intervals from 0 to T is evaluated.

The Newmark method which belongs to the direct integration family of methods, is the most
suitable method for solving dynamic problems that are formulated using the u-p formulation
[18, 19].

Let:

Oy, = Uy +[[1=6)5, + 60, , JAt (2.10.2)

) 1
Dpon = U, +utAt+KE—onut +aut+At}At2 (2.10.3)

where a and &6 are parameters for which the values are selected depending on the problem
1 1
and the required accuracy and stability of the method. If :Zand 525 then, the

method is unconditionally stable and is named as constant-average acceleration method
[20].

(U, + Uy

Figure 2.6 - The constant-average acceleration method

Applying eq. (2.9.29) for time step t + At, the following is obtained:

+Kvu,, =R, (2.10.4)

t+At t+At

By using egs. (2.10.2) and (2.10.3) along with eq. (2.10.4), v, ,, is evaluated and using this

evaluation, v, and v, , are evaluated.

The algorithm used for implementing the Newmark method is as follows:

e The quantities v, ¥, kat V,, the time step At and the values for parameters a

1 11
and § so thato > E and o > Z[EJF 5) are chosen.

Page | 25

1 o 1

The following constants are evaluated: ¢, =—, =, Qy=——,
alt al\t alt
o, :i—l, a, :é—l, o :E(E—ZJ, ay =At(l—5), a, = oAt
2a a a

The effective stiffness matrix is formulated which is equal to:

K=a,M+a,C+K

For each time step, the effective loads at time step t + At are evaluated which are

equal to: Ry, =R, +Ml(ayw, +a,v, +a,b,)+Claw, +a,v, +ab,),

the linear system Kv,,, = R, is solved and the time derivatives are being

t+At

evaluated using the equations: V.., = (v, —V,)—a,0, —a,b, and

Viar =V T Qg0 + 0, -

Page | 26

3 STOCHASTIC ANALYSIS

The second eigen-function

7%
117
e, 7 LA
1177755
ezinsssZ

IR
STt
it
SRR AR

o W
. A 8
B R R
e A e
SRR R

i 10

The eighth eigen-function

Page | 27

3.1 STOCHASTIC MECHANICS APPROACHES

Modeling a mechanical system can be defined as the mathematical idealization of the
physical processes governing its evolution. This requires the definitions of basic variables like
system geometry, loading and material properties, response variables like displacement,
strain and stresses and the relationships between them. A lot of effort has been made on
improving structural models and constitutive laws and with the development of computer
science, a great amount of work has been devoted to numerically evaluate approximated

solutions of the boundary value problems describing the mechanical system.

The finite element method is one of the most popular approaches for solution of these
problems. However the increasing accuracy of the constitutive models and the constant
enhancement of available computational tools do not solve the problem of identification of
the model parameters and the uncertainties associated with their estimation. Moreover, in
most structural engineering applications, the intrinsic randomness of materials or loads is
such that deterministic models using average characteristics lead to rough representations
of real-life behavior. One of the tasks of stochastic or probabilistic mechanics which has
developed rapidly over the last years is accounting for randomness and spatial variability of

the mechanical properties of material.

The existing theories for stochastic mechanics approaches are classified with respect to the
type of results they provide, as follows:

1. Theories aiming at calculating the first two statistical moments of the response
guantities, i.e. the mean, variance and correlation coefficients. These theories are
mainly based on the perturbation method.

2. Reliability methods, aiming at evaluating the probability of failure of the system.
These methods are based on the definition of a limit state function. As failure is
usually associated with rare events, the tails of the probability density functions
(PDFs) of response quantities are of interest in this matter.

3. Stochastic finite element methods aiming at evaluating the global probabilistic
structure of the response quantities considered as random processes. In this work,
the so-called spectral stochastic finite element methods (SSFEM) are considered.

The above theories and methods may overlap since results obtained as byproducts of the
main analysis tend to break the walls between these classes, i.e.:

e By means of sensitivity analysis, it is always possible to compute the probability
density function (PDF) of a response quantity after the main reliability analysis.

e The expression of response random processes obtained by SSFEM is generally not
used directly. Closed form expressions yield the second-moment statistics, and the
PDFs can be obtained by simulation.

Page | 28

3.2 RANDOM FIELD DISCRETIZATION

The engineering applications of Computational Structural Mechanics require representation
of uncertainties in the mechanical properties of continuous media. The mathematical theory
of this representation is called random fields.

The observation of a random phenomenon is called a trial. All the possible outcomes of a
trial form the sample space of the phenomenon, denoted hereinafter by ©. An event E is
defined as a subset of @ containing outcomes & € © . Probability theory aims at associating
numbers to events, namely their probability of occurrence.

Let P denote this probability measure. The collection of possible events having well-defined
probabilities is called the o-algebra associated with ©, denoted here by F. Finally the
probability space constructed by means of these notions is denoted by (O, F, P).

A real random variable X is a mapping X Z(@,F,P)—)]R. For continuous random
variables, the probability density function (PDF) and cumulative distribution function (CDF)
are denoted by f, (X) and F, (X) respectively, with the subscript X being possibly

dropped when there is no risk of ambiguity. In order to emphasize on the random nature of
X, the dependency on the outcomes may be added in some cases as in X(B). A random
vector is a collection of random variables.

The mathematical expectation will be denoted by E[] The mean, variance and n-th

moment of X are given by:

0

qu[X]=IXfX(x)dx (3.2.1)
o =B[(X —u)'|= [(x=u) 1, (x)x (322
E[X”]:Tx” fy (x)dx (3.2.3)

Furthermore, the covariance of two random variables X and Y is:
Cov[X,Y]=E[(X =,)(Y —14)] (3.2.4)

Introducing the joint distribution fX,Y (X, y) of these variables, eq. (3.2.4) can be rewritten

as:

o0 00

Cov[X,Y]= j I(x—,ux J(y—1t,) fy v (X y)dxdy (3.2.5)

—00 —00

Page | 29

3.3 RELATED HILBERT SPACES

The vector space of real random variables with finite second moment (E[XZJ <o) is

denoted by LZ(G),F,P). The expectation operation allows the definition of an inner

product with the corresponding norm as follows:

(X,Y)=E[XY] (3.3.1)

|X[=E[X*] (3.3.2)

L2 (@, F, P) is complete [21], which makes it a Hilbert space.

A random field H (X,H) can be defined as a curve in L2 (G), F, P); that is a collection of

random variables indexed by a continuous parameter X € QQ, where Q is an open set of RY,

describing the system geometry. This means that for a given X,, H (XO,H) is a random
variable while for a given outcome 6,, H (X, 90) is a realization of the field. This realization
is assumed to be an element of the Hilbert space L2 (Q) of square integrable functions over

Q with the natural inner product associated with L* (Q) being defined by:

(f19)i0) = J,, f (¥) g (x)dQ (3.3.3)

Hilbert spaces have convenient properties to develop approximate solutions of boundary
value problems, such as the Galerkin procedure. A random field is called univariate or
multivariate, depending on whether the quantity H(x) attached to point x is a random
variable or a random vector. It can be one- or multi- dimensional according to the dimension
d of x, that is d = 1 or d > 1. In this work, we consider univariate multidimensional fields
which corresponds to the modeling of mechanical properties including Young's modulus,
Poisson's ratio, yield stress, etc., as statistically independent fields.

The random field is Gaussian if any vector [H (X1) .. H (Xn)] is Gaussian. A Gaussian
field is completely defined by its mean ,u(X) , variance o’ (X) and autocorrelation
coefficient p(X, X’) functions. Moreover, it is homogeneous if the mean and variance are

constant and p is a function of the difference X; —X only. This one-argument function is

being denoted by ,5() . The correlation length is a characteristic parameter appearing in the

definition of the correlation function and for one-dimensional homogeneous fields, the
power spectrum is defined as the Fourier transform of the autocorrelation function, as
follows:

Page | 30

l K ~ —iwx
S (@) ==— j p(x)e " dx (3.3.4)
A discretization procedure is the approximation of H () by H (), defined by means of a

finite set of random variables y;, i=1...n, grouped in a random vector denoted by x:

Discretization

H(x) — H(x)=F[xx] (3.3.5)

It is essential to define the most efficient approximation while minimizing the approximation
error with respect to some error estimator; that is the one using the minimal number of
random variables. The discretization methods can be divided into three groups:
e Point discretization, where the random variables y; are selected values of H () at
some given points X; .
e Average discretization, where the random variables y; are weighted integrals of

H (-) over a domain Q, so that y, = IQ H (x)o(x)dQ

e Series expansion methods, where the field is exactly represented as a series
involving random variables and deterministic spatial functions. The approximation is
then obtained as a truncation of the series

In this work, a series expansion method called Karhunen-Loeve is used for the discretization
of the random field.

3.4 THE KARHUNEN-LOEVE EXPANSION

The Karhunen-Loéve (KL) expansion [22] of a random field H () is based on the spectral
decomposition of its autocovariance function C,,, (X, X') = J(X)G(X')p(x, X') . The set of

deterministic functions over which any realization of the field H (X,GO) is expanded is

defined by the eigenvalue problem:

vi=1,.. IQCHH (x,X) o (X')dQ, = A, (X) (3.4.1)

X 1

Eqg. (3.4.1) is a Fredholm integral equation with the kernel CHH (,) being an autocovariance
function and as a result, being bounded, symmetric and positive definite. Thus, the set of
[(oi] form a complete orthogonal basis of L2 (Q) while the set of eigenvalues (spectrum) is
real, positive, numerable, its only possible accumulation point is zero. Any realization of

H () can thus be expanded over this basis as follows:

Page | 31

H(x,0)= Zf &(0 (3.4.2)
f

where & (0) denotes the coordinates of the realization of the random field with respect to
the set of deterministic functions [goi]. Taking now into account all possible realizations of

the field, fi , 1=1,... becomes a numerable set of random variables.

When calculating COV[H (X), H (X’)] using eq. (3.4.2) and requiring it to be equal to

Coy (X, X') , the following stands:

E[&&]=6 (3.4.3)

where 0, denotes the Kronecker symbol. This means that &, i=1,... forms a set of
orthonormal random variables with respect to the inner product of eq. (3.3.1), making eq.

(3.4.2) to correspond to a separation of the space and randomness variables in H (X, 6).

3.5 KARHUNEN-LOEVE PROPERTIES

The KL expansion possesses the following properties:

e Due to non-accumulation of eigenvalues around a non-zero value, it is possible to
order them in a descending series converging to zero. Truncating the ordered series
(3.4.2) after the M-th term, the following KL-approximated field is obtained:

H(x,6)= Zfﬁ (3.5.1)

e The covariance eigenfunction basis ¢, (X) is optimal in the sense that the mean
square error (integrated over Q), resulting from a truncation after the M-th term, is
minimized with respect to the value it would take when any other complete basis

h, () is chosen.

e The set of random variables appearing in (3.4.2) is orthonormal, i.e. verifying (3.4.3),

if and only if the basis functions h (X) and the constants A, are solution of the

eigenvalue problem (3.4.1).

e Due to the orthonormality of the eigenfunctions, it is easy to get a closed form for
each random variable appearing in the series according to the following linear
transform:

e o

Page | 32

Hence when H () is a Gaussian random field, each random variable &, is Gaussian.

It follows that & form in this case a set of independent standard normal variables.

Furthermore, the KL expansion of Gaussian fields is almost surely convergent [22].
e From eq. (3.5.1), the error variance obtained when truncating the KL expansion after
M terms turns out to be after some basic algebra manipulation, as follows:

Var[H (x)-H (x)] =g? (x)—iﬂ,,gof () =Var[H (x)]—Var[ﬁ (x)] (3.5.3)

The right hand side of the above equation is always positive because it is the
variance of some quantity. This means that the KL expansion always under-
represents the true variance of the field.

3.6 THE INTEGRAL EIGENVALUE PROBLEM

Eg. (3.4.1) can be solved analytically only for few autocovariance functions and geometries
of Q. Detailed closed form solutions for triangular and exponential covariance functions for
one-dimensional homogeneous fields can be found in [23, 24], where Q = [-a, a]. Extension
to two-dimensional fields defined for similar correlation functions on a rectangular domain
can be obtained as well. Except in these particular cases, the integral eigenvalue problem
has to be solved numerically. A Galerkin-type numerical procedure is described below.

Let hi(X) be a complete basis of the Hilbert space L2 (Q) Each eigenfunction of

Cin (X, X') may be represented by its expansion over this basis, say:

2 (X)zidikhi(x) (3.6.1)

where dik are the unknown coefficients. The Galerkin procedure aims at obtaining the best
approximation of ¢@_ () when truncating the above series after the N-th term. This is

accomplished by projecting ¢, onto the space H, spanned by hi(-), i=1...,N.

Introducing a truncation of (3.6.1) in (3.4.1), the residual becomes:

6u ()= d [Co (xX)R (X402, ~ 21, (1) (3.6.2)

i=1

Requiring the truncated series being the projection of (0,((') onto HN implies that this

residual is orthogonal to H in L2 (Q) . This implies:

(g0,hy) =] &0 ()N (x)dQ=0, j=1...,N (3.6.3)

Page | 33

After some basic algebra, these conditions reduce to a linear system:
CD=ABD (3.6.4)

where the different matrices are defined as follows:

B, = |_h (x)h;(x)dQ (3.6.5)

Cy = [, Cow ()N (), (xR, 4, (366
D, =d; (3.6.7)

A =84, (3.6.8)

where J,, denotes the Kronecker symbol. This is a discrete eigenvalue problem which may
be solved for eigenvectors D and eigenvalues A . This solution scheme can be implemented

using the finite element mesh shape functions as the basis hi () [24].

Due to its useful properties, the KL expansion has been widely used in stochastic finite
element approaches. The main issue when using the KL expansion is to solve the eigenvalue
problem (3.4.1). In most applications found in the literature, closed form solution based on
the exponential autocovariance function in conjunction with square geometries have been
applied. However, for industrial applications where complex geometries will be
encountered, closed form solutions are not possible and thus the scheme presented in this
section for numerically solving (3.4.1) requires additional computations while the obtained

approximated basis ¢, () is no more optimal.

It is therefore recommended, for general geometries, to embed Q in a square-shape volume
and use the latter to solve the eigenvalue problem in a closed form, when possible.

3.7 THE SPECTRAL STOCHASTIC FINITE ELEMENT METHOD

The spectral stochastic finite element method (SSFEM) was proposed by Ghanem and
Spanos in [25, 26] and presented in a comprehensive monograph in [24]. It is an extension of
the deterministic finite element method (FEM) for boundary value problems involving
random material properties.

To understand what kind of discretization is introduced in SSFEM, we consider a
deterministic mechanical system with deterministic geometry, material properties and
loading. The evolution of such a system is governed by a set of partial differential equations
(PDE), the associated boundary conditions and the initial state. When no closed-form
solution to these equations exists, a discretization procedure has to be applied in order to
handle the problem numerically.

Page | 34

In the standard finite element method, the geometry is replaced by a set of points
X, 1=1...,N that correspond to the nodes of the finite element mesh. In the same
manner, the response of the system, i.e. the displacement field u(x) is approximated by

means of nodal displacements U;, i=1...,N gathered into a vector U. The set of PDE can

L N
then be transformed to a system of equations in {ui }izl.

If a material property such as the Young's modulus is now modeled as a random field, the

system will be governed by a set of stochastic PDE, and the response will be the

displacement random field u(x,@), where B denotes a basic outcome in the space of all

possible outcomes © . A spatial discretization procedure such as the one described in the
above paragraph results in approximating the response as a random vector of nodal

displacements U(B), each component being a random variable ui(H) yet to be

characterized.

A random variable is completely determined by the value it takes for all possible outcomes
0 € ® . Adopting the same kind of discretization as for the spatial part would result in

selecting a finite set of points {Hl,...HQ} in ©. The Monte Carlo simulation of the problem

corresponds to this kind of strategy. The realizations 9, have to be selected with some rules

to ensure that the space is correctly sampled. It is however well known that an accurate
description of the response would require a large value for Q.

SSFEM aims at discretizing the random dimension in a more efficient way using series
expansions. Two different procedures are used:

e The input random field is discretized using the truncated KL expansion.
e Each random nodal displacement ui(H) is represented by its coordinates in an
appropriate basis of the space of random variables L2(®,F,P), namely the

polynomial chaos.

For the sake of simplicity, rather than presenting SSFEM in a general way, the main ideas are
first developed in the following section on a simple example, namely the accounting of the
spatial variability of the Young's modulus in an elastic mechanical system. In this case, the
deterministic finite element method is assumed to be well-known and only the
approximated solution in the random dimension is developed.

3.8 SSFEM IN LINEAR ELASTIC PROBLEMS

Using classical notation, the finite element method in linear elasticity eventually yields a
linear system of size NxN (N being the number of degrees of freedom):

KU=F (3.8.1)

Page | 35

where the global stiffness matrix K is obtained after assembling the element stiffness

matrices k°:

e T
ke = erB DBAQ, (3.8.2)

In the above equation, D stands for the elasticity matrix and B is the deformation matrix that
relates the components of strain to the element nodal displacements.

Assuming that the material Young's modulus is a Gaussian random field, the elasticity matrix
in point x can thus be written as:

D(x,6)=H(x,0)D, (3.8.3)
where D, is a constant matrix. Substituting (3.8.3), (3.4.2) in (3.8.2) yields:
ke (8) =k + 3 K7 (0) (3.8.4)
i=1
where K; is the mean element stiffness matrix and Kk are deterministic matrices obtained
by using the KL expansion (eq. (3.5.1)):
ki =7, #(x)B"D,BAQ, (3.8.5)

Assembling the above element contributions provides the stochastic counterpart of the
equilibrium eq. (3.8.1):

{Ko +2Ki§i (9)}U (0)=F (3.8.6)

assuming a deterministic load vector F. In the above equation, K, are deterministic matrices

obtained by assembling kie in a way similar to the deterministic case.

The vector of nodal displacements U(B) is obtained by solving eq. (3.8.6). However no
closed-form solution exists for such an inverse. An early strategy adopted in [24] consists in
using a Neumann series expansion of the inverse stochastic stiffness matrix to get an
approximate response. Eq. (3.8.6) can thus be rewritten as:

KO{I +2K01Kig, (e)}u (0)=F (387)

which leads to:

1

U (H) :{I +i KoilKié (‘9)} U’ u’= Kole (3.8.8)
i=1

Page | 36

The Neumann series expansion of the above equation has the form:

U(8)=>(-1)" {i Ko 'K,& (Q)TUO (3.8.9)

u(6)= I—2K0‘1Ki§i(0)+iiKo‘lKiKo‘1 i(6»)51.(9)+..1u° (3.8.10)

Truncating both the KL and the Neumann expansions (indices i and k in eq. (3.8.9),
respectively) yields an approximate solution for U(0).

Based on eq. (3.8.10), each random displacement u' (6’) can be represented as a series of

polynomials in the standard normal variables {fk (9)}?_1. Reordering all terms by means of

a single index j, this representation is expressed as:
u'(8)=> u'P, ({gk (0)}k:1) (3.8.11)
=0

where Po =1 and F’j ({fk (6?)}:;1) are polynomials in standard normal variables, i.e.:

p

P, ({gk ('9)};0:1) = fiizlfiaz LG (3.8.12)

The set of {Pj}o_oo in eq. (3.8.12) forms a basis of the space of all random variables
J:

L2 (@, F,P) and the coefficients u} are interpreted as the coordinates of u‘(6’) in this

basis.

Referring to the inner product defined in LZ((E), F,P) by eq. (3.3.1), the above basis is
however not orthogonal. For instance, & (6) and & () are two basis random variables
whose inner product is E[§14]:3. For further exploitation of the response, such as

computing its moments, an orthogonal basis appears more appealing.

The polynomial chaos proposed in [24] possesses the orthogonality property. The details of
its construction are quite technical and are given in the following section. In order to

proceed, let us assume that any random variable u(B) element of L2(®,F,P) can be

represented as follows:

u(o)= Z;uj‘Pj (9) (3.8.13)
j=

Page | 37

0

where {‘IJJ-(H)}H) is a complete set of orthogonal random variables defined as

polynomials in {fk (6?)}0;20, satisfying:

¥, =1 (3.8.14)
E[¥,]=0,j>0 (3.8.15)
E[W;(0)¥,(0)]=0,j=k (3.8.16)

The expansion of the nodal displacements vector is consequently written as:
U(6)=>_U,¥,(9) (3.8.17)
=0

with the coordinates Uj being deterministic vectors having N components. Note that the
first term U, in the above equation is different from the first term in the Neumann

expansion (3.8.10). The latter, denoted by U°, is the one obtained by a perturbation
approach.

By denoting 50(9) =1 and substituting the above equation in eq. (3.8.6), the following is

obtained:

[2 K@(H))[guj\{’j(e)j_F =0 (3.8.18)

For computational purposes, the series involved in eq. (3.8.18) are truncated after a finite
number of terms, denoted by (M+1) for the stiffness matrix expansion (KL expansion) and by
P for the displacements vector expansion. As a result, the residual in eq. (3.8.18) due to the
truncation reads:

M P-1
Eup :z Kinéi (9)‘1’1(9)—F (3.8.19)
i=0 j=0
The best approximation of the exact solution U(6) in the space H, spanned by {‘Pk (49)}::_;

is obtained by minimizing this residual in a mean square sense. In the Hilbert space

L2 (@, F, P) , this is equivalent to requiring this residual to be orthogonal to H, , yielding:
E[&y ¥« |=0,k=0,..,P-1 (3.8.20)
Let us introduce the following notation:
cu =E[& ¥, W] (3.8.21)

Page | 38

Fo= E[\Pk F] (3.8.22)

Note that in the case of deterministic loading, as considered in this work, Fk is zero for k >

0. Using eq. (3.8.19), eq. (3.8.20) can be rewritten as:

M P-
> > ceKU, =F, k=0,..,P-1 (3.8.23)

=0 j=0

LN

For the sake of simplicity, let us define:

M
K, =Y K, (3.8.24)
i=0
Hence, eq. (3.8.23) can be written as:
P-1
> KU, =F, k=0,..,P-1 (3.8.25)
=0

In the above equations, each Uj is a N-dimensional vector and each KJ-k a matrix of size

NxN. The P different equations can be cast in a linear system of size NPxNP as follows:

Koo KO,P—l U, F
Ko Kl,P—l U, _ H (3.8.26)
KP—l,O e KP—l,P—l Us, Fos

After solving this system for U= {Uk,k =0,...,P —1} , the best approximation for U(0) in

the subspace Hp spanned by {‘I’k ((9)}::_; is given by:
U(0)=2U,;¥(9) (3.8.27)

The dimension P of HP usually varied between 10 to 35 in real world applications. This
means that any nodal displacement is characterized as a random variable by 15-35
coefficients. The amount of computation required for solving the linear system (3.8.26) is
thus orders of magnitude greater than that required for the deterministic analysis of the
same problem.

The coefficients themselves in eq. (3.8.27) do not provide a clear interpretation of the
response randomness. The following useful quantities are however readily obtained:

e The mean nodal displacement vector E [U] is the first term of the expansion, namely
U,, since E[‘Pj (0)} =0 forj>0.

e The covariance matrix of the components of vector U is:

Page | 39

P-1
Cov[U,U]=Y E[¥} Uy’ (3.8.28)
i=1
with the coefficients E [‘P?] being easily computed due to the definition of the ‘¥,
s, as it will be shown in the following section.
e The probability density function of any component U' of the nodal displacement
vector can be obtained by simulating the basis random variables ‘Pj (6), then using

eqg. (3.8.27). In the case when this equation is limited to quadratic terms (second
order polynomial chaos expansion), a closed-form expression for the characteristic
function of U has been given in [27], which can then be numerically Fourier-
transformed to obtain the required PDF.

As it can be seen in eq. (3.8.26), the size of the linear system resulting from the SSFEM
approach increases rapidly with the series cut-off number P. Whenever classical direct
methods are used to solve the system, the computational time grows exponentially. This is
the reason why early applications of SSFEM were limited to a small problem with limited
number of degrees of freedom N.

Egs. (3.8.24) and (3.8.25) suggest that the global matrix K is completely determined by the
matrices K; and the coefficients C;, . By not storing K as a whole but instead storing these
building blocks K; along with the Ciik coefficients, the required amount of memory is

reduced considerably. Using a second (resp. third) order polynomial chaos in 4-term KL
expansion example [28], the proposed method requires 11 times (resp. 33 times) less

memory compared to the classical global storage because a large number of coefficients Ciik

are zero [24].

Since KO corresponds to the stiffness matrix of a system having the mean material
properties, we can define in the same way, K., i > 0, as the stiffness matrix corresponding
to a certain spatial fluctuation of the material properties given by the eigenfunction ¢, (X) .

Since the mean of these fluctuations is zero, assuming that they are bounded within a

certain range, the entries of KO are expected to be dominant in magnitude. Furthermore, it
is easily seen from eq. (3.8.21) that Cy, oc 0, since &, =1 and the ¥ 's are orthogonal to

each other. This means that K, has a contribution only in the K blocks that are on the

main diagonal of K, as seen in eq. (3.8.24). These arguments confirm the diagonal dominance
of K which should be taken into consideration during the solution process. Furhtermore, all

matrices K; all have the same non-zero structure, which can simplify storage handling.

3.9 POLYNOMIAL CHAOS EXPANSION

Page | 40

The polynomial chaos is a particular basis of the space of random variables L* (@, F, P)

based on Hermite polynomials of standard normal variables. The one-dimensional Hermite
polynomials are defined by

1o
d”{e 2 } »
h, (x)=(-1)" —t——de?' (3.9.1)

Hermite polynomials of independent standard normal variables are orthogonal to each

other with respect to the inner product of L2 (@, F, P) defined in eq. (3.3.1), that is:

E[h, (& (0))h,(&(0))]=0, m=n (3.9.2)

Multidimensional Hermite polynomials can be defined as products of Hermite polynomials
of independent standard normal variables. To further specify their construction, let us
consider the following integer sequences:

a={a,...,a,}, a; 0 (3.9.3)

i={i,,....0,}, i; >0 (3.9.4)

1r-eealp

The multidimensional Hermite polynomial associated with the sequences (i,a) is written as:

¥, (0)=]Th, (4 () (3.95)

k=1

It turns out that the set {‘Pi’a} of all polynomials associated with all possible sequences (i, a)

of any length p forms a basis in L (@, F, P) .

For further convenience, let us denote by Fp(é:h (0),...,§ip(6’)) the set of basis

k=1

p
polynomials {‘Pi'a(ﬁ)|2ak = p} and by I'; the space they span. I' | is a subspace of

L2 ((E),F,P), usually called homogeneous chaos of order p. The subspaces Fp are
orthogonal to each other in L? (G), F, P). This is easily proven by the fact that they are

spanned by two sets of \Pi,a having null intersection. Thus the following relationship,

known as the Wiener Chaos decomposition, holds:

@ s

I =L*(6,F,P) (3.9.6)

k

0

Page | 41

where @ denotes the operator of orthogonal summation of subspaces in linear algebra.
Consequently the expansion of any random variable u(6) in the polynomial chaos can be
written as:

U(0) =Ty + YU (& (0))+

iy=1 i

)—‘M8

Il
JUN

guilizrz (fi1 (6);2 (9))+ (3.9.7)

In this expression Uy, U; ,U;; are the coordinates of u(6) associated with O-th, first and

second order homogeneous chaoses respectively. The lower order homogeneous chaos
have the following closed-form expression:

r,=1 (3.9.8)

r(&)=¢ (3.9.9)
r,(&.8,)=¢6¢ -3, (3.9.10)
To(&06,6,)= 668 ~6.0, —6.0, — 4.5 (3.9.11)

The polynomial chaos can be related to the (non-orthogonal) basis associated with the
Neumann series expansion, as seen on eq. (3.8.12). For this purpose, let us introduce the

orthogonal projection 7, of LZ(G), F,P) onto I' . It can be shown that the following

relationship holds:
7 (£2(0)...67 (0)) =¥, (3.9.12)

For computational purposes, finite dimensional polynomial chaoses are constructed by
means of a finite number M of orthonormal Gaussian random variables. In this work, these
variables are selected from the KL expansion of the input random field. The polynomial basis

formed by means of these M random variables is denoted by I" (é‘l ceerC) and it is called

homogeneous chaos of dimension M and order p.

Following eq. (3.9.5), the basis Fp(é‘l’ ...,§M) is generated as follows. To each set of M

integers {al,...,aM } ranging from 0 to p and summing up to p, the following basis vector is

associated:

¥, =]]h (&) (3.9.13)

This formula allows for a systematic construction of the polynomial chaoses of any order. It

M+p-1
can be shown that the dimension of I, (é‘l vy) is the binomial factor . The
' P

Page | 42

lower-dimensional polynomial chaoses (up to M = 4) have been tabulated in [24] for
different orders (up to p = 4). As an example, Table 3.9.1 gives the two-dimensional
polynomial chaoses for different orders.

When truncating eq. (3.9.7) after order p, the total number of basis polynomials P is given
by:

P(M+k-1
P= (3.9.14)
Py k

Table 3.9.2 gives an evaluation of P for certain values of M and p. It is seen that P is
increasing extremely fast with both parameters. Remembering that each scalar response
quantity u (which was a single number in the deterministic finite element method) is now
represented by P coefficients, it is easily seen that SSFEM will require a large amount of
computation. This may be worthwhile, considering that the whole probabilistic structure of
u is (approximately) contained in these P coefficients.

J P j-th basis polynomial ‘¥,
0 p=0 1

p=1 &
2 &
3 4:12 -1
4 | p=2 &é,
: g-1
6 & -3
7| e a5 -)
8 &(£-1)
9 & 3%,
10 EN-6E7+3
1 & (& -34)
e (g
13 &(&-35)
14 & —6&, +3

Table 3.9.1 — Two dimensional polynomial chaoses

From a practical point of view, the choice of M is dictated by the discretization of the input
random fields. In the original SSFEM, the Karhunen-Loéve expansion is used under the

Page | 43

assumption that the input field is Gaussian. The choice of M is thus directly related to the
accuracy requested in this random field discretization. The higher M, the better higher
frequency random fluctuations of the input will be taken into account. Conversely,
parameter p governs the order of non-linearity captured in describing the solution process.
Typical values used are M =4 and p=2, 3.

p=1 | p=2 | p=3 | p=4

3 6 10 | 15

5 15 35 | 70

a2

7 28 | 83 | 210

Table 3.9.2 — Number of basis polynomials P (M: number of basis random variables, p: order
of homogeneous chaos expansion)

3.10 SSFEM WITH A LOG-NORMAL INPUT RANDOM FIELD

The use of Gaussian random fields is quite common in the context of probabilistic
mechanics. However these fields are not well suited to modeling material properties like
Young's modulus or yield stress which are by their nature positive values. Indeed, for large
coefficients of variation, realizations of the field could include negative outcomes that are
physically meaningless. In contrast, the log-normal field appears attractive in this sense. A
lognormal field can be defined by a transformation of a Gaussian field g(x) as:

1(x)=¢"" (3.10.1)

The Karhunen-Loéve expansion of a log-normal field, although possible, is of no practical
interest since the probabilistic structure of the random variables {é‘l} appearing in the

expansion cannot be determined. In order to be able to include log-normal fields in the
SSFEM approach, it was proposed in [29] to expand them into the polynomial chaos.

Let us first consider a single lognormal random variable obtained as follows:
| = g*"oo* (3.10.2)

where € is a standard normal variable. The polynomial chaos expansion of || reads:
I=>1¥,(¢) (3.10.3)
i=0

where ¥, ((f) is the i-th Hermite polynomial in this case. Due to the orthogonality

properties of the Vs, the coefficients |, can be obtained as:

Page | 44

| = _ = — e ? (3.10.4)

o
However, the fraction in the above equation turns out to be equal to —Ig after some
I!

algebra, whereas the exponential term is nothing but the mean value of |, denoted by £ .

Thus the expansion of any log-normal random variable into the (one-dimensional)
polynomial chaos reduces to:

| = y,z_—;"l’i () (3.10.5)

Let us now consider the approximate log-normal field I(x) defined by exponentiating the
following truncated Karhunen-Loéve expansion of a Gaussian random field g(x):

I(x)=e 7 ety (3.10.6)

The polynomial chaos expansion now reads:

0

1(x)=>_L(X)¥;(¢) (3.10.7)

i=0

Closed-form expressions of the coefficients |i(X) are given in the next section. To use

SSFEM in conjunction with a lognormal input random field is now straightforward: the
procedure described in Section 3.4 applies, where eq. (3.4.2) is replaced by eq. (3.10.3). The
stochastic equilibrium equation of eq. (3.8.6) now writes:

(io K'Y, (9)jU (0)=F (3.10.8)

After truncation to the first P terms, the Galerkin minimization of error leads to a system of

linear equations similar to eq. (3.8.23). The coefficients Cijc are now replaced by:
dy =E[¥, ¥, ¥] (3.10.9)

The polynomial chaos expansion of the input random field introduces a new approximation
in SSFEM, which probably decreases the accuracy of the method. This accuracy has not been
stated by Ghanem and his co-workers. Whether an adequate accuracy could be obtained
with a manageable number of terms in the series expansion is of crucial importance.
Unfortunately, no comparison with other methods (e.g. Monte Carlo simulation) are
provided in [29, 30]. Regarding reliability problems, the accuracy in the tails of PDFs is
probably also affected by the use of the polynomial chaos expansion of the input random
field.

Page | 45

It is usual that more than one material property governs the evolution of a system (ie.
Young's modulus and Poisson's ratio). In a probabilistic context, all these quantities have to
be modeled as random fields if they are statistically independent.

This is completed in the following manner: each field is discretized using different sets of
standard normal variables, say [...&, | for the first one, [, ...&, | for the second, etc.

All these variables are then merged in a single array, the size of which determines the
dimension of the polynomial chaos expansion of the response. This technique was applied in
the heat conduction example presented in [30]. Except from the point of view of data
management, using multiple input random fields seems not a difficult task. However,
multiplying by 2 the length of vector € increases dramatically the size of the polynomial
chaos basis (see for instance table 3.9.2), which basically controls the computation time.

3.11 KARHUNEN-LOEVE EXPANSION OF LOG-NORMAL RANDOM FIELDS

Let us consider the following truncated Karhunen-Loéve expansion of a Gaussian random
field g(x):

§(%.6)= i1, (X)+ 3 0,(x)& (6) L)

i=1

Gathering the random variables ¢, (9) in a vector § and the deterministic functions g; (X)

in a vector g(x), we can define the following approximate log-normal random field:
1(x) =€ = grol*rral0)'¢ (3.11.2)
Its coefficients in the polynomial chaos expansion are obtained as in eq. (3.10.4) by:

E [eﬂgwg(xf:q,]

L (x)= (3.11.3)
The first coefficient corresponding to ‘¥'; =1 is the mean value of I(x), i.e.:
PRyt 12
lL(X)=p(x)=e e (3.11.4)

where o (X) is the standard deviation of Q(X) . The other coefficients simplify after some

algebra to:

E[¥(£+9()]

L (%) =14 (X) e[(3.11.5)

Page | 46

Referring to representation (3.9.13) of the polynomials ‘¥, (5) , the fraction in the above

equation can be written as:

=12 (3.11.6)

Finally, letting M tend to oo, the polynomial chaos expansion of the lognormal field can be

written as:

1(X)= 4 (x)+ZIi (X)W (&)= (X)Za:HM—\Pa (¢) (3.11.7)

Page | 47

4 SOLUTION METHODS

Page | 48

4.1 SOLUTION METHODS

In order to solve the system of equations that occurs from the space and time discretization
procedures that have been described in chapters 2 and 3, when applied on structural
mechanics problems, a number of solution methods can be used. These methods are divided
into direct and iterative, with respect to the procedure that is followed in order to compute
the solution and to global and domain decomposition if the problem domain is being solved

as a whole or is divided into subdomains.

In the following sections, both direct and iterative methods, suitable for structural static,
dynamic and stochastic engineering problems, will be described with special emphasis on

domain decomposition methods.

4.2 DIRECT SOLUTION WITH CHOLESKY FACTORIZATION

The most efficient direct solution methods are based on the classic Gauss elimination
method. In principal, the different variants of the Gauss elimination method are derived by
permutating the various steps of the actual elimination procedure. The Cholesky method
[31], which is widely utilized in computational mechanics, is derived by separating all
computations related to the right hand side of the linear system from the rest of the

computations needed to solve the linear systems of the form:
Ax=Db (4.2.1)

The first step of the Cholesky method consists of all the necessary computations for
performing the Gauss elimination process. This process is called factorization and aims to
transform the symmetric coefficient matrix A to a product and is independent of the current

right hand side. This factorization process can be written as follows:

A=LL (4.2.2)

where L is a lower-triangular matrix. Moreover, a variant of the Cholesky method [32] is

used where A is factorized as:

A=LDL (4.2.3)

where L is once again a lower-triangular matrix with unit diagonals and D is a diagonal
matrix. After the factorization process, the system can be solved by following the below
procedure:

e Evaluation of the intermediate vector x1 with a forward substitution:

Lx, =b < x, =L" (4.2.4)

Page | 49

e Trivial evaluation of the intermediate vector x2:

Dx, =X, < X, = D7 (4.2.5)
e Evaluation of the unknown vector x with a backward substitution:

L'x=x, < x=L"x, (4.2.6)

The most computationally intensive part of this process is the factorization process as per
egs. (4.2.2) or (4.2.3). The rest of the computations described by eqgs. (4.2.4) to (4.2.6) are
much less computationally intensive and can be repeated for the solution of multiple right
hand sides. As a result, the Cholesky method has the advantage of solving equations with

multiple right hand sides with negligible additional computational cost.

Moreover, the Cholesky method can have different implementations, depending on the
coefficient matrix storage format. Usually, matrix A is stored either in sparse format where
only the non-zero terms of the matrix are stored or in skyline format where, for every
column, all terms found between the first non-zero term and the diagonal are stored. For
the first case, a sparse solver is utilized whereas for the second case, a skyline solver is the
best choice. For each of these solvers, there is an optimum numbering in order to minimize

the bandwidth and the subsequently required computations.

The computations required for both skyline and sparse solvers are quite coupled in nature
since they involve a multitude of terms that do not exhibit any special locality pattern and
can be either near to or far from each other. Attempting to parallelize these solvers
demands high communication bandwidth and is quite difficult to implement. This
communication overhead does not influence very much the performance of such parallel
implementations in shared memory parallel architectures but in distributed memory
environments, the performance penalty of this overhead is severe and has a big negative
impact in scalability. In general, skyline and sparse solvers are popular in single node

environments and are used extensively in commercial finite element software packages.

4.3 ITERATIVE SOLUTION WITH THE PRECONDITIONED CONJUGATE GRADIENT
METHOD

Various iterative methods have been used for solving the discretized algebraic equations in
computational mechanics and in structural computational mechanics. In particular, Jacobi,
Gauss-Seidel, Successive Overrelaxation (SOR) and Steepest Descent are some early solution
methods. However one of the most widely used iterative methods is the preconditioned
conjugate gradient (PCG) method [33] which deals with solving linear systems of the form
(4.2.1).

Page | 50

In order for the PCG method to converge, matrix A must be symmetric and positive semi-
definite, meaning that its eigenvalues are greater or equal to zero. If matrix A is positive
definite, meaning that its eigenvalues are greater than zero, then the PCG method is
converging to the one and only solution of the linear system (4.2.1). However, in case matrix
A has zero eigenvalues, the linear system (4.2.1) has either no solutions or is indefinite if the

following stands:
berange(A)<:>nuII(A)T b=0 (4.3.1)
In such a case, the linear system (4.2.1) has infinite solutions of the form:
x=%X+null(A)a, aeR* (4.3.2)

where X is one of the solutions of the linear system (4.2.1) and a is any vector with

dimension equal to that of the null space of A.

