

Εθνικό Μετσόβιο Πολυτεχνείο

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών

Optimization Techniques for Task-based Parallel

Programming M odels

Διπλωματική Εργασία

του

Α θ αν άσ ιου – Ά κα νθ ου Χ ασάπη

Επ ιβλέπω ν : Νεκτάριος Κοζύρης

Καθηγητής Ε.Μ.Π.

Εργαστήριο Υπολογιστικών Συστημάτων

Αθήνα, Ιούλιος 2014

Εθνικό Μετσόβιο Πολυτεχνείο

Σ ο ή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών

Εργαστήριο Υπολογιστικών Συστημάτων

Optimization Techniques for Task-based Parallel

Programming M odels

Διπλωματική Εργασία

του

Α θ αν άσ ιου – Ά κα νθ ου Χ ασάπη

Επ ιβλέπω ν : Νεκτάριος Κοζύρης

Καθηγητής Ε.Μ.Π.

 Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την 18η Ιουλίου, 2014.

Αθήνα, Ιούλιος 2014

........................

Νεκτάριος Κοζύρης Αριστείδης Παγουρτζής Γεώργιος Γκούμας

Καθηγητής Ε.Μ.Π. Επικ. Καθηγητής Ε.Μ.Π. Λέκτορας Ε.Μ.Π.

...

Α θ αν άσ ιος – Ά κανθ ος Χ ασάπης

Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

Copyright © – All rights reserved Αθανάσιος – Άκανθος Χασάπης,

2014. Με επιφύλαξη παντός δικαιώματος.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου

ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή

για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να

αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφο-

για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγ-

γραφέα και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού

Μετσόβιου Πολυτεχνείου.

Π ερ ίληψ η

Ένα από τα πιο απαιτητικά προβλήματα στα σύγχρονα παράλληλα υπολογιστικά συστήματα

είναι η εκμετάλλευση του μεγάλου αριθμού των νημάτων/πυρήνων που προσφέρει το σύγ-

χρονο υλικό, με σκοπό την βελτίωση της αποδοτικότητας εφαρμογών που εκτελούν κομμά-

τια κώδικα παράλληλα. Στην βιβλιογραφία και την βιομηχανία έχουν προταθεί διάφορα προ-

γραμματιστικά μοντέλα για αυτό τον σκοπό, στα οποία περιλαμβάνεται και το μοντέλο με

παράλληλες εργασίες. Στο συγκεκριμένο μοντέλο, που έχει σκοπό την απλοποίηση του πα-

ράλληλου προγραμματισμού, ο προγραμματιστής εκφράζει τον παραλληλισμό της εφαρμογής

ως εργασίες που μπορούν να εκτελεστούν παράλληλα και το σύστημα εκτέλεσης αποφασίζει

πως αυτές οι εργασίες θα ανατεθούν σε νήματα του λειτουργικού συστήματος προς εκτέλε-

ση.

Στόχος της παρούσας εργασίας είναι να εξερευνήσει και να βελτιστοποιήσει τους εσωτερι-

κούς μηχανισμούς της βιβλιοθήκης Intel TBB κάτω από συγκεκριμένους αρχιτεκτονικούς

περιορισμούς. Αρχικά εξετάζουμε τον scheduler εργασιών της βιβλιοθήκης, με έμφαση στον

μηχανισμό «κλοπής εργασιών», ώστε να αναγνωριστούν οι βασικές λειτουργίες του και ε-

κτελούμε profiling για να μετρήσουμε την επιβάρυνση που επιφέρει η καθεμία. Εν συνεχεία,

γίνεται προσπάθεια να βελτιστοποιήσουμε τον μηχανισμό τυχαίας κλοπής προσθέτοντας

πληροφορίες που αφορούν την αρχιτεκτονική, κυρίως την ιεραρχία κρυφών μνημών και την

διαμόρφωση των packages. Υλοποιούμε έναν μηχανισμό κλοπής εργασιών που ακολουθεί

δύο πολιτικές: 1) κλοπή από τους κοντινότερους πυρήνες (σε απόσταση ιεραρχίας μνήμης),

2) κλοπή από τον πιο φορτωμένο με εργασίες πυρήνα. Η πρώτη πολιτική έχει στόχο να με-

γιστοποιήσει την επαναχρησιμοποίηση δεδομένων που μοιράζονται πυρήνες στην ιεραρχία

μνήμης, μείωση της μόλυνσης της κρυφής μνήμης με μη σχετικά δεδομένα (μείωση των con-

flict/coherence misses), ενθαρρύνοντας την πρόσβαση δεδομένων σε τοπικό αρχιτεκτονικό

επίπεδο. Η δεύτερη πολιτική έχει στόχο την βελτίωση της εξισορρόπησης φορτίου μεταξύ

των πυρήνων. Για την αξιολόγηση των παραπάνω παρουσιάζουμε πειραματικά αποτελέσματα

που αφορούν την βελτίωση της απόδοσης διάφορων εφαρμογών σε μία SMP πλατφόρμα 24

πυρήνων, μία NUMA πλατφόρμα 12 πυρήνων και μία NUMA πλατφόρμα 32 πυρήνων (με

πολυνηματισμό).

Λέξεις-Κλειδιά: Intel TBB, παράλληλα προγραμματιστικά μοντέλα βασισμένα σε εργασίες,

εξισορρόπηση φορτίου, ιεραρχία κρυφών μνημών, κλοπή εργασιών, τοπικότητα δεδομένων

Abstract

6

Abstract

One of the most challenging problems in modern parallel processing systems is to exploit

the large number of cores/threads available in modern hardware, in order to improve the

efficiency of applications by executing pieces of code in parallel. Various programming

models have been proposed for this purpose, among which the task programming model.

This model aims at simplifying parallel programming. In this model, the programmer

expresses parallelism as tasks to be executed in parallel and the runtime system decides

how these tasks are assigned to system threads.

The goal of this thesis is to explore and optimize the internals of the Intel TBB Library

under certain architectural conditions. Initially we examine the library task scheduler,

focusing on the task stealing mechanism, in order to identify its basic functions and we

run some profiling to verify the task stealing functionality and to measure the overheads

of each basic function. Subsequently we attempt to optimize the architecture agnostic

random stealing function by adding architecture information, mainly about the cache

hierarchy and the socket configuration. We implement a stealing mechanism that adopts

certain policies: i) stealing from the closest (in terms of cache/NUMA locality) core, ii)

stealing from the most loaded core. The first policy aims to maximize the reuse of data

shared between cores, reduce cache pollution due to irrelevant data (i.e. minimize con-

flict/coherence misses), and promote data accesses from local NUMA memory nodes. The

second policy tries to achieve better load balancing among the cores. To that end, we

present experimental results on performance improvement by measuring the speedup of

several applications on a 24-core SMP and a 12-core (with hyperthreading) NUMA mul-

ticore machine.

Keywords: Intel TBB, task-based parallel programming models, load balancing, cache

hierarchy, work stealing, data locality

Ευχα ρ ισ τ ίε ς

Η παρούσα διπλωματική εργασία εκπονήθηκε στο Εργαστήριο Υπολογιστικών Συστημάτων

της Σχολής Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών του Εθνικού Μετσό-

βιου Πολυτεχνείου, υπό την επίβλεψη του Καθηγητή Νεκτάριου Κοζύρη.

Θα ήθελα καταρχήν να ευχαριστήσω τον καθηγητή μου κ. Νεκτάριο Κοζύρη για τη επο-

πτεία του κατά την εκπόνηση της εργασίας μου, για τις γνώσεις και την έμπνευση που μου

προσέφερε με την διδασκαλία του, αλλά και για την ευκαιρία που μου έδωσε να ασχοληθώ

με ένα θέμα εξαιρετικά ενδιαφέρον στο άριστο περιβάλλον του εργαστηρίου του.

Θα ήθελα να εκφράσω την ιδιαίτερη ευγνωμοσύνη μου στον μεταδιδακτορικό ερευνητή κ.

Νίκο Αναστόπουλο για την συνεχή του καθοδήγηση στην διάρκεια εκπόνησης της διπλωμα-

τικής αυτής εργασίας, ο οποίος με την ανεξάντλητη υπομονή του με ενθάρρυνε συνεχώς και

με γέμιζε αισιοδοξία για την πορεία της εργασίας, καθώς και για τις γνώσεις και την εμπει-

ρία που μου μεταλαμπάδευσε μέσω των συζητήσεών μας γύρω από το θέμα της εργασίας.

Θα ήθελα ακόμη να ευχαριστήσω τους φίλους και συναδέλφους μου για την στήριξη που

μου προσέφεραν και τις εμπειρίες που μοιραστήκαμε.

Τέλος, θα ήθελα να ευχαριστήσω την σύντροφό μου, η οποία με στήριζε ψυχολογικά σε

όλη την ακαδημαϊκή μου πορεία μέχρι τώρα, δείχνοντας εμπιστοσύνη στις επιλογές μου και

στις δυνάμεις μου, και την οικογένειά μου, η οποία με στήριξε με υπομονή στην πορεία μου

στο ΕΜΠ τόσα χρόνια, αποτελώντας την σταθερότερη αξία στην ζωή μου.

Table of Contents 10

10

Table of Contents

Περίληψη ... 5

Abstract .. 6

Ευχαριστίες ... 7

Table of Contents ... 10

List of Figures ... 13

List of Listings .. 20

Chapter 1 Introduction .. 21

1.1 Overview .. 21

1.2 Multi-socket, multi-processor systems .. 22

1.2.1 Shared Memory Architectures ... 22

1.2.2 Distributed Memory Architectures .. 23

1.2.3 Hybrid Architectures ... 24

1.2.4 A Multi-Socket Multi-Core Machine ... 25

1.3 Parallel Programming, Amdahl’s Law, scalability .. 25

1.4 Parallel Programming Models .. 27

1.4.1 Shared Memory programming model ... 27

1.4.2 Distributed Memory programming model .. 28

1.4.3 Hybrid Programming model .. 29

1.5 Overview of Key Features for Performance .. 30

1.6 Problems and pitfalls of parallel programming that should be avoided 31

1.7 Desired Properties of Parallel Programming Models .. 33

Chapter 2 Motivation – Overview of the Problem ... 35

2.1 Regular vs. Irregular &Nested/Recursive Parallelism – Oversubscription -

Implicit vs. Explicit Parallelism... 35

2.2 The TBB Library ... 37

2.2.1 Overview of the library ... 37

2.2.2 How it satisfies the desired properties ... 39

2.3 TBB Scheduler ... 39

2.3.1 Overview, Basic Architectures and Components, Basic Functionalities . 39

11 0. Table of Contents

11

2.3.2 Executing Tasks - Work Stealing Mechanism & Load Balancing

Algorithms .. 40

2.3.3 Cache Coherence Protocols and Problems with Work Stealing 44

2.4 Profiling of basic functionalities – Characterization of overhead scalability 44

2.4.1 Systems Used .. 45

2.4.2 TBB Scheduler Basics ... 47

2.4.3 Basic TBB Functionalities ... 47

2.4.4 Applications used for characterization ... 48

Chapter 3 Techniques Used ... 63

3.1 Optimization targets .. 63

3.2 Stealing from the nearest neighbor ... 63

3.2.1 Technique description .. 63

3.2.2 Implementation details .. 64

3.3 Stealing from the most loaded processor ... 67

3.3.1 Technique description .. 67

3.3.2 Implementation details .. 68

Chapter 4 Evaluation ... 71

4.1 Physical Systems .. 71

4.2 Stealing from the nearest neighbor ... 72

4.2.1 Benchmarks Used .. 72

4.2.2 Results .. 72

4.2.3 Remarks .. 77

4.3 Load Balancing .. 78

4.3.1 Benchmarks Used .. 78

4.3.2 Results – Finding Max .. 78

4.3.3 Results–Global vs Local Sorted List .. 82

Chapter 5 Epilogue – Conclusions & Future Work .. 87

5.1 Conclusions .. 87

5.2 Related Work ... 87

5.3 Future Work .. 88

Chapter 6 Bibliography - References .. 89

Chapter 7 Appendix A – Profiling Results ... 90

7.1 Quicksort.. 90

Table of Contents 12

12

7.2 Swaptions ... 93

7.3 Matrix Multiplication ... 96

7.4 Convex-hull .. 99

Chapter 8 Appendix B – Evaluation Results ... 103

8.1 Cache-Aware Techniques ... 103

8.1.1 Heat .. 103

8.1.2 Gauss elimination .. 103

8.1.3 Floyd-Warshall.. 106

8.1.4 Quicksort .. 108

8.1.5 Matrix Multiplication .. 111

8.2 Load Balancing Techniques .. 113

8.2.1 Searching for the heaviest once in five steals 113

8.2.2 Global vs Local Sorted List ... 115

List of Figures

Figure 1. Shared Memory Architecture ... 23

Figure 2. Distributed Memory Architecture .. 24

Figure 3. Hybrid Architecture .. 25

Figure 4. Amdahl’s Law ... 27

Figure 5. TBB Components .. 38

Figure 6. Scheduler Architecture Overview ... 39

Figure 7. Recursive Splitting & Work Stealing 1 .. 42

Figure 8. Recursive Splitting & Work Stealing 2 .. 43

Figure 9. 24-core “Dunnington” SMP Platform ... 46

Figure 10. 12-core “Termi” NUMA Platform ... 46

Figure 11. Blackscholes speedup on SMP ... 50

Figure 12. Blackscholes speedup on NUMA .. 50

Figure 13. Blackscholes User-Library time on SMP for each thread count 50

Figure 14. Blackscholes User-Library time on NUMA for each thread count 50

Figure 15. Blackscholes basic functionalities breakdown on SMP for each thread count . 51

Figure 16. Blackscholes basic functionalities breakdown on NUMA for each thread count

 ... 51

Figure 17. Blakscholes basic functionalities’ scalability on SMP for each thread count ... 51

Figure 18. Blackscholes basic functionalities’ scalability on NUMA for each thread count

 ... 51

Figure 19. Blackscholes stealing components breakdown on SMP for each thread count 52

Figure 20. Blackscholes stealing components breakdown on NUMA for each thread count

 ... 52

Figure 21. Blackocholes scalability of stealing components on SMP for each thread count

 ... 52

Figure 22. Blackscholes scalability of stealing components on NUMA for each thread

count .. 52

Figure 23. Fluidanimate speedup on SMP .. 53

Figure 24. Fluidanimate speedup on NUMA ... 53

Figure 25. FluidanimateUser-Library time on SMP for each thread count 53

Figure 26. FluidanimateUser-Library time on NUMA for each thread count 53

Figure 27. Fluidanimate basic functionalities breakdown on SMP for each thread count 54

Figure 28. Fluidanimate basic functionalities breakdown on NUMA for each thread count

 ... 54

Figure 29. Fluidanimate basic functionalities’ scalability on SMP for each thread count 54

Figure 30. Fluidanimate basic functionalities’ scalability on NUMA for each thread count

 ... 54

Figure 31. Fluidanimate stealing components breakdown on SMP for each thread count

 ... 55

List of Figures 14

14

Figure 32. Fluidanimate stealing components breakdown on NUMA for each thread

count .. 55

Figure 33. Fluidanimate scalability of stealing components on SMP for each thread count

 .. 55

Figure 34. Fluidanimate scalability of stealing components on NUMA for each thread

count .. 55

Figure 35. Strassen speedup on SMP .. 56

Figure 36. Strassen speedup on NUMA .. 56

Figure 37. StrassenUser-Library time on SMP for each thread count 56

Figure 38. Strassen User-Library time on NUMA for each thread count 56

Figure 39. Strassen basic functionalities breakdown on SMP for each thread count 57

Figure 40. Strassen basic functionalities breakdown on NUMA for each thread count.... 57

Figure 41. Strassen basic functionalities’ scalability on SMP for each thread count 57

Figure 42. Strassen basic functionalities’ scalability on NUMA for each thread count 57

Figure 43. Strassen stealing components breakdown on SMP for each thread count 58

Figure 44. Strassen stealing components breakdown on NUMA for each thread count ... 58

Figure 45. Strassen scalability of stealing components on SMP for each thread count 58

Figure 46. Strassen scalability of stealing components on NUMA for each thread count 58

Figure 47. Streamcluster speedup on SMP ... 59

Figure 48. Streamcluster speedup on NUMA .. 59

Figure 49. Streamcluster User-Library time on SMP for each thread count 59

Figure 50. Streamcluster User-Library time on NUMA for each thread count 59

Figure 51. Streamcluster basic functionalities breakdown on SMP for each thread count

 .. 60

Figure 52. Streamcluster basic functionalities breakdown on NUMA for each thread

count .. 60

Figure 53. Streamcluster basic functionalities’ scalability on SMP for each thread count

 .. 60

Figure 54. Streamcluster basic functionalities’ scalability on NUMA for each thread

count .. 60

Figure 55. Streamcluster stealing components breakdown on SMP for each thread count

 .. 61

Figure 56. Streamcluster stealing components breakdown on NUMA for each thread

count .. 61

Figure 57. Streamcluster scalability of stealing components on SMP for each thread

count .. 61

Figure 58. Streamcluster scalability of stealing components on NUMA for each thread

count .. 61

Figure 59. The numbers represent the cpu ids the OS assigns to each core on Dunnington

 .. 65

Figure 60. Cpu-id distribution to arena’s slots ... 66

Figure 61. 32-core “Sandman” NUMA Platform .. 71

15 0. List of Figures

15

Figure 62. Speedup of 5-point Heat on Termi (Cache-aware) ... 73

Figure 63. Execution times of 5-point Heat on Termi (Cache-aware) 73

Figure 64. Performance gains of 5-point Heat on Termi (Cache-aware) 73

Figure 65. Speedup of 5-point Heat on Sandman (Cache-aware) 74

Figure 66. Execution times of 5-point Heat on Sandman (Cache-aware) 74

Figure 67. Performance gains of 5-point Heat on Sandman (Cache-aware) 74

Figure 68. Word Count speedup on Sandman (Cache-aware) ... 75

Figure 69. Word Count execution times on Sandman (Cache-aware) 75

Figure 70. Word Count performance gains on Sandman (Cache-aware) 76

Figure 71. Word Count speedup on Dunnington (Cache-aware) 76

Figure 72. Word Countexecution times on Dunnington (Cache-aware) 76

Figure 73. Word Count speedup on Termi (Cache-aware) .. 77

Figure 74. Word Count execution times on Termi (Cache-aware) 77

Figure 75. Streamcluster speedup on Dunnington (Just pick max) 78

Figure 76. Streamcluster execution times on Dunnington (Just pick max) 78

Figure 77. Streamcluster speedup on Termi (Just pick max) .. 79

Figure 78. Streamcluster execution times on Termi (Just pick max) 79

Figure 79. Streamcluster once in five steals speedup on Dunnington (Once in five) 80

Figure 80. Streamcluster once in five execution times on Dunnington (Once in five) 80

Figure 81. Streamcluster once in five Dunnington % Performance Improvement (Once in

five) .. 80

Figure 82. Streamcluster once in five Sandman Speedup (Once in five) 81

Figure 83. Streamcluster once in five Sandman Execution Times (Once in five) 81

Figure 84. Streamcluster once in five Sandman % Performance Improvement (Once in

five) .. 82

Figure 85. Streamcluster speedup on Dunnington (sorted-list) 83

Figure 86. Streamcluster performance gains on Dunnington (sorted list) 83

Figure 87. Quicksort speedup on Dunnington (sorted list) .. 84

Figure 88. Quicksort performance gains on Dunnington (sorted list) 84

Figure 89. Matrix multiplication speedup on Sandman (sorted list) 85

Figure 90. Matrix multiplication performance gains on Sandman (sorted list) 85

Figure 91. Quicksort speedup on SMP .. 90

Figure 92. Quicksort speedup on NUMA .. 90

Figure 93. Quicksort User-Library time on SMP for each thread count 91

Figure 94. Quicksort User-Library time on NUMA for each thread count 91

Figure 95. Quicksort basic functionalities breakdown on SMP for each thread count 91

