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PerÐlhyh

H jewrÐa twn meg�lwn apoklÐsewn sunÐstatai sthn ektÐmhsh spanÐwn endeqomènwn- en-
deqomènwn dhlad  pou apoklÐnoun apo thn tupik  sumperifor� sto jewroÔmeno q¸ro pi-
janìthtac. O isqurìc nìmoc twn meg�lwn arijm¸n mac dÐnei èna par�deigma tupik c sumper-
ifor�c afoÔ an h akoloujÐa Xi ikanopoieÐ tic upojèseic tou I.N.M.A. tìte h tupik  sumper-
ifor� thc Sn

n eÐnai (gia meg�la n) na eÐnai kont� sto mèso thc x̄. Apì ton asjen  nìmo
twn meg�lwn arijm¸n, to endeqomenì o mèsoc ìroc na brÐsketai èxw apì mia perioq  tou x̄
gÐnetai sp�nio kaj¸c to n gÐnetai meg�lo. H idèa na ektim soume sp�nia eneqìmena brÐsketai
sthn all�gh tou mètrou pijanìthtac k�tw apì to opoÐo èqoume mia mh tupik  sumperifor�.

Fusik� to na melet� kaneÐc thn pijanìthta spanÐwn endeqomènwn jètei ta pr�gmata se
polÔ genikì plaÐsio. 'Etsi apì th mia men h jewrÐa twn meg�lwn apoklÐsewn brÐskei efar-
mog  se perioqèc tìso diaforetikèc metaxÔ touc ìso h Statistik , Qrhmatooikonomik�,
ThlepikoinwnÐec, Statistik  Mhqanik , apì thn �llh ìmwc suqn� qrei�zetai na katafÔgei
k�poioc se eidikèc gia to ek�stote prìblhma mejìdouc.

Sthn paroÔsa ergasÐa ja prospaj soume na d¸soume paradeÐgmata ¸ste na anadeÐxoume
tic kentrikèc idèec kai teqnikèc thc jewrÐac twn meg�lwn apoklÐsewn. Tèloc ja doÔme mia
efarmog  jewrhtik , to prìblhma exìdou enìc stoqastikoÔ sust matoc apì èna fragmèno
uposÔnolo toÔ Rd all� kai mia efarmog  autoÔ tou probl matoc sta Qrhmatooikonomik�.
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Abstract

The subject of Large Deviations is going back to the early 1930s. It in fact started in
Scandinavia, with actuaries working for the insurance industry. The pioneer who started
that subject was named Esscher. He was interested in a situation where too many claims
could be made against the insurance company. He wanted to calculate the probability of
the total claim amount exceeding the reserve fund set aside for paying these claims. So
large deviations provides us a formula to estimate tail probabilities. Central Limit Theo-
rem states that the distribution of sums of independent random variables has a Gaussian
approximation. However, the error is measured in terms of difference. Both these numbers
are very small, therefore the difference between them is small. But, we are interested in
how small it is; we are interested in the ratio of these two things, not just the difference
of these small numbers. The idea is: how one can shift ones focus so that we can look
at the ratio rather than just at the difference. Esscher came up with this idea that is
called Esscher”s tilt. It is a way of changing the measure. And from this point of view
what was originally considered as a tail event now becomes a central event. Tail events
or rare events are events with very small probability, but we would like to have some
idea of how small it is. We would like to measure it in logarithmic scale. The main target
of the current thesis is to study Large Deviations theory. The thesis is orginised as follows.

In the first part Large Deviations for i.i.d. sequences is presented. More precisely, in
Chapter 1, we are studying some basic formualtion and definitions in order to formulate
Large Deviations Principle(LDP). The rest sections can be viewed as a sequence of ex-
amples, of increasing difficulty, to which the principle developed previously can be applied.

In Chapter 2, we are studying some classical results in Large Deviations area. The
most classical result is Cramér theorem. Indeed, we consider the case of real i.i.d. random
variables in R. Then Cramér theorem in Rd is proven through weak LDP and exponential
tightness. In Chapter 3 some further general principles are introduced for carrying out
Large Deviations results: Varadhan’s lemma, contraction principle, relative entropy and
Varadhan-Donsker formula. In Chapter 4, Large Deviations for abstract measures in Ba-
nach spaces are proven. Indeed, we are studying the example of level-2 LDP.

In many problems the interest is in rare events that depend on random process, and
the correspond asymptotics probabilities, usually called sample pathe large deviations. In
the second part, we are studying Large Deviation principle for stochastic processes. In
chapter 5 we prove Schilder’s theorem for a rescaled Browinian motion. Hence, we con-
tinue in the next Chapter with two applications of Schilder’s theorem. The deriviation of
Strassen renowned Law of Iterated Logarithm and the behavior of diffusions with small
parameter, proving Freidlin-Wentzel theorem using Euler approximations and superexpo-
nential estimates.

In Chapter 7 we deal with the problem of diffusions exit from a bounded domain
(the well-known Exit problem). Firstly, we prove this problem as an immediate result
of Freidlin-Wentzel theory. Then Exit problem is considered as a parabolic problem.
To this end, we introduce an approach which connects large deviations asymptotics of the



corresponding family of measures with an optimal control problem and Hamilton-Bellman-
Jacobi equation. This approach is developed within viscosity solutions.

The above problem occurs naturally in Finance. In Chapter 8 we used importance sam-
pling to reduce the variance of a Monte-Carlo computed price of deeply out of the money
options. The basic principle of importance sampling is to reduce variance by changing
probability measure from which paths are generated. The idea is to change the distribu-
tion of the price process and to derive the process to the region of high distribution to the
required expectation. We focus on importance sampling for diffusions models and then
we show how to obtain an optimal change of measure by large deviation approximations
of the required expectation.
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Part I

Large Deviations for I.I.D.
sequences
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Chapter 1

Introduction

1.1 Rare events and Large Deviations

The area of Large Deviations is a set of asymptotic results on rare events probabilities and
a set of methods to derive such results. Large deviations is a very active area in applied
probabily, and find important applications in finance where questions related to extremal
events play an increasing role. In its basic form, the theory of Large Deviations considers
the normalizations of logP (An) for a sequence of events with asymptotically vanishing
probabilities. Intuitively, the scope of Large Deviations is the study of deviations far from
typical behaviors.
We begin our journey on familiar territory. Let X1, X2, . . . , Xn, n ∈ N be indepen-
dent and indentically distributed (briefly i.i.d.) random variables on a probability space
(R,B (R) ,P), where B (R) is the Borel sigma-field on R. Write E to denote the expectation
under P, let

µ = EX1 ∈ R

σ2 = V arX1 ∈ (0,∞) ,

Denote the partial sum by Sn, i.e. Sn = X1 +X2 + · · ·+Xn. Two fundamendal theorems
in Probability theory dealing with such sequences give examples of typical behaviors.
Strong Law of Large Numbers(SLLN)

1

n
Sn

n→∞−→ µ P-a.s.

Central Limit theory(CLT)

1

σ
√
n

(Sn − µn)
n→∞−→ Z in law w.r.t P,

where Z is a standard normal random variable.
While the SLLN asserts that the empirical average 1

nSn converges to µ as n→∞, the CLT
quantifies the probability that Sn differs from µn by an amount of order

√
n. Deviations

of this sizes are called ’normal’. The SLLN implies that

P
(
Sn
n

/∈ (x̄− δ, x̄+ δ)

)
n→∞−→ 0,

for each δ > 0. Events like R \ (x̄− δ, x̄+ δ), δ > 0 or [y,∞), y > x̄ are considered as rare
events for Sn

n as n→∞.
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It is our task to quantify the rate at which probabilities of rare events tends to zero.
In, general, a detailed answer to this task is seldom available. However, if one restricts
one’s attention to events which are ’very deviant’ in the sense that the probability of their
occurence decays exponentially fast to zero and if one only asks about the exponential
rate, then one has a much better chance to find a solution. Now, we give a definition of
rare events using the distribution µn of Yn, n ∈ N:

Definition 1.1. Suppose that {µn : n > 0} is a family of probability measures on (R,B (R))
with the property that µn ⇒ δp as n→∞ for some p ∈ R(i.e. µn tends weakly to the point
mass δp). Then for each open set U ∈ p we have that µn (U c)→ 0. So we can reasonably
say that as n→∞, the measures µn see ’p as being typical’. Equivalently,one can say that
events A ⊆ X lying outside a neibhorhood of p describe increasingly ’deviant’ behavior,
These events are called rare events.

Let us begin with one of the most basic computations one can carry out in order to
find out how fast the probability of a rare event converges to zero.

Example 1.1. Consider coin tosses. Let {Xi} i.i.d. sequence of Bernoulli random vari-
ables with success probability p. The distribution of Xi is Bp := pδ1 + (1− p) δ0 for each
i ∈ N. We want to estimate the rate of convergence of

P
(
Sn
n
≥ q
)
→ 0

for q > p = EXi and the rate of convergence of

P
(
Sn
n
≤ q
)
→ 0

for q < p.

Proof. Using Chebyshev inequality, one has that

P (Sn ≥ nq) = P
(
Sn − np

n
≥ q − p

)
≤ 1

(q − p)2 n2
E (Sn − np)2

=
1

(q − p)2 n2

n∑
i=1

V ar (Xi) =
1

(q − p)2 n2
np (1− p) =

p (1− p)
(q − p)2

1

n
.

Thus, the rate of convergence is at least linear. However, it also holds from Chebyshev
that

P
(
Sn
n
≥ q
)
≤ 1

(q − p)4 n4
E (Sn − np)4

=
1

n4 (q − p)4

(
nE (X1 − p)4 + 6n (n− 1) [E (X1 − p)2]2

)
≤ C

n2

for C ≤ 0 constant. Thus, the rate of convergence is at least quadratic. Using existence of
higher moments of Xi we can obtain faster rates of decay for P

[
Sn
n ≥ q

]
, q > p. Indeed,

since EeλX1 ≤ ∞ for every λ ∈ R, then we can show that the rate of convergence is at
least exponential. Using Chebyshev inequality,we have that

P
(
Sn
n
≥ q
)

= P (Sn ≥ nq) ≤ e−nqλEeλSn = e−nλq
(
EλX1

)n
5



= e−nλq
(
peλ + 1− p

)n
= e−nλqen log(peλ+1−p)

= e−n[qλ−log(peλ+1−p)].

Therefore,

P
[
Sn
n
≥ q
]
≤ e−n supλ≥0[λq−log(peλ+1−p)].

Now for q > p, from Jensen inequality we have that

sup
λ>0

[λq − log
(
peλ + 1− p

)
] = sup

λ∈R
[λq − log

(
peλ + 1− p

)
],

Thus, if we define

I (q) = sup
λ∈R

[
λq − log

(
peλ + 1− p

)]
we obtain

P
[
Sn
n
≥ q
]
≤ e−nI(q)

If we prove that I (q) > 0, then we have show that the rate of convergence P
(
Sn
n ≥ q

)
→ 0

is exponential with rate function I (q). Differentiating I (q), we have that

d

dλ

(
λq − log

(
peλ + 1− p

))
= q − 1 +

1− p
peλ + 1− p

If q > 1 then q − 1 + 1−p
peλ+1−p > 0 and

I (q) = lim
λ→∞

(
λq − log

(
peλ + 1− p

))
=

log
1

p
q = 1

∞ q > 1

.

If, now, p < q < 1 then I (q) has unique critical point λ∗ := log q(1−p)
p(1−q) > 0, which is global

maximum. So that,

I (q) = qλ∗ − log
(
peλ∗ + 1− p

)
= q log

q (1− p)
p (1− q)

− log

(
q (1− p)

1− q
+ 1− p

)

= q log
q

p
+ q log

1− p
1− q

− log
1− p
1− q

= q log
q

p
− (1− q) log

1− p
1− q

⇒

I(q) = q log
q

p
+ (1− q) log

1− q
1− p

(1.1)

Therefore, for each q ∈ (p, 1) we have that

I ′ (q) = log
q

p
+ q

1/p

q/q
− log

1− q
1− p

− (1− q) 1/ (1− p)
(1− q) / (1− p)

= log
q (1− p)
p (1− p)

> 0

and I is monotonically increasing function in (p, 1). But, limq→p I (q) = 0, thus I (q) > 0
for every q ∈ (p, 1). The same holds for every q < p. We have that

P
(
Sn
n
≤ q
)
≤ enI(q) ∀n ∈ N

6



Similarly, if now 0 < q < p thus I (q) is given by 1.1 and if q ≤ 0 then, then

I (q) = lim
n→∞

(
λq − log

(
peλ + 1− p

))
=

log
1

1− p
q = 0

∞ q < 0

Therefore, taking every case into consideration one has that

I (q) =

q log
q

p
= + (1− q) log

1− q
1− p

q ∈ [0, 1]

∞ q /∈ [0, 1]

with the convention that 0 · ∞ = 0.
The function I (q) is called rate function. It is infinite outside [0, 1], finite and strictly
convex inside [0, 1] and has a unique zero at q = p.
Next, we show that I (q), p < q < 1 is the optimal exponential rate of convergence. By
this we mean that if there are n0 ∈ N and θ > 0 such that

∀n0 ∈ N⇒ P (Sn ≥ nq) ≤ e−nθ, (1.2)

then θ ≤ I (q). It suffices to show that

lim inf
n→∞

1

n
logP (Sn ≥ nq) ≥ −I (q) , (1.3)

since if 1.2 holds for some n0 ∈ N, θ > 0 then

lim sup
n→∞

1

n
logP (Sn ≥ nq) ≤ −θ,

Then, from 1.3 we have that

−I (q) ≤ lim inf
n→∞

1

n
logP (Sn ≥ nq) ≤ lim sup

n→∞

1

n
logP (Sn ≥ nq) ≤ −θ.

Thus, θ ≤ I (q). Firstly, since Sn is a the sum of i.i.d. Bernoulli random variables with
parameters (n, p) and p ∈ (0, 1), then Sn follows Binomial distribution with parameter p.
Therefore,

P (Sn ≥ nq) =
∑
k≥nq

P (Sn = k) =
∑
k≥nq

(
n

k

)
pk (1− p)n−k .

Next we estimate the above sum for q = p since its computation is rather difficult its
computation. Then we estimate the limit for every q. More presicely,∑

k≥np

(
n

k

)
pk (1− p)n−k = P (Sn ≥ np) = P

(
Sn − np

p (1− p)
√
n
≥ 0

)
,

Then, using the CLT, we have that

lim
n→∞

∑
k≥nq

(
n

k

)
pk (1− p)n−k =

∫ ∞
0

e−
x2

2
dx√
2π

=
1

2

For q > p,

P (Sn ≥ nq) =
∑
k≥nq

(
n

k

)
qk (1− q)n−k

(
p

q

)k (1− p
1− q

)n−k

7



=

(
1− p
1− q

)n ∑
k≥nq

(
n

k

)
qk (1− q)n−k

(
p (1− q)
q (1− p)

)k
.

For any p ∈ (0, 1)

∑
k≥nq

(
n

k

)
pk (1− p)n−k = P (Sn ≥ (p+ ε)n) = P

(
Sn − np
σ
√
n
≥ ε
√
n

σ

)
→ 0 as n→∞,

for every ε > 0 and σ = V ar (Xi) = p (1− p). Since p(1−q)
q(1−p) < 1 then

P (Sn ≥ nq) ≥
(

1− p
1− q

)n ∑
nq≤k≤n(q+ε)

(
n

k

)
qk (1− q)n−k

(
p (1− q)
q (1− p)

)n(q+ε)

.

Thus,

1

n
logP (Sn ≥ nq) ≥ log

1− p
1− q

+(q + ε) log

(
p (1− q)
q (1− p)

)
+

1

n
log

 ∑
nq≤k≤n(q+ε)

(
n

k

)
qk (1− q)n−k

 .

However, the sum in the last inequality can go as much close to 1 as we want by CLT,
therefore

lim
n→∞

1

n
log

 ∑
nq≤k≤n(q+ε)

(
n

k

)
qk (1− q)n−k

 = 0.

Thus,

lim inf
n→∞

1

n
logP (Sn ≥ nq) ≥ log

1− p
1− q

+ (q + ε) log

(
p (1− q)
q (1− p)

)
,

since this occurs for every ε > 0 we have that

lim inf
n→∞

1

n
logP (Sn ≥ nq) ≥ log

1− p
1− q

+ q log

(
p (1− q)
q (1− p)

)
= −I (q) ,

This completes the proof.

8



1.2 The Large Deviation Principle

Having seen an example for which it is possible to carry out a succesful analysis of the
large deviations, we will now formulate general principles. Firstly, we begin our program
by introducing some useful definitions.

Definition 1.2. Let X be a Polish space with distance d : X × X → [0,∞). f : X →
[−∞,+∞] is lower semi-continuous if it satisfies any of the following equivalent prop-
erties:

(i) lim infn→∞ f (xn) ≥ f (x) for all xn such that xn → x ∈ X .

(ii) f has closed level sets, i.e., f−1 ([−∞, c]) = {x ∈ X : f (x) ≤ c} is closed for all
c ∈ R.

(iii) limε→0 infy∈Bε(x) f (y) = f (x) with Bε (x) = {y ∈ X : d (x, y) < ε}

Remark 1.1. A lower semi-continuous function attains a minimum on every non-empty
compact set.

Definition 1.3. The moment generating function of a distribution µ ∈ R is a function
which is given by the following formula:

Mµ (λ) =

∫
eλxdµ (x).

The set DMµ := {λ ∈ R : Mµ (λ) <∞} is called essential range of Mµ.

Definition 1.4. The logarithmic moment generating function is a function in R
such that:

Λµ (λ) = log

(∫
R
eλxdµ (x)

)
, λ ∈ R

Remark 1.2. Note that Λµ (λ) ∈ R is a lower semi-continuous convex function. Indeed,
by truncation, it is easy to write Λµ as the non-decreasing limit of smooth functions, and
the convexity follows from Hölder’s inequality.

So we can define Λ∗µ (x) be the Legendre transform of Λµ:

Λ∗µ (x) = sup {λx− Λµ (λ) : λ ∈ R} , x ∈ R.

Note that, by its definition as the point-wise supremum of linear functions, Λ∗µ is necessarily
lower semi-cintinuous and convex.

Definition 1.5. Suppose that µ is a distribution in R with exponential moments. We call
rate function of µ the function Iµ : R→ [0,∞] such that

Iµ (x) = sup
λ∈R

(λx− logMµ (λ)) = sup
λ∈DMµ

(λx− logMµ (λ)) .

Remark 1.3. Obviously, Iµ ≥ 0 since for every x ∈ X zero is included in the domain
of the set of which we take the supremum in the definition of Iµ (x). Of course, the
above definition is applicable in a Polish space, with the appropriate modifications. This
definition is carried out in following sections.

9



Definition 1.6. The function I : X → [0,∞) is called good rate function if:

(i) I 6=∞

(ii) I is lower semi-continuous

(iii) I has compact level sets.

Definition 1.7. A sequence of probability measures {Pn}n on X is said to satisfy the
large deviation principle (LDP) with rate an and rate function I if:

lim sup
n→∞

1

an
logP (C) ≤ − inf

x∈C
I (x) , for each closed C ⊆ X

and

lim inf
n→∞

1

an
logP (O) ≥ − inf

x∈O
I (x) , for each open O ⊆ X

Finally, I is a good rate function.

The following remarks help to explain the basic concept of LDP.

Remark 1.4. In definition 1.7 it is crucial to distinguish between the asymptotics esti-
mates for open and closed sets. Namely, one might try to replace (i), (ii) by the stronger
requirement that

lim
n→∞

1

n
logPn (S) = −I (S) ∀S ∈ B (X ) : Borel field in X . (1.4)

However, this would be far too restrictive. Many examples that satisfy (i), (ii) do not
satisfy 1.4. For instance, Pn might be non-atomic for all n. In that case, Pn ({x}) = 0
for all n ∈ X , so picking S = {x} we would find that 1.4 could only be true with I ≡ ∞,
which is contradicted by (i) of definition 1.6.

Remark 1.5. The role of liminf in open and limsup in closed sets in the LDP reminds
us of weak convergence of probability measures where the same boundary issue arises.
(Pn) is said to converge weakly to P if

(I) lim supn→∞ Pn (C) ≤ P (C) ∀C ⊂ X closed

(II) lim infn→∞ Pn (O) ≥ P (O) ∀O ⊂ X open

One can therefore view (i),(ii) in definition 1.7 as analogues of weak convergence on an
exponential scale.

Remark 1.6. Due to Portmanteau theorem, see [14]: th. 3.25, p.53, (I),(II) are equina-
lent to ∫

X
F (x)Pn (dx)

n→∞−→
∫
X
F (x)P (dx) ∀F ∈ Cb (X )

with Cb (X ) the space of bounded continuous functions on X . It is intuitively clear that
the LDP is ideally suited for handling convergence of integrals of exponential functionals.
This intuition will be worked out in Section 3.

Remark 1.7. The LDP implies that

inf
x∈X

I (x) , I (X ) = 0

since Pn (X ) = 1 for all n and X is closed. Moreover, by remark 1.1 and defintion 1.6,
there is an x ∈ X such that I (x) = 0. In many examples this zero is unique as we have
seen in the example in the previous section and correponds to an underlying SLLN, but
there are cases where it is not unique as we shall see later in section 5.
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Remark 1.8. It is possible to set up definitions 1.6 and 1.7 in the framework of an arbi-
trary topological space. We will, however, not insist on this degree of generality. Without
the structure of a Polish space the theory tends to become more cumbersome and many
results in the Polish space setting fail to carry over. Conversly, the more structure is added
to X , the stronger results that can be obtained.

Now, we are going to give some properties of rate function of definition 1.5 before we
prove the Cramér theorem.

Proposition 1.1. Let µ be the distribution on R with exponential moments and mean x̄.
Suppose that I, µ,Λ the rate function,the moment generating function and the logarithmic
generating function respectively. Then,

(i) I is convex and lower semi-continuous.

(ii) I (x) = 0 if and only if x = x̄.

(iii) I (x) = supλ≥0 (λx− logM (λ)) for every x > x̄ and I (x) = supλ≤0 (λx− logM (λ))
for every x < x̄.

(iv) I is decreasing in (−∞, x̄) and increasing in (x̄,∞).

(v) For every c ≥ 0 the level sets I−1[0, c] = {x ∈ R : I (x) ≤ c} are compact.

Proof. (i) I is the supremum of functions φλ (x) = λx − logMµ (λ), λ ∈ R. Obviously,
φλ are continuous functions, therefore I is lower semi-continuous as the supremum of
continuous functions. Also, φλ are linear functions, so they are convex as the supremum
of convex functions.
(ii) Since eλx̄ ≤ Mµ (λ) then λx̄ ≤ logMµ (λ) for every λ ∈ R. Therefore, I (x̄) ≤ 0.
This proves that I (x̄) = 0. We will show that I (x) = 0 ⇒ x = x̄. Let x ≥ x̄ such that
I (x) = 0. Then, λx ≤ logMµ (λ) and for every λ ∈ R one has that

eλx̄ − 1

λ
≤ eλx − 1

λ
≤ M (λ)− 1

λ
,

thus, taking λ→ 0 we have that x̄ ≤ x ≤ x̄.
(iii) Let x ≥ x̄. Then, for every λ ≤ 0 we have that

λx− logMµ (λ) ≤ λx̄− logMµ (λ) ≤ I (x̄) = 0

Since I (x) ≥ 0 then every λ that are smaller than 0 don’t contribute to the supremum of
the definition of I (x). By this we mean that

I (x) = max

{
sup
λ≤0

(λx− logM (λ)) , sup
λ≥0

(λx− logM (λ))

}

= max

{
0, sup
λ≥0

(λx− logM (λ))

}
= sup

λ≥0
(λx− logM (λ)) .

The same argument holds if x ≤ x̄ then supλ≤0 (λx− logMµ (λ)).
(iv) Let x < y < x̄. Then, for each λ ≤ 0 we have that λy − logMµ (λ) ≤ λx− logMµ (λ)
Thus, using (iii) we have that:

I (y) = sup
λ≤0

(λy − logMµ (λ)) ≤ sup
λ≤0

(λx− logMµ (λ)) = I (x) .
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Then, I is decreasing in (−∞, x̄). Using the same argument, we can prove that I is
increasing in (x̄,+∞).
(v) Since I is lower semi-continuous, the set I−1[0, c] is closed for every c ≥ 0 from the
definition of lower semi-continuity. It suffices to show that I−1[0, c] is bounded. Since µ
has exponential moments, there is ε > 0 so that M (−ε) ∨M (ε) < +∞. Also, if I (x) ≤ c
then

(εx− Λ (ε)) ∨ (−εx− Λ (−ε)) ≤ I (x) ≤ c

Thus,

I−1[0, c] ⊆
[
−c+ Λ (−ε)

ε
,
c+ Λ (ε)

ε

]
⊆ R,

which means that I is bounded.

