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Abstract

Algorithms for robust grasp planning

by George I. Boutselis

The development of human-like robotic hands has received great attention in the past.

This effort aims at allowing robots to interact effectively with everyday objects, as

well as perform efficiently in industrial applications. Thus, designing appropriate grasp

planning algorithms is of utmost importance.

The majority of the analytical works on grasping consider both object as well as robot

hand parameters to be accurately known and do not take into account the constraints

imposed by the robotic hand. Obviously, the aforementioned drawbacks may lead to

unsuccessful results in real applications and must be tackled properly. In this thesis,

the basics of grasp analysis are presented and a complete methodology is proposed

that handles the grasping problem under a wide range of uncertainties. Specifically, an

acceptable posture is derived that provides robustness against positioning inaccuracies

and maximizes the ability of the robot hand to exert forces on the object. In addition,

in order to secure the grasp stability and lift the object properly, sufficient contact forces

are determined.

Apart from focusing on deriving a stable grasp, task specificity is also addressed. More

specifically, given a description of the task to be executed, the concept of Q distance is

introduced in a novel way to determine an efficient grasp with a task compatible hand

posture (i.e., configuration and contact points).

The efficiency of this approach is validated through simulated examples and extensive

experimental paradigms using a 15 DoF DLR/HIT II robotic hand attached at the end

effector of a 7 DoF Mitsubishi PA10 robotic manipulator. During the experimental

phase, an appropriate tactile sensor setup, mounted on the robot hand, is utilized in

order to reduce the magnitude of uncertainty regarding the grasping parameters.



Εθνικό Μετσόβιο Πολυτεχνείο 

Σχολή Μηχανολόγων Μηχανικών 

Γιώργος Μπουτσέλης 

Διπλωματική εργασία 

Σχεδιασμός αλγορίθμων λαβής αντικειμένων για την 

αντιμετώπιση ενός ευρέος φάσματος αβεβαιοτήτων 

 

Περίληψη 

 

Η ανάπτυξη ανθρωπόμορφων ρομποτικών χεριών αποτελεί ένα επιστημονικό πεδίο 

για το οποίο έχει παρατηρηθεί έντονο ενδιαφέρον τα τελευταία χρόνια. Αυτή η 

προσπάθεια στοχεύει στο να δώσει την ικανότητα στα ρομπότ να αλληλεπιδρούν με 

καθημερινά αντικείμενα και να έχουν υψηλές επιδόσεις σε βιομηχανικές 

εφαρμογές. Έτσι, ιδιαίτερη προσοχή πρέπει να δωθεί στην ανάπτυξη κατάλληλων 

αλγορίθμων λαβής. 

Η πλειοψηφία των αναλυτικών εργασιών λαβής αντικειμένων βασίζεται στην 

ακριβή γνώση των παραμέτρων τόσο του αντικειμένου όσο και του ρομποτικού 

χεριού. Επιπλέον, οι περιορισμοί που εισάγονται από την ύπαρξη του ρομποτικού 

χεριού σπάνια λαμβάνονται υπόψην. Όπως γίνεται κατανοητό, τα παραπάνω 

ελαττώματα είναι πιθανόν να οδηγήσουν σε ανεπιτυχή αποτελέσματα και πρέπει να 

αντιμετωπισθούν επιτυχώς. Σε αυτή τη διπλωματική εργασία, αφού δωθούν οι 

βασικές έννοιες της θεωρίας λαβής αντικειμένων, αναπτύσσεται μια μεθοδολογία 

συνολικής αντιμετώπισης του προβλήματος της λαβής αντικειμένων υπό την 

ύπαρξη αβεβαιοτήτων σε παραμέτρους σχεδιασμού. Συγκεκριμένα, το αποτέλεσμα 

αυτής της μεθοδολογίας είναι μία αποδεκτή διαμόρφωση αρπαγής που εγγυάται 

την ευστάθεια της λαβής έστω και αν σφάλματα τοποθέτησης εμφανισθούν. Ακόμη, 

η συγκεκριμένη διαμόρφωση μεγιστοποιεί την ικανότητα του ρομποτικού χεριού να 

μετατρέπει ροπές σε δυνάμεις επαφής. Επιπλέον, για να ολοκληρωθεί η διαδικασία 

αρπαγής προτείνεται μια μεθοδολογία εύρεσης ικανοποιητικών δυνάμεων. 

Εκτός από την ενασχόληση με την επίτευξη της ευστάθειας της λαβής, εξετάζεται 

και η περίπτωση που το ρομποτικό χέρι πρέπει να εκτελέσει μια συγκεκριμένη 

εργασία. Λαμβάνοντας υπόψην την περιγραφή της εργασίας, χρησιμοποιείται η 



έννοια της «Q distance» για τον καθορισμό μιας διαμόρφωσης, συμβατής με τη 

ζητούμενη εργασία. 

Η ορθότητα αυτής της προσέγγισης πιστοποιείται μέσω παραδειγμάτων 

προσομοίωσης και πειραματικών αποτελεσμάτων, χρησιμοποιώντας το DLR/HIT II 

(δεκαπέντε βαθμών ελευθερίας), το οποίο βρίσκεται στο τελικό σημείο δράσης του 

Mitsubishi PA10 (εφτά βαθμών ελευθερίας). Κατά τη διάρκεια της πειραματικής 

διαδικασίας, ένας αισθητήρας αφής χρησιμοποιείται με στόχο την μείωση του 

εύρους των αβεβαιοτήτων. 
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Chapter 1

Introduction

Nowadays, robot hands are getting more and more complex and sophisticated. Sim-

ple grippers have been largely replaced by state-of-the-art, multifingered, human- like

robot hands with many degrees of freedom and high levels of dexterity. Consequently,

there arises the need for the design of corresponding, equivalently complex and general

algorithms that can efficiently control robot hands and exploit the capabilities of their

hardware.

In this direction, specific emphasis has been devoted to the fundamental problem of

robot grasping. Grasping, an essential requirement for almost every manipulation task

is a complex problem of mechanics which can be approached by many different points

of view. Besides, human experience has proven that an object can be grasped in many

different ways depending on the task that we need to execute. However, as humans grow

older and get more and more aware of their environment as well as of their body, they

adopt intuitive optimization schemes, so that they grasp objects consuming the least

possible amount of energy and facilitating the desired task execution.

Inspired by this simple idea, this thesis addresses the problem of the grasp optimization,

taking into consideration the geometrical and mechanical constraints imposed by the

hand’s design and the grasped object’s surface properties. In addition, uncertainties

that may occur during the grasp implementation are considered.

1.1 Robotic hands

The evolution of the design of robotic hands has led to the creation of state-of-the-art

multifingered robot hands which can play a significant role in many areas. The trend

of imitating the complex nature of the human hand has led many companies to build

1



Chapter 1. Introduction 2

different types of hands, incorporating different types of technologies. One of the frst

and most widely known multifingered robot hands was the three-fingered Barrett Hand,

developed by Barrett Technology Inc illustrated in Fig. 1.1. Some of today’s most

representative robot hands have been developed by NASA [1], DLR [2] and DLR/HIT

[3], [4]. In general, the modern human-like robot hands can be separated in two main

categories depending on their type of actuation:

• External actuation robotic hands in which all the actuators are mounted in the

forearm

• Internal actuation robotic hands in which all the actuators are integrated in the

finger body and the palm

Figure 1.1: Barrett Robotic Hand, Barrett Technology Inc

Figure 1.2: DLR HIT II
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Figure 1.3: Robonaut

Due to their fundamental differences in actuation, in the first category the hand body

is usually bigger than in the latter. Hence, in order for the Internal Actuation Robotic

Hands to be more competitive, it is important that they are built in smaller dimensions.

The reduction of the motor’s and circuits’ size is crucial in this direction.

1.2 Grasp planning

During the 80’s and early 90’s, roboticists were devoted to the study of the Grasp Analy-

sis, paying more attention to the complex mechanics of the problem and the formulation

of grasp optimization problems. Since grasping constituted a new research direction,

this was necessary and very important. However, due to the computational difficulties

of that time, it was difficult to solve such a problem in order to generate a grasp with the

desired properties. Since the mid-90’s and up until nowadays though, Grasping research,

based on the important theoretical analysis and explorations of the past and making use

of state-of-the-art computational, simulational but also mechanical tools and innova-

tions, has become more applied and has approached more efficiently the real world and

the physical environment. In particular, a lot of research studies have been devoted to

the development of intelligent algorithms and their applications to real, mechanical and

complex robot hands. Nowadays, a high level, human-like grasp decision can lead to

the appropriate grasp selection and its successful implementation. Therefore, there are

almost unlimited opportunities in Grasp Synthesis research, i.e. the research devoted

in the successful generation of a grasp. Indeed, there exists a great amount of research

devoted to the development of Grasp Synthesis algorithms. Based on the work of P.
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Bidaud et al. in [5], we could classify the Grasp Synthesis algorithms in two main cate-

gories of approaches: the analytical ones and the empirical ones. By the term analytical

approaches, we mean those based on geometric, kinematic and/or dynamic formulations

of grasp synthesis problems. On the contrary, by the term empirical approaches, we

denot those which avoid the computation of the mathematical and physical models by

miming or imitating human strategies.

In the context of this thesis, we have adopted an analytical approach of the Grasping

problem. Such an approach requires good knowledge of the system parameters, includ-

ing both the robotic hand’s architecture and the surrounding environment, which is not

always easy to be acquired. Besides, the number of the physical, geometrical and me-

chanical conditions that must be satisfied in order to ensure a successful grasp and task

execution are also indicative of the complexity of the computation of such a problem.

However, the advantage of this approach is that is closer to the physical environment.

Making use of the laws of nature, an analytical algorithm makes use of the laws of

nature, taking also into consideration the hardware limitations of the system. This is

exactly the philosophy behind the algorithms developed and presented in this document.

Fig. 1.4 provides a complete, visualized presentation of the analytical grasp synthesis

approach.

Figure 1.4: Analytical approach
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1.3 Literature

Over the last decades, there has been a tremendous progress in the field of robotic hands

[6]. Simple grippers have been replaced by complex human like hands, built to grasp

and manipulate a wide range of every day life objects. However, to perform succesfully,

efficient algorithms, that guarantee certain quality criteria concerning the desired grasp

properties for the task to be executed, have to be employed. As a result, a lot of research

has been conducted in the field of grasp quality, which is defined by metrics that quantify

the performance of a grasp. A fundamental and widely accepted quality criterion for a

grasp is force closure [7]. It ensures both that the grasped object’s weight is compensated

as well as that the contact friction constraints are not violated. However, force closure

is quite a wide criterion. Therefore and owing to the increasing needs for precise and

human like grasps, several other quality measures have been presented. Ferrari and

Canny in [8] addressed the problem of minimizing contact forces and proposed two

different optimality criteria. Based on [8], Miller and Allen in [9], implemented 3d grasp

quality computations for the Barrett and the DLR robotic hands. Moreover, Mishra,

in [10] compared various metrics and presented a corresponding mathematical analysis.

A useful review on various grasp quality measures can be found in [11]. A lot of grasp

synthesis algorithms have been proposed combining different quality measures. Various

approaches have been presented both empirical and analytical. The empirical approaches

use mainly learning techniques in order to mimic human grasping (as in [12]). On the

other hand, the analytical techniques use mathematical formulations considering the

kinematics and the dynamics in order to determine optimal grasps regarding certain

criteria [5]. In [13], a grasp optimization algorithm with respect to an uncertainty grasp

index as well as a task compatibility index is proposed. Particular emphasis has also

been devoted to the grasping force optimization (GFO) problem (i.e., the problem of

finding the minimal forces that satisfy the force closure sufficient conditions); many

algorithms have been proposed in this direction (a complete and thorough overview

of grasp synthesis algorithms concerning force optimization but also other metrics and

approaches can be found in [5]). The problem of optimizing the maximum external

wrench that a multifingered robot hand can withstand is studied in [14]. Finally the

force limitations due to hardware and the increasing needs for real time computations

have also been taken into consideration in the ongoing research [15]. Another important

issue regarding grasp quality is the selection of contact points, which affects severely the

force distribution yielded by the aforementioned grasping force optimization algorithms

as well as other aspects of grasp quality. Optimality criteria for the selection of contact

points were proposed in [16] and [17]. A study on how infinitesimal perturbations of

contact points would affect a class of grasp quality functions was presented in [18]. In
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[19], it is shown how different contact locations can affect the optimal force distribution

with respect to various quality measures.

The main goal of all these studies is to be incorporated as part of an algorithm for

planning optimal grasps. In [20] a multi criteria optimization algorithm regarding the

fingers ability for force and velocity exertion was presented and was applied specifically

for the case of the NASA-JSC robonaut hand, while in [21] a strategy of moving fingers

to neighboured joint positions to produce optimal force distribution is proposed.

1.4 Contribution

The contribution of this thesis is based on the:

• Formulation and development of a Grasp Quality optimization algorithm for a

multifingered robot hand with fifteen actuated DOFs, such as the DLR/HIT II

five fingered robot hand, which is part of the NeuroRobotics Lab equipment

• Development of a methodology that takes into consideration the constraints im-

posed by the robotic hand and guarantees the stability of the grasp despite poten-

tial deviations of the grasping parameters. The presented approach is validated

through simulated examples and experimental paradigms. For the grasp imple-

mentation an appropriate tactile sensor was used. This work was accepted for

publication in the proceedings of the IEEE International Conference on Robotics

and Automation (ICRA), Hong Kong, China, 2014

• Utilization of the concept of Q distance towards deriving task oriented optimal

grasps

1.5 Thesis structure

Below the organization of the particular thesis is described:

• In Chapter 2 the basics of grasp analysis are presented. In addition, the force

closure property will be deeply explained. These theoretical aspects will be used

throughout this thesis

• Chapter 3 includes the presentation of multiple algorithms that yield optimal force

closure grasps. Special emphasis is given on the concept of Q distance. In addition,

some grasp quality metrics will be reviewed
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• Chapter 4 introduces the concept of independent contact regions towards dealing

with positioning inaccuracies

• Chapters 5, 6 and 7 present the formulation of optimization schemes that lead

to a successful grasp implementation despite a wide range of uncertainties. Task

specificity is also addressed

• Chapter 8 concludes the thesis



Chapter 2

Contact modelling and basic

properties

This chapter introduces the fundamental modelling techniques for grasp analysis and is

based on [22]. The overall model is a coupling of models that define contact behaviour

with widely used models of rigid body kinematics.

A mathematical model of grasping must be capable of predicting the behaviour of the

hand and object under the various loading conditions that may arise during grasping.

Generally, the most desirable behaviour is grasp maintenance in the face of unknown

disturbing forces and moments applied to the object. Typically, these disturbances arise

from inertia forces which become appreciable during high-speed manipulation or applied

forces such as those due to gravity. Grasp maintenance means that the contact forces

applied by the hand are such that they prevent contact separation and unwanted contact

sliding. The special class of grasps that can be maintained for every possible disturbing

load is known as closure grasps.

Special emphasis will be placed on explaining the fundamentals of force closure. In brief,

this property ensures grasp maintenance.

2.1 Definitions and main quantities

Assume that the links of the hand and the object are rigid and that there is a unique,

well-defined tangent plane at each contact point. Let {N} represent a conveniently

chosen inertial frame fixed in the workspace. The frame {B} is fixed to the object

with its origin defined relative to {N} by the vector p ∈ R3, where R3 denotes three

dimensional Euclidean space. A convenient choice for p is the center of mass of the

8
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object. The position of contact point i in {N} is defined by the vector ci ∈ R3. At

contact point i, we define a frame {C}i , with axes
{
n̂i t̂i ôi

}
({C}i is shown in exploded

view in Fig. 2.1). The unit vector n̂i is normal to the contact tangent plane, and

is directed towards the object. The other two unit vectors are orthogonal and lie in

the tangent plane of the contact. Let the joints be numbered from 1 to nq. Denote

by q = [q1 . . . qnq ]T ∈ Rnq the vector of joint displacements, where the superscript ()T

indicates matrix transposition. Also, let τ = [τ1 . . . τnq ]T ∈ Rnq represent joint loads

(forces in prismatic joints and torques in revolute joints). These loads can result from

actuator actions, other applied forces, and inertia forces. They could also arise from

contacts between the object and hand. However, it will be convenient to separate joint

loads into two components: those arising from contacts and those arising from all other

sources. Throughout this chapter, noncontact loads will be denoted by τ .

