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necessary that at least once in your life you 
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στοχεύει επίσης στην απόκτηση νέων γνώσεων σχετικά με την επίδραση μη γραμμικών 

φαινομένων στην ολική απόκριση του συστήματος.  
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ανάλυσης δοκού τυχούσας διπλά συμμετρικής διατομής, εδραζόμενης επί μη γραμμικού 
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Εκτενής Περίληψη

Γεωμετρικά Μη Γραμμική και Ανελαστική Ανάλυση 
Συστημάτων Αλληλεπίδρασης Δοκού – Εδάφους 

 
 
I. Εισαγωγή 

Η απόκριση συστημάτων αλληλεπίδρασης δοκού – εδάφους υπό στατική και δυναμική 
φόρτιση αποτελεί ένα πεδίο συνεχούς και εκτεταμένης έρευνας, τόσο στον τομέα της 
δομικής μηχανικής όσο και σε αυτόν της γεωτεχνικής μηχανικής. Σημαντικές 
ερευνητικές προσπάθειες έχουν πραγματοποιηθεί τα τελευταία χρόνια, με σκοπό να 
ενσωματωθεί η αποκτηθείσα γνώση στην ανάλυση και το σχεδιασμό των συστημάτων 
αυτών. Οι μέθοδοι μελέτης των συστημάτων αλληλεπίδρασης δοκού – εδάφους 
αξιολογούνται συνεχώς και βελτιώνονται λαμβάνοντας υπόψη ιστορικά στοιχεία, νέα 
πειραματικά δεδομένα και αποτελέσματα από μελέτες πεδίου, τα οποία καταδεικνύουν 
τη σημασία της ακριβούς ανάλυσης. Εντούτοις, η εγγενής πολυπλοκότητα του 
προβλήματος αλλά και οι αβεβαιότητες που σχετίζονται με την ίδια τη φύση του 
συστήματος καθιστούν ιδιαίτερα δύσκολη τόσο τη μαθηματική διατύπωση όσο και τη 
διαδικασία επίλυσης του.   

Με την πάροδο των χρόνων, αρκετοί ερευνητές έχουν αναπτύξει και προτείνει 
πλήθος μεθόδων για τη μελέτη της περίπλοκης συμπεριφοράς των συστημάτων 
αλληλεπίδρασης δοκού – εδάφους. Οι μέθοδοι ανάλυσης μπορούν να ομαδοποιηθούν 
σε τρείς κυρίαρχες κατηγορίες. Στην πρώτη κατηγορία ανήκουν οι μέθοδοι που 
βασίζονται στη θεώρηση δοκού επί ελατηριωτού εδάφους, στη δεύτερη κατηγορία οι 
μέθοδοι που βασίζονται στη θεωρία συνεχούς μέσου, ενώ τελευταία έχουν αναπτυχθεί 
οι μέθοδοι μακρο-στοιχείου. 

Στα πλαίσια της πρώτης κατηγορίας (θεωρίας δοκού), το εδαφικό μέσο 
προσομοιώνεται από ελατηριωτούς σχηματισμούς, ενώ το δομικό μέλος 
προσομοιώνεται με ραβδωτά στοιχεία.  Η μεθοδολογία αυτή έχει αποδειχθεί αποδοτική 
και ακριβής. Αντιθέτως, τα προσομοιώματα που βασίζονται στη θεωρία συνεχούς 
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μέσου επιδιώκουν να περιγράψουν την πραγματική συμπεριφορά του συστήματος μέσω 
της ρεαλιστικής προσομοίωσης του εδάφους αλλά και της  κατασκευής. Στην 
περίπτωση της γραμμικά ελαστικής απόκρισης έχουν αναπτυχθεί αναλυτικές 
εκφράσεις, οι οποίες όμως, παρότι είναι ιδιαίτερα εύχρηστες, αγνοούν την 
πλαστικοποίηση του εδάφους και περιορίζονται στην παραδοχή μικρών 
παραμορφώσεων. Για να ληφθεί υπόψη η μη γραμμικότητα υλικού καθώς και η μη 
γραμμικότητα γεωμετρίας και διεπιφάνειας, έχουν αναπτυχθεί μη γραμμικά 
προσομοιώματα τρισδιάστατων πεπερασμένων στοιχείων, τα οποία όμως απαιτούν 
εξειδικευμένες μεθόδους βαθμονόμησης αλλά και μεγάλο υπολογιστικό κόστος. Τέλος, 
πρόσφατα έχει αναπτυχθεί η μέθοδος του μακρο-στοιχείου, η οποία επιδιώκει να 
περιγράψει τη συνολική συμπεριφορά του συστήματος μέσω μιας μακροσκοπικής 
προσομοίωσης.   

Οι μέθοδοι που βασίζονται στη θεωρία δοκού, ίσως είναι οι πιο δημοφιλής για την 
ανάλυση των συστημάτων αλληλεπίδρασης αλλά και γενικότερα για τη μελέτη φορέων 
που συναντώνται σε έργα πολιτικού μηχανικού. Αυτό οφείλεται στα σημαντικά 
πλεονεκτήματα της θεωρίας δοκού έναντι των προσομοιωμάτων τρισδιάστατης 
ελαστικότητας ή ελαστοπλαστικότητας. Τα κυριότερα πλεονεκτήματα της θεωρίας 
δοκού συνοψίζονται ακολούθως: 

i. Ευκολία στην προσομοίωση και το χειρισμό.  

Ο ανθρώπινος και υπολογιστικός χρόνος στη φάση προ-επεξεργασίας των 
δεδομένων εισόδου της ανάλυσης είναι σαφώς μειωμένος, σε σύγκριση με τα 
τρισδιάστατα προσομοιώματα, όπου παρά την ύπαρξη αυτόματων γεννητόρων 
διακριτοποίησης, η διαδικασία της προσομοίωσης και της διακριτοποίησης της 
κατασκευής είναι χρονικά δαπανηρή. 

ii. Μικρό υπολογιστικό κόστος.  

Ο υπολογιστικός χρόνος στη φάση αριθμητικής επίλυσης των εξισώσεων του 
προβλήματος είναι ελάχιστος συγκριτικά με τα χρονικά δαπανηρά τρισδιάστατα 
προσομοιώματα. Η διαφορά αυτή γίνεται  πιο αισθητή στην περίπτωση δυναμικής 
ανάλυσης ή όπου λαμβάνεται υπόψη η επιρροή γεωμετρικής και υλικής μη 
γραμμικότητας, καθώς απαιτείται η επίλυση μη γραμμικών συστημάτων 
αλγεβρικών εξισώσεων. 
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iii. Άμεση επιβολή φορτίσεων και στηρίξεων.  

Η επιβολή των εξωτερικών φορτίων καθώς και των στηρίξεων της κατασκευής 
γίνεται με απλό και άμεσο τρόπο, σε αντίθεση με τα προσομοιώματα τρισδιάστατων 
πεπερασμένων στοιχείων τα οποία απαιτούν εξειδικευμένες μεθοδολογίες. 

iv. Ευκολία στη μελέτη επιρροής διαφόρων φαινομένων και στην αξιολόγηση 
των αποτελεσμάτων.  

Με τη χρήση απλών και πιο σύνθετων θεωριών δοκού είναι δυνατή η γρήγορη 
αξιολόγηση της επιρροής διάφορων φαινομένων στη συνολική απόκριση της 
κατασκευής και ως εκ τούτου η γρήγορη λήψη αποφάσεων σε επίπεδο σχεδιασμού. 
Επιπλέον, υπολογίζονται άμεσα μονοδιάστατα κινηματικά και εντατικά μεγέθη, τα 
οποία προσφέρονται για γρήγορη αξιολόγηση. Αντιθέτως, τα αποτελέσματα 
τρισδιάστατων προσομοιωμάτων αποτελούν τριδιάστατες συναρτήσεις, οι οποίες 
εποπτεύονται και αξιολογούνται με δυσκολία. Εξάλλου, οι σύγχρονοι κανονισμοί 
που διέπουν την ανάλυση και το σχεδιασμό έργων πολιτικού μηχανικού συνήθως 
είναι διατυπωμένοι με βάση τη λογική των εντατικών μεγεθών. 

v. Ευκολία στην εκτέλεση παραμετρικών αναλύσεων.  

Η θεωρία δοκού προσφέρεται στις περιπτώσεις παραμετρικών αναλύσεων και 
βελτιστοποίησης ραβδωτών κατασκευών. Αντιθέτως, τα τρισδιάστατα πεπερασμένα 
στοιχεία απαιτούν τη χρήση πολλαπλών προσομοιωμάτων.  

vi. Ευκολία στην άμεση παρομοίωση περίπλοκων κατασκευών.  

Σε πολλές περιπτώσεις η διερεύνηση δύσκολων πρακτικών προβλημάτων της 
επιστήμης του μηχανικού απαιτεί αρχικά τη μελέτη απλών προσομοιωμάτων (όπου 
δεν είναι επιθυμητή η ανάλυση τοπικών φαινομένων). Ο προσδιορισμός της 
ποιοτικής συμπεριφοράς της κατασκευής μπορεί να γίνει ευκολότερα εφαρμόζοντας 
τη θεωρία δοκού, συγκριτικά με τις τρισδιάστατες εξισώσεις της Μηχανικής 
Συνεχούς Μέσου. 

vii. Αποτελεσματικότητα στη μελέτη κατασκευών από δοκούς λεπτότοιχης 
διατομής. 

Αντιμετωπίζονται επιτυχώς τα προβλήματα του μεμβρανικού (membrane-locking) 
και διατμητικού (shear-locking) κλειδώματος.  
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viii. Αποτελεσματικός χειρισμός της στρέβλωσης της διατομής.  

Αντιμετωπίζεται επιτυχώς το πρόβλημα της στρέβλωσης της διατομής, το οποίο 
αδυνατούν να περιγράψουν τα κελυφωτά πεπερασμένα στοιχεία (midline models - 
shell finite elements).  

Αξίζει βέβαια να επισημανθεί ότι ο γενικός χαρακτήρας και η μεγάλη αξιοπιστία 
των προσομοιωμάτων τρισδιάστατων πεπερασμένων στοιχείων τα καθιστούν πολύ 
χρήσιμο εργαλείο στα χέρια του μηχανικού ή του ερευνητή, ο οποίος επιθυμεί να 
προσδιορίσει την αξιοπιστία των αποτελεσμάτων που λαμβάνει από άλλες αριθμητικές 
μεθόδους. 

Κύριος στόχος της παρούσας διδακτορικής διατριβής είναι η διατύπωση 
καινοτόμων θεωριών δοκού και η ανάπτυξη προηγμένων μεθόδων για την επίλυση του 
προβλήματος αλληλεπίδρασης δοκού – εδάφους, καθώς και η απόκτηση νέων γνώσεων 
σχετικά με την επίδραση μη γραμμικών φαινομένων. Για το σκοπό αυτό μελετάται και 
επιλύεται σειρά προβλημάτων μη γραμμικής ανάλυσης δοκού τυχούσας διπλά 
συμμετρικής διατομής, εδραζόμενης επί μη γραμμικού εδάφους. Η προσομοίωση του 
δομικού στοιχείου γίνεται με εφαρμογή της μονοδιάστατης θεωρίας δοκού, ενώ του 
εδαφικού μέσου υλοποιήθηκε με ποικίλους μη γραμμικούς ελατηριωτούς 
σχηματισμούς, όπου λαμβάνεται υπόψη και η μη γραμμικότητα διεπιφάνειας. Αρχικά, 
διερευνάται η γεωμετρικά μη γραμμική στατική και δυναμική ελαστική ανάλυση δοκών 
επί μη γραμμικού εδάφους, λαμβάνοντας υπόψη διατμητικές παραμορφώσεις. Εν 
συνεχεία, η έρευνα επεκτείνεται στην ανελαστική ανάλυση του προβλήματος, όπου 
τόσο το εδαφικό μέσο όσο και το δομικό στοιχείο ακολουθούν μη γραμμικούς 
ανελαστικούς νόμους. Τέλος, μελετάται η γεωμετρικά μη γραμμική και ανελαστική 
δυναμική απόκριση του συστήματος αλληλεπίδρασης δοκού – εδάφους. Η διατύπωση 
και επίλυση των εξεταζόμενων προβλημάτων είναι πλήρης, συστηματική, πρωτότυπη 
και συμβάλλει στην ρεαλιστικότερη προσέγγισή τους. Βάσει των αναλυτικών και 
αριθμητικών διαδικασιών που αναπτύσσονται στην εργασία αυτή συντάχθηκε πλήθος 
προγραμμάτων ηλεκτρονικού υπολογιστή, με τη βοήθεια των οποίων μελετήθηκαν 
αντιπροσωπευτικά αριθμητικά παραδείγματα ιδιαίτερου πρακτικού ενδιαφέροντος, τα 
οποία καταδεικνύουν την αποτελεσματικότητα και το εύρος εφαρμογής των 
προτεινόμενων μεθόδων. Η ακρίβεια και αξιοπιστία των ληφθέντων αποτελεσμάτων 
επιβεβαιώνεται με υπάρχουσες αναλυτικές και αριθμητικές λύσεις, πειραματικά 
αποτελέσματα, καθώς και με προσομοιώματα στερεών (εξαεδρικών) και κελυφωτών 
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(τετραπλευρικών) πεπερασμένων στοιχείων. Από την ανάλυση, υπολογίζονται όλα τα 
εντατικά, παραμορφωσιακά και κινηματικά μεγέθη του κάθε προβλήματος. 

Η έρευνα που παρουσιάζεται στη διατριβή αυτή είναι πρωτοποριακή και 
πρωτότυπη. Τα κύρια στοιχεία πρωτοτυπίας συνοψίζονται στα ακόλουθα. 

i. Για πρώτη φορά στη διεθνή βιβλιογραφία, παρουσιάζεται ολοκληρωμένα η 
μαθηματική διατύπωση και επίλυση του δυναμικού προβλήματος της γεωμετρικά 
μη γραμμικής ανελαστικής ανάλυσης συστήματος αλληλεπίδρασης δοκού – 
εδάφους, όπου το εδαφικό μέσο αλλά και το δομικό στοιχείο ακολουθούν μη 
γραμμικούς ανελαστικούς νόμους.  

ii. Στα εξεταζόμενα προβλήματα, η μη γραμμικότητα υλικού αντιμετωπίζεται μέσω 
προσομοιώματος κατανεμημένης πλαστικότητας (στοιχείο ινών) χρησιμοποιώντας 
τρισδιάστατες καταστατικές σχέσεις, ενώ η μαθηματική διατύπωση βασίζεται στη 
μέθοδο των μετατοπίσεων.  

iii. Το προτεινόμενο προσομοίωμα λαμβάνει υπόψη τη γεωμετρική μη γραμμικότητα 
διατηρώντας τα τετράγωνα των κλίσεων των εγκάρσιων μετατοπίσεων στην 
έκφραση των ορθών παραμορφώσεων ως προς τη διαμήκη διεύθυνση, 
αποφεύγοντας με αυτόν τον τρόπο τους περιορισμούς της γραμμικοποιημένης 
ανάλυσης δεύτερης τάξης (θεώρηση σταθερής αξονικής δύναμης). Για το σκοπό 
αυτό υιοθετείται η συνολική διατύπωση Lagrange (θεωρία μετρίως μεγάλων 
παραμορφώσεων).  

iv. Η επιρροή της διατμητικής παραμόρφωσης λαμβάνεται υπόψη με τη βοήθεια των 
συντελεστών διατμητικής παραμόρφωσης της θεωρίας δοκού Timoshenko, η οποία 
συνυπολογίζει έμμεσα το φαινόμενο αυτό μέσω διορθωτικών συντελεστών 
διάτμησης. Στην παρούσα διατριβή οι συντελεστές αυτοί υπολογίζονται με 
εφαρμογή ενεργειακής μεθόδου.  

v. Το προτεινόμενο μαθηματικό προσομοίωμα συνυπολογίζει τα πεπλεγμένα 
φαινόμενα των καμπτικών και διατμητικών παραμορφώσεων κατά μήκος της 
δοκού καθώς και τις αναπτυσσόμενες διατμητικές δυνάμεις από το αξονικό φορτίο. 
Επιπλέον, η δοκός υποβάλλεται σε τυχούσα συγκεντρωμένη ή κατανεμημένη 
αξονική και καμπτική φόρτιση, ενώ τα άκρα της υπόκεινται στις πλέον γενικές 
συνοριακές συνθήκες συμπεριλαμβανομένης και της ελαστικής στήριξης. 

vi.  Η προσομοίωση του εδαφικού μέσου υλοποιήθηκε με ποικίλους μη γραμμικούς 
ελατηριωτούς σχηματισμούς, όπου λαμβάνεται υπόψη και η μη γραμμικότητα 
διεπιφάνειας.   
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vii. Τα εξεταζόμενα προβλήματα επιλύονται αριθμητικά με τη βοήθεια συνοριακών 
ολοκληρωτικών εξισώσεων (Μέθοδος Συνοριακών Στοιχείων, Αναλογικής 
Εξίσωσης και Πεδιακή Μέθοδος Συνοριακών Στοιχείων), μέσω καινοτόμων 
αλγορίθμων σε υπολογιστικό περιβάλλον. 

Τέλος, αξίζει να αναφερθεί ότι από την παρούσα ερευνητική προσπάθεια 
προέκυψαν δημοσιεύσεις σε έγκριτα επιστημονικά περιοδικά διεθνούς κυκλοφορίας, σε 
πρακτικά διεθνών και εθνικών συνεδρίων καθώς και κεφάλαια σε βιβλία που 
εκδόθηκαν από διεθνείς εκδοτικούς οίκους. 

 
 
II. Γεωμετρικά Μη Γραμμική Ανάλυση Δοκών με Διατμητικές Παραμορφώσεις 

επί Μη Γραμμικού Εδάφους 

Στην παρούσα διδακτορική διατριβή παρουσιάζεται η γεωμετρικά μη γραμμική 
ανάλυση δοκού διπλά συμμετρικής διατομής, επί μη γραμμικού τριπαραμετρικού 
ελαστικού εδάφους. Η δοκός υποβάλλεται σε τυχούσα συγκεντρωμένη ή κατανεμημένη 
καμπτική φόρτιση καθώς και σε τυχόν αξονικό φορτίο, ενώ τα άκρα της υπόκεινται στις 
πλέον γενικές συνοριακές συνθήκες συμπεριλαμβανομένης και της ελαστικής στήριξης. 
Η γεωμετρική μη γραμμικότητα λαμβάνεται υπόψη σε ολική διατύπωση Lagrange 
μέσω της θεωρίας μεγάλων μετατοπίσεων - μικρών παραμορφώσεων. Η επιρροή των 
διατμητικών παραμορφώσεων λαμβάνεται υπόψη με τη βοήθεια της θεωρίας δοκού 
Timoshenko, η οποία συνυπολογίζει έμμεσα το φαινόμενο αυτό μέσω διορθωτικών 
συντελεστών διάτμησης. Στην παρούσα διατριβή οι συντελεστές αυτοί υπολογίζονται με 
εφαρμογή ενεργειακής μεθόδου. Το εδαφικό προσομοίωμα χαρακτηρίζεται από 
γραμμικά και μη γραμμικά ελατήρια τύπου Winkler και από ελατήρια τύπου Pasternak, 
ενώ επίσης έχει προσομοιωθεί η αδυναμία ανάληψης εφελκυστικών τάσεων 
(tensionless foundation models). Σύμφωνα με την προτεινόμενη μέθοδο μορφώνονται 
με τη βοήθεια της θεωρίας ελαστικότητας πέντε προβλήματα συνοριακών τιμών. 
Συγκεκριμένα, μορφώνονται τρία μονοδιάστατα πρόβλημα συνοριακών τιμών 
αναφορικά με την αξονική και τις εγκάρσιες μετατοπίσεις, που επιλύονται με τη 
βοήθεια της Μεθόδου Αναλογικής Εξίσωσης, σε συνδυασμό με την υβριδική μέθοδο 
Powell για την επίλυση μη γραμμικών συστημάτων αλγεβρικών εξισώσεων, καθώς και 
δύο διδιάστατα προβλήματα συνοριακών τιμών αναφορικά με τις τασικές συναρτήσεις 
που αναφέρονται στους συντελεστές διάτμησης, τα οποία επιλύονται με τη βοήθεια 
“αμιγούς” Μεθόδου Συνοριακών Στοιχείων.  
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Για τη μαθηματική διατύπωση του προβλήματος, εξετάζεται ευθύγραμμη 
πρισματική δοκός μήκους l  (Σχ. 1), σταθερής τυχούσας διπλά συμμετρικής διατομής 
που αποτελείται από ομογενές, ισότροπο και γραμμικά ελαστικό υλικό με μέτρο 
ελαστικότητας E , μέτρο διάτμησης G  και λόγο Poisson v , το οποίο καταλαμβάνει 

περιοχή Ω  του επιπέδου yz  και είναι απλά ή πολλαπλά συνεκτικό (υπάρχει η 

δυνατότητα να περιλαμβάνει οπές). Το σύνορο της διατομής του χωρίου Ω , είναι 
τμηματικά λείο, μπορεί δηλαδή να περιλαμβάνει πεπερασμένο αριθμό γωνιών και 

συμβολίζεται με ( )K
j 0 j j 1,2,...,KΓ Γ==   =U . Στο Σχ. 1, με Cxyz  συμβολίζεται το 

κύριο καμπτικό σύστημα αξόνων που διέρχεται από το κέντρο βάρους της διατομής C . 
Η δοκός θεωρείται μερικώς εδραζόμενη επί μη γραμμικού τριπαραμετρικού ελαστικού 
εδάφους. Λαμβάνοντας υπόψη τη μη γραμμική επαφή μεταξύ της δοκού και του 
εδαφικού μέσου (interface nonlinearity), η εδαφική αντίδραση επί της δοκού ενεργεί 
μόνο σε περίπτωση συμπίεσης των ελατηρίων και δίδεται για τις τρεις διευθύνσεις από 
τις ακόλουθες εκφράσεις 

 

C: Centre of 
gravity 
S: Shear centre 

(α) (β) 

Σχ. 1. Πρισματική δοκός υποβαλλόμενη σε τυχούσα καμπτική και αξονική φόρτιση (α) 
με ομογενή διατομή τυχόντος διπλά συμμετρικού σχήματος (β). 

 

 ( )sx xp k u x=  (1α) 

 ( ) ( ) ( ) ( )2
3

sy y Ly NL y Py 2
v x

p H x k v x k v x k
x

⎛ ⎞∂
= + −⎜ ⎟⎜ ⎟∂⎝ ⎠
%  (1β) 

 ( ) ( ) ( ) ( )2
3

sz z Lz NLz Pz 2
w x

p H x k w x k w x k
x

⎛ ⎞∂
= + −⎜ ⎟⎜ ⎟∂⎝ ⎠
%  (1γ) 
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όπου ( )yH x% , ( )zH x%  είναι συναρτήσεις Heaviside μοναδιαίου βήματος. 

Η δοκός υποβάλλεται σε συνδυασμό φορτίσεων από τυχόν συγκεντρωμένο ή/και 

κατανεμημένο αξονικό φορτίο ( )x xp p x=  κατά μήκος του άξονα x , εγκάρσιο φορτίο 

( )y yp p x= , ( )z zp p x=  κατά μήκος των αξόνων y  και z , αντίστοιχα, καθώς και 

καμπτική φόρτιση ( )y ym m x= , ( )z zm m x=  κατά μήκος των αξόνων y  και z , 

αντίστοιχα.  
Το πεδίο μετατοπίσεων τυχαίου σημείου της διατομής λαμβάνοντας υπόψη τη 

διατμητική παραμόρφωση, προσδιορίζεται ως (Ramm & Hofmann 1995) 
 

 ( ) ( ) ( ) ( )z yu x, y,z u x y x z xθ θ= − +  (2α) 

 ( ) ( )v x, y,z v x=       ( ) ( )w x, y,z w x=  (2β,γ) 

 
όπου u , v , w  είναι η διαμήκης και οι εγκάρσιες συνιστώσες της μετατόπισης ενός 

τυχαίου σημείου ως προς το σύστημα αξόνων Cyz . Επίσης, ( )u u x= , ( )v v x= , 

( )w w x=  είναι η διαμήκης και οι εγκάρσιες μετατοπίσεις του κέντρου βάρους C , ενώ 

( )y xθ , ( )z xθ  είναι οι γωνίες στροφής της διατομής λόγω της κάμψης, ως προς το 

κέντρο βάρους. Αξίζει να σημειωθεί ότι οι γωνίες στροφής της διατομής λόγω κάμψης 

δεν ταυτίζονται με τις παραγώγους των μετακινήσεων ( z v'θ ≠ , y w'θ ≠ ) λόγω 

διατμητικών παραμορφώσεων. 
Θεωρώντας μικρές παραμορφώσεις και ότι το υλικό της δοκού είναι ομογενές, 

ισότροπο, συνεχές και γραμμικά ελαστικό, οι συνιστώσες του 2ου τανυστή τάσης Piola-
Kirchhoff δίδονται συναρτήσει των παραμορφώσεων Green από το γενικευμένο νόμο 
του Hooke. Εν συνεχεία, εφαρμόζοντας την ισορροπία δυνάμεων και ροπών του 
στοιχειώδους τμήματος της δοκού στην παραμορφωμένη διαμόρφωση ή εναλλακτικά 
την Αρχή Δυνατών Έργων σε ολική διατύπωση Lagrange προκύπτουν οι διαφορικές 
εξισώσεις που περιγράφουν την καθολική ισορροπία του συστήματος, οι οποίες 
εκφράζονται ως 
 

 ( ) Lx xEA u w w v v k u p′′ ′ ′′ ′ ′′− + + + =  (3α) 

 ( ) ( ) ( )3
y z y Ly NL y Py yNv GA v H k v k v k v pθ′ ′′ ′′ ′′− − − + + − =%  (3β) 
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 ( ) ( ) ( )3
z y z Lz NL z Pz zNw GA w H k w k w k w" pθ′ ′′ ′′− − +  +  + − =%  (3γ) 

 ( )z z y z zEI GA v mθ θ′′ ′− − − =        ( )y y z y yEI GA w mθ θ′′ ′− + + =  (3δ,ε) 

 

όπου ( )'  συμβολίζει την παράγωγο ως προς τη χωρική μεταβλητή x . 

Συνδυάζοντας τις εξισώσεις (3β), (3δ) και (3γ), (3ε) για την απαλοιφή των γωνιών 
στροφής προκύπτουν οι τρεις διαφορικές εξισώσεις ισορροπίας της δοκού Timoshenko 
επί μη γραμμικού εδάφους υπό αξονική, εγκάρσια και καμπτική φόρτιση ως 
 

 ( ) Lx xEA u w w v v k u p′′ ′ ′′ ′ ′′− + + + =  (4α) 

 ( ) ( )( )y y
z sy sy y y z

y z

EI EI
EI v"" Nv p Nw p p p m

GA GA
′ ′′′′ ′ ′′ ′′ ′− + + − = − −  (4β) 

 ( ) ( )( )y y
y sz sz z z y

z z

EI EI
EI w"" Nw p Nw p p p m

GA GA
′ ′′′′ ′ ′′ ′′ ′− + + − = − +  (4γ) 

 
Οι αντίστοιχες συνοριακές συνθήκες στα άκρα της δοκού x 0,l=  διατυπώνονται με την 

ακόλουθη γενική μορφή 
 

 ( ) ( )1 2 3a u x N xα α+ =  (5α) 

 ( ) ( )1 2 y 3v x V xβ β β+ =         ( ) ( )1 z 2 z 3x xβ θ β Μ β+ =  (5β,γ) 

 ( ) ( )1 2 z 3w x V xγ γ γ+ =           ( ) ( )1 y 2 y 3x xγ θ γ Μ γ+ =  (5δ,ε) 

 

όπου ( )i i i i i, , , i 1,2,3α β β γ γ   ,   = είναι γνωστοί συντελεστές, ενώ τα εντατικά μεγέθη 

που αναπτύσσονται στη διατομή στην παραμορφωμένη κατάσταση και οι στροφές 
λόγω κάμψης δίδονται από τις ακόλουθες σχέσεις 
 

 ( )z
y z y sy z

y

EIV EI v Nv Nv p p m
GA

⎡ ⎤′′′′′ ′ ′ ′ ′= − + − + − −⎢ ⎥⎣ ⎦
 (6α) 

 ( )y
z y z sz y

z

EI
V EI w Nw Nw p p m

GA
= ⎡ ⎤′′′′′ ′ ′ ′ ′− + − + − +⎢ ⎥⎣ ⎦

 (6β) 
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( )( )y
y y z sz

z

EI
M EI w Nw p p

GA
′′′ ′= − − + −   ( )( )z

z z y sy
y

EIM EI v Nv p p
GA

′′′ ′= + + −  (6γ,δ) 

 
( )

( )( ) ( )y
y sz y z2

zz

EI 1Nw p EI w GA w
GAGA

θ ′′′ ′ ′′′ ′= − + − +  (6ε) 

 
( )

( )( ) ( )z
z sy z y2

yy

EI 1Nv p EI v GA v
GAGA

θ ′′′ ′ ′′′ ′= − + +  (6ζ) 

 
Η αριθμητική επίλυση του πεπλεγμένου προβλήματος συνοριακών τιμών 

επιτυγχάνεται με τη βοήθεια της μεθόδου Αναλογικής Εξίσωσης (Katsikadelis 1994, 

2002). Το διάστημα της δοκού ( )0,l  διαιρείται σε L  στοιχεία και η εφαρμογή της 

μεθόδου οδηγεί στη μόρφωση ενός μη γραμμικού συστήματος 3L 20+  αλγεβρικών 
εξισώσεων, το οποίο εκφράζεται σε τυπική μορφή ως 
 

 ( )( )+ =nlK K d d p  (7) 

 
όπου K  το γενικευμένο γνωστό γραμμικό μητρώο στιβαρότητας, nlK  το γενικευμένο 
γνωστό μη γραμμικό μητρώο στιβαρότητας, d  το γενικευμένο μητρώο στήλη 

άγνωστων ποσοτήτων και p  το γενικευμένο γνωστό μητρώο στήλη φόρτισης. Για την 

αριθμητική επίλυση του μη γραμμικού συστήματος αλγεβρικών εξισώσεων 
εφαρμόστηκε η υβριδική μέθοδος επίλυσης Powell (1977, 1985).  

Με βάση την αναπτυχθείσα αναλυτική και αριθμητική διαδικασία, συντάχθηκε 
πρόγραμμα ηλεκτρονικού υπολογιστή σε υπολογιστικό περιβάλλον Fortran 90/95 με τη 
βοήθεια του οποίου μελετήθηκαν αντιπροσωπευτικά παραδείγματα με πρακτικό 
ενδιαφέρον, προκειμένου να διαπιστωθεί η αποτελεσματικότητα και το εύρος 
εφαρμογής της προτεινόμενης μεθόδου. Η ακρίβεια των αριθμητικών αποτελεσμάτων 
ελέγχεται, όπου είναι εφικτό, με υπάρχουσες αριθμητικές λύσεις και πειραματικά 
δεδομένα, ενώ παράλληλα διερευνάται η επιρροή της γεωμετρικής μη γραμμικότητας, 
της διατμητικής παραμόρφωσης καθώς και της εδαφικής προσομοίωσης στην απόκριση 
του συστήματος αλληλεπίδρασης δοκού – εδάφους.  

Ως αντιπροσωπευτική αριθμητική εφαρμογή, μελετήθηκε αμφιέρειστη δοκός επί 
ομογενούς ελαστικού εδάφους. Η δοκός έχει μήκος l 5m=  και καμπτική δυσκαμψία 

3 2EI 10 kNm=  ενώ υποβάλλεται σε συγκεντρωμένες καμπτικές ροπές στα άκρα 1M =
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2M 100kNm= − . Στο Σχ. 2, παρουσιάζονται οι εγκάρσιες μετακινήσεις κατά μήκος της 

δοκού αγνοώντας (Σχ.2α) ή λαμβάνοντας υπόψη (Σχ.2β) τη μη γραμμικότητα 
διεπιφάνειας, για διάφορες τιμές της εδαφικής δυσκαμψίας. Στο ίδιο σχήμα 
παρουσιάζονται επίσης τα αντίστοιχα αποτελέσματα τόσο από την αναλυτική λύση 
(Hetenyi 1946) όσο και από λύσεις βασισμένες σε αριθμητικές μεθόδους (Pereira 2003, 
Silveira et al. 2008). Από τη σύγκριση των αποτελεσμάτων επιβεβαιώνεται η ακρίβεια 
της προτεινόμενης μεθόδου και διαπιστώνεται η σημασία της μη γραμμικότητας 
διεπιφάνειας.  

 
 

III. Γεωμετρικά Μη Γραμμική Δυναμική Ανάλυση Δοκών με Διατμητικές 
Παραμορφώσεις επί Μη Γραμμικού Εδάφους 

Στη συνέχεια διερευνάται και επιλύεται το δυναμικό πρόβλημα της γεωμετρικά μη 
γραμμικής ανάλυσης δοκού διπλά συμμετρικής διατομής, επί μη γραμμικού 
τριπαραμετρικού ελαστικού εδάφους με ιξώδη απόσβεση. Η δοκός υποβάλλεται σε 
τυχούσα συγκεντρωμένη ή κατανεμημένη δυναμική καμπτική φόρτιση καθώς και σε 
τυχόν χρονικά μεταβαλλόμενο αξονικό φορτίο, ενώ τα άκρα της υπόκεινται στις πλέον 
γενικές συνοριακές συνθήκες συμπεριλαμβανομένης και της ελαστικής στήριξης.  
 

(α) (β) 

Σχ. 2. Εγκάρσια μετακίνηση της δοκού για διάφορες τιμές της εδαφικής δυσκαμψίας 
αγνοώντας (α) ή λαμβάνοντας υπόψη (β) τη μη γραμμικότητα διεπιφάνειας. 
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Η γεωμετρική μη γραμμικότητα και η επιρροή των διατμητικών παραμορφώσεων 
λαμβάνεται υπόψη ομοίως με τη περίπτωση στατικής ανάλυσης. Το εδαφικό 
προσομοίωμα χαρακτηρίζεται από γραμμικά και μη γραμμικά ελατήρια τύπου Winkler, 
από ελατήρια τύπου Pasternak και το συντελεστή απόσβεσης, ενώ επίσης έχει 
προσομοιωθεί η αδυναμία ανάληψης εφελκυστικών τάσεων (tensionless foundation 
models). Σύμφωνα με την προτεινόμενη μέθοδο μορφώνονται με τη βοήθεια της 
θεωρίας ελαστικότητας πέντε προβλήματα συνοριακών τιμών. Συγκεκριμένα, 
μορφώνονται τρία μονοδιάστατα πρόβλημα συνοριακών τιμών αναφορικά με την 
αξονική και τις εγκάρσιες μετατοπίσεις, που επιλύονται με τη βοήθεια της Μεθόδου 
Αναλογικής Εξίσωσης, σε συνδυασμό με τη μέθοδο Petzold–Gear για την επίλυση μη 
γραμμικών συστημάτων διαφορικών-αλγεβρικών εξισώσεων, καθώς και δύο διδιάστατα 
προβλήματα συνοριακών τιμών αναφορικά με τις τασικές συναρτήσεις που 
αναφέρονται στους συντελεστές διάτμησης, τα οποία επιλύονται με τη βοήθεια 
“αμιγούς” Μεθόδου Συνοριακών Στοιχείων.  

Για τη μαθηματική διατύπωση του προβλήματος, εξετάζεται ευθύγραμμη 
πρισματική δοκός με γεωμετρικά χαρακτηριστικά όμοια με αυτά της προηγούμενης 
παραγράφου, ενώ επιπλέον ορίζεται και η πυκνότητα της δοκού ρ . Η εδαφική 

αντίδραση επί της δοκού δίδεται για τις τρεις διευθύνσεις από τις ακόλουθες εκφράσεις 
 

 ( )sx Lxp k u x,t=  (8α) 

 ( ) ( ) ( )sy reyp x,t H x,t p x,t= %      ( ) ( ) ( )sz rezp x,t H x,t p x,t= %  (8β,γ) 

 
όπου 
 

 ( ) ( ) ( ) ( ) ( )2
3

rey Ly NL y Py y2
v x,t v x,t

p x,t k v x,t k v x,t k c
tx

∂ ∂
= + − + 

∂∂
 (9α) 

 ( ) ( ) ( ) ( ) ( )2
3

rez Lz NLz Pz z2
w x,t w x,t

p x,t k w x,t k w x,t k c
tx

∂ ∂
= + − + 

∂∂
 (9β) 

 
Η δοκός υποβάλλεται σε συνδυασμό φορτίσεων από τυχόν συγκεντρωμένο ή 

κατανεμημένο δυναμικό αξονικό φορτίο ( )xp x,t  κατά μήκος του άξονα x , χρονικά 

εξαρτώμενο εγκάρσιο φορτίο ( )yp x,t , ( )zp x,t  κατά μήκος των αξόνων y  και z , 
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αντίστοιχα, καθώς και καμπτική φόρτιση ( )ym x,t , ( )zm x,t  κατά μήκος των αξόνων 

y  και z , αντίστοιχα. Μέσω της παρούσας διατύπωσης μπορεί να περιγραφεί 

οποιαδήποτε δυναμική φόρτιση συμπεριλαμβανομένων των κρουστικών πληγμάτων, 
των κινούμενων φορτίων ή μαζών, καθώς και των σεισμικών φορτίσεων.  

Το πεδίο μετατοπίσεων τυχαίου σημείου της διατομής λαμβάνοντας υπόψη τη 
διατμητική παραμόρφωση, προσδιορίζεται ως (Ramm & Hofmann 1995) 

 

 ( ) ( ) ( ) ( )z yu x, y,z,t u x,t y x,t z x,tθ θ= − +  (10α) 

 ( ) ( )v x,t v x,t=        ( ) ( )w x,t w x,t=  (10β,γ) 

 
Θεωρώντας μικρές παραμορφώσεις και ότι το υλικό της δοκού είναι ομογενές, 

ισότροπο, συνεχές και γραμμικά ελαστικό, οι συνιστώσες του 2ου τανυστή τάσης Piola-
Kirchhoff δίδονται συναρτήσει των παραμορφώσεων Green από το γενικευμένο νόμο 
του Hooke. Εν συνεχεία, εφαρμόζοντας την αρχή του Hamilton σε ολική διατύπωση 
Lagrange προκύπτουν οι κυρίαρχες διαφορικές εξισώσεις καθολικής δυναμικής 
ισορροπίας του συστήματος, οι οποίες εκφράζονται ως 

 

 ( ) x xu EA u w w v v k u pρΑ ′′ ′ ′′ ′ ′′− + + + =&&  (11α) 

( ) ( )y z sy yv Nv GA v p pρΑ θ′ ′′ ′′− − − + =&&   ( )z z z z y z zI EI GA v mρ θ θ θ′′ ′− − − =&&  (11β,γ) 

( ) ( )z y sz zw Nw GA w p pρΑ θ′ ′′ ′′− − +  + =&&   ( )y y y y z y yI EI GA w mρ θ θ θ′′ ′− + + =&&  (11δ,ε) 

 
όπου ( )⋅  συμβολίζει την παράγωγο ως προς τη χρονική μεταβλητή t . 

Συνδυάζοντας τις εξισώσεις (11β,γ) και (11δ,ε) για την απαλοιφή των γωνιών 
στροφής και αγνοώντας τις παραγώγους τέταρτης τάξεως ως προς το χρόνο t , 
προκύπτουν οι τρεις διαφορικές εξισώσεις ισορροπίας της δοκού Timoshenko επί μη 
γραμμικού εδάφους υπό αξονική, εγκάρσια και καμπτική φόρτιση ως 

 

 ( ) x xu EA u w w v v k u pρΑ ′′ ′ ′′ ′ ′′− + + + =&&  (12α) 
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( ) ( )

( )

2
z

z sy sy y2
y

22
z

z sy y y z2 2
y

EI vv EI v Nv p Nv A p " p "
GA x

NvIvI A v p p p m
GAx t

ρΑ ρ

ρρ ρ

⎛ ⎞∂′ ′′′′′′′ ′ ′+ − + + − − + −⎜ ⎟⎜ ⎟∂⎝ ⎠
⎛ ⎞′′∂∂ ′⎜ ⎟      − − − − + = −
⎜ ⎟∂ ∂⎝ ⎠

&&
&&

&&
&&&& && &&

 (12β) 

 

( ) ( )

( )

2
y

y sz sz z2
z

22
y

y sz z z y2 2
z

EI ww EI w"" Nw' p Nw' A p " p "
GA x

I Nw'wI Aw p p p m
GAx t

ρΑ ρ

ρ
ρ ρ

⎛ ⎞∂′ ′′′+ − + + − − + −⎜ ⎟⎜ ⎟∂⎝ ⎠
⎛ ⎞′∂∂ ′⎜ ⎟        − − − − + = +
⎜ ⎟∂ ∂⎝ ⎠

&&
&&

&&
&&&& && &&

 (12γ) 

 
Οι αντίστοιχες χρονικά μεταβαλλόμενες συνοριακές συνθήκες στα άκρα της δοκού 
x 0,l=  διατυπώνονται με την ακόλουθη γενική μορφή 

 

 ( ) ( )1 2 3a u x,t N x,tα α+ =  (13α) 

 ( ) ( )1 2 y 3v x,t V x,tβ β β+ =         ( ) ( )1 z 2 z 3x,t x,tβ θ β Μ β+ =  (13β,γ) 

 ( ) ( )1 2 z 3w x,t V x,tγ γ γ+ =           ( ) ( )1 y 2 y 3x,t x,tγ θ γ Μ γ+ =  (13δ,ε) 

 
Ενώ από την εφαρμογή της αρχής του Hamilton προκύπτουν και οι αντίστοιχες αρχικές 

συνθήκες ( ( )x 0,l∈ ) στις οποίες υπόκεινται η δοκός  

 
 ( ) ( )0u x,0 u x=          ( ) ( )0u x,0 u x= &&  (14α,β) 

 ( ) ( )0v x,0 v x=     ( ) ( )0v x,0 v x= &&     ( ) ( )0w x,0 w x=     ( ) ( )0w x,0 w x= &&  (14γ-ζ) 

 
Τα εντατικά μεγέθη που αναπτύσσονται στη διατομή στην παραμορφωμένη 

κατάσταση και οι στροφές λόγω κάμψης δίδονται από τις ακόλουθες σχέσεις 
 

 ( )z
y z y sy z z

y

EI vV Nv EI v Nv p p I
GA x

ρΑ ρ θ∂⎡ ⎤′′ ′′ ′′′ ′ ′= − − − + − +⎢ ⎥∂⎣ ⎦

&& &&  (15α) 

 ( )y
z y z sz y y

z

EI wV Nw EI w Nw A p p I
GA x

ρ ρ θ=
∂⎡ ⎤′′ ′′ ′′′ ′ ′− − − + − −⎢ ⎥∂⎣ ⎦

&& &&  (15β) 

 ( )z
z z y sy

y

EIM EI v Nv Av p p
GA

ρ⎡ ⎤′′′ ′= + − + − ⎢ ⎥⎣ ⎦
&&  (15γ) 
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 ( )y
y y z sz

z

EI
M EI w Nw Aw p p

GA
ρ⎡ ⎤′′′ ′= − − − + −⎢ ⎥⎣ ⎦
&&  (15δ) 

 ( ) ( )y
y z sy y y y z2 2

zz

EI w 1A Nw p p EI w I GA w
x GAG A

θ ρ ρ θ∂⎛ ⎞′′′ ′ ′ ′′′ ′= − − + − + +⎜ ⎟∂⎝ ⎠

&& &&  (15ε) 

 ( ) ( )z
z y sz z z z y2 2

yy

EI v 1Nv A p p EI v I GA v
x GAG A

θ ρ ρ θ∂⎛ ⎞′′′ ′ ′ ′′′ ′= − + − + − +⎜ ⎟∂⎝ ⎠

&& &&  (15ζ) 

 
Η αριθμητική επίλυση του πεπλεγμένου προβλήματος αρχικών τιμών 

επιτυγχάνεται με τη βοήθεια της μεθόδου Αναλογικής Εξίσωσης (Katsikadelis 1994, 

2002). Το διάστημα της δοκού ( )0,l  διαιρείται σε L  στοιχεία και η εφαρμογή της 

μεθόδου οδηγεί στη μόρφωση ενός μη γραμμικού συστήματος 3L 20+  διαφορικών-

αλγεβρικών εξισώσεων (DAE) ως προς 3L 20+  αγνώστους, το οποίο μπορεί να 
εκφραστεί σε τυπική μορφή και ως 
 

 = + + + nlMd Cd Kd f f&& &  (16) 
 
όπου M  το γενικευμένο μητρώο μάζας, C  το γενικευμένο μητρώο απόσβεσης,  K  το 

γενικευμένο μητρώο στιβαρότητας, nlf  το γενικευμένο μη γραμμικό μητρώο 
στιβαρότητας και f  το γενικευμένο μητρώο στήλη φόρτισης. Για την αριθμητική 
επίλυση του μη γραμμικού συστήματος διαφορικών-αλγεβρικών εξισώσεων μπορεί να 
εφαρμοστεί είτε μια εκ των Newmark-beta μεθόδων σε συνδυασμό με μια μη γραμμική 
επαναληπτική διαδικασία (Newton Raphson, Modified Newton Raphson, Arc-Length), 
είτε να χρησιμοποιηθεί η μέθοδος Petzold–Gear αφού εισαχθούν ισάριθμες νέες 
μεταβλητές ώστε να μειωθεί η τάξη του προβλήματος αρχικών τιμών ( ind 1= ). 
Εναλλακτικά το πρόβλημα που μορφώνεται από τις εξισώσεις (11) και (13,14) 
επιλύθηκε με τη μέθοδο Πεδιακών Συνοριακών Στοιχειών (Domain-BEM). Στο Σχ. 3, 
παρουσιάζεται το διάγραμμα ροής του μη γραμμικού επαναληπτικού αλγορίθμου 
επίλυσης του προβλήματος.  

Με βάση την αναπτυχθείσα αναλυτική και αριθμητική διαδικασία, συντάχθηκε 
πρόγραμμα ηλεκτρονικού υπολογιστή σε υπολογιστικό περιβάλλον Fortran 90/95 με τη 
βοήθεια του οποίου μελετήθηκαν αντιπροσωπευτικά παραδείγματα με πρακτικό 
ενδιαφέρον, προκειμένου να διαπιστωθεί η αποτελεσματικότητα και το εύρος 
εφαρμογής της προτεινόμενης μεθόδου. Η ακρίβεια των αριθμητικών αποτελεσμάτων 
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ελέγχεται, όπου είναι εφικτό, με υπάρχουσες αναλυτικές και αριθμητικές λύσεις, ενώ 
παράλληλα διερευνάται η επιρροή της γεωμετρικής μη γραμμικότητας, της διατμητικής 
παραμόρφωσης καθώς και της εδαφικής προσομοίωσης στη δυναμική απόκριση του 
συστήματος αλληλεπίδρασης δοκού – εδάφους. Επιπλέον, προκειμένου να διερευνηθεί 
η αξιοπιστία της προτεινόμενης μεθοδολογίας, τα ληφθέντα αριθμητικά αποτελέσματα 
συγκρίνονται με αυτά που προκύπτουν από προσομοιώματα στερεών (εξαεδρικών) και 
κελυφωτών (τετραπλευρικών) πεπερασμένων στοιχείων.  

 

1

1

i i
i

i
ε+

+

−
>

N N
N

 
Σχ. 3. Διάγραμμα ροής του επαναληπτικού αλγορίθμου του προβλήματος ελαστικής 

δυναμικής απόκρισης συστήματος αλληλεπίδρασης δοκού – εδάφους. 
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Ως αντιπροσωπευτική αριθμητική εφαρμογή, μελετήθηκε αμφίπακτη δοκός μήκους 

l 4.9m= , κοίλης ορθογωνικής διατομής ( E 210GPa= , v 0.3= , 37.85tn mρ = ) η 

οποία εδράζεται επί ελαστικού εδάφους. Στο Σχ. 4 παρουσιάζεται η χρονοϊστορία της 

εγκάρσιας μετατόπισης ( )w l 2  του κέντρου βάρους της μεσαίας διατομής της δοκού 

που προκύπτει με εφαρμογή γραμμικής ή μη γραμμικής ανάλυσης λαμβάνοντας υπόψη 
ή αγνοώντας τη διατμητική παραμόρφωση.  

Παρατηρείται ότι, λόγω δέσμευσης της αξονικής μετακίνησης στα δύο άκρα της 
δοκού, αναπτύσσονται σημαντικές εφελκυστικές δυνάμεις οι οποίες απομειώνουν τα 
βέλη και το χρόνο ταλάντωσης που προκαλεί η εξωτερική φόρτιση. Αντίθετα, το 
φαινόμενο της διατμητικής παραμόρφωσης προκαλεί αύξηση τόσο στις μετατοπίσεις 
όσο και στο χρόνο ταλάντωσης του πρώτου κύκλου κίνησης της δοκού. 
 

 
Σχ. 4. Χρονοϊστορία μετακίνησης του κέντρου βάρους της μεσαίας διατομής της δοκού 

επί ελαστικού εδάφους zk 645kPa= . 

 
Επιπλέον, προκειμένου να διερευνηθεί η επιρροή της γεωμετρικής μη 

γραμμικότητας καθώς και της διατμητικής παραμόρφωσης, μελετήθηκε πάσσαλος 

μήκους l 8m= , κοίλης κυκλικής διατομής ( E 210GPa= , v 0.3= , 37.85tn mρ = ). Τα 

γεωμετρικά χαρακτηριστικά της διατομής, η δυσκαμψία του εδαφικού μέσου καθώς και 
η φόρτιση της κεφαλής του πασσάλου απεικονίζονται στο Σχ. 5. Μελετάται η 
κατάσταση πρωτεύοντος συντονισμού του πασσάλου κατά την οποία ασκείται 
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εξωτερικά επιβαλλόμενη συγκεντρωμένη ημιτονοειδής εγκάρσια φόρτιση στο κέντρου 
βάρους της κεφαλής του πασσάλου.  

 

 
Σχ.5. Πάσσαλος κοίλης κυκλικής διατομής εμπηγνυόμενος σε ανομοιογενές έδαφος. 

 

Στο Σχ. 6 παρουσιάζεται η χρονοϊστορία της εγκάρσιας μετατόπισης ( )w l 2  του 

κέντρου βάρους της κεφαλής του πασσάλου που προκύπτει με εφαρμογή γραμμικής ή 
μη γραμμικής ανάλυσης λαμβάνοντας υπόψη τη διατμητική παραμόρφωση. Όπως 
αναμενόταν, μόνο στη γραμμική ανάλυση η εγκάρσια μετατόπιση αυξάνεται με το 
χρόνο (συντονισμός). Το διακρότημα που παρατηρείται στη χρονική απόκριση της μη 
γραμμικής ανάλυσης μπορεί να εξηγηθεί από το γεγονός ότι οι μεγάλες εγκάρσιες 
μετατοπίσεις αυξάνουν τη θεμελιώδη ιδιοσυχνότητα του πασσάλου. Συνεπώς, 
προκαλείται αποσυντονισμός μεταξύ της χρονικά μεταβαλλόμενης θεμελιώδους 
ιδιοσυχνότητας και της σταθερής διεγείρουσας συχνότητας του εξωτερικού φορτίου. 
Αφού η μετατόπιση λαμβάνει τη μέγιστη τιμή της, το εύρος της ταλάντωσης μειώνεται 
με αποτέλεσμα να προκαλείται και πάλι συντονισμός λόγω αντιστροφής του 
προαναφερθέντος μηχανισμού. 

Επιπρόσθετα, στο Σχ. 7 παρουσιάζεται η εγκάρσια μετατόπιση κατά μήκος του 
πασσάλου τη χρονική στιγμή 0.04st ec=  που προκύπτει με εφαρμογή γραμμικής ή μη 
γραμμικής ανάλυσης λαμβάνοντας υπόψη ή αγνοώντας τη διατμητική παραμόρφωση. 
Από το σχήμα διαπιστώνεται ότι η επιρροή τόσο της γεωμετρικής μη γραμμικότητας 
όσο και της διατμητικής παραμόρφωσης είναι σημαντική και πρέπει να λαμβάνεται 
υπόψη στη δυναμική ανάλυση.  
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Σχ. 6. Χρονοϊστορία εγκάρσιας μετατόπισης της κεφαλής του πασσάλου. 

 

Σχ. 7. Εγκάρσια μετατόπιση κατά μήκος του πασσάλου τη χρονική στιγμή t 0.04 s ec= . 

 
Εν συνεχεία, έχοντας επαληθεύσει την αξιοπιστία της μεθόδου, το προτεινόμενο 

προσομοίωμα δοκού εφαρμόστηκε στη μελέτη δυναμικής απόκρισης συστήματος 
εδάφους-πασσάλου-κατασκευής (soil-pile-structure interaction) υπό τρείς εξεταζόμενες 
σεισμικές διεγέρσεις. Συγκεκριμένα μελετήθηκαν τα επιταχυνσιογραφήματα του 
σεισμού του Αιγίου (1995), της Λευκάδας (2003) καθώς και του Kobe, Ιαπωνία (1995). 

Η ανάλυση του συστήματος επιτυγχάνεται σε δύο διαδοχικά στάδια. Αρχικά 
πραγματοποιείται ανελαστική μη γραμμική ανάλυση της απόκρισης του εδαφικού 
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σχηματισμού αμελώντας την παρουσία της θεμελίωσης και στη συνέχεια δυναμική 
ανάλυση του συστήματος εδάφους-πασσάλου-κατασκευής, λαμβάνοντας υπόψη τη 
γεωμετρική μη γραμμικότητα, τη διατμητική παραμόρφωση καθώς και την κινηματική 
και αδρανειακή αλληλεπίδραση. Για την προσομοίωση της μη γραμμικής ανελαστικής 
συμπεριφοράς του εδαφικού σχηματισμού χρησιμοποιήθηκε μια υβριδική διάταξη 
ελατηρίων και αποσβεστήρων. 

Στο Σχ. 8 παρουσιάζεται η χρονοϊστορία επιτάχυνσης της κεφαλής του πασσάλου 
με βάση τα αποτελέσματα που ελήφθησαν από την εφαρμογή της προτεινόμενης 
μεθόδου. Στο ίδιο σχήμα παρουσιάζονται επίσης τα αποτελέσματα που προέκυψαν από 
τη λεπτομερή προσομοίωση του συστήματος σε τρισδιάστατο προσομοίωμα 
πεπερασμένων στοιχείων. Παρατηρείται ότι τα αποτελέσματα παρουσιάζουν άριστη 
σύγκλιση.  

 

 
Σχ. 8. Χρονοϊστορία επιτάχυνσης της κεφαλής του πασσάλου για το σεισμογράφημα της 

Λευκάδας (2003). 
 
 

IV. Γεωμετρικά Μη Γραμμική και Ανελαστική Ανάλυση Δοκών με Διατμητικές 
Παραμορφώσεις επί Μη Γραμμικού Ανελαστικού Εδάφους 

Στη συνέχεια διερευνάται και επιλύεται το στατικό πρόβλημα της γεωμετρικά μη 
γραμμικής ανελαστικής ανάλυσης δοκού διπλά συμμετρικής διατομής, επί μη 
γραμμικού ανελαστικού εδάφους. Το υλικό της δοκού είναι ελαστοπλαστικό με 
ισότροπη κράτυνση. Η δοκός υποβάλλεται σε τυχούσα συγκεντρωμένη ή κατανεμημένη 
καμπτική φόρτιση καθώς και σε τυχόν αξονικό φορτίο, ενώ τα άκρα της υπόκεινται στις 
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πλέον γενικές συνοριακές συνθήκες. Η γεωμετρική μη γραμμικότητα και η επιρροή των 
διατμητικών παραμορφώσεων λαμβάνεται υπόψη ομοίως με την περίπτωση της 
ελαστικής ανάλυσης. Το εδαφικό προσομοίωμα χαρακτηρίζεται από μη γραμμικά 
ελατήρια τύπου Winkler και από ελατήρια τύπου Pasternak, ενώ επίσης έχει 
προσομοιωθεί η αδυναμία ανάληψης εφελκυστικών τάσεων (tensionless foundation 
models). Οι πλαστικές παραμορφώσεις προσδιορίζονται μέσω προσομοιώματος 
κατανεμημένης πλαστικότητας (distributed plasticity model), γνωστό και ως 
προσομοίωμα ινών (fibre model) χρησιμοποιώντας τρισδιάστατες καταστατικές σχέσεις 
(J2 plasticity). Οι σχέσεις αυτές ολοκληρώνονται με τη βοήθεια αποδοτικής 
επαναληπτικής μεθόδου. Σύμφωνα με την προτεινόμενη μέθοδο μορφώνονται με τη 
βοήθεια των θεωριών ελαστικότητας και ελαστοπλαστικότητας πέντε προβλήματα 
συνοριακών τιμών. Πιο συγκεκριμένα, μορφώνονται δύο διδιάστατα προβλήματα 
συνοριακών τιμών αναφορικά με τις τασικές συναρτήσεις που αναφέρονται στους 
συντελεστές διάτμησης, τα οποία επιλύονται με τη βοήθεια “αμιγούς” Μεθόδου 
Συνοριακών Στοιχείων. Επίσης, μορφώνονται τρία μονοδιάστατα προβλήματα 
συνοριακών τιμών αναφορικά με την αξονική και τις εγκάρσιες μετατοπίσεις, που 
επιλύονται με τη βοήθεια της Πεδιακής Μεθόδου Συνοριακών Στοιχείων, σε 
συνδυασμό με την υβριδική μέθοδο Powell για την επίλυση μη γραμμικών συστημάτων 
αλγεβρικών εξισώσεων. Η επίλυση του προβλήματος αυτού πραγματοποιείται στα 
πλαίσια προσαυξητικού - επαναληπτικού αλγορίθμου που βασίζεται στη μέθοδο του 
ελέγχου φορτίου. Με την προτεινόμενη αριθμητική μέθοδο αντιμετωπίζεται επιτυχώς 
το πρόβλημα του «διατμητικού κλειδώματος». 

Για τη μαθηματική διατύπωση του προβλήματος, εξετάζεται ευθύγραμμη 
πρισματική δοκός μήκους l , διατομής τυχόντος διπλά συμμετρικού σχήματος 
αποτελούμενη από συνεχές, ελαστοπλαστικό υλικό με ισότροπη κράτυνση, με μέτρο 

κράτυνσης h  και εφαπτομενικό μέτρο ελαστοπλαστικότητας tE  (Σχ. 9) χωρίς να 

εμφανίζει βλάβη κατά την πλαστικοποίησή του, με μέτρο ελαστικότητας E , μέτρο 

διάτμησης G  και τάση διαρροής Y0σ , το οποίο καταλαμβάνει την περιοχή Ω  του 

επιπέδου yz . Το σύνορο της διατομής του χωρίου Ω , είναι τμηματικά λείο, μπορεί 

δηλαδή να περιλαμβάνει πεπερασμένο αριθμό γωνιών και συμβολίζεται με 

( )K
j 0 j j 1,2,...,KΓ Γ==   =U . Η δοκός θεωρείται μερικώς εδραζόμενη επί μη 

γραμμικού ανελαστικού εδάφους τύπου Pasternak, ενώ λαμβάνεται επίσης υπόψη η μη 
γραμμική επαφή μεταξύ της δοκού και του εδαφικού μέσου (interface nonlinearity).  
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(α) (β) 

Σχ. 9. Σχέση ορθών τάσεων - παραμορφώσεων (α) και σχέση τάσης διαρροής -
ισοδύναμης πλαστικής παραμόρφωσης (β). 

 
Υιοθετώντας το πεδίο μετατοπίσεων τυχαίου σημείου της διατομής λαμβάνοντας 

υπόψη τη διατμητική παραμόρφωση (εξ. 2) και θεωρώντας μικρές παραμορφώσεις, οι 
συνιστώσες του 2ου τανυστή τάσης Piola-Kirchhoff δίδονται συναρτήσει των 
παραμορφώσεων και πλαστικών παραμορφώσεων Green ως  

 

 ( ) ( ) ( ) ( ) ( )2 2
yz pl

xx xx
d xdu x d x dv x dw x1S E y z

dx dx dx 2 dx dx
θθ

ε
⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟= − + + + −⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

   (17α) 

 ( ) ( ) pl
xy z xy

dv x
S G x

dx
θ γ

⎡ ⎤
= − −⎢ ⎥

⎣ ⎦
   ( ) ( ) pl

xz y xz
dw x

S G x
dx

θ γ
⎡ ⎤

= + −⎢ ⎥
⎣ ⎦

    (17β,γ) 

 
όπου με τον εκθέτη pl  συμβολίζεται το πλαστικό μέρος των συνιστωσών του τανυστή 

παραμόρφωσης. Ως κριτήριο διαρροής χρησιμοποιείται η συνάρτηση von Mises (yield 
function, J2 plasticity)  
 

 
( )
( )

2 2 2
xx xy xz

vM pl
Y eq

S 3 S S
1 0Φ

σ ε

+ +
= − ≤  (18) 

 

όπου ( )pl
eqε  είναι η ολική ισοδύναμη πλαστική παραμόρφωση (total equivalent plastic 

strain).  
Αντικαθιστώντας τις εκφράσεις των τάσεων συναρτήσει των κινηματικών μεγεθών 

στους ορισμούς των εντατικών μεγεθών προκύπτουν οι ακόλουθες εκφράσεις  
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 ( ) ( )
pl

2 2 pl 2 2 pl
xx

N

1 1N EA u' v w' E dA EA u' v w' N
2 2Ω ε⎡ ⎤ ⎡ ⎤′ ′= + + − = + + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∫14243
 (19α) 

 ( ) ( )( ) ( ) ( )( )
pl
z

pl pl
z z y xz z y zAz

Q

Q GA w' x x G dA GA w' x x Qθ γ θ= +  − = +  +   ∫144243
 (19β) 

 ( ) ( )( ) ( ) ( )( )
pl
z

pl pl
y y z xy y z yAy

Q

Q GA v' x x G dA GA v' x x Qθ γ θ= −  − = −  +   ∫
144243

 (19γ) 

 
pl
y

pl pl
y y y xx y y y

M

M EI E z dA EI MΩθ θ′ ′= − ε =  +∫1442443
 (19δ) 

 
pl
z

pl pl
z z z xx z z z

M

M EI E y dA EI MΩθ θ′ ′= − ε =  +∫1442443
 (19ε) 

 
όπου με plN , pl

zQ , pl
yQ , pl

zM  και pl
yM  συμβολίζεται το πλαστικό μέρος των 

αντιστοιχών εντατικών μεγεθών. Εν συνεχεία, εφαρμόζοντας την Αρχή Δυνατών 
Έργων σε ολική διατύπωση Lagrange προκύπτουν οι διαφορικές εξισώσεις που 
περιγράφουν την καθολική ισορροπία του συστήματος, οι οποίες εκφράζονται ως 
 

 ( )
pl

x
NEA u v v w w p

x
∂′′ ′ ′′ ′ ′′+ + + = −  

∂
 (20α) 

 ( ) ( )
( )

pl pl
y2 2

y z sy y

d N v Q1EA u' v w' v GA v p p
2 dx x

θ
′′ ∂⎡ ⎤⎛ ⎞ ′′ ′ ′+ + + + − + − = −  ⎜ ⎟⎢ ⎥ ∂⎝ ⎠⎣ ⎦

 (20β) 

 ( ) ( ) ( )
pl pl

2 2 z
z y sz z

d N w1 QEA u' v w' w GA w p p
2 dx x

θ
′′⎡ ⎤ ∂⎛ ⎞ ′′ ′ ′+ + + + + + − = −  ⎜ ⎟⎢ ⎥ ∂⎝ ⎠⎣ ⎦

 (20γ) 

 ( )
pl
y pl

y y z y z y
dM

EI GA w Q m
dx

θ θ′′ ′+ − + − = −   (20δ) 

 ( )
pl

plz
z z y z y z

dMEI GA v Q m
dx

θ θ′′ ′+ + − + = −   (20ε) 

 
Εναλλακτικά οι παραπάνω εξισώσεις γράφονται σε όρους εντατικών μεγεθών ως  
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( )el pl

x x

d N N dNp p
dx dx

+
= − ⇒ = −  (21α) 

 
( ) y

sy y
dQd Nv

p p
dx dx

′
 − − + =       ( ) z

sz z
d Nw dQ p p

dx dx
′

 − − + =  (21β,γ) 

 y
z y

dM
Q m

dx
− = −                        z

y z
dM Q m
dx

+ = −  (21δ,ε) 

 
Από την εφαρμογή της Αρχής Δυνατών Έργων επίσης προκύπτουν οι αντίστοιχες 
συνοριακές συνθήκες στα άκρα της δοκού x 0,l=  οι οποίες διατυπώνονται με την 

ακόλουθη γενική μορφή 
 

 ( ) ( )1 2 b 3a u x a N x a+ =  (22α) 

 ( ) ( )1 2 by 3v x V xβ β β+ =        ( ) ( )1 z 2 bz 3x xβ θ β Μ β+ =  (22β,γ) 

 ( ) ( )1 2 bz 3w x V xγ γ γ+ =         ( ) ( )1 y 2 by 3x xγ θ γ Μ γ+ =  (22δ,ε) 

 

όπου byV , bzV  είναι οι ολικές τέμνουσες και byM , bzM  οι ολικές ροπές, και δίνονται 

από τις ακόλουθες σχέσεις  
 

 ( ) ( )2 2 pl pl
by y z y

1V EA u' v w' v N v GA v Q
2

θ⎡ ⎤′ ′ ′ ′= + + + + − +⎢ ⎥⎣ ⎦
 (23α) 

 ( ) ( )2 2 pl pl
bz z y z

1V EA u' v w' w' N w GA w Q
2

θ⎡ ⎤′ ′ ′= + + + + + +⎢ ⎥⎣ ⎦
 (23β) 

 pl
by y y yM EI Mθ ′= +           pl

bz z z zM EI Mθ ′= +  (23γ,δ) 

 
Η αριθμητική επίλυση του πεπλεγμένου προβλήματος συνοριακών τιμών 

επιτυγχάνεται με τη βοήθεια της Πεδιακής Μεθόδου Συνοριακών Στοιχείων. Το 

διάστημα της δοκού ( )0,l  διαιρείται σε L  γραμμικά στοιχεία (Σχ. 10) και η εφαρμογή 

της μεθόδου οδηγεί στη μόρφωση ενός μη γραμμικού συστήματος 7L 23+  αλγεβρικών 
εξισώσεων, το οποίο εκφράζεται σε τυπική μορφή ως 
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Σχ. 10. Διακριτοποίηση της δοκού σε γραμμικά στοιχεία. 
 

 ( ) { } { } ( ){ }ext plK d d b b d= +⎡ ⎤⎣ ⎦  (24) 

 

όπου { }d  το γενικευμένο μητρώο στήλη άγνωστων ποσοτήτων, [ ]K  το γενικευμένο 

μητρώο στιβαρότητας, { }plb  το γενικευμένο πλαστικό μητρώο στήλη και { }extb το 

γενικευμένο γνωστό μητρώο στήλη φόρτισης. Για την αριθμητική επίλυση του μη 
γραμμικού συστήματος αλγεβρικών εξισώσεων εφαρμόστηκε η υβριδική μέθοδος 
επίλυσης Powell (1977, 1985). Στο Σχ. 11, παρουσιάζεται το διάγραμμα ροής του μη 
γραμμικού προσαυξητικού - επαναληπτικού αλγορίθμου επίλυσης του προβλήματος. 

Με βάση την αναπτυχθείσα αναλυτική και αριθμητική διαδικασία, συντάχθηκε 
πρόγραμμα ηλεκτρονικού υπολογιστή σε υπολογιστικό περιβάλλον Fortran 90/95 με τη 
βοήθεια του οποίου μελετήθηκαν αντιπροσωπευτικά παραδείγματα με πρακτικό 
ενδιαφέρον, προκειμένου να διαπιστωθεί η αποτελεσματικότητα και το εύρος 
εφαρμογής της προτεινόμενης μεθόδου. Η ακρίβεια των αριθμητικών αποτελεσμάτων 
ελέγχεται, όπου είναι εφικτό, με υπάρχουσες αριθμητικές λύσεις και πειραματικά 
δεδομένα, ενώ παράλληλα διερευνάται η επιρροή της μη γραμμικότητας υλικού και 
γεωμετρίας, της διατμητικής παραμόρφωσης καθώς και της εδαφικής προσομοίωσης 
στην ανελαστική απόκριση του συστήματος αλληλεπίδρασης δοκού – εδάφους. 
Επιπλέον, προκειμένου να διερευνηθεί η αξιοπιστία της προτεινόμενης μεθοδολογίας, 
τα ληφθέντα αριθμητικά αποτελέσματα συγκρίνονται με αυτά που προκύπτουν από 
προσομοιώματα στερεών (εξαεδρικών) και κελυφωτών (τετραπλευρικών) 
πεπερασμένων στοιχείων. 

 

L 1ξ +

l

x

iξ i 1ξ +

( )
( ) ( ) ( )

( )

: linear element assumption
Approximation of   within element  :

1 2i i 1
pl pl pl pl pl

y z z y y z

f x j

f x N f N f

f u ,v ,w , , ,N ,Q ,Q ,M ,Mθ θ

+= +

′ ′ ′=

element j shape functions:  1 2

j 1 j 1
1 2

j j 1 j j 1

j 1 j

N , N
x x

N 1 ,N

x

ξ ξ
ξ ξ ξ ξ

ξ ξ

− −

− −

−

− −
= − =

− −

≤ ≤

nodal points
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Σχ. 11. Διάγραμμα ροής του προσαυξητικού - επαναληπτικού αλγορίθμου για την 
ανελαστική απόκριση συστήματος αλληλεπίδρασης δοκού – εδάφους. 

 
Ως αντιπροσωπευτική αριθμητική εφαρμογή, μελετήθηκε μονόπακτη δοκός μήκους 

l 6m= , συμπαγούς ορθογωνικής διατομής 260 30cm×  ( E 32318.4MPa= ,
2

Y0 20 MN mσ = ) η οποία εδράζεται επί μη γραμμικού ανελαστικού εδάφους και 

καταπονείται από ομοιόμορφα κατανεμημένο φορτίο στο τμήμα 0 x 3m≤ ≤ .  
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Στο Σχ. 12 παρουσιάζεται η κατανομή των ορθών τάσεων κατά μήκος της δοκού 
για διάφορα στάδια φόρτισης, με βάση τα αποτελέσματα που ελήφθησαν από την 
εφαρμογή της προτεινόμενης μεθόδου. Στο ίδιο σχήμα παρουσιάζονται επίσης τα 
αποτελέσματα που προέκυψαν από τη λεπτομερή προσομοίωση του συστήματος σε 
τρισδιάστατο προσομοίωμα πεπερασμένων στοιχείων. Παρατηρείται ότι τα 
αποτελέσματα παρουσιάζουν άριστη σύγκλιση.  

 

Έχοντας επαληθεύσει την αξιοπιστία της μεθόδου, το προτεινόμενο προσομοίωμα 
δοκού εφαρμόστηκε για την εκτενή σύγκριση με μία σειρά πειραμάτων μονοτονικώς 
φορτιζομένων μεμονωμένων πασσάλων σε ξηρή άμμο υπό ροπή και οριζόντια δύναμη 
έως την αστοχία (Push-Οver Tests) τα οποία διεξήχθησαν στο Εργαστήριο Δυναμικής / 
Εδαφομηχανικής του Εθνικού Μετσόβιου Πολυτεχνείου. Στο Σχ. 13 παρουσιάζονται τα 
αποτελέσματα που ελήφθησαν από την εφαρμογή της προτεινόμενης μεθόδου και 
συγκρίνονται με αυτά που προκύπτουν από την πειραματική διαδικασία καθώς και από 
τη λεπτομερή προσομοίωση σε τρισδιάστατο προσομοίωμα πεπερασμένων στοιχείων. 
Παρατηρείται ότι τα αποτελέσματα παρουσιάζουν πολύ καλή σύγκλιση. 