The PCG algorithm is shown in Table 4.1, with Al being a positive definite preconditioner.

The method is considered to have converged when the following inequality stands:
||b — AXK || <&|p| (4.3.3)

where € is a threshold user defined positive value, relevant to the required solution

accuracy.

It is worth noting that the direction vectors pk computed at each iteration are A-orthogonal

which means that:
pk" Aps =0, k, =k, (4.3.4)

In case of ill-conditioned linear systems and generally for cases that significant round-off
errors are expected, the PCG algorithm can be applied with reorthogonalization which
explicitly enforces the condition (4.3.4) at each iteration.

.
po ro

o' L0

P q

Initialization phase: r’=b-Ax° z°= A_lro, pO =7° q0 = Apo, 770 =

Repeat for k=1,2,... until convergence:

Solution estimate Xk _ Xk—l _l_nk—lpk—l
Residual vector rk =kt _nk—lqk—l
Preconditioned residual vector 7% — Alpk

Page | 51

Search vector Simple estimation)) ZkT rk o
p =17 +mp (435)
Z r
Using reorthogonalization pk _ k-1 ZkTqi pi
= —
- pl ql
A matrix vector product qk — Apk (4.3.6)
n estimation Simple estimation) ZkT r
m= kT K
P q
Using reorthogonalization) ka r
m= kT K
P q

Table 4.1 - The PCG algorithm

The number of iterations of the PCG method is directly related to the structure and span of

the eigenvalue spectrum of matrix A*A. Another measure for estimating convergence

speed of the PCG method is the condition number [34] which is defined as the ratio of the

biggest in magnitude to the smallest eigenvalue of matrix AA:

e
(4.3.7)

A

min

K=

The larger the condition number, the greater the number of iterations that are needed for

the PCG method to converge.

Linear systems that feature a condition number of large magnitude are defined as ill-
conditioned systems. In structural computational mechanics, structures combining very
flexible and very stiff elements, shells of low width or structures comprised of highly

heterogeneous materials produce linear systems that are generally ill-conditioned.

Moreover, the efficiency of the preconditioner itself is highly related to the condition
number of matrix AA. Ideally, the most suitable preconditioner is the inverse of matrix A
sothat A’A= A*A=1 and A, =A__ =1.Insuch a case, the condition number is equal

to 1 and the PCG method converges in just one iteration. However, computing the inverse of
matrix A is not computationally efficient, especially of large matrices, so, in practice, efficient
preconditioners are approximations of the inverse of matrix A that are relatively cheap to

compute.

4.3.1 PRECONDITIONED CONJUGATE PROJECTED GRADIENT

Page | 52

A variant of the PCG method is the preconditioned conjugate projected gradient (PCPG)

method [35] which is suitable for solving linear systems of the form:

PTFA=P"d i
G'a=e 14.3.8)

where the vector search space is projected to a different subspace using the following
projector:

P=1-G(G'G) G (4.3.9)

with matrix G imposing a set of constraint equations.

The PCPG alogorithm is described as follows:

Initialization phase: A° = G(GTG)ile, w’ =P’ (d - FZ.O) (4.3.10)

Repeat for k=1,2,... until convergence:

Preconditioned projected residual vector vk = PF 1wk (4.3.11)
Search vector (with re-orthogonalization) k-1 ykT Fpi _

pk = y* - ——p (43.12)

i p Fp
. . T
n estimation nk _ pk wX
ka Fpk

Solution estimate A =2 p
Residual vector wht = wk —77" P"Fp (4.3.13)

Table 4.2 - The PCPG algorithm

4.3.2 IMPLEMENTATION FOR MULTIPLE RIGHT-HAND SIDES

By utilizing the PCG algorithm in order to solve the linear system (4.2.1), it is possible to
significantly reduce the computational burden for solving a problem with multiple right-
hand sides [36].

Let the following sequence of N, linear problems:

Page | 53

(4.3.14)

and P, with i=1..np to be the set of search vectors produced during solutions i=1..j with j <

N, . For the solution of analysis j+1, the PCG algorithm of Table 4.1 is followed using

reorthogonalization and using the following first solution estimate:
x°,, =P X (4.3.15)

with

F>np=[pl pnp],xp:(QnTanp)_anzbj+1,an:APnp:[Apl Apnp]z[ql

Estimating X, is trivial since (QI P)has values only in its diagonal due to the fact that the
p P

search vectors are computed using reorthogonalization, ensuring A-orthogonality.
Moreover, the search vector estimation step can be carried out using all or a fraction of the
vectors stored from all the accumulated solutions.

4.3.3 PCG-THE TWO-LEVEL TECHNIQUE

A special technique used when solving linear systems with the PCG method is the two-level
technique [37]. This technique is based on the definition of an arbitrary matrix C whose

columns are a linear combination of the linear system (4.2.1). By setting:
C"(b-Ax)=0 (4.3.16)

an approximation of the initial linear system is formed related to linear combinations
defined from the columns of matrix C. In order to satisfy the above equation, the solution x

is split as follows:
X =X+Cx, (4.3.17)

Thus, the linear system (4.2.1) can be reformed using one set of redundant equations as

follows:

{ AX+ACx, =b }
(4.3.18)

CTAX+CTACx =C'b

By substituting the solution of the second equation of the redundant linear system to the

first one, Eq. (4.3.18) becomes:

Page | 54

P AX=P'b (4.3.19)

where

-1
P.=1-C(CTAC) C'A (4.3.20)
In case that C" AC is not positive-definite but singular with zero eigenvalues, Eq. (4.3.20)
becomes:

P.=1-C(C"AC) C"A (4.3.21)

C

where (CT AC)+ is the generalized inverse of CT AC .

The computation of matrix P, of Eq. (4.3.20), or Eq. (4.3.21) if C" AC is singular, implicitly

involves the need for solving a problem of the form
(CTAC)x=b (4.3.22)

at each PCG iteration when solving Eq. (4.3.19). In fact, the problem (4.3.22) is a second-level
reduced form of problem (4.2.1), which explains why this solution technique is characterized

III

as a “two-level” technique.

The main advantage of this technique is the exhibition of a global coupling effect of all

substructure computations due to the C"AC term. Therefore, it provides a mechanism for
propagating the error globally and ensuring the numerical scalability with respect to the
number of substructures. If the number of columns of C is kept sufficiently small, the

problem (4.3.22) becomes a coarse problem.

4.4 DOMAIN DECOMPOSITION

In the following sections, basic aspects of domain decomposition methods (DDM) will be
presented in order to provide a solid foundation for the presentation of the primal and dual
DDM (P-DDM and D-DDM respectively) used for the solution of static, dynamic and
stochastic problems. Moreover, a specialized DDM family of methods will be presented,

custom tailored for the solution of porous media problems as formulated in chapter 2.

4.4.1 SUBDOMAINS AND MAPPING OPERATORS

Page | 55

Subdomain mapping operators for DDM [38] can be implemented for mapping either the

displacements and applied loads or the Lagrange multipliers of the subdomains.

If u and f represent the displacement and applied loads vectors of the global domain and u®
and f° are vectors which refer to the corresponding quantities for every subdomain, the

following equations hold:

_—

usz[u(lf u(“s)} (4.4.1)
_—

fs :[f‘lf o f) } (4.4.2)

u®=Lu (4.4.3)

f=Lf° (4.4.4)

where N, is the number of non-overlapping subdomains of the global domain and L is the

so-called global to local mapping operator which is a Boolean matrix.

Egs. (4.4.1)-(4.4.4), when applied to interface degrees of freedom (dof) become:

T T
u; {ukﬁl’ T] (4.4.5)
fo= [A AL T (4.4.6)
u; = Lyu, (4.4.7)
f,=L, f,’ (4.4.8)

The traction forces on the interface nodes of the disconnected subdomains are usually

expressed as:

t=f"-B'2 (4.4.9)
or

t="f"-B'4 (4.4.10)

when applied to the interface dof, where A is the vector of the Lagrange multipliers and B is
the so-called Lagrange mapping operator. The form of the mapping operator depends on the
definition of the Lagrange multipliers. In the case of redundant Lagrange multipliers, which

are used in the present investigation, B is a signed Boolean matrix.

Page | 56

Figure 4.1 - A structural domain, split in subdomains. Arrows show the traction forces between the disconnected

subdomains

The Lagrange mapping matrices may also be used to express the displacement compatibility

condition at subdomain interfaces as:

or

when applied to the interface dof.

u®

B(NS)} C =0 (4.4.11)
4
u®

B i |=0 (4.4.12)
L%

Specific attention has to be paid when using these mapping operators in preconditioning

steps of dual DDM. In the case of global to local mapping operator with respect to

homogeneous problems, the global to local mapping operator in the preconditioning step

can be written as:

Page | 57

L = L(M s)_1 (4.4.13)

or

-1

L, =L (Ms) (4.4.14)

Moreover, for cases of splitting displacements or forces to heterogeneous subdomains

inside a preconditioning step, we get:

beslimate = L-Il;bus (4.4.15)
fb:stimate = Lpb fb (4.4.16)

In the past, a number of modified versions of the Lagrange mapping operator that
incorporate scaling effects have been used in preconditioning steps of the dual DDM. In the
case of redundant Lagrange multipliers and homogeneous problems, the Lagrange mapping

operator in the preconditioning step can be written as:
B,=B(M*) (4.4.17)
or

B, =B,(M;) (4.4.18)

when applied to the interface dof, where M *® and M; are diagonal matrices with diagonal

entries the multiplicity of the corresponding dof, which correspond to the number of

subdomains that this dof belongs to.

4.4.2 LOCAL PROBLEM SOLUTION

Domain decomposition methods require the repeated solution of many local subdomain
problems corresponding to the dof of the subdomains. These local subdomain problems are
typically solved using a direct method since their size is very small compared to the size of
the global problem [38].

In the case of D-DDM, local subdomain problems are of the form:

KOU® = §60 _gO 4 (4.4.19)

where K is the stiffness matrix of each subdomain.

Page | 58

In the case of P-DDM, similar local subdomain problems require repeated solution. These

problems are of the form:
SO = f© _BO A (4.4.20)

(s)

where S® is the Schur complement matrix (Eq. (4.4.22)) and fb is the condensed force

vector (Eqg. (4.4.23)). The main difference of these local problems is the fact that they either
refer to all of the subdomain dof or to the interface ones. In the latter case, the equations
which are related to internal dof of the subdomains are eliminated first. In order to obtain
the corresponding relations, the local subdomain problem of Eq. (4.4.19) is re-arranged so

that it can be written in the form:

K(S) K(.S) U(S) f(s) B T
| AN I e R /) (4.4.21)
Kib Kii U(S) f-(s) 0

with subscripts b and i denoting the restriction of the matrices to interface (boundary) and
internal d.o.f., respectively. With this re-arrangement, the following matrices and vectors

are defined:
-1
S =KP -KP(KF) K (4.4.22)

~ -1
9= 19 -KP(KO) £ (4.4.23)
In the case of implicit dynamics, matrices K, Kt(,;), Ki(is) and $"° are coefficient matrices

of the integrated dynamic equilibrium equations and as such, they are always positive
definite. This means that the corresponding matrices of the subdomains have no null space

and the structure they refer to (adequately constrained or not) have no rigid body modes.

4.4.3 INTERFACE PROBLEM SOLUTION

Domain decomposition methods require the solution of an interface problem in the form of
the linear eq. (4.2.1) where A, x and b are the left-hand side matrix, the solution vector and
the right-hand side vector, respectively. Usually, the left-hand side matrix is symmetric and
positive definite or semi-definite. Furthermore, the above equation is typically solved
iteratively with the standard PCG method. The use of the PCG method also requires the

definition of a positive definite preconditioning matrix A'l, as an approximation of the

inverse or generalized inverse of A.

Page | 59

In the particular case of a semi-definite left-hand side matrix A (i.e. for an unconstrained
subdomain of a structural mechanics problem), a solution of the interface problem exists

under the condition:
berange(A) < nuII(A)T b=0 (4.4.24)
When the above condition holds, the interface problem has infinite solutions of the form:
x=X+null(A)a, aeR’ (4.4.25)

where X is a particular solution of the local interface and a is any vector with dimension
equal to the dimension d of the null-space of A. In the case of a semi-definite matrix A, the

PCG succeeds by computing one of the above infinite solutions of Eq. (4.4.25).

4.4.4 RIGID BODY MODES

(s)

By splitting the displacements u® of a subdomain into ur(s) and U, , the following

stands:
u® =u® +u,® (4.4.26)

Displacements ur(s) are caused by the rigid body modes of the subdomain while

displacements ud(s) are due to the stiffness K and are related to it with an equation
similar to that of eq. (4.4.19). However the stiffness matrix for these displacements does not
coincide with the one of eq. (4.4.19) since the latter also takes displacements ur(s) into
account. In order to exclude these displacements, a set of artificial constraints is imposed so
that displacements ur(s) are equal to 0. In practice, this can be accomplished by magnifying
the corresponding diagonals of the stiffness matrix by orders of magnitude, constituting
these dof practically rigid.

The stiffness matrix that occurs from this procedure now represents a statically determined
subdomain thus being positive definite and invertible, with its inverse being equal to the

generalized inverse KO” , and displacements ud(s) being equal to:

U, =K (198 4,) (4.4.27)
while displacements ur(s) are equal to:

ur(S) _R®® (4.4.28)

Page | 60

where R® is a matrix consisting of the rigid body modes of the subdomain and is equal to

the null space of the stiffness matrix K® and a® is a vector representing the contribution
of each rigid body mode at the displacement vector.

This implies that the loads f ©)_ B(S)Tib are self-equilibrated which means that:
Re (£ B(S)T/ib) -0 (4.4.29)
By combining eqgs. (4.4.26), (4.4.27) and (4.4.28) we get:
u® =K® (fO B 4,) +R®a® (4.4.30)

Egs. (4.4.29) and (4.4.30) in block form are written as:

RST(fS—BSTﬂb):O (4.4.31)
ut=K* (fs— BT/1)+ Ra (4.4.32)
where
K(1)+ R(l) a®
K = CR* = ca=| (4.4.33)
K(NS)+ R(Ns) a(NS)

For the case of eq. (4.4.20), a corresponding block form is derived and using the rationale for
the formulation of eqs. (4.4.31) and (4.4.32) we get:

R (f;-BJ4)=0 (4.4.34)
u;=8* (f;-BJ4)+Ra (4.4.35)
with
g fO
S* = fr=] (4.4.36)
g(Ns)’ fb(Ns)

and R; denoting the restriction of R°® to the interface dof.

Page | 61

4.5 SOLUTION METHODS FOR STATIC PROBLEMS

In the following sections, a series of domain decomposition methods for solving static

problems will be presented.

4.5.1 P-DDM: THE PRIMAL SUBSTRUCTURING METHOD (PSM)

The basic DDM is the primal substructuring method, abbreviated in the following as PSM. In
the context of this DDM, the internal dof of the subdomains are eliminated first. The PSM
interface displacement problem is thus obtained by combining Egs. (4.4.7), (4.4.8) and
(4.4.20) in order to form the equation

Su, = f, (4.5.1)
where
S=UsL,, f=L1f (4.5.2)
~ AT ~ . T
f. :[fb‘” R A } (4.5.3)
g
S° = (4.5.4)
g(Ns)

The solution of the linear system of Eq. (4.5.1) is usually performed with the PCG method as
stated in section 5.3, since the left-hand side matrix is symmetric and positive definite or
semi-definite.

In the past, several strategies have been proven efficient for preconditioning the underlying
iterative solver for these types of problems with a common choice being the preconditioner:

At=L, S L, (4.5.5)

which is used in the so-called Neumann—Neumann PSM [39]. More precisely, the
preconditioner (4.5.5) is implemented as follows:

A= NSKENS L, (4.5.6)

where N, is a Boolean matrix which extracts the interface dof from subdomain dof vectors,

as:

u, = Nyu®, fr=N;f° (4.5.7)

Page | 62

|4.5.2 D-DDM: THE FINITE ELEMENT TEARING AND INTECONNECTIING (FETI)
| METHOD

The FETI method [35], is a dual DDM that has been implemented for a number of problems
in computational mechanics. Since its introduction, it has attracted a lot of attention and is
considered as a fast domain decomposition algorithm suitable for both serial and parallel

computing environments.

While its predecessor, the PSM, performs iterations in order to compute the interface
displacement vector U, of the structure, the FETI method iterates on the Lagrange

multiplier vector A. The Lagrange multipliers, which represent the interaction forces
between the subdomains, are dual with respect to the interface displacements and this

explains the name dual substructuring method, in comparison to PSM.

In the context of the FETI method, the nodal force vector f of the structure is first split to the

subdomains:
f*=L,f (4.5.8)

Combining eqs. (4.4.11), (4.4.31) and (4.4.32), the following system of equations is obtained:
FF -Gl 4 d
T = (4.5.9)
-G 0 |la —e

F, =BK*B",G=BR*,d =BK* f*,e=R" f° (4.5.10)

where

In order to decouple the linear system (4.5.9), the following projector is introduced:
T 1At
P=1-QG(G'QG) G (4.5.11)

For homogeneous problems, operator P defined in eq. (4.5.11) is usually implemented with
Q=I. However, for heterogeneous problems matrix Q might be set otherwise as described at

the end of this section.

Computations involving projector P require the solution of linear problems of the form:
(G'QG)x=b (4.5.12)

which constitutes the so-called ““coarse-grid”’ problem of the FETI method. This name is
explained by the fact that GTQG is a sparse matrix, with the typical sparsity pattern of a

finite element stiffness matrix, if one considers each subdomain as a finite element node

having the same number of dof as the number of its zero energy modes. This coarse

Page | 63

problem ensures the exchange of information between remote subdomains of the structure
at each iteration of the underlying iterative solver used for the interface problem, thus

guaranteeing fast convergence.

-1
Premultiplying the first of the two matrix equations in eq. (4.5.9) with (GTQG) G'Q, it

follows that for a given Lagrange multiplier vector A, the vector of the zero energy mode

amplitudes a is equal to:
a=—(G'QG) G'Q(d-F 1) (4.5.13)

Furthermore, using egs. (4.4.32) and (4.5.13), it follows that the jump Au, = Bu® of the

displacement field at subdomain interfaces is equal to:
Au, =Bu,=d-FA+Ga=P" (d-F 1) (4.5.14)

Based on eq. (4.5.14), the linear system (4.5.9) is equivalent to the following system where

the unknown vectors A and a are decoupled:
PTFA=P'd (4.5.15)

G'a=e (4.5.16)

In order to solve egs. (4.5.15) and (4.5.16) for the Lagrange multiplier vector A, the latter is

being split as follows:
A=A, +PA (4.5.17)

where vector lo should satisfy eq. (4.5.16) and is chosen equal to:

2 =QG(G'QG) e (4.5.18)

Based on eqs. (4.5.17) and (4.5.18), the system of egs. (4.5.15) and (4.5.16) can be written as

the following interface problem:
(PTRP)Z=P"(d-F4,) (4.5.19)
In order to calculate the total displacement field u, the following steps are followed:

e The Lagrange multiplier vector Ais computed by solving the interface problem
(4.5.19).

e The Lagrange multiplier vector A is evaluated from eq. (4.5.17).

e The amplitudes a of the subdomain rigid body modes are computed from eq.
(4.5.13).

Page | 64

e Subdomain displacement fields U® are computed from eq. (4.4.32).

e The total displacement field u of the structure is finally given by U = LTpuS

The two most widely used preconditioners for the FETI method are:

F° =B,SB] (4.5.20)

=t T
F- =B, KB, (4.5.21)
the Dirichlet and the lumped preconditioners.

The Dirichlet preconditioner is typically used in fourth-order problems. Moreover, in second-
order problems, the lumped preconditioner is usually more efficient in terms of the total
solution time. In some second-order problems however, namely in highly heterogeneous
structures and in problems where subdomains of bad aspect ratio are generated, the

Dirichlet preconditioner may outperform the lumped one. Variant forms of the Dirichlet
preconditioner using approximate expressions for Ki? of the Schur complement S°® may also

be used.

Accordingly, these proconditioners can be used as values for matrix Q of projector P in case

of heterogeneous problems.

4.5.3 P-DDM FOR STATIC ANALYSIS WITH D-DDM BASED PRECONDITIONERS:
THE PFETI METHOD

In this section, we introduce a new category of preconditioners for the PSM originally

proposed by Fragakis and Papadrakakis [38]. An iterative solver is applied for the solution of

the interface problem (4.5.1) in order to compute the interface displacement vector Uy,

A

given an interface force vector f,. A good preconditioner for the PSM must treat the kth
residual r' = f, —Suk‘j as applied forces on the interface nodes of the structure and return

in z“=A""a good estimate of the interface displacements of the structure for the
applied forces r. For instance, if the PSM preconditioning step is performed with any
solver, like for example the FETI method, the iterative solver will immediately converge in
the first iteration. The PFETI method consists of using as preconditioner of the PSM, a crude
approximation of the FETI solution and as such, the first estimate for the interface
displacements of the structure obtained from the first iteration of the FETI method is

chosen.

For example, consider the FETI algorithm with an applied forces vector f equal to:

Page | 65

f=NJr (4.5.22)

Since all forces in the load vector of eq. (4.5.22) are applied on the interface nodes of the
structure, we have f, = r and f.* =0. Furthermore, the interface forces f, may be split

to the subdomains with the equation:
k
fy = L, f, = L,r (4.5.23)
From eqs. (4.4.23) and (4.5.22), it follows that fA,DS = fbS = Lpbl’k . The components of e and d
of eq. (4.5.10) thus become e = R® f° = R;T r* and d =BK® f* = BbSy Lpbr‘k . Moreover,

with respect to interface values, matrix F, may be written as F, = BK* B = Bng B, .

Futhermore, the initial Lagrange multiplier vector 4, is equal to:
-1 T
4, =QG(G"QG) "R;'r* (4.5.24)
Combining eqs. (4.5.13) and (4.5.24), initial zero energy mode amplitude @, is equal to:

a,=—(G'QG) G'Q(d~F,%)=—(G'QG) G'QB,S* (L,r*~Bl4,)
(4.5.25)

Combining the above equation with egs. (4.4.15) and (4.4.35), the interface displacements

U, estimated from the initialization of the FETI method are:

-0, (55* (=Bl 4,)-R: (G'QG) "GQB,S* (L, r* - Bgﬂo))

_ |_pr(| —R;(GTQG)leTQBb)SS* (L,r*~Bl4)

. (| —R:(67QG)" GTQBb)SS* (l ~B]QG(G'QG) ' R!) L "
(4.5.26)

From the above equation, the PSM preconditioner is deduced:

A-1 T Test

A"=L,H,S* H,L, (4.5.27)
where

H,=1-B]QG(G'QG) R (4.5.28)

Page | 66

4.6 SOLUTION METHODS FOR DYNAMIC AND POROUS MEDIA PROBLEMS

In the following sections, a series of domain decomposition methods for solving dynamic
problems will be presented. These problems are considered to be temporally discretized

with an implicit scheme as the one shown in section 2.10

4.6.1 D-DDM WITH NO COARSE PROBLEM FOR IMPLICIT DYNAMICS

The main difference of the D-DDM for implicit dynamics compared to the initial FETI variant
of dual substructuring method used for static problems, is the absence of the coarse
problem related to the rigid body modes of the subdomains, since all subdomains develop

internal strains and stresses due to inertial forces. The interface problem to be solved is:
FA=d (4.6.1)

with the preconditioners utilized for the underlying iterative interface problem solver being

the same as the ones used at the dual substructuring method [40].

The dual substructuring method is designed to solve problems which may contain floating
subdomains, that is subdomains with zero energy modes which exhibit singular coefficient
matrices. In that case, the local problems described by eq. (4.4.19) are ill-posed and in order
to guarantee their solvability, it is required that eq. (4.4.31) stands. This solvability condition
forms a natural coarse problem which, as stated above, is absent in this D-DDM dynamic
version because it is applicable to linear systems that have non-singular coefficient matrices
and thus it does not require the solvability condition. However, this lack of a coarse problem
constitutes this D-DDM non-scalable as the error propagates slowly when the number of
subdomains is high. In the following sections, a family of D-DDM is discussed which use the

two-level technique in order to impose a coarse problem which ensures scalability.

4.6.2 D-DDM FAMILY WITH AN ARTIFICIAL COARSE PROBLEM FOR IMPLICIT
DYNAMICS

This family of D-DDM is based on a FETI variant which imposes an artificial coarse problem.
The implicit dynamic versions of D-DDM are constructed by applying the two-level technique
on the standard D-DDM with no coarse problem [41]. By combining egs. (4.6.1), (4.3.19) and
(4.3.20), the following interface problem is needed to be solved:

PF,A=Pd (4.6.2)

Page | 67

where
-1
P=1-C(C'FC) C'F, (4.6.3)

As in the D-DDM with no coarse problem, the preconditioners used for the implementation
of this version with the PCG method are the same with the standard D-DDM and are given
by egs. (4.5.20) and (4.5.21).

The introduction of matrix C is equivalent to imposing a set of optional admissible

constraints. These constraints adhere to the following equation:

s=N, .
C" > BYu® =0 (4.6.4)

s=1

f
where U are the exact solutions of the local problems (4.4.19) and are called optional
because they are not required for the solution of these local problems. In order to impose

these constraints, a starting vector is chosen equal to:
-1
A"=C(C'FC) C'd (4.6.5)

Due to the nature of these constraints, any properly chosen matrix C with linearly
independent columns will exhibit superior convergence properties compared to the D-DDM

with no coarse problem.

The application of a PCG algorithm for the solution of the interface problem resulted from
the D-DDM with no coarse problem is quite straightforward. In the case of D-DDM family
with an artificial coarse problem, based on optional admissible constraints, special
considerations have to be implemented in order to evaluate the projector P. For reasons of
completeness, a typical projection step occurring in every iteration, which includes the

evaluation of an inner product of the projector with a vector, is described as follows:
T 1T w Y T
y="Pz :(I —C(C FIC) CF)z = z—(C(C W) W)z =72-XZ (4.6.6)
where:
W=FC=F][c, ¢, - c] (4.6.7)

and C,...C, are the columns of matrix C. Evaluation of matrix W is equivalent to solving a

linear system with n right-hand sides.

In order to evaluate the Xz inner product of eq. (4.6.6), the following steps have to be

performed:

Page | 68

Evaluate a=W"z (4.6.8)
Solve (C'w)x=a (4.6.9)

Evaluate b =Cx

After a closer look at the algorithm, it is evident that the W matrix is needed for every
projection step of Eq. (4.6.2) and is involved in two operations in Eq. (4.6.6). As a result, it is
prudent to store this matrix after its calculation and use it in subsequent stages of the

projection step since it is required to be computed at each projection step twice.

It is evident that storage and computational costs related to the projector P are directly

related to both the size and the efficient computation of matrix C.

|4.6.3 P-DDM FAMILY WITH AN ARTIFICIAL COARSE PROBLEM FOR IMPLICIT
| DYNAMICS

This P-DDM family belongs to the PFETI family of methods and consists of the PSM,
preconditioned with an estimate for the interface unknowns of the domain. This estimate is
obtained from the first iteration of the D-DDM family with an artificial coarse problem based
on optional admissible constraints [36, 37]. Thus, this P-DDM family is in fact a PSM

algorithm with the following preconditioner:
Aior (ssl ~$*'BIC(C'RC) ' CTB,S*) L, (4.6.10)

As in the case of the D-DDM family with an artificial coarse problem based on optional
admissible constraints, any properly chosen matrix C with linearly independent columns will
exhibit superior convergence properties compared to the PSM because of the implicit

introduction of a coarse problem.

Implementation-wise, the preconditioning step of a primal DDM when solved with a PCG

algorithm is denoted by a matrix-vector multiplication of the following form:

7“ =Sk (4.6.11)

The preconditioner shown in Eq. (4.6.10) is never constructed explicitly. Instead, the

following calculations take place at the preconditioning step:

Evaluate ~ , —| r*

Page | 69

Solve S°x =y
Evaluate d =B, x
Evaluate o—CTp
Solve (C'W)y=e
Evaluate | =Cy
Evaluate - BT|
Solve S*g=p
Evaluate 7k —=|T x
Evaluate 7k =T q
Evaluate 7« —zk_zk

It can be easily seen that these steps are a super-set of the calculations performed for the
projector evaluation of the D-DDM family with an artificial coarse problem based on optional
admissible constraints, with the exception of the calculation in Eqg. (4.6.8). As result, storage
and computational costs related to the calculation of the preconditioner are directly related

to both the size and the efficient computation of matrix C.

4.6.4 D-DDM-S AND P-DDM-S: SOLID BASED D-DDM AND P-DDM FOR ONE-
PHASE AND POROUS MEDIA PROBLEMS

For structural dynamics problems, matrix C can be set equal to [37, 42]:

C =QG, (4.6.12)
where:
G, = [BG)R(@ B(NS>R(NS>} (4.6.13)

and K is the coefficient matrix of a subdomain for the corresponding static structural

problem with all its displacement boundary conditions removed. Calculating the null space

of K can be done using geometric-algebraic algorithms, which are very cost-effective and
robust. Matrix Q can be set equal to unity or according to egs. (4.5.20), (4.5.21) , depending

on the nature of the problem (homogeneous, heterogeneous, fourth-order problems).

Page | 70

The same principal can be applied to porous media problems with K® being the coefficient
matrix of the soil skeleton, thus constituting the D-DDM-S method. Its primal counterpart is

the P-DDM-S method which consists in applying the PSM with the following preconditioner:

At=L (s ~S¥B]QG(G'QF, QG)‘1 G'Q"B,S*) L, (4.6.15)

|4.6.5 D-DDM-P AND P-DDM-P: PERMEABILITY BASED D-DDM AND P-DDM FOR
| POROUS MEDIA PROBLEMS

An alternative to the use of the soil skeleton stiffness matrix null space for the construction
of matrix C, is the usage of the permeability matrix null space [42]. In this case, matrix C

becomes equal to:

C=E, (4.6.16)
where:

E, - [B(”RH(” B<NS>RH<NS>] (4.6.17)

R, = nuII(H(S)) (4.6.18)

and H® is the permeability coefficient matrix of subdomains with all their pore boundary

conditions removed. This choice of matrix C constitutes the D-DDM-P method.

The null space of H® is equivalent to the null space of a structural problem with one dof
per node and is equal to a vector with equal values at each position (ie. unity). This
equivalence stems from the fact that the stiffness matrix has the same form as the

permeability matrix assuming that the structural problem has one dof per node. In

0
particular, if S = 6_ and D = E the generic expression of the stiffness matrix becomes
X

T o) @
K =[B"DBdOQ=[(SN) ESNdx:j(&NJ E— Ndx (4.6.19)

where E is a scalar denoting the Young’s modulus. The above expression is identical to the

expression of Eq. (14) for the permeability matrix HE.

The primal counterpart of D-DDM-P is the P-DDM-P method which consists in applying the

PSM with the following preconditioner:

Page | 71

A= Lpr (SS-l -5 By E, (EIT FE,)_1 = BbSS-l) L, (4.6.20)

Both D-DDM-S and D-DDM-P methods, along with their corresponding primal counterparts
P-DDM-S and P-DDM-P, are variants of the DDM family with an artificial coarse problem
based on optional admissible constraints, varying on the selection of matrix C. This selection
defines a number of properties of the method, such as the size of the coarse problem, the
projector evaluation time, storage requirements, number of iterations and computational

time.

All these properties are directly related to the size of matrix C. With ndof(s’ being the
number of dof per subdomain, the size of matrix C, for a 3D continuum problem in the case

of D-DDM-S and P-DDM-S, is Ny ®)x 6 per subdomain, where as in the case of D-DDM-P

and P-DDM-P, the corresponding size per subdomain is only N,) %1. This means that the

size of the porous coarse problem with 200 subdomains grows by three orders of magnitude
for the D-DDM-S and P-DDM-S variants, as opposed to only two orders of magnitude when
using D-DDM-P and P-DDM-P. This difference of one order of magnitude has a significant
impact on the efficiency of the D-DDM-P and P-DDM-P methods compared to the D-DDM-S
and P-DDM-S methods.

Eqg. (4.6.7) shows that the projector evaluation time is directly proportional to the size of
matrix C. Since matrix W has to be stored in order to accelerate the projector evaluation for
each iteration, the size of matrix W is also directly proportional to the storage requirements.
Finally, egs. (4.6.8) and (4.6.9) show that the required time per iteration is also proportional

to the size of the chosen matrix C, since both calculations are time-consuming.

4.7 SOLUTION METHODS FOR STOCHASTIC PROBLEMS

The most straightforward technique of solving stochastic partial differential equations (PDE)
are the widely applicable non-intrusive Monte Carlo (MC) methods. They can handle any
type of problems (linear, nonlinear, dynamic) as well as any kind of uncertainty in the load or
in the system properties. In particular, when dealing with deterministic external loading, MC
methods feature the solution of successive linear systems with multiple left-hand sides,
since only the coefficient matrix K changes in every simulation. On the other hand, recently
proposed approaches, such as stochastic collocation and Galerkin methods, are intrusive and
are using tensor product spaces for the spatial and stochastic discretizations. In the case
where the uncertain input parameters are modeled via the Karhunen-Loeve (KL) expansion
and the system response is projected on a polynomial chaos (PC) basis, the method is called
spectral stochastic finite element method (SSFEM). SSFEM approach applies a Galerkin
minimization in order to transform a stochastic PDE into a coupled set of deterministic PDEs.

Page | 72

In MC methods due to the fact that the solution process has to start from the beginning, a
new stiffness matrix needs to be formed at each simulation. Thus, the repeated solutions of
the system of equations for each newly formed solution becomes a major computational
task that hinders the stochastic assessment of large-scale problems with MC methods. In
SSFEM approach the solution of stochastic problems has to be performed on augmented
linear equation systems which can be orders of magnitude larger than the corresponding
deterministic ones [25, 24] and thus, as in MC methods, for large-scale problems the
solution of such augmented algebraic systems can become quite challenging due to the

increased memory and computational resources required.

In the following sections, a set of custom-tailored solution methods will be presented,
combining iterative solution methods and domain decomposition, providing superior

numerical performance.

4.7.1 THE MC-PCG METHOD FAMILY

In high performance computing environments which feature computing systems with
multicore processors and distributed memory architectures, iterative schemes are more
advantageous since they manage to harness the computational power of such environments
while being custom tailored to the particular properties of the equilibrium equations arising
in the context of the numerical simulation used. In order to efficiently solve the resulting
algebraic equations of a MC simulation, an iterative solver based on the PCG algorithm (see

Chapter 4.3) is implemented.

The PCG algorithm equipped with a preconditioner following the rationale of incomplete

Cholesky preconditioning features an error matrix E;. This matrix is dependent on the

discarded elements of the lower triangular matrix produced by the incomplete Cholesky
factorization procedure, which do not satisfy a specified magnitude or position criterion

[43]. Considering the near-by problems of the form:

sim

(Ko +AK Ju; = f, i=1...n, (4.7.1)

if matrix E; is taken as K,, the preconditioning matrix becomes the initial matrix A= K,-

The PCG algorithm equipped with the latter preconditioner throughout the entire solution
process constitutes the MC-PCG-Skyline method for the solution of the nsim near-by

problems of eq. (4.7.1).

With the preconditioning matrix A= K, remaining the same during the successive Monte
Carlo simulations, the repeated solutions required for the evaluation of the preconditioned

residual vector z¥ = Ar* can be treated as problems with multiple right-hand sides, since

Page | 73

this vector needs to be evaluated at each PCG iteration k of each simulation i. In order for
this evaluation to be efficient, a solution scheme capable of solving efficiently problems with

multiple right-hand sides is required.

The original MC-PCG-K, algorithm proposed in [44] uses a Cholesky direct solver for
performing the proconditioning step, where K| is factorized to LL" at the beginning of the

Monte Carlo simulation procedure. Subsequently, each evaluation of the preconditioned

residual vector is carried out by a forward substitution, a vector operation and a backward

substitution. Another implementation for obtaining the preconditioned residual vector " is
proposed [45] where the dual domain decomposition FETI method is applied to perform the
repeated solutions in parallel computing environment and is called the MC-PCG-FETI
method. In the present work, each evaluation of the preconditioned residual vector is
carried out using a PFETI solver [38], optimized for multiple right-hand sides [36] (see
Chapter 4.3.2), adhering to the rationale of the PCG method, where the preconditioning step
is performed with the FETI method. The latter method is called the MC-PCG-PFETI method.

4.7.2 THE SSFEM-PCG METHOD FAMILY

The augmented systems that are generated when using SSFEM are perfect candidates for
iterative solvers since iterative solvers are flexible enough to be custom tailored to their

particular properties while being suitable for high performance computing environments.

Current literature has provided solution procedures for solving eq. (3.8.25) that address
small to medium problems. However, as the problem size grows, such a solution can
become quite challenging due to the enormous memory and computational resources
required. Contemporary efficient solution techniques are based on iterative solvers like the
block Gauss-Jacobi [46], the CG [47, 28] and the block PCG [48].

In this work, specialized preconditioners that take advantage of the properties of the
augmented SSFEM linear systems are used. In particular, two solution preconditioners are

used and compared for efficiency for the case of Gaussian distribution. The first one is of the

form:
akK, 0 0
~ 0 K, ... 0
A=| . . . 11 (4.7.2)
: : . 0
0 0 K,
where ai,i =1...n are the coefficients as calculated from the polynomial chaos bases as

shown in described in chapter 3. For each evaluation of the preconditioned residual vector,

Page | 74

the same K0 matrix needs to be inverted n times and, as in the case of the MC-PCG-K,

method, this matrix inversion is implemented as a linear system solution. Since matrix Ais
block diagonal, the solution process can be pipelined as the successive solution of n linear
systems with multiple right-hand sides. The PCG algorithm equipped with the latter
preconditioner and utilizing the PFETI method for solving the successive linear systems,
introduced during the evaluation of the preconditioned residual vector, constitutes the
SSFEM-PCG-B method for the solution of the augmented linear system that is the outcome
from the SSFEM implementation.

The second preconditioner is based on the rationale of the SSOR-based preconditioners. In
particular, the augmented matrix K is decomposed into a diagonal component D, and a

strictly lower triangular component L of the form:

0 0 . 0
K 0 . 0
L= 2 (4.7.3)
K, . 0
Ky Ko, . 0
Using this decomposition, the aforementioned preconditioner is of the form:
A -1 T A-1 T\1 -1
A=(D-L)D*(D-L")= A*=(D-L") D(D-L) (4.7.4)

In this work, evaluation of the preconditioned residual vector of the PCG algorithm is

implemented as follows:
e Solve (D - L) Zlk =r* (4.7.5)

e Evaluate z = Dz

e Solve (D — LT)Zk = Z; (4.7.6)

The linear system (4.7.5) is lower triangular and its solution involves the implementation of a

forward substitution algorithm in block form, as follows:

a11KoX1 = bl
ay lez + Ay Ko X, = bz
a,.Kx. + a,Kyx + .. + a, Kx, = b

Page | 75

where rk:[blT b, ... bT]T) Zlkz[xiT X, ... XmT]T and a K, are the

m
various block matrices as they occur from the formulation of the SSFEM augmented system.
The evaluation of these block equations are executed in a sequential manner and are

implemented as the successive solution of the following linear systems:

(4.7.7)

Similarly, the linear system (4.7.6) is upper triangular and its solution involves the

implementation of a backward substitution algorithm in block form, as follows:

a11KOY1 + a12KZY2 + . aimeym = G
azzKoyz + . aZmKnym = G
ammKOym = Cm
where zzk:[clT c, ... cmT]T and zk:[ylT v, .. ymT]T

The evaluation of these block equations are executed as the successive solution of the
following linear systems:
C

Koym = am

mm

Cm—l - am—l,m—le—lxm—l

a

KO ym—l =

m-1,m-1

(4.7.8)

m-1
C,— Z a; Ki X;
Ko Yi= |=;1
1

The PCG algorithm equipped to the latter SSOR preconditioner and utilizing the PFETI

method for solving the linear systems occurring from the aforementioned forward and

Page | 76

backward substitutions, constitutes the SSFEM-PCG-S method for the solution of the

augmented linear system that occurs from the SSFEM.

