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AnoyopeleTar 1 avTiypagn, anodixeuon xal dlavour Tne mapoloag epyasiag, €€ ohoxhripou
) TURUATOS AUTAS, Yol EUTopxd oxomd. Emtpéneton 1 avatinwor, anolfixeucr xat dlovouy
Yot OXOTO YN XEEOOOXOTUXOG, EXTUDELTIXNNG 1| EPEUVNTIXNG PUONG, LTO TNV Teolndleor va
avapépeTol N TNYY TEogAsuong xou var datneeiton To mopdy prvuue. EpwtAuata mou ago-
polv TN xeron TN epyaolog Yot XEEBOOXOTUIXG GXOTO TEETEL Vo ameVYUVOVTOL TEOS TOV
CUYYYQRUPEA.

Ou amdeig xan Tor CUUTEPAOUATA IOV TEPLEYOVTAL GE AUTO TO EYYPAUPO eXPEELOLY TOV GUY-

Yeapéo xou dev mpénel va epunveudel 6T avtitpoonnedouy Tig enlonueg Véoelc Tou Edvixod

Metoo6fiou Ilohuteyvelou.



ITeplAndn

‘Eva and to mo amantnTixnd teofriuata ot oLy eove TapdhAnAc UTOAOYLOTIXA CUOTAUATA
elvar 1 expetddhhevon tou Yeydhou apliuol TwV VAUETWY/TUPHVWY TOU TPOGPEREL TO OUY-
XPOVO UANXO, ue oxomd TNV BeAtinon Tng amodoTXOTNTIC EQUEUOYWOY TOU EXTEAOUY XOUMUS-
T X@OWwe TopdAAnia. Xtny BiBiioypapio xou tny Brounyavia €youvv mpotadel dSudpopa Teo-
YOEUUUATIOTXG LOVTEAX Yiot QUTO TOV OXOTO, OTa onola TeEpLhauBdveTon XaL TO UOVTEAO Ue
TUEAAANAES epyaciec. XTO OUYXEXPWEVO UOVTEAD, TIOU €YEL OXOTO TNV ATAOTOINCT) TOU To-
EGAANAOU TEOYEAUUUATIONOU, O TEOYPUUHUATIOTAS EXPEACEL TOV TUPUAANMOUS TNG EQUPUOYNC
¢ €pYAOiEC TOL UTOEOVY VoL EXTEAEGTOVUY TapdAANA L xou To cbotnua extéleons anopacilel

TS AUTES oL epyaoies Yo avatedody 68 VAULOTO TOU AELTOURYLXOU CUOTAUATOS TEOSC EXTEAE-
on.

Ytdyog tne nopoloos epyaciog elvon va eEgpEUVAGEL Xl VoL BEATIOTOTIOLACEL TOUG ECWTERL-
%x0U¢ unyoviouolg e BBMotxng Intel TBB xdtw and cuyxexpiévoug apyitextovixoie
neploplopols. Apyd e€etdlouue tov scheduler epyoaoudy e BiBhiodixng, ye éugpoon otov
UNYOVIOUO «XAOTIG EQYOOLIVY, OOTE VAL VoY VWELOTOUY oL Bactxéc AELTOURYIEC TOU Xou €-
xteloVye profiling yia va yetpioouue v emPBdpuvon mou empépet 1 xadeplo. Ev ouveyela,
yivetow mpoomdieior vo BeATioTONOMCOUUE TOV PNyovioud Tuyalac XAomhg TEOCUETOVTAC
TANPOQOPIEC TTOU APOPOVUV TNV APYLTEXTOVIXT|, XUEIWS TNV LEEUEY (ol XELPEOY UVNUOY XAl TNV
dlaudppnon twv packages. Thomololue €voayv Unyaviopd ¥AomASC EEYACLOY TOLU oxoAoulel
000 mohtixéc: 1) xhomh and Toug xovtivdtepous tuphves (ot andotaoT tepapyiog Wviunc),
2) xhom) and Tov Mo QopTwuEvo pe epyaoiec muprva. H mpdtn mokitixd éxer otdyo vo ye-
YIOTOTOGEL TNV ETOvVIYENOOoToNoY dedouévenv mou poledlovial TUPHVES oTny Lepapyia
UVAUNG, Uelwon Tng HOALYVONS TNG XEUPAG UVAUNG UE U OXETXE dedouéva (Uelwon twv con-
flict /coherence misses), eviappivovtac Ty nedoBacn SeSOUEVKY OE TOTUXS dPYLTEXTOVIXO
eninedo. H deltepn mohtinn €yel otoyo v Bedtivwon tng ediooppdmnong @optiov petadd
v Tuphvev. Loty allohdynon TV tapandve TapouctdloUUE TEPUUATIXG ATOTEAECUATA
Tou aopoly TNV Behtinon g anddoong didpopwy epoupuoyYdy o plo SMP miatpdpuo 24
ruphvewy, o NUMA miatgoppa 12 muphvev xon pio NUMA mhat@dppa 32 muphvewy (ue

TONUVNUOTIONO).

AéEeic-Khewdid: Intel TBB, mopdhhnha npoypouuatiotind Yovtéla Poctopéva o epyaoleg,

eELo0PPOTINGT PoETioL, LEpapyia XPUPEDY UVNUMY, XAOTY ERYACLEY, TOTUXOTNTO OEBOUEVELV



Abstract

A bstract

One of the most challenging problems in modern parallel processing systems is to exploit
the large number of cores/threads available in modern hardware, in order to improve the
efficiency of applications by executing pieces of code in parallel. Various programming
models have been proposed for this purpose, among which the task programming model.
This model aims at simplifying parallel programming. In this model, the programmer
expresses parallelism as tasks to be executed in parallel and the runtime system decides
how these tasks are assigned to system threads.

The goal of this thesis is to explore and optimize the internals of the Intel TBB Library
under certain architectural conditions. Initially we examine the library task scheduler,
focusing on the task stealing mechanism, in order to identify its basic functions and we
run some profiling to verify the task stealing functionality and to measure the overheads
of each basic function. Subsequently we attempt to optimize the architecture agnostic
random stealing function by adding architecture information, mainly about the cache
hierarchy and the socket configuration. We implement a stealing mechanism that adopts
certain policies: i) stealing from the closest (in terms of cache/NUMA locality) core, ii)
stealing from the most loaded core. The first policy aims to maximize the reuse of data
shared between cores, reduce cache pollution due to irrelevant data (i.e. minimize con-
flict /coherence misses), and promote data accesses from local NUMA memory nodes. The
second policy tries to achieve better load balancing among the cores. To that end, we
present experimental results on performance improvement by measuring the speedup of
several applications on a 24-core SMP and a 12-core (with hyperthreading) NUMA mul-

ticore machine.

Keywords: Intel TBB, task-based parallel programming models, load balancing, cache

hierarchy, work stealing, data locality



BEuyapiotiec

H mapotoa dimhwpatixn epyacia exnovidnxe oto Epyaotripio Trohoyiotixedv Xuotnudtny
e Lyohnic Hihextpohdywy Mnyavixdv xou Mnyavixdv Troroyiotdv tou Edvixold Metood-
Blou Hoiuteyvelou, und v enifredmn tou Kadnynts Nextdpiou Kollen.

Oa fieha xatapyHv Vo euyaploThow Ttov xodnynth wou x. Nextdpio Kolien vy tn eno-
Ttelol TOU XATd TNV EXTOVNON TN EQYACLOC WOV, VLol TIC YVOOELS XAl TNY EUTVEUCY) TTOU OV
TEOCEQERE UE TNV OLOUCKHAAA TOU, OARG 0w Yo TNV ELXALEl TOU WOV €BWOE VoL Aoy oAU

ue éva Vépa e€oupeTind eviiapépov 6To dploTo TepBdlhoy Tou pyaoTtneiou Tou.

Oo fleha va ExPEACH TNV OLUTERT EVYVWUOCUVT HOU GTOV UETAOLOUXTOPIXO EQEUVITY X.
Nixo Avactémouvdo yio Tnv cuveyr| Tou xadodhyNnon GTNY BLdEXELN EXTOVNONG TNG OLTAWUA-
TAC aUTAHS epyaciag, o omolog Ue TNV aveEdVTANTY UTOHOVY) TOU UE EVISPEUVE GUVEY WS XAl
ue yéule auotodollo yior TNV mopelol TNS EEYATlog, XIS Xou YO TIC YVWOELS Xl TNV EUTEL-

elot oL pou peTaAAUTABEVOE PHECW TWV SLULNTACEDY Mg YURW and To Véua Tng epyaoiag.

Oa Hieho axdUn Vo EUYUPLOTACL TOUS PIAOUG %ol GUVIBEAQOUS HOUL Yiat TNV oThEEN Tou

HOU TPOGEPEQOY XU TLG EUTELRIEC TTOU UOLOUGTHXOYE.

Téhog, Vo fdeha vo evyoploThow TNV oLVTEOYS Wou, 1 onola Ye oThple Puyoroyd oe
OAN TNV oxadONUoixr] You Topelar P€ypL TWEA, OELYVOVTAS EUTLOTOCUVT OTIC EMAOYES UOU %ol
OTLC BUVAPELS OV, XaL TNV OLXOYEVELY Uou, 1) omola uE OTHRIEE UE UTOUOVY 0TV Topela uou

oto EMII t60a ypovia, anotehdvtag Ty ototepdtepn adio otny (o1 pou.
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Chapter 1

Introduction

1.1 Overview

In 1965 Gordon E. Moore published a paper [1] that affected the pace in which micropro-
cessors evolved. In this paper he stated that the number of transistors on integrated cir-
cuits would continue to double every two years, a trend confirmed by observations on
computer hardware history at the time. This prediction undoubtedly continues to affect
the computer hardware industry to this day, sometimes being the push behind modern
efforts for increased performance. Since the appearance of the first microprocessor IBM
chip in 1971, uniprocessor chips have dominated the computing industry for three long
decades. During this period, the increase in transistor density was exploited mainly by an
increased clock frequency, execution optimizations and caches. Increasing the clock speed
is more or less about running the same work faster. Optimizing execution flow tried to
make the instructions flow better and faster, squeezing the most work out of each clock
cycle by reducing latency and maximizing the work accomplished per clock cycle. Final-
ly, increasing the size of on-chip cache is about putting the most useful data closer to the
processor, as main memory continues to be so much slower than the CPU. It is im-
portant to point out that all these improvements aimed at making sequential programs
run faster.

Due to physical limitations, CPU performance growth hit a wall around 2003. The clock
race between manufacturers has led up to 3,8 GHz, where it became harder and harder
to exploit higher clock speeds. Heat dissipation, power consumption and current leakage
problems are the main obstacles yet to overcome. Thus, in order to exploit the still in-
creasing transistor density, industry has shifted towards multicore architectures. This
shift signaled the end of the free-lunch era [2], where improvement in performance was
offered freely by the architectural improvements, without any effort by the programmer.
Applications would no longer benefit from performance gains without significant rede-
sign. Multicore architectures have unraveled a new world for Computer Science, where
introducing new runtime environments and programming models are essential to exploit
the new hardware.

With almost a decade having passed, multicore systems and parallel applications have
become the standard. Operating Systems and Compilers have evolved to support the new
hardware, desktop applications use multiple parallel threads and even traditionally serial
algorithms have been replaced by parallel and distributed alternatives, promising better
scaling and improved performance in multicore environments. The prevalent class of ap-

plications to be benefited from multicore consists of computation-intensive applications.
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Except for scientific applications, which are traditionally computationally demanding,
customer-oriented applications, including computer graphics, database management and
machine learning, do have increasing demands in computational resources, in an effort to

manage unprecedentedly large datasets and reduce response time.

1.2 Multi-socket, multi-processor systems

Before explaining the common parallel architectures of our interest, we shall introduce
Flynn’s taxonomy|3] of computer architectures, according to the level of parallelism they
employ to process instructions and data streams.
e SISD: Single instruction, Single Data
A sequential (or uniprocessor) computer. No parallelism employed.
e SIMD: Single Instruction, Multiple Data
A computer which concurrently processes multiple data streams with a single in-
struction stream, to perform operations that may be parallelized.
e MISD: Multiple Instruction, Single Data
Uncommon, non-commercial architecture, used only for scientific purposes, as
fault tolerance.
e MIMD: Multiple Instruction, Multiple Data
Each processor executes its own instruction stream and processes its own data
stream. This architecture supports multiple threads (thread-level parallelism).
Multicore processors and clusters are examples of MIMD architectures.
Parallel computers are based on MIMD architectures, which can be further classified ac-
cording to their memory organization, into shared-memory architectures, distributed-
memory architectures and hybrid architectures and are profoundly analyzed below.