 
 

V. Γεωμετρικά Μη Γραμμική και Ανελαστική Δυναμική Ανάλυση Συστημάτων 
Αλληλεπίδρασης Δοκού – Εδάφους 

Στη συνέχεια διερευνάται και επιλύεται το δυναμικό πρόβλημα της γεωμετρικά μη 
γραμμικής ανελαστικής ανάλυσης δοκού διπλά συμμετρικής διατομής, επί μη 
γραμμικού ανελαστικού ελαστικού εδάφους. Η δοκός υποβάλλεται σε συνδυασμό 
φορτίσεων από τυχόν συγκεντρωμένο ή κατανεμημένο δυναμικό αξονικό  και εγκάρσιο 
φορτίο (όμοια με την παράγραφο ΙΙΙ), ενώ υπόκειται στις πλέον γενικές χρονικά 
εξαρτώμενες συνοριακές συνθήκες. Η γεωμετρική μη γραμμικότητα λαμβάνεται υπόψη 
σε ολική διατύπωση Lagrange μέσω της θεωρίας μεγάλων μετατοπίσεων - μικρών 
παραμορφώσεων. Το υστερητικό προσομοίωμα τύπου Bouc-Wen υιοθετείται για να 
περιγράψει την ανελαστική συμπεριφορά των εδαφικών ελατηρίων. Οι πλαστικές 
παραμορφώσεις προσδιορίζονται μέσω προσομοιώματος κατανεμημένης 
πλαστικότητας (distributed plasticity model), γνωστό και ως προσομοίωμα ινών (fibre 
model) χρησιμοποιώντας το υστερητικό προσομοίωμα τύπου Sivaselvan and Reinhorn. 
Οι σχέσεις αυτές ολοκληρώνονται με τη βοήθεια αποδοτικής - επαναληπτικής μεθόδου.  
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(α)

 

 

(β)

Σχ. 12. Κατανομή των ορθών τάσεων κατά μήκος της δοκού για διάφορα στάδια 
φόρτισης.  

 

 
Σχ. 13. Καμπύλη φορτίου-μετατόπισης στην κεφαλή του πασσάλου. 
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Σύμφωνα με την προτεινόμενη μέθοδο μορφώνονται με τη βοήθεια της θεωρίας 
ελαστοπλαστικότητας τρία μονοδιάστατα προβλήματα συνοριακών τιμών αναφορικά 
με την αξονική και τις εγκάρσιες μετατοπίσεις, που επιλύονται με τη βοήθεια της 
Μεθόδου Αναλογικής Εξίσωσης, σε συνδυασμό με την μέθοδο Petzold–Gear για την 
επίλυση μη γραμμικών συστημάτων διαφορικών-αλγεβρικών εξισώσεων.  

Για τη μαθηματική διατύπωση του προβλήματος, εξετάζεται ευθύγραμμη 
πρισματική δοκός με γεωμετρικά χαρακτηριστικά όμοια με αυτά της προηγούμενης  
παραγράφου. Η εδαφική αντίδραση επί της δοκού δίδεται από τις υστερητικές 
εκφράσεις δύναμης-μετατόπισης τύπου Bouc-Wen, ως  
 

 ( ) h
sy sy y sy y syp a k v 1 a k z= + −          και         ( ) h

sz sz z sz z szp a k w 1 a k z= + −  (25) 

 
όπου sy syp , p  είναι οι δυνάμεις των ελατηρίων, yk , zk  είναι η αρχική δυσκαμψία, 

sy sza ,a  είναι οι λόγοι της μετελαστικής προς την ελαστική δυσκαμψία και h h
sy szz , z  

είναι το υστερητικό τμήμα της πραγματικής μετατόπισης στις y  και z  διευθύνσεις, 

αντίστοιχα και προσδιορίζονται από τις υστερητικές εξισώσεις Bouc-Wen, ως 
 

 ( ) ( )( )
nh

syh h h
sy sy syh

sy _Yield

z
z z ,v 1 sign z v v

z
β γ

⎛ ⎞
⎜ ⎟= − +⎜ ⎟⎜ ⎟
⎝ ⎠

& & &&        (26α) 

 ( ) ( )( )
n

h
h h hsz
sz sz szh

sz _Yield

zz z ,w 1 sign z w w
z

β γ
⎛ ⎞
⎜ ⎟= − +⎜ ⎟⎜ ⎟
⎝ ⎠

& & &&        (26β) 

 
Η δοκός υποβάλλεται σε συνδυασμό φορτίσεων από τυχόν συγκεντρωμένο ή 

κατανεμημένο δυναμικό αξονικό φορτίο ( )xp x,t , χρονικά εξαρτώμενο εγκάρσιο 

φορτίο ( )yp x,t , ( )zp x,t  καθώς και καμπτική φόρτιση ( )ym x,t , ( )zm x,t . 

Υιοθετώντας το πεδίο μετατοπίσεων τυχαίου σημείου της διατομής (εξ. 10) 
αγνοώντας τη διατμητική παραμόρφωση (θεωρία δοκού Euler-Bernoulli), θεωρώντας 
μικρές παραμορφώσεις και χρησιμοποιώντας το φαινομενολογικό προσομοίωμα των 
Sivaselvan and Reinhorn (2003), η συνιστώσα του 2ου τανυστή τάσης Piola-Kirchhoff 
δίδεται συναρτήσει της παραμόρφωσης Green και της υστερητικής παραμορφώσεων ως 
(Σχ. 14) 
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Σχ. 14. Υστερητικό προσομοίωμα Bouc-Wen (α) σχέση ορθής τάσης παραμόρφωσης (β). 

 

 ( ) ( )el h h
xx xx xxS aS 1 a S aE 1 a Ezε= + − = + −  (27) 

 
όπου el

xxS , hS  είναι το ελαστικό και το υστερητικό μέρος της τάσης, αντίστοιχα. Το 

υστερητικό μέρος εξελίσσεται στο χρόνο σύμφωνα με την υστερητική εξίσωση Bouc-
Wen (Casciati 1995), ως  
 

 ( ) ( )h h h
xx 1 2 xxS z , Ez E 1 h hε ε= = −& & &&  (28) 

με ( ) nh
1h S 1Φ= +    και   ( )h

2 xxh sign Sβ γ ε= +  &  (29) 

 
όπου ( )2 2 pl

vM xx Y eqS 1 0Φ Φ σ ε= = − ≤  είναι μια απλοποιημένη έκφραση της 

συνάρτησης von Mises και αποτελεί το κριτήριο διαρροής.  
Αντικαθιστώντας τις εκφράσεις των τάσεων συναρτήσει των κινηματικών μεγεθών 

στους ορισμούς των εντατικών μεγεθών προκύπτουν οι ακόλουθες εκφράσεις  
 

 ( ) ( ) ( )2 2 h el h1N aEA u' v w' 1 S d N 1 N
2 Ωα Ω α α⎡ ⎤′= + + + − = + −⎢ ⎥⎣ ⎦

∫  (30α) 

 ( ) ( )h el h
y y y yM aEI w 1 S zd M 1 MΩα Ω α α′′= − + − = + −∫  (30β) 

 ( ) ( )h el h
z z z zM aEI v 1 S yd M 1 MΩα Ω α α′′= − − = − −∫  (30γ) 

 

όπου με hN , h
zM  και h

yM  συμβολίζεται το υστερητικό μέρος των αντιστοιχών 

εντατικών μεγεθών. Εν συνεχεία, εφαρμόζοντας την Αρχή Δυνατών Έργων σε ολική 
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διατύπωση Lagrange προκύπτουν οι διαφορικές εξισώσεις που περιγράφουν την 
καθολική ισορροπία του συστήματος, οι οποίες εκφράζονται ως 
 

 ( ) ( ) ( )
h

x
1 a N

Au EA u v v w w p x,t
x

ρ
− ∂

′′ ′ ′′ ′ ′′− α + + − =
∂

&&  (31α) 

 
( )

( )
( )

( ) ( ) ( )

2 h
3 2z

z 2

h

sy y z

M 1 1v aEI v 1 a aEA u v v w v
2 2x

N v
1 a p x,t p x,t m x,t

x

ρΑ
⎡ ⎤′∂ ⎛ ⎞′′′′ ⎢ ′ ′ ′ ′ ′ ⎥+ − − − + + −⎜ ⎟

∂ ⎝ ⎠⎢ ⎥⎣ ⎦

′∂
′        − − + = −

∂

&&

 (32β) 

 
( )

( )
( )

( ) ( ) ( )

2 h
y 3 2

y 2

h

sz z y

M 1 1w aEI w 1 a aEA u w w v w
2 2x

N w
1 a p x,t p x,t m x,t

x

ρΑ
⎡ ⎤′∂ ⎛ ⎞′′′′ ⎢ ′ ′ ′ ′ ′ ⎥+ − − − + + −⎜ ⎟

∂ ⎝ ⎠⎢ ⎥⎣ ⎦

′∂
′         − − + = +

∂

&&

 (32γ) 

 
Εναλλακτικά οι παραπάνω εξισώσεις γράφονται σε όρους εντατικών μεγεθών ως  
 

 ( )
el h

x
N NAu 1 a p

x x
ρ

⎡ ⎤∂ ∂
− α + − =⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦
&&  (33α) 

 ( )
( )

( )
( )el h2 h

z
z sy y z2

N v N vMv aEI v 1 a a 1 a p p m
x xx

ρΑ
′ ′∂ ∂∂′′′′ ′+ − − − − − + = −

∂ ∂∂
&&  (33β) 

 ( )
( )

( )
( )el h2 h

y
y sz z y2

N w N wM
w aEI w 1 a a 1 a p p m

x xx
ρΑ

′ ′∂ ∂∂
′′′′ ′+ − − − − − + = +

∂ ∂∂
&&  (33γ) 

 
Από την εφαρμογή της Αρχής Δυνατών Έργων επίσης προκύπτουν οι αντίστοιχες 
συνοριακές συνθήκες στα άκρα της δοκού x 0,l=  οι οποίες διατυπώνονται με την 

ακόλουθη γενική μορφή 
 

 ( ) ( )1 2 b 3u x,t N x,tα α α+ =  (34α) 

 ( ) ( )1 2 by 3v x,t V x,tβ β β+ =         ( ) ( )1 2 bz 3
v x,t x,t
x

β β Μ β∂
+ =

∂
 (34β,γ) 

 ( ) ( )1 2 bz 3w x,t V x,tγ γ γ+ =           ( ) ( )1 2 by 3
w x,t x,t
x

γ γ Μ γ∂
+ =

∂
 (34δ,ε) 
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όπου byV , bzV  είναι οι ολικές τέμνουσες και byM , bzM  οι ολικές ροπές και δίνονται 

από τις ακόλουθες σχέσεις 
 

 ( ) ( ) ( )
h

2 2 h z
by z

M1V aEA u' v w' v 1 a N v aEI v 1 a
2 x

∂⎡ ⎤′ ′ ′ ′′′= + + + − − + −⎢ ⎥ ∂⎣ ⎦
 (35α) 

 ( ) ( ) ( )
h
y2 2 h

bz y
M1V aEA u' v w' w 1 a N w aEI w 1 a

2 x
=

∂⎡ ⎤′ ′ ′ ′′+ + + − − + −⎢ ⎥ ∂⎣ ⎦
 (35β) 

 ( ) h
by y yM aEI w 1 a M′′= − + −       ( ) h

bz z zM EI v 1 Mα′′= − −  (35γ,δ) 

 

καθώς και οι αντίστοιχες αρχικές συνθήκες ( ( )x 0,l∈ ) στις οποίες υπόκεινται η δοκός 

 

 ( ) ( )0u x,0 u x=          ( ) ( )0u x,0 u x= &&  (36α,β) 

 ( ) ( )0v x,0 v x=     ( ) ( )0v x,0 v x= &&     ( ) ( )0w x,0 w x=     ( ) ( )0w x,0 w x= &&  (36γ-ζ) 

 
Η αριθμητική επίλυση του πεπλεγμένου προβλήματος αρχικών τιμών 

επιτυγχάνεται με τη βοήθεια της μεθόδου Αναλογικής Εξίσωσης (Katsikadelis 1994, 

2002). Το διάστημα της δοκού ( )0,l  διαιρείται σε L  στοιχεία (Σχ. 15) και η εφαρμογή 

της μεθόδου οδηγεί στη μόρφωση ενός μη γραμμικού συστήματος 3L 20+  διαφορικών-

αλγεβρικών εξισώσεων (DAE) ως προς 3L 20+  αγνώστους, το οποίο μπορεί να 
εκφραστεί σε τυπική μορφή και ως 
 
 = + + hMd Kd P f&&  (37) 
 
όπου hP  είναι το γενικευμένο υστερητικό μητρώο. Το σύστημα εξισώσεων (37) μαζί με 
τις υστερητικές εξισώσεις Bouc-Wen επιλύεται αριθμητικά. Για την αριθμητική 
επίλυση του μη γραμμικού συστήματος διαφορικών-αλγεβρικών εξισώσεων 
εφαρμόστηκε η μέθοδος Petzold–Gear αφού εισήχθησαν ισάριθμες νέες μεταβλητές 
(State-Space formulation) ώστε να μειωθεί η τάξη του προβλήματος αρχικών τιμών       
( ind 1= ). 
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Σχ. 15. Διακριτοποίηση της δοκού σε στοιχεία και των διατομών ολοκλήρωσης σε 
κελιά και σημεία Gauss (στοιχείο ινών). 

 
Με βάση την αναπτυχθείσα αναλυτική και αριθμητική διαδικασία, συντάχθηκε 

πρόγραμμα ηλεκτρονικού υπολογιστή σε υπολογιστικό περιβάλλον Fortran 90/95 με τη 
βοήθεια του οποίου μελετήθηκαν αντιπροσωπευτικά παραδείγματα με πρακτικό 
ενδιαφέρον, προκειμένου να διαπιστωθεί η αποτελεσματικότητα και το εύρος 
εφαρμογής της προτεινόμενης μεθόδου. Η ακρίβεια των αριθμητικών αποτελεσμάτων 
ελέγχεται, όπου είναι εφικτό, με υπάρχουσες αναλυτικές και αριθμητικές λύσεις, ενώ 
παράλληλα διερευνάται η επιρροή της μη γραμμικότητας υλικού και γεωμετρίας, καθώς 
και της εδαφικής προσομοίωσης στη δυναμική ανελαστική απόκριση του συστήματος 
αλληλεπίδρασης δοκού – εδάφους. Επιπλέον, προκειμένου να διερευνηθεί η αξιοπιστία 
της προτεινόμενης μεθοδολογίας, τα ληφθέντα αριθμητικά αποτελέσματα συγκρίνονται 
με αυτά που προκύπτουν από προσομοιώματα στερεών (εξαεδρικών) και κελυφωτών 
(τετραπλευρικών) πεπερασμένων στοιχείων. 

Ως αντιπροσωπευτική αριθμητική εφαρμογή, μελετήθηκε αμφίπακτη δοκός μήκους 

l 6m= , συμπαγούς ορθογωνικής διατομής 260 30cm×  ( E 32318.4MPa= ,
2

Y0 20 MN mσ = , 32.5tn mρ = ) η οποία εδράζεται επί μη γραμμικού ανελαστικού 

εδάφους και καταπονείται από ομοιόμορφα κατανεμημένο φορτίο. Στο Σχ. 16 

παρουσιάζεται η χρονοϊστορία της εγκάρσιας μετατόπισης ( )w l 2  του κέντρου βάρους 

της μεσαίας διατομής της δοκού που προκύπτει με εφαρμογή γεωμετρικά γραμμικής ή 
μη γραμμικής ανάλυσης λαμβάνοντας υπόψη ή αγνοώντας τη μη γραμμικότητα υλικού. 
Στο ίδιο σχήμα παρουσιάζονται επίσης τα αντίστοιχα αποτελέσματα που ελήφθησαν 
από λεπτομερές προσομοίωμα τρισδιάστατων πεπερασμένων στοιχείων. 
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Σχ. 16. Χρονοϊστορία της εγκάρσιας μετατόπισης του κέντρου βάρους της μεσαίας 

διατομής της δοκού. 
 
Τέλος, στο Σχ.17 παρουσιάζεται η κατανομή των ορθών τάσεων κατά μήκος της 

δοκού για διάφορες χρονικές στιγμές φόρτισης, με βάση τα αποτελέσματα που 
ελήφθησαν από την εφαρμογή της προτεινόμενης μεθόδου. Στο ίδιο σχήμα 
παρουσιάζονται επίσης τα αποτελέσματα που προέκυψαν από τη λεπτομερή 
προσομοίωση του συστήματος σε τρισδιάστατο προσομοίωμα πεπερασμένων 
στοιχείων. Από την πολύ καλή σύγκλιση των αποτελεσμάτων επιβεβαιώνονται η 
ακρίβεια και η αξιοπιστία της προτεινόμενης μεθόδου καθώς επίσης και η 
αποτελεσματικότητα και αποδοτικότητα της στην περίπτωση της γεωμετρικά μη 
γραμμικής και ανελαστικής δυναμικής ανάλυσης συστημάτων αλληλεπίδρασης δοκού – 
εδάφους. 

 
 

VI. Συμπεράσματα  

Στην παρούσα διδακτορική διατριβή διερευνάται και επιλύεται σειρά προβλημάτων που 
αφορούν στην ανάλυση συστημάτων αλληλεπίδρασης δοκού – εδάφους Τα 
προβλήματα αυτά είναι τα ακόλουθα. 
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• Η γεωμετρικά μη γραμμική στατική ανάλυση δοκών με διατμητικές 
παραμορφώσεις επί μη γραμμικού εδάφους. 

• Η γεωμετρικά μη γραμμική δυναμική ανάλυση δοκών με διατμητικές 
παραμορφώσεις επί μη γραμμικού εδάφους. 

• Η γεωμετρικά μη γραμμική και ανελαστική στατική ανάλυση δοκών με 
διατμητικές παραμορφώσεις επί μη γραμμικού ανελαστικού εδάφους. 

• Η γεωμετρικά μη γραμμική και ανελαστική δυναμική ανάλυση συστημάτων 
αλληλεπίδρασης δοκού – εδάφους. 

Η επίλυση των εξεταζόμενων προβλημάτων βασίζεται στη διατύπωση καινοτόμων 
θεωριών δοκού. Τα προκύπτοντα μονοδιάστατα και διδιάστατα προβλήματα 
συνοριακών τιμών και αρχικών συνοριακών τιμών επιλύονται αριθμητικά 
εφαρμόζοντας τη Μέθοδο Συνοριακών Στοιχείων, τη Μέθοδο Αναλογικής Εξίσωσης 
και την Πεδιακή Μέθοδο Συνοριακών Στοιχείων. Τα κύρια συμπεράσματα της 
διατριβής συνοψίζονται στα ακόλουθα. 
i. Η ακρίβεια και η αξιοπιστία της προτεινόμενης μεθόδου επιβεβαιώνονται με 

υπάρχοντα αναλυτικά, αριθμητικά και πειραματικά αποτελέσματα καθώς και με 
αποτελέσματα στερεών (εξαεδρικών) και κελυφωτών (τετραπλευρικών) 
πεπερασμένων στοιχείων από εμπορικό λογισμικό. 

ii. Η αποτελεσματικότητα και αποδοτικότητα που παρουσιάζει η αναπτυχθείσα 
μέθοδος αξιολογείται μέσω σύγκρισης με λεπτομερή προσομοιώματα 
τρισδιάστατων πεπερασμένων στοιχείων. Η άριστη συμφωνία των αποτελεσμάτων 
και ο σαφώς μειωμένος απαιτούμενος υπολογιστικός χρόνος καταδεικνύουν τον 
πλεονεκτικό χαρακτήρα της μονοδιάστατης θεωρίας δοκού, σε όρους 
υπολογιστικού κόστους, αξιοπιστίας και μοντελοποίησης. 

iii. Η ανάπτυξη πλαστικών παραμορφώσεων μειώνει την καμπτική δυσκαμψία και 
τελικά οδηγεί στην πλαστική κατάρρευση όταν αγνοείται η γεωμετρική μη 
γραμμικότητα. 

iv. Το προτεινόμενο προσομοίωμα κατανεμημένης πλαστικότητας (στοιχείο ινών) 
αποδεικνύεται ιδιαίτερα αποτελεσματικό καθώς αποτυπώνει με ακρίβεια τόσο την 
αρχική διαρροή όσο και το (τελικό) φορτίο κατάρρευσης, ενώ παράλληλα ορίζει 
σαφώς την κατανομή των τάσεων στις περιοχές ανάπτυξης πλαστικών 
παραμορφώσεων. Το στοιχείο ινών αποτελεί κατάλληλο υπολογιστικό εργαλείο για 
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την αξιολόγηση της φέρουσας ικανότητας μελών κατασκευής, ξεπερνώντας τους 
περιορισμούς των στοιχείων συγκεντρωμένης πλαστικότητας. 

 

 

(α)

 

(β)

 

(γ)

Σχ. 17. Κατανομή των ορθών τάσεων κατά μήκος της δοκού για διάφορες χρονικές 
στιγμές φόρτισης. 

0 1 2 3 4 5 6
Length (m)

-0.3
-0.1
0.1
0.3

H
ei

gh
t (

m
)

Deformed 3-D FEM Contour Configuration
                (NX Nastran 2007)

Time – t1=0.012sec
Normal Stress Distribution (MPa)

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

0 1 2 3 4 5 6
Length (m)

-0.3
-0.1
0.1
0.3

H
ei

gh
t (

m
)

Deformed 3-D FEM Contour Configuration
                (NX Nastran 2007)

Time – t2=0.02sec
Normal Stress Distribution (MPa)

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

0 1 2 3 4 5 6
Length (m)

-0.3
-0.1
0.1
0.3

H
ei

gh
t (

m
)

Deformed 3-D FEM Contour Configuration
                (NX Nastran 2007)

Time – t3=0.05sec
Normal Stress Distribution (MPa)



Εκτενής Περίληψη  

xxxvii 

v. Η επιρροή της γεωμετρικής μη γραμμικότητας παρουσιάζεται μέσα από τη 
σημαντική απόκλιση μεταξύ των αποτελεσμάτων των θεωριών μικρών ή μεγάλων 
μετατοπίσεων, τόσο στη στατική όσο και στη δυναμική ανάλυση.  

vi. Η γεωμετρική μη γραμμικότητα φράσσει τα κινηματικά μεγέθη ελαστικών δοκών 
που υπόκεινται σε πρωτεύοντα συντονισμό. Η απόκριση τόσο των κινηματικών 
όσο και των εντατικών μεγεθών παρουσιάζει χαρακτηριστικά διακροτήματος. 
Ακόμα, οι μεγάλες μετατοπίσεις επηρεάζουν αισθητά και σύνθετα τη θεμελιώδη 
ιδιοσυχνότητα του συστήματος. 

vii. Η αλληλεπίδραση αξονικής-τέμνουσας-ροπής αποδεικνύεται καθοριστική στην 
περίπτωση ανελαστικής ανάλυσης.  

viii. Οι διατμητικές παραμορφώσεις μειώνουν την καμπτική δυσκαμψία καθώς και την 
ιδιοσυχνότητα του συστήματος, ενώ επηρεάζουν ουσιωδώς τα εντατικά και τασικά 
μεγέθη. Επίσης, αντιμετωπίζεται επιτυχώς το πρόβλημα του διατμητικού 
κλειδώματος. 

ix. Καταδεικνύεται η σημαντική επιρροή της προσομοίωσης του εδαφικού μέσου στην 
απόκριση του συστήματος αλληλεπίδρασης. Η μη γραμμικότητα του εδαφικού 
υλικού και της διεπιφάνειας δοκού – εδάφους επηρεάζουν καθοριστικά τη 
συμπεριφορά του συστήματος. 

x. Η προτεινόμενη μέθοδος προσφέρει τα πλεονεκτήματα της Μεθόδου Συνοριακών 
Στοιχείων (δεν χρησιμοποιείται παράγωγος συναρτήσεων σχήματος), ενώ η 
απαιτούμενη ακρίβεια επιτυγχάνεται με μικρό αριθμό στοιχείων.  

 
 

VII. Ιδέες για Μελλοντική Έρευνα  

Πιθανές κατευθύνσεις μελλοντικής έρευνας, με σημαντικό επιστημονικό και πρακτικό 
ενδιαφέρον, συνοψίζονται ακολούθως. 

i. Επέκταση της γεωμετρικά μη γραμμικής ανελαστικής δυναμικής ανάλυσης 
συστημάτων αλληλεπίδρασης δοκού – εδάφους, ώστε να λαμβάνεται υπόψη η 
διατμητική παραμόρφωση (J2 plasticity). 

ii. Ενσωμάτωση συναρτήσεων στρέβλωσης για τον ακριβή υπολογισμό της 
κατανομής των διατμητικών τάσεων στη διατομή ελέγχου. 

iii. Περαιτέρω γενίκευση του προτεινόμενου προσομοιώματος μέσω της ενσωμάτωσης 
κινηματικής κράτυνσης. 
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iv. Εφαρμογή της προτεινόμενης μεθοδολογίας για την ανάπτυξη στοιχείου δοκού.  

v. Εμπλουτισμός του στοιχείου ώστε να αντιμετωπίζεται η περίπτωση 
στρεπτοκαμπτικής ανάλυσης σύμμικτης δοκού.  

vi. Περαιτέρω γενίκευση του εδαφικού προσομοιώματος με τη χρήση εξελιγμένων 
θεωριών.  

 

 

 

 

 

 

 

 

 

 

 



 

Abstract 
Ph.D. Dissertation by Kampitsis E. Andreas 

 

Geometric and Material Nonlinear Analysis of 
Beam–Soil Interaction Systems 

 
 

In this Ph.D. dissertation the geometric and material nonlinear analysis of beam-soil 
interaction systems is investigated. More specifically, the geometrically nonlinear static 
and dynamic analysis of shear deformable beams supported on nonlinear foundation is 
presented. Subsequently, the study is further extended to account for material 
nonlinearity in static response, where both the structural member and the soil medium 
are assumed to be inelastic. Finally the attention is drawn to the dynamic time domain 
analysis of beam-soil interaction systems taking into account geometric and material 
nonlinearities.  

The geometrical nonlinearity is taken into consideration through the Total 
Lagrangian formulation and the large displacements - small strains assumption. Shear 
deformation effect is taken into account using the Timoshenko beam theory, evaluating 
the shear deformation coefficients by using an energy approach. The material 
nonlinearity is treated through a displacement based formulation taking into account 
inelastic redistribution along the beam axis. Inelastic deformations are modelled through 
a distributed plasticity (fibre) model exploiting three dimensional material constitutive 
laws. The nonlinear half-space is approximated by nonlinear spring configurations, 
where interface nonlinearity is also taken into consideration. 

The obtained boundary value and initial boundary value problems are numerically 
solved employing the Boundary Element Method, the Analog Equation Method and the 
Domain Boundary Element Method. On the basis of the developed analytical and 
numerical procedures, representative examples are studied. The accuracy and reliability 
of the proposed method are confirmed through existing numerical and experimental 
results, as well as through results obtained from solid and shell Finite Element analyses. 
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Chapter 1 

Introduction  

 

 

1.1 Introduction and Motivation 

The main scope of structural analysis is to determine the stress and kinematical 

components of a physical structure subjected to external and self loading. Since the 

geometry of the structure, as well as the loading and boundary conditions are explicitly 

specified it is rather straightforward to determine a numerical model and analyse the 

response of the structure employing any available method.   

 In general, however, most of the physical structures are in direct contact with the 

supporting soil medium. Due to this contact, neither the structural nor the soil response 

are independent of each other when subjected to external forces, such as earthquake 

excitation, wind loading, etc. The phenomenon during which the motion of the soil 

medium influences the response of the structure and vise versa, is known as Soil-

Structure Interaction.  

 In the special case where a light structure is founded on relatively stiff soil (e.g. 

rock) the motion of the base during a seismic event is practically independent from the 

superstructure and thus the soil-structure interaction can de neglected and the analysis 

can be restricted to the above ground structure. On the other hand, in case of heavily 

loaded structures or relatively soft soils, the effect of this interaction becomes 

prominent. It is thus not permissible to analyse the structure without accounting for the 

interaction with the surrounding soil.  

 The response of soil-structure interaction systems under static or dynamic loading 

is an area of extensive research activity in structural and geotechnical engineering. In 

recent years, significant research efforts have indicated that neglecting the soil-structure 

interaction may lead to unsafe design. Since the beneficial as well as the detrimental 

effects of this interaction are well documented, there is a significant attempt been 

carried out towards incorporating the latest acquired knowledge and methodologies in 

the analysis and design of these systems. The thorough understanding of the beam-soil 
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interaction mechanics is the key aspect of any developed methodology and is 

prerequisite in order to conduct precise analysis, without jeopardizing accuracy and thus 

safety. Currently, the methods of studying soil-structure interaction are continuously 

evaluated and improved since evidence from case histories, new experimental data and 

field studies have indicated the importance of a rigorous and precise analysis. To this 

end, all possible causes of nonlinearities should be taken into account. The 

nonlinearities with the most profound influence on the response of a soil-structure 

system originate from the inherent nonlinear stress-strain behaviour of the materials 

(material nonlinearity) as well as from the significant variations of the geometrical 

configuration during dynamic loading (geometrical nonlinearity). 

Currently, modern design codes and the existing regulations indicate that the beam-

soil interaction systems, such as piles and deep embedded foundations, have to be 

designed to behave elastically for every type of loading. More specifically, Eurocode-8 

(EC-8, Part 2, § 5.8) explicitly states that “…foundations shall not be intentionally used 

as sources of hysteretic energy dissipation and therefore shall, as far as practicable, be 

designed to remain undamaged under the design seismic action”. This restriction, 

however, is most likely to be violated in a real case scenario, whereas significant 

research efforts have substantiate the beneficial character of permitting nonlinearities 

and inelasticity to occur at the beam-soil interaction system.  

Furthermore, in order to design cost-effective structures following the performance 

or displacement based design the realistic estimation of the maximum displacements is 

essential. Towards this direction and having in mind the magnitude of the arising axial 

forces due to self weight, dead and environmental loadings the geometrical nonlinearity 

has also to be incorporated in the analysis. This effect alters the flexural rigidity of the 

structure and leads to different behaviour from that of small displacement assumption. 

Moreover, contemporary advancements in material science have facilitated the intensive 

use of materials having relatively high transverse shear modulus; thereby the error 

incurred from the ignorance of shear deformation effect may be substantial. Therefore, 

the Timoshenko beam theory has to be employed in such problems. As it is well 

documented, this effect leads to increased displacements, compared to the Euler-

Bernoulli approach, and can have even greater influence in the dynamic time domain 

response. In any case, if the lateral loading is significant, the shear deformation effect 

can be proved crucial in both the elastic and inelastic regime.  

Over the years, many researchers have developed and validated various methods for 

the study of the intricate behaviour of the beam-soil interaction systems. Nevertheless, 
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due to the significant difficulties of the problem there are many areas yet to be 

investigated. These difficulties are attributed not only to the inherent complexity of the 

problem involving both the structural and the geotechnical engineering, but also to the 

uncertainties related to the nature of the problem such as interaction effects, material 

nonlinearity and soil properties. These methods can be grouped into three major 

categories namely; the beam based formulations, the continuum mechanics approaches 

and the lately developed macro-element methods.  

Within the context of beam approach, the supporting soil is approximated by a 

series of uncoupled springs while the structural components are modelled as beam 

elements. This approach was first introduced by Winkler (1867), therefore is known as 

Beam-on-Winkler-Foundation, and since then it has been adopted by a vast amount of 

investigators and engineers leading to analytical and numerical solutions. On the 

contrary, the continuum mechanics models take explicitly into account the physics of 

the problem through the realistic simulation. As long as the response of the continuum 

remains linear elastic, analytical solutions have been proposed (Poulos 1971, Veletsos 

& Verbic 1973), while several authors have developed closed forms and have presented 

parametric studies. Based on the same concept, the three dimensional finite element and 

the boundary element methods have also been employed. Nevertheless, linear models 

ignore the soil inelasticity and are limited to the small-strain assumption and steady-

state dynamic problems. Thus, in order to take into consideration the inevitable soil 

nonlinearity as well as the interaction effects, the nonlinear continuum finite element 

models have been utilized. Although accurate, these models require sophisticated 

calibration and excessive computational time. Finally, a relatively new trend, not only in 

structural but also in geotechnical engineering, is the concept of macro-modelling. The 

macro-element methods allow the macroscopic simulation of the behaviour of the 

structure or the soil and it can be perceived as an advanced finite element.  

Among the above mentioned, maybe the most attractive approach to both scientists 

and engineers for the interaction analysis as well as for the study of various beam-like 

structures is the one-dimensional beam model, due to its significant advantages over 

refined approaches. The major advantages of any beam model are listed below: 

i. Simplicity in handling and reduced modelling effort.  

More specifically, as far as the pre-processing procedure is concerned, the 

geometry simulation and the mesh of a beam model are straightforward and rather 

easily imported into any numerical code. On the contrary the implementation of a 
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three-dimensional or even two-dimensional model requires extensive effort, even 

though over the years many mesh generators have been developed. 

ii. Reduced computational cost.  

The computational time required for the numerical analysis of the boundary or 

initial value problem, is exponentially related to the amount of unknowns. The 

number of elements and subsequently of unknowns in three dimensional models is 

significantly larger than those of a beam model. This difference can be even greater 

if mesh refinement is required. The advantage of time performance becomes even 

more apparent in case of dynamic analysis. Modern design codes like the European 

standard for the Design of Structures for Earthquake Resistance (EN 1998, EC-8), 

the ASCE standard for the Seismic Rehabilitation of Existing Buildings (ASCE 

2007) as well as the Greek norm for the Seismic Retrofit of Existing Buildings 

(Retrofitting 2013) are based on concepts such as the displacement based design 

and the performance based design for the estimation of structural integrity 

(Priestley 2007, Fardis 2010). This implies that in order to evaluate the necessary 

design quantities, a vast amount of nonlinear dynamic analyses are required. 

Specifically, Eurocode-8 (EN 1998, EC-8) states that “The number of the 

accelerograms to be used shall be such as to give a stable statistical measure 

(mean and variance) of the response quantities of interest. The amplitude and the 

frequency content of the accelerograms shall be chosen such that their use results 

in an overall level of reliability commensurate with that implied by the use of the 

elastic response spectrum”. Therefore, the required analysis time as well as the 

amount of input/output data needed for the design process becomes crucial. 

iii. Straightforward modelling of external loading and supports. 

The imposition of the external loads and the support implementation is direct and 

easily applied, contrary to the cumbersome solid models. Especially in case of 

beam-soil interaction systems the simulation of the soil medium and the interaction 

phenomena are extremely complicated employing continuum models. The 

implementation of such models in numerical codes presumes the use and 

calibration of quite advanced and complicated constitutive laws, making it a 

challenging and extremely time-consuming task. Furthermore, the free-field 

boundaries have to be accurately handled in order to avoid radiation damping. The 

investigation and calibration of several types of boundaries, like dashpots or multi-
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point constrains, is essential in order to yield precise results, while the compatibility 

of the degrees of freedom at the coinciding nodes for different element types has 

also to be ensured. 

iv. Convenience in isolation of structural phenomena and results interpretation. 

Contrary to the reduced oversight of the three dimensional models, beam 

formulations provide the capability to assess the influence of each separate 

phenomenon to the overall response. Moreover, quantities such as rotation, warping 

parameter, stress resultants etc. are also evaluated in contrast to solid model which 

yields only displacements and stress components.  

v. Convenience in performing parametric analyses.  

In order to draw design guidelines parametric analyses are often performed. Thus a 

formulation capable of performing multiple analyses is required, unlike the solid 

modelling which often requires the setup of multiple models.  

vi. Straightforward discretization of a complex structure. 

Complex structures often require detailed simulation and thus the finite element 

mesh might be dense. This results in increased number of nodes and subsequently 

degrees of freedom (unknowns) leading to severe or unrealistic computational time. 

vii. Effective handling of structures including thin-walled members.  

Shear-locking and membrane-locking phenomena can be successfully addressed.  

viii. Effective handling of warping phenomena. 

The use of shell elements cannot give accurate results since warping of the walls of 

a cross section cannot be taken into account (midline models), while on the contrary 

the beam elements can successfully address these effects.  

 Having all this in mind, the development of a reliable and efficient computational 

tool based on the beam formulation, capable of performing beam-soil interaction 

analysis accounting for geometric, material and other key nonlinear effects is considered 

essential. 
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1.2 Brief Literature Review and Novelties of the Dissertation 

Over the past decades, many researchers have employed the Beam-on-Winkler-

Foundation model to study various problems related to both structural and geotechnical 

fields. Through these studies, the beam based model has been proved a powerful 

computational tool capable of analyzing in detail the beam–soil interaction systems. 

Both static and dynamic response can be studied through this model which retains the 

advantages of simplicity and time performance, while the obtained results are of good 

accuracy compared against more rigorous numerical schemes. In the following, a brief 

literature review is presented, while for each topic a detailed and extensive investigation 

of the bibliography is presented at the introduction section of the corresponding chapter. 

 Originally proposed by Winkler (1867), this approach has been used to solve a wide 

range of interaction problems. In this model the soil behaviour is represented as an array 

of closely spaced, mutually independent, linear elastic springs, while the structural 

element is modelled as a beam-column element. These springs are assumed to provide 

resistance in direct proportion to the deflection of the beam. This assumption, however, 

does not represent realistically the mechanical behaviour of the soil, thus nonlinear 

springs have been developed, where the shape of the load-deformation relationships is 

described by empirical p-y curves following non-proportional laws between the soil 

resistance per unit pile length p and the lateral displacement y. Numerous investigators 

have proposed recommendations for the estimation of the p-y curves (Matlock 1970, 

Reese et al. 1974, O'Neill & Murchison 1983, Georgiadis 1983, Ashour & Norris 2000, 

Reese & Van Impe 2001, Dahlberg 2002) based on results of high accuracy 

instrumented tests, while in the case of dynamic loading the spring configurations are 

enriched with appropriate dashpots accounting for the energy dissipation due to 

radiation damping. Furthermore, the original Winkler approach is also restricted to non-

cohesive soil media due to its inability to take into account the continuity or cohesion of 

the soil (interaction between adjacent springs). To overcome this limitation, several 

alternative spring configuration schemes have been proposed, such as the Filonenko–

Borodich, Pasternak, Vlasov or Hetenyi models among others. 

 The static linear elastic response of beam-soil interaction systems has been 

extensively investigated employing the beam-on-Winkler-foundation model (Hetenyi 

1946), while the tensionless (unilateral) character of the subgrade reaction has also been 

introduced in the analysis (Sharma & Dasgupta 1975, Kaschiev & Mikhajlov 1995, 

Zhang & Murphy 2004, Avramidis & Morfidis 2006, Maheshwari 2007, Zhang 2008, 
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Ma et al. 2009a,b, Tullini & Tralli 2010). On the contrary, the geometrically nonlinear 

static analysis has received little attention in the literature (Silveira et al. 2008, Tsiatas 

2010).  

 The dynamic analysis of these systems has also been extensively investigated (Wolf 

1985). Analytical solutions of problems involving beam vibration of simple geometry 

and boundary conditions have received a good amount of attention in the literature 

(Krylov 1905, Timoshenko 1911, Rades 1972, Wang & Stephens 1977, Choros & 

Adams 1979, Morgan & Sinha 1983), while the linear vibrations of beams on 

foundation traversed by moving loading have also been studied (Inglis 1934, Lowan 

1935, Weitsman 1971, Kolousek 1973, Fryba 1999).  When the beam displacements are 

small, a wide range of linear dynamic analysis tools can be used and several authors 

have implemented the beam-on-Winkler-foundation model in order to investigate 

various phenomena (Kuczma & Switka 1990,Huang & Zou 1994, Thambiratnam & 

Zhuge 1996, Matsunaga 1999, Sun 2001, Chen et al. 2001, Sun 2001a,b, 2002, Coskun 

2003, Chen et al. 2004, Kargarnovin & Younesian 2004, 2005, 2009, Muscolino & 

Palmeri 2007, Ying et al. 2008, Zehsaz et al. 2009, Millan & Dominguez 2009, 

Dimitrovova 2010, Ansari et. al. 2010, Chen & Chen 2011). As the beam displacements 

become larger, the induced geometric nonlinearities result in effects that are not 

observed in linear systems. Contrary to the good amount of attention in the literature 

concerning the linear dynamic analysis, very little work has been done on the 

corresponding nonlinear problem (Lewandowski 1989, Chang & Liu 1996, Chen et al. 

2001, Kim & Cho 2006, Arboleda-Monsalve et al. 2007).  

The beam approach has also been widely employed in studies regarding seismic 

excitations. It this cases, the analysis is performed in two different stages. At first a site 

response analysis is conducted for the seismic motion of the shear wave propagation on 

the free-field considering that it is uncoupled from the structures motion.  Subsequently, 

employing the motions from the obtained excitation derived from the first stage, the 

analysis of the beam-soil system is carried out. One of the key phenomena in seismic 

analysis is the kinematic and inertial interaction. Modern seismic codes like Eurocode 8 

(EN 1998, EC-8) recommend accounting for both inertial and kinematic soil–structure 

interaction effects. Specifically, EC–8, Part–5 states that piles and piers shall be 

designed to resist both inertial forces from the superstructure and kinematic forces 

arising from the deformation of the surrounding soil due to the passage of seismic 

waves. In order to address these effects, the beam-on-Winkler-foundation model been 

successfully adopted by several authors producing results of remarkable accuracy 
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compared to rigorous numerical schemes (Boulanger et al. 1999, Nikolaou et al. 2001, 

Hutchinson et al. 2004, Gerolymos et al. 2009, Castelli & Maugeri 2009, Dezi et al. 

2010, Sica et al. 2011, Anoyatis et al. 2013).  Though this approach ignores the shear 

transfer between layers of soil as well as the interface and three-dimensional interaction, 

it has been preferred by many researchers due to its efficiency and simplicity. 

 Although the beam-soil analysis accounting for the nonlinear behaviour of the soil 

due to high strain level has been studied extensively, only few works have encountered 

the inelastic behaviour of both the beam and the foundation elements. According to this 

approach, the beam stress-strain and the foundation load-displacement relations are 

assumed to follow nonlinear inelastic constitutive laws. Consequently, such models are 

not easily formulated due to the complexity of the problem. Nevertheless, in order to 

conduct precise analysis and design cost-effective structures the realistic estimation of 

the systems response is essential. Towards this direction, many researchers have 

resorted to the use of refined finite element models in order to account for the material 

nonlinearity. Nevertheless, this solution is not recommended in engineering practice due 

to the inherent modelling and analysis problems. In an attempt to bridge the gap 

between the widely used beam formulations and the computationally expensive 

solid/shell finite element simulations, just a few static inelastic beam-on-Winkler 

foundation models have been developed (Budek et al. 2000, Ayoub 2003, Mullapudi & 

Ayoub 2010a). Following the same trend, even less has been done in the dynamic 

inelastic analysis of beam-soil interaction systems (Hutchinson et al. 2004, Gerolymos 

and Gazetas 2005, Mullapudi and Ayoub 2010b,c). It is worth noting that in most of 

these studies, the interaction system has been addressed as an assembly of finite 

elements rather than formulating a uniform solution strategy, while the statement of the 

problem is limited to the equations for the static response.  Nevertheless, it is pointed 

out that a continuously growing demand, among the structural and geotechnical 

engineering communities, is observed towards incorporating geometrical and material 

nonlinearities into the analysis and design procedures. To this end, even though the 

basic understanding of beam-soil interaction system behaviour is acquired, there are still 

many areas to be thoroughly investigated. 

 The prime objective of this dissertation is to develop advanced methods and a 

reliable and efficient computational tool based on the beam formulation for the static 

and dynamic analysis of beam-soil interaction systems taking into consideration several 

nonlinear mechanisms. The motivation towards that scope is justified from the intention 

of gaining the accuracy of more rigorous models (i.e. shell/solid FE) while retaining the 
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simplicity of a beam formulation. In addition, the acquisition of knowledge regarding 

the influence of various key nonlinear phenomena consists also a main objective of the 

present dissertation.  

The research work presented herein is considered original and its essential features 

and novel aspects are summarized as follows 

i. To the author’s knowledge, for the first time in literature the geometrically 

nonlinear dynamic response of beam-soil interaction systems where both the beam 

and the foundation elements are assumed to be inelastic is investigated through the 

beam-on-Winkler-foundation approach. 

ii. For the problem at hand, the material nonlinearity is addressed through a distributed 

plasticity (fibre) approach, while the formulation is a displacement based one taking 

into account inelastic redistribution along the beam axis. 

iii. The proposed beam model accounts for the geometrical nonlinearity by retaining 

the square of the slope in the strain–displacement relations, avoiding in this way the 

inaccuracies arising from a linearized second-order analysis. For that purpose the 

total Lagrange formulation (intermediate non-linear theory) has been adopted. 

iv. Shear deformation effect is taken into account on the geometrically nonlinear 

elastic and static inelastic analysis (explicit axial-shear-flexure interaction). 

Especially in the static inelastic case, the developed formulation adopts a J2 three-

dimensional plasticity law (von Mises) to assess the inelastic beam-foundation 

system response.  

v. The proposed model accounts for the coupling effect of bending and shear 

deformations along the member as well as shear forces along the span induced by 

the applied axial loading. Moreover, the beam is subjected to arbitrary external 

loading and is supported by the most general time dependent boundary conditions. 

vi. The nonlinear half-space is approximated by various nonlinear spring 

configurations. Interface nonlinearity is also taken under consideration using 

tensionless spring properties. 

vii. To the author’s knowledge, a boundary element approach (BEM, AEM or D-BEM) 

has not yet been used for the solution of the problem at hand. The developed 

procedure retains most of the advantages of a BEM solution, since it does not 

require shape functions for the kinematical components; hence the minimum 

number of elements can be employed, while the accuracy of function derivatives is 

not compromised. 
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1.3 Outline of the Dissertation  

This doctoral dissertation is organized in six chapters and three appendices. The 

structure of each chapter comprises the literature review of the corresponding problem 

“State of the Art”, the statement of the problem, the numerical solution, the 

representative numerical examples and finally the obtained concluding remarks. In the 

final chapter, the main conclusions drawn in this dissertation are summarized while 

directions for further research are proposed. The appendices include information 

necessary to understand the content of the main chapters of the dissertation. 

 In this research work the geometrical nonlinearity is taken into account through the 

Total Lagrangian formulation by retaining the square of the slope in the strain-

displacement relations, avoiding in this way the inaccuracies arising from a linearized 

second-order analysis. In order to do so, the large displacements – small strains 

assumption (Armenakas 2006) is employed. Moreover, the material nonlinearity is 

treated through a displacement based formulation taking into account inelastic 

redistribution along the beam axis while a distributed plasticity (fibre) approach has 

been employed. On the basis of the analytical and numerical procedures presented in the 

each chapter a number of computer programs have been written using third and fourth 

generation high level languages, programming packages as well as symbolic languages. 

Representative examples of great practical interest have been studied to demonstrate the 

efficiency and the range of applications of the developed method. The accuracy and 

reliability of the obtained results have been verified by comparison with analytical 

solutions and experimental data as well as with the results obtained from shell 

(quadrilateral) or solid (hexahedral) finite element models.  

In Chapter 2, the geometrically nonlinear static analysis of shear deformable beams 

partially supported on nonlinear three-parameter tensionless foundation, is presented. 

The beam is of arbitrary doubly symmetric simply or multiply connected constant cross-

section and is subjected to the combined action of arbitrarily distributed or concentrated 

transverse loading and bending moments in both directions as well as to axial loading. 

The geometrical nonlinearity is taken into account through the Total Lagrangian 

formulation and the large displacements – small strains assumption. The beam is 

subjected to general boundary conditions while, to account for shear deformation effect 

the concept of shear deformation coefficients is used. The mechanical behaviour of the 

soil is taken into consideration by means of a refined spring configuration consisting of 

three independent parameters. In detail, foundation model is characterized by the linear 
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elastic Winkler spring element providing resistance in direct proportion to the 

displacement of the beam, the second shear layer parameter capturing the continuity or 

cohesion of the soil enabling interaction between adjacent springs and the nonlinear 

parameter describing the hardening/softening characteristics of the foundation. 

According to the proposed method, five boundary value problems are formulated. More 

specifically, two boundary value problems are formulated with respect to stress 

functions for the evaluation of the shear deformation coefficients and solved employing 

a pure Boundary Element Method, that is only boundary discretization is used. 

Moreover, three boundary value problems are formulated with respect to the transverse 

and axial displacements solved using the Analog Equation Method. Application of the 

boundary element technique yields a system of nonlinear equations from which the 

transverse and axial displacements are computed either by an iterative process or by 

employing the modified Powell’s hybrid algorithm. The increase of the stiffness rigidity 

due to the geometrical nonlinearity is observed and the influence of the shear 

deformation effect is quantified. Furthermore, the significant impact of the soil 

characteristics as well as the tensionless character to the beam-foundation response is 

investigated.  

In Chapter 3, the geometrically nonlinear dynamic analysis of shear deformable 

beams partially supported on nonlinear tensionless viscoelastic foundation, is presented. 

The beam is of arbitrary doubly symmetric simply or multiply connected constant cross-

section and is subjected to the combined action of arbitrarily distributed or concentrated 

transverse loading and bending moments in both directions as well as to axial loading. 

This dynamic loading represents the most general case, which includes impact loading, 

transverse moving loading, seismic excitation, beam–soil interaction, etc. The 

geometrical nonlinearity is taken into account through the Total Lagrangian formulation 

and the large displacements – small strains assumption. The beam is subjected to 

general boundary conditions while, to account for shear deformation effect the concept 

of shear deformation coefficients is used. The mechanical behaviour of the soil is 

approached by two alternative formulations. Firstly, a refined spring configuration 

consisting of four independent parameters is employed. In detail, foundation model is 

characterized by the linear elastic Winkler spring element providing resistance in direct 

proportion to the displacement of the beam, the second shear layer parameter capturing 

the continuity or cohesion of the soil enabling interaction between adjacent springs, the 

nonlinear parameter describing the hardening/softening characteristics of the foundation 

and finally the viscous damping parameter. Alternatively, the soil nonlinearity is taken 



Geometric and Material Nonlinear Analysis of Beam–Soil Interaction Systems 

12 

into consideration by means of a hybrid spring configuration consisting of a nonlinear 

(p-y) spring connected in series to an elastic spring–damper model. The nonlinear spring 

captures the near–field plastification of the soil while the spring–damper system 

(Kelvin–Voigt element) represents the far–field viscoelastic character of the soil. 

According to the proposed method, five boundary value problems are formulated. More 

specifically, two boundary value problems are formulated with respect to stress 

functions for the evaluation of the shear deformation coefficients and solved employing 

a pure Boundary Element Method, that is only boundary discretization is used. 

Moreover, three initial boundary value problems are formulated with respect to the 

transverse and axial displacements solved using the Analog Equation Method. 

Application of the boundary element technique yields a system of nonlinear differential-

algebraic equations from which the transverse and axial displacements are computed 

either by employing a Newmark-delta method or the Petzold-Gear backward 

differentiation formula. It is concluded that the large displacements change radically the 

dynamic response of the beam-foundation system influencing the natural frequencies 

while the significant affect of the shear deformations and the foundation modelling is 

verified. Subsequently, an extensive case study is carried out on a pile–column–deck 

system of a bridge subjected to earthquake excitations, providing insight to several 

phenomena.  

In Chapter 4, the geometrically nonlinear (J2) inelastic analysis of shear 

deformable beams partially supported on inelastic tensionless Pasternak foundation, is 

presented. The beam is of arbitrary doubly symmetric simply or multiply connected 

constant cross-section and is subjected to the combined action of arbitrarily distributed 

or concentrated transverse loading and bending moments in both directions as well as to 

axial loading. The geometrical nonlinearity is taken into account through the Total 

Lagrangian formulation and the large displacements – small strains assumption. The 

beam is subjected to general boundary conditions while, to account for shear 

deformation effect the concept of shear deformation coefficients is used. The 

mechanical behaviour of the soil is taken into consideration by means of a two-

parameter spring configuration consisting of two independent parameters. In detail, 

foundation model is characterized by the linear elastic Winkler spring element 

providing resistance in direct proportion to the displacement of the beam and the 

Pasternak shear layer parameter capturing the continuity or cohesion of the soil enabling 

interaction between adjacent springs. A displacement based formulation is developed 

and inelastic redistribution is modelled through a distributed plasticity (fibre) approach 
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exploiting three dimensional material constitutive laws and numerical integration over 

the cross sections. An incremental–iterative solution strategy along with an efficient 

iterative process is employed. According to the proposed method, a set of boundary 

value problems is formulated. More specifically, two boundary value problems are 

formulated with respect to stress functions for the evaluation of the shear deformation 

coefficients and solved employing a pure Boundary Element Method, that is only 

boundary discretization is used. Moreover, a boundary value problem is formulated with 

respect to the axial and transverse displacements and to the angles of rotation due to 

bending, solved using the domain Boundary Element Method. Application of the 

boundary element technique yields a system of nonlinear equations from which the 

unknowns of the problem are computed either by an iterative process or by employing 

the modified Powell’s hybrid algorithm. The influence of both the large displacements 

and the shear deformations to the plastic strain distribution is verified while the affect of 

the soil inelasticity is presented.  

In Chapter 5, the geometrically nonlinear inelastic analysis of Euler-Bernoulli 

beams of arbitrary doubly symmetric simply or multiply connected constant cross-

section, resting on inelastic Winkler foundation. The beam is subjected to the combined 

action of arbitrarily distributed or concentrated transverse dynamic loading and bending 

moments in both directions as well as to axial loading, while its edges are subjected to 

the most general boundary conditions. A hysteretic Bouc-Wen force-displacement 

model is employed in order to describe the inelastic behaviour of the Winkler springs. A 

displacement based formulation is developed and inelastic redistribution is modelled 

through a distributed plasticity (fibre) approach. A uniaxial hysteretic law is considered 

for the evolution of the plastic part of the normal stress following a phenomenological 

hysteresis model. Numerical integration over the cross sections is performed in order to 

resolve the hysteric parts of the stress resultants. Three boundary value problems are 

formulated with respect to the transverse and axial displacements and solved using the 

Analog Equation Method. Application of the boundary element technique yields a 

system of nonlinear Differential-Algebraic Equations which are written in state-space 

form and together with the hysteretic evolution equations are solved iteratively using the 

Petzold-Gear backward differentiation formula. It is concluded that the large 

displacements change radically the dynamic characteristics of the beam-foundation 

system. Furthermore, the influence of the plastic strain distribution is verified while the 

affect of the soil inelasticity is presented.  
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In Chapter6, the main conclusions drawn in this dissertation are summarized and 

the key advantages and novelties of the current formulation are highlighted. Moreover, 

directions for further research are suggested.  

This doctoral dissertation contains also three appendices. In the first Appendix A1, 

the main principles of the Analog Equation Method in its general form are presented, in 

case of one-dimensional boundary value problems described by ordinary differentia 

equations of the second and forth order, under the most general boundary conditions. In 

the second Appendix A2, the main principles of the Domain Boundary Element 

Method are presented, in case of one-dimensional boundary value problems described 

by ordinary differential equations of the second order. Finally, in the last Appendix A3, 

the solution for the general transverse shear loading problem in beams of arbitrary 

simply or multiply connected constant cross section is briefly presented while the shear 

deformation coefficients are established using pure Boundary Element Method. Finally, 

the references sited within the dissertation are presented in alphabetic order. 

Finally, it is worth mentioning that the outcome of the conducted research activity 

presented in this doctoral dissertation has been published in international journals, in 

national and international conferences and in books published by international 

publishing companies. These publications are cited at the introduction section of the 

corresponding chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Chapter 2 

Geometrically Nonlinear Static Analysis of  
Shear Deformable Beams on Nonlinear Foundation 

 

 

2.1 Introduction 

In most investigations concerning Beam-Foundation Systems the assumption is made 

that, bodies are in full contact (beam and subgrade are bonded to each other) and 

consequently compressive as well as tensile reactions are developed. These bilateral 

foundation models were probably motivated more by the desire of mathematical 

simplicity rather than by physical reality. However, for most foundation materials, the 

admission of tensile stresses across the interface separating the beam from the 

foundation is not realistic. In order to address this issue, tensionless foundation models 

were proposed in which regions of no contact develop beneath the beam. These regions 

are not known in advance and the change of the transverse displacement sign provides 

the condition for the determination of the contact length. 

 Moreover, according to the modelling of the mechanical behaviour of the subsoil 

and the soil-foundation interaction, the earliest, most famous and most frequently 

adopted mechanical model is the Winkler elastic foundation (Hetenyi 1946). In this 

model the supporting soil behaviour is approximated by a series of closely spaced, 

mutually independent, linear elastic vertical spring elements, providing resistance in 

direct proportion to the deflection of the beam. However, the application of this model 

is restricted to non-cohesive soil media due to its inability to take into account the 

continuity or cohesion of the soil (interaction between adjacent springs). To overcome 

this weakness, a second parameter is introduced such as Filonenko–Borodich, Pasternak 

or Hetenyi models (Pasternak 1954), to account for the interaction among the linear 

elastic springs (Fig.2.1). The induction of this second parameter brings the modelling of 

the soil behaviour closer to reality but its response is still not as complicate as the elastic 

continuum model. This fact resulted in the development of more sophisticated models 

comprising three independent parameters for the description of the soil behaviour. More 

specifically, since in practice the support structure may be highly nonlinear due to the 
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foundation hardening characteristics (e.g. ballast and rail-pad), the inclusion of a third 

parameter associated with the cubic nonlinearity of the deflection was verified 

experimentally by Dahlberg (2002). Besides, this formulation renders the arising 

mechanical model capable of distributing stresses correctly (Kargarnovin et al. 2005). 

 

          (a) 

          (b) 

Fig. 2.1. Displacement of Winkler (a) and Pasternak (b) foundation models. 

 

 Furthermore, the study of nonlinear effects on the analysis of structural elements is 

essential in civil engineering applications, wherein weight saving is of paramount 

importance. This nonlinearity results from retaining the square of the slope in the strain–

displacement relations (intermediate non-linear theory), avoiding in this way the 

inaccuracies arising from a linearized second–order analysis. Moreover, due to the 

intensive use of materials having relatively high transverse shear modulus, the error 

incurred from the ignorance of the effect of shear deformation may be substantial, 

particularly in the case of heavy lateral loading. 

Over the past thirty years, many researchers have developed and validated various 

methods for performing analysis of beams partially supported on Winkler foundation 

but only few took into account the realistic tensionless character of the subgrade 

reaction. To begin with, Sharma and Dasgupta (1975) employed an iteration method 

using Green’s functions for the analysis of uniformly loaded Bernoulli beams, followed 

by Kaschiev and Mikhajlov (1995), who presented a finite element solution for beams 

subjected to arbitrary loading. Later, Zhang and Murphy (2004) presented for the same 

problem an analytical/numerical solution making no assumption about either the contact 

area or the kinematics associated with the transverse deflection of the beam. Avramidis 
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and Morfidis (2006) analyzed the bending problem of a Timoshenko beam on a Kerr-

type three-parameter elastic foundation carrying out comparisons between one, two or 

three-parameter foundation models. Maheshwari (2007) employed the finite difference 

method with the help of appropriate boundary and continuity conditions for the analysis 

of beams on tensionless reinforced granular fill-soil system, while Ma et al. (2009a,b) 

used the transfer displacement function method (TDFM) to analyze the response of an 

infinite beam resting on a tensionless elastic foundation subjected to arbitrarily complex 

transverse loads. Zhang (2008) analyzed a beam resting on a tensionless Reissner 

foundation and demonstrated the improvements of the Reissner foundation model 

compared to the Winkler one, while Ying et al. (2008) presented exact solutions for 

bending and free vibration of functionally graded beams resting on a Winkler–Pasternak 

elastic foundation based on the two-dimensional theory of elasticity. Finally, Tullini and 

Tralli (2010) presented a finite element solution for the static analysis of a foundation 

Timoshenko beam resting on elastic half-plane by employing locking-free Hermite 

polynomials. Nevertheless, in all of the aforementioned research efforts only a 

geometrically linear analysis is performed. 

As the deflections become larger, the induced geometric nonlinearities result in 

effects that are not observed in linear systems. Recently, Silveira et al. (2008) presented 

a nonlinear analysis of Bernoulli structural elements under unilateral contact constraints 

employing a Ritz type approach, while Tsiatas (2010) suggested a boundary integral 

equation solution to the nonlinear problem of non-uniform Bernoulli beams resting on a 

nonlinear triparametric elastic foundation. In these research efforts, the shear 

deformation effect is ignored. 

In this chapter, a Boundary Element Method (BEM) is developed for the 

geometrically nonlinear analysis of shear deformable beams of arbitrary doubly 

symmetric simply or multiply connected constant cross-section, partially supported on 

nonlinear three-parameter tensionless foundation, undergoing moderate large 

deflections under general boundary conditions. The beam is subjected to the combined 

action of arbitrarily distributed or concentrated transverse loading and bending moments 

in both directions as well as to axial loading. To account for shear deformations, the 

concept of shear deformation coefficients is used. Five boundary value problems are 

formulated with respect to the transverse displacements, to the axial displacement and to 

two stress functions and solved using the Analog Equation Method (Katsikadelis 2002), 

a BE based method. Application of the boundary element technique yields a system of 

nonlinear equations from which the transverse and axial displacements are computed by 
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an iterative process. The evaluation of the shear deformation coefficients is 

accomplished from the aforementioned stress functions using only boundary integration.  

Numerical examples of great practical interest are worked out to demonstrate the 

efficiency and the accuracy of the developed method through comparison with literature 

and FEM results, as well as its range of applications. In these examples, the effects 

arising in the nonlinear response of beams on nonlinear foundation are illustrated. The 

essential features and novel aspects of the present formulation compared with previous 

ones are summarized as follows. 

i. The proposed beam model accounts for the geometrical nonlinearity by retaining 

the square of the slope in the strain–displacement relations. For that purpose the 

Total Lagrangian formulation (intermediate non-linear theory) has been adopted. 

ii. Shear deformation effect is taken into account on the geometrically nonlinear 

analysis of beams on nonlinear foundation. 

iii. The proposed model takes into account the coupling effects of bending and shear 

deformations along the member as well as the shear forces along the span induced 

by the applied axial loading. 

iv. The shear deformation coefficients are evaluated using an energy approach, instead 

of Timoshenko’s (Timoshenko & Goodier 1984) and Cowper’s (1966) definitions, 

for which several authors (Schramm et al. 1994, 1997) have pointed out that one 

obtains unsatisfactory results or definitions given by other researchers (Stephen 

1980, Hutchinson 2001) for which these factors take negative values. 

v. The beam is supported by the most general boundary conditions including elastic 

support or restraint, while it is subjected to arbitrary loading. 

vi. The nonlinear half-space is approximated by a nonlinear three-parameter 

tensionless foundation. The proposed method can also handle the case of negative 

foundation nonlinearity. 

vii. The proposed method employs a BEM approach while a small number of nodal 

points are required to achieve high accuracy. 

viii. The use of BEM permits the effective computation of derivatives of the field 

functions (e.g. stresses, stress resultants) which is very important during the 

nonlinear response of beam-foundation systems. 
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Finally, it is worth mentioning that the outcome of the conducted research activity 

presented in this chapter of the doctoral dissertation has been published in international 

journals (Sapountzakis & Kampitsis 2010a, 2011a) and in international conferences 

(Sapountzakis & Kampitsis 2010e). 

 

 

2.2 Statement of the Problem 

Let us consider a prismatic beam of length l (Fig.2.2), of constant arbitrary doubly 

symmetric cross-section of area A . The homogeneous isotropic and linear elastic 

material of the beam cross-section, with modulus of elasticity E , Poisson’s ratio v  and 

shear modulus G  (   G E / 2 1 v  ) occupies the two-dimensional multiply 

connected region   of the y , z  plane and is bounded by the  j j 1,2,...,K   

boundary curves, which are piecewise smooth, i.e. they may have a finite number of 

corners. 

 

 

C: Centre of gravity 
S: Shear centre 

(a) (b) 

Fig. 2.2. x-z plane of prismatic beam under axial-flexural loading (a) with arbitrary 
doubly symmetric cross-section (b). 

 

In Fig.2.2b Cyz  is the principal bending coordinate system through the cross-

section’s centroid. The beam is partially supported on an elastic nonlinear tensionless 

three-parameter soil. The foundation model is characterized by the linear Winkler 

moduli Lxk , Lyk ,  Lzk , the nonlinear Winkler moduli NLyk , NLzk  and the Pasternak 

(shear) foundation moduli  Pyk ,  Pzk  for the directions y, z, respectively. Having in 

mind that for the longitudinal direction the reaction is a bilateral one exhibiting both 

compressive and tensile tractions, while for the transverse directions is a unilateral one 

z,w

x,u

Timoshenko Beam
Pz(x) My(x)

pz(x)
Linear Winkler

Nonlinear Springs 

Shear Layer 

Lift-off Point 
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(accounting for the unbonded contact between beam and subgrade), the interaction 

pressure at the interface can be written as  

 

  sx xp k u x  (2.1a) 

      
 2

3
sy y Ly NLy Py 2

v x
p H x k v x k v x k

x

 
   

  

  (2.1b) 

      
 2

3
sz z Lz NLz Pz 2

w x
p H x k w x k w x k

x

 
   

  

  (2.1c) 

 

where  yH x ,  zH x  are the Heaviside unit step functions defined as 

 

  

   
 

   
 

2
3

Ly NL y Py 2

y
2

3
Ly NL y Py 2

v x
1 if k v x k v x k

x
H x

v x
if k v x k v x k 0

x

  
      

   
 

 
         

  (2.2a) 

  
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 

2
3

Lz NLz Pz 2

z
2

3
Lz NLz Pz 2

w x
1 if k w x k w x k

x
H x

w x
if k w x k w x k 0

x

  
      

   
 

 
         

  (2.2b) 

 

The beam is subjected to the combined action of the arbitrarily distributed or 

concentrated axial loading  x xp p x , transverse loading  y yp p x ,  z zp p x  

and bending moments  y ym m x ,  z zm m x  acting along y , z  directions, 

respectively (Fig.2.2a). 

 

2.2.1 Displacements, Strains & Stresses 

Under the action of the aforementioned loading, the displacement field of the beam 

taking into account shear deformation effect is given as (Ramm & Hofmann 1995) 

 

        z yu x, y ,z u x y x z x     (2.3a) 

    v x,y,z v x          w x,y,z w x  (2.3b,c) 
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where u , v , w  are the axial and transverse beam displacement components with 

respect to the Cyz  system of axes;  u x ,  v x ,  w x  are the corresponding 

components of the centroid C  and  y x ,  z x  are the angles of rotation due to 

bending of the cross-section with respect to its centroid (Fig.2.3). It is worth here noting 

that since the additional angle of rotation of the cross-section due to shear deformation 

is taken into account, the one due to bending is not equal to the derivative of the 

deflection (i.e. z v '  , y w'  ). 

 

                      (a) 

                 (b) 

Fig. 2.3. Displacement field according to xz (a) and xy (b) planes of shear deformable 
Timoshenko beam. 
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Employing the strain-displacement relations of the three-dimensional elasticity the 

components of the Green-Lagrange strain are defined as  

 

 
2 2 2

xx
u 1 u v w

x 2 x x x


         
         

          

 (2.4a) 

 

2 2 2
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

         
         

          

 (2.4b) 
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
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         

          

 (2.4c) 
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
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 (2.4d) 

 xz
w u u u v v w w

x z x z x z x z


          
       

          
 (2.4e) 

 yz
w v u u v v w w

y z y z y z y z


          
       

          
 (2.4f) 

 

Moreover, assuming relatively small centroidal axial displacement and moderate large 

transverse displacements (Ramm & Hofmann 1995, Rothert & Gensichen 1987, Brush 

& Almroth 1975) while strains remain small, the following strain components can be 

easily obtained 

 

 
2 2

xx
u 1 v w

x 2 x x


      
      

       

 (2.5a) 

 xz
w u v v w w

x z x z x z


      
    
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 (2.5b) 

 xy
v u v v w w

x y x y x y

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    
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 (2.5c) 

 yy zz yz 0      (2.5d,e,f) 
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where it has been assumed that for moderate displacements  
2

u u
x x

 
 

, 

      u u w u
x z x z

    
   

,       u u v u
x y x y

    
    . Substituting 

the displacement components (2.3) to the strain-displacement relations (2.5), the strain 

components can be written as 

 

  
2 2

y z
xx

ddu d 1 dv dw
x,y,z z y

dx dx dx 2 dx dx

 


 
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 
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 xy z
dv

dx
             xz y

dw

dx
    (2.6b,c) 

 

where xy , xz  are the additional angles of rotation of the cross-section due to shear 

deformation .It is worth noting what in the well known Euler-Bernoulli beam theory 

these shear deformations are neglected, thus  

 

 z
dv

dx
            y

dw

dx
    (2.7b,c) 

 

Considering strains to be small and assuming an isotropic and homogeneous 

material, the non vanishing work conjugate stress components of the second Piola–

Kirchhoff stress tensor are defined in terms of the strain ones as 

 

 
xx xx

xy xy

xz xz

S E 0 0

S 0 G 0

0 0 GS







    
        
        

 (2.8) 

 

or employing the strain-displacement relations (2.6) as  
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2.2.2 Stress Resultants, Equations of Equilibrium, Boundary Conditions 

The equations of equilibrium and the boundary conditions of the beam-foundation 

system are derived employing the equilibrium method. It is mentioned that any energy 

principle (e.g. total potential energy) could also be implemented providing the same 

results. To this end, let’s consider an infinitesimal beam element of length dx  at its 

deformed configuration as this is depicted in Fig. 2.4.  

 

(a) 

(b) 

Fig. 2.4. Infinitesimal beam element of length dx  at its deformed configuration under 
equilibrium according to xz (a) and xy (b) planes. 

 

Moreover, the angles of rotation are assumed to be small, thus the following 

relations hold  

 

 zcos 1        z zsin        ycos 1        y ysin   (2.10a-d) 

 

Consequently, the horizontal force xR  and the vertical forces y zV ,V  can be written in 

term of the axial N  and the shear yQ ,Qz  forces, as (Fig. 2.4) 
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 x y z z yR N Q Q     (2.11a) 

 y y zV Q N            z z yV Q N   (2.11b,c) 

 

while the angles of rotation y z,   are defined as  

 

 y
dw

dx
             z

dv

dx
    (2.12a,b) 

 

Substituting eqns. (2.12a,b) to eqns. (2.11) yields 

 

 x y zR N Q v Q w     (2.11a) 

 y yV Q Nv            z zV Q Nw   (2.11b,c) 

 

where    denotes differentiation with respect to x , while the second and third term of 

the right hand side of eqn. (2.11a) express the influence of the shear forces to the 

horizontal one. Nevertheless, as y zQ v ,Q w N    (Rothert & Gensichen 1987, Ramm & 

Hofmann 1995) the horizontal force is equated to the axial one, thus xR N .  

Subsequently, equating the external loads with the internal reaction, the equations 

of equilibrium are written as 

 

 x x
dN

k u p 0
dx

    (2.12a) 

 y
sy y

dQ
p p 0

dx
           z

sz z
dQ

p p 0
dx

    (2.12b,c) 

 y
z y

dM
Q m 0

dx
           z

y z
dM

Q m 0
dx

    (2.12d,e) 

 

while the axial N  and the shear yQ ,Qz  forces as well as the bending moments yM , 

zM  of the beam in the deformed configuration are defined as  

 

 xxN S d


   (2.13a) 

 
y

y xyA
Q S d           

z
z xzA

Q S d   (2.13b,c) 

 y xxS zd


           z xxS yd


    (2.13d,e) 
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After employing both the strain components of eqns. (2.6) and the stress-strain 

constitutive relations (2.9) for an isotropic and homogeneous material, eqns. (2.13) are 

written as  

 

  2 21
N EA u v w

2

 
     

 
 (2.14a) 

 y y xyQ GA            z z xzQ GA   (2.14b,c) 

 y y yM EI             z z zM EI    (2.14c,d) 

 

where A  is the cross section area, while yI , zI  are the moments of inertia with respect 

to the principle bending axes given as 

 

 A d


   (2.15a) 

 2
yI z d


           2

zI y d


   (2.15b,c) 

 

and yGA , zGA  are its shear rigidities of the Timoshenko’s beam theory, where 

 

 z z
z

1
A A A

a
           y y

y

1
A A A

a
   (2.16a,b) 

 

are the shear areas with respect to y , z  axes, respectively with y , z  the shear 

correction factors and ya , za  the shear deformation coefficients (Appendix A3). 