Figure 2.1: Main quantities of grasp analysis

Let u ∈ Rnu denote the vector describing the position and orientation of {B} relative to

{N}. For spatial systems, nu is three plus the number of parameters used to represent

orientation, typically three (for Euler angles) or four (for unit quaternions). Denote

by ν = [vT ωT ]T ∈ Rnv the twist of the object described in N. It is composed of the

translational velocity v ∈ R3 of the point p and the angular velocity ω ∈ R3 of the object,

both expressed in {N}. The components of the referred twist represent the velocity of

the origin of the new frame and the angular velocity of the body, both expressed in the

new frame. An important point is u̇ 6= v . Instead, these variables are related by the

matrix V as:

u̇ = V v (2.1)
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where the matrix V ∈ Rnu×nv is not generally square but nonetheless satisfies V V = I

(I is the identity matrix and the dot over the u implies differentiation with respect to

time). Let f ∈ R3 be the force applied to the object at the point p and let m ∈ R3

be the applied moment. These are combined into the object load, or wrench, vector

denoted by g = [fT mT ] ∈ Rnv , where f and m are expressed in {N}. Like twists,

wrenches can be referred to any convenient frame fixed to the body. One can think

of this as translating the line of application of the force until it contains the origin

of the new frame, then adjusting the moment component of the wrench to offset the

moment induced by moving the line of the force. Last, the force and adjusted moment

are expressed in the new frame. As done with the joint loads, the object wrench will

be partitioned into two main parts: contact and noncontact wrenches. Throughout this

chapter, g will denote the noncontact wrench on the object.

2.2 Grasp Matrix and hand Jacobian

Two matrices are of the utmost importance in grasp analysis: the Grasp Matrix G and

the hand Jacobian J . These matrices define the relevant velocity kinematics and force

transmission properties of the contacts.

Each contact should be considered as two coincident points: one on the hand and one

on the object. The hand Jacobian maps the joint velocities to the twists of the hand

expressed in the contact frames, while the transpose of the Grasp Matrix refers the

object twist to the contact frames. Finger joint motions induce a rigid-body motion in

each link of the hand. It is implicit in the terminology, twists of the hand, that the twist

referred to contact i is the twist of the link involved in contact i. Thus these matrices

can be derived from the transforms that change the reference frame of a twist.

To derive the Grasp Matrix, let ωNobj denote the angular velocity of the object expressed

in {N} and let vNi,obj , also expressed in {N}, denote the velocity of the point on the

object coincident with the origin of {C}i. These velocities can be obtained from the

object twist referred to {N} as: (
vNi,obj

ωNobj

)
= P Ti ν (2.2)

where:

Pi =

(
I3×3 0

S(ci − p) I3×3

)
(2.3)
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I3×3 is the identity matrix, and S(ci − p) is the cross-product matrix, that is, given a

three-vector r = [rx ry rz]
T , S(r) is defined as:

S(r) =


0 −rz ry

rz 0 −rx
−ry rx 0


The object twist referred to {C}i is simply the vector on the left-hand side of (2.2)

expressed in {C}i. Let Ri = [n̂i t̂i ôi] ∈ R3×3 represent the orientation of the ith contact

frame {C}i with respect to the inertial frame (the unit vectors n̂i, t̂i and ôi are expressed

in {N}). Then the object twist referred to {C}i is given as:

νi,obj = R
T
i

(
vNi,obj

ωNobj

)
(2.4)

where R
T
i = blockdiag(Ri, Ri) =

(
Ri 0

0 Ri

)
∈ R6×6.

Substituting P Ti ν from (2.2) into (4.4) yields the partial Grasp Matrix G̃Ti ∈ R6×6, which

maps the object twist from {N} to {C}i:

νi,obj = G̃Ti ν (2.5)

where

G̃Ti = R
T
i P

T
i (2.6)

The hand Jacobian can be derived similarly. Let ωNi,hnd be the angular velocity of the

link of the hand touching the object at contact i, expressed in {N}, and define vNi,hnd as

the translational velocity of contact i on the hand, expressed in {N}. These velocities

are related to the joint velocities through the matrix Zi:(
vNi,hnd

ωNi,hnd

)
= Ziq̇ (2.7)

where Zi ∈ R6×nq is defined as:

Zi =

(
di1 . . . dinq

li1 . . . linq

)
(2.8)

with the vectors dij , lij ∈ R3 defined as:
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dij =


0, if contact i does not affect joint j

ẑj , if joint j is prismatic

S(ci − ζj)T ẑj , if joint j is revolute

lij =


0, if contact i does not affect joint j

0, if joint j is prismatic

ẑj , if joint j is revolute

where ζj is the origin of the coordinate frame associated with the jth joint and ẑj is the

unit vector in the direction of the z-axis in the same frame. Both vectors are expressed

in {N}. These frames may be assigned by any convenient method, for example, the

dh method. The ẑj -axis is the rotational axis for revolute joints and the direction of

translation for prismatic joints. An example is illustrated in Fig. ??.

Figure 2.2: Example of frames assignment

The final step in referring the hand twists to the contact frames is to change the frame

of expression of νNi,hnd and ωNi,hnd to {C}i

νi,hnd = R
T
i

(
vNi,hnd

ωNi,hnd

)
(2.9)
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Table 2.1: Variables of grasp analysis

notation definition

nc number of contacts

nq number of joints

nv number of degrees of freedom (DoF) of the object

q joint dislpacements

q̇ joint velocities

τ noncontact joint loads

u position and orientation of object

ν twist of object

g noncontact object wrench

{B} frame fixed in object

{C}i contact frame i

{N} global frame

Combining (4.7) and (4.5) yields the partial hand Jacobian J̃i ∈ R6×nq , which relates

the joint velocities to the contact twists on the hand:

νi,hnd = J̃iq̇ (2.10)

where

J̃i = R
T
i Zi (2.11)

To compact notation, stack all the twists of the hand and object into the vectors νc,hnd ∈
R6nc and νc,obj ∈ R6nc as follows:

νc,ξ =
(
νT1,ξ . . . νTnc,ξ

)T
, ξ = (obj,hnd)

Now the complete Grasp Matrix G̃ ∈ R6×6nc and the complete hand Jacobian J̃ ∈
R6nc×nq relate the various velocity quantities as

νc,obj = G̃T ν (2.12)

νc,hnd = J̃ q̇ (2.13)

where

G̃T =


G̃T1

...

G̃Tnc

 J̃ =


J̃1
...

J̃nc

 (2.14)

The term complete is used to emphasize that all 6nc twist components at the contacts

are included in the mapping.
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2.3 Contact modelling

The three models of greatest interest in grasp analysis are known as point contact with-

out friction, hard finger, and soft finger. These models select components of the contact

twists to transmit between the hand and the object. This is done by equating a subset

of the components of the hand and object twist at each contact. The corresponding

components of the contact force and moment are also equated, but without regard for

the constraints imposed by contact unilaterality and friction models.

2.3.1 Friction model

To proceed, this chapter presents the commonly used Coulombs law. Many applications

on robotic manipulation and grasping have been based on this model of friction. More

sepcifically, this experimental law states that, for the planar case, the friction force

magnitude ft in the tangent plane at the contact interface is related to the normal force

magnitude fn by ft ≤ µfn, where µ is called the friction coefficient. If the contact

is sliding, then ft = µfn, and the friction force opposes the direction of motion. The

friction force is independent of the speed of sliding.

Often two friction coefficients are defined, a static friction coefficient µs and a kinetic

(or sliding) friction coefficient µk, where µs ≥ µk. This implies that a larger friction

force is available to resist initial motion, but once motion has begun, the resisting force

decreases. Many other friction models have been developed with different functional

dependencies on factors such as the speed of sliding and the duration of static contact

before sliding. All of these are aggregate models of complex microscopic behaviour. For

simplicity, the simplest Coulomb friction model with a single friction coefficient µ will be

used. This model is reasonable for hard, dry materials. The friction coefficient depends

on the two materials in contact, and typically ranges from 0.1 to 1.

Figure 2.3: Friction cone
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As shown in Fig. 2.3, this friction law can be interpreted in terms of a friction cone. The

set of all forces that can be applied to the object by the supporting line is constrained

to be inside this cone. Correspondingly, any force the object applies to the support is

inside the negative of the cone. The half-angle of the cone is β = tan−1 µ. If the object

slips to the left on the support, the force the support applies to it acts on the right edge

of the friction cone, with a magnitude determined by the normal force.

Figure 2.4: Illustration of friction cones during grasping

For computational purposes, it is common to approximate circular friction cones as

pyramidal cones, as shown in. A more accurate inscribed pyramidal approximation can

be used by increasing the number of faces of the pyramid.

Figure 2.5: An inscribed pyramidal approximation to the friction cone

2.3.2 Contact models

• Point contact without friction

The point-contact-without-friction (PwoF) model is used when the contact patch is very

small and the surfaces of the hand and object are slippery. With this model, only the

normal component of the translational velocity of the contact point on the hand (i.e., the

first component of νi,hnd) is transmitted to the object. The two components of tangential

velocity and the three components of angular velocity are not transmitted. Analogously,
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the normal component of the contact force is transmitted, but the frictional forces and

moments are assumed to be negligible.

• Hard finger

A hard-finger (HF) model is used when there is significant contact friction, but the

contact patch is small, so that no appreciable friction moment exists. When this model

is applied to a contact, all three translational velocity components of the contact point

on the hand (i.e., the first three components of νi,hnd) and all three components of

the contact force are transmitted through the contact. None of the angular velocity

components or moment components are transmitted.

• Soft finger

The soft-finger (SF) model is used in situations in which the surface friction and the

contact patch are large enough to generate significant friction forces and a friction mo-

ment about the contact normal. At a contact where this model is enforced, the three

translational velocity components of the contact on the hand and the angular velocity

component about the contact normal are transmitted (i.e., the first four components of

νi,hnd). Similarly, all three components of contact force and the normal component of

the contact moment are transmitted.

The analysis presented in this thesis is entirely based on the HF model. Thus, the

friction model and selection matrices presented below are chosen appropriately.

Define the relative twist of contact i as:

(
J̃i −G̃Ti

)(q̇
ν

)
= νi,obj − νi,hnd

The HF contact model is defined through the selection matrix Hi ∈ Rli×6, which selects

li components of the relative contact twist and sets them to zero (transmitted DoFs)

Hi =

(
I3×3 0

0 0

)
, Hi(νi,obj − νi,hnd) = 0 (2.15)

The contact constraint equations for all nc contacts can be written in compact form as:

H = blockdiag(H1 . . . Hnc) ∈ Rl×6nc , H(νi,obj − νi,hnd) = 0 (2.16)
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and the number of twist components l transmitted through the nc contacts is given by

l =
∑nc

i=1 li. Finally, by substituting (2.12) and (2.13) into (2.16) one obtains:

(
J −GT

)(q̇
ν

)
= 0 (2.17)

where GT = HG̃T is the Grasp Matrix and J = HJ̃ is the hand Jacobian.

According to the friction coulomb model, each contact force must lie inside its correspod-

ing friction cone in order to avoid slippage. Let us denote by µ the friction coefficient,

fn the normal force component and fo, ft the tangential components. In this respect,

the friction constraints are formulated as:√
f2io + f2it ≤ µfin , i = 1, ..., np (2.18)

Linearizing the friction cone by an ng-sided polyhedral cone, each grasping force can be

represented as:

fi =

ng∑
j=1

aijsij , aij ≥ 0,

with sij =


1

cos(2jπ)/ng

sin(2jπ)/ng

 , j = 1, ..., ng, denoting the jth edge vector of the linearized

friction cone.

2.4 Equilibrium

When the inertia terms are negligible, as occurs during slow motion, the system is said

to be quasistatic. In this case, the equation that connects the contact wrenches, the

joint loads and the external wrenches is the following:(
JT

−G

)
λ =

(
τ

g

)
(2.19)

g is the force and moment applied to the object by gravity and other external sources

and τ is the vector of actuator actions. The vector λ contains the contact force and

moment components transmitted through the contacts and expressed in the contact

frames. Specifically, λ = [λT1 . . . λ
T
nc

]T , where λi = Hi[fin fit fio min mit mio]
T . The

subscripts indicate one normal (n) and two tangential (t, o) components of contact force
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f and moment m. Finally, it is worth noting that Giλi = G̃iHiλi is the wrench applied

through contact i, where Gi and Hi are defined in (2.6) and (2.16). The vector λi is

known as the wrench intensity vector for contact i.

Equation (2.17) is closely related to the kinematic model in (7.11). Specifically, just

as J and GT transmit only selected components of contact twists, JT and G in (7.11)

serve to transmit only the corresponding components of the contact wrenches. Equation

(7.11) shows an important alternative view of the Grasp Matrix and the hand Jacobian.

G can be thought of as a mapping from the transmitted contact forces and moments to

the set wrenches that the hand can apply to the object, while JT can be thought of as a

mapping from the transmitted contact forces and moments to the vector of joint loads.

2.5 Controllable wrenches and twists

In hand design and in grasp and manipulation planning, it is important to know the set

of twists that can be imparted to the object by movements of the fingers, and conversely,

the conditions under which the hand can prevent all possible motions of the object. The

dual view is that one needs to know the set of wrenches that the hand can apply to the

object and under what conditions any wrench in R6 can be applied through the contacts.

This knowledge will be gained by studying the various subspaces associated with G and

J . The spaces, shown in Fig. 2.6, are the column spaces and null spaces of G,GT , J,

and JT . Column space (also known as range) and null space will be denoted by <(. . . )

and N (. . . ), respectively. The arrows show the propagation of the various velocity and

load quantities through the grasping system. For example, in the left part of Fig. 2.6

it is shown how any vector q̇ ∈ Rnq can be decomposed into a sum of two orthogonal

vectors in <(JT ) and in N (J) and how q̇ is mapped to <(J) by multiplication by J .

Figure 2.6: Linear maps relating the twists and wrenches of a grasping system

Lets us recall the following facts. First, a matrix A maps vectors from <(AT ) to <(A) in

a one-to-one and onto fashion, that is, the map A is a bijection. The generalized inverse

A+ of A is a bijection that maps vectors in the opposite direction. Also, A maps vectors
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in N (A) to zero. Finally, there is no nontrivial vector that A can map into N (AT ). This

implies that, if N (GT ) is nontrivial, then the hand will not be able to control all degrees

of freedom of the object’s motion.

2.5.1 Grasp classification

The four null spaces motivate a basic classification of grasping systems. Assuming

solutions to (7.11) exist, the following force and velocity equations provide insight into

the physical meaning of the various null spaces:

q̇ = J+νcc +N(J)α (2.20)

ν = (GT )+νcc +N(GT )β (2.21)

λ = −G+g +N(G)γ (2.22)

λ = (JT )+τ +N(JT )η (2.23)

In these equations A+ denotes the generalized inverse, henceforth pseudoinverse, of a

matrix A, N(A) denotes a matrix whose columns form a basis for N (A), and α, β, γ,

and η are arbitrary vectors that parameterize the solution sets.

If the null spaces represented in the equations are nontrivial, then it is immediately

apparent that many-to-one mappings exist. For instance, consider (2.20). It can be

rewritten with νcc decomposed into components νrs and νlns in <(J) and N(JT ), re-

spectively, as follows:

q̇ = J+(νrs + νlns) +N(J)α (2.24)

Every vector in N(AT ) is orthogonal to every row of A+. Therefore J+νlns = 0. If α

and νrs are fixed in (2.24), then q̇ is unique. Thus it is clear that, if N(JT ) is nontrivial,

then a subspace of twists of the hand at the contacts will map to a single joint velocity

vector.

The equations abpve motivate the following definitions.

• Redundant

A grasping system is said to be redundant if N(J) is nontrivial. Joint velocities q̇ in

N(J) are referred to as internal hand velocities, since they correspond to finger motions,

but do not generate motion of the hand in the constrained directions at the contact
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points. If the quasistatic model applies, it can be shown that these motions are not

influenced by the motion of the object and vice versa.

• Indeterminate

A grasping system is said to be indeterminate if N(GT ) is nontrivial. Object twists ν in

N(GT ) are called internal object twists, since they correspond to motions of the object

but do not cause motion of the object in the constrained directions at the contacts. If

the static model applies, it can be shown that these twists cannot be controlled by finger

motions.

• Graspable

A grasping system is said to be graspable if N(G) is nontrivial. Wrench intensities λ

in N(G) are referred to as internal object forces. These wrenches are internal because

they do not contribute to the acceleration of the object, i.e., Gλ = 0. Instead, these

wrench intensities affect the tightness of the grasp. Thus, internal wrench intensities

play a fundamental role in maintaining grasps that rely on friction.

2.5.2 Desirable properties

For a general-purpose grasping system, there are three main desirable properties: control

of the object twist ν, control of object wrench g, and control of the internal forces.

Control of these quantities implies that the hand can deliver the desired ν and g with

specified grip pressure by the appropriate choice of joint velocities and actions. The

associated conditions are derived in two steps. First, the structure and configuration of

the hand (captured in J) is ignored by assuming that the contact point on the finger

can be commanded to move in any direction transmitted by the chosen contact model.

An important perspective here is that νcc is seen as the independent input variable and

ν is seen as the output. The dual interpretation is that the actuators can generate any

contact force and moment in the constrained directions. Similarly, λ is seen as the input

and g is seen as the output. The preliminary property of interest under this assumption

is whether or not the arrangement and types of contacts on the object (captured in G)

are such that a sufficiently dexterous hand could control its fingers so as to impart any

twist ν ∈ R6 to the object and, similarly, to apply any wrench g ∈ R6 to the object.