1.2.1 Shared Memory Architectures

A Shared Memory Architecture is a memory organization scheme that offers a shared
memory address space to the programmer. Communication in this scheme is carried out
using variables in memory, which are accessed and modified using loads and stores. Each
processor has its own cache hierarchy. A typical Shared Memory Architecture is shown
in figure 1. Shared Memory Architectures can provide Uniform Memory Access (UMA),
where accesses from any processor to any memory address take the same amount of time,
or Non-Uniform Memory Access (NUMA), where memory access time varies among dif-
ferent memory addresses, depending on the processor and the topology. Obviously, NU-
MA architectures offer very low latencies for nearby memory accesses and lower memory
bus congestion when used correctly, introduce though challenges in program develop-
ment, due to their complicated topological peculiarity, a tradeoff that should be taken

into consideration.
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Figure 1. Shared Memory Architecture

Shared Memory Architectures offer ease of programmability, since parallel programs can
operate on the same collections of data, which are present in memory only once. Howev-
er, such an approach hides a lot of pitfalls, as concurrent modification of the same data
by different processors can lead to inconsistent data, thus requiring a synchronization
mechanism to ensure the validity of data. Such mechanisms are usually locks or mutexes,
so as to ensure that only one processor enters a critical section of the code at a time.
Moreover, cache coherence protocols are implemented to impose a universal sequence of
access to the main memory.

Although attractive for parallel programming, Shared Memory Architectures can be used
for connecting only small numbers of processors, up to a few dozens, since such architec-
tures don’t scale well. The reason for that is that all processors compete for the same bus
and memory system, which have limited bandwidth, leading to a saturation after adding
more than 30-40 processors.

1.2.2 Distributed Memory Architectures

A Distributed Memory Architecture is a memory scheme consisting of a network of sepa-
rate processing elements, that are offered no shared memory address space and each node
has access only to its own private memory address space. Each processor has its own
cache hierarchy and processors are connected using an interconnection network, with dif-
ferent implementations varying in characteristics, such as latency, throughput and scala-
bility. A typical Distributed Memory Architecture is shown in figure 2. Computational
tasks can only operate on local data and if remote data is required, the computational
task must communicate with one or more remote processors to serve its request. Com-
munication in Distributed Memory Architectures is carried out using explicit send and

receive routines to send and receive data.
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Figure 2. Distributed Memory Architecture

Clusters are usually built of commodity computers, using the same operating system,
physically connected through cables and switches, following some network topology.
Software gets involved to manage communication between non-neighboring nodes. To
decouple communication operations from the processors, direct memory access controllers
(DMA) and routers are employed, which both enable data transfer directly from the local
memory.

One important drawback of clusters is their management cost. Managing a cluster con-
sisting of n nodes equals to the cost of managing n computers, while the cost of manag-
ing a multiprocessor of n cores equals to the cost of managing a single computer. Fur-
thermore, the interconnection network adds extra latency to the communication process,
compared to a memory bus, which increases with the number of nodes. On the other
hand, a cluster is a low-cost solution to gain high performance. Scalability comes natural-
ly by adding more independent nodes to the network, enabling modern supercomputers
to have thousands of nodes, which can be maintained or replaced with no functioning
effect on the system.

Programming on a Distributed Memory Architecture is a far more challenging issue that
on a Shared Memory Architecture, since communication and data transfer overheads
have to be identified in advance and implemented explicitly. On the other hand, Distrib-
uted Memory Architectures scale up to thousands of nodes, since they are constructed
using independent nodes and interconnection networks, avoiding the bottlenecks that
appear in Shared Memory Architectures.

1.2.3 Hybrid Architectures

A Hybrid Memory Architecture is a memory organization scheme that follows the Dis-
tributed Memory scheme, where a symmetric multiprocessor (SMP) has taken the place
of each single processor node. Each node has its own private memory address space and
shared memory parallel programming techniques can be employed within it, whereas the
system scales up in the same way as a distributed memory system, simply by connecting
more SMPs to the network. A typical Hybrid Memory Architecture is shown in figure 3.
This architecture tries to combine the benefits of both memory architectures and is the
typical architecture of modern clusters and supercomputers.
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1.2.4 A Multi-Socket Multi-Core Machine

A Multi-Socket Multi-Core Machine refers to a shared memory architecture consisting of
several multicores on the same machine, each residing on a socket. Each multiprocessor
has its own cache hierarchy, and each cache memory level can be shared between two or

1more processors.

1.3 Parallel Programming, Amdahl’s Law, scalability

Parallel Programming makes sense when it enables the programmer to achieve speedup
of his application execution time. Despite being the main objective, no explicit formula
exists for the parallelization of sequential algorithms and programs. Thus, the program-
mer bears the burden of exploring the potential parallelism of an algorithm, with respect
to its semantics, and resolving issues that directly affect the execution time of the paral-
lel program.

We will elaborate on these issues later on, but before that we define some main perfor-
mance metrics of parallel programming, before we introduce the main parallel program-
ming models:

. T,(n): the parallel runtime of a program of size n on p processors

. Sp(n) = %pn): the speedup in execution time that a parallel program achieves,

compared to the sequential equivalent. T*(n) is the runtime of the fastest sequen-
tial program. In essence, it is the relative saving of execution time that can be ob-
tained by using a parallel execution on p processors compared to the best sequen-
tial program. If the inequality S,(n) < p holds, then the parallel implementation
is efficient. If S,(n) = p, the speedup is linear.

Sp(n) _ T*(n)_

. Efficiency = > —— it measures return on hardware investment. Ideal effi-
p

ciency is 1 (often reported as 100%), which corresponds to linear speedup.
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Linear speedup is rare in practice, since there is extra work involved in distributing work
to processors and coordinating them. In addition, and optimal serial algorithm may be
able to do less work overall than an optimal parallel algorithm for certain problems, so
the achievable speedup may be sublinear, even on theoretical ideal machines.
Interestingly, superlinear speedup (or efficiency greater that 100%) can be achieved.
Some common cases of superlinear speedup include:

e Restructuring a program for parallel execution can cause it to use cache memory
better, even when run on a single processor.

e The program’s performance is strongly dependent on having a sufficient amount
of cache memory, and no single processor has access to that amount. If multiple
processors bring that amount to bear, because they do not all share the same
cache, absolute speedup can be superlinear.

e The parallel algorithm may be more efficient than the equivalent serial algorithm,
since it may be able to avoid work that its serialization would be forced to do.
For example, in tree search problems, searching multiple branches in parallel
sometimes permits chopping off branches sooner than would occur in the serial
code.

If the cost of the best sequential program is unknown or varies depending on the data
set, then speedup is often computed by using a sequential version of the parallel imple-
mentation.

In the early years of high performance computing, Gene M. Amdahl [4] first denoted
some inherent constraints in the process of parallel programming. There is a fraction of
computational load in every application, associated with data management, which cannot
be executed in parallel with other computations and other acts as a constant overhead to
the runtime. To model this restriction, Amdahl introduced his famous law, which sets

the limit of the speedup potential of the program, according to the following formula

Sp (n) =

s+ %

where 7, is the portion of the program that can be parallelized and 7, the serial portion
of the program (r, =1 —15).

Amdahl’s law is a useful measure of the best case execution time for a parallel program.
If the number of processors p goes to infinity, the total speedup goes to 1/rs. If the paral-
lelizable part of the program is relatively small, its speedup would be respectively small,
regardless to the number of the processing units. Figure XX depicts the influence of
Amdahl’s law in parallel executions of different sequential fractions. In terms of pro-
gramming recipes, Amdahl’s law should be interpreted as follows: the programmer should
try to parallelize (or optimize) the parts of the code that consume the greatest fraction of
time. He also should try to parallelize all parts of the program (initialization faces,
memory allocation etc.), because if for example there is a 10% serial fraction of code in

our program, the maximum speedup potential is only 10.
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Figure 4. Amdahl’s Law

1.4 Parallel Programming Models

Parallel programming models are the interface between the hardware and the program-
mer, offering an abstraction level to facilitate parallel programming on the diverse paral-
lel architectures. It enables the expression of parallel programs which can be compiled
and executed. Thus, there exist three general parallel programming models, with respect
to the aforementioned architectures: the shared memory model, the message passing
model and the hybrid model. They can be implemented as language extensions, runtime
libraries of programming languages or even autonomous execution models. They map the
more or less high level programming constructs to lower level primitives, which are pro-
vided by the underlying system. The mapping may make use of hardware provided tools

(like specific machine instructions) or operating systems constructs (like threads).

1.4.1 Shared Memory programming model

A shared memory programming model enables the programmer to partition a program-
ming task into multiple threads which run in parallel on the cores of a multiprocessor
with a shared address space. Communication between threads is handled via load and
store operations on the shared address space, bearing in mind that whenever a processor
writes to a shared memory access, all processors accessing the same address will be aware
of the change. In order to maintain data consistency, synchronization mechanisms are
needed, such as barriers and locks, preventing race conditions from affecting the parallel
program’s correctness.

Shared memory programming models offer ease of programmability, as they facilitate
data exchange and communication through a simple annotation of a variable as shared,

thus visible and accessible to all processing units. Furthermore, these programming mod-
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els supply the programmers with several parallel constructs, easily applicable to sequen-
tial programs for their parallelization, such as parallel-for loops. The price for these con-
veniences is the complexity of identifying and resolving race conditions even for a highly
skilled programmer. Managing shared data often leads to subtle and not easily traceable
bugs, which makes large-scale parallel software development very error prone, tricky and
time-consuming, affecting the productivity.

It is rather straightforward and efficient to implement shared memory programming
models for shared memory platforms, carrying though the disadvantage of their limited
scalability. On the other hand, implementation on distributed memory platforms, alt-
hough feasible, requires special performance degrading software layers and costly hard-
ware support.

Commonly used shared memory programming models are PThreads, OpenMP, CilkPlus

and Intel TBBs. The latter will be thoroughly discussed in the following chapter.

1.4.2 Distributed Memory programming model

In a message passing programming model, the program consists of a set of independent
processes, where the same instructions may reside on distinct computing nodes or com-
puters. Each process owns a local private address space and sends and receives messages
to and from other processes to achieve inter-process communication and data exchange.
Message passing is executed by the operating system or by function calls to the runtime
library that activates low level operations. In a trivial approach of this model, a send op-
eration involves a local buffer where the message to be sent is stored and a receiving pro-
cess, whereas its complementary receive operation involves a local buffer where the mes-
sage to be received will be stored. Modern approaches have though a little different im-
plementation. The message sent is copied into an internal system buffer of the runtime
system, thus the sending process can continue after the copying operation is completed,
while the receiving process copies the data from the internal buffer of the runtime.

A more general classification of the communication in a message passing model is based
on whether it is performed in a synchronous or asynchronous manner. Synchronous (also
known as blocking) message passing refers to the case where both the sending and the
receiving process block all their other operations until data exchange is accomplished.
The message is immediately stored in the receiving process’s local memory and no syn-
chronization mechanism is required, as both processes involved are synchronized at the
end of the communication. In asynchronous or non-blocking message passing, the message
is sent by the sending process without waiting for the receiving process to be ready to
receive. Both processes may continue with their tasks until lower-level operations deliver
the message. A disadvantage of asynchronous communication is that it involves an inter-
nal buffer, which, if full, may lead to a deadlock.

Communication can also be categorized as point-to-point or collective, depending on the

number of processes that exchange data. Point-to-point is when a single process sends
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data to e single receiving process, while collective communication involves more than two
processes, with multiple sending and receiving points.

Naturally, message passing models serve better parallel programming on distributed
memory computing systems, which appeared long before shared memory parallel systems.
The de facto model for message passing in clusters is the MPI (Message Passing Inter-
face) standard library. The performance of such models on clusters is determined by the
communication efficiency, which relies on the interconnection network. With increasing
number of nodes, a significant overhead is added to message passing delays, which can-
not be modeled with Amdahl’s law. MPI is applicable to shared memory architectures as
well, though for reasons of performance the interconnection network is bypassed and
message passing is served by shared memory operations.