Remark 1.9. Analogues properties hold, if we are on Rd or in a Polish space as we will
see later.
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Chapter 2

LDP for finite dimensional spaces

2.1 Cramér theorem in R

Assume that {Xi}i∈N is a sequence of i.i.d. random variables with common distribution
an arbitrary distribution µ and I : R→ [0,∞] the rate function of µ. Let µn on R denote
the n-fold tensor product of µ with itself. Next, let µn on R denote the distribution of
1
n

∑n
i=1 xi under µn. We denote Sn := 1

n

∑n
i=1Xi. Assuming that

∫
R |x|µd (x) < ∞ the

Weak Law of Large Numbers implies that µn ⇒ δx̄.

Theorem 2.1. (Cramér) Assume that M (λ) < ∞ for every λ ∈ R. Then for every
measurable A ⊂ R one has that:

−I (x) ≤ lim inf
n→∞

1

n
logµn (A) ≤ lim sup

n→∞

1

n
logµn (A) ≤ −I (x)

where I (x) = supλ [λx− logM (λ)].

Proof. Upper Bound

Let x ≥ x̄. Applying Chebyshev inequality, one has that ∀λ ≥ 0:

µn ([x,∞)) = P [Sn ≥ nx] ≤ e−λnxE
(
eλSn

)
= e−λnxM (λ)n = e−λnxelogM(λ)n

= e−n(λx−logM(λ)) = e−n supλ≥0(λx−logM(λ))

optimizing over λ we get the last equality. Thus, taking logarithm in both sides and di-
viding by n, we have that ∀λ ∈ R:

lim sup
n→∞

1

n
logP [Sn ≥ nx] ≤ − (λx− logM (λ))

≤ inf
λ∈R

(− (λx− logM (λ))) = − sup
λ∈R

(λx− logM (λ)) .

However,
− sup
λ≥0

(λx− logM (λ)) = − sup
λ

(λx− logM (λ))

Indeed, if λ > 0, applying Jensen’s inequality :

log

∫
eλxdµ (x) ≥

∫
log eλxdµ (x) =

∫
λxdµ (x) = λx̄ ≥ λx

13



That is, if λ ≤ 0 then logM (λ) ≥ λx. Because 0 is always a trivial lower bound replacing
supλ≥0 (λx− logM (λ)) by supλ (λx− logM (λ)) does not increase its value.
Then,

lim sup
n→∞

1

n
logP [Sn ≥ nx] ≤ −I (x)

Lower Bound

For every δ ≥ 0 and x ≥ x̄, we will show that:

lim inf
n→∞

1

n
logµn ([x, x+ δ)) = lim inf

n→∞

1

n
logP ([nx ≤ Sn < nx+ nδ)) ≥ −I (x)

Let A = [x, x+ δ). We consider the case the supremum on I is attained at a finite λ.
That is, we suppose there exists λ∗ finite such that,

I (x) = sup
λ

(λx− logM (λ)) = λ∗x− logM (λ∗) .

Since M (λ∗) <∞,

x =
M ′ (λ∗)

M (λ∗)
=

∫
y
eλ
∗y

M (λ∗)
dµ (y)

If we now define a new probability distribution µ̃ by the relation:

dµ̃ (y) = eλ
∗(y)

M(λ∗)dµ (y), then µ̃ has x as its expected value.

P
[
x ≤ Sn

n
< x+ δ

]
= µ⊗n

(
S−1
n [nx, nx+ nδ]

)
=

∫
. . .

∫
nx≤

∑
xi≤n(x+δ)

dµ (x1) dµ (x2) . . . dµ (xn)

≥
∫
. . .

∫
nx≤Sn≤nx+nε

dµ (x1) dµ (x2) . . . dµ (xn) ∀ε > 0, δ > ε > 0

≥
∫
. . .

∫
nx≤Sn≤nx+nε

eλ
∗Sn(y)−nλ∗x−n|λ∗|εdµ̃ (x1) . . . dµ̃ (xn)

= e−nλ
∗x−n|λ∗|ε

∫
. . .

∫
nx≤Sn≤nx+nε

eλ
∗Sn(y)dµ̃ (x1) . . . dµ̃ (xn)

= e−nλ
∗x−n|λ∗|ε

∫
. . .

∫
nx≤Sn≤nx+nε

eλ
∗(x1+...+xn)dµ̃ (x1) . . . dµ̃ (xn)

= e−nλ
∗x−n|λ∗|ε

∫
. . .

∫
eλ
∗(x1+...+xn)1[nx≤Sn≤nx+nε]dµ̃ (x1) . . . dµ̃ (xn)

= e−nλ
∗x−n|λ∗|εMn (λ∗) P̃

[
x ≤ Sn

n
≤ x+ ε

]
= e−nλ

∗x−n|λ∗|εMn (λ∗) P̃
[
0 ≤ Sn

n
− x ≤ ε

]
.

Hence,

1

n
logP[nx ≤ Sn ≤ nx+ nδ] ≥ −λ∗x− |λ∗|ε+ logM (λ∗) +

1

n
log P̃

[
0 ≤ Sn

n
− x ≤ ε

]
where P̃ := µ̃⊗∞ in the measurable product space

(
RN,BNR, P̃

)
.

Then, by Central Limit Theorem:

P̃
(

0 ≤ Sn
n
− x ≤ ε

)
= P̃

(
0 ≤ 1

σ̃
√
n

(Sn − x) ≤ ε
√
n

σ̃

)
=

∫ ∞
0

e
−x

2

2
dx√
2π

= 1
2
.
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Therefore since ε was arbitrarily chosen,

lim inf
n→∞

1

n
logP[nx ≤ Sn ≤ nx+ nδ] ≥ −λ∗x− |λ∗|ε+ logM (λ∗) = − sup

λ
[λx− logM (λ∗)]

for every ε > 0.
Note that the assumption DMµ is not necessary, but we make it for shake of simplicity. An
analogous argument can be used in the case when x ≤ x̄. We refer the interested reader
in [4] Theorem 2.2.3 p.27
We also refer in [4] the same chapter, in case that Λ (λ) doesn’t attain at a finite λ∗.

Remark 2.1. We should take note of the structure of the preceding lines of reasoning.
Namely, the upper bound comes from optimizing over a family of Chebyshev inequalities,
while the lower bound comes from introducing a RADON-NICODYM measure in order
to make what was originally ”deviant” behavior look like typical behavior. This pattern of
proof is recurrent in the theory of Large Deviations. In particular, it will be used extendedly
in the following sections.

2.2 Cramér theorem in Rd

Now, we will extend the Cramér theorem on Rd. Assume that {Xi}i∈N i.i.d. random
vectors with common distribution µ and µn the distribution of their arithmetic mean
Sn
n = 1

n

∑n
i=1Xi. We denote 〈·, ·〉 the Euclidean inner product in Rd. The same properties

for the rate function and the logarithmic generating function holds as in Cramér theorem
on R. We give the basic definitions.

Definition 2.1. Suppose that µ is a distribution on Rd. The moment generating function
of µ is the function Mµ : Rd → [0,∞]

Mµ (x) =

∫
e〈λ,x〉dµ (x).

The set DMµ =
{
x ∈ Rd : Mµ (x) <∞

}
is called essential range of Mµ.

Remark 2.2. We denote by Λµ = logMµ the logarithmic generating function and by Iµ
the function that:

Iµ (x) = sup
λ∈Rd

(〈λ, x〉 − Λ (λ))

That, Iµ is the Legendre transform of Λµ, and we call Iµ the rate function of µ.

Next, we state the basic properties of rate functions.

Proposition 2.1. Let µ be distribution on Rd with exponential moments and mean x̄.
Suppose that I,M,Λ are the rate function, the moment generating function and the loga-
rithmic generating function of µ, respectively. Then,

(i) I is convex, lower semi-continuous and non-negative.

(ii) I (x) = 0 if and only if x = x̄

(iii) For each c ≥ 0 the level sets I−1[0, c] =
{
x ∈ Rd : I (x) ≤ c

}
are compact.
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Proof. The argument that are used to prove the above properties are the same as in the
case for d = 1, so we omit the proof.

Next, we prove the Cramér theorem in the case that the moment generating function
of the common distribution µ of {Xi}i∈N i.i.d. has essential range DMµ = Rd.

Theorem 2.2. (Cramér Theorem on Rd)
For every closed F ⊆ Rd ,

lim sup
n→∞

1

n
logµn (F ) ≤ − inf

x∈F
I (x)

and for every open U ⊆ Rd ,

lim inf
n→∞

1

n
logµn (U) ≥ − inf

x∈U
I (x)

Before proceeding with the proof of Theorem 2.2 we will introduce two definitions that
are useful in order to prove the upper bound.

Definition 2.2. (Weak Large Deviation Principle)
We say that the family {µn : n ∈ N} satisfies the WLDP. If I is a rate function and
{µn : n ∈ N} satisfies:
For all open sets U ⊂ Rd

lim inf
n→∞

1

n
logµn (U) ≥ − inf

x∈U
I (x)

and for all compact sets K in Rd

lim sup
n→∞

1

n
logµn (K) ≤ − inf

x∈K
I (x)

The passage from a Weak to a full Large Deviation Principle is often accomplished by
an application of the following observation:

Definition 2.3. (exponentially tightness)
Let {µn : n ∈ N} a family of measures and assume that, for each L ≥ 0 there exists a
compact set KL with the property that:

µn[Kc
L] ≤ e−nL ⇔ lim sup

n→∞

1

n
logµn[Kc

L] ≤ L

We say that the family {µn : n ∈ N} is exponentially tight.

Lemma 2.1. If {µn : n ∈ N} a family of measures satisfies weak LDP and exponentially
tightness property then it satisfies the full LDP.

Proof. In order to prove that {µn}n∈N satisfies full LDP we have to prove that for any
closed set K ⊂ Rd

lim sup
n→∞

1

n
logµn[F ] ≤ − inf

x∈F
I (x) .

First of all we observe that for every closed F ⊂ Rd and every compact K ⊂ Rd we have
that F = (F ∩K) ∪ (F \K) ⊂ (F ∩K) ∪Kc. So,

lim sup
n→∞

1

n
logµn (F ) ≤ lim sup

n→∞

1

n
logµn (F ∩K) ∨ lim sup

n→∞

1

n
logµn (Kc) (2.1)
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≤
(
− inf
x∈F∩K

I (x)

)
∨ (−L) ≤ − inf

x∈F
I (x) ∨ (−L) .

So, if infx∈F I (x) = 0 ⇒ logµn (F ) ≤ 0 for all n ∈ N and if infx∈F I (x) = ∞ from
the exponentially tightness, choosing an appropriate compact set K ⊂ Rd we make the
right side of 2.1 as small as we want and lim supn→∞

1
n logµn (F ) = −∞ = − infx∈F I (x).

Finally if 0 < infx∈F I (x) < ∞ then by the exponentially tightness we can choose a
compact set K ⊂ Rd such that lim supn→∞

1
n logµn (F ) < − infx∈F I (x) and for this K

we get a propper upper bound for F . The proof is completed.

Remark 2.3. Exponential tightness is the LD analogue of tightness in weak convergence.

Proof. Upper bound
Firstly,we will prove a proper upper bound for open balls. Then, we will cover compact
sets with a finite number of open balls. This will give us an upper bound for compact sets.
Finally, we will use the above definition to pass from compact to closed sets.
More precisely,
First Step:
we will prove that for eachx ∈ Rd and for each ε > 0 there exists δ = δx,ε > 0 such that:

1

n
logµn[B (x, δ)] ≤ −Iε (x) = (I (x)− ε) ∧ 1

ε

We included the term 1
ε to simultaneously treat the cases I (x) <∞ and I (x) =∞.

Suppose, now, that x ∈ Rd, ε > 0 and observe that for each δ > 0 and λ ∈ Rd, if
Sn
n ∈ B (x, δ) then

〈λ, Sn〉 ≥ n inf
y∈B(x,δ)

〈λ, y〉

Thus,

µn[B (x, δ)] = E[1Sn
n
∈B(x,δ)] ≤ E[e〈λ,Sn〉−n infy∈B(x,δ)〈λ,y〉] ≤ e−n infy∈B(x,δ)〈λ,y〉E[e〈λ,Sn〉]

= e−n infy∈B(x,δ)〈λ,y〉Mn (λ) = e−n infy∈B(x,δ)〈λ,y〉en logM(λ)

= e−n(infy∈B(x,δ)〈λ,y〉−Λ(λ))

Notice that y ∈ B (x, δ)⇒ | 〈λ, y − x〉 | ≤ |λ|δ ⇒ 〈λ, y〉 ≥ 〈λ, x〉 − |λ|δ.
Therefore,

1

n
logµn[B (x, δ)] ≤ − inf

y∈B(x,δ)
(〈λ, y〉 − Λ (λ)) ≤ − (〈λ, x〉+ |λ|δ − Λ (λ))

From the definition of I there exists λx,ε > 0 such that:

〈λx,ε, x〉 − Λ (λx,ε) >

(
I (x)− ε

2
∧ 1

ε

)
Then choosing δx,ε > 0 such that |λx,ε|δx,ε < ε

2

µn[B (x, δx,ε)] ≤ en|λx,ε|δx,εe−n|I(x)− ε
2
|∧ 1
ε ≤ e−nI(x)∧ 1

ε

Hence, for every x ∈ Rd, we have found a δx,ε > 0 such that

1

n
logµn[B (x, δx,ε) ≤ − (I (x)− ε) ∧ 1

ε
= −Iε (x) ,
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for each n ∈ N
second step
Suppose that K ⊆ Rd is compact set. Then, there exists N = N (K, ε) ∈ N and
x1 . . . xN ∈ K such that: K ⊆

⋃N
i=1B (xi, δxi,ε).

µn (K) ≤ µn

(
N⋃
i=1

B (xi, δxi,ε)

)
≤

N∑
i=1

µn (B (xi, δxi,ε)) ≤ N max
1≤i≤n

µn (B (xi, δxi,ε)) .

So,

1

n
logµn (K) ≤ 1

n
log

(
N max

1≤i≤n
µn
(
B
(
xi, δxi,ε

)))
=

1

n
log max

1≤i≤n
N +

1

n
logµn (B (xi, δxi,ε))

and taking n→∞ we get

lim sup
n→∞

1

n
max

1≤i≤n
logµn (K) ≤ lim sup

n→∞

1

n
max

1≤i≤n
logµn (B (xi, δxi,ε)) ≤

max
1≤i≤n

(−Iε (xi)) ≤ sup
x∈K

(−Iε (x)) = − inf
x∈K

Iε (x) ,

for each ε > 0.
Then, we make the following observation:

lim
ε→0

inf
x∈K

I (x) = lim
ε→0

min

{
inf

x∈K∩DI
Iε (x) ,

1

ε

}
= lim

ε→0
inf

x∈K∩DI
Iε (x)

= inf
x∈K∩DI

I (x)

= inf
x∈K

I (x)

Because Iεconverges uniformly to I on DI when ε→ 0.
Thus,

lim sup
n→∞

1

n
logµn (K) ≤ − inf

x∈K
I (x) ,

for every compact set K ⊆ Rd.
Third step

Now, due to lemma 2.1 we will pass from weak to full LDP proving exponentially tight-
ness.

Firstly, we observe that for every closed set F ⊂ Rd and compact K ⊂ Rd :

F = (F ∩K) ∪ (F \K) ⊆ (F ∩K) ∪Kc

Then,

lim sup
n→∞

1

n
logµn (F ) ≤ lim sup

n→∞

1

n
logµn (F ∩K) ∨ lim sup

n→∞

1

n
logµn (Kc)

≤ − inf
x∈K∩F

I (x) ∨ lim sup
n→∞

1

n
logµn (Kc)
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≤ − inf
x∈F

I (x) ∨ lim sup
n→∞

1

n
logµn (Kc) .

Thus, it suffices to show that {µn}n∈N is exponentially tight.
Suppose that M > 0 and define:

Kt := [−t, t]d ⇒ Kc
t =

(
[−t, t]d

)c
= ∪dj=1

{
x : |xj | > t

}
where xj : Rd → R are the projections of x. Then, the union of events bound yields:

µn (Kc
t ) = µn

(
∪dj=1

{
|xj | > t

})
≤

d∑
j=1

µjn ([t,∞)) +
d∑
j=1

µjn ((−∞,−t])

where µjn , j = 1, . . . , n are the laws of the coordinates of the random vector Sn and

Snj = 1
n

∑n
i=1X

j
i

{
Xj
i

}
i∈N

for j = 1, . . . , n i.i.d random vectors.

Thus, by Cramér Theorem on R:
µjn ([t,∞)) ≤ e−nΛ∗j (t) and µjn ((−∞,−t]) ≤ e−nΛ∗j (−t)

where Λ∗j is the Legendre transform of logE[eλX
j
i ] for j = 1, . . . , d

lim sup
n→∞

1

n
logµn (Kc

t ) ≤ max
j=1,...,d

lim sup
n→∞

1

n
logµjn ([−t, t]c)

≤ max
j=1,...,d

(−Ij (t) ∧ −Ij (−t))

≤ − min
j=1,...,d

(Ij (t) ∧ Ij (−t))

As |t| → ∞ then lim|t|→∞ Ij (t) = lim|t|→∞ (supt∈R {λt− Λ (λ)}) =∞
Then, there exists t0 for each t > t0 such that:

min (Ij (t) ∧ Ij (−t)) > M ⇒ lim sup
n→∞

1

n
logµjn

(
Kc
t0

)
≤ −M

Consequently, {µn} is a an exponentially tight sequence of probability measures, since the
hypercubes Kt are compact.

Lower bound
We take into account two cases, in the first case we suppose that the supremum in the
definition of I is attained at a finite λ, whereas in the second case we suppose that the
supremum is not achieved in a finite λ.

First case
Suppose that x ∈ Rd thus there exists ρ > 0 such that B (x, ρ) ⊂ U , where B (x, ρ) is a
ball of radius ρ. Then it suffices to show that:

lim inf
n→∞

1

n
logµn (B (x, ρ)) ≥ − inf I (x)

where I (x) := supλ∈Rd {〈λ, x〉 − logM (λ)} .
It follows from our assumption that there exists a solution λ∗ to the saddle-point equation
Λ (λ):

x = ∇Λ (λ∗)⇔ x =
∇M (λ∗)

M (λ∗)
⇔ x =

∫
y
e〈λ
∗,y〉

M (λ∗)
dµ (y)⇔ x =

∫
ydµ̃ (y)
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where dµ̃ (y) = e〈λ
∗,y〉

M(λ∗)dµ (y).

Define Sn : Rd × Rd × . . . × Rd → Rd such that Sn (x1, x2, . . . , xn) = x1 + x2 + . . . + xn
where xi, i = 1, 2, . . . n random vectors.

and the product measure: dµ̃⊗n (y) = e〈λ
∗,Sn(x)〉
M(λ∗) dµ⊗n.

Then observe that for Sn
n ∈ B (x, ε):

〈λ∗, Sn (x)〉 = n

〈
λ∗,

Sn
n

+ x− x
〉

= n 〈λ∗, x〉+ n

〈
λ∗,

Sn
n
− x
〉
≤ n 〈λ∗, x〉+ n|λ∗|ε,

so
e−〈λ

∗,Sn(x)〉 ≥ e−(n〈λ∗,x〉+n|λ∗|ε)

Suppose, now that 0 < ε < ρ. Therefore,

µn[B (x, ρ)] ≥ µn[B (x, ε)] = P[
Sn
n
∈ B (x, ε)] = µ⊗n

{
y ∈ Rd × . . .Rd, Sn (y)

n
∈ B (x, ε)

}
=

∫
. . .

∫
{Snn ∈B(x,ε)}

dµ (y) . . . dµ (y)

≥
∫
. . .

∫
{Snn ∈B(x,ε)}

e−〈λ
∗,Sn(x)〉Mn (λ∗) dµ̃ (y) . . . dµ̃ (y)

= Mn (λ∗)

∫
. . .

∫
{Snn ∈B(x,ε)}

e−〈λ
∗,Sn(x)〉dµ̃ (y) . . . dµ̃ (y)

≥Mn (λ∗)

∫
. . .

∫
{Snn ∈B(x,ε)}

e−n(〈λ∗,x〉+n|λ∗|ε)dµ̃ (y) . . . dµ̃ (y)

= Mn (λ∗) e−n|λ
∗|ε−n〈λ∗,x〉

∫
. . .

∫
{Snn ∈B(x,ε)}

dµ̃ (y) . . . dµ̃ (y).

Taking logarithms and dividing by n we have

1

n
logµn[B (x, ρ)] ≥ logM (λ∗)− |λ∗|ε− 〈λ∗, x〉+

1

n
log µ̃⊗n

[
Sn
n
∈ B (x, ε)

]

= −I (x)− |λ∗|ε+
1

n
log µ̃⊗n[

Sn
n
∈ B (x, ε)]

We are in the product space:
(
Rd × . . .× Rd,B

(
Rd
)
⊗ . . .⊗ B

(
Rd
)
,P∗
)
,

where: P∗ := µ̃⊗∞. We define pi : Rd × . . .Rd → Rd i.i.d. random vectors with common
distribution µ̃. Thus, S̃n : Ω → Rd such that S̃n = Sn ◦

(
p1, . . . , pn

)
=
∑n

i=1 p
i, for every

n ∈ N and

P∗
(
S̃n
n
∈ B (x, ε)

)
= µ̃⊗n

(
Sn
n
∈ B (x, ε)

)
.

Hence, by the Weak Law of Large Numbers: S̃n
n → x ∈ Rd P-a.s.

This means that,

lim inf
n→∞

1

n
log µ̃⊗n

[
Sn
n
∈ B (x, ε)

]
= lim inf

n→∞

1

n
logP∗

[
S̃n
n
∈ B (x, ε)

]
therefore,

lim inf
n→∞

1

n
logµn[B (x, ε)] ≥ −I (x)− |λ∗|ε = Iε (x) .
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Now, if let ε→ 0 then Iε (x)→ I (x).
Second case
Now, we consider the case the supremum of I (x) is not attained at any finite λ. More
precisely for x ∈ DI∇Λ

(
Rd
)
.

We regularize the common distribution µ of {Xi} with an appropriate family of Gaussian
measures, µε := µ ∗N

(
0, ε2I

)
in order to apply the previous case.

Xε
i = Xi + εYi ⇒ Sεn =

n∑
i=1

Xi + ε
n∑
i=1

Yi

where Yi is an i.i.d. sequence of normal distributed vectors independent of Xi. We shall
prove that the supremum of Iµε (x) is achieved in λε ∈ Rd.
Suppose that there exists {λn} ⊆ Rd such that:

Iµε (x) = lim
n→∞

(〈λn, x〉 − Λµε (λn))

WhenX ∼ N
(
0, ε2I

)
⇒ E

(
eλX

)
= e

|λ|2
2 ⇒ logM (λ) = |λ|2

2 , and Λµε (λ) = Λµ (λ)+ ε2|λn|2
2

Then,

Iµε (x) = lim
n→∞

(
〈λn, x〉 − Λµ (λn)− ε2|λn|2

2

)
and {λn} is bounded.
Indeed, if {λn} were not bounded then there would exist {λkn} such that |λkn | → ∞.
Since Λµ (λ) > 〈λ, x̄〉 for every λ ∈ Rd we would have

0 ≤ Iµε (x) = Iµε (x) = lim
n→∞

(
〈λkn , x〉 − Λµ (λkn)− ε2|λkn |2

2

)
≤ lim sup

n→∞

(
〈λkn , x− x̄〉 −

ε2|λkn |2

2

)

≤ lim sup
n→∞

(
|λkn ||x− x̄−

ε2|λkn |2

2

)
= −∞

which is a contradiction. Then, {λn} is bounded and there exists a subsequence which
converges to λε and Iµε (x) = 〈λε, x〉−Λµε (λε),obviously x ∈ ∇Λµε

(
Rd
)
. As a consequence,

from the previous case,

lim inf
n→∞

1

n
logP

[
Sεn
n
∈ B (x, ρ)

]
≥ −Iµε (x) ≥ −I (x) ,

for every ρ > 0.
We set Tn :=

∑n
i=1 Yi, then: Tn ∼ N (0, nI) ⇒ Tn√

n
∼ N (0, 1). We make the following

observation that: {
Sεn
n
∈ B (x, ρ)

}
⊂
{
Sn
n
∈ B (x, 2ρ)

}
∪
{
ε|Tn
n
| > ρ

}
More precisely,∣∣Sn

n − x
∣∣ ≤ ∣∣∣Sεnn − x∣∣∣+ ε

∣∣Tn
n

∣∣⇒ ∣∣Sn
n − x

∣∣ ≤ ρ+ ε
∣∣Tn
n

∣∣, since Sεn
n ∈ B (x, ρ).

If Sn
n /∈ B (x, 2ρ) then 2ρ < |Snn − x| ≤ ρ+ ε

∣∣Tn
n

∣∣⇒ ∣∣Tn
n

∣∣ ≥ ρ
ε .