• All object twists possible



Chapter 2. Contact modelling and basic properties 21

Given a set of contact locations and types, by observing the map G on the right side of

Fig. 2.6, one sees that the achievable object twists are those in <(G). Those in N(GT )

could not be achieved by any hand using the given grasp. Therefore, to achieve any

object twist, one must have: N(GT ) = 0, or equivalently, rank(G) = nv. Any grasp

with three non-collinear hard contacts satisfies this condition.

• All object wrenches possible

This case is the dual of the previous case, so we expect the same condition. From (7.11),

one immediately obtains the condition N(GT ) = 0, so again one has rank(G) = nv. To

obtain the conditions needed to control the various quantities of interest, the structure

of the hand cannot be ignored. Recall that the only achievable contact twists on the

hand are in <(J), which is not necessarily equal to Rl.

• Control all object twists

It is obvious that, in order to cause any object twist ν by choice of joint velocities q̇,

one must have <(GJ) = <(G) and N(GT ) = 0. These conditions are equivalent to

rank(GJ) = rank(G) = nv.

• Control all object wrenches

This property is dual to the previous one. Analysis of (7.11) yields the same conditions:

rank(GJ) = rank(G) = nv.

• Control all internal forces

Equation (7.11) shows that wrench intensities with no effect on object motion are only

those in N(G). In general, not all the internal forces may be actively controlled by joint

actions. It has been shown that all internal forces in N(G) are controllable if and only

if N(G)
⋂
N(JT ) = 0.

2.6 Restraint analysis

The most fundamental requirements in grasping and dexterous manipulation are the

abilities to hold an object in equilibrium and control the position and orientation of the

grasped object relative to the palm of the hand. The most useful characterizations of

grasp restraint are force closure and form closure. These names were in use over 134
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years ago in the field of machine design to distinguish between joints that required an

external force to maintain contact, and those that did not. For example, some water

wheels had a cylindrical axle that was laid in a horizontal semicylindrical groove split

on either side of the wheel. During operation, the weight of the wheel acted to close

the groove–axle contacts, hence the term force closure. By contrast, if the grooves were

replaced by cylindrical holes just long enough to accept the axle, then the contacts

would be closed by the geometry (even if the direction of the gravitational force were

reversed), hence the term form closure. When applied to grasping, form and force

closure have the following interpretations. Assume that a hand grasping an object has

its joint angles locked and its palm fixed in space; then the grasp has form closure, or

the object is form closed, if it is impossible to move the object, even infinitesimally.

Under the same conditions, the grasp has force closure, or the object is force closed, if

for any noncontact wrench experienced by the object, contact wrench intensities exist

that satisfy (7.11) and are consistent with the constraints imposed by the friction models

applicable at the contact points. Notice that all form closure grasps are also force closure

grasps. When under form closure, the object cannot move at force closure over the other

three degrees of freedom all, regardless of the noncontact wrench. Therefore, the hand

maintains the object in equilibrium for any external wrench, which is the force closure

requirement. Roughly speaking, form closure occurs when the palm and fingers wrap

around the object forming a cage with no wiggle room. This kind of grasp is also called a

power grasp. However, force closure is possible with fewer contacts but in this case force

closure requires the ability to control internal forces. It is also possible for a grasp to

have partial form closure, indicating that only a subset of the possible degrees of freedom

are restrained by form closure. The force closure property is utilized throughout this

thesis; thus, further details will be presented.

2.6.1 Force closure

A grasp has force closure, or is force closed, if the grasp can be maintained in the face

of any object wrench. Force closure is similar to form closure, but relaxed to allow

friction forces to help balance the object wrench. A benefit of including friction in the

analysis is the reduction in the number of contact points needed for closure. A three-

dimensional object with six degrees of freedom requires seven contacts for form closure,

but for force closure, only three (non-collinear) contacts are needed if they are modeled

as hard fingers. Force closure relies on the ability of the hand to squeeze arbitrarily

tightly in order to compensate for large applied wrenches that can only be resisted by

friction. One common definition of force closure can be stated simply by allowing each

contact force to lie in its friction cone. Because this definition does not consider the
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hand’s ability to control contact forces, this definition will be referred to as frictional

form closure. A grasp will be said to have frictional form closure if and only if the

following conditions are satisfied: 
Gλ = −g
∀g ∈ Rnv

λ ∈ F


where F is the composite friction cone. Letting Int(F ) denote the interior of the

composite friction cone, it can be deduced that a grasp has frictional form closure if and

only if the following conditions are satisfied:
rankG = nv

∃ λ such that Gλ = 0

λ ∈ Int(F)


These conditions define force closure. The force closure definition adopted here is stricter

than frictional form closure; it additionally requires that the hand be able to control the

internal object forces.

In addition, a grasp has force closure if and only if rank(G) = nv, N(G)
⋂
N(JT ) = 0

and there exists λ such that Gλ = 0 and λ ∈ Int(F). If the rank test passes, then

one must still find λ satisfying the remaining three conditions. Of these, the null space

intersection test can be performed easily by linear programming techniques, but the

friction cone constraint is quadratic, and thus forces one to use nonlinear programming

techniques.



Chapter 3

Optimal force closure grasps -

Quality measures

In this chapter, multiple methodologies are explained towards deriving optimal grasps.

In the first section optimal force closure grasps are studied and the concept of Q distance

is considered. Furthermore, quality measures found in the literature that are used to

quantify quality and produce optimal configurations are explained.

3.1 Synthesis of Force-Closure grasps based on Q Distance

Here, the concept of Q distance is presented [23]. With some mild and realistic assump-

tions, the proposed test criterion is differentiable almost everywhere and its derivative

can be calculated exactly. On this basis, an algorithm for planning force-closure grasps

is presented, which is implemented in the grasp configuration space. The algorithm

is generally applicable to planning optimal force-closure grasps on objects with curved

surfaces. In brief, the major advantages of the particular quantitative measure lie in

the fact that: i)it is differentiable, ii)an optimization problem can be formulated includ-

ing the kinematic constraints of the robotic hand, iii)it allows the computation of task

oriented optimal grasps.

3.1.1 Q+ distance

Given a compact convex set Q ⊂ Rm that contains the origin (i.e., 0 ∈int(Q)) and any

point a ∈ Rm, the gauge function of Q is defined as:

gQ(a) =
{

inf γ | a ∈ γQ, γ > 0
}

24
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For any a,a′ ∈ Rm and a > 0, the gauge function has the following properties: i)gQ(a) ≥
0; ii)gQ(a) = 0 if and only if a = 0; iii)gQ(a + a′) ≤ gQ(a) + gQ(a′); and iv)gQ(aa) =

agQ(a). In addition, if Q is symmetric with respect to the origin of the reference frame

(i.e., Q = −Q), then v)gQ(a) = gQ(−a). The above properties imply that gQ : Rm → R+

is a norm in Rm. In the general case, the gauge function may be considered as a

pseudonorm, since Q is not necessarily a symmetric set. Hereafter, the gauge function

gQ(·) is denoted by || · ||Q, and call it the Q norm. Naturally, the origin-centered

sphere in terms of || · ||Q, or concisely, the || · ||Q sphere, is defined by SQ = ρQ ={
a ∈ Rm | gQ(a) ≤ ρ

}
, where ρ ≥ 0 is the radius of the sphere. In this light, the Q

norm is defined in such a way that the unit sphere is determined at first as SQ(1) = Q,

from which the || · ||Q norm is induced. In particular, if Q is the unit L2 sphere, then

|| · ||Q is just the same as the commonly used L2 norm. However, since Q can be selected

as any compact convex set satisfying 0 ∈int(Q), e.g., it is restrained to be a polyhedral

set in the sequel, Q may differ significantly from the L2 norm. Based on the concept of

the Q norm, the Q+ distance will be defined.

Let p ∈ Rm and A ⊂ Rm be a point and a convex polyhedron, respectively. The Q+

distance from p to A is defined by:

d+Q(p, A) = min ||a− p||Q

The concept of Q+ distance can be directly generalized to two convex polyhedra, P and

A, as d+Q(P,A) = min ||a− p||Q,a ∈ A,p ∈ P .

In the sequel, the procedure of computing theQ+ distance is presented. Q is restrained to

be a polyhedral set, which is also specified by the convex hull of its vertices qk. From the

definition of theQ+ distance, it can be deduced that d+Q(p, A) has the following geometric

interpretation. It is the radius of the smallest ||·||Q sphere that is in contact with A−{p}.
The above observation implies that d+Q(p, A) can be calculated by minimizing ρ subject

to the constraint SQ
⋂
A− {p} 6= �. Since:

SQ = ρQ =
∑K

k=1 ρkqk|
∑K

k=1 ρk = ρ, ρk ≥ 0

A− {p} =
∑N

i=1 aiai|
∑N

i=1 ai = 1, ai ≥ 0

the constraint SQ
⋂
A − {p} 6= � can be represented by a set of linear equations with

nonnegative coefficients, and correspondingly, d+Q(p, A) is formulated as:

d+Q(p,A) = min

K∑
k=1

ρk (3.1)
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s.t.



K∑
k=1

ρkqk =

N∑
i=1

αiai − p

N∑
i=1

αi = 1

ρk, αi ≥ 0


The linear programs above can be solved using the simplex method. Assuming that

Φ∗ = [ρ∗1, . . . , ρ
∗
K , a

∗
1, . . . , a

∗
N ] denotes the optimal solution vector, the differentiability of

Q+ distance will be presented below.

Let B and B+ be the set of basic variables and the set of strictly positive basic variables in

Φ∗, respectively. Notice that the linear programming formulation involves m+1 equality

constraints and B+ ⊂ B, we have |B| = m + 1 and |B+| ≤ m + 1, where |B| and |B+|
denote the cardinal numbers of B and B+ respectively. In what follows, B+ is denoted by

B+ = [ρ∗k1 , . . . , ρ
∗
kr
, a∗i1 , . . . , a

∗
is

]. Obviously, we have r+s=|B+|. Note that, as the optimal

solution to the linear program, Φ∗ has to satisfy the constraints of (3.1). Therefore, the

following linear equations are derived:

d+Q(p,A) =

r∑
j=1

ρ∗kj

r∑
j=1

ρ∗kjqkj =

s∑
l=1

α∗ilail − p

s∑
l=1

α∗il = 1


(3.2)

As described above, d+Q(p,A) can be interpreted as the radius of the smallest origin-

centered || · ||Q sphere that is in contact with A − {p}. Generally, whether or not

d+Q(p,A) is differentiable is determined by the geometric nature of the contact of the

above two sets. In practice, the geometric nature of the contact can be identified by

examining the optimal solution vector Φ∗ of the linear program (3.1). The following

sufficient conditions for the differentiability of d+Q(p,A) are derived:

• d+Q(p,A) > 0

• The linear programming problem (3.1) has the unique optimum

• |B+| = m+ 1

The conditions above guarantee that the contact between d+Q(p,A)Q and A − {p} is

generic, which is explained as follows. Assume that the above sufficient conditions are
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satisfied; then one has r+s=|B+| = m+ 1. Introduce the following notations:

F1 = d+Q(p,A)co(q∗k1 , . . . , q
∗
kr

)

F2 = co(a∗i1 , . . . ,a
∗
is

)− {p}

F1 and F2 specify an (r-1) dimensional boundary feature of d+Q(p,A)Q and an (s-1) di-

mensional boundary feature of A − {p} respectively. As stated previously, Φ∗ is the

unique optimal solution to (3.1), which implies that d+Q(p,A)Q and A − {p} contact

at a single point. Denote the contact point by h; obviously, one has h ∈ F1
⋂
F2. In

other words, F1 and F2 are the two boundary features of d+Q(p,A)Q and A − {p} that

are in contact with each other. From the definition of F1 and F2, it is easy to realize

that dim(F1)+dim(F2)=|B+| − 2 = m − 1. This implies that the contacting feature

pair F1-F2 is either edge-edge or vertex-facet. Such types of contact are referred to as

the generic contact. An important character of the generic contact is that the state of

contact is invariant with the infinitesimal motions and/or deformations of the polyhedra

that do not cause the breakage of the contact. In other words, the infinitesimal motions

and/or deformations of the polyhedra do not change the uniqueness of the contact point

and the feature pair in contact. The concept of generic contact can be generalized to

the m-dimensional case, and thus, the conditions above imply that the contact between

d+Q(p,A)Q and A − {p} is generic, which guarantees the differentiability of d+Q(p,A).

Hereafter, it is assumed that the vertices of A are variables and their coordinate vec-

tors are represented by a set of smooth functions ai(u), where u is the vector of real

parameters. Accordingly, denote A by A(u), the optimal solution vector of the linear

programming formulation by Φ∗(u), the set of strictly positive basic variables in Φ∗(u)

by B+(u) = [ρ∗k1(u), . . . , ρ∗kr(u), a∗i1(u), . . . , a∗is(u)], and the distance from p to A(u) by

d+Q(u) respectively. Apparently, all of them are dependent on u. Suppose that u under-

goes an infinitesimal change to u+δ. It results in an infinitesimal deformation of A(u),

and, hence, an infinitesimal increment on the value of d+Q(u) (because of the Lipschitz

continuity). If the aforementioned conditions are satisfied, then δ does not change the

state of the contact. Thus, (4.2) holds in a neighborhood of u. By representing the

quantities in (4.2) as the functions of u, the particular set of equations can be rewritten

as: 

d+Q(u) =

r∑
j=1

ρ∗kj (u)

r∑
j=1

ρ∗kj (u)qkj =

s∑
l=1

α∗il(u)ail(u)− p

s∑
l=1

α∗il(u) = 1


(3.3)
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The formula for the derivative of d+Q(u) can be derived by differentiating (4.3). Thus,

by letting uτ be a single element of u, the partial derivative of d+Q(u) with respect to uτ

is determined by:

∂d+Q(u)

∂uτ
=
( r∑
j=1

emj

)
D1(u)−1

s∑
l=1

a∗il(u)
∂ail(u)

∂uτ
(3.4)

where D1(u) = [qk1 , . . . , qkr , ais − ai1 , . . . , ais − ais−1 ] and emj is the jth row of the m×m

identity matrix.

3.1.2 Methodology for grasp planning

Assume that a robotic hand grasps an object with np hard contacts. As explained in the

previous chapter all force components are transmitted through the contacts. According

to the friction coulomb model, each of the np forces must lie inside its correspoding

friction cone in order to avoid slippage. Let us denote by µ the friction coefficient, fn

the normal force component and fo, ft the tangential components. In this respect, the

friction constraints are formulated as:√
f2io + f2it ≤ µfin , i = 1, ..., np (3.5)

Linearizing the friction cone by an ng-sided polyhedral cone, each grasping force can be

represented as:

fi =

ng∑
j=1

aijsij , aij ≥ 0,

with sij denoting the jth edge vector of the linearized friction cone. Hence, the wrench

produced by fi is given by:

wi =

(
fi

fi × pi

)
=

ng∑
j=1

aij

(
sij

sij × pi

)

The vectors wij =

(
sij

sij × pi

)
∈ <6 define the primitive wrenches (i.e., the wrench

generated by a force along the jth edge of the linearized friction cone) where pi represents

the position of ith contact point with respect to the object coordinate frame.

In the previous chapter multiple definitions were given for the force closure property;

certain criteria must be satisfied in order for the grasp configuration to achieve force
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closure. Here, an additional condition will be presented. More specifically, it has been

shown that he grasp is force closured if and only if the primitive wrenches positively

span the entire wrench space, or equivalently the origin of the wrench space lies strictly

inside the convex hull of the primitive wrenches (i.e., 0 ∈ int [co(w11, w12, ..., wnpng)]).

Assume that W contains the primitive wrenches of the grasp configuration. According

to the definition of the Q+ distance, it is easy to prove that if d+Q(0, co(W )) = 0 and

only if 0 ∈ int [co(w11, w12, ..., wnpng)]). However, d+Q(0, co(W )) = 0 does not imply

0 ∈ int [co(w11, w12, ..., wnpng)]). Therefore, d+Q(0, co(W )) = 0 is a necessary condition

for the force-closure property. It can be easily deduced that a sufficient condition for

the force-closure property is desired. For this purpose, the concept of Q− distance is

introduced.

3.1.3 Q− distance

Assume that p and A are a point and a convex polyhedron respectively in Rm, so that

p ∈ A. Let ∂A denote the boundary set of A. The Q− distance of p and A is defined

by:

d−Q(p, A) = −min ||a− p||Q, a ∈ ∂A (3.6)

Obviously, d−Q ≤ 0. In addition, a nonconvex constraint a ∈ ∂A is used. The noncon-

vexity makes it difficult to solve (4.5) directly, and hence, some alternative approach

is desired for the calculation of d−Q. To this end, the following equivalent definition is

presented:

d−Q(p, A) =
{
−max ρ|SQ = ρQ ⊂ A− {p}

}
=
{

min−ρ|SQ = ρQ ⊂ A− {p}
}

(3.7)

From (4.6), the following geometric interpretation of |d−Q(p, A)| is obtained: it is the

radius of the largest || · ||Q sphere contained in A − {p}. Note that ρQ ⊂ A − {p} is

equivalent to ρqk ∈ A−{p}, ∀k. (4.6) can be represented as a set of linear programs as

follows:

d−Q(k) = min−ρ

s.t.