Substituting the stress resultants of eqns. (2.14) and the strain resultants of eqns. (2.6) in 

the equilibrium eqns. (2.12) the differential equations of equilibrium are written as 

 

   Lx xEA u w w v v k u p          (2.17a) 

      3
y z y Ly NL y Py yNv GA v H k v k v k v p           (2.17b) 

      3
z y z Lz NLz Pz zNw GA w H k w k w k w" p           (2.17c) 

  z z y z zEI GA v m              y y z y yEI GA w m       (2.17d,e) 
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Combining eqns. (2.17b,d) and (2.17c,e), the governing differential equations with 

respect only to the displacement components  u , v , w  of a geometrically nonlinear 

Timoshenko beam, partially supported on a nonlinear three-parameter tensionless 

foundation, subjected to the combined action of axial and transverse loading are 

obtained as 

 

   Lx xEA u w w v v k u p          (2.18a) 

     y y
z sy sy y y z

y z

EI EI
EI v"" Nv p Nw p p p m

GA GA
             (2.18b) 

     y y
y sz sz z z y

z z

EI EI
EI w"" Nw p Nw p p p m

GA GA
             (2.18c) 

 

These equations are also subjected to the pertinent boundary conditions of the problem 

at hand, which are given as 

 

    1 2 3a u x N x    (2.19a) 

    1 2 y 3v x V x               1 z 2 z 3x x       (2.19b,c) 

    1 2 z 3w x V x                 1 y 2 y 3x x       (2.19d,e) 

 

at the beam ends x 0 ,l . In eqns. (2.19b-e) the vertical reactions yV , zV , the bending 

moments yM , zM  and the angles of rotation due to bending y , z  are given as 
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 
    z

z sy z y2
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EI 1
Nv p EI v GA v
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         (2.22b) 

 

Finally, j j j j j, , , ,      ( j 1,2,3 ) are functions specified at the beam ends 

x 0 ,l . Eqns. (2.19) describe the most general boundary conditions associated with the 

problem at hand and can include elastic support or restraint. It is apparent that all types 

of the conventional boundary conditions (clamped, simply supported, free or guided 

edge) can be derived from these equations by specifying appropriately these functions 

(e.g. for a clamped edge it is 1 1 1 1     , 1 1 1   , 2  3  2  3  2 

3  2  3  2  3 0  ). 

 The solution of the boundary value problem given from eqns. (2.18) subjected to 

the boundary conditions (3.19) describes the axial-flexural response accounting for the 

geometrical nonlinearity (large displacements) of a Timoshenko beam, supported on a 

nonlinear three-parameter tensionless foundation. The evaluation of the shear 

deformation coefficients ya , za  corresponding to the principal centroidal system of 

axes Cyz , are established equating the approximate formula of the shear strain energy 

per unit length with the exact one as described in Appendix A3. 

 

 

2.3 Integral Representations  Numerical Solution 

According to the precedent analysis, the nonlinear axial-flexural analysis of a 

Timoshenko beam, partially supported on a  nonlinear three-parameter tensionless 

foundation, undergoing moderate large deflections reduces in establishing the 

displacement components  u x  and  v x ,  w x  having continuous derivatives up to 

the second and up to the fourth order with respect to x , respectively. Moreover, these 

displacement components must satisfy the coupled governing differential equations 

(2.178) inside the beam and the boundary conditions (2.19) at the beam ends x 0 ,l . 

The differential equations of equilibrium are solved using the Analog Equation Method 

(Katsikadelis 1994, 2002) as it is described in Appendix A1. 
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2.3.1 Axial  u x  and transverse displacements    v x ,w x  

According to this method, let  u x ,  v x  and  w x  be the sought solution of the 

aforementioned boundary value problem. Setting as    1u x u x ,    2u x v x , 

   3u x w x  and differentiating with respect to x  these functions two and four times, 

respectively yields 

 

  
2

1
12

u
q x,t

x





          

4
i

i4

u
q x,t

x





         i 2,3  (2.23) 

 

Eqns. (2.23) are called analog equations and indicate that the solution of eqns. (2.18) 

can be established by solving eqns. (2.23) under the same boundary conditions (2.19), 

provided that the fictitious load distributions  iq x,t   i 1,2,3  are first established. 

Following the procedure as described in Appendix A1, the integral representations of 

the displacement components iu   i 1,2,3  obtained by eqn. (A1.8, A1.36) and their 

first derivatives with respect to x  obtained by eqn. (A1.22, A1.43), when applied to the 

beam ends ( 0 ,l ), together with the boundary conditions (2.19) are employed to express 

the unknown boundary quantities  iu ,t ,  i xu , ,t ,  i xxu , ,t  and  i xxxu , ,t  

 0,l   in terms of the fictitious loads iq   i 1,2,3 . In order to accomplished this 

numerical formulation, the interval  0,l  is divided into L  elements, on which  iq x,t  

is assumed to vary according to certain law (constant, linear, parabolic etc). The 

constant element assumption is employed here as the numerical implementation 

becomes very simple and the obtained results are of high accuracy. 

Employing the aforementioned procedure, the following set of 20 nonlinear 

algebraic equations is obtained 
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with  
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 
 
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 (2.25a) 
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 (2.25b,c) 

 

where u
11E , u

12E , 11E - 48E  are rectangular 2×2  known coefficient matrices resulting 

from the values of the kernels  j r   1, 2, 3, 4j   at the beam ends and u
1F , 1F , 2F  

are 2×L  rectangular known matrices originating from the integration of the kernels 

along the axis of the beam, as defined in Appendix A1. Moreover, 11D - 24D  and 11G -

24G  are 2×2  known square matrices including the values of the functions 

j j j j ja , , , ,         1, 2j   of eqns.(2.19), while nl
1D , 3a  and nl

2D , nl
3D , 3b , 3c  are 4×1  

and 8×1, respectively known column matrices including the boundary values of the 

functions 3, 3 3 3 3a , , ,       of eqns. (2.19). Furthermore, 1d - 3d  are the generalized 

unknown vectors including the L  unknown nodal values of the fictitious loads 

 1 2

Ti i i
i Lq q q q     1,2,3i   and the vectors including the unknown boundary values 

of the respective boundary quantities. More specifically, the expressions of the matrices 

of eqn. (2.25) are given as 
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 (2.29) 

 

where the boundary values of the displacement components iu   i 1,2,3  and their 

derivatives with respect to x  are written in matrix form as 

 

     0
T

i iˆ u ,t u l ,tiu   1,2,3i   (2.30a) 

 
   0

T
i iu ,t u l,t

ˆ
x x

  
  

  
i xu ,   1,2,3i   (2.30b) 

 
   2 2

i i
2 2

0
T

u ,t u l ,t
ˆ

x x

   
  

   
i xxu ,   2,3i   (2.30c) 

 
   3 3

i i
3 3

0
T

u ,t u l ,t
ˆ

x x

   
  

   
i xxxu ,   2,3i   (2.30d) 

 

Thereafter, the discretization of the integral representations of the displacement 

components iu   i 1,2,3  and their derivatives with respect to x , and the application 

to the L  collocation nodal points yields 

 

 ˆ ˆ  0
1 1 1 0 1 1 1 xu A q C u C u ,  (2.31a) 

 ˆ1
1 x 1 1 0 1 xu , = A q + C u ,          1 xx 1u , = q  (2.31b,c) 

 

 ˆ ˆ ˆ ˆ0
2 2 2 0 2 1 2 x 2 2 xx 3 2 xxxu = A q + C u + C u , +C u , +C u ,  (2.32a) 

 ˆ ˆ ˆ1
2 x 2 2 0 2 x 1 2 xx 2 2 xxxu , = A q + C u , +C u , +C u ,  (2.32b) 

 ˆ ˆ  2
2 xx 2 2 0 2 xx 1 2 xxxu , A q C u , C u ,  (2.32c) 

 ˆ3
2 xxx 2 2 0 2 xxxu , = A q + C u ,         2 xxxx 2u , = q  (2.32d,e) 

 

 ˆ ˆ ˆ ˆ0
3 3 3 0 3 1 3 x 2 3 xx 3 3 xxxu = A q + C u + C u , +C u , +C u ,  (2.33a) 
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 ˆ ˆ ˆ1
3 x 3 3 0 3 x 1 3 xx 2 3 xxxu , = A q + C u , +C u , +C u ,  (2.33b) 

 ˆ ˆ2
3 xx 3 3 0 3 xx 1 3 xxxu , = A q + C u , +C u ,  (2.33c) 

 ˆ3
3 xxx 3 3 0 3 xxxu , = A q + C u ,         3 xxxx 3u , = q  (2.33d,e) 

 

where i
1A , j

2A , j
3A   0,1i   ,  0,1, 2, 3j      are L L  known matrices; 0C , 1C , 1C ,

2C , 3C  are 2L   known matrices and iu , i xu , , i xxu , , i xxxu , , i xxxxu ,  are vectors 

including the values of  iu x,t  and their derivatives at the L  nodal points. These 

equations can be assembled in a more convenient matrix form as 

 

 u
1 1u = B d            

u
,x1 x 1u , = B d  (2.34a,b) 

 2 2u = Bd           ,x2 x 2u , = B d         ,xx2 xx 2u , = B d          ,xxx2 xxx 2u , = B d  (2.35a-d) 

 3 3u = Bd           ,x3 x 3u , = B d         ,xx3 xx 3u , = B d          ,xxx3 xxx 3u , = B d  (2.36a-d) 

 

where 
uB , B  and there derivatives are  4L L   and  8L L   known matrices, 

respectively arising from 
uA , A , uC , C  and there derivatives as presented in 

Appendix A1. 

In conventional BEM, the load vectors iq  are known and eqns. (2.34-2.36) are used 

to evaluate  iu x,t  and their derivatives at the L  nodal points. This, however, cannot 

be applied here since iq  are unknown. Thus, 3L  additional equations are required in 

order to permit the establishment of iq . Therefore, the final step of AEM is 

implemented by applying the differential equations of equilibrium (2.18) to the L  

collocation points. Employing eqns. (2.34-2.36) leads to the formulation of the 

following set of 3 L  nonlinear equations of equilibrium  

 

  = = u

   
   

     
   
   

1 1
nl nl

2 1 2 3 2

3 3

d f

Kd f f K d f B ,B,d ,d ,d f

d f

 (2.37) 

 

where 
nlf  is a nonlinear generalized stiffness vector and , K f  are generalized stiffness 

matrices and force vector respectively, defined as  
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   u
dg ,L dg

   
 1 xK EA K B          1 xf p  (2.38a-b) 

 
nl
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     33 ydg dgnl
3 ,xxNLz NLz

z

EI

GA
 3 3f K d K B d        y

z y,x z,xx
z

EI

GA
  3f p m p  (2.40b,c) 

 

where N , ,xN  are L L  diagonal matrices containing the values of the axial force and 

its derivatives with respect to x, respectively, at the L  nodal points, yp , y,xxp , zp , 

z,xxp , y,xm  and z,xm  are L 1  vectors containing the values of the external loading 

and its derivatives at these points, while dg
LiK , dg

NLiK  and dg
PiK   i y,z  are diagonal 

matrices whose diagonal elements represent the values of the corresponding foundation 

parameter at each nodal point. Moreover, substituting eqns. (2.34) in eqn. (2.14a), the 

discretized counterpart of the axial force at the neutral axis of the beam is given as 

 

  u
,x ,xx ,x ,xx ,xdg. dg .

1
EA EA

2
                   1 2 2 3 3N B d B d B d B d B d  (2.41) 

 

The above equations (2.37), together with eqns. (2.24) constitute a system of 

3L 20  nonlinear algebraic equations which can be solved using any efficient solver. 

Within the framework of this doctoral dissertation two approaches have been 

performed. Firstly, the solution of this system was accomplished iteratively by 
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employing iterative numerical methods, such as the two term acceleration method 

(Isaacson & Keller 1966) and secondly, by using the modified Powell algorithm (Powell 

1977, 1985). A step-by-step algorithmic approach of the numerical implementation is 

summarized in a flowchart form in Fig. 2.5.  

 

1

1

i i
i

i








N N

N

 

Fig .2.5. Flowchart of the numerical implementation. 
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2.4 Numerical Examples 

On the basis of the analytical and numerical procedures presented in the previous 

sections concerning the geometrically nonlinear analysis of shear deformable beams on 

nonlinear foundation, a computer program has been written using High Level 3G 

Fortran 90/95. Representative examples have been studied to demonstrate the 

efficiency, wherever possible the accuracy and the range of applications of the 

developed method.  

 

2.4.1 Example 1 – Linear Analysis of Simply Supported Beam on Elastic Foundation 

In the first example, for comparison reasons a linear analysis of a simply supported 

beam has been studied for three different load and geometry cases. Although 

displacements are considered small the problem is strongly nonlinear as the contact 

length is unknown. A beam of length l 5m  and flexural stiffness 
3EI 10  subjected 

to concentrated moments 
2

1 2M M 10 kNm   at its ends, resting on a homogeneous 

elastic foundation with modulus of subgrade reaction zk , as shown in Fig. 2.6 (case i), 

has been studied.  

 

 

Fig. 2.6. Prismatic beam on elastic foundation subjected to concentrated moments at 
its ends (case i). 

 

The present example was first investigated by Hetenyi (1946) who presented an 

analytical solution, according to which the midpoint deflection is evaluated by the 

following expression 

 

  
   

2
1

z

l l
sinh sin

4M 2 2
w l / 2

k cosh l cos l

 


 

   
   
   


      where    4

zk 4EI   (2.41) 
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Lately, Pereira (2003) presented a FEM solution for the problem at hand, while 

Silveira et al. (2008) presented a nonlinear formulation employing a Ritz type approach. 

In Figs. 2.7a,b the beam deflections for the cases of conventional bilateral and unilateral 

(tensionless) Winkler springs, respectively are presented as compared with those 

obtained from analytical (Hetenyi 1946), FEM (Pereira 2003) and Ritz type (Silveira et 

al. 2008) solutions for various values of the dimensionless foundation parameter 

4
zk k l / EI . Moreover, in Table 2.1 the extreme values of the beam deflection and of 

the soil reaction are presented for both cases of bilateral and unilateral foundation and 

for various values of the aforementioned parameter k . From these figures and table the 

accuracy of the obtained results is remarkable, while the influence of both the 

foundation stiffness and the unilateral character of the soil reaction are easily verified. 

Moreover, the discrepancy in the deflections between the bilateral and the unilateral 

foundation model especially for a stiff soil is underlined.  

 

  
(a) (b) 

Fig. 2.7. Deflection for various values of the soil parameter k, of the beam of example 
1 (case i) resting on a bilateral (a) and unilateral (b) elastic foundation. 

 

As a variant of this example, the beam of length l 10m  subjected to concentrated 

moments 
2

1 2M M 10 kNm   at its ends and a concentrated force  P l / 2 150kN  

at the midpoint of the beam, as this is shown in Fig. 2.8 (case ii), has also been studied. 

In Figs. 2.9a,b the beam deflections for the cases of conventional bilateral and unilateral 

Winkler springs, respectively are presented as compared with those obtained from 
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analytical (Hetenyi 1946), FEM (Pereira 2003) and Ritz type (Silveira et al. 2008) 

solutions for various values of the parameter k , while in Table 2.2 the extreme values 

of the beam deflection and of the soil reaction are presented for both cases of bilateral 

and unilateral foundation reaction, leading to the same conclusions drawn from the 

previous beam case.  

 

Table 2.1. Extreme values of the deflections  210 and the foundation reaction of the 

beam of example 2.1 (case i). 

k  
Bilateral Winkler Unilateral Winkler 

Min w Max w 3
szp l EI  Min w Max w 3

szp l EI  

6.25 -3.960 3.960 0.049 -4.030 3.905 0.048 

62.5 -3.826 3.826 0.478 -4.418 3.425 0.428 

625 -2.869 2.869 3.586 -5.697 2.046 2.557 

6250 -1.015 1.015 12.688 -7.125 0.833 10.415 

62500 -0.304 0.304 37.965 -8.008 0.287 35.854 

 

Finally, as a second variant of this example, the beam of Fig. 2.8 subjected to 

concentrated moments 
2

1 2M M 10 kNm    at its ends and a concentrated force 

 P l / 2 50kN   at its midpoint, has also been studied (case iii). In Fig. 2.10 the 

deflections of the beam resting on a tensionless subgrade are presented as compared 

with those obtained from FEM (Pereira 2003) and Ritz type (Silveira et al. 2008) 

 

Fig. 2.8. Prismatic beam on elastic foundation subjected to concentrated moments at 
its ends and force at its midpoint (case ii). 
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solutions for various values of the dimensionless foundation parameter k . Moreover, in 

Fig. 2.11 the deflections of the beam ignoring the foundation reaction or resting either 

on unilateral or bilateral subgrade (
4k 10 ), are presented as compared with those 

obtained from a Ritz type solution (Silveira et al. 2008) demonstrating once again the 

paramount importance of the tensionless character of Winkler foundation. Finally, in 

Table 2.3 the extreme values of the beam deflection and of the soil reaction are 

presented for both cases of bilateral and unilateral foundation reaction, leading to the 

conclusions already drawn and noting the significant influence of the unilateral 

character of the soil reaction in both the deflections and the soil reaction especially in 

the case of a stiff soil. 

 

Table 2.2. Extreme values of the deflections  cm  and the foundation reaction of the 

beam of example 2.1 (case ii). 

k  
Bilateral Winkler Unilateral Winkler 

Min w Max w 3
szp l EI  Min w Max w 3

szp l EI  

102 0 9.671 9.670 0 9.671 9.671 

103

 -0.239 2.341 23.41 -0.255 2.326 23.26 

104

 -0.326 0.549 54.90 -0.778 0.490 49.04 

105

 -0.095 0.0941 94.06 -0.9139 0.104 104.36 

 

Table 2.3. Extreme values of the deflections  cm  and the foundation reaction of the 

beam of example 1 (case iii). 

k  
Bilateral Winkler Unilateral Winkler 

Min w Max w 3
szp l EI  Min w Max w 3

szp l EI  

102 -0.248 0.661 0.66 0 1.286 1.28 

103

 -0.197 0.318 3.18 -0.41 0.609 6.09 

104

 -0.031 0.095 9.53 -1.266 0.239 23.95 

105 -0.006 0.026 26.09 -1.789 0.082 81.47 

106

 0 0.005 54.05 -2.070 0.023 231.4 
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(a) (b) 

Fig. 2.9. Deflection of the beam of example 1 (case ii) resting on a bilateral (a) and 
unilateral (b) elastic foundation for various values of the parameter k. 

 
 

 

Fig. 2.10. Deflection of the beam of example 1 (case iii) resting on a unilateral 
elastic foundation for various values of the soil parameter k. 
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Fig. 2.11. Deflection of the beam of example 1 (case iii) ignoring the foundation 

reaction or resting either on unilateral or bilateral foundation 
4k 10 . 

 

 

2.4.2 Example 2 – Nonlinear Analysis of Clamped Beam on Elastic Foundation 

In order to illustrate the importance of the nonlinear analysis and the influence of the 

shear deformation effect, a clamped beam of length l m , having a hollow 

rectangular cross section ( E 210 GPa  , v 0.3 , za 3.664 , ya 1.766 ) resting on 

homogeneous (either bilateral or unilateral) elastic foundation of stiffness zk , as shown 

in Fig. 2.12, is examined. 

In Fig.2.13 the deflection curves along the beam resting on a tensionless foundation 

with 
2

zk 50kN / m  and subjected to a uniformly distributed load zp 100kN / m  

(case i) are presented performing either linear or nonlinear analysis and taking into 

account or ignoring shear deformation effect. From this figure, the influence of the 

nonlinearity to the performed analysis is remarked, while the discrepancy of the 

obtained results due to the shear deformation effect justifies its importance even in thin 
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walled sections. Moreover, in Table 2.4 the deflections and the bending moments at the 

beam’s midpoint and ends, respectively are presented performing either linear or 

nonlinear analysis and taking into account or ignoring shear deformation effect. Finally, 

in Fig. 2.14 the deflection curves of the beam resting on a tensionless foundation are 

presented for various values of the modulus zk  of the subgrade reaction, performing 

nonlinear analysis taking into account shear deformation effect and demonstrating the 

importance of the soil stiffness in the obtained results. 

 

kz 

h=
14

cm
 

t=4mm 

 z 

x 

pz=100kN/m 

l=5m 

az= 3.664 

ay= 1.766 

b=23cm 

y 

z 

y 

 

Fig. 2.12. Clamped beam of hollow rectangular cross section subjected to uniformly 

distributed load zp (case i). 

 

To illustrate the importance of the tensionless character of the subgrade reaction, 

the same beam subjected to a concentrated moment yM 100kNm   at its midpoint 

(case ii) is also studied. In Figs. 2.15(a,b) the deflection curves of the beam resting on a 

tensionless foundation and the foundation reaction are presented, respectively for 

various values of the subgrade reaction modulus zk , performing nonlinear analysis and 

taking into account shear deformation effect. Additionally, in Table 2.5 the extreme 

values of the displacements and the soil reaction are presented for both cases of bilateral 

and unilateral soil reaction for various values of the modulus zk  performing a 

geometrical nonlinear analysis and taking into account shear deformation effect. From 

the aforementioned figure and table, it is concluded that the unilateral character of the 

foundation is of paramount importance and the error occurred from the ignorance of this 

behaviour is considerable. 
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Fig. 2.13. Deflection along the beam of example 2 (case i), for soil stiffness 
2

zk 50kN / m . 

 

 

Fig. 2.14. Deflection along the beam of example 2 (case i), for various values of 

the subgrade reaction modulus zk . 
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Table 2.4. Deflection (cm) and Moment (kNm) at the midpoint and the ends of the 

clamped beam, respectively of example 2 (case i ), for 
2

zk 50kN / m . 

Analysis 

Without Shear Deformation With Shear Deformation 

Linear Nonlinear Linear Nonlinear 

 w l / 2  7.49 6.93 7.95 7.28 

 yM 0,l
 -202.98 -192.85 -199.31 -187.54 

 

  

(a) (b) 

Fig. 2.15. Deflection curves of the beam (a) and foundation reaction (b) of example 2 

(case ii) for various values of tensionless subgrade reaction zk . 

 
Table 2.5. Extreme values of the deflections ( mm ) and the foundation reaction 

 kN / m of the beam of example 2 (case ii). 
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Min w  Max w Max szp
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25 10  
-5.39 5.39 2.694 -6.10 4.92 2.459 

5 1 30  
-4.01 4.01 20.007 -7.84 2.56 12.822 
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-1.45 1.45 72.675 -9.21 0.57 28.327 
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2.4.3 Example 3 – Experimental Validation of Pile–Foundation Systems 

In this example, the accuracy of the developed formulation for the elastic analysis of 

pile–foundation systems is validated against experimental data and other numerical 

formulations available in literature.  

Under this scope, a single pile (i) of length l 4.65m , diameter d 0.3573m  and 

modulus of elasticity pE 20GPa  driven into clay soil with 
2

sE 9233kN / m  and 

Poison’s ratio sv 0.3  (measured experimentally, taking the mean over the first three 

meters), is studied. The pile is subjected to concentrated horizontal force zP 60kN  and 

to bending moment yM 69kNm  at its head. In Fig. 2.16 the displacement curve along 

the pile is presented as compared with the experimental measurements obtained by 

Kerisel and Adam(1967) and those from a BEM-FEM coupling formulation presented 

by Filho et al. (2005). 

 

 

Fig. 2.16. Displacement along the pile (i) of example 3. 
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Moreover, a pile (ii) of length l 6.096m  ( d 60.96cm , pE 21.11GPa ) driven 

into clay soil ( s pE 1%E , sv 0.2 ) under tip loading ( zP 181.6kN ,

95.826yM kNm  ), has also been studied. In Figs. 2.17a,b the displacement curves 

along the pile are presented as compared with those obtained from Vallabhan and 

Sivakumar (1986) and from a BEM-FEM coupling formulation presented by Filho et al. 

(2005). Additionally, in Fig 2.17b the settlement  u x  due to axial force 726.4xP kN  

is depicted, as compared with literature (Vallabhan & Sivakumar 1986, Ferro & 

Venturini 1992, Filho et al. 2005). 

Finally, a pile (iii) of length l 12.2m  ( d 61cm , 20.67pE GPa ) driven into 

London clay (
272.4MN/msE  , sv 0.5 ) under vertical loading 1.1xP MN , has been 

examined. The predicted settlement at the tip of the pile is evaluated from the current 

formulation at 285u 0. cm  while the experimentally measured one (Whitaker & 

Cooke 1966) is 284exu 0. cm , giving a divergence of only 0.35%. From these 

comparisons a very good agreement can be verified between the experimental data, the 

other numerical formulations and the proposed model. 

 

 
(a) (b) 

Fig. 2.17. Displacement along the pile (ii) of example 3. 
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2.4.4 Example 4 – Beam on 3-Parameter Foundation 

In order to illustrate the influence of the soil modelling to the beam-foundation system 

response, a beam of length l 3m  (
6 2E 2.9 10 kN / m  , 

2A 0.02m , 

5 4
yI 6.67 10 m  , za 1.2 ) resting on a three-parameter foundation, has been 

studied. The beam is subjected to a uniformly distributed load zp 500kN / m , while 

three types of boundary conditions have been examined; namely (i) hinged- hinged, (ii) 

hinged-fixed and (iii) fixed-fixed. 

In Tables 2.6-2.8 the central beam deflection for various values of the foundation 

parameters are presented taking into account or ignoring shear deformation effect as 

compared with those obtained from a BEM solution ignoring this effect (Tsiatas 2010), 

for the aforementioned cases of boundary conditions, respectively. Moreover, in Fig. 

2.18 the deflection curve along the clamped beam resting on a three-parameter 

nonlinear foundation with 
2

Lzk 1000 kN / m  , 
4

NLzk 1000 kN / m   and 

Pzk 1000 kN   is presented performing either a linear or a nonlinear analysis and taking 

into account or ignoring shear deformation effect. From this figure, the influence of 

geometrical nonlinearity to the performed analysis is remarked. 

 

 

Fig. 2.18. Deflection along the fixed-fixed beam of example 4. 
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Table 2.6. Deflections (m) at the midpoint of the hinged-hinged beam of example 4. 

 2
Lzk kN m   4

NLzk kN m   Pzk kN  
With Shear 

Deformation 
Without Shear 
Deformation 

Tsiatas 
(2010) 

0 0 0 0.31189 0.31259 0.31272 

1000 0 0 0.25452 0.25537 0.25546 

0 1000 0 0.30742 0.30812 0.30825 

0 0 1000 0.25086 0.25172 0.25176 

1000 1000 0 0.25168 0.25253 0.25262 

1000 0 1000 0.20057 0.20152 0.20154 

0 1000 1000 0.24820 0.24906 0.24909 

1000 1000 1000 0.19912 0.20005 0.20009 

 

Table 2.7. Deflections (m) at the midpoint of the hinged-fixed beam of example 4. 

 2
Lzk kN m   4

NLzk kN m   Pzk kN  
With Shear 

Deformation 
Without Shear 
Deformation 

Tsiatas 
(2010) 

0 0 0 0.28398 0.28184 0.28207 

1000 0 0 0.23144 0.23022 0.23038 

0 1000 0 0.28052 0.27849 0.27871 

0 0 1000 0.22395 0.22222 0.22242 

1000 1000 0 0.22933 0.22816 0.22832 

1000 0 1000 0.17989 0.17894 0.17910 

0 1000 1000 0.22204 0.22038 0.22058 

1000 1000 1000 0.17889 0.17796 0.17812 

 

Table 2.8. Deflections (m) at the midpoint of the fixed-fixed beam of example 4. 

 2
Lzk kN m   4

NLzk kN m   Pzk kN  
With Shear 

Deformation 
Without Shear 
Deformation 

Tsiatas 
(2010) 

0 0 0 0.25747 0.25292 0.25324 

1000 0 0 0.20956 0.20651 0.20675 

0 1000 0 0.25492 0.25054 0.25086 

0 0 1000 0.19759 0.19359 0.19390 

1000 1000 0 0.20807 0.20511 0.20533 

1000 0 1000 0.15997 0.15757 0.15757 

0 1000 1000 0.19633 0.19242 0.19274 

1000 1000 1000 0.15932 0.15673 0.15696 
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2.4.5 Example 5 – Axially Loaded Cantilever Beam on Pasternak Foundation 

In order to illustrate the influence of axial loading to the response of beam-foundation 

systems, a cantilever beam of length l 1.0m , (
7 2E 21 10 kN / m  , v 0.3 , 

3 2A 2.9 10 m  , -6 4
yI 5.124 10 m  , za 4.513 ) resting on a Pasternak type 

foundation of stiffness 
2

Lzk 2000 kN / m  , Pzk 1000 kN  , is examined. The beam is 

subjected to a uniformly distributed axial compressive xp 100kN / m  and transverse 

zp 200kN / m  loading as well as to a concentrated compressive axial force at its end 

 xP l 200kN . 

In Fig.2.19 the deflection curves of the beam are presented performing either a 

linear or a nonlinear analysis and taking into account or ignoring shear deformation 

effect. From this figure, the influence of the shear deformation effect to the performed 

analysis is remarked. Moreover, in Table 2.9 the deflections and the bending moments 

at the ends x l  and x 0 , respectively of the beam are presented for both of the 

aforementioned cases of analysis and taking into account or ignoring shear deformation 

effect. From the above analysis, it is easily concluded that the geometrically nonlinear 

analysis and the shear deformation effect are of paramount importance. 

 

 

Fig. 2.19. Deflection curves along the cantilever beam of example 5. 

0 0.2 0.4 0.6 0.8 1
Length (m)

0.03

0.02

0.01

0

D
ef

le
ct

io
n 

w
( m

)

Nonlinear Analysis

Without Shear Deformation

With Shear Deformation 

Linear Analysis

Without Shear Deformation 

With Shear Deformation 

20.45%



Geometric and Material Nonlinear Analysis of Beam–Soil Interaction Systems 

52 

Table 2.9. Deflection  cm  and bending moment  kNm  at the ends x l  and x 0 , 

respectively of the beam of example 5. 
 

Analysis 
Without Shear Deformation With Shear Deformation 

Linear  Nonlinear  Linear  Nonlinear  

 w l  2.10 2.29 2.42 2.64 

 yM 0  -94.53 -99.96 -96.64 -102.9 

 

 

2.4.6 Example 6 – Free-Free Beam on 3-Parameter Foundation 

To demonstrate the range of applications of the proposed method, a free-free beam 

resting on a three-parameter foundation ( 2
Lzk 35MN m , 6 4

NLzk 3.5 10 MN m   , 

Pzk 35MN ), is examined. The beam of length l 6.0m  ( 6 2E 29 10 kN m  , 

v 0.2 , 
2A 0.135m , 3 4

yI 1.013 10 m  , za 1.2 ) is subjected to a concentrated 

axial force at its ends    x xP 0 P l 600kN    and to a concentrated transverse force at 

its midpoint  zP l / 2 100kN . 

In Figs. 2.20, 2.21 the deflection curves of the Timoshenko beam performing 

nonlinear analysis are presented, for different types of foundation modelling taking into 

account or ignoring the tensionless character of the soil, respectively. Moreover, in 

Table 2.10 the deflections at the free ends and the bending moments at the midpoint of 

the beam are presented performing either a linear or a nonlinear analysis and taking into 

account or ignoring shear deformation effect.  

In Table 2.11 the extreme values of the deflection and the foundation reaction of 

the Timoshenko beam performing a nonlinear analysis are presented, for different types 

of foundation modelling taking into account or ignoring the tensionless character of the 

soil. Finally, in Fig. 2.22 the displacement  w l / 2  versus the applied load  zP l / 2  is 

presented for various types of foundation modelling illustrating the hardening and 

softening effect of the nonlinear foundation. The significant influence of the unilateral 

soil reaction to the deflections and the importance of the modelling of the subgrade to 

the response of the beam are once again verified. 
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Fig. 2.20. Deflection along the free beam of example 6, for unilateral foundation. 

 

 

Fig. 2.21. Deflection along the free beam of example 6, for bilateral foundation. 
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Table 2.10. Deflection  410 m  at x 0  and bending moment  kNm  at x l / 2  of 

the beam of example 6, resting on a three-parameter foundation. 

Analysis 
Without Shear Deformation With Shear Deformation 

Linear  Nonlinear  Linear  Nonlinear  

 w 0  -4.60 -5.23 -4.46 -5.09 

 yM l / 2  23.0 23.5 23.8 24.2 

 
 

Table 2.11. Extreme values of the deflections  410 m  and the foundation reactions 

 kN / m  of the beam of example 6. 

 

Bilateral Winkler Unilateral Winkler 

Min w Max w 
Max 

szp  
Min w Max w Max szp  

Linear Winkler -3.00 11.2 39.4 -6.53 11.5 40.4 

Nonlinear & Linear 
Winkler 

-2.86 10.6 41.2 -6.27 10.8 42.4 

Three-Parameter 
(Positive) 

-1.97 8.09 61.1 -5.09 7.69 61.6 

Three-Parameter 
(Negative) 

-2.07 8.56 64.0 -5.23 8.06 63.9 

 

 

2.4.7 Example 7 – Pinned Beam on 3-Parameter Foundation: Unbonded Contact 

Finally, in order to demonstrate the importance of the unbonded contact between the 

structural elements and the supporting subgrade, a pinned-pinned beam of length 

l 5m  ( E 210GPa , v 0.3 , 
4 2A 86.82 10 m  , 51 45 1 4

yI 0. 0 m  , ya 1.462 , 

za 4.668 ) resting on a three-parameter foundation reacting according to the following 

relation, is examined. 

 

  
2

3
sz w 2

w
p MN / m U 5w 5w

x

  

        
 (2.42) 
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where   is a scale factor. The beam is subjected to a concentrated bending moment 

yM 100kNm  at its midpoint. 

In Figs. 2.23a,b the deflection curves of the beam and the foundation reaction 

performing nonlinear analysis and taking into account shear deformation effect are 

presented, respectively, for either bilateral or unilateral soil reaction and for two values 

of the factor  . It is worth noting that the zero values of the soil reaction curve of Fig. 

2.23b denote the detachment of the beam. Finally, in Table 2.12 the extreme values of 

the aforementioned quantities are given for both cases of bilateral and unilateral soil 

reaction and for various values of the factor  . From the aforementioned figures and 

table, it is concluded that the unilateral character of the foundation is of paramount 

importance and cannot be ignored. 
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Fig. 2.22. Midpoint displacement vs. applied load of the free beam of example 6. 

 

 

2.5 Concluding Remarks 

In this chapter, a Boundary Element Method is developed for the geometrically 

nonlinear analysis of shear deformable beams of arbitrary doubly symmetric simply or 

multiply connected constant cross-section, partially supported on nonlinear three-
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parameter tensionless foundation, undergoing moderate large deflections under general 

boundary conditions. The beam is subjected to the combined action of arbitrarily 

distributed or concentrated transverse loading and bending moments in both directions 

as well as to axial loading. The main conclusions that can be drawn from this 

investigation are 

i. The proposed beam formulation is capable of yielding results of high accuracy, as 

verified by comparing with analytical, semi-analytical, FEM and experimental 

results, with minimum computational cost, providing a simple, reliable and efficient 

computational tool for the static analysis of beam-foundation systems.  

 

 
(a) (b) 

Fig. 2.23. Deflection curves (a) and foundation reactions (b) of the beam of example 7. 

 

Table 2.12. Extreme values of the displacements  mm  and the foundation reactions

 kN / m  of the beam of example 7. 
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2.0 -0.706 0.706 9.31 -1.42 0.346 5.18 
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ii. The influence of geometrical nonlinearity is illustrated through the significant 

discrepancy between the results of the linear and the nonlinear analyses. 

iii. The proposed model takes into account the coupling effects of bending and shear 

deformations along the member as well as the shear forces along the span induced 

by the applied axial loading. 

iv. In some cases, the effect of shear deformation is significant, especially for low 

beam slenderness values. 

v. The inclusion of both the coupling effect of the linear elastic springs and the 

nonlinear character of the subgrade reaction influences the response of the beam 

and makes the modelling of the mechanical behaviour of the subsoil more realistic 

and effective. 

vi. The significant influence of the unilateral character of the foundation in both the 

deflections and the soil reaction, especially in the case of a stiff soil is 

demonstrated. 

vii. The lift up of the beam caused by the tensionless character of the foundation is 

observed, leading to significantly different response compared to the bilateral one.  

viii. The developed procedure retains most of the advantages of a BEM solution while 

requiring a small number of nodal points to achieve high accuracy. 

ix. The use of BEM enables the accurate calculation of the stress resultants which are 

very important during both the analysis and the design of beam-foundation systems. 
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Chapter 3
Geometrically Nonlinear Dynamic Analysis of 

Shear Deformable Beams on Nonlinear Foundation
 
 
3.1 Introduction 

Many problems related to Soil–Structure–Interaction can be modelled by means of a 
beam or beam-column on/in nonlinear foundation. This model is commonly employed 
in the analysis of practical applications like spread footing, continuously supported 
pipelines and strip foundations. Also, the vibration analysis of beams on nonlinear 
foundations traversed by moving loads is of great interest in the area of high-speed 
transportation or rocket-sledge technology. Moreover, the seismic response of column-
pile systems under transient earthquake excitation is an area of extensive active 
research, since pile foundation is widely used to support superstructures such as bridges, 
wind-turbines and offshore platforms.  

Over the past thirty years, many researchers have developed and validated various 
methods for the study of Dynamic Beam–Soil–Interaction. Moreover, evidence from 
case histories (Mizuno1987, Makris & Gazetas 1996, Matsui 1996, Tokimatsu 1996, 
Gazetas & Mylonakis 1998) as well as from experimental investigations (Chau et al. 
2009, Manna & Baidya 2010) and field studies (Novak 1976, Burr et al. 1997, Blaney & 
O’Neill 1989, Han & Novak 1988, Han 1989, Marsafawi et al. 1992, Nikolaou et al. 
2001) have indicated the importance of a rigorous and precise dynamic analysis, since 
damages due to interaction may occur during a seismic excitation. 

Besides, having in mind the magnitude of the arising axial forces due to self weight, 
dead and environmental loading and the importance of weight saving in engineering 
structures, the study of nonlinear effects on the analysis of supporting structural 
elements becomes essential. This nonlinearity results from retaining the square of the 
slope in the strain–displacement relations (intermediate nonlinear theory), avoiding in 
this way the inaccuracies arising from a linearized second–order analysis. Moreover, 
due to the intensive use of materials having relatively high shear modulus, the error in 
the beam analysis incurred from the ignorance of the effect of shear deformation may be 
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substantial, particularly in the case of heavy lateral loading. All of the above concepts 
constitute the motive for the development of an advanced beam model capable of 
performing rigorous beam–soil kinematic and inertial interaction analysis accounting 
for the effects induced by geometrical nonlinearity, rotary inertia and shear deformation. 

The Beam on Nonlinear Foundation model is a powerful tool capable of analyzing 
in detail the Beam–Soil–Interaction and has been adopted by several authors producing 
results of remarkable accuracy compared to rigorous numerical schemes. Both the 
geometrical nonlinearities and the interaction effects (Kavvadas & Gazetas 1993, 
Mylonakis et al. 1997, Mylonakis 2001) can be studied through a beam model which 
retains the advantage of time performance and deriving directly perceptible quantities, 
while the obtained results are in remarkable agreement with more sophisticated models 
(i.e. two/three dimensional finite element analysis) (Nikolaou et al. 2001, Maiorano et 
al. 2009, Dezi et al. 2010, Thavaraj et al. 2010, Di Laora et al. 2013).  

When the beam displacements are small, a wide range of linear analysis tools, such 
as modal analysis, can be used and some analytical results are possible. Analytical 
solutions of problems involving beam vibrations of simple geometry and boundary 
conditions have received a good amount of attention in the literature, with pioneer the 
works of Krylov (1905) and later the one of Timoshenko (1911) who determined the 
dynamic stresses in beam structures. Furthermore, contributions concerning the linear 
transverse vibrations of simply supported beams traversed by a constant force moving at 
a constant velocity were presented by Inglis (1934), Lowan (1935) and later on by 
Kolousek (1973) and Fryba (1999). In these approaches the results are usually 
expressed as an infinite sum of normal modes, obtaining the contribution of each mode 
by the method of integral transformation. Moreover, Hetenyi (1966) studied the 
elementary Euler-Bernoulli beam on elastic Winkler foundation, while Weitsman 
(1971) presented an Euler-Bernoulli beam subjected to a concentrated load moving with 
constant speed resting on a tensionless foundation, relating the load amplitudes that 
bring the beam to the verge of separation from the foundation with the velocity of 
motion. Rades (1972) presented the steady-state response of a finite rigid beam resting 
on a foundation defined by one inertial and three elastic parameters in the assumption of 
a permanent and smooth contact between beam and foundation considering only 
uncoupled modes. Wang and Stephens (1977) studied the natural vibrations of a 
Timoshenko beam on a Pasternak-type foundation showing the effects of rotary inertia, 
shear deformation and foundation constants of the beam employing general analytic 
solutions for simple cases of boundary conditions. Choros and Adams (1979) 
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investigated the steady-state deformation of an infinite beam on a tensionless undamped 
elastic foundation under a single moving force, while Morgan and Sinha (1983) 
investigated the stability of Beck’s column supported by three different viscoelastic 
foundations, namely the standard linear soil, the Maxwell and the Kelvin-Voigt one, 
performing an exact dynamic analysis for each foundation model. Nevertheless, due to 
the simplifying assumptions made to all of the above contributions, it must be stressed 
that the results obtained correspond only to an estimate of the structural response.   

Since then, important development has been achieved regarding more rigorous 
linear dynamic analysis of beams on nonlinear foundation. To begin with, Kuczma and 
Switka (1990) presented a solution algorithm for the analysis of unilateral, frictionless 
contact between a beam and a viscoelastic foundation. The problem was formulated in 
the form of a variational inequality, from which after space discretization by the finite 
element method, a linear complementary problem was derived. Later, Huang and Zou 
(1994) analysed the dynamic response of an elastic beam on a linear viscoelastic 
Winkler foundation, impacted by a moving body at a low velocity, while Thambiratnam 
and Zhuge (1996) studied the dynamic analysis of beams on elastic foundation 
subjected to moving point loads employing the finite element method and modelling the 
foundation by springs of variable stiffness. Matsunaga (1999) employing the method of 
power series expansion presented the natural frequencies and buckling stresses of a deep 
beam-column on a two-parameter elastic foundations taking into account the effect of 
shear deformation, depth change and rotary inertia. De Rosa (1995) and El-Mously 
(1999) derived explicit formulae for the fundamental natural frequencies of finite 
Timoshenko-beams mounted on finite Pasternak foundation. Sun (2001) employed the 
Fourier transform to solve the problem of steady-state response of a beam on a 
viscoelastic foundation subjected to a harmonic line load. Boulanger et al. (1999) 
developed a beam formulation for analyzing seismic soil–pile–structure interaction and 
evaluated it against the results of a series of dynamic centrifuge model tests. Sensitivity 
of the results to dynamic p-y model parameters and site response calculations were also 
examined, while Nikolaou et al. (2001) implemented a beam model for piles in 
homogeneous and layered soils illustrating that the magnitude of kinematic moments 
depends mainly on the stiffness contrast between the soil layers, the pile–soil stiffness 
contrast, the excitation frequency, and the number of excitation cycles. Chen et al. 
(2001) established the dynamic stiffness matrix of an infinite or semi-infinite 
Timoshenko beam on a Winkler viscoelastic foundation subjected to a harmonic 
moving load, followed by Sun (2001a,b, 2002) who proposed a closed-form 
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displacement responses of beam-type structures subjected to moving line or 
concentrated loads after obtaining a Green’s function of the beam on elastic or 
viscoelastic foundation by means of Fourier transform. Coskun (2003) studied the 
response of an elastic beam on a two-dimensional tensionless Pasternak foundation 
subjected to a central concentrated harmonic load using trigonometric-hyperbolic 
functions, while Chen et al. (2004) proposed a mixed formulation combining the state-
space and the differential quadrature methods, for the bending and free vibration 
analysis of arbitrarily thick beams resting on a Pasternak elastic foundation. Hutchinson 
et al. (2004) used nonlinear dynamic analyses to evaluate the inelastic seismic response 
of bridge and viaduct structures supported on extended pile shafts. For the nonlinear 
dynamic soil–pile interaction analyses the beam on nonlinear foundation model was 
employed. The results focused on the influence of the ground motion characteristics and 
the variations in structural configurations on the performance measures which evaluated 
the inelastic seismic response of the structures examined. Kargarnovin and Younesian 
(2004, 2005) presented the response of an infinite length Timoshenko beam of uniform 
cross-section, supported by either a generalized Pasternak-type or a nonlinear 
viscoelastic foundation and subjected to arbitrarily distributed harmonic moving loading 
and employing either complex Fourier transformation in conjunction with the residue 
and convolution integral theorems or a straightforward technique using Lindstedt–
Poincare perturbation method in conjunction with a Fourier integral transformation. 
Muscolino and Palmeri (2007) studied the response of beams resting on viscoelastically 
damped foundation under moving single–degree–of–freedom (SDoF) oscillators 
through a novel state-space formulation, in which a number of internal variables is 
introduced with the aim of representing the frequency-dependent behaviour of the 
viscoelastic foundation. Ying et al. (2008) derived an exact solution for bending and 
free vibration analysis of functionally graded beams resting on a Winkler–Pasternak 
elastic foundation based on the two-dimensional theory of elasticity and employing the 
state space method. Lately, Zehsaz et al. (2009) studied the dynamics of railway, as a 
Timoshenko beam of limited length, lying on a Pasternak viscoelastic foundation, 
subjected to moving load employing the modal superposition method, while Calim 
(2009) presented the dynamic behaviour of Timoshenko beams on Pasternak-type 
viscoelastic foundation subjected to time-dependent loading, employing the 
complementary functions method. Millan and Dominguez (2009) developed a 
simplified model for the analysis of the dynamic response of structures on piles and pile 
groups in viscoelastic or poroelastic soils under time harmonic excitation using a 
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coupled boundary element–finite element model able to take into account dynamic pile–
soil–pile interaction in a rigorous manner. Younesian and Kargarnovin (2009) presented 
the dynamic response of infinite beams supported by random viscoelastic Pasternak 
foundation subjected to harmonic moving loads, employing the first order perturbation 
theory and calculating appropriate Green’s functions. Gerolymos et al. (2009) employed 
nonlinear distributed Winkler-type springs and dashpots to investigate the soil-pile-
bridge system interaction to seismic loading with emphasis on structural nonlinearity. 
The analyses focused on the influence of various parameters such as soil compliance 
and pile yielding on the local and global ductility demands and the maximum drift ratio. 
Castelli and Maugeri (2009) developed a simplified pseudostatic approach based on the 
p-y soil reaction in order to evaluate the internal response of piles under earthquake 
loading, verifying the obtained results with experimental and numerical ones. Dezi et al. 
(2010) performed a parametric kinematic seismic interaction analysis of single piles 
embedded in soil deposit focusing on the bending moments induced by the transient 
motion by employing an Euler–Bernoulli beam embedded in a layered Winkler–type 
medium. Dimitrovova (2010) presented the transverse vibrations induced by a load 
moving at a constant speed along a finite or an infinite beam resting on a piecewise 
homogeneous viscoelastic foundation employing the normal-mode analysis and paying 
attention to the amplification of the vibrations arising from a foundation discontinuity. 
Ansari et. al. (2010) studied the vibration of a finite Euler–Bernoulli beam, supported by 
non-linear viscoelastic foundation and traversed by a moving load employing the 
Galerkin method, while the solution for different harmonics is obtained using the 
Multiple Scales Method. Chen and Chen (2011) studied the effect of damping on the 
multiple steady state deformations of an infinite beam resting on a tensionless Winkler-
type foundation subjected to a point load moving with a sub- critical speed. Sica et al. 
(2011) highlighted the severity of kinematic pile bending through a parametric study of 
the dynamic response of piles to seismic loading based on a properly calibrated a beam 
model where the pile was modelled though an Euler–Bernoulli beam embedded in soil 
consisting of two homogeneous viscoelastic layers of sharply different stiffness and 
subjected to vertically propagating seismic S waves. Recently, Anoyatis et al. (2013) 
employed a beam model for investigating the behaviour of kinematically stressed piles 
for different boundary conditions at the head and tip deriving new closed-form 
analytical solutions. 

As the beam displacements become larger, the induced geometric nonlinearities 
result in effects that are not observed in linear systems. Contrary to the good amount of 
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attention in the literature concerning the linear dynamic analysis of beam supported on 
nonlinear foundation, very little work has been done on the corresponding nonlinear 
problem. Lewandowski (1989) studied the nonlinear free vibration analysis of multispan 
beams on elastic supports, employing the dynamic finite element method, neglecting the 
horizontally and rotary inertia forces and considering the beams as distributed mass 
systems. Moreover, Chang and Liu (1996) performed the deterministic and random 
vibration nonlinear analysis of a beam on an elastic foundation subjected to a moving 
load employing the Galerkin method in conjunction with the finite element method, 
while the nonlinear system of differential equation has been solved by the implicit direct 
integration method. Rotary inertia and shear deformations are neglected, while the 
effects of longitudinal deflections and inertia have been considered so that the coupled 
equations of longitudinal and transverse deflections can be derived based on Euler-
Bernoulli hypothesis. Chen et al. (2001) performing a geometrically nonlinear analysis 
with constant axial force presented the dynamic stiffness matrix of an infinite 
Timoshenko beam on viscoelastic foundation subjected to a harmonic moving load and 
determined the critical velocities and the resonant frequencies. Kim and Cho (2006) 
presented the vibration and buckling of an infinite beam-column under constant axial 
force, resting on an elastic foundation and subjected to moving loads of either constant 
or harmonically varying amplitude with a constant advance velocity, taking into account 
shear deformation effect. Finally, Arboleda-Monsalve et al. (2007) presented a 
Timoshenko beam resting on a two-parameter elastic foundation with generalized end 
conditions. The proposed model includes the frequency effects on the stiffness matrix 
and load vector as well as the coupling effects of bending and shear deformations along 
the member and the shear forces along the span induced by the applied axial load as the 
beam deforms according to the ‘modified shear equation’ proposed by Timoshenko. 

In this chapter, a Boundary Element Method (BEM) is developed for the 
geometrically nonlinear response of shear deformable beams of simply or multiply 
connected constant cross-section, partially supported on nonlinear three-parameter 
tensionless viscoelastic foundation, undergoing moderate large displacements under 
general boundary conditions. The beam is subjected to the combined action of 
arbitrarily distributed or concentrated transverse loading and bending moments in both 
directions as well as to axial loading. This dynamic loading represents the most general 
case, which includes impact loading, transverse moving loading, seismic excitation, 
beam–soil interaction, etc. To account for shear deformations, the concept of shear 
deformation coefficients is used. Five boundary value problems are formulated with 
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respect to the transverse displacements, to the axial displacement and to two stress 
functions and solved using the Analog Equation Method (Katsikadelis 2002), a BE 
based method. Application of the boundary element technique yields a system of 
nonlinear Differential-Algebraic Equations (DAE), which is solved iteratively using the 
Petzold-Gear backward differentiation formula (Brenan et al. 1989), a linear multistep 
method for differential equations coupled to algebraic equations. The evaluation of the 
shear deformation coefficient is accomplished from the aforementioned stress function 
using only boundary integration.  

Numerical examples of great practical interest are worked out to demonstrate the 
efficiency and the accuracy of the developed method through comparison with literature 
and FEM results, as well as its range of applications. In these examples, the effects 
arising in the nonlinear dynamic analysis of beams on nonlinear foundation are 
illustrated. Subsequently, an extensive case study is carried out on a pile–column–deck 
system of a bridge, founded in two cohesive layers of sharply different stiffness and 
subjected in various earthquake excitations, providing insight to several phenomena. 
The essential features and novel aspects of the present formulation compared with 
previous ones are summarized as follows. 

i. The proposed beam model accounts for the geometrical non-linearity by retaining 
the square of the slope in the strain–displacement relations. For that purpose the 
Total Lagrangian formulation (intermediate non-linear theory) has been adopted. 

ii. Shear deformation effect and rotary inertia are taken into account in the nonlinear 
dynamic analysis of beams on nonlinear foundation. 

iii. The proposed model accounts for the coupling effect of bending and shear 
deformations along the member as well as shear forces along the span induced by 
the applied axial loading. 

iv. The shear deformation coefficients are evaluated using an energy approach, instead 
of Timoshenko’s (Timoshenko & Goodier 1984) and Cowper’s (1966) definitions, 
for which several authors (Schramm et al. 1994, 1997) have pointed out that one 
obtains unsatisfactory results or definitions given by other researchers (Stephen 
1980, Hutchinson 2001) for which these factors take negative values. 

v. The beam is subjected to arbitrary external loading and is supported by the most 
general boundary conditions including elastic support or restrain, while its cross 
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section is an arbitrary doubly symmetric one, unless it is mentioned otherwise (i.e. 
mono symmetric cross sections). 

vi. The nonlinear half-space is approximated by a tensionless three-parameter 
viscoelastic foundation.  

vii. Soil nonlinearity can also be taken under consideration by means of a hybrid spring 
configuration consisting of a nonlinear (p-y) spring for the near–field plastification, 
connected in series to a Kelvin–Voigt element representing the far–field 
viscoelastic character of the soil. 

viii. In cases of earthquake excitations the site seismic response is obtained through one 
dimensional shear wave propagation analysis. 

ix. The proposed model employs a BEM approach, while a small number of nodal 
points are required to achieve high accuracy. 

x. The use of BEM permits the effective computation of derivatives of the field 
functions (e.g. stresses, stress resultants) which is very important during the 
dynamic analysis of beams. 

Finally, it is worth mentioning that the outcome of the conducted research activity 
presented in this chapter of the doctoral dissertation has been published in international 
journals (Sapountzakis & Kampitsis 2010b, 2011b, 2013a,b, Kampitsis et al. 2013a, 
Sapountzakis et al. 2014), in national and international conferences (Sapountzakis & 
Kampitsis 2009a,b, Sapountzakis et al. 2010, Sapountzakis & Kampitsis 2010c,d, 
2011c,d, 2012c, Sapountzakis et al. 2013, Kampitsis et al. 2013b) and in books 
published by international publishing companies (Sapountzakis & Kampitsis 2010f, 
2013e). 

 
 

3.2 Statement of the Problem 

Let us consider a prismatic beam of length l  (Fig. 3.1a), of constant arbitrary doubly 
symmetric cross-section of area A . The homogeneous isotropic and linearly elastic 
material of the beam cross-section, with modulus of elasticity E , shear modulus G  and 

Poisson’s ratio v  occupies the two dimensional multiply connected region Ω  of the 

y,z  plane and is bounded by the ( )j j 1,2,...,KΓ =  boundary curves, which are 

piecewise smooth, i.e. they may have a finite number of corners. In Fig. 3.1b Cyz  is the 



Chapter 3 Geometrically Nonlinear Dynamic Analysis of Shear Deformable Beams on Nonlinear Foundation 

67 

principal bending coordinate system through the cross section’s centroid. The beam is 
partially supported on a nonlinear tensionless three-parameter viscoelastic soil. The 

foundation model is characterized by the linear Winkler moduli Lxk , Lyk , Lzk , the 

nonlinear Winkler moduli NLyk , NLzk  the Pasternak (shear) foundation moduli Pyk , Pzk  

and the damping coefficients yc , zc  corresponding to the directions y, z respectively. 

Having in mind that for the longitudinal direction the reaction is a bilateral one 
exhibiting both compressive and tensile tractions, while for the transverse directions is a 
unilateral one (accounting for the unbonded contact between beam and subgrade), the 
interaction pressure at the interface can be written as 
 

 ( )sx Lxp k u x,t=  (3.1a) 

 ( ) ( ) ( )sy reyp x,t H x,t p x,t= %      ( ) ( ) ( )sz rezp x,t H x,t p x,t= %  (3.1b,c) 

 
where  
 

 ( ) ( ) ( ) ( ) ( )2
3

rey Ly NL y Py y2
v x,t v x,t

p x,t k v x,t k v x,t k c
tx

∂ ∂
= + − + 

∂∂
 (3.2a) 

 ( ) ( ) ( ) ( ) ( )2
3

rez Lz NLz Pz z2
w x,t w x,t

p x,t k w x,t k w x,t k c
tx

∂ ∂
= + − + 

∂∂
 (3.2b) 

 

with ( ) ( )y zH x,t , H x,t % %  being the Heaviside unit step functions defined as 

 

 ( )
( )
( )

rez

rez

1
y

if p x,t
H x,t

if p x,t 0

       > 0 ⎧⎪ = ⎨
0         ≤ ⎪⎩

%     ( )
( )
( )

rey

rey

1
z

if p x,t
H x,t

if p x,t 0

       > 0 ⎧⎪ = ⎨
0         ≤ ⎪⎩

%   (3.3a,b) 

 

The foundation reaction reyp , rezp  of eqns. (3.2a,b) takes into account the nonlinear 

behaviour of the soil (e.g. ballast and rail-bed) as proposed by Dahlberg (2002) who 
demonstrated that the employed nonlinear three-parameter model captures accurately 
the hardening behaviour of the foundation whereas the equivalent linear fails, yielding 
in considerable differences in the beam-foundation system response. Later, Wu and 
Thompson (2004) presented a similar nonlinear model and studied the problem of 
wheel/track impact employing the finite element method. Moreover, for real sample of 
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the hardening behaviour of the foundation one can refer to (Iwnicky 2007) where 
detailed field measurement results are presented. 

The beam is subjected to the combined action of the arbitrarily distributed or 

concentrated time dependent axial loading ( )x xp p x,t= , transverse loading 

( )y yp p x,t= , ( )z zp p x,t=  acting in the y , z  directions, respectively and bending 

moments ( )y ym m x,t= , ( )z zm m x,t=  along y , z  axes, respectively (Fig. 3.1a). 

 

(a)

y,v 

z,w 

Γ2 ΓΚ 

Γ1 

C≡S 

(Ω) 

n 
t s 

(C: Center of gravity 
S: Shear center)                                         (b)

Fig.3.1. x-z plane of prismatic beam under axial-flexural loading (a) with arbitrary 
doubly symmetric cross-section (b). 

 
 

3.2.1 Displacements, Strains & Stresses 

Under the action of the aforementioned loading, the displacement field of the beam 
taking into account shear deformation effect is given as (Ramm & Hofmann 1995) 
 

 ( ) ( ) ( ) ( )z yu x,y,z,t u x,t y x,t z x,tθ θ= − +  (3.4a) 

 ( ) ( )v x,t v x,t=        ( ) ( )w x,t w x,t=  (3.4b,c) 
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where u , v , w  are the axial and transverse beam displacement components with 

respect to the Cyz  system of axes; ( )u x,t , ( )v x,t , ( )w x,t  are the corresponding 

components of the centroid C  and ( )y x,tθ , ( )z x,tθ  are the angles of rotation due to 

bending of the cross-section with respect to its centroid. It is worth here noting that 
since the additional angle of rotation of the cross-section due to shear deformation is 
taken into account, the one due to bending is not equal to the derivative of the 

displacements (i.e. z v'θ ≠ , y w'θ ≠ ). 

Employing the strain-displacement relations of the three-dimensional elasticity the 
components of the Green-Lagrange strain are defined as  

 

 
2 2 2

xx
u 1 u v w
x 2 x x x

ε
⎡ ⎤∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 (3.5a) 

 
2 2 2

yy
v 1 u v w
y 2 y y y

ε
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎢ ⎥= + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

 (3.5b) 

 
2 2 2

zz
u 1 u v w
z 2 z z z

ε
⎡ ⎤∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 (3.5c) 

 xy
v u u u v v w w
x y x y x y x y

γ
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= + + + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (3.5d) 

 xz
w u u u v v w w
x z x z x z x z

γ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + + + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (3.5e) 

 yz
w v u u v v w w
y z y z y z y z

γ
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= + + + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (3.5f) 

 
Moreover, assuming relatively small centroidal axial displacement and moderate large 
transverse displacements (Ramm & Hofmann 1995, Rothert & Gensichen 1987, Brush 
& Almroth 1975) while strains remain small, the following strain components can be 
easily obtained 
 

 
2 2

xx
u 1 v w
x 2 x x

ε
⎡ ⎤∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 (3.6a) 



Geometric and Material Nonlinear Analysis of Beam–Soil Interaction Systems 

70 

 xz
w u v v w w
x z x z x z

γ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞= + + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
 (3.6b) 

 xy
v u v v w w
x y x y x y

γ
⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂

= + + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
 (3.6c) 

 yy zz yz 0ε ε γ= = =  (3.6d,e,f) 

 

where it has been assumed that for moderate displacements ( )2u u
x x

∂ ∂<<∂ ∂ , 

( )( ) ( ) ( )u u w u
x z x z

∂ ∂ ∂ ∂<< +∂ ∂ ∂ ∂ , ( )( ) ( ) ( )u u v u
x y x y

∂ ∂ ∂ ∂<< +∂ ∂ ∂ ∂ . Substituting 

the displacement components (3.4) to the strain-displacement relations (3.6), the strain 
components can be written as 
 

 ( ) ( )2 2
xx y z

1x, y,z,t u z y v w
2

ε θ θ′ ′′ ′ ′= + − + +  (3.7a) 

 xy zvγ θ′= −           xz ywγ θ′= +  (3.7b,c) 

 

where ( )′  denotes differentiation with respect to x  and xyγ , xzγ  are the additional 

angles of rotation of the cross-section due to shear deformation. 
Considering strains to be small and assuming an isotropic and homogeneous 

material, the non vanishing work conjugate stress components of the second Piola–
Kirchhoff stress tensor are defined in terms of the strain ones as 
 

 
xx xx

xy xy

xz xz

S E 0 0
S 0 G 0

0 0 GS

ε
γ

γ

⎧ ⎫ ⎧ ⎫⎡ ⎤
⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭ ⎩ ⎭

 (3.8) 

 
or employing the strain-displacement relations (3.7) as  
 

 ( )2 2
xx y z

1S E u z y v w
2

θ θ⎡ ⎤′ ′′ ′ ′= + − + +⎢ ⎥⎣ ⎦
 (3.9a) 

 ( )xy zS G v θ′= −          ( )xz yS G w θ′= +  (3.9b,c) 
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3.2.2 Stress Resultants, Governing Equations of Motion, Boundary and Initial 
Conditions 

The governing equations of motion and the boundary conditions of the beam-foundation 
system subjected to nonlinear vibrations are obtained employing Hamilton’s principle in 
the total Lagrange formulation, neglecting body forces, defined as 
 

 ( )int ext
2

1

t
bt U U K W dt 0δ + − − =∫  (3.10) 

 

where ( )δ ⋅  denotes variation of quantities, 1 2t ,t  are the initial and the final times of two 

sequential configurations, while intU  is the stain energy of the beam due to normal and 

shear stress, bU  is the strain energy of the elastic boundary conditions and K , extW  are 

the kinetic energy and the external load work, respectively given as 
 

 ( )int dxx xx xy xy xz xzVU S S S Vδ δε δγ δγ= + +∫  (3.11a) 

 ( )2 2 2 2 2 2
b

1
2

b b b b b
u b w b y yb v b z zb

b
U k u k w k k v kθ θδ δ θ θ

⎛ ⎞
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⎝ ⎠
∑  (3.11b) 

 
( ) ( )( )
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d
sy szx y p y y z p z zL

b b b b b
x b y b z zb z b y yb

b

W p u p v W m p w W m x

N u V v M V w M

δ δ δ δ δθ δ δ δθ

δ δ δθ δ δθ

= + − + + − + +

          + + + + +

∫

∑
 (3.11c) 

 ( )2 2 21 d
2 VK u v w Vδ ρ δ δ δ= + +∫ & & &  (3.11d) 

 

where ( ) &  denotes differentiation with respect to time t , b
jk , ( )y zj u,v,w, ,θ θ=  are the 

translational and rotational springs and b
xN , b

zV , b
yV , b

yM  and b
zM  are the externally 

applied forces and moments at the boundaries, V  is the initial volume of the beam in 
the undeformed configuration, while the variations of strains are expressed in terms of 
displacements as  
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2 2
xx y z

y z

1u z y v w
2

u z y v v w w

δε δ δ θ δ θ δ

δ δ θ δ θ δ δ

′ ′′ ′ ′= + − + + =

′ ′′ ′ ′ ′ ′        = + − + +
 (3.12a) 

 ( ) ( )xy zvδγ δ δ θ′= −        ( ) ( )xz ywδγ δ δ θ′= +  (3.12b,c) 

 
 Substituting the expressions of the stress components (3.9) into the stress resultants 
of the beam defined as  
 
 xxN S dΩ Ω= ∫  (3.13a) 

 
yy xyAQ S dΩ= ∫         

zz xzAQ S dΩ= ∫  (3.13b,c) 

 y xxS zdΩΜ Ω= ∫         z xxS ydΩΜ Ω= −∫  (3.13d,e) 

 
the following equation are obtained  
 

 ( )2 21N EA u v w
2

⎡ ⎤′ ′ ′= + +⎢ ⎥⎣ ⎦
 (3.14a) 

 y y xyQ GA γ=          z z xzQ GA γ=  (3.14b,c) 

 y y yM EI θ ′=           z z zM EI θ ′=  (3.14d,e) 

 
where N  is the axial force, y zQ ,Q  are the shear forces and y zM , M  are the bending 

moments, A  is the cross section area while yI , zI  the moments of inertia with respect 

to the principle bending axes given as 
 
 A dΩ Ω= ∫  (3.1a) 

 2
yI z dΩ Ω= ∫          2

zI y dΩ Ω= ∫  (3.15b,c) 

 

and yGA , zGA  are its shear rigidities of the Timoshenko’s beam theory, where 

 

 z z
z

1A A A
a

κ= =          y y
y

1A A A
a

κ= =  (3.16a,b) 
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are the shear areas with respect to y , z  axes, respectively with yκ , zκ  the shear 

correction factors and ya , za  the shear deformation coefficients (Appendix A3).  

 Hamilton's principle requires that this first-order variation is zero for all possible 
perturbations, thus exploiting the stress-displacement eqns. (3.9), the relations 
describing the displacement field (3.4) and after conducting algebraic manipulations the 
D' Alembert's equilibrium equations, expressed as a function of the stress resultants 
acting on the cross section of the beam in the deformed configuration are derived as 
 

 ( ) x xu EA u w w v v k u pρΑ ′′ ′ ′′ ′ ′′− + + + =&&  (3.17a) 

 ( ) ( )y z sy yv Nv GA v p pρΑ θ′ ′′ ′′− − − + =&&  (3.17b) 

 ( )z z z z y z zI EI GA v mρ θ θ θ′′ ′− − − =&&  (3.17c) 

 ( ) ( )z y sz zw Nw GA w p pρΑ θ′ ′′ ′′− − +  + =&&  (3.17d) 

 ( )y y y y z y yI EI GA w mρ θ θ θ′′ ′− + + =&&  (3.17e) 

 
 Eqns. (3.13) constitute the governing coupled differential equations of a 
Timoshenko-Rayleigh beam, supported on a tensionless nonlinear three-parameter 
viscoelastic foundation, subjected to nonlinear vibrations due to the combined action of 
arbitrarily distributed or concentrated transverse loading as well as to axial loading, 
accounting for the effects of geometrical nonlinearity, rotary inertia and shear 
deformation. The motivation to use this particular formulation is justified from the 
intention of gaining the advantages of a more rigorous model while retaining the 
simplicity of a beam approach. As it is well known (Antes et al. 2004), Timoshenko- 
Rayleigh’s beam theory gives more reliable results than Euler–Bernoulli’s one, 
especially at higher frequencies, thus beam-structures under arbitrary dynamic 
excitations (i.e. earthquake, moving load) should be analyzed on the basis of this refined 
approach. Moreover, it has been proved that the magnitude of the maximum 
displacement of a Timoshenko beam is larger than that of an Euler–Bernoulli one, while 
the magnitude of the bending moments differs as well (Younesian & Kargarnovin 2009, 

Sapountzakis & Kampitsis 2011). 
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 Subsequently, by combining equations (3.17b,c) and (3.17d,e) in order to eliminate 

the angles of rotation due to bending  ( )y x,tθ , ( )z x,tθ , the following differential 

equations with respect to u , v , w  are derived as 
 

 ( ) x xu EA u w w v v k u pρΑ ′′ ′ ′′ ′ ′′− + + + =&&  (3.18a) 

 

( ) ( )

( )

2
z

z sy sy y2
y

22
z

z sy y y z2 2
y

EI vv EI v Nv p Nv A p " p "
GA x

Nvv II A v p p p m
GAx t

ρΑ ρ

ρρ ρ

⎛ ⎞∂′ ′′′′′′′ ′ ′+ − + + − − + −⎜ ⎟⎜ ⎟∂⎝ ⎠
⎛ ⎞′′∂∂ ′⎜ ⎟      − − − − + = −
⎜ ⎟∂ ∂⎝ ⎠

&&
&&

&&
&&&& && &&

 (3.18b) 

 

( ) ( )

( )

2
y

y sz sz z2
z

22
y

y sz z z y2 2
z

EI ww EI w"" Nw' p Nw' A p " p "
GA x

I Nw'wI Aw p p p m
GAx t

ρΑ ρ

ρ
ρ ρ

⎛ ⎞∂′ ′′′+ − + + − − + −⎜ ⎟⎜ ⎟∂⎝ ⎠
⎛ ⎞′∂∂ ′⎜ ⎟        − − − − + = +
⎜ ⎟∂ ∂⎝ ⎠

&&
&&

&&
&&&& && &&

 (3.18c) 

 
 The above combined equations are easily simplified by crossing out the nonlinear 
terms and the components regarding the shear deformation effect, leading to the well 
known second order equation with respect to the axial and forth order equation with 
respect to the transverse directions.  
 The governing equations of motion are also subjected to the time dependent 
boundary conditions derived also by the Hamilton's principle as 
 

 ( ) ( ) ( ) ( ) ( )eqn. 3.14a0 0
x x

0

1EA u v w N u 0 0 N 0 N u 0 0
2

δ δ
⎡ ⎤⎛ ⎞ ⎡ ⎤′ ′ ′+ + + = ⎯⎯⎯⎯⎯→ + =⎢ ⎥⎜ ⎟ ⎣ ⎦⎝ ⎠⎢ ⎥⎣ ⎦

 (3.19a) 

 ( ) ( ) ( ) ( ) ( )eqn. 3.14al l
x x

l

1EA u v w N u l 0 N l N u l 0
2

δ δ
 

⎡ ⎤⎛ ⎞ ⎡ ⎤′ ′ ′+ + −   = ⎯⎯⎯⎯⎯→ − =⎢ ⎥⎜ ⎟ ⎣ ⎦⎝ ⎠⎢ ⎥⎣ ⎦
 (3.19b) 

 ( ) ( )3 2 0
y z y0

0

1 1EA u v v v w GA v V v 0 0
2 2

θ δ
⎡ ⎤⎛ ⎞′ ′ ′ ′ ′ ′ ′+ + + − + =⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
 (3.19c) 

 ( ) ( )3 2 l
y z yl

l

1 1EA u v v v w GA v V v l 0
2 2

θ δ
 

 

⎡ ⎤⎛ ⎞′ ′ ′ ′ ′ ′ ′+ + + − −  =⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 (3.19d) 
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 ( ) ( )2 3 0
z y z00

1 1EA u w v w w GA w V w 0 0
2 2

θ δ
⎡ ⎤⎛ ⎞′ ′ ′ ′ ′ ′ ′+ + + + + =⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
 (3.19e) 

 ( ) ( )2 3 l
z y zll

1 1EA u w v w w GA w V w l 0
2 2

θ δ
 

 

⎡ ⎤⎛ ⎞′ ′ ′ ′ ′ ′ ′+ + + + − =⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 (3.19f) 

 ( ) ( ) ( ) ( )eqn. 3.14d0 0
y y y y y y y0

EI M 0 0 M 0 M 0 0θ δθ δθ⎡ ⎤ ⎡ ⎤′ + = ⎯⎯⎯⎯⎯→ + =⎣ ⎦⎣ ⎦
 (3.19g) 

 ( ) ( ) ( ) ( )eqn. 3.14dl 0
y y y y y y yl

EI M l 0 M l M l 0θ δθ δθ
 

⎡ ⎤ ⎡ ⎤′ − = ⎯⎯⎯⎯⎯→ −   =⎣ ⎦⎣ ⎦
 (3.19h) 

 ( ) ( ) ( ) ( )eqn. 3.14e0 0
z z z z z z z0EI M 0 0 M 0 M 0 0θ δθ δθ⎡ ⎤ ⎡ ⎤′ + = ⎯⎯⎯⎯⎯→ + =⎣ ⎦ ⎣ ⎦  (3.19i) 

 ( ) ( ) ( ) ( )eqn. 3.14el 0
z z z z z z zlEI M l 0 M l M l 0θ δθ δθ  

⎡ ⎤ ⎡ ⎤′ − = ⎯⎯⎯⎯⎯→ −   =⎣ ⎦ ⎣ ⎦  (3.19j) 

 
which can be written in a more convenient form as  
 

 ( ) ( )1 2 3a u x,t N x,tα α+ =  (3.20a) 

 ( ) ( )1 2 y 3v x,t V x,tβ β β+ =         ( ) ( )1 z 2 z 3x,t x,tβ θ β Μ β+ =  (3.20b,c) 

 ( ) ( )1 2 z 3w x,t V x,tγ γ γ+ =           ( ) ( )1 y 2 y 3x,t x,tγ θ γ Μ γ+ =  (3.20d,e) 

 
at the beam ends x 0,l= , together with the initial conditions 

 

 ( ) ( )0u x,0 u x=          ( ) ( )0u x,0 u x= &&  (3.21a,b) 

 ( ) ( )0v x,0 v x=          ( ) ( )0v x,0 v x= &&  (3.21c,d) 

 ( ) ( )0w x,0 w x=        ( ) ( )0w x,0 w x= &&  (3.21e,f) 

 

where ( )0u x , ( )0v x , ( )0w x , ( )0u x& , ( )0v x&  and ( )0w x&  are prescribed functions. In 

the boundary eqns. (3.20b-e) yV , zV  and zM , yM  are the reactions and bending 

moments with respect to y , z , respectively, which together with the angles of rotation 

due to bending yθ , zθ  are given by the following relations 

 

 ( )z
y z y sy z z

y

EI vV Nv EI v Nv p p I
GA x

ρΑ ρ θ∂⎡ ⎤′′ ′′ ′′′ ′ ′= − − − + − +⎢ ⎥∂⎣ ⎦

&& &&  (3.22a) 
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 ( )y
z y z sz y y

z

EI wV Nw EI w Nw A p p I
GA x

ρ ρ θ=
∂⎡ ⎤′′ ′′ ′′′ ′ ′− − − + − −⎢ ⎥∂⎣ ⎦

&& &&  (3.22b) 

 ( )z
z z y sy

y

EIM EI v Nv Av p p
GA

ρ⎡ ⎤′′′ ′= + − + − ⎢ ⎥⎣ ⎦
&&  (3.22c) 

 ( )y
y y z sz

z

EI
M EI w Nw Aw p p

GA
ρ⎡ ⎤′′′ ′= − − − + −⎢ ⎥⎣ ⎦
&&  (3.22d) 

 ( ) ( )y
y z sy y y y z2 2

zz

EI w 1A Nw p p EI w I GA w
x GAG A

θ ρ ρ θ∂⎛ ⎞′′′ ′ ′ ′′′ ′= − − + − + +⎜ ⎟∂⎝ ⎠

&& &&  (3.22e) 

 ( ) ( )z
z y sz z z z y2 2

yy

EI v 1Nv A p p EI v I GA v
x GAG A

θ ρ ρ θ∂⎛ ⎞′′′ ′ ′ ′′′ ′= − + − + − +⎜ ⎟∂⎝ ⎠

&& &&  (3.22f) 

 

Finally, k k k k k, , , ,α β β γ γ  ( k 1,2,3= ) are functions specified at the beam ends 

x 0,l= . Eqns.(3.20) describe the most general nonlinear boundary conditions associated 

with the problem at hand and can include elastic support or restraint. It is apparent that 
all types of the conventional boundary conditions (clamped, simply supported, free or 
guided edge) can be derived from these equations by specifying appropriately these 

functions (e.g. for a clamped edge it is 1 1 1 1α β γ= = = , 1 1 1β γ= = , 2α = 3α = 2β =

3β = 2γ = 3γ = 2β = 3β = 2γ = 3 0γ = ). 

