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Περίληψη

Στην παρούσα διπλωματική παρουσιάσαμε το σύστημα φυσικής απαγωγής και την έν-

νοια της κανονικοποίησης μιας απόδειξης φυσικής απαγωγής. Ακολούθως παρουσιά-

σαμε το σύστημα ακολουθητών Gentzen και το πολύ σημαντικό θεώρημα απαλοιφής
της τομής. Στη συνέχεια περάσαμε σε ένα καινούριο σύστημα Φυσικής Απαγωγής

με Γενικευμένους Κανόνες Απαλοιφής. Χάρη στους καινούριους κανόνες πλέον ισχύ-

ει μια ισοδυναμία μεταξύ Φυσικής Απαγωγής και συστήματος ακολουθητών χωρίς τα

προβλήματα που υπήρχαν με το σύνηθες σύστημα Φυσικής Απαγωγής. Εξετάσαμε τις

κανονικές και τις μη-κανονικές αποδείξεις σε αυτό το σύστημα και δείξαμε ότι ισχύει η

κανονικοποίηση ως ισοδύναμη πράξη με την απαλοιφή της τομής. Στη συνέχεια παρου-

σιάσαμε μια διαφορετική απόδειξη του Hauptsatz χωρίς τον κανόνα της πολυτομής που
είχε εισάγει ο Gentzen στην περίπτωση που η δεξιά υπόθεση της τομής είχε προέλθει
από συστολή.



Abstract

In this thesis we presented the Natural Deduction System and the concept of nor-
malization of Natural Deduction derivation. Next, we presented Gentzen’s Sequent
Calculus and the very important cut elimination theorem. We continued with a
new system of Natural Deduction with General Elimination Rules. Thanks to the
new rules, we now have a correspondence between Natural Deduction and Sequent
Calculus without the problems that existed with the standard Natural Deduction
system. We examined normal and non-normal derivations in this system and we
showed that normalization applies as an equivalent procedure to Cut Elimination.
Last, we presented a different proof of Hauptsatz without the Multicut rule that was
introduce by Gentzen in the case that the right premiss of the Cut rule was derived
by contraction.
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Κεφάλαιο 1

Natural Deduction

1.1 The calculus

We shall use the notation

A

to designate a deduction of A, that is, ending at A. The deduction will be written as
a finite tree, and in particular, the tree will have leaves labelled by sentences. For
these sentences, there are two possible states, dead or alive.

In the usual state, a sentence is alive, that is to say it takes an active part in
the proof: we say it is a hypothesis. The typical case is illustrated by the first
rule of natural deduction, which allows us to form a deduction consisting of a single
sentence:

A

Here A is both the leaf and the root; logically, we deduce A, but that was easy
because A was assumed!

Now a sentence at a leaf can be dead, when it no longer plays an active part in
the proof. Dead sentences are obtained by killing live ones. The typical example is
the →-introduction rule:

[A]

B → I
A→ B
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It must be understood thus: starting from a deduction of B, in which we cho-
ose a certain number of occurrences of A as hypotheses (the number is arbitrary:
0, 1, 250, ...), we form a new deduction of which the conclusion is A → B, but in
which all these occurrences of A have been discharged, i.e. killed. There may be
other occurrences of A which we have chosen not to discharge.

This rule illustrates very well the illusion of the tree-like notation: it is of critical
importance to know when a hypothesis was discharged, and so it is essential to record
this. But if we do this in the example above, this means we have to link the crossed
A with the line of the→ I rule; but it is no longer a genuine tree we are considering!

1.1.1 The rules

Hypothesis: A

Introductions:

A B ∧I
A∧B

[A]

B →I
A→B

A ∨IR
A∨B

B ∨IL
A∨B

A ∀I∀xA
A[t/x]

∃I∃xA

Eliminations:

A→ B B →E
B

A ∨B

[A]

C

[B]

C ∨E
C

A ∧B ∧ER
A

A ∧B ∧EL
B

∀xA ∀E
A[t/x]

∃xA

[A]

C ∃E
C

⊥ ⊥E
C

2



The rule →E is traditionally called modus ponens.

The above rules are for the intuitionistic system Ni. To obtain the classical
system Nc, the ⊥c rule is added:

[¬A]

⊥ ⊥c
A

Some remarks:

All the rules, except →I, preserve the stock of hypotheses: for example, the
hypotheses in the deduction above which ends in→E, are those of the two immediate
sub-deductions.

For well-known logical reasons, it is necessary to restrict ∀I to the case where
the variable x is not free in any hypothesis (it may, on the other hand, be free in a
dead leaf). The variable x must no longer be free in the hypotheses or the conclusion
after use of the rule ∃E. There is, of course, no rule ⊥I.

The fundamental symmetry of the system is the introduction/elimination sym-
metry, which replaces the hypothesis/conclusion symmetry that cannot be imple-
mented in this context.

1.2 Normal Deductions

In this section we shall study the process of normalization for Natural Deductions
in Intuitionistic Logic.

We shall assume, unless stated otherwise, that applications of ⊥E have atomic
conclusions in the deductions we consider.

Normalizations aim at removing local maxima of complexity, i.e. formula occur-
rences which are first introduced and immediately afterwards eliminated. However,
an introduced formula may be used as a minor premise of an application of ∨E or
∃E, then stay the same throughout a sequence of applications of these rules, being
eliminated at the end. This also constitutes a local maximum, which we should like
to eliminate; for that we need the so-called permutation conversions. First we give
a precise definition.

NOTATION. In order to be able to generalize conveniently later on, we introdu-
ce the term del-rule (from ”disjunction-elimination-like”): the del-rules of Natural
Deduction are ∃E, ∨E.

Definition 1.1. A segment (of length n) in a deduction D is a sequence A1, . . . , An

of consecutive occurrences of a formula A in D such that
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(i) for 1 < n, i < n,Ai is a minor premise of a del-rule application in D, with
conclusion Ai+1,

(ii) An is not a minor premise of a del-rule application,

(iii) A1 is not the conclusion of a del-rule application.

(Note: An f.o. which is neither a minor premise nor the conclusion of an appli-
cation of ∨E or ∃E always belongs to a segment of length 1.) A segment is maximal,
or a cut (segment) if An is the major premise of an E-rule, and either n > 1, or n = 1
and A1 ≡ An is the conclusion of an I-rule. The cutrank cr(σ) of a maximal segment
σ with formula A is |A|. The cutrank cr(D) of a deduction D is the maximum of the
cutranks of cuts in D. If there is no cut, the cutrank of D is zero. A critical cut of
D is a cut of maximal cutrank among all cuts in D. We shall use σ, σ′ for segments.

We shall say that σ is a subformula of σ′ if the formula A in σ is a subformula
of B in σ′. A deduction without critical cuts is said to be normal.

REMARK. The obvious notion for a cut segment of length greater than 1 which
comes to mind stipulates that the first formula occurrence of the segment must
be the conclusion of an I-rule; but it turns out we can handle our more general
notion of cut in our normalization process without extra effort. Note that a formula
occurrence can belong to more than one segment of length greater than 1, due to
the ramifications in ∨E-applications.

1.2.1 Detour conversions

We first show how to remove cuts of length 1. We write ”conv” for ”converts to”.

∧-conversion:

D1

A1

D2

A2

A1 ∧ A2

Ai

conv Di

Ai

for i ∈ 1, 2.

∨-conversion:

D

Ai

A1 ∨ A2

[A1]

D1

C

[A2]

D2

C
C

conv

D

[Ai]

Di

C

for i ∈ 1, 2.
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→-conversion:

[A]

D

B
A→ B

D1

A
B

conv

D1

[A]

D

B

∀-conversion:

D

A
∀xA
A[t/x]

conv D[t/x]

A[t/x]

∃-conversion:

D

A[t/x]

∃xA

[A]

D′

C
C

conv

D

[A[t/x]]

D′[t/x]

C

1.2.2 Permutation conversions

In order to remove cuts of length > 1, we permute E-rules upwards over minor
premises of ∨E, ∃E.

∨-perm conversion:

D

A ∨B

D1

C

D2

C
C

D′

E-rule
D

conv

A ∨B

D1

C
D′

D

D2

C
D′

D
D

∃-perm conversion:

D

∃xA

D′

C
C

D′′

E-rule
D

conv D

∃xA

D′

C
D′′

D
D

1.2.3 Simplification conversions

Applications of ∨E with major premise A1 ∨ A2, where at least one of [A1], [A2]
is empty in the deduction of the first or second minor premise, are redundant; we
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accordingly introduce simplifying conversions. Similarly, an application of ∃E with
major premise ∃xA, where the assumption class [A] in the derivation of the minor
premise is empty, is redundant. Redundant applications of ∨E or ∃E can be removed
by the following conversions:

D

A ∨B

D1

C

D2

C
C

conv Di

C

where no assumptions are discharged by ∨E in Di, and

D

∃xA

D′

C
C

conv D′

C

where no assumptions of D′ are discharged at the final rule application. The simplifi-
cation for ∨E introduces a non-deterministic element if both discharged assumption
classes [Ai] are empty.

Theorem 1.2. Each derivation D in Natural Deduction reduces to a normal deri-
vation.

Απόδειξη. In applications of E-rules we always assume that the major premise is to
the left of the minor premise(s), if there are any minor premises. We use a main
induction on the cutrank n of D, with a subinduction on m, the sum of lengths of
all critical cuts (= cut segments) in D.

By a suitable choice of the critical cut to which we apply a conversion we can
achieve that either n decreases (and we can appeal to the main induction hypothesis),
or that n remains constant but m decreases (and we can appeal to the subinduction
hypothesis). Let us call σ a t.c.c. (top critical cut) in D if no critical cut occurs in
a branch of D, above σ. Now apply a conversion to the rightmost t.c.c. of D; then
the resulting D′ has a lower cutrank (if the segment treated has length 1, and is the
only critical segment in D), or has the same cutrank, but a lower value for m.

To see this in the case of an implication conversion, suppose we apply a conver-
sion to the rightmost t.c.c. consisting of a formula occurrence A→ B

[A]

D′

B
A→ B

D′′

A
B

conv

D′′

[A]

D′

B

6



Then the repeated substitution of D′′ at each f.o. of [A] cannot increase the value
of m, since D, does not contain a t.c.c. cut in D′′ above the minor premise A
of →E (such a cut would have to occur to the right of A → B, contrary to our
assumption).

