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Π ερ ίληψ η  

Ένα από τα πιο απαιτητικά προβλήματα στα σύγχρονα παράλληλα υπολογιστικά συστήματα 

είναι η εκμετάλλευση του μεγάλου αριθμού των νημάτων/πυρήνων που προσφέρει το σύγ-

χρονο υλικό, με σκοπό την βελτίωση της αποδοτικότητας εφαρμογών που εκτελούν κομμά-

τια κώδικα παράλληλα. Στην βιβλιογραφία και την βιομηχανία έχουν προταθεί διάφορα προ-

γραμματιστικά μοντέλα για αυτό τον σκοπό, στα οποία περιλαμβάνεται και το μοντέλο με 

παράλληλες εργασίες. Στο συγκεκριμένο μοντέλο, που έχει σκοπό την απλοποίηση του πα-

ράλληλου προγραμματισμού, ο προγραμματιστής εκφράζει τον παραλληλισμό της εφαρμογής 

ως εργασίες που μπορούν να εκτελεστούν παράλληλα και το σύστημα εκτέλεσης αποφασίζει 

πως αυτές οι εργασίες θα ανατεθούν σε νήματα του λειτουργικού συστήματος προς εκτέλε-

ση. 

Στόχος της παρούσας εργασίας είναι να εξερευνήσει και να βελτιστοποιήσει τους εσωτερι-

κούς μηχανισμούς της βιβλιοθήκης Intel TBB κάτω από συγκεκριμένους αρχιτεκτονικούς 

περιορισμούς. Αρχικά εξετάζουμε τον scheduler εργασιών της βιβλιοθήκης, με έμφαση στον 

μηχανισμό «κλοπής εργασιών», ώστε να αναγνωριστούν οι βασικές λειτουργίες του και ε-

κτελούμε profiling για να μετρήσουμε την επιβάρυνση που επιφέρει η καθεμία. Εν συνεχεία, 

γίνεται προσπάθεια να βελτιστοποιήσουμε τον μηχανισμό τυχαίας κλοπής προσθέτοντας 

πληροφορίες που αφορούν την αρχιτεκτονική, κυρίως την ιεραρχία κρυφών μνημών και την 

διαμόρφωση των packages. Υλοποιούμε έναν μηχανισμό κλοπής εργασιών που ακολουθεί 

δύο πολιτικές: 1) κλοπή από τους κοντινότερους πυρήνες (σε απόσταση ιεραρχίας μνήμης), 

2) κλοπή από τον πιο φορτωμένο με εργασίες πυρήνα. Η πρώτη πολιτική έχει στόχο να με-

γιστοποιήσει την επαναχρησιμοποίηση δεδομένων που μοιράζονται πυρήνες στην ιεραρχία 

μνήμης, μείωση της μόλυνσης της κρυφής μνήμης με μη σχετικά δεδομένα (μείωση των con-

flict/coherence misses), ενθαρρύνοντας την πρόσβαση δεδομένων σε τοπικό αρχιτεκτονικό 

επίπεδο. Η δεύτερη πολιτική έχει στόχο την βελτίωση της εξισορρόπησης φορτίου μεταξύ 

των πυρήνων. Για την αξιολόγηση των παραπάνω παρουσιάζουμε πειραματικά αποτελέσματα 

που αφορούν την βελτίωση της απόδοσης διάφορων εφαρμογών σε μία SMP πλατφόρμα 24 

πυρήνων, μία NUMA πλατφόρμα 12 πυρήνων και μία NUMA πλατφόρμα 32 πυρήνων (με 

πολυνηματισμό). 

  

 

Λέξεις-Κλειδιά: Intel TBB, παράλληλα προγραμματιστικά μοντέλα βασισμένα σε εργασίες, 

εξισορρόπηση φορτίου, ιεραρχία κρυφών μνημών, κλοπή εργασιών, τοπικότητα δεδομένων 
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Abstract 

One of the most challenging problems in modern parallel processing systems is to exploit 

the large number of cores/threads available in modern hardware, in order to improve the 

efficiency of applications by executing pieces of code in parallel. Various programming 

models have been proposed for this purpose, among which the task programming model. 

This model aims at simplifying parallel programming. In this model, the programmer 

expresses parallelism as tasks to be executed in parallel and the runtime system decides 

how these tasks are assigned to system threads. 

The goal of this thesis is to explore and optimize the internals of the Intel TBB Library 

under certain architectural conditions. Initially we examine the library task scheduler, 

focusing on the task stealing mechanism, in order to identify its basic functions and we 

run some profiling to verify the task stealing functionality and to measure the overheads 

of each basic function. Subsequently we attempt to optimize the architecture agnostic 

random stealing function by adding architecture information, mainly about the cache 

hierarchy and the socket configuration. We implement a stealing mechanism that adopts 

certain policies: i) stealing from the closest (in terms of cache/NUMA locality) core, ii) 

stealing from the most loaded core. The first policy aims to maximize the reuse of data 

shared between cores, reduce cache pollution due to irrelevant data (i.e. minimize con-

flict/coherence misses), and promote data accesses from local NUMA memory nodes. The 

second policy tries to achieve better load balancing among the cores. To that end, we 

present experimental results on performance improvement by measuring the speedup of 

several applications on a 24-core SMP and a 12-core (with hyperthreading) NUMA mul-

ticore machine.  

 

 

 

Keywords: Intel TBB, task-based parallel programming models, load balancing, cache 

hierarchy, work stealing, data locality 
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Chapter 1  

Introduction 

 

1.1 Overview 

In 1965 Gordon E. Moore published a paper [1] that affected the pace in which micropro-

cessors evolved. In this paper he stated that the number of transistors on integrated cir-

cuits would continue to double every two years, a trend confirmed by observations on 

computer hardware history at the time. This prediction undoubtedly continues to affect 

the computer hardware industry to this day, sometimes being the push behind modern 

efforts for increased performance. Since the appearance of the first microprocessor IBM 

chip in 1971, uniprocessor chips have dominated the computing industry for three long 

decades. During this period, the increase in transistor density was exploited mainly by an 

increased clock frequency, execution optimizations and caches. Increasing the clock speed 

is more or less about running the same work faster. Optimizing execution flow tried to 

make the instructions flow better and faster, squeezing the most work out of each clock 

cycle by reducing latency and maximizing the work accomplished per clock cycle. Final-

ly, increasing the size of on-chip cache is about putting the most useful data closer to the 

processor, as main memory continues to be so much slower than the CPU. It is im-

portant to point out that all these improvements aimed at making sequential programs 

run faster. 

Due to physical limitations, CPU performance growth hit a wall around 2003. The clock 

race between manufacturers has led up to 3,8 GHz, where it became harder and harder 

to exploit higher clock speeds. Heat dissipation, power consumption and current leakage 

problems are the main obstacles yet to overcome. Thus, in order to exploit the still in-

creasing transistor density, industry has shifted towards multicore architectures. This 

shift signaled the end of the free-lunch era [2], where improvement in performance was 

offered freely by the architectural improvements, without any effort by the programmer. 

Applications would no longer benefit from performance gains without significant rede-

sign. Multicore architectures have unraveled a new world for Computer Science, where 

introducing new runtime environments and programming models are essential to exploit 

the new hardware.  

With almost a decade having passed, multicore systems and parallel applications have 

become the standard. Operating Systems and Compilers have evolved to support the new 

hardware, desktop applications use multiple parallel threads and even traditionally serial 

algorithms have been replaced by parallel and distributed alternatives, promising better 

scaling and improved performance in multicore environments. The prevalent class of ap-

plications to be benefited from multicore consists of computation-intensive applications. 
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Except for scientific applications, which are traditionally computationally demanding, 

customer-oriented applications, including computer graphics, database management and 

machine learning, do have increasing demands in computational resources, in an effort to 

manage unprecedentedly large datasets and reduce response time.  

 

1.2 Multi-socket, multi-processor systems 

Before explaining the common parallel architectures of our interest, we shall introduce 

Flynn’s taxonomy[3] of computer architectures, according to the level of parallelism they 

employ to process instructions and data streams.  

 SISD: Single instruction, Single Data 

A sequential (or uniprocessor) computer. No parallelism employed. 

 SIMD: Single Instruction, Multiple Data 

A computer which concurrently processes multiple data streams with a single in-

struction stream, to perform operations that may be parallelized. 

 MISD: Multiple Instruction, Single Data 

Uncommon, non-commercial architecture, used only for scientific purposes, as 

fault tolerance. 

 MIMD: Multiple Instruction, Multiple Data 

Each processor executes its own instruction stream and processes its own data 

stream.  This architecture supports multiple threads (thread-level parallelism). 

Multicore processors and clusters are examples of MIMD architectures.  

Parallel computers are based on MIMD architectures, which can be further classified ac-

cording to their memory organization, into shared-memory architectures, distributed-

memory architectures and hybrid architectures and are profoundly analyzed below. 

 

1.2.1 Shared Memory Architectures 

A Shared Memory Architecture is a memory organization scheme that offers a shared 

memory address space to the programmer. Communication in this scheme is carried out 

using variables in memory, which are accessed and modified using loads and stores. Each 

processor has its own cache hierarchy. A typical Shared Memory Architecture is shown 

in figure 1. Shared Memory Architectures can provide Uniform Memory Access (UMA), 

where accesses from any processor to any memory address take the same amount of time, 

or Non-Uniform Memory Access (NUMA), where memory access time varies among dif-

ferent memory addresses, depending on the processor and the topology. Obviously, NU-

MA architectures offer very low latencies for nearby memory accesses and lower memory 

bus congestion when used correctly, introduce though challenges in program develop-

ment, due to their complicated topological peculiarity, a tradeoff that should be taken 

into consideration. 
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Figure 1. Shared Memory Architecture 

 

Shared Memory Architectures offer ease of programmability, since parallel programs can 

operate on the same collections of data, which are present in memory only once. Howev-

er, such an approach hides a lot of pitfalls, as concurrent modification of the same data 

by different processors can lead to inconsistent data, thus requiring a synchronization 

mechanism to ensure the validity of data. Such mechanisms are usually locks or mutexes, 

so as to ensure that only one processor enters a critical section of the code at a time. 

Moreover, cache coherence protocols are implemented to impose a universal sequence of 

access to the main memory.  

Although attractive for parallel programming, Shared Memory Architectures can be used 

for connecting only small numbers of processors, up to a few dozens, since such architec-

tures don’t scale well. The reason for that is that all processors compete for the same bus 

and memory system, which have limited bandwidth, leading to a saturation after adding 

more than 30-40 processors. 

 

1.2.2 Distributed Memory Architectures 

A Distributed Memory Architecture is a memory scheme consisting of a network of sepa-

rate processing elements, that are offered no shared memory address space and each node 

has access only to its own private memory address space. Each processor has its own 

cache hierarchy and processors are connected using an interconnection network, with dif-

ferent implementations varying in characteristics, such as latency, throughput and scala-

bility. A typical Distributed Memory Architecture is shown in figure 2. Computational 

tasks can only operate on local data and if remote data is required, the computational 

task must communicate with one or more remote processors to serve its request. Com-

munication in Distributed Memory Architectures is carried out using explicit send and 

receive routines to send and receive data. 
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Figure 2. Distributed Memory Architecture 

 

Clusters are usually built of commodity computers, using the same operating system, 

physically connected through cables and switches, following some network topology. 

Software gets involved to manage communication between non-neighboring nodes. To 

decouple communication operations from the processors, direct memory access controllers 

(DMA) and routers are employed, which both enable data transfer directly from the local 

memory. 

One important drawback of clusters is their management cost. Managing a cluster con-

sisting of n nodes equals to the cost of managing n computers, while the cost of manag-

ing a multiprocessor of n cores equals to the cost of managing a single computer. Fur-

thermore, the interconnection network adds extra latency to the communication process, 

compared to a memory bus, which increases with the number of nodes. On the other 

hand, a cluster is a low-cost solution to gain high performance. Scalability comes natural-

ly by adding more independent nodes to the network, enabling modern supercomputers 

to have thousands of nodes, which can be maintained or replaced with no functioning 

effect on the system. 

Programming on a Distributed Memory Architecture is a far more challenging issue that 

on a Shared Memory Architecture, since communication and data transfer overheads 

have to be identified in advance and implemented explicitly. On the other hand, Distrib-

uted Memory Architectures scale up to thousands of nodes, since they are constructed 

using independent nodes and interconnection networks, avoiding the bottlenecks that 

appear in Shared Memory Architectures. 

 

1.2.3 Hybrid Architectures 

A Hybrid Memory Architecture is a memory organization scheme that follows the Dis-

tributed Memory scheme, where a symmetric multiprocessor (SMP) has taken the place 

of each single processor node. Each node has its own private memory address space and 

shared memory parallel programming techniques can be employed within it, whereas the 

system scales up in the same way as a distributed memory system, simply by connecting 

more SMPs to the network. A typical Hybrid Memory Architecture is shown in figure 3. 