Hence,

P
[
Sεn
n
∈ B (x, ρ)

]
≤ P

[
Sn
n
∈ B (x, ρ)

]
+ P

[
ε

∣∣∣∣Tnn
∣∣∣∣ > ρ

]
.
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We want to show that P
[
ε|Tnn | > ρ

]
is quite small so as not to contribute to our compu-

tation. By this we mean that:

−I (x) ≤ lim inf
n→∞

1

n
logP

[
Sεn
n
∈ B (x, ρ)

]
≤ lim inf

n→∞

1

n
logP

[
Sn
n
∈ B (x, 2ρ)

]
∨lim inf

n→∞

1

n
logP

[
ε

∣∣∣∣Tnn
∣∣∣∣ > ρ

]

≤ lim inf
n→∞

1

n
log (µn[B (x, 2ρ)]) ∨ P

[
ε

∣∣∣∣Tnn
∣∣∣∣ > ρ

]
= lim inf

n→∞

1

n
logµn [B (x, 2ρ)] ,

since we will prove that:

P
[
ε

∣∣∣∣Tnn
∣∣∣∣ > ρ

]
< lim inf

n→∞

1

n
logµn [B (x, 2ρ)] .

More precisely,

P
[
ε

∣∣∣∣Tnn
∣∣∣∣ > ρ

]
= P

[∣∣∣∣Tnn
∣∣∣∣ > ρ

ε

]
= P

[∣∣∣∣ Tn√n
∣∣∣∣ > ρ

√
n

ε

]
=

∫ ∞
Rd\B

(
0, ρ
√
n
ε

) e− |x|22 dx

So, we have to compute:

lim
n→∞

1

n
logP

[
ε

∣∣∣∣Tnn
∣∣∣∣ > ρ

]
= lim

n→∞

1

n
log

∫ +∞

Rd\B
(

0, ρ
√
n
ε

) e− |x|22 dx = −ρ
2

2ε
(2.2)

By this we mean that if one of the above integrals exists then the other exists too and
they are equal.

For d = 1 the statement holds. Since

lim
n→∞

1

n
log

∫
R\
(
− ρ
√
n
ε
, ρ
√
n
ε

) e− |x|22 dx = lim
n→∞

1

n
log

∫ +∞

ρ
√
n
ε

e−
|x|2

2 dx

Using the following inequalities

x

1 + x2
e
−x2

2 ≤
∫ +∞

x
e−
|y|2

2 dy ≤ 1

x
e−

x2

2 , x > 0 (2.3)

and the limn→∞
log x
x = 0 then the 2.2 holds.

For d = 2, we use polar coordinates thus∫
R2\B(0,r0)

e−
|x|2

2 dx = 2π

∫ ∞
r0

re−
r2

2 dr = 2πe−
r20
2 .

Therefore

1

n
log

∫
R2\B

(
0, ρ
√
n
ε

) e− |x|22 dx =
log 2π

n
− ρ2

2ε2
→ − ρ2

2ε2
as n→∞.

Now, we pass in the d-dimension using once again polar coordinates. Indeed,∫
. . .

∫
Rd\B

(
0, ρ
√
n
ε

) e− |x|22 ds =

∫
Sd−1

dσ

∫ ∞
ρ
√
n
ε

dre−
r2

2 rd−1

= |Sd−1|
∫ ∞
ρ
√
n
ε

dre−
ρ2

2 .
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where |Sd−1| is the d- dimension surface area of unit radius sphere,
Sd−1 =

{
(x1, x2, . . . , xd) : x2

1 + x2
2 + . . .+ x2

d = 1
}

.
Then, we can easy estimate the last integral by 2.3 and we get

1

n
log

(∫
. . .

∫
Rd\B

(
0, ρ
√
n
ε

) e− |x|22 ds

)
→ − ρ2

2ε2
as n→∞

Since we have proved the equality 2.2 for d- dimensions then it holds for every d ∈ N. This
completes the proof.
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Chapter 3

General Principles

3.1 Varadhan’s Lemma and Contraction Principle

In this section, we present an approach to large deviations theory based on Laplace prin-
ciple, which relies on the evaluation of asymptotics of certain integrals.

We first state a theorem that enables us to generate one LDP from another through
contraction. In weak convergence, the continuous mapping theorem plays a key role. The
analogous theorem in large deviation theory is the contraction principle. This theorem
yields that LDP is preserved under continuous mappings. The contraction principle will
turn out to be very useful later on.

Theorem 3.1. (Contraction Principle)
If {Pn}n∈N satisfies LDP on X with good rate function I (·), and F is a continuous mapping
from the Polish space X to another Polish space Y, then the family Qn = Pn◦F−1 satisfies
L.D.P.on Y with good rate function J (·) given by :

J (y) = inf
x:F (x)=y

I (x)

with the convention that inf ∅ =∞.

Proof. Since F is continuous, F−1 maps open sets to open sets and closed sets to closed
sets. Pick C ⊂ Y closed.
Then,

lim sup
n→∞

1

n
logQn (C) = lim sup

n→∞
logPn ◦ F−1 (C) ≤ − inf

x∈F−1(C)
I (x) =

= − inf
y∈C

inf
x∈F−1({y})

I (x) = − inf
y∈C

inf
F (x)=y

I (x) = − inf
y∈C

J (y) .

A similar argument works for O ⊂ Y open.

lim inf
n→∞

1

n
logQn (O) = lim inf

n→∞

1

n
logP◦F−1 (O) ≥ − inf

(
F−1 (O)

)
≥ − inf

x∈F−1(O)
I (x) = − inf

y∈O
J (y) .

Hence, it remains to prove that J is a good rate function.

Clearly, DI = {x ∈ X : I (x)} 6= ∅ implies DJ = {y ∈ Y : J (y)} 6= ∅. In fact, for every
c ∈ R we have

{y : J(y) ≤ c} = F
(
{x : I(x) ≤ c}

)
. (3.1)

24



Indeed, if J(y) ≤ c, then there exists a sequence {xn} such that F (xn) = y and I(xn)→ c.
Since {xn} is eventually contained in the compact set {x : I(x) ≤ c + 1} we may take
a subsequence {xnk} such that xnk → x∗. By lower semicontinuity of I we have I(x∗) ≤
lim inf I(xnk) = c, and by continuity of F we have F (x∗) = y. Thus, y ∈ F

(
{x : I(x) ≤ c}

)
and the one inclusion is proved. The inverse inclusion is elementary. In view of (3.1) the
level set {y : J(y) ≤ c} is compact as the continuous image of the compact level set
{x : I(x) ≤ c}. J is lower semi-continuous as the infimum of lower semi-continuous
functions. Hence, both of the proceeding arguments prove that J is a good rate function
and the proof is complete.

We are now ready to formulate the first important general theorem of large deviations
which is due to Varadhan. In the evaluation of integrals, large values accomplished in
a ”small” part of the space may play a key role. Varadhan’s integral extends the well
known method of Laplace for studying the asymptotics of certain integrals on R: given a
continuous function f from [0, 1] into R, Laplace’s principle states that:

lim
ε→0

ε log

∫ 1

0
e
f(x)
ε dx = sup

x∈[0,1]
f(x)

Varadhan’s integral generalizes the previous result in the case of integrals not computed
under the same measure but under a family of measures that satisfies the LDP.

Lemma 3.1. (Varadhan’s lemma) Suppose that {µε}ε satisfies LDP on X with good rate
function I. Then for any bounded continuous function φ : X → R we have that:

lim
ε→0

ε log

∫
e
φ(x)
ε dµε (x) = sup

x∈X

(
φ (x)− I(x)

)
.

Proof. We break the proof into two parts.
Lower Bound
Since φ is continuous, then for every x ∈ X and δ ≥ 0 there exists a neighborhood Ux of
x such that:

Ux = {y ∈ Ux : φ (y) > φ (x)− δ} ,

for every y ∈ Ux.
Note that since x ∈ Ux we have that:

inf {I (y) : y ∈ Ux} ≤ I (x)

Thus, ∫
e
φ(y)
ε dµε (y) ≥

∫
Ux

e
φ(x)−δ

ε dµε (y) ≥ e
φ(x)−δ

ε

∫
Ux

dµε (y) = e
φ(x)−δ

ε µε (Ux) .

By the LDP lower bound we have that:

lim inf
ε→0

ε log

∫
e
φ(y)
ε dµε (y) ≥ φ(x)− δ − inf

y∈Ux
I (y) ≥ φ (x)− I (x)− δ.

Take δ → 0 and the supremum in the right side of the inequality, then we have the
lower bound.
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Upper bound
For each x ∈ X there exist a neighborhood Ux of x such that:
φ (y) < φ (x) + δ and I (y) > I (x)− δ, for each y ∈ Ūx.
We know that for each M > 0 ΨI (M) = {x : I (x) ≤M} is compact set.
Then, Ux balls cover the compact set ΨI ,

ΨI (M) ⊂
⋃N
i=1 Uxi and F =

(⋃N
i=1 Uxi

)c
∫
e
φ(y)ε
d

µε(y) =

∫
⋃N
i=1 Uxi

e
φ(y)
ε dµε (y)+

∫
F
e
φ(y)
ε dµε (y) ≤

N∑
i=1

∫
Uxi

e
φ(y)
ε dµε (y)+

∫
F
e
φ(y)
ε dµε (y)

≤
N∑
i=1

∫
Uxi

e
φ(xi)+δ

ε dµε (y)+

∫
F
e
φ(y)
ε dµε (y) ≤

N∑
i=1

µε (Uxi) e
φ(xi)+δ

ε +

∫
F
e
φ(y)
ε dµε (y)

But, φ is a bounded function and µε is exponentially tight we have that,

∫
F
e
φ(y)
ε dµε (y) =

∫
1F e

φ(y)
ε dµε (y) ≤

∫
1F e

supφ
ε dµε (y) = µε (F ) e

supφ
ε ≤ e

−L
ε e

supφ
ε

Collecting things together, we have by the LDP upper bound that,

lim sup
ε→0

ε log

∫
e
φ(y)
ε
dµε(y) ≤ max

{
max
i

(
φ (xi) + δ − inf

Ūxi

I (xi)

)
, supφ− L

}

≤ max

{
max
i

(φ (xi)− I (xi) + 2δ) , supφ− L
}

≤ max

{
max
i

(φ (xi)− I (xi)) , supφ− L
}

+ 2δ

Let δ → 0 and L→∞ and the proof is complete.

Remark 3.1. Varadhan’s integral has the following interpretation. By writing formally

the LDP for {Xε}ε with rate function I as P [Xε ∈ dx] ∼= e−
I(x)
ε , we can write:

E
[
e
φ(Xε)
ε

]
=

∫
e
φ(x)
ε P[Xε ∈ dx] ∼=

∫
e
φ(x)−I(x)

ε

As in Laplace’s method, Varadhan’s formula states that to exponential order, the main
contribution to the integral is due to the largest value of the exponent.

Hence, the previous lemma means that the large deviation principle implies the Laplace
principle. The next result proves the converse. The Laplace principle implies the large
deviation principle with the same good rate function.

Proposition 3.1. (Bryc’s theorem) Let {µn}n∈N be a sequence of probability measures on
a metric space X . Assume that {µn}n∈N is exponentially tight. Suppose that the limit:

Λ (f) = lim
n→n

1

n
log

∫
enf(x)dµn (x)

exists for all bounded functions f. Then, LDP holds with good rate function:

I (x) = sup
f∈Cb(X )

{f (x)− Λ (f)}
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Remark 3.2. The above theorem reminds us again of weak convergence of probability
measures. Varadhan’s Lemma implies that Λ (x) = supf∈Cb(X ) {f (x)− I (f)}, given the
LDP. Note, however that the relation between Λ and I is not the convex duality as we have
seen in the first chapter, where the functions f are linear. Even though, until this point we
have seen convex rate functions, the above rate function doesn’t need to be. Also, proving
that the limit Λ (f) exists for all bounded functions may be too hard to achieve. However,
one really needs the limit to exist for a rich enough class of functions for the LDP to hold.
If X is a metric vector space , then a rich enough class of functions, that ensure the LDP
through Bryc’s theorem is the class of Lipschitz functions.

Proof. Firstly, since Λ0 = 0, we have that I ≥ 0. Function I is lower semicontinuous, since
it is supremun of continuous functions. Since exponential tightness and the weak LDP
together imply the full LDP, we need only prove that weak LDP is satisfied. We start
with the upper bound.

Upper bound
As in Cramér theorem on Rd it suffices to show the upper bound for open balls on X and
then we will cover any compact K ⊂ X with a finite number of such open balls.
Pick ε > 0, from the definition of I we have that, for each x ∈ X there exists f ∈ Cb (X )
such that:

f (x)− Λ (f) > Iε (x) = (I − ε) ∧ 1

ε

Since, f is continuous, there exists δx = δx,ε > 0 such that:

lx = inf
y∈B(x,δx)

{f (y)− f (x)} ≥ −ε,

Since for every x ∈ X we have that f (x)− f (y)− lx ≥ 0, then for each y ∈ B (x, δx)

µn (B (x, δx)) =

∫
B(x,δx)

dµn ≤
∫
B(x,δx)

en[f(y)−f(x)−lx]dµ (y) = e−nlx
∫
B(x,δx)

en[f(y)−f(x)]dµ (y)

≤ en[ε−f(x)]

∫
enf(y)dµn (y)

for each x ∈ X , n ∈ N.

Thus,

lim sup
n→∞

1

n
logµn (B (x, δ)) ≤ ε− (f (x)− Λ (f)) < −Iε (x) + ε

for each x ∈ X .
Given, now, of any compact K ⊂ X there exists, x1, . . . , xm ∈ K, m ∈ N, such that
K ⊂

⋃m
i=1B (xi, δxi), therefore,

lim sup
n→∞

1

n
logµn (K) ≤ max

i=1,...,m
lim sup
n→∞

1

n
logµn (B (xi, δxi))

ε− min
i=1,··· ,m

Iε (xi) ≤ ε− inf
x∈K

Iε (x) .

Since ε is picked randomly, this result proves weak upper bound of the L.D.P.
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Lower bound
Suppose that x ∈ X and U ⊆ X a neighborhood of x. Since X is a metric space, there
exists continuous function such that f : X → [0, 1] such that f (x) = 1 and f vanishes
outside U . Take m > 0 and define fm = m (f − 1) for each m ∈ N. Then, by our
assumption there exists the limit:

Λ (fm) = lim
n→∞

1

n
log

∫
enfm(y)dµn (y)

Thus, ∫
enfm(y)dµn (y) =

∫
U
enfm(y)dµn (y) +

∫
Uc
enfm(y)dµn (y)

=

∫
U
enfm(y)dµn (y) + e−nmµn (U c)

≤ µn (U) + e−nm.

Thus,

lim inf
n→∞

1

n
logµn (U) ∨ (−m) ≥ lim inf

n→∞

1

n
log

∫
enfm(y)dµm (y) = Λ (fm)

= − (fm (x)− Λ (fm)) ≥ − sup
f∈Cb(X )

(f (x)− Λ (f))

= −I (x)

Since the above result is valid for every m > 0, the proof is completed if we let m→∞.

If we combine the results of Varadhan and Bryc, then we have the following theorem
for exponentially tight families of measures.

Theorem 3.2. Suppose that, {µn} is exponential tight sequence. Then, {µn} satisfies
LDP if and only if the limit

Λ (f) = lim
n→∞

1

n
log

∫
enf(x)dµn (x)

exists for each f ∈ Cb (X ) and in that case the rate function I is given by

I (x) = sup
f∈Cb(X )

{f (x)− Λ (f)}

and
Λ (f) = sup

x∈X
{f (x)− I (x)}

for each f ∈ Cb (X ).
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3.2 Relative entropy and Varadhan-Donsker formula

We next show how one can evaluate expectations arising in Laplace principles, which then
can be used to derive the large deviation principle associated with the empirical measures
of i.i.d. random variables.

The relative entropy plays a key role in the determination of the rate function. We are
given a topological space X , equipped with its Borel σ field. Let M (X ) be the space of
finite signed measures on (X ,B), M1 (X ) be the space of probability measures on M (X )
and Cb (X ) be the space of bounded continuous functions and Bb (X ) be the space of
bounded measurable functions. There is a natural duality between M (X ) and Bb (X ):

〈ν, g〉 =

∫
X
gdν

for g ∈ Bb (X ) and ν ∈M (X ).

Definition 3.1. For µ ∈ M1 (X ), the relative entropy R (·|µ) is a mapping from P (X )
into R̄, defined by

R (ν|µ) =


∫
X

(
log

dν

dµ

)
dν =

∫
X

dν

dµ

(
log

dν

dµ

)
dµ if ν � µ

∞ otherwise

Note that x log x ≥ −1
e so the above integral is well defined.

Remark 3.3. By observing that x log x ≥ x− 1 with equality if and only of x = 1, we see
that R (ν|µ) ≥ 0, and R (ν|µ) = 0 if and only if ν = µ.

Remark 3.4. Let us fix µ ∈ M1 (X ). Let p : Bb (X ) → R be defined by p (φ) =
log
∫
eφdµ (x). Then p and R are convex conjugate of one another and have the following

variational representation.

Proposition 3.2. Let φ be a bounded measurable function on X and µ a probability mea-
sure on X . Then,

log

∫
X
eφdµ = sup

ν∈M1(X )

[∫
X
φdν −R (ν|µ)

]
,

and the supremum is attained uniquely by the probability measure ν0 defined by

dν0

dµ
=

eφ∫
X e

φdµ

Proof. In the supremum in the above variational formula, we may restrict to ν ∈ P (X )
with finite relative entropy: R (ν|µ) <∞. If R (ν|µ) <∞, then ν is absolutely continuous
with respect to µ, and since µ is equivalent to ν0, ν is also absolutely continuous with
respect to ν0. Thus, ∫

X
φdν −R (ν|µ) =

∫
X
φdν −

∫
X

(
log

dν

dµ

)
dν

=

∫
X
φdν −

∫
X

log

(
dν

dν0

)
dν −

∫
X

log

(
dν0

dµ

)
dν
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=

∫
X

(
φ− log

dν0

dµ

)
dν −R (ν|ν0)

=

∫
X

log

(
eφ
dµ

dν0

)
dν −R (ν|ν0)

=

∫
X

log

(∫
X
eφdµ

)
dν −R (ν|ν0)

= log

∫
X
eφdµ−R (ν|ν0) .

We conclude by observing that R (ν|ν0) ≥ 0 and R (ν|ν0) = 0 if and only if ν = ν0.

Proposition 3.3. (Varadhan-Donsker variational formula) Let X be a Polish space. For
all µ, ν ∈M1 (X ), we have

R (ν|µ) = sup
f∈Bb(X )

{∫
X
fdν − log

∫
X
efdµ

}
= sup

g∈Cb(X )

{∫
X
gdν − log

∫
X
egdµ

}

The dual formula to the above variational formula is known as the Donsker-Varadhan
variational formula.

Proof. First we show that

R (ν|µ) = sup
f∈Bb(X )

{∫
X
fdν − log

∫
X
efdµ

}
and later we prove that

sup
g∈Cb(X )

{∫
X
gdν − log

∫
X
egdµ

}
= sup

f∈Bb(X )

{∫
X
fdν − log

∫
X
efdµ

}
. (3.2)

We denote by H (ν, µ) the right side of (3.2). By taking the zero function on X we observe
that H (ν, µ) ≥ 0. From Proposition 3.3, we have for any f ∈ Bb (X )

R (ν|µ) ≥
∫
X
fdν − log

∫
X
efdµ

and taking the supremum over f ∈ Bb (X ), we obtain that

R (ν|µ) ≥ sup
f∈Bb(X )

{∫
X
fdν − log

∫
X
efdµ

}
= H (ν, µ)

To prove the inverse inequality, we may assume that H (ν, µ) < ∞. We first show that
under this condition ν is absolutely continuous with respect to µ. Let A be a Borel set for
which µ (A) = 0 and take k > 0. Since for any f ∈ Bb (X )∫

X
fdν − log

∫
X
efdµ ≤ H (ν, µ) <∞

We obtain, upon substituting f = k1A∫
X
k1Adν − log

∫
X
ek1Adµ ≤ H (ν, µ)
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k

∫
A
dν ≤ H (ν, µ)⇒ kν (A) ≤ H (ν, µ)

Taking k → ∞ gives ν (A) thus ν � µ. Since ν � µ we can define the Radon-Nikodym
derivative h = dν

dµ . If h is uniformly positive and bounded then f = log h is bounded and
measurable and substituting this function into variational formula 3.3 yields

R (ν|µ) =

∫
X

log hdν ≤ H (ν, µ)

If h is uniformly positive and not bounded, we truncate the function and set hn = h∧n and
substitute f = log hn into the variational formula 3.3. Using the Monotone Convergence
theorem we again obtain,

R (ν|µ) =

∫
X

log hdν = lim
n→∞

∫
X

log hndν ≤ H (ν, µ) + lim
n→∞

log

∫
X
hndµ = H (ν, µ) .

We now treat the general case where f is neither uniformly positive nor bounded. For
t ∈ [0, 1] we define

νt = tµ+ (1− t) ν and ht = dνt
dµ = t+ (1− t)h

for each t ∈ (0, 1] ht is uniformly positive and so by the preceding calculation:

R (νt|µ) ≤ H (νt, µ) .
We now want to prove that

limt→0R (νt|µ) = R (ν|µ) and limt→0H (νt, µ) = H (ν, µ).
Since x log x is convex on [0,∞)

R (νt|µ) =

∫
X
ht log htdµ ≤ (1− t)

∫
X
h log hdµ

Furthermore, log x is concave on (0,∞) then,

log ht ≥ log t ∨ (1− t) log h.

This means that

R (νt|µ) =

∫
X
t log htdµ+

∫
X

(1− t)h log htdµ

≥ t log t+ (1− t)2
∫
h log hdµ

= t log t+ (1− t)2R (ν|µ) .

If we let t→ 0 and combine the above inequalities then

limt→0R (νt|µ) = R (ν|µ)

For the second limit, we observe that H (µ, µ) = 0 and t 7→ H (νt, µ) is lower semicon-
tinuous and convex, as the supremum of linear functions in t. Thus, for every t ∈ [0, 1]

0 ≤ H (νt, µ) ≤ tH (µ, µ) + (1− t)H (ν, µ) = (1− t)H (ν, µ) ≤ H (ν, µ) <∞
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and so H (νt, µ) is also bounded. Also, we know that a function f that is convex and lower
semicontinuous on R and is finite on the closed bounded interval [a, b] then f is continuous
on [a, b]. As a result, H (νt, µ) is continuous and therefore

lim
t→0

H (νt, µ) = H (ν0, µ) = H (ν, µ) .

We showed that

R (ν|µ) = sup
g∈Bb(X )

{∫
X
gdν − log

∫
X
egdµ

}
= H (ν, µ) . (3.3)

Now, we will use Lusin’s theorem to approximate f = dν
dµ by bounded continuous functions

with respect to both µ and ν and pass to the limit. In fact, we will find a rather small set
that will work with respect to both of the measures. Then we will have that

R (ν|µ) = sup
g∈Bb(X )

{∫
X
gdν − log

∫
X
egdµ

}
= sup

f∈Cb(X )

{∫
X
fdν − log

∫
X
efdµ

}
.

In order to prove 3.2 we need the following lemma

Lemma 3.2. For each f ∈ Bb (X ) and µ, ν ∈M (X ) there exists a sequence {fn} ⊆ Cb (X )
such that

fn
n↗∞−→ f in L1 (µ) and L1 (ν)

fn
n↗∞−→ f µ-a.s. and ν-a.s.,

‖fn‖u ≤ ‖f‖u −
1

n
,∀n ∈ N.

Proof. Since each measurable function is uniformly approximated by simple functions, it
suffices to show that in the case that f is the characteristic function 1E of a Borel set
E ⊆ X . Suppose that E ⊆ X Borel set and ε > 0. We are looking for a g ∈ Cb (X ) such
that ∫

X
|g − 1E |dµ ∨

∫
X
|g − 1E |dν < ε.

Since µ, ν are finite Borel measure in a Polish space, they are regular measures and there
exist compact sets Kµ,Kν ⊆ E and open set Aµ, Aν ⊇ E such that

Kρ ⊆ E ⊆ Aρ, ρ (Aρ \Kρ) < ε, ρ = µ, ν.

If we set K := Kµ ∪Kν , A := Aµ ∩Aν then K is compact and A is open and

ρ (A \K) ≤ ρ (Aρ \K) ≤ ρ (Aρ \Kρ) ≤ ε, ρ = µ, ν

Pick a function g ∈ Cb (X ) such that 1K ≤ g ≤ 1A, then

|g − 1E | ≤ 1A\K

and ∫
X
|g − 1E |dρ ≤ ρ (A \K) < ε, ρ = µ, ν.

Therefore we prove that for each f ∈ Bb (X ) there exists {gn} ⊆ Cb (X ) such that gn → f
in L1 (µ) and L1 (ν). Now if we pass in the subsequence of {gn} we can assume that {gn}
converges pointwise in f µ-a.s. and ν-a.s.. If we define

fn :=

(
−‖f‖u +

1

n

)
∨
[
gn ∧

(
‖f‖u −

1

n

)]
, ∀n ∈ N,
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then we obtain that fn → f pointwise µ-a.s. and ν-a.s.. Since ‖gn‖u ≤ ‖fn‖u for every
n ∈ N, we have that fn → f in L1 (µ) and L1 (ν) by bounded convergence theorem. Then
fn satisfies all the assumptions of the Lemma 3.2.