It is worth noting that in contrast with the common SSOR preconditioner applied in an
iterative solver, the evaluation of the preconditioned residual vector of the SSFEM-PCG-S
method is parallel and scalable due to the fact that all block matrices that take part on the
matrix-vector multiplications operations of the forward and backward substitutions are
already decomposed into subdomains. This means that each operation of these forward and
backward substitutions, including both the matrix-vector multiplications and the solution
process, are carried out in parallel, exhibiting the scalability of the PFETI method [38].

Implementing the A matrix-vector product

The augmented systems that are generated from the application of the SSFEM involve large
coefficient matrices that feature a block form. Each block is comprised of a linear
combination of stiffness matrix realizations that have identical structure and bandwidth with

the deterministic matrix K.

Figure 4.2 - Topology of K for the lognormal case (M=2, p=2)

Both the SSFEM-PCG-B and SSFEM-PCG-S methods need the evaluation of the A matrix-
vector product at each iteration i. In this work, this evaluation is performed as a series of
matrix-vector multiplications where the evaluated vectors are linearly combined in order to

form the resulting vector. An example of this process for the case of a SSFEM augmented

Page | 77

linear system as shown in Figure 4.2, where the A matrix-vector product qk = Apk for

iteration k is evaluated in 6 consecutive steps, is shown below:

Initialization step:

Step i=4:

KT KT KT

T T 7T
R S A A A A

T T T T T T T
qu :[oqg ochk oq; oqg oqz oqsk :| =0

s =400 + Ko pg
0 =0 + K py
0= g“+K.pX
Step i=1: |qi |—1qzk OpZ)
iq3:i—1q3+K0'2p3
s = .05 + K, ps

k

ilds = i—1q:+K0'2p5

G = 10g + K, g

iqlk = i_1Q1k+K1pcl)(+K1'2p§
Step i=2: G, = ;05 + K, p,

O =40 + K, -2pf

s =40 + K, p;

G5 =10y + K, Py
O = a0 + K, Py
Stepi=3: y =, 40 + K, p} +K,-2p;
05 = 405 + K, py
iqg = i—1qg + K2'2plz(

Oy =105 + Ky -2p5
k

iql - i71q1k+K3‘2p1
Oy =05 +K;-2pg + K, -8p;

Oy = .0 + Ky -2py

Page | 78

qu

A

Step i=5: %
0

10

iUs

9o

Step i=6: ,Q;
il

= 110 + K, P
= 1% +K,p;
= 40 + K, p;
=10 +K,-2p;

k

k

k

= .05 +K,ps+ K, -2ps
= i—lq: + K4 'ZpE

k

i—lqg + Ks -2 Ps
k

i—lq§+K5'2p2
i—lq:+K5'2pg+K5'8p:

with qu = qk. By examining these steps, it is evident that the A matrix-vector product

evaluation is computationally intensive since for a 6x6 matrix, 34 matrix-vector (MV)

products are being computed. In this work, a caching scheme has been developed for the

log-normal case, in order to minimize the computational burden of this evaluation, which is

described in the following section.

A caching scheme for the log-normal case

Stochastic problems modeled with input random fields featuring a log-normal distribution,

produce coefficient matrices that have three major differences when compared to the ones

produced from a problem modeled with a Gaussian distribution. The coefficient matrix

sparsity in a log-normal case is

i much denser when compared to the Gaussian ones,
ii. each block position might be the result of a linear combination of the stochastic
matrices while in Gaussian coefficient matrices, each block position is occupied by a
stochastic matrix multiplied by an integer coefficient and

iii. the structure of a number of block diagonal matrices is the result of a linear
combination of the deterministic matrix and some of the stochastic matrices, while

for Gaussian coefficient matrices, each block position is occupied only by the
deterministic matrix multiplied by an integer coefficient.

non-zero
size blocks
P multiplier (Gauss)
2 6 12
3 10 24

non-zero
block (log-
normal)

30

100

Page | 79

4 15 40 324

Table 4.3 - Sparsity of the resulting augmented stochastic Karhunen-Loeve expansion for M=2

These differences affect considerably the performance of the solvers, with respect to the
number of iterations necessary for convergence and the amount of computations required
to perform each PCG iteration. The computational effort is further magnified due to a more
cumbersome implementation of the A matrix-vector product evaluations that are needed in
each iteration of the SSFEM-PCG-B and SSFEM-PCG-S methods.

As shown in the previous section, the augmented matrix is not formulated as a whole and
each product is being evaluated by multiplying every block matrix with its corresponding
block vector and accumulating the partial results to the corresponding position of the
resulting vector. This means that if a block position of the coefficient matrix comprises a
linear combination of n terms, n matrix-vector products, must be evaluated, just for the
complete calculation of this position’s contribution to the result vector. For a Gaussian field

however, only one matrix-vector product for each block position needs to be evaluated.

In order to alleviate this additional computational effort, a caching scheme has been applied
where each unique linear combination that occurs in every block position is being pre-
calculated and stored in order to reduce the computation cost of each A matrix-vector
evaluation at each iteration of the PCG-B and PCG-S methods.

In order to demonstrate this technique, we consider M=2, p=2 for the Log-normal case as
depicted in Figure 4.2 where the linear combination 1K + 2K, is found two times. At the
uncached case, we would need to perform 4 matrix-vector operations and 4 linear scaling
operations in order to compute the contribution of these two terms at the final term, as
shown in the previous section. However, for the cached case where the linear combination

1K, + 2K, is stored as a separate matrix, only 2 matrix-vector operations need to be

performed.

The following tables compare the amount of matrix-vector products needed for a Kahrunen-

Loeve expansion of M=4 and a polynomial chaos expansion p varying from 4 to 6.

non-
matrices zero total mv
P stored blocks products
4 70 3090 4937
5 126 10158 19542

Page | 80

6 210 29448 70952

Table 4.4 - Metrics for the normal scheme of the SSFEM-PCG family

non-
matrices zero total mv
P stored blocks products
4 710 3090 3090
5 2109 10158 10158

6 6064 29448 29448

Table 4.5 - Metrics for the cached scheme of the SSFEM-PCG family

This caching scheme requires one to two orders of magnitude more computer memory
resources for storing the corresponding stiffness matrices but it can offer significant

performance benefits as it is shown in the numerical examples section of this work.

A full block preconditioning scheme for the log-normal case

The existence of linear combinations of the deterministic matrix with stochastic ones at the
block diagonal of the coefficient matrix can really deteriorate the convergence rate of the
block diagonal preconditioner of the SSFEM-PCG-B method. This is more pronounced at
large input covariances where the magnitude of the stochastic matrices is comparable to the
magnitude of the deterministic one. This is also the case for the SSFEM-PCG-S method where
the solution of a linear system at the end of each block row of the preconditioner is
required. If only the deterministic part is taken into account, convergence will deteriorate

for large input covariances.

Instead of using the PFETI solver, optimized for multiple right-hand sides as per the SSFEM-
PCG-B and SSFEM-PCG-S solvers, a PCG solver is used for the full linear combination having
the aforementioned PFETI solver as its preconditioner, as in the case of the MC-PCG-K,

solver described earlier.

As in the case of the Monte Carlo simulations, the repeated solutions required for the
preconditioning step of the MC-PCG-K, algorithm can be treated as problems with multiple
right-hand sides, since the entries in the residual vector are updated at each PCG iteration m

of each block diagonal part of the coefficient matrix.

In order to illustrate this technique, we consider the augmented stiffness matrix of Figure
4.2. For the SSFEM-PCG-B method, the preconditioner is of the form:

Page | 81

KO

p~!
I

K, +2K,

K, +2K,

K, +8K,

K, +2K,

2K, +8K, |

This means that for each iteration k of the SSFEM-PCG-B method, the preconditioned

residual vector involves the solution of the following linear systems:

kT

with z¥ :[z0 A

kT

KT KT
Z, Zg

z

s s

The PCG algorithm equipped with the preconditioner of the SSFEM-PCG-B method and

utilizing the MC-PCG-K, method for solving the

linear systems occurring at the

preconditioned residual vector evaluation, constitutes the SSFEM-PCG-BF method for the

solution of the augmented linear system that occurs from the SSFEM.

In the same fashion, the PCG-S method requires the successive solution of systems (4.7.5)

and (4.7.6) which for the case considered are of the form:

Koxl = 61

X, =0
5 = Mg
Xs =Dy

with vectors 6. and C, begin equal to the right hand sides as shown in egs. (4.7.7) and

(4.7.8) respectively.

Page | 82

The PCG algorithm equipped with the block SSOR preconditioner of the SSFEM-PCG-S
method and utilizing the MC-PCG-K, method for solving the linear systems occurring at the

preconditioned residual vector evaluation, constitutes the SSFEM-PCG-SF method for the
solution of the augmented linear system that occurs from the SSFEM.

Page | 83

5

PROGRAMMING PARADIGMS

Data structures only

record

Descriptive
declarative

+ procedure

"More is not better (or worse) than less, just different."

The principal programming paradigms

v1.03 © 2007 by Peter Van Ray

i H
e EYES Pt : : + cell Gsuate) o
' £ 0]
v _nondeterminism? Yes No_ | : :
' ' . Paseal, C
+ closure] i Tmy ve
. T + search
T 1
+ unification ' G niins 1 SNOBOL, Icon, Prolog
(equality) —_— r: (unforgeable constant)
continuation '
‘ ADT : ADT sricell
: O teell [. POy (state) + closure
I 1 i sty 73 e
i
] ' 3 Event-| ;
Scheme.ML | “Hael, ML,E | CLU,0z N object—oriented
+ by—need + thread i [RPIOSROIILES)
synchron. + single assign. | Stateful
Prolog, SQL Monotonic ;] + thread functional
embeddings dataflow : i TETETor i
+ solver | _programming [+ nondeterministic + port | programming | Java, OCaml
Declarative g choice | (channel) M. 7 + thread
| il ' Multi—agent rent C -]
CLP, ILOG Solver | dataflow object—oriented
+ thread Unix pipes!] ¢ Lee | programming
+ thread ' ntlogic | | Oz, Alice, AKL Shared-state
+ single assignment nming : aciment
1 FGHC, FCP, i
LIFE, AKI ity 0z, Alice, AKL JonANe,
+ by—need synchrenization Lazy ' + synchronizarion o s
e : on partial termination tlog
‘ H oftware
A 1 : E, Oz, Alice, ,:mw
0z, Ali Oz, Al ; FrTi : l,mlﬂlsws“b(slfl‘z’ie’ Il
z, Alice 1z, Alice : rTime tuple space (Linda -
> s ! ! ple sp) SQL embeddings
] 1
i H
N " ' Dataflow and .
- Functional ! |\ message passing Message passing Shared state)
it ; Weak state : PER, AP
No state ' ! Stateful
More declarative : + : t = Less decl,

Page | 84

5.1 THE OBJECT-ORIENTED PARADIGM

Object-oriented technology is built upon a sound engineering foundation, whose elements
are collectively called the object model. The object model encompasses the principles of
abstraction, encapsulation, modularity, hierarchy, typing, concurrency, and persistence.
None of these principles are new but, in object-oriented programming, these elements are

brought together in a synergistic way.

Object-oriented analysis and design is fundamentally different than traditional structured
design approaches since it requires a different way of thinking about problem
decomposition. Moreover, it produces software architectures that are very different from
those produced by following structured design patterns. These differences arise from the
fact that structured design methods build upon structured programming, whereas object-

oriented design builds upon the object model.

Looking back upon the history of software engineering, two trends are noticeable
¢ The shift in focus from programming-in-the-small to programming-in-the-large
¢ The evolution of high-order programming languages

Most new industrial-strength software systems are larger and more complex than their
predecessors. This growth in complexity has prompted a significant amount of useful applied
research in software engineering, particularly with regard to decomposition, abstraction,
and hierarchy with the development of more expressive programming languages to having
complemented these advances. The trend set is to move away from languages that tell the
computer what to do (imperative languages) and lean towards languages that describe the
key abstractions in the problem domain (declarative languages). In successive generations,

the kind of abstraction mechanism each language supported changed.

First-generation languages were used primarily for scientific and engineering applications,
and the vocabulary of this problem domain was almost entirely mathematics. Languages
such as FORTRAN 1 were thus developed to allow the programmer to write mathematical
formulas, thereby freeing the programmer from some of the intricacies of assembly or
machine language. This first generation of high-order programming languages therefore
represented a step closer to the problem space, and a step further away from the underlying

machine.

Among second-generation languages, the emphasis was upon algorithmic abstractions. By
this time, machines were becoming more and more powerful, and the economics of the
computer industry meant that more kinds of problems could be automated, especially for
business applications. Now, the focus was largely upon telling the machine what to do: read
these personnel records first, sort them next, and then print this report. Again, this new

Page | 85

generation of high-order programming languages moved a step closer to the problem space,

and further away from the underlying machine.

By the late 1960s, especially with the advent of transistors and then integrated circuit
technology, the cost of computer hardware had dropped dramatically, yet processing
capacity had grown almost exponentially. Larger problems could now be solved, but these
demanded the manipulation of more kinds of data. Thus, languages such as ALGOL 60 and,
later, Pascal evolved with support for data abstraction. Now a programmer could describe
the meaning of related kinds of data (their type) and let the programming language enforce
these design decisions. This generation of high-order programming languages again moved
developers a step closer to the problem domain, and further away from the underlying

machine.

In the 1970s, programming language research was very active, resulting in the creation of
literally a couple of thousand different programming languages and their dialects. To a large
extent, the drive to write larger and larger programs highlighted the inadequacies of earlier
languages. As a result, many new language mechanisms were developed to address these
limitations. Despite the fact that few of these languages survived, many of the concepts that
they introduced found their way into successors of earlier languages. Characteristic
examples are Smalltalk (a revolutionary successor to Simula), Ada (a successor to ALGOL 68
and Pascal, with contributions from Simula, Alphard, and CLU), CLOS (which evolved from
Lisp, LOOPS, and Flavors), C++ (derived from a marriage of C and Simula), and Eiffel (derived

from Simula and Ada).

Figure 5.1 - Topology of OO languages for small- to moderate sized applications

Page | 86

The importance of data abstraction to mastering complexity is fundamental: “The nature of
abstractions that may be achieved through the use of procedures is well suited to the
description of abstract operations, but is not particularly well suited to the description of
abstract objects. This is a serious drawback, for in many applications, the complexity of the
data objects to be manipulated contributes substantially to the overall complexity of the

problem” [49]. This realization had two important consequences:

e Data-driven design methods emerged, which provided a disciplined approach to the
problems of doing data abstraction in algorithmically oriented languages.
e Theories regarding the concept of a type appeared, which eventually found their

realization in languages such as Pascal.

The natural conclusion of these ideas first appeared in the language Simula and was
improved upon during the period of the language generation gap, resulting in the relatively
recent development of several languages such as -Smalltalk, Object Pascal, C++, CLOS, Ada,

and Eiffel which are object-oriented.

Figure 5.1 illustrates the topology of these languages for small- to moderate sized
applications. The physical building block in these languages is the module which represents a
logical collection of classes and objects instead of subprograms, as in earlier languages. To
state it another way, "If procedures and functions are verbs and pieces of data are nouns, a
procedure-oriented program is organized around verbs while an object-oriented program is
organized around nouns" [50]. For this reason, the physical structure of a small to moderate-
sized object-oriented application appears as a graph, not as a tree, which is typical of
algorithmically oriented languages. Additionally, there is little or no global data but, instead,
data and operations are united in such a way that the fundamental logical building blocks of

a system are not algorithms but classes and objects.

Figure 5.2 - Topology of large scale applications built with OO languages

Page | 87

For very complex systems, classes, objects, and modules provide an essential yet insufficient
means of abstraction. However, the object model is scalable and in large systems, clusters of
abstractions can be built in layers on top of one another. At any given level of abstraction,
meaningful collections of objects can be composed that collaborate to achieve a higher level
behavior. Examining any given cluster with respect to its implementation, more sets of

cooperative abstractions can be found as shown in Figure 5.2.

Structured design methods evolved to guide developers who were trying to build complex
systems using algorithms as their fundamental building blocks. Similarly, object-oriented
design methods have evolved to help developers exploit the expressive power of object-

oriented programming languages, using the class and object as basic building blocks.

Actually, the object model has been influenced by a number of factors, not just object-
oriented programming. The object model has proven to be a unifying concept in computer
science, applicable not just to programming languages, but also to the design of user
interfaces, databases, and even computer architectures. The reason for this widespread
appeal is simply that an object orientation helps to cope with the complexity inherent in

many different kinds of systems.

Object-oriented analysis and design thus represents an evolutionary development, not a
revolutionary one; it does not break with advances from the past, but builds upon proven
ones. Unfortunately, most programmers today are formally and informally trained only in
the principles of structured design. Despite the fact that countless useful software systems
have been developed using these techniques, there are limits to the amount of complexity
that can be tackled with, using only algorithmic decomposition. Furthermore, languages
such as C++ and Java are used as if they were only traditional, algorithmically oriented
languages, not only the language expressibility is underexploited but we usually end up

worse off than if we had used an older language such as C or Pascal.

In the following sections, we will talk about the goals served from the FE code that was
developed during this work and will dive into the details of the object oriented design

properties and principals.

5.2 GOALS OF A FINITE ELEMENT COMPUTER CODE

During the implementation of finite element codes at an academic or research level,
engineers tend to create programs that focus mainly on their research area. Since such
codes have been built just to serve research purposes, there is no emphasis on the number
of finite elements supported nor to the kind of problems (linear, non-linear, dynamic,
stochastic, optimization, etc) being solved. On the contrary, programs are built as simple as
possible, almost serving as a pilot or a proof of concept for the idea that the engineer has

conceived. Moreover, when special solution techniques are involved, special manipulation of

Page | 88

the data produced by the FEM (loads, stiffness matrices, mass matrices, etc) may be
considered to such an extent that, basic infrastructure methods such as global stiffness
matrix assembly may need to be rebuilt from scratch, in order to provide the appropriate

data to the implemented solvers.

Matters get more complicated when dealing with solvers that operate in parallel
environments. In order to fully exploit the power of today’s parallel processing
environments, programs must take into account both shared and distributed memory
paradigms and also consider the utilization of external processing hardware such as GPUs or
FPGAs. Finally, the data structures involved for each solver prove to be quite different which
requires an underlying message passing infrastructure that is flexible enough to

accommodate various data structures.

The main goal of the FE code that was implemented in this work is to provide a unified,
abstract and extendable infrastructure that will provide future engineers with all the
building blocks required to implement new features with respect to elements, problems and

solvers, while providing performance and scalability.

Different
finite
elements

Unified
platform

Different
computing

Different
problem
formulations

platforms

Figure 5.3 - A unified FEM platform

5.3 ASPECTS OF OBJECT-ORIENTED PROGRAMMING

Page | 89

In this section, various object-oriented properties will be presented along with design
decisions for the development and implementation of the finite element code used in this

work.

5.3.1 MODULARITY

The act of partitioning a program into individual components can reduce its complexity to
some degree. Moreover, it creates a number of well defined, documented boundaries within
the program. These boundaries, or interfaces, are invaluable in the comprehension of the
program [51]. In some languages, such as Smalltalk, there is no concept of a module, and so
the class forms the only physical unit of decomposition. In many others, including Object
Pascal, C++, CLOS, and Ada, the module is a separate language construct, and therefore
warrants a separate set of design decisions. In these languages, classes and objects form the
logical structure of a system while these abstractions are placed in modules to produce the
system's physical architecture. Especially for larger applications, in which we may have many

hundreds of classes, the use of modules is essential to help manage complexity.

Moreover, modularization consists of dividing a program into modules which can be
compiled separately but may have connections with other modules. As such, “The
connections between modules are the assumptions which the modules make about each
other” [52]. Most languages that support the module as a separate concept also distinguish
between the interface of a module and its implementation.

Particular languages support modularity in diverse ways. For example, modules in C++ are
nothing more than separately compiled files. The traditional practice in the C/C++
community is to place module interfaces in files named with an h suffix; these are called
header files. Module implementations are placed in files named with a c suffix.
Dependencies among files can then be asserted using the #include macro. This approach is
entirely one of convention; it is neither required nor enforced by the language itself. Object
Pascal is a little more formal about the matter. In this language, the syntax for units (its
name for modules) distinguishes between module interface and implementation.
Dependencies among units may be asserted only in a module's interface. Ada goes one step
further. A package (its name for modules) has two parts: the package specification and the
package body. Unlike Object Pascal, Ada allows connections among modules to be asserted
separately in the specification and body of a package. Thus, it is possible for a package body

to depend upon modules that are otherwise not visible to the package's specification.

Deciding upon the right set of modules for a given problem is almost as hard a problem as
deciding upon the right set of abstractions and according to [53] because the solution may
not be known when the design stage starts, decomposition into smaller modules may be

quite difficult. For older applications (such as compiler writing), this process may become

Page | 90

standard, but for new ones (such as defense systems or spacecraft control), it may be quite
difficult.

Modules serve as the physical containers in which we declare the classes and objects of our
logical design. For tiny problems, the developer might decide to declare every class and
object in the same package. One better solution is to group logically related classes and
objects in the same module, and expose only those elements that other modules absolutely
must see. This kind of modularization is beneficial but can be taken to extremes. Let’s
consider an application that runs on a distributed set of processors and uses a message
passing mechanism to coordinate the activities of different programs. In a large system, it is
common to have several hundred or even a few thousand kinds of messages. A naive
strategy might be to define each message class in its own module. Considering this
approach, it turns out to be a poor design decision because it creates a documentation
nightmare and makes it extremely difficult for any users to find the classes they need.
Furthermore, when decisions change, hundreds of modules must be modified or

recompiled. This example shows how information hiding can have adverse effects [54].

Arbitrary modularization can prove worse when compared to complete lack of
modularization. In traditional structured design, modularization is primarily concerned with
the meaningful grouping of subprograms, using the criteria of coupling and cohesion. In
object-oriented design, the problem is subtly different: the task is to decide where to
physically package the classes and objects from the design's logical structure, which are

distinctly different from subprograms.

Experience indicates that there are several useful technical as well as non technical
guidelines that can help to achieve an intelligent modularization of classes and objects. “The
overall goal of the decomposition into modules is the reduction of software cost by allowing
modules to be designed and revised independently. Each module's structure should be
simple enough that it can be understood fully; it should be possible to change the
implementation of other modules without knowledge of the implementation of other
modules and without affecting the behavior of other modules; the case of making a change
in the design should bear a reasonable relationship to the likelihood of the change being
needed” [55]. There is a pragmatic edge to these guidelines. In practice, the cost of
recompiling the body of a module is relatively small: only that unit needs to be recompiled
and the application to be relinked. However, the cost of recompiling the interface of a
module is relatively high. Especially with strongly typed languages, one must recompile the
module interface, its body, all other modules that depend upon this interface, the modules
that depend upon these modules, and so on. Thus, for very large programs (assuming that
our development environment does not support incremental compilation), a change in a
single module interface might result in many minutes of recompilation. Obviously, such
recompilations should not happen too frequently since they hinder productivity and for this

reason, a module's interface should be as narrow as possible, yet still satisfy the needs of all

Page | 91

using modules. A developer should aim to hide as much as possible in the implementation of
a module; incrementally shifting declarations from a modules implementation to its

interface is far less painful and destabilizing than ripping out extraneous interface code.

The developer must therefore balance two competing technical concerns, the desire to
encapsulate abstractions, and the need to make certain abstractions visible to other
modules. "System details that are likely to change independently should be the secrets of
separate modules; the only assumptions that should appear between modules are those
that are considered unlikely to change. Every data structure is private to one module; it may
be directly accessed by one or more programs within the module but not by programs
outside the module. Any other program that requires information stored in a module's data
structures must obtain it by calling module programs" [56]. In other words, a developer
should aim to build modules that are cohesive by grouping logically related abstractions and
loosely coupled by minimizing the dependencies among modules. From this perspective,
modaularity can be defined as the property of a system that has been decomposed into a set
of cohesive and loosely coupled modules. Thus, the principles of abstraction, encapsulation,
and modularity are synergistic. An object provides a crisp boundary around a single
abstraction, and both encapsulation and modularity provide barriers around this

abstraction.

Two additional technical issues can affect modularization decisions. First, since modules
usually serve as the elementary and indivisible units of software that can be reused across
applications, a developer might choose to package classes and objects into modules in a way
that makes their reuse convenient. Second, many compilers generate object code in
segments, one for each module. Therefore, there may be practical limits on the size of
individual modules. With regard to the dynamics of subprogram calls, the placement of
declarations within modules can greatly affect the locality of reference and thus, the paging
behavior of a virtual memory system. Poor locality happens when subprogram calls occur
across segments and lead to cache misses and page thrashing that ultimately slow down the

whole system.

Several competing non-technical needs may also affect modularization decisions. Typically,
work assignments in a development team are given on a module-by-module basis, and so
the boundaries of modules may be established to minimize the interfaces among different
parts of the development organization. Senior designers are usually given responsibility for
module interfaces and more junior developers complete their implementation. On a larger
scale, the same situation applies with subcontractor relationships. Abstractions may be
packaged so as to quickly stabilize the module interfaces agreed upon among the various
companies. Changing such interfaces usually involves troublesome procedures among team
members in order to update their code bases and, as a result, this often leads to
conservatively designed interfaces. Modules also usually serve as the unit of documentation

and configuration management. Security may also be an issue: most code may be

Page | 92

considered unclassified, but other code that might be classified secret or higher is best

placed in separate modules.

Taking into consideration all these different requirements is difficult but focus should be
given to the most important point: finding the right classes and objects and then organizing
them into separate modules are largely independent design decisions. The identification of
classes and objects is part of the logical design of the system, but the identification of
modules is part of the system's physical design. One cannot make all the logical design
decisions before making all the physical ones, or vice versa; rather, these design decisions

happen iteratively.

Design decision

During the design process of this code, a separation of the solver and mesh/preprocessor
data structures was deemed necessary. The rationale of this design decision was the fact
that a solver is merely a tool for the solution of a set of equations that define a certain
problem formulation, providing a set of values that have a physical meaning that
corresponds with the physical meaning of the mesh. If the equations derived from different
problem formulations have similar mathematical properties, there is no need to program
specific solvers for each formulation. The same solver can be used, provided that a
translation mechanism can generate the appropriate set of equations given the problem

formulation and the mesh

For the implementation of this design, separate classes for the solver and for the mesh were
generated, following a modular paradigm. These classes are loosely coupled via a translator
class, providing the functionality of solving different meshes and problem formulations using
any of the programmed solvers. Due to this modular design, the production of different
finite elements, problem formulations and solvers is completely independent from each
other, providing the opportunity for separate developers to program new solvers and finite

elements.

5.3.2 ABSTRACTION

Abstraction is one of the fundamental ways to cope with complexity. “Abstraction arises
from a recognition of similarities between certain objects, situations, or processes in the real
world, and the decision to concentrate upon these similarities and to ignore for the time
being the differences" [57]. Abstraction is also "a simplified description, or specification, of a
system that emphasizes some of the system's details or properties while suppressing others.
A good abstraction is one that emphasizes details that are significant to the reader or user

and suppresses details that are, at least for the moment, immaterial or diversionary" [58].

Page | 93

Moreover, “a concept qualifies as an abstraction only if it can be described, understood, and
analyzed independently of the mechanism that will eventually be used to realize it” [59].
Combining these different viewpoints, an abstraction denotes the essential characteristics of
an object that distinguish it from all other kinds of objects and thus provide defined
conceptual boundaries, relative to the perspective of the viewer.

An abstraction focuses on the outside view of an object, and so serves to separate an
object's essential behavior from its implementation. This behavior/implementation division
is called an abstraction barrier [60] achieved by applying the principle of least commitment,
through which the interface of an object provides its essential behavior, and nothing more.
An additional principle is also used which is called the principle of least astonishment,
through which an abstraction captures the entire behavior of some object, no more and no
less, and offers no surprises or side effects that go beyond the scope of the abstraction.
Abstraction focuses upon the essential characteristics of some object, relative to the

perspective of the viewer.

Deciding upon the right set of abstractions for a given domain is the central problem in
object-oriented design. "There is a spectrum of abstraction, from objects which closely
model problem domain entities to objects which really have no reason for existence" [61].

From the most to the least useful, these kinds of abstractions include the following:

e Entity abstraction — An object that represents a useful model of a problem domain
or solution-domain entity

e Action abstraction — An object that provides a generalized set of operations’, all of
which perform the same kind of function

e Virtual machine abstraction — An object that groups together operations that are all
used by some superior level of control, or operations that all use some junior-level
set of operations

e Coincidental abstraction — An object that packages a set of operations that have no

relation to each other

Developers should aim to build entity abstractions because they directly parallel the

vocabulary of a given problem domain.

A client is any object that uses the resources of another object, known as the server. We can
characterize the behavior of an object by considering the services that it provides to other
objects, as well as the operations that it may perform upon other objects. This view forces us
to concentrate upon the outside view of an object, and leads us to what the so-called
contract model of programming [62] where the outside view of each object defines a
contract upon which other objects may depend, and which in turn must be carried out by

' The terms operation, method, and member function evolved from three different programming
cultures (Ada, Smalltalk, and C++, respectively). They all mean virtually the same thing and are used
interchangeably in this work.

Page | 94

the inside view of the object itself, often in collaboration with other objects. This contract
thus establishes all the assumptions a client object may make about the behavior of a server
object. In other words, this contract encompasses the responsibilities of an object, namely,

the behavior for which it is held accountable [63].

Individually, each operation that contributes to this contract has a unique signature
comprising all of its formal arguments and return type. The entire set of operations that a
client may perform upon an object, together with the legal orderings in which they may be
invoked, is its protocol. A protocol denotes the ways in which an object may act and react,

and thus constitutes the entire static: and dynamic outside view of the abstraction.

Central to the idea of an abstraction is the concept of invariance. An invariant is some logical
condition whose truth must be preserved. For each operation associated with an object,
preconditions which are invariants assumed by the operation, as well as post conditions
which are invariants satisfied by the operation, are defined. Violating an invariant breaks the
contract associated with an abstraction. If a precondition is violated, this means that a client
has not satisfied its part of the bargain, and hence the server cannot proceed reliably.
Similarly, if a post condition is violated, this means that a server has not carried out its part
of the contract, and so its clients can no longer trust the behavior of the server. An exception
is an indication that some invariant has not been or cannot be satisfied. Certain languages
permit objects to throw exceptions so as to abandon processing and alert some other object

to the problem, which in turn may catch the exception and handle the problem.

All abstractions have static as well as dynamic properties. For example, a file object takes up
a certain amount of space on a particular memory device; it has a name, and it has contents.
These are all static properties. The value of each of these properties is dynamic, relative to
the lifetime of the object: a file object may grow or shrink in size, its name may change, its
contents may change. In a procedure-oriented style of programming, the activity that
changes the dynamic value of objects is the central part of all programs: things happen when
subprograms are called and statements are executed. In a rule-oriented style of
programming, things happen when new events cause rules to fire, which in turn may trigger
other rules, and so on. In an object-oriented style of programming, things happen whenever
we operate upon an object (in Smalltalk terminology, when we send a message to an
object). Thus, invoking an operation upon an object elicits some reaction from the object.
What operations we can meaningfully perform upon an object and how that object reacts

constitute the entire behavior of the object.

Design decision

During the design process of this code, the implementation of different solvers was deemed
necessary. These solvers had differences, not only on the underlying mathematics but on

their implementation as well. Specifically, both single-domain and multi-domain solvers

Page | 95

were implemented in order to investigate their efficiency, accuracy and scalability on a

variety of physical problems of varying magnitude.

Due to the very different nature of these solvers, it would be impossible to use traditional
programming techniques and be completely agnostic of the nature and internals of each
solver. However, using abstraction, we were able to use any solver from the other code
modules without knowing, either the identity or the specific implementation details of each

solver.

5.3.3 ENCAPSULATION

Encapsulation enforces that "no part of a complex system should depend on the internal
details of any other part" [64]. Whereas abstraction "helps people to think about what they-
are doing, encapsulation allows program changes to be reliably made with limited effort”
[65].

Abstraction and encapsulation are complementary concepts: abstraction focuses upon the
observable behavior of an object, whereas encapsulation focuses upon the implementation
that gives rise to this behavior. Encapsulation is most often achieved through information
hiding which is the process of hiding all properties of an object that do not contribute to its
essential characteristics; typically, the structure of an object is hidden, as well as the,

implementation of its methods.

Encapsulation provides explicit barriers among different abstractions and thus leads to a
clear separation of concerns. For example, considering the structure of a finite element
code, it is feasible to understand how a finite element works at a high level of abstraction,
ignoring details such as the integration scheme or if the element is based on Cartesian or
natural coordinates. In such cases, objects at one level of abstraction are shielded from

implementation details at lower levels of abstraction.

It is suggested that "for abstraction to work, implementations must be encapsulated"” [66]. In
practice, this means that each class must have two parts: an interface and an
implementation. The interface of a class captures only its outside view, encompassing
abstraction of the behavior common to all instances of the class. The implementation of a
class comprises the representation of the abstraction as well as the mechanisms that
achieve the desired behavior. The interface of a class is the one place where all of the
assumptions that a client may make about any instances of the class are asserted; the
implementation encapsulates details about which no client may make assumptions. To
summarize, encapsulation is the process of compartmentalizing the elements of an
abstraction that constitute its structure and behavior; encapsulation serves to separate the

contractual interface of an abstraction and its implementation.

Page | 96

Design decision

During the design process of this code, solving FEM models comprised of different finite
elements was deemed necessary. Specifically, a variety of continuum and engineering finite
elements should be supported in order to assess the accuracy and the efficiency of these

finite elements when solving various geotechnical and soil-structure interaction problems.

In order to support this feature, a generalized method of assembling the global and
subdomain stiffness matrix was developed, utilizing the encapsulation feature of object
oriented programming. This feature made the code extensible for the implementation of
future finite elements without these extensions breaking the already existing code base.
Moreover, the finite element libraries developed were programmed by different team

members, boosting productivity.

5.3.4 HIERARCHY

While abstraction can prove to be a useful tool in OO programming, it is not sufficient for
taming the complexity of large software systems. Encapsulation helps managing this
complexity by hiding the inside view of abstractions while modularity provides a way to

cluster logically related abstractions.

A set of abstractions often forms a hierarchy, and by identifying these hierarchies in a
design, understanding of the problem is greatly simplified. Considering this property,

hierarchy can be defined as a ranking or ordering of abstractions.

The most important hierarchies in a complex system are its class structure ("is a" hierarchy)
and its object structure (the "part of' hierarchy). Inheritance is the most important "is a”
hierarchy, and is an essential element of object systems. In its essence, inheritance defines a
relationship among classes; one class shares the structure or behavior defined in one or
more classes (denoting single inheritance and multiple inheritance, respectively). Inheritance
thus represents a hierarchy of abstractions, in which a subclass inherits from one or more
superclasses. Typically, a subclass augments or redefines the existing structure and behavior

of its superclasses.

Semantically, inheritance denotes an "is-a" relationship. For example, a truss “is a" kind of
finite element, a skyline matrix "is a" kind of symmetrical 2D matrix and PCG "is a” solution
algorithm. Inheritance thus implies a generalization/specialization hierarchy, where a
subclass specializes the more general structure or behavior of its superclasses. This property
can serve as a criterion for inheritance; if B "is not a" kind of A, then B should not inherit

from A.

Page | 97

As the inheritance hierarchy evolves, the structure and behavior that are common for
different classes will tend to migrate to common superclasses. As such, inheritance can be
considered as being a generalization/specialization hierarchy. Superclasses represent
generalized abstractions, and subclasses represent specializations in which fields and
methods from the superclass are added, modified, or even hidden. In this manner,
inheritance allows to state abstractions with an economy of expression. Indeed, neglecting
the "is a" hierarchies that exist can lead to bloated, inelegant designs. “Without inheritance,
every class would be a free-standing unit, each developed from the ground up. Different
classes would bear no relationship with one another, since the developer of each provides
methods in whatever manner he chooses. Any consistency across classes is the result of
discipline on the part of the programmers. Inheritance makes it possible to define new
software in the same way we introduce any concept to a newcomer, by comparing it with

something that is already familiar" [67].

There is a healthy tension among the principles of abstraction, encapsulation, and hierarchy.
"Data abstraction attempts to provide an opaque barrier behind which methods and state
are hidden; inheritance requires opening this interface to some extent and may allow state
as well as methods to be accessed without abstraction" [68]. For a given class, there are
usually two kinds of clients: objects that invoke operations upon instances of the class, and
subclasses that inherit from the class. Therefore, with inheritance, encapsulation can be

violated in one of three ways:

e The subclass might access an instance variable of its superclass,
e (Call a private operation of its superclass, or

e Refer directly to superclasses of its superclass.

Different programming languages trade off support for encapsulation and inheritance in
different ways, but among the languages referenced in this work, C++, C# and Java offer
perhaps the greatest flexibility. Specifically, the interface of a class may have three parts:
private parts, which declare members that are accessible only to the class itself, protected
parts, which declare members that are accessible only to, the class and its subclasses, and

public parts, which are accessible to all clients.

Whereas these "is a" hierarchies denote generalization/specialization relationships, "part of”
hierarchies describe aggregation relationships. Aggregation is not a concept unique to
object-oriented programming languages. Indeed, any language that supports record-like
structures supports aggregation. However, the combination of inheritance with aggregation
can prove to be powerful as aggregation permits the physical grouping of logically related
structures and inheritance allows these common groups to be easily reused on different

abstractions.

Aggregation raises the issue of ownership. The abstraction of a subdomain permits different

finite elements to be used over time, but replacing a finite element in a subdomain does not

Page | 98

change the identity of the subdomain as a whole, nor does removing a subdomain
necessarily destroys all of its finite elements. In other words, the lifetime of a subdomain

and its finite elements are independent.

Design decision

One of the differences between various finite elements is the evaluation of its stiffness
matrix. Specifically, the mechanical behavior of a finite element as a part of a finite element
model is affected by the aforementioned matrix. This matrix defines how this element is

stressed when various loads and displacements are being imposed on the model.

Depending on the nature of each finite element (i.e. if it is two- or three-dimensional), there
are certain processes that are common between families of finite elements. For such cases,
utilizing the notion of hierarchy and inheritance was deemed appropriate in order to define
a generic behavior for these elements while specializing specific behavior of each element

during the development process of this code.

5.3.5 TYPING

The concept of a type derives primarily from the theories of abstract data types. "A type is a
precise characterization of structural or behavioral properties which a collection of entities
all share" [69]. In this work, the terms type and class will be used interchangeably. Although
the concepts of a type and a class are similar, typing is considered as a separate element of
the object model because the concept of a type places a very different emphasis upon the
meaning of abstraction. Specifically, typing is the enforcement of the class of an object, such
that objects of different types may not be interchanged, or at the most, they may be

interchanged only in very restricted ways.

Typing allows the expression of abstractions so that the programming language they are
implemented can be made to enforce design decisions. This kind of enforcement is essential

for programming-in-the-large [70].

The idea of conformance is central to the notion of typing. For example, consider units of
measurement in engineering; when distance is divided by time, a value denoting speed is
expected. In the same manner, multiplying temperature by a unit of force doesn't make
sense, but multiplying mass by force does. These are both examples of strong typing,
wherein the rules of a domain prescribe and enforce certain legal combinations of

abstractions.