Programming with message passing models can be a challenging job. The programmer
has to design the parallel program from scratch, make decisions about data distribution,
message passing patterns and synchronization points. MPI is other than that error prone,
as it involves employing the MPI routines that match to the aforementioned decisions,
which can be cumbersome and non-trivial for the average programmer, requiring time-
consuming debugging processes. The non-trivial programmability though, when it leads
to a fine parallel implementation, has rewarding results, as the program can be highly
efficient and scalable, compared to its shared memory alternative.

Another popular implementation of message passing model is the Actor Model, imple-
mented in programming languages like Erlang and Scala. In the actor model, each object
is an actor. This is an entity that has a mailbox and a behavior. Messages can be ex-
changed between actors, which will be buffered in the mailbox. Upon receiving a mes-
sage, the behavior of the actor is executed, upon which the actor can: send a number of
messages to other actors, create a number of actors and assume new behavior for the
next message to be received. All communications are performed asynchronously. This
implies that the sender does not wait for a message to be received upon sending it, it
immediately continues its execution. There are no guarantees in which order messages

will be received by the recipient, but they will eventually be delivered.

1.4.3 Hybrid Programming model

The hybrid programming model is a combination of a shared memory and message pass-
ing model. A common hybrid model is the joint use of MPI and OpenMP. This model is
suited for hybrid architectures, as described above, where the shared memory is used to
parallelize a program at the interior of a node of an SMP cluster and the message passing
model is used for the communication between processes residing on distinct nodes. Ex-
cept for OpenMP, other shared memory implementations can be used, such as Intel
TBBs.
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1.5 Overview of Key Features for Performance

Although optimizing code cannot be dealt with in a generic manner, mainly because it
depends highly on the specific architectural characteristics of the underlying machine,
modern architectures have been designed with two major key assumptions: Data Locality
and Parallel Slack.

Data Locality refers to reusing data from nearby locations with regard to time or space.
So algorithms should be designed having in mind some of the following rules:

e Chunking the work in order to fit in cache. If the working set doesn’t fit in cache,
there will be a certain performance degradation due to capacity cache misses.

e Data structures and memory accesses should be organized to reuse data locally
when possible. Especially, unnecessary memory accesses far apart in memory or
simultaneous access to multiple memory locations located a power of two apart
should be avoided.

o Accessing too many pages at once could cause unnecessary TLB misses.

e It is very important to align data with cache line boundaries. Unrelated data ac-
cesses from different cores to the same cache lines should be avoided, as they may

cause false sharing.

Avoiding some of the above may require changes to data layout, including reordering
items and adding padding to achieve (or avoid) alignments with the hardware architec-
ture. It is noteworthy that breaking up the work into chunks and getting good alignment

with cache is also beneficial to single-core architectures.

Following the above rules assumes knowledge of cache line sizes, cache organization, or
the total size of the caches, which are not a given when writing portable code. In this
case, the memory allocation routines should be customized so that they select the chunk
size in a dynamic manner, either by hand-tuning them when porting to a new machine,
or by writing auto-tuning routines. Using cache oblivious algorithms, that is, algorithms

using recursive decomposition, is another approach to auto-tuning.

In this thesis, we will be referring to shared memory architectures. These architectures
have the property that groups of cores compete for the usage of a single memory bus. In
this case, another important factor that affects performance is arithmetic intensity, the
ratio of computation to communication. Given the fact that on-chip compute perfor-
mance is still rising with the number of transistors, but off-chip bandwidth is not rising
as fast, in order to achieve scalability a large number of on-chip computations should be
performed for every off-chip memory access. This can be achieved through a range of op-
timizations, including fusion and tiling. As a rule of thumb large enough chunks of work
that fit in cache should bring in practice the best performance. However, larger chunks of

work reduce the available parallelism since it will reduce the total number of work units.

Parallel Slack refers to the amount of extra parallelism available above the minimum

necessary to keep the parallel hardware resources utilized. Specifying an amount of po-
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tential parallelism higher than the actual parallelism offered by the hardware gives the
underlying software and hardware schedulers more flexibility to exploit machine re-

sources.

The ideal strategy would be to choose work units of size that reasonably amortizes the
overhead of partitioning and scheduling them and offer good arithmetic intensity. Break-
ing the problem down to the exact amount of hardware parallelism may sound tempting,
it isn’t though the best strategy. In case a task delays for some reason (for example an

operating system interrupt), it will inevitably delay the entire program.

1.6 Problems and pitfalls of parallel programming that should be

avoided

e Race Conditions: they occur when concurrent tasks perform actions on the same
memory location without proper synchronization. When entering a critical section
of a parallel program, shared data that are accessed can cause unpredictable be-
havior without synchronization. That can be caused because there is no guarantee
about the order that the operations are going to be executed by the hardware, so
the outcome is likely to be corrupted data. If you are unlucky, a program with
data races can work fine during tasting but fail once it is in the customer’s hands.
Even considering the possible interleaving of instructions isn’t enough to predict
data races, because modern hardware usually if not sequentially consistent. That
means that hardware and the compiler may produce different reordering between
operations. Avoiding races using special hardware features is a solution, though
not a good one, as it kills portability. For this reason, the parallel programming
model used and the programming language should offer a memory model that en-
ables avoiding data races independently from the hardware details. Races are not
limited to memory locations. They can happen with files and I/O too.

e Mutual Exclusion and Locks: Locks are a low-level way to eliminate races. Mutu-
al exclusion can be achieved in many situations using a lock. The locking and un-
locking are implemented using hardware instructions, in order to ensure atomici-
ty. An important point about locks is that they should protect logical invariants
and not specific memory locations. For example, in the case of a complex data
structure as the linked list, a lock might protect the invariant “the next field of
each element points to the next element in the list”. Any time a task traverses a
list, it must first take the lock, otherwise it might walk next fields under con-
struction by another task. If a lock protects a specific memory location, the invar-
iant may be temporarily violated inside the critical section, leading to unpredict-
able behaviors.

e Deadlock: it occurs when two concurrent tasks wait for each other, not being able

to resume until the other task proceeds. This can happen when they try to ac-
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quire more than one lock at the same time, in a way that creates cyclic depend-
encies. If for example task A tries to acquire locks L1 and L2, and task B tries to
acquire locks L2 and L1 at the same time, it is possible that A acquires L1, B ac-
quires L2, and then they wait each other. There are several ways to avoid dead-
locks:

i.  Holding at most one lock at a time: Never call other people’s code while
holding a lock, unless you are sure that the other code never acquires a
lock.

ii.  Always acquire multiple locks in the same order: a specific ordering to
lock acquiring avoids deadlocks.

iii.  Avoid locks when possible

iv.  Backoff: when trying to acquire a lock, if it cannot be immediately ac-

quired, release all locks already acquired. This approach requires a “try
lock” operation that immediately returns if the lock cannot be acquired.

Strangled Scaling: Locks serialize the program execution by nature, causing
Amdahl bottlenecks to the overall computation. When tasks contend for the same
lock, the impact on scaling can be severe, even worse than if the protected code
was serial. Except for the bottleneck to execution, the status of the protected
memory locations must be communicated between cores, thus adding communica-
tion costs not paid by the serial equivalent, which can be very costly when the
underlying machine is multisocket.
The locking can be either fine-grained or coarse-grained. Usually, fine-grained
locking replaces a single highly contended lock with many uncontended locks,
thus improving the scalability. Nevertheless, fine-grained locking can be tricky to
implement.
Load Imbalance: it refers to uneven distribution of work across workers. The time
of the longest running task contributes to the span, which limits how fast the
parallelized portion of the program can run. Load imbalance can be avoided by
decomposing the work to small parallel chunks, thus making it easier to distribute
to the workers available.
Lack of locality: Locality of data can be either temporal or spatial. Temporal lo-
cality refers to using the same data in the near future, while spatial locality refers
to using nearby data. In modern architectures, which use many levels of caches,
either types of locality can lead to speedup. Communication is very expensive in
these systems, while computation is very cheap. Thus, it is often preferable to in-
crease the work in exchange for reducing communication.
True and false sharing overhead caused by the cache coherence protocols can be
very high in multisocket architectures, due to the data exchange through the in-
tersocket interconnect. Also, a cache miss can take up to the order of a hundred
cycles. So having good locality but also avoiding unnecessary sharing between
cores are two requirements that both should be fulfilled, although in some cases

they may contradict each other.
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Overhead of parallelization: the programmer should have in mind that launching
and synchronizing parallel tasks introduces overhead, which increases the total
amount of work to be done. Making tasks very small can help with load balanc-
ing, but it can cause very large overhead of managing them. Ideally, the decom-
position of the work to parallel tasks should allow balancing the load while still
making tasks large enough to amortize synchronization overhead and maximize
arithmetic intensity. Launching and synchronizing the tasks in a tree structure
can lead to a time overhead that is logarithmic to the number of the workers, in-

stead of linear if all the parallel tasks were launched from one task.

1.7 Desired Properties of Parallel Programming Models

With the existing codebase consisting mainly of serial code, it is necessary to extend ex-

isting programming practices and tools to support parallelism. Broadly speaking, while

enabling dependable results, parallel programming models should have the following

properties:
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Performance: using the parallel programming model should be possible to predict-
ably achieve good performance. Moreover, the performance should be easily tuna-
ble for different systems and should scale easily to larger systems.

Productivity: Programming models should be highly expressive, debuggable and
maintainable. A very important aspect that greatly contributes to the achieve-
ment of these requirements is composability, which will be further discussed later.
Safety /Determinism: An inherent complication of parallel computation is non-
determinism. Determinism implies that running the same program multiple times
produces the same result. Due to the randomness of thread scheduling, for reasons
outside the control of the application, the order of operation of different threads
may be interleaved in an arbitrary order. If the threads modify shared data (in a
shared memory programming model), it is possible that different runs of a pro-
gram may produce different results even with the same input. Although non-
determinism is not necessarily bad, many approaches to application testing as-
sume determinism. In many cases, non-determinism is an error, as it leads to pos-
sible corruption of shared data. The problem of safety is how to ensure that only
correct orderings occur.

Portability of functionality: Being able to run code on a wide variety of plat-
forms, regardless of operating systems, processors and compilers, is desirable.
Portability of performance: Portability of performance is a serious concern. It is
reassuring for the programmer to know that his code will continue to perform
well on new machines and on machines he may not have tested it on. Ideally and
application that is tuned to run within 80%of the peak performance of a machine
should not suddenly run at 30% of the peak performance on another machine.
This can be achieved only with more abstract programming models. Abstract

models are removed enough from the hardware design to allow programs to map
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to a wide variety of hardware without requiring code changes, while delivering
reasonable performance relative to the machine’s capability.

Composability: it is the ability to use a feature without regard to other features
being used elsewhere in the program. Ideally, every feature in a programming
language is composable with every other. For example, if this property didn’t
hold for an if statement, then linking a library where any if statement was used
would mean for statements would be disallowed throughout the rest of the appli-
cation. As absurd as it may sound, similar situations exist in some parallel pro-
gramming models or combinations of programming models. Incompatibility be-
tween programming models or constructs can lead to failure even if parallel re-
gions do not directly invoke each other. Such situations can arise, for example, by
inconsistent use of local thread memory. Another principal issue is the inability to
support hierarchical composition. This commonly occurs when a program that is
parallelized using a parallel programming model calls a library function which is
parallelized using a different parallel programming model. To avoid this danger
the programmer should know inner details of the library, which violates some
fundamental principles of software engineering, such as information hiding and
separation of concerns. So if the library is serial, and the next version becomes
parallelized, upgrading to the newest version, although the binary interface is the

same, might break the code with which it is combined.



Chapter 2

Motivation — Overview of the
Problem

2.1 Regular vs. Irregular &Nested/Recursive Parallelism — Oversub-

scription - Implicit vs. Explicit Parallelism

In the previous chapter we presented an overview of the basic keys for performance in
parallel programming, as well as common pitfalls and the desired properties of parallel
programming.

In this section we will address two more aspects of parallel programming that often occur
when parallelizing programs, namely regular vs irregular parallelism and nested parallel-
18M.