We have proved that

R (ν|µ) = sup
f∈Bb(X )

{∫
X
fdν −

∫
X
h (f) dµ

}
where h (f) = h log f and f = dµ

dν . Also we know that

R (ν|µ) = H (ν, µ) ≥ H ′ (ν, µ) = sup
f∈Cb(X )

{∫
X
fdν −

∫
X
h (f) dµ

}
≥ 0.

Since f ∈ Bb (X ) , h (f) is lower bounded and the integral
∫
X f (f) is defined for every

f ∈ Bb (X ).
Assume that µ, ν ∈ M (X ), we need to show that for any function f ∈ Bb (X ) such that
f ∈ L1 (µ) there is {fn} ⊆ Cb (X ), such that∫

X
fndν −

∫
X
h (fn) dµ

n→∞−→
∫
X
fdν −

∫
X
h (f) dµ.

Suppose, now, that there is {fn} that satisfies the assumptions of Lemma 3.2. Then∫
X
fndµ→

∫
X
fdν as n→∞

So it remains to show that

lim
n→∞

∫
h (fn) dµ→

∫
X
h (f) dµ as n→∞ (3.4)

Indeed, h is continuous as a convex function. Then

h (fn)→ h (f) pointwise µ-a.s. as n→∞.

Also, h is continuous and bounded in any closed interval and |fn (x) | ≤ ‖f‖u for each
n ∈ N and for each x ∈ X . Then we have that

‖h (fn) ‖u ≤ sup
−‖f‖u≤t≤‖f‖u

h (t) ≤ ∞ for each n ∈ N.

By bounded convergence theorem we obtain 3.4 and so the proof is completed.

We next prove other three important properties of relative entropy: convexity, lower
semicontinuity, and compactness of level sets. In this section we develop only the prop-
erties of relative entropy that will be useful later in this section. All of the results in the
following lemma are formulated for arbitrary Polish spaces.

Lemma 3.3. Let X be a Polish space and µ ∈ M1 (X ). The relative entropy has the
following properties:

(i) (convexity) R (·|µ) is strictly convex on the set {ν ∈M1 (X ) : R (ν|µ) <∞}.
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(ii) (lower semicontinuity) R (·|µ) is lower semicontinuous.

(iii) (compactness of level sets) R (·|µ) has compact level sets. That is, for each M <∞
the set {ν ∈M1 (X ) : R (ν|µ) ≤M} is a compact subset of M1 (X ).

Proof. (i) Convexity is immediate by Proposition 3.3, since ν 7→ R(ν|µ) is the supremum
of linear functions in ν. To prove strict convexity recall that

R (ν|µ) =

∫
X

dν

dµ
log

dν

dµ
dµ

for any ν ∈ M1 (X ) satisfying R (ν|µ) < ∞. We know that h (x) = x log x is strictly
convex for x ∈ [0,∞).

Suppose that ν0, ν1 ∈M1 (X ) and νt = (1− t) ν0 + tν1 ∈M1 (X ), t ∈ (0, 1).
Then, we have that

h

(
dνt
dµ

)
= h

(
(1− t) dν0

dµ
+ t

dν1

dµ

)
≤ (1− t)h

(
dν0

dµ

)
+ th

(
dν1

dµ

)
with equality holding if and only if dν0

dµ = dν1
dµ . Thus,

R (νt|µ) =

∫
X
h

(
dνt
dµ

)
dµ ≤ (1− t)

∫
X
h

(
dν0

dµ

)
dµ+ t

∫
X
h

(
dν1

dµ

)
dµ

= (1− t)R (ν0|µ) + tR (ν1|µ) ,

with equality holding if and only if dν0
dµ = dν1

dµ µ-a.s., that is if and only if ν1 = ν2, proving
that R (·|µ) is strictly convex on {ν ∈M1 (X ) : R(ν|µ) < +∞}.

(ii) For any f ∈ Cb(X ) the map ν 7→
∫
fdν is continuous. In view of Proposition 3.3

R(·|µ) is lower semicontinuous as the supremum of continuous functions.
(iii) Let {νn, n ∈ N} be any sequence in {ν ∈ M1 (X ) : R (ν|µ) ≤ M}. According to

the variational formula 3.3 for any bounded measurable function f ∈ Bb (X ) mapping X
into R we have that ∫

X
fdνn − log

∫
X
efdµ ≤M

Pick any δ ≥ 0 and ε > 0. The tightness of µ guarantees that there exists a compact set
K such that µ (Kc) ≤ ε. Substituting into the last display the function f that equals to 0
on K and log

(
1 + 1

ε

)
on Kc, we have that for each n ∈ N∫

Kc

log

(
1 +

1

ε

)
dνn − log

(∫
K
dµ+

∫
Kc

1 +
1

ε
dµ

)
≤M ⇔

log

(
1 +

1

ε

)
νn (Kc)− log

(
1 +

1

ε
µ(Kc)

)
≤M ⇔

νn (Kc) ≤ 1

log
(
1 + 1

ε

) (M + log
(
1 +

1

ε
µ(Kc)

))
⇒

νn (Kc) ≤ 1

log
(
1 + 1

ε

) (M + log 2) .
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Since ε is picked arbitrary we can choose ε such that 1
log(1+ 1

ε )
(M + log 2) ≤ δ. This implies

that {νn} is tight. Applying Prohorov’s theorem there exists a subsequence {νnk} weakly
converging to some ν ∈M1 (X ). Lower semicontinuity yields that

R (ν|µ) ≤ lim inf
k→∞

R (νnk |µ) ≤M

This implies that {ν ∈M1 (X ) : R (ν|µ) ≤M} is compact, and the proof is complete.

Properties (ii) and (iii) above state in particular that the function ν 7→ R (ν|µ) is a
good rate function defined on M1 (X ).
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Chapter 4

LDP for abstract measures

4.1 Sanov’s theorem

We are now ready to prove large deviations for empirical measures of a sequence of i.i.d.
random variables on a Polish space. The topology that determines the open and closed
set in M (X ) is the weak topology generated by Cb (X ). Let {Xn} be a sequence of i.i.d.
random variables valued on a Polish space X and with common distribution µ. Then the
sample distribution of {Xi} is a sequence of random measures (empirical measures):

Ln =
1

n

n∑
i=1

δXi ,

where δx is the Dirac measure in x ∈ X and maps X n → M1 (X ) and the product
measure Pn will generate a measure Pn onM1 (X ) which is the distribution of the empirical
distribution. The weak law of Large Numbers essentially implies that :

Pn ⇒ δµ

This means that the empirical distribution µn approaches the true distribution µ. Close
here is in the sense of weak convergence. To this end, we have that

Ln (xj) =
1

n

n∑
i=1

1{xj} (Xj)

is a random variable. Therefore, the sequence {Yx,j} which is defined by Yj,x = 1{x}Xj is
i.i.d. sequence with mean value E [Yj,x] = P [x1 = µ] = µ (x). Thus, for every x ∈ X , by
the weak law of large numbers:

Ln (x) =
1

n

n∑
i=1

YX,j
n→∞−→ µ (x) P-a.s.

Thus, it is reasonable to inquire about the large deviations of {Pn : n ≥ 1}. In fact, we
will see that the large deviations of {Pn : n ≥ 1} are governed by the rate function:

I (ν) = R (ν|µ)

and that R (·|µ) is a good rate function as we proved previously.

Theorem 4.1. The sequence {Pn} satisfies LDP on M1 (X ) with the good rate function
the relative entropy R (ν|µ).
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Proof. Upper bound

We are going to follow the techniques that we used to prove Cramér theorem on Rd.
For any given ν and any ε > 0, there is a small neighborhood Uν around ν such that:

Uν := {ρ : | 〈f, ν〉 − 〈f, ρ〉 | < ε} .

Thus,
Pn [Uν ] = Pn[ρ : | 〈f, ν〉 − 〈f, ρ〉 | < ε]

= Pn
[
| 1
n

n∑
i=1

f (Xi)− 〈f, ν〉| < ε

]
≤ e−n〈f,ν〉+nεEn

[
e
∑n
i=1 f(Xi)

]
= e−n〈f,ν〉+nε

(∫
ef(x)dµ (x)

)n
Then,

1

n
logPn[Uν ] ≤ 1

n
log e−n〈f,ν〉 +

1

n
log enε +

1

n
log

(∫
X
ef(x)dµ (x)

)n
= −〈f, ν〉+ ε+

1

n
log

(∫
X
ef(x)dµ (x)

)n
= 〈f, ν〉+ ε+ log

∫
X
ef (x) dµ (x).

We may now choose f ∈ Cb (X ) so that

〈f, ν〉 − log

∫
efdµ ≥ R (ν|µ)− ε.

Therefore,

lim sup
n→∞

1

n
logPn[Uν ] ≤ −Iε (ν) + ε

If D is any compact subset of M1 (X ), then D can be covered by a finite number of
Uν . Hence, C ⊆

⋃N
i=1 Uνi .

Pn[D] ≤ Pn[
N⋃
i=1

Uνi ] ≤
n∑
i=1

Pn[Uνi ] ≤ N max
i≤N

P[Uνi ]

Then,
1

n
logPn[D] ≤ 1

n
max
i≤N

logN +
1

n
logP[Uνi ]⇒

lim sup
n→∞

1

n
logPn[D] ≤ max

i=1,··· ,N
lim sup
n→∞

1

n
logPn[Uνi ]

≤ max
i=1,··· ,n

(−Iε (νi)) ≤ sup
ν∈D

(−Iε (ν)) = − inf
ν∈D

Iε (ν)

Since ε is arbitrary we actually have that

lim sup
n→∞

1

n
logPn[D] ≤ − inf

ν∈D
I (ν)

for every compact D ⊆M1 (X ).
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In order to get an upper bound for general closed set, it is enough to establish expo-
nential tightness of {Pn}. We want to show that for every L > 0, there exists a compact
set KL such that Pn[Kc

l ] ≤ e−nL for all n ∈ N . Using Ulam’s theorem, for any proba-
bility measure µ ∈ M1 (X ) and for any ε > 0, there exists a compact set K ⊂ X such
that µ (Kc) ≤ ε. So, we can pick a compact set AL such that µ (AcL) < e−L

2
. Then,

DL =
{
ν : ν (AL) ≥ 1− 1

L

}
is closed in the weak topology σ (M (X ) , Cb (X )) because the

Portmanteau theorem implies that for every closed set AL

lim sup
j→∞

νj (AL) ≤ ν (AL)

if νj weakly converges to ν.
The set KL =

⋂
L≥lDL is also closed. Since KL is also tight, it is compact by Prohorov’s

theorem. But, now, we have that

Pn[Dc
L] = P

[
Ln[AcL] >

1

L

]
= P

[
1

n

n∑
i=1

1AcL (Xi) >
1

L

]

= P

[
n∑
i=1

1AcL (Xi) >
n

L

]

≤ e−
nL2

L EP
[
e
L2
∑n
i=1 1AcL (Xi)

]
= e−nLEµ

[
e
L21Ac

L
(Xi)
]n

= e−nL
(
eL

2
e−L

2
+ 1
)n
≤ e−nL2n

Therefore,

Pn[Kc
L] = Pn[(∩L≥lDL)c] = Pn[∪L≤lDc

L]

≤
∑
L≥l

Pn [Dc
L] ≤

∑
L≥l

2ne−nL ≤ 2ne−nL

1− e−n
≤ 2e−n (l − 1)

We use the same argument as in the Cramér theorem on Rd. F = (F ∩KL) ∪ (F \KL).

Hence,
Pn[F ] ≤ Pn[F ∩KL] + Pn[Kc

L]⇒

lim sup
n→∞

1

n
logPn[F ] ≤ max

{
− inf
ν∈F

I (ν) ,−l
}

and by letting l→∞ we get the upper bound

lim sup
n→∞

1

n
logPn[F ] ≤ − inf

ν∈F
I (ν)

for every closed F ⊂ X .

Lower bound
To prove the lower bound, we tilt the measure from Pn to Qn through Radon-Nikodym
derivative based on i.i.d. random vectors with µ for each component. This way relative

38



entropy enters the calculation. Let Uν be a neighborhood around ν. We assume that
R (ν|µ) <∞. We want to show that ∀ν ∈M1 (X ) and n ∈ Uν open

lim inf
n→∞

1

n
logPn[Uν ] ≥ −R (ν|µ) .

This implies that ν � µ. Let b = dν
dµ and let Q = ν⊗n and P = µ⊗n be the law of the i.i.d.

with marginal µ.

Then,

dQ
dP

(x1, · · · , xn) =
n∏
i=1

b (xi) = bn (x)

Here, we used the notation x = (xi)i≥1.
Now, we write

P[Ln ∈ Uν ] ≥
∫
Ln∈Uν

1{bn>0}dP

=

∫
Ln∈Uν

b−1
n (x) dQ

=

∫
Ln∈Uµ

(b (X1) · · · b (Xn))−1 dQ

= EQ[1{Ln∈Uν}b
−1
n (x)]

=
Q[1{Ln∈Uν}]

Q[1{Ln∈Uν}]
EQ[1{Ln∈Uν}b

−1
n (X)]

Thus,

1

n
logP[Ln ∈ Uν ] ≥ 1

n
log

[
1

Q[1{Ln∈Uν}]
EQ[1{Ln∈Uν}b

−1
n (X)]Q[1{Ln∈Uν}]

]

=
1

n
log

[
1

Q[1{Ln∈Uν}]
EQ[1{Ln∈Uν}b

−1
n (X)]

]
+

1

n
logQ[1{Ln∈Uν}]

≥ − 1

nQ[1{Ln∈Uµ}]
EQ[1{Ln∈Uµ} log bn] +

1

n
logQ[1{Ln∈Uµ}].

In the third line, in the first term of the second part of the inequality , we used Jensen’s
inequality in the convex function − log x. Now, we will use the fact that x log x ≥ −1

e to
write,

EQ[1{Ln∈Uν} log bn] = EQ[log bn]− EQ[1{Ln∈Ucν} log bn]

= nEν [log b]− EP[1{Ln∈Ucν}bn log bn]

≤ nR (ν|µ) +
1

e
.

Therefore,

1

n
logP[Ln ∈ Uν ] ≥ 1

Q[Ln ∈ Uν ]

(
−R (ν|µ)− 1

ne

)
+

1

n
logQ[1{Ln∈Uν}].

By the Law of Large Numbers, since Q ◦X−1
i = ν that is the distribution of Xi’s under

Q. Q[Ln ∈ Uν ] converges to 1. We, thus, have

lim inf
n→∞

1

n
logP[Uν ] ≥ −R (ν|µ) .
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The proof is now complete, since, we have already showed that R (ν|µ) = I (ν) is a good
rate function.
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Part II

Large Deviations for Stochastic
Processes
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Chapter 5

Sample path Large Deviations

5.1 Schilder’s theorem

In many problems, the interest is in rare events that depended on random process, and
the corresponding asymptotics probabilities, usually called sample path large deviations,
were developed by Freidlin-Wentzell and Donsker-Varadhan.
The first example is known as Schilder’s theorem, and concerns large deviations for the
process {Wε}ε =

√
εW , as ε goes to zero, (the family of rescaled Brownian Motion)

where W = {Wt}t∈[0,T ] is a Brownian motion in Rd. Denote by C0[0, 1] the space of
continuous functions on [0, 1]. The family of paths is defined on an infinite dimensional
space: (Θ, ‖ · ‖∞), where

Θ =
{
θ ∈

(
C0[0, 1];Rd

)
: θ (0) = 0

}
Θ is a separable Banach space with respect to the uniform norm. Now, we identify the
dual space of Θ. The dual space of Θ is the set of all vector signed measures on [0, 1] and
with finite variation. The duality relation is given by:∫ 1

0

d∑
i=1

θi (s)λ (ds) = 〈λ, θ〉.

We consider d = 1 for sake of simplicity.
Having identified C ′0 the dual space of C0 we follow the scheme of Ellis-Gärtner theorem

in order to compute for any λ ∈ C ′0 the limit

Λ (λ) = lim
ε→0

ε log Q̃ε

(
λ

ε

)
for Q̃ε ∈ C ′0 and the convex conjugate Λ∗ of Λ, that is for ψ ∈ C0

Λ∗(ψ) = sup
λ∈C′0

(〈λ, ψ〉 − Λ (λ))

Lemma 5.1. Given, λ ∈ C ′0 and ψ ∈ Θ then for all λ ∈ Θ∗

Λ (λ) =
1

2

∫ 1

0
|λ[s, 1]|2ds

Proof. First of all, we observe that
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ω → 〈λ,W (ω)〉 =

∫ 1

0
Ws (ω)λ (ds) (5.1)

is a centered Gaussian random variable and it is well known that the mean of the expo-
nential of a centered random variable with variance σ2 is equal to e

1
2
σ2

. So we have to
compute σ2 of 〈λ,W 〉.

σ2 = E[〈λ,W 〉2] = E

[(∫ 1

0
W (s)λ (ds)

)2
]

= E
[∫ 1

0
W (s)λ (ds)

∫ 1

0
W (t)λ (dt)

]
= E

[∫ 1

0

∫ 1

0
W (s)W (t)λ (dt)λ (ds)

]
=

∫ 1

0
dλ (s)

∫ 1

0
E[W (s)W (t)]λ (dt)

=

∫ 1

0
λ (ds)

∫ 1

0
t ∧ sλ (dt) .

However,

t ∧ s =

∫ 1

0
1[0,s] (u) du

=

∫ 1

0
t ∧ sλ (dt) =

∫ 1

0

∫ t

0
1[0,s] (u) duλ (dt)

=

∫ 1

0
du

∫ t

0
1[0,s] (u)λ (dt)

=

∫ s

0
λ ([u, 1]) du.

Therefore,

E[〈λ,W 〉2] =

∫ 1

0
λ (ds)

∫ s

0
λ[u, 1]du =

∫ 1

0
λ[u, 1]du

∫ 1

u
λ (ds) =

∫ 1

0
λ2 ([u, 1]) du.

so,

Λ (λ) = lim
ε→0

ε log Q̃ε

(
λ

ε

)
=

1

2

∫ 1

0
|λ ([s, 1]) |2ds.

Remark 5.1. Using stochastic integration, the variance of the random variable defined in
5.1 can be derived more easily by considering that, by integration by parts,∫ 1

0
W (ω)λ (ds) =

∫ 1

0
λ ([s, 1]) dW (s) .

Next define H be the space of ψ ∈ Θ, consisting of absolutely continuous functions
with the property that

ψ (t) =

∫ 1

0
ψ̇ (s) ds, ψ̇ ∈ L2

(
[0, 1];Rd

)
.

H is called Cameron-Martin space and is Hilbert space with respect to scalar product

〈f, g〉 =

∫ 1

0
ḟsġsds.
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Remark 5.2. It is important to notice that by Hölder’s inequality the paths in H are
Hölder continuous of index 1

2 for 0 < s < 1

|ψs − ψt| =
∣∣∣∣∫ t

s
ψ̇udu

∣∣∣∣ ≤ |t− s|1/2(∫ t

s
|ψ̇s|2ds

)
1/2 ≤ ‖ψ‖H|t− s|1/2.(5.2)

This implies that bounded sets of paths in H are uniformly bounded and uniformly equicon-
tinuous. Thus, by ths Ascoli-Arzela theorem, bounded sets of H are relative compact in
C0[0, 1]. We will use this argument later in order to construct relative compact set in H
and prove the upper bound.

Lemma 5.2. For any ψ ∈ C0 the Legendre transform of Λ (λ) is

Λ∗ (ψ) =


1

2

∫ 1

0
|ψ̇s|2ds ψ ∈ H

∞ otherwise

Proof. The Legendre transform of Λ (λ) will be

Λ∗ (ψ) = sup
λ∈C′0

{〈λ, ψ〉 − Λ (λ)}

= sup
λ∈C′0

{∫ 1

0
ψ (s) dλs −

1

2

∫ 1

0
|λ ([s, 1]) |2ds

}

= sup
λ∈C′0

{∫ 1

0
λ ([s, 1]) ψ̇sds−

1

2

∫ 1

0
|λ ([s, 1]) |2ds

}

= sup
λ∈C′0

{
−1

2

∫ 1

0
|λ ([s, 1])− ψ̇s|2ds+

1

2

∫ 1

0
|ψ̇s|2ds

}

≤ 1

2

∫ 1

0
|ψ̇ (s) |2ds. (5.3)

In order to prove that the equality holds we need to consider the following lemma.

Lemma 5.3. h ∈ H if and only if

lim
n→∞

2n
2n∑
i=1

∣∣∣∣h( i

2n

)
− h

(
i− 1

2n

)∣∣∣∣2 <∞ (5.4)

and is equal to ‖h‖2H =
∫ 1

0

∣∣∣ḣs∣∣∣2 ds, where H is Cameron-Martin space.

Proof. Suppose that h ∈ H then we devide [0, 1] in 2n equal parts. Then there is s ∈(
i−1
2n ,

i
2n

)
⊂ [0, 1]. We define

gn (s) = 2n
∫ i

2n

i−1
2n

ḣsds = 2n
(
h

(
i

2n

)
− h

(
i− 1

2n

))
.

Then

gn (t) =

∫ 1

0
ġn (s) ds (5.5)
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Thus this function gives us h for each point i
2n , i = 0, 1, 2, . . . , 2n. But this means that g

is linear between two such points, since it is linear interpolation of h at these points i
2n .

Then the norm of the interpolating function is

|gn|H = 2n
2n∑
i=1

∣∣∣∣h( 1

2n

)
− h

(
i− 1

2n

)∣∣∣∣2 <∞.
We need to prove that gn → h in H. We consider the σ-algebra which is generetad by
these intervals. More precisely, we define

Fn =

{[
i− 1

2n
,
i

2n

]
: 1 ≤ i ≤ 2n

}
.

Therefore,
ġn = E[ḣ|Fn]

which means that ġn is Fn-martingale and bounded in H and ġn converges to ḣ.
Now, suppose that 5.4 holds. We want to prove that h ∈ H. It suffices to show that

E[ġn+1|Fn] = ġn

which means that ġn is Fn martingale. Since Fn is generated by a partition of [0, 1] we
know that

E[ġn+1|Fn] =
1
1

2n

∫ i
2n

i−1
2n

ḣsds = ġn <∞

Then ġn is a martingale with respect to Fn which is bounded by 5.4 in L2. Thus there
exists ġ such that ġn → ġ in L2, which means that

ġn = E[ġ|Fn].

Since ∫ t

0
ġn (s) ds→

∫ t

0
ġ (s) ds

then necessarily h (s) =
∫ t

0 ġ (s) and h ∈ H.

Now, we construct a sequence of measures using the above lemma in order to prove
that the equality holds in 5.3.

λn = 2n
2n∑
i=1

∣∣∣∣ψ( i

2n

)
− ψ

(
i− 1

2n

)∣∣∣∣ (δ i
2n
− δ i−1

2n

)
.

We set bn=δ i
2n
− δ i−1

2n
, therefore

bn ([u, 1]) =

1
i− 1

2n
≤ u ≤ i

2n

0 otherwise.

Then

λn ([u, 1]) = 2n
∣∣∣∣ψ( i

2n

)
− ψ

(
i− 1

2n

)∣∣∣∣ for i−1
2n ≤ u ≤

i
2n
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and

Λ (λn) =
1

2
2n

2n∑
i=1

∣∣∣∣ψ( i

2n

)
− ψ

(
i− 1

2n

)∣∣∣∣2 .
Finally, we get

〈λn, ψ〉 = 2n
2n∑
i=1

∣∣∣∣ψ( i

2n

)
− ψ

(
i− 1

2n

)∣∣∣∣2 − 1

2
2n

2n∑
i=1

∣∣∣∣ψ( i

2n

)
− ψ

(
i− 1

2n

)∣∣∣∣2

=
1

2
2n

2n∑
i=1

∣∣∣∣ψ( 1

2n

)
− ψ

(
i− 1

2n

)∣∣∣∣2 → 1

2

∫ 1

0

∣∣∣ψ̇s∣∣∣2 ds as n→∞.

if ψ ∈ H.

Now, we are ready to prove Schilder’s theorem. Schilder’s theorem gives us an estimate
for the probability that a rescaled B.M. will stray far from the mean path which is constant
with value 0.

Theorem 5.1. Let Q be the Wiener measure on C0[0, 1] and for ε > 0 let Qε its image
through the mapping W →

√
εW . Then the family of measures {Qε}ε satisfies LDP with

good rate function given by Λ∗ (ψ) for ψ ∈ C0.

Proof. Upper bound

First step: We shall prove the upper bound for a small neighborhood of ψ, Bδ (ψ) open
balls of radius δ,

Bδ (ψ) = {f ∈ C0[0, 1] : sup |f (t)− ψ (t) | < δ} .