ρqk =

N∑
i=1

αiai − p

N∑
i=1

αi = 1

αi, ρ ≥ 0


d−Q(p,A) = max

k=1,...,K
d−Q(k) (3.8)
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By following a similar approach as for d+Q, the partial derivative of d−Q with respect to u

can be calculated as:

∂d−Q(u)

∂uτ
= em1 D2(u)−1

m∑
l=1

a∗il(u)
∂ail(u)

∂uτ

D2(u) = [−q∗k, . . . ,aim − ai1 , . . . ,aim − aim−1]

By the definition of the Q− distance it can be deduced that d−Q(0, co(W )) < 0 is

equivalent to 0 ∈ int[co(W )] and can be interpreted as a sufficient condition for the

force closure property. It can interpreted as the amplitude of the largest wrench that

the robotic hand can produce on the grasped object in the worst direction, with the

contact forces being constrained with
∑n

i=1 ||fin || ≤1 (fin is the normal component of

the contact force at pi). In the above interpretation, the amplitude of the wrench is

measured in terms of || ||Q. In light of this, not only dQ provides a qualitative test of the

force-closure property, but also quantifies the capability of the grasp in resisting unknown

external loads and/or disturbances. Thus, starting from a random grasp configuration,

an optimal force closure grasp can be obtained by minimizing:

dQ(0, co(W )) =

{
d+Q(0, co(W )), 0 /∈ int [co(W )]

d−Q(0, co(W )), 0 ∈ int [co(W )]

3.2 Different approaches for obtaining force closure grasps

Apart from the concept of Q distance other approaches have focused on deriving force

closure grasps as well. Some of these approaches will be summarized below.

• Solving a ray shooting problem

In [24], the configuration achieves force closure by using a test in each iteration that

implies the solution of a linear programming problem based on the ray-shooting tech-

nique. It is able to deal with frictional and frictionless contacts starts with the random

selection of n contact points and then iteratively moves the points to reduce the distance

between the convex hull of the applied wrenches and the origin of the wrench space. A

force closure configuration is guaranteed but the particular approach does not ensure

any optimality.

• Geometrical approach
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In [25], the procedure to search for force closure grasps has a heuristic nature and is based

on the metric of the largest perturbation wrench that the grasp resists, independently of

its direction. During this procedure the facet of the corresponding convex hull that limits

the grasp quality is identified, and one of its vertices (primitive wrenches associated with

a contact point) is iteratively replaced to look for a better grasp. The drawback of this

technique is the difficulty surrounding the incorporation of the kinematic constraints of

the robotic hand.

3.3 Quality measures

So far, the presented algorithms deal with the search for an optimal force closure grasp.

However, the quality of a grasp is not only measured by its ability to resist all posible

disturbances. In some cases it may be desired to optimize different quality measures.

In this respect, multiple quality measures will be presented that evaluate the goodness

of a grasp based either on the position of the contact points or the configuration of the

robotic hand. A more detailed description can be found in [11].

• Distance between the centroid of the contact polygon and the center of mass of

the object

The effect of inertial and gravitational forces on the grasp is minimized when the distance

between the center of mass of the object, CM, and the centroid C of the contact polygon

is minimized. This distance is also used as a grasp quality measure:

Q = ||CM − C||

• Normal directions at the contact points

The sum of the components of the applied forces normal to the object boundary is

indicative of the internal forces that the object withstands when an external disturbance

is applied. Then, a quality measure is defined as the sum of the modules of the normal

components of the applied forces required to achieve an expected demanding wrench:

Q = min
∑
fin

• Distance to singular configurations
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In order to keep redundant arms away from singular configurations, it is desirable to

maximize the smallest singular value σmin of the manipulator Jacobian. The same idea

is applied to grasps with mechanical hands using the hand-object Jacobian H, which in a

singular grasp configuration has at least one of the singular values equal zero. Therefore,

by using σmin(H) as a quality measure, maximizing the quality is equivalent to choose

a grasp configuration far away from a singular one:

Q = σmin(H)

• Volume of the manipulability ellipsoid

The measure σmin(H) considers only one singular value of H, which may be similar for

two different grasp configurations. In order to consider all the singular values of H, the

volume of the manipulability ellipsoid is proposed as quality measure. Let σ1, . . . , σr

be the singular values of H. The grasp quality (i.e. the volume of the manipulability

ellipsoid) is:

Q = k
√
det(HHT ) = k(σ1 . . . σr)



Chapter 4

Independent contact regions

So far the presented analysis emphasizes on the theoretical aspect of grasping; it has

been assumed that all parameters are known. However, parameters often differ from

their nominal value during experimental procedures. More specifically, robotic hands

can hardly assure that the fingers will precisely touch the object at the computed contact

points. In this respect the concept of independent contact regions (ICRs) is introduced

to provide robustness to finger positioning errors during an object grasping: a finger

contact anywhere inside each of these regions assures a force-closure grasp, despite the

exact contact position.

4.1 Grasping Uncertainties

A key influence on force closure is the presence of grasping uncertainties, which are

inevitable in practice and can lead to unpredictable, probably undesirable results. For

secure application of a force closure grasp, it is necessary to figure out the capability

of the grasp to tolerate grasping uncertainties, since the force closure property is not

guaranteed.

The force closure property of grasps depends on the contact types. For HF contacts,

friction coefficients are uncertain. Tangential friction is very sensitive to the environ-

ment. Under vibration, or with oil orwater on the contact surface, the coefficients are

liable to diminish. This changes the contact constraints and thus affects the force-closure

property.

Often contacts cannot be located exactly in the desired positions and obtaining their

actual positions without uncertainty is very difficult, even impossible. Contact position

uncertainty can be easily expressed by a position deviation, which occurs initially when

33
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the contact is located and further rises under the influence of the environment. The

position deviation alters the Grasp Matrix, so that the feasible resultant wrenches that

the grasp can generate are transformed. As shown in [26], the deviation may grow to

such an extent that computation of force closure grasps using exact contact positions

may be completely unreliable in reality.

The aforementioned uncertainties and their influence are depicted in Fig. 4.1.

Figure 4.1: A planar grasp with two point contacts with friction. (a) The grasp is
force closure, as the line connecting the contact points lies inside both friction cones.
(b) Compared with (a), the grasp is not force closure any more, owing to the decline of
friction coefficients. The dashed lines depict the original friction cones. (c) Compared
with (a), the grasp loses the force closure property because of tiny deviations at the

contact positions. The dashed curves indicate the original contact positions

Other uncertainties include deviations in the object boundary, stiffness and center of

mass as weell as parameters regarding the configuration of the robotic hand. Some

of these uncertainties will be tackled with the introduction of the independent contact

regions. Deviations of other grasping parameters will be tackled by deriving appropriate

contact forces.
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4.2 Independent contact regions

4.2.1 Definition

Suppose an np-fingered robotic hand grasping a rigid object with np point-to-point

frictional contacts. The hard finger model is adopted, implying that all force components

are transmitted through the contacts. According to the friction coulomb model, each

of the np forces must lie inside its correspoding friction cone in order to avoid slippage.

Let us denote by µ the friction coefficient, fn the normal force component and fo, ft the

tangential components. In this respect, the friction constraints are formulated as:√
f2io + f2it ≤ µfin , i = 1, ..., np (4.1)

Linearizing the friction cone by an ng-sided polyhedral cone, each grasping force can be

represented as:

fi =

ng∑
j=1

aijsij , aij ≥ 0,

with sij denoting the jth edge vector of the linearized friction cone. Hence, the wrench

produced by fi is given by:

wi =

(
fi

fi × pi

)
=

ng∑
j=1

aij

(
sij

sij × pi

)

The vectors wij =

(
sij

sij × pi

)
∈ <6 define the primitive wrenches (i.e., the wrench

generated by a force along the jth edge of the linearized friction cone) where pi represents

the position of ith contact point with respect to the object coordinate frame. Without

loss of generality the vectors sij are considered to be normalized. The grasp is force

closured if and only if the primitive wrenches positively span the entire wrench space,

or equivalently the origin of the wrench space lies strictly inside the convex hull of the

primitive wrenches (i.e., 0 ∈ int [co(w11, w12, ..., wnpng)]).

Assume that the H-representation of the convex hull is given as (H, K), where H is a

matrix containing the inward-pointing unit normals to the bounding hyperplanes and b

a vector containing the distances to the origin.By definition, independent contact region

i will contain points each of which can replace pi and still preserve the force closure

property. The idea of adding points in ICRs is illustrated in Fig. 4.2. It shows the

convex hull co(X), spanned by vectors xi containing the origin. By convexity, co(X) is
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fully contained in one of the half-spaces defined by the hyperplane Hf , corresponding

to facet f. Facet f is said to belong to the visible region of a point x̂i if that point lies in

the half-space of Hf not including the origin. Let Si be the intersection of all half-spaces

defined by hyperplanes corresponding to facets which contain xi, so that Si does not

contain the origin.

Figure 4.2: Visible Region: The yellow facets denote the visible region from the
point x̂1 on co(X). Point x1 can safely be substituted by x̂1. Points x1 and x2 can
simultaneously replaced by a point lying in the intersection of search regions S1 and

S2

The following analysis is based on geometric reasoning. Firstly, the convex hull resulting

from replacing a vertex xi with a point x̂i will fully contain co(X), if the visible region

of xi on co(X) is seen by x̂i as well. This is the case for any x̂i ∈ Si. In addition, point

x̂1 in Fig. 4.2 can safely substitute x1 while preserving co(X) [27].

4.2.2 Computation of ICRs

The computation of the independent contact regions (ICRs) is infeasible unless the

particular grasp configuration achieves force closure [25]. In this respect, the presented

analysis, which is based on the work, assumes that the force closure property is guaran-

teed. To derive a force closure grasp, appropriate algorithms should be applied; certain

algorithms were presented in the previous chapter.

To quantify the goodness of a grasp, the considered grasp quality measure, which is

one of the most common, is the largest perturbation wrench that the grasp can resist

independently of the perturbation direction. This grasp quality is equivalent to the
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radius of the largest hypersphere centered on 0 and fully contained in co(W ) (W =

(w11, w12, ..., wnpng)), i.e., it is the distance from 0 to the closest facet of co(W ).

Figure 4.3: (a) Non-force closure grasp. Hyperplane formed by {w2, w3, w4} leaves P
and 0 in different half spaces. (b) force closure grasp. All the supporting hyperplanes
of co(W ) leave P and 0 in the same half space. The radius Q of the largest inscribed

sphere indicates the grasp quality

The procedure of computing the ICRs is the following one: Given a starting force

closure grasp with quality Qs, the desired minimum grasp quality Qr = αQs (with

0 < α ≤ 1) for any force closure grasp within the ICRs is selected; when α → 0, the

ICRs allow force closure grasps with no lower limit on the grasp quality (note that

Qr = 0 is actually a forbidden value as it does not ensure the force closure condition).

The larger the Qr, the smaller the ICRs. Therefore, Qr must be selected as a tradeoff

between the desired robustness of potential grasps to external perturbations and the

flexibility or error margin in finger positioning on the object surface. Once Qr is fixed,

a set of hyperplanes in the wrench space parallel to the facets of the co(W ) of the

starting grasp and tangent to a hypersphere of radius Qr is used to determine regions

of the wrench space where new wrenches (associated with new contacts) will generate

force closure grasps with quality Q ≥ Qr. Finally, depending on whether each ICR is

constrained to be a continuous region or not, a neighbouring condition of the physical

points associated with the new valid wrenches can be imposed.

1. Find a starting force closure grasp with quality Qs

2. Select the minimum acceptable quality Qr = αQs

3. Compute co(W )
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4. For i = 1 to n (i.e., for each contact point pi), do

(a) For each facet Fk of co(W ) having at least one vertex wij , build the hyper-

plane H ′′k parallel to Fk and at a distance Qr from the origin 0, leaving 0

and Fk in different half spaces. Let H ′′+k be the open half space such that

wij ∈ H ′′+k
(b) Initialize ICRi = (pi)

(c) Label pi as open

(d) While there are open points ph ∈ ICRi, do

i. For all the neighboring points ps of ph, do: If ∃ j such that ∀ k wsj ∈ H ′′+k ,

then ICRi = ICRi
⋂

(ps), label ps as open

ii. Label ph as closed

5. Return the ICRs

The procedure is illustrated in Fig. 4.4 for a hypothetical 2d wrench space; note that

due to the geometrical construction, any physical point ph with a primitive wrench whj

in the region Si can replace the point pi of the given initial force closure grasp without

losing the force closure property and providing a quality Q ≥ Qr. Other examples are

illustrated in Fig. 4.4,4.5,4.6.

Figure 4.4: Search for ICRs ensuring a minimum grasp quality. Search zones Si for
each grasping point are depicted in gray, and the wrenches associated with neighboring

points within each ICR are depicted with squares
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Figure 4.5: ICRs with a minimum quality of (a)Qr = 0.17, (b) Qr = 0.0007

Figure 4.6: Search for the ICRs for a discretized ellipse. (a) Starting force closure
grasp on the ellipse. (b) Starting force closure grasp in the wrench space, with grasp
quality Qs = 0.43. (c) Search zones Si defined by the hyperplanes H ′′

k and wrenches
within each Si for Qr =0.1. (d) ICRs on the ellipse

4.3 Influence of uncertainties

Different sources of uncertainty may be present in grasping procedures, for instance, the

friction model used in grasp planning, indetermination of the friction coefficients, and
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errors in the model of the object that affect the positions of the boundary points as well

as the direction normal to the object surface. These uncertainties should be taken into

account during the computation of the ICRs [28].

As the material and the surface properties (e.g. roughness, deformations) for the grasped

object are, in general, not well known, it is difficult to provide an exact friction coeffi-

cient between the fingers and the object. Besides, the coefficients are very sensitive to

environment conditions (temperature or vibration, dust, oil or water on the surfaces). In

general, these factors tend to diminish the nominal friction coefficient µnom. The effect

of this uncertainty could be modelled as:

µmin = µnom/k (4.2)

with k ≥ 1 the reduction coefficient. With the expression provided in (4.2), two different

ICRs can be computed for the object: i)ICRsnom: nominal ICRs, computed for µnom.

This is the ideal case. ii)ICRsmin: minimal ICRs, computed for µmin. Note that

diminishing µ may potentially lead to a situation where the force closure property for the

starting grasp cannot be guaranteed any longer. If this is the case, then the computation

of ICRs will lead to an empty set of ICRs. The minimal ICRs allow a force closure

grasp despite any variation of µ, i.e. they are the most secure ICRs to grasp the object.

If at least one robotic finger is outside its ICRmin, then getting a force closure grasp

cannot be guaranteed due to friction uncertainty. As an example, Fig. 4.7 shows the

computation of the ICRsnom and ICRsmin for a parallelepiped, with µ = 0.4. The real

ICRs must lie in the ambiguity zone, i.e. somewhere between the ICRs nominal and

minimal.

The representation of a real 3d object as a cloud of points or as a triangular mesh could

involve several errors due, for instance, to possible locations occluded in the images used

to build the model, or to intrinsic errors in the acquisition system. As the grasp quality

depends strongly on the location of the contact points and its corresponding normal

directions, the effects of geometrical uncertainties should also be considered. These

uncertainties should be included in the computation of ICRs.

The location pib of the actual boundary contact point is considered to be inside a closed

sphere of radius ∆pi centered at the nominal position pi of the boundary point, i.e.

pib = pi + α∆pi, with 0 < α < 1. The primitive wrenches produced at the potential

locations of the real contact point are described with:

wij =

(
sij

sij × pib

)
=

(
sij

sij × pi

)
+

(
0

α∆pi × sij

)
(4.3)
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Figure 4.7: Independent contact regions on a parallelepiped with Qr = 0.04: a)
Minimal ICRs, µmin = 0.1; b) Nominal ICRs, µnom = 0.4. Note that the higher the

friction coefficient, the larger the ICRi obtained

Thus, the uncertainty in the location of the contact point is a perturbation ∆τ affecting

only the torque components of the wrench. Note that the magnitude of sij in (4.3) is 1,

so the magnitude of the maximum perturbation in the torque direction is:

||∆τ ||max = ||∆pi × sij || = ||∆pi|| (4.4)

To illustrate the effect of this perturbation in the computation of the ICRs, Fig. 4.8

illustrates a hypothetical 2-dimensional wrench space, with the horizontal axis repre-

senting the force component f and the vertical axis representing the torque component τ

for the wrench. Let a generic hyperplane Hk be described with the equation e · w = e0,

where e is the vector normal to the hyperplane. The distance of the hyperplane to the

origin is given by:

D = |e0|/||e|| (4.5)

Now, let every point of a hyperplane H ′′k be moved by a distance ∆τ in the torque

direction. A new hyperplane Hb
k is obtained in this way, which takes into account the

maximum error in the location of a contact point. The original hyperplane H ′′k is tangent

to a hypersphere with radius Qr; the new hyperplane Hb
k is tangent to a hypershpere

with radius Rb given by:

Rb = Qr + ∆τ e (4.6)

Note that this holds true for the 6-dimensional wrench space, as the radius Rb is com-

puted as the original radius plus the projection of the uncertainty ∆τ on the vector e
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Figure 4.8: Uncertainty in the contact location results in a displacement of the hy-
perplanes defining the search zones

normal to the hyperplane H ′′k .

