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Avaxtopikn Aratpipn) tov Kauriton E. Avdpéa

I'EQMETPIKA MH I PAMMIKH KAI ANEAAXTIKH ANAAYZH
YYITHMATON AAAHAEIIIAPATSHY AOKOY-EAA®OYX

H mapovoa didaxtopikn oatpifr] amoterel GUUPOAT GTN YEOUETPIKA UN) YPOULKT
KOl  OVEAUGTIKY] OVOAVLOY  GLOTNUATOV  OAANAETidpacng dokohd —  €dAQOLG.
SVYKEKPEVO,  OlITUTTOVOVTOL  Kovotopeg Oewmpieg O0okoD Kol OVOTTUGCOVTOL
wponyuéveg pebodoroyieg vy tn digpevvnon Kot emihvon  mpoPfAnUAT®V OV
CLUVOVIOVIOL OTNV EMOTHUN TOv unyoavikod. H mapovca epguvntikn mpoomadeia
0TOYEVEL EMIONG OTNV ATOKTNOT VEDV YVDCEWDV GYETIKA e TNV EMOPACT] U] YPOUUIKOV
QOLVOUEV®VY GTNV OAKT ATOKPLIGT] TOL GUGTYLLOTOG.

Mo 10 okomd avtd pereTdTOL KO EMADETOL GEWPE TPOPANUATOV U1 YPOLLIKNG
avéAvong 60koD TVYOVGOG SUTAQ GUUUETPIKNG SLATOUNG, EOPALOUEVNG ETL U1 YPOLLLULKOD
eodpovc. H mpooopoiwon tov dopkod otoreiov yivetor pE  €QOpUOY NG
povoodtdotartng Bewpiog 60Kkov, evd Tov £60PIKoD HEGOV VAOTOMONKE LE TOIKIAOVS Un
YPOUUIKODG  €AOTNPIOTOVS  OYNUATIOHOVS, Omov  AauPdvetar vmdyn Kot 1 un
YPOUUIKOTNTO OETIPAVELNS. APYIKA, SIEPEVVATOL 1] YEMUETPIKA UN YPOUUKY GTOTIKN
Kol OUVOUIKT] €AOCTIKY avdAvon Sok®Vv eml pn ypOoUpkoy &34Qovs, AauBdvovtog
VoY OlTUNTIKEG Topapopeacelc. Ev ocvveysia, n épevva  emexteivetor oty
AVELOGTIKN OVAALGT TOV TPOPANLATOG, OOV TOGO TO £0APIKO HEGO OGO KoL TO SOUIKO
otoyeio axkolovBodv pn YpOUUKODS avEANSTIKOVG vOuovs. Téhog, pehetdTonr m
YEOUETPIKA U1 YPOUUIKY] KOU OVEAOOGTIKY] OLVOUIKY OTOKPIGN TOV GUGTNHHOTOS
aAANAETIO PO G OKOV — EGAPOVC.

H yeopetpkn un ypoppukotnto Aapfdvetor vroyn ota egtaldpeva mpofAnuorta
pécm oAkng dratvmmong Lagrange kot g Oewpiog PHeYGA®V HETATOTICEMV - UIKPOV
TOPOLOPPOCEDY, JITNPOVING TO TETIPAY®OVE TOV KMOE®V TOV  £YKAPOI®V

LETATOTICEWV OTNV EKEPACT] TOV 0pHdV TUPOUOPPDOCEDMV ®C TPOG TN OLOUNKN



otevbuvon. Q¢ ek TOVTOL TO TPOPANUATO AVTE OEV VTOKEVTOL GTOVS TEPLOPIOUOVS TNG
YPOLUKOTTOMIEVNC ovaAvoTg de0Tepg TAENG (Bemdpnon otabepnc a&ovikng dvvaung).
H emppon| tov S0TpTIKdV Topapopeacemy Aappdavetal vwoyn pe t Pondeia g
Bewplag dokov Timoshenko, 1 omoia cuvuToroyilel upeca T0 EAVOUEVO OVTO LEGH
O10pBOTIKOV GLVTEAECTAOV OdTUNONG. TNV Tapovod STtpiPr] 0l GUVIEAEGTEG QWTOL
vrohoyilovionr pe epappoyn evepyelokng peBddov. Ot TAOGTIKEG TOPOUOPPDOCELS
TPocd10pilovTol HEG® TPOGOUOIMUATOS KOTAVEUUEVIC TAACTIKOTNTOS (OTOYEID VDY)
YPTCLOTOUDVTAG TPIGOIACTOTES KOTAGTAUTIKEG GYECELS, VO 1 HoONUATIKY SothTwon
Baoileton ot péBodo Tmv petatonicewv. Ta LovodtdoTato Kot 01d1deTaTo TPOoPA LT
GLUVOPLOKMV TIUOV KOL OPYIKOV GLVOPLOK®OV TILOV TOV HOPOOVOVIOL ETAVOVTOL
apOunTkd epapuodloviag t Mébodo Xvvoplakav Xtotyeiov, T MéBodo Avaroyikng
E&lowong kot v [Tedrokr MéBodo Xvvoprokdv Xtoryeimv.

Bdocelt tov ovolutik®v kol oplOunTikdv Oladlkaclidv oV OVOTTUCCOVTOL,
HEAETMOVTOL  OVTITPOCMOTEVLTIKA  oplOuntikd  mopadsiypoto  1310iTepoy  TPAKTIKOD
evowpépovtoc. H  axpifea  wor  aflomotioc towv  mpotewvdueveov  pebddwv
emPefordvoviol e VTAPYOVOES OVOALTIKEG Kol oplOUNTIKEG ADGELS, TEPOUATIKA
ATOTEAECUATO KOOMDC KOl UE TPOGOUOIDUOTO CTEPEDV KOl KEAVPOTOV TETEPUTUEVDOV

otoyeimv.
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["sopetpucd Mn I'poppkn kor Avelastikyy Avaivon
2votnuatov AMnieridpoaong Aokod — Eddepovg

I. Ewoayoym

H amdékpion cvomudtov aAlnienidopacng 60koH — £3A(QOVG LTO GTATIKY KOl OLVOLILKT
@Option amotelel Eva mESI0 GLVEXOVG KOl EKTETAUEVNG £PEVVAG, TOGO GTOV TOUEN TNG
OOUIKNG HNYOVIKNG 00O KOl OE OLTOV 1TNG YEMTEYVIKNG MHNYOVIKNG. ZMUOVTIKEG
gpeLVNTIKEG TpooTmdbeleg Exovv mpaypatonomBel Ta tedevtaion Ypdvia, LE GKOTO Vo
evoopatmdel n aroktnbeioa yvdon oty ovAALoN Kol TO 6YEOAGHO TOV CLOTNUATOV
avtdv. Ot pébodor pEAETNC TV GLOTNUATOV aAANAETidpacng dokoD — €04(POVLG
a&loA0yovvTol cUVEYDG Kot BeATidvovior Aapupdvovioag vedyn 10Topika ototyeio, véa
TEPOUATIKE dEdOUEVO KO OmoTEAEGHOTA OO PLEAETEG TEDIOV, T OTOIN KOTAOEIKVYOUV
™ onuaocic ¢ akpPovg avaivonc. Evtovtolg, m eyyeviig mOALTAOKOTNTO TOL
wpofAnpatog oAl kot ot afefardtreg mov oyetiCovtar pe v 01 T @OON TOL
GLOTNHOTOG KaO1oTOVV 1Wditepa SVGKOAN TOGO TN HAONUATIKY O1TOTTOOT OGO Kol TN
dwdkacio exidvong tov.

Me Vv mhpodo TV xpodvev, opKETOL EPELYNTEG EYOVV OVOTTVEEL Kol TPOTEIVEL
mN0oc pebBddwv Yo ™ HEAETN NG TEPIMAOKNG GULUTEPIPOPAS TOV GLGTNUATOV
aAAnAemiopaong 6okoh — edapovc. Ot péBodol avaivong Hmopovv va, opadoTotfovv
oe tpeic wuplapyeg katnyopieg. Xnv mpodtn katnyopio. avikovv ot pébodor mov
Bacilovtar ot Bedpnon 6okod emi eAaTnPlTOD £0APOVLE, GTN JEVLTEPN KaTNyopio Ot
pébodot mov Pacilovral otn Bempio cuveyovg LEGOL, evd TeElevTain £xovv avamTuydel
o1 uéBodo1 pakpo-cToryeiov.

Yto miaicle ™G mpOTG Kotnyopiog (Bewmpiog dokov), TO €daPIKO LEGO
TPOGOUOIOVETAL OO  EAQTNPIOTOVS  GYNUOTIOHOVS, &V TO  Ookd  pUEAOG
mpocopotwveTot pe pafdmtd otowyeio. H peBodoroyio avtn €xet amoderyBel amodotikn

Kol okppnc. AviiBétwg, ta mpocopoidpate mov Pacilovrar ot Bewpio cuve oV
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UEGOV EMOIOKOLVV VO TEPLYPAWYOLV TNV TPUYLOTIKT] GUUTEPLPOPA TOV CLGTHUOTOG LECH
MG PEQAICTIKNG TPOGOUOIMONG TOL €04POVE OAAG Kol NG  KATOOKELNG. XTNV
MEPIMTOON TNG YPOUUKO EAOCTIKNG OmOKPoNGg £xovv  avoamtuyfel  avaAvTikég
EKQPACELS, Ol omoleg Oumg, mapoOTL glvarl dloitepa  €0YPNCTES, OYVOOLV TNV
TAQGTIKOTOINOT  TOL  €3GQOVG Ko  meplopiloviar  oTnv  mopadoyn  HKPOV
Tapopope®cemy. [a va Anedel vToyn N uUn YPAUMKOTNTO VAIKOL KaBdg Kot 1 un
YPOUUIKOTNTO  YEOUETPlOG Kol SEMPAVEINS, €xovv avamtuyfel un  ypoppuxa
TPOCOUOIMUOTO TPIGOACTATMV TEMEPAGUEVOV GTOXEI®MVY, TO. omoia OU®G amotTtovv
eEedkevpéveg nebdoovg Pabuovounong aAdd kot peydlo vroloylotikd K6ctog. TENOG,
npoceata €xel avamtuydel n péBodOg TOL pHOKPO-OTOLXEIOL, M OTOlo EMOLOKEL VO
TEPLYPAYEL TN GUVOAIKY] GUUTEPIPOPE TOV GULOTNUOTOS HECH HI0G HOKPOGKOTIKNG
TPOGOUOImONG.

Ot péBoodor mov Pacilovrar otn Bewpio dokov, icmg ivat ot O INUOPIANG Yo TV
avEALGN TOV GLCTNUATOV CAANAETIOPAONG OAAL KO YEVIKOTEPQ YO TH UEAETT] POPEDV
TOL GLVOVTOVTOL GE £PY0 TOAITIKOD HNYOVIKOV. AVTO OQEIAETOl GTAL CNUOVTIKA
mheovektnuato TG Oewpilag S0KOL E€vavil TV TPOGOUOIOUATOV TPLoIUCTOTNG
ehaotikdmrog 1 ehactomAacTikOTnTac. Ta Kuplotepa mAcovektTiuate tg Oewpiog

doKkoL cuvoyilovtal akoAoVO®G:

i. EvkolAio 6ty Tpocopoimen Kot 1o EPIGRo.

O ovBpdmvog Kol VTOAOYIOTIKOG YPOVOS OTn QACT TPo-eneiepyaciog TV
dedopévav €16000V NG AVOALONG Elval COP®OG UEWOUEVOS, GE GUYKPION HE TO
TPIGOIGTATA TPOCOUOIOUOT, OTOVv Tapd TNV VIapEn oUTOUATOV YEVWNTOP®OV
dlokpltonoinong, 1 OWdKacio. TG TPOCOUOIMOoNG Kol NG OlKPLTOToinong e

KATOOKELNG fvat xpovikd domavnpn).

ii. Mukpo VTOAOYIGTIKO KOGTOG.

O vrmohoyoTikdg xpdvog ot @don oplBuntikng enthivong Tov eEICMOGEMY TOL
TPOPANUATOG €ivarl EA(IOTOC GLYKPITIKA HE TO XPOVIKG damovnpd TplodldoTota
npocopotdpata. H dwapopd avtr yivetor mo aicOnm oy mepintwon SuVoKng
avéivong 1 O6mov AouPdveror vwOYN M EMPPON YEOUETPIKNG KOl VAIKNG Un
YPOUUUKOTNTOS, KOODG oamotteiton 7 emilvon U YPOUUIK®V  GUGTNUAT®V

alyeBpikov EloDcE®V.

il
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ili. Apegon emporq Qoprticemwv Kol oTNPiE®V.

H egmPol tov eotepikdv @optiov kabmg kot Tov omnpifemv ¢ KOTOUGKELNG
yivetal pe amhd kot dpeco tpomo, o€ avtifeon e T TPOCOUOIDUATO TPIGOIUCTATOV

TEMEPOUCUEVOV GTOXEI®MV T OTTol0L AmOTOVV £EE10IKEVEVES LeBOdOAOYIEC.

iv. Evkohio otn perétn emppong oww@ipev @aivopévev kot otnv aflordynon

TOV OTOTELEGUATOV.

Me 1 ypron amhav kot wo ocvvletwv Bewpudv dokov elval dvvaty 1 ypryopn
alohdynon g emPpons OPop®V QPUIVOUEVEOV GTN GLVOAIKT] amdKplon 1Tng
KOTOOKELNG KOl MG K TOVTOV 1) YPNYOPN ANYT OMOPACEDY GE EMIMEOO TYEIOGLOV.
Emumiéov, vroroyilovtar Gpeca LovodAGTOTH KIVIUATIKE Kol EVTATIKA PEYEDT, Ta
omoio. mwpocseEépoviar Yoo ypnyopn oa&loddynon. Aviifétwg, To amoteAéouato
TPIGOIGTATOV TPOGOUOLMUATOV OTOTEAOVV TPLOACTATEG GUVOAPTNGELS, Ol OTOLES
emontevovTal Kot agloAoyovvion pe dvokoria. EEGALOV, o1 clhyypovol Kavovicuol
OV SEMOLY TNV OVOAVOT] KOl TO GYXEOAGUO EPYMV TOATIKOD UNYOVIKOU GLUVIOMG

elval dtatvpévol pe Pacn T AOYIKT TOV EVIOTIKOV HEYEDDV.

v.  EvkoAio 6ty EKTELEST] TOPUUETPIKAOV AVOAVGEMV.

H Beopio doxo0 TpoceépeTon OTIC TEPMTMOELS TOPAUETPIKAOV OVOIAVCEDV KoL
BeAtiotomoinong pafdmTdv KOTACKEVOV. AVTIOETMS, TO TPICIUCTUTO TEMEPAGUEVOL

otoyeio amontoHv TN ¥PNoN TOALATADY TPOGOUOIOUATOV.

vi. EvkoAio otny dpueon mapopoicwon TEPITAOK®OV KOTUCKEVOV.

Ye MOAMEG TEPIMTMGELS 1 OlEPELYNOT OVGKOA®MY TPAKTIKOV TPOPANUATOV TNG
EMGTAUNG TOL UNYOVIKOD OmoTel apykd Tn LEAETN OMADY TPOCOUOIOUAT®OV (OTOV
dev elvor embBount 1 avdivon TomKOV @avopévev). O Tpocsdlopiopods TG
TOLOTIKNG CUUTEPLPOPAS TNG KOTACKELNG UIOpel va yivel evkoAdTeEpa QapUOlovTOog
™m Bewpio dokov, cvykpltikd pe TG Tplodldotateg €S1l0GeE ™S Mnyoavikng

Xvveyovg Méoov.

vii. ATOTEAEOPOTIKOTITA O©T1 NEALTN] KOTUGKELAV 06 O00KOVG AETTOTOLYNG

owaTopg.

Avtipetonifovtol emtuydg tor TpofAnpate tov pepufpavikod (membrane-locking)

Kot otatuntikov (shear-locking) kKieddpotoc.

il
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viil. AmoteleopaTikog YEPLopog TG oTPEPAmoNg TS draTopnc.

AvtipetonileTor emtuy®g t0 TPOPANUA TG oTPEPA®ONG NG dTOUNG, TO 0moio
adVVATOVV VO TEPTYPAYOLV TO KEALQMTA Temepacuéva ototyeio (midline models -
shell finite elements).

A&iler BéPara va emonpavOel 6Tl 0 YEVIKOS YopakTipag Kot 1 HeydAn aSlomotio
TOV TPOCOUOLOUATOV TPIGOICTATMOV TEMEPACUEVAOV OTOLXEIOV TO KOOIGTOUV TOAD
YPNOWO €PYOAEID OTA ¥EPLOL TOL UNYOVIKOV 1] TOVL €PgLVNTY], 0 omoiog emBupel va
pocodlopicel TNV aglomoTio TOV ATOTEAECUAT®OV TOL AAUPAVEL O AALES aPlOUNTUKES
pebdd0vGs.

Kvplog otodxog g mapovoog OSwaxktopikng dwtpPng eivar M dtdmwon
KavoTOpmV Be@pldv 60KoD Kat 1 avamTtuEn Tponypévey peboddwv yia v eniAvon tov
TPOoPALaTOG OAANAETIOPOONS BOKOV — £0GPOVS, KAOMS Kol 1 ATOKTNOT VEOV YVAOCEDV
OYETIKA LE TNV €MOpOAOT UN YPOUUIKOV porvopévav. [a 10 okomd avtd pedetdron kot
EMAVETAL GEWPA TPOPANUATOV PN YPOUUIKNG OVAALGTG O0KOL TLYOVCHS OmAd
GLUUETPIKNG dtatopung, edpalopevng et un ypappukod edaeovs. H mpocopoimon tov
dopkoV otoyeiov yivetal pe epappoyn ¢ povooldotatng Bewpiog 00kod, Evd TOL
€00PIKOV  péoov  vAomomOnke pe mowiAovg N ypoppkohs  AATNPLOTOVG
GYNMOTIGHOVS, OOV AQUPAVETOL VITOYN Kol 1] U1 YPOUUKOTNTO OEMPAVELNG. ApyIKd,
OlEPELVATAL 1 YEOUETPIKA LT YPOLUIKT GTOTIKN Kot OUVOULKT EAAGTIKY AVAALGT SOKMOV
EML UN YPOUUIKOV €04QOVS, AauBdvovtog vroéyn OOTUNTIKES TOPAUOPEAOGES. Ev
cuveyela, N €pEVVA EMEKTEIVETOL GTNV OVEANCTIKY avdAvGm Tov TPOoPAruatog, dmov
1060 10 €d0PIKO HEGO OGO KOl TO OOMKO oTolyeio akoAovBohv pn YPOUUIKOVS
AVEAQGTIKOVG VOPOUG. TEAOG, HEAETATOL 1) YEOUETPIKGL UN YPOUUIKY] KO OVEAUGTIKY
OLVOUIKT] OTOKPIoT] TOL GLGTNUATOG OAANAETIOpacoNS dokov — £ddpove. H dtatdinwon
Kot enthvon tov eEetalopevov TpofAnudtov ivolr TANPNG, CLGTNUATIKY, TPMOTOTLTN
Kol oVUPEAAEL OV PEOMOTIKOTEPT TPOCEYYIoT Tovs. Bdoel tv avoAvtikdv Kot
aplUNTIKOV SOIKAGIOV TOV AVATTOCCOVTOL GTNV £PYAcio auTh cuvtdyOnke mAnbog
TPOYPAUUATOV NAEKTPOVIKOV LTOAOYIOTH, Me TN Ponbela twv omoiwv peietnOnkov
AVTITPOCHOTEVTIKG aplOunTIKd Tapadelypota O1iTePOV TPAKTIKOD EVOLLPEPOVTOG, TO.
ool KOTOAOEKVOOUV TNV  OMOTEAECUOTIKOTNTO KOl TO €VPOC EQOPUOYNG TAOV
mpotevopevey pebddwv. H axpifela ko a&omotio tov AneBéviav omoteAesniTov
emPePfardveTon Pe VTAPYOVGES AVOAVTIKEG Kot oplOuUNTIKEG ADGELS, TEPOUOTIKA

amoTeAéoUATO, KOOMG Kol LE TPOGOUOUDUATE GTEPEDV (EE0EOPIKMV) KUl KEALQPOTMOV

v
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(teTpomAevpik®V) TEMEPACUEVDVY oToLElmV. ATd ™V avdaAivor, vroloyilovtal Ola ta

EVTOTIKGL, TOPALOPPOCIOKA KOl KIVILLOTIKA LeYEON Tov kdBe TpoPfAnpaTos.

H épevva mov mapovcialeron ot dwtpiny ovt] eivol TPOTOTOPLOKY Kot

mpototunn. Ta kbpla otoyeia mpoToTLTTiog cuvoyilovtal ota akdAoLOa.

1.

il.

11l.

1v.

Vi.

INo mpot @opd ot debv Piproypapio, mapovsialetar olokAnpouéva m
poOnpotikny 1 TOTOoN Kol ETIAVCT] TOV SUVAUIKOU TPOPANUOTOS TG YEMUETPIKAL
Un  YPOUMKNG OVEANCTIKNG OVAALONG GULGTAUOTOS OAANAETiOpOoNG OOKOL —
€00(POVG, OOV TO €J0PIKO HEGO OAAG KOl TO SOUIKO oToreio axoilovBolv un

YPAUUKOVS aVELUGTIKOVS VOLLOVC.

Yto eEgtalopeva TPOPANUOATA, T U YPOLLIKOTNTO VAKOV avTipetoniletor HEcw
TPOGOUOIDHUOTOG KATAVEUNUEVTG TAACTIKOTNTOS (OTOYEID VAV) XPNCILOTOIDVTAG
TPIGOLAGTATEG KATAGTATIKEG GYEGELS, EVO 1 LoBNUoTiKn datutmon PacileTor ot
LéEB0O0 TV HETATOTIGEMV.

To mpotevopevo mpocopoiopa AapBaver vTOYN T YEOUETPIKN UN YPOLULKOTNTO
STNPAOVING TO TETPAYOVO TOV KAMGEOV TOV EYKAPCLOV UETOTOMIGE®V GTNV
ékppaocn TV opfdv  TOPALOPPOCE®Y ®G TPOG TN Swunkn  oevbuvon,
amoPEVYOVTIOG LE OVTOV TOV TPOTO TOVG TMEPLOPIGUOVS TNG YPOLUUIKOTOUNUEVTG
avdivong ogvtepng taéng (Bempnon otabeprg afovikng dvvaung). I'a to cxomd
avtd viobeteitan 1 ovvolkn Swtdmworn Lagrange (Bswpio petpiog peydiov
TOPAUOPPOCEDV).

H emppon| ¢ datuntikng tapoapdpewong Aappdvetor vroyn pe ) Pondeia twv
GLVTEAEGTMOV OATUNTIKNG Tapapdpemong s Bewpiag dokod Timoshenko, n onoia
ocvvuomoloyilel éupeca to QOVOUEVO OVTO HECH OOPOOTIKOV GLVTEAECTAOV
dlTunone. Xtnv moapovcsa dwTpiPr] ot cvvieheotég avtol vmohoyilovior e
EQOPUOYN EVEPYELOKNG HEBGOOL.

To mpotewvopevo paOnuotikd mpocopoiope cvvumoloyilel To TETAEYUEVOL
QOWVOUEVO TOV KOUTTIKOV KOl OOTUNTIKOV TOPALOPPDCEDV KOTO HNKOG TNG
d0KO0V KaB®G Kot TIG AVATTUGGOUEVES SIOTUNTIKEG OVVAELS 0O TO AEOVIKO (POPTIO.
Emumiéov, n d0kdc vmoPfdiietal o€ TuXOVGO GULYKEVIPOUEV N KOTOVEUNLEVN
aEOVIKN KOl KOUTTIKY] QOPTIOT), EVA TO AKPO TNG VTOKEWVTOL OTIC TAEOV YEVIKEG
oLVOPLOKEG CLVONKEG CLUTEPIAAUPAVOUEVIG KoL TNG EAAGTIKNG GTNPENG.

H mpocopoimon tov €dapikod pécov vAomomdnke pe TOKiAovg Un yYPOoUUKoUs
EATNPLOTOVG GYNUOTIOHOVS, Omov AapPavetal VITOYN Kot 1 Un YPOLKOTNTO

Jlemedavelog.
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vil. Ta eEetaldpeva mpoPfAnuatoa emdvovror apBuntikd pe ™ Pondea cuvoploKdV
oroKkANpOTIK®OV  eElodcewv  (MéEBodog Zvvoplok®dv Ztoryelov, AVOAOYIKNG
E&lowong xar Tledwoxkny MéBodoc Zuvvoprokadv Xtotyeiwv), HECH KOVOTOU®V
alyopiBumv g VTOAOYIGTIKO TEPIPAAAOV.

Téhog, ailer va avapepBel OTL omd TNV TOPOVOH EPELVNTIKY TPOCTAOELN

TPOEKLY AV ONUOGLEVGELS GE £YKPLTO EMGTNHOVIKE TEPLOdKd d1eBvovg Kukhopopiag, o

TPOKTIKE OEBvav Kot eBvikdv ocvvedplov KabBdg kot kepdrowo oe Piiic mov

ekoOINKav amd d1efveic ekd0TIKOVG OiKOLG,.

II. Teoperpikd Mn Ipoppiki) Avdrven Aokdv pe Awatpntikés Hapapopeocerg
emi Mn Il'pappikod Edagovg

v mopovca SOKTOPIKY] OTpiPr] TOPOVCIALETOL 1) YEMUETPIKA N YPOLLUIKN
avdAvon dokoD MAG GULUUETPIKNG OWTOUNG, €L UM YPOUUIKOD TPUTOPOUETPIKOD
eLaoTIKOV £00poVG. H 00KkOG vToBAAAETOL GE TVYOVGA GLYKEVIPOUEVT N KOTOVEUNUEVN
KOUTTIKY OPTIOT KOOMG Kot 6€ TUYOV aoviKd popTio, VA T GKPO TG VITOKEWVTOL GTIG
TAEOV YEVIKEG CLUVOPLOKEG cLVONKES cuUTEPTAAUPOVOLEVNG KOl TNG EAOGTIKNG OTHPIENG.
H yeopetpwn pun ypoppkdmra Aapfdavetor vmoyn o€ olkn olatvmwon Lagrange
péom g Bewpiog HEYAA®V HETATOTICEMV - LUKPOV Tapapopedcemy. H emppor| tov
SWITUNTIKOV TOPAUOPPOSE®V AdpPdvetor voyrn pe t Ponbela g Bewpiog dokov
Timoshenko, 1 omoio. cuvvmoloyilel Eupeco T0 PAIVOUEVO aVTO HECH O10pHMTIKAOV
GLVTEAECTMV O1ATUNONG. ZTNV TOPoVca dATPLPn) 01 GUVTELESTES avtoi vtoAoyilovTot pe
epapuoyn evepyewokng peBdoov. To edapikd mpooopoiopa yopaxtnpileton amd
YPOLLLKA Kot P ypoppikd edatipla tomov Winkler kon amd ehatipia tomov Pasternak,
evd emiong €xet mpooopowwfel M advvopio avIANYMG EPEAKLOTIKOV TACE®V
(tensionless foundation models). Zoppwva pe v Tpotevopevn HéBodo Lope®VOVTOL
pe 1t Ponbeia g Bewpiog elaocTiKOTTOC TEVIE TPOPANUATO GUVOPLOKDOV TIUADV.
JUYKEKPUEVO, HOopeOVOVTAL Tpio. HOVOSIoTOTA TPOPANUA  GLVOPLIKAOV  TIUOV
aVOQOPIKA HE TNV 0EOVIKY KOl TIS EYKAPOIEC WETOTOTICELS, TOL ETAVOVIOL HE TN
Bonbeia g Mebddov Avaroywkng E&icwong, e cuvdvacud pe v vPpdwn pébodo
Powell yio v eniAvon pun ypoppIK®OV cLGTHUATOV aAYERpIK®V £16M0EMY, KOODS Kot
d00 JdIGTATA TPOPANLLATA GUVOPLAK®V TILADV OVOPOPIKA UE TIS TOGIKEG GUVOPTHOELS
OV OVOPEPOVTOL GTOVG CLVTEAEGTEG OlATUNONG, TA omoia emivovion pe tn Ponbewa

“apryoug” Mebddov Xvvoplokdv Xtoryeiwv.

vi
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[Na ™ poOnuotikny Jowtdmwon Tov mpoPAfuatog, efetdleton  gvBLYpapn
TPIoUATIKY 00KOG punkovg /[ (Zy. 1), otabepnc Tuxovcoc SIMAG GUUUETPIKNG OLUTOUNG
OV OMOTEAEITAL OO OUOYEVEG, LGOTPOTO KOL YPOUUIKA EAOGTIKO LAKO pE HETPO
ghaotikotTog E, pétpo owdtunong G kot Adyo Poisson v, 10 omoio xotoAapfdver
mepoy] 2 TOov €mmEdOL yz Ko ivor amAhd 1 MOAAAMAG GuvEKTKO (LmhpyEl M
ovvatotro va mepthapPaver oméc). To obvopo g dwatoung tov ywpiov 2, sivon
Tunuotikd Agto, pmopel oniadn va meprlapPavel memepacpévo aplipd yovidv Kot

ocvpPorileTon pe T=U]1-<:0Tj (j=12..K). X0 Zy. 1, pe Cxyz ovpPolrileton t0

KUPLO KAUTTIKO GVGTNHA 0EOVAOV OV JEPYETAL amd TO KEVTPO Papovg g dratoung C.
H dox6g Bempeiton peptkdg edpaldpevn ent un ypoUUKOD TPUTOPAUETPIKOD ELOGTIKOD
€00povG. Aaupdavoviag voyn TN uUn YPOUMIKNY emaen HeTafd Tng 0oKoL Kol TOL
€0apkov péoov (interface nonlinearity), 1 €do@ikn ovtidopacn eni g 60kov gvepyel
UOVO o€ TEPIMTMOT GLUTIESTG TV EANTNPI®V Kol O1OETON Yo TIG TPELS O1EVBVVOELS amd

T1G aKoOAlovOeg ekppdoelg

Lift-off Point
Nonlinear Springs
Linear Winkler

M,(x)

Shear Layer

C: Centre of

gravity
S: Shear centre

(o) )

2x. 1. Ilpiouatikn 00kog vmwofallouevy o€ ToyoDoo, KOUTTIKY Kol 0.Covikn poption (o)
LLE OLLOYEVH O10TOUN] TOYOVTOS OITTAG CUUUETPIKOD TYHUATOS ().

P =hku(x) (lo)

N o’
Psy =Hy (x)[kLyv(x)+kNLyv3 (x)—kpy a‘;(;)j (1B)

82
Dy :Hz (x)[kLzW(x)+kNLzW3 (x)_sz ;/CEX)] (IY)

vii
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omov H ,(x), H, (x) sivar cuvaptioeig Heaviside povadioiov fripotog.

H 60k vrofaiietal oe cuvovacud PopTiceE®mV amd TVXOV GLYKEVIPOUEVO 1/Kot
KOTOVEUNIEVO 0EOVIKO QopTio p, = p. (x) KaTé UNKog Tov d&ova x, EyKApPc1o Poptio
Py =p,x), p,=p.(x) xotd pikog tov advev y kot z, aviiotoyo, KaHDG Kot
KOUTTIKY QOpTIoN 71y, =1, (x), m,=m, (x) Katé PnKog tov afdvev y kol z,

avticTolyd.
To medio petatomicewv Tuyoiov onueiov g dtatopng Aappdvovtag veoéyn

SLOTUNTIKY TOPOLOPP®S, Tpocdlopiletar wg (Ramm & Hofmann 1995)

u(x,y,z)=u(x)-y0,(x)+26,(x) (2a)

V(x,y,z)zv(x) v_v(x,y,Z)=W(X) (2B,y)

omov u, v, w &lval n SloUnKNG Kol Ol €YKAPCLEG GLVIGTMGES TNG HETATOTIONG E£VOG

tyaiov onpeiov g mpog 10 cvotnua afévev Cyz. Emiong, u=u(x), v=v(x),
w= w(x) glvol 1 SN KNG KO Ol YKAPGIEG LETATOTIGELS TOV KEVTPOL Papovg C, evd

Hy (x) , 0. (x) glval o1 yovieg otpoeng g daTouns Ady®m g KApW”NG, ©¢ TPog To

Kkévipo Papovg. A&ilel va onuelmBel 6tL 01 Yovieg oTpoPng TG S1TOUNG AOY® KAUWNG

dev tavtilovtol pe TG Topoydyovs TovV petokwhnoemv (0, #v', 49y Zw') AOyo

OLOTUNTIK®V TOPAUOPPDCEDV.

OcOpOVTOS MKPEG TOPAUOPPAOCES Kol OTL TO VAIKO NG 00KoL gival OpOYEVEC,
160TPOTTO, GVLVEXES KOL YPOUUIKE EAAGTIKO, 01 GLUVIGTMGES Tov 2°° Tavvoth Tdong Piola-
Kirchhoff didovtor cuvaptioel twv napapopeacemv Green amd T0 YEVIKELHEVO VOUO
tov Hooke. Ev cuveyela, epappoloviog v 160ppomtiot SUVAUEDY KOl POTMV TOL
GTOLYELMOOVS TUNHATOS TG O0KOV GTNV TOPAUOPPOUEVT] SLUUOPPOCT 1| EVOALAKTIKE
mv Apyn Avvatov ‘Epyov ce ohkn dwutdmwon Lagrange mpok0dmtouv ot O10popikég
e€lomoelg mov meptypdpovv TV KABOAKY| 1G0pPOTIO. TOV GULGTHUOTOS, Ol OmOoieg

ekppdalovton ¢

—EA(u"+ww' + W)+ kpu=p, (Ba)

—(Nv')' —-GA, (V" - 6’2')+ I:Iy (kLyv + kNLyV3 - kpyv") =py (3B)

viii
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_(NW'), - GAZ (W” + ey' ) + I:IZ (kLZW+ kNsz3 _szWH) =D; (3Y)

~ELO. ~GA,(V'-0,)=m,  —EL0, +GA (w+0,)=m, (35,8)

OTOoL (’) SLUPBOAILEL TV TAPAY®YO OG TPOG TN XWPIKN LETAPANTN X .
Yvvdvdlovtag 15 e€lodoelg (3P), (30) kar (3y), (3€) Y TV amoAoIpn TOV YOVIDV
GTPOPNG TPOKVITOVV O1 TPELS SLPOPIKES EEI0MOELS 160ppomiog TG dokov Timoshenko

eMi U1 YPOUUIKOO £0A(QOVG VIO AEOVIKT, EYKAPCLO KO KOUTTIKY OPTION MG

—EA(u"+ww' + W) +kpu=p, (40)
!/ EI m E[
"m ' Y ’ r o\ _ Yy '
El v —(Nv ) + Dgy +_GAy ((Nw) —psy) =Dy ——GAZ Dy —m; (4B)
! EI n" " EI " '
ELw"=(N) & po+ (N = | = p ==l @)

Z z

Ot avtioToeg cvvoplakéc cuvONKeS oTal Akpa TG 00KV X =0,/ STLTAOVOVTAL LE TNV

akOAOVON YEVIKT HopPN

au(x)+a,N(x)=a; (5a)
,BIV(X)JFﬂsz (x) = B3 3192 (X)JFEzMz (x) = 33 (5By)
71W(x)+72VZ (.X)=}/3 7]93) ('x)+772My (x):73 (5858)

omov o, B, B, Vs Vi (i =I,2,3) glval yvootol GLVTEAEOTEG, VA TO. EVTOTIKO peyEn

TOL OVOTTTOCCOVTIOL GTY| OlTOUN] OTNV TOPALOPPOUEVT KOTACTOOT KOl Ol GTPOPEG

AOy® Kdpyng didovtal amd Tig akOAoLOES OYEGELS

4 ’ EIZ ’ " ! !
V,=—EI[v"+ NV - [(Nv ) +p, —psy}—mz (6a)
GA,

1 / Ely " 2 ’
V,=—El[,W"+Nw _GT[(NW) +pz—psz}+my (6B)

y4

X
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El ' EI '
_ " y ’ _ " z '
M, =-El,w A ((Nw) +p, —psz) M_=ElV'+ o ((Nv ) +p, —psy) (6v,9)

-z y
EI " Ji
g, =——2 (N' ')——EI "+ GAW 6
a0 45 )Gt s oa)
EI !” ! 1 m !
6’2 = Z 5 ((NV ) _psy)'i'GT(Ele + GAyV ) (6@)
(GAy) y

H oapBuntkn ernilvon 1tov memieypévov mPOPANUATOS GLVOPLOKAOV  TIUOV
emtuyydveral pe ) Ponbeia g pebosov Avaroywkng E&icmong (Katsikadelis 1994,
2002). To dwbotnuo. TS S0KOV (0,1) dwupeitar oe L otoyeion Kot 1 €QAPUOY NG

puebddov odnyel otn popewon evog un ypopupkod cvotiuatog 3L + 20 alyefpikmdv

e€looemV, TO 0molo EKPPALETAL GE TLTIKY LOPON ®G
(K+K"(d))d=p (7)

omov K 1O YEVIKELUEVO YVOGTO YPOUUKO UNTPMO GTIRopOTNTOC, K" 10 YEVIKELUEVO
YVOGTO Un ypopkd untpmo otfapdmrag, d TO YEVIKELHEVO UNTPMOO GTNAN
AyVOOT®V TOGOTATOV KOl P TO YEVIKELUEVO YVOGTO UNTP®O GTHAN eoptiong. [ v
aplOuNTIKN  EMIALGN TOL UM YPOUMKOD GCLGTHMATOS OAYERPIKOV  eElodoemV
epappootnke N vpOKN pEBodog enidvong Powell (1977, 1985).

Me Bdon v avartvyBeica avalvtik Kot aplOuntikny dadikacio, cuvtiydnke
TPOYPALLO NAEKTPOVIKOV VITOAOYLOTY] G VTOAOYIGTIKO Ttepaiiov Fortran 90/95 pe
Bonbe tov omoiov peAETHONKOV OVIUTPOCOTELTIKO TOPASEIYHOTA HE TPOUKTIKO
EVOLIPEPOV, TPOKEWEVOL Vo OmoTOOEl 1 OMOTEAEGUOTIKOTNTO Kol TO €VPOG
EQOPUOYNG TNG TPoTEVOUEVNG HeBOdov. H akpifela tov aplOuntikdv omotehespiTmv
eléyyetan, Omov eivon ePKTO, HE VRApPYovoeg aplOuUNTIKEG ADGES Kol TELPOUOTIKA
dedopéva, Ve TOPAAANAO SIEPELVATAL 1] ETPPOTN TNG YEOUETPIKNG UN YPOUUIKOTNTOGS,
NG OLOTUNTIKNG TOPOUOPP®SNS KAOMS Kot TNG E00PIKNG TPOGOUOIMONG OTNV amOKPIoN
TOV GLOGTNHOTOS OAANAETIOpaOTG dOKOD — £6APOVG.

Q¢ avTIPOGOTEVTIKN OPOUNTIKT EQOPUOYT, HEAETNONKE apPlEpeloTn d0KOG emi

opOoYEVOLG €ANOTIKOD €0G(pOoVG. H dokOg €xel uiKkog [ =5m Kol KOUTTIKY OveKoyio

EI = 10°kNm?® evd VIOPBAALETOL GE CUYKEVTIPOUEVEG KAUTTIKEG POTEG GTOL GikpoL M ; =



Extevrg [lepiinyn

M, =—-100kNm . X710 Zy. 2, mapovctalovtal ot €YKAPGLEG LETOKIVIGELS KOTO PNKOG TNG
dokov ayvoavtag (Zy.2a) N AauPdvoviag vmoyn (Zx.2B) ™ un  YpOuUUIKOTNTO
dlemdvelog, ywo Odpopeg TWEG TG €00QIKNG Ovokapyioc. Xto 0 oynuo
ToPoLGLALovVTal EMIONG TO. OVTIGTO(O OMOTEAEGUOTA TOGO OO TNV OVOALTIKY ADON
(Hetenyi 1946) 660 ko and Adoels faciopéves oe apuntikég pebodovg (Pereira 2003,
Silveira et al. 2008). And ™ oOyKplon TV amotelecudtov emPefordveTon 1 akpifela
™G mpoTEWVOUEVNG HeBOOOL Kol OOMICTMOVETOL 1) OMUOGIO TNG UN YPOUUIKOTNTOG

OlEMPAvELOG.

III. I'eopetpikd Mn poppikny Avvopitkny Avaiven Aokov pe AwTpunTikég
Hapapopeocerg eni Mn I'pappikod Edagovg

2 ovvéyewn depeuvdrtal Kot eMAVETOL TO OLVOUKO TPOPANUOL TNG YEOUETPIKA UN
YPOUMKNG avdAvong OokoD OmAd GUUUETPIKNG OTOUNG, €l PN YPOUUKOD
TPUTALPOUETPIKOD EAAGTIKOV €0dpove pe 1EDON oandcsPeon. H doxdg vroPdiieton oe
TUYOVGO. GUYKEVIPMUEVN 1 KOTAVEUNUEVT] SUVOIKT KOUTTIKY @OpTIon kabmg Kol o€
TUYOV YPOVIKE HETAPBAAAOUEVO OEOVIKO (OPTIO, EVD T GKPO TNG VIOKELVTOL GTIG TAEOV

YEVIKEG GUVOPLOKES GVVONKES GuUTEPIAAUPOVOUEVNC KOl TG EAACTIKNG OTNPLENG.

-0.008 A -0.02 A

Bilateral Winkler Springs

Unilateral Winkler Springs k5=62500
S N

-0.015

Present Study
— Heteneyi (1946) 0.005

Present Study
X—>—X Pereira (2003)
G—6—=>0 Silveira et al. (2008)
T T T 1 001 T T T T 1

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x/1 x/1

(o) )
2x. 2. Eykdpoia uetaxivnon tg 00kod yio O10popeS TYWES THS EOOPIKNG OVTKOUYIOS
oyvowvtog (o) N Lopfavoviog vroyn (B) ™ un YpoKoTyTo. OlETIPAVELAS.
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H yeopetpin un ypop koo Kot 1 EXpPor| TV SITUNTIKOV TOPOUOPPOCEDY
Aapupavetar vmoéyn opolwg pe 1 mepimtoon otatikng avdivonc. To  €dagikd
TPOCOUOT®UO YopaKkTNPICETOL OO YPOLLUIKA Kol U YPOUUKE ehathpto Tomov Winkler,
amd elotmple tomov Pasternak kot to ocvvtedeot oamdofeong, evad emiong €xet
wpocopowdel  advvapio avainyne epelkvoTik®v tdocmv (tensionless foundation
models). X0ppova pe v mpotevopevn pébodo popedvovtar pe T Ponbeio g
Oewplag ehaoTiKOTNTAG TEVIE TPOPAUOTO  GUVOPLOKMV TIUMOV. ZVYKEKPIUEVO,
pope®vovtot Tpio. pHovodldotato TPOPANUO GLVOPLIKAV TIUAV OVOQPOPIKE LE TNV
aCOVIKY] Kol TIG EYKAPCIEG LETOTOTIGELS, TOV emAvovTol pe T Ponbeia g Mebddov
Avaloywng E&iowong, oe cuvovaoud pe m pebodo Petzold—Gear ywa v enthvom pun
YPOLUIK®Y GUOTNUATOV SOPOPIKOV-0AYERPIK®V e£l0MGE®V, KAONDS Kat 600 didtdoTota
TPOPANUATO.  CLUVOPLOKAOV TIUAV OVOQOPIKE HE TIG TACIKEG GUVOPTNGEIS OV
AVOQPEPOVTOL OTOVG GUVIEAEOSTEG OldTUNONG, TO. Oomoia emtAvovtor pe TN Pondeia
“apryoug” Mebddov Xvvoplokdv Xtoryeiwv.

lNo ™ pobnupotiky dwtvmwon tov  mpoPAnuotoc, efetaletor  vBOYpapun
TPIGUOTIKY] OOKOC LE YEOUETPIKO YOPOUKTNPIOTIKA OUOl0L HE OVTE TNG TPONYOVUEVS
Tapoypapov, eved emmAéov opiletor kot M mokvoTNTO TG dokov o . H edagpu

avtidpaon ent g doko¥ dideTan Yo TIS TPELS devhHVGELS 0md TIG aKOAOVOES EKPPAGELS

Psox = kau ()C,t) (8(1)

Py (0.0) = H (3.1) Prey (x.8) Pz (3.8) = H (2,8) Prez (x.8) (88.7)
Omov

82v(x,z‘) 8v(x,t)

Prey (x,l):kLyv(x,t)+kNLyv3 (x,t)—kpy T—+¢, (90)
ox ot
2
Pre- (x.8) =k w(x,1)+ kg W (x.8)—kp, ¢ :(;t) +c, ng;ct) (9B)
X

H dokdg vrmofdrietar oe cuvdvacud @opticewv omd TLXOV GLYKEVIPOUEVO M

KatovepUMUEVo duvapukd a&ovikd eoptio px(x,t) KOTé pPMKOg Tov AEova x, XPOVIKE

efaptdpevo eykdpolo goptio p,(x,1), p.(xf) Kot piKog tov afévev y Koi z,

Xii
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avtioToya, kabmg Kol KAUTTIK QopTIoN M, (x,t), m, (x,t) KaTé UKog TV a&ovav

y kot z, oavtiotoye. Méow g mapovcog OSoTdmmong pmopel va mEPrypapet
OTOLAONTOTE SVVALIKT] POPTICT) GULUTEPIAAUPOVOUEVOV TOV KPOLGTIKMOV TANYULATOV,
TOV KIVOOUEVOV pOopTimv 1 paldv, Kabmg Kol T®V GEICUIKOV QOPTIGEMV.

To medio petaromicewv Tvyoiov onueiov g Oatoung Aappdvovtag vmoéyn

dtpmTikn Topapdpemaen, tpocdtopiletar g (Ramm & Hofmann 1995)

ﬁ(x,y,z,t)zu(x,t)—y@z (x,t)+zt9y(x,t) (100)

V(x,t)zv(x,t) W(x,t)zw(x,t) (10B,y)

OepOVTOG HKPEG TOPAUOPPDOGEIS KOL OTL TO VAKO TNG 00KoV &ival opoyevég,
160TPOTTO, GLVEXES KOL YPOUUIKG EAOGTIKO, 01 GLVIGTMGES Tov 2°” TavvoTh tdomg Piola-
Kirchhoff didovtar cuvapticel tov tapopopedcemy Green amd 10 YEVIKELUEVO VOLO
tov Hooke. Ev cuveyeia, epapuolovtag v apyn tov Hamilton ce olMkn dtotdmwon
Lagrange mpokOmTOULV Ol KLplOPYES OPOPIKEG €EICADGELS KAOOMKNG OLVOUIKNG
1GOPPOTLOG TOV GLGTNIATOG, Ol OTTO1EG EKPPALOVTOL MG

r.n

PAi—EA(u" +ww' +V'V")+ k= p, (110)
pAT —(NV) =G4, (v" - ez')+ Py =p, PLO.—ELO~GA,(V=0.)=m. (11By)
pAv'\'/—(Nw’)' - GA, (w"+0y')+ Ds: =P plyéy —Elyﬁy" +GAZ(W,+9y):my (118,¢)

OOV () SLUPBOAILEL TV TAPAYWYO MG TPOG TN YPOVIKN LETOPANTN ¢ .

Yvvovalovtag Tic e€lomoetg (11B,y) ko (116,8) yio v amorolpr TV YOVIOV
GTPOPNG KOl OYVOOVTIOG TIC TAPOAYADYOLS TETOPTNG TAEEMS MG TPOG TO YPOVO ¢,
TPOKVTTOVV Ol TPELS SUPOPIKEG EEICMGELS 160ppoTiag TG dokov Timoshenko emi pun

YPOLUKOD £0GPOVS VLO AEOVIKT), EYKAPOLN KO KOUTTIKY POPTICT (G

pAii— EA(u" + w'w' + V") + ki = p, (120)
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. " r EI n" azv " "
PAV+El v —(Nv) +psy+G—AZy[(Nv) _pAGx_Z_psy +p, j_

' (12B)

_ Gzii_plz 0% (W) S

z axz GAy at2 sy y y z

.. " n EIJ/ n" 82W " "
pAW+ EL,w —(Nw) +pSZ+G—AZ (Nw) _pAax_Z_psz +p," |-

(12y)

- pl &’ ply | o7 (Nw')
Yo’ GA, or’

—p AV =P+ p, |=p,+m),

Ot avtiotolyeg ypovikd peTafaridpeves Guvoplakég cLuvONKeg ota. AKpo NG 00KOV

x =0,] dwrtvn®vovTal e TNV aKOA0LVON YEVIKT Lopon

au(x,t)+a,N(xt)=a3 (13a)
ﬂ]v(x,t)+,82Vy (x,t) = [ BIHZ (x,t)+,§2MZ (x,t) = ,33 (13B,y)
yw(x.t)+y, V. (x.t)=7;3 710, (x.0)+ 7> M, (x,t) =73 (133,¢)

Evo amd v epappoyn g apyns tov Hamilton mpokdmtouy Kot ot ovTicTol e apyikég
ouvOnkeg (x € (0, / )) OTIG OTOLEC VITOKEVTOL 1] OOKOG

w(x0)=Ty(x)  i(x0)=i(x) (140

v(x,0)=v)(x) (x0)=Vy(x) w(x0)=w(x) Ww(x0)=wy(x) (14y-0)

Ta evtotkd peyédn mov ovomTTUGGOVTOL OTN OlOTOUN OTNV TOPUUOPPOUEVT

KATAOTOGO KOl 01 6TPOPEG AMOY® KApyMS 6idovtat and Tig akoAovbes oyéoelg

’ m E[z I n” av 4 ' 2
V,=NVv'—Ely ey (W) —pA@—x+py —psy}-plﬁz (15a)
y L
' " EL, T A\ ow ' ' A
V.=Nw—El,w _G_Ay (Nw) —pAaerz —psz}—plyﬁy (15B)
z L
L ELT,
M, =EIlyv +GA (Nv) —pAV+p, — py, (15y)

y
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" E]y Y ..
M, =—Elw ——[(Nw) — pAV+ p, —pSZ:| (155)
GA,

El ow " i ..
g, =—-2 A——(Nw') =p. +p., |-——(EI.W"+ pI 0, +GAW 15¢
v GZAZZ('D o (W) = p; psyj GAZ( oW PO z ) (15¢)

EI " ov b ..

0. = = M) —pA—+p' —p'_ |+——(EIV"— pl 0. +GA V' 15

z GZAyZ (( ) ,D ax py pszj GA ( z ,D z7z y ) ( C_>)

Y

H oplBuntikn enilvon 1ov  memheypévov  mPOPANUOTOS  OPYIKOV  TIUOV
emtuyydveral pe ) Pondeia g pebosov Avaroywkng E&icmong (Katsikadelis 1994,
2002). To dbotnua. TS S0KOV (0,1) dwupeiton 6e L otoyeion Kot 1 €QAPUOYT TNG

puefodov 0dnyel ot HOPP®OT EVOC UN YPOUUIKOV cLuotiHotog 3L+ 20 d0poptKdv-
aryefpikov eEiowcewv (DAE) g mpog 3L+20 ayvodotovg, to omoio umopel va

EKPPOCTEL GE TUTIKN HOPPT] KO MG

Md+Cd+Kd+f"=f (16)

omov M 10 yevikevpévo puntpoo palag, C to yevikevpévo puntpoo ondsPfeone, K 10

YEVIKEVUEVO  UNTPOO  oTIPapOTNTOC, YEVIKEDUEVO U YPOUUIKO  UNTPDO
otfapdmrag Kot f TO YEVIKELUEVO PNTP®OO GTHAN @OpTione. [a v apBuntikn
EMIALGN TOL UM YPOUUKOD GLUGTILOTOS JOPOPIKOV-0AYERPIK®V EEICDCEDV UTOPEL VoL
epappootel gite pa ek towv Newmark-beta peodwv 6 GuVOLAGUO LE (oL [ YPOUULKT
enovoinmtiky Sudwcacio (Newton Raphson, Modified Newton Raphson, Arc-Length),
elte va ypnowomomBei n péBodoc Petzold—Gear ool ecoyBoldv 16apBuec véeg
petafAntés wote va pewwbel n tdén tov mpoPAnuatog apyikdv Tuav (ind =1).
EvoAlloxktikd 10 mpoPAnua mov popeovetor omd T e€lomoelg (11) won (13,14)
emAvOnke pe ™ pébodo Iedakdv Zuvoplakmv Xtoyeudv (Domain-BEM). Xto Xy. 3,
TaPoLGLAleTal TO JUUYPOUUUO PONG TOL UM YPOLUKOD EMOVUANTTIKOL oAyopifuov
eniAvong Tov TpoPANHLaTOG.

Me Bdon v avamtvyBeica avalvtiky Ko aplOuntikny dadikacio, cuvtiydnke
TPOYPULLO NAEKTPOVIKOV DITOAOYLOTY) G VITOAOYIGTIKO TtepPaiiov Fortran 90/95 pe
Bonbe tov omoiov peAeTHONKOV OVIUTPOCOTELTIKA TOPASEIYHOTA HE TPOUKTIKO
EVOLIPEPOV, TPOKEWEVOL Vo OmoTOOel 1 OMOTEAEGUOTIKOTNTO Kol TO €VPOG

EPOPLOYNG TNG TPOTEWVOUEVNG HeBOdov. H akpifela tov aplOuntikdv amotehespiTov
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elEyyeTal, OmMov €ivol eQIKTO, HE VIAPYOVOES AVOAVTIKEG Kol aplOunTikég AOGELS, VD
TAPOAANAQ SIEPELVATAL 1] ETPPON TNG YEOUETPIKNG UM YPOLLLKOTNTOS, TNG OLOTUNTIKNG
TAPOUOPPMONG KOOMDS Kot TG £60PIKNG TPOCOUOI®MONG OTN SVVOLIKY ATOKPIOoT TOV
GLGTNUATOG OAANAETIOpaCTS doKOV — £ddpovc. EmumAéov, mpokepévou va depevvn el
N a&lomortio TG TpoteEvOueEVN g neBodoroyiag, Ta AneBEvTa aptBunTiKd amroteléouata
cLYKpivovTo HE AVTE TOV TPOKVTTOVV OO TPOGOUOIDUATO GTEPEDV (EEAEOPIKADV) Kol

KEAVQPOTOV (TETPATAEVPIKADV) TETEPAGUEVMOV GTOLYEIWDV.

( Start

Data
Beam-Foundation
Load history

v

Cross Sectional Analysis
BEM Shear Deformation
Coefficients

v

Newmark-beta Method Petzold Gear Method
4‘ Global Analysis ’7

Y 4

4—
‘ Increment m ¢ ‘ Increment m ‘

| . x
4 Y ‘ Compute AEM matrices B*, B
v
Compute AEM matrices B", B ¢ ;
Compute general matrices & e
¢ general vectors
MG K K, & f
Compute general matrices & ¢

general vectors
Ma C, Ks Knl &f

v

Initial conditions d;(0,x)

i+1

Next Increment m =m-+1

5 Modified Newton Raphson lteration i ‘

ki Increment fictitious load cratont

Q

= Aq; L v |
% + DAE

5 i

Zz

v

introduce new variables to
reduce the order of the system

v

Equivalent System

YES ¢

L S Petzold Gear Method

Next Increment m =m+1

Total fictitious load ¢;:,=¢:t4q;
Total displacement components
Axial force in each nodal point

Next Iteration i

NO

YES

NO NO

End End

2y. 3. Awaypopo. pong tov EXOVOINTTIKOD 0AYopiOuov tov Tpofiuatos eLooTIKNG
OVVOLIKNG OTOKPLONG GVOTHUATOS OAANAETIOPATHS OOKOD — EOGPOVG.

XVi
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Q¢ avTUPOCSOTEVTIKN APOUNTIKY] EQAPLOYT, LEAETHONKE QUEITOKTY d0KOG L KOVG
[=4.9m, xoiAng opBoywvikng owroung (£ =210GPa,v=0.3,p= 7.85tn/m3 ) 1
omoio edpdletan emi EAAOTIKOV €0GPOVG. XT0 Xy. 4 TapovslaleTon 1 ypovoicTopio TNG

EYKAPOL0G UETATOTIONG w(l/ 2) OV KEVTPOL Phpovg ¢ pecaiog dtatopng g dokov

OV TPOKVTTEL LE EPAPLLOYT] YPOUUIKNG 1) U1 YPOLUKNG avaAivong Aapfavovtog vedym
N AyVo®VTAG TN SOTUNTIKY TOPAUOpO®ON.

[Mopatnpeitar 611, AOym déopevong e aovikng HeTakivnong ota dVO AKPo TG
d0KOV, OVATTOGGOVTOL CTUOVTIKEC EQPEAKVOTIKES OLVAUELS Ol OTOIEG OTOUEUDVOLY TO
BéAn ka1 to ypdvo TOAGVI®ONG TOL TPOKOaAEL M eEmTEPKN QOpTIoT. Avtifeta, TO
QOVOUEVO TNG JTUNTIKNG TOPAUOPO®ONG TPOKAAEL aOENGT TOGO OTIC UETOTOTIGELS

0G0 Kot GTO ¥POVO TAALVIMGNG TOV TPMOTOV KVKAOL Kiviiong g 60Kov.

0.4 5
fQ s,
0.35 . 4 ;
0.3
%0251 A
32 > /8N
= 024
£
8 0.15 1
<
B 0.1
-5 .
0.05
0 #
‘005 Ll Ll Ll Ll Ll Ll 1 1
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
Time (sec)
Linear Analysis Nonlinear Analysis
Without Shear Deformation ——————Without Shear Deformation

& - =O--- With Shear Deformation [3 =FEl= <41 With Shear Deformation

2x. 4. Xpovoiotopio puetaxivyons tov kEVIipov Lapoug e UEGOIOS JLOTOUNS THS OOKOD
el elootikod godpoug k, =645kPa .

Emumiéov, mpoxkeywévov va diepeuvnbel M emppor] TG  YEOUETPIKNAG N
YPOUUKOTNTOS KOOMG Kot NG SWTUNTIKNG TOPALOpO®oNS, HeietnOnke mdocorog
unkovg [ =8m , xoiing xukhkng oatoung (£ =210GPa,v=0.3,p= 7.85tn/m3 ). Ta
YEOUETPIKA YOPOKTNPIOTIKE TNG SLTOUNG, 1) SVGKOUYiC TOL £60PIKOD LEGOL KAOMG Kot

N eOpTIoN TG KEQOANG TOL TOccOAoL amewoviCovior oto Xy. 5. Meletdton n

KATAOTOON TPMTELOVIOS GLVIOVIGHOD TOV TAGGAAOVL KATé TNV Omoio ookeitol

Xvii
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eEoTePKd EMPAAAOUEVT] GUYKEVTPOUEVT TLUTOVOELONG EYKAPGIOL POPTIGT GTO KEVIPOL

Bapovg g KEPUANG TOV TAGGAAOVL.

P
| 0 100 200
D = 80cm
a,=2.226
2,=2.226 0.8m
P, (KN}
K.y (MPa)
500 p——mmmmm@@@ 4
X —
Il
0
0.0 Time (sec) 5
P, (KN) \
O \/v
0.0 Time {sec)
N
N

2x.5. [laoo0A0g K0IANG KOKAIKNG OLOTOUNG EUTNYVDOUEVOS GE OVOUOLOYEVES EDOPOG.

210 Xy. 6 mopovcialeTal | ypovoicTopia TNG EYKAPOLING UETATOTIONG w(l/ 2) TOV

KEVTPOL PApovg TG KEPOANG TOV TOAGGAAOL TOV TPOKVTTEL UE EPAPLOYT YPOUMKNG 1
N YPOUUKNAG avdAivong Aapupdvovtag vroyn  datuntikn mopapdpemon. Onwg
avapevoTay, HOVO GTY YPOUUIKY] OVOADOT M €YKAPOl0. HETATOTION OLEAvVETAL e TO
xp6vo (cvvtoviopdg). To dlakpdTNHE TOV TOPATNPEITOL OTN YPOVIKT OOKPIGN TNG 1N
YPOUUKNG avdAlvong umopel va e€nynbel amd 1o yeyovog 0Tl o1 peydAeg €YKAPGLES
petatonicels avédvouv T OepeAddn  1d106VXVOTNTA TOV TOGGAAOV. XUVETMG,
TPOKOAEITAL  OTOGUVTOVIGHOG HETAED TG YPOVIKA peTafaAilopevng Oepeddovg
W010oLVYVOTNTOG Kol TG oTabepng dieyeipovoag cuyvotntag Tov e€mTEPKoD Qoptiov.
A@o¥ 1 petotdmion AapPdvel ™ péylot T e, To €0POG TG TOAGVTMONG LELOVETOL
HE OMOTEAEGHO. VO TPOKOAEITOL Kol TOAL GUVTOVIGHOG AOY® OVTIGTPOPNG TOL
TPOUVUPEPOEVTOG UNYOVIGHLOV.

Emunpdobeta, oto Xy. 7 mopovoidletar n eykdpoio. LETATOMION KOTA UNKOG TOL
TaccdAov T xpovikn otiyun ¢t =0.04sec TOV TPOKVTTEL LE EQAPUOYT] YPOUUIKNAG 1] N
YPOLLIKNG avAALONG AdpPAvovTog VITOYN 1 oyvo®VTOG T STUNTIKY TAPOUOPPOOT).
Ao 10 oYU JUMIGTAOVETOL OTL 1] EMXPPON TOGO TNG YEMUETPIKNG UM YPOLUIKOTNTOG
0G0 Kol TNG SWTUNTIKNG TOPALOPPMOONG €lval ONUOVTIKY Kot TPENEL Vo AapPdvetan

VITOYT GTI SLVOUIKT] VAAVOT).
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< <
S (=]
(=] \S] 5
4 1 1

Displacement w at pile-head (m)
S
o
1

-0.04 1

With Shear Deformation !

Beating phenomeno

Nonlinear Analysis q
©®—0—0 Linear Analysis /10 (i),

Resonance/

-0.06
0

0.1 0.15 0.2 0.25 0.3 0.35
Time (sec)

2x. 6. Xpovoioropio eykOpo1oS UETOTOTIONS THS KEPAANS TOD TOCGAAOD.

’
Initial position /IZ| ﬁz
j

Nonlinear Analysis
--------- Without Shear Deformation

[# - El- 41 With Shear Deformation

Linear Analysis
Without Shear Deformation

&= % - © With Shear Deformation

-0.01 -0.02 -0.03 -0.04 -0.05
Displacement (m)

2x. 7. Eykdpoio petotomion koo, unKkog tov mooodlov t ypovikn otiyun t = 0.04 sec .

Ev ovveyeia, €ovtag emainBedoet v a&omotio g pebdoov, 10 mpotevoeEVO
TPOCOUOI®UO dOKOV €PAPUOGTNKE OTN UEAETN OLVOUIKNG OmOKPIONG CLGTHHOTOG
€00QoVc-taccdAov-Katackevng (soil-pile-structure interaction) vid tpeig e€etaldpeveg
CEICIIKEG OlEYEPOELS. ZVYKEKPUEVE UEAETNOMKAY TO  EMTOYVVOLOYPAPTLOTO  TOV
celopov tov Atyiov (1995), e Agvkdodag (2003) kabmg kot Tov Kobe, lanwvia (1995).

H avdivon tov ovotmiuotog emttuyydvetalr o€ 600 dodoyikd otadio. Apyika

TPUYLOTOTOEITOL OVEAOGTIKY] W1 YPOLLIKT OVOAVLCT] NG AmOKPIONG TOV €J0(QLKOD

XiX
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GYNMOTICUOD OUEADVTAG TNV TopoLGio NG OepeAimong Kol ot GLVEYEWD OLVOLUKN
av@ALGY TOL GLGTHUATOS EJAPOVG-TOCCAAOV-KATAGKELNG, AopBdvoviag vroyn 1
YEOUETPIKN UM YPOUUKOTNTO, TN SOTUNTIKY TOPAUOPO®GCT) KOOMG KoL TV KIVILOTIKNY
Kot adpavelokn oAAnienidpaon. [a v tpocopoiwon ™G pUn YPOUMKNG OVEALGTIKTG
CLUTEPLPOPAS TOV €00PIKOL GYNUATIOHOD Ypnotpomomonke o vPpdkny odTaén
ghatnpiov Kot arocPestipwy.

>10 Xy. 8 mopovctdleTal 1 ypovoioTopio EMLTAYVVONG TNG KEPAUANS TOV TOCTAAOL
pe Paon to amoteAéopaTe TOL EANPONGOV OmO TNV EQPAPUOYN TNG TPOTEWVOLEVNG
pebddov. 1o 1610 oynpa Tapovstdloviol ETIoNG TO ATOTEAECUATO TOV TPOEKLYOV OO
TN AEMTOUEPY] TPOGOUOIOT TOV GULUGTNUATOS GE TPLGOACTATO TPOCOUOIMLLL
nenepoacpuévav otoryeiov. Tlapatnpeitor 6Tl Ta amoteAéopaTo TOPOVGIAloVY APLoTH

cLYKMON.

24 p

Deck Level Acceleration (g)

40 Ppresent Study - Linear
-3 4 y b ! &—6—# Present Study - Non Linear
v @ @ ® Beam-FE - OpenSees (2005)

-——~- 3-DFE - ABAQUS (2009)
'4 T T T T T T T T 1

4 6 8 10 12 14 16 18 20
Time (sec)

2x. 8. Xpovoiotopio emitdyvvens e KEPOLNS TOD TOGGOAOD Y10, TO GELTUOYPAPHUO. THS
Agvkaoog (2003).

IV. I'eopetpika Mn Ipoppikn Kot AveAaoTik)] Avdivon AoK@OV pe AlTunTIKES
Hopapopeoocers eni Mn I'poppikod Avehaotikov Edagovg

2 oLVEXELD JIEPELVATOL KO ETIAVETOL TO GTOTIKO TPOPANUO TNG YEOUETPIKA UN
YPOLUIKNG  OVEAUCTIKAG 0oVAALGNG O0KOU OWAG GUUUPETPIKNG OTOUNG, €ml  un
YPOUUIKOD oveAaoTikoD €dapovc. To vikd g O0okoh &ivor €A0CTOTANGTIKO e
100TponT KpAtvven. H 60kdg vToPdALeTon G€ TVXOVGO GUYKEVIPOUEVT] | KATAVEUNUEVT)

KOUTTIKT pOPTIoN KaBMG Kot GE TUYOV AEOVIKO POPTIO, EVA TO AKPO TNG VITOKELVTOL GTIG

XX



Extevrg [lepiinyn

TAEOV YEVIKEG GLVOPLOKES cLuvONKeS. H yeoUETpKY| tn YPOUUIKOTNTO KO 1) ETLPPON TOV
SWITUNTIKOV  TAPOUOPOOCE®Y AapUPAveTaol VIOYN OUOIMG UHE TNV TEPITTMOON NG
ehaoTikng avaivons. To €dapikd mpocopoiopa yopokTnpileTor amd U YPOUUKE
eratpra tomov Winkler kour amd ehatfpie tomov Pasternak, evd emiong &xet
wpocopotwbel  advvapio avainynme epelkvoTikOv tdoemv (tensionless foundation
models). Ot mAooTIKEG TAPALOPPAOGCES TPoodopilovial HECH TPOGOUOIDUATOS
Katovepmuévng  mhaotikomrag (distributed plasticity model), yvootd kot ®g
mpocopoiopo vov (fibre model) ypnoiponoldvTog TPIGOACTATEG KATACTUTIKEG GYECELS
(J2 plasticity). Ov oyéoelg avtég oAokAnpavovtar pe tn Pondelo amodoTikng
enovOANTTIKNG HeBOOOV. ZOppova pe v mpotevopevn péBodo popedvovtal PE
Bonbela TV OBewpidv eAACTIKOTNTOG KOU EAOGTOMANCTIKOTNTOG TEVTE TPOPANLOTOL
cuvoplok®v Tipdv. ITo ovykekpyéva, popedvovtor dVo OSd1dotato TPOPANLaTL
GUVOPLIKMOV TIUOV OVOPOPIKA UE TIG TOGIKES GLVOPTNGELS TOV OVAPEPOVTOL GTOVG
OLVTEAEOTEG dudtunong, ta omoio emthvovror pe tn Ponbela “oapryovs” MebBoodov
Yvvoplokadyv  Xtoyyeiwv. Emiong, popedvovtar tpia  povodidotato  mwpoPAnuarto
GUVOPLOKMOV TILOV OVOQOPIKE HE TNV OEOVIKN KOl TIS EYKAPOLES LETATOTICEL, TOV
emivovtor pe m Ponbeia g Iledwkng MebBddov Zvvoplakmv Xtoyeimv, o€
cuvovao O pe TV VPPN néBodo Powell yia v exidvon pun ypoppuk®y GuGTNHATOV
alyefpikov eflomoemv. H emilvon tov mPoPAUOTOC 0VTOV TPOYUOTOTOLEITOL OTO
mAoiclo TPoGaLENTIKOL - emavaAnTTiKoy oAyopiBpov mov Paciletor otn péBodo tov
eréyyov poptiov. Me v mpotevopevn apOuntikn péEBodo avtipetomiletal mMTUY®S
TO TPOPANLA TOV «SOTUNTIKOD KAEWODUOTOC).