 The solution of the initial boundary value problem given from eqns. (3.17) or from 
the combined eqns.(3.18), subjected to the boundary conditions (3.20) and the initial 
conditions (3.21), describes the axial-flexural dynamic response accounting for the 
geometrical nonlinearity (large displacements) of a Timoshenko-Rayleigh beam, 
supported on a tensionless nonlinear three-parameter viscoelastic foundation. The 

evaluation of the shear deformation coefficients ya , za  corresponding to the principal 

centroidal system of axes Cyz , are established equating the approximate formula of the 

shear strain energy per unit length with the exact one as described in Appendix A3. 
 
 

3.3 Integral Representations − Numerical Solution 

According to the precedent analysis, the nonlinear axial-flexural dynamic analysis of 
Timoshenko-Rayleigh beams, supported on a tensionless nonlinear three-parameter 
viscoelastic foundation, undergoing moderate large displacements reduces in 
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establishing the displacement components ( )u x,t  and ( )v x,t , ( )w x,t  having 

continuous derivatives up to the second order and up to the fourth order with respect to 
x , respectively, and also having derivatives up to the second order with respect to t 
(ignoring the inertia terms of the fourth order (Thomson 1981)). These displacement 
components must satisfy the coupled governing differential equations (3.18) inside the 
beam, the boundary conditions (3.20) at the beam ends 0x ,l=  and the initial conditions 

(3.21). Eqns. (3.18) are solved using the Analog Equation Method (Katsikadelis 1994, 
2002) as it is described in Appendix A1. 
 

3.3.1 Axial ( )u x,t  and Transverse Displacements ( ) ( )v x,t , w x,t  

According to this method, let ( )u x,t , ( )v x,t  and ( )w x,t  be the sought solution of the 

aforementioned initial value problem. Setting as ( ) ( )1u x,t u x,t= , ( ) ( )2u x,t v x,t= , 

( ) ( )3u x,t w x,t=  and differentiating with respect to x  these functions two and four 

times, respectively yields 
 

 ( )
2

1
12

u q x,t
x

∂
=

∂
         ( )

4
i

i4
u q x,t

x
∂

=
∂

        ( )i 2,3=  (3.23) 

 
Eqns. (3.23) are quasi-static that is the time variable appears as a parameter. They 
indicate that the solution of eqns. (3.18) can be established by solving eqns. (3.23) under 
the same boundary conditions (3.20), provided that the fictitious load distributions 

( )iq x,t  ( )i 1,2,3=  are first established. Following the procedure as described in 

Appendix A1, the integral representations of the displacement components iu  

( )i 1,2,3=  obtained by eqn. (A1.8, A1.36) and their first derivatives with respect to x  

obtained by eqn. (A1.22, A1.43), when applied to the beam ends ( 0,l ), together with 

the boundary conditions (3.20) are employed to express the unknown boundary 

quantities ( )iu ,tζ , ( )i xu , ,tζ , ( )i xxu , ,tζ  and ( )i xxxu , ,tζ  ( )0,lζ =  in terms of the 

fictitious loads iq  ( )i 1,2,3= . In order to accomplished this numerical formulation, the 

interval ( )0,l  is divided into L  elements, on which ( )iq x,t  is assumed to vary 

according to certain law (constant, linear, parabolic etc). The constant element 
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assumption is employed here as the numerical implementation becomes very simple and 
the obtained results are of high accuracy. 

Employing the aforementioned procedure, the following set of 20 nonlinear 
algebraic equations is obtained 
 

 

3 3

⎧ ⎫⎡ ⎤ ⎧ ⎫ ⎧ ⎫⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥ + =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥⎣ ⎦ ⎩ ⎭ ⎩ ⎭⎪ ⎪⎩ ⎭

nl
111 1 3
nl

22 2 2 3
nl33 3

DT 0 0 d a
0 T 0 d D b
0 0 T d cD

 (3.24) 

 
with  
 

 
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

u u u
1 11 12

11 u u
12 22

F E E
T =

0 D D
 (3.25a) 

 

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

1 11 12 13 14

2 22 23 24
22

11 12 13 14

21 22 23 24

F E E E E
F 0 E E E

T =
0 D D D D
0 D D D D

   

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

1 11 12 13 14

2 22 23 24
33

11 12 13 14

21 22 23 24

F E E E E
F 0 E E E

T =
0 G G G G
0 G G G G

(3.25b,c) 

 

where u
11E , u

12E , 11E - 48E  are rectangular 2×2 known coefficient matrices resulting from 

the values of the kernels ( )j rΛ  ( )1, 2, 3, 4j =  at the beam ends and u
1F , 1F , 2F  are 

2×L  rectangular known matrices originating from the integration of the kernels along 

the axis of the beam, as defined in Appendix A1. Moreover, 11D - 24D  and 11G - 24G  

are 2×2 known square, time dependent matrices including the values of the functions 

j j j j ja , , , ,β β γ γ     ( )1, 2j =  of eqns.(3.20), while nl
1D , 3a  and nl

2D , nl
3D , 3b , 3c  are 4×1 

and 8×1, respectively known, in general time dependent, column matrices including the 

boundary values of the functions 3, 3 3 3 3a , , ,β β γ γ    of eqns. (3.20). Furthermore, 1d - 3d  

are the generalized unknown vectors including the L  unknown time dependent nodal 

values of the fictitious loads { }1 2
Ti i i

i Lq q q q=   ....  ( )1,2,3i =  and the vectors including 

the unknown time dependent boundary values of the respective boundary quantities. 
More specifically, the expressions of the matrices of eqn. (3.25) are given as 
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0
1

l
1

0

0

α

α

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦

u
12D               

0
2

l
2

EA 0

0 EA

α

α

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦

u
22D  (3.26a,b) 

[ ]
( ) ( )

( ) ( )

20
2 2,x 3,x

2l
2 2,x 3,x

0
1 ˆ ˆEA u 0 u 0
2

ˆ ˆu l u l

α

α

⎧ ⎫
⎪ ⎪
⎪ ⎪⎡ ⎤= +⎨ ⎬⎣ ⎦
⎪ ⎪
⎪ ⎪⎡ ⎤+⎣ ⎦⎩ ⎭

nl
1D               

[ ]
0
3
l
3

0

α

α

⎧ ⎫
⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

3α  (3.26c,d) 

 

0
1

l
1

0

0

β

β

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
11D  

( )

( )

0 z
2 y Ly

y

l z
2 y Ly

y

EIN 0 H k 0
GA

EI0 N l H k
GA

β

β

⎡ ⎤⎛ ⎞
+⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠= ⎢ ⎥

⎛ ⎞⎢ ⎥
+⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

12D

%

%

(3.27a,b) 

( )
( )

0
2z

l
y 2

N 0 02EI
GA 0 N l

β

β

⎡ ⎤′    
⎢ ⎥= −

′⎢ ⎥   ⎣ ⎦
13D   

( )( )

( )( )

0
2 y Py

y
z

l
2 y Py

y

11 N 0 H k 0
GA

EI
10 1 N l H k

GA

β

β

⎡ ⎤⎛ ⎞
+ +      ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠= − ⎢ ⎥

⎛ ⎞⎢ ⎥
     + +⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

14D

%

%

 (3.27c,d) 

2

y Ly0 z

y y Ly

H k 0EI
GA 0 H k

β
⎡ ⎤

= − ⎢ ⎥
⎢ ⎥⎣ ⎦

21D
%

%
 (3.27e) 

( )
( )

( )
( )

1 2

1 2

0 0z z
y Ly2

yy

l lz z
y Ly2

yy

EI EI1 H k 0 0
GAGA

EI EI0 1 H k l
GAGA

β β Ν

β β Ν

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟ ′− +      ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠= ⎢ ⎥

⎛ ⎞⎢ ⎥
⎜ ⎟⎢ ⎥′     − +⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

22D

%

%

 (3.27f) 

( )
( )

( )

( )
( )

( )

2

2

0 0
y P 1 2

y y y
z

l l
y P 1 2

y y y

1 1 21 N 0 H k N 0 0
GA GA GA

EI
1 1 20 1 N l H k N l

GA GA GA

β β

β β

⎡ ⎤⎛ ⎞
′+ − +          ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠

⎢ ⎥=   
⎢ ⎥⎛ ⎞
⎢ ⎥′         + − +⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

23D

%

%

 (3.27g) 
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( )( )

( )( )

1

1

0
y P

yz

y l
y P

y

11 N 0 H k 0
GAEI

GA 10 1 N l H k
GA

β

β

⎡ ⎤⎛ ⎞
+ +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠= ⎢ ⎥

⎛ ⎞⎢ ⎥
+ +⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

24D

%

%

 (3.27h) 

[ ]
( ) ( )
( ) ( )

[ ]

( ) ( ) ( )

( ) ( ) ( )

1

1

0 2
2 y NLy 2 2,x

l 2
2 y NLy 2 2,x

z

y 0 2 0 3
y NLy 2 2,x 2 y NLy 2

y

l 2 0 3
y NLy 2 2,x 2 y NLy 2

y

0

ˆ ˆH k 3u 0 u 0

ˆ ˆH k 3u l u l
EI 0
AG 3 ˆ ˆ ˆH k u 0 u 0 H k u 0

AG

3 ˆ ˆ ˆH k u l u l H k u l
AG

β

β

β β

β β

⎧ ⎫
⎪ ⎪

−⎪ ⎪
⎪ ⎪

−⎪ ⎪
⎪ ⎪⎪ ⎪= − ⎨ ⎬
⎪ ⎪

+⎪ ⎪
⎪ ⎪
⎪ ⎪

+⎪ ⎪
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nl
2D

%

%

% %

% %

 (3.27i) 

             

[ ]

( )

( )

[ ]

( ) ( )

( ) ( )

0 0 z
3 2 y

y

l l z
3 2 y

y

0
0 0z 1
3 y 2 y

y y

l
l lz 1
3 y 2 y

y y

0
EI p 0
AG

EI p l
AG

0

EI p 0 p 0
AG AG

EI p l p l
AG AG

β β

β β

ββ β

ββ β

⎧ ⎫
⎪ ⎪
⎪ ⎪′+
⎪ ⎪
⎪ ⎪
⎪ ⎪′+⎪ ⎪
⎪ ⎪

= ⎨ ⎬
⎪ ⎪

⎛ ⎞⎪ ⎪
′− −⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠

⎪ ⎪
⎛ ⎞⎪ ⎪′− −⎜ ⎟⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

3b  (3.27j) 

 

0
1

l
1

0

0

γ

γ

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
11G    

( )

( )

y0
2 z Lz

z

yl
2 z Lz

z

EI
N 0 H k 0

GA

EI
0 N l H k

GA

γ

γ

⎡ ⎤⎛ ⎞
+⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥= ⎢ ⎥⎛ ⎞⎢ ⎥+⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

12G

%

%

(3.28a,b) 

( )
( )

0
y 2

l
z 2

2EI N 0 0
GA 0 N l

γ

γ

⎡ ⎤′    
⎢ ⎥= −

′⎢ ⎥   ⎣ ⎦
13G   

( )( )

( )( )

0
2 z Pz

z
y

l
2 z Pz

z

11 N 0 H k 0
GA

EI
10 1 N l H k

GA

γ

γ

⎡ ⎤⎛ ⎞
+ +      ⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥= − ⎢ ⎥⎛ ⎞⎢ ⎥     + +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

14G

%

%

 (3.28c,d) 



Chapter 3 Geometrically Nonlinear Dynamic Analysis of Shear Deformable Beams on Nonlinear Foundation 

81 

2

y0 z Lz

z z Lz

EI H k 0
GA 0 H k

γ
⎡ ⎤

= − ⎢ ⎥
⎣ ⎦

21G
%

%
 (3.28e) 

( )
( )

( )
( )

1 2

1 2

y y0 0
z Lz2

zz

y yl l
z Lz2

zz

EI EI
1 H k 0 0

GAGA

EI EI
0 1 H k l

GAGA

γ γ Ν

γ γ Ν

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟ ′− +      

⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥= −
⎢ ⎥⎛ ⎞
⎢ ⎥⎜ ⎟ ′     − +

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

22G

%

%

 (3.28f) 

( )
( )

( )

( )
( )

( )

2

2

0 0
z P 1 2

z z z
y

l l
z P 1 2

z z z

1 1 21 N 0 H k N 0 0
GA GA GA

EI
1 1 20 1 N l H k N l

GA GA GA

γ γ

γ γ

⎡ ⎤⎛ ⎞
′+ − +          ⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥
= ⎢ ⎥

⎛ ⎞⎢ ⎥′         + − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

23G

%

%
 (3.28g) 

( )( )

( )( )

1

1

0
z P

zy

z l
z P

z

11 N 0 H k 0
GAEI

GA 10 1 N l H k
GA

γ

γ

⎡ ⎤⎛ ⎞
+ +⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥= ⎢ ⎥⎛ ⎞⎢ ⎥+ +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

24G

%

%

 (3.28h) 

[ ]
( ) ( )
( ) ( )

[ ]

( ) ( ) ( )

( ) ( ) ( )

1

1

0 2
2 z NLz 3 3,x
l 2
2 z NLz 3 3,x

y

z 0 2 0 3
z NLz 3 3,x 2 z NLz 3

z

l 2 0 3
z NLz 3 3,x 2 z NLz 3

z

0

ˆ ˆH k 3u 0 u 0

ˆ ˆH k 3u l u l
EI 0
AG 3 ˆ ˆ ˆH k u 0 u 0 H k u 0

AG
3 ˆ ˆ ˆH k u l u l H k u l

AG

γ

γ

γ γ

γ γ

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪

= ⎨ ⎬
⎪ ⎪

+⎪ ⎪
⎪ ⎪
⎪ ⎪

+⎪ ⎪
⎩ ⎭

nl
3D

%

%

% %

% %

 (3.28i) 

          

[ ]

( )

( )

[ ]

( ) ( )

( ) ( )

y0 0
3 2 z

z

yl l
3 2 z

z

0
y0 01

3 z 2 z
z z

l
yl l1

3 z 2 z
z z

0
EI

p 0
AG
EI

p l
AG
0

EI
p 0 p 0

AG AG

EI
p l p l

AG AG

γ γ

γ γ

γγ γ

γγ γ

⎧ ⎫
⎪ ⎪
⎪ ⎪′−⎪ ⎪
⎪ ⎪
⎪ ⎪′−⎪ ⎪
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪⎛ ⎞

′+ −⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠
⎪ ⎪

⎛ ⎞⎪ ⎪′+ −⎜ ⎟⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

3c  (3.28j) 



Geometric and Material Nonlinear Analysis of Beam–Soil Interaction Systems 

82 

 

 ˆ
ˆ

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

1

1 1

1 x

q
d u

u ,
           

ˆ
ˆ
ˆ
ˆ

⎧ ⎫
⎪ ⎪
⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

2

2

2 2 x

2 xx

2 xxx

q
u

d u ,
u ,
u ,

            
ˆ

ˆ
ˆ
ˆ

⎧ ⎫
⎪ ⎪
⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

3

3

3 x3

3 xx

3 xxx

q
u

u ,d
u ,
u ,

 (3.29) 

 

where the boundary values of the displacement components iu  ( )i 1,2,3=  and their 

derivatives with respect to x  are written in matrix form as 
 

 ( ) ( ){ }0 T
i iˆ u ,t u l ,t=iu  ( )1,2,3i =  (3.30a) 

 ( ) ( )0 T
i iu ,t u l ,tˆ

x x
∂ ∂⎧ ⎫

= ⎨ ⎬
∂ ∂⎩ ⎭

i xu ,  ( )1,2,3i =  (3.30b) 

 ( ) ( )2 2
i i

2 2
0

T
u ,t u l ,tˆ

x x

⎧ ⎫∂ ∂⎪ ⎪= ⎨ ⎬
∂ ∂⎪ ⎪⎩ ⎭

i xxu ,  ( )2,3i =  (3.30c) 

 ( ) ( )3 3
i i

3 3
0

T
u ,t u l ,tˆ

x x

⎧ ⎫∂ ∂⎪ ⎪= ⎨ ⎬
∂ ∂⎪ ⎪⎩ ⎭

i xxxu ,  ( )2,3i =  (3.30d) 

 
Thereafter, the discretization of the integral representations of the displacement 

components iu  ( )i 1,2,3=  and their derivatives with respect to x , and the application 

to the L  collocation nodal points yields 
 

 ˆ ˆ= + +0
1 1 1 0 1 1 1 xu A q C u C u ,  (3.31a) 

 ˆ1
1 x 1 1 0 1 xu , = A q + C u ,          1 xx 1u , = q  (3.31b,c) 

 

 ˆ ˆ ˆ ˆ′0
2 2 2 0 2 1 2 x 2 2 xx 3 2 xxxu = A q + C u + C u , +C u , +C u ,  (3.32a) 

 ˆ ˆ ˆ′1
2 x 2 2 0 2 x 1 2 xx 2 2 xxxu , = A q + C u , +C u , +C u ,  (3.32b) 

 ˆ ˆ′= + +2
2 xx 2 2 0 2 xx 1 2 xxxu , A q C u , C u ,  (3.32c) 

 ˆ3
2 xxx 2 2 0 2 xxxu , = A q + C u ,         2 xxxx 2u , = q  (3.32d,e) 
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 ˆ ˆ ˆ ˆ′0
3 3 3 0 3 1 3 x 2 3 xx 3 3 xxxu = A q + C u + C u , +C u , +C u ,  (3.33a) 

 ˆ ˆ ˆ′1
3 x 3 3 0 3 x 1 3 xx 2 3 xxxu , = A q + C u , +C u , +C u ,  (3.33b) 

 ˆ ˆ′2
3 xx 3 3 0 3 xx 1 3 xxxu , = A q + C u , +C u ,  (3.33c) 

 ˆ3
3 xxx 3 3 0 3 xxxu , = A q + C u ,         3 xxxx 3u , = q  (3.33d,e) 

 

where i
1A , j

2A , j
3A  ( )0,1i =  , ( )0,1, 2, 3j =     are L L×  known matrices; 0C , 1C , ′1C ,

2C , 3C  are 2L ×  known matrices and iu , i xu , , i xxu , , i xxxu , , i xxxxu ,  are time 

dependent vectors including the values of ( )iu x,t  and their derivatives at the L  nodal 

points. These equations can be assembled in a more convenient matrix form as 
 

 u
1 1u = B d            u

,x1 x 1u , = B d  (3.34a,b) 

 2 2u = Bd           ,x2 x 2u , = B d         ,xx2 xx 2u , = B d          ,xxx2 xxx 2u , = B d  (3.35a-d) 

 3 3u = Bd           ,x3 x 3u , = B d         ,xx3 xx 3u , = B d          ,xxx3 xxx 3u , = B d  (3.36a-d) 

 

where uB , B  and there derivatives are ( )4L L× +  and ( )8L L× +  known matrices, 

respectively arising from uA , A , uC , C  and there derivatives as presented in 
Appendix A1. 

In conventional BEM, the load vectors iq  are known and eqns. (3.34-3.36) are used 

to evaluate ( )iu x,t  and their derivatives at the L  nodal points. This, however, cannot 

be applied here since iq  are unknown. Thus, 3L  additional equations are required in 

order to permit the establishment of iq . Therefore, the final step of AEM is 

implemented by applying the governing equations of motion (3.18) to the L  collocation 
points, after ignoring the inertia terms of the fourth order arising from coupling of shear 
deformations and rotary inertia (Thomson 1981), and employing eqns. (3.34-3.36) leads 
to the formulation of the following set of 3 L×  semi-discretized nonlinear equations of 
motion  
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 (3.37) 

 

where nlf  is a nonlinear generalized stiffness vector and , , , M C K f  are generalized 

mass, damping, stiffness matrices and force vector respectively, defined as  
 

 uAρ=1M B          [ ] u
dg ,L dg

⎡ ⎤= − + ⎣ ⎦1 xK EA K B          =1 xf p  (3.38a-c) 

 nl
1 ,xx ,x ,xx ,xdg. dg.

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤=  +  ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦2 2 3 3f EA B d B d B d B d  (3.38d) 

 

 ( )y dg dgz
z ,xx x ,x ,xxPy Ly

y

Ea IA 1
G GA

ρρ ρΙ
⎛ ⎞ ⎡ ⎤= − + − + + − ⎜ ⎟ ⎣ ⎦⎝ ⎠

2M B B N B N K B K B  (3.39a) 

 ( )dg dgz z
y y ,xx xt ,x t ,xx

y y

EI 2 I
GA GA

ρ
= − − +2C C B C B N B N B  (3.39b) 

 
[ ] ( )

( ) ( )

dgz
z x ,x ,xx x ,xxx ,xxLydg ,L

y

dg dg dg dgz z
xtt ,x tt ,xx ,xx ,xxLy Py Ly Py

y y

EI 3
GA

I EI
GA GA
ρ

= − − + + − −

       − + + − − −

2K EI N B NB N B N K B

N B N B K B K B K B K
 (3.39c) 

 ( ) ( )( ) ( )33 3dg dgnl z z
,xxNLy NLy

y y

EI I
GA GA

ρ
= − −2 2 2 2f K d K B d Bd  (3.39d) 

 ( )z z
,x ,xx ,tt

y y

EI I
GA GA

ρ
= − − +2 y z y yf p m p p  (3.39e) 

 

 ( )y dg dgz
y ,xx x ,x ,xxPz Lz

z

IEaA 1
G GA

ρ
ρ ρΙ ⎛ ⎞ ⎡ ⎤= − + − + + − ⎜ ⎟ ⎣ ⎦⎝ ⎠

3M B B N B N K B K B  (3.40a) 

 ( )y ydg dg
z z ,xx xt ,x t ,xx

z z

EI 2 I
GA GA

ρ
= − − +3C C B C B N B N B  (3.40b) 
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( )

( ) ( )

y dg
y x ,x ,xx x ,xxx ,xxLzdg ,L z

y ydg dg dg dg
xtt ,x tt ,xx ,xx ,xxLz Pz Lz Pz

z z

EI
3

GA
I EI

GA GA
ρ

⎡ ⎤= − − + + − −⎣ ⎦

       − + + − − −

3K EI N B NB N B N K B

N B N B K B K B K B K
 (3.40c) 

 ( ) ( )( ) ( )33 3y ydg dgnl
3 ,xxNLz NLz

z z

EI I
GA GA

ρ
= − −3 3 3f K d K B d Bd  (3.40d) 

 ( )y y
z y,x z ,xx z ,tt

z z

EI I
GA GA

ρ
= + − +3f p m p p  (3.40e) 

 

where N , kmN ( k ,m x,t= ) are L L×  diagonal matrices containing the values of the 

axial force and its derivatives with respect to k and m parameters at the L  nodal points, 

yp , y ,xxp , y ,ttp , zp , z ,xxp , z ,ttp , y ,xm  and z ,xm  are L 1×  vectors containing the 

values of the external loading and its derivatives at these points, while dg
LiK , dg

NLiK , 

dg
PiK  and dg

iC  ( )i y,z=  are diagonal matrices whose diagonal elements represent the 

values of the corresponding foundation parameter at each nodal point. Moreover, 
substituting eqns. (3.34) in eqn. (3.14a), the discretized counterpart of the axial force at 
the neutral axis of the beam is given as 
 

 ( )u
,x ,xx ,x ,xx ,xdg. dg.

1EA EA
2

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= +  +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦1 2 2 3 3N B d B d B d B d B d  (3.41) 

 
Subsequently, the initial conditions of the problem are formulated in discretized 

form by substituting eqns. (3.34) in eqns. (3.21) yielding the following 3L  linear 

equations with respect to the generalized displacements 1d , 2d , 3d  and the generalized 

velocities 1d& , 2d& , 3d&  for 0t =  as 

 

 ( )0u =1 0B d u          ( )0u =1 0B d u& &  (3.42a,b) 
 ( )0 =2 0Bd v            ( )0 =2 0Bd v& &  (3.42c,d) 
 ( )0 =3 0Bd w           ( )0 =3 0Bd w& &  (3.42e,f) 
 

The above equations (4.42a,c,e), together with eqns. (3.24) written for 0t = , form a 
set of 3L 20+  nonlinear algebraic equations which are solved to establish the initial 
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conditions ( )01d , ( )02d , ( )03d  while similarly equations (3.42b,d,f) together with 12 

equations resulting after differentiating eqns. (3.24) with respect to time and writing 
them for 0t = , form a set of 3 +20L  linear algebraic equations from which the initial 

conditions ( )01d& , ( )02d& , ( )03d&  are established. 

The aforementioned initial conditions along with eqns. (3.24), (3.37) form an 
initial value problem of Differential-Algebraic Equations (DAE), which can be solved 
using any efficient solver. Within the framework of this doctoral dissertation two 
approaches have been performed. Firstly, the solution of this system was accomplished 
iteratively by employing the Newmark Average Acceleration Method in combination 
with the modified Newton Raphson Method (Chang 2004, Isaacson & Keller 1966) and 
secondly, the Petzold Gear Method was used (Brenan et al. 1989) after introducing new 
variables to reduce the order of the system (Bazant & Cedolin 1991) and after 
differentiating (3.24) with respect to time to obtain an equivalent system with a value of 
system index ind 1= . A step-by-step algorithmic approach of the numerical 
implementation is summarized in a flowchart form in Fig. 3.2. 

 
 

3.4 Alternative D-BEM Numerical Solution 

Alternatively, the nonlinear axial-flexural dynamic analysis of Timoshenko-Rayleigh 
beams supported on a tensionless nonlinear three-parameter viscoelastic foundation 
undergoing moderate large displacements, can de numerically solved employing the 
domain boundary element method, as described in Appendix A2. According to the 
formulation presented in section 3.2, the problem reduces in establishing either both the 
displacement and rotational components following the system of eqns. (3.17) or only the 
displacement components following the combined system of eqns. (3.18). Herein, the 
first approach is employed in order to alleviate any inaccuracies introduced from the 
combination of the differential equations into a single field equation representing 

Timoshenko dynamics (Bhaskar 2009). To this end, the components ( )u x,t , ( )v x,t , 

( )w x,t , ( )y x,tθ  and ( )z x,tθ  are assumed to have continuous derivatives up to the 

second order with respect to both space x  and time t variables. These components must 
satisfy the governing differential equations (3.17) inside the beam, the boundary 
conditions (3.20) at the beam ends 0x ,l=  and the initial conditions (3.21). 
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Fig.3.2. Flowchart of the numerical implementation. 

 

3.4.1 Displacements ( )u x,t ( ) ( )v x,t , w x,t and rotations ( ) ( )y zx,t , x,tθ θ  

According to this method, let ( )1u u x,t= , ( ) ( )2u x,t v x,t=  , ( ) ( )3u x,t w x,t= , 

( ) ( )4 yu x,t x,tθ=  and ( ) ( )5 zu x,t x,tθ=  be the sought solution of the problem at hand. 
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The solution of the second order differential equations 2 2
id u / dx q′′= , ( )i 1,2,..5=  and 

( )q y zu,v,w, ,θ θ=  are given in the well known integral form as 

 

 ( )
2

2
0

d
ll

u u ui i
i 2 2 1 i

0

u uu ,t x u
xx

ξ Λ Λ Λ∂ ∂⎡ ⎤= − −⎢ ⎥∂∂ ⎣ ⎦
∫ ( )i 1,2,..5=  (3.43) 

 

where the kernels ( ) ( ), u
j r j 1,2Λ =  are as defined in Appendix A1. Since EA , zGA ,

yGA , yEI  and zEI  are independent of x , eqns. (3.43) can be written as 

 

 ( )
2

2
0

d
ll

u u u1 1
1 2 2 1 1

0

u uEAu ,t EA x EA u
xx

ξ Λ Λ Λ
⎡ ⎤∂ ∂⎡ ⎤= − −⎢ ⎥ ⎢ ⎥∂∂ ⎣ ⎦⎢ ⎥⎣ ⎦

∫  (3.44a) 

 ( )
2

2
0

d
ll

u u u2 2
y 2 y 2 y 2 1 2

0

u uGA u ,t GA x GA u
xx

ξ Λ Λ Λ
⎡ ⎤∂ ∂⎡ ⎤= − −⎢ ⎥ ⎢ ⎥∂∂ ⎣ ⎦⎢ ⎥⎣ ⎦

∫  (3.44b) 

 ( )
2

2
0

d
ll

u u u3 3
z 3 z 2 z 2 1 3

0

u uGA u ,t GA x GA u
xx

ξ Λ Λ Λ
⎡ ⎤∂ ∂⎡ ⎤= − −⎢ ⎥ ⎢ ⎥∂∂ ⎣ ⎦⎢ ⎥⎣ ⎦

∫  (3.44c) 

 ( )
2

2
0

d
ll

u u u4 4
y 4 y 2 y 2 1 4

0

u uEI u ,t EI x EI u
xx

ξ Λ Λ Λ
⎡ ⎤∂ ∂⎡ ⎤= − −⎢ ⎥ ⎢ ⎥∂∂ ⎣ ⎦⎢ ⎥⎣ ⎦

∫  (3.44d) 

 ( )
2

2
0

d
ll

u u u5 5
z 5 z 2 z 2 1 5

0

u uEI u ,t EI x EI u
xx

ξ Λ Λ Λ
⎡ ⎤∂ ∂⎡ ⎤= − −⎢ ⎥ ⎢ ⎥∂∂ ⎣ ⎦⎢ ⎥⎣ ⎦

∫  (3.44e) 

 

Solving eqns. (3.18a-e) with respect to EAu′′ , yGA v′′ , zGA w′′ , y yEI θ ′′ and z zEI θ ′′  and 

substituting the result into eqns. (3.44a-e), respectively, the following integral 
representations are obtained 
 

 ( )
0

d
ll

u u u1
1 1 2 2 3 3 x 1 x 2 2 1 1

0

uEAu u EA u u u u k u p x EA u
x

ρΑ Λ Λ Λ∂⎡ ⎤′ ′′ ′ ′′⎡ ⎤= − + + − − −⎣ ⎦ ⎢ ⎥∂⎣ ⎦
∫ &&  (3.45a) 

 ( )
0

d
ll

u u u2
y 2 2 2 y 5 sy y 2 y 2 1 2

0

uGA u u Nu GA u p p x GA u
x

ρΑ Λ Λ Λ∂⎡ ⎤⎡ ⎤′′ ′= − −  + − − −⎢ ⎥⎢ ⎥⎣ ⎦ ∂⎣ ⎦
∫ &&  (3.45b) 
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 ( )
0

d
ll

u u u3
z 3 3 3 z 4 sz z 2 z 2 1 3

0

uGA u u Nu GA u p p x GA u
x

ρΑ Λ Λ Λ∂⎡ ⎤⎡ ⎤′′ ′= − +  + − − −⎢ ⎥⎢ ⎥⎣ ⎦ ∂⎣ ⎦
∫ &&  (3.45c) 

 ( )
0

d
ll

u u u4
y 4 z 4 z 3 4 y 2 y 2 1 4
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∫ &&  (3.45e) 

 
After carrying out several integrations by parts the above equations can be written as  
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&&

 (3.46a) 
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Numerical methods requiring domain approximation of unknown quantities exhibit 
“locking” effects when Timoshenko theory is applied to cases where the Euler–

Bernoulli theory could also be used ( 4 2 5 3u u ,u u′ ′≈  ≈ ) (Crisfield 1991, Zienkiewicz & 

Taylor 2005). Since domain approximation is also required in the present numerical 
technique, locking effects are alleviated by employing linear interpolation scheme for 
the longitudinal displacement and a linked interpolation scheme for the transverse 
displacement and the rotation due to bending. More specifically, the beam interval 

( )0  , l  is divided into L  elements in each of which ( )iu i 1,..5 =  are assumed to vary 

according to the abovementioned law and a Gauss integration scheme in implemented 
assuming K  integration points. Thus the displacement quantities of the beam can be 
written as a function of the nodal displacements 
 

 ji
1 1 1 2 1u N u N u= +  (3.47a) 

 ( )j ji i
2 1 2 2 3 4 42u N u N u N u u= + + −     ( )j ji i

3 1 3 2 3 5 53u N u N u N u u= + + −  (3.47b,c) 

 ji
4 1 4 2 4u N u N u= +                             ji

5 1 5 2 5u N u N u= +  (3.47d,e) 

 

where ( )1
1N 1
2

ξ= − , ( )2
1N 1
2

ξ= +  and ( )2e
3

LN 1
8

ξ= − − . By applying this 

interpolation scheme into eqns. (3.46) and performing mathematical manipulations the 
governing equations of the problem have been brought into a convenient form to 
establish a numerical computation of the unknown quantities Applying eqns. (3.46) to 
the L  collocation points and employing eqns. (3.47), 5L K×  nonlinear equations of 
motion are formulated as 
 

 [ ] [ ] [ ] { } ( ) { }= ,

⎧ ⎫ ⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪+ + +⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭

1 1 1

2 2 2
nl

3 3 3 1 2 3 4 5

4 4 4

5 5 5

u u u
u u u
u u uM C K f u u ,u ,u ,u f
u u u
u u u

&& &&

&& &&

&& &&

&& &&

&& &&

 (3.48) 

 
where , , , M C K f  are generalized mass, damping, stiffness matrices and force vector, 

respectively and nlf  is a nonlinear generalized stiffness vector. The boundary integral 
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equations (BIEs) at the interval of the beam, together with the boundary conditions 
(3.20) at the beam ends 0x ,l=  and the initial conditions (3.21) form a set of 

5L K 10× +  nonlinear algebraic equations with respect to the unknowns of the problem 
at hand. The aforementioned initial boundary value problem consisting of differential-
algebraic equations (DAE) can be solved using any efficient solver. In this study, the 
Petzold Gear Method was used (Brenan et al. 1989) after introducing new variables to 
reduce the order of the system (Bazant & Cedolin 1991) to obtain an equivalent system 
with a value of system index ind 1= . Having solved the initial value problem, the 
derivatives of each quantity and subsequently the stress resultants can be easily 

calculated at every point of the interval ( )0,l  by employing the boundary integral 

equations derived by differentiating eqns. (3.46) with respect to x . A step-by-step 
algorithmic approach of the numerical implementation is summarized in a flowchart 
form in Fig. 3.3. 
 

Fig.3.3. Flowchart of the D-BEM numerical implementation. 
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3.5 Numerical Examples 

On the basis of the analytical and numerical procedures presented in the previous 
sections concerning the geometrically nonlinear dynamic analysis of shear deformable 
beams on nonlinear foundation, a computer program has been written using High Level 
3G Fortran 90/95. Representative examples have been studied to demonstrate the 
efficiency, wherever possible the accuracy and the range of applications of the 
developed method. In all the examples treated, the results have been obtained using 

21L =  nodal points (longitudinal discretization), 400 boundary elements (cross section 
discretization) and a time step of 1.0t secΔ μ =  , unless it is stated otherwise. 

 
 
3.5.1 Example 1 – Linear Analysis of Simply Supported Beam on Pasternak Foundation 

In the first example, for comparison purposes the linear dynamic analysis of a simply 

supported beam of length l 6.096m =  ( E 24.82GPa = , 33387 g / mρ Κ =  , v 0.3 = , 

5 4I 143.9 10 m− =  × ) resting on a homogeneous viscoelastic Pasternak (either bilateral 

or unilateral) foundation with modulus of subgrade reaction 2
Lzk 16.55 MN / m=  , 

pzk 16.55 MN=  , as shown in Fig.3.4a is examined. The beam is subjected to a 

triangular impulsive load of amplitude l / 2P 100 kΝ =   at its midpoint (Fig. 3.4b). 

 

(a) (b) 

Fig. 3.4. Simply supported beam on viscoelastic Pasternak foundation (a) subjected 
to a triangular impulsive load (b). 

 
The free vibrations case of this example has been analyzed by Timoshenko et al. 

(1974), Lai et al. (1992), Thambiratnam and Zhuge (1996) and Friswell et al. (2007) 
assuming Winkler foundation, while the forced vibrations one by Calim (2009). In 
Table 3.1, the evaluated first five natural frequencies of the beam resting on the bilateral 
elastic Winkler foundation are presented as compared with those obtained from 
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literature. In Figs. 3.5, 3.6a,b the time history of the transverse displacement ( )w l / 2  at 

the beam’s midpoint, of the bending moment ( )yM l / 2  at the same point and of the 

shear force ( )zQ l  at the right supported end, respectively are presented either for 

bilateral or unilateral Winkler elastic foundation model and compared with those 
obtained from a complementary functions method and a FEM solution (Calim 2009) 
demonstrating the accuracy of the results of the proposed method. Moreover, in Table 

3.2 the extreme values of the displacement w  and of the soil reaction szp  at the beam’s 

midpoint are also presented for both cases of bilateral and unilateral soil reaction. 
 

Table 3.1. First five natural frequencies (Hz) of the beam of example 1. 

Analysis / Modes 1 2 3 4 5 

Timoshenko et al. (1974) 32.9032 56.8135 112.908 – – 
Lai et al (1992) 32.9049 56.8220 111.973 – – 
Thambiratnam & Zhuge (1996) 32.9033 56.8193 111.961 – – 
Friswell et al.(2007) 32.8980 56.8080 111.900 193.760 – 
Calim (2009) - CFM 32.8633 56.5972 110.759 189.939 222.078 
ANSYS FEM (Calim 2009) 32.8624 56.5891 110.739 189.901 222.043 

Present Study 32.7946 56.5476 110.722 189.489 222.077 
 

 
Fig. 3.5. Midpoint displacement time history of the beam of example 1. 
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(a) (b) 

Fig. 3.6. Time history of the midpoint bending moment (a) and of the shear force at the 
right supported end (b) of the beam of example 1. 

 

Table 3.2. Extreme values of the midpoint displacement w  and foundation reaction szp  
of the beam of example.1. 

Midpoint ( )l/2  
Winkler Tensionless Winkler  

w (mm) szp (kN) w (mm) szp (kN) 

Max 2.63 43.6 2.63 43.6 

Min -2.50 -41.5 -6.80 0.00 

 
Additionally, in Figs. 3.7a,b the time histories of the transverse displacement 

( )w l / 2  and the bending moment ( )yM l / 2  at the beam’s midpoint are presented for 

various values of the damping coefficient zc  (kNs/m2). In this figure the corresponding 

curves obtained from the solution of the same beam resting on a Pasternak-type 
viscoelastic foundation are also presented employing the complementary functions 
method in order to calculate the element dynamic stiffness matrix in the Laplace domain 
(Calim 2009). The Pasternak-type viscoelastic foundation is characterized by the 
Winkler spring constant which is multiplied by the displacement, the visco-
compressibility coefficient which is multiplied by the derivative of the displacement 
with respect to time, the Pasternak spring constant which is multiplied by the rotation 
and the viscosity coefficient which is multiplied by the derivative of the bending 
rotation with respect to time. Comparing the obtained results and those from literature 
the accuracy of the proposed method is verified. The small discrepancies between the 
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proposed results and those obtained from literature are attributed to the additional 
viscosity term of the Pasternak-type model that causes smaller amplitudes and less 

damping time. Moreover, in Table 3.3 the extreme values of the displacement ( )w l / 2  

and the bending moment ( )yM l / 2  at the beam-column’s midpoint and of the shear 

force ( )zQ l  at its right supported end are also presented for various values of the 

damping coefficient and for both Pasternak-type and Winkler-type foundations. 
 

 

(a) 

 

(b) 

Fig. 3.7. Midpoint time history of the displacement (a) and bending moment (b) of the 
beam for various values of the damping coefficient of example 1. 
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Table 3.3. Extreme values of the displacement ( )w mm , bending moment ( )yM kN m  

and shear force ( )zQ kN  of the beam of example 1. 

 Pasternak  Winkler  

 ( )w l / 2  ( )yM l / 2  ( )zQ l   ( )w l / 2   ( )yM l / 2   ( )zQ l   

Max values 
cz = 0 2.17 22.6 16.7 2.63 27.6 21.3 

cz = 1.655 2.15 20.7 16.4 2.60 25.9 19.0 

cz = 8.28 2.06 17.8 14.2 2.48 22.1 16.2 

cz = 16.55 1.96 14.9 11.9 2.34 18.1 13.3 

cz = 82.8 1.44 3.74 7.51 1.65 3.56 9.68 

Min values 

cz = 0 -1.97 -38.9 -16.4 -2.51 -43.4 -21.1 

cz = 1.655 -1.85 -38.7 -14.3 -2.38 -43.1 -18.6 

cz = 8.28 -1.59 -37.9 -11.3 -2.02 -4.21 -13.9 

cz = 16.55 -1.33 -37.1 -9.62 -1.65 -4.10 -1.26 

cz = 82.8 -0.31 -3.27 -5.33 -0.31 -3.57 -6.62 
 
 
3.5.2 Example 2 – Nonlinear Analysis of Hollow Rectangular Beam on Winkler 

Foundation  

In order to illustrate the importance of the nonlinear analysis and the influence of the 
shear deformation effect in flexural vibrations, a clamped beam of length l 4.90m = , 
having a hollow rectangular cross section ( E 210 GPa =  , v 0.3 = , 

z ya 3.664, a 1.766=    = , / 37.85 tn mρ =  ) resting on a homogeneous (either bilateral or 

unilateral) elastic foundation of stiffness zk , as this is shown in Fig. 3.8 is examined. 

In Figs. 3.9a,b the displacement curves ( )w x,t  along the beam subjected to a 

suddenly applied consecrated bending moment =yM 200kNm  at its midpoint are 

presented at the time instant 2t 1.6 10 sec− = ×  for various values of the stiffness zk  for 

the cases of bilateral and unilateral soil reaction, respectively. The influence of both the 

foundation stiffness parameter zk  and the unilateral character of the soil reaction are 

easily verified. Moreover, in Fig. 3.10 the time history of the central transverse 
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displacement ( )w l / 2  and in Table 3.4 the maximum central displacement ( )maxw m  

and the period ( )zT sec  of the first cycle of motion of the beam additionally subjected 

to a uniformly distributed load /zp 350 kN m =    (Fig. 3.8) are presented for a unilateral 

subgrade model with zk 645kPa = , performing either linear or nonlinear analysis and 

taking into account or ignoring both shear deformation effect and rotary inertia. From 
the obtained results, the discrepancy between the linear and the nonlinear analysis is not 
negligible and should not be ignored, while the significant influence of the shear 
deformation effect increasing both central transverse displacement and the obtained 
period of the first cycle of motion is remarked in both linear and nonlinear analysis. 
 

kz 

h=
14

cm
 

t=4mm 

y z 

x 

pz=350kN/m 

l=4.9m 

az= 3.664 
ay= 1.766 

b=23cm

y 

z 

My = 200kNm 

l/2=2.45m 

 
Fig. 3.8. Clamped beam of hollow rectangular cross section subjected to 

concentrated bending moment yM  and uniformly distributed load zp . 

 

(a) (b) 

Fig. 3.9. Displacement along the beam of example 2, for various stiffness zk  values 
of the bilateral (a) and unilateral (b) Winkler springs. 
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Table 3.4. Maximum central displacement ( )maxw m  and period ( )zT sec  of the first 
cycle of motion of the clamped beam of example 2. 

Analysis 
Without Shear Deformation With Shear Deformation 

Linear  Nonlinear  Linear Nonlinear  

maxw  0.3729 0.2572 0.3914 0.2688 

zT  0.01890 0.01482 0.01973 0.01607 

 

 
Fig. 3.10. Time history of the central displacement of the beam of example 2, for a 

unilateral subgrade model with zk 645.0 kPa =  . 
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( freel 6.20m = , embedl 8.80m = ), of circular cross section of diameter D 1.0m =               

( E 29 GPa =  , 2A 0.785m = , v 0.2= , 4
y zI I 0.049m= = , y za a 1,172 =  = ), as this is 
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at the elastic foundation is clamped, while the other end is free according to its 
displacements and blocked according to its rotations. The pile is subjected to a suddenly 

applied concentrated axial load xP 0,t ) 1.0MN (  = , ( )t 0.0≥  and to a uniformly 

distributed transverse load ( ) /yp t 500kN m  = , ( )t 0.0≥  acting to the free part of the 

length of the pile.  
 

     (a)
     (b)

Fig. 3.11. Pile of circular cross section in axial-flexural loading subjected to 
rectangular impulsive concentrated load zP , concentrated axial load xP  
and to uniformly distributed loading yp , zp . 

 
In Figs. 3.12a,b the time history of the head displacement topv  of the pile and the 

displacement v  along the pile at the time instant 2t 7.0 10 sec− = ⋅   are presented, 
respectively performing either linear or nonlinear analysis, taking into account or 
ignoring both rotary inertia and shear deformation effect. Moreover, in Table 3.5 the 

maximum value of the head displacement maxv  and the period yT  of the first-cycle of 

motion are presented for the aforementioned cases.  
Moreover, the examined pile in addition to the aforementioned loading is also 

subjected to a uniformly distributed load /zp 100 kN m =    at its free length and to a 

suddenly applied concentrated load ( )zP t 650kN  = , [ ]t 0,0.15∋  acting at its top, as 

shown in Fig. 3.11. In Fig. 3.13 the time history of the head displacement of the pile 

topw  performing either linear or nonlinear analysis is presented taking into account or 
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ignoring shear deformation effect. Finally, in Table 3.6 the maximum values of the head 

displacements maxv , maxw  and the periods y zT ,Τ  of the first cycle are presented for the 

same cases of analysis. It is worth noting that the minor discrepancy of the head 

displacement maxv  between Tables 3.5, 3.6 is due to the coupling effect of the 

transverse displacements in y, z  directions in the nonlinear analysis. 

 

(a) (b) 

Fig.3.12. Head displacement time history (a) and displacement v at -27 10 sec×  time 
instant along the pile (b) of example 3. 

 

 
Fig. 3.13. Head displacement time history topw  of the pile of example 3. 
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Table 3.5. Maximum head displacement and period of the first cycle of motion of the 
pile of example 3. 

Analysis 
Without Shear Deformation With Shear Deformation 

Linear  Nonlinear  Linear  Nonlinear  

( )maxv m  0.2699 0.2321 0.2699 0.2353 

yT  0.1105 0.1180 0.111 0.1201 
 

Table 3.6. Maximum head displacements and periods of the first cycle of the pile of 
example 3. 

Analysis 
Without Shear Deformation With Shear Deformation 

Linear  Nonlinear  Linear  Nonlinear  

( )maxv m  0.2054 0.2320 0.2070 0.2351 
( )maxw m  0.0992 0.1109 0.1002 0.1111 

( )yT sec  0.1105 0.1172 0.1111 0.1192 
( )zT sec  0.1133 0.1189 0.1143 0.1215 

 
 
3.5.4 Example 4 – Fully Embedded Hollow Circular Pile in Non-constant Stiffness Soil 

In this example, a fully embedded in stiff cohesive soil with non constant stiffness free 
head pile of length l 8.0 m =   of a hollow circular cross section ( E 210 GPa =  , 

/ 37.85 tn mρ =  , y za 2.226α = = , v 0.3= ), as shown in Fig. 3.14 is examined. The pile 

is subjected to a concentrated axial xP t ) 500 kΝ (  =  , ( )t 0.0≥  and transverse loading 

( ) ( )z f ,linP t 750cos t kNω  =   acting at the tip, where /f ,lin 614.329rad secω =  is the first 

natural frequency of the pile-soil system.  
In Figs. 3.15, 3.16 the time history of the pile head displacement topw  and the 

displacement w  along the pile at the time instant t 0.04 sec =  are presented, 
respectively, performing either linear or nonlinear analysis and taking into account or 
ignoring both rotary inertia and shear deformation effect. The discrepancy between 
linear and nonlinear analysis is remarkable, while in the resonance case the beating 
phenomenon observed in the nonlinear response (Fig. 3.15) is explained from the fact 
that large head displacements increase the beam’s fundamental natural frequency fω  
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(by increasing the stiffness of the beam), thereby causing a detuning of fω  with the 

frequency of the external loading. Since the head displacement reaches its maximum 
value, the amplitude of displacements decreases, leading to the reversal of the 
previously mentioned effects. 

 

 
Fig. 3.14. Hollow circular pile embedded in non constant stiffness soil subjected to 

concentrated axial xP  and transverse zP  head loading. 

 

 
Fig. 3.15. Head displacement time history topw  of the pile of example 4 (for graphic 

purposes displacements obtained from linear analysis are divided by 10). 
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Fig. 3.16. Displacement at time instant t 0.04 sec=  along the pile of example 4. 

 
 
3.5.5 Example 5 – Clamped Beam on Nonlinear Three-Parameter Viscoelastic 

Foundation. Resonance and Damping Effects 

In order to illustrate the importance of both the nonlinear analysis and the shear 
deformation effects in flexural vibrations, a clamped beam of length l 2m= , having a 
hollow rectangular cross section 0.15 0.10 0.01 m× ×  ( E 210 GPa =  , v 0.3 = , 

z ya 3.263, a 1.778=    = , / 37.85 tn mρ =  ) is examined. The beam is resting on a Winkler 

viscoelastic foundation with modulus of subgrade reaction Lzk 2MPa= , damping 

coefficient 2c 4.8kNs / m=  and is subjected to a uniformly distributed transverse load 

( )zp x,t 1000kN / m = . For the validation of the proposed numerical method, the 

obtained result have been compared with a FEM solution (NX-Nastran 2007) obtained 
by implementing 41 Beam elements and a 3-D FEM solution (NX-Nastran 2007) 
obtained by employing 4600 Solid Hexahedral (brick) elements (Fig. 3.17).  

In Fig. 3.18 the time history of the beam’s midpoint displacement ( )w l 2  free of 

foundation support performing either linear or nonlinear analysis and taking into 
account or ignoring both shear deformation effect and rotary inertia is presented as 
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compared with those obtained from the aforementioned FEM models, while in Fig. 3.19 
the same results are presented assuming the beam on Winkler viscoelastic foundation. 
Moreover, in Table 3.7 the maximum values of the displacement of the Timoshenko 
beam taking into account or ignoring the damping effect are presented as compared with 
the FEM models for different values of the distributed load. The accuracy of the 
proposed method is verified for both linear and nonlinear analysis. 

As a variant of the above example, the examined beam is resting on a nonlinear 

viscoelastic ( )2
zc kNs / m  three-parameter foundation with moduli Lzk 20MPa= , 

4
NLzk 20MN / m= , Pzk 10MN= . Two cases of loading are examined namely; (load 

case i) a transverse concentrated load ( ) ( )z f ,linP l / 2,t 100 sin t kNω =   acting at its 

midpoint, where f ,lin 1345.7 rad / secω =   is the fundamental frequency of the linear 

beam-soil system and (load case ii) an orthogonal impulsive load of amplitude 

zp 200kN / m= . 

 

          (a)

          (b)

Fig. 3.17. Clamped beam implemented in NX-Nastran (2007) with Beam Elements (a) 
and Solid Hexahedral (brick) Elements (b) 

  

Elements: 4600 
Nodes: 9292 
DoF: 54648 

Elements: 40 
Nodes: 41 
DoF: 246 
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Fig. 3.18. Midpoint displacement time history ( )w l / 2  of the beam of example 5, free 

of foundation support. 
 

 
Fig. 3.19. Midpoint displacement time history ( )w l / 2  of the beam of example 5, 

resting on Winkler viscoelastic foundation. 
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Table 3.7. Maximum displacement of the clamped Timoshenko beam on Winkler 
viscoelastic foundation of example 5, for different loading values. 

( )maxw cm  Present Study FEM (Beam Model) FEM (Solid Model) 

Analysis Linear  Nonlinear Linear  Nonlinear  Linear  Nonlinear  

( )zp kN m  No Damping ( c 0= ) 

1000 6.370 5.936 6.349 5.949 6.623 6.078 

2000 12.741 10.431 12.699 10.462 13.245 10.567 

3000 19.111 13.841 19.048 13.813 19.868 13.981 

 With Damping ( 2c 4.8kNs / m= ) 

1000 5.784 5.440 5.772 5.466 6.011 5.6801 

2000 11.576 9.732 11.543 9.771 12.021 9.905 

3000 17.354 13.063 17.315 13.038 18.031. 13.127 
 

In Fig. 3.20a the time history of the beam’s midpoint displacement ( )w l 2  resting 

on a linear Winkler foundation ( Lzk 20MPa= , NLz Pzk k 0= = ) is presented ignoring or 

accounting for geometrical nonlinearity, while in Fig. 3.20b the time history of the 
beam’s midpoint displacement resting on a three-parameter foundation performing a 
nonlinear analysis is presented taking into account or ignoring both shear deformation 
effect and rotary inertia.  

According to Fig. 3.20a the beating phenomenon is observed in the nonlinear 
response contrary to the resonance occurred in the linear one. This is explained from the 
fact that large displacements increase the beam’s fundamental natural frequency fω  (by 

increasing the stiffness of the beam), thereby causing a detuning of fω  with the 

frequency of the external loading ( f ,linω ). Since the displacement reaches its maximum 

value, the displacement amplitude decreases, leading to the reversal of the previously 

mentioned effects. In Table 3.8 the maximum displacements of the midpoint ( )w l 2  

performing either a linear or a nonlinear analysis and taking into account or ignoring 
both shear deformation effect and rotary inertia are presented for different types of 
foundation reaction. From this figure and table the intense influence of these effects is 
remarked. 
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Finally, in Fig.3.21 the time history of the beam’s midpoint displacement ( )w l 2  

performing nonlinear analysis and taking into account both shear deformation effect and 

rotary inertia is presented for various values of the damping coefficient zc , while in 

Table 3.9 the maximum values of the displacement maxw  and the period zΤ  of the first 

cycle of motion are presented for all the cases of analysis for zc 0= . 

 

(a) (b) 

Fig. 3.20. Midpoint displacement time history ( )w l 2  of the beam of example 5 
resting on Winkler (a) or 3-parameter foundation (b) (load case i). 

 

Table 3.8. Maximum displacement of the beam of example 5 for different types of 
foundation reaction (load case i). 
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Analysis Linear Nonlinear Linear Nonlinear 

Linear Winkler Resonance- ∞  68.827 – – 
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Linear & Nonlinear 
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Three-Parameter 7.512 7.495 8.922 8.305 
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Fig. 3.21. Midpoint displacement time history ( )w l 2  of the beam of example 5, 

resting on a 3-parameter viscoelastic foundation (load case ii). 

 

Table 3.9. Maximum displacement and period of the first cycle of motion of the beam of 
example 5 (load case ii). 

Analysis 
Without Shear Deformation With Shear Deformation 

Linear Nonlinear Linear Nonlinear 

( )maxw mm  6.12 5.46 6.41 5.73 
( )zT ms  4.01 3.81 4.14 3.95 

 
 
3.5.6 Example 6 – Partially Embedded Column-Pile in Nonlinear Three-Parameter 

Viscoelastic Foundation 

In this example, a partially embedded column-pile of total length l 10m= ( freel 3.0m= , 

embedl 7m= ) of circular cross section of diameter D 0.5m=  ( E 29GPa= , v 0.2= , 

2A 0.196m= , 3 4
y zI I 3.066 10 m−= = × ) is studied. The foundation model is 

characterized by the linear Winkler modulus 2
Lk 17.4MN / m= , the nonlinear Winkler 
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one 4
NLk 17.4GN / m= , the Pasternak (shear) modulus Pk 8.7MN=  and the damping 

coefficient 2c 12kNs / m= . According to its boundary conditions, the embedded 
column-pile end is free, while the other end is free according to its displacements and 
blocked according to its rotations. The column-pile is subjected to a concentrated 

compressive axial load xP 0,t ) 1.5MN (  = , ( )t 0.0≥  and to a concentrated transverse 

force ( )zP 0,t 1MN = , ( )t 0.0≥  acting at its top. 

In Fig. 3.22a,b the time histories of the head displacement topw  of the column-pile 

embedded in a Winkler type foundation are presented for two values of the damping 

coefficient ( 2c 0 or 12kNs / m=   ) respectively, taking into account the rotary inertia and 
the shear deformation effect, performing either a linear or a nonlinear analysis. The 
obtained results are also compared with those from a FEM solution (NX Nastran 2007) 
employing the Beam Element formulation. Moreover, in Fig. 3.23 the time histories of 
the head displacement topw  of the column-pile for various models of the mechanical 

behaviour of the subsoil are presented performing a nonlinear analysis and taking into 
account the rotary inertia and shear deformation effect, while in Table 3.10 the 

maximum values of the head displacement maxw  and the periods zT  of the first-cycle of 

motion are presented for the aforementioned cases of analysis. Finally, in Fig. 3.24 the 
static deflection curves of the column-pile performing either a linear or a nonlinear 
static analysis for various foundation models are presented, taking into account the 
shear deformation effect. The influence of the nonlinear Winkler and Pasternak (shear) 
moduli on the response of the beam-column is observed. 

Finally, in order to demonstrate the coupling effect of the transverse displacements 
in both directions in the nonlinear analysis, the examined column-pile additionally to 
the already described loading is also subjected to a concentrated transverse force 

( )yP 0,t 2MN = , acting also at its top. In Table 3.11 the maximum values of the head 

transverse displacements maxw , maxv  are presented performing either a linear or a 

nonlinear analysis for the aforementioned foundation models. The difference in the 
elements of the first columns of Tables 3.10, 3.11 is due to the coupling effect of the 
transverse displacements.  
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(a) 

(b) 

Fig. 3.22. Head displacement time history of the column-pile of example 6, for 
undamped (a) and damped (b) case. 

 

Table 3.10. Maximum head displacement and period of the first cycle of motion of the 
column-pile of example 6. 

Analysis / 210−×  
Nonlinear  Linear 

( )topw m  ( )zT sec  ( )topw m  ( )zT sec  

Linear Winkler 29.662 8.10 26.956 7.28 
Pasternak 31.224 8.23 28.228 7.85 
Linear & Nonlinear Winkler 20.900 5.80 19.843 5.32 
Three-Parameter 21.059 5.92 19.941 5.66 
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Fig. 3.23. Head displacement time history of the column-pile of example 6, for 

various foundation models.  

 

Table 3.11. Maximum head transverse displacements of the column-pile of example 6. 

Analysis / ( )210 m−×  
Nonlinear  Linear  

maxw  maxv  maxw  maxv  

Linear Winkler 29.671 59.343 26.956 53.912 

Pasternak  31.231 62.463 28.228 56.456 

Linear & Nonlinear Winkler 20.909 41.819 19.843 39.686 

Three-Parameter 21.062 42.123 19.941 39.882 
 

 
 
3.5.7 Example 7 – Timoshenko-Rayleigh Beam on Viscoelastic Pasternak Foundation 

under Concentrated Moving Load 

For comparison purposes, in this example the linear dynamic analysis of a simply 
supported steel Timoshenko beam free of foundation support is examined. The material 
and geometric constants are given in Table 3.12. The beam is subjected to a 

concentrated moving load with constant velocity, ( ) ( )zp x,t P x Vtδ= − , 700P N= , 

V km / h = 12  (δ  is the Dirac’s delta function). In Table 3.13, the maximum 
displacements of the midpoint of the beam for various internal nodal points’ 

0 0.05 0.1 0.15 0.2 0.25 0.3
Time (sec)

0

0.05

0.1

0.15

0.2

0.25

0.3

D
is

pl
ac

em
en

t w
to

p(m
)

Nonlinear Analysis

3-Parameter Foundation

Pasternak Winkler



Geometric and Material Nonlinear Analysis of Beam–Soil Interaction Systems 

112 

discretization schemes are presented; illustrating that convergence is achieved for a 
small number of nodal points. In Fig. 3.25, the time history of the displacement w  at 
the beam’s midpoint is presented for various internal nodal points’ discretization 
schemes as compared with the one obtained from a modal superposition method 
(Zehsaz et al. 2009) demonstrating the accuracy of the proposed method. 
 

Table 3.12. Geometric constants of the beam of example 7. 

l ( m )  10  ( )4
yI m  -61.04×10  ( )3kg / mρ  7040  

( )E GPa  207  ( )2A m  -310  za  1.2  

 

 
Fig. 3.24. Static deflection of the column-pile of example 6, for various foundation 

models.  

 
Table 3.13. Maximum displacements of the beam of example 7 and divergence values 

for various discretization schemes. 

Nodal Points 11 17 21 27 31 37 41 
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Divergence (%) 1.96 1.88 1.14 1.13 0.5 0.001 - 
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Fig. 3.25. Midpoint displacement time history of the beam of example 7. 

 
As a variant of this example, a simply supported Timoshenko-Rayleigh beam 

subjected to a concentrated moving load with constant velocity, ( ) ( )zp x,t P x Vtδ= − , 

having the material, geometric and loading constants given in Table 3.14 and resting on 
a Pasternak viscoelastic foundation is considered.  

 

Table 3.14. Geometric, foundation and loading constants of the beam of example 7. 

l ( m )  10  ( )4
yI m  -639.5×10  ( )3kg / mρ  7820  

( )E GPa  207  ( )2A m  -486.13×10  za  1.176  

v  0.3  ( )Lk MPa  20  ( )Pk kN  69  

( )2c kNs / m  138 ( )P kN  144  ( )V km / h  60  

 

In Fig. 3.26 the time history of the bending moment ( )/2yM l ,t  at the beam’s 

midpoint is presented for various internal nodal points’ and time discretization schemes, 

while in Figs. 3.27a,b the displacement ( )0.3w x,  and the bending moment ( )0.3yM x,  

at the time instant 0.3t s=  along the beam axis, respectively are also given. In these 
figures the corresponding curves obtained from the solution of the same beam resting on 
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a Pasternak-type viscoelastic foundation (using a viscous shear layer) are also presented 
employing the modal superposition method considering the first ten modes (Zehsaz et 
al. 2009). From these figures, it is easily verified that due to the high value of the 
damping coefficient, the response of the beam approaches to zero after passage of the 
moving load. Moreover, the bed influence limiting the effect of the moving load to the 
nearby points is remarked. 
 

 
Fig. 3.26. Midpoint time history of the bending moment of the beam of example 7. 

 

(a) (b) 

Fig. 3.27. Displacement (a) and bending moment (b) along the beam axis at the time 
instant 0.3t s=  of the beam of example 7. 
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Finally, in Table 3.15 the absolute maximum displacement maxw  as well as the 

maximum displacement ( )max/2w l  and bending moment ( ) max/2 yM l  at the midpoint 

of the beam are presented for various values of the velocity for both Pasternak and 
Winkler foundations, taking into account shear deformation effect. From this table the 
negligible, in this example, decrease of the transverse displacements and the bending 
moments arising from the shear foundation layer are remarked. 
 

Table 3.15. Absolute maximum displacement and maximum midpoint displacement 
(mm) and bending moment (kNm) of the beam of example 7, taking into 
account shear deformation effect. 

( )V km h  
Pasternak Winkler 

maxw  ( )max/2w l  ( ) max/2 yM l  maxw  ( )max/2w l  ( ) max/2 yM l  

0 3.318 3.171 38.37 3.327 3.185 38.43 

10 3.335 3.189 39.91 3.346 3.200 40.92 

60 3.345 3.202 41.17 3.350 3.209 41.24 

100 3.466 3.281 41.89 3.473 3.285 42.40 

120 3.522 3.363 45.99 3.531 3.369 46.17 

150 3.649 3.465 48.01 3.657 3.471 48.19 
 
 
3.5.8 Example 8 – UIC60 Rail Track on 3-Parameter Viscoelastic Foundation 

In order to illustrate the importance of the geometrically nonlinear analysis, a simply 
supported UIC60 rail track, resting on a three-parameter viscoelastic bilateral 
foundation is examined. The geometric, foundation and loading constants of the track, 
are given in Table 3.16.  
 

Table 3.16. Geometric, foundation and loading constants of the UIC60 rail track 
(Dahlberg 2002, Kargarnovin et al. 2005) of example 8.  

 

l ( m )  10  ( )4
yI m  -630.55×10 ( )3kg / mρ  7850

( )E GPa  210  ( )2A m  -476.86×10 za  2.68  

( )G GPa  77  ( )Lk MPa  35  ( )Pk kN  200  

( )4
NLk MN / m  84×10 ( )2c kNs / m 145 ( )P kN  100 
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The track is subjected to a concentrated moving harmonic load 

( ) ( ) ( )sinzp x,t P x Vt tδ Ω= − , where P , Ω  are the amplitude and the frequency of the 

harmonic load, respectively and δ  is the Dirac’s delta function. Moreover, the track is 
subjected to an either tensile or compressive distributed axial load 

( ) ( )2500xp x,t kN / m= ± . 

In Fig. 3.28 the time history and the extreme values of the central displacement 

( )/2w l ,t  of the track resting on the viscoelastic Winkler foundation and subjected to a 

concentrated harmonic load at its midpoint ( 0V m / s= , 100rad / sΩ = ) is presented, 
performing either a small or a large deflection analysis and taking into account both 
rotary inertia and shear deformation effect.  
 

 
Fig. 3.28. Midpoint time history and extreme values of the displacement of the track 

of example 8. 

 
 To illustrate the significant effect of the load frequency, in Table 3.17 the 

maximum midpoint displacement ( )/2w l ,t  of the track resting on the nonlinear three-

parameter bilateral viscoelastic foundation, subjected to a harmonic moving load with 
constant velocity 100V m / s=  are presented for various values of the excitation 
frequency Ω , performing either small or large deflection analysis (for both cases of 
tensile or compressive axial load). Moreover, in Table 3.18 the maximum displacements 
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and bending moments of the track are presented for different types of bilateral 

viscoelastic foundation reaction, for 400rad sΩ = , 100V m s= , while in Fig. 3.29 the 

displacement ( )0.055w x,  along the track axis at the time instant 0.055t s=  as well as 

their maximum values are also presented for both small and large deflection analysis for 
viscoelastic Winkler and three-parameter foundation. From the obtained results, it is 
concluded that the discrepancy between the geometrically linear and nonlinear analysis 
is not negligible and should not be ignored, while the influence of the shear deformation 
effect (increasing the transverse displacements and decreasing the bending moments) in 
both of the aforementioned analyses is observed. This latter influence is more 
pronounced as the length of the track becomes smaller. 
 

Table 3.17. Maximum midpoint displacement ( )maxw l 2 ( )mm  of the track of example 
8, for various values of the excitation frequency Ω .  

( )maxw l 2  
Linear Nonlinear  

Tensile Load 
Nonlinear  

Compressive Load ( )rad / sΩ /Analysis 

1.0 0.0715 0.0607 0.1009 
5.0 0.2699 0.2338 0.3374 
10 0.3999 0.3626 0.4693 
50 0.4609 0.4445 0.5147 
100 0.5690 0.5448 0.6272 
200 0.5150 0.4724 0.5745 
400 0.5782 0.5257 0.6589 

 

Table 3.18. Maximum displacement maxw  and bending moments maxyM  of the track of 
example 8, for different types of foundation reaction. 

( )maxw mm  

( )maxyM kNm  
Without Shear Deformation With Shear Deformation 

Linear  Nonlinear  Linear  Nonlinear  

Linear Winkler 0.9879 
15.449 

1.4336 
22.869 

0.9973 
15.285 

1.4436 
22.805 

Pasternak 0.9861 
15.942 

1.4235 
22.779 

0.9937 
15.255 

1.4452 
22.735 

Linear & 
Nonlinear Winkler 

0.5788 
12.906 

0.6859 
15.917 

0.5923 
12.161 

0.6992 
15.916 

Three-Parameter 0.5783 
12.887 

0.6851 
15.886 

0.5820 
12.148 

0.6893 
15.880 
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Fig. 3.29. Displacement at the time instant 0.055t s=  and their maximum values of 

the beam of example 8. 
 
 
3.5.9 Example 9 – HEA320 on Winkler Foundation under Axial Loading and 

Concentrated Moving Harmonic Force 

In this example, a clamped-pinned HEA320 beam of length l 6.5 m =   ( E 210 GPa =  , 

v 0.3 = , ya 1.475= , za 4.512= , 37.85tn mρ = ) resting on a constant stiffness soil of 

zk 1.2MPa= , as shown in Fig. 3.30, is considered. The beam is subjected to a 

uniformly distributed axial loading xp t ) 500 kΝ (  =  , ( )t 0.0≥  and to a transverse 

concentrated moving harmonic load ( ) ( ) ( )zP t 10 x Vt sin t MNδ Ω  = −    with constant 

velocity of /V 65m s= , and excitation frequency /100rad secΩ = . 
 

500kN/m 

65m/sec 

kz = 1.2MPa 
y 

z 

x 

l=6.5m 

az= 4.5118 
ay= 1.4752 

Pz=10.0·sin(ωt) MN 

HEA320

 
Fig.3.30. Beam under axial-flexural loading on constant stiffness soil. 
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In Fig. 3.31a the time history of the central transverse displacement ( )w l 2  of the 

beam, performing either linear or nonlinear analysis, taking into account or ignoring 
both rotary inertia and shear deformation effect is presented, while in Fig. 3.31b the 
displacement curves w  at the time instant sect 0.05 =  are also presented either for 
conventional Winkler or for tensionless Winkler soil performing nonlinear analysis and 
taking into account or ignoring shear deformation effect. Moreover, in Table 3.19 the 

extreme displacements maxw , minw  and in Fig. 3.32 the effect of the frequency ω  of the 

concentrated moving load to the maximum displacement maxw  are presented for all of 

the aforementioned cases. 
 

