
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ
ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
Τομέας Επιστήμης Υποοιστών
Εραστηρίο Μικροϋποοιστών & Ψηφιακών
Συστημάτν (MicroLab)

On the Dependability of Transient Neuron
Simulations

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

του

Αέξανδρου Μαυροιάννη

Επιέπν: Δημήτριος Ι. Σούντρης
Επίκουρος Καηητής

Αήνα, Ιούιος, 2014

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ
ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
Τομέας Επιστήμης Υποοιστών
Εραστηρίο Μικροϋποοιστών & Ψηφιακών
Συστημάτν (MicroLab)

On the Dependability of Transient Neuron
Simulations

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

του

Αέξανδρου Μαυροιάννη

Επιέπν: Δημήτριος Ι. Σούντρης
Επίκουρος Καηητής

Εκρίηκε από την τριμεή εξεταστική επιτροπή την 09/07/2014

..
Δημήτριος Ι. Σούντρης
Επίκουρος Καηητής

..
Κιαμά Πεκμεστζή

Καηητής

..
Νεκτάριος Κοζύρης

Καηητής

Αήνα, Ιούιος, 2014

...................................
Αέξανδρος Μαυροιάννης

Διπματούος Ηεκτροόος Μηανικός και Μηανικός Υποοιστών
Ε.Μ.Π.

Copyright © Αέξανδρος Μαυροιάννης 2014,
Με επιφύαξη παντός δικαιώµατος. All rights reserved.

Απαορεύεται η αντιραφή, αποήκευση και διανοµή της παρούσας ερασίας, εξ
οοκήρου ή τµήµατος αυτής, ια εµπορικό σκοπό. Επιτρέπεται η ανατύπση,

αποήκευση και διανοµή ια σκοπό µη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής
φύσης, υπό την προϋπόεση να αναφέρεται η πηή προέευσης και να διατηρείται το
παρόν µήνυµα. Ερτήµατα που αφορούν τη ρήση της ερασίας ια κερδοσκοπικό

σκοπό πρέπει να απευύνονται προς τον συραφέα.
Οι απόψεις και τα συµπεράσµατα που περιέονται σε αυτό το έραφο εκφράζουν
τον συραφέα και δεν πρέπει να ερµηνευεί ότι αντιπροσπεύουν τις επίσηµες

έσεις του Ενικού Μετσόιου Πουτενείου.

Abstract
Recent trends in many-core multiprocessor design focus on the aggressive
integration of multiple cores on a single chip, aiming for performance and
power scalability benefits through increased thread-level parallelism. In
such environments, reliability is becoming an increasing concern, as in-
creases in the number of cores tend to drastically reduce the mean time to
failure of these systems.
Current approaches in many-core and High-Performance Computing (HPC)
systems utilize Checkpoint/Restart (C/R) methods to provide fault tol-
erance. However, these methods are often performed manually or used
without addressing the overall dependability profile of the system. Specif-
ically, important concerns often are overlooked, such as automated error
resolution, detection of data corruption, thermal-aware chip usage and min-
imization of time redundancy.
The approach proposed in this thesis addresses these concerns by introduc-
ing Depman, a unified runtime environment that resolves common error
profiles through C/R and other system-level actions. The resulting frame-
work adapts to variabilities of the system's reliability in order to minimize
the total time overhead and provide a high degree of dependability to the
managed systems and applications.
Depman was tested through the use of fault injection, performing in accor-
dance to its specification. The adaptive time overhead optimization scheme
demonstrated potential for benefits in performance and energy consump-
tion in systems with time dependent failure rates.

Περίηψη
Οι σύρονες τάσεις στην σεδίαση πουπύρηνν επεξεραστών επικεντρώ-
νονται στην επιετική ενσμάτση ποαπών πυρήνν εντός του ίδιου κυ-
κώματος, αποσκοπώντας σε οφέη επίδοσης και ισύος μέσ του αυξημέ-
νου παραηισμού επιπέδου νήματος. Σε τέτοια περιάοντα, η αξιοπιστία
αποκτά οοένα και αυξανόμενο ενδιαφέρον, καώς οι αυξήσεις στον αριμό
πυρήνν οδηούν στην δραστική μείση του μέσου ρόνου αποτυίας αυτών
τν συστημάτν.
Οι σύρονες προσείσεις σε πουπήρυνα συστήματα και συστήματα υπο-
οιστικής υψηών επιδόσεν ρησιμοποιούν μεόδους Checkpoint/Restart
(C/R) ια να προσφέρουν ανοή σε σφάματα. Παρ'όα αυτά, αυτές οι τε-
νικές συνά πραματοποιούνται ειροκίνητα ή ανεξάρτητα απο την συνοική
εικόνα της αξιοπιστίας του συστήματος. Συκεκριμένα, σημαντικά ζητήματα
παραέπονται, όπς η αυτόματη επίυση σφαμάτν, η ανίνευση αοιώ-
σεν δεδομένν, η αξιοποίηση της πατφόρμας με επίνση τν ερμικών
αρακτηριστικών της και η εαιστοποίηση του προκύπτοντος ρονικού πε-
ονασμού.
Η προσέιση που προτείνεται σε αυτήν την διπματική ερασία ίει αυτά τα
ζητήματα με την παρουσίαση του Depman, ενός ενοποιημένου περιάοντος
εκτέεσης που επιύει συνά εμφανιζόμενα προφί σφαμάτν μέσ τενι-
κών C/R και άν δράσεν επιπέδου συστήματος. Το προκύπτον παίσιο
προσαρμόζεται στη μεταητότητα της αξιοπιστίας του συστήματος με σκοπό
την εαιστοποιήση του πεονάζν ρόνου, προσφέροντας εναν υψηό αμό
αξιοπιστίας στα διαειριζόμενα συστήματα και εφαρμοές.
Το Depman εέηκε μέσ της ρήσης έυσης σφαμάτν, επιτυάνο-
ντας την ικανοποίηση τν προδιαραφών του. Το σήμα προσαρμοζόμενης
ετιστοποίησης του πεονάζν ρόνου επέδειξε ενδεόμενα οφέη επίδοσης
και ενερειακής κατανάσης σε συστήματα με ρονοεξαρτώμενους ρυμούς
σφαμάτν.

Acknowledgements

The work described in this thesis was carried out at the Microprocessors
Laboratory and Digital Systems Lab of the School of Electrical and Com-
puter Engineering of the National Technical University of Athens, under
the supervision of Prof. D.J. Soudris and Mr. D. Rodopoulos.
I would like to express my gratitude to both of them for their guidance and
support throughout the project's duration and for introducing me to the
challenging field of system dependability. I am truly grateful to them for
their invaluable research experience and their positive attitude, which were
of paramount importance to the development of this work, as well as for
the trust and freedom they placed in me throughout the project's duration.
Finally, I would like to thank my friends and family for the support they
have showed me throughout the duration of this thesis.

Αέξανδρος Μαυροιάννης

3

Contents

1 Introduction 8

2 Prior Art 10
2.1 Introduction . 10
2.2 Checkpoint/Restart . 11

2.2.1 System-level and Application-Level C/R 12
2.2.2 Modelling C/R . 13

2.3 Error Profiles . 13
2.4 Checkpoint Interval Optimization 15

2.4.1 Periodic Checkpointing Approximations 15
2.4.2 Aperiodic Checkpointing Techniques 16

3 Experimental Setup 18
3.1 Target Platform & Application 18
3.2 Dependability Threats . 20
3.3 Available Countermeasures 22
3.4 Checkpoint/Restart Implementation for the InfOli simulator 23

3.4.1 Introduction . 23
3.4.2 Synchronization . 25
3.4.3 Restart Procedure 26

3.5 Injection Campaign . 28

4 Depman Tool 30
4.1 Introduction . 30
4.2 Core Tool . 32
4.3 Diagnostics & Countermeasures 35

4.3.1 Diagnostic Interface 35
4.3.2 Implemented Diagnostics 36
4.3.3 Countermeasure Procedures 37

4.4 Thermal-Aware Task Reallocation 38
4.5 Distinctions of SDC and DUE Checkpoints 42

4

CONTENTS

5 Checkpoint Interval Optimization 44
5.1 Introduction . 44
5.2 Optimal Checkpoint Interval 45
5.3 Moving Average Estimation 46
5.4 Efficiency Evaluation . 47

5.4.1 Constant MTTFDUE 50
5.4.2 Time-varying MTTFDUE 51

6 Conclusions 54
6.1 General Remarks . 54
6.2 Future Work . 55

Bibliography 57

7 Appendix 62
7.1 Source Code . 62

Alexandros Mavrogiannis Page 5 of 62

List of Symbols and
Abbreviations

ℓ Checkpoint Latency
λ Failures in Time rate
τ Checkpoint Interval
τopt Optimal Checkpoint Interval (time units)
τ ′opt Optimal Checkpoint Interval (simulation steps)
Eeff Energy Efficiency
k Number of Checkpoints
M Moving Average Filter Length
MTBF Mean Time Between Failures
MTTF Mean Time to Failure
MTTR Mean Time to Repair
N Total Number of Checkpointing Cycles
Peff Performance Efficiency
R Repair Time
Tr Rollback Time
TTF Time to Failure
W Waste Time

6

List of Figures

2.1 Research Landscape Tree 11
2.2 Time Modelling of the Checkpointing Cycle 13

3.1 High level view of the target platform and application [39] . 19
3.2 Time Distribution of the Boot Linux action 22
3.3 Time Distribution of the Platform Reinitialization action . 24
3.4 Checkpoint Interval and Latency for the C/R scheme of the

InfOli simulator . 25
3.5 InfOli Restart Duration for 2400 Neuron Cells 27
3.6 TTF Measurements for an Injected MTTFs of 10 s 29

4.1 Flow Diagram of Depman's Closed Loop Operation for DUE
Occurences . 31

4.2 Block Diagram of the Depman tool 32
4.3 Class Diagram of the Depman Tool 33
4.4 Pseudocode of the Event Loop 34
4.5 Countermeasure Procedure of the ProcessExit diagnostic . . 38
4.6 Pseudocode of the Thermal-Aware Task Allocation Algorithm 40
4.7 Temperature Modeling of 24 Running Cores on the SCC . . 41

5.1 Rising Step Response of the MTTF Estimation 48
5.2 Falling Step Response of the MTTF Estimation 49
5.3 Efficiency Evaluation for a constant Injected DUE Rate. . . 50
5.4 Efficiency Evaluation of Depman for Two Cases of Time-Varying

MTTFDUE . 52

7

Chapter 1

Introduction

In the recent years, vendors of computing systems consider the integra-
tion of multiple processing nodes as a viable solution for the emerging
upper bound on single-processor performance [17]. This trend has been
observed both in the context of Embedded Computing (EC) and of High
Performance Computing (HPC). In EC systems, this aggresive integration
is performed on single dies or packages and it is required in order to provide
diversification to the respective products [24]. Similarly, in HPC systems,
the increasing trend multiple cores per socket integration is apparent and
accompanied by a need for diversification, due to the convergence with
cloud computing systems [44, 47].
Even though novel transistors exhibit significant improvements in their
reliability profiles, especially in the case of soft error resilience [42], the ag-
gressive silicon integration leads to increased failure rates at the circuit and
system level[13]. Moreover, there is a class of semiconductor phenomena
which exhibit high time-zero and time-dependent variability [38, 19]. As a
result, the dependability of contemporary and future computing systems is
becoming an increasing concern, as the components of both EC and HPC
systems are subject to variability or degradation.
The dependability of a system can be broken down to five basic attributes:
availability, reliability, safety, integrity and maintainability. Of those at-
tributes, reliability and safety are the most important in systems with in-
creasing failure rates, as the others are handled by the operating system or
the corresponding error correction hardware.
In the context of this thesis, reliability is introduced to a many-core plat-
form, Intel Labs' Single-Chip Cloud Computer (SCC) [23]. As a target ap-
plication, a time-driven simulator of inferior olive neurons (InfOli) is used