[No ™ ponpotiky oatvmwon tov  mpoPAnuotoc, efetaletar  vBHypapun
TPIOCHOTIKY  00KOG pnkovg [/, SoToung Tuxdviog OuAG GULUUETPIKOD GYNIOTOG
amoTeELOVUEVT OO CLVEXEG, EAUGTOTANCTIKO VAIKO HE 100TPOT KPATUVOT|, HE HETPO
Kpétovong s wor epamtopevikd pétpo gractomioctikotntag £, (Xy. 9) yopig va
enpaviCer BAAPN Katd TV TAACGTIKOTOINGCY TOL, HE UETPO €AACTIKOTNTAG E, HETPO
ddtunong G ko tdon dwpponcoy,, T0 onoio katolapPdver v mepOy 2 TOL
emmédov yz. To ovvopo g draToung tov yopiov 2, givor tunuoatikd Aeglo, pmopel
oniadn va meprapPavel memepacuévo  aplBud  yoviov kot cvuPoriletor  pe

Fsz:OFj (j=12..K). H Sokog Beopeitor pepicdsg edpalopevn emi pn

YPOKOD avelaoTikoh eddpovg Tumov Pasternak, evd Aapfdvetol emiong vmoyn n un

ypoppukn emaen petasd g 0okov Kot Tov £dapikol pécov (interface nonlinearity).
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: Y0 € € e[;l
(o) )

2x. 9. Xyéon opBwv tacewv - TopouoppmoE®V (a) Kol GYEoH TAOHS OLOPPONS -
16000VOUNG TAACTIKNG TOpooppmong (b).

Yio0etdvtag 1o medio petaromicemv tvyaiov onueiov e dtotopng AapPavovtag
VIOYT TN STUNTIKY TOPOUOPP®S (€€, 2) Kol BE@POVTOG HKPES TUPALOPPADCELS, Ol
ocwviotwoeg tov 2% tavvoty taong Piola-Kirchhoff didovior cuvapticel Tov

TOPOUOPPAOCEMY KOl TAAGTIKAOV TOPaUopPmcewv Green wg

o _pldu(x) do.(x) _d0,(x) 1 [dv(x)j2+[dw_()c)J2 ot | a7

dx XX

/ dW(.X') /
SxyzG dx _ez(x)—ﬂffy} szzG{ dx +9y(x)_7fz (17B>Y)

omov pe tov ekBét pl cvpPorileTor To TAAGTIKO HEPOS TMOV GLVIGTOGMOV TOV TAVLGTY|
TOPOUOpP®oNG. g KpLTnplo dlappong ypnoyLonoteital n cuvéptnon von Mises (yield
function, J2 plasticity)

JS2+3AY2+S2)

p!
Oy (geq )

—1<0 (18)

OOV (gpql ) glvar n oAk1| 16odvvaun TAactikn Topapdpemon (total equivalent plastic

strain).
AVTiKa1oTOVTAG TIC EKPPAGELS TOV TACEMYV GLUVOPTNGEL TOV KIVIUATIKOV HEYEODV

GTOVG OPIGLOVG TMV EVIATIKAOV PEYEB®V TPoKOTTTOLV 01 aKOAOVOES EKPPATELS
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_ A2 2 ol g A2 2 pl
N—EA{M +5(V +w )}—Ej'ggxdi—EA[u+2(v +w )}+N (190)
NP

Q. = GA, (w'(x)+6,(x) )-G[ , yHdd =G4, (w'(x)+6,(x) )+ O (19B)

pl
z

0, = GA, (v'(x)=0.(x) )=GJ  yhdA=GA,(v'(x)-06.(x) ) + Of (19y)

' [ ' [
M, = EIL0,~E[, zeldd = EI,0,+M? (195)
[
My

M, =EI0,-E[,yelidd= EI.0, + M} (19)
[ ——

MP

omov e NP PLoP ) MP ko Mfl ocvuPoriletar 0 mAOOTIKO HEPOC TMV

avTioTolY MV eviatikov peyebaov. Ev ouvveyeia, epapupoloviag v Apyn Avvatov
‘Epyov og olkn dSwrtdnwon Lagrange mpoxdmtovv ot Sapopikés €EI0AGELS TOV

TEPLYPAPOVV TNV KOOOAIKT 1GOPPOTIO TOV GUGTHUATOG, Ol OTO1EG EKPPALOVTOL WG

NP

ox

EA(u"+ vV +w'w")+ =-p, (20a)

I o\ d(Npr,) 09 51
EAKu’-i—E(V’ +w' )jv} +T+GAy(v'—l92) + o - Py =-p, (20B)

' pl_ s
EAKu%é(vd +w’2)jw} +M+ GAZ(W,+(9y)’ + 00! -p,=-p, (20y)

dx ox
dm? .
ELO, +— 2=~ GA, (w+6,)-0 =-m, (208)
pl
ELO" + % +GA, (V' -0.)+ 0l =-m, (20¢)
X

EvoAhoktikd ot Tapamdve eEI0MGELS YPAPOVTAL GE OPOVS EVIOTIKMV HEYEDDV MG
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d(Nel +Npl) dN
=—p =D>—=- 2la
o Py =" "= Px (21a)
d(Nv') de d (Nw') do
rn o P =Py - Je P TP (21B,y)
am M
Y _ =—m Z —+ = — 218,8
5 0, y T 0, =-m, ( )

Amo v epapuoyn ™e Apyng Avvatov ‘Epyov emiong mpokdmTouv ot avticToryes
oLuVoplaKEG oLVONKES ot dKpo TG dokov x =0,/ ol omoieg OlATLITOVOVTOL PE TNV

akOAOVON YEVIKY HopeN

au(x)+a,Ny(x)=a; (22a)
B (x)+ BV (x)= Bs  Bib. (x)+ BoaM,. (x) = Bs (22B.y)
yw(x)+ 75V (x) =73 710, (x)+7:My, (x)=7; (223,¢)

onov Vy,, Vp, etvan ot ohikég tépvovoeg ko My, , My, ot oMkég pomég, kot divovtat

amo T oKOAoLOEG oYETELS

Vi = EA[u '+ é(\/z +w? )}v + NPV +GA, (v - 6,)+OF (230)
V,, = EA [u "+ é(v’z +w'? )}w% NPW +GA, (w’ + Gy)+ o (23B)
My, = ELG, + MY’ M, =EI0 +MP (23y,8)

H oapBuntikny emnilvon tov memdeypévov mPoPANUATOS GLVOPLOKADV  TIUDV
emroyydveror pe ™ Pondewa g Iledwokng Mebddov Zvvoprokmv Ztoyeiov. To
dloTn o TG S0KoV (0,1 ) dwupeitan og L ypoppkd ototyeio (Zy. 10) kot n epoppoyn
™G neBOdov odnyel 6N LOPPWSN VO U YPOUUIKOD GUOTAHOTOS 7L + 23 alyefpikadv

e€looEMV, TO 0TOl0 EKPPALETAL GE TLTIKNY LOPPON ®G
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i element j: linear element assumption Ei shape functions: N;, N, '
i Approximation of f(x) within element j: :E N x=&i g N x=&ig
' . wiVp=1- Ny = i
S ()= N () + N2 (f)y ! SjTel ST

[K(d) [{d} = {Bexs} +{bpi ()] (24)

oMoV {d } TO YEVIKELUEVO UNTPADOO GTNAN GYVOGT®V TOCOTHTOV, [K ] TO YEVIKELUEVO

untpmo oTifopdtrag, {bpl} TO YEVIKELUEVO TAOCTIKO UNTPOO GTHAN Kot {bext}ro

YEVIKELUEVO YVOOTO UNTP®O GTHAN @options. o v aplBuntikny emilvon tov pn
YPOUUKOD GLOTHUOTOG OAYERPIK®OV €EI0MCEWV EQOPUOCTNKE 1N VPP HEHO0SOG
enthvong Powell (1977, 1985). Zto Xyx. 11, mapovcialetal 1o SiypopLio. pong Tov Un
YPOUUKOD TPOGOVENTIKOV - EXOVOANTTIKOD aAyopiBov ETIAVGNC TOV TPOPANUATOC.
Me Bdon v avamtvyBeica avolvtiky] Kot aplBuntikny oadikacio, cuvtaydnke
TPOYPOUULO NAEKTPOVIKOD DITOAOYLIOTY) G VITOAOYIGTIKO TtepIBaiiov Fortran 90/95 pe
Bonbew tov omoiov peAeTHONKOV OVITPOCOTELTIKA ToPAdElyHOTA HE TPUKTIKO
EVOLAPEPOV, TPOKEUEVOL Vo OlamIoTOOEl 1 OMOTEAEGUOTIKOTNTO Kol TO €0POG
EQOPUOYNG NG TpotevOpevng nebodov. H axpifela tov apluntikdv onotehespitov
e éyyetal, Omov elvar €QIKTO, HE VTAPYOVGES APOUNTIKEG AVGEIS KOl TELPOUOTIKE
dgdopéva, eved mopdAANA dlepeuvatal 1 ETPPON NG UN YPOUUKOTNTOG VAIKOV Ko
YEOUETPIOG, TNG STUNTIKNG TOPAUOPO®ONG KOOMG Kol TS E00PIKNG TPOGOUOIMOoNG
OTNV OVEANGTIKY] OTOKPIGN TOL GULGTNHUOTOS OAANAEMIOPOCNS OOKOL — €JAPOVG.
Emumiéov, mpokepévou va diepevvnBel n aflomotio g mpotewvouevng pebodoroyiog,
o ANEeOEVTA aplBuNTIKG OTOTEAEGHOTO GLYKPIVOVTOL LLE OLTE TTOL TPOKLITOVV OO
TPOCOUOIOHOTO  oTepe®V  (e€aedpKdV) KOl KEAQOTOV  (TETPATAELPIKDV)

TEMEPACUEVAOV GTOLYEIMV.
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Start

Beam/Foundation
Inelastic Data

7

Cross Sectional Analysis
BEM Shear Deformation

Coefficients
A4
\ Global Analysis
v
‘ Increment m / Initialization }4

v

Loop over Foundation
Convergence

Generalized unknown vector
Elastic Prediction

v

| Cross Section i

v
| Cell / Gauss Points k

[1XN

w

door] uonEpuNO { 1IXaN.
[+u:

Von Mises
Criterion

»
'

1 OIS SSOI) IXAN

SN0 SSNBD) IXAN

[+1

Plastic flow rule
loading/unloading
Cutting plane
I

v

Powell’s hybrid algorithm
Solve the Nonlinear System

v
Total kinematic components
Total Stress resultants
Foundation reaction

Foundation
Convergence

LPrint Final Total ResultsJ
R AN

‘Goal Load

End

2x. 11. Midypouuo pons tov mpooavintikod - EXOAVOAINTTIKOD aAyopiuov yio. v
OVEAQOTIKY OTOKPIOH COOTHUOTOS OAANAETIOPOOHS OOKOD — EDCPOVG.

Q¢ avVTITPOCSHOTEVTIKY APOUNTIKY] EQAPLOYT, LEAETNONKE LOVOTOKTN OOKOG UIKOVG
[=6m, ovumayodg opboyovikig Owtopng 60 x 30cm? (E=32318.4MPa,
oy =20 MN, / m’ ) N omoio €dpdletan eml un YPOUUIKOD OVELAGTIKOV €0GPOVE Kot

KaTamoveitol omd opoldpopeo Katoveunpévo goptio oto tunue 0 < x < 3m.
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>10 Xyx. 12 mapovcialeton  katavoun Tov opfdv TacE®V KOTA UKOS TG 00K0D
vy dtdpopa othd. POpPTIoNG, He Pdon Ta amoteléouata mov eAN@Oncov amd v
EPOPUOYN NG TpoTEVOUEVNG HeBOdoV. Xto 1010 oynuo mapovstaloviol emiong To
AMOTEAECLLATO. TOV TTPOEKLYOV OO TN AEMTOUEPT TPOGOUOIMGN TOV GLGTNUOATOS GE
TPIGOACTATO  TTPOCOUOIOUe  TEmepacUEveY  otolyeimv. Tlapoammpeitor o611 100

amoteAéopato Topovctdlovy aplotn cOyKALo.

"Exovtag emainbevcel v aglomiotio g peBOdov, TO TPOTEWVOUEVO TPOGOUOIMLLNL
00KOU €QPAPUOGTNKE YLOL TNV EKTEVI] CUYKPION UE Uio GEPE TEPUUATOV HLOVOTOVIKMG
QOPTILOHEVAOV HEHOVOUEVOV TOCCHA®Y G€ ENp1| Ao vd pomn kot oplovtia dvvaun
¢w¢ v aotoyio (Push-Over Tests) ta onoia deEnydncav oto Epyactipio Avvapikng /
Edagounyavikng tov EBvikod MetooPiov Tlodvteyveiov. 1o Xy. 13 mapovsidlovion ta
OTOTEAECUATO TTOL EAMPONGOV amd TNV €QPOPUOYN TNG TPOTEWVOUEVNG UeBOdOL Kot
GLYKPIVOVTOL PE OVTA TOV TPOKVTTOLV OO TNV TEPOUATIKY] SLdIKAGIo KoM Kol amd
TN AEMTOUEPY] TPOCOUOIMOT] GE TPIGOIUGTATO TPOGOUOIMUO TEXEPACUEVOV CTOLYEIWV.

[Mopatnpeitar 6T1 0 amoteléopato Tapovctdlovy TOAD KaAr GUYKALO.

V. Teoperpika Mn I'poppikn] ko Avehootikny Avvopikny Avaivon XoeTnpdtov
Alreniopaong Aokov — Eda@ovg

2 ovvéreln OlEpeLVATOL KOl EMAVETOL TO OLVOLIKO TPOPANUO TNG YEOUETPIKO U
YPOLMIKNG  OVEAUCTIKNG 0oVAALGONG O0KOU OWAG GUUUETPIKNG OOTOUNG, €ml  un
YPOUUIKOD OVEAAGTIKOD €AACTIKOV €0Gpovs. H dokdg vmoPdiieton oe cuvovacud
QOPTIcEDV ATd TUYOV GLYKEVIPMUEVO 1) KOTAVEUNUEVO duvapkd aovikd Kol eyKapclo
eoptio (opowa pe v moapdypago III), evd vmokertonr oTlg TALOV YEVIKEG YPOVIKA
eEaptdpeves cuvoplokes cuvinkes. H yeopetpikn un ypoppuikdtto Aapfavetot veoyn
oe olMkn dSwrdmwon Lagrange péocm g Bempiog peydAov HETATOTICEWV - HKPAOV
napopopeocemy. To votepnTikd mpocopoiopa tomov Bouc-Wen viobeteitor yuo va
TEPLYPAYEL TNV OVEANCTIKT] CULUTEPIPOPE TV €0QIKMOV gAatnpiwv. O1 TAACTIKES
TOUPOULOPPOCELG npocdtopilovton pHEc® TPOGOLOIDOTOG KOTOVEUNUEVIG
mhaotikotntog (distributed plasticity model), yvootd kol wg tpocopoiopa vav (fibre
model) ypnoyonoidvtag To voTeEPNTIKO Tpocopoimpa Tomov Sivaselvan and Reinhorn.

Ot oyéoelc avtéc ohokAnpdvovtal pe T fondeto amodoTIKNG - EXAVIANTTIKNG HeBddoL.
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Normal Stress Distribution (MPa) for Distributed Load 220kN/m

_ Present Study 20
E
=
5
(=)
3 4 5 6
Length (m)
- )
Deformed FEM 3-D Solid Model (NX Nastran 2007)
Normal Stress Distribution (MPa) for Distributed Load 290kN/m
Present Study

E
<
&
a

3
Length (m)

B

> Deformed FEM 3-D Solid Model (NX Nastran 2007)

2y. 12. Kotavoun twv opbwv tdoewv katd unkog tje 00koD yio Olapopa. oTaola.

POopTIoNG.
g 501
€
a Pylt = 43.30kg g =\— -
2 A \
E 40 1 .
= Pult=44.22
5 ult g >
2 Pylt =45.55kg  Load (kg
% 30 Pylt = 44.72kg
,.<D e=32cm
g
Q Al
Q
© 20
<
% 60 cm
9 Proposed Beam Model
g 10+ &—6—=< Experimental Results 1
= . Longstone
= ®—@—® Experimental Results 2 Sand
ot
flé — — — 3-DFEM - ABAQUS i
—
0 L) L) L) L) L)
0 0.01 0.02 0.03 0.04 0.05 0.06

Lateral Displacement (m) at Ground Surface

2x. 13. KoumdAn poptiov-uetatonions otny kepain tov macoaiov.
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XOppova pe v mpotevopevn pébodo popedvovtarl pe  Ponbeia g Bewpiog
EMICTOTANGTIKOTNTAG TPl LOVOSLIGTATA TPOPANLOTO GUVOPLUK®V TIUOV OVOPOPIKE
pe v a&ovikn Kol T €YKOPGIES UETATOMIGEIS, OV emiAvovtal pe T Pondeia g
MebB6dov Avoroywkng E&lcmong, oe cuvovacpd pe v pebodo Petzold—Gear yua v
EMIALGN U1 YPOULUKOV GUGTNUATOV S10POPIKOV-0AYEPPIKOV EEICDCEMV.

[No ™ pobnupotiky owtvmmwon tov mpoPinuotoc, efetdletor  gvBHYpapun
TPICUOTIKY OOKOC LE YEOMUETPIKA YOPOUKTNPIOTIKA OO0 HE OVTO TNG TPONYOVUEVNS
napoypapov. H edapikn oviidpoaon ent g dokolh oidetor omd TIC VOTEPNTIKES

EKQPACELG duvauNc-peTatdmiong Tomov Bouc-Wen, wg

h h
Py = asykyv+(1—asy)kyzsy Ko Psz = aSZkaJr(]—aSZ)kZzSZ (25)
OmMov Py, Py, EVOL OL BUVAES TV ELaTNpioV, ky , k. etvar m apyxn Svokopyio,

, . , , , h _h
ag,, dg; €lvon 0L AOYoL TG UETELUGTIKAG TPOG TNV EAAOTIKY Suokopyio Ko Zg,, Zg

elvatl 10 voTEPNTIKO TUNUO TNG TPOYUOATIKNAG UETATOMIONG OTIS y KOl z O1eLVBvvoelg,

avtictoyo kot Tpocdopifovrat and Tic votepnTikés e€lomaelc Bouc-Wen, mg

h n
z
z'fy (zfy,\'/) = 1-|— sy (,3 + ysign (zfy\'/)) v (26a)
Zsy_Yield
I n
. . zg, . e
zh (zfz,w) = 1-|5* (ﬁ + yszgn(zfzw)) W (26B)
Zsz_Yield

H dokdg vrofdrietar oe cuvdvacpd @opticewv omd TLXOV GLYKEVIPOUEVO M

Kotovepnpuévo duvapkd agovikd goptio p, (x,t), YPOVIKG €E0PTOUEVO €YKAPGLO
poptio p,(x.1), p,(x,1) kabdg kor kopmwtiky eoption my, (x,t), m, (x,t).

Yobetovtag 1o medio petotomicemv tuyaiov onueiov g Swtoung (e€. 10)
ayvoovtag T oTunTikn mapopdpemon (Bewpia dokov Euler-Bernoulli), Bewpdvtog
UIKPEC TOPAUOPPADGEIS KOl YPNCUYLOTOUDVTIOG TO (PULVOUEVOLOYIKO TPOCOUOIMU TV
Sivaselvan and Reinhorn (2003), n cuvictdoa tov 2°° tavvot tdong Piola-Kirchhoff

dtdeTan ouvapTioEl TG Topapdpewons Green Kot TG VOTEPNTIKNG TUPAUOPPDCEDY MG
(Zyx. 14)
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‘ Stres$
S“] = aESXX Exx
AL
oFE
Ovo /
= (1-woxo

S"= (1-a)Ez" L .
M E) ach aGYO(Sxx/SYO)
) &vo Exx Strain

2x. 14. Yorepnuiko mpooouoiowuo Bouc-Wen (a) ayéon opOng téons mopopoppwaons (P).
S =aS%+(1-a)S" =aEe,, +(1-a) EZ" 27)

omov ST, S” elvan to €looTikd ko To voTEPNTIKO PEPOC TNG Thong, avtiotorya. To

XX 2
VOTEPNTIKO LEPOG eEEMTGETOL GTO YPOVO GOUP®VA LLE TNV LOTEPNTIKY e&icwon Bouc-
Wen (Casciati 1995), o¢

(" b )= B = E(1-Iyhy) &, (28)

e h; =HcD(Sh)+IHn Kot =,B+;/Sign(Shé‘xx) (29)

omov DP=@, = Sﬁx / 0'5 (gfql ) —1<0 elvor o amAomomuévn  EKQPOCT NG

cuvaptnong von Mises Kot amoTeAEL TO KPLTNPLO O1apPOT|S.
AVTIKOOIOTOVTOG TIG EKPPACELS TOV TAGEMV GLUVOPTHOEL TOV KIVIUATIKOV HEYEDDV

GTOVG OPIGUOVE TOV EVTATIKOV HEYEODV TPOKVTTOLV 01 0KOAOVOEG EKPPAGELG

N= aEA{u ’+§(v’2 +w’2)}+(l—a)jQShd.Q= aN® +(1-a)N" (300)
M, =—aEl W' +(1-a)[,5"2dQ2=aM? +(1-a) M} (30B)
M. =aEly' —(1-a)[,S"ydQ=aM{ - (1-a)M! (30y)

. h h , L ,
6mov ne N°, M ;’ kar My, cvpBoiiletar 10 VOTEPNTIKG HEPOG TV OVTIGTOL(DV

evrotikov peyebov. Ev ovveyela, spappuolovrag v Apyn Avvatev ‘Epyov ce ok
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owatvmwon Lagrange mpokOITOLY Ol SPOPIKES EEICMCELS TOL TEPLYPAPOLY TNV

KalBOAIKN 1G0PPOTic. TOV GLGTILATOC, Ol OTTOLES EKPPALOVTAL G

_ h
pAii — o0EA(u" +v'v" +w' ")—%:Px(x’t) (Gla)
24,k ’
pAi}'+aEIZv””—(]—a)a Agz —akA (U'V""iv’j +£W’2V’j -
o 22 (329)
G(th')
—(]—a)a—x+psy(x,f):Py(x’t)_m;(x't)
- M" 1 .3 I '
pAW+aEl w —(]—a) zey_aEA [uw +3w +3v WJ - .
6(th') . Y
—(J_C’)TJFPSZ(X;f)=l7z(x:’)+my(x”)

EvaAloktikd ot mapandve eE1I0DGELS YPAPOVTOL GE OPOVS EVIOTIKMOV LEYEDDV ®G

[ ane oN" | _
pAu_l:a = +(1-a) = }—px (33a)
2oh O NV o( N
pAi/'+aEIZV”"—(1—a)aaj\;Z —a (ax )_(I_a)%—}—psy:py—m; (33B)
om0 Nw o[ N"w
pAw-FClEIyW””_(]_a) axzy —a ( S )—(]—a)%_‘_psz:pz—{_m;} (33'Y)

Amo ™v epapuoyn ™s Apynsg Avvataov ‘Epyov emiong mpokdmTouv ot avticToyes
oLVOPLOKEG GLVONKES oTOL Akpo NG doKoL x =0,/ ol Omoieg JUTLIOVOVTIOL WE TNV

akOA0VON YEVIKT LopPN

au(x,t)+a,Ny(x,1)=a; (34a)
Brv(x,0)+ BoVyy, (x.1) = B3 B %(x,f)Jrﬁ_thz (x.1)=p; (34B,y)

_0 _ _
yw(x.t)+ 7V (x.) =73 71 a—:(x,t)+y2Mby (x.t) =73 (343,¢)
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onov Vy,, Vy, eivon o ohkég téuvovoeg kar My, , My, ot ohkég ponég kou divoviat

amo T oKOAoLOES OYETELS

' 1 2 2 ’ h_ 1 " aM?
be=aEA{u +3(v +w )}v +(1—a)N v'—aEIl_ v +(]—a) N (35a)
om”
V. =aEA[u’+é(v'2+w'2)}w'+(1—a)th’—aEIyw"+(1—a) 8xy (35B)
My, = —aEIyw"+(1—a)M;’ My, =ELY'—(1-a)M! (357,9)

KaBdg Kot oL avTioToLEG apyIkég cuvOnKeg (X € (0,1 ) ) oTIC 0Toleg LITOKEWVTAL 1] HOKOG

w(x0)=m(x)  i(x0)=ip(x) (360p)

v(x,O) =V (x) \'/(x,O) = v;() (x) w(x,O) =W (x) W(x,O) = 71/0 (x) (367-0)

H oplOuntikr| enilvon tov memleypévov  mPOPANUOTOS  OPYIKOV — TIUAV
emroyydveror pe t Pondewa e pebddov Avaroyikng E&icwong (Katsikadelis 1994,
2002). To dibdotnua TG 00KoH (0,1 ) dwupeitanr og L otoyyeio (Zy. 15) kot n epoppoyn

™G neBdS0L 0dNYEl 6T LOPPWST EVOS UN YPOUUKOD GLGTAUATOS 3L + 20 S1opopik®dV-
alyeBpikov elowoewv (DAE) og mpog 3L+20 ayvdotovg, t0 omoio pmopel vo

EKPPACTEL GE TLTKN LOPPT] KO MG
Md+Kd+P"=f (37)

omov P! givon 1o YEVIKELUEVO VOTEPNTIKO UNTpdo. To cvotnua eElomcemv (37) pali pe
TIg votepntikég e€lodoelg Bouc-Wen emddeton apBunticd. o v apBuntikng
eMIALGON  TOL U1 YPOUUIKOD GUOTHUOTOS  OQOPIK®OV-0AYERPIKAV  eEloDoEDV
epappoomke 1 péBodog Petzold—Gear apod sionydnoav 1odpBueg véec petafintég
(State-Space formulation) dote vo peiwdel n tdEn 0V TPOPANUATOG APYIKOV TULOV
(ind =1).

XXXi1



Extevng Iepiinyn

Beam Model
f—f—f—— ¢

Integrating
Cross Section

Y Vfibre 4 Z

2y. 15. Awaxpitomoinon g dokod o€ oToLyEio. Kou TV OLOTOUMY OAOKANPWAENS o€
keA10. kou onueia Gauss (oTtoryeio vav).

Me Bdon v avartvyBeica avalvtiky Ko aplBuntikny dadikacio, cuvtayOnke
TPOYPULLO NAEKTPOVIKOV DITOAOYLOTY) G VTOAOYIGTIKO Ttepiaiiov Fortran 90/95 pe
Bonbe tov omoiov peAETHONKOV OVIUTPOCOTELTIKA TOPASEIYHOTA HE TPOUKTIKO
EVOLIPEPOV, TPOKEWEVOL Vo OlamoTOOel 1 OTMOTEAEGUOTIKOTNTO Kol TO €VPOG
EPOPLOYNG TNG TPOTEWVOUEVNG HeBOdov. H akpifela tov aplOuntikdv amotehespiTmv
eAEyyeTaL, OOV €lval €QIKTO, e VIAPYOVGES AVOALTIKEG KO oplOUNTIKEG AVCELS, EVD
TOPAAANAQ OLEPEVVATAL 1] ETPPOT| TNG U YPOLUIKOTNTOG DAKOD Kot YEOUETPIOG, KOOMG
KOl TNG €00PIKNG TPOCOUOIMONG GTY| SUVAUIIKT OVEAAGTIKY OTOKPLIOT] TOL GUGTIILOTOG
aAAnienidopaong dokob — £daeovs. EmmAéov, mpokeipévou va depevvnei n a&lomiotio
™G mpotevopevng pebodoroyiag, Ta ANeHEva apBuntikd omoteléopato cuykpivoviot
LE OVTA TOL TPOKLATOLY OO TPOCOUOIMUOTO CTEPEDMV (£EAEOPIKADOV) Kl KEALQPOTMV
(TETPOTAELPIKDOV) TEMEPACUEVOV GTOLYEI®V.

Q¢ aVTITPOGMOTEVTIKY|] OPOUNTIKY EQAPUOYT], LEAETNONKE QUEITOKTY dOKOG PKOVG
[=6m, ovunayodc opboywvikg dwtopung 60 x 30cm?  (E=32318.4MPa,
Oyy :ZOMN/ m’ , p=25 tn/ ms) n omoio €dpdleton eml pn ypoppkoH aveLUGTIKOD
€04POVC KOl KOTOMOVEITAL OO OUOOHOPPO KOTOVEUNUEVO @opTio. Xto Xy. 16
TOPOLGLALETAL 1] XPOVOIGTOPiO TG EYKAPOLNG HETATOTIONG w(l/ 2) TOV KEVTPOL PBdpoug

™G HECAING SOTOUNG TNG OOKOV TOL TPOKVMTEL LE EPAPLOYT YEMUETPIKA YPOLUIKNG 1
U YPOLUIKNG 0VAALGNG ACUPAVOVTOS DITOYN 1] AyVOMVTOG TN U1 YPOLLLKOTNTO VAIKOV.
210 1010 oMU ToPoVCIALovTal EMIONG TO AVTIGTOLYO OMOTEAEGLOTA TOL EANQOMGAV

Ao AEMTOUEPES TPOCOUOIMLO TPICIUCTUTOV TENEPACUEVMV GTOLYEIWV.
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2y. 16. Xpovoigropio ¢ €YKOPOIOS UETOTOTIONS TOV KEVIPOV PApovs THG UETOLOS
O10TOUNS THG J0KOD.

Téhog, oto Zy.17 mapovstaletal 1 KOTOVOUN T®V 0pO®V TACEMV KATA UAKOG TNG
d0KOV Yyl O1AQOPES YPOVIKEG OTLYHEG (OpTIoNG, He Pdon to amoteléopato mov
emobnoav amd Vv epapuoyn TG mpotewvouevng pebodov. Xto do  oynua
Tapovcslaloviol EMIONG TO OMOTEAECUOTO TOL TPOEKLYOV OO TN AETTOUEPT
TPOCOUOI®OT TOL GUGTNUATOS OE TPLGOLACTATO TPOCOUOIMUO  TETEPACUEVOV
otoyyelov. Amd v mOAD KOAN GUYKMON T®V OmoTEAecUITOV emPBefatdvovior 1M
akpifelo kou 1M oflomotic TG mpotewouevng ueboddov Kabdg emiong kol M
OTOTEAEGUATIKOTNTO KOl OTOOOTIKOTNTO TNG OTNV TEPITTOOY TNG YEMUETPIKG N
YPOLLIKNG KO OVELOGTIKNG OLVOUIKNG OVAAVGTG GUGTNUATOV OAANAETIOPOGTC SOKOV —

€04.POVC.

VI. Zvpnepaopata

2V Topovca S100KTOPIKY| OaTpiPr] dlepevvaTal Kot ETAVETAL GEPE TPOPANUAT®V TOV
a@opohy  oTNV  avAaAvon ocvotnudtov oAAnienidpoaong Ookov — eddeovg Ta

wpofAnpata avtd eitvor ta akdAovda.
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e H yeoperpikd un ypORWIKY OTOTIKY OVOAVOT  O0KAOV HE  SLOTUNTIKES

TOPAUOPPAOCELS ETL U1 YPOUUIKOD EGAPOVGE.

e H yeoperpikd pn ypoputkyy OSvvopikny ovdivon S0KOV  pE  SOTUNTIKEG
TOPAUOPPAOCELS ETL U1 YPOUUIKOD EGAPOVGE.

e H yeopetpikd@ pun YPOUUIKY] KOl OVEAOOTIKN] OTOATIKY] OVOAVLOY OOKOV e

STUNTIKEG TOPOALOPPMOELS ETL UM YPOUUIKOD AVEAAGTIKOV £06.POVG,.

e H ysoperpwcd pn ypOUUIKY KOl OVEAACTIKY] OLVOIKY OVOALGY GLGTNUAT®V
aAAnAenidpaocng 00ko0 — £6GPOVC.

H enilvon tov egetalopevov npofAnudtov Baciletal 6t SOTOHTOOT KOVOTOU®V
Oeowpidv  dokov. Ta mpokOITOVTO HOVOSLACTOTE Kol  OOACTOTA  TPOPAN LT
GLUVOPLOKMOV  TIHAV KOl  OPYIKOV  GLVOPOKAOV TWOV  E€TAVOVIOL  oplOuntikd
epappolovtag t MéBodo Xuvvoplokdv Ztorgeiov, t Mébodo Avaroyikng E&icmong
kot v Iledwaxn MéBodo Zuvvoplakdv Xrtoyeiov. Ta xdpu cvunepdopota g
dwTp1png cvvoyilovtor ota akdAovOa.

1. H oxpifeia xor n a&omotio g mpotevopuevng pebodov emPefordvovrarl e
VILAPYOVTO OVOAVTIKG, OPOUNTIKG KOl TEWPUUATIKA OTOTEAEGHOTO KAOMS Kol e
armoteAéopato  otepedv  (e€aedplk®dV) Kol KEAQOTOV  (TETPOUTAELPIKDOV)
TEMEPOUCUEVOV GTOXEIMV amd EUTOPIKO AOYIGUIKO.

ii. H omotehecpoTikdTNTO KOU OTOSOTIKOTNTO TOL TopPovctdlel M avamntvyBeica
pnébodog  afloroyeitar  pécm  oOYKPIONG  UE  AEMTOUEPT)  TPOCOULOUMLLOTOL
TPIGOLAGTATOV TENEPAGUEVDV oTotyelwv. H dprot cvppovia tov anotelecpdtov
KOl O GOPMOG UEIWUEVOS OTTALTOVIEVOS VITOAOYICTIKOG YPOVOS KATOOEIKVOOVY TOV
TAEOVEKTIKO  yOpoKTNpaL TNG povodldotatng Oewpiag dokoh, o€  Opovg

VIOAOYLIGTIKOD KOGTOVG, 0&10TIOTIOG KO LOVTEAOTOINGTC.

1. H avdntuén mAaosTiKdv Topapopedcemy UEWMVEL TNV KOUTTIKY dvokapyio Kot
TEMKO 00NYel OTNV TANCTIKY KOTOPPELGT OTOV OYVOEITOL 1) YEOUETPIKY HUN
YPOUUKOTNTOL.

iv. To mpotevOUEVO TPOGOUOI®MUN KATAVEUNUEVIS TAACTIKOTNTOS (oTOElo vdV)
ATTOJEIKVUETAL 10104TEPO. ATOTELECUATIKO KOODS amoTuRdVvEL pe akpifela TOG0 TV
apyIKn olppon 000 Kot To (TEAMKO) QopTio KATAPPELONGS, VO TapdAAnAa opilet
ooP®MG TNV KOTOVOUN TOV TAGE®V OTIS TEPOYES OVATTLENG TANCTIKOV

TOPALOPPAOCEWV. To oTolYEl0 VAV 0moTELEL KATAAANAO VTOAOYIGTIKO £pYaAEio Yo

XXXV



Teopetpuca Mn Tpappixn kot Avedlaostikn Avaivon Zvotqpdtov AAAnAenidpacng Aokod — Eddpoug

™mv a&lohdynon mmg PEPOLGOS IKOVOTNTAG UEAMY KOTOUOKELNG, EEMEPVMOVTOG TOVG

TEPLOPIGLOVS TOV GTOLYEIMV GUYKEVTPMOUEVNC TAAGTIKOTITOG.
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Vi.

Vii.
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iX.

VII.

H emppon ¢ yveopetptkng pn ypoppukomrog mopovcstdletor péoo omd
ONUOVTIKY OOKAION UETAED TOV ATOTELECUATOV TOV BE@PLOV KPOV 1| LEYOA®V

LETATOMIGEWYV, TOGO GTN GTATIKN OGO Kot 6T SVVOIKY avaAvoN.

H yeopetpikn pun ypopukodTNTo @PACOEL TO KIVIUATIKG HEYEOT EAAOTIKOV O0K®MV
TOL VTOKEWVTOL GE TPMTEVOVTO. GLVTOVIGHO. H amdkpion 1060 TV KIVNUATIKOV
0G0 KOl TOV EVIOTIKOV UEYEOMV TOPOLGLALEL YOPOKTNPIOTIKA OLOKPOTHHUATOG.
Axopa, ot peydreg petatonicels enmnpedlovy aweOntd kot cvvOeta ™ Beperidon
13100VYVOTNTO TOV GLUGTILOTOC.

H oMnAenidpacn 0EOVIKNG-TEUVOVGOC-POTTNG ATOJEIKVVETAL KOOOPIOTIK OGNV
TEPIMTOON AVEAUGTIKTG AVAALGNC.

Ot SlTUNTIKES TOPAUOPPAOCELS LEUDVOLV TNV KOUTTIKY duoKapyio Kaddg kot v
13100VYVOTNTO TOL GUGTHUOTOC, VM ETNPEALOVY OVCIOOMG TA EVTATIKA KO TOCIKA

peyédn. Emiong, avtipetoniletor emrtoydg 10 TPOPANUO TOL  SLOTUNTIKOV

KAEODUOTOC.

Kotadeikvhetor 1 onUavTiKy EXppon g TPOGOUOIMoNG TOV £60PIKOD HEGOV GTNV
OmOKPIGT TOV GLGTHUOTOS OAANAEmidpaons. H un ypoppikémmro tov £do@ucol
VAMKOU Kol TG OlEmpavelng dokov — €d4eovg enmpedlovv KaboploTikd T
GLUTEPLPOPE TOL GLGTILOTOG.

H mpotewvopevn pnébodog mpospépet ta mheovektnuota g Mebddov Zuvoplakmv
Ytoyeiov (0ev YPNOILOTOIEITOL TOPAY®OYOS GULVOPTHCE®MY GCYNUOTOS), EVO M

amotrtovpevn axpifeto emrvyydvetan pe pikpd aplud otoryeiwv.

Io¢eg Yo Melrovtkn 'Epevva

[MBavéc katevBHVoEIG HEALOVTIKNG EPEVLVOC, LLE CNUOVTIKO ETICTNUOVIKO KOl TPOUKTIKO

evolapépov, cuvoyilovtor axorlovowc.

1.

ii.

1il.

Eméktoon g YEOUETPIKA UM YPOUMIKNG OVEAOGTIKNG OUVOIKNG OVAALGNG
ocvoTNUdteV aAANAETidpacng 00KoU — €0APOVG, MOOTE vo AauPdvetar voyn n
dwTunTikn Tapapdpemon (J2 plasticity).

Evoopdtoon ovvaptioemv otpéflmong Yy tov  okpip]  LIOAOYIOUO  TNG
KOTOVOUNG TOV SWOTUNTIK®OV TAGEMV GTN dlTopu EAEYYOL.

[Tepartépm yevikevon TOV TPOTEWVOUEVOL TPOGOUOIDUOTOS LECH TNG EVOMUATMONG

KWV UOTIKNG KPATOVONC.
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Eumhovtiopdg  tov  otoyeiov ®ote va  aviyetoniletar 1 wepintwon
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Abstract

Ph.D. Dissertation by Kampitsis E. Andreas

Geometric and Material Nonlinear Analysis of
Beam—Soil Interaction Systems

In this Ph.D. dissertation the geometric and material nonlinear analysis of beam-soil
interaction systems is investigated. More specifically, the geometrically nonlinear static
and dynamic analysis of shear deformable beams supported on nonlinear foundation is
presented. Subsequently, the study is further extended to account for material
nonlinearity in static response, where both the structural member and the soil medium
are assumed to be inelastic. Finally the attention is drawn to the dynamic time domain
analysis of beam-soil interaction systems taking into account geometric and material
nonlinearities.

The geometrical nonlinearity is taken into consideration through the Total
Lagrangian formulation and the large displacements - small strains assumption. Shear
deformation effect is taken into account using the Timoshenko beam theory, evaluating
the shear deformation coefficients by using an energy approach. The material
nonlinearity is treated through a displacement based formulation taking into account
inelastic redistribution along the beam axis. Inelastic deformations are modelled through
a distributed plasticity (fibre) model exploiting three dimensional material constitutive
laws. The nonlinear half-space is approximated by nonlinear spring configurations,
where interface nonlinearity is also taken into consideration.

The obtained boundary value and initial boundary value problems are numerically
solved employing the Boundary Element Method, the Analog Equation Method and the
Domain Boundary Element Method. On the basis of the developed analytical and
numerical procedures, representative examples are studied. The accuracy and reliability
of the proposed method are confirmed through existing numerical and experimental
results, as well as through results obtained from solid and shell Finite Element analyses.
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Chapter 1

Introduction

1.1 Introduction and Motivation

The main scope of structural analysis is to determine the stress and kinematical
components of a physical structure subjected to external and self loading. Since the
geometry of the structure, as well as the loading and boundary conditions are explicitly
specified it is rather straightforward to determine a numerical model and analyse the
response of the structure employing any available method.

In general, however, most of the physical structures are in direct contact with the
supporting soil medium. Due to this contact, neither the structural nor the soil response
are independent of each other when subjected to external forces, such as earthquake
excitation, wind loading, etc. The phenomenon during which the motion of the soil
medium influences the response of the structure and vise versa, is known as Soil-
Structure Interaction.

In the special case where a light structure is founded on relatively stiff soil (e.g.
rock) the motion of the base during a seismic event is practically independent from the
superstructure and thus the soil-structure interaction can de neglected and the analysis
can be restricted to the above ground structure. On the other hand, in case of heavily
loaded structures or relatively soft soils, the effect of this interaction becomes
prominent. It is thus not permissible to analyse the structure without accounting for the
interaction with the surrounding soil.

The response of soil-structure interaction systems under static or dynamic loading
is an area of extensive research activity in structural and geotechnical engineering. In
recent years, significant research efforts have indicated that neglecting the soil-structure
interaction may lead to unsafe design. Since the beneficial as well as the detrimental
effects of this interaction are well documented, there is a significant attempt been
carried out towards incorporating the latest acquired knowledge and methodologies in

the analysis and design of these systems. The thorough understanding of the beam-soil
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interaction mechanics is the key aspect of any developed methodology and is
prerequisite in order to conduct precise analysis, without jeopardizing accuracy and thus
safety. Currently, the methods of studying soil-structure interaction are continuously
evaluated and improved since evidence from case histories, new experimental data and
field studies have indicated the importance of a rigorous and precise analysis. To this
end, all possible causes of nonlinearities should be taken into account. The
nonlinearities with the most profound influence on the response of a soil-structure
system originate from the inherent nonlinear stress-strain behaviour of the materials
(material nonlinearity) as well as from the significant variations of the geometrical
configuration during dynamic loading (geometrical nonlinearity).

Currently, modern design codes and the existing regulations indicate that the beam-
soil interaction systems, such as piles and deep embedded foundations, have to be
designed to behave elastically for every type of loading. More specifically, Eurocode-8
(EC-8, Part 2, § 5.8) explicitly states that “...foundations shall not be intentionally used
as sources of hysteretic energy dissipation and therefore shall, as far as practicable, be
designed to remain undamaged under the design seismic action”. This restriction,
however, is most likely to be violated in a real case scenario, whereas significant
research efforts have substantiate the beneficial character of permitting nonlinearities
and inelasticity to occur at the beam-soil interaction system.

Furthermore, in order to design cost-effective structures following the performance
or displacement based design the realistic estimation of the maximum displacements is
essential. Towards this direction and having in mind the magnitude of the arising axial
forces due to self weight, dead and environmental loadings the geometrical nonlinearity
has also to be incorporated in the analysis. This effect alters the flexural rigidity of the
structure and leads to different behaviour from that of small displacement assumption.
Moreover, contemporary advancements in material science have facilitated the intensive
use of materials having relatively high transverse shear modulus; thereby the error
incurred from the ignorance of shear deformation effect may be substantial. Therefore,
the Timoshenko beam theory has to be employed in such problems. As it is well
documented, this effect leads to increased displacements, compared to the Euler-
Bernoulli approach, and can have even greater influence in the dynamic time domain
response. In any case, if the lateral loading is significant, the shear deformation effect
can be proved crucial in both the elastic and inelastic regime.

Over the years, many researchers have developed and validated various methods for

the study of the intricate behaviour of the beam-soil interaction systems. Nevertheless,
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due to the significant difficulties of the problem there are many areas yet to be
investigated. These difficulties are attributed not only to the inherent complexity of the
problem involving both the structural and the geotechnical engineering, but also to the
uncertainties related to the nature of the problem such as interaction effects, material
nonlinearity and soil properties. These methods can be grouped into three major
categories namely; the beam based formulations, the continuum mechanics approaches
and the lately developed macro-element methods.

Within the context of beam approach, the supporting soil is approximated by a
series of uncoupled springs while the structural components are modelled as beam
elements. This approach was first introduced by Winkler (1867), therefore is known as
Beam-on-Winkler-Foundation, and since then it has been adopted by a vast amount of
investigators and engineers leading to analytical and numerical solutions. On the
contrary, the continuum mechanics models take explicitly into account the physics of
the problem through the realistic simulation. As long as the response of the continuum
remains linear elastic, analytical solutions have been proposed (Poulos 1971, Veletsos
& Verbic 1973), while several authors have developed closed forms and have presented
parametric studies. Based on the same concept, the three dimensional finite element and
the boundary element methods have also been employed. Nevertheless, linear models
ignore the soil inelasticity and are limited to the small-strain assumption and steady-
state dynamic problems. Thus, in order to take into consideration the inevitable soil
nonlinearity as well as the interaction effects, the nonlinear continuum finite element
models have been utilized. Although accurate, these models require sophisticated
calibration and excessive computational time. Finally, a relatively new trend, not only in
structural but also in geotechnical engineering, is the concept of macro-modelling. The
macro-element methods allow the macroscopic simulation of the behaviour of the
structure or the soil and it can be perceived as an advanced finite element.

Among the above mentioned, maybe the most attractive approach to both scientists
and engineers for the interaction analysis as well as for the study of various beam-like
structures is the one-dimensional beam model, due to its significant advantages over

refined approaches. The major advantages of any beam model are listed below:
i.  Simplicity in handling and reduced modelling effort.

More specifically, as far as the pre-processing procedure is concerned, the
geometry simulation and the mesh of a beam model are straightforward and rather

easily imported into any numerical code. On the contrary the implementation of a
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three-dimensional or even two-dimensional model requires extensive effort, even

though over the years many mesh generators have been developed.
Reduced computational cost.

The computational time required for the numerical analysis of the boundary or
initial value problem, is exponentially related to the amount of unknowns. The
number of elements and subsequently of unknowns in three dimensional models is
significantly larger than those of a beam model. This difference can be even greater
if mesh refinement is required. The advantage of time performance becomes even
more apparent in case of dynamic analysis. Modern design codes like the European
standard for the Design of Structures for Earthquake Resistance (EN 1998, EC-8),
the ASCE standard for the Seismic Rehabilitation of Existing Buildings (ASCE
2007) as well as the Greek norm for the Seismic Retrofit of Existing Buildings
(Retrofitting 2013) are based on concepts such as the displacement based design
and the performance based design for the estimation of structural integrity
(Priestley 2007, Fardis 2010). This implies that in order to evaluate the necessary
design quantities, a vast amount of nonlinear dynamic analyses are required.
Specifically, Eurocode-8 (EN 1998, EC-8) states that “The number of the
accelerograms to be used shall be such as to give a stable statistical measure
(mean and variance) of the response quantities of interest. The amplitude and the
frequency content of the accelerograms shall be chosen such that their use results
in an overall level of reliability commensurate with that implied by the use of the
elastic response spectrum”. Therefore, the required analysis time as well as the

amount of input/output data needed for the design process becomes crucial.
Straightforward modelling of external loading and supports.

The imposition of the external loads and the support implementation is direct and
easily applied, contrary to the cumbersome solid models. Especially in case of
beam-soil interaction systems the simulation of the soil medium and the interaction
phenomena are extremely complicated employing continuum models. The
implementation of such models in numerical codes presumes the use and
calibration of quite advanced and complicated constitutive laws, making it a
challenging and extremely time-consuming task. Furthermore, the free-field
boundaries have to be accurately handled in order to avoid radiation damping. The

investigation and calibration of several types of boundaries, like dashpots or multi-
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iv.

vi.

vii.

viii.

tool

point constrains, is essential in order to yield precise results, while the compatibility
of the degrees of freedom at the coinciding nodes for different element types has

also to be ensured.

Convenience in isolation of structural phenomena and results interpretation.

Contrary to the reduced oversight of the three dimensional models, beam
formulations provide the capability to assess the influence of each separate
phenomenon to the overall response. Moreover, quantities such as rotation, warping
parameter, stress resultants etc. are also evaluated in contrast to solid model which

yields only displacements and stress components.
Convenience in performing parametric analyses.

In order to draw design guidelines parametric analyses are often performed. Thus a
formulation capable of performing multiple analyses is required, unlike the solid

modelling which often requires the setup of multiple models.
Straightforward discretization of a complex structure.

Complex structures often require detailed simulation and thus the finite element
mesh might be dense. This results in increased number of nodes and subsequently

degrees of freedom (unknowns) leading to severe or unrealistic computational time.
Effective handling of structures including thin-walled members.

Shear-locking and membrane-locking phenomena can be successfully addressed.
Effective handling of warping phenomena.

The use of shell elements cannot give accurate results since warping of the walls of
a cross section cannot be taken into account (midline models), while on the contrary

the beam elements can successfully address these effects.

Having all this in mind, the development of a reliable and efficient computational

based on the beam formulation, capable of performing beam-soil interaction

analysis accounting for geometric, material and other key nonlinear effects is considered

essential.
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1.2 Brief Literature Review and Novelties of the Dissertation

Over the past decades, many researchers have employed the Beam-on-Winkler-
Foundation model to study various problems related to both structural and geotechnical
fields. Through these studies, the beam based model has been proved a powerful
computational tool capable of analyzing in detail the beam—soil interaction systems.
Both static and dynamic response can be studied through this model which retains the
advantages of simplicity and time performance, while the obtained results are of good
accuracy compared against more rigorous numerical schemes. In the following, a brief
literature review is presented, while for each topic a detailed and extensive investigation
of the bibliography is presented at the introduction section of the corresponding chapter.

Originally proposed by Winkler (1867), this approach has been used to solve a wide
range of interaction problems. In this model the soil behaviour is represented as an array
of closely spaced, mutually independent, linear elastic springs, while the structural
element is modelled as a beam-column element. These springs are assumed to provide
resistance in direct proportion to the deflection of the beam. This assumption, however,
does not represent realistically the mechanical behaviour of the soil, thus nonlinear
springs have been developed, where the shape of the load-deformation relationships is
described by empirical p-y curves following non-proportional laws between the soil
resistance per unit pile length p and the lateral displacement y. Numerous investigators
have proposed recommendations for the estimation of the p-y curves (Matlock 1970,
Reese et al. 1974, O'Neill & Murchison 1983, Georgiadis 1983, Ashour & Norris 2000,
Reese & Van Impe 2001, Dahlberg 2002) based on results of high accuracy
instrumented tests, while in the case of dynamic loading the spring configurations are
enriched with appropriate dashpots accounting for the energy dissipation due to
radiation damping. Furthermore, the original Winkler approach is also restricted to non-
cohesive soil media due to its inability to take into account the continuity or cohesion of
the soil (interaction between adjacent springs). To overcome this limitation, several
alternative spring configuration schemes have been proposed, such as the Filonenko—
Borodich, Pasternak, Vlasov or Hetenyi models among others.

The static linear elastic response of beam-soil interaction systems has been
extensively investigated employing the beam-on-Winkler-foundation model (Hetenyi
1946), while the tensionless (unilateral) character of the subgrade reaction has also been
introduced in the analysis (Sharma & Dasgupta 1975, Kaschiev & Mikhajlov 1995,
Zhang & Murphy 2004, Avramidis & Morfidis 2006, Maheshwari 2007, Zhang 2008,
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Ma et al. 2009a,b, Tullini & Tralli 2010). On the contrary, the geometrically nonlinear
static analysis has received little attention in the literature (Silveira et al. 2008, Tsiatas
2010).

The dynamic analysis of these systems has also been extensively investigated (Wolf
1985). Analytical solutions of problems involving beam vibration of simple geometry
and boundary conditions have received a good amount of attention in the literature
(Krylov 1905, Timoshenko 1911, Rades 1972, Wang & Stephens 1977, Choros &
Adams 1979, Morgan & Sinha 1983), while the linear vibrations of beams on
foundation traversed by moving loading have also been studied (Inglis 1934, Lowan
1935, Weitsman 1971, Kolousek 1973, Fryba 1999). When the beam displacements are
small, a wide range of linear dynamic analysis tools can be used and several authors
have implemented the beam-on-Winkler-foundation model in order to investigate
various phenomena (Kuczma & Switka 1990,Huang & Zou 1994, Thambiratnam &
Zhuge 1996, Matsunaga 1999, Sun 2001, Chen et al. 2001, Sun 2001a,b, 2002, Coskun
2003, Chen et al. 2004, Kargarnovin & Younesian 2004, 2005, 2009, Muscolino &
Palmeri 2007, Ying et al. 2008, Zehsaz et al. 2009, Millan & Dominguez 2009,
Dimitrovova 2010, Ansari et. al. 2010, Chen & Chen 2011). As the beam displacements
become larger, the induced geometric nonlinearities result in effects that are not
observed in linear systems. Contrary to the good amount of attention in the literature
concerning the linear dynamic analysis, very little work has been done on the
corresponding nonlinear problem (Lewandowski 1989, Chang & Liu 1996, Chen et al.
2001, Kim & Cho 2006, Arboleda-Monsalve et al. 2007).

The beam approach has also been widely employed in studies regarding seismic
excitations. It this cases, the analysis is performed in two different stages. At first a site
response analysis is conducted for the seismic motion of the shear wave propagation on
the free-field considering that it is uncoupled from the structures motion. Subsequently,
employing the motions from the obtained excitation derived from the first stage, the
analysis of the beam-soil system is carried out. One of the key phenomena in seismic
analysis is the kinematic and inertial interaction. Modern seismic codes like Eurocode 8
(EN 1998, EC-8) recommend accounting for both inertial and kinematic soil-structure
interaction effects. Specifically, EC-8, Part-5 states that piles and piers shall be
designed to resist both inertial forces from the superstructure and kinematic forces
arising from the deformation of the surrounding soil due to the passage of seismic
waves. In order to address these effects, the beam-on-Winkler-foundation model been

successfully adopted by several authors producing results of remarkable accuracy
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compared to rigorous numerical schemes (Boulanger et al. 1999, Nikolaou et al. 2001,
Hutchinson et al. 2004, Gerolymos et al. 2009, Castelli & Maugeri 2009, Dezi et al.
2010, Sica et al. 2011, Anoyatis et al. 2013). Though this approach ignores the shear
transfer between layers of soil as well as the interface and three-dimensional interaction,
it has been preferred by many researchers due to its efficiency and simplicity.

Although the beam-soil analysis accounting for the nonlinear behaviour of the soil
due to high strain level has been studied extensively, only few works have encountered
the inelastic behaviour of both the beam and the foundation elements. According to this
approach, the beam stress-strain and the foundation load-displacement relations are
assumed to follow nonlinear inelastic constitutive laws. Consequently, such models are
not easily formulated due to the complexity of the problem. Nevertheless, in order to
conduct precise analysis and design cost-effective structures the realistic estimation of
the systems response is essential. Towards this direction, many researchers have
resorted to the use of refined finite element models in order to account for the material
nonlinearity. Nevertheless, this solution is not recommended in engineering practice due
to the inherent modelling and analysis problems. In an attempt to bridge the gap
between the widely used beam formulations and the computationally expensive
solid/shell finite element simulations, just a few static inelastic beam-on-Winkler
foundation models have been developed (Budek et al. 2000, Ayoub 2003, Mullapudi &
Ayoub 2010a). Following the same trend, even less has been done in the dynamic
inelastic analysis of beam-soil interaction systems (Hutchinson et al. 2004, Gerolymos
and Gazetas 2005, Mullapudi and Ayoub 2010b,c). It is worth noting that in most of
these studies, the interaction system has been addressed as an assembly of finite
elements rather than formulating a uniform solution strategy, while the statement of the
problem is limited to the equations for the static response. Nevertheless, it is pointed
out that a continuously growing demand, among the structural and geotechnical
engineering communities, is observed towards incorporating geometrical and material
nonlinearities into the analysis and design procedures. To this end, even though the
basic understanding of beam-soil interaction system behaviour is acquired, there are still
many areas to be thoroughly investigated.

The prime objective of this dissertation is to develop advanced methods and a
reliable and efficient computational tool based on the beam formulation for the static
and dynamic analysis of beam-soil interaction systems taking into consideration several
nonlinear mechanisms. The motivation towards that scope is justified from the intention

of gaining the accuracy of more rigorous models (i.e. shell/solid FE) while retaining the
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simplicity of a beam formulation. In addition, the acquisition of knowledge regarding

the influence of various key nonlinear phenomena consists also a main objective of the

present dissertation.

The research work presented herein is considered original and its essential features

and novel aspects are summarized as follows

L.

1l.

1il.

1v.

Vi.

Vil.

To the author’s knowledge, for the first time in literature the geometrically
nonlinear dynamic response of beam-soil interaction systems where both the beam
and the foundation elements are assumed to be inelastic is investigated through the

beam-on-Winkler-foundation approach.

For the problem at hand, the material nonlinearity is addressed through a distributed
plasticity (fibre) approach, while the formulation is a displacement based one taking

into account inelastic redistribution along the beam axis.

The proposed beam model accounts for the geometrical nonlinearity by retaining
the square of the slope in the strain—displacement relations, avoiding in this way the
inaccuracies arising from a linearized second-order analysis. For that purpose the

total Lagrange formulation (intermediate non-linear theory) has been adopted.

Shear deformation effect is taken into account on the geometrically nonlinear
elastic and static inelastic analysis (explicit axial-shear-flexure interaction).
Especially in the static inelastic case, the developed formulation adopts a J2 three-
dimensional plasticity law (von Mises) to assess the inelastic beam-foundation

system response.

The proposed model accounts for the coupling effect of bending and shear
deformations along the member as well as shear forces along the span induced by
the applied axial loading. Moreover, the beam is subjected to arbitrary external

loading and is supported by the most general time dependent boundary conditions.

The nonlinear half-space is approximated by various nonlinear spring
configurations. Interface nonlinearity is also taken under consideration using

tensionless spring properties.

To the author’s knowledge, a boundary element approach (BEM, AEM or D-BEM)
has not yet been used for the solution of the problem at hand. The developed
procedure retains most of the advantages of a BEM solution, since it does not
require shape functions for the kinematical components; hence the minimum
number of elements can be employed, while the accuracy of function derivatives is

not compromised.
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1.3 Outline of the Dissertation

This doctoral dissertation is organized in six chapters and three appendices. The
structure of each chapter comprises the literature review of the corresponding problem
“State of the Art”, the statement of the problem, the numerical solution, the
representative numerical examples and finally the obtained concluding remarks. In the
final chapter, the main conclusions drawn in this dissertation are summarized while
directions for further research are proposed. The appendices include information
necessary to understand the content of the main chapters of the dissertation.

In this research work the geometrical nonlinearity is taken into account through the
Total Lagrangian formulation by retaining the square of the slope in the strain-
displacement relations, avoiding in this way the inaccuracies arising from a linearized
second-order analysis. In order to do so, the large displacements — small strains
assumption (Armenakas 2006) is employed. Moreover, the material nonlinearity is
treated through a displacement based formulation taking into account inelastic
redistribution along the beam axis while a distributed plasticity (fibre) approach has
been employed. On the basis of the analytical and numerical procedures presented in the
each chapter a number of computer programs have been written using third and fourth
generation high level languages, programming packages as well as symbolic languages.
Representative examples of great practical interest have been studied to demonstrate the
efficiency and the range of applications of the developed method. The accuracy and
reliability of the obtained results have been verified by comparison with analytical
solutions and experimental data as well as with the results obtained from shell
(quadrilateral) or solid (hexahedral) finite element models.

In Chapter 2, the geometrically nonlinear static analysis of shear deformable beams
partially supported on nonlinear three-parameter tensionless foundation, is presented.
The beam is of arbitrary doubly symmetric simply or multiply connected constant cross-
section and is subjected to the combined action of arbitrarily distributed or concentrated
transverse loading and bending moments in both directions as well as to axial loading.
The geometrical nonlinearity is taken into account through the Total Lagrangian
formulation and the large displacements — small strains assumption. The beam is
subjected to general boundary conditions while, to account for shear deformation effect
the concept of shear deformation coefficients is used. The mechanical behaviour of the
soil is taken into consideration by means of a refined spring configuration consisting of

three independent parameters. In detail, foundation model is characterized by the linear
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elastic Winkler spring element providing resistance in direct proportion to the
displacement of the beam, the second shear layer parameter capturing the continuity or
cohesion of the soil enabling interaction between adjacent springs and the nonlinear
parameter describing the hardening/softening characteristics of the foundation.
According to the proposed method, five boundary value problems are formulated. More
specifically, two boundary value problems are formulated with respect to stress
functions for the evaluation of the shear deformation coefficients and solved employing
a pure Boundary Element Method, that is only boundary discretization is used.
Moreover, three boundary value problems are formulated with respect to the transverse
and axial displacements solved using the Analog Equation Method. Application of the
boundary element technique yields a system of nonlinear equations from which the
transverse and axial displacements are computed either by an iterative process or by
employing the modified Powell’s hybrid algorithm. The increase of the stiffness rigidity
due to the geometrical nonlinearity is observed and the influence of the shear
deformation effect is quantified. Furthermore, the significant impact of the soil
characteristics as well as the tensionless character to the beam-foundation response is
investigated.

In Chapter 3, the geometrically nonlinear dynamic analysis of shear deformable
beams partially supported on nonlinear tensionless viscoelastic foundation, is presented.
The beam is of arbitrary doubly symmetric simply or multiply connected constant cross-
section and is subjected to the combined action of arbitrarily distributed or concentrated
transverse loading and bending moments in both directions as well as to axial loading.
This dynamic loading represents the most general case, which includes impact loading,
transverse moving loading, seismic excitation, beam-soil interaction, etc. The
geometrical nonlinearity is taken into account through the Total Lagrangian formulation
and the large displacements — small strains assumption. The beam is subjected to
general boundary conditions while, to account for shear deformation effect the concept
of shear deformation coefficients is used. The mechanical behaviour of the soil is
approached by two alternative formulations. Firstly, a refined spring configuration
consisting of four independent parameters is employed. In detail, foundation model is
characterized by the linear elastic Winkler spring element providing resistance in direct
proportion to the displacement of the beam, the second shear layer parameter capturing
the continuity or cohesion of the soil enabling interaction between adjacent springs, the
nonlinear parameter describing the hardening/softening characteristics of the foundation

and finally the viscous damping parameter. Alternatively, the soil nonlinearity is taken
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into consideration by means of a hybrid spring configuration consisting of a nonlinear
(p-v) spring connected in series to an elastic spring-damper model. The nonlinear spring
captures the near—field plastification of the soil while the spring—damper system
(Kelvin—Voigt element) represents the far—field viscoelastic character of the soil.
According to the proposed method, five boundary value problems are formulated. More
specifically, two boundary value problems are formulated with respect to stress
functions for the evaluation of the shear deformation coefficients and solved employing
a pure Boundary Element Method, that is only boundary discretization is used.
Moreover, three initial boundary value problems are formulated with respect to the
transverse and axial displacements solved using the Analog Equation Method.
Application of the boundary element technique yields a system of nonlinear differential-
algebraic equations from which the transverse and axial displacements are computed
either by employing a Newmark-delta method or the Petzold-Gear backward
differentiation formula. It is concluded that the large displacements change radically the
dynamic response of the beam-foundation system influencing the natural frequencies
while the significant affect of the shear deformations and the foundation modelling is
verified. Subsequently, an extensive case study is carried out on a pile—column—deck
system of a bridge subjected to earthquake excitations, providing insight to several
phenomena.

In Chapter 4, the geometrically nonlinear (J2) inelastic analysis of shear
deformable beams partially supported on inelastic tensionless Pasternak foundation, is
presented. The beam is of arbitrary doubly symmetric simply or multiply connected
constant cross-section and is subjected to the combined action of arbitrarily distributed
or concentrated transverse loading and bending moments in both directions as well as to
axial loading. The geometrical nonlinearity is taken into account through the Total
Lagrangian formulation and the large displacements — small strains assumption. The
beam is subjected to general boundary conditions while, to account for shear
deformation effect the concept of shear deformation coefficients is used. The
mechanical behaviour of the soil is taken into consideration by means of a two-
parameter spring configuration consisting of two independent parameters. In detail,
foundation model is characterized by the linear elastic Winkler spring element
providing resistance in direct proportion to the displacement of the beam and the
Pasternak shear layer parameter capturing the continuity or cohesion of the soil enabling
interaction between adjacent springs. A displacement based formulation is developed

and inelastic redistribution is modelled through a distributed plasticity (fibre) approach
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exploiting three dimensional material constitutive laws and numerical integration over
the cross sections. An incremental—iterative solution strategy along with an efficient
iterative process is employed. According to the proposed method, a set of boundary
value problems is formulated. More specifically, two boundary value problems are
formulated with respect to stress functions for the evaluation of the shear deformation
coefficients and solved employing a pure Boundary Element Method, that is only
boundary discretization is used. Moreover, a boundary value problem is formulated with
respect to the axial and transverse displacements and to the angles of rotation due to
bending, solved using the domain Boundary Element Method. Application of the
boundary element technique yields a system of nonlinear equations from which the
unknowns of the problem are computed either by an iterative process or by employing
the modified Powell’s hybrid algorithm. The influence of both the large displacements
and the shear deformations to the plastic strain distribution is verified while the affect of
the soil inelasticity is presented.

In Chapter 5, the geometrically nonlinear inelastic analysis of Euler-Bernoulli
beams of arbitrary doubly symmetric simply or multiply connected constant cross-
section, resting on inelastic Winkler foundation. The beam is subjected to the combined
action of arbitrarily distributed or concentrated transverse dynamic loading and bending
moments in both directions as well as to axial loading, while its edges are subjected to
the most general boundary conditions. A hysteretic Bouc-Wen force-displacement
model is employed in order to describe the inelastic behaviour of the Winkler springs. A
displacement based formulation is developed and inelastic redistribution is modelled
through a distributed plasticity (fibre) approach. A uniaxial hysteretic law is considered
for the evolution of the plastic part of the normal stress following a phenomenological
hysteresis model. Numerical integration over the cross sections is performed in order to
resolve the hysteric parts of the stress resultants. Three boundary value problems are
formulated with respect to the transverse and axial displacements and solved using the
Analog Equation Method. Application of the boundary element technique yields a
system of nonlinear Differential-Algebraic Equations which are written in state-space
form and together with the hysteretic evolution equations are solved iteratively using the
Petzold-Gear backward differentiation formula. It is concluded that the large
displacements change radically the dynamic characteristics of the beam-foundation
system. Furthermore, the influence of the plastic strain distribution is verified while the

affect of the soil inelasticity is presented.
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In Chapter6, the main conclusions drawn in this dissertation are summarized and
the key advantages and novelties of the current formulation are highlighted. Moreover,
directions for further research are suggested.

This doctoral dissertation contains also three appendices. In the first Appendix Al,
the main principles of the Analog Equation Method in its general form are presented, in
case of one-dimensional boundary value problems described by ordinary differentia
equations of the second and forth order, under the most general boundary conditions. In
the second Appendix A2, the main principles of the Domain Boundary Element
Method are presented, in case of one-dimensional boundary value problems described
by ordinary differential equations of the second order. Finally, in the last Appendix A3,
the solution for the general transverse shear loading problem in beams of arbitrary
simply or multiply connected constant cross section is briefly presented while the shear
deformation coefficients are established using pure Boundary Element Method. Finally,
the references sited within the dissertation are presented in alphabetic order.

Finally, it is worth mentioning that the outcome of the conducted research activity
presented in this doctoral dissertation has been published in international journals, in
national and international conferences and in books published by international
publishing companies. These publications are cited at the introduction section of the

corresponding chapter.
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Chapter 2

Geometrically Nonlinear Static Analysis of
Shear Deformable Beams on Nonlinear Foundation

2.1 Introduction

In most investigations concerning Beam-Foundation Systems the assumption is made
that, bodies are in full contact (beam and subgrade are bonded to each other) and
consequently compressive as well as tensile reactions are developed. These bilateral
foundation models were probably motivated more by the desire of mathematical
simplicity rather than by physical reality. However, for most foundation materials, the
admission of tensile stresses across the interface separating the beam from the
foundation is not realistic. In order to address this issue, tensionless foundation models
were proposed in which regions of no contact develop beneath the beam. These regions
are not known in advance and the change of the transverse displacement sign provides
the condition for the determination of the contact length.

Moreover, according to the modelling of the mechanical behaviour of the subsoil
and the soil-foundation interaction, the earliest, most famous and most frequently
adopted mechanical model is the Winkler elastic foundation (Hetenyi 1946). In this
model the supporting soil behaviour is approximated by a series of closely spaced,
mutually independent, linear elastic vertical spring elements, providing resistance in
direct proportion to the deflection of the beam. However, the application of this model
is restricted to non-cohesive soil media due to its inability to take into account the
continuity or cohesion of the soil (interaction between adjacent springs). To overcome
this weakness, a second parameter is introduced such as Filonenko—Borodich, Pasternak
or Hetenyi models (Pasternak 1954), to account for the interaction among the linear
elastic springs (Fig.2.1). The induction of this second parameter brings the modelling of
the soil behaviour closer to reality but its response is still not as complicate as the elastic
continuum model. This fact resulted in the development of more sophisticated models
comprising three independent parameters for the description of the soil behaviour. More

specifically, since in practice the support structure may be highly nonlinear due to the
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foundation hardening characteristics (e.g. ballast and rail-pad), the inclusion of a third
parameter associated with the cubic nonlinearity of the deflection was verified
experimentally by Dahlberg (2002). Besides, this formulation renders the arising

mechanical model capable of distributing stresses correctly (Kargarnovin et al. 2005).

