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ABSTRACT 
 
The scope of this thesis is to apply metaheuristic algorithms for damage 

identification in realistic regarding size, member response and eigenvalue 
approximation (a case of a two-storey steel frame building is examined 
approximating the eigenvalues via substructuring) civil engineer structures as 
well as reviewing some of the basic theories and assumptions made.  

Two techniques for damage identification are proposed. The problem of 
damage identification is an inverse problem where one may expect multiple 
solutions. A discrete value algorithm is proposed in order to control the maximum 
number of damaged elements for the search. When size and/or number of 
damages increases the existing methods (mainly sensitivity methods derived 
from first order perturbation theory) produce more damages then the ones 
alleged. A technique using the null space of the sensitivity matrix (which is 
considered a function of the damage factors) is proposed so one can track the 
multiple solutions finding cases with fewer damaged elements. 
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INTRODUCTION 

 
Assessment of structural integrity and therefore the determination of the 

severity and number of damages in structures has always been of great 
importance to the engineering community, in order to evaluate maintenance, 
repair and replacement issues. These issues are even more demanding today 
because of the need to cut down source expenses and adopt a more preserving, 
greener attitude. 

Several non destructive testing tools for structural health monitoring have 
been developed and the research on the subject is very active. Especially 
appealing and promising are damage identification techniques utilizing modal 
data e.g. eigenfrequencies modal shapes or damping ratios. Among the first two, 
identification using only eigenfrequencies is even more appealing as they have a 
global nature and can be easily measured at few points. On the other hand the 
problem is easiest to deal with when mode shapes are included but experimental 
modal shapes demand more measurements and are in general noisy data 
(Parameter Identification of M & S, Mroz-Stavroulakis). 

Numerous papers dealt with the problem, (e.g. damage identification using 
variation of eigenfrequencies between damage and undamaged model) Cawley 
and Adams (1979), Bicanic and Chen (1997), Hassiotis and Jeong (1993,1995) 
for single or multiple damages ,Hu & Liang (1992,1993) , Bing,Chen & Zhengjia 
(2012). The problem can be set as a minimization problem and state of the art 
metaheuristic algorithms can be applied with satisfactory results such as genetic 
algorithms (Ruotolo & Surace 1997) simulated annealing (He & Wang 2006), 
particle swarm optimization technique (Saada,Arafa & Nassef 2012) and others. 
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Thesis order 
 
The thesis is organized in six chapters: 
 

 In the first chapter some theoretical background regarding the 
derivatives of eigenvalues and eigenvectors and the sensitivity methods 
for damage identification using eigenfrequencies is given. 
 

 In the second chapter the test examples for analysis and algorithm 
application are set as well as the physical meaning of the damage 
factors used for identification. 

 
 In the third chapter the algebraic equations for simple cases are derived 

in order to demonstrate the technique for tracking multiple solutions 
finding cases with fewer damaged elements. 

 
 In the fourth chapter a general description of metaheuristic algorithms 

is given and a review on particle swarm optimization algorithm used for 
damage identification.  

 
 In the fifth chapter a review on techniques for approximating 

eigenvalues for large structures via substructuring, in particular 
component mode synthesis and Rayleigh-Ritz analysis, is given. 

 
 In the sixth chapter numerical results of code implemented in Matlab 

are given, specifically  
 

a. For 11 damaged beam cases using Quadratic programming, PSO 
algorithm and tracking solutions of the same error as 
Quadprogramming solutions but with fewer damaged elements. 
 

b. For 11 cases of a damaged small two storey steel frame building 
using the proposed Discrete value algorithm  

 
c. For the same cases with single or double damage of the beam 

and building using the Discrete value algorithm and calculating 
the eigenfrequencies via component mode synthesis method.  
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Chapter 1      
Theoretical background  
  

In this chapter we give some theoretical background of the problem, in 
particular, methods for calculating the derivatives of eigenvalues and 
eigenvectors and sensitivity methods for damage identification. 

 
1.1 General formulation of the problem 

 
The simulation of the structure is through Finite Element Method and the 

global stiffness, mass and damping matrices are assembled from the local 
matrices of each element. The local matrix of every element is considered a 
function of a parameter (damage factor) Si. 

So the global matrices can be considered as: 
 

1 1 1

( ) , ( ) , ( )
N

i i i
i

N N
i i i

i i
K K s M M s C C s

  
      

 
Where summation means matrices assembly and Ki , Mi , Ci are part of zone 

matrices corresponding to each element. In the present paper only the stiffness 
matrix is considered a function of damage factors. 

The formulation of the generalized eigenproblem is as follows: 
 

                  
1

2 (1)
, ,

0
nxn matrices

nx vector
C

u Cu Mu

u

 
 
   

 

 
which can be set to standard form 

                 (2)A   
where 

 

            
1 1

0
C 

 
     

    ,   u
u



 

  
 

 

and   for   the left   eigenvector Ψ we  have       T     

If     there    exist     matrix  Γ such     that     1T     

then for each of the r=2n, left Ψκ and right Φκ eigenvectors 

                         (3)        
and because Ψκ, Φκ are orthogonal by definition we can    
normalize the vectors Φκ 
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                         (4)i j ij      
Depending on the form of matrix C there exist real or complex eigenvalues and 
eigenvectors. 

In the present study free undamped vibrations of the structure are considered 
therefore C=0 and K,M are symmetric positive definite (or semi definite) 
matrices. The generalized eigenproblem is 

                        (5)u Mu   

Assuming M is positive definite we consider the decomposition TM SS , it can 
be set as the standard eigenproblem 

                           
1 ,

(6)
TTS S u S u

u u
   

 
 
    

           
 
1.2   Sensitivity of eigenvalues and eigenvectors 

 
We consider the problem  
 

       1,2,... (7)( ) 0 , nM            

       ,i j j ij i j ij          

 
We can find the sensitivity derivatives of the eigenvalues and eigenvectors with 
respect to a factor S by differentiating the above equations 

     

(8)

(9)

( ) ( )

1
2

d d dK dMM
ds ds ds ds

d dM
ds ds

 
   


  


 

 


        


     

  

after pre-multiplying (8) with 
T
 , we obtain the first sensitivity derivative of 

the eigenvalue 
 

(10)
( )

( )

dK dM
d dK dMds ds
ds ds ds

  


  
 









  
    

 

 

in order to obtain the eigenvector derivative we consider them to be linear 
combination of the original eigenvectors that is 

                   
1

(11)
n

kj j
j

d c
ds






   
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And pre-multiplying (8) by 
T
j we get 

        

(12)
( )

,
( )

T
j k k

kj T
k j j j

dK dM
ds dsc k j



 

  
 

  

 

There are  several methods for computing the sensitivity derivatives even 
without using the whole set of eigenpairs, suitable for larger scale systems where 
only a few of eigenvalues and eigenvectors are approximated (Nelson 1976). Also 
from the above equations iterative procedures can be formulated to compute the 
variations of eigenvalues and eigenvectors. 

A way of dealing with the problem is using first order theory and in order to 
compute the variations of the eigenvalue, to neglect the variations of the 
eigenvectors, however as we can see from equation (12) that’s not always the 
case especially when two or more eigenvalues are close to each other so the 
coefficients ckj become large in magnitude. 
 

 
 

1.3  Damage identification based on frequency    
    measurements set as a minimization problem 

 
We consider again the problem for the undamaged structure 
 
            1,2,... (13)( ) 0 ,o ooi oi i NM      

 
The eigenvalues are expressed with the Rayleigh quotient 

           

(14)

,

T
oi o i

oi T
oi o i

oi o oj oi ij oi o oj ij

or

K 





   

 

  

       
 

For the damaged structure 
 
          (15)1,2,...( ) 0 ,i i i NM    

where          

, , ,o o i oi i i oi iK K M M M              
We assume   0 , oM M M   and we have 

              (16),i i j i j ij         
We can write 
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    ( )( ) ( ) ( ) 0oi i oi i oi iK            
Expanding and neglecting the higher order terms 
 

           (17)( )oi i oi i oiK         

Pre-multiplying by T
oi and because ( ) 0T

oi oiK M   we get the 
sensitivity of the eigenvalue to changes in the stiffness matrix 

 

             (18)
T

i oi oiK     
From the formulation of the stiffness matrix we can write 

             
1

(19)(1 )
NumElem

e
j j

j
K K 



    

Where summation means matrices assembly. δκ a NumElem-vector  being the 

reduction of the element stiffness multiplying each matrix 
e
jK   which can be 

considered as  matrix  with equal size to K with zeros everywhere but the degrees 
of freedom of the corresponding element at the global system. Substituting (19) 
to (18) we get 

                 

1

1

1

( )

... ...