Figure 96. Quicksort basic functionalities breakdown on NUMA for each thread count.. 91

Figure 97. Quicksort basic functionalities’ scalability on SMP for each thread count 92

Figure 98. Quicksort basic functionalities’ scalability on NUMA for each thread count .. 92

Figure 99. Quicksort stealing components breakdown on SMP for each thread count 92

Figure 100. Quicksort stealing components breakdown on NUMA for each thread count

 ... 92

List of Figures 16

16

Figure 101. Quicksort scalability of stealing components on SMP for each thread count 93

Figure 102. Quicksort scalability of stealing components on NUMA for each thread count

 .. 93

Figure 103. Swaptions speedup on SMP ... 93

Figure 104. Swaptions speedup on NUMA ... 93

Figure 105. Swaptions User-Library time on SMP for each thread count 94

Figure 106. Swaptions User-Library time on NUMA for each thread count 94

Figure 107. Swaptions basic functionalities breakdown on SMP for each thread count .. 94

Figure 108. Swaptions basic functionalities breakdown on NUMA for each thread count

 .. 94

Figure 109. Swaptions basic functionalities’ scalability on SMP for each thread count ... 95

Figure 110. Swaptions basic functionalities’ scalability on NUMA for each thread count95

Figure 111. Swaptions stealing components breakdown on SMP for each thread count .. 95

Figure 112. Swaptions stealing components breakdown on NUMA for each thread count

 .. 95

Figure 113. Swaptions scalability of stealing components on SMP for each thread count

 .. 96

Figure 114. Swaptions scalability of stealing components on NUMA for each thread

count .. 96

Figure 115. Matrix multiplication speedup on SMP ... 96

Figure 116. Matrix multiplication speedup on NUMA .. 96

Figure 117. Matrix multiplication User-Library time on SMP for each thread count...... 97

Figure 118. Matrix multiplication User-Library time on NUMA for each thread count .. 97

Figure 119. Matrix multiplication basic functionalities breakdown on SMP for each

thread count ... 97

Figure 120. Matrix multiplication basic functionalities breakdown on NUMA for each

thread count ... 97

Figure 121. Matrix multiplication basic functionalities’ scalability on SMP for each

thread count ... 98

Figure 122. Matrix multiplication basic functionalities’ scalability on NUMA for each

thread count ... 98

Figure 123. Matrix multiplication stealing components breakdown on SMP for each

thread count ... 98

Figure 124. Matrix multiplication stealing components breakdown on NUMA for each

thread count ... 98

Figure 125. Matrix multiplication scalability of stealing components on SMP for each

thread count ... 99

Figure 126. Matrix multiplication scalability of stealing components on NUMA for each

thread count ... 99

Figure 127. Convex Hull speedup on SMP ... 99

Figure 128. Convex Hull speedup on NUMA .. 99

Figure 129. Convex Hull User-Library time on SMP for each thread count 100

17 0. List of Figures

17

Figure 130. Convex Hull User-Library time on NUMA for each thread count 100

Figure 131. Convex Hull basic functionalities breakdown on SMP for each thread count

 ... 100

Figure 132. Convex Hull basic functionalities breakdown on NUMA for each thread

count .. 100

Figure 133. Convex Hull basic functionalities’ scalability on SMP for each thread count

 ... 101

Figure 134. Convex Hull basic functionalities’ scalability on NUMA for each thread

count .. 101

Figure 135. Convex Hull stealing components breakdown on SMP for each thread count

 ... 101

Figure 136. Convex Hull stealing components breakdown on NUMA for each thread

count .. 101

Figure 137. Convex Hull scalability of stealing components on SMP for each thread

count .. 102

Figure 138. Convex Hull scalability of stealing components on NUMA for each thread

count .. 102

Figure 139. Speedup of 5-point Heat on Dunnington(Cache-aware) 103

Figure 140. Execution Times of 5-point Heat on Dunnington(Cache-aware) 103

Figure 141. Gauss elimination Speedup on Dunnington(Cache-aware) 104

Figure 142. Gauss elimination execution times on Dunnington(Cache-aware) 104

Figure 143. Gauss elimination speedup on Termi(Cache-aware) 104

Figure 144. Gauss elimination execution times on Termi(Cache-aware) 105

Figure 145. Gauss elimination speedup on Sandman(Cache-aware) 105

Figure 146. Gauss elimination execution times on Sandman(Cache-aware) 105

Figure 147. Gauss elimination % performance improvement on Sandman(Cache-aware)

 ... 106

Figure 148. Floyd-Warshall speedup on Sandman(Cache-aware) 106

Figure 149. Floyd-Warshall execution times on Sandman(Cache-aware) 106

Figure 150. Floyd-Warshall performance gains on Sandman(Cache-aware) 107

Figure 151. Floyd-Warshall speedup on Termi(Cache-aware) 107

Figure 152. Floyd-Warshall execution times on Termi(Cache-aware) 107

Figure 153. Floyd-Warshall speedup on Dunnington(Cache-aware) 108

Figure 154. Floyd-Warshall execution times on Dunnington(Cache-aware) 108

Figure 155. Quicksort speedup on Dunnington(Cache-aware) 109

Figure 156. Quicksort execution times on Dunnington(Cache-aware) 109

Figure 157. Quicksort speedup on Termi(Cache-aware) .. 109

Figure 158. Quicksort execution times on Termi(Cache-aware) 110

Figure 159. Quicksort speedup on Sandman(Cache-aware) ... 110

Figure 160. Quicksort execution times on Sandman(Cache-aware) 110

Figure 161. Quicksort performance benefits on Sandman(Cache-aware) 111

Figure 162. Matrix multiplication speedup on Dunnington(Cache-aware) 111

List of Figures 18

18

Figure 163. Matrix multiplication execution times on Dunnington(Cache-aware) 111

Figure 164. Matrix multiplication speedup on Termi(Cache-aware) 112

Figure 165. Matrix multiplication execution times on Termi (Cache-aware) 112

Figure 166. Matrix multiplication speedup on Sandman (Cache-aware) 112

Figure 167. Matrix multiplication execution times on Sandman (Cache-aware) 113

Figure 168. Blackscholes speedup on Dunnington (once in five) 113

Figure 169. Blackscholes execution times on Dunnington (once in five) 114

Figure 170. Blackscholes performance gains on Dunnington (once in five) 114

Figure 171. Streamcluster speedup on Termi (sorted list) .. 115

Figure 172. Streamcluster performance gains on Termi (sorted list) 115

Figure 173. Streamcluster speedup on Sandman (sorted list).. 116

Figure 174. Streamcluster performance gains on Sandman (sorted list) 116

Figure 175. Quicksort speedup on Termi (sorted list)... 117

Figure 176. Quicksort performance gains on Termi (sorted list) 117

Figure 177. Quicksort speedup on Sandman (sorted list) .. 117

Figure 178. Quicksort performance gains on Sandman (sorted list) 118

Figure 179. Matrix multiplication speedup on Dunnington (sorted list) 118

Figure 180. Matrix multiplication performance gains on Dunnington (sorted list) 118

Figure 181. Matrix multiplication speedup on Termi (sorted list) 119

Figure 182. Matrix multiplication performance gains on Termi (sorted list) 119

Figure 183. Strassen speedup on Dunnington (sorted list) .. 119

Figure 184. Strassen performance gains on Dunnington (sorted list) 120

Figure 185. Strassen speedup on Termi (sorted list) ... 120

Figure 186. Strassen performance gains on Termi (sorted list) 120

Figure 187. Strassen speedup on Sandman (sorted list) .. 121

Figure 188. Strassen performance gains on Sandman (sorted list) 121

Figure 189. Blackscholes speedup on Dunnington (sorted list) 122

Figure 190. Blackscholes performance gains on Dunnington (sorted list) 122

Figure 191. Blackscholes speedup on Termi (sorted list) .. 122

Figure 192. Blackscholes peformance gains on Termi (sorted list) 123

Figure 193. Blackscholes speedup on Sandman (sorted list) ... 123

Figure 194. Blackscholes performance gains on Sandman (sorted list) 123

Figure 195. Swaptions speedup on Dunnington (sorted list) ... 124

Figure 196. Swaptions performance gains on Dunnington (sorted list) 124

Figure 197. Swaptions speedup on Termi (sorted list) .. 125

Figure 198. Swaptions performance gains on Termi (sorted list) 125

Figure 199. Swaptions speedup on Sandman (sorted list) ... 126

Figure 200. Swaptions performance gains on Sandman (sorted list) 126

19 0. List of Figures

19

List of Listings 20

20

List of Listings

Listing 1. Floyd-Warshall algorithm ... 35

Listing 2. Algorithm for computing the n-th Fibonacci number 36

Listing 3. Basic task dispatch loop ... 47

Listing 4. Worker stealing loop .. 67

Listing 5. Sorted-list technique algorithm ... 70

Chapter 1

Introduction

1.1 Overview

In 1965 Gordon E. Moore published a paper [1] that affected the pace in which micropro-

cessors evolved. In this paper he stated that the number of transistors on integrated cir-

cuits would continue to double every two years, a trend confirmed by observations on

computer hardware history at the time. This prediction undoubtedly continues to affect

the computer hardware industry to this day, sometimes being the push behind modern

efforts for increased performance. Since the appearance of the first microprocessor IBM

chip in 1971, uniprocessor chips have dominated the computing industry for three long

decades. During this period, the increase in transistor density was exploited mainly by an

increased clock frequency, execution optimizations and caches. Increasing the clock speed

is more or less about running the same work faster. Optimizing execution flow tried to

make the instructions flow better and faster, squeezing the most work out of each clock

cycle by reducing latency and maximizing the work accomplished per clock cycle. Final-

ly, increasing the size of on-chip cache is about putting the most useful data closer to the

processor, as main memory continues to be so much slower than the CPU. It is im-

portant to point out that all these improvements aimed at making sequential programs

run faster.

Due to physical limitations, CPU performance growth hit a wall around 2003. The clock

race between manufacturers has led up to 3,8 GHz, where it became harder and harder

to exploit higher clock speeds. Heat dissipation, power consumption and current leakage

problems are the main obstacles yet to overcome. Thus, in order to exploit the still in-

creasing transistor density, industry has shifted towards multicore architectures. This

shift signaled the end of the free-lunch era [2], where improvement in performance was

offered freely by the architectural improvements, without any effort by the programmer.

Applications would no longer benefit from performance gains without significant rede-

sign. Multicore architectures have unraveled a new world for Computer Science, where

introducing new runtime environments and programming models are essential to exploit

the new hardware.

With almost a decade having passed, multicore systems and parallel applications have

become the standard. Operating Systems and Compilers have evolved to support the new

hardware, desktop applications use multiple parallel threads and even traditionally serial

algorithms have been replaced by parallel and distributed alternatives, promising better

scaling and improved performance in multicore environments. The prevalent class of ap-

plications to be benefited from multicore consists of computation-intensive applications.

Introduction 22

22

Except for scientific applications, which are traditionally computationally demanding,

customer-oriented applications, including computer graphics, database management and

machine learning, do have increasing demands in computational resources, in an effort to

manage unprecedentedly large datasets and reduce response time.

1.2 Multi-socket, multi-processor systems

Before explaining the common parallel architectures of our interest, we shall introduce

Flynn’s taxonomy[3] of computer architectures, according to the level of parallelism they

employ to process instructions and data streams.

 SISD: Single instruction, Single Data

A sequential (or uniprocessor) computer. No parallelism employed.

 SIMD: Single Instruction, Multiple Data

A computer which concurrently processes multiple data streams with a single in-

struction stream, to perform operations that may be parallelized.

 MISD: Multiple Instruction, Single Data

Uncommon, non-commercial architecture, used only for scientific purposes, as

fault tolerance.

 MIMD: Multiple Instruction, Multiple Data

Each processor executes its own instruction stream and processes its own data

stream. This architecture supports multiple threads (thread-level parallelism).

Multicore processors and clusters are examples of MIMD architectures.

Parallel computers are based on MIMD architectures, which can be further classified ac-

cording to their memory organization, into shared-memory architectures, distributed-

memory architectures and hybrid architectures and are profoundly analyzed below.

1.2.1 Shared Memory Architectures

A Shared Memory Architecture is a memory organization scheme that offers a shared

memory address space to the programmer. Communication in this scheme is carried out

using variables in memory, which are accessed and modified using loads and stores. Each

processor has its own cache hierarchy. A typical Shared Memory Architecture is shown

in figure 1. Shared Memory Architectures can provide Uniform Memory Access (UMA),

where accesses from any processor to any memory address take the same amount of time,

or Non-Uniform Memory Access (NUMA), where memory access time varies among dif-

ferent memory addresses, depending on the processor and the topology. Obviously, NU-

MA architectures offer very low latencies for nearby memory accesses and lower memory

bus congestion when used correctly, introduce though challenges in program develop-

ment, due to their complicated topological peculiarity, a tradeoff that should be taken

into consideration.

23 Chapter 1. Introduction

23

Figure 1. Shared Memory Architecture

Shared Memory Architectures offer ease of programmability, since parallel programs can

operate on the same collections of data, which are present in memory only once. Howev-

er, such an approach hides a lot of pitfalls, as concurrent modification of the same data

by different processors can lead to inconsistent data, thus requiring a synchronization

mechanism to ensure the validity of data. Such mechanisms are usually locks or mutexes,

so as to ensure that only one processor enters a critical section of the code at a time.

Moreover, cache coherence protocols are implemented to impose a universal sequence of

access to the main memory.

Although attractive for parallel programming, Shared Memory Architectures can be used

for connecting only small numbers of processors, up to a few dozens, since such architec-

tures don’t scale well. The reason for that is that all processors compete for the same bus

and memory system, which have limited bandwidth, leading to a saturation after adding

more than 30-40 processors.

1.2.2 Distributed Memory Architectures

A Distributed Memory Architecture is a memory scheme consisting of a network of sepa-

rate processing elements, that are offered no shared memory address space and each node

has access only to its own private memory address space. Each processor has its own

cache hierarchy and processors are connected using an interconnection network, with dif-

ferent implementations varying in characteristics, such as latency, throughput and scala-

bility. A typical Distributed Memory Architecture is shown in figure 2. Computational

tasks can only operate on local data and if remote data is required, the computational

task must communicate with one or more remote processors to serve its request. Com-

munication in Distributed Memory Architectures is carried out using explicit send and

receive routines to send and receive data.

Introduction 24

24

Figure 2. Distributed Memory Architecture

Clusters are usually built of commodity computers, using the same operating system,

physically connected through cables and switches, following some network topology.

Software gets involved to manage communication between non-neighboring nodes. To

decouple communication operations from the processors, direct memory access controllers

(DMA) and routers are employed, which both enable data transfer directly from the local

memory.

One important drawback of clusters is their management cost. Managing a cluster con-

sisting of n nodes equals to the cost of managing n computers, while the cost of manag-

ing a multiprocessor of n cores equals to the cost of managing a single computer. Fur-

thermore, the interconnection network adds extra latency to the communication process,

compared to a memory bus, which increases with the number of nodes. On the other

hand, a cluster is a low-cost solution to gain high performance. Scalability comes natural-

ly by adding more independent nodes to the network, enabling modern supercomputers

to have thousands of nodes, which can be maintained or replaced with no functioning

effect on the system.

Programming on a Distributed Memory Architecture is a far more challenging issue that

on a Shared Memory Architecture, since communication and data transfer overheads

have to be identified in advance and implemented explicitly. On the other hand, Distrib-

uted Memory Architectures scale up to thousands of nodes, since they are constructed

using independent nodes and interconnection networks, avoiding the bottlenecks that

appear in Shared Memory Architectures.

1.2.3 Hybrid Architectures

A Hybrid Memory Architecture is a memory organization scheme that follows the Dis-

tributed Memory scheme, where a symmetric multiprocessor (SMP) has taken the place

of each single processor node. Each node has its own private memory address space and

shared memory parallel programming techniques can be employed within it, whereas the

system scales up in the same way as a distributed memory system, simply by connecting

more SMPs to the network. A typical Hybrid Memory Architecture is shown in figure 3.

This architecture tries to combine the benefits of both memory architectures and is the

typical architecture of modern clusters and supercomputers.

25 Chapter 1. Introduction

25

Figure 3. Hybrid Architecture

1.2.4 A Multi-Socket Multi-Core Machine

A Multi-Socket Multi-Core Machine refers to a shared memory architecture consisting of

several multicores on the same machine, each residing on a socket. Each multiprocessor

has its own cache hierarchy, and each cache memory level can be shared between two or

more processors.

1.3 Parallel Programming, Amdahl’s Law, scalability

Parallel Programming makes sense when it enables the programmer to achieve speedup

of his application execution time. Despite being the main objective, no explicit formula

exists for the parallelization of sequential algorithms and programs. Thus, the program-

mer bears the burden of exploring the potential parallelism of an algorithm, with respect

to its semantics, and resolving issues that directly affect the execution time of the paral-

lel program.

We will elaborate on these issues later on, but before that we define some main perfor-

mance metrics of parallel programming, before we introduce the main parallel program-

ming models:

 𝑇𝑝(𝑛): the parallel runtime of a program of size n on p processors

 𝑆𝑝(𝑛) =
𝑇∗(𝑛)

𝑇𝑝
: the speedup in execution time that a parallel program achieves,

compared to the sequential equivalent. 𝑇∗(𝑛) is the runtime of the fastest sequen-

tial program. In essence, it is the relative saving of execution time that can be ob-

tained by using a parallel execution on p processors compared to the best sequen-

tial program. If the inequality 𝑆𝑝(𝑛) ≤ 𝑝 holds, then the parallel implementation

is efficient. If 𝑆𝑝(𝑛) = 𝑝, the speedup is linear.

 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑆𝑝(𝑛)

𝑝
=

𝑇∗(𝑛)

𝑝∙𝑇𝑝
: it measures return on hardware investment. Ideal effi-

ciency is 1 (often reported as 100%), which corresponds to linear speedup.

Introduction 26

26

Linear speedup is rare in practice, since there is extra work involved in distributing work

to processors and coordinating them. In addition, and optimal serial algorithm may be

able to do less work overall than an optimal parallel algorithm for certain problems, so

the achievable speedup may be sublinear, even on theoretical ideal machines.

Interestingly, superlinear speedup (or efficiency greater that 100%) can be achieved.

Some common cases of superlinear speedup include:

 Restructuring a program for parallel execution can cause it to use cache memory

better, even when run on a single processor.

 The program’s performance is strongly dependent on having a sufficient amount

of cache memory, and no single processor has access to that amount. If multiple

processors bring that amount to bear, because they do not all share the same

cache, absolute speedup can be superlinear.

 The parallel algorithm may be more efficient than the equivalent serial algorithm,

since it may be able to avoid work that its serialization would be forced to do.

For example, in tree search problems, searching multiple branches in parallel

sometimes permits chopping off branches sooner than would occur in the serial

code.

If the cost of the best sequential program is unknown or varies depending on the data

set, then speedup is often computed by using a sequential version of the parallel imple-

mentation.