. Load Elastic Springs
Ground Surface

(a)

Ground Surface

(b)
Fig. 2.1. Displacement of Winkler (a) and Pasternak (b) foundation models.

Furthermore, the study of nonlinear effects on the analysis of structural elements is
essential in civil engineering applications, wherein weight saving is of paramount
importance. This nonlinearity results from retaining the square of the slope in the strain—
displacement relations (intermediate non-linear theory), avoiding in this way the
inaccuracies arising from a linearized second—order analysis. Moreover, due to the
intensive use of materials having relatively high transverse shear modulus, the error
incurred from the ignorance of the effect of shear deformation may be substantial,
particularly in the case of heavy lateral loading.

Over the past thirty years, many researchers have developed and validated various
methods for performing analysis of beams partially supported on Winkler foundation
but only few took into account the realistic tensionless character of the subgrade
reaction. To begin with, Sharma and Dasgupta (1975) employed an iteration method
using Green’s functions for the analysis of uniformly loaded Bernoulli beams, followed
by Kaschiev and Mikhajlov (1995), who presented a finite element solution for beams
subjected to arbitrary loading. Later, Zhang and Murphy (2004) presented for the same
problem an analytical/numerical solution making no assumption about either the contact

area or the kinematics associated with the transverse deflection of the beam. Avramidis
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and Morfidis (2006) analyzed the bending problem of a Timoshenko beam on a Kerr-
type three-parameter elastic foundation carrying out comparisons between one, two or
three-parameter foundation models. Maheshwari (2007) employed the finite difference
method with the help of appropriate boundary and continuity conditions for the analysis
of beams on tensionless reinforced granular fill-soil system, while Ma et al. (2009a,b)
used the transfer displacement function method (TDFM) to analyze the response of an
infinite beam resting on a tensionless elastic foundation subjected to arbitrarily complex
transverse loads. Zhang (2008) analyzed a beam resting on a tensionless Reissner
foundation and demonstrated the improvements of the Reissner foundation model
compared to the Winkler one, while Ying et al. (2008) presented exact solutions for
bending and free vibration of functionally graded beams resting on a Winkler—Pasternak
elastic foundation based on the two-dimensional theory of elasticity. Finally, Tullini and
Tralli (2010) presented a finite element solution for the static analysis of a foundation
Timoshenko beam resting on elastic half-plane by employing locking-free Hermite
polynomials. Nevertheless, in all of the aforementioned research efforts only a
geometrically linear analysis is performed.

As the deflections become larger, the induced geometric nonlinearities result in
effects that are not observed in linear systems. Recently, Silveira et al. (2008) presented
a nonlinear analysis of Bernoulli structural elements under unilateral contact constraints
employing a Ritz type approach, while Tsiatas (2010) suggested a boundary integral
equation solution to the nonlinear problem of non-uniform Bernoulli beams resting on a
nonlinear triparametric elastic foundation. In these research efforts, the shear
deformation effect is ignored.

In this chapter, a Boundary Element Method (BEM) is developed for the
geometrically nonlinear analysis of shear deformable beams of arbitrary doubly
symmetric simply or multiply connected constant cross-section, partially supported on
nonlinear three-parameter tensionless foundation, undergoing moderate large
deflections under general boundary conditions. The beam is subjected to the combined
action of arbitrarily distributed or concentrated transverse loading and bending moments
in both directions as well as to axial loading. To account for shear deformations, the
concept of shear deformation coefficients is used. Five boundary value problems are
formulated with respect to the transverse displacements, to the axial displacement and to
two stress functions and solved using the Analog Equation Method (Katsikadelis 2002),
a BE based method. Application of the boundary element technique yields a system of

nonlinear equations from which the transverse and axial displacements are computed by
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an

iterative process. The evaluation of the shear deformation coefficients is

accomplished from the aforementioned stress functions using only boundary integration.

Numerical examples of great practical interest are worked out to demonstrate the

efficiency and the accuracy of the developed method through comparison with literature

and

FEM results, as well as its range of applications. In these examples, the effects

arising in the nonlinear response of beams on nonlinear foundation are illustrated. The

essential features and novel aspects of the present formulation compared with previous

ones are summarized as follows.

il.

1il.

1v.

Vi.

Vil.

Viii.

The proposed beam model accounts for the geometrical nonlinearity by retaining
the square of the slope in the strain—displacement relations. For that purpose the

Total Lagrangian formulation (intermediate non-linear theory) has been adopted.

Shear deformation effect is taken into account on the geometrically nonlinear

analysis of beams on nonlinear foundation.

The proposed model takes into account the coupling effects of bending and shear
deformations along the member as well as the shear forces along the span induced

by the applied axial loading.

The shear deformation coefficients are evaluated using an energy approach, instead
of Timoshenko’s (Timoshenko & Goodier 1984) and Cowper’s (1966) definitions,
for which several authors (Schramm et al. 1994, 1997) have pointed out that one
obtains unsatisfactory results or definitions given by other researchers (Stephen

1980, Hutchinson 2001) for which these factors take negative values.

The beam is supported by the most general boundary conditions including elastic

support or restraint, while it is subjected to arbitrary loading.

The nonlinear half-space is approximated by a nonlinear three-parameter
tensionless foundation. The proposed method can also handle the case of negative

foundation nonlinearity.

The proposed method employs a BEM approach while a small number of nodal

points are required to achieve high accuracy.

The use of BEM permits the effective computation of derivatives of the field
functions (e.g. stresses, stress resultants) which is very important during the

nonlinear response of beam-foundation systems.
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Finally, it is worth mentioning that the outcome of the conducted research activity
presented in this chapter of the doctoral dissertation has been published in international
journals (Sapountzakis & Kampitsis 2010a, 2011a) and in international conferences

(Sapountzakis & Kampitsis 2010e).

2.2 Statement of the Problem

Let us consider a prismatic beam of length / (Fig.2.2), of constant arbitrary doubly
symmetric cross-section of area 4. The homogeneous isotropic and linear elastic

material of the beam cross-section, with modulus of elasticity £, Poisson’s ratio v and
shear modulus G (G=E/ (2(1+v)>) occupies the two-dimensional multiply
connected region 2 of the y,z plane and is bounded by the I ; ( j=12,.,K )

boundary curves, which are piecewise smooth, i.e. they may have a finite number of

corners.

Lift-off Point
Nonlinear Springs
Linear Winkler

C: Centre of gravity
S: Shear centre

(b)

Fig. 2.2. x-z plane of prismatic beam under axial-flexural loading (a) with arbitrary
doubly symmetric cross-section (b).

In Fig.2.2b Cyz is the principal bending coordinate system through the cross-

section’s centroid. The beam is partially supported on an elastic nonlinear tensionless

three-parameter soil. The foundation model is characterized by the linear Winkler

moduli &, , kLy, k; ., the nonlinear Winkler moduli kNLya ky;. and the Pasternak

(shear) foundation moduli kfb/’ kp, for the directions y, z, respectively. Having in

z

mind that for the longitudinal direction the reaction is a bilateral one exhibiting both

compressive and tensile tractions, while for the transverse directions is a unilateral one
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(accounting for the unbonded contact between beam and subgrade), the interaction

pressure at the interface can be written as

Do = kxu(x) (2.1a)
. &’
Py —Hy(x)[kLyv(x)+kNLyv3 (x) —kp, a‘;(;)] (2.1b)
2
b =H. (x)Lksz(x) ey (x) K ang)J 2.1¢)
e

where H y(x)s H - (x) are the Heaviside unit step functions defined as

2
1 if (kLyv(x)+kNLyv3(x)—kpy%(Zx)]>0
H (x)= (2.2a)
(- o
0 lf‘ kLyV(X)+kNLyV (X)_kpyax—z <0
2
1 lf‘ (kLZW(X)+kNLZW3(X)_kPZ%g‘)(;)j>0
. (x) = (2.2b)
(x) | 3 ()
0 lf‘ kLZW(x)+kNLZW (x)_kPZ axz <0

The beam is subjected to the combined action of the arbitrarily distributed or

concentrated axial loading p, = px(x), transverse loading p, = p (x), P, =P (x)

and bending moments m, =m, (x), m,= mz(x) acting along y, z directions,

respectively (Fig.2.2a).

2.2.1 Displacements, Strains & Stresses

Under the action of the aforementioned loading, the displacement field of the beam

taking into account shear deformation effect is given as (Ramm & Hofmann 1995)

i(x,y,2)=u(x)=-y0,(x)+26,(x) (2.3a)

V(x,y,z) = v(x) v_v(x,y,z) = w(x) (2.3b,c)
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where #, v, w are the axial and transverse beam displacement components with

respect to the Cyz system of axes; u(x), v(x), w(x) are the corresponding

components of the centroid C and 0, (x), HZ(x) are the angles of rotation due to

bending of the cross-section with respect to its centroid (Fig.2.3). It is worth here noting
that since the additional angle of rotation of the cross-section due to shear deformation

is taken into account, the one due to bending is not equal to the derivative of the

deflection (i.e. 6, = v', 6, #W").

Zw ¥

(2)

VA |

(b)

Fig. 2.3. Displacement field according to xz (a) and xy (b) planes of shear deformable
Timoshenko beam.
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Employing the strain-displacement relations of the three-dimensional elasticity the

components of the Green-Lagrange strain are defined as

g - L A (E) () (oW s
oo 2| \ox ox ox '
_ [/ a2 _\2 2]
o Lo Iifou) fov) [ow (2.4b)
Yoogy 2| oy oy oy
s L LA (oY (oW (.40)
= oz 2|\az 0z 0z '
7/ = 8_v+6_u + a_ua_u+a_va_v+6_wa_w (24d)
Polex oy Ox 0y Ox Oy Ox Oy
Vi = a_w+a_u + 8_u§_u+6_v6_v+6_w8_wj (246)
ox Oz Ox 0z Ox 0z Ox Oz
]/Zz 6_W+6_V + 6_u@_u+6_va_v+a_wa_w (24D
> oy Oz oy 0z Oy 0z Oy Oz

Moreover, assuming relatively small centroidal axial displacement and moderate large
transverse displacements (Ramm & Hofmann 1995, Rothert & Gensichen 1987, Brush
& Almroth 1975) while strains remain small, the following strain components can be

easily obtained

_ _\2 _\2

Exx :8_u+i (8_\/) +(8—Wj (2.52)

ox 2|\ ox Ox

Yz :a_w+a_u+(a_va_v+a_wa_wj (2.5b)
ox Oz Ox 0z Ox Oz

Vxy :8_v+8_u+ 6_v@+6_w@ (2.5¢)
Ox Oy \oxody Ox Oy

Eyy =8,=7,, =0 (2.5d,e,f)
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_,\2 _
where it has been assumed that for moderate displacements (a%x) << a%x’

(8O, ) << (T ) + (%) (a%x)(a%y) <(W4)+ (%) . Substituting

the displacement components (2.3) to the strain-displacement relations (2.5), the strain

components can be written as

e (6,7) du  _dy  do. 1 dv2+dw2 .60
, YV, = - VYV T — — .0a
w\ B = T e a2l
dv dw
Y g Mg 2.6b.c
Yo = e U Vo = e T (2.6b,0)

where 7, y,. are the additional angles of rotation of the cross-section due to shear

deformation .It is worth noting what in the well known Euler-Bernoulli beam theory

these shear deformations are neglected, thus

0 =2 g =-22 (2.7b,¢)

Considering strains to be small and assuming an isotropic and homogeneous
material, the non vanishing work conjugate stress components of the second Piola—

Kirchhoff stress tensor are defined in terms of the strain ones as

s, TE 0 0][e,
Set=[0 G 0y, (2.8)
S]CZ 0 0 G 7/ XZ

or employing the strain-displacement relations (2.6) as

dé 2 2
S.=E d—u+z—y—yd—92+i av v (2.9a)
dx dx dx 2| dx dx
dw
Sxy = G(% — sz sz = G(E + Qyj (29b,C)
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2.2.2 Stress Resultants, Equations of Equilibrium, Boundary Conditions

The equations of equilibrium and the boundary conditions of the beam-foundation
system are derived employing the equilibrium method. It is mentioned that any energy
principle (e.g. total potential energy) could also be implemented providing the same
results. To this end, let’s consider an infinitesimal beam element of length dx at its

deformed configuration as this is depicted in Fig. 2.4.

Q- ...
5 FJIQ_-CO,S'(OJ-
Q:siney ;< x}_ah: -w'
e i i
y Nsinw,
2, W
3
' (@

Y
LS

u+du x,u - AQ, cosw.

8]

]_CU:: —v'

Nsinw.

Y (b)

Fig. 2.4. Infinitesimal beam element of length dx at its deformed configuration under
equilibrium according to xz (a) and xy (b) planes.

Moreover, the angles of rotation are assumed to be small, thus the following

relations hold

cosw,~1  sino,~w, CSO,~]  siho,xo, (2.10a-d)

Consequently, the horizontal force R, and the vertical forces Vy V, can be written in

term of the axial N and the shear Q,,, Oz forces, as (Fig. 2.4)
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R, =N+ an)z + Qza)y (2.11a)
V,=0,—Na, V.=0.-Na, (2.11b,c)

while the angles of rotation @), @, are defined as

dw dv
@. = ——2 W =—— 2.12a,b
y o s = ( )

Substituting eqns. (2.12a,b) to eqns. (2.11) yields

R.=N+ va'+QZw' (2.11a)
V,=0, -\ V,=0, - Nw' (2.11b,¢)

where ( ') denotes differentiation with respect to x , while the second and third term of
the right hand side of eqn. (2.11a) express the influence of the shear forces to the
horizontal one. Nevertheless, as O/, 0, w << N (Rothert & Gensichen 1987, Ramm &
Hofmann 1995) the horizontal force is equated to the axial one, thus R_ =N .

Subsequently, equating the external loads with the internal reaction, the equations

of equilibrium are written as

—cgz—kxu—i-px =0 (2.12a)
do, dQ
_ —0 2z o i =0 2.12b,c
I Py TPy g P TPz ( )
dM am
Y _ —
e -0, +my, =0 dxz +0,+m, =0 (2.12d,e)

while the axial N and the shear Qy, Qz forces as well as the bending moments M v

M , of the beam in the deformed configuration are defined as

N=[,8,de2 (2.13a)
Oy =y Spd Q= [, Sed2 (2.13b,c)
M,=[,S,2d2  M,=—[,S, yd2 (2.13d.e)
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After employing both the strain components of eqns. (2.6) and the stress-strain
constitutive relations (2.9) for an isotropic and homogeneous material, eqns. (2.13) are

written as

N = EA[u’ + é(v'z +w'? )} (2.14)
0, =G4y, 0. =GA.y,. (2.14b,c)
M, =EIL®, M, =EIL0, (2.14c,d)

where A is the cross section area, while / y, I, are the moments of inertia with respect
to the principle bending axes given as
A=[,d02 (2.15a)

I,=[,7’d2 I =[,y'd0 (2.15b,c)

and GAy , G4, are its shear rigidities of the Timoshenko’s beam theory, where
1
A =x,A=—A4 A4, =x,A=—A (2.16a,b)

are the shear areas with respect to y, z axes, respectively with &, «, the shear

correction factors and a,, q. the shear deformation coefficients (Appendix A3).

y z

Substituting the stress resultants of eqns. (2.14) and the strain resultants of eqns. (2.6) in

the equilibrium eqns. (2.12) the differential equations of equilibrium are written as

—EA(u" +Ww' + W)+ k= p, (2.17a)

—(Nv')’ -GA, (v" -6, ) + ﬁy (kLyv + kNLyv3 - kuv”) =P, (2.17b)
—(Nw')’ -GA, (w" + Hy') +H. (kLZw+ kg W° — kPZW") =p. (2.17¢)
~ELO. ~GA,(v'=0.)=m,  —ELO,+GA(W+0,)=m,  (2.17de)
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Combining eqns. (2.17b,d) and (2.17c.,e), the governing differential equations with
respect only to the displacement components u, v, w of a geometrically nonlinear
Timoshenko beam, partially supported on a nonlinear three-parameter tensionless
foundation, subjected to the combined action of axial and transverse loading are

obtained as

—EA(u" +Ww' + W)+ kpu=p, (2.18a)
o EI " ) EI
El v (Nv) + Py +G—Ay((Nw) psy) =py - aA. py —m, (2.18b)
" __ E] " E]y " [
ElLw (Nw) +pg, +G_AZ((NW) psz) =p. —G—Azpz + i, (2.18¢)

These equations are also subjected to the pertinent boundary conditions of the problem

at hand, which are given as

au(x)+a,N(x)=a3 (2.19a)
ﬁ’lv(x) + ﬁ’ZVy (x) =[5 BIHZ (x) +BZMZ (x) = ,33 (2.19b,¢)
yw(x)+ 7V (x) =3 710, (x)+7,M,,(x) =7; (2.19d.e)

at the beam ends x =0,/. In eqns. (2.19b-e) the vertical reactions Vy, V., the bending

moments M y» M , and the angles of rotation due to bending Qy, 6, are given as

n / EI !

V,==El.v"+Nv — GA [ +py psyJ —m, (2.20a)

EI
V,=—EIl,wW"+Nw - —y[ "+ pl - p;zjl +m, (2.20b)

GA

EI
M, =—El W - GAy ( "+ p. - psz) (2.21a)

EI :

M, =EIV' + AZ ((Nv’) +py —psy) (2.21b)
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EI " Ji
0 - y (N ’ ' )__ EI " GA ' )
To(eay (W) + Pl GAZ( W+ GAw) (2.22a)
0, = L, 5 ((Nv’)" — p;y)+G%(EIZv’"+GAyv’) (2.22b)
(GAy) y

Finally, @ s ,Bj, ,Bj, V4 j,}7j (j=1,2,3) are functions specified at the beam ends

x=0,l. Eqns. (2.19) describe the most general boundary conditions associated with the
problem at hand and can include elastic support or restraint. It is apparent that all types
of the conventional boundary conditions (clamped, simply supported, free or guided

edge) can be derived from these equations by specifying appropriately these functions
(e.g. for a clamped edge itis o, =g, =y, =1, ,Z’J =7_/1 =l,a,=a;=p,=B;=7,=

ys=Pr=P3=7,=73=0).

The solution of the boundary value problem given from eqns. (2.18) subjected to
the boundary conditions (3.19) describes the axial-flexural response accounting for the
geometrical nonlinearity (large displacements) of a Timoshenko beam, supported on a

nonlinear three-parameter tensionless foundation. The evaluation of the shear

deformation coefficients a,, a,

corresponding to the principal centroidal system of
axes Cyz, are established equating the approximate formula of the shear strain energy

per unit length with the exact one as described in Appendix A3.

2.3 Integral Representations — Numerical Solution
According to the precedent analysis, the nonlinear axial-flexural analysis of a
Timoshenko beam, partially supported on a nonlinear three-parameter tensionless

foundation, undergoing moderate large deflections reduces in establishing the
displacement components u(x) and v(x), w(x) having continuous derivatives up to
the second and up to the fourth order with respect to x, respectively. Moreover, these
displacement components must satisfy the coupled governing differential equations
(2.178) inside the beam and the boundary conditions (2.19) at the beam ends x=0,!/.

The differential equations of equilibrium are solved using the Analog Equation Method
(Katsikadelis 1994, 2002) as it is described in Appendix Al.
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2.3.1 Axial u(x) and transverse displacements v(x), w(x)
According to this method, let u(x), v(x) and w(x) be the sought solution of the
aforementioned boundary value problem. Setting as uj(x)zu(x), uz(x)zv(x),

u (x) = w(x) and differentiating with respect to x these functions two and four times,

respectively yields

0%u o’ .
ale =q (x,t) P = qi(x,t) (l =2,3) (2.23)

Eqns. (2.23) are called analog equations and indicate that the solution of eqns. (2.18)
can be established by solving eqns. (2.23) under the same boundary conditions (2.19),

provided that the fictitious load distributions ql-(x,t) (i = ],2,3) are first established.
Following the procedure as described in Appendix Al, the integral representations of
the displacement components u; (i = 1,2,3) obtained by eqn. (A1.8, A1.36) and their

first derivatives with respect to x obtained by eqn. (A1.22, A1.43), when applied to the

beam ends (0,7 ), together with the boundary conditions (2.19) are employed to express
the unknown boundary quantities ul-(é',l) , ul-,x((,t), ui,xx(é',t) and ulm(é’t)
(£'=0,) in terms of the fictitious loads ¢, (i =1,2,3). In order to accomplished this

numerical formulation, the interval (O,I ) is divided into L elements, on which qi(x,t)

is assumed to vary according to certain law (constant, linear, parabolic etc). The
constant element assumption is employed here as the numerical implementation
becomes very simple and the obtained results are of high accuracy.

Employing the aforementioned procedure, the following set of 20 nonlinear

algebraic equations is obtained

1
T, 0 0](a) |PI'| (a,
0 T, 0 [{d,t+iD5i=1b, (2.24)
0 0 T33 d3 Dgl C3

with
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TH{FIH Ery Eﬂ (2.25a)
0 Dj;, Dy
Fi Ey Ep E3 Eyy F, Ey Ep Ej3 Ey
T, = F, 0 Ey Ey Ey T, = F, 0 Eyp Ey Ey (2.25b.c)
0 Dy Dy D3 Dy 0 Gy Gz Gz Gy
0 Dy Dy Dy Dy 0 Gy Gp Gy Gy

where E},,E},,E,;-E, are rectangular 2x2 known coefficient matrices resulting
from the values of the kernels A ; (r) ( j=1,2,3, 4) at the beam ends and F', F,, F,

are 2xL rectangular known matrices originating from the integration of the kernels

along the axis of the beam, as defined in Appendix Al. Moreover, D;;-D,, and G, -

G,; are 2x2 known square matrices including the values of the functions
aj,ﬂj,ﬂ_j,yj,fj (j=1,2) of eqns.(2.19), while D} ,a; and D', D5, bs,¢c; are 4x1
and 8x1, respectively known column matrices including the boundary values of the

functions aj, ﬁ3,ﬁ3,y3,;73 of eqns. (2.19). Furthermore, d,-d; are the generalized

unknown vectors including the L unknown nodal values of the fictitious loads
o AT, . .
q; = {q{ G5 e q’L} (1 = 1,2,3) and the vectors including the unknown boundary values

of the respective boundary quantities. More specifically, the expressions of the matrices

of eqn. (2.25) are given as

0 0
0 EA 0
DY, = {“l } DY, = {“z } (2.26a,b)
0

D' == E4{a) [ﬁz,x(0)+ﬁ3,x (0)] 0y =1al (2.26¢,d)
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0 EI, -
]0 , 5 (N(0)+G—AyHykLyJ 0
Dy = 0 ﬁl Dy, = £
] 0 ﬂé(N(l)jLTZﬁykLy
L Y
_ ] )
ﬁg(n— N(0)+ H kp ]
B 2EIZ ﬂgN’(O) 0 B GAy( y J’)
BTG4, 0 pin) L I
v 2 0 ﬂé(}—}—GT(N(l)"‘Hykpy)
Y
nu-—ﬁoﬂr’y’” S }
2GA,| 0 Hypky,
— EI. - —y EI. |
'810 1= ZzHykLy +ﬂ20GAZN(0) 0
(GAy y
D22_
- EI. - —, EI.
'le 1= ZzHykLy +ﬂij(1)
(GAy) Y
L ] i 2 |
N1+ ——N(0)———H kp |+ B N'(0 0
ﬂZ[ GA, ) G4, " g (G4,) )
Dy3 = £,
- 1 1 =~ - 2
0 Ni+—N()-——H k ! N'(1
ﬂZL +GAy () GAy yPJ-i_ﬂI(GA )2 ()
L y
— 1 -
. B (HG—Ay(N(o) Hykp)j 0
D24_ GAZ ;
Y =l ~
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[0]
ZOHykNLyj)ﬁg (O)ﬁZ,x (0)
—ByH ke, 35 (1)ii . (1)
m__ Z [0] (2.271)
3 : —0 7 .
7 ﬁlo GA H kNLy (0)“2)x(0)+ﬂ20HykNLyu3(0)
3 )
Bl — 7 ———H ey 15 (1)t (1) + B H ey, i3 (1)
[0]
EI,
B3 + /33 Py (0)
y
EI,
ps+ B = (1)
Y
by = [0] (2.27))
n0 ﬂ] '
02 [GA (0)= B, (0 >]
_l_ ﬂ] '
537G LGA () ﬂZpy()]
i El, . ]
3| N(0)+—=H. k;. 0
]/0 0 GAZ
Gy =|"' | Gnz= (2.28a,b)
0 7 0 Z{N(l) " f ]
72 + GA zNVLz
_yg(u 1 (N(0)+Flzkpz)J 0_
2EIL, | yIN'(0) 0 G4,
13 GA | ¢ yN’(l) y ] _
[0 7 0 y§[1+GA () szpz)j
()EI ﬁszz 0 2.28
Cu =7 G { 0 H.k,. (2289
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El - El
7| 1-—25Hk;, |+7) =N
(GA.) G4,

On =" EI
0 75[1 yzﬁzk&]ﬁl Y N'(1)

G23 :Ely

[0]
720szNLz 31232 (0)723)6 (0)

7éﬁszLz3I2§ (1)7’23)6 (1)
Dnl _ E]y [0]
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q2 q;3
q: u, u3
di=y dy =1 Uy dy =1 Uz (2.29)
lAll X lAlZ’xx l13 XX
lAlZ’xxx lAlS’xxx

where the boundary values of the displacement components u; (i =1,2,3) and their

derivatives with respect to x are written in matrix form as

iy = {u; (0.0) w; (1.0)) (i=1,23) (2.30a)

T

ou. .
ﬁi,x:{ ul(O,t) aul(l,t)} (1-21,2,3) (2.30b)
ox ox

% (0.0) % (L1))|
um:{ b . } (i=23) (2.30c)

S (0.0) & (11)]
By = ] R =23 2.30d
i { ox’ ox’ } (l ) ( )

Thereafter, the discretization of the integral representations of the displacement
components (i =], 2,3) and their derivatives with respect to x, and the application

to the L collocation nodal points yields

u; = Afq, + Coliy + Cyiy,, (2.31a)
U= Ajqy +Coliyy U =q (2.31b,c)
u, = Adq, + Cyiiy + Cliiy,, +Cyliyy +C3lly, (2.32a)
u,, = Alq, + Cyli,,, +Cliiy,  +Cyliy, (2.32b)
u2’xx = A%qz + C0ﬁ29xx +C,1ﬁ29xxx (2320)

— A3 A
u2’xxx - A2q2 + C0u2 XXX uz IXXXX q2 (2.32d,e)
uy = A3qz + Cyliy + Cliiy +Cyligory C3ll3o000 (2.332)
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u3’X = A:l‘ﬁqS + C0ﬁ3 X +C’1ﬁ3 IXX +C2ﬁ3 XXX (2-33b)
u3 IXX = A§q3 + C0ﬁ39xx +C,1ﬁ3 IXXX (2330)

—_ A3 A
u3’XXX - A3q3 + C0u3 IXXX U3oxxxx — (]3 (2.33(1,6)

where Al A%, A% (i:0,1), (j=0,1,2,3) are L x L known matrices; C,, C;, Cj,

C,, C; are Lx2 known matrices and u;, u;,,, u are vectors

ioxx > Wirxxx > Uisxxxx
including the values of ui(x,t) and their derivatives at the L nodal points. These

equations can be assembled in a more convenient matrix form as

u, = Bd, u;,, =Bid; (2.34a,b)
U, = de Uyox = B,de Upoxx = B,xde Wy oexx = B,xxde (2'353"(1)
u; = Bd, uz, =B .d; Uz, =B . d; Uzsx = B ds  (2.36a-d)

where B” B and there derivatives are L><(L+4) and L><(L+8) known matrices,

respectively arising from A, A, C“, C and there derivatives as presented in
Appendix Al.

In conventional BEM, the load vectors g, are known and eqns. (2.34-2.36) are used
to evaluate u,-(x,t) and their derivatives at the L nodal points. This, however, cannot
be applied here since q; are unknown. Thus, 3L additional equations are required in
order to permit the establishment of q;. Therefore, the final step of AEM is

implemented by applying the differential equations of equilibrium (2.18) to the L
collocation points. Employing eqns. (2.34-2.36) leads to the formulation of the

following set of 3 x L nonlinear equations of equilibrium

dy fy
Kd+f"=f < K/d, +f“'(B”,B,d1,d2,d3)= f, (2.37)
d; f3

where f™ is a nonlinear generalized stiffness vector and K, f are generalized stiffness

matrices and force vector respectively, defined as
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K, =—[EA], , + [KXBuLg f,=p, (2.38a-b)
£l = EA[[BMdz] e [B.d, |+[B .d;] " [B_d; ﬂ (2.38¢)
K,=[EL], ,~NB,~NB  +K{B-+ gfl 2 (3N,B . +N-K{B ) -

o g (2.39a)
dg z
- KPyB,xx - GA

(KcLiiB,xx - Kc}i’fz )

EI 3 EI
f;l = K?\fgLy (dZ )3 - GAZ (K?\fgLy (B,xxdl) ) f2 =Py Ty~ GAZ (pyxx) (2.39b,c)
y y

EI
d d
K, = [EI y]dg,L -N,B,-NB _ +K7B+ j(mxl;,m +N-K L§B,xx) _

- : (2.40a)
d d d
- KPgB,xx - j(KLgB,xx - KP% )
EI EI
/ d 3 d: 3
7' =K% (d3) —G—Ay(K . (B uds) ) fy=p.+m, —G—Ay(pm) (2.40b,c)
V4 z

where N, N are L x L diagonal matrices containing the values of the axial force and
its derivatives with respect to x, respectively, at the L nodal points, Py, Pyxcs Do
P-yx> M, and m_ . are Lx/ vectors containing the values of the external loading

and its derivatives at these points, while K”ng , K?’\,ng. and Kjﬂ% (i = y,Z) are diagonal

matrices whose diagonal elements represent the values of the corresponding foundation
parameter at each nodal point. Moreover, substituting eqns. (2.34) in eqn. (2.14a), the

discretized counterpart of the axial force at the neutral axis of the beam is given as

N=E4(B'd; )+ éEA [[B’xxdzj o[ Bada]+[Bods ] [B’xd3ﬂ (2.41)

The above equations (2.37), together with eqns. (2.24) constitute a system of
3L + 20 nonlinear algebraic equations which can be solved using any efficient solver.
Within the framework of this doctoral dissertation two approaches have been

performed. Firstly, the solution of this system was accomplished iteratively by
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employing iterative numerical methods, such as the two term acceleration method
(Isaacson & Keller 1966) and secondly, by using the modified Powell algorithm (Powell
1977, 1985). A step-by-step algorithmic approach of the numerical implementation is

summarized in a flowchart form in Fig. 2.5.
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Fig .2.5. Flowchart of the numerical implementation.
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2.4 Numerical Examples

On the basis of the analytical and numerical procedures presented in the previous
sections concerning the geometrically nonlinear analysis of shear deformable beams on
nonlinear foundation, a computer program has been written using High Level 3G
Fortran 90/95. Representative examples have been studied to demonstrate the
efficiency, wherever possible the accuracy and the range of applications of the

developed method.

2.4.1 Example 1 — Linear Analysis of Simply Supported Beam on Elastic Foundation

In the first example, for comparison reasons a linear analysis of a simply supported
beam has been studied for three different load and geometry cases. Although

displacements are considered small the problem is strongly nonlinear as the contact
length is unknown. A beam of length /= 5m and flexural stiffness £l =1 0 subjected
to concentrated moments M; =M, =—1 0’ kNm at its ends, resting on a homogeneous

elastic foundation with modulus of subgrade reaction &, as shown in Fig. 2.6 (case i),

has been studied.

} [ =5m {

Fig. 2.6. Prismatic beam on elastic foundation subjected to concentrated moments at
its ends (case i).

The present example was first investigated by Hetenyi (1946) who presented an
analytical solution, according to which the midpoint deflection is evaluated by the

following expression

YL sinh(jsin(ﬂ)
w(i/2)=221 2) A2 where A=4k./4EI (2.41)
k. cosh(Al)+cos(Al)

V4
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Lately, Pereira (2003) presented a FEM solution for the problem at hand, while
Silveira et al. (2008) presented a nonlinear formulation employing a Ritz type approach.
In Figs. 2.7a,b the beam deflections for the cases of conventional bilateral and unilateral
(tensionless) Winkler springs, respectively are presented as compared with those
obtained from analytical (Hetenyi 1946), FEM (Pereira 2003) and Ritz type (Silveira et

al. 2008) solutions for various values of the dimensionless foundation parameter

k=k" / EI . Moreover, in Table 2.1 the extreme values of the beam deflection and of

the soil reaction are presented for both cases of bilateral and unilateral foundation and
for various values of the aforementioned parameter k . From these figures and table the
accuracy of the obtained results is remarkable, while the influence of both the
foundation stiffness and the unilateral character of the soil reaction are easily verified.
Moreover, the discrepancy in the deflections between the bilateral and the unilateral

foundation model especially for a stiff soil is underlined.

-0.008 A -0.02
Bilateral Winkler Springs . . .
Unilateral Winkler Springs k5=62500
-0.015 - -
0.004 4
-0.01 A
So . N 0.005
k5=62500
To

Present Study
— - — Heteneyi (1946) 0.005
»—>—X Pereira (2003) X—>—X Pereira (2003)
G—6—>0 Silveira et al. (2008) G—6—>0 Silveira et al. (2008)
T T T 1 0.01 T T T T 1

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x/1 x/1

(a) (b)

Fig. 2.7. Deflection for various values of the soil parameter k, of the beam of example
[ (case i) resting on a bilateral (a) and unilateral (b) elastic foundation.

Present Study

As a variant of this example, the beam of length / = /0m subjected to concentrated

moments M; =-M, =1 0°kNm at its ends and a concentrated force P(1/2)=150kN

at the midpoint of the beam, as this is shown in Fig. 2.8 (case ii), has also been studied.
In Figs. 2.9a,b the beam deflections for the cases of conventional bilateral and unilateral

Winkler springs, respectively are presented as compared with those obtained from
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analytical (Hetenyi 1946), FEM (Pereira 2003) and Ritz type (Silveira et al. 2008)
solutions for various values of the parameter &k, while in Table 2.2 the extreme values
of the beam deflection and of the soil reaction are presented for both cases of bilateral
and unilateral foundation reaction, leading to the same conclusions drawn from the

previous beam case.

12 = 5m——

Fig. 2.8. Prismatic beam on elastic foundation subjected to concentrated moments at
its ends and force at its midpoint (case ii).

Table 2.1. Extreme values of the deflections (x] 0~ ) and the foundation reaction of the

beam of example 2.1 (case i).

Bilateral Winkler Unilateral Winkler
k
Min w Max w pszl3 / El Min w Max w pS213 / El
6.25 -3.960 3.960 0.049 -4.030 3.905 0.048
62.5 -3.826 3.826 0.478 -4.418 3.425 0.428
625 -2.869 2.869 3.586 -5.697 2.046 2.557
6250 -1.015 1.015 12.688 -7.125 0.833 10.415
62500 -0.304 0.304 37.965 -8.008 0.287 35.854

Finally, as a second variant of this example, the beam of Fig. 2.8 subjected to
2 .
concentrated moments M; =—M, =—10"kNm at its ends and a concentrated force

P(l / 2)=—50kN at its midpoint, has also been studied (case iii). In Fig. 2.10 the

deflections of the beam resting on a tensionless subgrade are presented as compared
with those obtained from FEM (Pereira 2003) and Ritz type (Silveira et al. 2008)
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solutions for various values of the dimensionless foundation parameter k . Moreover, in

Fig. 2.11 the deflections of the beam ignoring the foundation reaction or resting either

on unilateral or bilateral subgrade (k=104), are presented as compared with those
obtained from a Ritz type solution (Silveira et al. 2008) demonstrating once again the
paramount importance of the tensionless character of Winkler foundation. Finally, in
Table 2.3 the extreme values of the beam deflection and of the soil reaction are
presented for both cases of bilateral and unilateral foundation reaction, leading to the
conclusions already drawn and noting the significant influence of the unilateral
character of the soil reaction in both the deflections and the soil reaction especially in

the case of a stiff soil.

Table 2.2. Extreme values of the deflections (cm) and the foundation reaction of the

beam of example 2.1 (case ii).

‘ Bilateral Winkler Unilateral Winkler

Min w Max w pSZl3 / El Min w Max w pSZZ3 / El
10 0 9.671 9.670 0 9.671 9.671
10° -0.239 2.341 23.41 -0.255 2.326 23.26
10* -0.326 0.549 54.90 -0.778 0.490 49.04
10° -0.095 0.0941 94.06 -0.9139 0.104 104.36

Table 2.3. Extreme values of the deflections (cm) and the foundation reaction of the

beam of example 1 (case iii).

Bilateral Winkler Unilateral Winkler
k
Min w Max w pSZl3 / El Min w Max w pSZZ3 / El

10° -0.248 0.661 0.66 0 1.286 1.28
10° -0.197 0.318 3.18 -0.41 0.609 6.09
10* -0.031 0.095 9.53 -1.266 0.239 23.95
10° -0.006 0.026 26.09 -1.789 0.082 81.47
10° 0 0.005 54.05 -2.070 0.023 231.4
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Fig. 2.9. Deflection of the beam of example 1 (case ii) resting on a bilateral (a) and
unilateral (b) elastic foundation for various values of the parameter k.
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Fig. 2.10. Deflection of the beam of example 1 (case iii) resting on a unilateral
elastic foundation for various values of the soil parameter k.
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Fig. 2.11. Deflection of the beam of example 1 (case iii) ignoring the foundation

reaction or resting either on unilateral or bilateral foundation k =1 0%

2.4.2 Example 2 — Nonlinear Analysis of Clamped Beam on Elastic Foundation
In order to illustrate the importance of the nonlinear analysis and the influence of the
shear deformation effect, a clamped beam of length /=5m, having a hollow

rectangular cross section (E=210GPa, v=0.3, a,=3.664, a, = 1.766) resting on

homogeneous (either bilateral or unilateral) elastic foundation of stiffness k., as shown
in Fig. 2.12, is examined.

In Fig.2.13 the deflection curves along the beam resting on a tensionless foundation
with &k, =50kN / m’ and subjected to a uniformly distributed load p, =100kN / m

(case i) are presented performing either linear or nonlinear analysis and taking into
account or ignoring shear deformation effect. From this figure, the influence of the
nonlinearity to the performed analysis is remarked, while the discrepancy of the

obtained results due to the shear deformation effect justifies its importance even in thin
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walled sections. Moreover, in Table 2.4 the deflections and the bending moments at the
beam’s midpoint and ends, respectively are presented performing either linear or
nonlinear analysis and taking into account or ignoring shear deformation effect. Finally,

in Fig. 2.14 the deflection curves of the beam resting on a tensionless foundation are
presented for various values of the modulus &, of the subgrade reaction, performing

nonlinear analysis taking into account shear deformation effect and demonstrating the

importance of the soil stiffness in the obtained results.

a.= 3.664 Tj|f |
~

a,= 1.766 |z

Fig. 2.12. Clamped beam of hollow rectangular cross section subjected to uniformly
distributed load p, (case i).

To illustrate the importance of the tensionless character of the subgrade reaction,
the same beam subjected to a concentrated moment M, =—/00kNm at its midpoint
(case ii) is also studied. In Figs. 2.15(a,b) the deflection curves of the beam resting on a
tensionless foundation and the foundation reaction are presented, respectively for
various values of the subgrade reaction modulus k_, performing nonlinear analysis and

taking into account shear deformation effect. Additionally, in Table 2.5 the extreme
values of the displacements and the soil reaction are presented for both cases of bilateral
and unilateral soil reaction for various values of the modulus k. performing a
geometrical nonlinear analysis and taking into account shear deformation effect. From
the aforementioned figure and table, it is concluded that the unilateral character of the
foundation is of paramount importance and the error occurred from the ignorance of this

behaviour is considerable.
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Fig. 2.13. Deflection along the beam of example 2 (case i), for soil stiffness
k. = 50kN / n’.
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Fig. 2.14. Deflection along the beam of example 2 (case i), for various values of

the subgrade reaction modulus k.
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Table 2.4. Deflection (cm) and Moment (kNm) at the midpoint and the ends of the
clamped beam, respectively of example 2 (case i ), for k, =50kN / mZ.

Without Shear Deformation With Shear Deformation
Analysis
Linear Nonlinear Linear Nonlinear
w(l/2) 7.49 6.93 7.95 7.28
My(O,l) -202.98 -192.85 -199.31 -187.54
10 0 Bt

kz5 = 5 10%kN/m2

\
i
—
o
1

—
W
1

Deflection w(mm)
(3]

(=)
[\
(=]

1

Foundation Reaction pgz(kN/m)

kz2=50kN/m2

N
W
1

4 kz] =zero kz5 = 5 104kN/m2

30 T T

2 3 4 5
0 1 2 3 4 5
Length x(m) Length x(m)
(a) (b)

Fig. 2.15. Deflection curves of the beam (a) and foundation reaction (b) of example 2
(case ii) for various values of tensionless subgrade reaction k.

Table 2.5. Extreme values of the deflections (mm)and the foundation reaction

(kN/ m) of the beam of example 2 (case ii).

k, Bilateral Winkler Unilateral Winkler
(kN/m’) Minw  Maxw  Max p,, Min w Max w Max p,,

50 -5.59 5.59 0.279 -5.67 5.53 0.276
5%10* -5.39 5.39 2.694 -6.10 4.92 2.459
5%10° -4.01 4.01 20.007 -7.84 2.56 12.822
5x10% -1.45 1.45 72.675 -9.21 0.57 28.327
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2.4.3 Example 3 — Experimental Validation of Pile—Foundation Systems

In this example, the accuracy of the developed formulation for the elastic analysis of
pile—foundation systems is validated against experimental data and other numerical
formulations available in literature.

Under this scope, a single pile (i) of length / =4.65m , diameter d =0.3573m and

modulus of elasticity £, =20GPa driven into clay soil with E; =9233kN / m? and

Poison’s ratio v, =0.3 (measured experimentally, taking the mean over the first three
meters), is studied. The pile is subjected to concentrated horizontal force P, =60kN and
to bending moment M, = 69kNm at its head. In Fig. 2.16 the displacement curve along

the pile is presented as compared with the experimental measurements obtained by
Kerisel and Adam(1967) and those from a BEM-FEM coupling formulation presented
by Filho et al. (2005).

0 -

0.5 1

2 L X )
? Pile under Horizontal Force
& Bending Moment

J (3—6——© Present Study
4 - | [4 - £1 -[-] Kerisel and Adam (1967)
& = <€- =% Filho et al. (2005)

Un

-4 0 . 4 8 12
Displacement w(mm)

Fig. 2.16. Displacement along the pile (i) of example 3.
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Moreover, a pile (i) of length /=6.096m (d =60.96cm, E, = 21.11GPa) driven
into clay soil (E;=1%E,, v,=02) under tip loading (F,=181.6kN,
M, =-95.826kNm), has also been studied. In Figs. 2.17a,b the displacement curves

along the pile are presented as compared with those obtained from Vallabhan and
Sivakumar (1986) and from a BEM-FEM coupling formulation presented by Filho et al.
(2005). Additionally, in Fig 2.17b the settlement u(x) due to axial force P, =726.4kN

is depicted, as compared with literature (Vallabhan & Sivakumar 1986, Ferro &
Venturini 1992, Filho et al. 2005).

Finally, a pile (iii) of length [ =12.2m (d =6Ilcm, E, =20.67GPa) driven into

London clay ( £ = 72.4MN/m?, vy =0.5) under vertical loading P, =1.1MN , has been

examined. The predicted settlement at the tip of the pile is evaluated from the current

formulation at u =0.285cm while the experimentally measured one (Whitaker &

Cooke 1966) is u® =0.284cm, giving a divergence of only 0.35%. From these
comparisons a very good agreement can be verified between the experimental data, the

other numerical formulations and the proposed model.
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Fig. 2.17. Displacement along the pile (ii) of example 3.
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2.4.4 Example 4 — Beam on 3-Parameter Foundation
In order to illustrate the influence of the soil modelling to the beam-foundation system

response, a beam of length [=3m (E=2.9><]06kN/m2, A=0.02m2,

1,=6.67x 107 m?, a,=1.2) resting on a three-parameter foundation, has been

studied. The beam is subjected to a uniformly distributed load p, =500kN / m, while

three types of boundary conditions have been examined; namely (7) hinged- hinged, (i)
hinged-fixed and (ii7) fixed-fixed.

In Tables 2.6-2.8 the central beam deflection for various values of the foundation
parameters are presented taking into account or ignoring shear deformation effect as
compared with those obtained from a BEM solution ignoring this effect (Tsiatas 2010),
for the aforementioned cases of boundary conditions, respectively. Moreover, in Fig.

2.18 the deflection curve along the clamped beam resting on a three-parameter
nonlinear  foundation with  k;, =1000kN / m?, kg, =1000 kN / m®  and

kp, =1000kN is presented performing either a linear or a nonlinear analysis and taking

into account or ignoring shear deformation effect. From this figure, the influence of

geometrical nonlinearity to the performed analysis is remarked.

O -4 ‘- ————————————————————————— y.
’ K, =1000kN/m?
Fixed-Fixed Beam on Ky;,=1000kN/m#
0.04 1 Kp, =1000kN
Nonlinear Analysis
= 0.08 - Without Shear Deformation
E \ [3F-£1=-] With Shear Deformation
8
2
Z 0.12 1
0.16 1 . S T
Linear Analysis . S 3 . /g@ 13 .‘66%
- — —— Without Shear Deformatioios=o= — — — — — — — — — -
<> <>- <O With Shear Deformation
0.2 T T T T T 1
0 0.5 1 1.5 2 2.5 3

Length (m)
Fig. 2.18. Deflection along the fixed-fixed beam of example 4.
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Table 2.6. Deflections (m) at the midpoint of the hinged-hinged beam of example 4.

2 4 With Shear  Without Shear  Tsiatas
krz (kN/ m ) kNLZ (kN/ n ) kP Z(kN) Deformation  Deformation (2010)

0 0 0 0.31189 0.31259 0.31272
1000 0 0 0.25452 0.25537 0.25546
0 1000 0 0.30742 0.30812 0.30825
0 0 1000 0.25086 0.25172 0.25176
1000 1000 0 0.25168 0.25253 0.25262
1000 0 1000 0.20057 0.20152 0.20154
0 1000 1000 0.24820 0.24906 0.24909
1000 1000 1000 0.19912 0.20005 0.20009

Table 2.7. Deflections (m) at the midpoint of the hinged-fixed beam of example 4.

2 4 With Shear  Without Shear  Tsiatas
kpz (kN/ n ) knez (kN/ m ) kp Z(kN) Deformation  Deformation (2010)

0 0 0 0.28398 0.28184 0.28207
1000 0 0 0.23144 0.23022 0.23038
0 1000 0 0.28052 0.27849 0.27871
0 0 1000 0.22395 0.22222 0.22242
1000 1000 0 0.22933 0.22816 0.22832
1000 0 1000 0.17989 0.17894 0.17910
0 1000 1000 0.22204 0.22038 0.22058
1000 1000 1000 0.17889 0.17796 0.17812

Table 2.8. Deflections (m) at the midpoint of the fixed-fixed beam of example 4.

2 4 With Shear  Without Shear Tsiatas
krz (kN/ m ) kngz (kN/ n ) kP Z(kN) Deformation  Deformation (2010)

0 0 0 0.25747 0.25292 0.25324
1000 0 0 0.20956 0.20651 0.20675
0 1000 0 0.25492 0.25054 0.25086
0 0 1000 0.19759 0.19359 0.19390
1000 1000 0 0.20807 0.20511 0.20533
1000 0 1000 0.15997 0.15757 0.15757
0 1000 1000 0.19633 0.19242 0.19274

1000 1000 1000 0.15932 0.15673 0.15696
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2.4.5 Example 5 — Axially Loaded Cantilever Beam on Pasternak Foundation
In order to illustrate the influence of axial loading to the response of beam-foundation
systems, a cantilever beam of length [=1.0m, (E= 20x10°kN / mz,v =0.3,

A=2.9x107n’, Iy:5.]24><]0'6m4, a,=4.513) resting on a Pasternak type

foundation of stiffness k7, =2000kN / m’, kp, =1000kN , is examined. The beam is
subjected to a uniformly distributed axial compressive p, = 100kN / m and transverse
p. =200kN / m loading as well as to a concentrated compressive axial force at its end
P (l ) =200kN .

In Fig.2.19 the deflection curves of the beam are presented performing either a
linear or a nonlinear analysis and taking into account or ignoring shear deformation
effect. From this figure, the influence of the shear deformation effect to the performed
analysis is remarked. Moreover, in Table 2.9 the deflections and the bending moments
at the ends x=/ and x =0, respectively of the beam are presented for both of the
aforementioned cases of analysis and taking into account or ignoring shear deformation
effect. From the above analysis, it is easily concluded that the geometrically nonlinear

analysis and the shear deformation effect are of paramount importance.

0 e
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Fig. 2.19. Deflection curves along the cantilever beam of example 5.
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Table 2.9. Deflection (cm) and bending moment (kNm) at the ends x=1 and x=0,
respectively of the beam of example 5.

Without Shear Deformation With Shear Deformation
Analysis
Linear Nonlinear Linear Nonlinear
w(l) 2.10 2.29 2.42 2.64
M, (0) -94.53 -99.96 -96.64 -102.9

2.4.6 Example 6 — Free-Free Beam on 3-Parameter Foundation

To demonstrate the range of applications of the proposed method, a free-free beam

resting on a three-parameter foundation (k;, =35 MN/ m? ki, =%3.5x1 0° MN / m*

kp, =35MN), is examined. The beam of length /=6.0m (E=29x10° kN/mz,
v=0.2, A=0.135m2, I, =1.013-1073m?, a, =1.2) is subjected to a concentrated

axial force at its ends P, (0) =—P,(1)=600kN and to a concentrated transverse force at

its midpoint P, (l /2)=100kN .

In Figs. 2.20, 2.21 the deflection curves of the Timoshenko beam performing
nonlinear analysis are presented, for different types of foundation modelling taking into
account or ignoring the tensionless character of the soil, respectively. Moreover, in
Table 2.10 the deflections at the free ends and the bending moments at the midpoint of
the beam are presented performing either a linear or a nonlinear analysis and taking into
account or ignoring shear deformation effect.

In Table 2.11 the extreme values of the deflection and the foundation reaction of
the Timoshenko beam performing a nonlinear analysis are presented, for different types

of foundation modelling taking into account or ignoring the tensionless character of the
soil. Finally, in Fig. 2.22 the displacement w(/ / 2) versus the applied load Pz(l / 2) is

presented for various types of foundation modelling illustrating the hardening and
softening effect of the nonlinear foundation. The significant influence of the unilateral
soil reaction to the deflections and the importance of the modelling of the subgrade to

the response of the beam are once again verified.
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Fig. 2.20. Deflection along the free beam of example 6, for unilateral foundation.
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Fig. 2.21. Deflection along the free beam of example 6, for bilateral foundation.
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Table 2.10. Deflection (><10_4m) at x =0 and bending moment (kNm) at x=1/2 of

the beam of example 6, resting on a three-parameter foundation.

Without Shear Deformation

With Shear Deformation

Analysis
Linear Nonlinear Linear Nonlinear
w(0) -4.60 -5.23 -4.46 -5.09
M, (1/2) 23.0 23.5 23.8 24.2

Table 2.11. Extreme values of the deflections (x] 074m) and the foundation reactions

(kN / m) of the beam of example 6.

Bilateral Winkler Unilateral Winkler
] Max )
Minw Maxw Minw Maxw Max pg,
Dsz

Linear Winkler -3.00 112 39.4 -6.53 115 40.4
Nonlinear & Linear |, ¢ 10.6 412 6.27 10.8 42.4
Winkler

Three-Parameter 2197 8.09 61.1 509 7.69 61.6
(Positive)

Three-Parameter 22.07 8.56 64.0 -5.23 8.06 63.9
(Negative)

2.4.7 Example 7 — Pinned Beam on 3-Parameter Foundation: Unbonded Contact

Finally, in order to demonstrate the importance of the unbonded contact between the

structural elements and the supporting subgrade, a pinned-pinned beam of length

I=5m (E=210GPa, v=0.3, A=8682x10"m’, I,=1045x10"m?, a,=1462,

a, =4.668) resting on a three-parameter foundation reacting according to the following

relation, is examined.

Po(MN / m) = y[Uw(5w+ 5w’ —
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where y is a scale factor. The beam is subjected to a concentrated bending moment
M,, =100kNm at its midpoint.

In Figs. 2.23a,b the deflection curves of the beam and the foundation reaction
performing nonlinear analysis and taking into account shear deformation effect are
presented, respectively, for either bilateral or unilateral soil reaction and for two values
of the factor y . It is worth noting that the zero values of the soil reaction curve of Fig.
2.23b denote the detachment of the beam. Finally, in Table 2.12 the extreme values of
the aforementioned quantities are given for both cases of bilateral and unilateral soil
reaction and for various values of the factor 7. From the aforementioned figures and
table, it is concluded that the unilateral character of the foundation is of paramount

importance and cannot be ignored.

250 -
Positive Nonlinear Foundation
225 1 B Unilateral
[4—=—F1 Bilateral
200 A
175 4 Pasternak Foundation
§ 150 4
§ Negative Nonlinear Foundation
:N 125 1 —@— Unilateral
3 —c— Bilateral
& 100 4
=
75 1
50 1 Timoshenko Beam
’s Geometrically Nonlinear Analysis
0 T T T 1

0 0.001 0.002 0.003
Displacement w(//2) (m)

Fig. 2.22. Midpoint displacement vs. applied load of the free beam of example 6.

2.5 Concluding Remarks

In this chapter, a Boundary Element Method is developed for the geometrically
nonlinear analysis of shear deformable beams of arbitrary doubly symmetric simply or

multiply connected constant cross-section, partially supported on nonlinear three-

55



Geometric and Material Nonlinear Analysis of Beam—Soil Interaction Systems

parameter tensionless foundation, undergoing moderate large deflections under general

boundary conditions. The beam is subjected to the combined action of arbitrarily

distributed or concentrated transverse loading and bending moments in both directions

as well as to axial loading. The main conclusions that can be drawn from this

investigation are

i.  The proposed beam formulation is capable of yielding results of high accuracy, as

verified by comparing with analytical, semi-analytical, FEM and experimental

results, with minimum computational cost, providing a simple, reliable and efficient

computational tool for the static analysis of beam-foundation systems.
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Fig. 2.23. Deflection curves (a) and foundation reactions (b) of the beam of example 7.

Table 2.12. Extreme values of the displacements(mm) and the foundation reactions

(kN / m) of the beam of example 7.

Bilateral Contact Unilateral Contact
(7) Minw  Maxw  Max pg, Min w Max w Max pq,
0.5 -0.846 0.846 2.76 -1.17 0.617 2.11
1.0 -0.793 0.793 5.20 -1.30 0.475 3.38
1.5 -0.747 0.747 7.37 -1.38 0.394 4.33
2.0 -0.706 0.706 9.31 -1.42 0.346 5.18
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1l.
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The influence of geometrical nonlinearity is illustrated through the significant

discrepancy between the results of the linear and the nonlinear analyses.

The proposed model takes into account the coupling effects of bending and shear
deformations along the member as well as the shear forces along the span induced

by the applied axial loading.

In some cases, the effect of shear deformation is significant, especially for low

beam slenderness values.

The inclusion of both the coupling effect of the linear elastic springs and the
nonlinear character of the subgrade reaction influences the response of the beam
and makes the modelling of the mechanical behaviour of the subsoil more realistic

and effective.

The significant influence of the unilateral character of the foundation in both the
deflections and the soil reaction, especially in the case of a stiff soil is

demonstrated.

The lift up of the beam caused by the tensionless character of the foundation is

observed, leading to significantly different response compared to the bilateral one.

The developed procedure retains most of the advantages of a BEM solution while

requiring a small number of nodal points to achieve high accuracy.

The use of BEM enables the accurate calculation of the stress resultants which are

very important during both the analysis and the design of beam-foundation systems.
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Chapter 3

Geometrically Nonlinear Dynamic Analysis of
Shear Deformable Beams on Nonlinear Foundation

3.1 Introduction

Many problems related to Soil-Structure—Interaction can be modelled by means of a
beam or beam-column on/in nonlinear foundation. This model is commonly employed
in the analysis of practical applications like spread footing, continuously supported
pipelines and strip foundations. Also, the vibration analysis of beams on nonlinear
foundations traversed by moving loads is of great interest in the area of high-speed
transportation or rocket-sledge technology. Moreover, the seismic response of column-
pile systems under transient earthquake excitation is an area of extensive active
research, since pile foundation is widely used to support superstructures such as bridges,
wind-turbines and offshore platforms.

Over the past thirty years, many researchers have developed and validated various
methods for the study of Dynamic Beam—Soil-Interaction. Moreover, evidence from
case histories (Mizuno1987, Makris & Gazetas 1996, Matsui 1996, Tokimatsu 1996,
Gazetas & Mylonakis 1998) as well as from experimental investigations (Chau et al.
2009, Manna & Baidya 2010) and field studies (Novak 1976, Burr et al. 1997, Blaney &
O’Neill 1989, Han & Novak 1988, Han 1989, Marsafawi et al. 1992, Nikolaou et al.
2001) have indicated the importance of a rigorous and precise dynamic analysis, since
damages due to interaction may occur during a seismic excitation.

Besides, having in mind the magnitude of the arising axial forces due to self weight,
dead and environmental loading and the importance of weight saving in engineering
structures, the study of nonlinear effects on the analysis of supporting structural
elements becomes essential. This nonlinearity results from retaining the square of the
slope in the strain—displacement relations (intermediate nonlinear theory), avoiding in
this way the inaccuracies arising from a linearized second—order analysis. Moreover,
due to the intensive use of materials having relatively high shear modulus, the error in

the beam analysis incurred from the ignorance of the effect of shear deformation may be
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substantial, particularly in the case of heavy lateral loading. All of the above concepts
constitute the motive for the development of an advanced beam model capable of
performing rigorous beam-soil kinematic and inertial interaction analysis accounting
for the effects induced by geometrical nonlinearity, rotary inertia and shear deformation.

The Beam on Nonlinear Foundation model is a powerful tool capable of analyzing
in detail the Beam—Soil-Interaction and has been adopted by several authors producing
results of remarkable accuracy compared to rigorous numerical schemes. Both the
geometrical nonlinearities and the interaction effects (Kavvadas & Gazetas 1993,
Mylonakis et al. 1997, Mylonakis 2001) can be studied through a beam model which
retains the advantage of time performance and deriving directly perceptible quantities,
while the obtained results are in remarkable agreement with more sophisticated models
(i.e. two/three dimensional finite element analysis) (Nikolaou et al. 2001, Maiorano et
al. 2009, Dezi et al. 2010, Thavaraj et al. 2010, Di Laora et al. 2013).

When the beam displacements are small, a wide range of linear analysis tools, such
as modal analysis, can be used and some analytical results are possible. Analytical
solutions of problems involving beam vibrations of simple geometry and boundary
conditions have received a good amount of attention in the literature, with pioneer the
works of Krylov (1905) and later the one of Timoshenko (1911) who determined the
dynamic stresses in beam structures. Furthermore, contributions concerning the linear
transverse vibrations of simply supported beams traversed by a constant force moving at
a constant velocity were presented by Inglis (1934), Lowan (1935) and later on by
Kolousek (1973) and Fryba (1999). In these approaches the results are usually
expressed as an infinite sum of normal modes, obtaining the contribution of each mode
by the method of integral transformation. Moreover, Hetenyi (1966) studied the
elementary Euler-Bernoulli beam on elastic Winkler foundation, while Weitsman
(1971) presented an Euler-Bernoulli beam subjected to a concentrated load moving with
constant speed resting on a tensionless foundation, relating the load amplitudes that
bring the beam to the verge of separation from the foundation with the velocity of
motion. Rades (1972) presented the steady-state response of a finite rigid beam resting
on a foundation defined by one inertial and three elastic parameters in the assumption of
a permanent and smooth contact between beam and foundation considering only
uncoupled modes. Wang and Stephens (1977) studied the natural vibrations of a
Timoshenko beam on a Pasternak-type foundation showing the effects of rotary inertia,
shear deformation and foundation constants of the beam employing general analytic

solutions for simple cases of boundary conditions. Choros and Adams (1979)
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investigated the steady-state deformation of an infinite beam on a tensionless undamped
elastic foundation under a single moving force, while Morgan and Sinha (1983)
investigated the stability of Beck’s column supported by three different viscoelastic
foundations, namely the standard linear soil, the Maxwell and the Kelvin-Voigt one,
performing an exact dynamic analysis for each foundation model. Nevertheless, due to
the simplifying assumptions made to all of the above contributions, it must be stressed
that the results obtained correspond only to an estimate of the structural response.

Since then, important development has been achieved regarding more rigorous
linear dynamic analysis of beams on nonlinear foundation. To begin with, Kuczma and
Switka (1990) presented a solution algorithm for the analysis of unilateral, frictionless
contact between a beam and a viscoelastic foundation. The problem was formulated in
the form of a variational inequality, from which after space discretization by the finite
element method, a linear complementary problem was derived. Later, Huang and Zou
(1994) analysed the dynamic response of an elastic beam on a linear viscoelastic
Winkler foundation, impacted by a moving body at a low velocity, while Thambiratnam
and Zhuge (1996) studied the dynamic analysis of beams on elastic foundation
subjected to moving point loads employing the finite element method and modelling the
foundation by springs of variable stiffness. Matsunaga (1999) employing the method of
power series expansion presented the natural frequencies and buckling stresses of a deep
beam-column on a two-parameter elastic foundations taking into account the effect of
shear deformation, depth change and rotary inertia. De Rosa (1995) and El-Mously
(1999) derived explicit formulae for the fundamental natural frequencies of finite
Timoshenko-beams mounted on finite Pasternak foundation. Sun (2001) employed the
Fourier transform to solve the problem of steady-state response of a beam on a
viscoelastic foundation subjected to a harmonic line load. Boulanger et al. (1999)
developed a beam formulation for analyzing seismic soil-pile—structure interaction and
evaluated it against the results of a series of dynamic centrifuge model tests. Sensitivity
of the results to dynamic p-y model parameters and site response calculations were also
examined, while Nikolaou et al. (2001) implemented a beam model for piles in
homogeneous and layered soils illustrating that the magnitude of kinematic moments
depends mainly on the stiffness contrast between the soil layers, the pile—soil stiffness
contrast, the excitation frequency, and the number of excitation cycles. Chen et al.
(2001) established the dynamic stiffness matrix of an infinite or semi-infinite
Timoshenko beam on a Winkler viscoelastic foundation subjected to a harmonic

moving load, followed by Sun (2001a,b, 2002) who proposed a closed-form
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displacement responses of beam-type structures subjected to moving line or
concentrated loads after obtaining a Green’s function of the beam on elastic or
viscoelastic foundation by means of Fourier transform. Coskun (2003) studied the
response of an elastic beam on a two-dimensional tensionless Pasternak foundation
subjected to a central concentrated harmonic load using trigonometric-hyperbolic
functions, while Chen et al. (2004) proposed a mixed formulation combining the state-
space and the differential quadrature methods, for the bending and free vibration
analysis of arbitrarily thick beams resting on a Pasternak elastic foundation. Hutchinson
et al. (2004) used nonlinear dynamic analyses to evaluate the inelastic seismic response
of bridge and viaduct structures supported on extended pile shafts. For the nonlinear
dynamic soil-pile interaction analyses the beam on nonlinear foundation model was
employed. The results focused on the influence of the ground motion characteristics and
the variations in structural configurations on the performance measures which evaluated
the inelastic seismic response of the structures examined. Kargarnovin and Younesian
(2004, 2005) presented the response of an infinite length Timoshenko beam of uniform
cross-section, supported by either a generalized Pasternak-type or a nonlinear
viscoelastic foundation and subjected to arbitrarily distributed harmonic moving loading
and employing either complex Fourier transformation in conjunction with the residue
and convolution integral theorems or a straightforward technique using Lindstedt—
Poincare perturbation method in conjunction with a Fourier integral transformation.
Muscolino and Palmeri (2007) studied the response of beams resting on viscoelastically
damped foundation under moving single—degree—of—freedom (SDoF) oscillators
through a novel state-space formulation, in which a number of internal variables is
introduced with the aim of representing the frequency-dependent behaviour of the
viscoelastic foundation. Ying et al. (2008) derived an exact solution for bending and
free vibration analysis of functionally graded beams resting on a Winkler—Pasternak
elastic foundation based on the two-dimensional theory of elasticity and employing the
state space method. Lately, Zehsaz et al. (2009) studied the dynamics of railway, as a
Timoshenko beam of limited length, lying on a Pasternak viscoelastic foundation,
subjected to moving load employing the modal superposition method, while Calim
(2009) presented the dynamic behaviour of Timoshenko beams on Pasternak-type
viscoelastic foundation subjected to time-dependent loading, employing the
complementary functions method. Millan and Dominguez (2009) developed a
simplified model for the analysis of the dynamic response of structures on piles and pile

groups in viscoelastic or poroelastic soils under time harmonic excitation using a
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coupled boundary element—finite element model able to take into account dynamic pile—
soil-pile interaction in a rigorous manner. Younesian and Kargarnovin (2009) presented
the dynamic response of infinite beams supported by random viscoelastic Pasternak
foundation subjected to harmonic moving loads, employing the first order perturbation
theory and calculating appropriate Green’s functions. Gerolymos et al. (2009) employed
nonlinear distributed Winkler-type springs and dashpots to investigate the soil-pile-
bridge system interaction to seismic loading with emphasis on structural nonlinearity.
The analyses focused on the influence of various parameters such as soil compliance
and pile yielding on the local and global ductility demands and the maximum drift ratio.
Castelli and Maugeri (2009) developed a simplified pseudostatic approach based on the
p-y soil reaction in order to evaluate the internal response of piles under earthquake
loading, verifying the obtained results with experimental and numerical ones. Dezi et al.
(2010) performed a parametric kinematic seismic interaction analysis of single piles
embedded in soil deposit focusing on the bending moments induced by the transient
motion by employing an Euler—Bernoulli beam embedded in a layered Winkler—type
medium. Dimitrovova (2010) presented the transverse vibrations induced by a load
moving at a constant speed along a finite or an infinite beam resting on a piecewise
homogeneous viscoelastic foundation employing the normal-mode analysis and paying
attention to the amplification of the vibrations arising from a foundation discontinuity.
Ansari et. al. (2010) studied the vibration of a finite Euler—Bernoulli beam, supported by
non-linear viscoelastic foundation and traversed by a moving load employing the
Galerkin method, while the solution for different harmonics is obtained using the
Multiple Scales Method. Chen and Chen (2011) studied the effect of damping on the
multiple steady state deformations of an infinite beam resting on a tensionless Winkler-
type foundation subjected to a point load moving with a sub- critical speed. Sica et al.
(2011) highlighted the severity of kinematic pile bending through a parametric study of
the dynamic response of piles to seismic loading based on a properly calibrated a beam
model where the pile was modelled though an Euler—Bernoulli beam embedded in soil
consisting of two homogeneous viscoelastic layers of sharply different stiffness and
subjected to vertically propagating seismic S waves. Recently, Anoyatis et al. (2013)
employed a beam model for investigating the behaviour of kinematically stressed piles
for different boundary conditions at the head and tip deriving new closed-form
analytical solutions.

As the beam displacements become larger, the induced geometric nonlinearities

result in effects that are not observed in linear systems. Contrary to the good amount of
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attention in the literature concerning the linear dynamic analysis of beam supported on
nonlinear foundation, very little work has been done on the corresponding nonlinear
problem. Lewandowski (1989) studied the nonlinear free vibration analysis of multispan
beams on elastic supports, employing the dynamic finite element method, neglecting the
horizontally and rotary inertia forces and considering the beams as distributed mass
systems. Moreover, Chang and Liu (1996) performed the deterministic and random
vibration nonlinear analysis of a beam on an elastic foundation subjected to a moving
load employing the Galerkin method in conjunction with the finite element method,
while the nonlinear system of differential equation has been solved by the implicit direct
integration method. Rotary inertia and shear deformations are neglected, while the
effects of longitudinal deflections and inertia have been considered so that the coupled
equations of longitudinal and transverse deflections can be derived based on Euler-
Bernoulli hypothesis. Chen et al. (2001) performing a geometrically nonlinear analysis
with constant axial force presented the dynamic stiffness matrix of an infinite
Timoshenko beam on viscoelastic foundation subjected to a harmonic moving load and
determined the critical velocities and the resonant frequencies. Kim and Cho (2006)
presented the vibration and buckling of an infinite beam-column under constant axial
force, resting on an elastic foundation and subjected to moving loads of either constant
or harmonically varying amplitude with a constant advance velocity, taking into account
shear deformation effect. Finally, Arboleda-Monsalve et al. (2007) presented a
Timoshenko beam resting on a two-parameter elastic foundation with generalized end
conditions. The proposed model includes the frequency effects on the stiffness matrix
and load vector as well as the coupling effects of bending and shear deformations along
the member and the shear forces along the span induced by the applied axial load as the
beam deforms according to the ‘modified shear equation’ proposed by Timoshenko.