This architecture tries to combine the benefits of both memory architectures and is the 

typical architecture of modern clusters and supercomputers. 
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Figure 3. Hybrid Architecture 

 

1.2.4 A Multi-Socket Multi-Core Machine 

A Multi-Socket Multi-Core Machine refers to a shared memory architecture consisting of 

several multicores on the same machine, each residing on a socket. Each multiprocessor 

has its own cache hierarchy, and each cache memory level can be shared between two or 

more processors.  

 

 

 

1.3 Parallel Programming, Amdahl’s Law, scalability 

Parallel Programming makes sense when it enables the programmer to achieve speedup 

of his application execution time. Despite being the main objective, no explicit formula 

exists for the parallelization of sequential algorithms and programs. Thus, the program-

mer bears the burden of exploring the potential parallelism of an algorithm, with respect 

to its semantics, and resolving issues that directly affect the execution time of the paral-

lel program. 

We will elaborate on these issues later on, but before that we define some main perfor-

mance metrics of parallel programming, before we introduce the main parallel program-

ming models: 

 𝑇𝑝(𝑛): the parallel runtime of a program of size n on p processors 

 𝑆𝑝(𝑛) =
𝑇∗(𝑛)

𝑇𝑝
: the speedup in execution time that a parallel program achieves, 

compared to the sequential equivalent. 𝑇∗(𝑛) is the runtime of the fastest sequen-

tial program. In essence, it is the relative saving of execution time that can be ob-

tained by using a parallel execution on p processors compared to the best sequen-

tial program. If the inequality 𝑆𝑝(𝑛) ≤ 𝑝 holds, then the parallel implementation 

is efficient. If 𝑆𝑝(𝑛) = 𝑝, the speedup is linear. 

 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑆𝑝(𝑛)

𝑝
=

𝑇∗(𝑛)

𝑝∙𝑇𝑝
: it measures return on hardware investment. Ideal effi-

ciency is 1 (often reported as 100%), which corresponds to linear speedup. 
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Linear speedup is rare in practice, since there is extra work involved in distributing work 

to processors and coordinating them. In addition, and optimal serial algorithm may be 

able to do less work overall than an optimal parallel algorithm for certain problems, so 

the achievable speedup may be sublinear, even on theoretical ideal machines. 

Interestingly, superlinear speedup (or efficiency greater that 100%) can be achieved. 

Some common cases of superlinear speedup include: 

 Restructuring a program for parallel execution can cause it to use cache memory 

better, even when run on a single processor. 

 The program’s performance is strongly dependent on having a sufficient amount 

of cache memory, and no single processor has access to that amount. If multiple 

processors bring that amount to bear, because they do not all share the same 

cache, absolute speedup can be superlinear. 

 The parallel algorithm may be more efficient than the equivalent serial algorithm, 

since it may be able to avoid work that its serialization would be forced to do. 

For example, in tree search problems, searching multiple branches in parallel 

sometimes permits chopping off branches sooner than would occur in the serial 

code. 

If the cost of the best sequential program is unknown or varies depending on the data 

set, then speedup is often computed by using a sequential version of the parallel imple-

mentation. 

In the early years of high performance computing, Gene M. Amdahl [4] first denoted 

some inherent constraints in the process of parallel programming. There is a fraction of 

computational load in every application, associated with data management, which cannot 

be executed in parallel with other computations and other acts as a constant overhead to 

the runtime. To model this restriction, Amdahl introduced his famous law, which sets 

the limit of the speedup potential of the program, according to the following formula 

𝑆𝑝(𝑛) =
1

𝑟𝑠 +
𝑟𝑝

𝑝

 

where 𝑟𝑝 is the portion of the program that can be parallelized and 𝑟𝑠 the serial portion 

of the program (𝑟𝑝 = 1 − 𝑟𝑠). 

Amdahl’s law is a useful measure of the best case execution time for a parallel program. 

If the number of processors p goes to infinity, the total speedup goes to 1/rs. If the paral-

lelizable part of the program is relatively small, its speedup would be respectively small, 

regardless to the number of the processing units.  Figure XX depicts the influence of 

Amdahl’s law in parallel executions of different sequential fractions. In terms of pro-

gramming recipes, Amdahl’s law should be interpreted as follows: the programmer should 

try to parallelize (or optimize) the parts of the code that consume the greatest fraction of 

time. He also should try to parallelize all parts of the program (initialization faces, 

memory allocation etc.), because if for example there is a 10% serial fraction of code in 

our program, the maximum speedup potential is only 10. 
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Figure 4. Amdahl’s Law 

 

 

1.4 Parallel Programming Models 

Parallel programming models are the interface between the hardware and the program-

mer, offering an abstraction level to facilitate parallel programming on the diverse paral-

lel architectures. It enables the expression of parallel programs which can be compiled 

and executed. Thus, there exist three general parallel programming models, with respect 

to the aforementioned architectures: the shared memory model, the message passing 

model and the hybrid model. They can be implemented as language extensions, runtime 

libraries of programming languages or even autonomous execution models. They map the 

more or less high level programming constructs to lower level primitives, which are pro-

vided by the underlying system. The mapping may make use of hardware provided tools 

(like specific machine instructions) or operating systems constructs (like threads).  

 

1.4.1 Shared Memory programming model 

A shared memory programming model enables the programmer to partition a program-

ming task into multiple threads which run in parallel on the cores of a multiprocessor 

with a shared address space. Communication between threads is handled via load and 

store operations on the shared address space, bearing in mind that whenever a processor 

writes to a shared memory access, all processors accessing the same address will be aware 

of the change. In order to maintain data consistency, synchronization mechanisms are 

needed, such as barriers and locks, preventing race conditions from affecting the parallel 

program’s correctness. 

Shared memory programming models offer ease of programmability, as they facilitate 

data exchange and communication through a simple annotation of a variable as shared, 

thus visible and accessible to all processing units. Furthermore, these programming mod-
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els supply the programmers with several parallel constructs, easily applicable to sequen-

tial programs for their parallelization, such as parallel-for loops. The price for these con-

veniences is the complexity of identifying and resolving race conditions even for a highly 

skilled programmer. Managing shared data often leads to subtle and not easily traceable 

bugs, which makes large-scale parallel software development very error prone, tricky and 

time-consuming, affecting the productivity.  

It is rather straightforward and efficient to implement shared memory programming 

models for shared memory platforms, carrying though the disadvantage of their limited 

scalability. On the other hand, implementation on distributed memory platforms, alt-

hough feasible, requires special performance degrading software layers and costly hard-

ware support. 

Commonly used shared memory programming models are PThreads, OpenMP, CilkPlus 

and Intel TBBs. The latter will be thoroughly discussed in the following chapter. 

 

1.4.2 Distributed Memory programming model 

In a message passing programming model, the program consists of a set of independent 

processes, where the same instructions may reside on distinct computing nodes or com-

puters. Each process owns a local private address space and sends and receives messages 

to and from other processes to achieve inter-process communication and data exchange. 

Message passing is executed by the operating system or by function calls to the runtime 

library that activates low level operations. In a trivial approach of this model, a send op-

eration involves a local buffer where the message to be sent is stored and a receiving pro-

cess, whereas its complementary receive operation involves a local buffer where the mes-

sage to be received will be stored. Modern approaches have though a little different im-

plementation. The message sent is copied into an internal system buffer of the runtime 

system, thus the sending process can continue after the copying operation is completed, 

while the receiving process copies the data from the internal buffer of the runtime. 

A more general classification of the communication in a message passing model is based 

on whether it is performed in a synchronous or asynchronous manner. Synchronous (also 

known as blocking) message passing refers to the case where both the sending and the 

receiving process block all their other operations until data exchange is accomplished. 

The message is immediately stored in the receiving process’s local memory and no syn-

chronization mechanism is required, as both processes involved are synchronized at the 

end of the communication. In asynchronous or non-blocking message passing, the message 

is sent by the sending process without waiting for the receiving process to be ready to 

receive. Both processes may continue with their tasks until lower-level operations deliver 

the message. A disadvantage of asynchronous communication is that it involves an inter-

nal buffer, which, if full, may lead to a deadlock. 

Communication can also be categorized as point-to-point or collective, depending on the 

number of processes that exchange data. Point-to-point is when a single process sends 



29  Chapter 1. Introduction 

 

29 

 

data to e single receiving process, while collective communication involves more than two 

processes, with multiple sending and receiving points. 

Naturally, message passing models serve better parallel programming on distributed 

memory computing systems, which appeared long before shared memory parallel systems. 

The de facto model for message passing in clusters is the MPI (Message Passing Inter-

face) standard library. The performance of such models on clusters is determined by the 

communication efficiency, which relies on the interconnection network. With increasing 

number of nodes, a significant overhead is added to message passing delays, which can-

not be modeled with Amdahl’s law. MPI is applicable to shared memory architectures as 

well, though for reasons of performance the interconnection network is bypassed and 

message passing is served by shared memory operations. 

Programming with message passing models can be a challenging job. The programmer 

has to design the parallel program from scratch, make decisions about data distribution, 

message passing patterns and synchronization points. MPI is other than that error prone, 

as it involves employing the MPI routines that match to the aforementioned decisions, 

which can be cumbersome and non-trivial for the average programmer, requiring time-

consuming debugging processes. The non-trivial programmability though, when it leads 

to a fine parallel implementation, has rewarding results, as the program can be highly 

efficient and scalable, compared to its shared memory alternative.  

Another popular implementation of message passing model is the Actor Model, imple-

mented in programming languages like Erlang and Scala. In the actor model, each object 

is an actor. This is an entity that has a mailbox and a behavior. Messages can be ex-

changed between actors, which will be buffered in the mailbox. Upon receiving a mes-

sage, the behavior of the actor is executed, upon which the actor can: send a number of 

messages to other actors, create a number of actors and assume new behavior for the 

next message to be received. All communications are performed asynchronously. This 

implies that the sender does not wait for a message to be received upon sending it, it 

immediately continues its execution. There are no guarantees in which order messages 

will be received by the recipient, but they will eventually be delivered. 

 

1.4.3 Hybrid Programming model 

The hybrid programming model is a combination of a shared memory and message pass-

ing model. A common hybrid model is the joint use of MPI and OpenMP. This model is 

suited for hybrid architectures, as described above, where the shared memory is used to 

parallelize a program at the interior of a node of an SMP cluster and the message passing 

model is used for the communication between processes residing on distinct nodes. Ex-

cept for OpenMP, other shared memory implementations can be used, such as Intel 

TBBs. 
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1.5 Overview of Key Features for Performance 

Although optimizing code cannot be dealt with in a generic manner, mainly because it 

depends highly on the specific architectural characteristics of the underlying machine, 

modern architectures have been designed with two major key assumptions: Data Locality 

and Parallel Slack. 

Data Locality refers to reusing data from nearby locations with regard to time or space. 

So algorithms should be designed having in mind some of the following rules: 

 Chunking the work in order to fit in cache. If the working set doesn’t fit in cache, 

there will be a certain performance degradation due to capacity cache misses. 

 Data structures and memory accesses should be organized to reuse data locally 

when possible. Especially, unnecessary memory accesses far apart in memory or 

simultaneous access to multiple memory locations located a power of two apart 

should be avoided. 

 Accessing too many pages at once could cause unnecessary TLB misses. 

 It is very important to align data with cache line boundaries. Unrelated data ac-

cesses from different cores to the same cache lines should be avoided, as they may 

cause false sharing.  

Avoiding some of the above may require changes to data layout, including reordering 

items and adding padding to achieve (or avoid) alignments with the hardware architec-

ture. It is noteworthy that breaking up the work into chunks and getting good alignment 

with cache is also beneficial to single-core architectures. 

Following the above rules assumes knowledge of cache line sizes, cache organization, or 

the total size of the caches, which are not a given when writing portable code. In this 

case, the memory allocation routines should be customized so that they select the chunk 

size in a dynamic manner, either by hand-tuning them when porting to a new machine, 

or by writing auto-tuning routines. Using cache oblivious algorithms, that is, algorithms 

using recursive decomposition, is another approach to auto-tuning.  

In this thesis, we will be referring to shared memory architectures. These architectures 

have the property that groups of cores compete for the usage of a single memory bus. In 

this case, another important factor that affects performance is arithmetic intensity, the 

ratio of computation to communication. Given the fact that on-chip compute perfor-

mance is still rising with the number of transistors, but off-chip bandwidth is not rising 

as fast, in order to achieve scalability a large number of on-chip computations should be 

performed for every off-chip memory access. This can be achieved through a range of op-

timizations, including fusion and tiling. As a rule of thumb large enough chunks of work 

that fit in cache should bring in practice the best performance. However, larger chunks of 

work reduce the available parallelism since it will reduce the total number of work units. 