In the early years of high performance computing, Gene M. Amdahl [4] first denoted

some inherent constraints in the process of parallel programming. There is a fraction of

computational load in every application, associated with data management, which cannot

be executed in parallel with other computations and other acts as a constant overhead to

the runtime. To model this restriction, Amdahl introduced his famous law, which sets

the limit of the speedup potential of the program, according to the following formula

𝑆𝑝(𝑛) =
1

𝑟𝑠 +
𝑟𝑝

𝑝

where 𝑟𝑝 is the portion of the program that can be parallelized and 𝑟𝑠 the serial portion

of the program (𝑟𝑝 = 1 − 𝑟𝑠).

Amdahl’s law is a useful measure of the best case execution time for a parallel program.

If the number of processors p goes to infinity, the total speedup goes to 1/rs. If the paral-

lelizable part of the program is relatively small, its speedup would be respectively small,

regardless to the number of the processing units. Figure XX depicts the influence of

Amdahl’s law in parallel executions of different sequential fractions. In terms of pro-

gramming recipes, Amdahl’s law should be interpreted as follows: the programmer should

try to parallelize (or optimize) the parts of the code that consume the greatest fraction of

time. He also should try to parallelize all parts of the program (initialization faces,

memory allocation etc.), because if for example there is a 10% serial fraction of code in

our program, the maximum speedup potential is only 10.

27 Chapter 1. Introduction

27

Figure 4. Amdahl’s Law

1.4 Parallel Programming Models

Parallel programming models are the interface between the hardware and the program-

mer, offering an abstraction level to facilitate parallel programming on the diverse paral-

lel architectures. It enables the expression of parallel programs which can be compiled

and executed. Thus, there exist three general parallel programming models, with respect

to the aforementioned architectures: the shared memory model, the message passing

model and the hybrid model. They can be implemented as language extensions, runtime

libraries of programming languages or even autonomous execution models. They map the

more or less high level programming constructs to lower level primitives, which are pro-

vided by the underlying system. The mapping may make use of hardware provided tools

(like specific machine instructions) or operating systems constructs (like threads).

1.4.1 Shared Memory programming model

A shared memory programming model enables the programmer to partition a program-

ming task into multiple threads which run in parallel on the cores of a multiprocessor

with a shared address space. Communication between threads is handled via load and

store operations on the shared address space, bearing in mind that whenever a processor

writes to a shared memory access, all processors accessing the same address will be aware

of the change. In order to maintain data consistency, synchronization mechanisms are

needed, such as barriers and locks, preventing race conditions from affecting the parallel

program’s correctness.

Shared memory programming models offer ease of programmability, as they facilitate

data exchange and communication through a simple annotation of a variable as shared,

thus visible and accessible to all processing units. Furthermore, these programming mod-

Introduction 28

28

els supply the programmers with several parallel constructs, easily applicable to sequen-

tial programs for their parallelization, such as parallel-for loops. The price for these con-

veniences is the complexity of identifying and resolving race conditions even for a highly

skilled programmer. Managing shared data often leads to subtle and not easily traceable

bugs, which makes large-scale parallel software development very error prone, tricky and

time-consuming, affecting the productivity.

It is rather straightforward and efficient to implement shared memory programming

models for shared memory platforms, carrying though the disadvantage of their limited

scalability. On the other hand, implementation on distributed memory platforms, alt-

hough feasible, requires special performance degrading software layers and costly hard-

ware support.

Commonly used shared memory programming models are PThreads, OpenMP, CilkPlus

and Intel TBBs. The latter will be thoroughly discussed in the following chapter.

1.4.2 Distributed Memory programming model

In a message passing programming model, the program consists of a set of independent

processes, where the same instructions may reside on distinct computing nodes or com-

puters. Each process owns a local private address space and sends and receives messages

to and from other processes to achieve inter-process communication and data exchange.

Message passing is executed by the operating system or by function calls to the runtime

library that activates low level operations. In a trivial approach of this model, a send op-

eration involves a local buffer where the message to be sent is stored and a receiving pro-

cess, whereas its complementary receive operation involves a local buffer where the mes-

sage to be received will be stored. Modern approaches have though a little different im-

plementation. The message sent is copied into an internal system buffer of the runtime

system, thus the sending process can continue after the copying operation is completed,

while the receiving process copies the data from the internal buffer of the runtime.

A more general classification of the communication in a message passing model is based

on whether it is performed in a synchronous or asynchronous manner. Synchronous (also

known as blocking) message passing refers to the case where both the sending and the

receiving process block all their other operations until data exchange is accomplished.

The message is immediately stored in the receiving process’s local memory and no syn-

chronization mechanism is required, as both processes involved are synchronized at the

end of the communication. In asynchronous or non-blocking message passing, the message

is sent by the sending process without waiting for the receiving process to be ready to

receive. Both processes may continue with their tasks until lower-level operations deliver

the message. A disadvantage of asynchronous communication is that it involves an inter-

nal buffer, which, if full, may lead to a deadlock.

Communication can also be categorized as point-to-point or collective, depending on the

number of processes that exchange data. Point-to-point is when a single process sends

29 Chapter 1. Introduction

29

data to e single receiving process, while collective communication involves more than two

processes, with multiple sending and receiving points.

Naturally, message passing models serve better parallel programming on distributed

memory computing systems, which appeared long before shared memory parallel systems.

The de facto model for message passing in clusters is the MPI (Message Passing Inter-

face) standard library. The performance of such models on clusters is determined by the

communication efficiency, which relies on the interconnection network. With increasing

number of nodes, a significant overhead is added to message passing delays, which can-

not be modeled with Amdahl’s law. MPI is applicable to shared memory architectures as

well, though for reasons of performance the interconnection network is bypassed and

message passing is served by shared memory operations.

Programming with message passing models can be a challenging job. The programmer

has to design the parallel program from scratch, make decisions about data distribution,

message passing patterns and synchronization points. MPI is other than that error prone,

as it involves employing the MPI routines that match to the aforementioned decisions,

which can be cumbersome and non-trivial for the average programmer, requiring time-

consuming debugging processes. The non-trivial programmability though, when it leads

to a fine parallel implementation, has rewarding results, as the program can be highly

efficient and scalable, compared to its shared memory alternative.

Another popular implementation of message passing model is the Actor Model, imple-

mented in programming languages like Erlang and Scala. In the actor model, each object

is an actor. This is an entity that has a mailbox and a behavior. Messages can be ex-

changed between actors, which will be buffered in the mailbox. Upon receiving a mes-

sage, the behavior of the actor is executed, upon which the actor can: send a number of

messages to other actors, create a number of actors and assume new behavior for the

next message to be received. All communications are performed asynchronously. This

implies that the sender does not wait for a message to be received upon sending it, it

immediately continues its execution. There are no guarantees in which order messages

will be received by the recipient, but they will eventually be delivered.

1.4.3 Hybrid Programming model

The hybrid programming model is a combination of a shared memory and message pass-

ing model. A common hybrid model is the joint use of MPI and OpenMP. This model is

suited for hybrid architectures, as described above, where the shared memory is used to

parallelize a program at the interior of a node of an SMP cluster and the message passing

model is used for the communication between processes residing on distinct nodes. Ex-

cept for OpenMP, other shared memory implementations can be used, such as Intel

TBBs.

Introduction 30

30

1.5 Overview of Key Features for Performance

Although optimizing code cannot be dealt with in a generic manner, mainly because it

depends highly on the specific architectural characteristics of the underlying machine,

modern architectures have been designed with two major key assumptions: Data Locality

and Parallel Slack.

Data Locality refers to reusing data from nearby locations with regard to time or space.

So algorithms should be designed having in mind some of the following rules:

 Chunking the work in order to fit in cache. If the working set doesn’t fit in cache,

there will be a certain performance degradation due to capacity cache misses.

 Data structures and memory accesses should be organized to reuse data locally

when possible. Especially, unnecessary memory accesses far apart in memory or

simultaneous access to multiple memory locations located a power of two apart

should be avoided.

 Accessing too many pages at once could cause unnecessary TLB misses.

 It is very important to align data with cache line boundaries. Unrelated data ac-

cesses from different cores to the same cache lines should be avoided, as they may

cause false sharing.

Avoiding some of the above may require changes to data layout, including reordering

items and adding padding to achieve (or avoid) alignments with the hardware architec-

ture. It is noteworthy that breaking up the work into chunks and getting good alignment

with cache is also beneficial to single-core architectures.

Following the above rules assumes knowledge of cache line sizes, cache organization, or

the total size of the caches, which are not a given when writing portable code. In this

case, the memory allocation routines should be customized so that they select the chunk

size in a dynamic manner, either by hand-tuning them when porting to a new machine,

or by writing auto-tuning routines. Using cache oblivious algorithms, that is, algorithms

using recursive decomposition, is another approach to auto-tuning.

In this thesis, we will be referring to shared memory architectures. These architectures

have the property that groups of cores compete for the usage of a single memory bus. In

this case, another important factor that affects performance is arithmetic intensity, the

ratio of computation to communication. Given the fact that on-chip compute perfor-

mance is still rising with the number of transistors, but off-chip bandwidth is not rising

as fast, in order to achieve scalability a large number of on-chip computations should be

performed for every off-chip memory access. This can be achieved through a range of op-

timizations, including fusion and tiling. As a rule of thumb large enough chunks of work

that fit in cache should bring in practice the best performance. However, larger chunks of

work reduce the available parallelism since it will reduce the total number of work units.

Parallel Slack refers to the amount of extra parallelism available above the minimum

necessary to keep the parallel hardware resources utilized. Specifying an amount of po-

31 Chapter 1. Introduction

31

tential parallelism higher than the actual parallelism offered by the hardware gives the

underlying software and hardware schedulers more flexibility to exploit machine re-

sources.

The ideal strategy would be to choose work units of size that reasonably amortizes the

overhead of partitioning and scheduling them and offer good arithmetic intensity. Break-

ing the problem down to the exact amount of hardware parallelism may sound tempting,

it isn’t though the best strategy. In case a task delays for some reason (for example an

operating system interrupt), it will inevitably delay the entire program.

1.6 Problems and pitfalls of parallel programming that should be

avoided

 Race Conditions: they occur when concurrent tasks perform actions on the same

memory location without proper synchronization. When entering a critical section

of a parallel program, shared data that are accessed can cause unpredictable be-

havior without synchronization. That can be caused because there is no guarantee

about the order that the operations are going to be executed by the hardware, so

the outcome is likely to be corrupted data. If you are unlucky, a program with

data races can work fine during tasting but fail once it is in the customer’s hands.

Even considering the possible interleaving of instructions isn’t enough to predict

data races, because modern hardware usually if not sequentially consistent. That

means that hardware and the compiler may produce different reordering between

operations. Avoiding races using special hardware features is a solution, though

not a good one, as it kills portability. For this reason, the parallel programming

model used and the programming language should offer a memory model that en-

ables avoiding data races independently from the hardware details. Races are not

limited to memory locations. They can happen with files and I/O too.

 Mutual Exclusion and Locks: Locks are a low-level way to eliminate races. Mutu-

al exclusion can be achieved in many situations using a lock. The locking and un-

locking are implemented using hardware instructions, in order to ensure atomici-

ty. An important point about locks is that they should protect logical invariants

and not specific memory locations. For example, in the case of a complex data

structure as the linked list, a lock might protect the invariant “the next field of

each element points to the next element in the list”. Any time a task traverses a

list, it must first take the lock, otherwise it might walk next fields under con-

struction by another task. If a lock protects a specific memory location, the invar-

iant may be temporarily violated inside the critical section, leading to unpredict-

able behaviors.

 Deadlock: it occurs when two concurrent tasks wait for each other, not being able

to resume until the other task proceeds. This can happen when they try to ac-

Introduction 32

32

quire more than one lock at the same time, in a way that creates cyclic depend-

encies. If for example task A tries to acquire locks L1 and L2, and task B tries to

acquire locks L2 and L1 at the same time, it is possible that A acquires L1, B ac-

quires L2, and then they wait each other. There are several ways to avoid dead-

locks:

i. Holding at most one lock at a time: Never call other people’s code while

holding a lock, unless you are sure that the other code never acquires a

lock.

ii. Always acquire multiple locks in the same order: a specific ordering to

lock acquiring avoids deadlocks.

iii. Avoid locks when possible

iv. Backoff: when trying to acquire a lock, if it cannot be immediately ac-

quired, release all locks already acquired. This approach requires a “try

lock” operation that immediately returns if the lock cannot be acquired.

 Strangled Scaling: Locks serialize the program execution by nature, causing

Amdahl bottlenecks to the overall computation. When tasks contend for the same

lock, the impact on scaling can be severe, even worse than if the protected code

was serial. Except for the bottleneck to execution, the status of the protected

memory locations must be communicated between cores, thus adding communica-

tion costs not paid by the serial equivalent, which can be very costly when the

underlying machine is multisocket.

The locking can be either fine-grained or coarse-grained. Usually, fine-grained

locking replaces a single highly contended lock with many uncontended locks,

thus improving the scalability. Nevertheless, fine-grained locking can be tricky to

implement.

 Load Imbalance: it refers to uneven distribution of work across workers. The time

of the longest running task contributes to the span, which limits how fast the

parallelized portion of the program can run. Load imbalance can be avoided by

decomposing the work to small parallel chunks, thus making it easier to distribute

to the workers available.

 Lack of locality: Locality of data can be either temporal or spatial. Temporal lo-

cality refers to using the same data in the near future, while spatial locality refers

to using nearby data. In modern architectures, which use many levels of caches,

either types of locality can lead to speedup. Communication is very expensive in

these systems, while computation is very cheap. Thus, it is often preferable to in-

crease the work in exchange for reducing communication.

True and false sharing overhead caused by the cache coherence protocols can be

very high in multisocket architectures, due to the data exchange through the in-

tersocket interconnect. Also, a cache miss can take up to the order of a hundred

cycles. So having good locality but also avoiding unnecessary sharing between

cores are two requirements that both should be fulfilled, although in some cases

they may contradict each other.

33 Chapter 1. Introduction

33

 Overhead of parallelization: the programmer should have in mind that launching

and synchronizing parallel tasks introduces overhead, which increases the total

amount of work to be done. Making tasks very small can help with load balanc-

ing, but it can cause very large overhead of managing them. Ideally, the decom-

position of the work to parallel tasks should allow balancing the load while still

making tasks large enough to amortize synchronization overhead and maximize

arithmetic intensity. Launching and synchronizing the tasks in a tree structure

can lead to a time overhead that is logarithmic to the number of the workers, in-

stead of linear if all the parallel tasks were launched from one task.

1.7 Desired Properties of Parallel Programming Models

With the existing codebase consisting mainly of serial code, it is necessary to extend ex-

isting programming practices and tools to support parallelism. Broadly speaking, while

enabling dependable results, parallel programming models should have the following

properties:

 Performance: using the parallel programming model should be possible to predict-

ably achieve good performance. Moreover, the performance should be easily tuna-

ble for different systems and should scale easily to larger systems.

 Productivity: Programming models should be highly expressive, debuggable and

maintainable. A very important aspect that greatly contributes to the achieve-

ment of these requirements is composability, which will be further discussed later.

 Safety/Determinism: An inherent complication of parallel computation is non-

determinism. Determinism implies that running the same program multiple times

produces the same result. Due to the randomness of thread scheduling, for reasons

outside the control of the application, the order of operation of different threads

may be interleaved in an arbitrary order. If the threads modify shared data (in a

shared memory programming model), it is possible that different runs of a pro-

gram may produce different results even with the same input. Although non-

determinism is not necessarily bad, many approaches to application testing as-

sume determinism. In many cases, non-determinism is an error, as it leads to pos-

sible corruption of shared data. The problem of safety is how to ensure that only

correct orderings occur.

 Portability of functionality: Being able to run code on a wide variety of plat-

forms, regardless of operating systems, processors and compilers, is desirable.

 Portability of performance: Portability of performance is a serious concern. It is

reassuring for the programmer to know that his code will continue to perform

well on new machines and on machines he may not have tested it on. Ideally and

application that is tuned to run within 80%of the peak performance of a machine

should not suddenly run at 30% of the peak performance on another machine.

This can be achieved only with more abstract programming models. Abstract

models are removed enough from the hardware design to allow programs to map

Introduction 34

34

to a wide variety of hardware without requiring code changes, while delivering

reasonable performance relative to the machine’s capability.

 Composability: it is the ability to use a feature without regard to other features

being used elsewhere in the program. Ideally, every feature in a programming

language is composable with every other. For example, if this property didn’t

hold for an if statement, then linking a library where any if statement was used

would mean for statements would be disallowed throughout the rest of the appli-

cation. As absurd as it may sound, similar situations exist in some parallel pro-

gramming models or combinations of programming models. Incompatibility be-

tween programming models or constructs can lead to failure even if parallel re-

gions do not directly invoke each other. Such situations can arise, for example, by

inconsistent use of local thread memory. Another principal issue is the inability to

support hierarchical composition. This commonly occurs when a program that is

parallelized using a parallel programming model calls a library function which is

parallelized using a different parallel programming model. To avoid this danger

the programmer should know inner details of the library, which violates some

fundamental principles of software engineering, such as information hiding and

separation of concerns. So if the library is serial, and the next version becomes

parallelized, upgrading to the newest version, although the binary interface is the

same, might break the code with which it is combined.

Chapter 2

M otivation – Overview of the

Problem

2.1 Regular vs. Irregular &Nested/Recursive Parallelism – Oversub-

scription - Implicit vs. Explicit Parallelism

In the previous chapter we presented an overview of the basic keys for performance in

parallel programming, as well as common pitfalls and the desired properties of parallel

programming.

In this section we will address two more aspects of parallel programming that often occur

when parallelizing programs, namely regular vs irregular parallelism and nested parallel-

ism.

Regular parallelism refers to the parallelization of an algorithm, which acts in a predict-

able and static manner on data, which means that the computations are already known

to the programmer statically. An example of this kind of algorithms is the Floyd-

Warshall algorithm.

let dist be a |V| × |V| array of minimum distances initialized to ∞ (infinity)

for each vertex v

 dist[v][v] ← 0

for each edge (u,v)

 dist[u][v] ← w(u,v) // the weight of the edge (u,v)

for k from 1 to |V|

 for i from 1 to |V|

 for j from 1 to |V|

 if dist[i][k] + dist[k][j] < dist[i][j] then

 dist[i][j] ← dist[i][k] + dist[k][j]

Listing 1. Floyd-Warshall algorithm

In this case the programmer knows statically the order of computations, thus being able

to identify the loops that can be parallelized, divide the work and data between threads

and estimate very precisely the amount of work that each thread will have to do, com-

pute the work span and devise the way to parallelize it effectively.

On the contrary, an irregular algorithm is one that the amount of work depends on the

instance of the problem and is unpredictable by nature. For example the BFS or the A*

algorithm has this kind of “irregularity”, as the number of neighboring nodes that will be

explored for every node on the search front cannot be foreseen and they depend on the

topology of the graph that is explored. In this case, the programmer cannot simply divide

Motivation – Overview of the Problem 36

36

the work to a number of threads, because it is very likely that some of these will have to

do very little work, while others may face exponential increase in the work to be done. If

for example a thread follows a linear path on the graph, it will just explore subsequent

nodes, while another thread could face a tree-like structure of path alternatives that

should explore. That would lead to work imbalance, making the critical path ridiculously

long, resulting to huge performance degradation.

Nested parallelism refers to the situation when a programmer wants to parallelize a piece

of code which is nested in an outer piece of code that is already parallelized. A common

example is the parallelization of nested loops. As it is not usually done on purpose, an-

other more non-trivial example could be the following: Suppose an algorithm f is parallel-

ized, by creating 15 extra threads to assist the calling thread, and each thread calls a li-

brary routine g. If the implementer of g applies the same logic, now there are 16x15

threads running concurrently. A special case of nested parallelism is recursive parallelism.