We need to show that

lim sup
ε→0

ε logQε[Bδ (ψ)] ≤ − inf
ψ

Λ∗Q (ψ) . (5.6)

Qε[Bδ (ψ)] = P[
√
εW ∈ Bδ (ψ)] = P[ sup

0≤t≤1
|
√
εWt−ψt| < δ] = P

[
sup |
√
ε

(
Wt −

ψt√
ε

)
< δ

]
= P

[
sup

0≤t≤1
|Wt −

ψt√
ε
<

δ√
ε

]
= Q

[
B δ√

ε

(
ψ√
ε

)]

= EQ

[
1
B δ√

ε

(
ψ√
ε

)
]

≤
∫
B

δ√
ε

(
ψ√
ε

) exp[〈λ,W 〉 − inf
φ∈Bδ(ψ)

〈λ, φ〉]dQ

≤ e− infφ∈Bδ(ψ)〈λ,φ〉
∫
B δ√

ε

(
ψ√
ε

) e〈λ,W 〉dQ

≤ e−〈λ,ψ〉
∫
B δ√

ε

(0)
e
〈λ,W− ψ√

ε
〉
dQ.
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However by integration by parts we get

〈λ,W 〉 =

∫ 1

0
Wsdλs = −

∫ 1

0
λ ([s, 1]) dWs ≤

1

2

∫ 1

0
λ2 ([s, 1]) ds.

Then we have that

Qε[Bδ (ψ)] ≤ e〈λ,ψ〉
∫
B δ√

ε

(0)
e
〈λ,W 〉−〈λ, ψ√

ε
〉
dP

< e
−
(
〈λ,ψ〉+〈λ, ψ√

ε
〉
) ∫

B δ√
ε

(0)
e

1
2

∫ 1
0 λ

2([s,1])dsdP

< e−
1
ε (〈λ,ψ〉−

1
2

∫ 1
0 λ

2([s,1])ds)
∫
B δ√

ε

(0)
dP

= e
Λ∗(ψ)
ε P[B δ√

ε
(0)].

Thus, if we take the logarithm and let ε→ 0 we obtain the proper upper bound for open
balls

lim sup
ε→0

ε logQε[Bδ (ψ)] ≤ − inf Λ∗ (ψ) . (5.7)

Second step: Now, we will show the upper bound for K ⊂ Θ compact set. If K is compact
then K ⊂

⋃n
i=1Bδi (ψi). The technique is similar to that of Cramér theorem in Rd and by

5.7:
lim sup
ε→0

ε logQε[K] ≤ max
i

lim sup
ε→0

ε logQε[Bδi (ψi)]

≤ max
i

(− inf Λ∗ (ψi)) ≤ − inf Λ∗ (ψ) .

Third step: Finally, we prove the upper bound for F ⊂ Θ closed sets. Firstly, we make
the following observation

F = (F ∩K) ∪ (F \K) ⊂ (F ∩K) ∪Kc.

Therefore

lim sup
ε→0

ε logQε[F ] ≤ lim sup
ε→0

ε logQε[F ∩K] ∨ lim sup
ε→0

logQε[K
c]

≤ − inf
ψ∈F∩K

Λ∗ (ψ) ∨ lim sup
ε→0

ε logQε[K
c].

lim sup
ε→0

ε logQε[F ] ≤ − inf
ψ∈F

Λ∗ (ψ) ∨ lim sup
ε→0

ε logQε[K
c]. (5.8)

The problem is to remove compactness restriction from the above inequality. The idea is
to construct a compact set KL, L > 0 of paths with the property that

lim sup
ε→0

ε logQε[K
c
L] ≤ −L. (5.9)

What this mean is that as L → ∞ the events become so deviant that they cannot even
been seen on the scale at which we are looking. Therefore, they cannot contribute to our
calculation.
Recall that 5.2, because of Ascoli-Arzelá theorem, all sets which are uniformly bounded
and equicontinuous are relative compact. For 0 < α < 1

2 let us consider the Hölder norm
on C0[0, 1]

|ψ|α = sup
0≤s≤t≤1

|ψ (t)− ψ (s) |
|t− s|α
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But it is well-known that the paths of the Brownian motion are α-Hölder continuous for

every α < 1
2 , so that | · |α is finite Q-almost everywhere. Indeed, KL =

{
|ψ|α ≤

√
L/c

}
are relative compact because of 5.2, so we have that

Qε[K
c
L] = P

[
|
√
εW |α >

√
L

C

]
= P

[
eC|W |

2
α > e

L
ε

]
≤ E

[
eC|W |

2
α

]
e
−L
ε (5.10)

the last inequality is due to Markov inequality. We need to show that

E
[
eC|W |

2
α

]
= c1 <∞ (5.11)

There are several ways one can establish the property 5.11. The method which will
adopt here will be to construct a function Φ : Θ→ [0,∞] such that:

(1) Φ is sub-additive

(2) Φ (aθ) = |a|Φ (θ) for all a ∈ R and θ ∈ Θ.

(3) P[{θ : Φ (θ) <∞}] = 1

In order to construct such a Φ and to pass from the fact that it exists to 5.9, we will make
use of the following beatiful and powerful estimate due to X. Fernique.

Theorem 5.2. (Fernique). Let X be a real seperable Fréchét space and Φ : X → [0,∞] a
measurable function sub-additive function with the property that Φ (ax) = |a|Φ (x) for all
a ∈ R and x ∈ X . Next define µ a probability measure on (X ,BX ) with the property that
µ2 on

(
X 2,BX 2

)
is invariant under the transformation:

F (x, y) =

(
x+ y√

2
,
x− y√

2

)
∈ X 2.

If µ[{x : Φ (x) <∞}] = 1 then there exists an a > 0 for which∫
X
eaΦ(x)2

dµ (x) <∞.

Remark 5.3. Let us see how this result allows us to derive 5.11. Indeed, it is enough to
apply it to the semi-norm Φ = | · |α, 0 < α < 1/2 and for X = C0[0, 1], µ is the Wiener
measure. Since we know that the paths of the Brownian motion are α-Hölder continuous
for every α < 1/2 it holds that Φ < ∞ µ-a.s.. The invariance property of µ ⊗ µ under
F also comes easily from the fact that µ ⊗ µ is the law on C × C of a bi-dimensional
Brownian motion W = (W1,W2) and Wiener measure is invariant under the π

4 rotation.
To prove the invariance property is equivalent to show that if

V1 (t) =
1√
2

(W1 (t) +W2 (t)) , V2 (t) =
1√
2

(W1 (t)−W2 (t))

then V = (V1, V2) is still a bi-dimensional Brownian motion, which is immediate as V has
the same finite dimensional distributions of W .

Proof. Given that 0 < s < t and A =
{

(x, y) ∈ X 2 : φ (x) ≤ s, φ (ψ) ≥ t
}

we have

µ⊗ µ (A) = µ⊗ µ
({

(x, y) ;φ

(
x− y√

2

)
≤ s, φ

(
x+ y√

2

)
≥ t
})
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= µ⊗ µ
({

(x, y) ;φ (x− y) ≤
√

2s, φ (x+ y) ≥
√

2t
})

≤ µ⊗ µ
({
|φ (x)− φ (y) | ≤

√
2s, φ (x) + φ (y) ≥

√
2t
})

≤ µ⊗ µ
({

(x, y) : −max (φ (x) , φ (y)) + min (φ (x) , φ (y)) ≥ −
√

2s,

,max (φ (x) , φ (y)) + min (φ (x) + φ (y)) ≥
√

2t

≤ µ⊗ µ
({

(x, y) ,min (φ (x) , φ (y)) ≥ 1√
2

(t− s)
)

=

(
µ

(
x : φ (x) ≥ 1√

2
(t− s)

))2

.

In the third inequality, we used the argument that

|φ (x)− φ (y) | = max (φ (x) , φ (y))−min (φ (x) , φ (y)) .

Thus we have,

µ ({x : φ (x) ≤ s}) · µ ({y : φ (y) ≥ t}) ≤
(
µ

({
x : φ (x) ≥ 1√

2
(t− s)

}))2

. (5.12)

Since φ is finite µ-a.s. there exists s ≥ 0 such that

µ ({x : φ (x) ≤ s}) > 1

2
.

Thus we define by recurrence a sequence (tn)n by

t0 = s tn =
√

2tn−1 + s

tn = s

(
1 +
√

2 +
(√

2
)2

+ · · ·+
(√

2
)n)

= s

(√
2
)n+1 − 1
√

2− 1
≤ s(

√
2√

2− 1︸ ︷︷ ︸
=
√
b

) · 2n/2.

By 5.12 we derive that

µ (φ ≤ s)µ (φ ≥ tn) ≤ (µ (φ ≥ tn−1))2 .

Iterating this inequality we obtain:

µ (φ ≥ tn)

µ (φ ≤ s)
≤

µ (φ ≥ tn−1)

µ (φ ≤ s)︸ ︷︷ ︸
≤1


2

= e−2nc

where c = − log
[
µ(φ(x)≥s)
µ(φ(x)≤s)

]
and therefore ∫

X
eaφ

2(x)µdx ≤
∫
{φ≤

√
b}
eaφ

2(x)µdx︸ ︷︷ ︸
≤eab

+

∫
{φ≥

√
b}
eaΦ2(x)µdx.
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∫
{φ≥

√
b}
eaφ

2(x)µ (dx) ≤
∞∑
n=1

∫
{b2n≤φ2≤b2n+1}

eaφ
2(x)µ (dx)

≤
∞∑
n=1

eab2
n+1

µ
({
φ2 ≥ b2n

})
.

Since t2n ≤ b2n 5.12 gives∫
{φ≤

√
b}
eaφ

2(x)µ (dx) ≤
∞∑
n=1

eab2
n+1

µ (φ ≥ tn)

≤
∞∑
n=1

eab2
n+1

µ (φ ≥ s) e−2nc

which for 2ab < c gives convergent series and this concluded the proof.

Using the above theorem, the statement 5.10 holds and so the family of measures {Qε}
is exponential tight and the statement 5.9 holds too. Therefore, by 5.8 we have the proper
upper bound for closed sets.
Lower bound
Let ψ ∈ H1. We want to prove that

lim inf
ε→0

ε logQε[Bδ (ψ)] ≥ − inf
ψ∈H1

Λ∗ (ψ)

Bδ (ψ) being the open ball radius δ centered at ψ in the uniform norm. The idea is, as
always for a lower bound, based in a change of measure.

Qε[Bδ (ψ)] = P[
√
εW ∈ Bδ (ψ)] = P[

√
εW ∈ Bδ (ψ)]

= P[
√
ε

(
W − ψ√

ε

)
∈ Bδ (0)]

P[W − ψ√
ε
∈ D δ√

ε
(0)]

By Gisranov theorem the law of (Wt − ψ
√
ε) = W̃ has a density with respect to Wiener

measure Q which is given by:

dQε,ψ

dQε
= exp

 1√
ε

∫ 1

0
ψ̇sdWs −

1

2ε

∫ 1

0
|ψ̇s|2ds︸ ︷︷ ︸

=
Λ∗(ψ)
ε

 .

Thus,

P[
√
ε

(
W − ψ√

ε

)
∈ Bδ (0)] = Qε,ψ[Bδ (0)] =

∫
Bδ(0)

dQε,ψ

dQε
dQε

=

∫
Bδ(0)

exp

(
1√
ε

∫ 1

0
ψ̇sdws −

Λ∗ (ψ)

ε

)
dQε

= e−
Λ∗(ψ)
ε

∫
Bδ(0)

exp

(
1√
ε

∫ 1

0
ψ̇sdws

)
dQε
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= e−
Λ∗(ψ)
ε Qε[Bδ (0)]

1

Qε[Bδ (0)]

∫
Bδ(0)

exp

(
1√
ε

∫ 1

0
ψ̇sdws

)
dQε

≥ e−
Λ∗(ψ)
ε Qε[Bδ (0)] exp

1

Qε[Bδ (0)]

∫
Bδ(0)

(
1√
ε

∫ 1

0
ψ̇sdws

)
dQε.

In the last display the inequality is due to Jensen’s inequality. Furthermore,∫
Bδ(0)

(
1√
ε

∫ 1

0
ψ̇sdws

)
dQε = 0

since of Brownian motion symmetry W ∼ −W and Qε[Bδ (0)]→ 1 as ε→ 0 since

Qε[Bδ (0)] = P[
√
εW ∈ Bδ (0)] = P[ sup

0≤t≤1
|
√
εWt| < δ]

= P[ sup
0≤t≤1

|Wt| <
δ√
ε
] = 1− P[ sup

0≤t≥1
|Wt| >

δ√
ε
].

But

P[ sup
0≤t≤1

|Wt| >
δ√
ε
] = P[ sup

0≤t≤1
Wt >

δ√
ε
] + P[ inf

0≤t≤1
Wt < −

δ√
ε
]

= P[ sup
0≤t≤1

Wt >
δ√
ε
] + P[− sup

0≤t≤1
−Wt < −

δ√
ε
]

= 2P[ sup
0≤t≤1

Wt >
δ√
ε
] since W ∼ −W

We consider the exponential martingale for λ > 0: eλWt−λ
2

2
t = Mt then

P[ sup
0≤t≤1

Wt >
δ√
ε
] ≤ P[ sup

0≤t≤1
Mt > e

λ δ√
ε
+λ2

2
t
]

= P[e
−λ δ√

ε
+λ2

2
t

sup
0≤t≤1

Mt ≥ 1] ≤ e−λ
δ√
ε
+λ2

2 E[Mt]

= e
−λ δ√

ε
+λ2

2 E[M0] ≤ e−λ
δ√
ε
+λ2

2 .

By minimizing the latter expression in λ > 0 we have that

P[ sup
0≤t≤1

Wt >
δ√
ε
] ≤ e−

1
2
δ2

ε

which leads to

P[ sup
0≤t≤1

|Wt| >
δ√
ε
] ≤ 2e

− 1
2
δ2√
ε
.(5.13)

Otherwise, by reflection principle we have that

P[ sup
0≤t≤1

Wt >
δ√
ε
] = 2P[W1 > √

ε
] = 2

∫ ∞
δ√
ε

e−
x2

2
dx√
2π
.

Therefore,

Qε[Bδ (ψ)] ≥ e−
Λ∗(ψ)
ε

and
lim inf
ε→0

ε logQε[Bδ (ψ)] ≥ − inf
ψ∈H

Λ∗ (ψ) .
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We now give some examples of Schilder theorem.
First example
Suppose that W is 1-dimensional Brownian motion. We estimate the rate of decay of the
probability

P[ sup
0≤t≤1

Wt ≥M ]

as M →∞

Proof.

P[ sup
0≤t≤1

Wt ≥M ] = P[
1

M
sup

0≤t≤1
Wt ≥ 1] = P[ sup

0≤t≤1

1

M
Wt > 1]

We will use Schilder’s theorem to prove that

P[
1

M
W ∈ A] ≤ e− infψ∈A Λ∗(ψ)

where
A = {ψ : ψ ∈ C0[0, 1], ψ (t) ≥ 1, for some t > 1}

So, we have to estimate the infimumm over A of Λ∗ (ψ) = 1
2

∫ 1
0 |ψ̇s|

2ds.
First case if ψ (t) = 1 then by Cauchy-Schwartz inequality

1 =

∫ t

0
ψ̇sds ≤

√
t

(∫ t

0
|ψ̇s|2ds

) 1
2

≤
√
t|ψ|H

then —ψ|H > 1√
t
.So,Λ∗ (ψ) = 1

2

∫ 1
0 |ψ̇s|

2ds = 1
2 |ψ|H ≤

1
2 for t = 1.

Second case if ψ (t) = t ⇒ ψ̇ (t) = 1. This means that Λ∗ (ψ) = 1
2

∫ 1
0 ds = 1

2 then
infψ∈A Λ∗ (ψ) = 1

2 . But A is a closed set of paths then from the upper bound of Schilder
theorem we have that

lim
M→∞

sup
1

M2
logP[

1

M
W ∈ A] ≤ − inf

ψ∈A
Λ∗ (ψ) ≤ −1

2
.

Since the infimum is attained into A we have that

inf
ψ∈A

Λ∗ (ψ) = inf
ψ∈Ao

Λ∗ (ψ) .

Then we get that

lim sup
M→∞

logP[sup
t≤1

Wt ≥M ] = −1

2

However, by the reflection principle we get that

P
[
sup
t≤1

Wt ≤M ] = 2P[W1 ≤ 1] = 2
1√
2π

∫ ∞
M

e−
x2

2 dx ∼ 2

M
√

2π
e−

M2

2 .

Second example
Suppose that W is a d-dimensional Brownian motion, D is an open set containing the
origin. We define

τ = inf {t : Wt /∈ D} .

We estimate the exponential rate of decay towards 0 of the probability P[τ ≤ t] as t→ 0.
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Proof. First, we observe that

{τ ≤ t} = {w,Ws (w) /∈ D for some s ≤ t}

and Wst√
t

d
= Ws. Thus,

{τ ≤ t} = {w,Ws (w) /∈ D for some s ≤ t}

= {w,Wst (w) /∈ D for some s ≤ 1}

=

{√
t

(
Wst√
t
/∈ D for some s ≤ 1

}
=
{√

tW ∈ AD
}

where AD = {ψ,ψ (s) /∈ D for some s ≤ 1}. Then we can apply Schilder’s theorem and
we have to compute infψ∈AD Λ∗ (ψ). Let x ∈ ∂D be the point inthe boundary of D which
minimizes the distance from the origin. If ψ (t) = tx is the line segment joining the origin

to x then Λ∗ (ψ) = 1
2

∫ 1
0 |ψ̇

2
sds = |x|2

2 .
If ψ ∈ H is any path such that ψ (t) = z ∈ ∂D then

z =

∣∣∣∣∫ t

0
ψ̇sds

∣∣∣∣ ≤ √t(∫ s

0
|ψ̇s|2ds

) 1
2

≤
√
s|ψ|H.

So,

Λ∗ (ψ) =
1

2

∫ 1

0
|ψ̇s|2ds =

1

2
|ψ|2H ≥

|z|2

2

and infψ∈AD Λ∗ (ψ) = d2

2 where d = dist (x, ∂D). Therefore,

lim inf
t→0

t logP[τ ≤ t] = lim sup
t→0

t logP[τ ≤ t] = −d
2

2
.
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Chapter 6

Two applications of Schilder’s
theorem

6.1 Strassen theorem

Let P be the Wiener measure on the space Ω = C (([0, 1)) of continuous functions on [0, 1]
that starts from the point 0 at time 0. For n ≥ 3 we define the rescaled process:

ξn (t,W ) =
W (nt)√
n log log n

=
Wn·√

n log logn
(6.1)

As n → ∞, ξn (t,W ) → 0 in probability with respect to P. But, the convergence will
not be almost sure. Our first goal in this section will be to show how Schilder’s theorem
provides the key estimates in the proof of Strassen’s law of the iterated logarithm.

Remark 6.1. The original proof of Strassen made use of some special feature of Brownian
motion, the exact knowledge of its distribution and the reflection principle.

Theorem 6.1. (Strassen)For n ≥ 3 define:

ξn (t,W ) =
W (nt)√
n log logn

, (t,W ) ∈ [0, 1]×Θ.

and set K =
{
ψ ∈ H : 1

2

∫ 1
0 |ψ̇s|

2ds ≤ 1
}

then for P-almost sure the sequence {ξn (·)}∞3
has the following property:

The family {ξn (·) : n ≥ 3} is relative compact and K is its limit set.

Corollary 6.1. For every ψ ∈ K there is a subsequence of {ξn (·)}∞3 which converges to
ψ in Θ.

Remark 6.2. Notice that {ξn (·)}n≥3 contains in a compressed form the whole sample
path W (t).

Proof. The proof consists in three applications of the Borel-Cantelli lemma, the large
deviations estimates being necessary in order to prove that the series converge or diverge.
(i) First we shall prove that all limit points of {ξn (·)}n≥3 lie in K as n → ∞. If Kδ is a
neighborhood of size δ around K then for almost all w ξn (·)∈Kδ for sufficiently large n.
We need to show that for every δ > 0 there exists n ≥ n0 (w) such that

d (ξn (w) ,K) < δ ∀n ≥ n0
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This is proved in two steps.
Firstly, we sample ξn (·) along a discrete sequence n = ρm for some ρ > 1 and show that al-
most surely, for any such ρ, ξρm (·) ∈ Kδ for sufficiently large n. Kδ = {ψ ∈ C0 : d (ψ,K) < δ},
is an open set thus Kc

δ is a closed set.
Moreover, inf (Λ∗ (ψ) ;ψ /∈ Kδ) > 1. Indeed, this is obvious since the good rate function
Λ∗ always attains its infimum of the closed sets. Thus, there exists ψ ∈ Kc

δ such that

inf (Λ∗ (ψ) , ψ /∈ Kδ) = Λ∗ (ψ0) = λ > 1.

The key remark here is that W·t√
t

d
= W·.

Thus, for every δ > 0 and from Schilder’s theorem for any closed set

P[ξρm /∈ Kδ] = P[ξρm ∈ Kc
δ ]

= P

[
W·√

log (log ρm)
∈ Kc

δ

]
≤ eΛ∗(ψ) log(log ρm)

≤ eλ log(m log ρ)

=
log ρ

mλ

where P is the Wiener measure scaled by

1√
log (log ρm)

∼ 1√
logm

.

Therefore we obtain that
∞∑
m=1

P[ξρm ∈ Kc
δ ] <∞

since
∞∑
m=1

log ρ

mλ
<∞ for all λ > 1.

This requires just the Borel-Cantelli lemma. We have just showed that for almost w ∈ C0

there exists m0 = m0 (w) such that:

∞∑
m=1

P[ξρm (w) ∈ Kc
δ ] <∞ (6.2)

then
P[lim sup

m→∞
ξρm (w) ∈ Kc

δ ] = 0.

The second step is to show that the price for sampling is not too much. To this end, we
need to control the behavior of (ξn) for n between two numbers of the form ρm. More
precisely, we need to prove the following lemma.

Lemma 6.1. Let δ > 0 be fixed. There exists ρ > 1 such that for almost every w there
exists m1 = m1 (w) such that ∀m ≥ m1

Yn = sup
ρm<n<ρm+1

‖ξn (·)− ξρm (·) ‖∞ ≤ δ.
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Remark 6.3. This lemma concludes the proof of the first part of the proof since obviously
for m ≥ min {m0,m1} one has that

d (ξn (·) ,K) ≤ d (ξρm ,K) + δ ≤ 2δ

where ρm < n < ρm+1.

Proof. Let us define for simplicity φ (t) =
√
t log log t. Then one has that

ξn (t)− ξρm (t) =
Wnt

φ (n)
− Wρmt

φ (ρm)

=
Wnt

φ (n)
+
Wρmt

φ (n)
− Wρmt

φ (n)
− Wρmt

φ (ρm)

=
Wnt −Wρmt

φ (n)
+

Wρmt

φ (ρm)

(
φ (ρm)

φ (n)
− 1

)
:= Sn,mt +Rn,mt (6.3)

Let us start we the second term of the right side.

‖Rn,mt ‖∞ ≤ ‖ξρm‖∞
∣∣∣∣1− φ (ρm)

φ (n)

∣∣∣∣ .
From the first part we know that ξρm ∈ K so that there exists M ≥ 0 such that ‖ξρm‖∞ ≤
M since K is compact and thus bounded. Also an elemantary computation gives us

lim
m→∞

(
1− φ (n)

φρm

)
= 1− 1

√
ρ
.

Thus for m large we have that ‖Rn,m‖∞ ≤M
(

1− 1√
ρ

)
≤ δ.As for the term Sn,m we have

that

|Sn,mt | =
∣∣∣∣Wnt −Wρmt

φ (n)

∣∣∣∣ ≤ ∣∣∣∣Wnt −Wρmt

φ (ρm)

∣∣∣∣ =
φ
(
ρm+1

)
φ (ρm)

∣∣∣∣ξρm+1

t n
ρm+1

− ξρ
m+1

t
ρ

∣∣∣∣ .
Since ρm < n < ρm+1 then the quotient between the two time instants t n

ρm+1 and t
ρ is

comprised between 1
ρ and 1. Thus

‖Sn,m‖∞ = sup
0≤t≤1

|Sn,mt | ≤
φ
(
ρm+1

)
φ (ρm)

sup
0≤t≤1, t

ρ
≤s≤t

∣∣∣ξρm+1

t − ξρm+1

s

∣∣∣ .
We already know that

lim
m→∞

φ
(
ρm+1

)
φ (ρm)

=
√
ρ.

Now we will show that P[‖Sn,m‖+∞>δ]=0 , using Borel-Cantelli lemma. So,

P

‖Sn,m‖∞ > δ] ≤ P[ sup
0≤t≤1, t

ρ
≤s≤t

∣∣∣ξρm+1

t − ξρm+1

s

∣∣∣ > δ

 = P[ξρm+1 ∈ A]

where A is the set of paths

A =

ψ ∈ C0, sup
0≤t≤1, t

ρ
≤s≤t

∣∣∣ξρm+1

t − ξρm+1

s

∣∣∣ ≤ δ

2

 .
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So by Schilder’s theorem in order to estimate the behavior of P[ξρm+1 ∈ A] we need to
compute Λ∗ (ψ) over A. Since

P[ξρm+1 ∈ A] ≤ e−φ(ρm+1) infψ∈A Λ∗(ψ).

Recall that λ∗ (ψ) = 1
2

∫ 1
0 |ψ̇s|

2ds and 0 ≤ t ≤ 1, t
ρ ≤ s ≤ t. Therefore,

δ

2
≤ |ψt − ψs| =

∣∣∣∣∫ t

0
ψ̇udu

∣∣∣∣ ≤√|t− s|(∫ t

s
|ψ̇u|2du

)
1
2

≤ 2

√
|t− t

ρ
|Λ∗ (ψ) = 2

√
t

(
1− 1

ρ

)
Λ∗ (ψ) ≤ 2

√
ρ− 1

ρ
Λ∗ (ψ) .