A given programming language may be strongly- typed, weakly typed, or even untyped, yet
still be called object-oriented. For example, Eiffel is strongly-typed, meaning that type

Page | 99

conformance is strictly enforced; operations cannot be called upon an object unless the
exact signature of that operation is defined in the object's class or superclasses. In strongly
typed languages, violation of type conformance can be detected at the time of compilation.
Smalltalk, on the other hand, is an untyped language: a client can send any message to any
class (although a class may not know how to respond to the message). Violations of type
conformance may not be known until execution, and usually manifest themselves as
execution errors. Languages such as C# or Java are hybrid: they have tendencies toward

strong typing, but it is possible to ignore or suppress the typing rules.

Strong typing permits the usage of a programming language to enforce certain design
decisions, therefore helps to regulate the complexity of an evolving software system. On the
other hand, strong typing introduces semantic dependencies such that even small changes

in the interface of a base class require recompilation of all subclasses.

There are a number of important benefits to be derived from using strongly typed languages
[71]:

e Without type checking, a program in most languages can 'crash' in mysterious ways
at runtime.

e In most systems, the edit-compile-debug cycle is so tedious that early error
detection is indispensable.

e Type declarations help to document programs.

e Most compilers can generate more efficient object code if types are declared.

Untyped languages offer greater flexibility, but "in almost all cases, the programmer in fact
knows what sorts of objects are expected as the arguments of a message, and what sort of
object will be returned" [72], even with untyped languages. In practice, the safety offered by
strongly typed languages usually more than compensates for the flexibility lost by not using

an untyped language, especially for programming-in-the large.

The concepts of strong typing and static typing are entirely different. Strong typing refers to
type consistency, whereas static typing - also known as static binding or early binding - refers
to the time when names are bound to types. Static binding means that the types all variables
and expressions are fixed at the time of compilation; dynamic binding (also called late
binding) means that the types of all variables and expressions are not known until runtime.
Because strong typing and binding are independent concepts, a language may be both
strongly and statically typed strongly typed yet support dynamic binding (Object Pascal and
C++), or untyped yet support dynamic binding.

Dynamic binding provides a feature called polymorphism; it represents a concept in type
theory in which a single name (such as a variable declaration) may denote objects of many
different classes that are related by some common superclass. Any object denoted by this

name is therefore able to respond to some common set of operations [73]. The opposite of

Page | 100

polymorphism is monomorphism, which is found in all languages that are both strongly

typed and statically bound, such as Ada.

Polymorphism exists when the features of inheritance and dynamic binding interact. It is
perhaps the most powerful feature of object-oriented programming languages next to their
support for abstraction, and it is what distinguishes object-oriented programming from more

traditional programming with abstract data types.

5.4 APPLIED OBJECT ORIENTED PROGRAMMING

This section deals with the analysis of certain parts of the developed code where object-
oriented programming notions were utilized, driving the overall design process. Certain
issues that have been dealt with will be analyzed with respect to implementing a finite
element code in a multi-processor environment using structured programming and how

these issues are dealt with using object-oriented programming notions.

Specifically, the design decisions for issues like memory management, multi-processing and
algebraic computations will be presented through specific applications.

5.4.1 THE SUBDOMAIN ENTITY

Designing the subdomain class was done through enumerating all of the necessary
properties, methods and member functions that would define the behavior of this class
inside the developed code. The subdomain class is quintessential with respect to defining
geometrical and connectivity properties of a finite element mesh. This happens due to the
fact that the subdomain class is vital for both single-domain and multi-domain (domain
decomposition) solvers which are utilized in order to solve models in a multi-processor
environment. When dealing with single-domain solvers, a single subdomain class contains all
the necessary information needed to describe the model while for multi-domain solvers, a
set of subdomain classes are instantiated, containing the model information of each

subdomain along with their interconnection data.
The subdomain class properties include:

e Elements: Every subdomain class should have knowledge about the finite elements
that it includes and how these are interconnected.

e Nodes: The nodes contained by the elements that comprise the subdomain are
crucial in order to define subdomain boundaries, interconnection with other

subdomains along with constraints and force or displacement loads.

Page | 101

Neighboring subdomains: Utilizing the above properties, each subdomain maintains
a list of neighboring subdomains in order to provide information for the calculation

of various domain-decomposition solvers (ie. lagrange multipliers)

All of the above subdomain class properties were defined by using the notion of hierarchy

and more specifically, the notion of aggregation where the subdomain class aggregates

instances of the appropriate related classes.

With the same rationale, a set of subdomain class methods includes:

Stiffness matrix calculation: Each subdomain should be able to iterate through all of
its elements and calculate its stiffness matrix

Rigid body modes calculation: Should the subdomain be not adequately constrained,
it should be able to calculate its rigid body modes which can then be utilized if

necessary by the appropriate single- or multi-domain solvers.

A simplified interface of the above subdomain as utilized in the code developed is found

below:

Subdomain '{31353 Subdomain
publics:

// Calculation functions
vold CalcRigidModes ()7

Il- void CalcK():

// Physical properties
private:
Vector<int> neighborsubs:
Nodesel itsNodes:
Elenmentfet itsElementset:

Vector<double> forces:

}:

Figure 5.4 - The subdomain class

5.4.2 ITERATIVE SOLVERS AND DOMAIN DECOMPOSITION

Domain decomposition solver implementation was the corner stone of the design process of

this code. This was the case because:

Domain-decomposition solvers are well suited for large-scale structural engineering

problems and inherently support parallel processing environments.

Page | 102

e They are complicated in implementation, especially for parallel processing
environments since they involve inter-processor communication and
synchronization which makes the implementation of the necessary subdomain and
domain partitioning infrastructure necessary. Such an implementation can be used
for various domain-decomposition solvers as well and without any modifications
when designed appropriately.

e Their implementation requires the development of basic linear algebra building

blocks that are useful for other less complicated solvers as well.

The formulation of the various DD methods and their underlying solvers was presented on
Chapter 4. It is evident that these methods involve a lot of matrix and vector computations
along with message passing between processors when executed on a distributed memory
parallel processing environment. Implementing such solvers in structured programming
environments can produce code that is less readable and succinct, making the data
structures involved in each process to be almost cryptic for someone that has not been

involved in authoring the code.

Such issues can prove to be very cumbersome for developers, with debugging being one of
the most obvious problems. Unreadable “spaghetti” code can cause trouble for experienced
programmers who can spend great amount of time in order to debug even common logical
errors. One other important issue deals with code extensibility as unreadable code can
prove to be very difficult to extend. This difficulty does not always have to do with the
complexity of the task undertaken by the code but rather with the accidental complexity
arising from its implementation details and the underlying mathematical or algebraic
computations. It is evident that such properties can make code maintenance a very cost
inefficient process since every attempt to modify the code can result in a series of debugging

and extension processes that will prove to be cumbersome and time consuming.

The implementation of the PCPG iterations for the solution of a model using the FETI solver,

along with a one-to-one correspondence with the theoretical algorithm is found below:

Page | 103

f |'] =] =]_; H i 1
lterate for k=1,2, ... or (ink iter iter++)

/1.# :;{t— +r}k—l.Pk—1 —_— lagr +=h * p:

J_k_rk—l_ k=1_k-1 —_— I -=h * q:
x ‘_F‘k 1 —— 2z = r; MultiplvByPreci(z):
z =A"1

double error = ggrbi

Convergence criterion —— CalcDotiz, z)) / f:
i1f {error < toler) break:;

CalcReorthoip, z, o, iter):

Lt:?‘
I
llw_
|
[gl
Ly
(L]
=,

P
. . q = p; MuWltiplyByR(qg);
q =P F,Pp — MUlLipLYBYEILLQ) ?
MulbiplyRByP.(g);

7 =" . — h = QaleRetRivip, r, P, q);
P g ¥

Figure 5.5 - The PCPG iteration loop

5.4.3 HOMOGENEOUS SINGLE- AND MULTI-CORE PROGRAMMING

In order to tackle the large-scale problems that were investigated in this work, it was
deemed necessary for the code to run in parallel processing computing systems. Parallel
processing is based on the simultaneous utilization of many processing units in order to
evaluate a series of computations in less time. Such systems are divided into shared and
distributed memory systems. Shared memory systems comprise many processors which
have access to a common address space, i.e.: PCs based on multi-core processors or GPUs
that have hundreds of streaming processors that have access to a global memory. On the
other hand, distributed memory systems comprise processing units that have access to their

own address space, i.e.: PCs interconnected via a LAN.

In order for processors inside a distributed memory system to have access to a memory
space other than their own, interprocessor communication is taking place through message
passing interfaces. Such interfaces are PVM (Parallel Virtual Machine), MPI (Message passing
interface) or custom messaging systems, tailored for the specific algorithms that are
executing in this parallel environment. The administration of the whole messaging system is
the responsibility of the developer since this messaging process is strictly coupled with the

algorithms that need to be executed.

On the other hand, due to the scoping semantics of a shared memory parallel system, the
developer has just to make sure that each processor is fully loaded with computational work
and to ensure that no race conditions occur during the concurrent execution of tasks.
Specifically, a race condition occurs on a software system when the output of a certain
method is dependent on the sequence or timing of other methods.

Page | 104

In order to deal with this duality, the concept of encapsulation was used where the
implementation details for each processing system was “hidden” from the other classes of
this code, constituting them agnostic to the underlying computer infrastructure. A special

connector class was constructed, responsible for the transfer of information between nodes.

dnifarm
implemerntation

Serial
processing

Parallel
proceszing F/ Use messade passing

Shared Distributed T
MEmary MEMary fendil
systems systems]

Figure 5.6 - A unified message passing scheme

In order to ensure a transparent implementation with respect to the execution of this code
in single- and multi-processing environments, a message administrator class was
constructed which aims to aggregate information being sent from other objects in order to
send it with a single message to the appropriate processor. This class provides better
performance since message passing initialization overhead is being minimized and abstracts

information locality from the other classes.

This abstraction is also extended between this class and the ProcConnector class.
Specifically, the message administrator is agnostic to the nature of the parallel processing
environment (shared memory or distributed); it just gathers all information to be shared
among processors and lets ProcConnector to take care of the actual transmission, if it is

deemed necessary.

A figure of several objects interacting with the message administration class in order to

transmit information is found below:

Page | 105

swaenan

// Pack structural objects

______ » somesSubdomain.AddToBuf (
someBuf) ;

f,f Send packed buffer
_______ - nessagehdnin, SendBuf (somebuf)

// Receive packed buffer

Message | .- + nessagsddnin.GetBuf(sonekuf)
processor | .o

// Unpack structural objects
N » SomeSubdomain.GetEromBuf (

Finite somebuf) ;
lements

Figure 5.7 - Exchanging information using the message processor class

Another example illustrating the transparent implementation with respect to the execution

of this code in single- and multi-processing environments involves the evaluation of dot

products on iterative solution algorithms. Specifically, in PCG and PCPG methods, dot

products including information from all cores are being evaluated at each iteration. This

evaluation occurs as follows:

Partial dot products involving information contained in the memory domain of each
core are being evaluated in parallel.

Messages are being exchanged between cores in order to evaluate partial dot
products that involve information contained in more than one cores.

All the above partial dot products are being summed in parallel, following a tree-like
pattern in order to evaluate the full dot product.

This process is shown below:

// Calculation of dot product
someSelver.Calchot(p, q);

CC)

// Implement dot product

dpcProducts.CalcResult (vl,
Va2l

dpcBroducts. SendReceive () 7

Figure 5.8 - Dot products

Page | 106

5.4.4 THE VECTOR AND ARRAY CLASSES

The array and vector classes are the foundation of the code developed in this work since all
data structures used in the solver classes are based on them. Moreover, they are the main
data structures containing information that occupy large memory areas and are subject to

communication between cores.

Referring to FORTRAN which is the language of choice for people with engineering
background, memory management is very cumbersome. FORTRAN features dynamic
memory allocation at its later versions and, for reasons of portability, FORTRAN developers
are reluctant to its usage. However, even with the usage of such a feature, it is very difficult

to design a transparent system architecture with respect to memory allocation issues.

FORTRAN legacy code usually features the declaration of a very large vector which is then
subdivided to sections with the usage of indices. These indices were used in order to hold a
reference as to where information is stored. Such an implementation can prove problematic
since a vast amount of memory is allocated which may not be used completely or may not

be sufficient. In the latter case, the program will crash at runtime.

In the code developed in this work, a vector class capable of resizing itself is implemented

and is used throughout the code as shown below:

management ‘ector<double holo
D ,."- .." --;_.. re ‘-'l—_-_‘.:- -.:-I' WRTL=T ':‘_.'.:':—'

Resizable
vector class

[Smart memory]

——

Figure 5.9 - The resizable vector class

During the implementation of finite element solver algorithms, coefficient matrices might be
stored using various storage techniques, besides storing them element-by-element. Since
finite element matrices usually are symmetric and have a lot of zero elements, sparse
storage or skyline storage schemes may prove to be more memory efficient. Despite their
different storage scheme, these matrices still retain their properties with respect to
operators like addition, multiplication, etc. The implementation of these operators should be

done in a way that is agnostic to the storage scheme, as seen below.

Page | 107

sparent
atrix D
mentatio

Full array) for (int i = 0; i <

{
4(Sparse array) .

f/ Calc. preconditioned residual
sz = lumpedPrec * r;
Skyline array) -
}

Figure 5.10 - The matrix multiplication operator

Page | 108

6 PARALLEL PROGRAMMING

JIVIVUUIUUUIUITTIVIVIUUIUUIUILIUUIUUIIUUIUU]|
)101000010110101001110100101001010010101¢(
1010100010101010010010101001001000101100
10101010001001101110101010010111000110101
101010101000101001 01010
10100100010101100 01010
10101000101010010 01010
10101001010010010 01001

Page | 109

6.1 SERIAL HARDWARE

In order to solve large-scale problems in Computational Mechanics, it is necessary to
develop computer programs that can utilize parallel computing environments. However, in
order to write efficient parallel programs, knowledge of the underlying hardware and system
software is needed. Moreover, it is very useful to have some knowledge of different types of
parallel software and application programming interfaces (APls), so in this chapter a brief
overview of various topics in hardware and software will be presented along with a

methodology for developing parallel programs.

Parallel hardware and software have grown out of conventional serial hardware and
software, that is hardware and software that runs (more or less) a single job at a time. So in
order to better understand the current state of parallel systems, some aspects of serial

systems will be presented.

6.1.1 THE VON NEUMANN ARCHITECTURE

The classical von Neumann architecture consists of main memory, a central processing unit
(CPU) or processor or core, and an interconnection between the memory and the CPU. Main
memory consists of a collection of locations, each of which is capable of storing both
instructions and data. Every location consists of an address, which is used to access the
location and the contents of the location. These contents can be either instructions or raw
data.

The central processing unit is divided into a control unit and an arithmetic and logic unit
(ALU). The control unit is responsible for deciding which instructions in a program should be
executed, and the ALU is responsible for executing the actual instructions. Data in the CPU
and information about the state of an executing program are stored in special, very fast
storage called registers. The control unit has a special register called the program counter,
where the address of the next instruction to be executed is stored.

Instructions and data are transferred between the CPU and memory via the interconnect.
This has traditionally been a bus, which consists of a collection of parallel wires and some
hardware controlling access to the wires. A von Neumann machine executes a single
instruction at a time, and each instruction operates on only a few pieces of data as seen in

Figure 6.1.

Page | 110

CPU

ALU Control
registers registers
L 1 L 1
1 1
1 1
Interconnect
Address Contents
[I]
[[|
[[|

Main memory

Figure 6.1 - The von Neumann architecture

Fetching or reading from memory occurs when data or instructions are transferred from
memory to the CPU, while data are written to memory or stored when data are transferred
from the CPU to memory. The separation of memory and CPU is the so-called von Neumann
bottleneck, since the interconnect determines the rate at which instructions and data can be
accessed. The potentially vast quantity of data and instructions needed to run a program is
effectively isolated from the CPU. Contemporary CPUs are capable of executing instructions

more than one hundred times faster than they can fetch items from main memory.

In order to better understand this process, let’s assume that a large company has a single
factory (the CPU) in one town and a single warehouse (main memory) in another with a
single two-lane road joining the warehouse and the factory. All the raw materials used in
manufacturing the products are stored in the warehouse. Also, all the finished products are
stored in the warehouse before being shipped to customers. If the rate at which products
can be manufactured is much larger than the rate at which raw materials and finished
products can be transported, then it is likely that there will be a huge traffic jam on the road,
and the employees and machinery in the factory will either be idle for extended periods or

they will have to reduce the rate at which they produce finished products.

In order to address the von Neumann bottleneck and improve CPU performance, computer
engineers and computer scientists have experimented with many extensions and
modifications to the basic von Neumann architecture. Some of these modifications will be

presented in the next section.

Page | 111

6.1.2 PROCESSES, MULTI-TASKING AND THREADS

The operating system (OS) is a major piece of software with the purpose to manage
hardware and software resources on a computer. It determines which programs can run and
when they can run and controls the allocation of memory to running programs and access to

peripheral devices such as hard disks and network interface cards.

When a user runs a program, the operating system creates a process which is an instance of

a computer program that is being executed. A process consists of the following entities:

e The executable machine language program.
o A block of memory which will include:
0 the executable code, a call stack that keeps track of active functions
O aheapand
0 some other memory locations.
e Descriptors of resources that the operating system has allocated to the process, like
file descriptors or canvas descriptors.
e Security information, i.e.: information specifying which hardware and software
resources the process can access.
e Information about the state of the process such as whether the process is ready to
run or is waiting on some resource, the content of the registers, and information

about the process’ memory.

Most modern operating systems are multitasking which means that the operating system
provides support for the apparent simultaneous execution of multiple programs. This is
possible even on a system with a single core where each process runs for a small interval of
time (typically a few milliseconds), often called a time slice. After one running program has
executed for a time slice, the operating system can run a different program. A multitasking
0OS may change the running process many times a minute, even though changing the running
process can take a long time.

In a multitasking OS, if a process needs to wait for a resource i.e.: it needs to read data from
external storage, it will block. This means that it will stop executing and the operating
system can run another process. However, many programs can continue to do useful work
even though the part of the program that is currently executing must wait on a resource. For
example, an airline reservation system that is blocked waiting for a seat map for one user

could provide a list of available flights to another user.

Threading provides a mechanism for dividing programs into independent tasks so that, when
one thread is blocked another thread can be run. Furthermore, switching between threads is
much faster compared to switching between processes. This is because threads are more
light weight than processes. Threads are contained within processes and they can use the

same executable while sharing the same memory and the same I/O devices. In fact, two

Page | 112

threads belonging to one process can share all of the process’ resources with the exception
of needing a record of their own program counter and their own call stacks, so that they can

execute independently of each other.

Thread

r
Process / \
- /
A1
h
'l. T
\

Thread

Figure 6.2 - A process and two threads

If a process is the “master” thread of execution and threads are started and stopped by the
process, it is possible to form the analogy of the process and its subsidiary threads as lines.
When a thread is started, it forks off the process and when a thread terminates, it joins the

process as shown in Figure 6.2.

6.1.3 CACHING

Caching is one of the most widely used methods of addressing the von Neumann bottleneck.
To understand the ideas behind caching, recall our example. A company has a factory (CPU)
in one town and a warehouse (main memory) in another, and there is a single, two-lane
road joining the factory and the warehouse. There are a number of possible solutions to the
problem of transporting raw materials and finished products between the warehouse and
the factory. One is to widen the road. Another is to move the factory and/or the warehouse
or to build a unified factory and warehouse. Caching exploits both of these ideas. Rather
than transporting a single instruction or data item, an effectively wider interconnection is
used which can transport more data or more instructions in a single memory access.
Moreover, rather than storing all data and instructions exclusively in main memory, blocks of
data and instructions are stored in a special memory region that is effectively closer to the
registers in the CPU.

In general a cache is a collection of memory locations that can be accessed in less time than
some other memory locations. In this work, references to caches have the meaning of CPU
cache, which is a collection of memory locations that the CPU can access more quickly than
it can access main memory. A CPU cache can either be located on the same chip as the CPU
or it can be located on a separate chip that can be accessed much faster than an ordinary

memory chip.

Once a cache is available, an obvious problem is to decide which data and instructions

should be stored in this cache. The universally used principle is based on the idea that

Page | 113

programs tend to use data and instructions that are physically close to recently used data
and instructions. After executing an instruction, programs typically execute the next
instruction with branching tending to be relatively rare. Similarly, after a program has
accessed one memory location, it often accesses a memory location that is physically

nearby. An extreme example of this is in the use of arrays. Consider the loop:

float z[1000];

sum = 0.0;
for (i = 0; i < 1000; i++)

sum += z[i];

Arrays are allocated as blocks of contiguous memory locations which means that the
location storing z[1] immediately follows the location z[0]. Thus, as long as i < 999, the read

of z[i] is immediately followed by a read of z[i+1].

The principle that an access of one location is followed by an access of a nearby location is
called locality. After accessing one memory location (instruction or data), a program will

typically access a nearby location (spatial locality) in the near future (temporal locality).

In order to exploit the principle of locality, the system uses an effectively wider interconnect
to access data and instructions where a memory access will effectively operate on blocks of
data and instructions instead of individual instructions and individual data items. These
blocks are called cache blocks or cache lines. A typical cache line stores 8 to 16 times as
much information as a single memory location. In our example, if a cache line stores 16
floats, then when we first go to add sum += z[0], the system might read the first 16 elements
of z, z[0], z[1], . . ., z[15] from memory into cache. As a result, next 15 additions will use

elements of z that are already in the cache.

Conceptually, it is often convenient to think of a CPU cache as a single monolithic structure.
However, in practice, the cache is usually divided into levels: the first level (L1) is the
smallest and the fastest, and higher levels (L2, L3, . . .) are larger and slower. Most
contemporary computer systems, have at least two levels while having three levels is quite
common. Caches usually store copies of information in slower memory, and, if we think of a
lower-level (faster, smaller) cache as a cache for a higher level, this usually applies. So, for
example, a variable stored in a level 1 cache will also be stored in level 2. However, some
multilevel caches do not duplicate information that is available in another level. For these
caches, a variable in a level 1 cache might not be stored in any other level of the cache, but it

would be stored in main memory.

Page | 114

When the CPU needs to access an instruction or data, it works its way down the cache
hierarchy: First it checks the level 1 cache, then the level 2, and so on. Finally, if the
information needed is not in any of the caches, it accesses the main memory. When a cache
is checked for information and the information is available, it is called a cache hit or just a
hit. If the information is unavailable, it is called a cache miss or a miss. Hit or miss is often
modified by the level. For example, when the CPU attempts to access a variable, it might

have an L1 miss and an L2 hit.

When the CPU attempts to read data or instructions and there is a cache read miss, it will
read from memory the cache line that contains the needed information and store it in the
cache. This may stall the processor, while it waits for the slower memory. The processor may
stop executing statements from the current program until the required data or instructions
have been fetched from memory. Considering the previous loop, when z[0] is read, the
processor may stall while the cache line containing z[0] is transferred from memory into the

cache.

When the CPU writes data to a cache, the value in the cache and the value in main memory
are different or inconsistent. There are two basic approaches to dealing with this
inconsistency. In write-through caches, the line is written to main memory when it is written
to the cache. In write-back caches, the data isn’t written immediately. Rather, the updated
data in the cache is marked dirty, and when the cache line is replaced by a new cache line

from memory, the dirty line is written to memory.

Another issue in cache design is deciding where lines should be stored. This decision varies
from system to system with one extreme being a fully associative cache, in which a new line
can be placed at any location in the cache and the other extreme being a direct mapped
cache, in which each cache line has a unique location in the cache to which it will be
assigned. Intermediate schemes are called n-way set associative where each cache line can
be placed in one of n different locations in the cache, i.e.: in a two way set associative cache,

each line can be mapped to one of two locations.

Page | 115

Cache Location
Memory Index Fully Assoc Direct Mapped 2-way
0] 0,1,2,0r3 0 Dori
1 0,1,2,0r3 1 2or3
2 0,1,2,0r3 2 Dord
3 0,1,2,0r3 3 2or3
4 0,1,2,0r3 0 Oort
5 0,1,2,0r3 1 2or3
6 0,1,2,0r3 2 Dord
7 0,1,2,0r3 3 2or3
8 0,1,2,0r3 0 Dord
e] 0,1,2,0r3 1 2or3
10 0,1,2,0r3 2 Oori
11 0,1,2,0r3 3 2or3
12 0,1,2,0r3 0 Dord
13 0,1,2,0r3 1 2or3
14 0,1,2,0r3 2 Dord
15 0,1,2,0r3 3 20r3

Table 6.1 - Assignments of a 16-line main memory to a 4-line cache

As an example, suppose that the main memory consists of 16 lines with indexes 0-15, and
the cache consists of 4 lines with indexes 0-3. In a fully associative cache, line 0 can be
assigned to cache location 0, 1, 2, or 3. In a direct mapped cache, lines might be assigned by
looking at their remainder after division by 4. This means that lines 0, 4, 8, and 12 would be
mapped to cache index 0, lines 1, 5, 9, and 13 would be mapped to cache index 1, and so on.
In a two way set associative cache, the cache can be grouped into two sets, indexes 0 and 1
form one set—set 0—and indexes 2 and 3 form another— set 1. This way, the remainder of
the main memory index modulo 2 can be used, and cache line 0 would be mapped to either

cache index 0 or cache index 1 as in Table 6.1.

When more than one line in memory can be mapped to several different locations in a cache
(fully associative and n-way set associative), the line that should be replaced or evicted must
also be known. In the previous example, if for instance, line 0 is in location 0 and line 2 is in
location 1, the storage location of line 4 must be decided. The most commonly used scheme
for taking this decision is called least recently used where the cache has a record of the
relative order in which the blocks have been used, and if line 0 were used more recently

than line 2, then line 2 would be evicted and replaced by line 4.

A caching example

The CPU cache usage and administration is controlled by the system hardware and an
application cannot directly determine which data and which instructions are in the cache.
However, knowing the principle of spatial and temporal locality allows an indirect control
over caching. As an example, C stores two-dimensional arrays in “row-major” order. This
means that, although we think of a two-dimensional array as a rectangular block, memory is
effectively a huge one-dimensional array. In row-major storage, we row 0 is stored first, then

row 1, and so on. In the following two code segments, we the first pair of nested loops is

Page | 116

expected to have much better performance than the second, since it is accessing the data in

the two-dimensional array in contiguous blocks.

double A[MAX][MAX]. X[MAX]. YIMAX];

/* Initialize A and x, assign 'y = 0 */

/* First pair of loops */

for (i = 0; i < MAX; i++)

for (J = 0; j < MAX; j++)

yLil += ALI1L] x1:

/* Assigny =0 */

/* Second pair of loops */
for (J = 0; j < MAX; j++)

0; 1 < MAX; i++)

for (i

yLil += ALIG] > xO1;

To better understand this, suppose MAX is four, and the elements of A are stored in memory

as follows:

Cache Line Elements of A
0 ACOI[O] ALOICLI] ACOICZ2] ACOIL3]
1 ALLIC0I ALYICID ALLIC2] ALIIL3]
2 AL21001 AL21C11 AL21C021 ALZ21031]
3 AL3I00] AL3ICI] AL3I[21 AL3][3]

So, for example, A[0][1] is stored immediately after A[0][0] and A[1][0] is stored immediately
after A[0][3]. Let’s suppose that none of the elements of A are in the cache when each pair
of loops starts executing and that a cache line consists of four elements of A, with A[0][0]
being the first element of a cache line. Finally, let’s suppose that the cache is direct mapped

and it can only store eight elements of A, or two cache lines.

Both pairs of loops attempt to first access A[0][0]. Since it is not in the cache, this will result
in a cache miss, and the system will read the line consisting of the first row of A, A[0][0],
A[0][1], A[0][2], A[0][3], into the cache. The first pair of loops then accesses A[0][1], A[0][2],

Page | 117

A[0][3], all of which are in the cache, and the next miss in the first pair of loops will occur
when the code accesses A[1][0]. Continuing in this fashion, we see that the first pair of loops
will result in a total of four misses when it accesses elements of A, one for each row. Note
that since this cache can only store two lines or eight elements of A, one of the lines already
in the cache will have to be evicted, when the first element of row two and the first element
of row three are read. However, once a line is evicted, the first pair of loops won't need to

access the elements of that line again.

After reading the first row into the cache, the second pair of loops then needs to access
A[1][0], A[2][0], A[3][0], none of which are in the cache. As a result, the next three accesses
of A will also result in misses. Furthermore, because the cache is small, the reads of A[2][0]
and A[3][0] will require lines already in the cache to be evicted. Since A[2][0] is stored in
cache line 2, reading its line will evict line 0, and reading A[3][0] will evict line 1. After
finishing the first pass through the outer loop, access to A[0][1] is needed which was evicted
with the rest of the first row. It is evident that every time an element of A is read, a cache

miss occurs with the second pair of loops resulting in 16 misses.

Based on the above remarks, the first pair of nested loops is expected to be much faster
than the second. In fact, if the code is executed on a contemporary computer, with MAX =

1000, the first pair of nested loops is approximately three times faster than the second pair.

6.1.4 VIRTUAL MEMORY

Caches make it possible for the CPU to quickly access instructions and data that are in main
memory. However, if we run a very large program or a program that accesses very large data
sets, all of the instructions and data may not fit into main memory. This is especially true
with multitasking operating systems; in order to switch between programs and create the
illusion that multiple programs are running simultaneously, the instructions and data that
will be used during the next time slice should be in main memory. Thus, in a multitasking
system, even if the main memory is very large, many running programs must share the
available main memory. Furthermore, this sharing must be done in such a way that each

program’s data and instructions are protected from corruption by other programs.

Virtual memory was developed so that main memory can function as a cache for secondary
storage. It exploits the principle of spatial and temporal locality by keeping in main memory
only the active parts of the many running programs; those parts that are idle are kept in a
block of secondary storage called swap space. Like CPU caches, virtual memory operates on
blocks of data and instructions. These blocks are commonly called pages, and since
secondary storage access can be hundreds of thousands of times slower than main memory
access, pages are relatively large—most systems have a fixed page size that currently ranges
from 4 to 16 kilobytes.

Page | 118

Trying to assign physical memory addresses to pages during the compilation of a program
can prove to be problematic because with such a correspondence, each page of the program
can only be assigned to one block of memory and, with a multitasking operating system, it is
very likely that many programs will request to use the same block of memory. In order to
circumvent this problem, when a program is compiled, its pages are assigned to virtual page
numbers. When the program is executed, a table is created that maps the virtual page
numbers to physical addresses and, when the program refers to a virtual address, this page
table is used to translate the virtual address into a physical address. If the creation of the
page table is managed by the operating system, it can ensure that the memory used by one

program doesn’t overlap the memory used by another.

Virtual Address

Virtual Page Number Byte Offset
31 30 ... 13 12 11 10 --- 1 0
1 o ... 1 1 o o .- 1 1

Table 6.2 - Virtual address divided into virtual page number and byte offset

One major drawback to the use of a page table is that it can double the time needed to
access a location in main memory. Let’s assume that an instruction in main memory is
waiting for execution. The executing program will have the virtual address of this instruction
but before finding the instruction in memory, the virtual address needs to be translated into
an actual physical address. In order to do this, the page in memory that contains the
instruction must be found. Now the virtual page number is stored as a part of the virtual
address. As an example, suppose our addresses are 32 bits and our pages are 4 kilobytes =
4096 bytes. Each byte in the page can be identified with 12 bits, since 2** = 4096. Thus, we
can use the low order 12 bits of the virtual address to locate a byte within a page, and the

remaining bits of the virtual address can be used to locate an individual page as in Table 6.2.

The virtual page number can be computed from the virtual address without going to
memory. However, once the virtual page number is pinpointed, access to the page table is
needed for the translation into a physical page. If the required part of the page table is not in
cache, it needs to be loaded from memory. After that, virtual address can be translated to a
physical address in order to read the required instruction.

Although multiple programs can use main memory at more or less the same time, using a
page table has the potential to significantly increase each program’s overall run time. In
order to address this issue, processors have a special address translation cache called a
translation-lookaside buffer (TLB) which caches a small number of entries (typically 16-512)
from the page table in very fast memory. Using the principle of spatial and temporal locality,
most of our memory references are expected to be in pages whose physical address is

Page | 119

stored in the TLB, and the number of memory references that require accesses to the page

table in main memory will be substantially reduced.

The terminology for the TLB has a direct correspondence with the terminology for caches;
looking for an address whose virtual page number is in the TLB is a TLB hit while in the
opposite case it is a miss. On the other hand, the terminology for the page table has an
important difference from the terminology for caches. Attempting to access a page that’s
not in memory, that is, it does not have a valid physical address and the page is only stored

on disk, is called a page fault.

The relative slowness of disk accesses has a couple of additional consequences for virtual
memory. First, with CPU caches write-misses can be handled with either a write-through or
write-back scheme. With virtual memory, however, disk accesses are so expensive that they
should be avoided whenever possible, so virtual memory always uses a write-back scheme.
This can be handled by keeping a bit on each page in memory that indicates whether the
page has been updated. If it has been updated, when it is evicted from main memory, it will
be written to disk. Moreover, since disk accesses are so slow, management of the page table
and the handling of disk accesses can be done by the operating system. As a result, even
though an application cannot directly control virtual memory, unlike CPU caches which are
handled by system hardware, virtual memory is usually controlled by a combination of

system hardware and operating system software.

6.1.5 INSTRUCTION LEVEL PARALLELISM

Instruction-level parallelism, or ILP, attempts to improve processor performance by having
multiple processor components or functional units simultaneously executing instructions.
There are two main approaches to ILP: pipelining, in which functional units are arranged in
stages, and multiple issue, in which multiple instructions can be simultaneously initiated.

Both approaches are used in virtually all modern CPUs.

Pipelining

The principle of pipelining is similar to a factory assembly line: while one team is bolting a
car’s engine to the chassis, another team can connect the transmission to the engine and the
driveshaft of a car that is already been processed by the first team, and a third team can bolt
the body to the chassis in a car that has been processed by the first two teams. As an
example involving computation, the steps for adding the floating point numbers 9.87*10*

and 6.54*10°% are shown below:

Page | 120

Time Operation Operand 1 Operand 2 Result

0 Fetch operands 9.87x10* 6.54 x 10°

1 Compare exponents 9.87 x 10* 6.54 x 10°

2 Shift one operand 9.87 x10* 0.654 x 10%

3 Add 9.87 x 104 0.654 x 10* 10.524 x 10?
4 Normalize result 9.87 x 104 0.654 x 10* 1.0524 x 10°
5 Round result 9.87 x 104 0.654 x 10* 1.05x 10°

6 Store result 9.87 x 104 0.654 x 10* 1.05x 10°

In this example, base 10 is used along with a three digit mantissa or significand with one
digit to the left of the decimal point. Normalizing shifts the decimal point one unit to the left
and rounding rounds to three digits. If each of the operations takes one nanosecond, the
addition operation will take seven nanoseconds. The execution of the loop in the following

code:

float x[1000], y[1000], z[1000];

for (i = 0; i < 1000; i++)

z[i] = x[i] + y[i];

will take something like 7000 nanoseconds.

As an alternative, assume that the floating point adder is divided into seven separate pieces
of hardware or functional units with the first unit fetching two operands, the second
comparing exponents, and so on. Moreover, assume that the output of one functional unit is
the input to the next, so, for example, the output of the functional unit that adds the two
values is the input to the unit that normalizes the result. For this case, a single floating point
addition will also take seven nanoseconds. However, when the loop is executed, x[1] and
y[1] can be fetched while the exponents of x[0] and y[0] are being compared. Using this
notion, it is possible to simultaneously execute seven different stages in seven different
additions, as shown in Table 6.3. From this table, it is evident that after time 5, the pipelined
loop produces a result every nanosecond instead of every seven nanoseconds which brings
the total time to execute the for loop from 7000 nanoseconds down to 1006 nanoseconds,

an improvement of almost a factor of seven.

Page | 121

Time Fetch Compare Shift Add Normalize Round Store

0 0

1 1 0

2 2 1 0

3 3 2 1 0

4 4 3 2 1 0

5 5 4 3 2 1 0

6 6 5 4 3 2 1 0
999 999 998 997 996 995 994 993
1000 999 998 997 996 995 994
1001 999 998 997 996 995
1002 999 998 a9y 996
1003 999 998 997
1004 999 998
1005 999

Table 6.3 - Pipelined Addition: numbers in the table are subscripts of operands/results

In general, a pipeline with k stages will not get a k-fold improvement in performance. For
example, if the times required by the various functional units are different, then the stages
will effectively run at the speed of the slowest functional unit. Furthermore, delays such as

waiting for an operand to become available can cause the pipeline to stall.

Multiple issue

Pipelines improve performance by taking individual pieces of hardware or functional units
and connecting them in sequence. Multiple issue processors replicate functional units and
try to simultaneously execute different instructions in a program. For example, if two

complete floating point adders are available, the time it takes to execute the loop:
for (i = 0; i < 1000; i++)

z[i] = x[i] + y[i];

can be reduced to half.

While the first adder is computing z[0], the second can compute z[1]; while the first is
computing z[2], the second can compute z[3]; and so on. If the functional units are
scheduled at compile time, the multiple issue system is said to use static multiple issue. If
they’re scheduled at run-time, the system is said to use dynamic multiple issue. A processor

that supports dynamic multiple issue is called superscalar.

Page | 122

In order to make use of multiple issue, the system must find instructions that can be
executed simultaneously. One of the most important techniques to find such instructions is
called speculation. In speculation, the compiler or the processor makes a guess about an
instruction, and then executes the instruction on the basis of the guess. As a simple

example, consider the following code:
Z =X +Yy;

if (z>0)

The system might predict that the outcome of z = x + y will give z a positive value, and, as a

consequence, it will assign w = x. As another example, in the following code:

zZ=X+Yy;

=
|

= *a p; /* a p is a pointer */

the system might predict that p does not refer to z, therefore it can simultaneously execute
the two assignments. As both examples make clear, speculative execution must allow for the
possibility that the predicted behavior is incorrect. In the first example, we will need to go
back and execute the assighment w =y if the assignment z = x + y results in a value that’s not
positive. In the second example, if a p does point to z, we'll need to reexecute the

assignment w = *a p.

If the compiler does the speculation, it will usually insert code that tests whether the
speculation was correct, and, if not, takes corrective action. If the hardware does the
speculation, the processor usually stores the result(s) of the speculative execution in a
buffer. When it is known that the speculation was correct, the contents of the buffer are
transferred to registers or memory. If the speculation was incorrect, the contents of the

buffer are discarded and the instruction is re-executed.

While dynamic multiple issue systems can execute instructions out of order, in current
generation systems the instructions are still loaded in order and the results of the
instructions are also committed in order, which means that the results of instructions are
written to registers and memory in the program-specified order. Optimizing compilers, on
the other hand, can reorder instructions which can have important consequences for

shared-memory programming.

Page | 123

6.1.6 HARDWARE MULTITHREADING

ILP can be very difficult to exploit for programs with a long sequence of dependent

statements. For example, in a direct calculation of the Fibonacci numbers shown below:

f[0] = f[1] = 1;

for (i = 2; i <= n; i++)

fL[i] = fLi-1] + fLi-2];

there is essentially no opportunity for simultaneous execution of instructions. Thread-level
parallelism (TLP) attempts to provide parallelism through the simultaneous execution of
different threads, providing a coarser-grained parallelism than ILP. The program units that
are being simultaneously executed (threads) are larger or coarser than the finer-grained

units (individual instructions).