This occurs when the algorithm to parallelize is recursive by nature and is difficult to

transform it to its iterative equivalent. Even if it is not that difficult, it sure loses the

elegance, readability and maintainability of the recursive formula. Also, a recursive form

of an algorithm could be cache oblivious, thus enabling better use of the cache memory.

A classic example of recursive algorithm is the computation of the nth Fibonacci number,

given by the following algorithm:

int Fib(int n)

{

 if (n <= 1)

 return 1;

 else

 return Fib(n - 1) + Fib(n - 2);

}

Listing 2. Algorithm for computing the n-th Fibonacci number

If the programmer tries to spawn a thread for each of the two recursive calls, it could

result in a huge number of threads being spawned, which is undesirable. In either cases,

creating a very large number of threads could cause oversubscription, which means hav-

ing more threads than the available parallelism the hardware offers, or even more than

the system can handle.

When using OS threading interfaces, such as POSIX threads, too much actual parallelism

can be detrimental. These threads have mandatory semantics, which means they must

run in parallel. So the OS must time-slice execution among these threads, incurring large

overhead for context switching and reloading items into cache. Mandatory, or explicit,

parallelism doesn’t also support the idea of hierarchical decomposition of program mod-

ules that was discussed earlier, which makes writing large-scale parallel software that us-

es libraries and modules that can also be parallelized a real pain. That introduces the

37 Chapter 2. Motivation – Overview of the

Problem

37

need for a parallel programming model that offers the ability to express optional parallel-

ism. Instead of using threads as our main parallelizing component, we use tasks.

A task is a piece of optional parallelism, which is implicitly scheduled on software

threads. Scheduling software threads on hardware threads by the OS is usually preemp-

tive; it can happen at any time. In contrast, scheduling tasks on software threads is non-

preemptive; a thread only switches tasks at predictable switch points. Non-preemptive

scheduling enables significantly lower overhead and stronger reasoning about space and

time requirements than OS threads. Tasks are a more intuitive way of expressing paral-

lelism in general and offer a significant parallel slack, which gives more flexibility to ex-

ploit machine resources. For example, having more potential parallelism that cores can

help performance when the cores support multithreading. If, for instance, code must in-

evitably chase pointers using independent memory reads, additional parallelism can ena-

ble hardware-multithreading to hide the latency of the memory reads. Moreover, hierar-

chically decomposing software modules, composability and nested parallelism become

non-issues, as they all end up just expressing more optional parallelism, which will be

scheduled on the right number of software threads with care, without oversubscribing

software threads to the system with the detrimental results discussed.

2.2 The TBB Library

In this thesis we examine the Intel Threading Building Blocks (TBB) multithreading li-

brary. Its programming model supports parallelism based on a tasking model. TBB is a

library, not a language extension, and thus can be used with any compiler supporting

ISO C++, so it is portable across platforms, operating systems and processors. It uses

C++ features, such as function objects, to implement its syntax.

2.2.1 Overview of the library

TBB is written following the generic programming philosophy used by the C++ Stand-

ard Template Library (STL). It relies heavily on C++ templates to provide generic par-

allel programming patterns, such as parallel_for or parallel_reduce, with the fewest pos-

sible assumptions about data structures and data types that they will be used on.

An overview of the components of Intel TBB are presented in figure5. They include the

following:

 Task: The most primitive and low level representation of a task, as parallel work

abstraction. Tasks are chunks of work to be done, following the philosophy of poten-

tial parallelism. It is designed primarily for efficient execution, rather than conven-

ience. It serves as a foundation for every tool for parallel computation that is offered

by the library, and thus should impose minimal performance penalty. Task groups run

an arbitrary number of tasks in parallel.

 Parallel Algorithms: These are higher level templates, which provide convenient

interfaces for tasks, enabling the programmer to express parallelism using some popu-

Motivation – Overview of the Problem 38

38

lar algorithms and patterns, such as parallel_for, parallel_reduce, parallel_scan, work

pile pattern, pipeline pattern, flow graph etc. As already mentioned, their foundation

is tasks. This means that if, for instance, a parallel_for is invoked, the template will

spawn the required number of tasks implicitly, chunking the work that was given ac-

cording to specific requirements. These requirements are given in many cases by the

blocked_range class and the different partitioners.

 Synchronization: the library includes primitive synchronization components such

as atomic variables, mutexes etc., enabling the programmer to have full control of the

program execution flow.

 Concurrent containers: popular and useful containers that are designed to be

scalable and generic, following the philosophy of STL.

 Memory allocation: the library offers scalable memory allocators that offer cache

alignment for false sharing avoidance and thread-local storage.

 Utility: cross-thread accurate timers

Figure 5. TBB Components

All the above functionalities are fully composable, not only with one another, but also

with other popular parallel programming models such as OpenMP and MPI. TBB could

be used to provide scalable parallelization at node level, and MPI to provide message

passing style parallelism at system level. The abstract implementations on containers and

algorithms that TBB offers boost productivity by enabling high code reuse while the

non-preemptive scheduling of tasks enables better time and space overhead estimations.

39 Chapter 2. Motivation – Overview of the

Problem

39

2.2.2 How it satisfies the desired properties

The aforementioned must have made it clear that Intel TBB aims at high performance in

shared memory architectures, provides a portable solution (it runs with any ISO C++

compiler) that can cooperate with other parallel programming models, boosts productivi-

ty by providing high code reuse with its generic components, which are fully composable.

2.3 TBB Scheduler

2.3.1 Overview, Basic Architectures and Components, Basic Functionalities

At the heart of the TBB runtime library exists the TBB task scheduler. This piece of

code has the responsibility to schedule tasks on software threads in a non-preemptive

manner. An overview of the basic components that constitute the TBB scheduler is pre-

sented in figure 6.

Figure 6. Scheduler Architecture Overview

When a thread creates for the first time an instance of the class task_scheduler_init, it

is considered as the master thread and the following structures are initialized:

 RML (Resource Management Layer): this structure keeps the workers, which are

OS threads in essence. At the initialization time no actual OS threads are creat-

ed. The number of virtual workers that are created corresponds to the requested

concurrency by the application. The concurrency offered by the TBB runtime is

the largest between the number of threads that the first application that initial-

Motivation – Overview of the Problem 40

40

ized the scheduler requested and the concurrency offered by the underlying ma-

chine. This amount cannot be changed, unless the scheduler is destroyed and re-

initialized requesting different concurrency. Actual OS threads are created lazily,

for example when a parallel algorithm is invoked, up to the maximum number of

virtual workers that RML was initialized with.

 Market: this structure has the responsibility to provide the arenas with workers.

The maximum number of workers that can be offered to all master threads is de-

fined by the concurrency that the first application that constructed the scheduler

requested. If many master threads ask for workers, it is possible to exceed the

limit of the virtual workers of the RML. In this case the market tries to dispatch

a fraction of the total workers, according to the following rule:

𝑅𝑀𝐿_𝑤𝑜𝑟𝑘𝑒𝑟𝑠 ∗
𝑚𝑎𝑠𝑡𝑒𝑟_𝑑𝑒𝑚𝑎𝑛𝑑

𝑡𝑜𝑡𝑎𝑙_𝑑𝑒𝑚𝑎𝑛𝑑

 Arena: this structure is associated with the master thread. Each master thread

has its own arena, in which this thread along with the workers provided by the

market work on the tasks. Each arena registers to the market. The slots of each

arena correspond to the maximum number of workers that can be assigned by the

market and can be used by the master thread to execute tasks. Their number is

equal or less than the concurrency requested by the master thread that first ini-

tialized the task scheduler.

 Task dispatcher: this structure is the local scheduler of each worker that has the

responsibility to acquire and execute tasks. Local instances of the task dispatcher,

which corresponds to the class custom_scheduler, register to each arena slot. The

functionality of this class is described below.

2.3.2 Executing Tasks - Work Stealing Mechanism & Load Balancing Algo-

rithms

When a parallel algorithm is invoked from a master thread, for example a parallel_for,

an initial root task is spawned at the local task pool of the master thread. The market

provides the arena with the maximum number of workers it can and each one of them

keeps his own local task pool, initially empty. Each task pool is a LIFO data structure,

which means that the owner can only take for execution the task at the beginning of the

task pool, and can spawn new tasks also at the beginning. The reason for that will be-

come obvious later on.

TBBs use two load balancing techniques, recursive splitting and work stealing. Recursive

splitting refers to the situation where a worker has to execute a body of code on a range

of data, for example a parallel_for on an array of N elements. In this case the worker

starts to recursively split the range to equal subranges, creating and spawning the corre-

sponding tasks. This continues in a depth first manner, as in figure 7, until a range be-

comes less or equal to a specific grainsize. Then the worker calls the body code on the

subrange, executing the work needed. The other workers who initially have an empty

local task pool try to steal work from the workers that have tasks available. When a

41 Chapter 2. Motivation – Overview of the

Problem

41

worker (including the master) runs out of work, he tries to steal work from a victim

worker, which is chosen randomly. The latter mechanism is called work stealing and it

ensures that no worker will stay idle if there is still work available and no other worker

executes it. If the chunk of work he stole needs further splitting, he continues the split-

ting the same way the master thread did it, creating subtasks that are available to be

stolen by other idle workers. Although there is the factor of randomness in choosing the

victim, it has been proven in practice that this simple mechanism is very efficient for

load balancing, minimizing the idleness of the workers.

The critical point about work stealing is that when a worker tries to steal a victim, he

always steals from the end of its task pool, in a first-in first-out manner (FIFO). The

reason for that is that because of the depth-first recursive splitting that treats the task

pool as a last-in first-out (LIFO), the beginning of each local task pool has the smaller

chunks of work, while the end has the largest chunks. As a result, splitting in a depth-

first manner while stealing in a breadth-first manner leads to the best possible load bal-

ance.

2.3.2.1 Partitioners and Grainsize

The partitioner is responsible for splitting a range to subranges. Each partitioner guaran-

tees that the recursive splitting will continue until the chunks of work become greater

than G/2 and smaller that G, where G is the grainsize. There are three kinds of parti-

tioners, the simple partitioner, the auto-partitioner and the affinity partitioner:

 Simple Partitioner: In the case of the simple partitioner, the programmer explicit-

ly defines the grainsize, with the default value being 1. The partitioning of a

range r is simply continues until r.is_divisible() becomes false.

 Auto-partitioner: The grainsize is automatically estimated by a heuristic. The

mechanism includes two values, V and K, which are both 4 in the current imple-

mentation. A variable n is initialized with the value P*K for the top level range,

where P is the number of processors available. Each time the range is split, it

gets half of the original n. If a range is stolen, its n is forced to be at least V.

When n reaches 1 the range is not further split, although is_divisible() may still

return true (controlled by the grainsize that was hinted to the partitioner). The

intuition behind this mechanism is that the range should be split to a number of

equal chunks that equals to the number of available processors, but there should

be a little more splitting so that more than one tasks are pending for execution at

each processor, to help better load balancing and compensate for the randomness

of stealing. If the range is two-dimensional, it can be divisible along one or both

axes. If divisible along both dimensions, the two-dimensional range chooses the

split that yields pieces with an aspect ratio similar to aspect ratio of the grain

size.

 Affinity partitioner: In certain applications, such as numerical relaxation and

time-stepping marches for partial differential equations, cache affinity is crucial

Motivation – Overview of the Problem 42

42

for performance. The randomness of stealing causes loop algorithms to have poor

affinity between successive sweeps over the same range. The affinity partitioner

tries to tackle this problem, by hinting that the same or similar subranges are as-

signed to the same workers between successive sweeps, hoping that the data of

each subrange will still be in the cache for the next iterations. This is though a

hint, meaning that subranges may still be migrated to other threads to rebalance

load. Moreover, it is not guaranteed that the thread that corresponds to a specific

worker will not be migrated to a different physical core by the operating system.

Nevertheless, the OS does not often migrate threads for no reason, and assuming

that no other resource demanding process is running concurrently, the OS migra-

tion should not cause any performance issues. The grainsize in this case is select-

ed as in the case of auto-partitioner.

Figure 7. Recursive Splitting & Work Stealing 1

43 Chapter 2. Motivation – Overview of the

Problem

43

Figure8 shows two possible steps of a parallel_for computation on the range 0 to N.

First the master thread has subdivided the range at his local task pool, putting the

smallest chunks of work at the front. Meanwhile, workers 1 and 2 tried to steal work

from master. Worker 1 stole first the rightmost chunk of work and subsequently Worker

2 stole the second rightmost chunk. Worker 3 has not still stolen anything. At the next

step, the master thread still executes his smaller chunk of work, while Worker 1 and 2

have already splitted their stolen chunks a few times. Worker 3 now kicks in and tries to

steal the rightmost chunk from Worker 1.

Figure 8. Recursive Splitting & Work Stealing 2

When the master thread decides to leave the arena, it destructs the task_scheduler_init

object. Other workers though may still be working on tasks, so complete destruction of

Motivation – Overview of the Problem 44

44

components is postponed. When a worker repeatedly fails to steal work from others after

finishing his own, he scans the arena to make sure he is left alone and that the other

workers have already left, leaving no further work to be done. If that holds, he leaves the

arena and destructs the relevant components.

2.3.3 Cache Coherence Protocols and Problems with Work Stealing

While work stealing is a simple and efficient mechanism to balance the load, several is-

sues may arise during runtime.

2.3.3.1 Cache pollution

Stealing a task from a random victim implies that the thief must operate on data, such

as a specific subrange of a loop, which would otherwise be handled by the victim. The

randomness of stealing could pollute thief’s cache with data that are completely irrele-

vant to the current data, and are far apart from each other in memory. This could cause

serious performance degradation and several cache misses, compulsory as well as capacity

misses, because the new data may evict data that will be needed in the future.

2.3.3.2 Data sharing

When a thief brings data from a victim into his cache memory, some of them may be

adjacent to data in memory that are used by the victim. This leads to false-sharing be-

tween the two cores, which can cause a serious bottleneck in runtime, because of the

cache coherence protocols that will start to invalidate data to each other, causing a ping-

pong effect. That could be avoided if the two cores shared some cache level. The lower

the better, but the randomness in stealing cannot guarantee it.

2.3.3.3 Locking

Work stealing includes some locking mechanisms, in case a clash between the thief and

the victim occurs. Locking also occurs when multiple thieves try to steal from the same

victim. In either cases, when the thread count increases, locking could become a bottle-

neck to the system because of the randomness of stealing. If the stealing mechanism lim-

ited the stealing between specific threads, this locking mechanism could scale better and

fewer clashes would occur.

2.4 Profiling of basic functionalities – Characterization of overhead

scalability

The first step of this study is to examine the overhead introduced by the TBB runtime

library on parallel applications, broken down to basic functions as well as total user-

library time. The profiling has multiple targets: first it aims to confirm the structure of

the library and identify the functionalities into the code. Second, we try to measure the

amount of stealing that occurs during runtime and how much it can affect the overall

performance. Also we try to expose the scalability of each basic function of the library,

including stealing, in order to identify possible bottlenecks of the task stealing mecha-

nism and overall performance.

45 Chapter 2. Motivation – Overview of the

Problem

45

2.4.1 Systems Used

We use the Intel Threading Building Blocks 3.4 library (tbb40_20120408oss), which at

the start of our study was the most up-to-date release available. Although most recent

releases have taken place since then, the basic functionality of the task scheduler has not

been changed, so these changes do not affect the outcome of our results. We compile

TBB using GCC 4.6.3 and used the optimized “release” library.

For our profiling we used the systems described in the following subsections:

2.4.1.1 “Dunnington” SMP Platform

The first physical system used for the profiling is a 24-core Dunnington-based SMP with

the following characteristics (shown in figure 9):

 4 package(Intel(R) Xeon(R) X7460 @ 2.67GHz)

 6 cores per package

 no Hyperthreading

 32KB L1 cache per core

 3MB L2 cache per 2 cores

 16MB L3 cache per package (6 cores)

 28.136 MB RAM

2.4.1.2 “Termi” NUMA Platform

The second physical system used is a 12-core Termi-based NUMA with the following

characteristics (shown in figure 10):

 2 Packages (Intel(R) Xeon(R) X5650 @ 2.67GHz)

 6 cores per Package

 Hyperthreading (24 threads in total)

 32KB L1 cache per core (2 threads)

 256KB L2 cache per core (2 threads)

 12MB L3 per package (6 cores, 12 threads)

 48.295 MB RAM

Motivation – Overview of the Problem 46

46

Figure 9. 24-core “Dunnington” SMP Platform

Figure 10. 12-core “Termi” NUMA Platform

47 Chapter 2. Motivation – Overview of the

Problem

47

2.4.2 TBB Scheduler Basics

The TBB scheduler consists mainly of a basic dispatch loop, a simplified version of which

is presented below. The wait_for_all() procedure is the main scheduling loop. It consists

of nested loops that attempt to obtain work through three different ways: explicit task

specification, local task queue and random task stealing. In the innermost loop the task

for execution is specified by the current task, which returns a pointer to the next task. If

the current task does not return a task to execute, the do-while loop tries to acquire a

task from the local task pool. If there is no work left in the local task pool, the thread

tries to steal a task from a random victim. If that is unsuccessful, the thread waits for a

fixed amount of time and tries again. If too many unsuccessful attempts occur, the

thread gives up and waits until the main thread wakes it by generating more tasks.

wait_for_all(task *child) {

 task = child;

 loop until root is alive {

 do {

 while task available {

 next_task = task->execute();

 Decrease ref_count for parent of task

 If ref_count == 0

 next_task = parent of task

 }

 task = get_task();

 } while (task);

 task = steal_task(random());

 if steal unsuccessful {

 Wait for a fixed amount of time

 If waited for too long, wait for master thread to produce new work

 }

}

Listing 3. Basic task dispatch loop

2.4.3 Basic TBB Functionalities

The basic TBB Scheduler functionalities are:

 spawn: When a worker is created, it is associated with a local task pool, as al-

ready mentioned. Tasks are explicitly enqueued into a task pool when their corre-

sponding worker calls the spawn method. This can happen many times when exe-

cuting a task, as in the case of the Fibonacci computation, where each task

(which corresponds to the computation of the n-th number) spawns two more

tasks (which correspond to the computation of the (n-1)-th and (n-2)-th num-

bers). It takes a pointer to a task object and enqueues it to the local task pool of

the calling thread.

Motivation – Overview of the Problem 48

48

 get_task: This method is called by the dispatcher loop when the completion of

the previous task returns no task for execution. It tries to retrieve a task from the

local task pool. When unsuccessful, it returns NULL.

 receive_or_steal_task: This method is called when there is no work left in the

local task pool. Except for stealing tasks from other threads, it may also retrieve

tasks that have been mailed to it. It can be subdivided into tree functions:

 lock_task_pool: It basically tries to lock the victim’s local task pool so

that no collision will happen with the owner. Increasing number of threads

may cause several collisions and as any locking mechanism, it can have

scalability issues.

 stealing: It is the act of retrieving a task class description from the vic-

tim’s task pool, after locking it.

 steal_wait: It is the time spent on functions other than actual stealing in-

side the receive_or_steal_task, which is essentially the time waiting be-

tween successive attempts to steal.

 acquire_queue: This method is called by spawn and get_task to lock the thread’s

local task pool, in order to either enqueue a new task or retrieve a task ready for

execution.

 lib_wait: this value represents the time spent by the wait_for_all dispatch loop

on functions other than the above. It is essentially the difference between the to-

tal library timer (the wait_for_all loop) and the sum of the individual timers of

each aforementioned function (except for acquire_queue which is included in

spawn and get_task timers).