Parallel Slack refers to the amount of extra parallelism available above the minimum 

necessary to keep the parallel hardware resources utilized. Specifying an amount of po-
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tential parallelism higher than the actual parallelism offered by the hardware gives the 

underlying software and hardware schedulers more flexibility to exploit machine re-

sources. 

The ideal strategy would be to choose work units of size that reasonably amortizes the 

overhead of partitioning and scheduling them and offer good arithmetic intensity. Break-

ing the problem down to the exact amount of hardware parallelism may sound tempting, 

it isn’t though the best strategy. In case a task delays for some reason (for example an 

operating system interrupt), it will inevitably delay the entire program. 

 

1.6 Problems and pitfalls of parallel programming that should be 

avoided 

 Race Conditions: they occur when concurrent tasks perform actions on the same 

memory location without proper synchronization. When entering a critical section 

of a parallel program, shared data that are accessed can cause unpredictable be-

havior without synchronization. That can be caused because there is no guarantee 

about the order that the operations are going to be executed by the hardware, so 

the outcome is likely to be corrupted data. If you are unlucky, a program with 

data races can work fine during tasting but fail once it is in the customer’s hands. 

Even considering the possible interleaving of instructions isn’t enough to predict 

data races, because modern hardware usually if not sequentially consistent. That 

means that hardware and the compiler may produce different reordering between 

operations. Avoiding races using special hardware features is a solution, though 

not a good one, as it kills portability. For this reason, the parallel programming 

model used and the programming language should offer a memory model that en-

ables avoiding data races independently from the hardware details. Races are not 

limited to memory locations. They can happen with files and I/O too. 

 Mutual Exclusion and Locks: Locks are a low-level way to eliminate races. Mutu-

al exclusion can be achieved in many situations using a lock. The locking and un-

locking are implemented using hardware instructions, in order to ensure atomici-

ty. An important point about locks is that they should protect logical invariants 

and not specific memory locations. For example, in the case of a complex data 

structure as the linked list, a lock might protect the invariant “the next field of 

each element points to the next element in the list”. Any time a task traverses a 

list, it must first take the lock, otherwise it might walk next fields under con-

struction by another task. If a lock protects a specific memory location, the invar-

iant may be temporarily violated inside the critical section, leading to unpredict-

able behaviors.  

 Deadlock: it occurs when two concurrent tasks wait for each other, not being able 

to resume until the other task proceeds. This can happen when they try to ac-
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quire more than one lock at the same time, in a way that creates cyclic depend-

encies. If for example task A tries to acquire locks L1 and L2, and task B tries to 

acquire locks L2 and L1 at the same time, it is possible that A acquires L1, B ac-

quires L2, and then they wait each other. There are several ways to avoid dead-

locks: 

i. Holding at most one lock at a time: Never call other people’s code while 

holding a lock, unless you are sure that the other code never acquires a 

lock. 

ii. Always acquire multiple locks in the same order: a specific ordering to 

lock acquiring avoids deadlocks. 

iii. Avoid locks when possible 

iv. Backoff: when trying to acquire a lock, if it cannot be immediately ac-

quired, release all locks already acquired. This approach requires a “try 

lock” operation that immediately returns if the lock cannot be acquired. 

 Strangled Scaling: Locks serialize the program execution by nature, causing 

Amdahl bottlenecks to the overall computation. When tasks contend for the same 

lock, the impact on scaling can be severe, even worse than if the protected code 

was serial. Except for the bottleneck to execution, the status of the protected 

memory locations must be communicated between cores, thus adding communica-

tion costs not paid by the serial equivalent, which can be very costly when the 

underlying machine is multisocket. 

The locking can be either fine-grained or coarse-grained. Usually, fine-grained 

locking replaces a single highly contended lock with many uncontended locks, 

thus improving the scalability. Nevertheless, fine-grained locking can be tricky to 

implement. 

 Load Imbalance: it refers to uneven distribution of work across workers. The time 

of the longest running task contributes to the span, which limits how fast the 

parallelized portion of the program can run. Load imbalance can be avoided by 

decomposing the work to small parallel chunks, thus making it easier to distribute 

to the workers available. 

 Lack of locality: Locality of data can be either temporal or spatial. Temporal lo-

cality refers to using the same data in the near future, while spatial locality refers 

to using nearby data. In modern architectures, which use many levels of caches, 

either types of locality can lead to speedup. Communication is very expensive in 

these systems, while computation is very cheap. Thus, it is often preferable to in-

crease the work in exchange for reducing communication.  

True and false sharing overhead caused by the cache coherence protocols can be 

very high in multisocket architectures, due to the data exchange through the in-

tersocket interconnect. Also, a cache miss can take up to the order of a hundred 

cycles. So having good locality but also avoiding unnecessary sharing between 

cores are two requirements that both should be fulfilled, although in some cases 

they may contradict each other. 
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 Overhead of parallelization: the programmer should have in mind that launching 

and synchronizing parallel tasks introduces overhead, which increases the total 

amount of work to be done. Making tasks very small can help with load balanc-

ing, but it can cause very large overhead of managing them. Ideally, the decom-

position of the work to parallel tasks should allow balancing the load while still 

making tasks large enough to amortize synchronization overhead and maximize 

arithmetic intensity. Launching and synchronizing the tasks in a tree structure 

can lead to a time overhead that is logarithmic to the number of the workers, in-

stead of linear if all the parallel tasks were launched from one task. 

 

1.7 Desired Properties of Parallel Programming Models 

With the existing codebase consisting mainly of serial code, it is necessary to extend ex-

isting programming practices and tools to support parallelism. Broadly speaking, while 

enabling dependable results, parallel programming models should have the following 

properties: 

 Performance: using the parallel programming model should be possible to predict-

ably achieve good performance. Moreover, the performance should be easily tuna-

ble for different systems and should scale easily to larger systems. 

 Productivity: Programming models should be highly expressive, debuggable and 

maintainable. A very important aspect that greatly contributes to the achieve-

ment of these requirements is composability, which will be further discussed later. 

 Safety/Determinism: An inherent complication of parallel computation is non-

determinism. Determinism implies that running the same program multiple times 

produces the same result. Due to the randomness of thread scheduling, for reasons 

outside the control of the application, the order of operation of different threads 

may be interleaved in an arbitrary order. If the threads modify shared data (in a 

shared memory programming model), it is possible that different runs of a pro-

gram may produce different results even with the same input. Although non-

determinism is not necessarily bad, many approaches to application testing as-

sume determinism. In many cases, non-determinism is an error, as it leads to pos-

sible corruption of shared data. The problem of safety is how to ensure that only 

correct orderings occur. 

 Portability of functionality: Being able to run code on a wide variety of plat-

forms, regardless of operating systems, processors and compilers, is desirable. 

 Portability of performance: Portability of performance is a serious concern. It is 

reassuring for the programmer to know that his code will continue to perform 

well on new machines and on machines he may not have tested it on. Ideally and 

application that is tuned to run within 80%of the peak performance of a machine 

should not suddenly run at 30% of the peak performance on another machine. 

This can be achieved only with more abstract programming models. Abstract 

models are removed enough from the hardware design to allow programs to map 
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to a wide variety of hardware without requiring code changes, while delivering 

reasonable performance relative to the machine’s capability. 

 Composability: it is the ability to use a feature without regard to other features 

being used elsewhere in the program. Ideally, every feature in a programming 

language is composable with every other. For example, if this property didn’t 

hold for an if statement, then linking a library where any if statement was used 

would mean for statements would be disallowed throughout the rest of the appli-

cation. As absurd as it may sound, similar situations exist in some parallel pro-

gramming models or combinations of programming models. Incompatibility be-

tween programming models or constructs can lead to failure even if parallel re-

gions do not directly invoke each other. Such situations can arise, for example, by 

inconsistent use of local thread memory. Another principal issue is the inability to 

support hierarchical composition. This commonly occurs when a program that is 

parallelized using a parallel programming model calls a library function which is 

parallelized using a different parallel programming model. To avoid this danger 

the programmer should know inner details of the library, which violates some 

fundamental principles of software engineering, such as information hiding and 

separation of concerns. So if the library is serial, and the next version becomes 

parallelized, upgrading to the newest version, although the binary interface is the 

same, might break the code with which it is combined. 

 

 

 

 



 

 

Chapter 2  

M otivation – Overview of the 

Problem 

2.1 Regular vs. Irregular &Nested/Recursive Parallelism – Oversub-

scription - Implicit vs. Explicit Parallelism 

In the previous chapter we presented an overview of the basic keys for performance in 

parallel programming, as well as common pitfalls and the desired properties of parallel 

programming.  

In this section we will address two more aspects of parallel programming that often occur 

when parallelizing programs, namely regular vs irregular parallelism and nested parallel-

ism. 

Regular parallelism refers to the parallelization of an algorithm, which acts in a predict-

able and static manner on data, which means that the computations are already known 

to the programmer statically. An example of this kind of algorithms is the Floyd-

Warshall algorithm. 

 

let dist be a |V| × |V| array of minimum distances initialized to ∞ (infinity) 

for each vertex v 

   dist[v][v] ← 0 

for each edge (u,v) 

   dist[u][v] ← w(u,v)  // the weight of the edge (u,v) 

for k from 1 to |V| 

   for i from 1 to |V| 

      for j from 1 to |V| 

         if dist[i][k] + dist[k][j] < dist[i][j] then 

            dist[i][j] ← dist[i][k] + dist[k][j]  

Listing 1. Floyd-Warshall algorithm 

 

In this case the programmer knows statically the order of computations, thus being able 

to identify the loops that can be parallelized, divide the work and data between threads 

and estimate very precisely the amount of work that each thread will have to do, com-

pute the work span and devise the way to parallelize it effectively.  

On the contrary, an irregular algorithm is one that the amount of work depends on the 

instance of the problem and is unpredictable by nature. For example the BFS or the A* 

algorithm has this kind of “irregularity”, as the number of neighboring nodes that will be 

explored for every node on the search front cannot be foreseen and they depend on the 

topology of the graph that is explored. In this case, the programmer cannot simply divide 
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the work to a number of threads, because it is very likely that some of these will have to 

do very little work, while others may face exponential increase in the work to be done. If 

for example a thread follows a linear path on the graph, it will just explore subsequent 

nodes, while another thread could face a tree-like structure of path alternatives that 

should explore. That would lead to work imbalance, making the critical path ridiculously 

long, resulting to huge performance degradation. 

Nested parallelism refers to the situation when a programmer wants to parallelize a piece 

of code which is nested in an outer piece of code that is already parallelized. A common 

example is the parallelization of nested loops. As it is not usually done on purpose, an-

other more non-trivial example could be the following: Suppose an algorithm f is parallel-

ized, by creating 15 extra threads to assist the calling thread, and each thread calls a li-

brary routine g. If the implementer of g applies the same logic, now there are 16x15 

threads running concurrently. A special case of nested parallelism is recursive parallelism. 

This occurs when the algorithm to parallelize is recursive by nature and is difficult to 

transform it to its iterative equivalent. Even if it is not that difficult, it sure loses the 

elegance, readability and maintainability of the recursive formula. Also, a recursive form 

of an algorithm could be cache oblivious, thus enabling better use of the cache memory. 

A classic example of recursive algorithm is the computation of the nth Fibonacci number, 

given by the following algorithm: 

 

int Fib(int n) 

{ 

     if (n <= 1) 

         return 1; 

     else 

          return Fib(n - 1) + Fib(n - 2); 

}  

Listing 2. Algorithm for computing the n-th Fibonacci number 

 

If the programmer tries to spawn a thread for each of the two recursive calls, it could 

result in a huge number of threads being spawned, which is undesirable. In either cases, 

creating a very large number of threads could cause oversubscription, which means hav-

ing more threads than the available parallelism the hardware offers, or even more than 

the system can handle.  

When using OS threading interfaces, such as POSIX threads, too much actual parallelism 

can be detrimental. These threads have mandatory semantics, which means they must 

run in parallel. So the OS must time-slice execution among these threads, incurring large 

overhead for context switching and reloading items into cache. Mandatory, or explicit, 

parallelism doesn’t also support the idea of hierarchical decomposition of program mod-

ules that was discussed earlier, which makes writing large-scale parallel software that us-

es libraries and modules that can also be parallelized a real pain. That introduces the 
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need for a parallel programming model that offers the ability to express optional parallel-

ism. Instead of using threads as our main parallelizing component, we use tasks.  

