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IMepiindn

H dewpla v pyeydhwy anoxhioswy cuviotatar otny extiunon onaviwy evOeyouévwy- ev-
OEYOUEVLDY BNAAdY) TOU UTOXAIVOUV ANO TNV TUTIXTY] CUUTEPLPOPA 0TO VEWPOUUEVO YWPO Ti-
Yoavotnrag. O 10yupds VOUOS TwV PEYIAGY aptiudy pag divel évo Tapdderyo TUTLXAG CUUTER-
1popdc apol av 1 axohovdio X; txavorotet tig unodéoeic tou LN.M.A. téte 1 Tumny| cuprep-
1oPd NG % efvar (yio peydha n) vo efvon xovid oto péso e T. And tov acdev vouo
TWV YEYIADY aptiu®y, T0 EVOEYOUEVO 0 U€00g 6po¢ va Pploxetal €€w and Uio TEPLOYT TOU T
yiveton omdvio xadadg to n yivetan peydho. H déa va extipfooupe ondvia eveydueva Bploxetan
oY GANEYT, TOU UETEOU TUUVOTNTUS XATW ATO TO ONOLO EYOUUE WA U1] TUTLXY) CUUTERLPOQAL.

Puowd to va uehetd xavelg v miavotnta onaviey evoeyopévwy VETel To TpdyUATA OF
TohG yevixd mhaloto. ‘Etot and ) wa pev 1 Yewpla twv ueydhwy anoxiiocwy Peloxel eqap-
HOYT| OE TEPIOYES TOOO OLQOPETIXES UETAE) TOug 600 1) LTatioTixy), XemUaTOOIXOVOULXd,
Trhemxowvwvies, Ytatiotixg Mnyavixr, and v GAAY 6une ouyvd yeetdleton va xotapiyet
xdmotog o€ eIxég Yo T0 exdoToTeE TEOBANUA wetddouc.

Yy mapodoa epyacta o TpooTat oouUE Vo BOCOUYE TapadelyUoTa HOTE Vo avadei&oupe
TIC XEVTPIXES 1DEEC Xt TEYVIXES TN¢ Vewplog Twv peydhwy anoxiioewy. Téhog Yo doldue uia
egappoy) Vewpnuxt, 1o Tedfinua €600y eVOC GTOYAGTINOY CUCTAUATOS antd €va PpayUévo
umochvoro 100 RT ahhd xon wia egappoyh autol Tou TeoBAiuatoc ota XpnuatooKovopixd.



Abstract

The subject of Large Deviations is going back to the early 1930s. It in fact started in
Scandinavia, with actuaries working for the insurance industry. The pioneer who started
that subject was named Esscher. He was interested in a situation where too many claims
could be made against the insurance company. He wanted to calculate the probability of
the total claim amount exceeding the reserve fund set aside for paying these claims. So
large deviations provides us a formula to estimate tail probabilities. Central Limit Theo-
rem states that the distribution of sums of independent random variables has a Gaussian
approximation. However, the error is measured in terms of difference. Both these numbers
are very small, therefore the difference between them is small. But, we are interested in
how small it is; we are interested in the ratio of these two things, not just the difference
of these small numbers. The idea is: how one can shift ones focus so that we can look
at the ratio rather than just at the difference. Esscher came up with this idea that is
called Esscher”s tilt. It is a way of changing the measure. And from this point of view
what was originally considered as a tail event now becomes a central event. Tail events
or rare events are events with very small probability, but we would like to have some
idea of how small it is. We would like to measure it in logarithmic scale. The main target
of the current thesis is to study Large Deviations theory. The thesis is orginised as follows.

In the first part Large Deviations for i.i.d. sequences is presented. More precisely, in
Chapter 1, we are studying some basic formualtion and definitions in order to formulate
Large Deviations Principle(LDP). The rest sections can be viewed as a sequence of ex-
amples, of increasing difficulty, to which the principle developed previously can be applied.

In Chapter 2, we are studying some classical results in Large Deviations area. The
most classical result is Cramér theorem. Indeed, we consider the case of real i.i.d. random
variables in R. Then Cramér theorem in R¢ is proven through weak LDP and exponential
tightness. In Chapter 3 some further general principles are introduced for carrying out
Large Deviations results: Varadhan’s lemma, contraction principle, relative entropy and
Varadhan-Donsker formula. In Chapter 4, Large Deviations for abstract measures in Ba-
nach spaces are proven. Indeed, we are studying the example of level-2 LDP.

In many problems the interest is in rare events that depend on random process, and
the correspond asymptotics probabilities, usually called sample pathe large deviations. In
the second part, we are studying Large Deviation principle for stochastic processes. In
chapter 5 we prove Schilder’s theorem for a rescaled Browinian motion. Hence, we con-
tinue in the next Chapter with two applications of Schilder’s theorem. The deriviation of
Strassen renowned Law of Iterated Logarithm and the behavior of diffusions with small
parameter, proving Freidlin-Wentzel theorem using Euler approximations and superexpo-
nential estimates.

In Chapter 7 we deal with the problem of diffusions exit from a bounded domain
(the well-known Exit problem). Firstly, we prove this problem as an immediate result
of Freidlin-Wentzel theory. Then Exit problem is considered as a parabolic problem.
To this end, we introduce an approach which connects large deviations asymptotics of the



corresponding family of measures with an optimal control problem and Hamilton-Bellman-
Jacobi equation. This approach is developed within viscosity solutions.

The above problem occurs naturally in Finance. In Chapter 8 we used importance sam-
pling to reduce the variance of a Monte-Carlo computed price of deeply out of the money
options. The basic principle of importance sampling is to reduce variance by changing
probability measure from which paths are generated. The idea is to change the distribu-
tion of the price process and to derive the process to the region of high distribution to the
required expectation. We focus on importance sampling for diffusions models and then
we show how to obtain an optimal change of measure by large deviation approximations
of the required expectation.






Part 1

Large Deviations for I.I.D.
sequences






Chapter 1

Introduction

1.1 Rare events and Large Deviations

The area of Large Deviations is a set of asymptotic results on rare events probabilities and
a set of methods to derive such results. Large deviations is a very active area in applied
probabily, and find important applications in finance where questions related to extremal
events play an increasing role. In its basic form, the theory of Large Deviations considers
the normalizations of logP (4,,) for a sequence of events with asymptotically vanishing
probabilities. Intuitively, the scope of Large Deviations is the study of deviations far from
typical behaviors.

We begin our journey on familiar territory. Let X, Xa,...,X,, n € N be indepen-
dent and indentically distributed (briefly i.i.d.) random variables on a probability space
(R, B (R),P), where B (R) is the Borel sigma-field on R. Write E to denote the expectation
under P, let

p=EX; €R

02 =VarX; € (0,00),

Denote the partial sum by S,,, i.e. S, = X7+ Xo+ -+ X,,. Two fundamendal theorems
in Probability theory dealing with such sequences give examples of typical behaviors.
Strong Law of Large Numbers(SLLN)

1
~S, =% P-as.
n
Central Limit theory(CLT)
1 n—0o

0_7\/% (Sn — ,LLTL) — Z in law w.r.t P,

where Z is a standard normal random variable.

While the SLLN asserts that the empirical average %Sn converges to pu as n — oo, the CLT
quantifies the probability that S, differs from pn by an amount of order \/n. Deviations
of this sizes are called 'normal’. The SLLN implies that

]P(S” ¢ (33—6733—1—5)) =50,
n
for each d > 0. Events like R\ (z — 6,2+ ), 0 > 0 or [y,00), y > T are considered as rare

events for %” as n — 00.



It is our task to quantify the rate at which probabilities of rare events tends to zero.
In, general, a detailed answer to this task is seldom available. However, if one restricts
one’s attention to events which are 'very deviant’ in the sense that the probability of their
occurence decays exponentially fast to zero and if one only asks about the exponential
rate, then one has a much better chance to find a solution. Now, we give a definition of
rare events using the distribution u, of ¥,, n € N:

Definition 1.1. Suppose that {{i, : n > 0} is a family of probability measures on (R, B (R))
with the property that p, = 6, as n — oo for some p € R(i.e. p, tends weakly to the point
mass 0p). Then for each open set U € p we have that y,, (U¢) — 0. So we can reasonably
say that as n — oo, the measures u, see ’p as being typical’. Equivalently,one can say that
events A C X lying outside a neibhorhood of p describe increasingly ’deviant’ behavior,
These events are called rare events.

Let us begin with one of the most basic computations one can carry out in order to
find out how fast the probability of a rare event converges to zero.

Example 1.1. Consider coin tosses. Let {X;} i.i.d. sequence of Bernoulli random vari-
ables with success probability p. The distribution of X; is By := pd1 + (1 — p) éo for each
i € N. We want to estimate the rate of convergence of

P(San)—)O
n

for q > p=EX; and the rate of convergence of
S,
P (n < q) —0
n

Proof. Using Chebyshev inequality, one has that

for g < p.

na) — Sp —np . 1 — )2

P (Sp > ng) =P (n >q p) < 7(q—p)2n2E(Sn P)
1 " 1 1—p)1

T (q-p)n? Z;VW(Xi) - (q—p)2n2np(1 )= ]Zq(—p;)”'

Thus, the rate of convergence is at least linear. However, it also holds from Chebyshev
that g .
P (” > q) < ———E(S, —np)*
- — 4 n
n (¢g—p) n'
= ! E (X ‘16 1)[E(X ) o ©
=7 ("EX1 —p) +6n(n-1)[EX:—-p)7) <—
n*(q—p) n

for C' < 0 constant. Thus, the rate of convergence is at least quadratic. Using existence of
higher moments of X; we can obtain faster rates of decay for P [%" > q], q > p. Indeed,
since Ee?M1 < oo for every A € R, then we can show that the rate of convergence is at
least exponential. Using Chebyshev inequality,we have that

P (Sn > CI> =P (S, > ng) < e "R = ¢ (E)‘X1>n
n

5



= o7 (ped 41— p) " = e sl )
_ e—n[q)\—log(peA—i-l—p)] )

Iherefore,
P) & > q < e—nsllp/\>0[Aq—10g(peA 1 p)]
n

Now for ¢ > p, from Jensen inequality we have that

sup[Ag — log (pe)‘ +1-— p)] = sup[\g — log (pe)‘ +1— p)],
A>0 AeR

Thus, if we define

I(q) = Sup [Aq — log (peA +1- p)}

we obtain

P [S” > q] < e ()
n

If we prove that I (¢) > 0, then we have show that the rate of convergence P (% > q) — 0
is exponential with rate function I (¢). Differentiating I (¢), we have that

d 1—p
2 (a1 (A 1—)): S TN
d/\<q oglpetl=p)) =01+ X1,
Ifq>1thenq—1+p€§;f_p>Oand
1
N log — qg=1
I(q) = lim (Aq—log(pe —i—l—p)): D
A—00
0 qg>1

If, now, p < g < 1 then I (¢) has unique critical point \, := log g%:g; > 0, which is global
maximum. So that,

1- 1—
p(1- —q

q) 1
1— 1- -
:qlogngqlog p—log p:qlogg—(l—q)log LN
p l—¢q l—¢q p I—¢q
q l—q
I(q) = qlog = + (1 — q) log 1.1
(@) = alog 2 + (1~ q)log 1 (11)
Therefore, for each ¢ € (p,1) we have that
g 1/p l1—gq 1/(1-p) q(1—p)
I'(q)=log * + ¢~ —log—— — (1 —¢q =log——<>0
@ P q/q 1—p ( )(1—q)/(1—p) p(1-p)

and I is monotonically increasing function in (p,1). But, lim,, I (¢) = 0, thus I (¢) > 0
for every g € (p,1). The same holds for every ¢ < p. We have that

IP’<S”§q> <@ wypeN
n



Similarly, if now 0 < ¢ < p thus I (q) is given by 1.1 and if ¢ < 0 then, then

1
lo q=20
I(q) = lim (Aq—log(pe’\—l—l—p)): gl—p
n—oo
00 q<0
Therefore, taking every case into consideration one has that
qlog? =+(1—q)log=— g€ 0,1]
I(q) = p 1—p
00 q ¢10,1]

with the convention that 0 - oo = 0.

The function I (q) is called rate function. It is infinite outside [0, 1], finite and strictly
convex inside [0, 1] and has a unique zero at g = p.

Next, we show that I (q), p < ¢ < 1 is the optimal exponential rate of convergence. By
this we mean that if there are ng € N and 6 > 0 such that

Vng € N=P (S, > nqg) < e_"e, (1.2)

then 6 < I (q). It suffices to show that

1
lim inf —log P (S, > nq) > —1I (q), (1.3)

n—oo N

since if 1.2 holds for some ng € N, § > 0 then

1
limsup — log P (S,, > nq) < —0,

n—oo N

Then, from 1.3 we have that

1 1
—1I(q) <liminf —logP (S, > nq) < limsup — logP(S,, > ng) < —6.
n—oo N n

n—oo

Thus, 6 < I(q). Firstly, since S, is a the sum of i.i.d. Bernoulli random variables with
parameters (n,p) and p € (0,1), then S, follows Binomial distribution with parameter p.

Therefore,
n ne
P(Sp>ng)= Y P(Sp=k)=>_ <k>pk(1—p) k.
k>ng

k>ng

Next we estimate the above sum for ¢ = p since its computation is rather difficult its
computation. Then we estimate the limit for every gq. More presicely,

Then, using the CLT, we have that

For g > p,



For any p € (0,1)

Z<Z>pk(1_p)n_kzp(5n2(p+6)n)=P<Sn_np2€ﬁ>—>0 as nm — 0o,

S ov/n o

for every € > 0 and 0 = Var (X;) =p(1 — p). Since 28:3 < 1 then

P (S, > ng) > <1:§>n Y <Z> ¢ (1—g"" <§8:z§>n(q+e),

ng<k<n(g+e)

Thus,

1
—logP (S, > ng) > log
n 1

P g+ e)log <m) +% log > (Z) ¢ (1—q""

ng<k<n(q+e)

However, the sum in the last inequality can go as much close to 1 as we want by CLT,
therefore

. 1 n k n—k .
nh_}nolo - log Z <k>q (1-9q) = 0.
ng<k<n(g+e)
Thus,
.1 1
liminf — log P (S,, > nq) > log

n—oo n 1—q

since this occurs for every € > 0 we have that

1 1
liminf —log P (S, > ng) > log

n—oo MmN 1—

P p(1—q)\ _
7 + qlog <q(1—> =—1(q),

This completes the proof. O



1.2 The Large Deviation Principle

Having seen an example for which it is possible to carry out a succesful analysis of the
large deviations, we will now formulate general principles. Firstly, we begin our program
by introducing some useful definitions.

Definition 1.2. Let X be a Polish space with distance d : X x X — [0,00). f : X —
[—00, +00] is lower semi-continuous if it satisfies any of the following equivalent prop-
erties:

(i) liminf,, o f (zn) > f (z) for all z,, such that z, — x € X.

(ii) f has closed level sets, i.e., f~1([—o0o,c]) = {x € X : f(x) <c} is closed for all
ceR.

(i) lime o infycp (2) f (y) = f (z) with B (z) = {y € X 1 d (z,y) < ¢}

Remark 1.1. A lower semi-continuous function attains a minimum on every non-empty
compact set.

Definition 1.3. The moment generating function of a distribution p € R is a function
which is given by the following formula:

M, (\) = /emd,u ().

The set Dyy, :={A € R: M, (\) < oo} is called essential range of M,.

Definition 1.4. The logarithmic moment generating function is a function in R
such that:

A, (N) = log </R eMdy (:c)> , AER

Remark 1.2. Note that A, (A) € R is a lower semi-continuous convex function. Indeed,
by truncation, it is easy to write A, as the non-decreasing limit of smooth functions, and
the convexity follows from Hélder’s inequality.

So we can define A}, (z) be the Legendre transform of A:
Al (z) =sup{Az —A,(N\): AeR}, zeR

Note that, by its definition as the point-wise supremum of linear functions, A}, is necessarily
lower semi-cintinuous and convex.

Definition 1.5. Suppose that p is a distribution in R with exponential moments. We call
rate function of ;i the function I, : R — [0, 00] such that

I, (z) =sup (Ax —log M, (\)) = sup (Az —logM, (N)).
AER A€Dn,,

Remark 1.3. Obviously, I, > 0 since for every x € X zero is included in the domain
of the set of which we take the supremum in the definition of I, (x). Of course, the
above definition is applicable in a Polish space, with the appropriate modifications. This
definition is carried out in following sections.



Definition 1.6. The function I : X — [0,00) is called good rate function if:
(i) I # o
(ii) I is lower semi-continuous

(iii) I has compact level sets.

Definition 1.7. A sequence of probability measures {P,}, on X is said to satisfy the
large deviation principle (LDP) with rate a,, and rate function I if:

1
limsup — logP (C) < — iné[(a:), for each closed C C X
Te

n—oo Qn
and .
liminf —logP (O) > — ingl(:n), for each open O C X
xe

n—00 (y

Finally, I is a good rate function.

The following remarks help to explain the basic concept of LDP.

Remark 1.4. In definition 1.7 it is crucial to distinguish between the asymptotics esti-
mates for open and closed sets. Namely, one might try to replace (i), (ii) by the stronger
requirement that

lim lloan (S)=—-1(S) VSeB(X): Borel fieldin X. (1.4)

n—oo N
However, this would be far too restrictive. Many examples that satisfy (i), (ii) do not
satisfy 1.4. For instance, P, might be non-atomic for all n. In that case, P, ({x}) = 0

foralln € X, so picking S = {x} we would find that 1./ could only be true with I = oo,
which is contradicted by (i) of definition 1.6.

Remark 1.5. The role of liminf in open and limsup in closed sets in the LDP reminds
us of weak convergence of probability measures where the same boundary issue arises.
(Py) is said to converge weakly to P if

(1) limsup,, .. P, (C) <P(C) VC CX closed
(II) liminf, P, (O) > P(O) VYO C X open

One can therefore view (i), (ii) in definition 1.7 as analogues of weak convergence on an
exponential scale.

Remark 1.6. Due to Portmanteau theorem, see [14]: th. 3.25, p.53, (I),(Il) are equina-
lent to

/ F (2) P, (dz) =5 / F(2)P(dz) VF €Cy(X)
X X

with Cy, (X) the space of bounded continuous functions on X. It is intuitively clear that
the LDP is ideally suited for handling convergence of integrals of exponential functionals.
This intuition will be worked out in Section 3.

Remark 1.7. The LDP implies that

inf [ L21(X)=0

inf I(z) = I(X)
since P, (X) =1 for all n and X is closed. Moreover, by remark 1.1 and defintion 1.0,
there is an © € X such that I (x) = 0. In many examples this zero is unique as we have
seen in the example in the previous section and correponds to an underlying SLLN, but
there are cases where it is not unique as we shall see later in section 5.

10



Remark 1.8. It is possible to set up definitions 1.6 and 1.7 in the framework of an arbi-
trary topological space. We will, however, not insist on this degree of generality. Without
the structure of a Polish space the theory tends to become more cumbersome and many
results in the Polish space setting fail to carry over. Conversly, the more structure is added
to X, the stronger results that can be obtained.

Now, we are going to give some properties of rate function of definition 1.5 before we
prove the Cramér theorem.

Proposition 1.1. Let i be the distribution on R with exponential moments and mean .
Suppose that I, u, A the rate function,the moment generating function and the logarithmic
generating function respectively. Then,

(i) I is convexr and lower semi-continuous.
(ii) I(x) =0 if and only if x = T.