2.4.4 Applications used for characterization

We study the impact of the TBB runtime library on parallel applications by using some

well-known benchmarks: blackscholes, fluidanimate, streamcluster and swaptions, which

are part of PARSEC benchmark suite[5], and convex_hull, matrix_multiply, quicksort,

strassen, which are in-house developed benchmarks. These applications were chosen be-

cause they create a substantial amount of tasks and use many of the templated algo-

rithms offered by the library, as well as the low-level way of task creation by hand, ena-

bling us to examine the behavior and scalability of TBB’s basic functionalities in a wide

range of circumstances.

Algorithm Description Input size

Blackscholes
Option pricing with Black-Scholes Partial

Differential Equation
64K

Fluidanimate

Fluid dynamics for animation purposes with

Smoothed Particle Hydrodynamics (SPH)

method

500K

Streamcluster Online clustering of an input stream 16384 data points

Swaptions Pricing of a portfolio of swaptions
64 swaptions, 20000

simulations

Convex Hull Smallest convex that contains a set of points 40M points

49 Chapter 2. Motivation – Overview of the

Problem

49

Matrix_multiply Matrix multiplication 1500x1500

Quicksort Quicksort sorting method 100M

Strassen Matrix multiplication 256x256

In the following subsections we present the results acquired during the profiling. For each

application there is a brief description followed by 1) the speedup achieved, 2) a User-

Library time breakdown for each thread count, 3) a breakdown diagram of the library

time to the basic functionalities of the scheduler, 4) the scalability of each functionality

separately. We present the most notable and characteristic results. The rest can be found

in Appendix A.

Motivation – Overview of the Problem 50

50

2.4.4.1 Blackscholes

First, the speedup of the parallel area is given. We see that on the SMP machine the

scalability is not as good as on the NUMA, a fact that we relate to the potential bottle-

neck on the memory bus in combination with the increased overhead in case of inter-

socket communication. The following graphs give a clearer image of the overheads of

each library component.

Figure 11. Blackscholes speedup on SMP

Figure 12. Blackscholes speedup on NUMA

Figure 13. Blackscholes User-Library time on SMP for each

thread count

Figure 14. Blackscholes User-Library time on NUMA for each

thread count

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20 25 30

Speedup of Parallel Area

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30

Speedup of Parallel Area

0

1000000

2000000

3000000

4000000

5000000

1 2 4 8 12 16 20 24

User - Library time

library usec user usec

0

200000

400000

600000

800000

1000000

1200000

1400000

1 2 4 8 12 16 20 24

User - Library time

library usec user usec

51 Chapter 2. Motivation – Overview of the

Problem

51

Figure 15. Blackscholes basic functionalities breakdown on SMP

for each thread count

Figure 16. Blackscholes basic functionalities breakdown on

NUMA for each thread count

Figure 17. Blakscholes basic functionalities’ scalability on SMP for

each thread count

Figure 18. Blackscholes basic functionalities’ scalability on

NUMA for each thread count

0

1000000

2000000

3000000

4000000

1 2 4 8 12 16 20 24

Basic Functionalities

Breakdown

spawn get_task

receive_or_steal acquire_queue

lib_wait

0

50000

100000

150000

1 2 4 8 12 16 20 24

Basic Functionalities

Breakdown

spawn get_task

receive_or_steal acquire_queue

lib_wait

0

500000

1000000

1500000

2000000

2500000

3000000

u
se

c

Functionalities

Scalability of each functionality

1

2

4

8

12

16

20

24

0
20000
40000
60000
80000

100000
120000

u
se

c

Functionalities

Scalability of each

functionality

1

2

4

8

12

16

20

24

Motivation – Overview of the Problem 52

52

Figure 19. Blackscholes stealing components breakdown on SMP

for each thread count

Figure 20. Blackscholes stealing components breakdown on

NUMA for each thread count

Figure 21. Blackocholes scalability of stealing components on SMP

for each thread count

Figure 22. Blackscholes scalability of stealing components on

NUMA for each thread count

0

500000

1000000

1500000

2000000

2500000

3000000

1 2 4 8 12 16 20 24

Stealing components breakdown

lock_task_pool stealing steal_wait

0

20000

40000

60000

80000

100000

120000

1 2 4 8 12 16 20 24

Stealing components

breakdown

lock_task_pool stealing steal_wait

0

200000

400000

600000

800000

1000000

1200000

1400000

u
se

c

Stealing components

Stealing Mechanism

1

2

4

8

12

16

20

24

0

10000

20000

30000

40000

50000

60000

70000

u
se

c

Stealing components

Stealing Mechanism

1

2

4

8

12

16

20

24

53 Chapter 2. Motivation – Overview of the

Problem

53

2.4.4.2 Fluidanimate

The same graphs are presented for the fluidanimate application. This application does

not scale very well and the library time is dominated by the stealing function.

Figure 23. Fluidanimate speedup on SMP

Figure 24. Fluidanimate speedup on NUMA

Figure 25. FluidanimateUser-Library time on SMP for each thread

count

Figure 26. FluidanimateUser-Library time on NUMA for each

thread count

0

2

4

6

8

10

12

1 2 4 8 16

Speedup of Parallel Areas

ClearParticles RebuildGrid

InitDensitiesAndForces ComputeDensities

ComputeDensities2 ComputeForces

ProcessCollisions AdvanceParticles

overall

0

2

4

6

8

10

1 2 4 8 16

Speedup of Parallel Areas

ClearParticles RebuildGrid

InitDensitiesAndForces ComputeDensities

ComputeDensities2 ComputeForces

ProcessCollisions AdvanceParticles

overall

0

200000

400000

600000

800000

1000000

1200000

1400000

1 2 4 8 16

User - Library time

library usec user usec

0

200000

400000

600000

800000

1000000

1 2 4 8 16

User - Library time

library usec user usec

Motivation – Overview of the Problem 54

54

Figure 27. Fluidanimate basic functionalities breakdown on SMP for

each thread count

Figure 28. Fluidanimate basic functionalities breakdown on NUMA

for each thread count

Figure 29. Fluidanimate basic functionalities’ scalability on SMP

for each thread count

Figure 30. Fluidanimate basic functionalities’ scalability on NU-

MA for each thread count

0

200000

400000

600000

800000

1000000

1 2 4 8 16

Basic Functionalities Breakdown

spawn get_task receive_or_steal

acquire_queue lib_wait

0

20000

40000

60000

80000

100000

120000

140000

1 2 4 8 16

Basic Functionalities Breakdown

spawn get_task receive_or_steal

acquire_queue lib_wait

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

u
se

c

Functionalities

Scalability of each functionality

1

2

4

8

12

16

20

24

0

20000

40000

60000

80000

100000

120000

140000

u
se

c

Functionalities

Scalability of each functionality

1

2

4

8

12

16

20

24

55 Chapter 2. Motivation – Overview of the

Problem

55

Figure 31. Fluidanimate stealing components breakdown on SMP

for each thread count

Figure 32. Fluidanimate stealing components breakdown on

NUMA for each thread count

Figure 33. Fluidanimate scalability of stealing components on

SMP for each thread count

Figure 34. Fluidanimate scalability of stealing components on

NUMA for each thread count

0

200000

400000

600000

800000

1000000

1 2 4 8 16

Stealing components breakdown

lock_task_pool stealing steal_wait

0

20000

40000

60000

80000

100000

120000

140000

1 2 4 8 16

Stealing components breakdown

lock_task_pool stealing steal_wait

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000

u
se

c

Stealing components

Stealing Mechanism

1

2

4

8

12

16

20

24

0

20000

40000

60000

80000

100000

120000

u
se

c

Stealing components

Stealing Mechanism

1

2

4

8

12

16

20

24

Motivation – Overview of the Problem 56

56

2.4.4.3 Strassen

The same graphs are presented for the strassen application. This application scales poor-

ly on both the SMP and the NUMA platform. Work stealing also dominates in this case

the library time and the stealing function does not scale well, as we see increasing execu-

tion times as the thread count increases.

Figure 35. Strassen speedup on SMP

Figure 36. Strassen speedup on NUMA

Figure 37. StrassenUser-Library time on SMP for each

thread count

Figure 38. Strassen User-Library time on NUMA for each thread

count

0

0,5

1

1,5

2

2,5

3

3,5

0 5 10 15 20 25 30

Speedup of Parallel Area

0

0,5

1

1,5

2

2,5

3

0 2 4 6 8 10

Speedup of Parallel Area

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

1 2 4 8 12 16 20 24

User - Library time

library usec user usec

0

10000000

20000000

30000000

40000000

50000000

60000000

1 2 4 8 12 16 20 24

User - Library time

library usec user usec

57 Chapter 2. Motivation – Overview of the

Problem

57

Figure 39. Strassen basic functionalities breakdown on SMP for

each thread count

Figure 40. Strassen basic functionalities breakdown on NUMA for each

thread count

Figure 41. Strassen basic functionalities’ scalability on SMP for

each thread count

Figure 42. Strassen basic functionalities’ scalability on NUMA for

each thread count

0

50000

100000

150000

200000

1 2 4 8 12 16 20 24

Basic Functionalities Breakdown

spawn get_task receive_or_steal

acquire_queue lib_wait

0

1000

2000

3000

4000

5000

6000

7000

1 2 4 8 12 16 20 24

Basic Functionalities Breakdown

spawn get_task receive_or_steal

acquire_queue lib_wait

0
20000
40000
60000
80000

100000
120000
140000
160000
180000

u
se

c

Functionalities

Scalability of each functionality

1

2

4

8

12

16

20

24

0

1000

2000

3000

4000

5000

u
se

c

Functionalities

Scalability of each functionality

1

2

4

8

12

16

20

24

Motivation – Overview of the Problem 58

58

Figure 43. Strassen stealing components breakdown on SMP for

each thread count

Figure 44. Strassen stealing components breakdown on NUMA

for each thread count

Figure 45. Strassen scalability of stealing components on SMP

for each thread count

Figure 46. Strassen scalability of stealing components on NUMA for

each thread count

0

50000

100000

150000

200000

1 2 4 8 12 16 20 24

Stealing components breakdown

lock_task_pool stealing steal_wait

0

1000

2000

3000

4000

5000

1 2 4 8 12 16 20 24

Stealing components breakdown

lock_task_pool stealing steal_wait

0

20000

40000

60000

80000

100000

120000

u
se

c

Stealing components

Stealing Mechanism

1

2

4

8

12

16

20

24

0

500

1000

1500

2000

2500

3000

3500

4000

u
se

c

Stealing components

Stealing Mechanism

1

2

4

8

12

16

20

24

59 Chapter 2. Motivation – Overview of the

Problem

59

2.4.4.4 Streamcluster

The graphs for the streamcluster application show another example of poor scalability on

the SMP, with the NUMA having a better scalability, though not satisfying. Stealing

time also dominates here the library run time.

Figure 47. Streamcluster speedup on SMP

Figure 48. Streamcluster speedup on NUMA

Figure 49. Streamcluster User-Library time on SMP for

each thread count

Figure 50. Streamcluster User-Library time on NUMA for

each thread count

0

0,5

1

1,5

2

2,5

3

0 5 10 15 20 25 30

Speedup of Parallel Area

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20 25 30

Speedup of Parallel Area

0

50000000

100000000

150000000

200000000

1 2 4 8 12 16 20 24

User - Library time

library usec user usec

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

1 2 4 8 12 16 20 24

User - Library time

library usec user usec

Motivation – Overview of the Problem 60

60

Figure 51. Streamcluster basic functionalities breakdown on

SMP for each thread count

Figure 52. Streamcluster basic functionalities breakdown on

NUMA for each thread count

Figure 53. Streamcluster basic functionalities’ scalability on

SMP for each thread count

Figure 54. Streamcluster basic functionalities’ scalability on

NUMA for each thread count

0

50000000

100000000

150000000

200000000

1 2 4 8 12 16 20 24

Basic Functionalities

Breakdown

spawn get_task

receive_or_steal acquire_queue

lib_wait

0

2000000

4000000

6000000

8000000

1 2 4 8 12 16 20 24

Basic Functionalities

Breakdown

spawn get_task

receive_or_steal acquire_queue

lib_wait

0

50000000

100000000

150000000

200000000

u
se

c

Functionalities

Scalability of each

functionality

1

2

4

8

12

16

20

24

0
1000000
2000000
3000000
4000000
5000000
6000000
7000000

u
se

c

Functionalities

Scalability of each

functionality

1

2

4

8

12

16

20

24

61 Chapter 2. Motivation – Overview of the

Problem

61

Figure 55. Streamcluster stealing components breakdown on

SMP for each thread count

Figure 56. Streamcluster stealing components breakdown on

NUMA for each thread count

Figure 57. Streamcluster scalability of stealing components on

SMP for each thread count

Figure 58. Streamcluster scalability of stealing components on

NUMA for each thread count

0

50000000

100000000

150000000

200000000

1 2 4 8 12 16 20 24

Stealing components

breakdown

lock_task_pool stealing steal_wait

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

1 2 4 8 12 16 20 24

Stealing components

breakdown

lock_task_pool stealing steal_wait

0
10000000
20000000
30000000
40000000
50000000
60000000
70000000
80000000
90000000

100000000

u
se

c

Stealing components

Stealing Mechanism

1

2

4

8

12

16

20

24

0

1000000

2000000

3000000

4000000

5000000

6000000

u
se

c

Stealing components

Stealing Mechanism

1

2

4

8

12

16

20

24

Motivation – Overview of the Problem 62

62

Observations:

 In many cases, applications scaled better on the NUMA platform. The main rea-

son for that is that the SMP has a single memory bus, making it a bottleneck for

any memory transactions, and as the thread count increases more conflicts for the

bus occur, serializing transactions that could otherwise be executed in parallel.

 The NUMA platform offers different paths to memory, parallelizing memory ac-

cesses of different packages, when of course it is inherently possible by the access

pattern of the application.

 The most important observation on all applications is that stealing time domi-

nates the library run time, making it a hot target for optimization.

 In many cases the stealing time is dominated by the steal_wait function, which

means that the stealing attempts are mostly unsuccessful, a fact that is confirmed

by the library statistics and the successful to failed stealing attempts ratio, alt-

hough it is not presented in this thesis explicitly. According to the graphs, this

fact is even worse on the NUMA platform.

Chapter 3

Techniques Used

3.1 Optimization targets

In this section we present the techniques that we applied as an attempt to better exploit

the cache hierarchy of the physical system as well as attempts to improve load balancing.

Our target for optimization is the stealing mechanism of TBBs. We applied several tech-

niques and variations of them, exposing their strengths and weaknesses on each machine.

3.2 Stealing from the nearest neighbor

The first attempt for optimization of the stealing mechanism targets the cache hierarchy

of the underlying physical machine. As explained earlier, work stealing occurs in an ar-

chitecture-agnostic manner, by choosing random cores as potential victims. This can de-

teriorate the performance, especially on NUMA platforms that inter-socket communica-

tion incurs great overhead.

3.2.1 Technique description

Our approach was choosing the nearest possible core, in terms of cache distance, that has

work to offer as victim. As it can be seen in the relevant figures describing the architec-

tural organization of the platforms, each core shares several cache memory levels with

different sets of cores.

The key idea is to try stealing from the cores with which we share the L1 cache level.

Normally, that is zero or one cores, so in case we fail to steal from him or he doesn’t

have any tasks enqueued in his task queue we need to have alternatives. In that case we

try to steal from the (other) cores that we share the L2 cache level with. And if that fails

too, we try the L3 level. In case there is no work in our package, we could end up steal-

ing work from the cores in the other packages, as a last resort. In that way we prioritize

our targets in terms of cache level distance.

Another critical detail is the persistency to our first choices of victims. The nearest

neighbors, for example the ones we share the L1 cache with, are few in our physical sys-

tems. They can either be one or two. In case they are not available for stealing when we

probe them, we needed to persist and try again some times before we end up choosing

the next nearest neighbor. The most neighbors are located in the other packages, some

share the L3 cache level with our cpu, few the L2 and even fewer the L1 cache level.

This approach aims to stealing tasks that have a better chance to find the data they

need in a cache level, avoiding communicating with other packages on even worse the

main memory, which could happen if we steal from a core that lies on another package.

Techniques Used 64

64

Moreover, it avoids cache pollution that comes to play when we bring data from other

packages to our package. The size of each cache level is limited, so bringing new data

could evict other data that are needed by the other workers in the package, leading to

cache capacity and conflict misses.

As proposed in[6], it would be better to restrict stealing from other packages, in order to

minimize inter-socket communication cost. In order to achieve that, we permit only to

one worker from each package to be able to steal from the other packages, while the rest

can only steal local (in-package). We will be referring to these threads as the master

worker of the package and the slave workers respectively.

3.2.2 Implementation details

In order to be able to choose victims according to the underlying architecture, it was

necessary to pin each worker to a specific core. So, we created an extension to the arena

class that contains the information needed, that is, the platform representation as well as

a table that contains the physical cpu ids that library workers should be pinned on.

For pinning the OS threads to specific physical cores in order to be able to find the near-

est core, a basic decision should be made. That is, which class of the library should carry

the information about the physical core. The chosen class will enforce the entity that

represents to work on a specific core. It would sound reasonable to add this information

to the class private_worker that it represents a virtual worker and is bound with an OS

thread lazily, when the library decides to launch it. However, this information was inte-

grated to the arena_slot class. A number of such objects represent the available slots on

each arena that require library workers to populate them and execute some of the arena’s

work. On the instantiation of the master thread’s arena, each arena slot is assigned a

number that represents the physical core that it should work on. Any worker that occu-

pies an arena slot has to pin himself and work on the core it indicates. This decision was

made mainly because the workers of the library, who correspond to OS threads, are en-

tering and leaving arenas in a dynamic and unpredictable manner and it is not easy to

keep track of which worker is active and when. That happens for several reasons, includ-

ing:

 Lazy worker instantiation: the OS threads are created dynamically, according to

arenas’ needs and there is no guarantee that a worker is bound to an OS thread

at a specific point in time.

 In some cases, more workers than actual cpus are instantiated, thus making im-

possible to bind a private_worker object to a specific cpu.

 Load imbalance: if a worker has no work to execute due to load imbalance, he

goes to sleep, releasing the CPU and saving cpu time. Thus a worker that occu-

pies a cpu core is not guaranteed to continue to do so in the future, because he

may be migrated by the OS to a different core when he runs again.

 Workers are assigned dynamically to arenas that need them, so there is no guar-

antee that a pinned worker will work on the same arena with another.

65 Chapter 3. Techniques Used

65

The arena_slot class instead has a fixed number of instantiations for each arena, making

it easier to keep track and identify which one corresponds to the nearest cpu. Moreover,

the statistics mechanism of the library keeps track of several events and sums them up

for each arena slot. Thus, it was obvious that the library design considers the arena slots

as workers and not the dynamic instances of the class private_worker.