Hardware multithreading provides a means for systems to continue doing computational
work when the task being currently executed has stalled, i.e.: if the current task has to wait
for data to be loaded from memory. Instead of looking for parallelism in the currently
executing thread, it is more efficient to simply run another thread. In order for this to be
efficient, the system must support very rapid switching between threads, which is the case

for contemporary OS.

In fine-grained multithreading, the processor switches between threads after each
instruction, skipping threads that are stalled. While this approach has the potential to avoid
wasted machine time due to stalls, it has the drawback that a thread that’s ready to execute
a long sequence of instructions may have to wait to execute every instruction. Coarse-
grained multithreading attempts to avoid this problem by only switching threads that are
stalled waiting for a time-consuming operation to complete, i.e.: a load from main memory.
Such a strategy permits switching threads not to be instantaneous. However, the processor
may be idle on shorter stalls with thread switching also causing delays.

Simultaneous multithreading (SMT) is a variation on fine-grained multithreading. It attempts
to exploit superscalar processors by allowing multiple threads to make use of the multiple
functional units. By designating “preferred” threads which are threads that have many

instructions ready to execute, thread slowdown can be greatly reduced.

6.2 PARALLEL HARDWARE

Multiple issue and pipelining can clearly be considered to be parallel hardware, since

functional units are replicated. However, since this form of parallelism is not usually visible

Page | 124

to the programmer, they are both treated as extensions to the basic von Neumann model. In
the following sections, a series of parallel hardware that are exploitable by the programmer

are defined.

6.2.1 SIMD SYSTEMS

In parallel computing, Flynn’s taxonomy [74] is frequently used to classify computer
architectures according to the number of instruction streams and the number of data
streams it can simultaneously manage. A classical von Neumann system is therefore a single
instruction stream, single data stream (SISD) system, since it executes a single instruction at

a time and it can fetch or store one item of data at a time.

Single instruction, multiple data, or SIMD, systems are parallel systems which operate on
multiple data streams by applying the same instruction to multiple data items. Thus, an
abstract SIMD system can be thought of as having a single control unit and multiple ALUs. An
instruction is broadcast from the control unit to the ALUs, and each ALU either applies the

It

instruction to the current data item, or it is idle. As an example, suppose that a “vector
addition” is being executed where we have two arrays x and y, each with n elements, and

the elements of y are added to the elements of x, as show below:
for (i = 0; i < n; i++)

x[i] += y[il;

Assuming that our SIMD system has n ALUs, x[i] and y[i] could be loaded into the ith ALU
which could add y[i] to x[i] and store the result in x[i]. If the system has m ALUs and m < n,
the additions can be executed in blocks of m elements at a time, i.e.: if m=4 and n=15,
elements 0 to 3 can be added first, then elements 4 to 7, then elements 8 to 11, and finally
elements 12 to 14. Note that in the last group of elements in the example, only three

elements of x and y need to be added, so one of the four ALUs will be idle.

The requirement that all the ALUs execute the same instruction or are idle can seriously
degrade the overall performance of a SIMD system. For example, suppose that the previous

addition must be evaluated only if y[i] is positive, as shown below:
for (i = 0; i < n; i++)

if (y[i] > 0.0) x[i] += y[i];

In this case, each element of y must be loaded into an ALU and determine whether it is

positive. If y[i] is positive, the addition is evaluated, otherwise, the ALU storing y[i] will be

Page | 125

idle while the other ALUs carry out the addition. Note also that in a “classical” SIMD system,
the ALUs must operate synchronously, that is, each ALU must wait for the next instruction to
be broadcast before proceeding. Moreover, the ALUs have no instruction storage, so an ALU

cannot delay execution of an instruction by storing it for later execution.

Taking these examples under consideration, it is evident that SIMD systems are ideal for
parallelizing simple loops that operate on large arrays of data. Parallelism that is obtained by
dividing data among the processors and having the processors all apply the same
instructions to their subsets of the data, is called data-parallelism. SIMD parallelism can be
very efficient on large data parallel problems, but SIMD systems often do not perform very
well on other types of parallel problems. In contemporary computer systems, graphics
processing units (GPUs) and desktop CPUs are making use of aspects of SIMD computing.

Vector processors

Vector processors can operate on arrays or vectors of data, while conventional CPUs operate
on individual data elements or scalars. Contemporary systems have the following
characteristics:

e Vector registers. These are registers capable of storing a vector of operands and
operating simultaneously on their contents. The vector length is fixed by the system,
and can range from 4 to 128 64-bit elements.

e Vectorized and pipelined functional units where the same operation is applied to
each element in the vector, or, in the case of operations like addition, the same
operation is applied to each pair of corresponding elements in the two vectors.

e Vector instructions. These are instructions that operate on vectors rather than
scalars. If the vector length is vector length, these instructions have the great virtue

that a simple loop such as the one shown below:
for (i = 0; 1 < n; i++)

x[i] += yLil;

requires only a single load, add, and store for each block of vector length elements,
while a conventional system requires a load, add, and store for each element.

e Interleaved memory. The memory system consists of multiple “banks” of memory
which can be accessed more or less independently. After accessing one bank, there
will be a delay before it can be reaccessed, but a different bank can be accessed
much sooner. So if the elements of a vector are distributed across multiple banks,
there can be little to no delay in loading/storing successive elements.

e Strided memory access and hardware scatter/gather. In strided memory access, the
program accesses elements of a vector located at fixed intervals, i.e: accessing the
first element, the fifth element, the ninth element, and so on, would be strided

access with a stride of four. Scatter/gather in this context, is writing (scatter) or

Page | 126

reading (gather) elements of a vector located at irregular intervals, i.e.: accessing the
first element, the second element, the fourth element, the eighth element, and so
on. Typical vector systems provide special hardware to accelerate strided access and

scatter/gather.

Vector processors have the virtue that for many applications, they are very fast and very
easy to use. Vectorizing compilers are quite good at identifying code that can be vectorized
and loops that cannot be vectorized, providing information about why a loop couldn’t be
vectorized. The user can thereby make informed decisions about whether it’s possible to
rewrite the loop so that it will vectorize. Vector systems have very high memory bandwidth,
and every data item that’s loaded is actually used, unlike cache-based systems that may not
make use of every item in a cache line. On the other hand, they do not handle irregular data
structures as well as other parallel architectures, and there seems to be a very finite limit to
their scalability, that is, their ability to handle ever larger problems. It is difficult to see how
systems could be created that would operate on ever longer vectors. Current generation
systems scale by increasing the number of vector processors, not the vector length. Current
commodity systems provide limited support for operations on very short vectors, while
processors that operate on long vectors are custom manufactured, and, consequently, very

expensive.

Graphics processing units

Real-time graphics application programming interfaces (APIs) use points, lines, and triangles
to internally represent the surface of an object. They use a graphics processing pipeline to
convert the internal representation into an array of pixels that can be sent to a computer
screen. Several of the stages of this pipeline are programmable. The behavior of the
programmable stages is specified by functions called shader functions. The shader functions
are typically quite short—often just a few lines of C code. They’re also implicitly parallel,
since they can be applied to multiple elements (e.g., vertices) in the graphics stream. Since
the application of a shader function to nearby elements often results in the same flow of
control, GPUs can optimize performance by using SIMD parallelism, and in the current
generation all GPUs use SIMD parallelism. This is obtained by including a large number of
ALUs (e.g., 80) on each GPU processing core.

Processing a single image can require very large amounts of data—hundreds of megabytes
of data for a single image is not unusual. GPUs therefore need to maintain very high rates of
data movement, and in order to avoid stalls on memory accesses, they rely heavily on
hardware multithreading; some systems are capable of storing the state of more than a
hundred suspended threads for each executing thread. The actual number of threads

depends on the amount of resources (e.g., registers) needed by the shader function. A

Page | 127

drawback here is that many threads processing a lot of data are needed to keep the ALUs

busy, and GPUs may have relatively poor performance on small problems.

It should be stressed that GPUs are not pure SIMD systems. Although the ALUs on a given
core do use SIMD parallelism, current generation GPUs can have dozens of cores, which are
capable of executing independent instruction streams. GPUs are becoming increasingly
popular for general, high-performance computing, and several languages have been
developed that allow users to exploit their power. A special reference to GPUs is made on
Chapter 7.

6.2.2 MIMD SYSTEMS

Multiple instruction, multiple data (MIMD) systems support multiple simultaneous
instruction streams operating on multiple data streams. MIMD systems typically consist of a
collection of fully independent processing units or cores, each of which has its own control
unit and its own ALU. Furthermore, unlike SIMD systems, MIMD systems are usually
asynchronous, that is, the processors can operate at their own pace. In many MIMD systems
there is no global clock, and there may be no relation between the system times on two
different processors. In fact, unless the programmer imposes some synchronization,
processors executing the same sequence of instructions may be executing different

statements of this sequence at a point in time.

CPU CPU CPU CPU

[] !]

| Interconnect |

Memory

Figure 6.3 - A shared memory system

There are two principal types of MIMD systems: shared-memory systems and distributed-
memory systems. In a shared-memory system, a collection of autonomous processors is
connected to a memory system via an interconnection network and each processor can
access each memory location. In a shared-memory system, the processors usually
communicate implicitly by accessing shared data structures. On the other hand, in a
distributed-memory system, each processor is paired with its own private memory and the
processor-memory pairs communicate over an interconnection network. In distributed-

memory systems the processors usually communicate explicitly by sending messages or by

Page | 128

using special functions that provide access to the memory of another processor as seen in

Figure 6.3 and Figure 6.4

CPU CPU CPU
‘ Memory | ‘ Memory ‘ ‘ Memory ‘
/|
| Interconnect |

Figure 6.4 - A distributed memory system

Shared memory systems

The most widely available shared-memory systems use one or more multicore processors. A
multicore processor has multiple CPUs or cores on a single chip where the cores, typically
have private level 1 caches, while other caches may or may not be shared between the

cores.

Chip 1 Chip 2

‘ Core 1 ‘ ‘ Core 2 ‘ ‘ Core 1 ‘ ‘ Core 2 ‘

g

‘ Interconnect ‘

Memaory

Figure 6.5 - A UMA multicore system

In shared-memory systems with multiple multicore processors, the interconnect can either
connect all the processors directly to main memory or each processor can have a direct
connection to a block of main memory, and the processors can access each others’ blocks of
main memory through special hardware built into the processors, as seen in Figure 6.5 and
Figure 6.6. In the first type of system, the time to access all the memory locations will be the
same for all the cores, while in the second type a memory location to which a core is directly
connected can be accessed more quickly than a memory location that must be accessed
through another chip. The first type of system is called a uniform memory access (UMA)
system, while the second type is called a nonuniform memory access (NUMA) system. UMA
systems are usually easier to program, since the programmer does not need to worry about
different access times for different memory locations. This advantage can be offset by the

Page | 129

faster access to the directly connected memory in NUMA systems. Furthermore, NUMA

systems have the potential to use larger amounts of memory than UMA systems.

Chip 1 Chip 2
‘ Core 1 ‘ ‘ Core 2 ‘ = ‘ Core 1 ‘ ‘ Core 2 ‘
| Interconnect | | Interconnect |
Memory Memory

Figure 6.6 - A NUMA multicore system

Distributed memory systems

The most widely available distributed-memory systems are called clusters. They are
composed of a collection of commodity systems like PCs, connected by a commodity
interconnection network like Ethernet. In fact, the nodes of these systems, the individual
computational units joined together by the communication network, are usually shared-
memory systems with one or more multicore processors. To distinguish such systems from

pure distributed-memory systems, they are sometimes called hybrid systems.

The grid provides the infrastructure necessary to turn large networks of geographically
distributed computers into a unified distributed-memory system. In general, such a system
will be heterogeneous, that is, the individual nodes may be built from different types of

hardware.

6.2.3 INTERCONNECTION NETWORKS

The interconnect plays a decisive role in the performance of both distributed- and shared-
memory systems: even if the processors and memory have virtually unlimited performance,
a slow interconnect will seriously degrade the overall performance of all but the simplest

parallel program.

Page | 130

P1 P2 P3 P4

M1 O O O O
M2 O O O
M3 O O O
M4 O O O O

Figure 6.7 - A crossbar switch connecting four processors (Pi) and four memory modules (Mj)

/N 7N
N PH N VH

(i) (ii)

Figure 6.8 - Configuration of internal switches in a crossbar

Shared memory interconnects

Currently the two most widely used interconnects on shared-memory systems are buses and
crossbars. A bus is a collection of parallel communication wires together with some
hardware that controls access to it, with these communication wires to be shared by the
devices that are connected to it. Buses have low cost and flexibility since multiple devices
can be connected to a bus with little additional cost. However, since the communication
wires are shared, the likelihood of contention for use of the bus increases, as the number of
devices connected to the bus increases, with the expected performance of the bus to be
decreasing. Therefore, if a large number of processors are connected to a bus, the

processors are expected to wait for access to main memory frequently.

As the size of shared-memory systems increases, buses are rapidly being replaced by
switched interconnects. Switched interconnects use switches to control the routing of data
among the connected devices. A crossbar is illustrated in Figure 6.7 where the lines are
bidirectional communication links, the squares are cores or memory modules, and the circles

are switches.

Page | 131

P1 P2 P3 P4
M1 ’:\" _,f%_ -»> JI » (‘J\ L]
M2 ’/---\" f—.-\- - _,/'"\‘ L 2 []
T 1 w
M3 ‘e . e e
| ! f f
M4 - e T . ™
. | l |-

Figure 6.9 - Simultaneous memory accesses by the processors

The individual switches can assume one of the two configurations shown in Figure 6.8. With
these switches and at least as many memory modules as processors, there will only be a
conflict between two cores attempting to access memory. This conflict will occur when the
two cores attempt to simultaneously access the same memory module. Figure 6.9 shows the
configuration of the switches if P1 writes to M4, P2 reads from M3, P3 reads from M1, and
P4 writes to M2.

Crossbars allow simultaneous communication among different devices, so they are much
faster than buses. However, the cost of the switches and links is relatively high. A small bus-

based system will be much less expensive than a crossbar-based system of the same size.

~

l/—
Sy) S

S

Figure 6.10 - A ring

Distributed memory interconnects

Distributed-memory interconnects are often divided into two groups: direct interconnects
and indirect interconnects. In a direct interconnect each switch is directly connected to a
processor-memory pair and the switches are connected to each other. Figure 6.10 shows a
ring while Figure 6.11 shows a two-dimensional toroidal mesh. As before, the circles are
switches, the squares are processors, and the lines are bidirectional links. A ring is superior

to a simple bus since it allows multiple simultaneous communications.

The toroidal mesh will be more expensive than the ring, because the switches are more

complex—they must support five links instead of three—and if there are p processors, the

Page | 132

number of links is 3p in a toroidal mesh, while it’s only 2p in a ring. However, the number of

possible simultaneous communications patterns is greater with a mesh than with a ring.

//'__ . ™ -

Y)

uf
uf

~

SN

™

4
|

W o onv.onN
\goov),

L

=

~

Figure 6.11 - A toroidal mesh

One measure of “number of simultaneous communications” or “connectivity” is bisection
width. To understand this measure, assume a parallel system divided into two halves with
each half containing half of the processors or nodes. Bisection width is the quantity of
simultaneous communications that can take place “across the divide” between the two
halves. In Figure 6.12 a ring with eight nodes is divided into two groups of four nodes and it
is evident that only two communications can take place between the halves. However, in
Figure 6.13, the nodes are divided into two parts so that four simultaneous communications
can take place. Since bisection width is supposed to give a “worst-case” estimate, it is

assumed to be two, not four.

] ™

Figure 6.12 - Ring bisection, two communications between the two halves

An alternative way of computing the bisection width is to remove the minimum number of

links needed to split the set of nodes into two equal halves. The number of links removed is
the bisection width. Assuming a square two-dimensional toroidal mesh with p = q2 nodes

where q is even, the nodes can be split into two halves by removing the “middle” horizontal

links and the “wraparound” horizontal links as in Figure 6.14. This suggests that the bisection

Page | 133

width is at most 2q = 2\/6. In fact, this is the smallest possible number of links and the

bisection width of a square two-dimensional toroidal mesh is 2\/6 .

A .

2]
™

-~
e >
ﬂ

Figure 6.13 - Ring bisection of four communications

The bandwidth of a link is the rate at which it can transmit data. It's usually given in
megabits or megabytes per second. Bisection bandwidth is often used as a measure of
network quality and it is similar to bisection width. However, instead of counting the
number of links joining the halves, it sums the bandwidth of the links. For example, if the
links in a ring have a bandwidth of one billion bits per second, then the bisection bandwidth

of the ring will be two billion bits per second or 2000 megabits per second.

N/ N

Figure 6.14 - A bisection of a toroidal mesh

The ideal direct interconnect is a fully connected network in which each switch is directly
2

P

connected to every other switch as in Figure 6.15 with a bisection width of — . However,

it’s impractical to construct such an interconnect for systems with more than a few nodes,
p° P

since it requires a total of 7+E links, and each switch must be capable of connecting to p

links. It is therefore a “theoretical best possible” interconnect and not a practical one, only

used as a basis for evaluating other interconnects.

Page | 134

Figure 6.15 - A fully connected network

The hypercube is a highly connected direct interconnect that has been used in actual
systems. Hypercubes are built inductively. A one-dimensional hypercube is a fully-connected
system with two processors. A two-dimensional hypercube is built from two one-
dimensional hypercubes by joining “corresponding” switches. Similarly, a three-dimensional

hypercube is built from two two-dimensional hypercubes as in Figure 6.16. Thus, a

hypercube of dimension d has p = 2% nodes, and a switch in a d-dimensional hypercube is

directly connected to a processor and d switches. The bisection width of a hypercube is g,

so it has more connectivity than a ring or toroidal mesh, but the switches must be more
powerful, since they must support 1+d =1+1log, (p) wires, while the mesh switches only

require five wires. This constitutes a hypercube with p nodes to be more expensive to

construct than a toroidal mesh.

Figure 6.16 - 1D, 2D and 3D hypercubes

Indirect interconnects provide an alternative to direct interconnects. In an indirect
interconnect, the switches may not be directly connected to a processor. They're often
shown with unidirectional links and a collection of processors, each of which has an outgoing

and an incoming link, and a switching network as in Figure 6.17.

Page | 135

Switching
Network

A

Figure 6.17 - A generic indirect network

The crossbar and the omega network are relatively simple examples of indirect networks.
The diagram of a distributed-memory crossbar in Figure 6.18 has unidirectional links. Notice
that as long as two processors don’t attempt to communicate with the same processor, all
the processors can simultaneously communicate with another processor. An omega network
is shown in Figure 6.19. The switches are two-by-two crossbars as in Figure 6.20. Unlike the
crossbar, there are communications that cannot occur simultaneously, i.e.: in Figure 6.19, if
processor 0 sends a message to processor 6, then processor 1 cannot simultaneously send a
message to processor 7. On the other hand, the omega network is less expensive than the

1
crossbar. The omega network uses > plog, (p) of the 2x2 crossbar switches, so it uses a

total of 2plog, (p) switches, while the crossbar uses p2 .

_/

[_D N
N B
=

S

Figure 6.18 - A crossbar interconnect for distributed memory

()
OO J

-,
oy
-

——
)+\ A

e
.
-
\

It’s a little bit more complicated to define bisection width for indirect networks. However,
the principle is the same: the nodes must be divided into two groups of equal size and
communication that can take place between the two halves is determined, or alternatively,
the minimum number of links that need to be removed so that the two groups can’t

communicate. The bisection width of a p x p crossbar is p and the bisection width of an

P

omega network is —.

Page | 136

Figure 6.19 - An omega network

Latency and bandwidth

Any time data is transmitted, there is a need to know how long it will take for the data to
reach its destination. This is true whether referring about transmitting data between main
memory and cache, cache and register, hard disk and memory, or between two nodes in a
distributed-memory or hybrid system. There are two figures that are often used to describe
the performance of an interconnect, the latency and the bandwidth. The latency is the time
that elapses between the source’s beginning to transmit the data and the destination’s
starting to receive the first byte. The bandwidth is the rate at which the destination receives
data after it has started to receive the first byte. So if the latency of an interconnect is |
seconds and the bandwidth is b bytes per second, then the time it takes to transmit a

message of n bytes is

n
T=l+— (6.2.1)

b

4 ™

s Y
0
il R R
\

Figure 6.20 - A switch in an omega network

These terms are often used in different ways. Latency is sometimes used to describe total
message transmission time or the time required for any fixed overhead involved in

transmitting data. During a message transmission between two nodes in a distributed

Page | 137

memory system, a message is not just raw data as it might include the data to be
transmitted, a destination address, some information specifying the size of the message,
some information for error correction, and so on. In such a case, latency might be the time it
takes to assemble the message on the sending side, the time needed to combine the various
parts and the time to disassemble the message on the receiving side, the time needed to

extract the raw data from the message and store it in its destination.

6.2.4 CACHE COHERENCE

As seen in Section 6.1.3, CPU caches are managed by system hardware; programmers do not
have direct control over them. This has several important consequences for shared-memory
systems. To better illustrate these issues, assume a shared memory system with two cores,
each of which has its own private data cache. Moreover, assume that x is a shared variable
that has been initialized to 2, y0 is private and owned by core 0, and y1 and z1 are private

and owned by core 1 with the following statements to be executed at the indicated times:

Time Core 0 Core 1
0 y0 = x; ¥1 = 3*x;
1 w=7; Statement(s) not involving x
2 Statement(s) not involving x 21 = 4*x;

The memory location for yO will eventually get the value 2, and the memory location for y1
will eventually get the value 6. However, it is not so clear what value z1 will get. It might at
first appear that since core 0 updates x to 7 before the assignment to z1, z1 will get the value
4 x 7=28. However, at time 0O, x is in the cache of core 1, so unless for some reason x is
evicted from core 0’s cache and then reloaded into core 1’s cache, it actually appears that

the original value x = 2 may be used, and z1 will get the value 4 x 2 = 8.

Page | 138

Core 0 Core 1
Cache 0 Cache 1
Interconnect
X 2 y1
w0 z1

Figure 6.21 - A shared-memory system with two cores and two caches

Note that this unpredictable behavior will occur regardless of whether the system is using a
write-through or a write-back policy. If it is using a write-through policy, the main memory
will be updated by the assignment x = 7. However, this will have no effect on the value in the
cache of core 1. If the system is using a write-back policy, the new value of x in the cache of

core 0 probably won’t even be available to core 1 when it updates z1.

The programmer does not have direct control over when the caches are updated, so a
program cannot execute these statements and know what will be stored in z1. The caches
described for single processor systems provide no mechanism for insuring that when the
caches of multiple processors store the same variable, an update by one processor to the
cached variable is “seen” by the other processors. This issue is called the cache coherence

problem.

Snooping cache coherence

There are two main approaches to insuring cache coherence: snooping cache coherence and
directory-based cache coherence. The idea behind snooping comes from bus-based systems:
When the cores share a bus, any signal transmitted on the bus can be “seen” by all the cores
connected to the bus. Thus, when core 0 updates the copy of x stored in its cache, if it also
broadcasts this information across the bus, and if core 1 is “snooping” the bus, it will see

that x has been updated and it can mark its copy of x as invalid.

A couple of points should be made regarding snooping. First, it's not essential that the

interconnect is a bus, only that it support broadcasts from each processor to all the other

Page | 139

processors. Second, snooping works with both write-through and writeback caches. In
principle, if the interconnect is shared with writethrough caches, there is no need for
additional traffic on the interconnect since each core can simply “watch” for writes. With
write-back caches, an extra communication is necessary since updates to the cache don’t get

immediately sent to memory.

Directory-based cache coherence

Unfortunately, in large networks broadcasts are expensive and snooping cache coherence
requires a broadcast every time a variable is updated. In that sense, snooping cache
coherence is not scalable because, for larger systems, it will cause performance to degrade.
For example, assume a system with the basic distributed-memory architecture and a single
address space for all the memories, i.e.: core 0 can access the variable x stored in core 1’s
memory, by simply executing a statement such as y = x. Such a system can scale to very large
numbers of cores, in principle. However, snooping cache coherence is clearly a problem
since a broadcast across the interconnect will be very slow relative to the speed of accessing

local memory.

Directory-based cache coherence protocols attempt to solve this problem through the use of
a data structure called a directory which stores the status of each cache line. Typically, this
data structure is distributed, so in this example, each core/memory pair might be
responsible for storing the part of the structure that specifies the status of the cache lines in
its local memory. Thus, when a line is read into, core 0’s cache, the directory entry
corresponding to that line would be updated indicating that core 0 has a copy of the line.
When a variable is updated, the directory is consulted, and the cache controllers of the cores
that have that variable’s cache line in their caches are invalidated. It is evident that there will
be substantial additional storage required for the directory but when a cache variable is

updated, only the cores storing that variable need to be contacted.

False sharing

It is important to remember that CPU caches are implemented in hardware, so they operate
on cache lines, not individual variables. This can have disastrous consequences for
performance. Assume that a call to function f(i,j) will occur repeatedly, adding the computed

values into a vector:

int i, j, m, n;
double y[m];

/* Assign 'y =0 */

Page | 140

for (i O; 1 <m; i++)

for (=0; J < n; j++)

yLi] += £(i,j);

This can be parallelized by dividing the iterations in the outer loop among the cores. If we
have core count cores, we might assign the first m/core count iterations to the first core, the

next m/core count iterations to the second core, and so on, as shown below:

/* Private variables */

int i, j, itercount;

/* Shared variables initialized by one core */
int m, n, core count

double y[m];

itercount = m/corecount

/* Core 0 does this */

for (i 0; 1 < itercount; i++)

for (§

0; J < n; j++v)
y[i] += £(i.J);
/* Core 1 does this */

for (i = itercount+l; i < 2*itercount; i++)

for 0 = 0; J < n; j++)

yLil += £(i.3);

Assume a shared-memory system with two cores, m = 8, doubles are eight bytes, cache lines
are 64 bytes, and y[0] is stored at the beginning of a cache line. A cache line can store eight
doubles, and y takes one full cache line. Since all of y is stored in a single cache line, each
time one of the cores executes the statement y[i] += f(i,j), the line will be invalidated, and
the next time the other core tries to execute this statement it will have to fetch the updated
line from memory. If n is large, a large percentage of the assignments y[i] += f(i,j) are
expected to access main memory, despite the fact that core 0 and core 1 never access each
others’ elements of y. This is called false sharing, because the system is behaving as if the
elements of y were being shared by the cores. False sharing does not cause incorrect results

but it can degrade performance of a program by causing many more accesses to memory

Page | 141

than necessary. This effect can be reduced by using temporary storage that is local to the

thread or process and then copying the temporary storage to the shared storage.

6.2.5 SHARED-MEMORY VERSUS DISTRIBUTED-MEMORY

Newcomers to parallel computing sometimes wonder why all MIMD systems are not shared-
memory, since most programmers find the concept of implicitly coordinating the work of the
processors through shared data structures more appealing than explicitly sending messages.
The principal hardware issue is the cost of scaling the interconnect. As processors are added
to a bus, the chance that there will be conflicts over access to the bus increase dramatically,
so buses are suitable for systems with only a few processors. Large crossbars are very

expensive, so it is also unusual to find systems with large crossbar interconnects.

On the other hand, distributed-memory interconnects such as the hypercube and the
toroidal mesh are relatively inexpensive, and distributed-memory systems with thousands of
processors that use these and other interconnects have been built. Thus, distributed-
memory systems are often better suited for problems requiring vast amounts of data or

computation.

6.3 PARALLEL SOFTWARE

Parallel hardware is now a commodity since virtually all desktop and server systems use
multicore processors. However, the same does not apply to parallel software. With the
exception of operating systems, database systems, and web servers, there is currently very
little commodity software that makes extensive use of parallel hardware. This poses a
problem because we can no longer rely on hardware and compilers to provide a steady
increase in application performance. In order to continue having increases in application
performance and application power, it is imperative to develop applications that exploit
shared- and distributed-memory architectures. In this section some of the issues involved in

writing software for parallel systems will be presented along with some terminology.

6.3.1 PROCESS AND THREAD COORDINATION

Assume the addition of two arrays, as shown below:

double x[n], yInl;

for (int i = 0; i < n; i++)

Page | 142

x[i] += yLil;

In order to parallelize this loop, assigning elements of the arrays to processes/threads is
necessary. Assuming p processes/threads, process/thread 0 will be responsible for elements

0, ... ,n/p-1, process/thread 1 will be responsible for elements n=p, ...,2n/p-1, and so on.
In this example, the programmer only needs to:

1. Divide the work among the processes/threads in such a way that
a. each process/thread gets roughly the same amount of work, and

b. the amount of communication required is minimized.

The process of dividing the work among the processes/threads so that (a) is satisfied
is called load balancing. The process of converting a serial program or algorithm into
a parallel program is often called parallelization. Programs that can be parallelized
by simply dividing the work among the processes/threads are sometimes said to be
embarrassingly parallel. However, the vast majority of problems are much more
difficult to parallelize and for these problems, coordination of the work of the
processes/threads is needed. In these programs, we also usually need to

Arrange for the processes/threads to synchronize.

Arrange for communication among the processes/threads.

These last two tasks are often interrelated. For example, in distributed-memory programs,
the processes are implicitly synchronized when they communicate and in shared-memory

programs, we often communicate among the threads by synchronizing them.

6.3.2 SHARED MEMORY

In shared-memory programs, variables can be shared or private. Shared variables can be
read or written by any thread, and private variables can ordinarily be accessed by only one
thread. Communication among the threads is usually done through shared variables, so

communication is implicit, rather than explicit.

Dynamic and static threads

In many environments, shared-memory programs use dynamic threads. In this paradigm,
there is often a master thread and at any given instant a (possibly empty) collection of
worker threads. The master thread typically waits for work requests and when a new
request arrives, it forks a worker thread; the thread carries out the request, and when the
thread completes the work, it terminates and joins the master thread. This paradigm makes

Page | 143

efficient use of system resources since the resources required by a thread are only being

used while the thread is actually running.

An alternative to the dynamic paradigm is the static thread paradigm where all of the
threads are forked after any needed setup by the master thread and the threads run until all
the work is completed. After the threads join the master thread, the master thread may free
resources that are no longer needed and terminate. In terms of resource usage, this may be
less efficient: if a thread is idle, its resources i.e.: stack, program counter, etc, cannot be
freed. On the other hand, forking and joining threads can be fairly time-consuming
operations so, if the necessary resources are available, the static thread paradigm has the
potential for better performance than the dynamic paradigm. It is also closer to the most
widely used paradigm for distributed-memory programming so, part of the mindset that is

used for one type of system is preserved for the other.

Non-determinism

In any MIMD system in which the processors execute asynchronously it is likely that there
will be non-determinism. A computation is non-deterministic if a given input can result in
different outputs. If multiple threads are executing independently, the relative rate at which
they will complete statements varies from run to run, constituting the results of the program
different from run to run. As a very simple example, assume two threads, one with id or rank
0 and the other with id or rank 1. Assume also that each is storing a private variable called
my_x with thread 0’s value for my_x being 7, and thread 1’s being 19. Moreover assume that

both threads execute the following code:

printf("Thread %d > my val = %dnn', my_rank, my Xx);

Then the output could be
Thread 0 >myval=7

Thread 1 >myval =19

but it could also be
Thread 1 >myval =19

Thread 0 >myval=7

Page | 144

Since threads are executing independently and interacting with the operating system, the
time it takes for one thread to complete a block of statements varies from execution to

execution, so the order in which these statements complete can’t be predicted.

In many cases non-determinism does not pose a problem. In our example, since we have
labelled the output with the thread’s rank, the order in which the output appears probably
does not matter. However, there are also many cases in which non-determinism, especially
in shared-memory programs, can be disastrous because it can easily result in program
errors. Here is a simple example with two threads. Assume each thread computes an int
which is stored in a private variable called my_val. Moreover, assume the values stored in
my_val need to be added into a shared-memory location x that has been initialized to 0.

Both threads therefore want to execute code that looks something like this:
my val = Compute val(my rank);

X += my val;

An addition typically requires loading the two values to be added into registers, adding the
values, and finally storing the result. To keep things relatively simple, assume that values are
loaded from main memory directly into registers and stored in main memory directly from

registers. Here is one possible sequence of events:

Time Core 0 Core 1
0 Finish assignment to my_va 1 Incall to Compute_val
1 Load x = 0 into register Finish assignment to my_val
2 Load my_val = 7 intoregister Load x = 0 into register
3 Addmy_val = 7tox Loadmy_val = 19 into register
4 Storex = 7 Addmy_val to x
5 Start other work Store x = 19

Clearly this is not what we want, and it is easy to imagine other sequences of events that
result in an incorrect value for x. The non-determinism here is a result of the fact that two
threads are attempting to more or less simultaneously update the memory location x. When
threads or processes attempt to simultaneously access a resource, and the accesses can
result in an error, we often say the program has a race condition because the threads or
processes are said to be in a “horse race.” This means that the outcome of the computation
depends on which thread wins the race. In our example, the threads are in a race to execute
X += my_val. In this case, unless one thread completes x += my_val before the other thread
starts, the result will be incorrect. A block of code that can only be executed by one thread
at a time is called a critical section and it is up to the programmer to insure mutually
exclusive access to the critical section, meaning that it needs to be insured that if one thread

is executing the code in the critical section, then the other threads are excluded.

Page | 145

The most commonly used mechanism for insuring mutual exclusion is a mutual exclusion
lock or mutex or lock. A mutex is a special type of object that is supported by the underlying
hardware. The basic idea is that each critical section is protected by a lock. Before a thread
can execute the code in the critical section, it must “obtain” the mutex by calling a mutex
function, and, when it is done executing the code in the critical section, it should “relinquish”
the mutex by calling an unlock function. While one thread “owns” the lock, meaning that it
has returned from a call to the lock function but has not yet called the unlock function, any
other thread attempting to execute the code in the critical section will wait in its call to the

lock function.

Thus, in order to insure that the previous code functions correctly, it needs to be modified as

shown below:

my_val = Compute_val(my_rank);
Lock(&add_my_val_lock);

X += my_val;

Unlock(&add_my_val_lock);

This insures that only one thread at a time can execute the statement x += my_val. Note that
the code does not impose any predetermined order on the threads. Either thread 0 or
thread 1 can execute x += my_val first. Also note that the use of a mutex enforces

serialization of the critical section.

Since only one thread at a time can execute the code in the critical section, this code is
effectively serial. Thus, we want our code to have as few critical sections as possible, and we
want our critical sections to be as short as possible. There are alternatives to mutexes. In
busy-waiting, a thread enters a loop whose sole purpose is to test a condition. In our
example, suppose there is a shared variable ok _for_1 that has been initialized to false. For

that case, thread 1 won’t update x until after thread 0 has updated it, as shown below:
my_val = Compute_val(my_rank);

if (my_rank == 1)

while (lok_for_1); /* Busy-wait loop */

x += my_val; /* Critical section */

if (my_rank == 0)

ok_for_1 = true; /* Let thread 1 update x */

Page | 146

So until thread 0 executes ok for 1 = true, thread 1 will be stuck in the loop while (!ok for 1).
This loop is called a “busy-wait” because the thread can be very busy waiting for the
condition. Despite the fact that busy-wait is simple to understand and implement, it can be
very wasteful of system resources because, even when a thread is doing no useful work, the
core running the thread will be repeatedly checking to see if the critical section can be

entered.

Semaphores are similar to mutexes, although the details of their behavior are slightly
different, and there are some types of thread synchronization that are easier to implement
with semaphores than mutexes. A monitor provides mutual exclusion at a somewhat higher-

level: it is an object whose methods can only be executed by one thread at a time.

There are a number of other alternatives that are currently being studied but that are not
yet widely available. The one that has attracted the most attention is probably transactional
memory [75]. In database management systems, a transaction is an access to a database
that the system treats as a single unit. For example, transferring $1000 from a savings
account to a checking account should be treated by a bank’s software as a transaction, so
that the software cannot debit the savings account without also crediting the checking
account. If the software was able to debit the savings account, but was then unable to credit
the checking account, it would rollback the transaction meaning that the transaction would,
either be fully completed or any partial changes would be erased. The basic idea behind
transactional memory is that critical sections in shared-memory programs should be treated
as transactions. Either a thread successfully completes the critical section or any partial

results are rolled back and the critical section is repeated.

Thread safety

In many cases, parallel programs can call functions developed for use in serial programs
without any issues or problems. However, there are some notable exceptions with the most
important being functions that make use of static local variables. Ordinary local variables
which are variables declared inside a function, are allocated from the system stack. Since
each thread has its own stack, ordinary local variables are private. However, a static variable
that is declared in a function, persists from one call to the next. Thus, static variables are
effectively shared among any threads that call the function leading to unexpected and

unwanted consequences.

For example, the C string library function strtok splits an input string into substrings. When
it’s first called, it’s passed a string, and on subsequent calls it returns successive substrings.
This can be arranged through the use of a static char* variable that refers to the string that
was passed on the first call. Now suppose two threads are splitting strings into substrings.

Clearly, if, for example, thread 0 makes its first call to strtok, and then thread 1 makes its

Page | 147

first call to strtok before thread 0 has completed splitting its string, then thread 0’s string will

be lost or overwritten, and, on subsequent calls it may get substrings of thread 1’s strings.

A function such as strtok is not thread safe. This means that if it is used in a multithreaded
program, there may be errors or unexpected results. When a block of code is not thread
safe, it is usually because different threads are accessing shared data. Thus, even though
many serial functions can be used safely in multithreaded programs, meaning that they are
thread-safe, programmers need to be cautious of functions that were written exclusively for

use in serial programs.

6.3.3 DISTRIBUTED MEMORY

In distributed-memory programs, the cores can directly access only their own, private
memories. There are several APls that are used but the most widely used is message-
passing. Distributed-memory APIs is can be used with shared-memory hardware; it is
perfectly feasible for programmers to logically partition shared-memory into private address
spaces for the various threads and a library or compiler can implement the communication
that’s needed. Distributed-memory programs are usually executed by starting multiple
processes rather than multiple threads since, typical “threads of execution” in a distributed-
memory program may run on independent CPUs with independent operating systems and
there may be no software infrastructure for starting a single “distributed” process and
having that process fork one or more threads on each node of the system.

Message-passing

A message-passing API provides (at a minimum) a send and a receive function. Processes
typically identify each other by ranks in the range 0, 1, ..., p-1, where p is the number of
processes. As an example, process 1 might send a message to process 0 with the following

pseudo-code:

char message[100];

my rank = Get_rank();

if (my_rank == 1) {

sprintf(message, "Greetings from process 1");
Send(message, MSG CHAR, 100, 0);

} else if (my rank == 0) {

Receive(message, MSG CHAR, 100, 1);

Page | 148

printf("'Process 0 > Received: %snn', message);

}

Here the Get_rank function returns the calling process’ rank, then the processes branch
depending on their ranks. Process 1 creates a message and then sends it to process 0 with
the call to Send. The arguments to the call are in order: the message, the type of the
elements in the message (MSG CHAR), the number of elements in the message (100), and
the rank of the destination process (0). On the other hand, process 0 calls Receive with the
following arguments: the variable into which the message will be received (message), the
type of the message elements, the number of elements available for storing the message,
and the rank of the process sending the message. After completing the call to Receive,

process 0 prints the message.
Several points are worth noting here:

1. The program segment is SPMD. The two processes are using the same executable,
but carrying out different actions. In this case, what they do depends on their ranks.

2. The variable message refers to different blocks of memory on the different
processes. Programmers often stress this by using variable names such as my
message or local message.

3. Process 0 can write to stdout. This is usually the case: most implementations of
message-passing APls allow all processes access to stdout and stderr—even if the

API doesn’t explicitly provide for this.