(iii) I () = supy>q (Ax —log M (X)) for every x > T and I (x) = supy<o (Az —log M (X))
for every x < T.

(iv) I is decreasing in (—oo, ) and increasing in (T, 00).
(v) For every ¢ > 0 the level sets I71[0,¢] = {x € R: I (z) < ¢} are compact.

Proof. (i) I is the supremum of functions ¢y (z) = Az —log M, (), A € R. Obviously,
¢ are continuous functions, therefore I is lower semi-continuous as the supremum of
continuous functions. Also, ¢, are linear functions, so they are convex as the supremum
of convex functions.

(ii) Since e’ < M, (\) then A\Z < log M), ()\) for every A € R. Therefore, I (z) < 0.
This proves that I (z) = 0. We will show that I () =0 = = = . Let z > Z such that
I(z) = 0. Then, Az <log M, (\) and for every A € R one has that

M1 M1 M) -1
< < ,
P A

thus, taking A — 0 we have that z < z < 7.
(iii) Let > z. Then, for every A < 0 we have that

Ax —log M, (A\) <Az —logM, (\) <I(z)=0

Since I (x) > 0 then every A that are smaller than 0 don’t contribute to the supremum of
the definition of I (z). By this we mean that

I (x) = max {sup (Az —log M (X)) ,sup (Ax — log M (A))}
A<0 A>0

= max {0, sup (Az —log M ()\))} =sup (Az — log M (N)).
A>0 A>0

The same argument holds if x < Z then supy<, (Az —log M, (})).
(iv) Let <y < Z. Then, for each A < 0 we have that Ay —log M, () < Az —log M), (\)
Thus, using (iii) we have that:

I(y) = Sup (Ay —log My, (V) < sup (Az —log My, (A)) =1 (z).

11



Then, I is decreasing in (—o00,Z). Using the same argument, we can prove that I is
increasing in (z, +00).
(v) Since I is lower semi-continuous, the set I=1[0,c] is closed for every ¢ > 0 from the
definition of lower semi-continuity. It suffices to show that I71[0,¢] is bounded. Since p
has exponential moments, there is € > 0 so that M (—e€) V M (e) < +o00. Also, if I (z) < ¢
then

(ex —A(e))V(—ex —A(—¢)) <I(x)<c

Thus,
A(— A
1o, ¢ | -5 ( 6),C+ © CR,
€ €

which means that I is bounded. O

Remark 1.9. Analogues properties hold, if we are on R® or in a Polish space as we will
see later.
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Chapter 2

LDP for finite dimensional spaces

2.1 Cramér theorem in R

Assume that {X;},cn is a sequence of i.i.d. random variables with common distribution
an arbitrary distribution p and I : R — [0, oo] the rate function of p. Let u™ on R denote
the n-fold tensor product of p with itself. Next, let u, on R denote the distribution of
%Z?zl x; under p". We denote S, := %2?21 X;. Assuming that [, |z|ud () < oo the
Weak Law of Large Numbers implies that u, = dz.

Theorem 2.1. (Cramér) Assume that M (\) < oo for every A € R. Then for every
measurable A C R one has that:

1 1
—I (z) < liminf — log py, (A) < limsup — log u, (A) < —I ()
n—oo n n

n—o0

where I (x) = sup, [Az —log M (N\)].

Proof. Upper Bound
Let x > z. Applying Chebyshev inequality, one has that VA > 0:

Lin ([LU, OO)) _ ]P)[Sn > 77,.73] < ef)\mcE (6/\S”> — ef)\mcM ()\)n — ef)\mcelogM()\)n

6fn(/\a:flog M) — e sup>o(Az—log M (\))

optimizing over A we get the last equality. Thus, taking logarithm in both sides and di-
viding by n, we have that VA € R:

1
lim sup - logP[S), > nx] < — (Az —log M (X))

n—oo

< ;nIfK (—(Ax—log M (M) = —sup (Ax — log M (N)) .
€ AER

However,
—sup (Az —log M (X)) = —sup (Az — log M (A))
A

A>0
Indeed, if A > 0, applying Jensen’s inequality :

log/e”d,u (x) > /log eMdy (z) = /)\xdu () = AT > \x

13



That is, if A < 0 then log M (\) > Az. Because 0 is always a trivial lower bound replacing
supy>q (Az —log M (X)) by supy (Az —log M (X)) does not increase its value.
Then,

1
limsup —logP[S,, > nz] < —I (z)

n—oo N

Lower Bound

For every § > 0 and = > Z, we will show that:

1
hmmf— log pin, ([z,z +9)) = liniinf— logP ([nz < Sy, < nz+nd)) > —I (z)
n—oo n

n—o0

Let A= [z,x + 0). We consider the case the supremum on [ is attained at a finite \.
That is, we suppose there exists A* finite such that,

I(z)= Sl)l\p (Ax —log M (M) = X'z —log M (\¥).

Since M (\*) < oo,

T yM(A*)du(y)

If we now deﬁne a new probability distribution & by the relation:
di (y) = (A*)du( y), then [ has z as its expected value.

P [az < Sn <z+ 5} puen (S Yz, nx + n6 / / dp (1) dp (z2) ... dp (zy)
nz<> x;<n(z+0J)

/ / dp (z1)dp (z2) . ..dp (zy) Ye >0, §>€e>0
nr<S,<nz+ne

> // A SN ae=nNe gy (1) L dji ()
nr<S,<nzr+ne
e [ X0 dfi (21) ... dfi ()
nr<S,<nr+ne

— e—n)\*x—np\*\e / - / eA*(x1+...+a:n)dﬂ (fEl) L dﬂ (xn)
nr< Sy, <nr+ne

— efn)\*xfn‘)\*k / o / 6)‘*(x1+m+mn)]]-[nz§5n§n1‘+n€]dﬂ (.Il) . dﬂ (xn)

Sn

_ e—n)\*x—n|)\*|eMn ()\*)IF) |:$ < < .T+€:| _ e—n)\*x—np\*\eMn ()\*)E}; |:O < & < €:| )

Hence,

1 * * * 1 0 Sn
—logPlnx < S, <nx+nd| > =Nz —|XN|e+logM (\*)+ —logP [0 < — —x < ¢
n n n

where P := %% in the measurable product space (RN , BE , I@)
Then, by Central Limit Theorem:

o z2 T
p(OSSn—w§6>—P< <! (Sn—x)ge%ﬁ)—/ e T Ve g
0

n o\/1Nn g

14



Therefore since € was arbitrarily chosen,

lim inf 1 logPlnz < S, < nz+nd) > =Xz — |\'|e +log M (A\*) = —sup[\x — log M (\*)]
n—oo n, A

for every ¢ > 0.
Note that the assumption Dy, is not necessary, but we make it for shake of simplicity. An
analogous argument can be used in the case when x < Z. We refer the interested reader
in [4] Theorem 2.2.3 p.27
We also refer in [4] the same chapter, in case that A (\) doesn’t attain at a finite A*.

O

Remark 2.1. We should take note of the structure of the preceding lines of reasoning.
Namely, the upper bound comes from optimizing over a family of Chebyshev inequalities,
while the lower bound comes from introducing a RADON-NICODYM measure in order
to make what was originally ”deviant” behavior look like typical behavior. This pattern of
proof is recurrent in the theory of Large Deviations. In particular, it will be used extendedly
in the following sections.

2.2 Cramér theorem in R?

Now, we will extend the Cramér theorem on RY. Assume that {X;};cy i.i.d. random
vectors with common distribution p and pu, the distribution of their arithmetic mean
Su — % > Xi. We denote (-, -) the Euclidean inner product in R?. The same properties

0 —
for the rate function and the logarithmic generating function holds as in Cramér theorem
on R. We give the basic definitions.

Definition 2.1. Suppose that pi is a distribution on R%. The moment generating function
of uu is the function M, : R — [0, o0]

M, (z) = /e<)"x>du (z).

The set Dy, = {x € R?: M, (z) < oo} is called essential range of M.

Remark 2.2. We denote by A, = log M,, the logarithmic generating function and by I,
the function that:

I (z) = sup (A 2) = A (V)

That, 1,, is the Legendre transform of A,, and we call I, the rate function of .
Next, we state the basic properties of rate functions.

Proposition 2.1. Let u be distribution on RY with exponential moments and mean .
Suppose that I, M, \ are the rate function, the moment generating function and the loga-
rithmic generating function of u, respectively. Then,

(i) I is convez, lower semi-continuous and non-negative.
(ii) I(x) =0 if and only if x =T

(iti) For each ¢ >0 the level sets I71[0,c] = {x € R?: I (z) < ¢} are compact.

15



Proof. The argument that are used to prove the above properties are the same as in the
case for d = 1, so we omit the proof. O

Next, we prove the Cramér theorem in the case that the moment generating function
of the common distribution p of {X;}sen i.i.d. has essential range Dy, = R,

Theorem 2.2. (Cramér Theorem on R?)
For every closed F C R? |

lim sup — log pn (F) < — inf I (z)

n—oo T el
and for every open U C R
1
lim inf — log tn (U) > — inf I (x)

n— 00 zeU

Before proceeding with the proof of Theorem 2.2 we will introduce two definitions that
are useful in order to prove the upper bound.

Definition 2.2. (Weak Large Deviation Principle)
We say that the family {u, : n € N} satisfies the WLDP. If I is a rate function and
{pn : n € N} satisfies:
For all open sets U C R?
lim mf— log pin, (U) > — inf I (x)

n— o0 zeU

and for all compact sets K in RY

lim sup — log tn (K) < — inf I (x)

n—oo N zeK

The passage from a Weak to a full Large Deviation Principle is often accomplished by
an application of the following observation:

Definition 2.3. (exponentially tightness)
Let {un :m € N} a family of measures and assume that, for each L > 0 there exists a
compact set Ky, with the property that:

1
pnK§) < e < limsup — log pn[K§] < L
n

n—o0
We say that the family {pn, : n € N} is exponentially tight.

Lemma 2.1. If {{, : n € N} a family of measures satisfies weak LDP and exponentially
tightness property then it satisfies the full LDP.

Proof. In order to prove that {lu"}nEN satisfies full LDP we have to prove that for any

closed set K C R?
hmsup — log pn[F] < —inf I ().

n—00 zeF

First of all we observe that for every closed F C R? and every compact K C R?% we have
that F' = (FﬂK)U(F\K) C (FﬂK)UKC. So,

lim sup — log pn (F') < limsup — log pn (FNK) Vlimsup — log fn (K€) (2.1)
n

n—oo N n—00 n—00
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< (— mel}}(f%}([(:n)) V(-L) < —;22[(3}) vV (=L).
So, if infyep I (x) = 0 = logu, (F) < 0 for all n € N and if infyep I (z) = oo from
the exponentially tightness, choosing an appropriate compact set K C R% we make the
right side of 2.1 as small as we want and lim sup,,_, %log tn (F) = —0c0 = —infuer I ().
Finally if 0 < inf,ecp I (z) < oo then by the exponentially tightness we can choose a
compact set K C R? such that limsup,,_, < log u, (F) < —inf,ep I (z) and for this K

we get a propper upper bound for F'. The proof is completed.
O

Remark 2.3. Ezponential tightness is the LD analogue of tightness in weak convergence.

Proof. Upper bound

Firstly,we will prove a proper upper bound for open balls. Then, we will cover compact
sets with a finite number of open balls. This will give us an upper bound for compact sets.
Finally, we will use the above definition to pass from compact to closed sets.

More precisely,

First Step:

we will prove that for eachz € R% and for each € > 0 there exists § = 0z,e > 0 such that:

%logun[B (@, 0)] < =I*(z) = (I (z) = ) A %

We included the term 1 to simultaneously treat the cases I (z) < oo and I (z) = oo,
Suppose, now, that z € R? ¢ > 0 and observe that for each 6 > 0 and A\ € R, if
Sn—" € B(x,0) then

A, Sp) > inf (),

(A Sn) = nyegix,&)< y)

Thus,
pn|B (z,0)] = E[]IST"EB(L(S)] < E[eMSn)—ninfyenes(Av)] < e infyene.s Ay E[e(NSn)]
= ¢ fyen@e A N (N) = e MfueB.s) ) gnlos M(A)
— o n(infyen(a,s Ay —AN)
Notice that y € B (z,0) = | (A, y —x) | < |Al6 = (A, y) > (A, x) — |A]9.

Therefore,

Llog B (2.6)] < — inf () — AN) < — () + A5 — A (V)
n yEB(z,d)

From the definition of I there exists A\, ¢ > 0 such that:

Az, ) — A(Age) > <I (z) — g A 1)

€
Then choosing 6, > 0 such that [A\; [0z, < §
1

tin[B (2, 8,,)] < e"Palbncemnll@)=5IAL < o—nI@AL

Hence, for every x € R?% we have found a d, > 0 such that

%log 1B (,80.0) < — (I (x) — €) A % — (1),

17



for each n € N

second step

Suppose that K C R? is compact set. Then, there exists N = N (K,e) € N and
z1...xN € K such that: K C Uf\il B (24, 0z,)-

N N
pn (K) < pin (U B (z, 5@,5)) < Zﬂn (B (wi,0z,¢)) < N max pi, (B (i, 0z,,)) -
=1

) 1<i<n
=1

So,

1<i 1<i<n n

1 1 1 1

- log pn (K) < - log (N ax fi, (B (i, 5551.&))) = log max N + —log ity (B (24, 0z,.¢))
<n

and taking n — oo we get

1 1
li - ] K) <1l - ] B(z:.6, ) <
im sup — max og tin (K) < im sup — max 0g pin (B (T3, 0z;,)) <

_ 7€ . < _ 7€ — €
max (=1 (wz))_jgfg( I* (z)) = — inf I (2),

for each € > 0.
Then, we make the following observation:

1
lim inf [ (z) = lim min{ inf I°(x), }
e—0zeK e—0 zeKNDy €

=lim inf I¢(2)
e=0zeKNDy

= inf I(x)
$€KQD[

=

Because I¢converges uniformly to I on D; when ¢ — 0.
Thus,

1
limsup — log pun, (K) < — inf I (z),

n—soo N zeK

for every compact set K C R%.
Third step

Now, due to lemma 2.1 we will pass from weak to full LDP proving exponentially tight-
ness.

Firstly, we observe that for every closed set F' C R? and compact K C R? :

F=(FNK)U(F\K)C(FNK)UK*
Then,

1 1 1
lim sup — log iy, (F') < limsup — log i, (F N K) V limsup — log pu, (K€)

n—oo N n—oo N n—oo TN

1
< — inf I(z)Vli ~1 K¢
< - Jof I(z) imsup 0g tin (K°)
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1

< —inf I (x) V limsup — log u,, (K°€) .
zel n—oo N

Thus, it suffices to show that {,},cy is exponentially tight.

Suppose that M > 0 and define:

K= [-t,t]? = Kf = ([—t,t]d)c =l {z: |27 >t}

where 27 : R? — R are the projections of . Then, the union of events bound yields:

d d
pin (K5) = pin (Vg {Ja7) > £}) <7 i ([t.00)) + D e (=00, —1))
=1 =1

where /ﬂl , j = 1,...,n are the laws of the coordinates of the random vector S, and
St = E DD ¢ {Xf} . for j =1,...,n ii.d random vectors.

ic
Thus, by Cramér Theo;em on R:
i ([¢,00)) < e ™ and 4 ((—o0, —t]) < e_nAj.(_t)

where A is the Legendre transform of log E[e*X] for j=1,...,d

1 1 )
limsup — log up, (K7) < max limsup — log i, ([—t, t]°)
n n

n—00 j=1,...d n—oco

< A, ChO AL )

<~ min (I;(t) AL (~1))
j=1,...d

As [t| — oo then limy o I (1) = limyy o0 (SUper {AMt — A (N)}) = 0

Then, there exists ty for each ¢t > tg such that:

1 .
min (I (t) A I; (—t)) > M = limsup — log u}, (Kf,) < —M
n—oo N
Consequently, {u,} is a an exponentially tight sequence of probability measures, since the
hypercubes K; are compact.

Lower bound
We take into account two cases, in the first case we suppose that the supremum in the
definition of I is attained at a finite A, whereas in the second case we suppose that the
supremum is not achieved in a finite A.

First case
Suppose that z € R? thus there exists p > 0 such that B (x,p) C U, where B (z, p) is a
ball of radius p. Then it suffices to show that:

1
liminf — log puy, (B (z, p)) > —inf I (x)
n

n—oo
where I () := supyepd { (A, z) —log M (\)}.
It follows from our assumption that there exists a solution A* to the saddle-point equation

A(N):

VM (XY) eA")

r=VAN\) &= My TS ywdu(y)©$=/ydﬂ(y)
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e )

where dfi (y) = Sy di (y)-
Define S, : R? x R x ... x R? — R such that S, (z1,%2,...,2,) = 21 + 2o + ... + xp

where z;,7 = 1,2, ...n random vectors.
(A" 8n(2))

and the product measure: di®" (y) = ey dm
Then observe that for %" € B(z,€):

Xn

(A", Sp (2)) = n<)\*, % +x— x> =n{\,z)+n </\*7 % - m> < n (A, z) + n|A¥e,

SO
e~ A5n(2)) > o=(n{A"z)+nA"[€)

Suppose, now that 0 < € < p. Therefore,

pn[B (z,p)] > pn[B (z,€)] = ]P’[& € B(z,e)] = u®" {y eR?x...R%, €B (:U,e)}

:/.“/{SREB(:C,E)}du(y)“.du(y)

> / / e~ NS @) A (XY dii () . . dfi (y)
{STTLEB(CC,G)}

= M" ()\*)/.../ e NS @Ddn (y) .. di (y)
{Z2eB(x.e)}
2o [ e~ NI 4 () . dfa (1)
{ST"EB(x,é)}

= M" (\*) e N lemnidta) / / . div(y) ... dji (y).
{E2eB(x,0)}

Taking logarithms and dividing by n we have

1 1 Sn
g [B (2. )] 2 o M (V) = W'le = O0.a) 4 2o ™" | 2 € B (2.0)

1 S,
= —I(z) — |\|e+ = log p®"[—" € B
(@) = [X*le+ ~log i%"[—= € B (z,¢)]
We are in the product space:(Rdx...de,B(Rd)®...®B(Rd),P*),

where: P* := 19, We define p’ : R¢ x ...R¢ = R¢ i.i.d. random vectors with common
distribution ji. Thus, S, : Q@ — R? such that S, = S, o (pl, . ,p") =>", p', for every

n € N and B
* Sn _ ~Qn Sn

Hence, by the Weak Law of Large Numbers: %” -z € R? P-as.
This means that,

n— 00 n—soo N

1 n ] n

lim inf — log z®" [S € B (x, e)} = lim inf — log P* [S € B (x, e)]
n n n

therefore,

1
liminf — log pu,[B (z,€)] > —1I (x) — |A*|e = I¢ (z).
n

n—o0
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Now, if let € — 0 then I€ (z) — I (z).

Second case

Now, we consider the case the supremum of I (x) is not attained at any finite A. More
precisely for z € D;VA (Rd).