Then

Λ∗ (ψ) ≥
δ
√
ρ

4
√
ρ− 1

which means that for every δ > 0 the infimum over A can be made as large as we want,
provided that ρ is close to 1. In particular, if ρ is small enough then the infimum of Λ∗

over A is larger than 1, so that the series

∞∑
0

e−φ(ρ
m+1) infψ∈A Λ∗(ψ) <∞.

By Borel-Cantelli lemma this implies that for every δ > 0 there exists m0 = m0 (w) such
that |Sn,m (w) | > δ for all m ≥ m0. This combined with 6.3 and 6.1 concludes the proof.

One of the consequences of the result proved in the first part is that for any continuous
functional F : Ω→ R almost surely,

lim sup
m→∞

F (ξρm (·)) ≤ sup
ψ∈K

F (ψ)

(ii) We need to prove that every ψ ∈ K is a limit point of {ξn (·)}n≥3. More precisely , we

want to show that for every ψ ∈ K such that 1
2

∫ 1
0 |ψ̇s|ds < 1 there exists (nk)k such that

‖ξnk − ψ‖∞ →∞ as k →∞:

P[d (ξnk , ψ) < δ for infinite indices n] = 1.

It is sufficient to show that

∞∑
m=1

P[d (ξρm − ψ) < δ] =∞.

Thus if the events {d (ξρm − ψ) < δ} were independent the result will be immediate by
second lemma of Borel-Cantelli. Unfortunately, these events are not independent, so we
need to construct independent sequences. To this end, let us define am = ρm − ρm−1,
0 < t < 1

ym (t) =
1√

am log log am
[W
(
ρm−1t+ amt

)
−W

(
ρm−1

)
]

W
(
ρm−1t+ amt

)
−W

(
ρm−1

)
: increments, which consisting, as m varies, of families of

independent variables and ym (t) is a Brownian motion scaled by 1√
am log log am

.

Therefore
P[d (ym (t) , ψ) < δ] = P[‖ym (t)− ψ‖ < δ]
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= P[sup |ym (t)− ψ| < δ]

= P[ym ∈ A]

such that A = {f ∈ C([0, 1]) : |f − ψ| < δ} is open set, then by Schilder’s theorem for any
open set we obtain that

P[ym (·) ∈ A] ≤ e−Λ∗(ψ0) log(log am)

≤ e−λ log(log am) =
1

(log am)λ
.

Then
∞∑
m=1

P[ym (·) ∈ A] =∞

since
∞∑
m=1

1

(log am)
=∞ when λ < 1.

Applying Borel-Cantelli lemma yn (·) returns infinitely often to the δ neighborhood of ψ.
The last part of the proof is to show that almost surely

lim sup
m→∞

‖ξρm (·)− ym (·) ‖ ≤ ε (ρ) .

|ξρm (t)− ym (t) | =

∣∣∣∣∣ W (ρmt)√
ρm log log ρm

−
[W
(
ρm−1t− amt

)
−W

(
ρm−1

)
]

√
am log log am

∣∣∣∣∣
=

∣∣∣∣∣ W (ρmt)√
ρm log log ρm

+
W (ρmt)√
am log log am

− W (ρmt)√
am log log am

−
[W
(
ρm−1 + amt

)
− θ

(
ρm−1

)
]

√
am log log am

∣∣∣∣∣
≤
∣∣∣∣ W (ρmt)√
ρm log log ρm

− W (ρmt)√
am log log am

∣∣∣∣+ 1√
am log log am

∣∣W (ρmt)−W
(
ρm−1t+ amt

)
+W

(
ρm−1

)∣∣
≤ |W (ρmt) |

∣∣∣∣ 1√
ρm log log ρm

− 1
√
am log log am

∣∣∣∣+ 1√
am log log am

|W (ρmt)−W
(
ρm−1 + amt

)
|

+
1√

am log log am
|W (ρm) |

≤

∣∣∣∣∣
√
ρm log log ρm

am log log am
− 1

∣∣∣∣∣ |ξρm (t) |+

√
ρm log log ρm

am log log am

∣∣∣∣∣ξρm (t)−
W
(
ρm−1 + amt

)
√
ρm log log ρm

∣∣∣∣∣
+

√
ρm log log ρm

am log log am

∣∣∣∣ W (ρm)√
ρm log log ρm

∣∣∣∣
≤

∣∣∣∣∣
√
ρm log log ρm

am log log am
− 1

∣∣∣∣∣ |ξρm (t) |+

√
ρm log log ρm

am log log am

∣∣∣∣ξρm (t)− ξρm
(

1

ρ
+

(
1− 1

ρ

)
t

)∣∣∣∣
+

√
ρm log log ρm

am log log am

∣∣∣∣Wρm

(
1

ρ

)∣∣∣∣ .
Taking the supremum over 0 ≤ t ≤ 1

‖ξρm (t)− ym (t) ‖ ≤

∣∣∣∣∣
√
ρm log log ρm

am log log am
− 1

∣∣∣∣∣ ‖ξρm (t) ‖
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+

√
ρm log log ρm

am log log am

 sup
|t−s|≤ 1

ρ

|ξρm (t)− ξρm (s) |+ ξρm

(
1

ρ

)
≤
∣∣∣∣√ ρ

ρ− 1
− 1

∣∣∣∣ ‖ξρm (t) ‖+

√
ρ

ρ− 1
[ sup
|t−s|≤ 1

ρ

|ξρm (t)− ξρm (s) |+ ξρm

(
1

ρ

)
]

≤
∣∣∣∣√ ρ

ρ− 1
− 1

∣∣∣∣ sup
ψ∈K
‖ψ‖+

√
ρ

ρ− 1

 sup
ψ∈K

ψ

(
1

ρ

)
+ sup
|t−s|≤ 1

ρ

|ψ (t)− ψ (s) |


= ε (ρ) .

Then ε (ρ)→ 0 as ρ→∞. This completes the proof.

6.2 The Freidlin-Wentzel theory

Behavior of diffusions with a small noise parameter:
The results of Section 5 are extended here to the case of strong solutions of stochastic
differential equations. Let Wt be a d-dimensional Brownian motion and let Nt be the
σ-algebra generated by the random variables Wt for s ≤ t. We consider the stochastic
differential equation

dXt = b (Xt) dt+ σ (Xt) dWt X0 = x (6.4)

in Rd. Here b (Xt) =
(
b1 (x) , . . . , bd (x)

)
is a vector in Rd and σ (x) = σij (x) is an invertible

matrix having d columns and d rows.
We assume that the coefficients b (x), σ (x) satisfy the following conditions:

(i)
∑

i |bi (x)− bj (y) |+
∑

i,j |σ
j
i (x)− σji (y) | ≤ K|x− y|,

(ii)
∑

i |bi (x) |+
∑

i,j |σ
j
i (x) | ≤ K (1 + |x|),

under these conditions it can be proved that the above SDE 6.4 has a unique solution
which Xx

t (ω), t ≥ 0 which is continuous with probability one, the random variable Xx
t (ω)

is measurable with respect to the σ-algebra Nt for every t ≥ 0, and
∫ b
a E|X

x
t |2dt <∞ for

any 0 < a < b.
The corresponding generator to 6.4 is

L =
1

2

∑
i,j

aij (x)
∂2

∂x1∂xj
+
∑
i

bi (x)
∂

∂xi
,

where aij (x) = σ (x)σT (x) is a symmetric matrix valued.
Moreover, we assume that the diffusions coefficients are uniformly elliptic.
Now we are interested in the situation where L depends on a small parameter ε that is
small.
In particular, the diffusion Xε is a random perturbation of the deterministic system:

dX (t)

dt
= b (X (t)) , X (0) = x. (6.5)

We consider the following perturbation of the above deterministic system.

dXε
t = bε (Xε

t ) dt+
√
εσε (Xε

t ) dWt (6.6)
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if ε→ 0 then the above SDE transformed to a deterministic function.
Let Q̃ε be the measure induced by Xε (·) on the space of Rd-valued continuous functions
on some arbitrary but finite interval.
As ε→ 0, Q̃ε converges weakly to the degenerate measure concentrated at a single trajec-
tory x0 (t) which solves uniquely the O.D.E 6.5: Ẋ0 (t) = b (X0 (t)). Then we have that
Q̃ε ⇒ δx0 as ε→ 0. This means that

lim
ε

P
{

sup
0≤s≤1

|Xε
s −X0

s | > δ

}
= 0

Once again, we are dealing with a family for which it is reasonable to ask if it satisfies
large deviation principle. First we consider the relatively simple situation. Let {Xε

t }ε>0

be the diffusion process that is the unique strong solution of the SDE

dXε
t = b (Xε

t ) dt+
√
εdWt (6.7)

and the coefficient b satisfies the following conditions

(i) |b (x)− b (y) | ≤ K|x− y|

(ii) |b (x) | ≤ C

for K,C are constants. Let Q̃ε denote the measure induced by the strong solution {Xε
t }

of 6.7 on C0[0, 1] then Q̃ε = Qε ◦F−1 where Qε is the measure induced by {
√
εW} and the

deterministic map F : C0[0, 1] → C0[0, 1] is defined by f = F (g) where f is the unique
continuous solution of

f (t) =

∫ t

0
b (f (s)) ds+ g (t) , t ∈ [0, 1].

Then the LDP associated with {Xε
t } is a direct application of the contraction principle

with respect to the map F and Schilder’s theorem 5.1.

Theorem 6.2. {Xε
t }ε satisfies the LDP in C0[0, 1] with the good rate function

I (f) =


1

2

∫ 1

0
|ḟ (t)− b (f (t)) |2dt f ∈ H

∞ otherwise

.

Proof. We shall prove that

F :
√
εWt → Xε

t is continuous.

Indeed

F (g) = f (t) = x+

∫ t

0
b (f (s)) ds+

√
ε

∫ t

0
dWs

= x+

∫ t

0
b (f (s)) ds+

∫ t

0
d
(√
εWs

)
= x+

∫ t

0
b (f (s)) ds+ g (t) .
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We assume that x = 0, then

f (t) = F (g (t)) =

∫ t

0
b (f (s)) ds+ g (t) t ∈ [0, 1].

Therefore, for every f1, f2 ∈ C0

(
[0, 1];Rd

)
we define

f1 (t) = F (g1 (t)) , f2 (t) = F (g2 (t)) .

Hence, we have that

f1 (t)− f2 (t) =

∫ t

0
(b (f1 (s))− b (f2 (s))) ds+ g1 (t)− g2 (t) .

Now consider for g1, g2 ∈ C0[0, 1] and Lipshitz continuity of b, we have

|f1 (t)−f2 (t) | ≤
∫ t

0
|b (f1 (s))−b (f2 (s)) |ds+|g1 (t)−g2 (t) | ≤ K

∫ t

0
|f1 (s)−f2 (s) |ds+|g1 (t)−g2 (t) |

≤ K
∫ t

0
|f1 (s)− f2 (s) |ds+ δ ≤ δeKt

The last inequality is due to Gronwall inequality. So

‖f1 − f2‖ ≤ δeK

and the continuity of F is now established.
Now, we combine Schilder’s theorem and contraction principle to obtain our result. Firstly
we obtain a lower bound for every G open set in C0[0, 1].

lim inf
ε→0

log ε log Q̃ε (G) = lim inf
ε→0

ε logQε ◦ F−1 (G)

≥ − inf
f∈G

I (f)

where

I (f) = inf
g∈H:f=F (g)

1

2

∫ 1

0
|ġ (s) |2ds.

We observe that F is an injection and g ∈ H which implies that f = F (g) is differentiable
almost everywhere with

ḟ (t) = b (f (t)) + ġ (t) , f (0) = 0.

|ḟ (t)− ḟ (0) | ≤ K
∫ t

0
|ḟ (s) |ds+ ġ (t) ≤ δeKt

since g ∈ H we have that f ∈ H. Similarly, if F is a closed set of C0

(
[0, 1];Rd

)
we obtain

an upper bound
lim sup
ε→0

ε log Q̃ε (F ) ≤ − inf
f∈F

I (f) .

In other words, Schilder’s theorem leads directly to a large deviation result for
{
Q̃ε : ε > 0

}
.

The precceding example of Freidlin-Wentzel’s theory is as sipmle as because F is contin-
uous and its inverse is easy to compute. In general, the maps involved are not only more
complicated but are not even continuous. To be more precise, the following case describes
how to solve the problem of a function that is not continuous but measurable.
Let {Xε

t } be the difussion process that is the unique solution of the SDE

dXε
t = b (Xε

t ) dt+
√
εσ (Xε

t ) dWt, 0 ≤ t ≤ 1, Xε
0 = x. (6.9)
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Theorem 6.3. If b, σ are uniformly bounded and Lipschitz continuous functions then
{Xε

t } the unique strong solution of 6.9 satisfies LDP on C[0, 1] with good rate function

Ix (f) =


inf

{g∈H:f(t)=x+
∫ t
0 b(f(s))ds+

∫ t
0 σ(f(s))ġ(s)ds}

1

2

∫ 1

0
|ġ (s) |2ds f ∈ H

∞ otherwise

Remark 6.4. It suffices to proof the theorem for xε0 = x = 0 since x may always be moved
to the origin by a translation of coordinates. Then the measure Q̃ε of Xε is supported on
C0 ([0, 1]).

Proof. The proof here is based on approximating the process Xε
t by Xn,ε

t in the following
way. For each s > 0 we construct an approximate solution of 6.9 as follows

Xn,ε
t = x+

∫ t

0
b (Xε,n (πn (s))) ds+

√
ε

∫ t

0
σ (Xε,n (πn (s))) dWs (6.10)

where πn (s) = [ns]
n is Euler approximations and Xε,n

0 = 0, t ∈ [0, 1]. In fact, we amounts

to freezing the coefficients over the time interval [ kn ,
k+1
m ] and then updating them every

1
n unit of time. The advantage in using Xn,ε (t) is that in fact

Fn :
√
εWt → Xε,n

t continuous.

More precisely, let the map Fn defined by Fn (g) = h where

h (t) = h

(
k

n

)
+ b

(
h

(
k

n

))(
t− k

n

)
+ σ

(
h

(
k

n

))(
g (t)− g

(
k

n

))
and t ∈ [ kn ,

k+1
n ], k = 0, 1, . . . , n − 1, h (0) = 0. We observe that Fn : C0[0, 1] → C0[0, 1]

and Xε,n = Fn (
√
εW ). By assumptions of b (·) , σ (·) and that g1, g2 ∈ C0[0, 1] we have

that Fn is continuous. Indeed,

|Fn (g1)− Fn (g2) | = |h1 (t)− h2 (t) | ≤ b
(
h1

(
k

n

))
− b

(
h2

(
k

n

)) ∣∣∣∣t− k

n

∣∣∣∣+
+σ

(
h1

(
k

n

))
− σ

(
h2

(
k

n

))
||g1 (t)− g2 (t) |

≤ C
[∣∣∣∣h1

(
k

n

)
− h2

(
k

n

)∣∣∣∣+ |g1 (t)− g2 (t) |
]

then

sup
t∈[ k

n
, k+1
n

]

|h1 (t)− h2 (t) | ≤ C
[∣∣∣∣h1

(
k

n

)
− h2

(
k

n

)∣∣∣∣+ ‖g1 − g2‖
]

So the continuity of Fn with respect to the supremum norm is established by iterating
this bound over k = 0, 1, . . . , n− 1.
Now let F defined by f = F (g) as the unique solution of the integral

f (t) =

∫ t

0
b (f (s)) ds+

∫ t

0
σ (f (s)) ġ (s) ds, 0 ≤ t ≤ 1.

We shall show that for every c <∞

lim
n→∞

sup
{g:‖g‖H<c}

‖Fn (g)− F (g) ‖ = 0 (6.11)
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To this end, we fix c <∞, g ∈ H and ‖g‖H ≤ c then

h (t)− h
(

[nt]

n

)
=

∫ t

0
b

(
h

(
[ns]

n

))
ds+

∫ t

0
σ

(
h

(
[ns]

n

))
ġ (s) ds

by boundedness of b, σ and the Cauchy-Schwartz inequality in the second part of the right
side we have that

|h (t)− h
(

[nt]

n

)
| ≤ δnt+ δnc

and

sup
0≤t≤1

∣∣∣∣h (t)− h
(

[nt]

n

)∣∣∣∣ ≤ c (δn + 1)

where δn is independent of g. Therefore

|f (t)−h (t) | =
∣∣∣∣∫ t

0
b (f (s)) ds+

∫ t

0
σ (f (s)) ġ (s) ds−

(∫ t

0
b

(
h

(
[ns]

n

))
ds+

∫ t

0
σ

(
h

(
[ns]

n

))
ġ (s) ds

)∣∣∣∣
=

∣∣∣∣∫ t

0
b (f (s))− b

(
h

(
[ns]

n

))
ds

∣∣∣∣+

∣∣∣∣∫ t

0

(
σ

(
f (s)− σ

(
h

(
[ns]

n

)))
ġ (s) ds

∣∣∣∣
≤
∫ t

0

∣∣∣∣b (f (s))− b
(
h

(
[ns]

n

))∣∣∣∣ ds+

∫ t

0

∣∣∣∣σ (f (s))− σ
(
h

(
[ns]

n

))∣∣∣∣ ġ (s) ds

≤ C

(∫ t

0

∣∣∣∣f (s)− h
(

[ns]

n

)∣∣∣∣2 ds
) 1

2

+ C

(∫ t

0

(∣∣∣∣f (s)− h
(

[ns]

n

)∣∣∣∣ ġ (s)

)2

ds

) 1
2

≤ C
∫ t

0

∣∣∣∣f (s)− h
(

[ns]

n

)∣∣∣∣ ds (1 + c) .

Thus

|f (t)− h (t) |2 ≤ C
∫ t

0

∣∣∣∣f (s)− h
(

[ns]

n

)∣∣∣∣2 ds+ Cδ2
n ≤ Cδ2

ne
Ct

the last inequality is due to Cronwall inequality. So,

sup
{g:‖g‖H<c}

‖Fn (g)− F (g) ‖ ≤
√
Cδne

C

and the 6.11 is established. The proof of theorem is completed by proving that for any
δ > 0, Xε,n are exponentially good approximations of Xε.

lim
n→∞

lim sup
ε→0

ε logP[ sup
0≤t≤1

|Xn,ε (t)−Xε (t) ‖ ≥ δ] = −∞ (6.12)

These estimates are called superexponential estimates.

We prove the following lemma in which the proof of 6.12 is based.

Lemma 6.2. Let z (t) be a process satisfying

dz (t) = btdt+
√
εσtdWt

where z0 is deterministic. Let τ0 ∈ [0, 1] be a stopping time with respect to the filtration of
{Wt} , τ0 ∈ [0, 1]. Suppose that the coefficients of the diffusion are uniformly bounded

|σt| ≤M
(
ρ2 + |zt|2

) 1
2
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|bt| ≤ B
(
ρ2 + |zt|2

) 1
2

where B, ρ,M are constants and t ∈ [0, τ1]. Then for any δ > 0 and ε ≤ 1

P[ sup
t∈[0,τ1]

|zt| > δ] ≤ ρ2 + |z0|2

ρ2 + δ2
eK

where K = 2B +M2 (2 + d).

Proof. Let ut = (zt) and φ (y) =
(
ρ2 + |y|2

) 1
ε . Applying Ito’s formula in ut we have that

dut = ∇φ (zt) dzt +
ε

2
Tr[σtσ

′
tD

2 (zt)]dt

=
(
∇φ (zt) bt +

ε

2
Tr[σtσ

′
tD

2φ (zt)]
)
dt+

√
εσt∇φ (zt) dWt

= g (t) dt+ h (t) dWt.

Note that

∇φ (y) =
1

ε

2φ (y)

ρ2 + |y|2
y.

|∇φ (y) bt| ≤
∣∣∣∣1ε 2φ (zt)

ρ2 + |z2
t |
|zt|
∣∣∣∣B (ρ2 + |zt|2

)1/2
≤ 2B

ε
ut.

| ε
2
Tr[σtσ

′
tD

2 (zt)]| ≤
ε

2
M2

(
ρ2 + |zt|2

)(2

ε

(
φ (zt)

ρ2 + |zt|2

)′
y +

2

ε

φ (zt)

ρ2 + |zt|2

)
≤ M

ε
(2 + d)ut.

Then

|g (t) | ≤ 2B +M2 (2 + d)

ε
ut =

K

ε
ut, t ∈ [0, τ1]

where K = 2b+M2 (d+ 2) constant and

|h (t) | ≤ 2M√
ε
ut.

Now, fix δ > 0 we define the stopping time τ2 := inf {t : |zt| ≥ δ} ∧ τ1. Then gt, ht are
uniformly bounded on [0, τ2], htdWt is a martingale and ut −

∫ t
0 gsds is a continuous

martingale on [0, τ2]. So we can apply Doob’s theorem

E[ut∧τ2 −
∫ t

0
gsds] = E[u0]

E[ut∧τ2 ] = u0 + E
[∫ t∧τ2

0
gsds

]

0 + E
[∫ t∧τ2

0

K

ε
usds

]
= u0 +

K

ε
E
[∫ t∧τ2

0
us∧τ2ds

]
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≤ u0 +
K

ε
E
[∫ t

0
us∧τ2ds

]
= u0 +

K

ε

∫ t

0
E[us∧τ2 ]ds

≤ u0e
K
ε t

E[uτ2 ] = E[u1∧τ2 ] ≤ u0e
K
ε .

Therefore, since φ is monotone increasing in |y|

P[|zτ2 | ≤ δ] = P[φ (zτ2) ≤ φ (δ)] ≤ E[φ (zτ2)]

φ (δ)
=

E[uτ2 ]

φ (δ)

the last inequality is due to Chebyshev inequality. Finally,

P[|zτ2 | ≤ δ] = P[ sup
t∈[0,τ1]

|zt| ≥ δ] ≤
u0

φ (δ)
e
K
ε =

(
ρ2 + |z0|2

ρ2 + δ2

) 1
ε

e
K
ε .

Now we proceed in the proof of 6.12.

Lemma 6.3. For any δ > 0, the solutions Xn,ε (·) and Xε (·) of

Xε,n
t = x+

∫ t

0
b (Xε,n (πn (s))) ds+

√
ε

∫ t

0
σ (Xε,n (πn (s))) dWs

and

Xε
t = x+

∫ t

0
b (Xε

s) ds+
√
ε

∫ t

0
σ (Xε

s) dWs

respectively, satisfy:

lim
n→∞

lim sup
ε→0

ε logP[ sup
0≤t≤1

‖Xε,n (t)−Xε (t) ‖ ≥ δ] = −∞.

Proof. We define zt = Xε,n
t −Xε

t and for any ρ > 0 the stopping time

τ1 = inf

{
t : |Xε,n

t −X
ε,n
[nt]
n

| > ρ

}
∧ 1. For the process zt we have that

zt = Xε,n
t −X

ε,n
[nt]
n

=

∫ k+1
n

k
n

(
b (Xε,n

t )− b
(
Xε,n

[nt]
n

))
dt+

√
ε

∫ k+1
n

k
n

(
σ(Xε,n

t )−σ
(
Xε,n

[nt]
n

))
dWt

where z0 = 0. Then zt satisfies the conditions of the lemma 6.2 and it follows that

P[ sup
0≤t≤τ1

|Xε,n
t −X

ε,n
[nt]
n

| ≥ δ] ≤ e
K
ε

(
φ (z0)

φ (δ)

) 1
ε

with K constant and

lim
ρ→0

sup
n≥1

lim sup
ε→0

ε logP[ sup
0≤t≤τ1

|Xε,n
t −X

ε,n
[nt]
n

| ≥ δ] = −∞.
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We want to show that

lim
n→∞

lim sup
ε→0

ε logP[ sup
0≤t≤1

|Xε,n
t −Xε

t | ≥ δ] = −∞.

Now since

{‖X ,n −Xε‖ ≥ δ} ⊆ {τ1 < 1} ∪
{

sup
0≤t≤τ1

|Xε,n
t −Xε

t | ≥ δ
}

the proof is completed as soon as we show that

lim
n→∞

lim sup
ε→0

ε logP[ sup
0≤t≤1

|Xε,n
t −Xε

[nt]
n

| ≥ δ] = −∞.

By boundedness of |b (·) |, |σ (·) | we have

|Xε,n
t −X

ε,n
[nt]
n

| ≤ C

(
1

n
+
√
ε max
k=0,...,n−1

sup
0≤s≤ 1

n

|Ws+ k
n
−W k

n
|

)
Hence,

P[ sup
0≤t≤1

|Xε,n
t −X

ε,n
[nt]
n

| ≤ ρ] ≤ mP[

(
C

n
+ C
√
ε sup

0≤s≤ 1
n

|Ws+K
n
−WK

n
|

)
≤ ρ]

= nP[ sup
0≤s≤ 1

n

|Ws+K
n
−WK

n
| ≤

ρ− C
n

C
√
ε

]

= nP[ sup
0≤s≤ 1

n

|Ws| >
ρ− C

n

C
√
ε

]

≤ 2ne−
1
2

(ρ−Cn )
2
n

C2ε

the last inequality is due to 5.13 and the proof is completed.