There are several possibilities for the exact behavior of the Send and Receive functions with
most message-passing APIs providing several different send and/or receive functions. The
simplest behavior is for the call to Send to block until the call to Receive starts receiving the
data. This means that the process calling Send will not return from the call until the
matching call to Receive has started. Alternatively, the Send function may copy the contents
of the message into storage that it owns, and then it will return as soon as the data is
copied. The most common behavior for the Receive function is for the receiving process to
block until the message is received.

Typical message-passing APIs also provide a wide variety of additional functions. For
example, there may be functions for various “collective” communications, such as a
broadcast, in which a single process transmits the same data to all the processes, or a
reduction, in which results computed by the individual processes are combined into a single
result—for example, values computed by the processes are added. There may also be
special functions for managing processes and communicating complicated data structures.

The most widely used API for message passing is the Message-Passing Interface or MPI.

Page | 149

Message-passing is a very powerful and versatile APl for developing parallel programs.
Virtually all of the programs that are run on the most powerful computers in the world use
message-passing. However, it is also very low level as there is a huge amount of detail that
the programmer needs to manage and, in order to parallelize a serial program, it is usually
necessary to rewrite the vast majority of the program. The data structures in the program
may have to either be replicated by each process or be explicitly distributed among the
processes. Furthermore, the rewriting process usually cannot be done incrementally. For
example, if a data structure is used in many parts of the program, distributing it for the
parallel parts and collecting it for the serial (unparallelized) parts will probably be
prohibitively expensive. Therefore, message passing is sometimes called “the assembly
language of parallel programming,” and there have been many attempts to develop other

distributed-memory APIs.

One-sided communication

In message-passing, one process, must call a send function and the send must be matched
by another process’ call to a receive function. Any communication requires the explicit
participation of two processes. In one-sided communication, or remote memory access, a
single process calls a function, which updates either local memory with a value from another
process or remote memory with a value from the calling process. This can simplify
communication, since it only requires the active participation of a single process.
Furthermore, it can significantly reduce the cost of communication by eliminating the
overhead associated with synchronizing two processes. It can also reduce overhead by

eliminating the overhead of one of the function calls (send or receive).

It should be noted that some of these advantages may be hard to realize in practice. For
example, if process 0 is copying a value into the memory of process 1, 0 must have some
way of knowing when it’s safe to copy, since it will overwrite some memory location. Process
1 must also have some way of knowing when the memory location has been updated. The
first problem can be solved by synchronizing the two processes before the copy, and the
second problem can be solved by another synchronization or by having a “flag” variable that
process 0 sets after it has completed the copy. In the latter case, process 1 may need to poll
the flag variable in order to determine that the new value is available by repeatedly checking
the flag variable until it gets the value indicating 0 has completed its copy. These issues can
considerably increase the overhead associated with transmitting a value. A further difficulty
is that since there is no explicit interaction between the two processes, remote memory

operations can introduce errors that are very hard to track down.

Partitioned global address space languages

Page | 150

Since many programmers find shared-memory programming more appealing than message-
passing or one-sided communication, a number of groups are developing parallel
programming languages that allow the user to use some shared-memory techniques for
programming distributed-memory hardware. This is not a straightforward process; if simply
a compiler was developed that treated the collective memories in a distributed-memory
system as a single large memory, programs would have poor, or, at best, unpredictable
performance because, each time a running process accessed memory, it might access local
memory (memory belonging to the core on which it was executing) or remote memory

(memory belonging to another core).

Accessing remote memory can take hundreds or even thousands of times longer than
accessing local memory. As an example, consider the following pseudo-code for a shared-

memory vector addition:

shared int n = .

shared double x[n], y[n];

private int i, my_Ffirst_element, my_last_element;
my first element = . . _ ;

my last element = .

/* Initialize x and y */

for (i = my_Ffirst_element; i <= my_last _element; i++)

x[i] += y[il;

At first, two shared arrays are declared, then, on the basis of the process’ rank, the elements
of the array “belong” to each process are determined. After initializing the arrays, each
process adds its assigned elements. If the assigned elements of x and y have been allocated
so that the elements assigned to each process are in the memory attached to the core the
process is running on, then this code should be very fast. However, if, for example, all of x is
assigned to core 0 and all of y is assigned to core 1, then the performance is likely to be
vastly degraded since, each time the assignment x[i] += y[i] is executed, the process will

need to refer to remote memory.

Partitioned global address space (PGAS) languages such as the ones presented in [76],
provide some of the mechanisms of shared-memory programs and also provide the
programmer with tools to avoid the problem mentioned above. Private variables are
allocated in the local memory of the core on which the process is executing and the

distribution of the data in shared data structures is controlled by the programmer..

Page | 151

Programming hybrid systems

It is possible to program systems such as clusters of multicore processors using a
combination of a shared-memory APl on the nodes and a distributed-memory API for
internode communication. However, this is usually only done for programs that require the
highest possible levels of performance, since the complexity of this “hybrid” APl makes
program development extremely difficult [77]. Most commonly, such systems are usually
programmed using a single, distributed-memory APl for both inter- and intra-node
communication.

6.3.4 PARALLEL PROGRAM DESIGN

In general, parallelizing a serial program includes the division of the work among the
processes/threads so that each process gets roughly the same amount of work and
communication is minimized. In most cases, special consideration is needed for the

processes/threads to synchronize and communicate.

Unfortunately, there is no universal parallelization process to be followed but an outline of

steps as suggested in [78] can be as follows:

1. Partitioning. Divide the computation to be performed and the data operated on by
the computation into small tasks. The focus here should be on identifying tasks that
can be executed in parallel.

2. Communication. Determine what communication needs to be carried out among the
tasks identified in the previous step.

3. Agglomeration or aggregation. Combine tasks and communications identified in the
first step into larger tasks. For example, if task A must be executed before task B can
be executed, it may make sense to aggregate them into a single composite task.

4. Mapping. Assign the composite tasks identified in the previous step to
processes/threads. This should be done so that communication is minimized, and

each process/thread gets roughly the same amount of work.

This is sometimes called Foster’s methodology.

6.4 PERFORMANCE

In the following sections, various metrics for measuring performance benefits when

executing parallel codes in parallel hardware are presented.

Page | 152

6.4.1 SPEEDUP AND EFFICIENCY

The most efficient parallelization implementation is to equally divide the work among the
cores while at the same time introducing no additional work for the cores. For that case,

should a program is executed using p cores with one thread or process on each core, it will

run p times faster than the serial program. If serial run-time is T,

serial

, and the parallel run-

— Tserial

parallel = . In such cases, a

time is T .y then the maximum performance benefit is T

parallel program is said to have linear speedup.

p 1 2 4 8 16

S 10 19 36 65 108
E=S/;p 1.0 095 0820 081 0868

Table 6.4 - Speedups and efficiencies of a parallel program

In practice, linear speedup is unlikely to be achieved because the use of multiple
processes/threads almost invariably introduces some overhead. Shared memory programs
will almost always have critical sections, which will require the use of some mutual exclusion
mechanism such as a mutex. The calls to the mutex functions are overhead that is not
present in the serial program and the use of the mutex forces the parallel program to
serialize execution of the critical section. Distributed-memory programs will almost always
need to transmit data across the network, which is usually much slower than local memory
access. Serial programs, on the other hand, will not have these overheads. Thus, it will be
very unusual for us to find that our parallel programs get linear speedup. Furthermore, it is
likely that the overheads will increase as we increase the number of processes or threads
with more threads probably leading to more threads that need to access a critical section.
More processes will probably mean more data needs to be transmitted across the network.
So if we define the speedup of a parallel program to be:
T,

S = T serial (6.4.1)

parallel

then linear speedup has S=p, which is unusual. Furthermore, as p increases, S is expected to

become a smaller and smaller fraction of the ideal, linear speedup p. Another way of saying

S
this is that — will probably get smaller and smaller as p increases as show in Table 6.4 The

Page | 153

S
value —, is sometimes called the efficiency of the parallel program. By substituting the

p

formula for S, efficiency is equal to:

serial

T .
E :E _ parallel — Tserlal (6.4.2)
p p p- Tparallel

Itis clear that T

T

varallel » 5 @nd E depend on p, the number of processes or threads. Moreover,

S,E,and T,

serial

parallel 7 , all depend on the problem size. For example, if the problem size is

doubled or halved for the whose speedups are shown in Table 6.4, the speedups and

efficiencies shown in Table 6.5 occur.

p 1 2 4 8 16
Haf S 10 19 31 48 62
E 10 095 078 060 039

Orginal S 1.0 19 36 65 108
E 1.0 095 090 081 068

Double S 10 19 39 75 142
E 1.0 095 098 094 089

Table 6.5 - Speedups and efficiencies of a parallel program on different problem sizes

In this example, increasing the problem size results to an increase in speedups and
efficiencies, while a decrease in these quantities occurs when the problem size is decreased.

Such a behavior is quite common.

Many parallel programs are developed by dividing the work of the serial program among the
processes/threads and adding in the necessary “parallel overhead” such as mutual exclusion

or communication. Therefore, if T ..,q denotes this parallel overhead, it’s often the case

that

T

— ial
Tparallel - %;a +T0verhead (6-4-3)

Furthermore, as the problem size is increased, T ., Often grows more slowly than T, .

For such case, both speedup and efficiency will increase; since there is more work for the
processes/threads to do, the relative amount of time spent coordinating the work of the
processes/threads should be less.

A final issue to consider is what values of T,

«ria Should be used when reporting speedups

and efficiencies as it is stated that they should be the run-time of the fastest program on the

Page | 154

fastest processor available. In practice, most authors use a serial program on which the

parallel program was based and run it on a single processor of the parallel system.

6.4.2 AMDAHL’S LAW

Amdahl’s law [79] states that unless virtually all parts of a serial program are parallelized,
the possible speedup is going to be very limited, regardless of the number of cores available.
In order to illustrate this, assume that 90% of a serial program is parallelized and that the

parallelization is “perfect,” meaning that, regardless of the number of cores p used, the

speedup of this part of the program will be p. If the serial run-time is T_ .., = 20 seconds then

serial
T

18
—serial — —~ and the run-time of the

P P

= 2. The overall parallel run-time will be equal to:

the run-time of the parallelized part will be 0.9x

“unparallelized” part will be 0.1xT,

serial

0.9><T59ﬂ+0.1><T 18

Tparallel = P serial =—+2 (6.4.4)
and the speedup will be equal to:
S = = Tserial — 1820 (6.4.5)
0.9 x —serial 0.IxT, —+2
p p
, 18
Now as p gets larger and larger, 0.9 x—¢%. — —— gets closer and closer to 0, so the total

p

parallel run-time can’t be smaller than 0.1xT, =2, meaning that the denominator in S

serial

cannot be smaller than 0.1xT = 2. The fraction S must therefore be smaller than:

serial

S< LT Ise;a' = 2—20 =10 (6.4.6)
AX

serial

This means that even though 90% of the program is perfectly parallelized, a speedup better
than 10 will never be achieved even if the program is run on a parallel computing

environment with 100 or 1000 cores.

More generally, if a fraction r of the serial program remains unparallelized, then Amdahl’s
law implies that a speedup better than 1/r cannot be achieved. In the previous example, r=1-
0.9=0.1=1/10, so the maximum is 10. If a fraction r of a serial program is “inherently serial,”
that is, cannot possibly be parallelized, then a speedup better than 1=r is not possible. Even
if r is quite small like 1/100, having a system with thousands of cores at our disposal will not

provide a speedup better than 100. Fortunately, Amdahl’s law does not take into

Page | 155

consideration the problem size. For many problems, an increase in problem size results in a

IM

decrease of the “inherently serial” fraction of the program as stated by Gustafson’s law [80].
This is also backed up in practice where there are thousands of programs used by scientists

and engineers that routinely obtain huge speedups on large distributed-memory systems.

6.4.3 SCALABILITY

Assume that a parallel program is run with a fixed number of processes/threads and a fixed
input size, and an efficiency E is obtained. If the number of processes/threads that are used
by the program are increased and there exists a corresponding rate of increase in the
problem size so that the program always has efficiency E, then the program is said to be

scalable.

In order to illustrate that, assume that T,

«erial =N Microseconds and n is also the problem size.

If T

n
varatler = — 1, then efficiency is equal to:
p

. n
p(nﬂ} n+p
p

To determine if the program is scalable, the number of processes/threads is increased by a

(6.4.7)

factor of k, and the factor x that needs to increase the problem size by is sought so that E is
unchanged. If the number of processes/threads is kp and the problem size is xn, the

following equation needs to be evaluated for x:

n Xn
E=

= = (6.4.8)
n+p xn+kp

If x=k, there will be a common factor of k in the denominator xn+kp=kn+kp=k(n+p) and the
fraction can be reduced in order to get:

xn knn
xn+kp_k(n+p)_n+p

(6.4.9)

This means that if the problem size is increased at the same rate that the number of
processes/threads are increased, the efficiency will be unchanged, and the program is

considered to be scalable.

When the number of processes/threads is increased while keeping the efficiency fixed
without increasing the problem size, the program is said to be strongly scalable. If the
efficiency is kept fixed by increasing the problem size at the same rate as the number of

Page | 156

processes/threads is increased, then the program is said to be weakly scalable, as in the

previous example.

Page | 157

7 GPGPU PROGRAMMING

record
R The principal programming paradigms
- XML, "More is not better (or worse) than less, just different."
Data structures only S—expression

v1.03 © 2007 by Peter Van Ray

+ procedure
....................... First—order
! Observable [1 i

\ nondeterminism? Yes No

+ cell (state) rati

Pascal, C
Tmy ive
+ search

+ closure

+ unification ' G niins SNOBOL, Icon, Prolog
(equality) 5 4 r: (uiiforgeable constant)
continuation '
' ADT : ADT icell
] O teell [. + port (state) + closure
; | imperativ hannel) e
' h
' ! - Event—| :
Scheme.ML | “Hael, ML,E | CLU,0z N object—oriented
+ by—need + thread i [RPIOSROIILES)
synchron. + single assign. | Stateful
Prolog, SQL Monotonic ' ! + thread functional
embeddings dataflow ' ' Multi-agent -
+ solver programming [~ + nondeterministic + port programming Java, OCaml
Declarative g choice | (channel) M. 7 + thread
| il ' Multi—agent rent C -]
CLP,ILOG Solver ! | dataflow object—oriented
+ thread Usix pipen i | Lo i i
. + thread ' ntlogic | | Oz Alice, AKL Shared-state
+ single assignment ' nming ; concurrent
1 FGHC, FCP, i
LIFE. AKL dataflow : Oz, Alice, AKL Java, Alice,
f ' ! Smalltalk, O;
+ by—need synchrenization Lazy " + synchronization o s
b 1 on partial termination | programming | +loz
‘ ! oftware
concurrent] | E, Oz, Alice, ms actional
0z, Ali Oz, Al FrTi p“ll,iisws“b(eri?ie’ | memory (STVD |
z, Alice 1z, Alice : rTime tuple space (Linda -
d s : : ple sp) SQL embeddings
] 1
i H
N " ' Dataflow and .
- Functional ! |\ message passing Message passing Shared state)
et ' Weak state 1 P
No state ' ! Stateful
More declarative : + : t = Less decl,

Page | 158

7.1 GPUS AS GENERAL PURPOSE PROCESSING PLATFORMS

With the evolution of high-definition 3D graphics, the programmable GPU has evolved into a
highly parallel, multi-threaded, manycore processor with a vast computational potential and

very high memory bandwidth.

Theoretical
GFLOPI s

4750 +
4500 4
4250 NVIDIA GPU Single Precision
4000 - s NVIDIA GPU Double Precision
2750 - Intel CPU Double Precision

1500 =spmm|nte| CPU Single Precision

3250 -
3000 A
2750 -
2500 -
2250 -
2000 A
1750 -
1500 - Tedla K20X

1250 -

1000 4 Tesla N2

750 - Teda C2050

500 - Tesa C1080

i Harpertow
250 Woodcrest .

Sandy Bridge

0 4 “Hlooried Wesmere ' !
Apr-01 Sep-02 Jan-04 May-05 Oct-068 Feb-08 Jul-0%9 Nov-10 Apr-12 Augi13 Dec-14

Figure 7.1 - Computational power of the NVIDIA GPUs

The reason behind this huge difference in floating-point capability between the CPU and the
GPU is due to the GPU’s design; the GPU is specialized for compute-intensive, highly parallel
computation and designed so that more transistors are devoted to data processing rather

than data caching and flow control.

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations (SIMD) with high arithmetic intensity, which is the
ratio of arithmetic operations to memory operations. Following the SIMD paradigm, there is
a lower requirement for flow control while memory access latency can be hidden with
calculations instead of big data caches, because the code is executed on many data elements

and has high arithmetic intensity,

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model to
speed up the computations. In 3D rendering, large sets of pixels and vertices are mapped to
parallel threads. Similarly, image and media processing applications such as post-processing

Page | 159

of rendered images, video encoding and decoding, image scaling, stereo vision, and pattern
recognition can map image blocks and pixels to parallel processing threads. In fact, many
algorithms outside the field of image rendering and processing are accelerated by data-
parallel processing, from general signal processing or physics simulation to computational

finance or computational biology.
Theoretical G5 s

300

270
Teda K20

240 i CPU

CefForce GRU

0
Tesa GFU

180
Tesla MP0OS0
150
Tedla C2050
120

20 i TedaCH060

B0 Sandy Bridge

Boomfield

30

Prescott Mooderest Westmere

Harpert own
0 ot oot
2003 2004 2005 2006 2007 2008 2009 2010 211 22 2M3

Figure 7.2 - GPU vs CPU memory bandwidth

The advent of multi-core CPUs and manycore GPUs means that mainstream processor chips
are now parallel systems with their parallelism to continue scaling with Moore's law. The
challenge is to develop application software that transparently scales its parallelism to
leverage the increasing number of processor cores, much as 3D graphics applications
transparently scale their parallelism to manycore GPUs with widely varying numbers of

cores.

The CUDA parallel programming model is designed to overcome this challenge while
maintaining a low learning curve for programmers familiar with standard programming

languages such as C. It features three key abstractions:

e A hierarchy of thread groups

e A hierarchy of shared memories and

Page | 160

e Barrier synchronization

These abstractions are simply exposed to the programmer as a minimal set of language
extensions and provide fine-grained data parallelism and thread parallelism, nested within
coarse-grained data parallelism and task parallelism. They guide the programmer to
partition the problem into coarse sub-problems that can be solved independently in parallel,
by blocks of threads, and each sub-problem into finer pieces that can be solved
cooperatively in parallel by all threads within the block.

This decomposition preserves language expressivity by allowing threads to cooperate when
solving each sub-problem, and at the same time enables automatic scalability. Indeed, each
block of threads can be scheduled on any of the available multiprocessors within a GPU, in
any order, concurrently or sequentially, so that a compiled CUDA program can execute on
any number of multiprocessors and only the runtime system needs to know the physical

multiprocessor count.

A GPU is built around an array of Streaming Multiprocessors (SMs). A multithreaded
program is partitioned into blocks of threads that execute independently from each other,
so that a GPU with more multiprocessors will automatically execute the program in less time

than a GPU with fewer multiprocessors.

7.2 CUDA THREADS

The GPU is following a variation of the SIMD paradigm, applying the same functions on a
large number of data. These data-parallel functions are called kernels. Kernels generate a
large number of threads in order to exploit data parallelism, hence the Single Instruction
Multiple Thread (SIMT) paradigm. A thread is the smallest unit of processing that can be
scheduled by an operating system. It generally results from a forking execution into two or
more concurrently running tasks. Threads in GPUs take very few clock cycles to generate and
schedule due to the GPU’s underlying hardware support, unlike CPUs where thousands of
clock cycles are required. All threads generated by a kernel define a grid and are organized in
blocks. A grid consists of a number of blocks (all equal in size), and each block consists of a

number of threads, as shown in Figure 7.3.

Page | 161

Single Thread

Thread Block

Thread Grid

Figure 7.3 - Thread organization

Another type of thread grouping are warps. Warps are the units of thread scheduling in
SMPs. Only one warp can be executed by a SMP at any given time. The number of threads in
a warp is specific to the particular hardware implementation — it depends on how many
threads the available hardware can process at the same time. The purpose of warps is to
ensure high hardware utilization. For example, if a warp initiates a long-latency operation
and is waiting for results in order to continue, it is put on hold and another warp is selected
for execution in order to avoid having idle processors while waiting for the operation to
complete. When the long latency operation completes, the original warp will eventually
resume execution. With a sufficient number of warps, the processors are likely to have a
workload at all times in spite of the long-latency operations. The CUDA Programming Guide
recommends that the number of threads per block should be chosen as a multiple of the
warp size or better yet, a multiple of double the warp size from the viewpoint of

performance [81].

7.3 CUDA MEMORY

CUDA devices have a variety of different memories that can be utilized by programmers in
order to achieve high performance, as seen in Figure 7.4. The global memory is the memory
responsible for interaction with the host/CPU. The data to be processed by the device/GPU

is first transferred from the host memory to the device global memory. Also, output data

Page | 162

from the device needs to be placed here before being passed over to the host. Global
memory is large in size and off-chip. Constant memory provides interaction with the host
too, but the device is only allowed to read from it and not write to it. However, it provides
faster and more parallel data access paths for CUDA kernel execution than the global
memory. Graphics processors are also equipped with texture memory which is used to
accelerate frequently performed operations. CUDA allows the programmers to use some of
the added capabilities of the separate texture unit hardware. Texture memory also provides
a way to interact with the display capabilities of the GPU. There are also other types of
memories, namely registers and shared memories, which cannot be accessed by the host.
Data in these memories can be accessed in a highly parallel manner, but, due to their small
size, specific attention is required not to exceed their limited capacities. Registers are
thread-bound meaning that each thread can only access its own registers. Registers are
typically used for holding variables that need to be accessed frequently but that do not need
to be shared with other threads. If the registers size is insufficient, then the data spills into

local memory which is also private for each thread but is significantly slower.

Thread Grid

Global
Memory

Constant
Memory

Memory

Figure 7.4 - Visual representation of CUDA memory model and scope

This is why overflowing the registers needs to be avoided. Moreover, shared memories are
allocated to thread blocks instead of single threads, which allows all threads in a block to
access variables in the shared memory locations allocated specifically for that block. Shared
memories are as fast as registers while also allowing cooperation between threads of the

same block.

Page | 163

7.4 BEST PRACTICES

As mentioned above, threads are grouped together as thread blocks, so that each block of
threads is executed on the same SMP. Threads in the same block can communicate through
the very fast shared memory. Threads in different blocks can communicate through the
device memory, which is a lot slower than shared memory. For the aforementioned reason,
device global memory access should be minimized and when it is required, it should be
coalesced to attain high performance. Performance tuning requires taking into account
kernel sizes, memory access timing, sizes of on-chip memory (small) as well as global

memory on the GPU.

Memory coalescing is possible if consecutive threads access consecutive memory addresses.
When utilizing memory coalescing, memory access by consecutive threads in a warp is
combined by the hardware into several wide memory accesses. By organizing the memory
properly, it allows the device to access the memory in a few coalesced reads/writes instead

of many scattered (albeit simultaneous) accesses [81].

A common bottleneck is encountered in data transfers between host and device. These
transfers must pass through the peripheral component interconnect express (PCle) bus
which is commonly used to connect GPUs to the motherboard. The bottleneck is
exacerbated on multi-GPU implementations because the GPUs cannot communicate directly
(for CUDA applications) but only through the host. This implies multiple transfers through
the PCle bus. Thus, the measured speedup of an efficient parallel code based on message
massing interface (MPI) could potentially decrease in a multi-GPU implementation. If the
memory of the GPU is insufficient, then the data cannot be stored locally and it must be
moved back and forth. It should be noted that GPU communication dramatically degrades
performance, when computation count per communicating data is very low [82]. The global
memory’s long access latency can be circumvented by proper utilization of the shared
memory. When many threads need the same input, the corresponding data can be placed in
the shared memory from where it can be accessed by threads in an efficient manner. Thus, a
large number of global memory accesses can be avoided, leading to a significant increase in

performance. This type of memory handling is called locality.

7.5 HYBRID CPU-GPU IMPLEMENTATION OF DDM

The Dual DDM FETI solver has been implemented in hybrid CPU-GPU workstations with the
purpose of exploiting all available processing power and CPU memory resources in order to
handle even larger problems. Due to the fact that the CPU and GPU platforms are

heterogeneous and feature different programming paradigms, special considerations had to

Page | 164

be made in a number of steps of the FETI algorithm to achieve optimum efficiency. One of
the main issues which has to be dealt with is the difference in performance between the
CPU and GPU, which is mainly affected by the arithmetic operation being executed as well as
by other parameters. In particular, the difference in performance between the CPU and GPU
is not the same when calculating dot products, executing matrix—vector multiplications or

solving linear systems directly with the Cholesky factorization.

The most important step of the FETI algorithm, from the computer implementation point of
view, is the evaluation of vector d from Eq.(4.5.10), since it requires the strategy for the
solution of the local subdomain problems and the amount of subdomain data to be handled
by the CPU and GPU memory. Two different implementations have been considered for the
solution of local subdomain problems. The first one performs the solution of local problems
with the direct Cholesky solver and the second one with the iterative PCG solver. These
methods, apart from being quite different in their parallel programming implementation,
also feature different memory needs which affect the amount of subdomain data processed
by CPU and GPU.

7.5.1 THE CHOLESKY DIRECT SOLVER

The Cholesky direct solver for computing the solution of Ku=f comprises the following steps:

e Factorization of matrix K to the form K = LDL'
e Forward substitution so that Lx =f < x =L"f and trivial solution of
DX, = X, < X, = DX, since D is diagonal.

e Backward substitution so that L'U=X, <>u=L"X,.

For the case of solving a problem with multiple or repeated right-hand sides, the
factorization process is carried out once and, for each right-hand side, the forward and
backward substitution steps are performed. The factorization process is a recursive

operation which consists of the following steps:

j1

Dj = Ky _Z L2jk D, (7.5.1)
k=1
1 -1

Lij :F Kij _Zij ij Dy (7.5.2)
i k=1

where the indices define the position of the matrix where the corresponding value is
present. Memory consumption is increased for the direct solver since for each subdomain,
we need to store the stiffness matrix both in a compressed sparse row (CSR) format, in order
to use it for the preconditioning step of Eq. (4.3.11) with the lumped type preconditioner of

Page | 165

Eqg. (4.5.21), and in skyline format, in order to perform the factorization of the subdomain
matrices for the solution of local subdomain problems.

The proposed strategy for the parallel implementation of the factorization process in the
GPU is different from what is usually implemented in a parallel sparse solver. Parallel sparse
solvers try to utilize all available processors in order to process partial data from one big
sparse matrix. There are open issues as to how the rather poor scalability of parallel sparse
solvers can be improved, especially in very fine-grained parallelism of GPU architectures. For
the case of domain decomposition methods, primal or dual, there is no big sparse matrix but
rather hundreds, or even thousands, for the case of large-scale problems, of smaller sparse
matrices. This enables us to take advantage of the numerical scalability properties of the
FETI method and fully exploit the GPU’s fine-grained parallelism by assigning each
subdomain matrix factorization process to a warp of threads. This strategy allows the
utilization of all available GPU cores and use shared memory for parallel reductions without
the need of synchronization points. The same strategy and benefits hold true for the forward
and backward substitutions performed for the solution of subdomain problems.

6

S 10 15 20 25 30 35 40 45 S50 55 60 65 70 75 80 85 S0 955 100105110112120125130135

Figure 7.5 - Time in ms for factorizing a subdomain kernel. Horizontal axis represents the simultaneous factorizations

computed at the GPU in parallel.

One of the main concerns when implementing GPU kernels for execution is thread
occupancy. In order to fully exploit the capabilities of the GPU, the streaming
multiprocessors (SMPs) have to be overloaded with work which essentially means that the
number of simultaneous running threads has to be much larger than the quantity of SMPs.
This happens because global memory access is very slow so the GPU scheduler suspends a
thread accessing global memory until the requested data is fetched from it. In the
meantime, the GPU executes another thread that has its data available in local memory for
processing. In order to evaluate occupancy for the case of parallel Cholesky factorizations of
subdomain matrices, a parametric study was conducted with respect to the amount of
concurrent matrix factorizations being computed at the GPUs used for this work. The results

Page | 166

are shown in Figure 7.5, where it is evident that computing time is practically stabilized for
10 concurrent factorization computations and above. Taking these results into account, the
GPU is constantly loaded with more than 10 concurrent matrix factorizations and forward
and backward substitutions.

7.5.2 THE SOLUTION AT THE PROJECTION STEP

The projection matrix—vector multiplication encountered in Eqgs. (4.3.10) and (4.3.13)

involves the solution of
T T~
G'Gx, =X, &% =(G'G) x, (7.5.3)

at the initialization step and at each PCPG iteration, respectively, where x,, x, are temporary
vectors. This solution is usually performed with a direct solver since the order of the
coefficient matrix GTG is related to the rigid body modes of the floating subdomains and is
thus small for a coarse to a medium grained subdivision. In our implementation, the size of
this matrix may not be negligible due to the fine grained decomposition of the domain which
is better suited for a GPU environment. Bearing in mind that this matrix is global, spanning
across the whole domain and that it is not associated with subdomains, a direct solver is
generally not appropriate to performthis task. For this reason, a PCG solver with a diagonal

preconditioner is applied in parallel at each projection step of the PCPG algorithm.

Furthermore, since the solution of this problem is performed at each PCPG iteration, the re-
orthogonalization procedure performed in Eq. (4.3.12) is applied with search vectors
computed in previous PCPG iterations as well. This implementation is impractical when

applied to the full problem Ku = f due to excessive storage requirements. However, this

methodology can be efficiently utilized for the projection step, where the size of the G'G
matrix is small compared to the global matrix, which significantly accelerates the
convergence of PCG for subsequent solutions. This implementation is also performed for the
solution of the subdomain problems with PCG since the solution is also repeated at each
PCPG iteration and the size of the subdomain problems is small particularly for fine-grained

subdivisions.

7.5.3 DOT PRODUCTS

Apart from the presence of dot products in sparse matrix vector (SpMV) multiplications,
both PCPG and PCG algorithms feature a number of dot product computations at each
iteration. Specifically, during the re-orthogonalization step (Eq. (4.3.12)), these dot products

can consume a non-negligible amount of processing power and for this reason, they have to

Page | 167

be implemented efficiently. Furthermore, during the Cholesky factorization and the
forward—backward substitutions a large number of dot products are performed. A dot
product operation can be separated into two discrete tasks. The first consists of multiplying
the elements of each vector one by one and the second task consists of computing the sum
of each of these products for obtaining the final result. The multiplication step is inherently
parallel making it an excellent candidate for implementation on a GPU. In this work, the
product of the elements of each vector are stored in a vector which overwrites the contents
of the first vector by a simple GPU kernel of the form ali] = a[i]+b[i]. On the other hand, the

summation process is not that trivial.

On a sequential processor, the summation operation would be implemented by writing a
simple loop with a single accumulator variable to construct the sum of all elements in
sequence. On a parallel machine, using a single accumulator variable would create a global
serialization point and lead to very poor performance. In order to overcome this problem, a
parallel reduction strategy is implemented where each parallel thread sums a fixed-length
sub-sequence of the input. Then, these partial sums are gathered by summing pairs of
partial sums in parallel. Each step of this pair-wise summation divides the number of partial

sums by half and ultimately produces the final sum after log2N steps as shown in Figure 7.6.

G‘i “ C’\ Cb rg)

CJ

A \5 \
(sn @
o

Figure 7.6 - Parallel summation using a tree-like structure

The dot product algorithm implemented in this work features a subsequence of length one
which means that each thread is instructed to load one element of the input sequence. At
the end of the reduction, the first thread of the block (thread 0) holds the sum of all
elements initially loaded by the threads of this block. This is achieved in parallel by summing
values in a tree-like pattern since the loop in the implemented kernel implicitly builds a
summation tree over the input elements. The action of this loop for the simple case of a
block of eight threads is illustrated in Figure 7.7 and each step of the loop corresponds to
each successive level of the diagram with the arrow edges indicating from where partial
sums are being read. In order to calculate the dot product, the partial sums of all the blocks

in the grid must also be added.

Page | 168

Values (shared memory)[10[1 |8 [-1|o|-2[3]|5[-2]3[2]7]0[11]o]2]

Step 1 Thread /F‘

Stride 8 IDs &2 @’@" "TY

Values [8 |-2|10[6 |0 o [a|[7]-2]a]2]7]0]11]0]2]

Step 2 Thread . i
Stride 4 IDs 0‘0 2 @
8|7

[13[13/ oo a7 [2]a][2]7]0]11]0]2]

Values

Step 3 Thread

Stride 2 IDs ©Q@

Values [21 20|13 [13[0|9 |3 |7 |-2]3a][2 |7 01102}
Step 4 Thread
Stride 1 IDs

Values |41 |20 [13[13] o [o [3 |7 [-2[a[2]7]0o[11]0] 2]

Figure 7.7 - Successive steps for summation in a simple case of an eight-threaded block

In this work this is achieved by having each block write its partial sum into a second array
and then launch the reduction kernel again, repeating the process until the sequence is
reduced to a single value. A more attractive alternative supported by the Tesla architecture
and not by the GPUs used in this work, is to use atomicAdd(), an efficient atomic read-
modify-write primitive supported by the memory subsystem. This eliminates the need for

additional temporary arrays and repeated kernel launches.

7.5.4 SPARSE MATRIX-VECTOR MULTIPLICATION

At every PCPG iteration, the preconditioning step (Eq. (4.3.11)) is applied in order to improve
the convergence rate of the method. These preconditioning matrices depend on the
stiffness matrices of each subdomain which are stored in CSR format and, at the time that
the preconditioning step is executed, they are multiplied by a given vector. Similar matrix—
vector multiplications are performed in step (4.3.6) of the PCG algorithm and in the solution
of the projection step of Eqg. (7.5.3) with PCG. In order to achieve maximum efficiency of this
time-consuming operation, an optimized CUDA kernel calculating the result of a SpMV

multiplication has to be implemented.

Since the (sparse) dot product between a row of the stiffness matrix and the given vector
may be computed independently of all other rows, the CSR SpMV operation is easily
parallelized using one thread per matrix row. Several variants of this approach are
documented in [83]. While this approach exhibits fine-grained parallelism, its performance
suffers mainly by the way in which threads within a warp access the CSR indices and data
arrays. Specifically, while the column indices and nonzero values for a given row are stored
contiguously in the CSR data structure, these values are not accessed simultaneously but are

read sequentially by each thread. Moreover, when this implementation strategy is applied to

Page | 169

a matrix with a highly variable number of non-zeros per row, it is likely that many threads
within a warp will remain idle while the thread with the longest row continues iterating, thus

resulting to poor GPU utilization.

In order to circumvent this weakness, an alternative algorithm is implemented in this work
where one warp is assigned to each matrix row. Unlike previous approaches, which use one
thread per matrix row, the implemented kernel features a warp-wide parallel reduction to
sum the per-thread results together which requires coordination among threads within the
same warp. Moreover, shared memory is used for the summation process which greatly
improves the performance of this algorithm, while indices and data are accessed
contiguously, therefore overcoming the principal deficiency of the approaches documented
in [83]. The only limitation of this implementation is that its efficient execution demands
that matrix rows contain a number of non-zeros greater than the warp size (32 for current

CUDA 2.0 compute capability GPUs), which is not an issue for large-scale problems.

7.6 DYNAMIC LOAD BALANCING

7.6.1 TASK PARALLELISM

The heterogeneity of computer components has been addressed in this work by
implementing a dynamic load balancing procedure based on task queues. In particular, the
CPU creates a queue of tasks that have to be executed at a certain step of the algorithm. In
the case of the direct Cholesky solver, the subdomain matrices are stored in skyline format
and are factorized in parallel by both the CPU and the GPU. A queue of tasks is created for
performing the factorization queue is filled with the appropriate subdomain matrices and
the CPU and GPU are fed with tasks in an asynchronous manner. Upon finishing the
corresponding calculation, they pull another task from the queue, as is schematically shown
in Figure 7.8. Thus, both CPU and GPU are constantly busy with calculations until the queue

is emptied.

Page | 170

CUDA GPU CPU

Subdomain Task 1

Subdomain Task 2

Subdomain Task NS

Figure 7.8 - The task queue contains numerical computations to be performed by available resources.

For the case of the PCG solver with diagonal preconditioner, the most time consuming
operation is the sparse matrix—vector multiplication (SpMV) of Eq. (4.3.6) between the
subdomain stiffness matrices and the corresponding search vectors. The same SpMV
operation is required for the solution of the preconditioning step in Eq. (4.3.11) of the PCPG
algorithm, while a similar operation is performed during the solution of the projection step
of Eq. (7.5.3) with PCG. For all these cases, a typical queue of tasks is created, as with the
Cholesky solver, which is filled with the appropriate subdomain matrices and their
corresponding vectors, while the CPU and GPU are fed with tasks from the queue for

performing the SpMV multiplications in an asynchronous manner.

7.6.2 DYNAMIC LOAD BALANCING IMPLEMENTATION

An implementation of the task parallelism on a typical workstation, featuring an x-core CPU
with y GPUs, consists of x + y + 1 independent CPU threads executing concurrently. The
threads that actually perform numerical computations are the x ones, called ““CPU threads”,
while the y threads, called “GPU control threads”, simply instruct each GPU to launch a
specific GPU kernel for execution. The last thread is the “master thread” which is
responsible for managing the task queue defining the numerical computations to be
performed and the data structures that participate to that specific computation. All these
threads are executing a while-loop which, for each case, has a different body and a different

termination criterion.

Each CPU thread while-loop body consists of the actual function calls needed to perform the
computations described by the task that was fetched from the task queue. Since memory
access to the CPU is concurrent, memory has to be locked in order for the assigned tasks to
be deleted from the task queue, thus avoiding the infamous race conditions. CPU threads

Page | 171

are synchronous which means that each program statement must finish executing before
the next starts its execution. When all computations for the given task have finished
executing, the while-loop termination criterion checks for any remaining tasks in the queue.
When there are no tasks left, the thread is terminated and the master thread is notified that
this CPU thread has terminated.

On the other hand, GPU threads are asynchronous which means that GPU kernels will be
launched concurrently when there is a series of program statements that launches GPU
kernels. CUDA provides an event mechanism which notifies the launching thread when a
specific kernel has finished executing. This mechanism is used in this work, in order to
orchestrate the flow of GPU kernel execution. Thus, the while-loop body of a GPU thread
consists of GPU kernel launches corresponding to the actual calculations to be performed,
followed by another inner while-loop whose body performs Thread.Sleep operations.
Thread.Sleep provides an elegant mechanism for a thread to wait without blocking the
operating system. The termination criterion CPU memory to the GPU global memory and
vice versa, build the appropriate task queues and spawn the CPU and GPU threads which
execute the discrete tasks contained in a task queue. After the CPU and GPU threads are
spawned, the master thread executes a while-loop similar to the inner while-loop of a GPU
thread which waits for CPU and GPU thread termination. Following the concept of CPU, GPU
and master threads, the PCPG algorithm is implemented and executed in a parallel
environment with the master thread’s source code having the look and feel of a serial
program. This is a very important feature for source code maintainability, extensibility and
debugging since all internal work associated with the parallel implementation is
encapsulated to the CPU and GPU threads.

Page | 172

8 NUMERICAL EXAMPLES

Page | 173

8.1 X-DDM-S AND X-DDM-P NUMERICAL RESULTS

The section presents a set of numerical examples that demonstrate the numerical efficiency
of the proposed variants P-DDM-P, D-DDM-P, P-DDM-S and D-DDM-S methods described in
chapter 4. In order to assess the efficiency of these methods, their performance is compared
in two test cases. The first test case is a cubic soil consolidation problem subjected to a
surface step load. The domain is discretized with 8 node hexahedral finite elements (2nd
order quadrature) with 3 d.o.f. per node for the soil skeleton and 1 d.o.f. for the pore
pressure. This problem is solved using the monolithic u-p formulation presented in Chapter
2. The boundary conditions of this test case along with the loading are shown in the 2D cut
of Figure 8.1.