In this chapter, a Boundary Element Method (BEM) is developed for the
geometrically nonlinear response of shear deformable beams of simply or multiply
connected constant cross-section, partially supported on nonlinear three-parameter
tensionless viscoelastic foundation, undergoing moderate large displacements under
general boundary conditions. The beam is subjected to the combined action of
arbitrarily distributed or concentrated transverse loading and bending moments in both
directions as well as to axial loading. This dynamic loading represents the most general
case, which includes impact loading, transverse moving loading, seismic excitation,
beam—soil interaction, etc. To account for shear deformations, the concept of shear

deformation coefficients is used. Five boundary value problems are formulated with
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respect to the transverse displacements, to the axial displacement and to two stress
functions and solved using the Analog Equation Method (Katsikadelis 2002), a BE
based method. Application of the boundary element technique yields a system of
nonlinear Differential-Algebraic Equations (DAE), which is solved iteratively using the
Petzold-Gear backward differentiation formula (Brenan et al. 1989), a linear multistep
method for differential equations coupled to algebraic equations. The evaluation of the
shear deformation coefficient is accomplished from the aforementioned stress function
using only boundary integration.

Numerical examples of great practical interest are worked out to demonstrate the
efficiency and the accuracy of the developed method through comparison with literature
and FEM results, as well as its range of applications. In these examples, the effects
arising in the nonlinear dynamic analysis of beams on nonlinear foundation are
illustrated. Subsequently, an extensive case study is carried out on a pile—column—deck
system of a bridge, founded in two cohesive layers of sharply different stiffness and
subjected in various earthquake excitations, providing insight to several phenomena.
The essential features and novel aspects of the present formulation compared with

previous ones are summarized as follows.

i.  The proposed beam model accounts for the geometrical non-linearity by retaining
the square of the slope in the strain—displacement relations. For that purpose the

Total Lagrangian formulation (intermediate non-linear theory) has been adopted.

ii. Shear deformation effect and rotary inertia are taken into account in the nonlinear

dynamic analysis of beams on nonlinear foundation.

iii. The proposed model accounts for the coupling effect of bending and shear
deformations along the member as well as shear forces along the span induced by

the applied axial loading.

iv. The shear deformation coefficients are evaluated using an energy approach, instead
of Timoshenko’s (Timoshenko & Goodier 1984) and Cowper’s (1966) definitions,
for which several authors (Schramm et al. 1994, 1997) have pointed out that one
obtains unsatisfactory results or definitions given by other researchers (Stephen

1980, Hutchinson 2001) for which these factors take negative values.

v. The beam is subjected to arbitrary external loading and is supported by the most

general boundary conditions including elastic support or restrain, while its cross
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section is an arbitrary doubly symmetric one, unless it is mentioned otherwise (i.e.

mono symmetric cross sections).

vi. The nonlinear half-space is approximated by a tensionless three-parameter

viscoelastic foundation.

vii. Soil nonlinearity can also be taken under consideration by means of a hybrid spring
configuration consisting of a nonlinear (p-y) spring for the near—field plastification,
connected in series to a Kelvin—Voigt element representing the far—field

viscoelastic character of the soil.

viii. In cases of earthquake excitations the site seismic response is obtained through one

dimensional shear wave propagation analysis.

ix. The proposed model employs a BEM approach, while a small number of nodal

points are required to achieve high accuracy.

x. The use of BEM permits the effective computation of derivatives of the field
functions (e.g. stresses, stress resultants) which is very important during the

dynamic analysis of beams.

Finally, it is worth mentioning that the outcome of the conducted research activity
presented in this chapter of the doctoral dissertation has been published in international
journals (Sapountzakis & Kampitsis 2010b, 2011b, 2013a,b, Kampitsis et al. 2013a,
Sapountzakis et al. 2014), in national and international conferences (Sapountzakis &
Kampitsis 2009a,b, Sapountzakis et al. 2010, Sapountzakis & Kampitsis 2010c,d,
2011c,d, 2012c, Sapountzakis et al. 2013, Kampitsis et al. 2013b) and in books
published by international publishing companies (Sapountzakis & Kampitsis 2010f,
2013e).

3.2 Statement of the Problem

Let us consider a prismatic beam of length / (Fig. 3.1a), of constant arbitrary doubly
symmetric cross-section of area 4. The homogeneous isotropic and linearly elastic
material of the beam cross-section, with modulus of elasticity £ , shear modulus G' and

Poisson’s ratio vV occupies the two dimensional multiply connected region (2 of the

y,z plane and is bounded by the 77 ( j=1,2,...,K) boundary curves, which are

piecewise smooth, i.e. they may have a finite number of corners. In Fig. 3.1b Cyz is the
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principal bending coordinate system through the cross section’s centroid. The beam is

partially supported on a nonlinear tensionless three-parameter viscoelastic soil. The

foundation model is characterized by the linear Winkler moduli &, kpy kr., the
nonlinear Winkler moduli ky;,,, Ky, the Pasternak (shear) foundation moduli kp, , kp,

and the damping coefficients c,, ¢, corresponding to the directions y, z respectively.

Having in mind that for the longitudinal direction the reaction is a bilateral one
exhibiting both compressive and tensile tractions, while for the transverse directions is a
unilateral one (accounting for the unbonded contact between beam and subgrade), the

interaction pressure at the interface can be written as

Pisx :kau(x’t) (318.)

Dsy (x,t)ZI:I(x,t)prey(x,l‘) P (x.8)=H(x,t) pe. (x,1) (3.1b,c)

where

0%v(x,t ov(x,t
prey(x,t):kLyv(x,t)+kNLyv3(x,t)—kpy 89(62 )+cy E?t ) (3.2a)

2
Prez (x’t) = kLzW(x’t) + kNLzW3 (x’t) - kPZ ‘ Z(;,Z) +c, awé:}t) (32b)
X

with H y (x,t), I:IZ (x,t) being the Heaviside unit step functions defined as

~ {1 lf Prez (x’t) >0 7 {1 lf prey(x,t) 70 (3.3a,b)

H (x1t)= H_(xt)= '
) 0 if pry(xt) <0 (x1) 0 if Proy(x.t) <0

The foundation reaction p..,, P, of eqns. (3.2a,b) takes into account the nonlinear

behaviour of the soil (e.g. ballast and rail-bed) as proposed by Dahlberg (2002) who
demonstrated that the employed nonlinear three-parameter model captures accurately
the hardening behaviour of the foundation whereas the equivalent linear fails, yielding
in considerable differences in the beam-foundation system response. Later, Wu and
Thompson (2004) presented a similar nonlinear model and studied the problem of

wheel/track impact employing the finite element method. Moreover, for real sample of
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the hardening behaviour of the foundation one can refer to (Iwnicky 2007) where
detailed field measurement results are presented.

The beam is subjected to the combined action of the arbitrarily distributed or

concentrated time dependent axial loading p,=p,(x), transverse loading
py= py(x,t) , p.=p.(x1t) acting in the y, z directions, respectively and bending

moments m,, =m,, (x.¢), m, =m_(x,t) along y, z axes, respectively (Fig. 3.1a).

m(x,t)
T zmoshenko Beam Pl c, k; kp
T p) llll
e S i e e e T S Ly

AR T RN U AT e ITEEEF IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII [LLTLETEND X u
| o < L

(a)
»v
(C: Center of gravity
S: Shear center) v LW
(b)

Fig.3.1. x-z plane of prismatic beam under axial-flexural loading (a) with arbitrary
doubly symmetric cross-section (b).

3.2.1 Displacements, Strains & Stresses

Under the action of the aforementioned loading, the displacement field of the beam

taking into account shear deformation effect is given as (Ramm & Hofmann 1995)

L?(x,y,z,t):u(x,t)—y@z(x,t)+zt9y(x,t) (3.4a)
V(x,t)zv(x,t) W(x,t)z w(x,t) (3.4b,c)
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where #, v, w are the axial and transverse beam displacement components with

respect to the Cyz system of axes; u(x,r), v(x,t), w(x,t) are the corresponding
components of the centroid C and Hy (x,t) , 6, (x,t) are the angles of rotation due to

bending of the cross-section with respect to its centroid. It is worth here noting that
since the additional angle of rotation of the cross-section due to shear deformation is

taken into account, the one due to bending is not equal to the derivative of the

displacements (i.e. 6, #V', 6, # w'").

Employing the strain-displacement relations of the three-dimensional elasticity the

components of the Green-Lagrange strain are defined as

—\2 —\2 —\2
G_uJ + (a—vj + (8_w] (3.5a)
Ox Ox X

2

ow
—j (3.5b)
oy

[ A=N\2 —\2 —\2 ]
a—u] +(a—vj +[a—wj (3.5¢)
z 154 Oz

ov  ou Ouodu Ovov oOwow

W=t || (3.5d)
7 \ox oy Ox 0y Ox Oy Ox Oy
ow ou oudu Ovov oOwow

Ve =| —Ft— || ——Ft——+—— (3.5¢)
ox Oz Ox 0z Ox 0z Ox Oz

7yz = a_w+a_v + a_ua_u+a_va_v+a_wa_w (35f)
oy Oz Oy 0z 0Oy Oz Oy Oz

Moreover, assuming relatively small centroidal axial displacement and moderate large
transverse displacements (Ramm & Hofmann 1995, Rothert & Gensichen 1987, Brush
& Almroth 1975) while strains remain small, the following strain components can be

easily obtained
_ —\2 —\2
Evy :a—u+i & + ow (3.6a)
ox 2|\ ox ox
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y. =@+a_u+(a_va_v+@@j (3.6b)
Ox 0z \Ox 0Oz Ox Oz

]/x :a_v+8_u+ 8_V§_V+8_W8_W (360)
Y ox oy \éxody ox oy

Eyy =€, =7, =0 (3.6d,e,f)

_,\2 _
where it has been assumed that for moderate displacements (a%x) << a%x’

(T4 < (40)+(T2)- (2 o) <)+ () - susiuin

the displacement components (3.4) to the strain-displacement relations (3.6), the strain

components can be written as

' ! ! 1 ' ’
gxx(x,y,z,t):u +20, — 0, +3<v2 +w2) (3.7a)

yxy=V’_0

V4

V=W 0, (3.7b.c)

where (') denotes differentiation with respect to X and Yxy» Vxz are the additional

angles of rotation of the cross-section due to shear deformation.
Considering strains to be small and assuming an isotropic and homogeneous
material, the non vanishing work conjugate stress components of the second Piola—

Kirchhoff stress tensor are defined in terms of the strain ones as

o E 0 0||&,
w=0 G 0| 7ry (3.8)
SXZ 0 0 G }/XZ

or employing the strain-displacement relations (3.7) as

' ' 4 1 12 12
S, =E{u +20, - y0, +5(v +w )} (3.92)

Sy, =G(V—6,) S

xy Xz

= G(w’ + 9y) (3.9b,c)
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3.2.2 Stress Resultants, Governing Equations of Motion, Boundary and Initial

Conditions

The governing equations of motion and the boundary conditions of the beam-foundation
system subjected to nonlinear vibrations are obtained employing Hamilton’s principle in

the total Lagrange formulation, neglecting body forces, defined as

5_[,[12 (Uint + Ub -K- Wext )dt =0 (310)

where &(-) denotes variation of quantities, 7,7, are the initial and the final times of two
sequential configurations, while Uy is the stain energy of the beam due to normal and

shear stress, U}, is the strain energy of the elastic boundary conditions and K, W, are

the kinetic energy and the external load work, respectively given as

Uiy = [/ (Sa0 + S 07 + S0y JAV (3.11a)

2
SU, = 5(%2(1(% +kwp + kg, 05, +kLvi + k.02 )J (3.11b)

b

W = [, pSu+ p,6v=5(W, )+ m 30, + p.ow=5(W, )+ m.o0, Jix+
o (3.11¢)
+ 2 N2Suy + VS, + M2SO,, + V5w, + M50,
b
1 X S, Sy )

5K:§IVp(§u + 52 + 5 )dV (3.11d)

where (°) denotes differentiation with respect to time ¢, kj? ,( j=u,v,w, 6’y,<92) are the

translational and rotational springs and N i’ ,VZb,V;’ M )13 and M f are the externally

applied forces and moments at the boundaries, V' is the initial volume of the beam in
the undeformed configuration, while the variations of strains are expressed in terms of

displacements as
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St = 5(u')+za(ey’)_yg(gz')+§5(v,z )=

(3.12a)

=5 (u)+z5(0, )= 56, )+ V() + W (w)

5y =06(v)-6(6.)  Sy.=5(w)+5(6,) (3.12b,c)

Substituting the expressions of the stress components (3.9) into the stress resultants

of the beam defined as

N :JQSxde (3133_)
Qy - fAV Sxyd[) Qz = '[Az szd‘Q (313b,0)
My =[,S42d2 M. =~[,S,yd2 (3.13d,e)

the following equation are obtained

N=EA|:u'+i(v'2 +w? )} (3.14a)
2

0, =GA4,y,, 0. =G4y, (3.14b,c)
M, =EIp, M. =ELo. (3.14d,¢)

where N is the axial force, Qy, Q. are the shear forces and M y,MZ are the bending

moments, 4 is the cross section area while 7, I, the moments of inertia with respect

to the principle bending axes given as

A=[,d0 (3.1a)

I,=[,2%d2  I.=[,y’dQ (3.15b,0)

and G4, , GA, are its shear rigidities of the Timoshenko’s beam theory, where

A=nd="L4 A =k A= 4 (3.16a,b)
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are the shear areas with respect to y, z axes, respectively with x,,, &, the shear

correction factors and a,,, @, the shear deformation coefficients (Appendix A3).

Hamilton's principle requires that this first-order variation is zero for all possible
perturbations, thus exploiting the stress-displacement eqns. (3.9), the relations
describing the displacement field (3.4) and after conducting algebraic manipulations the
D' Alembert's equilibrium equations, expressed as a function of the stress resultants

acting on the cross section of the beam in the deformed configuration are derived as

pAii — EA(u" +ww" +VV" )+ ko = p, (3.17a)
pAi}'—(Nv')’ - G4, (v"—@z')+psy =Dy (3.17b)
pl.0. —ELO" —GA, (V' -6,)=m, (3.17¢c)
pAiv—(Nw') =G4, (w" + ey')+ P.. = P, (3.17d)
pL,0,—ELO," +GA, (W +0,)=m, (3.17¢)

Eqgns. (3.13) constitute the governing coupled differential equations of a
Timoshenko-Rayleigh beam, supported on a tensionless nonlinear three-parameter
viscoelastic foundation, subjected to nonlinear vibrations due to the combined action of
arbitrarily distributed or concentrated transverse loading as well as to axial loading,
accounting for the effects of geometrical nonlinearity, rotary inertia and shear
deformation. The motivation to use this particular formulation is justified from the
intention of gaining the advantages of a more rigorous model while retaining the
simplicity of a beam approach. As it is well known (Antes et al. 2004), Timoshenko-
Rayleigh’s beam theory gives more reliable results than Euler—Bernoulli’s one,
especially at higher frequencies, thus beam-structures under arbitrary dynamic
excitations (i.e. earthquake, moving load) should be analyzed on the basis of this refined
approach. Moreover, it has been proved that the magnitude of the maximum
displacement of a Timoshenko beam is larger than that of an Euler—Bernoulli one, while
the magnitude of the bending moments differs as well (Younesian & Kargarnovin 2009,

Sapountzakis & Kampitsis 2011).
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Subsequently, by combining equations (3.17b,c) and (3.17d,e) in order to eliminate

the angles of rotation due to bending 6, (x,t), 0.(x,t), the following differential

equations with respect to #, vV, W are derived as

[N

pAil‘—EA(Z/l”‘FW’W”'f‘VV)+kxu=px (3183)

L4 " ! ! EI / " azv n ”
PAV+ El v —(Nv) +psy+j((Nv) —pAy—psy +p," |-

y
, () (3.18b)
oV pl, | 0°(NV e '
_plzaxZ_GAy P —pAV = pg, +p, |=p,—m,
Avip+ EI (Nw') 2y (Nw")" e
W+ w'— w') + + w') — _ "y ml|_
P y et G PAZ S =P P
(3.18¢)

821‘/{/ p]y 62 (NW,)'
ox’  GA, or’

!

_pIy _pA'wl_ﬁsz"i_pz =pz+my

The above combined equations are easily simplified by crossing out the nonlinear
terms and the components regarding the shear deformation effect, leading to the well
known second order equation with respect to the axial and forth order equation with
respect to the transverse directions.

The governing equations of motion are also subjected to the time dependent

boundary conditions derived also by the Hamilton's principle as

eqn.(3.14a) [N(O)Jr]vg}gu(o):o (3.19a)

{EA[u' +§(v’ + w')j + Nﬁ}&u(O) =0

eqn.(3.14a)

—Ni}&t(l) =0 | N(1)= Ny ou(1)=0 (3.19)

)t Vyo 5v(0)

1 1
{EA(u'vurEvd +Ev'w'2 ) +GA, (V' - 6.) 0 (3.19¢)

0

0 (3.19d)

1 —V; |ov(1)

+GA, (V- 6.)

/
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EA[u'w’ +§v'2w' +—w’3j 0 +GA, (W + 9;)‘0 + Vzo}dw(O) =0 (3.1%)
_EA"1'2’]'3 GA.(w+0,) —V!|sw(l)=0 3.19
uw+§v w+3w l+ Z(w+ y)l_ > low(l)= (3.191)
ELGy| -+ M |60, (0)= 0— S Ty (0)+ MY 50, (0) =0 (B.19)

§0,(1)=0  (3.19h)

[
50, (1) = 0—" LD Ty (1) -m
eqn.(3.]4e) [

™
N
—_
S
SN—"
Il
|Q

]
M, (0)+M! |60.(0)=0  (3.19)
}

eqn.(3.14e) |:Mz(l)_MZO 592([) =( (319_])

|
Ni\.
| I——
™
2
—
=
Il
|Q

which can be written in a more convenient form as

au(x,t)+a,N(xt)=a; (3.20a)
B(x.t)+ BV, (x.t)=B; BB, (x.0)+ BoM_ (x.1)=B; (3.20b,c)

yw(x.0)+ 7.V, (x.t) =73 710, (x.0)+7>M , (x,t) = 73 (3.20d,e)

at the beam ends x = 0,/, together with the initial conditions

u(x,0)=1,(x) d(x,0)=b70 (x) (3.21a,b)
v(x,0) =", (x) v(x,O)z;o (x) (3.21c,d)
w(x,O): _o(x) W(x,O):Wo(x) (3.21e,f)

where u, (x), vy (x), wy(x), ity (x), ﬁo(x) and vT/O(x) are prescribed functions. In
the boundary eqns. (3.20b-e) V), V, and M., M, are the reactions and bending

moments with respect to y , z, respectively, which together with the angles of rotation

due to bending 6, 6, are given by the following relations

m E[z n" 8\/ 4 ' )
ey [(Nv) —pAa+py —psy}— pl.6. (3.22a)
Y

V,=NV—Ely
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V,=Nw—-EI w'"——EIy (Nw')”— A@%r "—p' |- pIl 6 (3.22b)
z y GAZ p ax pZ pSZ p y y .
M _EI " EIZ N "/ A
.=ELy +GAy (W) = pdi+p, - p,, (3.22¢)
" Ely 13 4 .o
My =B =i [(NW) —pAw+pz—psz} (3.22d)
EI ow " Ji .
= Y / 4 4 " ’
YT G7Al (PAg—(NW) —pz+psyj—G—AZ(E1yw +pL0, +GAw) (3.22¢)
EI " ov Ji ..
0, = (W) —pAd—+pl, — p., |+——(EIV"— pl,0, + GA)Y 3.22
z GZAyZ (( ) ,0 ax py pszj GAy( z ,0 z7z Vv ) ( f)

Finally, o,p;, ,Ek,ykjk (k=1,2,3) are functions specified at the beam ends

x =0,/. Eqns.(3.20) describe the most general nonlinear boundary conditions associated
with the problem at hand and can include elastic support or restraint. It is apparent that
all types of the conventional boundary conditions (clamped, simply supported, free or

guided edge) can be derived from these equations by specifying appropriately these

functions (e.g. for a clamped edge itis ; =, =y, =1, E[ =;] =1, ay=0;=0,=

,33:72=732152=ﬁ3:;2:7_’3:0)-

The solution of the initial boundary value problem given from eqns. (3.17) or from
the combined eqns.(3.18), subjected to the boundary conditions (3.20) and the initial
conditions (3.21), describes the axial-flexural dynamic response accounting for the
geometrical nonlinearity (large displacements) of a Timoshenko-Rayleigh beam,
supported on a tensionless nonlinear three-parameter viscoelastic foundation. The

evaluation of the shear deformation coefficients a,, a, corresponding to the principal

y 9
centroidal system of axes Cyz, are established equating the approximate formula of the

shear strain energy per unit length with the exact one as described in Appendix A3.

3.3 Integral Representations — Numerical Solution

According to the precedent analysis, the nonlinear axial-flexural dynamic analysis of
Timoshenko-Rayleigh beams, supported on a tensionless nonlinear three-parameter

viscoelastic foundation, undergoing moderate large displacements reduces in
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establishing the displacement components u(x,t) and v(x,), w(x,) having

continuous derivatives up to the second order and up to the fourth order with respect to
X, respectively, and also having derivatives up to the second order with respect to ¢
(ignoring the inertia terms of the fourth order (Thomson 1981)). These displacement
components must satisfy the coupled governing differential equations (3.18) inside the
beam, the boundary conditions (3.20) at the beam ends x =0,/ and the initial conditions
(3.21). Eqns. (3.18) are solved using the Analog Equation Method (Katsikadelis 1994,
2002) as it is described in Appendix Al.

3.3.1 Axial u (x,t) and Transverse Displacements v(x,t), w(x,t)

According to this method, let u(x,7), v(x,¢) and w(x,) be the sought solution of the
aforementioned initial value problem. Setting as u;(x,t)=u(x,t), uy(x.t)=v(x1),
uz(x,t)=w(x,¢t) and differentiating with respect to X these functions two and four

times, respectively yields

82u1 o%u,
=q;(xt -=q;(x.t =2,3 3.23
o) Thglan) (29) 623)

Eqns. (3.23) are quasi-static that is the time variable appears as a parameter. They
indicate that the solution of eqns. (3.18) can be established by solving eqns. (3.23) under
the same boundary conditions (3.20), provided that the fictitious load distributions
q;(x,t) (i=123) are first established. Following the procedure as described in

Appendix Al, the integral representations of the displacement components u;
(i =1,2,3) obtained by eqn. (A1.8, A1.36) and their first derivatives with respect to X
obtained by eqn. (A1.22, A1.43), when applied to the beam ends (0,/), together with

the boundary conditions (3.20) are employed to express the unknown boundary
quantities u;({,t), u;,,($.1), up ($01) and u;, (02) (£ =0,0) in terms of the
fictitious loads ¢; (i=1,2,3). In order to accomplished this numerical formulation, the
interval (0,/) is divided into L elements, on which ¢,(x,r) is assumed to vary

according to certain law (constant, linear, parabolic etc). The constant element
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assumption is employed here as the numerical implementation becomes very simple and
the obtained results are of high accuracy.
Employing the aforementioned procedure, the following set of 20 nonlinear

algebraic equations is obtained

1
T, 0 07(a) |PI'| [a,

0 T,, 0 [{d,i+{D5t=1b, (3.24)
0 0 T33 d3 Dgl C3
with
K Ep Ep
Tn{ Lo (3.25a)
0 D12 D22
Fl Ell E12 E13 E14 F1 E11 EIZ E13 E14
F 0 E E E E 0 E E E
T22= 2 22 23 24 T33= 2 22 23 24 (3.25b,C)
0 Dll D12 D13 D14 0 Gll G12 G13 G14
0 D21 D22 D23 D24 0 G21 G22 G23 G24

where Ej;,E},,E ;-E4g are rectangular 2x2 known coefficient matrices resulting from

the values of the kernels A; (r) (/=1,2,3,4) at the beam ends and F', F;, F, are

2xL rectangular known matrices originating from the integration of the kernels along
the axis of the beam, as defined in Appendix Al. Moreover, D;;-D,4 and G;;-Gyy
are 2x2 known square, time dependent matrices including the values of the functions
a;. B;.B;.7;.7; (j=1,2) of eqns.(3.20), while D! a; and D', DY ,b;,c; are 4x1
and 8x1, respectively known, in general time dependent, column matrices including the
boundary values of the functions as, £;, B;,7;,7; of eqns. (3.20). Furthermore, d;-d;

are the generalized unknown vectors including the L unknown time dependent nodal
o T
values of the fictitious loads ¢, = {q{ %) qu} (i=1,2,3) and the vectors including

the unknown time dependent boundary values of the respective boundary quantities.

More specifically, the expressions of the matrices of eqn. (3.25) are given as
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Chapter 3
a! 0 aJEA 0
i‘z—lo’ a,} D‘z'z{ o ] (3.26a,)
1 a,EA
[0] [0]
o =L Eal ol (0)+is .. (0)] ay=1a! (3.26¢,d)
~ 3 2 l
(Zél:ulx(l)-i-u_g’x(l):' a3
o\ N(0)+ E= ik 0
0 g 2( ( )+GAy Ly
Dy = 0 g Dy = . (3.27a,b)
! 0 5[N(1)+ o HykLyJ
L Y
_ ] ) .
ﬂg’{u— N(0)+H kp ] 0
ZEIZ ﬂgN'(O) 0 GAy( y y)
3=, I Dy =-EI, (3.27¢,d)
GA, | 0 pHN'(1) Z
0 B 1+7(N(l)+Hyku)
y -
_ El. | Hk 0
2 =—p" o S (3.27¢)
o0 Hikg,
- EI. - —y EI.
'310 B ZzHykLy +/320_Z (0)
(GAy) G4,
D, = (3.271)
- EI. - —, EI, _,
ﬂzl 1- 5 Hkp, +ﬂzl GAZ ()
(GAy) Y |
B0\ 10— N(0) - - Ak [+ B —2N'(0 0
ﬂ2[+GAy ()GAy yP+1(GA)2 “)
D, = EI. g (327¢)
- i ! - - 2
0 ,Bl{]+—N(l)——H P]w} N'(1)
2 GA, G4, (G Ay)2
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50\ 14— (N(0)+ Ak 0
El £ +GAy( (0) k)
24 =
GA
y - I .
0 ,6’][1+G—Ay(N(l) HykP)J
[0]
— By H kg, 305 (0)d, . (0)
BoH e, 305 (1) (1)
nl=_EIz [0]
’ 4Gy | 2y 3 - Yy 20 77 -3
B, EHykNLyuZ (0)i (0)+ By H Jeny,i; (0)
y
- 3 =~ . R ~ i
y
[0]
0o, 0 EI,
_—z 0
’83 + 2 AGy y( )
1, o EI,
= p(
/83"_ ZAGy y()
by = [0]
0 EL [ B | =0
B3 _A—Gzy(A—éy y(O)_'BZPy(O)J
=1 El B, 3l
e ) i, )
, A oo, 0
G- | g,- :
n= 12= o
1 0 yé[zv(z) =
o 141 (N(0)+ Ak 0
2EL,| yIN'(0) 0 72[ e ( (0)+ Hokp)
- Gy, =—EI
BG4 o Ay T )
2 0 yé(]+ (N()+H
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o EL | Hk,_. 0
Gy :_7/20G_Ay[ oL H_k; } o
B EI, o EL,
y?{]_ (GAy)2 HZkLZ] ’ 720G_AyN 0
o . : (3.28)
i Al - g, |7 Er )
_ +
" ey ) o,
7| N (0) -k |+ 7] N'(0) ]
T o 61 (3.28g)
B 0 7|+ 1 N(1)- L gk +;71—2 N'(1) b
_ Ao G4, ") (Gay
__0 ] B ]
a1, | [”GAZ (N(0)+sz”)j 0
it ] (3.28h)
Z 7! ]
_ 0 % (1+ o (N(1)+ szp)j_
[0]
Y9 H k. 303 (0)iis . (0)
£l 7éﬁszLz3uA§ (l)uAix (Z)
" : Gy [0] (3.28i)
2y 3 2\ SO0 ko i
7! EHZkNLZug (0)its . (0)+73 H kg3 (0)
- 3 A - - 7017 7
7)o Aok (i (1) + 78 ey (1)
z
[0]
EI
0_ 0"y
V3 =72 AGZ pz( )
El
V3= 75 Rl
. o (3.28))
., EI (%0
0 AG{[ A%Z p;(o)—m”pz(O)J
El, ( 7
—1 v YL !
' l)- l
73 AGZ(AGZPZ() m’z()]
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q; q;3
q; u, u3
d =1 d, =19 Uy, d; =1 us,, (3.29)
lAll’x ﬁZ’xx ﬁ3 9XX
ﬁZ’XXX ljiS’xxx

where the boundary values of the displacement components u; (i=1,2,3) and their

derivatives with respect to X are written in matrix form as

i; = {u,(0.0) w(10)) (i=1,23) (3.30a)
T

ﬁi,x={au"(0’t) a”"(l’t)} (i=1,2,3) (3.30b)
ox ox

) 0%u; (0,¢) &%u;(1,t) ! ,

i =173 " (i=2,3) (3.30¢)

u Zu(0n) Puto) (i=2.3) (3.30d)

irxxx — 1=2, .
o’ ox’

Thereafter, the discretization of the integral representations of the displacement

components u; (i =1 ,2,3) and their derivatives with respect to X, and the application

to the L collocation nodal points yields

u, = A(I]ql +Couy + Ciuy,y (3.31a)

Upay = Ajqy + ol Upyx = Qg (3.31b,c)

uy = A2q; + Cyliy + Clllypy +Clig sy +C3ll (3.32a)
Uz0x =AYz + Coltzpy +Cii 1y +Cllz (3.32b)
Upsyx = A%‘lz + Colgsyy TCl 514y (3.32¢)

U2 = A2+ Colizn U2 =02 (3.32d.e)
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u; = Adq; + Coliz + Cliig, +Cylig,,, +Csliz, (3.33a)
Ugsx = A3Q3 + Coligog +Cili3py +Coll 30 (3.33b)
U3 = AJQ3 + Coligyyy +Ciliz (3.33¢)

U = A303 + Colizonny Usopux =03 (3.33d.e)

where Al, A;, Ag (i=0,1), (j=0,1,2,3) are LxL known matrices; Cy, C;, Cj,

C,, C; are Lx2 known matrices and u;, u;,,, u Uiy s U are time

is ixx o i 9XxXXX

dependent vectors including the values of u;(x,¢) and their derivatives at the L nodal

points. These equations can be assembled in a more convenient matrix form as

u, =B"d, uy,, =Bid; (3.34a,b)
U = BdZ Upox = B,de Upoxx = B,xde U oxxx = B,xxxdz (3.35a-d)
uz = Bd3 Uzsy = B,xd3 Uzoxx = B,xxd3 U3zoxxx = B,xxxd3 (336a'd)

where B",B and there derivatives are Lx(L+4) and Lx(L+8) known matrices,

respectively arising from A", A, C", C and there derivatives as presented in
Appendix Al.

In conventional BEM, the load vectors q; are known and eqns. (3.34-3.36) are used
to evaluate u; (x,t) and their derivatives at the L nodal points. This, however, cannot
be applied here since q; are unknown. Thus, 3L additional equations are required in
order to permit the establishment of q;. Therefore, the final step of AEM is

implemented by applying the governing equations of motion (3.18) to the L collocation
points, after ignoring the inertia terms of the fourth order arising from coupling of shear
deformations and rotary inertia (Thomson 1981), and employing eqns. (3.34-3.36) leads
to the formulation of the following set of 3x L semi-discretized nonlinear equations of

motion
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Md+Cd+Kd+f"=f=
d; d; d,
M{d, ! +Cld, ! +K]d, +f“l(B”,B,d1,d2,d3)=f
d3 d3 d3

(3.37)

where f™ is a nonlinear generalized stiffness vector and M, C, K, f are generalized

mass, damping, stiffness matrices and force vector respectively, defined as

M, = pAB" K, =—-[EA], , + [KXB” Lg f,=p, (3.38a-c)

i | A[[B,xxdz ]dg. [B,d,]+[B .d, ]dg. [B,xdﬂ} (3.38d)

Ea
MZ:pAB—pIZ(]JrTyJB’xx Pl (NB +[N+K§iﬂB —Kif;B) (3.39a)

G4,

d El, 4 2pl,
C,=C{*B-—<CB , - y (N,B,+NB ) (3.39b)

y v

El, 4
Ky =[EL], , ~N.B,-NB,, +— = (3N,B . +N-K{EB |-
7 g £ (3.39¢)
P d; d d d
B GAZ (NaBx N, ) + KB~ KB, — AZ (KL‘iB,xx N K,;i)
Y v
| _ yod 3 El (a4 3\ pl 3
f =Kiiy (d2) - — (KNgLy (B,.d) )— o (Bdy) (3.39d)
Y y
EI pl
f; =Py Mg~ GAj; (py,xx) GAZ Py« (3.39%¢)
Ea pl i 4
M; = pA4B —p[y(l + GZ jB)xx —G—Ay(NxB,x + [N + KP§:|B,xx —KLéZ’B) (3.40a)
4
EI 2pl
d d

C; =C¥B- GAy C¥#B - Ay (N,B,+NB ) (3.40b)

z Z
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EI
d,
Ky=[EI,] ,~NB, -NB + G—Ay(sNme +N-K{B |-

ol : 5 (3.40¢)
d, d, d; d;
_ _GAZ (NyB, +N,B . )+ K¥%B-K¥£B . - G_Ay(K #B . -K¥)
EI 3\ ol 3
£ =K, (d;)" -—~ (Kﬁlng B .d; )——y(Bd3) (3.40d)
GA, (Bud) GA,
EI pl
_ Y Y
f3 =p:* my,x - G_Az(pz,xx) + G_Azpz,zt (3406)

where N, N, (k,m=x,t) are LxL diagonal matrices containing the values of the
axial force and its derivatives with respect to k£ and m parameters at the L nodal points,
Py> Py Pyyus Pzs Poays Poy» My, and m, . are Lx] vectors containing the

values of the external loading and its derivatives at these points, while K‘E , K?,gm,

K;ﬂ% and Cl‘-ig (i = y,z) are diagonal matrices whose diagonal elements represent the

values of the corresponding foundation parameter at each nodal point. Moreover,
substituting eqns. (3.34) in eqn. (3.14a), the discretized counterpart of the axial force at

the neutral axis of the beam is given as

N = EA(B'd, )+ éEA [[B’xxdz} o B2 ]+[Bods] [B’xdz,ﬂ (3.41)

Subsequently, the initial conditions of the problem are formulated in discretized

form by substituting eqns. (3.34) in eqns. (3.21) yielding the following 3L linear

equations with respect to the generalized displacements d;, d,, d3 and the generalized

velocities d,, d,,d5 for =0 as

B“d, (0)=1, B“d, (0)=1, (3.42a,b)
Bd;(0)=W, Bd;(0) =W, (3.42¢,1)

The above equations (4.42a,c,e), together with eqns. (3.24) written for # =0, form a

set of 3L+ 20 nonlinear algebraic equations which are solved to establish the initial
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conditions d; (0), d,(0), d3(0) while similarly equations (3.42b,d,f) together with 12

equations resulting after differentiating eqns. (3.24) with respect to time and writing

them for 1 =0, form a set of 3L+20 linear algebraic equations from which the initial

conditions d; (0), d,(0), d3(0) are established.

The aforementioned initial conditions along with eqns. (3.24), (3.37) form an
initial value problem of Differential-Algebraic Equations (DAE), which can be solved
using any efficient solver. Within the framework of this doctoral dissertation two
approaches have been performed. Firstly, the solution of this system was accomplished
iteratively by employing the Newmark Average Acceleration Method in combination
with the modified Newton Raphson Method (Chang 2004, Isaacson & Keller 1966) and
secondly, the Petzold Gear Method was used (Brenan et al. 1989) after introducing new
variables to reduce the order of the system (Bazant & Cedolin 1991) and after
differentiating (3.24) with respect to time to obtain an equivalent system with a value of
system index ind=1. A step-by-step algorithmic approach of the numerical

implementation is summarized in a flowchart form in Fig. 3.2.

3.4 Alternative D-BEM Numerical Solution

Alternatively, the nonlinear axial-flexural dynamic analysis of Timoshenko-Rayleigh
beams supported on a tensionless nonlinear three-parameter viscoelastic foundation
undergoing moderate large displacements, can de numerically solved employing the
domain boundary element method, as described in Appendix A2. According to the
formulation presented in section 3.2, the problem reduces in establishing either both the
displacement and rotational components following the system of eqns. (3.17) or only the
displacement components following the combined system of eqns. (3.18). Herein, the
first approach is employed in order to alleviate any inaccuracies introduced from the
combination of the differential equations into a single field equation representing

Timoshenko dynamics (Bhaskar 2009). To this end, the components u(x,7), v(x,z),

w(x,1), 0, (x,t) and 6, (x,¢) are assumed to have continuous derivatives up to the

second order with respect to both space X and time ¢ variables. These components must
satisfy the governing differential equations (3.17) inside the beam, the boundary
conditions (3.20) at the beam ends x =0,/ and the initial conditions (3.21).
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\ Start

Data
Beam-Foundation
Load history
Cross Sectional Analysis
BEM Shear Deformation
Coefficients
Newmark-beta Method + Petzold Gear Method
Global Analysis
A 4 A 4
Increment m < Increment m N
v 7
d Iterailon ! Compute AEM matrices B", B
Compute AEM matrices B", B ¢ -
Compute general matrices & ]

v

general vectors

; M, C, K, Ky & f £
Compute general matrices & ]
- general vectors - ¢ g
5 M, C, K, K, & f g Tnitial conditions di(0,x) g
aE ¢ m o
A £ v 2
o . E
) Modified Newton Raphson g .. =
b Increment fictitious load g i e é
Q o +
= Aq; b5} - |
¥ ¢ é + DAE
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Total fictitious load g;,=¢it4g; Z 8 reduce the order of the system
Total displacement components I s +
Axial force in each nodal point 2
il Equivalent System
o
i v
L YES
S— Petzold Gear Method
YES

Fig.3.2. Flowchart of the numerical implementation.

3.4.1 Displacements u(x,z) v(x,t), w(x,z) and rotations 6, (x.2).0.(x.1)
According to this method, let w; =u(x), uy(xt)=v(xt) ,uz(x.t)=w(x1),

uy(x,1)=6,(xt) and us(x,1)=6,(x,r) be the sought solution of the problem at hand.
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The solution of the second order differential equations 2 u; / dx’ = q", (i =1,2,.5 ) and

(q =u,v,w, Hy, 6’2) are given in the well known integral form as

l l
u; (&:1) = I ’/12 [Azaa - Afu } (i=12..5) (3.43)
00 0

where the kernels A (r), (j=1.2) are as defined in Appendix Al. Since E4, GA,,

GA,, EI, and EI, are independent of X, eqns. (3.43) can be written as

i oy i
0 X a 0
i %y (O !
0L x? X 0
i o%u ou !
GAuz (&) =[| GA,—5 [Ajdx - GA, {A§—3—A}’u3 (3.44¢)
ol ox” | Ox 0
! i 82u4 1 u u 8u4 u !
ol X~ X 0
1 2] l
ElLus(&,t)=[| EL 2 - Agdx—EIZ[Aj‘%—AI“uJ (3.44¢)
0| ax | ox 0

Solving eqns. (3.18a-e) with respect to EAu", GA,v", GA.w", Elyé’y" and EI6," and

substituting the result into eqns. (3.44a-e), respectively, the following integral

representations are obtained

/
0

/
Edu; = [[ pAiiy — EA(uuy +u5uf )+ ku; — p, | A5dx - EA{AZ aa
0

I l

.. Y ' u au u
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/
0

/
GAu; = j[pAug —(Nu}) + GAuly + p,, —pz}/lgdx— GA, [/15‘ aa”;

0
L .. ' u a1"4 u !
Eluy = [| pLiiy + GA, (us+uy)—m, | A3dx— EI, AZ » /1]144} (3.45d)
0 0
/ ou 1
ElLus = [| pljiis - GA, (u5 —us) - m, | A¥dx - EI, A2 55 A}%} (3.45¢)
0 L 0

After carrying out several integrations by parts the above equations can be written as
! ! 2 ! 2
Edu, = [ pAii, Abdx —ijEA(dﬁ] Aldx —ijEA(%] Aldx+
0 25 dx 25 dx

/
/ / 2
+ [l A — [ p AYdx + E4 4 (d”2J (%j - (3.462)
0 0 2 dx dx )

/ / / I
GAyuy = pAg iy Ay dx — Nuy + GA, (j) us Afdx + £ pyApdx - g pyAdx +

, (3.46b)
, / / 1 ou
+[Nu2A5’l) —|:Nu2/11u}0 G4, [MZA;’L —GA {AZ 22 A;‘uzl)
/ / I /
GA.usz = pA[iiz Aydx — Nuz + GA, [uy Al dx + [ p. Aydx — [ p.ASdx +
0 0 0 0 , (3.460)
, l I l ou
+| Nus A3 }0 ~| Nus A} }0 -G us A }0 —GA { 42 /11“40
/ / / /
Eluy = pl, [iigAydx + GA, [uy Ay dx — GA, Juz A dx — [m, Ay dx +
0 0 0 0 (3.46d)
o[y El,| A Oy _ g l
+ J—
z [”3 2 L 2 o Uy ,
/ / / /
Elus = pl ,[iisAydx + GA, [us Ay dx + GA, Ju, Af dx — [ m, Ay dx
0 0 ° 0 (3.46¢)
, Ous u
G, [u2/12:| —EI [/12 I 40
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Numerical methods requiring domain approximation of unknown quantities exhibit
“locking” effects when Timoshenko theory is applied to cases where the Euler—
Bernoulli theory could also be used (u, = u5,u; =~ u3) (Crisfield 1991, Zienkiewicz &
Taylor 2005). Since domain approximation is also required in the present numerical
technique, locking effects are alleviated by employing linear interpolation scheme for
the longitudinal displacement and a linked interpolation scheme for the transverse

displacement and the rotation due to bending. More specifically, the beam interval

(0, / ) is divided into L elements in each of which u, (i=1,..5) are assumed to vary

according to the abovementioned law and a Gauss integration scheme in implemented
assuming K integration points. Thus the displacement quantities of the beam can be

written as a function of the nodal displacements

u; = Nl +N2u]j (3.47a)

u =N1u§+N2u§+N3(ui—u[{) Uz =N1u§+N2u§+N3(u§—u§) (3.47b,c)

uy = N]Ul4 + N2U4{ Us = N]Ufs + N2U§ (347(1,6)
1 1 L 2 . .
where N, :5(1—5), N, 23(1+§) and Nj; :_?(1_5 ) By applying this

interpolation scheme into eqns. (3.46) and performing mathematical manipulations the
governing equations of the problem have been brought into a convenient form to
establish a numerical computation of the unknown quantities Applying eqns. (3.46) to
the L collocation points and employing eqns. (3.47), 5L x K nonlinear equations of

motion are formulated as

u; u; u,
u, u, u,
[M]{iiy §+[C]diis +[K]{ug t+{E}" (ug,uz,u3,u4,u5)= {f} (3.48)
iy iy uy
Us i Us

where M, C, K, f are generalized mass, damping, stiffness matrices and force vector,

respectively and f " js a nonlinear generalized stiffness vector. The boundary integral
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equations (BIEs) at the interval of the beam, together with the boundary conditions
(3.20) at the beam ends x=0,/ and the initial conditions (3.21) form a set of
5L x K + 10 nonlinear algebraic equations with respect to the unknowns of the problem
at hand. The aforementioned initial boundary value problem consisting of differential-
algebraic equations (DAE) can be solved using any efficient solver. In this study, the
Petzold Gear Method was used (Brenan et al. 1989) after introducing new variables to
reduce the order of the system (Bazant & Cedolin 1991) to obtain an equivalent system
with a value of system index ind=1. Having solved the initial value problem, the
derivatives of each quantity and subsequently the stress resultants can be easily

calculated at every point of the interval (0,/) by employing the boundary integral

equations derived by differentiating eqns. (3.46) with respect to x. A step-by-step

algorithmic approach of the numerical implementation is summarized in a flowchart

form in Fig. 3.3.

( Start

Data
Beam-Foundation
Load history

v
Cross Sectional Analysis
BEM Shear Deformation
Coefficients

v

‘ Increment m }4—
A
Iteration i ‘
v
D-BEM Numerical

Solution

v

Quantities:
u(x,t),v(x,t) w(x,t), 0y(x,t) & 0,(x,t)
Stress Resultants:
N(x,t), Vy(x,t), Vi(x,t), My(x,t) &
Mz(x,t)

'

i+1

Next Iteration i

NO

Convergence
Criterion

A

Next Increment m =m+1

»
>

Fig.3.3. Flowchart of the D-BEM numerical implementation.
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3.5 Numerical Examples

On the basis of the analytical and numerical procedures presented in the previous
sections concerning the geometrically nonlinear dynamic analysis of shear deformable
beams on nonlinear foundation, a computer program has been written using High Level
3G Fortran 90/95. Representative examples have been studied to demonstrate the
efficiency, wherever possible the accuracy and the range of applications of the
developed method. In all the examples treated, the results have been obtained using
L =21 nodal points (longitudinal discretization), 400 boundary elements (cross section

discretization) and a time step of Ar =1.0 usec, unless it is stated otherwise.

3.5.1 Example 1- Linear Analysis of Simply Supported Beam on Pasternak Foundation

In the first example, for comparison purposes the linear dynamic analysis of a simply

supported beam of length [/=6.096m (E=24.82GPa, p:3387Kg/m3, v=0.3,

[=143.9x10"m?) resting on a homogeneous viscoelastic Pasternak (either bilateral
or unilateral) foundation with modulus of subgrade reaction k;, =16.55 MN / m? ,

k,. =16.55MN , as shown in Fig.3.4a is examined. The beam is subjected to a

triangular impulsive load of amplitude F,, =100 kN at its midpoint (Fig. 3.4b).

N
B P(t
 Bam l o
/
J_ IR |||||l||||T||||||||| ||||||||
7y — C C 1 Times
0/0 12.5 25 ([0'25‘65)
(a) (b)

Fig. 3.4. Simply supported beam on viscoelastic Pasternak foundation (a) subjected
to a triangular impulsive load (b).

The free vibrations case of this example has been analyzed by Timoshenko et al.
(1974), Lai et al. (1992), Thambiratnam and Zhuge (1996) and Friswell et al. (2007)
assuming Winkler foundation, while the forced vibrations one by Calim (2009). In
Table 3.1, the evaluated first five natural frequencies of the beam resting on the bilateral

elastic Winkler foundation are presented as compared with those obtained from
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literature. In Figs. 3.5, 3.6a,b the time history of the transverse displacement w(// 2) at
the beam’s midpoint, of the bending moment M, (1/ 2) at the same point and of the

shear force Q,(/) at the right supported end, respectively are presented either for

bilateral or unilateral Winkler elastic foundation model and compared with those
obtained from a complementary functions method and a FEM solution (Calim 2009)
demonstrating the accuracy of the results of the proposed method. Moreover, in Table

3.2 the extreme values of the displacement w and of the soil reaction p,, at the beam’s

midpoint are also presented for both cases of bilateral and unilateral soil reaction.

Table 3.1. First five natural frequencies (Hz) of the beam of example 1.

Analysis / Modes 1 2 3 4 5
Timoshenko et al. (1974) 329032 56.8135 112.908 - -
Lai et al (1992) 329049  56.8220 111.973 —
Thambiratnam & Zhuge (1996) | 32.9033  56.8193 111.961 - -
Friswell et al.(2007) 32.8980 56.8080 111.900  193.760 —
Calim (2009) - CFM 32.8633 56.5972  110.759  189.939 222.078
ANSYS FEM (Calim 2009) 32.8624  56.5891 110.739  189.901 222.043
Present Study 32.7946 56.5476 110.722 189.489 222.077

0.0012 -
0.00] - G—6—0 Present Study - Winkler Tensionless
o ' Present Study - Winkler
= 0000896 ¢ ¢ Calim (2009)
Z00006{0 O DANSYS
£ 0.0004 oy
£ 0.0002 -
&
5 0= — — - — - - ——fm - = A - g - -
"£-0.0002 -
2
§—0.0004 -
£.0.0006 -
2-0.0008
-0.001 o
-0.0012 — T
0 001 0.02 0.03 004 005 0.06 0.07 008 0.09 0.1
Time (sec)

Fig. 3.5. Midpoint displacement time history of the beam of example 1.
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0.012 4 o 0.04
0.01 )
0.03
a 0.008 =)
= o
=0.006 0.02
=
g 0.004 "E 0014
g 0.002 §
- — - — — - wn
S om Z
500024 Y £ 001
200041 5 ¥ AR
2-0.006 5.0.02 . )
2-0.006 ./ G—6—0 Present study - Winkler Tensionless & 0.02 1 G—6—0 Present study - Winkler Tensionless
Z0.008 P Present study - Winkler z 0.03 - Present study - Winkler
2001 & = 6= -0 Calim (2009) ‘ g - g’ ‘5 iﬁg{ 2200%
00— 5 EEANSYS
0 001 0.02 0.03 0.04 005 006 0.07 0.08 0.09 0.1 0 000 0.02 0.03 0.04 0.05 0.06 0.07 0.08 009 0.1
Time (sec) Time (sec)
(a) (b)

Fig. 3.6. Time history of the midpoint bending moment (a) and of the shear force at the
right supported end (b) of the beam of example 1.

Table 3.2. Extreme values of the midpoint displacement w and foundation reaction p,

of the beam of example. 1.
Winkler Tensionless Winkler
Midpoint (1/2)
w (mnn) Psz (KN) w (mm) Psz (KN)
Max 2.63 43.6 2.63 43.6
Min -2.50 -41.5 -6.80 0.00

Additionally, in Figs. 3.7a,b the time histories of the transverse displacement

w(// 2) and the bending moment M y (l / 2) at the beam’s midpoint are presented for

various values of the damping coefficient c, (kNs/m?). In this figure the corresponding

curves obtained from the solution of the same beam resting on a Pasternak-type
viscoelastic foundation are also presented employing the complementary functions
method in order to calculate the element dynamic stiffness matrix in the Laplace domain
(Calim 2009). The Pasternak-type viscoelastic foundation is characterized by the
Winkler spring constant which is multiplied by the displacement, the visco-
compressibility coefficient which is multiplied by the derivative of the displacement
with respect to time, the Pasternak spring constant which is multiplied by the rotation
and the viscosity coefficient which is multiplied by the derivative of the bending
rotation with respect to time. Comparing the obtained results and those from literature

the accuracy of the proposed method is verified. The small discrepancies between the

94



Chapter 3 Geometrically Nonlinear Dynamic Analysis of Shear Deformable Beams on Nonlinear Foundation

proposed results and those obtained from literature are attributed to the additional
viscosity term of the Pasternak-type model that causes smaller amplitudes and less

damping time. Moreover, in Table 3.3 the extreme values of the displacement w(l / 2)
and the bending moment M, (l / 2) at the beam-column’s midpoint and of the shear

force Q.(!) at its right supported end are also presented for various values of the

damping coefficient and for both Pasternak-type and Winkler-type foundations.
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Fig. 3.7. Midpoint time history of the displacement (a) and bending moment (b) of the
beam for various values of the damping coefficient of example 1.
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Table 3.3. Extreme values of the displacement w(mm), bending moment M ,(kN/m)
and shear force Q. (kN) of the beam of example 1.

Pasternak Winkler
w(i/2) M,(1/2) ] 0.(1) | wt/2) M, (1/2)] 0.()
Max values
Cz= 2.17 22.6 16.7 2.63 27.6 21.3
c, = 1.655 2.15 20.7 16.4 2.60 25.9 19.0
c,=8.28 2.06 17.8 14.2 2.48 22.1 16.2
c,=16.55 1.96 14.9 11.9 2.34 18.1 13.3
c,=82.8 1.44 3.74 7.51 1.65 3.56 9.68
Min values
Cz= -1.97 -38.9 -16.4 -2.51 -43.4 -21.1
c,=1.655 -1.85 -38.7 -14.3 -2.38 -43.1 -18.6
c,=8.28 -1.59 -37.9 -11.3 -2.02 -4.21 -13.9
c,=16.55 -1.33 -37.1 -9.62 -1.65 -4.10 -1.26
c,=82.8 -0.31 -3.27 -5.33 -0.31 -3.57 -6.62

3.5.2 Example 2 — Nonlinear Analysis of Hollow Rectangular Beam on Winkler

Foundation

In order to illustrate the importance of the nonlinear analysis and the influence of the
shear deformation effect in flexural vibrations, a clamped beam of length /=4.90m ,

having a  hollow rectangular cross section (E=210GPa, v=0.3,
a,=3.664, a,=1.766, p=7.85 tn/m>) resting on a homogeneous (either bilateral or
unilateral) elastic foundation of stiffness k_, as this is shown in Fig. 3.8 is examined.

In Figs. 3.9a,b the displacement curves w(x,7) along the beam subjected to a

suddenly applied consecrated bending moment ,=200kNm at its midpoint are

presented at the time instant 7 =1.6 x 102 sec for various values of the stiffness &, for

the cases of bilateral and unilateral soil reaction, respectively. The influence of both the

foundation stiffness parameter k, and the unilateral character of the soil reaction are

easily verified. Moreover, in Fig. 3.10 the time history of the central transverse
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displacement w(//2) and in Table 3.4 the maximum central displacement w,,,.(m)
and the period T, (sec) of the first cycle of motion of the beam additionally subjected
to a uniformly distributed load p, =350 kN/m (Fig. 3.8) are presented for a unilateral

subgrade model with k, =645kPa, performing either linear or nonlinear analysis and

taking into account or ignoring both shear deformation effect and rotary inertia. From
the obtained results, the discrepancy between the linear and the nonlinear analysis is not
negligible and should not be ignored, while the significant influence of the shear
deformation effect increasing both central transverse displacement and the obtained

period of the first cycle of motion is remarked in both linear and nonlinear analysis.

- 1=4.9m >l
— 1/2=2.45m —| "
S t=4mm
A >
Ty
a,= 3.664 L
a,= 1.766 Z
b=23cm

Fig. 3.8. Clamped beam of hollow rectangular cross section subjected to
concentrated bending moment M , and uniformly distributed load p. .
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S6—6—= k, = 64500 kPa
F—H—+1k,=645 kPa
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k,=645 kPa
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10,02 4 —6—9 k,=64500 kPa
F—HB—+H k=645 kPa
00154 G—6—0© k,=645 kPa 4
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Fig. 3.9. Displacement along the beam of example 2, for various stiffness k, values
of the bilateral (a) and unilateral (b) Winkler springs.
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Table 3.4. Maximum central displacement w,,,, (m) and period T, (sec) of the first
cycle of motion of the clamped beam of example 2.

Without Shear Deformation With Shear Deformation
Analysis
Linear Nonlinear Linear Nonlinear
Winax 0.3729 0.2572 0.3914 0.2688
T, 0.01890 0.01482 0.01973 0.01607
0.4 h WQ e(} .
0.35 1
0.3 1
£025 -
B:
% 0.2 4
§ 0.15
S
Z 0.1
20
0.05 1
0 # N
'005 1 1 1 1 1 1 1 1
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
Time (sec)
Linear Analysis Nonlinear Analysis

Without Shear Deformation Without Shear Deformation
& - =O--<> With Shear Deformation [ = El= <1 With Shear Deformation

Fig. 3.10. Time history of the central displacement of the beam of example 2, for a
unilateral subgrade model with k,=645.0 kPa .

3.5.3 Example 3 — Partially Embedded Pile in Winker Foundation

In the third example, a partially embedded pile in a homogeneous elastic Winker

foundation with spring stiffness &, =k, =85.0 MN /m?, of total length /=15.0m
(Lfree =06.20m, lyypeq =8.80m), of circular cross section of diameter D=1.0m
(E=29GPa, A=0.785m", v=02, I,=1.=0.049m", a,=a,=1172), as this is
shown in Fig. 3.11 has been studied. According to its boundary conditions, the pile end
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at the elastic foundation is clamped, while the other end is free according to its

displacements and blocked according to its rotations. The pile is subjected to a suddenly

applied concentrated axial load P, (0,t)=1.0MN, (1>0.0) and to a uniformly

distributed transverse load p, (¢)=500kN/m, (1>0.0) acting to the free part of the

length of the pile.
Px ay=a,=1.17
Pz ry A=0.78m’
T "7 D=1.0m
N [ir0c=6.20m iy
Ground Level P. T kN

/) 650
Timg
00 0.15 (sec)

lem=8.80m

P,

Py
ey P—

(a) 0/0 Time(sec)' (b)

Fig. 3.11. Pile of circular cross section in axial-flexural loading subjected to
rectangular impulsive concentrated load P,, concentrated axial load P,

and to uniformly distributed loading p,, p,.

In Figs. 3.12a,b the time history of the head displacement v,,, of the pile and the

displacement v along the pile at the time instant t=7.0-10 ~Zsec are presented,
respectively performing either linear or nonlinear analysis, taking into account or
ignoring both rotary inertia and shear deformation effect. Moreover, in Table 3.5 the

maximum value of the head displacement v,,,, and the period 7, of the first-cycle of

motion are presented for the aforementioned cases.
Moreover, the examined pile in addition to the aforementioned loading is also

subjected to a uniformly distributed load p, =100kN/m at its free length and to a
suddenly applied concentrated load P, (1)=650kN, ¢>[0,0.15] acting at its top, as

shown in Fig. 3.11. In Fig. 3.13 the time history of the head displacement of the pile

Wy, performing either linear or nonlinear analysis is presented taking into account or
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ignoring shear deformation effect. Finally, in Table 3.6 the maximum values of the head

displacements v, , Wy, and the periods 7,7, of the first cycle are presented for the

same cases of analysis. It is worth noting that the minor discrepancy of the head

displacement v,,,. between Tables 3.5, 3.6 is due to the coupling effect of the

transverse displacements in y, z directions in the nonlinear analysis.
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Fig.3.12. Head displacement time history (a) and displacement v at 7 x 107 sec time
instant along the pile (b) of example 3.
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Fig. 3.13. Head displacement time history w,,, of the pile of example 3.
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Table 3.5. Maximum head displacement and period of the first cycle of motion of the

pile of example 3.
Without Shear Deformation With Shear Deformation
Analysis
Linear Nonlinear Linear Nonlinear
Vomax (M) 0.2699 0.2321 0.2699 0.2353
T, 0.1105 0.1180 0.111 0.1201

Table 3.6. Maximum head displacements and periods of the first cycle of the pile of

example 3.
Without Shear Deformation With Shear Deformation
Analysis
Linear Nonlinear Linear Nonlinear
Vonas (m) 0.2054 0.2320 0.2070 0.2351
Wonax (m 0.0992 0.1109 0.1002 0.1111
Ty(Sec) 0.1105 0.1172 0.1111 0.1192
Tz(sec) 0.1133 0.1189 0.1143 0.1215

3.5.4 Example 4 — Fully Embedded Hollow Circular Pile in Non-constant Stiffness Soil

In this example, a fully embedded in stiff cohesive soil with non constant stiffness free

head pile of length /=80m of a hollow circular cross section (E=210GPa,

p=7.385 m/m’ a, =a,=2.226,v=0.3), as shown in Fig. 3.14 is examined. The pile

is subjected to a concentrated axial P, (t)=500kN, (1>0.0) and transverse loading
P. (t)= 75000s(a)f’lint) kN acting at the tip, where @, = 614.329rad/ sec is the first

natural frequency of the pile-soil system.

In Figs. 3.15, 3.16 the time history of the pile head displacement w),, and the

displacement w along the pile at the time instant ¢=0.04sec are presented,
respectively, performing either linear or nonlinear analysis and taking into account or
ignoring both rotary inertia and shear deformation effect. The discrepancy between
linear and nonlinear analysis is remarkable, while in the resonance case the beating
phenomenon observed in the nonlinear response (Fig. 3.15) is explained from the fact

that large head displacements increase the beam’s fundamental natural frequency o,
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(by increasing the stiffness of the beam), thereby causing a detuning of @, with the

frequency of the external loading. Since the head displacement reaches its maximum
value, the amplitude of displacements decreases, leading to the reversal of the

previously mentioned effects.

oy P, 0 100 200
D = 80cm 15 mm
a,=2.226
a,=2.226 £ 0.8m
Pk
9 K. (MPa)
so0 p—mmmm— 4
* T
o]
0.0 Time (sec) E
P, (KN) \
0
0.0 Time (sec)
N
N

Fig. 3.14. Hollow circular pile embedded in non constant stiffness soil subjected to
concentrated axial P, and transverse P, head loading.
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Fig. 3.15. Head displacement time history w,,, of the pile of example 4 (for graphic

purposes displacements obtained from linear analysis are divided by 10).
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/
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Displacement (m)

Fig. 3.16. Displacement at time instant t = (0.04 sec along the pile of example 4.

3.5.5 Example 5 — Clamped Beam on Nonlinear Three-Parameter Viscoelastic

Foundation. Resonance and Damping Effects

In order to illustrate the importance of both the nonlinear analysis and the shear
deformation effects in flexural vibrations, a clamped beam of length /=2m, having a

hollow rectangular cross section 0./15x0.10x0.0lm (E=210GPa, v=0.3,
a,=3.263, a, = 1.778, p=7.85 tn/m3) is examined. The beam is resting on a Winkler
viscoelastic foundation with modulus of subgrade reaction k;. =2MPa, damping
coefficient ¢ =4.8kNs / m’ and is subjected to a uniformly distributed transverse load
D (x, t)=1000kN / m . For the validation of the proposed numerical method, the

obtained result have been compared with a FEM solution (NX-Nastran 2007) obtained
by implementing 41 Beam elements and a 3-D FEM solution (NX-Nastran 2007)
obtained by employing 4600 Solid Hexahedral (brick) elements (Fig. 3.17).

In Fig. 3.18 the time history of the beam’s midpoint displacement w(//2) free of

foundation support performing either linear or nonlinear analysis and taking into

account or ignoring both shear deformation effect and rotary inertia is presented as
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compared with those obtained from the aforementioned FEM models, while in Fig. 3.19
the same results are presented assuming the beam on Winkler viscoelastic foundation.
Moreover, in Table 3.7 the maximum values of the displacement of the Timoshenko
beam taking into account or ignoring the damping effect are presented as compared with
the FEM models for different values of the distributed load. The accuracy of the
proposed method is verified for both linear and nonlinear analysis.

As a variant of the above example, the examined beam is resting on a nonlinear

viscoelastic c, (st / m? ) three-parameter foundation with moduli k;. = 20MPa,

kyy, = 20MN / m?, kp, = I0MN . Two cases of loading are examined namely; (load
case i) a transverse concentrated load P, (// 2,t)=]00sin(a)f,,int) kN acting at its

midpoint, where @ j;, = 1345.7 rad / sec is the fundamental frequency of the linear

beam-soil system and (load case ii) an orthogonal impulsive load of amplitude

p.=200kN /m.

Elements: 40
Nodes: 41
DoF: 246

3
-
(a)
Elements: 4600
Nodes: 9292
DoF: 54648
ke
(b)

Fig. 3.17. Clamped beam implemented in NX-Nastran (2007) with Beam Elements (a)
and Solid Hexahedral (brick) Elements (b)
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Fig. 3.18. Midpoint displacement time history w(l / 2) of the beam of example 5, free

of foundation support.
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Fig. 3.19. Midpoint displacement time history w(l/2) of the beam of example 5,
resting on Winkler viscoelastic foundation.
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Table 3.7. Maximum displacement of the clamped Timoshenko beam on Winkler
viscoelastic foundation of example 5, for different loading values.

Winax (cm) Present Study FEM (Beam Model) FEM (Solid Model)
Analysis Linear Nonlinear Linear Nonlinear ~ Linear  Nonlinear
p-(kN/m) No Damping (¢ =0)
1000 6.370 5.936 6.349 5.949 6.623 6.078
2000 12.741 10.431 12.699 10.462 13.245 10.567
3000 19.111 13.841 19.048 13.813 19.868 13.981

With Damping (¢ = 4.8kNs / m2)

1000 5.784 5.440 5.772 5.466 6.011 5.6801
2000 11.576 9.732 11.543 9.771 12.021 9.905
3000 17.354 13.063 17.315 13.038 18.031. 13.127

In Fig. 3.20a the time history of the beam’s midpoint displacement w(//2) resting

on a linear Winkler foundation (k;, = 20MPa, ky;, = kp, = 0) is presented ignoring or

accounting for geometrical nonlinearity, while in Fig. 3.20b the time history of the
beam’s midpoint displacement resting on a three-parameter foundation performing a
nonlinear analysis is presented taking into account or ignoring both shear deformation
effect and rotary inertia.

According to Fig. 3.20a the beating phenomenon is observed in the nonlinear
response contrary to the resonance occurred in the linear one. This is explained from the

fact that large displacements increase the beam’s fundamental natural frequency @, (by
increasing the stiffness of the beam), thereby causing a detuning of @, with the
frequency of the external loading (@, j;, ). Since the displacement reaches its maximum

value, the displacement amplitude decreases, leading to the reversal of the previously

mentioned effects. In Table 3.8 the maximum displacements of the midpoint w(//2)

performing either a linear or a nonlinear analysis and taking into account or ignoring
both shear deformation effect and rotary inertia are presented for different types of
foundation reaction. From this figure and table the intense influence of these effects is

remarked.
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Finally, in Fig.3.21 the time history of the beam’s midpoint displacement w(l / 2)

performing nonlinear analysis and taking into account both shear deformation effect and

rotary inertia is presented for various values of the damping coefficient c_,

Table 3.9 the maximum values of the displacement w,,

while in

and the period 7, of the first

ax

cycle of motion are presented for all the cases of analysis for ¢, =0.
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0.3 7 0011 ¢ Without Shear Deformation
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024 Nonlinear Analysis ”
. : ; <9714¢4
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Fig. 3.20. Midpoint displacement time history w(l/2) of the beam of example 5

resting on Winkler (a) or 3-parameter foundation (b) (load case i).

Table 3.8. Maximum displacement of the beam of example 5 for different types of

foundation reaction (load case i).

Wonax (mm) Without Shear Deformation ~ With Shear Deformation
Analysis Linear Nonlinear Linear Nonlinear
Linear Winkler Resonance-® 68.827 — -
Pasternak 7.729 7.511 9.178 8.507
Linear & Nonlinear 11.866 10.932 14.468 12.678
Winkler
Three-Parameter 7.512 7.495 8.922 8.305
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Displacement w,,(mm)

0 0.004 0.008 0.012 0.016 0.02
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Fig. 3.21. Midpoint displacement time history w(l/2) of the beam of example 5,

resting on a 3-parameter viscoelastic foundation (load case ii).

Table 3.9. Maximum displacement and period of the first cycle of motion of the beam of
example 5 (load case ii).

Without Shear Deformation With Shear Deformation
Analysis
Linear Nonlinear Linear Nonlinear
Wyax (mm) 6.12 5.46 6.41 5.73
T, (ms) 4.01 3.81 4.14 395

3.5.6 Example 6 — Partially Embedded Column-Pile in Nonlinear Three-Parameter

Viscoelastic Foundation
In this example, a partially embedded column-pile of total length /= 10m (1;,, = 3.0m,

[

embed = /M) of circular cross section of diameter D =0.5m (E=29GPa, v=02,

A=0.196m°, I

y=1.=3.066x 10°m?) is studied. The foundation model is

characterized by the linear Winkler modulus k; = 17.4MN / m? , the nonlinear Winkler
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one ky; =17.4GN / m*, the Pasternak (shear) modulus kp =8.7MN and the damping

coefficient ¢ =12kNs /m?. According to its boundary conditions, the embedded
column-pile end is free, while the other end is free according to its displacements and
blocked according to its rotations. The column-pile is subjected to a concentrated

compressive axial load P, (0,t)=1.5MN, (t >(0.0) and to a concentrated transverse
force P.(0,¢)=IMN, (¢>0.0) acting at its top.

In Fig. 3.22a,b the time histories of the head displacement w,,, of the column-pile
embedded in a Winkler type foundation are presented for two values of the damping

coefficient (¢ =0or 12kNs / m2) respectively, taking into account the rotary inertia and
the shear deformation effect, performing either a linear or a nonlinear analysis. The
obtained results are also compared with those from a FEM solution (NX Nastran 2007)
employing the Beam Element formulation. Moreover, in Fig. 3.23 the time histories of

the head displacement w,,, of the column-pile for various models of the mechanical

behaviour of the subsoil are presented performing a nonlinear analysis and taking into

account the rotary inertia and shear deformation effect, while in Table 3.10 the

maximum values of the head displacement w,,,. and the periods T, of the first-cycle of

motion are presented for the aforementioned cases of analysis. Finally, in Fig. 3.24 the
static deflection curves of the column-pile performing either a linear or a nonlinear
static analysis for various foundation models are presented, taking into account the
shear deformation effect. The influence of the nonlinear Winkler and Pasternak (shear)
moduli on the response of the beam-column is observed.

Finally, in order to demonstrate the coupling effect of the transverse displacements
in both directions in the nonlinear analysis, the examined column-pile additionally to
the already described loading is also subjected to a concentrated transverse force

P, (0,t)=2MN , acting also at its top. In Table 3.11 the maximum values of the head

transverse displacements w,

max > v

e are presented performing either a linear or a

nonlinear analysis for the aforementioned foundation models. The difference in the
elements of the first columns of Tables 3.10, 3.11 is due to the coupling effect of the

transverse displacements.
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Fig. 3.22. Head displacement time history of the column-pile of example 6, for
undamped (a) and damped (b) case.