We regularize the common distribution p of {X;} with an appropriate family of Gaussian
measures, fi ‘= p*x N (0, eI ) in order to apply the previous case.

n n
Xi=Xi+e¥i=5,=> Xi+e)
=1 =1

where Y; is an i.i.d. sequence of normal distributed vectors independent of X;. We shall
prove that the supremum of I, (z) is achieved in A\ € RY.
Suppose that there exists {\,} € R? such that:

L () = Tim ((An, 2) = Ay (An))

n—o0

2
When X ~ N (0,2I) = E (X)) = '3 = log M () = 22 and A, (1) = A, (1) + 2L
Then,

€2\ |?
I, () = lim (()\n,x> ~ Ay (M) — ‘/2\71’)

and {\,} is bounded.
Indeed, if {\,} were not bounded then there would exist {Ag,} such that |\, | — oc.
Since A, (A) > (A, z) for every A € R? we would have

. €| M, | . B €2 A, |2
0<1, (z)=1, (z) = lim ()\kn,x>—AH(Akn)—T” <limsup | (Ag,,z — ) — 2"

n—00 n—0o0

2 A 2
< limsup <|)\1€n”33 T [ A > =—

n—00 2
which is a contradiction. Then, {\,} is bounded and there exists a subsequence which
converges to Ac and I, (z) = (Ae, 2)—A,,, (Ae),0bviously z € VA, (R?). As a consequence,
from the previous case,

n—oo N -

1 €
liminf — log P [S" eB (1‘,p)} > —Ie(x) > —I(x),
n

for every p > 0.

We set T, := > | Y;, then: T, ~ N (0,n]) = % ~ N (0,1). We make the following

observation that:

(Bepwnfc{Zenwambofdi-,)

More precisely,

‘%—x}g %—x‘+e‘%‘:‘%—x‘§p+e‘%,since%EB(:c,p).
If 5» ¢ B (z,2p) then 2p < |22 —z[ < p+e|ln| = |In| > 2,
Hence,
St S T,
IP’["EB(m,p)]SP[nEB(:c,p)]—HF’[en >p]
n n n
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We want to show that P [e|Z2| > p] is quite small so as not to contribute to our compu-
tation. By this we mean that:

n—o0

€ 1 1
—1I(z) < hmlnff logP [S € B (z, p)] < liminf —logP [Sn €B (1’,2,0):| Vlim inf — log P [e
n—oo M n n—oo 1N

T,
1>
n

1
< liminf —log (pn[B (z,2p)]) VP |:€ —

n—oo n

1
> p] = liminf — log uy, [B (z,2p)] ,
n—oo n,

since we will prove that:

P [e
More precisely,

b e[ [

So, we have to compute:

3|5

el
> p} < lhrg{.l.}fﬁ log pr, [B (x,2p)] .

p\/ﬁ]

€

= /00 e_#dx
Rd\B(O,pS")

1
lim — logP [e

n—oo N

T 1 o0 212 2
n‘ > ,o] = lim 10g/ e de = (2.2)
n n—oo N Rd\B<O,¥) 2¢

By this we mean that if one of the above integrals exists then the other exists too and
they are equal.

For d = 1 the statement holds. Since

.1 _l=? 1 oo jep?
lim — log e 2 dr= lim —log e 2 dx
n—oo M R\(—P‘f,p\e/ﬁ) n—oo M pxe/ﬁ
Using the following inequalities
X —z2 too 7@ 1 7&
71+$262 §/x e Qdygge 2, x>0 (2.3)

and the lim, o 6% = 0 then the 2.2 holds.

For d = 2, we use polar coordinates thus

1212 o2 il
e 2 dr =27 re” 2dr =2me” 2.
R2\B(0,r0) 0

Therefore

1 | / a 0
— 10 e T =
n 8 52\ (0,247 n 22 2

Now, we pass in the d-dimension using once again polar coordinates. Indeed,

7‘2
// _ds—/ da/ dre= "z rd
Rd\B<0 pv/n gd—1
Sd 1\/ dre” %.
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where |S?~1| is the d- dimension surface area of unit radius sphere,
Sdil = {(xl,l‘g,...,l‘d) : x% —i-ib‘% 4+ ... —I—x% = 1}.
Then, we can easy estimate the last integral by 2.3 and we get

1 _la? p?
— log e 2ds| % —-5 asn— oo
n Rd\B(O,ﬁ) 2¢

Since we have proved the equality 2.2 for d- dimensions then it holds for every d € N. This
completes the proof.
O
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Chapter 3

General Principles

3.1 Varadhan’s Lemma and Contraction Principle

In this section, we present an approach to large deviations theory based on Laplace prin-
ciple, which relies on the evaluation of asymptotics of certain integrals.

We first state a theorem that enables us to generate one LDP from another through
contraction. In weak convergence, the continuous mapping theorem plays a key role. The
analogous theorem in large deviation theory is the contraction principle. This theorem
yields that LDP is preserved under continuous mappings. The contraction principle will
turn out to be very useful later on.

Theorem 3.1. (Contraction Principle)

If {Py,},,cn satisfies LDP on X with good rate function I (-), and F is a continuous mapping
from the Polish space X to another Polish space ), then the family Q, = P, o F~! satisfies
L.D.P.on Y with good rate function J (-) given by :

J = inf I(x
)= nt 1)

with the convention that inf ) = oco.

Proof. Since F is continuous, F~! maps open sets to open sets and closed sets to closed
sets. Pick C' C Y closed.
Then,

1
limsup — log Q,, (C) = limsuplogP, 0 F~' (C) < — inf I(x)=
n

n—00 n—00 zeF~1(C)
= — inf inf I(z)=—inf inf [(x)=—inf J .
yeCzeF-1({y}) ( ) yeC F(z)=y ( ) yeC (y)

A similar argument works for O C ) open.

liminfllog Qn(0) = liminfllogPOF—1 (0)>—inf (F71(0)) > — inf I(x)=—inf J(y).
n

n—00 n—o0o 1 T zeF~Y0) yeO

Hence, it remains to prove that J is a good rate function.

Clearly, Dy = {zx € X : I (x)} # 0 implies Dy = {y € YV : J (y)} # 0. In fact, for every
¢ € R we have
{y: Jy) <cy=F({z: I(x) <c}). (3.1)
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Indeed, if J(y) < ¢, then there exists a sequence {z,} such that F'(z,) =y and I(z,) — c.
Since {x,} is eventually contained in the compact set {z : I(z) < ¢+ 1} we may take
a subsequence {z,, } such that z,, — z.. By lower semicontinuity of I we have I(z,) <
liminf I(zy, ) = ¢, and by continuity of F' we have F(z,) = y. Thus, y € F({z : I(z) < c})
and the one inclusion is proved. The inverse inclusion is elementary. In view of (3.1) the
level set {y : J(y) < c} is compact as the continuous image of the compact level set
{z : I(z) < ¢}. J is lower semi-continuous as the infimum of lower semi-continuous
functions. Hence, both of the proceeding arguments prove that J is a good rate function
and the proof is complete.

O]

We are now ready to formulate the first important general theorem of large deviations
which is due to Varadhan. In the evaluation of integrals, large values accomplished in
a ”small” part of the space may play a key role. Varadhan’s integral extends the well
known method of Laplace for studying the asymptotics of certain integrals on R: given a
continuous function f from [0, 1] into R, Laplace’s principle states that:

1
limelog/ R sup f(z)
e=0 0 z€[0,1]

Varadhan’s integral generalizes the previous result in the case of integrals not computed
under the same measure but under a family of measures that satisfies the LDP.

Lemma 3.1. (Varadhan’s lemma) Suppose that {puc}, satisfies LDP on X with good rate
function I. Then for any bounded continuous function ¢ : X — R we have that:

limelog/e(b(f)alu6 (z) = sup (¢ (z) — I(z)).

e—0 zeX

Proof. We break the proof into two parts.

Lower Bound

Since ¢ is continuous, then for every x € X and é > 0 there exists a neighborhood U, of
x such that:

Ue={y€Us:¢(y) > ¢ (x) -0},

for every y € U,.
Note that since z € U, we have that:

inf {7 (y) :y € Uz} <1 ()
Thus,

() o(x)—6 d(x)—6 o(z)—4
/efdue(y)Z/ e« duc(y) =e < /Udue(y)ze < pie (Uz) -

By the LDP lower bound we have that:

hrgsgfelog/e e dpe (y) > o(x) —5—y1€n§II(y) > ¢ (x)—1I(x)—0.

Take § — 0 and the supremum in the right side of the inequality, then we have the
lower bound.
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Upper bound
For each x € X there exist a neighborhood U, of x such that:
¢ (y) < ¢ (z)+dand I (y) > I (x) — 4, for each y € U,.
We know that for each M >0 ¥ (M) ={x: I (x) < M} is compact set.
Then, U, balls cover the compact set Uy,

Uy (M) C Ufil Uy, and F = (Uf\; Uari>c

N
d(y)e oY) oY) oY) oY)
/e @ o) =/ " due (y)+/ " dpe (y) SZ/ e due (y)+/ " dpe (y)
Ui, Us, F i=1 7 Us;

F
N
b(x)+6
< e« due(y)+ / e

But, ¢ is a bounded function and . is exponentially tight we have that,

N

o(y) b(x;)+o o)

€ d:ue (y) < E He (le)e € +L€ € dﬂe (y)
=1

/6 2 due(y)z/ﬂFe 2 due(y)é/]lFe “dpc (y) = pe(Fe c <eve
F

Collecting things together, we have by the LDP upper bound that,

e—0 z;

lim supelog/e(b(ey)d“e(y) < max {max (gb (x;) + 6 —inf T (a:z)> ,sup ¢ — L}

< max {mzax (6 (i) — I (a5) + 20) ,sup ¢ — L}

< max {mng(sﬁ (e0) — T (1)) ,5up & — L} 125

Let 6 — 0 and L — oo and the proof is complete.
O

Remark 3.1. Varadhan’s integral has the following interpretation. By writing formally
I(z)

the LDP for {X¢}¢ with rate function I as P[X, € dx] 2 e™ < , we can write:

E |:e¢()6(e)} :/ M:)]P’[XE c dm] ~ /6¢<z>;1<z)

As in Laplace’s method, Varadhan’s formula states that to exponential order, the main
contribution to the integral is due to the largest value of the exponent.

Hence, the previous lemma means that the large deviation principle implies the Laplace
principle. The next result proves the converse. The Laplace principle implies the large
deviation principle with the same good rate function.

Proposition 3.1. (Bryc’s theorem) Let {ji, }, oy be a sequence of probability measures on
a metric space X. Assume that {pn}, oy 95 exponentially tight. Suppose that the limit:

A(f) = lim 1log/e”f(x)d,un (z)

n—n n

exists for all bounded functions f. Then, LDP holds with good rate function:
I(z)= sup {f(z)—A(f)}
JECH(X)
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Remark 3.2. The above theorem reminds us again of weak convergence of probability
measures. Varadhan’s Lemma implies that A (z) = supsee,x) {f (¥) — L (f)}, given the
LDP. Note, however that the relation between A and I is not the convexr duality as we have
seen in the first chapter, where the functions f are linear. Even though, until this point we
have seen convex rate functions, the above rate function doesn’t need to be. Also, proving
that the limit A (f) exists for all bounded functions may be too hard to achieve. However,
one really needs the limit to exist for a rich enough class of functions for the LDP to hold.
If X is a metric vector space , then a rich enough class of functions, that ensure the LDP
through Bryc’s theorem is the class of Lipschitz functions.

Proof. Firstly, since Ag = 0, we have that I > 0. Function [ is lower semicontinuous, since
it is supremun of continuous functions. Since exponential tightness and the weak LDP
together imply the full LDP, we need only prove that weak LDP is satisfied. We start
with the upper bound.

Upper bound
As in Cramér theorem on R? it suffices to show the upper bound for open balls on X and
then we will cover any compact K C X with a finite number of such open balls.
Pick € > 0, from the definition of I we have that, for each x € X’ there exists f € Cp (X)
such that:

1
F@) = A > I = (T A
Since, f is continuous, there exists d, = 6, > 0 such that:
l = inf — > —e,
e {fy)—fx)}=—e€

Since for every x € X we have that f () — f (y) — lz > 0, then for each y € B (z, )

o (B (2.0.)) = |

A, < / @I @1 g () = =l / U@~ @] g ()
B(z,0,) B(z,04) B(z,02)

for each z € X, n € N.

Thus,

limsup = log sin (B (2,8)) < ¢ — (f (1) = A(f)) < —I(2) + ¢
n—oo N

for each x € X.

Given, now, of any compact K C X there exists, x1,...,2,; € K, m € N, such that

K c U™, B(z;,0d,), therefore,

1 1
limsup — log i, (K) < max limsup — log py, (B (%, 04,))
n

n—oo M i=1,..,m nooo

— min I°(x;) <e— inf I°(x).
T, ) s s P

Since € is picked randomly, this result proves weak upper bound of the L.D.P.
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Lower bound
Suppose that z € X and U C X a neighborhood of x. Since X is a metric space, there
exists continuous function such that f : X — [0,1] such that f(x) = 1 and f vanishes
outside U. Take m > 0 and define f,, = m(f —1) for each m € N. Then, by our
assumption there exists the limit:

1
= lim = nfm(y)
A (fm) nh_I;go n log / € dpin (y)

Thus,
[t )= [ D )+ [ i
B / e mWdp, (y) + e, (U°)
U
< i (U) e
Thus,

lim inf ! log pir, (U) V (—m) > lim inf ! log/e”fm(y)d,um (y) =A(fm)
n

n— 00 n—oo N

= —(fm (@) = A(fm)) = — sup (f(z) —A(f))

feCy(X)

= —I(x)
Since the above result is valid for every m > 0, the proof is completed if we let m — oo.

O]

If we combine the results of Varadhan and Bryc, then we have the following theorem
for exponentially tight families of measures.

Theorem 3.2. Suppose that, {un} is exponential tight sequence. Then, {u,} satisfies
LDP if and only if the limit

1
A(f) = lim log/e”f(m)dun (x)

n—oo N

exists for each f € Cy (X) and in that case the rate function I is given by
I'(z)= sup {f(z)—A(f)}

FEC(X)

and

A(f) = sup {f (z) = I (x)}

reX
for each f € Cy (X).
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3.2 Relative entropy and Varadhan-Donsker formula

We next show how one can evaluate expectations arising in Laplace principles, which then
can be used to derive the large deviation principle associated with the empirical measures
of i.i.d. random variables.

The relative entropy plays a key role in the determination of the rate function. We are
given a topological space X, equipped with its Borel o field. Let M (X) be the space of
finite signed measures on (X, B), M (X') be the space of probability measures on M (X)
and Cp (X) be the space of bounded continuous functions and By (X) be the space of
bounded measurable functions. There is a natural duality between M (X') and By, (X):

(V,g>=/gdv
X
for g € By (X) and v € M (X).

Definition 3.1. For u € M (X), the relative entropy R (-|n) is a mapping from P (X)
nto R, defined by

dv dv dv
10g> dy:/ <log> du ifv<<p
R(v|p) = /X < dp x dp dp

00 otherwise
Note that xlogz > —% so the above integral is well defined.

Remark 3.3. By observing that xlogx > x — 1 with equality if and only of x = 1, we see
that R (v|p) >0, and R (v|p) = 0 if and only if v = p.

Remark 3.4. Let us fit p € M1 (X). Let p : By (X) — R be defined by p(¢) =
log [ e®du (x). Then p and R are convex conjugate of one another and have the following
variational representation.

Proposition 3.2. Let ¢ be a bounded measurable function on X and pu a probability mea-
sure on X. Then,

log/ e®dp = sup {/ (;SduR(um)] ,
X veEMy(X) LVX

and the supremum is attained uniquely by the probability measure vy defined by

vy _ ¢
du [y e?du

Proof. In the supremum in the above variational formula, we may restrict to v € P (X)
with finite relative entropy: R (v|u) < oo. If R (v|u) < oo, then v is absolutely continuous
with respect to p, and since p is equivalent to vy, v is also absolutely continuous with

respect to vy. Thus,
dv
/ ¢dv — R (v|p) = / ¢dV—/ <log > dv
X X X dp
d d
:/ ¢dy—/ log <V) dy—/ log (VO> dv
X X dvy X dp
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i dl/()

_/X<¢_logd,u) dv — R (v|w)

:/ log <e¢d'u) dv — R (v|w)
x dvg

=/ lo e? v—R(vv

‘/Xlg</x du)d R (viwo)

= 10g/ e?du — R (v|wo) .
X

We conclude by observing that R (v|vp) > 0 and R (v|vp) = 0 if and only if v = 1.
]

Proposition 3.3. (Varadhan-Donsker variational formula) Let X be a Polish space. For
all p,v e My (X), we have

R(v|p) = sup {/ fdl/—log/ efdu}— sup {/ gdu—log/ egdu}
reBy(x) U X gecy(x) Ux X

The dual formula to the above variational formula is known as the Donsker-Varadhan
variational formula.

Proof. First we show that

R(v|p) = sup {/ fdu—log/ efdu}
reBy(x) U X

and later we prove that

sup {/ gdy—log/ egd,u}: sup {/ fdv—log/ efd,u}. (3.2)
gecy(x) Wx X reBy(x) W X

We denote by H (v, pt) the right side of (3.2). By taking the zero function on X’ we observe
that H (v, ) > 0. From Proposition 3.3, we have for any f € By, (X)

R(V|M)Z/ fdv—log/ el dp
X X

and taking the supremum over f € By (X'), we obtain that

R(v|p) > sup {/dev—log/xefdu}—H(vau)

FE€B(X)

To prove the inverse inequality, we may assume that H (v, ) < oo. We first show that
under this condition v is absolutely continuous with respect to u. Let A be a Borel set for
which p (A) = 0 and take £ > 0. Since for any f € By (X)

/fdu—log/ efdu < H (v, 1) < o0
X X

We obtain, upon substituting f = k1 4
/ k1 4dv — log/ eMlady < H (v, p)
X X
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k‘/duSH(V,,u):kzy(A)gH(u,u)
A

Taking k — oo gives v (A4) thus v < p. Since v < p we can define the Radon-Nikodym
derivative h = g—”. If A is uniformly positive and bounded then f = logh is bounded and
measurable and substituting this function into variational formula 3.3 yields

R(v|p) = /Xloghdu < H (v,u)

If h is uniformly positive and not bounded, we truncate the function and set h,, = hAn and
substitute f = logh,, into the variational formula 3.3. Using the Monotone Convergence
theorem we again obtain,

R (v|p) = / log hdv = nh—>Holo log hpdv < H (v, ) + nh_{rolo 10g/ hndp = H (v, 1) .
X X

X

We now treat the general case where f is neither uniformly positive nor bounded. For
t € 10,1] we define

vy =tu+ (1 —t)v and hy = % =t+(1—-t)h
for each t € (0, 1] h; is uniformly positive and so by the preceding calculation:

R(v|p) < H (v, p) -
We now want to prove that

limy_,0 R (1) = R (v|p) and limy_0 H (v, 1) = H (v, ).
Since x log x is convex on [0, c0)

R (v|p) = / hilog hydp < (1 — t)/ hlog hdu
X X
Furthermore, log z is concave on (0, 00) then,
log hy > logt Vv (1 —t)log h.

This means that
R (v|p) = / tlog hidp + / (1 —t) hlog hidp
X X

> tlogt + (1 —t)2/hloghd,u

=tlogt+ (1—1)> R(v|n).