(a) (b) 

Fig. 31. Central displacement time history (a) and displacement curves at time instant 
t = 0.05sec  (b) of the beam of example 9. 

 

Table 3.19. Extreme values of the displacement of the beam of example 9. 

Analysis 
Winkler 

Without Shear Deformation With Shear Deformation 

( )210 m−×   Linear  Nonlinear  Linear  Nonlinear  

maxw  6.21 8.43 6.45 8.58 

minw  -7.87 -9.15 -8.17 -9.26 

Analysis 
Tensionless Winkler 

Without Shear Deformation With Shear Deformation 

( )210 m−×   Linear  Nonlinear  Linear  Nonlinear  

maxw  5.92 6.84 6.67 6.98 

minw  -10.18 -10.96 -11.46 12.34 
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Fig.3.32. Frequency effect to the maximum displacement of the beam of example 9. 

 
 
3.5.10 Example 10 – HEM 240 on 3-Parameter Viscoelastic Foundation under Axial 

Loading and Distributed Moving Harmonic Force 

To demonstrate the range of applications of the developed method, in this example, a 
clamped-slide supported HEM 240 beam of length 8l m =  ( 210E GPa = , 0.3v = , 

4.344za = , 37.85 /tn mρ = ) has been studied. The foundation model is characterized by 

the linear Winkler modulus 2
L 1.5k MN / m= , the nonlinear Winkler one 

4
NL 1.5k GN / m= , the Pasternak (shear) modulus P 400k kN=  and the damping 

coefficient ( )2c kNs / m . The beam is subjected to a uniformly distributed axial loading 

( ) -1000xp x,t kN / m=  and to a moving harmonic line load ( )zp x,t  of length 2a  

defined as  
 

 ( )
( )

( )
2 2

cos
2z

H a s
p x,t P t

a
Ω

−
=  (3.xx) 
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where P , Ω  are the amplitude and the frequency of the harmonic load, H  is the 

Heaviside step function and s  is given as ( )s x a Vt= + − . It is considered that 

200P kN= , 100rad / sΩ =  and 0.381a m= . 

In Fig. 3.33a the midpoint displacement time history ( )/2w l ,t  of the beam 

subjected to the aforementioned load ( 215c kNs / m= , 0V m / s= ) for the time period 

[ ]0, 0.03t ∋  sec is presented, performing either small or large displacement analysis, 

taking into account rotary inertia, shear deformation effect and the tensionless character 
of the foundation, demonstrating the discrepancy between the conventional and the 
tensionless foundation, while in Fig. 3.33b the midpoint displacement time history 

( )/2w l ,t  of the beam subjected to the aforementioned load ( 215c kNs / m= , 

80V m / s= ) is also presented, performing either small or large deflection analysis and 
taking into account both shear deformation effect and rotary inertia. Moreover, in Table 

3.20 the maximum values of the displacement ( )w x,t  of the beam resting on either 

nonlinear or tensionless nonlinear three-parameter foundation are presented for various 
values of the damping coefficient c , performing both small and large deflection 
analysis and taking into account or ignoring shear deformation effect and rotary inertia. 
From the results obtained the influence of the damping coefficient is illustrated and the 
importance of large deflection analysis is verified. 
 

(a) (b) 

Fig. 3.33. Midpoint displacement time history of the beam of example 10 for 
215c kNs / m= , 0V m / s=  (a) and 80V m / s= (b). 

0 0.04 0.08 0.12 0.16
Time (sec)

0.006

0.004

0.002

0

-0.002

-0.004

-0.006

-0.008

-0.01

-0.012

D
is

pl
ac

em
en

t w
(l/

2,
t) 

(m
)

Tensionless Foundation
Linear Analysis
Nonlinear Analysis

Linear Analysis
Nonlinear Analysis

0 0.04 0.08 0.12 0.16
Time (sec)

0.014

0.012

0.01

0.008

0.006

0.004

0.002

0

-0.002

-0.004

-0.006

-0.008

-0.01

D
is

pl
ac

em
en

t w
(l/

2,
t) 

(m
)

Nonlinear Analysis 
with Shear Deformation 

Linear Analysis 
with Shear Deformation 



Geometric and Material Nonlinear Analysis of Beam–Soil Interaction Systems 

122 

Table 3.20. Maximum displacement ( )maxw cm  of the beam of example 10. 

Analysis 
Nonlinear Foundation 

Without Shear Deformation With Shear Deformation 

maxw  Linear  Nonlinear  Linear  Nonlinear  

0c =  1.985 2.373 2.019 2.448 
5c =  1.678 1.966 1.715 2.023 

10c = 1.471 1.681 1.487 1.713 
15c =  1.323 1.472 1.335 1.484 
20c =  1.197 1.305 1.210 1.314 
40c =  0.8579 0.924 0.861 0.925 

Analysis 
Nonlinear Tensionless Foundation  

Without Shear Deformation With Shear Deformation 

maxw  Linear  Nonlinear  Linear  Nonlinear  

0c =  2.473 3.094 2.568 3.376 
5c =  2.169 2.544 2.254 2.651 

10c = 1.925 2.251 2.001 2.352 
15c =  1.726 2.014 1.794 2.104 
20c =  1.561 1.819 1.619 1.896 
40c =  1.128 1.298 1.165 1.343 

 
 
3.5.11. Example 11 – Extensive Case Study 

The main purpose of this final example is to investigate the accuracy of the advanced 
beam model developed in the previous sections under the concept of an extensive case 
study concerning soil–pile–structure kinematic and inertial interaction, as well as to 
demonstrate its efficiency and advantages compared to other commonly used beam or 
solid models. 

Within this context, a column-pile monolithically connected to a bridge deck, 
embedded in two layers of cohesive soil and excited by seismic motion (Fig.3.34), has 
been studied. The concentrated mass at the centre of the deck is topM 60tons= , the 

height of the pier is H 10m= , the embedment length of the pile is L 30m= , and the 
diameter of the column-pile equals to d 1.5m= . The column-pile is assumed to be 
linear elastic, while the idealized soil profile from the Agios Stefanos bay depicted in 



Chapter 3 Geometrically Nonlinear Dynamic Analysis of Shear Deformable Beams on Nonlinear Foundation 

123 

Fig. 3.34 was used for the ground response analyses. More specifically, a soft to 
medium normally consolidated clay sets on top of a stiff clay. The bedrock is 
encountered at −50m  and is assumed to be rigid. The soft clay has a thickness of 18m  

and a plasticity index ( )PI 35% = . The second layer is 32m  thick and has constant 

undrained shear strength of 1 kPa00 . The maximum shear modulus was calculated by 
the empirical equations of Seed and Idriss (1970). 

 

 

Fig. 3.34. Column-pile monolithically connected to bridge deck embedded in two 
layers of cohesive soil and the adopted beam model. 

 
The layered soil profile is simulated by a Winkler type hybrid spring configuration. 

As proposed by Wang et al. (1998), the soil is separated into two zones, namely a far–

field zone implemented by Kelvin–Voigt element ( elk , elc ) and a near–field one 

represented by hysteretic element ( nlk ). More specifically, the adopted hybrid model 

consists of a nonlinear spring connected in series to a dashpot–elastic spring parallel 
configuration. The free extremities of the configuration are excited by the free–field       
( ffw , ffw& ) displacement and velocities time histories obtained at each depth from the 

free–field seismic response analysis (Fig.3.34). The equilibrium of forces at the mid-
node of the spring configuration results in an additional equation  
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 ( ) ( ) ( )el mnode ff el mnode ff nl mnodek w w c w w k w w− + − = −& &  (3.49) 

 

where, ffw , ffw&  and mnodew , mnodew&  correspond to the free-field and mid-node 

displacement and velocity, respectively. Eqn. (3.49)  together with the equilibrium 
equations of motion (3.17) constitute the governing coupled differential equations of a 
Timoshenko column-pile embedded in a layered nonlinear Winkler-type soil profile 
accounting for the kinematic and inertial soil–pile–structure interaction and for the 
effects of geometrical nonlinearity, rotary inertia and shear deformation. 

The calibration of the spring and dashpot coefficients of the examined hybrid spring 
configuration is based on the methodology presented by Giannakos (2013). The lateral 
soil reaction against a deflecting pile is expressed as the sum of a hysteretic elastic–
perfectly plastic and a visco–plastic component, according to the lumped parameter 
model, as depicted in Fig.3.34. In this way, the frequency–dependent characteristics of 
the subgrade reaction are realistically captured through a series–parallel assembly of 
frequency–independent springs and dashpots. In the elastic regime, the small–amplitude 
frequency–dependent spring and dashpot coefficients for the lateral soil reaction are 
approximated by  
 

 

( )22
elel

el
nl nlz

x 2 2
el el

nl nl

ckk
k kpk Re

w k c1
k k

ω

ω

+ +
⎛ ⎞= ≈⎜ ⎟
⎝ ⎠ ⎛ ⎞ ⎛ ⎞

+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (3.50a) 

 elz
x 2 2

el el

nl nl

cpc Im
w k c1

k k

ω ω

⎛ ⎞= ≈⎜ ⎟
⎝ ⎠ ⎛ ⎞ ⎛ ⎞

+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (3.50b) 

 

in which ω  is the circular frequency. In the above equations, nlk denotes the stiffness of 

the elastic branch of the nonlinear spring. The parameters elk , elc and nlk  are 

appropriately calibrated through an optimization procedure to match the stiffness and 
dashpot coefficients (Fig. 3.35) proposed by Makris and Gazetas (1992) 
 

 x sk 1.2E=       and      1/ 4
x 0 s sc 6a V dρ−=  (3.51a,b) 
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in which sE , sV and sρ are the Young’s modulus, shear wave velocity and mass density 

of the supporting soil, and 0α  is a dimensionless frequency parameter defined as

0 sd Vα ω= . 

 

 

(a) 

                   

(b) 

Fig. 3.35. Calibration of stiffness xk  (a) and damping coefficient xc  (b) for the 
examined configuration. 

 

Having calibrated the stiffness xk  and dashpot coefficient xc  according to Eqns. 

(3.51), plastic behaviour is then introduced by imposing a threshold value for the 

reaction force of spring nlk  equal to the ultimate soil resistance per unit length of the 

pile ( ultp ) as determined by Matlock (1970) and Reese et al. (1975) at near surface (top 

layer) and at greater depths (bottom layer), respectively. The architecture of the 
proposed assembly of springs and dashpots is such that the maximum transmissible 
force on to the pile is limited to the ultimate resistance of the nonlinear spring. When 
the force (per unit length of the pile) of the nonlinear spring reaches its threshold value 
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( )ultp , the corresponding tangential spring stiffness becomes zero. Thus, the arranged 

in-parallel spring and dashpot unit is deactivated and the radiation damping vanishes. 
The influence of shaking on the seismic response is investigated by selecting three 

well known acceleration records as seismic excitations: 
i) the record from Aegion earthquake (1995) 
ii) the record from Lefkada earthquake (2003) 
iii) the JMA record from Kobe earthquake (1995) 

The first two records were chosen as two strong motions of the seismic environment of 
Greece, with one and many cycles, respectively. JMA record is used to investigate the 
dynamic response of the soil-pile-structure system to a quite unfavourable incident. All 
the records were first scaled to a Peak Grand Acceleration (PGA) of 5g0. and 8g0.  at 

the ground surface. The acceleration time histories at the surface scaled to ag = 0.5g and 
the corresponding elastic response spectra for 5%ξ =  damping are presented in Figs. 

3.36, 3.37, respectively.  
 

 
Fig. 3.36. Excitation motion accelerograms scaled to ga  5g0.= . 
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Fig. 3.37. Corresponding response spectra of the scaled motions ( ga  5g0.= ). 

 
Then, through deconvolution analyses conducted with SHAKE91 (1991), the 

bedrock motion as well as the motion at various depths along the pile were estimated. 
Both elastic and inelastic soil response are investigated. For the elastic soil, the response 
of the soil–pile–structure system is investigated further with two different methods; 
namely a simplified Beam–FE model employing the OpenSees code (2005), and a 
rigorous fully 3–D continuum FE scheme materialized in the ABAQUS (2009) code. 
For the inelastic soil response, the proposed model is verified only against the Beam–FE 
solution due to the fact that soil response in the 3–D continuum FEM strongly depends 
on the adopted soil constitutive model.  

In the Beam–Finite Element formulation (Giannakos 2013), two different stages of 
analysis are required. At first, the analysis of the seismic site response without the 
presence of the structure is performed with the use of the computer program SHAKE91 
(1991). Thereinafter, employing the obtained excitation motions derived from the first 
stage, the analysis of the soil-pile-structure system is carried out with the use of a 
Beam–FE model using the code OpenSees (2005). In the first stage, the seismic site 
response analysis considers the soil profile as a one-dimensional system of 
homogeneous visco–elastic sub-layers of infinite horizontal extend. The response of this 
system is calculated using the wave equation and the assumption of vertically 
propagating shear waves. An equivalent linear method models the nonlinear variation of 
soil shear modulus and damping as a function of shear strain. Curves of shear modulus 
reduction G and damping ratio ξ increase with shear strain γ developed by Ishibashi and 
Zhang (1993) were used in the case of the nonlinear site response analysis. In the 
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second stage, the column-pile is discretized into linear elastic beam elements of 1m  
length. The mass of the deck is simulated as a concentrated mass at the top node of the 
pile–column, while the distributed mass of the extended pile is simulated by lumped 
masses on the beam–element nodes. The free extremities of the spring configuration are 
excited by the displacement time histories obtained at each depth from the free–field 
seismic response analysis. Rayleigh damping which represents material damping was 
taken equal to =5%ξ  in order to avoid spurious oscillations at very small deformations. 

On the contrary, in the fully 3-D Finite Element Model (Giannakos 2013) the 
calculations of the site response and the soil–pile–structure interaction are performed in 
a fully coupled manner with the Finite Element Code ABAQUS (2009). The pile–
column is modelled with 3–D beam elements placed at its centre and connected with 
appropriate kinematic restraints with the nodes at the perimeter of the pile in order to 
model the complete geometry of the pile as depicted in Fig. 3.38b. The solid elements 
inside the perimeter of the pile have no stiffness. In this way, each pile section behaves 
as a rigid disc, i.e. rotation is allowed on the condition that the disc remains always 
perpendicular to the beam axis, but stretching cannot occur. The pile–column and the 
soil behaviour are assumed to be elastic, while P-δ effects (linearized 2nd order analysis) 
are also taken into account. The soil is modelled with 8-node brick elements. The 
vertical length of the elements is identical to the beam model in order to avoid mesh 
sensitivity differences. Appropriate kinematic constraints are imposed to the lateral 
edges of the model, allowing it to move as the free–field. The acceleration time histories 
derived from the site response analysis with SHAKE91 at 30m  depth were used as the 
input excitation motion in the fully 3–D FE model. Rayleigh damping of the soil 
elements was taken equal to the equivalent damping from the dampers of the Beam–FE 
model in order to avoid spurious oscillations at very small deformations. Due to 
symmetry, only half of the problem was analyzed, as depicted in Fig. 3.38a, 
significantly reducing computational demands leading to approximately 15,000  

elements for each analysis. 
In order to construct a rigorous and precise fully 3–D FE model, the free-field 

boundaries had to be investigated first by two different types of boundaries; namely i) 3 
dashpots (one in each direction) on each node on the boundaries of the 3–D model were 
employed, while the soil motion at each depth from the free-field seismic response 
analysis was imposed on every node on the boundaries and ii) appropriate kinematic 
constraints were used, imposed to the lateral edges of the model, allowing it to move as 
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excitation by D’ Alambert forces. There is also a second source of radiation. That is the 
kinematically driven radiation damping due to the interaction of the pile with the 
surrounding soil, driven by the free-field response. To capture in a crude but simple way 
the effect of the latter source of radiation damping, the parameters of the Rayleigh 
damping for the soil elements were calibrated to match the equivalent damping from the 
dampers of the Beam-FE model at a frequency which equals the fundamental frequency 

of the soil C 2Kξ ω= , where ω is the soil frequency, C is the damping coefficient of 

the damper, and K is the spring stiffness, leading to improvement of the response of the 
3–D FE model in comparison to the beam model. Alternatively, the matching could 
have been done at the predominant frequency of the excitation as well, leading to a 
similar response Saitoh (2012). The main disadvantage of the second approximation lies 
on the estimation of the predominant excitation frequency which varies with depth and 
is different for different seismic motions. 

 

 
Fig. 3.39. Fast Fourier Transform Analysis for the free-field and Soil-Pile-Structure 

system response.  

 
The numerical results obtained by the proposed advanced beam model using a set 

of 6 excitation motions, have been compared against both FE models. More specifically, 

in Figs. 3.40a-c the acceleration time histories at the bridge deck level ( )w H ,t&&

corresponding to the Lefkada, JMA and Aegion excitation motions scaled to ga  8g,0.=

are presented, respectively. In these figures the geometrically linear and nonlinear 
analysis of the proposed model, taking into account both rotary inertia and shear 
deformation effect are compared with the Beam-FE and the fully 3–D FE models. From 
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the obtained results it is observed that the proposed nonlinear formulation can capture 
accurately the response of the solid model accounting for P–δ effect, while the linear 
case predicts identical acceleration time histories with the Beam–FE model. From the 
conducted investigation, it is deduced that instead of executing time–expensive 3–D 
analyses for the soil–pile–bridge system, the proposed beam model can be employed 
providing minimum calculation effort while retaining high precision in the obtained 
results. Under the scope of efficiency, it is worth noting that as the two approaches have 
fundamental differences (i.e. 101  elements for the proposed model instead of 

approximately 15,000 elements for the solid one), the difference between the 

computational time required for the analyses is significant. Indicatively, it is mentioned 
that the sophisticated solid model required approximately 2 5h. to5 5h. for the Aegion 
and JMA excitation, respectively (even though half of the system is concerned), while 
the proposed one required from 25sec to 70sec for the same excitations.  

Moreover, in Fig. 3.41 the corresponding ( 5%ξ = ) response spectra are also 

presented. As expected, the response spectra of the 3–D FE model produce higher peak 
acceleration values, due to the fact that the damping in this model is less than in the 
beam models, as stated before. Nevertheless, the response spectra from both approaches 
produce the maximum acceleration values at the same periods.  

Similarly, Figs. 3.42-3.47 illustrate the displacement time histories at the deck level 

( )w H ,t  and pile head (ground surface) level ( )w L,t  corresponding to the Lefkada, 

JMA and Aegion excitation motions, respectively for the same cases of analysis, while 

in Figs. 3.48-3.50 the rotation time histories at the deck level ( )y H ,tθ  are also 

presented. Once again the proposed nonlinear formulation captures well the response of 
the 3–D FE model while response for the linear analysis and the Beam–FE model are 
identical. As in the case of the acceleration time histories, the peak displacement and 
rotation values calculated with the solid model are higher than those from the linear 
Beam–FE analysis. 

What is of great interest is the case of Aegion (1995) (Figs. 3.46, 3.47), where a 
great difference in the response of the system is observed, even though the acceleration 
time histories are similar. In order to justify the difference between the 3–D analysis and 
both the proposed model and the one implemented in the Finite Element code OpenSees 
(2005), a Beam–FE model was also created in the Finite Element code ABAQUS 
(2009) which provides a graphical interface. The results obtained from that model lead 
to similar displacement time histories as the rest of the beam models.  



Geometric and Material Nonlinear Analysis of Beam–Soil Interaction Systems 

132 

(a) 

 

(b) 

 

(c) 

Fig. 3.40. Acceleration time history of the deck level for Lefkada(a), JMA(b) and 
Aegion (c) excitation. 
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Fig. 3.41. Comparison between the response spectra (ξ=5%) at the deck level. 

 

 
Fig. 3.42. Displacement time history of the deck level for Lefkada excitation. 

 

 
Fig. 3.43. Displacement time history of the pile head for Lefkada excitation. 
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Fig. 3.44. Displacement time history of the deck level for JMA excitation. 

 

 
Fig. 3.45. Displacement time history of the pile head for JMA excitation. 

 

 
Fig. 3.46. Displacement time history of the deck level for Aegion excitation. 
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Fig. 3.47. Displacement time history of the pile head for Aegion excitation. 
 

 
Fig. 3.48. Rotation time history of the deck level for Lefkada excitation. 

 

 
Fig. 3.49. Rotation time history of the deck level for JMA excitation. 
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Fig. 3.50. Rotation time history of the deck level for Aegion excitation. 
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significant pulses of the Aegion (1995) record. The response of the deck calculated by 
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in the beam model, while it moves greater towards the negative direction in the solid 
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also evident from the rotation time history (Fig. 3.50). The difference in the responses 
becomes greater as the peak ground acceleration increases from 0.5 to 0.8 g. However, 
this is a unique case, since analyses with other records that contain asymmetric loading 
(e.g. Lefkada 1973) showed no differences in the response of the system. Fig. 3.51 
illustrates snapshots of the deformed column-pile for the Aegion (1995) excitation 

scaled to ga  50. g=  at the time instants at =1 75s. , bt 2 65s.= , ct 3.6s=  and t 4 5sd .=  

in comparison to the undeformed state (scaling factor 50) from the solid and the beam 
models in FE code ABAQUS, verifying the aforementioned justification.  

Moreover, Figs. 3.52-3.54 illustrate the displacement time histories at the deck 
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respectively taking into account or ignoring soil material nonlinearity. In Figs. 3.55a-c 
the bending moment envelops of the column-pile corresponding to the Lefkada, JMA 
and Aegion excitation motions, respectively, are presented performing either a linear or 
a nonlinear analysis of the proposed model, compared with the Beam–FE and the fully 
3-D FE models. Both the results from the elastic and the inelastic soil response are 
illustrated. In general, the agreement between the computed curves is quite satisfactory. 

 

 

 

Fig. 3.51. Snapshots of the deformed column-pile for the Aegion (1995) excitation 
scaled to ga  50. g=  at the time instants at =1 75s. , bt 2 65s.= , ct 3.6s=  

and dt 4 5s.=  in comparison to the undeformed state (scaling factor 50) 
from the 3–D FE model and the Beam–FE model ABAQUS.  
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Fig. 3.52. Displacement time history of the deck level for Lefkada excitation. 

 

 
Fig. 3.53. Displacement time history of the deck level for JMA excitation. 

 

 
Fig. 3.54. Displacement time history of the deck level for Aegion excitation. 

4 8 12 16 20
Time (sec)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

D
ec

k 
Le

ve
l D

is
pl

ac
em

en
t (

m
)

Inelastic Soil Response
Elastic Soil Response

Lefkada (2003) 

4 8 12 16 20
Time (sec)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

D
ec

k 
Le

ve
l D

is
pl

ac
em

en
t (

m
)

Inelastic Soil Response
Elastic Soil Response

JMA Kobe (1995)

0 2 4 6 8 10
Time (sec)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

D
ec

k 
Le

ve
l D

is
pl

ac
em

en
t (

m
)

Inelastic Soil Response
Elastic Soil Response

Aegion (1995)



Chapter 3 Geometrically Nonlinear Dynamic Analysis of Shear Deformable Beams on Nonlinear Foundation 

139 

 

 

(a)

 

(b)

 

(c)

Fig. 3.55. Maximum bending moment distribution for Lefkada (a), JMA (b) and Aegion 
(c) excitation. 
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Finally, in Table 3.21 the maximum values of the bending moment along with their 
location are presented for different cases of analysis for all the excitation motions. From 
these figures and table it is concluded that the proposed geometrically nonlinear 
formulation captures accurately the calculated response according to the other methods 
of analysis used, while all the models predict similar shapes of the moment distribution 
and the increase of the bending moment at the interface of the two soil layers. The 
models also predict the same depth of the maximum bending moment as well as the 
shift of the maximum bending moment at a higher depth as the peak ground acceleration 
increases for the case of the inelastic soil response. The increased bending moment 
predicted by the proposed nonlinear analysis and the 3–D FE model is attributed to the 
higher predicted acceleration values at the deck level. 

 
 

3.6 Concluding Remarks 

In this chapter, a Boundary Element Method is developed for the geometrically 
nonlinear response of shear deformable beams of simply or multiply connected constant 
cross-section, partially supported on nonlinear three-parameter tensionless viscoelastic 
foundation, undergoing moderate large displacements under general boundary 
conditions. The beam is subjected to the combined action of arbitrarily distributed or 
concentrated transverse loading and bending moments in both directions as well as to 
axial loading. The main conclusions that can be drawn from this investigation are  
i. The proposed beam formulation is capable of yielding results of high accuracy, as 

verified by comparing with 2D/3D FEM models and experimental results, with 
minimum computational cost, providing a simple, reliable and efficient 
computational tool. 

ii.  In the examined examples, the influence of geometrical nonlinearity is illustrated 
through  

• The significant discrepancy between the results of the linear and the nonlinear 
analyses. 

• The remarkable discrepancy in the response of a beam-foundation system in the 
resonance case. 

• The increase or decrease of the stiffness rigidity.  

• The affect on the natural frequencies. 
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iii. The coupling effect of the transverse displacements in both directions in the 
nonlinear analysis influences these displacements 

 

Table 3.21. Maximum values of the bending moment for elastic soil elM  and inelastic 
soil ( )plM MPa  and their location ( m ) from the ground level. 

Excitation Analysis / Model 
Elastic Soil  Inelastic Soil  

elM  Location plM  Location 

Lefkada 
(2003) 
ga 0.5g=  

Present Study–Linear 13.68 -1.0 7.19 -4.5 

Present Study–Non Linear 17.01 -1.0 7.16 -4.5 

Beam FE–OpenSees (2005) 13.58 -1.0 7.18 -4.5 

3–D FE Abaqus (2009) 17.80 -0.5 – – 

Lefkada 
(2003) 
ga 0.8 g=  

Present Study–Linear 21.87 -1.0 12.75 -5.5 

Present Study–Non Linear 27.66 -1.0 12.52 -5.5 

Beam FE–OpenSees (2005) 21.72 -1.0 12.60 -5.5 

3–D FE Abaqus (2009) 28.48 -0.5 – – 

JMA 
(1995) 
ga 0.5g=  

Present Study–Linear 10.27 -1.0 12.58 -6.5 

Present Study–Non Linear 11.02 -1.0 12.70 -6.5 

Beam FE–OpenSees (2005) 10.13 -1.0 12.55 -6.5 

3–D FE Abaqus  (2009) 11.67 -0.5 .– – 

JMA 
(1995) 
ga 0.8 g=  

Present Study–Linear 16.31 -1.0 19.18 -7.5 

Present Study–Non Linear 17.14 -1.0 19.20 -7.5 

Beam FE–OpenSees (2005) 16.21 -1.0 19.16 -7.5 

3–D FE Abaqus (2009) 18.67 -0.5 – – 

Aegion 
(1995)
ga 0.5g=  

Present Study–Linear 9.94 -1.0 6.75 -4.5 

Present Study–Non Linear 10.00 -1.0 6.72 -4.5 

Beam FE–OpenSees (2005) 9.93 -1.0 6.74 -4.5 

3–D FE Abaqus (2009) 10.11 -0.5 – – 

Aegion 
(1995)
ga 0.8 g=  

Present Study–Linear 14.40 -1.0 10.26 -5.5 

Present Study–Non Linear 15.86 -1.0 10.36 -6.5 

Beam FE–OpenSees (2005) 15.89 -1.0 10.30 -5.5 

3–D FE Abaqus (2009) 16.18 -0.5 – – 
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iv. In some cases, the effect of shear deformation is significant, especially for low 
beam slenderness values, increasing both the maximum transverse displacements 
and the calculated periods of the first cycle of motion, in both small and large 
deflection analyses. 

v. The superiority of the presented Timoshenko beam formulation over Euler-
Bernoulli elements is also verified by yielding results closer to rigorous FEM 
model. 

vi. Shear-locking has been successfully avoided.  

vii. The proposed model takes into account both kinematic and inertial interaction to 
the geometrical nonlinear dynamic response of a column-pile embedded in a 
layered soil profile. 

viii. The soil nonlinearity can be easily treated by means of a hybrid spring 
configuration consisting of a nonlinear (p-y) spring connected in series to an elastic 
Kelvin–Voigt element. 

ix. The lift up of the beam caused by the tensionless character of the foundation is 
observed, leading to magnification of the consequences of the dynamic response. 

x. The response of the beam is strongly influenced by the linear and nonlinear 
parameters of the foundation reaction. 

xi. The damping coefficient is of paramount importance for beams on viscoelastic 
foundations, as it reduces the vibration amplitude and the consequences of the 
dynamic response 

xii. The imposed dynamic loading (e.g. sequence of significant pulses of the Aegion 
(1995) record) could influences the response of the beam-foundation system 
according to the implemented model. 



 

Chapter 4
Geometrically Nonlinear Inelastic Analysis of 

Shear Deformable Beams on Inelastic Foundation
 
 

4.1. Introduction 

In design of civil engineering structures (e.g. bridges, wind-turbines, offshore platforms, 
etc.) the analysis of beam–foundation systems is most often encountered. In order to 
conduct precise analysis, without jeopardizing accuracy and thus safety, the thorough 
understanding of the mechanics of the beam–foundation system is required. Currently, 
these systems are designed to behave elastically for every type of loading (EC8 2004), 
however recent research efforts (Gerolymos et al. 2009, Chiou et al. 2012) have 
investigated the beneficial character of permitting plastification to occur at the beam-
foundation system.  

Moreover, design of beams and engineering structures based on elastic analysis are 
most likely to be extremely conservative not only due to significant difference between 
initial yield and full plastification in a cross section, but also due to the unaccounted, yet 
significant, strength reserves that are mobilized in redundant members after inelastic 
redistribution takes place. Thus, material nonlinearity is important for investigating the 
ultimate strength of a beam that resists bending loading, while distributed plasticity 
models are acknowledged in the literature (Teh & Clarke 1999, Nukala & White 2004, 
Saritas & Filippou 2009) to capture more rigorously material nonlinearities than cross 
sectional stress resultant approaches (Attalla et al. 1994) or lumped plasticity 
idealizations (Orbison et al. 1982, Ngo-Huu et al. 2007). Furthermore, the cost-effective 
design of infrastructures requires the realistic estimation of the beam–foundation system 
response, accounting for all sources of nonlinearities; namely nonlinear stress–strain 
behaviour of the structural member and the soil (material nonlinearity) along with the 
geometrical nonlinearity. Moreover, the contemporary advancements in material science 
have facilitated the intensive use of materials having relatively high transverse shear 
modulus; thereby the error incurred from the ignorance of shear deformation effect may 
be substantial, particularly in the case of significant lateral loading.  
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Over the years, the beam-foundation interaction has been an area of extensive 
research activity and various methods have been developed in order to study the 
complex behaviour of the system, from the material level to the interaction between 
structural and foundation elements. These methods can be grouped into three major 
categories; namely the limit equilibrium (Broms 1964a, 1964b, 1965), the beam-on-
Winkler-foundation (Winkler 1867, Filonenko-Borodich 1940, Hetenyi 1946, Pasternak 
1954, Vlasov 1966) and those based on the continuum mechanics. Among them, the 
most commonly employed in engineering practice is the beam approach due to the 
significant advantages over the other methods, such as the simplicity in formulation and 
modelling together with the high level of accuracy with minor computational cost. 

Within this framework, several researches have employed the concept of Elastic 
Beam on Nonlinear Foundation. In this formulation, the foundation load-displacement 
relation is assumed to follow a nonlinear law while the beam remains elastic throughout 
the analysis. The load-displacement relationships are described by empirical p-y curves 
(Brown & Shie 1990,91, Laman et al. 1999, Kim & Jeong 2011) where the spring 
stiffness value is variable, allowing consideration of a non-proportional relationship 
between the soil resistance per unit pile length p and the lateral displacement y. To this 
end, Sharma and Dasgupta (1975) employed an iteration method using Green’s 
functions for the analysis of uniformly loaded axially constrained hinged beams 
assuming an exponential load-displacement foundation reaction law. Beaufait and 
Hoadley (1980) approximated the nonlinear load-displacement relationship of the 
Winkler foundation with a bilinear curve and utilized the midpoint difference method to 
analyze the beam coupled with the weighted averages scheme to estimate the spring 
stiffness for each iteration, followed by Yankelevsky et al. (1989) who presented an 
iterative procedure based on the exact stiffness matrix for the beam on Winkler 
foundation by approximating the load-displacement curve by three to five regions rather 
than two. Kaliszky and Logo (1994) adopted the extremum principle to analyze a 
nonlinear elastic beam on nonlinear elastic foundation. Both the beam and the Winkler 
springs were assumed to follow a bilinear material model while the beam was 
subdivided into series of rigid bars and the deformation was concentrated in the hinges 
and spring elements. El Naggar and Novak (1996) used a Winkler model employing a 
hyperbolic stress strain relationship to evaluate the lateral response of piles, while Wang 
et al. (1998) employed the same method to predict results of centrifuge model tests of 
single piles in a soft clay soil profile. Lately, Sapountzakis and Kampitsis (2011a) 
studied the nonlinear static analysis of shear deformable beam-columns partially 
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supported on tensionless three parameter foundation, undergoing moderate large 
deflections under general boundary conditions. In general, this method is the most 
commonly used in engineering practice. Its popularity derives from the simplicity and 
the adequate accuracy while the main drawback of the method is that it neglects the soil 
continuity. In order to overcome this disadvantage several researchers have adopted the 
three-dimensional continuum model, where nonlinear behaviour of the ground can be 
taken into consideration employing various constitutive laws. Although the continuum 
approach is a powerful and rigorous way of simulating the whole system accounting for 
various three-dimensional interaction effects and the nonlinear behaviour of soil, it is 
not widely implemented, besides research purposes, as it is intractable, mathematically 
complex and the computational and modelling effort required is extremely time 
consuming. 

Although the nonlinear behaviour of the soil due to high strain level has been 
studied extensively (Brown & Shie 1991, Laman et al. 1999, Kim & Jeong 2011) only 
few studies have encountered the inelastic behaviour of both the beam and the 
foundation elements. According to this, the beam stress-strain and the foundation load-
displacement relations are assumed to follow nonlinear inelastic constitutive laws. 
Consequently, such models are not easily formulated due to the complexity of the 
problem. To start with, Budek et al. (2000) investigated the inelastic response of a 
reinforced concrete pile in cohesionless soil while Ayoub (2003) presented an inelastic 
finite element formulation capable of capturing the nonlinear behaviour of both the 
beam and the foundation. The element is derived from a two-field mixed formulation 
with independent approximation of forces and displacements and compared with the 
displacement based formulation. Mullapudi and Ayoub (2010a) expanded this research 
in inelastic analysis of beams resting on two-parameter foundation where the values for 
the parameters are derived through an iterative technique that is based on an assumption 
of plane strain conditions for the soil medium.  

In this chapter, a Boundary Element Method (BEM) is developed for the 
geometrically nonlinear inelastic analysis of Timoshenko beams of arbitrary doubly 
symmetric simply or multiply connected constant cross-section, resting on inelastic 
tensionless two–parameter foundation. The beam is subjected to the combined action of 
arbitrarily distributed or concentrated transverse loading and bending moments in both 
directions as well as to axial loading, while its edges are subjected to the most general 
boundary conditions. To account for shear deformations, the concept of shear 
deformation coefficients is used. A displacement based formulation is developed and 
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inelastic redistribution is modelled through a distributed plasticity (fibre) approach 
exploiting three dimensional material constitutive laws and numerical integration over 
the cross sections. An incremental–iterative solution strategy along with an efficient 
iterative process are employed (Ortiz & Simo 1986), while the arising boundary value 
problem is solved employing the boundary element method (Katsikadelis 2002).  

Numerical examples are worked out confirming the accuracy and the computational 
efficiency of the proposed beam formulation through comparison with literature and 
FEM results. In these examples, the significant influence of the geometrical nonlinearity 
and the shear deformation effect in the response of a beam-foundations system are also 
illustrated. Subsequently, the proposed formulation is validated against a series of 
Laboratory Pushover tests on vertical single piles embedded in dry sand under different 
load paths to failure in M–Q space conducted in the Laboratory of Soil 
Mechanics/Dynamics in NTUA by Gerolymos (2012) and Giannakos (2013). The 
obtained results are also compared to those obtained from a fully 3D Nonlinear Finite 
Element (FE) simulation implemented in the finite element code ABAQUS (Dassault 
2009).The essential features and novel aspects of the present formulation compared with 
previous ones are summarized as follows. 

i. The proposed beam model accounts for the geometrical nonlinearity by retaining 
the square of the slope in the strain–displacement relations, avoiding in this way the 
inaccuracies arising from a linearized second-order analysis. For that purpose the 
total Lagrange formulation (intermediate non-linear theory) has been adopted. 

ii. Shear deformation effect is taken into account on the geometrically nonlinear 
inelastic analysis of beams on nonlinear foundation (explicit axial-shear-flexure 
interaction). 

iii. The formulation presented adopts a J2 three-dimensional plasticity law (von Mises) 
to assess the inelastic beam-foundation system response.  

iv. The formulation is a displacement based one taking into account inelastic 
redistribution along the beam axis. 

v. A distributed plasticity (fibre) approach has been employed. 

vi. The inelasticity of the soil medium is taken into account, employing an inelastic 
spring foundation model.  

vii. The tensionless character of the foundation is also taken into consideration. 
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viii. An incremental-iterative solution strategy is adopted to restore global equilibrium 
of the system.  

ix. The shear deformation coefficients are evaluated using an energy approach, instead 
of Timoshenko’s (Timoshenko & Goodier 1984) and Cowper’s (1966) definitions, 
for which several authors (Schramm et al. 1994, 1997) have pointed out that one 
obtains unsatisfactory results or definitions given by other researchers (Stephen 
1980, Hutchinson 2001) for which these factors take negative values. 

x. The beam is supported by the most general nonlinear boundary conditions. 

xi. The use of BEM permits the effective computation of derivatives of the field 
functions (e.g. stresses, stress resultants) which is very important during the 
nonlinear inelastic response of beam-foundation systems. 

xii. To the author’s knowledge, a BEM approach has not yet been used for the solution 
of the aforementioned problem, while the developed procedure retains most of the 
advantages of a BEM solution even though domain discretization is required.  

Finally, it is worth mentioning that the outcome of the conducted research activity 
presented in this chapter of the doctoral dissertation has been published in international 
journals (Sapountzakis & Kampitsis 2012a, 2013c, Kampitsis et al. 2014), and in 
international conferences (Sapountzakis & Kampitsis 2011e, 2012b, 2013d). 

 
 

4.2 Statement of the Problem 

Let us consider a prismatic beam of length l  (Fig. 4.1) with an arbitrarily shaped doubly 
symmetric constant cross section, occupying the two dimensional multiply connected 

region Ω  of the y,z  plane bounded by the ( )j j 1,2,...,KΓ =  boundary curves, which 

are piecewise smooth, i.e. they may have a finite number of corners. In Fig. 4.1, Cyz  is 

the principal bending coordinate system through the cross section’s centroid. The 
normal stress-strain relationship for the material is assumed to be elastic-plastic-strain 
hardening with initial modulus of elasticity E , shear modulus G , post-yield modulus of 

elasticity tE , yield stress Y0σ , and yield strain Y0ε . The beam is partially supported on 

inelastic tensionless two-parameter foundation. According to the Pasternak hypothesis, 
the foundation reaction is expressed as 
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Fig. 4.1. x-z plane of prismatic beam resting on inelastic foundation under axial–
flexural loading. 

 

 
( )Py

sy Wy
d p

p p
dx

= −             
( )Pz

sz Wz
d p

p p
dx

= −  (4.1a,b) 

 
with Winkler and Pasternak reactions related to the transverse displacements and their 
derivatives as 
 

 
if

and
if

syWy Py
Wy Py

sy

dv p 0k v k
p p dx

p 00 0

⎧     >   ⎧⎪ ⎪ =              =       ⎨ ⎨   ≤⎪⎩ ⎪⎩

 (4.2a) 

 
if

and
if

szWz Pz
Wz Pz

sz

dw p 0k w k
p p dx p 00 0

⎧     >   ⎧ ⎪ =              =       ⎨ ⎨   ≤⎩ ⎪⎩

 (4.2b) 

 
The nonlinear Winkler and Pasternak inelastic functions depend on the initial stiffnesses

Lyk , Pyk , Lzk , Pzk , yielding loads Y
yP , Y

zP , and hardening moduli ytk , ztk  according 

to y  and z  axes, respectively.  

The beam is subjected to the combined action of the arbitrarily distributed or 

concentrated axial loading ( )x xp p x= , transverse loading ( )y yp p x= , ( )z zp p x=  

and bending moments ( )y ym m x= , ( )z zm m x=  acting along y , z  directions, 

respectively (Fig.4.1).  
 



Chapter 4 Geometrically Nonlinear Inelastic Analysis of Shear Deformable Beams on Inelastic Foundation 

149 

4.2.1 Displacements, Strains & Stresses 

Under the action of the aforementioned loading, the displacement field of the beam 
taking into account shear deformation effect is given as (Ramm & Hofmann 1995) 

 

 ( ) ( ) ( ) ( )z yu x,y,z u x y x z xθ θ= − +  (4.3a) 

 ( ) ( )v x v x=                    ( ) ( )w x w x=  (4.3b,c) 

 
where u , v , w  are the axial and transverse beam displacement components with 

respect to the Cyz  system of axes; ( )u x , ( )v x , ( )w x  are the corresponding 

components of the centroid C  and ( )y xθ , ( )z xθ  are the angles of rotation due to 

bending of the cross-section with respect to its centroid. It is worth noting that since the 
additional angle of rotation of the cross-section due to shear deformation is taken into 
account, the angle of rotation due to bending is not equal to the derivative of the 

displacement (i.e. y wθ ′≠ , z vθ ′≠ ). 

Employing the strain-displacement relations of the three-dimensional elasticity for 
moderate large displacements (Ramm & Hofmann 1995, Rothert & Gensichen 1987, 
Brush & Almroth 1975) while strains remain small, the following strain components 
can be easily obtained 
 

 
2 2

xx
u 1 v w
x 2 x x

ε
⎡ ⎤∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 (4.4a) 

 xz
w u v v w w
x z x z x z

γ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞= + + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
    xy

v u v v w w
x y x y x y

γ
⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂

= + + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
 (4.4b,c) 

 yy zz yz 0ε ε γ= = =  (4.4d) 

 
Substituting the displacement components of eqn. (4.3) to the nonlinear strain-
displacement relations of the Green-Lagrange strain tensor and exploiting the 

assumptions of moderate large displacements ( ( )2u x u x∂ ∂ << ∂ ∂ ,

( )( ) ( ) ( )u x u z u x u z∂ ∂ ∂ ∂ << ∂ ∂ + ∂ ∂ , ( )( ) ( ) ( )u z u y u z u y∂ ∂ ∂ ∂ << ∂ ∂ + ∂ ∂ ) the 

non vanishing (total) strain components are obtained as 
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 ( ) ( ) ( ) ( ) ( ) ( )2 2
yz

xx
d xdu x d x dv x dw x1x, y,z y z

dx dx dx 2 dx dx
θθ

ε
⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥= − + + +⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (4.5a) 

 ( ) ( ) ( )xy z
dv x

x x
dx

γ θ= −           ( ) ( ) ( )xz y
dw x

x x
dx

γ θ= +  (4.5b,c) 

 
It is worth noting what in the well known Euler-Bernoulli beam theory these shear 
deformations are neglected, thus  
 

 z
dv
dx

θ =             y
dw
dx

θ = −  (4.6b,c) 

 
Considering strains to be small, employing the work conjugate second Piola–Kirchhoff 
stress tensor (Crisfield 1991), assuming an isotropic and homogeneous material without 

exhibiting any damage during its plastification and neglecting the vanishing yyS , zzS , 

yzS  components, the stress rates are defined in terms of the strain ones as 

 

 

el
xxxx
el

xy xy

elxz xz

ddS E
dS G d

GdS d

ε

γ

γ

∗ ⎧ ⎫⎡ ⎤⎧ ⎫
⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥

⎪ ⎪ ⎪ ⎪⎢ ⎥
⎩ ⎭ ⎣ ⎦ ⎪ ⎪⎩ ⎭

    (4.7) 

 

where ( )d ⋅  denotes infinitesimal incremental quantities over time (rates), the 

superscript el  denotes the elastic part of the strain component and 

( ) ( )( )E E 1 1 1 2ν ν ν∗ = − + −⎡ ⎤⎣ ⎦ . If the plane stress hypothesis is undertaken then 

( )2E E 1 ν∗ = −  holds, while E  is frequently considered instead of *E ( E E∗ ≈ ) in 

beam formulations (Vlasov 1963, Armenakas 2006). This last consideration has been 

followed throughout the paper, while any other reasonable expression of *E  could also 
be used without any difficulty in many beam formulations. 

As long as the material remains elastic or elastic unloading occurs 
 

 { } { }TT el el el
xx xy xz xx xy xzd d d d d dε γ γ ε γ γ=  (4.8) 
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the stress rates are given with respect to the total strain ones occupying the Hooke’s law 
(eqn. (4.7)), while when plastic flow occurs 
 

 { } { } { }T TT el el el pl pl pl
xx xy xz xx xy xz xx xy xzd d d d d d d d dε γ γ ε γ γ ε γ γ= +  (4.9) 

 
the stress rates are given with respect to the total and plastic strain ones through eqns. 
(4.7) and (4.9) as 
 

 

pl
xx xxxx

pl
xy xy xy

plxz xz xz

d ddS E
dS G d d

GdS d d

ε ε

γ γ

γ γ

⎧ ⎫−⎧ ⎫ ⎡ ⎤ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥= −⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥⎣ ⎦ −⎩ ⎭ ⎪ ⎪⎩ ⎭

 (4.10) 

 
where the superscript pl  denotes the plastic part of the strain component. The von 

Mises yield criterion (J2 plasticity), an associated flow rule and an isotropic hardening 
rule for the material are considered (Crisfield 1991), permitting the determination of the 
plastic strain components. The yield condition is described with the expression 
 

 
( )
( )

2 2 2
xx xy xz

vM pl
Y eq

S 3 S S
1 0Φ

σ ε

+ +
= − ≤  (4.11) 

 

where Yσ  is the yield stress of the material and pl
eqε  is the equivalent plastic strain, the 

rate of which is defined in (Crisfield 1991) and is equal to pl
eqd dε λ=  with dλ  being 

the proportionality facto. Moreover, the plastic modulus h is defined as pl
Y eqh d dσ ε=  

or Yd hdσ λ=  and can be estimated from a tension test as ( )t th E E E E= −  (Fig. 4.2).  

According to the associated flow rule the plastic strain rates are given as 
 

 { }
T

Tpl pl pl VM VM VM
xx xy xz

xx xy xz
d d d d

S S S
Φ Φ Φ

ε γ γ λ
⎧ ⎫∂ ∂ ∂⎪ ⎪= ⎨ ⎬

∂ ∂ ∂⎪ ⎪⎩ ⎭
 (4.12) 
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(a) (b) 

Fig. 4.2. Normal stress–strain (a) and yield stress – equivalent plastic strain (b) 
relationships. 

 
Using the aforementioned relation linking the yield stress rate and the proportionality 
factor, eqns. (4.5), (4.7)-(4.11) and exploiting the plastic loading condition ( df 0= ), the 

stress rates - total strain rates relations are resolved as 
 

 

elpl

xx 11 xx

xy 21 22 xy

31 32 33xz xz

D

dS c sym. d
1dS c c d
c

c c cdS d

ε
γ

γ

⎧ ⎫ ⎧ ⎫⎡ ⎤
⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭ ⎩ ⎭144424443

 (4.13) 

 

where elplD  is the elastoplastic constitutive matrix with 
 

 ( )2 2 2 2
e xx xy xzc hS ES 9G S S= + + +          ( )2 2 2

11 e xy xzc E hS 9G S S⎡ ⎤= + +⎣ ⎦
 (4.14a,b) 

 21 xx xyc 3EGS S= −   2 2 2
22 e xx xzc G hS ES 9GS⎡ ⎤= + +⎣ ⎦   31 xx xzc 3EGS S= −  (4.14c,d,e) 

2
32 xy xzc 9G S S= −   2 2 2

33 e xx xyc G hS ES 9GS⎡ ⎤= + +⎣ ⎦   ( )2 2 2
e xx xy xzS S 3 S S= + +  (4.14f,g,h) 

By setting h 0=  in the above relations, the constitutive matrix presented by Baba and 
Kajita (1982) is obtained, while if one of the shear stress components (along with the 
corresponding strain one) is dropped out, the constitutive relations presented by Chen 
and Trahair (1992) are also precisely recovered. 
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4.2.2 Stress Resultants, Equations of Equilibrium and Boundary Conditions 

In order to establish the global equilibrium equations and the boundary conditions of the 
beam-foundation system, the principle of virtual work under a Total Lagrangian 
formulation neglecting body forces is employed as 
 

 extintW Wδ δ=  (4.15) 

 

where ( )δ ⋅  denotes virtual quantities, intW  is the stain energy of the beam due to 

normal and shear stress and extW  is the external load work, defined as  

 

 ( )dint xx xx xy xy xz xzVW S S S Vδ δε δγ δγ= + +∫  (4.16a) 

 

( ) ( )

( )

ext

0, l

x y y y z y z sy sz
l l

b by bz bz z by y
b

W p u p v m p w m dx p v p w dx

N u V v V w M M

δ δ δ δθ δ δθ δ δ

δ δ δ δθ δθ
 

= + + + + − +

          + + + + +

∫ ∫

∑
 (4.16b) 

 
where V  is the volume and l  is the length of the beam in the undeformed 

configuration, syp , szp  are the foundation reaction according to y  and z  axes, 

respectively, while bN , byV , bzV , byM  and bzM  are the externally applied forces and 

moments at the beam boundaries. Within this framework, the stress resultants of the 
beam are defined as  
 

 xxN S dΩ Ω= ∫  (4.17a) 

 
yy xyAQ S dΩ= ∫        

zz xzAQ S dΩ= ∫  (4.17b,c) 

 y xxS zdΩΜ Ω= ∫     z xxS ydΩΜ Ω= −∫  (4.17d,e) 

 

where N , yQ , zQ  correspond to the axial and shear forces and yM , zM  correspond to 

the bending moments according to y  and z  axes, respectively. Subsequently, 

substituting the expressions of the stress components given from eqn. (4.10) and 
exploiting the strain-displacement relations (4.6), the stress resultants are obtained as 
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 ( ) ( )
pl

2 2 pl 2 2 pl
xx

N

1 1N EA u' v w' E dA EA u' v w' N
2 2Ω ε⎡ ⎤ ⎡ ⎤′ ′= + + − = + + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∫14243
 (4.18a) 

 ( ) ( )( ) ( ) ( )( )
pl
z

pl pl
z z y xz z y zAz

Q

Q GA w' x x G dA GA w' x x Qθ γ θ= +  − = +  +   ∫144243
 (4.18b) 

 ( ) ( )( ) ( ) ( )( )
pl
z

pl pl
y y z xy y z yAy

Q

Q GA v' x x G dA GA v' x x Qθ γ θ= −  − = −  +   ∫
144243

 (4.18c) 

 
pl
y

pl pl
y y y xx y y y

M

M EI E z dA EI MΩθ θ′ ′= − ε =  +∫1442443
 (4.18d) 

 
pl
z

pl pl
z z z xx z z z

M

M EI E y dA EI MΩθ θ′ ′= − ε =  +∫1442443
 (4.18e) 

 

where ( )'  denotes differentiation with respect to x , plN , pl
zQ , pl

yQ , pl
zM  and pl

yM  are 

the plastic parts of the corresponding stress resultants, A  is the cross section area, yI , 

zI  the moments of inertia with respect to the principle bending axes and yGA , zGA  are 

its shear rigidities of the Timoshenko’s beam theory, where 
 

 z z
z

1A A A
a

κ= =                   y y
y

1A A A
a

κ= =  (4.19a,b) 

 

are the shear areas with respect to y , z  axes, respectively with yκ , zκ  the shear 

correction factors and ya , za  the shear deformation coefficients. It is worth noting that 

these stress resultants refer to the directions of the infinitesimal elements of the cross 
section at its deformed configuration, since they have been defined with respect to the 
second Piola-Kirchhoff stress tensor.  

After substituting eqns. (4.6) and (4.18) into eqn. (4.15) and conducting some 
algebraic manipulations, the global equilibrium equations of the beam-foundation 
system are obtained as 
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 ( )
pl

x
NEA u v v w w p

x
∂′′ ′ ′′ ′ ′′+ + + = −  

∂
 (4.20a) 

 ( ) ( )
( )

pl pl
y2 2

y z sy y

d N v Q1EA u' v w' v GA v p p
2 dx x

θ
′′ ∂⎡ ⎤⎛ ⎞ ′′ ′ ′+ + + + − + − = −  ⎜ ⎟⎢ ⎥ ∂⎝ ⎠⎣ ⎦

 (4.20b) 

 ( ) ( ) ( )
pl pl

2 2 z
z y sz z

d N w1 QEA u' v w' w GA w p p
2 dx x

θ
′′⎡ ⎤ ∂⎛ ⎞ ′′ ′ ′+ + + + + + − = −  ⎜ ⎟⎢ ⎥ ∂⎝ ⎠⎣ ⎦

 (4.20c) 

 ( )
pl
y pl

y y z y z y
dM

EI GA w Q m
dx

θ θ′′ ′+ − + − = −   (4.20d) 

 ( )
pl

plz
z z y z y z

dMEI GA v Q m
dx

θ θ′′ ′+ + − + = −   (4.20e) 

 
or in terms of the total stress resultants as 
 

 
( )el pl

x x

d N N dNp p
dx dx

+
= − ⇒ = −  (4.21a) 

 
( ) y

sy y
dQd Nv

p p
dx dx

′
 − − + =       ( ) z

sz z
d Nw dQ p p

dx dx
′

 − − + =  (4.21b,c) 

 y
z y

dM
Q m

dx
− = −                        z

y z
dM Q m
dx

+ = −  (4.21d,e) 

 
Furthermore, the application of the principle of virtual work yields the 

corresponding boundary conditions as 
 

 ( ) ( )1 2 b 3a u x a N x a+ =  (4.22a) 

 ( ) ( )1 2 by 3v x V xβ β β+ =        ( ) ( )1 z 2 bz 3x xβ θ β Μ β+ =  (4.22b,c) 

 ( ) ( )1 2 bz 3w x V xγ γ γ+ =         ( ) ( )1 y 2 by 3x xγ θ γ Μ γ+ =  (4.22d,e) 

 

at the beam ends x 0,l= , where the total vertical reactions byV , bzV , and the total 

bending moments byM , bzM  are given by the following relations 
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 ( ) ( )2 2 pl pl
by y z y

1V EA u' v w' v N v GA v Q
2

θ⎡ ⎤′ ′ ′ ′= + + + + − +⎢ ⎥⎣ ⎦
 (4.23a) 

 ( ) ( )2 2 pl pl
bz z y z

1V EA u' v w' w' N w GA w Q
2

θ⎡ ⎤′ ′ ′= + + + + + +⎢ ⎥⎣ ⎦
 (4.23b) 

 pl
by y y yM EI Mθ′= +           pl

bz z z zM EI Mθ ′= +  (4.23c,d) 

 
Finally, j j j j j, , , ,α β β γ γ  ( j 1,2,3= ) are functions specified at the beam ends 

x 0,l= . Eqns. (19) describe the most general boundary conditions associated with the 

problem at hand and can include elastic support or restraint. It is apparent that all types 
of the conventional boundary conditions (clamped, simply supported, free or guided 
edge) can be derived from these equations by specifying appropriately these functions 

(e.g. for a clamped edge it is 1 1 1 1α β γ= = = , 1 1 1β γ= = , 2α = 3α = 2β = 3β = 2γ =

3γ = 2β = 3β = 2γ = 3 0γ = ). Dropping the plastic quantities of the global equilibrium 

equations, the boundary value problem of the examined problem is formulated. 
The above equations of equilibrium and boundary conditions are easily simplified 

by crossing out the nonlinear terms corresponding to material non linearity, leading to 
the well known elastic formulation while, by crossing out the nonlinear terms 
corresponding to the geometrical nonlinearity and the components regarding the shear 
deformation effect, leads to the well known second order equation with respect to the 
axial and transverse directions.  

The evaluation of the shear deformation coefficients ya , za  corresponding to the 

principal centroidal system of axes Cyz , are established equating the approximate 

formula of the shear strain energy per unit length with the exact one as described in 

Appendix A3 while, in the case of negligible shear deformations z ya a 0= = .  

 
 

4.3 Numerical Solution 

According to the precedent analysis, the geometrically nonlinear inelastic problem of 
Timoshenko beams supported on nonlinear inelastic soil, reduces to establishing the 

axial and transverse displacement components ( )u x , ( )v x , ( )w x  as well as the 
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rotations due to bending ( )y xθ , ( )z xθ  having continuous derivatives up to the second 

order with respect to x  and satisfying the boundary value problem described by the 
governing differential equation (4.20) along the beam and the boundary conditions 
(4.22) at the beam ends x 0,l= . 

This boundary value problem is solved employing the BEM (Katsikadelis 2002), as 
this is developed in Appendix A2 for the solution of coupled second order differential 
equations, after modifying it as follows. The motivation to use this particular technique 
is justified from the intention to retain the advantages of a BEM solution over a domain 
approach, while using simple fundamental solutions and avoiding finite differences to 
the solution of the problem. 
 
4.3.1. Integral Representations for the Axial and Transverse Displacements u,v,w   

and Rotations y z,θ θ  

According to this method, let ( ) ( )1u x u x= , ( ) ( )2u x v x= , ( ) ( )3u x w x= , 

( ) ( )4 yu x xθ=  and ( ) ( )5 zu x xθ=  be the sought solution of the problem. The solution 

of the second order differential equation 2 2
id u dx q′′ =  ( i 1,2,..5= ) and                       

( y zq u,v,w, ,θ θ=     ) is given in integral form as 

 

 ( )
l2 *l

* *i i
i i2

0 0

d u du uu u dx u u
dx xdx

ξ
⎡ ⎤∂

= − −⎢ ⎥
∂⎢ ⎥⎣ ⎦

∫       ( )i 1,2,..5=  (4.24) 

 

where *u  is the fundamental solution given as *u 0.5 r= , with r x ξ= − , x,ξ  points 

of the beam, as defined in Appendix A1. Since EA , zGA , yGA , yEI  and zEI  are 

independent of x , eqns. (4.24) can be written as 
 

 ( )
2

2
0

d
ll

1 1
1 2 2 1 1

0

u uEAu EA x EA u
xx

ξ Λ Λ Λ
⎡ ⎤∂ ∂⎡ ⎤= − −⎢ ⎥ ⎢ ⎥∂∂ ⎣ ⎦⎢ ⎥⎣ ⎦

∫  (4.25a) 

 ( )
2

2
0

d
ll

2 2
y 2 y 2 y 2 1 2

0

u uGA u GA x GA u
xx

ξ Λ Λ Λ
⎡ ⎤∂ ∂⎡ ⎤= − −⎢ ⎥ ⎢ ⎥∂∂ ⎣ ⎦⎢ ⎥⎣ ⎦

∫  (4.25b) 
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 ( )
2

2
0

d
ll

3 3
z 3 z 2 z 2 1 3

0

u uGA u GA x GA u
xx

ξ Λ Λ Λ
⎡ ⎤∂ ∂⎡ ⎤= − −⎢ ⎥ ⎢ ⎥∂∂ ⎣ ⎦⎢ ⎥⎣ ⎦

∫  (4.25c) 

 ( )
2

2
0

d
ll

4 4
y 4 y 2 y 2 1 4

0

u uEI u EI x EI u
xx

ξ Λ Λ Λ
⎡ ⎤∂ ∂⎡ ⎤= − −⎢ ⎥ ⎢ ⎥∂∂ ⎣ ⎦⎢ ⎥⎣ ⎦

∫  (4.25d) 

 ( )
2

2
0

d
ll

5 5
z 5 z 2 z 2 1 5

0

u uEI u EI x EI u
xx

ξ Λ Λ Λ
⎡ ⎤∂ ∂⎡ ⎤= − −⎢ ⎥ ⎢ ⎥∂∂ ⎣ ⎦⎢ ⎥⎣ ⎦

∫  (4.25e) 

 

where the kernels ( ) ( )j jr x,Λ Λ ξ=  ( j 1,2= ) are given in eqns. (A1.9a,b). Solving the 

global equilibrium equations of the beam-foundation system (4.20a-e) with respect to 

EAu′′ , yGA v′′ , zGA w′′ , y yEI θ ′′ and z zEI θ ′′  and substituting the result into eqns. (4.25a-

e), respectively, the following integral representations are obtained 
 

 

( ) ( )
2pl 2l

3 32 2
1 x 22 2

0

l
1

2 1 1
0

du d udN du d uEAu p x EA dx
dx dx dxdx dx

duEA u
dx

ξ Λ

Λ Λ

⎛ ⎞⎛ ⎞
= − − − + −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎡ ⎤               − −⎢ ⎥⎣ ⎦

∫
 (4.26a) 

 

( )
22 2 pll

3 32 1 2 2 2 2
y 2 y sy 22 2 2

0

22 2 2 pl
pl31 2 2 2 z

y2 2

du d udu d u du d u du dN duGA u GA EA p dx
dx dx dx dx dx dxdx dx dx

dudu 1 du d u d u QEA N p
dx 2 dx dx xdx dx

ξ Λ
⎡ ⎤⎛ ⎞

= − − + + − +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞⎛ ⎞ ∂⎛ ⎞⎛ ⎞⎢ ⎜ ⎟⎜ ⎟                 − + + + + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ∂⎢ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠⎣ ⎦

∫

l

2
0

l
2

y 2 1 2
0

dx

duGA u
dx

Λ

Λ Λ

⎥ −
⎥

⎡ ⎤                − −⎢ ⎥⎣ ⎦

∫
(4.26b) 

 

( )
22 2 pll

3 3 3 3 31 2 2
z 3 z sz 22 2 2

0

22 2 2 pl
pl3 3 31 2 z

z2 2

du du d u du dud u du d u dNGA u GA EA p dx
dx dx dx dx dx dxdx dx dx

du d u d udu 1 du QEA N p
dx 2 dx dx xdx dx

ξ Λ
⎡ ⎤⎛ ⎞

= − − + + − +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞⎛ ⎞ ∂⎛ ⎞⎛ ⎞⎢ ⎜ ⎟⎜ ⎟                 − + + + + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ∂⎢ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠⎣ ⎦

∫

l

2
0

l
3

z 2 1 3
0

dx

duGA u
dx

Λ

Λ Λ

⎥ −
⎥

⎡ ⎤                − −⎢ ⎥⎣ ⎦

∫
(4.26c) 
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 ( )
pl ll ypl3 4

y 4 z 4 y y 2 y 2 1 4
00

Mdu duEI u GA u Q m dx EI u
dx x dx

ξ Λ Λ Λ
⎛ ⎞∂⎛ ⎞ ⎡ ⎤⎜ ⎟= + + − − − −⎜ ⎟ ⎢ ⎥⎜ ⎟∂⎝ ⎠ ⎣ ⎦⎝ ⎠

∫ (4.26d) 

 ( )
lpll

pl 52 z
z 5 y 5 z z 2 z 2 1 5

00

dudu MEI u GA u Q m dx EI u
dx x dx

ξ Λ Λ Λ
⎛ ⎞∂ ⎡ ⎤⎛ ⎞= − + − − − −⎜ ⎟⎜ ⎟ ⎢ ⎥⎜ ⎟∂⎝ ⎠ ⎣ ⎦⎝ ⎠

∫ (4.26e) 

 
After carrying out several integrations by parts, eqns. (4.26) yield 
 

 

( )
22l l l

pl 32
1 x 2 1 1

0 0 0

l
22 l

pl32 1
2 2 1 1

0
0

du1 duEAu p dx N dx EA dx
2 dx dx

du1 du duEA N EA u
2 dx dx dx

ξ Λ Λ Λ

Λ Λ Λ

⎡ ⎤⎛ ⎞⎛ ⎞= −   +    +  + −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

⎡ ⎤⎛ ⎞⎡ ⎤⎛ ⎞⎛ ⎞ ⎡ ⎤⎢ ⎥⎜ ⎟               − + + − −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠ ⎣ ⎦⎝ ⎠⎢ ⎥⎣ ⎦⎝ ⎠⎣ ⎦

∫ ∫ ∫

 (4.27a) 

 

( )

[ ]

22l l l
31 2 2

y 2 y 2 1 y 2 1
0 0 0

l l l lpl pl2
1 y 1 sy 2 y 2 1 0

0 0 0

22
31 2

dudu 1 du duGA u GA u dx p dx EA dx
dx 2 dx dx dx

duN dx Q dx p dx GA u
dx

dudu 1 duEA
dx 2 dx dx

ξ Λ Λ Λ

Λ Λ Λ Λ

⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟= − + + + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

   + +  − + − 

⎛ ⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎜ ⎟   − + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝

∫ ∫ ∫

∫ ∫ ∫

l

pl pl2 2
2 y 4 y 2

0

du duN GA u Q
dx dx

Λ Λ
⎡ ⎤⎛ ⎞⎞ ⎛ ⎞⎛ ⎞⎢ ⎥⎜ ⎟⎟ + + + +⎜ ⎟⎜ ⎟⎢ ⎥⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎠⎝ ⎠⎣ ⎦

(4.27b) 

 

( )

[ ]

22l l l
3 31 2

z 3 z 3 1 z 2 1
0 0 0

l l l lpl pl3
1 z 1 sz 2 z 3 1 0

0 0 0

22
31 2

du dudu 1 duGA u GA u dx p dx EA dx
dx 2 dx dx dx

duN dx Q dx p dx GA u
dx

dudu 1 duEA
dx 2 dx dx

ξ Λ Λ Λ

Λ Λ Λ Λ

⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟= − + + + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

   + +  − + − 

⎛ ⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎜ ⎟   − + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝

∫ ∫ ∫

∫ ∫ ∫

l

pl pl3 2
2 z 5 z 2

0

du duN GA u Q
dx dx

Λ Λ
⎡ ⎤⎛ ⎞⎞ ⎛ ⎞⎛ ⎞⎢ ⎥⎜ ⎟⎟ + + − +⎜ ⎟⎜ ⎟⎢ ⎥⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎠⎝ ⎠⎣ ⎦

 (4.27c) 

 
( )

l l l l
pl pl3

y 4 z 4 2 z 2 y 1 y 2
0 0 0 0

llpl 4
y 2 y 2 1 40 0

duEI u GA u dx Q dx M dx m dx
dx

duM EI u
dx

ξ Λ Λ Λ Λ

Λ Λ Λ

⎛ ⎞= + + + − −⎜ ⎟
⎝ ⎠

⎡ ⎤⎡ ⎤                − − −⎢ ⎥⎣ ⎦ ⎣ ⎦

∫ ∫ ∫ ∫
 (4.27d) 
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( )

l l l l
pl pl2

z 5 y 5 2 y 2 z 1 z 2
0 0 0 0

llpl 5
z 2 z 2 1 50 0

duEI u GA u dx Q dx M dx m dx
dx

duM EI u
dx

ξ Λ Λ Λ Λ

Λ Λ Λ

⎛ ⎞= − + + − −⎜ ⎟
⎝ ⎠

⎡ ⎤⎡ ⎤                − − −⎢ ⎥⎣ ⎦ ⎣ ⎦

∫ ∫ ∫ ∫
 (4.27e) 

 
while by assembling the boundary terms in a more convenient form the integral 
representations are written as  
 

 
( )

[ ]

22l l l
pl 32

1 x 2 1 1
0 0 0

l
2 1 1 0

du1 duEAu p dx N dx EA dx
2 dx dx

N EA u

ξ Λ Λ Λ

Λ Λ

⎡ ⎤⎛ ⎞⎛ ⎞= −   +    +  + −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

                 − −

∫ ∫ ∫
 (4.28a) 

 

( )
22l l

31 2 2
y 2 y 2 1 1

0 0

l l l l
pl pl2

1 y 1 y 2 sy 2
0 0 0 0

l
by 2 y 2 1 0

dudu 1 du duGA u GA u dx EA dx
dx 2 dx dx dx

duN dx Q dx p dx p dx
dx

V GA u

ξ Λ Λ

Λ Λ Λ Λ

Λ Λ

⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟= + + + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

                 + + −  − −

⎡ ⎤                 − −⎣ ⎦

∫ ∫

∫ ∫ ∫ ∫  (4.28b) 

 

( )

[ ]

22l l
3 31 2

z 3 z 3 1 1
0 0

l l l l
pl pl3

1 z 1 z 2 sz 2
0 0 0 0

l
bz 2 z 3 1 0

du dudu 1 duGA u GA u dx EA dx
dx 2 dx dx dx

duN dx Q dx p dx p dx
dx

V GA u

ξ Λ Λ

Λ Λ Λ Λ

Λ Λ

⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟= + + + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

                 + +  − − −

                 − −

∫ ∫

∫ ∫ ∫ ∫  (4.28c) 

 
( )

l l l l
pl pl3

y 4 z 4 2 z 2 y 1 y 2
0 0 0 0

l
by 2 y 4 1 0

duEI u GA u dx Q dx M dx m dx
dx

M EI u

ξ Λ Λ Λ Λ

Λ Λ

⎛ ⎞= + + + −⎜ ⎟
⎝ ⎠

⎡ ⎤                − −⎣ ⎦

∫ ∫ ∫ ∫
 (4.28d) 

 
( )

[ ]

l l l l
pl pl2

z 5 y 5 2 y 2 z 1 z 2
0 0 0 0

l
bz 2 z 5 1 0

duEI u GA u dx Q dx M dx m dx
dx

M EI u

ξ Λ Λ Λ Λ

Λ Λ

⎛ ⎞= − + + −⎜ ⎟
⎝ ⎠

                 − −

∫ ∫ ∫ ∫
 (4.28e) 
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If shear deformation effects are negligible, then 5 2u u′≈  and 4 3u u′≈ . In such cases, 

numerical methods requiring domain approximation of unknown quantities, such as 
FEM, exhibit “locking” effects, when Timoshenko theory is applied to cases where the 
Euler–Bernoulli theory could also be used (Zienkiewicz & Taylor 2005). Since domain 
approximation of unknown quantities is employed in the present numerical technique, 

locking effects are alleviated by employing the same order of approximation for 4 5u ,u  

and 2 3u ,u′ ′ . In order to achieve explicit appearance of 2 3u ,u′ ′  in eqns. (4.28b,c), 

respectively these integral representations are differentiated with respect to ξ , yielding  

 

 

( ) ( ) ( ) ( ) ( )( ) ( )

( )

l
2 2 2

y y 1 y 2 1 2 3 2
0

l lpl pl
2 y sy 1 by 1 0

0

du 1GA p dx GA u EA u u u u
d 2

N u Q p dx V

ξ
Λ ξ ξ ξ ξ ξ

ξ

ξ Λ Λ

⎛ ⎞′ ′ ′ ′= − − + +⎜ ⎟
⎝ ⎠

⎡ ⎤′                   − − + + ⎣ ⎦

∫

∫

 (4.29a) 

 

 

( ) ( ) ( ) ( ) ( )( ) ( )

( ) [ ]

l
3 2 2

z z 1 z 3 1 2 3 3
0

l lpl pl
3 z sz 1 bz 1 0

0

u 1GA p dx GA u EA u u u u
d 2

N u Q p dx V

ξ
Λ ξ ξ ξ ξ ξ

ξ

ξ Λ Λ

⎛ ⎞′ ′ ′ ′= + + + +⎜ ⎟
⎝ ⎠

′                − −  + +

∫

∫

 (4.29b) 

 
Moreover, noting that plastic parts of the stress resultants depend on the derivatives of 

the displacement components, it is deduced that 1u′ , 4 5u ,u′ ′  must also be computed in 

order to resolve the total stress resultants (as well as strain components), thus the 
integral representations (4.28a,d,e) are differentiated with respect to ξ , yielding 

 

 ( ) ( ) ( ) ( )( ) [ ]
l l1 pl 2 2

x 1 2 3 1 0
0

du 1EA p dx N EA u u N
d 2

ξ
Λ ξ ξ ξ Λ

ξ
′ ′= − − + + ∫  (4.30a) 

 ( ) l l l l4 pl pl3
y y 1 z 4 1 z 1 y by 1 0

0 0 0

du duEI m dx GA u dx Q dx M M
d dx

ξ
Λ Λ Λ Λ

ξ
⎛ ⎞ ⎡ ⎤= − + − − +⎜ ⎟ ⎣ ⎦⎝ ⎠

∫ ∫ ∫  (4.30b) 

 ( ) [ ]
l l l l5 pl pl2

z z 1 z 5 1 y 1 z bz 1 0
0 0 0

du duEI m dx GA u dx Q dx M M
d dx

ξ
Λ Λ Λ Λ

ξ
⎛ ⎞= − − − − +⎜ ⎟
⎝ ⎠

∫ ∫ ∫  (4.30c) 
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Thereafter it is deduced that eqns. (4.28d,e), (4.29a,b) and (4.30a-c) have been 
brought into a convenient form to establish a numerical computation of the unknown 

quantities. Thus, the interval ( )0,l  is divided into L  elements, on each of which the 

unknown quantities together with the plastic parts of the stress resultants are assumed to 
vary according to a certain law (constant, linear, parabolic etc). The linear element 
assumption is employed here (Fig. 4.3) as the numerical implementation is simple and 
the obtained results are very good. It is worth here noting that this technique does not 
require either differentiation of shape functions or finite differences application.  