Table 3.10. Maximum head displacement and period of the first cycle of motion of the
column-pile of example 6.

Analvsic / x10- Nonlinear Linear

HAYSIS £ Wiop (m) T, (sec) Wiop (m) T, (sec)
Linear Winkler 29.662 8.10 26.956 7.28
Pasternak 31.224 8.23 28.228 7.85
Linear & Nonlinear Winkler 20.900 5.80 19.843 5.32
Three-Parameter 21.059 5.92 19.941 5.66
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Fig. 3.23. Head displacement time history of the column-pile of example 6, for
various foundation models.

Table 3.11. Maximum head transverse displacements of the column-pile of example 6.

5 Nonlinear Linear
Analysis / x10™ (m)
Wmax Vmax Wmax vmax
Linear Winkler 29.671 59.343 26.956 53912
Pasternak 31.231 62.463 28.228 56.456
Linear & Nonlinear Winkler 20.909 41.819 19.843 39.686
Three-Parameter 21.062 42.123 19.941 39.882

3.5.7 Example 7 — Timoshenko-Rayleigh Beam on Viscoelastic Pasternak Foundation

under Concentrated Moving Load

For comparison purposes, in this example the linear dynamic analysis of a simply
supported steel Timoshenko beam free of foundation support is examined. The material

and geometric constants are given in Table 3.12. The beam is subjected to a

concentrated moving load with constant velocity, p,(x,t)=PS(x—Vt), P=700N,

V=12km/h (0 is the Dirac’s delta function). In Table 3.13, the maximum

displacements of the midpoint of the beam for various internal nodal points’
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discretization schemes are presented; illustrating that convergence is achieved for a

small number of nodal points. In Fig. 3.25, the time history of the displacement w at

the beam’s midpoint is presented for various internal nodal points’ discretization

schemes as compared with the one obtained from a modal superposition method

(Zehsaz et al. 2009) demonstrating the accuracy of the proposed method.

Table 3.12. Geometric constants of the beam of example 7.

10 Iy(m4) 1.04x10°® p(kg/m3)
207 A(mz) 1073 a

7040

1.2
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Linear Analysis

[0 OO [ Winkler Foundation
& O < Pasternak Foundation
O O O 3-Parameter Foundation

0 0.04 0.08 0.12 0.16

Depth (m)

Fig. 3.24. Static deflection of the column-pile of example 6, for various foundation

models.

Table 3.13. Maximum displacements of the beam of example 7 and divergence values
for various discretization schemes.

Nodal Points

11 17 21 27 31

37 41

Wmax (€M) 69578  6.9636  7.0158 7.0167  7.0617

Divergence (%)

1.96 1.88 1.14 1.13 0.5

7.0967 7.0968

0.001 -
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Fig. 3.25. Midpoint displacement time history of the beam of example 7.

As a variant of this example, a simply supported Timoshenko-Rayleigh beam

subjected to a concentrated moving load with constant velocity, p_(x,t)=PS(x—V1),

having the material, geometric and loading constants given in Table 3.14 and resting on

a Pasternak viscoelastic foundation is considered.

Table 3.14. Geometric, foundation and loading constants of the beam of example 7.

I(m) 10 1, (m*) 39.5%10° p(kg /n) 7820
E(GPa) 207 A(mz) 86.13x10 a, 1.176
v 0.3 ky (MPa) 20 kp (kN') 69
c(st /mz) 138 P (kN) 144 V(km/h) 60

In Fig. 3.26 the time history of the bending moment M ,(//2,¢) at the beam’s

midpoint is presented for various internal nodal points’ and time discretization schemes,

while in Figs. 3.27a,b the displacement w(x,0.3) and the bending moment M , (x,0.3)

at the time instant ¢ =0.3s along the beam axis, respectively are also given. In these

figures the corresponding curves obtained from the solution of the same beam resting on
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a Pasternak-type viscoelastic foundation (using a viscous shear layer) are also presented
employing the modal superposition method considering the first ten modes (Zehsaz et
al. 2009). From these figures, it is easily verified that due to the high value of the
damping coefficient, the response of the beam approaches to zero after passage of the
moving load. Moreover, the bed influence limiting the effect of the moving load to the

nearby points is remarked.

50 1
Present Study - 21 Nodal Points
(dt=10-%sec)
Present Study - 17 Nodal Points

40 4 |-
': o (dt=10-sec)

Present Study - 11 Nodal Points
30 4 : (dt=10"sec)

20

10 1

Bending Moment My(1/2,t) (kNm)

0 01 02 03 04 05 06 07 08 09 1
Time (sec)

Fig. 3.26. Midpoint time history of the bending moment of the beam of example 7.

50 -
_,..@-?‘2‘% _________ _92 TR
Ground Level 3 40 4 i
_ , _ %
= f 5 24
“ < 30 $ ]
3“ - 0.001 = ¢
2 S ¢4
5 = 20 <P &
2 K = b
8 | 0.002 ) 2 104 $
2 % £ ¢
2 s by
[} ) %D Ground Level i b
% ERER o it Sl S = o
L 0.003 &j 2 wo f &?kz v
> o
-10 4
&< Present Study &4 Present Study
— — Zehsaz et al. (2009) — — Zehsazetal. (2009)
fb— . - - 20 ; ' ' ' '
0 2 4 6 8 10 0 2 4 6 8 10
Lenght (m) Length (m)
(a) (b)

Fig. 3.27. Displacement (a) and bending moment (b) along the beam axis at the time
instant t = 0.3s of the beam of example 7.
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Finally, in Table 3.15 the absolute maximum displacement w,,, as well as the

maximum displacement w(//2)  and bending moment M (1/2) at the midpoint

ymax
of the beam are presented for various values of the velocity for both Pasternak and
Winkler foundations, taking into account shear deformation effect. From this table the
negligible, in this example, decrease of the transverse displacements and the bending

moments arising from the shear foundation layer are remarked.

Table 3.15. Absolute maximum displacement and maximum midpoint displacement
(mm) and bending moment (kNm) of the beam of example 7, taking into
account shear deformation effect.

Pasternak Winkler
V (km/h)
Wax w(l/2)max M (l/z)ymax Wiax W(Z/z)max M (l/z)ymax
0 3.318 3.171 38.37 3.327 3.185 38.43
10 3.335 3.189 39.91 3.346 3.200 40.92
60 3.345 3.202 41.17 3.350 3.209 41.24
100 3.466 3.281 41.89 3.473 3.285 42.40
120 3.522 3.363 45.99 3.531 3.369 46.17
150 3.649 3.465 48.01 3.657 3.471 48.19

3.5.8 Example 8 — UIC60 Rail Track on 3-Parameter Viscoelastic Foundation

In order to illustrate the importance of the geometrically nonlinear analysis, a simply
supported UIC60 rail track, resting on a three-parameter viscoelastic bilateral
foundation is examined. The geometric, foundation and loading constants of the track,

are given in Table 3.16.

Table 3.16. Geometric, foundation and loading constants of the UIC60 rail track
(Dahlberg 2002, Kargarnovin et al. 2005) of example 8.

L(m) 10 L(m*)  3055%10°  p(ke/m*) 7850
E(GPa) 210 A(mz) 76.86x10° a, 2.68
G (GPa) 77 ky (MPa) 35 kp (kN) 200

ke (MN/m4) 4x108 c(kNS /mz) 145 P(kN) 100
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The track 1is subjected to a concentrated moving harmonic load

p.(x.t)=PS(x—Vt)sin(£2t), where P, €2 are the amplitude and the frequency of the

harmonic load, respectively and ¢ is the Dirac’s delta function. Moreover, the track is
subjected to an either tensile or compressive distributed axial load

Py (x.6)=%2500(kN / m).

In Fig. 3.28 the time history and the extreme values of the central displacement

w(l/2,t) of the track resting on the viscoelastic Winkler foundation and subjected to a

concentrated harmonic load at its midpoint (V' =0m /s,€2 =100rad / s) is presented,

performing either a small or a large deflection analysis and taking into account both

rotary inertia and shear deformation effect.

-0.003 -
<O>—©—<© Nonlinear Analysis with Compressive Axial Load

(G—<—=© Nonlinear Analysis with Tensile Axial Load
00024d-"""- Linear Analysis

\, . -2.163mm

£0.001 - -1.452mm
g -1.341mm
EY

= 0=

O

=)

(5]

2

20.001 -

a

1.353mm

0.002 1.452mm
2.174mm
0.003 T T T T 1
0 0.02 0.04 0.06 0.08 0.1
Time (s)

Fig. 3.28. Midpoint time history and extreme values of the displacement of the track
of example 8.

To illustrate the significant effect of the load frequency, in Table 3.17 the
maximum midpoint displacement w(//2,7) of the track resting on the nonlinear three-
parameter bilateral viscoelastic foundation, subjected to a harmonic moving load with
constant velocity V' =100m /s are presented for various values of the excitation

frequency (2, performing either small or large deflection analysis (for both cases of

tensile or compressive axial load). Moreover, in Table 3.18 the maximum displacements
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and bending moments of the track are presented for different types of bilateral

viscoelastic foundation reaction, for £2=400rad/s, V =100m/s , while in Fig. 3.29 the
displacement w(x,0.055) along the track axis at the time instant # = 0.055s as well as

their maximum values are also presented for both small and large deflection analysis for
viscoelastic Winkler and three-parameter foundation. From the obtained results, it is
concluded that the discrepancy between the geometrically linear and nonlinear analysis
is not negligible and should not be ignored, while the influence of the shear deformation
effect (increasing the transverse displacements and decreasing the bending moments) in
both of the aforementioned analyses is observed. This latter influence is more

pronounced as the length of the track becomes smaller.

Table 3.17. Maximum midpoint displacement w(l/2) (mm) of the track of example

8, for various values of the excitation frequency (2.

W(l /2 )max Linear Nonlinear Nonlinear
_Q( rad / S) /Analysis Tensile Load Compressive Load
1.0 0.0715 0.0607 0.1009
5.0 0.2699 0.2338 0.3374
10 0.3999 0.3626 0.4693
50 0.4609 0.4445 0.5147
100 0.5690 0.5448 0.6272
200 0.5150 0.4724 0.5745
400 0.5782 0.5257 0.6589
Table 3.18. Maximum displacement Wy, and bending moments M ... of the track of
example 8, for different types of foundation reaction.
Winax (mm) Without Shear Deformation With Shear Deformation
M max (kN m) Linear Nonlinear Linear Nonlinear
i Winkl 0.9879 1.4336 0.9973 1.4436
mear rinier 15.449 22.869 15.285 22.805
Pasternak 0.9861 1.4235 0.9937 1.4452
asternd 15.942 22.779 15.255 22.735
Linear & 0.5788 0.6859 0.5923 0.6992
Nonlinear Winkler 12.906 15.917 12.161 15916
Three-Parameter 0.5783 0.6851 0.5820 0.6893
12.887 15.886 12.148 15.880
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Fig. 3.29. Displacement at the time instant t = 0.055s and their maximum values of
the beam of example 8.

3.5.9 Example 9 — HEA320 on Winkler Foundation under Axial Loading and

Concentrated Moving Harmonic Force
In this example, a clamped-pinned HEA320 beam of length /=6.5m (E=210GPa,
v=0.3, a,= 1.475, a,=4.512, p=7.85 tn/m3 ) resting on a constant stiffness soil of
k,=1.2MPa, as shown in Fig. 3.30, is considered. The beam is subjected to a
uniformly distributed axial loading p, (t)=500kN, (¢>0.0) and to a transverse

concentrated moving harmonic load P, (1)=105(x—Vt)sin(£2t)MN with constant

velocity of V' = 65m/s, and excitation frequency 2 = 100rad/ sec .

P,=10.0-sin(wt) MN

— 1 » 65m/sec HEA320

_500kN/m a,= 1.4752

JS S 2 2 2 = = T

——————— =6.5m »

Fig.3.30. Beam under axial-flexural loading on constant stiffness soil.
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In Fig. 3.31a the time history of the central transverse displacement w(l /2) of the

beam, performing either linear or nonlinear analysis, taking into account or ignoring
both rotary inertia and shear deformation effect is presented, while in Fig. 3.31b the
displacement curves w at the time instant ¢=0.05sec are also presented either for
conventional Winkler or for tensionless Winkler soil performing nonlinear analysis and
taking into account or ignoring shear deformation effect. Moreover, in Table 3.19 the

extreme displacements and in Fig. 3.32 the effect of the frequency @ of the

Winax > Wmin

concentrated moving load to the maximum displacement w,,,, are presented for all of

the aforementioned cases.

0.1 7
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[E—&—F1 Without Shear Deformation
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-0.1 T T T T T 1 0 1 2 3 4 5 6 7
0 0.02 0.04 0.06 0.08 0.1 0.12 Beam Lenght (m)
Time (sec)
(a) (b)

Fig. 31. Central displacement time history (a) and displacement curves at time instant
t=0.05sec (b) of the beam of example 9.

Table 3.19. Extreme values of the displacement of the beam of example 9.

Winkler
Analysis
Without Shear Deformation With Shear Deformation
x1072 (m ) Linear Nonlinear Linear Nonlinear
Winan 6.21 8.43 6.45 8.58
Woin -7.87 -9.15 -8.17 -9.26
Tensionless Winkler
Analysis
Without Shear Deformation With Shear Deformation
x1072 (m ) Linear Nonlinear Linear Nonlinear
Wax 5.92 6.84 6.67 6.98
Win -10.18 -10.96 -11.46 12.34
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Fig.3.32. Frequency effect to the maximum displacement of the beam of example 9.

3.5.10 Example 10 — HEM 240 on 3-Parameter Viscoelastic Foundation under Axial
Loading and Distributed Moving Harmonic Force

To demonstrate the range of applications of the developed method, in this example, a

clamped-slide supported HEM 240 beam of length /=8m (E=210GPa, v=0.3,

a,=4.344, p= 7.85tn/m3) has been studied. The foundation model is characterized by
the linear Winkler modulus & =1.5MN /m?*, the nonlinear Winkler one
kxy =1.5GN / m*, the Pasternak (shear) modulus kp =400kN and the damping

coefficient ¢ (st / mz) . The beam is subjected to a uniformly distributed axial loading

Py (x,1)=-1000kN /m and to a moving harmonic line load p_(x,7) of length 2a

defined as

22
—H(a ~ )cos(.Qt) (3.xx)

t)=P
pz(x t) 2a

120



Chapter 3 Geometrically Nonlinear Dynamic Analysis of Shear Deformable Beams on Nonlinear Foundation

where P, are the amplitude and the frequency of the harmonic load, H is the

Heaviside step function and s is given as s=(x+a)—Vt. It is considered that

P=200kN, 2=100rad /s and a =0.381m .
In Fig. 3.33a the midpoint displacement time history w(//2,) of the beam

subjected to the aforementioned load (¢ =15kNs / m*, V=0m/ s ) for the time period

t> [0,0.03]sec is presented, performing either small or large displacement analysis,

taking into account rotary inertia, shear deformation effect and the tensionless character
of the foundation, demonstrating the discrepancy between the conventional and the

tensionless foundation, while in Fig. 3.33b the midpoint displacement time history
w(l/2,t) of the beam subjected to the aforementioned load (c=15kNs/ m?,

V' =80m /s) is also presented, performing either small or large deflection analysis and
taking into account both shear deformation effect and rotary inertia. Moreover, in Table

3.20 the maximum values of the displacement w(x,t) of the beam resting on either

nonlinear or tensionless nonlinear three-parameter foundation are presented for various
values of the damping coefficient ¢, performing both small and large deflection
analysis and taking into account or ignoring shear deformation effect and rotary inertia.
From the results obtained the influence of the damping coefficient is illustrated and the

importance of large deflection analysis is verified.
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Fig. 3.33. Midpoint displacement time history of the beam of example 10 for
c=15kNs / m*,V =0m /s (a) and V =80m / s (b).
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Table 3.20. Maximum displacement w,,,, (cm) of the beam of example 10.

Nonlinear Foundation

Analysis
Without Shear Deformation With Shear Deformation
Winax Linear Nonlinear Linear Nonlinear
c=0 1.985 2.373 2.019 2.448
c=5 1.678 1.966 1.715 2.023
c=10 1.471 1.681 1.487 1.713
c=15 1.323 1.472 1.335 1.484
c=20 1.197 1.305 1.210 1.314
c=40 0.8579 0.924 0.861 0.925
Nonlinear Tensionless Foundation
Analysis
Without Shear Deformation With Shear Deformation
Winax Linear Nonlinear Linear Nonlinear
c=0 2.473 3.094 2.568 3.376
c=5 2.169 2.544 2.254 2.651
c=10 1.925 2.251 2.001 2.352
c=15 1.726 2.014 1.794 2.104
c=20 1.561 1.819 1.619 1.896
c=40 1.128 1.298 1.165 1.343

3.5.11. Example 11 — Extensive Case Study

The main purpose of this final example is to investigate the accuracy of the advanced
beam model developed in the previous sections under the concept of an extensive case
study concerning soil-pile—structure kinematic and inertial interaction, as well as to
demonstrate its efficiency and advantages compared to other commonly used beam or
solid models.

Within this context, a column-pile monolithically connected to a bridge deck,
embedded in two layers of cohesive soil and excited by seismic motion (Fig.3.34), has

been studied. The concentrated mass at the centre of the deck is M, = 60tons, the

top
height of the pier is H =10m, the embedment length of the pile is L = 30m, and the
diameter of the column-pile equals to d =1.5m. The column-pile is assumed to be

linear elastic, while the idealized soil profile from the Agios Stefanos bay depicted in
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Fig. 3.34 was used for the ground response analyses. More specifically, a soft to
medium normally consolidated clay sets on top of a stiff clay. The bedrock is

encountered at —50m and is assumed to be rigid. The soft clay has a thickness of /8m

and a plasticity index PI(%)=35. The second layer is 32m thick and has constant

undrained shear strength of 100kPa. The maximum shear modulus was calculated by

the empirical equations of Seed and Idriss (1970).

\_if-o | /" Mass,,, = 60tons Massyq, E K K
Disp. “
— —d=15m => V.V,;
H=10m Cel Wy
rlI\I/[id-Node
Soft Clay Gy (2)

18m Su=2zkPa J Ei
L=30m p=1.6 t/m? 86MPa .Mﬁ

A
~>
«

200MP3

:

Stiff Clay ‘> i

Su=100 kPa

32m
p=1.8 t/m?

v

P e
Rock Ground Response
Analysis

Fig. 3.34. Column-pile monolithically connected to bridge deck embedded in two
layers of cohesive soil and the adopted beam model.

The layered soil profile is simulated by a Winkler type hybrid spring configuration.
As proposed by Wang et al. (1998), the soil is separated into two zones, namely a far—
field zone implemented by Kelvin—Voigt element (k,,c,;) and a near—field one

represented by hysteretic element (%,;). More specifically, the adopted hybrid model

consists of a nonlinear spring connected in series to a dashpot—elastic spring parallel
configuration. The free extremities of the configuration are excited by the free—field

(wﬁ,wﬁ) displacement and velocities time histories obtained at each depth from the

free—field seismic response analysis (Fig.3.34). The equilibrium of forces at the mid-

node of the spring configuration results in an additional equation
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kel (Wmnode - Wﬁ‘) +Co (Wmnode - Wﬁ) = knl (W_ Wmnode) (3.49)

w,

mnode  corTespond to the free-field and mid-node

where, wy, Wy and W00

displacement and velocity, respectively. Eqn. (3.49) together with the equilibrium
equations of motion (3.17) constitute the governing coupled differential equations of a
Timoshenko column-pile embedded in a layered nonlinear Winkler-type soil profile
accounting for the kinematic and inertial soil-pile—structure interaction and for the
effects of geometrical nonlinearity, rotary inertia and shear deformation.

The calibration of the spring and dashpot coefficients of the examined hybrid spring
configuration is based on the methodology presented by Giannakos (2013). The lateral
soil reaction against a deflecting pile is expressed as the sum of a hysteretic elastic—
perfectly plastic and a visco—plastic component, according to the lumped parameter
model, as depicted in Fig.3.34. In this way, the frequency—dependent characteristics of
the subgrade reaction are realistically captured through a series—parallel assembly of
frequency—independent springs and dashpots. In the elastic regime, the small-amplitude
frequency—dependent spring and dashpot coefficients for the lateral soil reaction are

approximated by

k M + (a)cd )2

el t
k k
_=Re| £z |~ n_nl (3.50a)
"))
knl knl
¢, = Im (%} ~ Cel (3.50b)

2 2
knl knl
in which @ is the circular frequency. In the above equations, k,,; denotes the stiffness of

the elastic branch of the nonlinear spring. The parameters &

s Cgand k, are

appropriately calibrated through an optimization procedure to match the stiffness and

dashpot coefficients (Fig. 3.35) proposed by Makris and Gazetas (1992)

k,=12E, and ¢ =6a,""pV.d (3.51a,b)
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in which £, V and p,are the Young’s modulus, shear wave velocity and mass density
of the supporting soil, and ¢, is a dimensionless frequency parameter defined as

ay=wdlV;.
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Fig. 3.35. Calibration of stiffness k, (a) and damping coefficient c, (b) for the

examined configuration.

Having calibrated the stiftness k&, and dashpot coefficient ¢, according to Eqns.
(3.51), plastic behaviour is then introduced by imposing a threshold value for the
reaction force of spring k,; equal to the ultimate soil resistance per unit length of the
pile ( p,;; ) as determined by Matlock (1970) and Reese et al. (1975) at near surface (top

layer) and at greater depths (bottom layer), respectively. The architecture of the
proposed assembly of springs and dashpots is such that the maximum transmissible
force on to the pile is limited to the ultimate resistance of the nonlinear spring. When

the force (per unit length of the pile) of the nonlinear spring reaches its threshold value
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(puh), the corresponding tangential spring stiffness becomes zero. Thus, the arranged

in-parallel spring and dashpot unit is deactivated and the radiation damping vanishes.

The influence of shaking on the seismic response is investigated by selecting three
well known acceleration records as seismic excitations:

1) the record from Aegion earthquake (1995)

i1) the record from Lefkada earthquake (2003)

111) the JMA record from Kobe earthquake (1995)
The first two records were chosen as two strong motions of the seismic environment of
Greece, with one and many cycles, respectively. JMA record is used to investigate the
dynamic response of the soil-pile-structure system to a quite unfavourable incident. All

the records were first scaled to a Peak Grand Acceleration (PGA) of 0.5gand 0.8g at

the ground surface. The acceleration time histories at the surface scaled to a; = 0.5g and

the corresponding elastic response spectra for & =5% damping are presented in Figs.

3.36, 3.37, respectively.
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Fig. 3.36. Excitation motion accelerograms scaled to a, = 0.5g.
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Fig. 3.37. Corresponding response spectra of the scaled motions (a, = 0.5g).

Then, through deconvolution analyses conducted with SHAKE91 (1991), the
bedrock motion as well as the motion at various depths along the pile were estimated.
Both elastic and inelastic soil response are investigated. For the elastic soil, the response
of the soil-pile—structure system is investigated further with two different methods;
namely a simplified Beam—FE model employing the OpenSees code (2005), and a
rigorous fully 3-D continuum FE scheme materialized in the ABAQUS (2009) code.
For the inelastic soil response, the proposed model is verified only against the Beam—FE
solution due to the fact that soil response in the 3—D continuum FEM strongly depends
on the adopted soil constitutive model.

In the Beam—Finite Element formulation (Giannakos 2013), two different stages of
analysis are required. At first, the analysis of the seismic site response without the
presence of the structure is performed with the use of the computer program SHAKE91
(1991). Thereinafter, employing the obtained excitation motions derived from the first
stage, the analysis of the soil-pile-structure system is carried out with the use of a
Beam-FE model using the code OpenSees (2005). In the first stage, the seismic site
response analysis considers the soil profile as a one-dimensional system of
homogeneous visco—elastic sub-layers of infinite horizontal extend. The response of this
system is calculated using the wave equation and the assumption of vertically
propagating shear waves. An equivalent linear method models the nonlinear variation of
soil shear modulus and damping as a function of shear strain. Curves of shear modulus
reduction G and damping ratio £ increase with shear strain y developed by Ishibashi and

Zhang (1993) were used in the case of the nonlinear site response analysis. In the
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second stage, the column-pile is discretized into linear elastic beam elements of Im
length. The mass of the deck is simulated as a concentrated mass at the top node of the
pile—column, while the distributed mass of the extended pile is simulated by lumped
masses on the beam—element nodes. The free extremities of the spring configuration are
excited by the displacement time histories obtained at each depth from the free—field
seismic response analysis. Rayleigh damping which represents material damping was

taken equal to £=5% in order to avoid spurious oscillations at very small deformations.

On the contrary, in the fully 3-D Finite Element Model (Giannakos 2013) the
calculations of the site response and the soil-pile—structure interaction are performed in
a fully coupled manner with the Finite Element Code ABAQUS (2009). The pile—
column is modelled with 3-D beam elements placed at its centre and connected with
appropriate kinematic restraints with the nodes at the perimeter of the pile in order to
model the complete geometry of the pile as depicted in Fig. 3.38b. The solid elements
inside the perimeter of the pile have no stiffness. In this way, each pile section behaves
as a rigid disc, i.e. rotation is allowed on the condition that the disc remains always
perpendicular to the beam axis, but stretching cannot occur. The pile—column and the
soil behaviour are assumed to be elastic, while P-§ effects (linearized 2™ order analysis)
are also taken into account. The soil is modelled with 8-node brick elements. The
vertical length of the elements is identical to the beam model in order to avoid mesh
sensitivity differences. Appropriate kinematic constraints are imposed to the lateral
edges of the model, allowing it to move as the free—field. The acceleration time histories
derived from the site response analysis with SHAKE91 at 30m depth were used as the
input excitation motion in the fully 3-D FE model. Rayleigh damping of the soil
elements was taken equal to the equivalent damping from the dampers of the Beam—FE
model in order to avoid spurious oscillations at very small deformations. Due to
symmetry, only half of the problem was analyzed, as depicted in Fig. 3.38a,

significantly reducing computational demands leading to approximately 15,000

elements for each analysis.

In order to construct a rigorous and precise fully 3—D FE model, the free-field
boundaries had to be investigated first by two different types of boundaries; namely 1) 3
dashpots (one in each direction) on each node on the boundaries of the 3—D model were
employed, while the soil motion at each depth from the free-field seismic response
analysis was imposed on every node on the boundaries and ii) appropriate kinematic

constraints were used, imposed to the lateral edges of the model, allowing it to move as
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the free-field, namely Multi-Point Constrains (MPC) boundaries, and the soil motion at
30m depth from the free-field seismic response analysis was imposed only on the nodes
of the bottom boundaries of the model. The comparison of the acceleration,
displacement and rotation time histories at the deck level with both the boundary types

studied for the JMA record scaled at a, =(.5g , yield identical results. This behaviour
was expected since the effective period of the soil was 7,,; = 0.45s from Fast Fourier

Transform Analysis, while the effective period of the soil-foundation-structure system

was T

sse = 0-63s, as shown in Fig. 3.39 and thus no radiation of waves from the

system to the soil takes place (Veletsos & Wei 1971). Hence, the MPC boundaries were

selected for all of the analyses conducted similarly to Zafeirakos and Gerolymos (2013).

3-D beam element

I~
™ Vd
Imposed kinematic

®/ constraint
AN

™ node

30m L

] .
g 3-D solid
elements

(b)
Fig. 3.38. Fully 3-D FE modelling of the investigated problem (a) and modelling of the
pile (b).

An additional factor that had to be investigated in order to perform the 3—D analysis
was the damping of the soil elements. Rayleigh damping of £=5% was initially selected
for the soil elements of the 3—-D FE model. It was found that this resulted in an
overestimation of the computed acceleration, displacement and rotation time histories in
comparison to the Beam—FE model. Indeed, the existence of a cut-off frequency for
radiation damping holds true when the source of radiation is attributed to the so-called

inertial interaction effect, referring to the response of the pile-structure system to

129



Geometric and Material Nonlinear Analysis of Beam—Soil Interaction Systems

excitation by D’ Alambert forces. There is also a second source of radiation. That is the
kinematically driven radiation damping due to the interaction of the pile with the
surrounding soil, driven by the free-field response. To capture in a crude but simple way
the effect of the latter source of radiation damping, the parameters of the Rayleigh
damping for the soil elements were calibrated to match the equivalent damping from the
dampers of the Beam-FE model at a frequency which equals the fundamental frequency

of the soil & =wC/2K , where o is the soil frequency, C is the damping coefficient of

the damper, and K is the spring stiffness, leading to improvement of the response of the
3-D FE model in comparison to the beam model. Alternatively, the matching could
have been done at the predominant frequency of the excitation as well, leading to a
similar response Saitoh (2012). The main disadvantage of the second approximation lies
on the estimation of the predominant excitation frequency which varies with depth and

is different for different seismic motions.

22.5 9
20 1
17.5
15 4
12.5

10

Amplitude

7.5 4

Soil-Pile-Structure System
= === Free-Field

T~ ——-

Period T (sec)

Fig. 3.39. Fast Fourier Transform Analysis for the free-field and Soil-Pile-Structure
system response.

The numerical results obtained by the proposed advanced beam model using a set

of 6 excitation motions, have been compared against both FE models. More specifically,

in Figs. 3.40a-c the acceleration time histories at the bridge deck level Vv(H ¢)
corresponding to the Letkada, JMA and Aegion excitation motions scaled to a, = 0.8g,

are presented, respectively. In these figures the geometrically linear and nonlinear
analysis of the proposed model, taking into account both rotary inertia and shear

deformation effect are compared with the Beam-FE and the fully 3—D FE models. From
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the obtained results it is observed that the proposed nonlinear formulation can capture
accurately the response of the solid model accounting for P—o effect, while the linear
case predicts identical acceleration time histories with the Beam—FE model. From the
conducted investigation, it is deduced that instead of executing time—expensive 3—D
analyses for the soil-pile-bridge system, the proposed beam model can be employed
providing minimum calculation effort while retaining high precision in the obtained
results. Under the scope of efficiency, it is worth noting that as the two approaches have
fundamental differences (i.e. /0! elements for the proposed model instead of

approximately 15,000elements for the solid one), the difference between the

computational time required for the analyses is significant. Indicatively, it is mentioned
that the sophisticated solid model required approximately 2.5hto5.5h for the Aegion
and JMA excitation, respectively (even though half of the system is concerned), while
the proposed one required from 25sec to 70sec for the same excitations.

Moreover, in Fig. 3.41 the corresponding (&= 5%) response spectra are also

presented. As expected, the response spectra of the 3—D FE model produce higher peak
acceleration values, due to the fact that the damping in this model is less than in the
beam models, as stated before. Nevertheless, the response spectra from both approaches
produce the maximum acceleration values at the same periods.

Similarly, Figs. 3.42-3.47 illustrate the displacement time histories at the deck level
w(H,t) and pile head (ground surface) level w(L,t) corresponding to the Lefkada,

JMA and Aegion excitation motions, respectively for the same cases of analysis, while

in Figs. 3.48-3.50 the rotation time histories at the deck level &, (H ,t) are also

presented. Once again the proposed nonlinear formulation captures well the response of
the 3—D FE model while response for the linear analysis and the Beam—FE model are
identical. As in the case of the acceleration time histories, the peak displacement and
rotation values calculated with the solid model are higher than those from the linear
Beam—FE analysis.

What is of great interest is the case of Aegion (1995) (Figs. 3.46, 3.47), where a
great difference in the response of the system is observed, even though the acceleration
time histories are similar. In order to justify the difference between the 3—D analysis and
both the proposed model and the one implemented in the Finite Element code OpenSees
(2005), a Beam—FE model was also created in the Finite Element code ABAQUS
(2009) which provides a graphical interface. The results obtained from that model lead

to similar displacement time histories as the rest of the beam models.
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Fig. 3.41. Comparison between the response spectra ({=5%) at the deck level.
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Fig. 3.50. Rotation time history of the deck level for Aegion excitation.

The difference in the displacement time histories is attributed to the sequence of
significant pulses of the Aegion (1995) record. The response of the deck calculated by
all the beam models (Fig. 3.46) exhibits greater displacement at the first peak
displacement (positive direction) than that estimated by the 3—D FE model. As the deck
starts to move towards the opposite direction, it does not pass far from its initial position
in the beam model, while it moves greater towards the negative direction in the solid
one. By the end of second positive peak displacement, the deck moves even further
towards the positive direction in both models. The distance covered until the second
negative peak displacement is smaller than the previous stages. Thus, in the 3—-D FE the
deck moves to the left, while in the beam models the deck remains to the right side. As
the distance covered among each peak displacement value decreases, the deck oscillates
in the side that was before until the end of the oscillation. This phenomenon becomes
also evident from the rotation time history (Fig. 3.50). The difference in the responses
becomes greater as the peak ground acceleration increases from 0.5 to 0.8 g. However,
this is a unique case, since analyses with other records that contain asymmetric loading
(e.g. Letkada 1973) showed no differences in the response of the system. Fig. 3.51
illustrates snapshots of the deformed column-pile for the Aegion (1995) excitation

scaled to a, = (.5g at the time instants t,=175s, t, =2.65s, 7, =3.65 and t; =4.5s

in comparison to the undeformed state (scaling factor 50) from the solid and the beam
models in FE code ABAQUS, verifying the aforementioned justification.
Moreover, Figs. 3.52-3.54 illustrate the displacement time histories at the deck

level w(H ,t)corresponding to the Lefkada, JMA and Aegion excitation motions,
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respectively taking into account or ignoring soil material nonlinearity. In Figs. 3.55a-c
the bending moment envelops of the column-pile corresponding to the Letkada, JMA
and Aegion excitation motions, respectively, are presented performing either a linear or
a nonlinear analysis of the proposed model, compared with the Beam—FE and the fully
3-D FE models. Both the results from the elastic and the inelastic soil response are

illustrated. In general, the agreement between the computed curves is quite satisfactory.
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Fig. 3.51. Snapshots of the deformed column-pile for the Aegion (1995) excitation
scaled to a, = 0.5g at the time instants t,=1.75s, t, =2.65s, t. = 3.65

and ty =4.5s in comparison to the undeformed state (scaling factor 50)
from the 3—D FE model and the Beam—FE model ABAQUS.
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Finally, in Table 3.21 the maximum values of the bending moment along with their
location are presented for different cases of analysis for all the excitation motions. From
these figures and table it is concluded that the proposed geometrically nonlinear
formulation captures accurately the calculated response according to the other methods
of analysis used, while all the models predict similar shapes of the moment distribution
and the increase of the bending moment at the interface of the two soil layers. The
models also predict the same depth of the maximum bending moment as well as the
shift of the maximum bending moment at a higher depth as the peak ground acceleration
increases for the case of the inelastic soil response. The increased bending moment
predicted by the proposed nonlinear analysis and the 3—D FE model is attributed to the

higher predicted acceleration values at the deck level.

3.6 Concluding Remarks

In this chapter, a Boundary Element Method is developed for the geometrically
nonlinear response of shear deformable beams of simply or multiply connected constant
cross-section, partially supported on nonlinear three-parameter tensionless viscoelastic
foundation, undergoing moderate large displacements under general boundary
conditions. The beam is subjected to the combined action of arbitrarily distributed or
concentrated transverse loading and bending moments in both directions as well as to
axial loading. The main conclusions that can be drawn from this investigation are
1. The proposed beam formulation is capable of yielding results of high accuracy, as
verified by comparing with 2D/3D FEM models and experimental results, with
minimum computational cost, providing a simple, reliable and efficient

computational tool.

ii.  In the examined examples, the influence of geometrical nonlinearity is illustrated

through

e The significant discrepancy between the results of the linear and the nonlinear
analyses.

e The remarkable discrepancy in the response of a beam-foundation system in the
resonance case.

e The increase or decrease of the stiffness rigidity.

e The affect on the natural frequencies.
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1ii. The coupling effect of the transverse displacements in both directions in the

nonlinear analysis influences these displacements

Table 3.21. Maximum values of the bending moment for elastic soil M, and inelastic

soil M ,; (MPa) and their location (m ) from the ground level.

Elastic Soil Inelastic Soil
Excitation Analysis / Model
M, Location | M ,; | Location

Present Study—Linear 13.68 -1.0 7.19 -4.5

L(;fé(g;i)a Present Study—Non Linear 17.01 -1.0 7.16 -4.5

a,=0.5g Beam FE-OpenSees (2005) 13.58 -1.0 7.18 -4.5
3-D FE Abaqus (2009) 17.80 -0.5 - -

Present Study—Linear 21.87 -1.0 12.75 -5.5

Léfggg)“ Present Study—Non Linear 27.66 -1.0 1252 -55

a, =0.8g Beam FE-OpenSees (2005) 21.72 -1.0 12.60 -5.5
3-D FE Abaqus (2009) 28.48 -0.5 — -

Present Study—Linear 10.27 -1.0 12.58 -6.5

({1;[91?) Present Study-Non Linear | 11.02 40 1270 65

ag=0.5g Beam FE-OpenSees (2005) 10.13 -1.0 12.55 -6.5
3-D FE Abaqus (2009) 11.67 -0.5 — -

Present Study—Linear 16.31 -1.0 19.18 -7.5

({1;/[9'2) Present Study—Non Linear 17.14 -1.0 19.20 -7.5

ag =0.8¢ Beam FE-OpenSees (2005) 16.21 -1.0 19.16 -7.5
3-D FE Abaqus (2009) 18.67 -0.5 — -

Present Study—Linear 9.94 -1.0 6.75 -4.5

‘;llegg;?j Present Study—Non Linear 10.00 -1.0 6.72 -4.5

a,=0.5g Beam FE—-OpenSees (2005) 9.93 -1.0 6.74 -4.5
3-D FE Abaqus (2009) 10.11 -0.5 - -

Present Study—Linear 14.40 -1.0 10.26 -5.5

Y

f(l]eg;?j Present Study—Non Linear 15.86 -1.0 1036  -6.5

a, =0.8g Beam FE-OpenSees (2005) 15.89 -1.0 10.30 -5.5
3-D FE Abaqus (2009) 16.18 -0.5 — -
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1v.

V1.

Vii.

Viil.

iX.

xi.

Xil.

In some cases, the effect of shear deformation is significant, especially for low
beam slenderness values, increasing both the maximum transverse displacements
and the calculated periods of the first cycle of motion, in both small and large

deflection analyses.

The superiority of the presented Timoshenko beam formulation over Euler-
Bernoulli elements is also verified by yielding results closer to rigorous FEM

model.
Shear-locking has been successfully avoided.

The proposed model takes into account both kinematic and inertial interaction to
the geometrical nonlinear dynamic response of a column-pile embedded in a

layered soil profile.

The soil nonlinearity can be easily treated by means of a hybrid spring
configuration consisting of a nonlinear (p-y) spring connected in series to an elastic

Kelvin—Voigt element.

The lift up of the beam caused by the tensionless character of the foundation is

observed, leading to magnification of the consequences of the dynamic response.

The response of the beam is strongly influenced by the linear and nonlinear

parameters of the foundation reaction.

The damping coefficient is of paramount importance for beams on viscoelastic
foundations, as it reduces the vibration amplitude and the consequences of the

dynamic response

The imposed dynamic loading (e.g. sequence of significant pulses of the Aegion
(1995) record) could influences the response of the beam-foundation system

according to the implemented model.
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Chapter 4

Geometrically Nonlinear Inelastic Analysis of
Shear Deformable Beams on Inelastic Foundation

4.1. Introduction

In design of civil engineering structures (e.g. bridges, wind-turbines, offshore platforms,
etc.) the analysis of beam—foundation systems is most often encountered. In order to
conduct precise analysis, without jeopardizing accuracy and thus safety, the thorough
understanding of the mechanics of the beam—foundation system is required. Currently,
these systems are designed to behave elastically for every type of loading (EC8 2004),
however recent research efforts (Gerolymos et al. 2009, Chiou et al. 2012) have
investigated the beneficial character of permitting plastification to occur at the beam-
foundation system.

Moreover, design of beams and engineering structures based on elastic analysis are
most likely to be extremely conservative not only due to significant difference between
initial yield and full plastification in a cross section, but also due to the unaccounted, yet
significant, strength reserves that are mobilized in redundant members after inelastic
redistribution takes place. Thus, material nonlinearity is important for investigating the
ultimate strength of a beam that resists bending loading, while distributed plasticity
models are acknowledged in the literature (Teh & Clarke 1999, Nukala & White 2004,
Saritas & Filippou 2009) to capture more rigorously material nonlinearities than cross
sectional stress resultant approaches (Attalla et al. 1994) or lumped plasticity
idealizations (Orbison et al. 1982, Ngo-Huu et al. 2007). Furthermore, the cost-effective
design of infrastructures requires the realistic estimation of the beam—foundation system
response, accounting for all sources of nonlinearities; namely nonlinear stress—strain
behaviour of the structural member and the soil (material nonlinearity) along with the
geometrical nonlinearity. Moreover, the contemporary advancements in material science
have facilitated the intensive use of materials having relatively high transverse shear
modulus; thereby the error incurred from the ignorance of shear deformation effect may

be substantial, particularly in the case of significant lateral loading.
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Over the years, the beam-foundation interaction has been an area of extensive
research activity and various methods have been developed in order to study the
complex behaviour of the system, from the material level to the interaction between
structural and foundation elements. These methods can be grouped into three major
categories; namely the limit equilibrium (Broms 1964a, 1964b, 1965), the beam-on-
Winkler-foundation (Winkler 1867, Filonenko-Borodich 1940, Hetenyi 1946, Pasternak
1954, Vlasov 1966) and those based on the continuum mechanics. Among them, the
most commonly employed in engineering practice is the beam approach due to the
significant advantages over the other methods, such as the simplicity in formulation and
modelling together with the high level of accuracy with minor computational cost.

Within this framework, several researches have employed the concept of Elastic
Beam on Nonlinear Foundation. In this formulation, the foundation load-displacement
relation is assumed to follow a nonlinear law while the beam remains elastic throughout
the analysis. The load-displacement relationships are described by empirical p-y curves
(Brown & Shie 1990,91, Laman et al. 1999, Kim & Jeong 2011) where the spring
stiffness value is variable, allowing consideration of a non-proportional relationship
between the soil resistance per unit pile length p and the lateral displacement y. To this
end, Sharma and Dasgupta (1975) employed an iteration method using Green’s
functions for the analysis of uniformly loaded axially constrained hinged beams
assuming an exponential load-displacement foundation reaction law. Beaufait and
Hoadley (1980) approximated the nonlinear load-displacement relationship of the
Winkler foundation with a bilinear curve and utilized the midpoint difference method to
analyze the beam coupled with the weighted averages scheme to estimate the spring
stiffness for each iteration, followed by Yankelevsky et al. (1989) who presented an
iterative procedure based on the exact stiffness matrix for the beam on Winkler
foundation by approximating the load-displacement curve by three to five regions rather
than two. Kaliszky and Logo (1994) adopted the extremum principle to analyze a
nonlinear elastic beam on nonlinear elastic foundation. Both the beam and the Winkler
springs were assumed to follow a bilinear material model while the beam was
subdivided into series of rigid bars and the deformation was concentrated in the hinges
and spring elements. El Naggar and Novak (1996) used a Winkler model employing a
hyperbolic stress strain relationship to evaluate the lateral response of piles, while Wang
et al. (1998) employed the same method to predict results of centrifuge model tests of
single piles in a soft clay soil profile. Lately, Sapountzakis and Kampitsis (2011a)

studied the nonlinear static analysis of shear deformable beam-columns partially
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supported on tensionless three parameter foundation, undergoing moderate large
deflections under general boundary conditions. In general, this method is the most
commonly used in engineering practice. Its popularity derives from the simplicity and
the adequate accuracy while the main drawback of the method is that it neglects the soil
continuity. In order to overcome this disadvantage several researchers have adopted the
three-dimensional continuum model, where nonlinear behaviour of the ground can be
taken into consideration employing various constitutive laws. Although the continuum
approach is a powerful and rigorous way of simulating the whole system accounting for
various three-dimensional interaction effects and the nonlinear behaviour of soil, it is
not widely implemented, besides research purposes, as it is intractable, mathematically
complex and the computational and modelling effort required is extremely time
consuming.

Although the nonlinear behaviour of the soil due to high strain level has been
studied extensively (Brown & Shie 1991, Laman et al. 1999, Kim & Jeong 2011) only
few studies have encountered the inelastic behaviour of both the beam and the
foundation elements. According to this, the beam stress-strain and the foundation load-
displacement relations are assumed to follow nonlinear inelastic constitutive laws.
Consequently, such models are not easily formulated due to the complexity of the
problem. To start with, Budek et al. (2000) investigated the inelastic response of a
reinforced concrete pile in cohesionless soil while Ayoub (2003) presented an inelastic
finite element formulation capable of capturing the nonlinear behaviour of both the
beam and the foundation. The element is derived from a two-field mixed formulation
with independent approximation of forces and displacements and compared with the
displacement based formulation. Mullapudi and Ayoub (2010a) expanded this research
in inelastic analysis of beams resting on two-parameter foundation where the values for
the parameters are derived through an iterative technique that is based on an assumption
of plane strain conditions for the soil medium.

In this chapter, a Boundary Element Method (BEM) is developed for the
geometrically nonlinear inelastic analysis of Timoshenko beams of arbitrary doubly
symmetric simply or multiply connected constant cross-section, resting on inelastic
tensionless two—parameter foundation. The beam is subjected to the combined action of
arbitrarily distributed or concentrated transverse loading and bending moments in both
directions as well as to axial loading, while its edges are subjected to the most general
boundary conditions. To account for shear deformations, the concept of shear

deformation coefficients is used. A displacement based formulation is developed and
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inelastic redistribution is modelled through a distributed plasticity (fibre) approach
exploiting three dimensional material constitutive laws and numerical integration over
the cross sections. An incremental—iterative solution strategy along with an efficient
iterative process are employed (Ortiz & Simo 1986), while the arising boundary value
problem is solved employing the boundary element method (Katsikadelis 2002).
Numerical examples are worked out confirming the accuracy and the computational
efficiency of the proposed beam formulation through comparison with literature and
FEM results. In these examples, the significant influence of the geometrical nonlinearity
and the shear deformation effect in the response of a beam-foundations system are also
illustrated. Subsequently, the proposed formulation is validated against a series of
Laboratory Pushover tests on vertical single piles embedded in dry sand under different
load paths to failure in M—-Q space conducted in the Laboratory of Soil
Mechanics/Dynamics in NTUA by Gerolymos (2012) and Giannakos (2013). The
obtained results are also compared to those obtained from a fully 3D Nonlinear Finite
Element (FE) simulation implemented in the finite element code ABAQUS (Dassault
2009).The essential features and novel aspects of the present formulation compared with

previous ones are summarized as follows.

i.  The proposed beam model accounts for the geometrical nonlinearity by retaining
the square of the slope in the strain—displacement relations, avoiding in this way the
inaccuracies arising from a linearized second-order analysis. For that purpose the

total Lagrange formulation (intermediate non-linear theory) has been adopted.

ii. Shear deformation effect is taken into account on the geometrically nonlinear
inelastic analysis of beams on nonlinear foundation (explicit axial-shear-flexure

interaction).

iii. The formulation presented adopts a J2 three-dimensional plasticity law (von Mises)

to assess the inelastic beam-foundation system response.

iv. The formulation is a displacement based one taking into account inelastic

redistribution along the beam axis.
v. A distributed plasticity (fibre) approach has been employed.

vi. The inelasticity of the soil medium is taken into account, employing an inelastic

spring foundation model.

vil. The tensionless character of the foundation is also taken into consideration.
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viii. An incremental-iterative solution strategy is adopted to restore global equilibrium

of the system.

ix. The shear deformation coefficients are evaluated using an energy approach, instead
of Timoshenko’s (Timoshenko & Goodier 1984) and Cowper’s (1966) definitions,
for which several authors (Schramm et al. 1994, 1997) have pointed out that one
obtains unsatisfactory results or definitions given by other researchers (Stephen

1980, Hutchinson 2001) for which these factors take negative values.
x. The beam is supported by the most general nonlinear boundary conditions.

xi. The use of BEM permits the effective computation of derivatives of the field
functions (e.g. stresses, stress resultants) which is very important during the

nonlinear inelastic response of beam-foundation systems.

xii. To the author’s knowledge, a BEM approach has not yet been used for the solution
of the aforementioned problem, while the developed procedure retains most of the

advantages of a BEM solution even though domain discretization is required.

Finally, it is worth mentioning that the outcome of the conducted research activity
presented in this chapter of the doctoral dissertation has been published in international
journals (Sapountzakis & Kampitsis 2012a, 2013c, Kampitsis et al. 2014), and in
international conferences (Sapountzakis & Kampitsis 2011e, 2012b, 2013d).

4.2 Statement of the Problem
Let us consider a prismatic beam of length / (Fig. 4.1) with an arbitrarily shaped doubly
symmetric constant cross section, occupying the two dimensional multiply connected

region (2 of the y,z plane bounded by the /7 ( j=12,..,K ) boundary curves, which

are piecewise smooth, i.e. they may have a finite number of corners. In Fig. 4.1, Cyz is

the principal bending coordinate system through the cross section’s centroid. The
normal stress-strain relationship for the material is assumed to be elastic-plastic-strain

hardening with initial modulus of elasticity £, shear modulus G , post-yield modulus of

elasticity £, yield stress oy, and yield strain &y, . The beam is partially supported on

inelastic tensionless two-parameter foundation. According to the Pasternak hypothesis,

the foundation reaction is expressed as
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Timoshenko Beam

Cross Section

Fig. 4.1. x-z plane of prismatic beam resting on inelastic foundation under axial—
flexural loading.

d(pP ) _ d(pPz)
Ty Psz = Pwz — dx

Dy = Py — (4.1a,b)

with Winkler and Pasternak reactions related to the transverse displacements and their

derivatives as

dv

Ky ko, & py >0
= and =3 Vd 4.2
Pwy { 0 Ppy X if p, <0 (4.2a)
0 y
dw .
ky,w kp, — if >0
pre=1 " and  pp={ x0T (4.2b)
0 0 if p, <0

The nonlinear Winkler and Pasternak inelastic functions depend on the initial stiffnesses

kiy, kpy, ki, kp., yielding loads PyY , PV, and hardening moduli &

ye» k2 according

to y and z axes, respectively.
The beam is subjected to the combined action of the arbitrarily distributed or

concentrated axial loading p, = p,(x), transverse loading p, =p,(x), p,=p,(x)
and bending moments m, =m, (x) , m,=m, (x) acting along y, z directions,

respectively (Fig.4.1).
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4.2.1 Displacements, Strains & Stresses

Under the action of the aforementioned loading, the displacement field of the beam

taking into account shear deformation effect is given as (Ramm & Hofmann 1995)

L_t(x,y,z):u(x)—yﬁz (x)+29y (x) (4.3a)

V(x) = v(x) v_v(x) = w(x) (4.3b,c)

where u, v, w are the axial and transverse beam displacement components with

respect to the Cyz system of axes; u(x), v(x), w(x) are the corresponding
components of the centroid C and 6,(x), €,(x) are the angles of rotation due to

bending of the cross-section with respect to its centroid. It is worth noting that since the
additional angle of rotation of the cross-section due to shear deformation is taken into
account, the angle of rotation due to bending is not equal to the derivative of the

displacement (i.e. 8, =W, 6, #V").

Employing the strain-displacement relations of the three-dimensional elasticity for
moderate large displacements (Ramm & Hofmann 1995, Rothert & Gensichen 1987,
Brush & Almroth 1975) while strains remain small, the following strain components

can be easily obtained

— —\2 —\2
Epy = ou + ! [6—‘}] + (a—wj (4.4a)
ox 2|\ ox Ox
ow Ou (0vov owow ov ou (Ovov Owow
Vee=—t—+| ot | Vo= t_—t T+t | “44bo
Ox 0z \Ox0z Ox Oz ox 0oy \oOx0dy Ox Oy
Eyy =&, =7y, =0 (4.4d)

Substituting the displacement components of eqn. (4.3) to the nonlinear strain-

displacement relations of the Green-Lagrange strain tensor and exploiting the

assumptions of  moderate large displacements ((ou/ 6x)2 << Ou/ox,

(Ou/ox)(0u/oz) << (Ou)ox)+(0u/oz), (Ou/oz)(0u/oy)<<(8u/oz)+(dufdy)) the

non vanishing (total) strain components are obtained as
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du(x do, (x o, (x) av(x)Y (dw(x)Y
Fur(.0:2) = dEc)_y d)E e dx %( d(x )j { dEc )j (4-52)
S LG R R RC SO S P

It is worth noting what in the well known Euler-Bernoulli beam theory these shear

deformations are neglected, thus

dv dw
g =22 0 =-"=" 4.6b,c
© dx Y dx ( )

Considering strains to be small, employing the work conjugate second Piola—Kirchhoff

stress tensor (Crisfield 1991), assuming an isotropic and homogeneous material without

exhibiting any damage during its plastification and neglecting the vanishing S, , S,

S, components, the stress rates are defined in terms of the strain ones as

. 1
as..| |E deg,
s, t=| G dys, (4.7)
a8, Clayd

where d () denotes infinitesimal incremental quantities over time (rates), the
superscript e/ denotes the elastic part of the strain component and
E* =E(]—v)/[(1+v)(1—2v):|. If the plane stress hypothesis is undertaken then
E* =E/ (1 —v2) holds, while £ is frequently considered instead of E*(E* ~FE) in
beam formulations (Vlasov 1963, Armenakas 2006). This last consideration has been

followed throughout the paper, while any other reasonable expression of E could also
be used without any difficulty in many beam formulations.

As long as the material remains elastic or elastic unloading occurs

(de dy, dr.| ={asd ard d%‘?ﬁ}T (4.8)
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the stress rates are given with respect to the total strain ones occupying the Hooke’s law

(eqn. (4.7)), while when plastic flow occurs

dry dyc) =[dss ayd ayd) +laetl ayfl a4y} @9

XX

{dg

the stress rates are given with respect to the total and plastic strain ones through eqns.
(4.7) and (4.9) as

/
ds.. E de, —del:
dS,, b= G dy,, —dy? (4.10)
dez G dyxz dyxz

where the superscript p/ denotes the plastic part of the strain component. The von
Mises yield criterion (J2 plasticity), an associated flow rule and an isotropic hardening
rule for the material are considered (Crisfield 1991), permitting the determination of the

plastic strain components. The yield condition is described with the expression

\/52 +3 52 +S2)

Y(gpql)

—1<0 4.11)

where oy is the yield stress of the material and gfql is the equivalent plastic strain, the
rate of which is defined in (Crisfield 1991) and is equal to dgp =dA with dA being

the proportionality facto. Moreover, the plastic modulus # is defined as 47 =doy / dep /

or doy = hdZ and can be estimated from a tension test as /1 = E,E/(E —E,) (Fig. 4.2).

According to the associated flow rule the plastic strain rates are given as

T
T
{d%’&l dyh! d%‘?zl} =di{a@m 0Py a@VM} (4.12)

oS, oS,  0S,.
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S E,
Tyo| "/

E

(0} A 0] l
& P

Y0 & Eey
(a) (b)
Fig. 4.2. Normal stress—strain (a) and yield stress — equivalent plastic strain (b)

relationships.

Using the aforementioned relation linking the yield stress rate and the proportionality

factor, eqns. (4.5), (4.7)-(4.11) and exploiting the plastic loading condition (df =0), the

stress rates - total strain rates relations are resolved as

das . ; crg sym. ||de,,
dey :Z Cry; Cx d}/xy (413)
ds..)] 161 €2 3 |dy,,

DXIpl
where DP! is the elastoplastic constitutive matrix with
c=hS?+ESL+9G(S2+SL) ¢ = E[hsj +9G(s3,+ sz)} (4.14a,b)

¢y =—3EGS_S. ¢,y = G[hsj +ES2 + 9GS§Z] ¢33 =—3EGS,.S_ (4.14c,d.e)

xx xy

¢y =-9GS,,S,. ey =G| hS? + ESZ + 9GS2, | S, = \/Sﬁx +3(82,+52) @.148h)

By setting 2 =0 in the above relations, the constitutive matrix presented by Baba and
Kajita (1982) is obtained, while if one of the shear stress components (along with the
corresponding strain one) is dropped out, the constitutive relations presented by Chen

and Trahair (1992) are also precisely recovered.
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4.2.2 Stress Resultants, Equations of Equilibrium and Boundary Conditions

In order to establish the global equilibrium equations and the boundary conditions of the
beam-foundation system, the principle of virtual work under a Total Lagrangian

formulation neglecting body forces is employed as

SW,, =W,

[} ext

(4.15)

where &(-) denotes virtual quantities, 7, is the stain energy of the beam due to

normal and shear stress and ,,, is the external load work, defined as

Wiy = [, (S x0.x + S0y + S0y )dV (4.16a)

Wi = J'(pxé'u + p,0v+m,00, + p.ow+ myé'@Z)dx —I(psy5v+ PSZ5W) dx
/ I

0,1 (4.16b)
+ 2 NyOu + Vy, 8v + Vy, 6w+ M, 50, + M}, 50, )

where V' is the volume and [/ is the length of the beam in the undeformed

configuration, p,,, p, are the foundation reaction according to y and - axes,
respectively, while Ny, V,, V., M, and M,  are the externally applied forces and

moments at the beam boundaries. Within this framework, the stress resultants of the

beam are defined as

N=],5.de2 (4.17a)
0, =] 4,592 0= [, Sed (4.17b,c)
M, =[,Sn2d2 M. =-[,S. ydQ (4.17d.¢)

where N, O, O, correspond to the axial and shear forces and M,,, M correspond to

the bending moments according to y and : axes, respectively. Subsequently,

substituting the expressions of the stress components given from eqn. (4.10) and

exploiting the strain-displacement relations (4.6), the stress resultants are obtained as
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i i
N = EA u'+—(v'2+w'2) —E[,&lldA = E4 u'+—(v'2+w'2) + NPT (4.182)
2 T 2
N7

0. =GA, (w'(x)+0,(x) )-Gf . ydA=GA, (w'(x)+6,(x) )+ 0  (4.18b)

pl
z

0, = GA, (v'(x)=0.(x) ) =G yhidd=GA, (v'(x)=0.(x) )+ 0F  (4.18¢)

pl
Z

' / ' /
M, =El 0, ~E|,ze0dA= EI,0, + M} (4.184d)
-
MP
y
M, =EI.0,—E[,yelidd= EI.0, + M} (4.18¢)

[
MP

where (') denotes differentiation with respect to x, N” l, fl , Qpl , Mfl and M;’l are
the plastic parts of the corresponding stress resultants, 4 is the cross section area, /,,

I, the moments of inertia with respect to the principle bending axes and G4, GA, are

its shear rigidities of the Timoshenko’s beam theory, where

—ed=-"L4 A = A= 4 (4.19a,b)

are the shear areas with respect to y, z axes, respectively with «,, x, the shear

correction factors and a,,, a, the shear deformation coefficients. It is worth noting that

these stress resultants refer to the directions of the infinitesimal elements of the cross
section at its deformed configuration, since they have been defined with respect to the
second Piola-Kirchhoff stress tensor.

After substituting eqns. (4.6) and (4.18) into eqn. (4.15) and conducting some
algebraic manipulations, the global equilibrium equations of the beam-foundation

system are obtained as
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p!
EA(M” + V’V” + W'W”) + 82] _ _px (4203)
X
- pl ! pl
oL o) d(N V) ' ;00 _
EA|:(M +3(V +w )j\/_ +T+GAy(V —02) +?—psy ——py (420b)
- pl._ s /
' 1 12 2 ' d(N W) ’ ! anp _
EAKu +E(V +w )jw_ +—X+GAZ(W +9y) +a—x—ps2 =-p, (4.20c)
/
EI 9"+d i ~GA, (W +0,)-0F =-m (4.20d)
»y dx z y z y :
14 szljl ! l
E]ZQZ +7 + GAy (V — 92)+ Q){) = —mZ (4206)
or in terms of the total stress resultants as
d(N+N") AN
r Py = "= "Px ( )
d(w) do, d(Nw) _do
_ _ + = - - =z 4 = 4.21b,c
dx dx Py =Py dx dx Pez = P: ( )
dM dM
y _ z _
T -Q.=-m, . +Q, =-m, (4.21d.e)

Furthermore, the application of the principle of virtual work yields the

corresponding boundary conditions as

alu(x)+a2Nb(x) =ag (4.22a)
Bv(x)+ BV (x)= B3 Bib. (x)+ BrM,, (x) = Bs (4.22b,c)

yw(X)+ 72V (X) =73 710, (x)+772Mby (x)=7; (4.22d,e)

at the beam ends x=0,/, where the total vertical reactions Vy,, V},, and the total

bending moments M, M, are given by the following relations
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Vi = EA[u '+ é(# +w'? )}v + NPV +GA, (V-0.)+ 0V (4.23a)
v, = EA{u '+ é(v’z +w? )}w NP'W +GA. (W +8,)+ 0! (4.23b)
My, = EL0, + M My, = ELO, + MY (4.23¢,d)

Finally, «;,p;, Bj,yjij (j=1,2,3) are functions specified at the beam ends

x=0,l. Eqns. (19) describe the most general boundary conditions associated with the
problem at hand and can include elastic support or restraint. It is apparent that all types
of the conventional boundary conditions (clamped, simply supported, free or guided
edge) can be derived from these equations by specifying appropriately these functions
(e.g. for a clamped edge it is a; =4, =y;=1, E] :7_/1 =1, 0,=03=Lr,=F3=0,=
V3= Ez = ,3’3 = }_/2 = 7_/ 3 =0). Dropping the plastic quantities of the global equilibrium
equations, the boundary value problem of the examined problem is formulated.

The above equations of equilibrium and boundary conditions are easily simplified
by crossing out the nonlinear terms corresponding to material non linearity, leading to
the well known elastic formulation while, by crossing out the nonlinear terms
corresponding to the geometrical nonlinearity and the components regarding the shear

deformation effect, leads to the well known second order equation with respect to the

axial and transverse directions.

The evaluation of the shear deformation coefficients a,, a, corresponding to the

principal centroidal system of axes Cyz, are established equating the approximate
formula of the shear strain energy per unit length with the exact one as described in

Appendix A3 while, in the case of negligible shear deformations a, =a, =0.

4.3 Numerical Solution

According to the precedent analysis, the geometrically nonlinear inelastic problem of

Timoshenko beams supported on nonlinear inelastic soil, reduces to establishing the

axial and transverse displacement components u(x), v(x), w(x) as well as the
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rotations due to bending 6, (x), 0, (x) having continuous derivatives up to the second

order with respect to x and satisfying the boundary value problem described by the
governing differential equation (4.20) along the beam and the boundary conditions
(4.22) at the beam ends x =0,/ .

This boundary value problem is solved employing the BEM (Katsikadelis 2002), as
this is developed in Appendix A2 for the solution of coupled second order differential
equations, after modifying it as follows. The motivation to use this particular technique
is justified from the intention to retain the advantages of a BEM solution over a domain
approach, while using simple fundamental solutions and avoiding finite differences to

the solution of the problem.

4.3.1. Integral Representations for the Axial and Transverse Displacements u, v, w

and Rotations 6,6,

According to this method, let u;(x)=u(x), wu,(x)=v(x), uz(x)=w(x),

uy(x)=6,(x) and us(x)=6,(x) be the sought solution of the problem. The solution

of the second order differential equation dzul-/ dx’=¢q" (i=12.5) and

(g=u,v,w,0,,0.)is given in integral form as

/
Ldu. sdu, ou'
) = L dx — L y. =1,2,..5 4.24
u,(f) g P, u dx {u o ull (z ) (4.24)

where u" is the fundamental solution given as U = 0.5|r , with r =x—-¢&, x,& points

of the beam, as defined in Appendix Al. Since EA4, GAZ,GAy, EIy and EI, are

independent of x, eqns. (4.24) can be written as

! o%u ou !
Edu)($)=[| EA— Azdx—EA[AZ—I—A]uI} (4.25a)
0 ox Ox 0
! 821/{2 8112 !
GAyUZ(é:) = J GAy > A2dX_GAy A2 __AI 1/[2 (425b)
0 ox ox 0
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! o%u Ouj !

GAZu3(§):j GA, 23 Aydx —GA, {A ——A]uJ (4.25¢)
0| Oox ) ox 0
o 62u4 | O !

EIyu4(§)=£ E]y ax2 A2dx—E1y AZE—A]LQ( , (425(1)
i o%u ] ou !

ElLus(&)=[| EI,—= Agdx—El{Ag - 4 4 (4.25¢)
0L Ox ] ox 0

where the kernels A, (r)=4;(x,&) (j=1,2) are given in eqns. (A1.9a,b). Solving the
global equilibrium equations of the beam-foundation system (4.20a-e¢) with respect to
EAu", GAV", GA,w', EI,0," and EL6," and substituting the result into eqns. (4.25a-

e), respectively, the following integral representations are obtained

! an?! du, d’u, dus d’u
EA —EA| =2 "2, 7537 53 |\ Aydx —
uj(f) £[ ]?x( ) dx (dx A’ dx di’ 20X

(4.26a)

du; !
dx 0

! 2 2 pl
GAuZ(f):_f G duy EAdu1 duzdu2+du3du3 du, dN a’z42+pY Ay
Y ) Y dx dx? dx d’ dx d? | dx dx dx g

pl 4.26b
_I[EA[‘Z; {(‘Z‘;j +(ch:] ]]‘;;2 + NP ‘;X”ZZ agx py}Agdx— ( )
0

du, !
dx 0

[ 2 2 pl
GAuz(£)=[| G4, =2 dus g 4w, duy d 2y dus d = dus ANT dus o Ay
0 x dx? dx dx dx dx’ |dx  dx ‘
il pl 4.26c
1] | (duzj +(du3] d’ s Lyt 4, 0 | | pie— (4.26¢)
0 dx dx dx ax? dx Ox

dus !
dx 0
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s (5) B ox 4 x 0

S —~

om P r 0
(GAZ(%+M4J + QP -2 | A~ I AZ%—AIW (4.26d)

l pl r +
ElLus(&)= j[GAy (% - u5j vor Mo e EL| A, g | (4.260)
0 L _
After carrying out several integrations by parts, eqns. (4.26) yield

dx dx
2 2 [
1 LEa (@] +(%j + NP | A, —EA[AZﬂ—Alu,}
2 dx dx dx 0

du, 1((du, (dusY ||du
GAyu2(§ GAyJuZAldx prAde+EAI —L 4 {(—Zj +[—3j J —Z Adx +

Z ! I H(du, Y (dusY
EAu; (&) =~[ pyAsdx + [NP' Ajdx + EEAI —2j +(_3] Aydx -
0 0 0

dx 2 dx dx dx
j ot du 2Adx+j 0P Aydx - j Py Aydx +GA, [uz/ll]o (4.275)
0
2 2 !
du, 1|(du du du du
EA| —L 22 4| 2 |+ 22 4,4+ G4 (—2+ j+ Pl A
H [dx {[dx) (dxj}] ]dx ? [ Y\ dx uy |+ Oy |
0
du du du du
GA = GA, [uzA,d Apdx + EA[| —L + 2 3) — Ad
60 i 2 [ ] 2]
)
+ [NV 3 4+ j 0P A dx — j Pz Ao + GA [uz A, ], - (4.27¢)
0 dx 0 0
2 2 !
|| pa| B L (dﬁj J{%) NP s 4 Ga (d— u5j+QZp’ A
dx 2|\ dx dx dx dx
0
l du l ; [ / l
Elu, (&)= GAZj(d—xS+u4jA2dx+ [0 Aydx + [ M P Nydx — [ m, Aydx —
0 0 0 0 (4.27d)

/
l duy
l
_|:Mf /12:|0 —EI |:AQE—A]u4i|O

159



Geometric and Material Nonlinear Analysis of Beam—Soil Interaction Systems

i [ l l
ElLus (&)= GAyJ(%—u5jA2dx+ jQﬁl/lde+ jMfl/lldx— [m_ Aydx —
0 0 0

0 (4.27¢)
pl! ! du5 :
- M! AJO—EI A5 Aus

0

while by assembling the boundary terms in a more convenient form the integral

representations are written as

2
Edu, (& )——jprde + ijlAId + éEAj“d%j +(%j ]AIdx—

0 dx dx (4.282)
—[NA, - EAA]ul]O
GAu,(£)=G ju Adx+EAI du] ! %ZJF %2 %Ad)hL
e 2 dx 2 dx dx dx 1
/ [ / l
+[NP l%/lzdﬂ [or Adx — [ p,Aydx — [ py, Agdlx — (4.28b)
dx 0 0 0
/
[V ts = GAur Ay |,
GAu (é:) GA _[u /ldx+EAI du] ] %24_ %2 %/ldx+
= 3 dx dx dx dx !
/ l / !
+ [N %Azdx + [0 Aydx — [ p, Aydx = | py, Aydx — (4.28¢)
0 dx 0 0 0
- [VbzAZ —GA,u3/ ]i)
Ll du l ) l , I
ElLu,(&)=GA,| (—3+u4j/12dx+ [OF Mydx + [M T Aydx — [ m, Aydx
o\ dx 0 0 0 (4.28d)
/
— I:MbyAZ — Elyu4/11 :|0
duZ ‘ p! L pl L
Elus(£)=G I Py e e L (L
0 0 0 .L0€C

- [M b= — ElusA, ]i)
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If shear deformation effects are negligible, then u5 ~u5 and u, = uj5. In such cases,

numerical methods requiring domain approximation of unknown quantities, such as
FEM, exhibit “locking” effects, when Timoshenko theory is applied to cases where the
Euler—Bernoulli theory could also be used (Zienkiewicz & Taylor 2005). Since domain
approximation of unknown quantities is employed in the present numerical technique,

locking effects are alleviated by employing the same order of approximation for u,,u;s
and u5,us. In order to achieve explicit appearance of u5,u; in eqns. (4.28b,c),

respectively these integral representations are differentiated with respect to &, yielding

d l
GA, u(8) _ jpyA,dx—GAyuz(é)—EA(u}(f)+i(u52(é‘)+”§2(5))j“5(§)
) 2 (4.292)
pl, 1 pl I ! |
-V (§) =0} + [y s+ [Vt ],
us(§) (&) + (s (&) + s () |
GAzd—é:fpz/lzderGAzus(?)““EA(“I(Q:)J’E(”Z () +u5 (5))}13(5)
0 (4.29b)

/
- Nplué (é) - Qfl + IpszAldx + [VbZAI ]10
0

Moreover, noting that plastic parts of the stress resultants depend on the derivatives of

the displacement components, it is deduced that u}, u},u5 must also be computed in

order to resolve the total stress resultants (as well as strain components), thus the

integral representations (4.28a,d,e) are differentiated with respect to &, yielding

/
E4 du;(é) [ pAdx = NP (£) —éEA(u’QZ ()+u? (9))+[NA],  (430a)
0
E[y du;(f) jm Aydx — GA f[czl; +u4j/1]dx prAdx Mfl+[Mby/11]lo(4.30b)
S 0
[
EL d”fgf) Jm. Adx ~ GA. | (@—%j/lzdx—f O Aydx — MP' +[M,, 4] (4.30¢)
dx 0
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Thereafter it is deduced that eqns. (4.28d,e), (4.29a,b) and (4.30a-c) have been

brought into a convenient form to establish a numerical computation of the unknown

quantities. Thus, the interval (0,1 ) is divided into L elements, on each of which the

unknown quantities together with the plastic parts of the stress resultants are assumed to
vary according to a certain law (constant, linear, parabolic etc). The linear element
assumption is employed here (Fig. 4.3) as the numerical implementation is simple and
the obtained results are very good. It is worth here noting that this technique does not

require either differentiation of shape functions or finite differences application.

nodal points é é:i+1 §L+I

E element j: linear element assumption ii shape functions: N;, N, i
E Approximation of f(x) within element j: Ei x—=&i_ x=& 50
: pp f() J ::NIZI— §J1,N2: (:E]]:
() =N () + N2 () i §jTe T ST

]

nEe.  <x<és
! (f=u’,v',w’,0y,HZ,N”’, f’,Qf’,Mf’,Mfl):;‘ff—l Sx<g;

1

Fig.4.3. Discretization of the beam interval into linear elements, distribution of the
nodal points and approximation of quantities.