8

CHAPTER 1. INTRODUCTION

[39]. This is achieved through the introduction of an adaptive depend-
ability manager tool called Depman, an abbreviation for Dependability
Manager. Depman orchestrates a Checkpoint/Restart scheme on target
platform and application as a closed-loop control system. The aim of the
proposed approach is to achieve fault tolerance, error recovery and error
resilience on the present experimental setup.
The Depman tool achieves a high dependability standard of the target
many-core system through several means. First of all, it monitors the sys-
tem for both Detected Unrecoverable Error (DUE) and Silent Data Cor-
ruption (SDC) occurences [35]. Upon detection, it attempts to resolve
the underlying failures through a series of actions called countermeasures.
The Time To Failure (TTF) of each error occurence is measured and used
to estimate the Mean Time to Failure (MTTF) of the system through a
Moving Average filter. Finally, after the system is operational again, the
application is optimally restarted in a thermal-aware configuration.
In contrast to recent trends in Checkpoint/Restart methods, Depman does
not require the definition of any design-time benchmark parameters. The
proposed system automatically estimates the overhead of the C/R imple-
mentation and adapts to time-dependent error failure rates of the system.
These estimates are used to select an optimal checkpoint rate during the
restart operation, in order to minimize the total wall-clock time of the tar-
get application. The performed experimental results confirm that adaptive
estimation offers performance and energy efficiency improvements over im-
plementations which are agnostic of the system's rate of failure occurence.
In conclusion, we introduce a framework that unifies existing approaches
in ensuring the dependability of many-core systems in a closed-loop con-
trol system. The resulting framework performs error monitoring and error
resolution operations while maintaining thermal-aware chip utilization and
minimal overhead in environments with time-dependent failure occurences.
The current thesis is structured as follows: Chapter 2 presents samples of
prior art which motivate the novel features of Depman. Chapter 3 intro-
duces the present experimental setup, the implemented Checkpoint/Restart
scheme and the error injection techniques that are used. Chapter 4 presents
the specifications and implementation of the Depman Tool. Finally, Chap-
ter 5 is dedicated to checkpoint interval optimization and the adaptive
estimation of the system's failure rate and Chapter 6 presents conclusions
and directions of future work.

Alexandros Mavrogiannis Page 9 of 62

Chapter 2

Prior Art

2.1 Introduction

In this chapter we will present the state of the art on supervised Check-
point/Restart methods on many-core streaming applications. In order to
achieve this, the graph shown in Figure 2.1 will be used. This graph shows
binary splits of each field of study, where siblings represent complemen-
tary design choices. The explored field of study serves as the tentative
root of the graph. Each path in this tree structure describes a series of
design choices that can be made during the implementation of supervised
Checkpoint/Restart models on many-core streaming applications.

As it is apparent in Figure 2.1, the field can be initially divided on whether
the Checkpoint/Restart snapshots are taken on the system level, or on the
application level. Afterwards, the terms Multiple Error Profiles and Sin-
gle Error Profile are used to describe the specification of the system in
terms of handling multiple types of errors, such as the distinction of data
corruption and unrecoverable errors. The final split is between the terms
Static CIO and Dynamic CIO, which refer to the selection of an opti-
mal checkpoint interval and whether this selection dynamically adjusts to
changes of the system or whether it remains static throughout the applica-
tion runtime. In the rest of this chapter, we will take a closer look at the
research landscape, addressing sequentially each level of the tree.

10

CHAPTER 2. PRIOR ART

Supervised Checkpoint/Restart on many-core streaming applications

System-level C/R Application-level C/R

Multiple Error Profiles

Static CIO Dynamic CIO

Single Error Profile

Static CIO Dynamic CIO

Figure 2.1: Research Landscape Tree

2.2 Checkpoint/Restart

Checkpoint/Restart (or C/R) is the technique by which fault tolerance is
introduced to a system through the storage of snapshots of the system
state, called checkpoints. In the event of a failure, these checkpoints can be
used to restore the system to a stable state. The added fault tolerance is
provided at the cost of added time and data redundancy [25], required for
the storage of the snapshots. Checkpoint/Restart has been used thoroughly
in the context of High Performance Computing systems[21, 5, 1, 6, 28], but
the techniques and methods used can be applied to many-core platforms as
well. C/R has been used primarily as a software technique, but hardware
implementations have been explored as well [34].

Uses of Checkpoint/Restart in distributed systems need to address the issue
of checkpoint consistency between all nodes of the system. In such systems,
individual nodes often encounter heavy packet loss and communication
latencies, requiring the ensurance that all checkpoints taken correspond
to the correct state in time of the distributed system. In these cases,
checkpointing is either used over unified distributed storage schemes it is
managed through coordination schemes [48].

Of all the coordination techniques available, the one requiring the least
programming effort is the use of blocking communication, which introduces
significant time overhead that scales poorly when new nodes are added
to the system. On the other hand, non-blocking techniques avoid this
overhead, but they must correctly manage the receipt of early and late
messages [48, 5].

Alexandros Mavrogiannis Page 11 of 62

CHAPTER 2. PRIOR ART

2.2.1 System-level and Application-Level C/R

Checkpoint/Restart can be implemented either on the system level, through
storage of the platform's state such as memory and register contents, or on
the application level, through storage of application-specific data such as
data structures and variable values [43]. A unique case of system-level
Checkpoint/Restart can be implemented at the user level by extracting
the application state from existing userspace systems, such as the Message
Passing Interface (MPI).

Several tools have been created to automate the implementation of Check-
point/Restart. A popular choice for system-level C/R in High Performance
Computing (HPC) is Berkeley Labs Checkpoint Restart (BLCR) [21], a
Linux kernel module that utilizes MPI callbacks to store distributed snap-
shots. Addditionally, a user-level choice for MPI applications is Distributed
Multithreaded Checkpointing (DMTCP) [1], which operates transparently
on the userspace, requiring no interference with the system kernel or the
target application.

Application-level C/R methods can potentially outperform their system-
level counterparts [43], as the snapshot size is generally smaller. This is
due to the fact that application-level methods only require the storage of
critical components of the application state at each checkpoint interval,
while methods performed by the operating system rely on larger, system-
wide snapshots. Moreover, they are highly more portable, as they are
transparent to the target platform. However, the implementation of an
efficient application-level C/R technique requires more programmer effort,
especially in the case of distributed and parallel programs.

Even though the intrusive nature of application-level Checkpoint/Restart
implementations usually requires the development of custom solutions,
there are several compiler-assisted tools which facilitate this process. One
such tool frequently used in HPC applications is The Cornell Checkpointing
pre-Compiler[5, 6], also known as C3. This framework parses programmer-
placed directives on the application source code in order to locate potential
checkpointing and restarting locations. It then evaluates these locations
with call-graph analysis and injects the necessary code snippets to the
code base. It also features a runtime environment, used with distributed
processes, which manages the checkpointing process through a coordina-
tion layer between the Message Passing Interface (MPI) library and the
application.

Alexandros Mavrogiannis Page 12 of 62

CHAPTER 2. PRIOR ART

2.2.2 Modelling C/R
Checkpoint/Restart is modeled through several parameters. The Check-
point Interval (τ) is the elapsed time period before taking a checkpoint.
The Checkpoint Latency (ℓ) , also mentioned as Checkpoint Overhead in
the literature, is the time interval used to create and store a checkpoint.
The actual time required to repair and restore the system and applica-
tion state is called the Repair Time (R) and it is often assumed constant.
Finally, the time interval between the detection of an error and the last
checkpoint is the Rollback Time (Tr) and it represents the lost compu-
tational time that needs to be performed again after the restart process.
The sequential time ordering of τ , ℓ, Tr and R is called a checkpointing
cycle and it can be observed in figure 2.2. In this figure, it is assumed that
checkpoints are taken equidistantly in time.

Figure 2.2: Time Modelling of the Checkpointing Cycle

2.3 Error Profiles
An important aspect of systems using C/R methods is the classification of
potential errors and the actions taken by the system for their resolution.
In the case of multiprocessing systems, faults either manifest themselves as
Detected Unrecoverable Failures (DUE), also known as hard errors, or they
remain unnoticed as Silent Data Corruptions (SDC) [35].
Detected Unrecoverable Failures can be caused by various categories of
faults, such as chip overheating or voltage spikes. The most important
characteristic of DUEs is that the application process is either terminated
or blocked when they manifest. Due to this reason, our proposed approach
will also consider software quality errors that terminate the application
process, such as segmentation faults and operating system errors.
Silent Data Corruptions are unintended variations in the system mem-
ory or filesystem that are not detected by the corresponding hardware or

Alexandros Mavrogiannis Page 13 of 62

CHAPTER 2. PRIOR ART

firmware. They may be caused by various faults, such as hardware degra-
dation, electromagnetic interference, cosmic radiation, firmware bugs or
data transfer noise. Given their elusive nature, the only reliable way to
detect and resolve SDC occurences is through triple redundancy of the tar-
get application. This method has been mainly used in HPC systems [16],
where high resource availability can overcome the increased computational
cost. Even though SDC mitigation methods have been introduced at the
hardware level [20, 36], the required architectural support renders them
unusable in many existing systems.
In many-core systems, task redundancy comes at a greater cost, as the
available resources are limited. Therefore, partial SDC mitigation can be
achieved through validation of the affected data. In this case, an SDC
monitor validates the data of interest in terms of format and plausibility,
marking any non-conforming data as latent errors. The term latent er-
rors implies the existence of a non-negligible error detection latency, which
needs to be taken into account when other system reliability metrics are
estimated.
In environments with latent errors, traditional Checkpoint/Restart tech-
niques fail to ensure the recoverability of all potential errors, as they follow
the fail-stop model. The fail-stop model assumes that there is no delay
between error occurence and detection. Therefore, new checkpoints can
be introduced during the error detection procedure, overwriting the check-
points that correspond to states before the error occurence and rendering
the error unrecoverable. In order to avoid this scenario, multiple versions of
validated checkpoints need to be kept. This method, called multi-version
checkpointing, is used to implement C/R in systems with latent errors [29].
System errors are often modeled through theMean Time to Failure (MTTF
or M) metric, which is the mean time period of system uptime after which
an error will occur. The inverse metric of the mean time to failure is called
the Failures in Time (FIT) rate, and it is often denoted as λ. A FIT rate
with a value of one declares that a failure will occur every one billion device
hours. The FIT rate is often a more practical metric than the MTTF , as
the FIT rate of a system can be expressed as the sum of the FIT rates of
its components [35].
Additionally, the Mean Time to Repair (MTTR) is used to model the
mean time duration of the system repair process. Finally, the Mean Time
Between Failures (MTBF) metric is defined as the sum of the MTTF and
MTTR values and represents the mean time period between the occurences
of two failures [35]. MTBF is also used in the bibliography as the mean

Alexandros Mavrogiannis Page 14 of 62

CHAPTER 2. PRIOR ART

time duration of a checkpointing cycle.
Theoretical studies of failure/error rates in HPC and many-cores systems
are clearly motivated on the time-dependent variability of these rates through-
out the lifetime of the system [9, 14, 45]. However, state-of-the-art C/R
implementations in both software and hardware often fail to address the is-
sue of time-dependent failure rates, assuming a constant error distribution
instead [2, 33].

2.4 Checkpoint Interval Optimization

The use of Checkpoint/Restart methods inevitably introduces time over-
head on the target system, also called Waste Time. As the checkpoint
interval (τ) is the only easily configurable parameter in the C/R model,
several attempts have been made to approximate the optimal checkpoint
interval through other parameters of the system. These attempts generally
aim to model and minimize the total waste time or the total runtime of the
system.
Ling et al. [27] proved through variational calculus that the optimal place-
ment of checkpoint intervals is directly correlated to the system's fail-
ure rate. Through this statement, they confirmed previous suggestions
[7] which state that time-varying failure rates require time-varying check-
pointing intervals. As a result, attempts in the specification of optimal
checkpoint intervals can be classified as periodic, which assume Poisson
failure distributions, and aperiodic, which can be used on other failure
distributions or adapt to the failure rate during runtime.
Checkpoint interval optimization has also been pursued through Markov
availability models [18], aiming to maximize the system availability rather
than minimize the total waste time. However, the two optimization prob-
lems are equivalent, and the same issues arise concerning the distribution
of failures.

2.4.1 Periodic Checkpointing Approximations

The first attempt in defining an optimum checkpoint interval was per-
formed by Young [50], whose first-order approximation introduced the at-
tractively simple result of equation 2.1.