The consideration of uncertainty in the location of the contact points can be taken

into account with the computation of the following ICRS: i)ICRsnom: nominal ICRi

using the nominal position pi for all the contact points, ii)ICRsmin: minimal ICRi

using the hyperplanes Hb
k parallel to the nominal hyperplanes H ′′k with a distance to the

origin given by Rbmin
= Qr + ∆τ e. Then, the consideration of this uncertainty implies

computing the ICRs with a minimum quality Rb larger that the predefined quality Qr.

Another parameter that may deviate from its nominal value is tirection normal to the

object boundary. In order to model this uncertainty, all the potential normal directions

are considered to be contained inside a cone with semiangle θ and with its axis along

the nominal normal direction. The real friction cone is somewhere between the minimal

and maximal cones depicted in Fig. 4.9. Let µ be the friction coefficient (assuming no

uncertainty in its determination, or considering µ as a conservative friction coefficient).

The friction cones have a semiangle of:

minimal : θmin = atan(µ)− θ (4.7)

maximal : θmax = atan(µ) + θ (4.8)

The influence of the aforementioned uncertainties are illustrated in Fig. 4.10.
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Figure 4.9: Uncertainties in the normal direction define a cone of normals containing
all the possible normal directions. All the potential friction cones can be found between

a minimal and a maximal cone

Figure 4.10: Independent contact regions: a)Nonimal ICRs (no uncertainty);
b)Minimal ICRs, (considering uncertainty in the normal direction); c) Minimal ICRs
with the combined effect of uncertainty in the normal direction and in the location of

the contact points

4.4 Extension of the presented analysis

The authors in [27] made the following suggestions:
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• Instead of exclusively checking primitive wrenches for the inclusion in the respec-

tive search regions, it was stated that there have to exist possible convex combi-

nations of the primitive wrenches inside all search regions

• If only one search region is defined associated with each pi (as the intersection

of the half spaces all primitive wrenches) smaller or even empty ICRs may be

derived

• Instead of measuring the minimum distance between the hyperplanes and 0 as

the metric, the task wrench space can be incorporated in the analysis. The ICRs

contain points that guarantee that the task wrench space will be in the interior of

co(W ) (Fig. 4.11)

Figure 4.11: The red lines denote valid convex combinations of the primitive wrenches,
which are shown as red squares. Contact points associated with the primitive wrenches
depicted as blue squares, as well as the primitive wrench illustrated as a yellow square

also can replace p1 without violating the task wrench space
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Posture selection scheme

The majority of the works on grasping consider both object as well as robot hand param-

eters to be accurately known and do not take into account the constraints imposed by

the robotic hand. In contrast, the proposed methodology [29] is complete in a way that

handles the grasping problem under a wide range of uncertainties. Aiming at satisfying

the kinematic constraints of the robotic hand, the determination of independent con-

tact regions is incorporated in the posture selection algorithm. In addition, the posture

selection scheme yields a configuration that is able to transmit efficiently forces on the

contact points. The presented methodology includes the kinematic constraints of the

DLR/HIT II robotic hand.

5.1 Problem definition

The software/hardware limitations of a robotic hand together with the uncertainties

regarding the object physical properties render the task of precise contact positioning

extremely difficult. For example, experimental results in our lab with the DLR/HIT II

robot hand, have shown that joint displacement errors occur up to 1.5 degree. In this

respect, it is essential to introduce the concept of independent contact regions to the

grasp configuration searching algorithm. The initial plan was to formulate the problem

so that, given any initial grasp, a robust grasp configuration with respect to positioning

errors would be produced. However, the computation of independent contact regions is

impossible, unless the particular configuration yields a force closure grasp. Hence, the

first step is to generate an efficient force closure grasp, compatible with the kinematic

constraints.

In order to lift the object properly, robotic fingers need to apply adequate contact forces

without however violating the actuators’ limitations. Thus, it is of utmost importance

45
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to adopt a configuration that is capable of exerting satisfactory forces on the object

with relatively small joint torque effort. Therefore, starting from the initial force closure

grasp, an optimization scheme is formulated in order to find a grasping posture that

maximizes the force transmission ratio of the robotic hand and provides robustness

against potential contact points deviation. Recent state of the art works, presented

in previous chapters, given a force closure grasp, focus on checking which points on

the object boundary qualify to be included in the independent contact regions. In

the proposed optimization scheme, however, based on the range of the DLR/HIT II

joint displacement error, the deviated contact points are constrained to lie inside the

independent contact regions. Hence, apart from maximizing the force transmission ratio

of the robotic hand, a force closure grasp will be obtained regardless the positioning

uncertainties. The output of the algorithms is verified with a simulation study for the

case of a robotic hand with the design and limitations of the DLR/HIT II. Nevertheless,

it should be noted that the proposed procedure can be applied to every mechanical

multi-fingered robotic hand.

5.2 Search for an acceptable force closure grasp

Prior to developing the methodology, the basics of grasping will be given. Consider an

np-fingered robotic hand with nq rotational joints in total, grasping a rigid object with

np point-to-point frictional contacts. The hard finger model is adopted, implying that

all force components are transmitted through the contacts. According to the friction

coulomb model, each of the np forces must lie inside its correspoding friction cone in

order to avoid slippage. Let µ denote the friction coefficient, fn the normal force com-

ponent and fo, ft the tangential components. In this respect, the friction constraints are

formulated as: √
f2io + f2it ≤ µfin , i = 1, ..., np (5.1)

Linearizing the friction cone by an ng-sided polyhedral cone, each grasping force can be

represented as:

fi =

ng∑
j=1

aijsij , aij ≥ 0,

with sij denoting the jth edge vector of the linearized friction cone. Hence, the wrench

produced by fi is given by:

wi =

(
fi

fi × pi

)
=

ng∑
j=1

aij

(
sij

sij × pi

)
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The vectors wij =

(
sij

sij × pi

)
∈ <6 define the primitive wrenches (i.e., the wrench

generated by a force along the jth edge of the linearized friction cone) where pi represents

the position of ith contact point with respect to the object coordinate frame. Without

loss of generality the vectors sij are considered to be normalized. The grasp is force

closured if and only if the primitive wrenches positively span the entire wrench space,

or equivalently the origin of the wrench space lies strictly inside the convex hull of the

primitive wrenches (i.e., 0 ∈ int [co(w11, w12, ..., wnpng)]).

The grasp selection algorithm is based on the concept of the Q distance for curved

objects. In summary, given a polyhedral set Q ⊂ R6 that contains the origin (i.e.,

0 ∈int[Q]), a point p ∈ R6 and a convex polyhedron A ⊂ R6, the Q distance from p to

A is calculated as follows:

−p /∈ int[A] : −p ∈int[A] :

d+Q(p,A) = min
K∑
k=1

ρk

s.t.



K∑
k=1

ρkqk =
N∑
i=1

αiai − p

N∑
i=1

αi = 1

ρk, αi ≥ 0



d−Q(k) = min−ρ

s.t.


ρqk =

N∑
i=1

αiai − p

N∑
i=1

αi = 1

αi, ρ ≥ 0


d−Q(p,A) = max

k=1,...,K
d−Q(k)

where qk (k = 1, ...,K) and ai (i = 1, ..., N) are the vertices of Q and A respectively.

Notice that the aforementioned linear programs can be easily solved using the simplex

method. Moreover, the set Q may be chosen to be a simplex in order to reduce the

computational complexity.

Assume that W contains the primitive wrenches of the grasp configuration. Then,

d+Q(0, co(W )) = 0 represents a necessary condition for the force closure property, while

d−Q(0, co(W )) < 0 is equivalent to 0 ∈ int[co(W )] and can be interpreted as a sufficient

condition. Furthermore, the quantity |d−Q(0, co(W ))| represents the amplitude of the

largest wrench the particular grasp can withstand in the worst direction, with
∑
|fni | =

1. Thus, starting from a random grasp configuration, an optimal force closure grasp can

be obtained by minimizing:

dQ(0, co(W )) =

{
d+Q(0, co(W )), 0 /∈ int [co(W )]

d−Q(0, co(W )), 0 ∈ int [co(W )]
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Additionally, in case the vertices of W can be represented as smooth functions of a vector

l of real parameters (w1(l), ..., wN (l)), it was proven that the derivatives of d+Q and d−Q

with respect to l exist and can be computed accurately almost everywhere. In light of

this, we formulate our optimization problem by choosing as decision variables the unified

vector v =
[
q w

]T
, where q ∈ Rnq and w ∈ R6 denote the joint displacements and wrist

position/orientation respectively. We assume that the desired position/orientation of the

robotic hand can be implemented by attaching it on a dexterous manipulator. Then,

the optimization problem can be formulated as following:

min dQ(0, co(W ))

s.t.

qmin ≤ q ≤ qmax (5.2)

fkine(q) ∈ ∂O (5.3)

qjabd/add ≤ q
j+1
abd/add (5.4)

p′ /∈ O (5.5)

Equation (5.2) describes the joint mechanical limits whereas (5.3) ensures that the fin-

gertips are in contact with the object surface. Furthermore, qjabd/add, (j = 1, ..., np − 1)

represents the abduction/adduction degree of freedom of all fingers opposed to the thumb

(index, middle, ring, pinky) and equation (5.4) ensures collision avoidance. The next

constraint is added in order to avoid penetration between the robotic hand and the

object. In particular, p′ denotes a set of finite discrete points lying on the robotic hand

(the fingertips are excluded). Given an analytical expression of the object boundary,

equation (5.5) can be easily expressed as inequality constraints. Henceforth, we shall

refer to these constraints using the abbreviation RHC, (robotic hand constraints).

Given that the primitive wrenches are expressed as smooth functions, it is possible,

through the computation of the manipulator’s forward kinematics, to calculate the

derivative of the objective function with respect to the decision variables vector v. Thus,

computing also the derivatives of the constraints with respect to v, the problem can be

solved using a non linear programming algorithm and an optimal force closure grasp

configuration can be obtained.
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5.3 Dealing with force transmission maximization and po-

sitioning inaccuracies

So far the kinematic constraints that need to be satisfied have been taken into account

during the grasping posture selection. However, robotic hands are also subjected to joint

torque constraints. Thus, it is important to adopt a robot hand configuration that is

capable of exerting the required grasping forces on the object with relatively low joint

torque effort. Towards this goal, the force transmission ratio rk and compatibility index

c was exploited, which was defined in [30] as:

rk = [uTk (JiJ
T
i )uk]

−1/2

ci =

l∑
k=1

r2k =

l∑
k=1

[uTk (JiJ
T
i )uk ]−1

where uk, k = 1, ..., l, denotes the direction of interest regarding the contact forces and

Ji denotes the jacobian of the ith finger, i = 1, ..., np. Since frictional hard contacts

have been assumed, each force is restricted to lie inside its corresponding friction cone.

Hence, for each contact point the unit vectors uk are chosen to be aligned with the edges

of the linearized friction cone [31]. The compatibility index for the robotic hand is given

by:

c =

np∑
i=1

wfici =

np∑
i=1

wfi

ng∑
k=1

[uTk (JiJ
T
i )uk]

−1

where wfi are weighting factors, each one for every robotic finger.

Maximization of the compatibility index c yields an optimal posture with respect to the

force transmission metric. However, as it was stated previously, different sources may

cause deviation between the actual and desired joint positions. Thus, it is important

that the robotic hand can grasp the object even if angular displacement errors induce

fingertip positioning inaccuracies. For that reason the concept of independent contact

regions (ICR) was utilized, adopting, in particular, the approach described in 4.2.2 to

determine whether a point on the object boundary qualifies to be a member of an ICR.

In summary, suppose a force closure grasp configuration is given with a quality D.

The quality metric considered, is the largest perturbation wrench that can be resisted

regardless the perturbation direction and is equal to the distance from 0 to the closest

facet of the primitive wrenches’ convex hull. Each ICRi consists of a set of discrete

points, so that if the fingertips are placed inside the corresponding region, a force closure

grasp with a minimum quality D′ is obtained. The procedure of computing the ICRs
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based on the particular method is illustrated in Fig. 5.1a) with a hypothetical 2-d wrench

space. In this figure a convex hull of 3 contact points is represented. Each contact point

pi is associated with 4 primitive wrenches wij and a number of facets Fk, involving at

least one vertex wij . For instance, contact point p1 is associated with facets F1 and F2.

H ′1, H
′
2 are the hyperplanes built parallel to F1, F2 respectively at a distance D′ from

0, leaving, also, 0 and their corresponding facet at different halfpsaces. A neighbouring

point is said to be included in the ICR1 if at least one of its primitive wrenches lies

inside the region S1 =
⋂
H ′+k , k = 1, 2 (we assume that co(W ) ⊆ H−k ). The green

primitive wrenches depicted in Fig. 5.1a) are associated with contact points inside the

ICR1.

It can be easily deduced that the method proposed in 4.2.2 may be used to determine

which neighbouring points are included in the independent contact region, with respect

to a minimum desired quality or, equally, a given parallel displacement of the hyper-

planes. In this work the range of the joint displacement error is known, hence the

deviation of the contact points can be computed. Therefore, instead of checking which

points qualify to be inside the ICRs, the necessary hyperplane displacements can be de-

termined, so that at least one primitive wrench of each deviated contact point ps belongs

in
⋂
H ′+k . Suppose a nominal contact point pi, the hyperplanes’ equations Hkx = Kk

associated with the particular point and the deviated contact points ps, s = 1, ..., S are

given. The necessary parallel movement of the hyperplanes for a single contact point

can be determined as following:
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a)ICR determination b)D′1 > 0 c)D′1 < 0

Figure 5.1: Independent Contact Regions

• for s = 1, ..., S (for each deviated contact point)

• for j = 1, ..., ng (for each primitive wrench of the deviated contact point)

• for k = 1, ...,K (for each hyperplane Hk having at least one primitive

wrench wij)

• compute the signed distance between the hyperplane Hk and primi-

tive wrench wsj
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• build the parallel hyperplane H ′k that involves wsj

• compute the signed distance iD′kj between H ′k and 0

• end

• find the required distance iD′jmin
= min(iD′kj) of all hyperplanes Hk from

0 so that wsj ∈
⋂
H ′+k

• end

• find the required distance iD′s = max(iD′jmin
) of all hyperplanes from 0 so

that at least one primitive wrench of ps belongs in
⋂
H ′+k

• end

• compute D′i = min(iD′s) of all deviated contact points ps

Notice that the aforementioned distances are computed through vector dot products,

rendering the procedure very computationally efficient. The quantityD′ = min(D′i) of all

nominal contact points pi denotes the maximum distance between 0 and all hyperplanes

H ′k so that the deviated contact points belong in their corresponding ICR. Furthermore,

it is equivalent to the minimum possible quality of the grasp, even if contact points

deviation occurs. Last but not least, the signed distance D′ must be greater than 0

(D′ > 0) in order to maintain the force closure property of the grasp. If D′ < 0 at least

one hyperplane H ′k does not contain the origin. The described procedure is illustrated

in Fig. 5.1b), c).

Considering the analysis above and keeping as decision variables the unified vector

v =
(
q w

)T
, the following optimization scheme is formulated that yields a grasp con-

figuration with great force transmission and robustness against positioning inaccuracies:

min
(
w1

1
c + w2

1
D′

)
s.t.

RHC

d−Q(0, co(W )) < 0 (5.6)

D′ > 0 (5.7)

It was mentioned earlier that d−Q(0, co(W )) < 0 represents a necessary and sufficient

condition for the force closure property. Hence, equation (5.6) constrains the algorithm
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to search only force closured grasps. Moreover, equation (5.7) requires the deviated

contact points to belong in their corresponding independent contact region. The initial

posture provided to the algorithm is the one calculated in the previous section. An

optimal configuration with respect to the utilized quality metric results in larger ICRs.

In light of this, the optimal grasp configuration generated in the previous section is ideal

to initiate the second search algorithm.

Given the object properties, the aforementioned algorithms yielded off-line an optimal

posture. For the simulated examples a 2.25 cm-radius, 13 cm-high cylindrical object

was considered. Furthermore, due to the robust nature of the analysis, a conservative

friction coefficient (µ = 0.3) was selected and the influence of uncertainties related to

the friction coefficient and object model in the computation of ICRs was taken into

consideration. An initial non force closure grasp and the optimal final grasp (output of

the algorithms) are depicted in Fig. 5.2. Based on the joint displacement error of the

DLR/HIT II, the maximum contact point deviation on the object was found to be 4 mm.

Hence, 4 deviated contact points (presented as red dots in Fig. 5.2) were considered at a

distance of 4 mm from their corresponding nominal contact point. For the experimental

validation the DLR/HIT II is attached at the end effector of the Mitsubishi PA 10.

Note, also, that due to the high accuracy in terms of positioning the Mitsubishi PA10

end effector, errors in the actual wrist position/orientation are neglected. The solution

of the optimization schemes was derived using the MATLAB Optimization Toolbox.