 

 

Fig.4.3. Discretization of the beam interval into linear elements, distribution of the 
nodal points and approximation of quantities. 

 
Employing the aforementioned procedure and a collocation technique, a set of 

( )7 L 1+  algebraic equations is obtained. Six additional algebraic equations are obtained 

by applying the integral representation (4.28a-c) at the beam ends 0,lξ = , while  

together the ten boundary conditions (eqns. (4.22)) yield a linear system of 7L 23+  
simultaneous algebraic equations 
 

 ( ) { } { } ( ){ }ext plK d d b b d= +⎡ ⎤⎣ ⎦  (4.31) 

 

where ( )K d  is a generalized elastic (geometrically) nonlinear stiffness matrix, { }d  is a 

7L 23+  generalized unknown vector given as 
 

L 1ξ +

l

x

iξ i 1ξ +

( )
( ) ( ) ( )

( )

: linear element assumption
Approximation of   within element  :

1 2i i 1
pl pl pl pl pl

y z z y y z

f x j

f x N f N f

f u ,v ,w , , ,N ,Q ,Q ,M ,Mθ θ

+= +

′ ′ ′=

element j shape functions:  1 2

j 1 j 1
1 2

j j 1 j j 1

j 1 j

N , N
x x

N 1 ,N

x

ξ ξ
ξ ξ ξ ξ

ξ ξ

− −

− −

−

− −
= − =

− −

≤ ≤

nodal points
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 { } 1j 2j 3j 4j 4 j 5j 5 j 1iT

2i 3i i zi yi yi zi

u u u u u u u u ...
d

...u u N Q Q M M
     ′ ′ ′ ′ ′⎧ ⎫⎪ ⎪= ⎨ ⎬

⎪ ⎪⎩ ⎭
   

j 1,2,..L 1
i 1,L 1
= +  ⎛ ⎞

⎜ ⎟  = +⎝ ⎠
 (4.32) 

 

while { }extb , ( ){ }plb d  are vectors representing all the terms related to the externally 

applied loading and the plastic parts of the stress resultants, respectively. Finally, after 
solving the system of eqns. (4.31), the integral representations (4.28a-c) can be 
employed in a post-processing step in order to obtain the axial and transverse 

displacement components ( )1u u x= , ( )2u v x= , ( )3u w x= , respectively at any interior 

point iξ  ( i 1,2,...,L 1= + ) of the beam.  

 
4.3.2. Incremental–Iterative Solution Algorithms / Fibre Approach 

In the framework of this doctoral thesis, two alternative approaches have been 
implemented for the incremental-iterative solution algorithm based on the fibre 
approach. The fist one is base on the Powell’s hybrid algorithm (Powell 1970a,b) while 
the second executes sequential iterations until an initial stress criterion is satisfied. In 
both incremental–iterative procedures, the loading history has to be known in order to 
establish the plastic strains thus; the first step is to determine the external load vector. 
To this end, load control (Crisfield 1991) over the incremental steps is used and load 
stations are chosen according to load history and convergence requirements.  
 
4.3.2.1 Incremental–Iterative Solution based on Powell Hybrid Algorithm  

In the first approach, at each load station the system of nonlinear equations (4.31) is 
numerically solved employing an iterative solution strategy. In the framework of this 
dissertation the modification of Powell’s hybrid algorithm (Powell 1970a,b) has been 
used. This algorithm is a variation of Newton’s method requiring the following 
quantities. 

a. The Jacobian matrix (More et al. 1980) of the nonlinear system which corresponds 
to the generalized stiffness matrix of the problem. This matrix is defined explicitly, 
avoiding this way any possible inaccuracy resulting from the finite differences 
approximation while, significantly improving the computational time.  
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b. An initial guess of the solution { }initd  (at each load station). The resolved vector 

{ }d  of the previously converged load station is employed { } { }init convd d= while 

{ } { }d 0=  is used at the first load station. 

c. A tolerance parameter tol  to perform the convergence criterion of the algorithm. In 

this study this parameter takes values of the range 7 10tol 10 10− −= ÷ . 

The incremental steps of the algorithm are executed until the target load is fully 
undertaken from the beam-foundation inelastic system or convergence cannot be 
achieved. Thereafter, a number of monitoring cross sections is defined. It is assumed 
that the monitoring sections coincide with the L 1+  nodal points of the beam interval 
(Fig. 4.3).  

The fibre approach is to be followed for the integrating the section internal forces 
and moments. Each section is divided into a number of triangular or quadrilateral cells 
and standard two-dimensional Gauss quadrature rules are employed in each cell to 
resolve the plastic parts of the stress resultants. If the same number of Gauss points is 

employed in every cell, then dof cells GaussN N N= ×  holds. Thus, the monitoring stations 

of each cross section coincide with the Gauss points of its cells, while exact patch 
between adjacent cells is not required. 

At each load station, the system of nonlinear eqns. (4.31) is expressed without 
explicitly deriving its incremental form which is more extensive due to terms associated 
with geometrical nonlinearity. This is achieved by exploiting the values of the stresses 

xxS , xyS , xzS  the plastic parts of the strains pl
eqε , pl

xxε , pl
xyγ , pl

xzγ  and the kinematic 

components 1u′ , 2u′ , 3u′ , 4u , 4u′ , 5u , 5u′  of the previously converged load station at the 

current monitoring stations and adhering to the following steps. 

i. Elastic prediction step: At each monitoring station of the beam, evaluate the trial 
stress components as 

 

 ( ) ( ) ( ) ( ) ( ) ( ) 2Tr
xx xx 1 cell 4 cell 5 2 3conv

1S S E u Ez u Ey u E u u
2

Δ Δ Δ Δ Δ′ ′ ′ ′ ′⎡ ⎤= + + − + +⎣ ⎦  (4.33a) 

 ( ) ( ) ( )( )Tr Tr
xy xy y 2 4conv

S S k G u G uΔ Δ′ ′= + −  (4.33b) 
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 ( ) ( ) ( )( )Tr Tr
xz xz z 3 5conv

S S k G u G uΔ Δ′ ′= + +  (4.33c) 

 

where ( ) ( )i i icur convu u uΔ ′ ′ ′= −  ( )i 1,2,..5= while, the subscript cur  denotes the 

current value of a quantity that is iteratively updated through the algorithm and the 
subscript conv  denotes the converged value of a quantity from a previous load 
station 

ii. Yield criterion: At each monitoring station of the beam the von Mises yield 
criterion is performed, employing eqn. (4.11) as 

 

 
( ) ( ) ( )

( )( )

2 2 2Tr Tr Tr
xx xy xz

Tr
vM pl

Y eq conv

S 3 S S
1Φ

σ ε

⎛ ⎞+ +⎜ ⎟
⎝ ⎠= −  (4.34) 

 
• If Tr

vM 0Φ ≤  then yield criterion is satisfied and the stress state lies within the 

elastic domain. Thus, the trial state is the final admissible one, the incremental 
plastic strain components are zero and the total plastic strain components along 
with the equivalent plastic strain get the corresponding values of the previously 
converged load station. 

• If Tr
vM 0Φ >  then plastic flow occurs and return must be made to yield surface 

(plastic correction step). A local Newton–Raphson method is initiated to 
integrate the inelastic constitutive equations by employing the generalized 
cutting-plane algorithm (Ortiz & Simo 1986, Simo & Hughes 1998). The 
incremental plastic strain components along with the equivalent plastic strain are 

updated according to this algorithm by using a prescribed tolerance 5
cptol 10−=  

in its convergence criterion and subsequently the total plastic strain components 
are resolved by adding the corresponding incremental quantities to the ones of 
the previously converged load station. 

iii. At each monitoring cross section of the beam, plastic parts of the stress resultants 
are evaluate numerically employing the two-dimensional numerical integration 
scheme. 
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iv. Employ the obtained plastic parts of the stress resultants to evaluate the vector 

{ }pl cur
b  of eqn. (4.31). Apart from elementary computations, this step requires the 

computation of line integrals along the beam interval (eqns. (4.28d,e), (4.29a,b) and 
(4.30a-c)) which is performed employing a semi-analytical scheme. It is worth 

noting here that the line integrals arising in the term ( ) { }curcur
K d d⎡ ⎤⎣ ⎦  of eqn. 

(4.31) (including the ones associated with geometrical nonlinearity) are also 
computed semi-analytically without any special difficulty. 

v. Since convergence is achieved then the foundation reaction is computed employing 
eqns. (4.1). The parameters are updated and the process described by steps (i)-(iv) is 
repeated until the foundation convergence criterion is achieved by using a 

prescribed tolerance of 10
foundtol 10−= . 

vi. The increments of the external loading continue until the target load is fully 
undertaken from the beam-foundation inelastic system or convergence cannot be 
achieved, which means that the last additional increment cannot be undertaken 
(plastic collapse). 

Finally, it is worth noting that the monitoring displacement components u , v  and 

w  at any interior point of the beam are updated after convergence in each increment by 
employing the integral representations (4.28a-c), respectively.  

A step-by-step algorithmic approach of the nonlinear solution is presented in a 
flowchart form in Fig.4.4. 
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Fig. 4.4. Flowchart of the incremental–iterative solution algorithm on Powell Hybrid 
algorithm. 
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4.3.2.2 Incremental–Iterative Solution based on Initial Stress Criterion 

In the second alternative approach, the incremental stress resultants are decomposed 
into elastic and plastic parts, as this is presented in eqns. (4.18). These quantities are 
computed through an iterative procedure since usually, changes between the plastic 
parts of incremental stress resultants of two successive iterations are not negligible due 
to the rate nature of the flow rule (Crisfield 1991). Thus, using the subscript m to denote 

the load step, the superscript l to denote the iterative cycle and the symbol ( )Δ ⋅  to 

denote incremental quantities, the l-th iteration of the m-th load step of the incremental–
iterative solution algorithm can be described as follows 

i. Evaluation of the generalized iterative unknown vector { }l
mdΔ  from the solution of 

the nonlinear system of eqns. (4.31) having been written as  
 

 ( ) { } { } { }l 1l
ext plm m m

K d d b bΔ Δ Δ
−

= +⎡ ⎤⎣ ⎦  (4.35) 

 

If m 1=  and l 1= , it is assumed that { } { }0
pl 1

b 0Δ = . If m 1>  and l 1= , it is 

assumed that { } { }0
pl m

b 0Δ =  or { } { }0 n
pl plm m 1

b bΔ Δ
−

= , where n is the total number 

of iterations performed in the previous increment m 1− . 

ii. Evaluation of the incremental unknown derivatives by exploiting { }l
mdΔ . 

iii. Elastic prediction step: At each monitoring station k  of the i th−  cross section of 

the beam ( dofk 1,2,...,N= , i 1,2,...,L 1= + ): Evaluation of the trial stress 

components as 
 

 ( )( ) ( )( ) ( )( )l l0Tr Tr
xx i k xx i k xx i kmm m

S ,z S ,z S ,zξ ξ Δ ξ= +  (4.36a) 

 ( )( ) ( )( )0 lTr Tr
xy xy i k k xy i k km m

S S , y , z S , y , zξ Δ ξ= +  (4.36b) 

 ( )( ) ( )( )0 lTr Tr
xz xz i k k xz i k km m

S S , y ,z S , y ,zξ Δ ξ= +  (4.36c) 
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where the incremental trial stress components are obtained as 
 

 
( )( ) ( ) ( ) ( )

( ) ( )( )

l lTr
xx i k k 1 i 4 i k 5 i k mm

l2
2 i 3 i

m

S ,y ,z E u u z u y

E u u
2

Δ ξ Δ ξ Δ ξ Δ ξ

Δ ξ Δ ξ

′ ′ ′⎡ ⎤= + − +⎣ ⎦

⎡ ⎤′ ′                               + +⎢ ⎥⎣ ⎦

 (4.37a) 

 ( )( ) ( ) ( )
l lTr

xy i k k y 2 i 4 i mm
S , y ,z G k u uΔ ξ Δ ξ Δ ξ′ ′⎡ ⎤= −⎣ ⎦  (4.37b) 

 ( )( ) ( ) ( )
l lTr

xz i k k z 3 i 5 i mm
S , y ,z G k u uΔ ξ Δ ξ Δ ξ′ ′⎡ ⎤= +⎣ ⎦  (4.37c) 

 
iv. Perform the yield criterion at each monitoring station k  of the i th−  cross section 

of the beam ( dofk 1,2,...,N= , i 1,2,...,L 1= + ) employing eqn. (4.34). 

• If Tr
vM 0Φ ≤  then yield criterion is satisfied and the stress state lies within the 

elastic domain. Thus, the trial state is the final admissible one, the incremental 
plastic strain components are zero and the total plastic strain components along 
with the equivalent plastic strain get the corresponding values of the previously 
converged load station. 

 

 ( ) ( ) ( )l l lpl pl pl
xx xy xzm m m

0Δε Δγ Δγ= = =  (4.38a) 

 ( ) ( )l 0pl pl
eq eqm m

ε ε=  (4.38b) 

• If Tr
vM 0Φ >  then plastic flow occurs and return must be made to yield surface 

(plastic correction step). A local Newton–Raphson method is initiated to 
integrate the inelastic constitutive equations by employing the generalized 
cutting-plane algorithm (Ortiz & Simo 1986, Simo & Hughes 1998). The 
incremental plastic strain components along with the equivalent plastic strain are 

updated according to this algorithm by using a prescribed tolerance 5
cptol 10−=  

in its convergence criterion. 

v. For each cross section of the beam, the evaluation of the plastic parts of the stress 
resultants is performed by employing a two-dimensional numerical integration 
scheme. Similarly to the procedure presented in section 4.3.2.1, the fibre approach 
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is adopted. To this end, the cross sections are divided into a number of triangular or 
quadrilateral cells and standard two-dimensional Gauss quadrature rules are 
employed in each cell to approximate the domain integrals of eqns. (4.18). If the 
same number of Gauss points is employed in every cell, then 

dof cells GaussN N N= ×  holds. Thus, the monitoring stations of each cross section 

coincide with the Gauss points of its cells, while exact patch between adjacent cells 
is not required. 

vi. Employ the obtained plastic quantities from the previous step to evaluate the vector 

{ }l
pl m

bΔ  related to plastic quantities as well as the plastic quantities required to 

perform step (ii) for the next iteration l 1+ . Apart from elementary computations, 
the current step also requires the computation of line integrals. A numerical 
integration scheme must be employed to resolve these integrals since plastic 

quantities are not known in the whole beam interval ( )0,l . A semi-analytical 

scheme has been implemented, according to which the incremental plastic stress 
resultants vary on an element (1,2,...,L ) of the beam interval following the same 

law that is used to approximate the problems unknowns. This leads to the 

integration of kernels being products of functions i( r )Λ  and two-node linear shape 

functions, thus it is performed analytically without any difficulty. 

vii. Initial Stress Convergence. Convergence occurs if the Euclidian norm of the 
incremental plastic stress resultants reaches a value smaller than a predetermined 
tolerance. If convergence is achieved after n iterations then: 

• For each monitoring station k  of the i th−  cross section of the beam                   

( dofk 1,2,...,N= , i 1,2,...,L 1= + ), the stress components along with the 

equivalent plastic strain are initialized for the next increment m 1+  as 
 

 ( ) ( ) ( ) ( ) ( ) ( )0 n0 n 0 n
xx xx xy xy xz xzm 1 m m 1 mm 1 m

S S S S S S+ ++
=           =           =  (4.39a) 

        ( ) ( )0 npl pl
eq eqm 1 m

ε ε
+

=                (4.39b) 
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• Resolve the vector { }ext m 1bΔ +
 related to externally applied loading as well as 

the terms related to the externally applied loading required to perform step (ii) 
for the next increment. Apart from elementary computations, the current step 
requires the computation of line integrals. Since the distributions of the external 
loads are usually prescribed in codes and regulations with simple analytical 
relations, these integrals are evaluated analytically, demonstrating the efficiency 
of the developed numerical procedure (e.g. concentrated loads may be treated 
using the Dirac function, without adhering to any simplifications). 

vii. Since convergence is achieved then the foundation reaction is computed employing 
eqns. (4.1). The parameters are updated and the process described by steps (i)-(vii) 
is repeated until the foundation convergence criterion is achieved by using a 

prescribed tolerance of 10
foundtol 10−= . 

viii. The increments of the external loading continue until the target load is fully 
undertaken from the beam-foundation inelastic system or convergence cannot be 
achieved, which means that the last additional increment cannot be undertaken 
(plastic collapse). 

Finally, it is worth noting that the monitoring displacement components u , v  and 

w  at any interior point of the beam are updated after convergence in each increment by 
employing the integral representations (4.28a-c), respectively.  

A step-by-step algorithmic approach of the nonlinear solution is presented in a 
flowchart form in Fig.4.5. 
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Fig. 4.5. Flowchart of the incremental– iterative solution algorithm based on the initial 
stress criterion  

 
 
4.4 Numerical Examples 

On the basis of the analytical and numerical procedures presented in the previous 
sections concerning the geometrically nonlinear inelastic analysis of shear deformable 
beams on nonlinear foundation, a computer program has been written using High Level 
3G Fortran 90/95. Representative examples have been studied to demonstrate the 
efficiency, wherever possible the accuracy and the range of applications of the 
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developed method. Furthermore, the accuracy of the developed beam formulation is 
validated against a series of Laboratory Pushover tests on vertical single piles embedded 
in dry sand under different load paths to failure in M–Q space conducted in the 
Laboratory of Soil Mechanics/Dynamics in NTUA. 
 
 
4.4.1 Example 1 – Elastic Analysis of Free-Free Beam on Pasternak Foundation 

For comparison purposes, in the first example the elastic analysis of a free-free beam of 
length l 5m=  resting on Pasternak elastic foundation subjected to a concentrated 

bending moment yM 50kNm=  acting at its midpoint, as shown in Fig. 4.6 is examined.  

 

1.0 

0.4 kw

Elastic Beam 

 z 
kp 

 x 

My(l/2) 

l=5m  
Fig. 4.6. Prismatic elastic beam on elastic two parameter foundation subjected to 

bending moment at its midpoint. 

 
The beam is made out of timber with elastic modulus E 10.5GPa= , Poison ratio 

v 0.25=  and has rectangular cross section of width b 0.4m=  and depth h 1.0m= . The 

elastic foundation is sandy clay with modulus of elasticity sE 45.5MPa=  and Poisson 

ratio sv 0.21= . The values of Winkler and Pasternak foundation parameters are 

evaluated as wk 3.081MPa=  and pk 12449kN= , respectively according to both 

Zhaohua and Cook (1983) and Mullapudi and Ayoub (2010) considering sv 0.25=  and 

1.0γ = . The present example was first studied by Shirima and Ginger (1990) who 

presented a complete solution of the stiffness matrix and nodal action vectors for a 
Timoshenko beam element resting on a two-parameter elastic foundation employing the 
displacement method. Later, Mullapudi and Ayoub (2010) solved the same problem 
deriving the values of the foundation parameters through an iterative technique that is 
based on the plain strain assumption for the soil medium, while the beam is discretized 
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into four mixed elements with cubic moment interpolation functions, assuming five 
integration points for each finite element.  

In Table 4.1, the evaluated deflection at the beam’s right end ( )w l  and the 

midpoint rotation ( )/w l 2′  for both Winkler and Pasternak formulations are presented as 

compared with those obtained from the literature (the compared values have been 
extracted from a graph). Moreover, in Fig. 4.7 the bending moment distribution along 
the beam length is also presented as compared with available results from the literature 
for the aforementioned cases, demonstrating the accuracy of the proposed method in 
elastic analysis and noting that the bending moment is slightly underestimated if 
ignoring the Pasternak effects. 

 

Table 4.1. Deflection (mm) and rotation (rad) of the beam of example 1. 

 
Winkler Pasternak 

Present 
Analysis 

Mullapudi & 
Ayoub (2010) 

Present 
Analysis 

Mullapudi & 
Ayoub (2010) 

Deflection ( )w l  3.88 3.90 1.32 1.30 
Rotation 

( ) 310w l / 2 −′ ×  1.599 1.600 0.5849 0.5850 

 

 
Fig. 4.7. Bending moment distribution ( )yM x  along the beam of example 1. 
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In order to demonstrate the effect of the unilateral character of the soil the same 
free-free elastic beam resting on tensionless Winkler foundation is analyzed, being 

subjected to a concentrated vertical force of ( )P l / 2 100kN=  and to a concentrated 

bending moment ( )M l / 2  acting at its midpoint. In Table 4.2 the deflection of both 

ends for various values of the applied moment, while in Fig. 4.8 the moment-rotation 
curve at the beam’s midpoint are presented as compared (wherever possible) with those 
obtained from literature (Mullapudi & Ayoub 2010). A very good agreement is once 
again verified.  

 

Table 4.2. Deflection (cm) at both ends of the beam of example 1, for tensionless 
Winkler foundation.  

 Present Analysis 

M(kNm) 20 50 100 150 168 

( )w 0  0.555 0.245 -0.180 -1.510 -2.633 
( )w l  0.710 1.020 1.425 2.154 2.570 

 Mullapudi & Ayoub (2010) - M=168kNm 

( )w 0 2.490= −             ( )w l 2.450=  

 

 
Fig. 4.8. Moment vs. rotation at the midpoint of the beam of example 1, for 

tensionless Winkler foundation.  
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4.4.2 Example 2 – Inelastic Analysis of Simply Supported Beam on Winkler Foundation 

As a second example, also for comparison purposes, a simply supported beam of length 
l 300in=  and square cross section of side d 6.26in=  subjected to a monotonically 
increasing concentrated vertical load P  at its midpoint has been studied. The material 
of the beam is assumed to follow an elastic–plastic behaviour with modulus of elasticity 

E 29000ksi= , yielding stress Y0 30ksiσ =  and a strain hardening slope of 1.4% 

(tangent modulus tE 406ksi= ), while the Winkler foundation load-displacement 

relation is also considered to be elastic–plastic with initial stiffness equals to 
2

wk 0.5kip / in= , yielding force wYP 1.0k / in=  and hardening slope of 1.0% (tangent 

stiffness 3 2
wtk 5 10 kip / in−= ⋅ ). For the longitudinal discretization 20 linear elements 

have been employed, while the cross section has been discretized into 36 quadrilateral 
cells (6 fibres) and a 2 2×  Gauss integration scheme has been used for each cell.  

The present example has been studied by Ayoub (2003), developing both 
displacement and mixed-based finite element formulation capable of capturing the 
nonlinear behaviour of both the beam and the foundation. The beam’s section has been 
discretized into 16 fibres, while for both the displacement and mixed models two 
different order of interpolation functions were used, employing a 6 element 
discretization. The results were compared with the converged solution obtained by a 
displacement-based model with fifth order polynomial and a mesh consisting of 32 
elements.  

In Table 4.3, the maximum deflections of the midpoint of the beam for various 
internal nodal points’ discretization schemes are presented; illustrating that convergence 
is achieved for a small number of nodal points. The obtained values are compared for 

the same load stage zP 160kN=  (the compared values have been extracted from a 

graph), with the one presented in Ayoub (2003). In Fig. 4.9, the load–displacement 
curve at the beam’s midpoint is presented, as compared with those obtained from a 
FEM solution (Ayoub 2003) demonstrating a very good agreement. More specifically, 
the obtained curve is almost identical with the results of the mixed model with cubic 
moment function and the converged solution, which is assumed to describe the exact 
behaviour of the beam–foundation system, while the other models present a perceptible 
amount of error in the inelastic region.  
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Table 4.3. Maximum values of the deflection ( )max /2w l  of the beam of example 2 and 
divergence values for various discretization schemes. 

Nodal Points 6 11 17 20 Ayoub (2003)

Max Deflection (cm) 3.894 3.906 3.937 3.925 3.975 

Divergence (%) 2.03 1.73 0.95 0.01 - 

 

 
Fig. 4.9. Load–displacement curve at the midpoint of the beam of example 2. 

 

In Fig. 4.10a,b the bending moment yM  and the displacement w  curves along the 

beam length are presented as compared with those from the literature for the load stage 
producing deflection at the midspan equal to 5. As it can be observed, the corresponding 
curves of the present study capture the exact behaviour rather accurately and agree with 
the converged solution and the results of the mixed model with cubic moment 
interpolation function, while differ from the curves of the displacement model with 

cubic displacement function. Finally, in Table 4.4 the midpoint curvature ( )w l / 2′′  and 

the foundation reaction sp  at x l / 6=  are also presented and compared for the same 

load stage (the compared values have been extracted from a graph), verifying that the 
maximum values of the curvature and the soil reaction are accurately represented. 
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(a) (b) 

Fig. 4.10. Bending moment ( )yM x  and displacement ( )w x  distribution along the 
beam of example 2. 

 

Table 4.4. Curvature (1/in) and foundation reaction (k/in) of the beam of example 2. 

Analysis Present 

Ayoub (2003) 

Converged 
Solution 

Mixed Model Displ. Model 
cubic 

moment 
linear 

moment 
5th 

order cubic

Curvature
( ) -310w l / 2′′ × (1/in) 9.98 10.66 11.85 9.95 4.91 2.26 

Foundation Reaction 
( )fp l / 6  (k/in) 0.601 0.60 0.60 0.611 0.619 0.689 

 
 

4.4.3 Example 3 – Inelastic Analysis of Simply Supported Beam on Nonlinear 
Pasternak Foundation 

In order to demonstrate the range of applications of the developed method, in the third 
example a rectangular cross section ( h 0.60m= , b 0.30m= ) beam of length l 6.0m= , 

clamped at both ends has been studied, employing 20 linear longitudinal elements, 400 
boundary elements, 72 quadrilateral cells (12 fibres) and a 3 3×  Gauss integration 
scheme for each cell (cross sectional discretization). Two material cases have been 

analyzed, namely an elastic-perfectly plastic with E 32318.4MPa= , 2
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and tE 0=  and an elastoplastic-strain hardening with tE 650MPa= , while two load 

cases have been examined namely a concentrated load at /2l 3  and a uniformly 
distributed one, both monotonically increasing.  

In Figs. 4.11a,b the load-displacement curves at the load position are presented for 
the two load cases, as compared with a FEM solution (NX Nastran 2007) obtained by 
employing 60 beam elements and a 3-D FEM solution (NX Nastran 2007) obtained by 
employing 8250 solid (brick) elements. In the case of elastic-perfectly plastic material 
an additional curve is presented in Fig. 4.11a applying the Step by Step concentrated 
plasticity method. A good agreement between the results of the present method and the 
3-D FEM solution is observed, especially in the elastoplastic-strain hardening case. 
Moreover, in Fig. 4.12 the normal stress distribution along the beam length is presented 

for different load stages for both load cases ( ( )/P 2l 3 610kN= , 780kN  and 810kN  

corresponding to the occurrence of the plastic hinges). 
 

(a) (b) 

Fig. 4.11. Load–displacement curve of the beam of example 3, for concentrated (a) 
and uniformly distributed (b) load.  

 
As a variant of this example, the same beam subjected to the same load cases 

resting on a tensionless Pasternak foundation is examined. The nonlinear load-
displacement foundation reaction is characterized by the perfectly plastic Winkler part 

with initial stiffness wk 20MPa=  and yielding force wYP 60kN / m=  and the Pasternak 

part with stiffness pk 5000kN= . In Figs. 4.13a,b the load-displacement curves are 
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presented for different types of beam and soil material properties and for both load 
cases, verifying the significant influence of the inelastic analysis to the soil-beam 
system response and the importance to the deflections of the subgrade modelling. 

Finally, in Table 4.5 the deflection of the midpoint of the beam ( )/w l 2  is presented in 

the case of a uniformly distributed load for both types of foundation modelling for 
various load stages taking into account or ignoring the beam’s material strain hardening 
slope. From this figure and table, it is easily concluded that the inelastic analysis and the 
soil nonlinearity are of paramount importance. 
 

 

(a) 

 

(b) 

Fig. 4.12. Normal stress distribution along the beam length for different load stages 
and for concentrated (a) or uniformly distributed (b) load. 
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(a) (b) 

Fig. 4.13. Load–displacement curve of the beam of example 3 resting on nonlinear 
foundation, for concentrated (a) and uniformly distributed (b) load. 

 

Table 4.5. Deflection (mm) of the midpoint of the beam of example 3, subjected to 
uniformly distributed loading (load step 2kN/m). 

zp
w  

Perfectly Plastic tE 0=  Strain Hardening / 2
tE 650MN m=  

Elastic 
Winkler  

Elastic 
Pasternak 

Plastic 
Pasternak 

Elastic 
Winkler 

Elastic 
Pasternak 

Plastic 
Pasternak  

100 1.49 1.46 1.46 1.49 1.46 1.46 

250 4.31 4.16 4.78 4.15 4.03 4.39 

300 6.16 5.94 10.40 5.63 5.46 7.10 

600 24.01 22.30 – 20.39 19.08 – 

 

 

4.4.4 Example 4 – Beam on Nonlinear Foundation under Cyclic Loading 

In this example, a pinned–fixed beam resting on an elastic-plastic Winkler foundation 

with initial stiffness wk 20MPa=  and yielding force wYP 100kN / m=  has been 

studied (Fig. 4.14a), employing 20 linear longitudinal elements, 400 boundary elements, 
72 quadrilateral cells (12 fibres) and a 3 3×  Gauss integration scheme for each cell 
(cross sectional discretization). The geometric properties of the beam are assumed equal 
to those of example 3, while it is subjected to a cyclic uniformly distributed loading 
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acting at 0 x 3.0m≤ ≤ , as presented in Figs. 4.14a,b. Two material cases have been 

analyzed, namely an elastic-perfectly plastic with E 32318.4MPa= , 2
Y 0 20MN / mσ =  

and tE 0=  and an elastoplastic-strain hardening with tE 650MPa= .  

 

             (a)

                            (b)

Fig. 4.14. Pinned-fixed beam resting on an elastic-plastic Winkler foundation (a) 
subjected to a uniformly distributed cyclic loading (b).  

 

In Figs. 4.15a,b the load–displacement curves at the midpoint ( )w l 2 of the beam 

are presented for different types of material properties, as compared with a 3-D FEM 
solution (NX Nastran 2007) employing 2561 solid elements, ignoring the foundation 

reaction. Furthermore, the load–displacement curves at the midpoint ( )w l 2  of the 

beam on elastic-plastic Winkler foundation for different types of material properties are 
depicted in Figs. 4.16a,b, as compared with a FEM solution (NX Nastran 2007) 
obtained by employing 2561 solid elements and 81 nonlinear springs following the 
elastic-plastic law given above. 

Moreover, in Fig. 4.17 the normal stress distribution along the beam’s length is 
presented for different load stages, as compared with the corresponding deformed 3-D 
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FEM contour representation. From these figures a very good agreement between the 
results is observed verifying the accuracy and applicability of the proposed formulation. 

 

 

 
 

Fig. 4.15. Load–displacement curve at the midpoint of the beam of example 4, in case 
of elastic-perfectly plastic (a) and elastoplastic-strain hardening (b) 
material.  

(a) (b) 

Fig. 4.16. Load–displacement curve at the midpoint of the beam on elastic-plastic 
Winkler foundation of example 4, in case of elastic-perfectly plastic (a) and 
elastoplastic-strain hardening (b) beam material.  
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(a)

 

 

(b)

 

 

 
(c)

Fig. 4.17. Normal stress distribution along the beam’s length for different load stages 
compared to the corresponding deformed 3-D FEM contour 
representation.  
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Finally, in Table 4.6 the maximum beam deflection maxw  is presented for different 

load stages and material properties as compared with those obtained from two FEM 
models, namely the aforementioned 3-D solid one and a one dimensional model 
employing 120 beam and spring elements, observing the convergence between the 
proposed formulation and the solid simulation, as well as the inability of the FEM beam 
model to capture accurately the systems response. From these figures and table, the 
significant influence of the inelastic analysis to the beam-foundation response, as well 
as the reliability of the proposed method are verified. 

 

Table 4.6. Maximum deflection w (cm) of the beam of example 4, for different types of 
beam and foundation material properties. 

Elastic Winkler Foundation 

z
max

p
w
 

Perfectly Plastic tE 0=  Strain Hardening / 2
tE 650MN m=  

Present 
Study 

FEM Solid 
Model 

FEM Beam 
Model 

Present 
Study 

FEM Solid 
Model 

FEM Beam 
Model 

500 0.987 1.002 1.100 0.980 0.984 1.041 

550 1.202 1.213 – 1.158 1.170 1.252 

600 1.438 1.468 – 1.364 1.384 1.483 

Perfectly Plastic Winkler Foundation 

z
max

p
w
 

Perfectly Plastic tE 0=  Strain Hardening / 2
tE 650MN m=  

Present 
Study 

FEM Solid 
Model 

FEM Beam 
Model 

Present 
Study 

FEM Solid 
Model 

FEM Beam 
Model 

350 0.567 0.589 0.576 0.566 0.585 0.586 

400 0.767 0.780 0.758 0.756 0.769 0.811 

440 1.657 1.659 – 1.199 1.215 2.128 

Hardening ( wtk 1.0MPa= ) Winkler Foundation 

z
max

p
w
 

Perfectly Plastic tE 0=  Strain Hardening / 2
tE 650MN m=  

Present 
Study 

FEM Solid 
Model 

FEM Beam 
Model 

Present 
Study 

FEM Solid 
Model 

FEM Beam 
Model 

400 0.750 0.773 0.810 0.743 0.766 0.789 

450 1.663 1.632 – 1.254 1.285 1.938 

500 5.689 5.651 – 2.618 2.678 3.876 
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4.4.5 Example 5 – I-Beam on Nonlinear Foundation 

In this numerical application, an I-shaped cross section (total height h 0.3m= , total 

width b 0.3m= , flange width ft 0.02m= , web width wt 0.01m= ) fixed-pinned beam    

( E 213.4GPa= , Y0 285MPaσ = ) of length l 8m=  resting on an elastic-plastic Winkler 

foundation ( wk 25MPa= , wYP 100kN / m= , wtk 1.25MPa= ) has been studied, 

employing 32 linear longitudinal elements, 400 boundary elements, 43 quadrilateral 
cells (15 fibres) and a 3 3×  Gauss integration scheme for each cell (cross sectional 
discretization). The computational model implemented in the proposed formulation is 
presented in Fig. 4.18a. The beam is subjected either to a concentrated load at position 
x 3m=  from the fixed end or to a uniformly distributed one, both monotonically 
increasing. 

 

       (a)

        (b)

Fig. 4.18. Fixed pinned beam subjected to a uniformly distributed loading (a) and shell 
model implemented in NX Nastran (2007) (b). 

 
In Figs. 4.19a,b the load-displacement curves are presented for different types of 

beam material properties ignoring the foundation reaction and for both load cases, as 
compared with a FEM solution (NX Nastran 2007) obtained by employing 2882 
quadrilateral shell elements (Fig. 4.18b). Excellent agreement between the results is 
observed. In the same figures the normal stress distribution is also presented for several 
inelastic load levels illustrating the spread of plasticity along the cross section. Finally, 

Elements: 2882 
Nodes: 3059 
DoF: 18354 
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in Figs. 4.20a,b the load-displacement curves are presented for different types of beam 
and soil material properties and for both load cases, as compared with a FEM solution 
(NX Nastran 2007) obtained by employing 2882 quadrilateral shell elements for the I-
shaped beam and assuming 161 nonlinear springs following the elastic-plastic law given 
above. From these figures, the significant influence of the inelastic analysis to the soil-
beam system response and the accuracy of the proposed formulation are verified. 

 

(a) (b) 

Fig. 4.19. Load–displacement curve of the beam of example 5, for concentrated (a) 
and uniformly distributed (b) load. 

 

(a) (b) 

Fig. 4.20. Load–displacement curve of the beam of example 5 resting on nonlinear 
foundation, for concentrated (a) and uniformly distributed (b) load. 
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4.4.6 Example 6 – I-Beam on Nonlinear Foundation under Cyclic Loading 

As an extension of the previous example, the same I-shaped cross has been analysed 
assuming two material cases; namely an elastic-perfectly plastic one with 

E 213.4GPa= , Y0 285MPaσ = , tE 0=  and an elastoplastic-strain hardening one with 

tE 6000MPa= . The beam is subjected to uniformly distributed cyclic loading, as 

presented in Fig. 4.21. 
 

 
To demonstrate the convergence of the developed numerical procedure, in Table 

4.7 pairs of applied transverse loading and displacement values at the midpoint of the 
beam are presented, for both cases of material properties, for three longitudinal 
discretization schemes. The first loading level of the table corresponds to an elastic 
behaviour, while the remaining ones refer to inelastic response. Moreover, in this table 

the ultimate transverse load u
zp  that can be undertaken by the beam (plastic collapse 

load) is also presented for the aforementioned longitudinal discretization schemes. 
Furthermore, in Figs. 4.22a,b the load–displacement curves are presented as compared 
with the FEM solution (NX Nastran 2007), taking into account or ignoring the material 
elastoplastic hardening. Excellent agreement between the obtained results and the shell 
finite element model is observed, illustrating once again the accuracy of the proposed 
method.  

 

Fig. 4.21. Normalized cyclic excitation of example 6. 
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(a) (b) 

Fig. 4.22. Load–displacement curve at the midpoint of the beam of example 6, for 
elastic-perfectly plastic (a) and elastoplastic-strain hardening (b) material. 

 
 

Table 4.7. Applied load versus displacement at 2x l=  along with ultimate transverse 
load u

zp  undertaken by the beam of example 6, for various longitudinal 
discretization schemes. 

Material Elastic-perfectly plastic Elastoplastic-strain hardening 

Number of 
elements 15 30 40 15 30 40 

( )kN/mzp  ( )-2
/2 10lw m×  

65 2.597 2.598 2.598 2.597 2.598 2.598 

80 3.688 3.719 3.721 3.405 3.518 3.522 

90 4.653 4.665 4.671 4.180 4.236 4.288 

95 5.020 5.150 5.164 4.598 4.674 4.682 

 ( )/u
zp kN m  
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4.4.7 Example 7 – Mono-Symmetric I Beam on Nonlinear Foundation under Cyclic 
Loading 

As a special numerical example, a mono-symmetric I-shaped cross section of total 

height h 0.3m= , upper/lower flange width top
fb 0.3m= / bot

fb 0.4m= , thickness 

f
t 0.02m= , and wed thickness 

w
t 0.01m= , clamped beam ( E 213.4GPa= , 

Y0 285MPaσ = ) of length l 7m=  resting on an inelastic Winkler foundation                  

( wk 25MPa= , wYP 100kN / m= , wtk 2.5MPa= ) has been studied, employing 32 

linear longitudinal elements, 400 boundary elements, 43 quadrilateral cells (15 fibres) 
and a 3 3×  Gauss integration scheme for each cell (cross sectional discretization). The 

beam is subjected to a cyclic concentrated load acting at x 2.5m= from the left support. 
In Fig. 4.23 the load–displacement curves at the loading point are presented for 

different types of beam and soil material properties in case of monotonically increasing 
concentrate load, verifying the significant influence of the inelastic analysis to the 
beam-foundation system response and the importance of the subgrade modelling to the 
beam deflections. Moreover, in Figs. 4.24a,b the load–displacement curves are 
presented accounting for or ignoring the beam’s and Winkler’s spring hardening slope, 
verifying the importance of the soil nonlinearity to the system’s cyclic response. 

 

 
Fig. 4.23. Load–displacement curve at the loading point of the beam of example 7 

resting on nonlinear foundation. 
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(a) (b) 

Fig. 4.24. Load–displacement curve at the loading point of the beam of example 7, in 
case of elastic-perfectly plastic (a) and elastoplastic-strain hardening (b) 
beam material. 

 
 

4.4.8 Example 8 – Cantilever under Axial & Transverse Loading 

For comparison purposes, in this example a cantilever beam of length l 2m=  under 

concentrated transverse and axial forces ( )zP l , ( )xP l , respectively acting at the tip, has 

been studied. The beam is made out of aluminium with modulus of elasticity

E 69GPa= , shear modulus G 26GPa=  and yielding stress Y0 275MPaσ = , with 

rectangular cross section of width b 0.02m= , height h 0.8m=  and shear correction 

factor z 1.2α = . The efficiency of the proposed formulation is illustrated through a 

convergence analysis performed in case of linear elastic response as compared with the 

exact solution for the tip displacement exactw  and rotation y exactθ   evaluated by the 

analytical expressions 
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z z
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z z

P l P lw
3EI GA
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z

P l
2EI
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In Fig. 4.25, the percentage error of the maximum tip displacement and rotation for 
various internal nodal points’ discretization schemes is presented, while in Table 4.8 the 
converged values are compared with those obtained from the Reduced Integration 
Element (RIE) proposed by Reddy (1997). From the obtained results it is concluded that 
the shear locking has been successfully prevented and satisfactory accuracy is achieve 
(i.e. error 1%≤ ) with small number of nodal points, while it is noted that in order to 
achieve adequate accuracy with RIE several elements are required (Reddy 1997, Saritas 
and Filippou 2009). 

 

 
Fig. 4.25. Tip displacement and rotation error for different internal domain 

discretization schemes. 

 

Table 4.8. Deflection (m) and rotation (rad) of the tip of the cantilever of example 8. 

Load zP 100kN=  ( )3
tipw 10−  ( )Error % w  ( )3

y tip 10θ −
  ( )Error y% θ    

Exact Solution 5.1059 - -3.3967 - 
Converged Solution  
(21Nodal Points) 5.0890 0.33 -3.3799 0.49 

RIE Reddy (1997) 3.9737 22.17 -3.3967 0.00 
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Thereinafter, the geometrically nonlinear inelastic response of the cantilever is 
investigated taking into account the shear deformation effect (axial-shear-flexural 
interaction), employing 22 linear longitudinal elements, 40 quadrilateral cells and a 
2 2×  Gauss integration scheme for each cell. The influence of the normalized axial 

loading x x ultn P / P=  on the nonlinear response of the beam is also investigated. The 

present example was first studied by Triantafyllou and Koumousis (2011) who 
presented a hysteric Timoshenko beam element based on the lumped plasticity 
assumption, accounting for the interaction between axial, shear and bending, 
implementing the yield criterion proposed by Simo et al. (1984). 
 

 
Fig. 4.26. Load–displacement curves at the tip of the cantilever beam of example 8. 
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( xn 0
z ultP 440.05kN=
 = ) practically coincides with the value predicted from plasticity 

theory (Lubliner 2008) ( z ultP 440kN = ), while for xn 0.9=  the calculated ultimate load 

( xn 0.9
z ultP 422.7kN=
 = ) deviates from the FEM solution for less than1.2% .  

Finally, in Figs. 4.27a,b the von Mises stress distribution along the cantilever’s 

length is presented for different load stages showing the spread of plasticity, while in 

Figs. 4.27c,d the normal and shear stress profile along the cross section at x 0.1m=  

from the fixed end, are presented assuming either constant or a more accurate parabolic 

shear stress distribution as presented in (Saritas and Filippou 2009). From these figures, 

the flexural character of the plastification becomes apparent while it is evident that the 

influence of the shear stress profile is negligible, in this example. 

 
 
4.4.9 Example 9 – Shear collapse of I-Beam on Inelastic Foundation  

The influence of the geometrical nonlinearity and the shear deformation effect (axial-
shear–flexure coupling) on the behaviour of the beam-foundation system is investigated 
in this example. For this purpose, an I-shaped cross section beam of length l 2m= , has 
been studied. The geometric properties of the selected cross section are presented in 
Table 4.8, while the beam’s material is considered to be elastic-perfectly plastic with 
modulus of elasticity E 213.4GPa= , shear modulus G 82GPa=  and yielding stress 

Y0 285MPaσ = . The beam is either clamped or fixed-pinned supported, leaning on a 

plastic Winkler foundation with initial stiffness of zk 20MPa=  and yielding force

Y
zP 100 KN m= , while it is subjected to monotonically increasing uniformly distributed 

load. The beam is discretized with 22 linear longitudinal elements, 43 quadrilateral cells 
(12 layers in the wed and 2 in each flange) and a 1 1×  Gauss integration scheme for 
each cell. 
 

Table 4.9. Geometric properties of the I-shaped cross section, of example 9. 

Total height h 0.3m=  Flange width ft 0.02m=  

Total width b 0.3m=  Web width wt 0.01m=  

Moment of Inertia  -525.0247 10 4
yI m= × Shear Correction 

Factor  za 5.3897=  
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(a) 

 
 

(b) 

  
 

(c) (d) 

Fig. 4.27. Von Mises stress (MPa) distribution along length (a) and normal & shear 
stress (MPa) distribution along cross section (b) for different load stages. 
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In Figs. 4.28, 4.29 the load–displacement curves are presented, performing either 
geometric and material nonlinear (GMNL) analysis or material nonlinear (MNL) 
analysis ignoring the foundation reaction, for both the boundary condition cases. The 
results are compared with those obtained from a FEM model (NX Nastran 2007) 
implemented by employing 2400 quadrilateral shell elements. Excellent convergence 

between the results is observed. In the same figures the von Mises stress vMσ  

distribution is also presented illustrating the plastification of the wed, as well as the non-
symmetry of the normal stresses due to the developed axial force. Additionally, the 
flexure-only response is presented in these figures. Since the beam yields in shear, the 
Euler-Bernoulli model fails to capture the nonlinear response and overestimates the 
collapse load of approximately 320%  for the clamped and 256%  for the fixed-pinned 
boundary conditions.  

The main reason for that divergence is the inability of the flexure-only model to 
predict the exact collapse mechanism, as it ignores the development of the shear 
stresses. In more detail, Figs. 4.30a,b depicts the stress distribution along the length of 
the web for geometrically nonlinear and linear analysis, respectively indicating the shear 
character of the collapse mechanism. In the same figure the corresponding deformed 
shell FEM contour representations are also presented verifying the accuracy of the 
presented model. On the contrary, Fig. 4.30c show the von Mises stress distribution 
assuming a flexure-only model demonstrating the collapse mechanism due to bending, 
which require the formation of three plastic hinges instead of two in the axial-shear–
flexure coupling model.  

Moreover, under the scope of efficiency, it is worth noting that even thought the 
two approaches have fundamental differences (i.e. 22  elements for the proposed model 
instead of 2400 elements for the shell one), the difference between the computational 
time required for the analyses is significant, while the obtained result have the same 
accuracy. Indicatively, it is mentioned that the refined shell model required 
approximately 30min  to h1.0  depending to the analysis type and model parameters, 
while the proposed one required from 10sec to 240sec for the same type of analysis. 

Finally, in Figs. 4.31, 4.32 the load–displacement curves of the beam-foundation 
system are presented, performing either geometrically nonlinear or linear inelastic 
analysis for both cases of boundary conditions, making evident the influence of the 
geometrical nonlinearity to the response of the system. Additionally, the flexure-only 
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response is presented in these figures, illustrating once again the importance of the shear 
deformation effect on the behaviour of the beam-foundation system. 

 

  
Fig. 4.28. Midpoint load–displacement curve of the clamped beam of example 9. 

 

 
Fig. 4.29. Midpoint load–displacement curve of the fixed-pinned beam of example 9. 
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(a) 

 

 
 

(b) 

 

 

 
 

(c) 

Fig. 4.30. Von Mises stress distribution contour diagrams along the length of the web 
for geometrically nonlinear (a) & linear (b) analysis as compared with the 
shell FEM model. Flexure-only model (c).  
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Fig. 4.31. Load–displacement curve at the midpoint of the clamped beam-foundation 

system of example 9. 

 

 
Fig. 4.32. Load–displacement curve at the midpoint of the fixed-pinned beam-

foundation system of example 9. 
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4.4.10 Example 10 – Influence of Geometrical Nonlinearity in Inelastic Analysis 

In order to demonstrate the influence of the geometrical nonlinearity even in case of no 
axial loading, in this example a rectangular cross section ( h 0.40m= , b 0.20m= ) 
clamped beam of length l 5.0m= , as shown in Fig. 4.33, has been studied. For the 
numerical implementation 15 linear longitudinal elements, 40 quadrilateral cells (10 
fibres) and a 2 2×  Gauss integration scheme have been employed. Two material cases 
have been analyzed; namely an elastic-perfectly plastic with modulus of elasticity 

E 20GPa= , shear modulus G 8.3GPa=  and yielding stress Y0 100MPaσ =  and an 

elastoplastic-strain hardening with tE 1GPa=  . The beam is supported on a plastic 

Winkler foundation with initial stiffness of zk 20MPa=  and yielding force

Y
zP 100 KN m= , while it is subjected to a monotonically increasing concentrated load 

at its midpoint. 
 

 
 

Fig. 4.33. Inelastic beam-foundation system subjected to monotonically increasing 
concentrated load. 

 
The geometrically linear case with absence of foundation reaction has been studied 

by Papachristidis et al. (2010), who proposed a force-based (FB) 3D fiber beam element 
formulation accounting for the axial–shear–moment interaction. In Fig. 4.34 the load–
displacement curve at the beam’s midpoint is presented as compared with those 
obtained from (Papachristidis et al. 2010) assuming both force and displacement based 
(DB) formulations for numerous integration sections and numerical integration schemes. 
The accuracy and efficiency of the proposed formulation are confirmed by the excellent 
agreement between the converged solution of Papachristidis et al. (2010) obtained by 2 
FB elements with 8 integration sections and the one obtained from the conducted 
analysis assuming the same number of integration sections (i.e. 16). More specifically, 
from this figure it is concluded that the conventional displacement based elements of 
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equal length fail to capture accurately the collapse load. This shortcoming can be 
resolved by employing either more dense mesh or adaptively spaced elements. Contrary 
to the conventional DB elements, the FB are capable of describing the inelastic response 
of the beam with a single element per member. However the results may differ with 
respect to the number of integration sections and the numerical integration scheme (i.e. 
Gauss (G) and Gauss–Lobatto (G-L)). 

 

Fig. 4.34. Load–displacement curve at the midpoint of the beam of example 9, 
performing geometrically linear analysis. 

 
In Fig. 4.35 the load–displacement curves are presented, performing either 

geometrically nonlinear or linear inelastic analysis for different types of material 
properties ignoring the foundation reaction. From this figure, it is concluded that large 
displacements, influence significantly the behaviour of the beam since the developed 
restoring force does not allow the evolvement of the plastic hinges and thus the plastic 
collapse. This can also be evident from the contrast observed between the von Mises 
stress distribution contour diagram as presented in Figs. 4.36a,b performing either 
geometrically nonlinear or linear inelastic analysis for perfectly plastic and strain 
hardening material, respectively. 
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Fig. 4.35. Load–displacement curve at the midpoint of the beam of example 9. 

 

 

(a) 

 

(b) 

Fig. 4.36. Von Mises stress (MPa) distribution along the beam length, of example 10. 
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Finally, in Fig. 4.37 the load–displacement curves of the beam-foundation system 
are presented, performing either geometrically nonlinear or linear inelastic analysis for 
different types of material properties, while in Table 4.10 the extreme values of the von 
Mises stresses for the all the conducted analyses are shown illustrating once again the 
paramount importance of both geometrical and material nonlinearity in the beam-
foundation system analysis.  
 

 
Fig. 4.37. Load–displacement curve at the midpoint of the beam of example 10, 

resting on nonlinear foundation. 
 
 
4.4.11 Case Study – Pile–Foundation System: Numerical and Experimental Validation 

The main purpose of this final example is to validate the developed beam model against 
a series of Laboratory Pushover tests on vertical single piles embedded in dry sand 
under different load paths to failure in M–Q space, conducted in the Laboratory of Soil 
Mechanics/Dynamics in NTUA by Gerolymos (2012) and Giannakos (2013). The 
obtained results are further compared to those from a fully 3D Nonlinear Finite Element 
simulation (Giannakos 2013) implemented in the finite element code ABAQUS 
(Dassault 2009). 
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Table 4.10. Extreme values of the von Mises stress of the beam-foundation system of 
example 10. 

 Clamped Beam 

Analysis 
Perfectly Plastic Strain Hardening 

Linear Nonlinear Linear Nonlinear 

( )vMMax S MPa   100 100 157.089 149.5203 

( )vMMin S MPa   9.236 12.104 12.179 17.81618 

 Beam-Foundation System 

Analysis 
Perfectly Plastic Strain Hardening 

Linear Nonlinear Linear Nonlinear 

( )vMMax S MPa   100 100 141.389 134.994 

( )vMMin S MPa   9.420 9.025 12.998 16.726 
 

To this end, the proposed beam formulation is utilized for the simulation of a 
vertical pile placed in a sand mass of uniform density. The model pile is a hollow 
aluminium 6063–F25 cylinder of 3cm  external diameter, 2.8cm  internal diameter, and 

60cm  length. The elasticity modulus of the pile is 0E 70GPa=  and the yield stress of 

the aluminium is 215MPa . The geometrical, material and model properties of the 
examined pile are summarized in Table 4.11. The stiffness coefficients of the soil 
independent springs are calculated according to Makris and Gazetas (1992). In order to 
simplify the complicated physics of the examined problem, an equivalent constant 

friction angle of 64οϕ =  was found for the sand through back analysis of Test 1, based 

on Brom's expression for cohesionless soils (Broms 1964b): 
 

 u pp 3 K z dγ=  (4.41) 

 

where pK  is the passive earth pressure coefficient, γ  the unit weight of soil, z  the 

depth from ground surface and d  the pile diameter. The pile is fixed at the base of the 
sandbox to ensure verticality during the sand raining process; however, its length is 
sufficiently large for the bending failure (plastic hinge) not to be affected by the tip 
boundary conditions. The load is applied to the pile at a distance e  from ground surface, 
while the aboveground height of the pile is f . The experimental setup is portrayed in 
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Fig 4.38. For more details on the laboratory testing process the reader is referred to the 
studies of Gerolymos (2012) and Giannakos (2013).  
 

Table 4.11. Pile properties for the proposed beam model.  

Model Properties Symbol Values 

Length l   0.6 m  

Area / Moment of Inertia y/ IΩ     5 2 9 49.11 10 m / 9.6 10 m− −× ×  

Young’s modulus  0E  47.0 10 MPa×  

Shear modulus G  326.9 10 MPa×  
Yield Stress Y0σ  215MPa  

Number of elements 150 (120  embedded length – 30 free length) 
Cross-sectional 
Discretization 

100  quadrilateral cells and 3 3×  Gauss integration 
scheme for each cell 

 
 

(a) (b) 

Fig. 4.38. Pushover model setup; geometry (a) and instrumentation (b). 
 

The piles studied were subjected to displacement control lateral loading. Monotonic 
loading was imposed either at the pile head considered to be at the ground surface or at 
a specified distance from ground surface in order to produce a moment acting at the pile 
head. A total number of 8 experiments were examined; namely: 
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Test 1. Lateral load at the ground surface level in order to determine the plastic yield 

shear force of the pile-soil system ( YQ = 97.15kg ; Point 1, 0 in yM M – yQ Q  

space) 

Test 2. Pure moment conditions in order to validate the plastic yield moment of the 

pile-soil system ( YM = 18.19kgm ; Point 0, 1) 

Test 3. Lateral load applied at 32cm above the ground surface (Point 0.47, 0.80) 

Test 4. Lateral load applied at 20cm above the ground surface (Point 0.59, 0.63) 

Test 5. Retest of the pile under lateral load applied at 32cm above the ground surface 
in order to check the repeatability of the experiments (Point 0.46, 0.79) 

Test 6. Lateral load applied at 10cm above the ground surface (Point 0.75, 0.40) 

Test 7. Lateral load applied at 6cmabove the ground surface  (Point 0.88, 0.28) 

Test 8. Lateral load applied at 56cm above the ground surface (Point 0.28, 0.84) 

For the first experiment, only lateral load was applied at the pile head in order to 

determine the ultimate lateral load capacity YQ  of the pile-soil system. Similarly, for the 

second experiment only overturning moment was applied for the determination of the 

ultimate moment capacity YM . Subsequently, different combinations of moment and 

horizontal force at the ground surface were produced by changing the above ground 
height e  of application of the horizontal load Q  (hence M Qe= ). Aiming to ensure the 

validity and repeatability of the testing procedure and gain confidence in the presented 
data, the lateral pushover test for the pile subjected to lateral load at 32cm above the 
ground surface (Test 3) was repeated (Test 5). 

These pushover tests are also modelled numerically with a fully 3D Finite Element 
model taking into account material nonlinearities for static analysis using the finite 
element code ABAQUS (Dassault 2009), as presented in Giannakos (2013) and 
Kampitsis et al. (2014). The pile and soil are analyzed at model scale, assuming model 
parameters appropriate for very small confining pressures. The view of the three 
dimensional Finite Element mesh used for the simulation of the pile and the sandbox is 
depicted in Fig. 4.39. Approximately 45000  elements are used for each analysis. The 
soil is modelled with 8-node brick elements while the pile is modelled as elastic-
perfectly plastic with 3D beam elements placed at its centre and connected with 
appropriate kinematic constraints, namely Multi-Point Constrains (MPC) boundaries, 
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with the nodes at the perimeter of the pile in order to model the complete geometry of 
the pile. Hence, the nodes of the 8-node brick elements at the perimeter of the pile at a 
specific elevation follow the displacement of the node of the 3D Beam element at that 
elevation (Giannakos et al. 2012). The solid elements inside the perimeter of the pile 
have no stiffness, thus each pile section behaves as a rigid disc. The sophisticated 
procedure of calibrating the 3D FE Model parameters (i.e. beam and soil constitutive 
models, hardening law, plastic flow rule, etc.) to capture the soil-pile system behaviour 
is presented in Giannakos (2013) and Kampitsis et al. (2014). 

 

 
Fig. 4.39. Mesh discretization of the 3D Finite Element Model for Pushover Tests. 

 
In Fig. 4.40, the force–displacement curves at the pile head derived from the 

proposed beam model for Test 1 is presented as compared with the experimental results 
and those from the calibrated 3D FE model. It is observed that both the stiffness and the 
maximum lateral capacity of the pile of the calibrated 3D model match the experimental 
values. On the contrary, the beam model matches well the maximum lateral capacity of 
the pile, but has a stiffer response than the experiment and the 3D numerical analysis. 

Moreover, in Table 4.12 the ultimate lateral YQ  (Test 1) and moment YM  (Test 2) 

capacities of the pile-soil system obtained from both numerical models are compared 
with those measured from the laboratory tests. The calculated results indicate that the 
numerical models are calibrated to capture accurately the response of the system in case 
of Tests 1 and 2. 

 

8-node brick elements
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Fig. 4.40. Experimental and calibrated (Proposed Beam and 3D FE models) force–

displacement curves at pile head for Test 1 (lateral loading acting at the 
ground surface). 

 

Table 4.12. Ultimate load capacity of the pile-soil system. 

Plastic Yield 
Components  Proposed Beam Model Experimental 

Measurements  3D FE Model 

( )YQ kg  96.80 97.15 102 

( )YM kgm  18.22 18.19 18.16 

 
Subsequently, the validation of the proposed beam formulation is performed though 

the examinations of the response of each individual test (Tests 3 to 8). In Figs 4.41 to 
4.45 the calculated lateral force acting at various heights on the pile with the 
corresponding displacement at the ground surface obtained from the proposed beam 
model are presented and compared with the measured values from the experiment and 
the calculated results from the 3D FE analysis. Both the stiffness and the maximum 
force values from the two numerical models compare well with the measured results 
from the experiments. More specifically, it is observed that the beam model exhibits a 
stiffer behaviour compared to the 3D FE model, as expected since it does not capture 
the strain softening behaviour of the soil, but it captures accurately the ultimate capacity 
of the system. In general, from the conducted investigation, it is deduced that the 
proposed beam model can be employed providing minimum calculation effort while 
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retaining good precision in the obtained results for the soil–pile inelastic systems instead 
of executing complicated 3D analyses. 

Similar trend is observed in Fig. 4.41, where the lateral force−horizontal 
displacement curves at the pile head from Tests 3 and 5 are compared with the 
calculated response from both numerical methods. The measured experimental results 
show quite satisfactory agreement between the original and repeated test, indicating that 
the experimental conditions are repeated with good accuracy in every experiment.  

 

 
Fig. 4.41. Experimental and computed force–displacement curves at pile head for Tests 

3 & 5 (lateral force at 32cm above the ground level). 

 

 
Fig. 4.42. Experimental and computed force–displacement curves at pile head for Test 

4 (lateral force at 20cm above the ground level). 
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Fig. 4.43. Experimental and computed force–displacement curves at pile head for Test 

6 (lateral force at 10cm above the ground level). 

 

 
Fig. 4.44. Experimental and computed force–displacement curves at pile head for Test 

7 (lateral force at 6cm above the ground level). 

 
Furthermore, Fig. 4.46 depicts a) the failure envelope of the analytical expression 

of eqns.(4.42), presented by Gerolymos (2012) and Giannakos (2013) for pile embedded 
in cohesionless soil for the case when the lateral force and the bending moment at the 
pile head act towards the same direction as compared with the points of overturning 

moment and lateral force ( )M Q−  at failure, normalized with the values of pure 
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moment YM  and pure lateral loading YQ  capacities respectively as derived from b) the 

laboratory experiments, c) the proposed beam model and d) the 3D FE model.  
 

 ( ) ( ) for
3/ 2

Y Y Y

Q M Mf sgn Q sgn M 1 0 1
Q M M

= + − =               <  (4.42a) 

 

and  for
Y Y

M Mf 1 0 1
M M

= − =                 =  (4.42b) 

 
It is observed that both the measured points from the experiments and the 

calculated points from the two numerical analyses almost coincide with the proposed 
failure envelope. The green triangular symbol on the figure corresponds to the repeated 
Test 5, performed in order to check the repeatability of the experiments for pile under 
lateral load applied at 32cm  above the ground surface (Test 3).  

In Table 4.13, the measured depths of the formation of the plastic hinge from the 
experiments are presented in comparison to the calculated ones from the proposed and 
the solid models. It is observed that both numerical methods predict well the decrease of 
the depth of the plastic hinge with the increase of the bending moment acting at the pile 
head. Hence, the maximum depth of plastic hinge is measured at 24cm  (Test1) from the 

ground surface while the minimum one is located at the pile head ( )0cm  when only 

bending moment acts at the pile head. Since this is a mesh-dependent problem, and the 
mesh in the simplified beam model is denser (0.5cm in the vertical direction) than the 
3D FE model ( 2cm ), the simplified beam model presents a slightly better accuracy for 
the depth of the plastic hinge  

Additionally, in Fig. 4.47 the cross-sectional distributions of von Mises stresses 

VMσ  accounting for (a-c) or ignoring (d-f) shear deformation effect, at the depth of the 

plastic hinge are presented for three load levels as calculated from the proposed beam 
model with respect to Test 4. The first load level (a, d) corresponds to an elastic 
behaviour, while the remaining ones refer to inelastic response. By comparing the 
results, it is concluded that accounting the shear deformation effect leads to slight 
increase of the developed stresses and consequently to more rapid spread of plasticity 
leading to the formation of the plastic hinge (collapse) for lower values of the applied 
load.  
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Fig. 4.45. Experimental and computed force–displacement curves at pile head for Test 

8 (lateral force at 56cm above the ground level). 

 

Table 4.13. Depth ( )cm  of plastic hinge from the ground surface 

Experiment  
Measured Depth  

Experiment  
Calculated Depth 

Proposed Beam Model 
Calculated Depth 

3D FE Model 

Test 1 24 22.5 22 

Tests 3& 5 15 12 10 

Test 4 18 14 14 

Test 6 21 19 18 

Test 7 22 20.5 20 

Test 8 11 8.5 8 
 
 
4.5 Concluding Remarks  

In this chapter a Boundary Element Method is developed for the geometrically 

nonlinear inelastic analysis of Timoshenko beams resting on inelastic tensionless two–

parameter foundation. To account for shear deformations, the concept of shear 

deformation coefficients is used. A displacement based formulation is developed and 

inelastic redistribution is modelled through a distributed plasticity (fibre) approach. Two 

alternative incremental–iterative solution strategies are developed. The main 

conclusions that can be drawn from this investigation are 
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Fig. 4.46. Comparison of the failure envelope from the analytical expression 

Gerolymos (2012) and Giannakos (2013) for piles embedded in 
cohesionless soil with the results from a) the LSMD experiments, b) the 
proposed beam model and c) the 3D FE analysis. 

 

  
(a) (b) (c) 

 
(d) (e) (f) 

Lateral Force 15kg   
(Elastic) 

Lateral Force 40kg  
(Inelastic) 

Lateral Force 54.5kg  
(Just before collapse) 

Fig. 4.47. Cross-sectional distribution of von Mises stresses ( )kPa  at the hinge point of
Test 4, accounting for (a-c) or ignoring (d-f) shear deformation effect. 
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i. The proposed beam formulation is capable of yielding results of high accuracy, as 
verified by comparing with analytical, experimental and FEM results, with 
minimum computational cost, providing a simple and efficient computational tool 
for the geometrically nonlinear inelastic analysis of beam-foundation systems. 

ii. The proposed model accurately captures both, the initial yielding and the ultimate 
(collapse) load, as well as the stress distribution and the region of the plastic hinge. 

iii. The influence of geometrical nonlinearity is illustrated through the significant 
discrepancy between the results of the linear and the nonlinear analyses. 

iv. The proposed model takes into account coupling effects of bending, shear and axial 
deformations, illustrating the paramount importance of this interaction in the 
inelastic analysis either under small or large displacement formulation.  

v. The significant influence of the inelastic character of the foundation is also 
demonstrated. 

vi. A small number of cells (fibres) is required in order to achieve satisfactory 
convergence. 

vii. The beam character of the developed formulation confers advantages over more 
refined approaches in the sense of modelling effort, model handling, results 
interpretation and isolation of structural phenomena. 

viii. The developed procedure retains most of the advantages of a BEM solution while 
requiring a small number of nodal points to achieve high accuracy. 

ix. The use of BEM enables the accurate calculation of the stress resultants which are 
very important during both the analysis and the design of beam-foundation systems. 



 

Chapter 5
Geometrically Nonlinear Dynamic Inelastic Analysis of 

Beam-Soil Interaction Systems
 
 
5.1. Introduction 

The dynamic analysis of beam-soil interaction systems is an area of extensive research 
activity in both structural and geotechnical engineering. The dynamic analysis of such 
systems is often mandatory in design of significant civil engineering structures as for 
instance bridges, offshore piles and wind-turbine foundations.  
 Currently, the design procedure is based on a set of simplifying assumptions while 
the nonlinear static pushover analysis is preferred over the dynamic time domain 
procedures. This is attributed to the intricate dynamic methodologies as well as to the 
increased computational cost. Nevertheless, modern design codes are based on concepts 
such as the displacement based design and the performance based design for the 
estimation of structural integrity (Priestley et al. 2007, Fardis 2010). That implies that in 
order to evaluate the necessary design quantities, a vast amount of nonlinear dynamic 
analyses are required. Thus, an efficient computational tool capable of performing 
nonlinear dynamic analysis is essential, conferring several advantages over the pushover 
procedure (Bozorgnia & Bertero 2004) and providing insight into complicated 
phenomena attributed to the inertia and the dynamic motion of the structure.  

In order to fully comprehend the beam-soil mechanism as well as to accurately 
estimate the response of the structure, all possible causes of nonlinearities should be 
taken into account. The nonlinearities with the most profound influence on the response 
of a structure originate from the inherent nonlinear stress-strain behaviour of the 
materials (material nonlinearity) as well as from the significant variations of the 
geometrical configuration during dynamic loading (geometrical nonlinearity). On the 
contrary, in engineering practice the foundation elements are designed to behave 
elastically for every type of loading. Modern design codes and the existing regulations 
indicate that the beam-soil interaction systems, such as piles and deep embedded 
foundations, are designed in order to prohibit the occurrence of any kind of nonlinearity, 
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neither of material nor of geometrical nature. More specifically, Eurocode-8 (EN 1998, 
EC-8, Part 2, § 5.8) explicitly states that “…foundations shall not be intentionally used 
as sources of hysteretic energy dissipation and therefore shall, as far as practicable, be 
designed to remain undamaged under the design seismic action.”  This restriction, 
however, is most likely to be extremely conservative leading to financially or even 
physically unfeasible structures. In recent years, significant research efforts (Paolucci 
1997, Gazetas et al. 2003, Gajan et al. 2005, Gerolymos et al. 2008, Harden & 
Hutchinson 2009, Gerolymos et al. 2009, Anastasopoulos et al. 2010, Gelagoti et al 
2012, Chiou et al. 2012, Figini et al. 2012) have investigated the beneficial character of 
permitting nonlinearities and inelasticity to occur at the beam-soil interaction system.  

Furthermore, in order to conduct precise analysis and design cost-effective 
structures the realistic estimation of the structural member transient response is 
essential. Towards this direction, the material nonlinearity is incorporated in the 
analysis either by a refined distributed plasticity (fibre) formulation or by the simplified 
concentrated plasticity (plastic-hinge) approach. Although time efficient, the cross-
sectional stress resultant approaches (Attalla et al. 1994) or lumped plasticity 
idealizations (Orbison et al. 1982, Ngo-Huu et al. 2007) come at the cost of accuracy. 
On the contrary, the fibre models are proved capable of accurately capturing the 
inelastic response (Teh & Clarke 1999, Nukala & White 2004, Saritas & Filippou 
2009), while their main drawback is the increased computational cost due to the 
numerical integrations at the cross-sectional level. Various beam element models 
accounting for the nonlinear stress-strain behaviour of the materials, have been 
proposed following either the displacement-based (Bathe 2007) or forced-based 
formulations (Sivaselvan & Reinhorn 2003, Saritas & Filippou 2004, Papachistidis et al. 
2010). Moreover, dissipation phenomena have to be explicitly taken into account in the 
dynamic analysis of nonlinear systems. To this end, several hysteretic modes have been 
proposed (Dahl 1978, Visintin 2003, Papoulia et al. 2007) with the most commonly 
used the Bouc-Wen family of hysteric models (Bouc 1967, Wen 1976, Sivaselvan & 
Reinhorn 2003, Charalampakis & Koumousis 2008, 2009). The hysteric Bouc-Wen 
model has been successfully introduced into the inelastic analysis of structural members 
(Symeonov et al. 2000, Guggenberger & Grundmann 2005, Triantafyllou & Koumousis 
2011, 2012a-c). Lately, Gkimousis and Koumousis (2013) presented distributed 
plasticity fibre beam formulations for both displacement and force based approach, 
while Kottari et al. (2014) presented a consistent smooth Bouc–Wen type degrading 
hysteretic model, incorporating stiffness degradation, strength deterioration, pinching, 
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asymmetric hysteresis and strain hardening characteristics. On the contrary, little has 
been done in case of soil-structure interaction systems (Gerolymos & Gazetas 2006, 
2007). 

