

National Technical University of Athens (NTUA)

School of Civil Engineering

Institute of Structural Analysis and Antiseismic Research

Massively Parallel Implementation of
Finite Element, Meshless and

Isogeometric Analysis Methods
in Computational Mechanics

PhD Dissertation

by

Alexander Karatarakis

Advisor:

Professor Manolis Papadrakakis

May 2014

National Technical University of Athens
School of Civil Engineering

Institute of Structural Analysis and Antiseismic Research

Massively Parallel Implementation of
Finite Element, Meshless and

Isogeometric Analysis Methods
in Computational Mechanics

by Alexander Karatarakis

Advisor:
Professor Manolis Papadrakakis

Athens,
May 2014

Εθνικό Μετσόβιο Πολυτεχνείο
Σχολή Πολιτικών Μηχανικών

Εργαστήριο Στατικής και Αντισεισμικών Ερευνών

Προσομοίωση κατασκευών με
πεπερασμένα στοιχεία, μη-πλεγματικές
μεθόδους και ισογεωμετρικές μεθόδους

σε περιβάλλον μαζικής πολυεπεξεργασίας

από τον Αλέξανδρο Καραταράκη

Επιβλέπων:
Καθηγητής Μανόλης Παπαδρακάκης

Αθήνα,
Μάιος 2014

Dedicated to my parents

Manolis and Anastasia,

and my brother

Aris

© Copyright 2014
by Alexander Karatarakis

All Rights Reserved

PhD Examination Committee

I certify that I have read this dissertation and that in my opinion it is fully adequate, in scope and
quality, as a dissertation for the degree of Doctor of Philosophy.

Manolis Papadrakakis

Professor
(Principal Advisor)

School of Civil Engineering
National Technical University of Athens

I certify that I have read this dissertation and that in my opinion it is fully adequate, in scope and
quality, as a dissertation for the degree of Doctor of Philosophy.

Andreas Boudouvis

Professor
(Member of advisory committee)
School of Chemical Engineering

National Technical University of Athens

I certify that I have read this dissertation and that in my opinion it is fully adequate, in scope and
quality, as a dissertation for the degree of Doctor of Philosophy.

Vissarion Papadopoulos

Assistant Professor
(Member of advisory committee)

School of Civil Engineering
National Technical University of Athens

I certify that I have read this dissertation and that in my opinion it is fully adequate, in scope and
quality, as a dissertation for the degree of Doctor of Philosophy.

Kyriakos C. Giannakoglou

Professor
School of Mechanical Engineering

National Technical University of Athens

I certify that I have read this dissertation and that in my opinion it is fully adequate, in scope and
quality, as a dissertation for the degree of Doctor of Philosophy.

Nectarios Koziris

Professor
School of Electrical and Computer Engineering

National Technical University of Athens

I certify that I have read this dissertation and that in my opinion it is fully adequate, in scope and
quality, as a dissertation for the degree of Doctor of Philosophy.

Konstantinos V. Spiliopoulos

Associate Professor
School of Civil Engineering

National Technical University of Athens

I certify that I have read this dissertation and that in my opinion it is fully adequate, in scope and
quality, as a dissertation for the degree of Doctor of Philosophy.

Nikos D. Lagaros

Assistant Professor
School of Civil Engineering

National Technical University of Athens

Abstract

The primary purpose of engineering analysis is to provide a numerical simulation of a physical

phenomenon in a way that is accurate but also computationally feasible. The need to accurately

simulate various physical processes in complex geometries is important, and has perplexed

scientists for many years. The up-to-date simulation methods can accurately model the physical

domain but often require high computational effort. A simulation needs to be performed within a

reasonable time-frame with the given computational resources in order to be affordable in real-

world applications. Thus, an important aspect in terms of feasibility is the efficient implementation

of a simulation method that enables its application in large-scale problems. While the prevailing

cost in traditional finite element analysis (FEA) is in the solution phase, the main drawback of

meshless methods (MMs) and isogeometric analysis (IGA) when addressing real-world problems is

the high cost for the formulation of the characteristic matrices. Therefore, in order to make them

efficient in large-scale simulations, these methods require massively parallel algorithms not only for

the solution phase but also for the assembly phase.

The aim of this work is to accelerate computationally expensive parts of simulation methods in a

manner that is both efficient and scalable. Algorithms in the context of this aim are explored and

implemented in this work. For the solution phase, domain decomposition is an attractive option as it

splits the domain into several subdomains and allows their concurrent solution. As for the

formulation phase, assembling the matrix by non-zero allows different parts of the matrix to be

calculated in parallel. The calculations involved in a particular algorithm must be performed

efficiently. Hence, calculations like matrix operations, which are omnipresent in the simulation,

should be handled appropriately. Each matrix format has its own strengths and weaknesses and

should be used for the task it is most suitable for. All of the above are combined with GPUs

(graphics processing units), which have been attracting a lot of attention in recent years due to their

remarkable performance features. GPU implementations are developed, for the solution phase in

FEA and the formulation phase of MMs and IGA, which led to a great reduction of the time

required for the simulation of a particular model.

The Ph.D. dissertation is organized a follows: Chapter 1 introduces the aims and objectives. Chapter

2 describes the three methods used in this work, i.e. FEM, MMs (focusing on element-free Galerkin

methods - EFG) and IGA. The test examples that are used throughout this work are outlined here.

xiii

Chapter 3 is dedicated to domain decomposition solution methods. Chapter 4 presents graphics

processing units (GPUs) and their characteristic properties, while Chapter 5 deals with the handling

of matrices that are frequently encountered in simulation implementations. Chapter 6 contains the

hybrid CPU-GPU implementation of the FETI domain decomposition method along with

supporting numerical results. Relations between the basic entities (nodes, Gauss points, control

points) are discussed in Chapter 7. Chapter 8 is dedicated to the formulation of the characteristic

matrices of the simulation methods. Chapter 9 concludes with an overview of the present work,

followed by the appendix, which includes supporting material, and bibliography.

xiv

Σύντομη Περίληψη

Η αριθμητική προσομοίωση κατασκευών και άλλων φορέων πρέπει να γίνεται με ένα τρόπο που

προσφέρει ικανοποιητική ακρίβεια ενώ είναι υπολογιστικά εφικτός. Σε περιπτώσεις πολύπλοκης

γεωμετρίας, η ακριβής προσομοίωση του φορέα είναι ένα από τα σημαντικότερα προβλήματα που

αντιμετωπίζουν οι μηχανικοί. Οι σύγχρονες μέθοδοι προσομοίωσης μπορούν να προσφέρουν την

επιθυμητή ακρίβεια αλλά πολλές φορές έχουν υψηλό υπολογιστικό κόστος. Για να είναι μια

προσομοίωση εφαρμόσιμη σε πραγματικά προβλήματα, θα πρέπει να πραγματοποιείται σε λογικά

υπολογιστικά χρονικά πλαίσια. Επομένως, ένας σημαντικός παράγοντας για την εφαρμογή των

προσομοιώσεων στην πράξη είναι η αποδοτική υλοποίηση τους, η οποία θα επιτρέψει την

εφαρμογή τους σε προβλήματα μεγάλης κλίμακας. Στις κλασικές μεθόδους πεπερασμένων

στοιχείων (FEA) το μεγαλύτερο κόστος βρίσκεται στην επίλυση των αλγεβρικών εξισώσεων. Σε μη

πλεγματικές μεθόδους (MMs) καθώς και στην ισογεωμετρική ανάλυση (IGA), το κόστος για την

κατασκευή των χαρακτηριστικών μητρώων (π.χ. μητρώο στιβαρότητας) είναι ιδιαίτερα υψηλό.

Επομένως, για να μπορούν αυτές οι μέθοδοι να αξιοποιηθούν σε προβλήματα μεγάλης κλίμακας,

απαιτούνται τεχνικές μαζικής πολυεπεξεργασίας όχι μόνο για την επίλυση αλλά και για τη φάση

κατασκευής των χαρακτηριστικών μητρώων, τα οποία απαιτούν αριθμητική ολοκλήρωση.

Ο σκοπός της παρούσας διατριβής είναι η επιτάχυνση των υπολογιστικά απαιτητικών φάσεων των

μεθόδων αριθμητικής προσομοίωσης με βασικά κριτήρια την αποδοτικότητα και επεκτασιμότητα

σε παράλληλο υπολογιστικό περιβάλλον. Για την επίλυση των εξισώσεων, οι μέθοδοι υποφορέων

είναι ιδιαίτερα ελκυστικές καθώς χωρίζουν το φορέα σε πολλούς υποφορείς και επιτρέπουν την

ταυτόχρονη επίλυσή τους. Όσον αφορά τη φάση κατασκευής των χαρακτηριστικών μητρών, ο

υπολογισμός με βάση τα μη μηδενικά στοιχεία του μητρώου επιτρέπει την παράλληλη υλοποίησή

τους. Οι αριθμητικές πράξεις που πραγματοποιούνται κατά την εκτέλεση ενός αλγορίθμου πρέπει

να γίνονται αποδοτικά. Επομένως, υπολογισμοί όπως πράξεις με μητρώα θέλουν ιδιαίτερη

προσοχή. Κάθε τύπος μητρώου είναι κατάλληλος για διαφορετικές λειτουργίες και πρέπει να

χρησιμοποιείται κατάλληλα. Όλα τα παραπάνω συνδυάζονται με τις κάρτες γραφικών (GPUs) οι

οποίες έχουμε εξαιρετικές δυνατότητες για παράλληλους υπολογισμούς. Σε αυτή τη διατριβή

υλοποιούνται κώδικες για κάρτες γραφικών για τη φάση επίλυσης στη μέθοδο των πεπερασμένων

στοιχείων καθώς και τη φάση κατασκευής των χαρακτηριστικών μητρώων στις μη-πλεγματικές και

στις ισογεωμετρικές μεθόδους με σκοπό τη σημαντική μείωση του χρόνου εκτέλεσης της

xv

προσομοίωσης.

Η διατριβή οργανώνεται ως εξής: στο εισαγωγικό κεφάλαιο 1 παρουσιάζονται οι στόχοι και το

αντικείμενο της διατριβής. Το κεφάλαιο 2 περιγράφει τις τρεις αριθμητικές μεθόδους που

χρησιμοποιούνται, δηλαδή η μέθοδος πεπερασμένων στοιχείων, οι μη-πλεγματικές μέθοδοι καθώς

και η μέθοδος ισογεωμετρικής ανάλυσης, ενώ παρουσιάζονται και τα παραδείγματα που θα

χρησιμοποιηθούν και χρονομετρηθούν στα επόμενα κεφάλαια. Το κεφάλαιο 3 είναι αφιερωμένο

στις μεθόδους υποφορέων. Το κεφάλαιο 4 παρουσιάζει τις κάρτες γραφικών και τα χαρακτηριστικά

τους στοιχεία ενώ το κεφάλαιο 5 αναλύει το χειρισμό των μητρώων και τα διάφορα είδη που

χρησιμοποιούνται. Το κεφάλαιο 6 περιλαμβάνει την υλοποίηση της μεθόδου υποφορέων FETI σε

υβριδικό (CPU-GPU) περιβάλλον. Οι σχέσεις μεταξύ των βασικών οντοτήτων (κόμβοι, σημεία

Gauss, σημεία ελέγχου) αναλύονται στο κεφάλαιο 7. Το κεφάλαιο 8 εστιάζει στη μορφοποίηση των

χαρακτηριστικών μητρώων των μεθόδων προσομοίωσης. Το κεφάλαιο 9 κλείνει με μια

ανακεφαλαίωση αυτής της διατριβής και ακολουθεί παράρτημα με υποστηρικτικό υλικό και

βιβλιογραφία.

xvi

Εκτενής Περίληψη

1 Εισαγωγή

Η αριθμητική προσομοίωση κατασκευών και άλλων φορέων πρέπει να γίνεται με ένα τρόπο που

προσφέρει ικανοποιητική ακρίβεια ενώ είναι υπολογιστικά εφικτός. Σε περιπτώσεις πολύπλοκης

γεωμετρίας, η ακριβής προσομοίωση του φορέα είναι ένα από τα σημαντικότερα προβλήματα που

αντιμετωπίζουν οι μηχανικοί. Οι σύγχρονες μέθοδοι προσομοίωσης μπορούν να προσφέρουν την

επιθυμητή ακρίβεια αλλά πολλές φορές έχουν υψηλό υπολογιστικό κόστος. Για να είναι μια

προσομοίωση εφαρμόσιμη σε πραγματικά προβλήματα, θα πρέπει να πραγματοποιείται σε λογικά

υπολογιστικά χρονικά πλαίσια. Επομένως, ένας σημαντικός παράγοντας για την εφαρμογή των

προσομοιώσεων στην πράξη είναι η αποδοτική υλοποίηση τους, η οποία θα επιτρέψει την

εφαρμογή τους σε προβλήματα μεγάλης κλίμακας. Στις κλασικές μεθόδους πεπερασμένων

στοιχείων (FEA) το μεγαλύτερο κόστος βρίσκεται στην επίλυση των αλγεβρικών εξισώσεων. Σε μη

πλεγματικές μεθόδους (MMs) καθώς και στην ισογεωμετρική ανάλυση (IGA), το κόστος για την

κατασκευή των χαρακτηριστικών μητρώων (π.χ. μητρώο στιβαρότητας) είναι ιδιαίτερα υψηλό.

Επομένως, για να μπορούν αυτές οι μέθοδοι να αξιοποιηθούν σε προβλήματα μεγάλης κλίμακας,

απαιτούνται τεχνικές μαζικής πολυεπεξεργασίας όχι μόνο για την επίλυση αλλά και για τη φάση

κατασκευής των χαρακτηριστικών μητρώων, τα οποία απαιτούν αριθμητική ολοκλήρωση.

Ο σκοπός της παρούσας διατριβής είναι η επιτάχυνση των υπολογιστικά απαιτητικών φάσεων των

μεθόδων αριθμητικής προσομοίωσης με βασικά κριτήρια την αποδοτικότητα και επεκτασιμότητα

σε παράλληλο υπολογιστικό περιβάλλον. Για την επίλυση των εξισώσεων, οι μέθοδοι υποφορέων

είναι ιδιαίτερα ελκυστικές καθώς χωρίζουν το φορέα σε πολλούς υποφορείς και επιτρέπουν την

ταυτόχρονη επίλυσή τους. Όσον αφορά τη φάση κατασκευής των χαρακτηριστικών μητρών, ο

υπολογισμός με βάση τα μη μηδενικά στοιχεία του μητρώου επιτρέπει την παράλληλη υλοποίησή

τους. Οι αριθμητικές πράξεις που πραγματοποιούνται κατά την εκτέλεση ενός αλγορίθμου πρέπει

να γίνονται αποδοτικά. Επομένως, υπολογισμοί όπως πράξεις με μητρώα θέλουν ιδιαίτερη

προσοχή. Κάθε τύπος μητρώου είναι κατάλληλος για διαφορετικές λειτουργίες και πρέπει να

χρησιμοποιείται κατάλληλα. Όλα τα παραπάνω συνδυάζονται με τις κάρτες γραφικών (GPUs) οι

οποίες έχουμε εξαιρετικές δυνατότητες για παράλληλους υπολογισμούς. Σε αυτή τη διατριβή

υλοποιούνται κώδικες για κάρτες γραφικών για τη φάση επίλυσης στη μέθοδο των πεπερασμένων

στοιχείων καθώς και τη φάση κατασκευής των χαρακτηριστικών μητρώων στις μη-πλεγματικές και

στις ισογεωμετρικές μεθόδους με σκοπό τη σημαντική μείωση του χρόνου εκτέλεσης της

xvii

προσομοίωσης.

2 Μέθοδοι προσομοίωσης

Η ανάγκη ακριβούς προσομοίωσης διαφόρων φυσικών φαινομένων σε πολύπλοκες γεωμετρίες

είναι σημαντική και έχει αποτελέσει αντικείμενο εντατικής έρευνας από επιστήμονες και

μηχανικούς. Η πιο διαδεδομένη μέθοδος προσομοίωσης είναι η μέθοδος πεπερασμένων στοιχείων

(FEM/FEA). Την τελευταία δεκαετία, δύο ακόμα μέθοδοι προσομοίωσης έχουν τραβήξει την

προσοχή της επιστημονικής κοινότητας: οι μη-πλεγματικές/meshless μέθοδοι (MMs) και η

ισογεωμετρική ανάλυση (IGA). Και οι δύο έχουν πλεονεκτήματα σε σχέση με τα πεπερασμένα

στοιχεία, έχουν όμως και κάποιες αδυναμίες. Ένα από τα μειονεκτήματα και των δύο μεθόδων είναι

ότι έχουν σημαντικά αυξημένο κόστος για τη μορφοποίηση των χαρακτηριστικών μητρώων.

2.1 Μη-πλεγματικές/Meshless μέθοδοι

Υπάρχουν πολλές αριθμητικές μέθοδοι προσομοίωσης για την επίλυση προβλημάτων μηχανικής

και οι μέθοδοι που βασίζονται σε πλέγματα (δίκτυα) χρησιμοποιούνται ευρέως. Σε τέτοιες

μεθόδους, όπως πεπερασμένα στοιχείων, πεπερασμένων διαφορών και πεπερασμένων όγκων, κάθε

σημείο έχει σταθερό αριθμό προκαθορισμένων “γειτόνων”. Σε προσομοιώσεις όπου το υλικό προς

προσομοίωση μπορεί να κινηθεί (όπως στην υπολογιστική ρευστοδυναμική) ή σε περιπτώσεις όπου

το υλικό μπορεί να υποστεί μεγάλες παραμορφώσεις (όπως σε προσομοιώσεις πλαστικών υλικών),

η συνδεσιμότητα του δικτύου είναι δύσκολο να διατηρηθεί χωρίς την εισαγωγή σφαλμάτων στην

προσομοίωση. Αν το δίκτυο εκφυλιστεί, τα αποτελέσματα θα έχουν ανακρίβειες. Η κατάσταση

μπορεί να βελτιωθεί με χρήση τεχνικών που αναδιαμορφώνουν το δίκτυο, αλλά ακόμα και σε αυτή

την περίπτωση εισάγονται σφάλματα ενώ αυξάνεται και το υπολογιστικό κόστος. Επιπλέον,

πολύπλοκες γεωμετρίες είναι δύσκολο να προσομοιωθούν με μεθόδους βασισμένες σε πλέγματα.

Οι μη-πλεγματικές μέθοδοι (MMs) είναι μια ιδιαίτερα ελκυστική οικογένεια μεθόδων λόγω του ότι

είναι απλές, ακριβείς και δε χρειάζονται δίκτυο. Πιο συγκεκριμένα, δε χρειάζονται δίκτυο που να

συνδέει τα χαρακτηριστικά σημεία του φορέα που προσομοιώνεται. Οι μη-πλεγματικές μέθοδοι

επιτρέπουν την προσομοίωση προβλημάτων που θα ήταν δύσκολη σε άλλη περίπτωση.

Προσφέρουν λύσεις με αυξημένη ακρίβεια, ενώ αποφεύγουν τους περιορισμούς και τις αδυναμίες

που έχουν σχέση με το πλέγμα. Επιπλέον, μειώνεται ο χρόνος που απαιτείται για ανθρώπινες

xviii

επεμβάσεις σε σχέση με τις πλεγματικές μεθόδους που πολλές φορές τις χρειάζονται για τη

δημιουργία χρήσιμων δικτύων. Οι μη-πλεγματικές μέθοδοι μπορούν εύκολα να χειριστούν τη

δημιουργία/καταστροφή χαρακτηριστικών σημείων κατά τη διάρκεια της προσομοίωσης, μεγάλες

παραμορφώσεις καθώς και ασυνέχειες που δεν είναι ευθυγραμμισμένες με τις πλευρές των

στοιχείων. Η υψηλότερη ποιότητα της ανάλυσης συνοδεύεται όμως και από υψηλό υπολογιστικό

κόστος για την κατασκευή των μητρώων (κυρίως) αλλά και την επίλυση των αλγεβρικών

εξισώσεων. Συγκεκριμένα, τα χαρακτηριστικά μητρώα έχουν πιο εκτεταμένο εύρος ζώνης

(bandwidth), είναι πιο πυκνά και η πολυπλοκότητα της μορφοποίησης είναι σημαντικά αυξημένη.

2.1.1 Παραδείγματα EFG

Τα παραδείγματα που αναλύονται είναι με τη μέθοδο element-free Galerkin (EFG). Σε σχέση με

άλλους γεωμετρικούς φορείς με την ίδια πυκνότητα (όσον αφορά τον αριθμό των σημείων σε μια

συγκεκριμένη περιοχή), οι επιλεγμένοι φορείς μεγιστοποιούν τον αριθμό των συσχετίσεων μεταξύ

κόμβων-σημείων Gauss και μεταξύ κόμβων-κόμβων. Τα παραδείγματα είναι προβλήματα

γραμμικής ελαστικότητας σε 2D (τετράγωνα) και 3D (κύβοι). Λεπτομέρειες για τα παραδείγματα

δίνονται στον πίνακα 2.1. Σε όλες τις περιπτώσεις, το πεδίο επιρροής είναι ορθογωνικό με

παράμετρο απόστασης 2.5.

2.2 Ισογεωμετρική ανάλυση

Η ισογεωμετρική ανάλυση (Isogeometric Analysis - IGA) μπορεί να λύσει προβλήματα

συνοριακών τιμών χρησιμοποιώντας τις ίδιες συναρτήσεις σχήματος που έχουν υιοθετηθεί από τη

σχεδιαστική (CAD) κοινότητα για την περιγραφή της γεωμετρίας και για τη δημιουργία της

αριθμητικής προσέγγισης της επίλυσης. Παρά την πολλά υποσχόμενη μεθοδολογία και

πλεονεκτήματα σε σχέση με τα πεπερασμένα στοιχεία, ο υπολογισμός του μητρώου δυσκαμψίας,

xix

Table 2.1: 2D και 3D παραδείγματα EFG

Nodes dof

2D-1 25,921 51,842 102,400
2D-2 76,125 152,250 300,304
2D-3 126,025 252,050 501,264
3D-1 9,261 27,783 64,000
3D-2 19,683 59,049 140,608
3D-3 35,937 107,811 262,144

EFG
Example

Gauss
points

μάζας και απόσβεσης είναι πιο δυσχερής. Λόγω της υψηλότερης συνέχειας μεταξύ στοιχείων, η

μέθοδος παράγει πολύ περισσότερα στοιχεία από τη μέθοδο των πεπερασμένων στοιχείων για τον

ίδιο αριθμό βαθμών ελευθερίας. Αυτό συνεπάγεται μεγαλύτερο αριθμό σημείων Gauss και κατ'

επέκταση αύξηση του υπολογιστικού κόστους για την κατασκευή των χαρακτηριστικών μητρώων.

2.2.1 Παραδείγματα IGA

Τα παραδείγματα που εξετάζονται είναι τετράγωνα και κύβοι στον παραμετρικό χώρο ώστε να

μεγιστοποιούν τον αριθμό των αλληλοσυσχετίσεων σε σχέση με άλλους ορθογωνικούς φορείς. Τα

παραδείγματα είναι σε 2D και 3D γραμμική ελαστικότητα. Οι συναρτήσεις σχήματος που

χρησιμοποιούνται είναι βασισμένες σε NURBS (non-uniform rational B-splines) και λεπτομέρειες

για τα παραδείγματα δίνονται στον πίνακα 2.2. Το παράδειγμα P i− j αντιστοιχεί σε τάξη p=i

της συνάρτησης βάσης, ενώ μεγαλύτερο j υποδηλώνει μεγαλύτερο παράδειγμα σε σύγκριση με τα

παραδείγματα της ίδιας ομάδας.

xx

Table 2.2: 2D και 3D παραδείγματα IGA

p n dof Elements

2D

P2-1 2 225 50,625 101,250 49,729 9 447,561
P2-2 2 500 250,000 500,000 248,004 9 2,232,036
P2-3 2 633 400,689 801,378 398,161 9 3,583,449
P3-1 3 225 50,625 101,250 49,284 16 788,544
P3-2 3 320 102,400 204,800 100,489 16 1,607,824
P3-3 3 388 150,544 301,088 148,225 16 2,371,600
P4-1 4 160 25,600 51,200 24,336 25 608,400
P4-2 4 225 50,625 101,250 48,841 25 1,221,025
P4-3 4 275 75,625 151,250 73,441 25 1,836,025

3D

P2-1 2 19 6,859 20,577 4,913 27 132,651
P2-2 2 26 17,576 52,728 13,824 27 373,248
P2-3 2 33 35,937 107,811 29,791 27 804,357
P3-1 3 19 6,859 20,577 4,096 64 262,144
P3-2 3 21 9,261 27,783 5,832 64 373,248
P3-3 3 26 17,576 52,728 12,167 64 778,688
P4-1 4 15 3,375 10,125 1,331 125 166,375
P4-2 4 17 4,913 14,739 2,197 125 274,625
P4-3 4 19 6,859 20,577 3,375 125 421,875

IGA
Example

Control
points

Gauss point
per element

Gauss
points

2.3 Παραδείγματα FEA

Η απόδοση της φάσης επίλυσης με πεπερασμένα στοιχεία παρουσιάζεται μέσω παραμετρικής

ανάλυσης 3D προβλημάτων γραμμικής ελαστικότητας σε έναν κύβο. Ο φορέας είναι πλήρως

δεσμευμένος στην κάτω επιφάνεια, και μερικώς δεσμευμένος κατά τις οριζόντιες διευθύνσεις στις

πλαϊνές πλευρές ενώ η πάνω επιφάνεια δέχεται ισοκατανεμημένο φορτίο. Ο φορέας είναι

διαχωρισμένος με 8-κομβικά εξαεδρικά στοιχεία. Το τελικό σύστημα έχει 1,058,610 βαθμούς

ελευθερίας (β.ε). Η επίλυση γίνεται με μεθόδους υποφορέων, οπότε ο φορέας χωρίζεται σε

υποφορείς, ο αριθμός των οποίων κυμαίνεται από 125 μέχρι 2744. Ο διαχωρισμός σε 125

υποφορείς φαίνεται στο σχήμα 2.1. Ο πίνακας 2.3 δείχνει τους β.ε του κάθε υποφορέα καθώς και

τους β.ε. του συνοριακού προβλήματος για τους διάφορους διαχωρισμούς σε υποφορείς.

xxi

Fig. 2.1:. Διαχωρισμός του φορέα
σε 125 υποφορείς

Table 2.3: Παραδείγματα FEA

Interface dof

125 10,119 49,920
175 7,419 76,800
245 5,439 118,080
343 3,987 181,440
490 2,898 276,480
700 2,106 421,200

1000 1,530 641,520
1400 1,146 935,280
1960 858 1,363,440
2744 642 1,987,440

Number of
subdomains

Subdomain
dof

3 Μέθοδοι υποφορέων

Οι μέθοδοι υποφορέων (domain decomposition methods - DDM) αποτελούν μια από τις

βασικότερες κατηγορίες μεθόδων επίλυσης για πολλά προβλήματα προσομοίωσης στην

εφαρμοσμένη μηχανική. Η κύρια συνοριακή μέθοδος (primal DDM) οδηγεί στην επίλυση του

αρχικού συστήματος μέσω της επίλυσης του συνοριακού προβλήματος “κύριων” μεταβλητών

(συνήθως μετατοπίσεις) μετά την απαλοιφή όλων των εσωτερικών βαθμών ελευθερίας (β.ε) των

υποφορέων. Η δυϊκή συνοριακή μέθοδος (dual DDM) υπολογίζει τους πολλαπλασιαστές Lagrange

που απαιτούνται για την επιβολή της συνέχειας μεταξύ των υποφορέων μετά την απαλοιφή όλων

των β.ε των υποφορέων (και εσωτερικών αλλά και συνοριακών). Και οι δύο κατηγορίες, κύρια και

δυϊκή, μελετούνται διεξοδικά και έχουν ενσωματωθεί σε εμπορικούς κώδικες.

Ο φορέας του σχήματος 3.1 χωρίζεται σε δύο υποφορείς. Οι συνοριακοί β.ε σημειώνονται με b

(boundary). Οι υπόλοιποι β.ε θεωρούνται εσωτερικοί και συμβολίζονται με i (internal).

xxii

Fig. 3.1: Φορέας χωρισμένος σε δύο υποφορείς

Subdomain 1 Subdomain 2

boundary (b)

3.1 Η κύρια συνοριακή μέθοδος

Η κύρια συνοριακή μέθοδος μειώνει τη διάσταση του συστήματος με χρήση στατικής

συμπύκνωσης. Το αρχικό σύστημα είναι:

K u=f (3.1)

Αν οι εσωτερικοί β.ε του κάθε υποφορέα αριθμηθούν πρώτα, αφήνοντας τους συνοριακούς β.ε για

το τέλος, τότε το σύστημα παίρνει τη μορφή:

[
K ii
(1)

… 0 K ib
(1)

K ii
(2)

… 0 K ib
(2)

⋮ ⋮ ⋮ ⋮

0 0 … K ii
(ns) K ib

(n s)

Kbi
(1) Kbi

(2)
… Kbi

(ns) Kbb

] [
u i
(1)

u i
(2)

⋮

u i
(ns)

ub

]=[
f i
(1)

f i
(2)

⋮

f i
(n s)

f b

] (3.2)

u i
s
=(K ii

s)
−1

f i
s
−(K ii

s)
−1

K ib
s ub (3.3)

Το μητρώο δυσκαμψίας του συνόρου και το διάνυσμα των δυνάμεων είναι:

K bb=∑
s=1

n s

Kbb
s f b=∑

s=1

ns

f b
s (3.4)

Στην κύρια συνοριακή μέθοδο, όλοι οι εσωτερικοί β.ε συμπυκνώνονται στους συνοριακούς β.ε. Η

στατική συμπύκνωση δίνεται από την παρακάτω σχέση:

(Kbb−∑
s=1

ns

Kbi
s (Kii

s)
−1

K ib
s)

⏟
K̂c≡S

ub=f b−∑
s=1

ns

Kbi
s (Kii

s)
−1

f i
s

⏟
f̂ c≡f̂b

(3.5)

S ub=f̂ b (3.6)

Το μητρώο S αναφέρεται στη βιβλιογραφία ως “Schur complement”.

xxiii

3.2 Η δυϊκή συνοριακή μέθοδος

Στη δυϊκή συνοριακή μέθοδο, μορφώνεται και επιλύεται το συνοριακό πρόβλημα υποφορέων στο

οποίο άγνωστοι είναι οι πολλαπλασιαστές Lagrange οι οποίοι αντιπροσωπεύουν τις

ενδοσυνοριακές δυνάμεις μεταξύ των υποφορέων. Η μέθοδος αναφέρεται συχνά στη βιβλιογραφία

ως FETI (finite element tearing and interconnecting) και έχει αποδειχτεί ότι είναι πολύ αποδοτική

για την επίλυση προβλημάτων μεγάλης κλίμακας σε παράλληλα συστήματα με κοινή και

κατανεμημένη μνήμη.

Οι εξισώσεις ισορροπίας του χωρισμένου φορέα είναι (γενική μορφή + παράδειγμα με 2

υποφορείς):

K g ug
=f g [K

(1) 0
0 K(2)][u

(1)

u(2)]=[f
(1)

f (2)] (3.7)

Για τη διατήρηση της συνέχειας του φορέα, οι μετατοπίσεις των συνοριακών βαθμών πρέπει να

είναι ίσες και για τους δύο υποφορείς.

xxiv

Fig. 3.2: Εξισώσεις υποφορέων και περιορισμοί

13 14 15 16 17 18

7 8 9 10 11 12

1 2 3 4 5 6

K(1)u(1)=f (1)− (B(1))
Τ

λ K(2)u(2)=f (2)−(B(2))
Τ

λ∑
s=1

N s

Bs us
=0

∑
s=1

n s

Bs us
=0 uboundary

(1) =uboundary
(2) (3.8)

όπου B είναι ένα προσημασμένο Boolean μητρώο.

Το αρχικό καθολικό πρόβλημα, που περιγράφεται από την εξίσωση (3.1) μετατρέπεται στο

πρόβλημα υποφορέων που περιγράφεται από τις παρακάτω σχέσεις:

K g ug
=f g

−∑
s=1

ns

(B s)
T

λ

(3.9)

υπό τις συνθήκες: ∑
s=1

n s

Bs u s
=0

όπου λ είναι οι ενδοσυνοριακές δυνάμεις των υποφορέων όπως φαίνεται και στο σχήμα 3.2. Οι

εξισώσεις ισορροπίας για κάθε υποφορέα s είναι:

K s u s
=f s

−(B s)
Τ

λ (3.10)

xxv

4 Κάρτες γραφικών (Graphics Processing Units - GPUs)

Η υλοποίηση επιστημονικών εφαρμογών σε κάρτες γραφικών είναι ιδιαίτερα ενδιαφέρουσα λόγω

του χαμηλού κόστους και των εξαιρετικών εγγενών χαρακτηριστικών τους. Λόγω των απαιτήσεων

της βιομηχανίας παιχνιδιών, οι κάρτες γραφικών έχουν εξελιχθεί σημαντικά τα τελευταία χρόνια

και παρουσιάζουν αξιοσημείωτη απόδοση. Αρχικά, οι αριθμητικές πράξεις έπρεπε να γίνουν

έμμεσα, μέσω διαδικασιών που ήταν προορισμένες για γραφικά και με χρήση βιβλιοθηκών για

γραφικά όπως openGL και DirectX. Οι υλοποιήσεις σε GPU διευκολύνθηκαν σημαντικά με την

πρώτη έκδοση του CUDA-SDK, που οδήγησε σε γρήγορη ανάπτυξη του προγραμματισμού σε

GPU καθώς και την εμφάνιση υπερυπελογιστών που τις αξιοποιούν, όπως φαίνεται στα Top 500

supercomputers. Σε αντίθεση με τις CPUs που έχουν στόχο να εκτελέσουν μια διεργασία πολύ

γρήγορα, οι GPUs έχουν εγγενώς παράλληλη αρχιτεκτονική που εστιάζει στην εκτέλεση πολλών

παράλληλων διεργασιών ταυτόχρονα.

Οι κάρτες γραφικών είναι παράλληλες συσκευές κατηγορίας SIMD (single instruction, multiple

data), δηλαδή συσκευές με πολλά επεξεργαστικά στοιχεία που εκτελούν την ίδια διαδικασία σε

διαφορετικά δεδομένα παράλληλα, εκμεταλλευόμενες έτσι την παραλληλία σε επίπεδο δεδομένων.

Ο προγραμματισμός σε “γλώσσες” CUDA ή openCL περιλαμβάνει απλώς κάποιες επεκτάσεις στη

C και άρα δεν απαιτεί εξειδικευμένη γνώση πάνω σε διεργασίες που αφορούν γραφικά. Στα πλαίσια

των openCL και CUDA, η CPU αναφέρεται ως “host” ενώ η GPU αναφέρεται ως “device”. Η

γενική ροή του προγραμματισμού σε GPU απεικονίζεται στο σχήμα 4.1.

xxvi

1. Μεταφορά δεδομένων στη μνήμη της GPU

2. CPU: εντολές προς GPU

3. GPU: παράλληλη επεξεργασία

4. Μεταφορά αποτελεσμάτων στην κεντρική
μνήμη

Fig. 4.1: Ροή επεξεργασίας με GPU

Device/GPU

Motherboard

Main Memory Host/CPU

GPU Global
Memory

Streaming
Multiprocessors

2 31 4

4.1 CPU vs GPU

Οι κάρτες γραφικών έχουν τη δυνατότητα να κάνουν πράξεις κινητής υποδιαστολής με διπλή

ακρίβεια (floating-point operations, double precision) της τάξης των 1.5-3.0 TFLOPS, σε αντίθεση

με τις CPUs που κυμαίνονται στα 150 GFLOPS. Παρά τη μεγάλη διαφορά σε αυτά τα νούμερα, οι

GPUs δεν αντικαθιστούν τις CPUs. Κάθε τύπος επεξεργαστή είναι κατάλληλος για διαφορετικού

τύπου διεργασίες οπότε είναι σημαντική η χρήση του κατάλληλου τύπου επεξεργαστή ανάλογα με

τη διεργασία για την επίτευξη υψηλών επιδόσεων.

Οι δύο τύποι (CPUs, GPUs) έχουν σχεδιαστεί με τελείως διαφορετική λογική. Ο σχεδιασμός της

CPU είναι “latency-oriented” και αποσκοπεί στο να βελτιώσει την εκτέλεση σειριακού κώδικα,

δηλαδή να μειώσει το χρόνο εκτέλεσης μιας και μόνο διεργασίας. Από την άλλη, ο σχεδιασμός της

GPU είναι “throughput-oriented” και επιτρέπει στις διεργασίες να γίνονται δυνητικά πιο αργά με

αντάλαγμα την εκτέλεση πάρα πολλών διεργασιών ταυτόχρονα. Οι δύο επεξεργαστές

αξιοποιούνται, λοιπόν, για διαφορετικές διεργασίες και πρέπει να αντιμετωπίζονται ως

συμπληρωματικοί συνεπεξεργαστές.

Οι GPUs αναπτύσσονται ταχύτατα και έτσι οι δυνατότητες τους αλλάζουν. Σε αυτή τη διατριβή, οι

GPUs που χρησιμοποιούνται είναι οι: NVIDIA GeForce GTX 580 και NVIDIA GeForce GTX 680.

4.2 GPU Threads

Η GPU εφαρμόζουν τις ίδιες διεργασίες σε μεγάλο πλήθος δεδομένων. Οι διεργασίες αυτές

ονομάζονται “kernels” και δημιουργούν ένα μεγάλο αριθμό από threads. Το thread είναι η

μικρότερη μονάδα για επεξεργασία που μπορεί να προγραμματιστεί από το λειτουργικό σύστημα.

Τα threads στις GPU θέλουν ελάχιστους κύκλους ρολογιού (clock cycles) για να δημιουργηθούν

και να αξιοποιηθούν, σε αντίθεση με τις CPU που τα threads είναι γενικώς “ακριβά”. Μία CPU έχει

χαμηλό αριθμό threads (π.χ. 4-12), ενώ μία GPU έχει χιλιάδες threads ή και περισσότερα.

Σημειώνεται ότι αυτό δε σημαίνει ότι όλα τα threads εκτελούνται ταυτόχρονα, αλλά μεγάλος

αριθμός threads επιτρέπει στη GPU να προγραμματίσει την εκτέλεση με το βέλτιστο τρόπο.

4.3 Οργάνωση των threads

Όλα τα threads που ορίζονται από ένα kernel αποτελούν το λεγόμενο “grid”. Τα threads ενός grid

είναι οργανωμένα σε ομάδες που αναφέρονται γενικά ως “thread blocks” [CUDA] ή “thread group”

xxvii

[openCL]. Το grid αποτελείται, λοιπόν, από μια ομάδα blocks (όλα ίδιου μεγέθους), και κάθε block

αποτελείται από μια ομάδα από threads (σχήμα 4.3). Όσα threads βρίσκονται στο ίδιο block

μπορούν να συνεργάζονται μεταξύ τους. Κάθε thread block είναι εντελώς ανεξάρτητο από τα

υπόλοιπα, γεγονός που επιτρέπει στη GPU να τα εκτελέσει με οποιαδήποτε σειρά.

4.4 Μνήμες της GPU

Οι κάρτες γραφικών έχουν πολλών τύπων μνήμες οι οποίες πρέπει να αξιοποιηθούν από τους

προγραμματιστές για την επίτευξη υψηλής απόδοσης. Το σχήμα 4.2 δείχνει μια απλοποιημένη

αναπαράσταση των διαφόρων τύπων. Οι μνήμες διαφέρουν ως προς την ταχύτητα, το μέγεθος

καθώς και με βάση το ποια threads έχουν πρόσβαση σε αυτές.

xxviii

Fig. 4.3. Οργάνωση των threads

Single Thread

Thread Block/Group

Thread Grid

Fig. 4.2. Σχηματική απεικόνιση των μνημών της GPU

Thread Grid

Thread Block/Group

Shared/Local Memory

Thread Thread

Global
Memory

Constant
Memory

CPU

RegistersRegisters

5 Χειρισμός μητρώων

Η αποθήκευση των μητρώων και οι μητρωικές πράξεις επηρεάζουν σημαντικά την απόδοση

μεγάλης κλίμακας προσομοιώσεων. Υπάρχουν πολλοί διαφορετικοί τρόποι αποθήκευσης, καθένας

από τους οποίους έχει τα πλεονεκτήματα και μειονεκτήματά του. Για παράδειγμα, η πλήρης

αποθήκευση αποτελεί τον πιο ευέλικτο και απλό τύπο αποθήκευσης, υποστηρίζοντας οποιαδήποτε

πράξη/διαδικασία, αλλά απαιτεί την περισσότερη μνήμη για την αποθήκευσή του. Τα αραιά

(sparse) μητρώα αποθηκεύουν τον ελάχιστον δυνατό αριθμό στοιχείων, αλλά έχουν υψηλό κόστος

προσπέλασης και μπορούν να χρησιμοποιηθούν αποτελεσματικά μόνο για συγκεκριμένες πράξεις

(διαφορετικές ανάλογα με τη sparse μορφή). Επομένως, η επιλογή της κατάλληλης μορφής

αποθήκευσης για τις διαδικασίες στις οποίες συμμετέχει το μητρώο έχουν σημαντική επίδραση

στην απόδοση.

5.1 Πλήρης αποθήκευση

5.1.1 Πλήρες μητρώο

Όταν ένα μητρώο με m γραμμές και n στήλες αποθηκεύεται σε πλήρη μορφή, αποθηκεύονται

όλοι οι m×n όροι του μητρώου. Αν το μητρώο είναι τετραγωνικό με διάσταση n , αποθηκεύονται

όλοι οι n×n όροι. Αυτός είναι ο πιο γενικός τύπος μητρώου, έχει γρήγορη προσπέλαση και

υποστηρίζει όλες τις πράξεις. Όμως, για την αποθήκευσή του απαιτείται χώρος ανάλογος με

O(m n) ή O(n2
) . Επομένως, καλό είναι να χρησιμοποιείται μόνο για μικρά μητρώα και όταν το

μητρώο είναι γεμάτο (ή σχεδόν γεμάτο) με μη-μηδενικούς όρους, όπως συμβαίνει για τα τοπικά

μητρώα δυσκαμψίας των πεπερασμένων στοιχείων. Το πλήρες μητρώο μπορεί να αποθηκευτεί είτε

κατά γραμμή (row-major) είτε κατά στήλη (column-major).

5.1.2 Συμμετρικό πλήρες μητρώο

Πολλά από τα μητρώα της ανάλυσης είναι συμμετρικά. Μπορούμε να εκμεταλλευτούμε αυτή την

ιδιότητα για να ελαττώσουμε τη μνήμη αποθήκευσης κατά ~ 50% . Τα συμμετρικά μητρώα είναι

τετραγωνικά μητρώα για τα οποία Aij=A ji για όλα τα i , j . Καθώς το κάτω τρίγωνο του μητρώου

είναι ίσο με το άνω τρίγωνο, αρκεί να αποθηκευτεί ένα από αυτά. Το συμμετρικό πλήρες μητρώο

υποδηλώνει ότι όλοι οι όροι του άνω ή κάτω τριγώνου αποθηκεύονται, σε αντίθεση με τις μορφές

αποθήκευσης που αναφέρονται παρακάτω.

xxix

5.1.3 Διαγώνιο μητρώο

Το διαγώνιο μητρώο μπορεί να έχει μη-μηδενικά στοιχεία μόνο στη διαγώνιο – όλα τα άλλα

στοιχεία θεωρούνται μηδέν. Το διαγώνιο μητρώο αποθηκεύει όλους τους Aii όρους και απαιτεί

μνήμη ανάλογη του O(n) . Παράδειγμα χρήσης αυτού του μητρώου είναι το μητρώο μάζας.

5.2 Αποθήκευση που λαμβάνει υπόψιν το εύρος ζώνης

Οι παραπάνω τύποι αποθήκευσης είναι “πλήρεις”, γιατί αποθηκεύουν ολόκληρο το μητρώο ή

κάποια περιοχή του. Μητρώα με μικρό εύρος ζώνης μπορούν να αποθηκευτούν με πολύ πιο

οικονομικό τρόπο. Το εύρος ζώνης είναι ο μικρότερος αριθμός συνεχόμενων διαγωνίων μέσα στις

οποίες βρίσκονται όλα τα μη-μηδενικά στοιχεία. Το εύρος ημι-ζώνης περιλαμβάνει διαγωνίους

μέχρι την κεντρική διαγώνιο.

Τα μητρώα (όπως πχ. το μητρώο δυσκαμψίας) που προκύπτουν από τις μεθόδους FEM/MMs/IGA

ανήκουν σε αυτή την κατηγορία καθώς έχουν τους μη-μηδενικούς όρους τους σχετικά κοντά στη

διαγώνιο. Η αρίθμηση επηρεάζει την απόσταση από τη διαγώνιο και υπάρχει πλήθος τεχνικών που

αλλάζει την αρίθμηση για να μειώσει το εύρος ζώνης. Μείωση του εύρους ζώνης συνεπάγεται

χαμηλότερο κόστος αποθήκευσης και πιο γρήγορες πράξεις.

5.2.1 Ταινιωτή αποθήκευση

Στο σχήμα 5.1, το εύρος ημιζώνης (χωρίς τη διαγώνιο) είναι 3 . Επομένως, 3+1=4 διαγώνιοι

πρέπει να αποθηκευτούν. Σημειώνεται ότι περιλαμβάνονται μηδενικά στοιχεία στην ταινιωτή

αποθήκευση, καθώς και συμπληρωματικά μηδενικά στοιχεία που επεκτείνουν τις διαγωνίους στο

μέγεθος της κεντρικής διαγωνίου. Οι όροι εντός της μπλε γραμμής που αποθηκεύονται αποτελούν

ένα πλήρες μητρώο διάστασης order×(k+1) .

xxx

Fig. 5.1: Όροι που περιλαμβάνονται στην ταινιωτή
αποθήκευση

K=[
K11 K 12 0 K14 0 0 0 0

K 22 K 23 0 0 0 0 0
K 33 K 34 0 K 36 0 0

K 44 K 45 K 46 0 0
K55 K 56 0 K 58

symm K 66 K 67 0
K 77 K 78

K 88

] 0

0 0

0 0 0

k=3

5.2.2 Αποθήκευση Skyline (οριογραμμής)

Η μορφή skyline αντιμετωπίζει το μητρώο κατά στήλη, ξεκινώντας από το διαγώνιο στοιχείο και

ανεβαίνοντας μέχρι το τελευταίο μη-μηδενικό στοιχείο της στήλης (οτιδήποτε εκτός της

οριογραμμής είναι μηδέν). Στο σχήμα 5.2, η μπλε γραμμή (οριογραμμή-skyline), περικλείει όλους

τους όρους του μητρώου που θα αποθηκευτούν. Η μορφή skyline αποθηκεύει κάποια μηδενικά,

σημαντικά λιγότερα όμως από την ταινιωτή μορφή, όπως για παράδειγμα τα μηδενικά σημειωμένα

με στο σχήμα 5.2. Οι όροι αποθηκεύονται κατά στήλη σε ένα διάνυσμα, ξεκινώντας από το

διαγώνιο στοιχείο της κάθε στήλης και ανεβαίνοντας, όπως φαίνεται στο σχήμα 5.3.

Η μορφή skyline έχει επιπλέον και ένα βοηθητικό διάνυσμα. Αυτό το διάνυσμα περιλαμβάνει τους

δείκτες των διαγώνιων στοιχείων του μητρώου.

diagIndexes= [1 2 4 6 10 12 16 18 22] (5.1)

5.2.3 Παραγοντοποίηση

Ένα από τα σημαντικότερα πλεονεκτήματα των μεθόδων αποθήκευσης που εκμεταλλεύονται το

εύρος ζώνης σε σχέση με την πλήρη και τη sparse αποθήκευση είναι η παραγοντοποίηση. Σε ένα

μητρώο με μικρό εύρος ζώνης, οι απαιτούμενες πράξεις είναι πολύ λιγότερες σε σχέση με τις

πλήρεις μορφές, ενώ διατηρείται η δυνατότητα επί τόπου (in-place) παραγοντοποίησης, σε

αντίθεση με τις sparse μορφές (σημείωση: αναφερόμαστε σε πλήρη παραγοντοποίηση).

xxxi

Fig. 5.2: Όροι που περιλαμβάνονται στην
αποθήκευση skyline

Fig. 5.3: Σειρά αποθήκευσης των όρων με την
αποθήκευση skyline

K=[
K11 K 12 0 K14 0 0 0 0

K 22 K 23 0 0 0 0 0
K 33 K 34 0 K 36 0 0

K 44 K 45 K 46 0 0
K55 K 56 0 K 58

symm K 66 K 67 0
K 77 K 78

K 88

] Κ=[
Α(1) A(3) A(9)

Α(2) A(5) A(8)
A(4) A(7) A(15)

A(6) A(11) A(14)
A(10) A(13) Α(21)

symm A(12) Α(17) Α(20)
Α(16) Α(19)

Α(18)

]

5.3 Αραιή (Sparse) αποθήκευση

Για να έχει νόημα η αραιή αποθήκευση ενός μητρώου θα πρέπει τα μη μηδενικά στοιχεία είναι

επαρκώς λίγα ώστε να έχει νόημα η ειδική αποθήκευσή τους για τη μείωση τόσο του χώρου όσο

και των υπολογισμών που απαιτούνται στις πράξεις που συμμετέχει το μητρώο. Παρότι είναι

επιθυμητό να αποθηκεύονται και να χρησιμοποιούνται μόνο οι μη-μηδενικοί όροι, στη γενική

περίπτωση αυτό δεν εξασφαλίζει ούτε ότι η απαιτούμενη μνήμη θα είναι λιγότερη ούτε ότι ο

υπολογιστικός φόρτος θα είναι μικρότερος. Αυτό συμβαίνει γιατί η αραιή αποθήκευση χρειάζεται

περισσότερο χώρο ανά μη-μηδενικό στοιχείο από ότι σε πιο πυκνούς τύπους αποθήκευσης.

Επιπλέον, οι πράξεις με αραιή αποθήκευση δεν είναι τόσο γρήγορη όσο με πιο πυκνούς τύπους,

αλλά βέβαια οι πράξεις είναι (ή τουλάχιστον θα έπρεπε να είναι) σημαντικά λιγότερες. Για τους

παραπάνω λόγους, μια συνθήκη για να είναι ένα μητρώο να είναι πρακτικά αραιό ώστε να

δικαιολογεί τη χρήση των αραιών μεθόδων αποθήκευσης είναι να περιέχει O(n) μη-μηδενικούς

όρους.

Κάθε τύπος αραιής αποθήκευσης είναι κατάλληλος για πολύ συγκεκριμένη χρήση. Στα πλαίσια

αυτής της διατριβής, υπάρχουν 2 βασικές κατηγορίες μορφών αραιής αποθήκευσης: μορφές που

είναι κατάλληλες για πράξεις (π.χ. μητρώο επί διάνυσμα - sparse-matrix vector multiplication –

SpMV) και μορφές που είναι κατάλληλες για σταδιακή κατασκευή του μητρώου.

5.3.1 Μορφές αραιής αποθήκευσης για τη φάση κατασκευής

Αυτές οι μορφές είναι κατάλληλες για τη σταδιακή κατασκευή ενός αραιού μητρώου. Το μητρώο

φτιάχνεται με κάποια από αυτές και στη συνέχεια μετατρέπεται στις μορφές που είναι καλύτερες

για μητρωικές πράξεις. Υπάρχουν δύο υποκατηγορίες: μορφές που υποστηρίζουν γρήγορη

ανάκτηση στοιχείων, οπότε επιτρέπουν την εύρεση και ανανέωση της τρέχουσας τιμής κάποιου

όρου του μητρώου, καθώς και μορφές που δεν υποστηρίζουν γρήγορη ανάκτηση. Οι πρώτες είναι

γενικά πιο πολύπλοκες στην υλοποίησή τους αλλά απαιτούνται στην περίπτωση που οι τιμές του

μητρώου ανανεώνονται σταδιακά κατά τη φάση κατασκευής. Από την άλλη, αν υπολογίζεται η

τελική τιμή του κάθε όρου του μητρώου πριν εισαχθεί στο μητρώο, τότε δε χρειάζονται ανακτήσεις

και μπορούν να χρησιμοποιηθούν πιο απλές μορφές. Δύο τύποι εξετάζονται: Coordinate List (COO)

και Dictionary of Keys (DOK).

xxxii

5.3.1.1 Coordinate list (COO)

Η μορφή COO αποθηκεύει μία λίστα με τριπλέτες (γραμμή, στήλη, τιμή) για κάθε μη μηδενική

τιμή. Ο πιο απλός τρόπος υλοποίησης είναι με χρήση τριών διανυσμάτων, ένα για τις γραμμές, ένα

για τις στήλες και ένα για τις τιμές, όπου ο όρος i των διανυσμάτων αντιστοιχεί σε ένα όρο του

μητρώου. Το μητρώο της σχ. (5.2) και διάστασης 4×5 δίνεται σε μορφή COO στη σχ. (5.3).

[
K11 K 12 0 0 0

0 K 22 0 0 0
K31 0 0 K 34 K 35

0 0 K 43 0 K 45
] (5.2)

rowIndexes=[3 1 1 4 3 2 4 4]

columnIndexes=[4 1 2 5 1 2 3 5] (5.3)

values=[K 34 K 11 K 12 K 45 K31 K22 K43 K 45]

Αυτή η μορφή αποθήκευσης είναι ιδανική όταν υπολογίζεται η τελική τιμή του κάθε όρου, αλλά

δεν είναι κατάλληλη για συνεχή ανανέωση τιμών. Ένα ακόμα πλεονέκτημα αυτής της μορφής είναι

ότι μετατρέπεται πολύ εύκολα στις μορφές CSR/CSC που είναι κατάλληλες για τη φάση επίλυσης.

5.3.1.2 Dictionary of Keys (DOK)

Σε αντίθεση με τη μορφή COO, η μορφή DOK επιτρέπει ανάκτηση και άρα προορίζεται για

περιπτώσεις όπου οι τελικές τιμές του μητρώου δημιουργούνται σταδιακά εντός του αραιού

μητρώου. Αυτό περιλαμβάνει εύρεση της τρέχουσας τιμής K ij και κατάλληλης ανανέωσης της.

Υπάρχουν πολλοί τρόποι για την υλοποίηση της μορφής DOK. Ένας τρόπος είναι να

αντιστοιχίσουμε (γραμμή ,στήλη) με τις τιμές του μητρώου με χρήση “hash-tables”, “binary search

trees (BST)” ή αντίστοιχες δομές δεδομένων. Το πρώτο επιτρέπει ανάκτηση σε χρόνο O(1) , ενώ

το δεύτερο σε χρόνο O(log NZ) , όπου NZ είναι ο αριθμός των αποθηκευμένων στοιχείων, αλλά

αποθηκεύει τις τιμές ταξινομημένες. Απεικόνιση της μορφής DOK δίνεται στη σχ. (5.4).

(1,1)→K 11 (1,2)→K 12 (2,2)→K 22 (3,1)→K31

(3,4)→K 34 (3,5)→K 35 (4,3)→K 43 (4,5)→K 45

 (5.4)

xxxiii

5.3.2 Μορφές αραιής αποθήκευσης για αριθμητικές πράξεις

Το μητρώο προετοιμάζεται με μία από τις μορφές που αναφέρθηκαν παραπάνω, και στη συνέχεια

μετατρέπεται στις μορφές Compressed Sparse Row (CSR) ή Compressed Sparse Column (CSC).

Αυτοί οι δύο μορφές είναι κατάλληλες για αριθμητικές πράξεις, αλλά και πάλι πρέπει να επιλεγεί η

βέλτιστη μορφή ανάλογα με τις πράξεις στις οποίες συμμετέχει το μητρώο κατά τη φάση επίλυσης.

5.3.2.1 Compressed Sparse Row (CSR)

Ξεκινώντας από τη μορφή COO, οι δείκτες της μορφής CSR είναι ταξινομημένοι κατά γραμμή και,

εντός της ίδιας γραμμής, κατά στήλη. Σε ταξινομημένη μορφή πολλοί συνεχόμενοι δείκτες γραμμής

θα είναι ίδιοι, οπότε στη συμπυκνωμένη (compressed) μορφή αποθηκεύουμε μόνο τη θέση στην

οποία κάποιος συγκεκριμένος δείκτης εμφανίζεται για πρώτη φορά:

rowIndexes=[1 3 4 7 9]

columnIndexes=[1 2 2 1 4 5 3 5] (5.5)

values=[K 11 K 12 K 22 K 31 K34 K35 K 43 K 45]

Η μορφή CSR είναι βολική για πράξεις που χρησιμοποιούν τα στοιχεία κατά γραμμή (όπως

πολλαπλασιασμός μητρώου-διανύσματος), αλλά αργή για πράξεις που χρησιμοποιούν στοιχεία

κατά στήλη.

5.3.2.2 Compressed Sparse Column (CSC)

Ξεκινώντας από τη μορφή COO, οι δείκτες της μορφής CSC είναι ταξινομημένοι κατά στήλη και,

εντός της ίδιας στήλης, κατά γραμμή. Σε ταξινομημένη μορφή πολλοί συνεχόμενοι δείκτες στήλης

θα είναι ίδιοι, οπότε στη συμπυκνωμένη (compressed) μορφή αποθηκεύουμε μόνο τη θέση στην

οποία κάποιος συγκεκριμένος δείκτης εμφανίζεται για πρώτη φορά:

rowIndexes=[1 3 1 2 4 3 3 4]

columnIndexes=[1 3 5 6 7 9] (5.6)

values=[K 11 K 12 K 22 K 31 K34 K35 K 43 K 45]

Η μορφή CSC είναι βολική για πράξεις που χρησιμοποιούν τα στοιχεία κατά στήλη (όπως

πολλαπλασιασμός ανάστροφου μητρώου-διανύσματος), αλλά αργή για πράξεις που χρησιμοποιούν

στοιχεία κατά γραμμή. Σημειώνεται ότι ο πολλαπλασιασμός μητρώου διανύσματος μπορεί να

υλοποιηθεί αποδοτικά και με αυτή τη μορφή, αλλά η μορφή CSR ενδέχεται να είναι ταχύτερη.

xxxiv

6 Μέθοδοι υποφορέων σε υβριδική αρχιτεκτονική CPU-GPU

Η δυϊκή μέθοδος υποφορέων (FETI) υλοποιήθηκε σε υβριδικό CPU-GPU περιβάλλον με σκοπό την

αξιοποίηση όλης της διαθέσιμης επεξεργαστικής ισχύς και διαθέσιμης μνήμης για την επίλυση

ακόμα μεγαλύτερων προβλημάτων. Λόγω της ετερογένειας μεταξύ CPU και GPU καθώς και του

του διαφορετικού τρόπου προγραμματισμού τους, απαιτείται ειδικός χειρισμός σε αρκετά σημεία

του αλγορίθμου της FETI για την επίτευξη της βέλτιστης απόδοσης. Ένα από τα βασικότερα

θέματα που πρέπει να αντιμετωπιστούν είναι η μεγάλη διαφορά της απόδοσης μεταξύ CPU και

GPU, που επηρεάζεται κυρίως από τις αριθμητικές πράξεις που εκτελούνται αλλά και άλλες

παραμέτρους. Μάλιστα, η διαφορά στην απόδοση μεταξύ CPU και GPU δεν είναι η ίδια για τον

υπολογισμό εσωτερικών γινομένων, για τον πολλαπλασιασμό μητρώου-διανύσματος ή για την

άμεση επίλυση γραμμικών συστημάτων με παραγοντοποίηση Cholesky.

Εξετάστηκαν δύο διαφορετικές υλοποιήσεις για την επίλυση των τοπικών προβλημάτων σε επίπεδο

υποφορέων. Η πρώτη χρησιμοποιεί άμεση επίλυση Cholesky ενώ η δεύτερη επαναληπτική επίλυση

με PCG. Οι δύο αυτοί τρόποι, εκτός από την εντελώς διαφορετική υλοποίηση σε παράλληλο

περιβάλλον, έχουν και διαφορετικές ανάγκες σε μνήμη, κάτι που επηρεάζει την κατανομή

υποφορέων σε CPU και GPU.

6.1 Dynamic load-balancing

Η ετερογένεια των υποσυστημάτων αντιμετωπίστηκε με dynamic load balancing βασισμένο σε task

queues. Πιο συγκεκριμένα, η CPU δημιουργεί μια ουρά (queue) από εργασίες που πρέπει να

εκτελεστούν σε κάποιο βήμα του αλγορίθμου. Στην περίπτωση της άμεσης επίλυσης Cholesky,

γίνεται παράλληλη παραγοντοποίηση στα μητρώα των υποφορέων, τα οποία είναι αποθηκευμένα

σε μορφή skyline, και από τη CPU και από τη GPU. Δημιουργείται μια ουρά εργασιών για την

εκτέλεση της παραγοντοποίησης και των εμπρός και πίσω αντικαταστάσεων. Η ουρά περιέχει τα

κατάλληλα μητρώα των υποφορέων, και οι CPU/GPU τροφοδοτούνται με εργασίες με ένα

ασύγχρονο τρόπο. Όταν κάποιος επεξεργαστής τελειώσει την τρέχουσα εργασία, παίρνει την

επόμενη εργασία από την ουρά, όπως φαίνεται σχηματικά στο σχήμα 6.1. Κατά αυτό τον τρόπο, και

η CPU και η GPU είναι συνεχώς απασχολημένες μέχρι η ουρά εργασιών να αδειάσει.

xxxv

6.2 Αριθμητικά αποτελέσματα

Έγινε παραμετρική μελέτη σε προβλήματα 3D γραμμικής ελαστικότητας (E=39 MPa , ν=0.2)

σε κύβο. Ο φορέας είναι πλήρως δεσμευμένος στην κάτω επιφάνεια, και μερικώς δεσμευμένος

κατά τις οριζόντιες διευθύνσεις στις πλαϊνές πλευρές και η πάνω επιφάνεια δέχεται

ισοκατανεμημένο φορτίο. Ο φορέας είναι διαχωρισμένος με 8-κομβικά εξαεδρικά στοιχεία. Το

τελικό σύστημα έχει 1,058,610 βαθμούς ελευθερίας (β.ε). Η επίλυση γίνεται με μεθόδους

υποφορέων, οπότε ο φορέας χωρίζεται σε υποφορείς, ο αριθμός των οποίων κυμαίνεται από 125

μέχρι 2744.

Τα παραδείγματα εκτελέστηκαν με το παρακάτω hardware. CPU: Core i7-950 που έχει 4 πυρήνες

(8 λογικούς πυρήνες) στα 3.06 GHz και 8MB cache. GPU: GeForce GTX580 με 512 πυρήνες

CUDA και 1.5GB GDDR5 μνήμη. Όλες οι πράξεις κινητής υποδιαστολής είναι με διπλή ακρίβεια.

Τα παραπάνω χαρακτηριστικά αρκούν για να εκτελεστούν όλοι οι υπολογισμοί στη μνήμη (δηλαδή

δεν υπεισέρχεται μείωση της ταχύτητας λόγω ανεπαρκούς μνήμης και χρήσης του σκληρού

δίσκου).

xxxvi

Fig. 6.1. Η ουρά εργασιών περιέχει αριθμητικούς
υπολογισμούς που πρέπει να εκτελεστούν με τους
διαθέσιμους πόρους.

xxxvii

Fig. 6.2: Συνολικός χρόνος επίσης της FETI για τις περιπτώσεις: υβριδική, μόνο GPU (GTX580),
μόνο CPU (i7); με άμεση επίλυση Cholesky για τα τοπικά προβλήματα υποφορέων

125

175

245

343

490

700

1000

1400

1960

2744

1 10 100 1000

76.74

34.39

14.7

14.27

9.84

6.88

5.92

5.38

5.3

5.2

139.77

49.41

18.11

18.56

12.12

8.58

7.54

7.13

7.05

7.03

267.17

190.3

131.76

98.75

77

52.12

40.78

35.99

34.78

29.05

Hybrid GPU (GTX580) CPU (i7)

log Time (s)

N
u

m
b

e
r

o
f s

u
b

d
o

m
a

in
s

Fig. 6.3: Συνολικός χρόνος επίσης της FETI για τις περιπτώσεις: υβριδική, μόνο GPU (GTX580),
μόνο CPU (i7); με επαναληπτική επίλυση PCG για τα τοπικά προβλήματα υποφορέων

125

175

245

343

490

700

1000

1400

1960

2744

1 10 100 1000 10000

70.31

56.21

51.34

45.77

48.5

35.94

31.77

34.67

36.05

37.64

73.09

62.48

57.49

51.14

54.57

41.33

36.6

39.85

42

45.18

3179.66

2007.26

1427.63

958.84

698

453.51

367.61

430.95

387.97

316.83

Hybrid GPU (GTX580) CPU (i7)

log Time (s)

N
u

m
b

e
r

o
f s

u
b

d
o

m
a

in
s

xxxviii

Fig. 6.5: Επιταχύνσεις για διαφορετικούς συνδυασμούς CPU (i7) και GPU (GTX 580) με
επαναληπτική επίλυση PCG για τα τοπικά προβλήματα υποφορέων

1
2

5

1
7

5

2
4

5

3
4

3

4
9

0

7
0

0

1
0

0
0

1
4

0
0

1
9

6
0

2
7

4
4

0

5

10

15

20

25

30

35

40

45

50

1.
04

1.
11

1.
12

1.
12

1.
13

1.
15

1.
15

1.
15

1.
16

1.
2

43
.5

32
.1

3

24
.8

3

18
.7

5

12
.7

9

10
.9

7

10
.0

5

10
.8

1

9.
24

7.
01

45
.2

2

35
.7

1

27
.8

1

20
.9

5

14
.3

9

12
.6

2

11
.5

7

12
.4

3

10
.7

6

8.
42

Hybrid/GPU GPU/CPU Hybrid/CPU

Number of subdomains

S
p

e
e

d
u

p
 R

a
tio

Fig. 6.4: Επιταχύνσεις για διαφορετικούς συνδυασμούς CPU (i7) και GPU (GTX 580) με άμεση
επίλυση Cholesky για τα τοπικά προβλήματα υποφορέων

0
5

/0
4/

1
9

0
0

0
6

/2
3

/1
9

0
0

0
9

/0
1

/1
9

0
0

1
2

/0
8

/1
9

0
0

0
5

/0
4

/1
9

0
1

1
1

/3
0

/1
9

0
1

0
9

/2
6

/1
9

0
2

1
0

/3
1

/1
9

0
3

0
5

/1
3

/1
9

0
5

0
7

/0
6

/1
9

0
7

0

1

2

3

4

5

6

7

8

9

10

1.
8

1.
4

1.
2

1.
3

1.
2

1.
2

1.
3

1.
3

1.
3

1.
4

1.
9

3.
9

7.
3

5.
3

6.
4

6.
1

5.
4

5.
1

4.
9

4.
1

3.
5

5.
5

9.
0

6.
9

7.
8

7.
6

6.
9

6.
7

6.
6

5.
6

Hybrid/GPU GPU/CPU Hybrid/CPU

Number of subdomains

S
p

e
e

d
u

p
 R

a
tio

xxxix

Fig. 6.6: Επιταχύνσεις ανά πυρήνα CPU για διαφορετικούς συνδυασμούς CPU (i7) και GPU
(GTX 580) με άμεση επίλυση Cholesky για τα τοπικά προβλήματα υποφορέων

1
2

5

1
7

5

2
4

5

3
4

3

4
9

0

7
0

0

1
0

0
0

1
4

0
0

1
9

6
0

2
7

4
4

0

5

10

15

20

25

30

35

40

45

8.
58

17
.2

9

32
.6

6

23
.8

9

28
.5

2

27
.2

5

24
.2

9

22
.6

7

22
.1

3

18
.5

6

15
.6

3

24
.8

4

40
.2

3

31
.0

6

35
.1

2

34

30
.9

4

30
.0

2

29
.4

8

25
.0

9

GPU/1 CPU core Hybrid/1 CPU core

Number of subdomains

S
p

e
e

d
u

p
 R

a
tio

Fig. 6.7: Επιταχύνσεις ανά πυρήνα CPU για διαφορετικούς συνδυασμούς CPU (i7) και GPU
(GTX 580) με επαναληπτική επίλυση PCG για τα τοπικά προβλήματα υποφορέων

1
2

5

1
7

5

2
4

5

3
4

3

4
9

0

7
0

0

1
0

0
0

1
4

0
0

1
9

6
0

2
7

4
4

0

20

40

60

80

100

120

140

160

180

200

17
4

12
8.