Regular parallelism refers to the parallelization of an algorithm, which acts in a predict-
able and static manner on data, which means that the computations are already known
to the programmer statically. An example of this kind of algorithms is the Floyd-
Warshall algorithm.

let dist be a |V| x |V| array of minimum distances initialized to = (infinity)
for each vertex v

dist[v][v] ¢ 0O
for each edge (u,v)

dist[u][v] ¢ w(u,v) // the weight of the edge (u,v)
fork from 1to |V|

forifrom1to |V]|

forjfrom1to |V|
if dist[i][k] + dist[k][j] < dist[i][j] then
dist[i][j] ¢ dist[i][k] + dist[k][j]

Listing 1. Floyd-Warshall algorithm

In this case the programmer knows statically the order of computations, thus being able
to identify the loops that can be parallelized, divide the work and data between threads
and estimate very precisely the amount of work that each thread will have to do, com-
pute the work span and devise the way to parallelize it effectively.

On the contrary, an irregular algorithm is one that the amount of work depends on the
instance of the problem and is unpredictable by nature. For example the BFS or the A*
algorithm has this kind of “irregularity”, as the number of neighboring nodes that will be
explored for every node on the search front cannot be foreseen and they depend on the

topology of the graph that is explored. In this case, the programmer cannot simply divide
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the work to a number of threads, because it is very likely that some of these will have to
do very little work, while others may face exponential increase in the work to be done. If
for example a thread follows a linear path on the graph, it will just explore subsequent
nodes, while another thread could face a tree-like structure of path alternatives that
should explore. That would lead to work imbalance, making the critical path ridiculously
long, resulting to huge performance degradation.

Nested parallelism refers to the situation when a programmer wants to parallelize a piece
of code which is nested in an outer piece of code that is already parallelized. A common
example is the parallelization of nested loops. As it is not usually done on purpose, an-
other more non-trivial example could be the following: Suppose an algorithm f is parallel-
ized, by creating 15 extra threads to assist the calling thread, and each thread calls a li-
brary routine g. If the implementer of g applies the same logic, now there are 16x15
threads running concurrently. A special case of nested parallelism is recursive parallelism.
This occurs when the algorithm to parallelize is recursive by nature and is difficult to
transform it to its iterative equivalent. Even if it is not that difficult, it sure loses the
elegance, readability and maintainability of the recursive formula. Also, a recursive form
of an algorithm could be cache oblivious, thus enabling better use of the cache memory.
A classic example of recursive algorithm is the computation of the nth Fibonacci number,

given by the following algorithm:

int Fib(int n)
{
if (n<=1)
return 1;
else
return Fib(n - 1) + Fib(n - 2);
}

Listing 2. Algorithm for computing the n-th Fibonacci number

If the programmer tries to spawn a thread for each of the two recursive calls, it could
result in a huge number of threads being spawned, which is undesirable. In either cases,
creating a very large number of threads could cause oversubscription, which means hav-
ing more threads than the available parallelism the hardware offers, or even more than
the system can handle.

When using OS threading interfaces, such as POSIX threads, too much actual parallelism
can be detrimental. These threads have mandatory semantics, which means they must
run in parallel. So the OS must time-slice execution among these threads, incurring large
overhead for context switching and reloading items into cache. Mandatory, or explicit,
parallelism doesn’t also support the idea of hierarchical decomposition of program mod-
ules that was discussed earlier, which makes writing large-scale parallel software that us-

es libraries and modules that can also be parallelized a real pain. That introduces the
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need for a parallel programming model that offers the ability to express optional parallel-
ism. Instead of using threads as our main parallelizing component, we use tasks.

A task is a piece of optional parallelism, which is implicitly scheduled on software
threads. Scheduling software threads on hardware threads by the OS is usually preemp-
tive; it can happen at any time. In contrast, scheduling tasks on software threads is non-
preemptive; a thread only switches tasks at predictable switch points. Non-preemptive
scheduling enables significantly lower overhead and stronger reasoning about space and
time requirements than OS threads. Tasks are a more intuitive way of expressing paral-
lelism in general and offer a significant parallel slack, which gives more flexibility to ex-
ploit machine resources. For example, having more potential parallelism that cores can
help performance when the cores support multithreading. If, for instance, code must in-
evitably chase pointers using independent memory reads, additional parallelism can ena-
ble hardware-multithreading to hide the latency of the memory reads. Moreover, hierar-
chically decomposing software modules, composability and nested parallelism become
non-issues, as they all end up just expressing more optional parallelism, which will be
scheduled on the right number of software threads with care, without oversubscribing

software threads to the system with the detrimental results discussed.

2.2 The TBB Library

In this thesis we examine the Intel Threading Building Blocks (TBB) multithreading li-
brary. Its programming model supports parallelism based on a tasking model. TBB is a
library, not a language extension, and thus can be used with any compiler supporting
ISO C++, so it is portable across platforms, operating systems and processors. It uses

C++ features, such as function objects, to implement its syntax.

2.2.1 Overview of the library
TBB is written following the generic programming philosophy used by the C++ Stand-
ard Template Library (STL). It relies heavily on C++ templates to provide generic par-
allel programming patterns, such as parallel for or parallel reduce, with the fewest pos-
sible assumptions about data structures and data types that they will be used on.
An overview of the components of Intel TBB are presented in figure5. They include the
following:
e  Task: The most primitive and low level representation of a task, as parallel work
abstraction. Tasks are chunks of work to be done, following the philosophy of poten-
tial parallelism. It is designed primarily for efficient execution, rather than conven-
ience. It serves as a foundation for every tool for parallel computation that is offered
by the library, and thus should impose minimal performance penalty. Task groups run
an arbitrary number of tasks in parallel.
e Parallel Algorithms: These are higher level templates, which provide convenient

interfaces for tasks, enabling the programmer to express parallelism using some popu-
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lar algorithms and patterns, such as parallel for, parallel reduce, parallel scan, work
pile pattern, pipeline pattern, flow graph etc. As already mentioned, their foundation
is tasks. This means that if, for instance, a parallel for is invoked, the template will
spawn the required number of tasks implicitly, chunking the work that was given ac-
cording to specific requirements. These requirements are given in many cases by the
blocked range class and the different partitioners.

e  Synchronization: the library includes primitive synchronization components such
as atomic variables, mutexes etc., enabling the programmer to have full control of the
program execution flow.

e  Concurrent containers: popular and useful containers that are designed to be
scalable and generic, following the philosophy of STL.

e  Memory allocation: the library offers scalable memory allocators that offer cache
alignment for false sharing avoidance and thread-local storage.

o  Utility: cross-thread accurate timers

Generic Parallel Algorithms \
parallel_for

parallel_reduce

parallel_scan

- o

parallel_do
pipeline, parallel_pipeline, Concurrent containers
parallel_sort concurrent_unordered_map,
parallel_invoke concurrent_unordered_set,
concurrent_hash_map,
\ concurrent_queue,

Synchronization primitives concurrent_bounded_queue,
atomic concurrent_priority_queue

mutex concurrent_vector

T

recursive_mutex
spin_mutex, spin_rw_mutex
queuing_mutex, queuing_rw_mutex

—

Memory allocation

' Rawta sking | Flow Graph tbb_allocator
cache_aligned_allocator

task h

grap
task_group function_node scalable_allocator
task_list broadcast_node

| task_scheduler_observer

Figure 5. TBB Components

All the above functionalities are fully composable, not only with one another, but also
with other popular parallel programming models such as OpenMP and MPI. TBB could
be used to provide scalable parallelization at node level, and MPI to provide message
passing style parallelism at system level. The abstract implementations on containers and
algorithms that TBB offers boost productivity by enabling high code reuse while the

non-preemptive scheduling of tasks enables better time and space overhead estimations.
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2.2.2 How it satisfies the desired properties

The aforementioned must have made it clear that Intel TBB aims at high performance in
shared memory architectures, provides a portable solution (it runs with any ISO C+4+
compiler) that can cooperate with other parallel programming models, boosts productivi-

ty by providing high code reuse with its generic components, which are fully composable.

2.3 TBB Scheduler

2.3.1 Overview, Basic Architectures and Components, Basic Functionalities

At the heart of the TBB runtime library exists the TBB task scheduler. This piece of
code has the responsibility to schedule tasks on software threads in a non-preemptive
manner. An overview of the basic components that constitute the TBB scheduler is pre-

sented in figure 6.

TBB worker threads

Arena
slots

Task dispatcher
instances

Master Application threads
threads

Figure 6. Scheduler Architecture Overview

When a thread creates for the first time an instance of the class task scheduler init, it
is considered as the master thread and the following structures are initialized:

e RML (Resource Management Layer): this structure keeps the workers, which are
OS threads in essence. At the initialization time no actual OS threads are creat-
ed. The number of virtual workers that are created corresponds to the requested
concurrency by the application. The concurrency offered by the TBB runtime is

the largest between the number of threads that the first application that initial-
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ized the scheduler requested and the concurrency offered by the underlying ma-
chine. This amount cannot be changed, unless the scheduler is destroyed and re-
initialized requesting different concurrency. Actual OS threads are created lazily,
for example when a parallel algorithm is invoked, up to the maximum number of
virtual workers that RML was initialized with.

o  Market: this structure has the responsibility to provide the arenas with workers.
The maximum number of workers that can be offered to all master threads is de-
fined by the concurrency that the first application that constructed the scheduler
requested. If many master threads ask for workers, it is possible to exceed the
limit of the virtual workers of the RML. In this case the market tries to dispatch

a fraction of the total workers, according to the following rule:

master_demand
RML _workers *

total_demand
e Arena: this structure is associated with the master thread. Each master thread

has its own arena, in which this thread along with the workers provided by the
market work on the tasks. Each arena registers to the market. The slots of each
arena correspond to the maximum number of workers that can be assigned by the
market and can be used by the master thread to execute tasks. Their number is
equal or less than the concurrency requested by the master thread that first ini-
tialized the task scheduler.

o Task dispatcher: this structure is the local scheduler of each worker that has the
responsibility to acquire and execute tasks. Local instances of the task dispatcher,
which corresponds to the class custom scheduler, register to each arena slot. The

functionality of this class is described below.

2.3.2 Executing Tasks - Work Stealing Mechanism & Load Balancing Algo-
rithms
When a parallel algorithm is invoked from a master thread, for example a parallel for,
an initial root task is spawned at the local task pool of the master thread. The market
provides the arena with the maximum number of workers it can and each one of them
keeps his own local task pool, initially empty. Each task pool is a LIFO data structure,
which means that the owner can only take for execution the task at the beginning of the
task pool, and can spawn new tasks also at the beginning. The reason for that will be-

come obvious later on.

TBBs use two load balancing techniques, recursive splitting and work stealing. Recursive
splitting refers to the situation where a worker has to execute a body of code on a range
of data, for example a parallel for on an array of N elements. In this case the worker
starts to recursively split the range to equal subranges, creating and spawning the corre-
sponding tasks. This continues in a depth first manner, as in figure 7, until a range be-
comes less or equal to a specific grainsize. Then the worker calls the body code on the
subrange, executing the work needed. The other workers who initially have an empty

local task pool try to steal work from the workers that have tasks available. When a
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worker (including the master) runs out of work, he tries to steal work from a victim
worker, which is chosen randomly. The latter mechanism is called work stealing and it
ensures that no worker will stay idle if there is still work available and no other worker
executes it. If the chunk of work he stole needs further splitting, he continues the split-
ting the same way the master thread did it, creating subtasks that are available to be
stolen by other idle workers. Although there is the factor of randomness in choosing the
victim, it has been proven in practice that this simple mechanism is very efficient for
load balancing, minimizing the idleness of the workers.

The critical point about work stealing is that when a worker tries to steal a victim, he
always steals from the end of its task pool, in a first-in first-out manner (FIFO). The
reason for that is that because of the depth-first recursive splitting that treats the task
pool as a last-in first-out (LIFO), the beginning of each local task pool has the smaller
chunks of work, while the end has the largest chunks. As a result, splitting in a depth-
first manner while stealing in a breadth-first manner leads to the best possible load bal-

ance.