NumElem
T e

i oi j oi
j

T e T e
oi oi oi j oi

j

K

K K

 







   

 
         
  



 

Considering m changes of eigenvalues we get the linear system 
 

                                         ( 20 )D    
Where D is a m x NumElem matrix and Δλ a m-vector. 

This is the linear system produced from first order perturbation theory and is 
in general underdetermined (as the number of measured eigenfrequencies is 
usually less than the number of elements). The solution space is bounded as        
-1<δκj<0 , we consider reduction of stiffness up to 100%. In order to solve the 
equations above  we can set them as a minimization problem, requiring that the 
“damaged” eigenproblem is not far from the initial. 

Assuming that the damaged eigenvectors are close to the initial ones we write  
          
            (21)( ) ( )oi oi i oi iK R        
Where Ri is the vector of residuals. Simplifying we have 
 

            (22)i oi i oiR K      

we can express it’s magnitude by the square 
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2 2 2 2 (23)|| || 2T

i i i oi oi i oi oi i oi oiR R R K M                 

And summing over m changes of eigenvalues 

             
2

1
(24)|| || 2

m

i
i

g R Q C   



    

Where Q is NumElem x NumElem matrix , C a NumElem-vector 
with 

                     
1 1

,
m m

T e e T e
ij k i j k i k i k

k k
q K K c K M

 

        

Where the last term of (6) has been dropped as it does not affect the 
minimization. 

So the problem can be posed as 
 

              
(25)

1 0
min 2
. . ,
g Q C

st D
  

  

 

 

 
   

Which is a quadratic programming problem with linear equality and inequality 
constraints. It is possible to modify the cost function g in order to account for the 
eigenvector variation. However, solving the problem and satisfying the equality 
constraints, implies that a linear correlation stands, which is the case for a few 
small damages but as the damage size and/or number increases  the non 
linearity effect grows significantly. Alternative methods for solving the above 
linear system have been proposed such us pseudo inverse techniques were one 
finds the min-norm solution. The reduction of stiffness can be expressed with the 
stiffness of an appropriate rotational spring in the assumed crack position in order 
to derive the size of a crack in beam structures. Finally as proposed in recent 
work the reduction of stiffness in order to represent damaged elements is 
justified and closed form solutions for multiple cracked beams are  available.  
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Chapter 2 
Test examples 

 
In this chapter we introduce the examples that we used for damage 

identification techniques and algorithms along with the damage factors which are 
used for quantification of damage.  

 
2.1 Setting the examples 

 
In the present paper we are applying damage identification techniques for 

three cases. Starting we examine a simple free-free rod composed of N 1-d finite 
elements (P1 truss element) regarding the equations that govern the problem 
and ways to perform identification. Secondly we examine a thin free-free steel 
beam of rectangular solid cross-section divided in 22 beam elements. Last we 
examine a small two-storey steel frame building composed by 63 finite elements 
(S2 elements), the columns of the building are steel members of rectangular 
hollow cross-section (400 x 400 x 10) while the beams are of type IPB 450. 

The element stiffness and mass matrices for each of the three case are: 
 

1 . 
 
Kloc= [w1 –w1   
      -w1  w1] 

with  w1 = E*A/L 
The mass matrix is assembled assuming a single mass of magnitude m at each 
node resulting in a N x N unit mass matrix.  
   
2. 
Kloc=[w2  w3 –w2  w3 
      w3  w4 -w3  w5 
     -w2 –w3  w2 –w3 
      w3  w5 –w3  w4] 
with  
w2 = 12*E*I/(L*L*L) 
w3 = 6*E*I/(L*L) 
w4 = 4*E*I/L 
w5 = 2*E*I/L 
 
For the beam case we have a consistent local mass matrix 

 
Mloc=(mf/420)*[156     22*L      54     -13*L 
              22*L   4*(L^2)   13*L   -3*(L^2) 
               54      13*L     156      -22*L 
              -13*L  -3*(L^2)  -22*L   4*(L^2)]  
where  
E=200*(10^9)Pa , Steel’s modulus of elasticity   
L=Ltot/Nelem ,  Element’s length 
Nelem=22  ,  Number of elements 
Ltot=0.55m , Total length of the beam 
dens=7850 Kg/m3  ,  Steel’s density 
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b=7.86 mm , Width of the cross section 
h=7.86 mm , Height of the cross section  
mf=dens*(b*h)*L 
I=(b*(h^3))/12 , Moment of inertia of the cross section 
 

The beam case was derived from an experimental case study on PSO algorithm 
(Saada, Arafa & Nassef 2012), a small mass on the 10th element was added in 
order to simulate the mass of the accelerometer in the original paper 
(maccel=0.03 Kgr). 

                  
3. 

Kloc=[w1 0  0  0   0  0  -w1 0  0   0   0   0   
      0  w2 0  0   0  w3 0  -w2 0   0   0   w3  
      0  0  w6 0  -w7 0  0   0 -w6  0  -w7  0   
      0  0  0  w10 0  0  0   0  0 -w10  0   0   
      0  0 -w7 0   w8 0  0   0  w7  0   w9  0   
      0  w3 0  0   0  w4 0  -w3 0   0   0   w5  
     -w1 0  0  0   0  0  w1  0  0   0   0   0   
      0 -w2 0  0   0 -w3 0   w2 0   0   0  -w3  
      0  0 -w6 0   w7 0  0   0  w6  0   w7  0   
      0  0  0 -w10 0  0  0   0  0  w10  0   0   
      0  0 -w7 0   w9 0  0   0  w7  0   w8  0   
      0  w3 0  0   0  w5 0  -w3 0   0   0   w4 ] 
 with 

w1 = E*A/L 
w2 = 12*E*Iz/(L*L*L) 
w3 = 6*E*Iz/(L*L) 
w4 = 4*E*Iz/L 
w5 = 2*E*Iz/L 
w6 = 12*E*Iy/(L*L*L) 
w7 = 6*E*Iy/(L*L) 
w8 = 4*E*Iy/L 
w9 = 2*E*Iy/L 
w10 = G*J/L 

where 
E=2.1e8 KPa , Steel’s modulus of elasticity  
G=0.8e8 Kpa, Steel’s shear modulus 
A=0.0156 m2 cross section area for the columns 
A=0.0218 m2 cross section area for the beams 
Iy,Iz,G = 0.0003935 , 0.000395 , 0.00059319  m4  
          Moments of inertia along y,z and x local axis 
          For the columns 
Iy,Iz,G = 0.0007989 , 0.0001172 , 3.88e-06  m4  
          Moments of inertia along y,z and x local axis 
          For the beams (IPB 450) 
L , Element’s length 
 

For the stiffness matrix the number of nodes is 58, each node has 6 degrees of 
freedom (three displacements and three rotations) resulting in a 312 x 312 global 
stiffness matrix. The mass matrix is assembled globally, 10 KN/m2 load at each 
floor is assumed and the mass is distributed accordingly to the area of influence 
of each node of the model. The significant degrees of freedom of the nodes at the 
edges of the floors are assumed to be x,y displacements and z rotation while 
those at the midspan of the beams are x,y,z displacements and z rotation. Also 
0,1 T (or 0.1 Tm) mass is assumed at the remaining DOFs resulting in a 312 x 
312 diagonal mass matrix. 
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Next, two photos of the structure are shown, from the static analysis program 
used for verification analysis (3dr Strad) and from the program used to perform 
the analysis for the damage identification (Matlab). 

 

  

Figure 2.1  Picture of the model from the analysis program 3DR Strad 

 

Figure 2.2  Frame building picture from the Matlab model 
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2.2 Interpretation of damage factors 
 

From equations (7), damage factors can be seen as a percentage reduction of 
stiffness (-1<δκ<0) or as the percentage of the remaining stiffness Si. 

                           (26)1 0 1,i i iS S     

The global stiffness matrix for the damaged structure is then formulated from 
the element stiffness matrices multiplied by the element damaged factor Si . 
Magnitude of the factor equal to 1 suggests that the element is intact and on the 
other hand equal to 0 suggests that the element’s stiffness is zero. 

The damage factor can relate to geometric characteristics of the element cross 
section. For each of the three cases we will derive to the usage of the damage 
factor described above. 

For the first case (truss element) it can be expressed as the ratio 

i
i

oi

AS
A

   ,  Aoi being the initial area of the cross section , Ai the cross section of 

the damaged element. Damaged can be seen as a reduction of the element’s 
cross section. 

For the second case the damage factor can be expressed as the ratio 
3

3
3

1 2
1 2

/ ( )
/

i i i
i

o i o i o i

I bh hS
I bh h

    , so damage is expressed as a reduction from Ioi 

to Ii of the moment of inertia, or as a symmetric reduction of the height’s cube of 
the cross section as pictured below. 