52

99
.3

2

75

51
.1

6

43
.8

8

40
.2 43
.2

4

36
.9

6

28
.0

4

18
0.

88

14
2.

84

11
1.

24

83
.8

57
.5

6

50
.4

8

46
.2

8

49
.7

2

43
.0

4

33
.6

8

GPU/1 CPU core Hybrid/1 CPU core

Number of subdomains

S
p

e
e

d
u

p
 R

a
tio

7 Συσχέτιση μεταξύ των βασικών μονάδων της ολοκλήρωσης Gauss

Στη γενικότερη μορφή της ολοκλήρωσης Gauss, διακρίνουμε τις εξής δύο κατηγορίες: κομβικές

μονάδες (N) και μονάδες Gauss (G). Στα πεπερασμένα στοιχεία και στις μη-πλεγματικές μεθόδους

οι κομβικές μονάδες είναι οι κόμβοι ενώ στην ισογεωμετρική ανάλυση τα σημεία ελέγχου (control

points). Οι μονάδες Gauss είναι είτε ξεχωριστά σημεία Gauss είτε ομάδες από σημεία Gauss που

συνεισφέρουν στον υπολογισμό των συντελεστών που σχετίζονται με τις κομβικές μονάδες. Στα

πεπερασμένα στοιχεία και την ισογεωμετρική ανάλυση, οι μονάδες Gauss είναι στοιχεία, τα οποία

ομαδοποιούν πολλά σημεία Gauss, ενώ στις μη-πλεγματικές μεθόδους οι μονάδες Gauss είναι

ανεξάρτητα σημεία Gauss. Η γενική αντιμετώπιση είναι χρήσιμη γιατί κάθε μέθοδος έχει

διαφορετικές βασικές μονάδες (για παράδειγμα: FEA: κόμβοι + στοιχεία, IGA: σημεία ελέγχου +

στοιχεία, MMs: κόμβοι + σημεία Gauss).

Με βάση τη γενική ορολογία, οι συσχετίσεις είναι:

• N-G αλληλοσυσχέτιση: αντιστοιχίζει κάθε κομβική μονάδα (N) με όλες τις μονάδες Gauss

(G) που την επηρεάζουν

• G-N αλληλοσυσχέτιση: αντιστοιχίζει κάθε μονάδα Gauss (G) με όλες τις κομβικές μονάδες

(Ν) που επηρεάζει

• Αλληλεπιδράσεις: αντιστοιχίζει κάθε κομβική μονάδα (N) με όλες τις άλλες κομβικές

μονάδες (Ν) με τις οποίες αλληλεπιδρά

• Συνεργίες: αντιστοιχίζει κάθε ζεύγος (N-N) με τις μονάδες Gauss (G) που επηρεάζουν και

τις δύο κομβικές μονάδες

7.1 Πεδίο επιρροής στις μεθόδους προσομοίωσης

Οι τρεις μέθοδοι που χρησιμοποιούνται σε αυτή τη διατριβή (FEA, MMs, IGA) διαφέρουν

σημαντικά στο μέγεθος του πεδίου επιρροής αλλά και τον τρόπο συσχέτισης των βασικών μονάδων

(κόμβοι, σημεία ελέγχου, σημεία Gauss, στοιχεία). Τα πεδία επιρροής καθορίζουν την

αλληλοσυσχέτιση μεταξύ κόμβων/σημείων ελέγχου και στοιχείων/σημείων Gauss. Επιπλέον,

καθορίζουν τις αλληλεπιδράσεις (ζεύγος κόμβων/σημείων ελέγχου). Ο γενικότερος ορισμός για

ζεύγη αλληλεπίδρασης στην ολοκλήρωση Gauss είναι: δύο κομβικές μονάδες αλληλεπιδρούν, και

άρα έχουν μη-μηδενικούς όρους στις αντίστοιχες θέσεις των χαρακτηριστικών μητρώων, αν και

μόνο αν υπάρχει τουλάχιστον ένα σημείο Gauss που επηρεάζει και τις δύο κομβικές μονάδες.

xl

7.1.1 Πεδίο επιρροής στις μη-πλεγματικές μεθόδους

Λόγω απουσίας στοιχείων, οι βασικές μονάδες στις μη-πλεγματικές μεθόδους (MMs) είναι οι

κόμβοι και τα σημεία Gauss. Τα πεδία επιρροής είναι αρκετά μεγαλύτερα από τα αντίστοιχα στα

πεπερασμένα στοιχεία (FEA), όπως φαίνεται στο σχήμα 7.1. Σημειώνεται ότι η σύγκριση γίνεται

για ίσο αριθμό κόμβων και σημείων Gauss - οι δύο μέθοδοι δεν παρουσιάζουν την ίδια ακρίβεια σε

αυτή την περίπτωση. Στα σχήματα, η ακτίνα του πεδίου επιρροής έχει ληφθεί ως 2,5 φορές η

απόσταση μεταξύ δύο διαδοχικών κόμβων.

Στα πεπερασμένα στοιχεία, κάθε σημείο Gauss εμπλέκεται μόνο σε υπολογισμούς του στοιχείου

στο οποίο ανήκει, δηλαδή για τη δημιουργία του τοπικού μητρώου δυσκαμψίας το οποίο στη

συνέχεια προστίθεται στο καθολικό μητρώο δυσκαμψίας. Επιπλέον, οι συναρτήσεις σχήματος είναι

προκαθορισμένες για κάθε τύπο στοιχείου και πρέπει να υπολογιστούν για κάθε συνδυασμό

κόμβων και σημείων Gauss εντός του κάθε στοιχείου. Στις μη-πλεγματικές μεθόδους, οι

συνεισφορές από τα σημεία Gauss προστίθενται απευθείας στο καθολικό μητρώο δυσκαμψίας ενώ

οι συναρτήσεις σχήματος δεν είναι προκαθορισμένες και εκτείνονται σε μεγαλύτερο μέρος του

φορέα, οπότε υπάρχουν πολύ περισσότεροι συνδυασμοί κόμβων και σημείων Gauss.

xli

Fig. 7.1: Πεδίο επιρροής σημείου Gauss σε (a) MMs; (b) FEA, για τον ίδιο αριθμό
κόμβων () και σημείων Gauss ()

4x4 Gauss Cell

(a) (b)

7.1.2 Πεδίο επιρροής στην ισογεωμετρική ανάλυση

Οι βασικές μονάδες στην ισογεωμετρική ανάλυση είναι τα σημεία ελέγχου και τα στοιχεία. Το

σχήμα 7.3 συγκρίνει τις περιοχές επιρροής των σημείων ελέγχου/κόμβων (αντίστοιχα) στην

ισογεωμετρική ανάλυση και στα πεπερασμένα στοιχεία, για διαφορετικά p . Σημειώνεται ότι η

αλληλοσυσχέτιση είναι στην πραγματικότητα μεταξύ σημείων ελέγχου και σημείων Gauss. Τα

στοιχεία αποτελούν μια βολική ομαδοποίηση ώστε οι αλληλοσυσχετίσεις να είναι ευκολότερες στο

χειρισμό και την αποθήκευση.

Στα πεπερασμένα στοιχεία, κάθε σημείο Gauss εμπλέκεται μόνο σε υπολογισμούς για τους κόμβους

εντός του στοιχείου στο οποίο περιέχεται. Οι συναρτήσεις σχήματος είναι προκαθορισμένες για

κάθε τύπο στοιχείου και πρέπει να υπολογιστούν για κάθε συνδυασμό κόμβων και σημείων Gauss

εντός του κάθε στοιχείου. Στην ισογεωμετρική ανάλυση, κάθε σημείο Gauss εμπλέκεται σε

υπολογισμούς με σημεία ελέγχου και των γύρω περιοχών (7.4), ενώ οι συναρτήσεις σχήματος δεν

είναι προκαθορισμένες και εκτείνονται σε μεγαλύτερο μέρος του φορέα, οπότε υπάρχουν πολύ

περισσότερο συνδυασμοί σημείων ελέγχου και σημείων Gauss. Για ισοδύναμα δίκτυα, το εύρος

ζώνης είναι ίδιο στις δύο μεθόδους, αλλά η ισογεωμετρική ανάλυση έχει πολύ περισσότερες

αλληλεπιδράσεις σημείων ελέγχου, άρα και πυκνότερα μητρώα δυσκαμψίας. Επιπλέον, ο

υπολογισμός του κάθε μη-μηδενικού όρου είναι πιο δυσχερής καθώς τα σημεία ελέγχου

επηρεάζονται από περισσότερα στοιχεία και κατ' επέκταση από σημαντικά περισσότερα σημεία

Gauss.

xlii

Fig. 7.2: Πεδίο επιρροής κόμβου σε (a) MMs; (b) FEA, για τον ίδιο αριθμό κόμβων
() και σημείων Gauss ()

(a) (b)

xliii

Fig. 7.3. Περιοχές επιρροής του σημείου ελέγχου
 σε:(a) IGA (p μονός); (b) IGA (p ζυγός); (c)

FEA. Οι οντότητες που επηρεάζουν είναι τα
σημεία Gauss στις σημειωμένες περιοχές.

Fig. 7.4. Σημεία ελέγχου/κόμβοι που επηρεάζονται
από σημείο Gauss σε:(a) IGA (p μονός); (b)
IGA (p ζυγός); (c) FEA.

any p any p

p=5

p=3

any p

(a)

(c)

p=1

p=4

(b)

p=2

 p=5

 p=4

 p=3

 p=2

 p=1

any p

(a)

(c)

(b)

8 Μορφοποίηση των χαρακτηριστικών μητρώων

Οι δύο μέθοδοι που παρουσιάζονται είναι η κλασική μέθοδος με βάση τις συνεισφορές και η

μέθοδος με βάση τις αλληλεπιδράσεις, η οποία είναι και κατάλληλη για παράλληλη επεξεργασία.

8.1 Μέθοδος μορφοποίησης με βάση τις συνεισφορές (contribution-wise, CW)

H κατασκευή μέσω σταδιακής άθροισης των συνεισφορών είναι η τυπική μέθοδος για την

μορφοποίηση των μητρώων που βασίζονται σε ολοκλήρωση Gauss. Το μητρώο αποτελείται από τις

συνεισφορές όλων των σημείων Gauss:

K=∑
G

wG QG (8.1)

όπου wG είναι ο συντελεστής βάρους του σημείου Gauss και QG είναι ένα μητρώο που σχετίζεται

με την εφαρμογή. Σε δομοστατικές εφαρμογές, QG=BG
T E BG για FEA, MMs και IGA. Το μητρώο

παραμορφώσεων BG υπολογίζεται στο εκάστοτε σημείο Gauss και E είναι το καταστατικό

μητρώο που περιγράφει τις ιδιότητες του υλικού. Δύο παραλλαγές της μεθόδου εξετάζονται. Η

πρώτη είναι η πιο γενική και χειρίζεται τα σημεία Gauss ξεχωριστά, ενώ η δεύτερη είναι κατάλληλη

για προσομοιώσεις βασισμένες σε στοιχεία και χειρίζεται ομάδες σημείων Gauss.

8.2 Μέθοδος μορφοποίησης με βάση τις αλληλεπιδράσεις (interaction-wise, IW)

Η μέθοδος που αναφέρθηκε παραπάνω υπολογίζει διαφορετικά τμήματα του αθροίσματος της σχ.

(8.1) και σταδιακά τα αθροίζει για να προκύψει το τελικό αποτέλεσμα. Η IW μέθοδος υπολογίζει

τις τελικές τιμές K ij και τις τοποθετεί στο μητρώο K . Για κάθε συνδυασμό i− j , το K ij

περιγράφει την αλληλεπίδραση μεταξύ δύο κόμβων (ή σημείων ελέγχου). Κάθε K ij διαμορφώνεται

από τις συνεισφορές εκείνων των σημείων Gauss που επηρεάζουν και τους δύο κόμβους i− j :

K ij=∑
Sh.G

wG Qij=∑
Sh.G

wG Bi
T E B j (8.2)

Δύο κόμβοι αλληλεπιδρούν και άρα έχουν μη-μηδενικό K ij αν υπάρχει τουλάχιστον ένα σημείο

Gauss που επηρεάζει και τους δύο κόμβους. Αναφερόμαστε σε αυτά ως κοινά (shared) σημεία

Gauss και είναι από τα βασικά συστατικά της IW μεθόδου. Και εδώ έχουμε δύο παραλλαγές, μία

για χειρισμό των σημείων Gauss ξεχωριστά και μία για προσομοιώσεις με στοιχεία.

xliv

8.3 Παραλληλία στις μεθόδους μορφοποίησης

Το πιο σημαντικό πλεονέκτημα της μορφοποίησης με βάση τις αλληλεπιδράσεις (IW) είναι ότι είναι

κατάλληλη για παράλληλη επεξεργασία. Στις μη-πλεγματικές μεθόδους και στην ισογεωμετρική

ανάλυση, κάθε υπομητρώο K ij διαμορφώνεται από μεγάλο αριθμό συνεισφορών καθώς κάθε

μονάδα Gauss επηρεάζει μεγάλο αριθμό κομβικών μονάδων. Η παραλληλοποίηση της μεθόδου

μορφοποίησης με βάση τις συνεισφορές (CW) προϋποθέτει το λεγόμενο “scatter parallelism” που

φαίνεται στο σχήμα 8.1 για δύο μονάδες Gauss C και D . Κάθε όρος του αθροίσματος μπορεί να

υπολογιστεί ανεξάρτητα και παράλληλα, αλλά υπάρχει πρόβλημα όταν γίνεται η πρόσθεση γιατί

πολλά threads πρέπει να γράψουν στις ίδιες θέσεις μνήμης. Το πρόβλημα μπορεί να παρακαμφθεί

με κατάλληλο προγραμματισμό, όμως σε μαζικώς παράλληλα συστήματα, στα οποία χιλιάδες

threads μπορεί να τρέχουν ταυτόχρονα, είναι πολύ επιβλαβές για την απόδοση γιατί όλες οι

εγγραφές θα καταλήξουν να γίνονται σειριακά.

Στην IW μέθοδο, αντί να ανανεώνονται συνεχώς οι όροι του μητρώου, υπολογίζονται οι τελικές

τιμές για κάθε υπομητρώο K ij και έπειτα τοποθετούνται στο καθολικό μητρώο. Για τον

υπολογισμό του εκάστοτε K ij , πρέπει να αθροιστούν όλες οι συνεισφορές των μονάδων Gauss που

ανήκουν στην τομή των πεδίων επιρροής των δύο κομβικών μονάδων. Επομένως, η IW μέθοδος

χρησιμοποιεί το λεγόμενο “gather parallelism”, όπως φαίνεται στο σχήμα 8.2. Σε παράλληλη

υλοποίηση, κάθε thread αναλαμβάνει ένα υπομητρώο K ij , συγκεντρώνει όλες τις συνεισφορές των

μονάδων Gauss και γράφει σε θέσεις μνήμης που δεν γράφονται από κανένα άλλο thread.

xlv

Fig. 8.1: Scatter parallelism στη μέθοδο
μορφοποίησης με βάση τις συνεισφορές

Fig. 8.2: Gather parallelism στη μέθοδο
μορφοποίησης με βάση τις αλληλεπιδράσεις

8.4 Υλοποίηση της IW μεθόδου σε GPU

H μέθοδος μορφοποίησης με βάση τις αλληλεπιδράσεις είναι κατάλληλη για εφαρμογή σε GPU. Οι

υπολογισμοί χωρίζονται σε δύο kernels, καθένας από τους οποίους χρησιμοποιεί διαφορετικά

επίπεδα παραλληλίας. Υπάρχουν διαφορετικές υλοποιήσεις και για τις δύο φάσεις ανάλογα με το αν

η ανάλυση στηρίζεται σε ξεχωριστά σημεία Gauss ή σε στοιχεία. Οι παρακάτω υλοποιήσεις είναι

γραμμένες σε openCL για περισσότερη ευελιξία.

8.4.1 Φάση 1 – Υπολογισμός των τιμών ολοκλήρωσης

Στην πρώτη φάση, υπολογίζονται οι τιμές ολοκλήρωσης για κάθε σημείο Gauss πάνω στις κομβικές

μονάδες. Οι τιμές αυτές εκφράζουν κάτι διαφορετικό σε κάθε εφαρμογή. Για παράδειγμα, σε

δομοστατικές εφαρμογές, υπολογίζονται οι τιμές των συναρτήσεων σχήματος για το μητρώο μάζας

ή οι τιμές των παραγώγων των συναρτήσεων σχήματος για το μητρώο δυσκαμψίας. Υπάρχουν δύο

επίπεδα παραλληλίας που εκμεταλλευόμαστε:

• Παραλλαγή ξεχωριστών σημείων Gauss: το κύριο επίπεδο παραλληλίας είναι τα σημεία

Gauss και το δευτερεύων είναι οι επηρεαζόμενοι κόμβοι.

• Παραλλαγή στοιχείων: το κύριο επίπεδο παραλληλίας είναι τα στοιχεία και το δευτερεύων

τα σημεία Gauss

8.4.2 Φάση 2 – Υπολογισμός των όρων του μητρώου

Στη δεύτερη και τελευταία φάση, υπολογίζονται τα υπομητρώα K ij . Για την αραιή (sparse) μορφή

μητρώου που χρησιμοποιεί η IW μέθοδος (COO), αυτό συνεπάγεται απλώς τον υπολογισμό των

δεικτών και των αντίστοιχων μη-μηδενικών τιμών για κάθε υπομητρώο. Μια απλή τεχνική για

παράλληλη επεξεργασία είναι ο ταυτόχρονος υπολογισμός κάθε ζεύγους αλληλεπίδρασης. Λόγω

των χαρακτηριστικών της GPU, όμως, επιλέγεται και ένα δεύτερο επίπεδο παραλληλίας, όπως

αναφέρθηκε παραπάνω. Οι τιμές που προέκυψαν από τη φάση 1 αποτελούν μέρος των δεδομένων

για τη φάση 2 και βρίσκονται ήδη στη GPU, εφόσον έχουν υπολογιστεί εκεί.

xlvi

8.5 Αριθμητικά αποτελέσματα για τη μορφοποίηση του μητρώου δυσκαμψίας σε μη-
πλεγματικές μεθόδους

Οι παραλλαγές των CW και IW μεθόδων που αφορούν προσομοιώσεις με ξεχωριστά σημεία Gauss

υλοποιούνται και εφαρμόζονται για τον υπολογισμό του μητρώου δυσκαμψίας σε 2D και 3D

παραδείγματα στατικής στη μη-πλεγματική μέθοδο προσομοίωσης element-free Galekrin (EFG). Η

γεωμετρία των φορέων (τετράγωνα, κύβοι) μεγιστοποιεί τις αλληλοσυσχετίσεις και άρα το

υπολογιστικό κόστος για τον εκάστοτε αριθμό κόμβων. Τα παραδείγματα εκτελέστηκαν με το

παρακάτω hardware. CPU: Core i7-980X που έχει 6 πυρήνες (12 λογικούς πυρήνες) στα 3.33 GHz

και 12MB cache. GPU: GeForce GTX680 με 1536 πυρήνες CUDA και 2GB GDDR5 μνήμη. Όλες

οι πράξεις κινητής υποδιαστολής είναι με διπλή ακρίβεια.

xlvii

Table 8.1: EFG: επιταχύνσεις GPU προς CPU για τη μορφοποίηση του
μητρώου δυσκαμψίας

CW Skyline IW

2D-1 41 32 31 39
2D-2 41 32 29 32
2D-3 40 31 28 33
3D-1 76 58 26 44
3D-2 78 59 27 41
3D-3 74 56 25 41

EFG
Example

CW Single
Hash T.

CW List of
Hash T.

Fig. 8.3: EFG: χρόνος μορφοποίησης του μητρώου δυσκαμψίας με τις CW και IW
μεθόδους (παραλλαγές για ξεχωριστά σημεία Gauss).

2D-1

2D-2

2D-3

3D-1

3D-2

3D-3

0.1 1 10 100 1000

CW Single Hash T. CW List of Hash T. CW Skyline

IW IW GPU

Time (s)

E
F

G
 E

xa
m

p
le

8.6 Αριθμητικά αποτελέσματα για τη μορφοποίηση του μητρώου δυσκαμψίας στην
ισογεωμετρική ανάλυση

Οι παραλλαγές των CW και IW μεθόδων που αφορούν προσομοιώσεις με στοιχεία υλοποιούνται

και εφαρμόζονται για τον υπολογισμό του μητρώου δυσκαμψίας σε 2D και 3D παραδείγματα

στατικής στην ισογεωμετρική ανάλυση. Οι παράμετροι που χρησιμοποιήθηκαν μεγιστοποιούν τις

αλληλοσυσχετίσεις και άρα το υπολογιστικό κόστος για τον εκάστοτε αριθμό σημείων ελέγχου. Τα

παραδείγματα εκτελέστηκαν με το παρακάτω hardware. CPU: Core i7-980X που έχει 6 πυρήνες (12

λογικούς πυρήνες) στα 3.33 GHz και 12MB cache. GPU: GeForce GTX680 με 1536 πυρήνες

CUDA και 2GB GDDR5 μνήμη. Όλες οι πράξεις κινητής υποδιαστολής είναι με διπλή ακρίβεια.

xlviii

Table 8.2: IGA: επιταχύνσεις GPU προς CPU για τη μορφοποίηση του μητρώου δυσκαμψίας

Non-coalesced Coalesced
CW IW CW IW

2D-P2-1 38 32 39 33
2D-P2-2 35 29 36 30
2D-P2-3 36 30 36 30
2D-P3-1 36 30 46 39
2D-P3-2 34 30 46 40
2D-P3-3 35 30 46 39
2D-P4-1 29 25 47 40
2D-P4-2 30 26 49 42
2D-P4-3 31 26 50 42
3D-P2-1 30 27 46 41
3D-P2-2 30 25 49 40
3D-P2-3 30 25 49 41
3D-P3-1 19 14 63 45
3D-P3-2 19 13 64 45
3D-P3-3 19 13 64 45
3D-P4-1 17 11 84 54
3D-P4-2 17 11 84 54
3D-P4-3 17 11 86 54

IGA
Example

xlix

Fig. 8.4: IGA: χρόνος μορφοποίησης του μητρώου δυσκαμψίας με τις CW και IW μεθόδους
(παραλλαγές για στοιχεία, με εξαίρεση: “CW w/o elements”).

2D-P2-1

2D-P2-2

2D-P2-3

2D-P3-1

2D-P3-2

2D-P3-3

2D-P4-1

2D-P4-2

2D-P4-3

3D-P2-1

3D-P2-2

3D-P2-3

3D-P3-1

3D-P3-2

3D-P3-3

3D-P4-1

3D-P4-2

3D-P4-3

0.1 1 10 100 1000

1230

Influence-wise w/o elements Influence-wise with elements Interaction-wise

Non-coalesced GPU Coalesced GPU

Times (s)

IG
A

 E
xa

m
p

le

l

Acknowledgements

First, I would like to thank my advisor, Professor Manolis Papadrakakis, for his scientific guidance

starting from my graduate studies, throughout my post-graduate studies as well as throughout the

years of academic research that lead to this PhD thesis.

For their valuable suggestions and comments, I would also like to express my deepest thanks to the

other two members of the PhD advisory committee, namely Professor Andreas Boudouvis and

Assistant Professor Vissarion Papadopoulos, as well as Assistant Professor Nikos Lagaros from my

graduate and post-graduate advisory committee.

Special thanks to George Stavroulakis for directing me towards sound programming foundations at

the start of my research. I would also like to thank Theofilos Manitaras for his support. Many

thanks to my co-authors Panagiotis Metsis and Panagiotis Karakitsios.

Special thanks to all the people of the research team of Professor Papadrakakis for maintaining an

enjoyable and cutting edge environment. Working with everyone has been a real pleasure.

Athens, May 2014

Alexander Karatarakis

li

lii

Table of Contents
 Abstract...xiii

 Σύντομη Περίληψη..xv

 Εκτενής Περίληψη..xvii

 Acknowledgements ..li

 Acronyms and Abbreviations...lxxi

1 Introduction...1

1.1 Motivation..1

1.2 Aim and objectives...1

1.3 Organization and outline..2

2 Simulation methods..5

2.1 Meshless/Meshfree methods..5

2.1.1 Basic ingredients of element-free Galerkin methods...7

2.1.1.1 Basic approximations...8

2.1.1.2 Weight functions...8

2.1.1.3 Moving least squares (MLS) approximation..9

2.1.1.4 Galerkin weak form..11

2.1.1.5 Essential Boundary Conditions..13

2.1.2 EFG test examples...14

2.2 Isogeometric Analysis..15

2.2.1 Basic ingredients of isogeometric analysis methods..15

2.2.1.1 Non-Uniform Rational B-SPLines (NURBS)..15

2.2.1.2 Stiffness matrix formulation...18

2.2.1.3 Quadrature rule...20

2.2.2 IGA Test examples...21

2.3 Finite element test examples..22

3 Domain decomposition methods ..23

3.1 The primal domain decomposition implementation..23

3.1.1 Static condensation..25

3.1.1.1 LL decomposition...26

3.1.1.2 LDL decomposition..27

3.2 The dual domain decomposition implementation..28

liii

3.2.1 FETI ingredients..28

3.2.2 Supported subdomains and supported degrees of freedom..36

3.2.3 Floating subdomains..37

3.2.4 Linear equations of the FETI interface problem..40

3.2.4.1 Matrix F..44

3.2.4.2 Vector d...44

3.2.4.3 Matrix G...45

3.2.4.4 Vector a...45

3.2.4.5 Vector e...45

3.2.5 Matrices of the boundary problem...46

3.2.5.1 Matrix F..46

3.2.5.2 Vector d...47

3.2.5.3 Matrix G and vector e...47

3.2.5.4 Vectors λ and a..47

3.2.6 Special cases..48

3.2.6.1 Boundary nodes with multiplicity >2...51

3.2.6.1.1 Minimum Constraints...52

3.2.6.1.2 Non-Redundant Constraints..53

3.2.6.1.3 Fully Redundant Constraints..54

3.2.6.2 Constrained boundary nodes..55

3.2.7 Solving the FETI interface problem...56

3.3 Preconditioners..60

3.3.1 General expression of preconditioners...61

3.3.2 Dirichlet preconditioner...62

3.3.3 Lumped preconditioner..63

3.3.4 Diagonal preconditioner...63

3.3.5 Preconditioner usage..64

3.4 Implementation considerations in the context of FETI...65

3.4.1 Matrix format...65

3.4.2 Variable type...65

3.4.3 Order of calculations..66

3.4.4 Boolean matrices..67

liv

3.4.4.1 Type A: indexes only..68

3.4.4.2 Type Β: signed indexes...69

3.4.4.3 Type C: Indexes and separate signs..70

3.4.4.4 Matrix-vector multiplication for compact B..70

3.4.4.4.1 Matrix-vector multiplication for Type Α..73

3.4.4.4.2 Matrix-vector multiplication for Type B..74

3.4.4.4.3 Matrix-vector multiplication for Type C..75

3.4.4.5 Left multiplying vector with matrix for compact B...76

3.4.4.6 Local to Global Mapping...77

3.4.5 Matrix W..79

3.4.5.1 Matrix vector multiplication for compact W..81

4 Graphics Processing Units (GPUs) ...83

4.1 CPU vs GPU..84

4.2 CUDA and OpenCL...86

4.3 GPU Hardware...87

4.4 GPU Threads..90

4.5 Thread Organization..90

4.6 Warps and control divergence..91

4.7 Block size...93

4.8 GPU Memory...94

4.8.1 Global Memory..95

4.8.2 Constant Memory...97

4.8.3 Shared Memory [CUDA] or Local Memory [OpenCL]..98

4.8.4 Registers...98

4.8.5 Other memories..98

4.8.6 Data transfer...99

4.9 Synchronization...99

4.10 Privatization...101

4.11 Atomic Operations...101

4.12 Reduction...103

4.13 Pinned Memory..106

4.14 GPU Task Parallelism..107

lv

5 Handling of matrices ...109

5.1 Dense Matrix..109

5.1.1 Row-major & column-major entry order...110

5.1.2 Implementations...110

5.1.2.1 Row-major, 2D array..111

5.1.2.2 Row-major, 1D array..112

5.1.2.3 Column-major, 2D array...113

5.1.2.4 Column-major, 1D array...114

5.2 Triangular Dense Matrix..115

5.2.1 Implementations...115

5.2.1.1 Lower triangular dense storage by row..116

5.2.1.2 Lower triangular dense storage by column..118

5.2.1.3 Upper triangular dense storage by row...120

5.2.1.4 Upper triangular dense storage by column...122

5.3 Symmetric Dense Matrix...123

5.3.1 Implementations...123

5.3.1.1 Lower Triangle by row or Upper Triangle by column...124

5.3.1.2 Lower Triangle by column or Upper Triangle by row...125

5.4 Diagonal Dense Matrix..127

5.5 Bandwidth-aware storage..128

5.5.1 Symmetric Banded Matrix...130

5.5.2 Symmetric Skyline Matrix...131

5.5.3 Factorization...135

5.5.4 Banded Factorization...136

5.5.5 Skyline Factorization...138

5.5.6 Numbering considerations...140

5.6 Sparse Matrix...145

5.6.1 Sparse Matrix Builders...145

5.6.1.1 Coordinate list (COO)..146

5.6.1.2 Dictionary of Keys (DOK)...147

5.6.2 Sparse Matrix formats for operations...149

5.6.2.1 Compressed Sparse Row (CSR)...149

lvi

5.6.2.2 Compressed Sparse Column (CSC)...150

5.6.2.3 Other sparse formats...151

5.7 Matrix multiplication...152

5.8 Order of calculations..154

5.9 Transpose...158

5.10 Matrices as a collection of vectors...159

6 Domain decomposition methods in hybrid CPU-GPU architectures161

6.1 Introduction..161

6.2 Dual DDM (FETI) method..163

6.3 Hybrid CPU-GPU implementation..165

6.3.1 The Choleksy direct solver...165

6.3.2 The PCG iterative solver..168

6.3.3 The solution at the projection step...169

6.3.4 Dot products...169

6.3.5 Sparse matrix – vector multiplications...170

6.4 Dynamic load-balancing..171

6.4.1 Task Parallelism...171

6.5 Dynamic load-balancing implementation..172

6.6 Numerical results...174

6.7 Remarks...187

7 Relations between basic entities of Gauss quadrature ..189

7.1 N-G correlations..190

7.2 G-N correlations..190

7.3 Interactions...191

7.4 Synergies..193

7.5 Domain of influence in the simulation methods..194

7.5.1 Domain of influence in FEA..194

7.5.2 Domain of influence in MMs...196

7.5.2.1 Comparison with FEA..198

7.5.2.2 Identification of correlations in MMs..201

7.5.2.3 Interactions and shared Gauss points in MMs..205

7.5.3 Domain of influence in IGA..209

lvii

7.5.3.1 Comparison with FEA..211

7.5.3.2 Interactions...214

7.5.3.3 Interaction comparison with FEA for equal number of freedom degrees..............216

8 Formulation of the characteristic matrices ..217

8.1 The contribution-wise (CW) method for assembling a matrix..217

8.1.1 Gauss point-wise variant of the CW method...217

8.1.2 Element-wise variant of the CW method...218

8.2 The interaction-wise (IW) method for assembling a matrix..219

8.2.1 IW variant with individual Gauss points..219

8.2.2 IW variant for element-driven applications...220

8.3 Scatter-gather parallelism of the matrix assembly methods..221

8.4 GPU implementation of the interaction-wise approach...223

8.4.1 Phase 1 – Calculation of quadrature values...223

8.4.1.1 Individual Gauss point variant...223

8.4.1.2 Element variant...225

8.4.2 Phase 2 – Calculation of matrix entries..226

8.4.2.1 Two-level individual Gauss point variant...227

8.4.2.2 Two-level element variant..229

8.5 Memory layout of quadrature values for coalesced access..230

8.6 Utilization of available hardware...232

8.7 GPU accelerated formulation of the EFG stiffness matrix..235

8.7.1 Computation of stiffness contribution for each Gauss point..235

8.7.1.1 Shape function derivative calculation..235

8.7.1.2 BTEB Calculation..237

8.7.2 Performance of the Gauss point-wise variant of the CW method..................................238

8.7.3 Performance of the interaction-wise approach...241

8.7.4 GPU implementation of the interaction-wise approach...242

8.7.4.1 Phase 1 – Calculation of shape function and derivative values.............................242

8.7.4.2 Phase 2 – Calculation of the global stiffness coefficients......................................243

8.7.5 Performance of the GPU implementation of the interaction-wise approach.................244

8.7.6 Numerical results...244

8.8 GPU accelerated formulation of the IGA stiffness matrix...247

lviii

8.8.1 BTEB Calculation..247

8.8.2 Performance of the element-wise variant of the CW method..248

8.8.3 Performance of the interaction-wise approach...251

8.8.4 GPU implementation of the interaction-wise approach...252

8.8.4.1 Phase 1 – Calculation of shape function and derivative values.............................252

8.8.4.2 Phase 2 – Calculation of the global stiffness coefficients......................................253

8.8.5 Performance of the coalesced and non-coalesced GPU implementations of the

interaction-wise approach...254

8.8.6 Numerical results...255

8.9 Remarks...258

9 Overview and concluding remarks ...261

9.1 Future work..264

10 Appendix A: BEB calculations ..265

10.1 The elasticity tensor in 3D problems...265

10.1.1 Anisotropic material...265

10.1.2 Orthotropic material...265

10.1.3 Isotropic material...266

10.2 The deformation matrix in 3D problems...267

10.3 Explicit calculation in 3D problems..268

10.3.1 Anisotropic material...269

10.3.2 Orthotropic material...270

10.3.3 Isotropic material...271

10.4 Total number of calculations required...274

10.5 The elasticity tensor in 2D problems...277

10.5.1 Anisotropic material...277

10.5.2 Orthotropic material...277

10.5.3 Isotropic material under Plane Stress...277

10.6 The deformation matrix in 2D problems...278

10.7 Explicit calculation in 2D problems..279

10.7.1 Anisotropic material...280

10.7.2 Orthotropic material...280

10.7.3 Isotropic material under Plane Stress...280

lix

10.8 Total number of calculations required in 2D problems...282

11 References..285

lx

List of Figures

Fig. 2.1: Weight functions...11

Fig. 2.2: C1 continuous quadratic basis derived from open uniform knot vector..............................16

Fig. 2.3. Partitioning of domain in 125 subdomains..22

Fig. 3.1: Example domain..29

Fig. 3.2: Numbering of nodes and degrees of freedom of the domain...29

Fig. 3.3: Domain teared into two subdomains..30

Fig. 3.4: Numbering of nodes and degrees of freedom of the teared domain....................................30

Fig. 3.5: Global numbering of nodes and degrees of freedom of the subdomains.............................31

Fig. 3.6: Equations of subdomains and constraints..35

Fig. 3.7: Close constraints..40

Fig. 3.8: Spaced-out constraints...40

Fig. 3.9: Example 2..48

Fig. 3.10: Numbering of nodes and degrees of freedom of the domain...48

Fig. 3.11: Domain teared into 4 subdomains..49

Fig. 3.12: Numbering of nodes and degrees of freedom of the teared domain..................................49

Fig. 3.13: Global numbering of nodes and degrees of freedom of the subdomains...........................50

Fig. 3.14: Special node cases..50

Fig. 3.15: Minimum constraints...52

Fig. 3.16: Non-redundant constraints...53

Fig. 3.17: Fully redundant constraints..54

Fig. 3.18: The PCPG algorithm..57

Fig. 3.19: Fully redundant constraints..72

Fig. 4.1. GPU processing flow paradigm...84

Fig. 4.2: SM vs SMX..87

Fig. 4.3: NVIDIA Fermi (GF100) GPU block diagram...88

Fig. 4.4: NVIDIA Kepler (GK110) GPU block diagram..88

Fig. 4.5. Thread Organization...91

Fig. 4.6: 2D thread grid with 2D thread blocks..91

Fig. 4.7. Visual Representation of GPU Memory Model and Scope..94

Fig. 4.8: DRAM burst example..95

Fig. 4.9: Fully coalesced memory access...95

lxi

Fig. 4.10: Non coalesced memory access...96

Fig. 4.11: Non coalesced strided memory access...96

Fig. 4.12: Non coalesced memory access due to misalignment...96

Fig. 4.13: A 4x4 matrix...97

Fig. 4.14: Barrier synchronization..100

Fig. 4.15. Parallel reduction tree..103

Fig. 4.16: Reduction pattern with thread divergence..104

Fig. 4.17: Good reduction pattern...105

Fig. 4.18: Data transfer between CPU and GPU..107

Fig. 4.19: Without task parallelism (dir. = direction)...108

Fig. 4.20: With task parallelism (dir. = direction)..108

Fig. 5.1: Row-major dense storage of a matrix...111

Fig. 5.2: Column-major dense storage of a matrix...113

Fig. 5.3: Storage by row of an lower triangular matrix..116

Fig. 5.4: Storage by column of an lower triangular matrix..118

Fig. 5.5: Storage by row of an upper triangular matrix..120

Fig. 5.6: Storage by column of an upper triangular matrix..122

Fig. 5.7: Symmetric storage of an symmetric matrix...124

Fig. 5.8: Symmetric storage of an symmetric matrix...125

Fig. 5.9: Storage of an diagonal matrix..127

Fig. 5.10: Entries stored with symmetric banded storage for a symmetric matrix...........................130

Fig. 5.11: Entries stored with symmetric skyline storage for an symmetric matrix.........................131

Fig. 5.12: Order of stored entries with symmetric skyline storage for an symmetric matrix...........131

Fig. 5.13: The number of entries in the skyline storage as well as the extra entry needed in the array.

..133

Fig. 5.14: The highest entries of columns and ...134

Fig. 5.15: decomposition for symmetric matrices..135

Fig. 5.16: Entries involved in dot product between columns , (red line)...136

Fig. 5.17: Entries involved in dot product between columns , (red line) for banded matrices.........137

Fig. 5.18: decomposition for symmetric banded matrices...137

Fig. 5.19: Entries involved in dot product between columns , (red line) for a skyline matrix.........138

Fig. 5.20: decomposition for symmetric banded matrices...139

lxii

Fig. 5.21: Good numbering of degrees of freedom. Grey = non-zero entries..................................140

Fig. 5.22: Bad numbering of degrees of freedom. Grey = non-zero entries.....................................140

Fig. 5.23: Global numbering..141

Fig. 5.24: Local numbering..141

Fig. 5.25:Element numbering...141

Fig. 5.26: Numbering A. Grey = entries up to the highest non-zero entry of the column................143

Fig. 5.27: Numbering B. Grey = entries up to the highest non-zero entry of the column................143

Fig. 5.28: Bandwidth improvement through the (reverse) Cuthill-McKee algorithm......................144

Fig. 5.29: Ordering of operations in linear algebra libraries..157

Fig. 6.1: The PCPG algorithm used for the solution of the interface problem.................................164

Fig. 6.2. Time in ms for factorizing a subdomain kernel. Horizontal axis represents the simultaneous

factorizations computed at the GPU in parallel..167

Fig. 6.3: The PCG algorithm..168

Fig. 6.4. The task queue contains numerical computations to be performed by available resources

..172

Fig. 6.5: Number of iterations for the PCPG solution of the interface problem with Cholesky and

PCG subdomain solvers...174

Fig. 6.6: Computing time per subdomain for Cholesky factorization..176

Fig. 6.7: Computing time per subdomain for forward and backward substitutions.........................176

Fig. 6.8: Computing time per subdomain for PCG solution...177

Fig. 6.9: Computing time per subdomain for sparse matrix-vector multiplication..........................177

Fig. 6.10: Optimum subdomain distribution between CPU and GPU for the factorization and

forward/backward substitutions of the Cholesky subdomain solver with the i7 and GTX 285

combination..178

Fig. 6.11: Optimum subdomain distribution between CPU and GPU for SpMV multiplications and

PCG subdomain solver with the i7 and GTX 285 combination...178

Fig. 6.12: Optimum subdomain distribution between CPU and GPU for the factorization and

forward/backward substitutions of the Cholesky subdomain solver with the i7 and GTX 580

combination..179

Fig. 6.13: Optimum subdomain distribution between CPU and GPU for SpMV multiplications and

PCG subdomain solver with the i7 and GTX 580 combination...179

Fig. 6.14: Total solution time of FETI for the Hybrid, GPU (GTX285) only and CPU (i7) only cases

lxiii

with the Cholesky subdomain solver..181

Fig. 6.15: Total solution time of FETI for the Hybrid, GPU (GTX285) only and CPU (i7) only cases

with the PCG subdomain solver...181

Fig. 6.16: Performance speedup ratios for different combinations of CPU (i7) and GPU (GTX 285)

with the Cholesky subdomain solver..182

Fig. 6.17: Performance speedup ratios for different combinations of CPU (i7) and GPU (GTX 285)

with the PCG subdomain solver...182

Fig. 6.18: Performance speedup ratios per CPU core for different combinations of CPU (i7) and

GPU (GTX 285) with the Cholesky subdomain solver..183

Fig. 6.19: Performance speedup ratios per CPU core for different combinations of CPU (i7) and

GPU (GTX 285) with the PCG subdomain solver...183

Fig. 6.20: Total solution time of FETI for the Hybrid, GPU (GTX580) only and CPU (i7) only cases

with the Cholesky subdomain solver..184

Fig. 6.21: Total solution time of FETI for the Hybrid, GPU (GTX580) only and CPU (i7) only cases

with the PCG subdomain solver...184

Fig. 6.22: Performance speedup ratios for different combinations of CPU (i7) and GPU (GTX 580)

with the Cholesky subdomain solver..185

Fig. 6.23: Performance speedup ratios for different combinations of CPU (i7) and GPU (GTX 580)

with the PCG subdomain solver...185

Fig. 6.24: Performance speedup ratios per CPU core for different combinations of CPU (i7) and

GPU (GTX 580) with the Cholesky subdomain solver..186

Fig. 6.25: Performance speedup ratios per CPU core for different combinations of CPU (i7) and

GPU (GTX 580) with the PCG subdomain solver...186

Fig. 7.1: N-G correlations: each nodal entity N is associated to all Gauss entities G influencing it.

..190

Fig. 7.2: G-N correlations: each Gauss entity G is associated with all nodal entities N it influences.

..190

Fig. 7.3: Nodal entity interactions..191

Fig. 7.4: Identifying interacting pairs for nodal entity ..192

Fig. 7.5: Interacting pairs with shared Gauss entities...193

Fig. 7.6: FEA: domain of influence of node...194

Fig. 7.7: FEA: domain of infl. of Gauss p..194

lxiv

Fig. 7.8: FEA: interacting nodes for p = 2..195

Fig. 7.9: Domain of influence of Gauss point in (a) MMs; (b) FEA, for the same number of nodes ()

and Gauss points ()...196

Fig. 7.10: Domain of influence of node (a) MMs; (b) FEA, for the same number of nodes () and

Gauss points ()..197

Fig. 7.11: MMs: node interactions (nodes:, Gauss points)..198

Fig. 7.12: Interacting nodes: (a) MMs; (b) FEA for the same number of nodes () and Gauss points ()

..199

Fig. 7.13: Global search for correlations (nodes:, Gauss points)..202

Fig. 7.14: Regioned search for correlations (nodes:, Gauss points)..202

Fig. 7.15: Identifying the influencing Gauss points of node..203

Fig. 7.16: Interaction nodes with their shared Gauss points...205

Fig. 7.17: Identifying interacting node pairs for node ...206

Fig. 7.18 Identifying interacting node pairs by considering Gauss points near the border of the

domain of influence..207

Fig. 7.19: Region-wise search for interacting nodes. Only the shaded regions are inspected for

shared Gauss points..208

Fig. 7.20. IGA 1D domains of influence of control points for various values of p..........................209

Fig. 7.21. Areas influencing control point in: (a) IGA (p odd); (b) IGA (p even); (c) FEA. The

influencing entities are the Gauss points in the shaded areas...210

Fig. 7.22. Control points/nodes influenced by Gauss point in: (a) IGA (p odd); (b) IGA (p even); (c)

FEA...210

Fig. 7.23. Visual comparison between (a)IGA p=even; (b) FEA p=2, for the same number of control

points/nodes..212

Fig. 7.24. Visual comparison between (a)IGA p=odd; (b) FEA p=3, for the same number of control

points/nodes..212

Fig. 7.25. Interacting control points/nodes for p = 2: (a) IGA; (b) FEA..214

Fig. 7.26. IGA Interacting control points for p=3...215

Fig. 8.1: Scatter parallelism in the contribution-wise approach...222

Fig. 8.2: Gather parallelism in the interaction-wise approach..222

Fig. 8.3: Thread organization in phase 1 for the individual Gauss point variant. A thread block/group

is assigned to Gauss point G and each thread of the block/group is assigned to an influenced node of

lxv

G...224

Fig. 8.4: Thread organization in phase 1 for the element variant. A thread block/group is assigned to

element E and each thread of the block/group is assigned to a Gauss point of E. Each thread iterates

over all influenced nodes ...225

Fig. 8.5: Thread organization in phase 2 for the individual Gauss point variant showing the threads

assigned to the shared Gauss points G of interacting pair ...227

Fig. 8.6: Phase 2: concurrency within a block/group for the assembly phase in the GPU...............228

Fig. 8.7. Thread organization in phase 2 for the element variant showing the threads assigned to the

Gauss points G of the shared elements E of interacting pair ...229

Fig. 8.8. Memory layout of quadrature values of an element “e”. The values are grouped together by

Gauss point (G), and each group contains values for all influenced nodal entities (N). This leads to

non-coalesced access pattern: consecutive threads access non-consecutive memory locations......231

Fig. 8.9. Memory layout of quadrature values of an element “e”. The values are grouped together by

nodal entity (N), and each group contains values for all influencing Gauss points (G). This leads to

coalesced access pattern: consecutive threads access consecutive memory locations.....................231

Fig. 8.10: Fully processing the nodes of the core also requires data from the halo surrounding it..232

Fig. 8.11: Schematic representation of the processing of node pairs utilizing all available hardware.

..234

Fig. 8.12: Phase 1 - Concurrency level for the calculation of shape function values in the GPU....243

Fig. 8.13: Overview of the numerical results obtained for EFG with the contribution-wise (CW) and

interaction-wise (IW) methods (individual Gauss point variants)..245

Fig. 8.14. IW approach: Phase 1 - Concurrency within a block/group of threads for the calculation

of shape function values in the GPU..253

Fig. 8.15: Overview of the numerical results obtained for IGA with the contribution-wise (CW) and

interaction-wise (IW) methods (element variants, except “CW w/o elements”).............................256

lxvi

List of Tables

Table 2.1: List of meshless methods...6

Table 2.2: 2D and 3D example details for EFG test examples...14

Table 2.3: 2D and 3D example details for IGA test examples...21

Table 2.4: Example details for FEA...22

Table 3.1: Numbering of interface nodes...32

Table 3.2: Storage formats for signed Boolean matrix...67

Table 4.1: CUDA vs OpenCL terminology..86

Table 4.2: Important GPU properties...89

Table 4.3: Specifications for GTX 580, GTX 680 and GTX Titan..89

Table 4.4: Block granularity considerations for Compute capability 2.0...93

Table 4.5: Memory scope and lifetime...94

Table 4.6: Desirable order of execution..101

Table 4.7: Undesirable order of execution..102

Table 5.1: Column height (diagonal exclusive) for each column for numbering A.........................142

Table 5.2: Column height (diagonal exclusive) for each column for numbering B.........................142

Table 5.3: Combinations of typical backing data structures for the DOK format. “Internal” refers to

the data structures that stores rows/columns, whereas “external” is the data structure that stores

references to them...148

Table 5.4: Matrix multiplication calculations for various types of matrices....................................152

Table 5.5: Multiplication from left to right...154

Table 5.6: Multiplication from right to left...155

Table 5.7: Example: multiplication from left to right...155

Table 5.8: Example: multiplication from right to left...155

Table 5.9: Multiplication from right to left with vector in the right...157

Table 5.10: Multiplication of 3 matrices and a vector..157

Table 6.1. Performance of PCG with and without re-orthogonalization..175

Table 7.1: Influences per node and Gauss point for EFG and FEA...198

Table 7.2: Total number of node-Gauss point correlations in EFG and FEA...................................199

Table 7.3: Number of interacting node pairs in EFG and FEA..200

Table 7.4: Total synergies for EFG and FEA..200

Table 7.5: Computing time required for all node-Gauss point correlations.....................................204

lxvii

Table 7.6: Computing time required for a naive identification of interacting nodes and their shared

Gauss points..206

Table 7.7: Computing time for the identification of interacting nodes..206

Table 7.8: Computing time for the identification of interacting nodes by only inspecting Gauss

points near the border...206

Table 7.9: Computing time to identify the shared Gauss points of an interacting node pair...........208

Table 7.10: Computing time to identify the shared Gauss points of an interacting node pair with

regioning...208

Table 7.11. Total elements and Gauss points in IGA and FEA, for n = 121 control points/nodes and

different p, in 2D and 3D square and cubic domains...211

Table 7.12. Total elements in IGA and FEA with respect to p..211

Table 7.13. Correlations of nodes with elements and Gauss points for FEA...................................213

Table 7.14. Correlations of control points with elements and Gauss points for IGA.......................213

Table 7.15. Number of Gauss points influencing a control point/node with respect to p................214

Table 7.16. Interactions per control point/node in IGA and FEA...216

Table 7.17. Interactions per control point/node with respect to p..216

Table 8.1: Metrics of the EFG 2D and 3D elasticity problems..239

Table 8.2: Computing times for the formulation of the EFG stiffness matrix with the Gauss point-

wise method for different sparse matrix builder implementations...239

Table 8.3: Computing times for the formulation of the EFG stiffness matrix when using sparse and

skyline matrix formats in the Gauss point-wise approach..240

Table 8.4: Stored entries comparison of the EFG stiffness matrix when using sparse and skyline

matrix formats..240

Table 8.5: Computing times for the formulation of the EFG stiffness matrix when using the

interaction-wise variant with individual Gauss points...241

Table 8.6: Computing times for the formulation of the EFG stiffness matrix in the GPU

implementation of the interaction-wise approach with individual Gauss points..............................244

Table 8.7: EFG: speedups obtained with the GPU implementation compared to the CPU

implementations for the matrix formulation...245

Table 8.8: Best achieved elapsed time until the finish of the formulation of the stiffness matrix. . .246

Table 8.9: Best projected elapsed time until the finish of the formulation of the stiffness matrix in a

hybrid implementation..246

lxviii

Table 8.10: Metrics of the IGA 2D and 3D elasticity problems...249

Table 8.11: Computing times for the formulation of the IGA stiffness matrix with the Gauss point-

wise and element-wise approaches...249

Table 8.12. Single core CPU computing time for the formulation of the stiffness matrix in the

element-wise (EW) approach with sparse and skyline storage..250

Table 8.13. Number of stored stiffness elements for skyline and sparse storage.............................250

Table 8.14: Computing times for the formulation of the IGA stiffness matrix when using the

interaction-wise variant with elements...251

Table 8.15: Computing times for the formulation of the IGA stiffness matrix in the non-coalesced

GPU implementation of the interaction- wise approach with elements...254

Table 8.16: Computing times for the formulation of the IGA stiffness matrix in the coalesced GPU

implementation of the interaction-wise approach with elements...255

Table 8.17: IGA: Speedups obtained with the non-coalesced and coalesced GPU implementations

compared to the CPU implementations..257

Table 10.1: Multiplications, additions and temporary variables required for a single pair of nodes

and at a single Gauss point...274

Table 10.2: Multiplications required for calculations at a single Gauss point.................................275

Table 10.3: Multiplications required for calculations at a single Gauss point.................................276

Table 10.4: Multiplications, additions and temporary variables required for a single pair of nodes

and at a single Gauss point...281

Table 10.5: Multiplications required for calculations at a single Gauss point.................................282

Table 10.6: Multiplications required for calculations at a single Gauss point (alternative way).....283

lxix

lxx

Acronyms and Abbreviations

The following acronyms and abbreviations are used in the the dissertation. Acronyms are also

spelled out the first time they appear in a section.

lxxi

Acronym Description

CPU
CUDA
DDM
EFG
FEA / FEM
FETI
GPU
IGA
MMs
SpMV

Central Processing Unit
Compute Unified Device Architecture
Domain Decomposition Method
Element Free Galerkin
Finite Element Analysis / Method
Finite Element Tearing & Interconnecting
Graphics Processing Unit
Isogeometric Analysis
Meshless Methods
Sparse Matrix-Vector (multiplication)

Abbreviation Description

Latin English
e.g. for example
et al. and others
etc. and so forth
i.e. that is
p. or pp. page

exempli gratia
et alii
et cetera
id est

lxxii

1 Introduction

1.1 Motivation

The primary purpose of engineering analysis is to provide numerical simulation of a physical

phenomenon in a way that is accurate but also computationally feasible. The need to accurately

simulate various physical processes in complex geometries is important, and has perplexed

scientists for many years. The up-to-date simulation methods can accurately model the physical

domain but often require high computational effort. A numerical simulation needs to be performed

within a reasonable time-frame with the given computational resources in order to be affordable in

real-world applications. Thus, an important aspect in terms of feasibility is the efficient

implementation of a simulation methods that enables its application in large-scale problems.

While the prevailing cost in traditional finite element analysis (FEA) is in the solution phase, the

main drawback of meshless methods (MMs) and isogeometric analysis (IGA) when addressing real-

world problems is the high cost for the formulation of the characteristic matrices. Therefore, in

order to make them efficient in large-scale simulations, these methods require massively parallel

algorithms not only for the solution phase but also for the assembly of the characteristic matrices.

1.2 Aim and objectives

The aim of this work is to accelerate computationally expensive parts of the most popular numerical

simulation methods in a manner that is both efficient and scalable. To that end, the main objectives

were:

• To investigate algorithms that enable massive parallelism for all parts of the simulation

phase.

◦ Domain decomposition methods split the domain into several subdomains and allows

their concurrent solution.

◦ Assembling the matrix by non-zero allows different parts of the matrix to be calculated

in parallel.

Often, the algorithms needed for an efficient serial implementation differ from those

applicable to a massively parallel one.

1

• To make numerical operations involved in the algorithm as efficient as possible. Hence,

operations like matrix calculations need to be performed with a format that carefully

balances calculation time and space requirements.

• To explore details of Graphics Processing Units (GPUs). GPUs have a different

programming model than CPUs and include a variety of different memories and special

characteristics that need to be appropriately exploited in efficient implementations.

• To develop efficient CPU implementations for the initial and intermediate phases of a

simulation. This mostly applies to MMs where the initialization phase is particularly

expensive due to the absence of a grid.

• To develop GPU implementations for computationally expensive part of the simulation

methods. In this work, the focus is on:

◦ The solution phase in FEA

◦ The formulation phase in MMs and IGA

1.3 Organization and outline

Chapter 2 describes the three numerical simulation methods used in this work, i.e. FEM, MMs

(focusing on element free Galerkin methods - EFG) and IGA. The test examples that are used

throughout this work are outlined in this chapter.

Chapter 3 is dedicated to domain decomposition solution methods. Domain decomposition methods

allow the exploitation of the natural parallelism offered by the subdivision of the physical domains

to a number of subdomains. The primal domain decomposition method is briefly described followed

by an extensive presentation of the dual domain decomposition method (DDM/FETI), which is used

in this work. The basic ingredients of FETI are presented, including floating subdomains which

constitute a particular characteristic of the method. The solution of the linear equations of the FETI

interface problem is discussed along with preconditioners and implementation considerations.

Chapter 4 presents graphics processing units (GPUs) and their characteristic properties. In a

massively parallel context, GPUs are particularly interesting. This is due to their low cost, low

2

energy consumption and high performance. GPUs are parallel devices of the SIMD (single

instruction, multiple data) classification and require a large number of threads to be effectively

utilized (thousand, usually more). As a result, the principles of massively parallel programming

directly apply to GPUs. GPU technology has matured considerably in the last years and is currently

improving at a very fast pace. Chapter 4 presents details that need to be considered in any GPU

implementation and are thus vital for the efficiency of the simulation methods considered in this

work.

Chapter 5 deals with the handling of matrices that are frequently encountered in simulation

implementations. Matrix storage and matrix operations are important performance factors for large-

scale simulations. The choice of an appropriate format for the task at hand may significantly affect

performance. Chapter 5 presents matrix formats that are commonly used in simulations along with

appropriate storage schemes and implementation considerations. These include dense, banded,

skyline formats as well as a variety of sparse formats.

Chapter 6 contains the hybrid CPU-GPU implementation of the FETI domain decomposition

method along with supporting numerical results. The solution of the subdomain problems is tested

with a direct Cholesky solver as well as with an iterative PCG solver, for different number of

subdomains. An important strategy discussed in Chapter 6 is dynamic load-balancing. The dynamic

load balancing with task parallelism and the parallel implementation of the sparse matrix-vector

multiplications and dot products ensure that all components of the workstation are constantly busy

with calculations resulting in full exploitation of their computing resources. The dynamic load

balancing allows the efficient utilization of different CPUs and GPUs as well as any number of

CPU cores or GPUs, while making sure that all components are used to their full capacity.

Relations between the basic entities (nodes, Gauss points, control points) are discussed in Chapter

7. Relations are presented in an abstract manner to cover all Gaussian quadrature-based methods

before being applied to the specific simulation methods used in this work (FEA, MMs, IGA).

Chapter 7 extensively deals with the domain of influence and its particular characteristics in each

simulation method. The domain of influence is a fundamental factor that dictates the density and

cost of the characteristic matrices of each method. A cost comparison of MMs and IGA with FEM is

included to further highlight the differences and challenges between the methods. Generic

techniques are presented for the identification of the relations. Furthermore, in the case of MMs

where the identification is quite laborious, efficient algorithms are presented to improve the cost of

3

identification.

Chapter 8 is dedicated to the formulation of the characteristic matrices of the simulation methods.

The techniques discussed in Chapter 8 are applicable to any simulation method whose characteristic

matrices are based on Gaussian quadrature. Two primary formulation methods are presented: the

standard contribution-wise (CW) method and the parallel-friendly interaction-wise (IW) method.

Both methods have two variants, one that handles Gauss points explicitly and one that handles

Gauss points as part of elements (or other groups). The CW approach is the typical approach for

assembling matrices with Gauss quadrature. For simulation methods with a large number of

contributions to the global matrix, a fine tuned matrix format for the assembly phase can greatly

improve the performance properties of the CW approach. Dense or skyline formats feature fast

indexing but use considerably more memory than sparse formats and thus can be prohibitive for

large-scale simulations. Sparse matrix formats have the lowest memory cost but higher indexing

cost, so sparse formats specifically tailored for the assembly phase are used in this work. The IW

method has several advantages with respect to the CW approach. The most important one is its

amenability to parallelism especially in massively parallel systems like the GPUs. Each interacting

pair can be processed separately by any available processor in order to compute the corresponding

submatrix.

GPU implementations are applied to the IW approach offering great speedups compared to CPU

implementations. The interacting pairs keep the GPU constantly busy with calculations resulting in

high hardware utilization. The IW approach offers great portability since it can be applied to any

available hardware achieving even lower computing times when combined with many GPUs,

hybrid CPU(s)/GPU(s) implementations and generally any available processing unit. The

importance of this flexibility becomes apparent when considering contemporary and future

developments like heterogeneous computing systems architecture.

4

2 Simulation methods

The need to accurately simulate various physical processes in complex geometries is important, and

has been the subject of intensive research by scientists and engineers. The most widely used

simulation method is the finite element method (FEM/FEA). In the last decade, two powerful

simulation methods have also attracted the interest of the research community: meshless methods

(MMs) and isogeometric analysis (IGA). MMs and IGA both have their own merits compared to

FEM but they also have some shortcomings. One of the downsides of both methods is the

significantly increased cost for the formulation of the characteristic matrices.

2.1 Meshless/Meshfree methods

Many numerical simulation schemes exist for solving engineering problems and mesh-based

methods are widely used. In mesh-based methods, such as FEM, finite difference (FDM) and finite

volume (FVM), each point has a fixed number of predefined neighbors. In simulations where the

material being simulated can move around (as in computational fluid dynamics) or where large

deformations of the material can occur (as in simulations of plastic materials), the connectivity of

the mesh can be difficult to maintain without introducing error into the simulation [1]. If the mesh

becomes degenerate, the simulation values may introduce inaccuracies. Remeshing can be used to

remedy the situation but this can also introduce errors and affect the computational cost.

Furthermore, complex geometries may require extensive meshing and involve difficulties when

simulated with mesh-based methods [2].

Meshless or meshfree methods (MMs) are a particularly attractive family of methods that are

receiving attention because they are relatively simple, accurate, and require no meshing. In

particular, MMs are numerical simulation methods that do not require a mesh connecting the

characteristic points of the simulation domain [1]. MMs can enable the simulation of otherwise

difficult problems and can provide solutions with increased accuracy while also avoiding the need

for mesh connectivity and consequently mesh-related weaknesses and limitations [3]. Manpower

time is reduced when compared to mesh-based methods which sometimes require human assistance

for the generation of useful meshes. MMs can also easily cope with creation/destruction of

characteristic points during the simulation as well as large deformations and discontinuities that do

not align with element edges. However, the higher quality of the analysis with MMs is accompanied

with increased computational cost for the assembly of the matrices and the solution of the resulting

5/362

algebraic equations. In particular, the characteristic matrices have larger bandwidth, are more

densely populated and their formulation complexity is substantially increased.

There is a wide variety of MMs, as can be seen in Table 2.1. The more common techniques include

kernel methods, element-free Galerkin, meshless Petrov-Galerkin, smooth-particle hydrodynamics,

and radial basis functions. Each technique has particular traits and advantages for specific classes of

problems. Related to MMs is the moving least squares and partition of unity methods as well as

FEA methods that combine some meshless aspects, like extended FEM (XFEM). MMs are

thoroughly analyzed in [4] with a particular focus on the most important techniques.

One of the first and most prominent meshless method is the element free Galerkin (EFG) method

introduced by Belytschko et al. [5]. EFG requires only nodal data, no element connectivity is

needed to construct the shape functions. However a global background cell structure is necessary

for the numerical integration. Moreover, since the number of interactions between nodes and/or

integration points is heavily increased, due to large domains of influence, the resulting matrices are

more densely populated and the computational cost for the formulation and solution of the problem

is much higher than in the conventional FEA [5].

To improve the computational efficiency of MMs, parallel implementations like the MPI parallel

6

Table 2.1: List of meshless methods

Boundary cloud method BCM
Boundary node method BNM
Diffuse element method DEM 1992
Discrete Least Squares Meshless method DLSM 2006
Discrete Vortex Method DVM
Dissipative particle dynamics DPD 1992
Element-free Galerkin method EFG 1994
Finite cloud method FCM
Finite Mass Method FMM 2000
Finite pointset method FPM 1998
Generalized finite difference method GFDM
Local Radial Basis Function Collocation Method LRBFCM
Material Point Method MPM
Meshfree local radial point interpolation method RPIM
Meshless local Petrov Galerkin MLPG
Method of Finite Spheres MFS
Method of fundamental solution MFS
Method of particular solution MPS
Moving particle finite element method MPFEM
Moving particle semi-implicit MPS
Natural element method NEM
Repeated Replacement Method RRM 2012
Reproducing kernel particle method RKPM 1995
Smoothed particle hydrodynamics SPH 1977
Smoothed point interpolation method S-PIM 2005

paradigm has been used in large scale applications [6], [7] and several alternative methodologies

have been proposed concerning the formulation of the problem. The smoothed FEA (SFEM) [8]

couples FEM with meshless methods by incorporating a strain smoothing operation used in the

mesh-free nodal integration method. The linear point interpolation method (PIM) [9] obtains the

partial derivatives of shape functions effortlessly due to the local character of the radial basis

functions. A coupled EFG/boundary element scheme [10], taking advantage of both the EFG and

the boundary element method. Furthermore, solvers which perform an improved factorization of the

stiffness matrix and use special algorithms for realizing the matrix-vector multiplication are

proposed in [11], [12]. Divo and Kassab [13] presented a domain decomposition scheme on a

meshless collocation method, where collocation expressions are used at each subdomain with

artificial created interfaces. Wang et al. [9] presented a parallel reproducing kernel particle method

(RKPM), using a particle overlapping scheme which significantly increases the number of shared

particles and the time for communicating information between them. Recently, a novel approach for

reducing the computational cost of EFG methods is proposed by employing domain decomposition

techniques on the physical as well as on the algebraic domains [14]. In that work the solution of the

resulting algebraic problems is performed with the dual domain decomposition FETI method with

and without overlapping between the subdomains. The non-overlapping scheme has led to a

significant decrease of the overall computational cost.

An extensive study on meshless methods can be found in [15].

2.1.1 Basic ingredients of element-free Galerkin methods

The EFG method, which is the method used in this work, is based on the diffuse elements method

originated by Nayroles et al. [16]. The major features of the method are: (i) Moving least squares

approximation for the construction of shape functions. (ii) Galerkin weak form with constraints to

develop the discrete system of equations. (iii) Background cells to perform the numerical

integration for assembling system matrices.

7

2.1.1.1 Basic approximations

Meshless approximations for a scalar function u in terms of the Lagrangian coordinates can be

written as

u (x ,t)=∑
i∈ S

Φi (x)ui (t) (2.1)

where Φi : Ω →ℜ are the shape functions, u i is the nodal values at particle i located at position

x i , and S is the set of nodes for which Φ i (x)≠ 0 . The shape functions in eq. (2.1) are only

approximants and not interpolants, since u i≠u (x i) . Therefore special techniques are needed to

treat Dirichlet boundary conditions.

2.1.1.2 Weight functions

The shape functions Φi are obtained from the kernel functions, often called weight functions,

which are denoted by w i : Ω →ℜ . In our study we use the cubic spline weight function:

w (r)={
2
3
−4 r 2

+4 r 3 , r≤
1
2

4
3
−4 r+4 r2

−4 r 3 ,
1
2
<r≤1

0 , r>1

 (2.2)

r=
‖x i−x‖

d i

 (2.3)

where d i is the support size of node i . The support size is a parameter which is crucial to solution

accuracy, stability and computational cost, as it defines the bandwidth of the system matrices.