Initial posture Optimal posture

Figure 5.2: Simulated postures

Remark 5.1. The quantity D′ denotes the minimum quality of the grasp even if contact

points deviation occurs. Based on the utilized quality metric, it depends exclusively

on the position of the contact points on the surface of the object. On the other hand,

the compatibility index c is used so that the resulted configuration of the robotic hand

can effectively transform joint torques to contact forces. Considering the above, D′

is associated with the transformation of contact forces to object wrenches, while c is

connected to the ability of the mechanical system to produce effectively forces to the

environment. Hence, the significance of each quality metric can be adjusted by using

the weighted factors w1, w2.



Chapter 6

Determination of appropriate

forces utilizing tactile sensing

Robotic hands are mechanical artifacts subject to joint torque limitations. Thus, apart

from choosing a suitable configuration, it is important to be able to perform the grasp

with the lowest possible amount of power. Towards this goal, many force optimization

algorithms have been proposed [32], [33], [34]. Balancing the external disturbances

with relatively small applied forces may prevent the object from deforming and requires

low joint torque effort. Nevertheless, uncertainties that may occur during the grasping

procedure need to be taken into consideration, so that the robotic hand can lift the object

successfully. Most works are designed for precise fingertip positioning on the object and

exact knowledge of object parameters, leading, thus, to potential unsuccessful results

in real world applications. Inspired by the work in [35], sufficient contact forces are

determined that can generate a force closure grasp, even when deviation of contact

points and object parameters occurs.

Appropriate tactile devices may contribute to the implementation of dexterous grasping

and manipulation tasks, by providing humanoid robots with useful information about

geometrical and physical quantities of the objects. In the presented methodology, in or-

der to reduce the magnitude of uncertainty regarding the grasping parameters, valuable

information from tactile sensors mounted appropriately on the DLR HIT II was utilized.

To verify the proposed grasping strategy, as well as the methodology presented in the

previous chapter, experiments are conducted using the 15 DoF DLR/HIT II attached

on the 7 DoF Mitsubishi PA10.

53
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6.1 Introducing the use of appropriate tactile sensors

The tactile sensor used was the off-the-self 4256e Grip sensor designed by Tekscan. This

ultra thin (0.15 mm) tactile sensor consists of 320 sensing elements (sensels) and is able

to measure the pressure magnitude of each sensel based on piezo-resistive technology.

The output of each sensel is divided into 256 increments, and displayed as a value (”raw

sum”) in the range of 0 to 255 by the software.

Figure 6.1: Tactile sensor

Figures Fig. 6.2 and Fig. 6.3 show how the tactile sensor was mounted on the DLR

HIT. Aiming at placing the grip sensor properly, the velcro cyan band and an elastic

black tape were used. Initially, the tactile sensor was placed on the DLR HIT so that

the active regions could reach the robotic fingertips. Subsequently, the velcro cyan band

was used to secure the position of the versatec cuff. Finally, an elastic black tape was

used to hold the active regions on the robotic fingertips. to

The active region of each fingertip is a 4x4 array and the sensels’ output allows the

computation of the center of force, or equally, the contact centroid as:

xcof =

3∑
i=0

xi

3∑
j=0

pij

3∑
i=0

3∑
j=0

pij

, ycof =

3∑
j=0

yj

3∑
i=0

pij

3∑
j=0

3∑
i=0

pij

where pij is the pressure value at each sensel and xi, yj denote the x-coordinate of ith

column and y-coordinate of jth row respectively on the 4x4 array.
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Figure 6.2: Experimental system setup, Front view

Figure 6.3: Experimental system setup, top view

The position of the contact centroids is defined by 2-d coordinates on the arrays of the

tactile sensor. However, it is required to map the centroid local coordinates (xcof , ycof )

into 3-D coordinates on the fingertip. Towards this goal, the point cloud of the DLR/HIT

II fingertips was exploited. For each robotic finger, initially, the 4 corner sensels of the

array were matched with their actual position pcorni , i = 1, ..., 4, on the point cloud and
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the distance from them to all other nodes of the point cloud was computed. Assuming

that the Grip sensor covers the surface of the fingertips due to its inherent thinness

and flexibility, given a contact centroid on each array (xcof , ycof ) its corresponding node

P(X,Y,Z) on the point cloud was determined to minimize the function:

min{
∑4

i=1(disti(X,Y, Z)− arraydisti(xcof , ycof ))2} (6.1)

where disti(X,Y, Z) denotes the distance from pcorni to node P(X,Y,Z) on the point

cloud and arraydisti(xcof , ycof ) denotes the distance between the ith corner sensel and

the contact centroid on the tactile array. In other words, it was assumed that the distance

between two points remains invariant whether they are expressed by 3-d coordinates or

2-d coordinates on the arrays.

(𝒙𝒄𝒐𝒇, 𝒚𝒄𝒐𝒇) 

P(X,Y,Z) 

Figure 6.4: Distances on the fingertip and the tactile array respectively

With the aforementioned capabilities of the tactile suit, the steps of this approach to-

wards the implementation of a successful grasp are presented:

1. Offline search for a robust configuration with respect to contact positioning inac-

curacies as presented in the previous chapter

2. Implementation of the desired wrist position/orientation and joint angles

3. Joints’ displacement freezing when their corresponding finger senses contact with

the object through its tactile array

4. Reading the actual joint positions and contacts centroids from the encoders and

tactile sensors output respectively

5. Mapping the contact centroids to their corresponding position on the mechanical

fingertips using (6.1)

6. Computation of the contact points position on the object through forward kine-

matics

7. Determination of sufficient forces to grasp the object
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It should be noticed that the measuring errors of the joint angle sensors are considered

to be negligible. Hence, any errors in the contact points computation in Step 6, may

appear only owing to uncertainties in the centroids’ measurements.

6.2 Force optimization algorithm

In the sequel, the analysis towards defining adequate contact forces online is presented.

The expressions that relate the contact forces fc with the external disturbance wext and

the joint torques τ are:

Gfc = −wext (6.2)

JT fc = τ (6.3)

whereG and J denote the grasp matrix and hand jacobian respectively (J = diag(Ji), i =

1, ..., np) [22]. In case the vector fc is expressed in global coordinates, the grasp matrix

is defined as:

G =
(
G1 G2 G3 · · · Gnp

)
, Gi =

[
I3x3

S(cm− pi)

]
(6.4)

where cm is the center of mass position, I3x3 is the identity matrix and S is the cross

product matrix. Furthermore, from (6.2) the contact forces can be written as:

fc = −G+wext + Eλ, (6.5)

where G+ is the pseudoinverse of G, E is a matrix whose columns form a basis for the

nullspace of G and λ is an arbitrary vector. The first term of (6.5) is related to the

compensation of external wrench wext, while the term Eλ denotes those forces whose

resultant wrench to the object is zero [22]. The set of these forces is called internal forces.

Internal forces play a fundamental role in grasping and are associated with the ability

of the robotic hand to squeeze arbitrarily tight in order to grasp properly. Moreover, by

exerting internal forces on the object appropriately, the generated contact forces comply

with the friction constraints. Thus, the goal in this section is to calculate and apply

appropriate internal forces to the object so that the friction law and torque constraints

are not violated during a stable grasping.

Assume that the maximum absolute value of the uncertainty on the fingertips is δpmax.

In this approach the magnitude of the uncertainty on the object geometry will also

be considered as δpmax. To proceed, the authors in [35] proposed that even if contact

uncertainties occur, equation (6.2) needs to be satisfied in order to grasp the object
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successfully. Thus, by representing as δx the deviation of x due to δp and neglecting

higher order terms, equation (6.2) becomes:

−wext = Gfc = (δG+G)(δfc + fc)

δfc = −G+δGfc (6.6)

After straightforward matrix norm calculations, (6.4), (6.6) lead in:

‖δfci‖ ≤ ‖ΞiG+

[
0

I3x3

]
‖δpmax

np∑
i=1

fci (6.7)

where Ξi represents a separation matrix (fci = Ξifc). In addition, utilizing the ortho-

normality of the rotation matrices, equation (5.1) gives: ‖fci‖ ≤
√

1 + µ2fni , where

fni = nifci is the normal force component and ni is the contact normal vector. Thus,

from (6.7) one obtains:

‖δfci‖ ≤ ‖δfcimax
‖ = ‖ΞiG+

[
0

I3x3

]
‖δpmax

√
1 + µ2

∑np

i=1 fni (6.8)

Similarly, from equation (7.10) one gets for the kth joint:

δτik = δJTikfci + JTikδfci (6.9)

Denoting by Jik the kth row of Ji, for hard point contacts, one obtains [22]:

Jik = [zik × (pfi − dik)], δJik =
∂Jik
∂pfi

δpfi +
∂Jik
∂qik

δqik

where pfi is the end effector position of each finger, zik , dik are the rotation axis and posi-

tion of kth joint respectively and qik the kth joint displacement. In our case, as explained

in Subsection A, joint displacement errors are negligible, hence (∂Jik/∂qik)δqik = 0.

Consequently:

δJik = [zik × δpfi]→ ‖δJik‖ ≤ ‖δJikmax
‖ = δpmax

|δτik | ≤ |δτikmax | =
√

1 + µ2δpmaxfni + ‖Jik‖T ‖δfcimax
‖ (6.10)

It should be noted that contact uncertainty affects the friction cone as well. In light of

this, a new friction coefficient for curved objects can be determined as [35]:

θmax = 2sin−1
δpmax

2r , r : curvature radius

µ′ = tan(tan−1µ− θmax)
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In order to take into consideration the contact forces and joint torques deviation, the

authors in [] proposed to increase the normal force component in the friction law by

‖δfcmax‖ (6.7) and reduce the maximum actuator torque by |δτikmax | (6.10). Moreover,

the friction cone defined in (5.1) may be approximated by an L-sided convex polyhedral

cone in order to reduce the computational complexity of the problem [32]. Hence, (5.1)

can be expressed as: −Vifci ≤ 0, fni ≥ 0.

Considering as decision variables the vector λ of the internal forces defined in (6.5), the

linear optimization problem towards determining sufficient internal forces is formulated

as following:

min
∑
fni

s.t.

−V ′i (fci − ni‖fcimax
‖) ≤ 0

|τik | ≤ |τikmax
| − |δτikmax

|
fni ≥ 0

i = 1, ..., np, k = 1, ...,K, where in V ′ the friction coefficient µ′ is used instead of µ.

The algorithm presented above searches for internal forces that minimize the sum of

the normal forces and therefore the grasp effort, while simultaneously constraining the

generated contact forces to satisfy the friction and torque constraints. The contact forces

and joint torques produced by the internal forces are computed in the optimization

scheme through equations (6.3), (6.5). In this work wext is considered to be the weight

of the object. However, estimating the location of the center of mass with great precision

is an extremely difficult task. Hence uncertainties in the center of mass position must be

taken into consideration as well. These deviations can be represented as a set of external

disturbances with respect to the nominal object coordinate frame. Consequently, instead

of compensating the object’s weight wext, we search for internal forces that compensate

a set wl, l = 1, ..., L, of external disturbances. In other words, the derived internal forces

should produce for each external wrench wl, contact forces (6.5) that satisfy the friction

and torque constraints.

Remark 6.1. In [35] the authors had to deal not only with joint angle deviations but

also with contact uncertainties both on the fingers and the object. In contrary, the

utilization of tactile sensors allows us to neglect joint angle errors and take into account

only potential errors on the fingertips. Furthermore, as stated in [35], given a configu-

ration and uncertainty magnitude, it is possible that the constraints of the optimization

problem cannot be satisfied. In other words, the particular configuration will not be



Chapter 6. Determination of appropriate forces utilizing tactile sensing 60

able to support the defined uncertainty. On the other hand, in our analysis, the pos-

ture of the robotic hand is determined by maximizing the force transmission ratio, as

presented previously, whereas by exploiting tactile sensing we further reduce the range

of uncertainty regarding the grasping parameters, thus relaxing significantly the on-line

derivation of the internal forces. Apparently, the two parts of the proposed grasping

strategy (i.e., the off-line and the on-line) are tightly connected and are cooperating

towards generating successful grasps.

6.3 Verification through an experiment

DLR/HIT II is a fifteen DoF anthropomorphic robotic hand [36]. It has five identical

fingers with 3 DoF per finger: two for flexion-extension and one for abduction-adduction.

The last two joints are mechanically coupled using a steel wire with transmission ratio

1:1.

Reaching Hand Closing Grasping Lifting

Figure 6.5: Experimental procedure

Regarding the grasping procedure, the DLR hand is attached at the end effector of

the Mitsubishi PA10 manipulator and the tactile arrays are mounted on the robotic

fingertips. The desired wrist position/orientation generated in the previous chapter, is

used in order to derive anthropomorphic trajectories for the Mitsubishi PA10 robotic

manipulator using “functional anthropomorphism” as described in [37]. Following this

methodology it is possible to reach and grasp in a humanlike manner the desired ob-

ject. Regarding the communications, a grasp planner PC (Ubuntu OS) establishes tcp

connections with a PC (Windows OS) that collects the forces from the tekscan system

and the Mitsubishi PA10 control unit (real-time linux), in order to detect contact with

the object and provide the appropriate trajectories respectively. The experiment is per-

formed using the cylindrical object presented in the simulation examples in the previous

chapter of weight 100 gr.

In the previous section an optimization algorithm was presented that yields the required

internal forces. In order to exert the desired forces the dynamic model of the robotic

hand was utilized. Due to its inherent joint flexibility, the flexible joint model is used
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Thumb qdes qact τdes τact
abd/ad -12.9 -12.7 0.116 0.090

flex/ext 1 10.8 11.4 0.251 0.311

flex/ext 2 14.6 13.7 0.122 0.120

Index qdes qact τdes τact
abd/ad -12.2 -11.0 -0.038 -0.012

flex/ext 1 10.6 11.3 0.109 0.108

flex/ext 2 18.9 18.7 0.053 0.064

Middle qdes qact τdes τact
abd/ad -4.3 -4.9 -0.016 -0.018

flex/ext 1 16.8 16.1 0.093 0.097

flex/ext 2 23.1 22.1 0.052 0.064

Ring qdes qact τdes τact
abd/ad 6.0 4.7 0.006 0.007

flex/ext 1 19.4 19.9 0.039 0.037

flex/ext 2 21.1 20.1 0.021 0.034

Pinky qdes qact τdes τact
abd/ad 7.6 6.4 0.008 0.009

flex/ext 1 19.7 21.1 0.031 0.037

flex/ext 2 14.0 12.7 0.013 0.020

Figure 6.6: Experimental data (q :degrees, τ : Nm)

[38]. In the presented analysis, one may arrive at:

τ = g(q)− τext = K(θ − q)

where q denotes the link side position vector, θ denotes the motor position vector ex-

pressed in link coordinates and g(q) represents the the gravity term. Furthermore, K is

the stiffness matrix and τext denotes the external torque vector respectively. Since this

analysis deals with rigid objects, for a given q vector (after contact detection), one may

calculate the necessary motor displacements θ =
g(q)− JTi fextd

K + q, in order to exert

the desired internal forces fextd on the object. The term g(q) may be computed using the

DH parameters and the nominal masses of the DLR/HIT II [38]. Below experimental

data of the grasp implementation are presented.
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Dealing with task specificity

Every day life experience and recent neuroscientific studies on human grasping behaviour

indicate that, when humans grasp objects, they intuitively adapt their hand posture

according to the object and the task to be executed. Particularly, in [39] grasp selection

by humans was studied and post processing of the hand’s kinematics verified that humans

adopt postures that generally maximize the force/velocity transmission ratios along the

directions required for the task to be executed.

The problem of deriving optimal grasps under a detailed task description has been

tackled in the past and various methodologies have been proposed. In [40] the authors

searched for optimal grasps using the branch-and-bound method based on a required

external set. Teichmann [41] minimized the number of contact points, needed to balance

any external force and moment contained in a given set. Other works utilize the index

proposed by Chiu that measures the compatibility of a manipulator to perform a given

task [30], as well as the concept of the task ellipsoid proposed by Li and Sastry [42]. A

task specific grasp selection scheme has been proposed in [43] for underactuated robotic

hands as well. Unfortunately, most of the aforementioned approaches suffer from major

drawbacks, such as the difficulty in modelling the task ellipsoid, as well as the fact that

force closure is not generally guaranteed by the yielded configuration, limiting thus their

applicability. As explained in the sequel, it is of great importance in this work not only

to balance the task disturbances but also to derive a force closure grasp1.

Given the presented analysis so far, a complete methodology for deriving task-specific

force closure grasps for robotic hands under a wide range of uncertainties is proposed.

Given a finite set of external disturbances representing the task to be executed, the

concept of Q distance is introduced in a novel way to determine an efficient grasp with

a task compatible hand posture (i.e., configuration and contact points). This approach

1Force closure ensures object immobility in the presence of any external disturbance [22].
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takes, also, into consideration the mechanical and geometric limitations imposed by

the robotic hand design and the object to be grasped. In addition, incorporating the

main idea of the previous chapter, the ability of the robot hand to exert the required

contact forces is maximized and robustness against positioning inaccuracies and object

uncertainties is established. Finally, the efficiency of this approach is verified through an

experimental study on a 15 DoF DLR/HIT II robotic hand attached at the end effector

of a 7 DoF Mitsubishi PA10 robotic manipulator.