Alexandros Mavrogiannis Page 15 of 62

CHAPTER 2. PRIOR ART

τopt =
√
2×MTTF × ℓ (2.1)

This was achieved through the minimization of a cost function that models
the waste time of the system. Young's model, however, is based on the
assumptions that error occurences follow an exponential distribution and
that the repair time of the system (R) is negligible.
An expansion of Young's model that included R was introduced by Daly
[10] who later defined a higher order estimate of the optimum checkpoint
interval [11]. Daly expanded Young's first order model to include the repair
time parameter in the estimation of the optimum checkpoint interval, thus
considering the possibility of errors occuring during checkpointing. The
result is expressed in equation 2.2.

τopt =
√
2× ℓ× (MTTF +R) (2.2)

Daly also introduced a higher order model, through which it was concluded
that the repair time has no contribution to the selection of an optimum
checkpoint interval. The complete results include the first three terms
of the perturbation solution of the model, thus the simplified model of
equation 2.3 was presented.

τopt =

{ √
2×MTTF × ℓ− ℓ for ℓ < MTTF/2

MTTF for ℓ ≥ MTTF/2
(2.3)

This simplification has a maximum relative error of 5% problem solution
time toward the complete higher order result. Therefore, it can be used
as a good rule of thumb for most practical systems, but it still follows the
assumption that errors are distributed exponentially. Daly's model has also
been enhanced to handle systems with detection latency in multi-version
checkpointing techniques [29].

2.4.2 Aperiodic Checkpointing Techniques
In contrast to the previous assumption that system failures can be mod-
elled as Poisson processes with a constant failure rate, real world systems
often follow different distributions [41]. Therefore, as mentioned, periodic
checkpoint placements cannot provide optimal minimization of the total
execution time. In response to this issue, several techniques have been
proposed proposed for other distribution types.

Alexandros Mavrogiannis Page 16 of 62

CHAPTER 2. PRIOR ART

First of all, Oliner et al. proposed the idea of cooperative checkpointing
[37] as an alternative to the previously mentioned periodic checkpointing
techniques. In this method, the runtime system may decide to skip se-
lected checkpoints, based on criteria such as storage or network contention
and reliability information. The dynamic adaptation to system parame-
ters enables the efficient and scalable handling of non-exponential failure
distributions.
Moreover, Liu et al.[28] have defined a general model which determines the
optimal checkpoint placement locations for arbitrary prespecified failure
distributions. The performed measurements suggest performance improve-
ments over the cooperative checkpoint model.
Implementations of the aforementioned aperiodic checkpointing techniques
require either runtime coordination between the checkpointing mechanism
and the system or specification of the checkpoint placement locations in the
application. As a result, they cannot be transparently used with existing
periodic checkpointing implementations.

Alexandros Mavrogiannis Page 17 of 62

Chapter 3

Experimental Setup

3.1 Target Platform & Application

In this chapter we shall explore the details of the target platform, Intel's
Single-Chip Cloud Computer, and the target application, the InfOli simula-
tor, in order to determine potential reliability violations of the experimental
setup and their countermeasures.
The Single-Chip Cloud Computer (SCC) is an experimental processor de-
veloped by Intel Labs as a platform for many-core software research [23, 31].
It is a homogeneous chip with 48 cores, grouped in tiles of two cores and
interconnected through a mesh network. Each core has access to a Message-
Passing Buffer (MPB), which is used to exchange messages between cores,
and its own private memory. The SCC chip is hosted on a board that
permits ethernet and PCIe communication with a Management-Console
Personal Computer (MCPC). Through these links, the MCPC is able to
provide power monitoring features and manage a shared directory, /shared,
between each of the SCC's cores and the MCPC. The chip's message pass-
ing capabilities are utilized by a programming model similar to the Message
Passing Interface (MPI). This model is enabled by RCCE [30], a C library
that is available on the MCPC.
Each tile of the SCC can be configured to a specific frequency value, al-
lowing it to be refered to as a frequency island. Moreover, each pair of
tiles can be configured to operate on different voltages, allowing them to
be considered as voltage islands. Finally each quarter of the SCC chip can
be considered as a memory island, as it is assigned a Dual Inline Memory
Module (DIMM) through a Memory Controller (MC). These tile groupings

18

CHAPTER 3. EXPERIMENTAL SETUP

are apparent in Figure 3.1a
The interactions between the MCPC and the SCC are orchestrated through
the SCCKit software framework. The framework is responsible for all op-
erations on the SCC board, such as linux image booting, core restarting
and reinitialization. The SCCKit also offers a GUI that contains these op-
erations, along with useful monitoring information such as core utilization.
The application that will be used in the context of this thesis is a transient
neuroscientific simulation, the InfOli Simulator [39, 8]. The simulator is a C
implementation of a biologically plausible computational model of the Infe-
rior Olivary nucleus [12, 4], based on the Hodgkin-Huxley model [22]. The
simulated neurons are located in the mendula oblongata region of the brain
and they are an important part of the brain's space perception and motor
skills. The application utilizes an 8-way interconnectivity scheme among
neighboring neurons, allowing exploitation of the SCC chip's message pass-
ing model. Moreover, the simulator operates at a constant simulation step
of ∆t = 50µs.

Figure 3.1: High level view of the target platform and application [39]

The simulator is initiated for a specific grid size and receives inputs through
a connectivity file which declares the connections among the neuron cells
and, optionally, a file of external current inputs for each neuron. If no
external inputs are declared, the simulator generates pseudo-random input
currents at every simulation step for each cell. The application produces a
series of files, containing the axon voltages of each cell at the end of every
simulation step.
Each neuron cell is simulated as a sequence of three individual compart-
ments: the dendrite compartment, which receives voltages from neighbor-
ing cells, the soma compartment, which computes the cell's response based
on these inputs, and the axon compartment, that propagates the output

Alexandros Mavrogiannis Page 19 of 62

CHAPTER 3. EXPERIMENTAL SETUP

to neighboring neurons. In the transient model of the InfOli simulator,
communications between neurons are performed at the beginning of each
simulation step t0, t1, t2, ... , resulting to the data flow depicted in Figure
3.1b [39, 8]. Finally, the simulator is a system with memory, as each com-
partment alters its internal state during operation.
The InfOli simulator have been developed for the SCC in two porting op-
tions, the first utilizing data parallelism and the second combining both
task and data parallelism. Porting Option 1 allocates all compartments of
the same cell to a core, while Porting Option 2 allocates each comparment
type to dedicated cores. For example, in a simulation with 48 cells (such
as a grid size of 1x48), Porting Option 1 would assign one cell to each of
the 48 available cores while Porting Option 2 would use three specialized
groups of 16 cores, assigning one compartment type to each group.
Even though the first porting option outperforms the second one on a
homogenous chip, the latter one produces more energy efficient mappings
when introducing inhomogeneity. This inhomogeneity can be added to
the platform by configuring the frequency and voltage islands of the SCC
to different values. Therefore, such a configuration can allow the second
porting option's groups of 16 cores operate on different voltage-frequency
pairs, in a manner which maximizes the utilization of each core.
In the scope of the current thesis, only Porting Option 1 was considered for
dependability management, as the second porting option creates an inho-
mogenous chip utilization which may alter the time to failure of individual
cores, eventually lowering the availability of the system. Additionally, each
core of the SCC was configured to 800Hz, 1.1V and booted with a custom
linux distribution. All tasks performed on the SCC were cross-compiled
on the MCPC and all executable, input and output files were exchanged
between the SCC and the MCPC through the shared directory.

3.2 Dependability Threats
Scientific simulations such as the InfOli simulator often require long total
wall-clock times before providing meaningful results. Therefore, the exper-
imental setup of should conform to high dependability standards in order
to minimize the total platform runtime and to ensure the completion of the
target application.
The three main dependability threats of systems are faults, errors and
failures. Faults are defects in the system that can potentially produce

Alexandros Mavrogiannis Page 20 of 62

CHAPTER 3. EXPERIMENTAL SETUP

failures, but it is also possible that no error will manifest on certain input
and state conditions. Errors are discrepancies between the system's actual
behavior and its specified behavior. Failures are instances where the system
behavior varies from its specification. Failures can be caused by errors,
but not all errors necessarily result to failures. Failures can be handled
through the use of fault tolerance mechanisms, allowing the overall system
to continue operating according to its specification [35, 3, 25].

In order to achieve a dependable experimental setup, these threats must be
countered through fault tolerance, fault avoidance, error removal and error
forecasting. By combining these methods, the experimental setup should
have the ability to confidently deliver its specified service.

In the case of the SCC and the InfOli simulator, no fault tolerance is pro-
vided against Detected Unrecoverable Errors (DUEs). These errors can
be either platform-related, such as core shutdowns or failures, or system-
specific, such as memory allocation errors or filesystem permission errors.
This issue can be resolved by implementing a Checkpoint/Restart mecha-
nism for the current application and restarting the application upon detec-
tion of such errors through a management process on the MCPC.

Furthermore, the experimental setup fails to account for permanent failures
of SCC cores during large simulation runtimes. In the event of such a
failure, the target application is unable to continue operating with the same
configuration on the affected platform. On the other hand, a dependable
simulation runtime should enable the simulator to continue operations at
any remaining set of available cores, if possible.

Additionally, it is possible for Silent Data Corruptions (SDCs) to be in-
troduced to the simulator's output in many stages throughout its stor-
age. These corruptions may be caused by several factors, such as hardware
faults, data transfer noise, poor electrical current distribution and elec-
tromagnetic interference. Even though it may not be always possible to
detect the occurence of SDCs without using execution redundancy, there
are several application-specific criteria that the output can be validated
against.

In the case of the InfOli simulator, such critera are the fact that the out-
put voltages of each line of the output file should resemble neuron signals
and that the types of the tokens of each line should match the expected
ones. Neuroscientifically, it is safe to assume that neuron signals occur in
the [−100, 100]mV range, which was verified by finding the minimum and
maximum values of previously available output files.

Alexandros Mavrogiannis Page 21 of 62

CHAPTER 3. EXPERIMENTAL SETUP

The aforementioned dependability threats require the use of a fault tol-
erance scheme, such as C/R, in order for the InfOli simulator to achieve
progress in environments with error occurences. Additionally, the runtime
environment needs to be equipped with error removal capabilities to avoid
the infinite occurence of the same errors. This capability can be achieved
through the use of platform-level countermeasures.

3.3 Available Countermeasures
There are several means available in the current experimental setup which
can alter the platform and system state and potentially stop the reoccurence
of errors. These actions, called countermeasures, can be performed in se-
quences in attempt to resolve the faults that caused the observed failures,
before restoring the system and application state to a working condition.
As mentioned before, various control operations can be performed on the
SCC board through the SCCKit framework on the MCPC. There are three
such operations that can potentially resolve platform-related faults, based
on the reliability threats already mentioned.

20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0

Boot Time (s)

0

20

40

60

80

100

120

140

N
u
m

b
e
r

o
f

O
cc

u
re

n
ce

s
(p

.u
.)

Figure 3.2: Time Distribution of the Boot Linux action

First of all, the SCCKit suite provides access to the sccBoot command.

Alexandros Mavrogiannis Page 22 of 62

CHAPTER 3. EXPERIMENTAL SETUP

Upon its execution, the specified cores of the SCC board are rebooted
with a prespecified custom linux image, after it is first redistributed to the
cores' private memories. This countermeasure proves useful in the event
of temporarily unreachable cores, especially due to system errors, such as
memory corruption or kernel panics. The image propagation generally
takes 20 to 25 seconds, as it can be observed in the distribution of Figure
3.2 and the cores can be typically reached by the ping command in 5 to 10
seconds.
Another action which can be used as a countermeasure is the sccReset
command. It enables access to each core's Reset switch, allowing us to pull
or release them independently. This is a near-instant process which causes
the core to reinitialize and flush its buffers. Even though the faults that
this action resolves are very rare, its use introduces minimal overhead and
ensures the correct behavior of the sccBoot command. Therefore, in the
context of the discussed error removal scheme, the sccReset command will
always be performed before the sccBoot command.
Finally, the sccBmc command allows use of the board management con-
troller. The most relevant feature in this case is the reinitialization of the
SCC platform, which reprograms the device's clock settings and trains the
physical system interface. This action may take more than 3 minutes to
complete, and therefore should be used only as a last resort. The exact
time distribution of the platform reinitialization feature can be observed at
Figure 3.3.