A task is a piece of optional parallelism, which is implicitly scheduled on software 

threads. Scheduling software threads on hardware threads by the OS is usually preemp-

tive; it can happen at any time. In contrast, scheduling tasks on software threads is non-

preemptive; a thread only switches tasks at predictable switch points. Non-preemptive 

scheduling enables significantly lower overhead and stronger reasoning about space and 

time requirements than OS threads. Tasks are a more intuitive way of expressing paral-

lelism in general and offer a significant parallel slack, which gives more flexibility to ex-

ploit machine resources. For example, having more potential parallelism that cores can 

help performance when the cores support multithreading. If, for instance, code must in-

evitably chase pointers using independent memory reads, additional parallelism can ena-

ble hardware-multithreading to hide the latency of the memory reads. Moreover, hierar-

chically decomposing software modules, composability and nested parallelism become 

non-issues, as they all end up just expressing more optional parallelism, which will be 

scheduled on the right number of software threads with care, without oversubscribing 

software threads to the system with the detrimental results discussed. 

 

2.2 The TBB Library 

In this thesis we examine the Intel Threading Building Blocks (TBB) multithreading li-

brary. Its programming model supports parallelism based on a tasking model. TBB is a 

library, not a language extension, and thus can be used with any compiler supporting 

ISO C++, so it is portable across platforms, operating systems and processors. It uses 

C++ features, such as function objects, to implement its syntax.  

2.2.1 Overview of the library 

TBB is written following the generic programming philosophy used by the C++ Stand-

ard Template Library (STL). It relies heavily on C++ templates to provide generic par-

allel programming patterns, such as parallel_for or parallel_reduce, with the fewest pos-

sible assumptions about data structures and data types that they will be used on. 

An overview of the components of Intel TBB are presented in figure5. They include the 

following: 

 Task: The most primitive and low level representation of a task, as parallel work 

abstraction. Tasks are chunks of work to be done, following the philosophy of poten-

tial parallelism. It is designed primarily for efficient execution, rather than conven-

ience. It serves as a foundation for every tool for parallel computation that is offered 

by the library, and thus should impose minimal performance penalty. Task groups run 

an arbitrary number of tasks in parallel. 

 Parallel Algorithms: These are higher level templates, which provide convenient 

interfaces for tasks, enabling the programmer to express parallelism using some popu-
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lar algorithms and patterns, such as parallel_for, parallel_reduce, parallel_scan, work 

pile pattern, pipeline pattern, flow graph etc. As already mentioned, their foundation 

is tasks. This means that if, for instance, a parallel_for is invoked, the template will 

spawn the required number of tasks implicitly, chunking the work that was given ac-

cording to specific requirements. These requirements are given in many cases by the 

blocked_range class and the different partitioners. 

 Synchronization: the library includes primitive synchronization components such 

as atomic variables, mutexes etc., enabling the programmer to have full control of the 

program execution flow. 

 Concurrent containers: popular and useful containers that are designed to be 

scalable and generic, following the philosophy of STL. 

 Memory allocation: the library offers scalable memory allocators that offer cache 

alignment for false sharing avoidance and thread-local storage. 

 Utility: cross-thread accurate timers 

 

Figure 5. TBB Components 

All the above functionalities are fully composable, not only with one another, but also 

with other popular parallel programming models such as OpenMP and MPI. TBB could 

be used to provide scalable parallelization at node level, and MPI to provide message 

passing style parallelism at system level. The abstract implementations on containers and 

algorithms that TBB offers boost productivity by enabling high code reuse while the 

non-preemptive scheduling of tasks enables better time and space overhead estimations. 
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2.2.2 How it satisfies the desired properties 

The aforementioned must have made it clear that Intel TBB aims at high performance in 

shared memory architectures, provides a portable solution (it runs with any ISO C++ 

compiler) that can cooperate with other parallel programming models, boosts productivi-

ty by providing high code reuse with its generic components, which are fully composable. 

2.3 TBB Scheduler 

2.3.1 Overview, Basic Architectures and Components, Basic Functionalities 

At the heart of the TBB runtime library exists the TBB task scheduler. This piece of 

code has the responsibility to schedule tasks on software threads in a non-preemptive 

manner. An overview of the basic components that constitute the TBB scheduler is pre-

sented in figure 6.  

 

 

Figure 6. Scheduler Architecture Overview 

When a thread creates for the first time an instance of the class task_scheduler_init, it 

is considered as the master thread and the following structures are initialized: 

 RML (Resource Management Layer): this structure keeps the workers, which are 

OS threads in essence. At the initialization time no actual OS threads are creat-

ed. The number of virtual workers that are created corresponds to the requested 

concurrency by the application. The concurrency offered by the TBB runtime is 

the largest between the number of threads that the first application that initial-
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ized the scheduler requested and the concurrency offered by the underlying ma-

chine. This amount cannot be changed, unless the scheduler is destroyed and re-

initialized requesting different concurrency. Actual OS threads are created lazily, 

for example when a parallel algorithm is invoked, up to the maximum number of 

virtual workers that RML was initialized with. 

 Market: this structure has the responsibility to provide the arenas with workers. 

The maximum number of workers that can be offered to all master threads is de-

fined by the concurrency that the first application that constructed the scheduler 

requested. If many master threads ask for workers, it is possible to exceed the 

limit of the virtual workers of the RML. In this case the market tries to dispatch 

a fraction of the total workers, according to the following rule:  

𝑅𝑀𝐿_𝑤𝑜𝑟𝑘𝑒𝑟𝑠 ∗
𝑚𝑎𝑠𝑡𝑒𝑟_𝑑𝑒𝑚𝑎𝑛𝑑

𝑡𝑜𝑡𝑎𝑙_𝑑𝑒𝑚𝑎𝑛𝑑
 

 Arena: this structure is associated with the master thread. Each master thread 

has its own arena, in which this thread along with the workers provided by the 

market work on the tasks. Each arena registers to the market. The slots of each 

arena correspond to the maximum number of workers that can be assigned by the 

market and can be used by the master thread to execute tasks. Their number is 

equal or less than the concurrency requested by the master thread that first ini-

tialized the task scheduler. 

 Task dispatcher: this structure is the local scheduler of each worker that has the 

responsibility to acquire and execute tasks. Local instances of the task dispatcher, 

which corresponds to the class custom_scheduler, register to each arena slot. The 

functionality of this class is described below. 

2.3.2 Executing Tasks - Work Stealing Mechanism & Load Balancing Algo-

rithms 

When a parallel algorithm is invoked from a master thread, for example a parallel_for, 

an initial root task is spawned at the local task pool of the master thread. The market 

provides the arena with the maximum number of workers it can and each one of them 

keeps his own local task pool, initially empty. Each task pool is a LIFO data structure, 

which means that the owner can only take for execution the task at the beginning of the 

task pool, and can spawn new tasks also at the beginning. The reason for that will be-

come obvious later on.  

TBBs use two load balancing techniques, recursive splitting and work stealing. Recursive 

splitting refers to the situation where a worker has to execute a body of code on a range 

of data, for example a parallel_for on an array of N elements. In this case the worker 

starts to recursively split the range to equal subranges, creating and spawning the corre-

sponding tasks. This continues in a depth first manner, as in figure 7, until a range be-

comes less or equal to a specific grainsize. Then the worker calls the body code on the 

subrange, executing the work needed. The other workers who initially have an empty 

local task pool try to steal work from the workers that have tasks available. When a 
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worker (including the master) runs out of work, he tries to steal work from a victim 

worker, which is chosen randomly. The latter mechanism is called work stealing and it 

ensures that no worker will stay idle if there is still work available and no other worker 

executes it. If the chunk of work he stole needs further splitting, he continues the split-

ting the same way the master thread did it, creating subtasks that are available to be 

stolen by other idle workers. Although there is the factor of randomness in choosing the 

victim, it has been proven in practice that this simple mechanism is very efficient for 

load balancing, minimizing the idleness of the workers. 

The critical point about work stealing is that when a worker tries to steal a victim, he 

always steals from the end of its task pool, in a first-in first-out manner (FIFO). The 

reason for that is that because of the depth-first recursive splitting that treats the task 

pool as a last-in first-out (LIFO), the beginning of each local task pool has the smaller 

chunks of work, while the end has the largest chunks. As a result, splitting in a depth-

first manner while stealing in a breadth-first manner leads to the best possible load bal-

ance. 

2.3.2.1 Partitioners and Grainsize 

The partitioner is responsible for splitting a range to subranges. Each partitioner guaran-

tees that the recursive splitting will continue until the chunks of work become greater 

than G/2 and smaller that G, where G is the grainsize. There are three kinds of parti-

tioners, the simple partitioner, the auto-partitioner and the affinity partitioner: 

 Simple Partitioner: In the case of the simple partitioner, the programmer explicit-

ly defines the grainsize, with the default value being 1. The partitioning of a 

range r is simply continues until r.is_divisible() becomes false. 

 Auto-partitioner: The grainsize is automatically estimated by a heuristic. The 

mechanism includes two values, V and K, which are both 4 in the current imple-

mentation. A variable n is initialized with the value P*K for the top level range, 

where P is the number of processors available. Each time the range is split, it 

gets half of the original n. If a range is stolen, its n is forced to be at least V. 

When n reaches 1 the range is not further split, although is_divisible() may still 

return true (controlled by the grainsize that was hinted to the partitioner). The 

intuition behind this mechanism is that the range should be split to a number of 

equal chunks that equals to the number of available processors, but there should 

be a little more splitting so that more than one tasks are pending for execution at 

each processor, to help better load balancing and compensate for the randomness 

of stealing. If the range is two-dimensional, it can be divisible along one or both 

axes. If divisible along both dimensions, the two-dimensional range chooses the 

split that yields pieces with an aspect ratio similar to aspect ratio of the grain 

size. 

 Affinity partitioner: In certain applications, such as numerical relaxation and 

time-stepping marches for partial differential equations, cache affinity is crucial 
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for performance. The randomness of stealing causes loop algorithms to have poor 

affinity between successive sweeps over the same range. The affinity partitioner 

tries to tackle this problem, by hinting that the same or similar subranges are as-

signed to the same workers between successive sweeps, hoping that the data of 

each subrange will still be in the cache for the next iterations. This is though a 

hint, meaning that subranges may still be migrated to other threads to rebalance 

load. Moreover, it is not guaranteed that the thread that corresponds to a specific 

worker will not be migrated to a different physical core by the operating system. 

Nevertheless, the OS does not often migrate threads for no reason, and assuming 

that no other resource demanding process is running concurrently, the OS migra-

tion should not cause any performance issues. The grainsize in this case is select-

ed as in the case of auto-partitioner. 

 

Figure 7. Recursive Splitting & Work Stealing 1 
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Figure8 shows two possible steps of a parallel_for computation on the range 0 to N. 

First the master thread has subdivided the range at his local task pool, putting the 

smallest chunks of work at the front. Meanwhile, workers 1 and 2 tried to steal work 

from master. Worker 1 stole first the rightmost chunk of work and subsequently Worker 

2 stole the second rightmost chunk. Worker 3 has not still stolen anything. At the next 

step, the master thread still executes his smaller chunk of work, while Worker 1 and 2 

have already splitted their stolen chunks a few times. Worker 3 now kicks in and tries to 

steal the rightmost chunk from Worker 1. 

 

Figure 8. Recursive Splitting & Work Stealing 2 

When the master thread decides to leave the arena, it destructs the task_scheduler_init 

object. Other workers though may still be working on tasks, so complete destruction of 
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components is postponed. When a worker repeatedly fails to steal work from others after 

finishing his own, he scans the arena to make sure he is left alone and that the other 

workers have already left, leaving no further work to be done. If that holds, he leaves the 

arena and destructs the relevant components. 

2.3.3 Cache Coherence Protocols and Problems with Work Stealing 

While work stealing is a simple and efficient mechanism to balance the load, several is-

sues may arise during runtime.  

2.3.3.1 Cache pollution 

Stealing a task from a random victim implies that the thief must operate on data, such 

as a specific subrange of a loop, which would otherwise be handled by the victim. The 

randomness of stealing could pollute thief’s cache with data that are completely irrele-

vant to the current data, and are far apart from each other in memory. This could cause 

serious performance degradation and several cache misses, compulsory as well as capacity 

misses, because the new data may evict data that will be needed in the future. 

2.3.3.2 Data sharing 

When a thief brings data from a victim into his cache memory, some of them may be 

adjacent to data in memory that are used by the victim. This leads to false-sharing be-

tween the two cores, which can cause a serious bottleneck in runtime, because of the 

cache coherence protocols that will start to invalidate data to each other, causing a ping-

pong effect. That could be avoided if the two cores shared some cache level. The lower 

the better, but the randomness in stealing cannot guarantee it. 

2.3.3.3 Locking 

Work stealing includes some locking mechanisms, in case a clash between the thief and 

the victim occurs. Locking also occurs when multiple thieves try to steal from the same 

victim. In either cases, when the thread count increases, locking could become a bottle-

neck to the system because of the randomness of stealing. If the stealing mechanism lim-

ited the stealing between specific threads, this locking mechanism could scale better and 

fewer clashes would occur. 