In 2D problems, circular and rectangular support types are commonly used:

Circular w (x−xi)=w(‖xi−x‖
d i

) (2.4)

Rectangular w (x−xi)=w(|xi−x|
d i

x)w (|y i−y|
d i

y) (2.5)

8

2.1.1.3 Moving least squares (MLS) approximation

The approximation uh: Ω →ℜ of the function u : Ω →ℜ is posed as a polynomial of order m

with non-constant coefficients. The local approximation around a point x̄ : Ω →ℜ , evaluated at a

point x : Ω →ℜ is given by

uL
h (x , x̄)=pT (x)a (x̄) (2.6)

where p(x) is a complete polynomial of order m and a(x̄) contains non constant coefficients that

depend on x (hence the name “moving”):

pT (x)=[1 x x2
… x m] (2.7)

aT (x̄)=[a0 (x) a1 (x) a2 (x) … am (x)] (2.8)

In two dimensional problems, the linear basis p(x) is given by

pT
(x)=[1 x y] , m=3 (2.9)

and the quadratic basis by

pT (x)=[1 x y x2 y2 x y] , m=6 (2.10)

The unknown parameters a j (x) are determined at any point x , by minimizing a functional J (x)

defined by a weighted average over all nodes i∈1, …, n :

J (x)=∑
i=1

n

w (x−x i) [uL
h
(x i ,x)−ui]

2
=∑

i=1

n

w (x−xi) [pT
(xi)a (x)−u i]

2
 (2.11)

where the parameters u i are specified by the difference between the local approximation uL
h (x , x̄)

and the value u i , at node i , of the function u to be approximated, while n is the number of

nodes in the neighborhood of x where the weight function w (x−xI)≠ 0 . An extremum of J (x)

in eq.(2.11) with respect to the coefficients a j (x) can be obtained by setting the derivative of J

with respect to a (x) equal to zero [17]. The following equations result:

9

∑
i=1

n

w (x−xi) 2p1 (xi) [pT
(x i)a(x)−ui]=0

∑
i=1

n

w (x−xi) 2p2 (x i) [pT
(x i)a (x)−ui]=0

…

∑
i=1

n

w (x−xi) 2pm (x i) [pT
(xi)a (x)−ui]=0

After rearrangements the above equations become:

∑
i=1

n

w (x−xi) p (xi)p
T
(xi)a (x)=∑

I=1

n

w (x−xi) p (xi)ui (2.12)

A more compact form is:

A (x)a (x)=B (x)u (2.13)

where

A (x)=∑
i=1

n

w (x−x i)p (xi) p
T
(x i) (2.14)

B (x)=w (x−x1)p (x1)w (x−x2)p (x2)⋯w (x−xn)p (xn) (2.15)

Solving a(x) from eq.(2.13) and substituting into eq.(2.6) the MLS approximants can be defined

as:

uh (x)=pT (x) [A (x)−1B (x)u] (2.16)

Recalling the form of the approximation defined in eq.(2.1)

u (x ,t)=∑
i∈ S

Φi (x)ui (t) (2.17)

we can derive the MLS shape functions as:

Φ (x)=pT (x)[A (x)]−1B (x) (2.18)

The shape function Φ i associated with node i at point x is given by:

Φ i (x)=pT (x) [A (x)]
−1

w (x−x i)p(x i) (2.19)

10

Matrix A (x) is the moment matrix of size m×m . This matrix must be inverted whenever the MLS

shape functions are to be evaluated. This fact is one of the major drawbacks of MLS-based MMs

because of the computational cost involved and the possibility that this moment matrix is ill

conditioned. Considering a linear basis in one dimension, the moment matrix becomes:

A (x)=w (x−x1)[1 x1

x1 x1
2]+w (x−x2) [1 x2

x2 x 2
2]+…+w (x−xn) [1 xn

xn xn
2] (2.20)

If n=1 , i.e. point x is covered by only one nodal support while the basis is linear (m=2), matrix

A (x) becomes singular and cannot be inverted. Therefore, it is necessary to have n ≥ m . We

should note also that if n=m , the nodes have to be arranged in different coordinate directions (not

aligned) otherwise the matrix will still be singular.

For typical 2D and 3D problems the linear (eq. 2.9) or quadratic (eq. 2.10) basis is used.

2.1.1.4 Galerkin weak form

The trial and test functions are given by

uh (x)=∑
i=1

N

Φi (x)u i (2.21)

δ uh (x)=∑
I=1

N

Ψ i (x)δ ui (2.22)

Usually the same functions are used for the approximation of the test and trial functions (Φ i=Ψ i).

11

Fig. 2.1: Weight functions

The discrete equations are produced by considering a domain Ω , bounded by Γ which is

partitioned in two sets Γ u and Γ t . Displacements are prescribed on Γ u whereas tractions are

prescribed on Γ t . The weak form of linear elastostatics is to find u in the trial space (contains C0

functions), such that for all test functions δ u in the test space (contains C0 functions but vanishes

on Γ u) the following equation is satisfied:

Π (u)=min (2.23)

∫
Ω

ε (u) :C : ε (δ u)d Ω=∫
Γ

t̄⋅δ u dΓ +∫
Ω

b⋅v d Ω (2.24)

Substitution of approximations for u and δ u into the above equations gives the discrete algebraic

equations yields:

Κ u=f (2.25)

with

Κ ij=∫
Ω

Βi
Τ CB j d Ω (2.26)

f i=∫
Γ t

ΦΙ t̄ d Γ +∫
Ω

Φi b d Ω (2.27)

In 2D problems matrix B is given by:

B Ι=[
Φ i , x 0

0 Φ i , y

Φ i , y Φ i , x
] (2.28)

and in 3D problems by:

Bi=[
Φ i , x 0 0

0 Φ i , y 0
0 0 Φi , z

0 Φ i , z Φi , y

Φ i , z 0 Φi , x

Φ i , y Φ i , x 0
] (2.29)

12

2.1.1.5 Essential Boundary Conditions

Due to the lack of the Kronecker delta property of shape functions, the essential boundary

conditions cannot be imposed the same way as in FEM. Among the several available techniques

(Lagrange multipliers, penalty factors, Nitche’s method) we use in our implementation penalty

factors α . The functional that we have for our problem is

Π (u , α)=Π (u)+
α
2∫Γ

C (u)T C (u)dΓ (2.30)

By applying the penalty factor method to elastostatics, the following weak form is obtained:

∫
Ω

εΤ
(u): C :ε (v)dΩ=∫

Γ

t̄⋅v dΓ +∫
Ω

b⋅vdΩ+a∫
Γ u

u⋅vdΓ−a∫
Γ u

ū⋅v dΓ (2.31)

which gives the equation Κ u=f , where

Κ ij=∫
Ω

Βi
Τ CB j dΩ−a∫

Γ u

Φi Φ j dΓ (2.32)

f i=∫
Γ t

Φi t̄ dΓ +∫
Ω

Φi b dΩ−a∫
Γ u

Φi ū dΓ (2.33)

The accuracy of the penalty method depends on the choice of the penalty parameter α . Although

no additional unknowns are required, constraints are satisfied approximately and the accuracy of the

solution is dependent on the value of α .

For the integration of eq. (2.26/2.32), virtual background cells are considered by dividing the

problem domain into integration cells over which a Gaussian quadrature is performed:

∫
Ω

f (x)dΩ=∑
j

f (ξ j)ωΞ det J ξ
(ξ) (2.34)

where ξ are the local coordinates and det J ξ
(ξ) is the determinant of the Jacobian.

13

2.1.2 EFG test examples

The examples analyzed in this study are squares (2D) or cubes (3D). Compared to other geometric

domains with the same density (with respect to the number of points in a certain area), the selected

domains maximize the number of node-Gauss point correlations and node-node interactions. The

examples are 2D and 3D linear elasticity problems. The details for the examples are provided in

Table 2.2. In all cases, the domain of influence is rectangular with influence range parameter 2.5.

14

Table 2.2: 2D and 3D example details for EFG test
examples.

Nodes dof

2D-1 25,921 51,842 102,400
2D-2 76,125 152,250 300,304
2D-3 126,025 252,050 501,264
3D-1 9,261 27,783 64,000
3D-2 19,683 59,049 140,608
3D-3 35,937 107,811 262,144

EFG
Example

Gauss
points

2.2 Isogeometric Analysis

Isogeometric analysis (IGA) was recently introduced by Hughes and co-workers [18] and since then

it has attracted a lot of attention for solving boundary value problems as a result of using the same

shape functions adopted from CAD community for describing the domain geometry and for

building the numerical approximation of the solution.

Despite IGA’s promising methodology and superior features [18]–[21] compared with finite

element analysis (FEA), the computation of mass, stiffness and advection matrices is more

laborious, which increases the cost of IGA in real-world applications. Due to its higher inter-

element continuity, IGA produces quite more elements than FEA for the same number of degrees of

freedom. This leads to an increase of the number of Gauss points and consequently of the

computational cost for assembling the characteristic matrices. This drawback dramatically increases

the computational cost in the multivariate domains, especially in 3D analysis.

It has been shown ([19], [20]) that standard element-wise Gauss rules are inefficient, because they

do not take precise account of the preserved smoothness at the element boundaries in the case of

higher-order NURBS and polynomial B-SPLines, and that the higher the inter-element regularity

the fewer the required number of Gauss points per element. However, recently proposed integration

rules, although optimal or nearly optimal in terms of the number of function evaluations, are either

cumbersome to implement [19] or need special consideration to be given to the boundary elements

[20]. In an effort to address the increased effort in the computation of IGA characteristic matrices,

collocation methods have been introduced, requiring a minimum number of quadrature points [22],

[23].

2.2.1 Basic ingredients of isogeometric analysis methods

2.2.1.1 Non-Uniform Rational B-SPLines (NURBS)

In IGA the exact geometry is always represented - even in the case of very coarse meshes - and thus

there is no approximation in that regard. For the implementation of IGA three spaces should be

defined: the physical space, the parameter space and the index space. For NURBS shape functions,

the parameter space is very important as all calculations take place in this space, while the index

space plays an auxiliary role. The input data is drawn from the physical space, which contains the

Cartesian coordinates of the control points and their corresponding weights. The number of basis

functions is equal to the number of degrees of freedom. The unknowns of the resulting algebraic

15

equations correspond to the displacements of the control points, while the knots are the boundaries

of the corresponding isogeometric elements. In the case of uniform knot vector, knot spans have the

same size in the parameter space while in the physical space they can have any size depending on

the corresponding control points and shape functions. The discretized NURBS-model is subdivided

into patches which are subdomains with the same material and geometry type and consist of a full

tensor product grid of elements. In this respect, they are analogous to elements in FEA as the basis

functions are interpolatory at its boundaries.

A knot vector is a non-decreasing set of coordinates in the parameter space, written as

Ξ={ξ1, ξ 2,… , ξ n+ p+1 } , where ξ i∈ℝ is the ith knot, i is the knot index, i=1,2 ,… , n+ p+1 , p is

the polynomial order and n is the number of basis functions used to construct the B-SPLine curve.

The knots partition the parameter space into elements. Element boundaries in the physical space are

the projections of knot lines under the B-SPLine mapping. Fig. 2.2 illustrates the quadratic C1

continuous B-SPLine basis functions, which are produced by the open uniform knot vector

Ξ={0,0 ,0 ,1,2 ,3 ,4,5 ,6 ,7,8 ,9 ,9,9 } . Control points are shown as circles, while knots as rectangles.

The interval [0,9] is a single patch and consists of 9 elements and 11 control points, which

correspond to 11 B-SPLine basis functions.

16

Fig. 2.2: C1 continuous quadratic basis derived from open uniform knot
vector Ξ={0,0 ,0 ,1,2 ,3 ,4,5 ,6 ,7,8 ,9 ,9,9 }

Given an open uniform knot vector Ξ={ξ1, ξ2,… , ξ n+ p+1 } , the B-SPLine basis functions N i
p
(ξ) are

defined by the Cox-de Boor recursion formula:

N i
0
(ξ)={1, if ξ i≤ξ <ξ i+1

0, otherwise
 (2.35)

N i
p
(ξ)=

ξ−ξ i

ξ i+ p−ξ i

N i
p−1
(ξ)+

ξ i+ p+1−ξ

ξ i+ p+1−ξ i

N i+1
p−1
(ξ) (2.36)

Due to their higher regularity between inter-element boundaries, they exhibit greater overlapping in

comparison with the shape functions of FEA. Their basic feature is their tensor product nature. In

the case of polynomial B-SPLines, basis functions are used as shape functions, while in the case of

NURBS, shape functions are produced from the following formulas:

1D
Ri

p
(ξ)=

N i
p
(ξ)W i

∑
i=1

n

N i
p
(ξ)W i

(2.37)

2D
Ri , j

p , q
(ξ ,η)=

N i
p
(ξ)M j

q
(η)W i , j

∑
i=1

n

∑
j=1

m

N i
p
(ξ)M j

q
(ξ)W i , j

(2.38)

3D
Ri , j , k

p , q , r
(ξ ,η , ζ)=

N i
p
(ξ)M j

q
(η) Lk

r
(ζ)W i , j ,k

∑
i=1

n

∑
j=1

m

∑
k=1

l

N i
p
(ξ)M j

q
(ξ)Lk

r
(ζ)W i , j , k

(2.39)

where W denotes weight factors with a full tensor product nature:

2D W i , j=W i W j (2.40)

3D W i , j ,k=W iW j W k (2.41)

The approximation of 1D displacement field in terms of control point variables can be written as

u (ξ)=∑
i=1

n

{R i
p
(ξ)uCPi } (2.42)

where Ri
p
(ξ) are the shape functions, n is the number of basis functions or control points, p is

the polynomial order and uCPi is the displacement of control point i . The exact geometry is

described by

17

X (ξ)=∑
i=1

n

{Ri
p(ξ)X CPi} (2.43)

where X CPi are the Cartesian coordinate(s) of the control point i .

There is a connection between polynomial basis order p , knot multiplicity m and continuity/

regularity k , given by

k= p−m , 1≤m≤p+1 (2.44)

Regularity -1 indicates discontinuity and it appears for the extreme knots of a single patch. In this

case, basis functions are interpolatory at these extreme knots. Regularity 0 resembles the case of

finite elements and is the minimum continuity for interior knots with basis functions interpolatory at

those knots. The case of maximum continuity is p−1 and occurs when every interior knot is

repeated only once.

In one-dimensional analysis with polynomial order p , multiplicity m and number of elements

nel , the corresponding number of control points n , which are directly linked to the number of

degrees of freedom, is equal to

n=(p+1)nel
−(k−1)(nel

−1) (2.45)

The corresponding knot vector has n+ p+1 knot values. The external knots are repeated p+1

times and the interior knots m times.

2.2.1.2 Stiffness matrix formulation

A given domain is represented with several NURBS-based isogeometric models, depending on its

geometry features. Every NURBS-based model is decomposed into subdomains, called patches,

according to the variance of its geometry and material. The more abrupt the geometry is, the more

subdomains are considered. They can be assumed as macro-elements consisting of a tensor product

mesh of elements and they are assembled in the same way as in finite elements. The arrays for the

patches are constructed and assembled in element-by-element fashion by numerically integrating

contributions over each element. In the parameter space, elements are rectangular.

The equilibrium equations applied to control points of the whole domain are expressed as

K u=f (2.46)

18

In order to formulate the domain/global stiffness matrix, the stiffness matrix of every patch

i=1,… ,N p has to be calculated:

K i
=∫

V

(Bi)
T

Ei Bi dV=∭
ξ ,η ,ζ

(Bi)
T

Ei Bi det Ji dξdηdζ (2.47)

where Ei , Bi are the elasticity and deformation matrix of the patch i respectively.

The stiffness matrix formulation in 2D elasticity cases is presented below. For the 3D case, the

formulation is analogous. Assuming n , m control points per parametric axis ξ , η respectively,

the 2D control points are N=nm (full tensor product) and the deformation matrix B is given by:

B
(3×N)

= B1
(3×4)

B2
(4×N)

 (2.48)

with

B1
(3× 4)

=
1

det J (ξ) [
J 22 −J 12 0 0
0 0 −J 21 J 11

−J 21 J 11 J 22 −J 12
] (2.49)

and

B2
(4×N)

=[
R1, ξ 0 R2,ξ 0 … RN , ξ 0
R1,η 0 R2, η 0 … RN , η 0
0 R1,ξ 0 R2,ξ 0 … RN ,ξ

0 R1,η 0 R2,η 0 … RN ,η
] (2.50)

The Jacobian matrix is local to patches rather than to elements and is given by

J (ξ , η)
(2×2)

=[R1, ξ (ξ , η) R2, ξ (ξ , η) … RN , ξ (ξ , η)
R1,η(ξ , η) R2,η(ξ , η) … RN ,η(ξ , η)]⏟

(2×N)

[
X CP 1 Y CP 1

X CP 2 Y CP 2

⋮ ⋮
X CPN Y CPN

]
(N×2)

=[J 11 J 12

J 21 J 22
]

(2×2)

 (2.51)

where Rl (ξ ,η) is the shape function that corresponds to the control point l , with Cartesian

coordinates Χ CPl , Y CPl , and

Rl , ξ (ξ ,η)=
dRl(ξ ,η)

d ξ
, Rl , η(ξ , η)=

dRl (ξ , η)
d η

 (2.52)

19

The derivatives in eq. (2.52) are obtained by applying the quotient rule to eq. (2.38):

dRi , j
p , q
(ξ , η)

dξ
=

dN i
p
(ξ)

dξ
M j

q
(η)W i , j W (ξ , η)−N i

p
(ξ)M j

q
(η)W i , j

dW (ξ , η)
dξ

(W (ξ , η))
2

dRi , j
p , q
(ξ ,η)

dη
=

N i
p
(ξ)

dM j
q
(η)

dη
W i , j W (ξ ,η)−N i

p
(ξ)M j

q
(η)W i , j

dW (ξ ,η)
dη

(W (ξ , η))
2

(2.53)

where

dW (ξ , η)
dξ

=∑
i=1

n

∑
j=1

m

{dN i
p
(ξ)

dξ
M j

q
(η)W i , j}

dW (ξ , η)
dη

=∑
i=1

n

∑
j=1

m

{N i
p
(ξ)

dM j
q
(η)

dη
W i , j}

(2.54)

2.2.1.3 Quadrature rule

The Gauss quadrature rule is applied to the non-zero knot spans as in FEA. However, the standard

element-wise Gauss rule requires extensive function evaluations due to the increased support of the

shape functions. According to [20], for the case of a one-dimensional function of order p , the

optimal (minimum exact) number of Gauss points per element is equal to (p+1) /2 or (p+2)/2 ,

for odd and even p , respectively. For the computation of the stiffness matrix in case of 1D

elasticity, the integrand’s order is equal to q=2 p−2 and the optimal number of Gauss points per

element is equal to (q+2)/2=p . In case of 2D and 3D elasticity, the integrand’s order is equal to

q=2 p and the optimal number of Gauss points per element is equal to (q+2)/2=p+1 . The

above rules are optimal for the case of minimum continuity. For higher continuity, new macro-

element rules have been proposed [19], [20], which are more efficient but also more involved and

difficult to implement.

20

2.2.2 IGA Test examples

The examples considered use squares or cubes in the parametric space to maximize the correlations

for the same number of control points compared to other rectangular domains. The examples are 2D

and 3D linear elasticity problems. The IGA variant used in this work utilizes shape functions based

on non-uniform rational B-splines (NURBS) and the details for the examples considered are

provided in Table 2.3. Example type P i− j corresponds to order p=i of the basis function of the

group, while j denotes the relative size of the example within the same group.

21

Table 2.3: 2D and 3D example details for IGA test examples.

p n dof Elements

2D

P2-1 2 225 50,625 101,250 49,729 9 447,561
P2-2 2 500 250,000 500,000 248,004 9 2,232,036
P2-3 2 633 400,689 801,378 398,161 9 3,583,449
P3-1 3 225 50,625 101,250 49,284 16 788,544
P3-2 3 320 102,400 204,800 100,489 16 1,607,824
P3-3 3 388 150,544 301,088 148,225 16 2,371,600
P4-1 4 160 25,600 51,200 24,336 25 608,400
P4-2 4 225 50,625 101,250 48,841 25 1,221,025
P4-3 4 275 75,625 151,250 73,441 25 1,836,025

3D

P2-1 2 19 6,859 20,577 4,913 27 132,651
P2-2 2 26 17,576 52,728 13,824 27 373,248
P2-3 2 33 35,937 107,811 29,791 27 804,357
P3-1 3 19 6,859 20,577 4,096 64 262,144
P3-2 3 21 9,261 27,783 5,832 64 373,248
P3-3 3 26 17,576 52,728 12,167 64 778,688
P4-1 4 15 3,375 10,125 1,331 125 166,375
P4-2 4 17 4,913 14,739 2,197 125 274,625
P4-3 4 19 6,859 20,577 3,375 125 421,875

IGA
Example

Control
points

Gauss point
per element

Gauss
points

2.3 Finite element test examples

The performance of the solution phase of FEA implementations is demonstrated through a

parametric study of 3D linear elasticity problems (E=39 MPa , ν=0.2) with a cubic geometry.

The domain is fully restrained at the bottom surface, partially restrained on the horizontal directions

of the side surfaces while the top surface is subjected to a distributed load, and are discretized with

8-node hexahedral finite elements, resulting in linear systems with 1,058,610 dof. Domain

decomposition methods are utilized for the solution so the domain is split into a number of

subdomains ranging from 125 to 2744. The subdivision in 125 subdomains is shown in Fig. 2.3.

Table 2.4 shows the dof of each subdomain and of the corresponding interface problem for different

number of subdomains.

22

Fig. 2.3. Partitioning of domain
in 125 subdomains

Table 2.4: Example details for FEA

Interface dof

125 10,119 49,920
175 7,419 76,800
245 5,439 118,080
343 3,987 181,440
490 2,898 276,480
700 2,106 421,200

1000 1,530 641,520
1400 1,146 935,280
1960 858 1,363,440
2744 642 1,987,440

Number of
subdomains

Subdomain
dof

3 Domain decomposition methods

Domain decomposition methods (DDM) constitute today an important category of methods for the

solution of a variety of problems in simulation based applied science and engineering. The primal

DDM (P-DDM) reach the solution by solving for the interface primal variables (usually the

displacements) after eliminating the internal degrees of freedom (dof) of the subdomains, while the

dual DDM (D-DDM) proceed with the computation of the Lagrange multipliers required to enforce

compatibility between subdomains after elimination of all dof (internal and interface) of each

subdomain. Both major categories, primal and dual, have gradually attracted the interest of a large

number of researchers and have been incorporated into high-performance commercial software

codes. The most important family of primal DDM is considered to be the balancing domain

decomposition (BDD) method, introduced by Mandel [24], while the FETI method, introduced by

Farhat and Roux [25], along with its variants, is considered a highly efficient dual DDM in both

sequential as well as in parallel/distributed computing environment. A unified framework for

formulating both primal and dual DDM is presented in [26], [27] for implicit static and dynamic

computations and a new family of methods, namely the P-FETI methods, were proposed. Since

their introduction, non-overlapping DDM have been widely used for solving large-scale problems

in a number of fields in computational mechanics. Some recent indicative applications are in

contact problems [28], porous media problems [29], heterogeneous problems [30], stochastic finite

elements [31], [32], inequality-constrained quadratic programming [33], Navier-Stokes equations

[34], Helmholtz problems [35], Galerkin least-squares methods [36].

3.1 The primal domain decomposition implementation

The primary domain decomposition implementation reduces the size of the solution system by

utilizing static condensation (see Section 3.1.1). The initial domain system is:

K u=f (3.1)

If the internal degrees of freedom (dof) of each subdomain are numbered first and the boundary dof

last, then the domain system can be written as:

23

[
K ii
(1)

… 0 K ib
(1)

K ii
(2)

… 0 K ib
(2)

⋮ ⋮ ⋮ ⋮

0 0 … K ii
(ns) K ib

(n s)

Kbi
(1) Kbi

(2)
… Kbi

(ns) Kbb

] [
u i
(1)

u i
(2)

⋮

u i
(ns)

ub

]=[
f i
(1)

f i
(2)

⋮

f i
(n s)

f b

] (3.2)

u i
s
=(K ii

s)
−1

f i
s
−(K ii

s)
−1

K ib
s ub (3.3)

The boundary stiffness submatrix and force subvector are:

K bb=∑
s=1

n s

Kbb
s f b=∑

s=1

ns

f b
s (3.4)

In the primal subdomain implementation, all internal dof are condensed into the boundary dof. The

static condensation is given by:

(Kbb−∑
s=1

ns

Kbi
s (Kii

s)
−1

K ib
s)

⏟
K̂c≡S

ub=f b−∑
s=1

ns

Kbi
s (Kii

s)
−1

f i
s

⏟
f̂ c≡f̂b

(3.5)

S ub=f̂ b (3.6)

The matrix S is commonly referenced as Schur complement.

S=∑
s=1

ns

Ss
=∑

s=1

ns

(Vb
s)

T
S s Vb

s (3.7)

Each subdomain's contribution is given by:

Ss
=K bb

s
−Kbi

s (K ii
s)
−1

K ib
s (3.8)

Also, the right hand side vector is:

f̂ b=f b−∑
s=1

n s

(Vb
s)

T
K bi

s (Kii
s)
−1

f i
s (3.9)

The Schur complement S is dense so its formulation is computationally feasible in small problems

or when the boundary degrees are few. In such case, eq. (Fig. 3.6) can even be solved directly.

However, for large scale problems (especially 3D ones) with an extensive boundary, an iterative

solution method is preferred because the formulation of the Schur complement S can be entirely

avoided.

24

3.1.1 Static condensation

The purpose of static condensation is to eliminate the the chosen e degrees of freedom and

condense them in the rest of the degrees of freedom c . After condensation, the c degrees

incorporate the effect of the e degrees. The condensed domain has only the c degrees of freedom

but they have exactly the same behavior as the c degrees of the original domain meaning that any

result on the condensed domain is valid for the original domain as well. After solving the condensed

domain for the c degrees of freedom, a de-condensation is performed to calculate the e degrees.

[Kee K ec

Kce K cc] [
ue

uc]=[
f e

f c] (3.10)

Solving the first equation of (3.10) for ue :

K eeue+Kec uc=f e

K eeue=f e−Kec uc

ue=Kee
−1 (f e−Kec uc)

(3.11)ue=Kee
−1 f e−K ee

−1 Kec uc

Substituting ue in the second equation of (3.10) and isolating uc :

K ceue+Kcc uc=f c

K ce (K ee
−1 f e−Kee

−1 K ecuc)+Kcc uc=f c

K ce Kee
−1 f e−K ce Kee

−1 K ecuc+K cc uc=f c

(K cc−K ce Kee
−1 Kec)⏟

K̂c

uc=f c−Kce K ee
−1f e⏟

f̂ c

(3.12)

K̂ c uc= f̂ c (3.13)

where

K̂ c=K cc−K ce Kee
−1 Kec (3.14)

f̂ c=f c−K ce Kee
−1 f e (3.15)

The condensed system refers to the c degrees only. However, while the stiffness matrix and force

vector is modified for the condensed system, the uc vector has no modification which means that

the solution of the condensed domain of eq. (3.13) is also the solution of the c degrees of freedom

of the original domain. If the matrix is factorized, the condensed form is calculated directly from the

25

factorized matrix. This is shown for L LT and L D LT decomposition in the next two sub-sections.

3.1.1.1 LL decomposition

[Kee K ec

Kce K cc
]=[Lee 0

Lce Lcc
] [Lee 0

Lce Lcc
]
T

 (3.16)

[Kee K ec

Kce K cc
]=[Lee 0

Lce Lcc
] [Lee

T Lce
T

0 Lcc
T]

T

 (3.17)

Taking the equations of (3.17) separately:

K ee=Lee Lee
Τ
⇒K ee

−1
=Lee

−T Lee
−1 (3.18)

K ce=Lce Lee
Τ ⇒Lce=K ceLee

−T (3.19)

Substituting eq. (3.18) in K̂ c :

K̂ c=K cc−K ce Kee
−1 Kec

K̂ c=K cc−K ce Lee
−T Lee

−1 K ec

K̂ c=K cc−K ce Lee
−T (Kce Lee

−T)
T

due to (3.19) K̂ c=K cc−Lce Lce
T (3.20)

Similarly, for f̂ c :

f̂ c=f c−K ce Ke
−1 f e

f̂ c=f c−K ce Lee
−T Lee

−1 f e

due to (3.19) f̂ c=f c−Lce Lee
−1 f e (3.21)

26

for j=N e+1 ,… , N

for i=N e+1 ,… , j

(K̂ c)ij=(K cc)ij−∑
k=m

N e

l ki l kj

end

end

3.1.1.2 LDL decomposition

[Kee K ec

Kce K cc
]=[Lee

Lce Lcc
] [Dee

Dcc
][Lee

T Lec
T

Lcc
T] (3.22)

Taking the equations of (3.22) separately:

K ee=Lee Dee Lee
Τ
⇒K ee

−1
=Lee

−T Dee
−1Lee

−1 (3.23)

K ce=Lce Dee Lee
Τ ⇒Lce=Kce Lee

−T Dee
−1 (3.24)

Substituting eq. (3.23) in K̂ c :

K̂ c=K cc−K ce Kee
−1 Kec

K̂ c=K cc−K ce Lee
−T Dee

−1 Lee
−1 Kec

K̂ c=K cc−K ce Lee
−T Dee

−1 Dee Dee
−1

⏟
I

Lee
−1 K ec

K̂ c=K cc−(Kce Lee
−T Dee

−1)Dee (Kce Lee
−T Dee

−1)
T

due to (3.24) K̂ c=K cc−Lce Dee Lce
T (3.25)

Similarly, for f̂ c :

f̂ c=f c−K ce Ke
−1 f e

f̂ c=f c−K ce Lee
−T Dee

−1 Lee
−1 f e

due to (3.24) f̂ c=f c−Lce Lee
−1 f e (3.26)

(same as eq. 3.21).

27

for j=N e+1 ,… , N

for i=N e+1 ,… , j

(K̂ c)ij=(K cc)ij−∑
k=m

N e

l ki l kj d kk

end

end

3.2 The dual domain decomposition implementation

In the dual domain decomposition implementation we form and solve the subdomain interface

problem in which the unknowns are Lagrange Multiplies that represent the boundary forces

between different subdomains. This method is usually referenced as finite element tearing and

interconnecting (FETI) and it was initially introduced in [25]. It has been proven to be particularly

efficient for solving large scale problem in parallel clusters with distributed or shared memory [37]–

[39]. Applications of the FETI method include a variety of fields in computational mechanics, like

linear and non-linear finite element analysis, static and dynamic problems, stochastic finite elements

as well as shape optimization and topology optimization problems [40]–[42].

3.2.1 FETI ingredients

The domain is teared in completely independent subdomains, which connect to each other with

boundary forces that maintain the continuity of the domain. These forces, which are the unknowns

of the interface problem, correspond to the Lagrange multipliers of the optimization problem

subject to limitations that is formed on the subdomain boundary.

The solution of the resulting system of equations requires special handling due to the existence of

zero elements along the diagonal. Hence, the system cannot be solved by a common iterative

method like PCG, but with a modified iterative algorithm called projected preconditioned conjugate

gradient (PCPG). Furthermore, FETI takes into account the presence of floating subdomains –

subdomains whose stiffness matrix cannot be inversed because of inadequate support.

The domain of Fig. 3.1 comprises 18 quadrilateral finite elements and is supported on the left side.

The domain node numbering is shown in Fig. 3.2. The domain's equilibrium equations are:

K u=f (3.27)

The domain is teared in two subdomains. The interface nodes are both on the left subdomain as well

as the right one (Fig. 3.4).

28

29

Fig. 3.1: Example domain

13 14 15 16 17 18

7 8 9 10 11 12

1 2 3 4 5 6

Fig. 3.2: Numbering of nodes and degrees of freedom of the domain

22(43, 44) 23(45, 46) 24(47, 48) 25(49, 50) 26(51, 52) 27(53, 54) 28(55, 56)

0 13 0 14 0 15 0 16 0 17 0 18 0

15(29, 30) 16(31, 32) 17(33, 34) 18(35, 36) 19(37, 38) 20(39, 40) 21(41, 42)

0 7 0 8 0 9 0 10 0 11 0 12 0

8(15, 16) 9(17, 18) 10(19, 20) 11(21, 22) 12(23, 24) 13(25, 26) 14(27, 28)

0 1 0 2 0 3 0 4 0 5 0 6 0

1(1, 2) 2(3, 4) 3(5, 6) 4(7, 8) 5(9, 10) 6(11, 12) 7(13, 14)

The equilibrium equation of the teared domain are:

[K
(1) 0

0 K(2)][u
(1)

u(2)]=[f
(1)

f (2)] (3.28)

More generally, for any number of subdomains:

K(TearedDomain)u(TearedDomain)
=f (TearedDomain) (3.29)

where K(TearedDomain) is a block diagonal matrix where each block is the stiffness matrix of a

30

Fig. 3.3: Domain teared into two subdomains

13 14 15 16 17 18

7 8 9 10 11 12

1 2 3 4 5 6

Fig. 3.4: Numbering of nodes and degrees of freedom of the teared domain

22(43, 44) 23(45, 46) 24(47, 48) 25(49, 50) 25(49, 50) 26(51, 52) 27(53, 54) 28(55, 56)

0 13 0 14 0 15 0 0 16 0 17 0 18 0

15(29, 30) 16(31, 32) 17(33, 34) 18(35, 36) 18(35, 36) 19(37, 38) 20(39, 40) 21(41, 42)

0 7 0 8 0 9 0 0 10 0 11 0 12 0

8(15, 16) 9(17, 18) 10(19, 20) 11(21, 22) 11(21, 22) 12(23, 24) 13(25, 26) 14(27, 28)

0 1 0 2 0 3 0 0 4 0 5 0 6 0

1(1, 2) 2(3, 4) 3(5, 6) 4(7, 8) 4(7, 8) 5(9, 10) 6(11, 12) 7(13, 14)

subdomain and the vectors contain the vector of the subdomains in consecutive order. The matrix is

block diagonal because the subdomains are independent so their interaction is zero. However, there

are several constraints that must be introduced in the boundary of the subdomains in order to

maintain continuity and make the problem equivalent to the original one. The actual equilibrium

equations are derived by minimizing:

Π=
1
2
((ug)

T
K

g
u

g)−(f g)
T

u
g , g≡TearedDomain (3.30)

The boundary constraints are added to the equation through the use of Lagrange multipliers:

L(u , λ)=
1
2
((ug)

T
K

g
u

g)−(f g)
T

u
g
+λ

Τ
⋅[constraints] , g≡TearedDomain (3.31)

In FETI, the Lagrange multipliers are subdomain boundary forces. Before moving on, the current

numbering needs to be changed. The reason for this is that at the boundary the same nodes appear

on all interconnected subdomains. Each node instance will be numbered separately, even through in

essence it is the same node and all instances have all characteristics in common (e.g. coordinates,

displacement etc). The number of instances of a node is called multiplicity of the node and the

constraints must preserve the equality of these instances.

The teared domain has more degrees of freedom (dof) that the original one. Hereinafter, each

instance of the node is treated as a separate node. The same applies to the dof of the node. The new

numbering is shown in Fig. 3.5.

31

Fig. 3.5: Global numbering of nodes and degrees of freedom of the subdomains

13(25, 26) 14(27, 28) 15(29, 30) 16(31, 32) 29(57, 58) 30(59, 60) 31(61, 62) 32(63, 64)

0 13 0 14 0 15 0 0 16 0 17 0 18 0

9(17, 18) 10(19, 20) 11(21, 22) 12(23, 24) 25(49, 50) 26(51, 52) 27(53, 54) 28(55, 56)

0 7 0 8 0 9 0 0 10 0 11 0 12 0

5(9, 10) 6(11, 12) 7(13, 14) 8(15, 16) 21(41, 42) 22(43, 44) 23(45, 46) 24(47, 48)

0 1 0 2 0 3 0 0 4 0 5 0 6 0

1(1, 2) 2(3, 4) 3(5, 6) 4(7, 8) 17(33, 34) 18(35, 36) 19(37, 38) 20(39, 40)

In order to maintain domain continuity, boundary node displacements must be equal in both

subdomains:

uboundary
(1) =uboundary

(2) (3.32)

This simply states that the same node cannot have different displacement in its various instances. If

this is not true, then the domain is not continuous. In our example, there are 4 boundary nodes, all

of which have 2 instances, one in each subdomain. Hence, the boundary dof are 8 in total. The

domain-scope and subdomain-scope numbering for the interface nodes is shown in Table 3.1. Each

node has only one domain scope instance, but may have multiple subdomain-scope instances.

Let u i be the displacement of dof i . The displacement of each instance must be the same and the

equality can be written in matrix form:

u i
(1)
=ui

(2) (3.33)

u i
(1)
−ui

(2)
=0 (3.34)

[1 −1] [ui
(1)

ui
(2)]=0 (3.35)

The general form of a polynomial with degree n is:

a1u1+a2 u2+...+anun=0 (3.36)

For the case at hand, n will be the number of dof of the teared subdomain. For each interface dof

i , this polynomial will have all coefficients equal to zero, except two. On of the non-zero

coefficients will be 1 and the other will be −1 . For example, dof 24 is connected to dof 50.

Hence:

32

Table 3.1: Numbering of interface nodes

Domain scope Subdomain scope
4 (7,8) 4 (7,8) 17 (33,34)

11 (21,22) 8 (15,16) 21 (41,42)
18 (35,36) 12 (23,24) 25 (49,50)
25 (49,50) 16 (31,32) 29 (57,58)

0⋅u1+0⋅u2+…+1⋅u24+…+(−1)⋅u50+…+0⋅u63+0⋅u64=0 (3.37)

[0 0 … 1 … −1 … 0 0] [
u1

u2

⋮
u24

⋮
u50

⋮
u63

u64

]=0

⇔ [0 0 … 1 … −1 … 0 0]u(TearedDomain)
=0

where the +1 coefficient is on the 24th entry and the −1 is on the 50th entry.

By repeating this for every dof of the teared domain:

B(TearedDomain)u(TearedDomain)
=0 (3.38)

where Β is the signed Boolean matrix of the teared domain. Each dof of the teared domain is

represented by a column of Β , where each line represents an equation-limitation between dof.

There are two dof types in this regard:

1. If a dof of the original domain is not part of the interface, then it will only have one instance

and will belong only to one subdomain. In this case, the whole corresponding column of this

dof will be composed of zeros.

2. If a dof of the original domain is part of the interface, then it will have more than one

instances and will belong to equal number of subdomains. In the example of Fig. 3.3, all

boundary dofs have two instances each. Therefore, there is a single equation between them

and consequently the number of equations is equal to the number of boundary dofs, hence 8.

Each row will have +1 on the column corresponding to the dofs that belongs to the first

subdomain and −1 on the column corresponding to the dof that belongs to the second subdomain.

The relevant numbering here is the subdomain-scope numbering shown in Fig. 3.5. All other entries

of this row will be 0 .

Therefore, the signed Boolean matrix Β of the example shown in Fig. 3.3 will have:

33

• A number of rows equal to the required limitations. In this case the limitations are exactly

equal to the boundary dofs, hence 8 (this is not always the case as explained later).

• A number of columns equal to the total dofs of the expanded domain, hence 64.

Therefore, the size of the matrix is [8×64] . Each line only has a +1 and a −1 on the appropriate

columns, and the rest of the row is filled with zeros. Each line is essentially an equation of the form

shown in eq. (3.34). The signed Boolean matrix Β packs all limitations in a single matrix (eq.

3.38).

From the teared domain's signed Boolean matrix Β , it is easy to extract the signed Boolean

matrices of the subdomains. For each one, all rows are included but only the columns belonging to

the subdomain are selected. In the example, the first 32 columns belong to the first subdomain while

the last 32 columns belong to the second subdomain. Consequently, the signed Boolean matrices of

the two subdomains are each [8×32] .

In subdomain terms, eq. (3.38) transforms as follows:

B(TearedDomain)u(TearedDomain)
=0

B(1)u(1)+B(2)u(2)=0

and generally, for an arbitrary number of subdomains ns :

∑
s=1

n s

Bs u s=0 (3.39)

These are the constraints that need to be applied in the Lagrange eq. (3.31) to maintain the

continuity of the domain:

L(u , λ)=
1
2
((ug)

T
K

g
u

g)−(f g)
T

u
g
+λ

Τ
⋅[constraints] , g≡TearedDomain

L(u , λ)=
1
2
((ug)

T
K g ug)−(f g)

T
ug+λΤ∑

s=1

ns

B s us (3.40)

• Differentiating with respect to u and equating with zero yields the equilibrium equations:

34

∂L(u , λ)
∂u

=K g ug
−f g

+∑
s=1

ns

(B s)
T

λ=0

K g ug
=f g

−∑
s=1

ns

(B s)
T

λ (3.41)

• Differentiating with respect to λ and equating with zero yields the limitations:

∂L(u , λ)
∂ λ

=∑
s=1

n s

Bs us

∑
s=1

n s

Bs us
=0

In sum, the original global problem, which is described by equation (3.27):

K u=f

is now converted to a subdomain problem which is described by (3.41) subject to (3.39):

35

Fig. 3.6: Equations of subdomains and constraints

13 14 15 16 17 18

7 8 9 10 11 12

1 2 3 4 5 6

K(1)u(1)=f (1)− (B(1))
Τ

λ K(2)u(2)=f (2)−(B(2))
Τ

λ∑
s=1

N s

Bs us
=0

K g ug
=f g

−∑
s=1

ns

(B s)
T

λ

(3.42)

subject to: ∑
s=1

n s

Bs us
=0

Even though this system is mathematically indefinite, there is only one, unique solution. Eqs. (3.38-

3.39), (3.41) can be written in a single equation as:

[K
g (Bg)

T

Bg 0][u
g

0]=[f0] , g≡TearedDomain (3.43)

The equilibrium equations for each subdomain s is:

K s u s
=f s

−(B s)
Τ

λ (3.44)

3.2.2 Supported subdomains and supported degrees of freedom

The domain of Fig. 3.1 is supported on the left side (all left-most nodes are supported). As a result,

subdomain 1 is a supported subdomain. We separate the subdomain's dofs in free (f) and

constrained (c):

K s
=[K ff

s K fc
s

K cf
s K cc

s] (3.45)

K ff
s is the part needed the most. The stiffness matrix of subdomain 1 K(1) initially has a dimension

of [32×32] and after removing all supported dofs we get K ff
(1) whose dimension are [24×24] .

Hence, the inverse matrix (K s)
+

 in the case of a supported subdomain is:

(K s)
+
=(Kff

s)
−1

 (3.46)

The same separation must also be performed on B , but only on the columns. Hence:

Β(1)
=[Βf

(1) Βc
(1)] (3.47)

The initial dimensions are [8×32] and Βf
(1) , whose dimensions are [8×24] , is extracted.

36

3.2.3 Floating subdomains

The second subdomain of Fig. 3.3 is not supported and as such it is a floating subdomain. Floating

subdomains require special handling because they behave like mechanisms and their stiffness

matrix is not invertible. The rigid body modes have to be isolated to make them invertible. To that

end, the initial stiffness matrix is separated as follows:

K s
=[K 11

s K 12
s

K 21
s K 22

s] (3.48)

where K 11
s is an invertible (full rank) matrix.

In order to make the aforementioned separation, the initial stiffness matrix is factorized. During

factorization, some degrees of freedom will have zeros on the diagonal, and these constitute the

degrees of submatrix K 22
s . When a zero diagonal entry is found, the whole row and column are

moved to the end of the matrix. At the end of the process, the dofs that were placed at the end of the

matrix are the dofs that are to be artificially supported.

Hence, the inverse matrix (K s)
+

 in the case of floating subdomains is:

(K s)
+
=[(K 11

s)
−1

0

0 0] (3.49)

where the zero-matrices have a dimension such that the final size of (K s)
+

 is the same as the

original stiffness matrix (without removals). In the example of Fig. 3.3, the generalized inverse of

the second subdomain (K (2))
+

 has dimensions [32×32] .

No alterations are required for the signed Boolean matrix of floating subdomains, but there are rigid

body modes that need to be taken into account. These are the null space of K s :

R s
=null (K s) (3.50)

RBM can be computed by the following formula:

R s
=[(K11

s)
−1

K 12
s

I] (3.51)

It is obvious from eq. (3.51) that rigid body modes are a natural part of the stiffness matrix and are

37

therefore problem specific.

Eq. (3.51) provides the computational method of calculating the rigid body modes. Unfortunately,

this method is prone to arithmetic errors, especially when the stiffness matrix is ill-conditioned [38],

[43]. Furthermore, not all solution methods factorize the matrix and factorizing it specifically for

calculating the rigid body modes is inefficient.

An alternative and preferred way for calculating rigid body modes is the analytical method [38].

Both methods produce a group of vectors and the vectors produced by one method are linearly

dependent on the vectors produced by the other one – they define the same linear subspace and the

displacements they describe are the same. However, the vectors produced through the analytical

method have better arithmetic behavior, a property which is especially important in iterative solvers.

In 2D problems, there are 3 possible rigid body modes:

• Displacements parallel to: x -axis, y -axis

• Rotation parallel to: z -axis

For node i of fully floating subdomain s , the rigid body modes are:

R i
s
=[R 1 R 2 R 3] (3.52)

R1=[100] , R 2=[010] , R 3=[
−y i

x i

0]

where (x i , y i) coordinates of node i .

In 3D problems, there are 6 possible rigid body modes:

• Displacements parallel to: x -axis, y -axis, z -axis

• Rotations parallel to: x -axis, y -axis, z -axis

For node i of fully floating subdomain s , the rigid body modes are [41]:

38

R i
s
=[R 1 R 2 R 3 R4 R5 R6] (3.53)

R 1=[100] , R 2=[010] , R3=[001] , R4=[
0
−z i

y i
] , R 5=[

z i

0
−x i

] , R 6=[
−y i

x i

0]

where x i , y i , zi coordinates of node i .

Similar analytical expressions can be defined for finite elements of various types of structural levels

(plates, shells, etc). A thorough discussion of RBM handling which also extends to semi-definite

problems and partially floating subdomains can be found in [44].

In the example (Fig. 3.5), each node has 2 degrees of freedom, namely x , y . The rotation of a

node, which is expressed by the 3rd row of R i
s , should not be confused with the rotation of the

subdomain, which is expressed by the 3rd column of R i
s . Despite not having a rotational degree of

freedom on nodes, the subdomain can, of course, rotate. Consequently, for node i of the fully

floating subdomain:

R i
s
=[R 1 R 2 R 3] (3.54)

R1=[10] , R 2=[01] , R 3=[−y i

x i]

As mentioned, the advantage of the analytical method of calculating R pertains to the precision of

the calculations that are carried out in order to determine rigid body modes and consequently the

zero energy modes a . The number of rigid body modes of a floating subdomains is usually equal to

the number of constraints that are required in order for the subdomain to be fully constrained. These

are applied as “pseudo-constraints” at the last degrees of freedom of the reordered matrix – those

that constitute K 22
s .

The degrees of freedom to be constrained by the implementation of the computational method are

usually the last degrees of the floating subdomain, which means that the matrix depicted by eq.

(3.48) hasn't actually been reordered and the pseudo-constraints will just be applied on the last

degrees of the original matrix. Hence, in the example (Fig. 3.5), the last 3 degrees of subdomain 2

will be constrained. Note that the degrees chosen are always the last, so different numbering of the

39

degrees leads to different selection of constrained degrees.

This, however, means that for a typical numbering of the domain, constraints will be applied in

nodes very close to each other, as shown in Fig. 3.7. This subdomain is indeed fully constrained, but

constraints this close create arithmetic errors. Furthermore, this affects round-off errors that tend to

accumulate at the end of the factorization process – a problem that is most severe in ill-conditioned

matrices. This round-off error accumulation results leads to a greater condition number for the FETI

boundary problem and consequently to a slower convergence of the PCPG iterative algorithm. The

constraints applied in Fig. 3.8 are better because they provide a more stable subdomain.

Fig. 3.7: Close constraints Fig. 3.8: Spaced-out constraints

When rigid body modes are determined analytically, the calculations are independent from the

properties of the stiffness matrix, so the aforementioned precision problems do not apply. Therefore,

it leads to a more stable and robust arithmetic process.

3.2.4 Linear equations of the FETI interface problem

Displacements of constrained subdomains are directly calculated by solving ths subdomain

equations for u :

us
=(K ff

s)
−1 (f s

−(B s)
T

λ) (3.55)

In order to be able to also take into account floating subdomains, the formula is modified to include

their rigid body modes:

40

us
=(K s)

+ (f s
− (B s)

T
λ)+R s as (3.56)

where:

• K+ is the generalized inverse stiffness matrix

• R is the matrix containing rigid body modes

• a represents zero energy modes

This formula covers both supported and floating subdomains, since:

✔ In constrained subdomains, where there are no rigid body modes, R dimensions can be

considered [0×0] and the last element of the formula is negated.

✔ In constrained subdomains, the generalized inverse is the inverse of K ff
s (the stiffness

matrix with constrained degrees of freedom removed).

Zero energy modes are derived from zero energy conditions as follows:

(R s)
T
K s us

=0

and because of eq. (3.44):

(R s)
T (f s

−(B s)
Τ

λ)=0 (3.57)

The final equations for subdomain s are (3.39, 3.56, 3.57):

(3.39) ∑
s=1

n s

Bs us
=0

(3.56) us
=(K s)

+ (f s
− (B s)

T
λ)+R s as

(3.57) (R s)
T (f s

−(B s)
Τ

λ)=0

which will be combined in a single system.

Multiply eq. (3.56) with B :

41

u s
=(K s)

+ (f s
− (B s)

T
λ)+R s as (3.58)

B s us=B s (K s)
+ (f s− (B s)

T
λ)+B s R s as

B s us=B s (K s)
+
f s−B s (K s)

+
(B s)

T
λ+B s R s as

Setting:

F s
=Bs (K s)

+
(Bs)

T
 (3.59)

ds
=Bs (K s)

+
f s (3.60)

G s
=Β s R s (3.61)

Hence, the equation for subdomain s becomes:

B s us
=d s

−F s λ+G s as (3.62)

Summing all subdomains results to:

∑
s=1

n s

Bs us=∑
s=1

n s

ds−∑
s=1

ns

F s λ+∑
s=1

ns

G sa s (3.63)

The left side of this equation is equal to 0 due to (3.39). We also set:

F=∑
s=1

ns

F s
=∑

s=1

ns

Bs (K s)
+
(Bs)

T
 (3.64)

d=∑
s=1

ns

d s
=∑

s=1

ns

Bs (K s)
+
f s (3.65)

G=[Β(1)
R
(1)

Β
(2)

R
(2)

… Β
(ns)R

(ns)] (3.66)

a={a
(1)

⋮

a
(ns)} (3.67)

Eq. (3.63) becomes:

0=d−F λ+G a

F λ−G a=d (3.68)

Furthermore, for subdomain s :

42

(R s)
T (f s

−(B s)
Τ

λ)=0 (3.69)

(R s)
T

f s
−(R s)

T
(B s)

Τ
λ=0

And for all subdomains:

[(R
(1))

T
f (1)

⋮

(R(N s))
T

f (ns)]−[(R
(1))

T
(B(1))

Τ

⋮

(R(N s))
T
(B(ns))

Τ] λ=0

[(R
(1))

T
f (1)

⋮

(R(ns))
T

f (ns)]−[R(1)B(1)
… R(n s)B(ns)]

T

λ=0 (3.70)

We also set:

e=[(R
(1))

T
f (1)

⋮

(R(ns))
T

f (n s)] (3.71)

Eq. (3.70) becomes:

e=GT λ (3.72)

From eqs. (3.68), (3.72):

{F λ−Ga=d
GT λ=e

{F λ−Ga=d
−GT λ=−e

{F λ−Ga=d
−GT λ+0 a=−e

[F −G
−GT 0][λa]=[d−e] (3.73)

where F , d , G , a , e are given by (3.64), (3.65), (3.66), (3.67), (3.71) respectively.

In the next sections, these formulas are applied on the example of Fig. 3.6 to help clarify useful

details.

43

3.2.4.1 Matrix F

F=∑
s=1

ns

B s (K s)
+
(B s)

T

F=B(1)(K(1))
+
(B(1))

T
+B(2) (K(2))

+
(B(2))

T

Subdomain 1 is supported, whereas subdomain 2 is floating, therefore:

F=B(1)(K ff
(1))

−1
(B(1))

T
+B(2)(K(2))

+
(B(2))

T

The dimensions of the involved matrices are:

[8×8]=[8×24][24×24] [24×8]+[8×32] [32×32] [32×8]

As mentioned in Section 3.2.1, all signed Boolean matrices (for the teared domain and all

subdomains) have a number of rows equal to the boundary degrees of freedom. Hence, all elements

of the sum have equal dimensions regardless of the size of the subdomain (and its stiffness matrix).

Specifically, the dimensions will be [8×8] , or generally [nb×nb] , where nb is the number of

boundary degrees of freedom. Hence, F will also be [nb×nb] .

3.2.4.2 Vector d

d=∑
s=1

ns

B s (K s)
+
f s

d=B(1)(K(1))
+

f (1)+B(2) (K(2))
+

f (2)

d=B(1)(K ff
(1))

−1
f (1)+B(2)(K(2))

+
f (2)

The dimensions of the matrices involved are:

[8×1]=[8×24][24×24] [24×1]+[8×32] [32×32] [32×1]

Just as in F , B projects each subdomain's matrix on the interface. Each element to be added as

well as the resulting d , will have a size of [8×1] , or generally [nb×1] .

44

3.2.4.3 Matrix G

G=[Β(1)
R
(1)

Β
(2)

R
(2)

… Β
(ns)R

(ns)]

G=[Β(1)R (1) Β(2)R(2)]

Subdomain 1 is constrained and as such there are no rigid body modes. Therefore matrix R(1) can

be assumed to have zero number of columns: [32×0] . Floating subdomains, like the second one,

have nR=3 rigid body modes in 2D problems or nR=6 for 3D problems. Hence, if n f is the

number of floating subdomains then the dimensions of G will be [nb×(nR⋅n f)] . In the example,

G has dimensions [8×3] .

3.2.4.4 Vector a

a={a
(1)

⋮

a
(ns)}

a={a
(1)

a(2)}

Supported subdomains have a with zero number of rows. So, for subdomain 1, a(1) has

dimensions [0×1] . Consequently, a has the dimensions of a(2) , which are [3×1] . In general, a

has dimensions [(nR⋅n f)×1] .

3.2.4.5 Vector e

e=[(R(1))
T

f (1)

⋮

(R(N s))
T

f (N s)] (3.74)

Constrained subdomains have R with zero number of columns, so their RT has zero number of

lines. According to this, e(1) has dimensions [0×1] and consequently e has the size of e(2) ,

which is [3×1] . In general terms, e has dimension [(nR⋅n f)×1] .

45

FETI is a compliance method, as can be observed from the formula of F (eq. 3.64), because the

generalized inverse of the stiffness matrix, i.e. the compliance matrix is utilized. This is contrary to

the primal subdomain implementation (Section 3.1), which uses the stiffness matrix. This is an

advantage because it leads to better arithmetic behavior.

Also note that the final equations are reached with the same handling of internal and boundary

degrees of freedom, which is another difference from the primal subdomain implementation. Hence,

another advantage of FETI is that all nodes are treated the same way.

3.2.5 Matrices of the boundary problem

The signed Boolean matrix has elements that are either ±1 or 0 . When B is multiplied with

another matrix, a certain degree is either picked (when its corresponding element in B is ±1) or

ignored (when its corresponding element is 0). Therefore, B essentially picks degrees of freedom

that will participate in the interface problem calculations. With that in mind, the matrices involved

in the interface problem can be explained more naturally.

3.2.5.1 Matrix F

F=∑
s=1

ns

B s (K s)
+
(B s)

T

B s (K s)
+
(B s)

T
 comes from subdomain s , and B is responsible for singling out the compliance

entries of the boundary degrees of that subdomain. However, B includes the degrees of the entire

domain. Hence, F is “global” and B selects the corresponding compliance entries from the

subdomains and places them in the appropriate positions. Summing this for all s , the contributions

of all subdomains are collected for the degrees of the interface problem. As a result, F is the

compliance matrix of the interface problem.

46

3.2.5.2 Vector d

d=∑
s=1

ns

B s (K s)
+
f s

(K s)
+
f s is solving directly for subdomain s . Thus, it reflects displacements of s due to forces

applied to s . By multiplying with B , only the displacements needed for the interface problem

remain: B s (K s)
+
f s are the displacements of the boundary degrees of subdomain s . The sum for all

s yields d and it contains the displacements of all degrees of freedom due to each subdomain's

forces.

3.2.5.3 Matrix G and vector e

G=[Β(1)
R
(1)

Β
(2)

R
(2)

… Β
(ns)R

(ns)] e=[(R
(1))

T
f (1)

⋮

(R(ns))
T

f (n s)]
With the effect of B , matrix G contains only rigid body modes of the interface problem, whereas

vector e contains displacements of boundary degrees of freedom caused by the aforementioned

rigid body modes (just as d contains displacements caused by deformation).

3.2.5.4 Vectors λ and a

From the final system of equations (eq. 3.73)

[F −G
−GT 0][λa]=[d−e]

it is clear that λ expresses the forces that need to be applied on the boundary degrees of freedom so

that interface displacements expressed in d are valid. Furthermore, a reflects the zero energy

modes of floating subdomains.

47

3.2.6 Special cases

The example used so far does not cover certain special cases. The domain depicted in Fig. 3.9 will

be used to examine them. Domain numbering for nodes and degrees of freedom is shown in Fig.

3.10.

48

Fig. 3.10: Numbering of nodes and degrees of freedom of the domain

21(41, 42) 22(43, 44) 23(45, 46) 24(47, 48) 25(49, 50)

0 13 0 14 0 15 0 16 0

16(31, 32) 17(33, 34) 18(35, 36) 19(37, 38) 20(39, 40)

0 9 0 10 0 11 0 12 0

11(21, 22) 12(23, 24) 13(25, 26) 14(27, 28) 15(29, 30)

0 5 0 6 0 7 0 8 0

6(11, 12) 7(13, 14) 8(15, 16) 9(17, 18) 10(19, 20)

0 1 0 2 0 3 0 4 0

1(1, 2) 2(3, 4) 3(5, 6) 4(7, 8) 5(9, 10)

Fig. 3.9: Example 2

9 10 11 12

5 6 7 8

1 2 3 4

13 14 15 16

The domain is teared into 4 equal subdomains as shown in Fig. 3.11. Domain-scope numbering and

subdomain-scope numbering for the teared domain is shown in Figs. 3.12, 3.13, respectively.

49

Fig. 3.11: Domain teared into 4
subdomains

9 10 11 12

5 6 7 8

1 2 3 4

13 14 15 16

Subdomain 1 Subdomain 2

Subdomain 3 Subdomain 4

Fig. 3.12: Numbering of nodes and degrees of freedom of the teared
domain

21(41, 42) 22(43, 44) 23(45, 46) 23(45, 46) 24(47, 48) 25(49, 50)

0 13 0 14 0 0 15 0 16 0

16(31, 32) 17(33, 34) 18(35, 36) 18(35, 36) 19(37, 38) 20(39, 40)

0 9 0 10 0 0 11 0 12 0

11(21, 22) 12(23, 24) 13(25, 26) 13(25, 26) 14(27, 28) 15(29, 30)

11(21, 22) 12(23, 24) 13(25, 26) 13(25, 26) 14(27, 28) 15(29, 30)

0 5 0 6 0 0 7 0 8 0

6(11, 12) 7(13, 14) 8(15, 16) 8(15, 16) 9(17, 18) 10(19, 20)

0 1 0 2 0 0 3 0 4 0

1(1, 2) 2(3, 4) 3(5, 6) 3(5, 6) 4(7, 8) 5(9, 10)

There are 2 node types that need further examination. These are shown in Fig. 3.14.

Node 13 (domain numbering) is a boundary node that belongs to 4 subdomains. Its multiplicity is

equal to 4 and its 4 instances in the subdomains are 9, 16, 21, 28.

Node 11 (domain numbering) is a boundary node that is constrained. Its multiplicity is equal to 2

and its 2 instances in the subdomains are 7, 19.

50

Fig. 3.14: Special node cases

9 10 11 12

5 6 7 8

1 2 3 4

13 14 15 16

1311

Fig. 3.13: Global numbering of nodes and degrees of freedom of the
subdomains

25(49, 50) 26(51, 52) 27(53, 54) 34(67, 68) 35(69, 70) 36(71, 72)

0 13 0 14 0 0 15 0 16 0

22(43, 44) 23(45, 46) 24(47, 48) 31(61, 62) 32(63, 64) 33(65, 66)

0 9 0 10 0 0 11 0 12 0

19(37, 38) 20(39, 40) 21(41, 42) 28(55, 56) 29(57, 58) 30(59, 60)

7(13, 14) 8(15, 16) 9(17, 18) 16(31, 32) 17(33, 34) 18(35, 36)

0 5 0 6 0 0 7 0 8 0

4(7, 8) 5(9, 10) 6(11, 12) 13(25, 26) 14(27, 28) 15(29, 30)

0 1 0 2 0 0 3 0 4 0

1(1, 2) 2(3, 4) 3(5, 6) 10(19, 20) 11(21, 22) 12(23, 24)

3.2.6.1 Boundary nodes with multiplicity >2

In the first example (Fig. 3.5), all nodes involved were either internal, therefore having multiplicity

equal to 1 , or boundary with multiplicity equal to 2 . For boundary node i , it was sufficient to use

only one equation for each degree of freedom of that node:

u i
(1)
=ui

(2) (3.75)

(where 1 and 2 are the two subdomains the node belongs to) so that all instances of the node have

the same properties. For a node with multiplicity equal to 4 we have the following equations:

u i
(1)
=ui

(2)
=u i

(3)
=ui

(4) (3.76)

There are 3 ways of handling this set of equations:

• Minimum Constraints

• Non-Redundant Constraints

• Fully Redundant Constraints

51

3.2.6.1.1 Minimum Constraints

The fewest possible equations we can use are 3. For example (Fig. 3.15):

u i
(1)
=ui

(2)

u i
(2)
=ui

(4) (3.77)

u i
(4)
=ui

(3)

These equations are just enough to ensure that all instances of the node will have equal properties.

However, with this method, the number of instances and the number of equations used between

subdomains is not equal – instances belonging to subdomain 2 and 3 have two equations between

them whereas instances belong to subdomain 1 and 3 only have one. A universal handling of the

subdomains is simpler and conducive to programming. For this reason we favor the next method

over this one.

52

Fig. 3.15: Minimum constraints

Subdomain 1 Subdomain 2

Subdomain 3 Subdomain 4

3.2.6.1.2 Non-Redundant Constraints

Even though the name of this method suggests otherwise, one equation is actually redundant.

However, we achieve universal handling of subdomains. The equations in this case are:

u i
(1)
=ui

(2)

u i
(2)
=ui

(4)
(3.78)

u i
(4)
=ui

(3)

u i
(3)
=ui

(1)

As depicted in the Fig. 3.16, each instance is connected to its horizontal and vertical neighbors but

not with the diagonal ones. Each instance is connected to two other instances. We have 4 equations

in total for each degree of freedom of the node in question.

53

Fig. 3.16: Non-redundant constraints

Subdomain 1 Subdomain 2

Subdomain 3 Subdomain 4

3.2.6.1.3 Fully Redundant Constraints

In this variation, all instances are connected to all other instances.

u i
(1)
=ui

(2) , ui
(1)
=u i

(3) , ui
(1)
=u i

(4)

u i
(2)
=ui

(3) , u i
(2)
=ui

(4) (3.79)

u i
(3)
=ui

(4)

As depicted in Fig. 3.17, each instance is connected to its horizontal and vertical neighbors as well

as the diagonal ones. Each instance is connected to three others. There are 6 equations for each

degree of the node in question, some of which are redundant. In this work, the fully redundant

variation is used. Even though the extra equations increase the number of rows of B , the

convergence rate is improved [39].

54

Fig. 3.17: Fully redundant constraints

Subdomain 1 Subdomain 2

Subdomain 3 Subdomain 4

3.2.6.2 Constrained boundary nodes

For typical constrained nodes (i.e. not necessarily boundary), the appropriate degrees of freedom are

removed both from the stiffness matrix (both rows and columns) and the signed Boolean matrix

(columns only). As mentioned in Section 3.2.1, the signed Boolean matrix B matrix of a

subdomain or of the expanded domain has a number of rows equal to the required limitations and a

number of columns equal to the total degrees of freedom of the teared domain.

When a boundary degree is constrained, then the relevant equations-limitations need to be removed

from the interface problem as well. The rows of B are separated in “active” and “inactive”:

B(1)
=[Bactive

(1)

Binactive
(1)] (3.80)

Only the active part is used when solving each participating subdomain.

In the example (Fig. 3.12) where each node has 2 degrees of freedom, the number of limitations

that need to be applied is 28 : there are 6⋅2=12 for the middle node and 1⋅2=2 for each one of

the other 8 boundary nodes, for the total of 12+8⋅2=28 . However, the 2 equations related to the

constrained node need to be ignored. Consequently, all signed Boolean matrices will have 26 rows,

instead of 28 .

55

3.2.7 Solving the FETI interface problem

The system of linear equations (3.73) may be solved directly:

(3.73) [F −G
−GT 0][λa]=[d−e]

[λa]=[F −G
−GT 0]

−1

[d−e] (3.81)

However, for problems with a very large number of degrees of freedom, solving the resulting

system of algebraic equations with a direct solver is very time consuming. Additionally, it requires

creating and storing the fully dense matrix F . Solving problems with an iterative method is more

efficient both time-wise and storage-wise since F is handled indirectly (through subdomain-scope

vectors), hence there is no need to ever create and store it.

However, the system is not positive definite so this prevents the usage of the standard PCG

algorithm. The solution of the interface problem of eq. (3.73) is based on a projected PCG

algorithm, where the vector search space is projected to a different subspace [37], [43]. This variant

is called preconditioned conjugate projected gradient (PCPG) and has the ability to deal with the

zero elements (in the block at the bottom right) that results from the constraints applied by (3.39).

The interface problem of eq. (3.73) can be rewritten as:

min Π (λ)=
1
2

λ
Τ

F λ−λ
Τ (Ga+d)

(3.82)

subject to: GT λ=e

PCPG uses the orthogonal projection matrix (or projector) in order to solve the interface problem.

The projector is calculated by the formula :

P=I−G (GT G)
−1

GT (3.83)

where I is the identity matrix whose dimensions are [nb×nb] . This is because the dimensions of

G are [nb×(nR⋅n f)] where nR the number of rigid modes, n f the number of floating subdomains,

nb the number of boundary degrees of freedom. The projection matrix P is used in order to "fix"

the current solution vector λ m so that the equation GT λ=e is satisfied.

56

Matrix GT G is sparse, symmetric and positive definite. Furthermore, its dimensions are small:

[(nR⋅n f)×(nR⋅n f)] , proportional to the number of rigid body modes of the floating subdomains.

The PCPG algorithm used for solving the interface problem (3.73) and symbolizing the

preconditioner (see Section 3.3) with ~F−1 is shown in Fig. 3.18.

There are two steps involving the projection matrix P (eq. 3.86, 3.87), so that symmetry is

maintained. Performing those two steps causes the propagation of arithmetic information to all

subdomains in each iteration which results in faster convergence [37].

It has been observed that for most structural problems, the norm of residual forces of the global

system K u=f (eq. 3.27) is usually 102
÷103 times greater [37] than the norm of boundary

residual forces resulting from eq. (3.73). This means that the convergence criterion of the iterative

procedure will have to be based on the norm of the global residual forces:

57

Initialization

λ0=G (GT G)
−1

e (3.84)

r0=d−F λ0 (3.85)

Iterate m=0,1,..., until convergence

ym−1=P
~
F−1 P rm−1

wm−1=P rm−1 (3.86)

zm−1=
~
F−1 wm−1 (3.87)

ym−1=P zm−1 (3.88)

βm=
ym−1

T wm−1

ym−2
T wm−2

 (For m=1 , β1=0) (3.89)

pm=ym−1+ β m pm−1 (For m=1 , p1=y0) (3.90)

γm=
ym−1

T wm−1

pm
T F pm

λ m=λ m−1+γm pm

rm=rm−1−γm F pm

Fig. 3.18: The PCPG algorithm

‖K um−f‖ (3.91)

where um is the displacement vector of iteration m . The straightforward approach is to extract λ m

and calculate am . Afterwards, through (3.56):

us
=(K s)

+ (f s
− (B s)

T
λ)+R s as

calculate the node displacements of each subdomain and consequently those of the domain. For a

given precision ε , if:

‖K um−f‖
‖f‖

≤ε (3.92)

then the process has converged and the approximate solution for precision ε has been reached.