3.4 Checkpoint/Restart Implementation for
the InfOli simulator

3.4.1 Introduction

In order to provide fault tolerance to the InfOli simulator, a C/R scheme
was implemented for both available Porting Options. As mentioned in the
previous chapter, most available distributed C/R tools, such as C3 and
BLCR utilize the MPI library to coordinate between the available nodes
[5, 6, 1, 21]. As a result, none of the available preexisting tools can be used
in the case of the RCCE library and the SCC.
Therefore, it was necessary to implement a custom C/R method. As men-
tioned in the previous chapter, application-level techniques offer reduced

Alexandros Mavrogiannis Page 23 of 62

CHAPTER 3. EXPERIMENTAL SETUP

140 160 180 200 220 240

Reinitialization Time (s)

0

20

40

60

80

100

120

140

160

180

N
u
m

b
e
r

o
f

O
cc

u
re

n
ce

s
(p

.u
.)

Figure 3.3: Time Distribution of the Platform Reinitialization action

checkpoint latency and checkpoint file sizes compared to their system-
level counterparts. This is explained by the reduced storage requirements,
caused by the selection of only the absolutely vital portions of the applica-
tion state during the checkpoint procedure.
Harnessing this performance benefit, an application-level C/R technique
was implemented for the InfOli simulator. The stored portions of the ap-
plication state were determined through analysis of the InfOli simulator
code base. These data structures represent the state of each individual
simulated neuron cell, containing information of neuroscientific relevance
such as current voltage or potassium levels for the axon, dendrite and soma
compartments of the cell. Moreover, a local indexing variable used for the
communication among neighboring cells also needed to be stored.
Furthermore, the InfOli simulator operates in simulation steps of equal
workload, allowing the selection of a checkpoint interval in simulation steps
rather than time. In the developed C/R implementation, checkpoints are
taken at the beginning of the simulation steps that divide the Checkpoint
Interval with no remainder.
The size of the output files is directly related to the Cells per Core metric,
which indicates how many neuron cells are assigned to each core. Larger
numbers of neuron cells require more storage space and increase the check-

Alexandros Mavrogiannis Page 24 of 62

CHAPTER 3. EXPERIMENTAL SETUP

point latency metric. The impact of the Cells per Core metric on the
latency and interval metrics of the C/R implementation for a fixed check-
point interval of 500 simulation steps can be observed at Figure 3.4. As
expected, it can be observed that an increase in the number of Cells per
Core corresponds to increased storage cost of the checkpoint files, result-
ing to a higher checkpoint latency, and increased processing time of the
available cell inventory, corresponding to a higher checkpoint interval.

0 50 100 150 200

Cells per Core (p.u.)

100

101

102

103

104

M
e
a
su

re
d
 T

im
e
 (

m
s)

Checkpoint Interval
Checkpoint Latency

Figure 3.4: Checkpoint Interval and Latency for the C/R scheme of the
InfOli simulator

3.4.2 Synchronization
In addition to storing the application state, the C/R implementation also
needs to be able to provide valid output files despite the occurence of
failures. This fact, along with the large I/O delays in the SCC platform,
calls for manual synchronization of the output files before a checkpoint is
written. This is achieved through the fsync system call, which ensures that
the output of every simulation step before the checkpointed one has been
successfully stored to the output files.
Through this process, it was observed that periodic synchronization of the
output files introduced performance benefits for the InfOli application.

Alexandros Mavrogiannis Page 25 of 62

CHAPTER 3. EXPERIMENTAL SETUP

More specifically, the application was previously synchronizing the out-
put files during the simulation exit, forcing their entire size to be written
simultaneously. This process quickly achieved full utilization of the PCIe
bus, introducing time overhead.
In order to allow the exploration of the introduced performance benefits,
the C/R implementation allows the synchronization of the output files to
occur at a different interval than the checkpoint files, called the Sync In-
terval. In order to ensure that the output files are synchronized before
each checkpoint, the Sync Interval should be a divisor of the Checkpoint
Interval. For the purposes of this thesis, the Sync Interval will be assumed
to be equal to 100 simulation steps, and all Checkpoint Intervals will be
multiples of this number.
In the developed C/R implementation, synchronization of the checkpoint
files between all nodes is achieved through blocking communication and
double bufferring. More specifically, a barrier function is called when a
checkpoint needs to be taken, forcing all nodes to take the checkpoint to-
gether. Even though blocking communication introduces more overhead
than non-blocking techniques, the InfOli simulator already utilized block-
ing techniques among all cores during each simulation step. Moreover,
checkpoints are stored in a double buffered file, containing two sequential
checkpoints at any time. This technique ensures the existence of a valid
checkpoint among all nodes, even in the event of errors occurring during
the checkpointing process.

3.4.3 Restart Procedure
The main task of the Restart procedure is to extract the neuron state data
structures from the checkpoint files, perform the appropriate variable ini-
tializations and restore the simulator to the correct simulation step. If the
number of running cores is different than that of the checkpointed run, the
output files of the InfOli simulator are reconstructed to provide a consis-
tent output. The time cost of the Restart operation in both cases, for a cell
inventory of 2400 neurons, is presented at Figure 3.5. The output recon-
struction measurements were taken for the scenario where the checkpoint
file represents 48 running cores and the restart procedure is performed for
24 cores.
Since the checkpoint files are double buffered, a communication scheme
was implemented to determine the maximum recoverable checkpoint for all
the nodes. Specifically, each core opens the checkpoint file that contains

Alexandros Mavrogiannis Page 26 of 62

CHAPTER 3. EXPERIMENTAL SETUP

the cells required for this core. Afterwards, the maximum simulation step
of the two available checkpoints is broadcasted to all the other nodes. By
the end of this process, each node is aware of the simulation steps of the
available checkpoints and individually determines the maximum simulation
step available to every node.

0 20000 40000 60000 80000 100000 120000

Checkpointed Simulation Step (p.u.)

101

102

103

R
e
st

a
rt

 T
im

e
 (

s)

Restart without Output Reconstruction
Restart with Output Reconstruction

Figure 3.5: InfOli Restart Duration for 2400 Neuron Cells

Given that the desired fault tolerance scheme should be able to handle
permanent failures of SCC cores, the C/R implementation needs to allow
the InfOli simulator to be restarted at a different amount of cores than the
previously checkpointed run. In this case, the consistency of the simulator
output needs to be ensured in order to allow the C/R implementation to
operate transparently. This is achieved through the output reconstruction
process, enabling the application to resume operation in a subset of the
available cores or on other platforms. The reconstruction process provides
a consistent output when the number of execution units of the simulation
is altered.
In order to achieve this feature, the current Cells per Core values need to
be added to the checkpoint files. Therefore, when the restart procedure is
initiated, every node reads the previous Cells per Core value from the first
checkpoint file in order to determine which checkpoint files contain the re-
quired cells for this core. After opening them and restoring the application
state, each core creates its new output file and populates it using the files

Alexandros Mavrogiannis Page 27 of 62

CHAPTER 3. EXPERIMENTAL SETUP

of the previous simulation.
For example, if the simulator is restarted at 24 cores, rather than 48, the
Cells per Core metric is doubled and each core opens two of the 48 check-
point files. Afterwards, each core merges the two corresponding output
files in one, resulting in 24 total output files, containing the double num-
ber of cells each. The reverse process can also be performed, by splitting
the contents of checkpoint and output files rather than merging them.
As it is apparent in Figure 3.5, the reconstruction of the output greatly in-
creases the cost of the restart operation, as the manipulation of the output
files is bounded by the performance of the platform's PCIe bus. Further-
more, it can be observed that the Restart Time increases in relation to
the checkpointed simulation step, regardless of the use of output recon-
struction. This is expected, as the required handling of larger output files
introduces an increased I/O cost during the restart operation.

3.5 Injection Campaign

In order to test and benchmark the target experimental setup, the injection
of errors on the runtime system is required. The developed injection cam-
paign introduces different types of DUE and SDC errors at user-specifed
MTTF intervals, called MTTFs, where the "s" stands for specified . These
intervals are defined as vectors of time and MTTF tuples, allowing the em-
ulation time-dependent behavior of the system's MTTF parameter. Addi-
tionally, the injection of each error type is configured with different MTTFs
vectors. The injection campaign is implemented as an independent module
of the Depman Tool, which will be further discussed in the next chapter.
The injection of errors at the specified vectors is performed through a Monte
Carlo simulation. The injector is invoked at regular time intervals, ∆t,
during the execution of the InfOli simulator and its restart procedure. The
probability of error occurence at each interval is given by equation 3.1,
which corresponds to a Weibull distribution of TTF values. The emulation
of the specified MTTFs vectors is demonstrated in Figure 3.6, where the
times between 2800 injections are grouped together in bins of 1s. The
measured MTTF value of 10.4s successfully matches the specification of
10s.

Ps = 1− e−∆t/MTTFs (3.1)

Alexandros Mavrogiannis Page 28 of 62

CHAPTER 3. EXPERIMENTAL SETUP

The implementation of the actual error occurences is performed at the
target platform, when possible, using commands of the SCCKit. However,
permanent failures and SDC occurences cannot be emulated through the
framework. As a result, these errors are injected by altering the input of the
corresponding error detectors, causing them to fail. This data manipulation
between the SCC and the error detectors is structurally performed at the
Injection Layer of the runtime environment.

0 10 20 30 40 50 60 70 80 90
Measured Time to Failure (s)

0

50

100

150

200

250

300

N
u
m

b
e
r

o
f

O
cc

u
re

n
ce

s
(.

p
.u

)

Estimated Mean Time to Failure

Figure 3.6: TTF Measurements for an Injected MTTFs of 10 s

Alexandros Mavrogiannis Page 29 of 62

Chapter 4

Depman Tool

4.1 Introduction

Depman is a runtime manager that controls the operation of a checkpointed
scientific application, the InfOli simulator, on the Single-Chip Cloud Com-
puter. It performs fault correction procedures, restarts the application in a
thermal-aware fashion and offers a closed loop optimization of the param-
eters of the managed C/R system. The interactions of the Depman tool
with the target system and application are depicted at Figure 4.1, while an
abstract block interpretation can be found at Figure 4.2.
The operations of Depman are structurally organized in three groups of
containers: diagnostics, which monitor the system for errors, countermea-
sures and the core tool. The core tool performs the main control sequence,
utilizing the appropriate diagnostics and countermeasures to perform ac-
tions related to the current platform or application. It also measures the
TTF of the system in order to estimate variations of the current MTTF
metric and use this knowledge for checkpoint interval optimization. The
latter feature is performed through a moving average estimator and it will
be further discussed in the next chapter. A simplified UML class diagram
of Depman is depicted at Figure 4.3.
Diagnostics are parallel monitoring tasks that follow the current state of the
application and platform for specific errors and define how to resolve them.
As mentioned in the previous chapter, countermeasures are the available
actions that can be taken by the system in order to resolve platform and
application errors. Each diagnostic corresponds to a specific type of error
and defines a sequence of countermeasures called a countermeasure pro-

30

CHAPTER 4. DEPMAN TOOL

Figure 4.1: Flow Diagram of Depman's Closed Loop Operation for DUE
Occurences

cedure that, when executed in order, can potentially resolve the faults that
caused them.

Depman also includes an error injection module that follows the specifica-
tion mentioned in the previous chapter to introduce errors at predetermined
MTTF vectors through a Monte Carlo simulation. The injection module
has been used in performance measurements of configurations. The module
enables multiple errors to be injected at different MTTF vectors, trigger-
ing different diagnostics. Each diagnostic can also be triggered by different
injectors, such as the injectors of permanent and temporary failures.

Depman was implemented in Python 2.7, using an object oriented design to
allow for easy portability to other target platforms and applications. In this
design, the core tool is implemented as the depman class, which is highly
configurable and contains little application and platform dependencies. The
source code is licenced under the GPLv3 and it is included in the Appendix.