Theorem 1.3. Deductions in Natural Deduction are strongly normalizing w.r.t. the
conversions listed, that is all reduction sequences terminate (every strategy produces
normal forms).

1.2.4 Normal Deductions in CL

The system Nc is not as well-behaved w.r.t. to normalization as Ni. In particular, no
obvious ”formulas-as-types” parallel is available. Nevertheless, as shown by Prawitz,
a form of normalization for Nc w.r.t. the ⊥ ∧ → ∀-language is possible, by observing
that ⊥c for this language may be restricted to instances with atomic conclusions.
For example, the left tree below may be transformed into the tree on the right hand
side:

[¬(B → C)]

D

⊥
B → C

(B → C) B

C ¬C
⊥

[¬(B → C)]

D

⊥
C

B → C

7



Κεφάλαιο 2

Sequent Calculus

The sequent calculus, due to Gentzen, is the prettiest illustration of the symmetries
of Logic. It presents numerous analogies with natural deduction, without being
limited to the intuitionistic case. This calculus is generally ignored by computer
scientists. Yet it underlies essential ideas: for example, PROLOG is an implemen-
tation of a fragment of sequent calculus, and the ”tableaux” used in automatic
theorem-proving are just a special case of this calculus. In other words, it is used
unwittingly by many people, but mixed with control features, i.e. programming
devices. What makes everything work is the sequent calculus with its deep sym-
metries, and not particular tricks. So it is difficult to consider, say, the theory of
PROLOG without knowing thoroughly the subtleties of sequent calculus.

2.1 The calculus

Definition 2.1. A sequent is an expression Γ⇒ ∆ where Γ and ∆ are finite seque-
nces of formulae Γ1, . . . ,Γn and ∆1, . . . ,∆n.

The naive (denotational) interpretation is that the conjunction of the Γi implies
the disjunction of the ∆j. In particular,

• if Γ is empty, the sequent asserts the disjunction of the ∆j ;

• if Γ is empty and ∆ is just ∆1, it asserts ∆1;

• if ∆ is empty, it asserts the negation of the conjunction of the Γi;

• if Γ and ∆ are empty, it asserts contradiction.

8



2.1.1 Structural rules

These rules, which seem not to say anything at all, impose a certain way of managing
the ”slots” in which one writes formulae. They are:

1. The weakening rules

Γ⇒ ∆
LW

A, Γ⇒ ∆
Γ⇒ ∆

RW
Γ⇒ A, ∆

as their name suggests, allow replacement of a sequent by a weaker one.

2. The contraction rules

A, A, Γ⇒ ∆
LC

A, Γ⇒ ∆
Γ⇒ A, A, ∆

RC
Γ⇒ A, ∆

express the idempotence of conjunction and disjunction.

In fact, contrary to popular belief, these rules are the most important of the w-
hole calculus, for, without having written a single logical symbol, we have practically
determined the future behaviour of the logical operations. Yet these rules, if they
are obvious from the denotational point of view, should be examined closely from
the operational point of view, especially the contraction. It is possible to envisage
variants on the sequent calculus, in which these rules are abolished or extremely re-
stricted. That seems to have some very beneficial effects, leading to linear logic [5].
But without going that far, certain well-known restrictions on the sequent calculus
seem to have no purpose apart from controlling the structural rules, as we shall see
in the following sections.

2.1.2 The intuitionistic case

Essentially, the intuitionistic sequent calculus is obtained by restricting the form of
sequents: an intuitionistic sequent is a sequent Γ⇒ ∆ where ∆ is a sequence formed
from at most one formula. In the intuitionistic sequent calculus, the only structural
rule on the right is RW since RC assumes several formulae on the right.

The intuitionistic restriction is in fact a modification to the management of
the formulae –the particular place distinguished by the symbol ⇒ is a place where
contraction is forbidden –and from that, numerous properties follow. On the other
hand, this choice is made at the expense of the left/right symmetry. A better result
is without doubt obtained by forbidding contraction (and weakening) altogether,
which allows the symmetry to reappear.

Otherwise, the intuitionistic sequent calculus will be obtained by restricting to
the intuitionistic sequents, and preserving –apart from one exception –the classical
rules of the calculus.

9



2.1.3 The ”identity” group

1. For every formula A there is the identity axiom A ⇒ A. In fact one could limit
it to the case of atomic A, but this is rarely done. 2. The cut rule

Γ⇒ A, ∆ A, Γ′ ⇒ ∆′
Cut

Γ, Γ′ ⇒ ∆, ∆′

is another way of expressing the identity. The identity axiom says that A (on the
left) is stronger than A (on the right); this rule states the converse truth, i.e. A (on
the right) is stronger than A (on the left).

The identity axiom is absolutely necessary to any proof, to start things off. That
is undoubtedly why the cut rule, which represents the dual, symmetric aspect can
be eliminated, by means of a difficult theorem which is related to the normalisation
theorem. The deep content of the two results is the same; they only differ in their
syntactic dressing.

2.1.4 Logical rules

There is tradition which would have it that Logic is a formal game, a succession of
more or less arbitrary axioms and rules. Sequent calculus (and natural deduction
as well) shows this is not at all so: one can amuse oneself by inventing one’s own
logical operations, but they have to respect the left/right symmetry, otherwise one
creates a logical atrocity without interest. Concretely, the symmetry is the fact that
we can eliminate the cut rule.

1. Conjunction: on the left, two unary rules; on the right, one binary rule:

A, Γ⇒ ∆
L∧L

A ∧B, Γ⇒ ∆
B, Γ⇒ C

L∧R
A ∧B, Γ⇒ C

Γ⇒ A, ∆ Γ′ ⇒ B, ∆′
R∧

Γ, Γ′ ⇒ A ∧B, ∆, ∆′

2. Disjunction: obtained from conjunction by interchanging right and left:

A, Γ⇒ ∆ B, Γ′ ⇒ ∆′
L∨

A ∨B, Γ, Γ′ ⇒ ∆, ∆′
Γ⇒ A, ∆

R∨L
Γ⇒ A ∨B, ∆

Γ⇒ B, ∆
R∨R

Γ⇒ A ∨B, ∆

Special case: The intuitionistic rule L∨ is written:

A, Γ⇒ ∆ B, Γ′ ⇒ ∆
L∨

A ∨B, Γ, Γ′ ⇒ ∆

10



where ∆ contains zero or one formula. This rule is not a special case of its classical
analogue, since a classical L∨ leads to ∆, ∆ on the right. This is the only case where
the intuitionistic rule is not simply a restriction of the classical one.

3. Implication: here we have on the left a rule with two premises and on the
right a rule with one premise. They match again, but in a different way from the
case of conjunction: the rule with one premise uses two occurrences in the premise:

Γ⇒ A, ∆ B, Γ′ ⇒ ∆′
L→

A→ B, Γ, Γ′ ⇒ ∆, ∆′
A, Γ⇒ B, ∆

R→
Γ⇒ A→ B, ∆

4. Universal quantification: two unary rules which match in the sense that one
uses a variable and the other a term:

A[t/x], Γ⇒ ∆
L∀∀xA, Γ, ⇒ ∆

Γ⇒ A[y/x], ∆
R∀

Γ⇒ ∀xA, ∆

R∀ is subject to a restriction: x must not be free in Γ,∆.

5. Existential quantification: the mirror image of 4:

A[y/x], Γ⇒ ∆
L∃∃xA, Γ, ⇒ ∆

Γ⇒ A[t/x], ∆
R∃

Γ⇒ ∃xA, ∆

L∃ is subject to the same restriction as R∀: x must not be free in Γ,∆.

2.2 Cut Elimination

Closure under Cut just says that the Cut rule is admissible: if ` Γ ⇒ ∆, A and
A,Γ′ ⇒ ∆′ in the system considered, then also ` Γ,Γ′ ⇒ ∆,∆′. This in itself does
not give us an algorithm for constructing a deduction of Γ,Γ′ ⇒ ∆,∆′ from given
deductions of Γ⇒ ∆, A and A,Γ′ ⇒ ∆′. In the systems studied here the deductions
are recursively enumerable. So, if we know that the system is closed under Cut, there
exists, trivially, an uninteresting algorithm for finding a deduction of Γ,Γ′ ⇒ ∆,∆′

given the fact that Γ ⇒ ∆, A and A,Γ′ ⇒ ∆′ are deducible: just search through
all deductions until one arrives at a deduction for Γ,Γ′ ⇒ ∆,∆′. For such a trivial
algorithm we cannot find a bound on the depth of the cutfree proof in terms of the
depth of the original proof.

We shall say that cut elimination holds for a system, if there is a ”non-trivial”
algorithm for transforming a deduction in this system into a deduction with the
same conclusion in the same system without the cut rule.

Definition 2.2. The level of a cut is defined as the sum of the depths of the dedu-
ctions of the premises; the rank of a cut on A is |A|+1. The cut rank of a deduction
D, cr(D), is the maximum of the ranks of the cutformulas occurring in D.
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Theorem 2.3. Cut elimination holds for sequent calculus.

The strategy is to successively remove cuts which are topmost among all cuts
with rank equal to the rank of the whole deduction, i.e. topmost maximal-rank cuts.
It suffices to show how to replace a subdeduction D of the form

D0

Γ⇒ ∆, A

D1

A,Γ′ ⇒ ∆′
Cut

Γ,Γ′ ⇒ ∆,∆′

where cr(Di) ≤ |A| = cr(D) − 1 for i ∈ {0, 1}, by a D∗ with the same conclusion,
such that cr(D∗) ≤ |A|. The proof proceeds by a main induction on the cutrank,
with a subinduction on the level of the cut at the bottom of D. If we try to prove
cut elimination directly for the system we have introduced, we encounter difficulties
with the Contraction rule. We should like to transform a deduction

D′

Γ⇒ A

D′′

Γ′, A,A⇒ B
LC

Γ′, A⇒ B
Cut

Γ,Γ′ ⇒ B

into

D′

Γ⇒ A

D′

Γ⇒ A

D′′

Γ′, A,A⇒ B
Cut

Γ,Γ′, A⇒ B
Cut

Γ,Γ,Γ′ ⇒ B
LC

Γ,Γ′ ⇒ B

but this does not give a reduction in the height of the subtrees above the lowest new
cut. The solution is to replace Cut by a derivable generalization of the Cut rule:

Multicut
Γ⇒ ∆, An Am,Γ′ ⇒ ∆′

Γ,Γ′ ⇒ ∆,∆′
(n,m > 0)

where Ak, k ∈ N, stands for k copies of A. Multicut, also called ”Mix”, can then be
eliminated from this modified calculus.