 
Figure 2.3 Height reduction of element’s cross-section 

 
We should note that in the present analysis 22 elements are used. However, 
using a more dense discretization one can simulate a crack like defect but always 
assuming a linear behavior which means that the edges of the crack do not close. 
Finally for the case of the two-storey building we can come up with one damage 

factor multiplying each element’s stiffness matrix using the ratio   d
i

dAS
dA

  , 

where dA is the infinitesimall area of the undamaged cross section and dAd of the 
damaged one and assuming that the reduction of the area is distributed uniformly 
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along both x and y axis. We illustrate this at the picture below assuming                     

0.333 1 / 3d d
i

dA AS
dA A

     

 

Figure 2.4 Uniform reduction of cross-section’s area   

In this example n=3 and we have 

2

1
3

d

dx dyndA n n
dx dydA n
n n

   , for the infinitesimall moment of inertia over y axis  

2 2 2

2
2

2

2
2

4

2

4 2 (27)

2 2( ) ( )
2 2

3 2

1 2
3 3

1 2
3 3

ydam

ydam

y

dx dxdI x d x d x d
n n

dxx d d
n
dx dxdyx dxdy

dI dx
dI x

  

 

    

 

 

 

 

 

as dx tends to zero we have
1
3

ydam

y

dI
dI

  ,  so 

(28)
1 1
3 3ydam ydam y yI dI dI I       
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The same is true for Ix and Ir=Ix+Iy. We note that we can express damage in 
different forms coming up with more than one damage factor for each element. 
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Chapter 3 
Uniqueness issues 
 

In this chapter we give the algebraic equations governing the simple rod 
problem and present the method of tracking multiple solutions on the intersection 
of hypersurfaces that represent fixed eigenvalues for the system. 

3.1 Algebraic equations governing the problem 
 

Let us consider the first case of the truss element rod, each node having one 
degree of freedom along the rod axis. The local stiffness matrix for the possibly 

damaged element is i i
i

i i

S S

S S

EAK
L





 
  

 
 the mass matrix is assembled globally 

with a mass m at each node. If we consider, initially only two elements of same 
length L and if λaj is the a priori known eigenvalue (derived from the measured 
eigenfrequency) the eigeproblem can be written as 

1 1

1 1 2 2

2 2

0
0 1 0 0

( ) 0 1 0 0
0 0 1

j

Ku Mu
S S

EA S S S S u m a u
L

S S





 

   
          
      

 

If the normalized eigenvalue is j j
Lm
EA

   and in order to be such for the 

damaged system we must have 

1 1

1 1 2 2

2 2

0
( ) 0

0

j

j

j

S S
Det S S S S

S S






 
    

 

expanding we have 

2 3
2 1 2 1 2 (29)3 2 ( ) 0n j j jDet S S S S          

Let 1 1 2 2 1 2, ( )Y S S Y S S    and assuming two eigenvalues are known (the first 

eigenvalue is always zero as the rod has free-free supports expressing the 
unstressed movement of the system as a rigid body) then we have the linear 
system  

2 3
12 2 2

2 3
23 3 3

(30)
3 2
3 2
  
  

     
         

 

Solving the above system we get the sum and the product of the damage factors. 

For 3 elements we have 
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1 1

1 1 2 2

2 2 3 3

3 2

0 0
( ) 0

0
0 ( )
0 0

j

j

j

j

S S
S S S S

Det
S S S S

S S







 
   


   

 
 

And expanding 

2 3 4
3 1 2 3 1 2 1 3 2 3 1 2 3

(31)

4 (3 4 3 ) 2 ( )

0
n j j j jDet S S S S S S S S S S S S            


 

we can set  

1 1 2 3 2 1 2 1 3 2 3 3 1 2 3, 3 4 3 , ( )Y S S S Y S S S S S S Y S S S        

And solve the linear system 

2 3 4
2 2 2 1 2

2 3 4
3 3 3 2 3

2 3 4
4 4 4 3 4

(32)

4 2
4 2
4 2

Y
Y
Y

   
   
   

      
           
          

 

For 4 elements expanding the determinant yields 

2
4 1 2 3 4 2 3 4 1 3 4 1 2 4 1 2 3

3
1 4 2 4 3 4 2 3 1 3 1 2

4 5
1 2 3 4 (33)

5 (4 6 6 4 )

(4 4 3 3 4 3 )

2 ( ) 0

n j j

j

j j

Det S S S S S S S S S S S S S S S S

S S S S S S S S S S S S

S S S S

 



 

      

     

     
 

Setting  

1 1 2 3 4 2 2 3 4 1 3 4 1 2 4 1 2 3

3 1 4 2 4 3 4 2 3 1 3 1 2

4 1 2 3 4

, 4 6 6 4
(4 4 3 3 4 3 )

( )

Y S S S S Y S S S S S S S S S S S S
Y S S S S S S S S S S S S
Y S S S S

    

      
   

 

The linear system is 

2 3 4 5
12 2 2 2 2

2 3 4 5
23 3 3 3 3

2 3 4 5
34 4 4 4 4

2 3 4 5
45 5 5 5 5

(34)

5 2
5 2
5 2
5 2

Y
Y
Y
Y

    
    
    
    

     
         
    
    
       

 

For the specific problem, from the properties of the determinant one can show 
that the following recursive formula stands 
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1

1 2 2 1 2 3

1 3 2 1 (35)

1 2 3

1

...

... ... ...

... ( )

)( n n n n

n nn n n n

n n

n n n nDet Det Det Det

Det Det

S S S S
S S S S S S S S
S S S S S

 

 

 

 

 

    



    

  

 



 

If we expand we can see that each monomial is a product of a coefficient and  
n+1 terms of the eigenvalue and the damage factors. The monomials with λn+1 
come up from the first term, the ones with λn and one damage factor come up 
from the two first terms of the above equation while the monomials with λ and n 
distinct damage factors come up from the first  and last term, thus it can be 
proved by induction that we have the terms 

1 1
1 2 1 2( 1) ... , ( 1) 2 ( ... ) , ( 1)n n n n

n nn S S S S S S           

the rest of the terms have common factor λk with k=2,3…n-1 so 

Although finding the values for each damage factor is a hard problem   

setting        1 1 2 3 1 2 3... , ( ... )n n nY SS S S Y S S S S        

we can solve the following linear system and find the sum and product of the 
damage factors without having explicit formulae for Y2 , Y2 , … , Yn-1  

1
12 2 2 2

1

1
1 1 1 1

(36)

( 1) ... ... ( 1) 2
.... .. .. ..

( 1)( 1) ... ... ( 1) 2
.... .. .. ..

( 1) ... ... ( 1) 2

m n n n

nm n n n
mk k k k

m n n n
nn n n n

Yn

Yn

Yn

   

   

   






   

       
    
    
        
    
    
           

 

The values of the damage factors are between 0 and 1, so solving the above 
system we get valuable information for the total damage of the rod as well as it’s 
distribution. If we have for example 10 elements, for the intact the sum is 10 and 
the product is 1, suppose that solving the system we get 9.50 for the sum if this 
is due to 1 damage of 0.5 factor  the product is 0.5, if we have two damages of 
0.75 factor for each the product will be 0.5625 and so forth. However a set of n 
eigenvalues is needed and as the number of elements increases, because of the 
large powers of λ, the system becames ill-conditioned and difficult to solve. 
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3.2 Possible solutions uniqueness issues – Tracking the     
    intersection of hypersurfaces for fixed eigenvalues 

 
One important aspect that should be noted when considering damage 

identification using only eigenfrequencies should be the expectation one has from 
it. We usually have a small number of eigenvalues at our disposal, much smaller 
than the number of elements who suggest possible damage positions. The 
number of the unknown damage factors is larger than that of the equations and 
we can expect that the system will have an infinite number of solutions. If we 
consider a limited number of damages (e.g. equal or less than the  number of the 
measured eigenfrequencies) we may expect a finite number of solutions and 
therefore search for solutions using one or more of the available algorithms. 

On the other hand a variation of the eigenfrequencies suggest that if the mass 
of the structure is not altered, there certainly is a change in the stiffness. Smaller 
eigenfrequencies suggest less rigid structures, the measured eigenfrequencies 
give infinite number of solutions who lie on a subspace of all possible 
configurations of our system. The question now can be posed as: which of these 
configurations are most dangerous for our structure? In the case of a statically 
determinate structure one plastic hinge would suggest collapse so we would, 
certainly, be interested in the element with the greatest amount of damage. 
However, it is possible that a scattering of the damages (more damages, less 
magnitude) could make the structure prone to other phenomena. 

There are certain combinations of damage factors that produce the same set of 
eigenfrequencies, for example damages at symmetric elements. In the building 
examined, in various occasions, apart from the damage scenario, which most of 
the times is detected there are some other combinations that produce almost 
identical first ten eigenfrequencies, sometimes at approximate locations of the 
structure and sometimes not. The scope of this chapter is to delve deeper in 
these subjects. 