In order to run applications using different number of threads, we needed a map that

maps workers to cpu ids. So, if we were to run an application with eight threads for ex-

ample, they should be distributed evenly to different packages, two workers to each

package in the case of Dunnington that has four packages. The map is essentially a table

that contains the cpu ids of the underlying machine, ordered in a way so that for each

thread count N, the first N numbers of the table are the cpu ids for an even distribution

of the N OS threads to the packages. For the example of Dunnington, we present in the

following picture the cpu id distribution that the operating system creates:

Figure 59. The numbers represent the cpu ids the OS assigns to each core on Dunnington

The corresponding map should be:

[0, 3, 6, 9, 1, 7, 4, 10, 12, 15, 18, 21, 13, 16, 19, 22, 2, 5, 8, 11, 14, 17, 20, 23]

On the arena instantiation, each of the arena slots that are created is assigned with a

cpuid from this table, starting from the beginning, as shown in the following picture:

Techniques Used 66

66

Figure 60. Cpu-id distribution to arena’s slots

For choosing the closest neighbor, another data structure was necessary, namely, an ad-

jacency list for each core that contains the core ids of the machine ordered from the clos-

est to the furthest to that core. On the arena instantiation, we compute a 2-dimensional

matrix that contains cpu ids and whose i-th row represents the adjacency list for cpu

with id i. So, first come the cpus that share the L1 cache level with cpu i, then follow the

cpus that share the L2 cache level, then the L3, and then come the cpus from the other

packages. To avoid resigning too early from the nearest neighbors in case of failure and

add the aforementioned persistency to choices, the first level of nearest neighbors

(L2sharers in Dunnington and L1 and L2 sharers in Termi) are unfolded 50 times, be-

cause they are the fewest but nearest, the next level of sharers (L3 in both Dunnington

and Termi) are unfolded 3 times, and the furthest (in the other packages) are unfolded

only once. This matrix is used by the workers when they want to find a victim to steal

work from.

Finally, a map from core ids to slot indexes is needed, which is essentially the inverse

map from the distribution table that we mentioned first.

When a worker is left with no work and decides to steal some, he executes the stealing

loop described by the pseudo code in Listing 4. In more detail, the mechanism works as

follows: first, we find the row of the 2d-matrix with the neighbors that corresponds to

the cpu id that our slot is working on. Second, we enter a loop that scans our neighbors

67 Chapter 3. Techniques Used

67

from the nearest to the furthest until we find an available one. We choose him as victim

and from the inverse map we find the slot that he works on and try to steal from it. In

case it fails, we continue with the next neighbor, until we reach the end of the array, in

case we are the master worker of the package, or the end of the L3 neighbors, in case we

are a slave worker. In this way, we achieve to steal from the nearest neighbors first.

fail_count=0;

while (fail_count < fail_threshhold) {

 int idx;

 neighbors_list = find_my_neighbor_adjacency_list(my_cpu);

 do {

 int victim_core = get_next_neighbor(neighbors_list);

 idx = get_slot_index_from_cpu_id(cpu_to_index_map, victim_core);

 if (I am master worker of mackage) {

 if (reached the end of array neighbors)

 continue_from_the_beginning;

 else

 if (reached the end of L3 neighbors)

 continue_from_the_beginning;

 }

 } while (idx slot is NOT populated by a worker);

 arena_slot* victim = &my_arena->my_slots[idx];

 t = steal_task(*victim);

 if (!t) {

 fail_count++;

 continue;

 }

}

Listing 4. Worker stealing loop

The results of the evaluation of this method are presented in the next Error! Refer-

ence source not found..

3.3 Stealing from the most loaded processor

The second attempt for optimization tries to tackle load imbalance problems. Load im-

balance occurs naturally in some applications, especially when more synchronization

points exist, for example in algorithms like parallel_reduce.

3.3.1 Technique description

Previous attempts [7] indicate that an occupancy-based approach to task stealing can

bring performance improvements under some circumstances and in some scenarios. Our

approach was finding the most loaded worker and stealing from him. It is obvious that

such an approach can help distributing work more evenly than with the random stealing

Techniques Used 68

68

approach. Load balancing may be a desired property, but we should also point out that

stealing work from the heaviest could also result in cache pollution, if that worker is lo-

cated to a different package.

The first approach is rather straightforward. If a worker needs to steal, he just scans the

arena to find the most loaded worker and steals from him. It is easy to implement but

doesn’t give us any flexibility in case of failures.

This approach can be very costly to use each time a worker needs to steal work. For this

reason, we tried to make a compromise by employing the stealing from the heaviest

technique once in five stealing attempts. For the four remaining stealing attempts the

classical random victim approach was followed.

In order to have more flexibility in case of failure, a second approach would be that each

worker keeps a sorted list of the task loads of all the other workers and uses it to search

for alternatives in case something goes wrong with the heaviest worker. This approach

helps to distribute steals so that not all attempts fall on the heaviest worker.

There are two main variations of this technique, keeping global and local task load lists.

The first variation tries to balance globally in order to alleviate inter-socket load imbal-

ances, but it can lead to cache pollution and heavy inter-socket communication. The sec-

ond variation tries to be more optimistic and cache friendly, by scanning locally in each

package, permitting only the master worker of each package to scan globally, like we dis-

cussed earlier for the cache-aware technique. When work is more evenly distributed to

packages it is makes sense to search locally for the heaviest, in order to balance the load

even further without incurring too much overhead. On the other hand, if the load imbal-

ance does exist between packages, overheads can be reduced by letting only the master

workers of each package to contribute to balancing it, thus minimizing inter-socket

communication. When scanning of the entire arena occurs, there are ping-pong effects

between packages, because all the workers need to read the task load of all other work-

ers.

3.3.2 Implementation details

To implement a mechanism to steal from the heavier cpu, in terms of task load, we

needed to add a current_load field to the arena_slot class. When it is occupied by a

worker, it is initialized to 0. The following three events induce changes to this variable:

 spawn by the owner worker: In this case the owner’s current load is incremented

by 1.

 get_task by the owner worker: In this case the owner’s current load is increment-

ed by 1.

 successful steal by any worker: In this case the victim’s current load is decre-

mented by 1.

The current_load variable counts in essence the enqueued tasks and works as an estima-

tion of each active worker’s load. It is not precise, because various tasks can differ in

69 Chapter 3. Techniques Used

69

size, so the number of enqueued tasks can be misleading. Previous work [7]indicates

though that it can be a reasonably adequate estimation.

3.3.2.1 Finding Max

The implementation is rather straightforward. We scan every arena slot to find the max

the worker that has the maximum current_load. Because this proved very costly we im-

plemented a variation that employs this technique once in five steals, and the other four

we follow the original random stealing algorithm.

3.3.2.2 Sorted List approach

Each worker keeps a list with the other workers and their load, sorted from the heaviest

to the lightest. When stealing needs to happen, the worker picks his victims from this

list, trying to steal from the most loaded worker.

The list needs to be refreshed with new estimations of each worker’s load. To do this, we

need to scan every slot and collect each worker’s load. After that, they need to be sorted

in reverse order. This procedure is costly and can cause performance degradation. Even if

we simply scan the slots only to find the most loaded victim, it causes excessive perfor-

mance degradation, if it is done on each stealing attempt. For this reason, we decided to

refresh the list with new estimations once every five and once every ten stealing at-

tempts. Every time the list is refreshed, we begin searching victims from the beginning.

In case of stealing failure, we move to the next most loaded worker. If we reach the end

of the list we jump to the beginning. In case of successful stealing, we followed two dif-

ferent policies. The first policy (Policy 1) dictates that next time we need to steal, we

will try to steal from the same victim with the previous successful stealing and we return

to the beginning of the list only if we reach the end or we refresh the list. The second

policy imposes that every time we need to steal again, even after a successful steal, we

begin from the beginning of the list, that is, the most loaded worker. The following list-

ing describes the technique in pseudo code:

Techniques Used 70

70

fail_count=0;

while (fail_count < fail_threshhold) {

 arena_slot *victim;

 if (it's time to refresh the list) {

 read_task_loads

 sort_loads_descending

 go_to_the_beginning_of_the_list

 }

 if (end_of_list)

 go_to_the_beginning_of_the_list;

 victim = get_victim_from_list();

 t = steal_task(victim);

 if(!t) {

 move_to_next_victim_on_list;

 fail_count++;

 continue;

 }

 /*Policy2*/victim_iterator = victim_loads.begin();

}

Listing 5. Sorted-list technique algorithm

3.3.2.2.1 Global occupancy scan

The simple idea was to scan all the slots of the arena in order to refresh the occupancy

list. That contributes to better load balancing, as it tries to alleviate the load differences

of all the workers.

The tradeoff is that except for balancing, it can also cause workers to steal from others

that are very far away, in terms of cache hierarchy, thus polluting their cache levels with

potentially irrelevant data, since neighboring cpus share some cache levels and may work

on data that are unrelated to the newcomers, leading to more capacity and conflict miss-

es. Except for that, false sharing between packages can cause severe performance degra-

dation.

3.3.2.2.2 Local occupancy scan

The other approach would be to scan only the local workers within the package and keep

an occupancy list that contains only estimations about local workers. So each worker can

steal only from workers in his package, preferring the most loaded each time. This ap-

proach also incorporates benefits from the cache-aware stealing mechanism than was ana-

lyzed in the section 3.2, like maintaining cache locality of the data, minimizing cache pol-

lution and inter-package stealing.

The implementation is exactly the same with Listing 5, except for the

“read_task_loads”, which in this case uses the adjacency list we implemented for the

cache-aware technique to find the in-package workers and their loads.

71 Chapter 4. Evaluation

71

Chapter 4

Evaluation

4.1 Physical Systems

The physical systems we used were the same as in the profiling section (Dunnington and

Termi) as well as “Sandman” NUMA Platform, a 32-core NUMA machine with the fol-

lowing characteristics:

 4 Packages (Intel(R) Xeon(R) X5650 @ 2.67GHz)

 8cores per Package

 Hyperthreading (64 threads in total)

 32KB L1 cache per core (2 threads)

 256KB L2 cache per core (2 threads)

 16MB L3 per package (8 cores, 16 threads)

 257.931 MB RAM

Figure 61. 32-core “Sandman” NUMA Platform

Evaluation 72

72

4.2 Stealing from the nearest neighbor

4.2.1 Benchmarks Used

Based on the previous work, we used a series of applications that are known to be shar-

ing-intensive as well some sharing-mild algorithms. The sharing-intensive algorithms are

Gauss Elimination, Heat and Floyd-Warshall. The memory-mild are quicksort and ma-

trix multiplication. We included an implementation of Word-Count as a sharing-

intensive representative example of the map-reduce algorithm category, using the paral-

lel-reduce template algorithm of TBBs.

Algorithm Description Input size

Gauss Elimination Linear systems solution 1024x1024

5-point Heat Algorithm 2D Heat Equation 2048x2048

Floyd-Warshall All-pairs shortest paths 4096x4096

Word Count
Counting number occurrences

in matrix
12000x12000

4.2.2 Results

In order to test our implementation on equal terms with the random mechanism, we

pinned the OS threads of the original library to the same cores for each thread count as

the custom library, while still using the random stealing policy. This is especially im-

portant in the case of small numbers of threads. If the original library lets the operating

system distribute the threads to packages and cores at will, thread migrations between

packages as well as uneven distribution have been observed, in opposition to the custom

library that keeps the OS threads to specific cores throughout the execution.

In the following sections we present selected results of the aforementioned applications.

4.2.2.1 Heat

As the following figures suggest, the 5-point heat algorithm benefited greatly from the

cache-aware approach on the NUMA platforms. On SMP platforms there was perfor-

mance degradation, as it can be seen on the relevant figures of Appendix B. On Termi

there is a performance benefit of up to 3,6% for large thread counts.

73 Chapter 4. Evaluation

73

Figure 62. Speedup of 5-point Heat on Termi (Cache-aware)

Figure 63. Execution times of 5-point Heat on Termi (Cache-aware)

Figure 64. Performance gains of 5-point Heat on Termi (Cache-aware)

0

0,5

1

1,5

2

2,5

3

0 2 4 6 8 10 12 14

Speedup

Random

Cache-aware

0

500000

1000000

1500000

2000000

1 4 6 8 10 12

u
se

c

threads

Random

Cache-aware

-20

-15

-10

-5

0

5

1 4 6 8 10 12

% Performance Improvement

Evaluation 74

74

On Sandman there was even greater performance boost, reaching up to 40% in large

thread counts, indicating that the more NUMA packages, the larger the potential of the

cache-aware technique to exploit localized work-stealing.

Figure 65. Speedup of 5-point Heat on Sandman (Cache-aware)

Figure 66. Execution times of 5-point Heat on Sandman (Cache-aware)

Figure 67. Performance gains of 5-point Heat on Sandman (Cache-aware)

0

1

2

3

4

5

6

0 10 20 30 40

S
p
ee

d
u
p

threads

Random

Cache-Aware

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

1 8 12 16 20 24 28 32

u
se

c

threads

Random

Cache-Aware

-5

0

5

10

15

20

25

30

35

40

45

1 8 12 16 20 24 28 32

% Performance Improvement

75 Chapter 4. Evaluation

75

4.2.2.2 Word count

Word count showed great performance improvement on Sandman, while on Dunnington

showed almost the same performance and on Termi suffered from excessive performance

degradation.

In this algorithm, every task keeps a private map that counts the words for its subprob-

lem, and when a join occurs the task merges its private map with the private map of an-

other task. That means accessing data that were written by another core recently. This

results in flushing the changes to the main memory. Stealing tasks from the same pack-

age effectively reduces this overhead as most of this information is likely to be found in

some cache level, like the L3 level.

Figure 68. Word Count speedup on Sandman (Cache-aware)

Figure 69. Word Count execution times on Sandman (Cache-aware)

0

1

2

3

4

5

6

7

8

0 10 20 30 40

Random

Cache-Aware

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

1 8 12 16 20 24 28 32

u
se

c

threads

Random

Cache-Aware

Evaluation 76

76

Figure 70. Word Count performance gains on Sandman (Cache-aware)

Figure 71. Word Count speedup on Dunnington (Cache-aware)

Figure 72. Word Countexecution times on Dunnington (Cache-aware)

-10

-5

0

5

10

15

1 8 12 16 20 24 28 32

% Performance Improvement

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30

S
p
ee

d
u
p

threads

Speedup

Random

Cache-Aware

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

1 8 16 24

77 Chapter 4. Evaluation

77

Figure 73. Word Count speedup on Termi (Cache-aware)

Figure 74. Word Count execution times on Termi (Cache-aware)

4.2.3 Remarks

The above examples offer the proof of concept that preferring stealing from neighbors

that lie near our core, in terms of cache hierarchy, can indeed bring great performance

improvements.

It is notable to mention that the mechanism we implemented does not incur large over-

heads and applications that do not benefit from this technique do not suffer from per-

formance deterioration either. A number of applications appear to have the same perfor-

mance as the random stealing, as their access pattern is not affected by locality issues

because there is not substantial read-write sharing between cores, thus degenerating the

choice to equal to random. In particular, these applications are Quicksort and Matrix

multiplication.

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

0 5 10 15

S
p
ee

d
u
p

threads

Random

Cache-Aware

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

1 4 6 8 10 12

u
se

c

threads

Random

Cache-Aware

Evaluation 78

78

4.3 Load Balancing

4.3.1 Benchmarks Used

We used a series of applications that previous work has shown to suffer from load imbal-

ance [7], namely streamcluster, swaptions, blackscholes, with emphasis on the first. For

some implementations we also used strassen, quicksort and matrix multiplication.

4.3.2 Results – Finding Max

4.3.2.1 Searching for the heaviest every time

This approach was proved very inefficient, as it can be seen on the following figures,

which present the behavior of the streamcluster application. The main reason is the

overhead to scan all arena slots on each stealing attempt to find the heaviest. All the

results can be found in Appendix B.

Figure 75. Streamcluster speedup on Dunnington (Just pick max)

Figure 76. Streamcluster execution times on Dunnington (Just pick max)

0

0,5

1

1,5

2

2,5

3

0 5 10 15 20 25 30

S
p
ee

d
u
p

threads

Speedup

Random

Always Pick Max

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

1 2 4 8 12 16 20 24

u
se

c

threads

Execution Times

Random

Always Pick Max

79 Chapter 4. Evaluation

79

Figure 77. Streamcluster speedup on Termi (Just pick max)

Figure 78. Streamcluster execution times on Termi (Just pick max)

4.3.2.2 Searching for the heaviest once in five steals

The excessive performance degradation caused by the overhead of scanning the whole

arena on every stealing attempt can be effectively avoided through a compromise be-

tween it and the original random stealing technique. The result is effective without in-

curring much overhead.

The following figures show the performance gains of streamcluster on Dunnington and

Sandman.

0

2

4

6

8

10

0 10 20 30

S
p
ee

d
u
p

threads

Speedup

Random

Always Pick Max

0

2000000

4000000

6000000

8000000

10000000

1 2 4 8 12 16 20 24

u
se

c

threads

Execution Times

Random

Always Pick Max

Evaluation 80

80

Figure 79. Streamcluster once in five steals speedup on Dunnington (Once in five)

Figure 80. Streamcluster once in five execution times on Dunnington (Once in five)

Figure 81. Streamcluster once in five Dunnington % Performance Improvement (Once in five)

0

0,5

1

1,5

2

2,5

3

3,5

0 5 10 15 20 25 30

S
p
ee

d
u
p

threads

Speedup

Random

Max once in five

0

2000000

4000000

6000000

8000000

10000000

1 2 4 8 12 16 20 24

u
se

cc

threads

Execution Times

Random

Max once in five

0

1

2

3

4

5

6

7

8

9

10

1 2 4 8 12 16 20 24

% Performance Gain

81 Chapter 4. Evaluation

81

Figure 82. Streamcluster once in five Sandman Speedup (Once in five)

Figure 83. Streamcluster once in five Sandman Execution Times (Once in five)

0

1

2

3

4

5

0 5 10 15 20 25 30 35

threads

Speedup

Random

Max once in five

0

1000000

2000000

3000000

4000000

5000000

6000000

1 2 4 8 10 12 14 16 18 20 22 24 26 28 30 32

u
se

c

threads

Execution Times

Random

Max once in five

Evaluation 82

82

Figure 84. Streamcluster once in five Sandman % Performance Improvement (Once in five)

This technique has positive effects up to a certain number of threads. For larger thread

counts it suffers from performance degradation. The reason for that is that every scan

needs to check the load of all the other cores, which comes with inter-socket communica-

tion. As the thread count rises, the overhead of these communications dominates the

benefits of the technique, resulting in performance deterioration. In order for applications

to benefit from this technique, there should be load imbalance between packages and run

them with a limited number of threads.

4.3.3 Results–Global vs Local Sorted List

The following sections present the results of the sorted list technique, demonstrating the

impact of the various alternatives of the two implementations on each application. Most

of the results are in Appendix B, due to their large number. Here we present the most

notable results, namely the applications and cases that benefited most from this tech-

nique.

4.3.3.1 Streamcluster

Streamcluster benefited by the local search technique on the SMP for large thread

counts, achieving performance boost up to 26%, although in smaller thread counts there

was significant performance degradation. This occurs in small thread counts especially in

the non-grouped versions because in every package only a few workers exist and it is

more often to pick a victim from a different package, resulting in more ping-pong effects,

given the initial load imbalance that comes with streamcluster.

-50

-40

-30

-20

-10

0

10

20

1 2 4 8 10 12 14 16 18 20 22 24 26 28 30 32

% Performance Gain

83 Chapter 4. Evaluation

83

Figure 85. Streamcluster speedup on Dunnington (sorted-list)

Figure 86. Streamcluster performance gains on Dunnington (sorted list)

4.3.3.2 Quicksort

Quicksort benefited by the local search version on large thread counts on the SMP,

achieving a performance boost up to 17% without incurring too much overhead on small-

er thread counts.