If we let ¢ — 0 and combine the above inequalities then

limy—,0 R (1¢|p) = R (v|p)

For the second limit, we observe that H (u, ) = 0 and ¢ — H (v, ) is lower semicon-
tinuous and convex, as the supremum of linear functions in ¢. Thus, for every t € [0, 1]

0<Hv,p) <tH (pp)+(1—t)H (v,p) = (1—-1)H (v,n) < H(v,p) < o0
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and so H (v, p) is also bounded. Also, we know that a function f that is convex and lower
semicontinuous on R and is finite on the closed bounded interval [a, b] then f is continuous
on [a,b]. As a result, H (v, 1) is continuous and therefore

%%H(Vtau) :H(V()vu) :H(Vﬂlu)

We showed that

R (v|p) = sup {/ngl/—log/xegd,u} =H(v,pn). (3.3)

9EBL(X)

Now, we will use Lusin’s theorem to approximate f = g—; by bounded continuous functions
with respect to both p and v and pass to the limit. In fact, we will find a rather small set
that will work with respect to both of the measures. Then we will have that

R(v|p) = sup {/ gdl/—log/ egd,u}: sup {/ fdv—log/ efd,u}.
geBy(x) U X recy(x) Lx X

In order to prove 3.2 we need the following lemma

Lemma 3.2. For each f € By (X) and p,v € M (X) there exists a sequence { fn} C Cp (X)
such that
fn /% f in LY (n) and L' (v)

In nﬁf f p-a.s. and v-a.s.,

1

Proof. Since each measurable function is uniformly approximated by simple functions, it
suffices to show that in the case that f is the characteristic function 1 of a Borel set
E C X. Suppose that E C X Borel set and € > 0. We are looking for a g € C, (X') such

that
/]g—]lE]d,u\//|g—]lE|dl/<e.
X X

Since p, v are finite Borel measure in a Polish space, they are regular measures and there
exist compact sets K, K, C E and open set A, A, O E such that

K, CECA, pA\K,) <e p=p,vr.
If we set K := K, UK,, A:= A, NA, then K is compact and A is open and
pP(ANK) < p(A\K) < p(4,\ K,) <€, p=p,v
Pick a function g € Cp (X') such that 1x < g < 14, then
l9—1g| < 1ax

and
/X!g—llE!dpép(A\K) <€ p=pv

Therefore we prove that for each f € By (X) there exists {gn} C Cp (X) such that g, — f
in L' (1) and L' (v). Now if we pass in the subsequence of {g,} we can assume that {g,}
converges pointwise in f p-a.s. and v-a.s.. If we define

N S K (I | B
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then we obtain that f, — f pointwise p-a.s. and v-a.s.. Since ||gn|lu < || fnllu for every

n € N, we have that f,, — f in L' (1) and L! (v) by bounded convergence theorem. Then
fn satisfies all the assumptions of the Lemma 3.2. O

R(v|p) = fesétip {/ de—/ )du}

where h (f) = hlog f and f = %£. Also we know that

We have proved that

R(vp) = H(v,p) > H (v,p) = sup {/fdv—/ )du}zo

fecCy(x

Since f € By (X) , h(f) is lower bounded and the integral [, f(f) is defined for every

febBy (X)
Assume that p,v € M (X), we need to show that for any function f € By (X') such that
f € L' (u) there is {f,} C Cp (X), such that

/andv—/xh(fn)du”if/dez/—/xh(f)du.

Suppose, now, that there is {f,} that satisfies the assumptions of Lemma 3.2. Then

/fnd,u—>/fdu as n — 0o
x X

So it remains to show that

lim h(fn)dﬂ_)/xh(f)dﬂ as n — 00 (3.4)

n—oo
Indeed, A is continuous as a convex function. Then
h(fn) — h(f) pointwise p-a.s. as n — oo.

Also, h is continuous and bounded in any closed interval and |f, ()| < || f]|. for each
n € N and for each x € X. Then we have that

1A (fr) |l < sup h(t) < oo for each n € N.
Nl <t<I fllu

By bounded convergence theorem we obtain 3.4 and so the proof is completed.
O

We next prove other three important properties of relative entropy: convexity, lower
semicontinuity, and compactness of level sets. In this section we develop only the prop-
erties of relative entropy that will be useful later in this section. All of the results in the
following lemma are formulated for arbitrary Polish spaces.

Lemma 3.3. Let X be a Polish space and p € My (X). The relative entropy has the
following properties:

(i) (convezity) R (-|u) is strictly convex on the set {v € My (X): R (v|u) < co}.
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(ii) (lower semicontinuity) R (-|pn) is lower semicontinuous.

(iii) (compactness of level sets) R (-|p) has compact level sets. That is, for each M < oo
the set {v € My (X): R(v|pn) < M} is a compact subset of My (X).

Proof. (i) Convexity is immediate by Proposition 3.3, since v — R(v|u) is the supremum
of linear functions in v. To prove strict convexity recall that

dv dv
R (v —/lo —d
(v|p) 08 g

for any v € My (X) satisfying R (v|u) < oco. We know that h(z) = xlogx is strictly
convex for z € [0, 00).

Suppose that v, 1 € M7 (X) and vy = (1 —t) vy + try, € My (X), t € (0,1).
Then, we have that

dI/t dI/() dl/1 dl/() dl/1
v = _ ) =Y ) < _ -v )
h<du> h<(1 " du+tdu>_(1 t)h<du>+th<du>

with equality holding if and only if Cfi—l;f = %. Thus,

s [1(22) 5070 (8 [ (82

— (1= ) R (volu) + tR (1]p)
with equality holding if and only if ‘ilﬂ = ‘f% p-a.s., that is if and only if v; = 1o, proving

m
that R (-|u) is strictly convex on {v € M, (‘LX) : R(v|p) < o0}

(ii) For any f € Cp(X) the map v — [ fdv is continuous. In view of Proposition 3.3
R(-|p) is lower semicontinuous as the supremum of continuous functions.

(iii) Let {vn,n € N} be any sequence in {v € M; (X): R(v|u) < M}. According to
the variational formula 3.3 for any bounded measurable function f € By (X) mapping X

into R we have that
/ fdl/n—log/ efd,ug M
X X

Pick any § > 0 and € > 0. The tightness of p guarantees that there exists a compact set
K such that p (K€) < e. Substituting into the last display the function f that equals to 0
on K and log (1 + %) on K¢, we have that for each n € N

1 1
/ log(1+>dvn—log</du+/ 1+d,u>§M<:>
c € K c €

1 1
log <1 + > vp, (K¢) — log <1 + ,u(Kc)> <M <&
€ €

c 1 c
Vn(K)Slog(1+i)<M+10g(1+eu(K ))> =

v (K€) <

——— (M +1og2).
_log(l—i-%)( +1og2)
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Since € is picked arbitrary we can choose € such that m (M +log2) < 4. This implies

that {v,} is tight. Applying Prohorov’s theorem there exists a subsequence {v,, } weakly
converging to some v € M; (X). Lower semicontinuity yields that

R(v|p) < liminf B (v, |p) < M
—00

This implies that {v € M; (X) : R (v|pn) < M} is compact, and the proof is complete.
O

Properties (ii) and (iii) above state in particular that the function v — R (v|u) is a
good rate function defined on M; (&X).
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Chapter 4

LDP for abstract measures

4.1 Sanov’s theorem

We are now ready to prove large deviations for empirical measures of a sequence of i.i.d.
random variables on a Polish space. The topology that determines the open and closed
set in M (X) is the weak topology generated by Cp (X'). Let {X,,} be a sequence of i.i.d.
random variables valued on a Polish space X and with common distribution y. Then the
sample distribution of {X;} is a sequence of random measures (empirical measures):

1
L, = ’I’LZ;(SX“
1=

where §, is the Dirac measure in x € X and maps A" — M; (&) and the product
measure P" will generate a measure P, on M (X') which is the distribution of the empirical
distribution. The weak law of Large Numbers essentially implies that :

P, = 4,

This means that the empirical distribution u, approaches the true distribution y. Close
here is in the sense of weak convergence. To this end, we have that

1 n
Ly (z5) = — > (X))
=1

is a random variable. Therefore, the sequence {Y, ;} which is defined by Y, = 1, X is
ii.d. sequence with mean value E[Y;,] =Pz = pu] = p(x). Thus, for every x € X', by
the weak law of large numbers:

n
L, (z)= ZYXJ X u(z)  P-as.
i=1

S

Thus, it is reasonable to inquire about the large deviations of {P,, : n > 1}. In fact, we
will see that the large deviations of {P, : n > 1} are governed by the rate function:

1(v) = R(v|p)
and that R (-|n) is a good rate function as we proved previously.

Theorem 4.1. The sequence {P,} satisfies LDP on M (X) with the good rate function
the relative entropy R (v|p).
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Proof. Upper bound

We are going to follow the techniques that we used to prove Cramér theorem on RY.
For any given v and any € > 0, there is a small neighborhood U, around v such that:

U, = {p: |<f?l/>_<fap>‘ <6}'

Thus,
Py (U] =Prp: [ (f,v) = (f,p) | <€
1 o —n(f,v)+nemn |5 i
=P |12 3 F(X) = ()] <] < et X 100)]
i=1
= e~Mfw)tne </ ef @y (J?)>n
Then,

1 1 1 1 "
—logP,[U,] < =loge ™) 4 Zloge™ + = log (/ F@dp (m))
n n n n pe
1 n
= —(f,v) +e+—log (/ e/ @y, (x))
n x

:<f,y>+e+1og/xef(x)du(x).

We may now choose f € C, (X)) so that

o) —tog [ el > ROl —e.

Therefore,

1
limsup —logP,[U,]| < —I°(v) + ¢

n—oo N

If D is any compact subset of M; (X'), then D can be covered by a finite number of
U,. Hence, C C UZJL Uy,.

Then,
1 1 1
- < = = :
- logP,[D] < - I%a}\}[(log]\f—k - log P[U,,] =

1 1
limsup —logP,[D] < max limsup — logP,[U,,]
n

n—oo TN =1, N pooo

< max (—I°(y;)) < sup(—I°(v)) = — inf I°(v)
i=1,,n veD veD

Since € is arbitrary we actually have that
lim sup — log P, [D] < — inf I (1)
imsup — lo — in v
n—}oop n g " - veD

for every compact D C M (X).
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In order to get an upper bound for general closed set, it is enough to establish expo-
nential tightness of {P,,}. We want to show that for every L > 0, there exists a compact
set K, such that P,[K[] < e ™ for all n € N. Using Ulam’s theorem, for any proba-
bility measure p € My (X) and for any € > 0, there exists a compact set K C X such
that p (K¢ < e. So, we can pick a compact set A7 such that p(Af) < e~L”. Then,
D ={v:v(AL)>1—1} is closed in the weak topology o (M (X),Cy (X)) because the
Portmanteau theorem implies that for every closed set Ay,

limsupv; (Ar) <v(Ar)
Jj—00
if v; weakly converges to v.

The set K7, = (;~; Dr is also closed. Since K7, is also tight, it is compact by Prohorov’s
theorem. But, now, we have that

(D] = P |Ll45] > 7| =P [; St (X)) > i]
=1

_.E)lji:'ﬂAi (XQ)I> ;%

i=1

_nL? P

<e L E [eL2 2z tag (Xz')]

— o nLgH [eLQILAi (Xi)}n

2 2 n
— L (eL e Ly 1) < e lon

Therefore,

Po[K7] = Pu[(Nr>1D1)°] = Pu[Ur< Df]
I 2ne—nL
<) P, [Df] <) 2ne < o <2en(l-1)
L>1 >l

We use the same argument as in the Cramér theorem on RY. F = (FNKp) U (F\ Kz).

Hence,
P,[F] <P, [FNKL]+P,[K}] =

1
limsup — log P,,[F] < max {— inlfmI (v), —l}
ve

n—oo N

and by letting | — co we get the upper bound

1
limsup — log P, [F] < — inf I (v)

n—oo N veF
for every closed F' C X.
Lower bound

To prove the lower bound, we tilt the measure from P, to Q, through Radon-Nikodym
derivative based on i.i.d. random vectors with u for each component. This way relative

38



entropy enters the calculation. Let U, be a neighborhood around v. We assume that
R (v|p) < co. We want to show that Vv € M (X) and n € U, open

lim inf E logP,[U,] > —R (v|p) .
n—oo N

This implies that v < p. Let b = le—; and let Q = v®" and P = pu®" be the law of the i.i.d.
with marginal p.

Then,

) = [T 6(w) = ba ()

Here, we used the notation x = (2;),+1-
Now, we write

]P)[Ln € Uy] > / ]l{bn>0}dp
LneU,

— / b (x) dQ
Ln,eU,
=/ (b(X1)--b(Xpn) " dQ
Ln€U,

=E {1,000, ()]

Q[H{L ev, }] _
Qyz,ev,)] (Liznev,ybn” (X))
Thus,
llo P[L, € U)] > llo [1EQ[]1 p=1 (X)]Q[1 ]
n BT Qlyr,ev,}] {Ln€U}on {Ln€U,}
- log [1EQ[1 b, (X)]| + 1 log Q[1 ]
n Q[ﬂ{LnEUV}} {LneUu} n n {LnEUL,}
- _;EQH log bn] + l1og@[11 ]
— nQ[ly,ev,y] {Ln€U.} nl + (LneUu})-

In the third line, in the first term of the second part of the inequality , we used Jensen’s
inequality in the convex function — logx. Now, we will use the fact that zlogz > —% to

write,
E°(L{r,e0,) logbn] = EV(log by] — E¥[Ly1,cur) log bn)
= nE”[logb] — E*[11,, cre}bn 10g by
1
<nR(v|p) + e
Therefore,

1 1 1 1
_ > | — _ — — .
n log PLn € U] = Q[Ln € U] ( Rviw) ne> * n log QlLr,cv.)]

By the Law of Large Numbers, since Q o Xl._1 = v that is the distribution of X;’s under
Q. Q[L,, € U,] converges to 1. We, thus, have

1
liminf —log P[U,] > —R (v|p) .

n—soo N
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The proof is now complete, since, we have already showed that R (v|u) = I (v) is a good
rate function.

O]
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Part 11

Large Deviations for Stochastic
Processes
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Chapter 5

Sample path Large Deviations

5.1 Schilder’s theorem

In many problems, the interest is in rare events that depended on random process, and
the corresponding asymptotics probabilities, usually called sample path large deviations,
were developed by Freidlin-Wentzell and Donsker-Varadhan.

The first example is known as Schilder’s theorem, and concerns large deviations for the
process {We}e = /€W, as € goes to zero, (the family of rescaled Brownian Motion)
where W = {Wi}ieo7) is a Brownian motion in R?. Denote by Cy[0,1] the space of
continuous functions on [0, 1]. The family of paths is defined on an infinite dimensional
space: (O, || - ||so), Where

o= {9 c (CO[O, 1];]Rd) 2 6(0) = o}
O is a separable Banach space with respect to the uniform norm. Now, we identify the

dual space of ©. The dual space of © is the set of all vector signed measures on [0, 1] and
with finite variation. The duality relation is given by:

1 d
/0 >0 () A (ds) = (0.

We consider d = 1 for sake of simplicity.
Having identified C{, the dual space of Cy we follow the scheme of Ellis-Gértner theorem
in order to compute for any A € C{, the limit

A () = lim elog Q. <A>
e—0 €
for Q. € C{, and the convex conjugate A* of A, that is for ¢ € Cy

A" () = sup (A ¢) = A (X))

AeC)
Lemma 5.1. Given, A € C{j and ¢ € © then for all A € O*
1 1
AN = / IA\[s, 1]|?ds
2 Jo

Proof. First of all, we observe that
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1
- /0 W, (w) A (ds) (5.1)

is a centered Gaussian random variable and it is well known that the1 mean of the expo-
. . . . . 1,2

nential of a centered random variable with variance o? is equal to e2? . So we have to

compute o2 of (\, W).

o B [( [we )]
E[/lms)x(ds)/ W(t)Mdt)]
- [ / / W (s (dt))\(ds)]

—/ dA (s )/ E[W (s) W (¢)]A (dt)
0 0

:/OlA(ds)/olt/\s)\(dt).

However,
1
t/\S:/ Ljo,6 (u) du
0
1 1t
:/ t/\s)\(dt):/ / Lo,q (u) duX (dt)
0 0o Jo
1 ¢
:/ du/ To,q (u) A (dt)
0 0
z/ A ([u, 1]) du
0
Therefore,

E[(\, W)?] :/OIA(ds) /OSA[U, 1]du:/01 AL, 1]du/ul)\(ds):/01)\2([u, 1]) du.

A(A)—hmelog(@e< > / 1A ([s,1]) |*ds.

Remark 5.1. Using stochastic integration, the variance of the random variable defined in
5.1 can be derived more easily by considering that, by integration by parts,

/01 W(w)A (ds) = /01 A ([s,1]) dW (s) .

Next define ‘H be the space of ¢ € ©, consisting of absolutely continuous functions
with the property that

SO,

_ /01¢(s)ds, b e L? ([0, 1];Rd) .

H is called Cameron-Martin space and is Hilbert space with respect to scalar product

1 .
(f.g) = /O fgeds.
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Remark 5.2. It is important to notice that by Holder’s inequality the paths in H are
Hoélder continuous of index % for0<s<1

t

/ Yy du
S

This implies that bounded sets of paths in H are uniformly bounded and uniformly equicon-

tinuous. Thus, by ths Ascoli-Arzela theorem, bounded sets of H are relative compact in

Co[0,1]. We will use this argument later in order to construct relative compact set in H
and prove the upper bound.

t .
s — el = <t o2 ([ iPas )12 < ol — o252

Lemma 5.2. For any ¢ € Cy the Legendre transform of A (\) is

IR
5 | Was ven

00 otherwise

A" () =
Proof. The Legendre transform of A (A) will be

A" (¥) = sup {{A,4) —A(A)}

\eCY)

:félgé{/d) d>\—/|>\ 81|d8}
:)\Sélopé{/ A ([s,1]) Yed s/ IA([s,1]) |d8}
B 1 [t TS
= s { g [ 1) i g [

1
< /0 14 (s) Pds. (5.3)

In order to prove that the equality holds we need to consider the following lemma.

h<;>—h(gf>r<m (5.4)

2
hs| ds, where H is Cameron-Martin space.

Lemma 5.3. h € H if and only if
27l

Hm 22

=1

and is equal to ||h||%¢ = fol

Pmof. 'Suppose that h € H then we devide [0, 1] in 2" equal parts. Then there is s €
(i, o) C [0,1]. We define

2”72”1
(s)—2"/2inhlds—2” (A
o) =20 ], 05 = on on '

omn

Then .
on (1) = /0 in (5) ds (5.5)
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Thus this function gives us h for each point -, i = 0,1,2,...,2". But this means that g

2n )
is linear between two such points, since it is linear interpolation of h at these points 5%

2n
Then the norm of the interpolating function is

1 1—1
() (%)
We need to prove that g, — h in H. We consider the o-algebra which is generetad by
these intervals. More precisely, we define

1—1 1
= — 1< g <"y

gn = E[h“’rn]

on

|gn|’H =2" Z

=1

2
< oQ.

Therefore,

which means that ¢, is F,-martingale and bounded in H and §, converges to h.
Now, suppose that 5.4 holds. We want to prove that h € H. It suffices to show that

E[Qn-l—l"FN] =0n

which means that ¢, is F,, martingale. Since JF,, is generated by a partition of [0, 1] we
know that

hsds = gp < 00
-1

o J i

. 1 [
Blgnl 7 = T |

Then ¢, is a martingale with respect to F; which is bounded by 5.4 in £2. Thus there
exists ¢ such that ¢, — ¢ in £2, which means that

[ ards = [0

then necessarily h (s) = jotg (s) and h € H.

Since

O]

Now, we construct a sequence of measures using the above lemma in order to prove
that the equality holds in 5.3.

on . )
n 1 1—1
oS () - ()| -00)
We set bnzézi — di-1, therefore
n 277.
1—1 7
1 <u< —
by ([u,1]) = 2n T T 9n
0 otherwise.