Employing the aforementioned procedure and a collocation technique, a set of

7(L +1 ) algebraic equations is obtained. Six additional algebraic equations are obtained

by applying the integral representation (4.28a-c) at the beam ends & =0,/, while
together the ten boundary conditions (eqns. (4.22)) yield a linear system of 7L+ 23

simultaneous algebraic equations
[K(d)[{d} = {bows } + {b,u ()} “.31)

where K (d) is a generalized elastic (geometrically) nonlinear stiffness matrix, {d } isa

7L + 23 generalized unknown vector given as
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{a)" = j (4.32)

Uy

' ' ' ’ ' .
u]] u2j u3j u4j 1/l4j 1/[5j Z/l5j Z/lh-... (] = ]’2,L+]
ioun N Oy O, M, M i=1L+1

while {5

ext} , {bp, (d )} are vectors representing all the terms related to the externally

applied loading and the plastic parts of the stress resultants, respectively. Finally, after
solving the system of eqns. (4.31), the integral representations (4.28a-c) can be

employed in a post-processing step in order to obtain the axial and transverse
displacement components u; = u(x), u, =v(x), u3 = w(x), respectively at any interior

point & (i=1,2,...,.L+1) of the beam.

4.3.2. Incremental-Iterative Solution Algorithms / Fibre Approach

In the framework of this doctoral thesis, two alternative approaches have been
implemented for the incremental-iterative solution algorithm based on the fibre
approach. The fist one is base on the Powell’s hybrid algorithm (Powell 1970a,b) while
the second executes sequential iterations until an initial stress criterion is satisfied. In
both incremental—iterative procedures, the loading history has to be known in order to
establish the plastic strains thus; the first step is to determine the external load vector.
To this end, load control (Crisfield 1991) over the incremental steps is used and load

stations are chosen according to load history and convergence requirements.

4.3.2.1 Incremental-Iterative Solution based on Powell Hybrid Algorithm

In the first approach, at each load station the system of nonlinear equations (4.31) is
numerically solved employing an iterative solution strategy. In the framework of this
dissertation the modification of Powell’s hybrid algorithm (Powell 1970a,b) has been
used. This algorithm is a variation of Newton’s method requiring the following

quantities.

a. The Jacobian matrix (More et al. 1980) of the nonlinear system which corresponds
to the generalized stiffness matrix of the problem. This matrix is defined explicitly,
avoiding this way any possible inaccuracy resulting from the finite differences

approximation while, significantly improving the computational time.
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b. An initial guess of the solution {d,,;,} (at each load station). The resolved vector

{d} of the previously converged load station is employed {d,,;,}={d while

conv }

{d } = {0} is used at the first load station.

c. A tolerance parameter fol to perform the convergence criterion of the algorithm. In

this study this parameter takes values of the range fol = 1 07 =10717.

The incremental steps of the algorithm are executed until the target load is fully
undertaken from the beam-foundation inelastic system or convergence cannot be
achieved. Thereafter, a number of monitoring cross sections is defined. It is assumed
that the monitoring sections coincide with the L+ / nodal points of the beam interval
(Fig. 4.3).

The fibre approach is to be followed for the integrating the section internal forces
and moments. Each section is divided into a number of triangular or quadrilateral cells
and standard two-dimensional Gauss quadrature rules are employed in each cell to
resolve the plastic parts of the stress resultants. If the same number of Gauss points is

employed in every cell, then Ny, = N g3 X Nayes holds. Thus, the monitoring stations

of each cross section coincide with the Gauss points of its cells, while exact patch
between adjacent cells is not required.

At each load station, the system of nonlinear eqns. (4.31) is expressed without
explicitly deriving its incremental form which is more extensive due to terms associated

with geometrical nonlinearity. This is achieved by exploiting the values of the stresses

Ser Sy S

x> Sy» Sy the plastic parts of the strains el g}gf , }/fyl, yle and the kinematic

eq
components uy, u5, us, uy, Uy, us, Us of the previously converged load station at the
current monitoring stations and adhering to the following steps.

i. Elastic prediction step: At each monitoring station of the beam, evaluate the trial

stress components as

! ’ ! ] ’ !’ 2
SE = (S )y + E (A1) + Ez gy (uty) = Ey oy (A ) + EE[(Au2)+ (du3)]" (4.33a)

So=(80) ke (G(auh) = G (auy)) (4.33b)
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Suw=(St) o+l (G(aus)+ G (au5)) (4.33¢)

conv

! !

where Auj =(u;), —(ui),, =~ (i=12.5)while, the subscript cur denotes the

1 1
current value of a quantity that is iteratively updated through the algorithm and the
subscript conv denotes the converged value of a quantity from a previous load

station

ii. Yield criterion: At each monitoring station of the beam the von Mises yield

criterion is performed, employing eqn. (4.11) as

sz +o{(s) (o2
o ().,.)

o If @/, <0 then yield criterion is satisfied and the stress state lies within the

r _
@vM -

~1 (4.34)

elastic domain. Thus, the trial state is the final admissible one, the incremental
plastic strain components are zero and the total plastic strain components along
with the equivalent plastic strain get the corresponding values of the previously

converged load station.

o If @I, >0 then plastic flow occurs and return must be made to yield surface

(plastic correction step). A local Newton—Raphson method is initiated to
integrate the inelastic constitutive equations by employing the generalized
cutting-plane algorithm (Ortiz & Simo 1986, Simo & Hughes 1998). The

incremental plastic strain components along with the equivalent plastic strain are
updated according to this algorithm by using a prescribed tolerance tol,, = I 0~

in its convergence criterion and subsequently the total plastic strain components
are resolved by adding the corresponding incremental quantities to the ones of

the previously converged load station.

iii. At each monitoring cross section of the beam, plastic parts of the stress resultants
are evaluate numerically employing the two-dimensional numerical integration

scheme.
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1v.

V.

Employ the obtained plastic parts of the stress resultants to evaluate the vector

{bpl}cur of eqn. (4.31). Apart from elementary computations, this step requires the
computation of line integrals along the beam interval (eqns. (4.28d,e), (4.29a,b) and
(4.30a-c)) which is performed employing a semi-analytical scheme. It is worth
noting here that the line integrals arising in the term [K (d )]CW {d} = of eqn.

(4.31) (including the ones associated with geometrical nonlinearity) are also

computed semi-analytically without any special difficulty.

Since convergence is achieved then the foundation reaction is computed employing
eqns. (4.1). The parameters are updated and the process described by steps (i)-(iv) is

repeated until the foundation convergence criterion is achieved by using a

prescribed tolerance of 10l .4 =1 0717

The increments of the external loading continue until the target load is fully
undertaken from the beam-foundation inelastic system or convergence cannot be
achieved, which means that the last additional increment cannot be undertaken

(plastic collapse).

Finally, it is worth noting that the monitoring displacement components u, v and

w at any interior point of the beam are updated after convergence in each increment by

employing the integral representations (4.28a-c), respectively.

A step-by-step algorithmic approach of the nonlinear solution is presented in a

flowchart form in Fig.4.4.
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Fig. 4.4. Flowchart of the incremental—iterative solution algorithm on Powell Hybrid
algorithm.
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4.3.2.2 Incremental-Iterative Solution based on Initial Stress Criterion

In the second alternative approach, the incremental stress resultants are decomposed

into elastic and plastic parts, as this is presented in eqns. (4.18). These quantities are

computed through an iterative procedure since usually, changes between the plastic

parts of incremental stress resultants of two successive iterations are not negligible due

to the rate nature of the flow rule (Crisfield 1991). Thus, using the subscript m to denote

the load step, the superscript / to denote the iterative cycle and the symbol A(-) to

denote incremental quantities, the /-4 iteration of the m-¢h load step of the incremental—

iterative solution algorithm can be described as follows

1.

1l

1il.

Evaluation of the generalized iterative unknown vector {Ad}in from the solution of

the nonlinear system of eqns. (4.31) having been written as

[K(d)){ad}, ={ab,} +{ap,)" (4.35)

m

0
If m=1 and =1, it is assumed that {Abpl}] :{0}. If m>1 and /=1, it is

0

assumed that {Abpl} fn

={0} or {Abpl} = {Abp,}n e where 7 is the total number

m

of iterations performed in the previous increment m — 1 .

Evaluation of the incremental unknown derivatives by exploiting {Ad }in :

Elastic prediction step: At each monitoring station & of the i —th cross section of

the beam (k=12,.,Nyy, i=12,.,L+1): Evaluation of the trial stress

components as

((&02)). =(Su(@z ), + (457 (620)) (4.363)
S){yr = (Sxy (gi’yk’zk ))fn + (AS;{; (fi,yk,zk )); (4.36b)
ST = (sz (& vr-2k )); + (AS){ZF (&2 )); (4.36¢)
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where the incremental trial stress components are obtained as

( (égu)’k:zk )l —E[AUJ +A”4(ég) k—A“'5(~§i)yk]fn+

£ Jo (4.37a)
+3[(Au’2(§i)+Au§(§i)) L

(a8 (¢ zk)) = G Jie, [y (&) - Ay (& )]in (4.37b)

( STr(ﬁl,yk,zk )l —Gf[ALg &)+ Aus (& )]in (4.37¢)

iv. Perform the yield criterion at each monitoring station k¥ of the i —th cross section

of the beam (k =1,2,...,Nyor, i=1,2,...,L +1) employing eqn. (4.34).

o If @VTA’/[ <0 then yield criterion is satisfied and the stress state lies within the

elastic domain. Thus, the trial state is the final admissible one, the incremental
plastic strain components are zero and the total plastic strain components along
with the equivalent plastic strain get the corresponding values of the previously

converged load station.

(Agggj); :(Ayfyl); :(Ayle); =0 (4.382)
(2 )l = (e )0 (4.38b)

o If @I, >0 then plastic flow occurs and return must be made to yield surface

(plastic correction step). A local Newton—Raphson method is initiated to
integrate the inelastic constitutive equations by employing the generalized
cutting-plane algorithm (Ortiz & Simo 1986, Simo & Hughes 1998). The

incremental plastic strain components along with the equivalent plastic strain are
updated according to this algorithm by using a prescribed tolerance tol,, = I 0~
in its convergence criterion.

v. For each cross section of the beam, the evaluation of the plastic parts of the stress
resultants is performed by employing a two-dimensional numerical integration

scheme. Similarly to the procedure presented in section 4.3.2.1, the fibre approach
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V1.

Vil.

is adopted. To this end, the cross sections are divided into a number of triangular or
quadrilateral cells and standard two-dimensional Gauss quadrature rules are
employed in each cell to approximate the domain integrals of eqns. (4.18). If the
same number of Gauss points is employed in every cell, then
Naor = Neetis X NGauss holds. Thus, the monitoring stations of each cross section
coincide with the Gauss points of its cells, while exact patch between adjacent cells

is not required.
Employ the obtained plastic quantities from the previous step to evaluate the vector
{Abpl}m related to plastic quantities as well as the plastic quantities required to

perform step (ii) for the next iteration /+ 7. Apart from elementary computations,
the current step also requires the computation of line integrals. A numerical

integration scheme must be employed to resolve these integrals since plastic

quantities are not known in the whole beam interval (0,1 ) A semi-analytical

scheme has been implemented, according to which the incremental plastic stress
resultants vary on an element (/,2,...,L ) of the beam interval following the same
law that is used to approximate the problems unknowns. This leads to the

integration of kernels being products of functions /(7 ) and two-node linear shape

functions, thus it is performed analytically without any difficulty.

Initial Stress Convergence. Convergence occurs if the Euclidian norm of the
incremental plastic stress resultants reaches a value smaller than a predetermined

tolerance. If convergence is achieved after » iterations then:

e For each monitoring station k of the i—th cross section of the beam

(k:],Z,...,Ndof, i=12,.,L+1), the stress components along with the

equivalent plastic strain are initialized for the next increment m + / as

(Sxx )f”” - (Sxx )ZI (Sxy )0 - (Sxy )n (sz )fn+] = (sz ):; (4.39a)

(e2! )0 = (2! ) (4.39b)
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e Resolve the vector {Abext}er ; related to externally applied loading as well as

the terms related to the externally applied loading required to perform step (i)
for the next increment. Apart from elementary computations, the current step
requires the computation of line integrals. Since the distributions of the external
loads are usually prescribed in codes and regulations with simple analytical
relations, these integrals are evaluated analytically, demonstrating the efficiency
of the developed numerical procedure (e.g. concentrated loads may be treated

using the Dirac function, without adhering to any simplifications).

vii. Since convergence is achieved then the foundation reaction is computed employing
eqns. (4.1). The parameters are updated and the process described by steps (1)-(vii)

is repeated until the foundation convergence criterion is achieved by using a

prescribed tolerance of t0l,,,,; = 10717,

viil. The increments of the external loading continue until the target load is fully
undertaken from the beam-foundation inelastic system or convergence cannot be
achieved, which means that the last additional increment cannot be undertaken

(plastic collapse).

Finally, it is worth noting that the monitoring displacement components u, v and
w at any interior point of the beam are updated after convergence in each increment by
employing the integral representations (4.28a-c), respectively.

A step-by-step algorithmic approach of the nonlinear solution is presented in a

flowchart form in Fig.4.5.
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Fig. 4.5. Flowchart of the incremental— iterative solution algorithm based on the initial
stress criterion

4.4 Numerical Examples

On the basis of the analytical and numerical procedures presented in the previous
sections concerning the geometrically nonlinear inelastic analysis of shear deformable
beams on nonlinear foundation, a computer program has been written using High Level
3G Fortran 90/95. Representative examples have been studied to demonstrate the

efficiency, wherever possible the accuracy and the range of applications of the
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developed method. Furthermore, the accuracy of the developed beam formulation is
validated against a series of Laboratory Pushover tests on vertical single piles embedded
in dry sand under different load paths to failure in M—Q space conducted in the
Laboratory of Soil Mechanics/Dynamics in NTUA.

4.4.1 Example 1 — Elastic Analysis of Free-Free Beam on Pasternak Foundation

For comparison purposes, in the first example the elastic analysis of a free-free beam of
length /=35m resting on Pasternak elastic foundation subjected to a concentrated

bending moment M , = 50kNm acting at its midpoint, as shown in Fig. 4.6 is examined.

Elastic Beam M,(1/2) ]‘

oo 1 lf

IIIIIIIIIIIIIIIIkp

———— 5m |

Fig. 4.6. Prismatic elastic beam on elastic two parameter foundation subjected to
bending moment at its midpoint.

The beam is made out of timber with elastic modulus £ = 10.5GPa , Poison ratio

v=0.25 and has rectangular cross section of width b =0.4m and depth & =1.0m. The

elastic foundation is sandy clay with modulus of elasticity £, =45.5MPa and Poisson
ratio v, =0.21. The values of Winkler and Pasternak foundation parameters are

evaluated as k, =3.08/MPa and k,=12449kN , respectively according to both

Zhaohua and Cook (1983) and Mullapudi and Ayoub (2010) considering v, =0.25 and

y =1.0. The present example was first studied by Shirima and Ginger (1990) who
presented a complete solution of the stiffness matrix and nodal action vectors for a
Timoshenko beam element resting on a two-parameter elastic foundation employing the
displacement method. Later, Mullapudi and Ayoub (2010) solved the same problem
deriving the values of the foundation parameters through an iterative technique that is

based on the plain strain assumption for the soil medium, while the beam is discretized

173



Geometric and Material Nonlinear Analysis of Beam—Soil Interaction Systems

into four mixed elements with cubic moment interpolation functions, assuming five

integration points for each finite element.

In Table 4.1, the evaluated deflection at the beam’s right end w(l) and the

midpoint rotation w/(1/2) for both Winkler and Pasternak formulations are presented as

compared with those obtained from the literature (the compared values have been
extracted from a graph). Moreover, in Fig. 4.7 the bending moment distribution along
the beam length is also presented as compared with available results from the literature
for the aforementioned cases, demonstrating the accuracy of the proposed method in
elastic analysis and noting that the bending moment is slightly underestimated if

ignoring the Pasternak effects.

Table 4.1. Deflection (mm) and rotation (rad) of the beam of example 1.

Winkler Pasternak
Present Mullapudi & Present Mullapudi &
Analysis Ayoub (2010) Analysis Ayoub (2010)
Deflection w(!/) 3.88 3.90 1.32 1.30
Rotation
w’(l/2)><10_3 1.599 1.600 0.5849 0.5850

30
20
e Present Study
Z
é% 10 1 — Winkler
% ----- Pasternak
=
g 0-
o
=
& _j04 Mullapudi & Ayoub (2010)
5
=]
s +—+—+ Winkler
204 ® @ @ Pasternak
'30 ] 1 1 1 1

e}
—_

2 3 4 5
Length Along the Beam (m)

Fig. 4.7. Bending moment distribution M, (x) along the beam of example 1.
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In order to demonstrate the effect of the unilateral character of the soil the same

free-free elastic beam resting on tensionless Winkler foundation is analyzed, being
subjected to a concentrated vertical force of P(// 2) =100kN and to a concentrated
bending moment M (Z / 2) acting at its midpoint. In Table 4.2 the deflection of both

ends for various values of the applied moment, while in Fig. 4.8 the moment-rotation
curve at the beam’s midpoint are presented as compared (wherever possible) with those
obtained from literature (Mullapudi & Ayoub 2010). A very good agreement is once

again verified.

Table 4.2. Deflection (cm) at both ends of the beam of example 1, for tensionless

Winkler foundation.
Present Analysis
M(kNm) 20 50 100 150 168
w(0) 0.555 0.245 -0.180 -1.510 -2.633
w(!) 0.710 1.020 1.425 2.154 2.570

Mullapudi & Ayoub (2010) - M=168kNm

w(0)=—2.490 w(l):2.450

180 -
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0 0.004 0.008 0.012
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Fig. 4.8. Moment vs. rotation at the midpoint of the beam of example I, for
tensionless Winkler foundation.
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4.4.2 Example 2 — Inelastic Analysis of Simply Supported Beam on Winkler Foundation

As a second example, also for comparison purposes, a simply supported beam of length
[ =300in and square cross section of side d =6.26in subjected to a monotonically
increasing concentrated vertical load P at its midpoint has been studied. The material

of the beam is assumed to follow an elastic—plastic behaviour with modulus of elasticity

E =29000ksi, yielding stress oy, =30ksi and a strain hardening slope of 1.4%

(tangent modulus FE, =406ksi), while the Winkler foundation load-displacement
relation is also considered to be elastic—plastic with initial stiffness equals to

k,, =0.5kip / in’, yielding force P,y = 1.0k /in and hardening slope of 1.0% (tangent

stiffness k,, =510 kip / in). For the longitudinal discretization 20 linear elements

have been employed, while the cross section has been discretized into 36 quadrilateral
cells (6 fibres) and a 2 x 2 Gauss integration scheme has been used for each cell.

The present example has been studied by Ayoub (2003), developing both
displacement and mixed-based finite element formulation capable of capturing the
nonlinear behaviour of both the beam and the foundation. The beam’s section has been
discretized into 16 fibres, while for both the displacement and mixed models two
different order of interpolation functions were used, employing a 6 element
discretization. The results were compared with the converged solution obtained by a
displacement-based model with fifth order polynomial and a mesh consisting of 32
elements.

In Table 4.3, the maximum deflections of the midpoint of the beam for various
internal nodal points’ discretization schemes are presented; illustrating that convergence
is achieved for a small number of nodal points. The obtained values are compared for

the same load stage P, =160kN (the compared values have been extracted from a

graph), with the one presented in Ayoub (2003). In Fig. 4.9, the load—displacement
curve at the beam’s midpoint is presented, as compared with those obtained from a
FEM solution (Ayoub 2003) demonstrating a very good agreement. More specifically,
the obtained curve is almost identical with the results of the mixed model with cubic
moment function and the converged solution, which is assumed to describe the exact
behaviour of the beam—foundation system, while the other models present a perceptible

amount of error in the inelastic region.
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Table 4.3. Maximum values of the deflection w,,, (

1/2) of the beam of example 2 and

divergence values for various discretization schemes.

Nodal Points 6 11 17 20 Ayoub (2003)
Max Deflection (cm) 3.894 3.906 3.937 3.925 3.975
Divergence (%) 2.03 1.73 0.95 0.01 -

200 — &

160 —

120

Present Study

Load P(1/2)

80 Ayoub (2003)

+— + =+ Converged Solution
@—@—® Mixed Model Cubic Moment
40 — Il -H -8 Mixed Model Linear Moment
O—©—0 Displ. Model_5th order Displ.
[—H—+£1 Displ. Model Cubic Displ.

0 1 2 3 4 5 6
Displacement w(l/2)

Fig. 4.9. Load—displacement curve at the midpoint of the beam of example 2.

In Fig. 4.10a,b the bending moment A, and the displacement w curves along the

beam length are presented as compared with those from the literature for the load stage
producing deflection at the midspan equal to 5. As it can be observed, the corresponding
curves of the present study capture the exact behaviour rather accurately and agree with
the converged solution and the results of the mixed model with cubic moment

interpolation function, while differ from the curves of the displacement model with

cubic displacement function. Finally, in Table 4.4 the midpoint curvature w”(l / 2) and

the foundation reaction p, at x=//6 are also presented and compared for the same

load stage (the compared values have been extracted from a graph), verifying that the

maximum values of the curvature and the soil reaction are accurately represented.
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Fig. 4.10. Bending moment M ,(x) and displacement w(x) distribution along the

beam of example 2.

Table 4.4. Curvature (1/in) and foundation reaction (k/in) of the beam of example 2.

Ayoub (2003)
Analysis Present Converged Mixed Model Displ. Model
Solution cubic linear 5th cubic
moment moment  order
Curvature
w”(l/2)><10‘3 (1/in) 9.98 10.66 11.85 9.95 491 2.26
Foundation Reaction
Py (1/6) (k/in) 0.601 0.60 0.60 0.611 0.619 0.689

443 Example 3 — Inelastic Analysis of Simply Supported Beam on Nonlinear

Pasternak Foundation

In order to demonstrate the range of applications of the developed method, in the third

example a rectangular cross section (4 =0.60m, b=0.30m) beam of length / =6.0m

clamped at both ends has been studied, employing 20 linear longitudinal elements, 400

boundary elements, 72 quadrilateral cells (12 fibres) and a 3x3 Gauss integration

scheme for each cell (cross sectional discretization). Two material cases have been

analyzed, namely an elastic-perfectly plastic with £ =32318.4MPa, oyy)=20MN / m?
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and E, =0 and an elastoplastic-strain hardening with E, =650MPa, while two load

cases have been examined namely a concentrated load at 2//3 and a uniformly
distributed one, both monotonically increasing.

In Figs. 4.11a,b the load-displacement curves at the load position are presented for
the two load cases, as compared with a FEM solution (NX Nastran 2007) obtained by
employing 60 beam elements and a 3-D FEM solution (NX Nastran 2007) obtained by
employing 8250 solid (brick) elements. In the case of elastic-perfectly plastic material
an additional curve is presented in Fig. 4.11a applying the Step by Step concentrated
plasticity method. A good agreement between the results of the present method and the
3-D FEM solution is observed, especially in the elastoplastic-strain hardening case.

Moreover, in Fig. 4.12 the normal stress distribution along the beam length is presented

for different load stages for both load cases (P(21/3)=610kN , 780kN and 810kN

corresponding to the occurrence of the plastic hinges).
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5 =1
s 400 FEM (NX-Nastran 2007) s FEM (NXN 2007
— - _ (NX-
H B Solid Model - Perfectly Plastic — 100 = i astran )
& -B -8 Solid Model - Strain Hardening —aa SOlfd Model - P erf?‘:tly P laSF’C
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Fig. 4.11. Load—displacement curve of the beam of example 3, for concentrated (a)
and uniformly distributed (b) load.

As a variant of this example, the same beam subjected to the same load cases
resting on a tensionless Pasternak foundation is examined. The nonlinear load-

displacement foundation reaction is characterized by the perfectly plastic Winkler part

with initial stiffness k,, = 20MPa and yielding force P,y = 60kN / m and the Pasternak

part with stiffness &, =5000kN . In Figs. 4.13a,b the load-displacement curves are
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presented for different types of beam and soil material properties and for both load
cases, verifying the significant influence of the inelastic analysis to the soil-beam
system response and the importance to the deflections of the subgrade modelling.

Finally, in Table 4.5 the deflection of the midpoint of the beam w(//2) is presented in

the case of a uniformly distributed load for both types of foundation modelling for
various load stages taking into account or ignoring the beam’s material strain hardening
slope. From this figure and table, it is easily concluded that the inelastic analysis and the

soil nonlinearity are of paramount importance.
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Fig. 4.12. Normal stress distribution along the beam length for different load stages
and for concentrated (a) or uniformly distributed (b) load.
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Fig. 4.13. Load—displacement curve of the beam of example 3 resting on nonlinear
foundation, for concentrated (a) and uniformly distributed (b) load.

Table 4.5. Deflection (mm) of the midpoint of the beam of example 3, subjected to
uniformly distributed loading (load step 2kN/m).

Perfectly Plastic E, =0 Strain Hardening E, = 650 MN m?
p% Elastic Elastic Plastic Elastic Elastic Plastic
Winkler  Pasternak  Pasternak | Winkler Pasternak  Pasternak
100 1.49 1.46 1.46 1.49 1.46 1.46
250 431 4.16 4.78 4.15 4.03 4.39
300 6.16 5.94 10.40 5.63 5.46 7.10
600 24.01 22.30 — 20.39 19.08 —

4.4.4 Example 4 — Beam on Nonlinear Foundation under Cyclic Loading

In this example, a pinned—fixed beam resting on an elastic-plastic Winkler foundation

with initial stiffness k,, =20MPa and yielding force P,y =100kN /m has been

studied (Fig. 4.14a), employing 20 linear longitudinal elements, 400 boundary elements,

72 quadrilateral cells (12 fibres) and a 3x3 Gauss integration scheme for each cell

(cross sectional discretization). The geometric properties of the beam are assumed equal

to those of example 3, while it is subjected to a cyclic uniformly distributed loading
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acting at 0 <x<3.0m, as presented in Figs. 4.14a,b. Two material cases have been

analyzed, namely an elastic-perfectly plastic with £ =32318.4MPa, oyy=20MN / m?

and E; =0 and an elastoplastic-strain hardening with E, =650MPa.

v v v v v v v v v

panEENTNNY

L SsSSSSTFSSSFSSFSSSTFFF
I*Load at 0<x<3 m4|

[ [=6m I (a)

Cyclic Excitation

0.5 1

Normalized Applied Load

-0.5

'1 T T T 1
0 0.4 0.8 12 1.6

Time (b)

Fig. 4.14. Pinned-fixed beam resting on an elastic-plastic Winkler foundation (a)
subjected to a uniformly distributed cyclic loading (b).

In Figs. 4.15a,b the load—displacement curves at the midpoint w(l/ 2) of the beam

are presented for different types of material properties, as compared with a 3-D FEM

solution (NX Nastran 2007) employing 2561 solid elements, ignoring the foundation

reaction. Furthermore, the load—displacement curves at the midpoint w(//2) of the

beam on elastic-plastic Winkler foundation for different types of material properties are
depicted in Figs. 4.16a,b, as compared with a FEM solution (NX Nastran 2007)
obtained by employing 2561 solid elements and 81 nonlinear springs following the
elastic-plastic law given above.

Moreover, in Fig. 4.17 the normal stress distribution along the beam’s length is

presented for different load stages, as compared with the corresponding deformed 3-D
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FEM contour representation. From these figures a very good agreement between the

results is observed verifying the accuracy and

applicability of the proposed formulation.
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Fig. 4.15. Load—displacement curve at the midpoint of the beam of example 4, in case
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material.
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and elastoplastic-strain hardening (b)

800

Strain Hardening Material
Elastic-Plastic Winkler Foundation,

AN

=4

(=]
1

. (kN/m)

04

,Applied Load p

4004
G.-

Present Study
G- & © FEM 3-D Solid Model (NX Nastran 2007)
T T T 1

-800 T
0 0.01 0.02 0.03 0.04 0.05
Displacement w,, (m)
(b)

midpoint of the beam on elastic-plastic
in case of elastic-perfectly plastic (a) and

elastoplastic-strain hardening (b) beam material.

183



Geometric and Material Nonlinear Analysis of Beam—Soil Interaction Systems

Normal Stress Distribution (MPa) for Distributed Load 220kN/m
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Fig. 4.17. Normal stress distribution along the beam’s length for different load stages
compared to the corresponding deformed 3-D FEM contour
representation.
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Finally, in Table 4.6 the maximum beam deflection w,,,. is presented for different

load stages and material properties as compared with those obtained from two FEM
models, namely the aforementioned 3-D solid one and a one dimensional model
employing 120 beam and spring elements, observing the convergence between the
proposed formulation and the solid simulation, as well as the inability of the FEM beam
model to capture accurately the systems response. From these figures and table, the
significant influence of the inelastic analysis to the beam-foundation response, as well

as the reliability of the proposed method are verified.

Table 4.6. Maximum deflection w (cm) of the beam of example 4, for different types of
beam and foundation material properties.

Elastic Winkler Foundation

p / Perfectly Plastic £, =0 Strain Hardening E, = 650MN /m?
"max present FEM Solid FEM Beam | Present FEM Solid FEM Beam
Study Model Model Study Model Model
500 0.987 1.002 1.100 0.980 0.984 1.041
550 1.202 1.213 — 1.158 1.170 1.252
600 1.438 1.468 - 1.364 1.384 1.483

Perfectly Plastic Winkler Foundation

p / Perfectly Plastic £, =0 Strain Hardening E, = 650 MN Im?
"max“present FEM Solid FEM Beam | Present FEM Solid FEM Beam
Study Model Model Study Model Model
350 0.567 0.589 0.576 0.566 0.585 0.586
400 0.767 0.780 0.758 0.756 0.769 0.811
440 1.657 1.659 - 1.199 1.215 2.128

Hardening (k,,, = 1.0MPa) Winkler Foundation

p / Perfectly Plastic £, =0 Strain Hardening E, = 650 MN Im?
"max present FEM Solid FEM Beam | Present FEM Solid FEM Beam
Study Model Model Study Model Model
400 0.750 0.773 0.810 0.743 0.766 0.789
450 1.663 1.632 - 1.254 1.285 1.938
500 5.689 5.651 — 2.618 2.678 3.876
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4.4.5 Example 5 — I-Beam on Nonlinear Foundation

In this numerical application, an I-shaped cross section (total height 4 =0.3m, total

width b =0.3m, flange width ¢, =0.02m, web width #,,=0.0Im) fixed-pinned beam

(E=213.4GPa, oyy=285MPa) of length [ = 8m resting on an elastic-plastic Winkler
foundation (k,,=25MPa, P,y =100kN/m, k,, =1.25MPa) has been studied,

employing 32 linear longitudinal elements, 400 boundary elements, 43 quadrilateral
cells (15 fibres) and a 3x3 Gauss integration scheme for each cell (cross sectional
discretization). The computational model implemented in the proposed formulation is
presented in Fig. 4.18a. The beam is subjected either to a concentrated load at position
x=3m from the fixed end or to a uniformly distributed one, both monotonically

increasing.

RN N O N 2O

[ /=8m | —o03— (a)

Elements: 2882
Nodes: 3059
DoF: 18354

(b)

Fig. 4.18. Fixed pinned beam subjected to a uniformly distributed loading (a) and shell
model implemented in NX Nastran (2007) (b).

In Figs. 4.19a,b the load-displacement curves are presented for different types of
beam material properties ignoring the foundation reaction and for both load cases, as
compared with a FEM solution (NX Nastran 2007) obtained by employing 2882
quadrilateral shell elements (Fig. 4.18b). Excellent agreement between the results is
observed. In the same figures the normal stress distribution is also presented for several

inelastic load levels illustrating the spread of plasticity along the cross section. Finally,
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in Figs. 4.20a,b the load-displacement curves are presented for different types of beam
and soil material properties and for both load cases, as compared with a FEM solution
(NX Nastran 2007) obtained by employing 2882 quadrilateral shell elements for the I-
shaped beam and assuming 161 nonlinear springs following the elastic-plastic law given
above. From these figures, the significant influence of the inelastic analysis to the soil-

beam system response and the accuracy of the proposed formulation are verified.
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Fig. 4.19. Load—displacement curve of the beam of example 5, for concentrated (a)
and uniformly distributed (b) load.
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Fig. 4.20. Load—displacement curve of the beam of example 5 resting on nonlinear
foundation, for concentrated (a) and uniformly distributed (b) load.
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4.4.6 Example 6 — I-Beam on Nonlinear Foundation under Cyclic Loading

As an extension of the previous example, the same I-shaped cross has been analysed

assuming two material cases; namely an elastic-perfectly plastic one with

E=2134GPa, oyy)=285MPa, E, =0 and an elastoplastic-strain hardening one with

E, =6000MPa. The beam is subjected to uniformly distributed cyclic loading, as
presented in Fig. 4.21.
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Fig. 4.21. Normalized cyclic excitation of example 6.

To demonstrate the convergence of the developed numerical procedure, in Table
4.7 pairs of applied transverse loading and displacement values at the midpoint of the
beam are presented, for both cases of material properties, for three longitudinal
discretization schemes. The first loading level of the table corresponds to an elastic

behaviour, while the remaining ones refer to inelastic response. Moreover, in this table
the ultimate transverse load p. that can be undertaken by the beam (plastic collapse

load) is also presented for the aforementioned longitudinal discretization schemes.
Furthermore, in Figs. 4.22a,b the load—displacement curves are presented as compared
with the FEM solution (NX Nastran 2007), taking into account or ignoring the material
elastoplastic hardening. Excellent agreement between the obtained results and the shell
finite element model is observed, illustrating once again the accuracy of the proposed

method.
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Fig. 4.22. Load—displacement curve at the midpoint of the beam of example 6, for
elastic-perfectly plastic (a) and elastoplastic-strain hardening (b) material.

Table 4.7. Applied load versus displacement at x =1/2 along with ultimate transverse
load p! undertaken by the beam of example 6, for various longitudinal

discretization schemes.

Material Elastic-perfectly plastic Elastoplastic-strain hardening
Number of 15 30 40 15 30 40
p.(kN/m) w,, x107 (m)

65 2.597 2.598 2.598 2.597 2.598 2.598
80 3.688 3.719 3.721 3.405 3.518 3.522
90 4.653 4.665 4.671 4.180 4.236 4.288
95 5.020 5.150 5.164 4.598 4.674 4.682
P! (kN /m)
99.8 99.8 100 -
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4.4.7 Example 7 — Mono-Symmetric 1 Beam on Nonlinear Foundation under Cyclic

Loading
As a special numerical example, a mono-symmetric I-shaped cross section of total

height h=0.3m, upper/lower flange width b;fp =0.3m/ bj’fm =0.4m, thickness

t =0.02m, and wed thickness ¢ =0.0/m, clamped beam (E=213.4GPa,

w

Oyg =285MPa) of length [/=7m resting on an inelastic Winkler foundation

(k,=25MPa, P

oy =100kN / m, k,, =2.5MPa) has been studied, employing 32
linear longitudinal elements, 400 boundary elements, 43 quadrilateral cells (15 fibres)
and a 3x3 Gauss integration scheme for each cell (cross sectional discretization). The
beam is subjected to a cyclic concentrated load acting at x = 2.5m from the left support.
In Fig. 4.23 the load—displacement curves at the loading point are presented for
different types of beam and soil material properties in case of monotonically increasing
concentrate load, verifying the significant influence of the inelastic analysis to the
beam-foundation system response and the importance of the subgrade modelling to the
beam deflections. Moreover, in Figs. 4.24a,b the load—displacement curves are

presented accounting for or ignoring the beam’s and Winkler’s spring hardening slope,

verifying the importance of the soil nonlinearity to the system’s cyclic response.

1200 - _-0
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400 -
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IB—— Perfectly Plastic - Plastic Winkler
[4 - BEI- 41 Strain Hardening - Plastic Winkler
@—@—® Perfectly Plastic - Hardening Winkler
G - ©- <O Strain Hardening - Hardening Winkler
1 1 1 1
0 0.01 0.02 0.03 0.04
Displacement w(m) at x=2.5m

Applied Load P (kN) at x=2.5m

Fig. 4.23. Load—displacement curve at the loading point of the beam of example 7
resting on nonlinear foundation.
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Fig. 4.24. Load—displacement curve at the loading point of the beam of example 7, in
case of elastic-perfectly plastic (a) and elastoplastic-strain hardening (b)
beam material.

4.4.8 Example 8 — Cantilever under Axial & Transverse Loading
For comparison purposes, in this example a cantilever beam of length /=2m under
concentrated transverse and axial forces P.(/), P, (1), respectively acting at the tip, has

been studied. The beam is made out of aluminium with modulus of elasticity
E =69GPa, shear modulus G =26GPa and yielding stress oy, =275MPa, with
rectangular cross section of width b=0.02m, height 4 =0.8m and shear correction
factor a, =1.2. The efficiency of the proposed formulation is illustrated through a
convergence analysis performed in case of linear elastic response as compared with the

exact solution for the tip displacement w,,, and rotation 6, .. evaluated by the

analytical expressions

PRI Pl
Wexact = 3E] + GA (4408.)
R’
z (4.40b)

yexact — ZEIZ
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In Fig. 4.25, the percentage error of the maximum tip displacement and rotation for
various internal nodal points’ discretization schemes is presented, while in Table 4.8 the
converged values are compared with those obtained from the Reduced Integration
Element (RIE) proposed by Reddy (1997). From the obtained results it is concluded that
the shear locking has been successfully prevented and satisfactory accuracy is achieve
(i.e. error <1%) with small number of nodal points, while it is noted that in order to
achieve adequate accuracy with RIE several elements are required (Reddy 1997, Saritas

and Filippou 2009).

8 -
P
7 - £z
T
6 1 h
5 f—— 22m —] ‘E‘
-
2 5 - 4—¢— Tip Displacement
m @®—0—® Tip Rotation
2 -
1 -
O - - - - - - . =SS s @ _ _
-1 T T T 1
0 10 20 30 40

Number of Nodes - Internal Domain Discretization

Fig. 4.25. Tip displacement and rotation error for different internal domain
discretization schemes.

Table 4.8. Deflection (m) and rotation (rad) of the tip of the cantilever of example 8.

Load P, = 100kN Wiy (10_3) Error(%)w 6, ,, (10_3) Error(%) 6,

y
Exact Solution 5.1059 - -3.3967 -
Converged Solution
(21Nodal Points) 5.0890 0.33 -3.3799 0.49
RIE Reddy (1997) 3.9737 22.17 -3.3967 0.00
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Thereinafter, the geometrically nonlinear inelastic response of the cantilever is
investigated taking into account the shear deformation effect (axial-shear-flexural
interaction), employing 22 linear longitudinal elements, 40 quadrilateral cells and a

2x 2 Gauss integration scheme for each cell. The influence of the normalized axial

loading n, = P, / P, on the nonlinear response of the beam is also investigated. The

present example was first studied by Triantafyllou and Koumousis (2011) who
presented a hysteric Timoshenko beam element based on the lumped plasticity
assumption, accounting for the interaction between axial, shear and bending,

implementing the yield criterion proposed by Simo et al. (1984).
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_‘— —é‘— = 2_—!}. = —_! '%‘—_—.—__
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400 i P.
\ 4
— 350 - T
\§/ Pt<_ h
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2 —— 2am ———
8 250 ng =0
.g_ »—>¢—X Present Study
E 200 Triantafyllou and Koumousis (2011)
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= 1504 % B B M FEM Solid Model
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© - ©- © Triantafyllou and Koumousis (2011)
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El- £~ £3 FEM Solid Model
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Tip Displacement w(m)

Fig. 4.26. Load—displacement curves at the tip of the cantilever beam of example 8.

In Fig. 4.26, the load—displacement curves at the cantilever’s tip are presented for

two axial load cases; namely zero axial force and n, =0.9. The results obtained with

the proposed formulation are compared with those from Triantafyllou and Koumousis
(2011) and from a 3-D FEM solution (NX Nastran 2007) by employing 640 solid

(brick) elements. Excellent agreement between the results is observed in case of zero

axial load while very good convergence is achieved for n,=0.9. Moreover, the

ultimate load predicted from the proposed formulation for zero axial force
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(PZ”;;O =440.05kN ) practically coincides with the value predicted from plasticity
theory (Lubliner 2008) ( P,,;, = 440kN ), while for n, =0.9 the calculated ultimate load

(P 09— 422.7kN ) deviates from the FEM solution for less than 7.2%.

z ult
Finally, in Figs. 4.27a,b the von Mises stress distribution along the cantilever’s
length is presented for different load stages showing the spread of plasticity, while in
Figs. 4.27c,d the normal and shear stress profile along the cross section at x =0./m
from the fixed end, are presented assuming either constant or a more accurate parabolic
shear stress distribution as presented in (Saritas and Filippou 2009). From these figures,
the flexural character of the plastification becomes apparent while it is evident that the

influence of the shear stress profile is negligible, in this example.

4.4.9 Example 9 — Shear collapse of I-Beam on Inelastic Foundation

The influence of the geometrical nonlinearity and the shear deformation effect (axial-
shear—flexure coupling) on the behaviour of the beam-foundation system is investigated
in this example. For this purpose, an I-shaped cross section beam of length / = 2m, has
been studied. The geometric properties of the selected cross section are presented in
Table 4.8, while the beam’s material is considered to be elastic-perfectly plastic with

modulus of elasticity £ = 213.4GPa, shear modulus G =82GPa and yielding stress

Oyp =285MPa. The beam is either clamped or fixed-pinned supported, leaning on a
plastic Winkler foundation with initial stiffness of k., =20MPa and yielding force

PZY =100 KN/m, while it is subjected to monotonically increasing uniformly distributed

load. The beam is discretized with 22 linear longitudinal elements, 43 quadrilateral cells
(12 layers in the wed and 2 in each flange) and a /x/ Gauss integration scheme for

each cell.

Table 4.9. Geometric properties of the I-shaped cross section, of example 9.

Total height h=0.3m Flange width ty=0.02m

Total width b=0.3m Web width t,=0.0Im

Moment of Inertia 7, =25.0247 x 10°m? Shear Correction a, =5.3897
Factor
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Fig. 4.27. Von Mises stress (MPa) distribution along length (a) and normal & shear
stress (MPa) distribution along cross section (b) for different load stages.
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In Figs. 4.28, 4.29 the load—displacement curves are presented, performing either
geometric and material nonlinear (GMNL) analysis or material nonlinear (MNL)
analysis ignoring the foundation reaction, for both the boundary condition cases. The
results are compared with those obtained from a FEM model (NX Nastran 2007)

implemented by employing 2400 quadrilateral shell elements. Excellent convergence

between the results is observed. In the same figures the von Mises stress o,

distribution is also presented illustrating the plastification of the wed, as well as the non-
symmetry of the normal stresses due to the developed axial force. Additionally, the
flexure-only response is presented in these figures. Since the beam yields in shear, the
Euler-Bernoulli model fails to capture the nonlinear response and overestimates the
collapse load of approximately 320% for the clamped and 256% for the fixed-pinned
boundary conditions.

The main reason for that divergence is the inability of the flexure-only model to
predict the exact collapse mechanism, as it ignores the development of the shear
stresses. In more detail, Figs. 4.30a,b depicts the stress distribution along the length of
the web for geometrically nonlinear and linear analysis, respectively indicating the shear
character of the collapse mechanism. In the same figure the corresponding deformed
shell FEM contour representations are also presented verifying the accuracy of the
presented model. On the contrary, Fig. 4.30c show the von Mises stress distribution
assuming a flexure-only model demonstrating the collapse mechanism due to bending,
which require the formation of three plastic hinges instead of two in the axial-shear—
flexure coupling model.

Moreover, under the scope of efficiency, it is worth noting that even thought the
two approaches have fundamental differences (i.e. 22 elements for the proposed model
instead of 2400 elements for the shell one), the difference between the computational
time required for the analyses is significant, while the obtained result have the same
accuracy. Indicatively, it is mentioned that the refined shell model required
approximately 30min to 1.0h depending to the analysis type and model parameters,
while the proposed one required from 10sec to 240sec for the same type of analysis.

Finally, in Figs. 4.31, 4.32 the load—displacement curves of the beam-foundation
system are presented, performing either geometrically nonlinear or linear inelastic
analysis for both cases of boundary conditions, making evident the influence of the

geometrical nonlinearity to the response of the system. Additionally, the flexure-only
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response is presented in these figures, illustrating once again the importance of the shear

deformation effect on the behaviour of the beam-foundation system.
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Fig. 4.28. Midpoint load—displacement curve of the clamped beam of example 9.
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Fig. 4.29. Midpoint load—displacement curve of the fixed-pinned beam of example 9.
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Fig. 4.30. Von Mises stress distribution contour diagrams along the length of the web
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Fig. 4.31. Load—displacement curve at the midpoint of the clamped beam-foundation
system of example 9.
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Fig. 4.32. Load—displacement curve at the midpoint of the fixed-pinned beam-
foundation system of example 9.
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4.4.10 Example 10 — Influence of Geometrical Nonlinearity in Inelastic Analysis

In order to demonstrate the influence of the geometrical nonlinearity even in case of no
axial loading, in this example a rectangular cross section (£ =0.40m, b=0.20m)
clamped beam of length /=5.0m, as shown in Fig. 4.33, has been studied. For the
numerical implementation 15 linear longitudinal elements, 40 quadrilateral cells (10
fibres) and a 2x 2 Gauss integration scheme have been employed. Two material cases
have been analyzed; namely an elastic-perfectly plastic with modulus of elasticity

E =20GPa, shear modulus G =8.3GPa and yielding stress oy, =100MPa and an
elastoplastic-strain hardening with E, =/GPa. The beam is supported on a plastic

Winkler foundation with initial stiffness of &, =20MPa and yielding force

PZY =100KN/m, while it is subjected to a monotonically increasing concentrated load

at its midpoint.

P,(kN
16 Integration Sections l Z( )
y g

I U U
T35 3

|
/=5m i

Fig. 4.33. Inelastic beam-foundation system subjected to monotonically increasing
concentrated load.

The geometrically linear case with absence of foundation reaction has been studied
by Papachristidis et al. (2010), who proposed a force-based (#B) 3D fiber beam element
formulation accounting for the axial-shear-moment interaction. In Fig. 4.34 the load—
displacement curve at the beam’s midpoint is presented as compared with those
obtained from (Papachristidis et al. 2010) assuming both force and displacement based
(DB) formulations for numerous integration sections and numerical integration schemes.
The accuracy and efficiency of the proposed formulation are confirmed by the excellent
agreement between the converged solution of Papachristidis et al. (2010) obtained by 2
FB elements with 8 integration sections and the one obtained from the conducted
analysis assuming the same number of integration sections (i.e. 16). More specifically,

from this figure it is concluded that the conventional displacement based elements of
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equal length fail to capture accurately the collapse load. This shortcoming can be
resolved by employing either more dense mesh or adaptively spaced elements. Contrary
to the conventional DB elements, the FB are capable of describing the inelastic response
of the beam with a single element per member. However the results may differ with
respect to the number of integration sections and the numerical integration scheme (i.e.

Gauss (G) and Gauss—Lobatto (G-L)).
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Fig. 4.34. Load—displacement curve at the midpoint of the beam of example 9,
performing geometrically linear analysis.

In Fig. 4.35 the load—displacement curves are presented, performing either
geometrically nonlinear or linear inelastic analysis for different types of material
properties ignoring the foundation reaction. From this figure, it is concluded that large
displacements, influence significantly the behaviour of the beam since the developed
restoring force does not allow the evolvement of the plastic hinges and thus the plastic
collapse. This can also be evident from the contrast observed between the von Mises
stress distribution contour diagram as presented in Figs. 4.36a,b performing either
geometrically nonlinear or linear inelastic analysis for perfectly plastic and strain

hardening material, respectively.
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Fig. 4.35. Load—displacement curve at the midpoint of the beam of example 9.
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Fig. 4.36. Von Mises stress (MPa) distribution along the beam length, of example 10.
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Finally, in Fig. 4.37 the load—displacement curves of the beam-foundation system
are presented, performing either geometrically nonlinear or linear inelastic analysis for
different types of material properties, while in Table 4.10 the extreme values of the von
Mises stresses for the all the conducted analyses are shown illustrating once again the
paramount importance of both geometrical and material nonlinearity in the beam-

foundation system analysis.
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Fig. 4.37. Load—displacement curve at the midpoint of the beam of example 10,
resting on nonlinear foundation.

4.4.11 Case Study — Pile—Foundation System: Numerical and Experimental Validation

The main purpose of this final example is to validate the developed beam model against
a series of Laboratory Pushover tests on vertical single piles embedded in dry sand
under different load paths to failure in M—Q space, conducted in the Laboratory of Soil
Mechanics/Dynamics in NTUA by Gerolymos (2012) and Giannakos (2013). The
obtained results are further compared to those from a fully 3D Nonlinear Finite Element
simulation (Giannakos 2013) implemented in the finite element code ABAQUS
(Dassault 2009).
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Table 4.10. Extreme values of the von Mises stress of the beam-foundation system of

example 10.
Clamped Beam
Perfectly Plastic Strain Hardening
Analysis ) i i )
Linear Nonlinear Linear Nonlinear
Max S, (MPa) 100 100 157.089 149.5203
Min S, (MPa) 9.236 12.104 12.179 17.81618
Beam-Foundation System
) Perfectly Plastic Strain Hardening
Analysis
Linear Nonlinear Linear Nonlinear
Max S, (MPa) 100 100 141.389 134.994
Min S, (MPa) 9.420 9.025 12.998 16.726

To this end, the proposed beam formulation is utilized for the simulation of a
vertical pile placed in a sand mass of uniform density. The model pile is a hollow

aluminium 6063—F25 cylinder of 3cm external diameter, 2.8cm internal diameter, and
60cm length. The elasticity modulus of the pile is £, =70GPa and the yield stress of
the aluminium is 2/5MPa. The geometrical, material and model properties of the
examined pile are summarized in Table 4.11. The stiffness coefficients of the soil
independent springs are calculated according to Makris and Gazetas (1992). In order to

simplify the complicated physics of the examined problem, an equivalent constant
friction angle of ¢ = 64° was found for the sand through back analysis of Test 1, based

on Brom's expression for cohesionless soils (Broms 1964b):

py=3K,yzd (4.41)

where K, is the passive earth pressure coefficient, y the unit weight of soil, z the

depth from ground surface and d the pile diameter. The pile is fixed at the base of the
sandbox to ensure verticality during the sand raining process; however, its length is
sufficiently large for the bending failure (plastic hinge) not to be affected by the tip
boundary conditions. The load is applied to the pile at a distance e from ground surface,

while the aboveground height of the pile is /. The experimental setup is portrayed in
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Fig 4.38. For more details on the laboratory testing process the reader is referred to the
studies of Gerolymos (2012) and Giannakos (2013).

Table 4.11. Pile properties for the proposed beam model.

Model Properties Symbol Values
Length [ 0.6 m
Area / Moment of Inertia Q/1, 9.11x107°m° /9.6x 10 m?
Young’s modulus Ey 7.0x 10% MPa
Shear modulus G 26.9x 10° MPa
Yield Stress Oy 215MPa

Number of elements

Cross-sectional
Discretization

150 (120 embedded length — 30 free length)

100 quadrilateral cells and 3 x 3 Gauss integration
scheme for each cell

O
|
O

Disp SensorDT3
Disp SensorDT2
Disp SensorDT1

Fig. 4.38. Pushover model setup, geometry (a) and instrumentation (b).

The piles studied were subjected to displacement control lateral loading. Monotonic

loading was imposed either at the pile head considered to be at the ground surface or at

a specified distance from ground surface in order to produce a moment acting at the pile

head. A total number of 8 experiments were examined; namely:
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Test 1. Lateral load at the ground surface level in order to determine the plastic yield

shear force of the pile-soil system (Qy= 97.15kg ; Point 1, 0 in M/My —Q/Qy
space)

Test 2. Pure moment conditions in order to validate the plastic yield moment of the

pile-soil system (My = 18.19kgm ; Point 0, 1)
Test 3. Lateral load applied at 32c¢m above the ground surface (Point 0.47, 0.80)

Test 4. Lateral load applied at 20cm above the ground surface (Point 0.59, 0.63)

Test 5. Retest of the pile under lateral load applied at 32cm above the ground surface
in order to check the repeatability of the experiments (Point 0.46, 0.79)

Test 6. Lateral load applied at /0cm above the ground surface (Point 0.75, 0.40)
Test 7. Lateral load applied at 6¢m above the ground surface (Point 0.88, 0.28)
Test 8. Lateral load applied at 56cm above the ground surface (Point 0.28, 0.84)

For the first experiment, only lateral load was applied at the pile head in order to

determine the ultimate lateral load capacity Oy of the pile-soil system. Similarly, for the

second experiment only overturning moment was applied for the determination of the

ultimate moment capacity My . Subsequently, different combinations of moment and

horizontal force at the ground surface were produced by changing the above ground

height e of application of the horizontal load Q (hence M = Qe). Aiming to ensure the

validity and repeatability of the testing procedure and gain confidence in the presented
data, the lateral pushover test for the pile subjected to lateral load at 32cm above the
ground surface (Test 3) was repeated (Test 5).

These pushover tests are also modelled numerically with a fully 3D Finite Element
model taking into account material nonlinearities for static analysis using the finite
element code ABAQUS (Dassault 2009), as presented in Giannakos (2013) and
Kampitsis et al. (2014). The pile and soil are analyzed at model scale, assuming model
parameters appropriate for very small confining pressures. The view of the three
dimensional Finite Element mesh used for the simulation of the pile and the sandbox is
depicted in Fig. 4.39. Approximately 45000 elements are used for each analysis. The
soil is modelled with 8-node brick elements while the pile is modelled as elastic-
perfectly plastic with 3D beam elements placed at its centre and connected with

appropriate kinematic constraints, namely Multi-Point Constrains (MPC) boundaries,
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with the nodes at the perimeter of the pile in order to model the complete geometry of
the pile. Hence, the nodes of the 8-node brick elements at the perimeter of the pile at a
specific elevation follow the displacement of the node of the 3D Beam element at that
elevation (Giannakos et al. 2012). The solid elements inside the perimeter of the pile
have no stiffness, thus each pile section behaves as a rigid disc. The sophisticated
procedure of calibrating the 3D FE Model parameters (i.e. beam and soil constitutive
models, hardening law, plastic flow rule, etc.) to capture the soil-pile system behaviour

is presented in Giannakos (2013) and Kampitsis et al. (2014).

Elastic-perfectly plastic
3D beam elements

®
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Fig. 4.39. Mesh discretization of the 3D Finite Element Model for Pushover Tests.

In Fig. 4.40, the force—displacement curves at the pile head derived from the
proposed beam model for Test 1 is presented as compared with the experimental results
and those from the calibrated 3D FE model. It is observed that both the stiffness and the
maximum lateral capacity of the pile of the calibrated 3D model match the experimental
values. On the contrary, the beam model matches well the maximum lateral capacity of

the pile, but has a stiffer response than the experiment and the 3D numerical analysis.
Moreover, in Table 4.12 the ultimate lateral Oy (Test 1) and moment My (Test 2)
capacities of the pile-soil system obtained from both numerical models are compared
with those measured from the laboratory tests. The calculated results indicate that the

numerical models are calibrated to capture accurately the response of the system in case
of Tests 1 and 2.
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Fig. 4.40. Experimental and calibrated (Proposed Beam and 3D FE models) force—
displacement curves at pile head for Test 1 (lateral loading acting at the
ground surface).

Table 4.12. Ultimate load capacity of the pile-soil system.

Plastic Yield Proposed Beam Model Experimental 3D FE Model
Components Measurements
Oy (kg) 96.80 97.15 102
My (kgm) 18.22 18.19 18.16

Subsequently, the validation of the proposed beam formulation is performed though
the examinations of the response of each individual test (Tests 3 to 8). In Figs 4.41 to
4.45 the calculated lateral force acting at various heights on the pile with the
corresponding displacement at the ground surface obtained from the proposed beam
model are presented and compared with the measured values from the experiment and
the calculated results from the 3D FE analysis. Both the stiffness and the maximum
force values from the two numerical models compare well with the measured results
from the experiments. More specifically, it is observed that the beam model exhibits a
stiffer behaviour compared to the 3D FE model, as expected since it does not capture
the strain softening behaviour of the soil, but it captures accurately the ultimate capacity
of the system. In general, from the conducted investigation, it is deduced that the

proposed beam model can be employed providing minimum calculation effort while
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retaining good precision in the obtained results for the soil-pile inelastic systems instead
of executing complicated 3D analyses.

Similar trend is observed in Fig. 4.41, where the lateral force—horizontal
displacement curves at the pile head from Tests 3 and 5 are compared with the
calculated response from both numerical methods. The measured experimental results
show quite satisfactory agreement between the original and repeated test, indicating that

the experimental conditions are repeated with good accuracy in every experiment.
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Fig. 4.41. Experimental and computed force—displacement curves at pile head for Tests
3 & 5 (lateral force at 32cm above the ground level).
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Fig. 4.42. Experimental and computed force—displacement curves at pile head for Test
4 (lateral force at 20cm above the ground level).
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Fig. 4.43. Experimental and computed force—displacement curves at pile head for Test
6 (lateral force at 10cm above the ground level).
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Fig. 4.44. Experimental and computed force—displacement curves at pile head for Test
7 (lateral force at 6cm above the ground level).

Furthermore, Fig. 4.46 depicts a) the failure envelope of the analytical expression
of eqns.(4.42), presented by Gerolymos (2012) and Giannakos (2013) for pile embedded
in cohesionless soil for the case when the lateral force and the bending moment at the
pile head act towards the same direction as compared with the points of overturning

moment and lateral force (M - Q) at failure, normalized with the values of pure
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moment My and pure lateral loading Oy capacities respectively as derived from b) the

laboratory experiments, c¢) the proposed beam model and d) the 3D FE model.

3/2
f= sgn(Q) — + M sgn(M) -1=0 for ‘ﬂ <1 (4.42a)
Y Y MY
and f =‘£ —-1=0 for ‘ﬂ =] (4.42b)
Y My

It is observed that both the measured points from the experiments and the
calculated points from the two numerical analyses almost coincide with the proposed
failure envelope. The green triangular symbol on the figure corresponds to the repeated
Test 5, performed in order to check the repeatability of the experiments for pile under
lateral load applied at 32cm above the ground surface (Test 3).

In Table 4.13, the measured depths of the formation of the plastic hinge from the
experiments are presented in comparison to the calculated ones from the proposed and
the solid models. It is observed that both numerical methods predict well the decrease of
the depth of the plastic hinge with the increase of the bending moment acting at the pile

head. Hence, the maximum depth of plastic hinge is measured at 24cm (Testl) from the

ground surface while the minimum one is located at the pile head (OCm) when only

bending moment acts at the pile head. Since this is a mesh-dependent problem, and the
mesh in the simplified beam model is denser (0.5cmin the vertical direction) than the
3D FE model (2cm), the simplified beam model presents a slightly better accuracy for
the depth of the plastic hinge

Additionally, in Fig. 4.47 the cross-sectional distributions of von Mises stresses

oy, accounting for (a-c) or ignoring (d-f) shear deformation effect, at the depth of the

plastic hinge are presented for three load levels as calculated from the proposed beam
model with respect to Test 4. The first load level (a, d) corresponds to an elastic
behaviour, while the remaining ones refer to inelastic response. By comparing the
results, it is concluded that accounting the shear deformation effect leads to slight
increase of the developed stresses and consequently to more rapid spread of plasticity
leading to the formation of the plastic hinge (collapse) for lower values of the applied
load.
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Fig. 4.45. Experimental and computed force—displacement curves at pile head for Test
8 (lateral force at 56cm above the ground level).

Table 4.13. Depth (cm) of plastic hinge from the ground surface

Experiment Measure.d Depth Calculated Depth Calculated Depth
Experiment Proposed Beam Model 3D FE Model
Test 1 24 205 ”
Tests 3& 5 15 12 10
Test 4 18 14 14
Test 6 21 19 13
Test 7 22 205 20
Test 8 11 8.5 8

4.5 Concluding Remarks

In this chapter a Boundary Element Method is developed for the geometrically
nonlinear inelastic analysis of Timoshenko beams resting on inelastic tensionless two—
parameter foundation. To account for shear deformations, the concept of shear
deformation coefficients is used. A displacement based formulation is developed and
inelastic redistribution is modelled through a distributed plasticity (fibre) approach. Two
alternative incremental—iterative solution strategies are developed. The main

conclusions that can be drawn from this investigation are
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Test 4, accounting for (a-c) or ignoring (d-f) shear deformation effect.
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ii.

iil.

1v.

vi.

Vii.

Viii.

iX.

The proposed beam formulation is capable of yielding results of high accuracy, as
verified by comparing with analytical, experimental and FEM results, with
minimum computational cost, providing a simple and efficient computational tool

for the geometrically nonlinear inelastic analysis of beam-foundation systems.

The proposed model accurately captures both, the initial yielding and the ultimate

(collapse) load, as well as the stress distribution and the region of the plastic hinge.

The influence of geometrical nonlinearity is illustrated through the significant

discrepancy between the results of the linear and the nonlinear analyses.

The proposed model takes into account coupling effects of bending, shear and axial
deformations, illustrating the paramount importance of this interaction in the

inelastic analysis either under small or large displacement formulation.

The significant influence of the inelastic character of the foundation is also

demonstrated.

A small number of cells (fibres) is required in order to achieve satisfactory

convergence.

The beam character of the developed formulation confers advantages over more
refined approaches in the sense of modelling effort, model handling, results

interpretation and isolation of structural phenomena.

The developed procedure retains most of the advantages of a BEM solution while

requiring a small number of nodal points to achieve high accuracy.

The use of BEM enables the accurate calculation of the stress resultants which are

very important during both the analysis and the design of beam-foundation systems.

214



Chapter 5

Geometrically Nonlinear Dynamic Inelastic Analysis of
Beam-Soil Interaction Systems

5.1. Introduction

The dynamic analysis of beam-soil interaction systems is an area of extensive research
activity in both structural and geotechnical engineering. The dynamic analysis of such
systems is often mandatory in design of significant civil engineering structures as for
instance bridges, offshore piles and wind-turbine foundations.

Currently, the design procedure is based on a set of simplifying assumptions while
the nonlinear static pushover analysis is preferred over the dynamic time domain
procedures. This is attributed to the intricate dynamic methodologies as well as to the
increased computational cost. Nevertheless, modern design codes are based on concepts
such as the displacement based design and the performance based design for the
estimation of structural integrity (Priestley et al. 2007, Fardis 2010). That implies that in
order to evaluate the necessary design quantities, a vast amount of nonlinear dynamic
analyses are required. Thus, an efficient computational tool capable of performing
nonlinear dynamic analysis is essential, conferring several advantages over the pushover
procedure (Bozorgnia & Bertero 2004) and providing insight into complicated
phenomena attributed to the inertia and the dynamic motion of the structure.

In order to fully comprehend the beam-soil mechanism as well as to accurately
estimate the response of the structure, all possible causes of nonlinearities should be
taken into account. The nonlinearities with the most profound influence on the response
of a structure originate from the inherent nonlinear stress-strain behaviour of the
materials (material nonlinearity) as well as from the significant variations of the
geometrical configuration during dynamic loading (geometrical nonlinearity). On the
contrary, in engineering practice the foundation elements are designed to behave
elastically for every type of loading. Modern design codes and the existing regulations
indicate that the beam-soil interaction systems, such as piles and deep embedded
foundations, are designed in order to prohibit the occurrence of any kind of nonlinearity,
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neither of material nor of geometrical nature. More specifically, Eurocode-8 (EN 1998,
EC-8, Part 2, 8 5.8) explicitly states that “...foundations shall not be intentionally used
as sources of hysteretic energy dissipation and therefore shall, as far as practicable, be
designed to remain undamaged under the design seismic action.” This restriction,
however, is most likely to be extremely conservative leading to financially or even
physically unfeasible structures. In recent years, significant research efforts (Paolucci
1997, Gazetas et al. 2003, Gajan et al. 2005, Gerolymos et al. 2008, Harden &
Hutchinson 2009, Gerolymos et al. 2009, Anastasopoulos et al. 2010, Gelagoti et al
2012, Chiou et al. 2012, Figini et al. 2012) have investigated the beneficial character of
permitting nonlinearities and inelasticity to occur at the beam-soil interaction system.
Furthermore, in order to conduct precise analysis and design cost-effective
structures the realistic estimation of the structural member transient response is
essential. Towards this direction, the material nonlinearity is incorporated in the
analysis either by a refined distributed plasticity (fibre) formulation or by the simplified
concentrated plasticity (plastic-hinge) approach. Although time efficient, the cross-
sectional stress resultant approaches (Attalla et al. 1994) or lumped Dplasticity
idealizations (Orbison et al. 1982, Ngo-Huu et al. 2007) come at the cost of accuracy.
On the contrary, the fibre models are proved capable of accurately capturing the
inelastic response (Teh & Clarke 1999, Nukala & White 2004, Saritas & Filippou
2009), while their main drawback is the increased computational cost due to the
numerical integrations at the cross-sectional level. Various beam element models
accounting for the nonlinear stress-strain behaviour of the materials, have been
proposed following either the displacement-based (Bathe 2007) or forced-based
formulations (Sivaselvan & Reinhorn 2003, Saritas & Filippou 2004, Papachistidis et al.
2010). Moreover, dissipation phenomena have to be explicitly taken into account in the
dynamic analysis of nonlinear systems. To this end, several hysteretic modes have been
proposed (Dahl 1978, Visintin 2003, Papoulia et al. 2007) with the most commonly
used the Bouc-Wen family of hysteric models (Bouc 1967, Wen 1976, Sivaselvan &
Reinhorn 2003, Charalampakis & Koumousis 2008, 2009). The hysteric Bouc-Wen
model has been successfully introduced into the inelastic analysis of structural members
(Symeonov et al. 2000, Guggenberger & Grundmann 2005, Triantafyllou & Koumousis
2011, 2012a-c). Lately, Gkimousis and Koumousis (2013) presented distributed
plasticity fibre beam formulations for both displacement and force based approach,
while Kottari et al. (2014) presented a consistent smooth Bouc—-Wen type degrading
hysteretic model, incorporating stiffness degradation, strength deterioration, pinching,
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asymmetric hysteresis and strain hardening characteristics. On the contrary, little has
been done in case of soil-structure interaction systems (Gerolymos & Gazetas 2006,
2007).