Let’s consider again the case of the 1-d rod of 3 elements. Also we consider 
elements 1 and 3 to be undamaged and element 2 having damage resulting in 
70% decrease in stiffness. The damage factor vector is S=[1 0.3 1]T. We 
calculate the eigenvalues of the system and assume that only the second 
eigenvalue is known and we wish to find all the possible combinations of damage 
factors that produce this eigenvalue. From equation (8) and creating a mesh grid 
of values from 0 to 1 for the damage factors S1 and S2 and solve each time for 
S3, we get the following surface plot. 
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Figure 3.1 Plot of equation (31) solved for S3 
 

 
 
Because   S3 takes singular values and we are only interested in the [1,1,1] 

cube we cut the values of S3 where abs(S3)>1.5 and we have the following plot. 

 
 
 

Figure 3.2 Plot of equation (31) solved for S3 
 

A 
 

A 
 

B 
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We can see two surfaces with a singular “zone” as a border between them. 
Equation (31) holds both for the known eigenvalue being the second and the third 
of the system and at the plot we can see exactly that (actually there is a third 
smaller area and a smaller “zone” where the known eigenvalue becomes the 
fourth one of the system). Area A is the surface between the singular “zone” and 
surfaces S1=1 , S2=1. The triplets of S1,S2 and S3 on this area satisfy equation 
(31) and give the eigenvalue as the second for the system. The values of the 
damage factors corresponding at area B produce the fixed eigenvalue as the third 
for the system, here our system changes and a new near zero or negative 
eigenvalue appears as the fixed eigenvalue descents from the second to the third 
place which means that matrix K is no longer positive definite. We are interested 
in the combinations at area A. 

If we have some number of measured eigenfrequencies our solutions exist on 
the intersection of the hypersurfaces of each fixed eigenvalue. If we find (from an 
optimization algorithm for example) one solution we could “move” along the 
intersection, finding other solutions that produce the same eigenvalues for the 
system. One way to do this is through the derivatives of the eigenvalues. If 
dS=[dS1,dS2,…,dSn]T (n is the number of elements) are the infinitesimal changes 
of the damage factors, we have: 

1 2

1 2
1 2

1 2
1 2

1 1 2 2

1 2
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( ) ( ) ... ( )
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T e T e T e
i i i i i n i n

T e T e T e
i i i i i n i

D grad S S S d S

dS dS dS
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dK dK dKdS dS dS
dS dS dS
K dS K dS K dS

K K K

 
  



 

  
   
  

         

         

       (37)d S




 

 
Where Dvλi stands for the directional derivative of the function which shows 

how the eigenvalue changes along some direction dS, K is the global stiffness 

matrix , 
e
jK  the element stiffness matrix for the global system and 

Φi(S1,S2,…,Sn) the i-th eigenvector. If we consider m  eigenvalues we can define 
the vector valued function Λ=[λ1,λ2,...,λm]T than the jacobian matrix of Λ is 
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1 1 1 1 1

1

(38)( )

T e T e
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T e T e
m m m n m

K K
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K K

    
 

   
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
  


 

 
This matrix is essentially almost the same as matrix D of equation (20) only 

that this time is considered as a function of S. If we are on a point (S1,S2,…,Sn) 
and we want to move at the intersection of the hypersurfaces of the fixed 
eigenvalues all we have to do is move along the null space of J(Λ). We calculate 
the null space (using for example singular value decomposition) and move along 
one combination of the null vectors multiplied by a small scalar. At the new point, 
we calculate again J(Λ) and it’s null space and move again.  

We implemented this for the beam example as shown below. Initially we put 
S1-S11 =0.85 and S12-S22=1 (figure 3.3), m=5 (first five non zero 
eigenfrequencies) and used the above procedure to move along the first null 
vector. When some Si has value of 1 or approached, we zeroed the corresponding 
column of J(Λ). We finally had the damage factors of figure 3.4. As the step size 
became smaller we approached the hypersurfaces with linear convergence. 
 
 
 

 
Figure 3.3 Damage factors before moving along the intersection 
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Figure 3.4 Damage factors after moving along the intersection 

Below  the eigenfrequencies for the initial and the final state are presented 
along with  the error (ωinit-ωfinal)/ωinit 

Initial 
eigenfrequencies 

(Hz)

Final 
eigenfrequencies 

(Hz)
(ωinit-ωfinal)/ωinit

121,2920 121,2867 4,36122E-05

349,9626 349,9479 4,19365E-05

661,5075 661,4799 4,17733E-05

1108,1162 1108,0842 2,88949E-05

1674,6198 1674,5533 3,96861E-05  

Figure 3.5 Initial and final eigenfrequencies 

In the beam example before applying PSO algorithm as we will describe later, 
we applied quadratic programming optimization as described in chapter 1.3 . If 
the number of damages are three and more (or large in magnitude) the 
optimization tends to give more than five damage elements with small error 
whatsoever, we used the above mentioned procedure to move on the intersection 
and find the minimum damaged element case with the same error.  

Some other similar techniques could be applied but have not been  tested in 
the present paper. We could calculate the difference for the eigenvalues of the 
initial (undamaged) and the final state ΔΛ=Λinit-Λfinal, divide by k and solve at 
each step J(Λ)dS=(1/k)ΔΛ, if the number of damaged elements produced is 
greater than the size of Λ we can use the null space of J(Λ) “move” along the 
intersection and track a case with fewer damaged elements but the same 
eigenvalues. 

An alternative way to derive the same matrix without solving the eigenvalue 
problem at each step is with the use of Jacobi formula for the derivative of the 
determinant 
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       (39)    

Equivalently, if dA stands for the differential of A, the formula is 

 

         (40) 

 

where A K     and demanding that ( ) 0 , 0iddet A d     here we 

have to calculate the adjugate of A at each step. 
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Chapter 4 
Optimization 
 

In this chapter we give some definitions and introductory information regarding 
the global optimization problem using metaheuristics and some background on 
PSO algorithm in general as well as for damage identification. 

 
4.1  Metaheuristics 
 

In the last 20 years, a new kind of approximate algorithm has emerged which 
basically tries to combine basic heuristic methods in higher level frameworks 
aimed at efficiently and effectively exploring a search space. These methods are 
nowadays commonly called metaheuristics. The term metaheuristic, derives from 
the composition of two Greek words. Heuristic derives from the verb heuriskein 
(ευρισκειν) which means “to find”, while the suffix meta means “beyond, in an 
upper level”. Before this term was widely adopted, metaheuristics were often 
called modern heuristics. 

This class of algorithms includes, but is not restricted to , Ant Colony 
Optimization (ACO), Evolutionary Computation (EC) including Genetic Algorithms 
(GA), Iterated Local Search (ILS), Simulated Annealing (SA), and Tabu Search 
(TS). In the following we quote some definitions of the term metaheuristic 
proposed by some researchers: 

 
a. A metaheuristic is formally defined as an iterative generation process 

which guides a subordinate heuristic by combining intelligently 
different concepts for exploring and exploiting the search space, 
learning strategies are used to structure information in order to find 
efficiently near-optimal solutions. 

  
b. A metaheuristic is an iterative master process that guides and 

modifies the operations of subordinate heuristics to efficiently produce 
high-quality solutions. It may manipulate a complete (or incomplete) 
single solution or a collection of solutions at each iteration. The 
subordinate heuristics may be high (or low) level procedures, or a 
simple local search, or just   construction method. 

 
c. Metaheuristics are typically high-level strategies which guide an 

underlying, more problem specific heuristic, to increase their 
performance. The main goal is to avoid the disadvantages of iterative 
improvement and, in particular, multiple descent by allowing the local 
search to escape from local optima. This is achieved by either allowing 
worsening moves or generating new starting solutions for the local 
search in a more “intelligent” way than just providing random initial 
solutions. Many of the methods can be interpreted as introducing a 
bias such that high quality solutions are produced quickly. This bias 
can be of various forms and can be cast as descent bias (based on the 
objective function), memory bias (based on previously made 
decisions) or experience bias (based on prior performance). Many of 
the metaheuristic approaches rely on probabilistic decisions made 
during the search. But, the main difference to pure random search is 
that in metaheuristic algorithms randomness is not used blindly but in 
an intelligent, biased form. 
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d. A metaheuristic is a set of concepts that can be used to define 
heuristic methods that can be applied to a wide set of different 
problems. In other words, a metaheuristic can be seen as a general 
algorithmic framework which can be applied to different optimization 
problems with relatively few modifications to make them adapted to a 
specific problem. 