Alexandros Mavrogiannis Page 31 of 62

CHAPTER 4. DEPMAN TOOL

Figure 4.2: Block Diagram of the Depman tool

4.2 Core Tool

The core manager tool spawns the initial application processes, waits for
it to exit and then performs the system repair routine by selecting and
executing a countermeasure procedure. It estimates the system's reliability
metrics during this process, such as the MTTF and MTTR parameters. It
then calculates a thermal-aware task allocation, if required, and restarts
the application. The tool implemented as the master thread of the depman
process. It forks the rccerun executable and waits for its termination. The
Depman tool terminates when the forked process has returned no error
value, no diagnostics have failed since the last repair and no diagnostics
have incomplete workloads.
The actions of the core tool after initialization are performed in the event
loop, which is depicted in pseudocode at Figure 4.4. Initially, the main
thread waits for all diagnostic threads to stop their current operation. Di-
agnostics that still require computational time after the application exits,
such as SDC detectors, are marked as incomplete and depman waits for
them if the application process has completed.
The latest checkpoint and output files of the application are then validated
and stored at a predetermined filesystem location, called the safe location.
The selection of a checkpoint from the safe location is performed during
application restart and it is different for DUE and SDC diagnostics. The

Alexandros Mavrogiannis Page 32 of 62

CHAPTER 4. DEPMAN TOOL

Fi
gu

re
4.
3:

Cl
as
sD

ia
gr
am

of
th

e
D
ep

m
an

To
ol

Alexandros Mavrogiannis Page 33 of 62

CHAPTER 4. DEPMAN TOOL

1 def event_loop():
2 wait(application_process)
3 wait(diagnostics)
4

5 repair_timestamp = time()
6

7 if length(failed_diagnostics) == 0:
8 if length(incomplete_diagnostics) > 0:
9 wait_for_completion(incomplete_diagnostics)

10 else:
11 exit_depman()
12

13 mttf_estimate.add_value(time() - failure_timestamp)
14

15 new_checkpoint_interval = optimal_CI(mttf_estimate, latency)
16

17 new_DUE_ckpt = look_for_new_checkpoints()
18 if not new_DUE_ckpt and countermeasure_procedure is None:
19 degrade_diagnostics()
20 else if new_DUE_ckpt:
21 determine_countermeasure_procedure()
22

23 perform(countermeasure_procedure.pop())
24 mttr_estimate.add_value(time() - repair_timestamp)
25

26 reinitialize_diagnostics()
27

28 if injecting_errors:
29 reinitialize_injectors()
30

31 failure_timestamp = time()
32 event_loop()

Figure 4.4: Pseudocode of the Event Loop

Alexandros Mavrogiannis Page 34 of 62

CHAPTER 4. DEPMAN TOOL

exact details of the checkpoint selection and management actions will be
discussed in the related subsection.
Afterwards, the measured Time to Failure is added to the set of previous
TTF values and a new optimum periodic checkpoint interval is determined
based on the new MTTF estimate. The theory and methodology behind
the estimation of MTTF and τopt will be examined in the next chapter.
Finally, the next step of the countermeasure procedure is determined and
performed, the time to repair is measured and the injectors and diagnostics
modules are reinitialized. It is also worth noting that the fork of the target
application is performed by the master thread during initialization and
when performing the related restart countermeasure.

4.3 Diagnostics & Countermeasures

4.3.1 Diagnostic Interface

In the previous section, it has been stated that diagnostics are the objects
that are responsible for the detection of errors on the target system. Being
used as an interface by the core tool, they can be either platform-specific,
such as DUE detectors, or application-specific, such as SDC detectors.
Diagnostics contain routines that create and manage any monitoring threads
they have, as well as a prespecified countermeasure procedure. The threads
perform system monitoring actions such as file or stdout reading and send-
ing IMCP echo requests to individual cores. Upon detection of a failure,
the fail() method of the corresponding diagnostic object is called.
Diagnostic objects are implementations of the diagnostic abstract class,
which specifies the concrete method fail() and the abstract methods wait()
and reinitialize(). The fail() method causes a diagnostic to suspend the
running application, through depman's stop() method, while holding the
diagnostic lock.
The wait() method of each enabled diagnostic is called by the core tool
directly after the application process exits. It is used to block the master
thread until the diagnostic thread can finish its current task, determine
whether it has failed and stop the monitoring process. This halt is required,
as the old application process is terminated at this point in time and no
errors can occur until it is restarted. Therefore, the diagnostics perform

Alexandros Mavrogiannis Page 35 of 62

CHAPTER 4. DEPMAN TOOL

cleanup actions during the wait() method and will be reinitialized when a
new application process will be forked during the repair procedure.
After this waiting period, the master thread selects the most time-expensive
countermeasure procedure of all failed diagnostics and performs the re-
quired sequence of countermeasures. More specifically, each countermea-
sure is enumerated in terms of its execution time and the most expensive
sequence of actions in a countermeasure procedure is always located last.
More details on this ordering and the exact form of countermeasure proce-
dures are depicted in the related subsection.
When the repair sequence is finished and the application process is restart-
ing, the core tool calls the reinitialize() method of each diagnostic. This
method causes the diagnostic threads to reinitialize themselves and start
monitoring the currently running application for errors. Based on this sep-
aration, we can conclude that depman considers that repair time errors can
occur only during the restart procedure of the application and not during
the selection and execution of other countermeasures.
The current design of the Depman tool allows diagnostics to inherit or
utilize abstract classes called monitors, which provide default actions such
as stdout piping, file following and core pinging. The existence of the
monitor classes enables diagnostic classes to contain only the platform-
specific or application-specific code segments, allowing for easier portability
to other platforms and applications.

4.3.2 Implemented Diagnostics

The following diagnostics were be implemented for the experimental setup
of the thesis, each corresponding to a unique error:

• ProcessExit, which monitors the stdout of the RCCErun process for
failure messages indicating a DUE error.

• CoreReachability, which periodically polls the available cores with
ICMP echo requests in order to detect unreachable cores.

• infoliOutputDivergence, which scans the validity of the InfOli simu-
lator's output files, aiming to detect SDC occurences.

The ProcessExit diagnostic checks each line of the RCCErun process' stan-
dard output for the existence of the "FAILURE" substring. This substring
exists in all error messages detected by the RCCE library, and it serves
as a useful system-level diagnostic. Potential errors detected by the Pro-

Alexandros Mavrogiannis Page 36 of 62

CHAPTER 4. DEPMAN TOOL

cessExit diagnostic are memory allocation or access errors, file permission
errors or application-specific errors that cause the application to exit, such
as invalid initialization and configuration.
The wait() method of the ProcessExit diagnostic closes the pipe from the
application process, while the reinitiliaze() method starts reading from the
pipe of the new application process' output. The diagnostic is implemented
as a subclass of the stdoutMonitor class, which provides all the initialization
and stdout reading functionality.
The CoreReachability diagnostic periodically checks whether each running
core is available through the unix tool ping. Upon detection of an un-
reachable core, the diagnostic fails. It is implemented as a subclass of the
corePinger monitor, which utilizes a thread pool to concurrently ping the
requested set of cores. More specifically, a controller thread inputs the
name of each core to a Queue data structure and the pinger threads in-
dividually pop the head of the queue and ping the corresponding core.
When the wait() method is called, the caller thread blocks until the Queue
is empty and the controller thread does not reenter the core names in the
queue, until the reinitialize() method is called.
The infoliOutputDivergence diagnostic checks for the occurence of SDCs in
the output files of the InfOli simulator. In order to achieve this, every line
of each output file is validated through several criteria, such as the total
number of tokens, the type of each token and the existence of values in
acceptable ranges. Its implementation uses a series of FileReader monitor
objects, each of which follows a file for changes, splits it into lines and
validates every line through the specifications of the diagnostic. The wait()
method causes the file reader threads to close the files they are reading,
while the reinitialize() method causes them to reopen the files and seek to
the appropriate line. Being an SDC detector, the infoliOutputDivergence
diagnostic may continue operating after the application has terminated, by
being marked as incomplete until the entirety of the output files has been
processed.

4.3.3 Countermeasure Procedures
Each diagnostic defines a series of sequences of countermeasures to be at-
tempted as resolutions for the detected failures. As discussed in the previ-
ous chapter, the execution time of each countermeasure varies, contributing
to the total Time to Repair of the system. Therefore, it is crucial that
expensive countermeasures are considered only after the faster alternatives

Alexandros Mavrogiannis Page 37 of 62

CHAPTER 4. DEPMAN TOOL

have been already attempted. As a result, the general rule for defining such
countermeasure procedures is that the total repair time of each individual
sequence should be in an ascending order.
In the present experimental setup, we observed that the most expensive
countermeasure is the platform reinitialization (sccBmc -i), followed by the
Linux Boot process (sccBoot -l). The resulting countermeasure procedure
for the infoliOutputDivergence and ProcessExit diagnostics is depicted at
Figure 4.5. The procedure of the coreReachability diagnostic differs by not
containing the first step, the single rccerun invocation.

Figure 4.5: Countermeasure Procedure of the ProcessExit diagnostic

4.4 Thermal-Aware Task Reallocation
A possible scenario in the diagnostics & countermeasures model is the case
where an error cannot be resolved by any of the available countermeasures,
leading to an empty countermeasure procedure. The standard policy of the
depman tool is to define a new countermeasure procedure and continue with
the error correction tasks . However, this new countermeasure procedure
does not ensure the resolution of the underlying fault, as it will be identical
to the one just attempted. For this reason, diagnostics can implement a
degrade function, which is called when the countermeasure procedure is
emptied, in an attempt to change parameters of the platform or application
that can potentially resolve the recurring fault.
This treatment is applicable in the present experimental setup through the
coreReachability diagnostic. When a set of cores is consistently detected as
unreachable, even after the entire countermeasure procedure is exhausted,

Alexandros Mavrogiannis Page 38 of 62

CHAPTER 4. DEPMAN TOOL

this set of cores can be considered as permanently defunct. In this case,
the degrade function changes the number of execution units that the target
application will be executed at, excluding problematic cores. However, the
decision of how the remaining tasks will be allocated on the available cores
of the chip still needs to be made.
Many-core applications often require the distribution of homogenous work-
loads among the running cores, especially when blocking communication is
used. This happens to be the case with the InfOli simulator, which requires
that the total number of simulated cells needs to be a multiple of the run-
ning number of cores. For example, if the initial number of cores used is 48
when one permanent core failure occurs, the application can operate on 24
cores, which is the largest possible divisor of 48. Therefore, in homogenous
applications such as the InfOli simulator, a permanent failure of one core
requires the next restart operation to exclude a portion of the operational
cores.
An important dependability concern of task allocations on many-core sys-
tems is the thermal homogeneity of the platform. Inhomogenous task dis-
tribution causes some areas of the chip to develop hotspots, while other
areas remain cooler. As the SCC is a homogenous chip of 48 cores, thermal
inhomogeneity can cause some areas of the chip to deteriorate faster than
others, resulting to variabilities in the mean time to failure of the chip's
individual components.
In order to reduce the effect of inhomogenous task distribution, a greedy
thermal-aware task allocation algorithm was developed as the degrade func-
tion of the coreReachability diagnostic. The algorithm uses as heuristics
the manhattan distance to the closest running core and the distance to the
edge of the chip to provide an evenly spaced distribution of tasks on the
chip. Even though the algorithm does not guarantee optimality, it provides
significant improvements to naive task allocation techniques, such as using
only one side of the chip, as presented in Figure 4.7. Additionally, even
though permanently defunct cores are not considered for task placement
by the algorithm, their thermal conductivity is taken into account as part
of manhattan distance calculations.
The pseudocode for this algorithm is presented in Figure 4.6 and the steady
state temperature modelling simulations of Figure 4.7 were performed using
version 5.0 of the HotSpot Temperature Modeling Tool [46] and an existing
floorplan of the SCC chip [40]. The temperatures on the figure are indicated
in a relative scale where each temperature is divided by the minimum
observed temperature of both figures.