So far, considerable effort has been made into investigating the dynamic response 
of beam-soil interaction systems employing the Beam-on-Nonlinear-Winkler-
Foundation (BNWF) method. Within this framework, several researches have proposed 
various formulations assuming nonlinear laws (p-y) for the foundation load-
displacement relation while the beam remains elastic throughout the analysis. Trochanis 
et al. (1991a) were the first to utilize a phenomenological hysteresis model for the 
simulation of the load-displacement relation of the nonlinear soil springs. More 
specifically, their study aim in developing a simplified model that incorporates the main 
nonlinear features of the behaviour of single piles as well as the interaction between a 
pair of piles. Taking advantage of the acquired knowledge gained from the three-
dimensional parametric study (Trochanis et al. 1991b), a model consisting of coupled 
inelastically supported piles was developed taking into account the slippage and the 
separation between the piles and the soil, as well as the overall inelastic soil behaviour 
including degradation. In this work the degrading hysteretic model developed by Wen 
(1976) for the analysis of single and multi-degree oscillators was employed in order to 
describe the soil springs’ constitutive law. The proposed model was verified by an 
extensive comparison with numerical results from the refined three-dimensional study, 
as well as with results from experimental field tests. Nogami et al (1992) presented a 
rational dynamic soil-pile interaction model adopting Winkler's hypothesis with a 
special attention to the conditions in which the strong nonlinearity is induced in the 
vicinity of the pile shaft under dynamic loading. The soil medium was approximated by 
a simple configuration of frequency independent mass, springs, and dashpots that 
consists a near-field and a far-field element. The far-field element, describes the elastic 
behaviour of the soil outside the plastification region while the near-field element 
reproduces the strongly nonlinear soil behaviour in the vicinity of the pile shaft. 
Therefore, the model enables the time-domain nonlinear analysis in a relatively simple 
manner. The nonlinear condition and the dynamic condition were coupled forming a 
complex soil action to the pile shaft motion while special consideration of the gap 
formation at the soil-pile interface was taken. Badoni and Makris (1996) developed a 
macroscopic model that consists of distributed hysteretic springs and frequency 
dependent dashpots. A one-dimensional finite element formulation was proposed for the 
evaluation of the nonlinear response of single piles under dynamic lateral loads. The 
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Bouc-Wen model (Bouc 1971, Wen 1976) was combined with a distributed viscous 
dashpot placed in parallel, in order to simulate the nonlinear behaviour of the springs. 
The model is physically motivated, adequate for cohesive and cohesionless soils and 
involves standard geotechnical parameters. Only two parameters have to be calibrated 
by fitting experimental data, while hysteretic damping was taken into account using the 
Bouc-Wen model and the radiation damping though a realistic frequency dependent 
expression. The model was calibrated and validated against five well instrumented full-
scale experiments. Boulanger et al. (1999) developed a dynamic beam on nonlinear 
Winkler foundation analysis method for analyzing seismic soil–pile–structure 
interaction and evaluated it against the results of a series of dynamic centrifuge model 
tests. Sensitivity of the results to dynamic p-y model parameters and site response 
calculations were also examined. Nikolaou et al. (2001) implemented a beam on 
dynamic Winkler foundation model for piles in homogeneous and layered soils 
illustrating that the magnitude of kinematic moments depends mainly on the stiffness 
contrast between the soil layers, the pile-soil stiffness contrast, the excitation frequency, 
and the number of excitation cycles. 

Although the soil inelasticity has been extensively investigated (Brown & Shie 
1991, Laman et al. 1999, Kim & Jeong 2011) only few studies have encountered the 
inelastic behaviour of both the beam and the foundation elements in dynamic analysis. 
According to this context, the beam stress-strain and the foundation load-displacement 
relations are assumed to follow nonlinear inelastic constitutive laws. To start with, 
Budek et al (2000) presented a Winkler beam model formulation to represent the lateral 
force response of a reinforced concrete pile in cohesionless soil. An inelastic finite-
element analysis was performed on the structure, using as the pile constitutive model the 
section moment-curvature relationship based on confined stress-strain relationships for 
the concrete. The influence of various parameters, such as the pile head boundary 
conditions, the height of pile head above grade level and the soil stiffness were 
investigated. The soil models were assumed linear, bilinear and hyperbolic. The analysis 
reviled that shear could be significantly underestimated by an elastic analysis, as 
inelastic behaviour moved the point of maximum moment in the pile shaft closer to the 
surface, thus reducing the shear span. Moreover, it was proved that the plastic hinge 
lengths as well as the maximum moment depth in the pile shaft are strongly influenced 
by the soil stiffness. Hutchinson et al. (2004) used nonlinear static and dynamic 
analyses to evaluate the inelastic seismic response of bridge and viaduct structures 
supported on extended pile shafts. For the nonlinear dynamic soil–pile interaction 
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analyses the beam on nonlinear Winkler foundation model was employed. Nonlinear 
fibre beam-column elements were used to model the reinforced concrete sections, and 
one-dimensional site response analyses for the free-field soil profile response. Several 
parameters have been taken into consideration such as the ground motion 
characteristics, the site response, the geometric second order effects and performance 
measures. The results focused on the influence of the ground motion characteristics and 
the variations in structural configurations on the performance measures which evaluated 
the inelastic seismic response of the structures examined. Later on, Gerolymos and 
Gazetas (2005) studied the inelastic response of soil-pile interaction systems employing 
a phenomenological model. The nonlinear response of the soil was treated as a Winkler 
spring-dashpot model utilizing the BWGG model. The separation of the pile from the 
soil, the radiation damping and the loss of strength due to pore-water pressure where 
also taken under consideration. The pile inelasticity was treated macroscopically at a 
cross-sectional level through a plastic-hinge approach utilizing the BWGG mode. An 
explicit finite differences method was used to solve the system of differential equations 
while this formulation was applied to piles subjected to laterally monotonic and cyclic 
loading. The developed model was then applied to conduct a parametric study of pile-
column supported bridge structures, in order to investigate the consequences of pile 
yielding behaviour and soil-structure interaction on structure ductility demand 
(Gerolymos et al. 2009). Allotey and El Naggar (2008) developed a generalized 
dynamic normal force–displacement BNWF model capable of accounting for various 
soil–structure interaction effects. The backbone curve of the model comprises a four-
segment adaptable multi-linear curve that can represent both monotonic and post-peak 
behaviour. The cyclic degradation was modelled as a modified version of the rainflow-
counting technique of Anthes (1997). The proposed model was verified by comparing 
the results with those from centrifuge tests of piles in weakening and partially 
weakening soil showing good agreement. Lately, Mullapudi and Ayoub (2010b) studied 
the cyclic performance of an inelastic beam resting on a nonlinear soil bed. The material 
nonlinearity was handled through a fibre beam element model and the discretization of 
the cross-section was introduced in order to derive the nonlinear terms of the governing 
equation regarding the uniaxial stress-strain relations. The soil was handled as a semi-
infinite element consisting of a single layer Winkler springs in conjunction with a 
Vlasov’s parameter that can provide moment resistance. The tensionless character of the 
soil was also taken into account, while the foundation parameters were based on a plane 
strain assumption. This investigation was then extended to the study of the seismic 
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behaviour of the inelastic beam resting on a nonlinear foundation (Mullapudi & Ayoub 
2010c). In both studies the models were implemented in the finite element program 
FEAP (Taylor 2005).  

In this chapter, a Boundary Element Method (BEM) is developed for the 
geometrically nonlinear inelastic analysis of Euler-Bernoulli beams of arbitrary doubly 
symmetric simply or multiply connected constant cross-section, resting on inelastic 
Winkler foundation. The beam is subjected to the combined action of arbitrarily 
distributed or concentrated transverse dynamic loading and bending moments in both 
directions as well as to axial loading, while its edges are subjected to the most general 
boundary conditions. A hysteretic Bouc-Wen force-displacement model is employed in 
order to describe the inelastic behaviour of the Winkler springs. A displacement based 
formulation is developed and inelastic redistribution is modelled through a distributed 
plasticity (fibre) approach. A uniaxial hysteretic law is considered for the evolution of 
the plastic part of the normal stress following the Sivaselvan and Reinhorn (2003) 
phenomenological hysteresis model. Numerical integration over the cross sections is 
performed in order to resolve the hysteric parts of the stress resultants. Three boundary 
value problems are formulated with respect to the transverse and axial displacements 
and solved using the Analog Equation Method (Katsikadelis 2002), a BE based method. 
Application of the boundary element technique yields a system of nonlinear 
Differential-Algebraic Equations (DAE), which are written in state-space form and 
together with the hysteretic evolution equations are solved iteratively using the Petzold-
Gear backward differentiation formula (Brenan et al. 1989), a linear multistep method 
for differential equations coupled to algebraic equations.  

Numerical examples are worked out confirming the accuracy and the computational 
efficiency of the proposed beam formulation through comparison with literature and 
FEM results. In these examples, the significant influence of material and geometrical 
nonlinearity in the response of a beam-foundations system are illustrated. The essential 
features and novel aspects of the present formulation compared with previous ones are 
summarized as follows. 

i. To the author’s knowledge, the geometrically nonlinear dynamic response of beam-
foundation systems where both the beam and the foundation are assumed to be 
inelastic is investigated for the first time in literature thought the beam-on-nonlinear 
Winkler-foundation approach. 
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ii. The proposed beam model accounts for the geometrical nonlinearity by retaining 
the square of the slope in the strain–displacement relations, avoiding in this way the 
inaccuracies arising from a linearized second-order analysis. For that purpose the 
total Lagrange formulation (intermediate non-linear theory) has been adopted. 

iii. A distributed plasticity (fibre) approach has been employed. 

iv. The formulation is a displacement based one taking into account inelastic 
redistribution along the beam axis. 

v. A uniaxial hysteretic law is considered for the evolution of the plastic part of the 
normal stress following the Sivaselvan and Reinhorn (2003) model. 

vi. The inelasticity of the soil medium is taken into account, employing a hysteretic 
Bouc-Wen force-displacement model. 

vii. The dynamic equilibrium equations are stated in state-space form and a predictor-
corrector solution strategy is adopted for the numerical implementation.  

viii. The beam is supported by the most general time dependent boundary conditions. 

ix. The use of BEM permits the effective computation of derivatives of the field 
functions (e.g. stresses, stress resultants) which is very important during the 
dynamic inelastic response of beam-foundation systems. 

x. To the author’s knowledge, a BEM approach has not yet been used for the solution 
of the aforementioned problem, while the developed procedure retains most of the 
advantages of a BEM solution even though domain discretization is required.  

Finally, it is worth mentioning that the outcome of the conducted research activity 
presented in this chapter of the doctoral dissertation has been published in national and 
international conferences (Kampitsis & Sapountzakis 2014a,b). 
 
 
5.2 Statement of the Problem 

Let us consider a prismatic beam of length l  (Fig. 5.1) with an arbitrarily shaped doubly 
symmetric constant cross section, occupying the two dimensional multiply connected 

region Ω  of the y,z  plane bounded by the ( )j j 1,2,...,KΓ =  boundary curves, which 

are piecewise smooth, i.e. they may have a finite number of corners. In Fig. 5.1, Cyz  is 

the principal bending coordinate system through the cross section’s centroid. The 
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normal stress-strain relationship for the material is assumed to be elastic-plastic-strain 
hardening with initial modulus of elasticity E , shear modulus G , post-yield modulus of 

elasticity tE , yield stress Y0σ , and yield strain Y 0ε . The beam is partially supported on 

inelastic Winkler foundation. According to the Winkler hypothesis, the foundation 
reaction is expressed as 
 

Fig. 5.1. x-z plane of prismatic beam resting on inelastic foundation under axial–
flexural dynamic loading. 

 

 ( ) ( )sy yp x,t k v x,t=          and         ( ) ( )sz zp x,t k w x,t=  (5.1a,b) 

 
while in order to take into consideration the nonlinear inelastic behaviour of the Winkler 
springs the hysteretic Bouc-Wen force-displacement relations are employed  
 

 ( ) h
sy sy y sy y syp a k v 1 a k z= + −          and         ( ) h

sz sz z sz z szp a k w 1 a k z= + −  (5.2a,b) 

 

where sy syp , p  are the spring forces, yk , zk  are the initial stiffnesses, v,w  are the 

actual displacements, sy sza ,a  are the inelastic to elastic stiffness ratio and h h
sy szz , z  are 

the hysteretic parts of the actual displacements acting in the y , z  directions, 

respectively and defined by the following Bouc-Wen evolution equations  
 



Chapter 5  Geometrically Nonlinear Dynamic Inelastic Analysis of Beam-Soil Interaction Systems 

223 

 ( ) ( )( )
nh

syh h h
sy sy syh

sy _Yield

z
z z ,v 1 sign z v v

z
β γ

⎛ ⎞
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 ( ) ( )( )
n

h
h h hsz
sz sz szh

sz _Yield

zz z ,w 1 sign z w w
z

β γ
⎛ ⎞
⎜ ⎟= − +⎜ ⎟⎜ ⎟
⎝ ⎠

& & &&        (5.3b) 

 
In the above eqns. (5.3), the first term of the right hand side can be regarded as the 

uniaxial flow rule while the second terms as the corresponding cyclic loading rate, while 

the symbol ( ) &  denotes differentiation with respect to time t . The dimensionless 

parameter n  controls the smoothness of the transition from the elastic to the inelastic 

regime while ,β γ are shape factors that define the shape of the loading and unloading 

branches of the hysteretic loop (Sivaselvan & Reinhorn, 2000). 
The beam is subjected to the combined action of the arbitrarily distributed or 

concentrated time dependent axial loading ( )x xp p x,t= , transverse loading 

( )y yp p x,t= , ( )z zp p x,t=  acting in the y , z  directions, respectively and bending 

moments ( )y ym m x,t= , ( )z zm m x,t=  along y , z  axes, respectively (Fig. 1a).  

 
5.2.1 Displacements, Strains & Stresses 

Under the action of the aforementioned loading, the displacement field of the beam is 
given as (Ramm & Hofmann 1995) 

 

 ( ) ( ) ( ) ( )z yu x, y,z,t u x,t y x,t z x,tθ θ= − +  (5.4a) 

 ( ) ( )v x,t v x,t=                  ( ) ( )w x,t w x,t=  (5.4b,c) 

 
where u , v , w  are the axial and transverse beam displacement components with 

respect to the Cyz  system of axes; ( )u x,t , ( )v x,t , ( )w x,t  are the corresponding 

components of the centroid C  and ( )y x,tθ , ( )z x,tθ  are the angles of rotation due to 

bending of the cross-section with respect to its centroid. By means of the well known 
Euler-Bernoulli beam theory, the additional angle of rotation of the cross-section due to 
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shear deformations are neglected therefore the angles of rotation due to bending are 
equal to the derivative of the displacement and are given by the following relations 
 

 z
dv
dx

θ =             y
dw
dx

θ = −  (5.5a,b) 

 
Employing the strain-displacement relations of the three-dimensional elasticity the 

components of the Green-Lagrange strain are defined as  
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Moreover, assuming relatively small centroidal axial displacement and moderate large 
transverse displacements (Ramm & Hofmann 1995, Rothert & Gensichen 1987, Brush 
& Almroth 1975) while strains remain small, the following strain components can be 
easily obtained 
 

 
2 2

xx
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x 2 x x

ε
⎡ ⎤∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 (5.7a) 

 xz
w u v v w w
x z x z x z

γ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞= + + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
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 xy
v u v v w w
x y x y x y

γ
⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂

= + + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
 (5.7c) 

 yy zz yz 0ε ε γ= = =  (5.7d,e,f) 

 

where it has been assumed that for moderate displacements ( )2u u
x x

∂ ∂<<∂ ∂ , 

( )( ) ( ) ( )u u w u
x z x z

∂ ∂ ∂ ∂<< +∂ ∂ ∂ ∂ , ( )( ) ( ) ( )u u v u
x y x y

∂ ∂ ∂ ∂<< +∂ ∂ ∂ ∂ . Exploiting 

the Euler-Bernoulli assumption and substituting the displacement components (5.4) to 
the strain-displacement relations (5.7), the normal strain component can be written as 
 

 ( )
2 22 2

xx 2 2
u w v 1 v wx, y,z,t z y
x 2 x xx x

ε
⎛ ⎞∂ ∂ ∂ ∂ ∂

= − − + +⎜ ⎟⎜ ⎟∂ ∂ ∂∂ ∂ ⎝ ⎠
 (5.8) 

 
Considering strains to be small, employing the work conjugate second Piola–Kirchhoff 
stress tensor (Crisfield 1991), assuming an isotropic and homogeneous material without 
exhibiting any damage during its plastification and neglecting the vanishing 
components, the normal stress is defined in terms of the strain one as 
 

 el
xx xxS E ε∗=  (5.9) 

 
where the superscript el  denotes the elastic part of the strain component and 

( ) ( )( )E E 1 1 1 2ν ν ν∗ = − + −⎡ ⎤⎣ ⎦ . If the plane stress hypothesis is undertaken then 

( )2E E 1 ν∗ = −  holds, while E  is frequently considered instead of *E ( E E∗ ≈ ) in 

beam formulations (Vlasov 1963, Armenakas 2006). This last consideration has been 

followed throughout the paper, while any other reasonable expression of *E  could also 
be used without any difficulty in many beam formulations. 

As long as the material remains elastic the total strain is assumed to occupying the 

Hooke’s law (i.e. el
xx xxε ε= ) while when plastic flow occurs the additive decomposition 

of the total strain rate into an elastic and a plastic component (Nemat-Nasser 1982) 
holds  
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 el pl
xx xx xxε ε ε= +& & &  (5.10) 

 

where xxε  the total normal strain, el
xxε  the elastic part of the normal strain and pl

xxε  the 

plastic part of the normal strain. 
A uniaxial hysteretic law is considered herein for the evolution of the plastic part of 

the normal stress. Following the Sivaselvan and Reinhorn (2003) model, the normal 
stress can be decomposed into a reduced elastic and a hysteretic part as follows  

 

 ( ) ( )el h h
xx xx xxS aS 1 a S aE 1 a Ezε= + − = + −  (5.11) 

 

where el
xxS , hS  are considered the elastic and hysteretic parts of the stress, respectively, 

a  is the post yield stiffness to elastic stiffness ratio and hz  is a hysteretic deformation 

parameter which serves as an internal variable. The hysteretic part hS  evolves in time 
according to a nonlinear differential equation following the Bouc-Wen hysteretic rule as 
proposed by Casciati (1995) (Fig. 5.2) 
 

 ( ) ( )h h h
xx 1 2 xxS z , Ez E 1 h hε ε= = −& & &&  (5.12) 

 

where 1 2h ,h  are smooth Heaviside functions given as  

 

 ( ) nh
1h S 1Φ= +  (5.13a) 

 ( )h
2 xxh sign Sβ γ ε= +  &  (5.13b) 

 
where Φ  is the adopted yield criterion, sign  is the signum function and n, ,β γ   are 

model’s dimensionless parameters. More specifically, n  controls the smoothness of the 

transition from the elastic to the inelastic regime while ,β γ are shape factors that define 

the shape of the loading and unloading branches of the hysteretic loop. Furthermore, it 
has been proved by Erlicher and Bursi (2004, 2009) that the identified parameters ,β γ  

should comply with the restriction β γ β− ≤ ≤  in order to be an admissible 
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thermodynamic model, while in the special case where 0.5β γ= =  the unloading 

stiffness is equal to the elastic one. In general, eqns. (5.13) can be perceived as control 
functions of the hysteretic behaviour. In particular, the first Heaviside function 
describes the flow rule while, the second one controls loading-unloading phases during 
the dynamic loading.  
 

 

Fig. 5.2. Bouc-Wen hysteretic model (a) and stress-strain relation (b). 

 
In the case where von Mises yield criterion, an associated flow rule and an isotropic 

hardening rule for the material are utilized (Crisfield 1991), the expression of the yield 
condition is described with the expression 
 

 
( )

2
xx

vM 2 pl
Y eq

S 1 0Φ Φ
σ ε

= = − ≤  (5.14) 

 

where Yσ  is the yield stress of the material and pl
eqε  is the equivalent plastic strain (Fig. 

5.3), the rate of which is defined in (Crisfield 1991) and is equal to pl
eqε λ= &&  with λ&  

being the proportionality facto. Moreover, the plastic modulus h is defined as 
pl

Y eqh σ ε= &&  or Y hσ λ= &&  and can be estimated from a tension test as ( )t th E E E E= −  

(Fig. 5.3). 
 
5.2.2 Stress Resultants, Equations of Equilibrium and Boundary Conditions 

In order to establish the global equilibrium equations and the boundary conditions of the 
beam-foundation system, the principle of virtual work under a Total Lagrangian 
formulation neglecting body forces is employed as 



Geometric and Material Nonlinear Analysis of Beam–Soil Interaction Systems 

228 

  
(a) (b) 

Fig. 5.3. Normal stress–strain (a) and yield stress – equivalent plastic strain (b) 
relationships. 

 

 extint massW W Wδ δ δ+ =  (5.15) 

 

where ( )δ ⋅  denotes virtual quantities, intW  is the stain energy of the beam due to 

normal stress, massW is the kinetic energy and extW  is the external load work, defined as  

 

 ( )dint xx xxVW S Vδ δε= ∫        ( )mass dVW u u v v w w Vδ ρ δ δ δ= + +∫ && && &&  (5.16a,b) 

 
( ) ( )

( )

mass

0, l

x y y y z y z sy sz
l l

b by bz bz z by y
b

W p u p v m p w m dx p v p w dx

N u V v V w M M

δ δ δ δθ δ δθ δ δ

δ δ δ δθ δθ
 

= + + + + − +

          + + + + +

∫ ∫

∑
 (5.16c) 

 
where V  is the volume and l  is the length of the beam in the undeformed configuration, 

syp , szp  are the foundation reaction according to y  and z  axes, respectively while bN , 

byV , bzV , byM  and bzM  are the externally applied forces and moments at the beam 

boundaries. The variations of strains are expressed in terms of displacements as 
 

 

( ) ( ) ( ) ( ) ( )

2 22 2

xx 2 2
u w v 1 v wz y
x 2 x xx x

u z w y v v v w w

δε δ δ δ δ

δ δ δ δ δ

⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞= − − + + =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
′ ′′ ′′ ′ ′ ′ ′        = − − + +

 (5.17) 

 

Sxx

εxx

Ε

σΥ0

O
εY0

Εt

pl
eqε

σY

O

σY0

h
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where ( )′  denotes differentiation with respect to x . Within this framework, the stress 

resultants of the beam are defined as  
 

 xxN S dΩ Ω= ∫  (5.18) 

 y xxS zdΩΜ Ω= ∫        z xxS ydΩΜ Ω= −∫  (5.18b,c) 

 
 

where N  correspond to the axial force and yM , zM  correspond to the bending 

moments according to y  and z  axes, respectively. Subsequently, substituting the 

expressions of the stress component given from eqn. (5.11) and exploiting the strain-
displacement relations (5.8), the stress resultants are obtained as 
 

 ( ) ( ) ( )2 2 h el h1N aEA u' v w' 1 S d N 1 N
2 Ωα Ω α α⎡ ⎤′= + + + − = + −⎢ ⎥⎣ ⎦

∫  (5.19a) 

 ( ) ( )h el h
y y y yM aEI w 1 S zd M 1 MΩα Ω α α′′= − + − = + −∫  (5.19b) 

 ( ) ( )h el h
z z z zM aEI v 1 S yd M 1 MΩα Ω α α′′= − − = − −∫  (5.19c) 

 
where hN , h

zM  and h
yM  are area integrals consisting the hysteretic parts of the 

corresponding stress resultants, A  is the cross section area, yI , zI  the moments of 

inertia with respect to the principle bending axes given as  

 

 A dΩ Ω= ∫  (5.20a) 

 2
yI z dΩ Ω= ∫          2

zI y dΩ Ω= ∫  (5.20b,c) 

 

It is worth noting that these stress resultants refer to the directions of the infinitesimal 
elements of the cross section at its deformed configuration, since they have been defined 
with respect to the second Piola-Kirchhoff stress tensor.  

After substituting eqns. (5.8) and (5.19) into eqn. (5.15) and conducting some 
algebraic manipulations, the differential equations of motion of the beam-foundation 
system are obtained as 
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 ( ) ( ) ( )
h

x
1 a N

Au EA u v v w w p x,t
x

ρ
− ∂

′′ ′ ′′ ′ ′′− α + + − =
∂

&&  (5.21a) 

 
( )

( )
( )

( ) ( ) ( )

2 h
3 2z

z 2

h

sy y z

M 1 1v aEI v 1 a aEA u v v w v
2 2x

N v
1 a p x,t p x,t m x,t

x

ρΑ
⎡ ⎤′∂ ⎛ ⎞′′′′ ⎢ ′ ′ ′ ′ ′ ⎥+ − − − + + −⎜ ⎟

∂ ⎝ ⎠⎢ ⎥⎣ ⎦

′∂
′        − − + = −

∂

&&

 (5.21b) 

 
( )

( )
( )

( ) ( ) ( )

2 h
y 3 2

y 2

h

sz z y

M 1 1w aEI w 1 a aEA u w w v w
2 2x

N w
1 a p x,t p x,t m x,t

x

ρΑ
⎡ ⎤′∂ ⎛ ⎞′′′′ ⎢ ′ ′ ′ ′ ′ ⎥+ − − − + + −⎜ ⎟

∂ ⎝ ⎠⎢ ⎥⎣ ⎦

′∂
′         − − + = +

∂

&&

 (5.21c) 

 
or in a more compact form these equations are written as  
 

 ( )
el h

x
N NAu 1 a p

x x
ρ

⎡ ⎤∂ ∂
− α + − =⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦
&&  (5.22a) 

 ( )
( )

( )
( )el h2 h

z
z sy y z2

N v N vMv aEI v 1 a a 1 a p p m
x xx

ρΑ
′ ′∂ ∂∂′′′′ ′+ − − − − − + = −

∂ ∂∂
&&  (5.22b) 

 ( )
( )

( )
( )el h2 h

y
y sz z y2

N w N wM
w aEI w 1 a a 1 a p p m

x xx
ρΑ

′ ′∂ ∂∂
′′′′ ′+ − − − − − + = +

∂ ∂∂
&&  (5.22c) 

 
The differential equations of motion can also be written in terms of the total stress 
resultants as 
 

 x
NAu p
x

ρ ∂
−  =

∂
&&  (5.23a) 

 ( )2
z

sy y z2
NvMv p p m
xx

ρΑ
′∂∂ ′+ − + = −

∂∂
&&  (5.23b) 

 ( )2
y

sz z y2

M Nw
w p p m

xx
ρΑ

∂ ′∂
′− − + = +

∂∂
&&  (5.23c) 
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 The above equations are easily simplified by crossing out the nonlinear terms 
regarding the hysteretic behaviour, leading to the well known differential equations 
governing the motion of an elastic beam assuming geometrical nonlinearity. It is noted 
that these equations are of the second order with respect to the axial and the forth order 
with respect to the transverse directions. 
 The governing equations of motion are also subjected to the time dependent 
boundary conditions derived also from the principle of virtual work as 
 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

eqn. 5.19ah 0
x

0

el h 0 0
x x

0

1aEA u v w 1 a N N u 0 0
2

N 1 N N u 0 0 N 0 N u 0 0

δ

α α δ δ

⎡ ⎤⎡ ⎤⎛ ⎞′ ′ ′+ + + − + = ⎯⎯⎯⎯⎯→⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎢ ⎥⎣ ⎦
⎡ ⎤⎡ ⎤ ⎡ ⎤+ − + = ⎯⎯→ + =⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

 (5.24a) 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

eqn. 5.19ah l
x

l

el h l l
x x

l

1aEA u v w 1 a N N u l 0
2

N 1 N N u l 0 N l N u l 0

δ

α α δ δ

⎡ ⎤⎡ ⎤⎛ ⎞′ ′ ′+ + + − + = ⎯⎯⎯⎯⎯→⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎢ ⎥⎣ ⎦
⎡ ⎤⎡ ⎤ ⎡ ⎤+ − + = ⎯⎯→ + =⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

 (5.24b) 

 

 

( ) ( )

( ) ( ) ( )

h
3 2 h z

z
0 0

eqns. 5.19a,b0 0z
y y

0

M1 1aEA u v v v w 1 a N v aEI v 1 a
2 2 x

MV v 0 0 Nv V v 0 0
x

δ δ

⎡ ⎡ ⎤∂⎡ ⎤⎛ ⎞⎢ ′ ′ ′ ′ ′ ′ ′′′+ + + − − − − +⎢ ⎥⎜ ⎟⎢ ⎥ ∂⎢ ⎝ ⎠⎣ ⎦ ⎢ ⎥⎣ ⎦⎣

⎡ ⎤∂⎤ ′    + = ⎯⎯⎯⎯⎯⎯→ − + =⎢ ⎥⎦ ∂⎢ ⎥⎣ ⎦

 (5.24c) 

 

( ) ( )

( ) ( ) ( )

h
3 2 h z

z
l l

eqns. 5.19a,bl lz
y y

l

M1 1aEA u v v v w 1 a N v aEI v 1 a
2 2 x

MV v l 0 Nv V v l 0
x

δ δ

⎡ ⎡ ⎤∂⎡ ⎤⎛ ⎞⎢ ′ ′ ′ ′ ′ ′ ′′′+ + + − − − − +⎢ ⎥⎜ ⎟⎢ ⎥ ∂⎢ ⎝ ⎠⎣ ⎦ ⎢ ⎥⎣ ⎦⎣

⎡ ⎤∂⎤ ′    + = ⎯⎯⎯⎯⎯⎯→ − + =⎢ ⎥⎦ ∂⎢ ⎥⎣ ⎦

 (5.24d) 

 

 

( ) ( )

( ) ( ) ( )

h
y3 2 h

z
0 0

eqns. 5.17a,c y0 0
z z

0

M1 1aEA u w w v w 1 a N w aEI w 1 a
2 2 x

M
V w 0 0 Nw V w 0 0

x
δ δ

⎡ ⎡ ⎤∂⎡ ⎤⎛ ⎞⎢ ′ ′ ′ ′ ′ ′ ′′′⎢ ⎥+ + + − − − − +⎜ ⎟⎢ ⎥⎢ ∂⎝ ⎠ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣

⎡ ⎤∂
⎤ ′⎢ ⎥    + = ⎯⎯⎯⎯⎯⎯→ − + =⎦ ∂⎢ ⎥⎣ ⎦

 (5.24e) 
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( ) ( )

( ) ( ) ( )

h
y3 2 h

z
l l

eqns. 5.19a,c yl l
z z

l

M1 1aEA u w w v w 1 a N w aEI w 1 a
2 2 x

M
V w l 0 Nw V w l 0

x
δ δ

⎡ ⎡ ⎤∂⎡ ⎤⎛ ⎞⎢ ′ ′ ′ ′ ′ ′ ′′′⎢ ⎥+ + + − − − − +⎜ ⎟⎢ ⎥⎢ ∂⎝ ⎠ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣

⎡ ⎤∂
⎤ ′⎢ ⎥    + = ⎯⎯⎯⎯⎯⎯→ − + =⎦ ∂⎢ ⎥⎣ ⎦

 (5.24f) 

 

 ( )( ) ( ) ( ) ( ) ( )eqn. 5.19ch 0 0
z z z z z

0
aEI v 1 a M M v 0 M 0 M v 0 0δ δ⎡ ⎤ ⎡ ⎤′′ ′ ′− − + ⎯⎯⎯⎯⎯→ + =⎢ ⎥ ⎣ ⎦⎣ ⎦

 (5.24g) 

 ( )( ) ( ) ( ) ( ) ( )eqn. 5.19ch l l
z z z z z

l
aEI v 1 a M M v l M l M v l 0δ δ⎡ ⎤ ⎡ ⎤′′ ′ ′− − + ⎯⎯⎯⎯⎯→ + =⎢ ⎥ ⎣ ⎦⎣ ⎦

 (5.24h) 

 

 ( )( ) ( ) ( ) ( ) ( )eqn. 5.19bh 0 0
y y y y y

0
aEI w 1 a M M w 0 M 0 M w 0 0δ δ⎡ ⎤ ⎡ ⎤′′ ′ ′− − + ⎯⎯⎯⎯⎯→ + =⎢ ⎥ ⎣ ⎦⎣ ⎦

 (5.24i) 

 ( )( ) ( ) ( ) ( ) ( )eqn. 5.19bh l l
y y y y y

l
aEI w 1 a M M w l M l M w l 0δ δ⎡ ⎤ ⎡ ⎤′′ ′ ′− − + ⎯⎯⎯⎯⎯→ + =⎢ ⎥ ⎣ ⎦⎣ ⎦

 (5.24j) 

 
which can be written in a more convenient form as  
 

 ( ) ( )1 2 b 3u x,t N x,tα α α+ =  (5.25a) 

 ( ) ( )1 2 by 3v x,t V x,tβ β β+ =         ( ) ( )1 2 bz 3
v x,t x,t
x

β β Μ β∂
+ =

∂
 (5.25b,c) 

 ( ) ( )1 2 bz 3w x,t V x,tγ γ γ+ =           ( ) ( )1 2 by 3
w x,t x,t
x

γ γ Μ γ∂
+ =

∂
 (5.25d,e) 

 
at the beam ends x 0 ,l= , together with the initial conditions 

 

 ( ) ( )0u x,0 u x=          ( ) ( )0u x,0 u x= &&  (5.26a,b) 

 ( ) ( )0v x,0 v x=          ( ) ( )0v x,0 v x= &&  (5.26c,d) 

 ( ) ( )0w x,0 w x=        ( ) ( )0w x,0 w x= &&  (5.26e,f) 
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where ( )0u x , ( )0v x , ( )0w x , ( )0u x& , ( )0v x&  and ( )0w x&  are prescribed functions. In the 

boundary eqns. (5.25b-e) byV , bzV  and bzM , byM  are the reactions and bending 

moments with respect to y , z , respectively given by the following relations 

 

 ( ) ( ) ( )
h

2 2 h z
by z

M1V aEA u' v w' v 1 a N v aEI v 1 a
2 x

∂⎡ ⎤′ ′ ′ ′′′= + + + − − + −⎢ ⎥ ∂⎣ ⎦
 (5.27a) 

 ( ) ( ) ( )
h
y2 2 h

bz y
M1V aEA u' v w' w 1 a N w aEI w 1 a

2 x
=

∂⎡ ⎤′ ′ ′ ′′+ + + − − + −⎢ ⎥ ∂⎣ ⎦
 (5.27b) 

 ( ) h
by y yM aEI w 1 a M′′= − + −  (5.27c) 

 ( ) h
bz z zM EI v 1 Mα′′= − −  (5.27d) 

 

Finally, j j j j j, , , ,α β β γ γ  ( j 1,2,3= ) are functions specified at the beam ends 

x 0,l= . Eqns. (5.25) describe the most general nonlinear boundary conditions 

associated with the problem at hand and can include elastic support or restraint. It is 
apparent that all types of the conventional boundary conditions (clamped, simply 
supported, free or guided edge) can be derived from these equations by specifying 

appropriately these functions (e.g. for a clamped edge it is 1 1 1 1α β γ= = = , 1β =

1 1γ = , 2α = 3α = 2β = 3β = 2γ = 3γ = 2β = 3β = 2γ = 3 0γ = ). 

The above equations of equilibrium and boundary conditions are easily simplified 
by crossing out the nonlinear terms corresponding to material nonlinearity, leading to 
the well known elastic formulation while, by crossing out the nonlinear terms 
corresponding to the geometrical nonlinearity leads to the well known second order with 
respect to the axial and the forth order with respect to the transverse directions.  
 
 
5.3 Numerical Solution 

According to the precedent analysis, the geometrically nonlinear inelastic problem of 
Euler-Bernoulli beams supported on nonlinear inelastic soil, reduces in establishing the 

displacement components ( )u x,t  and ( )v x,t , ( )w x,t  having continuous derivatives up 

to the second order and up to the fourth order with respect to x , respectively and also 
having derivatives up to the second order with respect to t. These displacement 
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components must satisfy the coupled governing differential equations (5.23) inside the 
beam, the boundary conditions (5.25) at the beam ends 0x ,l=  and the initial conditions 

(5.26). Eqns. (5.21) are solved using the Analog Equation Method (Katsikadelis 1994, 
2002) as it is described in Appendix A1. 
 

5.3.1 Axial ( )u x,t  and Transverse Displacements ( ) ( )v x,t , w x,t  

According to this method, let ( )u x,t , ( )v x,t  and ( )w x,t  be the sought solution of the 

aforementioned initial value problem. Setting as ( ) ( )1u x,t u x,t= , ( ) ( )2u x,t v x,t= , 

( ) ( )3u x,t w x,t=  and differentiating with respect to x  these functions two and four 

times, respectively yields 
 

 ( )
2

1
12

u q x,t
x

∂
=

∂
         ( )

4
i

i4
u q x,t

x
∂

=
∂

        ( )i 2,3=  (5.28) 

 
Eqns. (5.28) are quasi-static that is the time variable appears as a parameter. They 
indicate that the solution of eqns. (5.23) can be established by solving eqns. (5.28) under 
the same boundary conditions (5.25), provided that the fictitious load distributions 

( )iq x,t  ( )i 1,2,3=  are first established. Following the procedure as described in 

Appendix A1, the integral representations of the displacement components iu  

( )i 1,2,3=  obtained by eqn. (A1.8, A1.36) and their first derivatives with respect to x  

obtained by eqn. (A1.22, A1.43), when applied to the beam ends ( 0,l ), together with 

the boundary conditions (5.25) are employed to express the unknown boundary 

quantities ( )iu ,tζ , ( )i xu , ,tζ , ( )i xxu , ,tζ  and ( )i xxxu , ,tζ  ( )0,lζ =  in terms of the 

fictitious loads iq  ( )i 1,2,3= . In order to accomplished this numerical formulation, the 

interval ( )0,l  is divided into L  elements, on which ( )iq x,t  is assumed to vary 

according to certain law (constant, linear, parabolic etc). The constant element 
assumption is employed here as the numerical implementation becomes very simple and 
the obtained results are of high accuracy. 

Employing the aforementioned procedure, the following set of 20 nonlinear 
algebraic equations is obtained 
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3

⎧ ⎫⎡ ⎤ ⎧ ⎫ ⎧ ⎫⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥ + =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥⎣ ⎦ ⎩ ⎭ ⎩ ⎭⎪ ⎪⎩ ⎭

h
111 1 3
h

22 2 2 3
h33 33

DT 0 0 d a
0 T 0 d D b
0 0 T d cD

 (5.29) 

 
with  
 

 
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

u u u
1 11 12

11 u u
12 22

F E E
T =

0 D D
 (5.30a) 

 

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

1 11 12 13 14

2 22 23 24
22

11 12 14

22 23 24

F E E E E
F 0 E E E

T =
0 D D 0 D
0 0 D D D

   

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

1 11 12 13 14

2 22 23 24
33

11 12 14

22 23 24

F E E E E
F 0 E E E

T =
0 G G 0 G
0 0 G G G

(5.30b,c) 

 
where u

11E , u
12E , 11E - 48E  are rectangular 2×2 known coefficient matrices resulting 

from the values of the kernels ( )j rΛ  ( )1, 2, 3, 4j =  at the beam ends and u
1F , 1F , 2F  

are 2×L  rectangular known matrices originating from the integration of the kernels 

along the axis of the beam, as defined in Appendix A1. Moreover, 11D - 24D  and 11G -

24G  are 2×2 known square, time dependent matrices including the values of the 

functions j j j j ja , , , ,β β γ γ     ( )1, 2j =  of eqns.(5.25), while h
1D , 3a  and h

2D , h
3D , 3b , 3c  

are 4×1 and 8×1 , respectively known, in general time dependent, column matrices 

including the boundary values of the functions 3, 3 3 3 3a , , ,β β γ γ    of eqns. (5.25). 

Furthermore, 1d - 3d  are the generalized unknown vectors including the L  unknown 

time dependent nodal values of the fictitious loads { }1 2
Ti i i

i Lq q q q=   ....  ( )1,2,3i =  and 

the vectors including the unknown time dependent boundary values of the respective 
boundary quantities. More specifically, the expressions of the matrices of eqn. (5.30) are 
given as 
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 (5.34) 

 

where the boundary values of the displacement components iu  ( )i 1,2,3=  and their 

derivatives with respect to x  are written in matrix form as 
 

 ( ) ( ){ }0 T
i iˆ u ,t u l ,t=iu  ( )1,2,3i =  (5.35a) 

 ( ) ( )0 T
i iu ,t u l ,tˆ

x x
∂ ∂⎧ ⎫

= ⎨ ⎬
∂ ∂⎩ ⎭

i xu ,  ( )1,2,3i =  (5.35b) 

 ( ) ( )2 2
i i

2 2
0

T
u ,t u l ,t

ˆ
x x

⎧ ⎫∂ ∂⎪ ⎪= ⎨ ⎬
∂ ∂⎪ ⎪⎩ ⎭

i xxu ,  ( )2,3i =  (5.35c) 

 ( ) ( )3 3
i i

3 3
0

T
u ,t u l ,tˆ

x x

⎧ ⎫∂ ∂⎪ ⎪= ⎨ ⎬
∂ ∂⎪ ⎪⎩ ⎭

i xxxu ,  ( )2,3i =  (5.35d) 

 
Thereafter, the discretization of the integral representations of the displacement 

components iu  ( )i 1,2,3=  and their derivatives with respect to x , and the application to 

the L  collocation nodal points yields 
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 ˆ ˆ= + +0
1 1 1 0 1 1 1 xu A q C u C u ,  (5.36a) 

 ˆ1
1 x 1 1 0 1 xu , = A q + C u ,          1 xx 1u , = q  (5.36b,c) 

 

 ˆ ˆ ˆ ˆ′0
2 2 2 0 2 1 2 x 2 2 xx 3 2 xxxu = A q + C u + C u , +C u , +C u ,  (5.37a) 

 ˆ ˆ ˆ′1
2 x 2 2 0 2 x 1 2 xx 2 2 xxxu , = A q + C u , +C u , +C u ,  (5.37b) 

 ˆ ˆ′= + +2
2 xx 2 2 0 2 xx 1 2 xxxu , A q C u , C u ,  (5.37c) 

 ˆ3
2 xxx 2 2 0 2 xxxu , = A q + C u ,         2 xxxx 2u , = q  (5.37d,e) 

 

 ˆ ˆ ˆ ˆ′0
3 3 3 0 3 1 3 x 2 3 xx 3 3 xxxu = A q + C u + C u , +C u , +C u ,  (5.38a) 

 ˆ ˆ ˆ′1
3 x 3 3 0 3 x 1 3 xx 2 3 xxxu , = A q + C u , +C u , +C u ,  (5.38b) 

 ˆ ˆ′2
3 xx 3 3 0 3 xx 1 3 xxxu , = A q + C u , +C u ,  (5.38c) 

 ˆ3
3 xxx 3 3 0 3 xxxu , = A q + C u ,         3 xxxx 3u , = q  (5.38d,e) 

 

where i
1A , j

2A , j
3A  ( )0,1i =  , ( )0,1, 2, 3j =     are L L×  known matrices; 0C , 1C , ′1C ,

2C , 3C  are 2L×  known matrices and iu , i xu , , i xxu , , i xxxu , , i xxxxu ,  are time 

dependent vectors including the values of ( )iu x,t  and their derivatives at the L  nodal 

points. These equations can be assembled in a more convenient matrix form as 
 

 u
1 1u = B d            u

,x1 x 1u , = B d  (5.39a,b) 

 2 2u = Bd           ,x2 x 2u , = B d         ,xx2 xx 2u , = B d          ,xxx2 xxx 2u , = B d  (5.40a-d) 

 3 3u = Bd           ,x3 x 3u , = B d         ,xx3 xx 3u , = B d          ,xxx3 xxx 3u , = B d  (5.41a-d) 

 

where uB , B  and there derivatives are ( )4L L× +  and ( )8L L× +  known matrices, 

respectively arising from uA , A , uC , C  and there derivatives as presented in 
Appendix A1. 

In conventional BEM, the load vectors iq  are known and eqns. (3.40-3.41) are used 

to evaluate ( )iu x,t  and their derivatives at the L  nodal points. This, however, cannot 
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be applied here since iq  are unknown. Thus, 3L  additional equations are required in 

order to permit the establishment of iq . Therefore, the final step of AEM is 

implemented by applying the governing equations of motion (5.23) to the L  collocation 
points and employing eqns. (3.39-3.41) leads to the formulation of the following set of 
3 L×  semi-discretized nonlinear equations of motion  
 

 = = 
⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪+ + ⇒ + +⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪

⎩ ⎭⎩ ⎭

1 1
h h

2 2

3 3

d d
Md Kd P f M d K d P f

d d

&&

&& &&

&&
 (5.42) 

 

where hP  is a generalized vector including the  nonlinear terms due to geometrical and 
material nonlinearities and , ,  M K f  are generalized mass, stiffness matrices and force 

vector respectively, defined as  
 

 uAρ=1M B          [ ]dg,La= −1K EA          =1 xf p  (5.43a-c) 

 ( ),xx ,x ,xx ,x ,xdg. dg.
a 1 a⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤=  + + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

h h
1 2 2 3 3P EA B d B d B d B d N  (5.43d) 

 

 Aρ=2M B    [ ]( )el el dg
z x ,x ,xx sy ydg ,La a= − − +2K EI N B N B K B  (5.44a-c) 

( ) ( ) ( ) { }h
xx x x xx sy y sy1 a 1 a k z⎡ ⎤= − − + −⎣ ⎦

h h h h
2 z, , , ,P M N B - N B     ,x= −2 y zf p m  (5.44d) 

 

 Aρ=3M B    ( )el el dg
y x ,x ,xx sz zdg ,L

a a⎡ ⎤= − − +⎣ ⎦3K EI N B N B K B  (5.45a-c) 

( ) ( ) ( ) { }h
xx ,x ,x ,xx sz z sz1 a 1 a k z⎡ ⎤= − − + −⎣ ⎦

h h h h
3 y,P M N B - N B     ,x= +3 z yf p m  (5.45d) 

 

where elN , el
,xN  are L L×  diagonal matrices containing the values of the elastic axial 

force and its derivatives with respect to x  at the L  nodal points, yp , zp , y ,xm  and 
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z ,xm  are L 1×  vectors containing the values of the external loading and its derivatives 

at these points, while i
hP , ( )i 1,2,3=  are hysteretic vector. Moreover, substituting eqns. 

(5.36) in eqn. (3.18a), the discretized counterpart of the elastic axial force at the neutral 
axis of the beam is given as 
 

 ( )el u
,x ,xx ,x ,xx ,xdg . dg .

1EA EA
2

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= +  +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦1 2 2 3 3N B d B d B d B d B d  (5.46) 

 
Subsequently, the initial conditions of the problem are formulated in discretized 

form by substituting eqns. (5.39) in eqns. (5.26) yielding the following 3L  linear 

equations with respect to the generalized displacements 1d , 2d , 3d  and the generalized 

velocities 1d& , 2d& , 3d&  for 0t =  as 

 

 ( )0u =1 0B d u          ( )0u =1 0B d u& &  (5.47a,b) 

 ( )0 =2 0Bd v            ( )0 =2 0Bd v& &  (5.47c,d) 

 ( )0 =3 0Bd w           ( )0 =3 0Bd w& &  (5.47e,f) 

 
The above equations (5.47a,c,e), together with eqns. (5.29) written for 0t = , form 

a set of 3L 20+  nonlinear algebraic equations which are solved to establish the initial 

conditions ( )01d , ( )02d , ( )03d  while similarly equations (5.47b,d,f) together with 12 

equations resulting after differentiating eqns. (5.29) with respect to time and writing 
them for 0t = , form a set of 3 +20L  linear algebraic equations from which the initial 

conditions ( )01d& , ( )02d& , ( )03d&  are established. 

The aforementioned initial conditions along with eqns. (5.29), (5.42) and the 
evolution eqns. (5.3), (5.12) form an initial value problem of Differential-Algebraic 
Equations (DAE), which can be solved using any efficient solver. Within the framework 
of this doctoral dissertation the Petzold Gear Method was used (Brenan et al. 1989) after 
introducing new variables to reduce the order of the system (Bazant & Cedolin 1991) 
and after differentiating (5.27) with respect to time to obtain an equivalent system with 
a value of system index ind 1= .  
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5.3.2. Dynamic Incremental–Iterative Solution Algorithm 

In the framework of this doctoral thesis, a dynamic incremental–iterative solution 
algorithm has been implemented based on the fibre approach. The governing equations 
of motion are written in state-space form and a predictor-corrector differential solver 
base on the Petzold Gear method (Brenan et al. 1989) is adopted. It is worth noting that 
the standard second order representation of eqn. (5.40) could also be implemented 
incorporating any Newmark method in conjunction with an incremental–iterative 
Newton Raphson method for the integration of the equations of motion and the Bouc-
Wen evolution equations governing the inelastic behaviour of the beam-foundation 
system.  
 
5.3.2.1 State-Space Formulation / Fibre Approach 

The developed beam formulation follows the displacement-based theory, thus load 
control (Crisfield 1991) over the time steps is used and load stations are chosen 
according to load history and convergence requirements. Having evaluated the load 
vector, the initial conditions as well as all the necessary numerical coefficients the 
standard second order representation of eqn. (5.40) can be brought into a state-space 
form, by introducing an auxiliary unknown vector. More specifically,  

i. A number of monitoring cross sections is defined. It is assumed that the monitoring 
sections coincide with the L  nodal points of the beam interval as well as the beams 
boundaries.  

ii. Since the distribution of the normal stress within the cross section plane is not 
known in advance, the fibre approach is to be followed (Fig. 5.4) for the integration 
of the section internal axial force and moments. Therefore, each section is divided 
into a number of triangular or quadrilateral cells and standard two-dimensional 
Gauss quadrature rules are employed in each cell to resolve the hysteric parts of the 

stress resultants hN , 
h
yM , 

h
zM . If the same number of Gauss points is employed in 

every cell, then dof cells GaussN N N= ×  holds. Thus, the monitoring stations of each 

cross section coincide with the Gauss points of its cells, while exact patch between 
adjacent cells is not required. 

iii. For a specific dynamic loading and known initial conditions (5.47), at each time 
step the dynamic differential equation of motion (5.42) and the evolution eqns. 
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(5.3), (5.12) are written in a system form of first order differential-algebraic 
equations as follows 

 

 ( )G t,Y ,Y 0=&  (5.48) 

 
where the generalized vectors are defined as  

 

 { } { { { { { { { { {
dof

T

z
NL 4 L 8 L 4 L 8L 8 L 8 LL

Y
+ + + ++ +

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

h h h
1 2 3 1 2 3 sy sd d d d d d z z z& & &  (5.49a) 

 { } { { { { { { { { {
dof

T

z
NL 4 L 8 L 4 L 8L 8 L 8 LL

Y
+ + + ++ +

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

h h h
1 2 3 1 2 3 sy sd d d d d d z z z& & & & && && && & & &  (5.49b) 

 

The above system of first order DAEs, is numerically integrated using a predictor-
corrector differential solver base on the Petzold Gear method (Brenan et al. 1989). 
The iteration steps of the algorithm are executed until the dynamic load increment 
is fully undertaken from the beam-foundation inelastic system or convergence 
cannot be achieved. 

 

Fig.5.4. Discretization of the beam interval into integration cross sections and 
discretization of the cross sections into fibres. 
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iv. Since convergence is achieved for the specific dynamic load step, then the total 
stress resultants are evaluated and the displacement and stress components are 
stored.  

v. The parameters of the problem are updated and the process described by steps (ii)-
(iv) is repeated until the total load time history is examined or convergence cannot 
be achieved which means that the load cannot be fully undertaken (plastic 
collapse). 
A step-by-step algorithmic approach of the nonlinear solution is presented in a 

flowchart form in Fig. 5.5. 
 

Fig. 5.5. Flowchart of the numerical implementation. 
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5.4 Numerical Examples 

On the basis of the analytical and numerical procedures presented in the previous 
sections concerning the geometrically nonlinear inelastic analysis of Euler-Bernoulli 
beams on inelastic foundation, a computer program has been written using High Level 
3G Fortran 90/95. Representative examples have been studied to demonstrate the 
efficiency, wherever possible the accuracy and the range of applications of the 
developed method.  
 
 
5.4.1 Example 1 – Dynamic Inelastic Analysis of Cantilever Beam 

For comparison purposes, in the first example a cantilever beam of length 1l m=  under 

concentrated tip force zP , as depicted in Fig. 5.6a has been studied. The beam is made 

out of structural steel with modulus of elasticity 210E GPa=  , hardening ratio 

0.002α = , yielding stress 0 240Y MPaσ =  and mass density 37.85 /tn mρ = . The cross 

section is assumed rectangular of width 0.05b m=  and height 0.1h m= , while the 

hysteretic parameters are considered 0.5β γ= = . For the longitudinal discretization 21 

integration sections have been employed, while the cross-section has been discretized 
into 15 quadrilateral cells with a 2 2×  Gauss integration scheme for each cell. The 
present example was first studied by Triantafyllou and Koumousis (2012) who 
presented a hysteric triangular plane stress element incorporating the Bouc-Wen model. 
 

(a) (b) 

Fig. 5.6. Cantilever beam with tip load (a) applied sinusoidal load time history (b) 
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At first, the static response of the cantilever is investigated by assuming a 
monotonically increasing concentrated tip load. In Fig.5.7, the load-displacement curves 
at the cantilever’s tip are presented considering both an elastic-perfectly plastic and a 
elastoplastic-strain hardening material. In the first case the results are compared with 
those obtained from Triantafyllou and Koumousis (2012) implementing a sparse mesh 
of 62 and a dense mesh of 328 hysteric triangular plane stress element. Additionally, the 
FEM solution (NX Nastran 2007) obtained by employing 60 nonlinear beam elements 
and the 3-D FEM solution (NX Nastran 2007) obtained by employing 2560 solid (brick) 
are also presented. Furthermore, the theoretical values of the initial yield load and the 
lower bound for the ultimate load evaluated by the following analytical expressions 
(Lubliner 2008) are also depicted in this figure.  
 

 
2

Y 0
yield

bhP 20kN
6l

σ
= =       and      

2
Y 0

ultimate
bhP 30kN

4l
σ

= =  (5.50) 

 

Fig. 5.7. Load–displacement curve at tip of the cantilever beam, of example 1. 

 
Moreover, in Fig. 5.8, the normal stress distribution contour diagram along the 

beam length is plotted for the stage when the imposed load reaches the theoretically 
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derived collapse load ( 30zP kN= ), as compared with the one obtained from the solid 3-

D FEM model. At this stage, the plastic hinge mechanism predicted by plasticity theory 
is fully formed, as illustrated in this figure.  

From the above, it is evident that the proposed beam formulation predicts 
accurately the nonlinear response of the cantilever in case of a statically imposed load. 
More specifically, the obtained results are almost identical with those of the solid FEM 
solution and demonstrate a very good agreement with the hysteric plane stress 
formulation. It is also worth noting that the implemented finite beam element model 
fails to capture accurately the nonlinear response and underestimates the collapse load. 

 

Fig 5.8. Normal stress distribution along the beam length for the theoretically derived 
collapse load stage, of the cantilever of example 1. 
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In Fig. 5.9 the response of the cantilever is plotted in terms of applied load versus 
tip displacement for load case-a, as compared with the one presented by Triantafyllou 
and Koumousis (2012) illustrating excellent agreement. Finally, in Fig. 5.10 the time 
history of the tip displacement of the cantilever beam is presented for load case-b, 
assuming either elastic or inelastic material behaviour. From the contacted analysis, the 
accuracy of the proposed formulation is verified and the significant influence of the 
material nonlinearity is demonstrated.  

 

 
Fig. 5.9. Imposed load vs. tip displacement for sinusoidal excitation of increasing 

amplitude. 
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hardening material is considered, with 32318.4E MPa= , hardening ratio 0.02α = , 

yielding stress 0 20Y MPaσ =  and mass density 32.5 /tn mρ = . The beam is supported 

on perfectly plastic Winkler foundation with initial stiffness 20zk MPa=  and yielding 

force 60 /zYP kN m= . For the longitudinal discretization 21 integration sections have 

been employed, while the cross-section has been discretized into 15 quadrilateral cells 
with a 2 2×  Gauss integration scheme for each cell. 
 

Fig. 5.10. Time history of the cantilever tip of example 1, for impact load. 

 

Fig. 5.11. Clamped beam on nonlinear foundation, subjected to uniformly distributed 
impact load. 
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Two load cases have been examined. More specifically, the beam is subjected to a 

“quasi-static” uniformly distributed load ( ) ( )0,z z totp x t p t T=  for 0 tott T≤ ≤  (case-a) 

and subsequently to an impact load ( ) 0,z zp x t p=  for tott T≥  with 0.05sectotT =   

(case-b), as depicted in Fig. 5.11. 
In Fig. 5.12 the load–displacement curves for load case-a are presented for different 

types of material properties ignoring the foundation reaction, performing either 
geometric and material nonlinear (GMNL) analysis or material nonlinear (MNL), as 
compared with those obtained by a 3-D FE model (NX Nastran 2007) employing 8640 
solid (brick) elements. From this figure, the accuracy of the proposed formulation is 
confirmed through the excellent agreement between the compared results. Furthermore, 
the predominant character of the material nonlinearity is verified while the geometrical 
nonlinearity is of secondary importance, in this case.  
 

 
Fig. 5.12. Load–displacement curve at the midpoint of the clamped beam of example 2. 
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are presented in conjunction with the corresponding deformed 3-D FEM contour 
configurations, for different load stages (case-a). From these figures a very good 
agreement between the results is observed verifying that the proposed formulation 
accurately captures the spread of plasticity, while any minor divergence is attributed to 
the inherent difference between the models. Finally in Fig. 5.15 the number of Gauss 
points that have excided the yielding limit at the integration sections are presented for 
perfectly plastic or stain hardening material. From these figures, it is easily concluded 
that the spread of plasticity is more intense in the strain hardening case. 
 

 

(a)

 

(b) 

Fig. 5.13. Normal stress distributions along the beam’s length, for perfectly plastic 
material for different load stages compared to the corresponding deformed 
3-D FEM contour representations. 
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Moreover, in Fig. 5.16 the load–displacement curves at the midpoint ( )w l 2  of the 

beam on Winkler foundation are depicted, for different types of beam and soil material 
properties in case of monotonically increasing load (case-a). The significant influence 
of the material nonlinearity to the beam-foundation system response is verified and the 
importance of the subgrade modelling to the overall behaviour is illustrated. Once again, 
it is observed that, in this case the geometrical nonlinearity has minor importance 
compared to the major influence of the material nonlinearity. 
 

 
 

(a) 

 

(b)

Fig. 5.14. Normal stress distributions along the beam’s length, for strain hardening 
material for different load stages compared to the corresponding deformed 
3-D FEM contour representations. 
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Fig. 5.15. Number of plastified Gauss points at integration sections along the beam 

of example 2. 

 

 
Fig. 5.16. Load–displacement curve at the midpoint of the clamped beam of example 

2, resting on nonlinear foundation, for monotonically increasing uniformly 
distributed load. 

 

0 1 2 3 4 5 6
Lenght (m)

0

10

20

30

40

50

60

G
au

ss
 P

oi
nt

s B
ey

on
d 

Y
ie

ld
in

g

GMNL Analysis

Perfectly Plastic Material - pz=250kN/m
Strain Hardening Material - pz=400kN/m

0 0.04 0.08 0.12 0.16 0.2
Displacement wl/2(m)

0

50

100

150

200

250

300

350

400

450

500

550

Lo
ad

 p
z(k

N
/m

) -
 C

as
e-

a

GMNL - Perfectly Plastic / Elastic Winkler
MNL - Perfectly Plastic / Elastic Winkler
GMNL - Perfectly Plastic / Plastic Winkler
MNL - Perfectly Plastic / Plastic Winkler

Geometrically Linear Analysis
Elastic Solution 

Beam-Soil Interaction System



Chapter 5  Geometrically Nonlinear Dynamic Inelastic Analysis of Beam-Soil Interaction Systems 

253 

Thereafter, validity of the proposed model is further assessed in the case of 
dynamic response of the beam-foundation system. In Fig. 5.17 the time history of the 

beam’s midpoint displacement ( )w t ,l 2  free of foundation support performing either 

geometrically linear or nonlinear analysis, is presented for different types of material 
properties. In this figure the corresponding 3-D FEM solutions are also presented, 
highlighting the accuracy of the proposed model as well as the profound influence of 
both material and geometrical nonlinearity in the dynamic response of the system. 
These effects are also illustrated in Table 5.1, where the maximum values of 

displacements and normal stresses are presented for three time instants ( 1t 0.012= , 

2t 0.02= , 3t 0.05 sec= ) in case of either perfectly plastic or stain hardening material. 

The importance of geometrical nonlinearity is also depicted in Fig. 5.18 where the time 

histories of the midpoint ( )w t ,l 2  of the beam are presented performing either 

geometrically linear or nonlinear analysis, assuming elastic-plastic strain hardening 
material behaviour. In Figs. 5.19 the normal stress distributions along the beam’s length 

are presented, for three time instants ( 1 2 3t ,t ,t ) for the same case of analysis, as 

compared with the corresponding deformed 3-D FEM contour configurations. From this 
figure a very good agreement between the results is observed verifying that the 
proposed formulation accurately captures the spread of plasticity, also in the dynamic 
analysis.  
 

Table 5.1. Maximum displacement w and normal stress xxS  of the beam of example 2, 
for different time instants (case-b).  

Analysis Geometrically Linear Geometrically Nonlinear 

 ( )xxMax S kPa  ( )w l 2  (cm) ( )xxMax S kPa  ( )w l 2  (cm) 

 Strain Hardening  

Time 1t  23542.1 1.1062 23546.7 1.08 
Time 2t  15587.5 0.8276 16624.9 0.756 
Time 3t  18487.1 1.0936 21178.5 0.909 

 Perfectly Plastic  

Time 1t  20000 1.0984 20000 1.1596 
Time 2t  16328.2 1.0752 17426.9 1.0601 
Time 3t  17005.9 1.155 19803.6 1.1176 
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Fig. 5.17. Midpoint time history of the beam of example 2, for impact load (case-b). 

 

 
Fig. 5.18. Midpoint time history of the beam of example 2, for impact load (case-b) 

assuming elastic-plastic strain hardening material. 
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(a)

 

(b)

 

(c)

Fig. 5.19. Normal stress distributions along the beam’s length, for strain hardening 
material for different time instants compared to the corresponding 
deformed 3-D FEM contour representations. 

 

0 1 2 3 4 5 6
Length (m)

-0.3
-0.1
0.1
0.3

H
ei

gh
t (

m
)

Deformed 3-D FEM Contour Configuration
                (NX Nastran 2007)

Time – t1=0.012sec
Normal Stress Distribution (MPa)

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

0 1 2 3 4 5 6
Length (m)

-0.3
-0.1
0.1
0.3

H
ei

gh
t (

m
)

Deformed 3-D FEM Contour Configuration
                (NX Nastran 2007)

Time – t2=0.02sec
Normal Stress Distribution (MPa)

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

0 1 2 3 4 5 6
Length (m)

-0.3
-0.1
0.1
0.3

H
ei

gh
t (

m
)

Deformed 3-D FEM Contour Configuration
                (NX Nastran 2007)

Time – t3=0.05sec
Normal Stress Distribution (MPa)



Geometric and Material Nonlinear Analysis of Beam–Soil Interaction Systems 

256 

Finally, in Fig. 5.20 the time history at the midpoint ( )w t ,l 2  of the beam on 

Winkler foundation is presented, for different types of beam and soil material properties 
in case of impact load (case-b). The profound influence of material nonlinearity in the 
geometrically nonlinear dynamic response of the system is once again verified, as well 
as importance of the subgrade modelling to the overall dynamic behaviour of the 
system. 
 

Fig. 5.20. Midpoint time history of the beam example 2, resting on nonlinear 
foundation for impact load (case-b). 
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employing 20 integration sections, 43 quadrilateral cells (15 fibres) and a 3 3×  Gauss 
integration scheme for each cell (cross sectional discretization). The computational 
model implemented in the proposed formulation is presented in Fig. 5.21a. The beam is 

subjected to a uniformly distributed impact load ( )z z0p x,t p=  for tott T≥  with 

totT 0.2 sec=  . 

 

       (a)

        (b)

Fig. 5.21. Fixed pinned beam subjected to a uniformly distributed loading (a) and 
shell model implemented in NX Nastran (2007) (b). 

 
At first, the static response of the beam-foundation system is investigated by 
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displacement curves are presented for different types of beam material properties 
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efficiently of the proposed formulation. More specifically, the initial yielding load and 
the ultimate load are accurately captured, as well as the load path in cases of hardening 
and large displacements analysis. Moreover, in Figs. 5.23 the load-displacement curves 
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figures, the profound influence of both the geometrical and the material nonlinearity to 
the response of the beam-soil interaction systems is illustrated. 
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Fig. 5.22. Load–displacement curve of the beam of example 3, for monotonically 

increasing uniformly distributed load. 

 

 
Fig. 5.23. Load–displacement curve of the beam of example 5 resting on nonlinear 

foundation, for monotonically increasing uniformly distributed load. 
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Thereinafter, the dynamic response of the system is investigated. In Fig. 5.24 the 

time history of the beam’s midpoint displacement ( )w t ,l 2  free of foundation support 

performing either geometrically linear or nonlinear analysis, is presented for different 
types of material properties. In this figure the corresponding shell FEM solutions are 
also presented, highlighting the accuracy of the proposed model as well as the profound 
influence of both material and geometrical nonlinearity in the dynamic response of the 
beam. These effects are also illustrated in Table 5.2, where the maximum values of 

displacements and normal stresses are presented for three time instants ( 1t 0.05= , 

2t 0.1= , 3t 0.2 sec= ) in the cases of elastic, perfectly plastic and stain hardening 

material. Moreover, in Fig. 5.25 the time history at the midpoint ( )w t ,l 2  of the beam 

on Winkler foundation is presented, for different types of beam and soil material 
properties. From this figure it is concluded that the dynamic response of the system is 
mainly affected by the inelasticity of the foundation elements. That implies that the 
subgrade modelling is of great importance to the overall dynamic behaviour of the 
system. 
 

 
Fig. 5.24. Midpoint time history of the beam example 3, for impact load. 
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Table 5.2. Maximum displacement w and normal stress xxS  of the beam of example 3, 
for different time instants (case-b).  

Analysis Geometrically Linear Geometrically Nonlinear 

 ( )xxMax S kPa  ( )w l 2  (cm) ( )xxMax S kPa  ( )w l 2  (cm) 

 Elastic  

Time 1t  – 3.79 – 3.86 
Time 2t  – 8.17 – 7.82 
Time 3t  – 0.11 – 0.18 

 Perfectly Plastic  

Time 1t  285000 22.32 285000 19.75 
Time 2t  284571 23.40 285000 18.61 
Time 3t  281326 22.53 280148 18.77 

 Strain Hardening 

Time 1t  285987 14.24 253276 1242 
Time 2t  258174 13.27 298977 1326 
Time 3t  401548 15.43 255073 12.31 

 

 
Fig. 5.25. Midpoint time history of the beam of example 3 resting on nonlinear 

foundation, for impact load. 
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5.5 Concluding Remarks  

In this chapter, a Boundary Element Method is developed for the geometrically 
nonlinear inelastic analysis of Euler-Bernoulli beams of arbitrary doubly symmetric 
simply or multiply connected constant cross-section, resting on inelastic Winkler 
foundation. A hysteretic Bouc-Wen force-displacement model is employed in order to 
describe the inelastic behaviour of the Winkler springs. A displacement based 
formulation is developed and inelastic redistribution is modelled through a distributed 
plasticity (fibre) approach. A uniaxial hysteretic law is considered for the evolution of 
the plastic part of the normal stress following the Sivaselvan and Reinhorn (2003) 
model. Numerical integration over the cross sections is performed in order to resolve the 
hysteric parts of the stress resultants. Application of the boundary element technique 
yields a system of nonlinear Differential-Algebraic Equations which are written in state-
space form and solved together with the hysteretic evolution equations. The main 
conclusions that can be drawn from this investigation are 

i. The proposed beam formulation is capable of yielding results of high accuracy, as 
verified by comparing with analytical and FEM results, with minimum 
computational cost, providing a simple and efficient computational tool for the 
geometrically nonlinear dynamic inelastic analysis of beam-foundation systems. 

ii. The significant influence of material nonlinearity in the dynamic response of the 
system is demonstrated through the significant discrepancy between the results of 
the elastic and inelastic analyses.  

iii. The proposed model accurately captures both, the initial yielding and the ultimate 
(collapse) load in cases of statically imposed loading.  

iv.  The normal stress distribution and the regions of the developed plastic hinges are 
precisely described throughout the dynamic response.  

v. The influence of geometrical nonlinearity is illustrated through the significant 
discrepancy between the results of the linear and the nonlinear analyses. 

vi. The significant influence of the inelastic character of the foundation is also 
demonstrated. 

vii. A small number of cells (fibres) is required in order to achieve satisfactory 
convergence. 
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viii. The developed procedure retains most of the advantages of a BEM solution while 
requiring a small number of nodal points to achieve high accuracy. 

ix. The use of BEM enables the accurate calculation of the stress resultants which are 
very important during both the analysis and the design of beam-foundation systems. 

 

 

 



 

 

Chapter 6 

Conclusions and Future Research  

 

 

6.1 Concluding Remarks 

In this dissertation, a series of problems concerning the geometric and material 

nonlinear analysis of beam-soil interaction systems have been studied and solved. The 

main issues investigated are the following: 

 The geometrically nonlinear static analysis of shear deformable beams on nonlinear 

foundation 

 The geometrically nonlinear dynamic analysis of shear deformable beams on 

nonlinear foundation 

 The geometrically nonlinear inelastic analysis of shear deformable beams on 

inelastic foundation 

 The geometrically nonlinear dynamic inelastic analysis of beam-soil interaction 

systems 

 For the solution of the examined issues, innovative methods have been formulated 

and novel beam element models have been developed. These models are based on the 

Boundary Element Method (BEM) while the respective boundary-value and the initial-

value problems are solved numerically employing the Analog Equation Method (AEM) 

as well as the Domain Boundary Element Method (D-BEM). The main conclusions that 

can be drawn from this doctoral dissertation are 

i. The proposed beam formulation is verified in terms of accuracy through 

comparison with various analytical, semi-analytical, FEM and experimental 

results. 

ii. The efficiency of the presented computational tool is also assessed via 

comparisons with refined shell and solid models implemented in commercial FE 

codes. The obtained results were in excellent agreement with those from the 
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sophisticate models, indicating the advantageous character of the beam approach 

in terms of computational cost, reliability and modelling.  

iii. The development of plastic deformations reduces the flexural rigidity of the beam 

and eventually leads to plastic collapse in case of geometrically linear analysis. 

iv. The fibre based beam element formulation is proved suitable for the capacity 

assessment of frame members, overcoming the well documented restrictions of 

the concentrated plasticity formulations.  

v. The proposed distributed plasticity model accurately captures both, the initial 

yielding and the ultimate (collapse) load in cases of statically imposed, cycling 

and dynamic loading., while the significant influence of material nonlinearity in 

the response of the beam-soil interaction system is demonstrated through the 

significant discrepancy between the results of the elastic and inelastic analyses.  

vi. The normal stress distribution and the regions of the developed plastic hinges are 

precisely described, while a small number of fibres is required in order to achieve 

satisfactory convergence.  

vii. The influence of geometrical nonlinearity is illustrated through the significant 

discrepancy between the results of small and large displacement assumptions, in 

almost all cases of analysis.  

viii. The kinematical components of an elastic beam under primary resonance are 

bounded due to the developed axial force resulting from the large displacement 

assumption (i.e. retaining the square of the slope in the strain–displacement 

relations). The response of both the kinematical components and the stress 

resultants is characterized by the beating phenomenon. It is worth noting that such 

phenomena cannot be described by the linearized second-order analysis. 

ix. The geometrical nonlinearity increases the flexural rigidity of the beam. 

Especially in case of inelastic analysis the arising axial force, either from the 

imposed axial loading or from the axially restraining boundary conditions, 

prevents the plastic collapse of the beam. 

x. The geometrical nonlinearity influences significantly the natural frequencies of an 

elastic beam, while the coupling effects of bending and shear deformations along 

the member as well as the shear forces along the span induced by the applied axial 

loading influences the response system. 
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xi. The axial-shear-flexure interaction is proved to have paramount importance in the 

inelastic static analysis (J2 three-dimensional plasticity) either under small or 

large displacement assumption.  

xii. The shear deformation effect reduces the flexural stiffness of the beam, while 

results in larger transverse displacements and lower predicted eigen-frequencies 

for a given set of boundary conditions.  

xiii. The superiority of the Timoshenko beam formulation over the Euler-Bernoulli is 

verified, especially for low beam slenderness, by yielding results closer to those of 

refined shell and three-dimensional FE models. 

xiv. Shear-locking has been successfully eliminated, while the added shear mechanism 

alters significantly the dynamic characteristics of the elastic beam-soil interaction 

system. 

xv. The significant influence of the inelastic character of the foundation to the 

response of the beam-soil interaction system is demonstrated. 

xvi. The lift up of the beam caused by the tensionless (unilateral) character of the 

foundation is observed, leading to significantly different response compared to the 

bilateral one. This influence is magnified under dynamical excitations. 

xvii. In the elastic analysis, the response of the beam is strongly influenced by the 

linear and nonlinear parameters of the foundation reaction, while the damping 

coefficient is of paramount importance as it bounds the vibration amplitude. 

xviii. The versatility of the proposed formulation is also verified since several 

phenomena can be easily incorporated into the analysis (i.e. kinematic and inertial 

interaction), while the soil nonlinearity can be taken under consideration by means 

of several hybrid spring configurations (i.e. Winkler, Pasternak, three-Parameter, 

p-y spring in series to Kelvin–Voigt element, phenomenological springs, etc.) 

xix. The developed procedure retains most of the advantages of a BEM solution while 

requiring a small number of nodal points to achieve high accuracy. 

xx. The use of BEM enables the accurate computation of the derivatives of the field 

functions (e.g. stresses, stress resultants) which is very important during the 

analysis and the design of beam-foundation systems. 
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6.2 Future Research  

This doctoral dissertation consist a contribution to the geometric and material nonlinear 

analysis of beam-soil interaction systems. The following are research directions that will 

further improve the presented work and will provide even better understanding of the 

influence of nonlinear phenomena to the beam-soil systems behaviour. 

i. The geometrically nonlinear inelastic analysis of beam-soil interaction systems 

presented in this work can be extended in order to take explicitly into account the 

axial-shear-flexural (J2 plasticity) interaction.  

ii. Incorporation of shear warping functions for the accurate shear stress distribution 

along the cross-section into the proposed computational tool. 

iii. The fibre beam formulation for the inelastic analysis can be further improved by 

incorporating kinematic hardening though the adopted hysteretic model.  

iv. As the fibre beam formulation is suitable for multi-phenomena analysis, the 

developed model can de further improved by embodying torsion and distortional 

warping in the large displacement regime. 

v. The springs’ configuration describing the inelastic behaviour of the soil medium 

can be enriched by utilizing more sophisticated spring-dashpot formulations (i.e. 