2.3.2.1 Partitioners and Grainsize

The partitioner is responsible for splitting a range to subranges. Each partitioner guaran-
tees that the recursive splitting will continue until the chunks of work become greater
than G/2 and smaller that G, where G is the grainsize. There are three kinds of parti-

tioners, the simple partitioner, the auto-partitioner and the affinity partitioner:

e Simple Partitioner: In the case of the simple partitioner, the programmer explicit-
ly defines the grainsize, with the default value being 1. The partitioning of a
range 1 is simply continues until r.is_ divisible() becomes false.

e Auto-partitioner: The grainsize is automatically estimated by a heuristic. The
mechanism includes two values, V and K, which are both 4 in the current imple-
mentation. A variable n is initialized with the value P*K for the top level range,
where P is the number of processors available. Each time the range is split, it
gets half of the original n. If a range is stolen, its n is forced to be at least V.
When n reaches 1 the range is not further split, although is divisible() may still
return true (controlled by the grainsize that was hinted to the partitioner). The
intuition behind this mechanism is that the range should be split to a number of
equal chunks that equals to the number of available processors, but there should
be a little more splitting so that more than one tasks are pending for execution at
each processor, to help better load balancing and compensate for the randomness
of stealing. If the range is two-dimensional, it can be divisible along one or both
axes. If divisible along both dimensions, the two-dimensional range chooses the
split that yields pieces with an aspect ratio similar to aspect ratio of the grain
size.

o Affinity partitioner: In certain applications, such as numerical relaxation and

time-stepping marches for partial differential equations, cache affinity is crucial
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for performance. The randomness of stealing causes loop algorithms to have poor
affinity between successive sweeps over the same range. The affinity partitioner
tries to tackle this problem, by hinting that the same or similar subranges are as-
signed to the same workers between successive sweeps, hoping that the data of
each subrange will still be in the cache for the next iterations. This is though a
hint, meaning that subranges may still be migrated to other threads to rebalance
load. Moreover, it is not guaranteed that the thread that corresponds to a specific
worker will not be migrated to a different physical core by the operating system.
Nevertheless, the OS does not often migrate threads for no reason, and assuming
that no other resource demanding process is running concurrently, the OS migra-
tion should not cause any performance issues. The grainsize in this case is select-

ed as in the case of auto-partitioner.
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N/8 < GrainSize
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] Sea. steal task &
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Figure 7. Recursive Splitting & Work Stealing 1
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Figure8 shows two possible steps of a parallel for computation on the range 0 to N.
First the master thread has subdivided the range at his local task pool, putting the
smallest chunks of work at the front. Meanwhile, workers 1 and 2 tried to steal work
from master. Worker 1 stole first the rightmost chunk of work and subsequently Worker
2 stole the second rightmost chunk. Worker 3 has not still stolen anything. At the next
step, the master thread still executes his smaller chunk of work, while Worker 1 and 2
have already splitted their stolen chunks a few times. Worker 3 now kicks in and tries to
steal the rightmost chunk from Worker 1.

Master
Thread Worker 1 Warker 2 Worker 3
{Worker 0)

haster
Thread Worker 1 Worker 2 Warker 3
{Worker O)
1
Stealing IW

Figure 8. Recursive Splitting & Work Stealing 2

When the master thread decides to leave the arena, it destructs the task scheduler init

object. Other workers though may still be working on tasks, so complete destruction of
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components is postponed. When a worker repeatedly fails to steal work from others after
finishing his own, he scans the arena to make sure he is left alone and that the other
workers have already left, leaving no further work to be done. If that holds, he leaves the

arena and destructs the relevant components.

2.3.3 Cache Coherence Protocols and Problems with Work Stealing
While work stealing is a simple and efficient mechanism to balance the load, several is-

sues may arise during runtime.

2.3.3.1 Cache pollution

Stealing a task from a random victim implies that the thief must operate on data, such
as a specific subrange of a loop, which would otherwise be handled by the victim. The
randomness of stealing could pollute thief’s cache with data that are completely irrele-
vant to the current data, and are far apart from each other in memory. This could cause
serious performance degradation and several cache misses, compulsory as well as capacity

misses, because the new data may evict data that will be needed in the future.

2.3.3.2 Data sharing

When a thief brings data from a victim into his cache memory, some of them may be
adjacent to data in memory that are used by the victim. This leads to false-sharing be-
tween the two cores, which can cause a serious bottleneck in runtime, because of the
cache coherence protocols that will start to invalidate data to each other, causing a ping-
pong effect. That could be avoided if the two cores shared some cache level. The lower

the better, but the randomness in stealing cannot guarantee it.

2.3.3.3 Locking

Work stealing includes some locking mechanisms, in case a clash between the thief and
the victim occurs. Locking also occurs when multiple thieves try to steal from the same
victim. In either cases, when the thread count increases, locking could become a bottle-
neck to the system because of the randomness of stealing. If the stealing mechanism lim-
ited the stealing between specific threads, this locking mechanism could scale better and

fewer clashes would occur.

2.4 Profiling of basic functionalities — Characterization of overhead

scalability

The first step of this study is to examine the overhead introduced by the TBB runtime
library on parallel applications, broken down to basic functions as well as total user-
library time. The profiling has multiple targets: first it aims to confirm the structure of
the library and identify the functionalities into the code. Second, we try to measure the
amount of stealing that occurs during runtime and how much it can affect the overall
performance. Also we try to expose the scalability of each basic function of the library,
including stealing, in order to identify possible bottlenecks of the task stealing mecha-

nism and overall performance.
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2.4.1 Systems Used

We use the Intel Threading Building Blocks 3.4 library (tbb40 201204080ss), which at
the start of our study was the most up-to-date release available. Although most recent
releases have taken place since then, the basic functionality of the task scheduler has not
been changed, so these changes do not affect the outcome of our results. We compile
TBB using GCC 4.6.3 and used the optimized “release” library.

For our profiling we used the systems described in the following subsections:

2.4.1.1 “Dunnington” SMP Platform
The first physical system used for the profiling is a 24-core Dunnington-based SMP with

the following characteristics (shown in figure 9):

e 4 package(Intel(R) Xeon(R) X7460 @ 2.67GHz)
e 6 cores per package

e 1o Hyperthreading

e 32KB L1 cache per core

e 3MB L2 cache per 2 cores

e 16MB L3 cache per package (6 cores)

e 28.136 MB RAM

2.4.1.2 “Termi” NUMA Platform
The second physical system used is a 12-core Termi-based NUMA with the following

characteristics (shown in figure 10):

e 2 Packages (Intel(R) Xeon(R) X5650 @ 2.67GHz)
e 6 cores per Package

e Hyperthreading (24 threads in total)

e 32KB L1 cache per core (2 threads)

e 256KB L2 cache per core (2 threads)

e 12MB L3 per package (6 cores, 12 threads)

e 48.295 MB RAM
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Figure 9. 24-core “Dunnington” SMP Platform
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Figure 10. 12-core “Termi” NUMA Platform
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2.4.2 TBB Scheduler Basics

The TBB scheduler consists mainly of a basic dispatch loop, a simplified version of which
is presented below. The wait for all() procedure is the main scheduling loop. It consists
of nested loops that attempt to obtain work through three different ways: explicit task
specification, local task queue and random task stealing. In the innermost loop the task
for execution is specified by the current task, which returns a pointer to the next task. If
the current task does not return a task to execute, the do-while loop tries to acquire a
task from the local task pool. If there is no work left in the local task pool, the thread
tries to steal a task from a random victim. If that is unsuccessful, the thread waits for a
fixed amount of time and tries again. If too many unsuccessful attempts occur, the

thread gives up and waits until the main thread wakes it by generating more tasks.

wait_for_all(task *child) {
task = child;
loop until root is alive {
do {
while task available {
next_task = task->execute();
Decrease ref_count for parent of task
If ref_ count==0
next_task = parent of task

}
task = get_task();
} while (task);
task = steal_task(random());
if steal unsuccessful {
Wait for a fixed amount of time
If waited for too long, wait for master thread to produce new work

}

Listing 3. Basic task dispatch loop

2.4.3 Basic TBB Functionalities
The basic TBB Scheduler functionalities are:

e spawn: When a worker is created, it is associated with a local task pool, as al-
ready mentioned. Tasks are explicitly enqueued into a task pool when their corre-
sponding worker calls the spawn method. This can happen many times when exe-
cuting a task, as in the case of the Fibonacci computation, where each task
(which corresponds to the computation of the n-th number) spawns two more
tasks (which correspond to the computation of the (n-1)-th and (n-2)-th num-
bers). It takes a pointer to a task object and enqueues it to the local task pool of
the calling thread.

47



Motivation — Overview of the Problem 48

244

get task: This method is called by the dispatcher loop when the completion of
the previous task returns no task for execution. It tries to retrieve a task from the
local task pool. When unsuccessful, it returns NULL.
receive_or steal task: This method is called when there is no work left in the
local task pool. Except for stealing tasks from other threads, it may also retrieve
tasks that have been mailed to it. It can be subdivided into tree functions:
= Jock task pool: It basically tries to lock the victim’s local task pool so
that no collision will happen with the owner. Increasing number of threads
may cause several collisions and as any locking mechanism, it can have
scalability issues.
= gstealing: It is the act of retrieving a task class description from the vic-
tim’s task pool, after locking it.
= gsteal wait: It is the time spent on functions other than actual stealing in-
side the receive or steal task, which is essentially the time waiting be-
tween successive attempts to steal.
acquire queue: This method is called by spawn and get task to lock the thread’s
local task pool, in order to either enqueue a new task or retrieve a task ready for
execution.
lib_wait: this value represents the time spent by the wait for all dispatch loop
on functions other than the above. It is essentially the difference between the to-
tal library timer (the wait for all loop) and the sum of the individual timers of
each aforementioned function (except for acquire queue which is included in

spawn and get task timers).

Applications used for characterization

We study the impact of the TBB runtime library on parallel applications by using some

well-known benchmarks: blackscholes, fluidanimate, streamcluster and swaptions, which

are part of PARSEC benchmark suite[5], and convex hull, matrix multiply, quicksort,

strassen, which are in-house developed benchmarks. These applications were chosen be-

cause they create a substantial amount of tasks and use many of the templated algo-

rithms offered by the library, as well as the low-level way of task creation by hand, ena-

bling us to examine the behavior and scalability of TBB’s basic functionalities in a wide

range of circumstances.

Algorithm Description Input size

Blackscholes Option prici.ng Wit}% Black—S(‘:holes Partial 64K
Differential Equation
Fluid dynamics for animation purposes with
Fluidanimate Smoothed Particle Hydrodynamics (SPH) 500K
method

Streamcluster Online clustering of an input stream 16384 data points

Swaptions Pricing of a portfolio of swaptions 64 sw.apmon‘s, 20000

simulations

Convex Hull Smallest convex that contains a set of points 40M points
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Matrix multiply Matrix multiplication 1500x1500
Quicksort Quicksort sorting method 100M
Strassen Matrix multiplication 256x256

In the following subsections we present the results acquired during the profiling. For each

application there is a brief description followed by 1) the speedup achieved, 2) a User-

Library time breakdown for each thread count, 3) a breakdown diagram of the library

time to the basic functionalities of the scheduler, 4) the scalability of each functionality

separately. We present the most notable and characteristic results. The rest can be found

in Appendix A.
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2.4.4.1 Blackscholes

First, the speedup of the parallel area is given. We see that on the SMP machine the
scalability is not as good as on the NUMA, a fact that we relate to the potential bottle-
neck on the memory bus in combination with the increased overhead in case of inter-
socket communication. The following graphs give a clearer image of the overheads of
each library component.
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Figure 11. Blackscholes speedup on SMP Figure 12. Blackscholes speedup on NUMA
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2.4.4.2 Fluidanimate
The same graphs are presented for the fluidanimate application. This application does

not scale very well and the library time is dominated by the stealing function.
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2.4.4.3 Strassen

The same graphs are presented for the strassen application. This application scales poor-
ly on both the SMP and the NUMA platform. Work stealing also dominates in this case
the library time and the stealing function does not scale well, as we see increasing execu-

tion times as the thread count increases.
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2.4.4.4 Streamcluster

Chapter 2. Motivation — Overview of the

The graphs for the streamcluster application show another example of poor scalability on
the SMP, with the NUMA having a better scalability, though not satisfying. Stealing

time also dominates here the library run time.
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Observations:

62

In many cases, applications scaled better on the NUMA platform. The main rea-
son for that is that the SMP has a single memory bus, making it a bottleneck for
any memory transactions, and as the thread count increases more conflicts for the
bus occur, serializing transactions that could otherwise be executed in parallel.
The NUMA platform offers different paths to memory, parallelizing memory ac-
cesses of different packages, when of course it is inherently possible by the access
pattern of the application.