A

YYVYYYYYYYYYyey
A

p=0

< 15m >

Figure 8.1 - Test case 1: A 2D cut showing boundary and loading conditions

The resulting linear system to be solved at each time increment has 115,320 d.o.f. and, in
order to investigate the scalability of the various methods, a parametric analysis was carried
out with respect to the number of subdomains. The solution was obtained for the first time
increment of the Newmark algorithm and with number of subdomains ranging from 45 to
300. Two characteristic subdivisions are shown in Figure 8.2. The time step for this test case

was 107 seconds.

Page | 174

Figure 8.2 - Partitioning in 45 and 125 subdomains

The computer system used for both test cases is an Intel Pentium 4 531 3GHz workstation
with 1MB L2 cache equipped with 8GB of DDR2/667 memory which is enough for

performing these calculations without disk caching.

Young modulus of soil 3.9MPa
Poisson’s ratio 0.3

Void ratio 0.455
Permeability 1.2-10°®
Saturation 100%
Density of soil 1.6t/m°
Bulk modulus of water 2.2GPa

Table 8.1 - Material properties of the soil for test cases 1 & 2

Figure 8.3 and Figure 8.4 depict the required number of iterations and the computing time

to reach a solution tolerance of 10™ of the DDM considered for the first time step of the

Page | 175

Newmark time integration algorithm and for different number of subdomains. The

convergence criterion used is ”f - Kuk”/”f” where f is the force vector, K is the stiffness

matrix and U® is the unknowns vector of iteration k. The initialization time required for the

computation of the projection matrix P (Eg. (4.6.3)) and for the subdomain factorization of

the coefficient matrix is shown in Figure 8.5.

Iterations

40

35

30

25

20

15

10

—D-DDM-P
— P-DDM-P

- -D-DDM-S
----- P-DDM-S

/ S
s
=~ . =
- \\—’-.—:_‘:\\—""""-__l’
,f e, =
{ ...
45 54 75 90 108 125 150 180 216 250 300

Subdomains

Figure 8.3 - Test case 1: Number of iterations for each time step for different number of subdomains

Page | 176

45 - -D-DDM-S —D-DDM-P
.

20 ™ e P-DDM-S — P-DDM-P

A\
35 .

\, 7

30 ez .
25 N N i

0 T T I I I I

45 54 75

Subdomains

90 108 125 150 180 216 250 300

Figure 8.4 - Test case 1: Computation time in seconds per iteration for different number of subdomains

s 10
I
SN ---D-DDM-S —D-DDM-P
N
, N P-DDM-S — P-DDM-P
6 ~ \\;-‘,:;.‘
s 5 A \."":;— .
-E S """u.*_
4 — < %,
\W Y
N
3 \\“\\
2
1
0 \ T \ T \ \ T \ T 1
45 54 75 90 108 125 150 180 216 250 300
Subdomains

Figure 8.5 - Test case 1: Initialization time in seconds for different number of subdomains

The overall performance of the methods for the optimum number of subdomains is shown

in Table 8.2. N is the optimum number of subdomains, T, stands for the required time in

seconds for the first time step, T, corresponds to the initialization time, T3 is the total time

Page | 177

and T, denotes the time required per DDM iteration. Finally, Figure 8.6 demonstrates the

best overall performance of the methods for one time step of the Newmark time integration

algorithm with At=107 and convergence tolerance of the DDM equal to 10™.

Method N T1 T2 Tz Ta
D-DDM-S | 125 334 3920 4254 22
D-DDM-P | 216 315 2193 2507 15
P-DDM-S | 216 215 3699 3914 17
P-DDM-P | 216 342 2210 2552 18

Table 8.2 - Test case 1: Performance of the methods

4500

4000 -

3500

3000

2500 -
2000 -~
1500 -
1000

500 -

D-DDM-S

D-DDM-P

P-DDM-S P-DDM-P

Figure 8.6 - Test case 1: Overall performance of the methods

The second test case is a soil foundation problem. The boundary conditions and the loading

are shown in Figure 8.7. The domain is discretized with 8-node hexahedral elements, as in

test case 1, resulting in 272,160 d.o.f. The domain was subdivided in 200 subdomains and

the analysis was carried out for a total time span of 3 seconds with a time step of 107

seconds.

Page | 178

YV

— e T

Figure 8.7 - Test case 2: A 2D cut showing boundary and loading conditions

| /ll /II /II /II /II /|I /ll /II
|))) s |))) 4
/II J//II J//II J,/II /II J,/II AJ:ZII J//II
I J,I J/I J,I J,I J,I J/I J,I/]I|I IJ,I | |

|
N N AN o

7
v
7
4

1
N NN SN o

Figure 8.8 - Test case 2: Partitioning of the domain in 200 subdomains

The performance of the methods for this test case is presented in Table 8.3. N1 and N2
stand for the number of DDM iterations for the first time step of the Newmark time
integration algorithm and for the solution of the total problem with 3 seconds duration,

respectively, T1 corresponds to the initialization time in seconds, T2 is the total time and T3

Page | 179

denotes the time required per DDM iteration. The convergence tolerance of the DDM

methods was set to 10™. The overall performance is also displayed graphically in Figure 8.9.

Method Ni N: T T2 T3
D-DDM-S 9 519 7645 49510 81
D-DDM-P 9 549 3073 31049 51
P-DDM-S 7 507 7736 37287 58
P-DDM-P 7 531 3104 33447 57

Table 8.3 - Test case 2: Performance of the methods

4 60
é 50
40
30
20
10
0

D-DDM-S D-DDM-P P-DDM-S P-DDM-P

Figure 8.9 - Test case 2: Overall performance of the methods for the optimum number of subdomains

8.2 PERFORMANCE OF D-DDM-P IN HYBRID CPU/GPU ENVIRONMENT

This section provides a set of numerical examples that demonstrate the efficiency of the
domain decomposition solvers implemented in GPU environments as presented on Chapter
7, using the dual method shown in section 4.6.5. Their performance is demonstrated in
parametric studies of 3D linear porous media problems. Specifically, the cubic soil
consolidation problem of section 8.1 is revisited and is solved in a hybrid CPU/GPU
environment. The workstation used consists of an Intel Core 2 Quad Q6600 2.4 GHz, which

Page | 180

has 4 physical cores/4 logical cores and 8 MB L2 cache, 3 GB RAM and one NVIDIA GTX285
GPU equipped with 1 GB GDDR3 memory. This configuration is adequate for performing all

finite element calculations for this example in double precision without disk caching.

MNumber of dof Subdomain problems Projection step problem
subdomains . R . .
Iterations Iterations Iterations Iterations
without with without with
Re-orthogonalization Re-orthogonalization
45 135 95 8 11 1
54 162 89 7 13 2
75 225 77 6 18 2
a0 270 71 6 21 3
108 324 65 5 25 3
125 375 61 5 29 4
150 450 56 4 35 4
180 540 52 4 42 5
216 648 48 4 50 6
250 750 45 4 58 7
300 900 42 3 70 9

Table 8.4 - Example 1: Performance of PCG with and without re-orthogonalization

Figure 8.11a shows the resulting dof of each subdomain and of the corresponding interface
problem for different number of subdomains. The required number of PCPG iterations for
the solution of the interface problem, with Cholesky and PCG solvers for the subdomain
problems, are presented in Figure 8.11b. In both PCG and PCPG algorithms, the convergence
accuracy is e=10". The results demonstrate the numerical scalability of the FETI method with

PCPG iterations remaining almost constant regardless of the size of the interface problem.

(a) (b)
— 4 =— - 160 40 H Chelesky [PCG subdomain
a Subdomain dof subdomain solver soiver .
8 Interface dof = B =
= 3 1208 o 30 4 % = = =
= > 5 % - 24 o X
= "] - A
g2 80 %5 o 20 £ '
B 2 o
& 2 V]
o
i 1 \ 40 g o 10
& g &
o 1=
“g 0 0 0
45 54 75 90 108 125 150 180 216 250 300 45 54 75 90 108 125 150 180 216 250 300
Number of subdomains Number of subdomains

Figure 8.10 - Example 1: (a) Subdomain and interface dof for different number of subdomains. (b) Iteration numbers for the

PCPG solution of the interface problem with Cholesky and PCG subdomain solvers.

Page | 181

(a) 1B+, GPU (GTX 285) (b) &+ GPU (GTX 285)
*or,, *1/CPU (Q6500) +11CPU (Q8800)
1E+2 ~forsy,
1E+3 -
% T e
E u,"' E 1E+1 ',,"'
o 1E+2 - e, o i,
£ E o,
[e, F 1E+0 - e,
o "'., o] RLLITTPP.
o ey o
1E+1 - e,
1E-1 ~
1E+0 T T T T T T T T T 1 1E-2 T T T T T T T T T |
45 54 75 90 108 125 150 180 216 250 300 45 54 75 90 108 125 150 180 216 250 30
Number of subdomains Number of subdomains
(c) 1E+4 GPU (GTX 285) (d)1E+1 GPU (GTX 285)
111CPU (Q6600) 121 CPU (QB600)
1E+3 "ty -
-,,,“".“" -
\E’ nln.,“""uu,,“, g lunt.“"
o 1E+2 o 1E+0 - LITR—
E £ Mg,
£ E,‘“'
1E+1 -
1E+0 T T T T T T T T 1 1E-1 T T T T T T T T 1
45 54 75 90 108 125 150 180 216 250 300 45 54 75 90 108 125 150 180 216 250 300
Number of subdomains Number of subdomains

Figure 8.11 - Example 1: Computing time per subdomain. (a) Cholesky Factorization. (b) Forward/backward substitutions. (c)
PCG solution. (d) SpMV multiplication

The convergence behavior of PCG for the solution of the subdomain problems and of the
projection step, with and without reorthogonalization for treating the repeated solutions in
the course of the PCPG iterations, is shown in Table 8.4. The solution accuracy of the
projection step is increased to e=10" since it affects the convergence properties of PCPG. It
can be seen that the number of iterations is reduced by approximately one order of

magnitude with the re-orthogonalization procedure.

(a) D assoo O GTX 285 (b) Dassoo O GTX 285

100% B B B B BT R R R R 0% T T TR T A
= =
-o -o
E 75% ol Ll s E 75%

70
'(.% =AM P % 3| |41 |57 e9| lsa| les| hid pay f7d ped fod
a 50% a 50%
£ £
© N H A L L] L ©
Ees%|mz& s %% HEHHHHHHHHHH
3 Jj““jj”ﬂ% 1113182124f|313?-«51e1
Q0% — == = I B - == ==
45 54 75 90 108 125 150 180 216 250 300 45 54 75 90 108 125 150 180 216 250 300
Number of subdomains Number of subdomains

Figure 8.12 - Example 1: Optimum subdomain distribution between CPU and GPU. (a) Factorization and forward/backward

substitutions of the Cholesky subdomain solver. (b) SpMV multiplications and PCG subdomain solver.

Page | 182

Figure 8.12 presents the computing time per subdomain required for the Cholesky
factorization, the forward/backward substitutions and the PCG solution, as well as for
performing one SpMV multiplication, for different number of subdomains. It can be seen
that the required time of GTX285 is always faster that the corresponding time of Q6600 and
follows the same trend in all four types of computations.

By Dopu cTaes) O cPu o660

(a) 200 i =t
r
250 heoooorereessy Ty
0
7 s
E
180 m = g2
E
190 e
L
125 | =
:
108 s
m E] z=13
AR AR AR RARRRRRARARARARN, o2 S
E
= -

[
2
5 e 7T T

[
45 [m—

Number of subdomains

1 10 100 1,000
log Time (s)

@ rytriad O GPU (GTXEES) O CPU (Q6600)

(b)

300 [T

e

0 |

4 by

180 | —p

e

125
e

1208

MNumber of subdomains

log Time (s)

Figure 8.13 - Example 1: Total solution time of FETI for the Hybrid, GPU (GTX285) and CPU (Q6600) cases. (a) Cholesky

subdomain solver (b) PCG subdomain solver

Figure 8.13 shows the optimum subdomain distribution between CPU and GPU, as the result
of the dynamic load balancing implemented in this work, in order to keep both computing
components of the workstation busy during the solution. Figure 8.13a corresponds to the
load balance for the Cholesky solution of the subdomain problems for different number of
subdomains, while Figure 8.13b depicts the optimum subdomain distribution for performing
the SpMV multiplications of the preconditioning step of PCPG and of the PCG solution of the
subdomain problems. The percentage for the optimum distribution between Q6600 and
GTX285 is about 35%—75% for the Cholesky solver and 20%-80% for the SpMV

multiplications.

Page | 183

()6 | @rysiaceu () L ey

O GPUCRU - i = 0 GPuICPU 5
5 | B HybridicPU S B . 7 5 - B HybridCPU — ‘;‘? 3w >
= 93 9 72 R S - o ¥ 27 1 .
< b < il 7] Kl o ?:\ - = g e - 7]] o af ay y af
247p R s n A BBdH /
T 7 T 7 7
o & S o] H
o 3 ’ I a3
o K 2
? 2 4 3
U g 2 4 i j %
w w ¥ -] | x v
1 7 1 7
I
[
0 [I L1 Kl % ¥l 4 L1 o] i 0] &~] £ K L 4 L] vl L &
45 54 75 90 108 125 150 180 216 250 300 45 54 75 90 108 125 150 180 216 250 300
Number of subdomains Number of subdomains

Figure 8.14 - Example 1: Performance speedup ratios for different combinations of CPU (Q6600) and GPU (GTX 285). (a)
Cholesky subdomain solver. (b) PCG subdomain solver.

The performance of FETI with the Cholesky and PCG solvers for the subdomain problems is
depicted in Figure 8.14a and b, respectively, for three cases: Q6600-only, GTX285-only and
hybrid Q6600/GTX285. The optimum performance for all cases was achieved in the range of
180 subdomains which corresponds to a subdomain size of approximately 1000 dof and to

an interface problem with approximately 80,000 dof.

(a) 25 “T@epun cru som b)zs . .
| O g
- - o &= -
20 o = I; = 2 & 7 20 = - % = @ = L
o o = . = = | WT % g/ = b b e 3 .7 3 = o 7
° e o L o AAAP Y Y o AN EEEEE
515 A =A% U0 Z 5 1574 A A
o i 7 i /. 7, R @ o] S = b 7/
o b=ty = = : o
=
T 10 3 10 H)
@ 7 o 7
w 73] ~
5
7 5
0 2700 5 72 5 1 o I O 2 B 2 R 2 0 AL LB L LR e LR e L L L
45 54 75 90 108 125 150 180 216 250 300 45 54 75 90 108 125 150 180 216 250 300
Number of subdomains Number of subdomains

Figure 8.15 - Example 1: Performance speedup ratios per CPU core for different combinations of CPU (Q6600) and GPU (GTX
285). (a) Cholesky subdomain solver. (b) PCG subdomain solver.

A more illustrative indication of the performance of the method on the three workstation
configurations used for this example is depicted in Figure 8.15 and Figure 8.16 where the
relative performance speedup ratios are presented. Figure 8.15 shows the speedup ratios of
GPU vs CPU, Hybrid vs GPU and Hybrid vs CPU, while in Figure 8.16, the corresponding
speedup ratios are presented with respect to 1 CPU core, for the two versions of FETI. It can
be seen that the hybrid implementation achieves speedups ranging from 4.1x to 5.2x
compared to the CPU, depending on the number of subdomains, while the corresponding
speedups of hybrid vs GPU are around 1.3x. These speedups are almost quadrupled when

compared to 1 CPU core as indicated in Figure 8.16.

Page | 184

8.3 STOCHASTIC SOLVER RESULTS

This section provides a set of numerical examples for stochastic finite element and reliability
analysis that demonstrate the efficiency of the solution methods presented in Section 4.7.
For the case of Gaussian fields we will examine the performance of SSFEM-PCG-B and
SSFEM-PCG-S. For log-normal fields we will test the performance of SSFEM-PCG-B, SSFEM-
PCG-BF, SSFEM-PCG-S, SSFEM-PCG-SF and their variants with caching SSFEM-PCG-BC,
SSFEM-PCG-BFC, SSFEM-PCG-SC, SSFEM-PCG-SFC, respectively. For the case of the MC
method, we will examine the performance of the MC-PCG-Skyline, MC-PCG-FETI and MC-
PCG-PFETI solvers. The computer platform used is an Intel Core i7 X980 with 6 physical cores
at 3.33GHz with 24GB of RAM.

In order to assess the computational efficiency of the MC and SSFEM methods for the
analysis of systems with uncertain properties, a soil cube of 10 x 10 x 20 meters under load
in the center of its upper surface due to a large footing was considered, resulting to a finite
element mesh of 10k dof approximately, as shown in Figure 8.27a. This mesh is decomposed
into 16 subdomains featuring a cubic aspect ratio each, as shown in Figure 8.27b. A multi-
parametric study has been carried out first, considering both Gaussian and log-normal
stochastic fields.

2B
4-::3‘-".“‘::::&!;::::5’5!
Vs eeRIEgE
ﬂlﬁw -" I.“.{.

] p "
‘Eﬂnamﬁzﬁ!—!}yum“?
ny o gin S A

W g Y YAy
'-'-u;,.‘.':!-'lu e Ny
Ll S e LT
"Il‘:‘."l!l-:.‘==. B o)
g 1B e Ry
-;'-
s [Y-l
A] I.'.'l
x o M
. Sy o s
oyt Mg mk
LT 1 N
LR
% el
:""‘-!""‘"é':‘,“'—
R gty
SRR
“.."4”’I'
2 -I.“ .'I"
e
X Sa gk
Ta

Figure 8.16 - Domain decomposition of a quarter of the deterministic soil problem with 10k dof. (a) Element mesh (b)
Subdomain mesh

One dimensional stochastic fields are used to describe the spatial variation of the system's

modulus of elasticity E around its mean as E = E; (1 + f(x)), where E; is the mean value of E

Page | 185

and f(x) a zero mean homogeneous stochastic field with standard deviation oE. The

covariance function of the random field f(x) is assumed to be exponential:

A

C(x,X,)=0.e ° (62) (8.3.1)

where Ax = x2-x1. Three test cases regarding coefficients oE are examined: (a) oE = 15%
(Gaussian), (b) oE = 30% (log-normal) and (c) oE = 80% (lognormal). Moreover, four
correlation length values are assumed: (a) b= 0.1a, (b) b= 1a, (c) b= 10a and (d) b= 100a, with
a being the height of the cube.

For all these test cases, two separate problems are addressed: evaluation of the second
moments of the response field and a reliability analysis with 0.1% probability of failure.
Setting a = 20m, the correlation lengths that were examined for this example were 2m, 20m,
200m and 2000m.

8.3.1 SOLVER ASSESSMENT PROCEDURE

In order to set an objective basis for assessing the computational performance of the
numerical algorithms discussed, a parametric study was conducted, regarding different
values for standard deviation oE and correlation length b. For the computation of the second

moments of the response field, the following procedure was followed:

Step 1: A series of Monte Carlo analyses of 100k simulations was carried out, using M =1 as
the order of the KL expansion, in order to estimate the necessary number of simulations for
a convergence error of less than 1% for each value of oE and b examined. This error is
computed as the normalized difference of the COV (%) at each simulation with respect to
the COV (%) computed at the end of the 100k simulations.

Step 2: Assuming that the convergence behavior of the previous step remains invariant for
increasing M, another series of Monte Carlo analyses was carried out, in the range of M =2
to M =12, in order to estimate the appropriate order of the KL expansion for a convergence
error of less than 1%. In this case an "exact" solution was assumed at M = 12 in order to

compute the relative error (%) for different M.

Step 3: Using the results of step 2, the same procedure as in step 2 was carried out
performing SSFEM analyses, in order to estimate the appropriate order of the PC expansion

required for convergence to the corresponding MC results.

Step 4: For the case of reliability analysis with 0.1% target probability of failure, the order of
the PC expansion is being modified, with respect to step 3 (convergence in COV %), in order
to reach a convergence error in the estimation of the probability of failure of less than 10%,

Page | 186

compared to the corresponding MC results. The number of simulations for both MC and
SSFEM is in this case 100k.

8.3.2 COMPUTATION OF THE SECOND MOMENTS OF THE RESPONSE FIELD

Figure 8.28, Figure 8.29 and Figure 8.30 show the convergence error for each field as per
step 1 of the assessment procedure. Based on these figures, the number of simulations

necessary for evaluating the second moments of the response field are shown in Table 8.6.

10.00% |y . 3
_ Gaussian, 15% covariance
'
v - 1 “pnu_
:)
Ve W ,_.,.-\,\‘ ‘/‘r_\
. P e '~ A
1.00% o . N Y
) IO \
*y t o P I -
E i\ ! 4 o N T LS, “vy
A b Ny Y v
PR ot 2
§ s 21 i ’J ------ b=0.1a
i ARl
L u
- Soie
; = === b=100a
0.01% : $
G.m T TR TR T T T eT T TR TN TR TN T Tone v T T TITITTTTTm
OSSOGOOOOOQQQQOQODQOOQOOO
(=] [T e e I o B I o I s O o == v e T s T e O e o O o B o = I = e s T o |
- R R B B S i I B A R A

Figure 8.17 - Step 1: COV (%) convergence error of MC for the Gaussian field with oE = 15%

Page | 187

10.00% .
f' Log-normal, 30% covariance
A
r \
H Y n\
) ’ N RYS
. b L e :
1.00% - S », 1y 1
T s; h % N lI
if) : 5 T SR]
: 2 : L LE v san)
: KXt LN KRN S R I ALY |
| RIS T CEE T VT
il [T EEH AR T O | IS b-0.1a
0.10% KB = : o : bela
o e - " ¥ - M
ES: L MR
E; ‘ f Z ;;: e h=103
: w03 i 3 — == b=100a
H T
- 3
i f
0.01% : 1 4 H ' I
I . V |
0.00% _
[=] oo o O O 0 OO0 o o o o o0 oo o o oo o0
Inanggggmgmgmmmmﬂmmmmmmmm
3 3 [oe Y = =] WO O 0 WD
™ = NN v LW oM~~~ O

Figure 8.18 - Step 1: COV (%) convergence error of MC for the log-normal field with oE = 30%

10.00%
H
il
’
3
1.00% +&
0.10%
0.01% | 'l
Qm [II'I[II“[II1[[I1I[II1iIII1IIITI[II'I[II'IITII]TIIIHII'IiIII]TII1I[II1[IITI[II'II[I'I'I[II'II[II'IIII'II[II'II[II'I[II1I[II1iII1I TITTTIT LU
oo o oo o oo oo Qo
ﬁﬁﬁqﬁﬁﬁssgﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ
~ ™o~ m N www OM~M~O@RB O

Figure 8.19 - Step 1: COV (%) convergence error of MC for the log-normal field with oE = 80%

Page | 188

C’Efgeiitf” op =15% | op = 30% | op = 80%
0.1a 20.000 10.000 53.000
la 25.000 18.000 9R.000
104 23.000 23.000 34.000
1004 50.000 13.000 15.000

Table 8.5 - Required number of MC simulations for achieving a COV error less than 1%.

Correlation op = 15% op = 30% op = 80%
length b M | Error (%) | M | Ervor (%) | M | Error (%)

0.1a 12 "exact” 10 0.43 4 0.75

la 6 0.93 4 0.75 4 0.57

10a 2 0.36 2 0.85 4 0.26

100a 2 0.48 2 0.53 4 0.96

Table 8.6 - Step 2: COV (%) convergence errors for the various KL expansion orders

Following step 2, Figure 8.31, Figure 8.32 and Figure 8.33 show the convergence error for
each field as per step 3 of the assessment procedure for the selection of PC expansion order
(p) required for the SSFEM to converge at an error less than 1% using the KL expansion
orders M shown in Table 8.7. This relative error is computed with respect to the

corresponding MC simulations with the same parameter M.

3,00% - . :
‘i, Gaussian, 15% covariance
L]
2,50% "',
H
\
5 2,00% S—
g~ oM
: 1}
B 50w | ! — p=0.1a (p=2)
H i b= la{p=4)
E YR Threshold 194
§ 100% A - p=10a (p=2)
== p=100a (p=4)
0,50% - .
l'|..'.|r"l l'".:
] ! - ant
GJGG% |||||||.|.||||.||||.|-|||||III-IIIi.III.IIII|||||||||||||||||||||||||||||‘||||‘;I|‘||“ﬁ||||||||||||

numhber Of simulations

Figure 8.20 - Step 3: COV (%) convergence error of the SSFEM for the Gaussian field with cE=15% and p = 2,3,4.

Page | 189

3,00% —aim .
| Log-normal, 30% covariance
TR
2,50% {4y
i (I
N
= 2,00% i1}
g2~ | i
o 1 1
[} k i
2 150% feb i
= 1kl 5
£ /3 Threshold 196
.. 3 ‘ .-. - ., & i
: e = sy
-'.. ; . *“. ;‘l_ff ' “"U‘-“#"I‘-"
¥ -
o R o R o e o I o = |
BEREEEEEE
HERmHRE &
number of simulations

— b=0.1a [p=2)
p=1a(p=%)

- p=10a [p=3}

== =100z (p=3}

Figure 8.21 - Step 3: COV (%) convergence error of the SSFEM for the log-normal field with cE=30% and p = 2,3,4.

3,00% .
% Log-normal, 80% covariance
Vooia
2,50% | ': £
1
'E
Ez,maa T
¢ R A
B e ! : Y o — p=0.1a [no conv.)
& 1 Pl ’ 7 A
: g AT WA A p=1a(p=6)
] A
€ 100% et e o103 ()
. 11 WM % Threshold 1% !
LR vkt L, -- b=100a(p=6)
0,50% g e kK
1y
vy
]
0,00% - ¢
[T o o o IO o I o o I o e R o = R I T e R
[R s R e R Y o A o o e o I I e I O e o o R e R o R o
STUERAKNARAAREI S
number of simulations

Figure 8.22 - Step 3: COV (%) convergence error of the SSFEM for the log-normal field with cE=80% and p = 2,3,4.

Page | 190

Figure 8.34, Figure 8.35 and Figure 8.36 depict some indicative graphs of the convergence
behavior of the SSFEM in specific cases. Table 8.8 summarizes the convergence of the SSFEM
(relative error %) with respect to MC, for all cases considered.

Correlation op = 15% o = 30% o = 80%
length b | p | Error (%) | p | Error (%) | p | Error (%)
0.1a 2 0.23 2 0.07 6 30.00
la 4 0.09 4 0.69 6 0.52
10a 2 0.03 3 0.36 4 0.68
100a 4 0.36 3 0.74 6 0.88

Table 8.7 - Convergence errors for the SSFEM

B,60%

Gaussian, cov=15%,b =0.1a, M=12

6,40%

¥

G,20%

G,00%

¥

580% -

¥

p=2
5,60%

y

s =

5,40%

y

p=4

settlement covariance

5,20% Monte Carlo

5,00%

-y

4,80%

1500

2500

3500

4500

5500

G500]

7500

2500

9500

10500 |

11500

12500 |

13500

14500

15500

16500

17500

500
18500

number of simulations

Figure 8.23 - Settlement covariance for oE = 15% , correlation length 2m, and M = 12 for MC and SSFEM.

Page | 191

13,00%

Log-normal, cov=30%,b=0.1a, M=10

12,50%

12,00%

8
=
£ 1150% N
E k
_p:Z

£ Y S B p=3
2 10,50%
= p=4
2

10,00% Monte Carlo

9,50%

900% —T—T T T T T T T T T T T T T T T T T T 1

S ESSE S S

number of simulations

Figure 8.24 - Settlement covariance for oE = 30%, correlation length 2m, and M = 10 for MC and SSFEM

33,00%
Log-normal, cov=80%,b=0.1a, M=4
31,00% 4—
5]
E 29,00% " —
: -
£ 27.00% —p=3
g —p=4
ﬁ 25,00% p=5
w
— —
23,00% MonteCark
21,00%
[o T o TR o Y o O o [o Y o R o N o Y - R o R o O o o A o o I o T o |
222322 E22E222R228
cn R ELORRERSTEER
numhberof simulations

Figure 8.25 - Settlement covariance for oE = 80%, correlation length 2m and M = 4 for MC and SSFEM

It is worth noting that for the case of b=0.1a, the SSFEM failed to provide a solution within
the acceptable error margin when compared to the MC solution. While increasing the p-

Page | 192

order of the PC expansion, the SFFEM method was asymptotically converging to a solution

which exhibited a 30% error when compared to the corresponding Monte Carlo solution.

8.3.3 RELIABILITY ANALYSIS

Utilizing the values of M obtained at step 2 of the solver assessment procedure for the
computation of the second moments of the response field, we performed reliability analysis
on the same test problem. Table 8.9 shows the settlement values which correspond to a
probability of failure of 0.1%, as estimated by MC with 100k simulations, for various
stochastic parameters (oE and b) considered. Table 8.10 shows the probability of failure for
the corresponding limit state settlements of Table 8.9 using SSFEM with the KL and PC order
expansions used for the second order moments analysis as shown in Table 8.7 and Table 8.8,
respectively. The settlement values of Table 8.9 are used as reference values, i.e. as the limit
states that correspond to a probability of failure 0.1% for all cases considered, while Table
8.11 shows the same probability of failure with the PC order expansion needed to reach
almost the same accuracy with the "reference" MC solution. Values marked in bold

correspond to analyses that needed an increase of the PC order expansion.

Correlation MC
length b op=15% | op =30% | op = 80%
0.1a 0.019405 0.023468 0.076088
la 0.024796 0.032947 0.118410
10a 0.028214 0.033950 0.166543
100a 0.029439 0.039841 0.168306
Table 8.8 - Settlements with 0.1% probability of failure
Correlation SSFEM
length b op=16% | op =30% | op = 80%
0.1a 0.06 % 0.04 % -
la 0.09 % 0.09 % 0.07 %
10a 0.03 % 0.09 % 0.01 %
100a 0.07 % 0.10 % 0.10 %

Table 8.9 - Probability of failure as computed by SSFEM for the settlements of Table 8.9 for the limit states

Page | 193

Correlation | op =15% | o =30% | o = 80%

length b p | prob | p| prob | p | prob
0.1a 41 0.09% | 5| 0.09% | - -

la 4| 0.09% | 4 | 0.09% | 7| 0.09 %

10a 4 10.09% | 3]009% | 8] 0.10%

100a 6|0.09% |3]|010% |6 |010%

Table 8.10 - Probability of failure as computed by SSFEM for the settlements of Table 7 and the necessary PC order

For the case of b=0.1a and oE = 80%, a series of analyses were performed with various
expansion orders M and p, going up to M =12 and p = 6. However, SSFEM failed to converge

to an acceptable solution resulting to a minimum convergence error of 20%.

8.3.4 PERFORMANCE OF THE PROPOSED SOLUTION PROCEDURES

Using all previous numerical data (number of simulations, KL expansion order and PC
expansion order), a series of numerical tests were performed in order to assess the
performance of the various solution techniques discussed and proposed in this work. For all
cases considered the normalized solution accuracy was set to 107 while for the computation

of the preconditioned residual vector, the required accuracy was set to 10~

o = 15% Correlation length b 0.1la la 10a 100a
MC simmlations 20.000 25.000 23.000 50.000
PCG iterations 154,398 196.575 114.715 144.592
_ - " Time (s)-sequential 31.750 85.930 163.202 224,143
ME-PCG-Skyline — e o ralle] 1.670 12.637 21.000 32.062
455.016 134.198 22.015 39.060
FETI iterations
MOPCGFETT Herations (2.950.368) | (3.150.000) | (1.835.440) | (2.313.472)
' ' Time (s)-sequential 4%.001 36.752 21.203 30.827
Time (8)-parallel 7.050 5.405 3.118 5.857
S L 425.2581 124133 20,157 35.761
MCoP CGPFETT PEETT iterations (2.950.368) | (3.150.000) | (1.835.440) | (2.313.472)
! Time (s)-sequential 36.77 28,076 16.443 30.500
Time (s)-parallel 5.407 4,129 2,418 4,498

Table 8.11 - Performance of the various MC-PCG-Skyline variants for the MC for evaluating the second moments of the

response field for cE=15% in sequential and parallel implementation

Table 8.12, Table 8.13 and Table 8.14 show the performance of proposed MC-PCG-PFETI
solver for the evaluation of the second order moments of the response field using the MC
method, in comparison to MC-PCG-Skyline and MC-PCG-FETI and are visually depicted in
Figure 8.37, Figure 8.38 and Figure 8.39. The PFETI and FETI iterations correspond to the sum
of the PFETI and FETI iterations needed for all the MC simulations using the A-

Page | 194

orthogonalization technique, while in parentheses the corresponding PFETI and FETI
iterations without A-orthogonalization are given. These numbers show a drastic decrease of
iterations ranging from one to two orders of magnitude as a result of the A-

orthogonalization procedure.

Moreover, from these tables, it is evident that the PFETI variant outperforms the FETI one in
all tests, showing a 1.25x speedup. This performance increase occurs for two reasons: (i)
PFETI needs ~10% less iterations when compared to FETI. (ii) The cost for each
reorthogonalization of the PFETI method is about 35% less when compared to the FETI
method. This stems from the fact that the interface problem of the PFETI method is based
on the boundary dof of each subdomain while the interface problem of the FETI method is
based on the lagrange multipliers which, due to the existence of a considerable number of

subdomains crosspoints, are significantly larger in quantity than the boundary dof.

arp = 30% Correlation length b: 0.1a la 10a 100a
MC simulations 10.000 15.000 23.000 43.000
PCG iterations 110.100 221.531 114.541 153.5825
| P Time (s}-sequential 158,922 105.301 161.203 241.235
MC-PCG-Skyline Time (s)-parallel 2743 15400 23.700 35476
T e s 314.475 107.198 23.442 37.087
MC-PCO-FETI FETT iterations (1.761.600) | (3.544.496) | (1.832.656) | (2.461.200)
S ' Time (s)-sequential 33.053 32.437 22.189 38.625
Time (s)-parallel 4.861 4.77 3.263 5.680
T e e 294.235 99.478 21777 34.375
MCPOG-PFETI PEETT iterations (1.761.600) | (3.544.496) | (1.832.656) | (2.461.200)
') Time (s)-sequential 25.337 24.956 17.393 30.080
Time (s)-parallel 3.726 3.670 2558 4.423

Table 8.12 - Performance of the various MC-PCG-Skyline variants for the MC for evaluating the second moments of the

response field for oE = 30% in sequential and parallel implementation

o = 80% Correlation length: 0.1la la 10a 100a
MC simulations 53.000 28.000 34.000 45.000
PCG iterations 1.193.525 695.100 72.340 253.350
} e s Time (s)-sequential 205.052 65.030 370.320 400.378
ME-POG-Skyline e el 30.150 10.004 51.450 58870
FETI iterations 3.413.444 1.624.400 72.507 56.799
MO PCGFETL (19.101.200) | (11.121.600) | (4.357.440) | (4.053.600)
S ' Time (s)-sequential 358,806 07.472 65,108 60.159
Time (s)-parallel 52.765 14.334 0.575 8,247
. _— 3.265.860 1.530.760 67.320 52.650
TR —— PFETL iterations |, 5101 200) | (11.121.600) | (4.357.440) | (4.053.600)
') Time (s)-sequential 2R1.182 75.286 50.653 46.932
Time (s) -parallel 41.350 11.071 7.440 6.002

Table 8.13 - Performance of the various MC-PCG-Skyline variants for the MC for evaluating the second moments of the

response field for 6E = 80% in sequential and parallel implementation

Page | 195

The Skyline variant seems to be more efficient for b=0.1a but this happens due to the
relatively small size of the deterministic model. For large deterministic models, the Skyline
variant is outperformed by domain decomposition methods, particularly in massively

parallel computation environments.

Time (s)

Thowsards

Gaussian, 15% covariance

e

MC-PCG-FETI

o

= MC-PCG-PFETI

~_

o T

0.1a 1a

10a 100a

Figure 8.26 - Performance of the MC-PCG-PFETI and MC-PCG-FETI for Gaussian cE=15%

Page | 196

£ Log-normal, 30% covariance
q
£
3
4 /
E \
4] 3
E
F MC-PCG-FETI
=— MC-PCG-FFETI
2
1
o T T 1
0.1a 1a 10a 100a

Figure 8.27 - Performance of the MC-PCG-PFETI and MC-PCG-FETI for lognormal oE = 30%

Log-normal, 80% covariance

Thousards

Time (s)

MC-PCG-FETI
= MC-PCG-FFETI

o T T 1

0.1a 1la 10a 100a

Figure 8.28 - Performance of the MC-PCG-PFETI and MC-PCG-FETI for lognormal oE = 80%

Table 8.15, Table 8.16 and Table 8.17 depict the performance of the proposed SSFEM
solution methods. Table 8.15 shows the performance of SSFEM methods, using the

Page | 197

information gathered from steps 1-3 with respect to the necessary number of simulations,
KL expansion order (M) and PC expansion order (p) for the Gaussian case. For the Gaussian
case, only the SSFEM-PCG-B and SSFEM-PCG-S solvers are used for the SSFEM. It can be seen
that the proposed SSFEM-PCG-S outperforms SSFEM-PCG-B achieving a 2.8x speedup with
respect to the SSFEM-PCG-B.

Gaussian og = 15%
Correlation length b 0.1a la 10a 100a
MC Simulations 20.000 | 25.000 | 23.000 | 50.000
PCG iterations 7 10 b 8
SSFEM-PCG-B PFETI iterations 650 702 96 123
Total Time (s)-sequential | 2.417 | 3.339 105 168
Total Time (s)-parallel 422 586 18 29
PCG iterations 3 4 3 4
PFETI iterations 377 269 74 74
SSFEM-PCG-S e (s)-sequential | 1.026 | 1.178 77 100
Total Time (s)-parallel 179 204 13 17

Table 8.14 - Performance metrics for the Gaussian case (6E=15% covariance)

log-normal 30%

Correlation length b 0.1a la 10a 100a
MC Simulations 10.000 | 15.000 | 23.000 | 43.000
PCG iterations 10 15 12 11
SSFEM-PCG-B PFETI iterations 551 367 120 a8
Total Time (s8)-sequential | 2.786 | 6.568 244 256
Total Time (s)-parallel 488 1.149 43 43
PCG iterations 10 17 13 11
e ; v PFETT iterations 577 328 132 91
SSFEM-PCG-BF Total Time (8)-sequential | 2.930 | 7.191 260 273
Total Time (s)-parallel 516 1.241 44 46
PCQG iterations 4 5 4 4
e _ ' PFETI iterations 403 260 100 79
SSFEM-PCG-S Total Time (8)-sequential | 1.872 | 4.217 172 142
Total Time (s)-parallel 330 T45 31 24
PCQG iterations 4 5 5 4
e . o PFETI iterations 577 263 103 85
SSFEM-PCG-SK Total Time (8)-sequential | 2.728 | 4.347 200 150
Total Time (s)-parallel 480 752 35 25

Table 8.15 - Performance metrics for the log-normal case (oE = 30% covariance)

Table 8.16 shows performance metrics for the log-normal case with 30% covariance, where
all solver variants are implemented within SSFEM. As in the case of the Gaussian field
SSFEM-PCG-S outperforms SSFEM-PCG-B, achieving a 2.3x speedup when compared to the
SSFEM-PCG-B.