Rank and level of a Multicut application (a multicut) are defined as rank and
level of a cut. We can apply either the strategy of removing topmost cuts, or the
strategy of removing topmost maximal-rank cuts. Under both strategies we use
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an induction on the rank of the multicut, with a subinduction on the level of the
multicut, in showing how to get rid of a multicut of rank k+ 1 applied to two proofs
with cutrank 0 (on the first strategy) or less than k+ 1 (on the second strategy). In
the example above, the upper deduction is simply replaced by

Γ⇒ A

D′′

Γ′, A,A⇒ B
Multicut

Γ,Γ′ ⇒ B

Instructive is the following case, the most complicated one: let D be obtained by a
multicut on the following two cutfree deductions:

D00

Γ, A⇒ B, (A→ B)m,∆
R→

Γ⇒ (A→ B)m+1,∆

D10

Γ′, (A→ B)n ⇒ A,∆′

D11

Γ′, (A→ B)n, B ⇒ ∆′
L→

Γ′(A→ B)n+1 ⇒ ∆′

In the case where m,n > 0 we construct Da,Db,Dc:

Da ≡


D00

Γ, A⇒ B, (A→ B)m,∆

D10

Γ′, (A→ B)n ⇒ A,∆′

D11

Γ′, (A→ B)n, B ⇒ ∆′

Γ′(A→ B)n+1 ⇒ ∆′

Γ,Γ′, A⇒ B,∆,∆′

Db ≡


D00

Γ, A⇒ B, (A→ B)m,∆

Γ⇒ (A→ B)m+1,∆

D10

Γ′, (A→ B)n ⇒ A,∆′

Γ,Γ′ ⇒ A,∆,∆′

Dc ≡


D00

Γ, A⇒ B, (A→ B)m,∆

Γ⇒ (A→ B)m+1,∆

D11

Γ′, (A→ B)n, B ⇒ ∆′

Γ,Γ′, B ⇒ ∆,∆′

In each of these deductions the multicut on A → B has a lower level than in
D. Therefore we can construct by the IH their transforms D′a,D′b,D′c of cutrank
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≤ |A→ B| and combine these in

D′a
Γ,Γ′, A⇒ B,∆,∆′

D′b
Γ,Γ′ ⇒ A,∆,∆′

Γ,Γ,Γ′,Γ′ ⇒ B,∆,∆,∆′,∆′

D′c
Γ,Γ′, B ⇒ ∆,∆′

(Γ,Γ′)3 ⇒ (∆,∆′)3
C

Γ,Γ′ ⇒ ∆,∆′

The multicuts are now all of lower rank.
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Κεφάλαιο 3

Natural Deduction with General
Elimination Rules

The structure of derivations in natural deduction is analyzed through isomorphism
with a suitable sequent calculus, with twelve hidden convertibilities revealed in usual
natural deduction. A general formulation of conjunction and implication elimina-
tion rules is given, analogous to disjunction elimination. Normalization through
permutative conversions now applies in all cases. Derivations in normal form have
all major premisses of elimination rules as assumptions. Conversion in any order
terminates.

Through the condition that in a cut-free derivation of the sequent Γ ⇒ C,
no inactive weakening or contraction formulas remain in Γ, a correspondence with
the formal derivability relation of natural deduction is obtained: All formulas of
Γ become open assumptions in natural deduction, through an inductively defined
translation. Weakenings are interpreted as vacuous discharges, and contractions as
multiple discharges. In the other direction, non-normal derivations translate into
derivations with cuts having the cut formula principal either in both premisses or
in the right premiss only.

3.1 Introduction

We shall analyze the structure of derivations in natural deduction through isomor-
phic correspondence with derivations in a suitable sequent calculus. The key insight
is to formulate all elimination rules of natural deduction in the manner of disju-
nction elimination. The standard conjunction and implication elimination rules
come out as special cases: it is seen that these rules stand behind the failure of uni-
que correspondence between natural deduction and sequent calculus derivations. In

15



particular, twelve cases of failure of normalization in propositional logic are identi-
fied. When conjunction and implication elimination rules are formulated as general
elimination rules, derivations permit conversion to full normal form. The characte-
ristic of this form is that all major premisses of elimination rules are assumptions.
Normalization holds for any order of conversions.

In full normal form for intuitionistic logic, also premisses of falsity elimination,
or the rule “ex falso quodlibet”, are assumptions. Thus, a normal intuitionistic

derivation of a formula C begins with assumptions and inferences of the form
⊥
A

,

followed by subderivations in minimal logic. The usual conjunction and implication
elimination rules do not permit this, which created a discrepancy between natural
deduction and sequent calculus. In the former, falsity elimination can occur in the
middle of a derivation, but in the latter, falsity elimination always is in the beginning
of a derivation.

The concept of full normal form is extended to intuitionistic predicate logic by
a general elimination rule for the universal quantifier, analogous to the elimination
rule for the existential quantifier. This will bring forth twelve more cases of hidden
convertibilities in natural deduction.

Our analysis is based on translations establishing isomorphism between natural
deduction derivations and suitable sequent calculus derivations. The formal deriva-
bility relation of sequent calculus, written Γ⇒ C, is usually related to a meta-level
derivability relation for natural deduction, written Γ ` C. This latter is defined
through the existence of a natural deduction derivation of C from open assumptions
contained in Γ. We give a correspondence with the formal derivability relation of
natural deduction: If in the derivation of Γ ` C there remain no inactive weakening
or contraction formulas in the context Γ, all formulas of Γ become open assum-
ptions in the translation to a natural deduction derivation. Equivalence between
natural deduction and sequent calculus only obtains when inactive weakenings and
contractions are absent in the latter.

In the sequent calculus we use, weakening is an explicit structural rule. We-
akening by a formula that is active in a logical rule in a sequent calculus deriva-
tion corresponds to a vacuously discharged formula in natural deduction. To study
contraction, we treat contexts as multisets. A sequent calculus derivation has con-
tractions whenever more formula occurrences are discharged in a natural deduction
rule than is indicated in the schematic rule, say, more than one in implication intro-
duction. It was not possible to see fully what weakening and contraction amount to
in terms of natural deduction before the general elimination rules were available.

The proof of cut elimination for the sequent calculus corresponding to natural
deduction with general elimination rules is a straightforward induction on length of
cut formula and height of derivation of the premisses of cut. When contexts are
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treated as multisets, a case of cut elimination is encountered in which the right
premiss has been derived by contraction. To obtain cut elimination for this case, a
multi-cut rule, as in Gentzen’s original proof, can be used. But a direct proof is also
available, through consideration of how the premiss of contraction was derived.

The translations we give also apply to non-normal derivations. Normalization
can be achieved through translation to sequent calculus followed by cut elimina-
tion and translation back. The normal form thus obtained is not unique as cut
elimination is not unique. Direct normalization through detour and permutation
conversions, instead, will give strong normalization and uniqueness of normal form
for natural deduction with general elimination rules.

3.2 Hidden convertibilities in natural deduction

Normal derivations with the usual natural deduction rules for conjunction and im-
plication have a pleasant property: In each step of inference, the formula below is
an immediate subformula of a formula above, or the other way around. With disju-
nction elimination, this simple subformula structure along all branches of a normal
derivation tree is lost. But on the other hand, if the major premiss of an elimination
step is concluded by disjunction elimination, the derivation converts into a more
direct form. For example, if both steps are disjunction eliminations, we have

A ∨B

[A]1

C ∨D

[B]2

C ∨D ∨E,1, 2
C ∨D

[C]3

E

[D]4

E ∨E,3, 4
E

This derivation converts into

A ∨B

[A]1

C ∨D

[C]3

E

[D]4

E ∨E,3, 4
E

[B]2

C ∨D

[C]3

E

[D]4

E ∨E,3, 4
E ∨E,1, 2

E

If disjunction elimination is used to conclude a major premiss of conjunction or
implication elimination, translations similar to the above apply. These permutation
conversions were found by Prawitz in 1965. It is possible that the last step in the
derivation of C ∨ D from A or B is ∨I. Elimination with major premiss A ∨ B
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separates the introduction of C ∨D from an elimination of C ∨D. A permutation
conversion can reveal such a “hidden” detour convertibility.

In terms of sequent calculus, where the rule corresponding to ∨E is the left
disjunction rule L∨, the first derivation is

A⇒ C ∨D B ⇒ C ∨D
L∨

A ∨B ⇒ C ∨D
C ⇒ E D ⇒ E

L∨
C ∨D ⇒ E

Cut
A ∨B ⇒ E

The second derivation corresponds to

A⇒ C ∨D
C ⇒ E D ⇒ E

L∨
C ∨D ⇒ E

Cut
A⇒ E

B ⇒ C ∨D
C ⇒ E D ⇒ E

L∨
C ∨D ⇒ E

Cut
B ⇒ E

L∨
A ∨B ⇒ E

Thus, the conversion of the natural deduction derivation into a more direct form
corresponds to a step of cut elimination, where the cut is permuted with L∨, to move
it upwards in the derivation.

In Schroeder-Heister (1984), the following general conjunction elimination rule
is presented,

A ∧B

[A,B]

C ∧E
C

The standard rules come out as special cases when C = A and C = B, respe-
ctively:

A ∧B [A]
∧ER

A

A ∧B [B]
∧EL

B

In the other direction, leaving out the dummy discharged assumptions in these
special cases, if C is derivable from A,B, we have

A ∧B
A

A ∧B
B

C

But the structural properties of these two special elimination rules are quite
different from those of the general elimination rule. To give an example, with the
special rules we have the derivation
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(A ∧B) ∧ C
A ∧B
A

With the general rule, this becomes the derivation

(A ∧B) ∧ C [A ∧B]1
∧E,1

A ∧B [A]2
∧E,2

A

(3.1)

Here the major premiss of the second elimination is itself a conclusion of general
conjunction elimination and a permutation conversion can be made:

(A ∧B) ∧ C
[A ∧B]1 [A]2

∧E,2
A
∧E,1

A

(3.2)

Now the major premisses of both instances of the elimination rule have become
assumptions.