7.1 Grasping algorithm

We consider an np-fingered robotic hand with nq rotational joints in total, grasping a

rigid object with np point-to-point frictional contacts. The hard finger contact model

is also adopted, which implies that all force components are transmitted through the

contacts. Additionally, according to the friction coulomb model, each of the np forces

must lie inside its correspoding friction cone in order to avoid slippage. Thus, denoting by

µ the friction coefficient, by fn the normal force component and by fo, ft the tangential

components, the friction constraints are formulated as:√
f2io + f2it ≤ µfin , i = 1, ..., np. (7.1)

Hence, linearizing the friction cone by an ng-sided polyhedral cone, each grasping force

can be represented as:

fi =

ng∑
j=1

aijsij , aij ≥ 0,

with sij denoting the jth edge vector of the linearized friction cone. Consequently, the

wrench produced by fi is given by:

wi =

(
fi

fi × pi

)
=

ng∑
j=1

aij

(
sij

sij × pi

)

where the vectors wij =

(
sij

sij × pi

)
∈ <6 define the primitive wrenches (i.e., the wrench

generated by a force along the jth edge of the linearized friction cone) with pi denoting

the position of ith contact point with respect to the object coordinate frame. Finally,

the magnitude of the forces along the ng edges of the friction cone is considered to be

FG.
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In this way, the grasp is force closured if and only if the primitive wrenches positively

span the entire wrench space, or equivalently the origin of the wrench space lies strictly

inside the convex hull of the primitive wrenches (i.e., 0 ∈ int(co(w11, w12, ..., wnpng)))

[44]. Notice, also, that the convex hull of the primitive wrenches, or else theGrasp Wrench Space (GWS),

includes the set of wrenches that can be exerted on the object when the sum of the forces’

magnitudes is bounded by FG.

7.1.1 Task specific grasping posture

The proposed task specific grasp selection algorithm is based on the concept of the Q

distance, originally proposed in [23], for curved objects. Given a compact convex set

Q ⊂ Rm that contains the origin (i.e., 0 ∈int(Q)) and any point a ∈ Rm, the gauge

function of Q is defined as:

gQ(a) =
{

inf γ | a ∈ γQ
}

Notice further that gQ(·) may be considered as a pseudonorm [23]. In addition, the origin

centered Q-sphere in terms of gQ is defined as: SQ = ρQ =
{

a ∈ Rm | gQ(a) ≤ ρ
}

, where

ρ denotes the radius2.

The authors in [23] showed that if Q ⊂ Rm is restricted to be a polyhedral set, the

Q-distance dQ from p to A, where p ∈ Rm is a point and A ⊂ Rm a convex polyhedron,

is calculated in terms of gQ as follows:

−p /∈ int(A) : −p ∈int(A) :

d+Q(p,A) = min
K∑
k=1

ρk

s.t.



K∑
k=1

ρkqk =

N∑
i=1

αiai − p

N∑
i=1

αi = 1

ρk, αi ≥ 0



d−Q(k) = min(−ρ)

s.t.


ρqk =

N∑
i=1

αiai − p

N∑
i=1

αi = 1

αi, ρ ≥ 0


d−Q(p,A) = max

k=1,...,K
d−Q(k)

where qk, k = 1, ...,K and ai, i = 1, ..., N are the vertices of Q and A respectively.

Notice that the aforementioned linear programs can be easily solved using the simplex

method.

Assume that W contains the primitive wrenches of the grasp configuration (m = 6).

As noted in [23], the equality d+Q(0, co(W )) = 0 represents a necessary condition for

the force closure property, while the inequality d−Q(0, co(W )) < 0 is equivalent to 0 ∈
2In case Q is the L2 sphere then gQ is the same as the L2 norm.
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int(co(W )) and can be interpreted as a sufficient condition. Furthermore, the quantity

|d−Q(0, co(W ))| is consistent with the popular quality metric defined in [45], except that

the euclidean distance is replaced by the Q-distance. Thus, an optimal force closure

grasp can be obtained by minimizing:

dQ(0, co(W )) =

{
d+Q(0, co(W )), 0 /∈ int (co(W ))

d−Q(0, co(W )), 0 ∈ int (co(W ))

Notice, also, that −d−Q(0, co(W )) can be geometrically interpreted as the largest radius

of the Q-sphere contained in co(W ). Therefore, minimizing d−Q(0, co(W )) leads to a

grasp configuration that maximizes the radius of the Q sphere inside the convex hull of

the primitive wrenches. To proceed, notice that the utilized quality measure is tightly

connected to the Q set; thus, the optimal configuration can be adjusted through ap-

propriate modification of Q. To illustrate this point let us consider Fig. 7.1. In these

images two hypothetical convex hulls are depicted, for two grasp configurations. The

quality metric used in the first case is the L2 norm, while in the second case the adopted

Q-set differs significantly from the L2 sphere. It is obvious that the convenient L2 norm

evaluates equally these two cases. In contrast, the Q-distance discriminates the two

configurations according to the task specifications imposed by the Q-set.

Using the L2 sphere: ρ1 = ρ2

Using the Q set: ρ1 < ρ2

Figure 7.1: A hypothetical example illustrating the advantage of the Q distance over
the L2 norm in evaluating the task specificity of grasp configurations.

Considering the above and aiming at formulating a task oriented optimization problem,

the Q set should contain the origin as well as those wrenches that need to be applied

by the robotic hand in order to balance the task disturbances. Therefore, instead of
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just guaranteeing the force closure property as in [23], the obtained configuration will

be able to compensate disturbances in particular directions with relatively low forces.

Finally, it should be mentioned that the sum of the task disturbances’ magnitudes, Ft,

should be lower or equal than the sum of contact forces (Ft ≤ FG) [27].

To calculate task specific grasping postures in the context of Q-distance, we formulate

our optimization problem with the unified vector v =
[
q w

]T
as decision variable,

where q ∈ Rnq and w ∈ R6 denote the joint displacements and wrist position/orientation

respectively. We further assume that the desired position/orientation of the robotic hand

can be implemented by attaching it on a dexterous manipulator. Thus, the optimization

problem is defined as follows:

min dQ(0, co(W ))

s.t.

qmin ≤ q ≤ qmax (7.2)

fkine(q) ∈ ∂O (7.3)

qjabd/add ≤ q
j+1
abd/add (7.4)

p′ /∈ O (7.5)

Equation (7.2) describes the joint mechanical limits whereas (7.3) ensures that the fin-

gertips are in contact with the object surface. Furthermore, qjabd/add, (j = 1, ..., np − 1)

represents the abduction/adduction degree of freedom of all fingers opposed to the thumb

(index, middle, ring, pinky). Hence, equation (7.4) prevents collision between consecu-

tive robotic fingers. The last constraint is added in order to avoid penetration between

the robotic hand and the object. In particular, p′ denotes a set of finite discrete points

lying on the robotic hand (the fingertips are excluded). Thus, given an analytical ex-

pression of the object boundary, equation (7.5) can be easily expressed as inequality

constraints. Henceforth, we shall refer to these constraints using the abbreviation RHC,

(Robotic Hand Constraints).

It was proven (see [23]) that in case the primitive wrenches can be expressed as smooth

functions, the derivatives of d+Q and d−Q exist and can be computed accurately almost

everywhere. In such case, we are able, through the computation of the manipulator’s

forward kinematics, to calculate the derivative of the objective function with respect to

the decision variables vector v. Thus, computing also the derivatives of the constraints

with respect to v, the problem can be solved using a non linear programming algorithm

and an optimal force closure grasp configuration can be obtained.
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7.1.2 Dealing with force transmission maximization and positioning

inaccuracies

So far we have taken into account the task specifications and kinematic constraints that

need to be satisfied during the grasping posture selection. However, robotic hands are

also subjected to joint torque constraints. Thus, it is important to adopt a robot hand

configuration that is capable of exerting the required grasping forces on the object with

relatively low joint torque effort. Towards this goal, we exploited the force transmission

ratio rk and compatibility index c which was originally defined in [30] as:

rk = [uTk (JiJ
T
i )uk]

−1/2

ci =

l∑
k=1

r2k =

l∑
k=1

[uTk (JiJ
T
i )uk ]−1

where uk, k = 1, ..., l, denotes the direction of interest for the contact forces and Ji

denotes the jacobian of the ith finger, i = 1, ..., np. Since we have assumed frictional

hard contacts, each force is restricted to lie inside its corresponding friction cone. Hence,

for each contact point we choose the unit vectors uk to be aligned with the edges of the

linearized friction cone as in [31]. In this way, the compatibility index for the robotic

hand is given by:

c =

np∑
i=1

wfici =

np∑
i=1

wfi

ng∑
k=1

[uTk (JiJ
T
i )uk]

−1

where wfi are weighting factors, each one for every finger. Thus, maximization of the

compatibility index c yields an optimal posture with respect to the force transmission

metric. However, since deviation between the actual and desired joint positions is in-

evitable, we must guarantee that the robotic hand can perform the given task despite

fingertip positioning inaccuracies. Therefore, we utilized the concept of independent con-

tact regions (ICR), adopting, in particular, the approach described in [27] to determine

whether a point on the object boundary qualifies to be a member of an ICR.

In summary, consider a given force closure grasp configuration that contains the set of

task wrenches (Task Wrench Space, TWS). Each ICRi consists of a set of discrete

points, such that if the fingertips are placed inside the corresponding region, a force

closure grasp is obtained that can balance the task disturbances. The procedure of

computing the ICRs based on the particular method is illustrated in Fig. 7.2 for a

hypothetical 2-d wrench space. A convex hull of 3 contact points is illustrated that

contains the TWS (red colour). Each contact point pi is associated with two primitive

wrenches wij and a number of facets Fk, involving at least one vertex wij . For instance,
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w11 of contact point p1 is associated with facets F1 and F2. H
′
1, H

′
2 are the hyperplanes

built parallel to F1, F2 respectively and tangent to TWS, leaving 0 and their corre-

sponding facet at different halfpsaces. Assuming that co(W ) ⊆ H−k , the intersection of

the halfspaces H ′+1 , H ′+2 is named S11 (S11 =
⋂
H ′+k , k = 1, 2). S12 may be created for

w12 similarly. A neighbouring point is said to be included in the ICR1 if its primitive

wrenches lie inside S11 and S12 respectively.

In our work, the range of the joint displacement error of the robotic hand is known, hence

the deviation of the contact points can be computed. Therefore, instead of checking

which points on the object boundary qualify to be inside the ICRs, as in [25], [27], we

check whether the necessary hyperplane displacements H ′k satisfy the task constraints

(i.e., the TWS belongs in
⋂
H ′−k ). Thus, given: i) the nominal contact points pi, ii) the

hyperplanes’ equations Hkx = Kk, iii) the deviated contact points pis, s = 1, ..., S for

each pi as well as iv) the set of task disturbances tδ ∈ TWS, δ = 1, ...,∆, we can compute

the distance of H ′k from 0 when it is built tangent to the TWS as Dk = max(Hktδ) > 0.

This quantity denotes the minimum required distance between H ′k and 0 so that the

TWS will be contained in the GWS . Consequently, whether the deviated contact

points belong in their respective ICR, can be determined as follows:

for i← 1 to np (ie for each contact point, pi) do
for j ← 1 to ng (ie for each prim wrench, wij) do

find hyperplanes Hk that involve wij
for k ← 1 to K (ie for each Hk of wij) do

for s← 1 to S (ie for each deviated pis) do
compute the maximum possible distance κs=max(Hkwisj ) of H ′k from 0
so that at least one primitive wrench of pis belongs in H ′+k

end
compute the required signed distance Λk = min(κs) of H ′k from 0 so that at
least one primitive wrench of all pis belongs in H ′+k
if Λk < Dk then

pis /∈ ICRi
break

end

end

end
pis ∈ ICRi, s = 1, ..., S (ie all uncertainties pis of pi belong in ICRi)

end

where all the above distances are computed through vector dot products, rendering the

procedure very computationally efficient. Notice that, if Λk < Dk at least one hyperplane

H ′k that involves a primitive wrench of the deviated contact points does not contain the

TWS.

In this work, the TWS is represented by the Q set defined in Subsection II-A. Consider-

ing the analysis above and keeping as decision variables the unified vector v =
(
q w

)T
,



Chapter 7. Dealing with task specificity 69

0 

𝐹2 

𝐻1′ 

𝐻2’ 
𝐹3 

𝐻3′ 

𝒘𝟏𝟏 

𝐹1 
𝒘𝟏𝟐 

𝐒𝟏𝟏 𝐒𝟏𝟏 ∩ 𝐒𝟏𝟐 
𝐒𝟏𝟐 

TWS 

GWS 
 

Figure 7.2: Computation of ICR1. The green primitive wrenches belong in regions
S11 and S12 respectively and are associated with contact points inside the ICR1.

we formulate an optimization problem that yields a grasp configuration with optimal

force transmission and robustness against positioning inaccuracies as follows:

min 1
c

s.t.

RHC

d−Q(0, co(W )) < 0 (7.6)

pis ∈ ICRi (7.7)

As it was mentioned earlier, the inequality d−Q(0, co(W )) < 0 represents a necessary and

sufficient condition for the force closure property. Hence, equation (7.6) enforces the

algorithm to search only force closured grasps. Moreover, equation (7.7) enforces the

deviated contact points pis to belong in their corresponding independent contact region.

Finally, the initial posture provided to the algorithm is the one calculated in Subsection

II-A. As the authors in [25] state, an optimal configuration with respect to the utilized

quality metric (defined in [45]) results in larger ICRs. In light of this, the task oriented

optimal grasp configuration generated in the previous subsection is ideal to initiate our

second search algorithm.

Remark 7.1. The quantity d−Q which is utilized as a task oriented quality metric, depends

exclusively on the position of the contact points on the surface of the object and is

associated with the transformation of contact forces to object wrenches. On the other

hand, the compatibility index c is used so that the resulted configuration of the robotic
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hand can effectively transform joint torques to contact forces. Considering the above,

the proposed strategy exploits both quality metrics such that the desired task can be

implemented without a great amount of effort.

7.2 Determining contact forces via tactile sensing

Apart from choosing a suitable configuration, it is essential to be able to apply ap-

propriate forces in order to ensure object immobility. Due to the hyperstatic nature

of the force-determination problem, force optimization algorithms have received great

attention. Balancing the external disturbances with relatively small applied forces may

prevent the object from deforming while requesting low joint torque effort. Nevertheless,

certain uncertainties during the grasping procedure need to be taken into consideration,

such that the robotic hand can lift the object successfully. Towards relaxing the mag-

nitude of uncertainty, we utilized valuable information from tactile sensors deployed

appropriately on the robotic fingertips.

7.2.1 Introducing tactile sensing

Humans are able to use sensory data from their skin in order to interact successfully

with the environment. In a similar manner, appropriate tactile devices may contribute

to the implementation of dexterous grasping and manipulation tasks, by providing useful

information about geometrical and physical quantities of the objects. In our work, we

used the off-the-shelf 4256e Grip sensor designed by Tekscan. This ultra thin (0.15

mm) tactile sensor consists of 320 sensing elements (sensels) and is able to measure the

pressure magnitude of each sensel based on piezo-resistive technology. The active region

of each fingertip is a 4x4 array and the sensels’ output allows us to compute the center

of force, or equivalently, the contact centroid as:

xcof =

3∑
i=0

xi

3∑
j=0

pij

3∑
i=0

3∑
j=0

pij

, ycof =

3∑
j=0

yj

3∑
i=0

pij

3∑
j=0

3∑
i=0

pij

where pij is the pressure value at each sensel and xi, yj denote the x-coordinate of ith

column and the y-coordinate of jth row respectively on the 4x4 array.

The position of the contact centroids is defined by 2-D coordinates on the arrays of the

tactile sensor. However, it is required to map the centroid local coordinates (xcof , ycof )

into 3-D coordinates on the fingertip. Towards this goal, we exploited the point cloud of
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the robotic fingertips (in our case for the DLR/HIT II robotic hand). For each robotic

finger, we, initially, matched the 4 corner sensels of the array with their actual position

pcorni , i = 1, ..., 4, on the point cloud and computed the distance from them to all other

nodes of the point cloud. Assuming that the Grip sensor covers firmly the surface of the

fingertips owing to its inherent thinness and flexibility, given a contact centroid on each

array (xcof , ycof ) we determined its corresponding node P(X,Y,Z) on the point cloud of

the robotic fingertip by minimizing the function:

min{
∑4

i=1(disti(X,Y, Z)− arraydisti(xcof , ycof ))2} (7.8)

where disti(X,Y, Z) denotes the distance from pcorni to node P(X,Y,Z) on the point

cloud and arraydisti(xcof , ycof ) denotes the distance between the ith corner sensel and

the contact centroid on the tactile array. In other words, we assumed that the distance

between two points remains invariant whether they are expressed by 3-d coordinates or

2-d coordinates on the arrays.