So far, considerable effort has been made into investigating the dynamic response
of beam-soil interaction systems employing the Beam-on-Nonlinear-Winkler-
Foundation (BNWF) method. Within this framework, several researches have proposed
various formulations assuming nonlinear laws (p-y) for the foundation load-
displacement relation while the beam remains elastic throughout the analysis. Trochanis
et al. (1991a) were the first to utilize a phenomenological hysteresis model for the
simulation of the load-displacement relation of the nonlinear soil springs. More
specifically, their study aim in developing a simplified model that incorporates the main
nonlinear features of the behaviour of single piles as well as the interaction between a
pair of piles. Taking advantage of the acquired knowledge gained from the three-
dimensional parametric study (Trochanis et al. 1991b), a model consisting of coupled
inelastically supported piles was developed taking into account the slippage and the
separation between the piles and the soil, as well as the overall inelastic soil behaviour
including degradation. In this work the degrading hysteretic model developed by Wen
(1976) for the analysis of single and multi-degree oscillators was employed in order to
describe the soil springs’ constitutive law. The proposed model was verified by an
extensive comparison with numerical results from the refined three-dimensional study,
as well as with results from experimental field tests. Nogami et al (1992) presented a
rational dynamic soil-pile interaction model adopting Winkler's hypothesis with a
special attention to the conditions in which the strong nonlinearity is induced in the
vicinity of the pile shaft under dynamic loading. The soil medium was approximated by
a simple configuration of frequency independent mass, springs, and dashpots that
consists a near-field and a far-field element. The far-field element, describes the elastic
behaviour of the soil outside the plastification region while the near-field element
reproduces the strongly nonlinear soil behaviour in the vicinity of the pile shaft.
Therefore, the model enables the time-domain nonlinear analysis in a relatively simple
manner. The nonlinear condition and the dynamic condition were coupled forming a
complex soil action to the pile shaft motion while special consideration of the gap
formation at the soil-pile interface was taken. Badoni and Makris (1996) developed a
macroscopic model that consists of distributed hysteretic springs and frequency
dependent dashpots. A one-dimensional finite element formulation was proposed for the
evaluation of the nonlinear response of single piles under dynamic lateral loads. The
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Bouc-Wen model (Bouc 1971, Wen 1976) was combined with a distributed viscous
dashpot placed in parallel, in order to simulate the nonlinear behaviour of the springs.
The model is physically motivated, adequate for cohesive and cohesionless soils and
involves standard geotechnical parameters. Only two parameters have to be calibrated
by fitting experimental data, while hysteretic damping was taken into account using the
Bouc-Wen model and the radiation damping though a realistic frequency dependent
expression. The model was calibrated and validated against five well instrumented full-
scale experiments. Boulanger et al. (1999) developed a dynamic beam on nonlinear
Winkler foundation analysis method for analyzing seismic soil-pile-structure
interaction and evaluated it against the results of a series of dynamic centrifuge model
tests. Sensitivity of the results to dynamic p-y model parameters and site response
calculations were also examined. Nikolaou et al. (2001) implemented a beam on
dynamic Winkler foundation model for piles in homogeneous and layered soils
illustrating that the magnitude of kinematic moments depends mainly on the stiffness
contrast between the soil layers, the pile-soil stiffness contrast, the excitation frequency,
and the number of excitation cycles.

Although the soil inelasticity has been extensively investigated (Brown & Shie
1991, Laman et al. 1999, Kim & Jeong 2011) only few studies have encountered the
inelastic behaviour of both the beam and the foundation elements in dynamic analysis.
According to this context, the beam stress-strain and the foundation load-displacement
relations are assumed to follow nonlinear inelastic constitutive laws. To start with,
Budek et al (2000) presented a Winkler beam model formulation to represent the lateral
force response of a reinforced concrete pile in cohesionless soil. An inelastic finite-
element analysis was performed on the structure, using as the pile constitutive model the
section moment-curvature relationship based on confined stress-strain relationships for
the concrete. The influence of various parameters, such as the pile head boundary
conditions, the height of pile head above grade level and the soil stiffness were
investigated. The soil models were assumed linear, bilinear and hyperbolic. The analysis
reviled that shear could be significantly underestimated by an elastic analysis, as
inelastic behaviour moved the point of maximum moment in the pile shaft closer to the
surface, thus reducing the shear span. Moreover, it was proved that the plastic hinge
lengths as well as the maximum moment depth in the pile shaft are strongly influenced
by the soil stiffness. Hutchinson et al. (2004) used nonlinear static and dynamic
analyses to evaluate the inelastic seismic response of bridge and viaduct structures
supported on extended pile shafts. For the nonlinear dynamic soil-pile interaction
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analyses the beam on nonlinear Winkler foundation model was employed. Nonlinear
fibre beam-column elements were used to model the reinforced concrete sections, and
one-dimensional site response analyses for the free-field soil profile response. Several
parameters have been taken into consideration such as the ground motion
characteristics, the site response, the geometric second order effects and performance
measures. The results focused on the influence of the ground motion characteristics and
the variations in structural configurations on the performance measures which evaluated
the inelastic seismic response of the structures examined. Later on, Gerolymos and
Gazetas (2005) studied the inelastic response of soil-pile interaction systems employing
a phenomenological model. The nonlinear response of the soil was treated as a Winkler
spring-dashpot model utilizing the BWGG model. The separation of the pile from the
soil, the radiation damping and the loss of strength due to pore-water pressure where
also taken under consideration. The pile inelasticity was treated macroscopically at a
cross-sectional level through a plastic-hinge approach utilizing the BWGG mode. An
explicit finite differences method was used to solve the system of differential equations
while this formulation was applied to piles subjected to laterally monotonic and cyclic
loading. The developed model was then applied to conduct a parametric study of pile-
column supported bridge structures, in order to investigate the consequences of pile
yielding behaviour and soil-structure interaction on structure ductility demand
(Gerolymos et al. 2009). Allotey and El Naggar (2008) developed a generalized
dynamic normal force—displacement BNWF model capable of accounting for various
soil-structure interaction effects. The backbone curve of the model comprises a four-
segment adaptable multi-linear curve that can represent both monotonic and post-peak
behaviour. The cyclic degradation was modelled as a modified version of the rainflow-
counting technique of Anthes (1997). The proposed model was verified by comparing
the results with those from centrifuge tests of piles in weakening and partially
weakening soil showing good agreement. Lately, Mullapudi and Ayoub (2010b) studied
the cyclic performance of an inelastic beam resting on a nonlinear soil bed. The material
nonlinearity was handled through a fibre beam element model and the discretization of
the cross-section was introduced in order to derive the nonlinear terms of the governing
equation regarding the uniaxial stress-strain relations. The soil was handled as a semi-
infinite element consisting of a single layer Winkler springs in conjunction with a
Vlasov’s parameter that can provide moment resistance. The tensionless character of the
soil was also taken into account, while the foundation parameters were based on a plane
strain assumption. This investigation was then extended to the study of the seismic
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behaviour of the inelastic beam resting on a nonlinear foundation (Mullapudi & Ayoub
2010c). In both studies the models were implemented in the finite element program
FEAP (Taylor 2005).

In this chapter, a Boundary Element Method (BEM) is developed for the
geometrically nonlinear inelastic analysis of Euler-Bernoulli beams of arbitrary doubly
symmetric simply or multiply connected constant cross-section, resting on inelastic
Winkler foundation. The beam is subjected to the combined action of arbitrarily
distributed or concentrated transverse dynamic loading and bending moments in both
directions as well as to axial loading, while its edges are subjected to the most general
boundary conditions. A hysteretic Bouc-Wen force-displacement model is employed in
order to describe the inelastic behaviour of the Winkler springs. A displacement based
formulation is developed and inelastic redistribution is modelled through a distributed
plasticity (fibre) approach. A uniaxial hysteretic law is considered for the evolution of
the plastic part of the normal stress following the Sivaselvan and Reinhorn (2003)
phenomenological hysteresis model. Numerical integration over the cross sections is
performed in order to resolve the hysteric parts of the stress resultants. Three boundary
value problems are formulated with respect to the transverse and axial displacements
and solved using the Analog Equation Method (Katsikadelis 2002), a BE based method.
Application of the boundary element technique vyields a system of nonlinear
Differential-Algebraic Equations (DAE), which are written in state-space form and
together with the hysteretic evolution equations are solved iteratively using the Petzold-
Gear backward differentiation formula (Brenan et al. 1989), a linear multistep method
for differential equations coupled to algebraic equations.

Numerical examples are worked out confirming the accuracy and the computational
efficiency of the proposed beam formulation through comparison with literature and
FEM results. In these examples, the significant influence of material and geometrical
nonlinearity in the response of a beam-foundations system are illustrated. The essential
features and novel aspects of the present formulation compared with previous ones are
summarized as follows.

i. To the author’s knowledge, the geometrically nonlinear dynamic response of beam-
foundation systems where both the beam and the foundation are assumed to be
inelastic is investigated for the first time in literature thought the beam-on-nonlinear
Winkler-foundation approach.
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Vi.

Vii.

viii.

The proposed beam model accounts for the geometrical nonlinearity by retaining
the square of the slope in the strain—displacement relations, avoiding in this way the
inaccuracies arising from a linearized second-order analysis. For that purpose the
total Lagrange formulation (intermediate non-linear theory) has been adopted.

A distributed plasticity (fibre) approach has been employed.

The formulation is a displacement based one taking into account inelastic
redistribution along the beam axis.

A uniaxial hysteretic law is considered for the evolution of the plastic part of the
normal stress following the Sivaselvan and Reinhorn (2003) model.

The inelasticity of the soil medium is taken into account, employing a hysteretic
Bouc-Wen force-displacement model.

The dynamic equilibrium equations are stated in state-space form and a predictor-
corrector solution strategy is adopted for the numerical implementation.

The beam is supported by the most general time dependent boundary conditions.

. The use of BEM permits the effective computation of derivatives of the field

functions (e.g. stresses, stress resultants) which is very important during the
dynamic inelastic response of beam-foundation systems.

To the author’s knowledge, a BEM approach has not yet been used for the solution
of the aforementioned problem, while the developed procedure retains most of the
advantages of a BEM solution even though domain discretization is required.

Finally, it is worth mentioning that the outcome of the conducted research activity

presented in this chapter of the doctoral dissertation has been published in national and

international conferences (Kampitsis & Sapountzakis 2014a,b).

5.2 Statement of the Problem

Let us consider a prismatic beam of length / (Fig. 5.1) with an arbitrarily shaped doubly

symmetric constant cross section, occupying the two dimensional multiply connected

region (2 of the y,z plane bounded by the 77;(,j=1,2,..,K) boundary curves, which

are piecewise smooth, i.e. they may have a finite number of corners. In Fig. 5.1, Cyz is

the

principal bending coordinate system through the cross section’s centroid. The

221



Geometric and Material Nonlinear Analysis of Beam-Soil Interaction Systems

normal stress-strain relationship for the material is assumed to be elastic-plastic-strain
hardening with initial modulus of elasticity £, shear modulus G , post-yield modulus of
elasticity E,, yield stress oy, and yield strain &y, . The beam is partially supported on

inelastic Winkler foundation. According to the Winkler hypothesis, the foundation
reaction is expressed as

FEuler-Bernoulli Beam

I

Cross Section

Time

Fig. 5.1. x-z plane of prismatic beam resting on inelastic foundation under axial—
flexural dynamic loading.

Py (x.0)=kv(xt) and P (x.0) =k,w(x,t) (5.1a,b)

while in order to take into consideration the nonlinear inelastic behaviour of the Winkler
springs the hysteretic Bouc-Wen force-displacement relations are employed

yesy z45sz

py=agkyv+(l-ag )zl and  pg=agkw(I-a.)kzl  (52ab)

where py,, p,, are the spring forces, &, k. are the initial stiffnesses, v,w are the

h

actual displacements, ay,,a,, are the inelastic to elastic stiffness ratio and zfy,zsz are

the hysteretic parts of the actual displacements acting in the y, z directions,

respectively and defined by the following Bouc-Wen evolution equations

222



Chapter 5 Geometrically Nonlinear Dynamic Inelastic Analysis of Beam-Soil Interaction Systems

n

h
A Zgy . ho. )
Zgy (Zsy,V) = 1- T (,B+ }/Slgn(zsyv)) v (5.3a)
sy _Yie
h n
" (sz,W) = 1|~ Zsz (ﬂ+ 7sign(z£’zvi/)) W (5.3b)
ZsziY[eld

In the above eqns. (5.3), the first term of the right hand side can be regarded as the
uniaxial flow rule while the second terms as the corresponding cyclic loading rate, while

the symbol () denotes differentiation with respect to time #. The dimensionless

parameter » controls the smoothness of the transition from the elastic to the inelastic
regime while £, y are shape factors that define the shape of the loading and unloading

branches of the hysteretic loop (Sivaselvan & Reinhorn, 2000).
The beam is subjected to the combined action of the arbitrarily distributed or

concentrated time dependent axial loading p,=p (x,), transverse loading
py=py(x1), p.=p.(x1) acting in the y, z directions, respectively and bending

moments m,, =m,, (x,t), m, =m_(x,t) along y , z axes, respectively (Fig. 1a).

5.2.1 Displacements, Strains & Stresses

Under the action of the aforementioned loading, the displacement field of the beam is
given as (Ramm & Hofmann 1995)

LT(x,y,z,t):u(x,t)—yﬁz(x,t)+29y(x,t) (5.4a)

V(x,t) =v(x,t) v_v(x,t)zw(x,t) (5.4b,c)

where u, v, w are the axial and transverse beam displacement components with

respect to the Cyz system of axes; u(xt), v(x,), w(x,t) are the corresponding

components of the centroid C and 6, (x,z), 6,(x,) are the angles of rotation due to

bending of the cross-section with respect to its centroid. By means of the well known
Euler-Bernoulli beam theory, the additional angle of rotation of the cross-section due to
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shear deformations are neglected therefore the angles of rotation due to bending are
equal to the derivative of the displacement and are given by the following relations

dv dw
0, =— -
dx Y dx

(5.5a,b)

Employing the strain-displacement relations of the three-dimensional elasticity the
components of the Green-Lagrange strain are defined as

_ —\2 —\2 —\2
gxx:a—u+i au + @ + ow (5.6a)
ox 2|\ ox ox ox
, o (@) (@) (o) 650
Yoy 2|\ oy Yy '
_ [/ A2 —\2 —\2 ]
gzzza—u+i ou + il + w (5.6¢)
oz 2|\ 0z 0z oz
7xy = 8_v+8_u + a_ua_u+a_va_v+a_wa_w (56d)
ox Oy Ox 0y Ox 0y Ox Oy
ow Ou ouou 0Ovov oOwow
Ve =|—F+— |+ ——F—F+—— (5.6e)
ox 0Oz Ox 0z Ox 0z Ox Oz
L (. ) (Eaw vew owow (5.6
oy 0Oz 0y 0z 0Oy 0z Oy Oz

Moreover, assuming relatively small centroidal axial displacement and moderate large
transverse displacements (Ramm & Hofmann 1995, Rothert & Gensichen 1987, Brush
& Almroth 1975) while strains remain small, the following strain components can be
easily obtained

_ _\2 _\2
Exx = a_u + l (a_vj + (a_wj (578.)
ox 2|\ 0ox ox
Vi = %+a—u+ 8_\/8_\/ +6_w8_w (5.7b)
ox Oz Ox 0z Ox Oz

224



Chapter 5 Geometrically Nonlinear Dynamic Inelastic Analysis of Beam-Soil Interaction Systems

ov ou (0vov owow
Vo=t —+| ——t+t (5.7¢)
ox Oy Ox 0y Ox Oy
Eyy =&, =7y, =0 (5.7d,e,f)

_ 2 _
where it has been assumed that for moderate displacements (a%x) <<a%x,

(T4 )<< O3+ (%) (60 W) <<(Vn)+ () Extatin

the Euler-Bernoulli assumption and substituting the displacement components (5.4) to
the strain-displacement relations (5.7), the normal strain component can be written as

2 2 2 2
ou 0w 8v+1{6v +6w J (5.8)

Ox ox’ y6x2 Ea a

Considering strains to be small, employing the work conjugate second Piola—Kirchhoff
stress tensor (Crisfield 1991), assuming an isotropic and homogeneous material without
exhibiting any damage during its plastification and neglecting the vanishing
components, the normal stress is defined in terms of the strain one as

S = E*g;lc (5.9)

where the superscript e/ denotes the elastic part of the strain component and

E"=E(I-v)/[(1+v)(1-2v)]. If the plane stress hypothesis is undertaken then

E* =E/(]—v2) holds, while E is frequently considered instead of E (E*~E) in
beam formulations (Vlasov 1963, Armenakas 2006). This last consideration has been

followed throughout the paper, while any other reasonable expression of E" could also
be used without any difficulty in many beam formulations.
As long as the material remains elastic the total strain is assumed to occupying the

Hooke’s law (i.e.¢,, = ;’C) while when plastic flow occurs the additive decomposition

of the total strain rate into an elastic and a plastic component (Nemat-Nasser 1982)
holds
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Exx =

.el . pl
o+ &R (5.10)
where ¢, the total normal strain, g)ffc the elastic part of the normal strain and 5){;1 the

plastic part of the normal strain.

A uniaxial hysteretic law is considered herein for the evolution of the plastic part of
the normal stress. Following the Sivaselvan and Reinhorn (2003) model, the normal
stress can be decomposed into a reduced elastic and a hysteretic part as follows

Sy =aS% +(1-a)S" =aEe . +(1-a)Ez" (5.11)

where Sfjfc, S" are considered the elastic and hysteretic parts of the stress, respectively,

a is the post yield stiffness to elastic stiffness ratio and " isa hysteretic deformation

parameter which serves as an internal variable. The hysteretic part S" evolves in time
according to a nonlinear differential equation following the Bouc-Wen hysteretic rule as
proposed by Casciati (1995) (Fig. 5.2)

M ) = B2 = E(1=hyhy ), (5.12)

where h;, h, are smooth Heaviside functions given as

n

h =ch>(3”)+1

(5.13a)

hy=pB+y sign(Shéxx) (5.13b)

where @ is the adopted vyield criterion, sign is the signum function and », 5,y are

model’s dimensionless parameters. More specifically, » controls the smoothness of the
transition from the elastic to the inelastic regime while £, y are shape factors that define

the shape of the loading and unloading branches of the hysteretic loop. Furthermore, it
has been proved by Erlicher and Bursi (2004, 2009) that the identified parameters g,y

should comply with the restriction —f <y </ in order to be an admissible
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thermodynamic model, while in the special case where g =y =0.5 the unloading

stiffness is equal to the elastic one. In general, egns. (5.13) can be perceived as control
functions of the hysteretic behaviour. In particular, the first Heaviside function
describes the flow rule while, the second one controls loading-unloading phases during
the dynamic loading.

9= gFe e Stress
N +t Sxx = 7
J Gyo ¢
S=S+8" / (1-a)oyo
S"=(1-a)EZ" — (1-0)Gy0
E ~ e OLGYO aGvo(Exx/Evo)
AN €vo €x  Strain

Fig. 5.2. Bouc-Wen hysteretic model (a) and stress-strain relation (b).

In the case where von Mises yield criterion, an associated flow rule and an isotropic
hardening rule for the material are utilized (Crisfield 1991), the expression of the yield
condition is described with the expression

SZ
D=D,, =— __]1<( (5.14)

vM —
2( .pl
o7 (2ly)

where oy is the yield stress of the material and gfql is the equivalent plastic strain (Fig.
5.3), the rate of which is defined in (Crisfield 1991) and is equal to éfql =1 with 1
being the proportionality facto. Moreover, the plastic modulus % is defined as
h= o'-Y/éfql or Gy =hA and can be estimated from a tension test as / :EIE/(E—EZ)

(Fig. 5.3).

5.2.2 Stress Resultants, Equations of Equilibrium and Boundary Conditions

In order to establish the global equilibrium equations and the boundary conditions of the
beam-foundation system, the principle of virtual work under a Total Lagrangian
formulation neglecting body forces is employed as
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Sxx E[
Oyol "/
o 0
SYO 8)6)6 6‘5;
(a) (b)
Fig. 5.3. Normal stress—strain (a) and yield stress — equivalent plastic strain (b)
relationships.

5sz + éT/Vmasv 5VVext (515)

where &(-) denotes virtual quantities, 1, is the stain energy of the beam due to

normal stress, W, IS the Kinetic energy and W,, is the external load work, defined as

Wit = [, (S0 ) AV Wpass = [, p (67 + V6V +wsw)dV  (5.16a,b)

Wiass = I(pxﬁu +p,0v+m,60, + p.6w+m,o0, )dx —f(psy5v + pszé'w)dx
! !
(5.16¢)

0,1
+ 2Ny + Vv + Vy, 8w+ M, 50, + M}, 50, )
b

where 7 is the volume and ! is the length of the beam in the undeformed configuration,

Dy, D5, are the foundation reaction according to y and - axes, respectively while N,

Veys Vizr My, and M, are the externally applied forces and moments at the beam

boundaries. The variations of strains are expressed in terms of displacements as

2 2 2
5gxx=5(a”j—za Ow )y | Ls( 27 ow7)_
Ox 8x2 o) 2 | ox 8x (5.17)

= 5(u') — z§(w”) - yﬁ(v”) + v'§(v') + w’§(w')
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where (') denotes differentiation with respect to x. Within this framework, the stress

resultants of the beam are defined as

N=[,S8,d02 (5.18)

z

M,=[,S.2d2  M,=~[,S, ydQ2 (5.18b,c)

where N correspond to the axial force and M ,, M, correspond to the bending

yl
moments according to y and : axes, respectively. Subsequently, substituting the

expressions of the stress component given from eqgn. (5.11) and exploiting the strain-
displacement relations (5.8), the stress resultants are obtained as

N= aEA{u '+§(v'2 + W'Z)}r(]—a)jgshd.o —aN“ +(I-a)N"  (5.19a)

M, =—aEl W' +(1-a)[,8"2d Q2 =aM? +(1-a) M) (5.19b)

M. =aEly'-(1-a)|,8"ydQ=aM{ - (1-a)M! (5.19¢)

where N, Mf and Mﬁ are area integrals consisting the hysteretic parts of the

corresponding stress resultants, 4 is the cross section area, /,, I, the moments of

inertia with respect to the principle bending axes given as

A=],dQ (5.20a)

I,=[,2’dQ  I.=[,y’dQ (5.20b,c)

It is worth noting that these stress resultants refer to the directions of the infinitesimal
elements of the cross section at its deformed configuration, since they have been defined
with respect to the second Piola-Kirchhoff stress tensor.

After substituting eqns. (5.8) and (5.19) into eqgn. (5.15) and conducting some
algebraic manipulations, the differential equations of motion of the beam-foundation
system are obtained as
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B h
pAii—oEA(u" +vV' +w ")__(1 2)—8N = py(x.1) (5.21a)
X
23 h '
pAi/'+aEIZv""—(]—a)a Agz —aEA[(u'v'jLiv'S +iw'2v'j ]—
Ox 2 2
(5.21b)
G(th')
() ()= py () ()
23 rh '
pAv'{/+aE1yw""—(]—a) 8x2y —aEA (u'w'+éw'3+év'2w'j -
(5.21c)
G(th')
—(]—a)TJfPsz(x:f):Pz(x’f)““m'y(x’t)
or in a more compact form these equations are written as
el h
,DAii—{oc . +(1—a)82; :Isz (5.22a)
2 b (NN o(N"'
pA’v‘+aEIzv"”—(1—“)aaxAgz h (ax )—(l—a)%”’sfpy—m; (5.22b)
2um' o NI o(N"w
pA+aELW" ~(1-a)——"~a | )—(J—a)uﬂ?sz:l’ﬁm'y (5.22¢)
Ox Ox Ox

The differential equations of motion can also be written in terms of the total stress

resultants as

ON
Ail ——=
P o Px
oM. (N ,
PAV + axZZ - (8x )+psy =p,—m;
_O'M, o(Nw) ,
PAW— 2 5 + Dy =p,tm,
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The above equations are easily simplified by crossing out the nonlinear terms

regarding the hysteretic behaviour, leading to the well known differential equations

governing the motion of an elastic beam assuming geometrical nonlinearity. It is noted

that these equations are of the second order with respect to the axial and the forth order

with respect to the transverse directions.

The governing equations of motion are also subjected to the time dependent

boundary conditions derived also from the principle of virtual work as

aEA(u'+§(v’+w’))+(]—a)Nh} +N£}5u(0)=0 eqn{(3.19a)
- 0 (5.244)
_aNelJr(]—a)Nh] +N3}5u(0)=0—>[N(0)+Nf]5u(0)=0
- 0
aEA(u'+é(v’+w')j+(1—a)Nh} +Ni]§u(1)—0 eqn{(3.19a)
I z (5.24b)
_aNel+(]—a)Nh]l+Ni}5u(l):0—>[N(l)+Nfc]5u(l):
h
{aEA(uv+]v +1v’w'2j (I—a)th’} - aEIZv'"—(I—a)aMZ +
2 2 0 ox
O (5.24c)
+Vy0]5V(0)=0 eqns'(iwa’b)ﬁ{Nv’——agz+Vy0} 5v(0)=0
h
HaEA(uv+ V= v’w'zj (]—a)th'} —|:aE]Zv'" (1- a)a?j } +
i
: (5.24d)
+V! g—cas(519ab) |y OM: i sv(1)=0
ox Y
1 5. 1 oM’!
aEA(uw+ w4+ = v'zwj (I—a)th' —| aELW"—(1-a)—=| +
2 2 0 ox
" (5.24e)

+Vﬂ5w(0):0 >

eqns.(5.17a,c)

Sw(0)=0

oM
Nw ——2 40 }
ox

0
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h
oM ¢
ox

{aEA(u'w%éwd +év’2w'j+(1—a)th'} +

—[aEIZw"'—(I—a)
/

' (5.24f)

5w(l):0

oM
! Jow(1) =0tz tres {wa__a : V]
X

[

[(aEIZv"—(I—a)Mf)O

+M£}5v'(0)M>[MZ (0)+ M2 ]6v (0)=0 (5.249)

[(aEIZv"—(I—a)Mf )l

+Mé}5v’(1)M>[MZ(Z)+M£}5v’(l):0 (5.24h)

[(aElyw”—(l —a)M! )‘0 +Mﬂ5w'(0)M)[My (0)+ MY [sw(0) =0 (5.24)

[(aE]yw” ~(1-a)M! )‘l + M;]&W(Z)M)[My (1)+ M) [ow (1) =0 (5.24))

which can be written in a more convenient form as

a’]u(x,t)+a2Nb(x,t)=a3 (525&)
— Bv _ _

ﬁlv(x,t)+ﬂ2be (x,t)=ﬂ3 ﬂ]g(x,t)ﬂ‘ﬂszz (X,t):ﬁj (525b,C)
_0 _ _

yiw(x,t)+ V. (x.1) =73 yla—;v(x,t)+72Mby (x.1)=73 (5.25d,e)

at the beam ends x = 0,7, together with the initial conditions

u(x,0) =1, (x) i(x,0) = (x) (5.26a,b)
v(x,0)=v,(x) V(x,O)z\;/O (x) (5.26¢,d)
w(x,0)=w,(x) W(x,0)=w,(x) (5.26e,f)

232



Chapter 5 Geometrically Nonlinear Dynamic Inelastic Analysis of Beam-Soil Interaction Systems

where iz (x), vy(x), wy(x), #y(x), vy(x) and w,(x) are prescribed functions. In the
boundary eqns. (5.25b-e) V,,, V. and M,., M,, are the reactions and bending

moments with respectto y, z, respectively given by the following relations

r ] [ ] [ ! m aMf
be:aEA[u +3(v2+w2)}v +(1—a)th—aEIZv +(1—a) ~ (5.27a)
oM
V. = aEA[u ’+é(v'2 +w'? )}w'+(1—a)th’—aEIyw”+(1—a) 8xy (5.27b)
My, =—aElw'+(1-a) M) (5.27c)
M,, =ELv'~(1-a)M! (5.27d)

Finally, a.j,ﬁj,ﬁj,yj,fj (j=1,2,3) are functions specified at the beam ends

x=0,/. Egns. (5.25) describe the most general nonlinear boundary conditions
associated with the problem at hand and can include elastic support or restraint. It is
apparent that all types of the conventional boundary conditions (clamped, simply
supported, free or guided edge) can be derived from these equations by specifying

appropriately these functions (e.g. for a clamped edge it is o;=4;,=y,=1, El =

1=l ay=a;=Pr=Ps=7,=13=B,=Bs=r,=75=0).

The above equations of equilibrium and boundary conditions are easily simplified
by crossing out the nonlinear terms corresponding to material nonlinearity, leading to
the well known elastic formulation while, by crossing out the nonlinear terms
corresponding to the geometrical nonlinearity leads to the well known second order with
respect to the axial and the forth order with respect to the transverse directions.

5.3 Numerical Solution

According to the precedent analysis, the geometrically nonlinear inelastic problem of
Euler-Bernoulli beams supported on nonlinear inelastic soil, reduces in establishing the

displacement components « (x,¢) and v(x,z), w(x,7) having continuous derivatives up

to the second order and up to the fourth order with respect to x, respectively and also
having derivatives up to the second order with respect to ¢ These displacement
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components must satisfy the coupled governing differential equations (5.23) inside the
beam, the boundary conditions (5.25) at the beam ends x =0,/ and the initial conditions
(5.26). Eqgns. (5.21) are solved using the Analog Equation Method (Katsikadelis 1994,
2002) as it is described in Appendix Al.

5.3.1 Axial u(x,¢) and Transverse Displacements v(x,7), w(x,?)

According to this method, let u(x,7), v(x,r) and w(x,¢) be the sought solution of the
aforementioned initial value problem. Setting as u;(x.t)=u(x.t), u,(x,t)=v(x.1),
uz(x,t)=w(x,r) and differentiating with respect to x these functions two and four

times, respectively yields

0’u 0"y, .
! ~ F=q(xt)  (i=23) (5.28)

Eqgns. (5.28) are quasi-static that is the time variable appears as a parameter. They
indicate that the solution of eqns. (5.23) can be established by solving egns. (5.28) under
the same boundary conditions (5.25), provided that the fictitious load distributions

g;(x.t) (i=123) are first established. Following the procedure as described in
Appendix Al, the integral representations of the displacement components u;
(i=1,2,3) obtained by eqn. (A1.8, A1.36) and their first derivatives with respect to x
obtained by eqgn. (Al.22, A1.43), when applied to the beam ends (0,/), together with

the boundary conditions (5.25) are employed to express the unknown boundary
quantities w; (£.1), u;. ($01), up($02) and uy, (£0¢) (£=0,1) in terms of the

fictitious loads ¢; (i=1,2,3). In order to accomplished this numerical formulation, the

interval (0,7) is divided into L elements, on which g;(x,r) is assumed to vary

according to certain law (constant, linear, parabolic etc). The constant element
assumption is employed here as the numerical implementation becomes very simple and
the obtained results are of high accuracy.

Employing the aforementioned procedure, the following set of 20 nonlinear
algebraic equations is obtained
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h
T, 0 0 |(d] |P1| [as
0 T,, 0 [{d,+<D5i=1b, (5.29)
0 0 Ty ld; D} €3

with
F' E!. E!
T,=| ' 1 (5.30a)
0 Dj, D,
F E; E;p Ejz Ey F, Eu E;p Ez Ey
F 0 E E E F 0 E E E

T, 2 2 Fa Baulop 2 2 Fa B o ann 0

0 Dy Dy 0 Dy 0 Gy G, 0 Gy

0 0 Dy Dy; Dy 0 0 Gy Gy Gy

where EY;,E},,E;;-E4g are rectangular 2x2 known coefficient matrices resulting

from the values of the kernels /4;(r) (j=1,2,3,4) atthe beam ends and F', F;, F,

are 2xL rectangular known matrices originating from the integration of the kernels

along the axis of the beam, as defined in Appendix Al. Moreover, D;;-D,, and Gy;-
G,, are 2x2 known square, time dependent matrices including the values of the
functions a;, 8, 8;.7;.7; (j=1,2) of eqns.(5.25), while D} a3 and D}, D} b3, ¢,

are 4x1 and 8x1, respectively known, in general time dependent, column matrices

including the boundary values of the functions ag, 5, B;.7;.7; of egns. (5.25).

Furthermore, d;-d; are the generalized unknown vectors including the L unknown

.. T
time dependent nodal values of the fictitious loads g; ={q{ 95 ....q’L} (i=1,2,3) and

the vectors including the unknown time dependent boundary values of the respective
boundary quantities. More specifically, the expressions of the matrices of egn. (5.30) are

given as

0 0

a 0 a,EA 0

b=l p=al T (5.31a.b)
0 Ol] 0 azEA
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] #] 4]
D{‘:“gA o[y (0)+ii5 (0)] t+(1-a) ag’[zvh(o)f a;=1 ol (5.31c,d)
by, () +ii5 ()] AN )] a5

B’ 0 B0
Dy, =| ' ) Dy =aEl | ° _ (5.32d,e)
0 B 0o B

4]

i oM" (0 V ]
,BgNhuz,x (0)_,35)% B
h [
Db = (1-a)| BAN"i, . (1)~ ﬂgaMa;x(l) by = & (5.32f.9)
7 ¥ ]
ﬂ_O
3t (0) .
—paM (1)

0 Arel 0
N (0 0
o 72N 0) J Gy = —aFl, [7 2 0] (5.33a-c)

70 70
G22 = - _ G23 = aE]y _ (533d,e)
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4]
) M (0) 7]

N
yaN"i3 . (0)-72 . 0

V3
) oM™ (1 I
D =(/-a) 7§Nhu5,x(1)—7§¢ 73

T

~7, M (0) ;
=lash 73
- JMy (l)
q; q;3
q; u, u;
d1 = l/il d2 = l129)( d3 = l13’7(
lAll’x ﬁZ’xx lAlS’xx
ﬁl’xxx ﬁ39xxx

(5.33f,9)

(5.34)

where the boundary values of the displacement components u; (i=1,2,3) and their

derivatives with respect to x are written in matrix form as

i; = {u,(0.0) u;(L0)} (i=1,23)
T
ﬁi’xz{aul.(o,t) au,.(z,t)} (i=1,23)
ox ox
2 2 r
ﬁ. _ 8 ui(O,t) 8 Mi(l,t) (1223)
X o2 o2 ,

. _{531,”(0,2‘) 83Ui(1,f)}T (i=2,3)

ioxxx —
o’ o’

(5.35a)

(5.35)

(5.35¢)

(5.35d)

Thereafter, the discretization of the integral representations of the displacement

components u; (i=1,2,3) and their derivatives with respect to x, and the application to

the L collocation nodal points yields

237



Geometric and Material Nonlinear Analysis of Beam-Soil Interaction Systems

u; = Alq, + Coty +Cyiy (5.36a)

Uy = Ajqy +Colisy Upsxx = dp (5.36b,c)

u, = Ajq, +Coliy + Cltiypy +Cliy oy +C3llyyy (5.373)
Ujoy = A2y + Colig g +Cillp 0 +Coll (5.37b)
Uy = AJQy + Colig sy +Cllips (5.37c)

Uy, = AN T Clinny Uzspun = (5.37d,e)

U3 = A3q3 + Colig + Cjtizpy +Cll35 +Call350 (5.383)
Ujsy = A3qy + Colig, +Cjli3y +Colizayy (5.38b)
Uz, = A2Q3 + Colig ey TC)l3 (5.38¢)

Ugsee = A3q3 + Colizany U3k = 43 (5.38d,e)

where A}, A}, A} (i=0,1), (/=0,1,2,3) are LxL known matrices; Cy, C;, Cj,

C,, C; are Lx2 known matrices and u;, Wi,y, Ujsys Wisys Ujoxx are time

dependent vectors including the values of u,.(x,t) and their derivatives at the L nodal

points. These equations can be assembled in a more convenient matrix form as

lll = Budl ul,x = B?xdl (539&,b)
u; = BdZ Upox = B,xdz Upoxx = B,xde U2oxxx = B,xxxdz (540a-d)
uz = Bd3 Uzox = B,xd3 Uzoxx = B,x.xd3 Uzsyxx = B,xxxd3 (5'41a-d)

where BY,B and there derivatives are Lx(L+4) and Lx(L+8) known matrices,

respectively arising from A“, A, C", C and there derivatives as presented in
Appendix Al.

In conventional BEM, the load vectors q; are known and eqgns. (3.40-3.41) are used

to evaluate u;(x,7) and their derivatives at the L nodal points. This, however, cannot
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be applied here since q; are unknown. Thus, 3L additional equations are required in

order to permit the establishment of q;. Therefore, the final step of AEM is

implemented by applying the governing equations of motion (5.23) to the L collocation
points and employing eqgns. (3.39-3.41) leads to the formulation of the following set of
3x L semi-discretized nonlinear equations of motion

&1 d1
Md+Kd+P"=f=Mdd, +K:d, - +P"=f (5.42)
d.3 d3

where P! is a generalized vector including the nonlinear terms due to geometrical and
material nonlinearities and M, K, f are generalized mass, stiffness matrices and force

vector respectively, defined as
M, = pAB" K, =—a[EA] i f, =p, (5.43a-C)

P = aEA[[BMd2 ] . [B.d, |+[B.d; ] . [B’xdﬂ} +(1-a)N" (5.43d)

M, =pdB K, = a([EIZ] ver-NIB, —NelB,xx)+ a, K%B (5.44a-c)

P;‘:(]—a)[MlZ',xx—(NECB’X-NhB’m)J+(1—asy)ky{zfy} f,=p,-m,, (5.44d)

M; =pAB K, = a([EIng’

, ~NYB, —NelB)xx)+ a, K%B (5.45a-C)
Ph —(]- h  [(xgh h ]— k h _
V= (1-a)| My . ~(NSB . -N"B ) |+(1-ag k. {zL|  fy=p,+m,,  (5.450)

where N¢, Niﬁ are Lx L diagonal matrices containing the values of the elastic axial

and

X

force and its derivatives with respect to x at the L nodal points, p,,, p,, m,
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m_  are L x [ vectors containing the values of the external loading and its derivatives

z,X
at these points, while Pl.h , (i =1, 2,3) are hysteretic vector. Moreover, substituting egns.

(5.36) in egn. (3.18a), the discretized counterpart of the elastic axial force at the neutral
axis of the beam is given as

N = EA(Bf‘xdl)+§ EA[[B’xxdng_ [B.d, |+[B.d; | e [B'xd3ﬂ (5.46)

Subsequently, the initial conditions of the problem are formulated in discretized
form by substituting eqns. (5.39) in eqns. (5.26) yielding the following 3L linear

equations with respect to the generalized displacements d;, d,, d3 and the generalized

velocities d;, d,,d; for 1 =0 as

B“d, (0) =1, B“d, (0) =1, (5.47a,b)
Bd, (0)=v, Bd, (0)=v, (5.47¢,d)
Bd;(0)=Ww, Bd;(0)=Ww, (5.47¢,f)

The above equations (5.47a,c,e), together with egns. (5.29) written for 1 =0, form
a set of 3L+ 20 nonlinear algebraic equations which are solved to establish the initial
conditions d; (0), d,(0), d;(0) while similarly equations (5.47b,d,f) together with 12

equations resulting after differentiating egns. (5.29) with respect to time and writing
them for + =0, form a set of 3L+20 linear algebraic equations from which the initial

conditions d, (0), d,(0), d;(0) are established.

The aforementioned initial conditions along with eqgns. (5.29), (5.42) and the
evolution egns. (5.3), (5.12) form an initial value problem of Differential-Algebraic
Equations (DAE), which can be solved using any efficient solver. Within the framework
of this doctoral dissertation the Petzold Gear Method was used (Brenan et al. 1989) after
introducing new variables to reduce the order of the system (Bazant & Cedolin 1991)
and after differentiating (5.27) with respect to time to obtain an equivalent system with
a value of system index ind =1.
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5.3.2. Dynamic Incremental-Iterative Solution Algorithm

In the framework of this doctoral thesis, a dynamic incremental-iterative solution
algorithm has been implemented based on the fibre approach. The governing equations
of motion are written in state-space form and a predictor-corrector differential solver
base on the Petzold Gear method (Brenan et al. 1989) is adopted. It is worth noting that
the standard second order representation of egn. (5.40) could also be implemented
incorporating any Newmark method in conjunction with an incremental-iterative
Newton Raphson method for the integration of the equations of motion and the Bouc-
Wen evolution equations governing the inelastic behaviour of the beam-foundation
system.

5.3.2.1 State-Space Formulation / Fibre Approach

The developed beam formulation follows the displacement-based theory, thus load
control (Crisfield 1991) over the time steps is used and load stations are chosen
according to load history and convergence requirements. Having evaluated the load
vector, the initial conditions as well as all the necessary numerical coefficients the
standard second order representation of eqn. (5.40) can be brought into a state-space
form, by introducing an auxiliary unknown vector. More specifically,

I. A number of monitoring cross sections is defined. It is assumed that the monitoring
sections coincide with the L nodal points of the beam interval as well as the beams
boundaries.

ii. Since the distribution of the normal stress within the cross section plane is not
known in advance, the fibre approach is to be followed (Fig. 5.4) for the integration
of the section internal axial force and moments. Therefore, each section is divided
into a number of triangular or quadrilateral cells and standard two-dimensional
Gauss quadrature rules are employed in each cell to resolve the hysteric parts of the

stress resultants N, M;’, Mf. If the same number of Gauss points is employed in
every cell, then Ny, = Nejjg X NGuss holds. Thus, the monitoring stations of each

cross section coincide with the Gauss points of its cells, while exact patch between
adjacent cells is not required.

ii. For a specific dynamic loading and known initial conditions (5.47), at each time
step the dynamic differential equation of motion (5.42) and the evolution eqgns.
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(5.3), (5.12) are written in a system form of first order differential-algebraic

equations as follows
G(t,Y,Y)=0 (5.48)

where the generalized vectors are defined as

T

_ : ' : h  _h  _h
I B 5400

Lv4 L+ Lvs Lv4 Lvs Lvs Nar T L

T

o . . . b .hn .n
(Y}=4d, d, d; d; d, dy 2" z 2l (5.49b)

~~ ~~ L Il ~~ L N —— =

L+4 L+8 L+8 L+4 L+8 L+§8 dof L L

The above system of first order DAEs, is numerically integrated using a predictor-
corrector differential solver base on the Petzold Gear method (Brenan et al. 1989).
The iteration steps of the algorithm are executed until the dynamic load increment
is fully undertaken from the beam-foundation inelastic system or convergence

cannot be achieved.

Beam Model
i ————

Integrating
Cross Section

Fibres

......

......

Y Viibre ¥ Z

Fig.5.4. Discretization of the beam interval into integration cross sections and
discretization of the cross sections into fibres.
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iv. Since convergence is achieved for the specific dynamic load step, then the total
stress resultants are evaluated and the displacement and stress components are
stored.

v. The parameters of the problem are updated and the process described by steps (ii)-
(iv) is repeated until the total load time history is examined or convergence cannot
be achieved which means that the load cannot be fully undertaken (plastic
collapse).

A step-by-step algorithmic approach of the nonlinear solution is presented in a
flowchart form in Fig. 5.5.

e
( Start

Data
Beam-Foundation
Load history

v

‘ Time Increment m F—

Compute AEM matrices B", B

v

Compute general matrices &
general vectors
M, K& f

v

Initial conditions d;(0,x)

v

Iteration i

v

Discretization
Cells-Fibres-Gauss Points
Numerical integration
v

AEM
State-Space DAE
introduce new variables
reduce order of system

v

‘ Equivalent System G=0 ‘

v

Petzold Gear Method

YES ¢

Store output
data

a YES

NO

1

Next Increment m =m+1

N
"

Next Iteration i=i+1

End

[

Fig. 5.5. Flowchart of the numerical implementation.
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5.4 Numerical Examples

On the basis of the analytical and numerical procedures presented in the previous
sections concerning the geometrically nonlinear inelastic analysis of Euler-Bernoulli
beams on inelastic foundation, a computer program has been written using High Level
3G Fortran 90/95. Representative examples have been studied to demonstrate the
efficiency, wherever possible the accuracy and the range of applications of the
developed method.

5.4.1 Example 1 — Dynamic Inelastic Analysis of Cantilever Beam

For comparison purposes, in the first example a cantilever beam of length 7 =1m under

concentrated tip force P,, as depicted in Fig. 5.6a has been studied. The beam is made

out of structural steel with modulus of elasticity E =210GPa, hardening ratio

a =0.002, yielding stress oyg =240MPa and mass density p =7.85n/ m® . The cross
section is assumed rectangular of width »=0.05m and height 4 =0.1m, while the
hysteretic parameters are considered g =y =0.5. For the longitudinal discretization 21/

integration sections have been employed, while the cross-section has been discretized
into /5 quadrilateral cells with a 2x2 Gauss integration scheme for each cell. The
present example was first studied by Triantafyllou and Koumousis (2012) who
presented a hysteric triangular plane stress element incorporating the Bouc-Wen model.

40 -

30

le

N 20
|
|
|

=
o
1

I Length = 1m

Beam Model gcn? : 10
I i

Gz
g
Load Pz(kN)

—

Integration Sections

Time (sec)
(@) (b)
Fig. 5.6. Cantilever beam with tip load (a) applied sinusoidal load time history (b)
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At first, the static response of the cantilever is investigated by assuming a
monotonically increasing concentrated tip load. In Fig.5.7, the load-displacement curves
at the cantilever’s tip are presented considering both an elastic-perfectly plastic and a
elastoplastic-strain hardening material. In the first case the results are compared with
those obtained from Triantafyllou and Koumousis (2012) implementing a sparse mesh
of 62 and a dense mesh of 328 hysteric triangular plane stress element. Additionally, the
FEM solution (NX Nastran 2007) obtained by employing 60 nonlinear beam elements
and the 3-D FEM solution (NX Nastran 2007) obtained by employing 2560 solid (brick)
are also presented. Furthermore, the theoretical values of the initial yield load and the
lower bound for the ultimate load evaluated by the following analytical expressions
(Lubliner 2008) are also depicted in this figure.

bh? bh?
Poig = YO0 220N and Py = X007 = 30kN (5.50)
40
.""."”.;:.-.—.————v———v———-v———-*———-—v- ————— N
A A ACA A R AR A

Load Pz(kN)

Load Deflection Curves / Static Inelastic Analysis

Present Study - Perfectly Plastic Material
-y Present Study - Strain Hardening Material

V-v-

A A A 328 Hysteretic Plane-Stress Elements (Triantafyllou 2011)
® O o 62 Hysteretic Plane-Stress Elements (Triantafyllou 2011)
=3 -E-

471 FEM Solid Model - Perfectly Plastic Material (NX Nastran 2007)
9—9—¢ FEM Beam Model - Perfectly Plastic Material (NX Nastran 2007)

0 I I I I I I 1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
Tip Displacement (m)

Fig. 5.7. Load—displacement curve at tip of the cantilever beam, of example 1.

Moreover, in Fig. 5.8, the normal stress distribution contour diagram along the
beam length is plotted for the stage when the imposed load reaches the theoretically
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derived collapse load ( P. =30kN), as compared with the one obtained from the solid 3-

D FEM model. At this stage, the plastic hinge mechanism predicted by plasticity theory
is fully formed, as illustrated in this figure.

From the above, it is evident that the proposed beam formulation predicts
accurately the nonlinear response of the cantilever in case of a statically imposed load.
More specifically, the obtained results are almost identical with those of the solid FEM
solution and demonstrate a very good agreement with the hysteric plane stress
formulation. It is also worth noting that the implemented finite beam element model
fails to capture accurately the nonlinear response and underestimates the collapse load.

Normal Stress Distribution (MPa) 240
Present Study Pz = 30kN I 210

E 005

= 0 \l/ 180
> =

'% —0.050 01 \ T \ \ 150

. 05 06 07 08 09 1
Lenght (m) 120

90

FEM 3-D Solid Model (NX Nastran 2007) Pz = 30kN I 60

\l/ I30
0

Fig 5.8. Normal stress distribution along the beam length for the theoretically derived
collapse load stage, of the cantilever of example 1.

e 0 o

Thereinafter, the dynamic response of the cantilever beam is investigated. Two
different load cases are considered namely a sinusoidal excitation of increasing
amplitude (case-a, Fig. 5.6b) and a constant amplitude impact load (case-b) subjected at
the tip of the beam. The analytical expressions of the applied time histories are as follow

(case-a) P.(I,t)= 40-"sin (%rtj for  ¢3[0,7,] (5.51a)

tot

(case-b) P, (l,t) =27kN  for > [0, Y;m] (5.51b)
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In Fig. 5.9 the response of the cantilever is plotted in terms of applied load versus
tip displacement for load case-a, as compared with the one presented by Triantafyllou
and Koumousis (2012) illustrating excellent agreement. Finally, in Fig. 5.10 the time
history of the tip displacement of the cantilever beam is presented for load case-b,
assuming either elastic or inelastic material behaviour. From the contacted analysis, the
accuracy of the proposed formulation is verified and the significant influence of the
material nonlinearity is demonstrated.

40
20 —
= A
= 7 N
a A
g i |
QO0—=F--Fr-—-----1 & - - - ———— - — = -— -
° V- N
(5]
g 4
g A
20 - | A
|
IL}
l
-40 I i

I I I
-0.4 -0.2 0 0.2 0.4 0.6
Tip Displacement w(m)

Present Study

A A a 328 Hysteretic Plane-Stress Elements
(Triantafyllou & Koumousis 2012)

Fig. 5.9. Imposed load vs. tip displacement for sinusoidal excitation of increasing
amplitude.

5.4.2 Example 2 — Dynamic Inelastic Analysis of Clamped Beam on Foundation

In order to illustrate the importance of material nonlinearity in the dynamic response of
a beam-foundation systems, a rectangular cross-section (4 = 0.60m ,b = 0.30m ) clamped
beam of length 7 =6m , as shown in Fig. 5.11, has been studied. An elastoplastic-strain
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hardening material is considered, with E =32318.4MPa, hardening ratio « =0.02,
yielding stress oy =20MPa and mass density p=2.5tn/ m®. The beam is supported
on perfectly plastic Winkler foundation with initial stiffness k, = 20MPa and yielding

force P,y =60kN / m. For the longitudinal discretization 2/ integration sections have

been employed, while the cross-section has been discretized into /5 quadrilateral cells
with a 2x 2 Gauss integration scheme for each cell.

0.045
0.04 4
0.035 ~
Impact Load
§ 0.03 7 A—a—A Perfectly Plastic Material
= O—H—*E1 Strain Hardening Material
e Y (et Elastic Material
g
7 0027 N 17\ N\
a / \\ II \ ,' \
2 0.015 A P o\ b\
/ \ / \ / \
/ \ / \ / \
0.01 1 ! \ / \ ! \
) \ / \ ! \
) \ ! \ / \
0.005 - v ! ] Voo \
- \ 1 T,=0.01197s \\ /I \ p \ '
\ v/ \ K \
0~ — T AL T - T ]
0 0.01 0.02 0.03 0.04 0.05
Time (sec)

Fig. 5.10. Time history of the cantilever tip of example 1, for impact load.
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Fig. 5.11. Clamped beam on nonlinear foundation, subjected to uniformly distributed
impact load.
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Two load cases have been examined. More specifically, the beam is subjected to a

“quasi-static” uniformly distributed load p, (x.t) = p.o(#/T,,) for 0<¢<T,, (case-a)

and subsequently to an impact load p.(x,t)=p.y for t>T,, with T, =0.05sec

(case-b), as depicted in Fig. 5.11.

In Fig. 5.12 the load—displacement curves for load case-a are presented for different
types of material properties ignoring the foundation reaction, performing either
geometric and material nonlinear (GMNL) analysis or material nonlinear (MNL), as
compared with those obtained by a 3-D FE model (NX Nastran 2007) employing 8640
solid (brick) elements. From this figure, the accuracy of the proposed formulation is
confirmed through the excellent agreement between the compared results. Furthermore,
the predominant character of the material nonlinearity is verified while the geometrical
nonlinearity is of secondary importance, in this case.

500 A .
A&
Pl
Clamped beam A
Pl
il
400 1 ‘(z
/'A
3 -
) /
S A
O 300 ~ f/
E ' - -3 -B--E-Fa-8-8F
§/ """""" Lower Bound for the Ultimate Load
% 200 1 MNL Perfectly Plastic - Present Study
§ ----- MNL Strain Hardening - Present Study
A A A MNL Perfectly Plastic - 3D FEM (NX Nastran 2007)
A A A MNL Strain Hardening - 3D FEM (NX Nastran 2007)

100 — ——— GMNL Perfectly Plastic - Present Study

— — GMNL Strain Hardening - Present Study

0 O [O GMNL Perfectly Plastic - 3D FEM (NX Nastran 2007)

[ B N GMNL Strain Hardening - 3D FEM (NX Nastran 2007)
I I I I 1

0 0.04 0.08 0.12 0.16 0.2

Displacement w,,(m)

Fig. 5.12. Load—displacement curve at the midpoint of the clamped beam of example 2.
In Figs. 5.13, 5.14 the normal stress distribution along the beam’s length is

presented, performing geometrically nonlinear inelastic analysis in case of either
perfectly plastic or stain hardening material, respectively. The obtained contour maps
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are presented in conjunction with the corresponding deformed 3-D FEM contour
configurations, for different load stages (case-a). From these figures a very good
agreement between the results is observed verifying that the proposed formulation
accurately captures the spread of plasticity, while any minor divergence is attributed to
the inherent difference between the models. Finally in Fig. 5.15 the number of Gauss
points that have excided the yielding limit at the integration sections are presented for
perfectly plastic or stain hardening material. From these figures, it is easily concluded
that the spread of plasticity is more intense in the strain hardening case.

Applied Load — pz=235kN/m
Normal Stress Distribution (MPa)

€ 03
E
2
[}
T
3
Length (m)

Deformed 3-D FEM Contour Conflguratlon
- (NX Nastran 2007) |

Applied Load — pz=250kN/m
Normal Stress Distribution (MPa)

Height (m)

Length (m)

_ Deformed 3-D FEM Contour Conflguratlon
e (NX Nastran 2007)

Fig. 5.13. Normal stress distributions along the beam’s length, for perfectly plastic
material for different load stages compared to the corresponding deformed
3-D FEM contour representations.
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Moreover, in Fig. 5.16 the load—displacement curves at the midpoint w(//2) of the

beam on Winkler foundation are depicted, for different types of beam and soil material
properties in case of monotonically increasing load (case-a). The significant influence
of the material nonlinearity to the beam-foundation system response is verified and the
importance of the subgrade modelling to the overall behaviour is illustrated. Once again,
it is observed that, in this case the geometrical nonlinearity has minor importance
compared to the major influence of the material nonlinearity.

Applied Load — pz=300kN/m

Normal Stress Distribution (MPa)

Height (m)

Length (m)

Deformed 3-D FEM Contour Configuration
(NX Nastran 2007)

Applied Load — pz=400kN/m

Normal Stress Distribution (MPa)

Height (m)

Length (m)

(b)

Deformed 3-D FEM Contour Configuration

(NX Nastran 2007) \ I

Fig. 5.14. Normal stress distributions along the beam’s length, for strain hardening
material for different load stages compared to the corresponding deformed
3-D FEM contour representations.
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of example 2.
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Fig. 5.16. Load—displacement curve at the midpoint of the clamped beam of example
2, resting on nonlinear foundation, for monotonically increasing uniformly
distributed load.
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Thereafter, validity of the proposed model is further assessed in the case of
dynamic response of the beam-foundation system. In Fig. 5.17 the time history of the
beam’s midpoint displacement w(z,7/2) free of foundation support performing either
geometrically linear or nonlinear analysis, is presented for different types of material
properties. In this figure the corresponding 3-D FEM solutions are also presented,
highlighting the accuracy of the proposed model as well as the profound influence of
both material and geometrical nonlinearity in the dynamic response of the system.
These effects are also illustrated in Table 5.1, where the maximum values of

displacements and normal stresses are presented for three time instants (¢, =0.012,
t,=0.02, t; =0.05sec) in case of either perfectly plastic or stain hardening material.

The importance of geometrical nonlinearity is also depicted in Fig. 5.18 where the time
histories of the midpoint w(¢,//2) of the beam are presented performing either
geometrically linear or nonlinear analysis, assuming elastic-plastic strain hardening
material behaviour. In Figs. 5.19 the normal stress distributions along the beam’s length
are presented, for three time instants (¢;,7,,t;) for the same case of analysis, as
compared with the corresponding deformed 3-D FEM contour configurations. From this
figure a very good agreement between the results is observed verifying that the

proposed formulation accurately captures the spread of plasticity, also in the dynamic
analysis.

Table 5.1. Maximum displacementw and normal stress S, of the beam of example 2,
for different time instants (case-b).

Analysis Geometrically Linear Geometrically Nonlinear

Max S, (kPa) — w(l/2) (cm)  MaxS, (kPa)  w(l/2) (cm)

Strain Hardening

Time ¢, 23542.1 1.1062 23546.7 1.08

Time ¢, 15587.5 0.8276 16624.9 0.756

Time #; 18487.1 1.0936 21178.5 0.909
Perfectly Plastic

Time ¢, 20000 1.0984 20000 1.1596

Time ¢, 16328.2 1.0752 17426.9 1.0601

Time #; 17005.9 1.155 19803.6 1.1176
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Fig. 5.17. Midpoint time history of the beam of example 2, for impact load (case-b).
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Fig. 5.18. Midpoint time history of the beam of example 2, for impact load (case-b)
assuming elastic-plastic strain hardening material.
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Fig. 5.19. Normal stress distributions along the beam’s length, for strain hardening

material for different time instants compared to the corresponding
deformed 3-D FEM contour representations.

255



Geometric and Material Nonlinear Analysis of Beam-Soil Interaction Systems

Finally, in Fig. 5.20 the time history at the midpoint w(z,//2) of the beam on

Winkler foundation is presented, for different types of beam and soil material properties
in case of impact load (case-b). The profound influence of material nonlinearity in the
geometrically nonlinear dynamic response of the system is once again verified, as well
as importance of the subgrade modelling to the overall dynamic behaviour of the
system.
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Fig. 5.20. Midpoint time history of the beam example 2, resting on nonlinear
foundation for impact load (case-b).

5.4.3 Example 3 — [-Beam on Nonlinear Foundation

In this final numerical application, an I-shaped cross section (total height # =0.3m

total width b =0.3m, flange width ¢, =0.02m, web width #,,=0.0/m) fixed-pinned

beam (E =213.4GPa, oy)=285MPa) of length /=8m resting on an elastic-plastic

Winkler foundation (k, =25MPa, P,y =100kN/m, a, =0.05) has been studied,

V4
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employing 20 integration sections, 43 quadrilateral cells (15 fibres) and a 3x3 Gauss
integration scheme for each cell (cross sectional discretization). The computational
model implemented in the proposed formulation is presented in Fig. 5.21a. The beam is

subjected to a uniformly distributed impact load p.(x,7)=p., for t>T,, with

T,y = 0.2 sec .

L T O 2 2 2 2

Beam Model

...Integration Sections...

| [=8m [ F—03— (a)

Elements: 2882
Nodes: 3059
DoF: 18354

(b)
Fig. 5.21. Fixed pinned beam subjected to a uniformly distributed loading (a) and
shell model implemented in NX Nastran (2007) (b).

At first, the static response of the beam-foundation system is investigated by
assuming a monotonically increasing uniformly distributed load. In Figs. 5.22 the load-
displacement curves are presented for different types of beam material properties
ignoring the foundation reaction, as compared with a FEM solution (NX Nastran 2007)
obtained by employing 2882 quadrilateral shell elements (Fig. 5.21b). Excellent
agreement between the results is observed, verifying once again the accuracy and
efficiently of the proposed formulation. More specifically, the initial yielding load and
the ultimate load are accurately captured, as well as the load path in cases of hardening
and large displacements analysis. Moreover, in Figs. 5.23 the load-displacement curves
are presented for different types of beam and soil material properties. From these
figures, the profound influence of both the geometrical and the material nonlinearity to
the response of the beam-soil interaction systems is illustrated.
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Fig. 5.22. Load—displacement curve of the beam of example 3, for monotonically
increasing uniformly distributed load.
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Fig. 5.23. Load—displacement curve of the beam of example 5 resting on nonlinear
foundation, for monotonically increasing uniformly distributed load.
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Thereinafter, the dynamic response of the system is investigated. In Fig. 5.24 the

time history of the beam’s midpoint displacement w(¢,//2) free of foundation support

performing either geometrically linear or nonlinear analysis, is presented for different
types of material properties. In this figure the corresponding shell FEM solutions are
also presented, highlighting the accuracy of the proposed model as well as the profound
influence of both material and geometrical nonlinearity in the dynamic response of the
beam. These effects are also illustrated in Table 5.2, where the maximum values of

displacements and normal stresses are presented for three time instants (¢, =0.05,
t,=0.1, t;=0.2sec) in the cases of elastic, perfectly plastic and stain hardening
material. Moreover, in Fig. 5.25 the time history at the midpoint w(¢,//2) of the beam

on Winkler foundation is presented, for different types of beam and soil material
properties. From this figure it is concluded that the dynamic response of the system is
mainly affected by the inelasticity of the foundation elements. That implies that the
subgrade modelling is of great importance to the overall dynamic behaviour of the

system.
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Fig. 5.24. Midpoint time history of the beam example 3, for impact load.
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Table 5.2. Maximum displacementw and normal stress S, of the beam of example 3,
for different time instants (case-b).

Analysis Geometrically Linear Geometrically Nonlinear

Max S, (kPa)  w(l/2) (cm)  MaxS. (kPa)  w(l/2) (cm)

Elastic
Time ¢ - 3.79 - 3.86
Time ¢, - 8.17 - 7.82
Time & - 0.11 - 0.18

Perfectly Plastic

Time ¢ 285000 22.32 285000 19.75
Time ¢, 284571 23.40 285000 18.61
Time #; 281326 22.53 280148 18.77

Strain Hardening

Time ¢ 285987 14.24 253276 1242
Time ¢, 258174 13.27 298977 1326
Time % 401548 15.43 255073 12.31

. . ©O—0—=© Perfectly Plastic / Plastic Winkler
Geometrically Nonlinear

0.016 - .. ¢ & Strain Hardemg / Plastic Winkler
0.012
g
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Fig. 5.25. Midpoint time history of the beam of example 3 resting on nonlinear
foundation, for impact load.
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5.5 Concluding Remarks

In this chapter, a Boundary Element Method is developed for the geometrically
nonlinear inelastic analysis of Euler-Bernoulli beams of arbitrary doubly symmetric
simply or multiply connected constant cross-section, resting on inelastic Winkler
foundation. A hysteretic Bouc-Wen force-displacement model is employed in order to
describe the inelastic behaviour of the Winkler springs. A displacement based
formulation is developed and inelastic redistribution is modelled through a distributed
plasticity (fibre) approach. A uniaxial hysteretic law is considered for the evolution of
the plastic part of the normal stress following the Sivaselvan and Reinhorn (2003)
model. Numerical integration over the cross sections is performed in order to resolve the
hysteric parts of the stress resultants. Application of the boundary element technique
yields a system of nonlinear Differential-Algebraic Equations which are written in state-
space form and solved together with the hysteretic evolution equations. The main
conclusions that can be drawn from this investigation are

I. The proposed beam formulation is capable of yielding results of high accuracy, as
verified by comparing with analytical and FEM results, with minimum
computational cost, providing a simple and efficient computational tool for the
geometrically nonlinear dynamic inelastic analysis of beam-foundation systems.

ii. The significant influence of material nonlinearity in the dynamic response of the
system is demonstrated through the significant discrepancy between the results of
the elastic and inelastic analyses.

iii. The proposed model accurately captures both, the initial yielding and the ultimate
(collapse) load in cases of statically imposed loading.

iv. The normal stress distribution and the regions of the developed plastic hinges are
precisely described throughout the dynamic response.

v. The influence of geometrical nonlinearity is illustrated through the significant
discrepancy between the results of the linear and the nonlinear analyses.

vi. The significant influence of the inelastic character of the foundation is also
demonstrated.

vii. A small number of cells (fibres) is required in order to achieve satisfactory
convergence.
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viii. The developed procedure retains most of the advantages of a BEM solution while
requiring a small number of nodal points to achieve high accuracy.

ix. The use of BEM enables the accurate calculation of the stress resultants which are
very important during both the analysis and the design of beam-foundation systems.
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Conclusions and Future Research

6.1 Concluding Remarks

In this dissertation, a series of problems concerning the geometric and material
nonlinear analysis of beam-soil interaction systems have been studied and solved. The

main issues investigated are the following:

e The geometrically nonlinear static analysis of shear deformable beams on nonlinear

foundation

e The geometrically nonlinear dynamic analysis of shear deformable beams on

nonlinear foundation

e The geometrically nonlinear inelastic analysis of shear deformable beams on

inelastic foundation

e The geometrically nonlinear dynamic inelastic analysis of beam-soil interaction

systems

For the solution of the examined issues, innovative methods have been formulated
and novel beam element models have been developed. These models are based on the
Boundary Element Method (BEM) while the respective boundary-value and the initial-
value problems are solved numerically employing the Analog Equation Method (AEM)
as well as the Domain Boundary Element Method (D-BEM). The main conclusions that

can be drawn from this doctoral dissertation are

1. The proposed beam formulation is verified in terms of accuracy through
comparison with various analytical, semi-analytical, FEM and experimental

results.

ii.  The efficiency of the presented computational tool is also assessed via
comparisons with refined shell and solid models implemented in commercial FE

codes. The obtained results were in excellent agreement with those from the



Geometric and Material Nonlinear Analysis of Beam—Soil Interaction Systems

1il.

1v.

Vi.

Vil.

Viil.

iX.

sophisticate models, indicating the advantageous character of the beam approach

in terms of computational cost, reliability and modelling.

The development of plastic deformations reduces the flexural rigidity of the beam

and eventually leads to plastic collapse in case of geometrically linear analysis.

The fibre based beam element formulation is proved suitable for the capacity
assessment of frame members, overcoming the well documented restrictions of

the concentrated plasticity formulations.

The proposed distributed plasticity model accurately captures both, the initial
yielding and the ultimate (collapse) load in cases of statically imposed, cycling
and dynamic loading., while the significant influence of material nonlinearity in
the response of the beam-soil interaction system is demonstrated through the

significant discrepancy between the results of the elastic and inelastic analyses.

The normal stress distribution and the regions of the developed plastic hinges are
precisely described, while a small number of fibres is required in order to achieve

satisfactory convergence.

The influence of geometrical nonlinearity is illustrated through the significant
discrepancy between the results of small and large displacement assumptions, in

almost all cases of analysis.

The kinematical components of an elastic beam under primary resonance are
bounded due to the developed axial force resulting from the large displacement
assumption (i.e. retaining the square of the slope in the strain—displacement
relations). The response of both the kinematical components and the stress
resultants is characterized by the beating phenomenon. It is worth noting that such

phenomena cannot be described by the linearized second-order analysis.

The geometrical nonlinearity increases the flexural rigidity of the beam.
Especially in case of inelastic analysis the arising axial force, either from the
imposed axial loading or from the axially restraining boundary conditions,

prevents the plastic collapse of the beam.

The geometrical nonlinearity influences significantly the natural frequencies of an
elastic beam, while the coupling effects of bending and shear deformations along
the member as well as the shear forces along the span induced by the applied axial

loading influences the response system.
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Xi.

Xil.

Xiil.

X1v.

XV.

XVI.

XVvii.

XViil.

XiX.

XX.

The axial-shear-flexure interaction is proved to have paramount importance in the
inelastic static analysis (J2 three-dimensional plasticity) either under small or

large displacement assumption.

The shear deformation effect reduces the flexural stiffness of the beam, while
results in larger transverse displacements and lower predicted eigen-frequencies

for a given set of boundary conditions.

The superiority of the Timoshenko beam formulation over the Euler-Bernoulli is
verified, especially for low beam slenderness, by yielding results closer to those of

refined shell and three-dimensional FE models.

Shear-locking has been successfully eliminated, while the added shear mechanism
alters significantly the dynamic characteristics of the elastic beam-soil interaction

system.

The significant influence of the inelastic character of the foundation to the

response of the beam-soil interaction system is demonstrated.

The lift up of the beam caused by the tensionless (unilateral) character of the
foundation is observed, leading to significantly different response compared to the

bilateral one. This influence is magnified under dynamical excitations.

In the elastic analysis, the response of the beam is strongly influenced by the
linear and nonlinear parameters of the foundation reaction, while the damping

coefficient is of paramount importance as it bounds the vibration amplitude.

The versatility of the proposed formulation is also verified since several
phenomena can be easily incorporated into the analysis (i.e. kinematic and inertial
interaction), while the soil nonlinearity can be taken under consideration by means
of several hybrid spring configurations (i.e. Winkler, Pasternak, three-Parameter,

p-y spring in series to Kelvin—Voigt element, phenomenological springs, etc.)

The developed procedure retains most of the advantages of a BEM solution while

requiring a small number of nodal points to achieve high accuracy.

The use of BEM enables the accurate computation of the derivatives of the field
functions (e.g. stresses, stress resultants) which is very important during the

analysis and the design of beam-foundation systems.
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6.2 Future Research

This doctoral dissertation consist a contribution to the geometric and material nonlinear

analysis of beam-soil interaction systems. The following are research directions that will

further improve the presented work and will provide even better understanding of the

influence of nonlinear phenomena to the beam-soil systems behaviour.

L.

il.

1il.

1v.

Vi.

Vil.

The geometrically nonlinear inelastic analysis of beam-soil interaction systems
presented in this work can be extended in order to take explicitly into account the

axial-shear-flexural (J2 plasticity) interaction.

Incorporation of shear warping functions for the accurate shear stress distribution

along the cross-section into the proposed computational tool.

The fibre beam formulation for the inelastic analysis can be further improved by

incorporating kinematic hardening though the adopted hysteretic model.