Schroeder-Heister’s general conjunction elimination rule corresponds to the left
conjunction rule of sequent calculus, through the correspondence

A,B,Γ⇒ C
L∧

A ∧B,Γ⇒ C
 

A ∧B

[A,B],Γ

C ∧E
C

Derivation (3.1) with the general elimination rule corresponds, in a way to be
made exact below, to

A ∧B ⇒ A ∧B
W

A ∧B,C ⇒ A ∧B
L∧

(A ∧B) ∧ C ⇒ A ∧B

A⇒ A
W

A,B ⇒ A
L∧

A ∧B ⇒ A
Cut

(A ∧B) ∧ C ⇒ A

Derivation (3.2) corresponds to

A⇒ A
W

A,B ⇒ A
L∧

A ∧B ⇒ A
W

A ∧B,C ⇒ A
L∧

(A ∧B) ∧ C ⇒ A
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It can be obtained from the first one by permuting the cut up twice, first with
L∨ and then with weakening in the left premiss. We observe that the elimination of
cut corresponds to the conversion of major premisses of ∧E rules into assumptions.

With the standard implication elimination rule, or modus ponens, we observe
the same phenomenon: A derivation such as

A→ (B → C) A

B → C B
C

does not convert. But if in a sequent calculus derivation the last rule is L→ and
it is translated analogously to rules L∨ and L∧ a general implication elimination
rule is found:

Γ⇒ A B,∆⇒ C
L→

A→ B,Γ,∆⇒ C
 

A→ B

Γ

A

[B],∆

C →E
C

Again, we obtain the standard elimination rule as a special case, by setting
C = B. In the other direction, if C is derivable from B, we have

A→ B A
B

C

With the general rule, our example derivation is:

A→ (B → C) A [B → C]1
→E,1

B → C B [C]2
→E,2

C

It converts into the derivation

A→ (B → C) A

[B → C]1 B [C]2
→E,2

C
→E,1

C

Translations of these derivations into sequent calculus are: For the first, we have

A⇒ A B → C ⇒ B → C
L→

A→ (B → C), A⇒ B → C
B ⇒ B C ⇒ C

L→
B → C, B → C

Cut
A→ (B → C), A, B ⇒ C
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The second one gives instead the cut-free derivation

A⇒ A
B ⇒ B C ⇒ C

L→
B → C, B → C

L→
A→ (B → C), A, B ⇒ C

There are altogether twelve cases of hidden convertibilities in natural deduction
for propositional logic with special elimination rules.

For quantifiers, the standard elimination rules are

∀xA ∀E
A[t/x]

∃xA

[A]

C ∃E
C

where t is a term free for x in A and usual variable restrictions for ∃E apply.
Similarly to the case of propositional logic, if the major premiss of an elimination
step is derived by ∀E, the derivation does not convert. This brings out twelve new
cases of hidden convertibilities, all eliminable by the use of the general elimination
rule for the universal quantifier,

∀xA

[A[t/x]]

C ∀E
C

This rule will permit a full normal form for derivations in intuitionistic first-
order logic. The special elimination rule follows by setting C = A[t/x]. In the other
direction, if C is derivable from A[t/x], we have the derivation

∀xA
[A[t/x]]

C

The detailed treatment of quantifiers brings no essential new aspects and is left
to another occasion.

What has been said of conjunction and implication elimination extends to falsity

elimination
⊥
C

. In full normal form, its major premiss ⊥ is an assumption. Thus, in
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intuitionistic derivations in full normal form instances of rule ⊥E are top inferences,
followed by a derivation in minimal logic. A typical case of conversion is

A→⊥ A [⊥]1
→E,1

⊥ ⊥E
C

 A→⊥ A

[⊥]1
→E

C →E,1
E

that cannot be done with the modus ponens rule.

3.3 A sequent calculus isomorphic to natural de-

duction

We shall introduce a sequent calculus, to be called G0i, corresponding precisely to
natural deduction with logical introduction and general elimination rules.

G0i

Logical axiom: A⇒ A

Logical Rules:

A, B, Γ⇒ C
L∧

A ∧B, Γ⇒ C
Γ⇒ A ∆⇒ B

R∧
Γ, ∆⇒ A ∧B

A, Γ⇒ C B,∆⇒ C
L∨

A ∨B, Γ, ∆⇒ C
Γ⇒ A

R∨L
Γ⇒ A ∨B

Γ⇒ B
R∨R

Γ⇒ A ∨B

Γ⇒ A B, ∆⇒ C
L→

A→ B, Γ, ∆⇒ C
A, Γ⇒ B

R→
Γ⇒ A→ B

L⊥⊥⇒ C

A[t/x], Γ⇒ C
L∀∀xA, Γ, ⇒ C

Γ⇒ A[y/x]
R∀

Γ⇒ ∀xA

A[y/x], Γ⇒ C
L∃∃xA, Γ, ⇒ C

Γ⇒ A[t/x]
R∃

Γ⇒ ∃xA

Rules of weakening and contraction:

Γ⇒ C
W

A, Γ⇒ C
A, A, Γ⇒ C

Ctr
A, Γ⇒ C
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The restriction in R∀ and in L∃ is that y does not occur free in the conclusion. The
first axiom applies to arbitrary formulas. Therefore, in particular, it gives ⊥⇒⊥ as
an instance, where falsity ⊥ is not an atomic formula but a logical constant of length
0. To emphasize that L⊥ is a logical rule, we have written it as a zero-premiss left
rule. If it is left out, a sequent calculus for minimal logic is obtained.

Each rule has a context, a finite multiset of formulas designated by Γ, ∆ in the
above rules, active formulas designated by A and B, and a principal formula that is
introduced by the rule in question. Corresponding to the treatment of assumptions
in natural deduction, two-premiss rules have independent contexts, both collected
in the antecedent of the conclusion.

The rule of cut,
Γ⇒ A A, ∆⇒ C

Cut
Γ, ∆⇒ C

is proved admissible in Chapter 4.

We shall give an inductive definition of a translation from cut-free derivations in
G0i to natural deduction derivations with general elimination rules. It is sometimes
thought that natural deduction is not able to express the rule of weakening. One
defines instead derivability in natural deduction by: C is derivable from Γ if there
is a derivation with open assumptions contained in Γ. Here we shall consider the
more strict, formal derivability relation.

Definition 3.1. A formula in a sequent calculus derivation is used if it is active in
an antecedent in a rule.

Rules that use a formula make it disappear from an antecedent, so these are
the left rules and R→. In natural deduction, use of formulas corresponds to the
discharge of assumptions. The little numbers written next to the mnemonic symbol
for the rule applied and on top of formulas indicate what is discharged and where.We
shall adjust the translation from sequent calculus to natural deduction accordingly,
by adding labels to used formulas. Labels on top of discharged formulas are called
assumption labels and those next to the rules discharge labels.

Principle (Unique discharge) 3.2. No two rules in a derivation must have the
same discharge labels.

The translation of a cut-free sequent calculus derivation of a sequent Γ ⇒ C
to natural deduction, where Γ has no unused weakening or contraction formulas,
starts with the last step and works root-first step by step until it reaches axioms
and instances of L⊥. In this process, it is crucial to keep track of how formulas in the
antecedents turn into assumptions. To satisfy Principle 3.2, each rule that discharges
assumptions must have fresh discharge labels. Below, in each case of translation,
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we write the result of the first step of translation with a rule in natural deduction
notation, and the premisses from which the translation continues in sequent calculus
notation. We also add square brackets and treat labelled and bracketed formulas
in the same way as other formulas when continuing the translation. The natural
deduction derivation comes out from the translation all finished:

If the last rule to be translated is logical, we have

A, B, Γ⇒ C
L∧

A ∧B, Γ⇒ C

 
A ∧B [A]1, [B]2, Γ⇒ C

∧E,1,2
C

Γ⇒ A ∆⇒ B
R∧

Γ, ∆⇒ A ∧B

 
Γ⇒ A ∆⇒ B ∧I

A ∧B

A, Γ⇒ C B,∆⇒ C
L∨

A ∨B, Γ, ∆⇒ C

 
A ∨B [A]1, Γ⇒ C [B]2, ∆⇒ C

∨E,1,2
C

Γ⇒ A
R∨L

Γ⇒ A ∨B

 
Γ⇒ A ∨IL
A ∨B

Γ⇒ B
R∨R

Γ⇒ A ∨B

 
Γ⇒ B ∨IR
A ∨B

Γ⇒ A B, ∆⇒ C
L→

A→ B, Γ, ∆⇒ C

 
A→ B Γ⇒ A [B]1, ∆⇒ C

→E,1
C

A, Γ⇒ B
R→

Γ⇒ A→ B

 
[A]1, Γ⇒ B

→I,1
A→ B

L⊥⊥⇒ C  ⊥ ⊥E
C
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If the last rule is weakening or contraction, we have

Γ⇒ C
W

[A]n, Γ⇒ C

 

Γ⇒ C

A, A, Γ⇒ C
Ctr

[A]n, Γ⇒ C
 

[A]n, [A]n, Γ⇒ C

If the last rule is an axiom, we have

A⇒ A A

By the assumption of no unused weakening or contraction formulas, the translation
can only reach weakening or contraction formulas indicated as discharged by square
brackets. The topsequents of derivations are axioms or instances of ⊥⇒ C. If the
translation arrives to these sequents and they do not have labels, their antecedents
turn into open assumptions of the natural deduction derivation. When a formula is
used, the translation produces formulas with labels and we can reach topsequents
[A]n ⇒ A and [⊥]n ⇒ C with a label in the antecedent. These are translated into

[A]n and ⊥ ⊥E
C

, with discharged assumptions. Note that if a labelled formula

gets decomposed further up in the derivation, the labelled formula itself becomes
a major premiss of an elimination rule that has been assumed. The components,
instead, do not inherit that label but only those indicated in the above translations.
Two different labels must be used for assumptions A and B in rules ∨E and ∧E.
The translation produces derivations in which the major premisses of elimination
rules always are (open or discharged) assumptions:

Definition 3.3. A derivation in natural deduction is in full normal form if all major
premisses of E-rules are assumptions.