2.4 Profiling of basic functionalities – Characterization of overhead 

scalability 

The first step of this study is to examine the overhead introduced by the TBB runtime 

library on parallel applications, broken down to basic functions as well as total user-

library time. The profiling has multiple targets: first it aims to confirm the structure of 

the library and identify the functionalities into the code. Second, we try to measure the 

amount of stealing that occurs during runtime and how much it can affect the overall 

performance. Also we try to expose the scalability of each basic function of the library, 

including stealing, in order to identify possible bottlenecks of the task stealing mecha-

nism and overall performance.  
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2.4.1 Systems Used 

We use the Intel Threading Building Blocks 3.4 library (tbb40_20120408oss), which at 

the start of our study was the most up-to-date release available. Although most recent 

releases have taken place since then, the basic functionality of the task scheduler has not 

been changed, so these changes do not affect the outcome of our results. We compile 

TBB using GCC 4.6.3 and used the optimized “release” library. 

For our profiling we used the systems described in the following subsections: 

2.4.1.1 “Dunnington” SMP Platform 

The first physical system used for the profiling is a 24-core Dunnington-based SMP with 

the following characteristics (shown in figure 9): 

 4 package(Intel(R) Xeon(R) X7460 @ 2.67GHz) 

 6 cores per package 

 no Hyperthreading 

 32KB L1 cache per core 

 3MB L2 cache per 2 cores 

 16MB L3 cache per package (6 cores) 

 28.136 MB RAM 

2.4.1.2 “Termi” NUMA Platform 

The second physical system used is a 12-core Termi-based NUMA with the following 

characteristics (shown in figure 10): 

 2 Packages (Intel(R) Xeon(R) X5650 @ 2.67GHz) 

 6 cores per Package  

 Hyperthreading (24 threads in total) 

 32KB L1 cache per core (2 threads) 

 256KB L2 cache per core (2 threads) 

 12MB L3 per package (6 cores, 12 threads) 

 48.295 MB RAM 
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Figure 9. 24-core “Dunnington” SMP Platform 

 

Figure 10. 12-core “Termi” NUMA Platform 
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2.4.2 TBB Scheduler Basics 

The TBB scheduler consists mainly of a basic dispatch loop, a simplified version of which 

is presented below. The wait_for_all() procedure is the main scheduling loop. It consists 

of nested loops that attempt to obtain work through three different ways: explicit task 

specification, local task queue and random task stealing. In the innermost loop the task 

for execution is specified by the current task, which returns a pointer to the next task. If 

the current task does not return a task to execute, the do-while loop tries to acquire a 

task from the local task pool. If there is no work left in the local task pool, the thread 

tries to steal a task from a random victim. If that is unsuccessful, the thread waits for a 

fixed amount of time and tries again. If too many unsuccessful attempts occur, the 

thread gives up and waits until the main thread wakes it by generating more tasks. 

wait_for_all(task *child) { 

 task = child; 

 loop until root is alive { 

    do { 

    while task available { 

    next_task = task->execute(); 

    Decrease ref_count for parent of task 

    If ref_count == 0  

    next_task = parent of task 

    } 

    task = get_task(); 

    } while (task); 

 task = steal_task(random()); 

 if steal unsuccessful { 

    Wait for a fixed amount of time 

    If waited for too long, wait for master thread to produce new work 

 } 

}  

Listing 3. Basic task dispatch loop 

2.4.3 Basic TBB Functionalities 

The basic TBB Scheduler functionalities are: 

 spawn: When a worker is created, it is associated with a local task pool, as al-

ready mentioned. Tasks are explicitly enqueued into a task pool when their corre-

sponding worker calls the spawn method. This can happen many times when exe-

cuting a task, as in the case of the Fibonacci computation, where each task 

(which corresponds to the computation of the n-th number) spawns two more 

tasks (which correspond to the computation of the (n-1)-th and (n-2)-th num-

bers). It takes a pointer to a task object and enqueues it to the local task pool of 

the calling thread. 
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 get_task: This method is called by the dispatcher loop when the completion of 

the previous task returns no task for execution. It tries to retrieve a task from the 

local task pool. When unsuccessful, it returns NULL. 

 receive_or_steal_task: This method is called when there is no work left in the 

local task pool. Except for stealing tasks from other threads, it may also retrieve 

tasks that have been mailed to it. It can be subdivided into tree functions: 

 lock_task_pool: It basically tries to lock the victim’s local task pool so 

that no collision will happen with the owner. Increasing number of threads 

may cause several collisions and as any locking mechanism, it can have 

scalability issues. 

 stealing: It is the act of retrieving a task class description from the vic-

tim’s task pool, after locking it. 

 steal_wait: It is the time spent on functions other than actual stealing in-

side the receive_or_steal_task, which is essentially the time waiting be-

tween successive attempts to steal. 

 acquire_queue: This method is called by spawn and get_task to lock the thread’s 

local task pool, in order to either enqueue a new task or retrieve a task ready for 

execution. 

 lib_wait: this value represents the time spent by the wait_for_all dispatch loop 

on functions other than the above. It is essentially the difference between the to-

tal library timer (the wait_for_all loop) and the sum of the individual timers of 

each aforementioned function (except for acquire_queue which is included in 

spawn and get_task timers). 

2.4.4 Applications used for characterization 

We study the impact of the TBB runtime library on parallel applications by using some 

well-known benchmarks: blackscholes, fluidanimate, streamcluster and swaptions, which 

are part of PARSEC benchmark suite[5], and convex_hull, matrix_multiply, quicksort, 

strassen, which are in-house developed benchmarks. These applications were chosen be-

cause they create a substantial amount of tasks and use many of the templated algo-

rithms offered by the library, as well as the low-level way of task creation by hand, ena-

bling us to examine the behavior and scalability of TBB’s basic functionalities in a wide 

range of circumstances. 

Algorithm Description Input size 

Blackscholes 
Option pricing with Black-Scholes Partial 

Differential Equation 
64K 

Fluidanimate 

Fluid dynamics for animation purposes with 

Smoothed Particle Hydrodynamics (SPH) 

method 

500K 

Streamcluster Online clustering of an input stream 16384 data points 

Swaptions Pricing of a portfolio of swaptions 
64 swaptions, 20000 

simulations 

Convex Hull Smallest convex that contains a set of points 40M points 
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Matrix_multiply Matrix multiplication 1500x1500 

Quicksort Quicksort sorting method 100M 

Strassen Matrix multiplication  256x256 

 

In the following subsections we present the results acquired during the profiling. For each 

application there is a brief description followed by 1) the speedup achieved, 2) a User-

Library time breakdown for each thread count, 3) a breakdown diagram of the library 

time to the basic functionalities of the scheduler, 4) the scalability of each functionality 

separately. We present the most notable and characteristic results. The rest can be found 

in Appendix A. 
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2.4.4.1 Blackscholes 

First, the speedup of the parallel area is given. We see that on the SMP machine the 

scalability is not as good as on the NUMA, a fact that we relate to the potential bottle-

neck on the memory bus in combination with the increased overhead in case of inter-

socket communication. The following graphs give a clearer image of the overheads of 

each library component. 

 
Figure 11. Blackscholes speedup on SMP 

 

 
Figure 12. Blackscholes speedup on NUMA 

 

 
Figure 13. Blackscholes User-Library time on SMP for each 

thread count 

 

 
Figure 14. Blackscholes User-Library time on NUMA for each 

thread count 
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Figure 15. Blackscholes basic functionalities breakdown on SMP 

for each thread count 

 

 
Figure 16. Blackscholes basic functionalities breakdown on 

NUMA for each thread count 

 

 

 
Figure 17. Blakscholes basic functionalities’ scalability on SMP for 

each thread count 

 

 
Figure 18. Blackscholes basic functionalities’ scalability on 

NUMA for each thread count 
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Figure 19. Blackscholes stealing components breakdown on SMP 

for each thread count 

 

 
Figure 20. Blackscholes stealing components breakdown on 

NUMA for each thread count 

 

 

 
Figure 21. Blackocholes scalability of stealing components on SMP 

for each thread count 

 

 
Figure 22. Blackscholes scalability of stealing components on 

NUMA for each thread count 
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2.4.4.2 Fluidanimate 

The same graphs are presented for the fluidanimate application. This application does 

not scale very well and the library time is dominated by the stealing function. 

 
Figure 23. Fluidanimate speedup on SMP 

 

 
Figure 24. Fluidanimate speedup on NUMA 

 

 

 
Figure 25. FluidanimateUser-Library time on SMP for each thread 

count 

 

 
Figure 26. FluidanimateUser-Library time on NUMA for each 

thread count 
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Figure 27. Fluidanimate basic functionalities breakdown on SMP for 

each thread count 

 

 
Figure 28. Fluidanimate basic functionalities breakdown on NUMA 

for each thread count 

 

 

 
Figure 29. Fluidanimate basic functionalities’ scalability on SMP 

for each thread count 

 

 
Figure 30. Fluidanimate basic functionalities’ scalability on NU-

MA for each thread count 
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Figure 31. Fluidanimate stealing components breakdown on SMP 

for each thread count 

 

 
Figure 32. Fluidanimate stealing components breakdown on 

NUMA for each thread count 

 

 

 
Figure 33. Fluidanimate scalability of stealing components on 

SMP for each thread count 

 

 
Figure 34. Fluidanimate scalability of stealing components on 

NUMA for each thread count 
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2.4.4.3 Strassen 

The same graphs are presented for the strassen application. This application scales poor-

ly on both the SMP and the NUMA platform. Work stealing also dominates in this case 

the library time and the stealing function does not scale well, as we see increasing execu-

tion times as the thread count increases. 

 
Figure 35. Strassen speedup on SMP 

 

 
Figure 36. Strassen speedup on NUMA 

 

 

 
Figure 37. StrassenUser-Library time on SMP for each 

thread count 

 

 
Figure 38. Strassen User-Library time on NUMA for each thread 

count 
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Figure 39. Strassen basic functionalities breakdown on SMP for 

each thread count 

 

 
Figure 40. Strassen basic functionalities breakdown on NUMA for each 

thread count 

 

 

 
Figure 41. Strassen basic functionalities’ scalability on SMP for 

each thread count 

 

 
Figure 42. Strassen basic functionalities’ scalability on NUMA for 

each thread count 
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Figure 43. Strassen stealing components breakdown on SMP for 

each thread count 

 

 
Figure 44. Strassen stealing components breakdown on NUMA 

for each thread count 

 

 

 
Figure 45. Strassen scalability of stealing components on SMP 

for each thread count 

 

 
Figure 46. Strassen scalability of stealing components on NUMA for 

each thread count 
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2.4.4.4 Streamcluster 

The graphs for the streamcluster application show another example of poor scalability on 

the SMP, with the NUMA having a better scalability, though not satisfying. Stealing 

time also dominates here the library run time. 

 
Figure 47. Streamcluster speedup on SMP 

 

 
Figure 48. Streamcluster speedup on NUMA 

 

 

 
Figure 49. Streamcluster User-Library time on SMP for 

each thread count 

 

 
Figure 50. Streamcluster User-Library time on NUMA for 

each thread count 
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Figure 51. Streamcluster basic functionalities breakdown on 

SMP for each thread count 

 

 
Figure 52. Streamcluster basic functionalities breakdown on 

NUMA for each thread count 

 

 

 
Figure 53. Streamcluster basic functionalities’ scalability on 

SMP for each thread count 

 

 
Figure 54. Streamcluster basic functionalities’ scalability on 

NUMA for each thread count 
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Figure 55. Streamcluster stealing components breakdown on 

SMP for each thread count 

 

 
Figure 56. Streamcluster stealing components breakdown on 

NUMA for each thread count 

 

 

 
Figure 57. Streamcluster scalability of stealing components on 

SMP for each thread count 

 

 
Figure 58. Streamcluster scalability of stealing components on 

NUMA for each thread count 
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Observations: 

 In many cases, applications scaled better on the NUMA platform. The main rea-

son for that is that the SMP has a single memory bus, making it a bottleneck for 

any memory transactions, and as the thread count increases more conflicts for the 

bus occur, serializing transactions that could otherwise be executed in parallel. 

 The NUMA platform offers different paths to memory, parallelizing memory ac-

cesses of different packages, when of course it is inherently possible by the access 

pattern of the application. 

 The most important observation on all applications is that stealing time domi-

nates the library run time, making it a hot target for optimization.  

 In many cases the stealing time is dominated by the steal_wait function, which 

means that the stealing attempts are mostly unsuccessful, a fact that is confirmed 

by the library statistics and the successful to failed stealing attempts ratio, alt-

hough it is not presented in this thesis explicitly. According to the graphs, this 

fact is even worse on the NUMA platform. 