The criterion outlined above is called the objective criterion. However, using the objective criterion

for every iteration is very time-consuming. Instead, an approximate criterion is used with the

intention of improving performance. An accepted estimation of the norm (3.91) is the norm ‖zm‖ ,

which is calculated on every iteration by multiplying the residual vector rm with the projector and

the preconditioner (eq. 3.87). Hence, the approximate criterion will be:

‖zm‖
‖f‖

≤ε (3.93)

The results derived from the iterative solution are the values of Lagrange multipliers λ (see

Section 3.2.1). In the system of linear equations (3.73)

[F −G
−GT 0][λa]=[d−e]

after solving for λ the second equation is already satisfied. The first one still has the unknown

vector a . Solving for a :

F λ−G a=d

G a=F λ−d

Multiplying with GT :

58

GT Ga=GT (F λ−d)

and because GT G is invertible:

a=(GT G)
−1

GT (F λ−d) (3.94)

At this point, all unknowns of the interface problem have been calculated. The next step is to

calculate displacements from eq. (3.56):

us
=(K s)

+ (f s
− (B s)

T
λ)+R s as

which calculates displacements for the subdomains and consequently the teared domain. In order to

find the displacements of the original domain, the displacements of the teared domain need to be

averaged for degrees where the multiplicity is two or higher. If a node only has 1 instance, then its

displacements will be the displacements of that instance. If a node has more instances, then there

are more than one set of calculated displacements for the node. Due to the restriction from eq.

(3.39):

∑
s=1

n s

Bs u s
=0

those sets are all equal, barring arithmetic differences. Thus, in order to find the displacements ui

of node i with multiplicity equal to m :

ui=
1
m
∑
s=1

m

ui
s (3.95)

where ui
s are the displacements of the instance of the node in subdomain s .

59

3.3 Preconditioners

The efficiency of the PCPG method is greatly affected by the preconditioning used. Two

preconditioners that were presented in initial FETI articles are still being widely used to enhance the

convergence speed of the PCPG algorithm [37], [39]: the powerful Dirichlet preconditioner and the

low-cost lumped preconditioner. Despite intensive research on FETI and constant improvements of

the method, the number of articles pertaining to preconditioning for PCPG is relatively limited.

Alternative preconditioning methods suggested are based mostly on expanded versions of the

original Dirichlet and lumped preconditioners.

In this work, the Dirichlet and lumped preconditioners are presented along with the Diagonal

preconditioner, which more effective than lumped and is more economical to create than Dirichlet.

For every subdomain s , the stiffness matrix is rearranged:

K s=[K ii
s K ib

s

Kbi
s Kbb

s] (3.96)

where i represents internal degrees of subdomain s and b represents the boundary degrees of

subdomain s . Since the stiffness matrix is symmetric:

(Kib
s)

Τ
=Kbi

s (3.97)

The same rearrangement must be performed on matrix B so that each row/column corresponds to

the appropriate degree of the rearranged stiffness matrix. Only the columns of B , which represent

all degrees of subdomain s , need to be rearranged.

Β s
=[Βi

s Βb
s] (3.98)

The biggest cost requirement of the preconditioner on each subdomain s is K ii
s which is the part

of the subdomain stiffness matrix that contains the internal degrees of freedom. Hence, whereas the

Dirichlet preconditioner uses the exact K ii
s matrix, other variations use lower cost approximations.

For example, the Diagonal preconditioner uses the diagonal of K ii
s . Other variations use a matrix

based on the symmetric successive over-relaxation method (SSOR) or one that is obtained from an

incomplete Cholesky factorization.

60

3.3.1 General expression of preconditioners

The general form of preconditioners is:

~
F−1
=∑

s=1

ns

Ws [Βi
s Βb

s] [0 0

0 Kbb
s
−(K ib

s)
Τ
(
~
K ii

s)
−1

K ib
s][Βi

s Βb
s]

Τ

W s (3.99)

The symbol signifies an approximation of the matrix.

It should be noted that the preconditioner is an approximation of matrix F−1 . If the exact F−1 is

used as a preconditioner then the method will converge in a single iteration but exact calculation of

F−1 is equivalent to solving the system directly. An important advantage of PCPG is that the time-

consuming relevant calculations and storage of matrix F−1 are avoided. For large problems, it is

practically mandatory to approximate F−1 . Another approximation pertains to K ii
s because it

consumes the largest part of the storage of the preconditioner.

The general expression of eq. (3.99) can be simplified into a more useful form. The submatrices Bi
s

on each subdomain are all 0 , since they represent internal degrees of freedom. Therefore, with

Bi
s=0 :

~F−1=∑
s=1

ns

Ws Βb
s {Kbb

s −(K ib
s)

Τ
(
~
K ii

s)
−1

K ib
s }(Βb

s)
Τ

Ws (3.100)

Each part of the sum is independent and belongs to a different subdomain. This allows for an

efficient handling in parallel processing.

Matrix W is a diagonal matrix thats takes the multiplicities of boundary degrees into account. Its

dimensions are nb×nb where nb is the size of the interface problem. Each entry is equal to the

reciprocal of the multiplicity of the corresponding degree. In the example of Fig. 3.4, W has size

[8×8] , and since each boundary degree of freedom belongs only in 2 subdomains, each diagonal

entry is equal to 1/2 , hence:

61

W=[
1/2

1/2
1/2

1 /2
1 /2

1 /2
1/ 2

1/ 2
1/2

] (3.101)

In the example of Fig. 3.12, the matrix has size [26×26] and in the 12 lines corresponding to the

middle node (fully redundant constraints - Section 3.2.6.1.3) the diagonal element is equal to 1/4 ,

whereas all other lines have a diagonal element equal to 1/2 . The matrix can be efficiently stored

as explained in Section 3.4.5.

Initially, preconditioners did not utilize W . It was first analyzed in [40] and shown to lead to

significantly lower number of iterations, especially when used in conjunction with fully redundant

constraints. More information can be found in [26], [27].

The preconditioners presented in the next sections differ depending on their approximation of K ii
s .

3.3.2 Dirichlet preconditioner

The Dirichlet preconditioner uses the exact K ii
s matrix:

~
K ii

s
=Kii

s

~F−1=∑
s=1

ns

Ws [Βi
s Βb

s] [0 0

0 Kbb
s −(K ib

s)
Τ
(K ii

s)
−1

K ib
s][Βi

s Βb
s]

Τ
Ws

~F−1=∑
s=1

ns

Ws Βb
s {Kbb

s −(K ib
s)

Τ
(K ii

s)
−1

K ib
s }(Βb

s)
Τ

Ws (3.102)

This means that the preconditioner has a higher cost but is more efficient. However, calculating

(Kii
s)
−1

, like every matrix inversion, is time consuming can potentially cause arithmetic problems if

K ii
s is ill-conditioned.

62

3.3.3 Lumped preconditioner

The lumped preconditioner ignores the K ii
s matrix:

~
K ii

s=0

~F−1
=∑

s=1

ns

Ws [Βi
s Βb

s] [0 0
0 Kbb

s] [Βi
s Βb

s]
Τ

W s

~F−1=∑
s=1

ns

Ws Βb
s Kbb

s (Βb
s)

Τ
W s (3.103)

The lumped preconditioner is low-cost because it does not need K ii
s at all, but also because K ib

s

and Kbi
s
=(K ib

s)
Τ

 are also unneeded after nullifying K ii
s .

3.3.4 Diagonal preconditioner

The diagonal preconditioner approximates K ii
s with its diagonal:

~
K ii

s=Dii
s (3.104)

~F−1
=∑

s=1

ns

Ws [Βi
s Βb

s] [0 0

0 Kbb
s
−(K ib

s)
Τ
(Dii

s)
−1

K ib
s] [Β i

s Βb
s]

Τ
Ws

~F−1
=∑

s=1

ns

Ws Βb
s {Kbb

s
−(K ib

s)
Τ
(Dii

s)
−1

K ib
s }(Βb

s)
Τ

Ws

The diagonal preconditioner is intermediate in cost and efficiency to Dirichlet and lumped. By

using only the diagonal elements of K ii
s , the diagonal preconditioner is close to Dirichlet's

efficiency with a lower computational cost while also avoiding the arithmetic errors of matrix

inversion.

63

3.3.5 Preconditioner usage

Between the two extremes regarding the approximation of K ii
s , Dirichlet is more efficient than

lumped but costs a lot more memory. Depending on the type of the problem there are some

suggestions [42], [45]:

➢ For 2D and 3D elasticity problems that are teared in a small number of subdomains, the

lumped preconditioner is more efficient.

➢ For 2D and 3D elasticity problems that are teared in a large number of subdomains, the

Dirichlet preconditioner should be favored.

➢ For ill-conditioned problems, like plate and shell problems, the utilization of the Dirichlet

preconditioner is always advised.

More information on the properties and characteristics of the 2 conventional preconditioners as well

as other ones can be found in references [39], [46].

64

3.4 Implementation considerations in the context of FETI

FETI exhibits fast convergence as a method so a computer implementation has to also make sure

that each iteration is done as efficiently as possible. This chapter explores general techniques

towards that goal. Among others, the special characteristics of the matrices will be exploited to

improve their storage requirements and reduce the calculations required for the operations they are

involved in.

3.4.1 Matrix format

The symmetry of the matrix must be utilized. The stiffness matrix as well as derivatives like

B K BT are all symmetric, i.e.:

KT
=K

(B K BT)
T
=(BT)

T
K (B)T=B K BT

Therefore, symmetry can be taken into account and the diagonal and upper or lower triangle of the

matrix can be stored instead of the whole matrix.

Furthermore, and in conjunction with symmetry the particular pattern of the matrices can be taken

into account: the matrices are sparse, i.e. there is a large number of non-zeros. Depending on the

intended usage of the matrix there are several options: a sparse format, which stores non-zeros only

can be used for the assembly of the matrix or the skyline format can be used if factorization is

required. Matrix formats and their particular characteristics is presented extensively in Chapter 5.

The special matrix storage also implies that matrices with zeros are avoided. Each matrix type

performs operations (e.g. matrix-vector multiplication, multiplication with scalar etc) by

specifically taking into account the underlying structure of the matrix. Therefore, useless operations

(with zeros) that do not affect the result are kept to a minimum.

3.4.2 Variable type

Apart from the matrix storage format, the matrices should be stored with the smallest variable type

that is required for the matrix. The stiffness matrix is stored in double precision because the extra

precision is required. The preconditioner can be stored with single precision. Single precision

preconditioners are thoroughly presented in [47]. Preconditioners are an approximation anyway

65

whose sole purpose is to accelerate convergence. Better preconditioners imply faster convergence,

but the preconditioner itself must be as cheap as possible and storing it in single precision requires

half the memory while performing the same.

The signed Boolean matrices on the other hand only contain −1 , 0 or +1 so they can be stored

with much cheaper variables (even a single bit per value is possible here, see Section 3.4.4). See

also the Section 3.4.5 pertaining to the multiplicity matrix.

3.4.3 Order of calculations

The first 3 items (eq. 3.86, 3.87, 3.88) of the iterative process of the PCPG algorithm (Fig. 3.18)

perform the calculation ym−1=P
~
F−1 P rm−1 but they perform it from right to left. It is very efficient

to avoid performing matrix-matrix multiplication and hold operations until a vector appears on the

right. Then, perform the calculation as a series of matrix-vector multiplication as shown in Section

5.8.

There are two additional relevant items from the PCPG algorithm:

1. γm=
ym−1

T wm−1

pm
T F pm

 and rm=rm−1−γm F pm , from which F pm is interesting

2. zm−1=
~
F−1 wm−1

By expanding F and ~F−1 according to eq. (3.64) and (3.100), respectively :

• F=∑
s=1

ns

B s (K s)
+
(B s)

T

• ~F−1=∑
s=1

ns

Ws Βb
s {Kbb

s −(K ib
s)

Τ
(
~
K ii

s)
−1

K ib
s }(Βb

s)
Τ

Ws

These matrices appear in each iteration. A natural process is to calculate the final matrices once

before the iterative process and then keep reusing them. Due to the analysis of Section 5.8, its more

efficient to perform the operations from right to left with the current iteration's vector. Even though

this may initially seem that there are recalculation involved, the calculations are orders of

magnitude less this way and a huge number of calculations would be required in order to reach the

amount of calculations needed for performing the matrix-matrix multiplications as per the previous

66

idea. FETI exhibits fast convergence so performing the calculations as shown in Fig. 3.18 is much

more efficient. Furthermore, intermediate dense matrices are avoided and the matrices F and ~F−1

need not be explicitly formed.

Furthermore, note that matrices F and ~F−1 comprise a sum of subdomain-level parts, which is

another reason for not forming them: in each iteration, each subdomain performs calculations with

the current vector and returns relevant result vectors. Eventually, only vector need to be summed in

order to take the contributions of all subdomains into account.

3.4.4 Boolean matrices

In FETI features signed Boolean matrices Β (Section 3.2.1) which have only 2 entries per row: a

+1 and a −1 ; all other entries are zero. This presents an opportunity to store Β very efficiently.

Three alternative ways to store Β are presented and then the multiplication of Β with a vector

directly from the special format is provided. The three variations are shown in Table 3.2.

The storage formats will be presented with the help of the following example Β matrix with

dimensions 4×10 :

Β(TearedDomain)
=

1 2 3 4 5 6 7 8 9 10

[
1 0 0 0 0 −1 0 0 0 0
0 0 0 0 1 0 0 −1 0 0
0 −1 0 0 0 0 0 0 0 1
0 0 1 0 0 0 −1 0 0 0

]
(4 boundary dof×10 total dof)

(3.105)

The matrix Β(TearedDomain) comprises subdomain parts Β s where the first subdomain has degrees of

freedom 1-5 and the second has degrees 6-10.

67

Type

A Indexes only

B Signed Indexes

C Indexes and separate signs

Table 3.2: Storage formats for signed Boolean matrix Β

3.4.4.1 Type A: indexes only

In type A, the indexes of the two non-zero entries of each row are stored. The index corresponding

to +1 is stored first and the one corresponding to −1 is stored second.

Β* (TearedDomain)
=[

1 6
5 8

10 2
3 7

] (3.106)

For the signed Boolean matrices of each subdomain, the indexes that pertain to the subdomain are

stored. The column they are placed (left or right) depends on the sign of the represented entry. The

other entry of the same row is flagged with a value that signifies that the corresponding index is not

part of this subdomain. Below, the flag is 0 :

Β* (1)
=[

1 0
5 0
0 2
3 0

] Β* (2)
=[

0 6
0 8
10 0
0 7

] (3.107)

In all cases, the column of an entry in the Type A format (left or right) is important because it

signifies the sign of the stored entry of Β . Variable types (Section 3.4.2) that are sufficient in this

type are unsigned integers of enough range to cover the largest column index.

68

3.4.4.2 Type Β: signed indexes

In this storage type, each stored column index is signed with the appropriate sign of the value

represented. For the example of eq. (3.105):

Β* (TearedDomain)
=[

1 −6
5 −8
−2 10
3 −7

] or Β* (TearedDomain)
=[

1 −6
5 −8
10 −2
3 −7

] (3.108)

In contrast to Type A, the column of the entries (left or right) does not matter, which allows

swapping the entries of a particular row. As a result, both representations of eq. (3.108) are valid.

The benefit here is on the subdomain level. Storing as in Type A would yield:

Β* (1)
=[

1 0
5 0
0 −2
3 0

] Β* (2)
=[

0 −6
0 −8

10 0
0 −7

]

However, swaps are allowed, so all non-zeros (where 0 is the flag that signifies absence) can be

placed in the same column:

Β* (1)=[
1 0
5 0
−2 0
3 0

] Β* (2)=[
0 −6
0 −8
0 10
0 −7

]

Since an entire column is full of zeros, it can be discarded:

Β* (1)
=[

1
5
−2
3
] Β* (2)

=[
−6
−8
10
−7
] (3.109)

This allows the storage of subdomain-level Β matrices with half the entries compared to Type A.

Variable types (Section 3.4.2) that are sufficient in this type are integers of enough range to cover

the largest column index.

69

3.4.4.3 Type C: Indexes and separate signs

Another way is to store the signs in a different array. For the example of eq. (3.105):

Β* (TearedDomain)
=[

1 6
5 8
2 10
3 7

] , Sign* (TearedDomain)
=[

1 −1
1 −1
−1 1
1 −1

] (3.110)

Each entry has its sign stored in the corresponding position in the secondary matrix Sign . Swaps

are allowed in this case as well as long as the relevant swaps are performed in the Sign matrix as

well in order to preserve the invariants.

The subdomain matrices are:

Β* (1)
=[

1
5
2
3
] , Sign(1)=[

1
1
−1
1
] B* (2)

=[
6
8

10
7
] , Sign(2)=[

−1
−1
1
−1
] (3.111)

As a result, there are two arrays for each subdomain for Type C. The Sign matrix only takes values

+1 , −1 so it can be stored with a single bit per entry. Furthermore, the entries of B can be stored

with unsigned integers of enough range to cover the largest column index. Note that the unsigned

types can reach twice the maximum value of the signed types of the same bit size because the sign

takes up one bit to store.

3.4.4.4 Matrix-vector multiplication for compact B

Matrix Β is involved in matrix-vector multiplications and the multiplication is performed directly

from the compact form of Β . If a vector with all entries zero except a single entry equal to one is

multiplied with a vector x .

[0 0 0 1 0 0] [
x1

x2

x3

x4

x5

x6

]= x4
 (3.112)

70

The single entry is in the 4th column and it isolated the 4th entry of vector x . More generally:

[0 … 0 1 0 … 0]x= x i
, where i is the index of the “1” entry (3.113)

The single entry selects the entry of x that is at in the index equal to its own index. Furthermore, if

the single entry is equal to −1 it not only chooses the entry of x but also applies a negative sign

to it.

In the compact storage of Β , the column indexes of the +1 and −1 entries are stored. Therefore,

by using these two entries from a row of Β it is possible to find which two entries would be

selected if the multiplication was performed naively.

Let x , w be vectors of proper dimensions and Β an example signed Boolean Matrix. The Β x

multiplication results in a vector of size equal to the number of rows of Β . Each row of Β

contains exactly two entries. The ΒT w multiplication results in a vector of size equal to the

number of columns of Β . The multiplications are shown in (eq. 3.114) and (eq. 3.115),

respectively.

y=Β(TearedDomain)x=

1 2 3 4 5 6 7 8 9 10

[
1 0 0 0 0 −1 0 0 0 0
0 0 0 0 1 0 0 −1 0 0
0 −1 0 0 0 0 0 0 0 1
0 0 1 0 0 0 −1 0 0 0

][
x1

x 2

x3

x 4

x5

x6

x7

x8

x9

x10

]=[x1− x6

x5− x8

−x2+ x10

x3− x7
]

(3.114)

71

v=(Β(TearedDomain))
T

w=

1 2 3 4

[
1 0 0 0
0 0 −1 0
0 0 0 1
0 0 0 0
0 1 0 0
−1 0 0 0
0 0 0 −1
0 −1 0 0
0 0 0 0
0 0 1 0

][w1

w2

w3

w4
]=[

w1

−w3

w4

0
w2

−w1

−w4

−w2

0
w3

]
(3.115)

The number of entries of each of a row of ΒT depends on the multiplicity of the corresponding

degree of freedom (Section 3.2.6.1). In the example (eq. 3.115), there is only one non-zero entry per

row. This is true for degrees that belong to exactly 2 subdomains, so a single equation-constraint is

sufficient (Section 3.2.1). If a degree of freedom belongs to 4 subdomains and when using the fully

redundant constraint scheme (Section 3.2.6.1.3), there will be three non-zero entries – as many as

the equation-constraints pertaining to each such degree. This is shown from Fig. 3.19 because 3

arrows start/end from/to each instance of the center node. This details is relevant only for

Β(TearedDomain) which is typically not needed. On the subdomain level signed Boolean matrices there

is one entry per row.

As for every transpose, note that in the ΒT w multiplication, the transpose is not explicitly

calculated.

72

Fig. 3.19: Fully redundant
constraints

Subdomain 1 Subdomain 2

Subdomain 3 Subdomain 4

3.4.4.4.1 Matrix-vector multiplication for Type Α

For the multiplication Β(TearedDomain)x , comparing the compact Β (eq. 3.106) with the result y (eq.

3.114) it is observed that the indexes remaining in y are only those that are referenced in Β .

Therefore, for entry i of the result vector (where i=1,2,3,4 in the example):

j 1=B(i , 1) , j 2=B (i , 2) Get indexes j 1 , j 2 from row i of matrix Β

y (i)=x (j1)−x (j2) Choose entries j 1 , j 2 from x

The minus sign is because of the convention that the second column contains the negative entries.

For the multiplication (Β(TearedDomain))
T

w , in the general case of arbitrary number of entries per

row:Note that in the case of the transpose i=1,2,3,4 as well. Even though ΒT has 10 rows, the

operations are logically different. Furthermore, as can be seen by the algorithm, there is no explicit

transposition of Β .

j 1=B(i , 1) , j 2=B (i ,2) Get indexes j 1 , j 2 from row i of matrix Β

v (j1)+= w (i)
Add/Subtract at entries j 1 , j 2 of the result

v (j2) -= w(i)

On the subdomain level (eq. 3.107), for the multiplication Β s x the process is similar but either j 1

or j 2 will be zero (or whichever value is used for the flag). Thus:

j 1=B(i , 1) , j 2=B (i , 2) Get indexes j 1 , j 2 from row i of matrix Β

If j 1 ==absenceFlag y (i)=−x (j2) , else
If j 2 == absenceFlag y (i)=x (j1)

For the multiplication (Β s)
T

w on the subdomain level, it is know that each row only has a single

value. Therefore, the expressions are simplified:

j 1=B(i , 1) , j 2=B (i , 2)

v (j1)=w (i) Instead of v (j1)+=w (i)⇔ v (j 1)=v (j 1)+w(i) of the domain-level

v (j2)=−w (i) Instead of v (j2) -= w(i)⇔ v (j2)=v(j 2)−w(i) of the domain-level

73

3.4.4.4.2 Matrix-vector multiplication for Type B

For the multiplication Β(TearedDomain)x (eq. 3.108) on the domain level:

j 1=|B (i ,1)| , j 2=|B(i ,2)| Get indexes j 1 , j 2 from Β . Absolute value

sgn1=sgn (i ,1) , sgn2=sgn(i , 2) Get the sign of the stored entries

y (i)=sgn1⋅x (j 1)+sgn2⋅x (j 2) Choose entries j 1 , j 2 from x and apply the sign

The absolute values is because the stored entries are not always positive. sgn(x) is a function that

extracts the sign of a number like
|x|
x

.

For the multiplication (Β(TearedDomain))
T

w :

j 1=|B (i ,1)| , j 2=|B(i ,2)| Get indexes j 1 , j 2 from Β . Absolute value

sgn1=sgn (i ,1) , sgn2=sgn(i ,2) Get the sign of the stored entries

v (ji)+= sgn1⋅w (i)
Add at entries j 1 , j 2 of the result after applying the sign

v (j2)+= sgn2⋅w(i)

On the subdomain level (eq. 3.109), there is only one column. Therefore the the expressions are

simpler. For the multiplication Β s x :

j=|B(i)| Get index j from Β . Absolute value

sgn=sgn (i) Get the sign of the stored entry

y (i)=sgn⋅x (j) Choose entry j from x and apply the sign

For the multiplication (Β s)
T

w :

j=|B(i)| Get index j from Β . Absolute value

sgn=sgn (i) Get the sign of the stored entry

v (j)=sgn⋅w (i) Set index j of the result after applying the sign

74

3.4.4.4.3 Matrix-vector multiplication for Type C

For the multiplication Β(TearedDomain)x (eq. 3.110) on the domain level:

j 1=B(i , 1) , j 2=B (i , 2) Get indexes j 1 , j 2 from row i of matrix Β

sgn1=Sign (i ,1) , sgn2=Sign (i , 2) Get the signs from the Sign matrix

y (i)=sgn1⋅x (j 1)+sgn2⋅x (j 2) Choose entries j 1 , j 2 from x and apply the sign

For the multiplication (Β(TearedDomain))
T

w :

j 1=B(i , 1) , j 2=B (i , 2) Get indexes j 1 , j 2 from row i of matrix Β

sgn1=Sign (i ,1) , sgn2=Sign (i , 2) Get the signs from the Sign matrix

v (ji)+= sgn1⋅w (i)
Add at entries j 1 , j 2 of the result after applying the sign

v (j2)+= sgn2⋅w(i)

On the subdomain level (eq. 3.111), there is only one column. Therefore the the formulas are

simpler. For the multiplication Β s x :

j=B(i) Get index j from Β

sgn=Sign(i) Get the sign from the Sign matrix

y (i)=sgn⋅x (j) Choose entry j from x and apply the sign

For the multiplication (Β s)
T

w :

j=B(i) Get index j from Β

sgn=Sign(i) Get the sign from the Sign matrix

v (j)=sgn⋅w (i) Set index j of the result after applying the sign

75

3.4.4.5 Left multiplying vector with matrix for compact B

Section 3.4.4.4 describes the matrix-vector multiplication for efficiently stored Β : Β x and ΒT w ,

where x , w vectors of consistent dimensions. Left multiplying, i.e. wT Β and xT ΒT is

essentially the same (see Section 5.9). The following expression holds for any matrix vector:

(Α Β)T=BT AT (3.116)

Therefore:

y=B x⇔yT
=xT BT

(3.117)
v=BT w⇔vT

=wT B

Indeed:

xΤ ΒT
=[x1 x2 x3 x4 x5 x6 x7 x8 x9 x10]

1 2 3 4

[
1 0 0 0
0 0 −1 0
0 0 0 1
0 0 0 0
0 1 0 0
−1 0 0 0
0 0 0 −1
0 −1 0 0
0 0 0 0
0 0 1 0

]
(3.118)

⇔xΤ ΒT
=[x1− x6 x5−x8 −x 2+ x10 x3−x7]=[

x1− x6

x5− x8

−x2+x10

x3− x7
]
T

=yT (see eq. 3.114)

76

wT Β=[w1 w2 w3 w4]

1 2 3 4 5 6 7 8 9 10

[
1 0 0 0 0 −1 0 0 0 0
0 0 0 0 1 0 0 −1 0 0
0 −1 0 0 0 0 0 0 0 1
0 0 1 0 0 0 −1 0 0 0

] (3.119)

⇔wΤ Β=[w1 −w3 w4 0 w 2 −w1 −w4 −w2 0 w3]=[
w1

−w3

w4

0
w2

−w1

−w4

−w2

0
w3

]
T

=vT

(see eq. 3.115)

By using the same expressions established in Section 3.4.4.4, the operations wT Β and xT ΒT can

be performed. The only difference is that the result is a transposed vector but transposition in

vectors is inconsequential (see Section 5.9).

3.4.4.6 Local to Global Mapping

In the example of eq. (3.105) presented so far, there are only two subdomains and the boundary

belongs to both. In general, however, a subdomain is only participating in a small part of the global

boundary problem. Therefore, all rows of matrix Β s that pertain to boundary degrees of freedom

not relevant to the current subdomain are filled with zeros For example, for subdomain s :

77

Β* s
=[
⋮ ⋮
1 0
⋮ ⋮
5 0
⋮ ⋮
0 2
⋮ ⋮
3 0
⋮ ⋮

]
row 37

row 95

row 123

row 139

(3.120)

In this case, is more efficient to store only the part of the matrix relevant to the boundary of

subdomain s . However, the row index of the entries is important because it signifies the identity of

the boundary degree of freedom they refer to. As such, an auxiliary array is used to hold the initial

row indexes of the entries. This is a very common technique in the context of sparse matrices

(Section 5.6). The auxiliary array is named map here. Therefore:

Βlocal
* s
=[

1 0
5 0
0 2
3 0

] maps
=[

37
95

123
139

] (3.121)

Matrix Β is essentially stored in the local boundary system of subdomain s . The map array

contains the information needed to translate the local indexes to the global boundary indexes in

order to be able to append the contributions of subdomain s with the rest of the subdomains.

For entry i of the auxiliary array:

k i=map(i)
(3.122)

Bglobal
s

(k i)=Blocal
s
(i)

For example, the 3rd entry of eq. (3.121) yields:

k 3=map(3)=123

Bglobal
s

(123)=B local
s
(3)

Calculations are usually performed on the subdomain level, so the rows that are not stored were full

of zeros and would not affect the result anyway. The mapping leads to further efficiency in terms of

78

memory (no zeros stored) as well as operations (no calculations with zeros are performed).

3.4.5 Matrix W

The matrix W (see Section 3.3.1) is a diagonal matrix of size nb×nb where nb is the size of the

boundary problem (number of boundary degrees of freedom). Each (diagonal) entry is equal to the

inverse multiplicity of the corresponding degree. The following is an example 9×9 matrix W :

W=[
1
2

0 0 0 0 0 0 0 0

0
1
2

0 0 0 0 0 0 0

0 0
1
2

0 0 0 0 0 0

0 0 0
1
2

0 0 0 0 0

0 0 0 0
1
4

0 0 0 0

0 0 0 0 0
1
2

0 0 0

0 0 0 0 0 0
1
4

0 0

0 0 0 0 0 0 0
1
2

0

0 0 0 0 0 0 0 0
1
2

]
(3.123)

Since the matrix is diagonal, the simplest storage format is to store the diagonal entries in an array

(Section 5.4). Therefore:

w=[12 1
2

1
2

1
2

1
4

1
2

1
4

1
2

1
2]

Τ

 (3.124)

with

W (i ,i)=w (i)
(3.125)

W (i , j)=0 , i≠ j

79

This way, instead of storing a nb×nb matrix, only nb are stored. However, there is still room for

improvement. Matrix W contains the inverse of the multiplicity of each degree, thus, it contains

inverse values of integers. The multiplicity matrix M can be stored instead:

M=W−1
=[

2 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0
0 0 0 0 4 0 0 0 0
0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 4 0 0
0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 2

]
(3.126)

and in diagonal storage:

m=[2 2 2 2 4 2 4 2 2]
Τ

 (3.127)

Storing the multiplicity allows the usage of integers instead of real numbers and this is generally

cheaper. Not only is the multiplicity an integer, it is also a small integer. Using a single byte (8 bits)

per value allows for numbers ranging from 0 to 255. The multiplicity is usually small enough to

allow for even less than 8 bits per value. Real numbers require either 8 bytes/64 bits (double

precision) or 4 bytes/32 bits (single precision) per value.

Another idea for further compactness is to take advantage of the fact that most boundary degrees

have the same multiplicity, usually equal to 2, while a few of the degrees have multiplicity greater

than 2. In this case, the multiplicity of all exception can be stored and anything not stored can be

assumed to be equal to the default value 2. If the majority of the degrees has a different multiplicity,

e.g. 4, then the default value can be set to 4 and any multiplicities not equal to 4 are stored.

Furthermore, the multiplicity matrix usually contains large consecutive sections with the same

multiplicity. For example, there may be 100 consecutive degrees of freedom with multiplicity equal

to 2, then a single node with multiplicity equal to 4 followed by 150 degrees with multiplicity 2.

Thus, ranges of the same multiplicity can be stored:

– Multiplicity 2, from 0 to 100 (exclusive)

– Multiplicity 4, from 100 to 101 (exclusive)

80

– Multiplicity 2, from 101to 250 (exclusive)

3.4.5.1 Matrix vector multiplication for compact W

The multiplication here is fairly straightforward. A multiplication for the full form of W is:

y=W x=[
1 0 0 0 0 0 0 0 0

0
1
2

0 0 0 0 0 0 0

0 0
1
3

0 0 0 0 0 0

0 0 0
1
4

0 0 0 0 0

0 0 0 0
1
5

0 0 0 0

0 0 0 0 0
1
6

0 0 0

0 0 0 0 0 0
1
7

0 0

0 0 0 0 0 0 0
1
8

0

0 0 0 0 0 0 0 0
1
9

][
x1

x2

x3

x4

x5

x6

x7

x8

x9

]=[
x1

x2

2
x3

3
x4

4
x5

5
x6

6
x7

7
x8

8
x9

9

]
(3.128)

y (i)=W (i , i)⋅x (i) (3.129)

For the diagonal storage of W :

w=[1 1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9]

Τ

y (i)=w(i)⋅x(i) (3.130)

Eq. (3.129) and (3.130) are actually relevant to any diagonal matrix. If the multiplicity matrix is

stored instead:

m=[1 2 3 4 5 6 7 8 9]
Τ

y (i)=
1

m(i)
⋅x (i) (3.131)

81

82

4 Graphics Processing Units (GPUs)

Applications of graphics processing units (GPUs) to scientific computations are attracting a lot of

attention due to their low cost in conjunction with their inherently remarkable performance features.

Parametric tests on 2D and 3D elasticity problems revealed the potential of the proposed approaches

as a result of the exploitation of multi-core CPU hardware resources and the intrinsic software and

hardware features of the GPUs.

Driven by the demands of the gaming industry, graphics hardware has substantially evolved over

the years with remarkable floating point arithmetic performance. In the early years, these operations

had to be programmed indirectly, by mapping them to graphic manipulations and using graphic

libraries such as openGL and DirectX. This approach of solving general purpose problems is known

as general purpose computing on GPUs (GPGPU). GPU programming was greatly facilitated with

the initial release of the CUDA-SDK [48]–[50], which resulted in a rapid development of GPU

computing and the appearance of GPU-powered clusters on the Top500 supercomputers [51].

Unlike CPUs, GPUs have an inherent parallel throughput architecture that focuses on executing

many concurrent threads slowly, rather than executing a single thread very fast.

Work pertaining to GPUs has extended to a large spectrum of applications even before CUDA made

their use easier. A number of studies in engineering applications have been recently reported on a

variety of GPU platforms using implicit computational algorithms: in fluid mechanics [52]–[56],

molecular dynamics [57], [58], topology optimization [59], wave propagation [60], Helmholtz

problems [61], neurosurgical simulations [62]. Linear algebra applications have also been a topic of

scientific interest for GPU implementations. Dense linear algebra algorithms are reported in [63],

while a thorough analysis of algorithmic performance of basic linear algebra operations can be

found in [64]. The performance of iterative solvers is analyzed in [65], and a parametric study of the

PCG solver is performed on multi-GPU CUDA clusters in [66], [67]. A hybrid CPU-GPU

implementation of domain decomposition methods is presented in [68] where speedups of the order

of 40x have been achieved.

Graphics processing units (GPUs) are parallel devices of the SIMD (single instruction, multiple

data) classification, which describes devices with multiple processing elements that perform the

same operation on multiple data simultaneously and exploit data level parallelism. Programming in

openCL or CUDA is easier than legacy general purpose computing on GPUs (GPGPU), since it

only involves learning a few extensions to C and thus requiring no graphic-specific knowledge. In

83/362

openCL/CUDA context, the CPU is also referred to as a host and the GPU is also referred to as a

device. The general processing flow of GPU programming is depicted in Fig. 4.1.

4.1 CPU vs GPU

The ratio of peak floating-point (double precision) calculation of GPUs is in the order of 1.5-3.0

TFLOPS versus 150 GFLOPS of CPUs. Despite the large peak-performance gap between many-

threads GPUs and multicore CPUs, GPUs do not replace CPUs. Each one is suited for different

tasks and one needs to use the best hardware for the task at hand to achieve high performance.

CPUs and GPUs have fundamentally different design philosophies [49].

Two important terms for the discussion below are “latency” and “throughput”. Latency is the time

needed to perform a task and is measured in units of time. Throughput is the number of such tasks

performed per unit of time. For example, a company might need 12 hours to produce a car; this

means that the latency is 12 hours. The company has several facilities that produce cars so it can

produce 240 cars per day; this means that the throughput is 240 cars/day or 10 cars/hour.

The design of a CPU is latency-oriented and is optimized for sequential code performance i.e. to

minimize the execution latency of a single thread. It employees sophisticated control logic to

improve execution of a single thread and large cache memories to reduce data access latencies.

However, the large cache memory, low-latency arithmetic units (ALUs) and sophisticated control

84

1. Input transfer to GPU memory

2. CPU instructions to GPU

3. GPU parallel processing

4. Output transfer to main memory

Fig. 4.1. GPU processing flow paradigm

Device/GPU

Motherboard

Main Memory Host/CPU

GPU Global
Memory

Streaming
Multiprocessors

2 31 4

logic consume chip area (also power) that could be otherwise used to provide more arithmetic

execution units and memory access channels.

On the other hand, the design of GPUs is throughput-oriented and it strives to maximize the total

execution throughput of a large number of threads while allowing individual threads to take a

potentially longer time to execute. The control logic is much simpler, meaning no (or at least very

limited) branch prediction or data forwarding. There are long latency ALUs but this allows a large

number of them to be on-chip. They are heavily pipelined for high throughput and are also more

power efficient. Cache memories do exist but they are small and used to boost memory bandwidth.

Memory bandwidth is an important issue because the speed of many applications is limited by the

rate at which data can be delivered from the memory system into the processors. Graphics chips

have been operating at approximately six times the memory bandwidth of contemporary available

CPU chips. For example. the GTX 680 supports about 200 GB/s. Due to the fact that general-

purpose processors have to satisfy legacy requirements, CPUs are expected to continue to be at a

disadvantage in terms of memory bandwidth for some time [49]. Application software for

throughput-oriented processors is expected to be written with a large number of parallel threads in

mind in order to achieve good hardware utilization. The hardware takes advantage of the large

number of threads to find work to do when some of them are waiting for long-latency memory

accesses or arithmetic operations.

For the above reasons, it should be clear that CPUs and GPUs are intended for different types of

tasks and should be viewed as complementary co-processors. Winning applications should use both

CPU and GPU: CPUs for sequential parts where latency is critical and GPUs for parallel parts

where throughput prevails.

It should be also noted that all implementations prior to CUDA 1.3 are performed in single-

precision, since support for double-precision floating point operation is added on CUDA 1.3. This

has caused some misinterpretations in a number of published comparisons between the GPU and the

CPU, usually in favor of the GPU.

85

4.2 CUDA and OpenCL

GPU implementations are typically based in either CUDA (Compute Unified Device Architecture)

or OpenCL (Open Computing Language).

CUDA is a parallel computing platform and programming model created by NVIDIA and

implemented by their GPUs. It is currently the more popular of the two and as such learning

material, documentation etc is more readily available for CUDA. However, it only runs in CUDA

enabled devices. Kernels are written in CUDA C, which is essentially the C programming language

with a few extensions to enable GPU implementations.

OpenCL is a framework for writing programs that execute across heterogeneous platforms

consisting of GPUS as well as CPUs, FPGA (field-programmable gate arrays) and other processors.

As such, it is more portable but it should be noted that different hardware architecture may call for

different optimizations. Differences between CUDA and openCL are explained in [69].

Kernels in this work can be written in both “languages” with very similar code. In this scope, the

difference is mostly in the terminology used, as shown in Table 4.1, as well as API functions. When

not explicitly mentioned otherwise, the terminology used in this text is the CUDA one. The pseudo-

code, algorithm and general details are exactly the same in both CUDA and openCL.

86

Table 4.1: CUDA vs OpenCL terminology

CUDA OpenCL
Thread Work-item
Thread block Work-group
Global memory Global memory
Constant memory Constant memory
Shared memory Local memory
Local memory / registers Private memory
__syncthreads() barrier()
blockDim get_local_size()
blockIdx get_group_id()
threadIdx get_local_id

4.3 GPU Hardware

GPUs have been rapidly evolving and as such their computing capabilities are changing. The GPUs

used in this work are: NVIDIA GeForce GTX 580 and NVIDIA GeForce GTX 680. There were

more GPUs tested, like the GTX 480 and AMD Radeon HD 7970, but the results presented are for

the GTX 580 and GTX 680.

The GTX 580 is from the Fermi family and has Compute Capability 2.0. The GTX 680 is from the

Kepler family and has Compute Capability 3.0. Illustration of the architectures is shown in Fig. 4.3,

4.4. The “Compute Capability” version is a way to succinctly describe a set of important properties

and supported operations in the GPU. A summary of the most important properties for different

Computing Capability is given in Table 4.2 and they are discussed in depth in the next sections. For

an exhaustive listing of characteristics, see [70].

GPUs have a large number of streaming processors (SPs), which can collectively offer significantly

more gigaflops than current high-end CPUs. The SPs are grouped together in streaming

multiprocessors. Up until Fermi, they are denoted as SM and contain 32 cores each. Starting from

Kepler they are denoted as SMX and contain 192 cores each (Fig. 4.2). In total, there are a lot more

CUDA cores in GTX 680 than in GTX 580 (Fig. 4.3, Fig. 4.4) and it is increasing in newer GPUs

like the GTX Titan (Table 4.3). The size of the global memory is also significantly increased in the

latest generation. The current trend is that GPUs are improving at a fast pace.

87

Fig. 4.2: SM vs SMX

88

Fig. 4.3: NVIDIA Fermi (GF100) GPU block diagram

Fig. 4.4: NVIDIA Kepler (GK110) GPU block diagram

89

Table 4.2: Important GPU properties

Technical specifications

Compute capability (version)

1.0 1.1 1.2 1.3 2.x 3.0 3.5

2 (x,y) 3 (x,y,z)

3 (x,y,z)

Maximum dimensions of a block 512 x 512 x 64 1024 x 1024 x 64

512 1024

Warp size (number of threads) 32

8 16

24 32 48 64

768 1024 1536 2048

8 K 16 K 32 K 64 K

128 63 255

16 KB 48 KB

Constant memory size 64 KB

Double precision No Yes

Maximum dimensionality of grid
of thread blocks

Maximum x-, y-, or z-dimension
of a grid of thread blocks

216-1 (65535) 231-1 (2.1 bill)

Maximum dimensionality of
thread block

Maximum number of threads per
block

Maximum number of resident
blocks per multiprocessor

Maximum number of resident
warps per multiprocessor

Maximum number of resident
threads per multiprocessor

Number of 32-bit registers per
multiprocessor

Maximum number of 32-bit
registers per thread

Maximum amount of shared
memory per multiprocessor

Table 4.3: Specifications for GTX 580, GTX 680 and GTX Titan

GTX 580 GTX 680 GTX Titan
CUDA Cores 512 1536 2688
Core Clock 772MHz 1006MHz 837MHz
Memory Speed 4Gbps 6Gbps 6Gbps
Memory Interface GDDR5 GDDR5 GDDR5
Memory Interface Width 384-bit 256-bit 384-bit
Global Memory Size 1.5GB 2GB 6GB
Memory Bandwidth 192.4GB/s 192.2GB/s 288.4GB/s
Compute Capability 2.0 3.0 3.5

4.4 GPU Threads

The GPU applies the same functions on a large number of data. These data-parallel functions are

called kernels. Kernels generate a large number of threads in order to exploit data parallelism, hence

the single instruction multiple thread (SIMT) paradigm. A thread is the smallest unit of processing

that can be scheduled by an operating system. Threads in GPUs take very few clock cycles to

generate and schedule due to the GPU's underlying hardware support, unlike CPUs where

thousands of clock cycles are required. In a multi-threaded CPU, there is usually a small number of

threads (4-12 threads). In the GPU however, the number of threads is at least in the thousands and

usually much higher. Note that not all threads run at the same time but having large number of

threads allows the GPU to schedule execution in a way that hides latency.

4.5 Thread Organization

All threads generated by a kernel define a grid and are organized in groups which are commonly

referenced as thread blocks [in CUDA] or thread groups [in openCL]. A grid consists of a number

of blocks (all equal in size), and each block consists of a number of threads (Fig. 4.5). Threads

within the same block can cooperate with each other. Thread blocks are completely independent to

other thread blocks which allows for flexible scheduling.

In general, a grid is a 3D array of blocks (after Compute capability 2.0, before it was 2D, see Table

4.2) and each block is a 3D array of threads. Fewer dimensions can be used by setting the unused

dimensions to 1. There is a block index that shows the group-id of a thread block/group and it has

up to three components ((x , y , z)). Within a thread block/group, each thread has its own thread

index which also has up to three components ((x , y , z)). The indexes are symbolized as

blockIdx .(x , y , z) and threadIdx .(x , y , z) and are used to assign different parts of the data for

each thread. The dimensionality is intended to simplify index mapping (e.g. 2D for matrices)

instead of always requiring linearized indexes. Fig. 4.6 shows a 2D grid with 2D blocks. The

depicted “thread (1,2)” has threadIdx . x=1 and threadIdx . y=2 and since it belongs to “block

(1,1)”, it has blockIdx . x=1 and blockIdx . y=1 . These indexes are used to specify the parts of the

data that will be processed by the thread.

90

4.6 Warps and control divergence

Thread blocks are partitioned into warps which are the scheduling units in the GPU. The number of

threads in a warp is specific to the particular hardware implementation. This warp size is 32 for all

known NVIDIA GPUs, as shown in Table 4.2. Threads within a warp are consecutive and have

increasing indexes. Also, the split is one-dimensional even if the blocks are not. For example, a

91

Fig. 4.5. Thread Organization

Single Thread

Thread Block/Group

Thread Grid

Fig. 4.6: 2D thread grid with 2D thread blocks.

16x16 thread will be partitioned into 8 warps. The order of the partition, which is important to keep

in mind due to control divergence as discussed below, takes consecutive x thread indexes, then

consecutive y thread indexes, then consecutive z thread indexes.

The purpose of warps is to ensure high hardware utilization through latency hiding (see Section

4.1). For example, if a warp initiates a long-latency operation and is waiting for results in order to

continue, it is put on hold and another warp is selected for execution in order to avoid having idle

processors while waiting for the operation to complete. When the long latency operation completes,

the original warp will eventually resume execution. With a sufficient number of warps, the

processors are likely to have a continuous workload in spite of the long-latency operations.

All threads of a particular warp have the same control flow instructions. This means that its possible

to have control divergence when branching occurs and threads want to take different paths

depending on some condition. Different such execution paths are serialized in current GPUs and

this is undesirable so particular effort is made to reduce or remove control divergence when writing

a kernel.

Divergence can arise only when a branch condition is a function of thread indexes. For the

following example, lets assume a block has 512 threads. This is partition into 16 warps of 32

threads each. The following condition:

• if (threadIdx.x >2){}

creates two different control paths. The first is for threads 0, 1, 2 which fail the test and the other is

for threads 3-511. In the first warp (threads 0-31) there are threads following different paths and

there will be control divergence. However, for the other warps, all threads pass the test and there is

no control divergence. An if-statement does not always imply control divergence. If all threads in a

warp pass the condition or if all threads in a warp fail the condition, there is no divergence. For

example the following condition:

• if (threadIdx.x < 32){}

has no control divergence because all threads in the first warp pass the test while all other threads

fail the test. Keep in mind that the size of the warp is not guaranteed and is subject to change, so the

outcome may be different.

A condition such as:

92

• if (threadIdx.x % 2 ==0){}

which splits the threads into odd and even is particularly problematic because all warps will have

control divergence. An example of thread divergence is shown as part of the reduction

implementations in Section 4.12.

A related performance metric is occupancy, which is defined as the ratio of the active warps to the

maximum allowed active warps in the multiprocessor. Resources are allocated by the GPU for the

entire block and utilizing too many resources per thread may limit occupancy. Potential occupancy

limiters are excessive usage of registers or shared memory (see Section 4.7).

4.7 Block size

The block size has certain restrictions and considerations that need to be taken into account. First of

all there is a limit of 1024 threads in a block in recent GPUs or 512 in earlier ones, as shown in

Table 4.2. Another constraint comes from the warps, as discussed in Section 4.6: thread block size

should be a multiple of 32 [50].

There are more considerations dictated by the constraints of the streaming multiprocessors

(SM/SMX) as shown in Table 4.2. There is a constraint in the number of blocks as well as the

number of threads resident in a SM/SMX. For Compute capability 2.0, there can be up to 8 blocks

in a SM/SMX and up to 1536 threads. Table 4.4 shows the total blocks and threads in a SM for all

powers-of-two threads per block. For 32 threads per block, the restriction of 8 blocks in a SM

means that only 256 threads will be assigned to a SM. This is much lower than the 1536 upper

bound that is a available and may lead to poor hardware utilization. For 1024 threads per block,

only a single block can fit in the SM because another one would exceed the 1536 limit of the SM.

This uses only 2/3 of the thread capacity. For 256 and 512 threads per block, we have full utilization

and therefore these are good candidates for block size. For 2D blocks, a very commonly used size is

16x16 which has 256 threads.

93

Table 4.4: Block granularity considerations
for Compute capability 2.0

32 8 256
64 8 512
128 8 1024
256 6 1536
512 3 1536
1024 1 1024

Threads per
block

Total blocks
in SM

Total threads
in SM

4.8 GPU Memory

GPGPU devices have a variety of different memories that can be utilized by programmers in order

to achieve high performance. Fig. 4.7 shows a simplified representation of the different memories.

The scope and lifetime of each type of memory is shown in Table 4.5, which is sorted by decreasing

memory speed. Registers and shared memory are the fastest and the only two types of memory that

actually reside on the GPU chip. Local, Global, Constant and Texture memory all reside off chip.

94

Fig. 4.7. Visual Representation of GPU Memory Model
and Scope

Thread Grid

Thread Block/Group

Shared/Local Memory

Thread Thread

Global
Memory

Constant
Memory

CPU

RegistersRegisters

Table 4.5: Memory scope and lifetime

Memory Scope Lifetime
register thread thread
shared block block
constant grid application
texture grid application
local thread thread
global grid application

4.8.1 Global Memory

The global memory is the memory responsible for interaction with the host/CPU. The data to be

processed by the device/GPU is first transferred from the host memory to the device global

memory. Also, output data from the device needs to be placed here before being passed over to the

host. Global memory is large in size (GB, see Table 4.3), off-chip and implemented with DRAMs.

Data in this memory are visible by all threads of the entire grid.

The trade-off for its large size is that it is much slower than the other GPU memories, requiring

hundreds of clock cycles to access (~400-600 clock cycles). Furthermore, the trend is that these

memories keep becoming bigger but slower. Therefore one of the most important factors of CUDA

kernel performance is accessing data in the global memory. In order to make up for the slow speed

(and also due to the way DRAMs work), each time a memory location is accessed, many

consecutive locations including the requested one are actually accessed. In Fig. 4.8 the areas

marked with the same color are returned as a whole any time even a single one of their entries is

requested. For example, if position 5 is requested, all entries from 4 to 7 will be returned. This is

called DRAM bursting and modern DRAMs are designed to be always accessed in this manner. A

typical burst size is 128 bytes. Any bytes not used are discarded, so it is best if all of them are used.

When all threads of a warp load values in the same burst section, as in Fig. 4.9, only one DRAM

request is made and the memory access is (fully) coalesced.

On the other hand, if threads in warp load values that are scattered across burst sections, as in Fig.

4.10, then four separate memory accesses will be made. Furthermore, only a small fraction of the

bytes from each burst are actually need and the rest will be discarded.

95

Fig. 4.8: DRAM burst example

0 1 2 3 4 5 6 7

Burst section

8 9 10 11 12 13 14 15

Burst section Burst section Burst section

Fig. 4.9: Fully coalesced memory access

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T1 T2 T3 T4

Strided memory access, i.e. when threads do not access consecutive location results leads to non-

coalesced access. Even if the stride is only 1, as in Fig. 4.11, the memory access is not fully

coalesced and it multiple DRAM requests are made.

Note that consecutive memory location accesses does not always guarantee coalesced reads. The

accesses must also be aligned to the burst sections. Fig. 4.12 Shows an example of consecutive

reads that span across different burst sections.

96

Fig. 4.11: Non coalesced strided memory access

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T1 T2 T3 T4

Fig. 4.12: Non coalesced memory access due to misalignment

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T1 T2 T3 T4

Fig. 4.10: Non coalesced memory access

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T1 T2 T3 T4

Consider the 4×4 matrix of Fig. 4.13. Matrices in C-derivative languages (and consequently

CUDA C) are stored in row-wise format (see Section 5.1.1), so the layout of the matrix in memory

will be exactly the layout shown in Figs. 4.8-4.12. If threads of a warp access entries row-by-row,

then the memory accesses are fully coalesced (Fig. 4.9). However, if threads of a warp access

entries column-by-column, then the memory accesses are those shown in Fig. 4.10. The important

pattern for coalesced access is not the access pattern of each thread, but the access pattern of

neighboring threads in the same warp.

Consider a simple matrix-matrix multiplication C=A B where each thread multiplies a row of A

with a row of B to create an entry of C . Neighboring threads in the same warp access entries in

A that are in the same column and entries in B than are in the same row. As a result, the access is

coalesced in B but it is not coalesced in A . This is only a basic matrix-matrix multiplication

scheme and better matrix-matrix multiplication kernels have coalesced accesses to both matrices

among other improvements [49].

The speed of many applications is limited by the rate at which data can be delivered from the

memory into the processors. Therefore, accesses to the slow global memory should be minimized

by using the other memories where appropriate and the global memory accesses that are made

should ideally be fully coalesced as possible.

4.8.2 Constant Memory

The constant memory also provides interaction with the host/CPU, but the device is only allowed to

read from it and not write to it. The size of the constant memory is small (64KB in CUDA

hardware, see Table 4.2) but it is aggressively cached and provides fast access for data needed by all

threads of the grid. The constant memory is intended for small pieces of data that need to be

globally accessed.

97

Fig. 4.13: A 4x4 matrix

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

4.8.3 Shared Memory [CUDA] or Local Memory [OpenCL]

Shared memory is a form of scratch-pad memory designed to support efficient, high- bandwidth

sharing of data among threads in a block. They are allocated to a thread block/group and allow all

threads of the block/group to access them fast. Shared memories also allow cooperation between

threads of the same block. A common technique when all threads of a block need access to a subset

of the values is to have the threads cooperate in loading the values in the shared memory. Each

thread loads one or more values and then all threads use them from the fast shared memory instead

of each thread fetching the value from the global memory for itself.

The size of the shared memory is limited (16-48KB, see Table 4.2), so this creates an additional

constraint on block sizes as well as the chunks of data handled by each thread block. Proper

utilization of the shared memory to reduce global memory accesses is of critical importance to

achieve great performance.

4.8.4 Registers

Any automatic variables (except arrays) are placed in the registers [CUDA] or private memories

[openCL], which are the fastest memory types available in the GPU. Registers are thread-bound

meaning that each thread can only access its own registers. Registers are typically used for holding

variables that need to be accessed frequently but that do not need to be shared with other threads.

Registers are limited in number, though that number has increased significantly in the last

generation (Table 4.2). Excessive use of them will cause spilling to the local memory (see Section

4.8.5).

4.8.5 Other memories

Texture memory is a read-only memory on the device. When all reads in a warp are physically

adjacent, using texture memory can reduce memory traffic and increase performance compared to

global memory. It is not used in this work but more information about texture memory can be found

in [49].

Local memory [CUDA] is thread-local global memory so it is actually global memory and has the

same performance. Any variable that cannot fit in the registers is “spilled” in the global memory

98

and this is referred to as local memory. Automatic variables that are large structures or arrays are

also typically placed in local memory. The performance penalty of using the slow global memory

when the intention was to use fast on-chip memories is heavy, though not as bad after Compute

capability 2.0 when local memory became cached. Proper usage of the on-chip registers ensures that

local memory is not used in this work.

Note that the term “private memory” in OpenCL means a memory that is bound to a single thread

and appears to refer to both CUDA's local memory as well as registers.

4.8.6 Data transfer

A common bottleneck is encountered in data transfers between host and device. These transfers

must pass through the peripheral component interconnect express (PCIe) bus which is commonly

used to connect GPUs to the motherboard. The bottleneck is exacerbated on multi-GPU

implementations because the GPUs cannot communicate directly (for CUDA applications) but only

through the host. This implies multiple transfers through the PCIe bus. Thus, the measured speedup

of an efficient parallel code based on message massing interface (MPI) could potentially decrease in

a multi-GPU implementation. If the memory of the GPU is insufficient, then the data cannot be

stored locally and it must be moved back and forth. It should be noted that GPU communication

dramatically degrades performance, when computation count per communicating data is very low

[49].

4.9 Synchronization

Thread within the same thread block can cooperate with each other by sharing values through the

shared memory. Since threads may execute in any order, its important to have a mechanism that

guarantees that all threads have finished the previous step of a calculation before moving on to the

next one. For example, assume that each thread in the block loads a single value needed by all

threads in the block. Before carrying on with calculations, it must be ensured that all threads have

finished loading the values. This can be done with barrier synchronization which is a simple and

widely used method for coordinating parallel activities. Barrier synchronization is performed with

__synchthreads() in CUDA and barrier() in OpenCL (Table 4.1).

99

All threads must reach the synchronization point before being able to continue execution (Fig.

4.14). As a result, the slowest thread will delay execution for all thread of the block. Therefore, it is

preferred that threads have approximately equal amount of work to do. In this case threads will

reach the barrier at approximately the same time and there won't be much waiting. On the other

hand, if a thread has more work to do than other threads (or if it is delayed), then other threads will

have to wait for it resulting in underutilized resources, as is shown between the two barriers of Fig.

4.14.

Threads in different block cannot cooperate in the way outlined above. This is actually a design

choice: by not allowing threads in different blocks to perform barrier synchronization with each

other, blocks can be executed in any order relative to each other since none of them need to wait for

any other block. This also enables transparent scalability which means the same implementation can

run on any system without change and still benefit from the processing power of the system. For

example, a small system may only be able to run 2 blocks at a time whereas a high-end system may

be able to run 16 blocks at a time. Lack of synchronization constraints between blocks allow for the

same code to run on both systems without extra development effort.

100

Fig. 4.14: Barrier synchronization

Barrier

Thread 0

Thread 1

Thread 2

Thread 3

Barrier

Thread 0

Thread 1

Thread 2

Thread 3

4.10 Privatization

When multiple threads write into an output location, it is useful to have partial and private output

location for each thread or each thread block (in the registers or shared memory). This technique is

called privatization and allows threads to do a large part of the work with no synchronization with

other threads. For example, if a sum is being calculated then each thread may have its own partial

sum. After each thread has finished its share of the data, then the partial results are summed (see

also Section 4.12). Privatization also improves situations when atomic operations are required (see

Section 4.11).

4.11 Atomic Operations

In a parallel environment there is the risk of race conditions. A simple case of race conditions is

when multiple threads attempt to modify the same memory location. Threads need to read the

current value, modify it and then write it again. These are three separate operations, even though it

might not be visible from a simple statement like a +=1 .

Assume two threads that are incrementing a memory location with initial value zero. The expected

result is two and if the order of execution of the steps involved is either of the cases shown in Table

4.6 then the actual result will be two. However, if the order is like one of the cases in Table 4.7, then

the result will be wrong. Case 3 in more detail goes like this: thread A reads value 0 and increments

it to 1. Before it has a chance to write it, thread B reads the current value, which is still zero. Thread

A writes its calculated value of 1. Thread B increments the value it read, which was 0, to 1 and then

proceeds to write it to the result. Case 4 behaves similarly.

101

Table 4.6: Desirable order of execution

Order
Case 1 Case 2

Thread A Thread B Thread A Thread B
1 Read Read
2 Modify Modify
3 Write Write
4 Read Read
5 Modify Modify
6 Write Write

To avoid such problems, there must be a way to guarantee that each thread finishes its read-modify-

execute operation before another thread has a chance to access that particular memory location. This

is done through atomic operations, which guarantee that either Case 1 or Case 2 of Table 4.6 will

occur.

The pitfall of atomic operations is that it essentially serializes execution. Notice how in the previous

example, Thread A executes before Thread B or vice versa. This is especially problematic when

considering the particular characteristics of GPUs. First of all, GPUs are executing a massive

number of threads and serializing a large number of them may severely limit performance.

Furthermore, since atomic operations are serialized, latency determines throughput. GPUs are not

latency-oriented processors but throughput-oriented processors (see Section 4.1) which means that

individual operations are slow in favor of running many of them simultaneously, but the latter does

not happen when atomic operations are involved. Then, there is the issue of slow global memory

accesses (see Section 4.8.1). Each thread needs to perform both a read access and a write access.

The total read-modify-write sequence may cost more than 1000 clock cycles and during this time

other threads that want to access the same memory location are waiting.

The situation can sometimes be improved by privatization (Section 4.10). If the output is small and

fits in the shared memory, then each thread block may have each own copy of the output. Any read-

modify-write sequences are then done in the much faster shared memory. Also, threads in a block

only have to wait for threads within the same block, not threads from other blocks. As a final step,

individual copies are combined for the result. Even though this is much better, execution is still

serialized.

For the above reasons, atomic operations should be avoided when possible. Sometimes the

algorithm can be changed so that atomic operations are obviated entirely. For example, the scatter-

to-gather transformation employed in the matrix assembly methods in this work (Section 8.3)

completely avoids atomic operations.

102

Table 4.7: Undesirable order of execution

Order
Case 3 Case 4

Thread A Thread B Thread A Thread B
1 Read Read
2 Modify Read
3 Read Modify
4 Write Write
5 Modify Modify
6 Write Write

4.12 Reduction

Reduction is an important parallel computation pattern and it is used to summarize a collection of

input values into a single value. For example, finding the sum, maximum value or minimum value

of an array are all reduction operations. More generally, reduction can be performed for any

operations that is 1) associative 2) commutative and 3) has a well-defined identify value (e.g. 0 for

sum, infinity for min etc).

Reduction can be a direct requirement of the calculation as is the case in the vector dot product. It

can also be used as part of a parallel processing strategy. A commonly used strategy is to partition a

large input into smaller chunks. Each thread processes a chunk and creates a partial results. The

result is then summarized via reduction. Similarly, when privatization is used (Section 4.10),

reduction can be used to collect all partial private results.

On a sequential processor, reduction can be implemented very efficiently by iterating through the

input and performing the reduction operation between the result value and the current value.

Directly parallelizing this with atomic operations would create a serialization point and lead to very

poor performance (Section 4.11). In order to efficiently perform reduction, a parallel reduction tree

is used (Fig. 4.15). Each step divides the number of partial sums by half and ultimately produces the

final sum after log2 N steps. Parallel reduction trees are common but due to the special

characteristics of the GPU, there are certain GPU-specific choices that need to be made.

Initially, each block loads the part of the values assigned to it in the shared memory. From then, all

work is done within the shared memory and no interaction with the global memory until the result

of the block is obtained. Each thread loads a value to the shared memory.

For a straightforward reduction kernel, each thread can sum two neighboring values, as shown in

103

Fig. 4.15. Parallel reduction tree

17 5

22

3 12

15

3 6

9

9 0

9

37 18

55

+ + + +

+ +

+

Fig. 4.16. In each step, there are fewer and fewer threads working starting from multiples of 2, then

4, then 8 etc, doubling in each iteration. In each step, the active threads sum their value with a value

that is located “stride” away from them. The stride is doubled in each iteration as well. Also, there

needs to be barrier synchronization between the steps to ensure that all threads have properly

updated their values before the next iteration starts reading them.

While this reduction implementation would work well, there is a better approach for the GPU. The

problem with the basic reduction is that there is a lot of control divergence (see Section 4.6). For

example, in the first step odd threads are disabled but due to the way warps work there is no

execution gain by having them disabled, it is as if they performed the calculations anyway. This is

wasteful and it gets worse after a few iterations where entire warps will have only one active thread.

Therefore, the values that are added by each thread can be modified to accommodate this behavior

of the GPU. The idea is to try to gather the active threads to the front. Each thread adds its value

with a value that comes after all other active threads, as is depicted in Fig. 4.17. The number of

active threads keeps dividing but there will be no divergence: threads in a warp will be either all

active or all inactive. This continues up until the last 32 values, where only 1 warp is left. After that

point, there is some divergence but it is very limited since all other warps are inactive and have no

divergence. The improved reduction is in the order of 4.7 times faster than the divergent version

[71].

104

Fig. 4.16: Reduction pattern with thread divergence

Note that due to the thread grid hierarchy (i.e. thread blocks are used and they do not cooperate)

employed in the GPU, there will not be a single result but one result from each block. The values

are orders of magnitude fewer than in the initial reduction, but they need to be reduced further to

reach the final, single value. For example, if there are 1024⋅1024 values to be reduced, a thread

grid with 1024 blocks of 1024 threads each can be launched (sizes within proper constraints, see

Section 4.7). After execution there will be 1024 values, which will need to be reduced to reach the

desired reduction result. If the number of intermediate values is still large, the GPU reduction can

be applied recursively. When the values are fewer than a certain threshold, its better to return them

to the CPU and let it finish the calculation. This is applicable if the result of the reduction is needed

in the CPU. If the result is need in the GPU, the same reduction kernel can be launched again with a

single thread block which will produce the final result of the reduction. Another alternative is to use

atomic operations, specifically atomicAdd(). This eliminates the need for additional temporary

arrays and repeated kernel launches.

The reduction presented above pertains to reducing scalar values. In order to reduce partial vectors

into a single vector, a similar process is performed but each thread sums two vectors instead of two

values in every step. A very thorough analysis of the GPU reduction implementation with more

optimizations can be found in [71].

105

Fig. 4.17: Good reduction pattern

4.13 Pinned Memory

In order to discuss pinned memory, some background information are needed about virtual memory

in modern computers [72]. Virtual memory maps memory addresses used by a program, called

virtual addresses, into physical addresses in computer memory. The operating system manages

virtual address spaces and the assignment of real memory to virtual memory. The primary benefits

of virtual memory include obviating the need to manage a shared memory space on the application

level, increased security due to memory isolation, and being able to conceptually use more memory

than might be physically available, using the technique of paging [73]. The last benefit means that

not all data always reside in the physical memory. Each virtual address space is divided into pages

when mapped into physical memory. These pages can be paged out to a secondary memory in order

to make room in the main memory and paged in when required. Whether or not a particular piece of

data resides in the physical memory is checked at address translation time.

A CPU-GPU data transfer is performed by DMA (Direct Memory Access) hardware for better

efficiency. The DMA is responsible for data transfers, freeing the CPU for other tasks. The CPU

gives the proper instructions (source, destination and how many bytes to transfer) to initialize the

data transfer and then moves on to other tasks. The data is transferred over the systems interconnect,

typically PCIe in today's systems (Fig. 4.18).

The DMA uses physical addresses and when a CPU-GPU data transfer is requested, the transfer is

implemented with one or more DMA transfers. At the beginning of each transfer, the address is

checked and it is made sure that the corresponding memory page is present in the physical memory.

However, there are no further checks in the rest of the same DMA transfer so that high efficiency

can be achieved. This means that the operating systems could page-out data that is being read or

written by a DMA and page-in another virtual page into the same physical location. This is

dangerous because the integrity of the data is destroyed.

Pinned memory is specifically marked so that its virtual memory pages cannot be paged out. CPU

memory that is the source or destination of a DMA transfer must be allocated as pinned memory to

avoid potential problems. In the GPU there is no paging, so this is not applicable; the problem is

only on the CPU side. If a source or destination of a CPU-GPU data transfer (in the host memory

side) is not allocated in pinned memory, it needs to be copied to pinned memory first.

This is extra overhead which can be avoided by explicitly using pinned memory for data that is

intended to be transferred to/from the GPU. There are special commands to allocate pinned memory

106

and for CUDA this is done with cudaHostAlloc(). By using pinned memory, the memory transfers

should be about twice as fast because there will not be an extra copy from non-pinned memory to

pinned memory. However, it should be noted that pinned memory is a limited resource. Using too

much will severely limit the operating system's ability to properly manage virtual memory and this

can drastically reduce the overall system performance: the operating system will have a very small

amount of available memory and it will constantly be paging in and out to accommodate requests.

4.14 GPU Task Parallelism

Apart from the data parallelism in the GPU discussed so far, there is opportunity for task

parallelism. Contemporary GPU hardware can perform data transfers and calculations

simultaneously and independently. Furthermore, the PCIe bus can make simultaneous transfer both

ways, i.e. transfer data from the host to the device while also simultaneously transferring data from

the device to the host. The situation without task parallelism is shown in Fig. 4.19. In order to be

able to utilize task parallelism, the input can be divided into segments. The segments are processed

in a way that allows the overlap of transfer and computation of adjacent segments. This situation

with task parallelism is shown in Fig. 4.20.

107

Fig. 4.18: Data transfer between CPU and GPU

CPU Main Memory (RAM)

GPU

Global Memory DMA

PCIe

At the beginning and end of the process there will still be some idling of the GPU and/or PCIe but

with enough segments the GPU can essentially be fully utilized at all times. The actual benefit from

this overlap depends on the relative time between transfers and calculations. Figs. 4.19, 4.20 assume

that the time is about equal, but the actual ratio is application dependent.