0

0,5

1

1,5

2

2,5

3

0 10 20 30

S
p
ee

d
u
p

threads

Random

Grouped 5P1

Grouped 5P2

Grouped 10P1

Grouped 10P2

Non-grouped 5P1

Non-grouped 5P2

Non-grouped 10P1

-250

-200

-150

-100

-50

0

50

1 2 4 8 12 16 20 24

% Performance Gain - Dunnington

Grouped 5P1

Grouped 5P2

Grouped 10P1

Grouped 10P2

Non-grouped 5P1

Non-grouped 5P2

Non-grouped 10P1

Non-grouped 10P2

Evaluation 84

84

Figure 87. Quicksort speedup on Dunnington (sorted list)

Figure 88. Quicksort performance gains on Dunnington (sorted list)

4.3.3.3 Matrix Multiplication

Matrix multiplication benefited on Sandman from both techniques on various large

thread counts, achieving up to 6.2% improvement. Nevertheless, the global search tech-

nique incurred more overhead on smaller thread counts.

0

1

2

3

4

5

6

0 10 20 30

S
p
ee

d
u
p

threads

Random

Grouped 5P1

Grouped 5P2

Grouped 10P1

Grouped 10P2

Non-grouped 5P1

Non-grouped 5P2

Non-grouped 10P1

Non-grouped 10P2

-80

-60

-40

-20

0

20

40

1 2 4 8 12 16 20 24

% Performance Gain - Dunnington

Grouped 5P1

Grouped 5P2

Grouped 10P1

Grouped 10P2

Non-grouped 5P1

Non-grouped 5P2

Non-grouped 10P1

Non-grouped 10P2

85 Chapter 4. Evaluation

85

Figure 89. Matrix multiplication speedup on Sandman (sorted list)

Figure 90. Matrix multiplication performance gains on Sandman (sorted list)

4.3.3.4 Remarks

From the graphs presented, we can make the following remarks:

 The applications can be divided into two main categories, the ones that benefit

from the global search technique on all machines (swaptions) and the ones that

benefit from the local search technique on all machines (strassen and streamclus-

ter). That means that the applications of the first category have load imbalance

that is located mainly on a small number of workers and it can be alleviated by

the global search technique, and the applications of the other category have a

more even distribution of work, so that local search benefits local balancing with-

out incurring as much overhead as the global search.

0

5

10

15

20

25

30

0 10 20 30 40

S
p
ee

d
u
p

threads

Random

Grouped 5P1

Grouped 5P2

Grouped 10P1

Grouped 10P2

Non-grouped 5P1

Non-grouped 5P2

Non-grouped 10P1

Non-grouped 10P2

-15

-10

-5

0

5

10

1 2 4 8 10 12 14 16 18 20 22 24 26 28 30 32

% Performance Gain

Grouped 5P1 Grouped 5P2 Grouped 10P1

Grouped 10P2 Non-grouped 5P1 Non-grouped 5P2

Non-grouped 10P1 Non-grouped 10P2

Evaluation 86

86

 In most cases the applications suffer from severe performance deterioration, due

to the overhead of refreshing the sorted list.

 The two techniques have almost the same performance on Dunnington and

Sandman for the Matrix multiplication.

 There are some applications for which some techniques work better on some ma-

chines, while the other techniques have advantage on other machines. To be more

specific:

 Global/Non-Grouped Search

 Quicksort, Blackscholes and Matrix multiplication on Termi

 Local/Grouped Search

 Quicksort and Blackscholes on Dunnington and Sandman

In general we could argue that local search brings performance benefits on SMP

platforms for large thread counts, because it avoids cache pollution and minimizes

the ping-pong effect between packages and transactions with the memory that are

serialized on the memory bus, which is shared by all cores. That means that we

could benefit from the local search technique only in large thread counts on such

platforms.

Moreover, we could further argue that the overhead of each technique always ex-

ists, suggesting that in the cases that a technique appears to have insignificant

overhead, the reason is that the benefits of the technique compensate for its over-

heads. That means that although we do not have positive performance gains in

most cases, each technique does have a positive impact on stealing, despite that

its overheads dominate in some cases. Testing the techniques on a simulator ra-

ther than on real machines, where we could minimize the overheads ideally, could

help making the benefits of each technique more apparent.

Chapter 5

Epilogue – Conclusions & Future

Work

5.1 Conclusions

From all the above, it should be clear that there is not a silver bullet for reducing over-

heads on parallel programs. Many of the desired properties may be even contradictory,

as with load balancing and better cache use. It was proven by testing on physical ma-

chines that applications can benefit from a cache-aware approach to stealing on large

NUMA machines for large thread counts, depending on the memory access pattern of the

application and the read/write sharing dependencies between workers. Balancing tech-

niques, like stealing from the most loaded worker, can bring performance boost when

used in cooperation with the random stealing technique. More complex mechanisms that

keep track of each worker’s task load in a more detailed manner, could perform effective

load balancing on some cases, they can suffer though from severe overheads on physical

machines.

5.2 Related Work

In [6], a similar approach to our cache-aware stealing mechanism was tested on Cilk,

which has a similar task stealing mechanism as TBBs. During the first run of a parallel

algorithm the runtime classifies the tasks as inter-socket and intra-socket, mainly by

their sizes and their depth on the recursive tree splitting. On later runs of the same algo-

rithm, the runtime permits inter-socket stealing of the inter-socket tasks (which are the

largest and do not fit in the cache) and intra-socket stealing of the intra-socket tasks

(that fit in the cache).

In [7] a thorough characterization on the basic TBB functions is presented as well as an

occupancy based approach to stealing as well as a criticality-based approach, which takes

into consideration the relative complexities and lengths of tasks. The tests were carried

out on simulator, which gives insight about the effectiveness of the idea, but not its

overhead on physical machines.

In [8] various optimization approaches are presented, including lazy split and join for the

parallel-reduce template algorithm, automatic grain size determination as well as various

changes to the loop templates and the task scheduler to impose better task affinity be-

tween and optimize some stealing scenarios.

Epilogue – Conclusions & Future Work 88

88

5.3 Future Work

There is an extremely large number of combinations of access patterns and machine ar-

chitectural configurations, thus making the exploration and categorization of each situa-

tion a difficult task. Nevertheless, based on our work, there are some steps that should

be tested in the future in order to shed some more light on the directions we already

have started to explore:

 Grouping applications and patterns, in order to be able to make predictions

about the best technique for the best case.

 Run configurations on larger NUMA machines, so as to expose the potential of

the cache-aware technique under such architectural specificities.

 Implement the actual inter- and intra-socket task queues on TBBs, as specified

in [6].

 Creation of a mechanism that breaks the initial work into large pieces and dis-

tributes them locally to each package at the beginning. This technique, when

combined with the cache-aware stealing policy, would enable a more efficient

utilization of the memory hierarchy (more effective cache space available to

workers, more memory accesses satisfied locally, etc.), while maintaining the

properties of load balancing.

 Investigate hybrid schemes that compromise the aforementioned techniques

with the classic random stealing (it was proved successful with some load bal-

ancing techniques).

 Implement an automatic mechanism to pick the largest number of workers

that we could benefit from.

Chapter 6

Bibliography - References

[1] G. E. Moore, "Cramming more components onto integrated circuits," Electronics

Magazine, 1965.

[2] H. Sutter, "The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in

Software," Dr. Dobb’s Journal, vol. 30, no. 3, pp. 202-210, 2005.

[3] M. J. Flynn, "Some computer organizations and their effectiveness.," IEEE

Transactions on Computers, Vols. C-21, no. 9, 1972.

[4] G. Amdahl, "The validity of the single processor approach to achieving large scale

computing capabilities.," in In Proceedings of AFIPS Spring Joint Computer, N. J.,

1967.

[5] C. Bienia and K. Li, "Parsec 2.0: A new benchmark suite for chip-multiprocessors.,"

in Proceedings of the 5th Annual Workshop on Modeling, Benchmarking and

Simulation, 2009.

[6] Q. Chen, M. Guo and Z. Huang, "CATS: cache aware task-stealing based on online

profiling in multi-socket multi-core architectures," in ICS '12 Proceedings of the 26th

ACM international conference on Supercomputing, New York, 2012.

[7] A. Bhattacharjee, G. Contreras and M. Martonosi, "Parallelization libraries:

Characterizing and reducing overheads," ACM Transactions on Architecture and

Code Optimization (TACO), vol. 8, no. 1, 2011.

[8] A. Robinson, M. Voss and A. Kukanov, "Optimization via Reflection on Work

Stealing in TBB," in Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE

International Symposium on , vol., no., pp.1,8, 14-18 April 2008, 2008.

[9] J. Reinders, Intel threading building blocks: outfitting C++ for multi-core processor

parallelism, O'Reilly, 2010.

[10

]

U. Drepper, "What every programmer should know about memory.," Red Hat Inc.,

2007.

Appendix A – Profiling Results 90

90

Chapter 7

Appendix A – Profiling Results

7.1 Quicksort

Quicksort showed similar behavior to Blackscholes, that is, better scaling on the NUMA

platform.

Figure 91. Quicksort speedup on SMP

Figure 92. Quicksort speedup on NUMA

0

1

2

3

4

5

6

0 5 10 15 20 25 30

Speedup of Parallel Area

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30

Speedup of Parallel Area

91 Chapter 7. Appendix A – Profiling Results

91

Figure 93. Quicksort User-Library time on SMP for each

thread count

Figure 94. Quicksort User-Library time on NUMA for each

thread count

Figure 95. Quicksort basic functionalities breakdown on SMP

for each thread count

Figure 96. Quicksort basic functionalities breakdown on NU-

MA for each thread count

0

10000000

20000000

30000000

40000000

50000000

60000000

1 2 4 8 12 16 20 24

User - Library time

library usec user usec

0

5000000

10000000

15000000

1 2 4 8 12 16 20 24

User - Library time

library usec user usec

0

20000000

40000000

60000000

1 2 4 8 12 16 20 24

Basic Functionalities

Breakdown

spawn get_task

receive_or_steal acquire_queue

lib_wait

0

1000000

2000000

3000000

1 2 4 8 12 16 20 24

Basic Functionalities

Breakdown

spawn get_task

receive_or_steal acquire_queue

lib_wait

Appendix A – Profiling Results 92

92

Figure 97. Quicksort basic functionalities’ scalability on SMP for

each thread count

Figure 98. Quicksort basic functionalities’ scalability on NUMA

for each thread count

Figure 99. Quicksort stealing components breakdown on SMP

for each thread count

Figure 100. Quicksort stealing components breakdown on NUMA

for each thread count

0

10000000

20000000

30000000

40000000

50000000

60000000

u
se

c

Functionalities

Scalability of each functionality

1

2

4

8

12

16

20

24

0

500000

1000000

1500000

2000000

2500000

3000000

u
se

c

Functionalities

Scalability of each functionality

1

2

4

8

12

16

20

24

0

10000000

20000000

30000000

40000000

50000000

60000000

1 2 4 8 12 16 20 24

Stealing components

breakdown

lock_task_pool stealing steal_wait

0

500000

1000000

1500000

2000000

2500000

3000000

1 2 4 8 12 16 20 24

Stealing components breakdown

lock_task_pool stealing steal_wait

93 Chapter 7. Appendix A – Profiling Results

93

Figure 101. Quicksort scalability of stealing components on SMP

for each thread count

Figure 102. Quicksort scalability of stealing components on NU-

MA for each thread count

7.2 Swaptions

The same diagrams are given for the Swaptions application.

Figure 103. Swaptions speedup on SMP

Figure 104. Swaptions speedup on NUMA

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

u
se

c

Stealing components

Stealing Mechanism

1

2

4

8

12

16

20

24

0

500000

1000000

1500000

2000000

2500000

u
se

c

Stealing components

Stealing Mechanism

1

2

4

8

12

16

20

24

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30

Speedup of Parallel Area

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30

Speedup of Parallel Area

Appendix A – Profiling Results 94

94

Figure 105. Swaptions User-Library time on SMP for each

thread count

Figure 106. Swaptions User-Library time on NUMA for each

thread count

Figure 107. Swaptions basic functionalities breakdown on

SMP for each thread count

Figure 108. Swaptions basic functionalities breakdown on NUMA

for each thread count

0

1000000

2000000

3000000

4000000

5000000

1 2 4 8 12 16 20 24

User - Library time

library usec user usec

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

1 2 4 8 12 16 20 24

User - Library time

library usec user usec

0

20000

40000

60000

1 2 4 8 12 16 20 24

Basic Functionalities

Breakdown

spawn get_task

receive_or_steal acquire_queue

lib_wait

0

10000

20000

30000

40000

50000

60000

1 2 4 8 12 16 20 24

Basic Functionalities Breakdown

spawn get_task receive_or_steal

acquire_queue lib_wait

95 Chapter 7. Appendix A – Profiling Results

95

Figure 109. Swaptions basic functionalities’ scalability on SMP

for each thread count

Figure 110. Swaptions basic functionalities’ scalability on NUMA

for each thread count

Figure 111. Swaptions stealing components breakdown on SMP

for each thread count

Figure 112. Swaptions stealing components breakdown on NU-

MA for each thread count

0

10000

20000

30000

40000

50000

u
se

c

Functionalities

Scalability of each functionality

1

2

4

8

12

16

20

24

0

10000

20000

30000

40000

50000

60000

u
se

c

Functionalities

Scalability of each functionality

1

2

4

8

12

16

20

24

0

10000

20000

30000

40000

50000

1 2 4 8 12 16 20 24

Stealing components breakdown

lock_task_pool stealing steal_wait

0

10000

20000

30000

40000

50000

60000

1 2 4 8 12 16 20 24

Stealing components

breakdown

lock_task_pool stealing steal_wait

Appendix A – Profiling Results 96

96

Figure 113. Swaptions scalability of stealing components on SMP

for each thread count

Figure 114. Swaptions scalability of stealing components on NU-

MA for each thread count

7.3 Matrix Multiplication

The same diagrams are given for the Matrix Multiplication application. We can see here

that it scales linearly on the SMP but not as well on the NUMA when multithreading

kicks in.

Figure 115. Matrix multiplication speedup on SMP

Figure 116. Matrix multiplication speedup on NUMA

0

5000

10000

15000

20000

25000

30000

u
se

c

Stealing components

Stealing Mechanism

1

2

4

8

12

16

20

24

0

10000

20000

30000

40000

50000

60000

u
se

c

Stealing components

Stealing Mechanism

1

2

4

8

12

16

20

24

0

5

10

15

20

25

0 5 10 15 20 25 30

Speedup of Parallel Area

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30

Speedup of Parallel Area

97 Chapter 7. Appendix A – Profiling Results

97

Figure 117. Matrix multiplication User-Library time on SMP for

each thread count

Figure 118. Matrix multiplication User-Library time on NU-

MA for each thread count

Figure 119. Matrix multiplication basic functionalities breakdown

on SMP for each thread count

Figure 120. Matrix multiplication basic functionalities break-

down on NUMA for each thread count

0

5000000

10000000

15000000

20000000

1 2 4 8 12 16 20 24

User - Library time

library usec user usec

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

1 2 4 8 12 16 20 24

User - Library time

library usec user usec

0

10000

20000

30000

40000

50000

1 2 4 8 12 16 20 24

Basic Functionalities Breakdown

spawn get_task receive_or_steal

acquire_queue lib_wait

0

2000

4000

6000

8000

10000

1 2 4 8 12 16 20 24

Basic Functionalities

Breakdown

spawn get_task

receive_or_steal acquire_queue

lib_wait

Appendix A – Profiling Results 98

98

Figure 121. Matrix multiplication basic functionalities’ scalabil-

ity on SMP for each thread count

Figure 122. Matrix multiplication basic functionalities’ scalability

on NUMA for each thread count

Figure 123. Matrix multiplication stealing components break-

down on SMP for each thread count

Figure 124. Matrix multiplication stealing components breakdown

on NUMA for each thread count

0
5000

10000
15000
20000
25000
30000
35000
40000

u
se

c

Functionalities

Scalability of each functionality

1

2

4

8

12

16

20

24

0
1000
2000
3000
4000
5000
6000
7000
8000

u
se

c

Functionalities

Scalability of each functionality

1

2

4

8

12

16

20

24

0

10000

20000

30000

40000

1 2 4 8 12 16 20 24

Stealing components

breakdown

lock_task_pool stealing steal_wait

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 4 8 12 16 20 24

Stealing components breakdown

lock_task_pool stealing steal_wait

99 Chapter 7. Appendix A – Profiling Results

99

Figure 125. Matrix multiplication scalability of stealing compo-

nents on SMP for each thread count

Figure 126. Matrix multiplication scalability of stealing compo-

nents on NUMA for each thread count

7.4 Convex-hull

The same diagrams are given for the Convex-hull application, which is another applica-

tion that scales better on the NUMA than the SMP.

Figure 127. Convex Hull speedup on SMP

Figure 128. Convex Hull speedup on NUMA

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

u
se

c

Stealing components

Stealing Mechanism

1

2

4

8

12

16

20

24

0

1000

2000

3000

4000

5000

6000

7000

u
se

c

Stealing components

Stealing Mechanism

1

2

4

8

12

16

20

24

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20 25 30

Speedup of Parallel Areas

pmaxx pminx d&c initialize overall

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30

Speedup of Parallel Areas

pmaxx pminx d&c

initialize overall

Appendix A – Profiling Results 100

100

Figure 129. Convex Hull User-Library time on SMP for each thread

count

Figure 130. Convex Hull User-Library time on NUMA for each

thread count

Figure 131. Convex Hull basic functionalities breakdown on

SMP for each thread count

Figure 132. Convex Hull basic functionalities breakdown on NUMA

for each thread count

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

1 2 4 8 12 16 20 24

User - Library time

library usec user usec

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

1 2 4 8 12 16 20 24

User - Library time

library usec user usec

0

200000

400000

600000

800000

1 2 4 8 12 16 20 24

Basic Functionalities

Breakdown

spawn get_task

receive_or_steal acquire_queue

lib_wait

0

5000

10000

15000

20000

25000

30000

35000

40000

1 2 4 8 12 16 20 24

Basic Functionalities Breakdown

spawn get_task receive_or_steal

acquire_queue lib_wait

101 Chapter 7. Appendix A – Profiling Results

101

Figure 133. Convex Hull basic functionalities’ scalability on SMP

for each thread count

Figure 134. Convex Hull basic functionalities’ scalability on NUMA

for each thread count

Figure 135. Convex Hull stealing components breakdown on SMP

for each thread count

Figure 136. Convex Hull stealing components breakdown on NUMA

for each thread count

0

100000

200000

300000

400000

500000

600000

700000

u
se

c

Functionalities

Scalability of each functionality

1

2

4

8

12

16

20

24

0

5000

10000

15000

20000

25000

u
se

c

Functionalities

Scalability of each functionality

1

2

4

8

12

16

20

24

0

100000

200000

300000

400000

500000

600000

700000

1 2 4 8 12 16 20 24

Stealing components breakdown

lock_task_pool stealing steal_wait

0

5000

10000

15000

20000

25000

1 2 4 8 12 16 20 24

Stealing components breakdown

lock_task_pool stealing steal_wait

Appendix A – Profiling Results 102

102

Figure 137. Convex Hull scalability of stealing components on SMP

for each thread count

Figure 138. Convex Hull scalability of stealing components on

NUMA for each thread count

0

50000

100000

150000

200000

250000

300000

350000

u
se

c

Stealing components

Stealing Mechanism

1

2

4

8

12

16

20

24

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

u
se

c

Stealing components

Stealing Mechanism

1

2

4

8

12

16

20

24

103 Chapter 8. Appendix B – Evaluation

Results

103

Chapter 8

Appendix B – Evaluation Results

8.1 Cache-Aware Techniques

8.1.1 Heat

Figure 139. Speedup of 5-point Heat on Dunnington(Cache-aware)

Figure 140. Execution Times of 5-point Heat on Dunnington(Cache-aware)

8.1.2 Gauss elimination

As we can see from the following figures, Gauss Elimination did not benefit from the

cache-aware approach on Dunnington and Termi, in terms of execution time, although it

achieved greater speedup on Termi. On Sandman there was performance improvement

up to 3% on individual thread counts.