 

 



 

 

Chapter 3  

Techniques Used 

3.1 Optimization targets 

In this section we present the techniques that we applied as an attempt to better exploit 

the cache hierarchy of the physical system as well as attempts to improve load balancing. 

Our target for optimization is the stealing mechanism of TBBs. We applied several tech-

niques and variations of them, exposing their strengths and weaknesses on each machine. 

3.2 Stealing from the nearest neighbor 

The first attempt for optimization of the stealing mechanism targets the cache hierarchy 

of the underlying physical machine. As explained earlier, work stealing occurs in an ar-

chitecture-agnostic manner, by choosing random cores as potential victims. This can de-

teriorate the performance, especially on NUMA platforms that inter-socket communica-

tion incurs great overhead. 

3.2.1 Technique description 

Our approach was choosing the nearest possible core, in terms of cache distance, that has 

work to offer as victim. As it can be seen in the relevant figures describing the architec-

tural organization of the platforms, each core shares several cache memory levels with 

different sets of cores.  

The key idea is to try stealing from the cores with which we share the L1 cache level. 

Normally, that is zero or one cores, so in case we fail to steal from him or he doesn’t 

have any tasks enqueued in his task queue we need to have alternatives. In that case we 

try to steal from the (other) cores that we share the L2 cache level with. And if that fails 

too, we try the L3 level. In case there is no work in our package, we could end up steal-

ing work from the cores in the other packages, as a last resort. In that way we prioritize 

our targets in terms of cache level distance. 

Another critical detail is the persistency to our first choices of victims. The nearest 

neighbors, for example the ones we share the L1 cache with, are few in our physical sys-

tems. They can either be one or two. In case they are not available for stealing when we 

probe them, we needed to persist and try again some times before we end up choosing 

the next nearest neighbor. The most neighbors are located in the other packages, some 

share the L3 cache level with our cpu, few the L2 and even fewer the L1 cache level.  

This approach aims to stealing tasks that have a better chance to find the data they 

need in a cache level, avoiding communicating with other packages on even worse the 

main memory, which could happen if we steal from a core that lies on another package. 
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Moreover, it avoids cache pollution that comes to play when we bring data from other 

packages to our package. The size of each cache level is limited, so bringing new data 

could evict other data that are needed by the other workers in the package, leading to 

cache capacity and conflict misses. 

As proposed in[6], it would be better to restrict stealing from other packages, in order to 

minimize inter-socket communication cost. In order to achieve that, we permit only to 

one worker from each package to be able to steal from the other packages, while the rest 

can only steal local (in-package). We will be referring to these threads as the master 

worker of the package and the slave workers respectively. 

3.2.2 Implementation details 

In order to be able to choose victims according to the underlying architecture, it was 

necessary to pin each worker to a specific core. So, we created an extension to the arena 

class that contains the information needed, that is, the platform representation as well as 

a table that contains the physical cpu ids that library workers should be pinned on.  

For pinning the OS threads to specific physical cores in order to be able to find the near-

est core, a basic decision should be made. That is, which class of the library should carry 

the information about the physical core. The chosen class will enforce the entity that 

represents to work on a specific core. It would sound reasonable to add this information 

to the class private_worker that it represents a virtual worker and is bound with an OS 

thread lazily, when the library decides to launch it. However, this information was inte-

grated to the arena_slot class. A number of such objects represent the available slots on 

each arena that require library workers to populate them and execute some of the arena’s 

work. On the instantiation of the master thread’s arena, each arena slot is assigned a 

number that represents the physical core that it should work on. Any worker that occu-

pies an arena slot has to pin himself and work on the core it indicates. This decision was 

made mainly because the workers of the library, who correspond to OS threads, are en-

tering and leaving arenas in a dynamic and unpredictable manner and it is not easy to 

keep track of which worker is active and when. That happens for several reasons, includ-

ing: 

 Lazy worker instantiation: the OS threads are created dynamically, according to 

arenas’ needs and there is no guarantee that a worker is bound to an OS thread 

at a specific point in time. 

 In some cases, more workers than actual cpus are instantiated, thus making im-

possible to bind a private_worker object to a specific cpu. 

 Load imbalance: if a worker has no work to execute due to load imbalance, he 

goes to sleep, releasing the CPU and saving cpu time. Thus a worker that occu-

pies a cpu core is not guaranteed to continue to do so in the future, because he 

may be migrated by the OS to a different core when he runs again. 

 Workers are assigned dynamically to arenas that need them, so there is no guar-

antee that a pinned worker will work on the same arena with another. 
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The arena_slot class instead has a fixed number of instantiations for each arena, making 

it easier to keep track and identify which one corresponds to the nearest cpu. Moreover, 

the statistics mechanism of the library keeps track of several events and sums them up 

for each arena slot. Thus, it was obvious that the library design considers the arena slots 

as workers and not the dynamic instances of the class private_worker. 

In order to run applications using different number of threads, we needed a map that 

maps workers to cpu ids. So, if we were to run an application with eight threads for ex-

ample, they should be distributed evenly to different packages, two workers to each 

package in the case of Dunnington that has four packages. The map is essentially a table 

that contains the cpu ids of the underlying machine, ordered in a way so that for each 

thread count N, the first N numbers of the table are the cpu ids for an even distribution 

of the N OS threads to the packages. For the example of Dunnington, we present in the 

following picture the cpu id distribution that the operating system creates: 

 

Figure 59. The numbers represent the cpu ids the OS assigns to each core on Dunnington 

The corresponding map should be: 

[0, 3, 6, 9, 1, 7, 4, 10, 12, 15, 18, 21, 13, 16, 19, 22, 2, 5, 8, 11, 14, 17, 20, 23] 

On the arena instantiation, each of the arena slots that are created is assigned with a 

cpuid from this table, starting from the beginning, as shown in the following picture: 
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Figure 60. Cpu-id distribution to arena’s slots 

For choosing the closest neighbor, another data structure was necessary, namely, an ad-

jacency list for each core that contains the core ids of the machine ordered from the clos-

est to the furthest to that core. On the arena instantiation, we compute a 2-dimensional 

matrix that contains cpu ids and whose i-th row represents the adjacency list for cpu 

with id i. So, first come the cpus that share the L1 cache level with cpu i, then follow the 

cpus that share the L2 cache level, then the L3, and then come the cpus from the other 

packages. To avoid resigning too early from the nearest neighbors in case of failure and 

add the aforementioned persistency to choices, the first level of nearest neighbors 

(L2sharers in Dunnington and L1 and L2 sharers in Termi) are unfolded 50 times, be-

cause they are the fewest but nearest, the next level of sharers (L3 in both Dunnington 

and Termi) are unfolded 3 times, and the furthest (in the other packages) are unfolded 

only once. This matrix is used by the workers when they want to find a victim to steal 

work from. 

Finally, a map from core ids to slot indexes is needed, which is essentially the inverse 

map from the distribution table that we mentioned first. 

When a worker is left with no work and decides to steal some, he executes the stealing 

loop described by the pseudo code in Listing 4. In more detail, the mechanism works as 

follows: first, we find the row of the 2d-matrix with the neighbors that corresponds to 

the cpu id that our slot is working on. Second, we enter a loop that scans our neighbors 
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from the nearest to the furthest until we find an available one. We choose him as victim 

and from the inverse map we find the slot that he works on and try to steal from it. In 

case it fails, we continue with the next neighbor, until we reach the end of the array, in 

case we are the master worker of the package, or the end of the L3 neighbors, in case we 

are a slave worker. In this way, we achieve to steal from the nearest neighbors first. 

 

fail_count=0; 

while (fail_count < fail_threshhold)  { 

 int idx; 

 neighbors_list = find_my_neighbor_adjacency_list( my_cpu ); 

 do { 

  int victim_core = get_next_neighbor(neighbors_list); 

  idx = get_slot_index_from_cpu_id( cpu_to_index_map, victim_core ); 

  if ( I am master worker of mackage ) { 

   if ( reached the end of array neighbors )  

    continue_from_the_beginning; 

  else 

   if ( reached the end of L3 neighbors ) 

    continue_from_the_beginning; 

  } 

 } while ( idx slot is NOT populated by a worker ); 

 arena_slot* victim = &my_arena->my_slots[idx]; 

 t = steal_task( *victim ); 

 if (!t) { 

  fail_count++; 

  continue; 

 } 

}  

Listing 4. Worker stealing loop 

The results of the evaluation of this method are presented in the next Error! Refer-

ence source not found.. 

3.3 Stealing from the most loaded processor 

The second attempt for optimization tries to tackle load imbalance problems. Load im-

balance occurs naturally in some applications, especially when more synchronization 

points exist, for example in algorithms like parallel_reduce. 

3.3.1 Technique description 

Previous attempts [7] indicate that an occupancy-based approach to task stealing can 

bring performance improvements under some circumstances and in some scenarios. Our 

approach was finding the most loaded worker and stealing from him. It is obvious that 

such an approach can help distributing work more evenly than with the random stealing 
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approach. Load balancing may be a desired property, but we should also point out that 

stealing work from the heaviest could also result in cache pollution, if that worker is lo-

cated to a different package.  

The first approach is rather straightforward. If a worker needs to steal, he just scans the 

arena to find the most loaded worker and steals from him. It is easy to implement but 

doesn’t give us any flexibility in case of failures. 

This approach can be very costly to use each time a worker needs to steal work. For this 

reason, we tried to make a compromise by employing the stealing from the heaviest 

technique once in five stealing attempts. For the four remaining stealing attempts the 

classical random victim approach was followed.  

In order to have more flexibility in case of failure, a second approach would be that each 

worker keeps a sorted list of the task loads of all the other workers and uses it to search 

for alternatives in case something goes wrong with the heaviest worker. This approach 

helps to distribute steals so that not all attempts fall on the heaviest worker. 

There are two main variations of this technique, keeping global and local task load lists. 

The first variation tries to balance globally in order to alleviate inter-socket load imbal-

ances, but it can lead to cache pollution and heavy inter-socket communication. The sec-

ond variation tries to be more optimistic and cache friendly, by scanning locally in each 

package, permitting only the master worker of each package to scan globally, like we dis-

cussed earlier for the cache-aware technique. When work is more evenly distributed to 

packages it is makes sense to search locally for the heaviest, in order to balance the load 

even further without incurring too much overhead. On the other hand, if the load imbal-

ance does exist between packages, overheads can be reduced by letting only the master 

workers of each package to contribute to balancing it, thus minimizing inter-socket 

communication. When scanning of the entire arena occurs, there are ping-pong effects 

between packages, because all the workers need to read the task load of all other work-

ers.  

3.3.2 Implementation details 

To implement a mechanism to steal from the heavier cpu, in terms of task load, we 

needed to add a current_load field to the arena_slot class. When it is occupied by a 

worker, it is initialized to 0. The following three events induce changes to this variable: 

 spawn by the owner worker: In this case the owner’s current load is incremented 

by 1. 

 get_task by the owner worker: In this case the owner’s current load is increment-

ed by 1. 

 successful steal by any worker: In this case the victim’s current load is decre-

mented by 1. 

The current_load variable counts in essence the enqueued tasks and works as an estima-

tion of each active worker’s load. It is not precise, because various tasks can differ in 
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size, so the number of enqueued tasks can be misleading. Previous work [7]indicates 

though that it can be a reasonably adequate estimation. 

3.3.2.1 Finding Max 

The implementation is rather straightforward. We scan every arena slot to find the max 

the worker that has the maximum current_load. Because this proved very costly we im-

plemented a variation that employs this technique once in five steals, and the other four 

we follow the original random stealing algorithm.  

3.3.2.2 Sorted List approach 

Each worker keeps a list with the other workers and their load, sorted from the heaviest 

to the lightest. When stealing needs to happen, the worker picks his victims from this 

list, trying to steal from the most loaded worker. 

The list needs to be refreshed with new estimations of each worker’s load. To do this, we 

need to scan every slot and collect each worker’s load. After that, they need to be sorted 

in reverse order. This procedure is costly and can cause performance degradation. Even if 

we simply scan the slots only to find the most loaded victim, it causes excessive perfor-

mance degradation, if it is done on each stealing attempt. For this reason, we decided to 

refresh the list with new estimations once every five and once every ten stealing at-

tempts. Every time the list is refreshed, we begin searching victims from the beginning. 