Alexandros Mavrogiannis Page 39 of 62

CHAPTER 4. DEPMAN TOOL

1 def SCC_task_allocation(tasks, allowed_cores):
2 Grid = new Matrix[8][6]
3 for core not in allowed_cores:
4 Grid[core] = -1
5

6 x,y = random_available_edge_cell(Grid)
7

8 while tasks > 0:
9 Grid[x][y] = -2

10 tasks--
11 for i,j in (8,6):
12 if Grid[i][j] > 0:
13 r = manhattan_distance((x,y), (i,j))
14 if r < Grid[i][j]:
15 Grid[i][j] = r
16 else if (r - 1 < Grid[i][j] < r):
17 Grid[i][j] -= 0.01
18

19 max_list = get_all_max_values(Grid)
20 min_list = get_all_minimum_distances_to_edge(max_list)
21 x, y = select_random(min_list)
22

23 return core_names_from_coordinates(Grid.find(-2))

Figure 4.6: Pseudocode of the Thermal-Aware Task Allocation Algorithm

Alexandros Mavrogiannis Page 40 of 62

CHAPTER 4. DEPMAN TOOL

(a) Naive Task Allocation

(b) Thermal-Aware Task Allocation

Figure 4.7: Temperature Modeling of 24 Running Cores on the SCC

Alexandros Mavrogiannis Page 41 of 62

CHAPTER 4. DEPMAN TOOL

By comparing the thermal modelling images of the two task allocation
schemes, it can be observed that the proposed algorithm provides a more
even heat distribution on the chip. It is also expected that the thermal
gradient of the chip will be less steep, due to this even distribution. Addi-
tionally, the maximum temperature on the chip is also reduced from 1.47
units of relative temperature at the naive allocation scheme to 1.41 units
at the proposed algorithm.

4.5 Distinctions of SDC and DUE Check-
points

In contrast to DUEs, the system continues execution after the occurence
of SDCs. Therefore, it is possible that checkpoints will be taken before the
error is detected. These errors, called latent errors require a special C/R
technique called multi-version checkpointing in order to ensure that each
possible error is optimally recoverable. However, Depman performs valida-
tion and storage of checkpoint files only during error detection, rendering
multi-version checkpointing as unusable. Therefore, a similar suboptimal
technique has been developed, for use in environments with both DUE and
SDC occurences.
When an error occurs, the checkpoint files are stored in the safe location and
marked by the maximum recoverable simulation step they contain. This
leads to a series of checkpoints, sorted in ascending order of simulation
steps, one of which needs to be selected for the next restart procedure.
Moreover, when an SDC detector diagnostic is operational, it keeps track
of the maximum simulation step that has been validated on all output files,
called min_step, as it is the minimum of the maximum steps of all files.
Upon DUE occurence, the checkpoint corresponding to the maximum avail-
able simulation step will be used. Additionally, any checkpoints for simula-
tion steps less than the min_step are discarded, except for the largest one
of them. This procedure ensures that the set of checkpoints will be kept
as small as possible, while at the same time preserving the best available
checkpoint for SDC occurences.
Upon SDC detection, the checkpoint with the largest available simulation
step less than min_step will be used. Furthermore, all other checkpoints
will be discarded. More specifically, checkpoints corresponding to smaller
simulation steps are not needed, as they are covered by the selected check-
point. On the other hand, checkpoints corresponding to larger simulation

Alexandros Mavrogiannis Page 42 of 62

CHAPTER 4. DEPMAN TOOL

steps cannot be used as they reflect a system state where the observed fault
has been introduced.
This handling of stored checkpoints ensures the optimal recovery of DUE
occurences, in terms of Repair Time and Rollback Time. However, in
environments with only SDC occurences, it will fail to make progress, as
no checkpoints will be available when the SDC is detected. Therefore, it is
practically useful in systems where SDCs are expected to occur much less
frequently than DUEs, allowing the storage of additional checkpoints.

Alexandros Mavrogiannis Page 43 of 62

Chapter 5

Checkpoint Interval
Optimization

5.1 Introduction
Depman features a closed loop optimization scheme over the C/R imple-
mentation of the target application. This is substantiated through the
minimization of the total waste time of the system, which is the time
overhead introduced by the C/R implementation. The total waste time
can be defined as the sum of the waste times Wi of each of the N total
checkpointing cycles, as described in Equation 5.1.

W =
N∑
i=1

Wi (5.1)

Moreover, it is assumed that the C/R implementation on the target appli-
cation is periodic. Therefore, the calculated checkpoint intervals will be
optimal only for Poisson failure distributions, as suggested by Ling et al.
[27]. In periodic C/R schemes, each of the Wi times consists of the to-
tal time spent on checkpoint storage, the checkpoint latencies (ℓ), and the
rollback time (Tr) of that cycle. The waste time of one cycle is modelled
in Equation 5.2, assuming ki checkpoints are taken at the i-th checkpoint
cycle.

Wi = ki × ℓ+ Tr (5.2)

Additionally, the checkpoint interval τ is analogous to ki for each cycle and

44

CHAPTER 5. CHECKPOINT INTERVAL OPTIMIZATION

the rollback time Tr can be determined by the TTF of the i-th cycle, TTFi

and τ . As a result, knowledge of the TTFi of a checkpointing cycle can
lead to the calculation of an optimal checkpoint interval for that cycle.
Based on this motivation, Depman calculates an optimal checkpoint inter-
val for the next cycle as part of the repair process. This operation utilizes
the MTTF of the current failure distribution of the system, which is es-
timated using a moving average filter over measurements of the TTF of
previous cycles.
In the context of this chapter, we will consider only the cases of DUE
occurences for the related measurements, leaving out the injection and de-
tection of SDC occurences from our model. As mentioned in the previous
chapter, Depman cannot guarantee optimal recovery after SDC occurences,
as their delayed detection requires the use of multi-version checkpointing.
Therefore, in the case of SDCs the rollback time presents significant vari-
ability and the described optimization methods are not expected to perform
optimally. However, the implementation of the depman tool still performs
the same phases of estimation and optimization when SDCs are detected,
even though they have been designed to target DUEs.

5.2 Optimal Checkpoint Interval

The optimization of the Checkpoint Interval is performed by the Depman
tool in three stages: benchmarking, selection and transformation to sim-
ulation steps.
The benchmarking phase is performed at the first execution of the target
application on the current set of cores. During this phase, the application
reports time measurements for the checkpoint latency and checkpoint inter-
val on its standard output. These measurements are retrieved by Depman
and averaged, for use in the other optimization phases.
The selection phase determines an optimal checkpoint interval for the next
checkpointing cycle in time units. This selection is performed by attempt-
ing to minimize Wi for the next cycle, using the estimate of MTTFDUE.
The errors are assumed to occur, on average, in the middle of the last se-
quence of interval and latency. The rollback time can be calculated through
this assumption by Equation 5.3. Additionally, the number of checkpoints
taken in the i-th checkpointing cycle can be calculated, on average, through
Equation 5.4.

Alexandros Mavrogiannis Page 45 of 62

CHAPTER 5. CHECKPOINT INTERVAL OPTIMIZATION

Tr =
τ + ℓ

2
(5.3)

ki =
MTTFi

τ + ℓ
(5.4)

By substituting Equations 5.3 and 5.4 on Equation 5.2, we can calculate
the total waste time of the i-th checkpointing cycle using only the MTTF,
τ and ℓ parameters. The final result is presented in Equation 5.5.

Wi =
MTTFi × ℓ

τ + ℓ
+

τ + ℓ

2
(5.5)

By demanding the first derivative by τ of Equation 5.5 to be zero and
solving for τ , we can calculate the checkpoint interval τopt that minimizes
the waste time for that cycle. The final result, presented in Equation 5.6, is
the same as the one derived from Daly's model, who used a similar approach
to calculate τopt for all checkpointing cycles, making the same assumptions
on the distribution of failures as our model [11].

τopt =
√
2×MTTFDUE × ℓ− ℓ (5.6)

Once τopt is calculated in time units, it has to be transformed to simulation
steps. This is achieved by using the measured checkpoint interval of the
benchmarking phase in time units, τbench, and the specified checkpoint in-
terval in simulation steps, τsteps. The transformation is performed using the
relationships of Equation 5.7. The final value τ ′opt is then rounded to the
closest multiple of the sync interval, in order to preserve the performance
benefit of regular output file synchronization, as discussed in section 3.4.2

τ ′opt =
τopt
τbench

× τsteps (5.7)

5.3 Moving Average Estimation
The estimation of the MTTF value used for the optimization of the next
cycle is performed through a moving average filter of the measured TTF
values from the last M cycles. The estimation of the injected MTTF for
the i-th cycle (MTTFDUE) is depicted in Equation 5.8. The selection of

Alexandros Mavrogiannis Page 46 of 62

CHAPTER 5. CHECKPOINT INTERVAL OPTIMIZATION

M is performed at design time and it can greatly affect the efficiency of
the managed C/R scheme. In the implementation of the Depman tool, the
moving average filter was constructed as a double-ended queue with a fixed
length of M .

MTTFDUE =
N−1∑
i=1

TTFi

M
(5.8)

The step responses of the moving average filter for rising and falling MTTF
steps at various values of M are available at Figures 5.1 and ??. The mea-
surements were taken by using the moving average filter and the injection
module discussed in Chapter 2. We consider that the injections occur at
Weibull distributions of mean time MTTFDUE.
As it can be observed in the figure, larger values of M provide a more accu-
rate steady state convergence to the actual MTTF of the system. Moreover,
the amplitude of the MTTFDUE step affects the effectiveness of the esti-
mator, leading to a faster convergence for larger values. Finally, we can
observe that rising steps of MTTFDUE lead to more seldom updates of
the monitor. This is caused by the fact that the estimation of MTTFDUE
is performed upon error detection and it is, therefore, directly affected by
the actual injected TTF values. This is a preferable design choice, as the
credibility of the estimator is improved when the operating conditions of
the system become more hostile, causing the MTTFDUE to decrease. In
general, we can observe that increases in the length of the moving aver-
age filter produce more credible estimations of MTTFDUE, which favors
software implementations.

5.4 Efficiency Evaluation
In order to evaluate the efficiency of the presented optimization scheme, two
metrics are presented: performance efficiency and energy efficiency. These
metrics have been evaluated for both the cases of constant and time-varying
MTTFDUE injections on the experimental setup.
The performance efficiency metric is defined as the ratio of the execution
time of the target application with no C/R technique or fault injection to
the execution time of the application with the proposed fault injection and
C/R schemes. Similarly, the energy efficiency is defined as the ratio of the
total used energy with no fault injection to the total energy with fault in-
jection and C/R. The two efficiency metrics are depicted in Equations 5.9

Alexandros Mavrogiannis Page 47 of 62

CHAPTER 5. CHECKPOINT INTERVAL OPTIMIZATION

0 5000 10000 15000 20000

Execution Time (s)

0

50

100

150

200

250

300

350

400

450

M
e
a
n
 T

im
e
 t

o
 F

a
ilu

re
 (

s)

MTTF Specification
Moving Average with M = 2

(a) M = 2

0 5000 10000 15000 20000

Execution Time (s)

0

50

100

150

200

250

300

350

M
e
a
n
 T

im
e
 t

o
 F

a
ilu

re
 (

s)

MTTF Specification
Moving Average with M = 4

(b) M = 4

0 5000 10000 15000 20000

Execution Time (s)

0

50

100

150

200

250

M
e
a
n
 T

im
e
 t

o
 F

a
ilu

re
 (

s)

MTTF Specification
Moving Average with M = 8

(c) M = 8

0 5000 10000 15000 20000

Execution Time (s)

0

50

100

150

200

250

M
e
a
n
 T

im
e
 t

o
 F

a
ilu

re
 (

s)

MTTF Specification
Moving Average with M = 16

(d) M = 16

0 5000 10000 15000 20000

Execution Time (s)

20

40

60

80

100

120

140

160

180

M
e
a
n
 T

im
e
 t

o
 F

a
ilu

re
 (

s)

MTTF Specification
Moving Average with M = 32

(e) M = 32

0 5000 10000 15000 20000

Execution Time (s)

20

40

60

80

100

120

140

160

M
e
a
n
 T

im
e
 t

o
 F

a
ilu

re
 (

s)

MTTF Specification
Moving Average with M = 64

(f) M = 64

Figure 5.1: Rising Step Response of the MTTF Estimation

Alexandros Mavrogiannis Page 48 of 62

CHAPTER 5. CHECKPOINT INTERVAL OPTIMIZATION

0 5000 10000 15000 20000

Execution Time (s)