 
Summarizing, we outline fundamental properties which characterize 
metaheuristics:  
 

 Metaheuristics are strategies that “guide” the search process. 
 

 The goal is to efficiently explore the search space in order to find 
(near)optimal solutions. 

 
 Techniques which constitute metaheuristic algorithms range from simple 

local search procedures to complex learning processes. 
 

 Metaheuristic algorithms are approximate and usually non-deterministic. 
 

 They may incorporate mechanisms to avoid getting trapped in confined 
areas of the search space. 

 
 The basic concepts of metaheuristics permit an abstract level description. 

 
 Metaheuristics are not problem-specific. 

 
 Metaheuristics may make use of domain-specific knowledge in the form of 

heuristics that are controlled by the upper level strategy. 
 

 Todays more advanced metaheuristics use search experience (embodied in 
some form of memory) to guide the search. 
 

In short we could say that metaheuristics are high level strategies for 
exploring search spaces by using different methods. Of great importance hereby 
is that a dynamic balance is given between diversification and intensification. The 
term diversification generally refers to the exploration of the search space, 
whereas the term intensification refers to the exploitation of the accumulated 
search experience. These terms stem from the Tabu Search field  and it is 
important to clarify that the terms exploration and exploitation are sometimes 
used instead, for example in the Evolutionary Computation, with a more 
restricted meaning. In fact, the notions of exploitation and exploration often refer 
to rather short term strategies tied to randomness, whereas intensification and 
diversification also refer to medium and long term strategies based 
on the usage of memory. The balance between diversification and intensification 
as mentioned above is important, on one side to quickly identify regions in the 
search space with high quality solutions and on the other side not to waste too 
much time in regions of the search space which are either already explored or 
which do not provide high quality solutions. 

The search strategies of different metaheuristics are highly dependent on the 
philosophy of the metaheuristic itself. There are several different philosophies 
apparent in the existing metaheuristics. Some of them can be seen as 
“intelligent” extensions of local search algorithms. The goal of this kind of 
metaheuristic is to escape from local minima in order to proceed in the 
exploration of the search space and to move on to find other 
hopefully better local minima. This is for example the case in Tabu Search, 
Iterated Local Search, Variable Neighborhood Search, GRASP and Simulated 
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Annealing. These metaheuristics (also called trajectory methods) work on one or 
several neighborhood structure(s) imposed on the members (the solutions) of the 
search space. 

We can find a different philosophy in algorithms like Ant Colony Optimization 
and Evolutionary Computation. They incorporate a learning component in the 
sense that they implicitly or explicitly try to learn correlations between decision 
variables to identify high quality areas in the search space. This kind of 
metaheuristic performs, in a sense, a biased sampling of the search space. For 
instance, in Evolutionary Computation this is achieved by recombination of 
solutions and in Ant Colony Optimization by sampling the search space in every 
iteration according to a probability distribution.  

There are different ways to classify and describe metaheuristic algorithms. 
Depending on the characteristics selected to differentiate among them, several 
classifications are possible, each of them being the result of a specific viewpoint. 
We briefly summarize the most important ways of classifying metaheuristics. 

 
e. Nature-inspired vs. non-nature inspired. Perhaps, the most intuitive 

way of classifying metaheuristics is based on the origins of the 
algorithm. There are nature-inspired algorithms, like Genetic 
Algorithms and Ant Algorithms, and non nature-inspired ones such as 
Tabu Search and Iterated Local Search. This classification is not very 
meaningful for the following two reasons. First, many recent hybrid 
algorithms do not fit either class (or, in a sense, they fit both at the 
same time). Second, it is sometimes difficult to clearly attribute an 
algorithm to one of the two classes. 

  
f. Population-based vs. single point search. Another characteristic that 

can be used for the classification of metaheuristics is the number of 
solutions used at the same time: Does the algorithmwork on a 
population or on a single solution at any time? Algorithms working on 
single solutions are called trajectory methods and encompass local 
search-based metaheuristics, like Tabu Search, Iterated Local Search 
and Variable Neighborhood Search. They all share the property of 
describing a trajectory in the search space during the search process. 
Population-based metaheuristics, on the contrary, perform search 
processes which describe the evolution of a set of points in the search 
space. 

 
g. Dynamic vs. static objective function. Metaheuristics can also be 

classified according to the way they make use of the objective 
function. While some algorithms keep the objective function given in 
the problem representation “as it is”, some others, like Guided Local 
Search (GLS), modify it during the search. The idea behind this 
approach is to escape from local minima by modifying the search 
landscape. Accordingly, during the search the objective function is 
altered by trying to incorporate information collected during the 
search process. 

 
h. One vs. various neighborhood structures. Most metaheuristic 

algorithms work on one single neighborhood structure. In other 
words, the fitness landscape topology does not change in the course 
of the algorithm. Other metaheuristics, such as Variable Neighborhood 
Search (VNS), use a set of neighborhood structures which gives the 
possibility to diversify the search by swapping between different 
fitness landscapes. 
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i. Memory usage vs. memory-less methods. A very important feature to 
classify metaheuristics is the use they make of the search history, that 
is, whether they use memory or not. Memory-less algorithms perform 
a Markov process, as the information they exclusively use to 
determine the next action is the current state of the search process. 
There are several different ways of making use of memory. Usually we 
differentiate between the use of short term and long term memory. 
The first usually keeps track of recently performed moves, visited 
solutions or, in general, decisions taken. The second is usually an 
accumulation of synthetic parameters about the search. The use of 
memory is nowadays recognized as one of the fundamental elements 
of a powerful metaheuristic. 

 
 
4.2 PSO algorithm 
 

In numerous optimization problems encountered in different areas of 
scientific inquiry, the search for a solution is identified with the discovery of the 
global minimizer of a real valued objective function f : S → R, i.e., finding a point 
x S such that 

*( ) ( ) ,f x f x x S    
where S ⊂ RD is a nonempty compact set. 

As we already mentioned Global Optimization (GO) methods can be classified 
into two main categories: deterministic and probabilistic methods. Most of the 
deterministic methods involve the application of heuristics, such as modifying the 
trajectory (trajectory methods) or adding penalties (penalty-based methods), to 
escape from local minima. On the other hand, probabilistic methods rely on 
probabilistic judgements to determine whether or not search should depart from 
the neighborhood of a local minimum. In contrast with different adaptive 
stochastic search algorithms, Evolutionary Computation (EC) techniques exploit a 
set of potential solutions, named population, and detect the optimal problem 
solution through cooperation and competition among the individuals of the 
population. These techniques often find optima in complicated optimization 
problems faster than traditional optimization methods. The most commonly met 
population-based EC techniques, such as Evolution Strategies (ES), Genetic 
Algorithms (GA), Genetic Programming, Evolutionary Programming and Artificial 
Life methods are inspired from the evolution of nature. 

The Particle Swarm Optimization (PSO) method is a member of the wide 
category of Swarm Intelligence methods (Kennedy and Eberhart, 2001), for 
solving GO problems. It was originally proposed by J. Kennedy as a simulation of 
social behavior, and it was initially introduced as an optimization method in 1995 
(Eberhart and Kennedy, 1995; Kennedy and Eberhart, 1995). PSO is related with 
Artificial Life, and specifically to swarming theories, and also with EC, especially 
ES and GA. PSO can be easily implemented and it is computationally inexpensive, 
since its memory and CPU speed requirements are low. Moreover, it does not 
require gradient information of the objective function under consideration, but 
only its values, and it uses only primitive mathematical operators. PSO has been 
proved to be an efficient method for many GO problems and in some cases it 
does not suffer the difficulties encountered by other EC techniques (Eberhart and 
Kennedy, 1995). 
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         Historical background 
 

The implicit rules adhered to by the members of bird flocks and fish schools, 
that enable them to move synchronized, without colliding, resulting in an amazing 
choreography, was studied and simulated by several scientists. In simulations, 
the movement of the flock was an outcome of the individuals’ (birds, fishes etc.) 
efforts to maintain an optimum distance from their neighboring individuals  
The social behavior of animals, and in some cases of humans, is governed by 
similar rules. There is a general belief, and numerous examples coming from 
nature enforce the view, that social sharing of information among the individuals 
of a population, may provide 
an evolutionary advantage. This was the core idea behind the development of 
PSO. 
 