Then

(@) () s
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and
2n

AOw = 52'Y

=1

Finally, we get

— i -1\ 1, i i— 1\
e B () -+ (SI - ER () -+(5)
i=1 =1
1, - 1 i—1\[>2 1 1.2
:52 ;1#(271)—1/)(2” )’ —>2/O Ys| ds as n — oo.
if 1 € H. O

Now, we are ready to prove Schilder’s theorem. Schilder’s theorem gives us an estimate
for the probability that a rescaled B.M. will stray far from the mean path which is constant
with value 0.

Theorem 5.1. Let Q be the Wiener measure on Cyl0,1] and for e > 0 let Q. its image
through the mapping W — /eW. Then the family of measures {Qc}, satisfies LDP with
good rate function given by A* (¢) for ¢ € Cy.

Proof. Upper bound

First step: We shall prove the upper bound for a small neighborhood of v, By (1) open
balls of radius ¢,

Bs () ={f € Col0,1] : sup | f (¢) =4 (¢) | <}

We need to show that

limsup e log QB (1)] < —inf A (). (5.6)

e—0

Qc[Bs ()] = P[VeW € B; ()] = P[oiligl |VeW; — | < 6] =P [Sup Ve (Wt _ wt) < 5]

NG
—P [os<1£1 W, — \@% < \2] =Q [B} (j/é)]




However by integration by parts we get

1 1 1
(N W) :/0 Wsd)\s:—/o A ([s,1]) dW, < ;/ A2 ([s,1]) ds.

0
Then we have that w
Qc[Bs (¥)] < ) / AW

B (0)
v
< e_(o"”b)ﬂ)"%)) / o3 Jo N ([s.1))ds gp
B_s (0)
Ve

< o= [ N1 ds) / dP
B (0)
Ve

A* ()
=e¢ ¢« P|B 0)].
[%()]

Thus, if we take the logarithm and let € — 0 we obtain the proper upper bound for open
balls

limsup elog Q¢[Bs (¢)] < —inf A (¢) . (5.7)

e—0

Second step: Now, we will show the upper bound for K C © compact set. If K is compact
then K C |Ji; Bs, (). The technique is similar to that of Cramér theorem in R% and by
5.7

lim sup €log Q[K] < max limsup elog Qc[Bs, (¢;)]
(2

e—0 e—0

< max (—inf A" (¢9;)) < —inf A* (¢).

Third step: Finally, we prove the upper bound for F' C O closed sets. Firstly, we make
the following observation

F=(FNK)U(F\K)C(FNK)UK".
Therefore

lim sup € log Q[F] < limsup elog Q. [F N K| V lim sup log Q[ K¢

e—0 e—0 e—0
< — inf A" () Vi log Q[K“].
< - Jof AT(W) imsup ¢ log Q [K°]
limsup elog Q [F] < — inf A* (¢)) V limsup e log Q[K°]. (5.8)
e—0 YpeFr e—0

The problem is to remove compactness restriction from the above inequality. The idea is
to construct a compact set Ky, L > 0 of paths with the property that

limsup elog Q. [K7] < —L. (5.9)
e—0
What this mean is that as L — oo the events become so deviant that they cannot even
been seen on the scale at which we are looking. Therefore, they cannot contribute to our
calculation.
Recall that 5.2, because of Ascoli-Arzeld theorem, all sets which are uniformly bounded
and equicontinuous are relative compact. For 0 < a < % let us consider the Hoélder norm

on Cyl0,1]
e sy O]

o<s<t<1 |t —s|*
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But it is well-known that the paths of the Brownian motion are a-Hoélder continuous for
every a < 1, so that | - |, is finite Q-almost everywhere. Indeed, K = {|¢|a < \E/c}
are relative compact because of 5.2, so we have that

VL
kel

L

Q[KS] =P [y\/éwya > =P {eolwli > eﬂ <E [eolwli} e (5.10)

the last inequality is due to Markov inequality. We need to show that
E [6C\W\§] =c <00 (5.11)
There are several ways one can establish the property 5.11. The method which will
adopt here will be to construct a function ® : © — [0, oo] such that:
(1) @ is sub-additive
(2) ®(ab) =|a|® (0) for all a € R and 6 € O.
(3) P{O: () <oo}]=1

In order to construct such a ® and to pass from the fact that it exists to 5.9, we will make
use of the following beatiful and powerful estimate due to X. Fernique.

Theorem 5.2. (Fernique). Let X be a real seperable Fréchét space and ® : X — [0,00] a
measurable function sub-additive function with the property that ® (ax) = |a|® () for all
a € R and x € X. Next define p a probability measure on (X,Bx) with the property that
u? on (XQ,BXQ) is invariant under the transformation:

F(z,y) = <$\%y x\;iy) € X2,

If ul{zx : ® (x) < oo}] =1 then there exists an a > 0 for which

/ ea{)(x)gdu (r) < 0.
X

Remark 5.3. Let us see how this result allows us to derive 5.11. Indeed, it is enough to
apply it to the semi-norm ® = |- |,, 0 < a < 1/2 and for X = Cy[0,1], u is the Wiener
measure. Since we know that the paths of the Brownian motion are a-Holder continuous
for every a < 1/2 it holds that ® < oo p-a.s.. The invariance property of u ® p under
F also comes easily from the fact that p ® p is the law on C x C' of a bi-dimensional
Brownian motion W = (W1, Wa) and Wiener measure is invariant under the 7 rotation.
To prove the invariance property is equivalent to show that if

Vi (t) = ;5 (W1 () + Wa (1), Val(t) = ¢1§ (W1 () — W (1))

then V.= (V1, Vo) is still a bi-dimensional Brownian motion, which is immediate as V has
the same finite dimensional distributions of W.

Proof. Given that 0 < s <t and A= {(z,y) € X?: ¢ (z) < 5,0 (1)) >t} we have

pRp(A)=pepu ({(w,y);qﬁ (i;;) <s,¢ (x;;) > t})
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:M®M({(~’U7Z/)§¢( y) < V25,6 (z +y) >\ft})
<nen({lo@ -~ () < Vs 0@ +6() > Vit})

<pep ({@y): —max (6 (2),6 ) +min (6 (@), 6 () > —V2s,
max (6 (2) 6 (y) +min (6 (2) + 6 (1) > V2

:<u<x:¢(w)2\}§(t—8)>)2-

In the third inequality, we used the argument that

¢ (2) — ¢ (y) | = max (¢ (x), ¢ (y)) —min (¢ (), ¢ (y)) -

|/\
/\
f—/H
R
“i
£
’.3
%\
—~~
<
=
vV
—
—~
~
|
»
S~—
N————

Thus we have,

M({fc=¢(:ﬂ)Ss})-u({y:(b(y)zt})ﬁ(u({qub(x)z1(75S)}>)2- (5.12)

Since ¢ is finite p-a.s. there exists s > 0 such that

p{z:o(x) <s})>

l\)\i—‘

Thus we define by recurrence a sequence (t,),, by

to=8 tn=V21+s

e ()

By 5.12 we derive that

p(d<s)p(d>ty) < (u(d>tn))”.

Iterating this inequality we obtain:

p(d=>tn) <|H (¢ = tn-1) — 2"
plo<s) = | nl@<s)
<1

x)>s
where ¢ = —log [Zgigmggsg]

and therefore

/ e“¢2(x)udx < / ead’Q(I),udx—i— / eaq’z(x)udx.
X {e<Vvb} {o=>Vvb}

<eab

o1



w(dz) < / “‘1’2(1)/; dx
A¢>\/} Z {b2n<g2<b2n+1} ()

< Z ab2nt! {¢2 > an})

Since 2 < b2" 5.12 gives

ag?(x) = ab2nt1
e p(dr) <y e p(e > tn)
/{¢§¢B} 2

n=1

oo
<> (o zs) e
n=1

which for 2ab < ¢ gives convergent series and this concluded the proof. O

Using the above theorem, the statement 5.10 holds and so the family of measures {Q,}
is exponential tight and the statement 5.9 holds too. Therefore, by 5.8 we have the proper
upper bound for closed sets.

Lower bound
Let ¢ € H'. We want to prove that

lim i log Qc[Bs (4)] > — inf, A" (¢)

Bjs (v) being the open ball radius § centered at ¢ in the uniform norm. The idea is, as
always for a lower bound, based in a change of measure.

Qc[Bs ()] = P[V/eW € B; (1)] = P[V/eW € B; (¢)]

= g

By Gisranov theorem the law of (W; — ¥\/€) =
measure Q which is given by:

has a density with respect to Wiener

dQcy 1t
ot =ew | 2 [, - / s

A*(w)

Thus,
d@6,¢

dQ.

P[Ve (W - d’) € By (0)] = Qe y[B; (0)] = / a0,

Ve

_ ot _A*(¢))
- /B . exp( NG /0 dudu, ~ 21 ag,
A* (1) 1 [t
=e - xp | — sdws | dQe
‘ /B(;(O)ep<\ﬁ/ow w) ¢
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— QB (O)]m /35(0) exp (\2 /01¢8de) dQ.

_Aw) 1 1 [t
>e < QBs(0)] epre[Ba(O)]/B&(o) <ﬁ/@ wsdws> dQ..

In the last display the inequality is due to Jensen’s inequality. Furthermore,

/Bs(o) <\2 /o1 ¢5dw8> dQe =0

since of Brownian motion symmetry W ~ —W and Qc[Bs (0)] — 1 as € — 0 since

Qc[B5 (0)] = P[VeW € Bs (0)] = P[Oiltlgl [VeW;| < 4]

1) 1)
=Pl sup [Wi| < —=|=1-P| sup |W;| > —].
[ogtlg)l‘ t’ \@] [ogtlz)ly t| \/E]
But
1)

o 5
Pl sup |W¢| > —=| =P sup Wy > —| +P| inf W; < ——
[ sup (Wil > 7] = Bl swp Wi > ]+ Bl inf Wi <~ 7]
1)

1)
=P sup Wy > —|+P|— sup —W; < ——
{ogtlg)l ! \/E] [ 0921 ! \ﬁ]

1)
= 2P| sup Wy > — since W ~ —W
[Ogtlg)l ! \ﬁ]

2
We consider the exponential martingale for A > 0: A=t — M; then

o 52
Pl sup Wy > —] <P[sup M; > Vet 1

0<t<1 Ve 0<t<1
PRI PRI
=Ple VT sup My > 1) <e VETTE[M]
0<t<1

which leads to
1
Pl sup |[Wi| > —=] <2e 2V&

0<t<1 Ve

Otherwise, by reflection principle we have that

5 o0 z2 dZU
P| su W>:21P’W>:2/ e 2 .
[ogtgl ! ﬁ] Ug ﬁ] % V2T
Therefore,
_AT(W)
Qe[Bs ()] > e«
and

limnf clog Qc[Bs (1) > — inf A" ().
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We now give some examples of Schilder theorem.
First example
Suppose that W is 1-dimensional Brownian motion. We estimate the rate of decay of the
probability

P[ sup W; > M]|
0<t<1

as M — oo

Proof.

1 1
Pl sup Wy > M| =P[— sup W; > 1] =P[sup —W; > 1]
0<t<1 0<t<1 0<t<1

We will use Schilder’s theorem to prove that
1 : .
P[—W € A] < e~ fvea A" (¥)

where

A={yY ¢y eCl0,1],¢(t) > 1, forsome ¢>1}

So, we have to estimate the infimumm over A of A* (¢)) = % fol |4)s|2ds.
First case if ¢ (t) = 1 then by Cauchy-Schwartz inequality

. - 1
1_/0 wsdsgﬁ(/o \wslzds) < Vt|Ylu

then 4y > J2.S0,A" (v) = LI 1s|2ds = S|aplp < & for t = 1.

Second case if ¢ (t) = t = 1 (t) = 1. This means that A*(¢)) = %fol ds = 1 then
infypea A" (¢) = % But A is a closed set of paths then from the upper bound of Schilder
theorem we have that

1
li 5 logP[—W € A] < — inf A ——.
i sup s log [ € Al [nf, ¥) < =35
Since the infimum is attained into A we have that
inf A* = inf A* .
[nf, (%) Jnf, (%)
Then we get that
1
lim sup log Pjsup Wy > M| = ——
M—c0 t<1 2
However, by the reflection principle we get that
P |sup W, < M] = 2P[W; < 1] = 2 / e d =
sup Wy < = <l]=2——= €T~ 7.
ot t 1 ﬁ

O]

Second example
Suppose that W is a d-dimensional Brownian motion, D is an open set containing the
origin. We define
T=inf{t: W; ¢ D}.

We estimate the exponential rate of decay towards 0 of the probability P[r < ¢] as t — 0.
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Proof. First, we observe that

{r <t} ={w,Ws(w) ¢ D for some s <t}

and V\[;Sg 4 Ws. Thus,

{r <t} ={w,Ws(w) ¢ D for some s <t}

= {w, W (w) ¢ D for some s<1}

:{\/i<‘f;? ¢ D for some sgl}

= {\/ZW € AD}

where Ap = {¢,1 (s) ¢ D for some s < 1}. Then we can apply Schilder’s theorem and
we have to compute infyca, A* (¢). Let x € 0D be the point inthe boundary of D which
minimizes the distance from the origin. If ¢ (¢) = tx is the line segment joining the origin
to x then A* () = %fol [)2ds = @

If ¢ € H is any path such that ¢ (t) = z € 9D then

t .
/ hsds
0
|

Lt 1
K@) =5 [ WPds = 5lul > G-

z =

<Vi < / |¢s\2ds)2 < Vil

So,

2
2
and infyca, A" (¢) = % where d = dist (x,0D). Therefore,

d2
liminf¢logP[r < t] = limsuptlogP[r <t] = ——.
t—0 t—0 2
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Chapter 6

Two applications of Schilder’s
theorem

6.1 Strassen theorem

Let P be the Wiener measure on the space 2 = C (([0,1)) of continuous functions on [0, 1]
that starts from the point 0 at time 0. For n > 3 we define the rescaled process:

W (nt W
(W) = 220
Vvnloglogn  /nloglogn

(6.1)

As n — o0, &, (t,W) — 0 in probability with respect to P. But, the convergence will
not be almost sure. Our first goal in this section will be to show how Schilder’s theorem
provides the key estimates in the proof of Strassen’s law of the iterated logarithm.

Remark 6.1. The original proof of Strassen made use of some special feature of Brownian
motion, the exact knowledge of its distribution and the reflection principle.

Theorem 6.1. (Strassen)For n > 3 define:

W (nt)
vnloglogn’

and set K = {@ZJ €EH: %fol 1| 2ds < 1} then for P-almost sure the sequence {&, (+)}3°

has the following property:
The family {&, (+) : n > 3} is relative compact and K is its limit set.

&n (8, W) = (t,W) €[0,1] x ©.

Corollary 6.1. For every ¢ € K there is a subsequence of {&, (-)}3° which converges to
Y in ©.
Remark 6.2. Notice that {£, (-)},>3 contains in a compressed form the whole sample

path W (t).

Proof. The proof consists in three applications of the Borel-Cantelli lemma, the large
deviations estimates being necessary in order to prove that the series converge or diverge.
(i) First we shall prove that all limit points of {&, (-)},~5 lie in K as n — oo. If K5 is a
neighborhood of size § around K then for almost all w &, (-)€Ks for sufficiently large n.
We need to show that for every § > 0 there exists n > ng (w) such that

d(&, (w),K)<d Vn>ng
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This is proved in two steps.

Firstly, we sample &, (-) along a discrete sequence n = p™ for some p > 1 and show that al-
most surely, for any such p, {,m (-) € K5 for sufficiently large n. K5 = {¢p € Co : d (¢, K) < 6},
is an open set thus K is a closed set.

Moreover, inf (A* () ;9 ¢ Ks5) > 1. Indeed, this is obvious since the good rate function
A* always attains its infimum of the closed sets. Thus, there exists ¢ € K§ such that

inf (A" (), & K5) = A" (o) = A > L.

The key remark here is that % L.
Thus, for every § > 0 and from Schilder’s theorem for any closed set

P[épm ¢ K5] = P[fpm S Kg]
=P B € K§
v/ log (log p™)
< M7 (¥) log(log p™)

< e/\ log(m log p)

where P is the Wiener measure scaled by

1 1
Vog (log pm) — Vlogm'

Therefore we obtain that

since

1
S B oo forall A1
m

m=1

This requires just the Borel-Cantelli lemma. We have just showed that for almost w € Cy
there exists mg = mg (w) such that:

> Pley (w) € K5 < o0 (62)
m=1

then
Pllimsup §pm (w) € K§] = 0.

m—ro0

The second step is to show that the price for sampling is not too much. To this end, we
need to control the behavior of (,) for n between two numbers of the form p™. More
precisely, we need to prove the following lemma.

Lemma 6.1. Let § > 0 be fizred. There exists p > 1 such that for almost every w there
exists my = my (w) such that Ym > my

Y, = sup || (0) = &om () [loo < 6.
p'm<n<pm+1
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Remark 6.3. This lemma concludes the proof of the first part of the proof since obviously
for m > min {mg, m1} one has that

d(&n (), K)<d(Em,K)+6<20

where p™ < n < pmtl,

Proof. Let us define for simplicity ¢ (t) = v/tloglogt. Then one has that
Wnt met

¢(n) ¢ (p™)
Wt met met Wﬂmt

S om) d(n) o) H(m)
_ Wnt - met met ¢ (Pm) - . gnm 7,Mm
- it (S 1) = s

gn (t) - §pm (t) =

Let us start we the second term of the right side.

nwmesmwmh

From the first part we know that {,» € K so that there exists M > 0 such that || m || <
M since K is compact and thus bounded. Also an elemantary computation gives us

d (1) =1

Thus for m large we have that [|R™" || < M (1 - 7) < 0.As for the term S™™ we have
that
n,m Wnt W pmt Wnt — met ¢ (perl) m+1 pm+1
15 = = &y €
(n) (P™) ¢ (p™) z

m—+1

Since p™ < n < p then the quotient between the two time instants t# and % is

comprised between and 1. Thus

m+1 pm+1

M sup ‘ ff _ 58

18" ™o = sup [S;""| <
> 0<t<1 ! ¢ (p™) Ogtgl,%gsﬁt

We already know that

m+1
¢ (p m)) _

, using Borel-Cantelli lemma. So,

LR (p

Now we will show that IP’[||S”’”||+OO>6

m-+1

15"l > 3] <P sup |&"" =" > 6| = Plgnn € 4]

0<t<1,L <s<t

where A is the set of paths

. pm+1 m—+41
A=JvecCy, sw  |g" e
0§t§1,%§s§t
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So by Schilder’s theorem in order to estimate the behavior of P[{,m+1 € A] we need to
compute A* (1) over A. Since

Plg,m1 € A] < e~ ¢(P ) infyca A7 (¥).

Recall that \* (¢p) = %fol |1,Z.)S|2ds and 0 <t <1, % < s < t. Therefore,

< V=l ([ 1)’

< 2MA* () =24t <1 - ;)A () < 2ﬁA* ).

1
A () > P
44/p—1
which means that for every 6 > 0 the infimum over A can be made as large as we want,
provided that p is close to 1. In particular, if p is small enough then the infimum of A*
over A is larger than 1, so that the series

t-
gs\wt—ws!—‘/o ducl

Then

x
Zefd’(/)mﬂ)infwezq A W) « 5.
0

By Borel-Cantelli lemma this implies that for every ¢ > 0 there exists mo = mg (w) such
that |[S™™ (w)| > ¢ for all m > mg. This combined with 6.3 and 6.1 concludes the proof.
O

One of the consequences of the result proved in the first part is that for any continuous
functional F': Q — R almost surely,
limsup F' (§pm (+)) < sup F ()
m—o0 PYeK
(ii) We need to prove that every ¢ € K is a limit point of {§, ()},>3. More precisely , we

want to show that for every ¢) € K such that %fol |1hs|ds < 1 there exists (ny,), such that
l€n, — Ylloc = 00 as k — oo:

Pld (&n,,,%) < ¢ for infinite indices n| = 1.