The following theorem strengthens Theorem 6.3 by allowing for ε dependent initial
conditions.

Theorem 6.4. Assume the conditions of Theorem 6.3. Let {Xε,y
t } denote the solution of

dXε
t = b (Xε

t ) dt+
√
εσ (Xε

t ) dWt

for the initial condition X0 = y. Then for any compact K ⊂ Rd and any closed F ⊂
C ([0, 1])

lim sup
ε→0

ε log sup
y∈K

P[Xε,y ∈ F ] ≤ − inf
f∈F

Iy (f) . (6.13)

lim inf
ε→0

ε log inf
y∈K

P[Xε,y ∈ G] ≥ − sup
y∈K

inf
f∈G

Iy (f) . (6.14)

Proof. Let −IK = − inff∈F Iy (f). We fix δ > 0 and IδK = (IK − δ) ∧ 1
δ . Then for any

x ∈ K there is εx such that for every ε < εx

ε log sup
y∈Bεx (x)

P[Xε,y ∈ F ] ≤ −IδK .

But x1, x2, . . . , xk ∈ K and K is compact so K ⊆
⋃k
i=1Bεxi (xi). Then we choose ε ≤

mini=1,2,,k εxi
ε log sup

y∈K
P[Xε,y ∈ F ] ≤ −IK .

By first considering ε → 0 and the δ → 0 we obtain 6.13. The same arguments works in
order to prove tha lower bound 6.14.
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Chapter 7

Exit problem

7.1 A solution through Freidlin-Wentzel theory

Remark 7.1. ”The basic idea is that among a bunch of very unlikely things the least
unlikely thing is the most likely to occur first.”

Let us consider the problem of exit from a domain. We consider the system

dXε
t = b (Xε

t ) dt+
√
εσ (Xε

t ) dWt, Xε
t ∈ Rd Xε

0 = x(7.1)

in the open, bounded G ⊆ Rd and let ∂G be its boundary, which we assume to be
smooth for the sake of simplicity, b (·) , σ (·) are uniformly Lipschitz continuous functions
of d-dimensions and W is d-dimensional Brownian motion. In this section we shall assume
that b (x) · η (x) < 0 for x ∈ ∂G, where η (x) is the exterior normal to the boundary of
G, so that the curves xx (t) cannot leave G for x ∈ G. The trajectories of the O.D.E.
system 6.5 vanishes within G only at one point, the equilibrium point. More precisely,
we assume that there is a globally stable equilibrium point 0 in G such that for every
x ∈ G the solution x (t) of 6.5 lies in G for t > 0 and x (t) → 0 as t → ∞. As ε → 0
the trajectories of the diffusion process are close to the deterministic trajectories with a
very high probability. In the limit the deterministic trajectory doesn’t exit at all from the
set G so the exit time and the exit place are not defined. We need a new formulation to
calculate the limit of the hitting distribution on ∂G as ε → 0 . If we define the stopping
time

τ ε = inf {t : Xε
t /∈ G}

then events like this {τ ε < T} are rare events, indeed

P[τ ε < T ]→ 0 as ε→ 0

for any T < ∞, so we are dealing with a family that is reasonable to ask about large
deviation principle. Motivated by Theorem 6.3, we define the cost function

V (y, z, t) , inf
f∈C([0,1]):ft=z

Iy,t (f) (7.2)

= inf
g∈L2([0,t]):ft=z,fs=y+

∫ s
0 b(fu)du+

∫ s
0 σ(fu)ġdu

1

2

∫ t

0
|ġs|2ds.

where Iy,t is the good rate function of 6.3 which controls the LDP associated with 7.1.
Heuristicaly V (y, z, t) is the cost of forcing the system 7.1to be at the point z at time t
when starting at y. We define

V (y, z) , inf
t>0

V (y, z, t)
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The function V (0, z) is called the quasi-potential. The picture that emerges is that a
typical path will go quickly near the equilibrium point, wander around it for exponentially
long time making periodic futile short lived attempts to get out which are determined
by infz∈∂G V (0, z). Finally a successful excursion takes place. The rationale here is that
any excursion off the stable point x = 0 has an overwhelmingly high probability of being
pulled back there. What is matter is to find the path for a direct, fast exit due to a rare
segment in the Brownian motion’s path.
The following assumptions prevail throghout this section:
A-1 The unique equilibrium point in G of the d-dimensional ordinary differential equation

ḟt = b (ft) (7.3)

is at 0 ∈ G, and
f0 ∈ G⇒ ∀t > 0, ft ∈ G and limt→∞ ft = 0

A-2 All the trajectories of the deterministic system 7.3 starting at f0 ∈ ∂G converge to 0
as t→∞.
A-3 V̄ , infz∈∂G V (0, z) <∞
A-4 There exists M <∞ such that for all ρ > 0 small enough and all x, y with |x− y| ≤
|x− z|+ |y − z| ≤ ρ for some z ∈ ∂G ∪ {0} there is a function g ∈ L2 such that ‖g‖ < M
where

ft = x+

∫ t

0
b (fs) ds+

∫ t

0
σ (fs) ġds.

Remark 7.2. Assumption A-3 is natural otherwise all points on ∂G are equally unilikely
on the large deviation scale. Assumption A-4 is related to the controlability of system 7.1
where a smooth controls replaces the Brownian motion. Also this assumption implies the
following useful continuity property.

Lemma 7.1. Assume the condition of A-4. For any δ > 0, there exists ρ > 0 small
enough such that

sup
x,y∈Bρ

inf
t∈[0,1]

V (x, y, t) < δ (7.4)

sup
x,y:infz∈∂G{|y−z|+|x−z|<ρ}

inf
t∈[0,1]

V (x, y, t) < δ. (7.5)

Throughout this section we also denote as Bρ = {x : |x| ≤ ρ} and Sρ = {x : |x| = ρ}.
The first lemma gives a uniform lower bound on the probability of exit from G.

Lemma 7.2. For any η > 0 and ρ > 0 small enough, there is T <∞ such that

lim inf
ε→0

ε log inf
x∈Bρ

Px[τ ε < T ] > −
(
V̄ + η

)
Proof. We fix η > 0 and ρ > 0 then from lemma 7.1

sup
x∈Bρ

inf
t∈[0,1]

V (x, 0, t) .

Then there exists a path ψx of length tx < 1 such that

I (ψx) <
η

3
,where ψx0 = x and ψxtx = 0.

From assumption A-3 there exists z /∈ Ḡ for t < ∞ and the distance ∆ of z from Ḡ is
positive. Then there exsists a path φ ∈ C ([0, T ]) such that

I0,T (φ) ≤ V̄ +
η

3
where φ0 = 0 and φT = z
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Now we construct the following path φx by concatenating ψx and φ, in that order, and
extending the resulting function to be of length T0 = T + 1 by following the trajectory of
7.3 after reaching z. Then it follows that

Ix,T0 (φx) < V̄ +
2η

3
.

Consider the set

Ψ ,
⋃
x∈Bρ

{
ψ ∈ C ([0, T0]) : ‖ψ − φx‖ < ∆

2

}
.

We observe that Ψ is an open subset of C ([0, T0]) that contains the functions {φx}x∈Bρ .
Therefore by Theorem 6.3

lim sup
ε→0

ε log inf
x∈Bρ

Px[Xε ∈ Ψ] ≥ − sup
x∈Bρ

inf
ψ∈Ψ

Ix,T0 (ψ)

≥x∈Bρ Ix,T0 (φx) > −
(
V̄ + η

)
.

But {τ ε ≤ T0} ⊇ {Xε ∈ Ψ}. Since if ψ ∈ Ψ then ψt /∈ Ḡ for some t ∈ [0, T0] and the proof
is complete.

Next notice that the probability the diffusion 7.1 wanders in G for an arbitrary long
time without hitting a small meighborhood of 0 is exponential negligible. More precisely,let

σρ , inf {t : Xε
t ∈ Bρ ∪G} (7.6)

where Bρ ⊂ G. Then
lim
t→

lim sup
ε→0

log sup
x∈G

Px[σρ > t] = −∞. (7.7)

Now we give an upper bound relates the quasi-potential with the probability the excursion
started from a small sphere of 0 hits a given subset of ∂G before hitting an even smaller
sphere.

Lemma 7.3. For any closed set N ⊂ ∂G

lim sup
ε→0

ε log sup
x∈S2ρ

Px[Xε
σρ > t] ≤ − inf

z∈N
V (0, z)

where σρ is difined by 7.6.

Proof. We fix a closed set N ⊆ ∂G and define VN , (infz∈N V (0, z)− δ) ∧ 1
δ . By lemma

7.1
inf

y∈S2ρ,z∈N
V (y, z) ≥ inf

z∈N
V (0, z)− sup

y∈S2ρ

V (0, y) ≥ VN

Moreover, by 7.7 there exists T <∞ large enough for

lim sup
ε→0

ε log sup
ψ∈S2ρ

Py[σρ > T ] ≤ −VN .

We consider the set

Φ , {φ ∈ C ([0, T ]) : ∃t ∈ [0, T ]such that φt ∈ N}

Notice that
inf

y∈S2ρ,φ∈Φ
Iy,T (φ) ≥ inf

y∈S2ρ,z∈N
V (y, z) ≥ −VN
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then by Theorem 6.3

lim sup
ε→0

ε log sup
y∈S2ρ

Py[Xε ∈ Φ] ≤ − inf
y∈S2ρ,φ∈Φ

Iy,T (φ) ≤ −VN

Since {
Xε
σρ ∈ N

}
⊆ {σρ > T} ∪ {Xε ∈ Φ}

we obtain
lim sup
ε→0

ε log sup
y∈S2ρ

Py[Xε
σρ ∈ N ] ≤ −VN .

If we let δ → 0 the proof of the lemma is completed.

In order to extend the upper bound to hold for every Xε
0 ∈ G we observe,that as ε→ 0

with high probability Xε attracted to a a small neighborhood of 0 without hitting ∂G on
its way.

Lemma 7.4. For every ρ > 0 such that Bρ ⊂ G and all x ∈ G

lim
ε→0

Px[Xε
σρ ∈ Bρ] = 1

Fix x ∈ G \Bρ, let f denote the trajectory of 7.3 with initial condition f0 = x and let
T = inf {t : ft ∈ Sρ} <∞. Since f is a continuous path that does not hit the compact set
∂G,then d = dist (f, ∂G) > 0 for t ≤ T . Suppose that this distance is smaller than ρ and
let Xε

t be the solution of 6.4 with Xε
0 = x. Then

sup
t∈[0,T ]

|Xε
t − ft| ≤

d

2
⇒ Xε

σρ ∈ Bρ.

By uniform Lipscitz continuity of b (·) we have that

|Xε
t − ft| =

∫ t

0
b (Xε

s)− b (fs) ds+
√
ε

∫ t

0
σ (Xε

s) dWs

≤ B
∫ t

0
|xεs − fs|ds+

√
ε

∣∣∣∣∫ s

0
σ (Xε

s) dWs

∣∣∣∣ .
Hence, By Cronwall’s lemma we have that

sup
t∈[0,T ]

|Xε
t − ft| ≤

√
εeBT sup

t∈[0,t]

∣∣∣∣∫ t

0
σ (Xε

s) dWs

∣∣∣∣
Thus

Px[Xε
σρ ∈ ∂G] ≤ P[ sup

t∈[0,T ]
|Xε

t − ft| > d/2]

= P

[
e−BT√

ε
sup
t∈[0,T ]

|Xε
t − ft| >

de−BT√
ε

]

≤ P

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0
σ (Xε

s) dWs

∣∣∣∣ > de−BT√
ε

]
.

But Mt =
∫ t

0 σ (Xε
s) dWs is a martingale, then 〈M〉t =

∫ T
0 traceσ (Xε

s)σ (Xε
s)
′ ds. There-

fore, by maximal inequality we have that

P

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0
σ (Xε

s) dWs

∣∣∣∣ > de−BT√
ε

]
≤ kεEx

[∫ T

0
traceσ (Xε

s)σ (Xε
s)
′ ds

]
→ 0

as ε→ 0, where k is independent of ε and k <∞.
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Remark 7.3. In the language of the theory of differential equations this theorem can be
formulated in the following equivalent form.
Let g (x) be a continuous function defined on the boundary ∂G of a domain G. Let us
consider the Dirichlet problem in G

ε

2

∑
i,j

aij (x)
∂2uε (x)

∂xi∂xj
+
∑
i

bi (x)
∂uε (x)

∂xi
= 0, x ∈ G

uε (x) = g (x) , x ∈ ∂G

If the assumption of the theorem are satisfied , then there exist a unique y0 ∈ ∂G such that

lim
ε→0

uε (x) = g (y0) .

In the next section we formulate the above result in the language of the theory of PDEs,
in particular as a result of viscosity solution of a parabolic problem. The interest reader
should refer in Chapter 10 of [6] for a more detailed introduction in viscosity solutions of
a Hamilton-Jacobi-Bellman equation.

7.2 Viscosity solution approach

Recall that {Xε
s, t ≤ s ≤ τ} be the diffusion with small parameter noise and τε the exit

time from an open set G. Then

lim
ε→0

lnP[τ ε ≤ T ] = − inf {I (ψ) : ψ ∈ H ([0, T ]) : ψ (t) = x τ (ψ) ≤ T} = −V0 (t, x) .

We set
Φε (t, x) = P [τ ε < t1] (7.8)

where t1 <∞ with boundary data

Φε (t, x) = 1 (t, x) ∈ [0, t1)× ∂G

Φε (t1, x) = 0 x ∈ Ḡ

Then 7.8 satisfies the backward stochastic differential equation

− ∂Φε (t, x)

∂t
− b (t, x)DxΦε (t, x)− ε

2

∑
j

∑
i

aij (t, x)
∂2Φε (t, x)

∂xi∂xj
= 0. (7.9)

We, now, make the logarithmic transformation:

V ε = −ε log Φε (t, x) (7.10)

then 7.9 become

−∂V
ε (t, x)

∂t
− b (t, x)DxV

ε (t, x)− ε

2

∑
i

∑
j

aij (t, x)
∂2V ε (t, x)

∂xi∂xj

+
1

2

∑
i

∑
j

aij (t, x)DxV
ε (DxV

ε)′ = 0 (7.11)

and the boundary data become

V ε (t, x) = 0, (t, x) ∈ (0, t1]× ∂G
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lim
t→t1

V ε (t, x) =∞, x ∈ G.

The later boundary condition means that x (s) must reach the boundary before t1. Because
of the nonstandard form of the terminal data, the stability results for viscosity solutions
are not directly applicable to V ε. However, we could truncate V ε to a level as follow
V ε = −ε log Φε (t, x) ∧ 1

ε or two estimates of V ε could control the convergence of V ε. As
we can see later. As ε→ 0 the PDE 7.11 becomes a first order PDE

− ∂V 0 (t, x)

∂t
− b (t, x)DxV

0 (t, x) +
1

2

∑
i

∑
j

aij (t, x)
(
DxV

0
)′ (

DxV
0
)

= 0 (7.12)

By PDEs methods and viscosity solutions we can prove that V ε → V 0 solution to the above
PDE. Moreover V 0 has a representation in terms of control theory. Next, we consider the
Hamiltonian function

H (t, x, p) = −b (t, x) p+
1

2
p′σσ

′
(t, x) p.

so that

−∂V
0

∂t
(t, x) +H (t, x, p) = 0

Since the Hamiltonian is quadratic and particular convex in p, we can use the Legendre
transform and may rewrite

H (t, x, p) = sup
u∈Rd

{−up− L (t, x, u)}

= − inf
u∈Rd

{up+ L (t, x, u)}

where
L (t, x, u) = sup

p∈Rd
{−up−H (t, x, u)}

=
1

2
(u− b (t, x))

(
σσ′ (t, x)

)−1
(u− b (t, x))′

and (t, x, u) ∈ [0, t1]×G× Rd. Hence, 7.12 is rewritten as:

− ∂V 0 (t, x)

∂t
+ inf
u∈Rd

{up+ L (t, x, u)} = 0 (7.13)

which together with the boundary data is associated to the value function for the following
calculus of variation problem.

V 0 = inf
x(·)∈H

∫ t1

0
L (s, x, u) ds

= inf

∫ t1

0

1

2
(ẋ (s)− b (x, s))

(
σσT

)−1
(t, x) (ẋ (s)− b (x (s)))′ ds.

Then from control theory the solution to the Hamilton-Jacobi-Bellman equation is repre-
sented by a unique viscosity solution V 0, where H is the Cameron-Martin space that we
defined in the previous section. Therefore, the large deviation results stated as

lim
ε→0

ε log Φε (t, x) = −V 0 (t, x)
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where V 0 (t, x) is the rate function. Now, we have to prove that V 0 is the unique viscosity
solution of 7.13 which is the value function of an optimal control problem that we will
define now: Let U (t, x) =

{
u (·) ∈ U0 (t) : τ < t1

}
, where U denote the set of all controls,

and U0 is the space of all bounded, Lebesgue measurable, Rn valued functions on [0, t1].
Then ẋ (s) = u (s)⇒ u (s) = 1

t1

∫ t1
0 ẋ (s) ds.

V (t, x) = inf
x(·)∈H(t,x)

J (t, x, u)

where

J (t, x, u) =

∫ τ

t
L (s, x (s) , ẋ (s)) ds.

and τ is the first exit time of (s, x (s)) from G.
We make the following assumptions: σ is invertible, σ and b are bounded and Lipschitz
continuous on [t0, t1]× Rd and L has the following properties:

(i) L ≥ 0, Luu ≥ 0

(ii) There exists k such that k|u|2 ≤ L (t, x, u) when u ≥ R

(iii) |Lx (t, x, u) |+ |Lu (t, x, u) | ≤ K
(
1 + |u|2

)
.

Next, we continue with two estimates of V ε which can be derived by probabilistic methods
as we have seen in the previous section.

Lemma 7.5. Suppose that ∂G is smooth. Then there exists K > 0 satisfying

V ε (t, x) ≤ Kdist (x, ∂G)

t1 − t
, (t, x) ∈ Ḡ, ε ∈ (0, 1] . (7.14)

Proof. Suppose x1 is the first component of the vector x, there is a constant µ satisfying
x1 + µ > 0 for all x ∈ G. For λ, γ > 0, where γ is a constant, we define an auxiliary
function

gε (t, x) = exp

(
−λ (x1 + µ)

ε (tγ − t)

)
, (7.15)

where (t, x) ∈ Ḡγ , tγ = t1 − γ, Gγ = [0, tγ)×D.
Thus, gε (t, x) is a subsolution of 7.9. More precisely,

∂

∂t
gε (t, x)− ε

2
tra (t, x)D2

xg
ε (t, x)− b (t, x)Dxg

ε (t, x)

=
1

ε
gε (t, x)

λ (x1 + µ)

(tγ − t)2 +
1

ε
gε (t, x)

λb1 (t, x)

(tγ − t)
− 1

ε
a11 (t, x) gε (t, x)

λ2

(tγ − t)2

= −1

ε

gε (t, x)

(tγ − t)2

(
1

2
a11 (t, x)λ2 − λ (x1 + µ)− (tγ − t)λb1 (t, x)

)
< 0

where a11 is the first element of the matrix a (t, x). Since b (t, x), a−1 (t, x) are bounded,
a11 (t, x) is uniformly bounded away from zero on Ḡ. So the above expression is non
positive for large enough λ = λ∗. Therefore, gε (t, x) is a subsolution of 7.9 in G. Moreover,

gε (tγ , x) = 0 ≤ Φε (tγ , x) .

Using the maximum principle for parabolic equations we have that

Φε (t, x) ≥ gε (t, x) , (t, x) ∈ Ḡ.
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Otherwise we could use Ito’s formula to prove the above inequality. Since, the boundary
of G is smooth enough there exists δ > 0 such that d (x) = dist (x, ∂G) and

Gδ = {x ∈ G : d (x) < δ} .

Now, we set

g̃ε (t, x) = exp

(
−1

ε

Kd (x)

(tγ − t)

)
, (t, x) ∈ Gγ ,

therefore,
g̃ε (t, x) ≤ gε (t, x) ≤ Φε (t, x)

since K > 0 satisfy

K ≥ 1

δ
sup

{
λ∗ (x1 + µ) : x ∈ Ḡ

}
and d (x) > δ. This means that,

g̃ε (t, x) ≤ Φε (t, x) ,∀ (t, x) ∈ [t0, tγ)×Dc
δ. (7.16)

Then we observe that g̃ε (t, x) is a subsolution on [0, tγ)×Gδ. In particular,

∂

∂t
g̃ε (t, x)− ε

2
tra (t, x)D2

xg̃
ε (t, x)− b (t, x) g̃ε (t, x)

=
1

ε

Kd (x)

(tγ − t)2 g̃
ε (t, x)− 1

2ε

K2Dd (x)Dd (x)

(tγ − t)2 g̃ε (t, x)+
1

2

KD2d (x)

(tγ − t)
g̃ε (t, x)+

1

ε

Kd (x)

(tγ − t)
g̃ε (t, x)

= −Kg̃
ε (t, x)

ε (tγ − t)2

(
K

2
a (t, x)Dd (x)Dd (t, x)− ε(tγ − t)

2
tra (t, x)D2d (x)− (tγ − t) b (t, x)Dd (x)− d (x)

)
≤ −Kg̃

ε (t, x)

ε (tγ − t)2

(
Ka0 −

ε

2
(tγ − t) |a (t, x) ||D2d (x) |+ (tγ − t) |b (t, x) | − d (x)

)
< 0.

Since, a−1 is bounded and uniformly elliptic, there is a constant a0 > 0 such that

a (t, x) ξξ ≥ a0|ξ|2,∀ (t, x) ∈ D̄, ξ ∈ Rn

and |Dd (x) | = 1 on Gδ, so we obtain

a (t, x)Dd (x)Dd (x) ≥ a0|Dd (x) |2 = a0,∀ (t, x) ∈ Ḡ

Using theses facts the above expression is negative for sufficiently large K. So we have
prove that g̃ε (t, x) is a subsolution of 7.9 on (0, tγ)×Gδ. Also on [t0, tγ ]×∂Gδ ∪{tγ}×Gδ
g̃ε (t, x) = Φε (t, x) = 1. Thus, the maximum principle for parabolic equations yields

g̃ε (t, x) ≤ Φε (t, x) , on [t0, t1]×Gδ.

Moreover, Φε (t, x) = exp
(
−1
εV

ε (t, x)
)
, then this combined with 7.16 and the above in-

equality imply 7.14.

Lemma 7.6. For any M > 0 and d (x) = dist (x, ∂G) in C2
(
Ḡ
)

with d (x) = 0 for all
x ∈ ∂G, there exists KM > 0 such that

V ε (t, x) ≥Md (x)−KM (t1 − t) , (t, x) ∈ [t0, t1]× D̄, ε ∈ (0, 1) . (7.17)
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Proof. We define the auxiliary function

ḡε (t, x) = exp

(
−1

ε
Md (x)− 1

ε
KM (t1 − t)

)
and we show that ḡε (t, x) is a supersolution of 7.9. Particular,

− ∂

∂t
ḡε (t, x)− ε

2
tra (t, x)D2

xḡ
ε (t, x)− b (t, x)Dxḡ

ε (t, x)

= ḡε (t, x)
KM

ε
−1

2
tra (t, x)MDd (x) ḡε (t, x)+

1

2ε
M2tra (t, x)Dd (x) ḡε (t, x)Dd (x)+b (t, x)

1

ε
MDd (x) ḡε (t, x)

=
1

ε
ḡε (t, x)

(
KM −

ε

2
tra (t, x)MD2d (x) +

1

2
M2tra (t, x)Dd (x)Dd (x) + b (t, x)Md (x)

)
> 0

since we set

KM = sup
(t,x)∈[0,t1]×Ḡ

{
− ε

2
Mtra (t, x)D2d (x) + F (t, x,MDd (x))

}
.

Consequently, ḡε (t, x) is a supersolution of 7.9. Besides the fact that Φε is not continuous
at {t1} × ∂G, ḡε (t, x) is continuous since,

ḡε (t1, x) = 1, x ∈ ∂G.

Using maximum principle for parabolic equations once again we obtain 7.17.

Remark 7.4. Using this subsolution and supersolution of Φε (t, x), we manage to find a
way to control the convergence of V ε (t, x). Also, V ε ≥ 0 since Φε ≤ 1 and by 7.14 V ε (t, x)
is uniformly bounded for ε ∈ (0, 1], (t, x) ∈ [0, T ]× D̄ with any T < t1. We use the Barles
and Perthame procedure. We give a brief outline of this procedure, the interesting reader
should refer in Chapter VII paragraph 3− 4− 5− 6 of [8] for the detailed steps.
For (t, x) ∈ (t0, t1)× Ḡ, define

V ∗ (t, x) = lim sup
(s,y)→(t,x)

V ε (s, y) , (7.18)

V∗ (t, x) = lim inf
(s,y)→(t,x)

V ε (s, y) (7.19)

for (s, y) ∈ [t0, t1] × D̄. These functions however are not necessarily continuous. In fact
we may only infer that they are semi-continuous. Therefore, we conclude that V ∗, V∗
are respectively viscosity subsolution and supersolution of 7.13 in [t0, T ] × D for every
T < t1. Then, using the equation 7.9 and its boundary data yields that any viscosity
subsolution of this problem is dominated by any viscosity supersolution, V∗ ≥ V ∗. However,
by construction, V∗ ≤ V ∗. Although, the terminal data of the problem is infinite, the
stability result still holds. Hence, 7.17 implies that V ∗ (t, x) and V∗ (t, x) converges to ∞
as t → t1 uniformly on compact subsets of D. However, this convergence is controlled by
7.14. The above properties of V ∗, V∗ will be used later to show the convergence of V ε to
V 0 = V ∗ = V∗ which is the unique viscosity solution of HJB equation defined previously
7.13.