In case of stealing failure, we move to the next most loaded worker. If we reach the end 

of the list we jump to the beginning. In case of successful stealing, we followed two dif-

ferent policies. The first policy (Policy 1) dictates that next time we need to steal, we 

will try to steal from the same victim with the previous successful stealing and we return 

to the beginning of the list only if we reach the end or we refresh the list. The second 

policy imposes that every time we need to steal again, even after a successful steal, we 

begin from the beginning of the list, that is, the most loaded worker. The following list-

ing describes the technique in pseudo code: 
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fail_count=0; 

while (fail_count < fail_threshhold)  { 

 arena_slot *victim; 

 if ( it's time to refresh the list ) { 

   read_task_loads 

   sort_loads_descending 

   go_to_the_beginning_of_the_list 

 } 

 if ( end_of_list ) 

   go_to_the_beginning_of_the_list; 

 

 victim = get_victim_from_list(); 

 

 t = steal_task( victim ); 

 if( !t ) { 

   move_to_next_victim_on_list; 

   fail_count++; 

   continue; 

 } 

 /*Policy2*/victim_iterator = victim_loads.begin(); 

}  

Listing 5. Sorted-list technique algorithm 

3.3.2.2.1 Global occupancy scan 

The simple idea was to scan all the slots of the arena in order to refresh the occupancy 

list. That contributes to better load balancing, as it tries to alleviate the load differences 

of all the workers.  

The tradeoff is that except for balancing, it can also cause workers to steal from others 

that are very far away, in terms of cache hierarchy, thus polluting their cache levels with 

potentially irrelevant data, since neighboring cpus share some cache levels and may work 

on data that are unrelated to the newcomers, leading to more capacity and conflict miss-

es. Except for that, false sharing between packages can cause severe performance degra-

dation. 

3.3.2.2.2 Local occupancy scan 

The other approach would be to scan only the local workers within the package and keep 

an occupancy list that contains only estimations about local workers. So each worker can 

steal only from workers in his package, preferring the most loaded each time. This ap-

proach also incorporates benefits from the cache-aware stealing mechanism than was ana-

lyzed in the section 3.2, like maintaining cache locality of the data, minimizing cache pol-

lution and inter-package stealing. 

The implementation is exactly the same with Listing 5, except for the 

“read_task_loads”, which in this case uses the adjacency list we implemented for the 

cache-aware technique to find the in-package workers and their loads. 
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Chapter 4  

Evaluation 

4.1 Physical Systems 

The physical systems we used were the same as in the profiling section (Dunnington and 

Termi) as well as “Sandman” NUMA Platform, a 32-core NUMA machine with the fol-

lowing characteristics: 

 4 Packages (Intel(R) Xeon(R) X5650 @ 2.67GHz) 

 8cores per Package  

 Hyperthreading (64 threads in total) 

 32KB L1 cache per core (2 threads) 

 256KB L2 cache per core (2 threads) 

 16MB L3 per package (8 cores, 16 threads) 

 257.931 MB RAM 

 

Figure 61. 32-core “Sandman” NUMA Platform 
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4.2 Stealing from the nearest neighbor 

4.2.1 Benchmarks Used 

Based on the previous work, we used a series of applications that are known to be shar-

ing-intensive as well some sharing-mild algorithms. The sharing-intensive algorithms are 

Gauss Elimination, Heat and Floyd-Warshall. The memory-mild are quicksort and ma-

trix multiplication. We included an implementation of Word-Count as a sharing-

intensive representative example of the map-reduce algorithm category, using the paral-

lel-reduce template algorithm of TBBs. 

Algorithm Description Input size 

Gauss Elimination Linear systems solution 1024x1024 

5-point Heat Algorithm 2D Heat Equation 2048x2048 

Floyd-Warshall All-pairs shortest paths 4096x4096 

Word Count 
Counting number occurrences 

in matrix 
12000x12000 

 

4.2.2 Results 

In order to test our implementation on equal terms with the random mechanism, we 

pinned the OS threads of the original library to the same cores for each thread count as 

the custom library, while still using the random stealing policy. This is especially im-

portant in the case of small numbers of threads. If the original library lets the operating 

system distribute the threads to packages and cores at will, thread migrations between 

packages as well as uneven distribution have been observed, in opposition to the custom 

library that keeps the OS threads to specific cores throughout the execution. 

In the following sections we present selected results of the aforementioned applications. 

4.2.2.1 Heat 

As the following figures suggest, the 5-point heat algorithm benefited greatly from the 

cache-aware approach on the NUMA platforms. On SMP platforms there was perfor-

mance degradation, as it can be seen on the relevant figures of Appendix B. On Termi 

there is a performance benefit of up to 3,6% for large thread counts. 
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Figure 62. Speedup of 5-point Heat on Termi (Cache-aware) 

 

Figure 63. Execution times of 5-point Heat on Termi (Cache-aware) 

 

 

Figure 64. Performance gains of 5-point Heat on Termi (Cache-aware) 

0

0,5

1

1,5

2

2,5

3

0 2 4 6 8 10 12 14

Speedup

Random

Cache-aware

0

500000

1000000

1500000

2000000

1 4 6 8 10 12

u
se

c

threads

Random

Cache-aware

-20

-15

-10

-5

0

5

1 4 6 8 10 12

% Performance Improvement



Evaluation  74 

74 

 

On Sandman there was even greater performance boost, reaching up to 40% in large 

thread counts, indicating that the more NUMA packages, the larger the potential of the 

cache-aware technique to exploit localized work-stealing. 

 

Figure 65. Speedup of 5-point Heat on Sandman (Cache-aware) 

 

Figure 66. Execution times of 5-point Heat on Sandman (Cache-aware) 

 

Figure 67. Performance gains of 5-point Heat on Sandman (Cache-aware) 
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4.2.2.2 Word count 

Word count showed great performance improvement on Sandman, while on Dunnington 

showed almost the same performance and on Termi suffered from excessive performance 

degradation. 

In this algorithm, every task keeps a private map that counts the words for its subprob-

lem, and when a join occurs the task merges its private map with the private map of an-

other task. That means accessing data that were written by another core recently. This 

results in flushing the changes to the main memory. Stealing tasks from the same pack-

age effectively reduces this overhead as most of this information is likely to be found in 

some cache level, like the L3 level.  

 

Figure 68. Word Count speedup on Sandman (Cache-aware) 

 

Figure 69. Word Count execution times on Sandman (Cache-aware) 
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Figure 70. Word Count performance gains on Sandman (Cache-aware) 

 

 

Figure 71. Word Count speedup on Dunnington (Cache-aware) 

 

Figure 72. Word Countexecution times on Dunnington (Cache-aware) 
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Figure 73. Word Count speedup on Termi (Cache-aware) 

 

Figure 74. Word Count execution times on Termi (Cache-aware) 

4.2.3 Remarks 

The above examples offer the proof of concept that preferring stealing from neighbors 

that lie near our core, in terms of cache hierarchy, can indeed bring great performance 

improvements.  

It is notable to mention that the mechanism we implemented does not incur large over-

heads and applications that do not benefit from this technique do not suffer from per-

formance deterioration either. A number of applications appear to have the same perfor-

mance as the random stealing, as their access pattern is not affected by locality issues 

because there is not substantial read-write sharing between cores, thus degenerating the 

choice to equal to random. In particular, these applications are Quicksort and Matrix 

multiplication. 

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

0 5 10 15

S
p
ee

d
u
p

threads

Random

Cache-Aware

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

1 4 6 8 10 12

u
se

c

threads

Random

Cache-Aware



Evaluation  78 

78 

 

4.3 Load Balancing 

4.3.1 Benchmarks Used 

We used a series of applications that previous work has shown to suffer from load imbal-

ance [7], namely streamcluster, swaptions, blackscholes, with emphasis on the first. For 

some implementations we also used strassen, quicksort and matrix multiplication. 

4.3.2 Results – Finding Max 

4.3.2.1 Searching for the heaviest every time 

This approach was proved very inefficient, as it can be seen on the following figures, 

which present the behavior of the streamcluster application. The main reason is the 

overhead to scan all arena slots on each stealing attempt to find the heaviest. All the 

results can be found in Appendix B. 

 

Figure 75. Streamcluster speedup on Dunnington (Just pick max) 

 

Figure 76. Streamcluster execution times on Dunnington (Just pick max) 
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Figure 77. Streamcluster speedup on Termi (Just pick max) 

 

Figure 78. Streamcluster execution times on Termi (Just pick max) 
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Figure 79. Streamcluster once in five steals speedup on Dunnington (Once in five) 

 

Figure 80. Streamcluster once in five execution times on Dunnington (Once in five) 

 

Figure 81. Streamcluster once in five Dunnington % Performance Improvement (Once in five) 
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Figure 82. Streamcluster once in five Sandman Speedup (Once in five) 

 

Figure 83. Streamcluster once in five Sandman Execution Times (Once in five) 
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Figure 84. Streamcluster once in five Sandman % Performance Improvement (Once in five) 
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Figure 85. Streamcluster speedup on Dunnington (sorted-list) 

 

Figure 86. Streamcluster performance gains on Dunnington (sorted list) 
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Figure 87. Quicksort speedup on Dunnington (sorted list) 

 

Figure 88. Quicksort performance gains on Dunnington (sorted list) 
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Figure 89. Matrix multiplication speedup on Sandman (sorted list) 

 

Figure 90. Matrix multiplication performance gains on Sandman (sorted list) 
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 In most cases the applications suffer from severe performance deterioration, due 

to the overhead of refreshing the sorted list.  

 The two techniques have almost the same performance on Dunnington and 

Sandman for the Matrix multiplication. 

  There are some applications for which some techniques work better on some ma-

chines, while the other techniques have advantage on other machines. To be more 

specific: 

 Global/Non-Grouped Search 

 Quicksort, Blackscholes and Matrix multiplication on Termi 

 Local/Grouped Search 

 Quicksort and Blackscholes on Dunnington and Sandman 

In general we could argue that local search brings performance benefits on SMP 

platforms for large thread counts, because it avoids cache pollution and minimizes 

the ping-pong effect between packages and transactions with the memory that are 

serialized on the memory bus, which is shared by all cores. That means that we 

could benefit from the local search technique only in large thread counts on such 

platforms.  

Moreover, we could further argue that the overhead of each technique always ex-

ists, suggesting that in the cases that a technique appears to have insignificant 

overhead, the reason is that the benefits of the technique compensate for its over-

heads. That means that although we do not have positive performance gains in 

most cases, each technique does have a positive impact on stealing, despite that 

its overheads dominate in some cases. Testing the techniques on a simulator ra-

ther than on real machines, where we could minimize the overheads ideally, could 

help making the benefits of each technique more apparent. 

  

 



 

 

Chapter 5  

Epilogue – Conclusions & Future 

Work 

5.1 Conclusions 

From all the above, it should be clear that there is not a silver bullet for reducing over-

heads on parallel programs. Many of the desired properties may be even contradictory, 

as with load balancing and better cache use. It was proven by testing on physical ma-

chines that applications can benefit from a cache-aware approach to stealing on large 

NUMA machines for large thread counts, depending on the memory access pattern of the 

application and the read/write sharing dependencies between workers. Balancing tech-

niques, like stealing from the most loaded worker, can bring performance boost when 

used in cooperation with the random stealing technique. More complex mechanisms that 

keep track of each worker’s task load in a more detailed manner, could perform effective 

load balancing on some cases, they can suffer though from severe overheads on physical 

machines. 

5.2 Related Work 

In [6], a similar approach to our cache-aware stealing mechanism was tested on Cilk, 

which has a similar task stealing mechanism as TBBs. During the first run of a parallel 

algorithm the runtime classifies the tasks as inter-socket and intra-socket, mainly by 

their sizes and their depth on the recursive tree splitting. On later runs of the same algo-

rithm, the runtime permits inter-socket stealing of the inter-socket tasks (which are the 

largest and do not fit in the cache) and intra-socket stealing of the intra-socket tasks 

(that fit in the cache). 

In [7] a thorough characterization on the basic TBB functions is presented as well as an 

occupancy based approach to stealing as well as a criticality-based approach, which takes 

into consideration the relative complexities and lengths of tasks. The tests were carried 

out on simulator, which gives insight about the effectiveness of the idea, but not its 

overhead on physical machines. 

In [8] various optimization approaches are presented, including lazy split and join for the 

parallel-reduce template algorithm, automatic grain size determination as well as various 

changes to the loop templates and the task scheduler to impose better task affinity be-

tween and optimize some stealing scenarios. 
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5.3 Future Work 

There is an extremely large number of combinations of access patterns and machine ar-

chitectural configurations, thus making the exploration and categorization of each situa-

tion a difficult task. Nevertheless, based on our work, there are some steps that should 

be tested in the future in order to shed some more light on the directions we already 

have started to explore: 

 Grouping applications and patterns, in order to be able to make predictions 

about the best technique for the best case. 

 Run configurations on larger NUMA machines, so as to expose the potential of 

the cache-aware technique under such architectural specificities. 

 Implement the actual inter- and intra-socket task queues on TBBs, as specified 

in [6]. 