0

200

400

600

800

1000

1200

1400

M
e
a
n
 T

im
e
 t

o
 F

a
ilu

re
 (

s)

MTTF Specification
Moving Average with M = 2

(a) M = 2

0 5000 10000 15000 20000

Execution Time (s)

0

100

200

300

400

500

600

700

800

M
e
a
n
 T

im
e
 t

o
 F

a
ilu

re
 (

s)

MTTF Specification
Moving Average with M = 4

(b) M = 4

0 5000 10000 15000 20000

Execution Time (s)

0

100

200

300

400

500

M
e
a
n
 T

im
e
 t

o
 F

a
ilu

re
 (

s)

MTTF Specification
Moving Average with M = 8

(c) M = 8

0 5000 10000 15000 20000

Execution Time (s)

0

50

100

150

200

250

300

350

400

M
e
a
n
 T

im
e
 t

o
 F

a
ilu

re
 (

s)

MTTF Specification
Moving Average with M = 16

(d) M = 16

0 5000 10000 15000 20000

Execution Time (s)

0

50

100

150

200

250

300

350

400

M
e
a
n
 T

im
e
 t

o
 F

a
ilu

re
 (

s)

MTTF Specification
Moving Average with M = 32

(e) M = 32

0 5000 10000 15000 20000

Execution Time (s)

0

50

100

150

200

250

300

350

400

M
e
a
n
 T

im
e
 t

o
 F

a
ilu

re
 (

s)

MTTF Specification
Moving Average with M = 64

(f) M = 64

Figure 5.2: Falling Step Response of the MTTF Estimation

Alexandros Mavrogiannis Page 49 of 62

CHAPTER 5. CHECKPOINT INTERVAL OPTIMIZATION

0 50 100 150 200 250 300 350 400 450

Injected Mean Time to Failure (s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
e
a
n
 P

e
rf

o
rm

a
n
ce

 E
ff

ic
ie

n
cy

 (
p
.u

.)

With MTTF Estimation
Without MTTF Estimation

(a)

0 50 100 150 200 250 300 350 400 450

MTTFDUE (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
e
a
n
 E

n
e
rg

y
 E

ff
ic

ie
n
cy

 (
p
.u

.)

With MTTF Estimation
Without MTTF Estimation

(b)

Figure 5.3: Efficiency Evaluation for a constant Injected DUE Rate.

and 5.10. In the experiments presented in this section, we will assume an
InfOli simulation of the following parameters: 50 neuron cells per core, 6
seconds of total simulated brain activity, corresponding to 120000 simula-
tion steps, and a naive 8-way interconnectivity scheme between the plane
of neurons.

Peff =
Tgolden

TC/R

(5.9)

Eeff =
Egolden

EC/R

(5.10)

5.4.1 Constant MTTFDUE
Assuming a constant MTTF of injected errors, the performance and energy
efficiencies of two cases were calculated. The first case assumes that the
injected MTTFDUE is known in advance by the optimization module. The
second case utilizes the discussed moving average estimation technique.

The results for both cases are presented in Figure 5.3 for a moving average
filter of M = 32. We can observe that the efficiency of the optimization
scheme is not affected by the use of the moving average filter.

Alexandros Mavrogiannis Page 50 of 62

CHAPTER 5. CHECKPOINT INTERVAL OPTIMIZATION

5.4.2 Time-varying MTTFDUE
In this set of experiments, the efficiency of the rising and falling MTTFDUE
edges of Figure 5.4 were calculated. The error bars represent a 95% con-
fidence interval of the mean value, calculated by multiplying the standard
error of Equation 5.11 by 1.96 and using the result to define the lower and
upper bounds of the confidence interval [32]. In Equation 5.11, N repre-
sents the total number of measurements used for the estimation, which in
the present experiment was 20.

standard error = standard deviation s
N

(5.11)

The selection of τopt was performed in accordance to the technique described
in section 5.2 and three different hypotheses have been explored regarding
the MTTFDUE estimation:

• Oracle Estimation: In this case, we assume that the estimation
is performed by an oracle predictor. The oracle predictor is always
aware of the specified MTTFDUE of the injector, using it for check-
point interval optimization. This case effectively provides an upper
bound of efficiency, assuming on-the-fly estimation of MTTFDUE.

• Static Estimation: In this case, we assume that the MTTFDUE
estimation used for CI optimization is always constant and equal to
50s, even if in reality the injected MTTFDUE is time-dependent.
This provides a lower bound of efficiency for the discussed optimiza-
tion scheme.

• Adaptive Estimation: This method corresponds to the discussed
optimization scheme of this chapter, featuring the moving average
estimator.

The efficiency values for various values of M are presented in Figure 5.4.
From these results, we can determine that knowledge of the current MTTFDUE
leads to improved efficiency of the C/R optimization scheme, as it is ap-
parent from the difference between the oracle and static estimations.
Furthermore, we can determine that rising MTTFDUE edges do not nec-
essarily lead to improvements in the related efficiency metrics. This is
speculated to be caused due to several reasons, such as increased moving
average error and the fact that performance benefits in rising steps are
caused by the reduced total time spent as checkpoint latencies, which is
a very small portion of the total execution time to confidently provide an
efficiency benefit.

Alexandros Mavrogiannis Page 51 of 62

CHAPTER 5. CHECKPOINT INTERVAL OPTIMIZATION

0 2 4 6 8 10

M (p.u.)

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

M
e
a
n
 P

e
rf

o
rm

a
n
ce

 E
ff

ic
ie

n
cy

 (
p
.u

.) Static Checkpoint Interval
Adaptive Estimation
Oracle Estimation

(a) Rising MTTFDUE edge

0 2 4 6 8 10

M (p.u.)

0.30

0.35

0.40

0.45

0.50

0.55

M
e
a
n
 P

e
rf

o
rm

a
n
ce

 E
ff

ic
ie

n
cy

 (
p
.u

.)

Static Checkpoint Interval
Adaptive Estimation
Oracle Estimation

(b) Falling MTTFDUE edge

0 2 4 6 8 10

M (p.u.)

0.55

0.60

0.65

0.70

0.75

0.80

0.85

M
e
a
n
 E

n
e
rg

y
 E

ff
ic

ie
n
cy

 (
p
.u

.)

Static Checkpoint Interval
Oracle Estimation
Adaptive Estimation

(c) Rising MTTFDUE edge

0 2 4 6 8 10

M (p.u.)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

M
e
a
n
 E

n
e
rg

y
 E

ff
ic

ie
n
cy

 (
p
.u

.)

Static Checkpoint Interval
Oracle Estimation
Adaptive Estimation

(d) Falling MTTFDUE edge

Figure 5.4: Efficiency Evaluation of Depman for Two Cases of Time-Varying
MTTFDUE

Alexandros Mavrogiannis Page 52 of 62

CHAPTER 5. CHECKPOINT INTERVAL OPTIMIZATION

Finally, in the cases of falling MTTFDUE edges, we can observe improve-
ments in the efficiency of the C/R optimization scheme. This corresponds
to the event where errors are more frequently introduced to the system.
As a result, the C/R scheme benefits from reduced rollback times when
the checkpoint intervals are optimally selected. Moreover, the reduction in
MTTFDUE leads to a faster convergence of the moving average filter to
that value, as discussed in the previous sections.

Alexandros Mavrogiannis Page 53 of 62

Chapter 6

Conclusions

6.1 General Remarks
This work has been a multifaceted approach toward improving the de-
pendability of many-core systems. The experimental setup consists of the
Single-Chip Cloud Computer as the target platform and the InfOli simula-
tor as the target application, upon which a periodic application-level C/R
implementation was introduced. The implementation is controlled by the
proposed Depman tool which attempts to improve the overall dependability
of the system by considering various parameters.
Depman provides error recovery to the target system through the execution
of countermeasure procedures. It also enables thermal-aware task allocation
after the repair operation and it attempts to minimize the time overhead of
the C/R implementation by observing the system's failure rates. For this
procedure, the MTTF of the system is estimated on-the-fly by a moving
average filter and then used for the calculation of the optimal checkpoint
interval.
An error injection module was implemented for the efficiency measurements
of the optimization scheme. Using time-varying injection scenarios, the
step response of the moving average filter was measured for various filter
lengths. These step responses indicate that longer filter lengths lead to
more accurate estimate at the steady state, at the cost of increased transient
time.
The performance and energy efficiency metrics were measured at scenarios
of both constant and time-varying system failure rates. In the case of a
constant failure rate, it was observed that on-the-fly estimation does not

54

CHAPTER 6. CONCLUSIONS

introduce any measurable efficiency loss when compared a static optimiza-
tion scheme, where no estimation is performed. In the case of time-varying
failure rates, the falling step scenario showed some efficiency improvements
over the static optimization, which were not present in the case of the rising
step scenario.

6.2 Future Work
Several modifications and expansions can be performed to the Depman tool
in order to achieve better efficiency and a broader functionality spectrum.
These future work samples are presented in this section using the numbered
components of the block diagram of Figure 4.2, in order to demonstrate the
affected portions of the presented framework.

• Given the closed-loop form of the checkpoint interval optimization
process, the minimization of time overhead could be approached as a
state-space control problem. In this case, the non-observable MTTF
variable can be estimated through a state observer [49]. Furthermore,
various other options can be considered for the on-the-fly MTTF es-
timation and the estimation of the benchmarked checkpoint interval
and latency metrics, using the appropriate types of filters. These
proposals are concerned with component 3, the MTTF estimator.

• the Depman tool can be extended for use on platforms, requiring in-
trusion to components 2a and 4, and on other applications, requiring
changes on components 2b and, possibly, 5. Components 3 and 5 can
be also reworked to operate with aperiodic checkpointing techniques
[37]. Aperiodic techniques can be used along with a failure distribu-
tion estimator in order to improve an optimal checkpoint placement
for any failure distribution.

• Despite ensuring a high degree of dependability on the SCC, Dep-
man is susceptible to failures of the host machine, the MCPC. As
a result, the Depman tool can be expanded with fault tolerance ca-
pabilities through another Checkpoint/Restart implementation. An-
other potential extension is the dependability management of multi-
ple machines, allowing use of the presented techniques on networks
of many-core nodes. These changes demand the design of a meta-
system, which utilizes the existing depman tool as a component.

• The principles of the closed-loop optimization scheme can be also ap-
plied for uses of time redundancy, in addition to C/R. Redundancy

Alexandros Mavrogiannis Page 55 of 62

CHAPTER 6. CONCLUSIONS

is used to provide fault tolerance in systems with multiple nodes and
it is guaranteed to detect SDC occurences. Therefore, it has been
heavily used in HPC systems, along with C/R techniques [15]. As
a result, a similar closed-loop approach could be developed for the
optimization of both C/R and redundancy by estimating the reli-
ability characteristics of a system's components and using existing
optimization approaches [29, 26]. Adapting Depman to a combined
redundancy and C/R scheme would require changes in components
2a, 2b and 5, as well as a restatement of the event loop discussed in
Chapter 4.

Alexandros Mavrogiannis Page 56 of 62

Bibliography

[1] Jason Ansel, Kapil Arya, and Gene Cooperman. Dmtcp: Transparent
checkpointing for cluster computations and the desktop. In Parallel
& Distributed Processing, 2009. IPDPS 2009. IEEE International
Symposium on, pages 1--12. IEEE, 2009.

[2] K. Arya, G. Cooperman, A. Dotti, and P. Elmer. Use of checkpoint-
restart for complex hep software on traditional architectures and intel
mic. ArXiv e-prints -- 1311.0272, November 2013.

[3] Algirdas Avizienis, J-C Laprie, Brian Randell, and Carl Landwehr. Ba-
sic concepts and taxonomy of dependable and secure computing. De-
pendable and Secure Computing, IEEE Transactions on, 1(1):11--
33, 2004.

[4] Paolo Bazzigaluppi, Jornt R De Gruijl, Ruben S Van Der Giessen,
Sara Khosrovani, Chris I De Zeeuw, and Marcel TG De Jeu. Olivary
subthreshold oscillations and burst activity revisited. Frontiers in
neural circuits, 6, 2012.