         The Particle Swarm Optimization algorithm 
 

PSO’s precursor was a simulator of social behavior, that was used to visualize 
the movement of a birds’ flock. Several versions of the simulation model were 
developed, incorporating concepts such as nearest-neighbor velocity matching 
and acceleration by distance. When it was realized that the simulation could be 
used as an optimizer, several parameters were omitted, through a trial and error 
process resulting in the first simple version of PSO (Eberhart et al., 1996). PSO is 
similar to EC techniques in that, a population of potential solutions to the problem 
under consideration, is used to probe the search space. However, in PSO, each 
individual of the population has an adaptable velocity (position change), 
according to which it moves in the search space. Moreover, each individual has a 
memory, remembering the best position of the search space it has ever visited. 
Thus, its movement is an aggregated acceleration towards its best previously 
visited position and towards the best individual of a topological neighborhood. 
Since the “acceleration” term was mainly used for particle systems in Particle 
Physics, the pioneers of this technique decided to use the term particle for each 
individual, and the name swarm for the population, thus, coming up 
with the name Particle Swarm for their algorithm. Two variants of the PSO 
algorithm were developed. One with a global neighborhood, which we will be 
using for damage identification and one with a local neighborhood. According to 
the global variant, each particle moves towards its best previous position and 
towards the best particle in the whole swarm. On the other hand, according to 
the local variant, each particle moves towards its best previous position and 
towards the best particle in its restricted neighborhood. In the following 
paragraphs, the global variant is exposed (the local variant can be easily derived 
through minor changes). 

Suppose that the search space is D-dimensional, then the i-th particle of the 
swarm can be represented by a D-dimensional vector, Xi =(xi1, xi2, . . . , xiD)T. 
The velocity (position change) of this particle, can be represented by another D-
dimensional vector Vi = (vi1, vi2, . . . , viD) T. The best previously visited position 
of the i-th particle is denoted as Pi =(pi1, pi2, . . . , piD) T. Defining g as the index 
of the best particle in the swarm (i.e., the g-th particle is the best), and let the 
superscripts denote the iteration number, then the swarm is manipulated 
according to the following two equations: 

 
1

1 2

1 1

(41)

(42)

( ) ( )n n n n n n n n
id id id id gd id

n n n
id id id

v v cr p x cr p x

x x v



 

    

 
 

 
where d = 1, 2, . . .,D; i = 1, 2, . . . , N, and N is the size of the swarm; c is a 
positive constant, called acceleration constant; r1, r2 are random numbers, 
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uniformly distributed in [0, 1]; and n = 1, 2, . . ., determines the iteration 
number. 

The above equations define the initial version of the PSO algorithm. Since 
there was no actual mechanism for controlling the velocity of a particle, it was 
necessary to impose a maximum value Vmax on it. If the velocity exceeded this 
threshold, it was set equal to Vmax. This parameter proved to be crucial, because 
large values could result in particles moving past good solutions, while small 
values could result in insufficient exploration of the search space. This lack of a 
control mechanism for the velocity resulted in low efficiency for PSO, compared to 
EC techniques. Specifically, PSO located the area of the optimum faster than EC 
techniques, but once in the region of the optimum, it could not adjust its velocity 
stepsize to continue the search at a finer grain. The aforementioned problem was 
addressed by incorporating a weight parameter for the previous velocity of the 
particle. Thus, in the latest versions of the PSO, Equations (2) and (3) are 
changed to the following ones: 
 

 

1
1 1 2 2

1 1

(43)

(44)

( ( ) ( ))n n n n n n n n
id id id id gd id

n n n
id id id

v wv c r p x c r p x

x x v



 

    

 
 

 
where w is called inertia weight; c1, c2 are two positive constants, called 
cognitive and social parameter respectively; and χ is a constriction factor, which 
is used, alternatively to w to limit velocity.  

The PSO method appears to adhere to the five basic principles of swarm 
intelligence: 

(a) Proximity, i.e., the swarm must be able to perform simple space and time 
computations; 

(b) Quality, i.e., the swarm should be a able to respond to quality factors in 
the environment; 

(c)     Diverse response, i.e., the swarm should not commit its activities along 
excessively narrow channels; 

(d) Stability, i.e., the swarm should not change its behavior every time the 
environment alters; and finally 

(e) Adaptability, i.e., the swarm must be able to change its behavior, when 
the computational cost is not prohibitive. 

 
Indeed, the swarm in PSO performs space calculations for several time steps. 

It responds to the quality factors implied by each particle’s best position and the 
best particle in the swarm, allocating the responses in a way that ensures 
diversity. Moreover, the swarm alters its behavior (state) only when the best 
particle in the swarm (or in the neighborhood, in the local variant of PSO) 
changes, thus, it is both adaptive and stable. 
 
The parameters of PSO 
 

The role of the inertia weight w, in Equation (4), is considered critical for the 
PSO’s convergence behavior. The inertia weight is employed to control the impact 
of the previous history of velocities on the current one. Accordingly, the 
parameter w regulates the trade-off between the global (wide-ranging) and local 
(nearby) exploration abilities of the swarm. A large inertia weight facilitates 
global exploration (searching new areas), while a small one tends 
to facilitate local exploration, i.e., fine-tuning the current search area. A suitable 
value for the inertia weight w usually provides balance between global and local 
exploration abilities and consequently results in a reduction of the number of 
iterations required to locate the optimum solution. Initially, the inertia weight was 
constant. However, experimental results indicated that it is better to initially set 
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the inertia to a large value, in order to promote global exploration of the search 
space, and gradually decrease it to get more refined solutions. Thus, an initial 
value around 1.2 and a gradual decline towards 0 can be considered as a good 
choice for w. 

The parameters c1 and c2, in Equation (4), are not critical for PSO’s 
convergence. However, proper fine-tuning may result in faster convergence and 
alleviation of local minima. As default values, c1 = c2 = 2 were proposed, but 
experimental results indicate that c1 =c2 = 0.5 might provide even better results. 
Other work reports that it might be even better to choose a larger cognitive 
parameter, c1, than a social parameter, 
c2, but with c1 + c2 less than 4. 

The parameters r1 and r2 are used to maintain the diversity of the population 
and they are uniformly distributed in the range [0, 1]. The constriction factor χ 
controls on the magnitude of the velocities, in a way similar to the Vmax 
parameter, resulting in a variant of PSO, different from the one with the inertia 
weight. 

 
PSO for structural damage identification 
 

In the present work we implement PSO algorithm in two cases as already 
mentioned. Initially for a beam of 22 beam elements and then for a small steel 
frame building. The procedure is as follows: 

 
a) Finite element model for each structure is assembled, each element 

stiffness matrix is multiplied by the correspondent damage factor Si (the 
value is 1 for intact or a fraction for the damaged element) 

b) Damage cases are generated by reducing the stiffness of certain elements 
and the eigenfrequencies of the system are calculated. Essentially this is 
done by selecting a vector S of  damage factors for each case. 

c) We introduce the objective function 
 

1 1 2 2

1 2

(45)max( , , ... , , ... , )
FE EXP FE EXPFE EXP FE EXP
i i k k

EXP EXP EXP EXP
i k

E       
   

  
  

Where FE
i is the i-th eigenfrequency produced from the algorithm during 

the optimization procedure and EXP
i the value of the pseudoexperimental 

i-th eigenfrequency produced at step b. 
d) We run PSO algorithm for a predetermined number of iterations or until a 

convergence criterion is met. The D dimensional vector X is the vector of 
the damage factors, and D=22 for the beam while D=63 for the building 
example. 
 

We implement a quadratic programming minimization as described in the 
second chapter using the fmincon Matlab function, for test purposes. We conclude 
that quadratic programming minimization can successfully determine the 
damages when we have one or a few number of small damages and because it’s 
a gradient based method it produces the same result almost every time we apply 
the method. When the magnitude of damages rises quadprog tends to 
overestimate their size.  

PSO on the other hand is an evolutionary algorithm with a random character, 
so we can expect to track the minimum of the objective function at some success 
rate. If our function has many local minima (which is the case for our problems, 
especially the building), sometimes it can track one of them. In our examples, 
PSO sometimes misses the exact damage location (compared to Quad 
Programming) but as the damage magnitude becomes larger (so first order 
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perturbation theory declines) it predicts with more precision the size and the 
location of the damage. 

We run the algorithm using number of particles from 50-200 (When multiple 
damages are to be detected, the problem rises in complexicity) and for 20 time 
steps (iterations). As already mentioned the Vmax term is of great importance, 
and should be properly calibrated in order to track the solutions with the 
minimum error.  

 
Implementation of a randomized discrete variable algorithm 
 
As we already mentioned for a fixed number of known eigenvalues , provided 

that this number is smaller than the number of elements, we expect an infinite 
number of solutions. So in order to find the solution with the minimum number of 
damaged elements narrowing the search space, we implemented one other type 
of algorithm. We considered a predetermined number of damages, equal or less 
then the number of the measured eigenfrequencies, so the vector of the solution 
for a member of the population i is Xid where d=[1,2,…,2k] , k being the number 
of damages assumed. 
If q is an odd number that 0<q<2k than the values of Xiq are integer numbers 
that 0<Xiq<Number of Elements, while for dimension q+1 we have a real value 
with 0<Xiq+1<1. The odd dimension indicates which element while the even 
dimension the size (e.g. the damage factor) at this location. We keep track of the 
best solutions (a predetermined number of them usually ten). At every iteration 
one part of the population is updated randomly, and another part by partially 
updating the dimensions of the best solutions already found. Even if we update 
only randomly, after enough iterations, we get a picture of which parts of the 
structure are possible damaged and for which combinations.  
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Chapter 5 
Substructures 

 
In this chapter we give some theoretical background on dynamical reduction of 

a system using substructuring as a method of approximating eigenvalues through 
Rayleigh-Ritz analysis. 