Page | 198

log-normal 80%

Correlation length b 0.1a la 10a 100a
MC Simulations 53.000 | 28.000 | 34.000 | 45.000
PCG iterations 48 89 a3 hE
SSFEM-PCG-B PFETTI iterations 685 1.010 523 584
Total Time (s)-sequential 266,702 | 272,836 | 14.171 | 321.161
Total Time (s)-parallel 46.799 | 49.175 2,447 | 55.380

Total Time cached(s)-sequential | 112.142 | 114.721 | 0.443 | 134.402
Total Time cached(s)-parallel 1988 2079 131 2393

PCG iterations 47 117 47 82

PFETI iterations 2827 | 12.3093 | 423 167
. o Total Time (s)-sequential 273.786 | 280,083 | 19.072 | 452.675
SSFEM-PCG-BF Total Time (s)-parallel 4R8.047 | 50475 | 3.201 | 78.050

Total Time cached(s)-sequential | 12.246 12.563 1.237 1.885
Total Time eached(s)-parallel 21.495 | 22580 | 2.130 | 32538

PCG iterations 16 186 a6 59

PFETI iterations 528 1.167 414 338
- B, Total Time (s)-sequential 177.970 | 368.937 | 28.790 | 651.255
SSFEM-PCG-S Total Time (s)-parallel 31.236 | 066.454 | 4.968 | 112.289

Total Time cached(s)-sequential | 74.930 | 154271 | 18.473 | 276.205
Total Time cached(s)-parallel 13,180 | 27.807 | 3.180 | 47.624

PCG iterations 12 25 13 20

—_— i . PFETI iterations 461 449 273 228
SSFEM-PCG-SF Total Time (s)-sequential 133.533 | 276.818 | 10.520 | 220.804
Total Time (s)-parallel 23.430 | 49887 | 1.H1x | 38006
Total Time cached(s)-sequential | 56.253 | 115818 | 6.803 02.0094
Total Time eached(s)-parallel 9.879 2.087 1.175 15888

Table 8.16 - Performance metrics for the log-normal case (oE = 80% covariance)

Table 8.17 presents the performance metrics for the log-normal case with 80% covariance.
As previously, the SSFEM-PCG-S and SSFEM-PCG-SF variants outperform the SSFEM-PCG-B
and SSFEM-PCG-BF methods, showing a speedup up to 2.8x. For this covariance of the log-
normal case, the proposed caching scheme proves to be quite efficient, providing up to 3x

speedup when compared to the corresponding uncached method.

Table 8.18, Table 8.19 and Table 8.20 compare the performance of the MC and SSFEM when
using the most computationally efficient solution method for evaluating the second order
moments of the response field. It can be seen that for the Gaussian input field that SSFEM
outperforms Monte Carlo method. The same conclusion can be reached for the log-normal

case with 30% covariance.

Page | 199

Gaussian 15%
Correlation length b 0.1a la 10a 100a
PCG iterations 184.398 | 196.875 | 114.715 | 144.592
NC PFETT iterations | 425.281 | 124.133 | 20.157 | 35.761
Time (s)-sequential | 36.771 | 28.076 16.443 | 30.590
Time (s)-parallel 5.407 4.129 2.418 4.498
PCG iterations 3 4 3 4
, , PFETT iterations 377 269 T4 74
SSFEM Time (s)-sequential | 1.026 1.178 77 100
Time (s)-parallel 179 204 13 17
Table 8.17 - Monte Carlo vs. SSFEM for the Gaussian case (15% covariance)
log-normal 30%
Correlation length b: 0.1a la 10a 100a
PCG iterations 110.100 | 221.531 | 114.541 | 153.825
MO PFETT iterations | 294.235 | 99.478 | 21.777 | 34.375
Time (s)-sequential | 25.337 | 24.956 17.393 | 30.080
Time (s)-parallel 3.726 3.670 2.558 4.423
PCG iterations 4 5 4 4
PFETT iterations 403 260 100 79
SSFEM Time (s)-sequential 1.568 2.884 162 132
Time (s)-parallel 277 498 28 23

Table 8.18 - Monte Carlo vs. SSFEM for the log-normal case (30% covariance)

Table 8.20 shows performance metrics for the log-normal case with 80% covariance, where
all solver variants are used for the SSFEM. In contrast to the log-normal case with 30%
covariance, MC method outperforms SSFEM in all cases except for the b=10a correlation
length. This is due to the small order of p = 4 required by the PC expansion, compared to the
other cases which required an expansion of order p = 6. For the b= 0.1a case, SSFEM fails to
converge.

Table 8.21, Table 8.22 and Table 8.23 present performance comparisons of the MC and
SSFEM when using the most efficient solution method for carrying out a reliability analysis. It
can be seen that for the Gaussian input field, SSFEM outperforms MC by more than 2 orders
of magnitude, while for the log-normal input field with 30% covariance, SSFEM outperforms
MC for all cases except for the case of 0.1a correlation length. However, for the log-normal
input field with 80% covariance, SSFEM is inferior to the MC while being unable to converge

for the case of 0.1a correlation length.

Page | 200

log-normal 80%

Correlation length b 0.1a la 10a 100a
PCG iterations 1.194.328 | 695.100 | 272.340 | 253.350
MC PFETT iterations | 3.265.860 | 1.530.760 | 67.320 | 52.650
Time (s)-sequential | 281.182 75.286 50.653 | 46.932
Time (s)-parallel 41.350 11.071 7.449 6.902
PCQG iterations - 89 13 20
, , PFETT iterations - 1.010 273 228
SSFEM Time (s)-sequential - 114.721 6.303 92.094
Time (s)-parallel - 20.679 1.175 15.888
Table 8.19 - Monte Carlo vs. SSFEM for the log-normal case (80% covariance)
Gaussian 15%
Correlation length b 0.1a la 10a 100a
PCG iterations 809.678 | 763.678 | 490.980 | 271.804
MC PFETT iterations | 2.022.934 | 469.780 | 469.789 | 72.059
Time (s)-sequential | 179.401 112.023 | 68.632 59.793
Time (s)-parallel 26.382 16.474 | 10.093 8.793
p=4 p=4 p=4 p=6
PCG iterations 3 4 5 6
PFETT iterations 473 269 180 448
SSFEM Time (s)-sequential 6.797 1.178 201 1.276
Time (s)-parallel 1.156 204 h3 203
Table 8.20 - Reliability analysis: MC vs. SSFEM for the Gaussian case (oE = 15% covariance)
log-normal 30%
Correlation length b 0.1a la 10a 100a
PCG iterations 1.087.678 | 1.143.034 | 490.236 | 356.205
MC PFETT iterations 287.4353 | 512.199 03.203 | 79.748
Time (s)-sequential 250.318 128.625 74.246 69.648
Time (s)-parallel 36.811 18.915 10.919 | 10.242
p=>5 p=4 p=23 p=23
PCG iterations 5 5 4 4
PFETT iterations 621 260 100 79
SSFEM Time (s) -sequential | 302.369 2.884 162 132
Time (s)-parallel 54.508 498 28 23

Table 8.21 - Reliability analysis : MC vs. SSFEM for the log-normal case (oE = 30% covariance)

Page | 201

log-normal 80%

Correlation length b: 0.1a la 10a 100a
PCG iterations 2.223.683 | 2.478.497 | 792,509 | 557.113
MCS PFETI‘ iterations | 6.057.138 | 5.441.639 | 195.228 | 116.438
Time (s)-sequential | 522.998 267.7563 | 147.731 | 103.245

Time (s)-parallel 76.912 39.375 21.725 | 15.183

- p="T p=8 p==6

PCG iterations - 25 15 20

o , PFETI iterations - 449 309 228
SSFEM Time (s)-sequential - 472.607 | 517.627 | 92.004
Time (s)-parallel - 79.033 86.419 | 15.888

Table 8.22 - Reliability analysis: MC vs. SSFEM for the log-normal case (oE = 80% covariance)

8.4 SOIL-STRUCTURE INTERACTION NUMERICAL RESULTS

This section provides a set of numerical examples involving porous media as presented in
Chapter 2. In order to assess the influence of pore pressure on a soil-structure interaction
problem under seismic loading, a parametric study is conducted on a finite element mesh of
600k dof which simulates a 5-storey steel frame building situated on top of a soil mass
60x60mx20m. The building is excitated with and without taking the soil under consideration,
with and without soil non linearity and for dry and fully saturated cases. For the non linear
case, the Mohr-Coulomb plasticity model is considered. The finite elements used are 2-node
beams for simulating the building and 8-node hexahedral hybrid elements (8 translational
dof and 8 pore pressure dof) for modeling the soil volume.

Figure 8.29 - A simplified view of the soil-structure model

The boundary nodes of the soil mass are connected with spring elements and harmonic
dampeners in order to get more realistic results and to minimize seismic wave reflection and
refraction phenomena. Loading conditions included the soil and structure’s own weight and
a seismic load imposed as the equivalent force of accelerating the mass of the whole model

Page | 202

as dictated by the seismic accelerogram of Figure 8.30 which is constructed from data of a
real earthquake. The spectrum of the longitudinal axis of the earthquake is depicted on
Figure 8.31. Each analysis is performed using implicit time integration as shown in Section
2.9, with a time step of 20ms in order to record the structure’s behavior during the

earthquake.

0.4

= | gteral

0.3

Longitudinal

e AXGi Q|

0.2

©
[E=Y

o

Acceleration (g)

Time (s)

Figure 8.30 - Seismic accelerogram in all directions

The soil composition along with its properties is presented in Table 8.24. The maximum
dampening ratio for the building was set equal to 10% while for the soil volume mesh, no
damping was set as the harmonic dampeners were tuned to absorb most of the seismic

energy.

Page | 203

Earthquake amplitude spectrum
0.09

0.08

0.07

0.06

0.05

0.04

|Acceleration (g)|

0.03

0.02

0.01

0 10 20 30 40 50
Frequency (Hz)

Figure 8.31 — Seismic spectrogram of the longitudinal axis

. Young Cohesion | Friction | Dilation Dry . Poro- | Permeabi-
Soil modulus | v (kPa) (deg) (deg) density it lity (m/s)
Clay 6000 | 0.25 17.5 20 0 19| 035| 1.026-06
(0-5m)
sand 20000 | 0.3 0 35 5 1.8|0.455| 3.06E-03
(5-15m) ' Sl e :

Dense
sand 60000 | 0.35 300 30 o| 185| 03| 1.026-07
(15-20m)

Table 8.23 - Soil composition properties

Table 8.24 depicts the maximum longitudinal displacements of the building roof and the soil
along with the settlements after the seismic excitation, Figure 8.32 depicts the time history
of the building longitudinal displacements and Figure 8.33 depicts the time history of the soil
longitudinal displacements. It is evident that the omission of the soil participation in the
seismic excitation underestimates the seismic response of the building. On the other hand,
maximum longitudinal displacement for both the building and the soil is recorded for the dry

Page | 204

soil case while maximum axial displacement and maximum soil settlements are recorded for
the nonlinear saturated soil.

Max roof Max soil Max axial
. . . . Settlement
Foundation displacement | displacement | displacement
(m)

(m) (m) (m)
No soil 0.1313 0 0.1067 0
Dry soil 0.50494 0.11278 0.06578 0
Saturated soil 0.45885 0.10137 0.03569 0
Dry soil (nonlinear) 0.48531 0.10538 0.09729 0.04763
saturated soif 0.39891 0.08723 0.09755 | 0.07502
(nonlinear)

Table 8.24 — Maximum displacements and remaining settlements

0.5
No soil
04 =—Dry soil
==Dry soil (honlinear)

03 - e Saturated soil

0.2 - —Saturated soil (nonlinear)
— 0.1 -
E
c
o 0 -
£ P) O 10 1 N
(] < NN RO GO
C 01 - ™ ™ <t <t Ln Ln © ©
©
o
2
a 4

-0.2 i

-0.3 -

0.4 |

-0.5

-0.6

Time (s)

Figure 8.32 — Roof displacement history for all cases

The latter behavior is expected, since pore pressure buildup reduces shear resistance and
results to liquefaction phenomena where the structure is steadily “sinking” in the soil. This is
clearly depicted in Figure 8.34 where the time history of the settlements for each case is
depicted.

Page | 205

0.15

e Dry 50|

=== Dry soil (nonlinear
o1 | y soil ()

= Saturated soil

== Saturated soil (nonlinear)

o

o

w
1

Displacement (m)
o

©

o

(%2}
I

-0.15
Time (s)

Figure 8.33 — Soil longitudinal displacement history

0.06

e Dry soil

0.04 = Saturated soil

=== Dry soil (nonlinear)

0.02 == Saturated soil (nonlinear)

-0.02

-0.04

Displacement (m)

-0.06

-0.08

Time (s)

Figure 8.34 — Settlements time history

Page | 206

Surface

20
AV,
—
©
[- %
-
=3
(7]
(7]
g
£0. 01
S
g 210
: rav)
(7]
20

Shear strain

Surface

20
g 10
=3
2
g -
%@0.015 -0. 0 0.005
5 10
& 26

Shear strain

IS
o)

N
[en]

5m

-0.01 -0.005 0.005 0.01
r 0.005
60
10m
0.01
100 60
15m 15m
50 40
2110 /
r T T O 1 -
-0.006 -0.004 -0.00 0.002 ! ! 0 '
50 -0. 02
/ 40
fa¥a)
1uu / 50
/
150 80

Figure 8.35 - Shear strain-stress curves (Left: Dry soil, Right: Saturated soil)

Page | 207

Figure 8.35 depict the shear stress-strain response of the soil under the building
foundations, for the nonlinear soil cases. On the left, the curves for the dry soil are depicted
and on the right, the curves for the saturated soil are shown. By observing the graphs for
levels of 5 to 10m where the soil consists of sand, it is evident that the shear strength for

the saturated case is reduced, suggesting mild liquefaction.

Figure 8.46 depicts a snapshot of the contour of the pore pressures during the earthquake.
Pore pressure build up is evident at the foundation soil due to the cyclic loading occurring

from the earthquake.

W2
L1 164.9

H"‘q.-__
Outpu . Caze 416 Time 4.15
Defofrmed(0. 107 Tatal Translation

Contour: Pore prezsure i <02

Figure 8.36 - Earthquake snapshot with a contour of pore pressures for the alluvial case

Page | 208

9 CONCLUDING REMARKS AND FUTURE WORK

This Thesis explores the solution of seismic soil-structure interaction problems. For the case
of partially or fully saturated soils, whose pores are partially or fully filled with a fluid, their
behavior is very different when compared to the behavior of single phase material.
Intergranular forces will be affected by the pore pressures due to the fluid’s presence,
making the evaluation of these pore pressures of great importance for the accurate
prediction of the medium’s strains and stresses. This is especially applicable to dynamic
phenomena such as those which occur in earthquakes as the pressures developed will, in
general, be linked to the straining (or loading) history and must always be taken into
account. In general, the simultaneous solution of both strains of the solid matrix and the

transient fluid flow which occurs inside the medium’s pores is required for seismic analysis.

Another issue for evaluating the seismic behavior of a structure involves the identification of
the model parameters and the uncertainties associated with their estimation. Moreover, the
intrinsic randomness of materials or loads is such that deterministic models using average
characteristics lead to rough representations of real-life behavior. Stochastic mechanics is
accounting for randomness and spatial variability of the mechanical properties of materials,

leading to more accurate predictions at the expense of more computational resources.

Domain decomposition methods are used for the solution of both porous media and
stochastic problems because they allow the exploitation of the natural parallelism offered by
the subdivision of the physical domains to a number of subdomains. After the description of
the basic primal and dual domain decomposition methods, the primal/dual domain
decomposition method is introduced and a novel preconditioning technique custom tailored
to porous media problems, applicable to dual and primal/dual domain decomposition
methods is presented. Finally a set of novel domain decomposition methods for stochastic

analysis is presented

The software systems that efficiently implement the above solution algorithms are large and
complex compared to straightforward direct methods. This growth in complexity can be
tackled with specialized software engineering techniques that promote decomposition,
abstraction, and hierarchy. One of the most efficient paradigms that promotes the above
properties is the object-oriented paradigm and it is presented here along with some of its
applications for implementing a software code that can efficiently solve the problems
presented using the solution techniques mentioned above.

Central processing units (CPUs) and Graphics processing units (GPUs) and their characteristic
properties are thoroughly presented. In a massively parallel context, CPUs are quite different
than GPUs. GPUs are parallel devices of the SIMD (single instruction, multiple data)
classification and require a large number of threads to be effectively utilized (thousand,
usually more). As a result, the principles of massively parallel programming directly apply to

GPUs. On the other hand, CPU threads are more costly and massive parallelization generally

Page | 209

involves distributed computing and message passing which are also thoroughly presented.
The implementation of dual domain decomposition method in a hybrid CPU-GPU
environment is also presented along with supporting numerical results. The solution of the
subdomain problems was performed both with a direct Cholesky solver as well as with an
iterative PCG solver. An important aspect of the hybrid implementation is the dynamic load-
balancing. The dynamic load balancing with task parallelism and the parallel implementation
of the SpMV multiplications and dot products ensure that all components of the workstation
are constantly busy with calculations resulting in full exploitation of their computing
resources. The dynamic load balancing allows the efficient utilization of different CPUs and
GPUs as well as any number of CPU cores or GPUs, while making sure that all components

are used to their full capacity.

Numerical examples are presented for all the above cases. The two families of domain
decomposition methods, namely the primal domain decomposition (P-DDM) and the dual
domain decomposition (D-DDM), for implicit dynamics were tested in two characteristic
porous media problems. The numerical results demonstrated the efficiency of the proposed
methods for solving large scale porous media problems. Furthermore, the beneficial effect
of the use of the null space of the permeability matrix for the construction of the coarse
problem was shown where an improvement of up to 40% was achieved on the
computational efficiency of both initialization and iteration computing times. The same
stands for the hybrid CPU/GPU implementation as the hybrid implementation achieves
speedups ranging from 4.1x to 5.2x compared to the CPU, depending on the number of

subdomains, while the corresponding speedups of hybrid vs GPU are around 1.3x.

For the stochastic problems considered, when comparing the novel solution techniques
proposed for the MC procedure, a speedup of 1.25x was exhibited while for the SSFEM, a
speedup of 3x was exhibited when utilizing the block-SSOR preconditioning combined with
caching techniques with respect to the diagonally block preconditioning, making the SSFEM
even more attractive for solving large scale stochastic problems in high performance
computing environments. The efficiency comparison of the Monte Carlo method and SSFEM
was based on the computation of the second order moments of the response field as well as
on reliability analysis. For the first case, SSFEM proved to be more efficient when dealing
with input fields exhibiting small to medium covariance. However, for the case of large
covariance, the Monte Carlo outperformed the SSFEM in most cases with the latter being

unable to converge in one of the problems cases.

For the soil structure interaction problem, a 4-storey building on a sandy soil with a clay
surface was considered and the effect of soil and saturation was explored. It is concluded
that the effect of pore pressures to the shear strength of the soil are existent only when
considering a nonlinear analysis of the soil skeleton. Finally, not considering the influence of

the soil to the structure, provides unrealistically low displacements for the building.

Below are some future considerations of the present work:

Page | 210

Implementation of nonlinear fluid flow for porous media

Implementation of SSFEM for nonlinear, dynamic problems

Multi-GPU implementation of solution algorithms.

Multi-workstation implementation. Required for large-scale simulation and enabled
by clusters and cloud computing.

Implementation in new architectures and types of processors like Accelerated

Processing Units (APUs), “Phi” co-processors etc.

Page | 211

10 BIBLIOGRAPHY

[1] J. Boussinesq, Essai theorique sur I'equilibre d'elasticite des massif pulverulents, 1876.

[2] P. Fillunger, "Der Auftrieb in Talsperren," Austria, 1913, pp. 532-556.

[3] P. Fillunger, "Versuch uber die Zugfestigkeit bei allseitigem Wasserdruck," Austria, 1915,
pp. 443-448.

[4] M. Levy, Quelques considerations sur la construction des grandes barrages, 1895.

[5] C. Lyell, Student's elements of geology, London, 1871.

[6] O. Reynolds, "Experiments showing dilatancy, a property of granular material," Proc. R.
Inst, vol. 11, pp. 354-363, 1886.

[7] K.v.Terzaghi and L. Rendulic, "Die wirksame Flachenporositat des Betons," Z. Ost. Ing.-
u ArchitVer., vol. 86, pp. 1-9, 1934.

[8] K.v.Terzaghi, "The shearing resistance of saturated soils," Proc. 1st ICSMFE, vol. 1, pp.
54-56, 1936.

[9] M. A. Biot, "General theory of thee-dimensional consolidation," J. Appl. Phys., vol. 12,
pp. 155-164, 1941.

[10] O. C. Zienkiewicz and T. Shiomi, "Dynamic Behaviour of saturated porous media: The
generalized Biot formulation and its numerical solution," Int. J. Num. Anal. Geotech.,
vol. 8, pp. 71-96, 1984.

[11] R. S. Sandhu and E. L. Wilson, "Finite element analysis of flow in saturated porous
elastic media," ASCE EM, vol. 95, pp. 641-652, 1969.

[12] J. Ghaboussi and E. L. Wilson, "Variational formulation of dynamics of fluid saturated
porous elastic solids," ASCE EM, vol. 98, pp. 947-963, 1972.

Page | 212

[13] A. H. C. Chan, F. 0. O. and D. Muir Wood, "A Fully Explicit u-w Scheme for Dynamic Soil
and Pore Fluid Interaction," in APCOM, Hong Kong, 1991.

[14] O. C. Zienkiewicz, C. T. Chang and P. Bettess, "Drained, undrained, consolidating and
dynamic behaviour assumptions in soils," Geotechnique, vol. 4, no. 30, pp. 385-395,
1980.

[15] O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method - Volume I: Basic

Formulation and Linear Problems, London: McGraw-Hill, 1989.

[16] O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method - Volume II: Solid and
Fluid Mechanics, Dynamics and Non-Linearity, London: McGraw-Hill, 1991.

[17] A. H. C. Chan, A unified Finite Element Solution to Static and Dynamic Geomechanics

problems, Wales: Ph.D. Dissertation, University College of Swansea, 1988.

[18] M. Katona, "A general family of single-step methods for numerical time integration of
structural dynamic equations," NUMETA, no. 1, pp. 213-225, 1985.

[19] M. G. Katona and O. C. Zienkiewicz, "A unified set of single step algorithms Part 3: The
Beta-m method, a generalisation of the Newmark scheme," Int. J. Num. Meth. Eng., no.
21, pp. 1345-1359, 1985.

[20] N. M. Newmark, "A method of computation for structural dynamics," in Proc. ASCE,
1959.

[21] J. Neveu, Introduction aux probabilites, Paris: Cours de |' Ecole Polytechnique, 1992.

[22] M. Loeve, Probability theory, New York: Springer Verlag, 1977.

[23] P.-D. Spanos and R.-G. Ghanem, "Stochastic finite element expansion for random
media," ASCE, vol. 5, no. 115, pp. 1035-1053, 1989.

[24] R.-G. Ghanem and P.-D. Spanos, Stochastic finite elements - A spectral approach,

Springer Verlag, 1991.

Page | 213

[25] R.-G. Ghanem and P.-D. Spanos, "Spectral stochastic finite element formulation for
reliability analysis," J. Eng. Mech., vol. 10, no. 117, pp. 2351-2372, 1991.

[26] R.-G. Ghanem and P.-D. Spanos, "Polynomial chaos in stochastic finite elements," J. App.
Mech, ASME, pp. 197-202, 1990.

[27] R.-G. Ghanem, "Ingredients for a general purpose stochastic finite elements
implementation," Comp. Meth. Appl. Mech. Eng, no. 168, pp. 19-34, 1999.

[28] R.-G. Ghanem and R. Kruger, "Numerical solution of spectral stochastic finite element
systems," Comp. Meth. Appl. Mech. Eng, vol. 3, no. 129, pp. 289-303, 1996.

[29] R.-G. Ghanem, "The nonlinear gaussian spectrum of log-normal stochastic processes
and variables," J. Appl. Mech., ASME, no. 66, pp. 964-973, 1999.

[30] R.-G. Ghanem, "Stochastic finite elements with multiple random non-Gaussian
properties," J. Eng. Mech., ASCE, no. 125, pp. 26-40, 1999.

[31] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 1985.

[32] G. H. Golub and C. F. Van Loan, Matrix Computations (3rd ed.), Baltimore: Johns
Hopkins, 1996.

[33] M. R. Hestenes and E. Stiefel, "Methods of Conjugate Gradients for Solving Linear

Systems," Journal of Research of the National Bureau of Standards, vol. 49, no. 6, 1952.

[34] Y. Saad, Iterative methods for sparse linear systems, Philadelphia, Pa.: Society for
Industrial and Applied Mathematics, 2003.

[35] C. Farhat and F. X. Roux, "A method of finite element tearing and interconnecting and

its parallel solution algorithm," Internat. J. Numer. Meths. Engrg., vol. 32, 1992.

[36] Y. Fragakis and M. Papadrakakis, "The mosaic of high-performance domain
decomposition methods for structural mechanics - Part Il: Formulation enhancements,
multiple right-hand sides and implicit dynamics," Comp. Meth. App. Mech. Engrg., vol.
193, no. 42, pp. 4611-4662, 2004.

Page | 214

[37] C. Farhat, P.-S. Chen, F. Risler and F. X. Roux, "A unified framework for accelerating the
convergence of iterative substructuring methods with Lagrange multipliers," Int. J.
Numer. Meth. Engng., vol. 42, pp. 257-288, 1998.

[38] Y. Fragakis and M. Papadrakakis, "The mosaic of high performance domain
decomposition methods for structural mechanics: Formulation, interrelation and
numerical efficiency of primal and dual methods," Comp. Meth. Appl. Mech. Engrg., vol.
192, no. 35, pp. 3799-3830, 2003.

[39] J. Mandel, "Balancing domain decomposition," Commun. Appl. Numer. Meth., vol. 9, pp.
233-241, 1993.

[40] C. Farhat and L. Crivelli, "A transient FETI methodology for large-scale parallel implicit
computations in Structural Mechanics," Int. J. Numer. Meth. Engng., vol. 37, pp. 1945-
1975, 1994.

[41] C. Farhat, P.-S. Chen, F. Risler and F. Roux, "A unified framework for accelerating the
convergence of iterative substructuring methods with Lagrange multipliers," Int. J.
Numer. Meth. Engng., vol. 42, pp. 257-288, 1998.

[42] G. Stavroulakis and M. Papadrakakis, "Advances on the domain decomposition solution
of large scale porous media problems," Comp. Meth. Appl. Mech. Engrg., vol. 196, pp.
1935-1945, 2009.

[43] M. Papadrakakis, Solving large-scale linear problems in solid and structural mechanics,
John Wiley & Sons, 1993.

[44] D. Charmpis and M. Papadrakakis, "Improving the computational efficiency in finite
element analysis of shells with uncertain properties," Comp. Meth. Appl. Mech. Engrg.,
vol. 194, pp. 1447-1478, 2005.

[45] M. Papadrakakis and K. A., "Parallel solution methods for stochastic finite element
analysis using Monte Carlo simulation," Comp. Meth. Appl. Mech. Engrg, vol. 168, pp.
305-320, 1999.

[46] D. Chung, G. M.A,, L. Graham-Brady and F.-J. Lingen, "Efficient numerical strategies for
spectral stochastic finite element models," Int. J. Num. Meth. Engrg., vol. 64, pp. 1334-

Page | 215

1349, 2005.

[47] M. Pellissetti and R. Ghanem, "lterative solution of systems of linear equations arising in
the context of stochastic finite elements," Adv. Engrg. Software, vol. 31, pp. 607-616,
2000.

[48] D. Ghosh, P. Avery and C. Farhat, "A method to solve spectral stochastic finite element

problems for large-scale systems," Int. J. Numer. Meth. Engng, vol. 0, pp. 1-6, 2008.

[49] K. Shankar, "Data Design: Types, Structures and Abstractions," in Handbook of Software
Engineering, New York, Van Nostrand Reinhold, 1984.

[50] Macintosh MacApp 1.1.1 Programmer's reference, Cupertino, CA: Apple Computers,
1986.

[51] G. Myers, Composite/Structured design, New York, NY.: Van Nostrand Reinhold, 1978.

[52] B. Liskov, "A design methodology for reliable software systems," in Tutorial on software

design techniques, New York, NY, IEEE computer society, 1980.

[53] M. Zelkowitz, "Perspectives on Software Engineering," ACM computing surveys, vol. 10,
no. 2, p. 20, 1978.

[54] D. Parnas, P. Clements and D. Weiss, "The modular structure of complex systems," IEEE

transactions on software engineering, Vols. SE-11, no. 3, p. 260, 1985.

[55] B. a. Parnas, A-7E Software.

[56] D. Parnas, P. Clements and D. Weiss, "Enhancing reusability with information hiding," in

Proceedings of the workshop on reusability in programming, 1983.

[57] O. Dahl, E. Dijkstra and C. Hoare, Structured programming, London: Academic Press,
1972.

[58] M. Shaw, "Abstraction techniques in modern programming languages," IEEE software,
vol. 1, no. 4, 1984.

Page | 216

[59] V. Berzins, M. Gray and D. Naumann, "Abstraction-based software development,"
Communications of the ACM, vol. 29, no. 5, 1986.

[60] H. Abelson and G. Sussman, Structure and interpretation of computer programs,
Cambridge, MA.: The MIT press, 1985.

[61] E. Seidewitz and M. Stark, "Towards a general object-oriented software development
methodology," in Proceedings of the first international conference on Ada programming
language applications for the NASA space station, NASA Lyndon B. Johnson space
center, TX., 1986.

[62] B. Meyer, Object-oriented software construction, New York, NY: Prentice Hall, 1988.

[63] R. Wirfs-Brock and B. Wilkerson, "Object-oriented design: A responsibility-driven
approach," SIGPLAN notices, vol. 24, no. 10, 1989.

[64] D. Ingalls, "The Smalltalk-76 programming system design and implementation," in
Proceedings of the fifth annual ACM symposium on principles of programming

languages.

[65] J. Gannon, R. Hamlet and H. Mills, "Theory of modules," IEEE transactions of software

engineering, Vols. SE-13, no. 7, 1987.

[66] B. Liskov, "Data abstraction and hierarchy," SIGPLAN notices, vol. 23, no. 5, 1988.

[67] B. Cox, Object-oriented programming: An evolutionary approach, Reading, MA.:
Addison-Wesley, 1986.

[68] S. Danforth and C. Tomlinson, "Type theories and object-oriented programming," ACH

Computer surveys, vol. 20, no. 1, 1988.

[69] S. Zilles, On conceptual modeling: Perspectives from artificial intelligence, databases,

and programming languages, New York: Springer-Verlag, 1984.

[70] P. Wegner, "Dimensions of object-based language design," SIGPLAN notices, vol. 22, no.
12, 1987.

Page | 217

[71] L. Tesler, "The Smalltalk environment," Byte, vol. 6, no. 8, 1981.

[72] Borning and Ingalls, Type declaration.

[73] D. Thomas, "What is an Object?," Byte, vol. 14, no. 3, 1989.

[74] M. Flynn, "Very high-speed computing systems," in Proc. IEEE 54, 1966.

[75] J. Larus and C. Kozyrakis, "Transactional memory," Commun. ACM, vol. 51, no. 7, pp. 80-
88, 2008.

[76] B. Chamberlain, D. Callahan and H. Zima, "Parallel programmability and the Chapel
language," Int. J. High Perform. Comput. Appl, vol. 21, no. 3, pp. 291-312, 2007.

[77] O. L, "Effects of ordering strategies and programming paradigms on sparse," SIAM Rev,
vol. 44, no. 3, pp. 373-393, 2002.

[78] I. Foster, Designing and Building Parallel Programs, Reading, MA.: Addison-Wesley,
1995.

[79] G. Amdahl, "Validity of the single processor approach to achieving large scale
computing," in Proceedings of the American Federation of Information Processing,
Atlantic City, NJ, 1967.

[80] J. Gustafson, "Reevaluating Amdahl’s law," Commun. ACM, vol. 5, no. 31, pp. 532-533,
1988.

[81] N. Corporation, "CUDA Programming Guide Version 3.2".

[82] D. Kirk and W. Hwu, Programming Massively Parallel Processors: A Hands-on approach,
Morgan-Kauffman, 2010.

[83] J. Nickolls, I. Buck, M. Garland and K. Skadron, Scalable parallel programming with
CUDA, 2008.

Page | 218

Page | 219

	CONTENTS
	1 INTRODUCTION
	2 POROUS MEDIA
	2.1 NATURE OF SOILS AND POROUS MEDIA
	2.2 THE NOTION OF EFFECTIVE STRESS
	2.3 AN ALTERNATIVE APPROACH TO EFFECTIVE STRESS
	2.4 EFFECTIVE STRESS AND PARTIAL SATURATION
	2.5 SOLID MATRIX AND PORE PRESSURE DYNAMIC INTERACTION
	2.6 THE FORMULATION FOR FULLY SATURATED BEHAVIOR
	2.7 THE FORMULATION FOR PARTIALLY SATURATED BEHAVIOR
	2.8 FINITE ELEMENT METHOD DISCRETIZATION
	2.9 SPATIAL DISCRETIZATION OF THE FORMULATION
	2.10 TEMPORAL DISCRETIZATION OF THE FORMULATION

	3 STOCHASTIC ANALYSIS
	3.1 STOCHASTIC MECHANICS APPROACHES
	3.2 RANDOM FIELD DISCRETIZATION
	3.3 RELATED HILBERT SPACES
	3.4 THE KARHUNEN-LOÈVE EXPANSION
	3.5 KARHUNEN-LOÈVE PROPERTIES
	3.6 THE INTEGRAL EIGENVALUE PROBLEM
	3.7 THE SPECTRAL STOCHASTIC FINITE ELEMENT METHOD
	3.8 SSFEM IN LINEAR ELASTIC PROBLEMS
	3.9 POLYNOMIAL CHAOS EXPANSION
	3.10 SSFEM WITH A LOG-NORMAL INPUT RANDOM FIELD
	3.11 KARHUNEN-LOÈVE EXPANSION OF LOG-NORMAL RANDOM FIELDS

	4 SOLUTION METHODS
	4.1 SOLUTION METHODS
	4.2 DIRECT SOLUTION WITH CHOLESKY FACTORIZATION
	4.3 ITERATIVE SOLUTION WITH THE PRECONDITIONED CONJUGATE GRADIENT METHOD
	4.3.1 PRECONDITIONED CONJUGATE PROJECTED GRADIENT
	4.3.2 IMPLEMENTATION FOR MULTIPLE RIGHT-HAND SIDES
	4.3.3 PCG – THE TWO-LEVEL TECHNIQUE

	4.4 DOMAIN DECOMPOSITION
	4.4.1 SUBDOMAINS AND MAPPING OPERATORS
	4.4.2 LOCAL PROBLEM SOLUTION
	4.4.3 INTERFACE PROBLEM SOLUTION
	4.4.4 RIGID BODY MODES

	4.5 SOLUTION METHODS FOR STATIC PROBLEMS
	4.5.1 P-DDM: THE PRIMAL SUBSTRUCTURING METHOD (PSM)
	4.5.2 D-DDM: THE FINITE ELEMENT TEARING AND INTECONNECTIING (FETI) METHOD
	4.5.3 P-DDM FOR STATIC ANALYSIS WITH D-DDM BASED PRECONDITIONERS: THE PFETI METHOD

	4.6 SOLUTION METHODS FOR DYNAMIC AND POROUS MEDIA PROBLEMS
	4.6.1 D-DDM WITH NO COARSE PROBLEM FOR IMPLICIT DYNAMICS
	4.6.2 D-DDM FAMILY WITH AN ARTIFICIAL COARSE PROBLEM FOR IMPLICIT DYNAMICS
	4.6.3 P-DDM FAMILY WITH AN ARTIFICIAL COARSE PROBLEM FOR IMPLICIT DYNAMICS
	4.6.4 D-DDM-S AND P-DDM-S: SOLID BASED D-DDM AND P-DDM FOR ONE-PHASE AND POROUS MEDIA PROBLEMS
	4.6.5 D-DDM-P AND P-DDM-P: PERMEABILITY BASED D-DDM AND P-DDM FOR POROUS MEDIA PROBLEMS

	4.7 SOLUTION METHODS FOR STOCHASTIC PROBLEMS
	4.7.1 THE MC-PCG METHOD FAMILY
	4.7.2 THE SSFEM-PCG METHOD FAMILY

	5 PROGRAMMING PARADIGMS
	5.1 THE OBJECT-ORIENTED PARADIGM
	5.2 GOALS OF A FINITE ELEMENT COMPUTER CODE
	5.3 ASPECTS OF OBJECT-ORIENTED PROGRAMMING
	5.3.1 MODULARITY
	5.3.2 ABSTRACTION
	5.3.3 ENCAPSULATION
	5.3.4 HIERARCHY
	5.3.5 TYPING

	5.4 APPLIED OBJECT ORIENTED PROGRAMMING
	5.4.1 THE SUBDOMAIN ENTITY
	5.4.2 ITERATIVE SOLVERS AND DOMAIN DECOMPOSITION
	5.4.3 HOMOGENEOUS SINGLE- AND MULTI-CORE PROGRAMMING
	5.4.4 THE VECTOR AND ARRAY CLASSES

	6 PARALLEL PROGRAMMING
	6.1 SERIAL HARDWARE
	6.1.1 THE VON NEUMANN ARCHITECTURE
	6.1.2 PROCESSES, MULTI-TASKING AND THREADS
	6.1.3 CACHING
	6.1.4 VIRTUAL MEMORY
	6.1.5 INSTRUCTION LEVEL PARALLELISM
	6.1.6 HARDWARE MULTITHREADING

	6.2 PARALLEL HARDWARE
	6.2.1 SIMD SYSTEMS
	6.2.2 MIMD SYSTEMS
	6.2.3 INTERCONNECTION NETWORKS
	6.2.4 CACHE COHERENCE
	6.2.5 SHARED-MEMORY VERSUS DISTRIBUTED-MEMORY

	6.3 PARALLEL SOFTWARE
	6.3.1 PROCESS AND THREAD COORDINATION
	6.3.2 SHARED MEMORY
	6.3.3 DISTRIBUTED MEMORY
	6.3.4 PARALLEL PROGRAM DESIGN

	6.4 PERFORMANCE
	6.4.1 SPEEDUP AND EFFICIENCY
	6.4.2 AMDAHL’S LAW
	6.4.3 SCALABILITY

	7 GPGPU PROGRAMMING
	7.1 GPUS AS GENERAL PURPOSE PROCESSING PLATFORMS
	7.2 CUDA THREADS
	7.3 CUDA MEMORY
	7.4 BEST PRACTICES
	7.5 HYBRID CPU-GPU IMPLEMENTATION OF DDM
	7.5.1 THE CHOLESKY DIRECT SOLVER
	7.5.2 THE SOLUTION AT THE PROJECTION STEP
	7.5.3 DOT PRODUCTS
	7.5.4 SPARSE MATRIX-VECTOR MULTIPLICATION

	7.6 DYNAMIC LOAD BALANCING
	7.6.1 TASK PARALLELISM
	7.6.2 DYNAMIC LOAD BALANCING IMPLEMENTATION

	8 NUMERICAL EXAMPLES
	8.1 X-DDM-S AND X-DDM-P NUMERICAL RESULTS
	8.2 PERFORMANCE OF D-DDM-P IN HYBRID CPU/GPU ENVIRONMENT
	8.3 STOCHASTIC SOLVER RESULTS
	8.3.1 SOLVER ASSESSMENT PROCEDURE
	8.3.2 COMPUTATION OF THE SECOND MOMENTS OF THE RESPONSE FIELD
	8.3.3 RELIABILITY ANALYSIS
	8.3.4 PERFORMANCE OF THE PROPOSED SOLUTION PROCEDURES

	8.4 SOIL-STRUCTURE INTERACTION NUMERICAL RESULTS

	9 CONCLUDING REMARKS AND FUTURE WORK
	BIBLIOGRAPHY