[5] Greg Bronevetsky, Daniel Marques, Keshav Pingali, and Paul
Stodghill. Automated application-level checkpointing of mpi pro-
grams. ACM Sigplan Notices, 38(10):84--94, 2003.

[6] Greg Bronevetsky, Daniel Marques, Keshav Pingali, and Paul
Stodghill. C 3: A system for automating application-level checkpoint-
ing of mpi programs. In Languages and Compilers for Parallel Com-
puting, pages 357--373. Springer, 2004.

[7] John Bruno and Edward G Coffman Jr. Optimal fault-tolerant com-
puting on multiprocessor systems. Acta Informatica, 34(12):881--904,
1997.

[8] Giorgos Chatzikonstantis. Energy aware mapping of a biologically
accurate inferior olive cell model on the single-chip cloud computer.
Technical report, National Technical University of Athens, Sept 2013.

57

BIBLIOGRAPHY

[9] AG Colombo, D Costantini, and RJ Jaarsma. Bayes nonparametric
estimation of time-dependent failure rate. IEEE transactions on re-
liability, 34(2):109--112, 1985.

[10] John Daly. A model for predicting the optimum checkpoint interval
for restart dumps. In Computational Science—ICCS 2003, pages
3--12. Springer, 2003.

[11] John T Daly. A higher order estimate of the optimum checkpoint
interval for restart dumps. Future Generation Computer Systems,
22(3):303--312, 2006.

[12] Jornt R De Gruijl, Paolo Bazzigaluppi, Marcel TG de Jeu, and
Chris I De Zeeuw. Climbing fiber burst size and olivary sub-threshold
oscillations in a network setting. PLoS computational biology,
8(12):e1002814, 2012.

[13] Anand Dixit, Raymond Heald, and Alan Wood. Trends from Ten Years
of Soft Error Experimentation. In IEEE SELSE Workshop, 2009.

[14] Awad El-Gohary. Bayesian estimation of the parameters in two non-
independent component series system with dependent time failure
rate. Applied mathematics and computation, 154(1):41--51, 2004.

[15] James Elliott, Kishor Kharbas, David Fiala, Frank Mueller, Kurt Fer-
reira, and Christian Engelmann. Combining partial redundancy and
checkpointing for hpc. In Distributed Computing Systems (ICDCS),
2012 IEEE 32nd International Conference on, pages 615--626.
IEEE, 2012.

[16] David Fiala, Frank Mueller, Christian Engelmann, Rolf Riesen, and
Kurt Ferreira. Detection and correction of silent data corruption
for large-scale high-performance computing. Poster at the 24th
IEEE/ACM International Conference on High Performance Comput-
ing, Networking, Storage and Analysis (SC) 2011, Seattle, WA, USA,
November 12-18, 2011.

[17] Samuel H Fuller, Lynette I Millett, et al. The Future of Computing
Performance: Game Over or Next Level? National Academies
Press, 2011.

[18] Robert Geist, Robert Reynolds, and James Westall. Selection of a
checkpoint interval in a critical-task environment. Reliability, IEEE
Transactions on, 37(4):395--400, 1988.

[19] T. Grasser, B. Kaczer, W. Goes, H. Reisinger, T. Aichinger, P. Hehen-
berger, P. J Wagner, F. Schanovsky, J. Franco, M.T. Luque, and

Alexandros Mavrogiannis Page 58 of 62

http://sc11.supercomputing.org
http://sc11.supercomputing.org
http://sc11.supercomputing.org

BIBLIOGRAPHY

M. Nelhiebel. The paradigm shift in understanding the bias tem-
perature instability: From reaction-diffusion to switching oxide traps.
Electron Devices, IEEE Transactions on, 58(11):3652--3666, Nov
2011.

[20] Richard W Hamming. Error detecting and error correcting codes. Bell
System technical journal, 29(2):147--160, 1950.

[21] Paul H Hargrove and Jason C Duell. Berkeley lab checkpoint/restart
(blcr) for linux clusters. In Journal of Physics: Conference Series,
volume 46, page 494. IOP Publishing, 2006.

[22] Alan L Hodgkin and Andrew F Huxley. A quantitative description of
membrane current and its application to conduction and excitation in
nerve. The Journal of physiology, 117(4):500, 1952.

[23] Howard, J. et al. A 48-Core IA-32 Processor in 45 nm CMOS Using On-
Die Message-Passing and DVFS for Performance and Power Scaling.
IEEE JSSC, 46(1):173--183, 2011.

[24] Sukriti Jalali. Trends and implications in embedded systems develop-
ment. TCS white paper, 2009.

[25] Jean-Claude Laprie. Dependable computing and fault-tolerance. Di-
gest of Papers FTCS-15, pages 2--11, 1985.

[26] Gregory Levitin, Anatoly Lisnianski, Hanoch Ben-Haim, and David
Elmakis. Redundancy optimization for series-parallel multi-state sys-
tems. Reliability, IEEE Transactions on, 47(2):165--172, 1998.

[27] Yibei Ling, Jie Mi, and Xiaola Lin. A variational calculus approach to
optimal checkpoint placement. Computers, IEEE Transactions on,
50(7):699--708, 2001.

[28] Yudan Liu, Raja Nassar, CB Leangsuksun, Nichamon Naksinehaboon,
Mihaela Paun, and Stephen L Scott. An optimal checkpoint/restart
model for a large scale high performance computing system. In Par-
allel and Distributed Processing, 2008. IPDPS 2008. IEEE Inter-
national Symposium on, pages 1--9. IEEE, 2008.

[29] Guoming Lu, Ziming Zheng, and Andrew A Chien. When is multi-
version checkpointing needed? In Proceedings of the 3rd Workshop
on Fault-tolerance for HPC at extreme scale, pages 49--56. ACM,
2013.

[30] Tim Mattson and Rob van der Wijngaart. Rcce: a small library for
many-core communication. Intel Corporation, May, 2010.

Alexandros Mavrogiannis Page 59 of 62

BIBLIOGRAPHY

[31] Timothy G Mattson, Michael Riepen, Thomas Lehnig, Paul Brett,
Werner Haas, Patrick Kennedy, Jason Howard, Sriram Vangal, Nitin
Borkar, Greg Ruhl, et al. The 48-core scc processor: the programmer's
view. In Proceedings of the 2010 ACM/IEEE International Con-
ference for High Performance Computing, Networking, Storage
and Analysis, pages 1--11. IEEE Computer Society, 2010.

[32] Trent McConaghy, Kristopher Breen, Jeffrey Dyck, and Amit Gupta.
Variation-Aware Design of Custom Integrated Circuits: A Hands-
On Field Guide. Springer, 2013.

[33] A.A. Mendon, R. Sass, Z.K. Baker, and J.L. Tripp. Design and imple-
mentation of a hardware checkpoint/restart core. In Dependable Sys-
tems and Networks Workshops (DSN-W), 2012 IEEE/IFIP 42nd
International Conference on, pages 1--6, June 2012.

[34] Ashwin A Mendon, Ron Sass, Zachary K Baker, and Justin L Tripp.
Design and implementation of a hardware checkpoint/restart core. In
Dependable Systems and Networks Workshops (DSN-W), 2012
IEEE/IFIP 42nd International Conference on, pages 1--6. IEEE,
2012.

[35] Shubu Mukherjee. Architecture design for soft errors. Morgan Kauf-
mann, 2011.

[36] Hang T Nguyen, Yoad Yagil, Norbert Seifert, and Mike Reitsma. Chip-
level soft error estimation method. IEEE Transactions on Device
and Materials Reliability, 5(3):365--381, 2005.

[37] Adam J Oliner, Larry Rudolph, and Ramendra K Sahoo. Cooperative
checkpointing: a robust approach to large-scale systems reliability. In
Proceedings of the 20th annual international conference on Super-
computing, pages 14--23. ACM, 2006.

[38] D. Rodopoulos, P. Weckx, M. Noltsis, F. Catthoor, and D. Soudris.
Atomistic pseudo-transient bti simulation with inherent workload
memory, 2014.

[39] Dimitrios Rodopoulos, Giorgos Chatzikonstantis, Andreas Padelopou-
los, Dimitrios Soudris, Chris I. De Zeeuw, and Christos Strydis. Op-
timal mapping of inferior olive neuron simulations on the single-chip
cloud computer. In Embeded Computer Systems (SAMOS) 2014
International Conference on, 2014.

[40] M. Sadri, A. Bartolini, and L. Benini. Single-chip cloud computer ther-
mal model. In Thermal Investigations of ICs and Systems (THER-

Alexandros Mavrogiannis Page 60 of 62

BIBLIOGRAPHY

MINIC), 2011 17th International Workshop on, pages 1--6, Sept
2011.

[41] Bianca Schroeder and Garth A Gibson. A large-scale study of fail-
ures in high-performance computing systems. Dependable and Secure
Computing, IEEE Transactions on, 7(4):337--350, 2010.

[42] N. Seifert, B. Gill, S. Jahinuzzaman, J. Basile, V. Ambrose, Quan Shi,
R. Allmon, and A. Bramnik. Soft error susceptibilities of 22 nm tri-gate
devices. Nuclear Science, IEEE Transactions on, 59(6):2666--2673,
Dec 2012.

[43] Luís Moura Silva and João Gabriel Silva. System-level versus user-
defined checkpointing. In Reliable Distributed Systems, 1998. Pro-
ceedings. Seventeenth IEEE Symposium on, pages 68--74. IEEE,
1998.

[44] Josh Simons. Hpc cloud bad; hpc in the cloud good. In Parallel and
Distributed Processing Symposium, International, pages 891--891.
IEEE, 2013.

[45] A. Singh and Z. Mourelatos. Time-dependent reliability estimation
for dynamic systems using a random process approach. SAE Inter-
national Journal on Materials and Manufacturing, 3(1):339--355,
2010.

[46] Kevin Skadron, Mircea R. Stan, Karthik Sankaranarayanan, Wei
Huang, Sivakumar Velusamy, and David Tarjan. Temperature-aware
microarchitecture: Modeling and implementation. ACM Trans. Ar-
chit. Code Optim., 1(1):94--125, March 2004.

[47] TOP500 Supercomputer Sites. Cores per socket - performance share,
May 2014.

[48] John Paul Walters and Vipin Chaudhary. Application-level check-
pointing techniques for parallel programs. In Distributed Computing
and Internet Technology, pages 221--234. Springer, 2006.

[49] Weiwen Wang and Zhiqiang Gao. A comparison study of advanced
state observer design techniques. In American Control Conference,
2003. Proceedings of the 2003, volume 6, pages 4754--4759. IEEE,
2003.

[50] John W Young. A first order approximation to the optimum check-
point interval. Communications of the ACM, 17(9):530--531, 1974.

Alexandros Mavrogiannis Page 61 of 62

Chapter 7

Appendix

7.1 Source Code
The latest version of the source code of the Depman tool can be found
at https://github.com/afein/depman . The software is licensed under the
GPLv3 license.
Copyright (C) 2014 Alexandros Mavrogiannis
This program is free software: you can redistribute it and/or modify it un-
der the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.
This program is distributed in the hope that it will be useful, but WITH-
OUT ANY WARRANTY; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program. If not, see <http://www.gnu.org/licenses/>.

62

	Introduction
	Prior Art
	Introduction
	Checkpoint/Restart
	System-level and Application-Level C/R
	Modelling C/R

	Error Profiles
	Checkpoint Interval Optimization
	Periodic Checkpointing Approximations
	Aperiodic Checkpointing Techniques

	Experimental Setup
	Target Platform & Application
	Dependability Threats
	Available Countermeasures
	Checkpoint/Restart Implementation for the InfOli simulator
	Introduction
	Synchronization
	Restart Procedure

	Injection Campaign

	Depman Tool
	Introduction
	Core Tool
	Diagnostics & Countermeasures
	Diagnostic Interface
	Implemented Diagnostics
	Countermeasure Procedures

	Thermal-Aware Task Reallocation
	Distinctions of SDC and DUE Checkpoints

	Checkpoint Interval Optimization
	Introduction
	Optimal Checkpoint Interval
	Moving Average Estimation
	Efficiency Evaluation
	Constant MTTFDUE
	Time-varying MTTFDUE

	Conclusions
	General Remarks
	Future Work

	Bibliography
	Appendix
	Source Code