 

5.1 Component mode synthesis 
 

Component mode synthesis generally refers to methods of dividing a structure 
in substructures analyzing each of them separately and then combining the 
results to synthesize the larger structure. In general, models of structures may be 
very refined in order to represent complex geometry and to calculate static 
stresses but on the other hand may be too refined to represent global dynamics. 
So one reason for applying CMS is for dynamic reduction of the model, another is 
because it is in a large extent, a natural consequence of the analysis procedure 
followed in practice when complex and large structures are analyzed. If analyses 
have been performed for different parts of the structure (many times from 
different group of analysts) the next natural procedure to use is CMS to acquire 
an analysis for the whole structure. 

Initially one has to assembly the structure from the smaller substructures 
   

 
Figure 5.1 Substructures A and B  

 
and form the equations of motion for the combined substructures 

   

Where B is a signed Boolean matrix that enforces the compatibility of the 
substructures, for the above example that is  
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While L is the assembly matrix 

 

At the interface of the substructures the force equilibrium must be satisfied  

 

If we assume a unique set of degrees of freedom at the interface, u=Lq , than 
we have  

 

and premultiplying the first by LT we have the primal assembly 
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    (46)   

If we assume equilibrium of forces at the interface g=-BTλ we get the dual 
assembly  

 
       (47)   

The end result should be the same but the dual assembly works even for non 
matching meshes at the interface. 

The most frequently used method (although there are many variations) is the 
Craig-Bampton method, where the displacements are considered as a linear 
combination of the modal superposition of the eigenmodes of each substructure 
for a fixed interface and the static solution when considering displacements on 
the interface. So for free undamped vibrations for each substructure we have 
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We can form the global stiffness and Mass matrices  
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Where 
*,bb bbS M  are  assembly of statically condensed matrices. 

In practice a small number of modes is used, so we derive to an approximation 
of the system’s eigenvalues and eigenvectors, that is projecting the solution of 
the original system to a subspace with fewer dimensions and solving the problem 
there. In general this procedure is known as Ritz analysis. 

 

 

5.2 Rayleigh-Ritz Analysis 
 

The eigenvalue    problem     under     consideration   is  K     

we consider the    Rayleigh      quotient        ( )   
 









,  the Rayleigh 

minimum principle states that 1 min ( )    and min ( )r    where the 

minimum is taken over all possible vectors that satisfy the orthogonality condition 

1,2,..., 1,j j r    . In Ritz analysis we consider a set of vectors   which are 

considered a linear combination of the Ritz basis vectors 1, 2, ...,i i q   so a 

typical vector is given by 
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 xi are the Ritz coordinates. The typical vector here lies in subspace spanned from 
the Ritz basis vectors (they should be linearly independent) Vq with dimension q 
while the whole space containing Vq is Vn corresponding to the n dimensional 
matrices K and M. 

We evaluate the Rayleigh quotient and invoke the Rayleigh minimum principle 
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Using /k m   the condition can be stated as 
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or in eigenvalue problem form 

                                (55)Kx x    

In practical analysis we can obtain the Ritz basis vectors from a static solution 
of q load patterns defined in R that is 

                      1 (56), [ ,....., ]qK R       

so                       (57),K            

the solution of the eigenproblem can be written 

                             (58)KX XP    

where X is the matrix storing the eigenvectors x1,x2,…,xq of the Ritz coordinates 
and Ρ the diagonal matrix storing the eigenvalue approximations. The original 
problem eigenvectors can be approximated by 

                              (59)   
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Component mode synthesis can be understood as Ritz analysis. In our 
examples of the beam and the steel frame building we implemented CMS in the 
calculation of the eigenvalues in order to apply metaheuristic algorithms for 
damage identification, we considered each time the structure divided in two 
substructures. Two parts of 11 elements each for the beam and for the frame 
building as pictured below 

 

Figure 5.2 Substructures A and B for the frame building example 

We considered the substructures fixed at the interface and formed the stiffness 
K1,K2 and mass M1,M2 matrices for the component substructures A and B 
respectively fixed at the interface, the matrices for the whole structure are 
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We solved the eigenvalue problem for each of the substructures 

                         1 1 1 1 2 2 2 2 (60),K K         

and formed the matrix of load pattern R in order to calculate the Ritz basis 
vectors 
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where IA-B is the unit matrix of order equal to the connection degrees of freedom 
between component structure A and B. Because the substructures are fixed at the 
interface, the above mentioned unit matrix releases the fixed degrees of freedom. 

The above procedure, as any Ritz analysis, produces an approximation of the 
sought eigenvalues. The problem of damage identification using eigenfrequencies 
is actually based on the difference between the damaged and undamaged 
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eigenvalues and in many cases is very sensitive to this difference, therefore is 
very important to have good approximations. One way of doing this is by 
ensuring that at the computation of the Ritz basis vectors all the significant mass 
degrees of freedom are excited, in our problem for acquiring good approximations 
and perform damage identification, for the building case, we used some extra 
load patterns at matrix R. At the end 80-100 degrees of freedom for the building 
and 50% of them for the beam, could be condensed in order to apply damage 
identification. 
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Chapter 6 
Numerical Results 
 

In this chapter we present the numerical results for damage identification of 
the code implemented in Matlab specifically for: 

 
a. 11 damaged beam cases using Quadratic programming, PSO algorithm 

and tracking solutions of the same error as Quadprogramming solutions 
but with fewer damaged elements. 
 

b. 11 cases of a damaged small two storey steel frame building using the 
proposed Discrete value algorithm  

 
c. The same cases with single or double damage of the beam and building 

using the Discrete value algorithm and calculating the eigenfrequencies 
via component mode synthesis method.   

  

6.1 Numerical Results-Beam 
 

We present the results of several damage cases for the 22-element beam. We 
used as input data the first five (non zero) eigenfrequencies. All the code was 
implemented in Matlab, for the quadratic programming cases Matlab function 
fmincon (SQP,Interior Point algorithms) was used. For the PSO algorithm 50-200 
particles were used and no more than 30 iterations, the purpose was to identify 
the damage at a reasonable time (3-9 sec max) at a simple personal computer. 
The success rate for the  PSO was most of the times very high (especially for a 
small number of damages) but not always (exact success rates were not 
calculated). We tried initiating PSO with some particle’s initial point being the 
quadratic programming solution , some time the algorithm produced this as the 
best solution (as it was the one with the smallest error), other than that no other 
change was detected. 

The error for the best solutions ranged from very small order of 1e-8 to order 
of 1e-02. The order of the error is important as the problem proves to be 
sensitive in some occasions especially for light damage. In the quadratic 
programming cases when we had a large amount and/or number of damages, the 
algorithm tended to give many damaged elements, in these cases we used the 
procedure described in chapter 3 to track solutions with the same error, the 
number of damaged elements was decreased.  

We should note that because our beam is symmetric, damages at symmetric 
places produce the same eigenfrequencies. Also, damage at the edges of the 
beam has little effect on the first five eigenfrequencies. 
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a. 

 

b. 

 

c. 

Figure 6.1 Damage identification of case#1 implementing a.Quadratic 
Programming b. PSO c. PSO with QuadProgramming particles 
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a. 

 

b. 

 

c. 

Figure 6.2 Damage identification of case#2 implementing a.Quadratic 
Programming b. PSO c. PSO with QuadProgramming particles 
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a. 

 

b. 

 

c. 

Figure 6.3 Damage identification of case#3 implementing a.Quadratic 
Programming b. PSO c. PSO with QuadProgramming particles 
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a. 

 

b. 

 

c. 

Figure 6.4 Damage identification of case#4 implementing a.Quadratic 
Programming b. PSO c. PSO with QuadProgramming particles 
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a. 

 

b. 

 

c. 

Figure 6.5 Damage identification of case#5 implementing a.Quadratic 
Programming b. PSO c. PSO with QuadProgramming particles 
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a. 

 

b. 

 

c. 

Figure 6.6 Damage identification of case#6 implementing a.Quadratic 
Programming b. PSO c. PSO with QuadProgramming particles 
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a. 

 

b. 

 

c. 
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d. 