Task parallelism is achieved in CUDA by using streams. Each stream is a queue of transfers and

GPU computations and the streams are independent of each other, meaning that tasks in different

streams can be performed in parallel. The driver ensures that the commands within the same queue

are processed in sequence, meaning that the calculations for a specific segment will not start before

the input has successfully arrived nor will the transfer back be performed before the calculations

have finished. By using multiple streams, a hardware utilization like the one in Fig. 4.20 can be

achieved.

108

Fig. 4.19: Without task parallelism (dir. = direction)

Input Transfer
(host to device)

Calculations Output Transfer
(device to host)

GPU idle
one dir. of PCIe idle

PCIe idle GPU idle
one dir. of PCIe idle

Fig. 4.20: With task parallelism (dir. = direction)

Input Transfer
(host to device)

Segment 0

Calculations

Segment 0

Output Transfer
(device to host)

Segment 0

Input Transfer
(host to device)

Segment 1

Calculations

Segment 1

Output Transfer
(device to host)

Segment 1

Input Transfer
(host to device)

Segment 2

Calculations

Segment 2

Output Transfer
(device to host)

Segment 2

Input Transfer
(host to device)

Segment 3

Calculations

Segment 3

Output Transfer
(device to host)

Segment 3

Input Transfer
(host to device)

Segment 4

Calculations

Segment 4

Output Transfer
(device to host)

Segment 4

one dir. of PCIe idle Full UtilizationGPU idle
one dir. of PCIe idle

Full Utilization Full Utilization one dir. of PCIe idle GPU idle
one dir. of PCIe idle

5 Handling of matrices

Matrix storage and matrix operations are important performance factors for large scale simulations.

There is a large variety of different formats, all with different strengths and weaknesses. For

example, the dense format is the most flexible format and supports any kind of operation but

requires the most storage. Sparse formats store the minimum possible entries of the matrix, but have

higher indexing cost and can only perform a specific subset of operations efficiently. As such, the

choice of an appropriate format for the task at hand may significantly affect performance. This

section presents matrix formats that are commonly used in simulations along with appropriate

storage schemes and implementation considerations.

Note the distinction between a dense/banded/sparse matrix and a dense/banded/sparse storage

scheme. The former is a characteristic of the matrix while the latter refers to the way it is stored.

Any matrix can be stored with any storage scheme, even though it might not be the most efficient

way. For example, a sparse matrix can be stored with a dense format and a banded matrix can be

stored in sparse format. Sometimes the choices are dictated by the task at hand: if complete

factorization is required, then the skyline format is favored over a sparse format. Conversely, if a

sparse solver is employed, a sparse format is favored. The matrix is the same in both cases, but the

storage scheme differs in order to accommodate particular needs.

5.1 Dense Matrix

When a matrix with m rows and n columns is stored in dense format, all m×n entries of the

matrix are stored. If the matrix is square and has order n , all n×n are stored. This is the most

generic format, has fast indexing and supports all operations. However, the space complexity is

O(m n) or O(n2
) . Thus, it should only be used for small matrices and when the represented

matrix is actually full of non-zeros, like local stiffness matrices of finite elements.

Note that some programming languages use zero-based numbering, i.e. the indexes of an array of

size n range from 0 to n−1 , whereas others use one-based numbering, i.e. the indexes of an

array of size n range from 1 to n . C-derivatives (C/C++, Java, C#) use zero-based numbering

whereas FORTRAN, MATLAB, Octave, Scilab are one-based [74]. In the following sections,

formulas are given in both formats.

109/362

5.1.1 Row-major & column-major entry order

Row-major order and column-major order describe methods for storing multidimensional arrays in

linear memory. Since a matrix is two-dimensional, there are different implementations regarding the

order of the entries. Row-major order is used in C-derivatives (C/C++, Java, C#) while column-

major order is used in FORTRAN, MATLAB, Octave, Scilab. As a result, entry layout is important

for correctly communicating with programs/libraries written with a specific layout in mind.

The layout is also important for performance because each layout is more appropriate for different

operations: the row-major layout is suited for row-oriented operations whereas the column-major

layout is more suited for column-oriented operations [75]. This stems from the fact that accessing

memory in a contiguous manner is usually faster than accessing scattered memory entries. As an

example, different implementations are needed for row-major and column major orders when

performing a matrix-vector multiplication. For a matrix-matrix multiplication, the order of both

matrices needs to be taken into account. Sometimes it is unclear which one is better and it may be

worthwhile to experiment in order to find out what is faster for a particular application.

5.1.2 Implementations

There are several implementations for dense matrices. They differ in the entry order (row-major,

column-major) and whether the storage is in a single array or one array per row or column.

110

5.1.2.1 Row-major, 2D array

The matrix is represented as a 2D array and each 1D array contains a whole row of size equal to the

number of columns.

A=

[1 2 3 4 5 6 7 8]
[9 10 11 12 13 14 15 16]
[17 18 19 20 21 22 23 24]
[25 26 27 28 29 30 31 32]
[33 34 35 36 37 38 39 40]
[41 42 43 44 45 46 47 48]

 (5.1)

111

Fig. 5.1: Row-major dense storage of a [6×8] matrix

One-based format Zero-based format

1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7 8 0 0 1 2 3 4 5 6 7

2 9 10 11 12 13 14 15 16 1 8 9 10 11 12 13 14 15

3 17 18 19 20 21 22 23 24 2 16 17 18 19 20 21 22 23

4 25 26 27 28 29 30 31 32 3 24 25 26 27 28 29 30 31

5 33 34 35 36 37 38 39 40 4 32 33 34 35 36 37 38 39

6 41 42 43 44 45 46 47 48 5 40 41 42 43 44 45 46 47

5.1.2.2 Row-major, 1D array

The matrix is represented as a single 1D array containing all the entries row-by-row.

A= [1 2 3 4 5 … … 44 45 46 47 48] (5.2)

For one-based format, the index of an entry [row , column] in the 1D array is given by:

index1=(row−1)⋅columnCount+column (5.3)

index1
diagonal

=row⋅(columnCount+1)−columnCount (5.4)

where columnCount is the number of columns.

For zero-based format, the above relations are:

index0=(row⋅columnCount)+column (5.5)

index0
diagonal

=row⋅(columnCount+1) (5.6)

Note that the number of rows does not appear in the relations - it is still needed, however, for index

range checking.

112

5.1.2.3 Column-major, 2D array

The matrix is represented as a 2D array and each 1D array contains a whole column of size equal to

the number of rows.

A=[
1
2
3
4
5
6
] [

7
8
9

10
11
12
] [

13
14
15
16
17
18
] [

19
20
21
22
23
24
] [

25
26
27
28
29
30
] [

31
32
33
34
35
36
] [

37
38
39
40
41
42
] [

43
44
45
46
47
48
] (5.7)

113

Fig. 5.2: Column-major dense storage of a [6×8] matrix

One-based format Zero-based format

1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7

1 1 7 13 19 25 31 37 43 0 0 6 12 18 24 30 36 42

2 2 8 14 20 26 32 38 44 1 1 7 13 19 25 31 37 43

3 3 9 15 21 27 33 39 45 2 2 8 14 20 26 32 38 44

4 4 10 16 22 28 34 40 46 3 3 9 15 21 27 33 39 45

5 5 11 17 23 29 35 41 47 4 4 10 16 22 28 34 40 46

6 6 12 18 24 30 36 42 48 5 5 11 17 23 29 35 41 47

5.1.2.4 Column-major, 1D array

The matrix is represented as a single 1D array containing all the entries column-by-column.

A= [1 2 3 4 5 … … 44 45 46 47 48] (5.8)

For one-based format, the index of an entry [row ,column] in the 1D array is given by:

index1=(column−1)⋅rowCount+row (5.9)

index1
diagonal

=row⋅(rowCount+1)−rowCount (5.10)

where rowCount is the number of rows.

For zero-based format, the above relations are:

index0=(column⋅rowCount)+row (5.11)

index0
diagonal

=row⋅(rowCount+1) (5.12)

Note that the number of columns does not appear in the relations - it is still needed, however, for

index range checking.

114

5.2 Triangular Dense Matrix

Triangular matrices have one triangle of the matrix full of zeros: upper-triangle matrices only have

non-zero entries on the upper-triangle while lower-triangle matrices only have non-zero entries on

the lower-triangle. These typically include the diagonal as well, but there are strictly upper/lower

variants that exclude it. Triangular dense matrices store
n(n+1)

2
 entries which are approximately

half of that of a generic dense matrix, but still O(n2
) . Furthermore, less calculations need to be

performed because operations with zeros can be avoided. Triangular systems of equations are easily

solvable and occur as part of a solver that employs factorization either as the primary solution

strategy or as part of solving subdomains.

The relevant triangular part of the matrix can be stored row-by-row or column-by-column. The

column-by-column storage is also referenced as “packed storage”.

5.2.1 Implementations

Row-by-row and column-by column variants are demonstrated below. For both lower and upper

triangle, one of the two variants has simple indexing, while the other is more complex. For the

latter, alternative formulas are provided as well.

115

5.2.1.1 Lower triangular dense storage by row

The matrix is represented as a 1D array containing all lower-triangle entries row-by-row.

A= [1 2 3 4 5 … … 32 33 34 35 36] (5.13)

For one-based format, the index of a lower triangular entry [row , column] in the 1D array is given

by:

index1
row≥column

=column+
row (row−1)

2
 (5.14)

index1
row< column

=0 (5.15)

index1
diagonal

=
row (row+1)

2
 (5.16)

116

Fig. 5.3: Storage by row of an [8×8] lower triangular matrix

One-based format Zero-based format

1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7

1 1 0 0

2 2 3 1 1 2

3 4 5 6 2 3 4 5

4 7 8 9 10 3 6 7 8 9

5 11 12 13 14 15 4 10 11 12 13 14

6 16 17 18 19 20 21 5 15 16 17 18 19 20

7 22 23 24 25 26 27 28 6 21 22 23 24 25 26 27

8 29 30 31 32 33 34 35 36 7 28 29 30 31 32 33 34 35

For zero-based format, the above relations are:

index0=column+
row (row+1)

2
 (5.17)

index0
row< column

=0 (5.18)

index0
diagonal

=
row (row+3)

2
 (5.19)

Note that the order of the matrix does not appear in the relations - it is still needed, however, for

index range checking.

117

5.2.1.2 Lower triangular dense storage by column

In this storage, also referenced as lower packed storage, the matrix is represented as a 1D array

containing all lower triangle entries column-by-column.

A= [1 2 3 4 5 … … 32 33 34 35 36] (5.20)

For one-based format, the index of a lower triangular entry [row , column] in the 1D array is given

by:

index1
row≥column

=row+
(2order−column)(column−1)

2
 (5.21)

index1
row< column

=0

index1
diagonal

=row+
(2 order−row)(row−1)

2
 (5.22)

118

Fig. 5.4: Storage by column of an [8×8] lower triangular matrix

One-based format Zero-based format

1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7

1 1 0 0

2 2 9 1 1 8

3 3 10 16 2 2 9 15

4 4 11 17 22 3 3 10 16 21

5 5 12 18 23 27 4 4 11 17 22 26

6 6 13 19 24 28 31 5 5 12 18 23 27 30

7 7 14 20 25 29 32 34 6 6 13 19 24 28 31 33

8 8 15 21 26 30 33 35 36 7 7 14 20 25 29 32 34 35

For zero-based format, the above relations are:

index 0
row≥column

=row+
(2order−column−1)column

2
 (5.23)

index0
row< column

=0 (5.24)

index0
diagonal

=
(2order−row+1)row

2
 (5.25)

There are alternative formulas for determining the index, shown below:

index1
row≥column

=TotalValues−
(order−column+3)(order−column)

2
+row−column (5.26)

index1
diagonal

=TotalValues−
(order−row+3)(order−row)

2
 (5.27)

index 0
row≥column

=TotalValues−
(order−column+1)(order−column)

2
+row−column (5.28)

index0
diagonal

=TotalValues−
(order−row+1)(order−row)

2
 (5.29)

The total values are
n(n+1)

2
, but this is not recalculated every time since it is the length of the 1D

array used as storage.

119

5.2.1.3 Upper triangular dense storage by row

The matrix is represented as a 1D array containing all upper-triangle entries row-by-row.

A= [1 2 3 4 5 … … 32 33 34 35 36] (5.30)

For one-based format, the index of a lower triangular entry [row , column] in the 1D array is given

by:

index1
row≤column

=column+
(2 order−row)(row−1)

2
 (5.31)

index1
row> column

=0 (5.32)

index1
diagonal

=row+
(2 order−row)(row−1)

2
 (5.33)

120

Fig. 5.5: Storage by row of an [8×8] upper triangular matrix

One-based format Zero-based format

1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7 8 0 0 1 2 3 4 5 6 7

2 9 10 11 12 13 14 15 1 8 9 10 11 12 13 14

3 16 17 18 19 20 21 2 15 16 17 18 19 20

4 22 23 24 25 26 3 21 22 23 24 25

5 27 28 29 30 4 26 27 28 29

6 31 32 33 5 30 31 32

7 34 35 6 33 34

8 36 7 35

For zero-based format, the above relations are:

index0
row≤column

=column+
(2order−row−1)row

2
 (5.34)

index0
row> column

=0 (5.35)

index0
diagonal

=
(2order−row+1)row

2
 (5.36)

There are alternative formulas for determining the index, shown below:

index1
row≤column

=TotalValues−
(order−row+3)(order−row)

2
+column−row (5.37)

index1
diagonal

=TotalValues−
(order−row+3)(order−row)

2
 (5.38)

index0
row≤column

=TotalValues−
(order−row+1)(order−row)

2
+column−row (5.39)

index0
diagonal

=TotalValues−
(order−row+1)(order−row)

2
 (5.40)

The total values are
n(n+1)

2
, but this is not recalculated every time since it is the length of the 1D

array used as storage.

121

5.2.1.4 Upper triangular dense storage by column

In this storage, also referenced as upper packed storage, the matrix is represented as a 1D array

containing all upper-triangle entries column-by-column.

A= [1 2 3 4 5 … … 32 33 34 35 36] (5.41)

For one-based format, the index of a lower triangular entry [row , column] in the 1D array is given

by:

index1
row≤column

=row+
column (column−1)

2
 (5.42)

index1
row> column

=0 (5.43)

index1
diagonal

=
row (row+1)

2
 (5.44)

122

Fig. 5.6: Storage by column of an [8×8] upper triangular matrix

One-based format Zero-based format

1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7

1 1 2 4 7 11 16 22 29 0 0 1 3 6 10 15 21 28

2 3 5 8 12 17 23 30 1 2 4 7 11 16 22 29

3 6 9 13 18 24 31 2 5 8 12 17 23 30

4 10 14 19 25 32 3 9 13 18 24 31

5 15 20 26 33 4 14 19 25 32

6 21 27 34 5 20 26 33

7 28 35 6 27 34

8 36 7 35

For zero-based format, the above relations are:

index0
row≤column

=row+
column (column+1)

2
 (5.45)

index0
row> column

=0 (5.46)

index0
diagonal

=
row (row+3)

2
 (5.47)

Note that the order of the matrix does not appear in the relations - it is still needed, however, for

index range checking.

5.3 Symmetric Dense Matrix

Symmetric matrices are square matrices where Aij=A ji for all valid i , j . Since the lower triangle

is equal to the upper triangle, only one of them needs to be stored. The dense triangular storage

formats can be used for the dense symmetric matrix as well to store only
n(n+1)

2
 values. Due to

the symmetry of the matrix, the lower triangle storage by column leads to exactly the same layout as

the upper triangle storage by row. Similarly, the lower triangle storage by row is the same as the

lower triangle storage by column.

5.3.1 Implementations

The implementations demonstrated in this section use the triangular storages from Section 5.2. Of

course, the “other” triangle is not treated as full of zeros, but as a symmetric triangle.

123

5.3.1.1 Lower Triangle by row or Upper Triangle by column

index1
row≥column

=column+
row (row−1)

2
 (5.48)

index1
row≤column

=row+
column (column−1)

2
 (5.49)

index1
diagonal

=
row (row+1)

2
 (5.50)

index0=column+
row (row+1)

2
 (5.51)

index0
row≤column

=row+
column (column+1)

2
 (5.52)

index0
diagonal

=
row (row+3)

2
 (5.53)

124

Fig. 5.7: Symmetric storage of an [8×8] symmetric matrix

One-based format Zero-based format

1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7

1 1 2 4 7 11 16 22 29 0 0 1 3 6 10 15 21 28

2 2 3 5 8 12 17 23 30 1 1 2 4 7 11 16 22 29

3 4 5 6 9 13 18 24 31 2 3 4 5 8 12 17 23 30

4 7 8 9 10 14 19 25 32 3 6 7 8 9 13 18 24 31

5 11 12 13 14 15 20 26 33 4 10 11 12 13 14 19 25 32

6 16 17 18 19 20 21 27 34 5 15 16 17 18 19 20 26 33

7 22 23 24 25 26 27 28 35 6 21 22 23 24 25 26 27 34

8 29 30 31 32 33 34 35 36 7 28 29 30 31 32 33 34 35

5.3.1.2 Lower Triangle by column or Upper Triangle by row

index1
row≥column

=row+
(2order−column)(column−1)

2
 (5.54)

index1
row≤column

=column+
(2 order−row)(row−1)

2
 (5.55)

index1
diagonal

=row+
(2 order−row)(row−1)

2
 (5.56)

index 0
row≥column

=row+
(2order−column−1)column

2
 (5.57)

index0
row≤column

=column+
(2order−row−1)row

2
 (5.58)

index0
diagonal

=
(2order−row+1)row

2
 (5.59)

125

Fig. 5.8: Symmetric storage of an [8×8] symmetric matrix

One-based format Zero-based format

1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7 8 0 0 1 2 3 4 5 6 7

2 2 9 10 11 12 13 14 15 1 1 8 9 10 11 12 13 14

3 3 10 16 17 18 19 20 21 2 2 9 15 16 17 18 19 20

4 4 11 17 22 23 24 25 26 3 3 10 16 21 22 23 24 25

5 5 12 18 23 27 28 29 30 4 4 11 17 22 26 27 28 29

6 6 13 19 24 28 31 32 33 5 5 12 18 23 27 30 31 32

7 7 14 20 25 29 32 34 35 6 6 13 19 24 28 31 33 34

8 8 15 21 26 30 33 35 36 7 7 14 20 25 29 32 34 35

index1
row≥column

=TotalValues−
(order−column+3)(order−column)

2
+row−column (5.60)

index1
row≤column

=TotalValues−
(order−row+3)(order−row)

2
+column−row (5.61)

index1
diagonal

=TotalValues−
(order−row+3)(order−row)

2
 (5.62)

index 0
row≥column

=TotalValues−
(order−column+1)(order−column)

2
+row−column (5.63)

index0
row≤column

=TotalValues−
(order−row+1)(order−row)

2
+column−row (5.64)

index0
diagonal

=TotalValues−
(order−row+1)(order−row)

2
 (5.65)

126

5.4 Diagonal Dense Matrix

A diagonal matrix can only have non-zero entries on the diagonal – all off-diagonal entries are

assumed zero. From an implementation perspective, the diagonal matrices can be seen as vectors so

array-based (dense) or sparse implementations are applicable. The diagonal dense matrix stores all

entries of the diagonal, requiring O(n) space. A notable use of the diagonal dense matrix is the

lumped mass matrix.

Since a diagonal matrix has collapsed to a single dimension (similar to a vector), storage by

row/column etc are not applicable here. The matrix can be stored in an array:

A= [1 2 3 4 5 6 7 8] (5.66)

with trivial indexing, which for both one-based and zero-based arrays is:

index
row≠column

=0 (5.67)

index
diagonal

=row (5.68)

127

Fig. 5.9: Storage of an [8×8] diagonal matrix

One-based format Zero-based format

1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7

1 1 0 0

2 2 1 1

3 3 2 2

4 4 3 3

5 5 4 4

6 6 5 5

7 7 6 6

8 8 7 7

5.5 Bandwidth-aware storage

The matrix storage schemes mentioned so far are “dense” because they store the whole matrix or a

whole area of the matrix. Banded matrices, i.e. matrices with “small” bandwidth can be stored more

efficiently. The bandwidth of the matrix is the smallest number of adjacent diagonals to which the

non-zero elements are confined [76]. In more detail:

• Below the diagonal, consider the closest possible line parallel to the diagonal such that all

entries that are further away are all zero. The distance of that line from the diagonal is k 1

and is called left half-bandwidth (excludes the diagonal).

• Above the diagonal, consider the closest possible line parallel to the diagonal such that all

entries that are further away are all zero. The distance of that line from the diagonal is k 2

and is called right half-bandwidth (excludes the diagonal).

The bandwidth of the matrix is k 1+k 2+1 .

When the bandwidth is small then it is worthwhile to store the matrix in appropriate formats that

take this into account. The matrices (e.g. stiffness matrix) that are derived in a FEM/EFG/IGA

analysis typically have non-zero entries relatively close to the diagonal. Note that the distance from

the diagonal is dependent on the numbering of the degrees of freedom. Renumbering techniques are

extensively researched and can be used to considerably reduce the bandwidth of a matrix. By

making the bandwidth smaller, not only does the storage requirements become lower, but also

matrix operations require less calculations to perform.

128

The following matrix will be used as an example:

K=[
K11 K12 0 K14 0 0 0 0

K22 K 23 0 0 0 0 0
K 33 K34 0 K36 0 0

K44 K 45 K46 0 0
K 55 K56 0 K 58

symm K66 K67 0
K77 K 78

K 88

] (5.69)

For the ensuing analysis, it is important to define the row index of the highest (furthest from the

diagonal) non-zero entry of a column j , which will be symbolized as m j . In the example:

m6=3

m8=5

because the highest non-zero entry of column 6 is in row 3 and the highest non-zero entry of

column 8 is in row 5 .

Another important value is the height of a column, which is assumed to range from the diagonal of

each column up to m j . On the diagonal, the row index is equal to the column index, thus the

diagonal entry of column j is on row j . The height of a column can be calculated by:

columnHeight
diagonalexcluded

=columnIndex−mcolumn (5.70)

The height of eq. (5.70) does not include the diagonal. Simply add 1 for the diagonal inclusive

height. For the heights of columns 6 and 8 of the example:

h6=6−m6=6−3=3

h8=8−m8=8−5=3

129

5.5.1 Symmetric Banded Matrix

In Fig. 5.10, the half-bandwidth (excluding the diagonal) is 3 . As a result, 3+1=4 diagonals need

to be stored. Note that there are zero elements included in the band and zeros are needed to pad

diagonals to the size of the main diagonal, which is equal to the order of the matrix.

The entries of either triangle that lie inside the bandwidth can be seen as a rectangular matrix of size

order×(k+1) . In order to store this matrix, the storage schemes discussed in Section 5.1 can be

used.

[
K 11 K 22 K 33 K 44 K 55 K66 K77 K 88

K 12 K 23 K 34 K 45 K 56 K 67 K78 0
0 0 0 K 46 0 0 0 0

K 14 0 K 36 0 K 58 0 0 0
] (5.71)

For matrices in symmetric banded storage, m j is calculated by: j+1−b . However, for the first

few columns (j<b+1) this formula will yield negative m j . These are the columns where “all”

column elements (i.e. from line 1 up to the diagonal) are stored, like columns 1-4 in Fig. 5.10. In

order to take these corner cases into account:

m1, j=max (1, j+1−b) (one-based) (5.72)

m0, j=max (0, j−b) (zero-based)

130

Fig. 5.10: Entries stored with symmetric banded storage for a symmetric
matrix

K=[
K11 K 12 0 K14 0 0 0 0

K 22 K 23 0 0 0 0 0
K 33 K 34 0 K 36 0 0

K 44 K 45 K 46 0 0
K55 K 56 0 K 58

symm K 66 K 67 0
K 77 K 78

K 88

] 0

0 0

0 0 0

k=3

5.5.2 Symmetric Skyline Matrix

The symmetric banded storage can lead in huge savings in storage and calculations but it can be

further improved. For the skyline format, we will consider the matrix in a column-wise manner,

starting from the diagonal and going up. When using the symmetric banded storage, each column

would require storing k +1 entries, where k is the half-bandwidth (excluding the diagonal). This

would be fixed for all columns. The skyline matrix defines a separate boundary for each column.

Appropriately, the skyline storage is also known as the variable band matrix storage.

In Fig. 5.11 the blue line, called the “skyline”, encloses the values of the matrix that will be stored.

Note that there are no “padding” zeros in this storage scheme, but there are still some zeros stored

(marked with arrows in the example). For each column, all values from the diagonal to the last non-

zero value (going upwards) is stored, so zeros that have non-zero values above them (not

necessarily directly above them, just somewhere above them) are included.

The values are stored column-by-column in a 1D array. The order of the values starts from the

diagonal of a column and goes upwards as shown in Fig. 5.12. A(8) and A(20) are the zeros that

131

Fig. 5.12: Order of stored entries with symmetric skyline storage for
an [8×8] symmetric matrix

Κ=[
Α(1) A(3) A(9)

Α(2) A(5) A(8)
A(4) A(7) A(15)

A(6) A(11) A(14)
A(10) A(13) Α(21)

symm A(12) Α(17) Α(20)
Α(16) Α(19)

Α(18)

]

Fig. 5.11: Entries stored with symmetric skyline
storage for an symmetric matrix

K=[
K11 K 12 0 K14 0 0 0 0

K 22 K 23 0 0 0 0 0
K 33 K 34 0 K 36 0 0

K 44 K 45 K 46 0 0
K55 K 56 0 K 58

symm K 66 K 67 0
K 77 K 78

K 88

]

are included in the storage scheme. The array which contains plain values is:

A=[1 2 3 4 … 18 19 20 21] (5.73)

However, each column may have any number of values stored, unlike the other storages where each

column had a specific and predictable number of values. As a result, a formula by itself is not

sufficient here; a supportive array is needed to be able to properly map the 1D array of values to

proper matrix entries.

The supportive array is an integer array that contains the 1D-array index of all diagonal entries of

the matrix. By inspecting the diagonal of Fig. 5.12, these indexes are:

diagIndexes1=[1 2 4 6 10 12 16 18] (one-based)

(5.74)

diagIndexes0= [0 1 3 5 9 11 15 17] (zero-based)

The entry in position i shows the index in A that contains the diagonal entry of column i .

Using the diagIndexes array, it is easy to derive the start and end of each column: the diagonal

entry is the start of each column while the end of a column is at the start of the next column. For

example, diagIndexes (4)=6 shows that the diagonal of column i=4 is at position 6 in A .

Furthermore, the next column start at diagIndexes (i+1)=diagIndexes (5)=10 so the entries that

correspond to column i=4 are those ranging from positions 6 to 10 (without 10). Therefore, the

entries of a column are:

columnEntries=[diagIndexes (columnIndex) , diagIndexes (columnIndex+1)) (5.75)

With the diagIndexes array as defined so far, we cannot find how many entries are in the last

column – there is no i+1 for the last column. For this reason, an extra entry is included. The entry

is equal to the total number of entries in A plus 1. It can be considered as the diagonal entry of a

virtual next column, as shown Fig. 5.13.

132

In the example, the skyline format stores 21 values, so we need to add a “22” element in the

diagIndexes array. As a result, the full form of the skyline format stores which stores values in one

array and diagonal indexes in a second array is the following:

A=[1 2 3 4 … 18 19 20 21]

(5.76)

diagIndexes= [1 2 4 6 10 12 16 18 22]

When the matrix is stored in skyline format, the height of a column can be easily derived by:

columnHeight
diagonalexcluded

=diagIndexes (columnIndex+1)−diagIndexes(columnIndex)−1 (5.77)

Due to (5.76),

h6=diagIndexes (7)−diagIndexes (6)−1=16−12−1=3

h8=diagIndexes (9)−diagIndexes(8)−1=22−18−1=3

The calculation for column 8 also demonstrates the usage of the extra entry in the diagIndexes

array.

In order to calculate m j , we use eq. (5.70) as follows:

mcolumn=columnIndex−columnHeight
diagonal excluded

 (5.78)

For example:

133

Fig. 5.13: The number of entries in the skyline storage as well as the extra
entry needed in the diagIndexes array.

Κ=[
Α(1) A(3) A(9)

Α(2) A(5) A(8)
A(4) A(7) A(15)

A(6) A(11) A(14)
A(10) A(13) Α(21)

symm A(12) Α(17) Α(20)
Α(16) Α(19)

Α(18)

]
Α(22)

m6=6−3=3

m8=8−3=5

To retrieve an entry K (rowIndex , columnIndex) of the matrix, where rowIndex≤columnIndex

since the upper triangle is stored, it is initially verified that it is inside the active (stored) part of the

corresponding column, i.e. inside the “skyline”, otherwise the entry is implicitly zero. An entry is

outside the active column and assumed zero if:

columnIndex−rowIndex>columnHeight (5.79)

If the entry is inside the “skyline”, then the index where it is stored is calculated as follows:

index
rowIndex≤columnIndex

=diagIndexes (columnIndex)+columnIndex−rowIndex (5.80)

Finally, the entry is retrieved from the array A :

K (rowIndex , columnIndex)=A(index) (5.81)

For example, for column 6 , for which m6=3 :

Κ 36=A(diagIndexes(6)+6−3)=A(12+6−3)=A(15)

Κ 66=A(diagIndexes(6)+6−6)=A(12+6−6)=A(12)

Formulas (5.79) and (5.80) are valid for both zero-based and one-based but only when

rowIndex≤columnIndex . However, the matrix is symmetric so K ij=K ji . Thus, in order to

calculate an entry in the lower triangle of the matrix, where rowIndex≥columnIndex , the

symmetric entry K (columnIndex , rowIndex) , which is in the upper triangle, can be retrieved with

the aforementioned formulas.

134

Fig. 5.14: The highest entries of columns 6 and 8 .

K=[
K11 K 12 0 K14 0 0 0 0

K 22 K 23 0 0 0 0 0
K 33 K 34 0 K 36 0 0

K 44 K 45 K 46 0 0
K55 K 56 0 K 58

symm K 66 K 67 0
K 77 K 78

K 88

]
m6=3

m8=5

5.5.3 Factorization

One of the important benefits of bandwidth aware storage when compared to dense as well as sparse

(non-zeros only) formats is factorization. In a matrix with small bandwidth, it can save a lot of

calculations compared to dense matrix formats while also retaining the ability to be performed in-

place, unlike the sparse formats (note: complete factorization). The ensuing analysis pertains to

symmetric matrices and L LT (Cholesky) decomposition, but can be easily expanded to general

matrices and L U decomposition as well as for L D LT and L D U decompositions.

A simple implementation of the general-purpose (i.e. for any symmetric matrix) Cholesky

decomposition can be performed with the algorithm demonstrated in Fig. 5.15.

The sums in the algorithm are essentially dot products between column i and column j (note: any

row i is equivalent to column i since the matrix is symmetric). The columns entries involved in

the dot product are shown in Fig. 5.16 and range from row indexes 1 to min (i , j) (note: in Figs.

5.15, 5.16 min (i , j)= j).

135

for i=1÷n

for j=1÷(i−1)

Lij=

K ij−∑
r=1

j−1

Lri Lrj

L jj

end

Lii=√K ii−∑
r=1

i−1

Lri
2

end

Fig. 5.15: L LT decomposition for symmetric
matrices

5.5.4 Banded Factorization

When the matrix is banded, there are a lot of redundant calculations involved in the generic

algorithm since a large part of both columns may be full of zeros. In particular, in Fig. 5.17, all

entries above the blue line are zeros. The multiplication of columns i , j from rows 1 through m

involves zero values in at least one of the columns and thus can be completely avoided. Thus, it is

sufficient to multiply the entries from rows max (mi ,m j) through min (i , j) (note: in the algorithm

the indexes are always i> j , so max (mi , m j)=mi , min (i , j)= j). The section that is multiplied is

highlighted with red color in Fig. 5.17.

When factorizing a banded matrix, no entries outside the bandwidth will become non-zero. This is

because when a zero entry has only zero entries above, it will still be zero after the factorization.

However, if any of the entries above a zero entry is non-zero, then in general the entry will have a

non-zero value after the factorization. Therefore, entries outside the bandwidth, which are all zero,

are guaranteed to remain zero.

Since all entries outside the bandwidth remain zero, another change to the algorithm is the range of

index j , whose range is changed from 1÷(i−1) to (mi+1)÷(i−1) . An alternative observation

with the same conclusion is the following: when performing calculations for column i , all columns

j=1÷mi only have entries in rows j=1÷mi . These entries correspond to zero entries of column

i since by definition column i has non-zero entries from mi and below.

136

Fig. 5.16: Entries involved in dot product
between columns i , j (red line)

ij

i

j

The banded storage allows in-place factorization since all non-zeros are inside the bandwidth even

after the factorization and calculations do not depend on overwritten entries.

137

Fig. 5.17: Entries involved in dot product between columns i ,
j (red line) for banded matrices

for i=1÷n

mi=max(1,i+1−b)

for j=(mi+1)÷(i−1)

Lij=

K ij−∑
r=mi

j−1

Lri Lrj

L jj

end

Lii=√K ii−∑
r=mi

i−1

Lri
2

end

Fig. 5.18: L LT decomposition for symmetric banded
matrices

ij

i

j
k

mi

5.5.5 Skyline Factorization

When the matrix is stored in skyline format, only rows [m j , j] are stored for column j . In Fig.

5.19, mi , m j are the highest non-zero entries of columns i=6 , j=7 , respectively. For the

multiplication of those columns, only calculations on the part highlighted with red is needed.

More generally, the multiplication starts from max (mi , m j) , because one of the two columns will

have zeros in all rows above max (mi , m j) , and continues up to min (i , j) (note: in the algorithm

the indexes are always i> j , so min (i , j)= j , but max (mi , m j) can be anything here!). In the

example of Fig. 5.19:

[column6]⋅[column 7]=K66⋅K 67

[column 6]⋅[column8]=K 56⋅K58+K 66⋅K68

One change in the code is the new range for the column multiplications. Another is the range of

index j , which is similar to the change in the banded algorithm.

138

Fig. 5.19: Entries involved in dot product between
columns i , j (red line) for a skyline matrix

K=[
K11 K 12 0 K14 0 0 0 0

K 22 K 23 0 0 0 0 0
K 33 K 34 0 K 36 0 0

K 44 K 45 K 46 0 0
K55 K 56 0 K 58

symm K 66 K 67 0
K 77 K 78

K 88

]i

i

j

j

mi

m j

As mentioned in Section 5.5.4, a zero entry with zeros above it will remain zero after factorization,

while a zero entry which has a non-zero anywhere above it will have a non-zero value after

factorization. Considering that skyline only stores from the diagonal up to the highest non-zero

entry for each column, it is obvious that any entry outside the pattern (which is zero) will remain

zero after factorization. More importantly though, the zero entries that the skyline format stores are

the only zeros that will be non-zeros after the factorization. The skyline format stores exactly the

entries that are needed in the factorized form of the matrix. It is, therefore, ideal for solution

methods where complete L LT factorization is used. The skyline storage also allows in-place

factorization since all non-zeros are inside the “skyline” even after the factorization and calculations

do not depend on overwritten entries.

139

for i=1÷n

mi=… → eq. (5.78)

for j=(mi+1)÷(i−1)

m j=… → eq. (5.78)

m=max (mi ,m j)

Lij=

K ij−∑
r=m

j−1

L ri Lrj

L jj

end

Lii=√K ii−∑
r=mi

i−1

Lri
2

end

Fig. 5.20: L LT decomposition for symmetric banded
matrices

5.5.6 Numbering considerations

The numbering of the degrees of freedom is important for bandwidth-aware matrix storages. The

numbering affects the bandwidth which in turn can critically affect the space required as well as the

calculations involved when working with such storage schemes. A simple example is illustrated in

Fig. 5.21, 5.22 for a linear arrangement with 4 truss elements (it is assumed (Ε Α)/L=1). The red

line shows the bandwidth of the matrix.

140

Fig. 5.21: Good numbering of degrees of freedom. Grey = non-zero entries

1
1 2 1 1 12 2 2

32 41

2 3 4 5

1 -1

1+1

32 4 51

1

2

3

4

5

-1

1+1 -1

-11+1

1

Fig. 5.22: Bad numbering of degrees of freedom. Grey = non-zero entries

1
1 2 1 1 12 2 2

32 41

4 2 5 3

1

-1

1+1

32 4 51

1

2

3

4

5

-1

1

-1

-1

1+1

1+1

A more complex example for triangular elements with one degree of freedom per node is the

following:

Fig. 5.24: Local numbering Fig. 5.25:Element numbering

141

A Β

Fig. 5.23: Global numbering

1 2 3 4

5 6 7

8 9

10

1 2 3 4

9 10 5

8 6

7

3 2

11 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

3 2

1

3 2

1
53

6 8

7

9

2 4

1

Table 5.1 shows the column height for each of the degrees of freedom for numbering A while Table

5.2 shows the column heights for numbering B. A schematic depiction from the diagonal to the

highest column entry of the matrix is shown in Figs. 5.26, 5.27 (not all grayed entries are

necessarily non-zero). The red line shows the bandwidth of the matrix.

142

Global degree
of freedom (dof) i

Finite elements
involved

Minimum dof
involved mi

Column height
h i=i−mi

1 1 1 1-1 = 0

2 1,2,3 1 2-1 = 1

3 3,4,5 2 3-2 = 1

4 5 3 4-3 = 1

5 4,5,8 3 5-3 = 2

6 7,8,9 5 6-5 = 1

7 9 6 7-6 =1

8 6,7,9 6 8-6 = 2

9 1,2,6 1 9-1 = 8

10 2,3,4,6,7,8 2 10 – 2 = 8

Table 5.2: Column height (diagonal exclusive) for each column for numbering B

Global
degree of freedom (dof)

Finite elements
involved

Minimum dof
involved

Column height
h i=i−mi

1 1 1 1-1 = 0

2 1,2,3 1 2-1 = 1

3 3,4,5 2 3-2 = 1

4 5 3 4-3 = 1

5 1,2,6 1 5-1 = 4

6 2,3,4,6,7,8 2 6-2 = 4

7 4,5,8 3 7-3 = 4

8 6,7,9 5 8-5 = 3

9 7,8,9 6 9-6 = 3

10 9 8 10 – 8 = 2

Table 5.1: Column height (diagonal exclusive) for each column for numbering A

143

Fig. 5.26: Numbering A. Grey = entries up to the highest
non-zero entry of the column

1032 4 5 6 7 8 91

1

2

3

4

5

6

7

8

9

10

symmetric

Fig. 5.27: Numbering B. Grey = entries up to the highest
non-zero entry of the column

1032 4 5 6 7 8 91

1

2

3

4

5

6

7

8

9

10

symmetric

There is a plethora of algorithms to improve the numbering of the domain in order to reduce the

matrix bandwidth. One widely-used one is the Cuthill–McKee algorithm [77]. Fig. 5.28 shows an

example of applying the (reverse) Cuthill–McKee algorithm on a 60×60 matrix1.

It should be noted that the bandwidth problem, or equivalently the graph bandwidth problem is NP-

hard [78]. As such, it is unlikely that there exists an efficient (polynomial) algorithm that finds the

minimum bandwidth, but many of the available algorithms have been shown to give good results.

1 Image from: http://www.mathworks.com/help/matlab/ref/symrcm.html

144

Fig. 5.28: Bandwidth improvement through the (reverse) Cuthill-McKee algorithm

5.6 Sparse Matrix

For a sparse storage of a matrix to be practical, the non-zero entries should be few enough

(compared to the total possible entries of the matrix) so that it is worth taking advantage of them to

reduce both storage requirements and number of calculations in matrix operations. Ideally, it would

be desirable to store and operate on non-zero entries only, but this is not necessarily a clear win in

either storage or computational effort. Regarding storage, the complication is that sparse data

formats include more overhead than the plain arrays used for denser types of matrices because they

need to store indexes in addition to the values of the non-zero entries. As far as calculations are

concerned, matrix operations with sparse formats cannot be performed as fast as with denser

formats but the arithmetic calculations involved are (or should be) considerably fewer in typical

cases.

For these reasons, a practical requirement for a matrix to be “effectively” sparse, i.e. to warrant

using the sparse formats discussed in this section, is that it contains O(n) non-zero entries. If each

row/column contains a small/constant number of non-zeros, independent of the matrix dimension,

then the requirements is satisfied. This is true for the large (domain/subdomain) matrices

encountered in finite element methods etc. Apart from the number of non-zeros, their particular

locations in the matrix can often be exploited. Physical problems usually exhibit a characteristic

pattern that can lead to more efficient sparse storage.

The sparse storages presented in this work only need to store the non-zero entries. For the benefit of

storing only non-zeros, each sparse format is typically good for only a few usages, so using the

correct format for the appropriate task is very important. For the purposes of this work, there are

two primary categories: formats that are good for operations (e.g. sparse-matrix vector

multiplication or SpMV) and formats that are good for incrementally building the matrix, which are

referred to as sparse matrix builders. The subcategories are analyzed in the corresponding sections.

5.6.1 Sparse Matrix Builders

As the name suggests, these formats are good for incrementally building a matrix in sparse format.

There are formats that are more suitable for operations so these are used for the assembly phase and

then converted to another format for the solution phase. There are two subcategories: formats that

support (fast) lookups, i.e. finding an existing entry and updating its value, and formats that do not

support (fast) lookups. Formats that support lookups are in generally more complex but must be

145

used when the values need to be continually updated. On the other hand, if the task involves

calculating the final values of the matrix entries before inserting them in the builder, then no

lookups are required and the simpler formats are applicable.

Two formats are examined: the Coordinate List (COO) and the Dictionary of Keys (DOK) [79].

Another popular format is the List of Lists (LIL), but it falls into one of the categories discussed

below. For each of the implementations, there is a symmetric variant that uses the same backing

structures while taking care of symmetry considerations.

5.6.1.1 Coordinate list (COO)

COO stores a list of (row, column, value) tuples. The entries can be added in any order and no

requirements are present. Also, duplicate entries are allowed. The simplest implementation of this is

to use 3 arrays, one for the row indexes, one for the column indexes and one for the value, where an

entry i of the arrays corresponds to an entry of the matrix. The 4×5 matrix of (5.82) is shown in

COO format in (5.83).

[
K11 K 12 0 0 0
0 K 22 0 0 0

K31 0 0 K 34 K 35

0 0 K 43 0 K 45
] (5.82)

rowIndexes=[3 1 1 4 3 2 4 4]

columnIndexes=[4 1 2 5 1 2 3 5] (5.83)

values=[K 34 K 11 K 12 K 45 K31 K22 K43 K 45]

While it is possible to have the entries in sorted order. this would mean O(NZ) time to add a

random entry to the matrix, where NZ is the number of entries contained. This is because its

O(log NZ) to find the correct spot, but O(NZ) to move everything else by one slot. Thus,

keeping the entry unsorted is preferred and in this case adding an entry is just O(1) and trivial.

Note that it is possible for the COO format to support lookups, but it entails iterating through all the

values, which is O(NZ) and much too slow.

This format is ideal when the final value of each entry is calculated before being inserted into the

146

builder, but is not good for continually updating partial values. Another advantage of this format is

that it is easily converted to CSR/CSC formats for the solution phase.

5.6.1.2 Dictionary of Keys (DOK)

In contrast to COO, DOK format allows lookups so it is intended for cases where the final values

are incrementally created inside the builder, which entails finding the current K ij value and

updating it appropriately. There are several ways to implement this. One is to map

(rowIndex , columnIndex) tuples to the corresponding values. This can be done with a hash-table or

binary search tree (BST) or similar structures. The former allows O(1) lookups while the latter

allows O(log NZ) lookups, where NZ is the number of entries contained. BST also contains the

entries in sorted order The mapping of this approach for matrix (5.82) is shown in (5.84).

[
K 11 K 12 0 0 0

0 K 22 0 0 0
K 31 0 0 K 34 K 35

0 0 K 43 0 K 45
]

(1,1)→K 11

(1,2)→K 12

(2,2)→K 22

(3,1)→K 31

(3,4)→K 34

(3,5)→K 35

(4,3)→K 43

(4,5)→K 45

 (5.84)

Another way, borrowing from the LIL format as well, is to treat each row (or column) separately:

instead of having a single data structure for the whole matrix, have a data structure for each row (or

column). Then, all rows/columns need to be stored to an external data structure. This is shown in

(5.85) for a row-wise mapping while (5.86) shows a column-wise mapping.

row (1)→ [(1)→K 11 (2)→K 12]
row (2)→[(2)→K 22]
row (3)→[(1)→K31 (4)→K34,(5)→K 35]
row (4)→ [(3)→K 43 (5)→K45]

 (5.85)

147

column (1)→ [(1)→K 11 (3)→K31]
column (2)→[(2)→K 22]
column (3)→ [(4)→K 43]
column (4)→[(3)→K 34]
column(5)→ [(3)→K 35 (4)→K 45]

 (5.86)

There are several combinations of external and internal data structures, each one with its own

characteristics. Combinations with the most typical data structures are shown in Table 5.3, where

“internal” refers to the data structures that stores rows/columns, whereas “external” is the data

structure that stores references to them. A sparse matrix with very few entries might be better of

using a DOK implementation backed by a single hash-table. On the other hand, if entries are

concentrated in only a few columns and each column's entries need to be sorted, then a column-wise

Hash-BST implementation might be more effective. If every row is going to be populated (as is the

case for the stiffness matrix and other characteristic matrices), using an array as the external data

structure to store each row in the corresponding rowIndex is simpler compared to Hash/BST while

also keeping the rows sorted.

Note that the lookup time of the BST structures is based on the actual size of the structure (A or B)

and not the maximum size of the structure (M or N), although of course A, B can be as big as M, N

respectively. Also note that the LIL format essentially corresponds to a BST-BST or Array-BST

backed implementation of the DOK format.

148

Table 5.3: Combinations of typical backing data structures for the DOK format. “Internal”
refers to the data structures that stores rows/columns, whereas “external” is the data structure
that stores references to them.

Data structure Expected size Lookup Sorted
external internal external internal external internal

Single Hash Table NZ O(1) No
Single BST NZ Yes

Hash Table Hash Table No No

Hash Table BST No Yes

BST Hash Table Yes No
BST BST Yes Yes
Array (list) Hash Table M Yes No
Array (list) BST M Yes Yes

A expected number of stored rows/columns
B expected number of stored entries within a row/column
M major dimension of the matrix
N minor dimension of the matrix
NZ total number of stored entries

O(log NZ)

A ≤ M B ≤ N O(1)

A ≤ M B ≤ N O(log B)

A ≤ M B ≤ N O(log A)
A ≤ M B ≤ N O(log A + log B)

B ≤ N O(1)
B ≤ N O(log B)

5.6.2 Sparse Matrix formats for operations

The matrix is prepared with one of the sparse matrix builders and then converted to the Compressed

Sparse Row (CSR) or Compressed Sparse Column format (CSC). These two formats are

appropriate for arithmetic operations, though again care must be taken in the usage of each type

depending on the operations involved in the solution phase.

5.6.2.1 Compressed Sparse Row (CSR)

Consider the 4×5 matrix of eq. (5.82) once again:

[
K11 K 12 0 0 0
0 K 22 0 0 0

K31 0 0 K 34 K 35

0 0 K 43 0 K 45
]

The indexes of the CSR format are first sorted by row index and then within the same row by

column index. Note that it is assumed that each pair of row and column indexes appears only once.

This is essentially the COO format, but with sorted entries:

rowIndexes=[1 1 2 3 3 3 4 4]

columnIndexes=[1 2 2 1 4 5 3 5] (5.87)

values=[K 11 K 12 K 22 K 31 K34 K35 K 43 K 45]

Notice how the row indexes have consecutive repetitions of the same index and also that the

repetitions are in increasing, fully predictable order. Thus, instead of storing the row indexes as

shown in (5.87), the compressed version only stores the offset that a particular index would appear

for the first time. For one-based format:

rowIndexes=[1 3 4 7 9]

columnIndexes=[1 2 2 1 4 5 3 5] (5.88)

values=[K 11 K 12 K 22 K 31 K34 K35 K 43 K 45]

For zero-based format:

rowIndexes=[0 2 3 6 8]

columnIndexes=[0 1 1 0 3 4 2 4] (5.89)

149

rowIndexes=[0 2 3 6 8]

values=[K 11 K 12 K 22 K 31 K34 K35 K 43 K 45]

Row i 's values are located in the range: rowIndexes (i) (inclusive) up to rowIndexes (i+1)

exclusive. There is an extra entry at the end to accommodate the last row, so the size of the

rowIndexes array is n+1 , where n is the number of rows of the matrix.

The CSR format features efficient row slicing and fast matrix vector products but slow column

slicing operations, where the CSC format excels.

5.6.2.2 Compressed Sparse Column (CSC)

Consider the 4×5 matrix of eq. (5.82) once again:

[
K11 K 12 0 0 0
0 K 22 0 0 0

K31 0 0 K 34 K 35

0 0 K 43 0 K 45
]

The indexes of the CSC format are first sorted by column index and then within the same column

by row index. Note that it is assumed that each pair of row and column indexes appears only once.

This is essentially the COO format, but with sorted entries:

rowIndexes=[1 3 1 2 4 3 3 4]

columnIndexes=[1 1 2 2 3 4 5 5] (5.90)

values=[K 11 K 31 K 12 K 22 K 43 K34 K35 K 45]

Notice how the column indexes have consecutive repetitions of the same index and also that the

repetitions are in increasing, fully predictable order. Thus, instead of storing the column indexes as

shown in (5.90), the compressed version only stores the offset that a particular index would appear

for the first time. For one-based format:

rowIndexes=[1 3 1 2 4 3 3 4]

columnIndexes=[1 3 5 6 7 9] (5.91)

values=[K 11 K 12 K 22 K 31 K34 K35 K 43 K 45]

For zero-based format:

150

rowIndexes=[0 2 0 1 3 2 2 3]

columnIndexes=[0 2 4 5 6 8] (5.92)

values=[K 11 K 12 K 22 K 31 K34 K35 K 43 K 45]

Column i 's values are located in the range: columnIndexes (i) (inclusive) up to

columnIndexes (i+1) exclusive. There is an extra entry at the end to accommodate the last column,

so the size of the columnIndexes array is n+1 , where n is the number of columns of the matrix.

The CSC format features efficient column slicing and fast transposed matrix vector products but

slow row slicing operations, where the CSR format excels. Note that matrix-vector products are also

efficient with CSC, though the CSR format may be faster.

5.6.2.3 Other sparse formats

There are other formats which are suited for different use-cases. A use case that is related to this

work is application in GPUs. The access pattern of (standard) sparse formats might not allow the

GPU to reach its peak capability. For this reason, there are several “general-purpose” matrix formats

that are more GPU oriented, like the Ellpack-Itpack (ELL) which is demonstrated by NVIDIA in

[80]. Alternatively, or perhaps in conjunction with such formats, characteristic patterns in the matrix

should be exploited to improve GPU hardware utilization.

151

5.7 Matrix multiplication

Table 5.4 shows the number of calculations required for the multiplication of various types of

matrices. The type of the result also implies the amount of memory needed for it. Note that in

general the result is dense (e.g. upper triangular dense, lower triangular dense etc) even if the

operands of the multiplication are not (for example if they are sparse).

Matrix Multiplied with Result Multiplications Ratio with n3

for large n

Upper
Triangular

Dense Matrix
(incl. Symmetric)

Dense Matrix n2
(n+ 1)

2

1
2

Upper Triangular
Matrix

Upper Triangular
Matrix

n(n+ 1)(n+ 2)
6

1
6

Lower Triangular
Matrix

Dense Matrix n(n+ 1)(2n+ 1)
6

1
3

Diagonal Matrix Upper Triangular
Matrix

n(n+ 1)
2

1
2n

vector vector n(n+ 1)
2

1
2n

Lower
Triangular

Dense Matrix
(incl. Symmetric)

Dense Matrix n2
(n+ 1)

2

1
2

Upper Triangular
Matrix

Dense Matrix n(n+ 1)(2n+ 1)
6

1
3

Lower Triangular
Matrix

Lower Triangular
Matrix

n(n+ 1)(n+ 2)
6

1
6

Diagonal Matrix Lower Triangular
Matrix

n(n+ 1)
2

1
2n

vector vector n(n+ 1)
2

1
2n

Table 5.4: Matrix multiplication calculations for various types of matrices

Table 5.4 is based on the standard matrix multiplication which runs in O(n3
) . There are algorithms

that have a smaller lower bound.

152

The Strassen algorithm [81] is an algorithm for matrix multiplication which is faster that standard

matrix multiplication and is useful in practice for large matrices. Strassen published this algorithm

in 1969. Although his algorithm is only slightly faster than the standard algorithm for matrix

multiplication, he was the first to point out that the standard approach is not optimal. The Strassen

algorithm runs in O(nlog 2 7
)=O(N 2.8074

) . However, the algorithm exhibits somewhat reduced

numerical stability and it requires significantly more memory compared to the standard algorithm.

For multiplication of square matrices, the Coppersmith-Winograd algorithm [82] manages to lower

the complexity to O(N 2.375477
) . Since its original presentation in 1990, improvements in 2010

lowered the complexity to O(N 2.3736
) and in 2011 to O(N 2.3727

) . However, unlike the Strassen

algorithm, it is not used in practice because it only provides an advantage for matrices so large that

they cannot be processed by modern hardware anyway.

Even though the optimal matrix multiplication may have yet to be discovered, it has a lower bound

of Ω (n2
) because the resulting matrix has a number of values proportional to n2 . The n2 bound is

still very limiting to the size of the matrices that can be processed. Furthermore, due to the result

having ~ n2 values, the space required for the result is also proportional to n2 . So, even if lower

memory formats (sparse, skyline, etc) are used for the input matrices to keep the space usage low,

the memory requirement will still be ~ n2 due to the result matrix.

The ~ n2 running time and memory requirement makes matrix multiplication prohibitively

expensive for large matrices. When a matrix multiplication is involved in calculations, the

calculations are not performed until a vector appears next to them (see section 5.8).

153

5.8 Order of calculations

Let Μ1 , Μ2 be two matrices whose multiplication yields:

Μ1 Μ2=R (5.93)

In general, the dimensions are:

[a×b] [b×c]=[a×c] (5.94)

Each row of Μ1 has b values, as many as the values of a column of Μ2 .

To multiply a row of Μ1 with a column of Μ2 the calculations required are: b multiplications

which will yield b values that need to be summed, and b−1≃b additions to add them.

In order to multiply all a rows of Μ1 , we require: a b multiplications and a b additions.

In order to multiply all columns, the total effort required is: a bc multiplications and a bc

additions.

Assume that there are three matrices to multiply, with dimensions:

[a×b] [b×c] [c×d] (5.95)

The multiplication is mathematically correct regardless of the order the matrices are multiplied in

due to the associative property of matrix multiplication. However, there is a difference in the

number of calculations performed. The calculations required for the two ways of ordering the

calculations is shown in Table 5.5 and Table 5.6. Table 5.5 shows the calculations from left to right

while Table 5.6 shows the calculations from right to left.

154

Step Multiplications Additions

1 [a×b] [b×c]=[a×c] abc abc

2 [a×c] [c×d]=[a×d] acd acd

Total abc+acd abc+acd

Table 5.5: Multiplication from left to right

Note that the number of calculations required is different. Therefore, depending on the size of the

matrices, the order of calculations is important for the efficiency of calculating the result, even

though the result is always the same (barring arithmetic differences). For example:

[1000×800] [800×600] [600×400][400×200] (5.96)

Table 5.7 and Table 5.8 show that the number of operations from right to left are significantly less.

In general, starting calculations from the smaller matrices leads to significantly less number of

calculations in total. The order of operations is taken into account in some linear algebra libraries,

like Armadillo2. Fig. 5.29 shows the multiplication of 4 matrices Z=A BC D for three linear

2 http://arma.sourceforge.net/speed.html

155

Step Multiplications/Additions

1 [600×400][400×200]=[600×200] 600⋅400⋅200=48⋅106

2 [800×600] [600×200]=[800×200] 800⋅600⋅200=96⋅106

3 [1000×800] [800×200]=[1000×200] 1000⋅800⋅200=160⋅106

Total 304⋅106

Table 5.8: Example: multiplication from right to left

Step Multiplications/Additions

1 [1000×800] [800×600]=[1000×600] 1000⋅800⋅600=48⋅107

2 [1000×600] [600×400]=[1000×400] 1000⋅600⋅400=24⋅107

3 [1000×400][400×200]=[1000×200] 1000⋅400⋅200=8⋅107

Total 80⋅107
=800⋅106

Table 5.7: Example: multiplication from left to right

Step Multiplications Additions

1 [b×c] [c×d]=[b×d] bcd bcd

2 [a×b] [b×d]=[a×d] abd abd

Total bcd +abd bcd +abd

Table 5.6: Multiplication from right to left

algebra libraries and highlights the difference between doing the operations in the most efficient

order.

Assume that the result matrix must then be multiplied with a vector:

[1000×800] [800×600] [600×400][400×200] [200×1] (5.97)

Multiplication of three matrices followed by a vector is common. For example, in PCPG there is

ym−1=P
~
F−1 P rm−1 . So a natural idea is to calculate the matrices first especially considering that

they remain unchanged for all iterations of process, unlike the vector. In order to make the matrix-

vector multiplication [1000×200][200×1]=[1000×1] , an additional 1000⋅200⋅1=2⋅105

multiplications and equal number of additions are required. This is pretty insignificant compared to

the calculations already done for the matrix-matrix multiplications so we ignore them.

On the other hand, if the calculations are not performed until the vector appears on the right and

then the calculations were performed from right to left as a series of matrix-vector multiplications,

then the number of operations required is shown in Table 5.9. The collective results of the various

options are shown in Table 5.10. The number of operations in the last case are orders of magnitude

less.

It is clear that it is preferable to only perform matrix-vector operations. There is additional gain

when considering that a matrix-matrix multiplication would result in a dense matrix (see Section

5.7) while performing only matrix-vector multiplication keeps the memory requirements to a

minimum. Furthermore, an implementation of matrix-matrix multiplication that takes all the

possible combinations (for the type of matrix e.g. triangular as well as the storage format e.g.

skyline) into account is complex. Relying on matrix-vector multiplication is significantly easier in

an efficiency-oriented implementation.

156

157

Multiplications/Additions

Left to right 80000⋅104
+20⋅104

Right to left matrices first, then vector 30400⋅104
+20⋅104

Right to left 152⋅104

Table 5.10: Multiplication of 3 matrices and a vector

Step Multiplications/Additions

1 [400×200] [200×1]=[400×1] 400⋅200⋅1=8⋅104

2 [600×400][400×1]=[600×1] 600⋅400⋅1=24⋅104

3 [800×600] [600×1]=[800×1] 800⋅600⋅1=48⋅104

4 [1000×800] [800×1]=[1000×1] 1000⋅800⋅1=80⋅104

Total 152⋅104

Table 5.9: Multiplication from right to left with vector in the right

A=[100×80] , B=[80×60]

C=[60×40] , D=[40×20]

10× faster with proper ordering of operations

A=[1000×800] , B=[800×600]

C=[600×400] , D=[400×200]

20× faster with proper ordering of operations

Fig. 5.29: Ordering of operations in linear algebra libraries

5.9 Transpose

Explicit transposition of a matrix can usually be avoided. Specific handling can perform the

operations directly from the initial matrix without having to explicitly transpose it. An exception

might be when the transposed matrix is be reused a large number of times. In this case, transposing

the matrix in order to have the entries in consecutive memory locations with respect to the

operations the matrix is reused in might be beneficial.

As for vectors, the transpose is only a semantic and can always be avoided. The previous reason

stated for matrices is not applicable for vectors. The vector transpose is only symbolic so that the

dimensions of the operands are consistent. For example, if x is n×1 , xT is 1×n so in order to

left multiply it with a n×n matrix the expression xT A would be consistent.

The following equality is useful:

(Α Β)T=BT AT (5.98)

When applied to matrix with vector:

y=A x⇔yT
=xT AT

(5.99)
v=AT w⇔vT

=wT A

This means that left multiplying a matrix with a vector can be indirectly performed with the

standard matrix-vector multiplication. The only difference is seemingly that the result is a

transposed vector but, as it has already been established transposition in vectors is inconsequential.

158

5.10 Matrices as a collection of vectors

It is sometimes convenient to view a matrix as a collection of vectors (this can be useful in case of

multiple right hand sides for example). Matrix Χ with dimensions m×n can be decomposed as

follows:

Χ=[
X 11 X 12 … X 1 n

X 21 X 22 … X 2 n

⋮ ⋮ ⋮
X m1 X m2 … X mn

]=[[
X 11

X 21

⋮
X m1

] [
X 12

X 22

⋮
X m2

] … [
X 1n

X 2n

⋮
X mn

]]= [x1 x2 … xn] (5.100)

where each vector x i i=1,… , n has size m×1 .

For example, in order to multiply a matrix A with matrix Χ , where there is already an efficient

matrix-vector multiplication for matrix A , the multiplication A X can be performed with

consecutive matrix-vector multiplications. The result is another collection of vectors:

A Χ=Υ=[[
Υ 11

Υ 21

⋮
Υ m1

] [
Υ 12

Υ 22

⋮
Υ m 2

] … [
Υ 1 n

Υ 2 n

⋮
Υ mn
]]=[y1 y2 … yn] (5.101)

Similarly, matrix Χ can be decomposed to as:

X=[
X 11 X 12 … X 1 n

X 21 X 22 … X 2 n

⋮ ⋮ ⋮
X m1 X m2 … X mn

]=[
[X 11 X 12 … X 1 n]
[X 21 X 22 … X 2 n]

⋮

[X m1 X m2 … X mn]
]=[

x1
T

x2
T

⋮

xn
T] (5.102)

For example, in order to multiply a matrix X with matrix A , where there is already an efficient

left multiplication for matrix A , the multiplication X A can be performed with consecutive

vector-matrix left multiplications. The result is another collection of vectors:

X B=Υ=[
[Υ 11 Υ 21 … Υ m1]
[Υ 12 Υ 22 … Υ m2]

⋮

[Υ 1 n Υ 2 n … Υ mn]
]=[

y1
T

y2
T

⋮

yn
T] (5.103)

159

160

6 Domain decomposition methods in hybrid CPU-GPU architectures

6.1 Introduction

In scientific computing, there is a constant need for solving new and highly computationally

demanding problems with increased accuracy and enhanced numerical performance. In simulation-

based applied science and engineering, there have been considerable improvements in sparse matrix

solution algorithms as well as in domain decomposition methods to mitigate execution bottlenecks,

thus leading to faster calculation times and reduced memory requirements for the solution of

increasingly larger problems. To further increase the speed of their applications, scientists have also

relied on advances in hardware and utilization of expensive specialized computing systems with

parallel and/or distributed processing capabilities, as well as clusters of interconnected

workstations. Moreover, since power density issues limit the increase of the clock frequency,

manufacturers have turned to adding more cores to their processors. However, these advancements

pose a challenge to software developers since sequential codes run on one of the cores and do not

take advantage of the full processing capabilities. Parallel codes do not have this limitation, so

incentive for their further development has increased, especially since they have the potential for

exploiting the processing power of the graphics processing units (GPUs).

Driven by the demands of the gaming industry, graphics hardware has substantially evolved over

the years with remarkable floating point arithmetic performance. These processing capabilities

motivated the utilization of graphics hardware for general purpose applications, eventually leading

to their initial use for non-graphic operations in 1999. In the early years, these operations had to be

programmed indirectly, by mapping them to graphic manipulations and using graphic libraries such

as openGL and DirectX. This approach of solving general purpose problems is known as general

purpose computing on GPUs (GPGPU). Despite the cumbersome programming, it was soon

apparent that the GPUs' potential and capabilities could be utilized for accelerating arithmetic

operations, especially since they have considerably lower cost than current supercomputers or

workstation clusters.

GPU programming was greatly facilitated with the initial release of the CUDA-SDK [48], [83], [84]

in 2007, which resulted in a rapid development of GPU computing and the appearance of GPU-

powered clusters on the Top500 supercomputers [51]. CUDA, which stands for “compute unified

device architecture”, is a parallel computing architecture developed by NVIDIA. CUDA gives

161/362

developers direct access to the virtual instruction set and memory of the parallel computational

elements in CUDA GPUs. Using CUDA, the latest NVIDIA GPUs become easily accessible for

general-purpose applications by eliminating the need for special casting. Recently, openCL has been

released as an open industry standard to facilitate portability and vendor-independence, targeting

heterogeneous platforms consisting of CPUs, GPUs as well as other types of processors [85].

Unlike CPUs, GPUs have an inherent parallel throughput architecture that focuses on executing

many concurrent threads slowly, rather than executing a single thread very fast. Massive hardware

multithreading aims to overcome latencies that inevitably derive from device communication. A

comparison of the current GPU architecture as well as potential future GPU and modern multi-core

processor architecture is provided in [86].

Work pertaining to GPUs has extended to a large variety of applications even before CUDA made

their use easier. Non-linear finite element implementations for surgical simulation can be found in

[87] with GPGPU and in [62] with CUDA. Engineering applications in the field of fluid mechanics

[52]–[55], molecular dynamics [57], [58], topology optimization [59], wave propagation [60],

Helmholtz problems with the boundary element method [61], have been recently reported on a

variety of GPU platforms using explicit computational algorithms. Linear algebra applications have

also been a topic of scientific interest for GPU implementations. A thorough analysis of algorithmic

performance of basic linear algebra operations can be found in [64]. Performance of iterative

solvers is analyzed in [65], while a parametric study of the PCG solver is performed on multi-GPU

CUDA clusters in [66], [67]. A hybrid CPU-GPU implementation of dense linear algebra algorithms

is reported in [63].

It should be noted that all implementations prior to CUDA 1.3 are performed in single-precision,

since support for double-precision floating point operation is added on CUDA 1.3. This has caused

some misinterpretations in a number of published comparisons between the GPU and the CPU,

usually in favor of the GPU. However, GPUs were (and still are) perfectly suitable for mixed-

precision solvers. Performance and accuracy of mixed-precision iterative and multigrid solvers is

thoroughly discussed in [47].

Domain decomposition methods (DDM) constitute today an important category of methods for the

solution of highly demanding problems in simulation-based applied science and engineering.

Among them, dual domain decomposition methods have been successfully applied in a variety of

problems in both sequential as well as in parallel/distributed processing systems. In this work, the

162

implementation of the FETI method is demonstrated in hybrid CPU-GPU computing platforms

[68]. DDM are generally considered unsuitable for GPU applications due to their difficulty in

exploiting the full capacity of the fine-grained parallelism of the GPUs. However, this weakness of

DDM is overcome in the proposed implementation, with customized parallelization routines applied

for every part of the solution algorithm. Parametric tests on an implicit finite element structural

mechanics benchmark problem reveals the tremendous potential of this type of hybrid computing

environment as a result of the full exploitation of the intrinsic software and hardware features of the

GPUs as well as the numerical properties of the solution method.

6.2 Dual DDM (FETI) method

The Dual-DDM (FETI) method is implemented in a hybrid CPU-GPU computing environment. The

details of the implementation choices used for this application are desribed here. Assuming a

decomposition of the domain in ns non-overlapping subdomains

The solution of the interface problem:

[F −G
−GT 0][λa]=[d−e] (6.1)

is based on a projected PCG algorithm (Section 3.2.7), where the vector search space is projected to

a different subspace using the following projector:

P=I−G (GT G)
−1

GT (6.2)

The algorithmic description of the resulting PCPG algorithm is given in Fig. 6.1.