We shall refer to such derivations briefly as normal. Notice that ⊥ in ⊥E is
counted as a major premiss of an E-rule.

Translation of derivations with cuts will be discussed in Section 3.4.

The translation is an algorithm that works its way up from the endsequent in
a local way, reflecting the local character of sequent calculus rules. It produces
syntactically correct derivation trees with discharges fully formalized.

The translation of applications of the rule of weakening into natural deduction
may seem somewhat surprising, but it will lead to a useful insight about the nature
of this rule. Natural deduction rules permit to discharge formulas that have not
occurred in a derivation. Similarly, natural deduction rules permit to discharge any
number of occurrences of an assumption, not just the occurrence indicated in the
schematic rule.
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Definition 3.4. Rule →I and the elimination rules produce a vacuous (multiple)
discharge whenever

1. In →I concluding A → B no occurrence (more than one occurrence) of assum-
ption A was discharged.

2. In ∧E and ∨E with major premisses A ∧ B and A ∨ B, no occurrence of A or
B (more than one occurrence of A or B, or more than two if A = B), was
discharged.

3. In →E with major premiss A → B no (more than one) occurrence of B was
discharged.

A weakening formula (resp. contraction formula) is a formula A introduced by
weakening (contraction) in a derivation. There can be applications of weakening
that have no correspondence in natural deduction: Whenever we have a derivation
with weakening formulas that are not used, the endsequent is of the form A, Γ⇒ C,
with A an inactive weakening formula throughout.

The condition of no inactive weakening or contraction formulas in a sequent
calculus derivation permits a correspondence with the formal derivability relation of
natural deduction:

Theorem 3.5. Given a derivation of Γ ⇒ C with no inactive weakening or con-
traction formulas, there is a natural deduction derivation of C from Γ with each
formula of Γ an open assumption.

Απόδειξη. The proof is by induction on the height of derivation, using the translation
from sequent calculus. If Γ⇒ C is an axiom or instance of L⊥, Γ = C or Γ =⊥, and

the translation gives the natural deduction derivations C and ⊥ ⊥E
C

with open

assumptions C and ⊥, respectively. If the last rule is L∧, we have Γ = A ∧ B, Γ′

and the translation gives

A ∧B [A]1, [B]2, Γ′ ⇒ C
∧E,1,2

C

If there are no inactive weakenings or contractions in the derivation of A, B, Γ′ ⇒ C,
there is by inductive hypothesis a natural deduction derivation of C from open
assumptions A, B, Γ′. Now assume A ∧ B and apply ∧E to obtain a derivation of
C from A ∧B, Γ′.
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If there is an inactive weakening or contraction formula in the derivation of
A, B, Γ′ ⇒ C it is by assumption not in Γ′ so it is AorB or both. Deleting
the weakenings and contractions with unused formulas we obtain a derivation of
Am, Bn, Γ′ ⇒ C, with m,n ≥ 0 copies of A and B, respectively. By the inductive
hypothesis, there is a corresponding natural deduction derivation with open assum-
ptions Am, Bn,Γ′. Application of ∧E now gives a derivation of C from A∧B,Γ. All
the other cases of logical rules are dealt with similarly. The last step cannot be wea-
kening or contraction by the assumption about no inactive weakening or contraction
formulas.

By the translation, the natural deduction derivation in Theorem 3.5 is normal.
Later we show the converse result. Equivalence of derivability between sequent
calculus and natural deduction only applies if unused weakenings and contractions
are absent.

Theorem 3.6. Given a derivation of Γ⇒ C with no inactive weakening or contra-
ction formulas, if A is a weakening (contraction) formula in the derivation, then A
is vacuously (multiply) discharged in the corresponding natural deduction derivation.

Απόδειξη. Formula A can be used in left rules and R→ only. Applying the tran-
slation to natural deduction, A becomes a labelled formula in the antecedent, and
translating further, it disappears when a weakening with A is translated, and is
multiplied when a contraction on A is translated.

Perhaps the simplest example is, with the corresponding natural deduction at
right,

A⇒ A
W

A, B ⇒ A
L∧

A ∧B ⇒ A
R→⇒ A ∧B → A

[A ∧B]1 [A]2
∧E,2,3

A →I,1
A ∧B → A

In the natural deduction derivation, B is vacuously discharged. The translation
produces, as a trace of the weakening, the discharge label 3 to which no assum-
ption label corresponds. An intermediate stage of the translation just before the
disappearance of the weakening formula is

[A ∧B]1
A⇒ A

W
[A]2, [B]3 ⇒ A

∧E,2,3
A →I,1

A ∧B → A

In Gentzen’s original sequent calculus there were two left rules for conjunction:

A, Γ⇒ C
L∧L

A ∧B, Γ⇒ C
B, Γ⇒ C

L∧R
A ∧B, Γ⇒ C
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These left rules correspond to the standard elimination rules for conjunction,
and the derivation of A ∧B → A and its translation become

A
L∧L

A ∧B ⇒ A
R→⇒ A ∧B → A

[A ∧B]1
∧E

A →I,1
A ∧B → A

Weakening is hidden in Gentzen’s left conjunction rules and vacuous discharge in the
special conjunction elimination rules. It is not possible to state fully the meaning
of weakening in terms of natural deduction without using the general elimination
rules. The premiss of a contraction step can arise in essentially three ways: First, the
duplication A,A comes from a rule with two premisses each having one occurrence
of A. Second, A is the principal formula of a left rule and a premiss had A already in
the antecedent. Third, weakening is applied to a premiss having A in the antecedent.
The simplest example of a multiple discharge should be the derivation of A→ A∧A,
given here both in G0i with a contraction and in translation to natural deduction
with a double discharge:

A⇒ A A⇒ A
R∧

A, A⇒ A ∧ A
Ctr

A⇒ A ∧ A
R→⇒ A→ A ∧ A

[A]1 [A]1
∧I

A ∧ A →I,1
A→ A ∧ A

In Definition 3.4, the clause about more than two occurrences in ∧E and ∨E in case
of A = B, is exemplified by the derivation of A ∨ A→ A:

A⇒ A A⇒ A
L∨

A ∨ A⇒ A
R→⇒ A ∨ A→ A

[A ∨ A]3 [A]1 [A]2
∨E,1,2

A →I,3
A ∨ A→ A

Here there is no contraction even if two occurrences of A are discharged at ∨E.

We now come to the translation from natural deduction to sequent calculus. It
is essential to use multisets to see how natural deduction can keep track of contra-
ction. This is no problem since it is well defined how many times open assumptions
A,B,C, . . . appear above any given formula in a derivation.

Translation from fully normal natural deduction derivations with unique dischar-
ge to the calculus G0i is defined inductively according to the last rule used:

1. The last rule is ∧I:

Γ

A

∆

B ∧I
A ∧B

 

Γ

A

∆

B
R∧

Γ, ∆⇒ A ∧B
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2. The last rule is ∧E: The natural deduction derivation, with m-fold discharge on
A and n-fold on B, is

A ∧B

[Am]1, [Bn]2,Γ

C ∧E,1,2
C

The translation is by cases according to values of m and n:
m = 0, n = 0 :

Γ

C
W

A, Γ⇒ C
W

A, B, Γ⇒ C
L∧

A ∧B, Γ⇒ C

m = 1, n = 1 :
A, B, Γ

C
L∧

A ∧B, Γ⇒ C

Note that the discharge labels and brackets have been removed. The cases of
m = 1, n = 0 and m = 0, n = 1 have one weakening step before the L∧ inference.
m > 1, n = 0 :

Am, Γ

C
Ctrm

A, Γ⇒ C
W

A, B, Γ⇒ C
L∧

A ∧B, Γ⇒ C

Here Ctrm indicates an m− 1 fold contraction, and discharges in m occurrences
of assumption A have been removed. The rest of the cases for ∧E are similar.

3. The last rule is ∨I:

Γ

A ∨IL
A ∨B

 

Γ

A
R∨L

Γ⇒ A ∨B

Γ

B ∨IR
A ∨B

 

Γ

B
R∨R

Γ⇒ A ∨B
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4. The last rule is ∨E: The natural deduction derivation is

A ∨B

[Am]1, Γ

C

[Bn]2, ∆

C ∨E,1,2
C

and the translation is again by cases according to the values of m and n:
m = 0, n = 0 :

Γ

C
W

A, Γ⇒ C

∆

C
W

B, ∆⇒ C
L∨

A ∨B, Γ, ∆⇒ C

m = 1, n = 1
A, Γ

C

B, ∆

C
L∨

A ∨B, Γ, ∆⇒ C

Here again, the assumptions have been opened. The general case is m > 1, n > 1 :

Am, Γ

C
Ctrm

A, Γ⇒ C

Bn, ∆

C
Ctrn

B, ∆⇒ C
L∨

A ∨B, Γ, ∆⇒ C

5. The last rule is →I: The general case with m > 1 is translated by

[Am],Γ

B →I,1
A→ B

 

Am,Γ

B
Ctrm

A, Γ⇒ B
R→

Γ⇒ A→ B

Again assumptions have been opened. If m = 0, there is a weakening instead of
contraction, if m = 1, there is just rule R→.
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6. The last rule is →E: The general case is translated as

A→ B

Γ

A

[Bn]1,∆

C →E,1
C

 

Γ

A

Bn,∆

C
Ctrm

B, ∆⇒ C
L→

A→ B, Γ, ∆⇒ C

The other cases are translated analogously to above.

7. The last rule is ⊥E:
⊥ ⊥E
C

 L⊥⊥⇒ C

8. The last formula is an assumption:

A  A⇒ A

Notice that in a fully normal derivation, the premiss of rule ⊥E is an assumption
and nothing remains to be translated in step 7. If in 7 or 8 there are discharge labels
and brackets they are removed.

Theorem 3.7. Given a fully normal natural deduction derivation of C from open
assumptions Γ, there is a derivation of Γ⇒ C in G0i.

Απόδειξη. By the translation defined.

There are no unused weakenings or contractions in the derivation of Γ⇒ C. By
the translation, we obtain the converse to theorem 3.6:

Theorem 3.8. If A is vacuously (multiply) discharged in the derivation of C from
open assumptions Γ, then A is a weakening (contraction) formula used in the deri-
vation of Γ⇒ C in G0i.