Lemma 7.7. For every T < t1, V 0 is a viscosity solution of 7.13 in [0, T ) × G and is
Lipschitz continuous on [0, T ]× Ḡ.
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Proof. We give the proof in four steps.
First step
We show that V 0 (t, x) is bounded on [0, T ]×G. In particular, we show that there exists
M such that:

0 ≤ V 0 (t, x) ≤Mdist (x, ∂G) , (t, x) ∈ [0, T ]×G. (7.20)

To this end, let x̄ ∈ ∂G nearest to x, dist (x, ∂G) ≤ |x− x̄|. We know that

u =
1

t1 − t

∫ t1

t
ẋ (s) ds

then
x0 (s) = x+ u0 (s− t) , u0 = c|x̄− x|−1 (x̄− x) ,

where c = diamG
t1−T . Let τ0 be the exit time from G of x0 (s). Then

τ0 − t =
|x̄− x|
c

≤ diamG

c
= t1 − T

and τ0 < t1 when t ≤ T . So, for every x (·) ∈ H (t, x)

0 ≤ J (t, x, u) ≤
∫ τ0

t
L (s, x0 (s) , u0) ds ≤ C (τ0 − t) ≤ C

diamG

c
≤Mdist (x, ∂G)

since L is bounded from its definition L (s, y, u) ≤ C for all (s, y) and M = C
c .

Second step
We show that V 0 (t, ·) is Lipschtz continuous on Ḡ. More precisely, we show that for any
x, y ∈ D there is M1 > 0 such that

|V 0 (t, x)− V 0 (s, y) | ≤M1|x− y|.

For any λ ∈ (0, 1), let yλ (s) = x (s) + λ (y − x). Let τ1 be the exit time of (s, y1 (s)) from
G and τ2 = min (τ, τ1). By the dynamic programming principle we have that

V 0 (t, y) ≤
∫ τ2

t
L (s, y1 (s) , ẋ (s)) ds+ V (τ2, y1 (τ2))

=

∫ τ2

t
L (s, x (s) , ẋ (s)) ds+

∫ τ2

t

∫ 1

0
Lx (s, y (s) , ẋ)λ (y − x) dλds+ V (τ2, y1 (τ2)) .

From the definition of L that L (s, y, ẋ) =
∫ t1
t

1
2

(
ẋ (s)− b (x, s)

(
σσT

)
(s, x) (ẋ (s)− b (x, s))

)′
ds

and the properties of b, σ we have that there exists K such that

|Lx (s, x (s) , ẋ (s)) ≤ K
(
1 + |ẋ (s) |2

)
for all (s, y) ∈ [0, T ]× Ḡ and ẋ ∈ Rn.
Therefore,

V (t, y) ≤ J (t, x, ẋ) +K|x− y|
∫ τ2

t

(
1 + |ẋ (s) |2

)
ds+ V (τ2, y1 (τ2)) .

Now, if τ2 = t1 ≤ τ , then y1 (τ2) ∈ ∂G and V (τ2, y1 (τ2)) = 0, and if τ2 = τ < τ1 then
x (τ2) ∈ ∂G. By 7.20 we obtain

V (τ2, y1 (τ2)) ≤M |y1 (τ2)− x (τ2) | < M |x− y|.
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Thus,
V (t, y) ≤ V (t, x) + k +K|x− y| (t1 − t0) +K|x− y|C1 +M |x− y|

≤ V (t, x) + k + |x− y| ((t1 − t0 + C1)K +M)

since J (t, x, u) < V (t, x) + k for any k ∈ [0, 1],
∫ τ
t |cẋ (s) |2ds < C1, and we set M1 =

K (t1 − t0 + C1) +M . Then k is chosen arbitrarily and we can write

|V (t, y)− V (s, y) | ≤M1|x− y|, (7.21)

for 0 ≤ t ≤ T and x, y ∈ Ḡ.
Third step
Next, we prove that V 0 is a viscosity solution of HBJ equation 7.13.
Let (t, x) ∈ [0, T )×G, the dynamic programming principle implies that

V 0 (t, x) = inf
ẋ(·)∈H

{∫ τ̃

t
L (s, x (s) , ẋ (s)) ds+ V 0 (τ̃ , x (τ))

}
where τ̃ = τ ∧T . From stochastic control we verify that the terminal cost function satisfies

V 0 (τ̃ , x (τ)) =

{
0 if (t, x) ∈ [0, T ]× ∂G
V 0 (T, x) , if x ∈ G

also from the previous step we know that V 0 is Lipschitz continuous. Also, using the
assumptions of the integrand L we can apply the Theorem 10.4 of [8] that the value
function V 0 is the unique Lipschitz continuous viscosity solution to the HBJ equation
7.9 with the same boundary data. Therefore, V 0 is Lipschitz continuous and a viscosity
solution to the HBJ 7.13 on [t0, T )×G.
Fourth step
Finally, we verify the boundary and terminal data of HBJ equation 7.13. First, V ≥ 0
since L is positive. Then, we choose x (·) ∈ H (t, x) satisfying τ = t, for (t, x) ∈ [0, t1)×∂G
we have that V 0 (t, x) = 0. To prove V 0 (t, x) =∞, let x ∈ G, thus

dist (x, ∂G) ≤ |x− x̄| =
∣∣∣∣∫ τ

t
ẋ (s) ds

∣∣∣∣
since x (τ) ∈ ∂G. Also, the boundedness of a (t, x) yields

L (t, x, ẋ) ≥ c0|ẋ− b (t, x) |2

for c0 constant. This means that∫ τ

t
L (s, x (s) , ẋ (s)) ds ≥ c0

∫ τ

t
|ẋ (s)− b (s, x (s)) |2ds

≥ c0

∫ τ

t
|ẋ (s) |2ds−K

≥ c0

τ − t

∣∣∣∣∫ τ

t
ẋ (s) ds

∣∣∣∣2 −K,
where K is a constant. Finally, we obtain

V 0 (t, x) ≥ c0 (dist (x, ∂G))2

t1 − t
−K

since τ − t ≤ t1 − t and we have that

lim
t→t1

V 0 (t, x) =∞

and this completes the proof.
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Now, we are ready to prove that V ε converges uniformly to V 0 as ε→ 0.

Theorem 7.1. Assume that the properties of b, a, a−1 satisfied. Then V ε converges to V 0

uniformly on compact subsets of [t0, t1)× D̄ as ε→ 0.

Proof. Recall that V∗ (t, x) = lim infε→0 V
ε (t, x) and V ∗ = lim supε→0 V

ε (t, x). Then,

V ∗ (t, x)− V∗ (t, y) ≤ V 0 (t+ δ, x)− V 0 (t− δ, y) | ≤ C (δ + |x− y|)

and
V ∗ (t, x)− V∗ (t, y) ≥ V∗ (t, x)− V ∗ (t, x) ≥ −C (δ + |x− y|)

Therefore
|V ∗ (t, x)− V∗ (t, y) | ≤ C (δ + |x− y|) .

Now fix x. In order to show the uniformly convergence of V ε to V 0, it suffices to show
that

V ∗ (t, x) ≤ V 0 (t+ δ, x) for (t, x) ∈ (t0, t1 − δ)× Ḡ
and

V 0 (t− δ, x) ≤ V∗ (t, x) for (t, x) ∈ (t0 + δ, t1)× Ḡ.
First, we show the first inequality,

V ∗ (t, x) ≤ V 0 (t+ δ, x) for (t, x) ∈ [0, t1 − δ)× Ḡ. (7.22)

We observe that
lim inf
T→t1

sup
x∈D̄

{
V 0 (T, x)− V ∗ (T − δ, x)

}
> 0 (7.23)

We set supx∈Ḡ {V (T, x)− V ∗ (T − δ, x)} = a (T, δ). In particular, choose any sequence
(Tn, xn)→ (t1, x̄).

When x̄ ∈ ∂G, then the estimate V ε (t, x) ≤ Kdist(x,∂G)
t1−t and the positivity of V 0 means

that 7.23 satified.
When x̄ ∈ G, then the fact that V 0 (t, x) ≥ c0(dist(x,∂G))2

t1−t −K
together with V ε (t, x) ≤ Kdist(x,∂G)

t1−t give 7.23.

Now, for any δ > 0 and T < t1 note that V 0 (t, x) + a (T, δ) and V ∗ (t, x) are a viscosity
subsolution and supersolution respectively of 7.9 in (0, t1 − δ) × Ḡ. Thus, the boundary
and terminal data are the following

V 0 (t, x) = a (t, δ) , for (t, x) ∈ (t0 + δ, T )× ∂G

V 0 (t, x) = V (T, x) + a (T, δ) , for x ∈ G.
Since, V 0 is Lipschitz continuous then a weak comparison result holds giving

V 0 (t+ δ, x) + a (T, δ) ≥ V ∗ (t, δ) .

Finally, if we let T → t1 we get the 7.22.
The second inequality

V 0 (t− δ, x) ≤ V∗ (t, x) for (t, x) ∈ (0 + δ, t1)× Ḡ

is a consequence of

lim inf
t→t1

inf
x∈Ḡ

{
V∗ (t, x)− V 0 (t− δ, x)− V 0 (t− δ, x)

}
> 0

and the weak comparison principle that we used before. The above inequality yields due
to the fact that
V ε (t, x) = 0, for (t, x) ∈ (δ, t1)× ∂G and V ε (t, x) ≥Md (x)−KM (t1 − t).
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Remark 7.5. The above convergence result can be restated as

Φε (t, x) = exp

(
−1

ε

(
V 0 (t, x) + hε (t, x)

))
, (7.24)

where hε converges uniformly on compact subsets of [0, t1)×Ḡ as ε→ 0. When V 0 (t, x) >
0, we conclude that Φε (t, x)→ 0 exponentially fast as ε→ 0. However, if V 0 (t, x) = 0 the
expansion 7.24 does not provide any information. So it is interest the case that V 0 (t, x) >
0 on [0, t1]× Ḡ.
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Part III

Applications in Finance
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Chapter 8

Introduction

Large Deviations finds important applications in finance where questions related to exter-
nal events play an increasingly important role. Large deviations arise in various financial
contexts. They occur in risk management for the computation of the probability of large
losses of a portfolio subject to market risk or the defaut probabilities of a portfolio under
credit risk. Large deviations methods are largely used in rare events simulation and so ap-
pear naturally in the approximation of option pricing, in particular for barrier option and
out of the money options. More recently, there has been a growing literarure on various
asymptotics (small-time, large time, fast mean-reverting, extreme strike) for stochastic
volatility mdels, see [1],[15].
We illustrate our purpose with the following toy example. Let, X be a real valued random
variable, and consider the problem of computing or estimating P[X > l], the probability
that X exceeds some level l. In finance, we may think of X as the loss of a portfolio
subject to credit or market risk, and we are interested in the probability of large loss or
default probability. The r.v. X may also correspond to the terminal value of a stock price,
and the quantity P[X > l] appear typically in the computation of a call or barrier option,
with small probability of payoff when the option is out of the money or the barrier l is
large. To estimate p = P[X > l], a basic technique is Monte Carlo simulation: generate n
independent paths X1, X2, . . . , Xn of X and use the sample mean

S̄n =
1

n

n∑
i=1

Yi, with Yi = 1{Xi>l}

The convergence of this estimate (when n → ∞) follows from the law of large numbers,
while the standard rate of convergence is given through the central limit theorem, in terms
of the variance v = p (1− p) of Yi:

P
[
|S̄n − p| ≥

a√
n

]
→ 2Φ

(
− a√

v

)
,

where Φ is the cucmulative distribution function of the standard normal law. Furthermore,
the convergence of the estimator S̄n is precised with the large deviation result, known here
as the Cramér theorem.
Let us now turn again to the estimation of p = P[X ≥ l]. As mentioned above, the rate of
convergence of the estimator S̄n is determined by:

V ar
(
S̄n
)

=
V ar

(
1{X>l}

)
n

=
p (1− p)

n
,

and the relative error is

relative error =
standard deviation of S̄n

mean of S̄n
=

√
p (1− p)
p
√
n

.
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Hence, if p = P[X > l] is small and since
√
p− q2/p → ∞ as p goes to zero, we realize

that a large sample size is required for the estimator to achieve a reasonable relative error
bound. This is a common occurance when estimating rare events. In order to improve
the estimate of a tail probability P[X > l], one is tempted to use importance sampling
to reduce variance and hence speed up the computation by requiring fewer samples. This
consists basically in changing measures to try to give more weight to important outcomes,
(increase the default probability). Since large deviations also deal with rare events we can
see a strong link with importance sampling. There are a lot of book and notes in the
literature, that the interested reader could find for Monte-Carlo methods and especially
for the importance sampling technique for variance reduction see [2] and [11].
To make the idea concrete, consider again the problem of estimating p = P[X > l],
and suppose taht X has the distrubution µ (dx). Let us took at an alernative sampling

distribution ν (dx) absolutely continuous with respect t µ (dx), with density f (x) = dν(x)
dµ(x) .

The tail probability can be rewritten as

p = P[X > l] =

∫
1{x>l}φ (x) ν (dx) = Eν [1{X>l}φ (X)],

where φ = 1
f , and E denotes the expectation under the measure ν. By generating i.i.d

samples X̃1, . . . , X̃n with distribution , we have an alternative unbiased and convergent
estiamte of p with

S̃n =
1

n

n∑
i=1

1{X̃i>l}φ
(
X̃i

)
,

and whose the convergence is determined by

V ar
(
S̃n

)
=

1

n

∫ (
1{x>l} − pf (x)

)2
φ (x) ν (dx)

The minimization of this quantity over all possible ν leads to a zero variance with the choise

of a density f (x) =
1{x>l}
p . This is of course only a theoritical result since it requires the

knowledge of p, the very thing we want ro estimate! However, by noting that in this
case ν (dx) = f (x)µ (dx) = 1{x>l}µ (dx) /P[X > l] is nothing else than the conditional
distribution of X given {X > l}, this suggests to use an importance sampling change of
measure that makes the rare event more likely to occur. This method of suitable change
of measure is also the key step in proving large deviations results. In this chapter we show
how to use large deviations approximation through importance sampling for Monte-Carlo
computation of expectation arising in option pricing. In the frame of continuous time
models, we are interested in the computation of

Ig = E[g (St, 0 ≤ t ≤ T )]

where S is the underlying asset price, and g is the payoff function of the option, eventually
path-dependent, i.e. depending on the path process, St, 0 ≤ t ≤ T . The Monte-Carlo
approximation technique consists in simulating N independent sample paths

(
Sit
)

0≤t≤T ,

i = 1, 2, 3, . . . , N , in the distribution of (St)0≤t≤T , and approximating the required expec-
tation by the sample mean estimator:

INg =
1

N

N∑
i=1

g
(
Si
)
.

The consistency of the estimator is ensured by the Law of Large Numbers, while the error
approxiamtion is given by the variance of this estimator from the central limit theorem.
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The lower is the variance of g (S), the better is the approxiamtion for a given number N
of simulations As already mentioned, the basic idea of importance sampling is to reduce
variance by changing probability measure from which paths are generated. Here, the
idea is to change the distribution of the price process to be simulated in order to take
account the specifities of the payoff function g, and to derive the process to the region of
high contribution to the required expectation. We focus in this section in the importance
sampling technique within the context of diffusions models, and then show how to obtain an
optimal change of measure by a large deviations approximation of the required expectation.

8.1 Importance sampling for diffusions via Girsanov’s the-
orem

In this section, we briefly describe the importance sampling variance reduction technique
for diffusions. Let X be a d-dimensional diffusion process gonverned by

dXs = b (Xs) ds+ σ (Xs) dWs, (8.1)

where (Wt)t≥0 is a d-dimensional Brownian motion on a filtered probability space (Ω,F ,P),
and the borel-measurable functions b, σ satisfy the Lipschitz condition ensuring the exis-
tence of a strong solution to the 8.1. We denote by Xt,x

s the solution to 8.1 starting from
x at time t, and we define the function

u (t, x) = E
[
g
(
Xt,x
s , t ≤ s ≤ T

)]
(t, x) ∈ [0, T ]× Rd.

Let, φt be a Rd-valued adapted process on [0, T ] such that the process

Mt = exp

{∫ t

0
φsdWs −

1

2

∫ t

0
|φs|2ds

}
, t ∈ [0, T ]

is a local martingale by Ito’s formula. Since Mt (φ) is non-negative, Fatou’s lemma implies
that Mt (φ) is a supermartingale. Then a supermartingale is a martingale if E[MT (φ)] =

E[M0 (φ)] = 1. But, this is ensured by the Novikov condition that E[exp
(

1
2

∫ T
0 |φu|

2du
)

] <

∞. Therefore, we can have a probability measure Q absolutely continuous with respect
to P on (Ω,F) by

dQ
dP

= MT .

It is worth noting that for all F-measurable functions t < T , dQ
dP = Mt because of the

martingale property of Mt. Moreover, by Girsanov’s theorem, the process W̃t = Wt −∫ t
0 φsds, 0 ≤ t ≤ T is a Brownian motion under the new probability measure Q, and the

dynamics, now, of X with respect to Q is given by

dXs = (b (Xs)− σ (Xs)φs) ds+ σ (Xs) dW̃s.

Thus, from Bayes formula the expectation we want to compute can be rewritten as

u (t, x) = EQ [g (Xt,x
s , t ≤ s ≤ T

)
LT
]
, (8.2)

where L is the Q martingale

Lt =
1

Mt
= exp

(∫ t

0
φsdW̃s −

1

2

∫ t

0
|φs|2ds

)
, 0 ≤ t ≤ T. (8.3)
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Due to 8.2 we have an alternative Monte-Carlo estimator for u (t, x) for any choise of φ

INg,φ (t, x) =
1

N

N∑
i=1

g
(
Xi,t,x

)
LiT ,

by simulating N independent sample paths
(
Xi,t,x

)
and LiT of Xt,x and LT under Q given

by 8.2 and 8.3. Hence, the change of probability measure through the choise of φ leads to a
modification of the drift process in the simulation of X. The variance reduction technique
consists in determining a process φ, which induces a smaller variance for the corresponding
estimator Ig,φ than the initial Ig. In the next section we present an approach leading to the
construction of such process φ. In this approach, the process φ is stochastic and requires
an approximation of the expectation of interest. This approach relies on asymptotic results
from large daviations techniques.

8.2 Option pricing approximation with a Freidlin-Wentzell
large deviation priniciple

In this section, we are looking for a stochastic process φ, which allows us to reduce the
variance (possibly to zero!) the variance of the corresponding estimator. We give the
theoritical approach of the problem which is due to [10]. The heuristics for achieving
this goal is based on the following argument. Suppose that the payoff function g depends
only on the terminal value XT . Then by applying Ito’s formula to the Q-martingale

u
(
s,Xt,x

S

)
Ls for t ≤ s ≤ T , we have that

g
(
Xt,x
T

)
LT = u (t, x)Lt +

∫ T

t
Ls

(
Dxu

(
s,Xt,x

s

)′
σ
(
Xt,x
s

)
+ u

(
s,Xt,x

s

)
φ′s

)
dW̃s.

Hence, the variance of INg,φ (t, x) is given by

V arQ
(
INg,φ (t, x)

)
=

1

N
EQ
[∫ T

t
L2
s|
(
Dxu

(
s,Xt,x

s

)′
σ
(
Xt,x
s

)
+ u

(
s,Xt,x

s

)
φ′s

)
|2ds

]
.

So, if the function u were known, then one could vanish the variance by choosing

φs = φ∗s = − 1

u
(
s,Xt,x

s

)σ′ (Xt,x
s

)
Dxu

(
s,Xt,x

s

)
, t ≤ s ≤ T. (8.4)

Indeed,the function u is unknown, this is precisely what we want to compute, but this
suggest to use a process φ from the above formula with an approxiamtion of the function
u. We may then reasonably hope to reduce the variance and also to use such a method
for more general payoff functions, possibly path-dependent. We shall use a large deviation
approxiamtion for the function u.
The basic idea for use the large deviations approxiamation to the expectation function u
is the following.
Suppose the option of interest, characterized by its payoff function g, has a low probability
of excersice, e.g. it is deeply out of the money. Then, a large proportion of simulated
paths end up out of the excersice domain, giving no contribution to the Monte-Carlo
estimator but increasing the variance. In order to reduce the variance, it is interesting
to change of drift in the simulation of price process to make the domain excersice more
likely. This is achieved with a large deviation approximation of the process of interest
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in the asymptotics of small diffusion term: such a result is known in the literature as
Freidlin-Wentzell sample path large deviations principle. Equivalently, by time-scaling,
this amounts to large deviation approximation of the process in small time, studied by
Varadhan.
To illustrate our purpose, let us cosider an option that pays one unit of numéraire iff
the underlying asset reached a given up-barrier K. Within a stochastic volatility model
X = (S, Y ) as in 8.1 and given by:

dSt = σ (Yt)StdW
1
t (8.5)

dYt = η (Yt) dt+ γ (Yt) dW
2
t (8.6)

with d〈W1,W2〉t = ρdt, its price is given by

u (t, x) = E
[
1maxt≤u≤T S

t,x
u ≥K

]
= P[τt,x ≤ T ], t ∈ [0, T ], x = (s, y) ∈ (0,∞)× R,

where
τt,x = inf

{
u ≥ t : Xt,x

u /∈ D
}
, D = (0,K)× R.

Then, the event
{

maxt≤u≤T S
t,x
u ≥ K

}
= {τt,x ≤ T} is rare when x = (s, y) ∈ D, i.e.

s < K (out of the money option) and the time to maturity T − t is very small. The large
deviations asymptotics for the exit probability u (t, x) in small time to maturity T − t is
provided by the Freindlin-Wentzell and Varadhan theories. Indeed, we see from the time-
homogeneity of the coefficients of the difussion and by time-scaling that we may write
u (t, x) = uT−t (o, x), where for ε > 0, uε is the function defined on [0, 1]× (0,∞)× R by

uε (t, x) = Px[τ ε ≤ 1],

and Xε
t,x is the solution to

dXε
s = εb (Xε

s) ds+
√
εσ (Xε

s) dWs, Xε
t = x.

and
τ εt,x = inf

{
s ≥ t : Xε,t,x

s /∈ D
}
.

From the large deviation result that we have already proven in section 8.2, the problem
of exit from a domain using viscosity solution, we have

lim
t→T
− (T − t) lnu (t, x) = V0 (t, x) ,

where

V0 (t, x) = inf
x(·)∈A(t,x)

∫ 1

t

1

2
ẋ (u)′ a (x (u))ẋ (u) du (t, x) ∈ [0, 1)×D,

where σ (x) is the diffusion matrix of X = (S, Y ), a (x) = (σσ′ (x))−1 and

A (t, x) = {x (·) ∈ C[(0, 1)] : x (t) = x, and τ (x) ≤ 1} .

There is another interpretation of the positive function V0 in terms of Riemann distance
on Rd associated in the the metric a (x) = (σσ′)−1. One can prove, see [10], that L0 (x) =√

2V0 (0, x) is the unique viscosity solution of the eikonal equation

(DxL0)′ σ′ (x)DxL0 = 1, x ∈ D

L0 (x) = inf
z∈∂D

L0 (x, z) , x ∈ ∂D
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and it may be represented as

L0 (x) = inf
z∈∂D

L0 (x, z) , x ∈ D

where

L0 (x, z) = inf
x(·)∈A(x,z)

∫ 1

0

√
ẋ (u)′ a (x (u)) ẋ (u)du,

and
A (x, z) = {x (·) ∈ C[(0, 1)] : x (0) = x and x (1) = z} .

Hence the function L0 can be computed either by numerical resolution of the eikonal
equation or by using the above represantation. L0 (x) is interpreted as the minimal length
of the path x (·) allowing to reach the boundary ∂D from x.
From the above large deviations result, the viscosity solution of the eikonal equation and
the equation for the optimal theoritical φ∗, we use a change of probability measure with

φ (t, x) =
L0 (x)

T − t
σ′ (x)DxL0 (x) .

Such a process φ may also appear interesting to use in more general framework than this
model. One can use it for computing any option whose excersice domain looks similar
to this one. We also expect the variance reduction is more significant as the excersice
probability is low, i.e. for deep out-of-the money options.

Remark 8.1. One can estimate φ with a method due to [12], which in contrast with
the above approach, does not require the knowledge of the option price and restricts to
deterministics change of drifts. The change of drift is selected through Varadhan-Laplace
principle and is shown to be optimal in an asymptotic sense.
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