(𝒙𝒄𝒐𝒇, 𝒚𝒄𝒐𝒇) 

P(X,Y,Z) 

Figure 7.3: Distances on the fingertip and the tactile array respectively

7.2.2 The grasping strategy

With the aforementioned tactile sensing capabilities, we present the following grasping

strategy:

1. Offline search for a task specific robust configuration (i.e., joint angles and wrist

position/orientation) as presented in the previous subsection.

2. Implementation of the desired configuration.

3. Stop robotic finger motion when contact with the object has been detected by the

corresponding tactile sensor.

4. Obtain the actual joint positions and contact centroids from the encoders and the

tactile sensors respectively.

5. Map the contact centroids to their corresponding position on the mechanical fin-

gertips using (7.8)
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6. Compute the position of the contact points on the object through forward kine-

matics.

7. Determine sufficient forces to grasp the object.

It should be noticed that the measuring errors of the joint angle sensors are considered

to be negligible. Hence, any errors in the contact points computation in Step 6, may

appear only owing to uncertainties in the centroids’ measurements.

In the sequel, we present the algorithm that calculates online adequate contact forces

to ensure object immobility. The expressions that relate the contact forces fc with the

external disturbance wext and the joint torques τ are:

Gfc = −wext (7.9)

JT fc = τ (7.10)

whereG and J denote the grasp matrix and hand jacobian respectively (J = diag(Ji), i =

1, ..., np) [22]. In case the vector fc is expressed in global coordinates, the grasp matrix

is defined as:

G =
(
G1 G2 G3 · · · Gnp

)
, Gi =

[
I3x3

S(cm− pi)

]
(7.11)

where cm is the center of mass position, I3x3 is the identity matrix and S is the cross

product matrix. Furthermore, from (7.9) the contact forces can be written as:

fc = −G+wext + Eλ, (7.12)

where G+ is the pseudoinverse of G, E is a matrix whose columns form a basis for the

nullspace of G and λ is an arbitrary vector. The first term of (7.12) is related to the

compensation of external wrench wext, while the term Eλ denotes those forces whose

resultant wrench to the object is null [22]. The set of these forces is known as internal

forces. Internal forces play a fundamental role in grasping and are associated with

the ability of the robotic hand to squeeze arbitrarily tight in order to grasp properly.

Moreover, by exerting internal forces on the object appropriately, the generated contact

forces comply with the friction constraints. Thus, our goal in this section is to calculate

and apply appropriate internal forces to the object so that the friction law and torque

constraints are not violated during a stable grasping.

Assume that the maximum absolute value of the uncertainty on the fingertips is δpmax.

In our approach the magnitude of the uncertainty on the object geometry will also be
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considered as δpmax. To proceed, the authors in [35] proposed that even if contact

uncertainties occur, equation (7.9) needs to be satisfied in order to grasp the object

successfully. Thus, by representing as δx the deviation of x due to δp and neglecting

higher order terms, equation (7.9) becomes:

−wext = Gfc = (δG+G)(δfc + fc)

⇒ δfc = −G+δGfc (7.13)

After straightforward matrix norm calculations, (7.11), (7.13) lead in:

‖δfci‖ ≤ ‖ΞiG+

[
0

I3x3

]
‖δpmax

np∑
i=1

fci (7.14)

where Ξi represents a separation matrix (fci = Ξifc). In addition, utilizing the ortho-

normality of the rotation matrices, equation (7.1) gives: ‖fci‖ ≤
√

1 + µ2fni , where

fni = nifci is the normal force component and ni is the contact normal vector. Thus,

from (7.14) we obtain:

‖δfci‖ ≤ ‖δfcimax
‖ = ‖ΞiG+

[
0

I3x3

]
‖δpmax

√
1 + µ2

∑np

i=1 fni (7.15)

Similarly, from equation (7.10) we get for the kth joint:

δτik = δJTikfci + JTikδfci (7.16)

Denoting by Jik the kth row of Ji, for hard point contacts, we obtain [22]:

Jik = [zik × (pfi − dik)], δJik =
∂Jik
∂pfi

δpfi +
∂Jik
∂qik

δqik

where pfi is the end effector position of each finger, zik , dik are the rotation axis and posi-

tion of kth joint respectively and qik the kth joint displacement. In our case, as explained

in Subsection IIC 2), joint displacement errors are negligible, hence (∂Jik/∂qik)δqik = 0.

Consequently, we arrive at:

δJik = [zik × δpfi]⇒ ‖δJik‖ ≤ ‖δJikmax
‖ = δpmax

|δτik | ≤ |δτikmax | =
√

1 + µ2δpmaxfni + ‖Jik‖T ‖δfcimax
‖ (7.17)

It should be noted that contact uncertainty affects the friction cone as well. In light of

this, a new friction coefficient for curved objects can be determined as [35]:
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θmax = 2sin−1
δpmax

2r , r : curvature radius

µ′ = tan(tan−1µ− θmax)

In order to take into consideration the contact forces and joint torques deviation, the

authors in [35] proposed to increase the normal force component in the friction law by

‖δfcmax‖ (7.14) and reduce the maximum actuator torque by |δτikmax | (7.17). Moreover,

the friction cone defined in (7.1) may be approximated by an L-sided convex polyhedral

cone in order to reduce the computational complexity of the problem [32]. Hence, (7.1)

can be expressed as: −Vifci ≤ 0, fni ≥ 0.

Considering as decision variables the vector λ of the internal forces defined in (7.12), the

linear optimization problem towards determining sufficient internal forces is formulated

as follows:

min
∑
fni

s.t.

−V ′i (fci − ni‖fcimax
‖) ≤ 0

|τik | ≤ |τikmax
| − |δτikmax

|
fni ≥ 0

i = 1, ..., np, k = 1, ...,K, where in V ′ the friction coefficient µ′ is used instead of µ.

The algorithm presented above searches for internal forces that minimize the sum of

the normal forces and therefore the grasp effort, while simultaneously constraining the

generated contact forces to satisfy the friction and torque constraints. The contact forces

and joint torques produced by the internal forces are computed in the optimization

scheme through equations (7.10), (7.12).

Remark 7.2. In [35] the authors had to deal not only with joint angle deviations but

also with contact uncertainties both on the fingers and the object. In contrast, the

tactile sensors allows us to neglect joint angle errors and take into account only poten-

tial errors on the fingertips. Furthermore, as stated in [35], given a configuration and

uncertainty magnitude, it is possible that the constraints of the optimization problem

cannot be satisfied (i.e., the particular configuration will not be able to support the de-

fined uncertainty). On the other hand, in our analysis, the posture of the robotic hand

is determined by maximizing the force transmission ratio, as presented in Subsection

II-B, whereas by exploiting tactile sensing we further reduce the range of uncertainty

regarding the grasping parameters, thus relaxing significantly the on-line calculation of

the internal forces. Apparently, in this way the two parts of the proposed grasping
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strategy (i.e., the off-line and the on-line) are tightly interconnected towards generating

successful grasps.

7.3 Experimental results and verification

In this section, we initially present the considered task specifications and then verify the

grasping algorithm developed in Section II via an experimental study with the DLR/HIT

II robotic hand.

7.3.1 Task description

Our experimental procedure considers the stable grasp of a cylindrical object filled with

liquid, while it is being rotated about one axis. Four different states of the object

are depicted in Fig. 7.4, all of which are used to model our task disturbances. More

specifically, the rotation is implemented about the z axis, while it is assumed that the

liquid is distributed symetrically about the particular axis. In these images the black

dot denotes the center of mass for each state of the object, while the object coordinate

frame is determined by the red axis. Thus, it can be inferred that the object’s weight

at the depicted states causes external forces along the x and y axis, as well as external

moments about the z axis of the object coordinate frame.

(a) Phase I (b) Phase II (c) Phase III (d) Phase IV

Figure 7.4: Task description

7.3.2 Output of the algorithms

The object to be grasped was considered to be a 2.25 cm-radius, 13 cm-high cylin-

der. Given the task and object characteristics, the algorithms in Subsections II-A, II-B

yielded off-line an optimal posture illustrated in Fig. 7.5. For the derived configuration

we considered an 8-sided linearized friction cone and, due to the robust nature of our

analysis, we selected a conservative friction coefficient [26] (µ = 0.3). Furthermore based

on the joint displacement error of the DLR/HIT II robotic hand, the maximum contact

point deviation on the object was found to be 4 mm. Hence, for the computation of
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the ICRs presented in Subsection II-B, four deviated contact points (denoted as pis)

were considered at a distance of 4 mm from their corresponding nominal contact point.

It should be mentioned that, the influence of uncertainties related to the friction coeffi-

cient and object model were considered for the ICRs determination as presented in [28].

The solution of the optimization schemes was derived using the MATLAB Optimization

Toolbox.

Figure 7.5: Optimal configuration (red dots denote the contact points uncertainties)

In order to perform the given task the required internal forces are computed by solving

the algorithm presented in Subsection II-C. As it was stated there, the contact forces

derived by the internal forces should satisfy the friction and torque constraints. In

our work wext in (7.12) is considered to be the set of task disturbances that appear

throughout the experimental procedure (see Fig. 7.4). However, estimating the location

of the center of mass with great precision is an extremely difficult task. To overcome this

difficulty, the particular uncertainties can be represented as a set of external wrenches

with respect to the nominal position of the center of mass. Consequently, instead of

compensating the nominal task disturbances wt, t = 1, ..., T , we search for internal forces

that compensate a set wtl, l = 1, ..., L, of external disturbances, where wtl denotes the

l center of mass uncertainty for the t task disturbance. In other words, the derived

internal forces should produce, for each external wrench wtl, contact forces (7.12) that

satisfy the friction and torque constraints. In this respect, note also that the Q set

determined in Subsection II-A should not only include the nominal task loads, but also

the external wrenches associated with the uncertainty in the center of mass.

In Fig. 7.6 we present the desired angles q and torques τ . The vector τ was obtained

employing (7.10) and (7.12). Regarding the calculation of the internal forces, the un-

certainty of the contact points δpmax and the center of mass is considered to be 1 and 3

cm respectively.

7.3.3 Experimental verification

DLR/HIT II is a fifteen DoF anthropomorphic robotic hand [36]. It has five identical

fingers with 3 DoF per finger: two for flexion-extension and one for abduction-adduction.

The last two joints are mechanically coupled using a steel wire with transmission ratio

1:1. The DLR/HIT II robotic hand is attached at the end effector of the Mitsubishi PA10
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Thumb q τ Index q τ

a/a -12.4 0.12 a/a -9.1 -0.07

f/e 1 8.9 0.34 f/e 1 22.8 0.13

f/e 2 10.9 0.17 f/e 2 13 0.07

Middle q τ Ring q τ

a/a -4.3 -0.01 a/a 0.3 0

f/e 1 12 0.07 f/e 1 10.8 0.09

f/e 2 35.2 0.04 f/ext 2 33.2 0.07

Pinky q τ

a/a 5.2 0

f/e 1 12.5 0.03

f/e 2 21 0.01

Figure 7.6: Experimental data (q :degrees, τ : Nm, “a/a”: abduction/adduction
DoF,“f/e”: flexion/extension DoF)

manipulator and the tactile arrays are mounted on the robotic fingertips. Furthermore,

a grasp planner PC (Ubuntu OS) establishes tcp connections with a PC (Windows OS)

that collects the forces from the tekscan system and the Mitsubishi PA10 control unit

(real-time linux), in order to detect contact with the object and provide the appropriate

trajectories respectively. Note, also, that due to the high accuracy we have in terms

of positioning the Mitsubishi PA10 end effector, we neglect errors in the actual wrist

position/orientation.

In order to exert the desired forces we utilized the dynamic model of the robotic hand.

Owing to its inherent joint flexibility, the flexible joint model is used [38]. In our case,

we may arrive at:

τ = g(q)− τext = K(θ − q)

where q denotes the link side position vector, θ denotes the motor position vector ex-

pressed in link coordinates and g(q) represents the gravity term. Furthermore, K is the

stiffness matrix and τext denotes the external torque vector. Since we deal with rigid

objects, for a given q vector (after contact detection), we may calculate the necessary

motor displacements θ = K−1(g(q)− JTi fextd) + q, in order to exert the desired internal

forces fextd on the object. The term g(q) may be computed using the DH parameters and

the nominal masses of the DLR/HIT II [38]. Finally, three snapshots of the experiment

we conducted are given in Fig. 7.7.



Chapter 7. Dealing with task specificity 78

(a) Reaching. (b) Grasping/Lifting. (c) Performing the task.

Figure 7.7: Three snapshots of the reaching, grasping and task implementation phases



Chapter 8

Conclusion

In this thesis, the problem of robust grasping was tackled. The proposed work consti-

tuted an analytical approach to robust grasping and its applicability was verified through

simulated examples and experimental paradigms for the case of the DLR HIT II robotic

hand. Regarding the theoretical part, a wide range of uncertainties was considered so

that grasp stability is maintained despite potential deviations of grasping parameters.

The optimization schemes yielded an acceptable grasp posture and appropriate contact

forces towards achieving a stable grasp. For the experimental part, useful information

from a tactile sensor was utilized. This strategy eventually allowed to reduce the mag-

nitude of uncertainty and relax the computation of forces. In addition, in the case that

task specifications must be satisfied, the theoretical part, which is based on the concept

of Q distance, can be modified to handle the task description.

Future directions are presented:

• The proposed methodology was applied to a cylindrical object. Instead of having

a boundary that can be expressed by an analytical equation, objects with complex

geometry could be used

• In this thesis the point contact model was used. One interesting direction could

be applying a similar approach using a patch contact model

• Instead of exerting forces through joint displacements, a force control scheme could

be utilized

• It would be interesting to utilize tactile information in order to discover certain

object properties such as its boundary and stiffness

79
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• The proposed grasping approach could be used to initialize a manipulation proce-

dure



Appendix A

DH parameters for the DLR HIT

II

DH Parameter 

Joint D[mm]   a [mm]   

0 0 0 0 0 

1 0 0 0 / 2  

2 0 0 55 0 

3 0 / 2  25 0 

4 25   0 / 2  

 

Joint Limits 

Joint Lower Limit Upper Limit 

0 15  15  

1 5  85  

2 5  65  
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Figure A.1: DH (i)
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Figure A.2: DH (ii)
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ForeBaseTF: 

0 0.087156 0.996195 0.002529881
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Figure A.3: DH (iii)



Appendix B

Routines

The matlab routines for the implementation of the proposed approach are presented.

Qdistcylkin.m (Script):

This main MATLAB routine is used to derive an optimal grasp configuration in terms

of the Q metric. It initializes most variables (object and robotic hand parameters) and

calls the functions below.

Qdistcylkinobjf.m (function):

Calclulates d+Q for the determination of the objective function.

Qmaxdistcylkinobjf.m (function):

Calclulates d−Q for the determination of the objective function.

Qdistcylkincon.m (function):

Calclulates the kinematic constraints that constitute the constraints of the optimization

problem.

Qmaxdistcylkinobjf.m (function):

Calclulates d−Q for the determination of the objective function.

contact frame.m (function):

Calclulates the rotation matrix for each contact.

convexcyl.m (function):

Calclulates the vertices of the convex hull of the primitive wrenches.

84



Appendix B. Routines 85

cylinderpoints.m (function):

Calclulates the points of the cylinder based on its properties.

kinematic.m (function):

Calclulates the forward kinematics of the DLR HIT.

plothandfingers.m (function):

Plots the grasp configuration of the DLR HIT.

metricsQcyl.m (Script):

This main MATLAB routine is used to derive an optimal grasp configuration in terms

of the Q metric and the force manipulability measure. It constraints the deviated con-

tact points to belong in ICRs. It initializes most variables (object and robotic hand

parameters) and calls the functions below.

metricsQcylobjf.m (function):

Calculates the objective function.

metricsQcylcon.m (function):

Calculates the constraints of the particular optimization problem.

forcemanipfrcyl.m (function):

Calculates the force manipulability measure.

hypermovement.m (function):

Calculates the required hyperplanes displacements.

vertlcon.m (function):

Calculates the hyperplanes parameters.
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torques.m (Script):

This main MATLAB routine is used to derive the optimal contact forces. It considers

deviations of the parameters. It initializes most variables (object and robotic hand

parameters) and calls the functions below.

forcesobjf.m (function):

Calculates the objective function of the optimization problem.

forcescon.m (function):

Calculates the constraints of the optimization problem.

tacpoint.m (Script):

Creates the point cloud of the DLR robotic fingertips and calculates the distances of all

points from the four corner points.

positionsxyz.m (function):

Calculates the position of the contact point based on the sensor measurements trans-

forming the coordinates of the tactile array into real coordinates.

df max.m (function):

Calculates the influence of uncertainties on forces.

dt max.m (function):

Calculates the influence of uncertainties on torqes.

GrapsMatrix.m (function):

Calculates the Grasp Matrix.

linfr.m (function):

Calculates the the linearized friction cone.

linfr.m (function):

Calculates the the linearized friction cone.
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