The usual explanation of contraction runs something like “if you can derive a
formula using assumption A twice you can also derive it using A only once.” But
this is just a verbal statement of the rule of contraction. Logical rules of natural
deduction that discharge assumptions vacuously or multiply are reproduced as wea-
kenings or contractions plus a logical rule in sequent calculus, but the weakening and
contraction rules in themselves have no proof-theoretical meaning, as was pointed
out by Gentzen (1936, pp. 513-14) already.

By the translation of a derivation from natural deduction to sequent calculus,
each formula in the former appears in the latter. We therefore have a somewhat
surprising proof of the
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Corollary (Subformula property) 3.9. In a normal derivation of C from open
assumptions Γ, each formula in the derivation is a subformula of Γ, C.

The translations we have defined from natural deduction to sequent calculus
and the other way around do not quite establish an isomorphism between the two:
the order of logical rules is preserved, but it is possible to permute weakenings and
contractions on a formula A as long as A remains inactive so that isomorphism
obtains modulo such permutations. This, however, is a minor point that can be
handled by doing weakening and contraction on formula A right before A is used.

Translation of non-normal derivations will be discussed in Section 3.5.

3.4 Derivation with cuts

We show that derivations with cuts can be translated into natural deduction if the
cuts are of a suitable kind: the detour cuts and permutation cuts corresponding
to cuts with the cut formula principal in both premisses and right premiss only,
respectively. These are the principal cuts, the rest are nonprincipal cuts. Principal
cuts correspond, in terms of natural deduction, to instances of rules of elimination
in which the major premisses are not assumptions.

A sequent calculus derivation has an equivalent in natural deduction only if it
has no unused weakening or contraction formulas. By this criterion, there is no
correspondence in natural deduction for many of the nonprincipal cuts of sequent
calculus. In particular, if the right premiss of cut has been derived by contraction,
the contraction formula is not used in the derivation and there is no corresponding
natural deduction derivation. This is precisely the problematic case that led Gentzen
to use the rule of multicut. If cut and contraction are permuted, the right premiss
of a cut becomes derived by another cut and there is likewise no translation.

In translating derivations with cuts, if the left premiss is an axiom the cut is
deleted. There are three detour cuts and another twelve permutation cuts with left
premiss derived by a logical rule to be translated. We also translate principal cuts
on ⊥ as well as cases where the left premiss has been derived by a structural rule,
but derivations with other cases of cuts will not be translated. Translation of rules
other than cut have been given in Section 3.3.

1. Detour cut on A ∧B, and we have the deivation

Γ⇒ A ∆⇒ B
R∧

Γ, ∆⇒ A ∧B
A, B, Θ⇒ C

L∧
A ∧B, Θ⇒ C

Cut
Γ, ∆, Θ⇒ C

32



The translation is:

Γ⇒ A ∆⇒ B ∧I
A ∧B [A]1, [B]2, Θ⇒ C

∧E,1,2
C

Translation now continues from the premisses.

2.,3. Detour cuts on A ∨ B and A → B. The translations are analogous to 1,
with the left and right rules translated as in Section 3.3.

4. Permutation cut on C ∧D with left premiss derived by L∧:

A, B, Γ⇒ C ∧D
L∧

A ∧B, Γ⇒ C ∧D
C, D, ∆⇒ E

L∧
C ∧D, ∆⇒ E

Cut
A ∧B, Γ ∆⇒ E

The translation is

A ∧B [A]1, [B]2, Γ⇒ C ∧D
∧E,1,2

C ∧D [C]3, [D]4, ∆⇒ E
∧E,3,4

E
The rest of the permutation cuts with L∧, L∨ and L→ are translated analogously.

5. We also have permutation cuts on ⊥E but no detour cuts since ⊥ can never
be principal in the left premiss. The derivation and its translation are, where L
stands for a (one-premiss) left rule and E for an elimination,

Γ′ ⇒⊥
L

Γ⇒⊥ L⊥⊥⇒ C
Cut

Γ⇒ C

 Γ′ ⇒⊥
E⊥ ⊥E

C

6. ‘Structural’ cuts with left premiss derived by weakening, contraction or cut.
For weakening and contraction the translation reaches, by the condition of no unused
weakening or contraction formulas, a conclusion of cut of the form [An], Γ, ∆⇒ C.
In the case of weakening, the left premiss of cut A, Γ ⇒ B has been derived from
Γ⇒ B, in the case of contraction from A, A, Γ⇒ B. The cuts are translated with
left premiss replaced by Γ⇒ B and [An], [An], Γ⇒ B, respectively.

For left premiss of cut derived by another cut the translation is modular and
the upper cut is handled as before.
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3.5 Non-normal derivations

We began in Section 3.2 with examples of non-normal natural deduction derivations
corresponding to sequent calculus derivations with cuts. The latter are produced by
translations defined inductively according to the last step. Derived major premisses
are called conversion formulas. There are three cases of non-normality in which
the major premiss of an elimination rule has been derived by the corresponding
introduction rule:

1. The conversion formula has been derived by ∧I and the derivation is

Γ

A

∆

B ∧I
A ∧B

[Am]1, [Bn]2,Θ

C ∧E,1,2
C

The translation is by cases according to values of m and n. The general case is

Γ

A

∆

B
R∧

Γ, ∆⇒ A ∧B

Am, Bn, Θ

C
Ctrm,Ctrn

A, B, Θ⇒ C
L∧

A ∧B, Θ⇒ C
Cut

Γ, ∆, Θ⇒ C

There is an m+ n− 2 fold contraction in case m,n > 1.

2., 3. The conversion formula has been derived by ∨I or →I and the translation
is analogous.

When detour conversions are applied, the open assumptions in a derivation can
change. For example, the derivation

A B ∧I
A ∧B [A]1

∧E,1
A

converts into the derivation A. Translation gives

A⇒ A B ⇒ B
R∧

A, B ⇒ A ∧B

A⇒ A
W

A, B ⇒ A
L∧

A ∧B ⇒ A
Cut

A, B ⇒ A

34



Cut elimination produces the derivation

A⇒ A
W

A, B ⇒ A

Deletion of the unused weakening gives the derivation A⇒ A, corresponding to the
result of the detour conversion.

Given a (cut-free) derivation of Γ ⇒ C, we can first delete the unused wea-
kenings, then translate to natural deduction, and last add the unused weakening
formulas of Γ to the natural deduction derivation by the above trick on formula B,
to obtain a non-normal derivation of C from open assumptions Γ.

There is a good number of non-normalities with a permutation convertibility
but we only show one typical case:

4. The conversion formula C ∧D has been derived by ∧E from A ∧B:

A ∧B

[Am]1, [Bn]2, Γ

C ∧D ∧E,1,2
C ∧D

[Ck]3, [Dl]4,∆

E ∧E,3,4
E

The translation is by cases according to values of m,n, k, l, with the general case

Am, Bn, Γ

C ∧D
Ctrm,Ctrn

A, B, Γ⇒ C ∧D
L∧

A ∧B, Γ⇒ C ∧D

Ck, Dl, ∆

C
Ctrk,Ctrl

C, D, ∆⇒ E
L∧

C ∧D, ∆⇒ E
Cut

A ∧B, Γ, ∆⇒ E

If A ∧ B in turn is a conversion formula, a cut on A ∧ B is inserted after the rule
L∧ that concludes the left premiss of the cut on C ∧D.

Translations when ∨E and→E have been used are analogous to the one for ∧E.
Translation when ⊥E has been used is the converse to translation 5 in Section 3.4.
If the major premiss in the derivation of a conversion formula is again a conversion
formula, another cut is inserted.

Consider a typical principal cut, say, on A ∧B:

Γ⇒ A ∧B
A, B, ∆⇒ C

L∧
A ∧B,∆⇒ C

Cut
Γ, ∆⇒ C
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We see that the cut is redundant, in the sense that its left premiss is an axiom,
precisely when A ∧ B is an assumption in the corresponding natural deduction
derivation. In this case, the cut is not translated but deleted. We have, in general:

A non-normal instance of a logical rule in natural deduction is represen-
ted in sequent calculus by the corresponding left rule and a cut.

Let us compare this explanation of cut to the presentation of cut as a combination
of two lemmas Γ ⇒ A and A, ∆ ⇒ C into a theorem Γ, ∆ ⇒ C. Consider the
derivation of C from assumptions A,∆ in natural deduction. Obviously A plays an
essential role only if it is analyzed into components by an elimination rule, thus,
A is a major premiss of that elimination rule. If not, it acts just as a parameter
in the derivation. Our explanation of cut makes more precise the idea of cut as
a combination of lemmas: In terms of sequent calculus, the cut formula has to be
principal in a left rule in the derivation of A,∆⇒ C.

Given a non-normal derivation, translation to sequent calculus, followed by cut
elimination and translation back to natural deduction, will produce a normal deri-
vation:

Theorem (Normalization) 3.10. Given a natural deduction derivation of C from
Γ, the derivation converts to a normal derivation of C from Γ∗ where each formula
in Γ∗ is a formula in Γ.

This process of normalization will not produce a unique result since cut elimi-
nation will not.

3.6 The structure of normal derivations

Theorem 3.10 gave a proof of normalization for intuitionistic natural deduction with
general elimination rules, through a translation to sequent calculus, cut elimination
and translation back to natural deduction. Strong normalization and uniqueness
of normal form (modulo the choices in simplification convertibilities on disjunction,
see below) for our system of natural deduction is given by Joachimski and Matthes
(2001). Their proof uses a system of term assignment.

We consider three different types of non-normalities of a natural deduction de-
rivation with general elimination rules that depend on how a major premiss of an
elimination rule was derived. Then the subformula structure of normal derivations
is detailed, with a direct proof of the subformula property.

1. Detour conversions: Gentzen’s original notion of a normal derivation in
natural deduction was that no conclusion of an introduction rule must be
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the major premiss of an elimination rule. (This is seen from the example
on implication in his 1934-35, Sec. II. §5.12.) Non-normal derivations are
transformed into normal ones by detour conversions that delete each such pair
of introduction and elimination rule instances. In a fully general form, a detour
convertibility on the formula A ∧ B obtains in a derivation whenever it has a
part of the form

[A] [B]
∧I

A ∧B

[Am]1, [Bn]2

C ∧E1,2
C

Detour conversion on A ∧ B gives, through simultaneous substitution, the
modified derivation

...
A,m×. . .,

...
A

...
B, n×. . .,

...
B

C

A detour convertibility on A ∨ B is quite analogous. For implication, the
situation is more complicated since a vacuous or multiple discharge is possible
also in the introduction of the conversion formula:

[Am]1

B →,I,1
A→ B A

[Bn]2

C →E,2
C
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Detour conversion on A→ B gives the modified derivation

...
A,m×. . .,

...
A

...
A,m×. . .,

...
A

...
B, n×. . .,

...
B

C

In detour conversions, open assumptions typically get multiplied or deleted.