It is sufficient to show that
> Pld(&m — 1) < 8] = o0.
m=1

Thus if the events {d ({,m — 1)) < d} were independent the result will be immediate by
second lemma of Borel-Cantelli. Unfortunately, these events are not independent, so we
need to construct independent sequences. To this end, let us define a,, = p™ — p™ !,

O0<t<l
1

Ym (1) = ===
vy loglog a,
w (pm_lt + amt) -w (pm_l): increments, which consisting, as m varies, of families of

independent variables and y,, (t) is a Brownian motion scaled by W.
Therefore

w (pm_lt + amt) — W (pm_l)]

Pld (ym (1) ,4) < 0] = Plllym (1) — 9|} <]
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= P[sup [ym (t) — | < 4]
= Ply,, € 4]

such that A = {f € C([0,1]) : |f — | < 6} is open set, then by Schilder’s theorem for any
open set we obtain that

Plym () € A] < e~ (Wo)log(logam)

< e—)\log(log am) _ 1

(log am)’\'
Then -
> Plym () € Al =00
m=1
since
> 1
—_— = h 1.
Z (log an) oo when A<

m=1
Applying Borel-Cantelli lemma y,, (-) returns infinitely often to the ¢ neighborhood of .
The last part of the proof is to show that almost surely

limsup [|§pm () = ym () | < €(p).-

m—r 00

m m—1 —apmt) — m—1
1€y (1) — g ()| = W (p™t) (W (p" 1t t) =W (p )]‘

Vv p™ loglog p™ B am loglog a,,
| W(em) Wmt) W) W (" awmt) =0 (0" )]
Vpmloglog p™  +aplogloga,  vamloglogan, Van loglog ay,

LG W () ’ . (W (p™t) =W (p"™ 't + amt) + W (p™ )]

< i
- ‘ Vpmloglog p™  vaploglogam | +/amloglogay,
1 1 n 1
Vpmloglog p™  /amloglogam | +/amloglogay,
1
W (")
vVam loglog a,

p™ loglog p™ | p" loglog p™
< —_— -1 m (t —_— & m () —

- ‘ am loglog a, “g’) )]+ am loglog a,, &om (1)
L [P loglog p ' W (p™) ‘
am loglog an, |v/p™ loglog p™
p™ log log p™ [ p™ log log p™ 1 1

< _— -1 m (T — |&m (t) = Epm | — 1——|t
—‘ amloglogam “gp ()‘—i_ amloglogam Eﬂ () €p p+ P

p™ log log p™

< W (™) | W (™) =W (5" + amt) |

W (pm_1 + amt)
Vp" loglog p™

am loglog ay,

Taking the supremum over 0 <t <1

p™ log log p™
m (1) —ym (1) || < |/ 288 ¢
[€pm (t) —y ()II_‘ aToglog a, |||€pm()||
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p™ log log p™ (1)
+yf——— | sup [Emm (t) —Em (8) ]|+ Epm | =
o, |22, 1 =6 G116

P P 1
757l Ol 5L s 6 0= )+ ()
1
<| V52 s+ 2 s () + s - v o)
p— YeEK p—1 lyex \p jt—s|<1
=€(p).
Then € (p) — 0 as p — oo. This completes the proof. O

6.2 The Freidlin-Wentzel theory

Behavior of diffusions with a small noise parameter:

The results of Section 5 are extended here to the case of strong solutions of stochastic
differential equations. Let W; be a d-dimensional Brownian motion and let A; be the
o-algebra generated by the random variables Wy for s < t. We consider the stochastic
differential equation

in RY. Here b(X;) = (b (2),...,b%(2)) is a vector in R? and o (z) = U§ (z) is an invertible
matrix having d columns and d rows.

We assume that the coefficients b (z), o (z) satisfy the following conditions:

1) S0 (@) =¥ () [+ 3, 10) (@) — o (y) | < Kz =y,

(i) 316 (@) |+ ;5 10f (2) | < K (1+ ),

under these conditions it can be proved that the above SDE 6.4 has a unique solution
which X[ (w), t > 0 which is continuous with probability one, the random variable X} (w)
is measurable with respect to the o-algebra N; for every t > 0, and f;E|X§”|2dt < oo for
any 0 < a < b.

The corresponding generator to 6.4 is

DI P TS P AR e
N 2 al'la.rj - al'i’

@] %

where a¥ () = o (z) o7 () is a symmetric matrix valued.

Moreover, we assume that the diffusions coefficients are uniformly elliptic.

Now we are interested in the situation where L depends on a small parameter € that is
small.

In particular, the diffusion X°€ is a random perturbation of the deterministic system:

dX (t)
dt
We consider the following perturbation of the above deterministic system.

=b(X (1), X(0)=az. (6.5)

AX§ = be (XE) dt + /eoe (X£) dW; (6.6)
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if € = 0 then the above SDE transformed to a deterministic function.
Let @, be the measure induced by X, (-) on the space of R%valued continuous functions
on some arbitrary but finite interval.
As e — 0, Q. converges weakly to the degenerate measure concentrated at a single trajec-
tory zo (t) which solves uniquely the O.D.E 6.5: Xq (t) = b(Xq (t)). Then we have that
@6 = 0y, as € = 0. This means that

limP{ sup | XS — X9 > 5} =0
€ 0<s<1

Once again, we are dealing with a family for which it is reasonable to ask if it satisfies
large deviation principle. First we consider the relatively simple situation. Let {Xf}
be the diffusion process that is the unique strong solution of the SDE

>0

dX5 =b(X5)dt + edWy (6.7)
and the coefficient b satisfies the following conditions
(i) b ()~ b(y) | < K|z —y|
(i) [b(z)| <C

for K, C are constants. Let Q. denote the measure induced by the strong solution {Xf}
of 6.7 on Cy|0,1] then Q. = Q. o F~! where Q. is the measure induced by {y/eW} and the
deterministic map F : Cy[0,1] — Cy|0, 1] is defined by f = F'(g) where f is the unique
continuous solution of

f<t>=/0b<f<s>>ds+g<t>, te (o1,

Then the LDP associated with {Xf} is a direct application of the contraction principle
with respect to the map F' and Schilder’s theorem 5.1.

Theorem 6.2. {X[}  satisfies the LDP in Cy[0, 1] with the good rate function

/|f ) = b(f () [2dt fe’H'

otherwise
Proof. We shall prove that
F:\eW, — X; is continuous.

Indeed
F(g)=f —:17—1—/17 ds+\f/ dWy
—x—l—/b(f())ds—i—/ (VeWs)

—x+/b ))ds+g(t).
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We assume that x = 0, then

FO=Fw)= [ b7Eds+o0 el
Therefore, for every f1, fo € Co ([O, 1]; Rd) we define
fi)=F(n@®), fot)=F(9().
Hence, we have that
AO=RO= [ GAE) =R E)d+0 0 -0,

Now consider for g1, g2 € Cp[0, 1] and Lipshitz continuity of b, we have

Ao (t |§/wﬁ ﬁ(M@Hmogz|<K/hﬁ f2.(5) [ds +]g1 ()2 ()

<K/ |f1 (s (s)|ds + 8 < skt
The last inequality is due to Gronwall inequality. So
Ifr = fol| < 6

and the continuity of F' is now established.
Now, we combine Schilder’s theorem and contraction principle to obtain our result. Firstly
we obtain a lower bound for every G open set in C[0, 1].

lim inf log e log Q. (G) = liminf elog Q. o F~1 (@)
e—0 e—0

> —}Ielgf(f)

I ds.
()= gEHf F(Q)Q/ 9(s |

We observe that F' is an injection and g € H which implies that f = F (g) is differentiable
almost everywhere with

where

f@)y=b(f®)+gt),  f(0)=0.
t

v@wimnsx/Lﬂ@m+g@g&m
0

since g € H we have that f € H. Similarly, if F' is a closed set of Cp ([0, 1]; R?) we obtain
an upper bound

limsupelo @E F)<-—inf I .
nsupelog e (F) <~ nf 1(f)

O

In other words, Schilder’s theorem leads directly to a large deviation result for {@e te> 0}.

The precceding example of Freidlin-Wentzel’s theory is as sipmle as because F' is contin-
uous and its inverse is easy to compute. In general, the maps involved are not only more
complicated but are not even continuous. To be more precise, the following case describes
how to solve the problem of a function that is not continuous but measurable.

Let {X[} be the difussion process that is the unique solution of the SDE

dXE = b(XE)dt + eo (XO)dW,, 0<t<1, X§=a. (6.9)
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Theorem 6.3. If b,0 are uniformly bounded and Lipschitz continuous functions then
{X§} the unique strong solution of 6.9 satisfies LDP on C|0, 1] with good rate function

inf / 19 (s) |*ds feH
1, (f) = {gE’H f(t —:c—i—fo b(f(s)) ds—l—fo s)ds} 2

00 otherwise

Remark 6.4. It suffices to proof the theorem for xf = x = 0 since x may always be moved
to the origin by a translation of coordinates. Then the measure Q. of X€ is supported on

Co ([0,1]).

Proof. The proof here is based on approximating the process Xf by X, in the following
way. For each s > 0 we construct an approximate solution of 6.9 as follows

X — 4 /0 b (XM (mp (5))) ds + /e /0 o (X5 (7 (5))) AW (6.10)

where 7, (s) = [T;—S} is Euler approximations and X§" =0, ¢ € [0,1]. In fact, we amounts
to freezing the coefficients over the time interval [k krfll] and then updating them every

% unit of time. The advantage in using X, ¢ () is that in fact

F" : \/eWy — X" continuous.

More precisely, let the map F™ defined by F" (g) = h where

=0 () (G) (=3)+o 0 () (o= ()

and t € [E Btk 1. — 1, h(0) = 0. We observe that F™ : Cy[0,1] — Cp[0, 1]

and X" = F" (\fW By assumptlons of b(-),o (-) and that g1,g2 € Cp[0,1] we have
that F"™ is continuous. Indeed,

P 0 = " (0) | = I 0 =01 <0 (1 (£)) = (na (£)) - £
o (m(5)) = (v (%)) s 0 -
<cllm (%)=t (5)|+nw-no)|

op (0~ ha(®)] < |1 (£) = (£)] 4 1on - el

te[ﬁ,ﬁ]
So the continuity of F™ with respect to the supremum norm is established by iterating
this bound over £ =0,1,...,n — 1.
Now let F' defined by f = F'(g) as the unique solution of the integral

_.I_

then

= [oeenast [ oo o<i<t
We shall show that for every ¢ < oo

lim  sup [[F"(g) = F(g)[| =0 (6.11)
"7 {gillgll<c}
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To this end, we fix ¢ < 00, g € H and ||g|| < c then

-3 (50) [0 () 2o (5) s

by boundedness of b, 0 and the Cauchy-Schwartz inequality in the second part of the right
side we have that

h(t) — h (“:ﬂ) | < Ot + O

and
[nt]

-1 (I <t 1

where 9§, is independent of g. Therefore

b <>>ds+/t draeas—([o(n(B) )asr [o(n (")) 5000s)|

sup
0<t<1

[f(O)=h ()] =

)
< ( >> ‘ < (f“)—f’(h({?ls])))g(s)ds
S/o b= < (H)l o7 )= (0] 9010

§C</Ot f(s)—=nh ) ( ‘f h(?)’g(s)fds)%
(n]> ds(14¢).
Thus
FO) R0 < “h (“;‘f) s+ O < 0B

the last inequality is due to Cronwall inequality. So,

sup [|[E" (9) = F(g) || < VCOne”

{g:llgll2e<c}

and the 6.11 is established. The proof of theorem is completed by proving that for any
6 >0, X" are exponentially good approximations of X¢.

lim limsupelogP[ sup |X™€(t) — X“(t)|| > d] = —o0 (6.12)
n=00 0 0<t<1
These estimates are called superexponential estimates. ]

We prove the following lemma in which the proof of 6.12 is based.

Lemma 6.2. Let z (t) be a process satisfying
dz (t) = btdt + \EUtth

where zg is deterministic. Let o € [0, 1] be a stopping time with respect to the filtration of
{Wi} , 10 € ]0,1]. Suppose that the coefficients of the diffusion are uniformly bounded

1
|oe| < M (p* + |2]*)2
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1
|be] < B (p? + [2]%)
where B, p, M are constants and t € [0,71]. Then for any § >0 and e <1

2 2
+ |20
P[ sup [z| > 6] < % K
tE[O,Tﬂ 1Y +5

where K = 2B + M? (2 + d).
1

Proof. Let uy = (z;) and ¢ (y) = (p2 + |y[2) . Applying Ito’s formula in u; we have that

duy = Vo (z) dzy + %Tr[atagDZ (z¢)]dt

- (w (2) by + gTr[atagD% (zt)]) dt + /eo Vo (z) AW,
— g(t)dt + h(t) dW,.

Note that

1 2¢
Vo (y) = 6102_1_(?2‘23/-

1 2¢ ()

B (p* + |z 12
€ + 27| (1)

|2t

V6 (4) b < ]

Yy 2 gle0)

EpQ + |22

Then

€
where K = 2b+ M? (d + 2) constant and

|h(t)| < —F=u.
€

Ve

Now, fix § > 0 we define the stopping time 7o := inf {t: |z;| > d} A 71. Then g¢;, hy are
uniformly bounded on [0, 73], hidW; is a martingale and wu; — f(f gsds is a continuous
martingale on [0, 72]. So we can apply Doob’s theorem

t
Efuinr, — / gsds] = Elug]
0

tAT2
Eluipr,] = up + E [/ gsds]
0

tATo K
o+E [/ usds}
0 €

K tAT2
=ug+ —E [/ ’LLS/\Tst:|
€ 0
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K t
< wug+ IE [/ usATzds}
=up + / us/\Tg

< upee t
K
Elur,| = Eluiag,] < ugee .

Therefore, since ¢ is monotone increasing in |y|

E[¢ (27,)] _ Efur,]
¢ (9) ¢ (0)

the last inequality is due to Chebyshev inequality. Finally,

Pllzry| < 6] =Pl¢ (2r,) < ¢ (5)] <

1
2 2\ ©
up K p+|zo\>€ K
Pllzn| < 6] =P sup |z¢| > 9] < ee:< ee.
el <81 = Pl sup |21 201 < e = (275

Now we proceed in the proof of 6.12.

Lemma 6.3. For any 0 > 0, the solutions X, (-) and X¢ (-) of

Xpt = [0 () ds 4+ VE [0 (X (o () W,

and

t t
X{ —x—i—/ b(X;)ds—i—\/E/ o (X5)dWy
0 0
respectively, satisfy:

lim limsupelogP[ sup || X" (t) — X (¢)] > 0] = —
o0 e—0 0<t<1

Proof. We define z; = X;" — X{ and for any p > 0 the stopping time
71 = inf {t X" = X > p} A 1. For the process z; we have that

= X - X
k+1 k41
-/ (b( €">—b( m>)dt+f/
oo o

[

n

where zg = 0. Then z; satisfies the conditions of the lemma 6.2 and it follows that

1
€,n €,n e ¢(20)>6
Pl sup | X" — X7, | >0 <e-
[ogtgpn‘ ! Bat= < <¢(5)

with K constant and

lim sup lim sup elog P[ sup |X;" — X7 | > 6] = —oc.
P=0p>1 €0 0<t<m n
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We want to show that

lim lim sup € log P| sup |X - X{| > 6] = —c0.
0<

n—0o0 ¢ 0

Now since

(= xzap € n <o s x; - xil > o)

0<t<m
the proof is completed as soon as we show that

lim limsupelogP[ sup |X;" — X7§,,| > 0] = —oc.
N0 0 0<t<1 2

By boundedness of |b(-)|,|o (+)| we have

\Xf’n an?]]<C< +\f max sup ’W k—Wk|)
=0,...,n— 10< <1 n

— —mn

Hence,

P[ sup |X€n—X6"\<p]<mIP[<S+C\/E sup |W, K—WK> pl

0<tL1 0<3<,

c
n

p_
—Wk| <
0<s<t st %| ~ Cye
c

p— ¢
=nP[ sup |Ws| > —2]
0<s<t Cye

1 (P*%)Q"
<2ne 2 <%

=nP[ sup |W ]

the last inequality is due to 5.13 and the proof is completed. ]

The following theorem strengthens Theorem 6.3 by allowing for ¢ dependent initial
conditions.

Theorem 6.4. Assume the conditions of Theorem 6.3. Let {X[Y} denote the solution of
dX§ = b(X{)dt + Veo (X5) dW,

for the initial condition Xo = y. Then for any compact K C R% and any closed F C
¢ ([0,1])

lim sup elog sup P[X“Y € F| < —inf I, (f). (6.13)
e—0 yeK fer

liminf elog inf P XY € G] > — f I, 6.14

iminf elog inf P| ] = 52;3}2@ (f)- (6.14)

Proof. Let —Ix = —infrep I, (f). We fix 6 > 0 and I8 = (Ig —0) A %. Then for any
x € K there is ¢, such that for every € < €,
elog sup P[XY e F]<—I¢.
yeBEz(x)

But x1,22,...,2, € K and K is compact so K C Ule Be,. (7;). Then we choose € <
mlnz 1,2,k €x;

14

elogsup P[X“Y € F] < —I.
yeK

By first considering € — 0 and the § — 0 we obtain 6.13. The same arguments works in
order to prove tha lower bound 6.14. O
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Chapter 7

Exit problem

7.1 A solution through Freidlin-Wentzel theory

Remark 7.1. ”"The basic idea is that among a bunch of very unlikely things the least
unlikely thing is the most likely to occur first.”

Let us consider the problem of exit from a domain. We consider the system
dXf =b(Xf)dt + Veo (X{)dW,;,  XfeR? X§=ux(7.1)

in the open, bounded G C R? and let OG be its boundary, which we assume to be
smooth for the sake of simplicity, b(-), o (-) are uniformly Lipschitz continuous functions
of d-dimensions and W is d-dimensional Brownian motion. In this section we shall assume
that b(z) - n(x) < 0 for z € G, where n(z) is the exterior normal to the boundary of
G, so that the curves x (t) cannot leave G for x € G. The trajectories of the O.D.E.
system 6.5 vanishes within G only at one point, the equilibrium point. More precisely,
we assume that there is a globally stable equilibrium point 0 in G such that for every
x € G the solution z (t) of 6.5 lies in G for t > 0 and z(t) - 0 ast — oco. Ase — 0
the trajectories of the diffusion process are close to the deterministic trajectories with a
very high probability. In the limit the deterministic trajectory doesn’t exit at all from the
set GG so the exit time and the exit place are not defined. We need a new formulation to
calculate the limit of the hitting distribution on dG as € — 0 . If we define the stopping
time

¢ =1inf{t: X; ¢ G}

then events like this {7¢ < T'} are rare events, indeed
Plr¢<T] =0 ase—0

for any T' < oo, so we are dealing with a family that is reasonable to ask about large
deviation principle. Motivated by Theorem 6.3, we define the cost function

V(y,z,t) & inf I 7.2
(.20 = dnf e () (7.2)

1 t
= inf = / |gs|ds.
9EL2([0,t])): fe=2, fa=y+ [ b(fu)du+ [§ o(fu)gdu 2 Jo

where I, ; is the good rate function of 6.3 which controls the LDP associated with 7.1.
Heuristicaly V' (y, z,t) is the cost of forcing the system 7.1to be at the point z at time t
when starting at y. We define

Vi(y,2) = infV(y,2,1)

69



The function V (0, z) is called the quasi-potential. The picture that emerges is that a
typical path will go quickly near the equilibrium point, wander around it for exponentially
long time making periodic futile short lived attempts to get out which are determined
by inf,coq V (0, z). Finally a successful excursion takes place. The rationale here is that
any excursion off the stable point = 0 has an overwhelmingly high probability of being
pulled back there. What is matter is to find the path for a direct, fast exit due to a rare
segment in the Brownian motion’s path.