As the fibre beam formulation is suitable for multi-phenomena analysis, the
developed model can de further improved by embodying torsion and distortional

warping in the large displacement regime.

The springs’ configuration describing the inelastic behaviour of the soil medium
can be enriched by utilizing more sophisticated spring-dashpot formulations (i.e.
BWGG) where the separation of the beam from the soil, the radiation damping and

the degradation phenomena are taken under consideration.

The formulation presented in this dissertation can be extended to beams of

composite cross-section.

Formulation of a finite beam-element for the study of structures, which will
incorporate the phenomena, investigated in this dissertation as well as the future

research directions.
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Appendix Al

AEM for
Ordinary Differential Equations of the 2" and 4™ Order

Al.1 Introduction

Several boundary value problems, formulated in this doctoral thesis, have been solved
employing the Analog Equation Method (AEM). This method has been developed by
Katsikadelis (1994, 2002b) and is based on the well known Boundary Element Method
(BEM). AEM is capable of dealing with either linear or nonlinear, static or dynamic
boundary value problems with constant or variable coefficients, subjected to either
linear or nonlinear boundary conditions, overcoming the drawbacks of BEM.

Contrary to the numerical methods based on domain discretization like the Finite
Element Method (FEM) or the Finite Difference Method (FDM), the BEM requires only
boundary discretization, thereby reducing the dimensionality of the problem by one
order. Thus, the discretization procedure is simplified while the number of unknowns is
significantly reduced. Yet another important advantage of this method is its efficiency
in determining accurately the derivatives of the field functions, which are the unknowns
of the problem, as it does not require the use of shape functions, while it allows
evaluation of the solution and its derivatives at any point of the domain of the problem
and at any time instant (Hartmann 1989, Hartmann & Katz 2007, Katsikadelis 2002b).

Nevertheless, BEM is not free from drawbacks. At its current stage of development,
this numerical method requires the determination of the fundamental solution (or
Green's function), thereby it cannot be used to problems for which Green's functions are
either unknown or cannot be calculated. Thus, it is not applicable to non-linear static or
dynamic problems for which the principle of superposition is not valid. A further
disadvantage is that typically boundary element formulations give rise to fully
populated and non-symmetric matrices. This means that the storage requirements and
computational time tend to grow, especially in large scale problems.

During the last years, intense research has been conducted in an effort to overcome

these disadvantages (Yu et al. 2010). Most of the new developments in BEM aim at


http://en.wikipedia.org/wiki/Green%27s_function

Geometric and Material Nonlinear Analysis of Beam—Soil Interaction Systems

dealing with complicated nonlinear time-dependent problems or linear problems for
which the fundamental solution is not known; thereby the resulting integral solution
involves domain integrals (Brebbia 2010). The most efficient techniques that
successfully overcome most of the difficulties and at the same time preserve the pure
boundary character of BEM are the Dual Reciprocity Method (DRM) (Kontoni et al
1991, Partridge et al 1992), which is a general technique for converting domain
integrals to the boundary, and the Analog Equation Method (Katsikadelis 1994,
Katsikadelis 2002b). The latter is a generally applicable boundary method for solving
nonlinear static and dynamic problems in continuum mechanics; alleviated from the
restrictions characterizing the DRM.

AEM (Katsikadelis 1994) is based on a simple concept, according to which the
linear or nonlinear problem is replaced by an equivalent simple linear one under a
fictitious source with the same boundary and initial conditions. The substitute problem
is chosen so that the integral representation of the solution is known and it is solved
using BEM. The numerical implementation of AEM involves domain discretization,
altering the pure boundary character of the method. However, it is noted that domain
discretization is employed only for the calculation of the domain integrals rather than
the discretization of the continuum, as in the Finite Element Method. Thus, contrary to
other domain methods, neither the concurrence of the internal nodes nor the continuity
conditions between the elements are required. Lately, important developments have
been achieved regarding AEM. Katsikadelis and Tsiatas (2003) presented a boundary-
only method, in the sense that the discretization and integration are limited only to the
boundary, in which the fictitious loads are represented by Radial Basis Function (RBF)
series. Even though the method maintains all the advantages of the pure BEM,
additional parameters are imposed due to the RBFs, which are not easily evaluated
(Katsikadelis 2008, Babouskos 2011). Finally, a new purely meshless method for
solving elliptic partial differential equations based on the analog equation principle
(MAEM) is presented by Katsikadelis (2009).

In this appendix, the main principles of AEM in its general form are presented, in
case of one-dimensional boundary value problems described by ordinary differentia
equations of the 2" and 4™ order, under the most general boundary conditions. It is
noted that the governing equations as well as the boundary conditions of the problem

can be either linear or nonlinear.
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A1.2 Main Concepts of the Analog Equation Method

The main concept of the Analog Equation Method can be mathematically represented as

follows: Consider the boundary value problem

N(u)zg(x), xe (Al.1a)

B(u)zg_(x), xel’ (A1.1b)

where N (), B() are in general nonlinear differential operators with constant or
variable coefficients, g(x) is a source or an external loading function of known

distribution and u = u(x) is the sought solution of the problem. Consider N* () being

a linear or nonlinear differential operator of the same order with N . By applying this

operator to the solution of the problem u(x), yields

N*(u)=q(x), xe (Al1.2)

where ¢(x) is an unknown source density function. Eqn. (Al.2) is called analog
equation of the initial problem and in combination with the boundary conditions
(A1.1b) indicates that the solution of the original problem could be obtained, provided
that the source density function ¢ (X) will be first determined. The establishment of this
function, which hereinafter will be called fictitious source density function or fictitious
load, 1s one of the essential ingredients of AEM. Implementation of the method leads to
the numerical establishment of the fictitious load q(x)in the domain £, through the
solution of a system of linear or nonlinear algebraic equations. The boundary value
problem defined in eqns. (A1.2) and (A1.1b) is called equivalent or substitute problem.
It is noted that the analog equation is defined by a differential operator of the same order
with that of the initial problem, while the same number of boundary conditions are
obtained and continuity of the solution and its derivatives up to the order of the initial
operator N is ensured.

Moreover, eqn. (A1.2) can be also employed for the solution of the boundary value

problem defined in eqns. (Al.1), in case where u=u(x,y) and g=g(x,y) (where

ye), gzg(x,y) (with y € 7). Subsequently, the numerical implementation of
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AEM leads to a system of differential equations the differential operator and boundary

conditions of which depend only on y. Finally, it is noted that the AEM can be easily

employed for the solution of boundary value problems with more than one unknown

functions u by implementing eqn. (A1.2) for each one of the unknowns.

A1.3 AEM for Ordinary Differential Equations of the 2"! Order
A1.3.1 Integral Representation — Numerical Solution

Consider the one-dimensional boundary value problem

du d’u
N[U,E,dx—zJZg(X), XE(O,Z) (Al3a)
aIB[u,%j+a2u:a3, x=0,1 (A1.3b)
X

where N (), B(-) are linear or nonlinear one-dimensional operators of the second and
fist order, respectively, a; (i=1,2,3) are functions specified at x=10,/, g(x) is the
known source function defined at (0,/) and u=u(x) is the sought solution of the

problem, having continuous derivatives up to the second order in (0,1 ) According to

the concept of AEM, the substitute problem is also of the second order, thus the

following equation can be applied

o

e =q" (x) (Al1.4)

In terms of mechanics of materials, eqn. (A1.4) describes the axial response of a beam
with axial stiffness E4 = I, under the action of a fictitious loading ¢"“ (x) . According to

section Al.2, eqn. (Al.4) indicates that the solution of the original problem (A1l.3a,b)

could be obtained as the solution of this equation subjected to the same boundary

condition (A1.3b), provided that the fictitious loading ¢* (x)will be first determined.
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This can be accomplished as follows: The weak form of the analog equation is written

as

e (s £y =0 =

1 * 1 * (A1.5)
_[Ou"(x)u (x,f)dx—joq“ (x)u (x,&)dx=0

where ()' denotes differentiation with respect to x. The fundamental solution of the

one-dimensional Laplace operator is adopted as the u” function, which is a particular

solution of the differential equation

dzu*(x,f)

e =5(x—¢) (A1.6)

where o (x -¢& ) is the one-dimensional Dirac (J) function. The fundamental solution u'

is obtained as
¥ 1
u (x,§)=3|r| (A1.7)

with »=x-¢ being the distance between any two points x and &, where & is a
constant collocation point while x runs through the interval (0,1 ) By applying

sequential integrations by parts in the first integral equation (A1.5), substituting eqns.

(A1.4) and (A1.7) and exploiting the property of the Dirac function, yields

x=[

u(¢&)= IéAg (x.£)g" (x) dx—[—/l}’ (x,&)u(x)+ A3 (x,é‘)u’(x)lczo (A1.8)

where A (r) (i=1,2) are the kernels, defined as

Af (r)zésgnr Ay (r)=§|r| (A1.9a,b)
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with sgn being the signum function, defined as

+1, r>0
sgnr = (A1.10)
-1, r<o0

for » =0 the signum function is not defined. The relation (A1.8) constitutes the integral
representation of the solution as a function of the fictitious load and the boundary
quantities. In order to relate the boundary quantities with the fictitious load, the integral

representation (A1.8) is applied to the interval edges 0,/. In that case,

E & =0" (Al.11a)
E & =1 (Al1.11b)

Consequently, two boundary integral equations are obtained as

u(0)= Ié/lé’ (x.&)q" (x)dx—[—/l}’ (x,& )u(x)+ A5 (x, §O)u’(x)}:; (Al.12a)

u(z)zj;Ag(x,g,)q”(x)dx—[—A;‘(x,g,)u(x)mg(x,gl)u'(x)Kl (A1.12b)

These integral equations can be written in a matrix form as

u u ﬁ _ u
[E, Ez}{ﬁ’x}—T (A1.13)
where

ﬁTz[u(O) u(l)] ﬁﬁz[u'(O) u’(l)] (Al.14a,b)

| MO8 A7 (15) ]
' _

] (Al.14c,d)
A1(0.8)  —AF(LE)+1
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l
Ay (x,&))q" (x)dx
T" = j"l (x.co)a" () (Al.14e)
_[0 A3 (x,&)q" (x)dx
Substituting eqns. (A1.9) into the expressions of arrays (Al.14c¢,d), yields
/2 -1/2 0 12
E} = / / E) = / (Al.15a,b)
-1/2 1/2 -1/2 0

The boundary integral equations (A1.13) together with the boundary conditions (A1.3b)

permit the establishment of the boundary quantities u, u, in terms of the fictitious
load.
Thereafter, the discretization of the interval (0,/) is performed and the

approximation of the fictitious load is established. For this purpose, the interval is
discretized into L elements employing the constant element assumption for the

fictitious load distribution. More specifically, it is assumed that the fictitious function

¢" (x) maintains constant in each element, equal to its mid-point value (Fig. Al.1).

According to the above assumption, the column matrix T" is approximated as

q(x)/!\ Q2 Z-(L;li q(x) - Real Loading Function qZ:
I q >&
[ —AT;
|

| § |
e i it S L A
x=0 1 2 i J L X

$o=0 Constant Element T
x.
v N Constant Element T;
Xj1 7
Xjo & Collocation points
X2 >
Length / >

Fig. Al.1. Discretization of the interval (O,I ) with constant elements.
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L
X g, A () “
z

T ~ 17~ — T — Fy Fy o Fpp 95 “q" (A1.16)
& u Yy Fyy - Fyp |-
> 4], A5 (x.g)dx
Jj=1 !

Il
>

where the coefficients l%l]” (i=12, j=1,2,...L) are defined as
Fii=[p A (x&)de Fiy =, A5 (x.&)dx (A1.17a,b)

Subsequently, the boundary conditions (A1.3b) can be written in a matrix form as

A

u
DY D”} .
[ ! ? {u

X

}+]A)‘,‘)n,(ﬁ,ﬁ)x):a§ (A1.18)

where D7, DY are 2 x 2 known square matrices including the values of the functions a;
(i=1,2) of eqn. (A1.3b), ]A)Z;,nl = ]A)lj,nl (ﬁ,ﬁ,x) are 2x 1 column matrices including the

nonlinear terms of the same functions and a5 are 2 x/ known column matrix including

the boundary values a; of eqn. (A1.3b). Relations (A1.13) and (A1.18) can be written

in a more convenient form as

1 E2 { }+ o=t (A1.19)
D} D% |(Yx Lnl a5

Alternatively,

q
F* EY E! . 0 . 0
DR PRI O ) Lo — E“d“ + DY = (A1.20)
nl nl
u u u u
0 DY DY @
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nl

. A T . T
where F* =-F", ( ”) :[0 D?,nl:|’ while(d“) :[q” u ﬁ’x} is a (L+4)xI
generalized unknown vector including the values of the fictitious load and the boundary
values of the respective boundary quantities. Eqns. (A1.20) constitute a nonlinear

system of 4 algebraic equations with L+4 unknowns. In order to solve this system, L

additional equations are required.

Exploiting the aforementioned discretization of the interval (0,1 ) and the
approximation of the fictitious load with constant elements (Fig Al.1), the integral
representation of the solution (A1.8) for the &; position of the i element (& #0,/) can

be written as

u(&)= qufr A5 (x,&;)dx - [A}‘(x,cf,-)u(x)wlg‘(x,gi)u'(x)}le (A1.21)

j=1 =

In order to solve the problem, the derivative of the solution is required. Thus,

differentiating the above equation with respect to &, the discretized form of the

derivative of the solution is obtained as

x=l
du(&) &g o4 xé) | o (x8) 045 (x.&)
T q" Jr PY: u(x)+ TR (x) ) (A1.22)
where
oA (x8)_, for  x=0.1 (A1.23a)
0¢
—5/158(;,95):_/1;,()6,5) for Vxe[0,/] (A1.23b)

Finally, applying eqns. (A1.21) and (A1.22) to the L collocation points yield

u
u=A"q" +C" {A } =B"d" (A1.24a)
ux
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i}
U u u u qu
u,=Aq +ny{ﬁ }:B,xd
X

(), ]

(A1.24b)

(A1.25a,b)

are L x I vectors including the unknown values of » and its derivative with respect to

x, at the L nodal points of the interval, while A", Af‘x are Lx L square matrices with

coefficients defined as

4 = L_j A (x,&)dx 4y =—L—j A (x.&;)dx

(A1.26a,b)

where i=1,2,...L, j=12,..L. Moreover, C", C", are Lx4 matrices defined as

(Mokos 2007)
[ AL(0.8) -A(0,8) | -AL(LE) A
|4 (0.8) -4 (0.8

while exploiting eqns. (A1.9) result in

1

A08)=-5  A08)-38

ALE)=2  AE)=10-4)

!
2
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where & =1x;, is the coordinate of the mid-point of the element /7; (Fig.Al1.1) and B”,
B“ are Lx(L+4) matrices defined as B" =[A” Cu}, B’ :[AZC CL;}

The final step of AEM is the application of the governing equation of the initial
problem (A1.3) at the L internal nodal points and subsequently the substitution of the
values of the field function » and its derivative u’ at the L internal nodal points

according to eqns. (A1.24). From the definition of the analog equation (A1l.4) it is

apparent that the values of the second derivative u” at the nodal points are equal to the

corresponding values of the fictitious load vector q“. Thus, L additional algebraic

equations are derived with respect to the generalized unknown vector d“. These
equations in combination with eqns. (A1.20) constitute a system of L+4 algebraic
equations with L+4 unknowns. The solution of this system provides the values of the
fictitious load at the L internal nodal points as well as the values of the field function u
and its derivative ' at the edges of the examined interval. Thereafter, exploiting eqn.
(A1.24) the vectors including the values of the solution and its derivative at the L
internal nodal points are obtained. Finally, it is noted that the values of » and ' at any

point of the interval §e(0,l) can be easily calculated by applying the integral

representations (A1.21-22) substituting the value & with &.

A1.3.2 Evaluation of Integrals

In order to determine the coefficients of the matrices F“, A" and A" (relations

(A1.20), (A1.24)) the integrals defined in eqns. (A1.17) and (A1.26) have first to be
evaluated. This calculation can be easily performed employing any numerical
integration scheme (e.g. Gauss, Gauss-Lobatto). Nevertheless, due to the closed form of

the kernels, the analytic integration along the element’s /7; length is indicated, thus
avoiding any computational error and the increase of the computational time. Exploiting
eqns. (A1.9), the analytic expressions of the integrals of the coefficients FU” (i=12,

j=12,... L) defined in eqns. (A1.17) are obtained as

2 ] 2 X=X, a 1 2712
Fy=11x] £y == (1= | (A1.29a,b)

x:ij x:x”
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where x;;, x;, are the coordinates of the element’s /7, edges (Fig.Al.l). Moreover,

il
from eqn. (A1.9), the analytic expressions of the coefficients A;’ (i=12,...L,

j=12,... L) defined in eqn. (A1.26) are obtained as

o 1 2 L
A@==—-{(no—x)} , i> ) (A1.30a)
4 x=x;
o 1 2= .
A :_[(xm_x) } , i<) (A1.30b)
4 X=X
] X=X ] X=X
Ag=——B%0—ny 0+—Bn0—xf} Y, (A1.300)
4 X=X 4 X=X,
A =S i A ==IDITEL i< A=0 (AL30ded)

where x;;,x;, and x;, are the coordinates of the element’s /7; edges and mid-point,

respectively, while x;, are the coordinates of mid-point of the element /7 (Fig.A1.1)

Al.4 AEM for Ordinary Differential Equations of the 4™ Order
A1.4.1 Integral Representation — Numerical Solution

Consider the one-dimensional boundary value problem

do d’0 430 d%o
N|O0,—, , , =g(x), xe(0, (Al.31a)
[ dx dx2 dx3 dx4J ( ) ( )
a,B Gﬁﬁﬁ +a0=a;, x=0,1 (A1.31b)
PN aa? ad ) ’ '
do d’e do
B, 0" |+ p,"L=8B,, x=01 Al3lc
B 2( T dx2j B> T Bz, x ( )

where N () is a linear or nonlinear one-dimensional differential operator of the fourth

order, B, (), B, () are linear or nonlinear one-dimensional operators of third and
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second order, respectively, a;, f; (i=1,2,3) are functions specified at x =0,/, g(x)
is the known source function defined at (0,/) and 8=6(x) is the sought solution of the

problem, having continuous derivatives up to the forth order in (0,1 ) According to the

concept of AEM, the substitute problem is also of the fourth order, thus the following

equation can be applied
—=q(x) (A1.32)

In terms of mechanics of materials, eqn. (I12.4.2) describes the flexural response of a

beam with flexural stiffness EI =1, under the action of a fictitious loading q(x).

According to section Al.2, eqn. (A1.32) indicates that the solution of the original
problem (Al.31a,b) could be obtained as the solution of this equation subjected to the

same boundary condition (A1.31b,c), provided that the fictitious loading ¢ (x)will be

first determined. This can be accomplished as follows: The weak form of the analog

equation is written as

[0 (x)~q(x)]67(x.&)dx =0 =

) , ) . (A1.33)
IOH""(x)H (x,é‘)dx—'foq(x)é’ (x,&)dx=0

where ()' denotes differentiation with respect to x. The fundamental solution of the

one-dimensional Laplace operator is adopted as the &" function, which is a particular

solution of the differential equation

d*'o’(x,£)

Y =6(x-¢) (A1.34)

where o (x -& ) is the one-dimensional Dirac (o) function. The fundamental solution 0"

is obtained as
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0" (x,&)= é(|r|3 =31 + 213) (A1.35)

with r=x-¢ being the distance between any two points x and &, where & is a
constant collocation point while x runs through the interval (0,/). By applying

sequential integrations by parts in the first integral equation (A1.33), substituting eqns.

(A1.32) and (A1.35) and exploiting the property of the Dirac function, yields

= IéA4 (x,ﬁ)q(x)dx—

., (A136)
—[—A,(x,f)@(x)+/12 (x,f)@'(x)—A3(x,§)0”(x)+/l4 (x,f)@"’(x)]x:o
where /4 (r) (i=1,2,3,4) are the kernels, defined as
(x §)——sgnr A2 X, § (| | ) (Al1.37a,b)
Ay (x,8) —_| (|- 21)sgnr Ay (%)= (| P-sipf +217)  (AL3Ted)

with sgn being the signum function, defined in relation (A1.10). The relation (A1.36)

constitutes the integral representation of the solution as a function of the fictitious load
and the boundary quantities. In order to relate the boundary quantities with the fictitious

load, the integral representation (A1.36) is applied to the interval edges 0,/. In that case,

E &) =0" (A1.38a)
g =0 (A1.38b)

Consequently, two boundary integral equations are obtained as

0) =[5 (x.)q () d -

(A1.392)
- [—A, (x,fo)ﬁ(x) +4, (x,fo)ﬁ'(x) -/ (x, (50)(9"(x) + 4, (x,fo)ﬁ'"(x)]x:o
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|

|

|

Appendix Al
l
ol)=|,4,(x,&)g(x)dx—
)=l (o) i
—[—A,(x,fl)ﬁ(x)—i-/lz(x,fl)19'(x)—/13(x,§l)t9"(x)+/14(x,§l)t9’"(x)]x:0
These integral equations can be written in a matrix form as
0
0,
[E; E;p Ej3 Epnly.7 =T, (A1.40)
B,XX
B,XXX
where
0" =[0(0) o(1)] o’ =[0(0) o()] (Al.41a,b)
o’ =[0'(0) o(1)] o =[0"(0) o"())] (Al.41c,d)
E, - 2(0.8)+1  ~A,(L.&) E,,- ~4,(0.¢y) A;(1.&)) (Al.41e,f)
- 4,(0.8) A (L&G)+T —4,(0,8) A (L&) ]
E13= A3 (0’50) _A3 (1’50) E14= _A4 (0’50) A4 (1’50) (A141g,h)
A5(0.8) —45(1.8) A4,(0.8) A4,(1.4) ]
/
Ay (x,&))q(x)dx
o B ALati
J0A4(x,§,)q(x)dx
Substituting eqns. (A1.37) into the expressions of arrays (Al.41e-h), yields
E |12 E _[iz0 (Al.42a,b)
"ol-y2 02 270 -2 e
0 1?4 _Pls 0
Ple 0 o0 Pls
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Differentiating integral representation of the solution eqn. (A1.36) with respect to &,

the integral representation of its derivative is obtained

do(¢) _ J 04, (x.8) q(x)dx— —Mﬁ(x) +M9'(") -

dé 0 o 0& 0
o (A143)
_ 6/13 (x’é) 0"()6) 4 a/14()6’56) efﬂ(x)
aé: aé: x=0
where
M =0 for x=0,1 (Al.44a)
0¢

—%a(; 5. A (x,&)  for x=01 (A1.44b)
%;5):_ A(xg)  for x=0 (Al440)
%;Jf) — A (xE)  for Vxe[0] (A1.44d)

Exploiting eqns. (A1.44) and applying the integral representation at the intervals edges

0,1 (&—>¢& =0", & & =1") the following boundary conditions are obtained

400) _ (1 4k £ Vo) —

2 JoA5(x.8)a(x)d (A1.453)
[ (08)0 () A2 (5.2)6 (1)~ As(x.2)7 ()]

4O0) 4 Vo)

T [ 45 (x.&)a(x)d (A1.45b)

x=l

—[=A(%.4) 0 (x)+ A (x.&)6"(x) - 45 (xlétl)em(x)lpo

These integral equations (A1.45) can be written in a matrix form as
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0
0,
[0 E; E, Eyply." =T, (A1.46)
e,xx
B,xxx
where
EH:_A,(O,fo)Jr] -A;(1,&) } £, - -4,(0.5)) A,(1.&)) (A1.47a,b)
L A4(0.8)  —A(LG)+T A (0.6) A4
/
_ B -, A;(x, &) )g(x)dx
4;(0,&)) —4; (1,60)} T, = OZ (6.6 (x) (A1.47¢,d)
~J, A5 (x.& ) g (x)dx

E,, =
P A5(0.8) -A;5(1.8)

Substituting eqns. (A1.37) into eqns. (A1.47a-c), yield
. E R UE N 0 1’/ (AL4abo)
— = == . a, ,C

A y2 12 ol -2l F Rl o

Eqns. (A1.40) and (A1.46) can be written in a more compact form as

[« =3

E, E, E; E, ]| 6 T
{ 1 B2 Bys 14} U :{ 1} (A1.49)
0 E; Ep Exjie, T,
e,xxx
The boundary integral equations (A1.49) together with the boundary conditions
0 Ax’ éxx’ 6XXX ln

(A1.31b) permit the establishment of the boundary quantities 6, 0

terms of the fictitious load.
Thereafter, the discretization of the interval (0,1 ) is performed and the
approximation of the fictitious load is established. For this purpose, the interval is
discretized into L elements employing the constant element assumption for the

fictitious load g (x). More specifically, it is assumed that the fictitious function g(x)
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maintains constant in each element, equal to its mid-point value (Fig. A1.1). According

to the above assumption, the column matrix T! = [T, T2] is approximated as

qu.l.r A4(xsé:0)dx _ . -
’i [ Aee) i Ky - Fp|(q
A A (x,&)dx ~ 2 r n
T, LG5 el Fyy F,, - F F
T:{ l}z T B U e > SR 2L |92 :Tz{A]}q (A1.50)
T2 _Z q;iJ.r A3 (x’ é:O)dx F3l F32 o F3L FZ
B N P o qr
_qujr Ay (x,&)dx
where the coefficients ﬁij (i=1,2,3,4, j=1,2,... L) are defined as
F; :IF]_ A(x.&)de  Fy; :fr,./14 (x.&)dx (Al.51a,b)
F :_Irj Ay (x.&)dx  Fyj = _jrj Az (x,& ) dx (Al.51c,d)

Subsequently, the boundary conditions (A1.31b) can be written in a matrix form as

0
DI[ D12 D13 D14j| B’X . Dl)nl(e,e,xye,xx:e,xxx) :{(13} (Al 52)
D, Dy Dy Dy l6 D,, (06,6, Bs
0

where D;;, D;,, D;3, Dy, Dy;, D)y, Dy; and D,, are 2 x 2 known square matrices

including the values of the functions a;, f; (i =1,2), as presented in eqns. (A1.31b,c),

A A A

]A)])nl =]A)1)nl(é,é’x,9’xx 0 ), ]A)2)nl =]A)2)nl(é,é’x,9)xx) are 2x/ column matrices

» ¥ xxx

including the nonlinear terms of the same functions and @3, P; are 2x/ known

column matrix including the boundary values a;, f; of eqn. (Al.31b,c). Relations

(A1.49) and (A1.52) can be written in a more convenient form as
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E; E, Ej; Ey Aﬂ 0 Fiq
0 E E E 0 T
21 22 23 x L) _JFyq (A1.53)
D;; Dy Diz Dyyi|e,, Lnl o
Dy Dy Doz Doyfle | (DPow Bs
Alternatively,
q
F, E;p Ep Epi Eull g 0 0
F 0 E E E A A B 0
? S P R T ) S = Ed+D,, = (A1.54)
0 D, D, Dj; Dy 0 o3 o
0 D,; Dy, Dy Dy || ™ B; B;
e,xxx
A A . \T A A )
where  F,=-F,  F=-F, (D,) =[0 0 D, D,,|,  whil

A A A

d"=[q 6 6, 0,

0

XXX

} is a (L + 8)>< 1 generalized unknown vector including

the values of the fictitious load and the boundary values of the respective boundary
quantities. Eqns. (A1.54) constitute a nonlinear system of 8 algebraic equations with
L+ 8 unknowns. In order to solve this system, L additional equations are required.
Exploiting the aforementioned discretization of the interval (0,1) and the
approximation of the fictitious load with constant elements (Fig.Al.1), the integral
representation of the solution (A1.36) for the &; position of the i element (& #0,/) can

be written as

L
0(4)=Y 4], Ae(x.8)dx
e (A1.55)

x=l

- [‘AI (x, & )(9()6) +4, (x,fl- )49'(x) -/ (x, fi)ﬁ"(x) + 4, (x, & )«9"'(x)]x:0

In order to solve the problem, the derivatives of the solution are required. The integral
representation of the first derivative has already been presented in eqn. (A1.43). Thus,

differentiating this equation with respect to &, the discretized forms of the derivatives

of the solution are obtained as
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dﬁ(fi) L
=— A Ay (x, &) dx -
dé Eijjrf s (0o (A1.56a)
[ (x.8)0 (x)+ Ay (x.6)0" () - A5 (x.8)0" (x) ],

d*0(&)

d&?
= (A1.56¢)

x=0

L -
= ZI 4] A (x.&)dx=[ =y (x.6)0" (x)+ 45 (x.5)0" (x)] ' (AL56b)
J:

3 L
. ;(35,) =-2 qu_.A](x,gi)dx—[—/lj(x,é’,-)ﬁ'"(x)]
4 =t

Finally, applying eqns. (A1.55) and (A1.56) to the L collocation points yield

0 0
0, 0,
0=Aq+Cq . +=Bd 0,=Aq+C,{." (=B.d (Al1.57a,b)
B,XX 9 XX
B,XXX e,xxx
0 0
0, 0,
0,.,=A,49+C 1 . =B,.d 0, =A,49+C, 1. =B ,d (Al.57c,d)
e,xx B,xx
e,xxx e,xxx
where
0’ =[(9)1 (0), (H)L} 0. :[(‘9')1 (9, (e')L] (A1.58a,b)
B,XXT _ ':(HN)] (0”)2 (err)L :| 0 xxxT _ [(em)l (em)2 (Hm)L :| (Al SSC,d)
are L x [ vector including the unknown values of » and its derivative with respect to x,
at the L nodal points of the interval, while A, A,, A, , A, are LxL square
matrices with coefficients defined as
A = Ir, Ay(x.&)dx Ay =—] r Az (x,&; ) dx (A1.59a,b)
Aj =] A (ng)de Ay ==]p A0 )dx (A1.59¢,d)
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where i=1,2,...L, j=12,..L. Moreover, C, C,, C, ., C .. are Lx8 matrices

defined as (Mokos 2007)

—A, (O, 51) A, (O, §1) A (O, §1) 0] A, (l’ 51) —A, (l’égl) Ay (1’51) 0
—A, (:0, fz) A, (0’ ‘fz) —A, (:0’ 52) (:):A3 (l’ 52) —A, (:l’ 52) A (l’ 52) 0 (Al .60b)
_A3 (O’é:L) Az (O’é:L) _Al(o’gL) O|A3 (lst) _Az (l’gL) Al (19§L) 0_

C:

X

c - /12(?;52) —/11(:0»52) . i—/lz(zl»égz) /11(1:’52) L L] (AL60c)

C= . cor L. (A1.60d)

A(LE) 0 0 0

while exploiting eqns. (A1.37) result in

4(0.6)=-3 4(0.6)=3(6-1) (A1.61ab)
A3(0,&) = —55,. (&-21)  A4,(0.&)= é(gﬁ - 31¢7 +21° ) (Al.61c,d)
A (1,;):% A, (z,g,.)=—§§,. (Al.6le,D)
4(18)=-5(P-&)  ALE)=—5((-&) -31(-5) +21') (AL61gh)
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where & =X, is the coordinate of the mid-point of the element /; (Fig.Al.1) and B,

B,, B, B, are Lx(L+8) matrices defined as B=[A C], B, =[A, C_],

Bo=[An Cul Bu=[Auw Cuul

The final step of the AEM is the application of the governing equation of the
initial problem (A1.31) at the L internal nodal points and subsequently the substitution
of the values of the field function @ and its derivative at the L internal nodal points
according to eqns. (A1.57). From the definition of the analog equation (A1.32) it is
apparent that the values of forth derivative 8"" at the nodal points are equal to the
corresponding values of the fictitious load vector q. Thus, L additional algebraic
equations are derived with respect to the generalized unknown vector d. These
equations in combination with eqns. (A1.54) constitute a system of L+&8 algebraic
equations with L+ & unknowns. The solution of this system provides the values of the
fictitious load at the L internal nodal points as well as the values of the field function &
and its derivatives &, 6", 8" at the edges of the examined interval. Thereafter,
exploiting eqn. (A1.57) the vectors including the values of the solution and its
derivative at the L internal nodal points are obtained. Finally, it is noted that the values

of 8, ¢, 8", @ at any point of the interval £e(0,/) can be easily calculated, by

applying the integral representations (A1.55-56) substituting the value &; with &.

A1.4.2 Evaluation of Integrals

In order to determine the coefficients of the matrices F;, F,, A, A, A, and A

(relations (A1.54), (A1.57)) the integrals defined in eqns. (A1.51) and (A1.59) have first
to be evaluated. This calculation can be easily performed employing any numerical
integration scheme (e.g. Gauss, Gauss-Lobatto). Nevertheless, due to the closed form of

the kernels, the analytic integration along the element’s /7; length is indicated, thus
avoiding any computational error and the increase of the computational time. Exploiting
eqns. (A1.37), the analytic expressions of the integrals of the coefficients ﬁij

(i=12,3,4, j=1,2,... L) defined in eqns. (A1.4.21) are obtained as

r 1 G
Fpj=—|2Px+=x" - Iy’ (A1.62a)
12 4

X=X
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fa 1 3 1 4
Ey; :E{ﬂ x—z(l—x) +1(1-x) (A1.62b)

“w
| I
=
Il
Ry
™

X=X

- 115 L1 . 11 3 2 [
F3j:—z[§x —Ix } Fij==7 E(l—x) —1(1-x) (A1.62¢,d)

X=X X=X

where x;;, x;, are the coordinates of the element’s /7; edges (Fig.Al.1). Moreover,

>
from eqns. (A1.37), the analytic expressions of the coefficients 4;, 4;,, 4, and
Aj oo (1=1,2,...L, j=1,2,... L) defined in eqns. (A1.59) are obtained as
1] 1 T
=0 213x—z(x,~0—x)4+l(xio—x)3 Q> (A1.63a)
- —XIXj]
1] 1 T
dy =3 Wt (o) = Uw=xg)' | i< (A1.63b)
- —XIX‘/‘]
1 i 3 1 4 3 o
AU—E 2l —Z(xlo—x) +1(x;9 —x) }
XIXj]
(A1.63¢c)
4 3 [
+—{213x+—(x—xl-0) —I(x—x;) } , =]
X=X;
1] 1 3 2
L -x=x;,
1] 1 3 2
Aij,x:_z E(x—xio) —1(x—x;) , <] (A1.64b)
L -x=x;,
1 3 2 [
Ay x = _Z[_(xzo _x) _Z(XIO _x) :l
X=X,
‘ (Al.64c)
X=X;,
1 2
—Z[—(x—xm) —l(x—xm) } , I=]
X=X
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111 > T
Ai === =(x;0—x) +Ix , 0>
1] ,.xx 2[2( i0 ) :lx:x J
il
1[1 LR
Ay 1 :E[E(X_xm) —lx} , <]

X=X

202

11 I e
Aij,xx:——[—(xio—x)z+lx} +E[E(x—xm)2—lx} , I=]

X=X

1 X=X, . .
Aij,xxx = 3[ ]x:xj/j 1>]
1 = .
Aij,xxx E[X]i:;cjj 1<y
Aij,xxx =0, i=]j

(A1.652)

(A1.65b)

(A1.65¢)

(A1.4.36a)

(A1.4.36b)

(A1.4.36¢)

where x;;,x;, and x;, are the coordinates of the element’s /”; edges and mid-point,

respectively, while x;, are the coordinates of mid-point of the element 7 (Fig. A1.1).
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Appendix A2

Domain BEM for
Ordinary Differential Equations of the 2"! Order

A2.1 Introduction

Several boundary value problems, formulated in this doctoral thesis, have been solved
employing the Domain Boundary Element Method (D-BEM). In numerical analysis, D-
BEM belongs to the family of Boundary Element Methods (BEM) and is applicable to
either linear or nonlinear, static or dynamic boundary value problems with constant or
variable coefficients, subjected to either linear or nonlinear boundary conditions. Even
though, pure BEM requires the calculation of the fundamental solution (or Green's
function), placing considerable restrictions on the range and applicability of the method,
the D-BEM is capable of dealing with problems at which the fundamental solution is
unknown. According to this method, the boundary integral representation is
supplemented with domain integrals. That is, both boundary and domain discretization
are required. Typical approaches for evaluating the domain integrals involving
discretization of the interior of the domain (Lagrangian Interpolants, Numerical
Quadrature) could be incorporated in BEMs. Nevertheless, this additional discretization
devaluates one of the main attractions of using a boundary element technique.

Over the years, several approaches for either evaluating or eliminating domain
integrals have been developed, in order to maintain the pure boundary character of the
method. Nardini and Brebbia (1982) proposed a generalization of the concept of
particular integrals, known as Dual Reciprocity Method (DRM) (Kontoni et al 1991,
Partridge et al 1992), while Ahmad and Banerjee (1986) used a closed form
representation of a Particular Solution. Both methods require approximation of the field
function in the interior of the domain with the use of Radial Basis Functions (RBF).
Korsmeyer et al (1993) used the Fast Multipole Method (FMM) to study three
dimensional potential problems, while a vast amount of applications have been
presented by Katsikadelis and Sapountzakis (1988, 1991), Katsikadelis et al. (1990) and
Sapountzakis and Katsikadelis (1991, 1992) in which the Classical Domain Integration
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is implemented. In general, this approach is employed in cases where the values of the
field function at the interior points are unknown. This domain integration technique
requires the subdivision of the interior of the domain into triangular or quadrilateral
interior elements. These elements contain the unknown quantities of the field function at
the interior points and can be evaluated by either iferative processes or by collocation
techniques (Ingber et al. 2001). In the first, the domain integral can be evaluated with an
initial guess for the unknowns allowing an approximate boundary solution to be found.
Based on this approximate solution new values for the unknowns can be found, leading
to an improved estimation of the solution. The iteration is repeated until convergence is
succeeded within the required level of accuracy. Even though, this procedure is versatile
the convergence is not guaranteed. However, according to the collocation technique, the
field function’s values at the interior element nodes are introduced as additional
unknowns. A system of equations is formulated by applying the boundary integral
equations of the problem into these nodes and the solution of the system yields the
unknown quantities of the field function.

In this appendix, the main principles of D-BEM are presented, in case of one-
dimensional boundary value problems described by ordinary differential equations of
the 2™ order. It is noted that the differential operator of the problem can be either linear
or nonlinear, while similar procedure could be followed for the 4™ order differential

equations.

A2.2 Main Concepts of the Domain — Boundary Element Method

Consider the one-dimensional boundary value problem

d’u dN(x,u,u’)
e — 0 =g(x), xe(O,l) (A2.1a)

a](d—u—N(x,u,u')j+a2u:a3, x=0,1 (A2.1b)

where () denotes differentiation with respect to x, N () is linear or nonlinear one-
dimensional operator of first order, a; (i=1,2,3) are functions specified at x=0,/,

g(x) is the known source function defined at (0,/) and u =u(x) is the sought solution
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of the problem, having continuous derivatives up to the second order in (0.7).

According to BEM and employing eqns. (A1.4), (Al.3a) the integral representation of

the solution (A1.8) can be written as

u(é)= jé/l? (x,é)[N’(x,u,u') + g(x)]dx -

y (A2.2)
[ (e pu(x) + A8 (520 ()

x=0

where Aj', A5 are the kernels as defined in eqns. (A1.9). By applying integration by

parts the above equation can be written as

u(cf) = 'féAg (x,cf)g(x)dx —Li/l}‘ (x,g)N(x,u,u’)dx +

o (A2.3)
H A (N (ranad) | =] A (x.E)u(x) + A5 (5. &)o' (x)

x=[

x=0
while differentiating with respect to &, yields

u'(&)= —jé/l}’ (x,é)g(x)dx+N(§,u,u')+[/1}’ (x,gg)[u'(x)—N(x,u,u’)ﬂ (A2.4)

x=0

Thereafter, the interval (0,1 ) is discretized into L elements. The integral representation

of the field function (A2.3) and its derivative (A2.4) can be written as follows

u()= [ A% (x.£) g (x)dr - fzj J A (N ()~

(A2.5)
x=l

A (e () 48 ()0 () N ()

x=0

' (&) ==J Af (x.€) g (x)dx + N (&awu') | Af (x.8) [ (x)=N(xua) ]| (A26)

X=

A2.3 Classical Domain Integration

As it is mentioned above, the classical domain integration is implemented in cases

where the values of the field function at the interior points are unknown. The integral
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_[F_ A} (x,E)N(xuu')dx (j=12,..,L), as defined in eqn. (A2.5), is approximated as

a weighted sum of the integrand at a finite set of points called integration points. The
integration points and weights depend on the specific rule employed and the required
accuracy. Herein, the Gauss rule has been adopted and K integration points are

assumed in each element. Thus the above integral can be written as
u K u
-[Fj A ()N (xuu')dx =Y A (xjk,f)N(xjk,ujk,ujk)wk (A2.7)

where w, (k=12,..,K) are known weights, while X ji (k=12,.,K) are

predetermined Gauss points located within the element j (j=1,2,...,L). Substituting

the above equation into eqn. (A2.5), yields

u(&)= Ié/lg (x.&)g(x)dx - i i Ay (xjk,é)N(xjk,ujk,u}k)wk -
j=1k=1 (A2.8)
x=l
_[—A}‘ (x,&)u(x)+ A3 (x,é)(u'(x)—N(x,u,u'))}

x=0

By applying the integral representations (A2.6) and (A2.8) to the LxK
collocation points (&; = ik i=12,...LxK,j=12,.,L, k=1,2,..,K) together with
the integral representation (A2.8) to the interval’s edges (=&, =0, =&,k =1), a

system of 2L x K + 2 algebraic equations with 2L x K +4 unknowns is formulated.
This system in combination with the boundary conditions constitutes a system of

2L x K +4 algebraic equation with 2L x K +4 unknowns; namely, the internal u;,u;

(i=1,2,..,LxK) and the boundary quantities u,, u’; —N(x~ u~,u’-) (j=LL+1) at

J> 7 Ji
E=6,=0, E=&; k. =1. The solution of this system provides the values of u,u’ at
Lx K internal nodal points as well as the values of u and u'— N(x,u,u’)at the edges

of the examined interval. It is noted that the values of u# and u' at any point of the

interval & e (0,1) can be easily calculated from the integral representations (A2.6) and

(A2.8) for the examined value of &. Furthermore, in order to avoid singularities in case
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the collocation point &; is located within the element j, the integral presented in eqn.

(A2.7) is normalized according to Katsikadelis and Sapountzakis (1988) as follows

Ir. A (x,éi)N(x,u,u')dx = _fr_ Af (x,fi)(N(x,u,u') - N( l-,ul-,ulf))dx+

(A2.9)
+ N(éi’ui’u;)jf/ Af (x,&;)dx

Since the quantity Af (x,&)(N(x,u,u’)=N(&,u;,u})) of the above equation has a
finite value, the first integral of the right hand side can be evaluated performing any
domain integration rule, while the second one can be evaluated analytically. Finally, it is
worth mentioning that the integrals .[é/l}‘ (x.&)g(x)dx and jé/l? (x,&)g(x)dx of

eqns. (A2.5) and (A2.6), respectively, can also be analytically evaluated provided

that g (x) is a known function.

A2.4 Approximation of the Field Function

The approximation of the field function technique is usually adopted in case the field
function is known at any point of the domain. It requires approximation of the unknown
field function in the interior of the domain with simple shape functions, leading to the
formulation of integrals which can be evaluated either analytically or numerically
(Sapountzakis 2000). More specifically, it is assumed that the unknown function u
varies within the element j, according to a specific distribution rule (i.e. constant,
linear, quadratic, cubic etc). Thus, the distribution of the function’s derivative u' can be
easily obtained. The explicit definition of the boundary value problem with respect to

the unknown quantities u,u’ at any point of the interval, permits the analytical

determination of the integral J.F Af (x,f)N(x,u,u')dx (j=L2,...,L)of eqn. (A2.5).

By applying the integral representations (A2.5,6) to the L collocation points ¢;
(i=1,2,...,L) together with the integral representation (A2.5) to the interval’s edges
(&= =0, &=&,,=1), a system of 2L+2 algebraic equations with 2L +4

unknowns is formulated. This system in combination with the boundary conditions

constitutes a system of 2L + 4 algebraic equation with 2L + 4 unknowns. The solution
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of this system provides the values of the distribution rule quantities of u at the L nodal
points and the boundary quantities u;, u’; — N (x U J-,u;-) (j=1L+1) at the intervals
edges £=&,=0, £=¢&; , =/. It is noted that the values of u and ' at any point of

the interval ¢ e (O,I ) can be easily calculated from the integral representations (A2.5)

and (A2.6) for the examined value of ¢&. Finally, it is worth mentioning that the
integrals jé/l}‘ (x,&)g(x)dx and .[é/lg (x,&)g(x)dx of eqns. (A2.5) and (A2.6),
respectively, can be also analytically evaluated provided that g(x) is a known function,

while in the special case where the operator N is only a function of u' only one of the

integral representations has to be employed for the solution of the problem.
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Shear Centre — Shear Deformation Coefficients

A3.1 Introduction

In engineering practice the analysis of beam members is frequently encountered. In the
vast majority of these cases the assumptions of the well established Euler-Bernoulli
theory plays a dominant role on the structural analysis. Nevertheless, in cases where
shear deformation is not negligible, this theory fails to give acceptable results.

To this end, Stephen Timoshenko (1921, 1922) developed and established a beam
model that takes into account the shear deformation effect making it suitable for
describing the behaviour of short beams or beam under significant transverse loading.
Under a physical perspective, the Timoshenko beam theory accounts for the

displacement w;, of the beam axis due to shear deformation in addition to the one due to
bending wj .(Fig. A3.1a). Thus, the total angles of rotation is not equal to the derivative

of the transverse displacement but equals to the sum of this derivative and the
corresponding shear strain component (Fig. A3.1b). Under this consideration, the key
assumption of the Euler-Bernoulli theory, stated as “plane sections initially
perpendicular to the centroidal axis, remain plane and perpendicular to the axis after
deformation” is relaxed to “plane sections initially perpendicular to the centroidal axis,
remain plane to the axis after deformation” implying that the cross-sections are allowed
to develop shear strain.

From a practical point of view, the added shear deformation mechanisms reduces
the stiffness of the beam, resulting in larger displacements and lower predicted
eigenfrequencies for a specific set of boundary conditions. Moreover, it is worth noting
that for relatively large ratio of length over thickness of the beam or if the shear stiffness
is relatively high (compared to the flexural one), the Timoshenko beam theory
converges to the Euler-Bernoulli one.

In general, shear stresses due to shear loading develop in a non-uniform way

within the cross section. Thus, the distribution of shear strains will be non-uniform


http://en.wikipedia.org/wiki/Stephen_Timoshenko
http://en.wikipedia.org/wiki/Shear_stress
http://en.wikipedia.org/wiki/Eigenfrequency
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resulting in warping of the cross section. Consequently, the Euler-Bernoulli assumption
is not valid (Fig.A3.2). In case of a beam under constant shear force along the length
and unrestrained longitudinal displacements, the applied shear load is undertaken only
by shear stresses that are maximized on the boundary. This is called Uniform Shear
(Timoshenko & Goodier 1951, Love 1952, Sokolnikoff 1956). On the contrary, if the
shear load varies along the length or/and warping is restrained due to loading or support
conditions, shear stresses develop. Theories regarding Non-uniform Shear of

homogenous beams have been stated by Fatmi (2007a, 2007b).

Euler-Bernoulli Beam Theory

Timoshenko Beam Theory /

N Infinitesimal
length dx

Cantilever Beam /

»v

zZw ¥

(b)

Fig. A3.1 Cantilever beam under transversal load and an infinitesimal segment (a)
displacement field of shear deformable Timoshenko beam (b).

Warping due to shear is considered in general to be small. Thus, stresses due to
shear loading are usually determined considering uniform shear, while the effect of

warping is taken implicitly into account with the use of appropriate shear deformation
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coefficients. Timoshenko (1921, 1922) was the first who considered the influence of
shear deformation using correction factors (k) and altering appropriately the
equilibrium equations of the beam. More specifically, similarly to the ordinary beam
theory, the Timoshenko one yields a differential equation of the forth order to describe
the equilibrium of the beam. The difference lies in the additional second order spatial
derivative, which is multiplied by a shear deformation coefficient in order to correct the
value of the calculated shear force. The inaccuracy of the originally obtained shear force
is attributed to the assumption of constant shear stress distribution along the cross-
section. As a result, the beam theory which takes into account these coefficients is

known as Timoshenko Beam Theory.

(a) (b)

Fig. A3.2. Warping due to shear for rectangular (a) and hollow rectangular (b) cross
section.

Furthermore, in beams under transverse loading, shear stresses are developed and
usually occur in conjunction with bending, while in case this externally imposed loading
is not applied through the shear centre of the cross section, except for shear, torsional
stresses are also developed due to eccentricity. Thus, in order to avoid torsional effects
the shear centre S is defined as “the point in the cross sectional plane where a shear
force can be applied without introducing any torsional moment due to shear stresses,

that is,

Q. ¥5-0,-7%=[(r, -V -1, Z)d0 (A3.1)
Q
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where Q,,0, are the shear forces along y and z axes respectively, Cxyz is the

centroidal system of axes, yS ,z° are the shear centre S coordinates with respect to the

cross section centroid C and 7,,,7,, are the shear stresses developed over the cross

section (Fig. A3.3). The left hand side of eqn. (A3.1) expresses the external moment
while the right hand side expresses the internal moment due to shear stresses. If the
centroid C coincides with the shear centre S, the twisting moment due to the shear
stresses becomes equal to zero. If the shear stresses due to shear loading are known, the
position of the shear centre can be determined. In case the shear stresses are computed
for a Poisson’s ratio equal to zero (v=0), the position of the shear centre is
independent of the type and the size of the external loading and depends only on the
shape of the beam’s cross section (Weber 1924, Trefftz 1935).

General Cross section

® >

Fig. A3.3. Shear centre S with respect to the centroid C .

Thus, considering the above, the solution of uniform shear problem can be obtained
by the determination of shear stresses over the interior of the cross section, the position
of the shear centre S and the shear deformation coefficients a of the beam’s cross
section.

The “accurate” statement of uniform shear problem is described by a boundary
value problem, avoiding in this way the approximations arising from the shear
engineering beam theory (Sauer 1980, Hartmann & Katz 2007) and the thin-walled
theory (Vlasov, 1964, 1965). The formulation of this problem can be obtained either
with respect to the displacement or to the stress field (Mokos & Sapountzakis 2005),
with the aid of the theory of elasticity.

Over the years, the calculation of the shear deformation coefficients has been a

subject of extensive research activity (Kaneko 1975, Renton 1991, 1997, Hutchinson
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2001). According to Timoshenko (1921, 1922), this coefficient is evaluated as the ratio
of the average value of the developed shear stresses over the cross section divided by
the value of the shear stress at the centroid of the cross section. Apparently, the
previously mentioned definition has difficulties during implementation when the
centroid is placed out of the domain of the cross section. Later, Cowper (1966)
suggested a new shear deformation coefficient formulating the equilibrium equations of
the beam by integrating the equilibrium equations of the three- dimensional elasticity,
which take more into account the influence of warping (compared with Timoshenko
coefficient) mainly in dynamic analysis of high frequency beams. The suggested
coefficients by Timoshenko and Cowper for a variety of simple cross sections are the
same for a Poisson’s ratio v =0. The Cowper coefficient concerns only symmetric cross
sections with an orientation about the principal axis bending system which results in the

existence of two shear deformation coefficients a,, and a,,. Mason and Herrmann

(1968) tried to extend Cowper’s method in asymmetric cross sections with an arbitrary

system of axis resulting in having instead of @, and a_, , two new unequal coefficients,

zz >

the a,, and a,,. Apparently, the use of the two unequal coefficients a,, and a,, in

analysis is not appropriate since it leads to non-symmetric stiffness matrices. The
aforementioned shear deformation coefficients do not take into account the width b to
depth /4 ratio of the cross section yielding inaccurate results with the decrement of the
depth. To this end, Stephen (1980) based on Cowper’s theory suggested a new
expression for shear deformation coefficients which takes into account the ratiob/h.
Hutchinson (2001) using a different methodology derived the same expression as
Stephen. Puchegger et al. (2003) verified experimentally the accuracy of Stephen—
Hutchinson coefficient for a rectangular cross section of a b/h ratio between 1 and 4.
However, Stephen—Hutchinson coefficient, which is valid for symmetric cross sections,

as theb/h ratio is increasing exhibits a discontinuity and then takes negative values with

the result of not taking realistically into account the influence of warping for some b/h
ratios.

A different formulation of shear deformation coefficients can be achieved with the
aid of the energy method (Bach & Baumann 1924, Gruttmann and Wagner 2001)
according to which the exact strain energy of the beam, owing to the shear stresses
calculated according to elasticity theory, is equal to the approximate strain energy of the

beam, owing to the shear stresses according to Timoshenko theory. For an arbitrary
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cross section with an arbitrary system of axis the energy method allows the

determination of the four shear deformation coefficients a,,, a.., a,,, a,, with a,,

and a,,being symmetric (a,, =a,,), which take into account Poisson’s ratio v and

width to depth ratio b/h of the cross section (Schramm et al. 1994, Pilkey 2002). It
should be noted that the coefficients obtained by the energy method (taking into account
the b/h ratio) proved to be very effective in dealing with the shear—locking
computational problem (Pilkey 2002, Wunderlich & Pilkey 2003). In addition to this,
the reliability of shear deformation coefficients based on the energy method is verified
with the aid of solid finite elements (Fatmi & Zenzri 2004). Thus, according to the
above mentioned, the most appropriate method for the formulation of shear deformation
coefficients is the energy method.

Coefficients al-j,(i, j:y,z) are the components of a plane (2x2) symmetric
second-order tensor while they abide with the transformation law of second-order

tensors (Schramm et al. 1997). Thus, corresponding to the plane tensor of bending

moments of inertia, the diagonalization of the tensor a;;, (i, j= y,z) (Pilkey 2002) will

lead to a principal system which is called principal shear system and for asymmetric
cross sections does not coincide with the principal bending one. The result of this
difference between the two principal systems of axes is the coupling of the displacement
components of the beam in y and z directions, even if the cross section system of axes
coincides with the principal bending one (Schramm et al. 1997, Pilkey 2002). In case of
a symmetric cross section, the principal shear system coincides with the corresponding
principal bending one and the deflection components on the principal axes are not

coupled (a,, =a,, =0 and I,, =1, =0).

Reviewing the international literature it is observed that the problem of a prismatic
beam subjected in shear torsionless loading has been widely studied from both
analytical and numerical point of view. Theoretical discussions concerning flexural
shear stresses (Weber 1924, Trefftz 1935, Goodier 1944) or the problem of the centre of
shear (Osgood 1943, Goodier 1944, Weinstein 1947, Reissner & Tsai 1972) and text
books giving detailed representations of these topics (Love 1952, Sokolnikoff 1956,
Muskhelishvili 1963, Timoshenko & Goodier 1984) are mentioned among the extended
analytical studies. In all these studies a stress function formulation is presented. This

formulation is based on either splitting the stress function into a primary part
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independent of the beam material describing the beam equilibrium and a secondary one
dependent on the Poisson’s ratio satisfying compatibility equations or on splitting the
governing differential equation into two parts representing shear and torsion problems.
Moreover, these studies are limited in the analysis based on the principal cross section
system of axes.

Numerical methods have also been used for the analysis of the aforementioned
problem. Among these methods the majority of researchers have employed the Finite
Element Method (FEM). Mason and Herrmann (1968) based on assumptions for the
displacement field and exploiting the principle of minimum potential energy developed
triangular finite elements for a beam of arbitrary cross section and isotropic material
subjected to bending. This method using triangular or quadrilateral finite elements has
also been used for beams with orthotropic (Tolf 1985) and anisotropic material (Haberl
& Och 1974, Kosmatka 1993). Later, a finite element solution for the evaluation of the
shear stresses (Gruttmann et. al. 1998, 1999) and the shear deformation coefficients
(Gruttmann & Wagner 2001) was developed formulating all basic equations to an
arbitrary coordinate system, using isoparametric element functions and introducing a
stress function which fulfils the equilibrium equations.

Moreover, boundary integral methods seem to be an alternative powerful tool for
the solution of the aforementioned problem, having in mind that finite element methods
require the whole cross section to be discretized into area (triangular or quadrilateral)
elements and are also limited with respect to the shape (distortion) of the elements.
Boundary Element Method (BEM) solutions require only boundary discretization
resulting in line or parabolic elements instead of area elements of FEM solutions, while
a small number of line elements are required to achieve high accuracy. Boundary
element procedure was first employed by Sauer (1980) for the shear stresses calculation
based on Weber analysis (1924) and neglecting Poisson’s ratio. BEM was also used for
the calculation of the shear centre location in an arbitrary cross section by Chou (1993)
and for the presentation of a solution to the general flexure problem in an isotropic only
simply connected arbitrary cross section beam by Friedman and Kosmatka (2000). In
this research effort the analysis is accomplished with respect only to the principal
bending axes of the cross section restricting in this way its generality. Finally,
Sapountzakis and Mokos (2005) and Mokos and Sapountzakis(2005) presented a stress
function solution employing BEM for the general transverse shear loading problem of

homogeneous and composite beams of arbitrary constant cross section, respectively,
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while the same authors (Sapountzakis & Mokos 2009) presented a displacement based
solution for the same problem of composite beams.

Within this appendix, the solution for the general transverse shear loading problem
in beams of arbitrary simply or multiply connected constant cross section is briefly
presented. The formulation follows the displacement field adopted in Wagner and
Gruttmann (2002) and Sapountzakis and Mokos (2009). The shear deformation
coefficients are obtained from the solution of two boundary value problems with respect
to warping functions, using pure BEM. The shear deformation coefficients are evaluated
using an energy approach (Pilkey 2002) instead of Timoshenko’s (1984) and Cowper’s
(1966) definitions, for which several authors (Schramm et al. 1994, 1997) have pointed
out that lead to unsatisfactory results or definitions given by other researchers (Stephen

1980, Hutchinson 2001) for which these factors take negative values.

A3.2 Statement of the problem
Consider a prismatic beam of length L, of arbitrarily shaped cross section, occupying
the two dimensional multiply connected region Q of the y,z plane bounded by
I j ( j=12,.,K ) boundary curves, as shown in Fig. A3.4a. Let also denote as I" the
union of the boundaries of the region €. These boundary curves are piecewise smooth,
i.e. they may have a finite number of corners. The material of the beam (Fig.A3.4b) is
assumed homogeneous, isotropic and linearly elastic with modulus of elasticity £,
shear modulus G and Poisson ratio v. Without loss of generality, it may be assumed
that the beam end with centroid at point C is fixed, while the x —axis of the coordinate
system is the line joining the centroids of the cross sections.

The beam is subjected to concentrated load Q, having components Q,,, O, along
v,z axes, respectively, applied at the shear centre S of its free end cross section. Under

the action of the aforementioned loading, the displacement field of the beam is given as

ﬁ(x,y,z)zﬁy (x)z—&’z (x)y+(7)c(y,z) (A3.2a)

V(x,y,z) = v(x) v_v(x,y,z) = w(x) (A3.2b,c)
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where #, v, w are the axial and transverse beam displacement components with

respect to the Cxyz system; 6,(x),6

.(x) are the angles of rotation about the

centroidal yand zaxes; v(x),w(x) describe the deflections of a reference point in

yand z directions, respectively.

(C: centroid, S: shear center)
o —

(@) (b)

Fig. A3.4. Prismatic beam subjected to torsionless bending (a) with a cross-section
of arbitrary shape occupying the two dimensional region Q (b)

Moreover, ¢Zc ( y,z) is the warping function due to shear, according to the centroid. The

warping function ¢Zc ( y,z) depends only on the geometry of the cross section, i.e. is a

parameter of the cross section and is independent from x coordinate. From a physical
point of view, the warping function expresses the displacement of the points on a cross
section in the longitudinal direction. However, in a more refined model the influence of
this coordinate may also be considered (Dikaros & Sapountzakis 2014a,b).

Employing the strain—displacement equations of the three-dimensional elasticity

(Love 1952, Armenakas 2006), the following strain components are obtained

oo o6

=, 9% A33
xS oI Y (A3.3a)
v, 00(02) (A3.3b)

Ty ox - oy '
w, g, 0% 0r2) (A3.3¢)

T2 = T T T g, '
Eyy =6, =7y, =0 (A3.3d-f)
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Moreover, the stress-stain relation for isotropic material is given from the following

relation

Ox | [A+2G A A 0 0 0%«
Oy A A+2G A 0 0 O] |%wy
O | _ A A A+2G 0 0 O | &z (A3.4)
Tyy 0 0 0 G 0 0|7y
Ty 0 0 0 0 G O Yy
ES 0 0 0 0 0 G Ve

where A = VE/I:(] +v)(1- 21/)} is Lame’s constant and G = E/[Z(I + v):| is the shear

modulus. Substituting eqns. (A3.3a-f) into the above relation and having in mind that in
engineering beam theory the Poisson ratio Vanishes(v = O), the stress components are

given as

00 00
=E|—ZXz-—= A3.5a
O [ o’ o yj ( )
4. (»,
Ty :c{@ 0. e (y Z)J (A3.5b)
ox oy
53
r =G| 0 ,202) (A3.5¢)
ox 7 0z
Oy =0,=1,=0 (A3.5d-f)
Introducing the unit warping function ¢, (y,z) due to shear as
¢.(y.2)= @—9 y+ a—W+49 z+¢.(»,2) (A3.6)
¢ ox ° ox 7 ¢

and applying the stress components (A3.5a-c) incorporating eqn.(A3.6) in the first
elasticity equation of equilibrium neglecting the body forces (Love 1952, Armenakas
2006)
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X4 = =) (A3.7)
ox oy oz
results in
0. 0% 0’0, 3%
G| e+ |=F| —2Xz-"—"2y (A3.8)
( 6y2 oz ox? ox?

while the last two elasticity equations of equilibrium are identically satisfied. From eqn.
(A3.8) a particular differential equation can be obtained in which the only unknown

quantity is the warping function ¢,., thus the right hand side term has to be determined.

Exploiting eqn. (A3.5a) the bending moments can be written as

06 00
M,=[0,zdQ=E —yjzzdg—%jyzdg _B|rp %% | (A3
Y, ox o ox ox 7 oox
00,

00 06
M,=[o zd.Q:E(—yjzzdﬂ—%jyde]:E(—y[ -] j(A3.9b)
= Ox Ox > -
0 0 0

Oox ox

while using eqns. (A3.5b,c) in combination with eqn.(A3.6) the shear forces can be

written as
_ _a[ 9
0,=[r,d2=G[—=dQ (A3.10a)
?] re) oy
_ _a 9
0,=[7,dQ2=G[—4dQ (A3.10b)
0 re) 82
where
Q0 0 o

are the moments and the product of inertia of the cross section, respectively.

Alternatively, by differentiating relations (A3.9) the shear forces can also be obtained as
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oM 0’0,  o%
0, =+ _E{ — I, - ax; I (A3.12a)
oM 0’0 220
_ Yy _ Yy
0.=— —E( — I, - ax; IyZJ (A3.12b)

Performing algebraic manipulations the following relations are obtained

82(9y :inlzz —leyz

A3.13a
o’ E 4 ( )
2 I -0.1
o0, R (A3.13b)
ox E 4

where A is defined as A = ([ ylzz =1 iz ) Substituting the above relations in eqn. (A3.8)

the following differential equation is obtained

¢, % 1
o[ 2424 Alor 0= -0)]  wa

while setting as g( y,z) the right hand side of the above equation, the partial Poisson

type differential equation governing the unit warping function is obtained as

o', & 1
:%+87¢;‘3:—5g(y,z) (A3.15)

2
V4. (.2)
where V? = 9? / 6y2 +0? / oz% is the Laplace operator.
Moreover, the boundary condition of the aforementioned warping function with
respect to the cross section’s centroid C is derived from the physical consideration that

the traction vector in the direction of the normal vector n vanishes on the free prismatic

surface of the beam (Fig. A3.4), that is
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eqns.(A3,4d,C) . a¢c -0
on

(A3.16)

Ton =Ty

iy + T, =0

where n, = cos(y,n) and n, =sin(y,n) are the direction cosines of the normal vector 7

to the boundary I", while this vector is positive when points outward of the domain (2,

as shown in Fig. A3.5.

Fig. A3.5. Shear stresses at the cross section boundary.

According to the above, the warping function due to shear can be obtained from the

solution of the following Neumann type problem of the Poisson differential equation

2 2
v2¢c(y,z)=‘2y—¢;c+zz—¢;c=f(y,z) in (A3.17a)
W:o on I (A3.17b)
n

where f ( y,z) =-1/G- g( y,z) . In order to solve the Neumann problem defined in eqns.
(A3.17), the following must apply (Hsiao and Wendland 2008)

o ~¢7)

[ = ds=0 (A3.18)
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where ¢? is a partial solution of the Poisson equation (A3.17a). It can be proved that

this condition applies. Moreover, the Neumann problem solution is a function of an
arbitrary constant (rigid body motion alongx) which cannot be determined from the
boundary conditions. However, quantities involving derivatives of the solution (i.e.
stresses) are independent from this constant. Thus, setting as ¢ the arbitrary constant of
the rigid body motion (integration constant), the warping function due to shear can be

written as
6. (y.2)=¢.(y.2)+c (A3.19)

The above relation verifies the Poisson eqn. (A3.17a) and the boundary condition

(A3.17b), while the constant ¢ can be determined by the requirement of

[ (y.2)d2=0 (A3.20)
Q

After substituting eqn. (A3.19) in the above integral, relation (A3.19) can be written as

¢.(v.2)=¢.(.2) —ﬁffzcéc(y,Z)dQ (A3.21)

where 4= IQ d 2 1is the area of the cross section.

Having in mind that the shear centre S is defined as the point of the cross section at

which the torsional moment arising from the transverse shear stress distribution

vanishes, the coordinates { y S,ZS} of this point with respect to the Cxyz system of axes

can be derived from the condition
ySQz _ZSQy = Mx g ySQz _ZSQy = J-Q(szy - Txyz)d'Q (A322)

For {Qy =0,0, :]} and after substituting eqns. (A3.3b,c) in eqn. (A3.22), the yg

coordinate of the shear centre S can be obtained as
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0. op,
_G oY li0 A3.23
s L’)(y oz oy j (A3.23)

Similarly, for {Qy =10, = 0} the zg coordinate is given as

Zg :G_[Q(y%—z%jdﬁ (A3.24)

Eqns. (A3.23) and (A3.24) declare that the coordinates of the shear centre S are
independent from shear loading. Moreover, it can be shown that the coordinates of the
shear centre S, coincide with the coordinates of the centre of twist M as given in
Sapountzakis (2000). This coincidence of these centres was first recognized by Weber
(1924) applying the Betty-Maxwell reciprocal relations and Trefftz (1935) using an
energy approach.

Furthermore, the shear deformation coefficients &, &, and «,, =, which are

y
introduced from the approximate formula for the evaluation of the shear strain energy

per unit length (Schramm et al. 1997) given as

2 2
_ a0, + a,0, N a,,0,0;

= A3.25
WP 2AG  2AG AG ( )
are evaluated equating this approximate energy with the exact one given from
2 2
T, +7
Uppact = | %dﬂ (A3.26)

0

For {Qy #0,0, = 0} setting as ¢, ( y,z) the resulting warping function and substituting

relations (A3.5b-c) incorporating eqn. (A3.6), the coefficient «, is obtained as

2 (0. Y (04,
@, =L A9 ( %j +( ¢Cyj 40 (A3.27)
K, 0y o oy 0z
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For {Qy =0,0, # 0} setting as ¢, ( y,z) the resulting warping function and substituting

relations (A3.5b-c) incorporating eqn. (A3.6), the coefficient ¢, is obtained as

2 2 2
a, :L: Ai Ka%zj +(a¢czj }d[) (A3.28)
K, o o oy 0z

Similarly, for {Qy #0,0, # 0} setting as ¢, ( y,z) the resulting warping function and

substituting relations (A3.5b-c) incorporating eqn. (A3.6) together with eqns. (A3.27),
(A3.28) the coefficient &, is obtained as

o A5 (a%zr{amf o
Yok, 00 5 O Oy

2 2 2 2 2 2
_AG? (a@zj +(%j 40-49 | (a@yj +(6¢cyj 10
Qsz Q ay aZ Qsz Q 6.)} aZ

where x,, &,k are called shear correction factors or shear stiffness factors (Pilkey

(A3.29)

2002). It is worth noting that the warping function ¢, (,z) of eqns. (A3.22), (A3.26)

and (A3.28), results from the solution of the Neumann boundary value problem

I y—-1_z
Vi, (rz)=—2 = im0 (A3.302)
(1,017,
0 , K+1
4y (rz) _, o o ur, (A3.30b)
on j=1

and the warping function ¢, (y,z) of eqns. (A3.24), (A3.28) and (A3.29), results from
the solution of the Neumann boundary value problem

1 o
V24, (.z)=— 2L n 0 (A3.31a)

G(Iyylzz _ Jj)
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0 , K+1
¢ (.2) =0 on r=yr, (A3.31b)
on j=1

Employing the shear deformation coefficients «,,a, and «a,, the cross section shear

y)

rigidities of the Timoshenko’s beam theory are defined as

ou =94 ou G4 5, G4 (A3.32a-c)
[04

sy ay Ry a, Syz .
The numerical evaluation of the shear deformation coefficients implies the estimation of
the warping functions. This is accomplished employing BEM (Katsikadelis 2002a) as

this is presented in Mokos (2007) and Sapountzakis and Mokos (2009).
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