 Creation of a mechanism that breaks the initial work into large pieces and dis-

tributes them locally to each package at the beginning. This technique, when 

combined with the cache-aware stealing policy, would enable a more efficient 

utilization of the memory hierarchy (more effective cache space available to 

workers, more memory accesses satisfied locally, etc.), while maintaining the 

properties of load balancing.    

 Investigate hybrid schemes that compromise the aforementioned techniques 

with the classic random stealing (it was proved successful with some load bal-

ancing techniques). 

 Implement an automatic mechanism to pick the largest number of workers 

that we could benefit from. 
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Chapter 7  

Appendix A – Profiling Results 

7.1 Quicksort 

Quicksort showed similar behavior to Blackscholes, that is, better scaling on the NUMA 

platform. 

 
Figure 91. Quicksort speedup on SMP 

 

 
Figure 92. Quicksort speedup on NUMA 
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Figure 93. Quicksort User-Library time on SMP for each 

thread count 

 

 
Figure 94. Quicksort User-Library time on NUMA for each 

thread count 

 

 
Figure 95. Quicksort basic functionalities breakdown on SMP 

for each thread count 

 

 
Figure 96. Quicksort basic functionalities breakdown on NU-

MA for each thread count 
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Figure 97. Quicksort basic functionalities’ scalability on SMP for 

each thread count 

 

 
Figure 98. Quicksort basic functionalities’ scalability on NUMA 

for each thread count 

 

 

 
Figure 99. Quicksort stealing components breakdown on SMP 

for each thread count 

 

 
Figure 100. Quicksort stealing components breakdown on NUMA 

for each thread count 
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Figure 101. Quicksort scalability of stealing components on SMP 

for each thread count 

 

 
Figure 102. Quicksort scalability of stealing components on NU-

MA for each thread count 

 

7.2 Swaptions 

The same diagrams are given for the Swaptions application. 

 
Figure 103. Swaptions speedup on SMP 

 

 
Figure 104. Swaptions speedup on NUMA 
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Figure 105. Swaptions User-Library time on SMP for each 

thread count 

 

 
Figure 106. Swaptions User-Library time on NUMA for each 

thread count 

 

 
Figure 107. Swaptions basic functionalities breakdown on 

SMP for each thread count 

 

 
Figure 108. Swaptions basic functionalities breakdown on NUMA 

for each thread count 
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Figure 109. Swaptions basic functionalities’ scalability on SMP 

for each thread count 

 

 
Figure 110. Swaptions basic functionalities’ scalability on NUMA 

for each thread count 

 

 

 
Figure 111. Swaptions stealing components breakdown on SMP 

for each thread count 
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Figure 113. Swaptions scalability of stealing components on SMP 

for each thread count 

 

 
Figure 114. Swaptions scalability of stealing components on NU-

MA for each thread count 

 

7.3 Matrix Multiplication 

The same diagrams are given for the Matrix Multiplication application. We can see here 

that it scales linearly on the SMP but not as well on the NUMA when multithreading 

kicks in. 

 
Figure 115. Matrix multiplication speedup on SMP 

 

 
Figure 116. Matrix multiplication speedup on NUMA 
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Figure 117. Matrix multiplication User-Library time on SMP for 

each thread count 

 

 
Figure 118. Matrix multiplication User-Library time on NU-

MA for each thread count 

 

 
Figure 119. Matrix multiplication basic functionalities breakdown 

on SMP for each thread count 

 

 
Figure 120. Matrix multiplication basic functionalities break-

down on NUMA for each thread count 
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Figure 121. Matrix multiplication basic functionalities’ scalabil-

ity on SMP for each thread count 

 

 
Figure 122. Matrix multiplication basic functionalities’ scalability 

on NUMA for each thread count 

 

 

 
Figure 123. Matrix multiplication stealing components break-

down on SMP for each thread count 

 

 
Figure 124. Matrix multiplication stealing components breakdown 

on NUMA for each thread count 
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Figure 125. Matrix multiplication scalability of stealing compo-

nents on SMP for each thread count 

 

 
Figure 126. Matrix multiplication scalability of stealing compo-

nents on NUMA for each thread count 

 

7.4 Convex-hull 

The same diagrams are given for the Convex-hull application, which is another applica-

tion that scales better on the NUMA than the SMP. 

 
Figure 127. Convex Hull speedup on SMP 

 

 
Figure 128. Convex Hull speedup on NUMA 
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Figure 129. Convex Hull User-Library time on SMP for each thread 

count 

 

 
Figure 130. Convex Hull User-Library time on NUMA for each 

thread count 

 

 
Figure 131. Convex Hull basic functionalities breakdown on 

SMP for each thread count 

 

 
Figure 132. Convex Hull basic functionalities breakdown on NUMA 

for each thread count 
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Figure 133. Convex Hull basic functionalities’ scalability on SMP 

for each thread count 

 

 
Figure 134. Convex Hull basic functionalities’ scalability on NUMA 

for each thread count 

 

 

 
Figure 135. Convex Hull stealing components breakdown on SMP 

for each thread count 

 

 
Figure 136. Convex Hull stealing components breakdown on NUMA 

for each thread count 
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Figure 137. Convex Hull scalability of stealing components on SMP 

for each thread count 

 

 
Figure 138. Convex Hull scalability of stealing components on 

NUMA for each thread count 
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Chapter 8  

Appendix B – Evaluation Results 

8.1 Cache-Aware Techniques 

8.1.1 Heat 

 

Figure 139. Speedup of 5-point Heat on Dunnington(Cache-aware) 

 

Figure 140. Execution Times of 5-point Heat on Dunnington(Cache-aware) 

8.1.2 Gauss elimination 

As we can see from the following figures, Gauss Elimination did not benefit from the 

cache-aware approach on Dunnington and Termi, in terms of execution time, although it 

achieved greater speedup on Termi. On Sandman there was performance improvement 

up to 3% on individual thread counts. 
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Figure 141. Gauss elimination Speedup on Dunnington(Cache-aware) 

 

Figure 142. Gauss elimination execution times on Dunnington(Cache-aware) 

 

Figure 143. Gauss elimination speedup on Termi(Cache-aware) 
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Figure 144. Gauss elimination execution times on Termi(Cache-aware) 

 

Figure 145. Gauss elimination speedup on Sandman(Cache-aware) 

 

Figure 146. Gauss elimination execution times on Sandman(Cache-aware) 
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Figure 147. Gauss elimination %  performance improvement on Sandman(Cache-aware) 

8.1.3 Floyd-Warshall 

It is obvious form the following figures that the Floyd-Warshall algorithm did not benefit 

from the cache-aware approach on any machine, neither did it suffer from performance 

degradation.  

 

Figure 148. Floyd-Warshall speedup on Sandman(Cache-aware) 

 

Figure 149. Floyd-Warshall execution times on Sandman(Cache-aware) 
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Figure 150. Floyd-Warshall performance gains on Sandman(Cache-aware) 

 

Figure 151. Floyd-Warshall speedup on Termi(Cache-aware) 

 

Figure 152. Floyd-Warshall execution times on Termi(Cache-aware) 
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Figure 153. Floyd-Warshall speedup on Dunnington(Cache-aware) 

 

Figure 154. Floyd-Warshall execution times on Dunnington(Cache-aware) 
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Quicksort did not benefit from the cache-aware approach to work stealing, as shown in 

the following figures. The main reason for this is that the overhead of the mechanism we 

implemented dominates the benefits for the access pattern of this application. 

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30

S
p
ee

d
u
p

threads

Random

Cache-Aware

0

100000000

200000000

300000000

400000000

500000000

1 8 16 24

u
se

c

threads

Times

Random

Cache-Aware



109 Chapter 8. Appendix B – Evaluation 

Results 

 

109 

 

 

Figure 155. Quicksort speedup on Dunnington(Cache-aware) 

 

Figure 156. Quicksort execution times on Dunnington(Cache-aware) 

 

Figure 157. Quicksort speedup on Termi(Cache-aware) 
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Figure 158. Quicksort execution times on Termi(Cache-aware) 

 

Figure 159. Quicksort speedup on Sandman(Cache-aware) 

 

Figure 160. Quicksort execution times on Sandman(Cache-aware) 
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Figure 161. Quicksort performance benefits on Sandman(Cache-aware) 

8.1.5 Matrix Multiplication 

Matrix multiplication achieved an almost linear speedup even with the random stealing 

approach. As it can be seen in the following diagrams, our cache-aware mechanism did 

not cause performance degradation for this application, maintaining its excellent scaling. 

 

Figure 162. Matrix multiplication speedup on Dunnington(Cache-aware) 

 

Figure 163. Matrix multiplication execution times on Dunnington(Cache-aware) 
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Figure 164. Matrix multiplication speedup on Termi(Cache-aware) 

 

Figure 165. Matrix multiplication execution times on Termi (Cache-aware) 

 

Figure 166. Matrix multiplication speedup on Sandman (Cache-aware) 
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Figure 167. Matrix multiplication execution times on Sandman (Cache-aware) 

8.2 Load Balancing Techniques 

8.2.1 Searching for the heaviest once in five steals 

The next figures show the results of running blackscholes on Dunnington and Sandman. 

We can see that they match the results of streamcluster in most cases, as described in 

Chapter 4, that is gaining performance benefits for an average number of threads, result-

ing in performance degradation in very large thread counts. 

 

Figure 168. Blackscholes speedup on Dunnington (once in five) 
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Figure 169. Blackscholes execution times on Dunnington (once in five) 

 

Figure 170. Blackscholes performance gains on Dunnington (once in five) 
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8.2.2 Global vs Local Sorted List 

8.2.2.1 Streamcluster 

 

Figure 171. Streamcluster speedup on Termi (sorted list) 

 

Figure 172. Streamcluster performance gains on Termi (sorted list) 
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Figure 173. Streamcluster speedup on Sandman (sorted list) 

 

Figure 174. Streamcluster performance gains on Sandman (sorted list) 
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8.2.2.2 Quicksort 

 

Figure 175. Quicksort speedup on Termi (sorted list) 

 

Figure 176. Quicksort performance gains on Termi (sorted list) 

 

Figure 177. Quicksort speedup on Sandman (sorted list) 
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Figure 178. Quicksort performance gains on Sandman (sorted list) 

8.2.2.3 Matrix multiplication 

 

Figure 179. Matrix multiplication speedup on Dunnington (sorted list) 

 

Figure 180. Matrix multiplication performance gains on Dunnington (sorted list) 
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Figure 181. Matrix multiplication speedup on Termi (sorted list) 

 

Figure 182. Matrix multiplication performance gains on Termi (sorted list) 

8.2.2.4 Strassen 

 

Figure 183. Strassen speedup on Dunnington (sorted list) 
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Figure 184. Strassen performance gains on Dunnington (sorted list) 

 

Figure 185. Strassen speedup on Termi (sorted list) 

 

Figure 186. Strassen performance gains on Termi (sorted list) 
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Figure 187. Strassen speedup on Sandman (sorted list) 

 

Figure 188. Strassen performance gains on Sandman (sorted list) 
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8.2.2.5 Blackscholes 

 

Figure 189. Blackscholes speedup on Dunnington (sorted list) 

 

Figure 190. Blackscholes performance gains on Dunnington (sorted list) 

 

Figure 191. Blackscholes speedup on Termi (sorted list) 

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30

S
p
ee

d
u
p

threads

Random

Grouped 5P1

Grouped 5P2

Grouped 10P1

Grouped 10P2

Non-grouped 5P1

Non-grouped 5P2

Non-grouped 10P1

Non-grouped 10P2

-50

-40

-30

-20

-10

0

10

1 2 4 8 12 16 20 24

% Performance Gain - Dunnington

Grouped 5P1

Grouped 5P2

Grouped 10P1

Grouped 10P2

Non-grouped 5P1

Non-grouped 5P2

Non-grouped 10P1

Non-grouped 10P2

0

2

4

6

8

10

12

14

16

0 10 20 30

S
p
ee

d
u
p

threads

Random

Grouped 5P1

Grouped 5P2

Grouped 10P1

Grouped 10P2

Non-grouped 5P1

Non-grouped 5P2

Non-grouped 10P1

Non-grouped 10P2



123 Chapter 8. Appendix B – Evaluation 

Results 

 

123 

 

 

Figure 192. Blackscholes peformance gains on Termi (sorted list) 

 

Figure 193. Blackscholes speedup on Sandman (sorted list) 

 

Figure 194. Blackscholes performance gains on Sandman (sorted list) 
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8.2.2.6 Swaptions 

 

Figure 195. Swaptions speedup on Dunnington (sorted list) 

 

Figure 196. Swaptions performance gains on Dunnington (sorted list) 
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Figure 197. Swaptions speedup on Termi (sorted list) 

 

Figure 198. Swaptions performance gains on Termi (sorted list) 
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Figure 199. Swaptions speedup on Sandman (sorted list) 

 

Figure 200. Swaptions performance gains on Sandman (sorted list) 
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