Figure 6.7 Damage identification of case#7 implementing a.Quadratic 
Programming b. PSO c. PSO with QuadProgramming particles d. Tracking 
intersection of hypersurfaces with same error as QuadProgramming solution 
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b. 
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c. 

d. 

Figure 6.8 Damage identification of case#8 implementing a.Quadratic 
Programming b. PSO c. PSO with QuadProgramming particles d. Tracking 
intersection of hypersurfaces with same error as QuadProgramming solution 
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a. 

 

b. 

 

c. 

Figure 6.9 Damage identification of case#9 implementing a.Quadratic 
Programming b. PSO c. PSO with QuadProgramming particles 
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a. 

 

b. 

 

c. 

Figure 6.10 Damage identification of case#10 implementing a.Quadratic 
Programming b. PSO c. PSO with QuadProgramming particles 
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c. 

 

d. 

Figure 6.11 Damage identification of case#11 implementing a.Quadratic 
Programming b. PSO c. PSO with QuadProgramming particles d. Tracking 
intersection of hypersurfaces with same error as QuadProgramming solution 
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6.2 Numerical Results-Steel frame building 
 

We implemented metaheuristic algorithms for damage identification at the 
building example. We used as input data the first ten eigenfrequencies. The 
eigenfrequencies for the undamaged case are presented below along with the first 
ten eigenmodes 

 
 
 

                      

No Hz
1 2,472
2 2,594
3 2,785
4 2,987
5 3,200
6 3,309
7 3,577
8 3,577
9 3,735
10 3,946  

Table 6.12  First ten eigenfrequencies of the building example 
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Figure 6.13   First ten eigenmodes of the building example 

The spectrum is narrow and we even have  eigenfrequencies with almost the 
same value (7 and 8), this is one of the reasons that this example was more 
sensitive than the beam and appeared to have more local minima for the 
algorithm’s objective function. Quadratic programming was tried but did not 
produce satisfactory results, the same is true for PSO as implemented before, 
many times though it approached the damaged scenario but needed a lot of 
computational time. In order to reduce the search space we implemented a 
randomized discrete variable algorithm as described in chapter 4. At every 
iteration we calculate the error of a predetermined number of solutions (usually 
50-100) and keep record of the best solutions found through the search (usually 
10). At every iteration the candidate solutions are updated using a distribution, 
that is 50% of them are randomly updated while the rest of them  came up from 
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randomly updating some dimensions of the best solutions already found (the 
possibility of this depends on the rating of each best solution) .  The i-th solution 
vector for k number of damages is 
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 
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 










 

 

 

The odd dimension represents the damaged element while the even it’s 
damage factor. We run the above algorithm scanning for two possible damages 
for a predetermined number of times and at the cases examined the success rate 
was very high (detecting the case or the symmetric scenario)  below we present 
the results. 
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a. 

 

b. 
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c. 

Figure 6.14  a. Damage Identification of case#1 b. Actual damage c. Predicted 
damage 
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a. 

 

b. 
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c. 

Figure 6.15  a. Damage Identification of case#2 b. Actual damage c. Predicted 
damage 
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a. 

b. 
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c. 

Figure 6.16  a. Damage Identification of case#3 b. Actual damage c. Predicted 
damage 
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a. 

b. 
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c. 

Figure 6.17  a. Damage Identification of case#4 b. Actual damage c. Predicted 
damage 
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a. 

b. 
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c. 

Figure 6.18  a. Damage Identification of case#5 b. Actual damage c. Predicted 
damage 
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a. 

b. 
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c. 

Figure 6.19  a. Damage Identification of case#6 b. Actual damage c. Predicted 
damage 
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a. 

b. 
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c. 

Figure 6.20  a. Damage Identification of case#7 b. Actual damage c. Predicted 
damage 
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a. 
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c. 

Figure 6.21  a. Damage Identification of case#8 b. Actual damage c. Predicted 
damage 
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a
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b. 
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c. 

Figure 6.22  a. Damage Identification of case#9 b. Actual damage c. Predicted 
damage 
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a. 

b. 
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c. 

Figure 6.23  a. Damage Identification of case#10 b. Actual damage c. Predicted 
damage 
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a. 

b. 
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c. 

Figure 6.24  a. Damage Identification of case#11 b. Actual damage c. Predicted 
damage 
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6.3 Numerical Results Component mode synthesis 

 
 

We implemented the discrete value algorithm using component mode 
synthesis as described in chapter 5. The approximation of the eigenfrequencies at 
the component mode synthesis procedure is very important in order to perform 
damage identification. One important aspect is the form of the mass matrix. In 
the building example as the mass matrix was fully diagonial 312x312 matrix but 
with fewer significant mass degrees of freedom after little manipulation we were 
able to produce satisfactory approximations of the eigenvalues (max error 1e-3 
for the undamaged case). For the beam on the other hand, even though the 
dimension was 46x46, the mass matrix was consistent and we had a systematic 
error (max error 3e-2 for the undamaged case) we included this error at the 
objective function. This time we run the discrete value algorithm scanning for one 
damage in the single damage cases and for two damage in the double damage 
cases. Below we present the results.  
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6.3.a  Numerical Results Component mode synthesis-    
         Beam 

a. 

 

b. 

c. 

Figure 6.25 Damage identification implementing Discrete Value algorithm and 
Component Mode Synthesis a.case #1 b. case #2 c. case #3  

 



[83] 
 

a. 

b. 

c. 

Figure 6.26 Damage identification implementing Discrete Value algorithm and 
Component Mode Synthesis a.case #4 b. case #5 c. case #6  
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a. 

 

b. 

Figure 6.27 Damage identification implementing Discrete Value algorithm and 
Component Mode Synthesis a.case #9 b. case #10   
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6.3.b  Numerical Results Component mode synthesis-   
          Steel frame building 

a. 

b. 
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c. 

Figure 6.28 a. Damage identification implementing Discrete Value algorithm and 
Component Mode Synthesis case #1 b. Actual damage c. Predicted damage   
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b. 
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c. 

Figure 6.29 a. Damage identification implementing Discrete Value algorithm and 
Component Mode Synthesis case #2 b. Actual damage c. Predicted damage   
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a. 

b. 
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c. 

Figure 6.30 a. Damage identification implementing Discrete Value algorithm and 
Component Mode Synthesis case #3 b. Actual damage c. Predicted damage   
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a. 

b. 
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c. 

Figure 6.31 a. Damage identification implementing Discrete Value algorithm and 
Component Mode Synthesis case #4 b. Actual damage c. Predicted damage   
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a. 

b. 
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c. 

Figure 6.32 a. Damage identification implementing Discrete Value algorithm and 
Component Mode Synthesis case #5 b. Actual damage c. Predicted damage   
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a. 
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c. 

Figure 6.33 a. Damage identification implementing Discrete Value algorithm and 
Component Mode Synthesis case #6 b. Actual damage c. Predicted damage   
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a. 
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c. 

Figure 6.34 a. Damage identification implementing Discrete Value algorithm and 
Component Mode Synthesis case #7 b. Actual damage c. Predicted damage   
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a. 

b. 
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c. 

Figure 6.35 a. Damage identification implementing Discrete Value algorithm and 
Component Mode Synthesis case #8 b. Actual damage c. Predicted damage   
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a. 

b. 
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c. 

Figure 6.36 a. Damage identification implementing Discrete Value algorithm and 
Component Mode Synthesis case #9 b. Actual damage c. Predicted damage   
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a. 

b. 
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c. 

Figure 6.37 a. Damage identification implementing Discrete Value algorithm and 
Component Mode Synthesis case #10 b. Actual damage c. Predicted damage   
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a. 

b. 
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c. 

Figure 6.38 a. Damage identification implementing Discrete Value algorithm and 
Component Mode Synthesis case #11 b. Actual damage c. Predicted damage   
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Conclusions 

At the present study damage identification from measured eigenfrequencies 
using metaheuristic algorithms was implemented. As it was shown here and in 
numerous other studies, damage identification is possible. At the author’s opinion 
as the problem is sensitive, certain requirements should be met. First, the 
stiffness matrix should represent the structure adequately that is the nonlinear 
effects should be insignificant (or properly introduced in the model) and we 
should have accurate information regarding the geometry and the materials of 
the structure. Of course the boundary conditions are very important and should 
be properly handled. Finally the distribution of the mass is crucial as it can totally 
alter the results. 

Assuming the above requirements are met, metaheuristic algorithms can give 
possible damage scenario but as the size of the problem grows (larger models 
with many elements) the computer power requirement rises. The challenge is to 
find appropriate algorithms coupled with simplification and dynamic reduction of 
each problem. 

Finally, a mathematical approach of the problem is needed in order to clarify 
uniqueness issues and the minimum number of damaged elements for a set of 
given eigenvalues. 

  

 