BWGG) where the separation of the beam from the soil, the radiation damping and 

the degradation phenomena are taken under consideration.  

vi. The formulation presented in this dissertation can be extended to beams of 

composite cross-section. 

vii. Formulation of a finite beam-element for the study of structures, which will 

incorporate the phenomena, investigated in this dissertation as well as the future 

research directions.  

 



 

 

Appendix A1 

ΑΕΜ for  
Ordinary Differential Equations of the 2nd and 4th Order  

 

 

A1.1 Introduction 

Several boundary value problems, formulated in this doctoral thesis, have been solved 

employing the Analog Equation Method (AEM). This method has been developed by 

Katsikadelis (1994, 2002b) and is based on the well known Boundary Element Method 

(BEM). AEM is capable of dealing with either linear or nonlinear, static or dynamic 

boundary value problems with constant or variable coefficients, subjected to either 

linear or nonlinear boundary conditions, overcoming the drawbacks of BEM.  

Contrary to the numerical methods based on domain discretization like the Finite 

Element Method (FEM) or the Finite Difference Method (FDM), the BEM requires only 

boundary discretization, thereby reducing the dimensionality of the problem by one 

order. Thus, the discretization procedure is simplified while the number of unknowns is 

significantly reduced. Yet another important advantage of this method is its efficiency 

in determining accurately the derivatives of the field functions, which are the unknowns 

of the problem, as it does not require the use of shape functions, while it allows 

evaluation of the solution and its derivatives at any point of the domain of the problem 

and at any time instant (Hartmann 1989, Hartmann & Katz 2007, Katsikadelis 2002b). 

Nevertheless, BEM is not free from drawbacks. At its current stage of development, 

this numerical method requires the determination of the fundamental solution (or 

Green's function), thereby it cannot be used to problems for which Green's functions are 

either unknown or cannot be calculated. Thus, it is not applicable to non-linear static or 

dynamic problems for which the principle of superposition is not valid. A further 

disadvantage is that typically boundary element formulations give rise to fully 

populated and non-symmetric matrices. This means that the storage requirements and 

computational time tend to grow, especially in large scale problems. 

During the last years, intense research has been conducted in an effort to overcome 

these disadvantages (Yu et al. 2010). Most of the new developments in BEM aim at 

http://en.wikipedia.org/wiki/Green%27s_function
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dealing with complicated nonlinear time-dependent problems or linear problems for 

which the fundamental solution is not known; thereby the resulting integral solution 

involves domain integrals (Brebbia 2010). The most efficient techniques that 

successfully overcome most of the difficulties and at the same time preserve the pure 

boundary character of BEM are the Dual Reciprocity Method (DRM) (Kontoni et al 

1991, Partridge et al 1992), which is a general technique for converting domain 

integrals to the boundary, and the Analog Equation Method (Katsikadelis 1994, 

Katsikadelis 2002b). The latter is a generally applicable boundary method for solving 

nonlinear static and dynamic problems in continuum mechanics; alleviated from the 

restrictions characterizing the DRM.  

AEM (Katsikadelis 1994) is based on a simple concept, according to which the 

linear or nonlinear problem is replaced by an equivalent simple linear one under a 

fictitious source with the same boundary and initial conditions. The substitute problem 

is chosen so that the integral representation of the solution is known and it is solved 

using BEM. The numerical implementation of AEM involves domain discretization, 

altering the pure boundary character of the method. However, it is noted that domain 

discretization is employed only for the calculation of the domain integrals rather than 

the discretization of the continuum, as in the Finite Element Method. Thus, contrary to 

other domain methods, neither the concurrence of the internal nodes nor the continuity 

conditions between the elements are required. Lately, important developments have 

been achieved regarding AEM. Katsikadelis and Tsiatas (2003) presented a boundary-

only method, in the sense that the discretization and integration are limited only to the 

boundary, in which the fictitious loads are represented by Radial Basis Function (RBF) 

series. Even though the method maintains all the advantages of the pure BEM, 

additional parameters are imposed due to the RBFs, which are not easily evaluated 

(Katsikadelis 2008, Babouskos 2011). Finally, a new purely meshless method for 

solving elliptic partial differential equations based on the analog equation principle 

(MAEM) is presented by Katsikadelis (2009).  

In this appendix, the main principles of AEM in its general form are presented, in 

case of one-dimensional boundary value problems described by ordinary differentia 

equations of the 2nd and 4th order, under the most general boundary conditions. It is 

noted that the governing equations as well as the boundary conditions of the problem 

can be either linear or nonlinear.  
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A1.2 Main Concepts of the Analog Equation Method 

The main concept of the Analog Equation Method can be mathematically represented as 

follows: Consider the boundary value problem  

 

    N u g ,   x x   (A1.1a) 

    u g ,   x x   (A1.1b) 

 

where    ,     are in general nonlinear differential operators with constant or 

variable coefficients,  g x  is a source or an external loading function of known 

distribution and  u u x  is the sought solution of the problem. Consider  N    being 

a linear or nonlinear differential operator of the same order with  . By applying this 

operator to the solution of the problem  u x , yields 

 

    N u q ,    x x   (A1.2) 

 

where  q x  is an unknown source density function. Eqn. (A1.2) is called analog 

equation of the initial problem and in combination with the boundary conditions 

(A1.1b) indicates that the solution of the original problem could be obtained, provided 

that the source density function  q x  will be first determined. The establishment of this 

function, which hereinafter will be called fictitious source density function or fictitious 

load, is one of the essential ingredients of AEM. Implementation of the method leads to 

the numerical establishment of the fictitious load  q x in the domain  , through the 

solution of a system of linear or nonlinear algebraic equations. The boundary value 

problem defined in eqns. (A1.2) and (A1.1b) is called equivalent or substitute problem. 

It is noted that the analog equation is defined by a differential operator of the same order 

with that of the initial problem, while the same number of boundary conditions are 

obtained and continuity of the solution and its derivatives up to the order of the initial 

operator   is ensured.  

 Moreover, eqn. (A1.2) can be also employed for the solution of the boundary value 

problem defined in eqns. (A1.1), in case where  u u , x y  and  g g , x y  (where 

y ),  g g , x y  (with y ). Subsequently, the numerical implementation of 
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AEM leads to a system of differential equations the differential operator and boundary 

conditions of which depend only on y . Finally, it is noted that the AEM can be easily 

employed for the solution of boundary value problems with more than one unknown 

functions u  by implementing eqn. (A1.2) for each one of the unknowns. 

 

 

A1.3 ΑΕΜ for Ordinary Differential Equations of the 2nd Order 

A1.3.1 Integral Representation – Numerical Solution  

Consider the one-dimensional boundary value problem  

 

    
2

2

du d u
N u, , g x , x 0,l

dx dx

 
    

 
  (A1.3a) 

 1 2 3
du

a B u, a u a , x 0,l
dx

 
    

 
  (A1.3b) 

 

where    ,     are linear or nonlinear one-dimensional operators of the second and 

fist order, respectively, ia  ( i 1,2,3 ) are functions specified at x 0,l ,  g x  is the 

known source function defined at  0,l  and  u u x  is the sought solution of the 

problem, having continuous derivatives up to the second order in  0,l . According to 

the concept of AEM, the substitute problem is also of the second order, thus the 

following equation can be applied 

 

  
2

u
2

d u
q x

dx
  (A1.4) 

 

In terms of mechanics of materials, eqn. (A1.4) describes the axial response of a beam 

with axial stiffness EA 1 , under the action of a fictitious loading  uq x . According to 

section A1.2, eqn. (A1.4) indicates that the solution of the original problem (A1.3a,b) 

could be obtained as the solution of this equation subjected to the same boundary 

condition (A1.3b), provided that the fictitious loading  uq x will be first determined. 
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This can be accomplished as follows: The weak form of the analog equation is written 

as 

 

 
     

       

l u *
0

l l* u *
0 0

u x q x u x, dx 0

u x u x, dx q x u x, dx 0



 

     
 

  



 
 (A1.5) 

 

where    denotes differentiation with respect to x . The fundamental solution of the 

one-dimensional Laplace operator is adopted as the u  function, which is a particular 

solution of the differential equation  

 

 
 

 
2 *

2

d u x,
x

dx


    (A1.6) 

 

where  x   is the one-dimensional Dirac (δ) function. The fundamental solution *u  

is obtained as 

 

  * 1
u x, r

2
   (A1.7) 

 

with r x    being the distance between any two points x  and  , where   is a 

constant collocation point while x  runs through the interval  0,l . By applying 

sequential integrations by parts in the first integral equation (A1.5), substituting eqns. 

(A1.4) and (A1.7) and exploiting the property of the Dirac function, yields  

 

              
x ll u u u u

2 1 20 x 0
u x, q x dx x, u x x, u x      




    
   (A1.8) 

 

where  u
i r  ( i 1,2 )  are the kernels, defined as 

 

  u
1

1
r sgnr

2
        u

2
1

r r
2

   (A1.9a,b) 
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with sgn  being the signum function, defined as 

 

 
1, r 0

sgn r
1, r 0

  
 

  
     (A1.10) 

 

for r 0  the signum function is not defined. The relation (A1.8) constitutes the integral 

representation of the solution as a function of the fictitious load and the boundary 

quantities. In order to relate the boundary quantities with the fictitious load, the integral 

representation (A1.8) is applied to the interval edges 0,l . In that case,  

 

 0 0         (A1.11a) 

 l l         (A1.11b) 

 

Consequently, two boundary integral equations are obtained as 

 

              
x ll u u u u

2 0 1 0 2 00 x 0
u 0 x, q x dx x, u x x, u x     




    
   (A1.12a) 

              
x ll u u u u

2 l 1 l 2 l0 x 0
u l x, q x dx x, u x x, u x     




    
   (A1.12b) 

 

These integral equations can be written in a matrix form as 

 

 u u u
1 2

,x

ˆ

ˆ

 
    

 

u
E E T

u
 (A1.13) 

 
where 
 

    Tˆ u 0 u l   u                               T
,xˆ u 0 u l    u  (A1.14a,b) 

 

 
   

   

u u
1 0 1 0u

1 u u
1 l 1 l

0, 1 l,

0, l , 1

   

   

  
 
   

E      
   

   

u u
2 0 2 0u

2 u u
2 l 2 l

0, l ,

0, l ,

   

   

 
 
  

E  (A1.14c,d) 
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   

   

l u u
2 00u

l u u
2 l0

x, q x dx

x, q x dx

 

 

 
 

  
 
 




T  (A1.14e) 

 

Substituting eqns. (A1.9) into the expressions of arrays (A1.14c,d), yields  

 

 u
1

1 2 1 2

1 2 1 2

 
   

E      u
2

0 l 2

l 2 0

 
   

E  (A1.15a,b) 

 

The boundary integral equations (A1.13) together with the boundary conditions (A1.3b) 

permit the establishment of the boundary quantities û , ,xû  in terms of the fictitious 

load.  

 Thereafter, the discretization of the interval  0,l  is performed and the 

approximation of the fictitious load is established. For this purpose, the interval is 

discretized into L  elements employing the constant element assumption for the 

fictitious load distribution. More specifically, it is assumed that the fictitious function 

 uq x  maintains constant in each element, equal to its mid-point value (Fig. A1.1). 

According to the above assumption, the column matrix uT  is approximated as  

 

 

Fig. A1.1. Discretization of the interval  0,l with constant elements. 
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 

 

j

j

uL
u u 1
j 2 0 u u u u

j 1 11 12 1Lu u u u2
u u uL

u u 21 22 2L
j 2 l

uj 1 L

q
q x, dx

ˆ ˆ ˆF F F q ˆ
ˆ ˆ ˆF F F

q x, dx
q





 

 





  
       

       
     

   
   

 

 

T T F q



 (A1.16) 

 

where the coefficients u
ijF̂  ( i 1,2 , j 1,2, L  ) are defined as  

 

  
j

u u
1 j 2 0F̂ x, dx


         

j

u u
2 j 2 lF̂ x, dx


    (A1.17a,b) 

 

Subsequently, the boundary conditions (A1.3b) can be written in a matrix form as  

 

  u u u u
1 2 1,nl ,x 3

,x

ˆ
ˆ ˆ ˆ,

ˆ

 
     

 

u
D D D u u α

u
 (A1.18) 

 

where u
1D , u

2D  are 2 2 known square matrices including the values of the functions ia  

( i 1,2 ) of eqn. (A1.3b),  u u
1,nl 1,nl ,x

ˆ ˆ ˆ ˆ,D D u u  are 2 1  column matrices including the 

nonlinear terms of the same functions and u
3α  are 2 1  known column matrix including 

the boundary values 3a  of eqn. (A1.3b). Relations (A1.13) and (A1.18) can be written 

in a more convenient form as  

 

 
u uu u

1 2
u uu u

,x 1,nl 31 2

ˆˆ

ˆˆ

         
        

          

0u F qE E

u D αD D
 (A1.19) 

 
Alternatively, 
 

 

u
u u u

1 1 u u u u
nl nlu uu u

3 31 2
,x

ˆ ˆˆ

ˆ

 
          

          
           

 

q
0 0F E E

u D E d D
α α0 D D u

 (A1.20) 
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where u uˆ F F ,  
T

u u
nl 1,nl

ˆ ˆ 
 

D 0 D , while  
T

u u
,xˆ ˆ 

 
d q u u  is a  L 4 1   

generalized unknown vector including the values of the fictitious load and the boundary 

values of the respective boundary quantities. Eqns. (A1.20) constitute a nonlinear 

system of 4 algebraic equations with L 4  unknowns. In order to solve this system, L

additional equations are required.  

 Exploiting the aforementioned discretization of the interval  0,l  and the 

approximation of the fictitious load with constant elements (Fig A1.1), the integral 

representation of the solution (A1.8) for the i  position of the i  element ( i 0,l  ) can 

be written as  

 

            
j

L x lu u u u
i j 2 i 1 i 2 i

x 0j 1

u q x, dx x, u x x, u x


      




    
    (A1.21) 

 

In order to solve the problem, the derivative of the solution is required. Thus, 

differentiating the above equation with respect to  , the discretized form of the 

derivative of the solution is obtained as 

 

 
     

 
 

 
j

x lu u uL
i 2 i 1 i 2 iu

j
j 1

x 0

du x, x, x,
q dx u x u x

d 

      

   






   
    

    
   (A1.22) 

 
where  
 

 
 u

1 x,
0

 







                  for         x 0,l  (A1.23a) 

 
 

 
u
2 u

1

x,
x,

 
 




 


   for     x 0,l   (A1.23b) 

 

Finally, applying eqns. (A1.21) and (A1.22) to the L  collocation points yield  

 

 u u u u u

,x

ˆ

ˆ

 
   

 

u
u A q C B d

u
 (A1.24a) 
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 u u u u u
,x ,x ,x ,x

,x

ˆ

ˆ

 
   

 

u
u A q C B d

u
 (A1.24b) 

 

where  
 

      T
1 2 L

u u u   u            T
,x 1 2 L

u u u     u   (A1.25a,b) 

 

are L 1  vectors including the unknown values of u  and its derivative with respect to 

x , at the L  nodal points of the interval, while uA , u
,xA  are L L  square matrices with 

coefficients defined as  

 

  
j

u u
ij 2 iA x, dx


         

j

u u
ij ,x 1 iA x, dx


    (A1.26a,b) 

 

where i 1,2, L  , j 1,2, L  . Moreover, uC , u
,xC  are L 4  matrices defined as 

(Mokos 2007) 

 

 

       

       

       

u u u u
2 1 1 1 2 1 1 1

u u u u
u 2 2 1 2 2 2 1 2

u u u u
2 L 1 L 2 L 1 L

0, 0, l , l ,

0, 0, l , l ,

0, 0, l , l ,

       

       

       

  
 
  

  
 
   

C
   

 (A1.27a) 

 

   

   

   

u u
1 1 1 1

u u
u 1 2 1 2
,x

u u
1 L 1 L

0, 0 l, 0

0, 0 l, 0

0, 0 l, 0

   

   

   

 
 
 

  
 
  

C
   

 (A1.27b) 

 

while exploiting eqns. (A1.9) result in  

 

  u
1 i

1
0,

2
                 u

2 i i
1

0,
2

    (A1.28a,b) 

  u
1 i

1
l ,

2
               u

2 i i
1

l , l
2

     (A1.28c,d) 
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where i i0x   is the coordinate of the mid-point of the element i  (Fig.A1.1) and uB , 

u
,xB  are  L L 4   matrices defined as 

u u u 
 

B A C , 
u u u
,x ,x ,x

 
 

B A C . 

The final step of AEM is the application of the governing equation of the initial 

problem (A1.3) at the L  internal nodal points and subsequently the substitution of the 

values of the field function u  and its derivative u  at the L  internal nodal points 

according to eqns. (A1.24). From the definition of the analog equation (A1.4) it is 

apparent that the values of the second derivative u  at the nodal points are equal to the 

corresponding values of the fictitious load vector uq . Thus, L  additional algebraic 

equations are derived with respect to the generalized unknown vector ud . These 

equations in combination with eqns. (A1.20) constitute a system of L 4  algebraic 

equations with L 4  unknowns. The solution of this system provides the values of the 

fictitious load at the L  internal nodal points as well as the values of the field function u  

and its derivative u  at the edges of the examined interval. Thereafter, exploiting eqn. 

(A1.24) the vectors including the values of the solution and its derivative at the L  

internal nodal points are obtained. Finally, it is noted that the values of u  and u  at any 

point of the interval  0,l   can be easily calculated by applying the integral 

representations (A1.21-22) substituting the value i  with  . 

 

A1.3.2 Evaluation of Integrals 

In order to determine the coefficients of the matrices uF , uA  and u
,xA  (relations 

(A1.20), (A1.24)) the integrals defined in eqns. (A1.17) and (A1.26) have first to be 

evaluated. This calculation can be easily performed employing any numerical 

integration scheme (e.g. Gauss, Gauss-Lobatto). Nevertheless, due to the closed form of 

the kernels, the analytic integration along the element’s j  length is indicated, thus 

avoiding any computational error and the increase of the computational time. Exploiting 

eqns. (A1.9), the analytic expressions of the integrals of the coefficients  u
ijF̂  ( i 1,2 , 

j 1,2, L  ) defined in eqns. (A1.17) are obtained as 

 

 
j 2

j1

x xu 2
1 j

x x

1
F̂ x

4




 
 

        
j 2

j1

x x2u
2 j

x x

1
F̂ l x

4





     
 (A1.29a,b) 
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where j1x , j2x  are the coordinates of the element’s j  edges (Fig.A1.1). Moreover, 

from eqn. (A1.9), the analytic expressions of the coefficients u
ijA  ( i 1,2, L  , 

j 1,2, L  ) defined in eqn. (A1.26) are obtained as 

 

  
j 2

j1

x x2u
ij i0

x x

1
A x x , i j

4





       
 (A1.30a) 

  
j 2

j1

x x2u
ij i0

x x

1
A x x , i j

4





      
 (A1.30b) 

    
j0 j 2

j1 j0

x x x x2 2u
ij i0 i0

x x x x

1 1
A x x x x , i j

4 4

 

 

               
 (A1.30c) 

  j 2

j1

x xu
ij ,x x x

1
A x , i j

2




          j 2

j1

x xu
ij ,x x x

1
A x , i j

2




           u

ij ,xA 0  (A1.30d,e,f) 

 

where j1 j2x , x  and j0x  are the coordinates of the element’s j  edges and mid-point, 

respectively, while i0x  are the coordinates of mid-point of the element i  (Fig.A1.1) 

 

 

A1.4 ΑΕΜ for Ordinary Differential Equations of the 4th Order 

A1.4.1 Integral Representation – Numerical Solution  

Consider the one-dimensional boundary value problem  

 

    
2 3 4

2 3 4

d d d d
N , , , , g x , x 0,l

dx dx dx dx

   

 

    
 

 (A1.31a) 

 
2 3

1 1 2 32 3

d d d
a B , , , a a , x 0,l

dx dx dx

  
 
 

     
 

 (A1.31b) 

 
2

1 2 2 32

d d d
B , , , x 0,l

dx dxdx

  
   

 
     

 
 (A1.31c) 

 

where     is a linear or nonlinear one-dimensional differential operator of the fourth 

order,  1  ,  2   are linear or nonlinear one-dimensional operators of third and 
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second order, respectively, ia , i  ( i 1,2,3 ) are functions specified at x 0,l ,  g x  

is the known source function defined at  0,l  and  x   is the sought solution of the 

problem, having continuous derivatives up to the forth order in  0,l . According to the 

concept of AEM, the substitute problem is also of the fourth order, thus the following 

equation can be applied  

 

  
4

4

d
q x

dx


  (A1.32) 

 

In terms of mechanics of materials, eqn. (Π2.4.2) describes the flexural response of a 

beam with flexural stiffness EI 1 , under the action of a fictitious loading  q x . 

According to section A1.2, eqn. (A1.32) indicates that the solution of the original 

problem (A1.31a,b) could be obtained as the solution of this equation subjected to the 

same boundary condition (A1.31b,c), provided that the fictitious loading  q x will be 

first determined. This can be accomplished as follows: The weak form of the analog 

equation is written as 

 

 
     

       

l *
0

l l* *
0 0

x q x x, dx 0

x x, dx q x x, dx 0

  

    

     

  



 
 (A1.33) 

 

where    denotes differentiation with respect to x . The fundamental solution of the 

one-dimensional Laplace operator is adopted as the   function, which is a particular 

solution of the differential equation  

 

 
 

 
4 *

4

d x,
x

dx

 
    (A1.34) 

 

where  x   is the one-dimensional Dirac (δ) function. The fundamental solution *  

is obtained as 
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    3 2* 31
x, r 3l r 2l

12
      (A1.35) 

 

with r x    being the distance between any two points x  and  , where   is a 

constant collocation point while x  runs through the interval  0,l . By applying 

sequential integrations by parts in the first integral equation (A1.33), substituting eqns. 

(A1.32) and (A1.35) and exploiting the property of the Dirac function, yields  

 

     

                      

l
40

x l
1 2 3 4 x 0

x, q x dx

x, x x, x x, x x, x

   

           




 

        


 (A1.36) 

 

where  i r  ( i 1,2,3,4 ) are the kernels, defined as 

 

  1
1

x, sgn r
2

           2
1

x, r l
2

     (A1.37a,b) 

    3
1

x, r r 2l sgn r
4

            3 2 3
4

1
x, r 3l r 2l

12
      (A1.37c,d) 

 

with sgn  being the signum function, defined in relation (A1.10). The relation (A1.36) 

constitutes the integral representation of the solution as a function of the fictitious load 

and the boundary quantities. In order to relate the boundary quantities with the fictitious 

load, the integral representation (A1.36) is applied to the interval edges 0,l . In that case,  

 

 0 0     (A1.38a) 

 l l     (A1.38b) 

 

Consequently, two boundary integral equations are obtained as 

 

     

                 

l
4 00

x l
1 0 2 0 3 0 4 0 x 0

0 x, q x dx

x, x x, x x, x x, x

  

           




 

        


 (A1.39a) 
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     

                  

l
4 l0

x l
1 l 2 l 3 l 4 l x 0

l x, q x dx

x, x x, x x, x x, x

  

           




 

        


 (A1.39b) 

 

These integral equations can be written in a matrix form as 

 

   ,x
11 12 13 14 1

,xx

,xxx

ˆ

ˆ

ˆ

ˆ

 
 
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 
 
 
 

θ

θ
E E E E T

θ

θ

 (A1.40) 

 
where  
 

                             Tˆ 0 l    θ              T
,x

ˆ 0 l     θ  (A1.41a,b) 

    T
,xx

ˆ 0 l     θ         T
,xxx

ˆ 0 l     θ  (A1.41c,d) 
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   
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 
  

 
E  (A1.41e,f) 
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3 0 3 0
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   

   

 
  

 
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   
   

4 0 4 0
14
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   
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 
  

 
E  (A1.41g,h) 

 

 
   

   

l
4 00

1 l
4 l0

x, q x dx

x, q x dx

 

 

 
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  
 
 




T  (A1.41i) 

 

Substituting eqns. (A1.37) into the expressions of arrays (A1.41e-h), yields  

 

 11

1 2 1 2

1 2 1 2

 
   

E         12

l 2 0

0 l 2

 
   

E  (A1.42a,b) 
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Differentiating integral representation of the solution eqn. (A1.36) with respect to  , 

the integral representation of its derivative is obtained  

 

 

   
 

 
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 
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3 4
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 
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 


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  
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   

  
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 (A1.43) 

 
where 
 

 1 x,
0

 







                   for     x 0,l  (A1.44a) 

 
 2

1

x,
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 
 




 


      for    x 0,l  (A1.44b) 

 
 3

2

x,
x,

 
 




 


      for    x 0,l  (A1.44c) 

 
 4

3

x,
x,

 
 




 


      for     x 0,l   (A1.44d) 

 

Exploiting eqns. (A1.44) and applying the integral representation at the intervals edges 

0 , l  ( 0 0    , l l    ) the following boundary conditions are obtained  
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d l
x, q x dx

d

x, x x, x x, x


 



        




  

       


 (A1.45b) 

 
These integral equations (A1.45) can be written in a matrix form as 
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   ,x
21 22 23 2

,xx

,xxx

ˆ

ˆ

ˆ

ˆ

 
 
 

 
 
 
 

θ

θ
0 E E E T

θ

θ

 (A1.46) 

 
where 
 

     
   
   

1 0 1 0
21

1 l 1 l

0, 1 l ,

0, l , 1

   

   

  
  

  
E     

   
   

2 0 2 0
22

2 l 2 l

0, l ,

0, l ,

   

   

 
  

 
E  (A1.47a,b) 

     
   
   

3 0 3 0
23

3 l 3 l

0, l ,

0, l ,

   

   

 
  

 
E               

   

   

l
3 00

2 l
3 l0

x, q x dx

x, q x dx

 

 

  
  
  




T  (A1.47c,d) 

 

Substituting eqns. (A1.37) into eqns. (A1.47a-c), yield  

 

 21

1 2 1 2

1 2 1 2

 
   

E     22

l 2 0

0 l 2

 
   

E     
2

23 2

0 l 4

l 4 0

 
  
  

E  (A1.48a,b,c) 

 

Eqns. (A1.40) and (A1.46) can be written in a more compact form as  

 

 
,x11 12 13 14 1

21 22 23 2,xx

,xxx

ˆ

ˆ

ˆ

ˆ

 
 

     
    
    

 
 

θ

θΕ Ε Ε Ε T

0 E E E Tθ

θ

 (A1.49) 

 

The boundary integral equations (A1.49) together with the boundary conditions 

(A1.31b) permit the establishment of the boundary quantities θ̂ , ,xθ̂ , ,xxθ̂ , ,xxxθ̂  in 

terms of the fictitious load. 

 Thereafter, the discretization of the interval  0,l  is performed and the 

approximation of the fictitious load is established. For this purpose, the interval is 

discretized into L  elements employing the constant element assumption for the 

fictitious load  q x . More specifically, it is assumed that the fictitious function  q x  
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maintains constant in each element, equal to its mid-point value (Fig. A1.1). According 

to the above assumption, the column matrix  T
1 2T T T  is approximated as 

 

1

2

 
  
 

T
T

T

 

 

 

 

4 0
1

4
1

3 0
1

3
1

,

,

,

,

j

j

j

j

L

j
j

L

j l
j

L

j
j

L

j l
j

q x dx

q x dx

q x dx

q x dx





















 
 

 
 

 
 

 
  
 
 
 
  

 

 

 

 

 

11 12 1 1

21 22 2 2 1

31 32 3 2

41 42 4

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

L

L

L

L
L

F F F q

F F F q

F F F

qF F F

   
        

      
     

     









F
T q

F
 (A1.50) 

 

where the coefficients ijF̂  ( i 1,2,3,4 , j 1,2, L  ) are defined as 

 

  
j

1 j 4 0F̂ x, dx


        
j

2 j 4 lF̂ x, dx

    (A1.51a,b) 

  
j

3 j 3 0F̂ x, dx


        
j

4 j 3 lF̂ x, dx


    (A1.51c,d) 

 

Subsequently, the boundary conditions (A1.31b) can be written in a matrix form as 

 

 
 

 
1,nl ,x ,xx ,xxx,x11 12 13 14 3

21 22 23 24 3,xx 2,nl ,x ,xx

,xxx

ˆ

ˆ ˆ ˆ ˆˆˆ , , ,

ˆ ˆ ˆ ˆˆ , ,
ˆ

 
   

      
       

        
 

θ

D θ θ θ θθD D D D α

D D D D βθ D θ θ θ

θ

 (A1.52) 

 

where 11D , 12D , 13D , 14D , 21D , 22D , 23D  and 24D  are 2 2 known square matrices 

including the values of the functions ia , i  ( i 1,2 ), as presented in eqns. (A1.31b,c), 

 1,nl 1,nl ,x ,xx ,xxx
ˆ ˆ ˆ ˆˆ ˆ , , ,D D θ θ θ θ ,  2,nl 2,nl ,x ,xx

ˆ ˆ ˆˆ ˆ , ,D D θ θ θ  are 2 1  column matrices 

including the nonlinear terms of the same functions and 3α , 3β  are 2 1  known 

column matrix including the boundary values 3a , 3  of eqn. (A1.31b,c). Relations 

(A1.49) and (A1.52) can be written in a more convenient form as 
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11 12 13 14 1

,x21 22 23 2

1,nl11 12 13 14 ,xx 3

21 22 23 24 2,nl 3,xxx

ˆ ˆ

ˆ ˆ

ˆˆ

ˆˆ

      
      
             

       
            

θ 0E E E E F q

0θ0 E E E F q

DD D D D θ α

D D D D D βθ

 (A1.53) 

 
Alternatively,  
 

 

1 11 12 13 14

2 21 22 23
,x nl nl

11 12 13 14 3 3
,xx

21 22 23 24 3 3

,xxx

ˆ

ˆ ˆ ˆ

ˆ

ˆ

 
      
      
                 

       
            

 
 

q
F E E E E 0 0

θ
F 0 E E E 0 0

θ D Ed D
0 D D D D α α

θ
0 D D D D β β

θ

 (A1.54) 

 

where 1 1
ˆ F F , 2 2

ˆ F F ,  
T

nl 1,nl 2,nl
ˆ ˆ ˆ   D 0 0 D D , while 

T
,x ,xx ,xxx

ˆ ˆ ˆ ˆ   d q θ θ θ θ  is a  L 8 1   generalized unknown vector including 

the values of the fictitious load and the boundary values of the respective boundary 

quantities. Eqns. (A1.54) constitute a nonlinear system of 8  algebraic equations with 

L 8  unknowns. In order to solve this system, L additional equations are required.  

Exploiting the aforementioned discretization of the interval  0,l  and the 

approximation of the fictitious load with constant elements (Fig.A1.1), the integral 

representation of the solution (A1.36) for the i  position of the i  element ( i 0,l  ) can 

be written as  

 

   

                   

j

L

i j 4 i
j 1

x l
1 i 2 i 3 i 4 i x 0

q x, dx

x, x x, x x, x x, x


   

           









        

 
 (A1.55) 

 

In order to solve the problem, the derivatives of the solution are required. The integral 

representation of the first derivative has already been presented in eqn. (A1.43). Thus, 

differentiating this equation with respect to  , the discretized forms of the derivatives 

of the solution are obtained as 
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 
 

                          

j

L
i

j 3 i
j 1

x l
1 i 2 i 3 i x 0

d
q x, dx

d

x, x x, x x, x



 
 



        







  

       

 
 (A1.56a) 

 
 

         
j

2 L x li
j 2 i 1 i 2 i2 x 0

j 1

d
q x, dx x, x x, x

d 

 
       








         (A1.56b) 

 
 

     
j

3 L x li
j 1 i 1 i3 x 0

j 1

d
q x, dx x, x

d 

 
    








        (A1.56c) 

 

Finally, applying eqns. (A1.55) and (A1.56) to the L  collocation points yield  

 

              
,x

,xx

,xxx

ˆ

ˆ

ˆ

ˆ

 
 
 

   
 
 
 

θ

θ
θ Aq C Bd

θ

θ

               
,x

,x ,x ,x ,x
,xx

,xxx

ˆ

ˆ

ˆ

ˆ

 
 
 

   
 
 
 

θ

θ
θ A q C B d

θ

θ

 (A1.57a,b) 

 
,x

,xx ,xx ,xx ,xx
,xx

,xxx

ˆ

ˆ

ˆ

ˆ

 
 
 

   
 
 
 

θ

θ
θ A q C B d

θ

θ

    
,x

,xxx ,xxx ,xxx ,xxx
,xx

,xxx

ˆ

ˆ

ˆ

ˆ

 
 
 

   
 
 
 

θ

θ
θ A q C B d

θ

θ

 (A1.57c,d) 

 
where  
 

     T
1 2 L

     θ                   T
,x 1 2 L

       θ   (A1.58a,b) 

     T
,xx 1 2 L

       θ          T
,xxx 1 2 L

       θ   (A1.58c,d) 

 

are L 1  vector including the unknown values of u  and its derivative with respect to x, 

at the L  nodal points of the interval, while A , ,xA , ,xxA , ,xxxA  are L L  square 

matrices with coefficients defined as  

 

  
j

ij 4 iA x, dx


         
j

ij ,x 3 iA x, dx


    (A1.59a,b) 

  
j

ij ,xx 2 iA x, dx


         
j

ij ,xxx 1 iA x, dx


    (A1.59c,d) 
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where i 1,2, L  , j 1,2, L  . Moreover, C , ,xC , ,xxC , ,xxxC  are L 8  matrices 

defined as (Mokos 2007) 

 

 

       
       

       

       
       

       

4 1 3 1 2 1 1 1 4 1 3 1 2 1 1 1

4 2 3 2 2 2 1 2 4 2 3 2 2 2 1 2

4 3 2 1 4 3 2 1

0, 0, 0, 0, , , , ,|

0, 0, 0, 0, , , , ,|

|

0, 0, 0, 0, , , , ,|L L L L L L L L

l l l l

l l l l

l l l l

       

       

       

        
 
        
 
 
         

       
C (A1.60a) 

 

 

     
     

     

     
     

     

3 1 2 1 1 1 3 1 2 1 1 1

3 2 2 2 1 2 3 2 2 2 1 2

,

3 2 1 3 2 1

0, 0, 0, 0 , , , 0|

0, 0, 0, 0 , , , 0|

|

0, 0, 0, 0 , , , 0|

x

L L L L L L

l l l

l l l

l l l

     

     

     

      
 
      
 
 
       

       
C  (A1.60b) 

 

 

   
   

   

   
   

   

2 1 1 1 2 1 1 1

2 2 1 2 2 2 1 2
,xx

2 L 1 L 2 L 1 L

0, 0, 0 0 l , l , 0 0

0, 0, 0 0 l , l , 0 0

0, 0, 0 0 l , l , 0 0

       

       

       

  
 

  
 
 

   

C
       

 (A1.60c) 

 

 

 
 

 

 
 

 

1 1 1 1

1 2 1 2
,xxx

1 L 1 L

0, 0 0 0 l , 0 0 0

0, 0 0 0 l , 0 0 0

0, 0 0 0 l , 0 0 0

   

   

   

 
 
 
 
 
  

C
       

 (A1.60d) 

 

while exploiting eqns. (A1.37) result in  

 

 1 i
1

0,
2

        2 i i
1

0, l
2

     (A1.61a,b) 

   3 i i i
1

0, 2l
4

          3 2 3
4 i i i

1
0, 3l 2l

12
       (A1.61c,d) 

 1 i
1

l ,
2

     2 i i
1

l ,
2

     (A1.61e,f) 

   2 2
3 i i

1
l , l

4
             3 2 3

4 i i i
1

l , l 3l l 2l
12

         (A1.61g,h) 
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where i i0x   is the coordinate of the mid-point of the element i  (Fig.A1.1) and B , 

,xB , ,xxB , ,xxxB  are  L L 8   matrices defined as  B A C , ,x ,x ,x   B A C , 

,xx ,xx ,xx   B A C , ,xxx ,xxx ,xxx   B A C . 

 The final step of the AEM is the application of the governing equation of the 

initial problem (A1.31) at the L  internal nodal points and subsequently the substitution 

of the values of the field function   and its derivative at the L  internal nodal points 

according to eqns. (A1.57). From the definition of the analog equation (A1.32) it is 

apparent that the values of forth derivative   at the nodal points are equal to the 

corresponding values of the fictitious load vector q . Thus, L  additional algebraic 

equations are derived with respect to the generalized unknown vector d . These 

equations in combination with eqns. (A1.54) constitute a system of L 8  algebraic 

equations with L 8  unknowns. The solution of this system provides the values of the 

fictitious load at the L  internal nodal points as well as the values of the field function   

and its derivatives  ,  ,    at the edges of the examined interval. Thereafter, 

exploiting eqn. (A1.57) the vectors including the values of the solution and its 

derivative at the L  internal nodal points are obtained. Finally, it is noted that the values 

of  ,  ,  ,   at any point of the interval  0,l   can be easily calculated, by 

applying the integral representations (A1.55-56) substituting the value i  with  . 

 

A1.4.2 Evaluation of Integrals 

In order to determine the coefficients of the matrices 1F , 2F , A , ,xA , ,xxA  and ,xxxA

(relations (A1.54), (A1.57)) the integrals defined in eqns. (A1.51) and (A1.59) have first 

to be evaluated. This calculation can be easily performed employing any numerical 

integration scheme (e.g. Gauss, Gauss-Lobatto). Nevertheless, due to the closed form of 

the kernels, the analytic integration along the element’s j  length is indicated, thus 

avoiding any computational error and the increase of the computational time. Exploiting 

eqns. (A1.37), the analytic expressions of the integrals of the coefficients  ijF̂                  

( i 1,2,3,4 , j 1,2, L  ) defined in eqns. (A1.4.21) are obtained as 

 

 
j 2

j1

x x
3 4 3

1 j
x x

1 1
F̂ 2l x x lx

12 4





 
    

 (A1.62a) 
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    
j 2

j1

x x
4 33

2 j
x x

1 1
F̂ 2l x l x l l x

12 4





 
      

 (A1.62b) 
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x x
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F̂ x lx
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



 
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         
j 2

j1

x x
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4 j
x x

1 1
F̂ l x l l x

4 3





 
      

 (A1.62c,d) 

 

where j1x , j2x  are the coordinates of the element’s j  edges (Fig.A1.1). Moreover, 

from eqns. (A1.37), the analytic expressions of the coefficients ijA , ij ,xA , ij ,xxA  and 

ij ,xxxA  ( i 1,2, L  , j 1,2, L  ) defined in eqns. (A1.59) are obtained as 

 

    
j 2

j1

x x
4 33

ij i0 i0
x x

1 1
A 2l x x x l x x , i j

12 4





 
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 (A1.63a) 
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x x
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

 
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 (A1.63b) 
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j 2
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x x
4 33
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x x

x x
4 33
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x x

1 1
A 2l x x x l x x

12 4
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
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



 
     

 

 
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 (A1.63c) 
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  
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   j 2

j1

x x
ij ,xxx x x

1
A x , i j

2




   (A1.4.36a) 

   j 2

j1

x x
ij ,xxx x x

1
A x , i j

2




    (A1.4.36b) 

 ij ,xxxA 0 , i j   (A1.4.36c) 

 

where j1 j2x , x  and j0x  are the coordinates of the element’s j  edges and mid-point, 

respectively, while i0x  are the coordinates of mid-point of the element i  (Fig. A1.1). 



 

 

Appendix A2 

Domain BEM for  
Ordinary Differential Equations of the 2nd Order  

 

 

A2.1 Introduction 

Several boundary value problems, formulated in this doctoral thesis, have been solved 

employing the Domain Boundary Element Method (D-BEM). In numerical analysis, D-

BEM belongs to the family of Boundary Element Methods (BEM) and is applicable to 

either linear or nonlinear, static or dynamic boundary value problems with constant or 

variable coefficients, subjected to either linear or nonlinear boundary conditions. Even 

though, pure BEM requires the calculation of the fundamental solution (or Green's 

function), placing considerable restrictions on the range and applicability of the method, 

the D-BEM is capable of dealing with problems at which the fundamental solution is 

unknown. According to this method, the boundary integral representation is 

supplemented with domain integrals. That is, both boundary and domain discretization 

are required. Typical approaches for evaluating the domain integrals involving 

discretization of the interior of the domain (Lagrangian Interpolants, Numerical 

Quadrature) could be incorporated in BEMs. Nevertheless, this additional discretization 

devaluates one of the main attractions of using a boundary element technique.  

Over the years, several approaches for either evaluating or eliminating domain 

integrals have been developed, in order to maintain the pure boundary character of the 

method. Nardini and Brebbia (1982) proposed a generalization of the concept of 

particular integrals, known as Dual Reciprocity Method (DRM) (Kontoni et al 1991, 

Partridge et al 1992), while Ahmad and Banerjee (1986) used a closed form 

representation of a Particular Solution. Both methods require approximation of the field 

function in the interior of the domain with the use of Radial Basis Functions (RBF). 

Korsmeyer et al (1993) used the Fast Multipole Method (FMM) to study three 

dimensional potential problems, while a vast amount of applications have been 

presented by Katsikadelis and Sapountzakis (1988, 1991), Katsikadelis et al. (1990) and 

Sapountzakis and Katsikadelis (1991, 1992) in which the Classical Domain Integration 
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is implemented. In general, this approach is employed in cases where the values of the 

field function at the interior points are unknown. This domain integration technique 

requires the subdivision of the interior of the domain into triangular or quadrilateral 

interior elements. These elements contain the unknown quantities of the field function at 

the interior points and can be evaluated by either iterative processes or by collocation 

techniques (Ingber et al. 2001). In the first, the domain integral can be evaluated with an 

initial guess for the unknowns allowing an approximate boundary solution to be found. 

Based on this approximate solution new values for the unknowns can be found, leading 

to an improved estimation of the solution. The iteration is repeated until convergence is 

succeeded within the required level of accuracy. Even though, this procedure is versatile 

the convergence is not guaranteed. However, according to the collocation technique, the 

field function’s values at the interior element nodes are introduced as additional 

unknowns. A system of equations is formulated by applying the boundary integral 

equations of the problem into these nodes and the solution of the system yields the 

unknown quantities of the field function. 

 In this appendix, the main principles of D-BEM are presented, in case of one-

dimensional boundary value problems described by ordinary differential equations of 

the 2nd order. It is noted that the differential operator of the problem can be either linear 

or nonlinear, while similar procedure could be followed for the 4th order differential 

equations.  

 

 

A2.2 Main Concepts of the Domain – Boundary Element Method  

Consider the one-dimensional boundary value problem  

 

 
 

   
2

2

dN x,u,ud u
g x , x 0,l

dxdx


     (A2.1a) 

  1 2 3
du

a N x,u,u a u a , x 0,l
dx

      
 

 (A2.1b) 

 

where    denotes differentiation with respect to x ,  N   is linear or nonlinear one-

dimensional operator of first order, ia  ( i 1,2,3 ) are functions specified at x 0,l , 

 g x  is the known source function defined at  0,l  and  u u x  is the sought solution 
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of the problem, having continuous derivatives up to the second order in  0,l . 

According to BEM and employing eqns. (A1.4), (A1.3a) the integral representation of 

the solution (A1.8) can be written as 

 

 
       

       

l u
20

x lu u
1 2

x 0

u x, N x,u,u g x dx

x, u x x, u x

  
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



     

   
 


 (A2.2) 

 

where u
1 , u

2  are the kernels as defined in eqns. (A1.9). By applying integration by 

parts the above equation can be written as  

 

 
         

                  

l lu u
2 10 0

x l x lu u u
2 1 2

x 0 x 0

u x, g x dx x, N x,u,u dx

x, N x,u,u x, u x x, u x
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 

 

  

       
   

 
 (A2.3) 

 

while differentiating with respect to  , yields 

 

              
x ll u u

1 10 x 0
u x, g x dx N ,u,u x, u x N x,u,u     




             (A2.4) 

 

Thereafter, the interval  0,l  is discretized into L  elements. The integral representation 

of the field function (A2.3) and its derivative (A2.4) can be written as follows  

 

 

         

                     
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Ll u u
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x lu u
1 2

x 0
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x, u x x, u x N x,u,u
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





  

     
 

 
 (A2.5) 

              
x ll u u

1 10 x 0
u x, g x dx N ,u,u x, u x N x,u,u     




             (A2.6) 

 

A2.3 Classical Domain Integration 

As it is mentioned above, the classical domain integration is implemented in cases 

where the values of the field function at the interior points are unknown. The integral 
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   
j

u
1 x, N x,u,u dx


    ( j 1,2,...,L ), as defined in eqn. (A2.5), is approximated as 

a weighted sum of the integrand at a finite set of points called integration points. The 

integration points and weights depend on the specific rule employed and the required 

accuracy. Herein, the Gauss rule has been adopted and K  integration points are 

assumed in each element. Thus the above integral can be written as 

 

        
j

K
u u
1 1 jk jk jk jk k

k 1

x, N x,u,u dx x , N x ,u ,u w

   



    (A2.7) 

 

where kw  ( k 1,2,...,K ) are known weights, while jkx  ( k 1,2,...,K ) are 

predetermined Gauss points located within the element j  ( j 1,2,...,L ). Substituting 

the above equation into eqn. (A2.5), yields 
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 





  
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 

 
 (A2.8) 

 

 By applying the integral representations (A2.6) and (A2.8) to the  L K  

collocation points ( i jkx   i 1,2,...,L K  , j 1,2,...,L , k 1,2,...,K ) together with 

the integral representation (A2.8) to the interval’s edges ( 0 0   , L K 1 l     ), a 

system of 2L K 2   algebraic equations with 2L K 4   unknowns is formulated. 

This system in combination with the boundary conditions constitutes a system of 

2L K 4   algebraic equation with 2L K 4   unknowns; namely, the internal iu , iu  

( i 1,2,...,L K  ) and the boundary quantities ju ,  , ,j j j ju N x u u   ( 1, 1j L  ) at 

0 0   , 1L K l     . The solution of this system provides the values of u ,u  at 

L K  internal nodal points as well as the values of u  and  , ,u N x u u  at the edges 

of the examined interval. It is noted that the values of u  and u  at any point of the 

interval  0,l   can be easily calculated from the integral representations (A2.6) and 

(A2.8) for the examined value of  . Furthermore, in order to avoid singularities in case 
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the collocation point i  is located within the element j , the integral presented in eqn. 

(A2.7) is normalized according to Katsikadelis and Sapountzakis (1988) as follows  

 

 
          

                                             

j j

j

u u
1 i 1 i i i i

u
i i i 1 i

x, N x,u,u dx x, N x,u,u N ,u ,u dx

N ,u ,u x, dx

 



    

  

    



 


 (A2.9) 

 

Since the quantity       u
1 i i i ix, N x,u,u N ,u ,u     of the above equation has a 

finite value, the first integral of the right hand side can be evaluated performing any 

domain integration rule, while the second one can be evaluated analytically. Finally, it is 

worth mentioning that the integrals    l u
10

x, g x dx   and     l u
20

x, g x dx   of 

eqns. (A2.5) and (A2.6), respectively, can also be analytically evaluated provided 

that  g x is a known function. 

 

 

A2.4 Approximation of the Field Function 

The approximation of the field function technique is usually adopted in case the field 

function is known at any point of the domain. It requires approximation of the unknown 

field function in the interior of the domain with simple shape functions, leading to the 

formulation of integrals which can be evaluated either analytically or numerically 

(Sapountzakis 2000). More specifically, it is assumed that the unknown function u  

varies within the element j , according to a specific distribution rule (i.e. constant, 

linear, quadratic, cubic etc). Thus, the distribution of the function’s derivative u  can be 

easily obtained. The explicit definition of the boundary value problem with respect to 

the unknown quantities u ,u  at any point of the interval, permits the analytical 

determination of the integral    1 , , ,
j

u x N x u u dx


  ( 1,2,...,j L ) of eqn. (A2.5). 

By applying the integral representations (A2.5,6) to the  L  collocation points i  

( i 1,2,...,L ) together with the integral representation (A2.5) to the interval’s edges 

( 0 0   , L 1 l    ), a system of 2L 2  algebraic equations with 2L 4  

unknowns is formulated. This system in combination with the boundary conditions 

constitutes a system of 2L 4  algebraic equation with 2L 4  unknowns. The solution 
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of this system provides the values of the distribution rule quantities of u  at the L  nodal 

points and the boundary quantities ju ,  , ,j j j ju N x u u   ( 1, 1j L  ) at the intervals 

edges 0 0   , 1L l    . It is noted that the values of u  and u  at any point of 

the interval  0,l   can be easily calculated from the integral representations (A2.5) 

and (A2.6) for the examined value of  . Finally, it is worth mentioning that the 

integrals    l u
10

x, g x dx   and     l u
20

x, g x dx   of eqns. (A2.5) and (A2.6), 

respectively, can be also analytically evaluated provided that  g x is a known function, 

while in the special case where the operator N  is only a function of u  only one of the 

integral representations has to be employed for the solution of the problem.   

 



 

Appendix A3 

Shear Centre – Shear Deformation Coefficients  

 

 

A3.1 Introduction 

In engineering practice the analysis of beam members is frequently encountered. In the 

vast majority of these cases the assumptions of the well established Euler-Bernoulli 

theory plays a dominant role on the structural analysis. Nevertheless, in cases where 

shear deformation is not negligible, this theory fails to give acceptable results.  

To this end, Stephen Timoshenko (1921, 1922) developed and established a beam 

model that takes into account the shear deformation effect making it suitable for 

describing the behaviour of short beams or beam under significant transverse loading. 

Under a physical perspective, the Timoshenko beam theory accounts for the 

displacement sw  of the beam axis due to shear deformation in addition to the one due to 

bending bw .(Fig. A3.1a). Thus, the total angles of rotation is not equal to the derivative 

of the transverse displacement but equals to the sum of this derivative and the 

corresponding shear strain component (Fig. A3.1b). Under this consideration, the key 

assumption of the Euler-Bernoulli theory, stated as “plane sections initially 

perpendicular to the centroidal axis, remain plane and perpendicular to the axis after 

deformation” is relaxed to “plane sections initially perpendicular to the centroidal axis, 

remain plane to the axis after deformation” implying that the cross-sections are allowed 

to develop shear strain.  

From a practical point of view, the added shear deformation mechanisms reduces 

the stiffness of the beam, resulting in larger displacements and lower predicted 

eigenfrequencies for a specific set of boundary conditions. Moreover, it is worth noting 

that for relatively large ratio of length over thickness of the beam or if the shear stiffness 

is relatively high (compared to the flexural one), the Timoshenko beam theory 

converges to the Euler-Bernoulli one.  

In general, shear stresses due to shear loading develop in a non-uniform way 

within the cross section. Thus, the distribution of shear strains will be non-uniform 

http://en.wikipedia.org/wiki/Stephen_Timoshenko
http://en.wikipedia.org/wiki/Shear_stress
http://en.wikipedia.org/wiki/Eigenfrequency
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resulting in warping of the cross section. Consequently, the Euler-Bernoulli assumption 

is not valid (Fig.A3.2). In case of a beam under constant shear force along the length 

and unrestrained longitudinal displacements, the applied shear load is undertaken only 

by shear stresses that are maximized on the boundary. This is called Uniform Shear 

(Timoshenko & Goodier 1951, Love 1952, Sokolnikoff 1956). On the contrary, if the 

shear load varies along the length or/and warping is restrained due to loading or support 

conditions, shear stresses develop. Theories regarding Non-uniform Shear of 

homogenous beams have been stated by Fatmi (2007a, 2007b).  

 

Q
z

Q
z

dx

γ
μ

ws

wb

 (a) 

                      (b) 

Fig. A3.1 Cantilever beam under transversal load and an infinitesimal segment (a) 
displacement field of shear deformable Timoshenko beam (b). 

 

Warping due to shear is considered in general to be small. Thus, stresses due to 

shear loading are usually determined considering uniform shear, while the effect of 

warping is taken implicitly into account with the use of appropriate shear deformation 
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coefficients. Timoshenko (1921, 1922) was the first who considered the influence of 

shear deformation using correction factors ( k ) and altering appropriately the 

equilibrium equations of the beam. More specifically, similarly to the ordinary beam 

theory, the Timoshenko one yields a differential equation of the forth order to describe 

the equilibrium of the beam. The difference lies in the additional second order spatial 

derivative, which is multiplied by a shear deformation coefficient in order to correct the 

value of the calculated shear force. The inaccuracy of the originally obtained shear force 

is attributed to the assumption of constant shear stress distribution along the cross-

section. As a result, the beam theory which takes into account these coefficients is 

known as Timoshenko Beam Theory.  

 

 
 

(a) (b) 

Fig. A3.2. Warping due to shear for rectangular (a) and hollow rectangular (b) cross 
section. 

 

Furthermore, in beams under transverse loading, shear stresses are developed and 

usually occur in conjunction with bending, while in case this externally imposed loading 

is not applied through the shear centre of the cross section, except for shear, torsional 

stresses are also developed due to eccentricity. Thus, in order to avoid torsional effects 

the shear centre S  is defined as “the point in the cross sectional plane where a shear 

force can be applied without introducing any torsional moment due to shear stresses, 

that is,  

 

  S S
z y xz xyQ Y Q Z Y Z d



          (A3.1) 
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where y zQ ,Q  are the shear forces along y  and z  axes respectively, Cxyz  is the 

centroidal system of axes, S Sy ,z  are the shear centre S coordinates with respect to the 

cross section centroid C  and xy xz,   are the shear stresses developed over the cross 

section (Fig. A3.3). The left hand side of eqn. (A3.1) expresses the external moment 

while the right hand side expresses the internal moment due to shear stresses. If the 

centroid C coincides with the shear centre S, the twisting moment due to the shear 

stresses becomes equal to zero. If the shear stresses due to shear loading are known, the 

position of the shear centre can be determined. In case the shear stresses are computed 

for a Poisson’s ratio equal to zero ( 0v  ), the position of the shear centre is 

independent of the type and the size of the external loading and depends only on the 

shape of the beam’s cross section (Weber 1924, Trefftz 1935). 

 

   

Fig. A3.3. Shear centre S  with respect to the centroidC . 

 

Thus, considering the above, the solution of uniform shear problem can be obtained 

by the determination of shear stresses over the interior of the cross section, the position 

of the shear centre S  and the shear deformation coefficients a  of the beam’s cross 

section.  

The “accurate” statement of uniform shear problem is described by a boundary 

value problem, avoiding in this way the approximations arising from the shear 

engineering beam theory (Sauer 1980, Hartmann & Katz 2007) and the thin-walled 

theory (Vlasov, 1964, 1965). The formulation of this problem can be obtained either 

with respect to the displacement or to the stress field (Mokos & Sapountzakis 2005), 

with the aid of the theory of elasticity. 

Over the years, the calculation of the shear deformation coefficients has been a 

subject of extensive research activity (Kaneko 1975, Renton 1991, 1997, Hutchinson 
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2001). According to Timoshenko (1921, 1922), this coefficient is evaluated as the ratio 

of the average value of the developed shear stresses over the cross section divided by 

the value of the shear stress at the centroid of the cross section. Apparently, the 

previously mentioned definition has difficulties during implementation when the 

centroid is placed out of the domain of the cross section. Later, Cowper (1966) 

suggested a new shear deformation coefficient formulating the equilibrium equations of 

the beam by integrating the equilibrium equations of the three- dimensional elasticity, 

which take more into account the influence of warping (compared with Timoshenko 

coefficient) mainly in dynamic analysis of high frequency beams. The suggested 

coefficients by Timoshenko and Cowper for a variety of simple cross sections are the 

same for a Poisson’s ratio 0v  . The Cowper coefficient concerns only symmetric cross 

sections with an orientation about the principal axis bending system which results in the 

existence of two shear deformation coefficients yya and zza . Mason and Herrmann 

(1968) tried to extend Cowper’s method in asymmetric cross sections with an arbitrary 

system of axis resulting in having instead of yya and zza , two new unequal coefficients, 

the yza  and zya . Apparently, the use of the two unequal coefficients yza  and zya  in 

analysis is not appropriate since it leads to non-symmetric stiffness matrices. The 

aforementioned shear deformation coefficients do not take into account the width b to 

depth h  ratio of the cross section yielding inaccurate results with the decrement of the 

depth. To this end, Stephen (1980) based on Cowper’s theory suggested a new 

expression for shear deformation coefficients which takes into account the ratiob h . 

Hutchinson (2001) using a different methodology derived the same expression as 

Stephen. Puchegger et al. (2003) verified experimentally the accuracy of Stephen–

Hutchinson coefficient for a rectangular cross section of a b h  ratio between 1 and 4. 

However, Stephen–Hutchinson coefficient, which is valid for symmetric cross sections, 

as theb h  ratio is increasing exhibits a discontinuity and then takes negative values with 

the result of not taking realistically into account the influence of warping for some b h  

ratios.  

A different formulation of shear deformation coefficients can be achieved with the 

aid of the energy method (Bach & Baumann 1924, Gruttmann and Wagner 2001) 

according to which the exact strain energy of the beam, owing to the shear stresses 

calculated according to elasticity theory, is equal to the approximate strain energy of the 

beam, owing to the shear stresses according to Timoshenko theory. For an arbitrary 
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cross section with an arbitrary system of axis the energy method allows the 

determination of the four shear deformation coefficients yya , zza , yza , zya  with yza  

and zya being symmetric ( yz zya a ), which take into account Poisson’s ratio v  and 

width to depth ratio b h  of the cross section (Schramm et al. 1994, Pilkey 2002). It 

should be noted that the coefficients obtained by the energy method (taking into account 

the b h  ratio) proved to be very effective in dealing with the shear–locking 

computational problem (Pilkey 2002, Wunderlich & Pilkey 2003). In addition to this, 

the reliability of shear deformation coefficients based on the energy method is verified 

with the aid of solid finite elements (Fatmi & Zenzri 2004). Thus, according to the 

above mentioned, the most appropriate method for the formulation of shear deformation 

coefficients is the energy method.   

Coefficients  , , ,ija i j y z  are the components of a plane ( 2 2 ) symmetric 

second-order tensor while they abide with the transformation law of second-order 

tensors (Schramm et al. 1997). Thus, corresponding to the plane tensor of bending 

moments of inertia, the diagonalization of the tensor  , , ,ija i j y z (Pilkey 2002) will 

lead to a principal system which is called principal shear system and for asymmetric 

cross sections does not coincide with the principal bending one. The result of this 

difference between the two principal systems of axes is the coupling of the displacement 

components of the beam in y and z directions, even if the cross section system of axes 

coincides with the principal bending one (Schramm et al. 1997, Pilkey 2002). In case of 

a symmetric cross section, the principal shear system coincides with the corresponding 

principal bending one and the deflection components on the principal axes are not 

coupled ( 0yz zya a   and 0yz zyI I  ). 

Reviewing the international literature it is observed that the problem of a prismatic 

beam subjected in shear torsionless loading has been widely studied from both 

analytical and numerical point of view. Theoretical discussions concerning flexural 

shear stresses (Weber 1924, Trefftz 1935, Goodier 1944) or the problem of the centre of 

shear (Osgood 1943, Goodier 1944, Weinstein 1947, Reissner & Tsai 1972) and text 

books giving detailed representations of these topics (Love 1952, Sokolnikoff 1956, 

Muskhelishvili 1963, Timoshenko & Goodier 1984) are mentioned among the extended 

analytical studies. In all these studies a stress function formulation is presented. This 

formulation is based on either splitting the stress function into a primary part 
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independent of the beam material describing the beam equilibrium and a secondary one 

dependent on the Poisson’s ratio satisfying compatibility equations or on splitting the 

governing differential equation into two parts representing shear and torsion problems. 

Moreover, these studies are limited in the analysis based on the principal cross section 

system of axes.  

Numerical methods have also been used for the analysis of the aforementioned 

problem. Among these methods the majority of researchers have employed the Finite 

Element Method (FEM). Mason and Herrmann (1968) based on assumptions for the 

displacement field and exploiting the principle of minimum potential energy developed 

triangular finite elements for a beam of arbitrary cross section and isotropic material 

subjected to bending. This method using triangular or quadrilateral finite elements has 

also been used for beams with orthotropic (Tolf 1985) and anisotropic material (Haberl 

& Och 1974, Kosmatka 1993). Later, a finite element solution for the evaluation of the 

shear stresses (Gruttmann et. al. 1998, 1999) and the shear deformation coefficients 

(Gruttmann & Wagner 2001) was developed formulating all basic equations to an 

arbitrary coordinate system, using isoparametric element functions and introducing a 

stress function which fulfils the equilibrium equations. 

Moreover, boundary integral methods seem to be an alternative powerful tool for 

the solution of the aforementioned problem, having in mind that finite element methods 

require the whole cross section to be discretized into area (triangular or quadrilateral) 

elements and are also limited with respect to the shape (distortion) of the elements. 

Boundary Element Method (BEM) solutions require only boundary discretization 

resulting in line or parabolic elements instead of area elements of FEM solutions, while 

a small number of line elements are required to achieve high accuracy. Boundary 

element procedure was first employed by Sauer (1980) for the shear stresses calculation 

based on Weber analysis (1924) and neglecting Poisson’s ratio. BEM was also used for 

the calculation of the shear centre location in an arbitrary cross section by Chou (1993) 

and for the presentation of a solution to the general flexure problem in an isotropic only 

simply connected arbitrary cross section beam by Friedman and Kosmatka (2000). In 

this research effort the analysis is accomplished with respect only to the principal 

bending axes of the cross section restricting in this way its generality. Finally, 

Sapountzakis and Mokos (2005) and Mokos and Sapountzakis(2005) presented a stress 

function solution employing BEM for the general transverse shear loading problem of 

homogeneous and composite beams of arbitrary constant cross section, respectively, 
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while the same authors (Sapountzakis & Mokos 2009) presented a displacement based 

solution for the same problem of composite beams. 

Within this appendix, the solution for the general transverse shear loading problem 

in beams of arbitrary simply or multiply connected constant cross section is briefly 

presented. The formulation follows the displacement field adopted in Wagner and 

Gruttmann (2002) and Sapountzakis and Mokos (2009). The shear deformation 

coefficients are obtained from the solution of two boundary value problems with respect 

to warping functions, using pure BEM. The shear deformation coefficients are evaluated 

using an energy approach (Pilkey 2002) instead of Timoshenko’s (1984) and Cowper’s 

(1966) definitions, for which several authors (Schramm et al. 1994, 1997) have pointed 

out that lead to unsatisfactory results or definitions given by other researchers (Stephen 

1980, Hutchinson 2001) for which these factors take negative values.  

 

 

A3.2 Statement of the problem 

Consider a prismatic beam of length L, of arbitrarily shaped cross section, occupying 

the two dimensional multiply connected region   of the ,y z  plane bounded by 

 j j 1,2,...,K   boundary curves, as shown in Fig. A3.4a. Let also denote as   the 

union of the boundaries of the region  . These boundary curves are piecewise smooth, 

i.e. they may have a finite number of corners. The material of the beam (Fig.A3.4b) is 

assumed homogeneous, isotropic and linearly elastic with modulus of elasticity E , 

shear modulus G  and Poisson ratio  . Without loss of generality, it may be assumed 

that the beam end with centroid at point C is fixed, while the x  axis of the coordinate 

system is the line joining the centroids of the cross sections. 

The beam is subjected to concentrated load Q , having components yQ , zQ  along 

y , z  axes, respectively, applied at the shear centre S of its free end cross section. Under 

the action of the aforementioned loading, the displacement field of the beam is given as 

 

        , , ,y z cu x y z x z x y y z         (A3.2a) 

    , ,v x y z v x             , ,w x y z w x  (A3.2b,c) 
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where u , v , w  are the axial and transverse beam displacement components with 

respect to the Cxyz  system;    y zx x    are the angles of rotation about the 

centroidal y and z axes;    ,v x w x  describe the deflections of a reference point in 

y and z directions, respectively. 

 

 

(a) (b) 

Fig. A3.4. Prismatic beam subjected to torsionless bending (a) with a cross-section 
of arbitrary shape occupying the two dimensional region   (b) 

 

Moreover,  c y,z  is the warping function due to shear, according to the centroid. The 

warping function  c y,z  depends only on the geometry of the cross section, i.e. is a 

parameter of the cross section and is independent from x  coordinate. From a physical 

point of view, the warping function expresses the displacement of the points on a cross 

section in the longitudinal direction. However, in a more refined model the influence of 

this coordinate may also be considered (Dikaros & Sapountzakis 2014a,b). 

Employing the strain–displacement equations of the three-dimensional elasticity 

(Love 1952, Armenakas 2006), the following strain components are obtained 

 

 
y z
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 


 
 
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  (A3.3a) 
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 yy zz yz 0       (A3.3d-f) 
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Moreover, the stress-stain relation for isotropic material is given from the following 

relation  
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  (A3.4) 

 

where   E 1 1 2         is Lame’s constant and  G E 2 1      is the shear 

modulus. Substituting eqns. (A3.3a-f) into the above relation and having in mind that in 

engineering beam theory the Poisson ratio vanishes  0v  , the stress components are 

given as 
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 

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 yy zz yz 0      (A3.5d-f) 

 

Introducing the unit warping function  c y,z  due to shear as 

 

    c z y c
v w

y,z y z y,z
x x

   
    

       
    

  (A3.6) 

 

and applying the stress components (A3.5a-c) incorporating eqn.(A3.6) in the first 

elasticity equation of equilibrium neglecting the body forces (Love 1952, Armenakas 

2006) 
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results in 
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 (A3.8) 

 

while the last two elasticity equations of equilibrium are identically satisfied. From eqn. 

(A3.8) a particular differential equation can be obtained in which the only unknown 

quantity is the warping function c , thus the right hand side term has to be determined. 

Exploiting eqn. (A3.5a) the bending moments can be written as 
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while using eqns. (A3.5b,c) in combination with eqn.(A3.6) the shear forces can be 

written as 
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where  
 

 2
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       2
zzI y d



       yzI yz d


   (A3.11a-c) 

 

are the moments and the product of inertia of the cross section, respectively. 

Alternatively, by differentiating relations (A3.9) the shear forces can also be obtained as 
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Performing algebraic manipulations the following relations are obtained  
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where   is defined as  2
yy zz yzI I I   . Substituting the above relations in eqn. (A3.8) 

the following differential equation is obtained   
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while setting as  g y,z  the right hand side of the above equation, the partial Poisson 

type differential equation governing the unit warping function is obtained as  
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where 2 2 2 2 2y z        is the Laplace operator.  

Moreover, the boundary condition of the aforementioned warping function with 

respect to the cross section’s centroid C  is derived from the physical consideration that 

the traction vector in the direction of the normal vector n vanishes on the free prismatic 

surface of the beam (Fig. A3.4), that is 
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where  yn cos y,n  and  zn sin y,n  are the direction cosines of the normal vector n 

to the boundary  , while this vector is positive when points outward of the domain  , 

as shown in Fig. A3.5. 

 

 

Fig. A3.5. Shear stresses at the cross section boundary. 

 

According to the above, the warping function due to shear can be obtained from the 

solution of the following Neumann type problem of the Poisson differential equation 

 

    
2 2

2
2 2

, ,c c
c y z f y z

y z

 


 
   

 
     in       (A3.17a) 

 
 c y,z

0
n





     on       (A3.17b) 

 

where    , 1 ,f y z G g y z   . In order to solve the Neumann problem defined in eqns. 

(A3.17), the following must apply (Hsiao and Wendland 2008) 
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  (A3.18) 
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where p
c  is a partial solution of the Poisson equation (A3.17a). It can be proved that 

this condition applies. Moreover, the Neumann problem solution is a function of an 

arbitrary constant (rigid body motion along x ) which cannot be determined from the 

boundary conditions. However, quantities involving derivatives of the solution (i.e. 

stresses) are independent from this constant. Thus, setting as c  the arbitrary constant of 

the rigid body motion (integration constant), the warping function due to shear can be 

written as 

 

    c cy,z y,z c    (A3.19) 

 

The above relation verifies the Poisson eqn. (A3.17a) and the boundary condition 

(A3.17b), while the constant c  can be determined by the requirement of 

 

  c y,z d 0


    (A3.20) 

 

After substituting eqn. (A3.19) in the above integral, relation (A3.19) can be written as 

 

      c c c
1

y,z y,z y,z d
A 

       (A3.21) 

 

where A d


   is the area of the cross section.  

 Having in mind that the shear centre S  is defined as the point of the cross section at 

which the torsional moment arising from the transverse shear stress distribution 

vanishes, the coordinates  S Sy ,z  of this point with respect to the Cxyz  system of axes 

can be derived from the condition 

 

  S z S y x S z S y xz xyy Q z Q M y Q z Q y z d


         (A3.22) 

 

For  y zQ 0,Q 1   and after substituting eqns. (A3.3b,c) in eqn. (A3.22),  the Sy  

coordinate of the shear centre S  can be obtained as 
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cy cy

Sy G y z d
z y

 


  
  

  
  (A3.23) 

 

Similarly, for  y zQ 1,Q 0   the Sz  coordinate is given as 

 

 cz cz
Sz G y z d

z y

 


  
    

  (A3.24) 

 

Eqns. (A3.23) and (A3.24) declare that the coordinates of the shear centre S  are 

independent from shear loading. Moreover, it can be shown that the coordinates of the 

shear centre S, coincide with the coordinates of the centre of twist M  as given in 

Sapountzakis (2000). This coincidence of these centres was first recognized by Weber 

(1924) applying the Betty-Maxwell reciprocal relations and Trefftz (1935) using an 

energy approach. 

Furthermore, the shear deformation coefficients y z,   and yz zy   which are 

introduced from the approximate formula for the evaluation of the shear strain energy 

per unit length (Schramm et al. 1997) given as  
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    (A3.25) 

 

are evaluated equating this approximate energy with the exact one given from 

 

 
2 2
xy xz

exactU d
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   (A3.26) 

 

For  y zQ 0,Q 0   setting as  cy y,z  the resulting warping function and substituting 

relations (A3.5b-c) incorporating eqn. (A3.6), the coefficient y  is obtained as 
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For  y zQ 0,Q 0   setting as  cz y,z  the resulting warping function and substituting 

relations (A3.5b-c) incorporating eqn. (A3.6), the coefficient z  is obtained as 

 

 

2 22
cz cz

z 2
z z

1 AG
a d

y zQ 

 



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      

  (A3.28) 

 

Similarly, for  y zQ 0,Q 0   setting as  cyz y,z  the resulting warping function and 

substituting relations (A3.5b-c) incorporating eqn. (A3.6) together with eqns. (A3.27), 

(A3.28) the coefficient yz  is obtained as 
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(A3.29) 

 

where y z yz, ,     are called shear correction factors or shear stiffness factors (Pilkey 

2002). It is worth noting that the warping function  cy y,z  of eqns. (A3.22), (A3.26) 

and (A3.28), results from the solution of the Neumann boundary value problem  
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and the warping function  cz y,z  of eqns. (A3.24), (A3.28) and (A3.29), results from 

the solution of the Neumann boundary value problem  
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Employing the shear deformation coefficients y z,   and yz  the cross section shear 

rigidities of the Timoshenko’s beam theory are defined as  
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  (A3.32a-c) 

 

The numerical evaluation of the shear deformation coefficients implies the estimation of 

the warping functions. This is accomplished employing BEM (Katsikadelis 2002a) as 

this is presented in Mokos (2007) and Sapountzakis and Mokos (2009). 
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