The most important observation on all applications is that stealing time domi-
nates the library run time, making it a hot target for optimization.

In many cases the stealing time is dominated by the steal wait function, which
means that the stealing attempts are mostly unsuccessful, a fact that is confirmed
by the library statistics and the successful to failed stealing attempts ratio, alt-
hough it is not presented in this thesis explicitly. According to the graphs, this

fact is even worse on the NUMA platform.



Chapter 3
Techniques Used

3.1 Optimization targets

In this section we present the techniques that we applied as an attempt to better exploit
the cache hierarchy of the physical system as well as attempts to improve load balancing.
Our target for optimization is the stealing mechanism of TBBs. We applied several tech-

niques and variations of them, exposing their strengths and weaknesses on each machine.

3.2 Stealing from the nearest neighbor

The first attempt for optimization of the stealing mechanism targets the cache hierarchy
of the underlying physical machine. As explained earlier, work stealing occurs in an ar-
chitecture-agnostic manner, by choosing random cores as potential victims. This can de-
teriorate the performance, especially on NUMA platforms that inter-socket communica-

tion incurs great overhead.

3.2.1 Technique description

Our approach was choosing the nearest possible core, in terms of cache distance, that has
work to offer as victim. As it can be seen in the relevant figures describing the architec-
tural organization of the platforms, each core shares several cache memory levels with

different sets of cores.

The key idea is to try stealing from the cores with which we share the L1 cache level.
Normally, that is zero or one cores, so in case we fail to steal from him or he doesn’t
have any tasks enqueued in his task queue we need to have alternatives. In that case we
try to steal from the (other) cores that we share the L2 cache level with. And if that fails
too, we try the L3 level. In case there is no work in our package, we could end up steal-
ing work from the cores in the other packages, as a last resort. In that way we prioritize

our targets in terms of cache level distance.

Another critical detail is the persistency to our first choices of victims. The nearest
neighbors, for example the ones we share the L1 cache with, are few in our physical sys-
tems. They can either be one or two. In case they are not available for stealing when we
probe them, we needed to persist and try again some times before we end up choosing
the next nearest neighbor. The most neighbors are located in the other packages, some

share the L3 cache level with our cpu, few the L2 and even fewer the L1 cache level.

This approach aims to stealing tasks that have a better chance to find the data they
need in a cache level, avoiding communicating with other packages on even worse the

main memory, which could happen if we steal from a core that lies on another package.
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Moreover, it avoids cache pollution that comes to play when we bring data from other
packages to our package. The size of each cache level is limited, so bringing new data
could evict other data that are needed by the other workers in the package, leading to
cache capacity and conflict misses.

As proposed in[6], it would be better to restrict stealing from other packages, in order to
minimize inter-socket communication cost. In order to achieve that, we permit only to
one worker from each package to be able to steal from the other packages, while the rest
can only steal local (in-package). We will be referring to these threads as the master

worker of the package and the slave workers respectively.

3.2.2 Implementation details

In order to be able to choose victims according to the underlying architecture, it was
necessary to pin each worker to a specific core. So, we created an extension to the arena
class that contains the information needed, that is, the platform representation as well as

a table that contains the physical cpu ids that library workers should be pinned on.

For pinning the OS threads to specific physical cores in order to be able to find the near-
est core, a basic decision should be made. That is, which class of the library should carry
the information about the physical core. The chosen class will enforce the entity that
represents to work on a specific core. It would sound reasonable to add this information
to the class private worker that it represents a virtual worker and is bound with an OS
thread lazily, when the library decides to launch it. However, this information was inte-
grated to the arena_ slot class. A number of such objects represent the available slots on
each arena that require library workers to populate them and execute some of the arena’s
work. On the instantiation of the master thread’s arena, each arena slot is assigned a
number that represents the physical core that it should work on. Any worker that occu-
pies an arena slot has to pin himself and work on the core it indicates. This decision was
made mainly because the workers of the library, who correspond to OS threads, are en-
tering and leaving arenas in a dynamic and unpredictable manner and it is not easy to
keep track of which worker is active and when. That happens for several reasons, includ-

ing:

o Lazy worker instantiation: the OS threads are created dynamically, according to
arenas’ needs and there is no guarantee that a worker is bound to an OS thread
at a specific point in time.

e In some cases, more workers than actual cpus are instantiated, thus making im-
possible to bind a private_worker object to a specific cpu.

e Load imbalance: if a worker has no work to execute due to load imbalance, he
goes to sleep, releasing the CPU and saving cpu time. Thus a worker that occu-
pies a cpu core is not guaranteed to continue to do so in the future, because he
may be migrated by the OS to a different core when he runs again.

o  Workers are assigned dynamically to arenas that need them, so there is no guar-

antee that a pinned worker will work on the same arena with another.
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The arena_ slot class instead has a fixed number of instantiations for each arena, making
it easier to keep track and identify which one corresponds to the nearest cpu. Moreover,
the statistics mechanism of the library keeps track of several events and sums them up
for each arena slot. Thus, it was obvious that the library design considers the arena slots

as workers and not the dynamic instances of the class private_worker.

In order to run applications using different number of threads, we needed a map that
maps workers to cpu ids. So, if we were to run an application with eight threads for ex-
ample, they should be distributed evenly to different packages, two workers to each
package in the case of Dunnington that has four packages. The map is essentially a table
that contains the cpu ids of the underlying machine, ordered in a way so that for each
thread count N, the first N numbers of the table are the cpu ids for an even distribution
of the N OS threads to the packages. For the example of Dunnington, we present in the
following picture the cpu id distribution that the operating system creates:

Figure 59. The numbers represent the cpu ids the OS assigns to each core on Dunnington
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Package 2
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The corresponding map should be:
0,3, 6,9, 1, 7,4, 10, 12, 15, 18, 21, 13, 16, 19, 22, 2, 5, 8, 11, 14, 17, 20, 23]

On the arena instantiation, each of the arena slots that are created is assigned with a

cpuid from this table, starting from the beginning, as shown in the following picture:
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0,3,6,9,1,4,7,10]

Figure 60. Cpu-id distribution to arena’s slots

For choosing the closest neighbor, another data structure was necessary, namely, an ad-
jacency list for each core that contains the core ids of the machine ordered from the clos-
est to the furthest to that core. On the arena instantiation, we compute a 2-dimensional
matrix that contains cpu ids and whose i-th row represents the adjacency list for cpu
with id i. So, first come the cpus that share the L1 cache level with cpu i, then follow the
cpus that share the L2 cache level, then the L3, and then come the cpus from the other
packages. To avoid resigning too early from the nearest neighbors in case of failure and
add the aforementioned persistency to choices, the first level of nearest neighbors
(L2sharers in Dunnington and L1 and L2 sharers in Termi) are unfolded 50 times, be-
cause they are the fewest but nearest, the next level of sharers (L3 in both Dunnington
and Termi) are unfolded 3 times, and the furthest (in the other packages) are unfolded
only once. This matrix is used by the workers when they want to find a victim to steal

work from.

Finally, a map from core ids to slot indexes is needed, which is essentially the inverse

map from the distribution table that we mentioned first.

When a worker is left with no work and decides to steal some, he executes the stealing
loop described by the pseudo code in Listing 4. In more detail, the mechanism works as
follows: first, we find the row of the 2d-matrix with the neighbors that corresponds to

the cpu id that our slot is working on. Second, we enter a loop that scans our neighbors
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from the nearest to the furthest until we find an available one. We choose him as victim
and from the inverse map we find the slot that he works on and try to steal from it. In
case it fails, we continue with the next neighbor, until we reach the end of the array, in
case we are the master worker of the package, or the end of the L3 neighbors, in case we

are a slave worker. In this way, we achieve to steal from the nearest neighbors first.

fail_count=0;
while (fail_count < fail_threshhold) {
int idx;
neighbors_list = find_my_neighbor_adjacency_list( my_cpu );
do{
int victim_core = get_next_neighbor(neighbors_list);
idx = get_slot_index_from_cpu_id( cpu_to_index_map, victim_core );
if (1 am master worker of mackage ) {
if ( reached the end of array neighbors)
continue_from_the_beginning;
else
if ( reached the end of L3 neighbors )
continue_from_the_beginning;
}
} while (idx slot is NOT populated by a worker );
arena_slot* victim = &my_arena->my_slots[idx];
t = steal_task( *victim );
if (1t) {
fail_count++;
continue;

Listing 4. Worker stealing loop

The results of the evaluation of this method are presented in the next Error! Refer-

ence source not found..
3.3 Stealing from the most loaded processor

The second attempt for optimization tries to tackle load imbalance problems. Load im-
balance occurs naturally in some applications, especially when more synchronization

points exist, for example in algorithms like parallel reduce.

3.3.1 Technique description

Previous attempts [7] indicate that an occupancy-based approach to task stealing can
bring performance improvements under some circumstances and in some scenarios. Our
approach was finding the most loaded worker and stealing from him. It is obvious that

such an approach can help distributing work more evenly than with the random stealing
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approach. Load balancing may be a desired property, but we should also point out that
stealing work from the heaviest could also result in cache pollution, if that worker is lo-

cated to a different package.

The first approach is rather straightforward. If a worker needs to steal, he just scans the
arena to find the most loaded worker and steals from him. It is easy to implement but

doesn’t give us any flexibility in case of failures.

This approach can be very costly to use each time a worker needs to steal work. For this
reason, we tried to make a compromise by employing the stealing from the heaviest
technique once in five stealing attempts. For the four remaining stealing attempts the

classical random victim approach was followed.

In order to have more flexibility in case of failure, a second approach would be that each
worker keeps a sorted list of the task loads of all the other workers and uses it to search
for alternatives in case something goes wrong with the heaviest worker. This approach

helps to distribute steals so that not all attempts fall on the heaviest worker.

There are two main variations of this technique, keeping global and local task load lists.
The first variation tries to balance globally in order to alleviate inter-socket load imbal-
ances, but it can lead to cache pollution and heavy inter-socket communication. The sec-
ond variation tries to be more optimistic and cache friendly, by scanning locally in each
package, permitting only the master worker of each package to scan globally, like we dis-
cussed earlier for the cache-aware technique. When work is more evenly distributed to
packages it is makes sense to search locally for the heaviest, in order to balance the load
even further without incurring too much overhead. On the other hand, if the load imbal-
ance does exist between packages, overheads can be reduced by letting only the master
workers of each package to contribute to balancing it, thus minimizing inter-socket
communication. When scanning of the entire arena occurs, there are ping-pong effects
between packages, because all the workers need to read the task load of all other work-

ers.

3.3.2 Implementation details
To implement a mechanism to steal from the heavier cpu, in terms of task load, we
needed to add a current load field to the arena_slot class. When it is occupied by a

worker, it is initialized to 0. The following three events induce changes to this variable:

e spawn by the owner worker: In this case the owner’s current load is incremented
by 1.

e get task by the owner worker: In this case the owner’s current load is increment-
ed by 1.

o successful steal by any worker: In this case the victim’s current load is decre-

mented by 1.

The current load variable counts in essence the enqueued tasks and works as an estima-

tion of each active worker’s load. It is not precise, because various tasks can differ in
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size, so the number of enqueued tasks can be misleading. Previous work |[7|indicates

though that it can be a reasonably adequate estimation.

3.3.2.1 Finding Max

The implementation is rather straightforward. We scan every arena slot to find the max
the worker that has the maximum current load. Because this proved very costly we im-
plemented a variation that employs this technique once in five steals, and the other four

we follow the original random stealing algorithm.

3.3.2.2 Sorted List approach
Each worker keeps a list with the other workers and their load, sorted from the heaviest
to the lightest. When stealing needs to happen, the worker picks his victims from this

list, trying to steal from the most loaded worker.