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

0 10 20 30

S
p
ee

d
u
p

threads

Random

Cache-aware

0

2000000

4000000

6000000

8000000

10000000

1 4 8 12 16 20 24

u
se

c

threads

Random

Cache-aware

Appendix B – Evaluation Results 104

104

Figure 141. Gauss elimination Speedup on Dunnington(Cache-aware)

Figure 142. Gauss elimination execution times on Dunnington(Cache-aware)

Figure 143. Gauss elimination speedup on Termi(Cache-aware)

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

0 5 10 15 20 25 30

S
p
ee

d
u
p

thread count

Random

Cache-Aware

0

50000000

100000000

150000000

200000000

250000000

1 8 16 24

u
se

c

thread count

Random

Cache-Aware

0

0,5

1

1,5

2

2,5

3

0 5 10 15

S
p
ee

d
u
p

threads

Random

Cache-Aware

105 Chapter 8. Appendix B – Evaluation

Results

105

Figure 144. Gauss elimination execution times on Termi(Cache-aware)

Figure 145. Gauss elimination speedup on Sandman(Cache-aware)

Figure 146. Gauss elimination execution times on Sandman(Cache-aware)

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

45000000

1 4 6 8 10 12

u
se

c

threads

Random

Cache-Aware

0

1

2

3

4

5

6

0 10 20 30 40

S
p
ee

d
u
p

threads

Random

Cache-Aware

0

2000000

4000000

6000000

8000000

10000000

12000000

1 8 12 16 20 24 28 32

u
se

c

threads

Random

Cache-Aware

Appendix B – Evaluation Results 106

106

Figure 147. Gauss elimination % performance improvement on Sandman(Cache-aware)

8.1.3 Floyd-Warshall

It is obvious form the following figures that the Floyd-Warshall algorithm did not benefit

from the cache-aware approach on any machine, neither did it suffer from performance

degradation.

Figure 148. Floyd-Warshall speedup on Sandman(Cache-aware)

Figure 149. Floyd-Warshall execution times on Sandman(Cache-aware)

-2

-1

0

1

2

3

4

1 8 12 16 20 24 28 32

threads

% Performance Improvement

0

5

10

15

20

25

0 10 20 30 40

S
p
ee

d
u
p

threads

Speedup

Random

Cache-Aware

0

5000000

10000000

15000000

20000000

25000000

30000000

1 8 12 16 20 24 28 32

u
se

c

threads

Random

Cache-Aware

107 Chapter 8. Appendix B – Evaluation

Results

107

Figure 150. Floyd-Warshall performance gains on Sandman(Cache-aware)

Figure 151. Floyd-Warshall speedup on Termi(Cache-aware)

Figure 152. Floyd-Warshall execution times on Termi(Cache-aware)

-0,4

-0,3

-0,2

-0,1

0

0,1

0,2

0,3

0,4

1 8 12 16 20 24 28 32

% Performance Improvement

0

2

4

6

8

10

12

14

0 5 10 15

S
p
ee

d
u
p

threads

Random

Cache-Aware

0

5000000

10000000

15000000

20000000

25000000

1 4 6 8 10 12

u
se

c

threads

Execution Times

Random

Cache-Aware

Appendix B – Evaluation Results 108

108

Figure 153. Floyd-Warshall speedup on Dunnington(Cache-aware)

Figure 154. Floyd-Warshall execution times on Dunnington(Cache-aware)

8.1.4 Quicksort

Quicksort did not benefit from the cache-aware approach to work stealing, as shown in

the following figures. The main reason for this is that the overhead of the mechanism we

implemented dominates the benefits for the access pattern of this application.

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30

S
p
ee

d
u
p

threads

Random

Cache-Aware

0

100000000

200000000

300000000

400000000

500000000

1 8 16 24

u
se

c

threads

Times

Random

Cache-Aware

109 Chapter 8. Appendix B – Evaluation

Results

109

Figure 155. Quicksort speedup on Dunnington(Cache-aware)

Figure 156. Quicksort execution times on Dunnington(Cache-aware)

Figure 157. Quicksort speedup on Termi(Cache-aware)

0

1

2

3

4

5

6

0 10 20 30

S
p
ee

d
u
p

threads

Random

Cache-aware

0

5000000

10000000

15000000

1 8 16 24

u
se

c

threads

Execution Times

Random

Cache-aware

0

1

2

3

4

5

6

7

8

0 5 10 15

S
p
ee

d
u
p

threads

Random

Cache-aware

Appendix B – Evaluation Results 110

110

Figure 158. Quicksort execution times on Termi(Cache-aware)

Figure 159. Quicksort speedup on Sandman(Cache-aware)

Figure 160. Quicksort execution times on Sandman(Cache-aware)

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

1 4 6 8 10 12

u
se

c

threads

Execution Times

Random

Cache-aware

0

1

2

3

4

5

6

7

8

0 10 20 30 40

S
p
ee

d
u
p

threads

Random

Cache-Aware

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

1 8 12 16 20 24 28 32

u
se

c

threads

Execution Times

Random

Cache-Aware

111 Chapter 8. Appendix B – Evaluation

Results

111

Figure 161. Quicksort performance benefits on Sandman(Cache-aware)

8.1.5 Matrix Multiplication

Matrix multiplication achieved an almost linear speedup even with the random stealing

approach. As it can be seen in the following diagrams, our cache-aware mechanism did

not cause performance degradation for this application, maintaining its excellent scaling.

Figure 162. Matrix multiplication speedup on Dunnington(Cache-aware)

Figure 163. Matrix multiplication execution times on Dunnington(Cache-aware)

-4

-3

-2

-1

0

1

2

1 2 3 4 5 6 7 8

% Performance Improvement

0

5

10

15

20

25

0 10 20 30

S
p
ee

d
u
p

threads

Random

Cache-aware

0

5000000

10000000

15000000

20000000

1 8 16 24

u
se

c

threads

Execution Times

Random

Cache-aware

Appendix B – Evaluation Results 112

112

Figure 164. Matrix multiplication speedup on Termi(Cache-aware)

Figure 165. Matrix multiplication execution times on Termi (Cache-aware)

Figure 166. Matrix multiplication speedup on Sandman (Cache-aware)

0

2

4

6

8

10

12

14

0 5 10 15

S
p
ee

d
u
p

threads

Random

Cache-aware

0

10000000

20000000

30000000

40000000

1 4 6 8 10 12

u
se

c

threads

Execution Times

Random

Cache-aware

0

5

10

15

20

25

30

0 10 20 30 40

S
p
ee

d
u
p

threads

Random

Cache-Aware

113 Chapter 8. Appendix B – Evaluation

Results

113

Figure 167. Matrix multiplication execution times on Sandman (Cache-aware)

8.2 Load Balancing Techniques

8.2.1 Searching for the heaviest once in five steals

The next figures show the results of running blackscholes on Dunnington and Sandman.

We can see that they match the results of streamcluster in most cases, as described in

Chapter 4, that is gaining performance benefits for an average number of threads, result-

ing in performance degradation in very large thread counts.

Figure 168. Blackscholes speedup on Dunnington (once in five)

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

1 8 12 16 20 24 28 32

u
se

c

threads

Execution Times

Random

Cache-Aware

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20 25 30

S
p
ee

d
u
p

threads

Random

Once in five

Appendix B – Evaluation Results 114

114

Figure 169. Blackscholes execution times on Dunnington (once in five)

Figure 170. Blackscholes performance gains on Dunnington (once in five)

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1 2 4 8 12 16 20 24

u
se

c

threads

Execution Times

Random

Once in five

-1

-0,5

0

0,5

1

1,5

2

2,5

3

1 2 4 8 12 16 20 24

% Performance Gain

115 Chapter 8. Appendix B – Evaluation

Results

115

8.2.2 Global vs Local Sorted List

8.2.2.1 Streamcluster

Figure 171. Streamcluster speedup on Termi (sorted list)

Figure 172. Streamcluster performance gains on Termi (sorted list)

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20 25 30

S
p
ee

d
u
p

threads

Random

Grouped 5P1

Grouped 5P2

Grouped 10P1

Grouped 10P2

Non-grouped 5P1

Non-grouped 5P2

Non-grouped 10P1

Non-grouped 10P2

-1000

-800

-600

-400

-200

0

200

1 2 4 8 12 16 20 24

%Performance Gain

Grouped 5P1 Grouped 5P2 Grouped 10P1

Grouped 10P2 Non-grouped 5P1 Non-grouped 5P2

Non-grouped 10P1 Non-grouped 10P2

Appendix B – Evaluation Results 116

116

Figure 173. Streamcluster speedup on Sandman (sorted list)

Figure 174. Streamcluster performance gains on Sandman (sorted list)

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

0 10 20 30 40

S
p
ee

d
u
p

threads

Random

Grouped 5P1

Grouped 5P2

Grouped 10P1

Grouped 10P2

Non-grouped 5P1

Non-grouped 5P2

Non-grouped 10P1

Non-grouped 10P2

-700

-600

-500

-400

-300

-200

-100

0

100

1 2 4 8 10 12 14 16 18 20 22 24 26 28 30 32

% Performance Gain

Grouped 5P1 Grouped 5P2 Grouped 10P1

Grouped 10P2 Non-grouped 5P1 Non-grouped 5P2

Non-grouped 10P1 Non-grouped 10P2

117 Chapter 8. Appendix B – Evaluation

Results

117

8.2.2.2 Quicksort

Figure 175. Quicksort speedup on Termi (sorted list)

Figure 176. Quicksort performance gains on Termi (sorted list)

Figure 177. Quicksort speedup on Sandman (sorted list)

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30

S
p
ee

d
u
p

threads

Random

Grouped 5P1

Grouped 5P2

Grouped 10P1

Grouped 10P2

Non-grouped 5P1

Non-grouped 5P2

Non-grouped 10P1

Non-grouped 10P2

-3000

-2000

-1000

0

1000

1 2 4 8 12 16 20 24

%Performance Gain

Grouped 5P1 Grouped 5P2 Grouped 10P1

Grouped 10P2 Non-grouped 5P1 Non-grouped 5P2

Non-grouped 10P1 Non-grouped 10P2

0

1

2

3

4

5

6

7

8

0 10 20 30 40

S
p
ee

d
u
p

threads

Random

Grouped 5P1

Grouped 5P2

Grouped 10P1

Grouped 10P2

Non-grouped 5P1

Non-grouped 5P2

Non-grouped 10P1

Non-grouped 10P2

Appendix B – Evaluation Results 118

118

Figure 178. Quicksort performance gains on Sandman (sorted list)

8.2.2.3 Matrix multiplication

Figure 179. Matrix multiplication speedup on Dunnington (sorted list)

Figure 180. Matrix multiplication performance gains on Dunnington (sorted list)

-250

-200

-150

-100

-50

0

50

1 2 4 8 10 12 14 16 18 20 22 24 26 28 30 32

% Performance Gain

Grouped 5P1 Grouped 5P2 Grouped 10P1

Grouped 10P2 Non-grouped 5P1 Non-grouped 5P2

Non-grouped 10P1 Non-grouped 10P2

0

5

10

15

20

25

0 5 10 15 20 25 30

S
p
ee

d
u
p

threads

Random

Grouped 5P1

Grouped 5P2

Grouped 10P1

Grouped 10P2

Non-grouped 5P1

Non-grouped 5P2

Non-grouped 10P1

Non-grouped 10P2

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

1 2 4 8 12 16 20 24

% Performance Gain - Dunnington

Grouped 5P1

Grouped 5P2

Grouped 10P1

Grouped 10P2

Non-grouped 5P1

Non-grouped 5P2

Non-grouped 10P1

Non-grouped 10P2

119 Chapter 8. Appendix B – Evaluation

Results

119

Figure 181. Matrix multiplication speedup on Termi (sorted list)

Figure 182. Matrix multiplication performance gains on Termi (sorted list)

8.2.2.4 Strassen

Figure 183. Strassen speedup on Dunnington (sorted list)

0

2

4

6

8

10

12

14

0 10 20 30

S
p
ee

d
u
p

threads

Random

Grouped 5P1

Grouped 5P2

Grouped 10P1

Grouped 10P2

Non-grouped 5P1

Non-grouped 5P2

Non-grouped 10P1

Non-grouped 10P2

-4000

-3000

-2000

-1000

0

1000

1 2 4 8 12 16 20 24

%Performance Gain

Grouped 5P1 Grouped 5P2 Grouped 10P1

Grouped 10P2 Non-grouped 5P1 Non-grouped 5P2

Non-grouped 10P1 Non-grouped 10P2

0

0,5

1

1,5

2

2,5

3

3,5

0 10 20 30

S
p
ee

d
u
p

threads

Random

Grouped 5P1

Grouped 5P2

Grouped 10P1

Grouped 10P2

Non-grouped 5P1

Non-grouped 5P2

Non-grouped 10P1

Non-grouped 10P2

Appendix B – Evaluation Results 120

120

Figure 184. Strassen performance gains on Dunnington (sorted list)

Figure 185. Strassen speedup on Termi (sorted list)

Figure 186. Strassen performance gains on Termi (sorted list)

-250

-200

-150

-100

-50

0

50

1 2 4 8 12 16 20 24

% Performance Gain - Dunnington

Grouped 5P1

Grouped 5P2

Grouped 10P1

Grouped 10P2

Non-grouped 5P1

Non-grouped 5P2

Non-grouped 10P1

Non-grouped 10P2

0

0,5

1

1,5

2

2,5

3

3,5

0 10 20 30

S
p
ee

d
u
p

threads

Random

Grouped 5P1

Grouped 5P2

Grouped 10P1

Grouped 10P2

Non-grouped 5P1

Non-grouped 5P2

Non-grouped 10P1

Non-grouped 10P2

-600

-400

-200

0

200

1 2 4 8 12 16 20 24

%Performance Gain

Grouped 5P1 Grouped 5P2 Grouped 10P1

Grouped 10P2 Non-grouped 5P1 Non-grouped 5P2

Non-grouped 10P1 Non-grouped 10P2

121 Chapter 8. Appendix B – Evaluation

Results

121

Figure 187. Strassen speedup on Sandman (sorted list)

Figure 188. Strassen performance gains on Sandman (sorted list)

0

0,5

1

1,5

2

2,5

3

3,5

0 10 20 30 40

S
p
ee

d
u
p

threads

Random

Grouped 5P1

Grouped 5P2

Grouped 10P1

Grouped 10P2

Non-grouped 5P1

Non-grouped 5P2

Non-grouped 10P1

Non-grouped 10P2

-450

-400

-350

-300

-250

-200

-150

-100

-50

0

50

1 2 4 8 10 12 14 16 18 20 22 24 26 28 30 32

% Performance Gain

Grouped 5P1 Grouped 5P2 Grouped 10P1 Grouped 10P2

Non-grouped 5P1 Non-grouped 5P2 Non-grouped 10P1 Non-grouped 10P2

Appendix B – Evaluation Results 122

122

8.2.2.5 Blackscholes

Figure 189. Blackscholes speedup on Dunnington (sorted list)

Figure 190. Blackscholes performance gains on Dunnington (sorted list)

Figure 191. Blackscholes speedup on Termi (sorted list)

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30

S
p
ee

d
u
p

threads

Random

Grouped 5P1

Grouped 5P2

Grouped 10P1

Grouped 10P2

Non-grouped 5P1

Non-grouped 5P2

Non-grouped 10P1

Non-grouped 10P2

-50

-40

-30

-20

-10

0

10

1 2 4 8 12 16 20 24

% Performance Gain - Dunnington

Grouped 5P1

Grouped 5P2

Grouped 10P1

Grouped 10P2

Non-grouped 5P1

Non-grouped 5P2

Non-grouped 10P1

Non-grouped 10P2

0

2

4

6

8

10

12

14

16

0 10 20 30

S
p
ee

d
u
p

threads

Random

Grouped 5P1

Grouped 5P2

Grouped 10P1

Grouped 10P2

Non-grouped 5P1

Non-grouped 5P2

Non-grouped 10P1

Non-grouped 10P2

123 Chapter 8. Appendix B – Evaluation

Results

123

Figure 192. Blackscholes peformance gains on Termi (sorted list)

Figure 193. Blackscholes speedup on Sandman (sorted list)

Figure 194. Blackscholes performance gains on Sandman (sorted list)

-1000

-500

0

500

1 2 4 8 12 16 20 24

%Performance Gain

Grouped 5P1 Grouped 5P2 Grouped 10P1

Grouped 10P2 Non-grouped 5P1 Non-grouped 5P2

Non-grouped 10P1 Non-grouped 10P2

0

5

10

15

20

0 10 20 30 40

S
p
ee

d
u
p

threads

Random

Grouped 5P1

Grouped 5P2

Grouped 10P1

Grouped 10P2

Non-grouped 5P1

Non-grouped 5P2

Non-grouped 10P1

Non-grouped 10P2

-400

-350

-300

-250

-200

-150

-100

-50

0

50

1 2 4 8 10 12 14 16 18 20 22 24 26 28 30 32

% Performance Gain

Grouped 5P1 Grouped 5P2 Grouped 10P1 Grouped 10P2

Non-grouped 5P1 Non-grouped 5P2 Non-grouped 10P1 Non-grouped 10P2

Appendix B – Evaluation Results 124

124

8.2.2.6 Swaptions

Figure 195. Swaptions speedup on Dunnington (sorted list)

Figure 196. Swaptions performance gains on Dunnington (sorted list)

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30

S
p
ee

d
u
p

threads

Random

Grouped 5P1

Grouped 5P2

Grouped 10P1

Grouped 10P2

Non-grouped 5P1

Non-grouped 5P2

Non-grouped 10P1

Non-grouped 10P2

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

1 2 4 8 12 16 20 24

% Performance Gain - Dunnington

Grouped 5P1

Grouped 5P2

Grouped 10P1

Grouped 10P2

Non-grouped 5P1

Non-grouped 5P2

Non-grouped 10P1

Non-grouped 10P2

125 Chapter 8. Appendix B – Evaluation

Results

125

Figure 197. Swaptions speedup on Termi (sorted list)

Figure 198. Swaptions performance gains on Termi (sorted list)

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30

S
p
ee

d
u
p

threads

Random

Grouped 5P1

Grouped 5P2

Grouped 10P1

Grouped 10P2

Non-grouped 5P1

Non-grouped 5P2

Non-grouped 10P1

Non-grouped 10P2

-2000

-1500

-1000

-500

0

500

1 2 4 8 12 16 20 24

%Performance Gain

Grouped 5P1 Grouped 5P2 Grouped 10P1 Grouped 10P2

Non-grouped 5P1 Non-grouped 5P2 Non-grouped 10P1 Non-grouped 10P2

Appendix B – Evaluation Results 126

126

Figure 199. Swaptions speedup on Sandman (sorted list)

Figure 200. Swaptions performance gains on Sandman (sorted list)

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35

S
p
ee

d
u
p

threads

Random

Grouped 5P1

Grouped 5P2

Grouped 10P1

Grouped 10P2

Non-grouped 5P1

Non-grouped 5P2

Non-grouped 10P1

Non-grouped 10P2

-120

-100

-80

-60

-40

-20

0

20

1 2 4 8 10 12 14 16 18 20 22 24 26 28 30 32

% Performance Gain

Grouped 5P1 Grouped 5P2 Grouped 10P1 Grouped 10P2

Non-grouped 5P1 Non-grouped 5P2 Non-grouped 10P1 Non-grouped 10P2