163

~
F−1 being is an appropriate preconditioner. The matrix-vector multiplication F p i in eq. (6.6) is

performed implicitly as follows: Map pi to pi
s using the BT operator, solve K ps=pi

s for ps and

then map p s again using the B operator. The lumped preconditioner with scaling is used:

~F−1
=∑

s=1

ns

(Ms)
−1

Βs [0 0
0 K bb

s] (Β s)
T
(Ms)

−1
 (6.10)

In the past, a number of versions of the Lagrange mapping operator that incorporate scaling effects

have been used in the preconditioning step of the FETI method [40]. In the case of redundant

Lagrange multipliers and homogeneous problems, the Lagrange mapping operator in the

preconditioning step can be written as

Bp=(Ms)
−1

B Bpb
=(Mb

s)
−1

Bb (6.11)

where Ms and Mb
s are diagonal matrices whose diagonal entries contain the multiplicity of the

corresponding dof. An extensive investigation of DDM mapping operators and their interconnection

can be found in [26], [27]. The lumped preconditioner becomes:

~F−1
=∑

s=1

Ns

Βp
s K s (Βp

s)
T

 (6.12)

164

Initialization

λ0=G (GT G)
−1

e (6.3)

w 0=PT (d−F λ0) (6.4)

Iterate k=0,1,..., until convergence

y k=P
~
F−1 wk (6.5)

pk=yk−∑
i=0

k−1 yk
T F pi

pi
T F pi

pi
 (6.6)

ηk=
pk

T wk

pk
T F pk

 (6.7)

λ k+1=λk+ηk pk (6.8)

w k +1=wk−ηk PT F pk (6.9)

Fig. 6.1: The PCPG algorithm used for the solution of the interface problem

6.3 Hybrid CPU-GPU implementation

The Dual DDM FETI solver has been implemented in hybrid CPU-GPU workstations with the

purpose of exploiting all available processing power and memory resources in order to handle even

larger problems. Due to the fact that the CPU and GPU platforms are heterogeneous and feature

different programming paradigms, special considerations had to be made in a number of steps of the

FETI algorithm to achieve optimum efficiency. One of the main issues which has to be dealt with is

the difference in performance between the CPU and GPU, which is mainly affected by the

arithmetic operation being executed as well as by other parameters. Furthermore, this difference in

performance between the CPU and GPU is not the same when calculating dot products, executing

matrix-vector multiplications or solving linear systems directly with the Cholesky factorization.

The most important step of the FETI algorithm, from the computer implementation point of view, is

the calculation of d of eq. (6.1), since it involves the solution of the local subdomain problems and

the subdomain data to be handled by the CPU and GPU memory. Two different implementations

have been considered for the solution of local subdomain problems. The first one performs the

solution of local problems with the direct Cholesky solver and the second one with the iterative

PCG solver. These methods, apart from being quite different in their parallel programming

implementation, also feature different memory needs which affect the amount of subdomain data

processed by the CPU and GPU.

6.3.1 The Choleksy direct solver

The Cholesky direct solver for computing the solution of K u=f comprises the following steps:

• Factorization of matrix K to the form K=L DLT

• Forward substitution so that L x1=f⇔x1=L−1f and trivial solution of

D x2=x1⇔x2=D−1 x1 since D is diagonal.

• Backward substitution so that LT u=x2⇔u=L−T x2

For the case of solving a problem with multiple or repeated right-hand sides, the factorization

process is carried out once and, for each right-hand side, the forward and backward substitution

steps are performed. The factorization process is a recursive operation which consists of the

following steps:

165

D j=Kkk−∑
k=1

j−1

L jk
2 D k (6.13)

Lij=
1

D j
(Kij−∑

k=1

j−1

L jk L jk Dk) (6.14)

where the indexes define the position of the matrix where the corresponding value is present.

Memory consumption is increased for the direct solver since for each subdomain, we need to store

the stiffness matrix both in a compressed sparse row (CSR) format, in order to use it for the

preconditioning step of eq. (6.5) with the lumped type preconditioner of eq. (6.12), and in skyline

format, in order to perform the factorization of the subdomain matrices for the solution of local

subdomain problems.

The proposed strategy for the parallel implementation of the factorization process in the GPU is

different from what is usually implemented in a parallel sparse solver. Parallel sparse solvers try to

utilize all available processors in order to process partial data from one big sparse matrix. There are

open issues as to how the rather poor scalability of parallel sparse solvers can be improved,

especially in very fine-grained parallelism of GPU architectures. For the case of domain

decomposition methods, primal or dual, there is no big sparse matrix but rather hundreds, or even

thousands, for the case of large-scale problems, of smaller sparse matrices. This enables us to take

advantage of the numerical scalability properties of the FETI method and fully exploit the GPU's

fine-grained parallelism by assigning each subdomain matrix factorization process to a warp of

threads. This strategy allows the utilization of all available GPU cores and use shared memory for

parallel reductions without the need of synchronization points. The same strategy and benefits hold

true for the forward and backward substitutions performed for the solution of subdomain problems.

One of the main concerns when implementing GPU kernels for execution is thread occupancy. In

order to fully exploit the capabilities of the GPU, the streaming multiprocessors (SMPs) have to be

overloaded with work which essentially means that the number of simultaneous running threads has

to be much larger than the quantity of SMPs. This happens because global memory access is very

slow so the GPU scheduler suspends a thread accessing global memory until the requested data is

fetched from it. In the meantime, the GPU executes another thread that has its data available in local

memory for processing. In order to evaluate occupancy for the case of parallel Cholesky

factorizations of subdomain matrices, a parametric study was conducted with respect to the amount

of concurrent matrix factorizations being computed at the GPUs used for this work. The results are

166

shown in Fig. 6.2, where it is evident that computing time is practically stabilized for 10 concurrent

factorization computations and above. Taking these results into account, the GPU is constantly

loaded with more than 10 concurrent matrix factorizations and forward and backward substitutions.

167

Fig. 6.2. Time in ms for factorizing a subdomain kernel. Horizontal
axis represents the simultaneous factorizations computed at the
GPU in parallel

6.3.2 The PCG iterative solver

The PCG iterative solver for computing the solution of K u=f , comprises the following steps with

preconditioner ~K :

For the subdomain problems solved in this work, the diagonal preconditioner is used for performing

step (6.18) and the coefficient matrices K s of step (6.20) are stored in CSR format (Section

5.6.2.1). In the case of semi-positive definite matrices, the null space of matrix K cannot be

derived as a by-product of the PCG solution, as in the case of the Cholesky solver. For this case, the

analytical evaluation of the rigid body modes (Section 3.2.3) is applied.

168

Initialization

r0=f−K u0 , p0=z0=
~
K−1 r0 , q0=K p0 , η0=

p0
T r0

p0
T q0

 (6.15)

Iterate k=0,1,..., until convergence

uk=uk−1+ηk−1 pk−1 (6.16)

rk=rk−1−ηk−1 qk−1 (6.17)

zk=
~
K−1rk (6.18)

pk=zk−∑
i=0

k−1 z k
T qi

pi
T qi

pi (6.19)

qk=K pk (6.20)

ηk=
pk

T rk

pk
T qk

 (6.21)

Fig. 6.3: The PCG algorithm

6.3.3 The solution at the projection step

The projection matrix-vector multiplication encountered in eqs. (6.4) and (6.9) involves the solution

of

GT G x1=x2⇔x1=(GT G)
−1

x2 (6.22)

at the initialization step and at each PCPG iteration, respectively, where x1 , x2 are temporary

vectors. This solution is usually performed with a direct solver since the order of the coefficient

matrix GT G is related to the rigid body modes of the floating subdomains and is thus small for a

coarse to a medium grained subdivision. In our implementation, the size of this matrix may not be

negligible due to the fine grained decomposition of the domain which is better suited for a GPU

environment. Bearing in mind that this matrix is global, spanning across the whole domain and that

it is not associated with subdomains, a direct solver is generally not appropriate to perform this task.

For this reason, a PCG solver with a diagonal preconditioner is applied in parallel at each projection

step of the PCPG algorithm.

Furthermore, since the solution of this problem is performed at each PCPG iteration, the re-

orthogonalization procedure performed in eq. (6.19) is applied with search vectors computed in

previous PCPG iterations as well. This implementation is impractical when applied to the full

problem K u=f due to excessive storage requirements. However, this methodology can be

efficiently utilized for the projection step, where the size of the GT G matrix is small compared to

the global matrix, which significantly accelerates the convergence of PCG for subsequent solutions.

This implementation is also performed for the solution of the subdomain problems with PCG since

the solution is also repeated at each PCPG iteration and the size of the subdomain problems is small

particularly for fine-grained subdivisions.

6.3.4 Dot products

Apart from the presence of dot products in sparse matrix vector (SpMV) multiplications, both

PCPG and PCG algorithms feature a number of dot product computations at each iteration.

Specifically, during the re-orthogonalization step (eqs. 6.6 and 6.19 for the PCPG and PCG

algorithms respectively), these dot products can consume a non-negligible amount of processing

power and for this reason, they have to be implemented efficiently. Furthermore, during the

Cholesky factorization and the forward-backward substitutions a large number of dot products are

169

performed.

A dot product operation can be separated into two discrete tasks. The first consists of multiplying

the elements of each vector one by one and the second task consists of computing the sum of each

of these products for obtaining the final result. The multiplication step is inherently parallel making

it an excellent candidate for implementation on a GPU. In this work, the product of the elements of

each vector are stored in a vector which overwrites the contents of the first vector by a simple GPU

kernel of the form a [i]=a[i]⋅b[i] . On the other hand, the summation process is not that trivial and

needs a reduction operation (Section 4.12). From the options available to finalized the reduction

process, the reduction implementation in this work uses the option of launching an additional kernel

with a single thread block.

6.3.5 Sparse matrix – vector multiplications

At every PCPG iteration, the preconditioning step (eq. 6.5) is applied in order to improve the

convergence rate of the method. These preconditioning matrices depend on the stiffness matrices of

each subdomain which are stored in CSR format and, at the time that the preconditioning step is

executed, they are multiplied by a given vector. Similar matrix-vector multiplications are performed

in step (6.20) of the PCG algorithm and in the solution of the projection step of eq. (6.22) with

PCG. In order to achieve maximum efficiency of this time-consuming operation, an optimized

CUDA kernel calculating the result of a SpMV multiplication has to be implemented.

Since the (sparse) dot product between a row of the stiffness matrix and the given vector may be

computed independently of all other rows, the CSR SpMV operation is easily parallelized using one

thread per matrix row. Several variants of this approach are documented in [88]. While this

approach exhibits fine-grained parallelism, its performance suffers mainly by the way in which

threads within a warp access the CSR indices and data arrays. Specifically, while the column

indices and nonzero values for a given row are stored contiguously in the CSR data structure, these

values are not accessed simultaneously but are read sequentially by each thread. Moreover, when

this implementation strategy is applied to a matrix with a highly variable number of non-zeros per

row, it is likely that many threads within a warp will remain idle while the thread with the longest

row continues iterating, thus resulting to poor GPU utilization.

In order to circumvent this weakness, an alternative algorithm is implemented in this work where

170

one warp is assigned to each matrix row. Unlike previous approaches, which use one thread per

matrix row, the implemented kernel features a warp-wide parallel reduction to sum the per-thread

results together which requires coordination among threads within the same warp. Moreover, shared

memory is used for the summation process which greatly improves the performance of this

algorithm, while indexes and data are accessed contiguously, therefore overcoming the principal

deficiency of the approaches documented in [88]. The only limitation of this implementation is that

its efficient execution demands that matrix rows contain a number of non-zeros greater than the

warp size (32 for current CUDA 2.0 compute capability GPUs), which is not an issue for large-scale

problems.

6.4 Dynamic load-balancing

6.4.1 Task Parallelism

The heterogeneity of computer components has been addressed in this work by implementing a

dynamic load balancing procedure based on task queues. In particular, the CPU creates a queue of

tasks that have to be executed at a certain step of the algorithm. In the case of the direct Cholesky

solver, the subdomain matrices are stored in skyline format and are factorized in parallel by both the

CPU and the GPU. A queue of tasks is created for performing the factorization and the forward and

backward substitutions. This queue is filled with the appropriate subdomain matrices and the CPU

and GPU are fed with tasks in an asynchronous manner. Upon finishing the corresponding

calculation, they pull another task from the queue, as is schematically shown in Fig. 6.4. Thus, both

CPU and GPU are constantly busy with calculations until the queue is emptied.

For the case of the PCG solver with diagonal preconditioner, the most time consuming operation is

the sparse matrix-vector multiplication (SpMV) of eq. (6.20) between the subdomain stiffness

matrices and the corresponding search vectors. The same SpMV operation is required for the

solution of the preconditioning step in eq. (6.5) of the PCPG algorithm, while a similar operation is

performed during the solution of the projection step of eq. (6.22) with PCG. For all these cases, a

typical queue of tasks is created, as with the Cholesky solver, which is filled with the appropriate

subdomain matrices and their corresponding vectors, while the CPU and GPU are fed with tasks

from the queue for performing the SpMV multiplications in an asynchronous manner.

171

6.5 Dynamic load-balancing implementation

An implementation of the task parallelism on a typical workstation, featuring an x-core CPU with y

GPUs, consists of x + y + 1 independent CPU threads executing concurrently. The threads that

actually perform numerical computations are the x ones, called “CPU threads”, while the y threads,

called “GPU control threads”, simply instruct each GPU to launch a specific GPU kernel for

execution. The last thread is the “master thread” which is responsible for managing the task queue

defining the numerical computations to be performed and the data structures that participate to that

specific computation. All these threads are executing a while-loop which, for each case, has a

different body and a different termination criterion.

Each CPU thread while-loop body consists of the actual function calls needed to perform the

computations described by the task that was fetched from the task queue. Since memory access to

the CPU is concurrent, memory has to be locked in order for the assigned tasks to be deleted from

the task queue, thus avoiding the infamous race conditions. CPU threads are synchronous which

172

Fig. 6.4. The task queue contains numerical
computations to be performed by available resources

means that each program statement must finish executing before the next starts its execution. When

all computations for the given task have finished executing, the while-loop termination criterion

checks for any remaining tasks in the queue. When there are no tasks left, the thread is terminated

and the master thread is notified that this CPU thread has terminated.

On the other hand, GPU threads are asynchronous which means that GPU kernels will be launched

concurrently when there is a series of program statements that launches GPU kernels. CUDA

provides an event mechanism which notifies the launching thread when a specific kernel has

finished executing. This mechanism is used in this work, in order to orchestrate the flow of GPU

kernel execution. Thus, the while-loop body of a GPU thread consists of GPU kernel launches

corresponding to the actual calculations to be performed, followed by another inner while-loop

whose body performs Thread.Sleep operations. Thread.Sleep provides an elegant mechanism for a

thread to wait without blocking the operating system. The termination criterion of the inner while-

loop checks for incoming kernel termination events while the termination criterion of the outer

while-loop is similar to that of a CPU thread. Similar to the case of a CPU thread, the thread is

terminated when there are no tasks left and the master thread is notified that this GPU thread has

terminated.

The master thread’s body contains program statements that handle memory allocation, perform

memory copies from the CPU memory to the GPU global memory and vice versa, build the

appropriate task queues and spawn the CPU and GPU threads which execute the discrete tasks

contained in a task queue. After the CPU and GPU threads are spawned, the master thread executes

a while-loop similar to the inner while-loop of a GPU thread which waits for CPU and GPU thread

termination. Following the concept of CPU, GPU and master threads, the PCPG algorithm is

implemented and executed in a parallel environment with the master thread’s source code having

the look and feel of a serial program. This is a very important feature for source code

maintainability, extensibility and debugging since all internal work associated with the parallel

implementation is encapsulated to the CPU and GPU threads.

173

6.6 Numerical results

In order to assess the efficiency of the previously discussed implementations, their performance is

demonstrated in a parametric study of 3D linear elasticity problems (E=39 MPa , ν=0.2) with a

cubic geometry. The domain is fully restrained at the bottom surface, partially restrained on the

horizontal directions of the side surfaces while the top surface is subjected to a distributed load, and

are discretized with 8-node hexahedral finite elements, resulting in linear systems with 1,058,610

dof. The number of subdomains ranges from 125 to 2744 (see Section 2.3). More detailed results

are provided in [89].

Two workstations are used, both having an Intel Core i7-950 Processor, 3.06 GHz, which has 4

physical cores/8 logical cores and 8 MB cache along with 6 GB RAM. Two different NVIDIA

GPUs are tested independently: GTX285 and GTX580 with 1GB GDDR3 and 1.5 GB GDDR5

memory, respectively. The workstation is adequate for performing all calculations in double

precision without disk caching.

Fig. 6.5 shows the required number of iterations for the PCG solution (ε=10−4) of the subdomain

problems with re-orthogonalization (mean values for all repeated solution within PCPG) and the

interface problem with PCPG (ε=10−4). The convergence behavior of PCG for the solution of the

subdomain problems and for the projection step problem (ε=10−7), with and without re-

174

Fig. 6.5: Number of iterations for the PCPG solution of the interface problem
with Cholesky and PCG subdomain solvers

1
2

5

1
7

5

2
4

5

3
4

3

4
9

0

7
0

0

1
0

00

1
4

0
0

1
9

60

2
7

4
4

0

5

10

15

20

25

30

35

40

45

50

28

32 31

28

34
32 31

34 35
37

35

40 39

35

43

40 39

44 45 46

Cholesky subdomain solver PCG subdomain solver

Number of subdomains

P
C

P
G

 It
e

ra
tio

n
s

orthogonalization, is shown in Table 6.1, where one order of magnitude reduction on the number of

iterations is achieved with the re-orthogonalization procedure for solving the repeated right-hand

side problems.

Figs. 6.6-6.9 present the computing time per subdomain required for the Cholesky factorization, the

forward/backward substitutions and the PCG solution, as well as for one SpMV multiplication, for

different number of subdomains. It can be seen that the required factorization time and

forward/backward substitutions on GTX 580 is improved by one to two orders of magnitude

compared to the GTX285, while the corresponding performance of i7 is in-between. Fig. 6.8 shows

the performance of each component for the solution of the subdomain problems with PCG, which is

following the trend of the SpMV multiplication shown in Fig. 6.9. The GTX285 has similar

performance (of the same order) with i7 while the GTX580 is faster by more than one order of

magnitude.

175

Table 6.1. Performance of PCG with and without re-orthogonalization

GtG dof

Subdomain Problems Projection Step Problem

reorthogonalization reorthogonalization
125 720 219 18 47 5
175 1020 168 13 67 7
245 1440 150 12 95 11
343 2016 136 11 133 15
490 2898 119 10 210 23
700 4158 102 8 301 33
1000 5940 86 7 429 48
1400 8340 74 6 603 67
1960 11700 64 5 846 94
2744 16380 56 4 1184 132

Number of
subdomains

Iterations
without

Iterations
with

Iterations
without

Iterations
with

176

Fig. 6.6: Computing time per subdomain for Cholesky factorization

1
2

5

1
7

5

2
4

5

3
4

3

4
9

0

7
0

0

1
0

0
0

1
4

0
0

1
9

60

2
7

4
4

1E-1

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

GPU (GTX 580) GPU (GTX 285) CPU (i7)

Number of subdomains

lo
g

 T
im

e
 (

m
s)

Fig. 6.7: Computing time per subdomain for forward and backward substitutions

1
2

5

1
7

5

2
4

5

3
4

3

4
9

0

7
0

0

1
0

0
0

1
4

0
0

1
9

60

2
7

4
4

1E-2

1E-1

1E+0

1E+1

1E+2

1E+3

1E+4

GPU (GTX 580) GPU (GTX 285) CPU (i7)

Number of subdomains

lo
g

 T
im

e
 (

m
s)

177

Fig. 6.8: Computing time per subdomain for PCG solution

1
2

5

1
7

5

2
4

5

3
4

3

4
9

0

7
0

0

1
0

0
0

1
4

0
0

1
9

6
0

2
7

4
4

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

GPU (GTX 580) GPU (GTX 285) CPU (i7)

Number of subdomains

lo
g

 T
im

e
 (

m
s)

Fig. 6.9: Computing time per subdomain for sparse matrix-vector multiplication

1
2

5

1
7

5

2
4

5

3
4

3

4
9

0

7
0

0

1
0

0
0

1
4

0
0

1
9

6
0

2
7

4
4

1E-2

1E-1

1E+0

1E+1

1E+2

GPU (GTX 580) GPU (GTX 285) CPU (i7)

Number of subdomains

lo
g

 T
im

e
 (

m
s)

The optimum subdomain distribution between CPU and GPU for different number of subdomains,

resulting from the dynamic load balancing described in Section 6.5, for performing the Cholesky

factorization and the forward and backward substitutions of the subdomain problems, is presented

in Figs. 6.10 and 6.12 for the GTX 285 and the GTX 580, respectively. The percentage for the

optimum subdomain distribution for GTX 285 is in the range of 25% and for GTX 580 in the range

of 75%, for the most efficient decompositions. The corresponding optimum subdomain distribution

for the PCG subdomain solver, as shown in Figs. 6.11 and 6.13, is 50% for the GTX 285 and 90%

for the GTX 580.

178

Fig. 6.10: Optimum subdomain distribution between CPU and GPU for the
factorization and forward/backward substitutions of the Cholesky subdomain
solver with the i7 and GTX 285 combination

125 175 245 343 490 700 1000 1400 1960 2744

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

124 174 243 337 473 644
807

1035 1366 1792

1 1 2 6 17 56
193

365 594 952

GTX 285

i7

Number of subdomains

S
u

b
d

o
m

a
in

 D
is

tr
ib

u
tio

n

Fig. 6.11: Optimum subdomain distribution between CPU and GPU for SpMV
multiplications and PCG subdomain solver with the i7 and GTX 285
combination

125 175 245 343 490 700 1000 1400 1960 2744

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

37
67 92

152
256 392 544 706 1019 1542

88
108 153

191
234 308 456 694 941 1202

GTX 285

i7

Number of subdomains

S
p

M
V

179

Fig. 6.12: Optimum subdomain distribution between CPU and GPU for the
factorization and forward/backward substitutions of the Cholesky subdomain
solver with the i7 and GTX 580 combination

125 175 245 343 490 700 1000 1400 1960 2744

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

57

54
47 83 98 150 231 372 551 781

68

121
198 260 392 550 769 1028 1409 1963

GTX 580

i7

Number of subdomains

S
u

b
d

o
m

a
in

 D
is

tr
ib

u
tio

n

Fig. 6.13: Optimum subdomain distribution between CPU and GPU for SpMV
multiplications and PCG subdomain solver with the i7 and GTX 580
combination

125 175 245 343 490 700 1000 1400 1960 2744

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

3 5 9 17 36 58 91 118 191 342

122 170 236 326 454 642 909 1282 1769 2402

GTX 580

i7

Number of subdomains

S
p

M
V

The performance of the two versions of FETI is demonstrated in Figs .6.14, 6.15. From this

comparison, it is verified that both FETI versions demonstrate a better performance for fine-grained

subdivisions in all three workstation configurations. The relative speedup ratios of i7 and GTX285

are shown in Figs. 6.16, 6.17, for the two FETI versions, while Figs. 6.18, 6.19, depict the

corresponding speedup ratios of the GPU and hybrid workstation vs 1 CPU core. Similar

comparisons for the workstation with GTX580 are presented in Figs. 6.20-6.25. From these figures,

the following observations can be made. For the case of i7-285, the optimum performance is

achieved with the finest-grained decomposition. The improvement is more pronounced for the

Cholesky subdomain solver, as a result of the larger reduction in the cost of factorization for smaller

subdomains, compared to the corresponding reduction in the cost of SpMV multiplications which

dominate the PCG subdomain solver. This trend is followed with GTX580 albeit the difference in

computing times is less pronounced with respect to the number of subdomains. The CPU-only (i7)

implementation gave better results than the GPU when the GTX285 was used, but this picture is

completely reversed with the GTX580. In both workstation configurations, the hybrid computing

implementations achieved the solution in reduced computing times.

A more quantitative picture of the performance of the proposed implementation of FETI in hybrid

CPU/GPU architectures is given by comparing the speedup ratios of the different workstation

configurations considered in this work. Looking at the performance of the method in the range of

the optimum number of subdomains, the speedup ratios for the two versions of FETI of hybrid

(i7/GTX285) vs CPU (i7) are 1.5x and 2.0x and of hybrid (i7/GTX285) vs GPU (GTX285) are 3.8x

and 2.3x, respectively. For GTX580, the corresponding speedup ratios of hybrid (i7/GTX580) vs

CPU (i7) are 7x and 12x and of hybrid (i7/GTX580) vs GPU (GTX580) are 1.3x and 1.2x. These

speedups become more than quadrupled when compared to 1 CPU core, due to the utilization of i7's

8 logical cores.

180

181

Fig. 6.14: Total solution time of FETI for the Hybrid, GPU (GTX285) only and CPU (i7) only cases
with the Cholesky subdomain solver

125

175

245

343

490

700

1000

1400

1960

2744

1 10 100 1,000 10,000 100,000

334

144

93

74

58

38

27

22

20

17

38,008

18,537

8,352

2,982

1,092

293

103

63

52

44

279

198

136

102

79

53

41

36

35

29

Hybrid GPU (GTX285) CPU (i7)

log Time (s)

N
u

m
b

e
r

o
f s

u
b

d
o

m
a

in
s

Fig. 6.15: Total solution time of FETI for the Hybrid, GPU (GTX285) only and CPU (i7) only cases
with the PCG subdomain solver

125

175

245

343

490

700

1000

1400

1960

2744

1 10 100 1,000 10,000

941

771

539

427

365

255

200

217

202

178

1,326

1,250

862

767

764

579

439

438

420

407

3,180

2,007

1,428

959

698

454

368

431

388

317

Hybrid GPU (GTX285) CPU (i7)

log Time (s)

N
u

m
b

e
r

o
f s

u
b

d
o

m
a

in
s

182

Fig. 6.16: Performance speedup ratios for different combinations of CPU (i7) and GPU (GTX
285) with the Cholesky subdomain solver

1
2

5

1
7

5

2
4

5

3
4

3

4
9

0

7
0

0

1
0

0
0

1
4

0
0

1
9

6
0

2
7

4
4

0

20

40

60

80

100

120

140

11
3.

85

12
8.

97

89
.4

3

40
.4

18
.8

2

7.
77

3.
78

2.
91

2.
58

2.
54

0.
01

0.
01

0.
02

0.
03

0.
07

0.
18

0.
4

0.
58

0.
67

0.
66

0.
84

1.
37

1.
46

1.
38

1.
36

1.
41

1.
52

1.
67

1.
72

1.
67

Hybrid/GPU GPU/CPU Hybrid/CPU

Number of subdomains

S
p

e
e

d
u

p
 R

a
tio

Fig. 6.17: Performance speedup ratios for different combinations of CPU (i7) and GPU (GTX
285) with the PCG subdomain solver

1
2

5

1
7

5

2
4

5

3
4

3

4
9

0

7
0

0

1
0

0
0

1
4

0
0

1
9

6
0

2
7

4
4

0

1

2

3

4

1.
49

1.
7

1.
69

1.
89

2.
2

2.
39

2.
3

2.
12 2.
19

2.
4

2.
4

1.
61 1.
66

1.
25

0.
91

0.
78 0.
84 0.

98

0.
92

0.
78

3.
56

2.
74 2.
79

2.
36

2.
01

1.
87 1.
93 2.

08

2.
02

1.
87

Hybrid/GPU GPU/CPU Hybrid/CPU

Number of subdomains

S
p

e
e

d
u

p
 R

a
tio

183

Fig. 6.18: Performance speedup ratios per CPU core for different combinations of CPU (i7)
and GPU (GTX 285) with the Cholesky subdomain solver

1
2

5

1
7

5

2
4

5

3
4

3

4
9

0

7
0

0

1
0

0
0

1
4

0
0

1
9

6
0

2
7

4
4

0

1

2

3

4

5

6

7

8

9

0.
03

0.
05

0.
07 0.
15 0.

32

0.
81

1.
8

2.
58

3 2.
96

3.
76

6.
17

6.
53

6.
19

6.
1 6.

32

6.
81

7.
51 7.

74

7.
51

GPU/1 CPU core Hybrid/1 CPU core

Number of subdomains

S
p

e
e

d
u

p
 R

a
tio

Fig. 6.19: Performance speedup ratios per CPU core for different combinations of CPU (i7)
and GPU (GTX 285) with the PCG subdomain solver

1
2

5

1
7

5

2
4

5

3
4

3

4
9

0

7
0

0

1
0

0
0

1
4

0
0

1
9

6
0

2
7

4
4

0

2

4

6

8

10

12

14

16

18

10
.7

7

7.
23 7.
45

5.
61

4.
09

3.
5 3.
77 4.

4

4.
13

3.
5

15
.9

8

12
.3

12
.5

2

10
.5

9

9.
02

8.
39 8.
66 9.

34

9.
07

8.
39

GPU/1 CPU core Hybrid/1 CPU core

Number of subdomains

S
p

e
e

d
u

p
 R

a
tio

184

Fig. 6.20: Total solution time of FETI for the Hybrid, GPU (GTX580) only and CPU (i7) only cases
with the Cholesky subdomain solver

125

175

245

343

490

700

1000

1400

1960

2744

1 10 100 1000

76.74

34.39

14.7

14.27

9.84

6.88

5.92

5.38

5.3

5.2

139.77

49.41

18.11

18.56

12.12

8.58

7.54

7.13

7.05

7.03

267.17

190.3

131.76

98.75

77

52.12

40.78

35.99

34.78

29.05

Hybrid GPU (GTX580) CPU (i7)

log Time (s)

N
u

m
b

e
r

o
f s

u
b

d
o

m
a

in
s

Fig. 6.21: Total solution time of FETI for the Hybrid, GPU (GTX580) only and CPU (i7) only cases
with the PCG subdomain solver

125

175

245

343

490

700

1000

1400

1960

2744

1 10 100 1000 10000

70.31

56.21

51.34

45.77

48.5

35.94

31.77

34.67

36.05

37.64

73.09

62.48

57.49

51.14

54.57

41.33

36.6

39.85

42

45.18

3179.66

2007.26

1427.63

958.84

698

453.51

367.61

430.95

387.97

316.83

Hybrid GPU (GTX580) CPU (i7)

log Time (s)

N
u

m
b

e
r

o
f s

u
b

d
o

m
a

in
s

185

Fig. 6.23: Performance speedup ratios for different combinations of CPU (i7) and GPU (GTX
580) with the PCG subdomain solver

1
2

5

1
7

5

2
4

5

3
4

3

4
9

0

7
0

0

1
0

0
0

1
4

0
0

1
9

6
0

2
7

4
4

0

5

10

15

20

25

30

35

40

45

50

1.
04

1.
11

1.
12

1.
12

1.
13

1.
15

1.
15

1.
15

1.
16

1.
2

43
.5

32
.1

3

24
.8

3

18
.7

5

12
.7

9

10
.9

7

10
.0

5

10
.8

1

9.
24

7.
01

45
.2

2

35
.7

1

27
.8

1

20
.9

5

14
.3

9

12
.6

2

11
.5

7

12
.4

3

10
.7

6

8.
42

Hybrid/GPU GPU/CPU Hybrid/CPU

Number of subdomains

S
p

e
e

d
u

p
 R

a
tio

Fig. 6.22: Performance speedup ratios for different combinations of CPU (i7) and GPU (GTX
580) with the Cholesky subdomain solver

0
5

/0
4

/1
9

0
0

0
6

/2
3

/1
9

0
0

0
9

/0
1

/1
9

0
0

1
2

/0
8

/1
9

0
0

0
5

/0
4

/1
9

0
1

1
1

/3
0

/1
9

0
1

0
9

/2
6

/1
9

0
2

1
0

/3
1

/1
9

0
3

0
5

/1
3

/1
9

0
5

0
7

/0
6

/1
9

0
7

0

1

2

3

4

5

6

7

8

9

10

1.
8

1.
4

1.
2 1.
3

1.
2

1.
2

1.
3

1.
3

1.
3

1.
4

1.
9

3.
9

7.
3

5.
3

6.
4

6.
1

5.
4

5.
1

4.
9

4.
1

3.
5

5.
5

9.
0

6.
9

7.
8

7.
6

6.
9

6.
7

6.
6

5.
6

Hybrid/GPU GPU/CPU Hybrid/CPU

Number of subdomains

S
p

e
e

d
u

p
 R

a
tio

186

Fig. 6.24: Performance speedup ratios per CPU core for different combinations of CPU (i7)
and GPU (GTX 580) with the Cholesky subdomain solver

1
2

5

1
7

5

2
4

5

3
4

3

4
9

0

7
0

0

1
0

0
0

1
4

0
0

1
9

6
0

2
7

4
4

0

5

10

15

20

25

30

35

40

45

8.
58

17
.2

9

32
.6

6

23
.8

9

28
.5

2

27
.2

5

24
.2

9

22
.6

7

22
.1

3

18
.5

6

15
.6

3

24
.8

4

40
.2

3

31
.0

6

35
.1

2

34

30
.9

4

30
.0

2

29
.4

8

25
.0

9

GPU/1 CPU core Hybrid/1 CPU core

Number of subdomains

S
p

e
e

d
u

p
 R

a
tio

Fig. 6.25: Performance speedup ratios per CPU core for different combinations of CPU (i7)
and GPU (GTX 580) with the PCG subdomain solver

1
2

5

1
7

5

2
4

5

3
4

3

4
9

0

7
0

0

1
0

0
0

1
4

0
0

1
9

6
0

2
7

4
4

0

20

40

60

80

100

120

140

160

180

200

17
4

12
8.

52

99
.3

2

75

51
.1

6

43
.8

8

40
.2 43
.2

4

36
.9

6

28
.0

4

18
0.

88

14
2.

84

11
1.

24

83
.8

57
.5

6

50
.4

8

46
.2

8

49
.7

2

43
.0

4

33
.6

8

GPU/1 CPU core Hybrid/1 CPU core

Number of subdomains

S
p

e
e

d
u

p
 R

a
tio

6.7 Remarks

Based on the performed numerical tests in this chapter, the following remarks may be drawn. The

FETI version with the direct Cholesky solver for the solution of subdomain problems performs

better than the PCG subdomain solver in the examined tests and with different workstation

configurations. This is attributed to the dynamic load balancing implementation of the factorization

and forward backward substitution tasks. However, the performance improvement with the faster

GPU is more pronounced with the PCG solver than with the Cholesky solver as a result of faster

execution by GPUs of SpMV multiplications which dominate the performance of PCG.

Fine-grained subdivisions gave much better results than coarse-grained subdivisions particularly for

the Cholesky solver of the subdomain problems. This is due to the high cost of the factorization for

large subdomains in connection to the numerical scalability of FETI, where the convergence of the

PCPG algorithm is not sensitive to the size of the interface problem. The performance of FETI with

the PCG solver is less susceptible to the number of subdomains since it is dominated by the SpMV

multiplications which are performed with the same efficiency by the workstation components

irrespective of the size of the matrices and the corresponding vectors.

The dynamic load balancing with the task parallelism and the parallel implementation of the SpMV

multiplications and dot products ensure that all components of the workstation are constantly busy

with calculations resulting in full exploitation of their computing resources. This is evidenced by

the high speedup ratios achieved in the test example for all hardware combinations and different

number of subdomains. The dynamic load balancing allows the efficient utilization of different

CPUs and GPUs as well as any number of CPU cores or GPUs, while making sure that all

components are used to their full potential. Therefore, the computational handling of the finite

element solution method achieves high portability for different CPU/GPU architectures while the

source code exhibits maintainability, extensibility and ease of debugging, since all internal work

associated with the parallel implementation is encapsulated to the CPU and GPU threads.

In conclusion, the parametric tests performed in the framework of this study showed the tremendous

potential of the proposed realization of the dual domain decomposition FETI method in hybrid

CPU/GPU computing platforms. The presented implementation ensures high hardware utilization

and minimizes idle time which is a major issue for the efficient exploitation of the available

computing power of hybrid CPU/GPU high performance computing architectures. The load

balancing scheme can optimally exploit the capabilities of the available heterogeneous hardware

187

equipment and in conjunction with the parallel implementation of the solution algorithms of the

subdomains as well as of the interface problem, can accomplish high speedup factors in the range of

50x for just one-CPU/one-GPU configuration.

188

7 Relations between basic entities of Gauss quadrature

In an abstract examination of the Gauss quadrature assembly, there are two types of entities: nodal

entities (N) and Gauss entities (G). In FEA/MMs the nodal entities are the nodes and in IGA the

nodal entities are the control points, which constitute the main parameters of the simulation method.

The Gauss entities are individual Gauss points or groups of Gauss points which contribute to the

calculation of the quantities associated with the nodal entities (e.g. stiffness coefficients). In

FEA/IGA the Gauss entities are elements, which group several Gauss points, whereas in MMs the

Gauss entities are individual Gauss points. The abstraction is helpful because each method may

have different entities (for example FEA: nodes + elements, IGA: control points + elements, MMs:

nodes/particles + Gauss points).

Relations between the basic entities are established for the creation of the characteristic matrices as

well as for other parts of the analysis. Relations can be stored as maps or, more accurately,

multimaps, i.e. associative containers in which each key is associated with multiple values. The

underlying implementation of the multimaps may vary in space and time complexity allowing for

flexibility in choosing the right implementation for a given scenario. These relation multimaps

allow for a straightforward implementation of the assembly methods, but their identification may be

non-trivial. Each of the multimaps may be stored in appropriate data structures for subsequent use

or (re)calculated temporarily when required.

For MMs the definition of entity relations (nodes-Gauss points) is more involved than in FEA and

IGA. Sections 7.5.2.2 and 7.5.2.3 are dedicated to the presentation of strategies towards efficient

entity relations in MMs.

189/362

7.1 N-G correlations

This multimap associates each nodal entity (N) to all Gauss entities (G) that influence it, as can be

seen in Fig. 7.1. Examples of N-G correlations for EFG and IGA are shown in Figs. 7.10, 7.21,

respectively. An exhaustive search that tests all nodal-Gauss entity combinations is not practical and

therefore simulation-specific methods need to be used to derive this information. For example in

MMs a geometric search has to be performed whereas in IGA, which exhibits a structured control

point grid, this information can be easily derived from the grid.

7.2 G-N correlations

This multimap associates each Gauss entity (G) with all nodal entities it influences, as can be seen

in Fig. 7.2. Examples of what the G-N correlations are in EFG and IGA are shown in Figs. 7.9,

7.22, respectively. This is the reverse of the N-G correlations and is directly used in the

contribution-wise methods which iterate through Gauss points/elements. It is also used in the first

phase of the interaction-wise methods for the calculation of the quadrature values, e.g. shape

function derivatives. The G-N correlations can be derived with simulation-specific methods

similarly to the N-G correlations. For example in MMs methods, a geometric search has to be

190

Fig. 7.1: N-G correlations: each nodal entity N is
associated to all Gauss entities G influencing it.

⋮

N

N

N

G G G G G G

G G G G

G G G G G G G

Fig. 7.2: G-N correlations: each Gauss entity G is
associated with all nodal entities N it influences.

⋮

G

G

G

N N N N N NN

N N N N NN

N N N NN

performed, while in FEA the G-N correlations of a Gauss point are simply the nodes of the

enclosing element. In IGA the G-N correlations can be easily derived from the structured grid.

G-N correlations can also be derived from the N-G correlations if the latter are already calculated

and stored. The reversing process can be performed as follows: (i) Initialize a collection s j for each

Gauss entity G j of the domain. (ii) Take the correlations of a nodal entity N i from the N-G

correlations. (iii) Iterate through all influencing Gauss entities G j of N i and add N i to the

appropriate collection (s j) if not already present.

Calculating the N-G correlations from the G-N correlations is also possible, which implies that

calculating either of the correlations can also yield the other one. Reversing either of the N-G or G-

N correlations to obtain the other is useful if the cost of searching for correlations is high. However,

correlation searches are embarrassingly parallel whereas the reversing process as outlined above

involves scatter parallelism.

7.3 Interactions

The interactions of a nodal entity (N) comprise all other nodal entities that interact with it as defined

in the corresponding simulation method (e.g. having at least one shared Gauss point or element).

The interactions used by the contribution-wise methods to predict the non-zero pattern for certain

matrix formats (like the skyline matrix). It is also the main ingredient for the interaction-wise

methods, as they iterate through interacting pairs.

There are several generic ways to identify the interactions. The brute-force method checks all

possible pairs of nodal entities and keeps those that are interacting. This is O(n2
) to the number of

nodal entities and thus it is only applicable for small problems. A better way is to utilize the N-G

and G-N correlations: Each nodal entity N A has a list of Gauss entities influencing it and each

191

Fig. 7.3: Nodal entity interactions.

⋮

N

N

N

N N N N N N

N N NN

N N N N N N N

Gauss point has a list of nodal entities it influences. Therefore, to identify the interactions of a nodal

entity, the nodal entities associated with the related Gauss entities of N A are inspected. This is

exactly the same as modeling the nodal and Gauss entities in a graph and running breadth-first

search (BFS) [90]. More specifically, the correlations can be modeled in a bipartite graph where

there are vertices for nodal and Gauss entities. Edges connect correlated entities: nodal entities are

connected to the Gauss entities that influence them and Gauss entities are connected to the nodal

entities they influence. In that case, running BFS from a nodal entity N A yields all influencing

Gauss entities of N A in the first layer of BFS and all interacting nodal entities of N A in the second

layer of BFS.

Fig. 7.4 shows node N A which is influenced by Gauss points Gi ,G j ,G k and each of these Gauss

points influences various nodes, including node N A itself. Those nodes are guaranteed to interact

with N A since there is at least one Gauss point in common between them. Thus, since N A

interacts with N A , N B , N C due to Gi , N A , N B ,N D due to G j and N A , N B , N E due to G k , the

interactions of N A are N A , N B ,N D , N E .

This technique is parallel-friendly and works without assuming any specific characteristics about

the basic entities involved. It can be further improved by checking only the Gauss points/elements

that are near the border of the domain of influence of the nodal entity, as the Gauss entities closer to

the nodal entity will provide duplicates.

Apart from the aforementioned generic approaches, the interactions can also be identified with

approaches that take advantage of the actual simulation method characteristics (e.g. structured grid,

geometry etc), leading to potentially faster implementations. In IGA, the generic technique takes

very little time compared to the total matrix formulation time so it can be applied in lieu of a faster

192

Fig. 7.4: Identifying interacting pairs for nodal entity N A .

N
A

G
i

G
j

G
k

N
B

N
C

N
A

N
B

N
D

N
A

N
B

N
E

N
A

...

...

... ...

...

method based on the structured grid. On the other hand, in EFG, it is worthwhile to apply a method-

specific approach.

7.4 Synergies

The second vital ingredient of the interaction-wise method is to identify the Gauss points or

elements shared by an interacting pair. These Gauss point are used for the calculation of the matrix

coefficients corresponding to that particular interacting pair. A generic, parallel-friendly technique

which works without assuming any specific characteristics about the basic entities involved is to use

the N-G correlations to facilitate the identification of synergies: For each pair i− j , find the Gauss

entities that are contained in the N-G correlations of both i and j . The Gauss entities of the N-G

correlations can be stored in data structures that can quickly find if an item is contained or not (e.g.

hash tables). Alternatively, simulation specific characteristics can be used, as in the case of EFG

where the influencing Gauss entities of i can be geometrically checked to determine the subset of

them that are also within the domain of influence of j . In IGA, the generic technique takes little

time compared to the total matrix formulation time but the synergies can also be identified through

the structured grid.

193

Fig. 7.5: Interacting pairs with shared Gauss entities.

⋮

N N

N N

N N

G G G G G

G G G

G G G G

G

7.5 Domain of influence in the simulation methods

The three methods used in this work (FEA, MMs, IGA) greatly differ in the range of the domain of

influence as well as the characteristics of the influences between their basic entities (nodes,

particles, control points, Gauss points, elements). The domains of influence determine the

correlations between nodes/control points and Gauss points/elements. They also determine the

node-node or control point-control point interactions. The most general definition for interacting

pairs in Gauss quadrature based methods is: two nodal entities are interacting, and thus have non-

zero entries in the corresponding matrix entries, if and only if there is at least 1 Gauss point

influencing both nodal entities. Easier definitions can apply depending on the simulation methods.

7.5.1 Domain of influence in FEA

The basic entities in FEA are nodes and elements. The elements influencing a node are only the

ones that are adjacent to the node. Fig. 7.6 shows different cases of influencing elements depending

on the position of a node. Node C is a corner node and is influenced by 4 elements, node S is a side

node and is influenced 2 elements while node I is internal and is influenced solely by the element it

is enclosed in. In 3D the situation is similar, with a maximum of 8 elements influencing a corner

node and 1 element influencing an internal node. Fig. 7.7 shows the area influenced by a single

Gauss point. This is true for all Gauss points of that element, so in FEA, each element only

influences the nodes it is directly adjacent to or that are directly within it.

194

Fig. 7.6: FEA: domain of influence of node Fig. 7.7: FEA: domain of infl. of Gauss p.

C S

I

The nodes that are interacting are shown in Fig. 7.8. Each node interacts with all nodes in its

adjacent elements because the Gauss points of those elements are guaranteed to be shared by both

nodes. Corner elements have the most interactions with other nodes, while internal nodes have the

least interactions.

Compared to the other two simulations methods, the domains of influence in FEA are limited: there

is a constant number (max 8) of elements affecting each node, regardless of the order p of the

elements and each Gauss point/element only influences the nodes adjacent to it or directly within it.

Another characteristic is that the shape functions in FEA are predefined for each element type

whereas shape functions in MMs/IGA are more “dynamic”. As a result, the cost for the matrix

formulation in FEA is significantly less than the cost of MMs and IGA for similar analysis

parameters. For finite elements of typical order, the solution time dominates the formulation time.

More information on FEA in the context of the domain of influence and matrix formulation cost is

found in the comparisons made with the other methods in the next two sections.

195

Fig. 7.8: FEA: interacting nodes for p = 2

C

S

I

7.5.2 Domain of influence in MMs

Due to the absence of elements, the basic entities in MMs are nodes/particles and Gauss points. The

domains of influence of Gauss points are much larger than the corresponding domains in FEA as is

schematically shown in Fig. 7.9 for a domain discretized with MMs and FEA. Note that the

comparison is for equal number of nodes and Gauss points; the two methods do not exhibit the

same accuracy in this case. In the figures, the radius of the domain of influence is assumed 2,5

times the distance between two consecutive nodes.

In FEA each Gauss point is involved in element-level computations for the formation of the element

stiffness matrix which is then added to the appropriate positions of the global stiffness matrix.

Moreover, the shape functions and their derivatives are predefined for each element type and need

to be evaluated on all combinations of nodes and Gauss points within each element. In MMs

methods, however, the contribution of each Gauss point is directly added to the global stiffness

matrix while the shape functions are not predefined and span across larger domains with a

significantly higher amount of Gauss point-node interactions.

196

Fig. 7.9: Domain of influence of Gauss point in (a) MMs; (b) FEA, for the same number of
nodes () and Gauss points ()

4x4 Gauss Cell

(a) (b)

Although, in MMs methods there is no need to construct a mesh, the correlation between nodes and

Gauss points needs to be defined. This preliminary step required before building the stiffness matrix

is implicitly performed with the mesh creation in FEA but must be explicitly done in MMs and can

be time-consuming if not appropriately handled. For the aforementioned reasons, computing the

stiffness matrix in MMs is a computationally demanding task which needs special attention in order

to be affordable in real-world applications.

Fig. 7.11 shows interacting nodes A, B as well as node C, which does not interact with neither A or

B. Due to the nature of MMs, the general definition of interactions is used, i.e: two nodes are

interacting if there is at least 1 Gauss point shared by both nodes.

197

Fig. 7.10: Domain of influence of node (a) MMs; (b) FEA, for the same number of nodes ()
and Gauss points ()

(a) (b)

7.5.2.1 Comparison with FEA

Table 7.1 shows the number of Gauss points influencing a single node and the number of nodes

influenced by a single Gauss point in typical 2D and 3D problems. The elements representing FEA

are Quad4 and Hexa8 which comprise corner nodes only.

Table 7.2 shows the total number of correlations for the six examples considered (see Table 2.2).

The significantly higher number in EFG methods is a direct consequence of the larger domain of

influence, as shown in Figs. 7.9 And 7.10.

198

Fig. 7.11: MMs: node interactions (nodes: , Gauss points)

A

C

B

Table 7.1: Influences per node and Gauss point for EFG and FEA

2D 3D
EFG FEA EFG FEA

 (doi=2.5) (QUAD4) (doi=2.5) (HEXA8)
Gauss points influencing a node 100 16 1000 64

Nodes influenced by a Gauss point 25 4 125 8

Fig. 7.12 compares MMs and FEA for equal number of nodes and Gauss points. Table 7.3 shows

the number of interacting node pairs in MMs and FEA for equal number of nodes and Gauss points.

Interactions in MMs extend in much larger regions than in FEA, as is shown in Fig. 7.12.

Furthermore, the numbers are indicative of the total non-zeros of the corresponding stiffness

matrices. The total non-zeros can be calculated by

NZ=4⋅NP−n (2D) NZ=9⋅NP−3⋅n (3D) (7.1)

where NP is the number of interacting node pairs and n is the number of nodes.

199

Fig. 7.12: Interacting nodes: (a) MMs; (b) FEA for the same number of nodes ()
and Gauss points ()

No shared GP, not interacting

At least 1 shared GP, interacting

(a) (b)

Table 7.2: Total number of node-Gauss point correlations in EFG and FEA

Example Nodes
Total Correlations

Ratio
EFG FEA

2D-1 25,921 102,400 2,534,464 409,600 6.2
2D-2 75,625 300,304 7,463,824 1,201,216 6.2
2D-3 126,025 501,264 12,475,024 2,005,056 6.2
3D-1 9,221 64,000 7,077,888 512,000 13.8
3D-2 19,683 140,608 16,003,008 1,124,864 14.2
3D-3 35,937 262,144 30,371,328 2,097,152 14.5

Gauss
points

Each interacting node pair corresponds to a non-zero submatrix of the stiffness matrix, whose size is

equal to the number of dof of each node. To calculate the corresponding coefficients, contributions

from several Gauss points are summed to form the final submatrix. The total number of synergies is

shown in Table 7.4.

From the above tables it is clear that the computational effort required for MMs methods is much

higher than in FEA. Large domains of influence lead to large number of node interactions which

increases the bandwidth of the matrix. Furthermore, large domains of influence imply that the cost

to calculate each of them is relatively higher compared to FEA. In sum, MMs pose the following

additional challenges compared to FEA concerning performance:

• Definition of correlations, interactions, etc

• Increased cost of non-zero entries

• Increased matrix bandwidth

200

Table 7.3: Number of interacting node pairs in EFG and FEA

Example Nodes
Interacting node pairs

Ratio
EFG FEA

2D-1 25,921 1,033,981 128,641 8.0
2D-2 75,625 3,051,325 376,477 8.1
2D-3 126,025 5,103,325 627,997 8.1
3D-1 9,221 2,418,035 118,121 20.5
3D-2 19,683 5,554,625 256,361 21.7
3D-3 35,937 10,644,935 474,305 22.4

Table 7.4: Total synergies for EFG and FEA.

Example
Total Synergies

Ratio
EFG FEA

2D-1 102,400 32,725,544 1,024,000 32.0
2D-2 300,304 96,647,624 3,003,040 32.2
2D-3 501,264 161,681,224 5,012,640 32.3
3D-1 64,000 408,317,728 2,304,000 177.2
3D-2 140,608 942,981,088 5,061,888 186.3
3D-3 262,144 1,813,006,048 9,437,184 192.1

Gauss
points

7.5.2.2 Identification of correlations in MMs

With the absence of an element mesh, the node-Gauss point and Gauss point-node correlations

(Sections 7.1, 7.2 respectively) must be established explicitly in MM simulations through geometric

searches. In the ensuing analysis, the focus is on finding the influencing Gauss points of a node. The

same techniques apply for finding the influenced nodes of a Gauss point by swapping the role of

nodes and Gauss points.

The so-called naive approach is to globally search for the Gauss points belonging to the domain of

influence of each node (Fig. 7.13). This approach performs a large amount of unnecessary

calculations since the domains of influence are localized areas. All combinations of nodes and

Gauss points must be tested so the algorithmic complexity for this kind of approach would be

O(n nG) , where n is the number of nodes and nG is the number of Gauss points. Since the

number of Gauss points is typically much higher than the number of nodes, this is at least O(n2
)

and a quadratic running time is poor. In order to reduce the time spent for identifying the

correlations, Gauss points far away from the nodes under inspection must be quickly excluded.

Regioning is a technique that can be used to localize geometric searches. A rectangular grid is

created and we refer to each of the regions defined as a Gauss region. The grid is always

rectangular, and usually with square regions, regardless of the domain. Each Gauss region contains

a group of Gauss points. Given the coordinates of a particular node, it is immediately known in

which region it is located (by dividing the coordinate of an axis with the region size in the same

axis). The search per node is conducted over the neighboring Gauss regions only instead of the

global domain (Fig. 7.14). The neighboring Gauss regions are the c×c regions surrounding the

node, where c is determined by the domain of influence. Regardless of the size of the problem, the

search per node is restricted to a small number of Gauss regions (c2). Since each node needs to

check a constant number of Gauss points regardless of the size of the problem, the time complexity

is O(n) . Note that Gauss regions can be formed from a single Gauss cell or a cluster of Gauss cells

or can be totally unrelated to Gauss cells (Fig. 7.15).

201

202

Fig. 7.14: Regioned search for correlations
(nodes: , Gauss points)

Fig. 7.13: Global search for correlations
(nodes: , Gauss points)

One optimization that can be applied to regioning, is to quickly be able to decide whether a

neighboring Gauss region will be search or not. For example, the bottom right grayed region of Fig.

7.14 can be entirely skipped. For that purpose, the centroid of each Gauss region is used as a

representative point for the whole region. If the centroid of a Gauss region lies inside the domain of

influence of a node, then all Gauss points of that region will be processed for possible correlation

with the node, otherwise they will be ignored. However, there may be cases of Gauss points which

are inside the domain of influence of a node but the centroid of their Gauss region lies outside the

domain of influence, as can be seen in Fig. 7.15. In order to account for such cases, the centroids are

tested with regard to an extended domain of influence. The extended domain of influence is only

used for the centroids so the contribution of Gauss points is evaluated based on the actual domain of

influence of the node.

The extended domain of influence should be large enough to include the centroids of regions that

would be outside the actual domain of influence and small enough to avoid false positives, i.e.

regions that test true but contain no influencing Gauss points. In order to accomplish this, the

maximum distance between the centroid and a point on the border of the respective Gauss region is

computed. For rectangular regions, this is simply the half-diagonal. The extended domain of

203

Fig. 7.15: Identifying the influencing Gauss points of
node

CCCC

CCCC

CCCC

CCCC

Gauss RegionGauss Cell

Extended Domain of InfluenceDomain of Influence

Centroid

influence is then defined by adding this distance to the initial domain of influence.

The time required to define correlations in three 2D and three 3D elasticity problems with varying

number of degrees of freedom (dof) are shown in Table 7.5. The 2D problems correspond to square

domains and the 3D to cubic domains, with rectangular domains of influence (doi) with

dimensionless parameter 2.5. These domains maximize the number of correlations and

consequently the computational cost for the given number of nodes. In these examples, each Gauss

region comprises a single Gauss cell, meaning the the Gauss cell “grid” is re-used as a Gauss region

“grid”. Thus, in the 2D examples each Gauss cell/region contains 16 Gauss points (4×4 rule) and

in the 3D examples 64 Gauss points (4×4×4 rule). The examples are run on a Core i7-980X

which has 6 physical cores (12 logical cores) at 3.33GHz and 12MB cache. Each node can define its

correlation independently of other nodes, thus the process is amenable to parallel computations.

With the implementation of Gauss regions, the initialization phase of MMs in complex domains can

take less time than in FEA, since the generation of a finite element mesh can sometimes be

laborious and time consuming [91]. At the end of this step, each node has a list of influencing Gauss

points and each Gauss point has a list of influenced nodes (Sections 7.1, 7.2).

Another technique that can be used to accelerate geometric searches is through the usage of kd-

trees. The running time in that case would be O(n log nG) , which is lower than the O(n nG) of

regioning, but kd-trees can handle degenerate cases of clustering points more easily. More

information on the application of kd-trees is MMs can be found in [92].

204

Table 7.5: Computing time required for all node-Gauss point correlations

Example Nodes
Search Time (seconds)

Global Regioned Regioned
Serial Serial Parallel

2D-1 25,921 102,400 23 1.3 0.5
2D-2 75,625 300,304 300 3.4 1.0
2D-3 126,025 501,264 836 5.4 1.4
3D-1 9,221 64,000 7 3.7 0.9
3D-2 19,683 140,608 45 7.8 1.7
3D-3 35,937 262,144 157 15.7 3.3

Gauss
points

7.5.2.3 Interactions and shared Gauss points in MMs

The identification of interactions and synergies (Sections 7.3, 7.4), is also a laborious task in MMs.

The naive approach is to check all possible combinations of node pairs and find their shared Gauss

points. If there is at least one Gauss point (by definition, see start of Section 7.5) those node are

interacting and their synergies are also identified as part of the process. The shared Gauss points are

located in the intersection of the domains of influence of two interacting nodes (Fig. 7.16). This

approach, however, takes a prohibitive amount of time because it needs to calculate the shared

Gauss points for all possible n (n+1)/2 combinations of node pairs, where n is the number of

nodes. Table 7.6 shows all the number of possible combinations of node pairs, the number of

interacting nodes as well as the associated computing time for a naive identification.

The strategies presented here identify the interactions and synergies in separate steps. Having the

interactions as a first step avoids unnecessary searches for Gauss points of non-interacting nodes.

As in the naive approach, all n (n+1)/2 combinations can be checked and if there is at least one

Gauss point in common the node pair is marked as interacting. However, this is still a O(n2
)

process so it does not scale well and quickly grows into unacceptable running times.

205

Fig. 7.16: Interaction nodes with their shared Gauss
points

The interactions can be identified by using the N-G and G-N correlations that have already been

calculated (Section7.5.2.2). The generic technique described in Section 7.3 is used and the

computing times required are shown in Table 7.7. The examples are run on a Core i7-980X which

has 6 physical cores (12 logical cores) at 3.33 GHz. Each node can search for interacting nodes

independently of other nodes, so parallelism offers very good acceleration.

206

Fig. 7.17: Identifying interacting node pairs for node N A .

N
A

G
i

G
j

G
k

N
B

N
C

N
A

N
B

N
D

N
A

N
B

N
E

N
A

...

...

... ...

...

Table 7.6: Computing time required for a naive identification of interacting nodes and
their shared Gauss points

Example Nodes Interacting
2D-1 25.921 335.962.081 1.033.981 771
2D-2 75.625 2.859.608.125 3.051.325 6.908
2D-3 126.025 7.941.213.325 5.103.325 23.380
3D-1 9.221 42.518.031 2.418.035 608
3D-2 19.683 193.720.086 5.554.625 3.021
3D-3 35.937 645.751.953 10.644.935 16.290

All combinations Time (seconds)

Table 7.7: Computing time for the identification
of interacting nodes

Table 7.8: Computing time for the identification
of interacting nodes by only inspecting Gauss
points near the border

Example
Time (seconds)

Serial Parallel
2D-1 0.2 <0,1
2D-2 0.5 <0,1
2D-3 0.8 <0,1
3D-1 0.5 <0,1
3D-2 0.9 0.2
3D-3 1.6 0.3

2D-1 1,5 0,2
2D-2 4,5 0,7
2D-3 9,8 1,6
3D-1 20,1 2,8
3D-2 42,6 5,6
3D-3 85,6 11,2

Example
Time (seconds)

Serial Parallel

With this approach the identification of interacting nodes is improved, but it can be further

accelerated by noting that an interacting node may be in the lists of several Gauss points of N A , as

is node N B in Fig. 7.17. Since the number of influencing Gauss points of a node is large (1000 for

the majority of nodes in our 3D examples), there will be a large amount of duplicates in the process

(duplicates are discarded). To reduce the number of duplicates, it is appropriate to only inspect those

Gauss points that are near the border of the domain of influence of the node (Fig. 7.18). These

Gauss points reach the interactions with further away nodes while including all closer nodes. This

considerably reduces the time as can be seen in Table 7.8.

Following the identification of the interacting node pairs, the identification of shared Gauss points

is performed the least possible number of times, i.e. only once for every interacting node pair, in

contrast to the n (n+1)/2 times of the naive approach. This leads to a vast reduction of the required

amount of computing time compared to the naive approach (Table 7.6) as can be seen in Table 7.9.

The times presented are for the shared Gauss point identification via hash-tables, as described in

Section 7.4.

For further improvement, regioning (Fig. 7.19) can be utilized and the results are shown in Table

7.10. The Gauss regions may be the same as those in the correlation phase (Section 7.5.2.2) but can

also be different. Shared Gauss points are only searched within regions shared by both node pairs.

207

Fig. 7.18 Identifying interacting node pairs
by considering Gauss points near the border
of the domain of influence

Domain of influence

In both shared Gauss point identifications, with and without regions, each node pair can identify its

shared Gauss points independently of other node pairs, so parallelism offers very good

accelerations, as shown in Tables 7.9 and 7.10.

In the 2D examples considered, each region has 16 Gauss points and the results are slightly worse

with regioning because skipping 16 Gauss points per skipped region was not enough to compensate

for the added overhead. Higher number of Gauss points per region eventually makes regioning

worthwhile in the 2D examples. In the 3D examples, the extra dimension and the fact that each

region has 64 Gauss points makes regioning more important. Regioning benefits become greater as

the number of Gauss points per region increases.

208

Table 7.9: Computing time to identify the shared
Gauss points of an interacting node pair

Table 7.10: Computing time to identify the shared
Gauss points of an interacting node pair with
regioning

2D-1 2,1 0,4
2D-2 6,1 1,2
2D-3 8,8 1,5
3D-1 46,6 7,4
3D-2 135,6 18,8
3D-3 315,7 45,8

Example
Time (seconds)

Serial Parallel
2D-1 2,4 0,6
2D-2 6,8 1,6
2D-3 11,0 2,8
3D-1 24,9 4,8
3D-2 57,9 10,7
3D-3 118,0 22,4

Example
Time (seconds)

Serial Parallel

Fig. 7.19: Region-wise search for interacting nodes. Only
the shaded regions are inspected for shared Gauss points.

C CCC

C CCC

C C

C

C

C C

C

C

7.5.3 Domain of influence in IGA

The basic entities in IGA are control points and elements. The areas influencing a control point are

shown in Fig. 7.20 for various values of p in the 1D case. A comparison between the influencing

areas of a control point/node in IGA and FEA is depicted in Fig. 7.21, for 2D case and for different

p . It should be noted that the actual correlation is between control points and Gauss points.

Elements provide a convenient grouping so the correlations are easier to handle and store. Note that

this comparison does not imply the same accuracy for the two methods.

In FEA, each Gauss point is involved in computations with nodes within its own element only. The

shape functions and their derivatives are predefined for each element type and need to be evaluated

on all combinations of nodes and Gauss points within the element. In IGA, however, each Gauss

point is involved in computations with control points of the surrounding areas as well (Fig. 7.22),

while the shape functions are not predefined and span across larger domains with a significantly

higher amount of control point -Gauss point correlations.

For equivalent meshes, the bandwidth is the same between the two methods but IGA has a larger

amount of control point interactions and, consequently, denser stiffness matrices. Furthermore, the

computation of each non-zero coefficient is more laborious because the control point pairs have a

lot more shared elements (on average) and consequently significantly more Gauss points that

contribute to the final values.

209

Fig. 7.20. IGA 1D domains of influence of control points for various values of p.

p=4

p=3

p=5

p=2

210

Fig. 7.21. Areas influencing control point in:
(a) IGA (p odd); (b) IGA (p even); (c) FEA.
The influencing entities are the Gauss points in
the shaded areas.

Fig. 7.22. Control points/nodes influenced by
Gauss point in:
(a) IGA (p odd); (b) IGA (p even); (c) FEA.

any p any p

p=5

p=3

any p

(a)

(c)

p=1

p=4

(b)

p=2

 p=5

 p=4

 p=3

 p=2

 p=1

any p

(a)

(c)

(b)

7.5.3.1 Comparison with FEA

Table 7.11 gives a quantitative comparison of the total number of elements and Gauss points in IGA

and FEA for n=121 control points/nodes in each axis, for 2D and 3D simulations. A p+1

integration rule is adopted in both IGA and FEA for the sake of comparison. For large numbers n

of control points/nodes, the ratio of elements in IGA and FEA asymptotically approaches pd ,

where d is the dimension of the problem (Table 7.12). Since each element has the same number of

Gauss points in both IGA and FEA, the ratio holds for both elements and Gauss points.

Figs. 7.23 and 7.24 show a visual comparison when zooming in on a region of the domain with the

same number of control points/nodes. Variations in the number of correlations in the boundary of

the domain are ignored in the following analysis. Fig. 7.23 depicts the control points/nodes for even

numbers of p for IGA and p=2 for FEA, while Fig. 7.24 depicts them for odd numbers of p for

IGA and p=3 for FEA.

211

Table 7.11. Total elements and Gauss points in IGA and FEA, for n = 121 control points/nodes
and different p, in 2D and 3D square and cubic domains.

n = 121 Total Elements Total Gauss points
Ratio

p IGA FEA IGA FEA

2D

1 4 14,400 14,400 57,600 57,600 1.0
2 9 14,161 3,600 127,449 32,400 3.9
3 16 13,924 1,600 222,784 25,600 8.7
4 25 13,689 900 342,225 22,500 15.2
5 36 13,456 576 484,416 20,736 23.4

3D

1 8 1,728,000 1,728,000 13,824,000 13,824,000 1.0
2 27 1,685,159 216,000 45,499,293 5,832,000 7.8
3 64 1,643,032 64,000 105,154,048 4,096,000 25.7
4 125 1,601,613 27,000 200,201,625 3,375,000 59.3
5 216 1,560,896 13,824 337,153,536 2,985,984 112.9

GP per
Element

Table 7.12. Total elements in IGA and FEA with respect to p.

Total elements
IGA FEA

1D
2D
3D

IGA lim FEA lim
(n-p)1 n1 [(n-1)/p]1 (n/p)1

(n-p)2 n2 [(n-1)/p]2 (n/p)2

(n-p)3 n3 [(n-1)/p]3 (n/p)3

Table 7.13 shows the number of correlations of nodes with elements and Gauss points in 2D and 3D

problems for FEA. The first column shows the order p while the second shows the number of

Gauss points per element. The third column shows the number of nodes influenced by a Gauss point

or element. The next columns show the number of elements and the number of Gauss points

influencing a node. As can be seen from Figs. 7.23 and 7.24, there are variations as to how many

elements/Gauss points influence a node. Corner nodes have the max number of correlations, while

internal nodes are only affected by the Gauss points of the element they belong to, while side/edge

nodes are in-between.

212

Fig. 7.24. Visual comparison between (a)IGA p=odd; (b) FEA
p=3, for the same number of control points/nodes.

(a) (b)

Fig. 7.23. Visual comparison between (a)IGA p=even; (b)
FEA p=2, for the same number of control points/nodes.

(a) (b)

Table 7.14 shows the corresponding number of correlations of control points with elements and

Gauss points in 2D and 3D problems for IGA. In this case, the way in which a control point is

correlated with an element/Gauss point is different and there are no variations in the number of

Gauss points or elements affecting a control point.

In FEA each Gauss point affects only the nodes within its own element and the number of nodes is

increased with the order p . In IGA each Gauss point affects surrounding areas (range depending

on p), but the number of control points affected by each Gauss point is the same as the number of

influenced nodes in FEA. On the other hand, each control point is affected by more elements in IGA

than in FEA and consequently by a lot more Gauss points. The correlations are increasing much

faster in IGA than in FEA as p increases. Table 7.15 shows the number of Gauss points

213

Table 7.13. Correlations of nodes with elements and Gauss points for
FEA.

p

min max min max

2D

1 4 4 4 4 16 16
2 9 9 1 4 9 36
3 16 16 1 4 16 64
4 25 25 1 4 25 100
5 36 36 1 4 36 144

3D

1 8 8 8 8 64 64
2 27 27 1 8 27 216
3 64 64 1 8 64 512
4 125 125 1 8 125 1,000
5 216 216 1 8 216 1,728

GP per
element

Nodes
influenced by

GP/element

Elements
influencing

a node

Gauss Points
influencing

a node

Table 7.14. Correlations of control points with elements and Gauss
points for IGA.

p

2D

1 4 4 4 16
2 9 9 9 81
3 16 16 16 256
4 25 25 25 625
5 36 36 36 1,296

3D

1 8 8 8 64
2 27 27 27 729
3 64 64 64 4,096
4 125 125 125 15,625
5 216 216 216 46,656

GP per
element

Control points
influenced by

GP/element

Elements
influencing a
control point

Gauss points
influencing a
control point

influencing a control point/node with respect to p , demonstrating the growth rate.