The list needs to be refreshed with new estimations of each worker’s load. To do this, we
need to scan every slot and collect each worker’s load. After that, they need to be sorted
in reverse order. This procedure is costly and can cause performance degradation. Even if
we simply scan the slots only to find the most loaded victim, it causes excessive perfor-
mance degradation, if it is done on each stealing attempt. For this reason, we decided to
refresh the list with new estimations once every five and once every ten stealing at-

tempts. Every time the list is refreshed, we begin searching victims from the beginning.

In case of stealing failure, we move to the next most loaded worker. If we reach the end
of the list we jump to the beginning. In case of successful stealing, we followed two dif-
ferent policies. The first policy (Policy 1) dictates that next time we need to steal, we
will try to steal from the same victim with the previous successful stealing and we return
to the beginning of the list only if we reach the end or we refresh the list. The second
policy imposes that every time we need to steal again, even after a successful steal, we
begin from the beginning of the list, that is, the most loaded worker. The following list-

ing describes the technique in pseudo code:
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fail_count=0;
while (fail_count < fail_threshhold) {
arena_slot *victim;
if (it's time to refresh the list ) {
read_task_loads
sort_loads_descending
go_to_the_beginning_of _the_list
}
if (end_of_list)
go_to_the_beginning_of the_list;

victim = get_victim_from_list();

t = steal_task( victim );

if(1t){
move_to_next_victim_on_list;
fail_count++;
continue;

}

/*Policy2*/victim_iterator = victim_loads.begin();

Listing 5. Sorted-list technique algorithm

3.3.2.2.1 Global occupancy scan
The simple idea was to scan all the slots of the arena in order to refresh the occupancy
list. That contributes to better load balancing, as it tries to alleviate the load differences

of all the workers.

The tradeoff is that except for balancing, it can also cause workers to steal from others
that are very far away, in terms of cache hierarchy, thus polluting their cache levels with
potentially irrelevant data, since neighboring cpus share some cache levels and may work
on data that are unrelated to the newcomers, leading to more capacity and conflict miss-
es. Except for that, false sharing between packages can cause severe performance degra-

dation.

3.3.2.2.2  Local occupancy scan

The other approach would be to scan only the local workers within the package and keep
an occupancy list that contains only estimations about local workers. So each worker can
steal only from workers in his package, preferring the most loaded each time. This ap-
proach also incorporates benefits from the cache-aware stealing mechanism than was ana-
lyzed in the section 3.2, like maintaining cache locality of the data, minimizing cache pol-

lution and inter-package stealing.

The implementation is exactly the same with Listing 5, except for the
“read task loads”, which in this case uses the adjacency list we implemented for the

cache-aware technique to find the in-package workers and their loads.
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Chapter 4
Evaluation

4.1 Physical Systems

The physical systems we used were the same as in the profiling section (Dunnington and
Termi) as well as “Sandman” NUMA Platform, a 32-core NUMA machine with the fol-

lowing characteristics:

e 4 Packages (Intel(R) Xeon(R) X5650 @ 2.67GHz)
e Scores per Package

e Hyperthreading (64 threads in total)

e 32KB L1 cache per core (2 threads)

e 256KB L2 cache per core (2 threads)

e 16MB L3 per package (8 cores, 16 threads)

e 257.931 MB RAM

Package 0
Package 1

Figure 61. 32-core “Sandman” NUMA Platform
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4.2 Stealing from the nearest neighbor

4.2.1 Benchmarks Used

Based on the previous work, we used a series of applications that are known to be shar-
ing-intensive as well some sharing-mild algorithms. The sharing-intensive algorithms are
Gauss Elimination, Heat and Floyd-Warshall. The memory-mild are quicksort and ma-
trix multiplication. We included an implementation of Word-Count as a sharing-
intensive representative example of the map-reduce algorithm category, using the paral-
lel-reduce template algorithm of TBBs.

Algorithm Description Input size
Gauss Elimination Linear systems solution 1024x1024
5-point Heat Algorithm 2D Heat Equation 2048x2048
Floyd-Warshall All-pairs shortest paths 4096x4096
Word Count Counting Tlumber'occurrences 12000x12000
1 matrix

4.2.2 Results

In order to test our implementation on equal terms with the random mechanism, we
pinned the OS threads of the original library to the same cores for each thread count as
the custom library, while still using the random stealing policy. This is especially im-
portant in the case of small numbers of threads. If the original library lets the operating
system distribute the threads to packages and cores at will, thread migrations between
packages as well as uneven distribution have been observed, in opposition to the custom

library that keeps the OS threads to specific cores throughout the execution.
In the following sections we present selected results of the aforementioned applications.

4.2.2.1 Heat

As the following figures suggest, the 5-point heat algorithm benefited greatly from the
cache-aware approach on the NUMA platforms. On SMP platforms there was perfor-
mance degradation, as it can be seen on the relevant figures of Appendix B. On Termi

there is a performance benefit of up to 3,6% for large thread counts.
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Speedup
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Figure 62. Speedup of 5-point Heat on Termi (Cache-aware)
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Figure 63. Ezecution times of 5-point Heat on Termi (Cache-aware)
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Figure 64. Performance gains of 5-point Heat on Termi (Cache-aware)
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On Sandman there was even greater performance boost, reaching up to 40% in large
thread counts, indicating that the more NUMA packages, the larger the potential of the

cache-aware technique to exploit localized work-stealing.

—8— Random
—0— Cache-Aware

0 10 20 30 40
threads

Figure 65. Speedup of 5-point Heat on Sandman (Cache-aware)
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Figure 66. Ezecution times of 5-point Heat on Sandman (Cache-aware)
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Figure 67. Performance gains of 5-point Heat on Sandman (Cache-aware)
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4.2.2.2  Word count
Word count showed great performance improvement on Sandman, while on Dunnington
showed almost the same performance and on Termi suffered from excessive performance

degradation.

In this algorithm, every task keeps a private map that counts the words for its subprob-
lem, and when a join occurs the task merges its private map with the private map of an-
other task. That means accessing data that were written by another core recently. This
results in flushing the changes to the main memory. Stealing tasks from the same pack-
age effectively reduces this overhead as most of this information is likely to be found in

some cache level, like the L3 level.

4 —®— Random
3 —@— Cache-Aware

0 10 20 30 40

Figure 68. Word Count speedup on Sandman (Cache-aware)
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Figure 69. Word Count execution times on Sandman (Cache-aware)
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Figure 70. Word Count performance gains on Sandman (Cache-aware)
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Figure 71. Word Count speedup on Dunnington (Cache-aware)
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Figure 72. Word Countexecution times on Dunnington (Cache-aware)
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Figure 78. Word Count speedup on Termi (Cache-aware)
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Figure 7. Word Count execution times on Termi (Cache-aware)

4.2.3 Remarks
The above examples offer the proof of concept that preferring stealing from neighbors
that lie near our core, in terms of cache hierarchy, can indeed bring great performance

improvements.

It is notable to mention that the mechanism we implemented does not incur large over-
heads and applications that do not benefit from this technique do not suffer from per-
formance deterioration either. A number of applications appear to have the same perfor-
mance as the random stealing, as their access pattern is not affected by locality issues
because there is not substantial read-write sharing between cores, thus degenerating the
choice to equal to random. In particular, these applications are Quicksort and Matrix

multiplication.
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4.3 Load Balancing

4.3.1 Benchmarks Used
We used a series of applications that previous work has shown to suffer from load imbal-
ance [7|, namely streamcluster, swaptions, blackscholes, with emphasis on the first. For

some implementations we also used strassen, quicksort and matriz multiplication.

4.3.2 Results — Finding Max
4.3.2.1 Searching for the heaviest every time

This approach was proved very inefficient, as it can be seen on the following figures,
which present the behavior of the streamcluster application. The main reason is the
overhead to scan all arena slots on each stealing attempt to find the heaviest. All the

results can be found in Appendix B.

Speedup
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Figure 75. Streamcluster speedup on Dunnington (Just pick maz)
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Figure 76. Streamcluster execution times on Dunnington (Just pick maz)
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Figure 77. Streamcluster speedup on Termi (Just pick mazx)
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Figure 78. Streamcluster execution times on Termi (Just pick max)

4.3.2.2  Searching for the heaviest once in five steals

The excessive performance degradation caused by the overhead of scanning the whole
arena on every stealing attempt can be effectively avoided through a compromise be-
tween it and the original random stealing technique. The result is effective without in-

curring much overhead.

The following figures show the performance gains of streamcluster on Dunnington and

Sandman.
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Figure 79. Streamcluster once in five steals speedup on Dunnington (Once in five)
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Figure 80. Streamcluster once in five execution times on Dunnington (Once in five)
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Figure 81. Streamcluster once in five Dunnington % Performance Improvement (Once in five)
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Figure 82. Streamcluster once in five Sandman Speedup (Once in five)
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Figure 83. Streamcluster once in five Sandman Ezecution Times (Once in five)
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Figure 84. Streamcluster once in five Sandman % Performance Improvement (Once in five)

[
[\V]

This technique has positive effects up to a certain number of threads. For larger thread
counts it suffers from performance degradation. The reason for that is that every scan
needs to check the load of all the other cores, which comes with inter-socket communica-
tion. As the thread count rises, the overhead of these communications dominates the
benefits of the technique, resulting in performance deterioration. In order for applications
to benefit from this technique, there should be load imbalance between packages and run

them with a limited number of threads.

4.3.3 Results—Global vs Local Sorted List

The following sections present the results of the sorted list technique, demonstrating the
impact of the various alternatives of the two implementations on each application. Most
of the results are in Appendix B, due to their large number. Here we present the most
notable results, namely the applications and cases that benefited most from this tech-

nique.

4.3.3.1 Streamcluster

Streamcluster benefited by the local search technique on the SMP for large thread
counts, achieving performance boost up to 26%, although in smaller thread counts there
was significant performance degradation. This occurs in small thread counts especially in
the non-grouped versions because in every package only a few workers exist and it is
more often to pick a victim from a different package, resulting in more ping-pong effects,

given the initial load imbalance that comes with streamcluster.
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Figure 85. Streamcluster speedup on Dunnington (sorted-list)

% Performance Gain - Dunnington

50
0 ) ' . | |III m B Grouped 5P1
Ly II3 ||£ - J“
1 2 4 2 24 ® Grouped 5P2
-50 H Grouped 10P1
B Grouped 10P2
-100
Non-grouped 5P1
-150 ® Non-grouped 5P2
m Non-grouped 10P1
-200 H Non-grouped 10P2
-250

Figure 86. Streamcluster performance gains on Dunnington (sorted list)

4.3.3.2  Quicksort
Quicksort benefited by the local search version on large thread counts on the SMP,

achieving a performance boost up to 17% without incurring too much overhead on small-

er thread counts.
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Figure 87. Quicksort speedup on Dunnington (sorted list)
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Figure 88. Quicksort performance gains on Dunnington (sorted list)

4.3.3.3 Matrix Multiplication
Matriz multiplication benefited on Sandman from both techniques on various large
thread counts, achieving up to 6.2% improvement. Nevertheless, the global search tech-

nique incurred more overhead on smaller thread counts.
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Figure 89. Matriz multiplication speedup on Sandman (sorted list)
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Figure 90. Matriz multiplication performance gains on Sandman (sorted list)

4.3.3.4 Remarks
From the graphs presented, we can make the following remarks:

+ The applications can be divided into two main categories, the ones that benefit
from the global search technique on all machines (swaptions) and the ones that
benefit from the local search technique on all machines (strassen and streamclus-
ter). That means that the applications of the first category have load imbalance
that is located mainly on a small number of workers and it can be alleviated by
the global search technique, and the applications of the other category have a
more even distribution of work, so that local search benefits local balancing with-

out incurring as much overhead as the global search.
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In most cases the applications suffer from severe performance deterioration, due
to the overhead of refreshing the sorted list.
The two techniques have almost the same performance on Dunnington and
Sandman for the Matriz multiplication.
There are some applications for which some techniques work better on some ma-
chines, while the other techniques have advantage on other machines. To be more
specific:

» Global/Non-Grouped Search

= Quicksort, Blackscholes and Matriz multiplication on Termi
» Local/Grouped Search
e Quicksort and Blackscholes on Dunnington and Sandman

In general we could argue that local search brings performance benefits on SMP
platforms for large thread counts, because it avoids cache pollution and minimizes
the ping-pong effect between packages and transactions with the memory that are
serialized on the memory bus, which is shared by all cores. That means that we
could benefit from the local search technique only in large thread counts on such
platforms.
Moreover, we could further argue that the overhead of each technique always ex-
ists, suggesting that in the cases that a technique appears to have insignificant
overhead, the reason is that the benefits of the technique compensate for its over-
heads. That means that although we do not have positive performance gains in
most cases, each technique does have a positive impact on stealing, despite that
its overheads dominate in some cases. Testing the techniques on a simulator ra-
ther than on real machines, where we could minimize the overheads ideally, could

help making the benefits of each technique more apparent.