2. Permutation conversions for general elimination rules: There are four
elimination rules which gives sixteen cases of permutation convertibilities, ma-
jor premisses of elimination rules that are derived by another elimination rule.
All of these act in a similar way on derivations and we only show one:

A permutation convertibility on major premiss C ∧D derived by ∧E on A∧B
obtains whenever a derivation has the part

A ∧B

[Am, Bn]

C ∧D ∧E
C ∧D

[Ck, Dl]

E ∧E
E

After the permutation conversion the part is

A ∧B

[Am, Bn]

C ∧D

[Ck, Dl]

E ∧E
E ∧E

E

The effect of the conversion is that the height of derivation of major premiss
C ∧D, as measured from the discharged assumptions A,B, is diminished by
one.
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3. Simplification conversions: Analogously to Section 1.2.3, we have

Γ

A ∧B

∆

C ∧E
C

Γ

A→ B

∆

A

Θ

C →E
C

In both inferences, C is already concluded without the elimination rule, and
simplification conversion extends to all elimination rules, quantifier rules inclu-
ded. The notion is captured by the

Definition 3.11. A simplification convertibility in a derivation is an instance
of an E-rule with no discharged assumptions, or an instance of ∨E with no
discharges of at least one disjunct.

A simplification convertibility can prevent the normalization of a derivation,
as is shown by the following:

[A]1
→I,1

A→ A

[B]2
→I,2

B → B ∧I
(A→ A) ∧ (B → B)

[C]3
→,3

C → C
∧E

C → C

There is a detour convertibility but due to the vacuous discharge in ∧E, the
pieces of derivation do not fit together in the right way to remove it. Instead
a simplification conversion into the derivation

[C]3
→I,3

C → C

will remove the detour convertibility.

It is possible that in a simplification convertibility with ∨E, both auxiliary
assumptions are vacuously discharged. In this case, there are two converted
derivations of the conclusion.
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Κεφάλαιο 4

A proof of Gentzen’s Hauptsatz
without multicut

Gentzen”s original proof of the Hauptsatz used a rule of multicut in the case that
the right premiss of cut was derived by contraction. Cut elimination is here proved
without multicut, by transforming suitably the derivation of the premiss of the
contraction.

4.1 Introduction

Gentzen in his original 1934 proof of the Hauptsatz for sequent calculus, or cut
elimination theorem, met the following problem: If the right premiss of cut is derived
by contraction, the permutation of cut with contraction does not move the cut higher
up in the derivation. Gentzen introduced the “mix” rule, or rule of multicut, that
lets one eliminate m ≥ 1 occurrences A, . . . , A = Am of the cut formula in one step:

Γ⇒ A Am,∆⇒ C
Cut∗

Γ,∆⇒ C

The reason for having to make recourse to this rule is as follows: Consider the
derivation

Γ⇒ A
A,A,∆⇒ C

Ctr
A,∆⇒ C

Cut
Γ,∆⇒ C

Permuting cut with contraction, we obtain

Γ⇒ A
Γ⇒ A A,A,∆⇒ C

Cut
A,Γ,∆⇒ C

Cut
Γ,Γ,∆⇒ C

Ctr
Γ,∆⇒ C
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Here the lower cut is on the same formula A and has a sum of heights of derivations
of the premisses not less than that in the first derivation. With multicut, instead,
we transform the derivation into:

Γ⇒ A A2,∆⇒ C
Cut∗

Γ,∆⇒ C

Here the height of derivation of the right premiss is diminished by one. A proof
of multicut elimination can be given by induction on the length of the cut formula
and a subinduction on cut-height, i.e., the sum of the derivation heights of the two
premisses of cut. The proof consists of permuting multicut up with the rules used
for deriving its premisses, until it reaches logical axioms and disappears(see, e.g.,
Takeuti 1975). A calculus with multicut is equivalent to a calculus with cut, in
the sense that the same sequents are derivable. Ordinary cut is a special case of
multicut, so that elimination follows from elimination of multicut.

We shall give proofs of the Hauptsatz without multicut for an intuitionistic
single-succedent and a classical multi-succedent calculus. These can be considered
standard calculi when contexts in rules with two premisses are treated as inde-
pendent. In the problematic case of contraction, we make a more global proof
transformation by cases on the derivation of the premiss of contraction.

4.2 Hauptsatz for the intuitionistic calculus

We will use the G0i system again. To prove the admissibility of cut, i.e., the
derivability of its conclusion whenever the premisses are derivable, we define length
w(C) by w(⊥) = 0, w(P ) = 1 for atoms P , and w(A ◦ B) = w(A) + w(B) + 1
for conjunction, disjunction and implication. Height of a derivation is the greatest
number of consecutive steps of inference in it. Cut-height is the sum of heights of
the two premisses in an instance of the cut rule.

The proof of cut elimination is organized as follows: We first consider cases
in which one premiss is an axiom of form A ⇒ A or the left premiss is an axiom
of form ⊥⇒ C, then cases with a premiss obtained by weakening. Next, reflecting
normalization in natural deduction, we have cases where the cut formula is principal
in both premisses and cases where the cut formula is principal in the right premiss
only. Then we have the case that both premisses are derived by a logical rule
and the cut formula is not principal in either rule instance. The last cases concern
contraction. Cut elimination proceeds by first eliminating cuts that are not preceded
by other cuts. The following lemma is needed:

Lemma 4.1. (i) If A ∧B,Γ⇒ C is derivable, also A,B,Γ⇒ C is derivable.
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(ii) If A ∨B,Γ⇒ C is derivable, also A,Γ⇒ C and B,Γ⇒ C are derivable.

(iii) If A ∨B,Γ⇒ C is derivable, also B,Γ⇒ C is derivable.

Απόδειξη. In each case, trace up from the endsequent the occurrence of the formula
in question. If at some stage the formula is principal in contraction, trace up from
the premiss both occurrences. In this way, a number of first occurrences of the
formula is located. (i) If a first occurrence of A ∧ B is obtained by weakening,
weaken with A and with B and continue as before after the weakenings until either
a derivation of A,B,G⇒ C is reached or a step found where a contraction on A∧B
was done in the first derivation. In the latter case, the transformed derivation will
have A,A,B,B in place of A ∧B,A ∧B, and a contraction on A and on B is done
and the derivation continued as before. If a first occurrence of A∧B is obtained by
an axiom A ∧B ⇒ A ∧B, the axiom is substituted by

A⇒ A B ⇒ B
R∧

A,B ⇒ A ∧B

and the derivation continued as before. Otherwise, a first occurrence of A ∧ B is
obtained by L∧, and deletion of this rule will give a derivation of A,B,Γ ⇒ C as
before. For (ii), weakening and axiom are treated similarly to (i). Otherwise, the
L∨ rule introducing A ∨B in the antecedent is

A,Γ′′ ⇒ C ′ A,Γ′′′ ⇒ C ′
L∨

A ∨B,Γ′ ⇒ C ′

where Γ′ = Γ′′,Γ′′′. Repeated weakening of the premisses gives A,Γ′ ⇒ C ′ and
B,Γ′ ⇒ C ′, and continuing as before derivations of A,Γ ⇒ C and B,Γ ⇒ C are
obtained. (iii) is proved similarly to (ii).

Note that the inversions do not need to preserve height of derivation.

Theorem 4.2. The rule of cut

Γ⇒ D D,∆⇒ C
Cut

Γ,∆⇒ C

is admissible in G0i.

Απόδειξη. The proof is an induction on (n,m) where n is the length of the cut
formula and m the cut-height. Uppermost cuts (in the obvious sense) are eliminated
first, so it is sufficient to consider a derivation with just one cut. For all cases, a
transformation is given that either reduces the length of cut formula, or the cut-
height while maintaining the cut formula.
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1. One premissisof form A ⇒ A: The conclusion is equal to the other premiss
and the cut is deleted. The left premiss is ⊥⇒ A: The conclusion of cut is obtained
from the axiom ⊥⇒ C by weakening.

2. A premiss is derived by weakening: If the first premiss is derived by we-
akening, cut and weakening are permuted to obtain a cut with lower cut-height,
and similarly if the second premiss is derived by weakening and the cut formula is
different from the weakening formula. If it is not, the conclusion G,∆ ⇒ C of cut
is derived from the premiss ∆⇒ C of the weakening by repeated weakening and no
cut.

3. Cut formula D is principal in both premisses. There are three subcases each
of which has a transformation of cut into cuts on shorter formulas:

3.1 D = A ∧B, and the derivation

Γ⇒ A ∆→ B
R∧

Γ,∆⇒ A ∧B
A,B,Θ⇒ C

L0∧
A ∧B,Θ⇒ C

Cut
Γ,∆,Θ⇒ C

is transformed into

∆→ B
Γ⇒ A A,B,Θ⇒ C

Cut
B,Γ,Θ⇒ C

Cut
Γ,∆,Θ⇒ C

Note that cut-height can increase in the transformation, but the cut formula is
reduced.

3.2 D = A ∨B, and the derivation is

Γ⇒ A
R∧L

Γ⇒ A ∨B
A,∆⇒ C B,Θ⇒ C

L∨
A ∨B,∆,Θ⇒ C

Cut
Γ,∆,Θ⇒ C

This is transformed into

Γ⇒ A A,∆⇒ C
Cut

Γ,∆⇒ C

that gives the conclusion by repeated weakening. Similarly if the second R∨ rule
was used. Length of cut formula is reduced.