It should be noted that in FEA corner nodes are constantly 4 or 8 (for 2D and 3D analysis

respectively) and the number of internal nodes increases faster than side/edge nodes. Thus, for

higher values of p , most nodes are internal and therefore the average number of Gauss

points/element influencing a node is closer to the min value than to the max value. Therefore, for

large problems (where deviations in the boundary can be ignored) and for increasing values of p ,

the amount of correlations in IGA are approaching the square of those in FEA.

7.5.3.2 Interactions

Due to the structured grid featured in IGA, the interacting control points associated with a specific

control point are those located within a fixed range dictated by the order p in each axis.

In FEA the nodes interact with nodes in adjacent elements only and thus the interacting node pairs

can be easily defined from the element-node connectivity (Fig. 7.25b). In IGA, however, a control

214

Table 7.15. Number of Gauss points influencing
a control point/node with respect to p.

Gauss points influencing a control point/node
Problem Type IGA

1D
2D
3D

FEA min FEA max
(p+1)2 (p+1)1 21 (p+1)1

(p+1)4 (p+1)2 22 (p+1)2

(p+1)6 (p+1)3 23 (p+1)3

Fig. 7.25. Interacting control points/nodes for p = 2: (a) IGA; (b) FEA.
(a) (b)

C

B

A

X

C

S

I

D

E

point pair is interacting if there is at least one (non-empty) element shared between the two control

points (Fig. 7.25a). Thus, control point X interacts with B,C,D, but not with A or E. If the basis

order is p , then the interacting control points extend up to p elements in all directions. This can

be observed for p=2 in Fig. 7.25a. The gray shaded regions are the influence domains of each

control point. The thick-lined rectangles in Fig. 7.25 include all control points/nodes that are

interacting with the corresponding control point/node.

Fig. 7.26 shows the interactions for p=3 . It also shows the case where there is a trivial knot span

on the y-axis. This creates a row of elements that are empty and affects interactions due to the

general definition of interaction that requires at least one shared Gauss point (see Section 7.5). As a

result, X and C are not interacting despite having a common element, since this element has no

Gauss points. Control points X and D are still interacting because there is one shared element with

Gauss points. The effect of a trivial knot span is that it limits the range of the interaction area in that

direction, as can be seen in Fig. 7.26. Similarly, multiple trivial knot spans further limit the range of

the interaction.

215

Fig. 7.26. IGA Interacting control points for p=3.

X

A

B

C

D

E

7.5.3.3 Interaction comparison with FEA for equal number of freedom degrees

Tables 7.16 and 7.17 show the number of interactions per control point/node. The max case for

FEA is equal to the case in IGA (assuming no trivial knot spans and ignoring boundaries). As it has

already been mentioned, internal nodes are increasing faster than other nodes as p increases, so the

average of FEA is going to be closer to the min values.

There are variations in the number of shared elements between two interacting control points/nodes

in both IGA and FEA. Closer nodes have many shared elements, as is the case of points A and E, or

only a single one, as is the case of distant elements like X and B in Fig. 7.25a and Fig. 7.26. In

FEA, the variations are limited to less shared elements: internal nodes only have a single shared

element with any of their interacting nodes, while non-internal nodes have at most 2, in 2D

problems, or 4, in 3D problems, shared elements with other non-internal nodes they interact with.

From the above analysis it is clear that the computational effort for assembling the stiffness matrix

in IGA is much higher than in FEA for the same number of freedom degrees.

216

Table 7.16. Interactions per control
point/node in IGA and FEA.

Interactions per control point/node
p IGA FEA min FEA max

2D

1 9 4 9
2 25 9 25
3 49 16 49
4 81 25 81
5 121 36 121

3D

1 27 8 27
2 125 27 125
3 343 64 343
4 729 125 729
5 1,331 216 1,331

Table 7.17. Interactions per control point/node
with respect to p.

Interactions per control point/node
Problem Type IGA FEA min FEA max

1D
2D
3D

(2p+1)1 (p+1)1 (2p+1)1

(2p+1)2 (p+1)2 (2p+1)2

(2p+1)3 (p+1)3 (2p+1)3

8 Formulation of the characteristic matrices

Matrix formulation can be an expensive part of the simulation, as has been established in Sections

7.5.2, 7.5.3 for MMs and IGA methods. This chapter defines the blueprints of two methods for

formulating the characteristic matrices (mostly having the stiffness matrix in mind) before getting

into simulation method specifics. The two methods that are explored are the standard contribution-

wise method and the parallel-friendly interaction-wise method.

8.1 The contribution-wise (CW) method for assembling a matrix

Assembly by summation of contributions is the typical, straightforward method for assembling

matrices with Gaussian quadrature. The matrix is built from the contributions of all Gauss points, as

follows:

K=∑
G

wG QG (8.1)

where wG is the weight factor of the Gauss point and QG is a matrix depending on the application.

In structural mechanics applications QG=BG
T E BG for FEA, MMs and IGA. The deformation

matrix BG is computed at the corresponding Gauss point and E is the constitutive matrix

describing the properties of the material. Two variants of the contribution-wise method are

considered. The first and more generic one handles Gauss points individually while the second is

suitable for element-driven simulations and handles groups of Gauss points through elements.

8.1.1 Gauss point-wise variant of the CW method

In the assembly by Gauss point, each Gauss point needs to be handled individually and may affect

different degrees of freedom and consequently different entries of the matrix. This is the most

generic approach and is the one which is typically used in methods which do not utilize elements,

like MMs. Two major factors that affect the performance of this process are: (i) the calculation of

the wG QG matrices which is performed at every Gauss point and (ii) the indexing time to append

the partial matrices to the global matrix. For MMs, these factors have been addressed in [93] and

achieved an acceleration of 10× . The indexing time for the contributions of each Gauss point to

the global stiffness matrix is further explored in this work.

217/362

In the Gauss point-wise assembly it is necessary to specify which nodes are affected by each Gauss

point. The strategy to obtain them can vary greatly. For example, in FEA the correlations can be

easily derived from the element connectivity whereas in MMs a geometric search needs to be

performed in order to identify them. Strategies for finding the correlations in MMs methods can be

found in [92]. The influenced nodes of each Gauss point are needed for the calculation of the

corresponding quadrature values (shape function derivatives for the stiffness matrix in the presented

structural mechanics examples) and for placing the contribution of the Gauss point in the

appropriate entries of the matrix.

8.1.2 Element-wise variant of the CW method

The assembly by element is the standard approach used in element-driven simulation methods, like

FEA and IGA. In a more general sense, this variant applies to any simulation method where a group

of Gauss points affect the same degrees of freedom and contribute to the same positions of the

matrix and thus can be treated in the same way. The Gauss point-wise assembly can be used in

element-driven simulations as well, but utilizing the grouping provided by the elements is highly

beneficial. It should be noted that, from the perspective of the assembly, the important entities are

still the Gauss points and the elements merely provide a natural grouping.

In this variant, instead of adding each individual Gauss point's contribution to the global matrix, the

process is firstly to build the matrix of each element by adding the contributions of all Gauss points

G of the element to its local matrix:

K E=∑
E G

wG QG=∑
EG

wG BG
T E BG (8.2)

Since all Gauss points of an element affect the same entries of the global matrix, making several

additions locally has significant savings on indexing time. After local assembly, the global matrix is

updated with the collective contribution of all Gauss points of the element:

K=∑
E

K E (8.3)

For an element with 64 Gauss points, the Gauss point-wise assembly would make 64 times more

global entry updates than the element-wise assembly. Thus, the grouping provided by elements

reduces the number of required global entry updates and thus mitigates the indexing cost.

218

In contrast to the sparse global matrix, the element's local matrix is usually fully populated – all

entries are non-zero – since it contains only the degrees of freedom relevant to the element. Thus,

dense matrix formats, which have very fast indexing, can be used without being wasteful.

Furthermore, working on the element level enables better utilization of memory locality which is

important in modern processors.

8.2 The interaction-wise (IW) method for assembling a matrix

The standard approach analyzed in the previous sections computes different parts of the sum of eq.

(8.1) and gradually sums them together. The interaction-wise approach computes the final values of

K ij submatrices and appends them to the matrix K . For each node combination i− j , K ij

describes the interactions between the two nodes. Each K ij is formed from contributions by those

Gauss points that are shared between the two nodes i− j :

K ij=∑
Sh.G

wG Qij=∑
Sh.G

wG Bi
T E B j (8.4)

Two nodes are interacting and therefore have a non-zero K ij if there is at least 1 Gauss point that

influences both nodes. We refer to these as shared Gauss points and they are a core part of the IW

method. An in-depth analysis of interactions in MMs and IGA is provided in Sections 7.5.2, 7.5.3.

8.2.1 IW variant with individual Gauss points

This is the generic version of the interaction-wise method and, similarly to the contribution-wise

assembly with Gauss points, each Gauss point needs to be handled separately and may affect

different degrees of freedom and consequently different entries of the matrix.

The computation of the stiffness elements for each interacting node pair is split in two phases. In the

first phase, the quadrature values for each influenced node of every Gauss point are calculated as in

the Gauss point-wise method. Then, instead of continuing with the calculation of the stiffness

matrix coefficients corresponding to a particular Gauss point, the quadrature values are stored for

the calculation of Qij matrices in the next phase. In our test cases, the memory needed for the

quadrature values (shape function derivatives) is relatively small compared to the overall amount of

memory needed for the initialization and assembly phases. In the second phase, the stiffness matrix

219

coefficients of each interacting node pair is computed. For each interacting node pair i− j , the

matrix wG Qij of eq. (8.4) is calculated over all shared Gauss points and summed to form the final

values K ij of the corresponding coefficients of the global matrix.

Both phases are amenable to parallelization - the first with respect to Gauss points and the second

with respect to interacting node pairs - and involve no race conditions or the need for

synchronization, which makes the interaction-wise approach an ideal method for massively parallel

systems.

8.2.2 IW variant for element-driven applications

In element-driven simulations, the Gauss points enclosed within an element are handled as a group,

so for each interacting node eq. (8.4) becomes:

K ij=∑
Sh.G

wG Qij=∑
Sh.E (∑GE

wG Qij)=∑Sh.E (∑GE

wG Bi
T E B j) (8.5)

The inner summation is performed over the Gauss points GE of an element E and calculates the

total contribution of element E pertaining to the interacting pair i− j , while the contribution of

each element is added by the outer summation to reach the final value for the coefficients of i− j

by the outer sum. For element-driven applications, it is more convenient to define interacting nodes

if there is at least one element that influences both nodes, but since the actual influencing entities

are the Gauss points, care must be taken in cases where elements may contain no Gauss points, a

situation which is possible in IGA.

220

8.3 Scatter-gather parallelism of the matrix assembly methods

The most important advantage of the interaction-wise approach is its amenability to parallelism,

especially in massively parallel systems. Since each Gauss entity may affect a large number of

nodal entities, as is the case in MMs and IGA, each K ij submatrix is formed by a large number of

Gauss entity contributions. Parallelizing the contribution-wise approach involves scatter

parallelism, which is schematically shown in Fig. 8.1 for two Gauss entities C and D . Each part

of the sum can be calculated in parallel but there are conflicting updates to the same entries of the

stiffness matrix. These race conditions can be avoided with proper synchronization but in massively

parallel systems, where thousands of threads may be working concurrently, it is very detrimental to

performance because all updates are serialized with atomic operations [94].

In the interaction-wise approach, instead of constantly updating the matrix, the final values for the

submatrix K ij of each interacting pair i− j are calculated and then appended to the matrix. For the

calculation of a submatrix K ij , all contributions of the Gauss entities belonging to the intersection

of the domains of influence of an interacting pair should be summed together. Thus, the interaction-

wise approach utilizes gather parallelism as shown schematically in Fig. 8.2.

In a parallel implementation, each thread prepares a submatrix K ij related to a specific interacting

pair i− j . It gathers all contributions from the Gauss entities and writes to a specific memory

location accessed by no other thread. Thus, this method requires no synchronization or atomic

operations.

221

222

Fig. 8.1: Scatter parallelism in the contribution-wise
approach.

Fig. 8.2: Gather parallelism in the interaction-wise
approach.

8.4 GPU implementation of the interaction-wise approach

The interaction-wise approach for the assembly of the stiffness matrix is well-suited for the GPU.

The calculations are split into two kernels, each one utilizing different levels of parallelism. There

are different versions for both phases depending on whether the analysis deals with individual

Gauss points or elements. GPU details are given in Chapter 4. The implementations in this work are

written in openCL for greater portability [93], [95].

8.4.1 Phase 1 – Calculation of quadrature values

In the first phase, application-specific quadrature values are calculated on the influenced entities of

every Gauss point. For example, in structural mechanics problems the shape function values are

needed for the mass matrix and the shape function derivatives are needed for the stiffness matrix. In

this phase, the calculations are performed at each Gauss point, so in element-driven simulations this

phase will need to access the Gauss points grouped by an element.

8.4.1.1 Individual Gauss point variant

In this section we demonstrate the calculation of quadrature values calculation for cases where

Gauss points are handled individually. The calculations are independent between Gauss points and

as such can be processed in parallel. Two levels of parallelism are exploited: the primary over the

Gauss points and the secondary over the influenced nodes. A thread block/group is assigned to each

Gauss point and each thread handles one influenced node at a time. This is schematically shown in

Fig. 8.3, where it is assumed that each thread handles a single influencing node. The number of

threads in a block/group is chosen as a power of two (see Section 4.7) but the number of influenced

nodes i is not necessarily a power of two. Thus, threads i+1 and i+2 do not have corresponding

influenced nodes.

The calculations on the nodes of a particular Gauss point are usually interdependent to each other.

For example, in EFG simulations the moment matrix, which is derived from contributions from all

influenced nodes, has to be calculated and inverted. Phases like these are not embarrassingly

parallel but the only synchronization needed is within a block of threads as each Gauss point is

completely independent from other Gauss points.

223

Since each Gauss point has its own thread block, all data related to a particular Gauss point is stored

in the shared/local memory. In EFG simulation, this includes the aforementioned moment matrix

and several vectors. Each thread is assigned to an influenced node so node-specific data can be

stored in registers or shared/local memory. Gauss point-specific data needs to be accessed by all

threads of the block assigned to that Gauss point, usually multiple times, so utilizing the

shared/local memory is most appropriate and greatly reduces expensive accesses to the global

memory. In fact, interaction with the global memory is performed only at the beginning of the

process, i.e. when loading input data, and at the end of the process where the resulting values are

written to the global memory. In both cases the accesses are coalesced. Constant memory is used for

storing analysis parameters, like the ranges of the influence domains (EFG) and can also be used for

storing nodal data (e.g. coordinates) which are needed by all blocks. However, the small size of the

224

Fig. 8.3: Thread organization in phase 1 for the individual Gauss point variant. A
thread block/group is assigned to Gauss point G and each thread of the
block/group is assigned to an influenced node N i of G.

...

G

N
2

N
3

N
1

N
i

... N
i-1

N
4

N
i+1

N
i+2

Thread Block/Group

constant memory (64KB total in contemporary GPUs) dictates that such data must be appropriately

small, otherwise the global memory needs to be used. Thus, all calculations are performed with data

found in fast memories.

8.4.1.2 Element variant

This variant utilizes elements and generally has better parallel behavior and memory utilization

because all Gauss points of a particular element have the same influenced nodes. Two levels of

parallelism are exploited here as well, the primary over the elements and the secondary over the

225

Fig. 8.4: Thread organization in phase 1 for the element variant. A thread
block/group is assigned to element E and each thread of the block/group is assigned
to a Gauss point Gi of E. Each thread iterates over all influenced nodes N j .

...

E

G
2

G
3

G
1

G
i

... G
i-1

G
4

G
i+1

G
i+2

Thread Block/Group

N
2

N
3

N
1

N
j

... N
j-1

N
4

Gauss points. A thread block/group is assigned to each element and each thread handles one Gauss

point at a time and iterates over all influenced nodes. The thread organization is schematically

shown in Fig. 8.4, where it is assumed that each thread handles a single Gauss point. There are i

Gauss points, but the block has a power-of-two number of threads, so excess threads do not have

corresponding Gauss points. Each thread iterates over the influenced nodes so the number of

influenced nodes is unrelated to the number of threads in a block/group and not subject to the

constraints outlined in Section 4.7.

The element variant has several favorable differences over the individual Gauss point variant. Each

element is assigned to a specific thread block and thus all values related to a particular element (i.e.

Gauss point values as well as nodal entity values) are stored in the shared/local memory so they can

be accessed efficiently by all threads in the block. The element values can be transferred to the

shared/local memory in a coalesced manner and node-related data are also shared within a block so

there is better usage of on-chip memories. Since all threads of a block iterate over the same number

of influenced nodes, they are all tasked with an equal amount of work and thus there is no thread

divergence which would have a negative impact on performance. The calculation of quadrature

values for each Gauss point is independent from other Gauss points and thus threads in a block need

no synchronization between them.

8.4.2 Phase 2 – Calculation of matrix entries

In the second and final phase, the submatrices K ij are calculated. For the sparse matrix format used

by the interaction-wise approach (COO), this entails the indexes and values of the submatrices. A

straightforward scheme is to process each interacting pair concurrently. For the GPU

implementation however, we opt for a second level of parallelism with respect to shared Gauss

points. The output data of the previous phase, namely the quadrature values, are used as input in this

phase. The quadrature values already reside in the GPU if calculated there, as described in the

previous section, otherwise they are copied there.

226

8.4.2.1 Two-level individual Gauss point variant

As in phase 1, there are two levels of parallelism, the primary one over interacting pairs and the

secondary one over Gauss points. A thread block/group is assigned to each interacting pair and each

thread of the block handles one Gauss point at a time. This is schematically shown in Fig. 8.5,

where it is assumed that each thread handles (up to) 3 shared Gauss points. In each of the first two

passes, the block handles a number of Gauss points equal to the number of threads j . In the last

pass, threads i+1 and i+2 of Fig. 8.5 do not have corresponding Gauss points because i is not

necessarily a multiple of the number of threads.

227

Fig. 8.5: Thread organization in phase 2 for the individual Gauss point variant showing
the threads assigned to the shared Gauss points G of interacting pair N A−N B .

...

G
2

G
3

G
1

G
j-2

... G
j-3

G
4

Thread Block/Group

N
A

N
B

G
j-1

G
j

...

G
j+2

G
j+3

G
j+1

G
2j-2

... G
2j-3

G
j+4

G
2j-1

G
2j

G
2j+2

G
2j+3

G
2j+1

G
i

... G
i-1

G
2j+4

G
i+1

G
i+2

In this phase, all threads of a block go through all available shared Gauss points of the interacting

pair and calculate the wG Qij submatrices (eq. 8.4), as described in section 8.2.1. Each thread t of

the block sums contributions from different shared Gauss points and updates its own partial K ij
t so

there is no need for atomic operations. After all shared Gauss points have been processed, the partial

K ij
t matrices of each thread of the block are summed with a parallel reduction into the final values

of the stiffness coefficients K ij . Each step of the parallel reduction strategy divides the number of

partial sums by half and ultimately produces the final sum after log2 N . Thread utilization within a

block is shown in Fig. 8.6.

Using the GPU for reductions, e.g. as part of a vector dot product, is a well-studied problem [71].

However, the reductions used in the proposed implementations are only within a group/block of

threads, not on a global level. That is, all reductions are within a block and not between blocks and

thus no global synchronization is needed. Furthermore, the aforementioned reductions exist only

because of an implementation choice: multiple threads are assigned to a pair so reductions are

needed to reach the final values for the corresponding pair, but those reductions are isolated within

that particular group of threads. If desired, a single thread can be assigned to each pair thus

obviating reductions. However, a block/group of threads is assigned to each pair due to the amount

228

Fig. 8.6: Phase 2: concurrency within a block/group for the
assembly phase in the GPU.

N threads

Active threads within block

N/2 threads

1 thread

Calculation of wG Qij

K ijSummation into

of work involved and in order to better utilize the particular properties of the GPU. It should also be

noted that only the fast shared/local memories are involved in the reductions.

8.4.2.2 Two-level element variant

This is similar to the individual Gauss point variant, except that the shared entities are elements

instead of Gauss points. The two levels of parallelism are the same as in the Gauss point variant, i.e.

the primary one over interacting pairs and the secondary one over Gauss points. A thread

block/group is assigned to each interacting pair and each thread of the block handles one Gauss

229

Fig. 8.7. Thread organization in phase 2 for the element variant showing the threads
assigned to the Gauss points G of the shared elements E of interacting pair N A−N B .

...

G
1,2

G
1,3

G
1,1

G
1,i-2

... G
1,i-3

G
1,4

Thread Block/Group

N
A

N
B

G
1,i-1

G
1,i

E
3

E
2

E
1

⋮ ⋮ ⋮

G
2,2

G
2,3

G
2,1

G
2,i-2

... G
2,i-3

G
2,4

G
2,i-1

G
2,i

G
3,2

G
3,3

G
3,1

G
3,i-2

... G
3,i-3

G
3,4

G
3,i-1

G
3,i

point from the shared elements at a time. In the individual Gauss point variant, each shared Gauss

point reference had to be done separately, but in this variant the shared entities are elements and

thus for each element referenced, there is a group of Gauss points that will need to be processed.

This leads to more efficient memory usage, because significantly fewer reads are required for the

same number of calculations than in the previous variant. Furthermore, the reads are more

coalesced. In fact, with enough number of Gauss points per element, the memory accesses can be

fully coalesced, thus utilizing the hardware more efficiently.

This variant is schematically shown in Fig. 8.7, where it is assumed that each thread handles only

one Gauss point from each of the three shared elements shown. Thread utilization within a block is

the same as in Fig. 8.6.

8.5 Memory layout of quadrature values for coalesced access

The quadrature values (e.g. shape function derivatives) are initially grouped by Gauss point since

this is the natural order for their calculation. This yields a memory layout which is depicted in Fig.

8.8 for an element with 4 Gauss points and 4 nodes. The quadrature values are needed in phase 2 of

the GPU implementation, but the values are accessed by nodal entity in the interaction-wise

approach instead of by Gauss point as in the contribution-wise approach. The values are scattered in

various memory locations and therefore accesses from consecutive threads are not going to be

coalesced.

In general, when accessing global memory, peak performance occurs when all threads in a warp

access continuous memory locations. Thus, the desired memory layout for an element with 4 nodes

and 4 Gauss points is the one depicted in Fig. 8.9. After the calculation of the quadrature values, a

transformation between the two memory layouts is performed. The transformation takes place

during phase 1 of the GPU implementation because it has conducive levels of parallelism (block →

elements, threads → Gauss points). The resulting memory layout ensures that consecutive threads

access consecutive memory locations, as shown in Fig. 8.9, thus achieving memory coalescence.

230

231

Fig. 8.9. Memory layout of quadrature values of an element “e”. The values are grouped together
by nodal entity (N), and each group contains values for all influencing Gauss points (G). This
leads to coalesced access pattern: consecutive threads access consecutive memory locations.

Processing N2

Processing N1

Element “e”

N1 N2 N3 N4

G3G2 G4G1 G3G2 G4G1 G3G2 G4G1G3G2 G4G1

Fig. 8.8. Memory layout of quadrature values of an element “e”. The values are grouped together
by Gauss point (G), and each group contains values for all influenced nodal entities (N). This
leads to non-coalesced access pattern: consecutive threads access non-consecutive memory
locations.

Processing N2

Processing N1

Element “e”

G1 G2 G3 G4

N3N2 N4N1 N3N2 N4N1 N3N2 N4N1 N3N2 N4N1

8.6 Utilization of available hardware

In order to take advantage of the available hardware, e.g. for processing by multiple GPUs, CPUs

and/or workstations which may contain several GPU(s) and CPU(s), the assembly of the matrix can

be split into multiple independent parts by exploiting the fact that interacting pairs in the

interaction-wise approach are completely independent to each other.

Ideally, the independent parts should be contiguous. Fig. 8.10 shows a group of nodes in the dark

shaded area that are assigned to a particular processor. For calculations pertaining to these nodes,

the processor needs access to the data inside the dark area as well as the data of the surrounding

area, denoted as a halo. The halo includes nodes interacting with the core nodes as well as all Gauss

points present in the core nodes' synergies. Since every part needs access only to the

aforementioned subset of the data, contiguous parts minimize the amount of data that would need to

be transferred to processors and the number of times quadrature values are re-calculated in different

processors. In IGA, MMs and FEA the GTX 680's 2GB of global memory is sufficient to handle

large enough chunks of the domain so that the halos are much smaller compared to the core. Newer

GPUs like the GTX Titan offer 6GB of global memory and thus can handle even larger chunks.

A simple partitioning scheme can be employed to create parts with approximately equal workload.

If the number of correlations is roughly the same across the domain, then a simple split into parts of

equal number of nodes is sufficient for providing approximately equal amount of work to the

232

Fig. 8.10: Fully processing the nodes of the
core also requires data from the halo
surrounding it.

Core Halo

processors. More sophisticated load balance can be achieved by inspecting the number of

interactions of the node as well as the synergies of the corresponding pairs. The load balancing

becomes even more complex in heterogeneous computing environments, where equal partitions

lead to idle times.

In a domain decomposition-based analysis, the matrix computation can be handled in different

ways. For large subdomains, the previously described techniques can be applied at the level of each

subdomain, resulting in multiple processors working concurrently to produce the characteristic

matrices of a subdomain. Smaller subdomains may be handled concurrently by different processors,

utilizing the natural parallelism offered in subdomain-based simulations. However, in the case of

very small subdomains, the hardware is underutilized if only one subdomain is processed by each

processor at a time. A reasonable approach in this case is to assign many subdomains per processor.

This is appropriate when the subdomains require much fewer resources than those available in a

processor. Sometimes, however, a particular resource may prevent assigning enough subdomains to

efficiently utilization of the hardware. For example, if a subdomain requires 51% of the global

memory of the GPU, a second subdomain cannot be assigned to the GPU due to insufficient

memory.

The fine-grained parallelism offered by the interaction-wise approach allows the implementation of

a better scheme. This scheme enables dynamic load balancing and it is applicable to all cases

discussed in this section while also providing high hardware utilization, even in a heterogeneous

environment. Interacting pairs are produced and added to a pool (Fig. 8.11). Processing can be done

by any available CPUs, GPUs or other processing units thanks to the huge amount of interacting

pairs and the fact that each pair is completely independent of other pairs. Each processor is supplied

with as many pairs as it can handle at a time in an asynchronous manner. Upon finishing a chunk of

pairs, a processor pulls another chunk from the pool, continuing until all pairs are exhausted.

233

234

Fig. 8.11: Schematic representation of the
processing of node pairs utilizing all
available hardware.

CPU 1 CPU 2 CPU n GPU 1 GPU 2 GPU m... ...

Subdomain
1

Subdomain
2

Subdomain
s

...

Processing of interacting pairs

Interaction pool

8.7 GPU accelerated formulation of the EFG stiffness matrix

The individual Gauss point variants of the assembly methods are used for the assembly of the EFG

stiffness matrix.

8.7.1 Computation of stiffness contribution for each Gauss point

8.7.1.1 Shape function derivative calculation

The shape functions in EFG formulation span across larger domains of influence than in FEA and

their evaluation is performed over a large number of correlated Gauss points-nodes. For the

evaluation of the deformation matrix B the shape functions and their derivatives are calculated

with the following procedure for each Gauss point (see Section 2.1): (i) Calculate the weight

function coefficients w , w , x , w , y , w , z for each node in the domain of influence of the Gauss

point. (ii) Calculate the moment matrix A and its derivatives, A x , A y , A z of the Gauss point

with contributions from all influenced nodes. (iii) Use the moment matrix and its derivatives along

with the weight coefficients to calculate the shape function and derivative values for all influenced

nodes of the Gauss point.

The moment matrix and its derivatives are functions of the polynomial p , which is a complete

polynomial of order q for any material point of the domain. In the case of a linear basis (see

Section 2.1), the moment matrix A and its derivatives are 3×3 or 4×4 matrices for 2D and 3D

elasticity problems, respectively. The contribution of each node to the moment matrix and its

derivatives is related to the product p pT . The moment matrix and its derivatives are given by:

A=∑
i

wi(p pT
)i , ∀ i∈Infl .Nodes

A x=∑
i

(w x)i(p pT
)i A y=∑

i

(w y)i(p pT
)i A z=∑

i

(w z)i(p pT
)i , ∀ i∈Infl . Nodes

(8.6)

Thus, the moment matrix consists of the following terms

A=[
∑

i

wi ∑
i

w i xi ∑
i

wi y i

∑
i

w i x i
2 ∑

i

wi x i y i

∑
i

wi y i
2] (8.7)

while similar expressions define its derivatives A x , A y , A z .

235

The shape function value Φi(x) associated with node i at point x and the derivatives while the

derivatives Φi , x , Φi , y , Φ i , z are given by

Φi (x)=pG
T A−1 wi pi (8.8)

Φ i , x=wi , x pG
T
(A−1 pi)+w i {0 1 0 0}(A−1 pi)+(−wi)pG

T A−1 A x(A
−1 pi)

Φ i , y=w i , y pG
T
(A−1 pi)+w i {0 0 1 0 }(A−1 pi)+(−w i)pG

T A−1 A y (A
−1 pi)

Φ i , z=w i , z pG
T
(A−1 pi)+w i {0 0 0 1 }(A−1 pi)+(−wi)pG

T A−1 A z(A
−1 pi)

(8.9)

where the polynomials pG and pi are evaluated at the Gauss point G and the influenced node i ,

respectively. In equations (8.8) and (8.9) the following operations are repeated for all influenced

nodes of a Gauss point:

pA
T=pG

T A−1 pAx=pA
T A x A−1 pAy=pA

T A y A−1 pAz=pA
T A z A−1 (8.10)

These matrix-vector multiplications can be reused in several calculations for every influenced node

of a particular Gauss point. For large size of the moment matrix A , the direct computation of its

inverse is burdensome, so an LU factorization is typically performed [2]. In this implementation, an

explicit algorithm is used for the inversion of the moment matrix in order to minimize the

calculations.

For each influenced node i , the following three groups of calculations are then performed:

Φi=wi pA
T pi

Φ i , x
(1)
=wi , x pA

T pi

Φ i , y
(1)
=w i , y pA

T p i

Φ i , z
(1)
=w i , z pA

T pi

Φ i , x
(2)
=wi {0 1 0 0 }(A−1 pi)

Φi , y
(2)
=w i {0 0 1 0 }(A−1 pi)

Φ i , z
(2)
=w i {0 0 0 1 }(A−1 pi)

Φ i , x
(3)
=−wi pAx

T pi

Φ i , y
(3)
=−wi pAy

T p i

Φ i , z
(3)
=−wi pAz

T pi

(8.11)

236

8.7.1.2 BTEB Calculation

A fast computation of the matrix product (Section 8.1):

QG=BT
G E BG (8.12)

is important because it is repeated at each integration point. This may not be so critical in FEA

compared to the total simulation time, but it is very important in MMs where the number of Gauss

points and the number of influenced nodes per Gauss point are both significantly greater.

The computations of eq. (8.12) can be broken into smaller operations for each combination of

influenced nodes i , j belonging to the domain of influence of the Gauss point:

Qij=Bi
T E B j=Q ji

T (8.13)

Once a submatrix Qij is calculated, it is added to the corresponding positions of the stiffness matrix

K . The computation of Qij together with the associated indexing to access the entries of K

dominate the total effort for the formulation of the global stiffness matrix [96].

The Qij for an isotropic material in 3D elasticity takes the form:

Qij
(3×3)

= Bi
T

(3×6)

E
(6×6)

B j
(6×3)

=[
Φ i , x 0 0 Φ i , y 0 Φ i , z

0 Φ i , y 0 Φ i , x Φ i , z 0
0 0 Φi , z 0 Φ i , y Φi , x

][
M λ λ
λ M λ
λ λ M

μ
μ

μ
][

Φ j , x 0 0
0 Φ j , y 0
0 0 Φ j , z

Φ j , y Φ j , x 0
0 Φ j , z Φ j , y

Φ j , z 0 Φ j , x

]

Q ij
(3×3)

=[
Φ i , x Φ j , x M +Φi , y Φ j , y μ+Φ i , z Φ j , z μ Φi , x Φ j , y λ+Φ i , yΦ j , x μ Φi , x Φ j , z λ+Φ i , zΦ j , x μ

Φi , y Φ j , x λ+Φ i , x Φ j , y μ Φ i , y Φ j , y Μ +Φ i , xΦ j , x μ+Φi , zΦ j , z μ Φ i , y Φ j , z λ+Φ i , zΦ j , y μ

Φ i , z Φ j , x λ+Φ i , x Φ j , z μ Φ i , z Φ j , y λ+Φ i , yΦ j , z μ Φi , zΦ j , z M +Φ i , yΦ j , y μ+Φ i , x Φ j , x μ]

(8.14)

E and Bi / B j are never formed. Instead three values for E , the two Lamé parameters λ , μ and

the P-Wave modulus M=2 μ+ λ and three values for Bi , specifically N i , x , N i , y , N i , z , are

stored. Since some of the multiplications are repeated, the calculations in eq. (8.14) can be

efficiently performed with 30 multiplications and 12 additions. More detailed analysis for the

BT E B calculation expanding to other types of material as well can be found in Appendix A.

237

8.7.2 Performance of the Gauss point-wise variant of the CW method

During the contribution-wise assembly, the global matrix coefficients are continually updated with

new contributions. Thus, a matrix format with fast indexing time is needed for quickly looking up

and updating the relevant matrix entries. This is especially important in the Gauss point-wise

variant since each individual Gauss point's contribution needs to be directly appended to the global

matrix. The dense and skyline formats feature very fast indexing time but require prohibitive

amount of memory in large-scale simulations. Thus, an efficient implementation for building the

stiffness matrix in sparse format is needed for the Gauss point-wise approach.

The sparse matrix formats are discussed more thoroughly in Section 5.6. Relevant details are

repeated here. The compressed sparse row (CSR) and compressed sparse column (CSC) are the

most widely used sparse formats. These formats are extensively used in linear algebra libraries and

the CSC is used in MATLAB. These formats are good for matrix operations but for the assembly

phase there are more suitable options like the dictionary of keys (DOK), the list of lists (LIL) and

the coordinate list (COO). The COO format maintains a list of row-column-value tuples while the

DOK format maintains a dictionary mapping of row-column tuples to values. The LIL format stores

one list per row, where each entry stores a column index and value, typically sorted. Note that, after

the assembly phase, the matrix should be converted to a format more suitable for the solution phase,

like CSR/CSC if sparse solvers are utilized.

There can be several variations in the implementations depending on the specific needs of the

application. For the contribution-wise matrix assembly, the process requires updating previous

values of the matrix, thus a sparse matrix type that allows fast lookups is needed. Updates happen a

large number of times for every non-zero element of the matrix, so they can take considerable

amount of time. Since our main concern is lookup, implementations that feature fast lookups are

desired. In particular, two types of implementation are tested (see Section 5.6.1.2): the first

implementation is backed by a single hash-table, whose keys are based on both the row and column

index of a particular element, and exhibits O(1) lookups. The second implementation has a list of

hash tables, one for each row instead of a single hash-table. The hash table for the appropriate row

is selected from the list, and a O(1) lookup is performed on that using only the column index as

key. Alternatively, a column-major approach, i.e. having one hash-table for each column can be

used. Both implementations have constant lookup time and space proportional to the number of

non-zero entries.

238

Table 8.1 provides relevant metrics for the EFG examples considered while Table 8.2 provides

computing times for the two sparse matrix builder implementations tested. The examples are run on

a Core i7-980X which has 6 physical cores (12 logical cores) at 3.33GHz and 12MB cache. All

floating point calculations are in double-precision arithmetic. Overall running time when using a list

of hash-tables was about 30% better compared to using a single hash table. The computing times

include the calculation of shape function derivatives and the matrix assembly. Both matrix

implementations utilize symmetry and store the upper triangle of the matrix.

Since the total formulation time is heavily affected by indexing time, a matrix format with better

indexing properties, like the skyline format (Section 5.5.2), would be very beneficial. The skyline

format stores the values in a column-wise manner from the diagonal up to the last non-zero entry of

the column. This means that zero entries in that span are included as well. All matrix entries are

stored in a preallocated vector and an additional vector is used to denote the index range of each

column. Thus, the skyline format exhibits faster indexing time but increased memory requirements

compared to a sparse matrix format which contains only non-zero entries.

239

Table 8.1: Metrics of the EFG 2D and 3D elasticity problems.

2D-1 4,110,003 128,367,712 31
2D-2 12,129,675 379,126,672 31
2D-3 20,287,275 634,249,872 31
3D-1 21,734,532 3,653,625,888 168
3D-2 49,932,576 8,438,820,768 169
3D-3 95,696,604 16,225,940,448 170

EFG
Example

Total non-zero
entries

Total entry
updates

Average updates
per entry

Table 8.2: Computing times for the formulation of the EFG stiffness
matrix with the Gauss point-wise method for different sparse matrix
builder implementations.

Time (s)
Ratio

Single Hash T. List of Hash T.
2D-1 9.8 7.6 1.28
2D-2 28 22 1.28
2D-3 44 34 1.28
3D-1 197 150 1.31
3D-2 506 386 1.31
3D-3 955 724 1.32

EFG
Example

Tables 8.3 and 8.4 compare the Gauss point-wise approach for building the stiffness matrix in EFG

methods when using sparse and skyline formats. The skyline format does perform better, as shown

in Table 8.3, but it stores significantly more elements, as shown in Table 8.4, and thus requires

considerably more memory compared to the sparse format. It should also be noted that the skyline

format is dependent on the numbering of nodes in the domain and the comparison is made with

optimum numbering. This dependency may lead to even more zeros stored in real-world

applications and further exacerbate the required memory of the skyline format, whereas sparse

formats always have the same amount of elements regardless of numbering.

240

Table 8.4: Stored entries comparison of the EFG stiffness
matrix when using sparse and skyline matrix formats.

Number of Stored Entries
Ratio

Skyline Sparse
2D-1 66,221,715 4,110,003 16
2D-2 331,150,875 12,129,675 27
2D-3 713,161,275 20,287,275 35
3D-1 136,041,444 21,734,532 6
3D-2 486,852,444 49,932,576 10
3D-3 1,343,011,428 95,696,604 14

EFG
Example

Table 8.3: Computing times for the formulation of the EFG
stiffness matrix when using sparse and skyline matrix
formats in the Gauss point-wise approach.

Time (s)
Ratio

Sparse Skyline
2D-1 7.6 7.3 1.05
2D-2 22 20 1.12
2D-3 34 31 1.10
3D-1 150 68 2.21
3D-2 386 174 2.21
3D-3 724 329 2.20

EFG
Example

8.7.3 Performance of the interaction-wise approach

The final values of each K ij submatrix are calculated and written once in the corresponding

positions of the global stiffness matrix instead of being gradually updated as in the contribution-

wise approach. Apart from the reduced number of accesses to the matrix, this method does not

require lookups, which allows the use of a simpler and more efficient sparse matrix format, like the

coordinate list (COO) format (Section 5.6.1.1). A simple implementation based on three arrays, one

for row indexes, one for column indexes and one for the value of each non-zero matrix coefficient is

sufficient and is easily applied both in the CPU and the GPU. The memory required is less than in

the implementations discussed in Section 8.7.2, though still proportional to the number of non-zero

entries. Note that the interaction-wise method has no indexing time due to its nature, in contrast to

the contribution-wise approach.

Table 8.5 shows the computing times required for the interaction-wise variant with Gauss points in

the EFG test examples. It can be seen that the interaction-wise approach performed better than the

contribution-wise approach with sparse formats (Table 8.2), but not from the memory-intensive

skyline format (Table 8.3).

241

Table 8.5: Computing times for the formulation of the
EFG stiffness matrix when using the interaction-wise
variant with individual Gauss points.

Time (s)

2D-1 9.3
2D-2 22
2D-3 36
3D-1 112
3D-2 269
3D-3 525

EFG
Example

8.7.4 GPU implementation of the interaction-wise approach

Contrary to the contribution-wise approach, the interaction-wise approach for the formation of the

stiffness matrix is well suited for the GPU. There are two phases, as described in Section 8.7.4.1,

and each one of the two phases is calculated with its own kernel and exhibits different levels of

parallelism. The implementations in in this section are written in openCL for greater portability.

8.7.4.1 Phase 1 – Calculation of shape function and derivative values

In the first phase the shape function and its derivatives are calculated for all influenced nodes of

every Gauss point. The calculations in this phase are described in detail in Section 8.7.1.1. There are

two levels of parallelism: the major over the Gauss points and the minor over the influenced nodes.

A thread block/group is assigned to each Gauss point and each thread handles one influenced node

at a time. This is schematically shown in Fig. 8.3 where N corresponds to nodes and G

corresponds to Gauss points.

For the most part of this phase all threads of a block are busy. The exceptions are the inversion of

the moment matrix A and the reductions which are used to sum the contributions of all influenced

nodes in the moment matrix A and the vectors pA , pAx , pAy , pAz . The process is shown

schematically in Fig. 8.12.

Since each Gauss point has its own thread block, all values related to a particular Gauss point are

stored in the shared/local memory. This includes the moment matrix and all vectors (pA , pAx ,

pAy , pAz). The interaction with the global memory is performed only at the beginning of the

process, where each thread reads the coordinates of the corresponding Gauss point and influenced

node and stores them in registers, and at the end of the process where the resulting shape function

values are written to the global memory. Constant memory is used for storing the ranges of the

influence domains. As a result, all calculations are performed with data found in fast memories

which is very beneficial from a performance point of view.

242

8.7.4.2 Phase 2 – Calculation of the global stiffness coefficients

In the second phase, there are also two levels of parallelism, the major one over interacting node

pairs and the minor one over Gauss points. The process closely follows the higher-level presentation

given in Section 8.4.2.1. A thread block/group is assigned to each node pair and each thread of the

block handles one Gauss point at a time. This is schematically shown in Fig. 8.5, where N

corresponds to nodes and G corresponds to Gauss points. More details for this phase are given in

Section 8.4.2.1.

243

Fig. 8.12: Phase 1 - Concurrency level for the
calculation of shape function values in the GPU

Evaluation of Weight Function

N threads

Calculation of partial moment matrices

N/2 threads

Summation into moment matrix

Threads working

Calculation of shape function values

2 threads

Calculation of vector and
partial vectors

pA

pAx pAy pAz

Summation into pAx pAy pAz

Inversion of moment matrix

1 thread

8.7.5 Performance of the GPU implementation of the interaction-wise approach

Table 8.6 shows the computing times needed for the GPU implementation of interaction-wise

variant with individual Gauss points. A GeForce GTX680 with 1536 CUDA cores and 2GB

GDDR5 memory is used. For this implementation, kernel 1 corresponds to phase 1 of the GPU

implementation, i.e. the calculation of the quadrature points, and kernel 2 corresponds to phase 2,

i.e. the calculation of the matrix coefficients.

8.7.6 Numerical results

Τhe individual Gauss point variants of the contribution-wise and interaction-wise approaches are

implemented and tested for the computation of the stiffness matrix in 2D and 3D structural

mechanics problems for EFG methods. The geometric domains of these problems maximize the

number of correlations and consequently the computational cost for the given number of nodes. The

test examples are run on the following hardware. CPU: Core i7-980X which has 6 physical cores

(12 logical cores) at 3.33 GHz and 12MB cache. GPU: GeForce GTX680 with 1536 CUDA cores

and 2GB GDDR5 memory. All floating point operations are in double precision.

Fig. 8.13 shows an overview of the numerical results obtained for EFG, which uses the individual

Gauss point variants of the contribution-wise (CW) and interaction-wise (IW) methods, while Table

8.7 shows the speedups of the GPU implementation compared to all CPU implementations.

Compared to the CW method with the best sparse matrix builder the speedup of the GPU

implementation is almost 60× , while with the skyline format the speedup is around 25× , but the

memory requirements are significantly higher (Table 8.4). Compared to the IW method in the CPU,

the speedup of the GPU implementation is about 40× .

244

Table 8.6: Computing times for the formulation of the EFG stiffness
matrix in the GPU implementation of the interaction-wise approach with
individual Gauss points.

Time (s)
Kernel 1 Kernel 2 Total

2D-1 0.05 0.19 0.2
2D-2 0.13 0.56 0.7
2D-3 0.21 0.89 1.1
3D-1 0.17 2.41 2.6
3D-2 0.32 6.17 6.5
3D-3 0.62 12.31 12.9

EFG
Example

In order to get the total time elapsed from the beginning of the simulation until the stiffness matrix

has been created, the time required to identify correlations, interactions and synergies is also be

taken into account. The best total elapsed time is shown in Table 8.8. In this implementation, the

bottleneck is the identification of synergies. The synergy identification is performed in the CPU and

245

Fig. 8.13: Overview of the numerical results obtained for EFG with the contribution-wise (CW) and
interaction-wise (IW) methods (individual Gauss point variants).

2D-1

2D-2

2D-3

3D-1

3D-2

3D-3

0.1 1 10 100 1000

CW Single Hash T. CW List of Hash T. CW Skyline

IW IW GPU

Time (s)

E
F

G
 E

xa
m

p
le

Table 8.7: EFG: speedups obtained with the GPU implementation
compared to the CPU implementations for the matrix formulation.

CW Skyline IW

2D-1 41 32 31 39
2D-2 41 32 29 32
2D-3 40 31 28 33
3D-1 76 58 26 44
3D-2 78 59 27 41
3D-3 74 56 25 41

EFG
Example

CW Single
Hash T.

CW List of
Hash T.

the formulation of the stiffness matrix in the GPU. Therefore, in a hybrid implementation, it is

possible to have the CPU producing synergies and the GPU processing them concurrently. A

projection of the time required in that case is shown in Table 8.9.

246

Table 8.8: Best achieved elapsed time until the finish of the formulation of the
stiffness matrix

Best achieved time (seconds)
Correlations Interactions Synergies Formulation Total

CPU parallel CPU parallel CPU parallel GPU

2D-1 0.5 <0.1 0.4 0.2 1.2
2D-2 1.0 <0.1 1.2 0.7 2.9
2D-3 1.4 <0.1 1.5 1.1 4.0
3D-1 0.9 <0.1 4.8 2.6 8.2
3D-2 1.7 0.2 10.7 6.5 19.1
3D-3 3.3 0.3 22.4 12.9 38.9

EFG
Example

Table 8.9: Best projected elapsed time until the finish of the formulation of the
stiffness matrix in a hybrid implementation

Best achieved time (seconds)
Correlations Interactions Synergies Formulation Total

CPU parallel CPU parallel CPU parallel GPU

2D-1 0.5 <0.1 0.4 0.9
2D-2 1.0 <0.1 1.2 2.2
2D-3 1.4 <0.1 1.5 2.9
3D-1 0.9 <0.1 5.0 5.9
3D-2 1.7 0.2 11.5 13.4
3D-3 3.3 0.3 24.0 27.6

EFG
Example

8.8 GPU accelerated formulation of the IGA stiffness matrix

The element variants of the assembly methods are used for the IGA stiffness matrix.

8.8.1 BTEB Calculation

Similarly to EFG, a fast computation of the matrix product (Section 8.1):

QG=BT
G E BG (8.15)

is important because it is repeated at each integration point. This may not be so critical in FEA

compared to the total simulation time, but it is very important in IGA where the number of Gauss

points and the number of influenced nodes/control points per Gauss point are both significantly

greater. The computations of eq. (8.15) can be broken into smaller operations for each combination

of influenced control points i , j belonging to the domain of influence of the Gauss point under

consideration:

Qij=Bi
T E B j (8.16)

Once a submatrix Qij is calculated, it is multiplied with the weight factor of the corresponding

Gauss point and then added to the appropriate positions of the element's stiffness matrix. The

computation related to Qij together with the associated entry updates of K are a significant part of

the total effort for the formulation of the global stiffness matrix.

The Qij for an isotropic material in 3D elasticity takes the form (same as EFG, but repeated here

for completeness):

Qij
(3×3)

= Bi
T

(3×6)

E
(6×6)

B j
(6×3)

=[
Φ i , x 0 0 Φ i , y 0 Φ i , z

0 Φ i , y 0 Φ i , x Φ i , z 0
0 0 Φi , z 0 Φ i , y Φi , x

][
M λ λ
λ M λ
λ λ M

μ
μ

μ
][

Φ j , x 0 0
0 Φ j , y 0
0 0 Φ j , z

Φ j , y Φ j , x 0
0 Φ j , z Φ j , y

Φ j , z 0 Φ j , x

]

Q ij
(3×3)

=[
Φ i , x Φ j , x M+Φi , y Φ j , y μ+Φ i , zΦ j , z μ Φi , x Φ j , y λ+Φ i , yΦ j , x μ Φi , x Φ j , z λ+Φ i , zΦ j , x μ

Φi , y Φ j , x λ+Φ i , x Φ j , y μ Φ i , y Φ j , y Μ +Φ i , xΦ j , x μ+Φi , zΦ j , z μ Φ i , y Φ j , z λ+Φ i , zΦ j , y μ

Φ i , z Φ j , x λ+Φ i , x Φ j , z μ Φ i , z Φ j , y λ+Φ i , yΦ j , z μ Φi , zΦ j , z M +Φ i , yΦ j , y μ+Φ i , x Φ j , x μ]

(8.1

7)

E and Bi / B j are never formed. Instead three values for E , the two Lamé parameters λ , μ and

the P-Wave modulus M=2 μ+ λ and three values for Bi , specifically N i , x , N i , y , N i , z , are

247

stored. Since some of the multiplications are repeated, the calculations in eq. (8.17) can be

efficiently performed with 30 multiplications and 12 additions. More detailed analysis for the

BT E B calculation expanding to other types of material as well can be found in Appendix A.

8.8.2 Performance of the element-wise variant of the CW method

During the contribution-wise assembly, the global matrix coefficients are continually updated with

new contributions. Unlike EFG, however, a lot of the updating work is offloaded to local

computations, so the importance of the sparse matrix builder is diminished. It is still a common

source of significant slowdown and must be handled appropriately. The implementations of the

DOK matrix format (Section 5.6.1.2) used in EFG (Section 8.7.2) are perfectly suitable for the

element-wise variant utilized in IGA, since they perform well in the much more intensive Gauss

point-wise variant.

Table 8.10 shows relevant metrics of the analyzed IGA examples, while Table 8.11 shows the

computing times for assembling IGA stiffness matrices with both variants of the contribution-wise

method. The examples are run on a Core i7-980X which has 6 physical cores (12 logical cores) at

3.33GHz and 12MB cache. The examples have no trivial knot spans in order to maximize the

number of calculations. All floating point calculations are in double-precision arithmetic. The

computing times include the calculation of shape function derivatives and the matrix assembly.

Table 8.10 shows the local and global updates required for the element-wise assembly. In the case

of the Gauss point-wise assembly, there are no extra global updates because all the local updates of

Table 8.10 are global since all contributions are directly added to the global stiffness matrix. Even

though the Gauss point-wise variant is applicable as well, Table 8.11 shows that making element-

level computations is significantly better.

Table 8.12 compares the element-wise approach for building the stiffness matrix when using sparse

and skyline format. Although the skyline format offers very fast indexing times (almost the same as

the dense format) it stores an increasingly higher number of stiffness elements, as shown in Table

8.13, and thus imposes restrictions in memory requirements of large-scale simulations. Tables 8.12

and 8.13 show that the employed sparse matrix implementation is very close to the skyline format

in terms of the required computing time, while storing a significantly lower amount of stiffness

elements.

248

249

Table 8.10: Metrics of the IGA 2D and 3D elasticity problems.

2D-P2-1 2,554,947 76,532,931 30 8,503,659 3.3 9
2D-P2-2 12,690,072 381,678,156 30 42,408,684 3.3 9
2D-P2-3 20,359,251 612,769,779 30 68,085,531 3.3 9
2D-P3-1 4,936,563 416,351,232 84 26,021,952 5.3 16
2D-P3-2 10,030,368 848,931,072 85 53,058,192 5.3 16
2D-P3-3 14,773,776 1,252,204,800 85 78,262,800 5.3 16
2D-P4-1 4,058,400 775,710,000 191 31,028,400 7.6 25
2D-P4-2 8,090,675 1,556,806,875 192 62,272,275 7.7 25
2D-P4-3 12,129,675 2,340,931,875 193 93,637,275 7.7 25
3D-P2-1 3,182,649 440,533,971 138 16,316,073 5.1 27
3D-P2-2 8,606,172 1,239,556,608 144 45,909,504 5.3 27
3D-P2-3 18,142,461 2,671,269,597 147 98,935,911 5.5 27
3D-P3-1 7,982,313 4,857,004,032 608 75,890,688 9.5 64
3D-P3-2 11,085,579 6,915,538,944 624 108,055,296 9.7 64
3D-P3-3 22,134,864 14,427,531,264 652 225,430,176 10.2 64
3D-P4-1 6,849,000 11,729,437,500 1,713 93,835,500 13.7 125
3D-P4-2 10,594,236 19,361,062,500 1,828 154,888,500 14.6 125
3D-P4-3 15,503,568 29,742,187,500 1,918 237,937,500 15.3 125

IGA
Example

Total non-zero
entries

Total local entry
updates

Average local
updates/entry

Total global
entry updates

Average global
updates/entry

Local/Global
update ratio

Table 8.11: Computing times for the formulation of the IGA
stiffness matrix with the Gauss point-wise and element-wise
approaches.

Time (seconds)
Speedup ratio

Gauss p.-wise Element-wise
2D-P2-1 6.5 5.1 1.3
2D-P2-2 27 20 1.3
2D-P2-3 53 32 1.7
2D-P3-1 23 14 1.6
2D-P3-2 44 27 1.7
2D-P3-3 81 39 2.0
2D-P4-1 34 19 1.8
2D-P4-2 65 36 1.8
2D-P4-3 97 57 1.7
3D-P2-1 21 7.6 2.7
3D-P2-2 50 21 2.5
3D-P2-3 127 43 3.0
3D-P3-1 201 59 3.4
3D-P3-2 255 83 3.1
3D-P3-3 517 168 3.1
3D-P4-1 415 131 3.2
3D-P4-2 695 218 3.2
3D-P4-3 1,230 333 3.7

IGA
Example

250

Table 8.12. Single core CPU computing time for the formulation of the stiffness
matrix in the element-wise (EW) approach with sparse and skyline storage.

dof
Time (seconds)

Ratio
Sparse Skyline

2D-P2-1 101,250 5 4 1.2
2D-P2-2 500,000 20 17 1.2
2D-P2-3 801,378 32 27 1.2
2D-P3-1 101,250 14 13 1.1
2D-P3-2 204,800 27 25 1.1
2D-P3-3 301,088 39 35 1.1
2D-P4-1 51,200 19 18 1.1
2D-P4-2 101,250 36 34 1.1
2D-P4-3 151,250 57 52 1.1
3D-P2-1 20,577 8 8 1.0
3D-P2-2 52,728 21 18 1.1
3D-P2-3 107,811 43 37 1.2
3D-P3-1 20,577 59 54 1.1
3D-P3-2 27,783 83 75 1.1
3D-P3-3 52,728 168 154 1.1
3D-P4-1 10,125 131 128 1.0
3D-P4-2 14,739 218 216 1.0
3D-P4-3 20,577 333 323 1.0

IGA
Example

Table 8.13. Number of stored stiffness elements for skyline and sparse storage.

Example dof
Number of Stored Elements

Ratio
Skyline Sparse

2D

P2-1 101,250 91,071,675 2,554,947 36
P2-2 500,000 999,744,000 12,690,072 79
P2-3 801,378 2,028,680,811 20,359,251 100
P3-1 101,250 136,226,475 4,936,563 28
P3-2 204,800 392,296,720 10,030,368 39
P3-3 301,088 699,568,656 14,773,776 47
P4-1 51,200 64,992,000 4,058,400 16
P4-2 101,250 181,177,875 8,090,675 22
P4-3 151,250 331,150,875 12,129,675 27

3D

P2-1 20,577 43,366,569 3,182,649 14
P2-2 52,728 209,681,004 8,606,172 24
P2-3 107,811 693,626,571 18,142,461 38
P3-1 20,577 63,172,473 7,982,313 8
P3-2 27,783 104,801,445 11,085,579 9
P3-3 52,728 308,053,200 22,134,864 14
P4-1 10,125 24,421,500 6,849,000 4
P4-2 14,739 46,342,884 10,594,236 4
P4-3 20,577 81,740,508 15,503,568 5

8.8.3 Performance of the interaction-wise approach

The final values of each K ij submatrix are calculated and written once in the corresponding

positions of the global stiffness matrix instead of being gradually updated as in the contribution-

wise approach. This method does not require lookups, which allows the use of a simpler and more

efficient sparse matrix format, like the coordinate list (COO) format (Section 5.6.1.1). A simple

implementation based on three arrays, one for row indexes, one for column indexes and one for the

value of each non-zero matrix coefficient is sufficient and is easily applied both in the CPU and the

GPU. The memory required is less than in the DOK implementations used in the contribution-wise

approach, though still proportional to the number of non-zero entries. Note that the interaction-wise

method has no indexing time due to its nature, in contrast to the contribution-wise approach.

Table 8.14 shows the computing times required for the interaction-wise variant with elements in the

IGA test examples. Our implementation of the interaction-wise approach (Table 8.14) performed

better than the contribution-wise approach (Table 8.12). Regardless of the relative performance of

the two methods, the most important advantage of the interaction-wise approach is its amenability

to parallelism which is discussed in later sections.

251

Table 8.14: Computing times for the formulation of the IGA stiffness matrix when using
the interaction-wise variant with elements.

Example
Time (seconds)

Shape Functions Assembly Total

2D

P2-1 101,250 2 2 4
P2-2 500,000 10 6 17
P2-3 801,378 17 10 27
P3-1 101,250 7 5 12
P3-2 204,800 13 10 23
P3-3 301,088 18 16 34
P4-1 51,200 8 8 16
P4-2 101,250 15 17 31
P4-3 151,250 21 26 47

3D

P2-1 20,577 2 4 7
P2-2 52,728 6 10 17
P2-3 107,811 12 23 36
P3-1 20,577 9 33 42
P3-2 27,783 12 46 58
P3-3 52,728 24 95 119
P4-1 10,125 11 73 84
P4-2 14,739 18 123 141
P4-3 20,577 27 184 211

dof

8.8.4 GPU implementation of the interaction-wise approach

Contrary to the contribution-wise approach, the interaction-wise approach for the formation of the

stiffness matrix is well suited for the GPU. There are two phases, as described in Section 8.4, and

each one of the two phases is calculated with its own kernel and exhibits different levels of

parallelism. The implementations in in this section are written in openCL for greater portability.

8.8.4.1 Phase 1 – Calculation of shape function and derivative values

In the first phase, the shape functions and their derivatives are calculated for all influenced nodes of

every Gauss point. All Gauss points of a particular element have the same influenced nodes. There

are two levels of parallelism: the major over the elements and the minor over the Gauss points. A

thread block/group is assigned to each element and each thread handles one Gauss point at a time

and iterates over all influenced nodes. Since all threads iterate over the same number of influenced

nodes, there is no thread divergence which would have a negative impact on performance. The

thread organization is schematically shown in Fig. 8.4, where N corresponds to control points, E

corresponds to elements and G corresponds to Gauss points.

For the most part of this phase all threads of a block are busy (Fig. 8.14). The exceptions are in the

first step, which loads B spline values for each axis into the shared/local memory, and in the last

step which rearranges the output values, as described in Section 8.5. Since each element has its own

thread block, all values related to a particular element are stored in the shared/local memory so they

can be accessed efficiently by all threads in the block. In particular, all B-spline values and their

derivatives (for all axes) that are relevant to the element assigned to this block are needed by each

thread for processing all influenced nodes. The constant memory is used for storing values such as

the number of influenced control points per element, the number of influenced Gauss points per

element, the number of Gauss points per axis in each element, etc. As a result, many calculations

are performed with data found in fast memories which is very beneficial from a performance point

of view.

252

8.8.4.2 Phase 2 – Calculation of the global stiffness coefficients

In the second phase, there are also two levels of parallelism, the major one over interacting node

pairs and the minor one over Gauss points. The process closely follows the higher-level presentation

given in Section 8.4.2.2. A thread block/group is assigned to each node pair and each thread of the

block handles one Gauss point at a time. This is schematically shown in Fig. 8.7, where N

corresponds to nodes and G corresponds to Gauss points. More details for this phase are given in

Section 8.4.2.2.

253

Fig. 8.14. IW approach: Phase 1 - Concurrency
within a block/group of threads for the
calculation of shape function values in the GPU

N threads

Calculation of weighting function
values and derivatives

Active threads within block

Calculation of Cartesian shape function values

Calculation of natural shape function derivatives
and Jacobian Matrix

Calculation of Jacobian inverse and
Jacobian determinant

B-Spline values and derivatives per axis
into Shared/Local Memory

Rearranging output values

8.8.5 Performance of the coalesced and non-coalesced GPU implementations of the interaction-wise
approach

Tables 8.15 and 8.16 show the computing time needed for the non-coalesced and coalesced GPU

implementations, respectively, of the interaction-wise variant with elements. A GeForce GTX680

with 1536 CUDA cores and 2GB GDDR5 memory is used. In the non-coalesced implementation,

kernel 1 and kernel 2 correspond to phase 1 and phase 2, respectively, of the process outlined above.

However, in the coalesced implementation, kernel 1 is also tasked with rearranging the values in the

preferred memory layout, as described in Section 8.5. As a result, it takes slightly longer in the

coalesced version in order to rearrange the values, but the benefits on the second phase are clear.

The speedup ratio between the two versions is also shown in Table 8.16.

254

Table 8.15: Computing times for the formulation of the IGA
stiffness matrix in the non-coalesced GPU implementation of the
interaction- wise approach with elements.

Time (seconds)
Kernel 1 Kernel 2 Total

2D-P2-1 0.05 0.08 0.1
2D-P2-2 0.22 0.36 0.6
2D-P2-3 0.34 0.55 0.9
2D-P3-1 0.12 0.28 0.4
2D-P3-2 0.23 0.56 0.8
2D-P3-3 0.34 0.79 1.1
2D-P4-1 0.17 0.48 0.6
2D-P4-2 0.31 0.90 1.2
2D-P4-3 0.44 1.37 1.8
3D-P2-1 0.06 0.20 0.3
3D-P2-2 0.14 0.54 0.7
3D-P2-3 0.30 1.13 1.4
3D-P3-1 0.28 2.77 3.1
3D-P3-2 0.40 3.95 4.3
3D-P3-3 0.77 8.27 9.0
3D-P4-1 0.37 7.52 7.9
3D-P4-2 0.61 12.5 13.1
3D-P4-3 0.88 18.9 19.8

IGA
Example

8.8.6 Numerical results

Fig. 8.15 shows an overview of the numerical results obtained for IGA, which uses element variants

of the CW and IW methods. Table 8.17 shows the speedups of both non-coalesced and coalesced

GPU implementations compared to the CPU implementations, with the exception of the speedup of

the CW variant without elements (i.e. the Gauss point-wise variant) because it is misrepresentative.

The coalesced GPU implementation offers speedup up to 85× compared to the CW method and up

to 55× compared to the IW method.

255

Table 8.16: Computing times for the formulation of the IGA stiffness matrix in
the coalesced GPU implementation of the interaction-wise approach with
elements.

Time (seconds)
Kernel 1 Kernel 2 Total

P2-1 0.05 0.08 0.1 1.0
P2-2 0.23 0.34 0.6 1.0
P2-3 0.35 0.53 0.9 1.0
P3-1 0.13 0.18 0.3 1.3
P3-2 0.23 0.35 0.6 1.4
P3-3 0.36 0.51 0.9 1.3
P4-1 0.21 0.20 0.4 1.6
P4-2 0.38 0.38 0.8 1.6
P4-3 0.60 0.54 1.1 1.6
P2-1 0.07 0.10 0.2 1.5
P2-2 0.18 0.25 0.4 1.6
P2-3 0.38 0.51 0.9 1.6
P3-1 0.37 0.56 0.9 3.3
P3-2 0.51 0.78 1.3 3.4
P3-3 1.03 1.61 2.6 3.4
P4-1 0.49 1.07 1.6 5.1
P4-2 0.80 1.79 2.6 5.1
P4-3 1.19 2.68 3.9 5.1

IGA
Example

Speedup
Ratio

256

Fig. 8.15: Overview of the numerical results obtained for IGA with the contribution-wise (CW)
and interaction-wise (IW) methods (element variants, except “CW w/o elements”).

2D-P2-1

2D-P2-2

2D-P2-3

2D-P3-1

2D-P3-2

2D-P3-3

2D-P4-1

2D-P4-2

2D-P4-3

3D-P2-1

3D-P2-2

3D-P2-3

3D-P3-1

3D-P3-2

3D-P3-3

3D-P4-1

3D-P4-2

3D-P4-3

0.1 1 10 100 1000

1230

Influence-wise w/o elements Influence-wise with elements Interaction-wise

Non-coalesced GPU Coalesced GPU

Times (s)

IG
A

 E
xa

m
p

le

The cost of the EFG examples greatly differs from the cost of the IGA examples due to several

reasons. IGA has significantly more Gauss points per dof than EFG, as can be seen in Tables 2.2,

2.3. More importantly, the number of N-G and G-N correlations is higher in IGA than in EFG. Each

EFG node is influenced by an average of 100 and 1000 Gauss points in 2D and 3D respectively,

whereas each IGA control point is influenced by 256 and 4,096 (p=3) or 625 and 15,625 (p=4)

in 2D and 3D respectively. On the other hand, Gauss points in IGA are handled in groups and not

individually, as in MMs. These two competing factors make the cost characteristics very different

between the two simulation methods.

The speedups of Table 8.17 are in the same tier within a group of examples, but differ between

groups. In the 3D examples, for p=3 , there are 64 Gauss points in each element, whereas for

p=4 there are 125 Gauss points in each element. As a result, there are more calculations per

memory access for p=4 than for p=3 . Data transferred to the shared/local memory of a thread

257

Table 8.17: IGA: Speedups obtained with the non-coalesced and coalesced GPU
implementations compared to the CPU implementations.

Non-coalesced Coalesced
CW IW CW IW

2D-P2-1 38 32 39 33
2D-P2-2 35 29 36 30
2D-P2-3 36 30 36 30
2D-P3-1 36 30 46 39
2D-P3-2 34 30 46 40
2D-P3-3 35 30 46 39
2D-P4-1 29 25 47 40
2D-P4-2 30 26 49 42
2D-P4-3 31 26 50 42
3D-P2-1 30 27 46 41
3D-P2-2 30 25 49 40
3D-P2-3 30 25 49 41
3D-P3-1 19 14 63 45
3D-P3-2 19 13 64 45
3D-P3-3 19 13 64 45
3D-P4-1 17 11 84 54
3D-P4-2 17 11 84 54
3D-P4-3 17 11 86 54

IGA
Example

block are reused more times. Furthermore, in the second phase of the GPU implementation, each

shared element contains more Gauss points to process. There are also more interacting pairs and

more shared elements per pair. These reasons make the coalesced GPU implementation perform

increasingly better as p increases, but the non-coalesced GPU implementation performs

increasingly worse. The latter is because of the memory layout of the non-coalesced implementation

(Section 8.5): higher values of p lead to more distant memory accesses while also further

preventing the cache to improve the situation by avoiding some of the global memory accesses.

8.9 Remarks

Several numerical simulation methods, among them meshless and isogeometric analysis methods,

exhibit expensive matrix computation. This is attributed to the significantly increased number of

correlations as well as interactions, caused by extended domains of influence and/or large number

of Gauss points required. More interactions also imply more non-zeros in the characteristic matrices

leading to increased computational effort for the matrix assembly as well as solution of the resulting

algebraic equations. The cost of the matrix assembly per se is significant and must be handled

accordingly to enable real-word applications of these numerical simulation methods.