The following assumptions prevail throghout this section:

A-1 The unique equilibrium point in G of the d-dimensional ordinary differential equation

fr=0(f) (7.3)

is at 0 € GG, and
foeG=Vt>0,f €Gandlimy o ft =0

A-2 All the trajectories of the deterministic system 7.3 starting at fy € G converge to 0
as t — oo.

A-3V 2 ‘nfzeag \% (0, Z) < o0

A-4 There exists M < oo such that for all p > 0 small enough and all z,y with |z — y| <
|z — 2| + |y — 2| < p for some z € G U {0} there is a function g € Ly such that ||g|| < M
where

t t
ft=x+/0 b(fs)ds+/0 o (£2) gds.

Remark 7.2. Assumption A-3 is natural otherwise all points on OG are equally unilikely
on the large deviation scale. Assumption A-4 is related to the controlability of system 7.1
where a smooth controls replaces the Brownian motion. Also this assumption implies the
following useful continuity property.

Lemma 7.1. Assume the condition of A-4. For any § > 0, there exists p > 0 small
enough such that

sup inf V (x,y,t) <6 7.4
S (z,y,t) (7.4)
sup inf V(z,y,t) <9. (7.5)

zyiinf,coa{|ly—2+z—z|<p} LE01]

Throughout this section we also denote as B, = {z : |z| < p} and S, = {z : |z| = p}.
The first lemma gives a uniform lower bound on the probability of exit from G.

Lemma 7.2. For any n > 0 and p > 0 small enough, there is T' < co such that
liminf elog inf P,[r¢ < T] > — (V
migtels ff P <71 >~ (V )

Proof. We fix n > 0 and p > 0 then from lemma 7.1

sup inf V (z,0,t).
zeB, t€[0,1]

Then there exists a path * of length ¢, < 1 such that

I < g,where YF =z and ¢f =0.

From assumption A-3 there exists z ¢ G for t < co and the distance A of z from G is
positive. Then there exsists a path ¢ € C ([0, 7]) such that

Ior(¢) <V + gwhere ¢o =0 and ¢ = 2
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Now we construct the following path ¢® by concatenating ©* and ¢, in that order, and
extending the resulting function to be of length Ty = T 4 1 by following the trajectory of
7.3 after reaching z. Then it follows that

2n

I:z:,To(¢ )<V+§

Consider the set

ve U foecomyv-si<3).

z€B,

We observe that ¥ is an open subset of C (]0,7p]) that contains the functions {¢*}
Therefore by Theorem 6.3

z€B,"

lim sup € log mf P,[ X € ¥] > — sup 1nf I, (¢)
e—0 zeB, YV

ZIGBP Ix,To (be) > = (V + 77) .
But {7¢ < Tp} D {X¢ € ¥}. Since if ) € ¥ then vy ¢ G for some t € [0,Ty] and the proof

is complete. ]

Next notice that the probability the diffusion 7.1 wanders in G for an arbitrary long
time without hitting a small meighborhood of 0 is exponential negligible. More precisely,let

o, =inf{t: X; € B,UG} (7.6)
where B, C G. Then
lim lim sup log sup P[0, > t] = —o0. (7.7)
= 50 zeG

Now we give an upper bound relates the quasi-potential with the probability the excursion
started from a small sphere of 0 hits a given subset of G before hitting an even smaller
sphere.

Lemma 7.3. For any closed set N C 0G

limsupelog sup P,[X; > 1] < — inf V (0,2)
e—0 IESQP zEN

where o, is difined by 7.6.

Proof. We fix a closed set N C dG and define Vy £ (inf.en V (0,2) — §) A . By lemma
7.1
in V (y, >1an0z—su V(0,y) >V
yesil oV 9:2) (0, 2) b d 0,9) 2 Vn

Moreover, by 7.7 there exists T' < oo large enough for

limsup elog sup Pylo, > T] < —Vy.
e—0 ’LﬁESQP

‘We consider the set
® 2 {peC(0,T)) :3t€[0,T]such that ¢; € N}
Notice that

inf I, > inf V(y,z)>-V,
yeSapped UL () = YESap,2EN (v,2) 2 =V
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then by Theorem 6.3

limsupelog sup P,/ X € ®] < — inf I < —Vn
ol e ol P edthy ey v (9)

Since

{Xf,p € N} C {o,>T}U{X" € B}
we obtain

limsup elog sup P,[X; € N] < —Vy.

e—0 yES2, e

If we let 6 — 0 the proof of the lemma is completed. O

In order to extend the upper bound to hold for every X§ € G we observe,that as e — 0
with high probability X¢ attracted to a a small neighborhood of 0 without hitting G on
its way.

Lemma 7.4. For every p > 0 such that B, C G and all x € G
12%]1%[)(‘6’0 € B, =1
Fix x € G\ By, let f denote the trajectory of 7.3 with initial condition fo = 2 and let
T =inf{t: fi € S,} <oo. Since f is a continuous path that does not hit the compact set

0G then d = dist (f,0G) > 0 for t < T'. Suppose that this distance is smaller than p and
let X{ be the solution of 6.4 with X§ = z. Then

d
sup | X7 — fi] < 5 = Xj_p € B,.
t€[0,T

By uniform Lipscitz continuity of b (-) we have that

t t
X~ ] =/O b(X0) —b<fs>ds+ﬁ/0 o (X) dW,

t
SB/ |w§ — flds + Ve
0

Hence, By Cronwall’s lemma we have that

/ o (X) dIV,
0

sup | X7 — fil < VeePT sup
te[0,T7] t€[0,t]

t
| oxsaw,
0

Thus

P[X5, € 0G] <P[ sup |X{ — fi| >d/2]
t€[0,T]

B_BT dB_BT
=P sup | X7 — fi| >
[ Ve o i - Rl > =7

t
S]P’[sup /a(XE)dWS >
0

te[0,7

Cle_BT

But M; = fga (X&) dWs is a martingale, then (M), = fOT traceo (X&) o (XE) ds. There-
fore, by maximal inequality we have that

de_BT
e

as € — 0, where k is independent of € and k < oc.

t T
P [ sup / o (X$)dWs| > < keE, [/ tracec (X;)J(Xg)/ds] — 0
0 0

t€[0,T
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Remark 7.3. In the language of the theory of differential equations this theorem can be
formulated in the following equivalent form.

Let g (x) be a continuous function defined on the boundary O0G of a domain G. Let us
consider the Dirichlet problem in G

€ 626 )
52 i (%) 8@83:] +Zb 6301 =0, zed

2,7 7

u(z)=g(x), =€dG

If the assumption of the theorem are satisfied , then there exist a unique yo € 0G such that

lim u () = g (yo) -

e—0
In the next section we formulate the above result in the language of the theory of PDEs,
in particular as a result of viscosity solution of a parabolic problem. The interest reader
should refer in Chapter 10 of [6] for a more detailed introduction in viscosity solutions of
a Hamilton-Jacobi-Bellman equation.

7.2 Viscosity solution approach

Recall that {X¢,t < s < 7} be the diffusion with small parameter noise and 7. the exit
time from an open set G. Then

lmInP[re < T) = —inf {I (¥) s € H(O,T]) 1w () =2 () ST} =~V (t,2).

We set
O (t,x) =P [m° < t1] (7.8)

where t1 < oo with boundary data
o (t,z) =1 (t,x) € [0,t1) x OG
O (t1,2) =0 reG

Then 7.8 satisfies the backward stochastic differential equation

0% (t, 1) PP (t,x)
Y —b(t,z) D,® (t,x) —fZZaU t,x) Doz, =0. (7.9)

We, now, make the logarithmic transformation:
Ve = —clog @ (t,x) (7.10)

then 7.9 become

_ove(t,x) o?Vve 0°Ve(t,x)
9t —b(t,z) D,V (t,x) —fZZaU (t,z) Dm0,

1 € e\/
+§ZZ% (t,z) D,V (D,VE) =0 (7.11)
v ]

and the boundary data become

Ve(t,x) =0, (t,x)€ (0,t1] x G
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lim V€ (¢, z) = oo, z €.

t—t1

The later boundary condition means that 2 (s) must reach the boundary before ¢;. Because
of the nonstandard form of the terminal data, the stability results for viscosity solutions
are not directly applicable to V€. However, we could truncate V¢ to a level as follow

Ve = —elog @ (t,x) A % or two estimates of V' could control the convergence of V€. As
we can see later. As € — 0 the PDE 7.11 becomes a first order PDE
B ovO(t,x)

o (t,x) D, VO (t,z) + % Z ; aij (t,2) (DV°) (D,VO) =0  (7.12)

By PDEs methods and viscosity solutions we can prove that V¢ — V% solution to the above
PDE. Moreover V° has a representation in terms of control theory. Next, we consider the
Hamiltonian function

1 /
H(t,z,p) = —b(t,z)p + ip’aa (t,z) p.
so that
o
ot

Since the Hamiltonian is quadratic and particular convex in p, we can use the Legendre
transform and may rewrite

t,x)+H(t,z,p) =0

H (t7x7p) = sup {—up —L (t,.’B,U)}
u€R4

= — inf {up+ L(t,z,u)}

ucRd
where
L(t,x,u) = sup {—up — H (t,z,u)}
pERC
1 , 1 ,
=3 (u—"0(t,x)) (aa (t,x)) (u—">0(t,x))

and (t,z,u) € [0,t1] x G x R%. Hence, 7.12 is rewritten as:

0
VL) ot fup+ L (2 u0)} = 0 (7.13)
ot u€ER4

which together with the boundary data is associated to the value function for the following
calculus of variation problem.

t1
VO = inf / L(s,xz,u)ds
z()ER Jo

_ inf/o 1 % (@ (5) = b(x,8)) (007) " (t,2) @ () — b (x () ds.

Then from control theory the solution to the Hamilton-Jacobi-Bellman equation is repre-
sented by a unique viscosity solution V°, where H is the Cameron-Martin space that we
defined in the previous section. Therefore, the large deviation results stated as

lim e log ®¢ (t,z) = = VO (t,z)

e—0
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where V0 (,2) is the rate function. Now, we have to prove that V' is the unique viscosity
solution of 7.13 Which is the value function of an optimal control problem that we will
define now: Let U (t,x) {u cUt): 1< tl}, where U denote the set of all controls,
and U" is the space of all bounded, Lebesgue measurable, R"” valued functions on [0, ¢;].
Then & (s) =u(s) = u(s) = t11 i (s) ds.

V(t,e)= inf J(¢
(t.2) P()EH(1,2) ()

where

J(t,x,u):/;L(s,:ﬁ(s),fn(s))ds.

and 7 is the first exit time of (s,z (s)) from G.
We make the following assumptions: o is invertible, o and b are bounded and Lipschitz
continuous on [tg,#1] x R? and L has the following properties:

(i) L>0, Lyy >0
(ii) There exists k such that k|u|? < L (t,z,u) when u > R

(iii) |Lg (t, 2, u) |+ Ly (6 2,u) | < K (1+ uf?).

Next, we continue with two estimates of V¢ which can be derived by probabilistic methods
as we have seen in the previous section.

Lemma 7.5. Suppose that OG is smooth. Then there exists K > 0 satisfying

Ve (t,2) < W, (t,2) € G,e € (0,1]. (7.14)
—

Proof. Suppose z1 is the first component of the vector x, there is a constant p satisfying
1+ p > 0 for all z € G. For A\,v > 0, where « is a constant, we define an auxiliary

function
A(ry + M))

T (7.15)

g (t,2) = exp (—

where (t,x) € G, ty =t1 — 7, Gy =[0,ty) x D.
Thus, ¢¢ (t,x) is a subsolution of 7.9. More precisely,

%ge (t,z) — %tra (t,z) DigE (t,z) —b(t,z) Dyg° (L, x)
. Az +p) 1, by (t,z) 1 . A2
= g (ta) L) 4 Ze ) SR S (¢ toa)——
g ( .’L') (t,y — t)2 eg ( .’B) (t,y — t) ean ( .’L‘) g ( J}) (t,y — t)Z

= {M (;an (t,2) A* = A1 + p) — (ty — t) Aby (t,m)) <0
v

where a1 is the first element of the matrix a (¢,7). Since b(t, ), a~! (t,2) are bounded,
aq1 (t,x) is uniformly bounded away from zero on G. So the above expression is non
positive for large enough A = A\*. Therefore, ¢g¢ (¢, ) is a subsolution of 7.9 in G. Moreover,

9 (ty,2) =0 < O (ty, 7).
Using the maximum principle for parabolic equations we have that

¢ (t,x) > ¢° (t,x), (t,x) € G.
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Otherwise we could use Ito’s formula to prove the above inequality. Since, the boundary
of G is smooth enough there exists 6 > 0 such that d (z) = dist (z,0G) and

Gs={reG:d(zx) <d}.

Now, we set
. 1 Kd(z)
€ t — _
g (7'%.) eXp( e(try_t)

) , (t,z) € G,

therefore,
§° (t,z) < g (t,2) < @ (¢, 2)

since K > 0 satisfy
1 _
K > gsup{/\*(xl—i—,u):meG}

and d (z) > §. This means that,
g (t,x) < ®°(t,z),Y (t,x) € [to,t,) x D§. (7.16)

Then we observe that g€ (t,x) is a subsolution on [0,¢y) x Gs. In particular,

05 (ta) — Stra(t,2) D2 (1) ~b(L.2) 5 (12)

ag
_ 1 Kd(@) . 1K*Dd@)Dd() . IKD*(z) . 1 Kd(z)
N E(tv_t)2g (40 2e (tw—t)Q gt )+2 (ty —1) g (t )+e(t7—t)g (t,2)
_ Kg“ (tx)

=2 (Ka (t,z) Dd(x) Dd (t,x) — e(tVQ_t)tra (t,z) D*d(z) — (t, — t)b(t,2) Dd (z) — d (x))

f(tv - t)2 2

< —K(f(_t:;) (Koo — 5 (b5 = 0)]a (12) 1D%d (@) | + (1 — 1) b (,2) | — d () < 0.

Since, a~! is bounded and uniformly elliptic, there is a constant ag > 0 such that
a(t,z) € > aol¢]*, ¥ (t,2) € D,E €R"
and |Dd (z)| =1 on Gg, so we obtain
a(t,z) Dd(x) Dd (z) > ag|Dd (z) |* = ag, ¥ (t,z) € G

Using theses facts the above expression is negative for sufficiently large K. So we have
prove that g€ (¢, x) is a subsolution of 7.9 on (0,¢y) x G5. Also on [tg,t,] x 0GsU{t,} x G5
g¢ (t,x) = ®€ (t,z) = 1. Thus, the maximum principle for parabolic equations yields

g (t,x) < O (t,z), on [to,t1] X Gs.

Moreover, ®€ (t,z) = exp (—%VE (t,a:)), then this combined with 7.16 and the above in-
equality imply 7.14. O

Lemma 7.6. For any M > 0 and d (z) = dist (z,0G) in C* (G) with d(z) = 0 for all
x € 0G, there exists Ky > 0 such that

Ve (t,r) > Md(x) — Ky (t1 — t), (t,2) € [to,t1] x D,e € (0,1). (7.17)
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Proof. We define the auxiliary function
y 1 1
g (t,x) =exp | ——Md(x) — =K (t1 — t)
€ €
and we show that g€ (¢, x) is a supersolution of 7.9. Particular,
0 e € 2 _¢ —€
(t,l‘) - §tTa (t,l‘) Dg:g (t,SU) - b(t’x) D»g (t,:ﬂ)

759

Ky

= g (t,2) "2 tra (t,2) MDA 2) g (1,2)+ 5 MPtra (1,2) D () §° (1,2) D (2) +b (1,2) - MDd () g (1,0

€
1 1

= —g°(t, o) (KM - gtTa (t,x) MD*d (z) + §M2tra (t,z) Dd(z) Dd (x) + b (t,z) Md ($)) >0
€

since we set

Ky = sup {—EMtra (t,x) D2d($)+F(t,x,MDd(x))}.
(t,x)€[0,t1]x G

Consequently, g¢ (¢, z) is a supersolution of 7.9. Besides the fact that ®€ is not continuous
at {t1} x G, g (t,x) is continuous since,

9 (t1,z) =1, z€IG.
Using maximum principle for parabolic equations once again we obtain 7.17. O

Remark 7.4. Using this subsolution and supersolution of ®€ (t,x), we manage to find a
way to control the convergence of V€ (t,x). Also, V¢ > 0 since ®¢ <1 and by 7.14 V* (¢, x)
is uniformly bounded for e € (0,1], (t,z) € [0,T] x D with any T < t;. We use the Barles
and Perthame procedure. We give a brief outline of this procedure, the interesting reader
should refer in Chapter VII paragraph 3 —4 —5 — 6 of [8] for the detailed steps.

For (t,z) € (to,t1) x G, define

V*(t,z) = limsup V€ (s,y), (7.18)
(s,y)—=(t,7)

Vi(t,z) = liminf V€ (s,y) (7.19)
(s;y)—=(t,7)

for (s,y) € [to,t1] x D. These functions however are not necessarily continuous. In fact
we may only infer that they are semi-continuous. Therefore, we conclude that V* V,
are respectively viscosity subsolution and supersolution of 7.13 in [tg,T] X D for every
T < t1. Then, using the equation 7.9 and its boundary data yields that any wviscosity
subsolution of this problem is dominated by any viscosity supersolution, V, > V*. Howewver,
by construction, Vi, < V*. Although, the terminal data of the problem is infinite, the
stability result still holds. Hence, 7.17 implies that V* (t,z) and Vi (t,x) converges to oo
as t — t1 uniformly on compact subsets of D. Howewver, this convergence is controlled by
7.14. The above properties of V*, Vi will be used later to show the convergence of V¢ to
VO = V* =V, which is the unique viscosity solution of HJB equation defined previously
7.15.

Lemma 7.7. For every T < tl,_Vo is a wviscosity solution of 7.13 in [0,T) x G and is
Lipschitz continuous on [0,T] x G.
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Proof. We give the proof in four steps.
First step
We show that VO (,z) is bounded on [0, 7] x G. In particular, we show that there exists
M such that:
0<VO(t,2) < Mdist (z,0G), (t,z) €[0,T] x G. (7.20)

To this end, let & € OG nearest to z, dist (x,0G) < |z — z|. We know that
I
u= / x(s)ds
tl - t t

zo(s)=x4up(s—1t), u=clt—2a(z—1),

then

where ¢ = %. Let 19 be the exit time from G of xq (s). Then

|z — x| < diamG:tl_T

09—t =

c
and 79 < ¢ when t <T. So, for every z (-) € H (t,x)

diamG
c

70
0<J(t,z,u) §/ L(s,x0(s),up)ds < C(rp—t)<C < Mdist (z, 0Q)
t

since L is bounded from its definition L (s,y,u) < C for all (s,y) and M = %

Second step

We show that VO (t,-) is Lipschtz continuous on G. More precisely, we show that for any
x,y € D there is M; > 0 such that

|VO (t>$) - VO (Say) ‘ < Ml’x - y’

For any A € (0,1), let yx (s) =z (s) + A(y — x). Let 71 be the exit time of (s,y; (s)) from
G and 79 = min (7, 71). By the dynamic programming principle we have that

VO (1) < /;2 L(s,n (s),3 (s)) ds+ V (72,51 (m2))

T2 T2 1
:/t L(s,x(s),:b(s))ds—l—/t /0Lx(s,y(s),:b))\(y—a:)d)\ds—l—V(Tg,yl(7‘2)).