Chapter 5

Epilogue — Conclusions & Future
Work

5.1 Conclusions

From all the above, it should be clear that there is not a silver bullet for reducing over-
heads on parallel programs. Many of the desired properties may be even contradictory,
as with load balancing and better cache use. It was proven by testing on physical ma-
chines that applications can benefit from a cache-aware approach to stealing on large
NUMA machines for large thread counts, depending on the memory access pattern of the
application and the read/write sharing dependencies between workers. Balancing tech-
niques, like stealing from the most loaded worker, can bring performance boost when
used in cooperation with the random stealing technique. More complex mechanisms that
keep track of each worker’s task load in a more detailed manner, could perform effective
load balancing on some cases, they can suffer though from severe overheads on physical

machines.
5.2 Related Work

In [6], a similar approach to our cache-aware stealing mechanism was tested on Cilk,
which has a similar task stealing mechanism as TBBs. During the first run of a parallel
algorithm the runtime classifies the tasks as inter-socket and intra-socket, mainly by
their sizes and their depth on the recursive tree splitting. On later runs of the same algo-
rithm, the runtime permits inter-socket stealing of the inter-socket tasks (which are the
largest and do not fit in the cache) and intra-socket stealing of the intra-socket tasks
(that fit in the cache).

In [7] a thorough characterization on the basic TBB functions is presented as well as an
occupancy based approach to stealing as well as a criticality-based approach, which takes
into consideration the relative complexities and lengths of tasks. The tests were carried
out on simulator, which gives insight about the effectiveness of the idea, but not its

overhead on physical machines.

In [8] various optimization approaches are presented, including lazy split and join for the
parallel-reduce template algorithm, automatic grain size determination as well as various
changes to the loop templates and the task scheduler to impose better task affinity be-

tween and optimize some stealing scenarios.
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5.3 Future Work

There is an extremely large number of combinations of access patterns and machine ar-

chitectural configurations, thus making the exploration and categorization of each situa-

tion a difficult task. Nevertheless, based on our work, there are some steps that should

be tested in the future in order to shed some more light on the directions we already

have started to explore:

88

Grouping applications and patterns, in order to be able to make predictions
about the best technique for the best case.

Run configurations on larger NUMA machines, so as to expose the potential of
the cache-aware technique under such architectural specificities.

Implement the actual inter- and intra-socket task queues on TBBs, as specified
in [6].

Creation of a mechanism that breaks the initial work into large pieces and dis-
tributes them locally to each package at the beginning. This technique, when
combined with the cache-aware stealing policy, would enable a more efficient
utilization of the memory hierarchy (more effective cache space available to
workers, more memory accesses satisfied locally, etc.), while maintaining the
properties of load balancing.

Investigate hybrid schemes that compromise the aforementioned techniques
with the classic random stealing (it was proved successful with some load bal-
ancing techniques).

Implement an automatic mechanism to pick the largest number of workers

that we could benefit from.
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7.1 Quicksort

Quicksort showed similar behavior to Blackscholes, that is, better scaling on the NUMA

platform.
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Figure 91. Quicksort speedup on SMP Figure 92. Quicksort speedup on NUMA
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Figure 93. Quicksort User-Library time on SMP for each
thread count

Basic Functionalities

Breakdown
60000000
40000000
20000000 I
; B
1 2 4 8 12 16 20 24
H spawn Wget task

BMreceive or_ steal Macquire queue

mlib_ wait

Figure 95. Quicksort basic functionalities breakdown on SMP
for each thread count
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Figure 94. Quicksort User-Library time on NUMA for each
thread count
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Figure 96. Quicksort basic functionalities breakdown on NU-
MA for each thread count
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Figure 97. Quicksort basic functionalities’ scalability on SMP for
each thread count
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Figure 98. Quicksort basic functionalities’ scalability on NUMA
for each thread count
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Figure 102. Quicksort scalability of stealing components on NU-

MA for each thread count

The same diagrams are given for the Swaptions application.
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Figure 103. Swaptions speedup on SMP
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Figure 105. Swaptions User-Library time on SMP for each
thread count
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Figure 107. Swaptions basic functionalities breakdown on
SMP for each thread count
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Figure 106. Swaptions User-Library time on NUMA for each
thread count
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Figure 109. Swaptions basic functionalities’ scalability on SMP
for each thread count
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Figure 110. Swaptions basic functionalities’ scalability on NUMA
for each thread count
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Figure 113. Swaptions scalability of stealing components on SMP
for each thread count

7.3 Matrix Multiplication

usec
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The same diagrams are given for the Matrix Multiplication application. We can see here
that it scales linearly on the SMP but not as well on the NUMA when multithreading

kicks in.
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Figure 115. Matrix multiplication speedup on SMP
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Figure 117. Matriz multiplication User-Library time on SMP for
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Figure 119. Matriz multiplication basic functionalities breakdown

on SMP for each thread count
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Figure 118. Matrix multiplication User-Library time on NU-
MA for each thread count
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Figure 121. Matriz multiplication basic functionalities’ scalabil-
ity on SMP for each thread count
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Figure 125. Matriz multiplication scalability of stealing compo- Figure 126. Matrix multiplication scalability of stealing compo-

nents on SMP for each thread count nents on NUMA for each thread count

7.4 Convex-hull

The same diagrams are given for the Convex-hull application, which is another applica-
tion that scales better on the NUMA than the SMP.
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Figure 127. Convex Hull speedup on SMP Figure 128. Convexr Hull speedup on NUMA
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Figure 133. Convex Hull basic functionalities’ scalability on SMP
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8.1 Cache-Aware Techniques

8.1.1 Heat
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Figure 139. Speedup of 5-point Heat on Dunnington(Cache-aware)
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Figure 140. Ezecution Times of 5-point Heat on Dunnington(Cache-aware)

8.1.2 Gauss elimination

As we can see from the following figures, Gauss Elimination did not benefit from the
cache-aware approach on Dunnington and Termi, in terms of execution time, although it
achieved greater speedup on Termi. On Sandman there was performance improvement

up to 3% on individual thread counts.
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Figure 141. Gauss elimination Speedup on Dunnington(Cache-aware)
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Figure 142. Gauss elimination execution times on Dunnington(Cache-aware)
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Figure 143. Gauss elimination speedup on Termi(Cache-aware)
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Figure 144. Gauss elimination execution times on Termi(Cache-aware)
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Figure 145. Gauss elimination speedup on Sandman(Cache-aware)
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Figure 146. Gauss elimination execution times on Sandman(Cache-aware)
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Figure 147. Gauss elimination % performance improvement on Sandman(Cache-aware)

8.1.3 Floyd-Warshall
It is obvious form the following figures that the Floyd- Warshall algorithm did not benefit
from the cache-aware approach on any machine, neither did it suffer from performance

degradation.
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Figure 148. Floyd-Warshall speedup on Sandman(Cache-aware)
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Figure 149. Floyd-Warshall exzecution times on Sandman(Cache-aware)
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Figure 150. Floyd-Warshall performance gains on Sandman(Cache-aware)
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Figure 151. Floyd-Warshall speedup on Termi(Cache-aware)
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Figure 152. Floyd-Warshall execution times on Termi(Cache-aware)
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Figure 158. Floyd-Warshall speedup on Dunnington(Cache-aware)
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Figure 154. Floyd-Warshall exzecution times on Dunnington(Cache-aware)

8.1.4 Quicksort
Quicksort did not benefit from the cache-aware approach to work stealing, as shown in
the following figures. The main reason for this is that the overhead of the mechanism we

implemented dominates the benefits for the access pattern of this application.
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Figure 155. Quicksort speedup on Dunnington(Cache-aware)
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Figure 156. Quicksort execution times on Dunnington(Cache-aware)
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Figure 157. Quicksort speedup on Termi(Cache-aware)
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Figure 158. Quicksort execution times on Termi(Cache-aware)

8
7
6
o b
=
T4
2, —@— Random
03
5 —@— Cache-Aware
1
0
0 10 20 30 40

threads
Figure 159. Quicksort speedup on Sandman(Cache-aware)
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Figure 160. Quicksort exzecution times on Sandman(Cache-aware)
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Figure 161. Quicksort performance benefits on Sandman(Cache-aware)

8.1.5 Matrix Multiplication
Matrix multiplication achieved an almost linear speedup even with the random stealing
approach. As it can be seen in the following diagrams, our cache-aware mechanism did

not cause performance degradation for this application, maintaining its excellent scaling.
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Figure 162. Matriz multiplication speedup on Dunnington(Cache-aware)
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Figure 163. Matriz multiplication execution times on Dunnington(Cache-aware)
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Figure 164. Matriz multiplication speedup on Termi(Cache-aware)
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Figure 165. Matriz multiplication execution times on Termi (Cache-aware)
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Figure 166. Matriz multiplication speedup on Sandman (Cache-aware)
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Figure 167. Matriz multiplication execution times on Sandman (Cache-aware)

8.2 Load Balancing Techniques

8.2.1 Searching for the heaviest once in five steals

The next figures show the results of running blackscholes on Dunnington and Sandman.
We can see that they match the results of streamcluster in most cases, as described in
Chapter 4, that is gaining performance benefits for an average number of threads, result-

ing in performance degradation in very large thread counts.
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Figure 168. Blackscholes speedup on Dunnington (once in five)
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Figure 169. Blackscholes execution times on Dunnington (once in five)
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Figure 170. Blackscholes performance gains on Dunnington (once in five)
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8.2.2 Global vs Local Sorted List
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Figure 171. Streamcluster speedup on Termi (sorted list)
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Figure 172. Streamcluster performance gains on Termi (sorted list)
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Figure 173. Streamcluster speedup on Sandman (sorted list)
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Figure 174. Streamcluster performance gains on Sandman (sorted list)
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8.2.2.2  Quicksort
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Figure 175. Quicksort speedup on Termi (sorted list)
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Figure 176. Quicksort performance gains on Termi (sorted list)
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Figure 177. Quicksort speedup on Sandman (sorted list)
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Figure 178. Quicksort performance gains on Sandman (sorted list)

8.2.2.3 Matrix multiplication
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Figure 179. Matriz multiplication speedup on Dunnington (sorted list)
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Figure 180. Matriz multiplication performance gains on Dunnington (sorted list)
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Figure 181. Matriz multiplication speedup on Termi (sorted list)
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Figure 182. Matriz multiplication performance gains on Termi (sorted list)
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Figure 183. Strassen speedup on Dunnington (sorted list)
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Figure 184. Strassen performance gains on Dunnington (sorted list)
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Figure 185. Strassen speedup on Termi (sorted list)
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Figure 186. Strassen performance gains on Termi (sorted list)
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Figure 187. Strassen speedup on Sandman (sorted list)
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Figure 188. Strassen performance gains on Sandman (sorted list)
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8.2.2.5 Blackscholes
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Figure 189. Blackscholes speedup on Dunnington (sorted list)
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Figure 190. Blackscholes performance gains on Dunnington (sorted list)
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Figure 191. Blackscholes speedup on Termi (sorted list)
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Figure 192. Blackscholes peformance gains on Termi (sorted list)
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Figure 193. Blackscholes speedup on Sandman (sorted list)
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Figure 19/. Blackscholes performance gains on Sandman (sorted list)
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8.2.2.6 Swaptions
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Figure 195. Swaptions speedup on Dunnington (sorted list)
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Figure 196. Swaptions performance gains on Dunnington (sorted list)
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Figure 197. Swaptions speedup on Termi (sorted list)
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Figure 198. Swaptions performance gains on Termi (sorted list)
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Figure 199. Swaptions speedup on Sandman (sorted list)
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Figure 200. Swaptions performance gains on Sandman (sorted list)
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