The contribution-wise (CW) approach is the typical approach for assembling matrices with Gauss

quadrature. For simulation methods with a large number of contributions to the global matrix, a fine

tuned matrix format for the assembly phase can greatly improve the performance properties of the

CW approach. Dense or skyline formats feature fast indexing but use considerably more memory

than sparse formats and thus can be prohibitive for large scale simulations. Sparse matrix formats

have the lowest memory cost but higher indexing cost, so sparse formats specifically tailored for the

assembly phase are used in this work.

The interaction-wise (IW) method has several advantages with respect to the CW approach. The

most important one is its amenability to parallelism especially in massively parallel systems like the

GPUs. Each interacting pair can be processed separately by any available processor in order to

compute the corresponding submatrix. The IW approach is characterized as “embarrassingly

parallel” since it requires no synchronization whatsoever between pairs.

A GPU implementation is applied to the IW approach offering great speedups compared to CPU

implementations. The interacting pairs keep the GPU constantly busy with calculations resulting in

258

high hardware utilization which is evidenced by the high speedup ratios of approximately two

orders of magnitude in the test examples presented with a single GPU. The IW approach offers

great portability since it can be applied as is to any available hardware achieving even lower

computing times when combined with many GPUs, hybrid CPU(s)/GPU(s) implementations and

generally any available processing unit. The importance of this flexibility becomes apparent when

considering contemporary and future developments like heterogeneous computing systems

architecture.

In conclusion, the parametric tests performed in the framework of this study showed that with the

proposed implementation along with the exploitation of currently available low cost hardware, the

expensive formulation of Gauss quadrature-based matrices can be reduced by orders of magnitude.

The presented interaction-wise approach enables the efficient utilization of any available hardware

and in conjunction with fast initialization and its inherently parallelization features can accomplish

high speedup ratios, which convincingly addresses the main shortcoming of simulation methods

like MMs and IGA, which is the computational cost for the assembly characteristic matrices and

making them computationally competitive in solving large-scale problems.

259

260

9 Overview and concluding remarks

This work explores massively parallel computer implementations for the most widely used

simulation method, namely the finite element method (FEM/FEA), as well as meshless methods

(MMs) and isogeometric analysis methods which have recently attracted a lot of interest from the

scientific community. The main drawback of MMs and IGA when addressing real-world problems

is the significantly increased cost for the formulation of the characteristic matrices. This is

attributed to the excessive number of correlations as well as interactions, caused by extended

domains of influence and/or large number of Gauss points required for the numerical integration.

More interactions also imply more non-zeros in the characteristic matrices leading to increased

computational effort for the matrix assembly as well as for the solution of the resulting algebraic

equations. The cost of the matrix formulation is significant and must be handled accordingly to

enable real-word applications of these numerical simulation methods. Therefore, in order to make

them affordable in large-scale simulations, these methods require massively parallel algorithms not

only for the solution phase of the algebraic equations but also for the assembly phase of the

characteristic matrices.

Domain decomposition methods are used for the solution phase because they allow the exploitation

of the natural parallelism offered by the subdivision of the physical domains to a number of

subdomains. The primal domain decomposition method is briefly described followed by an

extensive presentation of the dual domain decomposition method (DDM/FETI), which is used in

this work. The basic ingredients of FETI are presented, including floating subdomains which

constitute a particular characteristic of the method. The solution of the linear equations of the FETI

interface problem is discussed along with preconditioners and implementation considerations.

Graphics processing units (GPUs) and their characteristic properties are thoroughly presented. In a

massively parallel context, GPUs are particularly interesting. This is due to their low cost, low

energy consumption and high performance. GPUs are parallel devices of the SIMD (single

instruction, multiple data) classification and require a large number of threads to be effectively

utilized (thousand, usually more). As a result, the principles of massively parallel programming

directly apply to GPUs. GPU technology has matured considerably in the last years and is currently

improving at a very fast pace. The implementation details presented need to be considered in any

GPU implementation and are thus vital for the efficiency of the simulation methods considered in

261/362

this work.

The matrices involved in the simulation phase need to be handled appropriately. Matrix storage and

matrix operations are important performance factors for large-scale simulations. The choice of an

appropriate format for the task at hand may significantly affect performance. Matrix formats that

are commonly used in simulations are presented along with appropriate storage schemes and

implementation considerations. These include dense, banded, skyline formats as well as a variety of

sparse formats.

The implementation of the FETI domain decomposition method in a hybrid CPU-GPU environment

is presented along with supporting numerical results. The solution of the subdomain problems was

performed both with a direct Cholesky solver as well as with an iterative PCG solver. The FETI

version with the direct Cholesky solver performed better than the PCG solver in the tests considered

and with different workstation configurations. This is attributed to the dynamic load balancing

implementation of the factorization and forward backward substitution tasks. However, the

performance improvement with the faster GPU is more pronounced with the PCG solver than with

the Cholesky solver as a result of faster GPU execution of sparse matrix-vector multiplications

(SpMV) which dominate the performance of PCG. Fine-grained subdivisions gave much better

results than coarse-grained subdivisions particularly for the Cholesky solver of the subdomain

problems. This is due to the high cost of the factorization for large subdomains in connection to the

numerical scalability of FETI, where the convergence of the PCPG algorithm is not sensitive to the

size of the interface problem. The performance of FETI with the PCG solver is less susceptible to

the number of subdomains since it is dominated by the SpMV which are performed with the same

efficiency by the workstation components irrespective of the size of the matrices and the

corresponding vectors.

An important aspect of the hybrid FETI implementation is the dynamic load-balancing. The

dynamic load balancing with task parallelism and the parallel implementation of the SpMV

multiplications and dot products ensure that all components of the workstation are constantly busy

with calculations resulting in full exploitation of their computing resources. This is evidenced by

the high speedup ratios achieved in the test example for all hardware combinations and different

number of subdomains. The dynamic load balancing allows the efficient utilization of different

CPUs and GPUs as well as any number of CPU cores or GPUs, while making sure that all

components are used to their full capacity.

262

Relations between the basic entities (nodes, Gauss points, control points) are needed for quadrature-

based simulation methods and need to be identified at the start of the simulation. Relations are

presented in an abstract manner to cover all quadrature-based methods before being applied to the

specific simulation methods used in this work (FEA, MMs, IGA). The domain of influence and its

particular characteristics is also extensively discussed for each simulation method. The domain of

influence is a fundamental factor that dictates the density and cost of the characteristic matrices of

each method. A cost comparison of MMs and IGA with FEM is included to further highlight the

differences and challenges between the methods. Generic techniques are presented for the

identification of the relations. Furthermore, in the case of MMs where the identification is quite

laborious, efficient algorithms are presented to improve the cost of identification.

The formulation of the characteristic matrices in MMs and IGA take considerable time and thus

needs to be appropriately handled. Two primary formulation methods are presented: the standard

contribution-wise (CW) method and the parallel-friendly interaction-wise (IW) method. Both

methods have two variants, one that handles Gauss points explicitly and one that handles Gauss

points as part of elements (or other groups). The CW approach is the typical approach for

assembling matrices with Gauss quadrature. For simulation methods with a large number of

contributions to the global matrix, a fine tuned matrix format for the assembly phase can greatly

improve the performance properties of the CW approach. Dense or skyline formats feature fast

indexing but use considerably more memory than sparse formats and thus can be prohibitive for

large-scale simulations. Sparse matrix formats have the lowest memory cost but higher indexing

cost, so sparse formats specifically tailored for the assembly phase are used in this work. The IW

method has several advantages with respect to the CW approach. The most important one is its

amenability to parallelism especially in massively parallel systems like the GPUs. Each interacting

pair can be processed separately by any available processor in order to compute the corresponding

submatrix.

GPU implementations are applied to the IW approach offering great speedups compared to CPU

implementations. The interacting pairs keep the GPU constantly busy with calculations resulting in

high hardware utilization which is evidenced by the high speedup ratios of approximately two

orders of magnitude in the test examples presented with a single GPU. The IW approach offers

great portability since it can be applied to any available hardware achieving even lower computing

263

times when combined with many GPUs, hybrid CPU(s)/GPU(s) implementations and generally any

available processing unit. The importance of this flexibility becomes apparent when considering

contemporary and future developments like heterogeneous computing systems architecture.

9.1 Future work

Below are some interesting extensions and future considerations of the present work:

• GPU implementation of the solution of the resulting algebraic equations in MMs and IGA.

The main principles are similar to those outlined for FEA, but there are additional

challenges that should be addressed as a result of the overlapping subdomains which is a

direct consequence of their large domains of influence.

• Hybrid implementation of the solution of MMs and IGA.

• Multi-GPU implementation of formulation and solution. This is important when taking into

consideration that each workstation may contain more than 1 GPU (even “home”

workstations can easily include up to 4).

• Multi-workstation implementation. Required for large-scale simulation and enabled by

clusters and cloud computing.

• Implementation in new architectures and types of processors like Accelerated Processing

Units (APUs), “Phi” co-processors etc.

264

10 Appendix A: BEB calculations

10.1 The elasticity tensor in 3D problems

The elasticity tensor or stiffness tensor is the tensor expression of Hooke's law [97].

σ=Ε ε (10.1)

Due to the symmetry of the stress tensor, strain tensor, and stiffness tensor, only 21 elastic

coefficients are independent. The matrix form of Ε is always symmetric.

10.1.1 Anisotropic material

An anisotropic material has 21 independent elastic coefficients and its matrix representation is:

[
σ xx

σ yy

σ zz

σ xy

σ yz

σ zx

]=[
E xx . xx E xx . yy Exx . zz E xx . xy E xx . yz Exx . zx

E yy . yy E yy . zz E yy . xy E yy . yz E yy . zx

E zz . zz E zz . xy E zz . yz E zz . zx

E xy . xy E xy . yz Exy . zx

symm E yz . yz E yz. zx

E zx. zx

][
ε xx

ε yy

ε zz

2 ε xy

2 ε yz

2 ε zx

] (10.2)

10.1.2 Orthotropic material

An orthotropic material has 9 independent elastic coefficients and its matrix representation is:

[
σ xx

σ yy

σ zz

σ xy

σ yz

σ zx

]=[
E xx . xx E xx . yy E xx . zz

E yy . yy E yy . zz
E zz . zz

E xy . xy
symm E yz . yz

E zx . zx
][

ε xx

ε yy

ε zz

2 εxy

2 ε yz

2 ε zx

] (10.3)

265/362

10.1.3 Isotropic material

An isotropic material has 2 independent elastic coefficients and its matrix representation with Lamé

parameters is:

[
σ xx

σ yy

σ zz

σ xy

σ yz

σ zx

]=[
2 μ+λ λ λ

λ 2 μ+ λ λ
λ λ 2 μ+ λ

μ
μ

μ
][

ε xx

ε yy

ε zz

2ε xy

2ε yz

2 ε zx

] (10.4)

Only 2 values need to be saved in place of the whole matrix. If 3 values are stored, recalculations

can be avoided:

[
σ xx

σ yy

σzz

σ xy

σ yz

σ zx

]=[
M λ λ
λ M λ
λ λ M

μ
μ

μ
][

εxx

ε yy

ε zz

2 ε xy

2 ε yz

2 ε zx

] (10.5)

where M is the P-wave modulus which is equal to M=2 μ+ λ . In 6 separate equations, eq. (10.5)

is the familiar:

σ xx=M ε xx+ λ ε yy+ λ ε zz
σ yy=λ ε xx+Μ ε yy+λ ε zz
σ zz= λ ε xx+λ ε yy+Μ ε zz

σ xy=2 μ ε xy
σ yz=2 μ ε yz
σ zx=2 με xz

(10.6)

266

10.2 The deformation matrix in 3D problems

The deformation matrix B handles the conversion between strains and nodal displacements:

ε
(6×1)

= B
(6×3n)

d
(3n×1)

 (10.7)

B can be broken down to sub-matrices, each one corresponding to one node:

B
(6×3n)

=[B1 B2 … Bn] (10.8)

Each sub-matrix Bi in eq. (10.8) has size 6×3 , but only has 3 distinct values: N i , x , N i , y , N i , z :

Bi⏟
(6×3)

=[
N i , x 0 0

0 N i , y 0

0 0 N i , z

N i , y N i , x 0

0 N i , z N i , y

N i , z 0 N i , x

] (10.9)

Instead of storing a 6×3 matrix, these 3 values can be stored and are sufficient to fully represent

the underlying matrix. To store all info the whole matrix B contains, 3 values per node are

required, hence 3n values instead of a 6×3n matrix. Note that B never need to actually be

formed.

267

10.3 Explicit calculation in 3D problems

The fast computation of the matrix product:

BT

(3 n×6)
E
(6×6)

B
(6×3 n)

 (10.10)

is important because it is repeated at each integration point. This is important for finite elements but

is even more important for EFG and IGA methods where the number of Gauss points and the

number of influenced nodes per Gauss point are both significantly greater.

The operation can be broken down to smaller node pair operations:

[
B1

T

(3×6)

B2
T

(3×6)

⋮

Bn
T

(3×6)

] E
(6×6)[B1

(6×3)

B2
(6×3)

… Bn
(6×3)] =[

B1
T E B1 B1

T EB2 … B1
T E Bn

B2
T E B1 B2

T EB2 … B2
T E Bn

⋮ ⋮

Bn
T E B1 Bn

T EB2 … Bn
T E Bn

] (10.11)

For each pair of nodes i , j . we need to calculate the product:

Qij
(3×3)

= Bi
T

(3×6)

E
(6×6)

B j
(6×3)

=Q ji
T

(3×3)

 (10.12)

Note that, with the exception of i= j , Qij is generally not symmetric.

The product BT EB need not be calculated as a whole. Its parts Qij can be produced and

consumed immediately (the exact way differs depending on the assembly method used).

Computation of Qij plus associated indexing to access the K entries, dominates the total effort

[96]. The computation is split in two steps:

Step 1: C j
(6×3)

= E
(6×6)

B j
(6×3)

 Step 2: Qij
(3×3)

= Bi
T

(3×6)

C j
(6×3)

 (10.13)

268

10.3.1 Anisotropic material

C j
(6×3)

= E
(6×6)

B j
(6×3)

=[
E xx . xx E xx . yy E xx . zz E xx . xy E xx . yz E xx . zx

E yy . yy E yy . zz E yy . xy E yy . yz E yy . zx

Ezz . zz E zz . xy E zz . yz E zz. zx

E xy . xy E xy . yz E xy . zx

symm E yz . yz E yz . zx

Ezx . zx

][
N j , x 0 0

0 N j , y 0
0 0 N j , z

N j , y N j , x 0
0 N j , z N j , y

N j , z 0 N j , x

]
(10.14)(column-wise pattern)

[
N j , x E xx . xx+N j , y E xx. xy+N j , z E xx .xz N j , y E xx. yy+N j , x Exx .xy+N j , z Exx . yz N j , z E xx. zz+N j , y E xx. yz+N j , x E xx . zx

N j , x Exx . yy+N j , y E yy. xy+N j , z E yy . xz N j , y E yy. yy+N j , x E yy .xy+N j , z E yy. yz N j , z E yy. zz+N j , y E yy. yz+N j , x E yy. zx

N j , x E xx . zz+N j , y E zz . xy+N j , z E zz . xz N j , y E yy . zz+N j , x E zz . xy+N j , z E zz . yz N j , z E zz . zz+N j , y Ezz . yz+N j , x E zz . zx

N j , x E xx . xy+N j , y E xy. xy+N j , z E xy .xz N j , y E yy. xy+N j , x Exy .xy+N j , z Exy . yz N j , z E zz . xy+N j , y E xy. yz+N j , x E xy . zx

N j , x E xx . yz+N j , y E xy. yz+N j , z E yz .xz N j , y E yy. yz+N j , x Exy . yz+N j , z E yz . yz N j , z E zz . yz+N j , y E yz . yz+N j , x E yz . zx

N j , x E xx. zx+N j , y E xy. zx+N j , z E xz . zx N j , y E yy. zx+N j , x E xy . zx+N j , z E yz . zx N j , z E zz . zx+N j , y E yz . zx+N j , x E zx . zx

]
Qij
(3×3)

= Bi
T

(3×6)

C j
(6×3)[

N i , x 0 0 N i , y 0 N i , z

0 N i , y 0 N i , x N i , z 0
0 0 N i , z 0 N i , y N i , x

][
C11 C12 C13

C 21 C22 C23

C 31 C32 C33

C 41 C42 C43

C 51 C52 C53

C 61 C62 C63

]

(10.15)

Qij
(3×3)

=[
N i , x C 11+N i , y C 41+N i , z C61 N i , x C12+N i , y C42+N i , z C62 N i , x C13+N i , y C 43+N i , z C 63

N i , y C21+N i , x C 41+N i , z C51 N i , y C22+N i , x C42+N i , zC52 N i , y C 23+N i , x C 43+N i , z C 53

N i , z C31+N i , y C51+N i , x C61 N i , z C32+N i , y C52+N i , x C62 N i , z C33+N i , y C53+N i , x C 63
]

The number of calculations required is shown in Table 10.1.

269

10.3.2 Orthotropic material

C j
(6×3)

= E
(6×6)

B j
(6×3)

=[
E xx.xx E xx.yy Exx.zz

E yy.yy E yy.zz

E zz.zz

E xy.xy

symm E yz.yz

E zx.zx

][
N j , x 0 0

0 N j , y 0
0 0 N j , z

N j , y N j , x 0
0 N j , z N j , y

N j , z 0 N j , x

]

(10.16)

C j
(6×3)

=[
N j , x E xx . xx N j , y E xx . yy N j , z E xx . zz
N j , x E xx . yy N j , y E yy . yy N j , z E yy . zz
N j , x E xx . zz N j , y E yy . zz N j , z E zz . zz
N j , y E xy . xy N j , x E xy . xy 0

0 N j , z E yz . yz N j , y E yz . yz
N j , z Ezx . zx 0 N j , x E zx . zx

]

Qij
(3×3)

= Bi
T

(3×6)

C j
(6×3)[

N i , x 0 0 N i , y 0 N i , z

0 N i , y 0 N i , x N i , z 0
0 0 N i , z 0 N i , y N i , x

][
C11 C12 C13

C 21 C22 C23

C 31 C32 C33

C 41 C42 0
0 C52 C53

C 61 0 C63

]

(10.17)

Qij
(3×3)

=[
N i , x C11+N i , y C41+N i , zC 61 N i , x C12+N i , y C42 N i , x C13+N i , z C63

N i , y C21+N i , x C41 N i , y C 22+N i , x C 42+N i , z C52 N i , y C23+N i , z C53

N i , z C31+N i , x C 61 N i , z C32+N i , y C52 N i , z C33+N i , y C53+N i , x C63
]

The number of calculations required is shown in Table 10.1.

270

10.3.3 Isotropic material

Eq (10.16) can be simplified:

C j
(6×3)

=E B j=[
M λ λ
λ M λ
λ λ M

μ
μ

μ
][

N j , x 0 0
0 N j , y 0
0 0 N j , z

N j , y N j , x 0
0 N j , z N j , y

N j , z 0 N j , x

]=[
N j , x M N j , y λ N j , z λ
N j , x λ N j , y M N j , z λ
N j , x λ N j , y λ N j , z M
N j , y μ N j , x μ 0

0 N j , z μ N j , y μ
N j , z μ 0 N j , x μ

] (10.18)

Some calculations are repeated. We multiply M , λ , μ with each of the 3 derivatives N i , x , N i , y ,

N i , z . Therefore we only need 9 computations, specifically:

M x=N j , x M M y=N j , y M M z=N j , z M

(10.19)
λx=N j , x λ λ y=N j , y λ λ z=N j , z λ

μ x=N j , x μ μ y=N j , y μ μ z=N j , z μ

Substituting (10.19) in (10.18):

C j
(6×3)

=E B j=[
M x λ y λz

λ x M y λz

λ x λ y M z

μ y μx 0
0 μz μ y

μ z 0 μ x

] (10.20)

As for the second step:

Qij
(3×3)

= Bi
T

(3×6)

C j
(6×3)[

N i , x 0 0 N i , y 0 N i , z

0 N i , y 0 N i , x N i , z 0
0 0 N i , z 0 N i , y N i , x

] [
M x λ y λz

λ x M y λz

λ x λ y M z

μ y μ x 0
0 μz μ y

μz 0 μ x

]

(10.21)

Qij
(3×3)

=[
N i , x M x+N i , y μ y+N i , z μz N i , x λ y+N i , y μ x N i , x λz+N i , z μ x

N i , y λ x+N i , x μ y N i , y Μ y+N i , x μx+N i , z μ z N i , y λz+N i , z μ y

N i , z λ x+N i , x μz N i , z λ y+N i , y μ z N i , z M z+N i , y μ y+N i , x μx
]

This calculation can be performed in as low as few as 27 multiplications, if we take the few

repetitions into account or 30 if we don't (preferable for the GPU because we save a few variables).

We also need 12 additions.

271

We have the following calculations:

×1 N i , x M x N i , y M y N i , z M z

(10.22)
×1 N i , x λ y , N i , x λz N i , y λx , N i , y λz N i , z λx , N i , z λy

×2 N i , x μx N i , y μ y N i , z μz

×1 N i , x μy , N i , x μz N i , y μx , N i , y μz N i , z μx , N i , z μ y

For these calculations we need 6 multiplications for each axis for a total of 18 multiplications. The

number of calculations is shown in Table 10.1 for the case of recalculating and not recalculating

repeated values.

An alternative for the isotropic would be to utilize the repetition of derivative products. Expanding

eq. (10.22):

N i , x N j , x M N i , y N j , y M N i , z N j , z M

(10.23)

N i , x N j , y λ , N i , x N j , z λ N i , y N j , x λ , N i , y N j , z λ N i , z N j , x λ , N i , z N j , y λ

N i , x N j , x μ N i , y N j , y μ N i , z N j , z μ

N i , x N j , y μ , N i , x N j , z μ N i , y N j , x μ , N i , y N j , z μ N i , z N j , x μ , N i , z N j , y μ

Qij
(3×3)

=[
N i , x N j , x M +N i , y N j , y μ+N i , z N j ,z μ N i ,x N j , y λ+N i , y N j , x μ N i , x N j , z λ+N i , z N j ,x μ

N i , y N j , x λ+N i , x N j , y μ N i , y N j , y Μ +N i ,x N j , x μ+N i , z N j , z μ N i , y N j , z λ+N i , z N j , y μ
N i , z N j , x λ+N i , x N j , z μ N i , z N j , y λ+N i , y N j , z μ N i ,z N j , z M +N i , y N j , y μ+N i , x N j , x μ] (10.24)

We now calculate all N ab=N i , a N j , b , a , b=x , y , z :

N xx M N yy M N zz M

N xy λ , N xz λ N yx λ , N yz λ N zx λ , N zy λ

N xx μ N yy μ N zz μ (10.25)

N xy μ , N xz μ N yx μ , N yz μ N zx μ , N zy μ

This requires 9 multiplications. Then, eq. (10.24) becomes:

272

Qij
(3×3)

=[
N i , x N j , x M +N i , y N j , y μ+N i , z N j ,z μ N i ,x N j , y λ+N i , y N j , x μ N i , x N j , z λ+N i , z N j ,x μ

N i , y N j , x λ+N i , x N j , y μ N i , y N j , y Μ +N i ,x N j , x μ+N i , z N j , z μ N i , y N j , z λ+N i , z N j , y μ
N i , z N j , x λ+N i , x N j , z μ N i , z N j , y λ+N i , y N j , z μ N i ,z N j , z M +N i , y N j , y μ+N i , x N j , x μ]

(10.26)

Qij
(3×3)

=[
N xx M +N yy μ+N zz μ N xy λ+N yx μ N xz λ+N zx μ

N yx λ+N xy μ N yy Μ +N xx μ+N zz μ N yz λ+N zy μ
N zx λ+N xz μ N zy λ+N yz μ N zz M +N yy μ+N xx μ]

×1 N xx M N yy M N zz M (10.27)

×2 N xx μ N yy μ N zz μ

×1 N xy λ N xz λ N yx λ N yz λ N zx λ N zy λ (10.28)

×1 N xy μ N xz μ N yx μ N yz μ N zx μ N zy μ

Therefore, this requires 18 multiplications. For these calculations we need 6 multiplications for each

axis for a total of 18 multiplications. The number of calculations is shown in Table 10.1 for the case

of recalculating and not recalculating repeated values.

The 4 variations for handling the isotropic material may differ depending on the exact

implementation and underlying hardware (GPU is an interesting case here). However, in typical

implementations the difference is expected to be small.

The evaluation of Qij as mentioned above should always be preferred to a generic matrix

multiplication, which requires:

• Step1: C j
(6×3)

= E
(6×6)

B j
(6×3)

⇒6⋅6⋅3=108 multiplications, 6⋅5⋅3=90 additions

• Step2: Qij
(3×3)

= Bi
T

(3×6)

C j
(6×3)

⇒3⋅6⋅3=54 multiplications, 3⋅5⋅3=45 additions

The computation of each Qij block requires the number of operations and temporary variables

shown in Table 10.1. There can be minor savings for i= j . This calculation is repeated for all node

pairs (see eq. 10.11) and for every Gauss point.

273

10.4 Total number of calculations required

The calculations of Table 10.1 will be performed for all i , j but due to symmetry, only
n(n+1)

2

times instead of n2 times. The total multiplications per Gauss point are shown in Table 10.2 and the

total additions can be derived similarly.

274

Material Type Multiplications Additions Temporary Variables

Generic multiplication 108+54=162 90+45=135 18 (for C j)

Anisotropic 54+27=81 36+18=54 18 (for C j)

Orthotropic 15+21=36 0+12=12 15 (for C j)

Isotropic 1
(without recalculation)

9+18=27 0+12=12
9 (for C j) + 3 for
repeated values of

(10.22)

Isotropic 1
(with recalculation)

9+21=30 0+12=12 9 (for C j)

Isotropic 2
(without recalculation)

9+18=27 0+12=12
9 (for all N ab) + 3 for

repeated values of
(10.27)

Isotropic 2
(with recalculation)

9+21=30 0+12=12 9 (for all N ab)

Table 10.1: Multiplications, additions and temporary variables required for a single pair of nodes
and at a single Gauss point

The contribution-wise approaches (Gauss point wise & element wise) externally iterate through

nodes and internally through node pairs. Since the deformation matrix B is evaluated for a

particular Gauss point, the method can take advantage of the repetition of E B j elements to save on

calculations at the cost of additional memory. For n number of nodes, we can to perform n

calculations of C j and reuse them properly to calculate Qij . Therefore, step 1 is performed n and

step 2 is performed
n(n+1)

2
 times. Table 10.3 shows the total multiplications per Gauss point

when performing calculations this way, and the total additions can be derived similarly.

275

Material Type Multiplications per Gauss point

Step 1 Step 2 Total

Generic multiplication
108

n (n+1)
2

 54
n(n+1)

2

81n(n+1)

Anisotropic
54

n(n+1)
2

 27
n(n+1)

2
 81

n (n+1)
2

Orthotropic
15

n (n+1)
2

 21
n(n+1)

2

18n(n+1)

Isotropic 1 & 2
(without recalculation) 9

n(n+1)
2

 18
n (n+1)

2
 27

n(n+1)
2

Isotropic 1 & 2
(with recalculation) 9

n(n+1)
2

 21
n(n+1)

2

15n(n+1)

Table 10.2: Multiplications required for calculations at a single Gauss point

Note that to generically calculate BT EB as a whole, it would require:

• E
(6×6)

B
(6×3n)

⇒6⋅6⋅3n=108 n multiplications, 6⋅5⋅3n=90 n additions per integration point

• BT

(3n×6)
C

(6×3n)
⇒3n⋅6⋅3n=54 n2 multiplications, 3 n⋅5⋅3 n=45 n2 per integration point

The total effort for generic matrix multiplications is:

• 54 n(n+2) multiplications, 45 n (n+2) additions

• 18n temporary variables for E B . Additionally, it requires the formation of B and E and

corresponding memory for storing them.

276

Material Type Multiplications per Gauss point

Step 1 Step 2 Total

Generic multiplication 108n
54

n(n+1)
2

27n (n+5)

Anisotropic 54 n
27

n(n+1)
2

27
2

n(n+5)

Orthotropic 15 n
21

n(n+1)
2

3
2

n(7 n+17)

Isotropic 1 & 2
(without recalculation)

9n
18

n (n+1)
2

9n(n+2)

Isotropic 1 & 2
(with recalculation)

9n
21

n(n+1)
2

1
2

n(21 n+39)

Table 10.3: Multiplications required for calculations at a single Gauss point

10.5 The elasticity tensor in 2D problems

The elasticity tensor or stiffness tensor is the tensor expression of Hooke's law [97].

σ=Ε ε (10.29)

The matrix form of Ε is always symmetric.

10.5.1 Anisotropic material

An anisotropic material has 6 independent elastic coefficients and its matrix representation is:

[
σ xx

σ yy

σ xy
]=[

E xx . xx E xx . yy E xx . xy

E yy . yy E yy . xy

symm E xy . xy
][

ε xx

ε yy

2 ε xy
] (10.30)

10.5.2 Orthotropic material

An orthotropic material has 4 independent elastic coefficients and its matrix representation is:

[
σ xx

σ yy

σ xy
]=[

E xx . xx E xx . yy 0
E yy . yy 0

symm E xy . xy
][

ε xx

ε yy

2 ε xy
] (10.31)

10.5.3 Isotropic material under Plane Stress

An isotropic material has 2 independent elastic coefficients. Hooke's law in this case is:

[
ε xx

ε yy

2 ε xy
]= 1

E [
1 −ν 0
−ν 1 0
0 0 2(1+ν)] [

σ xx

σ yy

σ xy
] (10.32)

[
σ xx

σ yy

σ xy
]= E

1−ν2 [
1 ν 0
ν 1 0

0 0
1−ν

2
] [ε xx

ε yy

2 ε xy
] (10.33)

It can be stored with 2 values only, or, to avoid recalculations, define:

E11 :=
E

1−ν2
 (10.34)

277

Furthermore, the last element is equal to the Shear Modulus:

E

1−ν2

1−ν
2
=

Ε
2(1+ν)

=G (10.35)

Therefore, the formula can be written as:

E=[
E11 ν E11 0

ν E11 E11 0
0 0 G] (10.36)

By storing 3 values, namely E11 , ν Ε11 and G , recalculations are avoided.

10.6 The deformation matrix in 2D problems

The deformation matrix B handles the conversion between strains and nodal displacements:

ε
(3×1)

= B
(3×2n)

d
(2n×1)

 (10.37)

B can be broken down to sub-matrices, each one corresponding to one node:

B
(3× 2n)

=[B1 B2 … Bn] (10.38)

Each sub-matrix Bi in eq. (10.38) has size 3×2 , but only has 2 distinct values: N i , x , N i , y .

Bi⏟
(6×3)

=[
N i , x 0

0 N i , y

N i , y N i , x
] (10.39)

Instead of storing a 3×2 matrix, these 2 values can be stored and are sufficient to fully represent

the underlying matrix. To store all info the whole matrix B contains, 2 values per node are

required, hence 2n values instead of a 3×2n matrix. Note that B never need to actually be

formed.

278

10.7 Explicit calculation in 2D problems

The fast computation of the matrix product:

BT

(2 n×3)
E
(3×3)

B
(3×2 n)

 (10.40)

is important because it is repeated at each integration point. This is important for finite elements but

is even more important for EFG and IGA methods where the number of Gauss points and the

number of influenced nodes per Gauss point are both significantly greater.

The operation can be broken down to smaller node pair operations:

[
B1

T

(2×3)

B2
T

(2×3)

⋮

Bn
T

(2×3)

] E
(3×3)[B1

(3×2)

B2
(3×2)

… Bn
(3×2)] =[

B1
T E B1 B1

T EB2 … B1
T E Bn

B2
T E B1 B2

T EB2 … B2
T E Bn

⋮ ⋮

Bn
T E B1 Bn

T EB2 … Bn
T E Bn

] (10.41)

For each pair of nodes i , j . we need to calculate the product:

Qij
(2×2)

= Bi
T

(2×3)

E
(3×3)

B j
(3×2)

=Q ji
T

(2×2)

 (10.42)

Note that, with the exception of i= j , Qij is generally not symmetric.

The product BT EB need not be calculated as a whole. Its parts Qij can be produced and

consumed immediately (the exact way differs depending on the assembly method used).

Computation of Qij plus associated indexing to access the K entries, dominates the total effort

[96]. The computation is split in two steps:

Step 1: C j
(3× 2)

= E
(3×3)

B j
(3×2)

 Step 2: Qij
(2×2)

= Bi
T

(2×3)

C j
(3×2)

 (10.43)

279

10.7.1 Anisotropic material

C j
(3×2)

= E
(3×3)

B j
(3×2)

=[
E xx . xx E xx . yy E xx . xy

E yy . yy E yy . xy

symm E xy . xy
][

N j , x 0
0 N j , y

N j , y N j , x
]

(10.44)(column-wise pattern)

C j
(3× 2)

=[
N j , x E xx . xx+N j , y E xx . xy N j , y E xx . yy+N j , x E xx . xy
N j , x E xx . yy+N j , y E yy . xy N j , y E yy . yy+N j , x E yy . xy
N j , x E xx . xy+N j , y E xy . xy N j , y E yy . xy+N j , x E xy . xy]

Qij
(2×2)

= Bi
T

(2×3)

C j
(3×2)

=[N i , x 0 N i , y

0 N i , y N i , x
] [

C11 C12

C21 C22

C31 C32
]

(10.45)

Qij
(2×2)

=[N i , x C 11+N i , y C31 N i , x C12+N i , y C 32

N i , y C 21+N i , x C31 N i , y C 22+N i , x C32]

10.7.2 Orthotropic material

C j
(3× 2)

= E
(3×3)

B j
(3×2)

=[
E xx . xx E xx . yy

E yy . yy

symm E xy . xy
] [

N j , x 0
0 N j , y

N j , y N j , x
]

(10.46)

C j
(3×2)

=[
N j , x E xx . xx N j , y Exx . yy
N j , x E xx . yy N j , y E yy . yy
N j , y E xy . xy N j , x E xy . xy]

The computation Qij
(2×2)

= Bi
T

(2×3)

C j
(3×2)

 is the same as in eq (10.45).

10.7.3 Isotropic material under Plane Stress

Eq (10.46) can be simplified:

280

C j
(3×2)

= E
(3×3)

B j
(3×2)

=[
E11 ν E11 0

ν E11 E11 0
0 0 G][

N j , x 0
0 N j , y

N j , y N j , x
]

(10.47)

C j
(3× 2)

=[
N j , x E11 N j , y ν E11

N j , x ν E11 N j , y E11

N j , y G N j , x G]
The computation Qij

(2×2)

= Bi
T

(2×3)

C j
(3×2)

 is the same as in eq (10.45).

The evaluation of Qij as mentioned above should always be preferred to a generic matrix

multiplication, which requires:

• Step1: C j
(3× 2)

= E
(3×3)

B j
(3×2)

⇒3⋅3⋅2=18 multiplications, 3⋅2⋅2=12 additions

• Step2: Qij
(2×2)

= Bi
T

(2×3)

C j
(3×2)

⇒2⋅3⋅2=12 multiplications, 2⋅2⋅2=8 additions

The computation of each Qij block requires the number of operations and temporary variables

shown in Table 10.4. There can be minor savings for i= j . This calculation is repeated for all node

pairs (see eq. 10.41) and for every Gauss point.

281

Material Type Multiplications Additions Temporary Variables

Generic multiplication 18+12=40 12+8=20 6 (for C j)

Anisotropic 12+8=20 6+4=10 6 (for C j)

Orthotropic 6+8=14 0+4=4 6 (for C j)

Isotropic (place stress) 6+8=14 0+4=4 6 (for C j)

Table 10.4: Multiplications, additions and temporary variables required for a single pair of nodes
and at a single Gauss point

10.8 Total number of calculations required in 2D problems

The calculations of Table 10.4 will be performed for all i , j but due to symmetry, only
n(n+1)

2

times instead of n2 times. The total multiplications per Gauss point are shown in Table 10.5 and the

total additions can be derived similarly.

The contribution-wise approaches (Gauss point wise & element wise) externally iterate through

nodes and internally through node pairs. Since the deformation matrix B is evaluated for a

particular Gauss point, the method can take advantage of the repetition of E B j elements to save on

calculations at the cost of additional memory. For n number of nodes, we can to perform n

calculations of C j and reuse them properly to calculate Qij . Therefore, step 1 is performed n and

step 2 is performed
n(n+1)

2
 times. Table 10.6 shows the total multiplications per Gauss point

when performing calculations this way, and the total additions can be derived similarly.

282

Material Type Multiplications per Gauss point

Step 1 Step 2 Total

Generic multiplication
18

n (n+1)
2

 12
n(n+1)

2

20 n(n+1)

Anisotropic
12

n(n+1)
2

 8
n (n+1)

2

10 n(n+1)

Orthotropic
6

n(n+1)
2

 8
n (n+1)

2

7n(n+1)

Isotropic (place stress)
6

n(n+1)
2

 8
n (n+1)

2

7n(n+1)

Table 10.5: Multiplications required for calculations at a single Gauss point

Note that to generically calculate BT EB as a whole, it would require:

• E
(3×3)

B
(3×2 n)

⇒3⋅3⋅2n=18 n multiplications, 3⋅2⋅2 n=12n additions per integration point

• BT

(2 n×3)
C

(3×2 n)
⇒2 n⋅3⋅2 n=12 n2 multiplications, 2 n⋅2⋅2n=8 n2 per integration point

The total effort for generic matrix multiplications is:

• 6n(2n+3) multiplications, 4 n(2 n+3) additions

• 6n temporary variables for E B . Additionally, it requires the formation of B and E and

corresponding memory for storing them.

283

Material Type Multiplications per Gauss point

Step 1 Step 2 Total

Generic multiplication 18 n
12

n(n+1)
2

6n(n+4)

Anisotropic 12n
8

n (n+1)
2

4 n(n+4)

Orthotropic 6n
8

n (n+1)
2

2n (2 n+5)

Isotropic (place stress) 6n
8

n (n+1)
2

2n (2 n+5)

Table 10.6: Multiplications required for calculations at a single Gauss point (alternative way)

284

11References

[1] “Meshfree methods,” Wikipedia, the free encyclopedia. 13-Dec-2013.
[2] V. P. Nguyen, T. Rabczuk, S. Bordas, and M. Duflot, “Meshless methods: A review and

computer implementation aspects,” Mathematics and Computers in Simulation, vol. 79, no. 3,
pp. 763–813, 2008.

[3] S. Li and W. K. Liu, “Meshfree and particle methods and their applications,” Applied
Mechanics Reviews, vol. 55, no. 1, pp. 1–34, 2002.

[4] G. R. Liu, Meshfree methods: moving beyond the finite element method. Boca Raton: CRC
Press, 2010.

[5] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl, “Meshless methods: An
overview and recent developments,” Computer Methods in Applied Mechanics and
Engineering, vol. 139, no. 1–4, pp. 3–47, 1996.

[6] K. T. Danielson, S. Hao, W. K. Liu, R. A. Uras, and S. Li, “Parallel computation of meshless
methods for explicit dynamic analysis,” International Journal for Numerical Methods in
Engineering, vol. 47, no. 7, pp. 1323–1341, 2000.

[7] K. T. Danielson, R. A. Uras, M. D. Adley, and S. Li, “Large-scale application of some modern
CSM methodologies by parallel computation,” Advances in engineering software, vol. 31, no.
8, pp. 501–509, 2000.

[8] G. R. Liu, K. Y. Dai, and T. T. Nguyen, “A smoothed finite element method for mechanics
problems,” Computational Mechanics, vol. 39, no. 6, pp. 859–877, 2007.

[9] J. G. Wang and G. R. Liu, “A point interpolation meshless method based on radial basis
functions,” International Journal for Numerical Methods in Engineering, vol. 54, no. 11, pp.
1623–1648, 2002.

[10] Y. T. Gu and G. R. Liu, “A coupled element free Galerkin/boundary element method for stress
analysis of tow-dimensional solids,” Computer Methods in Applied Mechanics and
Engineering, vol. 190, no. 34, pp. 4405–4419, 2001.

[11] W.-R. Yuan, P. Chen, and K.-X. Liu, “High performance sparse solver for unsymmetrical
linear equations with out-of-core strategies and its application on meshless methods,” Applied
Mathematics and Mechanics (English Edition), vol. 27, no. 10, pp. 1339–1348, 2006.

[12] S. C. Wu, H. O. Zhang, C. Zheng, and J. H. Zhang, “A high performance large sparse
symmetric solver for the meshfree Galerkin method,” International Journal of Computational
Methods, vol. 5, no. 4, pp. 533–550, 2008.

[13] E. Divo and A. Kassab, “Iterative domain decomposition meshless method modeling of
incompressible viscous flows and conjugate heat transfer,” Engineering Analysis with
Boundary Elements, vol. 30, no. 6, pp. 465–478, 2006.

[14] P. Metsis and M. Papadrakakis, “Overlapping and non-overlapping domain decomposition
methods for large-scale meshless EFG simulations,” Computer Methods in Applied Mechanics
and Engineering, vol. 229–232, pp. 128–141, 2012.

[15] P. Metsis, “Meshless Methods for solving large-scale problems,” Αθήνα, 2014.
[16] B. Nayroles, G. Touzot, and P. Villon, “Generalizing the finite element method: Diffuse

approximation and diffuse elements,” Computational Mechanics, vol. 10, no. 5, pp. 307–318,
Sep. 1992.

[17] Y. Y. Lu, T. Belytschko, and L. Gu, “A new implementation of the element free Galerkin
method,” Computer Methods in Applied Mechanics and Engineering, vol. 113, no. 3–4, pp.
397–414, 1994.

[18] T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs, “Isogeometric analysis: CAD, finite elements,
NURBS, exact geometry and mesh refinement,” Computer Methods in Applied Mechanics and

285/362

Engineering, vol. 194, no. 39–41, pp. 4135–4195, 2005.
[19] F. Auricchio, F. Calabrò, T. J. R. Hughes, A. Reali, and G. Sangalli, “A simple algorithm for

obtaining nearly optimal quadrature rules for NURBS-based isogeometric analysis,”
Computer Methods in Applied Mechanics and Engineering, vol. 249–252, pp. 15–27, 2012.

[20] T. J. R. Hughes, A. Reali, and G. Sangalli, “Efficient quadrature for NURBS-based
isogeometric analysis,” Computer Methods in Applied Mechanics and Engineering, vol. 199,
no. 5–8, pp. 301–313, 2010.

[21] J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs, Isogeometric Analysis: Toward Integration of
CAD and FEA, 1st ed. Wiley, 2009.

[22] F. Auricchio, L. Beirão da Veiga, T. J. R. Hughes, A. Reali, and G. Sangalli, “Isogeometric
collocation for elastostatics and explicit dynamics,” Computer Methods in Applied Mechanics
and Engineering, vol. 249–252, pp. 2–14, 2012.

[23] D. Schillinger, J. A. Evans, A. Reali, M. A. Scott, and T. J. R. Hughes, “Isogeometric
collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical
NURBS discretizations,” Computer Methods in Applied Mechanics and Engineering, vol. 267,
pp. 170–232, 2013.

[24] J. Mandel, “Balancing domain decomposition,” Communications in Numerical Methods in
Engineering, vol. 9, no. 3, pp. 233–241, 1993.

[25] C. Farhat and F.-X. Roux, “Method of finite element tearing and interconnecting and its
parallel solution algorithm,” International Journal for Numerical Methods in Engineering, vol.
32, no. 6, pp. 1205–1227, 1991.

[26] Y. Fragakis and M. Papadrakakis, “The mosaic of high performance domain Decomposition
Methods for Structural Mechanics: Formulation, interrelation and numerical efficiency of
primal and dual methods,” Computer Methods in Applied Mechanics and Engineering, vol.
192, no. 35–36, pp. 3799–3830, 2003.

[27] Y. Fragakis and M. Papadrakakis, “The mosaic of high-performance domain decomposition
methods for structural mechanics - Part II: Formulation enhancements, multiple right-hand
sides and implicit dynamics,” Computer Methods in Applied Mechanics and Engineering, vol.
193, no. 42–44, pp. 4611–4662, 2004.

[28] V. Vondrák, T. Kozubek, A. Markopoulos, and Z. Dostál, “Parallel solution of contact shape
optimization problems based on Total FETI domain decomposition method,” Structural and
Multidisciplinary Optimization, vol. 42, no. 6, pp. 955–964, 2010.

[29] G. M. Stavroulakis and M. Papadrakakis, “Advances on the domain decomposition solution of
large scale porous media problems,” Computer Methods in Applied Mechanics and
Engineering, vol. 198, no. 21–26, pp. 1935–1945, 2009.

[30] A. Mobasher Amini, D. Dureisseix, P. Cartraud, and N. Buannic, “A domain decomposition
method for problems with structural heterogeneities on the interface: Application to a
passenger ship,” Computer Methods in Applied Mechanics and Engineering, vol. 198, no. 41–
44, pp. 3452–3463, 2009.

[31] D. Ghosh, P. Avery, and C. Farhat, “A FETI-preconditioned conjugate gradient method for
large-scale stochastic finite element problems,” International Journal for Numerical Methods
in Engineering, vol. 80, no. 6–7, pp. 914–931, 2009.

[32] D. Ghosh and C. Farhat, “Strain and stress computations in stochastic finite element methods,”
International Journal for Numerical Methods in Engineering, vol. 74, no. 8, pp. 1219–1239,
2008.

[33] P. Avery and C. Farhat, “The FETI family of domain decomposition methods for inequality-
constrained quadratic programming: Application to contact problems with conforming and
nonconforming interfaces,” Computer Methods in Applied Mechanics and Engineering, vol.

286

198, no. 21–26, pp. 1673–1683, 2009.
[34] Z. Cheng and M. Paraschivoiu, “A posteriori finite element bounds to linear functional outputs

of the three-dimensional Navier-Stokes equations,” International Journal for Numerical
Methods in Engineering, vol. 61, no. 11, pp. 1835–1859, 2004.

[35] C. Farhat, R. Tezaur, and J. Toivanen, “A domain decomposition method for discontinuous
Galerkin discretizations of Helmholtz problems with plane waves and Lagrange multipliers,”
International Journal for Numerical Methods in Engineering, vol. 78, no. 13, pp. 1513–1531,
2009.

[36] M. Yano and D. L. Darmofal, “BDDC preconditioning for high-order Galerkin Least-Squares
methods using inexact solvers,” Computer Methods in Applied Mechanics and Engineering,
vol. 199, no. 45–48, pp. 2958–2969, 2010.

[37] C. Farhat and F.-X. Roux, “Implicit parallel processing in structural mechanics,”
Computational Mechanics Advances, vol. 2, no. 1, 1994.

[38] S. Bitzarakis, M. Papadrakakis, and A. Kotsopulos, “Parallel solution techniques in
computational structural mechanics,” Computer Methods in Applied Mechanics and
Engineering, vol. 148, no. 1–2, pp. 75–104, 1997.

[39] Δ. Χ. Χαρμπής, “Ανάλυση Φορέων με Συμβατικά, Προσαρμοστικά και Στοχαστικά
Πεπερασμένα, Στοιχεία σε Διαδικτυωμένους Ηλεκτρονικούς Υπολογιστές,” Αθήνα, 2002.

[40] D. J. Rixen and C. Farhat, “A simple and efficient extension of a class of substructure based
preconditioners to heterogeneous structural mechanics problems,” International Journal for
Numerical Methods in Engineering, vol. 44, no. 4, pp. 489–516, 1999.

[41] M. Papadrakakis and Y. Tsompanakis, “Domain decomposition methods for parallel solution
of shape sensitivity analysis problems,” International Journal for Numerical Methods in
Engineering, vol. 44, no. 2, pp. 281–303, 1999.

[42] C. Farhat, A. Macedo, M. Lesoinne, F.-X. Roux, F. Magoulès, and A. De La Bourdonnaie,
“Two-level domain decomposition methods with Lagrange multipliers for the fast iterative
solution of acoustic scattering problems,” Computer Methods in Applied Mechanics and
Engineering, vol. 184, no. 2–4, pp. 213–239, 2000.

[43] C. Farhat, L. Crivelli, and F. X. Roux, “Extending substructure based iterative solvers to
multiple load and repeated analyses,” Computer Methods in Applied Mechanics and
Engineering, vol. 117, no. 1–2, pp. 195–209, 1994.

[44] M. Papadrakakis and Y. Fragakis, “An integrated geometric-algebraic method for solving
semi-definite problems in structural mechanics,” Computer Methods in Applied Mechanics
and Engineering, vol. 190, no. 49–50, pp. 6513–6532, 2001.

[45] C. Farhat, A. Macedo, and M. Lesoinne, “A two-level domain decomposition method for the
iterative solution of high frequency exterior Helmholtz problems,” Numerische Mathematik,
vol. 85, no. 2, pp. 283–308, 2000.

[46] Ι. Φραγκάκης, “Μέθοδοι Υψηλών Επιδόσεων για τη Στατική και Δυναμική Ανάλυση Φορέων
με Πεπερασμένα Στοιχεία,” Αθήνα, 2004.

[47] D. Göddeke, R. Strzodka, and S. Turek, “Performance and accuracy of hardware-oriented
native-, emulated- and mixed-precision solvers in FEM simulations,” International Journal of
Parallel, Emergent and Distributed Systems, vol. 22, no. 4, pp. 221–256, 2007.

[48] J. Sanders and E. Kandrot, CUDA by Example: An Introduction to General-Purpose GPU
Programming, 1st ed. Addison-Wesley Professional, 2010.

[49] D. Kirk and W. Hwu, Programming massively parallel processors: a hands-on approach, 2nd
ed. San Francisco, Calif.; Oxford: Morgan Kaufmann ; Elsevier Science distributor, 2013. 

[50] NVIDIA Corporation, “CUDA C Best Practices Guide,” NVIDIA GPU Computing
Documentation | NVIDIA Developer Zone, 2014. [Online]. Available:

287

http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/. [Accessed: 02-Feb-2014].
[51] “TOP500 Supercomputing Sites.” [Online]. Available: http://www.top500.org/. [Accessed: 09-

Dec-2010].
[52] I. C. Kampolis, X. S. Trompoukis, V. G. Asouti, and K. C. Giannakoglou, “CFD-based

analysis and two-level aerodynamic optimization on graphics processing units,” Computer
Methods in Applied Mechanics and Engineering, vol. 199, no. 9–12, pp. 712–722, 2010.

[53] E. Elsen, P. LeGresley, and E. Darve, “Large calculation of the flow over a hypersonic vehicle
using a GPU,” Journal of Computational Physics, vol. 227, no. 24, pp. 10148–10161, 2008.

[54] J. C. Thibault and I. Senocak, “Accelerating incompressible flow computations with a
Pthreads-CUDA implementation on small-footprint multi-GPU platforms,” Journal of
Supercomputing, vol. 59, no. 2, pp. 693–719, 2012.

[55] M. De La Asunción, J. M. Mantas, and M. J. Castro, “Simulation of one-layer shallow water
systems on multicore and CUDA architectures,” Journal of Supercomputing, vol. 58, no. 2, pp.
206–214, 2011.

[56] H. Zhou, G. Mo, F. Wu, J. Zhao, M. Rui, and K. Cen, “GPU implementation of lattice
Boltzmann method for flows with curved boundaries,” Computer Methods in Applied
Mechanics and Engineering, vol. 225–228, pp. 65–73, 2012.

[57] A. Sunarso, T. Tsuji, and S. Chono, “GPU-accelerated molecular dynamics simulation for
study of liquid crystalline flows,” Journal of Computational Physics, vol. 229, no. 15, pp.
5486–5497, 2010.

[58] J. A. Anderson, C. D. Lorenz, and A. Travesset, “General purpose molecular dynamics
simulations fully implemented on graphics processing units,” Journal of Computational
Physics, vol. 227, no. 10, pp. 5342–5359, 2008.

[59] E. Wadbro and M. Berggren, “Megapixel topology optimization on a graphics processing
unit,” SIAM Review, vol. 51, no. 4, pp. 707–721, 2009.

[60] D. Komatitsch, G. Erlebacher, D. Göddeke, and D. Michéa, “High-order finite-element
seismic wave propagation modeling with MPI on a large GPU cluster,” Journal of
Computational Physics, vol. 229, no. 20, pp. 7692–7714, 2010.

[61] T. Takahashi and T. Hamada, “GPU-accelerated boundary element method for Helmholtz’
equation in three dimensions,” International Journal for Numerical Methods in Engineering,
vol. 80, no. 10, pp. 1295–1321, 2009.

[62] G. R. Joldes, A. Wittek, and K. Miller, “Real-time nonlinear finite element computations on
GPU - Application to neurosurgical simulation,” Computer Methods in Applied Mechanics
and Engineering, vol. 199, no. 49–52, pp. 3305–3314, 2010.

[63] S. Tomov, J. Dongarra, and M. Baboulin, “Towards dense linear algebra for hybrid GPU
accelerated manycore systems,” Parallel Computing, vol. 36, no. 5–6, pp. 232–240, 2010.

[64] O. Schenk, M. Christen, and H. Burkhart, “Algorithmic performance studies on graphics
processing units,” Journal of Parallel and Distributed Computing, vol. 68, no. 10, pp. 1360–
1369, 2008.

[65] J. M. Elble, N. V. Sahinidis, and P. Vouzis, “GPU computing with Kaczmarz’s and other
iterative algorithms for linear systems,” Parallel Computing, vol. 36, no. 5–6, pp. 215–231,
2010.

[66] A. Cevahir, A. Nukada, and S. Matsuoka, “Fast conjugate gradients with multiple GPUs,”
presented at the 9th International Conference on Computational Science, ICCS 2009, Baton
Rouge, LA, 2009, vol. 5544 LNCS, pp. 893–903.

[67] A. Cevahir, A. Nukada, and S. Matsuoka, “High performance conjugate gradient solver on
multi-GPU clusters using hypergraph partitioning,” Computer Science - Research and
Development, vol. 25, no. 1–2, pp. 83–91, 2010.

288

[68] M. Papadrakakis, G. Stavroulakis, and A. Karatarakis, “A new era in scientific computing:
Domain decomposition methods in hybrid CPU-GPU architectures,” Computer Methods in
Applied Mechanics and Engineering, vol. 200, no. 13–16, pp. 1490–1508, 2011.

[69] “Porting CUDA Applications to OpenCLTM,” AMD. [Online]. Available:
http://developer.amd.com/resources/heterogeneous-computing/opencl-zone/programming-in-
opencl/porting-cuda-applications-to-opencl/. [Accessed: 01-Feb-2014].

[70] “CUDA,” Wikipedia, the free encyclopedia. 02-Feb-2014.
[71] M. Harris, “Optimizing parallel reduction in CUDA,” Proc. ACM SIGMOD, vol. 13, pp. 104–

110, 2007.
[72] “Virtual memory,” Wikipedia, the free encyclopedia. 22-Feb-2014.
[73] “Paging,” Wikipedia, the free encyclopedia. 16-Feb-2014.
[74] “Zero-based numbering,” Wikipedia, the free encyclopedia. 06-Dec-2013.
[75] “Row-major order,” Wikipedia, the free encyclopedia. 13-Nov-2013.
[76] “Band matrix,” Wikipedia, the free encyclopedia. 16-Dec-2013.
[77] “Cuthill–McKee algorithm,” Wikipedia, the free encyclopedia. 09-Jan-2014.
[78] “Graph bandwidth,” Wikipedia, the free encyclopedia. 05-Sep-2013.
[79] “Sparse matrix,” Wikipedia, the free encyclopedia. 2013.
[80] “CUSPARSE.” [Online]. Available: http://docs.nvidia.com/cuda/cusparse/#ellpack-itpack-

format-ell. [Accessed: 27-Jan-2014].
[81] “Strassen algorithm,” Wikipedia, the free encyclopedia. 16-Feb-2014.
[82] “Coppersmith–Winograd algorithm,” Wikipedia, the free encyclopedia. 15-Feb-2014.
[83] D. B. Kirk and W. W. Hwu, Programming Massively Parallel Processors: A Hands-on

Approach, 1st ed. Morgan Kaufmann, 2010.
[84] NVIDIA Corporation, “CUDA Programming Guide Version 3.2.” [Online]. Available:

http://developer.nvidia.com/object/gpucomputing.html.
[85] Khronos OpenCL Working Group, “The OpenCL Specification.” [Online]. Available:

http://www.khronos.org/opencl/. [Accessed: 08-Dec-2010].
[86] K. Fatahalian and M. Houston, “A closer look at GPUs,” Communications of the ACM, vol.

51, no. 10, pp. 50–57, 2008.
[87] Z. A. Taylor, M. Cheng, and S. Ourselin, “Real-time nonlinear finite element analysis for

surgical simulation using graphics processing units.,” Medical image computing and
computer-assisted intervention : MICCAI ... International Conference on Medical Image  
Computing and Computer-Assisted Intervention, vol. 10, no. Pt 1, pp. 701–708, 2007.

[88] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel programming with
CUDA,” Queue, vol. 6, no. 2, p. 40, Mar. 2008.

[89] G. Stavroulakis, “Seismic soil-structure interaction with finite elements and the method of
substructures,” Αθήνα, 2014.

[90] R. Sedgewick and K. Wayne, Algorithms, 4th ed. Addison-Wesley Professional, 2011.
[91] R. Trobec, M. Šterk, and B. Robič, “Computational complexity and parallelization of the

meshless local Petrov-Galerkin method,” Computers and Structures, vol. 87, no. 1–2, pp. 81–
90, 2009.

[92] E. Barbieri and M. Meo, “A fast object-oriented Matlab implementation of the Reproducing
Kernel Particle Method,” Computational Mechanics, vol. 49, no. 5, pp. 581–602, 2012.

[93] A. Karatarakis, P. Metsis, and M. Papadrakakis, “GPU-acceleration of stiffness matrix
calculation and efficient initialization of EFG meshless methods,” Computer Methods in
Applied Mechanics and Engineering, vol. 258, pp. 63–80, 2013.

[94] W. W. Hwu and D. B. Kirk, “Parallelism Scalability,” in Programming and tUning Massively
Parallel Systems (PUMPS), Barcelona, 2011.

289

[95] A. Karatarakis, P. Karakitsios, and M. Papadrakakis, “GPU accelerated computation of the
isogeometric analysis stiffness matrix,” Computer Methods in Applied Mechanics and
Engineering, vol. 269, pp. 334–355, 2014.

[96] C. Felippa, “Chapter 15 - Solid Elements: Overview,” in Advanced Finite Element Methods
(ASEN 6367) Course Material, 2011.

[97] “Hooke’s law,” Wikipedia, the free encyclopedia. 16-Feb-2014.

290

	1 Introduction
	1.1 Motivation
	1.2 Aim and objectives
	1.3 Organization and outline

	2 Simulation methods
	2.1 Meshless/Meshfree methods
	2.1.1 Basic ingredients of element-free Galerkin methods
	2.1.1.1 Basic approximations
	2.1.1.2 Weight functions
	2.1.1.3 Moving least squares (MLS) approximation
	2.1.1.4 Galerkin weak form
	2.1.1.5 Essential Boundary Conditions

	2.1.2 EFG test examples

	2.2 Isogeometric Analysis
	2.2.1 Basic ingredients of isogeometric analysis methods
	2.2.1.1 Non-Uniform Rational B-SPLines (NURBS)
	2.2.1.2 Stiffness matrix formulation
	2.2.1.3 Quadrature rule

	2.2.2 IGA Test examples

	2.3 Finite element test examples

	3 Domain decomposition methods
	3.1 The primal domain decomposition implementation
	3.1.1 Static condensation
	3.1.1.1 LL decomposition
	3.1.1.2 LDL decomposition

	3.2 The dual domain decomposition implementation
	3.2.1 FETI ingredients
	3.2.2 Supported subdomains and supported degrees of freedom
	3.2.3 Floating subdomains
	3.2.4 Linear equations of the FETI interface problem
	3.2.4.1 Matrix F
	3.2.4.2 Vector d
	3.2.4.3 Matrix G
	3.2.4.4 Vector a
	3.2.4.5 Vector e

	3.2.5 Matrices of the boundary problem
	3.2.5.1 Matrix F
	3.2.5.2 Vector d
	3.2.5.3 Matrix G and vector e
	3.2.5.4 Vectors λ and a

	3.2.6 Special cases
	3.2.6.1 Boundary nodes with multiplicity >2
	3.2.6.1.1 Minimum Constraints
	3.2.6.1.2 Non-Redundant Constraints
	3.2.6.1.3 Fully Redundant Constraints

	3.2.6.2 Constrained boundary nodes

	3.2.7 Solving the FETI interface problem

	3.3 Preconditioners
	3.3.1 General expression of preconditioners
	3.3.2 Dirichlet preconditioner
	3.3.3 Lumped preconditioner
	3.3.4 Diagonal preconditioner
	3.3.5 Preconditioner usage

	3.4 Implementation considerations in the context of FETI
	3.4.1 Matrix format
	3.4.2 Variable type
	3.4.3 Order of calculations
	3.4.4 Boolean matrices
	3.4.4.1 Type A: indexes only
	3.4.4.2 Type Β: signed indexes
	3.4.4.3 Type C: Indexes and separate signs
	3.4.4.4 Matrix-vector multiplication for compact B
	3.4.4.4.1 Matrix-vector multiplication for Type Α
	3.4.4.4.2 Matrix-vector multiplication for Type B
	3.4.4.4.3 Matrix-vector multiplication for Type C

	3.4.4.5 Left multiplying vector with matrix for compact B
	3.4.4.6 Local to Global Mapping

	3.4.5 Matrix W
	3.4.5.1 Matrix vector multiplication for compact W

	4 Graphics Processing Units (GPUs)
	4.1 CPU vs GPU
	4.2 CUDA and OpenCL
	4.3 GPU Hardware
	4.4 GPU Threads
	4.5 Thread Organization
	4.6 Warps and control divergence
	4.7 Block size
	4.8 GPU Memory
	4.8.1 Global Memory
	4.8.2 Constant Memory
	4.8.3 Shared Memory [CUDA] or Local Memory [OpenCL]
	4.8.4 Registers
	4.8.5 Other memories
	4.8.6 Data transfer

	4.9 Synchronization
	4.10 Privatization
	4.11 Atomic Operations
	4.12 Reduction
	4.13 Pinned Memory
	4.14 GPU Task Parallelism

	5 Handling of matrices
	5.1 Dense Matrix
	5.1.1 Row-major & column-major entry order
	5.1.2 Implementations
	5.1.2.1 Row-major, 2D array
	5.1.2.2 Row-major, 1D array
	5.1.2.3 Column-major, 2D array
	5.1.2.4 Column-major, 1D array

	5.2 Triangular Dense Matrix
	5.2.1 Implementations
	5.2.1.1 Lower triangular dense storage by row
	5.2.1.2 Lower triangular dense storage by column
	5.2.1.3 Upper triangular dense storage by row
	5.2.1.4 Upper triangular dense storage by column

	5.3 Symmetric Dense Matrix
	5.3.1 Implementations
	5.3.1.1 Lower Triangle by row or Upper Triangle by column
	5.3.1.2 Lower Triangle by column or Upper Triangle by row

	5.4 Diagonal Dense Matrix
	5.5 Bandwidth-aware storage
	5.5.1 Symmetric Banded Matrix
	5.5.2 Symmetric Skyline Matrix
	5.5.3 Factorization
	5.5.4 Banded Factorization
	5.5.5 Skyline Factorization
	5.5.6 Numbering considerations

	5.6 Sparse Matrix
	5.6.1 Sparse Matrix Builders
	5.6.1.1 Coordinate list (COO)
	5.6.1.2 Dictionary of Keys (DOK)

	5.6.2 Sparse Matrix formats for operations
	5.6.2.1 Compressed Sparse Row (CSR)
	5.6.2.2 Compressed Sparse Column (CSC)
	5.6.2.3 Other sparse formats

	5.7 Matrix multiplication
	5.8 Order of calculations
	5.9 Transpose
	5.10 Matrices as a collection of vectors

	6 Domain decomposition methods in hybrid CPU-GPU architectures
	6.1 Introduction
	6.2 Dual DDM (FETI) method
	6.3 Hybrid CPU-GPU implementation
	6.3.1 The Choleksy direct solver
	6.3.2 The PCG iterative solver
	6.3.3 The solution at the projection step
	6.3.4 Dot products
	6.3.5 Sparse matrix – vector multiplications

	6.4 Dynamic load-balancing
	6.4.1 Task Parallelism

	6.5 Dynamic load-balancing implementation
	6.6 Numerical results
	6.7 Remarks

	7 Relations between basic entities of Gauss quadrature
	7.1 N-G correlations
	7.2 G-N correlations
	7.3 Interactions
	7.4 Synergies
	7.5 Domain of influence in the simulation methods
	7.5.1 Domain of influence in FEA
	7.5.2 Domain of influence in MMs
	7.5.2.1 Comparison with FEA
	7.5.2.2 Identification of correlations in MMs
	7.5.2.3 Interactions and shared Gauss points in MMs

	7.5.3 Domain of influence in IGA
	7.5.3.1 Comparison with FEA
	7.5.3.2 Interactions
	7.5.3.3 Interaction comparison with FEA for equal number of freedom degrees

	8 Formulation of the characteristic matrices
	8.1 The contribution-wise (CW) method for assembling a matrix
	8.1.1 Gauss point-wise variant of the CW method
	8.1.2 Element-wise variant of the CW method

	8.2 The interaction-wise (IW) method for assembling a matrix
	8.2.1 IW variant with individual Gauss points
	8.2.2 IW variant for element-driven applications

	8.3 Scatter-gather parallelism of the matrix assembly methods
	8.4 GPU implementation of the interaction-wise approach
	8.4.1 Phase 1 – Calculation of quadrature values
	8.4.1.1 Individual Gauss point variant
	8.4.1.2 Element variant

	8.4.2 Phase 2 – Calculation of matrix entries
	8.4.2.1 Two-level individual Gauss point variant
	8.4.2.2 Two-level element variant

	8.5 Memory layout of quadrature values for coalesced access
	8.6 Utilization of available hardware
	8.7 GPU accelerated formulation of the EFG stiffness matrix
	8.7.1 Computation of stiffness contribution for each Gauss point
	8.7.1.1 Shape function derivative calculation
	8.7.1.2 BTEB Calculation

	8.7.2 Performance of the Gauss point-wise variant of the CW method
	8.7.3 Performance of the interaction-wise approach
	8.7.4 GPU implementation of the interaction-wise approach
	8.7.4.1 Phase 1 – Calculation of shape function and derivative values
	8.7.4.2 Phase 2 – Calculation of the global stiffness coefficients

	8.7.5 Performance of the GPU implementation of the interaction-wise approach
	8.7.6 Numerical results

	8.8 GPU accelerated formulation of the IGA stiffness matrix
	8.8.1 BTEB Calculation
	8.8.2 Performance of the element-wise variant of the CW method
	8.8.3 Performance of the interaction-wise approach
	8.8.4 GPU implementation of the interaction-wise approach
	8.8.4.1 Phase 1 – Calculation of shape function and derivative values
	8.8.4.2 Phase 2 – Calculation of the global stiffness coefficients

	8.8.5 Performance of the coalesced and non-coalesced GPU implementations of the interaction-wise approach
	8.8.6 Numerical results

	8.9 Remarks

	9 Overview and concluding remarks
	9.1 Future work

	10 Appendix A: BEB calculations
	10.1 The elasticity tensor in 3D problems
	10.1.1 Anisotropic material
	10.1.2 Orthotropic material
	10.1.3 Isotropic material

	10.2 The deformation matrix in 3D problems
	10.3 Explicit calculation in 3D problems
	10.3.1 Anisotropic material
	10.3.2 Orthotropic material
	10.3.3 Isotropic material

	10.4 Total number of calculations required
	10.5 The elasticity tensor in 2D problems
	10.5.1 Anisotropic material
	10.5.2 Orthotropic material
	10.5.3 Isotropic material under Plane Stress

	10.6 The deformation matrix in 2D problems
	10.7 Explicit calculation in 2D problems
	10.7.1 Anisotropic material
	10.7.2 Orthotropic material
	10.7.3 Isotropic material under Plane Stress

	10.8 Total number of calculations required in 2D problems

	11 References