. . t . . !/
From the definition of L that L (s,y,4) = [;* 3 (2 (s) — b(,s) (c0T) (s,2) (@ (s) — b(z,s))) ds
and the properties of b, 0 we have that there exists K such that

Lo (5,2 (s) @ (s)) < K (1+ ]2 (s) )

for all (s,y) € [0,7] x G and i € R".
Therefore,

Vty) < J(t20)+ Klz —1 /t (14 [ (s) °) ds + V (ra, 91 (72)) -

Now, if 79 = t; < 7, then y; (1) € 0G and V (12,41 (12)) = 0, and if 79 = 7 < 71 then
x (12) € 0G. By 7.20 we obtain

V(12,91 (12)) < Mly1 (12) — x (m2) | < Mz — y|.
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Thus,
Vi(t,y) SV (t,z)+k+ K|z —y|(t1 —to) + K|z — y|C1 + M|z — y|
<V(t,z)+k+]z—yl((t1 —to+C1) K+ M)

since J (t,x,u) < V (t,x) + k for any k € [0,1], [, |c& (s)|*ds < C1, and we set M; =
K (t1 —to+ C1) + M. Then k is chosen arbitrarily and we can write

[V (ty) =V (s,y)| < Milz —yl, (7.21)

forOStSTandx,yG(_;.

Third step

Next, we prove that VY is a viscosity solution of HBJ equation 7.13.
Let (t,z) € [0,T) x G, the dynamic programming principle implies that

VO(t,z) = inf {/:L(s,x(s),i‘(s))dS—FVO(%,x(T))}

z(-)EH
where 7 = 7 AT. From stochastic control we verify that the terminal cost function satisfies
0 if (t,x)€[0,T] x 0G

0/~ _
v (T’z(T))_{VO(T,x), if zeq

also from the previous step we know that V? is Lipschitz continuous. Also, using the
assumptions of the integrand L we can apply the Theorem 10.4 of [8] that the value
function V' is the unique Lipschitz continuous viscosity solution to the HBJ equation
7.9 with the same boundary data. Therefore, VO is Lipschitz continuous and a viscosity
solution to the HBJ 7.13 on [tg, T) X G.

Fourth step

Finally, we verify the boundary and terminal data of HBJ equation 7.13. First, V > 0
since L is positive. Then, we choose z (-) € H (t, z) satisfying 7 = t, for (t,z) € [0,t1) x 0G
we have that VO (t,z) = 0. To prove V° (t,2) = oo, let € G, thus

/tTyb(s)ds

since z (1) € 0G. Also, the boundedness of a (, z) yields
L(t,z,&) > cold —b(t,z) >

dist (z,0G) < |z — z| =

for cg constant. This means that

/tTL(s,x(s),dU(s))dsZCO/tT|:’L‘(s) ~b(s, 2 (s)) [2ds
zco/tTI:b(s)Fds—K
co T 2

/t z(s)ds

where K is a constant. Finally, we obtain

- K,

T—1

dist (v,0G))*

VO (1) > 0L

K
t1 — 1
since 7 —t < t; —t and we have that
lim VO (t,2) = 0o
t—t1
and this completes the proof. O
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Now, we are ready to prove that V¢ converges uniformly to V° as e — 0.

Theorem 7.1. Assume that the properties of b,a,a™" satisfied. Then V¢ converges to V°
uniformly on compact subsets of [to,t1) X D as e — 0.

Proof. Recall that V; (¢t,z) = liminf._,o V¢ (¢,2) and V* = limsup,_,, V° (¢,2). Then,
VE(tx) = Vi (ty) S VOt +6,2) = VO (t = 6,y)| < C (8 + [z —yl)
and

Therefore
V*(t,x)=Vit,y) | <C0 + ]z —yl).

Now fix . In order to show the uniformly convergence of V¢ to V9, it suffices to show
that _
V*(t,x) < VO (t+6,2) for (t,z) € (to,t1 — ) x G

and

VOt —6,2) <Vi(t,z) for (t,z) € (to+6,t1) x G.

First, we show the first inequality,

V*(t,x) <VO(t+6,2) for (t,x)€[0,t; —6) x G. (7.22)
We observe that
lim inf sup {VO (T, z) — V*(T' - 6,2)} >0 (7.23)
Tttt 4ep

We set sup,ca {V (T,2) = V*(T — 6,2)} = a(T,0). In particular, choose any sequence
(T, ) — (t1,T).
When & € 0G, then the estimate V€ (¢, z) <
that 7.23 satified.
When Z € G, then the fact that VO (t,2) > coldist(z.0G)* _ p¢

- t1—t
together with V¢ (¢, z) < % give 7.23.
Now, for any § > 0 and T < t; note that V° (t,z) + a (T, ) and V*(t,z) are a viscosity
subsolution and supersolution respectively of 7.9 in (0,¢; — ) x G. Thus, the boundary

and terminal data are the following

Kdist(x,0G)
1

P and the positivity of V¥ means

VO(t,z)=a(t,8), for (t,x)€ (to+0,T)x G
VO(t,z) =V (T,z) +a(T,8), for zcG.
Since, V" is Lipschitz continuous then a weak comparison result holds giving
VO(t+6,2)+a(T,8) > V* ().

Finally, if we let T — t; we get the 7.22.
The second inequality

VO(t—6,2) <Vi(t,x) for (t,z)€ (0+6,t) xG
is a consequence of

liminf inf {V; (t,z) = VO (t —6,2) = VO (t—d6,2)} >0

t—t1 xc@G

and the weak comparison principle that we used before. The above inequality yields due
to the fact that
Ve(t,z) =0, for (t,x)€ (,t1) x OG and VE (t,x) > Md(z) — Kar (t1 — t). O
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Remark 7.5. The above convergence result can be restated as

€ (t,x) = exp (—1 (VO (t,2) + he (¢, ac))) , (7.24)

where h¢ converges uniformly on compact subsets of [0,t1) x G as € — 0. When VO (t,x) >
0, we conclude that ®¢ (t,x) — 0 exponentially fast as € — 0. However, if VO (t,z) = 0 the
expansion 7.2/ does not provide any information. So it is interest the case that VO (t,z) >
0 on [0,t1] x G.
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Applications in Finance
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Chapter 8

Introduction

Large Deviations finds important applications in finance where questions related to exter-
nal events play an increasingly important role. Large deviations arise in various financial
contexts. They occur in risk management for the computation of the probability of large
losses of a portfolio subject to market risk or the defaut probabilities of a portfolio under
credit risk. Large deviations methods are largely used in rare events simulation and so ap-
pear naturally in the approximation of option pricing, in particular for barrier option and
out of the money options. More recently, there has been a growing literarure on various
asymptotics (small-time, large time, fast mean-reverting, extreme strike) for stochastic
volatility mdels, see [1],[15].

We illustrate our purpose with the following toy example. Let, X be a real valued random
variable, and consider the problem of computing or estimating P[X > [], the probability
that X exceeds some level [. In finance, we may think of X as the loss of a portfolio
subject to credit or market risk, and we are interested in the probability of large loss or
default probability. The r.v. X may also correspond to the terminal value of a stock price,
and the quantity P[X > [] appear typically in the computation of a call or barrier option,
with small probability of payoff when the option is out of the money or the barrier [ is
large. To estimate p = P[X > [], a basic technique is Monte Carlo simulation: generate n
independent paths X7, Xo,..., X, of X and use the sample mean

_ 1 & )
Sn = E Zlm, with Y; = 1{X¢>l}
1=
The convergence of this estimate (when n — o0) follows from the law of large numbers,
while the standard rate of convergence is given through the central limit theorem, in terms
of the variance v = p (1 — p) of ¥;:

e ] ().

where ® is the cucmulative distribution function of the standard normal law. Furthermore,
the convergence of the estimator S, is precised with the large deviation result, known here
as the Cramér theorem.

Let us now turn again to the estimation of p = P[X > ]. As mentioned above, the rate of
convergence of the estimator S, is determined by:

Var (Iixs)  p(1—p)

Var S = - ;
(Sn) - -
and the relative error is
) standard deviation of S, p(1—p)
relative error = - = .
mean of S, pvn
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Hence, if p = P[X > [] is small and since \/p — ¢?/p — oo as p goes to zero, we realize
that a large sample size is required for the estimator to achieve a reasonable relative error
bound. This is a common occurance when estimating rare events. In order to improve
the estimate of a tail probability P[X > [], one is tempted to use importance sampling
to reduce variance and hence speed up the computation by requiring fewer samples. This
consists basically in changing measures to try to give more weight to important outcomes,
(increase the default probability). Since large deviations also deal with rare events we can
see a strong link with importance sampling. There are a lot of book and notes in the
literature, that the interested reader could find for Monte-Carlo methods and especially
for the importance sampling technique for variance reduction see [2] and [11].

To make the idea concrete, consider again the problem of estimating p = P[X > [],

and suppose taht X has the distrubution u (dz). Let us took at an alernative sampling
_ dv(x)
T odp(x)”

distribution v (dz) absolutely continuous with respect t p (dx), with density f (x)
The tail probability can be rewritten as

p=P[X > 1] = / Loy @ (2) v (d2) = B [1 x50 (X)),

where ¢ = %, and E denotes the expectation under the measure v. By generating i.i.d

samples X1,..., X, with distribution , we have an alternative unbiased and convergent
estiamte of p with

- 1 & -
5= 5 Loy (5).
1=
and whose the convergence is determined by

Var (5,) = & [ (L = 2 (0)” 6 (@) (d)

The minimization of this quantity over all possible v leads to a zero variance with the choise
of a density f (z) = 1{”;%”. This is of course only a theoritical result since it requires the
knowledge of p, the very thing we want ro estimate! However, by noting that in this
case v (dz) = f(v)p(dzr) = Lzspp(de) /PIX > 1] is nothing else than the conditional
distribution of X given {X > [}, this suggests to use an importance sampling change of
measure that makes the rare event more likely to occur. This method of suitable change
of measure is also the key step in proving large deviations results. In this chapter we show
how to use large deviations approximation through importance sampling for Monte-Carlo
computation of expectation arising in option pricing. In the frame of continuous time
models, we are interested in the computation of

I, =E[g(S,0 <t <T)]

where S is the underlying asset price, and g is the payoff function of the option, eventually
path-dependent, i.e. depending on the path process, S;, 0 <t < T. The Monte-Carlo
approximation technique consists in simulating N independent sample paths (Sg) 0<<T
i=1,2,3,..., N, in the distribution of (S;)y<;<7, and approximating the required expec-

tation by the sample mean estimator:

N

IéV:%Zg(Si).

i=1

The consistency of the estimator is ensured by the Law of Large Numbers, while the error
approxiamtion is given by the variance of this estimator from the central limit theorem.
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The lower is the variance of g (.5), the better is the approxiamtion for a given number N
of simulations As already mentioned, the basic idea of importance sampling is to reduce
variance by changing probability measure from which paths are generated. Here, the
idea is to change the distribution of the price process to be simulated in order to take
account the specifities of the payoff function g, and to derive the process to the region of
high contribution to the required expectation. We focus in this section in the importance
sampling technique within the context of diffusions models, and then show how to obtain an
optimal change of measure by a large deviations approximation of the required expectation.

8.1 Importance sampling for diffusions via Girsanov’s the-
orem

In this section, we briefly describe the importance sampling variance reduction technique
for diffusions. Let X be a d-dimensional diffusion process gonverned by

dXs =b(Xs)ds+ o (Xs) dWs, (8.1)

where (W;),~ is a d-dimensional Brownian motion on a filtered probability space (£2, F,P),
and the borel-measurable functions b, o satisfy the Lipschitz condition ensuring the exis-
tence of a strong solution to the 8.1. We denote by X5 the solution to 8.1 starting from
x at time ¢, and we define the function

u(t,r) =E[g(Xt"t<s<T)] (t,z)€[0,T]xR%

Let, ¢ be a R%valued adapted process on [0, 7] such that the process

t 1 t
Mﬁw%/%mflww%}tﬂwﬂ
0 0

is a local martingale by Ito’s formula. Since M; (¢) is non-negative, Fatou’s lemma implies
that M; (¢) is a supermartingale. Then a supermartingale is a martingale if E[Myp (¢)] =

E[My (¢)] = 1. But, this is ensured by the Novikov condition that E[exp (% fOT \(bu]Zdu)] <

0o. Therefore, we can have a probability measure Q absolutely continuous with respect
to P on (2, F) by

dQ

It is worth noting that for all F-measurable functions ¢t < T, % = M, because of the

martingale property of M;. Moreover, by Girsanov’s theorem, the process W, = W, —
f(f ¢sds, 0 <t < T is a Brownian motion under the new probability measure QQ, and the
dynamics, now, of X with respect to Q is given by

dXs = (b(X;) — 0 (Xs) ¢s) ds + o (Xs) dWs.
Thus, from Bayes formula the expectation we want to compute can be rewritten as
u(t,z) =E9[g (X"t <s<T)Lr], (8.2)

where L is the Q martingale

1 t B 1 t
hzwmg%m%>/w%>0ﬁﬁf (8.3)
Mt 0 2 0
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Due to 8.2 we have an alternative Monte-Carlo estimator for u (¢,z) for any choise of ¢

N
1 . .
I‘é\f(z) (t7aj) g 7N g g ( Xl,tm) %_‘7
i=1

by simulating N independent sample paths (X““*) and L% of X** and Ly under Q given
by 8.2 and 8.3. Hence, the change of probability measure through the choise of ¢ leads to a
modification of the drift process in the simulation of X. The variance reduction technique
consists in determining a process ¢, which induces a smaller variance for the corresponding
estimator I, 4 than the initial ;. In the next section we present an approach leading to the
construction of such process ¢. In this approach, the process ¢ is stochastic and requires
an approximation of the expectation of interest. This approach relies on asymptotic results
from large daviations techniques.

8.2 Option pricing approximation with a Freidlin-Wentzell
large deviation priniciple

In this section, we are looking for a stochastic process ¢, which allows us to reduce the
variance (possibly to zero!) the variance of the corresponding estimator. We give the
theoritical approach of the problem which is due to [10]. The heuristics for achieving
this goal is based on the following argument. Suppose that the payoff function g depends
only on the terminal value Xp. Then by applying Ito’s formula to the Q-martingale

u (s,X§$> L for t < s < T, we have that

T
g (X)L =ty Lot [ L (Do s, X0 0 (X0) 4 (5, X17) L) i
t

Hence, the variance of I ;V ¢ (t, ) is given by

T
Varg (IéY¢ (t,z)) = %EQ [/t L2 <Dxu (S,Xé’x)la (XE") 4+ u (s, X07) QS'S) |2d5] :

So, if the function u were known, then one could vanish the variance by choosing

N 1
bs = b5 = T aa
u(s,Xs’ )

Indeed,the function u is unknown, this is precisely what we want to compute, but this
suggest to use a process ¢ from the above formula with an approxiamtion of the function
u. We may then reasonably hope to reduce the variance and also to use such a method
for more general payoff functions, possibly path-dependent. We shall use a large deviation
approxiamtion for the function u.

The basic idea for use the large deviations approxiamation to the expectation function u
is the following.

Suppose the option of interest, characterized by its payoff function g, has a low probability
of excersice, e.g. it is deeply out of the money. Then, a large proportion of simulated
paths end up out of the excersice domain, giving no contribution to the Monte-Carlo
estimator but increasing the variance. In order to reduce the variance, it is interesting
to change of drift in the simulation of price process to make the domain excersice more
likely. This is achieved with a large deviation approximation of the process of interest

o' (XL") Dyu (s, X0%), t<s<T. (8.4)
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in the asymptotics of small diffusion term: such a result is known in the literature as
Freidlin-Wentzell sample path large deviations principle. Equivalently, by time-scaling,
this amounts to large deviation approximation of the process in small time, studied by
Varadhan.

To illustrate our purpose, let us cosider an option that pays one unit of numéraire iff
the underlying asset reached a given up-barrier K. Within a stochastic volatility model
X =(5,Y) as in 8.1 and given by:

dSy = o (Y;) SpdW,}! (8.5)

dY; = 1 (Y;) dt + (V) dW? (8.6)
with d(W7, Wa)y = pdt, its price is given by

u(t,z) =E [11 } = Plr, <T], tel0,T],z=(sy) € (0,00) x R,

max; <, <1 S > K
where

To=inf{u>t: X,"¢ D}, D=(0,K)xR.

Then, the event {maxtSuST Sht > K} = {1ty <T} is rare when = = (s,y) € D, ie.

s < K (out of the money option) and the time to maturity 7 — ¢ is very small. The large
deviations asymptotics for the exit probability w (¢, z) in small time to maturity 7" — ¢ is
provided by the Freindlin-Wentzell and Varadhan theories. Indeed, we see from the time-
homogeneity of the coefficients of the difussion and by time-scaling that we may write
u(t,z) = ur—¢ (0, ), where for € > 0, u, is the function defined on [0, 1] x (0,00) x R by

ue (t,z) =Pyr¢ < 1],

and X7

£z 1s the solution to

dXS =eb(XS)ds +\eo (X)dW,, Xf=uz.
and
T, =inf{s>1: Xt ¢ D}

From the large deviation result that we have already proven in section 8.2, the problem
of exit from a domain using viscosity solution, we have

lim — (T —t)Inu(t,z) = Vy (t,z),
t—=T

e Vo (t,x) = inf Ly P (u)du (t 0,1) x D
)= nt [ Ss ) ale )i (t0) €0.0)x D,
where o (z) is the diffusion matrix of X = (S,Y), a(z) = (o0’ (z))" and
At,z) ={x(-) e C[(0,1)] :z(t) =2, and 7(z)<1}.

There is another interpretation of the positive function V4 in terms of Riemann distance
on R associated in the the metric a (z) = (60’)"". One can prove, see [10], that Lo () =
2V (0, z) is the unique viscosity solution of the eikonal equation

(DyLo) o' (x)DyLo =1, w€D

L — inf L oD
o () Jnf o(x,2), ze€
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and it may be represented as

LO (SU):Zle%fDLo(ﬂf,Z), xeD

where

Lo(z,2) = inf )/01\/9'c(u)/a(a:(u)):b(u)du,

z(-)EA(z,2

and
Az, z) ={x(-) € C[(0,1)] : z(0) =2 and =z(1)==z}.

Hence the function Ly can be computed either by numerical resolution of the eikonal
equation or by using the above represantation. Lg (x) is interpreted as the minimal length
of the path z (-) allowing to reach the boundary 0D from x.

From the above large deviations result, the viscosity solution of the eikonal equation and
the equation for the optimal theoritical ¢*, we use a change of probability measure with

6 (t,z) = g?fg;) o' (2) DoLo (2).

Such a process ¢ may also appear interesting to use in more general framework than this
model. One can use it for computing any option whose excersice domain looks similar
to this one. We also expect the variance reduction is more significant as the excersice
probability is low, i.e. for deep out-of-the money options.

Remark 8.1. One can estimate ¢ with a method due to [12], which in contrast with
the above approach, does not require the knowledge of the option price and restricts to
deterministics change of drifts. The change of drift is selected through Varadhan-Laplace
principle and is shown to be optimal in an asymptotic sense.
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