3.3 D = A→ B, and the derivation is

A,Γ⇒ B
R→

Γ⇒ A→ B
∆⇒ A B,Θ⇒ C

L→
A→ B,∆,Θ⇒ C

Cut
Γ,∆,Θ⇒ C
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This is transformed into

∆⇒ A
A,Γ⇒ B B,Θ⇒ C

Cut
A,Γ,Θ⇒ C

Cut
Γ,∆,Θ⇒ C

4. Cut formula D is principal in the right premiss only. Counting ⊥⇒ C as a
zero-premiss left rule with principal formula ⊥, we have four cases and in each, four
subcases according to the left rule used for deriving the left premiss. In all cases,
cut is permuted up in the derivation of the left premiss:

4.1 The left premiss has been derived by L∧, and we have Γ = A ∧ B,Γ′ and
the derivation is

A,B,Γ′ ⇒ D
L∧

A ∧B,Γ′ ⇒ D D,∆⇒ C
Cut

A ∧B,Γ′,∆⇒ C

It is transformed into

A,B,Γ′ ⇒ D D,∆⇒ C
Cut

A,B,Γ′,∆⇒ C
L∧

A ∧B,Γ′,∆⇒ C

4.2 The left premiss is derived by L∨. The transformation is analogous to case
4.1.

4.3 The left premiss is derived by L→. As for case 4.2.

4.4 If the left premiss is ⊥⇒ D, we are back to case 1.

5. Cut formula is not principal in the right premiss: The derivation, with a
two-premiss rule R and D in the antecedent of the left premiss of rule R, is

Γ⇒ D
D,∆′ ⇒ C ′ ∆′′ ⇒ C ′′

R
D,∆⇒ C

Cut
Γ,∆⇒ C

This is transformed into

Γ⇒ D D,∆′ ⇒ C ′
Cut

Γ,∆′ ⇒ C ′ ∆′′ ⇒ C ′′
R

Γ,∆⇒ C

Cut formula is the same but cut-height is reduced by at least one. Other cases of
rules are variants of this one.

6. The left premiss is derived by contraction: The derivation

A,A,Γ⇒ D
Ctr

A,Γ⇒ D D,∆⇒ C
Cut

A,Γ,∆⇒ C
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is transformed into
A,A,Γ⇒ D D,∆⇒ C

Cut
A,A,Γ,∆⇒ C

Ctr
A,Γ,∆⇒ C

7. The right premiss D,∆ ⇒ C is derived by contraction on D. If the left
premiss has been derived by a left rule, cut is permuted up on the left premiss
with cut-height diminished as in 4 above. Otherwise the derivation is transformed
according to the derivation of the premiss of contraction.

7.1 If premiss of contraction is derived by weakening on D, both weakening and
contraction are deleted.

7.2 If neither contraction formula occurrence is active in the rule derivingD,D,∆⇒
C, the rule and contraction are permuted, except when copies of D come from dif-
ferent premisses: In this case cut is permuted up to the premisses and then the rule
is applied, followed by contraction on Γ.

The cases remain in which the contraction formula is principal in the left pre-
miss and in the premiss of contraction, or the latter has been derived by another
contraction on D. We trace up the derivation of the right premiss of cut until the
rule is not a contraction on D, and find a sequent with n copies of formula D in the
antecedent. If D is not principal in the rule concluding this sequent, either 7.1 or
7.2 applies. If it is the former, deleting the weakening and contraction leaves n− 1
copies of D. If it is the latter, we either permute the rule down through the n − 1
contractions until it concludes the right premiss of cut, or copies of D come from
two premisses. If more than one copy come from a premiss, they are contracted to
one, and then cut is permuted up with two cuts of reduced cut-height as result.

If the contraction formula D is principal in the rule concluding the sequent with
n copies of D, with D = A ∧B the rule is L∧, with D = A ∨B the rule is L∨, and
with D = A→ B the rule is L→. The left premiss has been derived by a right rule
corresponding to the left rule by which D was derived. The cases are:

7.3 If D = A ∧B, we have the derivation

Γ⇒ A ∆⇒ B
R∧

Γ,∆⇒ A ∧B

A,B, (A ∧B)n−1,Θ⇒ C
L∧

A ∧B, (A ∧B)n−1,Θ⇒ C
Ctr∗

A ∧B,Θ⇒ C
Cut

Γ,∆,Θ⇒ A ∧B

Application of the transformation of lemma 4.1 will give a derivation of A,B,Θ⇒ C,
and cut is permuted to cuts on shorter formulas as in 3.1 above.

7.4 Next consider the case of D = A∨B, with the premiss of the first contraction
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on D derived by L∨. This step is

A,∆′ ⇒ C B,∆′′ ⇒ C
L∨

A ∨B, (A ∨B)n−1,∆⇒ C

with (A ∨B)n−1,∆ = ∆′,∆′′. As before, application of lemma 4.1 gives derivations
of A,∆ ⇒ C and B,∆ ⇒ C where contractions have been done on A and B. If
the left premiss of cut is derived by R∨L, cut is permuted to a shorter formula as in
case 3.2 above. If the left premiss is derived by the second rule R∨R, a cut with B
is done.

7.5 With D = A→ B the contraction formula, the step concluding the premiss
of the uppermost contraction is

∆⇒ A B,Θ′ ⇒ C
L→

A→ B, (A→ B)n−1,Θ⇒ C

Here (A → B)n−1,Θ = ∆,Θ′. The n − 1 copies of formula A → B are divided in
∆ and Θ′ with ∆ = (A → B)k,Λ and Θ′ = (A → B)l,Θ′′ and k + l = n− 1. Each
formula in Λ and in Θ′′ is also in Θ. The derivation can now be written, with Ctrn

standing for an n− 1 fold contraction, as

A,Γ⇒ B
R→

Γ⇒ A→ B

(A→ B)k,Λ⇒ A B, (A→ B)l,Θ′′ ⇒ C
L→

A→ B, (A→ B)n−1,Θ⇒ C
Ctrn

A→ B,Θ⇒ C
Cut

Γ,Θ⇒ C

The transformed derivation, with a k − 1 fold contraction before the first cut, is

A,Γ⇒ B
R→

Γ⇒ A→ B

(A→ B)k,Λ⇒ A
Ctrk

A→ B,Λ⇒ A
Cut

Γ,Λ⇒ A A,Γ⇒ B
Cut

Γ2,Λ⇒ B B,Θ⇒ C
Cut

Γ2,Λ,Θ⇒ C
Ctr∗

Γ,Θ⇒ C

where B,Θ⇒ C follows by lemma 4.1 from the right premiss of cut. Since k ≤ n−1,
the first cut has a reduced cut-height. The other two cuts are on shorter formulas,
and finally the contractions in the end are justified by the fact that each formula of
Λ is a formula of Θ.

4.3 Hauptsatz for the classical calculus

The rules for the calculus, designated G0c, are as follows:
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G0c

Logical axiom: A⇒ A

Logical Rules:

A, B, Γ⇒ ∆
L∧

A ∧B, Γ⇒ ∆
Γ⇒ A, ∆ Γ′ ⇒ B, ∆′

R∧
Γ, Γ′ ⇒ A ∧B, ∆, ∆′

A, Γ⇒ ∆ B,Γ′ ⇒ ∆′
L∨

A ∨B, Γ, Γ′ ⇒ ∆, ∆′
Γ⇒ A, B, ∆

R∨
Γ⇒ A ∨B, ∆

Γ⇒ A, ∆ B, Γ′ ⇒ ∆′
L→

A→ B, Γ, Γ′ ⇒ ∆, ∆′
A, Γ⇒ B, ∆

R→
Γ⇒ A→ B, ∆

L⊥⊥⇒ ∆

A[t/x], Γ⇒ ∆
L∀∀xA, Γ, ⇒ ∆

Γ⇒ A[y/x], ∆
R∀

Γ⇒ ∀xA, ∆

A[y/x], Γ⇒ ∆
L∃∃xA, Γ, ⇒ ∆

Γ⇒ A[t/x], ∆
R∃

Γ⇒ ∃xA, ∆

Rules of weakening:

Γ⇒ ∆
LW

A, Γ⇒ ∆
Γ⇒ ∆

RW
Γ⇒ A, ∆

Rules of contraction:

A, A, Γ⇒ ∆
LC

A, Γ⇒ ∆
Γ⇒ A, A, ∆

RC
Γ⇒ A, ∆

The restrictions in the L∃ and R∀ rules are that y must not occur free in the
conclusion.

Lemma 4.3. (i) If A ∧B,Γ⇒ ∆ is derivable, also A,B,Γ⇒ ∆ is derivable.

(ii) If Γ⇒ ∆, A ∧B is derivable, also Γ⇒ ∆, A and Γ⇒ ∆, B are derivable.

(iii) If A ∨B,Γ⇒ ∆ is derivable, also A,Γ⇒ ∆ and B,Γ⇒ ∆ are derivable.

(iv) If Γ⇒ ∆, A ∨B is derivable, also Γ⇒ ∆, A,B is derivable.
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(v) If A→ B,Γ⇒ ∆ is derivable, also B,Γ⇒ ∆ is derivable.

(vi) If Γ⇒ ∆, A→ B is derivable, also A,Γ⇒ ∆, B is derivable.

Απόδειξη. (i) Similar to lemma 4.1. For (ii), if A ∧ B is obtained by weakening,
weaken first with A, then with B. If it is obtained as an axiom, conclude instead
A∧B ⇒ A from A⇒ A by weakening with B and L∧, and similarly for A∧B ⇒ B.
If A∧B is introduced by R∧, apply repeated weakening instead, dually to case (ii)
of lemma 4.1. (iii) and (iv) are dual to previous. (v) If A → B in the antecedent
is obtained by weakening, weaken with B on left instead. If A → B is obtained
by an axiom A → B ⇒ A → B, conclude B ⇒ A → B from B ⇒ B by left
weakening with A followed by R→. If A → B is obtained by L→, proof is similar
to (ii). (vi) If A → B in the succedent is obtained by right weakening, do left
weakening with A and right weakening with B instead. If A → B is obtained by
axiom A → B ⇒ A → B, conclude A,A → B ⇒ B from A ⇒ A and B ⇒ B by
L→ instead. If A→ B is concluded by R→, delete the rule.

We note that the inversions of G0c are not height-preserving. Cut elimination
is proved by arguments quite similar to those in theorem 4.2:

Theorem 4.4. The rule of cut,

Γ⇒ ∆, A A, Γ′ ⇒ ∆′
Cut

Γ, Γ′ ⇒ ∆, ∆′

is admissible in G0c.
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